body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
920ecf2a801c8c4ca1b105b4718313308f1091c0afe403ebd49cb6f667de15f8
def ensure_large_islands(smoothed_cluster, min_size): '\n Function to eliminate islands below a threshold size\n Inputs:\n smoothed_cluster (np.ndarray) : Binary raster indicating\n filtered connected cluster of active pixels, output of\n smooth_object_interface()\n min_size (int) : Minimum area (specified in pixels) of islands\n to qualify for coarsening\n Outputs:\n large_islands (np.ndarray) : Binary raster similar to\n smoothed_cluster, with islands below min_size eliminated\n ' large_islands = morphology.remove_small_holes(smoothed_cluster, min_size, 2) return large_islands
Function to eliminate islands below a threshold size Inputs: smoothed_cluster (np.ndarray) : Binary raster indicating filtered connected cluster of active pixels, output of smooth_object_interface() min_size (int) : Minimum area (specified in pixels) of islands to qualify for coarsening Outputs: large_islands (np.ndarray) : Binary raster similar to smoothed_cluster, with islands below min_size eliminated
unstructured_mesh_refinement_tools.py
ensure_large_islands
passaH2O/meshrefinement
1
python
def ensure_large_islands(smoothed_cluster, min_size): '\n Function to eliminate islands below a threshold size\n Inputs:\n smoothed_cluster (np.ndarray) : Binary raster indicating\n filtered connected cluster of active pixels, output of\n smooth_object_interface()\n min_size (int) : Minimum area (specified in pixels) of islands\n to qualify for coarsening\n Outputs:\n large_islands (np.ndarray) : Binary raster similar to\n smoothed_cluster, with islands below min_size eliminated\n ' large_islands = morphology.remove_small_holes(smoothed_cluster, min_size, 2) return large_islands
def ensure_large_islands(smoothed_cluster, min_size): '\n Function to eliminate islands below a threshold size\n Inputs:\n smoothed_cluster (np.ndarray) : Binary raster indicating\n filtered connected cluster of active pixels, output of\n smooth_object_interface()\n min_size (int) : Minimum area (specified in pixels) of islands\n to qualify for coarsening\n Outputs:\n large_islands (np.ndarray) : Binary raster similar to\n smoothed_cluster, with islands below min_size eliminated\n ' large_islands = morphology.remove_small_holes(smoothed_cluster, min_size, 2) return large_islands<|docstring|>Function to eliminate islands below a threshold size Inputs: smoothed_cluster (np.ndarray) : Binary raster indicating filtered connected cluster of active pixels, output of smooth_object_interface() min_size (int) : Minimum area (specified in pixels) of islands to qualify for coarsening Outputs: large_islands (np.ndarray) : Binary raster similar to smoothed_cluster, with islands below min_size eliminated<|endoftext|>
05f9dd7201292159791b30565a496a397059857ed7730f950f967ddddbf734ee
def smooth_island_interface(large_islands, outside, buffer=4): "\n Optional function to smooth channel-island interface from opposite\n orientation as smooth_object_interface. Can lead to slightly more\n locally-convex perimeter.\n Inputs:\n large_islands (np.ndarray) : Binary raster indicating\n largest islands for coarsening, output of ensure_large_islands()\n outside (np.ndarray) : Binary raster same size as the imagery\n raster with 1's representing cells outside the boundary\n and 0's inside the boundary. Output of generate_boundary()\n buffer (int) : Radius of a disk-shaped buffer with which to\n smooth island features, specified in number of pixels\n Outputs:\n large_islands (np.ndarray) : Binary raster similar to\n large_islands, with islands slightly smoothed\n " large_islands = morphology.binary_opening(large_islands, morphology.disk(buffer)) large_islands[outside] = 1 return large_islands
Optional function to smooth channel-island interface from opposite orientation as smooth_object_interface. Can lead to slightly more locally-convex perimeter. Inputs: large_islands (np.ndarray) : Binary raster indicating largest islands for coarsening, output of ensure_large_islands() outside (np.ndarray) : Binary raster same size as the imagery raster with 1's representing cells outside the boundary and 0's inside the boundary. Output of generate_boundary() buffer (int) : Radius of a disk-shaped buffer with which to smooth island features, specified in number of pixels Outputs: large_islands (np.ndarray) : Binary raster similar to large_islands, with islands slightly smoothed
unstructured_mesh_refinement_tools.py
smooth_island_interface
passaH2O/meshrefinement
1
python
def smooth_island_interface(large_islands, outside, buffer=4): "\n Optional function to smooth channel-island interface from opposite\n orientation as smooth_object_interface. Can lead to slightly more\n locally-convex perimeter.\n Inputs:\n large_islands (np.ndarray) : Binary raster indicating\n largest islands for coarsening, output of ensure_large_islands()\n outside (np.ndarray) : Binary raster same size as the imagery\n raster with 1's representing cells outside the boundary\n and 0's inside the boundary. Output of generate_boundary()\n buffer (int) : Radius of a disk-shaped buffer with which to\n smooth island features, specified in number of pixels\n Outputs:\n large_islands (np.ndarray) : Binary raster similar to\n large_islands, with islands slightly smoothed\n " large_islands = morphology.binary_opening(large_islands, morphology.disk(buffer)) large_islands[outside] = 1 return large_islands
def smooth_island_interface(large_islands, outside, buffer=4): "\n Optional function to smooth channel-island interface from opposite\n orientation as smooth_object_interface. Can lead to slightly more\n locally-convex perimeter.\n Inputs:\n large_islands (np.ndarray) : Binary raster indicating\n largest islands for coarsening, output of ensure_large_islands()\n outside (np.ndarray) : Binary raster same size as the imagery\n raster with 1's representing cells outside the boundary\n and 0's inside the boundary. Output of generate_boundary()\n buffer (int) : Radius of a disk-shaped buffer with which to\n smooth island features, specified in number of pixels\n Outputs:\n large_islands (np.ndarray) : Binary raster similar to\n large_islands, with islands slightly smoothed\n " large_islands = morphology.binary_opening(large_islands, morphology.disk(buffer)) large_islands[outside] = 1 return large_islands<|docstring|>Optional function to smooth channel-island interface from opposite orientation as smooth_object_interface. Can lead to slightly more locally-convex perimeter. Inputs: large_islands (np.ndarray) : Binary raster indicating largest islands for coarsening, output of ensure_large_islands() outside (np.ndarray) : Binary raster same size as the imagery raster with 1's representing cells outside the boundary and 0's inside the boundary. Output of generate_boundary() buffer (int) : Radius of a disk-shaped buffer with which to smooth island features, specified in number of pixels Outputs: large_islands (np.ndarray) : Binary raster similar to large_islands, with islands slightly smoothed<|endoftext|>
803d3f80d7a40d6f671065c461bdb28a53c343bf1e48598374a58d50d49e6516
def raster2polygon(large_islands, img_path): "\n Function to convert binary raster with 0's indicating islands\n into a list of vector polygons.\n Inputs:\n large_islands (np.ndarray) : Binary raster indicating\n largest islands for coarsening, output of ensure_large_islands()\n or smooth_island_interface()\n img_path (str) : Path to original input image, from which we need to\n grab the geo transform matrix\n Outputs:\n polycoords (list) : List of polygon vertices outlining the islands\n (holes) of large_islands\n " image = np.array((large_islands == 0)).astype(np.uint8) src = rasterio.open(img_path) with rasterio.Env(): results = ({'properties': {'raster_val': v}, 'geometry': s} for (i, (s, v)) in enumerate(rasterio.features.shapes(image, mask=None, transform=src.transform))) geoms = list(results) polycoords = [geoms[c]['geometry']['coordinates'][0] for c in range(len(geoms)) if (geoms[c]['properties']['raster_val'] == 1)] return polycoords
Function to convert binary raster with 0's indicating islands into a list of vector polygons. Inputs: large_islands (np.ndarray) : Binary raster indicating largest islands for coarsening, output of ensure_large_islands() or smooth_island_interface() img_path (str) : Path to original input image, from which we need to grab the geo transform matrix Outputs: polycoords (list) : List of polygon vertices outlining the islands (holes) of large_islands
unstructured_mesh_refinement_tools.py
raster2polygon
passaH2O/meshrefinement
1
python
def raster2polygon(large_islands, img_path): "\n Function to convert binary raster with 0's indicating islands\n into a list of vector polygons.\n Inputs:\n large_islands (np.ndarray) : Binary raster indicating\n largest islands for coarsening, output of ensure_large_islands()\n or smooth_island_interface()\n img_path (str) : Path to original input image, from which we need to\n grab the geo transform matrix\n Outputs:\n polycoords (list) : List of polygon vertices outlining the islands\n (holes) of large_islands\n " image = np.array((large_islands == 0)).astype(np.uint8) src = rasterio.open(img_path) with rasterio.Env(): results = ({'properties': {'raster_val': v}, 'geometry': s} for (i, (s, v)) in enumerate(rasterio.features.shapes(image, mask=None, transform=src.transform))) geoms = list(results) polycoords = [geoms[c]['geometry']['coordinates'][0] for c in range(len(geoms)) if (geoms[c]['properties']['raster_val'] == 1)] return polycoords
def raster2polygon(large_islands, img_path): "\n Function to convert binary raster with 0's indicating islands\n into a list of vector polygons.\n Inputs:\n large_islands (np.ndarray) : Binary raster indicating\n largest islands for coarsening, output of ensure_large_islands()\n or smooth_island_interface()\n img_path (str) : Path to original input image, from which we need to\n grab the geo transform matrix\n Outputs:\n polycoords (list) : List of polygon vertices outlining the islands\n (holes) of large_islands\n " image = np.array((large_islands == 0)).astype(np.uint8) src = rasterio.open(img_path) with rasterio.Env(): results = ({'properties': {'raster_val': v}, 'geometry': s} for (i, (s, v)) in enumerate(rasterio.features.shapes(image, mask=None, transform=src.transform))) geoms = list(results) polycoords = [geoms[c]['geometry']['coordinates'][0] for c in range(len(geoms)) if (geoms[c]['properties']['raster_val'] == 1)] return polycoords<|docstring|>Function to convert binary raster with 0's indicating islands into a list of vector polygons. Inputs: large_islands (np.ndarray) : Binary raster indicating largest islands for coarsening, output of ensure_large_islands() or smooth_island_interface() img_path (str) : Path to original input image, from which we need to grab the geo transform matrix Outputs: polycoords (list) : List of polygon vertices outlining the islands (holes) of large_islands<|endoftext|>
bf8b57782d95deb54e915e99883cc926a2abf907f67a003f7bd94190bd7b78ba
def simplify_polygons(polycoords, epsilon): '\n Function to decimate the vertices of a list of polygons using the\n Ramer-Douglas-Peucker algorithm.\n Inputs:\n polycoords (list) : List of polygon vertices outlining the islands\n to be simplified, output of raster2polygon()\n epsilon (float or int) : Epsilon value to use for the RDP algorithm,\n essentially a buffer lengthscale to eliminate proximal vertices\n Outputs:\n simple_polygons (list) : Simplified (decimated) form of polycoords\n ' simple_polygons = [rdp(c, epsilon=epsilon) for c in polycoords] return simple_polygons
Function to decimate the vertices of a list of polygons using the Ramer-Douglas-Peucker algorithm. Inputs: polycoords (list) : List of polygon vertices outlining the islands to be simplified, output of raster2polygon() epsilon (float or int) : Epsilon value to use for the RDP algorithm, essentially a buffer lengthscale to eliminate proximal vertices Outputs: simple_polygons (list) : Simplified (decimated) form of polycoords
unstructured_mesh_refinement_tools.py
simplify_polygons
passaH2O/meshrefinement
1
python
def simplify_polygons(polycoords, epsilon): '\n Function to decimate the vertices of a list of polygons using the\n Ramer-Douglas-Peucker algorithm.\n Inputs:\n polycoords (list) : List of polygon vertices outlining the islands\n to be simplified, output of raster2polygon()\n epsilon (float or int) : Epsilon value to use for the RDP algorithm,\n essentially a buffer lengthscale to eliminate proximal vertices\n Outputs:\n simple_polygons (list) : Simplified (decimated) form of polycoords\n ' simple_polygons = [rdp(c, epsilon=epsilon) for c in polycoords] return simple_polygons
def simplify_polygons(polycoords, epsilon): '\n Function to decimate the vertices of a list of polygons using the\n Ramer-Douglas-Peucker algorithm.\n Inputs:\n polycoords (list) : List of polygon vertices outlining the islands\n to be simplified, output of raster2polygon()\n epsilon (float or int) : Epsilon value to use for the RDP algorithm,\n essentially a buffer lengthscale to eliminate proximal vertices\n Outputs:\n simple_polygons (list) : Simplified (decimated) form of polycoords\n ' simple_polygons = [rdp(c, epsilon=epsilon) for c in polycoords] return simple_polygons<|docstring|>Function to decimate the vertices of a list of polygons using the Ramer-Douglas-Peucker algorithm. Inputs: polycoords (list) : List of polygon vertices outlining the islands to be simplified, output of raster2polygon() epsilon (float or int) : Epsilon value to use for the RDP algorithm, essentially a buffer lengthscale to eliminate proximal vertices Outputs: simple_polygons (list) : Simplified (decimated) form of polycoords<|endoftext|>
54575610d81047b7fd5c2ab3295df1a39346be0d086e91fa28dd15eda3865eb5
def getAngle(a, b, c): '\n Helper function for filter_poly_angles()\n Find angle between three points ABC\n ' ang = math.degrees((math.atan2((c[1] - b[1]), (c[0] - b[0])) - math.atan2((a[1] - b[1]), (a[0] - b[0])))) return ((ang + 360) if (ang < 0) else ang)
Helper function for filter_poly_angles() Find angle between three points ABC
unstructured_mesh_refinement_tools.py
getAngle
passaH2O/meshrefinement
1
python
def getAngle(a, b, c): '\n Helper function for filter_poly_angles()\n Find angle between three points ABC\n ' ang = math.degrees((math.atan2((c[1] - b[1]), (c[0] - b[0])) - math.atan2((a[1] - b[1]), (a[0] - b[0])))) return ((ang + 360) if (ang < 0) else ang)
def getAngle(a, b, c): '\n Helper function for filter_poly_angles()\n Find angle between three points ABC\n ' ang = math.degrees((math.atan2((c[1] - b[1]), (c[0] - b[0])) - math.atan2((a[1] - b[1]), (a[0] - b[0])))) return ((ang + 360) if (ang < 0) else ang)<|docstring|>Helper function for filter_poly_angles() Find angle between three points ABC<|endoftext|>
b0a58a7d21766723a4bda28d53dbac2df38432dfd0475110f6b9f7af498fda5a
def removeAcute(polygon): '\n Helper function for filter_poly_angles()\n Remove any angles which are too sharp (< 28 deg)\n ' newpoly = polygon.copy() for n in range((len(polygon) - 2), 0, (- 1)): ang = getAngle(polygon[(n - 1)], polygon[n], polygon[(n + 1)]) if ((ang < 28) | (ang > 332)): del newpoly[n] return newpoly
Helper function for filter_poly_angles() Remove any angles which are too sharp (< 28 deg)
unstructured_mesh_refinement_tools.py
removeAcute
passaH2O/meshrefinement
1
python
def removeAcute(polygon): '\n Helper function for filter_poly_angles()\n Remove any angles which are too sharp (< 28 deg)\n ' newpoly = polygon.copy() for n in range((len(polygon) - 2), 0, (- 1)): ang = getAngle(polygon[(n - 1)], polygon[n], polygon[(n + 1)]) if ((ang < 28) | (ang > 332)): del newpoly[n] return newpoly
def removeAcute(polygon): '\n Helper function for filter_poly_angles()\n Remove any angles which are too sharp (< 28 deg)\n ' newpoly = polygon.copy() for n in range((len(polygon) - 2), 0, (- 1)): ang = getAngle(polygon[(n - 1)], polygon[n], polygon[(n + 1)]) if ((ang < 28) | (ang > 332)): del newpoly[n] return newpoly<|docstring|>Helper function for filter_poly_angles() Remove any angles which are too sharp (< 28 deg)<|endoftext|>
8db5737cbefb709ad39fd51389fcf06f3ebebbb236fa92b913cb6dcc97fe6057
def filter_poly_angles(simple_polygons): '\n Function to eliminate acute angles from of a list of polygons \n Inputs:\n simple_polygons (list) : List of polygon vertices outlining islands\n to be simplified, output of simplify_polygons()\n Outputs:\n safe_simple_polygons (list) : List similar to simple_polygons with\n sharp angles removed\n ' safe_simple_polygons = [removeAcute(c) for c in simple_polygons] return safe_simple_polygons
Function to eliminate acute angles from of a list of polygons Inputs: simple_polygons (list) : List of polygon vertices outlining islands to be simplified, output of simplify_polygons() Outputs: safe_simple_polygons (list) : List similar to simple_polygons with sharp angles removed
unstructured_mesh_refinement_tools.py
filter_poly_angles
passaH2O/meshrefinement
1
python
def filter_poly_angles(simple_polygons): '\n Function to eliminate acute angles from of a list of polygons \n Inputs:\n simple_polygons (list) : List of polygon vertices outlining islands\n to be simplified, output of simplify_polygons()\n Outputs:\n safe_simple_polygons (list) : List similar to simple_polygons with\n sharp angles removed\n ' safe_simple_polygons = [removeAcute(c) for c in simple_polygons] return safe_simple_polygons
def filter_poly_angles(simple_polygons): '\n Function to eliminate acute angles from of a list of polygons \n Inputs:\n simple_polygons (list) : List of polygon vertices outlining islands\n to be simplified, output of simplify_polygons()\n Outputs:\n safe_simple_polygons (list) : List similar to simple_polygons with\n sharp angles removed\n ' safe_simple_polygons = [removeAcute(c) for c in simple_polygons] return safe_simple_polygons<|docstring|>Function to eliminate acute angles from of a list of polygons Inputs: simple_polygons (list) : List of polygon vertices outlining islands to be simplified, output of simplify_polygons() Outputs: safe_simple_polygons (list) : List similar to simple_polygons with sharp angles removed<|endoftext|>
628824a63add0c03a6f2ce2bb1cccb160eecb34e2627a64d36bd35dadbe43a6a
def save_for_anuga(safe_simple_polygons, outfolder, triangle_res): '\n Function to save list of polygons to CSV files indicating their future\n ANUGA resolution in outfolder.\n Inputs:\n safe_simple_polygons (list) : List of filtered polygon vertices\n outlining islands to be coarsened\n outfolder (str) : String specifying folder path in which to\n save polygon files\n triangle_res (float or list of floats) : Max triangle area\n to be assigned to this polygon when loaded into ANUGA, which\n is saved into the filename for ease of use later. Can be\n specified as a single float for all polygons or as a list/array\n of floats of equal length to the number of polygons.\n Outputs:\n Saves a list of CSV files in outfolder\n ' for (n, simple_poly) in enumerate(safe_simple_polygons): try: res = triangle_res[n] except TypeError: res = triangle_res name = os.path.join(outfolder, ('CoarseReg%s_Res%s.csv' % (n, res))) df = pd.DataFrame(data=simple_poly[0:(- 1)]) df.to_csv(name, index=False, header=False) return
Function to save list of polygons to CSV files indicating their future ANUGA resolution in outfolder. Inputs: safe_simple_polygons (list) : List of filtered polygon vertices outlining islands to be coarsened outfolder (str) : String specifying folder path in which to save polygon files triangle_res (float or list of floats) : Max triangle area to be assigned to this polygon when loaded into ANUGA, which is saved into the filename for ease of use later. Can be specified as a single float for all polygons or as a list/array of floats of equal length to the number of polygons. Outputs: Saves a list of CSV files in outfolder
unstructured_mesh_refinement_tools.py
save_for_anuga
passaH2O/meshrefinement
1
python
def save_for_anuga(safe_simple_polygons, outfolder, triangle_res): '\n Function to save list of polygons to CSV files indicating their future\n ANUGA resolution in outfolder.\n Inputs:\n safe_simple_polygons (list) : List of filtered polygon vertices\n outlining islands to be coarsened\n outfolder (str) : String specifying folder path in which to\n save polygon files\n triangle_res (float or list of floats) : Max triangle area\n to be assigned to this polygon when loaded into ANUGA, which\n is saved into the filename for ease of use later. Can be\n specified as a single float for all polygons or as a list/array\n of floats of equal length to the number of polygons.\n Outputs:\n Saves a list of CSV files in outfolder\n ' for (n, simple_poly) in enumerate(safe_simple_polygons): try: res = triangle_res[n] except TypeError: res = triangle_res name = os.path.join(outfolder, ('CoarseReg%s_Res%s.csv' % (n, res))) df = pd.DataFrame(data=simple_poly[0:(- 1)]) df.to_csv(name, index=False, header=False) return
def save_for_anuga(safe_simple_polygons, outfolder, triangle_res): '\n Function to save list of polygons to CSV files indicating their future\n ANUGA resolution in outfolder.\n Inputs:\n safe_simple_polygons (list) : List of filtered polygon vertices\n outlining islands to be coarsened\n outfolder (str) : String specifying folder path in which to\n save polygon files\n triangle_res (float or list of floats) : Max triangle area\n to be assigned to this polygon when loaded into ANUGA, which\n is saved into the filename for ease of use later. Can be\n specified as a single float for all polygons or as a list/array\n of floats of equal length to the number of polygons.\n Outputs:\n Saves a list of CSV files in outfolder\n ' for (n, simple_poly) in enumerate(safe_simple_polygons): try: res = triangle_res[n] except TypeError: res = triangle_res name = os.path.join(outfolder, ('CoarseReg%s_Res%s.csv' % (n, res))) df = pd.DataFrame(data=simple_poly[0:(- 1)]) df.to_csv(name, index=False, header=False) return<|docstring|>Function to save list of polygons to CSV files indicating their future ANUGA resolution in outfolder. Inputs: safe_simple_polygons (list) : List of filtered polygon vertices outlining islands to be coarsened outfolder (str) : String specifying folder path in which to save polygon files triangle_res (float or list of floats) : Max triangle area to be assigned to this polygon when loaded into ANUGA, which is saved into the filename for ease of use later. Can be specified as a single float for all polygons or as a list/array of floats of equal length to the number of polygons. Outputs: Saves a list of CSV files in outfolder<|endoftext|>
957564cf8e1403a0be2a3aead3b1d7e414a34bc433e8800dd09df7c68d6357b7
def plot_polygons(polygons, fill=True, outline=False, outline_color='k'): '\n Helper function to plot the vector form of the interior polygons,\n either filled in or as outlines.\n Inputs:\n polygons (list) : List of polygon coordinates\n fill (bool) : Option to plot polygons as filled-in\n outline (bool) : Option to plot polygon outlines\n outline_color (str) : If outline is True, plot with this color\n Outputs:\n Outputs a figure showing polygon features\n ' fig = plt.figure(figsize=(8, 8), dpi=400) for poly in polygons: x = [c[0] for c in poly] y = [c[1] for c in poly] if fill: plt.fill(x, y) if outline: plt.plot(x, y, c=outline_color, linewidth=0.5, alpha=0.9) plt.axis('scaled') return
Helper function to plot the vector form of the interior polygons, either filled in or as outlines. Inputs: polygons (list) : List of polygon coordinates fill (bool) : Option to plot polygons as filled-in outline (bool) : Option to plot polygon outlines outline_color (str) : If outline is True, plot with this color Outputs: Outputs a figure showing polygon features
unstructured_mesh_refinement_tools.py
plot_polygons
passaH2O/meshrefinement
1
python
def plot_polygons(polygons, fill=True, outline=False, outline_color='k'): '\n Helper function to plot the vector form of the interior polygons,\n either filled in or as outlines.\n Inputs:\n polygons (list) : List of polygon coordinates\n fill (bool) : Option to plot polygons as filled-in\n outline (bool) : Option to plot polygon outlines\n outline_color (str) : If outline is True, plot with this color\n Outputs:\n Outputs a figure showing polygon features\n ' fig = plt.figure(figsize=(8, 8), dpi=400) for poly in polygons: x = [c[0] for c in poly] y = [c[1] for c in poly] if fill: plt.fill(x, y) if outline: plt.plot(x, y, c=outline_color, linewidth=0.5, alpha=0.9) plt.axis('scaled') return
def plot_polygons(polygons, fill=True, outline=False, outline_color='k'): '\n Helper function to plot the vector form of the interior polygons,\n either filled in or as outlines.\n Inputs:\n polygons (list) : List of polygon coordinates\n fill (bool) : Option to plot polygons as filled-in\n outline (bool) : Option to plot polygon outlines\n outline_color (str) : If outline is True, plot with this color\n Outputs:\n Outputs a figure showing polygon features\n ' fig = plt.figure(figsize=(8, 8), dpi=400) for poly in polygons: x = [c[0] for c in poly] y = [c[1] for c in poly] if fill: plt.fill(x, y) if outline: plt.plot(x, y, c=outline_color, linewidth=0.5, alpha=0.9) plt.axis('scaled') return<|docstring|>Helper function to plot the vector form of the interior polygons, either filled in or as outlines. Inputs: polygons (list) : List of polygon coordinates fill (bool) : Option to plot polygons as filled-in outline (bool) : Option to plot polygon outlines outline_color (str) : If outline is True, plot with this color Outputs: Outputs a figure showing polygon features<|endoftext|>
d2f33e6978ba0c240caf03983fc92a1a1b4a11a199d251746207687a037f2431
def initialize_multi_client_cluster(job_name: str, dtensor_jobs: List[str], client_id: int, collective_leader: str, port: Optional[int]=None, protocol: Optional[str]='grpc+loas', enable_coordination_service: bool=False): 'Initialize GRPC servers and collectives for multi-client DTensor setup.\n\n While single clients (e.g. Forge) can use local mode of collectives, GRPC\n servers are necessary in mutli-client setup. This function can be used to\n initialize a cluster and enable collective ops.\n\n NOTE: this function must be called in an eager context.\n\n Args:\n job_name: The job name used by all clients in the DTensor cluster.\n dtensor_jobs: A list of the DTensor client jobs participating in the\n cluster. Must be strings of the form "hostname:port".\n client_id: The ID of the DTensor client this function is being called in.\n collective_leader: The job/task that will be used to run collectives.\n port: The port this client\'s GRPC server will run on.\n protocol: The protocol to be used by this server.\n enable_coordination_service: If true, enable distributed coordination\n service to make sure that workers know the devices on each other, a\n prerequisite for data transfer through cross-worker rendezvous.\n\n Raises:\n RuntimeError: If running inside a tf.function.\n ' assert context.executing_eagerly() if (not collective_leader.startswith('/job:')): collective_leader = ('/job:' + collective_leader) context.context().configure_collective_ops(collective_leader=collective_leader) if enable_coordination_service: context.context().configure_coordination_service(service_type='standalone', service_leader=collective_leader) config_proto = context.get_config() config_proto.experimental.collective_group_leader = collective_leader cluster_def = cluster_pb2.ClusterDef() cluster_def.job.add(name=job_name, tasks=dict(enumerate(dtensor_jobs))) server_def = tensorflow_server_pb2.ServerDef(cluster=cluster_def, default_session_config=config_proto, job_name=job_name, task_index=client_id, protocol=protocol, port=port) server_def.default_session_config.rpc_options.num_channels_per_target = 4 server_def.default_session_config.experimental.recv_buf_max_chunk = (- 1) logging.info('Enabling collectives with server_def: %s', server_def) context.context().enable_collective_ops(server_def) context.ensure_initialized()
Initialize GRPC servers and collectives for multi-client DTensor setup. While single clients (e.g. Forge) can use local mode of collectives, GRPC servers are necessary in mutli-client setup. This function can be used to initialize a cluster and enable collective ops. NOTE: this function must be called in an eager context. Args: job_name: The job name used by all clients in the DTensor cluster. dtensor_jobs: A list of the DTensor client jobs participating in the cluster. Must be strings of the form "hostname:port". client_id: The ID of the DTensor client this function is being called in. collective_leader: The job/task that will be used to run collectives. port: The port this client's GRPC server will run on. protocol: The protocol to be used by this server. enable_coordination_service: If true, enable distributed coordination service to make sure that workers know the devices on each other, a prerequisite for data transfer through cross-worker rendezvous. Raises: RuntimeError: If running inside a tf.function.
tensorflow/dtensor/python/multi_client_util.py
initialize_multi_client_cluster
snadampal/tensorflow
3
python
def initialize_multi_client_cluster(job_name: str, dtensor_jobs: List[str], client_id: int, collective_leader: str, port: Optional[int]=None, protocol: Optional[str]='grpc+loas', enable_coordination_service: bool=False): 'Initialize GRPC servers and collectives for multi-client DTensor setup.\n\n While single clients (e.g. Forge) can use local mode of collectives, GRPC\n servers are necessary in mutli-client setup. This function can be used to\n initialize a cluster and enable collective ops.\n\n NOTE: this function must be called in an eager context.\n\n Args:\n job_name: The job name used by all clients in the DTensor cluster.\n dtensor_jobs: A list of the DTensor client jobs participating in the\n cluster. Must be strings of the form "hostname:port".\n client_id: The ID of the DTensor client this function is being called in.\n collective_leader: The job/task that will be used to run collectives.\n port: The port this client\'s GRPC server will run on.\n protocol: The protocol to be used by this server.\n enable_coordination_service: If true, enable distributed coordination\n service to make sure that workers know the devices on each other, a\n prerequisite for data transfer through cross-worker rendezvous.\n\n Raises:\n RuntimeError: If running inside a tf.function.\n ' assert context.executing_eagerly() if (not collective_leader.startswith('/job:')): collective_leader = ('/job:' + collective_leader) context.context().configure_collective_ops(collective_leader=collective_leader) if enable_coordination_service: context.context().configure_coordination_service(service_type='standalone', service_leader=collective_leader) config_proto = context.get_config() config_proto.experimental.collective_group_leader = collective_leader cluster_def = cluster_pb2.ClusterDef() cluster_def.job.add(name=job_name, tasks=dict(enumerate(dtensor_jobs))) server_def = tensorflow_server_pb2.ServerDef(cluster=cluster_def, default_session_config=config_proto, job_name=job_name, task_index=client_id, protocol=protocol, port=port) server_def.default_session_config.rpc_options.num_channels_per_target = 4 server_def.default_session_config.experimental.recv_buf_max_chunk = (- 1) logging.info('Enabling collectives with server_def: %s', server_def) context.context().enable_collective_ops(server_def) context.ensure_initialized()
def initialize_multi_client_cluster(job_name: str, dtensor_jobs: List[str], client_id: int, collective_leader: str, port: Optional[int]=None, protocol: Optional[str]='grpc+loas', enable_coordination_service: bool=False): 'Initialize GRPC servers and collectives for multi-client DTensor setup.\n\n While single clients (e.g. Forge) can use local mode of collectives, GRPC\n servers are necessary in mutli-client setup. This function can be used to\n initialize a cluster and enable collective ops.\n\n NOTE: this function must be called in an eager context.\n\n Args:\n job_name: The job name used by all clients in the DTensor cluster.\n dtensor_jobs: A list of the DTensor client jobs participating in the\n cluster. Must be strings of the form "hostname:port".\n client_id: The ID of the DTensor client this function is being called in.\n collective_leader: The job/task that will be used to run collectives.\n port: The port this client\'s GRPC server will run on.\n protocol: The protocol to be used by this server.\n enable_coordination_service: If true, enable distributed coordination\n service to make sure that workers know the devices on each other, a\n prerequisite for data transfer through cross-worker rendezvous.\n\n Raises:\n RuntimeError: If running inside a tf.function.\n ' assert context.executing_eagerly() if (not collective_leader.startswith('/job:')): collective_leader = ('/job:' + collective_leader) context.context().configure_collective_ops(collective_leader=collective_leader) if enable_coordination_service: context.context().configure_coordination_service(service_type='standalone', service_leader=collective_leader) config_proto = context.get_config() config_proto.experimental.collective_group_leader = collective_leader cluster_def = cluster_pb2.ClusterDef() cluster_def.job.add(name=job_name, tasks=dict(enumerate(dtensor_jobs))) server_def = tensorflow_server_pb2.ServerDef(cluster=cluster_def, default_session_config=config_proto, job_name=job_name, task_index=client_id, protocol=protocol, port=port) server_def.default_session_config.rpc_options.num_channels_per_target = 4 server_def.default_session_config.experimental.recv_buf_max_chunk = (- 1) logging.info('Enabling collectives with server_def: %s', server_def) context.context().enable_collective_ops(server_def) context.ensure_initialized()<|docstring|>Initialize GRPC servers and collectives for multi-client DTensor setup. While single clients (e.g. Forge) can use local mode of collectives, GRPC servers are necessary in mutli-client setup. This function can be used to initialize a cluster and enable collective ops. NOTE: this function must be called in an eager context. Args: job_name: The job name used by all clients in the DTensor cluster. dtensor_jobs: A list of the DTensor client jobs participating in the cluster. Must be strings of the form "hostname:port". client_id: The ID of the DTensor client this function is being called in. collective_leader: The job/task that will be used to run collectives. port: The port this client's GRPC server will run on. protocol: The protocol to be used by this server. enable_coordination_service: If true, enable distributed coordination service to make sure that workers know the devices on each other, a prerequisite for data transfer through cross-worker rendezvous. Raises: RuntimeError: If running inside a tf.function.<|endoftext|>
efd563fef01bad7578a1f1b0cbdebfebd22cf6328226dd6344862f722a825cf9
def parse_input(self, input, inflv, starttime, endtime): 'Read simulations data from input file.\n\n Arguments:\n input -- prefix of file containing neutrino fluxes\n inflv -- neutrino flavor to consider\n starttime -- start time set by user via command line option (or None)\n endtime -- end time set by user via command line option (or None)\n ' (self.times_el, self.times_nb) = ([], []) self.e_bins = [zero] (self.N_dict, self.egroup_dict, self.dNLde_dict, self.log_spectrum) = ({}, {}, {}, {}) self._parse((input + '-early.txt'), 'early', inflv) self._parse((input + '-late.txt'), 'late', inflv) self._calculate_dNLde() times = self.times_el self.starttime = get_starttime(starttime, times[0]) self.endtime = get_endtime(endtime, times[(- 1)]) if ((inflv == 'e') and (self.starttime < 50)): self._parse_nb((input + '-nb.txt')) times = sorted((times + self.times_nb)) self.raw_times = get_raw_times(times, self.starttime, self.endtime) log_group_e = [log10(e_bin) for e_bin in self.e_bins] for time in self.raw_times: log_dNLde = [log10(d) for d in self.dNLde_dict[time]] self.log_spectrum[time] = InterpolatedUnivariateSpline(log_group_e, log_dNLde)
Read simulations data from input file. Arguments: input -- prefix of file containing neutrino fluxes inflv -- neutrino flavor to consider starttime -- start time set by user via command line option (or None) endtime -- end time set by user via command line option (or None)
sntools/formats/totani.py
parse_input
svalder/sntools
10
python
def parse_input(self, input, inflv, starttime, endtime): 'Read simulations data from input file.\n\n Arguments:\n input -- prefix of file containing neutrino fluxes\n inflv -- neutrino flavor to consider\n starttime -- start time set by user via command line option (or None)\n endtime -- end time set by user via command line option (or None)\n ' (self.times_el, self.times_nb) = ([], []) self.e_bins = [zero] (self.N_dict, self.egroup_dict, self.dNLde_dict, self.log_spectrum) = ({}, {}, {}, {}) self._parse((input + '-early.txt'), 'early', inflv) self._parse((input + '-late.txt'), 'late', inflv) self._calculate_dNLde() times = self.times_el self.starttime = get_starttime(starttime, times[0]) self.endtime = get_endtime(endtime, times[(- 1)]) if ((inflv == 'e') and (self.starttime < 50)): self._parse_nb((input + '-nb.txt')) times = sorted((times + self.times_nb)) self.raw_times = get_raw_times(times, self.starttime, self.endtime) log_group_e = [log10(e_bin) for e_bin in self.e_bins] for time in self.raw_times: log_dNLde = [log10(d) for d in self.dNLde_dict[time]] self.log_spectrum[time] = InterpolatedUnivariateSpline(log_group_e, log_dNLde)
def parse_input(self, input, inflv, starttime, endtime): 'Read simulations data from input file.\n\n Arguments:\n input -- prefix of file containing neutrino fluxes\n inflv -- neutrino flavor to consider\n starttime -- start time set by user via command line option (or None)\n endtime -- end time set by user via command line option (or None)\n ' (self.times_el, self.times_nb) = ([], []) self.e_bins = [zero] (self.N_dict, self.egroup_dict, self.dNLde_dict, self.log_spectrum) = ({}, {}, {}, {}) self._parse((input + '-early.txt'), 'early', inflv) self._parse((input + '-late.txt'), 'late', inflv) self._calculate_dNLde() times = self.times_el self.starttime = get_starttime(starttime, times[0]) self.endtime = get_endtime(endtime, times[(- 1)]) if ((inflv == 'e') and (self.starttime < 50)): self._parse_nb((input + '-nb.txt')) times = sorted((times + self.times_nb)) self.raw_times = get_raw_times(times, self.starttime, self.endtime) log_group_e = [log10(e_bin) for e_bin in self.e_bins] for time in self.raw_times: log_dNLde = [log10(d) for d in self.dNLde_dict[time]] self.log_spectrum[time] = InterpolatedUnivariateSpline(log_group_e, log_dNLde)<|docstring|>Read simulations data from input file. Arguments: input -- prefix of file containing neutrino fluxes inflv -- neutrino flavor to consider starttime -- start time set by user via command line option (or None) endtime -- end time set by user via command line option (or None)<|endoftext|>
62ee4841012503a7fc5b64b9775d2da0633f5a35865d18abe025abb01cc0658b
def prepare_evt_gen(self, binned_t): 'Pre-compute values necessary for event generation.\n\n Scipy/numpy are optimized for parallel operation on large arrays, making\n it orders of magnitude faster to pre-compute all values at one time\n instead of computing them lazily when needed.\n\n Argument:\n binned_t -- list of time bins for generating events\n ' for time in binned_t: if (time in self.log_spectrum): continue if ((40 <= time <= 49.99) and (self.times_nb != [])): _times = [x for x in self.times_nb if (x in self.raw_times)] else: _times = [x for x in self.times_el if (x in self.raw_times)] for t_bin in _times: if (time <= t_bin): t1 = t_bin break else: t0 = t_bin dNLde = [] prev_dNLde = self.dNLde_dict[t0] next_dNLde = self.dNLde_dict[t1] for (i, _) in enumerate(self.e_bins): tmp = (prev_dNLde[i] + (((next_dNLde[i] - prev_dNLde[i]) * (time - t0)) / (t1 - t0))) dNLde.append(tmp) log_group_e = [log10(e_bin) for e_bin in self.e_bins] log_dNLde = [log10(d) for d in dNLde] self.log_spectrum[time] = InterpolatedUnivariateSpline(log_group_e, log_dNLde) return None
Pre-compute values necessary for event generation. Scipy/numpy are optimized for parallel operation on large arrays, making it orders of magnitude faster to pre-compute all values at one time instead of computing them lazily when needed. Argument: binned_t -- list of time bins for generating events
sntools/formats/totani.py
prepare_evt_gen
svalder/sntools
10
python
def prepare_evt_gen(self, binned_t): 'Pre-compute values necessary for event generation.\n\n Scipy/numpy are optimized for parallel operation on large arrays, making\n it orders of magnitude faster to pre-compute all values at one time\n instead of computing them lazily when needed.\n\n Argument:\n binned_t -- list of time bins for generating events\n ' for time in binned_t: if (time in self.log_spectrum): continue if ((40 <= time <= 49.99) and (self.times_nb != [])): _times = [x for x in self.times_nb if (x in self.raw_times)] else: _times = [x for x in self.times_el if (x in self.raw_times)] for t_bin in _times: if (time <= t_bin): t1 = t_bin break else: t0 = t_bin dNLde = [] prev_dNLde = self.dNLde_dict[t0] next_dNLde = self.dNLde_dict[t1] for (i, _) in enumerate(self.e_bins): tmp = (prev_dNLde[i] + (((next_dNLde[i] - prev_dNLde[i]) * (time - t0)) / (t1 - t0))) dNLde.append(tmp) log_group_e = [log10(e_bin) for e_bin in self.e_bins] log_dNLde = [log10(d) for d in dNLde] self.log_spectrum[time] = InterpolatedUnivariateSpline(log_group_e, log_dNLde) return None
def prepare_evt_gen(self, binned_t): 'Pre-compute values necessary for event generation.\n\n Scipy/numpy are optimized for parallel operation on large arrays, making\n it orders of magnitude faster to pre-compute all values at one time\n instead of computing them lazily when needed.\n\n Argument:\n binned_t -- list of time bins for generating events\n ' for time in binned_t: if (time in self.log_spectrum): continue if ((40 <= time <= 49.99) and (self.times_nb != [])): _times = [x for x in self.times_nb if (x in self.raw_times)] else: _times = [x for x in self.times_el if (x in self.raw_times)] for t_bin in _times: if (time <= t_bin): t1 = t_bin break else: t0 = t_bin dNLde = [] prev_dNLde = self.dNLde_dict[t0] next_dNLde = self.dNLde_dict[t1] for (i, _) in enumerate(self.e_bins): tmp = (prev_dNLde[i] + (((next_dNLde[i] - prev_dNLde[i]) * (time - t0)) / (t1 - t0))) dNLde.append(tmp) log_group_e = [log10(e_bin) for e_bin in self.e_bins] log_dNLde = [log10(d) for d in dNLde] self.log_spectrum[time] = InterpolatedUnivariateSpline(log_group_e, log_dNLde) return None<|docstring|>Pre-compute values necessary for event generation. Scipy/numpy are optimized for parallel operation on large arrays, making it orders of magnitude faster to pre-compute all values at one time instead of computing them lazily when needed. Argument: binned_t -- list of time bins for generating events<|endoftext|>
7f2125d3593acc2be42d4eba167f8f3f851eea699ec788ee544ae5a26db4db56
def nu_emission(self, eNu, time): 'Number of neutrinos emitted, as a function of energy.\n\n This is not yet the flux! The geometry factor 1/(4 pi r**2) is added later.\n Arguments:\n eNu -- neutrino energy\n time -- time ;)\n ' f = self.log_spectrum[time] return (10 ** f(log10(eNu)))
Number of neutrinos emitted, as a function of energy. This is not yet the flux! The geometry factor 1/(4 pi r**2) is added later. Arguments: eNu -- neutrino energy time -- time ;)
sntools/formats/totani.py
nu_emission
svalder/sntools
10
python
def nu_emission(self, eNu, time): 'Number of neutrinos emitted, as a function of energy.\n\n This is not yet the flux! The geometry factor 1/(4 pi r**2) is added later.\n Arguments:\n eNu -- neutrino energy\n time -- time ;)\n ' f = self.log_spectrum[time] return (10 ** f(log10(eNu)))
def nu_emission(self, eNu, time): 'Number of neutrinos emitted, as a function of energy.\n\n This is not yet the flux! The geometry factor 1/(4 pi r**2) is added later.\n Arguments:\n eNu -- neutrino energy\n time -- time ;)\n ' f = self.log_spectrum[time] return (10 ** f(log10(eNu)))<|docstring|>Number of neutrinos emitted, as a function of energy. This is not yet the flux! The geometry factor 1/(4 pi r**2) is added later. Arguments: eNu -- neutrino energy time -- time ;)<|endoftext|>
1e0cd3889187119a0786f867d56a7173ede6240878951127c1655d5e1f8eef78
def _parse(self, input, format, flv): 'Read data from files into dictionaries to look up by time.' with open(input) as infile: raw_indata = [line for line in infile] chunks = [] if (format == 'early'): for i in range(26): chunks.append(raw_indata[(42 * i):(42 * (i + 1))]) line_N = 6 range_egroup = range(19, 39) elif (format == 'late'): for i in range(36): chunks.append(raw_indata[(46 * i):(46 * (i + 1))]) line_N = 8 range_egroup = range(21, 41) offset = {'e': 0, 'eb': 1, 'x': 2, 'xb': 2}[flv] for chunk in chunks: time = (float(chunk[0].split()[0]) * 1000) time -= 2 self.times_el.append(time) N = float(chunk[line_N].split()[offset]) if (offset == 2): N /= 4 self.N_dict[time] = N egroup = [zero] for i in range_egroup: line = list(map(float, chunk[i].split())) egroup.append(line[((- 3) + offset)]) if (self.egroup_dict == {}): self.e_bins.append((line[1] / 1000)) self.egroup_dict[time] = egroup return None
Read data from files into dictionaries to look up by time.
sntools/formats/totani.py
_parse
svalder/sntools
10
python
def _parse(self, input, format, flv): with open(input) as infile: raw_indata = [line for line in infile] chunks = [] if (format == 'early'): for i in range(26): chunks.append(raw_indata[(42 * i):(42 * (i + 1))]) line_N = 6 range_egroup = range(19, 39) elif (format == 'late'): for i in range(36): chunks.append(raw_indata[(46 * i):(46 * (i + 1))]) line_N = 8 range_egroup = range(21, 41) offset = {'e': 0, 'eb': 1, 'x': 2, 'xb': 2}[flv] for chunk in chunks: time = (float(chunk[0].split()[0]) * 1000) time -= 2 self.times_el.append(time) N = float(chunk[line_N].split()[offset]) if (offset == 2): N /= 4 self.N_dict[time] = N egroup = [zero] for i in range_egroup: line = list(map(float, chunk[i].split())) egroup.append(line[((- 3) + offset)]) if (self.egroup_dict == {}): self.e_bins.append((line[1] / 1000)) self.egroup_dict[time] = egroup return None
def _parse(self, input, format, flv): with open(input) as infile: raw_indata = [line for line in infile] chunks = [] if (format == 'early'): for i in range(26): chunks.append(raw_indata[(42 * i):(42 * (i + 1))]) line_N = 6 range_egroup = range(19, 39) elif (format == 'late'): for i in range(36): chunks.append(raw_indata[(46 * i):(46 * (i + 1))]) line_N = 8 range_egroup = range(21, 41) offset = {'e': 0, 'eb': 1, 'x': 2, 'xb': 2}[flv] for chunk in chunks: time = (float(chunk[0].split()[0]) * 1000) time -= 2 self.times_el.append(time) N = float(chunk[line_N].split()[offset]) if (offset == 2): N /= 4 self.N_dict[time] = N egroup = [zero] for i in range_egroup: line = list(map(float, chunk[i].split())) egroup.append(line[((- 3) + offset)]) if (self.egroup_dict == {}): self.e_bins.append((line[1] / 1000)) self.egroup_dict[time] = egroup return None<|docstring|>Read data from files into dictionaries to look up by time.<|endoftext|>
7779c10c6303d4a9e343ea8a7926b5ba8f55b7684f5a522053c855c3d9854a28
def _parse_nb(self, input): 'More granular nu_e data for the neutronization burst ("nb", 40-50ms).\n\n Note: the nb file comes from a slightly different simulation, therefore we\n have to deal with a time offset and a scaling factor.\n ' with open(input) as infile: raw_indata = [line for line in infile] chunks = [raw_indata[(26 * i):(26 * (i + 1))] for i in range(6, 57)] for chunk in chunks: time = (float(chunk[0].split()[2]) * 1000) time -= 467.5 self.times_nb.append(time) luminosity = (float(chunk[1].split()[2]) * 624.151) egroup = [zero] for i in range(3, 23): line = list(map(float, chunk[i].split())) egroup.append(line[(- 3)]) E_integ = 0 spec = [] for (j, n) in enumerate(egroup): if ((j == 0) or (j == (len(egroup) - 1))): spec.append(zero) else: spec.append((n / (self.e_bins[(j + 1)] - self.e_bins[(j - 1)]))) E_integ += ((((spec[(j - 1)] * self.e_bins[(j - 1)]) + (spec[j] * self.e_bins[j])) * (self.e_bins[j] - self.e_bins[(j - 1)])) / 2) spec = [((x / E_integ) * luminosity) for x in spec] nb_scale = (1 - (((5.23 / 13.82) * (time - 40)) / 10)) self.dNLde_dict[time] = [(x * nb_scale) for x in spec] return None
More granular nu_e data for the neutronization burst ("nb", 40-50ms). Note: the nb file comes from a slightly different simulation, therefore we have to deal with a time offset and a scaling factor.
sntools/formats/totani.py
_parse_nb
svalder/sntools
10
python
def _parse_nb(self, input): 'More granular nu_e data for the neutronization burst ("nb", 40-50ms).\n\n Note: the nb file comes from a slightly different simulation, therefore we\n have to deal with a time offset and a scaling factor.\n ' with open(input) as infile: raw_indata = [line for line in infile] chunks = [raw_indata[(26 * i):(26 * (i + 1))] for i in range(6, 57)] for chunk in chunks: time = (float(chunk[0].split()[2]) * 1000) time -= 467.5 self.times_nb.append(time) luminosity = (float(chunk[1].split()[2]) * 624.151) egroup = [zero] for i in range(3, 23): line = list(map(float, chunk[i].split())) egroup.append(line[(- 3)]) E_integ = 0 spec = [] for (j, n) in enumerate(egroup): if ((j == 0) or (j == (len(egroup) - 1))): spec.append(zero) else: spec.append((n / (self.e_bins[(j + 1)] - self.e_bins[(j - 1)]))) E_integ += ((((spec[(j - 1)] * self.e_bins[(j - 1)]) + (spec[j] * self.e_bins[j])) * (self.e_bins[j] - self.e_bins[(j - 1)])) / 2) spec = [((x / E_integ) * luminosity) for x in spec] nb_scale = (1 - (((5.23 / 13.82) * (time - 40)) / 10)) self.dNLde_dict[time] = [(x * nb_scale) for x in spec] return None
def _parse_nb(self, input): 'More granular nu_e data for the neutronization burst ("nb", 40-50ms).\n\n Note: the nb file comes from a slightly different simulation, therefore we\n have to deal with a time offset and a scaling factor.\n ' with open(input) as infile: raw_indata = [line for line in infile] chunks = [raw_indata[(26 * i):(26 * (i + 1))] for i in range(6, 57)] for chunk in chunks: time = (float(chunk[0].split()[2]) * 1000) time -= 467.5 self.times_nb.append(time) luminosity = (float(chunk[1].split()[2]) * 624.151) egroup = [zero] for i in range(3, 23): line = list(map(float, chunk[i].split())) egroup.append(line[(- 3)]) E_integ = 0 spec = [] for (j, n) in enumerate(egroup): if ((j == 0) or (j == (len(egroup) - 1))): spec.append(zero) else: spec.append((n / (self.e_bins[(j + 1)] - self.e_bins[(j - 1)]))) E_integ += ((((spec[(j - 1)] * self.e_bins[(j - 1)]) + (spec[j] * self.e_bins[j])) * (self.e_bins[j] - self.e_bins[(j - 1)])) / 2) spec = [((x / E_integ) * luminosity) for x in spec] nb_scale = (1 - (((5.23 / 13.82) * (time - 40)) / 10)) self.dNLde_dict[time] = [(x * nb_scale) for x in spec] return None<|docstring|>More granular nu_e data for the neutronization burst ("nb", 40-50ms). Note: the nb file comes from a slightly different simulation, therefore we have to deal with a time offset and a scaling factor.<|endoftext|>
48b2c4cb86b77d1825c3307cf6ff45474a87514ce89f6393c6896ebf7c6e4723
def _calculate_dNLde(self): 'Calculate number luminosity spectrum for each time bin.' for (i, time) in enumerate(self.times_el): E_integ = 0 spec = [] egroup = self.egroup_dict[time] for (j, n) in enumerate(egroup): if ((j == 0) or (j == (len(egroup) - 1))): spec.append(zero) else: spec.append((n / (self.e_bins[(j + 1)] - self.e_bins[(j - 1)]))) E_integ += (((spec[(j - 1)] + spec[j]) * (self.e_bins[j] - self.e_bins[(j - 1)])) / 2) spec = [(x / E_integ) for x in spec] if (i == 0): num_lum = zero else: prev_time = self.times_el[(i - 1)] num_lum = ((self.N_dict[time] - self.N_dict[prev_time]) / (time - prev_time)) dNLde = [(num_lum * spectrum) for spectrum in spec] self.dNLde_dict[time] = dNLde return None
Calculate number luminosity spectrum for each time bin.
sntools/formats/totani.py
_calculate_dNLde
svalder/sntools
10
python
def _calculate_dNLde(self): for (i, time) in enumerate(self.times_el): E_integ = 0 spec = [] egroup = self.egroup_dict[time] for (j, n) in enumerate(egroup): if ((j == 0) or (j == (len(egroup) - 1))): spec.append(zero) else: spec.append((n / (self.e_bins[(j + 1)] - self.e_bins[(j - 1)]))) E_integ += (((spec[(j - 1)] + spec[j]) * (self.e_bins[j] - self.e_bins[(j - 1)])) / 2) spec = [(x / E_integ) for x in spec] if (i == 0): num_lum = zero else: prev_time = self.times_el[(i - 1)] num_lum = ((self.N_dict[time] - self.N_dict[prev_time]) / (time - prev_time)) dNLde = [(num_lum * spectrum) for spectrum in spec] self.dNLde_dict[time] = dNLde return None
def _calculate_dNLde(self): for (i, time) in enumerate(self.times_el): E_integ = 0 spec = [] egroup = self.egroup_dict[time] for (j, n) in enumerate(egroup): if ((j == 0) or (j == (len(egroup) - 1))): spec.append(zero) else: spec.append((n / (self.e_bins[(j + 1)] - self.e_bins[(j - 1)]))) E_integ += (((spec[(j - 1)] + spec[j]) * (self.e_bins[j] - self.e_bins[(j - 1)])) / 2) spec = [(x / E_integ) for x in spec] if (i == 0): num_lum = zero else: prev_time = self.times_el[(i - 1)] num_lum = ((self.N_dict[time] - self.N_dict[prev_time]) / (time - prev_time)) dNLde = [(num_lum * spectrum) for spectrum in spec] self.dNLde_dict[time] = dNLde return None<|docstring|>Calculate number luminosity spectrum for each time bin.<|endoftext|>
c2d8baf536cf3d8eec8ee8622556bcb0ecf3683bdcffb6abdf72825ec692653a
@staticmethod def get_diseases_for_gene_desc(gene_id): 'for a given NCBI Entrez Gene ID, returns a ``set`` of DOI disease identifiers for the gene\n\n :returns: a ``set`` containing ``str`` disease ontology identifiers\n ' handler = QueryBioLink.HANDLER_MAP['get_diseases_for_gene'].format(gene_id=gene_id) results = QueryBioLink.__access_api(handler) ret_data = dict() if (results is None): return ret_data ret_list = results['objects'] if (len(ret_list) > 200): print(((('Number of diseases found for gene ' + gene_id) + ' is: ') + str(len(ret_list))), file=sys.stderr) for disease_id in ret_list: if (('DOID:' in disease_id) or ('OMIM:' in disease_id)): ret_data[disease_id] = QueryBioLink.get_label_for_disease(disease_id) return ret_data
for a given NCBI Entrez Gene ID, returns a ``set`` of DOI disease identifiers for the gene :returns: a ``set`` containing ``str`` disease ontology identifiers
code/reasoningtool/kg-construction/QueryBioLink.py
get_diseases_for_gene_desc
rtx-travis-tester/RTX
31
python
@staticmethod def get_diseases_for_gene_desc(gene_id): 'for a given NCBI Entrez Gene ID, returns a ``set`` of DOI disease identifiers for the gene\n\n :returns: a ``set`` containing ``str`` disease ontology identifiers\n ' handler = QueryBioLink.HANDLER_MAP['get_diseases_for_gene'].format(gene_id=gene_id) results = QueryBioLink.__access_api(handler) ret_data = dict() if (results is None): return ret_data ret_list = results['objects'] if (len(ret_list) > 200): print(((('Number of diseases found for gene ' + gene_id) + ' is: ') + str(len(ret_list))), file=sys.stderr) for disease_id in ret_list: if (('DOID:' in disease_id) or ('OMIM:' in disease_id)): ret_data[disease_id] = QueryBioLink.get_label_for_disease(disease_id) return ret_data
@staticmethod def get_diseases_for_gene_desc(gene_id): 'for a given NCBI Entrez Gene ID, returns a ``set`` of DOI disease identifiers for the gene\n\n :returns: a ``set`` containing ``str`` disease ontology identifiers\n ' handler = QueryBioLink.HANDLER_MAP['get_diseases_for_gene'].format(gene_id=gene_id) results = QueryBioLink.__access_api(handler) ret_data = dict() if (results is None): return ret_data ret_list = results['objects'] if (len(ret_list) > 200): print(((('Number of diseases found for gene ' + gene_id) + ' is: ') + str(len(ret_list))), file=sys.stderr) for disease_id in ret_list: if (('DOID:' in disease_id) or ('OMIM:' in disease_id)): ret_data[disease_id] = QueryBioLink.get_label_for_disease(disease_id) return ret_data<|docstring|>for a given NCBI Entrez Gene ID, returns a ``set`` of DOI disease identifiers for the gene :returns: a ``set`` containing ``str`` disease ontology identifiers<|endoftext|>
45fbb7ac54796aa83a6e049cee57622b1a0816ac214e6ff643a2fb26a4d2c0c1
@staticmethod def get_anatomies_for_gene(gene_id): 'for a given NCBI Entrez Gene ID, returns a ``dict`` of Anatomy IDs and labels for the gene\n\n :returns: a ``dict`` of <anatomy_ID, label>\n ' handler = QueryBioLink.HANDLER_MAP['get_anatomies_for_gene'].format(gene_id=gene_id) results = QueryBioLink.__access_api(handler) ret_dict = dict() if (results is None): return ret_dict res_dict = results['associations'] ret_dict = dict(map((lambda r: (r['object']['id'], r['object']['label'])), res_dict)) if (len(ret_dict) > 200): print('Warning, got {} anatomies for gene {}'.format(len(ret_dict), gene_id), file=sys.stderr) return ret_dict
for a given NCBI Entrez Gene ID, returns a ``dict`` of Anatomy IDs and labels for the gene :returns: a ``dict`` of <anatomy_ID, label>
code/reasoningtool/kg-construction/QueryBioLink.py
get_anatomies_for_gene
rtx-travis-tester/RTX
31
python
@staticmethod def get_anatomies_for_gene(gene_id): 'for a given NCBI Entrez Gene ID, returns a ``dict`` of Anatomy IDs and labels for the gene\n\n :returns: a ``dict`` of <anatomy_ID, label>\n ' handler = QueryBioLink.HANDLER_MAP['get_anatomies_for_gene'].format(gene_id=gene_id) results = QueryBioLink.__access_api(handler) ret_dict = dict() if (results is None): return ret_dict res_dict = results['associations'] ret_dict = dict(map((lambda r: (r['object']['id'], r['object']['label'])), res_dict)) if (len(ret_dict) > 200): print('Warning, got {} anatomies for gene {}'.format(len(ret_dict), gene_id), file=sys.stderr) return ret_dict
@staticmethod def get_anatomies_for_gene(gene_id): 'for a given NCBI Entrez Gene ID, returns a ``dict`` of Anatomy IDs and labels for the gene\n\n :returns: a ``dict`` of <anatomy_ID, label>\n ' handler = QueryBioLink.HANDLER_MAP['get_anatomies_for_gene'].format(gene_id=gene_id) results = QueryBioLink.__access_api(handler) ret_dict = dict() if (results is None): return ret_dict res_dict = results['associations'] ret_dict = dict(map((lambda r: (r['object']['id'], r['object']['label'])), res_dict)) if (len(ret_dict) > 200): print('Warning, got {} anatomies for gene {}'.format(len(ret_dict), gene_id), file=sys.stderr) return ret_dict<|docstring|>for a given NCBI Entrez Gene ID, returns a ``dict`` of Anatomy IDs and labels for the gene :returns: a ``dict`` of <anatomy_ID, label><|endoftext|>
58aa0b2917265a605719f08f4d3a2d58c303ce38823247d8d5242cbd955e06a6
@staticmethod def get_genes_for_anatomy(anatomy_id): 'for a given Anatomy ID, returns a ``list`` of Gene ID for the anatomy\n\n :returns: a ``list`` of gene ID\n ' handler = QueryBioLink.HANDLER_MAP['get_genes_for_anatomy'].format(anatomy_id=anatomy_id) results = QueryBioLink.__access_api(handler) ret_list = [] if (results is None): return ret_list res_dict = results['associations'] ret_list = list(map((lambda r: r['subject']['id']), res_dict)) if (len(ret_list) > 200): print('Warning, got {} genes for anatomy {}'.format(len(ret_list), anatomy_id), file=sys.stderr) return ret_list
for a given Anatomy ID, returns a ``list`` of Gene ID for the anatomy :returns: a ``list`` of gene ID
code/reasoningtool/kg-construction/QueryBioLink.py
get_genes_for_anatomy
rtx-travis-tester/RTX
31
python
@staticmethod def get_genes_for_anatomy(anatomy_id): 'for a given Anatomy ID, returns a ``list`` of Gene ID for the anatomy\n\n :returns: a ``list`` of gene ID\n ' handler = QueryBioLink.HANDLER_MAP['get_genes_for_anatomy'].format(anatomy_id=anatomy_id) results = QueryBioLink.__access_api(handler) ret_list = [] if (results is None): return ret_list res_dict = results['associations'] ret_list = list(map((lambda r: r['subject']['id']), res_dict)) if (len(ret_list) > 200): print('Warning, got {} genes for anatomy {}'.format(len(ret_list), anatomy_id), file=sys.stderr) return ret_list
@staticmethod def get_genes_for_anatomy(anatomy_id): 'for a given Anatomy ID, returns a ``list`` of Gene ID for the anatomy\n\n :returns: a ``list`` of gene ID\n ' handler = QueryBioLink.HANDLER_MAP['get_genes_for_anatomy'].format(anatomy_id=anatomy_id) results = QueryBioLink.__access_api(handler) ret_list = [] if (results is None): return ret_list res_dict = results['associations'] ret_list = list(map((lambda r: r['subject']['id']), res_dict)) if (len(ret_list) > 200): print('Warning, got {} genes for anatomy {}'.format(len(ret_list), anatomy_id), file=sys.stderr) return ret_list<|docstring|>for a given Anatomy ID, returns a ``list`` of Gene ID for the anatomy :returns: a ``list`` of gene ID<|endoftext|>
6e164784aaa8eb69bb1ef59fde74802a711507c033c8f2da06e9c7b9974afac3
@staticmethod def get_anatomies_for_phenotype(phenotype_id): 'for a given phenotype ID, returns a ``dict`` of Anatomy IDs and labels for the phenotype\n\n :returns: a ``dict`` of <anatomy_ID, label>\n ' handler = QueryBioLink.HANDLER_MAP['get_anatomies_for_phenotype'].format(phenotype_id=phenotype_id) results = QueryBioLink.__access_api(handler) ret_dict = dict() if (results is None): return ret_dict ret_dict = dict(map((lambda r: (r['id'], r['label'])), results)) if (len(ret_dict) > 200): print('Warning, got {} anatomies for phenotype {}'.format(len(ret_dict), phenotype_id), file=sys.stderr) return ret_dict
for a given phenotype ID, returns a ``dict`` of Anatomy IDs and labels for the phenotype :returns: a ``dict`` of <anatomy_ID, label>
code/reasoningtool/kg-construction/QueryBioLink.py
get_anatomies_for_phenotype
rtx-travis-tester/RTX
31
python
@staticmethod def get_anatomies_for_phenotype(phenotype_id): 'for a given phenotype ID, returns a ``dict`` of Anatomy IDs and labels for the phenotype\n\n :returns: a ``dict`` of <anatomy_ID, label>\n ' handler = QueryBioLink.HANDLER_MAP['get_anatomies_for_phenotype'].format(phenotype_id=phenotype_id) results = QueryBioLink.__access_api(handler) ret_dict = dict() if (results is None): return ret_dict ret_dict = dict(map((lambda r: (r['id'], r['label'])), results)) if (len(ret_dict) > 200): print('Warning, got {} anatomies for phenotype {}'.format(len(ret_dict), phenotype_id), file=sys.stderr) return ret_dict
@staticmethod def get_anatomies_for_phenotype(phenotype_id): 'for a given phenotype ID, returns a ``dict`` of Anatomy IDs and labels for the phenotype\n\n :returns: a ``dict`` of <anatomy_ID, label>\n ' handler = QueryBioLink.HANDLER_MAP['get_anatomies_for_phenotype'].format(phenotype_id=phenotype_id) results = QueryBioLink.__access_api(handler) ret_dict = dict() if (results is None): return ret_dict ret_dict = dict(map((lambda r: (r['id'], r['label'])), results)) if (len(ret_dict) > 200): print('Warning, got {} anatomies for phenotype {}'.format(len(ret_dict), phenotype_id), file=sys.stderr) return ret_dict<|docstring|>for a given phenotype ID, returns a ``dict`` of Anatomy IDs and labels for the phenotype :returns: a ``dict`` of <anatomy_ID, label><|endoftext|>
cc9130d47069ef9d9d63cb647e58ebd09bbe2e402989ed6b95c3bccd7e30aa1b
@staticmethod def map_disease_to_phenotype(disease_id): '\n Mapping a disease to a list of phenotypes\n :param disease_id: The DOID / OMIM ID for a disease\n :return: A list of phenotypes HP IDs, or an empty array if no HP IDs are found\n ' hp_array = [] if ((not isinstance(disease_id, str)) or ((disease_id[:5] != 'OMIM:') and (disease_id[:5] != 'DOID:'))): return hp_array handler = QueryBioLink.HANDLER_MAP['map_disease_to_phenotype'].format(disease_id=disease_id) results = QueryBioLink.__access_api(handler) if (results is not None): if ('objects' in results.keys()): hp_array = results['objects'] return hp_array
Mapping a disease to a list of phenotypes :param disease_id: The DOID / OMIM ID for a disease :return: A list of phenotypes HP IDs, or an empty array if no HP IDs are found
code/reasoningtool/kg-construction/QueryBioLink.py
map_disease_to_phenotype
rtx-travis-tester/RTX
31
python
@staticmethod def map_disease_to_phenotype(disease_id): '\n Mapping a disease to a list of phenotypes\n :param disease_id: The DOID / OMIM ID for a disease\n :return: A list of phenotypes HP IDs, or an empty array if no HP IDs are found\n ' hp_array = [] if ((not isinstance(disease_id, str)) or ((disease_id[:5] != 'OMIM:') and (disease_id[:5] != 'DOID:'))): return hp_array handler = QueryBioLink.HANDLER_MAP['map_disease_to_phenotype'].format(disease_id=disease_id) results = QueryBioLink.__access_api(handler) if (results is not None): if ('objects' in results.keys()): hp_array = results['objects'] return hp_array
@staticmethod def map_disease_to_phenotype(disease_id): '\n Mapping a disease to a list of phenotypes\n :param disease_id: The DOID / OMIM ID for a disease\n :return: A list of phenotypes HP IDs, or an empty array if no HP IDs are found\n ' hp_array = [] if ((not isinstance(disease_id, str)) or ((disease_id[:5] != 'OMIM:') and (disease_id[:5] != 'DOID:'))): return hp_array handler = QueryBioLink.HANDLER_MAP['map_disease_to_phenotype'].format(disease_id=disease_id) results = QueryBioLink.__access_api(handler) if (results is not None): if ('objects' in results.keys()): hp_array = results['objects'] return hp_array<|docstring|>Mapping a disease to a list of phenotypes :param disease_id: The DOID / OMIM ID for a disease :return: A list of phenotypes HP IDs, or an empty array if no HP IDs are found<|endoftext|>
b94e9b4cfd19c7c0bdb5dee7d04b44d87ff982e7c00c8bb20090a79eea29abcb
def compute_homography(src, dst): 'computes the homography from src, to dst using inversion method.' if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = ((2 * npoints) + 1) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[(((i * 2) + 1), 3:6)] = (- wpi) A[(((i * 2) + 1), 6:9)] = ypi A[((i * 2), 0:3)] = (- wpi) A[((i * 2), 6:9)] = xpi A[(8, 8)] = 1 B = np.zeros((9, 1)) B[(8, 0)] = 1 h = (np.linalg.inv(A) @ B) print(np.linalg.inv(A).shape) H = h.reshape(3, 3) return H
computes the homography from src, to dst using inversion method.
compute_homography.py
compute_homography
adi2809/SimpleScanner
1
python
def compute_homography(src, dst): if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = ((2 * npoints) + 1) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[(((i * 2) + 1), 3:6)] = (- wpi) A[(((i * 2) + 1), 6:9)] = ypi A[((i * 2), 0:3)] = (- wpi) A[((i * 2), 6:9)] = xpi A[(8, 8)] = 1 B = np.zeros((9, 1)) B[(8, 0)] = 1 h = (np.linalg.inv(A) @ B) print(np.linalg.inv(A).shape) H = h.reshape(3, 3) return H
def compute_homography(src, dst): if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = ((2 * npoints) + 1) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[(((i * 2) + 1), 3:6)] = (- wpi) A[(((i * 2) + 1), 6:9)] = ypi A[((i * 2), 0:3)] = (- wpi) A[((i * 2), 6:9)] = xpi A[(8, 8)] = 1 B = np.zeros((9, 1)) B[(8, 0)] = 1 h = (np.linalg.inv(A) @ B) print(np.linalg.inv(A).shape) H = h.reshape(3, 3) return H<|docstring|>computes the homography from src, to dst using inversion method.<|endoftext|>
1676c3db720271b2ff0807150ea7e2b0d112396a4ada70d0f03b872a59f43c02
def find_homography(src, dst): 'computes the homography from src, to dst using singular value decomposition method.' if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = (3 * npoints) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[((i * 3), 3:6)] = (- wpi) A[((i * 3), 6:9)] = ypi A[(((i * 3) + 1), 0:3)] = wpi A[(((i * 3) + 1), 6:9)] = (- xpi) A[(((i * 3) + 2), 0:3)] = (- ypi) A[(((i * 3) + 2), 3:6)] = xpi (U, s, V) = np.linalg.svd(A) h = V[(- 1)] H = h.reshape(3, 3) return H
computes the homography from src, to dst using singular value decomposition method.
compute_homography.py
find_homography
adi2809/SimpleScanner
1
python
def find_homography(src, dst): if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = (3 * npoints) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[((i * 3), 3:6)] = (- wpi) A[((i * 3), 6:9)] = ypi A[(((i * 3) + 1), 0:3)] = wpi A[(((i * 3) + 1), 6:9)] = (- xpi) A[(((i * 3) + 2), 0:3)] = (- ypi) A[(((i * 3) + 2), 3:6)] = xpi (U, s, V) = np.linalg.svd(A) h = V[(- 1)] H = h.reshape(3, 3) return H
def find_homography(src, dst): if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = (3 * npoints) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[((i * 3), 3:6)] = (- wpi) A[((i * 3), 6:9)] = ypi A[(((i * 3) + 1), 0:3)] = wpi A[(((i * 3) + 1), 6:9)] = (- xpi) A[(((i * 3) + 2), 0:3)] = (- ypi) A[(((i * 3) + 2), 3:6)] = xpi (U, s, V) = np.linalg.svd(A) h = V[(- 1)] H = h.reshape(3, 3) return H<|docstring|>computes the homography from src, to dst using singular value decomposition method.<|endoftext|>
84b32cfb38ed9b4045850c4a145d7a9f32548fd4105340cf05fb46ec8955cab9
def find_homography_2(src, dst): 'computes the homography from src, to dst using singular value decomposition method.' if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = ((2 * npoints) + 1) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[(((i * 2) + 1), 3:6)] = (- wpi) A[(((i * 2) + 1), 6:9)] = ypi A[((i * 2), 0:3)] = (- wpi) A[((i * 2), 6:9)] = xpi (U, s, V) = np.linalg.svd(A) h = V[(- 1)] H = h.reshape(3, 3) return H
computes the homography from src, to dst using singular value decomposition method.
compute_homography.py
find_homography_2
adi2809/SimpleScanner
1
python
def find_homography_2(src, dst): if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = ((2 * npoints) + 1) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[(((i * 2) + 1), 3:6)] = (- wpi) A[(((i * 2) + 1), 6:9)] = ypi A[((i * 2), 0:3)] = (- wpi) A[((i * 2), 6:9)] = xpi (U, s, V) = np.linalg.svd(A) h = V[(- 1)] H = h.reshape(3, 3) return H
def find_homography_2(src, dst): if (src.shape[1] == 2): p1 = np.ones((len(src), 3), 'float64') p1[(:, :2)] = src elif (src.shape[1] == 3): p1 = src if (dst.shape[1] == 2): p2 = np.ones((len(dst), 3), 'float64') p2[(:, :2)] = dst elif (dst.shape[1] == 3): p2 = dst npoints = len(src) count = ((2 * npoints) + 1) A = np.zeros((count, 9), 'float32') for i in range(npoints): p1i = p1[i] (x2i, y2i, w2i) = p2[i] xpi = (x2i * p1i) ypi = (y2i * p1i) wpi = (w2i * p1i) A[(((i * 2) + 1), 3:6)] = (- wpi) A[(((i * 2) + 1), 6:9)] = ypi A[((i * 2), 0:3)] = (- wpi) A[((i * 2), 6:9)] = xpi (U, s, V) = np.linalg.svd(A) h = V[(- 1)] H = h.reshape(3, 3) return H<|docstring|>computes the homography from src, to dst using singular value decomposition method.<|endoftext|>
f3c8fc1a18f0f140ca221b9d5da908fa1307c2c23f6b0e7ffb8e36b9b8f06f1f
def string_list_validator(value: str) -> str: "\n Validate if value is a str\n\n Arguments:\n value {str} -- value to validate\n\n Raises:\n ValueError: value is not a type of str\n ValueError: Value can't be a empty string\n\n Returns:\n str -- unchanged input value\n " if (not isinstance(value, str)): raise ValueError('All values has to be an string! List[str]') if (value == ''): raise ValueError("Value can't be a empty string! List[str]") return value
Validate if value is a str Arguments: value {str} -- value to validate Raises: ValueError: value is not a type of str ValueError: Value can't be a empty string Returns: str -- unchanged input value
meetup_search/rest_api/argument_validator.py
string_list_validator
saxsys/flask-meetup-data-scraper
1
python
def string_list_validator(value: str) -> str: "\n Validate if value is a str\n\n Arguments:\n value {str} -- value to validate\n\n Raises:\n ValueError: value is not a type of str\n ValueError: Value can't be a empty string\n\n Returns:\n str -- unchanged input value\n " if (not isinstance(value, str)): raise ValueError('All values has to be an string! List[str]') if (value == ): raise ValueError("Value can't be a empty string! List[str]") return value
def string_list_validator(value: str) -> str: "\n Validate if value is a str\n\n Arguments:\n value {str} -- value to validate\n\n Raises:\n ValueError: value is not a type of str\n ValueError: Value can't be a empty string\n\n Returns:\n str -- unchanged input value\n " if (not isinstance(value, str)): raise ValueError('All values has to be an string! List[str]') if (value == ): raise ValueError("Value can't be a empty string! List[str]") return value<|docstring|>Validate if value is a str Arguments: value {str} -- value to validate Raises: ValueError: value is not a type of str ValueError: Value can't be a empty string Returns: str -- unchanged input value<|endoftext|>
7464ea7bb387d17ba8e853fb5b7a1fcb2bb4fd090a7a54642f202d3468a78c6f
def positive_int_validator(value: int) -> int: '\n Validate for positive int\n\n Arguments:\n value {int} -- int number\n\n Raises:\n ValueError: Value is an str that can not convert to an int\n ValueError: Value has to be an int\n ValueError: Value has to be equal or greater than 0\n\n Returns:\n int -- unchanged input value\n ' if isinstance(value, str): try: value = int(value) except ValueError: raise ValueError('Value has to be an int!') if (not isinstance(value, int)): raise ValueError('Value has to be an int!') if (value < 0): raise ValueError('Value has to be equal or greater than 0!') return value
Validate for positive int Arguments: value {int} -- int number Raises: ValueError: Value is an str that can not convert to an int ValueError: Value has to be an int ValueError: Value has to be equal or greater than 0 Returns: int -- unchanged input value
meetup_search/rest_api/argument_validator.py
positive_int_validator
saxsys/flask-meetup-data-scraper
1
python
def positive_int_validator(value: int) -> int: '\n Validate for positive int\n\n Arguments:\n value {int} -- int number\n\n Raises:\n ValueError: Value is an str that can not convert to an int\n ValueError: Value has to be an int\n ValueError: Value has to be equal or greater than 0\n\n Returns:\n int -- unchanged input value\n ' if isinstance(value, str): try: value = int(value) except ValueError: raise ValueError('Value has to be an int!') if (not isinstance(value, int)): raise ValueError('Value has to be an int!') if (value < 0): raise ValueError('Value has to be equal or greater than 0!') return value
def positive_int_validator(value: int) -> int: '\n Validate for positive int\n\n Arguments:\n value {int} -- int number\n\n Raises:\n ValueError: Value is an str that can not convert to an int\n ValueError: Value has to be an int\n ValueError: Value has to be equal or greater than 0\n\n Returns:\n int -- unchanged input value\n ' if isinstance(value, str): try: value = int(value) except ValueError: raise ValueError('Value has to be an int!') if (not isinstance(value, int)): raise ValueError('Value has to be an int!') if (value < 0): raise ValueError('Value has to be equal or greater than 0!') return value<|docstring|>Validate for positive int Arguments: value {int} -- int number Raises: ValueError: Value is an str that can not convert to an int ValueError: Value has to be an int ValueError: Value has to be equal or greater than 0 Returns: int -- unchanged input value<|endoftext|>
589c169bfa97d31674910afd7b711b98b8d96f307bd8bae6feffef697825c26d
def date_validator(value: str) -> str: '\n Validate if string is a valid date\n\n Arguments:\n value {str} -- value to validate\n\n Returns:\n str -- validate date as string\n ' try: return str(datetime.fromisoformat(value).date()) except TypeError: raise ValueError("Can't convert value to date!")
Validate if string is a valid date Arguments: value {str} -- value to validate Returns: str -- validate date as string
meetup_search/rest_api/argument_validator.py
date_validator
saxsys/flask-meetup-data-scraper
1
python
def date_validator(value: str) -> str: '\n Validate if string is a valid date\n\n Arguments:\n value {str} -- value to validate\n\n Returns:\n str -- validate date as string\n ' try: return str(datetime.fromisoformat(value).date()) except TypeError: raise ValueError("Can't convert value to date!")
def date_validator(value: str) -> str: '\n Validate if string is a valid date\n\n Arguments:\n value {str} -- value to validate\n\n Returns:\n str -- validate date as string\n ' try: return str(datetime.fromisoformat(value).date()) except TypeError: raise ValueError("Can't convert value to date!")<|docstring|>Validate if string is a valid date Arguments: value {str} -- value to validate Returns: str -- validate date as string<|endoftext|>
6ca657b3043c5307828cd0dda315de85aa3c84dfcd46a78030a1198cca19da89
def __init__(self, batch_queue, min_records_in_aggregated_batches): '\n :param batch_queue: instance of :class:`BatchQueue` or :class:`PartitionedBatchQueue` to be wrapped\n ' self._q = batch_queue self._empty = False self._min_records_in_aggregated_batches = min_records_in_aggregated_batches
:param batch_queue: instance of :class:`BatchQueue` or :class:`PartitionedBatchQueue` to be wrapped
shellstreaming/core/remote_queue.py
__init__
laysakura/shellstreaming
1
python
def __init__(self, batch_queue, min_records_in_aggregated_batches): '\n \n ' self._q = batch_queue self._empty = False self._min_records_in_aggregated_batches = min_records_in_aggregated_batches
def __init__(self, batch_queue, min_records_in_aggregated_batches): '\n \n ' self._q = batch_queue self._empty = False self._min_records_in_aggregated_batches = min_records_in_aggregated_batches<|docstring|>:param batch_queue: instance of :class:`BatchQueue` or :class:`PartitionedBatchQueue` to be wrapped<|endoftext|>
800b9d67c131e5e07d11c8ff4ccc12ec1b96eee9b420a234359ddf2646a23e01
def findChildEndingWith(el, tagEnd): 'Finds first child of an XML element with tag ending in tagEnd (case insensitive).' tagEnd = tagEnd.lower() for child in el: if child.tag.lower().endswith(tagEnd): return child return None
Finds first child of an XML element with tag ending in tagEnd (case insensitive).
secscan/scrape13F.py
findChildEndingWith
ikedim01/secscan
0
python
def findChildEndingWith(el, tagEnd): tagEnd = tagEnd.lower() for child in el: if child.tag.lower().endswith(tagEnd): return child return None
def findChildEndingWith(el, tagEnd): tagEnd = tagEnd.lower() for child in el: if child.tag.lower().endswith(tagEnd): return child return None<|docstring|>Finds first child of an XML element with tag ending in tagEnd (case insensitive).<|endoftext|>
8ee08baf12a78f0b85bea370a07df78123ec2ee8f22d2fa126920d6420bf643a
def findChildSeries(el, tagEnds): 'Finds a nested series of children by tag using findChildEndingWith' for tagEnd in tagEnds: el = findChildEndingWith(el, tagEnd) return el
Finds a nested series of children by tag using findChildEndingWith
secscan/scrape13F.py
findChildSeries
ikedim01/secscan
0
python
def findChildSeries(el, tagEnds): for tagEnd in tagEnds: el = findChildEndingWith(el, tagEnd) return el
def findChildSeries(el, tagEnds): for tagEnd in tagEnds: el = findChildEndingWith(el, tagEnd) return el<|docstring|>Finds a nested series of children by tag using findChildEndingWith<|endoftext|>
9f0ca411945b0292ff991aeebb6b0cf8c4ea422f53692cb44887fc9cb7514d8c
def getRowInfo(row): "\n Returns information for a row in a 13F table in the form:\n (cusip, name, value, title, count, putCall)\n where the field values are as given in the table,\n except putCall is 'CALL', 'PUT', or ''.\n " cusip = findChildEndingWith(row, 'cusip').text.upper().strip() name = findChildEndingWith(row, 'issuer').text.strip() value = findChildEndingWith(row, 'value').text.strip() title = findChildEndingWith(row, 'titleOfClass').text.upper().strip() shrsOrPrnEl = findChildEndingWith(row, 'shrsOrPrnAmt') count = findChildEndingWith(shrsOrPrnEl, 'sshPrnamt').text.strip() putCallEl = findChildEndingWith(row, 'putCall') if (putCallEl is None): putCallEl = findChildEndingWith(shrsOrPrnEl, 'putCall') if (putCallEl is not None): putCall = putCallEl.text.upper().strip() elif (callOptPat.search(name) or title.startswith('CALL') or (title == 'CAL')): putCall = 'CALL' elif (putOptPat.search(name) or title.startswith('PUT')): putCall = 'PUT' else: putCall = '' return (cusip, name, value, title, count, putCall)
Returns information for a row in a 13F table in the form: (cusip, name, value, title, count, putCall) where the field values are as given in the table, except putCall is 'CALL', 'PUT', or ''.
secscan/scrape13F.py
getRowInfo
ikedim01/secscan
0
python
def getRowInfo(row): "\n Returns information for a row in a 13F table in the form:\n (cusip, name, value, title, count, putCall)\n where the field values are as given in the table,\n except putCall is 'CALL', 'PUT', or .\n " cusip = findChildEndingWith(row, 'cusip').text.upper().strip() name = findChildEndingWith(row, 'issuer').text.strip() value = findChildEndingWith(row, 'value').text.strip() title = findChildEndingWith(row, 'titleOfClass').text.upper().strip() shrsOrPrnEl = findChildEndingWith(row, 'shrsOrPrnAmt') count = findChildEndingWith(shrsOrPrnEl, 'sshPrnamt').text.strip() putCallEl = findChildEndingWith(row, 'putCall') if (putCallEl is None): putCallEl = findChildEndingWith(shrsOrPrnEl, 'putCall') if (putCallEl is not None): putCall = putCallEl.text.upper().strip() elif (callOptPat.search(name) or title.startswith('CALL') or (title == 'CAL')): putCall = 'CALL' elif (putOptPat.search(name) or title.startswith('PUT')): putCall = 'PUT' else: putCall = return (cusip, name, value, title, count, putCall)
def getRowInfo(row): "\n Returns information for a row in a 13F table in the form:\n (cusip, name, value, title, count, putCall)\n where the field values are as given in the table,\n except putCall is 'CALL', 'PUT', or .\n " cusip = findChildEndingWith(row, 'cusip').text.upper().strip() name = findChildEndingWith(row, 'issuer').text.strip() value = findChildEndingWith(row, 'value').text.strip() title = findChildEndingWith(row, 'titleOfClass').text.upper().strip() shrsOrPrnEl = findChildEndingWith(row, 'shrsOrPrnAmt') count = findChildEndingWith(shrsOrPrnEl, 'sshPrnamt').text.strip() putCallEl = findChildEndingWith(row, 'putCall') if (putCallEl is None): putCallEl = findChildEndingWith(shrsOrPrnEl, 'putCall') if (putCallEl is not None): putCall = putCallEl.text.upper().strip() elif (callOptPat.search(name) or title.startswith('CALL') or (title == 'CAL')): putCall = 'CALL' elif (putOptPat.search(name) or title.startswith('PUT')): putCall = 'PUT' else: putCall = return (cusip, name, value, title, count, putCall)<|docstring|>Returns information for a row in a 13F table in the form: (cusip, name, value, title, count, putCall) where the field values are as given in the table, except putCall is 'CALL', 'PUT', or ''.<|endoftext|>
77640d80ac88d73e35a8a3212324bd08dd4d59e5eed3e81ebe3b2c2e17fc192a
def parse13FHoldings(accNo, formType=None): "\n Parses a 13F filing, returning the result in the form:\n {\n 'period': 'YYYY-MM-DD',\n 'acceptDate': 'YYYY-MM-DD',\n 'acceptTime': 'HH:MM:SS',\n 'cik' : 'DDDDDDDDDD',\n 'holdings': [(cusip, name, value, title, count, putCall), ... ]\n }\n where the field values are as given in the table,\n except putCall is 'CALL', 'PUT', or ''.\n " info = basicInfo.getSecFormInfo(accNo, formType) xmlUrls = [l[(- 1)] for l in info['links'] if l[0].lower().endswith('xml')] if (len(xmlUrls) == 1): xmlSummTab = utils.downloadSecUrl(xmlUrls[0], toFormat='xml') tot = int(findChildSeries(xmlSummTab, ['formdata', 'summarypage', 'tableentrytotal']).text.strip()) if (tot == 0): print('*** zero total, table not present') else: print('*** nonzero total, but table not present') holdings = [] else: xmlTab = utils.downloadSecUrl(xmlUrls[(- 1)], toFormat='xml') tabRows = [tabRow for tabRow in xmlTab if tabRow.tag.lower().endswith('infotable')] if (len(xmlTab) != len(tabRows)): print('*** #rows mismatch', len(xmlTab), 'all children', len(tabRows), 'table rows') if (len(tabRows) == 0): print('*** no holdings in table') holdings = [getRowInfo(tabRow) for tabRow in tabRows] if (len(info['ciks']) != 1): print('*** unexpected number of CIKs!=1', info['ciks']) return {'period': info['period'], 'acceptDate': info['acceptDate'], 'acceptTime': info['acceptTime'], 'cik': info['ciks'][0], 'holdings': holdings}
Parses a 13F filing, returning the result in the form: { 'period': 'YYYY-MM-DD', 'acceptDate': 'YYYY-MM-DD', 'acceptTime': 'HH:MM:SS', 'cik' : 'DDDDDDDDDD', 'holdings': [(cusip, name, value, title, count, putCall), ... ] } where the field values are as given in the table, except putCall is 'CALL', 'PUT', or ''.
secscan/scrape13F.py
parse13FHoldings
ikedim01/secscan
0
python
def parse13FHoldings(accNo, formType=None): "\n Parses a 13F filing, returning the result in the form:\n {\n 'period': 'YYYY-MM-DD',\n 'acceptDate': 'YYYY-MM-DD',\n 'acceptTime': 'HH:MM:SS',\n 'cik' : 'DDDDDDDDDD',\n 'holdings': [(cusip, name, value, title, count, putCall), ... ]\n }\n where the field values are as given in the table,\n except putCall is 'CALL', 'PUT', or .\n " info = basicInfo.getSecFormInfo(accNo, formType) xmlUrls = [l[(- 1)] for l in info['links'] if l[0].lower().endswith('xml')] if (len(xmlUrls) == 1): xmlSummTab = utils.downloadSecUrl(xmlUrls[0], toFormat='xml') tot = int(findChildSeries(xmlSummTab, ['formdata', 'summarypage', 'tableentrytotal']).text.strip()) if (tot == 0): print('*** zero total, table not present') else: print('*** nonzero total, but table not present') holdings = [] else: xmlTab = utils.downloadSecUrl(xmlUrls[(- 1)], toFormat='xml') tabRows = [tabRow for tabRow in xmlTab if tabRow.tag.lower().endswith('infotable')] if (len(xmlTab) != len(tabRows)): print('*** #rows mismatch', len(xmlTab), 'all children', len(tabRows), 'table rows') if (len(tabRows) == 0): print('*** no holdings in table') holdings = [getRowInfo(tabRow) for tabRow in tabRows] if (len(info['ciks']) != 1): print('*** unexpected number of CIKs!=1', info['ciks']) return {'period': info['period'], 'acceptDate': info['acceptDate'], 'acceptTime': info['acceptTime'], 'cik': info['ciks'][0], 'holdings': holdings}
def parse13FHoldings(accNo, formType=None): "\n Parses a 13F filing, returning the result in the form:\n {\n 'period': 'YYYY-MM-DD',\n 'acceptDate': 'YYYY-MM-DD',\n 'acceptTime': 'HH:MM:SS',\n 'cik' : 'DDDDDDDDDD',\n 'holdings': [(cusip, name, value, title, count, putCall), ... ]\n }\n where the field values are as given in the table,\n except putCall is 'CALL', 'PUT', or .\n " info = basicInfo.getSecFormInfo(accNo, formType) xmlUrls = [l[(- 1)] for l in info['links'] if l[0].lower().endswith('xml')] if (len(xmlUrls) == 1): xmlSummTab = utils.downloadSecUrl(xmlUrls[0], toFormat='xml') tot = int(findChildSeries(xmlSummTab, ['formdata', 'summarypage', 'tableentrytotal']).text.strip()) if (tot == 0): print('*** zero total, table not present') else: print('*** nonzero total, but table not present') holdings = [] else: xmlTab = utils.downloadSecUrl(xmlUrls[(- 1)], toFormat='xml') tabRows = [tabRow for tabRow in xmlTab if tabRow.tag.lower().endswith('infotable')] if (len(xmlTab) != len(tabRows)): print('*** #rows mismatch', len(xmlTab), 'all children', len(tabRows), 'table rows') if (len(tabRows) == 0): print('*** no holdings in table') holdings = [getRowInfo(tabRow) for tabRow in tabRows] if (len(info['ciks']) != 1): print('*** unexpected number of CIKs!=1', info['ciks']) return {'period': info['period'], 'acceptDate': info['acceptDate'], 'acceptTime': info['acceptTime'], 'cik': info['ciks'][0], 'holdings': holdings}<|docstring|>Parses a 13F filing, returning the result in the form: { 'period': 'YYYY-MM-DD', 'acceptDate': 'YYYY-MM-DD', 'acceptTime': 'HH:MM:SS', 'cik' : 'DDDDDDDDDD', 'holdings': [(cusip, name, value, title, count, putCall), ... ] } where the field values are as given in the table, except putCall is 'CALL', 'PUT', or ''.<|endoftext|>
fe2fcdfd2d16a3cfd34557480f332b4e8749b345e65063a4d76a96b79f5ffc99
def condenseHoldings(holdings, minFrac=0.0, maxFrac=1.0, pctFormat=False, includeName=False, cusipNames={}, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=None, minAUM=None, allCusipCounter=None, all13FHoldingsMap=None, forCik=None): '\n Converts a list of of stock and option holdings as parsed from the 13F:\n [(cusip, name, value, title, count, putCall), ... ]\n that may have multiple entries per stock into a condensed list that omits\n call/put options and only has one combined entry per stock:\n [(cusip, val, frac) ... ]\n sorted in descending order by value, and restricted to stocks with fraction\n of total portfolio in [minFrac..maxFrac]\n\n If pctFormat is True, frac is returned as a string in the format N.NN%\n If includeName is True, the cusip name is also returned:\n [(cusip, name, val, frac) ... ]\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, returns None\n for lists with too few stocks, too many stocks, too small a fraction in the\n top 10 stocks, or too small a total value.\n\n If supplied, allCusipCounter should be a Counter, and it will be updated to count\n all investors that have any position in each stock, without regard to the min/max\n options supplied to restrict the holdings list.\n\n If supplied, all13FHoldingsMap should be a dict, and a full sorted holdings list:\n [(cusip, val, frac) ... ]\n will be saved in all13FHoldingsMap[forCik], without regard to the min/max\n options supplied to restrict the holdings list.\n ' if includeName: cusipToName = dict(((cusip, name) for (cusip, name, value, shType, nShares, putCall) in holdings)) holdings = sorted(((cusip, float(value)) for (cusip, name, value, shType, nShares, putCall) in holdings if (putCall == ''))) holdings = [(cusip, sum((val for (_, val) in it))) for (cusip, it) in itertools.groupby(holdings, key=(lambda x: x[0]))] holdings.sort(key=(lambda x: x[1]), reverse=True) totAum = sum((val for (_, val) in holdings)) holdings = [(cusip, val, ((val / totAum) if (totAum > 0.0) else 0.0)) for (cusip, val) in holdings] if (all13FHoldingsMap is not None): all13FHoldingsMap[forCik] = holdings if (allCusipCounter is not None): allCusipCounter.update((cusip for (cusip, _, _) in holdings)) if (((minStocksPerInv is not None) and (minStocksPerInv > len(holdings))) or ((maxStocksPerInv is not None) and (maxStocksPerInv < len(holdings))) or ((minAUM is not None) and (minAUM > (totAum * 1000.0))) or ((minTop10Frac is not None) and (minTop10Frac > sum((frac for (_, _, frac) in holdings[:10]))))): return None res = [] for (cusip, val, frac) in holdings: if (frac > maxFrac): continue if (minFrac > frac): break fracOut = (f'{frac:.2%}' if pctFormat else frac) if includeName: res.append((cusip, cusipNames.get(cusip, cusipToName[cusip]), val, fracOut)) else: res.append((cusip, val, fracOut)) return (res if (len(res) > 0) else None)
Converts a list of of stock and option holdings as parsed from the 13F: [(cusip, name, value, title, count, putCall), ... ] that may have multiple entries per stock into a condensed list that omits call/put options and only has one combined entry per stock: [(cusip, val, frac) ... ] sorted in descending order by value, and restricted to stocks with fraction of total portfolio in [minFrac..maxFrac] If pctFormat is True, frac is returned as a string in the format N.NN% If includeName is True, the cusip name is also returned: [(cusip, name, val, frac) ... ] If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, returns None for lists with too few stocks, too many stocks, too small a fraction in the top 10 stocks, or too small a total value. If supplied, allCusipCounter should be a Counter, and it will be updated to count all investors that have any position in each stock, without regard to the min/max options supplied to restrict the holdings list. If supplied, all13FHoldingsMap should be a dict, and a full sorted holdings list: [(cusip, val, frac) ... ] will be saved in all13FHoldingsMap[forCik], without regard to the min/max options supplied to restrict the holdings list.
secscan/scrape13F.py
condenseHoldings
ikedim01/secscan
0
python
def condenseHoldings(holdings, minFrac=0.0, maxFrac=1.0, pctFormat=False, includeName=False, cusipNames={}, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=None, minAUM=None, allCusipCounter=None, all13FHoldingsMap=None, forCik=None): '\n Converts a list of of stock and option holdings as parsed from the 13F:\n [(cusip, name, value, title, count, putCall), ... ]\n that may have multiple entries per stock into a condensed list that omits\n call/put options and only has one combined entry per stock:\n [(cusip, val, frac) ... ]\n sorted in descending order by value, and restricted to stocks with fraction\n of total portfolio in [minFrac..maxFrac]\n\n If pctFormat is True, frac is returned as a string in the format N.NN%\n If includeName is True, the cusip name is also returned:\n [(cusip, name, val, frac) ... ]\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, returns None\n for lists with too few stocks, too many stocks, too small a fraction in the\n top 10 stocks, or too small a total value.\n\n If supplied, allCusipCounter should be a Counter, and it will be updated to count\n all investors that have any position in each stock, without regard to the min/max\n options supplied to restrict the holdings list.\n\n If supplied, all13FHoldingsMap should be a dict, and a full sorted holdings list:\n [(cusip, val, frac) ... ]\n will be saved in all13FHoldingsMap[forCik], without regard to the min/max\n options supplied to restrict the holdings list.\n ' if includeName: cusipToName = dict(((cusip, name) for (cusip, name, value, shType, nShares, putCall) in holdings)) holdings = sorted(((cusip, float(value)) for (cusip, name, value, shType, nShares, putCall) in holdings if (putCall == ))) holdings = [(cusip, sum((val for (_, val) in it))) for (cusip, it) in itertools.groupby(holdings, key=(lambda x: x[0]))] holdings.sort(key=(lambda x: x[1]), reverse=True) totAum = sum((val for (_, val) in holdings)) holdings = [(cusip, val, ((val / totAum) if (totAum > 0.0) else 0.0)) for (cusip, val) in holdings] if (all13FHoldingsMap is not None): all13FHoldingsMap[forCik] = holdings if (allCusipCounter is not None): allCusipCounter.update((cusip for (cusip, _, _) in holdings)) if (((minStocksPerInv is not None) and (minStocksPerInv > len(holdings))) or ((maxStocksPerInv is not None) and (maxStocksPerInv < len(holdings))) or ((minAUM is not None) and (minAUM > (totAum * 1000.0))) or ((minTop10Frac is not None) and (minTop10Frac > sum((frac for (_, _, frac) in holdings[:10]))))): return None res = [] for (cusip, val, frac) in holdings: if (frac > maxFrac): continue if (minFrac > frac): break fracOut = (f'{frac:.2%}' if pctFormat else frac) if includeName: res.append((cusip, cusipNames.get(cusip, cusipToName[cusip]), val, fracOut)) else: res.append((cusip, val, fracOut)) return (res if (len(res) > 0) else None)
def condenseHoldings(holdings, minFrac=0.0, maxFrac=1.0, pctFormat=False, includeName=False, cusipNames={}, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=None, minAUM=None, allCusipCounter=None, all13FHoldingsMap=None, forCik=None): '\n Converts a list of of stock and option holdings as parsed from the 13F:\n [(cusip, name, value, title, count, putCall), ... ]\n that may have multiple entries per stock into a condensed list that omits\n call/put options and only has one combined entry per stock:\n [(cusip, val, frac) ... ]\n sorted in descending order by value, and restricted to stocks with fraction\n of total portfolio in [minFrac..maxFrac]\n\n If pctFormat is True, frac is returned as a string in the format N.NN%\n If includeName is True, the cusip name is also returned:\n [(cusip, name, val, frac) ... ]\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, returns None\n for lists with too few stocks, too many stocks, too small a fraction in the\n top 10 stocks, or too small a total value.\n\n If supplied, allCusipCounter should be a Counter, and it will be updated to count\n all investors that have any position in each stock, without regard to the min/max\n options supplied to restrict the holdings list.\n\n If supplied, all13FHoldingsMap should be a dict, and a full sorted holdings list:\n [(cusip, val, frac) ... ]\n will be saved in all13FHoldingsMap[forCik], without regard to the min/max\n options supplied to restrict the holdings list.\n ' if includeName: cusipToName = dict(((cusip, name) for (cusip, name, value, shType, nShares, putCall) in holdings)) holdings = sorted(((cusip, float(value)) for (cusip, name, value, shType, nShares, putCall) in holdings if (putCall == ))) holdings = [(cusip, sum((val for (_, val) in it))) for (cusip, it) in itertools.groupby(holdings, key=(lambda x: x[0]))] holdings.sort(key=(lambda x: x[1]), reverse=True) totAum = sum((val for (_, val) in holdings)) holdings = [(cusip, val, ((val / totAum) if (totAum > 0.0) else 0.0)) for (cusip, val) in holdings] if (all13FHoldingsMap is not None): all13FHoldingsMap[forCik] = holdings if (allCusipCounter is not None): allCusipCounter.update((cusip for (cusip, _, _) in holdings)) if (((minStocksPerInv is not None) and (minStocksPerInv > len(holdings))) or ((maxStocksPerInv is not None) and (maxStocksPerInv < len(holdings))) or ((minAUM is not None) and (minAUM > (totAum * 1000.0))) or ((minTop10Frac is not None) and (minTop10Frac > sum((frac for (_, _, frac) in holdings[:10]))))): return None res = [] for (cusip, val, frac) in holdings: if (frac > maxFrac): continue if (minFrac > frac): break fracOut = (f'{frac:.2%}' if pctFormat else frac) if includeName: res.append((cusip, cusipNames.get(cusip, cusipToName[cusip]), val, fracOut)) else: res.append((cusip, val, fracOut)) return (res if (len(res) > 0) else None)<|docstring|>Converts a list of of stock and option holdings as parsed from the 13F: [(cusip, name, value, title, count, putCall), ... ] that may have multiple entries per stock into a condensed list that omits call/put options and only has one combined entry per stock: [(cusip, val, frac) ... ] sorted in descending order by value, and restricted to stocks with fraction of total portfolio in [minFrac..maxFrac] If pctFormat is True, frac is returned as a string in the format N.NN% If includeName is True, the cusip name is also returned: [(cusip, name, val, frac) ... ] If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, returns None for lists with too few stocks, too many stocks, too small a fraction in the top 10 stocks, or too small a total value. If supplied, allCusipCounter should be a Counter, and it will be updated to count all investors that have any position in each stock, without regard to the min/max options supplied to restrict the holdings list. If supplied, all13FHoldingsMap should be a dict, and a full sorted holdings list: [(cusip, val, frac) ... ] will be saved in all13FHoldingsMap[forCik], without regard to the min/max options supplied to restrict the holdings list.<|endoftext|>
2fb6eb58f8f3c3fe7fb02f4cdee2246c670d2b5e3ba42faa0c025c1ac4c0f971
def get13FAmendmentType(accNo, formType=None): "\n Gets the amendment type for a 13F-HR/A filing - may be RESTATEMENT or NEW HOLDINGS.\n This turned out to be unreliable (often missing or wrong), so I don't use it to get\n the combined holdings for an investor. Instead I just look at the number of holdings\n in an amendment compared to the previous filing, and treat it as a restatement\n if the new number of holdings is more than half the old number.\n " info = basicInfo.getSecFormInfo(accNo, formType) xmlUrls = [l[(- 1)] for l in info['links'] if l[0].lower().endswith('xml')] xmlSummTab = utils.downloadSecUrl(xmlUrls[0], toFormat='xml') coverPage = findChildSeries(xmlSummTab, ['formdata', 'coverpage']) isAmendment = findChildEndingWith(coverPage, 'isamendment') if ((isAmendment is None) or (isAmendment.text.strip().lower() not in ['true', 'yes'])): return None return findChildSeries(coverPage, ['amendmentinfo', 'amendmenttype']).text.strip()
Gets the amendment type for a 13F-HR/A filing - may be RESTATEMENT or NEW HOLDINGS. This turned out to be unreliable (often missing or wrong), so I don't use it to get the combined holdings for an investor. Instead I just look at the number of holdings in an amendment compared to the previous filing, and treat it as a restatement if the new number of holdings is more than half the old number.
secscan/scrape13F.py
get13FAmendmentType
ikedim01/secscan
0
python
def get13FAmendmentType(accNo, formType=None): "\n Gets the amendment type for a 13F-HR/A filing - may be RESTATEMENT or NEW HOLDINGS.\n This turned out to be unreliable (often missing or wrong), so I don't use it to get\n the combined holdings for an investor. Instead I just look at the number of holdings\n in an amendment compared to the previous filing, and treat it as a restatement\n if the new number of holdings is more than half the old number.\n " info = basicInfo.getSecFormInfo(accNo, formType) xmlUrls = [l[(- 1)] for l in info['links'] if l[0].lower().endswith('xml')] xmlSummTab = utils.downloadSecUrl(xmlUrls[0], toFormat='xml') coverPage = findChildSeries(xmlSummTab, ['formdata', 'coverpage']) isAmendment = findChildEndingWith(coverPage, 'isamendment') if ((isAmendment is None) or (isAmendment.text.strip().lower() not in ['true', 'yes'])): return None return findChildSeries(coverPage, ['amendmentinfo', 'amendmenttype']).text.strip()
def get13FAmendmentType(accNo, formType=None): "\n Gets the amendment type for a 13F-HR/A filing - may be RESTATEMENT or NEW HOLDINGS.\n This turned out to be unreliable (often missing or wrong), so I don't use it to get\n the combined holdings for an investor. Instead I just look at the number of holdings\n in an amendment compared to the previous filing, and treat it as a restatement\n if the new number of holdings is more than half the old number.\n " info = basicInfo.getSecFormInfo(accNo, formType) xmlUrls = [l[(- 1)] for l in info['links'] if l[0].lower().endswith('xml')] xmlSummTab = utils.downloadSecUrl(xmlUrls[0], toFormat='xml') coverPage = findChildSeries(xmlSummTab, ['formdata', 'coverpage']) isAmendment = findChildEndingWith(coverPage, 'isamendment') if ((isAmendment is None) or (isAmendment.text.strip().lower() not in ['true', 'yes'])): return None return findChildSeries(coverPage, ['amendmentinfo', 'amendmenttype']).text.strip()<|docstring|>Gets the amendment type for a 13F-HR/A filing - may be RESTATEMENT or NEW HOLDINGS. This turned out to be unreliable (often missing or wrong), so I don't use it to get the combined holdings for an investor. Instead I just look at the number of holdings in an amendment compared to the previous filing, and treat it as a restatement if the new number of holdings is more than half the old number.<|endoftext|>
03b9025a87833302dd97646589ddc4a3567271dcfdf19d01f38e1868af588a54
def indexMap(lis): 'Converts a list to a dict mapping item -> index in the list.' return dict(((el, i) for (i, el) in enumerate(lis)))
Converts a list to a dict mapping item -> index in the list.
secscan/scrape13F.py
indexMap
ikedim01/secscan
0
python
def indexMap(lis): return dict(((el, i) for (i, el) in enumerate(lis)))
def indexMap(lis): return dict(((el, i) for (i, el) in enumerate(lis)))<|docstring|>Converts a list to a dict mapping item -> index in the list.<|endoftext|>
039b00b1e49a3be6022cb36161880fdc80303ff606509ff8fa5142475c39f926
def getHoldingsMap(scraped13F, period, minFrac=0.0, maxFrac=1.0, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=None, minAUM=None, allCusipCounter=None, all13FHoldingsMap=None): '\n Consolidate holdings for each CIK based on all filings for a given period into\n a combined map of investor holdings.\n\n Returns a dict: cik -> {cusip -> pct}\n\n Restricts to stocks only (no call/put options).\n\n If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of\n total portfolio >=minFrac and/or <=maxFrac.\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits\n investors with too few stocks, too many stocks, too small a fraction in the\n top 10 stocks, or too small a total stock value.\n\n If supplied, allCusipCounter should be a Counter, and it will be updated to count\n all investors that have any position in each stock, without regard to the min/max\n options supplied to restrict the returned holdings map.\n\n If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted\n holdings list for each CIK:\n all13FHoldingsMap[cik] = [(cusip, val, frac) ... ]\n without regard to the min/max options supplied to restrict the returned holdings map.\n ' for (v, msg) in [(minFrac, 'min stock fraction of portfolio'), (maxFrac, 'max stock fraction of portfolio'), (minStocksPerInv, 'min stocks per investor'), (maxStocksPerInv, 'max stocks per investor'), (minTop10Frac, 'min fraction of portfolio in top 10 positions'), (minAUM, 'min AUM (total portfolio value)')]: if (v is not None): print(msg, v) cikTo13Fs = collections.defaultdict(list) count = 0 for (dStr, accNoToInfo) in scraped13F.infoMap.items(): for (accNo, info) in accNoToInfo.items(): if (info == 'ERROR'): print('ERR', accNo) elif (info['period'] == period): cikTo13Fs[info['cik'].lstrip('0')].append((dStr, accNo, info['holdings'])) count += 1 print('period', period, '- total of', len(cikTo13Fs), 'ciks,', count, '13F filings') cikToPosList = {} for (cik, cik13FList) in cikTo13Fs.items(): cik13FList.sort() i = 0 j = 1 while (j < len(cik13FList)): if (len(cik13FList[j][2]) > (len(cik13FList[i][2]) // 2)): i = j j += 1 if (j != 1): print('CIK', cik, i, '-', j, [(dStr, accNo, len(holdings)) for (dStr, accNo, holdings) in cik13FList]) combHoldings = cik13FList[i][2] while ((i + 1) < j): i += 1 combHoldings = (combHoldings + cik13FList[i][2]) posList = condenseHoldings(combHoldings, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=minStocksPerInv, maxStocksPerInv=maxStocksPerInv, minTop10Frac=minTop10Frac, minAUM=minAUM, allCusipCounter=allCusipCounter, all13FHoldingsMap=all13FHoldingsMap, forCik=cik) if (posList is not None): cikToPosList[cik] = posList res = {} for (cik, posList) in cikToPosList.items(): res[cik] = dict(((cusip, frac) for (cusip, _, frac) in posList)) return res
Consolidate holdings for each CIK based on all filings for a given period into a combined map of investor holdings. Returns a dict: cik -> {cusip -> pct} Restricts to stocks only (no call/put options). If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of total portfolio >=minFrac and/or <=maxFrac. If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits investors with too few stocks, too many stocks, too small a fraction in the top 10 stocks, or too small a total stock value. If supplied, allCusipCounter should be a Counter, and it will be updated to count all investors that have any position in each stock, without regard to the min/max options supplied to restrict the returned holdings map. If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted holdings list for each CIK: all13FHoldingsMap[cik] = [(cusip, val, frac) ... ] without regard to the min/max options supplied to restrict the returned holdings map.
secscan/scrape13F.py
getHoldingsMap
ikedim01/secscan
0
python
def getHoldingsMap(scraped13F, period, minFrac=0.0, maxFrac=1.0, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=None, minAUM=None, allCusipCounter=None, all13FHoldingsMap=None): '\n Consolidate holdings for each CIK based on all filings for a given period into\n a combined map of investor holdings.\n\n Returns a dict: cik -> {cusip -> pct}\n\n Restricts to stocks only (no call/put options).\n\n If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of\n total portfolio >=minFrac and/or <=maxFrac.\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits\n investors with too few stocks, too many stocks, too small a fraction in the\n top 10 stocks, or too small a total stock value.\n\n If supplied, allCusipCounter should be a Counter, and it will be updated to count\n all investors that have any position in each stock, without regard to the min/max\n options supplied to restrict the returned holdings map.\n\n If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted\n holdings list for each CIK:\n all13FHoldingsMap[cik] = [(cusip, val, frac) ... ]\n without regard to the min/max options supplied to restrict the returned holdings map.\n ' for (v, msg) in [(minFrac, 'min stock fraction of portfolio'), (maxFrac, 'max stock fraction of portfolio'), (minStocksPerInv, 'min stocks per investor'), (maxStocksPerInv, 'max stocks per investor'), (minTop10Frac, 'min fraction of portfolio in top 10 positions'), (minAUM, 'min AUM (total portfolio value)')]: if (v is not None): print(msg, v) cikTo13Fs = collections.defaultdict(list) count = 0 for (dStr, accNoToInfo) in scraped13F.infoMap.items(): for (accNo, info) in accNoToInfo.items(): if (info == 'ERROR'): print('ERR', accNo) elif (info['period'] == period): cikTo13Fs[info['cik'].lstrip('0')].append((dStr, accNo, info['holdings'])) count += 1 print('period', period, '- total of', len(cikTo13Fs), 'ciks,', count, '13F filings') cikToPosList = {} for (cik, cik13FList) in cikTo13Fs.items(): cik13FList.sort() i = 0 j = 1 while (j < len(cik13FList)): if (len(cik13FList[j][2]) > (len(cik13FList[i][2]) // 2)): i = j j += 1 if (j != 1): print('CIK', cik, i, '-', j, [(dStr, accNo, len(holdings)) for (dStr, accNo, holdings) in cik13FList]) combHoldings = cik13FList[i][2] while ((i + 1) < j): i += 1 combHoldings = (combHoldings + cik13FList[i][2]) posList = condenseHoldings(combHoldings, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=minStocksPerInv, maxStocksPerInv=maxStocksPerInv, minTop10Frac=minTop10Frac, minAUM=minAUM, allCusipCounter=allCusipCounter, all13FHoldingsMap=all13FHoldingsMap, forCik=cik) if (posList is not None): cikToPosList[cik] = posList res = {} for (cik, posList) in cikToPosList.items(): res[cik] = dict(((cusip, frac) for (cusip, _, frac) in posList)) return res
def getHoldingsMap(scraped13F, period, minFrac=0.0, maxFrac=1.0, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=None, minAUM=None, allCusipCounter=None, all13FHoldingsMap=None): '\n Consolidate holdings for each CIK based on all filings for a given period into\n a combined map of investor holdings.\n\n Returns a dict: cik -> {cusip -> pct}\n\n Restricts to stocks only (no call/put options).\n\n If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of\n total portfolio >=minFrac and/or <=maxFrac.\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits\n investors with too few stocks, too many stocks, too small a fraction in the\n top 10 stocks, or too small a total stock value.\n\n If supplied, allCusipCounter should be a Counter, and it will be updated to count\n all investors that have any position in each stock, without regard to the min/max\n options supplied to restrict the returned holdings map.\n\n If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted\n holdings list for each CIK:\n all13FHoldingsMap[cik] = [(cusip, val, frac) ... ]\n without regard to the min/max options supplied to restrict the returned holdings map.\n ' for (v, msg) in [(minFrac, 'min stock fraction of portfolio'), (maxFrac, 'max stock fraction of portfolio'), (minStocksPerInv, 'min stocks per investor'), (maxStocksPerInv, 'max stocks per investor'), (minTop10Frac, 'min fraction of portfolio in top 10 positions'), (minAUM, 'min AUM (total portfolio value)')]: if (v is not None): print(msg, v) cikTo13Fs = collections.defaultdict(list) count = 0 for (dStr, accNoToInfo) in scraped13F.infoMap.items(): for (accNo, info) in accNoToInfo.items(): if (info == 'ERROR'): print('ERR', accNo) elif (info['period'] == period): cikTo13Fs[info['cik'].lstrip('0')].append((dStr, accNo, info['holdings'])) count += 1 print('period', period, '- total of', len(cikTo13Fs), 'ciks,', count, '13F filings') cikToPosList = {} for (cik, cik13FList) in cikTo13Fs.items(): cik13FList.sort() i = 0 j = 1 while (j < len(cik13FList)): if (len(cik13FList[j][2]) > (len(cik13FList[i][2]) // 2)): i = j j += 1 if (j != 1): print('CIK', cik, i, '-', j, [(dStr, accNo, len(holdings)) for (dStr, accNo, holdings) in cik13FList]) combHoldings = cik13FList[i][2] while ((i + 1) < j): i += 1 combHoldings = (combHoldings + cik13FList[i][2]) posList = condenseHoldings(combHoldings, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=minStocksPerInv, maxStocksPerInv=maxStocksPerInv, minTop10Frac=minTop10Frac, minAUM=minAUM, allCusipCounter=allCusipCounter, all13FHoldingsMap=all13FHoldingsMap, forCik=cik) if (posList is not None): cikToPosList[cik] = posList res = {} for (cik, posList) in cikToPosList.items(): res[cik] = dict(((cusip, frac) for (cusip, _, frac) in posList)) return res<|docstring|>Consolidate holdings for each CIK based on all filings for a given period into a combined map of investor holdings. Returns a dict: cik -> {cusip -> pct} Restricts to stocks only (no call/put options). If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of total portfolio >=minFrac and/or <=maxFrac. If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits investors with too few stocks, too many stocks, too small a fraction in the top 10 stocks, or too small a total stock value. If supplied, allCusipCounter should be a Counter, and it will be updated to count all investors that have any position in each stock, without regard to the min/max options supplied to restrict the returned holdings map. If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted holdings list for each CIK: all13FHoldingsMap[cik] = [(cusip, val, frac) ... ] without regard to the min/max options supplied to restrict the returned holdings map.<|endoftext|>
ff9f679a222dc9854d2922210fde5d7554609c73d23416db62be4bfb06ec422f
def addHoldingsMap(holdingsMap, extraHoldingsMap): '\n Adds positions in extraHoldingsMap to holdingsMap.\n Each argument is a dict: cik -> {cusip -> pct}\n but extraHoldingsMap may contain ciks and cusips not in holdingsMap.\n ' for (cik, extraPosMap) in extraHoldingsMap.items(): if (cik not in holdingsMap): holdingsMap[cik] = {} posMap = holdingsMap[cik] for (cusip, frac) in extraPosMap.items(): posMap[cusip] = (posMap.get(cusip, 0.0) + frac)
Adds positions in extraHoldingsMap to holdingsMap. Each argument is a dict: cik -> {cusip -> pct} but extraHoldingsMap may contain ciks and cusips not in holdingsMap.
secscan/scrape13F.py
addHoldingsMap
ikedim01/secscan
0
python
def addHoldingsMap(holdingsMap, extraHoldingsMap): '\n Adds positions in extraHoldingsMap to holdingsMap.\n Each argument is a dict: cik -> {cusip -> pct}\n but extraHoldingsMap may contain ciks and cusips not in holdingsMap.\n ' for (cik, extraPosMap) in extraHoldingsMap.items(): if (cik not in holdingsMap): holdingsMap[cik] = {} posMap = holdingsMap[cik] for (cusip, frac) in extraPosMap.items(): posMap[cusip] = (posMap.get(cusip, 0.0) + frac)
def addHoldingsMap(holdingsMap, extraHoldingsMap): '\n Adds positions in extraHoldingsMap to holdingsMap.\n Each argument is a dict: cik -> {cusip -> pct}\n but extraHoldingsMap may contain ciks and cusips not in holdingsMap.\n ' for (cik, extraPosMap) in extraHoldingsMap.items(): if (cik not in holdingsMap): holdingsMap[cik] = {} posMap = holdingsMap[cik] for (cusip, frac) in extraPosMap.items(): posMap[cusip] = (posMap.get(cusip, 0.0) + frac)<|docstring|>Adds positions in extraHoldingsMap to holdingsMap. Each argument is a dict: cik -> {cusip -> pct} but extraHoldingsMap may contain ciks and cusips not in holdingsMap.<|endoftext|>
b184531800e3079981ad435c621b9d635aa379db25310a6db2e44de047a73c27
def holdingsMapToMatrix(holdingsMap, minStocksPerInvestor=None, maxStocksPerInvestor=None, minInvestorsPerStock=None, maxInvestorsPerStock=None, minAllInvestorsPerStock=None, maxAllInvestorsPerStock=None, allCusipCounter=None, cusipFilter=None, dtype=np.float64): '\n Converts a holdings map: cik -> {cusip -> frac} into a matrix.\n\n Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips))\n in which each row has the fractions held by the corresponding cik in each cusip.\n\n If minStocksPerInvestor is specified, restricts to investors with at least that many stocks\n in the returned matrix; likewise, maxStocksPerInvestor can be used to give an upper bound.\n\n If minInvestorsPerStock is specified, restricts to stocks with at least that many investors\n in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound.\n\n If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter\n should be a Counter counting all investors that have any position in each stock,\n and the result will be restricted based on this count.\n\n If cusipFilter is specified, this should be a function that returns True for cusips to keep.\n ' invCount = len(holdingsMap) print('starting investor count:', invCount) if ((minStocksPerInvestor is None) and (maxStocksPerInvestor is None)): print('not limiting number of stocks per investor') else: if (minStocksPerInvestor is not None): print('requiring at least', minStocksPerInvestor, 'stocks per investor') holdingsMap = dict(((cik, posMap) for (cik, posMap) in holdingsMap.items() if (len(posMap) >= minStocksPerInvestor))) print('- removed', (invCount - len(holdingsMap)), 'investors,', len(holdingsMap), 'remaining') invCount = len(holdingsMap) if (maxStocksPerInvestor is not None): print('requiring at most', maxStocksPerInvestor, 'stocks per investor') holdingsMap = dict(((cik, posMap) for (cik, posMap) in holdingsMap.items() if (len(posMap) <= maxStocksPerInvestor))) print('- removed', (invCount - len(holdingsMap)), 'investors,', len(holdingsMap), 'remaining') invCount = len(holdingsMap) cusipCounter = collections.Counter() for posMap in holdingsMap.values(): cusipCounter.update(posMap.keys()) print('starting stock count:', len(cusipCounter)) cusipsToRemove = set() delCount = 0 if ((minInvestorsPerStock is None) and (maxInvestorsPerStock is None) and (minAllInvestorsPerStock is None) and (maxAllInvestorsPerStock is None)): print('not limiting number of investors per stock') else: if (minAllInvestorsPerStock is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (allCusipCounter[cusip] < minAllInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at least {minAllInvestorsPerStock} ALL investors per stock') if (maxAllInvestorsPerStock is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (allCusipCounter[cusip] > maxAllInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at most {maxAllInvestorsPerStock} ALL investors per stock') if (minInvestorsPerStock is not None): cusipsToRemove.update((cusip for (cusip, count) in cusipCounter.items() if (count < minInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at least {minInvestorsPerStock} investors per stock') if (maxInvestorsPerStock is not None): cusipsToRemove.update((cusip for (cusip, count) in cusipCounter.items() if (count > maxInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at most {maxInvestorsPerStock} investors per stock') if (cusipFilter is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (not cusipFilter(cusip)))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, 'applying CUSIP filter') cusips = sorted((set(cusipCounter.keys()) - cusipsToRemove)) if (delCount > 0): print('removed a total of', delCount, 'stocks,', len(cusips), 'remaining') ciks = sorted((cik.zfill(10) for (cik, posMap) in holdingsMap.items() if (1 <= len((set(posMap.keys()) - cusipsToRemove))))) print('removed', (invCount - len(ciks)), 'investors with no remaining positions') print(f'final counts: {len(ciks):,} investors; {len(cusips):,} stocks;', end=' ') cikToRow = indexMap(ciks) cusipToCol = indexMap(cusips) mat = np.zeros((len(ciks), len(cusips)), dtype=dtype) count = 0 for (cik, posMap) in holdingsMap.items(): cikRow = cikToRow.get(cik.zfill(10)) if (cikRow is None): continue for (cusip, frac) in posMap.items(): if (cusip not in cusipsToRemove): mat[(cikRow, cusipToCol[cusip])] = frac count += 1 print(f'{count:,} positions') return (mat, ciks, cusips)
Converts a holdings map: cik -> {cusip -> frac} into a matrix. Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips)) in which each row has the fractions held by the corresponding cik in each cusip. If minStocksPerInvestor is specified, restricts to investors with at least that many stocks in the returned matrix; likewise, maxStocksPerInvestor can be used to give an upper bound. If minInvestorsPerStock is specified, restricts to stocks with at least that many investors in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound. If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter should be a Counter counting all investors that have any position in each stock, and the result will be restricted based on this count. If cusipFilter is specified, this should be a function that returns True for cusips to keep.
secscan/scrape13F.py
holdingsMapToMatrix
ikedim01/secscan
0
python
def holdingsMapToMatrix(holdingsMap, minStocksPerInvestor=None, maxStocksPerInvestor=None, minInvestorsPerStock=None, maxInvestorsPerStock=None, minAllInvestorsPerStock=None, maxAllInvestorsPerStock=None, allCusipCounter=None, cusipFilter=None, dtype=np.float64): '\n Converts a holdings map: cik -> {cusip -> frac} into a matrix.\n\n Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips))\n in which each row has the fractions held by the corresponding cik in each cusip.\n\n If minStocksPerInvestor is specified, restricts to investors with at least that many stocks\n in the returned matrix; likewise, maxStocksPerInvestor can be used to give an upper bound.\n\n If minInvestorsPerStock is specified, restricts to stocks with at least that many investors\n in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound.\n\n If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter\n should be a Counter counting all investors that have any position in each stock,\n and the result will be restricted based on this count.\n\n If cusipFilter is specified, this should be a function that returns True for cusips to keep.\n ' invCount = len(holdingsMap) print('starting investor count:', invCount) if ((minStocksPerInvestor is None) and (maxStocksPerInvestor is None)): print('not limiting number of stocks per investor') else: if (minStocksPerInvestor is not None): print('requiring at least', minStocksPerInvestor, 'stocks per investor') holdingsMap = dict(((cik, posMap) for (cik, posMap) in holdingsMap.items() if (len(posMap) >= minStocksPerInvestor))) print('- removed', (invCount - len(holdingsMap)), 'investors,', len(holdingsMap), 'remaining') invCount = len(holdingsMap) if (maxStocksPerInvestor is not None): print('requiring at most', maxStocksPerInvestor, 'stocks per investor') holdingsMap = dict(((cik, posMap) for (cik, posMap) in holdingsMap.items() if (len(posMap) <= maxStocksPerInvestor))) print('- removed', (invCount - len(holdingsMap)), 'investors,', len(holdingsMap), 'remaining') invCount = len(holdingsMap) cusipCounter = collections.Counter() for posMap in holdingsMap.values(): cusipCounter.update(posMap.keys()) print('starting stock count:', len(cusipCounter)) cusipsToRemove = set() delCount = 0 if ((minInvestorsPerStock is None) and (maxInvestorsPerStock is None) and (minAllInvestorsPerStock is None) and (maxAllInvestorsPerStock is None)): print('not limiting number of investors per stock') else: if (minAllInvestorsPerStock is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (allCusipCounter[cusip] < minAllInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at least {minAllInvestorsPerStock} ALL investors per stock') if (maxAllInvestorsPerStock is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (allCusipCounter[cusip] > maxAllInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at most {maxAllInvestorsPerStock} ALL investors per stock') if (minInvestorsPerStock is not None): cusipsToRemove.update((cusip for (cusip, count) in cusipCounter.items() if (count < minInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at least {minInvestorsPerStock} investors per stock') if (maxInvestorsPerStock is not None): cusipsToRemove.update((cusip for (cusip, count) in cusipCounter.items() if (count > maxInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at most {maxInvestorsPerStock} investors per stock') if (cusipFilter is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (not cusipFilter(cusip)))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, 'applying CUSIP filter') cusips = sorted((set(cusipCounter.keys()) - cusipsToRemove)) if (delCount > 0): print('removed a total of', delCount, 'stocks,', len(cusips), 'remaining') ciks = sorted((cik.zfill(10) for (cik, posMap) in holdingsMap.items() if (1 <= len((set(posMap.keys()) - cusipsToRemove))))) print('removed', (invCount - len(ciks)), 'investors with no remaining positions') print(f'final counts: {len(ciks):,} investors; {len(cusips):,} stocks;', end=' ') cikToRow = indexMap(ciks) cusipToCol = indexMap(cusips) mat = np.zeros((len(ciks), len(cusips)), dtype=dtype) count = 0 for (cik, posMap) in holdingsMap.items(): cikRow = cikToRow.get(cik.zfill(10)) if (cikRow is None): continue for (cusip, frac) in posMap.items(): if (cusip not in cusipsToRemove): mat[(cikRow, cusipToCol[cusip])] = frac count += 1 print(f'{count:,} positions') return (mat, ciks, cusips)
def holdingsMapToMatrix(holdingsMap, minStocksPerInvestor=None, maxStocksPerInvestor=None, minInvestorsPerStock=None, maxInvestorsPerStock=None, minAllInvestorsPerStock=None, maxAllInvestorsPerStock=None, allCusipCounter=None, cusipFilter=None, dtype=np.float64): '\n Converts a holdings map: cik -> {cusip -> frac} into a matrix.\n\n Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips))\n in which each row has the fractions held by the corresponding cik in each cusip.\n\n If minStocksPerInvestor is specified, restricts to investors with at least that many stocks\n in the returned matrix; likewise, maxStocksPerInvestor can be used to give an upper bound.\n\n If minInvestorsPerStock is specified, restricts to stocks with at least that many investors\n in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound.\n\n If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter\n should be a Counter counting all investors that have any position in each stock,\n and the result will be restricted based on this count.\n\n If cusipFilter is specified, this should be a function that returns True for cusips to keep.\n ' invCount = len(holdingsMap) print('starting investor count:', invCount) if ((minStocksPerInvestor is None) and (maxStocksPerInvestor is None)): print('not limiting number of stocks per investor') else: if (minStocksPerInvestor is not None): print('requiring at least', minStocksPerInvestor, 'stocks per investor') holdingsMap = dict(((cik, posMap) for (cik, posMap) in holdingsMap.items() if (len(posMap) >= minStocksPerInvestor))) print('- removed', (invCount - len(holdingsMap)), 'investors,', len(holdingsMap), 'remaining') invCount = len(holdingsMap) if (maxStocksPerInvestor is not None): print('requiring at most', maxStocksPerInvestor, 'stocks per investor') holdingsMap = dict(((cik, posMap) for (cik, posMap) in holdingsMap.items() if (len(posMap) <= maxStocksPerInvestor))) print('- removed', (invCount - len(holdingsMap)), 'investors,', len(holdingsMap), 'remaining') invCount = len(holdingsMap) cusipCounter = collections.Counter() for posMap in holdingsMap.values(): cusipCounter.update(posMap.keys()) print('starting stock count:', len(cusipCounter)) cusipsToRemove = set() delCount = 0 if ((minInvestorsPerStock is None) and (maxInvestorsPerStock is None) and (minAllInvestorsPerStock is None) and (maxAllInvestorsPerStock is None)): print('not limiting number of investors per stock') else: if (minAllInvestorsPerStock is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (allCusipCounter[cusip] < minAllInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at least {minAllInvestorsPerStock} ALL investors per stock') if (maxAllInvestorsPerStock is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (allCusipCounter[cusip] > maxAllInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at most {maxAllInvestorsPerStock} ALL investors per stock') if (minInvestorsPerStock is not None): cusipsToRemove.update((cusip for (cusip, count) in cusipCounter.items() if (count < minInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at least {minInvestorsPerStock} investors per stock') if (maxInvestorsPerStock is not None): cusipsToRemove.update((cusip for (cusip, count) in cusipCounter.items() if (count > maxInvestorsPerStock))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, f'requiring at most {maxInvestorsPerStock} investors per stock') if (cusipFilter is not None): cusipsToRemove.update((cusip for cusip in cusipCounter if (not cusipFilter(cusip)))) delCount = printRemoveStocksMessage(cusipsToRemove, delCount, 'applying CUSIP filter') cusips = sorted((set(cusipCounter.keys()) - cusipsToRemove)) if (delCount > 0): print('removed a total of', delCount, 'stocks,', len(cusips), 'remaining') ciks = sorted((cik.zfill(10) for (cik, posMap) in holdingsMap.items() if (1 <= len((set(posMap.keys()) - cusipsToRemove))))) print('removed', (invCount - len(ciks)), 'investors with no remaining positions') print(f'final counts: {len(ciks):,} investors; {len(cusips):,} stocks;', end=' ') cikToRow = indexMap(ciks) cusipToCol = indexMap(cusips) mat = np.zeros((len(ciks), len(cusips)), dtype=dtype) count = 0 for (cik, posMap) in holdingsMap.items(): cikRow = cikToRow.get(cik.zfill(10)) if (cikRow is None): continue for (cusip, frac) in posMap.items(): if (cusip not in cusipsToRemove): mat[(cikRow, cusipToCol[cusip])] = frac count += 1 print(f'{count:,} positions') return (mat, ciks, cusips)<|docstring|>Converts a holdings map: cik -> {cusip -> frac} into a matrix. Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips)) in which each row has the fractions held by the corresponding cik in each cusip. If minStocksPerInvestor is specified, restricts to investors with at least that many stocks in the returned matrix; likewise, maxStocksPerInvestor can be used to give an upper bound. If minInvestorsPerStock is specified, restricts to stocks with at least that many investors in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound. If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter should be a Counter counting all investors that have any position in each stock, and the result will be restricted based on this count. If cusipFilter is specified, this should be a function that returns True for cusips to keep.<|endoftext|>
847fc5accffdbbadc045fcde526e86b9db836c8fd670e3c26855fbc2f1f79b9b
def getPeriodAndNextQStartEnd(y, qNo): '\n Returns the 13F period date for a given year and quarter number (this is the\n last day in the quarter), along with the start and end dateStrs for the next\n quarter (this is the date range when the 13Fs for this year should be filed).\n Quarters are numbered 1-4.\n ' nextY = ((y + 1) if (qNo == 4) else y) nextQNo = (1 if (qNo == 4) else (qNo + 1)) return ((str(y) + qPeriods[(qNo - 1)]), {'startD': (str(nextY) + qStartEnds[(nextQNo - 1)]), 'endD': (str(((nextY + 1) if (nextQNo == 4) else nextY)) + qStartEnds[nextQNo])})
Returns the 13F period date for a given year and quarter number (this is the last day in the quarter), along with the start and end dateStrs for the next quarter (this is the date range when the 13Fs for this year should be filed). Quarters are numbered 1-4.
secscan/scrape13F.py
getPeriodAndNextQStartEnd
ikedim01/secscan
0
python
def getPeriodAndNextQStartEnd(y, qNo): '\n Returns the 13F period date for a given year and quarter number (this is the\n last day in the quarter), along with the start and end dateStrs for the next\n quarter (this is the date range when the 13Fs for this year should be filed).\n Quarters are numbered 1-4.\n ' nextY = ((y + 1) if (qNo == 4) else y) nextQNo = (1 if (qNo == 4) else (qNo + 1)) return ((str(y) + qPeriods[(qNo - 1)]), {'startD': (str(nextY) + qStartEnds[(nextQNo - 1)]), 'endD': (str(((nextY + 1) if (nextQNo == 4) else nextY)) + qStartEnds[nextQNo])})
def getPeriodAndNextQStartEnd(y, qNo): '\n Returns the 13F period date for a given year and quarter number (this is the\n last day in the quarter), along with the start and end dateStrs for the next\n quarter (this is the date range when the 13Fs for this year should be filed).\n Quarters are numbered 1-4.\n ' nextY = ((y + 1) if (qNo == 4) else y) nextQNo = (1 if (qNo == 4) else (qNo + 1)) return ((str(y) + qPeriods[(qNo - 1)]), {'startD': (str(nextY) + qStartEnds[(nextQNo - 1)]), 'endD': (str(((nextY + 1) if (nextQNo == 4) else nextY)) + qStartEnds[nextQNo])})<|docstring|>Returns the 13F period date for a given year and quarter number (this is the last day in the quarter), along with the start and end dateStrs for the next quarter (this is the date range when the 13Fs for this year should be filed). Quarters are numbered 1-4.<|endoftext|>
c335d2ee5f5e85c47a2067dcf31ec7eea75ce07f51b42637a3af650826473e26
def getNSSForQ(y, qNo, minFrac=0.01, maxFrac=1.0, minStocksPerInv=3, maxStocksPerInv=100, minTop10Frac=0.4, minAUM=None, dtype=np.float64, minInvestorsPerStock=2, maxInvestorsPerStock=None, minAllInvestorsPerStock=None, maxAllInvestorsPerStock=None, allCusipCounter=None, cusipFilter=None, extraHoldingsMaps=[], include13F=True, all13FHoldingsMap=None): '\n Calculates a matrix of investor holdings for a quarter, based on all 13F filings filed\n during the succeeding quarter.\n\n Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips))\n in which each row has the fractions held by the corresponding cik in each cusip.\n\n If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of\n total portfolio >=minFrac and/or <=maxFrac.\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits\n investors with too few stocks, too many stocks, too small a fraction in the\n top 10 holdings, or too small a total stock value.\n If minInvestorsPerStock is specified, restricts to stocks with at least that many investors\n in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound.\n If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter\n should be a Counter counting all investors that have any position in each stock,\n and the result will be restricted based on this count.\n If cusipFilter is specified, this should be a function that returns True for cusips to keep.\n\n If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted\n holdings list for each CIK:\n all13FHoldingsMap[cik] = [(cusip, val, frac) ... ]\n without regard to the min/max options supplied to restrict the returned holdings map.\n\n Optionally adds holdings from a list of extraHoldingsMaps (used for 13G/13D filings).\n ' if (((minAllInvestorsPerStock is not None) or (maxAllInvestorsPerStock is not None)) and (allCusipCounter is None)): allCusipCounter = collections.Counter() if include13F: (period, nextQStartEnd) = getPeriodAndNextQStartEnd(y, qNo) holdingsMap = getHoldingsMap(scraper13F(**nextQStartEnd), period, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=minTop10Frac, minAUM=minAUM, allCusipCounter=allCusipCounter, all13FHoldingsMap=all13FHoldingsMap) else: holdingsMap = {} for extraHoldingsMap in extraHoldingsMaps: addHoldingsMap(holdingsMap, extraHoldingsMap) return holdingsMapToMatrix(holdingsMap, minStocksPerInvestor=minStocksPerInv, maxStocksPerInvestor=maxStocksPerInv, minInvestorsPerStock=minInvestorsPerStock, maxInvestorsPerStock=maxInvestorsPerStock, minAllInvestorsPerStock=minAllInvestorsPerStock, maxAllInvestorsPerStock=maxAllInvestorsPerStock, allCusipCounter=allCusipCounter, cusipFilter=cusipFilter, dtype=dtype)
Calculates a matrix of investor holdings for a quarter, based on all 13F filings filed during the succeeding quarter. Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips)) in which each row has the fractions held by the corresponding cik in each cusip. If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of total portfolio >=minFrac and/or <=maxFrac. If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits investors with too few stocks, too many stocks, too small a fraction in the top 10 holdings, or too small a total stock value. If minInvestorsPerStock is specified, restricts to stocks with at least that many investors in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound. If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter should be a Counter counting all investors that have any position in each stock, and the result will be restricted based on this count. If cusipFilter is specified, this should be a function that returns True for cusips to keep. If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted holdings list for each CIK: all13FHoldingsMap[cik] = [(cusip, val, frac) ... ] without regard to the min/max options supplied to restrict the returned holdings map. Optionally adds holdings from a list of extraHoldingsMaps (used for 13G/13D filings).
secscan/scrape13F.py
getNSSForQ
ikedim01/secscan
0
python
def getNSSForQ(y, qNo, minFrac=0.01, maxFrac=1.0, minStocksPerInv=3, maxStocksPerInv=100, minTop10Frac=0.4, minAUM=None, dtype=np.float64, minInvestorsPerStock=2, maxInvestorsPerStock=None, minAllInvestorsPerStock=None, maxAllInvestorsPerStock=None, allCusipCounter=None, cusipFilter=None, extraHoldingsMaps=[], include13F=True, all13FHoldingsMap=None): '\n Calculates a matrix of investor holdings for a quarter, based on all 13F filings filed\n during the succeeding quarter.\n\n Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips))\n in which each row has the fractions held by the corresponding cik in each cusip.\n\n If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of\n total portfolio >=minFrac and/or <=maxFrac.\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits\n investors with too few stocks, too many stocks, too small a fraction in the\n top 10 holdings, or too small a total stock value.\n If minInvestorsPerStock is specified, restricts to stocks with at least that many investors\n in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound.\n If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter\n should be a Counter counting all investors that have any position in each stock,\n and the result will be restricted based on this count.\n If cusipFilter is specified, this should be a function that returns True for cusips to keep.\n\n If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted\n holdings list for each CIK:\n all13FHoldingsMap[cik] = [(cusip, val, frac) ... ]\n without regard to the min/max options supplied to restrict the returned holdings map.\n\n Optionally adds holdings from a list of extraHoldingsMaps (used for 13G/13D filings).\n ' if (((minAllInvestorsPerStock is not None) or (maxAllInvestorsPerStock is not None)) and (allCusipCounter is None)): allCusipCounter = collections.Counter() if include13F: (period, nextQStartEnd) = getPeriodAndNextQStartEnd(y, qNo) holdingsMap = getHoldingsMap(scraper13F(**nextQStartEnd), period, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=minTop10Frac, minAUM=minAUM, allCusipCounter=allCusipCounter, all13FHoldingsMap=all13FHoldingsMap) else: holdingsMap = {} for extraHoldingsMap in extraHoldingsMaps: addHoldingsMap(holdingsMap, extraHoldingsMap) return holdingsMapToMatrix(holdingsMap, minStocksPerInvestor=minStocksPerInv, maxStocksPerInvestor=maxStocksPerInv, minInvestorsPerStock=minInvestorsPerStock, maxInvestorsPerStock=maxInvestorsPerStock, minAllInvestorsPerStock=minAllInvestorsPerStock, maxAllInvestorsPerStock=maxAllInvestorsPerStock, allCusipCounter=allCusipCounter, cusipFilter=cusipFilter, dtype=dtype)
def getNSSForQ(y, qNo, minFrac=0.01, maxFrac=1.0, minStocksPerInv=3, maxStocksPerInv=100, minTop10Frac=0.4, minAUM=None, dtype=np.float64, minInvestorsPerStock=2, maxInvestorsPerStock=None, minAllInvestorsPerStock=None, maxAllInvestorsPerStock=None, allCusipCounter=None, cusipFilter=None, extraHoldingsMaps=[], include13F=True, all13FHoldingsMap=None): '\n Calculates a matrix of investor holdings for a quarter, based on all 13F filings filed\n during the succeeding quarter.\n\n Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips))\n in which each row has the fractions held by the corresponding cik in each cusip.\n\n If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of\n total portfolio >=minFrac and/or <=maxFrac.\n\n If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits\n investors with too few stocks, too many stocks, too small a fraction in the\n top 10 holdings, or too small a total stock value.\n If minInvestorsPerStock is specified, restricts to stocks with at least that many investors\n in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound.\n If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter\n should be a Counter counting all investors that have any position in each stock,\n and the result will be restricted based on this count.\n If cusipFilter is specified, this should be a function that returns True for cusips to keep.\n\n If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted\n holdings list for each CIK:\n all13FHoldingsMap[cik] = [(cusip, val, frac) ... ]\n without regard to the min/max options supplied to restrict the returned holdings map.\n\n Optionally adds holdings from a list of extraHoldingsMaps (used for 13G/13D filings).\n ' if (((minAllInvestorsPerStock is not None) or (maxAllInvestorsPerStock is not None)) and (allCusipCounter is None)): allCusipCounter = collections.Counter() if include13F: (period, nextQStartEnd) = getPeriodAndNextQStartEnd(y, qNo) holdingsMap = getHoldingsMap(scraper13F(**nextQStartEnd), period, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=None, maxStocksPerInv=None, minTop10Frac=minTop10Frac, minAUM=minAUM, allCusipCounter=allCusipCounter, all13FHoldingsMap=all13FHoldingsMap) else: holdingsMap = {} for extraHoldingsMap in extraHoldingsMaps: addHoldingsMap(holdingsMap, extraHoldingsMap) return holdingsMapToMatrix(holdingsMap, minStocksPerInvestor=minStocksPerInv, maxStocksPerInvestor=maxStocksPerInv, minInvestorsPerStock=minInvestorsPerStock, maxInvestorsPerStock=maxInvestorsPerStock, minAllInvestorsPerStock=minAllInvestorsPerStock, maxAllInvestorsPerStock=maxAllInvestorsPerStock, allCusipCounter=allCusipCounter, cusipFilter=cusipFilter, dtype=dtype)<|docstring|>Calculates a matrix of investor holdings for a quarter, based on all 13F filings filed during the succeeding quarter. Returns mat, ciks, cusips where mat is a matrix of shape (len(ciks), len(cusips)) in which each row has the fractions held by the corresponding cik in each cusip. If minFrac and/or maxFrac is supplied, restricts to stocks with fraction of total portfolio >=minFrac and/or <=maxFrac. If minStocksPerInv, maxStocksPerInv, minTop10Frac or minAUM are specified, omits investors with too few stocks, too many stocks, too small a fraction in the top 10 holdings, or too small a total stock value. If minInvestorsPerStock is specified, restricts to stocks with at least that many investors in the returned matrix; likewise, maxInvestorsPerStock can be used to give an upper bound. If minAllInvestorsPerStock or maxAllInvestorsPerStock is specified, then allCusipCounter should be a Counter counting all investors that have any position in each stock, and the result will be restricted based on this count. If cusipFilter is specified, this should be a function that returns True for cusips to keep. If supplied, all13FHoldingsMap should be a dict, and it will be updated with a full sorted holdings list for each CIK: all13FHoldingsMap[cik] = [(cusip, val, frac) ... ] without regard to the min/max options supplied to restrict the returned holdings map. Optionally adds holdings from a list of extraHoldingsMaps (used for 13G/13D filings).<|endoftext|>
1461a9bbbb054b152d3566257e60e394272e7185f0eefad350d2a915f47a5fdc
def saveConvMatrixPy2(y, qNo, minFrac=0.13, maxFrac=0.4, minStocksPerInv=3, maxStocksPerInv=500, minTop10Frac=None, minAUM=75000000.0, dtype=np.float64, minInvestorsPerStock=2, maxInvestorsPerStock=None): '\n Save a matrix of 13F conviction positions only for the given quarter,\n in a format readable by the BW old Python2 version.\n ' (mat, ciks, cusips) = getNSSForQ(y, qNo, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=minStocksPerInv, maxStocksPerInv=maxStocksPerInv, minTop10Frac=minTop10Frac, minAUM=minAUM, dtype=dtype, minInvestorsPerStock=minInvestorsPerStock, maxInvestorsPerStock=maxInvestorsPerStock) ciks = [cik.encode(encoding='ascii', errors='ignore') for cik in ciks] cusips = [cusip.encode(encoding='ascii', errors='ignore') for cusip in cusips] m = ([[('0' if (el == 0.0) else str(el)).encode(encoding='ascii') for el in row] for row in mat], ciks, indexMap(ciks), cusips, indexMap(cusips)) fPath = os.path.join(utils.stockDataRoot, f'Conv{y}Q{qNo}.pkl') print('saving to', fPath) utils.pickSave(fPath, m, fix_imports=True, protocol=2)
Save a matrix of 13F conviction positions only for the given quarter, in a format readable by the BW old Python2 version.
secscan/scrape13F.py
saveConvMatrixPy2
ikedim01/secscan
0
python
def saveConvMatrixPy2(y, qNo, minFrac=0.13, maxFrac=0.4, minStocksPerInv=3, maxStocksPerInv=500, minTop10Frac=None, minAUM=75000000.0, dtype=np.float64, minInvestorsPerStock=2, maxInvestorsPerStock=None): '\n Save a matrix of 13F conviction positions only for the given quarter,\n in a format readable by the BW old Python2 version.\n ' (mat, ciks, cusips) = getNSSForQ(y, qNo, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=minStocksPerInv, maxStocksPerInv=maxStocksPerInv, minTop10Frac=minTop10Frac, minAUM=minAUM, dtype=dtype, minInvestorsPerStock=minInvestorsPerStock, maxInvestorsPerStock=maxInvestorsPerStock) ciks = [cik.encode(encoding='ascii', errors='ignore') for cik in ciks] cusips = [cusip.encode(encoding='ascii', errors='ignore') for cusip in cusips] m = ([[('0' if (el == 0.0) else str(el)).encode(encoding='ascii') for el in row] for row in mat], ciks, indexMap(ciks), cusips, indexMap(cusips)) fPath = os.path.join(utils.stockDataRoot, f'Conv{y}Q{qNo}.pkl') print('saving to', fPath) utils.pickSave(fPath, m, fix_imports=True, protocol=2)
def saveConvMatrixPy2(y, qNo, minFrac=0.13, maxFrac=0.4, minStocksPerInv=3, maxStocksPerInv=500, minTop10Frac=None, minAUM=75000000.0, dtype=np.float64, minInvestorsPerStock=2, maxInvestorsPerStock=None): '\n Save a matrix of 13F conviction positions only for the given quarter,\n in a format readable by the BW old Python2 version.\n ' (mat, ciks, cusips) = getNSSForQ(y, qNo, minFrac=minFrac, maxFrac=maxFrac, minStocksPerInv=minStocksPerInv, maxStocksPerInv=maxStocksPerInv, minTop10Frac=minTop10Frac, minAUM=minAUM, dtype=dtype, minInvestorsPerStock=minInvestorsPerStock, maxInvestorsPerStock=maxInvestorsPerStock) ciks = [cik.encode(encoding='ascii', errors='ignore') for cik in ciks] cusips = [cusip.encode(encoding='ascii', errors='ignore') for cusip in cusips] m = ([[('0' if (el == 0.0) else str(el)).encode(encoding='ascii') for el in row] for row in mat], ciks, indexMap(ciks), cusips, indexMap(cusips)) fPath = os.path.join(utils.stockDataRoot, f'Conv{y}Q{qNo}.pkl') print('saving to', fPath) utils.pickSave(fPath, m, fix_imports=True, protocol=2)<|docstring|>Save a matrix of 13F conviction positions only for the given quarter, in a format readable by the BW old Python2 version.<|endoftext|>
911670c04c3a7273ecdf163091b5c1288854b7856308bb9c1253bb02da2be09b
def test_no_mysterious_extra_vertical_lines(): '\n This test is to make sure that issue #2 is fixed.\n ' width = 60 height = 17 pixels = render(xs=np.array([1, 1]), ys=np.array([0, 1]), x_min=3, y_min=0, x_max=6, y_max=1.1, width=width, height=height, lines=True) desired_pixels = np.zeros((height, width), dtype=int) np.testing.assert_array_equal(pixels, desired_pixels)
This test is to make sure that issue #2 is fixed.
tests/unit/test_pixel_matrix.py
test_no_mysterious_extra_vertical_lines
olavolav/textplot
156
python
def test_no_mysterious_extra_vertical_lines(): '\n \n ' width = 60 height = 17 pixels = render(xs=np.array([1, 1]), ys=np.array([0, 1]), x_min=3, y_min=0, x_max=6, y_max=1.1, width=width, height=height, lines=True) desired_pixels = np.zeros((height, width), dtype=int) np.testing.assert_array_equal(pixels, desired_pixels)
def test_no_mysterious_extra_vertical_lines(): '\n \n ' width = 60 height = 17 pixels = render(xs=np.array([1, 1]), ys=np.array([0, 1]), x_min=3, y_min=0, x_max=6, y_max=1.1, width=width, height=height, lines=True) desired_pixels = np.zeros((height, width), dtype=int) np.testing.assert_array_equal(pixels, desired_pixels)<|docstring|>This test is to make sure that issue #2 is fixed.<|endoftext|>
3b3ab4355801b0aa0963082edf2bbb511dfd3aae2f9c1f0f6fac513339ea83e8
def __init__(self, future: BaseFuture, value: int) -> None: 'ValueAtMostConstraint constructor.\n\n :param future: the variable that should be at most the given value\n :param value: the maximum value that the given future may have\n ' self._future = future self._value = value
ValueAtMostConstraint constructor. :param future: the variable that should be at most the given value :param value: the maximum value that the given future may have
netqasm/sdk/constraint.py
__init__
QuTech-Delft/netqasm
6
python
def __init__(self, future: BaseFuture, value: int) -> None: 'ValueAtMostConstraint constructor.\n\n :param future: the variable that should be at most the given value\n :param value: the maximum value that the given future may have\n ' self._future = future self._value = value
def __init__(self, future: BaseFuture, value: int) -> None: 'ValueAtMostConstraint constructor.\n\n :param future: the variable that should be at most the given value\n :param value: the maximum value that the given future may have\n ' self._future = future self._value = value<|docstring|>ValueAtMostConstraint constructor. :param future: the variable that should be at most the given value :param value: the maximum value that the given future may have<|endoftext|>
5f041fe7b24475ead9fd87935b6064d5adf4d9c0f0e739e649574cf28e36cb12
def dump_content(filename, offset, count, strucc): '\n Dump the content of the file "filename" starting from offset and using the\n BStruct subclass pointed by strucc\n ' try: fp = open(filename, 'rb') except OSError as e: print(("[ERROR] '%s' raised when tried to read the file '%s'" % (e.strerror, filename))) sys.exit(1) fp.seek(offset) i = 0 while ((i < count) or (count == 0)): buf = fp.read(strucc._size) if (len(buf) != strucc._size): break obj = strucc(buf) i += 1 print(obj)
Dump the content of the file "filename" starting from offset and using the BStruct subclass pointed by strucc
scripts/py/mt_read.py
dump_content
ulises2k/EA-Tester
58
python
def dump_content(filename, offset, count, strucc): '\n Dump the content of the file "filename" starting from offset and using the\n BStruct subclass pointed by strucc\n ' try: fp = open(filename, 'rb') except OSError as e: print(("[ERROR] '%s' raised when tried to read the file '%s'" % (e.strerror, filename))) sys.exit(1) fp.seek(offset) i = 0 while ((i < count) or (count == 0)): buf = fp.read(strucc._size) if (len(buf) != strucc._size): break obj = strucc(buf) i += 1 print(obj)
def dump_content(filename, offset, count, strucc): '\n Dump the content of the file "filename" starting from offset and using the\n BStruct subclass pointed by strucc\n ' try: fp = open(filename, 'rb') except OSError as e: print(("[ERROR] '%s' raised when tried to read the file '%s'" % (e.strerror, filename))) sys.exit(1) fp.seek(offset) i = 0 while ((i < count) or (count == 0)): buf = fp.read(strucc._size) if (len(buf) != strucc._size): break obj = strucc(buf) i += 1 print(obj)<|docstring|>Dump the content of the file "filename" starting from offset and using the BStruct subclass pointed by strucc<|endoftext|>
f01d556e6074e02e89effa273a6d0afd84a46841613d318b2e34e55b56ca3937
def create_app(*, config_module_class: str) -> Flask: '\n Creates app in function so that flask with flask extensions can be\n initialized with specific config. Here it defines the route of APIs\n so that it can be seen in one place where implementation is separated.\n\n Config is being fetched via module.class name where module.class name\n can be passed through environment variable.\n This is to make config fetched through runtime PYTHON_PATH so that\n Config class can be easily injected.\n More on: http://flask.pocoo.org/docs/1.0/config/\n\n :param config_module_class: name of the config (TODO: Implement config.py)\n :return: Flask\n ' if (FLASK_APP_MODULE_NAME and FLASK_APP_CLASS_NAME): print('Using requested Flask module {module_name} and class {class_name}'.format(module_name=FLASK_APP_MODULE_NAME, class_name=FLASK_APP_CLASS_NAME), file=sys.stderr) class_obj = getattr(importlib.import_module(FLASK_APP_MODULE_NAME), FLASK_APP_CLASS_NAME) flask_kwargs_dict = {} if FLASK_APP_KWARGS_DICT_STR: print('Using kwargs {kwargs} to instantiate Flask'.format(kwargs=FLASK_APP_KWARGS_DICT_STR), file=sys.stderr) flask_kwargs_dict = ast.literal_eval(FLASK_APP_KWARGS_DICT_STR) app = class_obj(__name__, **flask_kwargs_dict) else: app = Flask(__name__) config_module_class = (os.getenv('METADATA_SVC_CONFIG_MODULE_CLASS') or config_module_class) app.config.from_object(config_module_class) logging.basicConfig(format=app.config.get('LOG_FORMAT'), datefmt=app.config.get('LOG_DATE_FORMAT')) logging.getLogger().setLevel(app.config.get('LOG_LEVEL')) logging.info('Created app with config name {}'.format(config_module_class)) api_bp = Blueprint('api', __name__) api_bp.add_url_rule('/healthcheck', 'healthcheck', healthcheck) api = Api(api_bp) api.add_resource(PopularTablesAPI, '/popular_tables/') api.add_resource(TableDetailAPI, '/table/<path:table_uri>') api.add_resource(TableDescriptionAPI, '/table/<path:table_uri>/description', '/table/<path:table_uri>/description/<path:description_val>') api.add_resource(TableTagAPI, '/table/<path:table_uri>/tag', '/table/<path:table_uri>/tag/<tag>') api.add_resource(TableOwnerAPI, '/table/<path:table_uri>/owner/<owner>') api.add_resource(ColumnDescriptionAPI, '/table/<path:table_uri>/column/<column_name>/description', '/table/<path:table_uri>/column/<column_name>/description/<path:description_val>') api.add_resource(Neo4jDetailAPI, '/latest_updated_ts') api.add_resource(TagAPI, '/tags/') api.add_resource(UserDetailAPI, '/user/<path:user_id>') api.add_resource(UserFollowAPI, '/user/<path:user_id>/follow/', '/user/<path:user_id>/follow/<resource_type>/<path:table_uri>') api.add_resource(UserOwnAPI, '/user/<path:user_id>/own/', '/user/<path:user_id>/own/<resource_type>/<path:table_uri>') api.add_resource(UserReadAPI, '/user/<path:user_id>/read/', '/user/<path:user_id>/read/<resource_type>/<path:table_uri>') app.register_blueprint(api_bp) return app
Creates app in function so that flask with flask extensions can be initialized with specific config. Here it defines the route of APIs so that it can be seen in one place where implementation is separated. Config is being fetched via module.class name where module.class name can be passed through environment variable. This is to make config fetched through runtime PYTHON_PATH so that Config class can be easily injected. More on: http://flask.pocoo.org/docs/1.0/config/ :param config_module_class: name of the config (TODO: Implement config.py) :return: Flask
metadata_service/__init__.py
create_app
feng-tao/amundsenmetadatalibrary
1
python
def create_app(*, config_module_class: str) -> Flask: '\n Creates app in function so that flask with flask extensions can be\n initialized with specific config. Here it defines the route of APIs\n so that it can be seen in one place where implementation is separated.\n\n Config is being fetched via module.class name where module.class name\n can be passed through environment variable.\n This is to make config fetched through runtime PYTHON_PATH so that\n Config class can be easily injected.\n More on: http://flask.pocoo.org/docs/1.0/config/\n\n :param config_module_class: name of the config (TODO: Implement config.py)\n :return: Flask\n ' if (FLASK_APP_MODULE_NAME and FLASK_APP_CLASS_NAME): print('Using requested Flask module {module_name} and class {class_name}'.format(module_name=FLASK_APP_MODULE_NAME, class_name=FLASK_APP_CLASS_NAME), file=sys.stderr) class_obj = getattr(importlib.import_module(FLASK_APP_MODULE_NAME), FLASK_APP_CLASS_NAME) flask_kwargs_dict = {} if FLASK_APP_KWARGS_DICT_STR: print('Using kwargs {kwargs} to instantiate Flask'.format(kwargs=FLASK_APP_KWARGS_DICT_STR), file=sys.stderr) flask_kwargs_dict = ast.literal_eval(FLASK_APP_KWARGS_DICT_STR) app = class_obj(__name__, **flask_kwargs_dict) else: app = Flask(__name__) config_module_class = (os.getenv('METADATA_SVC_CONFIG_MODULE_CLASS') or config_module_class) app.config.from_object(config_module_class) logging.basicConfig(format=app.config.get('LOG_FORMAT'), datefmt=app.config.get('LOG_DATE_FORMAT')) logging.getLogger().setLevel(app.config.get('LOG_LEVEL')) logging.info('Created app with config name {}'.format(config_module_class)) api_bp = Blueprint('api', __name__) api_bp.add_url_rule('/healthcheck', 'healthcheck', healthcheck) api = Api(api_bp) api.add_resource(PopularTablesAPI, '/popular_tables/') api.add_resource(TableDetailAPI, '/table/<path:table_uri>') api.add_resource(TableDescriptionAPI, '/table/<path:table_uri>/description', '/table/<path:table_uri>/description/<path:description_val>') api.add_resource(TableTagAPI, '/table/<path:table_uri>/tag', '/table/<path:table_uri>/tag/<tag>') api.add_resource(TableOwnerAPI, '/table/<path:table_uri>/owner/<owner>') api.add_resource(ColumnDescriptionAPI, '/table/<path:table_uri>/column/<column_name>/description', '/table/<path:table_uri>/column/<column_name>/description/<path:description_val>') api.add_resource(Neo4jDetailAPI, '/latest_updated_ts') api.add_resource(TagAPI, '/tags/') api.add_resource(UserDetailAPI, '/user/<path:user_id>') api.add_resource(UserFollowAPI, '/user/<path:user_id>/follow/', '/user/<path:user_id>/follow/<resource_type>/<path:table_uri>') api.add_resource(UserOwnAPI, '/user/<path:user_id>/own/', '/user/<path:user_id>/own/<resource_type>/<path:table_uri>') api.add_resource(UserReadAPI, '/user/<path:user_id>/read/', '/user/<path:user_id>/read/<resource_type>/<path:table_uri>') app.register_blueprint(api_bp) return app
def create_app(*, config_module_class: str) -> Flask: '\n Creates app in function so that flask with flask extensions can be\n initialized with specific config. Here it defines the route of APIs\n so that it can be seen in one place where implementation is separated.\n\n Config is being fetched via module.class name where module.class name\n can be passed through environment variable.\n This is to make config fetched through runtime PYTHON_PATH so that\n Config class can be easily injected.\n More on: http://flask.pocoo.org/docs/1.0/config/\n\n :param config_module_class: name of the config (TODO: Implement config.py)\n :return: Flask\n ' if (FLASK_APP_MODULE_NAME and FLASK_APP_CLASS_NAME): print('Using requested Flask module {module_name} and class {class_name}'.format(module_name=FLASK_APP_MODULE_NAME, class_name=FLASK_APP_CLASS_NAME), file=sys.stderr) class_obj = getattr(importlib.import_module(FLASK_APP_MODULE_NAME), FLASK_APP_CLASS_NAME) flask_kwargs_dict = {} if FLASK_APP_KWARGS_DICT_STR: print('Using kwargs {kwargs} to instantiate Flask'.format(kwargs=FLASK_APP_KWARGS_DICT_STR), file=sys.stderr) flask_kwargs_dict = ast.literal_eval(FLASK_APP_KWARGS_DICT_STR) app = class_obj(__name__, **flask_kwargs_dict) else: app = Flask(__name__) config_module_class = (os.getenv('METADATA_SVC_CONFIG_MODULE_CLASS') or config_module_class) app.config.from_object(config_module_class) logging.basicConfig(format=app.config.get('LOG_FORMAT'), datefmt=app.config.get('LOG_DATE_FORMAT')) logging.getLogger().setLevel(app.config.get('LOG_LEVEL')) logging.info('Created app with config name {}'.format(config_module_class)) api_bp = Blueprint('api', __name__) api_bp.add_url_rule('/healthcheck', 'healthcheck', healthcheck) api = Api(api_bp) api.add_resource(PopularTablesAPI, '/popular_tables/') api.add_resource(TableDetailAPI, '/table/<path:table_uri>') api.add_resource(TableDescriptionAPI, '/table/<path:table_uri>/description', '/table/<path:table_uri>/description/<path:description_val>') api.add_resource(TableTagAPI, '/table/<path:table_uri>/tag', '/table/<path:table_uri>/tag/<tag>') api.add_resource(TableOwnerAPI, '/table/<path:table_uri>/owner/<owner>') api.add_resource(ColumnDescriptionAPI, '/table/<path:table_uri>/column/<column_name>/description', '/table/<path:table_uri>/column/<column_name>/description/<path:description_val>') api.add_resource(Neo4jDetailAPI, '/latest_updated_ts') api.add_resource(TagAPI, '/tags/') api.add_resource(UserDetailAPI, '/user/<path:user_id>') api.add_resource(UserFollowAPI, '/user/<path:user_id>/follow/', '/user/<path:user_id>/follow/<resource_type>/<path:table_uri>') api.add_resource(UserOwnAPI, '/user/<path:user_id>/own/', '/user/<path:user_id>/own/<resource_type>/<path:table_uri>') api.add_resource(UserReadAPI, '/user/<path:user_id>/read/', '/user/<path:user_id>/read/<resource_type>/<path:table_uri>') app.register_blueprint(api_bp) return app<|docstring|>Creates app in function so that flask with flask extensions can be initialized with specific config. Here it defines the route of APIs so that it can be seen in one place where implementation is separated. Config is being fetched via module.class name where module.class name can be passed through environment variable. This is to make config fetched through runtime PYTHON_PATH so that Config class can be easily injected. More on: http://flask.pocoo.org/docs/1.0/config/ :param config_module_class: name of the config (TODO: Implement config.py) :return: Flask<|endoftext|>
e541a61daf36fedf357af8f6ac6fa71e6edc0dc04876dcaac5fdfa364dffd835
def test_evaluate(self): '\n Test if values are computed correctly.\n ' for struct in [rosen_for_sensi(2, False, [0, 1]), poly_for_sensi(2, True, 0.5), convreact_for_funmode(2, [(- 0.3), (- 0.7)])]: self._test_evaluate_funmode(struct) self._test_evaluate_resmode(convreact_for_resmode(1, [(- 0.3), (- 0.7)]))
Test if values are computed correctly.
test/test_aggregated.py
test_evaluate
LukasSp/pyPESTO
0
python
def test_evaluate(self): '\n \n ' for struct in [rosen_for_sensi(2, False, [0, 1]), poly_for_sensi(2, True, 0.5), convreact_for_funmode(2, [(- 0.3), (- 0.7)])]: self._test_evaluate_funmode(struct) self._test_evaluate_resmode(convreact_for_resmode(1, [(- 0.3), (- 0.7)]))
def test_evaluate(self): '\n \n ' for struct in [rosen_for_sensi(2, False, [0, 1]), poly_for_sensi(2, True, 0.5), convreact_for_funmode(2, [(- 0.3), (- 0.7)])]: self._test_evaluate_funmode(struct) self._test_evaluate_resmode(convreact_for_resmode(1, [(- 0.3), (- 0.7)]))<|docstring|>Test if values are computed correctly.<|endoftext|>
e5f1bf0c82a4f7f47ab82b191e8c8c4abd6d40f057df72260d3e9fe2ae33b902
@abstractmethod def getConfigurationController(self) -> 'XConfigurationController_557c15c4': '\n Return the XConfigurationController object.\n '
Return the XConfigurationController object.
ooobuild/lo/drawing/framework/x_controller_manager.py
getConfigurationController
Amourspirit/ooo_uno_tmpl
0
python
@abstractmethod def getConfigurationController(self) -> 'XConfigurationController_557c15c4': '\n \n '
@abstractmethod def getConfigurationController(self) -> 'XConfigurationController_557c15c4': '\n \n '<|docstring|>Return the XConfigurationController object.<|endoftext|>
16a4dc46b2601062574717b439518bad8164353e3bd8f19cdcc33c779d12a7b4
@abstractmethod def getModuleController(self) -> 'XModuleController_c5d112d2': '\n Return the XModuleController object.\n '
Return the XModuleController object.
ooobuild/lo/drawing/framework/x_controller_manager.py
getModuleController
Amourspirit/ooo_uno_tmpl
0
python
@abstractmethod def getModuleController(self) -> 'XModuleController_c5d112d2': '\n \n '
@abstractmethod def getModuleController(self) -> 'XModuleController_c5d112d2': '\n \n '<|docstring|>Return the XModuleController object.<|endoftext|>
9063bdcaac7d0cf10dd22c4ce5a2dd5b55b32e401b54ae2d45a3503c5c84cb5d
def testIndividualDataConsentDocument(self): 'Test IndividualDataConsentDocument' pass
Test IndividualDataConsentDocument
test/test_individual_data_consent_document.py
testIndividualDataConsentDocument
My-Data-My-Consent/python-sdk
0
python
def testIndividualDataConsentDocument(self): pass
def testIndividualDataConsentDocument(self): pass<|docstring|>Test IndividualDataConsentDocument<|endoftext|>
39ce838414f9a26f411e0ad8db3e34c1f8d373a93575b134e19f800c98b72210
def on_start(self): "Run the task pool.\n\n Will pre-fork all workers so they're ready to accept tasks.\n\n " self._pool = self.Pool(processes=self.limit, **self.options) self.on_apply = self._pool.apply_async
Run the task pool. Will pre-fork all workers so they're ready to accept tasks.
celery/concurrency/processes/__init__.py
on_start
aleszoulek/celery
2
python
def on_start(self): "Run the task pool.\n\n Will pre-fork all workers so they're ready to accept tasks.\n\n " self._pool = self.Pool(processes=self.limit, **self.options) self.on_apply = self._pool.apply_async
def on_start(self): "Run the task pool.\n\n Will pre-fork all workers so they're ready to accept tasks.\n\n " self._pool = self.Pool(processes=self.limit, **self.options) self.on_apply = self._pool.apply_async<|docstring|>Run the task pool. Will pre-fork all workers so they're ready to accept tasks.<|endoftext|>
2f5cb79463e4d4d21b9a8a87beac01a5f9f6f59a7f1e3fcf52f6001e8be90d4b
def on_stop(self): 'Gracefully stop the pool.' if ((self._pool is not None) and (self._pool._state == RUN)): self._pool.close() self._pool.join() self._pool = None
Gracefully stop the pool.
celery/concurrency/processes/__init__.py
on_stop
aleszoulek/celery
2
python
def on_stop(self): if ((self._pool is not None) and (self._pool._state == RUN)): self._pool.close() self._pool.join() self._pool = None
def on_stop(self): if ((self._pool is not None) and (self._pool._state == RUN)): self._pool.close() self._pool.join() self._pool = None<|docstring|>Gracefully stop the pool.<|endoftext|>
eb8cc733aff7634e56d32c94b107fcbd919faa8efc7b8cc4d6a2d2830a166133
def on_terminate(self): 'Force terminate the pool.' if (self._pool is not None): self._pool.terminate() self._pool = None
Force terminate the pool.
celery/concurrency/processes/__init__.py
on_terminate
aleszoulek/celery
2
python
def on_terminate(self): if (self._pool is not None): self._pool.terminate() self._pool = None
def on_terminate(self): if (self._pool is not None): self._pool.terminate() self._pool = None<|docstring|>Force terminate the pool.<|endoftext|>
3fca7905be83fbacc6956a61366b9dd92582a19321cdca5e372befbe2ef4cd9a
def test_patch_druid_get_columns(mocker: MockerFixture) -> None: '\n Test ``patch_druid_get_columns``.\n ' pytest.importorskip('pydruid') DruidDialect = mocker.patch('datajunction.fixes.DruidDialect') connection = mocker.MagicMock() mocker.patch('datajunction.fixes.PYDRUID_INSTALLED', new=False) patch_druid_get_columns() DruidDialect.assert_not_called() mocker.patch('datajunction.fixes.PYDRUID_INSTALLED', new=True) patch_druid_get_columns() DruidDialect.get_columns(None, connection, 'table_name', 'schema') assert (str(connection.execute.mock_calls[0].args[0]) == "\nSELECT COLUMN_NAME,\n DATA_TYPE,\n IS_NULLABLE,\n COLUMN_DEFAULT\n FROM INFORMATION_SCHEMA.COLUMNS\n WHERE TABLE_NAME = 'table_name'\n AND TABLE_SCHEMA = 'schema'") connection.execute.reset_mock() DruidDialect.get_columns(None, connection, 'table_name') assert (str(connection.execute.mock_calls[0].args[0]) == "\nSELECT COLUMN_NAME,\n DATA_TYPE,\n IS_NULLABLE,\n COLUMN_DEFAULT\n FROM INFORMATION_SCHEMA.COLUMNS\n WHERE TABLE_NAME = 'table_name'\n")
Test ``patch_druid_get_columns``.
tests/fixes_test.py
test_patch_druid_get_columns
DataJunction/datajunction
0
python
def test_patch_druid_get_columns(mocker: MockerFixture) -> None: '\n \n ' pytest.importorskip('pydruid') DruidDialect = mocker.patch('datajunction.fixes.DruidDialect') connection = mocker.MagicMock() mocker.patch('datajunction.fixes.PYDRUID_INSTALLED', new=False) patch_druid_get_columns() DruidDialect.assert_not_called() mocker.patch('datajunction.fixes.PYDRUID_INSTALLED', new=True) patch_druid_get_columns() DruidDialect.get_columns(None, connection, 'table_name', 'schema') assert (str(connection.execute.mock_calls[0].args[0]) == "\nSELECT COLUMN_NAME,\n DATA_TYPE,\n IS_NULLABLE,\n COLUMN_DEFAULT\n FROM INFORMATION_SCHEMA.COLUMNS\n WHERE TABLE_NAME = 'table_name'\n AND TABLE_SCHEMA = 'schema'") connection.execute.reset_mock() DruidDialect.get_columns(None, connection, 'table_name') assert (str(connection.execute.mock_calls[0].args[0]) == "\nSELECT COLUMN_NAME,\n DATA_TYPE,\n IS_NULLABLE,\n COLUMN_DEFAULT\n FROM INFORMATION_SCHEMA.COLUMNS\n WHERE TABLE_NAME = 'table_name'\n")
def test_patch_druid_get_columns(mocker: MockerFixture) -> None: '\n \n ' pytest.importorskip('pydruid') DruidDialect = mocker.patch('datajunction.fixes.DruidDialect') connection = mocker.MagicMock() mocker.patch('datajunction.fixes.PYDRUID_INSTALLED', new=False) patch_druid_get_columns() DruidDialect.assert_not_called() mocker.patch('datajunction.fixes.PYDRUID_INSTALLED', new=True) patch_druid_get_columns() DruidDialect.get_columns(None, connection, 'table_name', 'schema') assert (str(connection.execute.mock_calls[0].args[0]) == "\nSELECT COLUMN_NAME,\n DATA_TYPE,\n IS_NULLABLE,\n COLUMN_DEFAULT\n FROM INFORMATION_SCHEMA.COLUMNS\n WHERE TABLE_NAME = 'table_name'\n AND TABLE_SCHEMA = 'schema'") connection.execute.reset_mock() DruidDialect.get_columns(None, connection, 'table_name') assert (str(connection.execute.mock_calls[0].args[0]) == "\nSELECT COLUMN_NAME,\n DATA_TYPE,\n IS_NULLABLE,\n COLUMN_DEFAULT\n FROM INFORMATION_SCHEMA.COLUMNS\n WHERE TABLE_NAME = 'table_name'\n")<|docstring|>Test ``patch_druid_get_columns``.<|endoftext|>
a6b73a99925ce8171b093b0a763ccd367c6bbf6d534a23c2532127be1e1837a5
def forward(self, logits): '\n Input: logits -> T x K # Where K is the number of classes and T is the batch size\n Output: L = MEL, BEL\n ' sum1 = torch.zeros([logits.shape[0], 1]) for t in range(logits.shape[0]): sum1[t] = self.entropy(logits[(t, :)]) L1 = torch.mean(sum1) mean_output = torch.mean(logits, dim=0) L2 = ((- 1.0) * self.entropy(mean_output)) return (L1.cuda(), L2.cuda())
Input: logits -> T x K # Where K is the number of classes and T is the batch size Output: L = MEL, BEL
CIFAR10/losses.py
forward
ankanbansal/semi-supervised-learning
0
python
def forward(self, logits): '\n Input: logits -> T x K # Where K is the number of classes and T is the batch size\n Output: L = MEL, BEL\n ' sum1 = torch.zeros([logits.shape[0], 1]) for t in range(logits.shape[0]): sum1[t] = self.entropy(logits[(t, :)]) L1 = torch.mean(sum1) mean_output = torch.mean(logits, dim=0) L2 = ((- 1.0) * self.entropy(mean_output)) return (L1.cuda(), L2.cuda())
def forward(self, logits): '\n Input: logits -> T x K # Where K is the number of classes and T is the batch size\n Output: L = MEL, BEL\n ' sum1 = torch.zeros([logits.shape[0], 1]) for t in range(logits.shape[0]): sum1[t] = self.entropy(logits[(t, :)]) L1 = torch.mean(sum1) mean_output = torch.mean(logits, dim=0) L2 = ((- 1.0) * self.entropy(mean_output)) return (L1.cuda(), L2.cuda())<|docstring|>Input: logits -> T x K # Where K is the number of classes and T is the batch size Output: L = MEL, BEL<|endoftext|>
f302c6535dfc985bdcc89c65f46b6f8ac3a15870d6dced70a6a74a25d61d679d
def entropy(self, logits): '\n Input: logits -> N x 1 x D # Where D is the feature dimension\n Output: entropy -> N x 1\n ' return ((- 1.0) * (F.softmax(logits, dim=(- 1)) * F.log_softmax(logits, dim=(- 1))).sum((- 1)))
Input: logits -> N x 1 x D # Where D is the feature dimension Output: entropy -> N x 1
CIFAR10/losses.py
entropy
ankanbansal/semi-supervised-learning
0
python
def entropy(self, logits): '\n Input: logits -> N x 1 x D # Where D is the feature dimension\n Output: entropy -> N x 1\n ' return ((- 1.0) * (F.softmax(logits, dim=(- 1)) * F.log_softmax(logits, dim=(- 1))).sum((- 1)))
def entropy(self, logits): '\n Input: logits -> N x 1 x D # Where D is the feature dimension\n Output: entropy -> N x 1\n ' return ((- 1.0) * (F.softmax(logits, dim=(- 1)) * F.log_softmax(logits, dim=(- 1))).sum((- 1)))<|docstring|>Input: logits -> N x 1 x D # Where D is the feature dimension Output: entropy -> N x 1<|endoftext|>
27a0017511d15369bf40ebe9951409f442eab57ac95b0cf8b67b8d1a6bc42518
def cross_entropy(self, logits1, logits2): '\n Input: logits1 -> N x 1 x D # Where D is the feature dimension\n logits2 -> 1 x N x D # Where D is the feature dimension\n Output: Pairwise Cross-entropy -> N x N\n ' return ((- 1.0) * (F.softmax(logits1, dim=(- 1)) * F.log_softmax(logits2, dim=(- 1))).sum((- 1)))
Input: logits1 -> N x 1 x D # Where D is the feature dimension logits2 -> 1 x N x D # Where D is the feature dimension Output: Pairwise Cross-entropy -> N x N
CIFAR10/losses.py
cross_entropy
ankanbansal/semi-supervised-learning
0
python
def cross_entropy(self, logits1, logits2): '\n Input: logits1 -> N x 1 x D # Where D is the feature dimension\n logits2 -> 1 x N x D # Where D is the feature dimension\n Output: Pairwise Cross-entropy -> N x N\n ' return ((- 1.0) * (F.softmax(logits1, dim=(- 1)) * F.log_softmax(logits2, dim=(- 1))).sum((- 1)))
def cross_entropy(self, logits1, logits2): '\n Input: logits1 -> N x 1 x D # Where D is the feature dimension\n logits2 -> 1 x N x D # Where D is the feature dimension\n Output: Pairwise Cross-entropy -> N x N\n ' return ((- 1.0) * (F.softmax(logits1, dim=(- 1)) * F.log_softmax(logits2, dim=(- 1))).sum((- 1)))<|docstring|>Input: logits1 -> N x 1 x D # Where D is the feature dimension logits2 -> 1 x N x D # Where D is the feature dimension Output: Pairwise Cross-entropy -> N x N<|endoftext|>
3e16aef19354ff2968657ce14efd8436a52718704497bf5c8d1df16e58b0f1e6
def distances(self, A, distance_type='Euclidean', eps=1e-06): "\n Input: A -> num_transformations x D # Where D is the feature dimension\n distance_type -> 'Euclidean'/'cosine'/'KL'\n Output: distances -> num_transformations x num_transformations pair wise distances\n " assert (A.dim() == 2) if (distance_type == 'Euclidean'): B = A.unsqueeze(1) C = A.unsqueeze(0) differences = (B - C) distances = torch.sum((differences * differences), (- 1)) elif (distance_type == 'cosine'): B = F.normalize(A, p=2, dim=1) distances = (1.0 - torch.matmul(B, B.t())) elif (distance_type == 'KL'): B = A.unsqueeze(1) C = A.unsqueeze(0) distances = (((- 1.0) * self.entropy(B)) + self.cross_entropy(B, C)) return distances
Input: A -> num_transformations x D # Where D is the feature dimension distance_type -> 'Euclidean'/'cosine'/'KL' Output: distances -> num_transformations x num_transformations pair wise distances
CIFAR10/losses.py
distances
ankanbansal/semi-supervised-learning
0
python
def distances(self, A, distance_type='Euclidean', eps=1e-06): "\n Input: A -> num_transformations x D # Where D is the feature dimension\n distance_type -> 'Euclidean'/'cosine'/'KL'\n Output: distances -> num_transformations x num_transformations pair wise distances\n " assert (A.dim() == 2) if (distance_type == 'Euclidean'): B = A.unsqueeze(1) C = A.unsqueeze(0) differences = (B - C) distances = torch.sum((differences * differences), (- 1)) elif (distance_type == 'cosine'): B = F.normalize(A, p=2, dim=1) distances = (1.0 - torch.matmul(B, B.t())) elif (distance_type == 'KL'): B = A.unsqueeze(1) C = A.unsqueeze(0) distances = (((- 1.0) * self.entropy(B)) + self.cross_entropy(B, C)) return distances
def distances(self, A, distance_type='Euclidean', eps=1e-06): "\n Input: A -> num_transformations x D # Where D is the feature dimension\n distance_type -> 'Euclidean'/'cosine'/'KL'\n Output: distances -> num_transformations x num_transformations pair wise distances\n " assert (A.dim() == 2) if (distance_type == 'Euclidean'): B = A.unsqueeze(1) C = A.unsqueeze(0) differences = (B - C) distances = torch.sum((differences * differences), (- 1)) elif (distance_type == 'cosine'): B = F.normalize(A, p=2, dim=1) distances = (1.0 - torch.matmul(B, B.t())) elif (distance_type == 'KL'): B = A.unsqueeze(1) C = A.unsqueeze(0) distances = (((- 1.0) * self.entropy(B)) + self.cross_entropy(B, C)) return distances<|docstring|>Input: A -> num_transformations x D # Where D is the feature dimension distance_type -> 'Euclidean'/'cosine'/'KL' Output: distances -> num_transformations x num_transformations pair wise distances<|endoftext|>
7dce90b81a2c2ae052c479a64782c126f1b417c863337a850725e4fff84401c1
def forward(self, features, num_transformations, distance_type='Euclidean'): '\n Input: features -> T x D # Where D is the feature dimension and T is the batch size\n num_transformations -> Number of transformations applied to the data\n (Make sure that T is a multiple of num_transformations)\n Output: ST Loss\n ' batch_size = features.shape[0] all_index_groups = [[((i * num_transformations) + j) for j in range(num_transformations)] for i in range((batch_size / num_transformations))] total_loss = 0.0 for i in range(len(all_index_groups)): split_features = torch.index_select(features, 0, torch.cuda.LongTensor(all_index_groups[i])) distances = self.distances(split_features, distance_type=distance_type) total_loss += (0.5 * torch.sum(distances)) total_loss = (total_loss / (1.0 * batch_size)) return total_loss
Input: features -> T x D # Where D is the feature dimension and T is the batch size num_transformations -> Number of transformations applied to the data (Make sure that T is a multiple of num_transformations) Output: ST Loss
CIFAR10/losses.py
forward
ankanbansal/semi-supervised-learning
0
python
def forward(self, features, num_transformations, distance_type='Euclidean'): '\n Input: features -> T x D # Where D is the feature dimension and T is the batch size\n num_transformations -> Number of transformations applied to the data\n (Make sure that T is a multiple of num_transformations)\n Output: ST Loss\n ' batch_size = features.shape[0] all_index_groups = [[((i * num_transformations) + j) for j in range(num_transformations)] for i in range((batch_size / num_transformations))] total_loss = 0.0 for i in range(len(all_index_groups)): split_features = torch.index_select(features, 0, torch.cuda.LongTensor(all_index_groups[i])) distances = self.distances(split_features, distance_type=distance_type) total_loss += (0.5 * torch.sum(distances)) total_loss = (total_loss / (1.0 * batch_size)) return total_loss
def forward(self, features, num_transformations, distance_type='Euclidean'): '\n Input: features -> T x D # Where D is the feature dimension and T is the batch size\n num_transformations -> Number of transformations applied to the data\n (Make sure that T is a multiple of num_transformations)\n Output: ST Loss\n ' batch_size = features.shape[0] all_index_groups = [[((i * num_transformations) + j) for j in range(num_transformations)] for i in range((batch_size / num_transformations))] total_loss = 0.0 for i in range(len(all_index_groups)): split_features = torch.index_select(features, 0, torch.cuda.LongTensor(all_index_groups[i])) distances = self.distances(split_features, distance_type=distance_type) total_loss += (0.5 * torch.sum(distances)) total_loss = (total_loss / (1.0 * batch_size)) return total_loss<|docstring|>Input: features -> T x D # Where D is the feature dimension and T is the batch size num_transformations -> Number of transformations applied to the data (Make sure that T is a multiple of num_transformations) Output: ST Loss<|endoftext|>
a63499ca3a8931efa15f333017befaf1cdcc43e898f3d5875c5ad92c3a43eaf0
def syscall(*args): ' Helper method to make a syscall, check for errors, and return output as a string.' return subprocess.run(args, capture_output=True, check=True, text=True).stdout
Helper method to make a syscall, check for errors, and return output as a string.
switch.py
syscall
CydeWeys/static-window-switcher
1
python
def syscall(*args): ' ' return subprocess.run(args, capture_output=True, check=True, text=True).stdout
def syscall(*args): ' ' return subprocess.run(args, capture_output=True, check=True, text=True).stdout<|docstring|>Helper method to make a syscall, check for errors, and return output as a string.<|endoftext|>
9cbf987a648bf6357bece8ae25d6e28f3f6df4833dd67e277adbf655d1065fe7
@staticmethod def _boot_psus_replicates(number_psus: int, number_reps: int, samp_rate: Number=0, size_gap: int=1) -> np.ndarray: 'Creates the bootstrap replicates structure' if (number_psus <= size_gap): raise AssertionError('size_gap should be smaller than the number of units') sample_size = (number_psus - size_gap) psu = np.arange(0, number_psus) psu_boot = np.random.choice(psu, size=(number_reps, sample_size)) psu_replicates = np.zeros(shape=(number_psus, number_reps)) for rep in np.arange(0, number_reps): (psu_ids, psus_counts) = np.unique(psu_boot[(rep, :)], return_counts=True) psu_replicates[(:, rep)][psu_ids] = psus_counts ratio_sqrt = np.sqrt((((1 - samp_rate) * sample_size) / (number_psus - 1))) return np.asarray(((1 - ratio_sqrt) + ((ratio_sqrt * (number_psus / sample_size)) * psu_replicates)))
Creates the bootstrap replicates structure
src/samplics/weighting/replicates.py
_boot_psus_replicates
samplics-org/samplics
14
python
@staticmethod def _boot_psus_replicates(number_psus: int, number_reps: int, samp_rate: Number=0, size_gap: int=1) -> np.ndarray: if (number_psus <= size_gap): raise AssertionError('size_gap should be smaller than the number of units') sample_size = (number_psus - size_gap) psu = np.arange(0, number_psus) psu_boot = np.random.choice(psu, size=(number_reps, sample_size)) psu_replicates = np.zeros(shape=(number_psus, number_reps)) for rep in np.arange(0, number_reps): (psu_ids, psus_counts) = np.unique(psu_boot[(rep, :)], return_counts=True) psu_replicates[(:, rep)][psu_ids] = psus_counts ratio_sqrt = np.sqrt((((1 - samp_rate) * sample_size) / (number_psus - 1))) return np.asarray(((1 - ratio_sqrt) + ((ratio_sqrt * (number_psus / sample_size)) * psu_replicates)))
@staticmethod def _boot_psus_replicates(number_psus: int, number_reps: int, samp_rate: Number=0, size_gap: int=1) -> np.ndarray: if (number_psus <= size_gap): raise AssertionError('size_gap should be smaller than the number of units') sample_size = (number_psus - size_gap) psu = np.arange(0, number_psus) psu_boot = np.random.choice(psu, size=(number_reps, sample_size)) psu_replicates = np.zeros(shape=(number_psus, number_reps)) for rep in np.arange(0, number_reps): (psu_ids, psus_counts) = np.unique(psu_boot[(rep, :)], return_counts=True) psu_replicates[(:, rep)][psu_ids] = psus_counts ratio_sqrt = np.sqrt((((1 - samp_rate) * sample_size) / (number_psus - 1))) return np.asarray(((1 - ratio_sqrt) + ((ratio_sqrt * (number_psus / sample_size)) * psu_replicates)))<|docstring|>Creates the bootstrap replicates structure<|endoftext|>
e2caa38086c04b4ee88086eac6e8483d9d892152b9ff29f36a1e3a3e9e1c99e5
def _brr_replicates(self, psu: np.ndarray, stratum: Optional[np.ndarray]) -> np.ndarray: 'Creates the brr replicate structure' if (not (0 <= self.fay_coef < 1)): raise ValueError('The Fay coefficient must be greater or equal to 0 and lower than 1.') self._brr_number_reps(psu, stratum) self.rep_coefs = list(((1 / (self.number_reps * pow((1 - self.fay_coef), 2))) * np.ones(self.number_reps))) brr_coefs = hdd.hadamard(self.number_reps).astype(float) brr_coefs = brr_coefs[(:, 1:(self.number_strata + 1))] brr_coefs = np.repeat(brr_coefs, 2, axis=1) for r in np.arange(self.number_reps): for h in np.arange(self.number_strata): start = (2 * h) end = (start + 2) if (brr_coefs[(r, start)] == 1.0): brr_coefs[(r, start:end)] = [self.fay_coef, (2 - self.fay_coef)] else: brr_coefs[(r, start:end)] = [(2 - self.fay_coef), self.fay_coef] return brr_coefs.T
Creates the brr replicate structure
src/samplics/weighting/replicates.py
_brr_replicates
samplics-org/samplics
14
python
def _brr_replicates(self, psu: np.ndarray, stratum: Optional[np.ndarray]) -> np.ndarray: if (not (0 <= self.fay_coef < 1)): raise ValueError('The Fay coefficient must be greater or equal to 0 and lower than 1.') self._brr_number_reps(psu, stratum) self.rep_coefs = list(((1 / (self.number_reps * pow((1 - self.fay_coef), 2))) * np.ones(self.number_reps))) brr_coefs = hdd.hadamard(self.number_reps).astype(float) brr_coefs = brr_coefs[(:, 1:(self.number_strata + 1))] brr_coefs = np.repeat(brr_coefs, 2, axis=1) for r in np.arange(self.number_reps): for h in np.arange(self.number_strata): start = (2 * h) end = (start + 2) if (brr_coefs[(r, start)] == 1.0): brr_coefs[(r, start:end)] = [self.fay_coef, (2 - self.fay_coef)] else: brr_coefs[(r, start:end)] = [(2 - self.fay_coef), self.fay_coef] return brr_coefs.T
def _brr_replicates(self, psu: np.ndarray, stratum: Optional[np.ndarray]) -> np.ndarray: if (not (0 <= self.fay_coef < 1)): raise ValueError('The Fay coefficient must be greater or equal to 0 and lower than 1.') self._brr_number_reps(psu, stratum) self.rep_coefs = list(((1 / (self.number_reps * pow((1 - self.fay_coef), 2))) * np.ones(self.number_reps))) brr_coefs = hdd.hadamard(self.number_reps).astype(float) brr_coefs = brr_coefs[(:, 1:(self.number_strata + 1))] brr_coefs = np.repeat(brr_coefs, 2, axis=1) for r in np.arange(self.number_reps): for h in np.arange(self.number_strata): start = (2 * h) end = (start + 2) if (brr_coefs[(r, start)] == 1.0): brr_coefs[(r, start:end)] = [self.fay_coef, (2 - self.fay_coef)] else: brr_coefs[(r, start:end)] = [(2 - self.fay_coef), self.fay_coef] return brr_coefs.T<|docstring|>Creates the brr replicate structure<|endoftext|>
66e718eff1a27156be1ffbb93926908c9234a35acec8c8e6a488cdeeadec8837
@staticmethod def _jkn_psus_replicates(number_psus: int) -> np.ndarray: 'Creates the jackknife delete-1 replicate structure ' jk_coefs = ((number_psus / (number_psus - 1)) * (np.ones((number_psus, number_psus)) - np.identity(number_psus))) return np.asarray(jk_coefs)
Creates the jackknife delete-1 replicate structure
src/samplics/weighting/replicates.py
_jkn_psus_replicates
samplics-org/samplics
14
python
@staticmethod def _jkn_psus_replicates(number_psus: int) -> np.ndarray: ' ' jk_coefs = ((number_psus / (number_psus - 1)) * (np.ones((number_psus, number_psus)) - np.identity(number_psus))) return np.asarray(jk_coefs)
@staticmethod def _jkn_psus_replicates(number_psus: int) -> np.ndarray: ' ' jk_coefs = ((number_psus / (number_psus - 1)) * (np.ones((number_psus, number_psus)) - np.identity(number_psus))) return np.asarray(jk_coefs)<|docstring|>Creates the jackknife delete-1 replicate structure<|endoftext|>
34904ee489a9001ab5c72a2fbc27238791334907254ddc95806527f9e922a928
def replicate(self, samp_weight: Array, psu: Array, stratum: Optional[Array]=None, rep_coefs: Union[(Array, Number)]=False, rep_prefix: Optional[str]=None, psu_varname: str='_psu', str_varname: str='_stratum') -> pd.DataFrame: 'Computes replicate sample weights.\n\n Args:\n samp_weight (Array): array of sample weights. To incorporate the weights adjustment\n in the replicate weights, first replicate the design sample weights then apply\n the adjustments to the replicates.\n psu (Array):\n stratum (Array, optional): array of the strata. Defaults to None.\n rep_coefs (Union[Array, Number], optional): coefficients associated to the replicates.\n Defaults to False.\n rep_prefix (str, optional): prefix to apply to the replicate weights names.\n Defaults to None.\n psu_varname (str, optional): name of the psu variable in the output dataframe.\n Defaults to "_psu".\n str_varname (str, optional): name of the stratum variable in the output dataframe.\n Defaults to "_stratum".\n\n Raises:\n AssertionError: raises an assertion error when stratum is None for a stratified design.\n AssertionError: raises an assertion error when the replication method is not valid.\n\n Returns:\n pd.DataFrame: a dataframe of the replicates sample weights.\n ' samp_weight = formats.numpy_array(samp_weight) psu = formats.numpy_array(psu) if (not self.stratification): stratum = None else: stratum = formats.numpy_array(stratum) self._degree_of_freedom(samp_weight, stratum, psu) if (self.stratification and (stratum is None)): raise AssertionError('For a stratified design, stratum must be specified.') elif (stratum is not None): stratum_psu = pd.DataFrame({str_varname: stratum, psu_varname: psu}) stratum_psu.sort_values(by=str_varname, inplace=True) key = [str_varname, psu_varname] elif (self.method == 'brr'): (_, str_index) = np.unique(psu, return_index=True) checks.assert_brr_number_psus(str_index) psus = psu[np.sort(str_index)] strata = np.repeat(range(1, ((psus.size // 2) + 1)), 2) stratum_psu = pd.DataFrame({str_varname: strata, psu_varname: psus}) psu_pd = pd.DataFrame({psu_varname: psu}) stratum_psu = pd.merge(psu_pd, stratum_psu, on=psu_varname, how='left', sort=False) stratum_psu = stratum_psu[[str_varname, psu_varname]] key = [str_varname, psu_varname] else: stratum_psu = pd.DataFrame({psu_varname: psu}) key = [psu_varname] psus_ids = stratum_psu.drop_duplicates() if (self.method == 'jackknife'): self.number_reps = psus_ids.shape[0] _rep_data = self._jkn_replicates(psu, stratum) elif (self.method == 'bootstrap'): _rep_data = self._boot_replicates(psu, stratum) elif (self.method == 'brr'): _rep_data = self._brr_replicates(psu, stratum) self.rep_coefs = list((((1 / self.number_reps) * pow((1 - self.fay_coef), 2)) * np.ones(self.number_reps))) else: raise AssertionError("Replication method not recognized. Possible options are: 'bootstrap', 'brr', and 'jackknife'") rep_prefix = self._rep_prefix(rep_prefix) _rep_data = self._reps_to_dataframe(psus_ids, _rep_data, rep_prefix) samp_weight = pd.DataFrame({'_samp_weight': samp_weight}) samp_weight.reset_index(drop=True, inplace=True) full_sample = pd.concat([stratum_psu, samp_weight], axis=1) full_sample = pd.merge(full_sample, _rep_data, on=key, how='left', sort=False) if (not rep_coefs): rep_cols = [col for col in full_sample if col.startswith(rep_prefix)] full_sample[rep_cols] = full_sample[rep_cols].mul(samp_weight.values, axis=0) return full_sample
Computes replicate sample weights. Args: samp_weight (Array): array of sample weights. To incorporate the weights adjustment in the replicate weights, first replicate the design sample weights then apply the adjustments to the replicates. psu (Array): stratum (Array, optional): array of the strata. Defaults to None. rep_coefs (Union[Array, Number], optional): coefficients associated to the replicates. Defaults to False. rep_prefix (str, optional): prefix to apply to the replicate weights names. Defaults to None. psu_varname (str, optional): name of the psu variable in the output dataframe. Defaults to "_psu". str_varname (str, optional): name of the stratum variable in the output dataframe. Defaults to "_stratum". Raises: AssertionError: raises an assertion error when stratum is None for a stratified design. AssertionError: raises an assertion error when the replication method is not valid. Returns: pd.DataFrame: a dataframe of the replicates sample weights.
src/samplics/weighting/replicates.py
replicate
samplics-org/samplics
14
python
def replicate(self, samp_weight: Array, psu: Array, stratum: Optional[Array]=None, rep_coefs: Union[(Array, Number)]=False, rep_prefix: Optional[str]=None, psu_varname: str='_psu', str_varname: str='_stratum') -> pd.DataFrame: 'Computes replicate sample weights.\n\n Args:\n samp_weight (Array): array of sample weights. To incorporate the weights adjustment\n in the replicate weights, first replicate the design sample weights then apply\n the adjustments to the replicates.\n psu (Array):\n stratum (Array, optional): array of the strata. Defaults to None.\n rep_coefs (Union[Array, Number], optional): coefficients associated to the replicates.\n Defaults to False.\n rep_prefix (str, optional): prefix to apply to the replicate weights names.\n Defaults to None.\n psu_varname (str, optional): name of the psu variable in the output dataframe.\n Defaults to "_psu".\n str_varname (str, optional): name of the stratum variable in the output dataframe.\n Defaults to "_stratum".\n\n Raises:\n AssertionError: raises an assertion error when stratum is None for a stratified design.\n AssertionError: raises an assertion error when the replication method is not valid.\n\n Returns:\n pd.DataFrame: a dataframe of the replicates sample weights.\n ' samp_weight = formats.numpy_array(samp_weight) psu = formats.numpy_array(psu) if (not self.stratification): stratum = None else: stratum = formats.numpy_array(stratum) self._degree_of_freedom(samp_weight, stratum, psu) if (self.stratification and (stratum is None)): raise AssertionError('For a stratified design, stratum must be specified.') elif (stratum is not None): stratum_psu = pd.DataFrame({str_varname: stratum, psu_varname: psu}) stratum_psu.sort_values(by=str_varname, inplace=True) key = [str_varname, psu_varname] elif (self.method == 'brr'): (_, str_index) = np.unique(psu, return_index=True) checks.assert_brr_number_psus(str_index) psus = psu[np.sort(str_index)] strata = np.repeat(range(1, ((psus.size // 2) + 1)), 2) stratum_psu = pd.DataFrame({str_varname: strata, psu_varname: psus}) psu_pd = pd.DataFrame({psu_varname: psu}) stratum_psu = pd.merge(psu_pd, stratum_psu, on=psu_varname, how='left', sort=False) stratum_psu = stratum_psu[[str_varname, psu_varname]] key = [str_varname, psu_varname] else: stratum_psu = pd.DataFrame({psu_varname: psu}) key = [psu_varname] psus_ids = stratum_psu.drop_duplicates() if (self.method == 'jackknife'): self.number_reps = psus_ids.shape[0] _rep_data = self._jkn_replicates(psu, stratum) elif (self.method == 'bootstrap'): _rep_data = self._boot_replicates(psu, stratum) elif (self.method == 'brr'): _rep_data = self._brr_replicates(psu, stratum) self.rep_coefs = list((((1 / self.number_reps) * pow((1 - self.fay_coef), 2)) * np.ones(self.number_reps))) else: raise AssertionError("Replication method not recognized. Possible options are: 'bootstrap', 'brr', and 'jackknife'") rep_prefix = self._rep_prefix(rep_prefix) _rep_data = self._reps_to_dataframe(psus_ids, _rep_data, rep_prefix) samp_weight = pd.DataFrame({'_samp_weight': samp_weight}) samp_weight.reset_index(drop=True, inplace=True) full_sample = pd.concat([stratum_psu, samp_weight], axis=1) full_sample = pd.merge(full_sample, _rep_data, on=key, how='left', sort=False) if (not rep_coefs): rep_cols = [col for col in full_sample if col.startswith(rep_prefix)] full_sample[rep_cols] = full_sample[rep_cols].mul(samp_weight.values, axis=0) return full_sample
def replicate(self, samp_weight: Array, psu: Array, stratum: Optional[Array]=None, rep_coefs: Union[(Array, Number)]=False, rep_prefix: Optional[str]=None, psu_varname: str='_psu', str_varname: str='_stratum') -> pd.DataFrame: 'Computes replicate sample weights.\n\n Args:\n samp_weight (Array): array of sample weights. To incorporate the weights adjustment\n in the replicate weights, first replicate the design sample weights then apply\n the adjustments to the replicates.\n psu (Array):\n stratum (Array, optional): array of the strata. Defaults to None.\n rep_coefs (Union[Array, Number], optional): coefficients associated to the replicates.\n Defaults to False.\n rep_prefix (str, optional): prefix to apply to the replicate weights names.\n Defaults to None.\n psu_varname (str, optional): name of the psu variable in the output dataframe.\n Defaults to "_psu".\n str_varname (str, optional): name of the stratum variable in the output dataframe.\n Defaults to "_stratum".\n\n Raises:\n AssertionError: raises an assertion error when stratum is None for a stratified design.\n AssertionError: raises an assertion error when the replication method is not valid.\n\n Returns:\n pd.DataFrame: a dataframe of the replicates sample weights.\n ' samp_weight = formats.numpy_array(samp_weight) psu = formats.numpy_array(psu) if (not self.stratification): stratum = None else: stratum = formats.numpy_array(stratum) self._degree_of_freedom(samp_weight, stratum, psu) if (self.stratification and (stratum is None)): raise AssertionError('For a stratified design, stratum must be specified.') elif (stratum is not None): stratum_psu = pd.DataFrame({str_varname: stratum, psu_varname: psu}) stratum_psu.sort_values(by=str_varname, inplace=True) key = [str_varname, psu_varname] elif (self.method == 'brr'): (_, str_index) = np.unique(psu, return_index=True) checks.assert_brr_number_psus(str_index) psus = psu[np.sort(str_index)] strata = np.repeat(range(1, ((psus.size // 2) + 1)), 2) stratum_psu = pd.DataFrame({str_varname: strata, psu_varname: psus}) psu_pd = pd.DataFrame({psu_varname: psu}) stratum_psu = pd.merge(psu_pd, stratum_psu, on=psu_varname, how='left', sort=False) stratum_psu = stratum_psu[[str_varname, psu_varname]] key = [str_varname, psu_varname] else: stratum_psu = pd.DataFrame({psu_varname: psu}) key = [psu_varname] psus_ids = stratum_psu.drop_duplicates() if (self.method == 'jackknife'): self.number_reps = psus_ids.shape[0] _rep_data = self._jkn_replicates(psu, stratum) elif (self.method == 'bootstrap'): _rep_data = self._boot_replicates(psu, stratum) elif (self.method == 'brr'): _rep_data = self._brr_replicates(psu, stratum) self.rep_coefs = list((((1 / self.number_reps) * pow((1 - self.fay_coef), 2)) * np.ones(self.number_reps))) else: raise AssertionError("Replication method not recognized. Possible options are: 'bootstrap', 'brr', and 'jackknife'") rep_prefix = self._rep_prefix(rep_prefix) _rep_data = self._reps_to_dataframe(psus_ids, _rep_data, rep_prefix) samp_weight = pd.DataFrame({'_samp_weight': samp_weight}) samp_weight.reset_index(drop=True, inplace=True) full_sample = pd.concat([stratum_psu, samp_weight], axis=1) full_sample = pd.merge(full_sample, _rep_data, on=key, how='left', sort=False) if (not rep_coefs): rep_cols = [col for col in full_sample if col.startswith(rep_prefix)] full_sample[rep_cols] = full_sample[rep_cols].mul(samp_weight.values, axis=0) return full_sample<|docstring|>Computes replicate sample weights. Args: samp_weight (Array): array of sample weights. To incorporate the weights adjustment in the replicate weights, first replicate the design sample weights then apply the adjustments to the replicates. psu (Array): stratum (Array, optional): array of the strata. Defaults to None. rep_coefs (Union[Array, Number], optional): coefficients associated to the replicates. Defaults to False. rep_prefix (str, optional): prefix to apply to the replicate weights names. Defaults to None. psu_varname (str, optional): name of the psu variable in the output dataframe. Defaults to "_psu". str_varname (str, optional): name of the stratum variable in the output dataframe. Defaults to "_stratum". Raises: AssertionError: raises an assertion error when stratum is None for a stratified design. AssertionError: raises an assertion error when the replication method is not valid. Returns: pd.DataFrame: a dataframe of the replicates sample weights.<|endoftext|>
2ba8ce127003c1c2c4c454c4f55309fa003b78fcd4afd9e4e6e41f630cbf2e0d
def filter_anchor(points, rotate, properties, error): 'This function will add extreme weighting to the boundary points' max_weight = 10000 points[0]['weight'] = max_weight points[(- 1)]['weight'] = max_weight points[0]['residual weight'] = 1 points[(- 1)]['residual weight'] = 1 return points
This function will add extreme weighting to the boundary points
mesh_viewport_vertex_alignment.py
filter_anchor
hdunderscore/mesh_viewport_vertex_align
2
python
def filter_anchor(points, rotate, properties, error): max_weight = 10000 points[0]['weight'] = max_weight points[(- 1)]['weight'] = max_weight points[0]['residual weight'] = 1 points[(- 1)]['residual weight'] = 1 return points
def filter_anchor(points, rotate, properties, error): max_weight = 10000 points[0]['weight'] = max_weight points[(- 1)]['weight'] = max_weight points[0]['residual weight'] = 1 points[(- 1)]['residual weight'] = 1 return points<|docstring|>This function will add extreme weighting to the boundary points<|endoftext|>
03092600cdcf14ac7f20e3168dff036991a96e708bde96f0ca079fba59f944af
def fit1(properties, points): 'This function applies the fitting function several times, finding the axis rotation that causes the smallest error and returns the points.\n This expects a 1D fit where x is the domain, y is the range (and therefore y is being affected in fit).' fit_function = properties['function'] iterations = properties['iterations'] max_error = 9999999999999999999999999 error = [] smallest_error = max_error min_error = 0 min_theta = 0 theta = 0 theta_step_initial = 45 theta_step = theta_step_initial theta_forward = True for i in range(iterations): anchor = properties['anchor'] points = filter_reset_weights(points) try: error.append({'failed': True, 'error sum': max_error, 'stdev': 0, 'mean': max_error, 'residuals': [max_error], 'devs': [0]}) while True: error[i] = {'failed': True, 'error sum': max_error, 'stdev': 0, 'mean': max_error, 'residuals': [max_error], 'devs': [0]} points = fit_function(points, theta, properties) error[i] = {'failed': False, 'error sum': 0, 'stdev': 0, 'mean': 0, 'residuals': [], 'devs': []} SrN = 0 for p in points: error[i]['residuals'].append((math.pow(math.sqrt((((math.pow(p['delta'].x, 2) + math.pow(p['delta'].y, 2)) + math.pow(p['delta'].z, 2)) + math.pow(p['delta'].w, 2))), 2) * p['residual weight'])) error[i]['error sum'] += error[i]['residuals'][(- 1)] SrN += p['residual weight'] N = SrN error[i]['mean'] = (error[i]['error sum'] / N) for e in error[i]['residuals']: error[i]['devs'].append(math.pow((e - error[i]['mean']), 2)) error[i]['stdev'] += error[i]['devs'][(- 1)] error[i]['stdev'] = math.sqrt((error[i]['stdev'] / N)) if (not anchor): break if anchor: points = filter_anchor(points, theta, properties, error) anchor = False if (error[i]['error sum'] < smallest_error): smallest_error = error[i]['error sum'] min_error = i min_theta = theta except ValueError as e: print(e) except ZeroDivisionError as e: print(e) if (i > (360 / theta_step_initial)): if theta_forward: if (error[i]['error sum'] == smallest_error): theta += theta_step elif (error[i]['error sum'] > smallest_error): theta_step /= 2.0 theta -= theta_step theta_forward = False elif (error[i]['error sum'] == smallest_error): theta -= theta_step elif (error[i]['error sum'] > smallest_error): theta_step /= 2.0 theta += theta_step theta_forward = True elif (i == (360 / theta_step_initial)): theta = min_theta theta_step /= 2.0 else: theta += theta_step if (theta_step <= 1e-09): break anchor = properties['anchor'] points = filter_reset_weights(points) points = fit_function(points, min_theta, properties) if anchor: points = filter_anchor(points, min_theta, properties, error) anchor = False points = fit_function(points, min_theta, properties) return points
This function applies the fitting function several times, finding the axis rotation that causes the smallest error and returns the points. This expects a 1D fit where x is the domain, y is the range (and therefore y is being affected in fit).
mesh_viewport_vertex_alignment.py
fit1
hdunderscore/mesh_viewport_vertex_align
2
python
def fit1(properties, points): 'This function applies the fitting function several times, finding the axis rotation that causes the smallest error and returns the points.\n This expects a 1D fit where x is the domain, y is the range (and therefore y is being affected in fit).' fit_function = properties['function'] iterations = properties['iterations'] max_error = 9999999999999999999999999 error = [] smallest_error = max_error min_error = 0 min_theta = 0 theta = 0 theta_step_initial = 45 theta_step = theta_step_initial theta_forward = True for i in range(iterations): anchor = properties['anchor'] points = filter_reset_weights(points) try: error.append({'failed': True, 'error sum': max_error, 'stdev': 0, 'mean': max_error, 'residuals': [max_error], 'devs': [0]}) while True: error[i] = {'failed': True, 'error sum': max_error, 'stdev': 0, 'mean': max_error, 'residuals': [max_error], 'devs': [0]} points = fit_function(points, theta, properties) error[i] = {'failed': False, 'error sum': 0, 'stdev': 0, 'mean': 0, 'residuals': [], 'devs': []} SrN = 0 for p in points: error[i]['residuals'].append((math.pow(math.sqrt((((math.pow(p['delta'].x, 2) + math.pow(p['delta'].y, 2)) + math.pow(p['delta'].z, 2)) + math.pow(p['delta'].w, 2))), 2) * p['residual weight'])) error[i]['error sum'] += error[i]['residuals'][(- 1)] SrN += p['residual weight'] N = SrN error[i]['mean'] = (error[i]['error sum'] / N) for e in error[i]['residuals']: error[i]['devs'].append(math.pow((e - error[i]['mean']), 2)) error[i]['stdev'] += error[i]['devs'][(- 1)] error[i]['stdev'] = math.sqrt((error[i]['stdev'] / N)) if (not anchor): break if anchor: points = filter_anchor(points, theta, properties, error) anchor = False if (error[i]['error sum'] < smallest_error): smallest_error = error[i]['error sum'] min_error = i min_theta = theta except ValueError as e: print(e) except ZeroDivisionError as e: print(e) if (i > (360 / theta_step_initial)): if theta_forward: if (error[i]['error sum'] == smallest_error): theta += theta_step elif (error[i]['error sum'] > smallest_error): theta_step /= 2.0 theta -= theta_step theta_forward = False elif (error[i]['error sum'] == smallest_error): theta -= theta_step elif (error[i]['error sum'] > smallest_error): theta_step /= 2.0 theta += theta_step theta_forward = True elif (i == (360 / theta_step_initial)): theta = min_theta theta_step /= 2.0 else: theta += theta_step if (theta_step <= 1e-09): break anchor = properties['anchor'] points = filter_reset_weights(points) points = fit_function(points, min_theta, properties) if anchor: points = filter_anchor(points, min_theta, properties, error) anchor = False points = fit_function(points, min_theta, properties) return points
def fit1(properties, points): 'This function applies the fitting function several times, finding the axis rotation that causes the smallest error and returns the points.\n This expects a 1D fit where x is the domain, y is the range (and therefore y is being affected in fit).' fit_function = properties['function'] iterations = properties['iterations'] max_error = 9999999999999999999999999 error = [] smallest_error = max_error min_error = 0 min_theta = 0 theta = 0 theta_step_initial = 45 theta_step = theta_step_initial theta_forward = True for i in range(iterations): anchor = properties['anchor'] points = filter_reset_weights(points) try: error.append({'failed': True, 'error sum': max_error, 'stdev': 0, 'mean': max_error, 'residuals': [max_error], 'devs': [0]}) while True: error[i] = {'failed': True, 'error sum': max_error, 'stdev': 0, 'mean': max_error, 'residuals': [max_error], 'devs': [0]} points = fit_function(points, theta, properties) error[i] = {'failed': False, 'error sum': 0, 'stdev': 0, 'mean': 0, 'residuals': [], 'devs': []} SrN = 0 for p in points: error[i]['residuals'].append((math.pow(math.sqrt((((math.pow(p['delta'].x, 2) + math.pow(p['delta'].y, 2)) + math.pow(p['delta'].z, 2)) + math.pow(p['delta'].w, 2))), 2) * p['residual weight'])) error[i]['error sum'] += error[i]['residuals'][(- 1)] SrN += p['residual weight'] N = SrN error[i]['mean'] = (error[i]['error sum'] / N) for e in error[i]['residuals']: error[i]['devs'].append(math.pow((e - error[i]['mean']), 2)) error[i]['stdev'] += error[i]['devs'][(- 1)] error[i]['stdev'] = math.sqrt((error[i]['stdev'] / N)) if (not anchor): break if anchor: points = filter_anchor(points, theta, properties, error) anchor = False if (error[i]['error sum'] < smallest_error): smallest_error = error[i]['error sum'] min_error = i min_theta = theta except ValueError as e: print(e) except ZeroDivisionError as e: print(e) if (i > (360 / theta_step_initial)): if theta_forward: if (error[i]['error sum'] == smallest_error): theta += theta_step elif (error[i]['error sum'] > smallest_error): theta_step /= 2.0 theta -= theta_step theta_forward = False elif (error[i]['error sum'] == smallest_error): theta -= theta_step elif (error[i]['error sum'] > smallest_error): theta_step /= 2.0 theta += theta_step theta_forward = True elif (i == (360 / theta_step_initial)): theta = min_theta theta_step /= 2.0 else: theta += theta_step if (theta_step <= 1e-09): break anchor = properties['anchor'] points = filter_reset_weights(points) points = fit_function(points, min_theta, properties) if anchor: points = filter_anchor(points, min_theta, properties, error) anchor = False points = fit_function(points, min_theta, properties) return points<|docstring|>This function applies the fitting function several times, finding the axis rotation that causes the smallest error and returns the points. This expects a 1D fit where x is the domain, y is the range (and therefore y is being affected in fit).<|endoftext|>
bc2e4a8567cd881c5e39401cd7e954d139c2305c4d3e4d834665a751be7796e6
def error_residual1(points, r, rr, properties, line_func, line_parameters): 'This function is used in the fitting functions to determine the deltas ' for p in points: pr = (p['point'] * r) x = pr.x y = pr.y yy = line_func(x, line_parameters) p['delta'] = (mathutils.Vector((0, (y - yy), 0, 0)) * rr) return points
This function is used in the fitting functions to determine the deltas
mesh_viewport_vertex_alignment.py
error_residual1
hdunderscore/mesh_viewport_vertex_align
2
python
def error_residual1(points, r, rr, properties, line_func, line_parameters): ' ' for p in points: pr = (p['point'] * r) x = pr.x y = pr.y yy = line_func(x, line_parameters) p['delta'] = (mathutils.Vector((0, (y - yy), 0, 0)) * rr) return points
def error_residual1(points, r, rr, properties, line_func, line_parameters): ' ' for p in points: pr = (p['point'] * r) x = pr.x y = pr.y yy = line_func(x, line_parameters) p['delta'] = (mathutils.Vector((0, (y - yy), 0, 0)) * rr) return points<|docstring|>This function is used in the fitting functions to determine the deltas<|endoftext|>
01d93957589bca76e807b58408f07308288a5ec1c0341c580038c1b2f7e6dbd5
def sort_index1(points, r): 'This function sorts points based on their domain (assumed as x axis when rotated) ' points = sorted(points, key=(lambda xx: (xx['point'] * r).x)) return points
This function sorts points based on their domain (assumed as x axis when rotated)
mesh_viewport_vertex_alignment.py
sort_index1
hdunderscore/mesh_viewport_vertex_align
2
python
def sort_index1(points, r): ' ' points = sorted(points, key=(lambda xx: (xx['point'] * r).x)) return points
def sort_index1(points, r): ' ' points = sorted(points, key=(lambda xx: (xx['point'] * r).x)) return points<|docstring|>This function sorts points based on their domain (assumed as x axis when rotated)<|endoftext|>
1ae0d8fdf631491fa17d610e476e96d372295bfb18cd6d081ee758bb99126f5b
def fit_linear1(points, rotate, properties=None): 'This function attempts to fit a given set of points to a linear line: y = a1*x + a0' r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy += ((x * y) * p['weight']) Sx += (x * p['weight']) Sy += (y * p['weight']) Sx2 += (math.pow(x, 2) * p['weight']) Sw += p['weight'] N = Sw a1 = (((N * Sxy) - (Sx * Sy)) / ((N * Sx2) - math.pow(Sx, 2))) a0 = (((1 / N) * Sy) - (((a1 * 1) / N) * Sx)) def line_func(x, a): return (a[0] + (a[1] * x)) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1])
This function attempts to fit a given set of points to a linear line: y = a1*x + a0
mesh_viewport_vertex_alignment.py
fit_linear1
hdunderscore/mesh_viewport_vertex_align
2
python
def fit_linear1(points, rotate, properties=None): r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy += ((x * y) * p['weight']) Sx += (x * p['weight']) Sy += (y * p['weight']) Sx2 += (math.pow(x, 2) * p['weight']) Sw += p['weight'] N = Sw a1 = (((N * Sxy) - (Sx * Sy)) / ((N * Sx2) - math.pow(Sx, 2))) a0 = (((1 / N) * Sy) - (((a1 * 1) / N) * Sx)) def line_func(x, a): return (a[0] + (a[1] * x)) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1])
def fit_linear1(points, rotate, properties=None): r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy += ((x * y) * p['weight']) Sx += (x * p['weight']) Sy += (y * p['weight']) Sx2 += (math.pow(x, 2) * p['weight']) Sw += p['weight'] N = Sw a1 = (((N * Sxy) - (Sx * Sy)) / ((N * Sx2) - math.pow(Sx, 2))) a0 = (((1 / N) * Sy) - (((a1 * 1) / N) * Sx)) def line_func(x, a): return (a[0] + (a[1] * x)) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1])<|docstring|>This function attempts to fit a given set of points to a linear line: y = a1*x + a0<|endoftext|>
801b7cbde1b10e65abeb4bb89eb87ea9ebf05f8ad0cc7f1410c39b22572bd3ce
def fit_quadratic1(points, rotate, properties=None): 'This function attempts to fit a given set of points to a quadratic polynomial line: y = a2*x^2 + a1*x + a0' r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sx2y = 0 Sx3 = 0 Sx4 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy = (Sxy + ((x * y) * p['weight'])) Sx = (Sx + (x * p['weight'])) Sy = (Sy + (y * p['weight'])) Sx2 = (Sx2 + (math.pow(x, 2) * p['weight'])) Sx2y = (Sx2y + ((math.pow(x, 2) * y) * p['weight'])) Sx3 = (Sx3 + (math.pow(x, 3) * p['weight'])) Sx4 = (Sx4 + (math.pow(x, 4) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Sx, Sx2, Sy], [Sx, Sx2, Sx3, Sxy], [Sx2, Sx3, Sx4, Sx2y]] xM = like_a_gauss(A) a0 = xM[0][3] a1 = xM[1][3] a2 = xM[2][3] def line_func(x, a): return ((a[0] + (a[1] * x)) + (a[2] * math.pow(x, 2))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2])
This function attempts to fit a given set of points to a quadratic polynomial line: y = a2*x^2 + a1*x + a0
mesh_viewport_vertex_alignment.py
fit_quadratic1
hdunderscore/mesh_viewport_vertex_align
2
python
def fit_quadratic1(points, rotate, properties=None): r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sx2y = 0 Sx3 = 0 Sx4 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy = (Sxy + ((x * y) * p['weight'])) Sx = (Sx + (x * p['weight'])) Sy = (Sy + (y * p['weight'])) Sx2 = (Sx2 + (math.pow(x, 2) * p['weight'])) Sx2y = (Sx2y + ((math.pow(x, 2) * y) * p['weight'])) Sx3 = (Sx3 + (math.pow(x, 3) * p['weight'])) Sx4 = (Sx4 + (math.pow(x, 4) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Sx, Sx2, Sy], [Sx, Sx2, Sx3, Sxy], [Sx2, Sx3, Sx4, Sx2y]] xM = like_a_gauss(A) a0 = xM[0][3] a1 = xM[1][3] a2 = xM[2][3] def line_func(x, a): return ((a[0] + (a[1] * x)) + (a[2] * math.pow(x, 2))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2])
def fit_quadratic1(points, rotate, properties=None): r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sx2y = 0 Sx3 = 0 Sx4 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy = (Sxy + ((x * y) * p['weight'])) Sx = (Sx + (x * p['weight'])) Sy = (Sy + (y * p['weight'])) Sx2 = (Sx2 + (math.pow(x, 2) * p['weight'])) Sx2y = (Sx2y + ((math.pow(x, 2) * y) * p['weight'])) Sx3 = (Sx3 + (math.pow(x, 3) * p['weight'])) Sx4 = (Sx4 + (math.pow(x, 4) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Sx, Sx2, Sy], [Sx, Sx2, Sx3, Sxy], [Sx2, Sx3, Sx4, Sx2y]] xM = like_a_gauss(A) a0 = xM[0][3] a1 = xM[1][3] a2 = xM[2][3] def line_func(x, a): return ((a[0] + (a[1] * x)) + (a[2] * math.pow(x, 2))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2])<|docstring|>This function attempts to fit a given set of points to a quadratic polynomial line: y = a2*x^2 + a1*x + a0<|endoftext|>
dd90d1d7756f8a46f12ee0a681f29b5d35f006c78a1b55b6ad115e833f1ff83f
def fit_cubic1(points, rotate, properties=None): 'This function attempts to fit a given set of points to a cubic polynomial line: y = a3*x^3 + a2*x^2 + a1*x + a0' r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sx2y = 0 Sx3y = 0 Sx3 = 0 Sx4 = 0 Sx5 = 0 Sx6 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy = (Sxy + ((x * y) * p['weight'])) Sx = (Sx + (x * p['weight'])) Sy = (Sy + (y * p['weight'])) Sx2 = (Sx2 + (math.pow(x, 2) * p['weight'])) Sx2y = (Sx2y + ((math.pow(x, 2) * y) * p['weight'])) Sx3y = (Sx3y + ((math.pow(x, 3) * y) * p['weight'])) Sx3 = (Sx3 + (math.pow(x, 3) * p['weight'])) Sx4 = (Sx4 + (math.pow(x, 4) * p['weight'])) Sx5 = (Sx5 + (math.pow(x, 5) * p['weight'])) Sx6 = (Sx6 + (math.pow(x, 6) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Sx, Sx2, Sx3, Sy], [Sx, Sx2, Sx3, Sx4, Sxy], [Sx2, Sx3, Sx4, Sx5, Sx2y], [Sx3, Sx4, Sx5, Sx6, Sx3y]] xM = like_a_gauss(A) a0 = xM[0][4] a1 = xM[1][4] a2 = xM[2][4] a3 = xM[3][4] def line_func(x, a): return (((a[0] + (a[1] * x)) + (a[2] * math.pow(x, 2))) + (a[3] * math.pow(x, 3))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2, a3])
This function attempts to fit a given set of points to a cubic polynomial line: y = a3*x^3 + a2*x^2 + a1*x + a0
mesh_viewport_vertex_alignment.py
fit_cubic1
hdunderscore/mesh_viewport_vertex_align
2
python
def fit_cubic1(points, rotate, properties=None): r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sx2y = 0 Sx3y = 0 Sx3 = 0 Sx4 = 0 Sx5 = 0 Sx6 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy = (Sxy + ((x * y) * p['weight'])) Sx = (Sx + (x * p['weight'])) Sy = (Sy + (y * p['weight'])) Sx2 = (Sx2 + (math.pow(x, 2) * p['weight'])) Sx2y = (Sx2y + ((math.pow(x, 2) * y) * p['weight'])) Sx3y = (Sx3y + ((math.pow(x, 3) * y) * p['weight'])) Sx3 = (Sx3 + (math.pow(x, 3) * p['weight'])) Sx4 = (Sx4 + (math.pow(x, 4) * p['weight'])) Sx5 = (Sx5 + (math.pow(x, 5) * p['weight'])) Sx6 = (Sx6 + (math.pow(x, 6) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Sx, Sx2, Sx3, Sy], [Sx, Sx2, Sx3, Sx4, Sxy], [Sx2, Sx3, Sx4, Sx5, Sx2y], [Sx3, Sx4, Sx5, Sx6, Sx3y]] xM = like_a_gauss(A) a0 = xM[0][4] a1 = xM[1][4] a2 = xM[2][4] a3 = xM[3][4] def line_func(x, a): return (((a[0] + (a[1] * x)) + (a[2] * math.pow(x, 2))) + (a[3] * math.pow(x, 3))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2, a3])
def fit_cubic1(points, rotate, properties=None): r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') Sxy = 0 Sx = 0 Sy = 0 Sx2 = 0 Sx2y = 0 Sx3y = 0 Sx3 = 0 Sx4 = 0 Sx5 = 0 Sx6 = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sxy = (Sxy + ((x * y) * p['weight'])) Sx = (Sx + (x * p['weight'])) Sy = (Sy + (y * p['weight'])) Sx2 = (Sx2 + (math.pow(x, 2) * p['weight'])) Sx2y = (Sx2y + ((math.pow(x, 2) * y) * p['weight'])) Sx3y = (Sx3y + ((math.pow(x, 3) * y) * p['weight'])) Sx3 = (Sx3 + (math.pow(x, 3) * p['weight'])) Sx4 = (Sx4 + (math.pow(x, 4) * p['weight'])) Sx5 = (Sx5 + (math.pow(x, 5) * p['weight'])) Sx6 = (Sx6 + (math.pow(x, 6) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Sx, Sx2, Sx3, Sy], [Sx, Sx2, Sx3, Sx4, Sxy], [Sx2, Sx3, Sx4, Sx5, Sx2y], [Sx3, Sx4, Sx5, Sx6, Sx3y]] xM = like_a_gauss(A) a0 = xM[0][4] a1 = xM[1][4] a2 = xM[2][4] a3 = xM[3][4] def line_func(x, a): return (((a[0] + (a[1] * x)) + (a[2] * math.pow(x, 2))) + (a[3] * math.pow(x, 3))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2, a3])<|docstring|>This function attempts to fit a given set of points to a cubic polynomial line: y = a3*x^3 + a2*x^2 + a1*x + a0<|endoftext|>
66dabc3919176fd60e6d60af3fdc14dbf65749efa7c0ee82c63ae4242fef5e7b
def fit_cosine1(points, rotate, properties): 'This function attempts to fit a given set of points to a cosine curve: y = a0 + a1*cos(w*x) + a2*cos(w*x) ' r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') omega = properties['cosine_omega'] Sycos = 0 Sysin = 0 Scos = 0 Scos2 = 0 Ssin = 0 Ssin2 = 0 Sy = 0 Scossin = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sy = (Sy + (y * p['weight'])) Sycos = (Sycos + ((y * math.cos((omega * x))) * p['weight'])) Sysin = (Sysin + ((y * math.sin((omega * x))) * p['weight'])) Scos = (Scos + (math.cos((omega * x)) * p['weight'])) Ssin = (Ssin + (math.sin((omega * x)) * p['weight'])) Scos2 = (Scos2 + (math.pow(math.cos((omega * x)), 2) * p['weight'])) Ssin2 = (Ssin2 + (math.pow(math.sin((omega * x)), 2) * p['weight'])) Scossin = (Scossin + ((math.cos((omega * x)) * math.sin((omega * x))) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Scos, Ssin, Sy], [Scos, Scos2, Scossin, Sycos], [Ssin, Scossin, Ssin2, Sysin]] xM = like_a_gauss(A) a0 = xM[0][3] a1 = xM[1][3] a2 = xM[2][3] def line_func(x, a): return ((a[0] + (a[1] * math.cos((a[3] * x)))) + (a[2] * math.sin((a[3] * x)))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2, omega])
This function attempts to fit a given set of points to a cosine curve: y = a0 + a1*cos(w*x) + a2*cos(w*x)
mesh_viewport_vertex_alignment.py
fit_cosine1
hdunderscore/mesh_viewport_vertex_align
2
python
def fit_cosine1(points, rotate, properties): ' ' r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') omega = properties['cosine_omega'] Sycos = 0 Sysin = 0 Scos = 0 Scos2 = 0 Ssin = 0 Ssin2 = 0 Sy = 0 Scossin = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sy = (Sy + (y * p['weight'])) Sycos = (Sycos + ((y * math.cos((omega * x))) * p['weight'])) Sysin = (Sysin + ((y * math.sin((omega * x))) * p['weight'])) Scos = (Scos + (math.cos((omega * x)) * p['weight'])) Ssin = (Ssin + (math.sin((omega * x)) * p['weight'])) Scos2 = (Scos2 + (math.pow(math.cos((omega * x)), 2) * p['weight'])) Ssin2 = (Ssin2 + (math.pow(math.sin((omega * x)), 2) * p['weight'])) Scossin = (Scossin + ((math.cos((omega * x)) * math.sin((omega * x))) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Scos, Ssin, Sy], [Scos, Scos2, Scossin, Sycos], [Ssin, Scossin, Ssin2, Sysin]] xM = like_a_gauss(A) a0 = xM[0][3] a1 = xM[1][3] a2 = xM[2][3] def line_func(x, a): return ((a[0] + (a[1] * math.cos((a[3] * x)))) + (a[2] * math.sin((a[3] * x)))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2, omega])
def fit_cosine1(points, rotate, properties): ' ' r = mathutils.Matrix.Rotation(math.radians(rotate), 4, 'Z') rr = mathutils.Matrix.Rotation(math.radians((- rotate)), 4, 'Z') omega = properties['cosine_omega'] Sycos = 0 Sysin = 0 Scos = 0 Scos2 = 0 Ssin = 0 Ssin2 = 0 Sy = 0 Scossin = 0 Sw = 0 for p in points: pr = (p['point'] * r) x = pr.x y = pr.y Sy = (Sy + (y * p['weight'])) Sycos = (Sycos + ((y * math.cos((omega * x))) * p['weight'])) Sysin = (Sysin + ((y * math.sin((omega * x))) * p['weight'])) Scos = (Scos + (math.cos((omega * x)) * p['weight'])) Ssin = (Ssin + (math.sin((omega * x)) * p['weight'])) Scos2 = (Scos2 + (math.pow(math.cos((omega * x)), 2) * p['weight'])) Ssin2 = (Ssin2 + (math.pow(math.sin((omega * x)), 2) * p['weight'])) Scossin = (Scossin + ((math.cos((omega * x)) * math.sin((omega * x))) * p['weight'])) Sw += p['weight'] N = Sw A = [[N, Scos, Ssin, Sy], [Scos, Scos2, Scossin, Sycos], [Ssin, Scossin, Ssin2, Sysin]] xM = like_a_gauss(A) a0 = xM[0][3] a1 = xM[1][3] a2 = xM[2][3] def line_func(x, a): return ((a[0] + (a[1] * math.cos((a[3] * x)))) + (a[2] * math.sin((a[3] * x)))) points = sort_index1(points, r) return error_residual1(points, r, rr, properties, line_func, [a0, a1, a2, omega])<|docstring|>This function attempts to fit a given set of points to a cosine curve: y = a0 + a1*cos(w*x) + a2*cos(w*x)<|endoftext|>
eb6996e0da4033b131cc148d07c44aba93e7acf09c6515cffc51863e35e37d79
def get_vertices(mesh): 'Returns the active list of selected vertices.' verts = [] for v in mesh.verts: if v.select: verts.append(v) return verts
Returns the active list of selected vertices.
mesh_viewport_vertex_alignment.py
get_vertices
hdunderscore/mesh_viewport_vertex_align
2
python
def get_vertices(mesh): verts = [] for v in mesh.verts: if v.select: verts.append(v) return verts
def get_vertices(mesh): verts = [] for v in mesh.verts: if v.select: verts.append(v) return verts<|docstring|>Returns the active list of selected vertices.<|endoftext|>
2550d3763631dc500823d267d6c2c1166ab3ca189f453208555f27f5820751a1
def get_axis(type): 'Gets the axis we will be performing the rotation on. Returns a projection matrix' if (type == 'perspective'): region = bpy.context.region rv3d = bpy.context.region_data else: return None return {'region': region, 'rv3d': rv3d}
Gets the axis we will be performing the rotation on. Returns a projection matrix
mesh_viewport_vertex_alignment.py
get_axis
hdunderscore/mesh_viewport_vertex_align
2
python
def get_axis(type): if (type == 'perspective'): region = bpy.context.region rv3d = bpy.context.region_data else: return None return {'region': region, 'rv3d': rv3d}
def get_axis(type): if (type == 'perspective'): region = bpy.context.region rv3d = bpy.context.region_data else: return None return {'region': region, 'rv3d': rv3d}<|docstring|>Gets the axis we will be performing the rotation on. Returns a projection matrix<|endoftext|>
99bf769309f44f801407c7bff8912bc3a56f356eca70887a964a8229806cd54c
def project(vertices, axis): 'Project the vertices onto a plane of the given axis.' points = [] for v in vertices: vec = mathutils.Vector(v.co) p = bpy_extras.view3d_utils.location_3d_to_region_2d(axis['region'], axis['rv3d'], vec).to_4d() depth = vec points.append({'id': v, 'point': p, 'delta': None, "v'": None, 'depth': depth, 'weight': 1.0, 'residual weight': 1.0, 'index': None}) return points
Project the vertices onto a plane of the given axis.
mesh_viewport_vertex_alignment.py
project
hdunderscore/mesh_viewport_vertex_align
2
python
def project(vertices, axis): points = [] for v in vertices: vec = mathutils.Vector(v.co) p = bpy_extras.view3d_utils.location_3d_to_region_2d(axis['region'], axis['rv3d'], vec).to_4d() depth = vec points.append({'id': v, 'point': p, 'delta': None, "v'": None, 'depth': depth, 'weight': 1.0, 'residual weight': 1.0, 'index': None}) return points
def project(vertices, axis): points = [] for v in vertices: vec = mathutils.Vector(v.co) p = bpy_extras.view3d_utils.location_3d_to_region_2d(axis['region'], axis['rv3d'], vec).to_4d() depth = vec points.append({'id': v, 'point': p, 'delta': None, "v'": None, 'depth': depth, 'weight': 1.0, 'residual weight': 1.0, 'index': None}) return points<|docstring|>Project the vertices onto a plane of the given axis.<|endoftext|>
6c4c3466dae071fc31405638d886aba67c5b4853be6e7d006321c29d7689b467
def unproject(points, axis, properties): 'Unproject points on a plane to vertices in 3d space.' for p in points: new_p = (p['point'] - (p['delta'] * properties['influence'])) old_v = p['id'].co new_v = bpy_extras.view3d_utils.region_2d_to_location_3d(axis['region'], axis['rv3d'], new_p.to_2d(), p['depth']) p["v'"] = new_v return points
Unproject points on a plane to vertices in 3d space.
mesh_viewport_vertex_alignment.py
unproject
hdunderscore/mesh_viewport_vertex_align
2
python
def unproject(points, axis, properties): for p in points: new_p = (p['point'] - (p['delta'] * properties['influence'])) old_v = p['id'].co new_v = bpy_extras.view3d_utils.region_2d_to_location_3d(axis['region'], axis['rv3d'], new_p.to_2d(), p['depth']) p["v'"] = new_v return points
def unproject(points, axis, properties): for p in points: new_p = (p['point'] - (p['delta'] * properties['influence'])) old_v = p['id'].co new_v = bpy_extras.view3d_utils.region_2d_to_location_3d(axis['region'], axis['rv3d'], new_p.to_2d(), p['depth']) p["v'"] = new_v return points<|docstring|>Unproject points on a plane to vertices in 3d space.<|endoftext|>
4aa2ffe5acddabc24a79933b44c12d0f0181dc26585db685f0993f39f61c7448
def update_vertices(mesh, points): 'Update the active set of selected vertices with their fitted positions.' for p in points: p['id'].co = p["v'"].to_3d().to_tuple() bmesh.update_edit_mesh(mesh)
Update the active set of selected vertices with their fitted positions.
mesh_viewport_vertex_alignment.py
update_vertices
hdunderscore/mesh_viewport_vertex_align
2
python
def update_vertices(mesh, points): for p in points: p['id'].co = p["v'"].to_3d().to_tuple() bmesh.update_edit_mesh(mesh)
def update_vertices(mesh, points): for p in points: p['id'].co = p["v'"].to_3d().to_tuple() bmesh.update_edit_mesh(mesh)<|docstring|>Update the active set of selected vertices with their fitted positions.<|endoftext|>
df8dbf2e61345fb064c43f3a3ff84a51b46b493d2c437f6a6806f707a0c70fd2
def like_a_gauss(mat): "\n Implementation of the Gaussian Elimination Algorithm for finding the row-reduced echelon form of a given matrix.\n No pivoting is done.\n Requires Python 3 due to the different behaviour of the division operation in earlier versions of Python.\n Released under the Public Domain (if you want it - you probably don't)\n https://gist.github.com/zhuowei/7149445\n Changes mat into Reduced Row-Echelon Form.\n " for i in range(min(len(mat), len(mat[0]))): for r in range(i, len(mat)): zero_row = (mat[r][i] == 0) if zero_row: continue (mat[i], mat[r]) = (mat[r], mat[i]) first_row_first_col = mat[i][i] for rr in range((i + 1), len(mat)): this_row_first = mat[rr][i] scalarMultiple = (((- 1) * this_row_first) / first_row_first_col) for cc in range(i, len(mat[0])): mat[rr][cc] += (mat[i][cc] * scalarMultiple) break for i in range((min(len(mat), len(mat[0])) - 1), (- 1), (- 1)): first_elem_col = (- 1) first_elem = (- 1) for c in range(len(mat[0])): if (mat[i][c] == 0): continue if (first_elem_col == (- 1)): first_elem_col = c first_elem = mat[i][c] mat[i][c] /= first_elem for r in range(i): this_row_above = mat[r][first_elem_col] scalarMultiple = ((- 1) * this_row_above) for cc in range(len(mat[0])): mat[r][cc] += (mat[i][cc] * scalarMultiple) return mat
Implementation of the Gaussian Elimination Algorithm for finding the row-reduced echelon form of a given matrix. No pivoting is done. Requires Python 3 due to the different behaviour of the division operation in earlier versions of Python. Released under the Public Domain (if you want it - you probably don't) https://gist.github.com/zhuowei/7149445 Changes mat into Reduced Row-Echelon Form.
mesh_viewport_vertex_alignment.py
like_a_gauss
hdunderscore/mesh_viewport_vertex_align
2
python
def like_a_gauss(mat): "\n Implementation of the Gaussian Elimination Algorithm for finding the row-reduced echelon form of a given matrix.\n No pivoting is done.\n Requires Python 3 due to the different behaviour of the division operation in earlier versions of Python.\n Released under the Public Domain (if you want it - you probably don't)\n https://gist.github.com/zhuowei/7149445\n Changes mat into Reduced Row-Echelon Form.\n " for i in range(min(len(mat), len(mat[0]))): for r in range(i, len(mat)): zero_row = (mat[r][i] == 0) if zero_row: continue (mat[i], mat[r]) = (mat[r], mat[i]) first_row_first_col = mat[i][i] for rr in range((i + 1), len(mat)): this_row_first = mat[rr][i] scalarMultiple = (((- 1) * this_row_first) / first_row_first_col) for cc in range(i, len(mat[0])): mat[rr][cc] += (mat[i][cc] * scalarMultiple) break for i in range((min(len(mat), len(mat[0])) - 1), (- 1), (- 1)): first_elem_col = (- 1) first_elem = (- 1) for c in range(len(mat[0])): if (mat[i][c] == 0): continue if (first_elem_col == (- 1)): first_elem_col = c first_elem = mat[i][c] mat[i][c] /= first_elem for r in range(i): this_row_above = mat[r][first_elem_col] scalarMultiple = ((- 1) * this_row_above) for cc in range(len(mat[0])): mat[r][cc] += (mat[i][cc] * scalarMultiple) return mat
def like_a_gauss(mat): "\n Implementation of the Gaussian Elimination Algorithm for finding the row-reduced echelon form of a given matrix.\n No pivoting is done.\n Requires Python 3 due to the different behaviour of the division operation in earlier versions of Python.\n Released under the Public Domain (if you want it - you probably don't)\n https://gist.github.com/zhuowei/7149445\n Changes mat into Reduced Row-Echelon Form.\n " for i in range(min(len(mat), len(mat[0]))): for r in range(i, len(mat)): zero_row = (mat[r][i] == 0) if zero_row: continue (mat[i], mat[r]) = (mat[r], mat[i]) first_row_first_col = mat[i][i] for rr in range((i + 1), len(mat)): this_row_first = mat[rr][i] scalarMultiple = (((- 1) * this_row_first) / first_row_first_col) for cc in range(i, len(mat[0])): mat[rr][cc] += (mat[i][cc] * scalarMultiple) break for i in range((min(len(mat), len(mat[0])) - 1), (- 1), (- 1)): first_elem_col = (- 1) first_elem = (- 1) for c in range(len(mat[0])): if (mat[i][c] == 0): continue if (first_elem_col == (- 1)): first_elem_col = c first_elem = mat[i][c] mat[i][c] /= first_elem for r in range(i): this_row_above = mat[r][first_elem_col] scalarMultiple = ((- 1) * this_row_above) for cc in range(len(mat[0])): mat[r][cc] += (mat[i][cc] * scalarMultiple) return mat<|docstring|>Implementation of the Gaussian Elimination Algorithm for finding the row-reduced echelon form of a given matrix. No pivoting is done. Requires Python 3 due to the different behaviour of the division operation in earlier versions of Python. Released under the Public Domain (if you want it - you probably don't) https://gist.github.com/zhuowei/7149445 Changes mat into Reduced Row-Echelon Form.<|endoftext|>
17498c96b3f8df099a37a41c19504885ace2cbd822726ae508d8d01b2af9de34
def get_ols(force_download: bool=False): 'Get the OLS registry.' if (PROCESSED_PATH.exists() and (not force_download)): with PROCESSED_PATH.open() as file: return json.load(file) download(url=URL, path=RAW_PATH, force=True) with RAW_PATH.open() as file: data = json.load(file) if ('next' in data['_links']): raise NotImplementedError('Need to implement paging since there are more entries than fit into one page') processed = {} for ontology in data['_embedded']['ontologies']: ols_id = ontology['ontologyId'] config = _PROCESSING.get(ols_id) if (config is None): logger.warning('need to curate processing file for OLS prefix %s', ols_id) continue processed[ols_id] = _process(ontology, config) with PROCESSED_PATH.open('w') as file: json.dump(processed, file, indent=2, sort_keys=True) return processed
Get the OLS registry.
src/bioregistry/external/ols.py
get_ols
cthoyt/bioregistry
2
python
def get_ols(force_download: bool=False): if (PROCESSED_PATH.exists() and (not force_download)): with PROCESSED_PATH.open() as file: return json.load(file) download(url=URL, path=RAW_PATH, force=True) with RAW_PATH.open() as file: data = json.load(file) if ('next' in data['_links']): raise NotImplementedError('Need to implement paging since there are more entries than fit into one page') processed = {} for ontology in data['_embedded']['ontologies']: ols_id = ontology['ontologyId'] config = _PROCESSING.get(ols_id) if (config is None): logger.warning('need to curate processing file for OLS prefix %s', ols_id) continue processed[ols_id] = _process(ontology, config) with PROCESSED_PATH.open('w') as file: json.dump(processed, file, indent=2, sort_keys=True) return processed
def get_ols(force_download: bool=False): if (PROCESSED_PATH.exists() and (not force_download)): with PROCESSED_PATH.open() as file: return json.load(file) download(url=URL, path=RAW_PATH, force=True) with RAW_PATH.open() as file: data = json.load(file) if ('next' in data['_links']): raise NotImplementedError('Need to implement paging since there are more entries than fit into one page') processed = {} for ontology in data['_embedded']['ontologies']: ols_id = ontology['ontologyId'] config = _PROCESSING.get(ols_id) if (config is None): logger.warning('need to curate processing file for OLS prefix %s', ols_id) continue processed[ols_id] = _process(ontology, config) with PROCESSED_PATH.open('w') as file: json.dump(processed, file, indent=2, sort_keys=True) return processed<|docstring|>Get the OLS registry.<|endoftext|>
e24278d0c74797a5e9c2c22f90eca30ffe82ae3c7c120be16e6152a74a7a982a
@click.command() def main(): 'Reload the OLS data.' get_ols(force_download=True)
Reload the OLS data.
src/bioregistry/external/ols.py
main
cthoyt/bioregistry
2
python
@click.command() def main(): get_ols(force_download=True)
@click.command() def main(): get_ols(force_download=True)<|docstring|>Reload the OLS data.<|endoftext|>
1878d0f3280149992723ccb245d5358ba74379175d00cbc492a2761e72b6a524
def test(): '\n 异常处理\n ' try: a = (10 / 0) print(('a is %s' % a)) except Exception as e: print(('exception is %s' % e))
异常处理
bookcode/pythonproject/pythonlearning/pythonlearning/base/except.py
test
zhangymPerson/Think-in-java-note
0
python
def test(): '\n \n ' try: a = (10 / 0) print(('a is %s' % a)) except Exception as e: print(('exception is %s' % e))
def test(): '\n \n ' try: a = (10 / 0) print(('a is %s' % a)) except Exception as e: print(('exception is %s' % e))<|docstring|>异常处理<|endoftext|>
c6a5457920b6907aa5c46f6cd8b50eebcaf9eeb3854d90a945f045a7fbd5a5d4
def OpenEditor(self, col, row): '\n Opens an editor at the current position.\n Modified to allow a generic getter to set editor text.\n ' evt = wx.ListEvent(wx.wxEVT_COMMAND_LIST_BEGIN_LABEL_EDIT, self.GetId()) evt.m_itemIndex = row evt.m_col = col item = self.GetItem(row, col) evt.m_item.SetId(item.GetId()) evt.m_item.SetColumn(item.GetColumn()) evt.m_item.SetData(item.GetData()) evt.m_item.SetText(item.GetText()) ret = self.GetEventHandler().ProcessEvent(evt) if (ret and (not evt.IsAllowed())): return if (self.GetColumn(col).m_format != self.col_style): self.make_editor(self.GetColumn(col).m_format) x0 = self.col_locs[col] x1 = (self.col_locs[(col + 1)] - x0) scrolloffset = self.GetScrollPos(wx.HORIZONTAL) if (((x0 + x1) - scrolloffset) > self.GetSize()[0]): if (wx.Platform == '__WXMSW__'): offset = (((x0 + x1) - self.GetSize()[0]) - scrolloffset) addoffset = (self.GetSize()[0] / 4) if ((addoffset + scrolloffset) < self.GetSize()[0]): offset += addoffset self.ScrollList(offset, 0) scrolloffset = self.GetScrollPos(wx.HORIZONTAL) else: self.editor.SetValue(self.GetItem(row, col).GetText()) self.curRow = row self.curCol = col self.CloseEditor() return y0 = self.GetItemRect(row)[1] editor = self.editor editor.SetDimensions((x0 - scrolloffset), y0, x1, (- 1)) editor.SetValue(self.GetEditValue(row, col)) editor.Show() editor.Raise() editor.SetSelection((- 1), (- 1)) editor.SetFocus() self.curRow = row self.curCol = col
Opens an editor at the current position. Modified to allow a generic getter to set editor text.
ListEditorCtrl.py
OpenEditor
fprimex/lad
0
python
def OpenEditor(self, col, row): '\n Opens an editor at the current position.\n Modified to allow a generic getter to set editor text.\n ' evt = wx.ListEvent(wx.wxEVT_COMMAND_LIST_BEGIN_LABEL_EDIT, self.GetId()) evt.m_itemIndex = row evt.m_col = col item = self.GetItem(row, col) evt.m_item.SetId(item.GetId()) evt.m_item.SetColumn(item.GetColumn()) evt.m_item.SetData(item.GetData()) evt.m_item.SetText(item.GetText()) ret = self.GetEventHandler().ProcessEvent(evt) if (ret and (not evt.IsAllowed())): return if (self.GetColumn(col).m_format != self.col_style): self.make_editor(self.GetColumn(col).m_format) x0 = self.col_locs[col] x1 = (self.col_locs[(col + 1)] - x0) scrolloffset = self.GetScrollPos(wx.HORIZONTAL) if (((x0 + x1) - scrolloffset) > self.GetSize()[0]): if (wx.Platform == '__WXMSW__'): offset = (((x0 + x1) - self.GetSize()[0]) - scrolloffset) addoffset = (self.GetSize()[0] / 4) if ((addoffset + scrolloffset) < self.GetSize()[0]): offset += addoffset self.ScrollList(offset, 0) scrolloffset = self.GetScrollPos(wx.HORIZONTAL) else: self.editor.SetValue(self.GetItem(row, col).GetText()) self.curRow = row self.curCol = col self.CloseEditor() return y0 = self.GetItemRect(row)[1] editor = self.editor editor.SetDimensions((x0 - scrolloffset), y0, x1, (- 1)) editor.SetValue(self.GetEditValue(row, col)) editor.Show() editor.Raise() editor.SetSelection((- 1), (- 1)) editor.SetFocus() self.curRow = row self.curCol = col
def OpenEditor(self, col, row): '\n Opens an editor at the current position.\n Modified to allow a generic getter to set editor text.\n ' evt = wx.ListEvent(wx.wxEVT_COMMAND_LIST_BEGIN_LABEL_EDIT, self.GetId()) evt.m_itemIndex = row evt.m_col = col item = self.GetItem(row, col) evt.m_item.SetId(item.GetId()) evt.m_item.SetColumn(item.GetColumn()) evt.m_item.SetData(item.GetData()) evt.m_item.SetText(item.GetText()) ret = self.GetEventHandler().ProcessEvent(evt) if (ret and (not evt.IsAllowed())): return if (self.GetColumn(col).m_format != self.col_style): self.make_editor(self.GetColumn(col).m_format) x0 = self.col_locs[col] x1 = (self.col_locs[(col + 1)] - x0) scrolloffset = self.GetScrollPos(wx.HORIZONTAL) if (((x0 + x1) - scrolloffset) > self.GetSize()[0]): if (wx.Platform == '__WXMSW__'): offset = (((x0 + x1) - self.GetSize()[0]) - scrolloffset) addoffset = (self.GetSize()[0] / 4) if ((addoffset + scrolloffset) < self.GetSize()[0]): offset += addoffset self.ScrollList(offset, 0) scrolloffset = self.GetScrollPos(wx.HORIZONTAL) else: self.editor.SetValue(self.GetItem(row, col).GetText()) self.curRow = row self.curCol = col self.CloseEditor() return y0 = self.GetItemRect(row)[1] editor = self.editor editor.SetDimensions((x0 - scrolloffset), y0, x1, (- 1)) editor.SetValue(self.GetEditValue(row, col)) editor.Show() editor.Raise() editor.SetSelection((- 1), (- 1)) editor.SetFocus() self.curRow = row self.curCol = col<|docstring|>Opens an editor at the current position. Modified to allow a generic getter to set editor text.<|endoftext|>
86a23d488cd1031fca30b125a9373c1f3aff1e0771beee3aac253240e936f541
def CloseEditor(self, evt=None): '\n Close the editor and save the new value to the ListCtrl.\n Modified to allow a generic setter to save edited data.\n ' if (not self.editor.IsShown()): return text = self.editor.GetValue() self.editor.Hide() self.SetFocus() self.SetValue(self.curRow, self.curCol, text) evt = wx.ListEvent(wx.wxEVT_COMMAND_LIST_END_LABEL_EDIT, self.GetId()) evt.m_itemIndex = self.curRow evt.m_col = self.curCol item = self.GetItem(self.curRow, self.curCol) evt.m_item.SetId(item.GetId()) evt.m_item.SetColumn(item.GetColumn()) evt.m_item.SetData(item.GetData()) evt.m_item.SetText(text) ret = self.GetEventHandler().ProcessEvent(evt) if ((not ret) or evt.IsAllowed()): if self.IsVirtual(): self.SetVirtualData(self.curRow, self.curCol, text) else: self.SetStringItem(self.curRow, self.curCol, text) self.RefreshItem(self.curRow) self.RefreshList()
Close the editor and save the new value to the ListCtrl. Modified to allow a generic setter to save edited data.
ListEditorCtrl.py
CloseEditor
fprimex/lad
0
python
def CloseEditor(self, evt=None): '\n Close the editor and save the new value to the ListCtrl.\n Modified to allow a generic setter to save edited data.\n ' if (not self.editor.IsShown()): return text = self.editor.GetValue() self.editor.Hide() self.SetFocus() self.SetValue(self.curRow, self.curCol, text) evt = wx.ListEvent(wx.wxEVT_COMMAND_LIST_END_LABEL_EDIT, self.GetId()) evt.m_itemIndex = self.curRow evt.m_col = self.curCol item = self.GetItem(self.curRow, self.curCol) evt.m_item.SetId(item.GetId()) evt.m_item.SetColumn(item.GetColumn()) evt.m_item.SetData(item.GetData()) evt.m_item.SetText(text) ret = self.GetEventHandler().ProcessEvent(evt) if ((not ret) or evt.IsAllowed()): if self.IsVirtual(): self.SetVirtualData(self.curRow, self.curCol, text) else: self.SetStringItem(self.curRow, self.curCol, text) self.RefreshItem(self.curRow) self.RefreshList()
def CloseEditor(self, evt=None): '\n Close the editor and save the new value to the ListCtrl.\n Modified to allow a generic setter to save edited data.\n ' if (not self.editor.IsShown()): return text = self.editor.GetValue() self.editor.Hide() self.SetFocus() self.SetValue(self.curRow, self.curCol, text) evt = wx.ListEvent(wx.wxEVT_COMMAND_LIST_END_LABEL_EDIT, self.GetId()) evt.m_itemIndex = self.curRow evt.m_col = self.curCol item = self.GetItem(self.curRow, self.curCol) evt.m_item.SetId(item.GetId()) evt.m_item.SetColumn(item.GetColumn()) evt.m_item.SetData(item.GetData()) evt.m_item.SetText(text) ret = self.GetEventHandler().ProcessEvent(evt) if ((not ret) or evt.IsAllowed()): if self.IsVirtual(): self.SetVirtualData(self.curRow, self.curCol, text) else: self.SetStringItem(self.curRow, self.curCol, text) self.RefreshItem(self.curRow) self.RefreshList()<|docstring|>Close the editor and save the new value to the ListCtrl. Modified to allow a generic setter to save edited data.<|endoftext|>
e6b90a400d0fdcbb2eecc3ae97cb796f296636dde0f4854daae20a3e62d48cdc
def OnChar(self, event): 'Catch ESC and cancel gracefully, preserving data' if (event.GetKeyCode() == wx.WXK_ESCAPE): if (not self.editor.IsShown()): return self.editor.Hide() self.SetFocus() else: listmix.TextEditMixin.OnChar(self, event)
Catch ESC and cancel gracefully, preserving data
ListEditorCtrl.py
OnChar
fprimex/lad
0
python
def OnChar(self, event): if (event.GetKeyCode() == wx.WXK_ESCAPE): if (not self.editor.IsShown()): return self.editor.Hide() self.SetFocus() else: listmix.TextEditMixin.OnChar(self, event)
def OnChar(self, event): if (event.GetKeyCode() == wx.WXK_ESCAPE): if (not self.editor.IsShown()): return self.editor.Hide() self.SetFocus() else: listmix.TextEditMixin.OnChar(self, event)<|docstring|>Catch ESC and cancel gracefully, preserving data<|endoftext|>
95444b0eb4873b02cc254511153d2bdbafae23b713169d73591f9857c122000d
def OnLeftDouble(self, evt=None): 'Open the editor on double clicks' if self.editor.IsShown(): self.CloseEditor() (x, y) = evt.GetPosition() (row, flags) = self.HitTest((x, y)) self.col_locs = [0] loc = 0 for n in range(self.GetColumnCount()): loc = (loc + self.GetColumnWidth(n)) self.col_locs.append(loc) col = (bisect(self.col_locs, (x + self.GetScrollPos(wx.HORIZONTAL))) - 1) self.OpenEditor(col, row)
Open the editor on double clicks
ListEditorCtrl.py
OnLeftDouble
fprimex/lad
0
python
def OnLeftDouble(self, evt=None): if self.editor.IsShown(): self.CloseEditor() (x, y) = evt.GetPosition() (row, flags) = self.HitTest((x, y)) self.col_locs = [0] loc = 0 for n in range(self.GetColumnCount()): loc = (loc + self.GetColumnWidth(n)) self.col_locs.append(loc) col = (bisect(self.col_locs, (x + self.GetScrollPos(wx.HORIZONTAL))) - 1) self.OpenEditor(col, row)
def OnLeftDouble(self, evt=None): if self.editor.IsShown(): self.CloseEditor() (x, y) = evt.GetPosition() (row, flags) = self.HitTest((x, y)) self.col_locs = [0] loc = 0 for n in range(self.GetColumnCount()): loc = (loc + self.GetColumnWidth(n)) self.col_locs.append(loc) col = (bisect(self.col_locs, (x + self.GetScrollPos(wx.HORIZONTAL))) - 1) self.OpenEditor(col, row)<|docstring|>Open the editor on double clicks<|endoftext|>
f90aa81ddaab14dd17a128f5a0e20b33820347ccf1c1e411ef4351aa26c50129
@staticmethod def memlets_intersect(graph_a: SDFGState, group_a: List[nodes.AccessNode], inputs_a: bool, graph_b: SDFGState, group_b: List[nodes.AccessNode], inputs_b: bool) -> bool: '\n Performs an all-pairs check for subset intersection on two\n groups of nodes. If group intersects or result is indeterminate,\n returns True as a precaution.\n :param graph_a: The graph in which the first set of nodes reside.\n :param group_a: The first set of nodes to check.\n :param inputs_a: If True, checks inputs of the first group.\n :param graph_b: The graph in which the second set of nodes reside.\n :param group_b: The second set of nodes to check.\n :param inputs_b: If True, checks inputs of the second group.\n :returns True if subsets intersect or result is indeterminate.\n ' src_subset = (lambda e: (e.data.src_subset if (e.data.src_subset is not None) else e.data.dst_subset)) dst_subset = (lambda e: (e.data.dst_subset if (e.data.dst_subset is not None) else e.data.src_subset)) if inputs_a: edges_a = [e for n in group_a for e in graph_a.out_edges(n)] subset_a = src_subset else: edges_a = [e for n in group_a for e in graph_a.in_edges(n)] subset_a = dst_subset if inputs_b: edges_b = [e for n in group_b for e in graph_b.out_edges(n)] subset_b = src_subset else: edges_b = [e for n in group_b for e in graph_b.in_edges(n)] subset_b = dst_subset for ea in edges_a: for eb in edges_b: result = subsets.intersects(subset_a(ea), subset_b(eb)) if ((result is True) or (result is None)): return True return False
Performs an all-pairs check for subset intersection on two groups of nodes. If group intersects or result is indeterminate, returns True as a precaution. :param graph_a: The graph in which the first set of nodes reside. :param group_a: The first set of nodes to check. :param inputs_a: If True, checks inputs of the first group. :param graph_b: The graph in which the second set of nodes reside. :param group_b: The second set of nodes to check. :param inputs_b: If True, checks inputs of the second group. :returns True if subsets intersect or result is indeterminate.
dace/transformation/interstate/state_fusion.py
memlets_intersect
jnice-81/dace
227
python
@staticmethod def memlets_intersect(graph_a: SDFGState, group_a: List[nodes.AccessNode], inputs_a: bool, graph_b: SDFGState, group_b: List[nodes.AccessNode], inputs_b: bool) -> bool: '\n Performs an all-pairs check for subset intersection on two\n groups of nodes. If group intersects or result is indeterminate,\n returns True as a precaution.\n :param graph_a: The graph in which the first set of nodes reside.\n :param group_a: The first set of nodes to check.\n :param inputs_a: If True, checks inputs of the first group.\n :param graph_b: The graph in which the second set of nodes reside.\n :param group_b: The second set of nodes to check.\n :param inputs_b: If True, checks inputs of the second group.\n :returns True if subsets intersect or result is indeterminate.\n ' src_subset = (lambda e: (e.data.src_subset if (e.data.src_subset is not None) else e.data.dst_subset)) dst_subset = (lambda e: (e.data.dst_subset if (e.data.dst_subset is not None) else e.data.src_subset)) if inputs_a: edges_a = [e for n in group_a for e in graph_a.out_edges(n)] subset_a = src_subset else: edges_a = [e for n in group_a for e in graph_a.in_edges(n)] subset_a = dst_subset if inputs_b: edges_b = [e for n in group_b for e in graph_b.out_edges(n)] subset_b = src_subset else: edges_b = [e for n in group_b for e in graph_b.in_edges(n)] subset_b = dst_subset for ea in edges_a: for eb in edges_b: result = subsets.intersects(subset_a(ea), subset_b(eb)) if ((result is True) or (result is None)): return True return False
@staticmethod def memlets_intersect(graph_a: SDFGState, group_a: List[nodes.AccessNode], inputs_a: bool, graph_b: SDFGState, group_b: List[nodes.AccessNode], inputs_b: bool) -> bool: '\n Performs an all-pairs check for subset intersection on two\n groups of nodes. If group intersects or result is indeterminate,\n returns True as a precaution.\n :param graph_a: The graph in which the first set of nodes reside.\n :param group_a: The first set of nodes to check.\n :param inputs_a: If True, checks inputs of the first group.\n :param graph_b: The graph in which the second set of nodes reside.\n :param group_b: The second set of nodes to check.\n :param inputs_b: If True, checks inputs of the second group.\n :returns True if subsets intersect or result is indeterminate.\n ' src_subset = (lambda e: (e.data.src_subset if (e.data.src_subset is not None) else e.data.dst_subset)) dst_subset = (lambda e: (e.data.dst_subset if (e.data.dst_subset is not None) else e.data.src_subset)) if inputs_a: edges_a = [e for n in group_a for e in graph_a.out_edges(n)] subset_a = src_subset else: edges_a = [e for n in group_a for e in graph_a.in_edges(n)] subset_a = dst_subset if inputs_b: edges_b = [e for n in group_b for e in graph_b.out_edges(n)] subset_b = src_subset else: edges_b = [e for n in group_b for e in graph_b.in_edges(n)] subset_b = dst_subset for ea in edges_a: for eb in edges_b: result = subsets.intersects(subset_a(ea), subset_b(eb)) if ((result is True) or (result is None)): return True return False<|docstring|>Performs an all-pairs check for subset intersection on two groups of nodes. If group intersects or result is indeterminate, returns True as a precaution. :param graph_a: The graph in which the first set of nodes reside. :param group_a: The first set of nodes to check. :param inputs_a: If True, checks inputs of the first group. :param graph_b: The graph in which the second set of nodes reside. :param group_b: The second set of nodes to check. :param inputs_b: If True, checks inputs of the second group. :returns True if subsets intersect or result is indeterminate.<|endoftext|>
d90d02ca1725d1848b40e6a3afc4b2b855e257945c729832059e2fe29048468c
def populate_movie_queue(self): 'populates a new MovieQueue' self.queue.insert(0, 'Donatello') self.queue.insert(1, 'Raphael') self.queue.insert(2, 'Michelangelo') self.queue.insert(3, 'Leonardo') return
populates a new MovieQueue
exercises/structures/src/movie_queue.py
populate_movie_queue
bmazey/summer2020
0
python
def populate_movie_queue(self): self.queue.insert(0, 'Donatello') self.queue.insert(1, 'Raphael') self.queue.insert(2, 'Michelangelo') self.queue.insert(3, 'Leonardo') return
def populate_movie_queue(self): self.queue.insert(0, 'Donatello') self.queue.insert(1, 'Raphael') self.queue.insert(2, 'Michelangelo') self.queue.insert(3, 'Leonardo') return<|docstring|>populates a new MovieQueue<|endoftext|>
3f1afca9ecdaa9765dd1e246bf45369de084deb5871a055205f602a222eeb472
@abstractmethod def train(self, mini_batch, discount): ' Trains the current neural network on a batch of experiences.\n \n inputs:\n mini_batch - an iterable object containing experiences observed\n from a Markov decision process, of the form \n (state, action, reward, next_state, done)\n discount - the discount factor in [0, 1]\n ' pass
Trains the current neural network on a batch of experiences. inputs: mini_batch - an iterable object containing experiences observed from a Markov decision process, of the form (state, action, reward, next_state, done) discount - the discount factor in [0, 1]
agents/Neural.py
train
mike-gimelfarb/mfpy
1
python
@abstractmethod def train(self, mini_batch, discount): ' Trains the current neural network on a batch of experiences.\n \n inputs:\n mini_batch - an iterable object containing experiences observed\n from a Markov decision process, of the form \n (state, action, reward, next_state, done)\n discount - the discount factor in [0, 1]\n ' pass
@abstractmethod def train(self, mini_batch, discount): ' Trains the current neural network on a batch of experiences.\n \n inputs:\n mini_batch - an iterable object containing experiences observed\n from a Markov decision process, of the form \n (state, action, reward, next_state, done)\n discount - the discount factor in [0, 1]\n ' pass<|docstring|>Trains the current neural network on a batch of experiences. inputs: mini_batch - an iterable object containing experiences observed from a Markov decision process, of the form (state, action, reward, next_state, done) discount - the discount factor in [0, 1]<|endoftext|>
742385b441afb60c2b2e816ae5e8ad535c7107a490416041e509cc3e58354e41
@staticmethod def clear_model(model): ' A recursive method to re-initialize all layers in a Keras model.\n \n This method will recursively check all layers in the current model. For each\n layer, if a weight initializer exists, it calls the weight initializer to initialize\n all weights in the layer to their default values. \n \n inputs:\n model - a Keras model whose weights to re-initialize\n ' session = K.get_session() for layer in model.layers: if isinstance(layer, Network): Neural.clear_model(layer) continue for v in layer.__dict__: v_arg = getattr(layer, v) if hasattr(v_arg, 'initializer'): initializer_method = getattr(v_arg, 'initializer') initializer_method.run(session=session)
A recursive method to re-initialize all layers in a Keras model. This method will recursively check all layers in the current model. For each layer, if a weight initializer exists, it calls the weight initializer to initialize all weights in the layer to their default values. inputs: model - a Keras model whose weights to re-initialize
agents/Neural.py
clear_model
mike-gimelfarb/mfpy
1
python
@staticmethod def clear_model(model): ' A recursive method to re-initialize all layers in a Keras model.\n \n This method will recursively check all layers in the current model. For each\n layer, if a weight initializer exists, it calls the weight initializer to initialize\n all weights in the layer to their default values. \n \n inputs:\n model - a Keras model whose weights to re-initialize\n ' session = K.get_session() for layer in model.layers: if isinstance(layer, Network): Neural.clear_model(layer) continue for v in layer.__dict__: v_arg = getattr(layer, v) if hasattr(v_arg, 'initializer'): initializer_method = getattr(v_arg, 'initializer') initializer_method.run(session=session)
@staticmethod def clear_model(model): ' A recursive method to re-initialize all layers in a Keras model.\n \n This method will recursively check all layers in the current model. For each\n layer, if a weight initializer exists, it calls the weight initializer to initialize\n all weights in the layer to their default values. \n \n inputs:\n model - a Keras model whose weights to re-initialize\n ' session = K.get_session() for layer in model.layers: if isinstance(layer, Network): Neural.clear_model(layer) continue for v in layer.__dict__: v_arg = getattr(layer, v) if hasattr(v_arg, 'initializer'): initializer_method = getattr(v_arg, 'initializer') initializer_method.run(session=session)<|docstring|>A recursive method to re-initialize all layers in a Keras model. This method will recursively check all layers in the current model. For each layer, if a weight initializer exists, it calls the weight initializer to initialize all weights in the layer to their default values. inputs: model - a Keras model whose weights to re-initialize<|endoftext|>
c95875569dcc5ffc8950d2c4ece5616d06ab78164eb865331804a7f284b936a2
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): '3x3 convolution with padding' return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
3x3 convolution with padding
models/resnet_imagenet.py
conv3x3
winycg/HSAKD
36
python
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)<|docstring|>3x3 convolution with padding<|endoftext|>
7447c07b06cc8d16674f31fc29f40a376c8d7a0321f9f661635b233109ed88c5
def conv1x1(in_planes, out_planes, stride=1): '1x1 convolution' return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
1x1 convolution
models/resnet_imagenet.py
conv1x1
winycg/HSAKD
36
python
def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)<|docstring|>1x1 convolution<|endoftext|>
bf293f1f83f0c096a558de1db7ffb4360fab645bf2da38f987abf78c98a57395
@coroutine def recv_packet(self): 'Parse the packet header and read entire packet payload into buffer.' buff = b'' while True: packet_header = (yield self.connection.stream.read_bytes(4)) if DEBUG: dump_packet(packet_header) packet_length_bin = packet_header[:3] self._packet_number = byte2int(packet_header[3]) bin_length = (packet_length_bin + b'\x00') bytes_to_read = struct.unpack('<I', bin_length)[0] recv_data = (yield self.connection.stream.read_bytes(bytes_to_read)) if DEBUG: dump_packet(recv_data) buff += recv_data if (bytes_to_read < MAX_PACKET_LEN): break self._data = buff
Parse the packet header and read entire packet payload into buffer.
asynctorndb/connection.py
recv_packet
mayflaver/AsyncTorndb
103
python
@coroutine def recv_packet(self): buff = b while True: packet_header = (yield self.connection.stream.read_bytes(4)) if DEBUG: dump_packet(packet_header) packet_length_bin = packet_header[:3] self._packet_number = byte2int(packet_header[3]) bin_length = (packet_length_bin + b'\x00') bytes_to_read = struct.unpack('<I', bin_length)[0] recv_data = (yield self.connection.stream.read_bytes(bytes_to_read)) if DEBUG: dump_packet(recv_data) buff += recv_data if (bytes_to_read < MAX_PACKET_LEN): break self._data = buff
@coroutine def recv_packet(self): buff = b while True: packet_header = (yield self.connection.stream.read_bytes(4)) if DEBUG: dump_packet(packet_header) packet_length_bin = packet_header[:3] self._packet_number = byte2int(packet_header[3]) bin_length = (packet_length_bin + b'\x00') bytes_to_read = struct.unpack('<I', bin_length)[0] recv_data = (yield self.connection.stream.read_bytes(bytes_to_read)) if DEBUG: dump_packet(recv_data) buff += recv_data if (bytes_to_read < MAX_PACKET_LEN): break self._data = buff<|docstring|>Parse the packet header and read entire packet payload into buffer.<|endoftext|>
908ee200050a41c690b14364c77c5cbe47de20dabd0a07ad7c9b669324b6a958
def read(self, size): "Read the first 'size' bytes in packet and advance cursor past them." result = self._data[self._position:(self._position + size)] if (len(result) != size): error = ('Result length not requested length:\nExpected=%s. Actual=%s. Position: %s. Data Length: %s' % (size, len(result), self._position, len(self._data))) if DEBUG: print(error) self.dump() raise AssertionError(error) self._position += size return result
Read the first 'size' bytes in packet and advance cursor past them.
asynctorndb/connection.py
read
mayflaver/AsyncTorndb
103
python
def read(self, size): result = self._data[self._position:(self._position + size)] if (len(result) != size): error = ('Result length not requested length:\nExpected=%s. Actual=%s. Position: %s. Data Length: %s' % (size, len(result), self._position, len(self._data))) if DEBUG: print(error) self.dump() raise AssertionError(error) self._position += size return result
def read(self, size): result = self._data[self._position:(self._position + size)] if (len(result) != size): error = ('Result length not requested length:\nExpected=%s. Actual=%s. Position: %s. Data Length: %s' % (size, len(result), self._position, len(self._data))) if DEBUG: print(error) self.dump() raise AssertionError(error) self._position += size return result<|docstring|>Read the first 'size' bytes in packet and advance cursor past them.<|endoftext|>
c3e079808f9fb2ca29e7a92a36b0dc24a225c28005651fef74ec084701fb2150
def read_all(self): 'Read all remaining data in the packet.\n\n (Subsequent read() will return errors.)\n ' result = self._data[self._position:] self._position = None return result
Read all remaining data in the packet. (Subsequent read() will return errors.)
asynctorndb/connection.py
read_all
mayflaver/AsyncTorndb
103
python
def read_all(self): 'Read all remaining data in the packet.\n\n (Subsequent read() will return errors.)\n ' result = self._data[self._position:] self._position = None return result
def read_all(self): 'Read all remaining data in the packet.\n\n (Subsequent read() will return errors.)\n ' result = self._data[self._position:] self._position = None return result<|docstring|>Read all remaining data in the packet. (Subsequent read() will return errors.)<|endoftext|>
b5bf74d9936cfe196fef2615c15bc75b36c70a158e3a4d3e4b9d34ea88e91753
def advance(self, length): "Advance the cursor in data buffer 'length' bytes." new_position = (self._position + length) if ((new_position < 0) or (new_position > len(self._data))): raise Exception(('Invalid advance amount (%s) for cursor. Position=%s' % (length, new_position))) self._position = new_position
Advance the cursor in data buffer 'length' bytes.
asynctorndb/connection.py
advance
mayflaver/AsyncTorndb
103
python
def advance(self, length): new_position = (self._position + length) if ((new_position < 0) or (new_position > len(self._data))): raise Exception(('Invalid advance amount (%s) for cursor. Position=%s' % (length, new_position))) self._position = new_position
def advance(self, length): new_position = (self._position + length) if ((new_position < 0) or (new_position > len(self._data))): raise Exception(('Invalid advance amount (%s) for cursor. Position=%s' % (length, new_position))) self._position = new_position<|docstring|>Advance the cursor in data buffer 'length' bytes.<|endoftext|>
6d9bd32a5189335699dd9614a7a57c10147c7474f818e2fe322a17e608101584
def rewind(self, position=0): "Set the position of the data buffer cursor to 'position'." if ((position < 0) or (position > len(self._data))): raise Exception(('Invalid position to rewind cursor to: %s.' % position)) self._position = position
Set the position of the data buffer cursor to 'position'.
asynctorndb/connection.py
rewind
mayflaver/AsyncTorndb
103
python
def rewind(self, position=0): if ((position < 0) or (position > len(self._data))): raise Exception(('Invalid position to rewind cursor to: %s.' % position)) self._position = position
def rewind(self, position=0): if ((position < 0) or (position > len(self._data))): raise Exception(('Invalid position to rewind cursor to: %s.' % position)) self._position = position<|docstring|>Set the position of the data buffer cursor to 'position'.<|endoftext|>
361d3bd82bc5d23fdfe59ce0a99ec705b267a4094d5a303ba79273e903b33788
def get_bytes(self, position, length=1): "Get 'length' bytes starting at 'position'.\n\n Position is start of payload (first four packet header bytes are not\n included) starting at index '0'.\n\n No error checking is done. If requesting outside end of buffer\n an empty string (or string shorter than 'length') may be returned!\n " return self._data[position:(position + length)]
Get 'length' bytes starting at 'position'. Position is start of payload (first four packet header bytes are not included) starting at index '0'. No error checking is done. If requesting outside end of buffer an empty string (or string shorter than 'length') may be returned!
asynctorndb/connection.py
get_bytes
mayflaver/AsyncTorndb
103
python
def get_bytes(self, position, length=1): "Get 'length' bytes starting at 'position'.\n\n Position is start of payload (first four packet header bytes are not\n included) starting at index '0'.\n\n No error checking is done. If requesting outside end of buffer\n an empty string (or string shorter than 'length') may be returned!\n " return self._data[position:(position + length)]
def get_bytes(self, position, length=1): "Get 'length' bytes starting at 'position'.\n\n Position is start of payload (first four packet header bytes are not\n included) starting at index '0'.\n\n No error checking is done. If requesting outside end of buffer\n an empty string (or string shorter than 'length') may be returned!\n " return self._data[position:(position + length)]<|docstring|>Get 'length' bytes starting at 'position'. Position is start of payload (first four packet header bytes are not included) starting at index '0'. No error checking is done. If requesting outside end of buffer an empty string (or string shorter than 'length') may be returned!<|endoftext|>
2f2aa1f24bc0c43e9f29827e820d3a29b12fec396a7ab994f84efaa65ae5284a
def read_length_encoded_integer(self): "Read a 'Length Coded Binary' number from the data buffer.\n\n Length coded numbers can be anywhere from 1 to 9 bytes depending\n on the value of the first byte.\n " c = ord(self.read(1)) if (c == NULL_COLUMN): return None if (c < UNSIGNED_CHAR_COLUMN): return c elif (c == UNSIGNED_SHORT_COLUMN): return unpack_uint16(self.read(UNSIGNED_SHORT_LENGTH)) elif (c == UNSIGNED_INT24_COLUMN): return unpack_int24(self.read(UNSIGNED_INT24_LENGTH)) elif (c == UNSIGNED_INT64_COLUMN): return unpack_int64(self.read(UNSIGNED_INT64_LENGTH))
Read a 'Length Coded Binary' number from the data buffer. Length coded numbers can be anywhere from 1 to 9 bytes depending on the value of the first byte.
asynctorndb/connection.py
read_length_encoded_integer
mayflaver/AsyncTorndb
103
python
def read_length_encoded_integer(self): "Read a 'Length Coded Binary' number from the data buffer.\n\n Length coded numbers can be anywhere from 1 to 9 bytes depending\n on the value of the first byte.\n " c = ord(self.read(1)) if (c == NULL_COLUMN): return None if (c < UNSIGNED_CHAR_COLUMN): return c elif (c == UNSIGNED_SHORT_COLUMN): return unpack_uint16(self.read(UNSIGNED_SHORT_LENGTH)) elif (c == UNSIGNED_INT24_COLUMN): return unpack_int24(self.read(UNSIGNED_INT24_LENGTH)) elif (c == UNSIGNED_INT64_COLUMN): return unpack_int64(self.read(UNSIGNED_INT64_LENGTH))
def read_length_encoded_integer(self): "Read a 'Length Coded Binary' number from the data buffer.\n\n Length coded numbers can be anywhere from 1 to 9 bytes depending\n on the value of the first byte.\n " c = ord(self.read(1)) if (c == NULL_COLUMN): return None if (c < UNSIGNED_CHAR_COLUMN): return c elif (c == UNSIGNED_SHORT_COLUMN): return unpack_uint16(self.read(UNSIGNED_SHORT_LENGTH)) elif (c == UNSIGNED_INT24_COLUMN): return unpack_int24(self.read(UNSIGNED_INT24_LENGTH)) elif (c == UNSIGNED_INT64_COLUMN): return unpack_int64(self.read(UNSIGNED_INT64_LENGTH))<|docstring|>Read a 'Length Coded Binary' number from the data buffer. Length coded numbers can be anywhere from 1 to 9 bytes depending on the value of the first byte.<|endoftext|>
eee51d0ed24e371397264aa158f517c001eeec7b8b1bc641380ab646cfedcef9
def read_length_coded_string(self): 'Read a \'Length Coded String\' from the data buffer.\n\n A \'Length Coded String\' consists first of a length coded\n (unsigned, positive) integer represented in 1-9 bytes followed by\n that many bytes of binary data. (For example "cat" would be "3cat".)\n ' length = self.read_length_encoded_integer() if (length is None): return None return self.read(length)
Read a 'Length Coded String' from the data buffer. A 'Length Coded String' consists first of a length coded (unsigned, positive) integer represented in 1-9 bytes followed by that many bytes of binary data. (For example "cat" would be "3cat".)
asynctorndb/connection.py
read_length_coded_string
mayflaver/AsyncTorndb
103
python
def read_length_coded_string(self): 'Read a \'Length Coded String\' from the data buffer.\n\n A \'Length Coded String\' consists first of a length coded\n (unsigned, positive) integer represented in 1-9 bytes followed by\n that many bytes of binary data. (For example "cat" would be "3cat".)\n ' length = self.read_length_encoded_integer() if (length is None): return None return self.read(length)
def read_length_coded_string(self): 'Read a \'Length Coded String\' from the data buffer.\n\n A \'Length Coded String\' consists first of a length coded\n (unsigned, positive) integer represented in 1-9 bytes followed by\n that many bytes of binary data. (For example "cat" would be "3cat".)\n ' length = self.read_length_encoded_integer() if (length is None): return None return self.read(length)<|docstring|>Read a 'Length Coded String' from the data buffer. A 'Length Coded String' consists first of a length coded (unsigned, positive) integer represented in 1-9 bytes followed by that many bytes of binary data. (For example "cat" would be "3cat".)<|endoftext|>
ec1f56ae6fa8320c131cf5e8af6f5addc2cecc64f8a841fb08317ea866f55eb7
def __parse_field_descriptor(self, encoding): "Parse the 'Field Descriptor' (Metadata) packet.\n\n This is compatible with MySQL 4.1+ (not compatible with MySQL 4.0).\n " self.catalog = self.read_length_coded_string() self.db = self.read_length_coded_string() self.table_name = self.read_length_coded_string().decode(encoding) self.org_table = self.read_length_coded_string().decode(encoding) self.name = self.read_length_coded_string().decode(encoding) self.org_name = self.read_length_coded_string().decode(encoding) self.advance(1) self.charsetnr = struct.unpack('<H', self.read(2))[0] self.length = struct.unpack('<I', self.read(4))[0] self.type_code = byte2int(self.read(1)) self.flags = struct.unpack('<H', self.read(2))[0] self.scale = byte2int(self.read(1)) self.advance(2)
Parse the 'Field Descriptor' (Metadata) packet. This is compatible with MySQL 4.1+ (not compatible with MySQL 4.0).
asynctorndb/connection.py
__parse_field_descriptor
mayflaver/AsyncTorndb
103
python
def __parse_field_descriptor(self, encoding): "Parse the 'Field Descriptor' (Metadata) packet.\n\n This is compatible with MySQL 4.1+ (not compatible with MySQL 4.0).\n " self.catalog = self.read_length_coded_string() self.db = self.read_length_coded_string() self.table_name = self.read_length_coded_string().decode(encoding) self.org_table = self.read_length_coded_string().decode(encoding) self.name = self.read_length_coded_string().decode(encoding) self.org_name = self.read_length_coded_string().decode(encoding) self.advance(1) self.charsetnr = struct.unpack('<H', self.read(2))[0] self.length = struct.unpack('<I', self.read(4))[0] self.type_code = byte2int(self.read(1)) self.flags = struct.unpack('<H', self.read(2))[0] self.scale = byte2int(self.read(1)) self.advance(2)
def __parse_field_descriptor(self, encoding): "Parse the 'Field Descriptor' (Metadata) packet.\n\n This is compatible with MySQL 4.1+ (not compatible with MySQL 4.0).\n " self.catalog = self.read_length_coded_string() self.db = self.read_length_coded_string() self.table_name = self.read_length_coded_string().decode(encoding) self.org_table = self.read_length_coded_string().decode(encoding) self.name = self.read_length_coded_string().decode(encoding) self.org_name = self.read_length_coded_string().decode(encoding) self.advance(1) self.charsetnr = struct.unpack('<H', self.read(2))[0] self.length = struct.unpack('<I', self.read(4))[0] self.type_code = byte2int(self.read(1)) self.flags = struct.unpack('<H', self.read(2))[0] self.scale = byte2int(self.read(1)) self.advance(2)<|docstring|>Parse the 'Field Descriptor' (Metadata) packet. This is compatible with MySQL 4.1+ (not compatible with MySQL 4.0).<|endoftext|>
daf1cc2483838de93573d588ee4997789473d8ec3950b21ef65429115b30394a
def description(self): 'Provides a 7-item tuple compatible with the Python PEP249 DB Spec.' desc = [] desc.append(self.name) desc.append(self.type_code) desc.append(None) desc.append(self.get_column_length()) desc.append(self.get_column_length()) desc.append(self.scale) if ((self.flags % 2) == 0): desc.append(1) else: desc.append(0) return tuple(desc)
Provides a 7-item tuple compatible with the Python PEP249 DB Spec.
asynctorndb/connection.py
description
mayflaver/AsyncTorndb
103
python
def description(self): desc = [] desc.append(self.name) desc.append(self.type_code) desc.append(None) desc.append(self.get_column_length()) desc.append(self.get_column_length()) desc.append(self.scale) if ((self.flags % 2) == 0): desc.append(1) else: desc.append(0) return tuple(desc)
def description(self): desc = [] desc.append(self.name) desc.append(self.type_code) desc.append(None) desc.append(self.get_column_length()) desc.append(self.get_column_length()) desc.append(self.scale) if ((self.flags % 2) == 0): desc.append(1) else: desc.append(0) return tuple(desc)<|docstring|>Provides a 7-item tuple compatible with the Python PEP249 DB Spec.<|endoftext|>