text
stringlengths
8
1.72M
id
stringlengths
22
143
metadata
dict
__index_level_0__
int64
0
104
from promptflow import tool @tool def passthrough_dict(image_list: list, image_dict: dict): return image_dict
promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_composite_image/passthrough_dict.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_composite_image/passthrough_dict.py", "repo_id": "promptflow", "token_count": 38 }
78
import random from promptflow.contracts.multimedia import Image from promptflow import tool @tool def pick_an_image(image_1: Image, image_2: Image) -> Image: if random.choice([True, False]): return image_1 else: return image_2
promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_simple_image/pick_an_image.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_with_simple_image/pick_an_image.py", "repo_id": "promptflow", "token_count": 93 }
79
inputs: text: type: string default: dummy_input outputs: output_prompt: type: string reference: ${sync_fail.output} nodes: - name: sync_fail type: python source: type: code path: sync_fail.py inputs: s: ${inputs.text}
promptflow/src/promptflow/tests/test_configs/flows/sync_tools_failures/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/sync_tools_failures/flow.dag.yaml", "repo_id": "promptflow", "token_count": 109 }
80
[ { "url": "https://www.microsoft.com/en-us/d/xbox-wireless-controller-stellar-shift-special-edition/94fbjc7h0h6h" }, { "url": "https://www.microsoft.com/en-us/windows/" } ]
promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_exception/samples.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/web_classification_with_exception/samples.json", "repo_id": "promptflow", "token_count": 86 }
81
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.046' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.085' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.122' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.145' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:06:13 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/simple_eager_flow_data.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '25' content-md5: - zt1zN1V/HR5p7N0Sh5396w== content-type: - application/octet-stream last-modified: - Tue, 23 Jan 2024 06:27:00 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 23 Jan 2024 06:26:59 GMT x-ms-meta-name: - 1e376ce4-7c3b-4683-82ad-412f5cd23626 x-ms-meta-upload_status: - completed x-ms-meta-version: - 7e65351c-7e4b-4a4d-90f8-304eacdc36bc x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:06:16 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/simple_eager_flow_data.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.136' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.0 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.116' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:06:19 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/simple_with_req/entry.py response: body: string: '' headers: accept-ranges: - bytes content-length: - '331' content-md5: - bf0G3F/eNgZO8UPfGebSUQ== content-type: - application/octet-stream last-modified: - Thu, 25 Jan 2024 08:57:55 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 25 Jan 2024 08:57:54 GMT x-ms-meta-name: - c42d946f-2978-4455-8a89-b768c66a9277 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.11.5 (Windows-10-10.0.22621-SP0) x-ms-date: - Thu, 25 Jan 2024 09:06:23 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/simple_with_req/entry.py response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/simple_with_req/flow.dag.yaml", "runId": "name", "runDisplayName": "name", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/simple_eager_flow_data.jsonl"}, "inputsMapping": {}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '791' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '6.962' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d06599ce-0829-42a7-a641-370cd112bc25", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.256' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d06599ce-0829-42a7-a641-370cd112bc25", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.369' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d06599ce-0829-42a7-a641-370cd112bc25", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.195' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d06599ce-0829-42a7-a641-370cd112bc25", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.154' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d06599ce-0829-42a7-a641-370cd112bc25", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.413' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/childRuns?endIndex=24&startIndex=0 response: body: string: '[{"run_id": "name_0", "status": "Completed", "error": null, "inputs": {"input_val": "input1"}, "output": {"output": "Hello world! input1"}, "metrics": null, "request": null, "parent_run_id": "name", "root_run_id": "name", "source_run_id": null, "flow_id": "default_flow_id", "start_time": "2024-01-25T09:06:53.027652Z", "end_time": "2024-01-25T09:06:53.029602Z", "index": 0, "api_calls": [{"name": "my_flow", "type": "Function", "inputs": {"input_val": "input1"}, "output": "Hello world! input1", "start_time": 1706173613.028362, "end_time": 1706173613.029179, "error": null, "children": [], "node_name": null, "parent_id": "", "id": "8f02508e-dc43-4e37-a697-78946dcf2c03"}], "variant_id": "", "name": "", "description": "", "tags": null, "system_metrics": {"duration": 0.00195}, "result": {"output": "Hello world! input1"}, "upload_metrics": false}]' headers: connection: - keep-alive content-length: - '877' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.905' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/childRuns?endIndex=49&startIndex=25 response: body: string: '[]' headers: connection: - keep-alive content-length: - '2' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '0.675' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/name/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "automatic", "inputsMapping": {}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "d06599ce-0829-42a7-a641-370cd112bc25", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '1028' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.417' status: code: 200 message: OK - request: body: '{}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '2' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/metric/v2.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/runs/name/lastvalues response: body: string: '{"value": [{"dataContainerId": "dcid.name", "name": "__pf__.lines.completed", "columns": {"__pf__.lines.completed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "3b56e572-949e-4cdf-9691-3fd55fe5470a", "createdUtc": "2024-01-25T09:06:55.178+00:00", "step": 0, "data": {"__pf__.lines.completed": 1.0}}]}, {"dataContainerId": "dcid.name", "name": "__pf__.lines.failed", "columns": {"__pf__.lines.failed": "Double"}, "properties": {"uxMetricType": "azureml.v1.scalar", "dataLocation": null}, "namespace": null, "standardSchemaId": null, "value": [{"metricId": "1b966973-ccb1-450f-82d8-cf17745b01b3", "createdUtc": "2024-01-25T09:06:55.662+00:00", "step": 0, "data": {"__pf__.lines.failed": 0.0}}]}]}' headers: connection: - keep-alive content-length: - '1240' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '1.547' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1706173599, "rootRunId": "name", "createdUtc": "2024-01-25T09:06:39.0044382+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 6, "statusRevision": 3, "runUuid": "7db32729-6b4a-426b-9d8a-daf8cf60ba28", "parentRunUuid": null, "rootRunUuid": "7db32729-6b4a-426b-9d8a-daf8cf60ba28", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:08.3010965", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": "100320005227D154", "userIdp": null, "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "Han Wang", "upn": "[email protected]"}, "lastModifiedUtc": "2024-01-25T09:06:56.1006972+00:00", "duration": "00:00:08.3010965", "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "64465848-e4a8-42a2-a617-d7f0fcda6f32", "status": "Completed", "startTimeUtc": "2024-01-25T09:06:48.6457164+00:00", "endTimeUtc": "2024-01-25T09:06:56.9468129+00:00", "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": null}, "properties": {"azureml.promptflow.runtime_name": "automatic", "azureml.promptflow.runtime_version": "20240116.v1", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.flow_lineage_id": "63d67b0b61e34b0527b5f3c46dfc953854138b2ffebc68175580285dc2d95663", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/79819672296a1785a95c65c8c0e75b0d/simple_with_req/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.session_id": "b905697d9d04e1b8c87c12d30eb37326380d5cfeb7d0500e", "azureml.promptflow.snapshot_id": "d06599ce-0829-42a7-a641-370cd112bc25", "azureml.promptflow.run_mode": "Eager", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4485' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.030' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.11.5 (Windows-10-10.0.22621-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name/logContent response: body: string: '"2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO [name] Receiving v2 bulk run request 393a559d-2afa-4415-ae87-b7ec7966ab02: {\"flow_id\": \"name\", \"flow_run_id\": \"name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"d06599ce-0829-42a7-a641-370cd112bc25\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-25T08%3A48%3A12Z&ske=2024-01-26T16%3A58%3A12Z&sks=b&skv=2019-07-07&st=2024-01-25T08%3A56%3A40Z&se=2024-01-25T17%3A06%3A40Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/e62bc4d5a164939b21d42dd420469da7/simple_eager_flow_data.jsonl\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-25T09%3A06%3A40Z&ske=2024-02-01T09%3A06%3A40Z&sks=b&skv=2019-07-07&se=2024-02-01T09%3A06%3A40Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Runtime version: 20240116.v1. PromptFlow version: 0.0.116642424\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Updating name to Status.Preparing...\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/42871/requests/name\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Get snapshot sas url for d06599ce-0829-42a7-a641-370cd112bc25.\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Snapshot d06599ce-0829-42a7-a641-370cd112bc25 contains 3 files.\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Download snapshot d06599ce-0829-42a7-a641-370cd112bc25 completed.\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/42871/requests/name\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO About to execute a python flow.\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-25 09:06:42 +0000 162 promptflow-runtime INFO Starting to check process 305 status for run name\n2024-01-25 09:06:43 +0000 162 promptflow-runtime INFO Start checking run status for run name\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO [162--305] Start processing flowV2......\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Runtime version: 20240116.v1. PromptFlow version: 0.0.116642424\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-25 09:06:47 +0000 305 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-25 09:06:48 +0000 305 promptflow-runtime INFO Resolve data from url finished in 0.603015494000033 seconds\n2024-01-25 09:06:48 +0000 305 promptflow-runtime INFO Starting the aml run ''name''...\n2024-01-25 09:06:48 +0000 305 execution WARNING Starting run without column mapping may lead to unexpected results. Please consult the following documentation for more information: https://aka.ms/pf/column-mapping\n2024-01-25 09:06:48 +0000 305 execution.bulk INFO Set process count to 1 by taking the minimum value among the factors of {''default_worker_count'': 4, ''row_count'': 1}.\n2024-01-25 09:06:52 +0000 305 execution.bulk INFO Process name(ForkProcess-2:2:1)-Process id(375)-Line number(0) start execution.\n2024-01-25 09:06:53 +0000 305 execution.bulk INFO Process name(ForkProcess-2:2:1)-Process id(375)-Line number(0) completed.\n2024-01-25 09:06:53 +0000 305 execution.bulk INFO Finished 1 / 1 lines.\n2024-01-25 09:06:53 +0000 305 execution.bulk INFO Average execution time for completed lines: 5.0 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-25 09:06:55 +0000 305 promptflow-runtime INFO Post processing batch result...\n2024-01-25 09:06:56 +0000 305 execution.bulk INFO Upload status summary metrics for run name finished in 0.8607595070000116 seconds\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''name''\n2024-01-25 09:06:56 +0000 305 execution.bulk INFO Upload RH properties for run name finished in 0.07683961700001873 seconds\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_debug_info/versions/1\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Creating unregistered output Asset for Run name...\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_name_output_data_flow_outputs/versions/1\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Creating Artifact for Run name...\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Patching name...\n2024-01-25 09:06:56 +0000 305 promptflow-runtime INFO Ending the aml run ''name'' with status ''Completed''...\n"' headers: connection: - keep-alive content-length: - '7934' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.632' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_eager_flow_crud.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_eager_flow_crud.yaml", "repo_id": "promptflow", "token_count": 20704 }
82
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.034' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.127' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory", "name": "workspaceworkingdirectory", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": false, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureFile", "accountName": "fake_account_name", "fileShareName": "fake-file-share-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "None"}, "systemData": {"createdAt": "2023-04-08T02:53:06.6001169+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.2885525+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1161' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.088' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceworkingdirectory/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.178' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:46 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/LocalUpload?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:6129333d-f01a-008a-1530-45563d000000\nTime:2024-01-12T08:20:47.2521286Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:48 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:86b8d942-f01a-0103-4330-4512e5000000\nTime:2024-01-12T08:20:49.4233757Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:49 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:ecf357ab-601a-000e-3630-45243c000000\nTime:2024-01-12T08:20:50.4359042Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:50 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceAlreadyExists</Code><Message>The specified resource already exists.\nRequestId:c3caa163-701a-004f-3930-457cd8000000\nTime:2024-01-12T08:20:51.5247623Z</Message></Error>" headers: content-length: - '228' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceAlreadyExists x-ms-version: - '2023-08-03' status: code: 409 message: The specified resource already exists. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:51 GMT x-ms-version: - '2023-08-03' method: GET uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name?restype=directory response: body: string: "\uFEFF<?xml version=\"1.0\" encoding=\"utf-8\"?><Error><Code>ResourceNotFound</Code><Message>The specified resource does not exist.\nRequestId:2e1ebc56-901a-00a3-7730-456849000000\nTime:2024-01-12T08:20:52.5499479Z</Message></Error>" headers: content-length: - '223' content-type: - application/xml server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-error-code: - ResourceNotFound x-ms-version: - '2023-08-03' status: code: 404 message: The specified resource does not exist. - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:52 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name?restype=directory response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:53 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Directory x-ms-file-change-time: - '2024-01-12T08:20:53.5910056Z' x-ms-file-creation-time: - '2024-01-12T08:20:53.5910056Z' x-ms-file-id: - '13835071872191954944' x-ms-file-last-write-time: - '2024-01-12T08:20:53.5910056Z' x-ms-file-parent-id: - '10088082484072808448' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:53 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - inherit x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users%2Funknown_user%2Fpromptflow%2Fflow_name%2F__pycache__?restype=directory response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:54 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Directory x-ms-file-change-time: - '2024-01-12T08:20:54.6393991Z' x-ms-file-creation-time: - '2024-01-12T08:20:54.6393991Z' x-ms-file-id: - '13835142240936132608' x-ms-file-last-write-time: - '2024-01-12T08:20:54.6393991Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '14' x-ms-date: - Fri, 12 Jan 2024 08:20:54 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/.gitattributes response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:55 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:55.6877941Z' x-ms-file-creation-time: - '2024-01-12T08:20:55.6877941Z' x-ms-file-id: - '13835107056564043776' x-ms-file-last-write-time: - '2024-01-12T08:20:55.6877941Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: '* text eol=lf ' headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '14' Content-MD5: - nYmkCopuDuFj82431amzZw== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:55 GMT x-ms-range: - bytes=0-13 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/.gitattributes?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - nYmkCopuDuFj82431amzZw== last-modified: - Fri, 12 Jan 2024 08:20:56 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T08:20:56.7202574Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '250' x-ms-date: - Fri, 12 Jan 2024 08:20:56 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:57 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-creation-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-id: - '13835177425308221440' x-ms-file-last-write-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: "inputs:\n name:\n type: string\n default: hod\noutputs:\n result:\n \ type: string\n reference: ${hello_world.output}\nnodes:\n- name: hello_world\n \ type: python\n source:\n type: code\n path: hello_world.py\n inputs:\n \ name: ${inputs.name}\n" headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '250' Content-MD5: - CT1FTZp5JScB8fq+HjnINw== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:57 GMT x-ms-range: - bytes=0-249 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - CT1FTZp5JScB8fq+HjnINw== last-modified: - Fri, 12 Jan 2024 08:20:58 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T08:20:58.8299884Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-content-length: - '105' x-ms-date: - Fri, 12 Jan 2024 08:20:58 GMT x-ms-file-attributes: - none x-ms-file-creation-time: - now x-ms-file-last-write-time: - now x-ms-file-permission: - Inherit x-ms-type: - file x-ms-version: - '2023-08-03' method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/hello_world.py response: body: string: '' headers: content-length: - '0' last-modified: - Fri, 12 Jan 2024 08:20:59 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:59.8445310Z' x-ms-file-creation-time: - '2024-01-12T08:20:59.8445310Z' x-ms-file-id: - '13835089464377999360' x-ms-file-last-write-time: - '2024-01-12T08:20:59.8445310Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: "from promptflow import tool\n\n\n@tool\ndef hello_world(name: str) -> str:\n \ return f\"Hello World {name}!\"\n" headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '105' Content-MD5: - fGMkkiZAjGs8PW/AMiYppA== Content-Type: - application/octet-stream User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:20:59 GMT x-ms-range: - bytes=0-104 x-ms-version: - '2023-08-03' x-ms-write: - update method: PUT uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/hello_world.py?comp=range response: body: string: '' headers: content-length: - '0' content-md5: - fGMkkiZAjGs8PW/AMiYppA== last-modified: - Fri, 12 Jan 2024 08:21:00 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-last-write-time: - '2024-01-12T08:21:00.8660433Z' x-ms-request-server-encrypted: - 'true' x-ms-version: - '2023-08-03' status: code: 201 message: Created - request: body: '{"flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml", "flowType": "default"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '282' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/Flows response: body: string: '{"eTag": {}, "studioPortalEndpoint": "https://ml.azure.com/prompts/flow/3e123da1-f9a5-4c91-9234-8d9ffbb39ff5/f3886259-e2d7-4acc-880a-69cd2ed547cc/details?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "flowId": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "flowName": "flow_display_name", "description": "test flow description", "tags": {"owner": "sdk-test"}, "flowType": "Default", "experimentId": "00000000-0000-0000-0000-000000000000", "createdDate": "2024-01-12T08:21:03.4561663Z", "lastModifiedDate": "2024-01-12T08:21:03.456185Z", "owner": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587"}, "flowResourceId": "azureml://locations/eastus/workspaces/00000/flows/f3886259-e2d7-4acc-880a-69cd2ed547cc", "isArchived": false, "flowDefinitionFilePath": "Users/unknown_user/promptflow/flow_name/flow.dag.yaml"}' headers: connection: - keep-alive content-length: - '1099' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.560' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-file-share/12.14.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:21:03 GMT x-ms-version: - '2023-08-03' method: HEAD uri: https://fake_account_name.file.core.windows.net/fake-file-share-name/Users/unknown_user/promptflow/flow_name/flow.dag.yaml response: body: string: '' headers: content-length: - '250' content-type: - application/octet-stream last-modified: - Fri, 12 Jan 2024 08:20:58 GMT server: - Windows-Azure-File/1.0 Microsoft-HTTPAPI/2.0 x-ms-file-attributes: - Archive x-ms-file-change-time: - '2024-01-12T08:20:58.8299884Z' x-ms-file-creation-time: - '2024-01-12T08:20:57.7935437Z' x-ms-file-id: - '13835177425308221440' x-ms-file-last-write-time: - '2024-01-12T08:20:58.8299884Z' x-ms-file-parent-id: - '13835071872191954944' x-ms-type: - File x-ms-version: - '2023-08-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.144' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.206' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:21:07 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/simple_hello_world.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '22' content-md5: - SaVvJK8fXJzgPgQkmSaCGA== content-type: - application/octet-stream last-modified: - Thu, 23 Nov 2023 12:11:21 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Thu, 23 Nov 2023 12:11:20 GMT x-ms-meta-name: - 74c8f1fa-9e14-4249-8fec-279efedeb400 x-ms-meta-upload_status: - completed x-ms-meta-version: - 2266d840-3ecd-4a91-9e63-8d57e7b0a62e x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:21:08 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/simple_hello_world.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionResourceId": "azureml://locations/fake-region/workspaces/00000/flows/00000000-0000-0000-0000-000000000000/", "runId": "name", "runDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/simple_hello_world.jsonl"}, "inputsMapping": {"name": "${data.name}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '727' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '7.332' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/f3886259-e2d7-4acc-880a-69cd2ed547cc/flowRuns/name", "flowRunId": "name", "flowRunDisplayName": "name", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/79f088fae0e502653c43146c9682f425/simple_hello_world.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.name}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/f3886259-e2d7-4acc-880a-69cd2ed547cc/name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "5003f634-d7a8-42ec-a7a9-519755b1c1fa", "studioPortalEndpoint": "https://ml.azure.com/runs/name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12944' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.319' status: code: 200 message: OK - request: body: '{"runId": "name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705047673, "rootRunId": "name", "createdUtc": "2024-01-12T08:21:13.4108336+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 3, "statusRevision": 1, "runUuid": "726be460-9edf-49d2-a74f-066dc85d64ba", "parentRunUuid": null, "rootRunUuid": "726be460-9edf-49d2-a74f-066dc85d64ba", "lastStartTimeUtc": null, "currentComputeTime": "00:00:00", "computeDuration": null, "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:21:17.8855829+00:00", "duration": null, "cancelationReason": null, "currentAttemptId": 1, "runId": "name", "parentRunId": null, "experimentId": "ea890465-3022-4c1a-b6d8-894897cbe16d", "status": "Preparing", "startTimeUtc": null, "endTimeUtc": null, "scheduleId": null, "displayName": "name", "name": null, "dataContainerId": "dcid.name", "description": null, "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.flow_lineage_id": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.flow_definition_resource_id": "azureml://locations/eastus/workspaces/00000/flows/f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.flow_id": "f3886259-e2d7-4acc-880a-69cd2ed547cc", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/79f088fae0e502653c43146c9682f425/simple_hello_world.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.name}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "5003f634-d7a8-42ec-a7a9-519755b1c1fa"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '3930' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.045' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_bulk_with_remote_flow.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_run_bulk_with_remote_flow.yaml", "repo_id": "promptflow", "token_count": 25860 }
83
interactions: - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000 response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000", "name": "00000", "type": "Microsoft.MachineLearningServices/workspaces", "location": "eastus", "tags": {}, "etag": null, "kind": "Default", "sku": {"name": "Basic", "tier": "Basic"}, "properties": {"discoveryUrl": "https://eastus.api.azureml.ms/discovery"}}' headers: cache-control: - no-cache content-length: - '3630' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.024' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores?count=30&isDefault=true&orderByAsc=false response: body: string: '{"value": [{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}]}' headers: cache-control: - no-cache content-length: - '1372' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.099' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.107' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.169' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:08:21 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: accept-ranges: - bytes content-length: - '379' content-md5: - lI/pz9jzTQ7Td3RHPL7y7w== content-type: - application/octet-stream last-modified: - Mon, 06 Nov 2023 08:30:18 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Mon, 06 Nov 2023 08:30:18 GMT x-ms-meta-name: - 94331215-cf7f-452a-9f1a-1d276bc9b0e4 x-ms-meta-upload_status: - completed x-ms-meta-version: - 3f163752-edb0-4afc-a6f5-b0a670bd7c24 x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:08:22 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/webClassification3.jsonl response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore response: body: string: '{"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore", "name": "workspaceblobstore", "type": "Microsoft.MachineLearningServices/workspaces/datastores", "properties": {"description": null, "tags": null, "properties": null, "isDefault": true, "credentials": {"credentialsType": "AccountKey"}, "intellectualProperty": null, "subscriptionId": "00000000-0000-0000-0000-000000000000", "resourceGroup": "00000", "datastoreType": "AzureBlob", "accountName": "fake_account_name", "containerName": "fake-container-name", "endpoint": "core.windows.net", "protocol": "https", "serviceDataAccessAuthIdentity": "WorkspaceSystemAssignedIdentity"}, "systemData": {"createdAt": "2023-04-08T02:53:06.5886442+00:00", "createdBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "createdByType": "Application", "lastModifiedAt": "2023-04-08T02:53:07.521127+00:00", "lastModifiedBy": "779301c0-18b2-4cdc-801b-a0a3368fee0a", "lastModifiedByType": "Application"}}' headers: cache-control: - no-cache content-length: - '1227' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding,Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.090' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '0' User-Agent: - promptflow-sdk/0.0.1 azure-ai-ml/1.12.1 azsdk-python-mgmt-machinelearningservices/0.1.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://management.azure.com/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/datastores/workspaceblobstore/listSecrets response: body: string: '{"secretsType": "AccountKey", "key": "dGhpcyBpcyBmYWtlIGtleQ=="}' headers: cache-control: - no-cache content-length: - '134' content-type: - application/json; charset=utf-8 expires: - '-1' pragma: - no-cache strict-transport-security: - max-age=31536000; includeSubDomains transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.126' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:08:25 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/LocalUpload/000000000000000000000000000000000000/hello-world/flow.dag.yaml response: body: string: '' headers: accept-ranges: - bytes content-length: - '266' content-md5: - UZm3TyOoKWjSR23+Up6qUA== content-type: - application/octet-stream last-modified: - Tue, 19 Dec 2023 06:05:25 GMT server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 vary: - Origin x-ms-blob-type: - BlockBlob x-ms-creation-time: - Tue, 19 Dec 2023 06:05:25 GMT x-ms-meta-name: - 7b68bf5e-6ef4-4eb3-9f49-28f9a5baad87 x-ms-meta-upload_status: - completed x-ms-meta-version: - '1' x-ms-version: - '2023-11-03' status: code: 200 message: OK - request: body: null headers: Accept: - application/xml Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - azsdk-python-storage-blob/12.19.0 Python/3.10.13 (Windows-10-10.0.22631-SP0) x-ms-date: - Fri, 12 Jan 2024 08:08:26 GMT x-ms-version: - '2023-11-03' method: HEAD uri: https://fake_account_name.blob.core.windows.net/fake-container-name/az-ml-artifacts/000000000000000000000000000000000000/hello-world/flow.dag.yaml response: body: string: '' headers: server: - Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 transfer-encoding: - chunked vary: - Origin x-ms-error-code: - BlobNotFound x-ms-version: - '2023-11-03' status: code: 404 message: The specified blob does not exist. - request: body: '{"flowDefinitionDataStoreName": "workspaceblobstore", "flowDefinitionBlobPath": "LocalUpload/000000000000000000000000000000000000/hello-world/flow.dag.yaml", "runId": "batch_run_name", "runDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "runExperimentName": "", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/000000000000000000000000000000000000/webClassification3.jsonl"}, "inputsMapping": {"name": "${data.url}"}, "connections": {}, "environmentVariables": {}, "runtimeName": "fake-runtime-name", "sessionId": "000000000000000000000000000000000000000000000000", "sessionSetupMode": "SystemWait", "flowLineageId": "0000000000000000000000000000000000000000000000000000000000000000", "runDisplayNameGenerationType": "UserProvidedMacro"}' headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '812' Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: POST uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/submit response: body: string: '"batch_run_name"' headers: connection: - keep-alive content-length: - '38' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload x-content-type-options: - nosniff x-request-time: - '7.455' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "477088e3-9e08-439c-a5ec-266ca0d49abc", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.422' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "477088e3-9e08-439c-a5ec-266ca0d49abc", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.359' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "477088e3-9e08-439c-a5ec-266ca0d49abc", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.425' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "477088e3-9e08-439c-a5ec-266ca0d49abc", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.452' status: code: 200 message: OK - request: body: '{"displayName": "test_display_name_test_mark", "description": "test_description_test_mark", "tags": {"test_tag": "test_mark"}}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '207' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: PATCH uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/runs/batch_run_name/modify response: body: string: '{"runNumber": 1705046913, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T08:08:33.1182665+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "e04b700a-c607-479f-bf48-2ee2e2da3961", "parentRunUuid": null, "rootRunUuid": "e04b700a-c607-479f-bf48-2ee2e2da3961", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:04.0069699", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:09:13.903583+00:00", "duration": "00:00:04.0069699", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "00000000-0000-0000-0000-000000000000", "status": "Completed", "startTimeUtc": "2024-01-12T08:08:50.7845738+00:00", "endTimeUtc": "2024-01-12T08:08:54.7915437+00:00", "scheduleId": null, "displayName": "test_display_name_test_mark", "name": null, "dataContainerId": "dcid.batch_run_name", "description": "test_description_test_mark", "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "bee356189f7e7f18671a79369c78df4cfb1bbd0c99069074", "azureml.promptflow.flow_lineage_id": "f7ee724d91e4f4a7501bdc0b66995bc8b57f86b3a526fa2a81c34ebcccbbd912", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/36774154bc3ecde4aa21054b3052221f/hello-world/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "477088e3-9e08-439c-a5ec-266ca0d49abc", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {"test_tag": "test_mark"}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}' headers: connection: - keep-alive content-length: - '3985' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.310' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "477088e3-9e08-439c-a5ec-266ca0d49abc", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.479' status: code: 200 message: OK - request: body: '{}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '2' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: PATCH uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/runs/batch_run_name/modify response: body: string: '{"runNumber": 1705046913, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T08:08:33.1182665+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "e04b700a-c607-479f-bf48-2ee2e2da3961", "parentRunUuid": null, "rootRunUuid": "e04b700a-c607-479f-bf48-2ee2e2da3961", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:04.0069699", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:09:24.2248797+00:00", "duration": "00:00:04.0069699", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "00000000-0000-0000-0000-000000000000", "status": "Completed", "startTimeUtc": "2024-01-12T08:08:50.7845738+00:00", "endTimeUtc": "2024-01-12T08:08:54.7915437+00:00", "scheduleId": null, "displayName": "test_display_name_test_mark", "name": null, "dataContainerId": "dcid.batch_run_name", "description": "test_description_test_mark", "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "bee356189f7e7f18671a79369c78df4cfb1bbd0c99069074", "azureml.promptflow.flow_lineage_id": "f7ee724d91e4f4a7501bdc0b66995bc8b57f86b3a526fa2a81c34ebcccbbd912", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/36774154bc3ecde4aa21054b3052221f/hello-world/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "477088e3-9e08-439c-a5ec-266ca0d49abc", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {"test_tag": "test_mark"}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": null}' headers: connection: - keep-alive content-length: - '3986' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.073' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name response: body: string: '{"flowGraph": {"nodes": [{"name": "hello_world", "type": "python", "source": {"type": "code", "path": "hello_world.py"}, "inputs": {"name": "${inputs.name}"}, "tool": "hello_world.py", "reduce": false}], "tools": [{"name": "Content Safety (Text Analyze)", "type": "python", "inputs": {"connection": {"type": ["AzureContentSafetyConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "hate_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "self_harm_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "sexual_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "violence_category": {"type": ["string"], "default": "medium_sensitivity", "enum": ["disable", "low_sensitivity", "medium_sensitivity", "high_sensitivity"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Azure Content Safety to detect harmful content.", "module": "promptflow.tools.azure_content_safety", "function": "analyze_text", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "deprecated_tools": ["content_safety_text.tools.content_safety_text_tool.analyze_text"], "tool_state": "stable"}, {"name": "Embedding", "type": "python", "inputs": {"connection": {"type": ["AzureOpenAIConnection", "OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["AzureOpenAIConnection"], "model_list": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "capabilities": {"completion": false, "chat_completion": false, "embeddings": true}, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "input": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["text-embedding-ada-002", "text-search-ada-doc-001", "text-search-ada-query-001"], "enabled_by": "connection", "enabled_by_type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Open AI''s embedding model to create an embedding vector representing the input text.", "module": "promptflow.tools.embedding", "function": "embedding", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Open Source LLM", "type": "custom_llm", "inputs": {"api": {"type": ["string"], "enum": ["chat", "completion"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CustomConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "deployment_name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "endpoint_name": {"type": ["string"], "default": "-- please enter an endpoint name --", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_new_tokens": {"type": ["int"], "default": 500, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model_kwargs": {"type": ["object"], "default": "{}", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}, "temperature": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1.0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default", "advanced": true}}, "description": "Use an Open Source model from the Azure Model catalog, deployed to an AzureML Online Endpoint for LLM Chat or Completion API calls.", "module": "promptflow.tools.open_source_llm", "class_name": "OpenSourceLLM", "function": "call", "icon": "", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "OpenAI GPT-4V", "type": "custom_llm", "inputs": {"connection": {"type": ["OpenAIConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "frequency_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "max_tokens": {"type": ["int"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "model": {"type": ["string"], "enum": ["gpt-4-vision-preview"], "allow_manual_entry": true, "is_multi_select": false, "input_type": "default"}, "presence_penalty": {"type": ["double"], "default": 0, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "stop": {"type": ["list"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "temperature": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_p": {"type": ["double"], "default": 1, "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use OpenAI GPT-4V to leverage vision ability.", "module": "promptflow.tools.openai_gpt4v", "class_name": "OpenAI", "function": "chat", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "default_prompt": "# system:\nAs an AI assistant, your task involves interpreting images and responding to questions about the image.\nRemember to provide accurate answers based on the information present in the image.\n\n# user:\nCan you tell me what the image depicts?\n![image]({{image_input}})\n", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Serp API", "type": "python", "inputs": {"connection": {"type": ["SerpConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "engine": {"type": ["string"], "default": "google", "enum": ["google", "bing"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "location": {"type": ["string"], "default": "", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "num": {"type": ["int"], "default": "10", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "safe": {"type": ["string"], "default": "off", "enum": ["active", "off"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Use Serp API to obtain search results from a specific search engine.", "module": "promptflow.tools.serpapi", "class_name": "SerpAPI", "function": "search", "is_builtin": true, "package": "promptflow-tools", "package_version": "0.0.216", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Faiss Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from the FAISS index file.", "module": "promptflow_vectordb.tool.faiss_index_lookup", "class_name": "FaissIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector DB Lookup", "type": "python", "inputs": {"class_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "collection_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "connection": {"type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "index_name": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_filters": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "search_params": {"type": ["object"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "text_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection", "QdrantConnection", "WeaviateConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector": {"type": ["list"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "vector_field": {"type": ["string"], "enabled_by": "connection", "enabled_by_type": ["CognitiveSearchConnection"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search vector based query from existing Vector Database.", "module": "promptflow_vectordb.tool.vector_db_lookup", "class_name": "VectorDBLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "Vector Index Lookup", "type": "python", "inputs": {"path": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "query": {"type": ["object"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}, "top_k": {"type": ["int"], "default": "3", "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "description": "Search text or vector based query from AzureML Vector Index.", "module": "promptflow_vectordb.tool.vector_index_lookup", "class_name": "VectorIndexLookup", "function": "search", "is_builtin": true, "package": "promptflow-vectordb", "package_version": "0.0.1", "enable_kwargs": false, "tool_state": "stable"}, {"name": "hello_world.py", "type": "python", "inputs": {"name": {"type": ["string"], "allow_manual_entry": false, "is_multi_select": false, "input_type": "default"}}, "source": "hello_world.py", "function": "hello_world", "is_builtin": false, "enable_kwargs": false, "tool_state": "stable"}], "inputs": {"name": {"type": "string", "default": "hod", "is_chat_input": false}}, "outputs": {"result": {"type": "string", "reference": "${hello_world.output}", "evaluation_only": false, "is_chat_output": false}}}, "flowRunResourceId": "azureml://locations/eastus/workspaces/00000/flows/batch_run_name/flowRuns/batch_run_name", "flowRunId": "batch_run_name", "flowRunDisplayName": "sdk-cli-test-fixture-batch-run-without-llm", "batchDataInput": {"dataUri": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl"}, "flowRunType": "FlowRun", "flowType": "Default", "runtimeName": "test-runtime-ci", "inputsMapping": {"name": "${data.url}"}, "outputDatastoreName": "workspaceblobstore", "childRunBasePath": "promptflow/PromptFlowArtifacts/batch_run_name/flow_artifacts", "flowDagFileRelativePath": "flow.dag.yaml", "flowSnapshotId": "477088e3-9e08-439c-a5ec-266ca0d49abc", "studioPortalEndpoint": "https://ml.azure.com/runs/batch_run_name?wsid=/subscriptions/00000000-0000-0000-0000-000000000000/resourcegroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000"}' headers: connection: - keep-alive content-length: - '12912' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.486' status: code: 200 message: OK - request: body: '{"runId": "batch_run_name", "selectRunMetadata": true, "selectRunDefinition": true, "selectJobSpecification": true}' headers: Accept: - '*/*' Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Length: - '137' Content-Type: - application/json User-Agent: - python-requests/2.31.0 method: POST uri: https://eastus.api.azureml.ms/history/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/rundata response: body: string: '{"runMetadata": {"runNumber": 1705046913, "rootRunId": "batch_run_name", "createdUtc": "2024-01-12T08:08:33.1182665+00:00", "createdBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "userId": "00000000-0000-0000-0000-000000000000", "token": null, "tokenExpiryTimeUtc": null, "error": null, "warnings": null, "revision": 7, "statusRevision": 3, "runUuid": "e04b700a-c607-479f-bf48-2ee2e2da3961", "parentRunUuid": null, "rootRunUuid": "e04b700a-c607-479f-bf48-2ee2e2da3961", "lastStartTimeUtc": null, "currentComputeTime": null, "computeDuration": "00:00:04.0069699", "effectiveStartTimeUtc": null, "lastModifiedBy": {"userObjectId": "00000000-0000-0000-0000-000000000000", "userPuId": null, "userIdp": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userAltSecId": null, "userIss": "https://sts.windows.net/00000000-0000-0000-0000-000000000000/", "userTenantId": "00000000-0000-0000-0000-000000000000", "userName": "4cbd0e2e-aae4-4099-b4ba-94d3a4910587", "upn": null}, "lastModifiedUtc": "2024-01-12T08:09:13.903583+00:00", "duration": "00:00:04.0069699", "cancelationReason": null, "currentAttemptId": 1, "runId": "batch_run_name", "parentRunId": null, "experimentId": "b1e733a1-2a5f-4c17-bc34-4d66d2858228", "status": "Completed", "startTimeUtc": "2024-01-12T08:08:50.7845738+00:00", "endTimeUtc": "2024-01-12T08:08:54.7915437+00:00", "scheduleId": null, "displayName": "test_display_name_test_mark", "name": null, "dataContainerId": "dcid.batch_run_name", "description": "test_description_test_mark", "hidden": false, "runType": "azureml.promptflow.FlowRun", "runTypeV2": {"orchestrator": null, "traits": [], "attribution": "PromptFlow", "computeType": "AmlcDsi"}, "properties": {"azureml.promptflow.runtime_name": "test-runtime-ci", "azureml.promptflow.runtime_version": "20231204.v4", "azureml.promptflow.definition_file_name": "flow.dag.yaml", "azureml.promptflow.session_id": "bee356189f7e7f18671a79369c78df4cfb1bbd0c99069074", "azureml.promptflow.flow_lineage_id": "f7ee724d91e4f4a7501bdc0b66995bc8b57f86b3a526fa2a81c34ebcccbbd912", "azureml.promptflow.flow_definition_datastore_name": "workspaceblobstore", "azureml.promptflow.flow_definition_blob_path": "LocalUpload/36774154bc3ecde4aa21054b3052221f/hello-world/flow.dag.yaml", "azureml.promptflow.input_data": "azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl", "azureml.promptflow.inputs_mapping": "{\"name\":\"${data.url}\"}", "_azureml.evaluation_run": "promptflow.BatchRun", "azureml.promptflow.snapshot_id": "477088e3-9e08-439c-a5ec-266ca0d49abc", "azureml.promptflow.total_tokens": "0", "_azureml.evaluate_artifacts": "[{\"path\": \"instance_results.jsonl\", \"type\": \"table\"}]"}, "parameters": {}, "actionUris": {}, "scriptName": null, "target": null, "uniqueChildRunComputeTargets": [], "tags": {"test_tag": "test_mark"}, "settings": {}, "services": {}, "inputDatasets": [], "outputDatasets": [], "runDefinition": null, "jobSpecification": null, "primaryMetricName": null, "createdFrom": null, "cancelUri": null, "completeUri": null, "diagnosticsUri": null, "computeRequest": null, "compute": null, "retainForLifetimeOfWorkspace": false, "queueingInfo": null, "inputs": null, "outputs": {"debug_info": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1", "type": "UriFolder"}, "flow_outputs": {"assetId": "azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1", "type": "UriFolder"}}}, "runDefinition": null, "jobSpecification": null, "systemSettings": null}' headers: connection: - keep-alive content-length: - '4773' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.045' status: code: 200 message: OK - request: body: null headers: Accept: - application/json Accept-Encoding: - gzip, deflate Connection: - keep-alive Content-Type: - application/json User-Agent: - promptflow-sdk/0.0.1 azsdk-python-azuremachinelearningdesignerserviceclient/unknown Python/3.10.13 (Windows-10-10.0.22631-SP0) method: GET uri: https://eastus.api.azureml.ms/flow/api/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/00000/BulkRuns/batch_run_name/logContent response: body: string: '"2024-01-12 08:08:37 +0000 78 promptflow-runtime INFO [batch_run_name] Receiving v2 bulk run request e934a20c-24c4-4d15-a844-2f2cb1cba4db: {\"flow_id\": \"batch_run_name\", \"flow_run_id\": \"batch_run_name\", \"flow_source\": {\"flow_source_type\": 1, \"flow_source_info\": {\"snapshot_id\": \"477088e3-9e08-439c-a5ec-266ca0d49abc\"}, \"flow_dag_file\": \"flow.dag.yaml\"}, \"log_path\": \"https://promptfloweast4063704120.blob.core.windows.net/azureml/ExperimentRun/dcid.batch_run_name/logs/azureml/executionlogs.txt?sv=2019-07-07&sr=b&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T07%3A43%3A15Z&ske=2024-01-13T15%3A53%3A15Z&sks=b&skv=2019-07-07&st=2024-01-12T07%3A58%3A37Z&se=2024-01-12T16%3A08%3A37Z&sp=rcw\", \"app_insights_instrumentation_key\": \"InstrumentationKey=**data_scrubbed**;IngestionEndpoint=https://eastus-6.in.applicationinsights.azure.com/;LiveEndpoint=https://eastus.livediagnostics.monitor.azure.com/\", \"data_inputs\": {\"data\": \"azureml://datastores/workspaceblobstore/paths/LocalUpload/74c11bba717480b2d6b04b8e746d09d7/webClassification3.jsonl\"}, \"inputs_mapping\": {\"name\": \"${data.url}\"}, \"azure_storage_setting\": {\"azure_storage_mode\": 1, \"storage_account_name\": \"promptfloweast4063704120\", \"blob_container_name\": \"azureml-blobstore-3e123da1-f9a5-4c91-9234-8d9ffbb39ff5\", \"flow_artifacts_root_path\": \"promptflow/PromptFlowArtifacts/batch_run_name\", \"blob_container_sas_token\": \"?sv=2019-07-07&sr=c&sig=**data_scrubbed**&skoid=55b92eba-d7c7-4afd-ab76-7bb1cd345283&sktid=00000000-0000-0000-0000-000000000000&skt=2024-01-12T08%3A08%3A37Z&ske=2024-01-19T08%3A08%3A37Z&sks=b&skv=2019-07-07&se=2024-01-19T08%3A08%3A37Z&sp=racwl\", \"output_datastore_name\": \"workspaceblobstore\"}}\n2024-01-12 08:08:38 +0000 78 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:08:38 +0000 78 promptflow-runtime INFO Updating batch_run_name to Status.Preparing...\n2024-01-12 08:08:38 +0000 78 promptflow-runtime INFO Downloading snapshot to /mnt/host/service/app/39415/requests/batch_run_name\n2024-01-12 08:08:38 +0000 78 promptflow-runtime INFO Get snapshot sas url for 477088e3-9e08-439c-a5ec-266ca0d49abc...\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Downloading snapshot 477088e3-9e08-439c-a5ec-266ca0d49abc from uri https://promptfloweast4063704120.blob.core.windows.net/snapshotzips/promptflow-eastus:3e123da1-f9a5-4c91-9234-8d9ffbb39ff5:snapshotzip/477088e3-9e08-439c-a5ec-266ca0d49abc.zip...\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Downloaded file /mnt/host/service/app/39415/requests/batch_run_name/477088e3-9e08-439c-a5ec-266ca0d49abc.zip with size 495 for snapshot 477088e3-9e08-439c-a5ec-266ca0d49abc.\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Download snapshot 477088e3-9e08-439c-a5ec-266ca0d49abc completed.\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Successfully download snapshot to /mnt/host/service/app/39415/requests/batch_run_name\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO About to execute a python flow.\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Use spawn method to start child process.\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Starting to check process 3535 status for run batch_run_name\n2024-01-12 08:08:45 +0000 78 promptflow-runtime INFO Start checking run status for run batch_run_name\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO [78--3535] Start processing flowV2......\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Runtime version: 20231204.v4. PromptFlow version: 1.2.0rc1\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Setting mlflow tracking uri...\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Validating ''AzureML Data Scientist'' user authentication...\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Successfully validated ''AzureML Data Scientist'' user authentication.\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Using AzureMLRunStorageV2\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:08:49 +0000 3535 promptflow-runtime INFO Initialized blob service client for AzureMLRunTracker.\n2024-01-12 08:08:50 +0000 3535 promptflow-runtime INFO Setting mlflow tracking uri to ''azureml://eastus.api.azureml.ms/mlflow/v1.0/subscriptions/00000000-0000-0000-0000-000000000000/resourceGroups/00000/providers/Microsoft.MachineLearningServices/workspaces/promptflow-eastus''\n2024-01-12 08:08:50 +0000 3535 promptflow-runtime INFO Resolve data from url finished in 0.4670193735510111 seconds\n2024-01-12 08:08:50 +0000 3535 promptflow-runtime INFO Starting the aml run ''batch_run_name''...\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Using fork, process count: 3\n2024-01-12 08:08:51 +0000 3582 execution.bulk INFO Process 3582 started.\n2024-01-12 08:08:51 +0000 3587 execution.bulk INFO Process 3587 started.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Process name: ForkProcess-44:3, Process id: 3582, Line number: 0 start execution.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Process name: ForkProcess-44:4, Process id: 3587, Line number: 1 start execution.\n2024-01-12 08:08:51 +0000 3578 execution.bulk INFO Process 3578 started.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Process name: ForkProcess-44:3, Process id: 3582, Line number: 0 completed.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Finished 1 / 3 lines.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Process name: ForkProcess-44:2, Process id: 3578, Line number: 2 start execution.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Average execution time for completed lines: 0.21 seconds. Estimated time for incomplete lines: 0.42 seconds.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Process name: ForkProcess-44:4, Process id: 3587, Line number: 1 completed.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Finished 2 / 3 lines.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Average execution time for completed lines: 0.14 seconds. Estimated time for incomplete lines: 0.14 seconds.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Process name: ForkProcess-44:2, Process id: 3578, Line number: 2 completed.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Finished 3 / 3 lines.\n2024-01-12 08:08:51 +0000 3535 execution.bulk INFO Average execution time for completed lines: 0.11 seconds. Estimated time for incomplete lines: 0.0 seconds.\n2024-01-12 08:08:53 +0000 3535 execution.bulk INFO Upload status summary metrics for run batch_run_name finished in 1.1852441783994436 seconds\n2024-01-12 08:08:53 +0000 3535 promptflow-runtime INFO Successfully write run properties {\"azureml.promptflow.total_tokens\": 0, \"_azureml.evaluate_artifacts\": \"[{\\\"path\\\": \\\"instance_results.jsonl\\\", \\\"type\\\": \\\"table\\\"}]\"} with run id ''batch_run_name''\n2024-01-12 08:08:53 +0000 3535 execution.bulk INFO Upload RH properties for run batch_run_name finished in 0.07909195311367512 seconds\n2024-01-12 08:08:53 +0000 3535 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Created debug_info Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_debug_info/versions/1\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Creating unregistered output Asset for Run batch_run_name...\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Created flow_outputs output Asset: azureml://locations/eastus/workspaces/00000/data/azureml_batch_run_name_output_data_flow_outputs/versions/1\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Creating Artifact for Run batch_run_name...\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Created instance_results.jsonl Artifact.\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Patching batch_run_name...\n2024-01-12 08:08:54 +0000 3535 promptflow-runtime INFO Ending the aml run ''batch_run_name'' with status ''Completed''...\n2024-01-12 08:08:56 +0000 78 promptflow-runtime INFO Process 3535 finished\n2024-01-12 08:08:56 +0000 78 promptflow-runtime INFO [78] Child process finished!\n2024-01-12 08:08:56 +0000 78 promptflow-runtime INFO [batch_run_name] End processing bulk run\n2024-01-12 08:08:56 +0000 78 promptflow-runtime INFO Cleanup working dir /mnt/host/service/app/39415/requests/batch_run_name for bulk run\n"' headers: connection: - keep-alive content-length: - '9817' content-type: - application/json; charset=utf-8 strict-transport-security: - max-age=15724800; includeSubDomains; preload transfer-encoding: - chunked vary: - Accept-Encoding x-content-type-options: - nosniff x-request-time: - '0.527' status: code: 200 message: OK version: 1
promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_update_run.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/recordings/test_run_operations_TestFlowRun_test_update_run.yaml", "repo_id": "promptflow", "token_count": 58301 }
84
name: flow_run_20230629_101205 flow: ../flows/web_classification data: ../datas/webClassification1.jsonl column_mapping: url: "${data.url}" variant: ${summarize_text_content.variant_0} resources: instance_type: Standard_D2 # optional, server default value idle_time_before_shutdown_minutes: 60 #optional, server default value
promptflow/src/promptflow/tests/test_configs/runs/sample_bulk_run_with_resources.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/sample_bulk_run_with_resources.yaml", "repo_id": "promptflow", "token_count": 115 }
85
from enum import Enum from promptflow.entities import InputSetting from promptflow import tool class UserType(str, Enum): STUDENT = "student" TEACHER = "teacher" @tool( name="My Tool with Enabled By Value", description="This is my tool with enabled by value", input_settings={ "teacher_id": InputSetting(enabled_by="user_type", enabled_by_value=[UserType.TEACHER]), "student_id": InputSetting(enabled_by="user_type", enabled_by_value=[UserType.STUDENT]), } ) def my_tool(user_type: UserType, student_id: str = "", teacher_id: str = "") -> str: """This is a dummy function to support enabled by feature. :param user_type: user type, student or teacher. :param student_id: student id. :param teacher_id: teacher id. :return: id of the user. If user_type is student, return student_id. If user_type is teacher, return teacher_id. """ if user_type == UserType.STUDENT: return student_id elif user_type == UserType.TEACHER: return teacher_id else: raise Exception("Invalid user.")
promptflow/src/promptflow/tests/test_configs/tools/tool_with_enabled_by_value.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/tools/tool_with_enabled_by_value.py", "repo_id": "promptflow", "token_count": 396 }
86
inputs: outputs: content: type: string reference: ${divide_num.output} nodes: - name: divide_num type: python source: type: code path: divide_num.py inputs: num: ${divide_num_2.output} - name: divide_num_1 type: python source: type: code path: divide_num.py inputs: num: ${divide_num.output} - name: divide_num_2 type: python source: type: code path: divide_num.py inputs: num: ${divide_num_1.output}
promptflow/src/promptflow/tests/test_configs/wrong_flows/node_circular_dependency/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/node_circular_dependency/flow.dag.yaml", "repo_id": "promptflow", "token_count": 202 }
87
# See https://pre-commit.com for more information # See https://pre-commit.com/hooks.html for more hooks exclude: '(^docs/)|flows|scripts|src/promptflow/promptflow/azure/_restclient/|src/promptflow/tests/test_configs|src/promptflow-tools' repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v3.2.0 hooks: - id: trailing-whitespace - id: end-of-file-fixer - id: check-yaml - id: check-json - id: check-merge-conflict - repo: https://github.com/psf/black rev: 22.3.0 # Replace by any tag/version: https://github.com/psf/black/tags hooks: - id: black language_version: python3 # Should be a command that runs python3.6+ args: - "--line-length=120" - repo: https://github.com/pre-commit/pre-commit-hooks rev: v2.3.0 hooks: - id: flake8 # Temporary disable this since it gets stuck when updating env - repo: https://github.com/streetsidesoftware/cspell-cli rev: v7.3.0 hooks: - id: cspell args: ['--config', '.cspell.json', "--no-must-find-files"] - repo: https://github.com/hadialqattan/pycln rev: v2.1.2 # Possible releases: https://github.com/hadialqattan/pycln/tags hooks: - id: pycln name: "Clean unused python imports" args: [--config=setup.cfg] - repo: https://github.com/pycqa/isort rev: 5.12.0 hooks: - id: isort # stages: [commit] name: isort-python # Use black profile for isort to avoid conflicts # see https://github.com/PyCQA/isort/issues/1518 args: ["--profile", "black", --line-length=120]
promptflow/.pre-commit-config.yaml/0
{ "file_path": "promptflow/.pre-commit-config.yaml", "repo_id": "promptflow", "token_count": 812 }
0
In prompt flow, you can utilize connections to securely manage credentials or secrets for external services. # Connections Connections are for storing information about how to access external services like LLMs: endpoint, api keys etc. - In your local development environment, the connections are persisted in your local machine with keys encrypted. - In Azure AI, connections can be configured to be shared across the entire workspace. Secrets associated with connections are securely persisted in the corresponding Azure Key Vault, adhering to robust security and compliance standards. Prompt flow provides a variety of pre-built connections, including Azure Open AI, Open AI, etc. These pre-built connections enable seamless integration with these resources within the built-in tools. Additionally, you have the flexibility to create custom connection types using key-value pairs, empowering them to tailor the connections to their specific requirements, particularly in Python tools. | Connection type | Built-in tools | | ------------------------------------------------------------ | ------------------------------- | | [Azure Open AI](https://azure.microsoft.com/en-us/products/cognitive-services/openai-service) | LLM or Python | | [Open AI](https://openai.com/) | LLM or Python | | [Cognitive Search](https://azure.microsoft.com/en-us/products/search) | Vector DB Lookup or Python | | [Serp](https://serpapi.com/) | Serp API or Python | | Custom | Python | By leveraging connections in prompt flow, you can easily establish and manage connections to external APIs and data sources, facilitating efficient data exchange and interaction within their AI applications. ## Next steps - [Create connections](../how-to-guides/manage-connections.md)
promptflow/docs/concepts/concept-connections.md/0
{ "file_path": "promptflow/docs/concepts/concept-connections.md", "repo_id": "promptflow", "token_count": 641 }
1
# Develop evaluation flow :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../faq.md#stable-vs-experimental). ::: The evaluation flow is a flow to test/evaluate the quality of your LLM application (standard/chat flow). It usually runs on the outputs of standard/chat flow, and compute key metrics that can be used to determine whether the standard/chat flow performs well. See [Flows](../../concepts/concept-flows.md) for more information. Before proceeding with this document, it is important to have a good understanding of the standard flow. Please make sure you have read [Develop standard flow](./develop-standard-flow.md), since they share many common features and these features won't be repeated in this doc, such as: - `Inputs/Outputs definition` - `Nodes` - `Chain nodes in a flow` While the evaluation flow shares similarities with the standard flow, there are some important differences that set it apart. The main distinctions are as follows: - `Inputs from an existing run`: The evaluation flow contains inputs that are derived from the outputs of the standard/chat flow. These inputs are used for evaluation purposes. - `Aggregation node`: The evaluation flow contains one or more aggregation nodes, where the actual evaluation takes place. These nodes are responsible for computing metrics and determining the performance of the standard/chat flow. ## Evaluation flow example In this guide, we use [eval-classification-accuracy](https://github.com/microsoft/promptflow/tree/main/examples/flows/evaluation/eval-classification-accuracy) flow as an example of the evaluation flow. This is a flow illustrating how to evaluate the performance of a classification flow. It involves comparing each prediction to the groundtruth and assigns a `Correct` or `Incorrect` grade, and aggregating the results to produce metrics such as `accuracy`, which reflects how good the system is at classifying the data. ## Flow inputs The flow `eval-classification-accuracy` contains two inputs: ```yaml inputs: groundtruth: type: string description: Groundtruth of the original question, it's the correct label that you hope your standard flow could predict. default: APP prediction: type: string description: The actual predicted outputs that your flow produces. default: APP ``` As evident from the inputs description, the evaluation flow requires two specific inputs: - `groundtruth`: This input represents the actual or expected values against which the performance of the standard/chat flow will be evaluated. - `prediction`: The prediction input is derived from the outputs of another standard/chat flow. It contains the predicted values generated by the standard/chat flow, which will be compared to the groundtruth values during the evaluation process. From the definition perspective, there is no difference compared with adding an input/output in a `standard/chat flow`. However when running an evaluation flow, you may need to specify the data source from both data file and flow run outputs. For more details please refer to [Run and evaluate a flow](../run-and-evaluate-a-flow/index.md#evaluate-your-flow). ## Aggregation node Before introducing the aggregation node, let's see what a regular node looks like, we use node `grade` in the example flow for instance: ```yaml - name: grade type: python source: type: code path: grade.py inputs: groundtruth: ${inputs.groundtruth} prediction: ${inputs.prediction} ``` It takes both `groundtruth` and `prediction` from the flow inputs, compare them in the source code to see if they match: ```python from promptflow import tool @tool def grade(groundtruth: str, prediction: str): return "Correct" if groundtruth.lower() == prediction.lower() else "Incorrect" ``` When it comes to an `aggregation node`, there are two key distinctions that set it apart from a regular node: 1. It has an attribute `aggregation` set to be `true`. ```yaml - name: calculate_accuracy type: python source: type: code path: calculate_accuracy.py inputs: grades: ${grade.output} aggregation: true # Add this attribute to make it an aggregation node ``` 2. Its source code accepts a `List` type parameter which is a collection of the previous regular node's outputs. ```python from typing import List from promptflow import log_metric, tool @tool def calculate_accuracy(grades: List[str]): result = [] for index in range(len(grades)): grade = grades[index] result.append(grade) # calculate accuracy for each variant accuracy = round((result.count("Correct") / len(result)), 2) log_metric("accuracy", accuracy) return result ``` The parameter `grades` in above function, contains all results that are produced by the regular node `grade`. Assuming the referred standard flow run has 3 outputs: ```json {"prediction": "App"} {"prediction": "Channel"} {"prediction": "Academic"} ``` And we provides a data file like this: ```json {"groundtruth": "App"} {"groundtruth": "Channel"} {"groundtruth": "Wiki"} ``` Then the `grades` value would be `["Correct", "Correct", "Incorrect"]`, and the final accuracy is `0.67`. This example provides a straightforward demonstration of how to evaluate the classification flow. Once you have a solid understanding of the evaluation mechanism, you can customize and design your own evaluation method to suit your specific needs. ### More about the list parameter What if the number of referred standard flow run outputs does not match the provided data file? We know that a standard flow can be executed against multiple line data and some of them could fail while others succeed. Consider the same standard flow run mentioned in above example but the `2nd` line run has failed, thus we have below run outputs: ```json {"prediction": "App"} {"prediction": "Academic"} ``` The promptflow flow executor has the capability to recognize the index of the referred run's outputs and extract the corresponding data from the provided data file. This means that during the execution process, even if the same data file is provided(3 lines), only the specific data mentioned below will be processed: ```json {"groundtruth": "App"} {"groundtruth": "Wiki"} ``` In this case, the `grades` value would be `["Correct", "Incorrect"]` and the accuracy is `0.5`. ### How to set aggregation node in VS Code Extention ![img](../../media/how-to-guides/develop-evaluation-flow/set_aggregation_node_in_vscode.png) ## How to log metrics :::{admonition} Limitation You can only log metrics in an `aggregation node`, otherwise the metric will be ignored. ::: Promptflow supports logging and tracking experiments using `log_metric` function. A metric is a key-value pair that records a single float measure. In a python node, you can log a metric with below code: ```python from typing import List from promptflow import log_metric, tool @tool def example_log_metrics(grades: List[str]): # this node is an aggregation node so it accepts a list of grades metric_key = "accuracy" metric_value = round((grades.count("Correct") / len(result)), 2) log_metric(metric_key, metric_value) ``` After the run is completed, you can run `pf run show-metrics -n <run_name>` to see the metrics. ![img](../../media/how-to-guides/run_show_metrics.png)
promptflow/docs/how-to-guides/develop-a-flow/develop-evaluation-flow.md/0
{ "file_path": "promptflow/docs/how-to-guides/develop-a-flow/develop-evaluation-flow.md", "repo_id": "promptflow", "token_count": 1939 }
2
# How-to Guides Simple and short articles grouped by topics, each introduces a core feature of prompt flow and how you can use it to address your specific use cases. ```{toctree} :maxdepth: 1 develop-a-flow/index init-and-test-a-flow add-conditional-control-to-a-flow run-and-evaluate-a-flow/index tune-prompts-with-variants execute-flow-as-a-function deploy-a-flow/index enable-streaming-mode manage-connections manage-runs set-global-configs develop-a-tool/index process-image-in-flow faq ```
promptflow/docs/how-to-guides/index.md/0
{ "file_path": "promptflow/docs/how-to-guides/index.md", "repo_id": "promptflow", "token_count": 174 }
3
# pf :::{admonition} Experimental feature This is an experimental feature, and may change at any time. Learn [more](../how-to-guides/faq.md#stable-vs-experimental). ::: Manage prompt flow resources with the prompt flow CLI. | Command | Description | |---------------------------------|---------------------------------| | [pf flow](#pf-flow) | Manage flows. | | [pf connection](#pf-connection) | Manage connections. | | [pf run](#pf-run) | Manage runs. | | [pf tool](#pf-tool) | Init or list tools. | | [pf config](#pf-config) | Manage config for current user. | | [pf upgrade](#pf-upgrade) | Upgrade prompt flow CLI. | ## pf flow Manage promptflow flow flows. | Command | Description | | --- | --- | | [pf flow init](#pf-flow-init) | Initialize a prompt flow directory. | | [pf flow test](#pf-flow-test) | Test the prompt flow or flow node. | | [pf flow validate](#pf-flow-validate) | Validate a flow and generate `flow.tools.json` for it. | | [pf flow build](#pf-flow-build) | Build a flow for further sharing or deployment. | | [pf flow serve](#pf-flow-serve) | Serve a flow as an endpoint. | ### pf flow init Initialize a prompt flow directory. ```bash pf flow init [--flow] [--entry] [--function] [--prompt-template] [--type] [--yes] ``` #### Examples Create a flow folder with code, prompts and YAML specification of the flow. ```bash pf flow init --flow <path-to-flow-direcotry> ``` Create an evaluation prompt flow ```bash pf flow init --flow <path-to-flow-direcotry> --type evaluation ``` Create a flow in existing folder ```bash pf flow init --flow <path-to-existing-folder> --entry <entry.py> --function <function-name> --prompt-template <path-to-prompt-template.md> ``` #### Optional Parameters `--flow` The flow name to create. `--entry` The entry file name. `--function` The function name in entry file. `--prompt-template` The prompt template parameter and assignment. `--type` The initialized flow type. accepted value: standard, evaluation, chat `--yes --assume-yes -y` Automatic yes to all prompts; assume 'yes' as answer to all prompts and run non-interactively. ### pf flow test Test the prompt flow or flow node. ```bash pf flow test --flow [--inputs] [--node] [--variant] [--debug] [--interactive] [--verbose] ``` #### Examples Test the flow. ```bash pf flow test --flow <path-to-flow-directory> ``` Test the flow with single line from input file. ```bash pf flow test --flow <path-to-flow-directory> --inputs data_key1=data_val1 data_key2=data_val2 ``` Test the flow with specified variant node. ```bash pf flow test --flow <path-to-flow-directory> --variant '${node_name.variant_name}' ``` Test the single node in the flow. ```bash pf flow test --flow <path-to-flow-directory> --node <node_name> ``` Debug the single node in the flow. ```bash pf flow test --flow <path-to-flow-directory> --node <node_name> --debug ``` Chat in the flow. ```bash pf flow test --flow <path-to-flow-directory> --node <node_name> --interactive ``` #### Required Parameter `--flow` The flow directory to test. #### Optional Parameters `--inputs` Input data for the flow. Example: --inputs data1=data1_val data2=data2_val `--node` The node name in the flow need to be tested. `--variant` Node & variant name in format of ${node_name.variant_name}. `--debug` Debug the single node in the flow. `--interactive` Start a interactive chat session for chat flow. `--verbose` Displays the output for each step in the chat flow. ### pf flow validate Validate the prompt flow and generate a `flow.tools.json` under `.promptflow`. This file is required when using flow as a component in a Azure ML pipeline. ```bash pf flow validate --source [--debug] [--verbose] ``` #### Examples Validate the flow. ```bash pf flow validate --source <path-to-flow> ``` #### Required Parameter `--source` The flow source to validate. ### pf flow build Build a flow for further sharing or deployment. ```bash pf flow build --source --output --format [--variant] [--verbose] [--debug] ``` #### Examples Build a flow as docker, which can be built into Docker image via `docker build`. ```bash pf flow build --source <path-to-flow> --output <output-path> --format docker ``` Build a flow as docker with specific variant. ```bash pf flow build --source <path-to-flow> --output <output-path> --format docker --variant '${node_name.variant_name}' ``` #### Required Parameter `--source` The flow or run source to be used. `--output` The folder to output built flow. Need to be empty or not existed. `--format` The format to build flow into #### Optional Parameters `--variant` Node & variant name in format of ${node_name.variant_name}. `--verbose` Show more details for each step during build. `--debug` Show debug information during build. ### pf flow serve Serving a flow as an endpoint. ```bash pf flow serve --source [--port] [--host] [--environment-variables] [--verbose] [--debug] [--skip-open-browser] ``` #### Examples Serve flow as an endpoint. ```bash pf flow serve --source <path-to-flow> ``` Serve flow as an endpoint with specific port and host. ```bash pf flow serve --source <path-to-flow> --port <port> --host <host> --environment-variables key1="`${my_connection.api_key}`" key2="value2" ``` #### Required Parameter `--source` The flow or run source to be used. #### Optional Parameters `--port` The port on which endpoint to run. `--host` The host of endpoint. `--environment-variables` Environment variables to set by specifying a property path and value. Example: --environment-variable key1="\`${my_connection.api_key}\`" key2="value2". The value reference to connection keys will be resolved to the actual value, and all environment variables specified will be set into `os.environ`. `--verbose` Show more details for each step during serve. `--debug` Show debug information during serve. `--skip-open-browser` Skip opening browser after serve. Store true parameter. ## pf connection Manage prompt flow connections. | Command | Description | | --- | --- | | [pf connection create](#pf-connection-create) | Create a connection. | | [pf connection update](#pf-connection-update) | Update a connection. | | [pf connection show](#pf-connection-show) | Show details of a connection. | | [pf connection list](#pf-connection-list) | List all the connection. | | [pf connection delete](#pf-connection-delete) | Delete a connection. | ### pf connection create Create a connection. ```bash pf connection create --file [--name] [--set] ``` #### Examples Create a connection with YAML file. ```bash pf connection create -f <yaml-filename> ``` Create a connection with YAML file with override. ```bash pf connection create -f <yaml-filename> --set api_key="<api-key>" ``` Create a custom connection with .env file; note that overrides specified by `--set` will be ignored. ```bash pf connection create -f .env --name <name> ``` #### Required Parameter `--file -f` Local path to the YAML file containing the prompt flow connection specification. #### Optional Parameters `--name -n` Name of the connection. `--set` Update an object by specifying a property path and value to set. Example: --set property1.property2=. ### pf connection update Update a connection. ```bash pf connection update --name [--set] ``` #### Example Update a connection. ```bash pf connection update -n <name> --set api_key="<api-key>" ``` #### Required Parameter `--name -n` Name of the connection. #### Optional Parameter `--set` Update an object by specifying a property path and value to set. Example: --set property1.property2=. ### pf connection show Show details of a connection. ```bash pf connection show --name ``` #### Required Parameter `--name -n` Name of the connection. ### pf connection list List all the connection. ```bash pf connection list ``` ### pf connection delete Delete a connection. ```bash pf connection delete --name ``` #### Required Parameter `--name -n` Name of the connection. ## pf run Manage prompt flow runs. | Command | Description | | --- | --- | | [pf run create](#pf-run-create) | Create a run. | | [pf run update](#pf-run-update) | Update a run metadata, including display name, description and tags. | | [pf run stream](#pf-run-stream) | Stream run logs to the console. | | [pf run list](#pf-run-list) | List runs. | | [pf run show](#pf-run-show) | Show details for a run. | | [pf run show-details](#pf-run-show-details) | Preview a run's intput(s) and output(s). | | [pf run show-metrics](#pf-run-show-metrics) | Print run metrics to the console. | | [pf run visualize](#pf-run-visualize) | Visualize a run. | | [pf run archive](#pf-run-archive) | Archive a run. | | [pf run restore](#pf-run-restore) | Restore an archived run. | ### pf run create Create a run. ```bash pf run create [--file] [--flow] [--data] [--column-mapping] [--run] [--variant] [--stream] [--environment-variables] [--connections] [--set] [--source] ``` #### Examples Create a run with YAML file. ```bash pf run create -f <yaml-filename> ``` Create a run with YAML file and replace another data in the YAML file. ```bash pf run create -f <yaml-filename> --data <path-to-new-data-file-relative-to-yaml-file> ``` Create a run from flow directory and reference a run. ```bash pf run create --flow <path-to-flow-directory> --data <path-to-data-file> --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run <run-name> --variant '${summarize_text_content.variant_0}' --stream ``` Create a run from an existing run record folder. ```bash pf run create --source <path-to-run-folder> ``` #### Optional Parameters `--file -f` Local path to the YAML file containing the prompt flow run specification; can be overwritten by other parameters. Reference [here](https://azuremlschemas.azureedge.net/promptflow/latest/Run.schema.json) for YAML schema. `--flow` Local path to the flow directory. If --file is provided, this path should be relative path to the file. `--data` Local path to the data file. If --file is provided, this path should be relative path to the file. `--column-mapping` Inputs column mapping, use `${data.xx}` to refer to data columns, use `${run.inputs.xx}` to refer to referenced run's data columns, and `${run.outputs.xx}` to refer to run outputs columns. `--run` Referenced flow run name. For example, you can run an evaluation flow against an existing run. For example, "pf run create --flow evaluation_flow_dir --run existing_bulk_run". `--variant` Node & variant name in format of `${node_name.variant_name}`. `--stream -s` Indicates whether to stream the run's logs to the console. default value: False `--environment-variables` Environment variables to set by specifying a property path and value. Example: `--environment-variable key1='${my_connection.api_key}' key2='value2'`. The value reference to connection keys will be resolved to the actual value, and all environment variables specified will be set into os.environ. `--connections` Overwrite node level connections with provided value. Example: `--connections node1.connection=test_llm_connection node1.deployment_name=gpt-35-turbo` `--set` Update an object by specifying a property path and value to set. Example: `--set property1.property2=<value>`. `--source` Local path to the existing run record folder. ### pf run update Update a run metadata, including display name, description and tags. ```bash pf run update --name [--set] ``` #### Example Update a run ```bash pf run update -n <name> --set display_name="<display-name>" description="<description>" tags.key="value" ``` #### Required Parameter `--name -n` Name of the run. #### Optional Parameter `--set` Update an object by specifying a property path and value to set. Example: --set property1.property2=. ### pf run stream Stream run logs to the console. ```bash pf run stream --name ``` #### Required Parameter `--name -n` Name of the run. ### pf run list List runs. ```bash pf run list [--all-results] [--archived-only] [--include-archived] [--max-results] ``` #### Optional Parameters `--all-results` Returns all results. default value: False `--archived-only` List archived runs only. default value: False `--include-archived` List archived runs and active runs. default value: False `--max-results -r` Max number of results to return. Default is 50. default value: 50 ### pf run show Show details for a run. ```bash pf run show --name ``` #### Required Parameter `--name -n` Name of the run. ### pf run show-details Preview a run's input(s) and output(s). ```bash pf run show-details --name ``` #### Required Parameter `--name -n` Name of the run. ### pf run show-metrics Print run metrics to the console. ```bash pf run show-metrics --name ``` #### Required Parameter `--name -n` Name of the run. ### pf run visualize Visualize a run in the browser. ```bash pf run visualize --names ``` #### Required Parameter `--names -n` Name of the runs, comma separated. ### pf run archive Archive a run. ```bash pf run archive --name ``` #### Required Parameter `--name -n` Name of the run. ### pf run restore Restore an archived run. ```bash pf run restore --name ``` #### Required Parameter `--name -n` Name of the run. ## pf tool Manage promptflow tools. | Command | Description | | --- | --- | | [pf tool init](#pf-tool-init) | Initialize a tool directory. | | [pf tool list](#pf-tool-list) | List all tools in the environment. | | [pf tool validate](#pf-tool-validate) | Validate tools. | ### pf tool init Initialize a tool directory. ```bash pf tool init [--package] [--tool] [--set] ``` #### Examples Creating a package tool from scratch. ```bash pf tool init --package <package-name> --tool <tool-name> ``` Creating a package tool with extra info. ```bash pf tool init --package <package-name> --tool <tool-name> --set icon=<icon-path> category=<tool-category> tags="{'<key>': '<value>'}" ``` Creating a package tool from scratch. ```bash pf tool init --package <package-name> --tool <tool-name> ``` Creating a python tool from scratch. ```bash pf tool init --tool <tool-name> ``` #### Optional Parameters `--package` The package name to create. `--tool` The tool name to create. `--set` Set extra information about the tool, like category, icon and tags. Example: --set <key>=<value>. ### pf tool list List all tools in the environment. ```bash pf tool list [--flow] ``` #### Examples List all package tool in the environment. ```bash pf tool list ``` List all package tool and code tool in the flow. ```bash pf tool list --flow <path-to-flow-direcotry> ``` #### Optional Parameters `--flow` The flow directory. ### pf tool validate Validate tool. ```bash pf tool validate --source ``` #### Examples Validate single function tool. ```bash pf tool validate -–source <package-name>.<module-name>.<tool-function> ``` Validate all tool in a package tool. ```bash pf tool validate -–source <package-name> ``` Validate tools in a python script. ```bash pf tool validate --source <path-to-tool-script> ``` #### Required Parameter `--source` The tool source to be used. ## pf config Manage config for current user. | Command | Description | |-----------------------------------|--------------------------------------------| | [pf config set](#pf-config-set) | Set prompt flow configs for current user. | | [pf config show](#pf-config-show) | Show prompt flow configs for current user. | ### pf config set Set prompt flow configs for current user, configs will be stored at ~/.promptflow/pf.yaml. ```bash pf config set ``` #### Examples Config connection provider to azure workspace for current user. ```bash pf config set connection.provider="azureml://subscriptions/<your-subscription>/resourceGroups/<your-resourcegroup>/providers/Microsoft.MachineLearningServices/workspaces/<your-workspace>" ``` ### pf config show Show prompt flow configs for current user. ```bash pf config show ``` #### Examples Show prompt flow for current user. ```bash pf config show ``` ## pf upgrade Upgrade prompt flow CLI. | Command | Description | |-----------------------------|-----------------------------| | [pf upgrade](#pf-upgrade) | Upgrade prompt flow CLI. | ### Examples Upgrade prompt flow without prompt and run non-interactively. ```bash pf upgrade --yes ```
promptflow/docs/reference/pf-command-reference.md/0
{ "file_path": "promptflow/docs/reference/pf-command-reference.md", "repo_id": "promptflow", "token_count": 6270 }
4
# Contributing to examples folder Thank you for your interest in contributing to the examples folder. This folder contains a collection of Python notebooks and selected markdown files that demonstrate various usage of this promptflow project. The script will automatically generate a README.md file in the root folder, listing all the notebooks and markdown files with their corresponding workflows. ## Guidelines for notebooks and markdown files in examples folder When creating or modifying a notebook or markdown file, please follow these guidelines: - Each notebook or markdown file should have a clear and descriptive title as the first line - Each notebook or markdown file should have a brief introduction that explains the purpose and scope of the example. For details, please refer to the readme workflow generator manual [README.md](../scripts/readme/README.md) file. - The first sentence of first paragraph of the markdown file is important. The introduction should be concise and informative, and end with a period. - Each notebook file should have a metadata area when the file is opened as a big JSON file. The metadata area may contain the following fields: - `.metadata.description`: (Mandatory) A short description of the example that will be displayed in the README.md file. The description should be concise and informative, and end with a period. - `.metadata.stage`: (Optional) A value that indicates whether the script should skip generating a workflow for this notebook or markdown file. If set to `development`, the script will ignore this file. If set to other values or omitted, the script will generate a workflow for this file. - Each notebook or markdown file should have a clear and logical structure, using appropriate headings, subheadings, comments, and code cells. The code cells should be executable and produce meaningful outputs. - Each notebook or markdown file should follow the [PEP 8](https://peps.python.org/pep-0008/) style guide for Python code, and use consistent and readable variable names, indentation, spacing, and punctuation. - Each notebook or markdown file should include relevant references, citations, and acknowledgements. - If you are contributing to [tutorial](./tutorials/), each notebook or markdown file should declare its dependent resources in its metadata, so that the auto generated workflow can listen to the changes of these resources to avoid unexpected breaking. Resources should be declared with relative path to the repo root, and here are examples for [notebook](./tutorials/get-started/quickstart.ipynb) and [markdown](./tutorials/e2e-development/chat-with-pdf.md). ## Generate workflows, update README.md and submit pull requests To run the readme.py script, you need to have Python 3 installed on your system. You also need to install the required packages by running: ```bash # At this examples folder pip install -r requirements.txt pip install -r dev_requirements.txt ``` Then, you can run the script by: ```bash # At the root of this repository python scripts/readme/readme.py ``` For detailed usage of readme.py, please refer to the readme workflow generator manual [README.md](../scripts/readme/README.md) ### Update [README.md](./README.md) in [examples](./) folder The readme.py script will scan all the notebooks and markdown files in the examples folder, and generate a README.md file in the root folder. The README.md file will contain a table of contents with links to each notebook and markdown file, as well as their descriptions and workflows. ### Generations in the [workflows](../.github/workflows/) folder This contains two parts: * For notebooks, we'll prepare standard workflow running environment to test the notebook to the end. * For markdowns, The workflows are generated by extracting the `bash` cells from markdown file. The workflows will prepare standard workflow running environment and test these cells to the end. The script will also save workflows in the [workflows](../.github/workflows/) folder, where each notebook or markdown file will have a corresponding workflow file with the `.yml` extension. The workflow files can be triggered by creating a new pull request or pushing a new commit to the repository. The workflow will run the notebook or markdown file, and you could check the outputs afterwards. ## Feedback and Support If you have any feedback or need any support regarding this folder, submit an issue on GitHub. We appreciate your contribution and hope you enjoy using our project.
promptflow/examples/CONTRIBUTING.md/0
{ "file_path": "promptflow/examples/CONTRIBUTING.md", "repo_id": "promptflow", "token_count": 1042 }
5
from promptflow import tool from chat_with_pdf.build_index import create_faiss_index @tool def build_index_tool(pdf_path: str) -> str: return create_faiss_index(pdf_path)
promptflow/examples/flows/chat/chat-with-pdf/build_index_tool.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/build_index_tool.py", "repo_id": "promptflow", "token_count": 61 }
6
import os from utils.oai import OAIChat def qna(prompt: str, history: list): max_completion_tokens = int(os.environ.get("MAX_COMPLETION_TOKENS")) chat = OAIChat() stream = chat.stream( messages=history + [{"role": "user", "content": prompt}], max_tokens=max_completion_tokens, ) return stream
promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/qna.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/chat_with_pdf/qna.py", "repo_id": "promptflow", "token_count": 140 }
7
from promptflow import tool from chat_with_pdf.download import download @tool def download_tool(url: str, env_ready_signal: str) -> str: return download(url)
promptflow/examples/flows/chat/chat-with-pdf/download_tool.py/0
{ "file_path": "promptflow/examples/flows/chat/chat-with-pdf/download_tool.py", "repo_id": "promptflow", "token_count": 52 }
8
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: groundtruth: type: string description: Please specify the groundtruth column, which contains the true label to the outputs that your flow produces. default: APP prediction: type: string description: Please specify the prediction column, which contains the predicted outputs that your flow produces. default: APP outputs: grade: type: string reference: ${grade.output} nodes: - name: grade type: python source: type: code path: grade.py inputs: groundtruth: ${inputs.groundtruth} prediction: ${inputs.prediction} - name: calculate_accuracy type: python source: type: code path: calculate_accuracy.py inputs: grades: ${grade.output} aggregation: true environment: python_requirements_txt: requirements.txt
promptflow/examples/flows/evaluation/eval-classification-accuracy/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-classification-accuracy/flow.dag.yaml", "repo_id": "promptflow", "token_count": 297 }
9
user: # Instructions * There are many chatbots that can answer users questions based on the context given from different sources like search results, or snippets from books/papers. They try to understand users's question and then get context by either performing search from search engines, databases or books/papers for relevant content. Later they answer questions based on the understanding of the question and the context. * Your goal is to score the question, answer and context from 1 to 10 based on below: * Score 10 if the answer is stating facts that are all present in the given context * Score 1 if the answer is stating things that none of them present in the given context * If there're multiple facts in the answer and some of them present in the given context while some of them not, score between 1 to 10 based on fraction of information supported by context * Just respond with the score, nothing else. # Real work ## Question {{question}} ## Answer {{answer}} ## Context {{context}} ## Score
promptflow/examples/flows/evaluation/eval-groundedness/gpt_groundedness.md/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-groundedness/gpt_groundedness.md", "repo_id": "promptflow", "token_count": 231 }
10
system: You are an AI assistant. You will be given the definition of an evaluation metric for assessing the quality of an answer in a question-answering task. Your job is to compute an accurate evaluation score using the provided evaluation metric. user: Coherence of an answer is measured by how well all the sentences fit together and sound naturally as a whole. Consider the overall quality of the answer when evaluating coherence. Given the question and answer, score the coherence of answer between one to five stars using the following rating scale: One star: the answer completely lacks coherence Two stars: the answer mostly lacks coherence Three stars: the answer is partially coherent Four stars: the answer is mostly coherent Five stars: the answer has perfect coherency This rating value should always be an integer between 1 and 5. So the rating produced should be 1 or 2 or 3 or 4 or 5. question: What is your favorite indoor activity and why do you enjoy it? answer: I like pizza. The sun is shining. stars: 1 question: Can you describe your favorite movie without giving away any spoilers? answer: It is a science fiction movie. There are dinosaurs. The actors eat cake. People must stop the villain. stars: 2 question: What are some benefits of regular exercise? answer: Regular exercise improves your mood. A good workout also helps you sleep better. Trees are green. stars: 3 question: How do you cope with stress in your daily life? answer: I usually go for a walk to clear my head. Listening to music helps me relax as well. Stress is a part of life, but we can manage it through some activities. stars: 4 question: What can you tell me about climate change and its effects on the environment? answer: Climate change has far-reaching effects on the environment. Rising temperatures result in the melting of polar ice caps, contributing to sea-level rise. Additionally, more frequent and severe weather events, such as hurricanes and heatwaves, can cause disruption to ecosystems and human societies alike. stars: 5 question: {{question}} answer: {{answer}} stars:
promptflow/examples/flows/evaluation/eval-qna-non-rag/gpt_coherence_prompt.jinja2/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-non-rag/gpt_coherence_prompt.jinja2", "repo_id": "promptflow", "token_count": 464 }
11
system: You will be provided a question, a conversation history, fetched documents related to the question and a response to the question in the domain. You task is to evaluate the quality of the provided response by following the steps below: - Understand the context of the question based on the conversation history. - Generate a reference answer that is only based on the conversation history, question, and fetched documents. Don't generate the reference answer based on your own knowledge. - You need to rate the provided response according to the reference answer if it's available on a scale of 1 (poor) to 5 (excellent), based on the below criteria: - 5 - Ideal: The provided response includes all information necessary to answer the question based on the reference answer and conversation history. Please be strict about giving a 5 score. - 4 - Mostly Relevant: The provided response is mostly relevant, although it may be a little too narrow or too broad based on the reference answer and conversation history. - 3 - Somewhat Relevant: The provided response may be partly helpful but might be hard to read or contain other irrelevant content based on the reference answer and conversation history. - 2 - Barely Relevant: The provided response is barely relevant, perhaps shown as a last resort based on the reference answer and conversation history. - 1 - Completely Irrelevant: The provided response should never be used for answering this question based on the reference answer and conversation history. - You need to rate the provided response to be 5, if the reference answer can not be generated since no relevant documents were retrieved. - You need to first provide a scoring reason for the evaluation according to the above criteria, and then provide a score for the quality of the provided response. - You need to translate the provided response into English if it's in another language. - Your final response must include both the reference answer and the evaluation result. The evaluation result should be written in English. Your response should be in the following format: ``` [assistant](#evaluation result) <start reference answer> [insert the reference answer here] <end reference answer> <start quality score reasoning> Quality score reasoning: [insert score reasoning here] <end quality score reasoning> <start quality score> Quality score: [insert score here]/5 <end quality score> ``` - Your answer must end with <|im_end|>. user: #conversation history #question {{question}} #fetched documents {{FullBody}} #provided response {{answer}} assistant: #evaluation result <start reference answer>"""
promptflow/examples/flows/evaluation/eval-qna-rag-metrics/rag_generation_prompt.jinja2/0
{ "file_path": "promptflow/examples/flows/evaluation/eval-qna-rag-metrics/rag_generation_prompt.jinja2", "repo_id": "promptflow", "token_count": 579 }
12
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomConnection.schema.json name: azure_ai_translator_connection type: custom configs: endpoint: "<azure-translator-resource-endpoint>" region: "<azure-translator-resource-region>" secrets: api_key: "<to-be-replaced>"
promptflow/examples/flows/integrations/azure-ai-language/connections/azure_ai_translator.yml/0
{ "file_path": "promptflow/examples/flows/integrations/azure-ai-language/connections/azure_ai_translator.yml", "repo_id": "promptflow", "token_count": 102 }
13
Determine which next function to use, and respond using stringfield JSON object. If you have completed all your tasks, make sure to use the 'finish' function to signal and remember show your results.
promptflow/examples/flows/standard/autonomous-agent/triggering_prompt.jinja2/0
{ "file_path": "promptflow/examples/flows/standard/autonomous-agent/triggering_prompt.jinja2", "repo_id": "promptflow", "token_count": 44 }
14
AZURE_OPENAI_API_KEY=<your_AOAI_key> AZURE_OPENAI_API_BASE=<your_AOAI_endpoint> AZURE_OPENAI_API_TYPE=azure
promptflow/examples/flows/standard/basic/.env.example/0
{ "file_path": "promptflow/examples/flows/standard/basic/.env.example", "repo_id": "promptflow", "token_count": 58 }
15
from promptflow import tool @tool def llm_result(question: str) -> str: # You can use an LLM node to replace this tool. return ( "Prompt flow is a suite of development tools designed to streamline " "the end-to-end development cycle of LLM-based AI applications." )
promptflow/examples/flows/standard/conditional-flow-for-if-else/llm_result.py/0
{ "file_path": "promptflow/examples/flows/standard/conditional-flow-for-if-else/llm_result.py", "repo_id": "promptflow", "token_count": 100 }
16
# Customer Intent Extraction This sample is using OpenAI chat model(ChatGPT/GPT4) to identify customer intent from customer's question. By going through this sample you will learn how to create a flow from existing working code (written in LangChain in this case). This is the [existing code](./intent.py). ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` Ensure you have put your azure open ai endpoint key in .env file. ```bash cat .env ``` ## Run flow 1. init flow directory - create promptflow folder from existing python file ```bash pf flow init --flow . --entry intent.py --function extract_intent --prompt-template chat_prompt=user_intent_zero_shot.jinja2 ``` The generated files: - extract_intent_tool.py: Wrap the func `extract_intent` in the `intent.py` script into a [Python Tool](https://promptflow.azurewebsites.net/tools-reference/python-tool.html). - flow.dag.yaml: Describes the DAG(Directed Acyclic Graph) of this flow. - .gitignore: File/folder in the flow to be ignored. 2. create needed custom connection ```bash pf connection create -f .env --name custom_connection ``` 3. test flow with single line input ```bash pf flow test --flow . --input ./data/denormalized-flat.jsonl ``` 4. run with multiple lines input ```bash pf run create --flow . --data ./data --column-mapping history='${data.history}' customer_info='${data.customer_info}' ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI. 5. list/show ```bash # list created run pf run list # get a sample completed run name name=$(pf run list | jq '.[] | select(.name | contains("customer_intent_extraction")) | .name'| head -n 1 | tr -d '"') # show run pf run show --name $name # show specific run detail, top 3 lines pf run show-details --name $name -r 3 ``` 6. evaluation ```bash # create evaluation run pf run create --flow ../../evaluation/eval-classification-accuracy --data ./data --column-mapping groundtruth='${data.intent}' prediction='${run.outputs.output}' --run $name ``` ```bash # get the evaluation run in previous step eval_run_name=$(pf run list | jq '.[] | select(.name | contains("eval_classification_accuracy")) | .name'| head -n 1 | tr -d '"') # show run pf run show --name $eval_run_name # show run output pf run show-details --name $eval_run_name -r 3 ``` 6. visualize ```bash # visualize in browser pf run visualize --name $eval_run_name # your evaluation run name ``` ## Deploy ### Serve as a local test app ```bash pf flow serve --source . --port 5123 --host localhost ``` Visit http://localhost:5213 to access the test app. ### Export #### Export as docker ```bash # pf flow export --source . --format docker --output ./package ```
promptflow/examples/flows/standard/customer-intent-extraction/README.md/0
{ "file_path": "promptflow/examples/flows/standard/customer-intent-extraction/README.md", "repo_id": "promptflow", "token_count": 905 }
17
{"url": "https://www.youtube.com/watch?v=o5ZQyXaAv1g", "answer": "Channel", "evidence": "Url"} {"url": "https://arxiv.org/abs/2307.04767", "answer": "Academic", "evidence": "Text content"} {"url": "https://play.google.com/store/apps/details?id=com.twitter.android", "answer": "App", "evidence": "Both"}
promptflow/examples/flows/standard/flow-with-additional-includes/data.jsonl/0
{ "file_path": "promptflow/examples/flows/standard/flow-with-additional-includes/data.jsonl", "repo_id": "promptflow", "token_count": 114 }
18
import difflib import webbrowser def show_diff(left_content, right_content, name="file"): d = difflib.HtmlDiff() html = d.make_file( left_content.splitlines(), right_content.splitlines(), "origin " + name, "new " + name, context=True, numlines=20) html = html.encode() html_name = name + "_diff.html" with open(html_name, "w+b") as fp: fp.write(html) webbrowser.open(html_name)
promptflow/examples/flows/standard/gen-docstring/diff.py/0
{ "file_path": "promptflow/examples/flows/standard/gen-docstring/diff.py", "repo_id": "promptflow", "token_count": 210 }
19
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json environment: python_requirements_txt: requirements.txt inputs: math_question: type: string default: If a rectangle has a length of 10 and width of 5, what is the area? outputs: code: type: string reference: ${code_refine.output} answer: type: string reference: ${final_code_execution.output} nodes: - name: final_code_execution type: python source: type: code path: code_execution.py inputs: code_snippet: ${code_refine.output} - name: math_example type: python source: type: code path: math_example.py inputs: {} - name: code_refine type: python source: type: code path: code_refine.py inputs: original_code: ${code_gen.output} - name: code_gen type: llm source: type: code path: ask_llm.jinja2 inputs: # This is to easily switch between openai and azure openai. # deployment_name is required by azure openai, model is required by openai. deployment_name: gpt-35-turbo model: gpt-3.5-turbo question: ${inputs.math_question} examples: ${math_example.output} connection: open_ai_connection api: chat
promptflow/examples/flows/standard/maths-to-code/flow.dag.yaml/0
{ "file_path": "promptflow/examples/flows/standard/maths-to-code/flow.dag.yaml", "repo_id": "promptflow", "token_count": 457 }
20
# Web Classification This is a flow demonstrating multi-class classification with LLM. Given an url, it will classify the url into one web category with just a few shots, simple summarization and classification prompts. ## Tools used in this flow - LLM Tool - Python Tool ## What you will learn In this flow, you will learn - how to compose a classification flow with LLM. - how to feed few shots to LLM classifier. ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Getting Started ### 1. Setup connection If you are using Azure Open AI, prepare your resource follow this [instruction](https://learn.microsoft.com/en-us/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal) and get your `api_key` if you don't have one. ```bash # Override keys with --set to avoid yaml file changes pf connection create --file ../../../connections/azure_openai.yml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` If you using OpenAI, sign up account [OpenAI website](https://openai.com/), login and [find personal API key](https://platform.openai.com/account/api-keys). ```shell pf connection create --file ../../../connections/openai.yml --set api_key=<your_api_key> ``` ### 2. Configure the flow with your connection `flow.dag.yaml` is already configured with connection named `open_ai_connection`. ### 3. Test flow with single line data ```bash # test with default input value in flow.dag.yaml pf flow test --flow . # test with user specified inputs pf flow test --flow . --inputs url='https://www.youtube.com/watch?v=kYqRtjDBci8' ``` ### 4. Run with multi-line data ```bash # create run using command line args pf run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream # (Optional) create a random run name run_name="web_classification_"$(openssl rand -hex 12) # create run using yaml file, run_name will be used in following contents, --name is optional pf run create --file run.yml --stream --name $run_name ``` You can also skip providing `column-mapping` if provided data has same column name as the flow. Reference [here](https://aka.ms/pf/column-mapping) for default behavior when `column-mapping` not provided in CLI. ```bash # list run pf run list # show run pf run show --name $run_name # show run outputs pf run show-details --name $run_name ``` ### 5. Run with classification evaluation flow create `evaluation` run: ```bash # (Optional) save previous run name into variable, and create a new random run name for further use prev_run_name=$run_name run_name="classification_accuracy_"$(openssl rand -hex 12) # create run using command line args pf run create --flow ../../evaluation/eval-classification-accuracy --data ./data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run $prev_run_name --stream # create run using yaml file, --name is optional pf run create --file run_evaluation.yml --run $prev_run_name --stream --name $run_name ``` ```bash pf run show-details --name $run_name pf run show-metrics --name $run_name pf run visualize --name $run_name ``` ### 6. Submit run to cloud ```bash # set default workspace az account set -s <your_subscription_id> az configure --defaults group=<your_resource_group_name> workspace=<your_workspace_name> # create run pfazure run create --flow . --data ./data.jsonl --column-mapping url='${data.url}' --stream # (Optional) create a new random run name for further use run_name="web_classification_"$(openssl rand -hex 12) # create run using yaml file, --name is optional pfazure run create --file run.yml --name $run_name pfazure run stream --name $run_name pfazure run show-details --name $run_name pfazure run show-metrics --name $run_name # (Optional) save previous run name into variable, and create a new random run name for further use prev_run_name=$run_name run_name="classification_accuracy_"$(openssl rand -hex 12) # create evaluation run, --name is optional pfazure run create --flow ../../evaluation/eval-classification-accuracy --data ./data.jsonl --column-mapping groundtruth='${data.answer}' prediction='${run.outputs.category}' --run $prev_run_name pfazure run create --file run_evaluation.yml --run $prev_run_name --stream --name $run_name pfazure run stream --name $run_name pfazure run show --name $run_name pfazure run show-details --name $run_name pfazure run show-metrics --name $run_name pfazure run visualize --name $run_name ```
promptflow/examples/flows/standard/web-classification/README.md/0
{ "file_path": "promptflow/examples/flows/standard/web-classification/README.md", "repo_id": "promptflow", "token_count": 1419 }
21
my_tool_package.tools.tool_with_custom_llm_type.my_tool: name: My Custom LLM Tool description: This is a tool to demonstrate how to customize an LLM tool with a PromptTemplate. type: custom_llm module: my_tool_package.tools.tool_with_custom_llm_type function: my_tool inputs: connection: type: - CustomConnection
promptflow/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_custom_llm_type.yaml/0
{ "file_path": "promptflow/examples/tools/tool-package-quickstart/my_tool_package/yamls/tool_with_custom_llm_type.yaml", "repo_id": "promptflow", "token_count": 121 }
22
# Basic flow with package tool using cascading inputs This is a flow demonstrating the use of a tool with cascading inputs which frequently used in situations where the selection in one input field determines what subsequent inputs should be shown, and it helps in creating a more efficient, user-friendly, and error-free input process. Tools used in this flow: - `python` Tool Connections used in this flow: - None ## Prerequisites Install promptflow sdk and other dependencies: ```bash pip install -r requirements.txt ``` ## Run flow - Test flow ```bash pf flow test --flow . ```
promptflow/examples/tools/use-cases/cascading-inputs-tool-showcase/README.md/0
{ "file_path": "promptflow/examples/tools/use-cases/cascading-inputs-tool-showcase/README.md", "repo_id": "promptflow", "token_count": 152 }
23
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: website_name: type: string default: Microsoft user_name: type: string default: "" outputs: output: type: string reference: ${my_custom_llm_tool.output} nodes: - name: my_custom_llm_tool type: custom_llm source: type: package_with_prompt tool: my_tool_package.tools.tool_with_custom_llm_type.my_tool path: prompt_template.jinja2 inputs: connection: basic_custom_connection website_name: ${inputs.website_name} user_name: ${inputs.user_name}
promptflow/examples/tools/use-cases/custom_llm_tool_showcase/flow.dag.yaml/0
{ "file_path": "promptflow/examples/tools/use-cases/custom_llm_tool_showcase/flow.dag.yaml", "repo_id": "promptflow", "token_count": 238 }
24
<# .DESCRIPTION Script to deploy promptflow to Azure App Service. .PARAMETER path The folder path to be deployed .PARAMETER image_tag The container image tag. .PARAMETER registry The container registry name, for example 'xx.azurecr.io'. .PARAMETER name The app name to produce a unique FQDN as AppName.azurewebsites.net. .PARAMETER location The app location, default to 'centralus'. .PARAMETER sku The app sku, default to 'F1'(free). .PARAMETER resource_group The app resource group. .PARAMETER subscription The app subscription, default using az account subscription. .PARAMETER verbose verbose mode. .EXAMPLE PS> .\deploy.ps1 -Path <folder-path> -Name my_app_23d8m -i <image_tag> -r <registry> -n <app_name> -g <resource_group> .EXAMPLE PS> .\deploy.ps1 -Path <folder-path> -Name my_app_23d8m -i <image_tag> -r <registry> -n <app_name> -g <resource_group> -Subscription "xxxx-xxxx-xxxx-xxxx-xxxx" -Verbose #> [CmdletBinding()] param( [string]$Path, [Alias("i", "image_tag")][string]$ImageTag, [Alias("r")][string]$Registry, [Alias("n")][string]$Name, [Alias("l")][string]$Location = "eastus", [string]$Sku = "F1", [Alias("g", "resource_group")][string]$ResourceGroup, [string]$Subscription ) ####################### Validate args ############################ $ErrorActionPreference = "Stop" # fail if image_tag not provided if (!$ImageTag) { Write-Host "***************************" Write-Host "* Error: image_tag is required.*" Write-Host "***************************" exit 1 } # check if : in image_tag if (!$ImageTag.Contains(":")) { $version="v$(Get-Date -Format 'yyyyMMdd-HHmmss')" $image_tag="${ImageTag}:${version}" } Write-Host "image_tag: $ImageTag" # fail if Registry not provided if (!$Registry) { Write-Host "***************************" Write-Host "* Error: registry is required.*" Write-Host "***************************" exit } # fail if name not provided if (!$Name) { Write-Host "***************************" Write-Host "* Error: name is required.*" Write-Host "***************************" exit } # fail if resource_group not provided if (!$ResourceGroup) { Write-Host "***************************" Write-Host "* Error: resource_group is required.*" Write-Host "***************************" exit } # fail if image_tag not provided if (!$Path) { Write-Host "***************************" Write-Host "* Error: Path is required.*" Write-Host "***************************" exit 1 } ####################### Build and push image ############################ Write-Host "Change working directory to $Path" cd $Path docker build -t "$ImageTag" . if ($Registry.Contains("azurecr.io")) { Write-Host "Trying to login to $Registry..." az acr login -n "$Registry" $AcrImageTag = $Registry + "/" + $ImageTag Write-Host "ACR image tag: $AcrImageTag" docker tag "$ImageTag" "$AcrImageTag" $ImageTag = $AcrImageTag } else { Write-Host "***************************************************\n" Write-Host "* WARN: Make sure you have docker account login!!!*\n" Write-Host "***************************************************\n" $DockerImageTag = $Registry + "/" + $ImageTag Write-Host "Docker image tag: $DockerImageTag" docker tag "$ImageTag" "$DockerImageTag" $ImageTag = $DockerImageTag } Write-Host "Start pushing image...$ImageTag" docker push "$ImageTag" ####################### Create and config app ############################ function Append-To-Command { param ( [string] $Command ) if ($Subscription) { $Command = "$Command --subscription $Subscription" } if ($VerbosePreference -eq "Continue") { $Command="$Command --debug" } Write-Host "$Command" return $Command } function Invoke-Expression-And-Check{ param ( [string]$Command ) $Command=$(Append-To-Command "$Command") Invoke-Expression $Command if ($LASTEXITCODE -gt 0) { exit $LASTEXITCODE } } # Check and create resource group if not exist $Result = (az group exists --name $ResourceGroup) if ($Result -eq "false") { Write-Host "Creating resource group...$ResourceGroup" $Command="az group create --name $ResourceGroup -l $Location" Invoke-Expression-And-Check "$Command" } # Create service plan $ServicePlanName = $Name + "_service_plan" Write-Host "Creating service plan...$ServicePlanName" $Command="az appservice plan create --name $ServicePlanName --sku $Sku --location $location --is-linux -g $ResourceGroup" Invoke-Expression-And-Check "$Command" # Create app Write-Host "Creating app...$Name" $Command="az webapp create --name $Name -p $ServicePlanName --deployment-container-image-name $ImageTag --startup-file 'bash start.sh' -g $ResourceGroup" Invoke-Expression-And-Check "$Command" # Config environment variable Write-Host "Config app...$Name" $Command="az webapp config appsettings set -g $ResourceGroup --name $Name --settings USER_AGENT=promptflow-appservice ('@settings.json')" Invoke-Expression-And-Check "$Command" Write-Host "Please go to https://portal.azure.com/ to config environment variables and restart the app: $Name at (Settings>Configuration) or (Settings>Environment variables)" Write-Host "Reach deployment logs at (Deployment>Deployment Central) and app logs at (Monitoring>Log stream)" Write-Host "Reach advanced deployment tools at https://$Name.scm.azurewebsites.net/" Write-Host "Reach more details about app service at https://learn.microsoft.com/en-us/azure/app-service/"
promptflow/examples/tutorials/flow-deploy/azure-app-service/deploy.ps1/0
{ "file_path": "promptflow/examples/tutorials/flow-deploy/azure-app-service/deploy.ps1", "repo_id": "promptflow", "token_count": 1878 }
25
<PoliCheckExclusions> <!-- All strings must be UPPER CASE --> <!--index-xxx.js is an auto-generated javascript file - skipped given it's not expected to be readable --> <Exclusion Type="FileName">SRC\PROMPTFLOW\PROMPTFLOW\_SDK\_SERVING\STATIC\INDEX.JS</Exclusion> </PoliCheckExclusions>
promptflow/scripts/compliance-check/user_exclusion.xml/0
{ "file_path": "promptflow/scripts/compliance-check/user_exclusion.xml", "repo_id": "promptflow", "token_count": 99 }
26
# Building the Windows MSI Installer This document provides instructions on creating the MSI installer. ## Option1: Building with Github Actions Trigger the [workflow](https://github.com/microsoft/promptflow/actions/workflows/build_msi_installer.yml) manually. ## Option2: Local Building ### Prerequisites 1. Turn on the '.NET Framework 3.5' Windows Feature (required for WIX Toolset). 2. Install 'Microsoft Build Tools 2015'. https://www.microsoft.com/download/details.aspx?id=48159 3. You need to have curl.exe, unzip.exe and msbuild.exe available under PATH. 4. Install 'WIX Toolset build tools' following the instructions below. - Enter the directory where the README is located (`cd scripts/installer/windows`), `mkdir wix` and `cd wix`. - `curl --output wix-archive.zip https://azurecliprod.blob.core.windows.net/msi/wix310-binaries-mirror.zip` - `unzip wix-archive.zip` and `del wix-archive.zip` 5. We recommend creating a clean virtual Python environment and installing all dependencies using src/promptflow/setup.py. - `python -m venv venv` - `venv\Scripts\activate` - `pip install promptflow[azure,executable,pfs] promptflow-tools` ### Building 1. Update the version number `$(env.CLI_VERSION)` and `$(env.FILE_VERSION)` in `product.wxs`, `promptflow.wixproj` and `version_info.txt`. 2. `cd scripts/installer/windows/scripts` and run `pyinstaller promptflow.spec`. 3. `cd scripts/installer/windows` and Run `msbuild /t:rebuild /p:Configuration=Release /p:Platform=x64 promptflow.wixproj`. 4. The unsigned MSI will be in the `scripts/installer/windows/out` folder. ## Notes - If you encounter "Access is denied" error when running promptflow. Please follow the [link](https://learn.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction-rules-deployment-implement?view=o365-worldwide#customize-attack-surface-reduction-rules) to add the executable to the Windows Defender Attack Surface Reduction (ASR) rule.
promptflow/scripts/installer/windows/README.md/0
{ "file_path": "promptflow/scripts/installer/windows/README.md", "repo_id": "promptflow", "token_count": 610 }
27
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # flake8: noqa # This file is part of scripts\generate_json_schema.py in sdk-cli-v2, which is used to generate json schema # To use this script, run `python <this_file>` in promptflow env, # and the json schema will be generated in the same folder. from inspect import isclass import json from azure.ai.ml._schema import ExperimentalField from promptflow._sdk.schemas._base import YamlFileSchema from promptflow._sdk.schemas._fields import UnionField from marshmallow import Schema, fields, missing from marshmallow.class_registry import get_class from marshmallow_jsonschema import JSONSchema class PatchedJSONSchema(JSONSchema): required = fields.Method("get_required") properties = fields.Method("get_properties") def __init__(self, *args, **kwargs): """Setup internal cache of nested fields, to prevent recursion. :param bool props_ordered: if `True` order of properties will be save as declare in class, else will using sorting, default is `False`. Note: For the marshmallow scheme, also need to enable ordering of fields too (via `class Meta`, attribute `ordered`). """ self._nested_schema_classes = {} self.nested = kwargs.pop("nested", False) self.props_ordered = kwargs.pop("props_ordered", False) setattr(self.opts, "ordered", self.props_ordered) super().__init__(*args, **kwargs) # cspell: ignore pytype def _from_python_type(self, obj, field, pytype): metadata = field.metadata.get("metadata", {}) metadata.update(field.metadata) # This is in the upcoming release of marshmallow-jsonschema, but not available yet if isinstance(field, fields.Dict): values = metadata.get("values", None) or field.value_field json_schema = {"title": field.attribute or field.data_key or field.name} json_schema["type"] = "object" if values: values.parent = field json_schema["additionalProperties"] = self._get_schema_for_field(obj, values) if values else {} return json_schema if isinstance(field, fields.Raw): json_schema = {"title": field.attribute or field.data_key or field.name} return json_schema return super()._from_python_type(obj, field, pytype) def _get_schema_for_field(self, obj, field): """Get schema and validators for field.""" if hasattr(field, "_jsonschema_type_mapping"): schema = field._jsonschema_type_mapping() # pylint: disable=protected-access elif "_jsonschema_type_mapping" in field.metadata: schema = field.metadata["_jsonschema_type_mapping"] else: if isinstance(field, UnionField): schema = self._get_schema_for_union_field(obj, field) elif isinstance(field, ExperimentalField): schema = self._get_schema_for_field(obj, field.experimental_field) elif isinstance(field, fields.Constant): schema = {"const": field.constant} else: schema = super()._get_schema_for_field(obj, field) if field.data_key: schema["title"] = field.data_key return schema def _get_schema_for_union_field(self, obj, field): has_yaml_option = False schemas = [] for field_item in field._union_fields: # pylint: disable=protected-access if isinstance(field_item, fields.Nested) and isinstance(field_item.schema, YamlFileSchema): has_yaml_option = True schemas.append(self._get_schema_for_field(obj, field_item)) if has_yaml_option: schemas.append({"type": "string", "pattern": "^file:.*"}) if field.allow_none: schemas.append({"type": "null"}) if field.is_strict: schema = {"oneOf": schemas} else: schema = {"anyOf": schemas} # This happens in the super() call to get_schema, doing here to allow for adding # descriptions and other schema attributes from marshmallow metadata metadata = field.metadata.get("metadata", {}) for md_key, md_val in metadata.items(): if md_key in ("metadata", "name"): continue schema[md_key] = md_val return schema def _from_nested_schema(self, obj, field): """patch in context for nested field""" if isinstance(field.nested, (str, bytes)): nested = get_class(field.nested) else: nested = field.nested if isclass(nested) and issubclass(nested, Schema): only = field.only exclude = field.exclude context = getattr(field.parent, "context", {}) field.nested = nested(only=only, exclude=exclude, context=context) return super()._from_nested_schema(obj, field) def get_properties(self, obj): """Fill out properties field.""" properties = self.dict_class() if self.props_ordered: fields_items_sequence = obj.fields.items() else: fields_items_sequence = sorted(obj.fields.items()) for _, field in fields_items_sequence: schema = self._get_schema_for_field(obj, field) properties[field.metadata.get("name") or field.data_key or field.name] = schema return properties def get_required(self, obj): """Fill out required field.""" required = [] for _, field in sorted(obj.fields.items()): if field.required: required.append(field.metadata.get("name") or field.data_key or field.name) return required or missing from promptflow._sdk.schemas._connection import AzureOpenAIConnectionSchema, OpenAIConnectionSchema, \ QdrantConnectionSchema, CognitiveSearchConnectionSchema, SerpConnectionSchema, AzureContentSafetyConnectionSchema, \ FormRecognizerConnectionSchema, CustomConnectionSchema, WeaviateConnectionSchema from promptflow._sdk.schemas._run import RunSchema from promptflow._sdk.schemas._flow import FlowSchema, EagerFlowSchema if __name__ == "__main__": cls_list = [FlowSchema, EagerFlowSchema] schema_list = [] for cls in cls_list: target_schema = PatchedJSONSchema().dump(cls(context={"base_path": "./"})) # print(target_schema) file_name = cls.__name__ file_name = file_name.replace("Schema", "") schema_list.append(target_schema["definitions"][cls.__name__]) print(target_schema) schema = { "type": "object", "oneOf": schema_list } with open((f"Flow.schema.json"), "w") as f: f.write(json.dumps(schema, indent=4))
promptflow/scripts/json_schema/gen_json_schema.py/0
{ "file_path": "promptflow/scripts/json_schema/gen_json_schema.py", "repo_id": "promptflow", "token_count": 2887 }
28
- name: {{ step_name }} working-directory: {{ working_dir }} run: | if [[ -e .env ]]; then pf connection create --file .env --name {{ connection_name }} fi if [[ -e azure_openai.yml ]]; then pf connection create --file azure_openai.yml --name {{ connection_name }} fi pf connection list
promptflow/scripts/readme/ghactions_driver/workflow_steps/step_env_create_aoai.yml.jinja2/0
{ "file_path": "promptflow/scripts/readme/ghactions_driver/workflow_steps/step_env_create_aoai.yml.jinja2", "repo_id": "promptflow", "token_count": 123 }
29
import os import glob import argparse from pathlib import Path import ntpath import re import hashlib import json from jinja2 import Environment, FileSystemLoader from ghactions_driver.readme_step import ReadmeStepsManage from ghactions_driver.resource_resolver import resolve_tutorial_resource from ghactions_driver.telemetry_obj import Telemetry def format_ipynb(notebooks): # run code formatter on .ipynb files for notebook in notebooks: os.system(f"black-nb --clear-output {notebook}") def _get_paths(paths_list): """ Convert the path list to unix format. :param paths_list: The input path list. :returns: The same list with unix-like paths. """ paths_list.sort() if ntpath.sep == os.path.sep: return [pth.replace(ntpath.sep, "/") for pth in paths_list] return paths_list def write_notebook_workflow(notebook, name, output_telemetry=Telemetry()): temp_name_list = re.split(r"/|\.", notebook) temp_name_list = [ x for x in temp_name_list if x != "tutorials" and x != "examples" and x != "ipynb" ] temp_name_list = [x.replace("-", "") for x in temp_name_list] workflow_name = "_".join(["samples"] + temp_name_list) place_to_write = ( Path(ReadmeStepsManage.git_base_dir()) / ".github" / "workflows" / f"{workflow_name}.yml" ) gh_working_dir = "/".join(notebook.split("/")[:-1]) env = Environment( loader=FileSystemLoader("./scripts/readme/ghactions_driver/workflow_templates") ) template = env.get_template("basic_workflow.yml.jinja2") # Schedule notebooks at different times to reduce maximum quota usage. name_hash = int(hashlib.sha512(workflow_name.encode()).hexdigest(), 16) schedule_minute = name_hash % 60 schedule_hour = (name_hash // 60) % 4 + 19 # 19-22 UTC if "tutorials" in gh_working_dir: notebook_path = Path(ReadmeStepsManage.git_base_dir()) / str(notebook) path_filter = resolve_tutorial_resource(workflow_name, notebook_path.resolve()) elif "samples_configuration" in workflow_name: # exception, samples configuration is very simple and not related to other prompt flow examples path_filter = ( "[ examples/configuration.ipynb, .github/workflows/samples_configuration.yml ]" ) else: path_filter = f"[ {gh_working_dir}/**, examples/*requirements.txt, .github/workflows/{workflow_name}.yml ]" # these workflows require config.json to init PF/ML client workflows_require_config_json = [ "configuration", "flowinpipeline", "quickstartazure", "cloudrunmanagement", ] if any(keyword in workflow_name for keyword in workflows_require_config_json): template = env.get_template("workflow_config_json.yml.jinja2") elif "chatwithpdf" in workflow_name: template = env.get_template("pdf_workflow.yml.jinja2") elif "flowasfunction" in workflow_name: template = env.get_template("flow_as_function.yml.jinja2") content = template.render( { "workflow_name": workflow_name, "ci_name": "samples_notebook_ci", "name": name, "gh_working_dir": gh_working_dir, "path_filter": path_filter, "crontab": f"{schedule_minute} {schedule_hour} * * *", "crontab_comment": f"Every day starting at {schedule_hour - 16}:{schedule_minute} BJT", } ) # To customize workflow, add new steps in steps.py # make another function for special cases. with open(place_to_write.resolve(), "w") as f: f.write(content) print(f"Write workflow: {place_to_write.resolve()}") output_telemetry.workflow_name = workflow_name output_telemetry.name = name output_telemetry.gh_working_dir = gh_working_dir output_telemetry.path_filter = path_filter def write_workflows(notebooks, output_telemetries=[]): # process notebooks for notebook in notebooks: # get notebook name output_telemetry = Telemetry() nb_path = Path(notebook) name, _ = os.path.splitext(nb_path.parts[-1]) # write workflow file write_notebook_workflow(notebook, name, output_telemetry) output_telemetry.notebook = nb_path output_telemetries.append(output_telemetry) def local_filter(callback, array): results = [] for index, item in enumerate(array): result = callback(item, index, array) # if returned true, append item to results if result: results.append(item) return results def no_readme_generation_filter(item, index, array) -> bool: """ Set each ipynb metadata no_readme_generation to "true" to skip readme generation """ try: if item.endswith("test.ipynb"): return False # read in notebook with open(item, "r", encoding="utf-8") as f: data = json.load(f) try: if data["metadata"]["no_readme_generation"] is not None: # no_readme_generate == "true", then no generation return data["metadata"]["no_readme_generation"] != "true" except Exception: return True # generate readme except Exception: return False # not generate readme def main(input_glob, output_files=[], check=False): # get list of workflows notebooks = _get_paths( [j for i in [glob.glob(p, recursive=True) for p in input_glob] for j in i] ) # check each workflow, get metadata. notebooks = local_filter(no_readme_generation_filter, notebooks) # format code if not check: format_ipynb(notebooks) # write workflows write_workflows(notebooks, output_files) # run functions if __name__ == "__main__": # setup argparse parser = argparse.ArgumentParser() parser.add_argument( "-g", "--input-glob", nargs="+", help="Input glob example 'examples/**/*.ipynb'" ) args = parser.parse_args() # call main main(input_glob=args.input_glob)
promptflow/scripts/readme/workflow_generator.py/0
{ "file_path": "promptflow/scripts/readme/workflow_generator.py", "repo_id": "promptflow", "token_count": 2474 }
30
import pytest import unittest from {{ package_name }}.tools.{{ tool_name }} import {{ class_name }} @pytest.fixture def my_url() -> str: my_url = "https://www.bing.com" return my_url @pytest.fixture def my_tool_provider(my_url) -> {{ class_name }}: my_tool_provider = {{ class_name }}(my_url) return my_tool_provider class TestTool: def test_{{ tool_name }}(self, my_tool_provider): result = my_tool_provider.{{ function_name }}(query="Microsoft") assert result == "Hello Microsoft" # Run the unit tests if __name__ == "__main__": unittest.main()
promptflow/scripts/tool/templates/test_tool2.py.j2/0
{ "file_path": "promptflow/scripts/tool/templates/test_tool2.py.j2", "repo_id": "promptflow", "token_count": 231 }
31
# Release History ## 1.0.0 (2023.11.30) ### Features Added - Support openai 1.x in promptflow-tools - Add new tool "OpenAI GPT-4V"
promptflow/src/promptflow-tools/CHANGELOG.md/0
{ "file_path": "promptflow/src/promptflow-tools/CHANGELOG.md", "repo_id": "promptflow", "token_count": 52 }
32
try: from openai import OpenAI as OpenAIClient except Exception: raise Exception( "Please upgrade your OpenAI package to version 1.0.0 or later using the command: pip install --upgrade openai.") from promptflow.connections import OpenAIConnection from promptflow.contracts.types import PromptTemplate from promptflow._internal import ToolProvider, tool from promptflow.tools.common import render_jinja_template, handle_openai_error, \ parse_chat, post_process_chat_api_response, preprocess_template_string, \ find_referenced_image_set, convert_to_chat_list, normalize_connection_config class OpenAI(ToolProvider): def __init__(self, connection: OpenAIConnection): super().__init__() self._connection_dict = normalize_connection_config(connection) self._client = OpenAIClient(**self._connection_dict) @tool(streaming_option_parameter="stream") @handle_openai_error() def chat( self, prompt: PromptTemplate, model: str = "gpt-4-vision-preview", temperature: float = 1.0, top_p: float = 1.0, # stream is a hidden to the end user, it is only supposed to be set by the executor. stream: bool = False, stop: list = None, max_tokens: int = None, presence_penalty: float = 0, frequency_penalty: float = 0, **kwargs, ) -> [str, dict]: # keep_trailing_newline=True is to keep the last \n in the prompt to avoid converting "user:\t\n" to "user:". prompt = preprocess_template_string(prompt) referenced_images = find_referenced_image_set(kwargs) # convert list type into ChatInputList type converted_kwargs = convert_to_chat_list(kwargs) chat_str = render_jinja_template(prompt, trim_blocks=True, keep_trailing_newline=True, **converted_kwargs) messages = parse_chat(chat_str, list(referenced_images)) params = { "model": model, "messages": messages, "temperature": temperature, "top_p": top_p, "n": 1, "stream": stream, "presence_penalty": presence_penalty, "frequency_penalty": frequency_penalty, } if stop: params["stop"] = stop if max_tokens is not None: params["max_tokens"] = max_tokens completion = self._client.chat.completions.create(**params) return post_process_chat_api_response(completion, stream, None)
promptflow/src/promptflow-tools/promptflow/tools/openai_gpt4v.py/0
{ "file_path": "promptflow/src/promptflow-tools/promptflow/tools/openai_gpt4v.py", "repo_id": "promptflow", "token_count": 1021 }
33
from unittest.mock import patch import pytest import json from promptflow.connections import AzureOpenAIConnection from promptflow.tools.aoai import chat, completion from promptflow.tools.exception import WrappedOpenAIError from tests.utils import AttrDict @pytest.mark.usefixtures("use_secrets_config_file") class TestAOAI: def test_aoai_completion(self, aoai_provider): prompt_template = "please complete this sentence: world war II " # test whether tool can handle param "stop" with value empty list # as openai raises "[] is not valid under any of the given schemas - 'stop'" aoai_provider.completion( prompt=prompt_template, deployment_name="gpt-35-turbo-instruct", stop=[], logit_bias={} ) def test_aoai_stream_completion(self, aoai_provider): prompt_template = "please complete this sentence: world war II " # test whether tool can handle param "stop" with value empty list in stream mode # as openai raises "[] is not valid under any of the given schemas - 'stop'" aoai_provider.completion( prompt=prompt_template, deployment_name="gpt-35-turbo-instruct", stop=[], logit_bias={}, stream=True ) def test_aoai_chat(self, aoai_provider, example_prompt_template, chat_history): result = aoai_provider.chat( prompt=example_prompt_template, deployment_name="gpt-35-turbo", max_tokens="32", temperature=0, user_input="Fill in more details about trend 2.", chat_history=chat_history, ) assert "additional details" in result.lower() def test_aoai_chat_api(self, azure_open_ai_connection, example_prompt_template, chat_history): result = chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo", max_tokens="inF", temperature=0, user_input="Write a slogan for product X", chat_history=chat_history, ) assert "Product X".lower() in result.lower() @pytest.mark.parametrize( "function_call", [ "auto", {"name": "get_current_weather"}, ], ) def test_aoai_chat_with_function( self, azure_open_ai_connection, example_prompt_template, chat_history, functions, function_call): result = chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo", max_tokens="inF", temperature=0, user_input="What is the weather in Boston?", chat_history=chat_history, functions=functions, function_call=function_call ) assert "function_call" in result assert result["function_call"]["name"] == "get_current_weather" def test_aoai_chat_with_name_in_roles( self, azure_open_ai_connection, example_prompt_template_with_name_in_roles, chat_history, functions): result = chat( connection=azure_open_ai_connection, prompt=example_prompt_template_with_name_in_roles, deployment_name="gpt-35-turbo", max_tokens="inF", temperature=0, functions=functions, name="get_location", result=json.dumps({"location": "Austin"}), question="What is the weather in Boston?", prev_question="Where is Boston?" ) assert "function_call" in result assert result["function_call"]["name"] == "get_current_weather" def test_aoai_chat_message_with_no_content(self, aoai_provider): # missing colon after role name. Sometimes following prompt may result in empty content. prompt = ( "user:\n what is your name\nassistant\nAs an AI language model developed by" " OpenAI, I do not have a name. You can call me OpenAI or AI assistant. " "How can I assist you today?" ) # assert chat tool can handle. aoai_provider.chat(prompt=prompt, deployment_name="gpt-35-turbo") # empty content after role name:\n prompt = "user:\n" aoai_provider.chat(prompt=prompt, deployment_name="gpt-35-turbo") def test_aoai_stream_chat(self, aoai_provider, example_prompt_template, chat_history): result = aoai_provider.chat( prompt=example_prompt_template, deployment_name="gpt-35-turbo", max_tokens="32", temperature=0, user_input="Fill in more details about trend 2.", chat_history=chat_history, stream=True, ) answer = "" while True: try: answer += next(result) except Exception: break assert "additional details" in answer.lower() @pytest.mark.parametrize( "params, expected", [ ({"stop": [], "logit_bias": {}}, {"stop": None}), ({"stop": ["</i>"], "logit_bias": {"16": 100, "17": 100}}, {}), ], ) def test_aoai_parameters(self, params, expected): for k, v in params.items(): if k not in expected: expected[k] = v deployment_name = "dummy" conn_dict = {"api_key": "dummy", "api_base": "base", "api_version": "dummy_ver", "api_type": "azure"} conn = AzureOpenAIConnection(**conn_dict) def mock_completion(self, **kwargs): assert kwargs["model"] == deployment_name for k, v in expected.items(): assert kwargs[k] == v, f"Expect {k} to be {v}, but got {kwargs[k]}" text = kwargs["prompt"] return AttrDict({"choices": [AttrDict({"text": text})]}) with patch("openai.resources.Completions.create", new=mock_completion): prompt = "dummy_prompt" result = completion(connection=conn, prompt=prompt, deployment_name=deployment_name, **params) assert result == prompt def test_aoai_chat_with_response_format( self, azure_open_ai_connection, example_prompt_template, chat_history): result = chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo-1106", temperature=0, user_input="Write a slogan for product X, please response with json.", chat_history=chat_history, response_format={"type": "json_object"} ) assert "x:".lower() in result.lower() @pytest.mark.parametrize( "response_format, user_input, error_message, error_codes, exception", [ ({"type": "json"}, "Write a slogan for product X, please response with json.", "\'json\' is not one of [\'json_object\', \'text\']", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError), ({"type": "json_object"}, "Write a slogan for product X", "\'messages\' must contain the word \'json\' in some form", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError), ({"types": "json_object"}, "Write a slogan for product X", "The response_format parameter needs to be a dictionary such as {\"type\": \"text\"}", "UserError/OpenAIError/BadRequestError", WrappedOpenAIError) ] ) def test_aoai_chat_with_invalid_response_format( self, azure_open_ai_connection, example_prompt_template, chat_history, response_format, user_input, error_message, error_codes, exception ): with pytest.raises(exception) as exc_info: chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo-1106", temperature=0, user_input=user_input, chat_history=chat_history, response_format=response_format ) assert error_message in exc_info.value.message assert exc_info.value.error_codes == error_codes.split("/") def test_aoai_chat_with_not_support_response_format_json_mode_model( self, azure_open_ai_connection, example_prompt_template, chat_history ): with pytest.raises(WrappedOpenAIError) as exc_info: chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo", temperature=0, user_input="Write a slogan for product X, please response with json.", chat_history=chat_history, response_format={"type": "json_object"} ) error_message = "The response_format parameter needs to be a dictionary such as {\"type\": \"text\"}." assert error_message in exc_info.value.message assert exc_info.value.error_codes == "UserError/OpenAIError/BadRequestError".split("/") def test_aoai_chat_with_response_format_text_mode( self, azure_open_ai_connection, example_prompt_template, chat_history ): result = chat( connection=azure_open_ai_connection, prompt=example_prompt_template, deployment_name="gpt-35-turbo", temperature=0, user_input="Write a slogan for product X.", chat_history=chat_history, response_format={"type": "text"} ) assert "Product X".lower() in result.lower()
promptflow/src/promptflow-tools/tests/test_aoai.py/0
{ "file_path": "promptflow/src/promptflow-tools/tests/test_aoai.py", "repo_id": "promptflow", "token_count": 4560 }
34
DEFAULT_SUBSCRIPTION_ID="your-subscription-id" DEFAULT_RESOURCE_GROUP_NAME="your-resource-group-name" DEFAULT_WORKSPACE_NAME="your-workspace-name" DEFAULT_RUNTIME_NAME="test-runtime-ci" PROMPT_FLOW_TEST_MODE="replay"
promptflow/src/promptflow/.env.example/0
{ "file_path": "promptflow/src/promptflow/.env.example", "repo_id": "promptflow", "token_count": 85 }
35
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import argparse import importlib import json import os import shutil import subprocess import sys import tempfile import webbrowser from pathlib import Path from promptflow._cli._params import ( add_param_config, add_param_entry, add_param_environment_variables, add_param_flow_display_name, add_param_function, add_param_inputs, add_param_prompt_template, add_param_source, add_param_yes, add_parser_build, base_params, ) from promptflow._cli._pf._init_entry_generators import ( AzureOpenAIConnectionGenerator, ChatFlowDAGGenerator, FlowDAGGenerator, OpenAIConnectionGenerator, StreamlitFileReplicator, ToolMetaGenerator, ToolPyGenerator, copy_extra_files, ) from promptflow._cli._pf._run import exception_handler from promptflow._cli._utils import _copy_to_flow, activate_action, confirm, inject_sys_path, list_of_dict_to_dict from promptflow._constants import LANGUAGE_KEY, FlowLanguage from promptflow._sdk._constants import PROMPT_FLOW_DIR_NAME, ConnectionProvider from promptflow._sdk._pf_client import PFClient from promptflow._sdk.operations._flow_operations import FlowOperations from promptflow._utils.logger_utils import get_cli_sdk_logger from promptflow.exceptions import ErrorTarget, UserErrorException DEFAULT_CONNECTION = "open_ai_connection" DEFAULT_DEPLOYMENT = "gpt-35-turbo" logger = get_cli_sdk_logger() def add_flow_parser(subparsers): """Add flow parser to the pf subparsers.""" flow_parser = subparsers.add_parser( "flow", description="Manage flows for promptflow.", help="pf flow", ) flow_subparsers = flow_parser.add_subparsers() add_parser_init_flow(flow_subparsers) add_parser_test_flow(flow_subparsers) add_parser_serve_flow(flow_subparsers) add_parser_build(flow_subparsers, "flow") add_parser_validate_flow(flow_subparsers) flow_parser.set_defaults(action="flow") def dispatch_flow_commands(args: argparse.Namespace): if args.sub_action == "init": init_flow(args) elif args.sub_action == "test": test_flow(args) elif args.sub_action == "serve": serve_flow(args) elif args.sub_action == "build": build_flow(args) elif args.sub_action == "validate": validate_flow(args) def add_parser_init_flow(subparsers): """Add flow create parser to the pf flow subparsers.""" epilog = """ Examples: # Creating a flow folder with code/prompts and yaml definitions of the flow: pf flow init --flow my-awesome-flow # Creating an eval prompt flow: pf flow init --flow my-awesome-flow --type evaluation # Creating a flow in existing folder pf flow init --flow intent_copilot --entry intent.py --function extract_intent --prompt-template prompt_template=tpl.jinja2 """ # noqa: E501 add_param_type = lambda parser: parser.add_argument( # noqa: E731 "--type", type=str, choices=["standard", "evaluation", "chat"], help="The initialized flow type.", default="standard", ) add_param_connection = lambda parser: parser.add_argument( # noqa: E731 "--connection", type=str, help=argparse.SUPPRESS ) add_param_deployment = lambda parser: parser.add_argument( # noqa: E731 "--deployment", type=str, help=argparse.SUPPRESS ) add_params = [ add_param_type, add_param_yes, add_param_flow_display_name, add_param_entry, add_param_function, add_param_prompt_template, add_param_connection, add_param_deployment, ] + base_params activate_action( name="init", description="Creating a flow folder with code/prompts and yaml definitions of the flow.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Initialize a prompt flow directory.", action_param_name="sub_action", ) def add_parser_serve_flow(subparsers): """Add flow serve parser to the pf flow subparsers.""" epilog = """ Examples: # Serve flow as an endpoint: pf flow serve --source <path_to_flow> # Serve flow as an endpoint with specific port and host: pf flow serve --source <path_to_flow> --port 8080 --host localhost --environment-variables key1="`${my_connection.api_key}" key2="value2" # Serve flow without opening browser: pf flow serve --source <path_to_flow> --skip-open-browser """ # noqa: E501 add_param_port = lambda parser: parser.add_argument( # noqa: E731 "--port", type=int, default=8080, help="The port on which endpoint to run." ) add_param_host = lambda parser: parser.add_argument( # noqa: E731 "--host", type=str, default="localhost", help="The host of endpoint." ) add_param_static_folder = lambda parser: parser.add_argument( # noqa: E731 "--static_folder", type=str, help=argparse.SUPPRESS ) add_param_skip_browser = lambda parser: parser.add_argument( # noqa: E731 "--skip-open-browser", action="store_true", default=False, help="Skip open browser for flow serving." ) activate_action( name="serve", description="Serving a flow as an endpoint.", epilog=epilog, add_params=[ add_param_source, add_param_port, add_param_host, add_param_static_folder, add_param_environment_variables, add_param_config, add_param_skip_browser, ] + base_params, subparsers=subparsers, help_message="Serving a flow as an endpoint.", action_param_name="sub_action", ) def add_parser_validate_flow(subparsers): """Add flow validate parser to the pf flow subparsers.""" epilog = """ Examples: # Validate flow pf flow validate --source <path_to_flow> """ # noqa: E501 activate_action( name="validate", description="Validate a flow and generate flow.tools.json for the flow.", epilog=epilog, add_params=[ add_param_source, ] + base_params, subparsers=subparsers, help_message="Validate a flow. Will raise error if the flow is not valid.", action_param_name="sub_action", ) def add_parser_test_flow(subparsers): """Add flow test parser to the pf flow subparsers.""" epilog = """ Examples: # Test the flow: pf flow test --flow my-awesome-flow # Test the flow with inputs: pf flow test --flow my-awesome-flow --inputs key1=val1 key2=val2 # Test the flow with specified variant node: pf flow test --flow my-awesome-flow --variant ${node_name.variant_name} # Test the single node in the flow: pf flow test --flow my-awesome-flow --node node_name # Chat in the flow: pf flow test --flow my-awesome-flow --node node_name --interactive """ # noqa: E501 add_param_flow = lambda parser: parser.add_argument( # noqa: E731 "--flow", type=str, required=True, help="the flow directory to test." ) add_param_node = lambda parser: parser.add_argument( # noqa: E731 "--node", type=str, help="the node name in the flow need to be tested." ) add_param_variant = lambda parser: parser.add_argument( # noqa: E731 "--variant", type=str, help="Node & variant name in format of ${node_name.variant_name}." ) add_param_interactive = lambda parser: parser.add_argument( # noqa: E731 "--interactive", action="store_true", help="start a interactive chat session for chat flow." ) add_param_multi_modal = lambda parser: parser.add_argument( # noqa: E731 "--multi-modal", action="store_true", help=argparse.SUPPRESS ) add_param_ui = lambda parser: parser.add_argument("--ui", action="store_true", help=argparse.SUPPRESS) # noqa: E731 add_param_input = lambda parser: parser.add_argument("--input", type=str, help=argparse.SUPPRESS) # noqa: E731 add_param_detail = lambda parser: parser.add_argument( # noqa: E731 "--detail", type=str, default=None, required=False, help=argparse.SUPPRESS ) add_params = [ add_param_flow, add_param_node, add_param_variant, add_param_interactive, add_param_input, add_param_inputs, add_param_environment_variables, add_param_multi_modal, add_param_ui, add_param_config, add_param_detail, ] + base_params activate_action( name="test", description="Test the flow.", epilog=epilog, add_params=add_params, subparsers=subparsers, help_message="Test the prompt flow or flow node.", action_param_name="sub_action", ) def init_flow(args): if any([args.entry, args.prompt_template]): print("Creating flow from existing folder...") prompt_tpl = {} if args.prompt_template: for _dct in args.prompt_template: prompt_tpl.update(**_dct) _init_existing_flow(args.flow, args.entry, args.function, prompt_tpl) else: # Create an example flow print("Creating flow from scratch...") _init_flow_by_template(args.flow, args.type, args.yes, args.connection, args.deployment) def _init_existing_flow(flow_name, entry=None, function=None, prompt_params: dict = None): flow_path = Path(flow_name).resolve() if not function: logger.error("--function must be specified when --entry is specified.") return if not flow_path.exists(): logger.error(f"{flow_path.resolve()} must exist when --entry specified.") return print(f"Change working directory to .. {flow_path.resolve()}") os.chdir(flow_path) entry = Path(entry).resolve() if not entry.exists(): logger.error(f"{entry} must exist.") return with inject_sys_path(flow_path): # import function object function_obj = getattr(importlib.import_module(entry.stem), function) # Create tool.py tool_py = f"{function}_tool.py" python_tool = ToolPyGenerator(entry, function, function_obj) tools = ToolMetaGenerator(tool_py, function, function_obj, prompt_params) python_tool_inputs = [arg.name for arg in python_tool.tool_arg_list] for tool_input in tools.prompt_params.keys(): if tool_input not in python_tool_inputs: error = ValueError(f"Template parameter {tool_input} doesn't find in python function arguments.") raise UserErrorException(target=ErrorTarget.CONTROL_PLANE_SDK, message=str(error), error=error) python_tool.generate_to_file(tool_py) # Create .promptflow and flow.tools.json meta_dir = flow_path / PROMPT_FLOW_DIR_NAME meta_dir.mkdir(parents=True, exist_ok=True) tools.generate_to_file(meta_dir / "flow.tools.json") # Create flow.dag.yaml FlowDAGGenerator(tool_py, function, function_obj, prompt_params).generate_to_file("flow.dag.yaml") copy_extra_files(flow_path=flow_path, extra_files=["requirements.txt", ".gitignore"]) print(f"Done. Generated flow in folder: {flow_path.resolve()}.") def _init_chat_flow(flow_name, flow_path, connection=None, deployment=None): from promptflow._sdk._configuration import Configuration example_flow_path = Path(__file__).parent.parent / "data" / "chat_flow" / "flow_files" for item in list(example_flow_path.iterdir()): _copy_to_flow(flow_path=flow_path, source_file=item) # Generate flow.dag.yaml to chat flow. connection = connection or DEFAULT_CONNECTION deployment = deployment or DEFAULT_DEPLOYMENT ChatFlowDAGGenerator(connection=connection, deployment=deployment).generate_to_file(flow_path / "flow.dag.yaml") # When customer not configure the remote connection provider, create connection yaml to chat flow. is_local_connection = Configuration.get_instance().get_connection_provider() == ConnectionProvider.LOCAL if is_local_connection: OpenAIConnectionGenerator(connection=connection).generate_to_file(flow_path / "openai.yaml") AzureOpenAIConnectionGenerator(connection=connection).generate_to_file(flow_path / "azure_openai.yaml") copy_extra_files(flow_path=flow_path, extra_files=["requirements.txt", ".gitignore"]) print(f"Done. Created chat flow folder: {flow_path.resolve()}.") if is_local_connection: print( f"The generated chat flow is requiring a connection named {connection}, " "please follow the steps in README.md to create if you haven't done that." ) else: print( f"The generated chat flow is requiring a connection named {connection}, " "please ensure it exists in workspace." ) flow_test_command = f"pf flow test --flow {flow_name} --interactive" print(f"You can execute this command to test the flow, {flow_test_command}") def _init_standard_or_evaluation_flow(flow_name, flow_path, flow_type): example_flow_path = Path(__file__).parent.parent / "data" / f"{flow_type}_flow" for item in list(example_flow_path.iterdir()): _copy_to_flow(flow_path=flow_path, source_file=item) copy_extra_files(flow_path=flow_path, extra_files=["requirements.txt", ".gitignore"]) print(f"Done. Created {flow_type} flow folder: {flow_path.resolve()}.") flow_test_command = f"pf flow test --flow {flow_name} --input {os.path.join(flow_name, 'data.jsonl')}" print(f"You can execute this command to test the flow, {flow_test_command}") def _init_flow_by_template(flow_name, flow_type, overwrite=False, connection=None, deployment=None): flow_path = Path(flow_name) if flow_path.exists(): if not flow_path.is_dir(): logger.error(f"{flow_path.resolve()} is not a folder.") return answer = confirm( "The flow folder already exists, do you want to create the flow in this existing folder?", overwrite ) if not answer: print("The 'pf init' command has been cancelled.") return flow_path.mkdir(parents=True, exist_ok=True) if flow_type == "chat": _init_chat_flow(flow_name=flow_name, flow_path=flow_path, connection=connection, deployment=deployment) else: _init_standard_or_evaluation_flow(flow_name=flow_name, flow_path=flow_path, flow_type=flow_type) @exception_handler("Flow test") def test_flow(args): from promptflow._sdk._load_functions import load_flow config = list_of_dict_to_dict(args.config) pf_client = PFClient(config=config) if args.environment_variables: environment_variables = list_of_dict_to_dict(args.environment_variables) else: environment_variables = {} inputs = {} if args.input: from promptflow._utils.load_data import load_data if args.input and not args.input.endswith(".jsonl"): error = ValueError("Only support jsonl file as input.") raise UserErrorException( target=ErrorTarget.CONTROL_PLANE_SDK, message=str(error), error=error, ) inputs = load_data(local_path=args.input)[0] if args.inputs: inputs.update(list_of_dict_to_dict(args.inputs)) if args.multi_modal or args.ui: with tempfile.TemporaryDirectory() as temp_dir: flow = load_flow(args.flow) script_path = [ os.path.join(temp_dir, "main.py"), os.path.join(temp_dir, "utils.py"), os.path.join(temp_dir, "logo.png"), ] for script in script_path: StreamlitFileReplicator( flow_name=flow.display_name if flow.display_name else flow.name, flow_dag_path=flow.flow_dag_path, ).generate_to_file(script) main_script_path = os.path.join(temp_dir, "main.py") pf_client.flows._chat_with_ui(script=main_script_path) else: if args.interactive: pf_client.flows._chat( flow=args.flow, inputs=inputs, environment_variables=environment_variables, variant=args.variant, show_step_output=args.verbose, ) else: result = pf_client.flows.test( flow=args.flow, inputs=inputs, environment_variables=environment_variables, variant=args.variant, node=args.node, allow_generator_output=False, stream_output=False, dump_test_result=True, detail=args.detail, ) # Print flow/node test result if isinstance(result, dict): print(json.dumps(result, indent=4, ensure_ascii=False)) else: print(result) def serve_flow(args): from promptflow._sdk._load_functions import load_flow logger.info("Start serve model: %s", args.source) # Set environment variable for local test source = Path(args.source) logger.info( "Start promptflow server with port %s", args.port, ) os.environ["PROMPTFLOW_PROJECT_PATH"] = source.absolute().as_posix() flow = load_flow(args.source) if flow.dag.get(LANGUAGE_KEY, FlowLanguage.Python) == FlowLanguage.CSharp: serve_flow_csharp(args, source) else: serve_flow_python(args, source) logger.info("Promptflow app ended") def serve_flow_csharp(args, source): from promptflow.batch._csharp_executor_proxy import EXECUTOR_SERVICE_DLL try: # Change working directory to model dir logger.info(f"Change working directory to model dir {source}") os.chdir(source) command = [ "dotnet", EXECUTOR_SERVICE_DLL, "--port", str(args.port), "--yaml_path", "flow.dag.yaml", "--assembly_folder", ".", "--connection_provider_url", "", "--log_path", "", "--serving", ] subprocess.run(command, stdout=sys.stdout, stderr=sys.stderr) except KeyboardInterrupt: pass def _resolve_python_flow_additional_includes(source) -> Path: # Resolve flow additional includes from promptflow import load_flow flow = load_flow(source) with FlowOperations._resolve_additional_includes(flow.path) as resolved_flow_path: if resolved_flow_path == flow.path: return source # Copy resolved flow to temp folder if additional includes exists # Note: DO NOT use resolved flow path directly, as when inner logic raise exception, # temp dir will fail due to file occupied by other process. temp_flow_path = Path(tempfile.TemporaryDirectory().name) shutil.copytree(src=resolved_flow_path.parent, dst=temp_flow_path, dirs_exist_ok=True) return temp_flow_path def serve_flow_python(args, source): from promptflow._sdk._serving.app import create_app static_folder = args.static_folder if static_folder: static_folder = Path(static_folder).absolute().as_posix() config = list_of_dict_to_dict(args.config) source = _resolve_python_flow_additional_includes(source) os.environ["PROMPTFLOW_PROJECT_PATH"] = source.absolute().as_posix() logger.info(f"Change working directory to model dir {source}") os.chdir(source) app = create_app( static_folder=static_folder, environment_variables=list_of_dict_to_dict(args.environment_variables), config=config, ) if not args.skip_open_browser: target = f"http://{args.host}:{args.port}" logger.info(f"Opening browser {target}...") webbrowser.open(target) # Debug is not supported for now as debug will rerun command, and we changed working directory. app.run(port=args.port, host=args.host) def build_flow(args): """ i. `pf flow build --source <flow_folder> --output <output_folder> --variant <variant>` ii. `pf flow build --source <flow_folder> --format docker --output <output_folder> --variant <variant>` iii. `pf flow build --source <flow_folder> --format executable --output <output_folder> --variant <variant>` # default to resolve variant and update flow.dag.yaml, support this in case customer want to keep the variants for continuous development # we can delay this before receiving specific customer request v. `pf flow build --source <flow_folder> --output <output_folder> --keep-variants` output structure: flow/ .connections/ Dockerfile|executable.exe ... """ pf_client = PFClient() pf_client.flows.build( flow=args.source, output=args.output, format=args.format, variant=args.variant, flow_only=args.flow_only, ) print( f"Exported flow to {Path(args.output).absolute().as_posix()}.\n" f"please check {Path(args.output).joinpath('README.md').absolute().as_posix()} " f"for how to use it." ) def validate_flow(args): pf_client = PFClient() validation_result = pf_client.flows.validate( flow=args.source, ) print(repr(validation_result)) if not validation_result.passed: exit(1) else: exit(0)
promptflow/src/promptflow/promptflow/_cli/_pf/_flow.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/_pf/_flow.py", "repo_id": "promptflow", "token_count": 8800 }
36
# Chat flow Chat flow is designed for conversational application development, building upon the capabilities of standard flow and providing enhanced support for chat inputs/outputs and chat history management. With chat flow, you can easily create a chatbot that handles chat input and output. ## Create connection for LLM tool to use You can follow these steps to create a connection required by a LLM tool. Currently, there are two connection types supported by LLM tool: "AzureOpenAI" and "OpenAI". If you want to use "AzureOpenAI" connection type, you need to create an Azure OpenAI service first. Please refer to [Azure OpenAI Service](https://azure.microsoft.com/en-us/products/cognitive-services/openai-service/) for more details. If you want to use "OpenAI" connection type, you need to create an OpenAI account first. Please refer to [OpenAI](https://platform.openai.com/) for more details. ```bash # Override keys with --set to avoid yaml file changes # Create open ai connection pf connection create --file openai.yaml --set api_key=<your_api_key> --name open_ai_connection # Create azure open ai connection # pf connection create --file azure_openai.yaml --set api_key=<your_api_key> api_base=<your_api_base> --name open_ai_connection ``` Note in [flow.dag.yaml](flow.dag.yaml) we are using connection named `open_ai_connection`. ```bash # show registered connection pf connection show --name open_ai_connection ``` Please refer to connections [document](https://promptflow.azurewebsites.net/community/local/manage-connections.html) and [example](https://github.com/microsoft/promptflow/tree/main/examples/connections) for more details. ## Develop a chat flow The most important elements that differentiate a chat flow from a standard flow are **Chat Input**, **Chat History**, and **Chat Output**. - **Chat Input**: Chat input refers to the messages or queries submitted by users to the chatbot. Effectively handling chat input is crucial for a successful conversation, as it involves understanding user intentions, extracting relevant information, and triggering appropriate responses. - **Chat History**: Chat history is the record of all interactions between the user and the chatbot, including both user inputs and AI-generated outputs. Maintaining chat history is essential for keeping track of the conversation context and ensuring the AI can generate contextually relevant responses. Chat History is a special type of chat flow input, that stores chat messages in a structured format. - **Chat Output**: Chat output refers to the AI-generated messages that are sent to the user in response to their inputs. Generating contextually appropriate and engaging chat outputs is vital for a positive user experience. A chat flow can have multiple inputs, but Chat History and Chat Input are required inputs in chat flow. ## Interact with chat flow Promptflow CLI provides a way to start an interactive chat session for chat flow. Customer can use below command to start an interactive chat session: ``` pf flow test --flow <flow_folder> --interactive ``` After executing this command, customer can interact with the chat flow in the terminal. Customer can press **Enter** to send the message to chat flow. And customer can quit with **ctrl+C**. Promptflow CLI will distinguish the output of different roles by color, <span style="color:Green">User input</span>, <span style="color:Gold">Bot output</span>, <span style="color:Blue">Flow script output</span>, <span style="color:Cyan">Node output</span>. > =========================================<br> > Welcome to chat flow, <You-flow-name>.<br> > Press Enter to send your message.<br> > You can quit with ctrl+C.<br> > =========================================<br> > <span style="color:Green">User:</span> What types of container software there are<br> > <span style="color:Gold">Bot:</span> There are several types of container software available, including:<br> > 1. Docker: This is one of the most popular containerization software that allows developers to package their applications into containers and deploy them across different environments.<br> > 2. Kubernetes: This is an open-source container orchestration platform that automates the deployment, scaling, and management of containerized applications.<br> > > <span style="color:Green">User:</span> What's the different between them<br> > <span style="color:Gold">Bot:</span> The main difference between the various container software systems is their functionality and purpose. Here are some key differences between them:<br> > 1. Docker is more focused on container packaging and deployment, while Kubernetes is more focused on container orchestration and management.<br> > 2. Kubernetes: Kubernetes is a container orchestration tool that helps manage and deploy containers at scale. It automates the deployment, scaling, and management of containerized applications across multiple hosts.<br> If customer adds "--verbose" in the pf command, the output of each step will be displayed. > =========================================<br> > Welcome to chat flow, Template Chat Flow.<br> > Press Enter to send your message.<br> > You can quit with ctrl+C.<br> > =========================================<br> > <span style="color:Green">User:</span> What types of container software there are<br> > <span style="color:Cyan">chat:</span> There are several types of container software available, including:<br> > 1. Docker: A popular container platform that is widely used in the industry.<br> > 2. Kubernetes: A container orchestration tool that helps manage and deploy containers at scale.<br> > > <span style="color:Gold">Bot:</span> There are several types of container software available, including:<br> > 1. Docker: A popular container platform that is widely used in the industry.<br> > 2. Kubernetes: A container orchestration tool that helps manage and deploy containers at scale.<br> > > <span style="color:Green">User:</span> What's the different between them<br> > <span style="color:Cyan">chat:</span> The main differences between container software are in their architecture, feature sets, and use cases. Here are some brief explanations of the differences between the examples I listed:<br> > 1. Docker: Docker is a container platform that is widely used for building, packaging, and deploying containerized applications. It is known for its ease of use, portability, and large ecosystem of tools and services.<br> > 2. Kubernetes: Kubernetes is a container orchestration tool that helps manage and deploy containers at scale. It automates the deployment, scaling, and management of containerized applications across multiple hosts.<br> > > <span style="color:Gold">Bot:</span> The main differences between container software are in their architecture, feature sets, and use cases. Here are some brief explanations of the differences between the examples I listed:<br> > 1. Docker: Docker is a container platform that is widely used for building, packaging, and deploying containerized applications. It is known for its ease of use, portability, and large ecosystem of tools and services.<br> > 2. Kubernetes: Kubernetes is a container orchestration tool that helps manage and deploy containers at scale. It automates the deployment, scaling, and management of containerized applications across multiple hosts.<br>
promptflow/src/promptflow/promptflow/_cli/data/chat_flow/flow_files/README.md/0
{ "file_path": "promptflow/src/promptflow/promptflow/_cli/data/chat_flow/flow_files/README.md", "repo_id": "promptflow", "token_count": 1766 }
37
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- class GeneratorProxy: """A proxy for generator that can record all items that have been yielded from the generator.""" def __init__(self, generator): self._generator = generator self._items = [] def __iter__(self): return self def __next__(self): item = next(self._generator) self._items.append(item) return item @property def items(self): return self._items def generate_from_proxy(proxy: GeneratorProxy): yield from proxy
promptflow/src/promptflow/promptflow/_core/generator_proxy.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_core/generator_proxy.py", "repo_id": "promptflow", "token_count": 215 }
38
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from promptflow._sdk._constants import BULK_RUN_ERRORS from promptflow.exceptions import ErrorTarget, SystemErrorException, UserErrorException class SDKError(UserErrorException): """SDK base class, target default is CONTROL_PLANE_SDK.""" def __init__( self, message="", message_format="", target: ErrorTarget = ErrorTarget.CONTROL_PLANE_SDK, module=None, **kwargs, ): super().__init__(message=message, message_format=message_format, target=target, module=module, **kwargs) class SDKInternalError(SystemErrorException): """SDK internal error.""" def __init__( self, message="", message_format="", target: ErrorTarget = ErrorTarget.CONTROL_PLANE_SDK, module=None, **kwargs, ): super().__init__(message=message, message_format=message_format, target=target, module=module, **kwargs) class RunExistsError(SDKError): """Exception raised when run already exists.""" pass class RunNotFoundError(SDKError): """Exception raised if run cannot be found.""" pass class InvalidRunStatusError(SDKError): """Exception raised if run status is invalid.""" pass class UnsecureConnectionError(SDKError): """Exception raised if connection is not secure.""" pass class DecryptConnectionError(SDKError): """Exception raised if connection decryption failed.""" pass class StoreConnectionEncryptionKeyError(SDKError): """Exception raised if no keyring backend.""" pass class InvalidFlowError(SDKError): """Exception raised if flow definition is not legal.""" pass class ConnectionNotFoundError(SDKError): """Exception raised if connection is not found.""" pass class InvalidRunError(SDKError): """Exception raised if run name is not legal.""" pass class GenerateFlowToolsJsonError(SDKError): """Exception raised if flow tools json generation failed.""" pass class BulkRunException(SDKError): """Exception raised when bulk run failed.""" def __init__(self, *, message="", failed_lines, total_lines, errors, module: str = None, **kwargs): self.failed_lines = failed_lines self.total_lines = total_lines self._additional_info = { BULK_RUN_ERRORS: errors, } message = f"First error message is: {message}" # bulk run error is line error only when failed_lines > 0 if isinstance(failed_lines, int) and isinstance(total_lines, int) and failed_lines > 0: message = f"Failed to run {failed_lines}/{total_lines} lines. " + message super().__init__(message=message, target=ErrorTarget.RUNTIME, module=module, **kwargs) @property def additional_info(self): """Set the tool exception details as additional info.""" return self._additional_info class RunOperationParameterError(SDKError): """Exception raised when list run failed.""" pass class RunOperationError(SDKError): """Exception raised when run operation failed.""" pass class FlowOperationError(SDKError): """Exception raised when flow operation failed.""" pass class ExperimentExistsError(SDKError): """Exception raised when experiment already exists.""" pass class ExperimentNotFoundError(SDKError): """Exception raised if experiment cannot be found.""" pass class ExperimentValidationError(SDKError): """Exception raised if experiment validation failed.""" pass class ExperimentValueError(SDKError): """Exception raised if experiment validation failed.""" pass class ExperimentHasCycle(SDKError): """Exception raised if experiment validation failed.""" pass class DownloadInternalError(SDKInternalError): """Exception raised if download internal error.""" pass class ExperimentCommandRunError(SDKError): """Exception raised if experiment validation failed.""" pass
promptflow/src/promptflow/promptflow/_sdk/_errors.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_errors.py", "repo_id": "promptflow", "token_count": 1364 }
39
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import shlex import subprocess import sys import tempfile from dataclasses import asdict from pathlib import Path from flask import Response, jsonify, make_response, request from promptflow._sdk._constants import FlowRunProperties, get_list_view_type from promptflow._sdk._errors import RunNotFoundError from promptflow._sdk._service import Namespace, Resource, fields from promptflow._sdk._service.utils.utils import build_pfs_user_agent, get_client_from_request, make_response_no_content from promptflow._sdk.entities import Run as RunEntity from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow._utils.yaml_utils import dump_yaml from promptflow.contracts._run_management import RunMetadata api = Namespace("Runs", description="Runs Management") # Define update run request parsing update_run_parser = api.parser() update_run_parser.add_argument("display_name", type=str, location="form", required=False) update_run_parser.add_argument("description", type=str, location="form", required=False) update_run_parser.add_argument("tags", type=str, location="form", required=False) # Define visualize request parsing visualize_parser = api.parser() visualize_parser.add_argument("html", type=str, location="form", required=False) # Response model of run operation dict_field = api.schema_model("RunDict", {"additionalProperties": True, "type": "object"}) list_field = api.schema_model("RunList", {"type": "array", "items": {"$ref": "#/definitions/RunDict"}}) @api.route("/") class RunList(Resource): @api.response(code=200, description="Runs", model=list_field) @api.doc(description="List all runs") def get(self): # parse query parameters max_results = request.args.get("max_results", default=50, type=int) all_results = request.args.get("all_results", default=False, type=bool) archived_only = request.args.get("archived_only", default=False, type=bool) include_archived = request.args.get("include_archived", default=False, type=bool) # align with CLI behavior if all_results: max_results = None list_view_type = get_list_view_type(archived_only=archived_only, include_archived=include_archived) runs = get_client_from_request().runs.list(max_results=max_results, list_view_type=list_view_type) runs_dict = [run._to_dict() for run in runs] return jsonify(runs_dict) @api.route("/submit") class RunSubmit(Resource): @api.response(code=200, description="Submit run info", model=dict_field) @api.doc(body=dict_field, description="Submit run") def post(self): run_dict = request.get_json(force=True) run_name = run_dict.get("name", None) if not run_name: run = RunEntity(**run_dict) run_name = run._generate_run_name() run_dict["name"] = run_name with tempfile.TemporaryDirectory() as temp_dir: run_file = Path(temp_dir) / "batch_run.yaml" with open(run_file, "w", encoding="utf-8") as f: dump_yaml(run_dict, f) cmd = [ "pf", "run", "create", "--file", str(run_file), "--user-agent", build_pfs_user_agent(), ] if sys.executable.endswith("pfcli.exe"): cmd = ["pfcli"] + cmd process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) stdout, _ = process.communicate() if process.returncode == 0: try: run = get_client_from_request().runs._get(name=run_name) return jsonify(run._to_dict()) except RunNotFoundError as e: raise RunNotFoundError( f"Failed to get the submitted run: {e}\n" f"Used command: {' '.join(shlex.quote(arg) for arg in cmd)}\n" f"Output: {stdout.decode('utf-8')}" ) else: raise Exception(f"Create batch run failed: {stdout.decode('utf-8')}") @api.route("/<string:name>") class Run(Resource): @api.response(code=200, description="Update run info", model=dict_field) @api.doc(parser=update_run_parser, description="Update run") def put(self, name: str): args = update_run_parser.parse_args() tags = json.loads(args.tags) if args.tags else None run = get_client_from_request().runs.update( name=name, display_name=args.display_name, description=args.description, tags=tags ) return jsonify(run._to_dict()) @api.response(code=200, description="Get run info", model=dict_field) @api.doc(description="Get run") def get(self, name: str): run = get_client_from_request().runs.get(name=name) return jsonify(run._to_dict()) @api.response(code=204, description="Delete run", model=dict_field) @api.doc(description="Delete run") def delete(self, name: str): get_client_from_request().runs.delete(name=name) return make_response_no_content() @api.route("/<string:name>/childRuns") class FlowChildRuns(Resource): @api.response(code=200, description="Child runs", model=list_field) @api.doc(description="Get child runs") def get(self, name: str): run = get_client_from_request().runs.get(name=name) local_storage_op = LocalStorageOperations(run=run) detail_dict = local_storage_op.load_detail() return jsonify(detail_dict["flow_runs"]) @api.route("/<string:name>/nodeRuns/<string:node_name>") class FlowNodeRuns(Resource): @api.response(code=200, description="Node runs", model=list_field) @api.doc(description="Get node runs info") def get(self, name: str, node_name: str): run = get_client_from_request().runs.get(name=name) local_storage_op = LocalStorageOperations(run=run) detail_dict = local_storage_op.load_detail() node_runs = [item for item in detail_dict["node_runs"] if item["node"] == node_name] return jsonify(node_runs) @api.route("/<string:name>/metaData") class MetaData(Resource): @api.doc(description="Get metadata of run") @api.response(code=200, description="Run metadata", model=dict_field) def get(self, name: str): run = get_client_from_request().runs.get(name=name) local_storage_op = LocalStorageOperations(run=run) metadata = RunMetadata( name=run.name, display_name=run.display_name, create_time=run.created_on, flow_path=run.properties[FlowRunProperties.FLOW_PATH], output_path=run.properties[FlowRunProperties.OUTPUT_PATH], tags=run.tags, lineage=run.run, metrics=local_storage_op.load_metrics(), dag=local_storage_op.load_dag_as_string(), flow_tools_json=local_storage_op.load_flow_tools_json(), ) return jsonify(asdict(metadata)) @api.route("/<string:name>/logContent") class LogContent(Resource): @api.doc(description="Get run log content") @api.response(code=200, description="Log content", model=fields.String) def get(self, name: str): run = get_client_from_request().runs.get(name=name) local_storage_op = LocalStorageOperations(run=run) log_content = local_storage_op.logger.get_logs() return make_response(log_content) @api.route("/<string:name>/metrics") class Metrics(Resource): @api.doc(description="Get run metrics") @api.response(code=200, description="Run metrics", model=dict_field) def get(self, name: str): run = get_client_from_request().runs.get(name=name) local_storage_op = LocalStorageOperations(run=run) metrics = local_storage_op.load_metrics() return jsonify(metrics) @api.route("/<string:name>/visualize") class VisualizeRun(Resource): @api.doc(description="Visualize run") @api.response(code=200, description="Visualize run", model=fields.String) @api.produces(["text/html"]) def get(self, name: str): with tempfile.TemporaryDirectory() as temp_dir: from promptflow._sdk.operations import RunOperations run_op: RunOperations = get_client_from_request().runs html_path = Path(temp_dir) / "visualize_run.html" # visualize operation may accept name in string run_op.visualize(name, html_path=html_path) with open(html_path, "r") as f: return Response(f.read(), mimetype="text/html") @api.route("/<string:name>/archive") class ArchiveRun(Resource): @api.doc(description="Archive run") @api.response(code=200, description="Archived run", model=dict_field) def get(self, name: str): run = get_client_from_request().runs.archive(name=name) return jsonify(run._to_dict()) @api.route("/<string:name>/restore") class RestoreRun(Resource): @api.doc(description="Restore run") @api.response(code=200, description="Restored run", model=dict_field) def get(self, name: str): run = get_client_from_request().runs.restore(name=name) return jsonify(run._to_dict())
promptflow/src/promptflow/promptflow/_sdk/_service/apis/run.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_service/apis/run.py", "repo_id": "promptflow", "token_count": 3864 }
40
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import json import os import re from promptflow._sdk._serving._errors import InvalidConnectionData, MissingConnectionProvider from promptflow._sdk._serving.extension.default_extension import AppExtension from promptflow._sdk._serving.monitor.data_collector import FlowDataCollector from promptflow._sdk._serving.monitor.flow_monitor import FlowMonitor from promptflow._sdk._serving.monitor.metrics import MetricsRecorder from promptflow._sdk._serving.utils import decode_dict, get_pf_serving_env, normalize_connection_name from promptflow._utils.retry_utils import retry from promptflow._version import VERSION from promptflow.contracts.flow import Flow USER_AGENT = f"promptflow-cloud-serving/{VERSION}" AML_DEPLOYMENT_RESOURCE_ID_REGEX = "/subscriptions/(.*)/resourceGroups/(.*)/providers/Microsoft.MachineLearningServices/workspaces/(.*)/onlineEndpoints/(.*)/deployments/(.*)" # noqa: E501 AML_CONNECTION_PROVIDER_TEMPLATE = "azureml:/subscriptions/{}/resourceGroups/{}/providers/Microsoft.MachineLearningServices/workspaces/{}" # noqa: E501 class AzureMLExtension(AppExtension): """AzureMLExtension is used to create extension for azureml serving.""" def __init__(self, logger, **kwargs): super().__init__(logger=logger, **kwargs) self.logger = logger # parse promptflow project path project_path: str = get_pf_serving_env("PROMPTFLOW_PROJECT_PATH") if not project_path: model_dir = os.getenv("AZUREML_MODEL_DIR", ".") model_rootdir = os.listdir(model_dir)[0] self.model_name = model_rootdir project_path = os.path.join(model_dir, model_rootdir) self.model_root_path = project_path # mlflow support in base extension self.project_path = self._get_mlflow_project_path(project_path) # initialize connections or connection provider # TODO: to be deprecated, remove in next major version self.connections = self._get_env_connections_if_exist() self.endpoint_name: str = None self.deployment_name: str = None self.connection_provider = None self.credential = _get_managed_identity_credential_with_retry() if len(self.connections) == 0: self._initialize_connection_provider() # initialize metrics common dimensions if exist self.common_dimensions = {} if self.endpoint_name: self.common_dimensions["endpoint"] = self.endpoint_name if self.deployment_name: self.common_dimensions["deployment"] = self.deployment_name env_dimensions = self._get_common_dimensions_from_env() self.common_dimensions.update(env_dimensions) # initialize flow monitor data_collector = FlowDataCollector(self.logger) metrics_recorder = self._get_metrics_recorder() self.flow_monitor = FlowMonitor( self.logger, self.get_flow_name(), data_collector, metrics_recorder=metrics_recorder ) def get_flow_project_path(self) -> str: return self.project_path def get_flow_name(self) -> str: return os.path.basename(self.model_root_path) def get_connection_provider(self) -> str: return self.connection_provider def get_blueprints(self): return self._get_default_blueprints() def get_flow_monitor(self) -> FlowMonitor: return self.flow_monitor def get_override_connections(self, flow: Flow) -> (dict, dict): connection_names = flow.get_connection_names() connections = {} connections_name_overrides = {} for connection_name in connection_names: # replace " " with "_" in connection name normalized_name = normalize_connection_name(connection_name) if normalized_name in os.environ: override_conn = os.environ[normalized_name] data_override = False # try load connection as a json try: # data override conn_data = json.loads(override_conn) data_override = True except ValueError: # name override self.logger.debug(f"Connection value is not json, enable name override for {connection_name}.") connections_name_overrides[connection_name] = override_conn if data_override: try: # try best to convert to connection, this is only for azureml deployment. from promptflow.azure.operations._arm_connection_operations import ArmConnectionOperations conn = ArmConnectionOperations._convert_to_connection_dict(connection_name, conn_data) connections[connection_name] = conn except Exception as e: self.logger.warn(f"Failed to convert connection data to connection: {e}") raise InvalidConnectionData(connection_name) if len(connections_name_overrides) > 0: self.logger.info(f"Connection name overrides: {connections_name_overrides}") if len(connections) > 0: self.logger.info(f"Connections data overrides: {connections.keys()}") self.connections.update(connections) return self.connections, connections_name_overrides def raise_ex_on_invoker_initialization_failure(self, ex: Exception): from promptflow.azure.operations._arm_connection_operations import UserAuthenticationError # allow lazy authentication for UserAuthenticationError return not isinstance(ex, UserAuthenticationError) def get_user_agent(self) -> str: return USER_AGENT def get_metrics_common_dimensions(self): return self.common_dimensions def get_credential(self): return self.credential def _get_env_connections_if_exist(self): # For local test app connections will be set. connections = {} env_connections = get_pf_serving_env("PROMPTFLOW_ENCODED_CONNECTIONS") if env_connections: connections = decode_dict(env_connections) return connections def _get_metrics_recorder(self): # currently only support exporting it to azure monitor(application insights) # TODO: add support for dynamic loading thus user can customize their own exporter. custom_dimensions = self.get_metrics_common_dimensions() try: from azure.monitor.opentelemetry.exporter import AzureMonitorMetricExporter from opentelemetry.sdk.metrics.export import PeriodicExportingMetricReader # check whether azure monitor instrumentation key is set instrumentation_key = os.getenv("AML_APP_INSIGHTS_KEY") or os.getenv("APPINSIGHTS_INSTRUMENTATIONKEY") if instrumentation_key: self.logger.info("Initialize metrics recorder with azure monitor metrics exporter...") exporter = AzureMonitorMetricExporter(connection_string=f"InstrumentationKey={instrumentation_key}") reader = PeriodicExportingMetricReader(exporter=exporter, export_interval_millis=60000) return MetricsRecorder(self.logger, reader=reader, common_dimensions=custom_dimensions) else: self.logger.info("Azure monitor metrics exporter is not enabled, metrics will not be collected.") except ImportError: self.logger.warning("No metrics exporter module found, metrics will not be collected.") return None def _initialize_connection_provider(self): # parse connection provider self.connection_provider = get_pf_serving_env("PROMPTFLOW_CONNECTION_PROVIDER") if not self.connection_provider: pf_override = os.getenv("PRT_CONFIG_OVERRIDE", None) if pf_override: env_conf = pf_override.split(",") env_conf_list = [setting.split("=") for setting in env_conf] settings = {setting[0]: setting[1] for setting in env_conf_list} self.subscription_id = settings.get("deployment.subscription_id", None) self.resource_group = settings.get("deployment.resource_group", None) self.workspace_name = settings.get("deployment.workspace_name", None) self.endpoint_name = settings.get("deployment.endpoint_name", None) self.deployment_name = settings.get("deployment.deployment_name", None) else: deploy_resource_id = os.getenv("AML_DEPLOYMENT_RESOURCE_ID", None) if deploy_resource_id: match_result = re.match(AML_DEPLOYMENT_RESOURCE_ID_REGEX, deploy_resource_id) if len(match_result.groups()) == 5: self.subscription_id = match_result.group(1) self.resource_group = match_result.group(2) self.workspace_name = match_result.group(3) self.endpoint_name = match_result.group(4) self.deployment_name = match_result.group(5) else: # raise exception if not found any valid connection provider setting raise MissingConnectionProvider( message="Missing connection provider, please check whether 'PROMPTFLOW_CONNECTION_PROVIDER' " "is in your environment variable list." ) # noqa: E501 self.connection_provider = AML_CONNECTION_PROVIDER_TEMPLATE.format( self.subscription_id, self.resource_group, self.workspace_name ) # noqa: E501 def _get_managed_identity_credential_with_retry(**kwargs): from azure.identity import ManagedIdentityCredential class ManagedIdentityCredentialWithRetry(ManagedIdentityCredential): @retry(Exception) def get_token(self, *scopes, **kwargs): return super().get_token(*scopes, **kwargs) return ManagedIdentityCredentialWithRetry(**kwargs)
promptflow/src/promptflow/promptflow/_sdk/_serving/extension/azureml_extension.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_serving/extension/azureml_extension.py", "repo_id": "promptflow", "token_count": 4282 }
41
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os import subprocess from datetime import datetime from pathlib import Path from typing import Dict from promptflow._sdk._configuration import Configuration from promptflow._sdk._constants import ExperimentNodeType, ExperimentStatus, FlowRunProperties, RunTypes from promptflow._sdk._errors import ExperimentCommandRunError, ExperimentHasCycle, ExperimentValueError from promptflow._sdk._submitter import RunSubmitter from promptflow._sdk._submitter.utils import SubmitterHelper from promptflow._sdk.entities import Run from promptflow._sdk.entities._experiment import Experiment from promptflow._sdk.operations import RunOperations from promptflow._sdk.operations._experiment_operations import ExperimentOperations from promptflow._sdk.operations._local_storage_operations import LocalStorageOperations from promptflow._utils.logger_utils import LoggerFactory from promptflow.contracts.run_info import Status from promptflow.contracts.run_mode import RunMode from promptflow.exceptions import UserErrorException logger = LoggerFactory.get_logger(name=__name__) class ExperimentOrchestrator: """Experiment orchestrator, responsible for experiment running.""" def __init__(self, run_operations: RunOperations, experiment_operations: ExperimentOperations): self.run_operations = run_operations self.experiment_operations = experiment_operations self.run_submitter = ExperimentRunSubmitter(run_operations) self.command_submitter = ExperimentCommandSubmitter(run_operations) def start(self, experiment: Experiment, **kwargs): """Start an experiment. :param experiment: Experiment to start. :type experiment: ~promptflow.entities.Experiment :param kwargs: Keyword arguments. :type kwargs: Any """ # Start experiment logger.info(f"Starting experiment {experiment.name}.") experiment.status = ExperimentStatus.IN_PROGRESS experiment.last_start_time = datetime.utcnow().isoformat() experiment.last_end_time = None self.experiment_operations.create_or_update(experiment) # Ensure nodes order resolved_nodes = self._ensure_nodes_order(experiment.nodes) # Run nodes run_dict = {} try: for node in resolved_nodes: logger.info(f"Running node {node.name}.") run = self._run_node(node, experiment, run_dict) # Update node run to experiment experiment._append_node_run(node.name, run) self.experiment_operations.create_or_update(experiment) run_dict[node.name] = run logger.info(f"Node {node.name} run {run.name} completed, outputs to {run._output_path}.") except Exception as e: logger.error(f"Running experiment {experiment.name} failed with error {e}.") finally: # End experiment logger.info(f"Terminating experiment {experiment.name}.") experiment.status = ExperimentStatus.TERMINATED experiment.last_end_time = datetime.utcnow().isoformat() return self.experiment_operations.create_or_update(experiment) def _ensure_nodes_order(self, nodes): # Perform topological sort to ensure nodes order resolved_nodes = [] def _prepare_edges(node): node_names = set() for input_value in node.inputs.values(): if not isinstance(input_value, str): continue if ( input_value.startswith("${") and not input_value.startswith("${data.") and not input_value.startswith("${inputs.") ): referenced_node_name = input_value.split(".")[0].replace("${", "") node_names.add(referenced_node_name) return node_names edges = {node.name: _prepare_edges(node) for node in nodes} logger.debug(f"Experiment nodes edges: {edges!r}") while len(resolved_nodes) != len(nodes): action = False for node in nodes: if node.name not in edges: continue if len(edges[node.name]) != 0: continue action = True resolved_nodes.append(node) del edges[node.name] for referenced_nodes in edges.values(): referenced_nodes.discard(node.name) break if not action: raise ExperimentHasCycle(f"Experiment has circular dependency {edges!r}") logger.debug(f"Experiment nodes resolved order: {[node.name for node in resolved_nodes]}") return resolved_nodes def _run_node(self, node, experiment, run_dict) -> Run: if node.type == ExperimentNodeType.FLOW: return self._run_flow_node(node, experiment, run_dict) elif node.type == ExperimentNodeType.COMMAND: return self._run_command_node(node, experiment, run_dict) raise ExperimentValueError(f"Unknown experiment node {node.name!r} type {node.type!r}") def _run_flow_node(self, node, experiment, run_dict): run_output_path = (Path(experiment._output_dir) / "runs" / node.name).resolve().absolute().as_posix() timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") run = ExperimentRun( node_name=node.name, experiment=experiment, experiment_runs=run_dict, # Use node name as prefix for run name? name=f"{node.name}_attempt{timestamp}", display_name=node.display_name or node.name, column_mapping=node.inputs, variant=node.variant, flow=node.path, connections=node.connections, environment_variables=node.environment_variables, # Config run output path to experiment output folder config=Configuration(overrides={Configuration.RUN_OUTPUT_PATH: run_output_path}), ) logger.debug(f"Creating run {run.name}") return self.run_submitter.submit(run) def _run_command_node(self, node, experiment, run_dict): run_output_path = (Path(experiment._output_dir) / "runs" / node.name).resolve().absolute().as_posix() timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f") run = ExperimentRun( type=RunTypes.COMMAND, node_name=node.name, experiment=experiment, experiment_runs=run_dict, name=f"{node.name}_attempt{timestamp}", display_name=node.display_name or node.name, column_mapping=node.inputs, # Use command code path as flow path flow=node.code, outputs=node.outputs, command=node.command, environment_variables=node.environment_variables, config=Configuration(overrides={Configuration.RUN_OUTPUT_PATH: run_output_path}), ) logger.debug(f"Creating run {run.name}") return self.command_submitter.submit(run) class ExperimentRun(Run): """Experiment run, includes experiment running context, like data, inputs and runs.""" def __init__(self, experiment, node_name, experiment_runs: Dict[str, "ExperimentRun"], **kwargs): self.node_name = node_name self.experiment = experiment self.experiment_data = {data.name: data for data in experiment.data} self.experiment_inputs = {input.name: input for input in experiment.inputs} self.experiment_runs = experiment_runs super().__init__(**kwargs) self._resolve_column_mapping() def _resolve_column_mapping(self): """Resolve column mapping with experiment inputs to constant values.""" logger.info(f"Start resolve node {self.node_name!r} column mapping.") resolved_mapping = {} for name, value in self.column_mapping.items(): if not isinstance(value, str) or not value.startswith("${inputs."): resolved_mapping[name] = value continue input_name = value.split(".")[1].replace("}", "") if input_name not in self.experiment_inputs: raise ExperimentValueError( f"Node {self.node_name!r} inputs {value!r} related experiment input {input_name!r} not found." ) resolved_mapping[name] = self.experiment_inputs[input_name].default logger.debug(f"Resolved node {self.node_name!r} column mapping {resolved_mapping}.") self.column_mapping = resolved_mapping def _get_referenced_data_and_run(self) -> tuple: """Get the node referenced data and runs. Format: {name: ExperimentData/ExperimentRun}""" data, run = {}, {} inputs_mapping = self.column_mapping for value in inputs_mapping.values(): if not isinstance(value, str): continue if value.startswith("${data."): name = value.split(".")[1].replace("}", "") if name not in self.experiment_data: raise ExperimentValueError( f"Node {self.display_name!r} inputs {value!r} related experiment data {name!r} not found." ) data[name] = self.experiment_data[name] elif value.startswith("${"): name = value.split(".")[0].replace("${", "") if name not in self.experiment_runs: raise ExperimentValueError( f"Node {self.display_name!r} inputs {value!r} related experiment run {name!r} not found." ) run[name] = self.experiment_runs[name] return data, run class ExperimentRunSubmitterHelper: @staticmethod def resolve_binding_from_run(run_name, run, run_operations) -> dict: """Return the valid binding dict based on a run.""" binding_dict = { # to align with cloud behavior, run.inputs should refer to original data f"{run_name}.inputs": run_operations._get_data_path(run), } # Update command node outputs if run._outputs: binding_dict.update({f"{run_name}.outputs.{name}": path for name, path in run._outputs.items()}) else: binding_dict.update({f"{run_name}.outputs": run_operations._get_outputs_path(run)}) logger.debug(f"Resolved node {run_name} binding inputs {binding_dict}.") return binding_dict class ExperimentRunSubmitter(RunSubmitter): """Experiment run submitter, override some function from RunSubmitter as experiment run could be different.""" @classmethod def _validate_inputs(cls, run: Run): # Do not validate run/data field, as we will resolve them in _resolve_input_dirs. return def _resolve_input_dirs(self, run: ExperimentRun): logger.info("Start resolve node %s input dirs.", run.node_name) logger.debug(f"Experiment context: {run.experiment_data}, {run.experiment_runs}, inputs: {run.column_mapping}") # Get the node referenced data and run referenced_data, referenced_run = run._get_referenced_data_and_run() if len(referenced_data) > 1: raise ExperimentValueError( f"Experiment flow node {run.node_name!r} has multiple data inputs {referenced_data}, " "only 1 is expected." ) if len(referenced_run) > 1: raise ExperimentValueError( f"Experiment flow node {run.node_name!r} has multiple run inputs {referenced_run}, " "only 1 is expected." ) (data_name, data_obj) = next(iter(referenced_data.items())) if referenced_data else (None, None) (run_name, run_obj) = next(iter(referenced_run.items())) if referenced_run else (None, None) logger.debug(f"Resolve node {run.node_name} referenced data {data_name!r}, run {run_name!r}.") # Build inputs from experiment data and run result = {} if data_obj: result.update({f"data.{data_name}": data_obj.path}) if run_obj: result.update(ExperimentRunSubmitterHelper.resolve_binding_from_run(run_name, run_obj, self.run_operations)) result = {k: str(Path(v).resolve()) for k, v in result.items() if v is not None} logger.debug(f"Resolved node {run.node_name} input dirs {result}.") return result class ExperimentCommandSubmitter: """Experiment command submitter, responsible for experiment command running.""" def __init__(self, run_operations: RunOperations): self.run_operations = run_operations def submit(self, run: ExperimentRun, **kwargs): """Submit an experiment command run. :param run: Experiment command to submit. :type run: ~promptflow.entities.Run """ local_storage = LocalStorageOperations(run, run_mode=RunMode.SingleNode) self._submit_command_run(run=run, local_storage=local_storage) return self.run_operations.get(name=run.name) def _resolve_inputs(self, run: ExperimentRun): """Resolve binding inputs to constant values.""" # e.g. "input_path": "${data.my_data}" -> "${inputs.input_path}": "real_data_path" logger.info("Start resolve node %s inputs.", run.node_name) data, runs = run._get_referenced_data_and_run() # prepare "${data.my_data}": real_data_path binding_dict = {"${data.%s}" % name: val.path for name, val in data.items()} # prepare "${run.outputs}": run_outputs_path, "${run.inputs}": run_inputs_path for name, val in runs.items(): binding_dict.update( { "${%s}" % k: v for k, v in ExperimentRunSubmitterHelper.resolve_binding_from_run( name, val, self.run_operations ).items() } ) logger.debug(f"Resolved node {run.node_name} binding inputs {binding_dict}.") # resolve inputs resolved_inputs = {} for name, value in run.column_mapping.items(): if not isinstance(value, str) or not value.startswith("${"): resolved_inputs[name] = value continue # my_input: "${run.outputs}" -> my_input: run_outputs_path if value in binding_dict: resolved_inputs[name] = binding_dict[value] continue logger.warning( f"Possibly invalid partial input value binding {value!r} found for node {run.node_name!r}. " "Only full binding is supported for command node. For example: ${data.my_data}, ${main_node.outputs}." ) resolved_inputs[name] = value logger.debug(f"Resolved node {run.node_name} inputs {resolved_inputs}.") return resolved_inputs def _resolve_outputs(self, run: ExperimentRun): """Resolve outputs to real path.""" # e.g. "output_path": "${outputs.my_output}" -> "${outputs.output_path}": "real_output_path" logger.info("Start resolve node %s outputs.", run.node_name) # resolve outputs resolved_outputs = {} for name, value in run._outputs.items(): # Set default output path if user doesn't set it if not value: # Create default output path if user doesn't set it value = run._output_path / name value.mkdir(parents=True, exist_ok=True) value = value.resolve().absolute().as_posix() # Update default to run run._outputs[name] = value # Note: We will do nothing if user config the value, as we don't know it's a file or folder resolved_outputs[name] = value logger.debug(f"Resolved node {run.node_name} outputs {resolved_outputs}.") return resolved_outputs def _resolve_command(self, run: ExperimentRun, inputs: dict, outputs: dict): """Resolve command to real command.""" logger.info("Start resolve node %s command.", run.node_name) # resolve command resolved_command = run._command # replace inputs for name, value in inputs.items(): resolved_command = resolved_command.replace(f"${{inputs.{name}}}", str(value)) # replace outputs for name, value in outputs.items(): resolved_command = resolved_command.replace(f"${{outputs.{name}}}", str(value)) logger.debug(f"Resolved node {run.node_name} command {resolved_command}.") if "${" in resolved_command: logger.warning( f"Possibly unresolved command value binding found for node {run.node_name!r}. " f"Resolved command: {resolved_command}. Please check your command again." ) return resolved_command def _submit_command_run(self, run: ExperimentRun, local_storage: LocalStorageOperations) -> dict: # resolve environment variables SubmitterHelper.resolve_environment_variables(environment_variables=run.environment_variables) SubmitterHelper.init_env(environment_variables=run.environment_variables) # resolve inputs & outputs for command preparing # e.g. input_path: ${data.my_data} -> ${inputs.input_path}: real_data_path inputs = self._resolve_inputs(run) outputs = self._resolve_outputs(run) # replace to command command = self._resolve_command(run, inputs, outputs) # execute command status = Status.Failed.value # create run to db when fully prepared to run in executor, otherwise won't create it run._dump() # pylint: disable=protected-access try: return_code = ExperimentCommandExecutor.run(command=command, cwd=run.flow, local_storage=local_storage) if return_code != 0: raise ExperimentCommandRunError( f"Run {run.name} failed with return code {return_code}, " f"please check out {run.properties[FlowRunProperties.OUTPUT_PATH]} for more details." ) status = Status.Completed.value except Exception as e: # when run failed in executor, store the exception in result and dump to file logger.warning(f"Run {run.name} failed when executing in executor with exception {e}.") # for user error, swallow stack trace and return failed run since user don't need the stack trace if not isinstance(e, UserErrorException): # for other errors, raise it to user to help debug root cause. raise e finally: self.run_operations.update( name=run.name, status=status, end_time=datetime.now(), ) class ExperimentCommandExecutor: """Experiment command executor, responsible for experiment command running.""" @staticmethod def run(command: str, cwd: str, local_storage: LocalStorageOperations): """Start a subprocess to run the command""" log_path = local_storage.logger.file_path logger.info(f"Start running command {command}, log path: {log_path}.") with open(log_path, "w") as log_file: process = subprocess.Popen(command, stdout=log_file, stderr=log_file, shell=True, env=os.environ, cwd=cwd) process.wait() return process.returncode
promptflow/src/promptflow/promptflow/_sdk/_submitter/experiment_orchestrator.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/_submitter/experiment_orchestrator.py", "repo_id": "promptflow", "token_count": 8367 }
42
Exported Dockerfile & its dependencies are located in the same folder. The structure is as below: - flow: the folder contains all the flow files - ... - connections: the folder contains yaml files to create all related connections - ... - runit: the folder contains all the runit scripts - ... - Dockerfile: the dockerfile to build the image - start.sh: the script used in `CMD` of `Dockerfile` to start the service - settings.json: a json file to store the settings of the docker image - README.md: the readme file to describe how to use the dockerfile Please refer to [official doc](https://microsoft.github.io/promptflow/how-to-guides/deploy-and-export-a-flow.html#export-a-flow) for more details about how to use the exported dockerfile and scripts.
promptflow/src/promptflow/promptflow/_sdk/data/docker/README.md/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/data/docker/README.md", "repo_id": "promptflow", "token_count": 206 }
43
{ "$schema": "http://json-schema.org/draft-04/schema#", "title": "Tool", "type": "object", "properties": { "name": { "type": "string" }, "type": { "$ref": "#/definitions/ToolType" }, "inputs": { "type": "object", "additionalProperties": { "$ref": "#/definitions/InputDefinition" } }, "outputs": { "type": "object", "additionalProperties": { "$ref": "#/definitions/OutputDefinition" } }, "description": { "type": "string" }, "connection_type": { "type": "array", "items": { "$ref": "#/definitions/ConnectionType" } }, "module": { "type": "string" }, "class_name": { "type": "string" }, "source": { "type": "string" }, "LkgCode": { "type": "string" }, "code": { "type": "string" }, "function": { "type": "string" }, "action_type": { "type": "string" }, "provider_config": { "type": "object", "additionalProperties": { "$ref": "#/definitions/InputDefinition" } }, "function_config": { "type": "object", "additionalProperties": { "$ref": "#/definitions/InputDefinition" } }, "icon": {}, "category": { "type": "string" }, "tags": { "type": "object", "additionalProperties": {} }, "is_builtin": { "type": "boolean" }, "package": { "type": "string" }, "package_version": { "type": "string" }, "default_prompt": { "type": "string" }, "enable_kwargs": { "type": "boolean" }, "deprecated_tools": { "type": "array", "items": { "type": "string" } }, "tool_state": { "$ref": "#/definitions/ToolState" } }, "definitions": { "ToolType": { "type": "string", "description": "", "x-enumNames": [ "Llm", "Python", "Action", "Prompt", "CustomLLM", "CSharp" ], "enum": [ "llm", "python", "action", "prompt", "custom_llm", "csharp" ] }, "InputDefinition": { "type": "object", "properties": { "name": { "type": "string" }, "type": { "type": "array", "items": { "$ref": "#/definitions/ValueType" } }, "default": {}, "description": { "type": "string" }, "enum": { "type": "array", "items": { "type": "string" } }, "enabled_by": { "type": "string" }, "enabled_by_type": { "type": "array", "items": { "$ref": "#/definitions/ValueType" } }, "enabled_by_value": { "type": "array", "items": {} }, "model_list": { "type": "array", "items": { "type": "string" } }, "capabilities": { "$ref": "#/definitions/AzureOpenAIModelCapabilities" }, "dynamic_list": { "$ref": "#/definitions/ToolInputDynamicList" }, "allow_manual_entry": { "type": "boolean" }, "is_multi_select": { "type": "boolean" }, "generated_by": { "$ref": "#/definitions/ToolInputGeneratedBy" }, "input_type": { "$ref": "#/definitions/InputType" }, "advanced": { "type": [ "boolean", "null" ] }, "ui_hints": { "type": "object", "additionalProperties": {} } } }, "ValueType": { "type": "string", "description": "", "x-enumNames": [ "Int", "Double", "Bool", "String", "Secret", "PromptTemplate", "Object", "List", "BingConnection", "OpenAIConnection", "AzureOpenAIConnection", "AzureContentModeratorConnection", "CustomConnection", "AzureContentSafetyConnection", "SerpConnection", "CognitiveSearchConnection", "SubstrateLLMConnection", "PineconeConnection", "QdrantConnection", "WeaviateConnection", "FunctionList", "FunctionStr", "FormRecognizerConnection", "FilePath", "Image" ], "enum": [ "int", "double", "bool", "string", "secret", "prompt_template", "object", "list", "BingConnection", "OpenAIConnection", "AzureOpenAIConnection", "AzureContentModeratorConnection", "CustomConnection", "AzureContentSafetyConnection", "SerpConnection", "CognitiveSearchConnection", "SubstrateLLMConnection", "PineconeConnection", "QdrantConnection", "WeaviateConnection", "function_list", "function_str", "FormRecognizerConnection", "file_path", "image" ] }, "AzureOpenAIModelCapabilities": { "type": "object", "properties": { "completion": { "type": [ "boolean", "null" ] }, "chat_completion": { "type": [ "boolean", "null" ] }, "embeddings": { "type": [ "boolean", "null" ] } } }, "ToolInputDynamicList": { "type": "object", "properties": { "func_path": { "type": "string" }, "func_kwargs": { "type": "array", "description": "Sample value in yaml\nfunc_kwargs:\n- name: prefix # Argument name to be passed to the function\n type: \n - string\n # if optional is not specified, default to false.\n # this is for UX pre-validaton. If optional is false, but no input. UX can throw error in advanced.\n optional: true\n reference: ${inputs.index_prefix} # Dynamic reference to another input parameter\n- name: size # Another argument name to be passed to the function\n type: \n - int\n optional: true\n default: 10", "items": { "type": "object", "additionalProperties": {} } } } }, "ToolInputGeneratedBy": { "type": "object", "properties": { "func_path": { "type": "string" }, "func_kwargs": { "type": "array", "description": "Sample value in yaml\nfunc_kwargs:\n- name: index_type # Argument name to be passed to the function\n type: \n - string\n optional: true\n reference: ${inputs.index_type} # Dynamic reference to another input parameter\n- name: index # Another argument name to be passed to the function\n type: \n - string\n optional: true\n reference: ${inputs.index}", "items": { "type": "object", "additionalProperties": {} } }, "reverse_func_path": { "type": "string" } } }, "InputType": { "type": "string", "description": "", "x-enumNames": [ "Default", "UIOnly_Hidden" ], "enum": [ "default", "uionly_hidden" ] }, "OutputDefinition": { "type": "object", "properties": { "name": { "type": "string" }, "type": { "type": "array", "items": { "$ref": "#/definitions/ValueType" } }, "description": { "type": "string" }, "isProperty": { "type": "boolean" } } }, "ConnectionType": { "type": "string", "description": "", "x-enumNames": [ "OpenAI", "AzureOpenAI", "Serp", "Bing", "AzureContentModerator", "Custom", "AzureContentSafety", "CognitiveSearch", "SubstrateLLM", "Pinecone", "Qdrant", "Weaviate", "FormRecognizer" ], "enum": [ "OpenAI", "AzureOpenAI", "Serp", "Bing", "AzureContentModerator", "Custom", "AzureContentSafety", "CognitiveSearch", "SubstrateLLM", "Pinecone", "Qdrant", "Weaviate", "FormRecognizer" ] }, "ToolState": { "type": "string", "description": "", "x-enumNames": [ "Stable", "Preview", "Deprecated" ], "enum": [ "stable", "preview", "deprecated" ] } } }
promptflow/src/promptflow/promptflow/_sdk/data/tool.schema.json/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/data/tool.schema.json", "repo_id": "promptflow", "token_count": 4791 }
44
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from functools import lru_cache from os import PathLike from pathlib import Path from typing import Dict from promptflow._sdk._constants import NODES from promptflow._sdk._utils import parse_variant from promptflow._sdk.entities import FlowContext from promptflow._sdk.entities._flow import Flow from promptflow._utils.flow_utils import load_flow_dag from promptflow.contracts.flow import Node from promptflow.exceptions import UserErrorException # Resolve flow context to invoker # Resolve flow according to flow context # Resolve connection, variant, overwrite, store in-memory # create invoker based on resolved flow # cache invoker if flow context not changed (define hash function for flow context). class FlowContextResolver: """Flow context resolver.""" def __init__(self, flow_path: PathLike): from promptflow import PFClient self.flow_path, self.flow_dag = load_flow_dag(flow_path=Path(flow_path)) self.working_dir = Path(self.flow_path).parent.resolve() self.node_name_2_node: Dict[str, Node] = {node["name"]: node for node in self.flow_dag[NODES]} self.client = PFClient() @classmethod @lru_cache def resolve(cls, flow: Flow) -> "FlowInvoker": """Resolve flow to flow invoker.""" resolver = cls(flow_path=flow.path) resolver._resolve(flow_context=flow.context) return resolver._create_invoker(flow=flow, flow_context=flow.context) def _resolve(self, flow_context: FlowContext): """Resolve flow context.""" # TODO(2813319): support node overrides # TODO: define priority of the contexts flow_context._resolve_connections() self._resolve_variant(flow_context=flow_context)._resolve_connections( flow_context=flow_context, )._resolve_overrides(flow_context=flow_context) def _resolve_variant(self, flow_context: FlowContext) -> "FlowContextResolver": """Resolve variant of the flow and store in-memory.""" # TODO: put all varint string parser here if not flow_context.variant: return self else: tuning_node, variant = parse_variant(flow_context.variant) from promptflow._sdk._submitter import overwrite_variant overwrite_variant( flow_dag=self.flow_dag, tuning_node=tuning_node, variant=variant, ) return self def _resolve_connections(self, flow_context: FlowContext) -> "FlowContextResolver": """Resolve connections of the flow and store in-memory.""" from promptflow._sdk._submitter import overwrite_connections overwrite_connections( flow_dag=self.flow_dag, connections=flow_context.connections, working_dir=self.working_dir, ) return self def _resolve_overrides(self, flow_context: FlowContext) -> "FlowContextResolver": """Resolve overrides of the flow and store in-memory.""" from promptflow._sdk._submitter import overwrite_flow overwrite_flow( flow_dag=self.flow_dag, params_overrides=flow_context.overrides, ) return self def _resolve_connection_objs(self, flow_context: FlowContext): # validate connection objs connections = {} for key, connection_obj in flow_context._connection_objs.items(): scrubbed_secrets = connection_obj._get_scrubbed_secrets() if scrubbed_secrets: raise UserErrorException( f"Connection {connection_obj} contains scrubbed secrets with key {scrubbed_secrets.keys()}, " "please make sure connection has decrypted secrets to use in flow execution. " ) connections[key] = connection_obj._to_execution_connection_dict() return connections def _create_invoker(self, flow: Flow, flow_context: FlowContext) -> "FlowInvoker": from promptflow._sdk._serving.flow_invoker import FlowInvoker connections = self._resolve_connection_objs(flow_context=flow_context) # use updated flow dag to create new flow object for invoker resolved_flow = Flow(code=self.working_dir, dag=self.flow_dag) invoker = FlowInvoker( flow=resolved_flow, connections=connections, streaming=flow_context.streaming, ) return invoker
promptflow/src/promptflow/promptflow/_sdk/operations/_flow_context_resolver.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_sdk/operations/_flow_context_resolver.py", "repo_id": "promptflow", "token_count": 1768 }
45
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import io import re from jinja2 import Template from .yaml_utils import dump_yaml, load_yaml_string def generate_custom_strong_type_connection_spec(cls, package, package_version): connection_spec = { "connectionCategory": "CustomKeys", "flowValueType": "CustomConnection", "connectionType": cls.__name__, "ConnectionTypeDisplayName": cls.__name__, "configSpecs": [], "module": cls.__module__, "package": package, "package_version": package_version, } for k, typ in cls.__annotations__.items(): spec = { "name": k, "displayName": k.replace("_", " ").title(), "configValueType": typ.__name__, } if hasattr(cls, k): spec["isOptional"] = getattr(cls, k, None) is not None else: spec["isOptional"] = False connection_spec["configSpecs"].append(spec) return connection_spec def generate_custom_strong_type_connection_template(cls, connection_spec, package, package_version): connection_template_str = """ $schema: https://azuremlschemas.azureedge.net/promptflow/latest/CustomStrongTypeConnection.schema.json name: "to_replace_with_connection_name" type: custom custom_type: {{ custom_type }} module: {{ module }} package: {{ package }} package_version: {{ package_version }} configs:{% for key, value in configs.items() %} {{ key }}: "{{ value -}}"{% endfor %} secrets: # must-have{% for key, value in secrets.items() %} {{ key }}: "{{ value -}}"{% endfor %} """ connection_template = Template(connection_template_str) # Extract configs and secrets configs = {} secrets = {} for spec in connection_spec["configSpecs"]: if spec["configValueType"] == "Secret": secrets[spec["name"]] = "to_replace_with_" + spec["name"].replace("-", "_") else: configs[spec["name"]] = getattr(cls, spec["name"], None) or "to_replace_with_" + spec["name"].replace( "-", "_" ) # Prepare data for template data = { "custom_type": cls.__name__, "module": cls.__module__, "package": package, "package_version": package_version, "configs": configs, "secrets": secrets, } connection_template_with_data = connection_template.render(data) connection_template_with_comments = render_comments( connection_template_with_data, cls, secrets.keys(), configs.keys() ) return connection_template_with_comments def render_comments(connection_template, cls, secrets, configs): if cls.__doc__ is not None: data = load_yaml_string(connection_template) comments_map = extract_comments_mapping(list(secrets) + list(configs), cls.__doc__) # Add comments for secret keys for key in secrets: if key in comments_map.keys(): data["secrets"].yaml_add_eol_comment(comments_map[key] + "\n", key) # Add comments for config keys for key in configs: if key in comments_map.keys(): data["configs"].yaml_add_eol_comment(comments_map[key] + "\n", key) # Dump data object back to string buf = io.StringIO() dump_yaml(data, buf) connection_template_with_comments = buf.getvalue() return connection_template_with_comments return connection_template def extract_comments_mapping(keys, doc): comments_map = {} for key in keys: try: param_pattern = rf":param {key}: (.*)" key_description = " ".join(re.findall(param_pattern, doc)) type_pattern = rf":type {key}: (.*)" key_type = " ".join(re.findall(type_pattern, doc)).rstrip(".") if key_type and key_description: comments_map[key] = " ".join([key_type + " type.", key_description]) elif key_type: comments_map[key] = key_type + " type." elif key_description: comments_map[key] = key_description except re.error: print("An error occurred when extract comments mapping.") return comments_map
promptflow/src/promptflow/promptflow/_utils/connection_utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/connection_utils.py", "repo_id": "promptflow", "token_count": 1814 }
46
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- """This is a common util file. !!!Please do not include any project related import.!!! """ import contextlib import contextvars import functools import importlib import json import logging import os import re import time import traceback from datetime import datetime from pathlib import Path from typing import Any, Dict, Iterable, Iterator, List, Optional, TypeVar, Union from promptflow._constants import DEFAULT_ENCODING T = TypeVar("T") class AttrDict(dict): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __getattr__(self, item): if item in self: return self.__getitem__(item) return super().__getattribute__(item) def camel_to_snake(text: str) -> Optional[str]: text = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", text) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", text).lower() class DateTimeEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, datetime): return o.isoformat() return json.JSONEncoder.default(self, o) def is_json_serializable(value: Any) -> bool: try: json.dumps(value) return True except TypeError: return False def load_json(file_path: Union[str, Path]) -> dict: if os.path.getsize(file_path) > 0: with open(file_path, "r") as f: return json.load(f) return {} def dump_list_to_jsonl(file_path: Union[str, Path], list_data: List[Dict]): with open(file_path, "w", encoding=DEFAULT_ENCODING) as jsonl_file: for data in list_data: json.dump(data, jsonl_file, ensure_ascii=False) jsonl_file.write("\n") def transpose(values: List[Dict[str, Any]], keys: Optional[List] = None) -> Dict[str, List]: keys = keys or list(values[0].keys()) return {key: [v.get(key) for v in values] for key in keys} def reverse_transpose(values: Dict[str, List]) -> List[Dict[str, Any]]: # Setup a result list same len with values value_lists = list(values.values()) _len = len(value_lists[0]) if any(len(value_list) != _len for value_list in value_lists): raise Exception(f"Value list of each key must have same length, please check {values!r}.") result = [] for i in range(_len): result.append({}) for key, vals in values.items(): for _idx, val in enumerate(vals): result[_idx][key] = val return result def deprecated(f=None, replace=None, version=None): if f is None: return functools.partial(deprecated, replace=replace, version=version) msg = [f"Function {f.__qualname__!r} is deprecated."] if version: msg.append(f"Deprecated since version {version}.") if replace: msg.append(f"Use {replace!r} instead.") msg = " ".join(msg) @functools.wraps(f) def wrapper(*args, **kwargs): logging.warning(msg) return f(*args, **kwargs) return wrapper def try_import(module, error_message, raise_error=True): try: importlib.import_module(module) except ImportError as e: ex_message = f"{error_message} Root cause: {e!r}" logging.warning(ex_message) if raise_error: raise Exception(ex_message) def is_in_ci_pipeline(): if os.environ.get("IS_IN_CI_PIPELINE") == "true": return True return False def count_and_log_progress( inputs: Iterable[T], logger: logging.Logger, total_count: int, formatter="{count} / {total_count} finished." ) -> Iterator[T]: log_interval = max(int(total_count / 10), 1) count = 0 for item in inputs: count += 1 if count % log_interval == 0 or count == total_count: logger.info(formatter.format(count=count, total_count=total_count)) yield item def log_progress( run_start_time: datetime, logger: logging.Logger, count: int, total_count: int, formatter="Finished {count} / {total_count} lines.", *, last_log_count: Optional[int] = None, ): # Calculate log_interval to determine when to log progress. # If total_count is less than 100, log every 10% of total_count; otherwise, log every 10 lines. log_interval = min(10, max(int(total_count / 10), 1)) # If last_log_count is not None, determine whether to log based on whether the difference # between the current count and the previous count exceeds log_interval. # Otherwise, decide based on whether the current count is evenly divisible by log_interval. if last_log_count: log_flag = (count - last_log_count) >= log_interval else: log_flag = count % log_interval == 0 if count > 0 and (log_flag or count == total_count): average_execution_time = round((datetime.utcnow().timestamp() - run_start_time.timestamp()) / count, 2) estimated_execution_time = round(average_execution_time * (total_count - count), 2) logger.info(formatter.format(count=count, total_count=total_count)) logger.info( f"Average execution time for completed lines: {average_execution_time} seconds. " f"Estimated time for incomplete lines: {estimated_execution_time} seconds." ) def extract_user_frame_summaries(frame_summaries: List[traceback.FrameSummary]): from promptflow import _core core_folder = os.path.dirname(_core.__file__) for i in range(len(frame_summaries) - 1): cur_file = frame_summaries[i].filename next_file = frame_summaries[i + 1].filename # If the current frame is in _core folder and the next frame is not in _core folder # then we can say that the next frame is in user code. if cur_file.startswith(core_folder) and not next_file.startswith(core_folder): return frame_summaries[i + 1 :] return frame_summaries def format_user_stacktrace(frame): # TODO: Maybe we can filter all frames from our code base to make it clean? frame_summaries = traceback.extract_stack(frame) user_frame_summaries = extract_user_frame_summaries(frame_summaries) return traceback.format_list(user_frame_summaries) def generate_elapsed_time_messages(func_name: str, start_time: float, interval: int, thread_id: int): import sys frames = sys._current_frames() if thread_id not in frames: thread_msg = ( f"thread {thread_id} cannot be found in sys._current_frames, " + "maybe it has been terminated due to unexpected errors." ) else: frame = frames[thread_id] stack_msgs = format_user_stacktrace(frame) stack_msg = "".join(stack_msgs) thread_msg = f"stacktrace of thread {thread_id}:\n{stack_msg}" elapse_time = time.perf_counter() - start_time # Make elapse time a multiple of interval. elapse_time = round(elapse_time / interval) * interval msgs = [f"{func_name} has been running for {elapse_time:.0f} seconds, {thread_msg}"] return msgs def set_context(context: contextvars.Context): for var, value in context.items(): var.set(value) def convert_inputs_mapping_to_param(inputs_mapping: dict): """Use this function to convert inputs_mapping to a string that can be passed to component as a string parameter, we have to do this since we can't pass a dict as a parameter to component. # TODO: Finalize the format of inputs_mapping """ return ",".join([f"{k}={v}" for k, v in inputs_mapping.items()]) @contextlib.contextmanager def environment_variable_overwrite(key, val): if key in os.environ.keys(): backup_value = os.environ[key] else: backup_value = None os.environ[key] = val try: yield finally: if backup_value: os.environ[key] = backup_value else: os.environ.pop(key) def resolve_dir_to_absolute(base_dir: Union[str, Path], sub_dir: Union[str, Path]) -> Path: """Resolve directory to absolute path with base_dir as root""" path = sub_dir if isinstance(sub_dir, Path) else Path(sub_dir) if not path.is_absolute(): base_dir = base_dir if isinstance(base_dir, Path) else Path(base_dir) path = base_dir / sub_dir return path def parse_ua_to_dict(ua): """Parse string user agent to dict with name as ua name and value as ua version.""" ua_dict = {} ua_list = ua.split(" ") for item in ua_list: if item: key, value = item.split("/") ua_dict[key] = value return ua_dict # TODO: Add "conditions" parameter to pass in a list of lambda functions # to check if the environment variable is valid. def get_int_env_var(env_var_name, default_value=None): """ The function `get_int_env_var` retrieves an integer environment variable value, with an optional default value if the variable is not set or cannot be converted to an integer. :param env_var_name: The name of the environment variable you want to retrieve the value of :param default_value: The default value is the value that will be returned if the environment variable is not found or if it cannot be converted to an integer :return: an integer value. """ try: return int(os.environ.get(env_var_name, default_value)) except Exception: return default_value def prompt_y_n(msg, default=None): if default not in [None, "y", "n"]: raise ValueError("Valid values for default are 'y', 'n' or None") y = "Y" if default == "y" else "y" n = "N" if default == "n" else "n" while True: ans = prompt_input("{} ({}/{}): ".format(msg, y, n)) if ans.lower() == n.lower(): return False if ans.lower() == y.lower(): return True if default and not ans: return default == y.lower() def prompt_input(msg): return input("\n===> " + msg)
promptflow/src/promptflow/promptflow/_utils/utils.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/_utils/utils.py", "repo_id": "promptflow", "token_count": 3875 }
47
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from ._azure_machine_learning_designer_service_client import AzureMachineLearningDesignerServiceClient __all__ = ['AzureMachineLearningDesignerServiceClient'] # `._patch.py` is used for handwritten extensions to the generated code # Example: https://github.com/Azure/azure-sdk-for-python/blob/main/doc/dev/customize_code/how-to-patch-sdk-code.md from ._patch import patch_sdk patch_sdk()
promptflow/src/promptflow/promptflow/azure/_restclient/flow/__init__.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/__init__.py", "repo_id": "promptflow", "token_count": 192 }
48
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ... import models as _models from ..._vendor import _convert_request from ...operations._flow_sessions_admin_operations import build_create_flow_session_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class FlowSessionsAdminOperations: """FlowSessionsAdminOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def create_flow_session( self, subscription_id: str, resource_group_name: str, workspace_name: str, session_id: str, waitfor_completion: Optional[bool] = False, body: Optional["_models.CreateFlowSessionRequest"] = None, **kwargs: Any ) -> str: """create_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :param waitfor_completion: :type waitfor_completion: bool :param body: :type body: ~flow.models.CreateFlowSessionRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowSessionRequest') else: _json = None request = build_create_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, content_type=content_type, json=_json, waitfor_completion=waitfor_completion, template_url=self.create_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessionsAdmin/{sessionId}'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_flow_sessions_admin_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/aio/operations/_flow_sessions_admin_operations.py", "repo_id": "promptflow", "token_count": 1820 }
49
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator (autorest: 3.8.0, generator: @autorest/[email protected]) # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from msrest import Serializer from .. import models as _models from .._vendor import _convert_request, _format_url_section if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False # fmt: off def build_create_flow_session_request( subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str **kwargs # type: Any ): # type: (...) -> HttpRequest content_type = kwargs.pop('content_type', None) # type: Optional[str] waitfor_completion = kwargs.pop('waitfor_completion', False) # type: Optional[bool] accept = "text/plain, application/json" # Construct URL url = kwargs.pop("template_url", '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessionsAdmin/{sessionId}') path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, 'str'), "resourceGroupName": _SERIALIZER.url("resource_group_name", resource_group_name, 'str'), "workspaceName": _SERIALIZER.url("workspace_name", workspace_name, 'str'), "sessionId": _SERIALIZER.url("session_id", session_id, 'str'), } url = _format_url_section(url, **path_format_arguments) # Construct parameters query_parameters = kwargs.pop("params", {}) # type: Dict[str, Any] if waitfor_completion is not None: query_parameters['waitforCompletion'] = _SERIALIZER.query("waitfor_completion", waitfor_completion, 'bool') # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters['Content-Type'] = _SERIALIZER.header("content_type", content_type, 'str') header_parameters['Accept'] = _SERIALIZER.header("accept", accept, 'str') return HttpRequest( method="POST", url=url, params=query_parameters, headers=header_parameters, **kwargs ) # fmt: on class FlowSessionsAdminOperations(object): """FlowSessionsAdminOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~flow.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace def create_flow_session( self, subscription_id, # type: str resource_group_name, # type: str workspace_name, # type: str session_id, # type: str waitfor_completion=False, # type: Optional[bool] body=None, # type: Optional["_models.CreateFlowSessionRequest"] **kwargs # type: Any ): # type: (...) -> str """create_flow_session. :param subscription_id: The Azure Subscription ID. :type subscription_id: str :param resource_group_name: The Name of the resource group in which the workspace is located. :type resource_group_name: str :param workspace_name: The name of the workspace. :type workspace_name: str :param session_id: :type session_id: str :param waitfor_completion: :type waitfor_completion: bool :param body: :type body: ~flow.models.CreateFlowSessionRequest :keyword callable cls: A custom type or function that will be passed the direct response :return: str, or the result of cls(response) :rtype: str :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[str] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[str] if body is not None: _json = self._serialize.body(body, 'CreateFlowSessionRequest') else: _json = None request = build_create_flow_session_request( subscription_id=subscription_id, resource_group_name=resource_group_name, workspace_name=workspace_name, session_id=session_id, content_type=content_type, json=_json, waitfor_completion=waitfor_completion, template_url=self.create_flow_session.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error) deserialized = self._deserialize('str', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized create_flow_session.metadata = {'url': '/flow/api/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.MachineLearningServices/workspaces/{workspaceName}/FlowSessionsAdmin/{sessionId}'} # type: ignore
promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flow_sessions_admin_operations.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/_restclient/flow/operations/_flow_sessions_admin_operations.py", "repo_id": "promptflow", "token_count": 2613 }
50
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- # pylint: disable=protected-access import os import uuid from datetime import datetime, timedelta from pathlib import Path from typing import Dict, Optional, TypeVar, Union from azure.ai.ml._artifacts._blob_storage_helper import BlobStorageClient from azure.ai.ml._artifacts._gen2_storage_helper import Gen2StorageClient from azure.ai.ml._azure_environments import _get_storage_endpoint_from_metadata from azure.ai.ml._restclient.v2022_10_01.models import DatastoreType from azure.ai.ml._scope_dependent_operations import OperationScope from azure.ai.ml._utils._arm_id_utils import ( AMLNamedArmId, get_resource_name_from_arm_id, is_ARM_id_for_resource, remove_aml_prefix, ) from azure.ai.ml._utils._asset_utils import ( IgnoreFile, _build_metadata_dict, _validate_path, get_ignore_file, get_object_hash, ) from azure.ai.ml._utils._storage_utils import ( AzureMLDatastorePathUri, get_artifact_path_from_storage_url, get_storage_client, ) from azure.ai.ml.constants._common import SHORT_URI_FORMAT, STORAGE_ACCOUNT_URLS from azure.ai.ml.entities import Environment from azure.ai.ml.entities._assets._artifacts.artifact import Artifact, ArtifactStorageInfo from azure.ai.ml.entities._credentials import AccountKeyConfiguration from azure.ai.ml.entities._datastore._constants import WORKSPACE_BLOB_STORE from azure.ai.ml.exceptions import ErrorTarget, ValidationException from azure.ai.ml.operations._datastore_operations import DatastoreOperations from azure.storage.blob import BlobSasPermissions, generate_blob_sas from azure.storage.filedatalake import FileSasPermissions, generate_file_sas from ..._utils.logger_utils import LoggerFactory from ._fileshare_storeage_helper import FlowFileStorageClient module_logger = LoggerFactory.get_logger(__name__) def _get_datastore_name(*, datastore_name: Optional[str] = WORKSPACE_BLOB_STORE) -> str: datastore_name = WORKSPACE_BLOB_STORE if not datastore_name else datastore_name try: datastore_name = get_resource_name_from_arm_id(datastore_name) except (ValueError, AttributeError, ValidationException): module_logger.debug("datastore_name %s is not a full arm id. Proceed with a shortened name.\n", datastore_name) datastore_name = remove_aml_prefix(datastore_name) if is_ARM_id_for_resource(datastore_name): datastore_name = get_resource_name_from_arm_id(datastore_name) return datastore_name def get_datastore_info(operations: DatastoreOperations, name: str) -> Dict[str, str]: """Get datastore account, type, and auth information.""" datastore_info = {} if name: datastore = operations.get(name, include_secrets=True) else: datastore = operations.get_default(include_secrets=True) storage_endpoint = _get_storage_endpoint_from_metadata() credentials = datastore.credentials datastore_info["storage_type"] = datastore.type datastore_info["storage_account"] = datastore.account_name datastore_info["account_url"] = STORAGE_ACCOUNT_URLS[datastore.type].format( datastore.account_name, storage_endpoint ) if isinstance(credentials, AccountKeyConfiguration): datastore_info["credential"] = credentials.account_key else: try: datastore_info["credential"] = credentials.sas_token except Exception as e: # pylint: disable=broad-except if not hasattr(credentials, "sas_token"): datastore_info["credential"] = operations._credential else: raise e if datastore.type == DatastoreType.AZURE_BLOB: datastore_info["container_name"] = str(datastore.container_name) elif datastore.type == DatastoreType.AZURE_DATA_LAKE_GEN2: datastore_info["container_name"] = str(datastore.filesystem) elif datastore.type == DatastoreType.AZURE_FILE: datastore_info["container_name"] = str(datastore.file_share_name) else: raise Exception( f"Datastore type {datastore.type} is not supported for uploads. " f"Supported types are {DatastoreType.AZURE_BLOB} and {DatastoreType.AZURE_DATA_LAKE_GEN2}." ) return datastore_info def list_logs_in_datastore(ds_info: Dict[str, str], prefix: str, legacy_log_folder_name: str) -> Dict[str, str]: """Returns a dictionary of file name to blob or data lake uri with SAS token, matching the structure of RunDetails.logFiles. legacy_log_folder_name: the name of the folder in the datastore that contains the logs /azureml-logs/*.txt is the legacy log structure for commandJob and sweepJob /logs/azureml/*.txt is the legacy log structure for pipeline parent Job """ if ds_info["storage_type"] not in [ DatastoreType.AZURE_BLOB, DatastoreType.AZURE_DATA_LAKE_GEN2, ]: raise Exception("Only Blob and Azure DataLake Storage Gen2 datastores are supported.") storage_client = get_storage_client( credential=ds_info["credential"], container_name=ds_info["container_name"], storage_account=ds_info["storage_account"], storage_type=ds_info["storage_type"], ) items = storage_client.list(starts_with=prefix + "/user_logs/") # Append legacy log files if present items.extend(storage_client.list(starts_with=prefix + legacy_log_folder_name)) log_dict = {} for item_name in items: sub_name = item_name.split(prefix + "/")[1] if isinstance(storage_client, BlobStorageClient): token = generate_blob_sas( account_name=ds_info["storage_account"], container_name=ds_info["container_name"], blob_name=item_name, account_key=ds_info["credential"], permission=BlobSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(minutes=30), ) elif isinstance(storage_client, Gen2StorageClient): token = generate_file_sas( # pylint: disable=no-value-for-parameter account_name=ds_info["storage_account"], file_system_name=ds_info["container_name"], file_name=item_name, credential=ds_info["credential"], permission=FileSasPermissions(read=True), expiry=datetime.utcnow() + timedelta(minutes=30), ) log_dict[sub_name] = "{}/{}/{}?{}".format(ds_info["account_url"], ds_info["container_name"], item_name, token) return log_dict def _get_default_datastore_info(datastore_operation): return get_datastore_info(datastore_operation, None) def upload_artifact( local_path: str, datastore_operation: DatastoreOperations, operation_scope: OperationScope, datastore_name: Optional[str], asset_hash: Optional[str] = None, show_progress: bool = True, asset_name: Optional[str] = None, asset_version: Optional[str] = None, ignore_file: IgnoreFile = IgnoreFile(None), sas_uri=None, ) -> ArtifactStorageInfo: """Upload local file or directory to datastore.""" if sas_uri: storage_client = get_storage_client(credential=None, storage_account=None, account_url=sas_uri) else: datastore_name = _get_datastore_name(datastore_name=datastore_name) datastore_info = get_datastore_info(datastore_operation, datastore_name) storage_client = FlowFileStorageClient( credential=datastore_info["credential"], file_share_name=datastore_info["container_name"], account_url=datastore_info["account_url"], azure_cred=datastore_operation._credential, ) artifact_info = storage_client.upload( local_path, asset_hash=asset_hash, show_progress=show_progress, name=asset_name, version=asset_version, ignore_file=ignore_file, ) artifact_info["remote path"] = os.path.join( storage_client.directory_client.directory_path, artifact_info["remote path"] ) return artifact_info def download_artifact( starts_with: Union[str, os.PathLike], destination: str, datastore_operation: DatastoreOperations, datastore_name: Optional[str], datastore_info: Optional[Dict] = None, ) -> str: """Download datastore path to local file or directory. :param Union[str, os.PathLike] starts_with: Prefix of blobs to download :param str destination: Path that files will be written to :param DatastoreOperations datastore_operation: Datastore operations :param Optional[str] datastore_name: name of datastore :param Dict datastore_info: the return value of invoking get_datastore_info :return str: Path that files were written to """ starts_with = starts_with.as_posix() if isinstance(starts_with, Path) else starts_with datastore_name = _get_datastore_name(datastore_name=datastore_name) if datastore_info is None: datastore_info = get_datastore_info(datastore_operation, datastore_name) storage_client = get_storage_client(**datastore_info) storage_client.download(starts_with=starts_with, destination=destination) return destination def download_artifact_from_storage_url( blob_url: str, destination: str, datastore_operation: DatastoreOperations, datastore_name: Optional[str], ) -> str: """Download datastore blob URL to local file or directory.""" datastore_name = _get_datastore_name(datastore_name=datastore_name) datastore_info = get_datastore_info(datastore_operation, datastore_name) starts_with = get_artifact_path_from_storage_url( blob_url=str(blob_url), container_name=datastore_info.get("container_name") ) return download_artifact( starts_with=starts_with, destination=destination, datastore_operation=datastore_operation, datastore_name=datastore_name, datastore_info=datastore_info, ) def download_artifact_from_aml_uri(uri: str, destination: str, datastore_operation: DatastoreOperations): """Downloads artifact pointed to by URI of the form `azureml://...` to destination. :param str uri: AzureML uri of artifact to download :param str destination: Path to download artifact to :param DatastoreOperations datastore_operation: datastore operations :return str: Path that files were downloaded to """ parsed_uri = AzureMLDatastorePathUri(uri) return download_artifact( starts_with=parsed_uri.path, destination=destination, datastore_operation=datastore_operation, datastore_name=parsed_uri.datastore, ) def aml_datastore_path_exists( uri: str, datastore_operation: DatastoreOperations, datastore_info: Optional[dict] = None ): """Checks whether `uri` of the form "azureml://" points to either a directory or a file. :param str uri: azure ml datastore uri :param DatastoreOperations datastore_operation: Datastore operation :param dict datastore_info: return value of get_datastore_info """ parsed_uri = AzureMLDatastorePathUri(uri) datastore_info = datastore_info or get_datastore_info(datastore_operation, parsed_uri.datastore) return get_storage_client(**datastore_info).exists(parsed_uri.path) def _upload_to_datastore( operation_scope: OperationScope, datastore_operation: DatastoreOperations, path: Union[str, Path, os.PathLike], artifact_type: str, datastore_name: Optional[str] = None, show_progress: bool = True, asset_name: Optional[str] = None, asset_version: Optional[str] = None, asset_hash: Optional[str] = None, ignore_file: Optional[IgnoreFile] = None, sas_uri: Optional[str] = None, # contains registry sas url ) -> ArtifactStorageInfo: _validate_path(path, _type=artifact_type) if not ignore_file: ignore_file = get_ignore_file(path) if not asset_hash: asset_hash = get_object_hash(path, ignore_file) artifact = upload_artifact( str(path), datastore_operation, operation_scope, datastore_name, show_progress=show_progress, asset_hash=asset_hash, asset_name=asset_name, asset_version=asset_version, ignore_file=ignore_file, sas_uri=sas_uri, ) return artifact def _upload_and_generate_remote_uri( operation_scope: OperationScope, datastore_operation: DatastoreOperations, path: Union[str, Path, os.PathLike], artifact_type: str = ErrorTarget.ARTIFACT, datastore_name: str = WORKSPACE_BLOB_STORE, show_progress: bool = True, ) -> str: # Asset name is required for uploading to a datastore asset_name = str(uuid.uuid4()) artifact_info = _upload_to_datastore( operation_scope=operation_scope, datastore_operation=datastore_operation, path=path, datastore_name=datastore_name, asset_name=asset_name, artifact_type=artifact_type, show_progress=show_progress, ) path = artifact_info.relative_path datastore = AMLNamedArmId(artifact_info.datastore_arm_id).asset_name return SHORT_URI_FORMAT.format(datastore, path) def _update_metadata(name, version, indicator_file, datastore_info) -> None: storage_client = get_storage_client(**datastore_info) if isinstance(storage_client, BlobStorageClient): _update_blob_metadata(name, version, indicator_file, storage_client) elif isinstance(storage_client, Gen2StorageClient): _update_gen2_metadata(name, version, indicator_file, storage_client) def _update_blob_metadata(name, version, indicator_file, storage_client) -> None: container_client = storage_client.container_client if indicator_file.startswith(storage_client.container): indicator_file = indicator_file.split(storage_client.container)[1] blob = container_client.get_blob_client(blob=indicator_file) blob.set_blob_metadata(_build_metadata_dict(name=name, version=version)) def _update_gen2_metadata(name, version, indicator_file, storage_client) -> None: artifact_directory_client = storage_client.file_system_client.get_directory_client(indicator_file) artifact_directory_client.set_metadata(_build_metadata_dict(name=name, version=version)) T = TypeVar("T", bound=Artifact) def _check_and_upload_path( artifact: T, asset_operations: Union["DataOperations", "ModelOperations", "CodeOperations", "FeatureSetOperations"], artifact_type: str, datastore_name: Optional[str] = None, sas_uri: Optional[str] = None, show_progress: bool = True, ): """Checks whether `artifact` is a path or a uri and uploads it to the datastore if necessary. param T artifact: artifact to check and upload param Union["DataOperations", "ModelOperations", "CodeOperations"] asset_operations: the asset operations to use for uploading param str datastore_name: the name of the datastore to upload to param str sas_uri: the sas uri to use for uploading """ from azure.ai.ml._utils.utils import is_mlflow_uri, is_url datastore_name = artifact.datastore if ( hasattr(artifact, "local_path") and artifact.local_path is not None or ( hasattr(artifact, "path") and artifact.path is not None and not (is_url(artifact.path) or is_mlflow_uri(artifact.path)) ) ): path = ( Path(artifact.path) if hasattr(artifact, "path") and artifact.path is not None else Path(artifact.local_path) ) if not path.is_absolute(): path = Path(artifact.base_path, path).resolve() uploaded_artifact = _upload_to_datastore( asset_operations._operation_scope, asset_operations._datastore_operation, path, datastore_name=datastore_name, asset_name=artifact.name, asset_version=str(artifact.version), asset_hash=artifact._upload_hash if hasattr(artifact, "_upload_hash") else None, sas_uri=sas_uri, artifact_type=artifact_type, show_progress=show_progress, ignore_file=getattr(artifact, "_ignore_file", None), ) return uploaded_artifact def _check_and_upload_env_build_context( environment: Environment, operations: "EnvironmentOperations", sas_uri=None, show_progress: bool = True, ) -> Environment: if environment.path: uploaded_artifact = _upload_to_datastore( operations._operation_scope, operations._datastore_operation, environment.path, asset_name=environment.name, asset_version=str(environment.version), asset_hash=environment._upload_hash, sas_uri=sas_uri, artifact_type=ErrorTarget.ENVIRONMENT, datastore_name=environment.datastore, show_progress=show_progress, ) # TODO: Depending on decision trailing "/" needs to stay or not. EMS requires it to be present environment.build.path = uploaded_artifact.full_storage_path + "/" return environment
promptflow/src/promptflow/promptflow/azure/operations/_artifact_utilities.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/azure/operations/_artifact_utilities.py", "repo_id": "promptflow", "token_count": 6848 }
51
import docutils.nodes from docutils.core import publish_doctree class DocstringParser: @staticmethod def parse(docstring: str): doctree = publish_doctree(docstring) description = doctree[0].astext() params = {} for field in doctree.traverse(docutils.nodes.field): field_name = field[0].astext() field_body = field[1].astext() if field_name.startswith("param"): param_name = field_name.split(" ")[1] if param_name not in params: params[param_name] = {} params[param_name]["description"] = field_body if field_name.startswith("type"): param_name = field_name.split(" ")[1] if param_name not in params: params[param_name] = {} params[param_name]["type"] = field_body return description, params
promptflow/src/promptflow/promptflow/executor/_docstring_parser.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/executor/_docstring_parser.py", "repo_id": "promptflow", "token_count": 447 }
52
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- from dataclasses import dataclass from datetime import datetime from promptflow.contracts.run_info import RunInfo @dataclass class CacheRecord: run_id: str hash_id: str flow_run_id: str flow_id: str cache_string: str end_time: datetime class AbstractCacheStorage: def get_cache_record_list(hash_id: str) -> CacheRecord: pass def persist_cache_result(run_info: RunInfo): pass
promptflow/src/promptflow/promptflow/storage/_cache_storage.py/0
{ "file_path": "promptflow/src/promptflow/promptflow/storage/_cache_storage.py", "repo_id": "promptflow", "token_count": 189 }
53
import json import multiprocessing import threading from pathlib import Path from tempfile import mkdtemp from typing import Optional, Tuple, Union import pytest from promptflow._constants import FlowLanguage from promptflow._utils.exception_utils import ExceptionPresenter from promptflow.batch._batch_engine import BatchEngine from promptflow.batch._csharp_executor_proxy import CSharpExecutorProxy from promptflow.batch._result import BatchResult from promptflow.contracts.run_info import Status from promptflow.exceptions import ErrorTarget, ValidationException from promptflow.executor._errors import ConnectionNotFound from promptflow.storage._run_storage import AbstractRunStorage from ..mock_execution_server import run_executor_server from ..utils import MemoryRunStorage, get_flow_folder, get_flow_inputs_file, get_yaml_file @pytest.mark.unittest class TestCSharpExecutorProxy: def setup_method(self): BatchEngine.register_executor(FlowLanguage.CSharp, MockCSharpExecutorProxy) def test_batch(self): # submit a batch run _, batch_result = self._submit_batch_run() assert batch_result.status == Status.Completed assert batch_result.completed_lines == batch_result.total_lines assert batch_result.system_metrics.duration > 0 assert batch_result.completed_lines > 0 def test_batch_execution_error(self): # submit a batch run _, batch_result = self._submit_batch_run(has_error=True) assert batch_result.status == Status.Completed assert batch_result.total_lines == 3 assert batch_result.failed_lines == 1 assert batch_result.system_metrics.duration > 0 def test_batch_validation_error(self): # prepare the init error file to mock the validation error error_message = "'test_connection' not found." test_exception = ConnectionNotFound(message=error_message) error_dict = ExceptionPresenter.create(test_exception).to_dict() init_error_file = Path(mkdtemp()) / "init_error.json" with open(init_error_file, "w") as file: json.dump(error_dict, file) # submit a batch run with pytest.raises(ValidationException) as e: self._submit_batch_run(init_error_file=init_error_file) assert error_message in e.value.message assert e.value.error_codes == ["UserError", "ValidationError"] assert e.value.target == ErrorTarget.BATCH def test_batch_cancel(self): # use a thread to submit a batch run batch_engine, batch_run_thread = self._submit_batch_run(run_in_thread=True) assert batch_engine._is_canceled is False batch_run_thread.start() # cancel the batch run batch_engine.cancel() batch_run_thread.join() assert batch_engine._is_canceled is True assert batch_result_global.status == Status.Canceled assert batch_result_global.system_metrics.duration > 0 def _submit_batch_run( self, run_in_thread=False, has_error=False, init_error_file=None ) -> Union[Tuple[BatchEngine, threading.Thread], Tuple[BatchEngine, BatchResult]]: flow_folder = "csharp_flow" mem_run_storage = MemoryRunStorage() # init the batch engine batch_engine = BatchEngine( get_yaml_file(flow_folder), get_flow_folder(flow_folder), storage=mem_run_storage, has_error=has_error, init_error_file=init_error_file, ) # prepare the inputs input_dirs = {"data": get_flow_inputs_file(flow_folder)} inputs_mapping = {"question": "${data.question}"} output_dir = Path(mkdtemp()) if run_in_thread: return batch_engine, threading.Thread( target=self._batch_run_in_thread, args=(batch_engine, input_dirs, inputs_mapping, output_dir) ) else: return batch_engine, batch_engine.run(input_dirs, inputs_mapping, output_dir) def _batch_run_in_thread(self, batch_engine: BatchEngine, input_dirs, inputs_mapping, output_dir): global batch_result_global batch_result_global = batch_engine.run(input_dirs, inputs_mapping, output_dir) class MockCSharpExecutorProxy(CSharpExecutorProxy): def __init__(self, process: multiprocessing.Process, port: str): self._process = process self._port = port @classmethod async def create( cls, flow_file: Path, working_dir: Optional[Path] = None, *, connections: Optional[dict] = None, storage: Optional[AbstractRunStorage] = None, **kwargs, ) -> "MockCSharpExecutorProxy": """Create a new executor""" has_error = kwargs.get("has_error", False) init_error_file = kwargs.get("init_error_file", None) port = cls.find_available_port() process = multiprocessing.Process( target=run_executor_server, args=( int(port), has_error, init_error_file, ), ) process.start() executor_proxy = cls(process, port) await executor_proxy.ensure_executor_startup(init_error_file) return executor_proxy async def destroy(self): """Destroy the executor""" if self._process and self._process.is_alive(): self._process.terminate() try: self._process.join(timeout=5) except TimeoutError: self._process.kill() def _is_executor_active(self): return self._process and self._process.is_alive()
promptflow/src/promptflow/tests/executor/e2etests/test_csharp_executor_proxy.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/e2etests/test_csharp_executor_proxy.py", "repo_id": "promptflow", "token_count": 2303 }
54
{ "custom_llm_tool.TestCustomLLMTool.call": { "class_name": "TestCustomLLMTool", "function": "call", "inputs": { "connection": {"type": ["AzureOpenAIConnection"]}, "connection_2": {"type": ["AzureOpenAIConnection"]}, "api": {"type": ["string"]}, "template": {"type": ["PromptTemplate"]} }, "module": "custom_llm_tool", "name": "Test Custom LLM Tool", "description": "Test Custom LLM Tool", "type": "python" } }
promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/package_tool_definition.json/0
{ "file_path": "promptflow/src/promptflow/tests/executor/package_tools/custom_llm_tool/package_tool_definition.json", "repo_id": "promptflow", "token_count": 261 }
55
import logging import sys import time from multiprocessing.pool import ThreadPool import pytest from dateutil.parser import parse from promptflow._core.log_manager import NodeLogManager, NodeLogWriter RUN_ID = "dummy_run_id" NODE_NAME = "dummy_node" LINE_NUMBER = 1 def assert_print_result(i: int, run_logger: NodeLogWriter): run_id = f"{RUN_ID}-{i}" run_logger.set_node_info(run_id, NODE_NAME, LINE_NUMBER) time.sleep(i / 10) print(i) assert_datetime_prefix(run_logger.get_log(run_id), str(i) + "\n") def is_datetime(string: str) -> bool: """Check if a string follows datetime format.""" try: parse(string) return True except ValueError: return False def assert_datetime_prefix(string: str, expected_str: str): """Assert if string has a datetime prefix, such as: [2023-04-17T07:49:54+0000] example string """ datetime_prefix = string[string.index("[") + 1 : string.index("]")] inner_str = string[string.index("]") + 2 :] assert is_datetime(datetime_prefix) assert inner_str == expected_str @pytest.mark.unittest class TestNodeLogManager: def test_get_logs(self): with NodeLogManager(record_datetime=False) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") print("test2") print("test stderr", file=sys.stderr) assert lm.get_logs(RUN_ID).get("stdout") == "test\ntest2\n" assert lm.get_logs(RUN_ID).get("stderr") == "test stderr\n" lm.clear_node_context(RUN_ID) assert lm.get_logs(RUN_ID).get("stdout") is None assert lm.get_logs(RUN_ID).get("stderr") is None def test_logging(self): with NodeLogManager(record_datetime=False) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) stdout_logger = logging.getLogger("stdout") stderr_logger = logging.getLogger("stderr") stdout_logger.addHandler(logging.StreamHandler(stream=sys.stdout)) stderr_logger.addHandler(logging.StreamHandler(stream=sys.stderr)) stdout_logger.warning("test stdout") stderr_logger.warning("test stderr") logs = lm.get_logs(RUN_ID) assert logs.get("stdout") == "test stdout\n" assert logs.get("stderr") == "test stderr\n" def test_exit_context_manager(self): with NodeLogManager() as lm: assert lm.stdout_logger is sys.stdout assert lm.stdout_logger != sys.stdout def test_datetime_prefix(self): with NodeLogManager(record_datetime=True) as lm: lm.set_node_context(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") print("test2") output = lm.get_logs(RUN_ID).get("stdout") outputs = output.split("\n") assert_datetime_prefix(outputs[0], "test") assert_datetime_prefix(outputs[1], "test2") assert outputs[2] == "" @pytest.mark.unittest class TestNodeLogWriter: def test_set_node_info(self): run_logger = NodeLogWriter(sys.stdout) assert run_logger.get_log(RUN_ID) is None run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) assert run_logger.get_log(RUN_ID) == "" def test_clear_node_info(self): run_logger = NodeLogWriter(sys.stdout) run_logger.clear_node_info(RUN_ID) run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) run_logger.clear_node_info(RUN_ID) assert run_logger.run_id_to_stdout.get(RUN_ID) is None def test_get_log(self): run_logger = NodeLogWriter(sys.stdout) sys.stdout = run_logger print("test") assert run_logger.get_log(RUN_ID) is None run_logger.set_node_info(RUN_ID, NODE_NAME, LINE_NUMBER) print("test") assert_datetime_prefix(run_logger.get_log(RUN_ID), "test\n") run_logger.clear_node_info(RUN_ID) assert run_logger.get_log(RUN_ID) is None def test_multi_thread(self): run_logger = NodeLogWriter(sys.stdout) sys.stdout = run_logger with ThreadPool(processes=10) as pool: results = pool.starmap(assert_print_result, ((i, run_logger) for i in range(10))) for r in results: pass
promptflow/src/promptflow/tests/executor/unittests/_core/test_log_manager.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_core/test_log_manager.py", "repo_id": "promptflow", "token_count": 2053 }
56
from pathlib import Path from unittest.mock import Mock import pytest from promptflow._utils.multimedia_data_converter import ( AbstractMultimediaInfoConverter, MultimediaConverter, MultimediaFormatAdapter20231201, MultimediaInfo, ResourceType, ) @pytest.mark.unittest class TestMultimediaConverter: def test_convert_content_recursively(self): converter = MultimediaConverter(Path("flow.yaml")) # Don't convert anything. content = { "image": {"data:image/jpg;url": "https://example.com/logo.jpg"}, "images": [ {"data:image/jpg;url": "https://example.com/logo.jpg"}, {"data:image/jpg;base64": "base64 string"}, ], "object": {"image": {"data:image/png;path": "random_path"}, "other_data": "other_data"}, } mock_converter = Mock(spec=AbstractMultimediaInfoConverter) mock_converter.convert.side_effect = lambda x: x result = converter.convert_content_recursively(content, mock_converter) assert result == content # Convert all valid images. mock_converter.convert.side_effect = lambda x: MultimediaInfo("image/jpg", ResourceType("path"), "logo.jpg") result = converter.convert_content_recursively(content, mock_converter) expected_result = { "image": {"data:image/jpg;path": "logo.jpg"}, "images": [ {"data:image/jpg;path": "logo.jpg"}, {"data:image/jpg;path": "logo.jpg"}, ], "object": {"image": {"data:image/jpg;path": "logo.jpg"}, "other_data": "other_data"}, } assert result == expected_result @pytest.mark.unittest class TestMultimediaFormatAdapter20231201: def test_is_valid_format(self): adapter = MultimediaFormatAdapter20231201() assert adapter.is_valid_format({"data:image/jpg;path": "logo.jpg"}) assert adapter.is_valid_format({"data:image/jpg;url": "https://example.com/logo.jpg"}) assert not adapter.is_valid_format({"data:audio/mp3;path": "audio.mp3"}) assert not adapter.is_valid_format({"data:video/mp4;url": "https://example.com/video.mp4"}) def test_extract_info(self): adapter = MultimediaFormatAdapter20231201() # Valid formats expected_result = MultimediaInfo("image/jpg", ResourceType.PATH, "random_path") assert adapter.extract_info({"data:image/jpg;path": "random_path"}) == expected_result expected_result = MultimediaInfo("image/jpg", ResourceType.URL, "random_url") assert adapter.extract_info({"data:image/jpg;url": "random_url"}) == expected_result expected_result = MultimediaInfo("image/jpg", ResourceType.BASE64, "random_base64") assert adapter.extract_info({"data:image/jpg;base64": "random_base64"}) == expected_result # Invalid format assert adapter.extract_info({"data:video/mp4;url": "https://example.com/video.mp4"}) is None assert adapter.extract_info({"data:image/mp4;url2": "https://example.com/video.mp4"}) is None assert adapter.extract_info({"content:image/mp4;path": "random_path"}) is None def test_create_data(self): adapter = MultimediaFormatAdapter20231201() info = MultimediaInfo("image/jpg", ResourceType.PATH, "random_path") expected_result = {"data:image/jpg;path": "random_path"} assert adapter.create_data(info) == expected_result info = MultimediaInfo("image/jpg", ResourceType.URL, "random_url") expected_result = {"data:image/jpg;url": "random_url"} assert adapter.create_data(info) == expected_result info = MultimediaInfo("image/jpg", ResourceType.BASE64, "base64 string") expected_result = {"data:image/jpg;base64": "base64 string"} assert adapter.create_data(info) == expected_result # Bad case when client provides invalid resource type. info = MultimediaInfo("image/jpg", "path", "base64 string") expected_result = {"data:image/jpg;base64": "base64 string"} with pytest.raises(AttributeError): adapter.create_data(info)
promptflow/src/promptflow/tests/executor/unittests/_utils/test_multimedia_data_converter.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/_utils/test_multimedia_data_converter.py", "repo_id": "promptflow", "token_count": 1685 }
57
import pytest from promptflow.contracts.run_mode import RunMode @pytest.mark.unittest @pytest.mark.parametrize( "run_mode, expected", [ ("Test", RunMode.Test), ("SingleNode", RunMode.SingleNode), ("Batch", RunMode.Batch), ("Default", RunMode.Test), ], ) def test_parse(run_mode, expected): assert RunMode.parse(run_mode) == expected @pytest.mark.unittest def test_parse_invalid(): with pytest.raises(ValueError): RunMode.parse(123)
promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_mode.py/0
{ "file_path": "promptflow/src/promptflow/tests/executor/unittests/contracts/test_run_mode.py", "repo_id": "promptflow", "token_count": 210 }
58
import json import pytest from ..recording_utilities import is_live testdata = """The event sourcing pattern involves using an append-only store to record the full series of actions on that data. The Azure Cosmos DB change feed is a great choice as a central data store in event sourcing architectures in which all data ingestion is modeled as writes (no updates or deletes). In this case, each write to Azure Cosmos DB is an \"event,\" so there's a full record of past events in the change feed. Typical uses of the events published by the central event store are to maintain materialized views or to integrate with external systems. Because there's no time limit for retention in the change feed latest version mode, you can replay all past events by reading from the beginning of your Azure Cosmos DB container's change feed. You can even have multiple change feed consumers subscribe to the same container's change feed.""" @pytest.mark.skipif(condition=not is_live(), reason="serving tests, only run in live mode.") @pytest.mark.usefixtures("flow_serving_client_remote_connection") @pytest.mark.e2etest def test_local_serving_api_with_remote_connection(flow_serving_client_remote_connection): response = flow_serving_client_remote_connection.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client_remote_connection.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode()) @pytest.mark.skipif(condition=not is_live(), reason="serving tests, only run in live mode.") @pytest.mark.usefixtures("flow_serving_client_with_prt_config_env") @pytest.mark.e2etest def test_azureml_serving_api_with_prt_config_env(flow_serving_client_with_prt_config_env): response = flow_serving_client_with_prt_config_env.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client_with_prt_config_env.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode()) response = flow_serving_client_with_prt_config_env.get("/") assert b"Welcome to promptflow app" in response.data @pytest.mark.skipif(condition=not is_live(), reason="serving tests, only run in live mode.") @pytest.mark.usefixtures("flow_serving_client_with_connection_provider_env") @pytest.mark.e2etest def test_azureml_serving_api_with_conn_provider_env(flow_serving_client_with_connection_provider_env): response = flow_serving_client_with_connection_provider_env.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client_with_connection_provider_env.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode()) response = flow_serving_client_with_connection_provider_env.get("/") assert b"Welcome to promptflow app" in response.data @pytest.mark.skipif(condition=not is_live(), reason="serving tests, only run in live mode.") @pytest.mark.usefixtures("flow_serving_client_with_connection_provider_env") @pytest.mark.e2etest def test_azureml_serving_api_with_aml_resource_id_env(flow_serving_client_with_aml_resource_id_env): response = flow_serving_client_with_aml_resource_id_env.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = flow_serving_client_with_aml_resource_id_env.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "output_prompt" in json.loads(response.data.decode()) @pytest.mark.skipif(condition=not is_live(), reason="serving tests, only run in live mode.") @pytest.mark.usefixtures("serving_client_with_connection_name_override") @pytest.mark.e2etest def test_azureml_serving_api_with_connection_name_override(serving_client_with_connection_name_override): response = serving_client_with_connection_name_override.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = serving_client_with_connection_name_override.post("/score", data=json.dumps({"text": testdata})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "api_base" not in json.loads(response.data.decode()).values() @pytest.mark.usefixtures("serving_client_with_connection_data_override") @pytest.mark.e2etest def test_azureml_serving_api_with_connection_data_override(serving_client_with_connection_data_override): response = serving_client_with_connection_data_override.get("/health") assert b'{"status":"Healthy","version":"0.0.1"}' in response.data response = serving_client_with_connection_data_override.post("/score", data=json.dumps({"text": "hi"})) assert ( response.status_code == 200 ), f"Response code indicates error {response.status_code} - {response.data.decode()}" assert "api_base" in json.loads(response.data.decode()).values()
promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_flow_serve.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/e2etests/test_flow_serve.py", "repo_id": "promptflow", "token_count": 1820 }
59
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import mock import pytest from promptflow import PFClient from promptflow._sdk.operations._connection_operations import ConnectionOperations from promptflow._sdk.operations._local_azure_connection_operations import LocalAzureConnectionOperations from promptflow.exceptions import UserErrorException from ..recording_utilities import is_live AZUREML_RESOURCE_PROVIDER = "Microsoft.MachineLearningServices" RESOURCE_ID_FORMAT = "/subscriptions/{}/resourceGroups/{}/providers/{}/workspaces/{}" @pytest.mark.sdk_test @pytest.mark.e2etest class TestPFClient: # Test pf client when connection provider is azureml. # This tests suites need azure dependencies. @pytest.mark.skipif(condition=not is_live(), reason="This test requires an actual PFClient") def test_connection_provider(self, subscription_id: str, resource_group_name: str, workspace_name: str): target = "promptflow._sdk._pf_client.Configuration" with mock.patch(target) as mocked: mocked.return_value.get_connection_provider.return_value = "abc" with pytest.raises(UserErrorException) as e: client = PFClient() assert client.connections assert "Unsupported connection provider" in str(e.value) with mock.patch(target) as mocked: mocked.return_value.get_connection_provider.return_value = "azureml:xx" with pytest.raises(ValueError) as e: client = PFClient() assert client.connections assert "Malformed connection provider string" in str(e.value) with mock.patch(target) as mocked: mocked.return_value.get_connection_provider.return_value = "local" client = PFClient() assert isinstance(client.connections, ConnectionOperations) with mock.patch(target) as mocked: mocked.return_value.get_connection_provider.return_value = "azureml:" + RESOURCE_ID_FORMAT.format( subscription_id, resource_group_name, AZUREML_RESOURCE_PROVIDER, workspace_name ) client = PFClient() assert isinstance(client.connections, LocalAzureConnectionOperations) client = PFClient( config={ "connection.provider": "azureml:" + RESOURCE_ID_FORMAT.format( subscription_id, resource_group_name, AZUREML_RESOURCE_PROVIDER, workspace_name ) } ) assert isinstance(client.connections, LocalAzureConnectionOperations) def test_local_azure_connection_extract_workspace(self): res = LocalAzureConnectionOperations._extract_workspace( "azureml://subscriptions/123/resourceGroups/456/providers/Microsoft.MachineLearningServices/workspaces/789" ) assert res == ("123", "456", "789") res = LocalAzureConnectionOperations._extract_workspace( "azureml://subscriptions/123/resourcegroups/456/workspaces/789" ) assert res == ("123", "456", "789") with pytest.raises(ValueError) as e: LocalAzureConnectionOperations._extract_workspace("azureml:xx") assert "Malformed connection provider string" in str(e.value) with pytest.raises(ValueError) as e: LocalAzureConnectionOperations._extract_workspace( "azureml://subscriptions/123/resourceGroups/456/providers/Microsoft.MachineLearningServices/workspaces/" ) assert "Malformed connection provider string" in str(e.value)
promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_pf_client.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_azure_test/unittests/test_pf_client.py", "repo_id": "promptflow", "token_count": 1445 }
60
import uuid from pathlib import Path import pydash import pytest from promptflow._sdk._constants import SCRUBBED_VALUE, CustomStrongTypeConnectionConfigs from promptflow._sdk._pf_client import PFClient from promptflow._sdk.entities import CustomStrongTypeConnection from promptflow.contracts.types import Secret class MyCustomConnection(CustomStrongTypeConnection): api_key: Secret api_base: str _client = PFClient() TEST_ROOT = Path(__file__).parent.parent.parent CONNECTION_ROOT = TEST_ROOT / "test_configs/connections" @pytest.mark.cli_test @pytest.mark.e2etest class TestCustomStrongTypeConnection: def test_connection_operations(self): name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) # Create _client.connections.create_or_update(conn) # Get result = _client.connections.get(name) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # Update conn.configs["api_base"] = "test2" result = _client.connections.create_or_update(conn) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test2", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # List result = _client.connections.list() assert len(result) > 0 # Delete _client.connections.delete(name) with pytest.raises(Exception) as e: _client.connections.get(name) assert "is not found." in str(e.value) def test_connection_update(self): name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) # Create _client.connections.create_or_update(conn) # Get custom_conn = _client.connections.get(name) assert pydash.omit(custom_conn._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # Update custom_conn.configs["api_base"] = "test2" result = _client.connections.create_or_update(custom_conn) assert pydash.omit(result._to_dict(), ["created_date", "last_modified_date", "name"]) == { "module": "promptflow.connections", "type": "custom", "configs": { "api_base": "test2", "promptflow.connection.custom_type": "MyCustomConnection", "promptflow.connection.module": "sdk_cli_test.e2etests.test_custom_strong_type_connection", }, "secrets": {"api_key": "******"}, } # List result = _client.connections.list() assert len(result) > 0 # Delete _client.connections.delete(name) with pytest.raises(Exception) as e: _client.connections.get(name) assert "is not found." in str(e.value) def test_connection_get_and_update(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) result = _client.connections.create_or_update(conn) assert result.secrets["api_key"] == SCRUBBED_VALUE # Update api_base only Assert no exception result.configs["api_base"] = "test2" result = _client.connections.create_or_update(result) assert result._to_dict()["configs"]["api_base"] == "test2" # Assert value not scrubbed assert result._secrets["api_key"] == "test" _client.connections.delete(name) # Invalid update with pytest.raises(Exception) as e: result._secrets = {} _client.connections.create_or_update(result) assert "secrets ['api_key'] value invalid, please fill them" in str(e.value) def test_connection_get_and_update_with_key(self): # Test api key not updated name = f"Connection_{str(uuid.uuid4())[:4]}" conn = MyCustomConnection(name=name, secrets={"api_key": "test"}, configs={"api_base": "test"}) assert conn.api_base == "test" assert conn.configs["api_base"] == "test" result = _client.connections.create_or_update(conn) converted_conn = result._convert_to_custom_strong_type( module=__class__.__module__, to_class="MyCustomConnection" ) assert isinstance(converted_conn, MyCustomConnection) assert converted_conn.api_base == "test" converted_conn.api_base = "test2" assert converted_conn.api_base == "test2" assert converted_conn.configs["api_base"] == "test2" @pytest.mark.parametrize( "file_name, expected_updated_item, expected_secret_item", [ ("custom_strong_type_connection.yaml", ("api_base", "new_value"), ("api_key", "<to-be-replaced>")), ], ) def test_upsert_connection_from_file( self, install_custom_tool_pkg, file_name, expected_updated_item, expected_secret_item ): from promptflow._cli._pf._connection import _upsert_connection_from_file name = f"Connection_{str(uuid.uuid4())[:4]}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / file_name, params_override=[{"name": name}]) assert result is not None assert result.configs[CustomStrongTypeConnectionConfigs.PROMPTFLOW_MODULE_KEY] == "my_tool_package.connections" update_file_name = f"update_{file_name}" result = _upsert_connection_from_file(file=CONNECTION_ROOT / update_file_name, params_override=[{"name": name}]) # Test secrets not updated, and configs updated assert ( result.configs[expected_updated_item[0]] == expected_updated_item[1] ), "Assert configs updated failed, expected: {}, actual: {}".format( expected_updated_item[1], result.configs[expected_updated_item[0]] ) assert ( result._secrets[expected_secret_item[0]] == expected_secret_item[1] ), "Assert secrets not updated failed, expected: {}, actual: {}".format( expected_secret_item[1], result._secrets[expected_secret_item[0]] )
promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_custom_strong_type_connection.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/e2etests/test_custom_strong_type_connection.py", "repo_id": "promptflow", "token_count": 3245 }
61
import pytest from promptflow._cli._pf.entry import get_parser_args from promptflow._cli._utils import _get_cli_activity_name def get_cli_activity_name(cmd): prog, args = get_parser_args(list(cmd)[1:]) return _get_cli_activity_name(cli=prog, args=args) @pytest.mark.unittest class TestCliTimeConsume: def test_pf_run_create(self, activity_name="pf.run.create") -> None: assert get_cli_activity_name( cmd=( "pf", "run", "create", "--flow", "print_input_flow", "--data", "print_input_flow.jsonl", )) == activity_name def test_pf_run_update(self, activity_name="pf.run.update") -> None: assert get_cli_activity_name( cmd=( "pf", "run", "update", "--name", "test_name", "--set", "description=test pf run update" )) == activity_name def test_pf_flow_test(self, activity_name="pf.flow.test"): assert get_cli_activity_name( cmd=( "pf", "flow", "test", "--flow", "print_input_flow", "--inputs", "text=https://www.youtube.com/watch?v=o5ZQyXaAv1g", )) == activity_name def test_pf_flow_build(self, activity_name="pf.flow.build"): assert get_cli_activity_name( cmd=( "pf", "flow", "build", "--source", "print_input_flow/flow.dag.yaml", "--output", "./", "--format", "docker", )) == activity_name def test_pf_connection_create(self, activity_name="pf.connection.create"): assert get_cli_activity_name( cmd=( "pf", "connection", "create", "--file", "azure_openai_connection.yaml", "--name", "test_name", )) == activity_name def test_pf_connection_list(self, activity_name="pf.connection.list"): assert get_cli_activity_name(cmd=("pf", "connection", "list")) == activity_name
promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_cli_activity_name.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_cli_test/unittests/test_cli_activity_name.py", "repo_id": "promptflow", "token_count": 1349 }
62
# --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import pytest from flask.app import Flask from promptflow import PFClient from .utils import PFSOperations @pytest.fixture def app() -> Flask: from promptflow._sdk._service.app import create_app app, _ = create_app() app.config.update({"TESTING": True}) yield app @pytest.fixture def pfs_op(app: Flask) -> PFSOperations: client = app.test_client() return PFSOperations(client) @pytest.fixture(scope="session") def pf_client() -> PFClient: return PFClient()
promptflow/src/promptflow/tests/sdk_pfs_test/conftest.py/0
{ "file_path": "promptflow/src/promptflow/tests/sdk_pfs_test/conftest.py", "repo_id": "promptflow", "token_count": 202 }
63
name: my_custom_strong_type_connection type: custom custom_type: MyFirstConnection module: my_tool_package.connections package: test-custom-tools package_version: 0.0.2 configs: api_base: "This is my first connection." secrets: # must-have api_key: "<to-be-replaced>"
promptflow/src/promptflow/tests/test_configs/connections/custom_strong_type_connection.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/connections/custom_strong_type_connection.yaml", "repo_id": "promptflow", "token_count": 92 }
64
{"name": "promptflow"}
promptflow/src/promptflow/tests/test_configs/datas/simple_hello_world.jsonl/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/datas/simple_hello_world.jsonl", "repo_id": "promptflow", "token_count": 8 }
65
entry: my_func path: ./entry.py nodes: []
promptflow/src/promptflow/tests/test_configs/eager_flows/invalid_extra_fields_nodes/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/eager_flows/invalid_extra_fields_nodes/flow.dag.yaml", "repo_id": "promptflow", "token_count": 17 }
66
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Experiment.schema.json description: Basic experiment without script node data: - name: my_data path: ../../flows/web_classification/data.jsonl inputs: - name: count type: int default: 3 nodes: - name: gen_data type: command command: python generate_data.py --input-path ${inputs.input_path} --count ${inputs.count} --output-path ${outputs.output_path} code: ./generate_data inputs: input_path: ${data.my_data} count: ${inputs.count} outputs: output_path: environment_variables: CONNECTION_KEY: ${azure_open_ai_connection.api_key} - name: main type: flow path: ../../flows/web_classification/flow.dag.yaml inputs: url: ${gen_data.outputs.output_path.url} variant: ${summarize_text_content.variant_0} environment_variables: {} connections: {} - name: eval type: flow path: ../../flows/eval-classification-accuracy inputs: groundtruth: ${data.my_data.answer} # No node can be named with "data" prediction: ${main.outputs.category} environment_variables: {} connections: {} - name: echo type: command command: echo ${inputs.input_path} > ${outputs.output_path}/output.txt inputs: input_path: ${main.outputs} outputs: output_path:
promptflow/src/promptflow/tests/test_configs/experiments/basic-script-template/basic-script.exp.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/experiments/basic-script-template/basic-script.exp.yaml", "repo_id": "promptflow", "token_count": 541 }
67
{ "line_process.completed": 3, "aggregate.failed": 1 }
promptflow/src/promptflow/tests/test_configs/flows/aggregation_node_failed/expected_status_summary.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/aggregation_node_failed/expected_status_summary.json", "repo_id": "promptflow", "token_count": 28 }
68
import random import time from promptflow import tool @tool def get_stock_eod_price(date: str, company: str): """Get the stock end of day price by date and symbol. :param date: the date of the stock price. e.g. 2021-01-01 :type date: str :param company: the company name like A, B, C :type company: str """ print(f"Try to get the stock end of day price by date {date} and company {company}.") # Sleep a random number between 0.2s and 1s for tracing purpose time.sleep(random.uniform(0.2, 1)) return random.uniform(110, 130)
promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/get_stock_eod_price.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/assistant-with-file/get_stock_eod_price.py", "repo_id": "promptflow", "token_count": 198 }
69
$schema: https://azuremlschemas.azureedge.net/promptflow/latest/Flow.schema.json inputs: text: type: string default: Python Hello World! outputs: output: type: string reference: ${llm.output} nodes: - name: hello_prompt type: prompt inputs: text: ${inputs.text} source: type: code path: hello.jinja2 - name: llm type: llm inputs: prompt: ${hello_prompt.output} deployment_name: gpt-35-turbo model: gpt-3.5-turbo max_tokens: '120' source: type: code path: hello.jinja2 connection: azure_open_ai_connection api: chat node_variants: {}
promptflow/src/promptflow/tests/test_configs/flows/basic_with_builtin_llm_node/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/basic_with_builtin_llm_node/flow.dag.yaml", "repo_id": "promptflow", "token_count": 258 }
70
from promptflow import tool from typing import Generator, List def stream(question: str) -> Generator[str, None, None]: for word in question: yield word @tool def my_python_tool(chat_history: List[dict], question: str) -> dict: return {"answer": stream(question)}
promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_python_node_streaming_output/stream.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/chat_flow_with_python_node_streaming_output/stream.py", "repo_id": "promptflow", "token_count": 89 }
71
from time import sleep from promptflow import tool @tool def wait(**args) -> int: sleep(5) return str(args)
promptflow/src/promptflow/tests/test_configs/flows/concurrent_execution_flow/wait_long.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/concurrent_execution_flow/wait_long.py", "repo_id": "promptflow", "token_count": 42 }
72
from promptflow import tool @tool def collect(input1, input2: str="") -> str: return {'double': input1, 'square': input2}
promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/collect_node.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/conditional_flow_with_aggregate_bypassed/collect_node.py", "repo_id": "promptflow", "token_count": 42 }
73
from typing import List from promptflow import tool @tool def test_print_input(input_str: List[str], input_bool: List[bool], input_list: List[List], input_dict: List[dict]): assert input_bool[0] == False assert input_list[0] == [] assert input_dict[0] == {} print(input_str) return input_str
promptflow/src/promptflow/tests/test_configs/flows/default_input/test_print_aggregation.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/default_input/test_print_aggregation.py", "repo_id": "promptflow", "token_count": 112 }
74
from promptflow import tool @tool def merge_images(image_1: list, image_2: list, image_3: list): res = set() res.add(image_1[0]) res.add(image_2[0]) res.add(image_3[0]) return list(res)
promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_simple_image/merge_images.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/eval_flow_with_simple_image/merge_images.py", "repo_id": "promptflow", "token_count": 93 }
75
{ "CUSTOM_CONNECTION_AZURE_OPENAI_API_KEY": "" }
promptflow/src/promptflow/tests/test_configs/flows/export/linux/settings.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/export/linux/settings.json", "repo_id": "promptflow", "token_count": 26 }
76
from promptflow import tool @tool def print_val(val, origin_val): print(val) print(origin_val) if not isinstance(origin_val, dict): raise TypeError(f"key must be a dict, got {type(origin_val)}") return val
promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input/print_val.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_dict_input/print_val.py", "repo_id": "promptflow", "token_count": 90 }
77
import package_not_exist
promptflow/src/promptflow/tests/test_configs/flows/flow_with_invalid_import/hello.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/flow_with_invalid_import/hello.py", "repo_id": "promptflow", "token_count": 7 }
78
from promptflow import tool import random import time @tool def my_python_tool_with_failed_line(idx: int, mod=5) -> int: if idx % mod == 0: while True: time.sleep(60) return idx
promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/my_python_tool_with_failed_line.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/one_line_of_bulktest_timeout/my_python_tool_with_failed_line.py", "repo_id": "promptflow", "token_count": 90 }
79
{ "my_python_tool_with_failed_line_1.completed": 7, "my_python_tool_with_failed_line_1.failed": 3, "my_python_tool_with_failed_line_2.completed": 5, "my_python_tool_with_failed_line_2.failed": 2 }
promptflow/src/promptflow/tests/test_configs/flows/python_tool_partial_failure/expected_status_summary.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/python_tool_partial_failure/expected_status_summary.json", "repo_id": "promptflow", "token_count": 96 }
80
{ "name": "main", "type": "python", "inputs": { "x": { "type": [ "string" ] } }, "source": "dummy_utils/main.py", "function": "main" }
promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/main.meta.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/script_with_import/dummy_utils/main.meta.json", "repo_id": "promptflow", "token_count": 93 }
81
import statistics from typing import List from promptflow import tool @tool def aggregate_num(num: List[int]) -> int: return statistics.mean(num)
promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/aggregate_num.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/simple_flow_with_python_tool_and_aggregate/aggregate_num.py", "repo_id": "promptflow", "token_count": 45 }
82
name: node_wrong_order inputs: text: type: string outputs: result: type: string reference: ${third_node} nodes: - name: third_node type: python source: type: code path: test.py inputs: text: ${second_node} - name: first_node type: python source: type: code path: test.py inputs: text: ${inputs.text} - name: second_node type: python source: type: code path: test.py inputs: text: ${first_node}
promptflow/src/promptflow/tests/test_configs/flows/unordered_nodes/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/flows/unordered_nodes/flow.dag.yaml", "repo_id": "promptflow", "token_count": 195 }
83
FOO=BAR
promptflow/src/promptflow/tests/test_configs/runs/env_file/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/env_file", "repo_id": "promptflow", "token_count": 6 }
84
{"batch_size": 1}
promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/meta.json/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/runs/web_classification_variant_0_20231205_120253_104100/meta.json", "repo_id": "promptflow", "token_count": 7 }
85
from enum import Enum from promptflow.entities import InputSetting from promptflow import tool class UserType(str, Enum): STUDENT = "student" TEACHER = "teacher" @tool(name=1, description=1) def invalid_schema_type(input1: str) -> str: return 'hello ' + input1 @tool( name="invalid_input_settings", description="This is my tool with enabled by value", input_settings={ "teacher_id": InputSetting(enabled_by="invalid_input", enabled_by_value=[UserType.TEACHER]), "student_id": InputSetting(enabled_by="invalid_input", enabled_by_value=[UserType.STUDENT]), } ) def invalid_input_settings(user_type: UserType, student_id: str = "", teacher_id: str = "") -> str: pass @tool(name="invalid_tool_icon", icon="mock_icon_path", icon_dark="mock_icon_path", icon_light="mock_icon_path") def invalid_tool_icon(input1: str) -> str: return 'hello ' + input1
promptflow/src/promptflow/tests/test_configs/tools/invalid_tool.py/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/tools/invalid_tool.py", "repo_id": "promptflow", "token_count": 333 }
86
inputs: {} outputs: {} nodes: - name: wrong_llm type: llm source: type: code path: wrong_llm.jinja2 inputs: {} connection: custom_connection
promptflow/src/promptflow/tests/test_configs/wrong_flows/flow_llm_with_wrong_conn/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/flow_llm_with_wrong_conn/flow.dag.yaml", "repo_id": "promptflow", "token_count": 65 }
87
name: node_cycle inputs: text: type: string outputs: result: type: string reference: ${second_node} nodes: - name: first_node type: python source: type: code path: test.py inputs: text: ${second_node} aggregation: true - name: second_node type: python source: type: code path: test.py inputs: text: ${first_node} aggregation: true
promptflow/src/promptflow/tests/test_configs/wrong_flows/nodes_cycle/flow.dag.yaml/0
{ "file_path": "promptflow/src/promptflow/tests/test_configs/wrong_flows/nodes_cycle/flow.dag.yaml", "repo_id": "promptflow", "token_count": 155 }
88
# Microsoft Open Source Code of Conduct This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/). Resources: - [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/) - [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) - Contact [[email protected]](mailto:[email protected]) with questions or concerns
promptflow/CODE_OF_CONDUCT.md/0
{ "file_path": "promptflow/CODE_OF_CONDUCT.md", "repo_id": "promptflow", "token_count": 115 }
0