body_hash
stringlengths 64
64
| body
stringlengths 23
109k
| docstring
stringlengths 1
57k
| path
stringlengths 4
198
| name
stringlengths 1
115
| repository_name
stringlengths 7
111
| repository_stars
float64 0
191k
| lang
stringclasses 1
value | body_without_docstring
stringlengths 14
108k
| unified
stringlengths 45
133k
|
---|---|---|---|---|---|---|---|---|---|
e6843de2d70bf38954a05a146ec782290ff0c7f638ea74335b172c31b6687602 | def __init__(self, host='localhost', user=None, passwd='', database=None, port=3306, unix_socket=None, charset='', sql_mode=None, read_default_file=None, conv=decoders, use_unicode=None, client_flag=0, cursorclass=Cursor, init_command=None, connect_timeout=None, ssl=None, read_default_group=None, compress=None, named_pipe=None, no_delay=False, autocommit=False, db=None, io_loop=None):
"\n Establish a connection to the MySQL database. Accepts several\n arguments:\n\n host: Host where the database server is located\n user: Username to log in as\n passwd: Password to use.\n database: Database to use, None to not use a particular one.\n port: MySQL port to use, default is usually OK.\n unix_socket: Optionally, you can use a unix socket rather than TCP/IP.\n charset: Charset you want to use.\n sql_mode: Default SQL_MODE to use.\n read_default_file: Specifies my.cnf file to read these parameters from under the [client] section.\n conv: Decoders dictionary to use instead of the default one. This is used to provide custom marshalling of types. See converters.\n use_unicode: Whether or not to default to unicode strings. This option defaults to true for Py3k.\n client_flag: Custom flags to send to MySQL. Find potential values in constants.CLIENT.\n cursorclass: Custom cursor class to use.\n init_command: Initial SQL statement to run when connection is established.\n connect_timeout: Timeout before throwing an exception when connecting.\n ssl: A dict of arguments similar to mysql_ssl_set()'s parameters. For now the capath and cipher arguments are not supported.\n read_default_group: Group to read from in the configuration file.\n compress; Not supported\n named_pipe: Not supported\n no_delay: Disable Nagle's algorithm on the socket\n autocommit: Autocommit mode. None means use server default. (default: False)\n db: Alias for database. (for compatibility to MySQLdb)\n "
if ((use_unicode is None) and (sys.version_info[0] > 2)):
use_unicode = True
if ((db is not None) and (database is None)):
database = db
if (compress or named_pipe):
raise NotImplementedError('compress and named_pipe arguments are not supported')
if (ssl and (('capath' in ssl) or ('cipher' in ssl))):
raise NotImplementedError('ssl options capath and cipher are not supported')
self.ssl = False
if ssl:
if (not SSL_ENABLED):
raise NotImplementedError('ssl module not found')
self.ssl = True
client_flag |= SSL
for k in ('key', 'cert', 'ca'):
v = None
if (k in ssl):
v = ssl[k]
setattr(self, k, v)
if (read_default_group and (not read_default_file)):
if sys.platform.startswith('win'):
read_default_file = 'c:\\my.ini'
else:
read_default_file = '/etc/my.cnf'
if read_default_file:
if (not read_default_group):
read_default_group = 'client'
cfg = configparser.RawConfigParser()
cfg.read(os.path.expanduser(read_default_file))
def _config(key, default):
try:
return cfg.get(read_default_group, key)
except Exception:
return default
user = _config('user', user)
passwd = _config('password', passwd)
host = _config('host', host)
database = _config('database', database)
unix_socket = _config('socket', unix_socket)
port = int(_config('port', port))
charset = _config('default-character-set', charset)
self.host = host
self.port = port
self.user = (user or DEFAULT_USER)
self.password = (passwd or '')
self.db = database
self.no_delay = no_delay
self.unix_socket = unix_socket
if charset:
self.charset = charset
self.use_unicode = True
else:
self.charset = DEFAULT_CHARSET
self.use_unicode = False
if (use_unicode is not None):
self.use_unicode = use_unicode
self.encoding = charset_by_name(self.charset).encoding
client_flag |= CAPABILITIES
client_flag |= MULTI_STATEMENTS
if self.db:
client_flag |= CONNECT_WITH_DB
self.client_flag = client_flag
self.cursorclass = cursorclass
self.connect_timeout = connect_timeout
self._result = None
self._affected_rows = 0
self.host_info = 'Not connected'
self.autocommit_mode = autocommit
self.encoders = encoders
self.decoders = conv
self.sql_mode = sql_mode
self.init_command = init_command
self.io_loop = (io_loop or tornado.ioloop.IOLoop.current())
self.stream = None | Establish a connection to the MySQL database. Accepts several
arguments:
host: Host where the database server is located
user: Username to log in as
passwd: Password to use.
database: Database to use, None to not use a particular one.
port: MySQL port to use, default is usually OK.
unix_socket: Optionally, you can use a unix socket rather than TCP/IP.
charset: Charset you want to use.
sql_mode: Default SQL_MODE to use.
read_default_file: Specifies my.cnf file to read these parameters from under the [client] section.
conv: Decoders dictionary to use instead of the default one. This is used to provide custom marshalling of types. See converters.
use_unicode: Whether or not to default to unicode strings. This option defaults to true for Py3k.
client_flag: Custom flags to send to MySQL. Find potential values in constants.CLIENT.
cursorclass: Custom cursor class to use.
init_command: Initial SQL statement to run when connection is established.
connect_timeout: Timeout before throwing an exception when connecting.
ssl: A dict of arguments similar to mysql_ssl_set()'s parameters. For now the capath and cipher arguments are not supported.
read_default_group: Group to read from in the configuration file.
compress; Not supported
named_pipe: Not supported
no_delay: Disable Nagle's algorithm on the socket
autocommit: Autocommit mode. None means use server default. (default: False)
db: Alias for database. (for compatibility to MySQLdb) | asynctorndb/connection.py | __init__ | mayflaver/AsyncTorndb | 103 | python | def __init__(self, host='localhost', user=None, passwd=, database=None, port=3306, unix_socket=None, charset=, sql_mode=None, read_default_file=None, conv=decoders, use_unicode=None, client_flag=0, cursorclass=Cursor, init_command=None, connect_timeout=None, ssl=None, read_default_group=None, compress=None, named_pipe=None, no_delay=False, autocommit=False, db=None, io_loop=None):
"\n Establish a connection to the MySQL database. Accepts several\n arguments:\n\n host: Host where the database server is located\n user: Username to log in as\n passwd: Password to use.\n database: Database to use, None to not use a particular one.\n port: MySQL port to use, default is usually OK.\n unix_socket: Optionally, you can use a unix socket rather than TCP/IP.\n charset: Charset you want to use.\n sql_mode: Default SQL_MODE to use.\n read_default_file: Specifies my.cnf file to read these parameters from under the [client] section.\n conv: Decoders dictionary to use instead of the default one. This is used to provide custom marshalling of types. See converters.\n use_unicode: Whether or not to default to unicode strings. This option defaults to true for Py3k.\n client_flag: Custom flags to send to MySQL. Find potential values in constants.CLIENT.\n cursorclass: Custom cursor class to use.\n init_command: Initial SQL statement to run when connection is established.\n connect_timeout: Timeout before throwing an exception when connecting.\n ssl: A dict of arguments similar to mysql_ssl_set()'s parameters. For now the capath and cipher arguments are not supported.\n read_default_group: Group to read from in the configuration file.\n compress; Not supported\n named_pipe: Not supported\n no_delay: Disable Nagle's algorithm on the socket\n autocommit: Autocommit mode. None means use server default. (default: False)\n db: Alias for database. (for compatibility to MySQLdb)\n "
if ((use_unicode is None) and (sys.version_info[0] > 2)):
use_unicode = True
if ((db is not None) and (database is None)):
database = db
if (compress or named_pipe):
raise NotImplementedError('compress and named_pipe arguments are not supported')
if (ssl and (('capath' in ssl) or ('cipher' in ssl))):
raise NotImplementedError('ssl options capath and cipher are not supported')
self.ssl = False
if ssl:
if (not SSL_ENABLED):
raise NotImplementedError('ssl module not found')
self.ssl = True
client_flag |= SSL
for k in ('key', 'cert', 'ca'):
v = None
if (k in ssl):
v = ssl[k]
setattr(self, k, v)
if (read_default_group and (not read_default_file)):
if sys.platform.startswith('win'):
read_default_file = 'c:\\my.ini'
else:
read_default_file = '/etc/my.cnf'
if read_default_file:
if (not read_default_group):
read_default_group = 'client'
cfg = configparser.RawConfigParser()
cfg.read(os.path.expanduser(read_default_file))
def _config(key, default):
try:
return cfg.get(read_default_group, key)
except Exception:
return default
user = _config('user', user)
passwd = _config('password', passwd)
host = _config('host', host)
database = _config('database', database)
unix_socket = _config('socket', unix_socket)
port = int(_config('port', port))
charset = _config('default-character-set', charset)
self.host = host
self.port = port
self.user = (user or DEFAULT_USER)
self.password = (passwd or )
self.db = database
self.no_delay = no_delay
self.unix_socket = unix_socket
if charset:
self.charset = charset
self.use_unicode = True
else:
self.charset = DEFAULT_CHARSET
self.use_unicode = False
if (use_unicode is not None):
self.use_unicode = use_unicode
self.encoding = charset_by_name(self.charset).encoding
client_flag |= CAPABILITIES
client_flag |= MULTI_STATEMENTS
if self.db:
client_flag |= CONNECT_WITH_DB
self.client_flag = client_flag
self.cursorclass = cursorclass
self.connect_timeout = connect_timeout
self._result = None
self._affected_rows = 0
self.host_info = 'Not connected'
self.autocommit_mode = autocommit
self.encoders = encoders
self.decoders = conv
self.sql_mode = sql_mode
self.init_command = init_command
self.io_loop = (io_loop or tornado.ioloop.IOLoop.current())
self.stream = None | def __init__(self, host='localhost', user=None, passwd=, database=None, port=3306, unix_socket=None, charset=, sql_mode=None, read_default_file=None, conv=decoders, use_unicode=None, client_flag=0, cursorclass=Cursor, init_command=None, connect_timeout=None, ssl=None, read_default_group=None, compress=None, named_pipe=None, no_delay=False, autocommit=False, db=None, io_loop=None):
"\n Establish a connection to the MySQL database. Accepts several\n arguments:\n\n host: Host where the database server is located\n user: Username to log in as\n passwd: Password to use.\n database: Database to use, None to not use a particular one.\n port: MySQL port to use, default is usually OK.\n unix_socket: Optionally, you can use a unix socket rather than TCP/IP.\n charset: Charset you want to use.\n sql_mode: Default SQL_MODE to use.\n read_default_file: Specifies my.cnf file to read these parameters from under the [client] section.\n conv: Decoders dictionary to use instead of the default one. This is used to provide custom marshalling of types. See converters.\n use_unicode: Whether or not to default to unicode strings. This option defaults to true for Py3k.\n client_flag: Custom flags to send to MySQL. Find potential values in constants.CLIENT.\n cursorclass: Custom cursor class to use.\n init_command: Initial SQL statement to run when connection is established.\n connect_timeout: Timeout before throwing an exception when connecting.\n ssl: A dict of arguments similar to mysql_ssl_set()'s parameters. For now the capath and cipher arguments are not supported.\n read_default_group: Group to read from in the configuration file.\n compress; Not supported\n named_pipe: Not supported\n no_delay: Disable Nagle's algorithm on the socket\n autocommit: Autocommit mode. None means use server default. (default: False)\n db: Alias for database. (for compatibility to MySQLdb)\n "
if ((use_unicode is None) and (sys.version_info[0] > 2)):
use_unicode = True
if ((db is not None) and (database is None)):
database = db
if (compress or named_pipe):
raise NotImplementedError('compress and named_pipe arguments are not supported')
if (ssl and (('capath' in ssl) or ('cipher' in ssl))):
raise NotImplementedError('ssl options capath and cipher are not supported')
self.ssl = False
if ssl:
if (not SSL_ENABLED):
raise NotImplementedError('ssl module not found')
self.ssl = True
client_flag |= SSL
for k in ('key', 'cert', 'ca'):
v = None
if (k in ssl):
v = ssl[k]
setattr(self, k, v)
if (read_default_group and (not read_default_file)):
if sys.platform.startswith('win'):
read_default_file = 'c:\\my.ini'
else:
read_default_file = '/etc/my.cnf'
if read_default_file:
if (not read_default_group):
read_default_group = 'client'
cfg = configparser.RawConfigParser()
cfg.read(os.path.expanduser(read_default_file))
def _config(key, default):
try:
return cfg.get(read_default_group, key)
except Exception:
return default
user = _config('user', user)
passwd = _config('password', passwd)
host = _config('host', host)
database = _config('database', database)
unix_socket = _config('socket', unix_socket)
port = int(_config('port', port))
charset = _config('default-character-set', charset)
self.host = host
self.port = port
self.user = (user or DEFAULT_USER)
self.password = (passwd or )
self.db = database
self.no_delay = no_delay
self.unix_socket = unix_socket
if charset:
self.charset = charset
self.use_unicode = True
else:
self.charset = DEFAULT_CHARSET
self.use_unicode = False
if (use_unicode is not None):
self.use_unicode = use_unicode
self.encoding = charset_by_name(self.charset).encoding
client_flag |= CAPABILITIES
client_flag |= MULTI_STATEMENTS
if self.db:
client_flag |= CONNECT_WITH_DB
self.client_flag = client_flag
self.cursorclass = cursorclass
self.connect_timeout = connect_timeout
self._result = None
self._affected_rows = 0
self.host_info = 'Not connected'
self.autocommit_mode = autocommit
self.encoders = encoders
self.decoders = conv
self.sql_mode = sql_mode
self.init_command = init_command
self.io_loop = (io_loop or tornado.ioloop.IOLoop.current())
self.stream = None<|docstring|>Establish a connection to the MySQL database. Accepts several
arguments:
host: Host where the database server is located
user: Username to log in as
passwd: Password to use.
database: Database to use, None to not use a particular one.
port: MySQL port to use, default is usually OK.
unix_socket: Optionally, you can use a unix socket rather than TCP/IP.
charset: Charset you want to use.
sql_mode: Default SQL_MODE to use.
read_default_file: Specifies my.cnf file to read these parameters from under the [client] section.
conv: Decoders dictionary to use instead of the default one. This is used to provide custom marshalling of types. See converters.
use_unicode: Whether or not to default to unicode strings. This option defaults to true for Py3k.
client_flag: Custom flags to send to MySQL. Find potential values in constants.CLIENT.
cursorclass: Custom cursor class to use.
init_command: Initial SQL statement to run when connection is established.
connect_timeout: Timeout before throwing an exception when connecting.
ssl: A dict of arguments similar to mysql_ssl_set()'s parameters. For now the capath and cipher arguments are not supported.
read_default_group: Group to read from in the configuration file.
compress; Not supported
named_pipe: Not supported
no_delay: Disable Nagle's algorithm on the socket
autocommit: Autocommit mode. None means use server default. (default: False)
db: Alias for database. (for compatibility to MySQLdb)<|endoftext|> |
77203e983723c9c3a26e0ef0250259aa610d8ecef9bbba42e28947b3d30b76e3 | @coroutine
def close(self):
' Send the quit message and close the socket '
if self.stream.closed():
raise Error('Already closed')
send_data = (struct.pack('<i', 1) + int2byte(COM_QUIT))
try:
(yield self.stream.write(send_data))
except Exception:
pass
finally:
self.stream.close()
self.stream = None | Send the quit message and close the socket | asynctorndb/connection.py | close | mayflaver/AsyncTorndb | 103 | python | @coroutine
def close(self):
' '
if self.stream.closed():
raise Error('Already closed')
send_data = (struct.pack('<i', 1) + int2byte(COM_QUIT))
try:
(yield self.stream.write(send_data))
except Exception:
pass
finally:
self.stream.close()
self.stream = None | @coroutine
def close(self):
' '
if self.stream.closed():
raise Error('Already closed')
send_data = (struct.pack('<i', 1) + int2byte(COM_QUIT))
try:
(yield self.stream.write(send_data))
except Exception:
pass
finally:
self.stream.close()
self.stream = None<|docstring|>Send the quit message and close the socket<|endoftext|> |
f793d272d784f2100a08f4f709ac8bb5c05bf9432d4d0205d9e52415a23aefee | @coroutine
def _send_autocommit_mode(self):
' Set whether or not to commit after every execute() '
self._execute_command(COM_QUERY, ('SET AUTOCOMMIT = %s' % self.escape(self.autocommit_mode)))
(yield self._read_ok_packet()) | Set whether or not to commit after every execute() | asynctorndb/connection.py | _send_autocommit_mode | mayflaver/AsyncTorndb | 103 | python | @coroutine
def _send_autocommit_mode(self):
' '
self._execute_command(COM_QUERY, ('SET AUTOCOMMIT = %s' % self.escape(self.autocommit_mode)))
(yield self._read_ok_packet()) | @coroutine
def _send_autocommit_mode(self):
' '
self._execute_command(COM_QUERY, ('SET AUTOCOMMIT = %s' % self.escape(self.autocommit_mode)))
(yield self._read_ok_packet())<|docstring|>Set whether or not to commit after every execute()<|endoftext|> |
4248b5cdbb9f9ba533c76318aa483a34421d7cdfec88bdc1b26bafc106735559 | @coroutine
def commit(self):
' Commit changes to stable storage '
self._execute_command(COM_QUERY, 'COMMIT')
(yield self._read_ok_packet()) | Commit changes to stable storage | asynctorndb/connection.py | commit | mayflaver/AsyncTorndb | 103 | python | @coroutine
def commit(self):
' '
self._execute_command(COM_QUERY, 'COMMIT')
(yield self._read_ok_packet()) | @coroutine
def commit(self):
' '
self._execute_command(COM_QUERY, 'COMMIT')
(yield self._read_ok_packet())<|docstring|>Commit changes to stable storage<|endoftext|> |
207f216fdd24e9a5042c1331ffafb8dd7861a3c64efc6164defc302c782b6305 | @coroutine
def rollback(self):
' Roll back the current transaction '
(yield self._execute_command(COM_QUERY, 'ROLLBACK'))
(yield self._read_ok_packet()) | Roll back the current transaction | asynctorndb/connection.py | rollback | mayflaver/AsyncTorndb | 103 | python | @coroutine
def rollback(self):
' '
(yield self._execute_command(COM_QUERY, 'ROLLBACK'))
(yield self._read_ok_packet()) | @coroutine
def rollback(self):
' '
(yield self._execute_command(COM_QUERY, 'ROLLBACK'))
(yield self._read_ok_packet())<|docstring|>Roll back the current transaction<|endoftext|> |
30da28a9ba880e0d9b98716ace96819103d6f60e2a86c002b44e4a73569b2ff7 | @coroutine
def select_db(self, db):
'Set current db'
(yield self._execute_command(COM_INIT_DB, db))
(yield self._read_ok_packet()) | Set current db | asynctorndb/connection.py | select_db | mayflaver/AsyncTorndb | 103 | python | @coroutine
def select_db(self, db):
(yield self._execute_command(COM_INIT_DB, db))
(yield self._read_ok_packet()) | @coroutine
def select_db(self, db):
(yield self._execute_command(COM_INIT_DB, db))
(yield self._read_ok_packet())<|docstring|>Set current db<|endoftext|> |
aa8a4838ff689668790e3f0c1bb93bb5f64a4ba8a57738f33201e97c76e94183 | def escape(self, obj):
' Escape whatever value you pass to it '
if isinstance(obj, str_type):
return (("'" + self.escape_string(obj)) + "'")
return escape_item(obj, self.charset) | Escape whatever value you pass to it | asynctorndb/connection.py | escape | mayflaver/AsyncTorndb | 103 | python | def escape(self, obj):
' '
if isinstance(obj, str_type):
return (("'" + self.escape_string(obj)) + "'")
return escape_item(obj, self.charset) | def escape(self, obj):
' '
if isinstance(obj, str_type):
return (("'" + self.escape_string(obj)) + "'")
return escape_item(obj, self.charset)<|docstring|>Escape whatever value you pass to it<|endoftext|> |
465011ceb4399dd42cf42227c3f2f407d4c45a5683ac6a0915d759f2d50dac7d | def literal(self, obj):
'Alias for escape()'
return self.escape(obj) | Alias for escape() | asynctorndb/connection.py | literal | mayflaver/AsyncTorndb | 103 | python | def literal(self, obj):
return self.escape(obj) | def literal(self, obj):
return self.escape(obj)<|docstring|>Alias for escape()<|endoftext|> |
d26a0f6f23bf2918ee6bc50638a66969e229a10255726bdbf871e3de755ff609 | def cursor(self, cursor=None):
' Create a new cursor to execute queries with '
if cursor:
return cursor(self)
return self.cursorclass(self) | Create a new cursor to execute queries with | asynctorndb/connection.py | cursor | mayflaver/AsyncTorndb | 103 | python | def cursor(self, cursor=None):
' '
if cursor:
return cursor(self)
return self.cursorclass(self) | def cursor(self, cursor=None):
' '
if cursor:
return cursor(self)
return self.cursorclass(self)<|docstring|>Create a new cursor to execute queries with<|endoftext|> |
3b92166da523960b4ca2411ab7c7f9186d061f806d1296ff1072816d8d0f3778 | def __enter__(self):
' Context manager that returns a Cursor '
return self.cursor() | Context manager that returns a Cursor | asynctorndb/connection.py | __enter__ | mayflaver/AsyncTorndb | 103 | python | def __enter__(self):
' '
return self.cursor() | def __enter__(self):
' '
return self.cursor()<|docstring|>Context manager that returns a Cursor<|endoftext|> |
cb5fa828fb96b1eee737d252a1733d164859dcd29264fef9c7e1641483d698ce | @coroutine
def __exit__(self, exc, value, traceback):
' On successful exit, commit. On exception, rollback. '
if exc:
(yield self.rollback())
else:
(yield self.commit()) | On successful exit, commit. On exception, rollback. | asynctorndb/connection.py | __exit__ | mayflaver/AsyncTorndb | 103 | python | @coroutine
def __exit__(self, exc, value, traceback):
' '
if exc:
(yield self.rollback())
else:
(yield self.commit()) | @coroutine
def __exit__(self, exc, value, traceback):
' '
if exc:
(yield self.rollback())
else:
(yield self.commit())<|docstring|>On successful exit, commit. On exception, rollback.<|endoftext|> |
dda212a01dfac34c4569c411938e9b3567375862a62bdbbf3186b836ce02491f | @coroutine
def query(self, sql, *args):
'Returns a row list for the given query and parameters.'
cur = self.cursor()
try:
(yield cur.execute(sql, *args))
column_names = [d[0] for d in cur.description]
raise Return([Row(zip(column_names, row)) for row in cur])
finally:
cur.close() | Returns a row list for the given query and parameters. | asynctorndb/connection.py | query | mayflaver/AsyncTorndb | 103 | python | @coroutine
def query(self, sql, *args):
cur = self.cursor()
try:
(yield cur.execute(sql, *args))
column_names = [d[0] for d in cur.description]
raise Return([Row(zip(column_names, row)) for row in cur])
finally:
cur.close() | @coroutine
def query(self, sql, *args):
cur = self.cursor()
try:
(yield cur.execute(sql, *args))
column_names = [d[0] for d in cur.description]
raise Return([Row(zip(column_names, row)) for row in cur])
finally:
cur.close()<|docstring|>Returns a row list for the given query and parameters.<|endoftext|> |
0b4ad3a82cd800b4c1dba5b8595da05e7178c1e4b96299516a210faf226fae5d | @coroutine
def get(self, sql, *args):
'Returns the (singular) row returned by the given query.\n \n If the query has no results, returns None. If it has\n more than one result, raises an exception.\n '
rows = (yield self.query(sql, *args))
if (not rows):
raise Return(None)
elif (len(rows) > 1):
raise Exception('Multiple rows returned for Database.get() query')
else:
raise Return(rows[0]) | Returns the (singular) row returned by the given query.
If the query has no results, returns None. If it has
more than one result, raises an exception. | asynctorndb/connection.py | get | mayflaver/AsyncTorndb | 103 | python | @coroutine
def get(self, sql, *args):
'Returns the (singular) row returned by the given query.\n \n If the query has no results, returns None. If it has\n more than one result, raises an exception.\n '
rows = (yield self.query(sql, *args))
if (not rows):
raise Return(None)
elif (len(rows) > 1):
raise Exception('Multiple rows returned for Database.get() query')
else:
raise Return(rows[0]) | @coroutine
def get(self, sql, *args):
'Returns the (singular) row returned by the given query.\n \n If the query has no results, returns None. If it has\n more than one result, raises an exception.\n '
rows = (yield self.query(sql, *args))
if (not rows):
raise Return(None)
elif (len(rows) > 1):
raise Exception('Multiple rows returned for Database.get() query')
else:
raise Return(rows[0])<|docstring|>Returns the (singular) row returned by the given query.
If the query has no results, returns None. If it has
more than one result, raises an exception.<|endoftext|> |
2a493e955a17cfb387aa184bca4742b513a81907f6e61e7dc9f12cdb9d9adadf | @coroutine
def execute(self, sql, *args):
'Executes the given query, returning the lastrowid from the query.'
raise Return((yield self.execute_lastrowid(sql, *args))) | Executes the given query, returning the lastrowid from the query. | asynctorndb/connection.py | execute | mayflaver/AsyncTorndb | 103 | python | @coroutine
def execute(self, sql, *args):
raise Return((yield self.execute_lastrowid(sql, *args))) | @coroutine
def execute(self, sql, *args):
raise Return((yield self.execute_lastrowid(sql, *args)))<|docstring|>Executes the given query, returning the lastrowid from the query.<|endoftext|> |
4f2c61522a570876a64d2eef24f6d3cd04f3f47ffd5bcf4cb695fafde639a3c9 | @coroutine
def execute_lastrowid(self, sql, *args):
'Executes the given query, returning the lastrowid from the query.'
cur = self.cursor()
try:
(yield self._execute(cur, sql, *args))
raise Return(cur.lastrowid)
finally:
cur.close() | Executes the given query, returning the lastrowid from the query. | asynctorndb/connection.py | execute_lastrowid | mayflaver/AsyncTorndb | 103 | python | @coroutine
def execute_lastrowid(self, sql, *args):
cur = self.cursor()
try:
(yield self._execute(cur, sql, *args))
raise Return(cur.lastrowid)
finally:
cur.close() | @coroutine
def execute_lastrowid(self, sql, *args):
cur = self.cursor()
try:
(yield self._execute(cur, sql, *args))
raise Return(cur.lastrowid)
finally:
cur.close()<|docstring|>Executes the given query, returning the lastrowid from the query.<|endoftext|> |
3fccb9a6ffbe3e47ef83f7b670a9543963733e5544ca64f5f4e35fb598b30879 | @coroutine
def execute_rowcount(self, sql, *args):
'Executes the given query, returning the rowcount from the query.'
cur = self.cursor()
try:
(yield self._execute(cur, sql, *args))
raise Return(cur.rowcount)
finally:
cur.close() | Executes the given query, returning the rowcount from the query. | asynctorndb/connection.py | execute_rowcount | mayflaver/AsyncTorndb | 103 | python | @coroutine
def execute_rowcount(self, sql, *args):
cur = self.cursor()
try:
(yield self._execute(cur, sql, *args))
raise Return(cur.rowcount)
finally:
cur.close() | @coroutine
def execute_rowcount(self, sql, *args):
cur = self.cursor()
try:
(yield self._execute(cur, sql, *args))
raise Return(cur.rowcount)
finally:
cur.close()<|docstring|>Executes the given query, returning the rowcount from the query.<|endoftext|> |
d2d196e782c712454c108e683b043edb5dd592da3b69b8bda34446de5a81235c | @coroutine
def executemany(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the lastrowid from the query.\n '
raise Return((yield self.executemany_lastrowid(sql, args))) | Executes the given query against all the given param sequences.
We return the lastrowid from the query. | asynctorndb/connection.py | executemany | mayflaver/AsyncTorndb | 103 | python | @coroutine
def executemany(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the lastrowid from the query.\n '
raise Return((yield self.executemany_lastrowid(sql, args))) | @coroutine
def executemany(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the lastrowid from the query.\n '
raise Return((yield self.executemany_lastrowid(sql, args)))<|docstring|>Executes the given query against all the given param sequences.
We return the lastrowid from the query.<|endoftext|> |
a375c1a40d92a541f11ec463ccb5d9c4e0c50c056c350a0605d4e7a1370ca33d | @coroutine
def executemany_lastrowid(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the lastrowid from the query.\n '
cur = self.cursor()
try:
(yield cur.executemany(sql, args))
raise Return(cur.lastrowid)
finally:
cur.close() | Executes the given query against all the given param sequences.
We return the lastrowid from the query. | asynctorndb/connection.py | executemany_lastrowid | mayflaver/AsyncTorndb | 103 | python | @coroutine
def executemany_lastrowid(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the lastrowid from the query.\n '
cur = self.cursor()
try:
(yield cur.executemany(sql, args))
raise Return(cur.lastrowid)
finally:
cur.close() | @coroutine
def executemany_lastrowid(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the lastrowid from the query.\n '
cur = self.cursor()
try:
(yield cur.executemany(sql, args))
raise Return(cur.lastrowid)
finally:
cur.close()<|docstring|>Executes the given query against all the given param sequences.
We return the lastrowid from the query.<|endoftext|> |
a698318ad340832d5bc5225ae7e27fdd1edcf0dcff7df755c5c1229eeca21193 | @coroutine
def executemany_rowcount(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the rowcount from the query.\n '
cur = self.cursor()
try:
(yield cur.executemany(sql, args))
raise Return(cur.rowcount)
finally:
cur.close() | Executes the given query against all the given param sequences.
We return the rowcount from the query. | asynctorndb/connection.py | executemany_rowcount | mayflaver/AsyncTorndb | 103 | python | @coroutine
def executemany_rowcount(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the rowcount from the query.\n '
cur = self.cursor()
try:
(yield cur.executemany(sql, args))
raise Return(cur.rowcount)
finally:
cur.close() | @coroutine
def executemany_rowcount(self, sql, args):
'Executes the given query against all the given param sequences.\n\n We return the rowcount from the query.\n '
cur = self.cursor()
try:
(yield cur.executemany(sql, args))
raise Return(cur.rowcount)
finally:
cur.close()<|docstring|>Executes the given query against all the given param sequences.
We return the rowcount from the query.<|endoftext|> |
abfec0e564be9158ea64461ec5db6841e63eee266e2cc8f739169dd06b1e3cec | def ping(self, reconnect=True):
' Check if the server is alive '
if (self.socket is None):
if reconnect:
self._connect()
reconnect = False
else:
raise Error('Already closed')
try:
self._execute_command(COM_PING, '')
return self._read_ok_packet()
except Exception:
if reconnect:
self._connect()
return self.ping(False)
else:
raise | Check if the server is alive | asynctorndb/connection.py | ping | mayflaver/AsyncTorndb | 103 | python | def ping(self, reconnect=True):
' '
if (self.socket is None):
if reconnect:
self._connect()
reconnect = False
else:
raise Error('Already closed')
try:
self._execute_command(COM_PING, )
return self._read_ok_packet()
except Exception:
if reconnect:
self._connect()
return self.ping(False)
else:
raise | def ping(self, reconnect=True):
' '
if (self.socket is None):
if reconnect:
self._connect()
reconnect = False
else:
raise Error('Already closed')
try:
self._execute_command(COM_PING, )
return self._read_ok_packet()
except Exception:
if reconnect:
self._connect()
return self.ping(False)
else:
raise<|docstring|>Check if the server is alive<|endoftext|> |
b61757288896040b2e9625db22136fac3746c48bc9559b17902694d34b74553b | @coroutine
def _read_packet(self, packet_type=MysqlPacket):
'Read an entire "mysql packet" in its entirety from the network\n and return a MysqlPacket type that represents the results.\n '
packet = packet_type(self)
(yield packet.recv_packet())
packet.check_error()
raise Return(packet) | Read an entire "mysql packet" in its entirety from the network
and return a MysqlPacket type that represents the results. | asynctorndb/connection.py | _read_packet | mayflaver/AsyncTorndb | 103 | python | @coroutine
def _read_packet(self, packet_type=MysqlPacket):
'Read an entire "mysql packet" in its entirety from the network\n and return a MysqlPacket type that represents the results.\n '
packet = packet_type(self)
(yield packet.recv_packet())
packet.check_error()
raise Return(packet) | @coroutine
def _read_packet(self, packet_type=MysqlPacket):
'Read an entire "mysql packet" in its entirety from the network\n and return a MysqlPacket type that represents the results.\n '
packet = packet_type(self)
(yield packet.recv_packet())
packet.check_error()
raise Return(packet)<|docstring|>Read an entire "mysql packet" in its entirety from the network
and return a MysqlPacket type that represents the results.<|endoftext|> |
c570dc702a17c36f36b6914db926b76d7367bd0f167a20bd49a5f515b8f749a0 | @coroutine
def _read_rowdata_packet(self):
'Read a rowdata packet for each data row in the result set.'
rows = []
while True:
packet = MysqlPacket(self.connection)
buff = b''
while True:
packet_header = (yield self.connection.stream.read_bytes(4))
if DEBUG:
dump_packet(packet_header)
packet_length_bin = packet_header[:3]
self._packet_number = byte2int(packet_header[3])
bin_length = (packet_length_bin + b'\x00')
bytes_to_read = struct.unpack('<I', bin_length)[0]
recv_data = (yield self.connection.stream.read_bytes(bytes_to_read))
if DEBUG:
dump_packet(recv_data)
buff += recv_data
if (bytes_to_read < MAX_PACKET_LEN):
break
packet.set_data(buff)
if self._check_packet_is_eof(packet):
self.connection = None
break
rows.append(self._read_row_from_packet(packet))
self.affected_rows = len(rows)
self.rows = tuple(rows) | Read a rowdata packet for each data row in the result set. | asynctorndb/connection.py | _read_rowdata_packet | mayflaver/AsyncTorndb | 103 | python | @coroutine
def _read_rowdata_packet(self):
rows = []
while True:
packet = MysqlPacket(self.connection)
buff = b
while True:
packet_header = (yield self.connection.stream.read_bytes(4))
if DEBUG:
dump_packet(packet_header)
packet_length_bin = packet_header[:3]
self._packet_number = byte2int(packet_header[3])
bin_length = (packet_length_bin + b'\x00')
bytes_to_read = struct.unpack('<I', bin_length)[0]
recv_data = (yield self.connection.stream.read_bytes(bytes_to_read))
if DEBUG:
dump_packet(recv_data)
buff += recv_data
if (bytes_to_read < MAX_PACKET_LEN):
break
packet.set_data(buff)
if self._check_packet_is_eof(packet):
self.connection = None
break
rows.append(self._read_row_from_packet(packet))
self.affected_rows = len(rows)
self.rows = tuple(rows) | @coroutine
def _read_rowdata_packet(self):
rows = []
while True:
packet = MysqlPacket(self.connection)
buff = b
while True:
packet_header = (yield self.connection.stream.read_bytes(4))
if DEBUG:
dump_packet(packet_header)
packet_length_bin = packet_header[:3]
self._packet_number = byte2int(packet_header[3])
bin_length = (packet_length_bin + b'\x00')
bytes_to_read = struct.unpack('<I', bin_length)[0]
recv_data = (yield self.connection.stream.read_bytes(bytes_to_read))
if DEBUG:
dump_packet(recv_data)
buff += recv_data
if (bytes_to_read < MAX_PACKET_LEN):
break
packet.set_data(buff)
if self._check_packet_is_eof(packet):
self.connection = None
break
rows.append(self._read_row_from_packet(packet))
self.affected_rows = len(rows)
self.rows = tuple(rows)<|docstring|>Read a rowdata packet for each data row in the result set.<|endoftext|> |
e39fa8f7cefdd754379d1309b1ffde548363dcd13e5a38113385442a346639de | @coroutine
def _get_descriptions(self):
'Read a column descriptor packet for each column in the result.'
self.fields = []
description = []
for i in range_type(self.field_count):
field = (yield self.connection._read_packet(FieldDescriptorPacket))
self.fields.append(field)
description.append(field.description())
eof_packet = (yield self.connection._read_packet())
assert eof_packet.is_eof_packet(), 'Protocol error, expecting EOF'
self.description = tuple(description) | Read a column descriptor packet for each column in the result. | asynctorndb/connection.py | _get_descriptions | mayflaver/AsyncTorndb | 103 | python | @coroutine
def _get_descriptions(self):
self.fields = []
description = []
for i in range_type(self.field_count):
field = (yield self.connection._read_packet(FieldDescriptorPacket))
self.fields.append(field)
description.append(field.description())
eof_packet = (yield self.connection._read_packet())
assert eof_packet.is_eof_packet(), 'Protocol error, expecting EOF'
self.description = tuple(description) | @coroutine
def _get_descriptions(self):
self.fields = []
description = []
for i in range_type(self.field_count):
field = (yield self.connection._read_packet(FieldDescriptorPacket))
self.fields.append(field)
description.append(field.description())
eof_packet = (yield self.connection._read_packet())
assert eof_packet.is_eof_packet(), 'Protocol error, expecting EOF'
self.description = tuple(description)<|docstring|>Read a column descriptor packet for each column in the result.<|endoftext|> |
8e651b3718a8e1ed5acb36dda5944acabf2c55bc6120ca0643674f959bd0568f | @property
def libs(self):
"Export the libraries of SuiteSparse.\n Sample usage: spec['suite-sparse'].libs.ld_flags\n spec['suite-sparse:klu,btf'].libs.ld_flags\n "
all_comps = ['klu', 'btf', 'umfpack', 'cholmod', 'colamd', 'amd', 'camd', 'ccolamd', 'cxsparse', 'ldl', 'rbio', 'spqr', 'suitesparseconfig']
query_parameters = self.spec.last_query.extra_parameters
comps = (all_comps if (not query_parameters) else query_parameters)
libs = find_libraries([('lib' + c) for c in comps], root=self.prefix.lib, shared=True, recursive=False)
if (not libs):
return None
libs += find_system_libraries('librt')
return libs | Export the libraries of SuiteSparse.
Sample usage: spec['suite-sparse'].libs.ld_flags
spec['suite-sparse:klu,btf'].libs.ld_flags | var/spack/repos/builtin/packages/suite-sparse/package.py | libs | kresan/spack | 3 | python | @property
def libs(self):
"Export the libraries of SuiteSparse.\n Sample usage: spec['suite-sparse'].libs.ld_flags\n spec['suite-sparse:klu,btf'].libs.ld_flags\n "
all_comps = ['klu', 'btf', 'umfpack', 'cholmod', 'colamd', 'amd', 'camd', 'ccolamd', 'cxsparse', 'ldl', 'rbio', 'spqr', 'suitesparseconfig']
query_parameters = self.spec.last_query.extra_parameters
comps = (all_comps if (not query_parameters) else query_parameters)
libs = find_libraries([('lib' + c) for c in comps], root=self.prefix.lib, shared=True, recursive=False)
if (not libs):
return None
libs += find_system_libraries('librt')
return libs | @property
def libs(self):
"Export the libraries of SuiteSparse.\n Sample usage: spec['suite-sparse'].libs.ld_flags\n spec['suite-sparse:klu,btf'].libs.ld_flags\n "
all_comps = ['klu', 'btf', 'umfpack', 'cholmod', 'colamd', 'amd', 'camd', 'ccolamd', 'cxsparse', 'ldl', 'rbio', 'spqr', 'suitesparseconfig']
query_parameters = self.spec.last_query.extra_parameters
comps = (all_comps if (not query_parameters) else query_parameters)
libs = find_libraries([('lib' + c) for c in comps], root=self.prefix.lib, shared=True, recursive=False)
if (not libs):
return None
libs += find_system_libraries('librt')
return libs<|docstring|>Export the libraries of SuiteSparse.
Sample usage: spec['suite-sparse'].libs.ld_flags
spec['suite-sparse:klu,btf'].libs.ld_flags<|endoftext|> |
2381f372cd69d06a1d537f33efad7eb509bcb034362f2c65cf6f64f51a2547a1 | def test_get_system_date_time(self):
'\n Test we are able to get the correct time\n '
t1 = datetime.datetime.now()
res = self.run_function('system.get_system_date_time')
t2 = datetime.datetime.strptime(res, self.fmt_str)
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(t1, t2)
self.assertTrue(self._same_times(t1, t2), msg=msg) | Test we are able to get the correct time | tests/integration/modules/system.py | test_get_system_date_time | ahammond/salt | 0 | python | def test_get_system_date_time(self):
'\n \n '
t1 = datetime.datetime.now()
res = self.run_function('system.get_system_date_time')
t2 = datetime.datetime.strptime(res, self.fmt_str)
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(t1, t2)
self.assertTrue(self._same_times(t1, t2), msg=msg) | def test_get_system_date_time(self):
'\n \n '
t1 = datetime.datetime.now()
res = self.run_function('system.get_system_date_time')
t2 = datetime.datetime.strptime(res, self.fmt_str)
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(t1, t2)
self.assertTrue(self._same_times(t1, t2), msg=msg)<|docstring|>Test we are able to get the correct time<|endoftext|> |
763b095b9cdf7c1de8080271b283f9d7c2283c4b040ca3ca8cf62d5c84facc73 | def test_get_system_date_time_utc(self):
'\n Test we are able to get the correct time with utc\n '
t1 = datetime.datetime.utcnow()
res = self.run_function('system.get_system_date_time', utc=True)
t2 = datetime.datetime.strptime(res, self.fmt_str)
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(t1, t2)
self.assertTrue(self._same_times(t1, t2), msg=msg) | Test we are able to get the correct time with utc | tests/integration/modules/system.py | test_get_system_date_time_utc | ahammond/salt | 0 | python | def test_get_system_date_time_utc(self):
'\n \n '
t1 = datetime.datetime.utcnow()
res = self.run_function('system.get_system_date_time', utc=True)
t2 = datetime.datetime.strptime(res, self.fmt_str)
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(t1, t2)
self.assertTrue(self._same_times(t1, t2), msg=msg) | def test_get_system_date_time_utc(self):
'\n \n '
t1 = datetime.datetime.utcnow()
res = self.run_function('system.get_system_date_time', utc=True)
t2 = datetime.datetime.strptime(res, self.fmt_str)
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(t1, t2)
self.assertTrue(self._same_times(t1, t2), msg=msg)<|docstring|>Test we are able to get the correct time with utc<|endoftext|> |
f53e63ba71570e82fec718e93c9c95d40f5a1a2385fbe89ee8a538f777f098d2 | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
self._set_time(self._fake_time)
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(self._same_times(time_now, self._fake_time), msg=msg)
self._restore_time() | Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time. | tests/integration/modules/system.py | test_set_system_date_time | ahammond/salt | 0 | python | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
self._set_time(self._fake_time)
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(self._same_times(time_now, self._fake_time), msg=msg)
self._restore_time() | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
self._set_time(self._fake_time)
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(self._same_times(time_now, self._fake_time), msg=msg)
self._restore_time()<|docstring|>Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time.<|endoftext|> |
92020a1fed25a8a16207de286e32304305e8e48fb0473d55217bc60dc0425f41 | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_utc(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, utc=True)
time_now = datetime.datetime.utcnow()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time)), msg=msg)
self._restore_time(utc=True) | Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time. | tests/integration/modules/system.py | test_set_system_date_time_utc | ahammond/salt | 0 | python | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_utc(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, utc=True)
time_now = datetime.datetime.utcnow()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time)), msg=msg)
self._restore_time(utc=True) | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_utc(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, utc=True)
time_now = datetime.datetime.utcnow()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time)), msg=msg)
self._restore_time(utc=True)<|docstring|>Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time.<|endoftext|> |
06f7c5455a39f1143d72966058dc25288293b1f4fc431fd65150704e91aa12bd | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_posix(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, posix=True)
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time, seconds_diff=60)), msg=msg)
self._restore_time() | Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time. | tests/integration/modules/system.py | test_set_system_date_time_posix | ahammond/salt | 0 | python | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_posix(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, posix=True)
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time, seconds_diff=60)), msg=msg)
self._restore_time() | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_posix(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, posix=True)
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time, seconds_diff=60)), msg=msg)
self._restore_time()<|docstring|>Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time.<|endoftext|> |
81948af8fc56b3bbe9898f60edc5c58a6d4200fd32e0a002e6d44b9ad16ecee7 | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_posix_utc(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, posix=True, utc=True)
time_now = datetime.datetime.utcnow()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time, seconds_diff=60)), msg=msg)
self._restore_time(utc=True) | Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time. | tests/integration/modules/system.py | test_set_system_date_time_posix_utc | ahammond/salt | 0 | python | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_posix_utc(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, posix=True, utc=True)
time_now = datetime.datetime.utcnow()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time, seconds_diff=60)), msg=msg)
self._restore_time(utc=True) | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date_time_posix_utc(self):
'\n Test changing the system clock. We are only able to set it up to a\n resolution of a second so this test may appear to run in negative time.\n '
self._fake_time = datetime.datetime.strptime('1981-02-03 04:05:06', self.fmt_str)
self._save_time()
result = self._set_time(self._fake_time, posix=True, utc=True)
time_now = datetime.datetime.utcnow()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue((result and self._same_times(time_now, self._fake_time, seconds_diff=60)), msg=msg)
self._restore_time(utc=True)<|docstring|>Test changing the system clock. We are only able to set it up to a
resolution of a second so this test may appear to run in negative time.<|endoftext|> |
5aae2047c1b14f8bb0a7335eabd191b0120c173cca1767a66c76a4297fcedc31 | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_time(self):
'\n Test setting the system time without adjusting the date.\n '
self._fake_time = datetime.datetime.combine(datetime.date.today(), datetime.time(4, 5, 0))
self._save_time()
result = self.run_function('system.set_system_time', ['04:05:00'])
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(result)
self.assertTrue(((time_now.hour == 4) and (time_now.minute == 5) and (time_now.second < 10)), msg=msg)
self._restore_time() | Test setting the system time without adjusting the date. | tests/integration/modules/system.py | test_set_system_time | ahammond/salt | 0 | python | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_time(self):
'\n \n '
self._fake_time = datetime.datetime.combine(datetime.date.today(), datetime.time(4, 5, 0))
self._save_time()
result = self.run_function('system.set_system_time', ['04:05:00'])
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(result)
self.assertTrue(((time_now.hour == 4) and (time_now.minute == 5) and (time_now.second < 10)), msg=msg)
self._restore_time() | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_time(self):
'\n \n '
self._fake_time = datetime.datetime.combine(datetime.date.today(), datetime.time(4, 5, 0))
self._save_time()
result = self.run_function('system.set_system_time', ['04:05:00'])
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(result)
self.assertTrue(((time_now.hour == 4) and (time_now.minute == 5) and (time_now.second < 10)), msg=msg)
self._restore_time()<|docstring|>Test setting the system time without adjusting the date.<|endoftext|> |
fa4e4a06ff03ce7b7597b56496581c96ece734c9fa9db4e138796890d2baa1ae | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date(self):
'\n Test setting the system date without adjusting the time.\n '
self._fake_time = datetime.datetime.combine(datetime.datetime(2000, 12, 25), datetime.datetime.now().time())
self._save_time()
result = self.run_function('system.set_system_date', ['2000-12-25'])
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(result)
self.assertTrue(((time_now.year == 2000) and (time_now.day == 25) and (time_now.month == 12) and (time_now.hour == self._orig_time.hour) and (time_now.minute == self._orig_time.minute)), msg=msg)
self._restore_time() | Test setting the system date without adjusting the time. | tests/integration/modules/system.py | test_set_system_date | ahammond/salt | 0 | python | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date(self):
'\n \n '
self._fake_time = datetime.datetime.combine(datetime.datetime(2000, 12, 25), datetime.datetime.now().time())
self._save_time()
result = self.run_function('system.set_system_date', ['2000-12-25'])
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(result)
self.assertTrue(((time_now.year == 2000) and (time_now.day == 25) and (time_now.month == 12) and (time_now.hour == self._orig_time.hour) and (time_now.minute == self._orig_time.minute)), msg=msg)
self._restore_time() | @destructiveTest
@skipIf((os.geteuid() != 0), 'you must be root to run this test')
def test_set_system_date(self):
'\n \n '
self._fake_time = datetime.datetime.combine(datetime.datetime(2000, 12, 25), datetime.datetime.now().time())
self._save_time()
result = self.run_function('system.set_system_date', ['2000-12-25'])
time_now = datetime.datetime.now()
msg = 'Difference in times is too large. Now: {0} Fake: {1}'.format(time_now, self._fake_time)
self.assertTrue(result)
self.assertTrue(((time_now.year == 2000) and (time_now.day == 25) and (time_now.month == 12) and (time_now.hour == self._orig_time.hour) and (time_now.minute == self._orig_time.minute)), msg=msg)
self._restore_time()<|docstring|>Test setting the system date without adjusting the time.<|endoftext|> |
2268b181a174287b1abd966174e76f19d5f96ce71822b4cf74e8ff388ac41f02 | def delete_user(self: api_client.Api, path_params: RequestPathParams=frozendict(), stream: bool=False, timeout: typing.Optional[typing.Union[(int, typing.Tuple)]]=None, skip_deserialization: bool=False) -> typing.Union[api_client.ApiResponseWithoutDeserialization]:
'\n Delete user\n :param skip_deserialization: If true then api_response.response will be set but\n api_response.body and api_response.headers will not be deserialized into schema\n class instances\n '
self._verify_typed_dict_inputs(RequestPathParams, path_params)
_path_params = {}
for parameter in (request_path_username,):
parameter_data = path_params.get(parameter.name, unset)
if (parameter_data is unset):
continue
serialized_data = parameter.serialize(parameter_data)
_path_params.update(serialized_data)
response = self.api_client.call_api(resource_path=_path, method=_method, path_params=_path_params, stream=stream, timeout=timeout)
if skip_deserialization:
api_response = api_client.ApiResponseWithoutDeserialization(response=response)
else:
response_for_status = _status_code_to_response.get(str(response.status))
if response_for_status:
api_response = response_for_status.deserialize(response, self.api_client.configuration)
else:
api_response = api_client.ApiResponseWithoutDeserialization(response=response)
if (not (200 <= response.status <= 299)):
raise exceptions.ApiException(api_response=api_response)
return api_response | Delete user
:param skip_deserialization: If true then api_response.response will be set but
api_response.body and api_response.headers will not be deserialized into schema
class instances | samples/openapi3/client/petstore/python-experimental/petstore_api/api/user_api_endpoints/delete_user.py | delete_user | joaocmendes/openapi-generator | 0 | python | def delete_user(self: api_client.Api, path_params: RequestPathParams=frozendict(), stream: bool=False, timeout: typing.Optional[typing.Union[(int, typing.Tuple)]]=None, skip_deserialization: bool=False) -> typing.Union[api_client.ApiResponseWithoutDeserialization]:
'\n Delete user\n :param skip_deserialization: If true then api_response.response will be set but\n api_response.body and api_response.headers will not be deserialized into schema\n class instances\n '
self._verify_typed_dict_inputs(RequestPathParams, path_params)
_path_params = {}
for parameter in (request_path_username,):
parameter_data = path_params.get(parameter.name, unset)
if (parameter_data is unset):
continue
serialized_data = parameter.serialize(parameter_data)
_path_params.update(serialized_data)
response = self.api_client.call_api(resource_path=_path, method=_method, path_params=_path_params, stream=stream, timeout=timeout)
if skip_deserialization:
api_response = api_client.ApiResponseWithoutDeserialization(response=response)
else:
response_for_status = _status_code_to_response.get(str(response.status))
if response_for_status:
api_response = response_for_status.deserialize(response, self.api_client.configuration)
else:
api_response = api_client.ApiResponseWithoutDeserialization(response=response)
if (not (200 <= response.status <= 299)):
raise exceptions.ApiException(api_response=api_response)
return api_response | def delete_user(self: api_client.Api, path_params: RequestPathParams=frozendict(), stream: bool=False, timeout: typing.Optional[typing.Union[(int, typing.Tuple)]]=None, skip_deserialization: bool=False) -> typing.Union[api_client.ApiResponseWithoutDeserialization]:
'\n Delete user\n :param skip_deserialization: If true then api_response.response will be set but\n api_response.body and api_response.headers will not be deserialized into schema\n class instances\n '
self._verify_typed_dict_inputs(RequestPathParams, path_params)
_path_params = {}
for parameter in (request_path_username,):
parameter_data = path_params.get(parameter.name, unset)
if (parameter_data is unset):
continue
serialized_data = parameter.serialize(parameter_data)
_path_params.update(serialized_data)
response = self.api_client.call_api(resource_path=_path, method=_method, path_params=_path_params, stream=stream, timeout=timeout)
if skip_deserialization:
api_response = api_client.ApiResponseWithoutDeserialization(response=response)
else:
response_for_status = _status_code_to_response.get(str(response.status))
if response_for_status:
api_response = response_for_status.deserialize(response, self.api_client.configuration)
else:
api_response = api_client.ApiResponseWithoutDeserialization(response=response)
if (not (200 <= response.status <= 299)):
raise exceptions.ApiException(api_response=api_response)
return api_response<|docstring|>Delete user
:param skip_deserialization: If true then api_response.response will be set but
api_response.body and api_response.headers will not be deserialized into schema
class instances<|endoftext|> |
f08fca5774b8a7114e55b445758dc106c276399f6612dd169676c85fab35bfec | def angles_mean(time, rad, angles, path):
'Generate mean along angles for single simulation.'
out = readpvd(task_root=path, task_id='model', pcs='GROUNDWATER_FLOW')
rt_head = np.zeros((time.shape + rad.shape), dtype=float)
for (select, step) in enumerate(time):
points = out['DATA'][select]['points']
radii = np.sqrt(((points[(:, 0)] ** 2) + (points[(:, 1)] ** 2)))
rad_ids = np.argmin(np.abs(np.subtract.outer(rad, radii)), axis=0)
for (i, head) in enumerate(out['DATA'][select]['point_data']['HEAD']):
rt_head[(select, rad_ids[i])] += head
rt_head[(:, 1:)] = (rt_head[(:, 1:)] / angles)
np.savetxt(os.path.join(path, 'rad_mean_head.txt'), rt_head) | Generate mean along angles for single simulation. | src/01_run_sim.py | angles_mean | GeoStat-Examples/gstools-pumping-test-ensemble | 2 | python | def angles_mean(time, rad, angles, path):
out = readpvd(task_root=path, task_id='model', pcs='GROUNDWATER_FLOW')
rt_head = np.zeros((time.shape + rad.shape), dtype=float)
for (select, step) in enumerate(time):
points = out['DATA'][select]['points']
radii = np.sqrt(((points[(:, 0)] ** 2) + (points[(:, 1)] ** 2)))
rad_ids = np.argmin(np.abs(np.subtract.outer(rad, radii)), axis=0)
for (i, head) in enumerate(out['DATA'][select]['point_data']['HEAD']):
rt_head[(select, rad_ids[i])] += head
rt_head[(:, 1:)] = (rt_head[(:, 1:)] / angles)
np.savetxt(os.path.join(path, 'rad_mean_head.txt'), rt_head) | def angles_mean(time, rad, angles, path):
out = readpvd(task_root=path, task_id='model', pcs='GROUNDWATER_FLOW')
rt_head = np.zeros((time.shape + rad.shape), dtype=float)
for (select, step) in enumerate(time):
points = out['DATA'][select]['points']
radii = np.sqrt(((points[(:, 0)] ** 2) + (points[(:, 1)] ** 2)))
rad_ids = np.argmin(np.abs(np.subtract.outer(rad, radii)), axis=0)
for (i, head) in enumerate(out['DATA'][select]['point_data']['HEAD']):
rt_head[(select, rad_ids[i])] += head
rt_head[(:, 1:)] = (rt_head[(:, 1:)] / angles)
np.savetxt(os.path.join(path, 'rad_mean_head.txt'), rt_head)<|docstring|>Generate mean along angles for single simulation.<|endoftext|> |
26495a597c8b366b8186c2d53d5d825addef9008272fae3bbd64263d108aa0f6 | def random_pred_test_data(size: int, seed: int=4321):
'Return a tuple of random tensors representing test and pred. data'
y_pred = tf.random.stateless_normal((size,), seed=(seed, 0))
y_test = tf.random.stateless_normal((size,), seed=(seed, 1))
return (y_pred, y_test) | Return a tuple of random tensors representing test and pred. data | rlo/test/rlo/test_losses.py | random_pred_test_data | tomjaguarpaw/knossos-ksc | 31 | python | def random_pred_test_data(size: int, seed: int=4321):
y_pred = tf.random.stateless_normal((size,), seed=(seed, 0))
y_test = tf.random.stateless_normal((size,), seed=(seed, 1))
return (y_pred, y_test) | def random_pred_test_data(size: int, seed: int=4321):
y_pred = tf.random.stateless_normal((size,), seed=(seed, 0))
y_test = tf.random.stateless_normal((size,), seed=(seed, 1))
return (y_pred, y_test)<|docstring|>Return a tuple of random tensors representing test and pred. data<|endoftext|> |
48657ee3292afd08c4c171f4e07591a342b65edf75c65163472b1fe37ad5ea9e | def check_same_as_tensorflow(ours, theirs):
'Test our "unreduced" implementation (ours) gives the same value as the tensorflow implementation (theirs) after averaging'
size = 1024
(y_pred, y_test) = random_pred_test_data(size)
actual = tf.reduce_mean(ours(y_pred, y_test))
expected = theirs(y_pred, y_test)
np.testing.assert_allclose(actual.numpy(), expected.numpy(), rtol=1e-05) | Test our "unreduced" implementation (ours) gives the same value as the tensorflow implementation (theirs) after averaging | rlo/test/rlo/test_losses.py | check_same_as_tensorflow | tomjaguarpaw/knossos-ksc | 31 | python | def check_same_as_tensorflow(ours, theirs):
size = 1024
(y_pred, y_test) = random_pred_test_data(size)
actual = tf.reduce_mean(ours(y_pred, y_test))
expected = theirs(y_pred, y_test)
np.testing.assert_allclose(actual.numpy(), expected.numpy(), rtol=1e-05) | def check_same_as_tensorflow(ours, theirs):
size = 1024
(y_pred, y_test) = random_pred_test_data(size)
actual = tf.reduce_mean(ours(y_pred, y_test))
expected = theirs(y_pred, y_test)
np.testing.assert_allclose(actual.numpy(), expected.numpy(), rtol=1e-05)<|docstring|>Test our "unreduced" implementation (ours) gives the same value as the tensorflow implementation (theirs) after averaging<|endoftext|> |
763c316624ae5b3a3919288d718e4cd2612909272418360a640d4d281caeddaf | def align_face(img, size=(512, 512)):
'\n :param img: input photo, numpy array\n :param size: output shape\n :return: output align face image\n '
if ((img.shape[0] * img.shape[1]) > (512 * 512)):
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
(detector, predictor, facerec) = generate_detector()
dets = detector(img, 1)
d = dets[0]
bb = np.zeros(4, dtype=np.int32)
ext = 8
bb[0] = np.maximum((d.left() - ext), 0)
bb[1] = np.maximum(((d.top() - ext) - 20), 0)
bb[2] = np.minimum((d.right() + ext), img.shape[1])
bb[3] = np.minimum((d.bottom() + 2), img.shape[0])
rec = dlib.rectangle(bb[0], bb[1], bb[2], bb[3])
shape = predictor(img, rec)
face_descriptor = facerec.compute_face_descriptor(img, shape)
face_array = np.array(face_descriptor).reshape((1, 128))
cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), (255, 255, 255), 1)
cropped = img[(bb[1]:bb[3], bb[0]:bb[2], :)]
scaled = cv2.resize(cropped, size, interpolation=cv2.INTER_LINEAR)
return scaled | :param img: input photo, numpy array
:param size: output shape
:return: output align face image | neural/align.py | align_face | Hengle/face-nn | 319 | python | def align_face(img, size=(512, 512)):
'\n :param img: input photo, numpy array\n :param size: output shape\n :return: output align face image\n '
if ((img.shape[0] * img.shape[1]) > (512 * 512)):
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
(detector, predictor, facerec) = generate_detector()
dets = detector(img, 1)
d = dets[0]
bb = np.zeros(4, dtype=np.int32)
ext = 8
bb[0] = np.maximum((d.left() - ext), 0)
bb[1] = np.maximum(((d.top() - ext) - 20), 0)
bb[2] = np.minimum((d.right() + ext), img.shape[1])
bb[3] = np.minimum((d.bottom() + 2), img.shape[0])
rec = dlib.rectangle(bb[0], bb[1], bb[2], bb[3])
shape = predictor(img, rec)
face_descriptor = facerec.compute_face_descriptor(img, shape)
face_array = np.array(face_descriptor).reshape((1, 128))
cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), (255, 255, 255), 1)
cropped = img[(bb[1]:bb[3], bb[0]:bb[2], :)]
scaled = cv2.resize(cropped, size, interpolation=cv2.INTER_LINEAR)
return scaled | def align_face(img, size=(512, 512)):
'\n :param img: input photo, numpy array\n :param size: output shape\n :return: output align face image\n '
if ((img.shape[0] * img.shape[1]) > (512 * 512)):
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
(detector, predictor, facerec) = generate_detector()
dets = detector(img, 1)
d = dets[0]
bb = np.zeros(4, dtype=np.int32)
ext = 8
bb[0] = np.maximum((d.left() - ext), 0)
bb[1] = np.maximum(((d.top() - ext) - 20), 0)
bb[2] = np.minimum((d.right() + ext), img.shape[1])
bb[3] = np.minimum((d.bottom() + 2), img.shape[0])
rec = dlib.rectangle(bb[0], bb[1], bb[2], bb[3])
shape = predictor(img, rec)
face_descriptor = facerec.compute_face_descriptor(img, shape)
face_array = np.array(face_descriptor).reshape((1, 128))
cv2.rectangle(img, (bb[0], bb[1]), (bb[2], bb[3]), (255, 255, 255), 1)
cropped = img[(bb[1]:bb[3], bb[0]:bb[2], :)]
scaled = cv2.resize(cropped, size, interpolation=cv2.INTER_LINEAR)
return scaled<|docstring|>:param img: input photo, numpy array
:param size: output shape
:return: output align face image<|endoftext|> |
21d0927414b6da90443e8f4f629474acf34a8ff56c41af29f177e4d5d6a91e83 | def face_features(path_img, path_save=None):
'\n 提取脸部特征图片\n :param path_img: input photo path, str\n :param path_save: output save image path, str\n :return:\n '
try:
img = cv2.imread(path_img)
if ((img.shape[0] * img.shape[1]) > (512 * 512)):
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
scaled = align_face(img)
if (path_save is not None):
cv2.imwrite(path_save, img)
cv2.imwrite(path_save.replace('align_', 'align2_'), scaled)
return scaled
except Exception as e:
log.error(e) | 提取脸部特征图片
:param path_img: input photo path, str
:param path_save: output save image path, str
:return: | neural/align.py | face_features | Hengle/face-nn | 319 | python | def face_features(path_img, path_save=None):
'\n 提取脸部特征图片\n :param path_img: input photo path, str\n :param path_save: output save image path, str\n :return:\n '
try:
img = cv2.imread(path_img)
if ((img.shape[0] * img.shape[1]) > (512 * 512)):
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
scaled = align_face(img)
if (path_save is not None):
cv2.imwrite(path_save, img)
cv2.imwrite(path_save.replace('align_', 'align2_'), scaled)
return scaled
except Exception as e:
log.error(e) | def face_features(path_img, path_save=None):
'\n 提取脸部特征图片\n :param path_img: input photo path, str\n :param path_save: output save image path, str\n :return:\n '
try:
img = cv2.imread(path_img)
if ((img.shape[0] * img.shape[1]) > (512 * 512)):
img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
scaled = align_face(img)
if (path_save is not None):
cv2.imwrite(path_save, img)
cv2.imwrite(path_save.replace('align_', 'align2_'), scaled)
return scaled
except Exception as e:
log.error(e)<|docstring|>提取脸部特征图片
:param path_img: input photo path, str
:param path_save: output save image path, str
:return:<|endoftext|> |
15518380346f8eb5d27e09b3e785d885b97e8061af4d63eeafec75131402763d | def sampling(args):
'Reparameterization trick by sampling fr an isotropic unit Gaussian.\n Arguments\n args (tensor): mean and log of variance of Q(z|X)\n Returns\n z (tensor): sampled latent vector\n '
epsilon_mean = 0.0
epsilon_std = 1.0
(z_mean, z_log_var) = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim), mean=epsilon_mean, stddev=epsilon_std)
return (z_mean + (K.exp((0.5 * z_log_var)) * epsilon)) | Reparameterization trick by sampling fr an isotropic unit Gaussian.
Arguments
args (tensor): mean and log of variance of Q(z|X)
Returns
z (tensor): sampled latent vector | Generative_Models/Variational_AE/VAE.py | sampling | Romit-Maulik/Tutorials-Demos-Practice | 8 | python | def sampling(args):
'Reparameterization trick by sampling fr an isotropic unit Gaussian.\n Arguments\n args (tensor): mean and log of variance of Q(z|X)\n Returns\n z (tensor): sampled latent vector\n '
epsilon_mean = 0.0
epsilon_std = 1.0
(z_mean, z_log_var) = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim), mean=epsilon_mean, stddev=epsilon_std)
return (z_mean + (K.exp((0.5 * z_log_var)) * epsilon)) | def sampling(args):
'Reparameterization trick by sampling fr an isotropic unit Gaussian.\n Arguments\n args (tensor): mean and log of variance of Q(z|X)\n Returns\n z (tensor): sampled latent vector\n '
epsilon_mean = 0.0
epsilon_std = 1.0
(z_mean, z_log_var) = args
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim), mean=epsilon_mean, stddev=epsilon_std)
return (z_mean + (K.exp((0.5 * z_log_var)) * epsilon))<|docstring|>Reparameterization trick by sampling fr an isotropic unit Gaussian.
Arguments
args (tensor): mean and log of variance of Q(z|X)
Returns
z (tensor): sampled latent vector<|endoftext|> |
f8ee8306b8b4128398be654320cbddffda671037fc0e021158f61c3cb4faf7a6 | @plugin.register(chain='pricing', requires=['ventures', 'devices'])
def splunk(**kwargs):
'Updates Splunk usage per Venture'
if (not settings.SPLUNK_HOST):
return (False, 'Not configured.', kwargs)
try:
splunk_venture = Venture.objects.get(symbol='splunk_unknown_usage')
except Venture.DoesNotExist:
return (False, 'Splunk venture does not exist!', kwargs)
(usage_type, created) = UsageType.objects.get_or_create(name='Splunk Volume 1 MB')
date = kwargs['today']
splunk = Splunk()
days_ago = (date - datetime.date.today()).days
earliest = '{}d@d'.format((days_ago - 1))
latest = ('{}d@d'.format(days_ago) if (days_ago != 0) else 'now')
splunk.start(earliest=earliest, latest=latest)
percent = splunk.progress
while (percent < 100):
print(percent)
time.sleep(30)
percent = splunk.progress
hosts = {}
for item in splunk.results:
host = item['host']
mb = float(item['MBytes'])
if (host in hosts):
hosts[host] += mb
else:
hosts[host] = mb
for (host, usage) in hosts.iteritems():
set_usages(date, usage, usage_type, host, splunk_venture)
return (True, 'done.', kwargs) | Updates Splunk usage per Venture | src/ralph_pricing/plugins/splunk.py | splunk | andrzej-jankowski/ralph_pricing | 0 | python | @plugin.register(chain='pricing', requires=['ventures', 'devices'])
def splunk(**kwargs):
if (not settings.SPLUNK_HOST):
return (False, 'Not configured.', kwargs)
try:
splunk_venture = Venture.objects.get(symbol='splunk_unknown_usage')
except Venture.DoesNotExist:
return (False, 'Splunk venture does not exist!', kwargs)
(usage_type, created) = UsageType.objects.get_or_create(name='Splunk Volume 1 MB')
date = kwargs['today']
splunk = Splunk()
days_ago = (date - datetime.date.today()).days
earliest = '{}d@d'.format((days_ago - 1))
latest = ('{}d@d'.format(days_ago) if (days_ago != 0) else 'now')
splunk.start(earliest=earliest, latest=latest)
percent = splunk.progress
while (percent < 100):
print(percent)
time.sleep(30)
percent = splunk.progress
hosts = {}
for item in splunk.results:
host = item['host']
mb = float(item['MBytes'])
if (host in hosts):
hosts[host] += mb
else:
hosts[host] = mb
for (host, usage) in hosts.iteritems():
set_usages(date, usage, usage_type, host, splunk_venture)
return (True, 'done.', kwargs) | @plugin.register(chain='pricing', requires=['ventures', 'devices'])
def splunk(**kwargs):
if (not settings.SPLUNK_HOST):
return (False, 'Not configured.', kwargs)
try:
splunk_venture = Venture.objects.get(symbol='splunk_unknown_usage')
except Venture.DoesNotExist:
return (False, 'Splunk venture does not exist!', kwargs)
(usage_type, created) = UsageType.objects.get_or_create(name='Splunk Volume 1 MB')
date = kwargs['today']
splunk = Splunk()
days_ago = (date - datetime.date.today()).days
earliest = '{}d@d'.format((days_ago - 1))
latest = ('{}d@d'.format(days_ago) if (days_ago != 0) else 'now')
splunk.start(earliest=earliest, latest=latest)
percent = splunk.progress
while (percent < 100):
print(percent)
time.sleep(30)
percent = splunk.progress
hosts = {}
for item in splunk.results:
host = item['host']
mb = float(item['MBytes'])
if (host in hosts):
hosts[host] += mb
else:
hosts[host] = mb
for (host, usage) in hosts.iteritems():
set_usages(date, usage, usage_type, host, splunk_venture)
return (True, 'done.', kwargs)<|docstring|>Updates Splunk usage per Venture<|endoftext|> |
3bf0d0f81f65ce78461c30cf6998d7faa5cf16f0747a0f0c39dfd04298000e6d | def setUp(self):
'\n Setup for the tests\n '
super(TestFuzzService, self).setUp()
self.domain_list = [{'domain': 'mywebsite.com'}]
self.origin_list = [{'origin': 'mywebsite1.com', 'port': 443, 'ssl': False}]
self.caching_list = [{'name': 'default', 'ttl': 3600}, {'name': 'home', 'ttl': 1200, 'rules': [{'name': 'index', 'request_url': '/index.htm'}]}]
self.restrictions_list = [{u'name': u'website only', u'rules': [{u'name': 'mywebsite.com', u'referrer': 'mywebsite.com'}]}]
self.service_name = str(uuid.uuid1())
self.flavor_id = self.test_config.default_flavor
if self.test_config.generate_flavors:
self.flavor_id = str(uuid.uuid1())
self.client.create_flavor(flavor_id=self.flavor_id, provider_list=[{'provider': 'fastly', 'links': [{'href': 'www.fastly.com', 'rel': 'provider_url'}]}]) | Setup for the tests | tests/security/services/test_fuzz_services.py | setUp | jqxin2006/poppy | 0 | python | def setUp(self):
'\n \n '
super(TestFuzzService, self).setUp()
self.domain_list = [{'domain': 'mywebsite.com'}]
self.origin_list = [{'origin': 'mywebsite1.com', 'port': 443, 'ssl': False}]
self.caching_list = [{'name': 'default', 'ttl': 3600}, {'name': 'home', 'ttl': 1200, 'rules': [{'name': 'index', 'request_url': '/index.htm'}]}]
self.restrictions_list = [{u'name': u'website only', u'rules': [{u'name': 'mywebsite.com', u'referrer': 'mywebsite.com'}]}]
self.service_name = str(uuid.uuid1())
self.flavor_id = self.test_config.default_flavor
if self.test_config.generate_flavors:
self.flavor_id = str(uuid.uuid1())
self.client.create_flavor(flavor_id=self.flavor_id, provider_list=[{'provider': 'fastly', 'links': [{'href': 'www.fastly.com', 'rel': 'provider_url'}]}]) | def setUp(self):
'\n \n '
super(TestFuzzService, self).setUp()
self.domain_list = [{'domain': 'mywebsite.com'}]
self.origin_list = [{'origin': 'mywebsite1.com', 'port': 443, 'ssl': False}]
self.caching_list = [{'name': 'default', 'ttl': 3600}, {'name': 'home', 'ttl': 1200, 'rules': [{'name': 'index', 'request_url': '/index.htm'}]}]
self.restrictions_list = [{u'name': u'website only', u'rules': [{u'name': 'mywebsite.com', u'referrer': 'mywebsite.com'}]}]
self.service_name = str(uuid.uuid1())
self.flavor_id = self.test_config.default_flavor
if self.test_config.generate_flavors:
self.flavor_id = str(uuid.uuid1())
self.client.create_flavor(flavor_id=self.flavor_id, provider_list=[{'provider': 'fastly', 'links': [{'href': 'www.fastly.com', 'rel': 'provider_url'}]}])<|docstring|>Setup for the tests<|endoftext|> |
1f9533a887122573c44459dc29507d7dd6707880cccbcdca84093045994d4a34 | def reset_defaults(self):
'\n Reset domain_list, origin_list, caching_list, service_name\n and flavor_id to its default value.\n '
self.domain_list = [{'domain': 'mywebsite.com'}]
self.origin_list = [{'origin': 'mywebsite1.com', 'port': 443, 'ssl': False}]
self.caching_list = [{'name': 'default', 'ttl': 3600}, {'name': 'home', 'ttl': 1200, 'rules': [{'name': 'index', 'request_url': '/index.htm'}]}]
self.service_name = str(uuid.uuid1())
self.flavor_id = self.test_config.default_flavor
self.restrictions_list = [{u'name': u'website only', u'rules': [{u'name': 'mywebsite.com', u'referrer': 'mywebsite.com'}]}] | Reset domain_list, origin_list, caching_list, service_name
and flavor_id to its default value. | tests/security/services/test_fuzz_services.py | reset_defaults | jqxin2006/poppy | 0 | python | def reset_defaults(self):
'\n Reset domain_list, origin_list, caching_list, service_name\n and flavor_id to its default value.\n '
self.domain_list = [{'domain': 'mywebsite.com'}]
self.origin_list = [{'origin': 'mywebsite1.com', 'port': 443, 'ssl': False}]
self.caching_list = [{'name': 'default', 'ttl': 3600}, {'name': 'home', 'ttl': 1200, 'rules': [{'name': 'index', 'request_url': '/index.htm'}]}]
self.service_name = str(uuid.uuid1())
self.flavor_id = self.test_config.default_flavor
self.restrictions_list = [{u'name': u'website only', u'rules': [{u'name': 'mywebsite.com', u'referrer': 'mywebsite.com'}]}] | def reset_defaults(self):
'\n Reset domain_list, origin_list, caching_list, service_name\n and flavor_id to its default value.\n '
self.domain_list = [{'domain': 'mywebsite.com'}]
self.origin_list = [{'origin': 'mywebsite1.com', 'port': 443, 'ssl': False}]
self.caching_list = [{'name': 'default', 'ttl': 3600}, {'name': 'home', 'ttl': 1200, 'rules': [{'name': 'index', 'request_url': '/index.htm'}]}]
self.service_name = str(uuid.uuid1())
self.flavor_id = self.test_config.default_flavor
self.restrictions_list = [{u'name': u'website only', u'rules': [{u'name': 'mywebsite.com', u'referrer': 'mywebsite.com'}]}]<|docstring|>Reset domain_list, origin_list, caching_list, service_name
and flavor_id to its default value.<|endoftext|> |
8e06620f0e33f30dcd452d00a36b284cbe361197025ecd48baf360a98e1f14d7 | def check_one_request(self):
'\n Check the response of one request to see whether the application\n generates any 500 errors.\n '
resp = self.client.create_service(service_name=self.service_name, domain_list=self.domain_list, origin_list=self.origin_list, caching_list=self.caching_list, restrictions_list=self.restrictions_list, flavor_id=self.flavor_id)
if ('location' in resp.headers):
self.service_url = resp.headers['location']
else:
self.service_url = ''
self.assertTrue((resp.status_code < 500))
if (self.service_url != ''):
self.client.delete_service(location=self.service_url) | Check the response of one request to see whether the application
generates any 500 errors. | tests/security/services/test_fuzz_services.py | check_one_request | jqxin2006/poppy | 0 | python | def check_one_request(self):
'\n Check the response of one request to see whether the application\n generates any 500 errors.\n '
resp = self.client.create_service(service_name=self.service_name, domain_list=self.domain_list, origin_list=self.origin_list, caching_list=self.caching_list, restrictions_list=self.restrictions_list, flavor_id=self.flavor_id)
if ('location' in resp.headers):
self.service_url = resp.headers['location']
else:
self.service_url =
self.assertTrue((resp.status_code < 500))
if (self.service_url != ):
self.client.delete_service(location=self.service_url) | def check_one_request(self):
'\n Check the response of one request to see whether the application\n generates any 500 errors.\n '
resp = self.client.create_service(service_name=self.service_name, domain_list=self.domain_list, origin_list=self.origin_list, caching_list=self.caching_list, restrictions_list=self.restrictions_list, flavor_id=self.flavor_id)
if ('location' in resp.headers):
self.service_url = resp.headers['location']
else:
self.service_url =
self.assertTrue((resp.status_code < 500))
if (self.service_url != ):
self.client.delete_service(location=self.service_url)<|docstring|>Check the response of one request to see whether the application
generates any 500 errors.<|endoftext|> |
a8bb756a3bf81772df0cb9c7103324f5d760602fae2d5e3aef6badf967d8f4b9 | @attrib.attr('fuzz')
@ddt.file_data('data_fuzz.json')
def test_fuzz_create_service(self, test_data):
'\n Fuzz the create service calls to see whether 500 errors are generated.\n '
test_string = test_data['fuzz_string']
for key in self.domain_list[0]:
self.service_name = str(uuid.uuid1())
self.domain_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.origin_list[0]:
self.service_name = str(uuid.uuid1())
self.origin_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.caching_list[1]:
self.service_name = str(uuid.uuid1())
if isinstance(self.caching_list[1][key], list):
for the_key in self.caching_list[1][key][0]:
self.caching_list[1][key][0][the_key] = test_string
self.check_one_request()
self.reset_defaults()
else:
self.caching_list[1][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.restrictions_list[0]:
self.service_name = str(uuid.uuid1())
if isinstance(self.restrictions_list[0][key], list):
for the_key in self.restrictions_list[0][key][0]:
self.restrictions_list[0][key][0][the_key] = test_string
self.check_one_request()
self.reset_defaults()
else:
self.restrictions_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
self.service_name = test_string
self.check_one_request()
self.reset_defaults()
self.flavor_id = test_string
self.check_one_request()
self.reset_defaults() | Fuzz the create service calls to see whether 500 errors are generated. | tests/security/services/test_fuzz_services.py | test_fuzz_create_service | jqxin2006/poppy | 0 | python | @attrib.attr('fuzz')
@ddt.file_data('data_fuzz.json')
def test_fuzz_create_service(self, test_data):
'\n \n '
test_string = test_data['fuzz_string']
for key in self.domain_list[0]:
self.service_name = str(uuid.uuid1())
self.domain_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.origin_list[0]:
self.service_name = str(uuid.uuid1())
self.origin_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.caching_list[1]:
self.service_name = str(uuid.uuid1())
if isinstance(self.caching_list[1][key], list):
for the_key in self.caching_list[1][key][0]:
self.caching_list[1][key][0][the_key] = test_string
self.check_one_request()
self.reset_defaults()
else:
self.caching_list[1][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.restrictions_list[0]:
self.service_name = str(uuid.uuid1())
if isinstance(self.restrictions_list[0][key], list):
for the_key in self.restrictions_list[0][key][0]:
self.restrictions_list[0][key][0][the_key] = test_string
self.check_one_request()
self.reset_defaults()
else:
self.restrictions_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
self.service_name = test_string
self.check_one_request()
self.reset_defaults()
self.flavor_id = test_string
self.check_one_request()
self.reset_defaults() | @attrib.attr('fuzz')
@ddt.file_data('data_fuzz.json')
def test_fuzz_create_service(self, test_data):
'\n \n '
test_string = test_data['fuzz_string']
for key in self.domain_list[0]:
self.service_name = str(uuid.uuid1())
self.domain_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.origin_list[0]:
self.service_name = str(uuid.uuid1())
self.origin_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.caching_list[1]:
self.service_name = str(uuid.uuid1())
if isinstance(self.caching_list[1][key], list):
for the_key in self.caching_list[1][key][0]:
self.caching_list[1][key][0][the_key] = test_string
self.check_one_request()
self.reset_defaults()
else:
self.caching_list[1][key] = test_string
self.check_one_request()
self.reset_defaults()
for key in self.restrictions_list[0]:
self.service_name = str(uuid.uuid1())
if isinstance(self.restrictions_list[0][key], list):
for the_key in self.restrictions_list[0][key][0]:
self.restrictions_list[0][key][0][the_key] = test_string
self.check_one_request()
self.reset_defaults()
else:
self.restrictions_list[0][key] = test_string
self.check_one_request()
self.reset_defaults()
self.service_name = test_string
self.check_one_request()
self.reset_defaults()
self.flavor_id = test_string
self.check_one_request()
self.reset_defaults()<|docstring|>Fuzz the create service calls to see whether 500 errors are generated.<|endoftext|> |
555b9296d827ba88c265e461191e1d216599652d2a344093f3443a3952ce54ab | def strip_protocol(url):
'\n Function removing the protocol from the given url.\n\n Args:\n url (str): Target URL as a string.\n\n Returns:\n string: The url without protocol.\n\n '
return PROTOCOL_RE.sub('', url) | Function removing the protocol from the given url.
Args:
url (str): Target URL as a string.
Returns:
string: The url without protocol. | ural/strip_protocol.py | strip_protocol | Yomguithereal/ural | 30 | python | def strip_protocol(url):
'\n Function removing the protocol from the given url.\n\n Args:\n url (str): Target URL as a string.\n\n Returns:\n string: The url without protocol.\n\n '
return PROTOCOL_RE.sub(, url) | def strip_protocol(url):
'\n Function removing the protocol from the given url.\n\n Args:\n url (str): Target URL as a string.\n\n Returns:\n string: The url without protocol.\n\n '
return PROTOCOL_RE.sub(, url)<|docstring|>Function removing the protocol from the given url.
Args:
url (str): Target URL as a string.
Returns:
string: The url without protocol.<|endoftext|> |
fa14ac2a74ab90f5c2f6b8d2b43c6c6bad136bc5290a300c908ada9b58fdac41 | def runrootscript(pathname, donotwait):
'Runs script located at given pathname'
if g_dry_run:
iaslog(('Dry run executing root script: %s' % pathname))
return True
try:
if donotwait:
iaslog('Do not wait triggered')
proc = subprocess.Popen(pathname)
iaslog(('Running Script: %s ' % str(pathname)))
else:
proc = subprocess.Popen(pathname, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
iaslog(('Running Script: %s ' % str(pathname)))
(out, err) = proc.communicate()
if (err and (proc.returncode == 0)):
iaslog(('Output from %s on stderr but ran successfully: %s' % (pathname, err)))
elif (proc.returncode > 0):
iaslog(('Received non-zero exit code: ' + str(err)))
return False
except OSError as err:
iaslog(('Failure running script: ' + str(err)))
return False
return True | Runs script located at given pathname | payload/Library/installapplications/installapplications.py | runrootscript | BrandwatchLtd/installapplications | 0 | python | def runrootscript(pathname, donotwait):
if g_dry_run:
iaslog(('Dry run executing root script: %s' % pathname))
return True
try:
if donotwait:
iaslog('Do not wait triggered')
proc = subprocess.Popen(pathname)
iaslog(('Running Script: %s ' % str(pathname)))
else:
proc = subprocess.Popen(pathname, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
iaslog(('Running Script: %s ' % str(pathname)))
(out, err) = proc.communicate()
if (err and (proc.returncode == 0)):
iaslog(('Output from %s on stderr but ran successfully: %s' % (pathname, err)))
elif (proc.returncode > 0):
iaslog(('Received non-zero exit code: ' + str(err)))
return False
except OSError as err:
iaslog(('Failure running script: ' + str(err)))
return False
return True | def runrootscript(pathname, donotwait):
if g_dry_run:
iaslog(('Dry run executing root script: %s' % pathname))
return True
try:
if donotwait:
iaslog('Do not wait triggered')
proc = subprocess.Popen(pathname)
iaslog(('Running Script: %s ' % str(pathname)))
else:
proc = subprocess.Popen(pathname, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
iaslog(('Running Script: %s ' % str(pathname)))
(out, err) = proc.communicate()
if (err and (proc.returncode == 0)):
iaslog(('Output from %s on stderr but ran successfully: %s' % (pathname, err)))
elif (proc.returncode > 0):
iaslog(('Received non-zero exit code: ' + str(err)))
return False
except OSError as err:
iaslog(('Failure running script: ' + str(err)))
return False
return True<|docstring|>Runs script located at given pathname<|endoftext|> |
c74796352a005b7080d0c39fccb348fbe4cbba9150232351d217b41e96a8c11e | def __init__(self, exp_para, image_para, lithosim_para):
'\n Initialization of Neural_ILT_Wrapper\n Args:\n exp_para: experiment-relevant parameters\n image_para: image-relevant parameters\n lithosim_para: lithosim-relevant parameters \n '
print('Launching Neural-ILT on device:', exp_para['device'])
self.exp_para = exp_para
self.image_para = image_para
self.lithosim_para = lithosim_para
self.device = exp_para['device']
self.save_mask = exp_para['save_mask']
self.dynamic_beta = exp_para['dynamic_beta']
self.lr = exp_para['lr']
self.beta = exp_para['beta']
self.gamma = exp_para['gamma']
self.refine_iter_num = exp_para['refine_iter_num']
self.step_size = exp_para['step_size']
self.select_by_obj = exp_para['select_by_obj']
self.max_l2 = 1000000000000000.0
self.max_epe = 100000.0
if exp_para['max_l2']:
self.max_l2 = exp_para['max_l2']
if exp_para['max_epe']:
self.max_epe = exp_para['max_epe']
print('-------- Loading Neural-ILT Model & Data --------')
print('MODEL:', self.exp_para['ilt_model_path'])
if self.exp_para['data_set_name']:
print('DATASET:', self.exp_para['data_set_name'])
self.kernels_root = self.lithosim_para['kernels_root']
self.kernels = torch.load(os.path.join(self.kernels_root, 'kernel_focus_tensor.pt'), map_location=self.device)
self.kernels_ct = torch.load(os.path.join(self.kernels_root, 'kernel_ct_focus_tensor.pt'), map_location=self.device)
self.kernels_def = torch.load(os.path.join(self.kernels_root, 'kernel_defocus_tensor.pt'), map_location=self.device)
self.kernels_def_ct = torch.load(os.path.join(self.kernels_root, 'kernel_ct_defocus_tensor.pt'), map_location=self.device)
self.weight = torch.load(os.path.join(self.kernels_root, 'weight_focus_tensor.pt'), map_location=self.device)
self.weight_def = torch.load(os.path.join(self.kernels_root, 'weight_defocus_tensor.pt'), map_location=self.device)
self.load_in_backone_model = unet_torch.UNet(n_class=1, in_channels=1).to(self.device)
self.load_in_backone_model.load_state_dict(torch.load(self.exp_para['ilt_model_path'], map_location=self.device))
self.refine_backbone_model = ILTNet(1, self.kernels, self.kernels_ct, self.kernels_def, self.kernels_def_ct, self.weight, self.weight_def, cplx_obj=False, report_epe=True, in_channels=1).to(self.device)
self.cplx_loss_layer = ilt_loss_layer(self.kernels, self.kernels_ct, self.kernels_def, self.kernels_def_ct, self.weight, self.weight_def, cplx_obj=True).to(self.device)
pretrain_dict = self.load_in_backone_model.state_dict()
self.model_dict = self.refine_backbone_model.state_dict()
pretrain_dict = {k: v for (k, v) in pretrain_dict.items() if (k in self.model_dict)}
for param in self.refine_backbone_model.parameters():
param.requires_grad = True
self.model_dict.update(pretrain_dict)
self.refine_backbone_model.load_state_dict(self.model_dict)
self.optimizer_ft = optim.Adam(self.refine_backbone_model.parameters(), lr=self.lr)
self.opt_init_state = self.optimizer_ft.state_dict() | Initialization of Neural_ILT_Wrapper
Args:
exp_para: experiment-relevant parameters
image_para: image-relevant parameters
lithosim_para: lithosim-relevant parameters | neural_ilt.py | __init__ | cuhk-eda/neural-ilt | 14 | python | def __init__(self, exp_para, image_para, lithosim_para):
'\n Initialization of Neural_ILT_Wrapper\n Args:\n exp_para: experiment-relevant parameters\n image_para: image-relevant parameters\n lithosim_para: lithosim-relevant parameters \n '
print('Launching Neural-ILT on device:', exp_para['device'])
self.exp_para = exp_para
self.image_para = image_para
self.lithosim_para = lithosim_para
self.device = exp_para['device']
self.save_mask = exp_para['save_mask']
self.dynamic_beta = exp_para['dynamic_beta']
self.lr = exp_para['lr']
self.beta = exp_para['beta']
self.gamma = exp_para['gamma']
self.refine_iter_num = exp_para['refine_iter_num']
self.step_size = exp_para['step_size']
self.select_by_obj = exp_para['select_by_obj']
self.max_l2 = 1000000000000000.0
self.max_epe = 100000.0
if exp_para['max_l2']:
self.max_l2 = exp_para['max_l2']
if exp_para['max_epe']:
self.max_epe = exp_para['max_epe']
print('-------- Loading Neural-ILT Model & Data --------')
print('MODEL:', self.exp_para['ilt_model_path'])
if self.exp_para['data_set_name']:
print('DATASET:', self.exp_para['data_set_name'])
self.kernels_root = self.lithosim_para['kernels_root']
self.kernels = torch.load(os.path.join(self.kernels_root, 'kernel_focus_tensor.pt'), map_location=self.device)
self.kernels_ct = torch.load(os.path.join(self.kernels_root, 'kernel_ct_focus_tensor.pt'), map_location=self.device)
self.kernels_def = torch.load(os.path.join(self.kernels_root, 'kernel_defocus_tensor.pt'), map_location=self.device)
self.kernels_def_ct = torch.load(os.path.join(self.kernels_root, 'kernel_ct_defocus_tensor.pt'), map_location=self.device)
self.weight = torch.load(os.path.join(self.kernels_root, 'weight_focus_tensor.pt'), map_location=self.device)
self.weight_def = torch.load(os.path.join(self.kernels_root, 'weight_defocus_tensor.pt'), map_location=self.device)
self.load_in_backone_model = unet_torch.UNet(n_class=1, in_channels=1).to(self.device)
self.load_in_backone_model.load_state_dict(torch.load(self.exp_para['ilt_model_path'], map_location=self.device))
self.refine_backbone_model = ILTNet(1, self.kernels, self.kernels_ct, self.kernels_def, self.kernels_def_ct, self.weight, self.weight_def, cplx_obj=False, report_epe=True, in_channels=1).to(self.device)
self.cplx_loss_layer = ilt_loss_layer(self.kernels, self.kernels_ct, self.kernels_def, self.kernels_def_ct, self.weight, self.weight_def, cplx_obj=True).to(self.device)
pretrain_dict = self.load_in_backone_model.state_dict()
self.model_dict = self.refine_backbone_model.state_dict()
pretrain_dict = {k: v for (k, v) in pretrain_dict.items() if (k in self.model_dict)}
for param in self.refine_backbone_model.parameters():
param.requires_grad = True
self.model_dict.update(pretrain_dict)
self.refine_backbone_model.load_state_dict(self.model_dict)
self.optimizer_ft = optim.Adam(self.refine_backbone_model.parameters(), lr=self.lr)
self.opt_init_state = self.optimizer_ft.state_dict() | def __init__(self, exp_para, image_para, lithosim_para):
'\n Initialization of Neural_ILT_Wrapper\n Args:\n exp_para: experiment-relevant parameters\n image_para: image-relevant parameters\n lithosim_para: lithosim-relevant parameters \n '
print('Launching Neural-ILT on device:', exp_para['device'])
self.exp_para = exp_para
self.image_para = image_para
self.lithosim_para = lithosim_para
self.device = exp_para['device']
self.save_mask = exp_para['save_mask']
self.dynamic_beta = exp_para['dynamic_beta']
self.lr = exp_para['lr']
self.beta = exp_para['beta']
self.gamma = exp_para['gamma']
self.refine_iter_num = exp_para['refine_iter_num']
self.step_size = exp_para['step_size']
self.select_by_obj = exp_para['select_by_obj']
self.max_l2 = 1000000000000000.0
self.max_epe = 100000.0
if exp_para['max_l2']:
self.max_l2 = exp_para['max_l2']
if exp_para['max_epe']:
self.max_epe = exp_para['max_epe']
print('-------- Loading Neural-ILT Model & Data --------')
print('MODEL:', self.exp_para['ilt_model_path'])
if self.exp_para['data_set_name']:
print('DATASET:', self.exp_para['data_set_name'])
self.kernels_root = self.lithosim_para['kernels_root']
self.kernels = torch.load(os.path.join(self.kernels_root, 'kernel_focus_tensor.pt'), map_location=self.device)
self.kernels_ct = torch.load(os.path.join(self.kernels_root, 'kernel_ct_focus_tensor.pt'), map_location=self.device)
self.kernels_def = torch.load(os.path.join(self.kernels_root, 'kernel_defocus_tensor.pt'), map_location=self.device)
self.kernels_def_ct = torch.load(os.path.join(self.kernels_root, 'kernel_ct_defocus_tensor.pt'), map_location=self.device)
self.weight = torch.load(os.path.join(self.kernels_root, 'weight_focus_tensor.pt'), map_location=self.device)
self.weight_def = torch.load(os.path.join(self.kernels_root, 'weight_defocus_tensor.pt'), map_location=self.device)
self.load_in_backone_model = unet_torch.UNet(n_class=1, in_channels=1).to(self.device)
self.load_in_backone_model.load_state_dict(torch.load(self.exp_para['ilt_model_path'], map_location=self.device))
self.refine_backbone_model = ILTNet(1, self.kernels, self.kernels_ct, self.kernels_def, self.kernels_def_ct, self.weight, self.weight_def, cplx_obj=False, report_epe=True, in_channels=1).to(self.device)
self.cplx_loss_layer = ilt_loss_layer(self.kernels, self.kernels_ct, self.kernels_def, self.kernels_def_ct, self.weight, self.weight_def, cplx_obj=True).to(self.device)
pretrain_dict = self.load_in_backone_model.state_dict()
self.model_dict = self.refine_backbone_model.state_dict()
pretrain_dict = {k: v for (k, v) in pretrain_dict.items() if (k in self.model_dict)}
for param in self.refine_backbone_model.parameters():
param.requires_grad = True
self.model_dict.update(pretrain_dict)
self.refine_backbone_model.load_state_dict(self.model_dict)
self.optimizer_ft = optim.Adam(self.refine_backbone_model.parameters(), lr=self.lr)
self.opt_init_state = self.optimizer_ft.state_dict()<|docstring|>Initialization of Neural_ILT_Wrapper
Args:
exp_para: experiment-relevant parameters
image_para: image-relevant parameters
lithosim_para: lithosim-relevant parameters<|endoftext|> |
771fef246d4ef5cce85cb1ca0eca7721b193c38962c8fcfe54a6906aa1d5df28 | def MTRmap(*argv):
' Calculate MTR from a MT "on" and a MT "off" acquisition \n\t \n\n\t INTERFACES\n\t MTRmap(mton_nifti,mtoff_nifti,mtr_output)\n\t MTRmap(mton_nifti,mtoff_nifti,mtr_output,mask_nifti)\n\n\t \n\t PARAMETERS\n\t - mton_nifti: path of a Nifti file storing the 3D MT "on" image (with off-res. pulse)\n\t - mtoff_nifti: path of a Nifti file storing the 3D MT "off" image (without off-res. pulse)\n\t - mtr_output: path of the Nifti file that will store the 3D output MTR image (saved as a \n\t\t\t double-precision floating point image FLOAT64); such an output map is\n\t\t\t calculated as\n\t\t\t\n\t\t\t\tMTR = 100 * (MToff - MTon)/MToff\n\t\t\n\t\t\t above, MTon is the image where the off-resonance pulse is played (so is "on")\n\t\t\t while MToff is the image where the off-resonance pulse is not played (so is "off")\n\n\t - mask_nifti: path of a Nifti file storting a mask (MTR will be calculated only where\n\t\t\t mask_nifti equals 1; 0 will be set in the MTR output map otherwise)\n\t \n\t Dependencies (Python packages): nibabel, numpy (other than standard library).\n\t \n\t References: "T1, T2 relaxation and magnetization transfer in tissue at 3T", Stanisz GJ,\n\t\t Magnetic Resonance in Medicine (2005), 54:507-512\n\t \n\t Author: Francesco Grussu, University College London\n\t\t CDSQuaMRI Project \n\t\t <[email protected]> <[email protected]>'
Nargv = len(argv)
mton_nifti = argv[0]
mtoff_nifti = argv[1]
mtr_output = argv[2]
print(' ... loading input data')
try:
mton_obj = nib.load(mton_nifti)
except:
print('')
print('ERROR: the 3D input MT "on" file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mton_nifti))
print('')
sys.exit(1)
mton_data = mton_obj.get_fdata()
imgsize = mton_data.shape
imgsize = np.array(imgsize)
if (imgsize.size != 3):
print('')
print('ERROR: the 3D input MT "on" file {} is not a 3D NIFTI. Exiting with 1.'.format(mton_nifti))
print('')
sys.exit(1)
try:
mtoff_obj = nib.load(mtoff_nifti)
except:
print('')
print('ERROR: the 3D input MT "off" file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mtoff_nifti))
print('')
sys.exit(1)
mtoff_data = mtoff_obj.get_fdata()
mton_header = mton_obj.header
mton_affine = mton_header.get_best_affine()
mton_dims = mton_obj.shape
mtoff_header = mtoff_obj.header
mtoff_affine = mtoff_header.get_best_affine()
mtoff_dims = mtoff_obj.shape
mtoff_size = mtoff_data.shape
mtoff_size = np.array(mtoff_size)
if (mtoff_size.size != 3):
print('')
print('ERROR: the 3D input MT "off" file {} is not a 3D NIFTI. Exiting with 1.'.format(mtoff_nifti))
print('')
sys.exit(1)
elif ((np.sum((mton_affine == mtoff_affine)) != 16) or (mton_dims[0] != mtoff_dims[0]) or (mton_dims[1] != mtoff_dims[1]) or (mton_dims[2] != mtoff_dims[2])):
print('')
print('ERROR: the geometry of the MT on file {} and the MT off file {} do not match. Exiting with 1.'.format(mton_nifti, mtoff_nifti))
print('')
sys.exit(1)
if (Nargv == 4):
got_mask = True
mask_nifti = argv[3]
try:
mask_obj = nib.load(mask_nifti)
except:
print('')
print('ERROR: the mask file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mask_nifti))
print('')
sys.exit(1)
mask_data = mask_obj.get_fdata()
mask_size = mask_data.shape
mask_size = np.array(mask_size)
mask_header = mask_obj.header
mask_affine = mask_header.get_best_affine()
mask_dims = mask_obj.shape
if (mask_size.size != 3):
print('')
print('WARNING: the mask file {} is not a 3D NIFTI file. Ignoring mask...'.format(mask_nifti))
print('')
mask_data = np.ones(imgsize[0:3], 'float64')
elif ((np.sum((mton_affine == mask_affine)) != 16) or (mton_dims[0] != mask_dims[0]) or (mton_dims[1] != mask_dims[1]) or (mton_dims[2] != mask_dims[2])):
print('')
print('WARNING: the geometry of the the mask file {} does not match that of the MT data. Ignoring mask...'.format(mask_nifti))
print('')
mask_data = np.ones(imgsize[0:3], 'float64')
else:
mask_data = np.array(mask_data, 'float64')
mask_data[(mask_data > 1)] = 1
mask_data[(mask_data < 0)] = 0
else:
got_mask = False
print(' ... calculating MTR')
mton_data = np.array(mton_data, 'float64')
mtoff_data = np.array(mtoff_data, 'float64')
warnings.filterwarnings('ignore')
mtr_map = ((100 * (mtoff_data - mton_data)) / mtoff_data)
mtr_map[np.isnan(mtr_map)] = 0.0
mtr_map[np.isinf(mtr_map)] = 0.0
print(' ... substituting any nan and inf values with 0')
if (got_mask == True):
mtr_map[(mask_data == 0)] = 0
print(' ... saving output file')
buffer_header = mton_obj.header
buffer_header.set_data_dtype('float64')
mtr_obj = nib.Nifti1Image(mtr_map, mton_obj.affine, buffer_header)
nib.save(mtr_obj, mtr_output)
print('') | Calculate MTR from a MT "on" and a MT "off" acquisition
INTERFACES
MTRmap(mton_nifti,mtoff_nifti,mtr_output)
MTRmap(mton_nifti,mtoff_nifti,mtr_output,mask_nifti)
PARAMETERS
- mton_nifti: path of a Nifti file storing the 3D MT "on" image (with off-res. pulse)
- mtoff_nifti: path of a Nifti file storing the 3D MT "off" image (without off-res. pulse)
- mtr_output: path of the Nifti file that will store the 3D output MTR image (saved as a
double-precision floating point image FLOAT64); such an output map is
calculated as
MTR = 100 * (MToff - MTon)/MToff
above, MTon is the image where the off-resonance pulse is played (so is "on")
while MToff is the image where the off-resonance pulse is not played (so is "off")
- mask_nifti: path of a Nifti file storting a mask (MTR will be calculated only where
mask_nifti equals 1; 0 will be set in the MTR output map otherwise)
Dependencies (Python packages): nibabel, numpy (other than standard library).
References: "T1, T2 relaxation and magnetization transfer in tissue at 3T", Stanisz GJ,
Magnetic Resonance in Medicine (2005), 54:507-512
Author: Francesco Grussu, University College London
CDSQuaMRI Project
<[email protected]> <[email protected]> | myrelax/getMTR.py | MTRmap | fragrussu/MyRelax | 3 | python | def MTRmap(*argv):
' Calculate MTR from a MT "on" and a MT "off" acquisition \n\t \n\n\t INTERFACES\n\t MTRmap(mton_nifti,mtoff_nifti,mtr_output)\n\t MTRmap(mton_nifti,mtoff_nifti,mtr_output,mask_nifti)\n\n\t \n\t PARAMETERS\n\t - mton_nifti: path of a Nifti file storing the 3D MT "on" image (with off-res. pulse)\n\t - mtoff_nifti: path of a Nifti file storing the 3D MT "off" image (without off-res. pulse)\n\t - mtr_output: path of the Nifti file that will store the 3D output MTR image (saved as a \n\t\t\t double-precision floating point image FLOAT64); such an output map is\n\t\t\t calculated as\n\t\t\t\n\t\t\t\tMTR = 100 * (MToff - MTon)/MToff\n\t\t\n\t\t\t above, MTon is the image where the off-resonance pulse is played (so is "on")\n\t\t\t while MToff is the image where the off-resonance pulse is not played (so is "off")\n\n\t - mask_nifti: path of a Nifti file storting a mask (MTR will be calculated only where\n\t\t\t mask_nifti equals 1; 0 will be set in the MTR output map otherwise)\n\t \n\t Dependencies (Python packages): nibabel, numpy (other than standard library).\n\t \n\t References: "T1, T2 relaxation and magnetization transfer in tissue at 3T", Stanisz GJ,\n\t\t Magnetic Resonance in Medicine (2005), 54:507-512\n\t \n\t Author: Francesco Grussu, University College London\n\t\t CDSQuaMRI Project \n\t\t <[email protected]> <[email protected]>'
Nargv = len(argv)
mton_nifti = argv[0]
mtoff_nifti = argv[1]
mtr_output = argv[2]
print(' ... loading input data')
try:
mton_obj = nib.load(mton_nifti)
except:
print()
print('ERROR: the 3D input MT "on" file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mton_nifti))
print()
sys.exit(1)
mton_data = mton_obj.get_fdata()
imgsize = mton_data.shape
imgsize = np.array(imgsize)
if (imgsize.size != 3):
print()
print('ERROR: the 3D input MT "on" file {} is not a 3D NIFTI. Exiting with 1.'.format(mton_nifti))
print()
sys.exit(1)
try:
mtoff_obj = nib.load(mtoff_nifti)
except:
print()
print('ERROR: the 3D input MT "off" file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mtoff_nifti))
print()
sys.exit(1)
mtoff_data = mtoff_obj.get_fdata()
mton_header = mton_obj.header
mton_affine = mton_header.get_best_affine()
mton_dims = mton_obj.shape
mtoff_header = mtoff_obj.header
mtoff_affine = mtoff_header.get_best_affine()
mtoff_dims = mtoff_obj.shape
mtoff_size = mtoff_data.shape
mtoff_size = np.array(mtoff_size)
if (mtoff_size.size != 3):
print()
print('ERROR: the 3D input MT "off" file {} is not a 3D NIFTI. Exiting with 1.'.format(mtoff_nifti))
print()
sys.exit(1)
elif ((np.sum((mton_affine == mtoff_affine)) != 16) or (mton_dims[0] != mtoff_dims[0]) or (mton_dims[1] != mtoff_dims[1]) or (mton_dims[2] != mtoff_dims[2])):
print()
print('ERROR: the geometry of the MT on file {} and the MT off file {} do not match. Exiting with 1.'.format(mton_nifti, mtoff_nifti))
print()
sys.exit(1)
if (Nargv == 4):
got_mask = True
mask_nifti = argv[3]
try:
mask_obj = nib.load(mask_nifti)
except:
print()
print('ERROR: the mask file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mask_nifti))
print()
sys.exit(1)
mask_data = mask_obj.get_fdata()
mask_size = mask_data.shape
mask_size = np.array(mask_size)
mask_header = mask_obj.header
mask_affine = mask_header.get_best_affine()
mask_dims = mask_obj.shape
if (mask_size.size != 3):
print()
print('WARNING: the mask file {} is not a 3D NIFTI file. Ignoring mask...'.format(mask_nifti))
print()
mask_data = np.ones(imgsize[0:3], 'float64')
elif ((np.sum((mton_affine == mask_affine)) != 16) or (mton_dims[0] != mask_dims[0]) or (mton_dims[1] != mask_dims[1]) or (mton_dims[2] != mask_dims[2])):
print()
print('WARNING: the geometry of the the mask file {} does not match that of the MT data. Ignoring mask...'.format(mask_nifti))
print()
mask_data = np.ones(imgsize[0:3], 'float64')
else:
mask_data = np.array(mask_data, 'float64')
mask_data[(mask_data > 1)] = 1
mask_data[(mask_data < 0)] = 0
else:
got_mask = False
print(' ... calculating MTR')
mton_data = np.array(mton_data, 'float64')
mtoff_data = np.array(mtoff_data, 'float64')
warnings.filterwarnings('ignore')
mtr_map = ((100 * (mtoff_data - mton_data)) / mtoff_data)
mtr_map[np.isnan(mtr_map)] = 0.0
mtr_map[np.isinf(mtr_map)] = 0.0
print(' ... substituting any nan and inf values with 0')
if (got_mask == True):
mtr_map[(mask_data == 0)] = 0
print(' ... saving output file')
buffer_header = mton_obj.header
buffer_header.set_data_dtype('float64')
mtr_obj = nib.Nifti1Image(mtr_map, mton_obj.affine, buffer_header)
nib.save(mtr_obj, mtr_output)
print() | def MTRmap(*argv):
' Calculate MTR from a MT "on" and a MT "off" acquisition \n\t \n\n\t INTERFACES\n\t MTRmap(mton_nifti,mtoff_nifti,mtr_output)\n\t MTRmap(mton_nifti,mtoff_nifti,mtr_output,mask_nifti)\n\n\t \n\t PARAMETERS\n\t - mton_nifti: path of a Nifti file storing the 3D MT "on" image (with off-res. pulse)\n\t - mtoff_nifti: path of a Nifti file storing the 3D MT "off" image (without off-res. pulse)\n\t - mtr_output: path of the Nifti file that will store the 3D output MTR image (saved as a \n\t\t\t double-precision floating point image FLOAT64); such an output map is\n\t\t\t calculated as\n\t\t\t\n\t\t\t\tMTR = 100 * (MToff - MTon)/MToff\n\t\t\n\t\t\t above, MTon is the image where the off-resonance pulse is played (so is "on")\n\t\t\t while MToff is the image where the off-resonance pulse is not played (so is "off")\n\n\t - mask_nifti: path of a Nifti file storting a mask (MTR will be calculated only where\n\t\t\t mask_nifti equals 1; 0 will be set in the MTR output map otherwise)\n\t \n\t Dependencies (Python packages): nibabel, numpy (other than standard library).\n\t \n\t References: "T1, T2 relaxation and magnetization transfer in tissue at 3T", Stanisz GJ,\n\t\t Magnetic Resonance in Medicine (2005), 54:507-512\n\t \n\t Author: Francesco Grussu, University College London\n\t\t CDSQuaMRI Project \n\t\t <[email protected]> <[email protected]>'
Nargv = len(argv)
mton_nifti = argv[0]
mtoff_nifti = argv[1]
mtr_output = argv[2]
print(' ... loading input data')
try:
mton_obj = nib.load(mton_nifti)
except:
print()
print('ERROR: the 3D input MT "on" file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mton_nifti))
print()
sys.exit(1)
mton_data = mton_obj.get_fdata()
imgsize = mton_data.shape
imgsize = np.array(imgsize)
if (imgsize.size != 3):
print()
print('ERROR: the 3D input MT "on" file {} is not a 3D NIFTI. Exiting with 1.'.format(mton_nifti))
print()
sys.exit(1)
try:
mtoff_obj = nib.load(mtoff_nifti)
except:
print()
print('ERROR: the 3D input MT "off" file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mtoff_nifti))
print()
sys.exit(1)
mtoff_data = mtoff_obj.get_fdata()
mton_header = mton_obj.header
mton_affine = mton_header.get_best_affine()
mton_dims = mton_obj.shape
mtoff_header = mtoff_obj.header
mtoff_affine = mtoff_header.get_best_affine()
mtoff_dims = mtoff_obj.shape
mtoff_size = mtoff_data.shape
mtoff_size = np.array(mtoff_size)
if (mtoff_size.size != 3):
print()
print('ERROR: the 3D input MT "off" file {} is not a 3D NIFTI. Exiting with 1.'.format(mtoff_nifti))
print()
sys.exit(1)
elif ((np.sum((mton_affine == mtoff_affine)) != 16) or (mton_dims[0] != mtoff_dims[0]) or (mton_dims[1] != mtoff_dims[1]) or (mton_dims[2] != mtoff_dims[2])):
print()
print('ERROR: the geometry of the MT on file {} and the MT off file {} do not match. Exiting with 1.'.format(mton_nifti, mtoff_nifti))
print()
sys.exit(1)
if (Nargv == 4):
got_mask = True
mask_nifti = argv[3]
try:
mask_obj = nib.load(mask_nifti)
except:
print()
print('ERROR: the mask file {} does not exist or is not in NIFTI format. Exiting with 1.'.format(mask_nifti))
print()
sys.exit(1)
mask_data = mask_obj.get_fdata()
mask_size = mask_data.shape
mask_size = np.array(mask_size)
mask_header = mask_obj.header
mask_affine = mask_header.get_best_affine()
mask_dims = mask_obj.shape
if (mask_size.size != 3):
print()
print('WARNING: the mask file {} is not a 3D NIFTI file. Ignoring mask...'.format(mask_nifti))
print()
mask_data = np.ones(imgsize[0:3], 'float64')
elif ((np.sum((mton_affine == mask_affine)) != 16) or (mton_dims[0] != mask_dims[0]) or (mton_dims[1] != mask_dims[1]) or (mton_dims[2] != mask_dims[2])):
print()
print('WARNING: the geometry of the the mask file {} does not match that of the MT data. Ignoring mask...'.format(mask_nifti))
print()
mask_data = np.ones(imgsize[0:3], 'float64')
else:
mask_data = np.array(mask_data, 'float64')
mask_data[(mask_data > 1)] = 1
mask_data[(mask_data < 0)] = 0
else:
got_mask = False
print(' ... calculating MTR')
mton_data = np.array(mton_data, 'float64')
mtoff_data = np.array(mtoff_data, 'float64')
warnings.filterwarnings('ignore')
mtr_map = ((100 * (mtoff_data - mton_data)) / mtoff_data)
mtr_map[np.isnan(mtr_map)] = 0.0
mtr_map[np.isinf(mtr_map)] = 0.0
print(' ... substituting any nan and inf values with 0')
if (got_mask == True):
mtr_map[(mask_data == 0)] = 0
print(' ... saving output file')
buffer_header = mton_obj.header
buffer_header.set_data_dtype('float64')
mtr_obj = nib.Nifti1Image(mtr_map, mton_obj.affine, buffer_header)
nib.save(mtr_obj, mtr_output)
print()<|docstring|>Calculate MTR from a MT "on" and a MT "off" acquisition
INTERFACES
MTRmap(mton_nifti,mtoff_nifti,mtr_output)
MTRmap(mton_nifti,mtoff_nifti,mtr_output,mask_nifti)
PARAMETERS
- mton_nifti: path of a Nifti file storing the 3D MT "on" image (with off-res. pulse)
- mtoff_nifti: path of a Nifti file storing the 3D MT "off" image (without off-res. pulse)
- mtr_output: path of the Nifti file that will store the 3D output MTR image (saved as a
double-precision floating point image FLOAT64); such an output map is
calculated as
MTR = 100 * (MToff - MTon)/MToff
above, MTon is the image where the off-resonance pulse is played (so is "on")
while MToff is the image where the off-resonance pulse is not played (so is "off")
- mask_nifti: path of a Nifti file storting a mask (MTR will be calculated only where
mask_nifti equals 1; 0 will be set in the MTR output map otherwise)
Dependencies (Python packages): nibabel, numpy (other than standard library).
References: "T1, T2 relaxation and magnetization transfer in tissue at 3T", Stanisz GJ,
Magnetic Resonance in Medicine (2005), 54:507-512
Author: Francesco Grussu, University College London
CDSQuaMRI Project
<[email protected]> <[email protected]><|endoftext|> |
fc1871101f045b8ec772cabd82c92c3767fc1996a1bb8e021f0da5d828fbb4c9 | def add_data(self, field, no_ghost=False):
'Adds a source of data for the block collection.\n\n Given a `data_source` and a `field` to populate from, adds the data\n to the block collection so that is able to be rendered.\n\n Parameters\n ----------\n data_source : YTRegion\n A YTRegion object to use as a data source.\n field : string\n A field to populate from.\n no_ghost : bool (False)\n Should we speed things up by skipping ghost zone generation?\n '
self.data_source.tiles.set_fields([field], [False], no_ghost=no_ghost)
(vert, dx, le, re) = ([], [], [], [])
self.min_val = (+ np.inf)
self.max_val = (- np.inf)
if self.scale:
left_min = (np.ones(3, 'f8') * np.inf)
right_max = (np.ones(3, 'f8') * (- np.inf))
for block in self.data_source.tiles.traverse():
np.minimum(left_min, block.LeftEdge, left_min)
np.maximum(right_max, block.LeftEdge, right_max)
scale = (right_max.max() - left_min.min())
for block in self.data_source.tiles.traverse():
block.LeftEdge -= left_min
block.LeftEdge /= scale
block.RightEdge -= left_min
block.RightEdge /= scale
for (i, block) in enumerate(self.data_source.tiles.traverse()):
self.min_val = min(self.min_val, np.nanmin(np.abs(block.my_data[0])).min())
self.max_val = max(self.max_val, np.nanmax(np.abs(block.my_data[0])).max())
self.blocks[id(block)] = (i, block)
vert.append([1.0, 1.0, 1.0, 1.0])
dds = ((block.RightEdge - block.LeftEdge) / block.source_mask.shape)
dx.append(dds.tolist())
le.append(block.LeftEdge.tolist())
re.append(block.RightEdge.tolist())
for (g, node, (sl, _dims, _gi)) in self.data_source.tiles.slice_traverse():
block = node.data
self.blocks_by_grid[(g.id - g._id_offset)].append((id(block), i))
self.grids_by_block[id(node.data)] = ((g.id - g._id_offset), sl)
if hasattr(self.min_val, 'in_units'):
self.min_val = self.min_val.d
if hasattr(self.max_val, 'in_units'):
self.max_val = self.max_val.d
LE = np.array([b.LeftEdge for (i, b) in self.blocks.values()]).min(axis=0)
RE = np.array([b.RightEdge for (i, b) in self.blocks.values()]).max(axis=0)
self.diagonal = np.sqrt(((RE - LE) ** 2).sum())
vert = np.array(vert, dtype='f4')
dx = np.array(dx, dtype='f4')
le = np.array(le, dtype='f4')
re = np.array(re, dtype='f4')
self.vertex_array.attributes.append(VertexAttribute(name='model_vertex', data=vert))
self.vertex_array.attributes.append(VertexAttribute(name='in_dx', data=dx))
self.vertex_array.attributes.append(VertexAttribute(name='in_left_edge', data=le))
self.vertex_array.attributes.append(VertexAttribute(name='in_right_edge', data=re))
self._load_textures() | Adds a source of data for the block collection.
Given a `data_source` and a `field` to populate from, adds the data
to the block collection so that is able to be rendered.
Parameters
----------
data_source : YTRegion
A YTRegion object to use as a data source.
field : string
A field to populate from.
no_ghost : bool (False)
Should we speed things up by skipping ghost zone generation? | yt_idv/scene_data/block_collection.py | add_data | chrishavlin/tempidv | 3 | python | def add_data(self, field, no_ghost=False):
'Adds a source of data for the block collection.\n\n Given a `data_source` and a `field` to populate from, adds the data\n to the block collection so that is able to be rendered.\n\n Parameters\n ----------\n data_source : YTRegion\n A YTRegion object to use as a data source.\n field : string\n A field to populate from.\n no_ghost : bool (False)\n Should we speed things up by skipping ghost zone generation?\n '
self.data_source.tiles.set_fields([field], [False], no_ghost=no_ghost)
(vert, dx, le, re) = ([], [], [], [])
self.min_val = (+ np.inf)
self.max_val = (- np.inf)
if self.scale:
left_min = (np.ones(3, 'f8') * np.inf)
right_max = (np.ones(3, 'f8') * (- np.inf))
for block in self.data_source.tiles.traverse():
np.minimum(left_min, block.LeftEdge, left_min)
np.maximum(right_max, block.LeftEdge, right_max)
scale = (right_max.max() - left_min.min())
for block in self.data_source.tiles.traverse():
block.LeftEdge -= left_min
block.LeftEdge /= scale
block.RightEdge -= left_min
block.RightEdge /= scale
for (i, block) in enumerate(self.data_source.tiles.traverse()):
self.min_val = min(self.min_val, np.nanmin(np.abs(block.my_data[0])).min())
self.max_val = max(self.max_val, np.nanmax(np.abs(block.my_data[0])).max())
self.blocks[id(block)] = (i, block)
vert.append([1.0, 1.0, 1.0, 1.0])
dds = ((block.RightEdge - block.LeftEdge) / block.source_mask.shape)
dx.append(dds.tolist())
le.append(block.LeftEdge.tolist())
re.append(block.RightEdge.tolist())
for (g, node, (sl, _dims, _gi)) in self.data_source.tiles.slice_traverse():
block = node.data
self.blocks_by_grid[(g.id - g._id_offset)].append((id(block), i))
self.grids_by_block[id(node.data)] = ((g.id - g._id_offset), sl)
if hasattr(self.min_val, 'in_units'):
self.min_val = self.min_val.d
if hasattr(self.max_val, 'in_units'):
self.max_val = self.max_val.d
LE = np.array([b.LeftEdge for (i, b) in self.blocks.values()]).min(axis=0)
RE = np.array([b.RightEdge for (i, b) in self.blocks.values()]).max(axis=0)
self.diagonal = np.sqrt(((RE - LE) ** 2).sum())
vert = np.array(vert, dtype='f4')
dx = np.array(dx, dtype='f4')
le = np.array(le, dtype='f4')
re = np.array(re, dtype='f4')
self.vertex_array.attributes.append(VertexAttribute(name='model_vertex', data=vert))
self.vertex_array.attributes.append(VertexAttribute(name='in_dx', data=dx))
self.vertex_array.attributes.append(VertexAttribute(name='in_left_edge', data=le))
self.vertex_array.attributes.append(VertexAttribute(name='in_right_edge', data=re))
self._load_textures() | def add_data(self, field, no_ghost=False):
'Adds a source of data for the block collection.\n\n Given a `data_source` and a `field` to populate from, adds the data\n to the block collection so that is able to be rendered.\n\n Parameters\n ----------\n data_source : YTRegion\n A YTRegion object to use as a data source.\n field : string\n A field to populate from.\n no_ghost : bool (False)\n Should we speed things up by skipping ghost zone generation?\n '
self.data_source.tiles.set_fields([field], [False], no_ghost=no_ghost)
(vert, dx, le, re) = ([], [], [], [])
self.min_val = (+ np.inf)
self.max_val = (- np.inf)
if self.scale:
left_min = (np.ones(3, 'f8') * np.inf)
right_max = (np.ones(3, 'f8') * (- np.inf))
for block in self.data_source.tiles.traverse():
np.minimum(left_min, block.LeftEdge, left_min)
np.maximum(right_max, block.LeftEdge, right_max)
scale = (right_max.max() - left_min.min())
for block in self.data_source.tiles.traverse():
block.LeftEdge -= left_min
block.LeftEdge /= scale
block.RightEdge -= left_min
block.RightEdge /= scale
for (i, block) in enumerate(self.data_source.tiles.traverse()):
self.min_val = min(self.min_val, np.nanmin(np.abs(block.my_data[0])).min())
self.max_val = max(self.max_val, np.nanmax(np.abs(block.my_data[0])).max())
self.blocks[id(block)] = (i, block)
vert.append([1.0, 1.0, 1.0, 1.0])
dds = ((block.RightEdge - block.LeftEdge) / block.source_mask.shape)
dx.append(dds.tolist())
le.append(block.LeftEdge.tolist())
re.append(block.RightEdge.tolist())
for (g, node, (sl, _dims, _gi)) in self.data_source.tiles.slice_traverse():
block = node.data
self.blocks_by_grid[(g.id - g._id_offset)].append((id(block), i))
self.grids_by_block[id(node.data)] = ((g.id - g._id_offset), sl)
if hasattr(self.min_val, 'in_units'):
self.min_val = self.min_val.d
if hasattr(self.max_val, 'in_units'):
self.max_val = self.max_val.d
LE = np.array([b.LeftEdge for (i, b) in self.blocks.values()]).min(axis=0)
RE = np.array([b.RightEdge for (i, b) in self.blocks.values()]).max(axis=0)
self.diagonal = np.sqrt(((RE - LE) ** 2).sum())
vert = np.array(vert, dtype='f4')
dx = np.array(dx, dtype='f4')
le = np.array(le, dtype='f4')
re = np.array(re, dtype='f4')
self.vertex_array.attributes.append(VertexAttribute(name='model_vertex', data=vert))
self.vertex_array.attributes.append(VertexAttribute(name='in_dx', data=dx))
self.vertex_array.attributes.append(VertexAttribute(name='in_left_edge', data=le))
self.vertex_array.attributes.append(VertexAttribute(name='in_right_edge', data=re))
self._load_textures()<|docstring|>Adds a source of data for the block collection.
Given a `data_source` and a `field` to populate from, adds the data
to the block collection so that is able to be rendered.
Parameters
----------
data_source : YTRegion
A YTRegion object to use as a data source.
field : string
A field to populate from.
no_ghost : bool (False)
Should we speed things up by skipping ghost zone generation?<|endoftext|> |
29b8107c31ee3490c5a78edab3bc63a2a384849ecf61ccfc266540675fcd9bc4 | def eval_fields_3d_no_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', glob_arr_coeff: 'float[:,:,:,:]', out_fields: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X,Y and Z directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3), out_fields.shape[3]))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_coeff_fields[(:, :, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3), :)]
for i_basis_1 in range((1 + f_p1)):
for i_basis_2 in range((1 + f_p2)):
for i_basis_3 in range((1 + f_p3)):
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, i_basis_3, :)]
for i_quad_1 in range(k1):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_quad_2 in range(k2):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
for i_quad_3 in range(k3):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline = ((spline_1 * spline_2) * spline_3)
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :)] += (spline * coeff_fields) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
glob_arr_coeff: ndarray of floats
Coefficients of the fields in the X,Y and Z directions
out_fields: ndarray of floats
Evaluated fields, filled with the correct values by the function | psydac/core/kernels.py | eval_fields_3d_no_weights | mayuri-dhote/psydac | 0 | python | def eval_fields_3d_no_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', glob_arr_coeff: 'float[:,:,:,:]', out_fields: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X,Y and Z directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3), out_fields.shape[3]))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_coeff_fields[(:, :, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3), :)]
for i_basis_1 in range((1 + f_p1)):
for i_basis_2 in range((1 + f_p2)):
for i_basis_3 in range((1 + f_p3)):
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, i_basis_3, :)]
for i_quad_1 in range(k1):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_quad_2 in range(k2):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
for i_quad_3 in range(k3):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline = ((spline_1 * spline_2) * spline_3)
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :)] += (spline * coeff_fields) | def eval_fields_3d_no_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', glob_arr_coeff: 'float[:,:,:,:]', out_fields: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X,Y and Z directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3), out_fields.shape[3]))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_coeff_fields[(:, :, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3), :)]
for i_basis_1 in range((1 + f_p1)):
for i_basis_2 in range((1 + f_p2)):
for i_basis_3 in range((1 + f_p3)):
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, i_basis_3, :)]
for i_quad_1 in range(k1):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_quad_2 in range(k2):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
for i_quad_3 in range(k3):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline = ((spline_1 * spline_2) * spline_3)
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :)] += (spline * coeff_fields)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
glob_arr_coeff: ndarray of floats
Coefficients of the fields in the X,Y and Z directions
out_fields: ndarray of floats
Evaluated fields, filled with the correct values by the function<|endoftext|> |
34cc5d0e08e3e4a21d096ec44959a7a5b961c2d77e82cc4dcbf1547abcee743b | def eval_fields_2d_no_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', glob_arr_coeff: 'float[:,:,:]', out_fields: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X and Y directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), out_fields.shape[2]))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_coeff_fields[(:, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), :)]
for i_basis_1 in range((1 + f_p1)):
for i_basis_2 in range((1 + f_p2)):
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, :)]
for i_quad_1 in range(k1):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_quad_2 in range(k2):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline = (spline_1 * spline_2)
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :)] += (spline * coeff_fields) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
glob_arr_coeff: ndarray of floats
Coefficients of the fields in the X and Y directions
out_fields: ndarray of floats
Evaluated fields, filled with the correct values by the function | psydac/core/kernels.py | eval_fields_2d_no_weights | mayuri-dhote/psydac | 0 | python | def eval_fields_2d_no_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', glob_arr_coeff: 'float[:,:,:]', out_fields: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X and Y directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), out_fields.shape[2]))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_coeff_fields[(:, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), :)]
for i_basis_1 in range((1 + f_p1)):
for i_basis_2 in range((1 + f_p2)):
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, :)]
for i_quad_1 in range(k1):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_quad_2 in range(k2):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline = (spline_1 * spline_2)
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :)] += (spline * coeff_fields) | def eval_fields_2d_no_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', glob_arr_coeff: 'float[:,:,:]', out_fields: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X and Y directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), out_fields.shape[2]))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_coeff_fields[(:, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), :)]
for i_basis_1 in range((1 + f_p1)):
for i_basis_2 in range((1 + f_p2)):
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, :)]
for i_quad_1 in range(k1):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_quad_2 in range(k2):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline = (spline_1 * spline_2)
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :)] += (spline * coeff_fields)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
glob_arr_coeff: ndarray of floats
Coefficients of the fields in the X and Y directions
out_fields: ndarray of floats
Evaluated fields, filled with the correct values by the function<|endoftext|> |
732a66e6c7df5071b012a58bf96585620767451b0d3fa603e4ff74bf7190fc27 | def eval_fields_3d_weighted(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', glob_arr_coeff: 'float[:,:,:,:]', global_arr_weights: 'float[:,:,:]', out_fields: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X,Y and Z directions\n\n global_arr_weights: ndarray of float\n Coefficients of the weight field in the X,Y and Z directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3), out_fields.shape[3]))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_fields = np.zeros((k1, k2, k3, out_fields.shape[3]))
arr_weights = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_coeff_fields[(:, :, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3), :)]
arr_coeff_weights[(:, :, :)] = global_arr_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_fields[(:, :, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
splines = ((spline_1 * spline_2) * spline_3)
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, i_basis_3, :)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_fields[(i_quad_1, i_quad_2, i_quad_3, :)] += ((splines * coeff_fields) * coeff_weight)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (splines * coeff_weight)
fields = arr_fields[(i_quad_1, i_quad_2, i_quad_3, :)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :)] += (fields / weight) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
glob_arr_coeff: ndarray of floats
Coefficients of the fields in the X,Y and Z directions
global_arr_weights: ndarray of float
Coefficients of the weight field in the X,Y and Z directions
out_fields: ndarray of floats
Evaluated fields, filled with the correct values by the function | psydac/core/kernels.py | eval_fields_3d_weighted | mayuri-dhote/psydac | 0 | python | def eval_fields_3d_weighted(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', glob_arr_coeff: 'float[:,:,:,:]', global_arr_weights: 'float[:,:,:]', out_fields: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X,Y and Z directions\n\n global_arr_weights: ndarray of float\n Coefficients of the weight field in the X,Y and Z directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3), out_fields.shape[3]))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_fields = np.zeros((k1, k2, k3, out_fields.shape[3]))
arr_weights = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_coeff_fields[(:, :, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3), :)]
arr_coeff_weights[(:, :, :)] = global_arr_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_fields[(:, :, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
splines = ((spline_1 * spline_2) * spline_3)
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, i_basis_3, :)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_fields[(i_quad_1, i_quad_2, i_quad_3, :)] += ((splines * coeff_fields) * coeff_weight)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (splines * coeff_weight)
fields = arr_fields[(i_quad_1, i_quad_2, i_quad_3, :)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :)] += (fields / weight) | def eval_fields_3d_weighted(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', glob_arr_coeff: 'float[:,:,:,:]', global_arr_weights: 'float[:,:,:]', out_fields: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n glob_arr_coeff: ndarray of floats\n Coefficients of the fields in the X,Y and Z directions\n\n global_arr_weights: ndarray of float\n Coefficients of the weight field in the X,Y and Z directions\n\n out_fields: ndarray of floats\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3), out_fields.shape[3]))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_fields = np.zeros((k1, k2, k3, out_fields.shape[3]))
arr_weights = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_coeff_fields[(:, :, :, :)] = glob_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3), :)]
arr_coeff_weights[(:, :, :)] = global_arr_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_fields[(:, :, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
splines = ((spline_1 * spline_2) * spline_3)
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, i_basis_3, :)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_fields[(i_quad_1, i_quad_2, i_quad_3, :)] += ((splines * coeff_fields) * coeff_weight)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (splines * coeff_weight)
fields = arr_fields[(i_quad_1, i_quad_2, i_quad_3, :)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :)] += (fields / weight)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
glob_arr_coeff: ndarray of floats
Coefficients of the fields in the X,Y and Z directions
global_arr_weights: ndarray of float
Coefficients of the weight field in the X,Y and Z directions
out_fields: ndarray of floats
Evaluated fields, filled with the correct values by the function<|endoftext|> |
de090c3d0fcfd5ae6f64132caeca160355fc24b02f3f6d5f124b4db133db09ec | def eval_fields_2d_weighted(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff: 'float[:,:,:]', global_arr_weights: 'float[:,:]', out_fields: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n\n global_basis_1: ndarray of float\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of float\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of int\n Spans in the X direction\n global_spans_2: ndarray of int\n Spans in the Y direction\n\n global_arr_coeff: ndarray of float\n Coefficients of the fields in the X,Y and Z directions\n\n global_arr_weights: ndarray of float\n Coefficients of the weight field in the X,Y and Z directions\n\n out_fields: ndarray of float\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), out_fields.shape[2]))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_fields = np.zeros((k1, k2, out_fields.shape[2]))
arr_weights = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_coeff_fields[(:, :, :)] = global_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), :)]
arr_coeff_weights[(:, :)] = global_arr_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_fields[(:, :, :)] = 0.0
arr_weights[(:, :)] = 0.0
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline = (spline_1 * spline_2)
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, :)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_fields[(i_quad_1, i_quad_2, :)] += ((spline * coeff_fields) * coeff_weight)
arr_weights[(i_quad_1, i_quad_2)] += (spline * coeff_weight)
fields = arr_fields[(i_quad_1, i_quad_2, :)]
weight = arr_weights[(i_quad_1, i_quad_2)]
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :)] += (fields / weight) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of float
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of float
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of int
Spans in the X direction
global_spans_2: ndarray of int
Spans in the Y direction
global_arr_coeff: ndarray of float
Coefficients of the fields in the X,Y and Z directions
global_arr_weights: ndarray of float
Coefficients of the weight field in the X,Y and Z directions
out_fields: ndarray of float
Evaluated fields, filled with the correct values by the function | psydac/core/kernels.py | eval_fields_2d_weighted | mayuri-dhote/psydac | 0 | python | def eval_fields_2d_weighted(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff: 'float[:,:,:]', global_arr_weights: 'float[:,:]', out_fields: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n\n global_basis_1: ndarray of float\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of float\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of int\n Spans in the X direction\n global_spans_2: ndarray of int\n Spans in the Y direction\n\n global_arr_coeff: ndarray of float\n Coefficients of the fields in the X,Y and Z directions\n\n global_arr_weights: ndarray of float\n Coefficients of the weight field in the X,Y and Z directions\n\n out_fields: ndarray of float\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), out_fields.shape[2]))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_fields = np.zeros((k1, k2, out_fields.shape[2]))
arr_weights = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_coeff_fields[(:, :, :)] = global_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), :)]
arr_coeff_weights[(:, :)] = global_arr_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_fields[(:, :, :)] = 0.0
arr_weights[(:, :)] = 0.0
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline = (spline_1 * spline_2)
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, :)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_fields[(i_quad_1, i_quad_2, :)] += ((spline * coeff_fields) * coeff_weight)
arr_weights[(i_quad_1, i_quad_2)] += (spline * coeff_weight)
fields = arr_fields[(i_quad_1, i_quad_2, :)]
weight = arr_weights[(i_quad_1, i_quad_2)]
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :)] += (fields / weight) | def eval_fields_2d_weighted(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff: 'float[:,:,:]', global_arr_weights: 'float[:,:]', out_fields: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n\n global_basis_1: ndarray of float\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of float\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of int\n Spans in the X direction\n global_spans_2: ndarray of int\n Spans in the Y direction\n\n global_arr_coeff: ndarray of float\n Coefficients of the fields in the X,Y and Z directions\n\n global_arr_weights: ndarray of float\n Coefficients of the weight field in the X,Y and Z directions\n\n out_fields: ndarray of float\n Evaluated fields, filled with the correct values by the function\n '
arr_coeff_fields = np.zeros(((1 + f_p1), (1 + f_p2), out_fields.shape[2]))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_fields = np.zeros((k1, k2, out_fields.shape[2]))
arr_weights = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_coeff_fields[(:, :, :)] = global_arr_coeff[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), :)]
arr_coeff_weights[(:, :)] = global_arr_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_fields[(:, :, :)] = 0.0
arr_weights[(:, :)] = 0.0
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline = (spline_1 * spline_2)
coeff_fields = arr_coeff_fields[(i_basis_1, i_basis_2, :)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_fields[(i_quad_1, i_quad_2, :)] += ((spline * coeff_fields) * coeff_weight)
arr_weights[(i_quad_1, i_quad_2)] += (spline * coeff_weight)
fields = arr_fields[(i_quad_1, i_quad_2, :)]
weight = arr_weights[(i_quad_1, i_quad_2)]
out_fields[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :)] += (fields / weight)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of float
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of float
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of int
Spans in the X direction
global_spans_2: ndarray of int
Spans in the Y direction
global_arr_coeff: ndarray of float
Coefficients of the fields in the X,Y and Z directions
global_arr_weights: ndarray of float
Coefficients of the weight field in the X,Y and Z directions
out_fields: ndarray of float
Evaluated fields, filled with the correct values by the function<|endoftext|> |
1be6215d696a2c45a5a140d595b1186121e6c9000c802add063f5695f868653f | def eval_jac_det_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jac_det: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid.\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3))] = ((((((((+ x_x1) * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1)) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
jac_det: ndarray of floats
Jacobian determinant on the grid. | psydac/core/kernels.py | eval_jac_det_3d | mayuri-dhote/psydac | 0 | python | def eval_jac_det_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jac_det: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid.\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3))] = ((((((((+ x_x1) * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1)) | def eval_jac_det_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jac_det: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid.\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3))] = ((((((((+ x_x1) * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
jac_det: ndarray of floats
Jacobian determinant on the grid.<|endoftext|> |
698433e449ac3f6d2b437b27800b308878af7fa3f60305b9b80b6231651cc071 | def eval_jac_det_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jac_det: 'float[:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid.\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2))] = ((x_x1 * y_x2) - (x_x2 * y_x1)) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
jac_det: ndarray of floats
Jacobian determinant on the grid. | psydac/core/kernels.py | eval_jac_det_2d | mayuri-dhote/psydac | 0 | python | def eval_jac_det_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jac_det: 'float[:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid.\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2))] = ((x_x1 * y_x2) - (x_x2 * y_x1)) | def eval_jac_det_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jac_det: 'float[:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid.\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2))] = ((x_x1 * y_x2) - (x_x2 * y_x1))<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
jac_det: ndarray of floats
Jacobian determinant on the grid.<|endoftext|> |
33a6732d9bdc5a9f597f6c0189b810101c1df395ac3489f3a19c361b02f21a6c | def eval_jac_det_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weights: 'float[:,:,:]', jac_det: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weight field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3))] = ((((((((+ x_x1) * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1)) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weight field
jac_det: ndarray of floats
Jacobian determinant on the grid | psydac/core/kernels.py | eval_jac_det_3d_weights | mayuri-dhote/psydac | 0 | python | def eval_jac_det_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weights: 'float[:,:,:]', jac_det: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weight field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3))] = ((((((((+ x_x1) * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1)) | def eval_jac_det_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weights: 'float[:,:,:]', jac_det: 'float[:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weight field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3))] = ((((((((+ x_x1) * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weight field
jac_det: ndarray of floats
Jacobian determinant on the grid<|endoftext|> |
21ad3d768a5883c214b26e387d7056737bc7abb4e61a87f65cadf4c367399be5 | def eval_jac_det_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jac_det: 'float[:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2))] = ((x_x1 * y_x2) - (x_x2 * y_x1)) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weights field
jac_det: ndarray of floats
Jacobian determinant on the grid | psydac/core/kernels.py | eval_jac_det_2d_weights | mayuri-dhote/psydac | 0 | python | def eval_jac_det_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jac_det: 'float[:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2))] = ((x_x1 * y_x2) - (x_x2 * y_x1)) | def eval_jac_det_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jac_det: 'float[:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jac_det: ndarray of floats\n Jacobian determinant on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
jac_det[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2))] = ((x_x1 * y_x2) - (x_x2 * y_x1))<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weights field
jac_det: ndarray of floats
Jacobian determinant on the grid<|endoftext|> |
9c986a6c80559f3b4e0f592679678754515908c1f241c3ae13a7a4fa44df7216 | def eval_jacobians_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jacobians: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jacobians: ndarray of floats\n Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = np.array([[x_x1, x_x2, x_x3], [y_x1, y_x2, y_x3], [z_x1, z_x2, z_x3]]) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
jacobians: ndarray of floats
Jacobian matrix on the grid | psydac/core/kernels.py | eval_jacobians_3d | mayuri-dhote/psydac | 0 | python | def eval_jacobians_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jacobians: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jacobians: ndarray of floats\n Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = np.array([[x_x1, x_x2, x_x3], [y_x1, y_x2, y_x3], [z_x1, z_x2, z_x3]]) | def eval_jacobians_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jacobians: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jacobians: ndarray of floats\n Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = np.array([[x_x1, x_x2, x_x3], [y_x1, y_x2, y_x3], [z_x1, z_x2, z_x3]])<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
jacobians: ndarray of floats
Jacobian matrix on the grid<|endoftext|> |
5fbda78a4a41482981de66de0138ff6a29dc327ba8ffd9e0d9c415a9a2430f2e | def eval_jacobians_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jacobians: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jacobians: ndarray of floats\n Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = np.array([[x_x1, x_x2], [y_x1, y_x2]]) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
jacobians: ndarray of floats
Jacobian matrix at every point of the grid | psydac/core/kernels.py | eval_jacobians_2d | mayuri-dhote/psydac | 0 | python | def eval_jacobians_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jacobians: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jacobians: ndarray of floats\n Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = np.array([[x_x1, x_x2], [y_x1, y_x2]]) | def eval_jacobians_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jacobians: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jacobians: ndarray of floats\n Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = np.array([[x_x1, x_x2], [y_x1, y_x2]])<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
jacobians: ndarray of floats
Jacobian matrix at every point of the grid<|endoftext|> |
73183c99ef542e464b6766f2ca2ca132c10a86926fc2a529b80f3249b6ff0e22 | def eval_jacobians_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weights: 'float[:,:,:]', jacobians: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weight field\n\n jacobians: ndarray of floats\n Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = np.array([[x_x1, x_x2, x_x3], [y_x1, y_x2, y_x3], [z_x1, z_x2, z_x3]]) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weight field
jacobians: ndarray of floats
Jacobian matrix on the grid | psydac/core/kernels.py | eval_jacobians_3d_weights | mayuri-dhote/psydac | 0 | python | def eval_jacobians_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weights: 'float[:,:,:]', jacobians: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weight field\n\n jacobians: ndarray of floats\n Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = np.array([[x_x1, x_x2, x_x3], [y_x1, y_x2, y_x3], [z_x1, z_x2, z_x3]]) | def eval_jacobians_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weights: 'float[:,:,:]', jacobians: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weight field\n\n jacobians: ndarray of floats\n Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = np.array([[x_x1, x_x2, x_x3], [y_x1, y_x2, y_x3], [z_x1, z_x2, z_x3]])<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weight field
jacobians: ndarray of floats
Jacobian matrix on the grid<|endoftext|> |
fc7ee821b452d0d3afe01008a7e56a2a74e26b66f23d3f12e094ee1c46e0f1e8 | def eval_jacobians_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jacobians: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jacobians: ndarray of floats\n Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = np.array([[x_x1, x_x2], [y_x1, y_x2]]) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weights field
jacobians: ndarray of floats
Jacobian matrix at every point of the grid | psydac/core/kernels.py | eval_jacobians_2d_weights | mayuri-dhote/psydac | 0 | python | def eval_jacobians_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jacobians: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jacobians: ndarray of floats\n Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = np.array([[x_x1, x_x2], [y_x1, y_x2]]) | def eval_jacobians_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jacobians: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jacobians: ndarray of floats\n Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
jacobians[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = np.array([[x_x1, x_x2], [y_x1, y_x2]])<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weights field
jacobians: ndarray of floats
Jacobian matrix at every point of the grid<|endoftext|> |
cbd7e4954d9d9212e091d15aafc4235bdd9a8b8b1e444b0b6864839e2ef92664 | def eval_jacobians_inv_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jacobians_inv: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
det = (((((((x_x1 * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))
a_11 = ((y_x2 * z_x3) - (y_x3 * z_x2))
a_12 = (((- y_x1) * z_x3) + (y_x3 * z_x1))
a_13 = ((y_x1 * z_x2) - (y_x2 * z_x1))
a_21 = (((- x_x2) * z_x3) + (x_x3 * z_x2))
a_22 = ((x_x1 * z_x3) - (x_x3 * z_x1))
a_23 = (((- x_x1) * z_x2) + (x_x2 * z_x1))
a_31 = ((x_x2 * y_x3) - (x_x3 * y_x2))
a_32 = (((- x_x1) * y_x3) + (x_x3 * y_x1))
a_33 = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = (np.array([[a_11, a_21, a_31], [a_12, a_22, a_32], [a_13, a_23, a_33]]) / det) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix on the grid | psydac/core/kernels.py | eval_jacobians_inv_3d | mayuri-dhote/psydac | 0 | python | def eval_jacobians_inv_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jacobians_inv: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
det = (((((((x_x1 * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))
a_11 = ((y_x2 * z_x3) - (y_x3 * z_x2))
a_12 = (((- y_x1) * z_x3) + (y_x3 * z_x1))
a_13 = ((y_x1 * z_x2) - (y_x2 * z_x1))
a_21 = (((- x_x2) * z_x3) + (x_x3 * z_x2))
a_22 = ((x_x1 * z_x3) - (x_x3 * z_x1))
a_23 = (((- x_x1) * z_x2) + (x_x2 * z_x1))
a_31 = ((x_x2 * y_x3) - (x_x3 * y_x2))
a_32 = (((- x_x1) * y_x3) + (x_x3 * y_x1))
a_33 = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = (np.array([[a_11, a_21, a_31], [a_12, a_22, a_32], [a_13, a_23, a_33]]) / det) | def eval_jacobians_inv_3d(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', jacobians_inv: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x2[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
det = (((((((x_x1 * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))
a_11 = ((y_x2 * z_x3) - (y_x3 * z_x2))
a_12 = (((- y_x1) * z_x3) + (y_x3 * z_x1))
a_13 = ((y_x1 * z_x2) - (y_x2 * z_x1))
a_21 = (((- x_x2) * z_x3) + (x_x3 * z_x2))
a_22 = ((x_x1 * z_x3) - (x_x3 * z_x1))
a_23 = (((- x_x1) * z_x2) + (x_x2 * z_x1))
a_31 = ((x_x2 * y_x3) - (x_x3 * y_x2))
a_32 = (((- x_x1) * y_x3) + (x_x3 * y_x1))
a_33 = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = (np.array([[a_11, a_21, a_31], [a_12, a_22, a_32], [a_13, a_23, a_33]]) / det)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix on the grid<|endoftext|> |
3469014c653485fba3ee3e1ff66e8450f97de0a5e53f6b01a9fb4f84dc4e9907 | def eval_jacobians_inv_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jacobians_inv: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
det = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = (np.array([[y_x2, (- x_x2)], [(- y_x1), x_x1]]) / det) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix at every point of the grid | psydac/core/kernels.py | eval_jacobians_inv_2d | mayuri-dhote/psydac | 0 | python | def eval_jacobians_inv_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jacobians_inv: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
det = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = (np.array([[y_x2, (- x_x2)], [(- y_x1), x_x1]]) / det) | def eval_jacobians_inv_2d(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', jacobians_inv: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
det = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = (np.array([[y_x2, (- x_x2)], [(- y_x1), x_x1]]) / det)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix at every point of the grid<|endoftext|> |
05bb51661e2b69c31c28ca57a6de4d171d22bb943211e69236dc8d1c81a86f6b | def eval_jacobians_inv_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weigths: 'float[:,:,:]', jacobians_inv: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weigths: ndarray of floats\n Coefficients of the weight field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weigths[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
det = (((((((x_x1 * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))
a_11 = ((y_x2 * z_x3) - (y_x3 * z_x2))
a_12 = (((- y_x1) * z_x3) + (y_x3 * z_x1))
a_13 = ((y_x1 * z_x2) - (y_x2 * z_x1))
a_21 = (((- x_x2) * z_x3) + (x_x3 * z_x2))
a_22 = ((x_x1 * z_x3) - (x_x3 * z_x1))
a_23 = (((- x_x1) * z_x2) + (x_x2 * z_x1))
a_31 = ((x_x2 * y_x3) - (x_x3 * y_x2))
a_32 = (((- x_x1) * y_x3) + (x_x3 * y_x1))
a_33 = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = (np.array([[a_11, a_21, a_31], [a_12, a_22, a_32], [a_13, a_23, a_33]]) / det) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
global_arr_coeff_weigths: ndarray of floats
Coefficients of the weight field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix on the grid | psydac/core/kernels.py | eval_jacobians_inv_3d_weights | mayuri-dhote/psydac | 0 | python | def eval_jacobians_inv_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weigths: 'float[:,:,:]', jacobians_inv: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weigths: ndarray of floats\n Coefficients of the weight field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weigths[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
det = (((((((x_x1 * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))
a_11 = ((y_x2 * z_x3) - (y_x3 * z_x2))
a_12 = (((- y_x1) * z_x3) + (y_x3 * z_x1))
a_13 = ((y_x1 * z_x2) - (y_x2 * z_x1))
a_21 = (((- x_x2) * z_x3) + (x_x3 * z_x2))
a_22 = ((x_x1 * z_x3) - (x_x3 * z_x1))
a_23 = (((- x_x1) * z_x2) + (x_x2 * z_x1))
a_31 = ((x_x2 * y_x3) - (x_x3 * y_x2))
a_32 = (((- x_x1) * y_x3) + (x_x3 * y_x1))
a_33 = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = (np.array([[a_11, a_21, a_31], [a_12, a_22, a_32], [a_13, a_23, a_33]]) / det) | def eval_jacobians_inv_3d_weights(nc1: int, nc2: int, nc3: int, pad1: int, pad2: int, pad3: int, f_p1: int, f_p2: int, f_p3: int, k1: int, k2: int, k3: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_basis_3: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_spans_3: 'int[:]', global_arr_coeff_x: 'float[:,:,:]', global_arr_coeff_y: 'float[:,:,:]', global_arr_coeff_z: 'float[:,:,:]', global_arr_coeff_weigths: 'float[:,:,:]', jacobians_inv: 'float[:,:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n nc3: int\n Number of cells in the Z direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n pad3: int\n Padding in the Z direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n f_p3: int\n Degree in the Z direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n k3: int\n Number of evaluation points in the Z direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n global_basis_3: ndarray of floats\n Basis functions values at each cell and quadrature points in the Z direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n global_spans_3: ndarray of ints\n Spans in the Z direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n global_arr_coeff_z: ndarray of floats\n Coefficients of the Z field\n\n global_arr_coeff_weigths: ndarray of floats\n Coefficients of the weight field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix on the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeffs_z = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2), (1 + f_p3)))
arr_x = np.zeros((k1, k2, k3))
arr_y = np.zeros((k1, k2, k3))
arr_z = np.zeros((k1, k2, k3))
arr_x_x1 = np.zeros((k1, k2, k3))
arr_x_x2 = np.zeros((k1, k2, k3))
arr_x_x3 = np.zeros((k1, k2, k3))
arr_y_x1 = np.zeros((k1, k2, k3))
arr_y_x2 = np.zeros((k1, k2, k3))
arr_y_x3 = np.zeros((k1, k2, k3))
arr_z_x1 = np.zeros((k1, k2, k3))
arr_z_x2 = np.zeros((k1, k2, k3))
arr_z_x3 = np.zeros((k1, k2, k3))
arr_weights = np.zeros((k1, k2, k3))
arr_weights_x1 = np.zeros((k1, k2, k3))
arr_weights_x2 = np.zeros((k1, k2, k3))
arr_weights_x3 = np.zeros((k1, k2, k3))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
for i_cell_3 in range(nc3):
span_3 = global_spans_3[i_cell_3]
arr_x[(:, :, :)] = 0.0
arr_y[(:, :, :)] = 0.0
arr_z[(:, :, :)] = 0.0
arr_x_x1[(:, :, :)] = 0.0
arr_x_x2[(:, :, :)] = 0.0
arr_x_x3[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x1[(:, :, :)] = 0.0
arr_y_x3[(:, :, :)] = 0.0
arr_z_x1[(:, :, :)] = 0.0
arr_z_x2[(:, :, :)] = 0.0
arr_z_x3[(:, :, :)] = 0.0
arr_weights[(:, :, :)] = 0.0
arr_weights_x1[(:, :, :)] = 0.0
arr_weights_x2[(:, :, :)] = 0.0
arr_weights_x3[(:, :, :)] = 0.0
arr_coeffs_x[(:, :, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_y[(:, :, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeffs_z[(:, :, :)] = global_arr_coeff_z[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
arr_coeff_weights[(:, :, :)] = global_arr_coeff_weigths[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2), ((pad3 + span_3) - f_p3):((1 + pad3) + span_3))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_quad_3 in range(k3):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
for i_basis_3 in range((1 + f_p3)):
spline_3 = global_basis_3[(i_cell_3, i_basis_3, 0, i_quad_3)]
spline_x3 = global_basis_3[(i_cell_3, i_basis_3, 1, i_quad_3)]
mapping = ((spline_1 * spline_2) * spline_3)
mapping_x1 = ((spline_x1 * spline_2) * spline_3)
mapping_x2 = ((spline_1 * spline_x2) * spline_3)
mapping_x3 = ((spline_1 * spline_2) * spline_x3)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2, i_basis_3)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2, i_basis_3)]
coeff_z = arr_coeffs_z[(i_basis_1, i_basis_2, i_basis_3)]
coeff_weight = arr_coeff_weights[(i_basis_1, i_basis_2, i_basis_3)]
arr_x[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_y)
arr_z[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_z)
arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_x)
arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_y)
arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_y)
arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_z)
arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_z)
arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_z)
arr_weights[(i_quad_1, i_quad_2, i_quad_3)] += (mapping * coeff_weight)
arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x1 * coeff_weight)
arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x2 * coeff_weight)
arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)] += (mapping_x3 * coeff_weight)
x = arr_x[(i_quad_1, i_quad_2, i_quad_3)]
y = arr_y[(i_quad_1, i_quad_2, i_quad_3)]
z = arr_z[(i_quad_1, i_quad_2, i_quad_3)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2, i_quad_3)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2, i_quad_3)]
x_x3 = arr_x_x3[(i_quad_1, i_quad_2, i_quad_3)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2, i_quad_3)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2, i_quad_3)]
y_x3 = arr_y_x3[(i_quad_1, i_quad_2, i_quad_3)]
z_x1 = arr_z_x1[(i_quad_1, i_quad_2, i_quad_3)]
z_x2 = arr_z_x2[(i_quad_1, i_quad_2, i_quad_3)]
z_x3 = arr_z_x3[(i_quad_1, i_quad_2, i_quad_3)]
weight = arr_weights[(i_quad_1, i_quad_2, i_quad_3)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2, i_quad_3)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2, i_quad_3)]
weight_x3 = arr_weights_x3[(i_quad_1, i_quad_2, i_quad_3)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
x_x3 = ((x_x3 - ((weight_x3 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
y_x3 = ((y_x3 - ((weight_x3 * y) * inv_weight)) * inv_weight)
z_x1 = ((z_x1 - ((weight_x1 * z) * inv_weight)) * inv_weight)
z_x2 = ((z_x2 - ((weight_x2 * z) * inv_weight)) * inv_weight)
z_x3 = ((z_x3 - ((weight_x3 * z) * inv_weight)) * inv_weight)
det = (((((((x_x1 * y_x2) * z_x3) + ((x_x2 * y_x3) * z_x1)) + ((x_x3 * y_x1) * z_x2)) - ((x_x1 * y_x3) * z_x2)) - ((x_x2 * y_x1) * z_x3)) - ((x_x3 * y_x2) * z_x1))
a_11 = ((y_x2 * z_x3) - (y_x3 * z_x2))
a_12 = (((- y_x1) * z_x3) + (y_x3 * z_x1))
a_13 = ((y_x1 * z_x2) - (y_x2 * z_x1))
a_21 = (((- x_x2) * z_x3) + (x_x3 * z_x2))
a_22 = ((x_x1 * z_x3) - (x_x3 * z_x1))
a_23 = (((- x_x1) * z_x2) + (x_x2 * z_x1))
a_31 = ((x_x2 * y_x3) - (x_x3 * y_x2))
a_32 = (((- x_x1) * y_x3) + (x_x3 * y_x1))
a_33 = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), ((i_cell_3 * k3) + i_quad_3), :, :)] = (np.array([[a_11, a_21, a_31], [a_12, a_22, a_32], [a_13, a_23, a_33]]) / det)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
nc3: int
Number of cells in the Z direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
pad3: int
Padding in the Z direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
f_p3: int
Degree in the Z direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
k3: int
Number of evaluation points in the Z direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_basis_3: ndarray of floats
Basis functions values at each cell and quadrature points in the Z direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_spans_3: ndarray of ints
Spans in the Z direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_z: ndarray of floats
Coefficients of the Z field
global_arr_coeff_weigths: ndarray of floats
Coefficients of the weight field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix on the grid<|endoftext|> |
246b08b03c90f60c0f2ef0fa94ec2b1250e9d26e5cc46c9045b813eecc47c731 | def eval_jacobians_inv_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jacobians_inv: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
det = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = (np.array([[y_x2, (- x_x2)], [(- y_x1), x_x1]]) / det) | Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weights field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix at every point of the grid | psydac/core/kernels.py | eval_jacobians_inv_2d_weights | mayuri-dhote/psydac | 0 | python | def eval_jacobians_inv_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jacobians_inv: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
det = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = (np.array([[y_x2, (- x_x2)], [(- y_x1), x_x1]]) / det) | def eval_jacobians_inv_2d_weights(nc1: int, nc2: int, pad1: int, pad2: int, f_p1: int, f_p2: int, k1: int, k2: int, global_basis_1: 'float[:,:,:,:]', global_basis_2: 'float[:,:,:,:]', global_spans_1: 'int[:]', global_spans_2: 'int[:]', global_arr_coeff_x: 'float[:,:]', global_arr_coeff_y: 'float[:,:]', global_arr_coeff_weights: 'float[:,:]', jacobians_inv: 'float[:,:,:,:]'):
'\n Parameters\n ----------\n nc1: int\n Number of cells in the X direction\n nc2: int\n Number of cells in the Y direction\n\n pad1: int\n Padding in the X direction\n pad2: int\n Padding in the Y direction\n\n f_p1: int\n Degree in the X direction\n f_p2: int\n Degree in the Y direction\n\n k1: int\n Number of evaluation points in the X direction\n k2: int\n Number of evaluation points in the Y direction\n\n global_basis_1: ndarray of floats\n Basis functions values at each cell and quadrature points in the X direction\n global_basis_2: ndarray of floats\n Basis functions values at each cell and quadrature points in the Y direction\n\n global_spans_1: ndarray of ints\n Spans in the X direction\n global_spans_2: ndarray of ints\n Spans in the Y direction\n\n global_arr_coeff_x: ndarray of floats\n Coefficients of the X field\n global_arr_coeff_y: ndarray of floats\n Coefficients of the Y field\n\n global_arr_coeff_weights: ndarray of floats\n Coefficients of the weights field\n\n jacobians_inv: ndarray of floats\n Inverse of the Jacobian matrix at every point of the grid\n '
arr_coeffs_x = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeffs_y = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_coeff_weights = np.zeros(((1 + f_p1), (1 + f_p2)))
arr_x = np.zeros((k1, k2))
arr_y = np.zeros((k1, k2))
arr_x_x1 = np.zeros((k1, k2))
arr_x_x2 = np.zeros((k1, k2))
arr_y_x1 = np.zeros((k1, k2))
arr_y_x2 = np.zeros((k1, k2))
arr_weights = np.zeros((k1, k2))
arr_weights_x1 = np.zeros((k1, k2))
arr_weights_x2 = np.zeros((k1, k2))
for i_cell_1 in range(nc1):
span_1 = global_spans_1[i_cell_1]
for i_cell_2 in range(nc2):
span_2 = global_spans_2[i_cell_2]
arr_x[(:, :)] = 0.0
arr_y[(:, :)] = 0.0
arr_x_x1[(:, :)] = 0.0
arr_x_x2[(:, :)] = 0.0
arr_y_x1[(:, :)] = 0.0
arr_y_x2[(:, :)] = 0.0
arr_weights[(:, :)] = 0.0
arr_weights_x1[(:, :)] = 0.0
arr_weights_x2[(:, :)] = 0.0
arr_coeffs_x[(:, :)] = global_arr_coeff_x[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeffs_y[(:, :)] = global_arr_coeff_y[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
arr_coeff_weights[(:, :)] = global_arr_coeff_weights[(((pad1 + span_1) - f_p1):((1 + pad1) + span_1), ((pad2 + span_2) - f_p2):((1 + pad2) + span_2))]
for i_quad_1 in range(k1):
for i_quad_2 in range(k2):
for i_basis_1 in range((1 + f_p1)):
spline_1 = global_basis_1[(i_cell_1, i_basis_1, 0, i_quad_1)]
spline_x1 = global_basis_1[(i_cell_1, i_basis_1, 1, i_quad_1)]
for i_basis_2 in range((1 + f_p2)):
spline_2 = global_basis_2[(i_cell_2, i_basis_2, 0, i_quad_2)]
spline_x2 = global_basis_2[(i_cell_2, i_basis_2, 1, i_quad_2)]
mapping = (spline_1 * spline_2)
mapping_x1 = (spline_x1 * spline_2)
mapping_x2 = (spline_1 * spline_x2)
coeff_x = arr_coeffs_x[(i_basis_1, i_basis_2)]
coeff_y = arr_coeffs_y[(i_basis_1, i_basis_2)]
coeff_weights = arr_coeff_weights[(i_basis_1, i_basis_2)]
arr_x[(i_quad_1, i_quad_2)] += (mapping * coeff_x)
arr_y[(i_quad_1, i_quad_2)] += (mapping * coeff_y)
arr_x_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_x)
arr_x_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_x)
arr_y_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_y)
arr_y_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_y)
arr_weights[(i_quad_1, i_quad_2)] += (mapping * coeff_weights)
arr_weights_x1[(i_quad_1, i_quad_2)] += (mapping_x1 * coeff_weights)
arr_weights_x2[(i_quad_1, i_quad_2)] += (mapping_x2 * coeff_weights)
x = arr_x[(i_quad_1, i_quad_2)]
y = arr_y[(i_quad_1, i_quad_2)]
x_x1 = arr_x_x1[(i_quad_1, i_quad_2)]
x_x2 = arr_x_x2[(i_quad_1, i_quad_2)]
y_x1 = arr_y_x1[(i_quad_1, i_quad_2)]
y_x2 = arr_y_x2[(i_quad_1, i_quad_2)]
weight = arr_weights[(i_quad_1, i_quad_2)]
weight_x1 = arr_weights_x1[(i_quad_1, i_quad_2)]
weight_x2 = arr_weights_x2[(i_quad_1, i_quad_2)]
inv_weight = (1.0 / weight)
x_x1 = ((x_x1 - ((weight_x1 * x) * inv_weight)) * inv_weight)
x_x2 = ((x_x2 - ((weight_x2 * x) * inv_weight)) * inv_weight)
y_x1 = ((y_x1 - ((weight_x1 * y) * inv_weight)) * inv_weight)
y_x2 = ((y_x2 - ((weight_x2 * y) * inv_weight)) * inv_weight)
det = ((x_x1 * y_x2) - (x_x2 * y_x1))
jacobians_inv[(((i_cell_1 * k1) + i_quad_1), ((i_cell_2 * k2) + i_quad_2), :, :)] = (np.array([[y_x2, (- x_x2)], [(- y_x1), x_x1]]) / det)<|docstring|>Parameters
----------
nc1: int
Number of cells in the X direction
nc2: int
Number of cells in the Y direction
pad1: int
Padding in the X direction
pad2: int
Padding in the Y direction
f_p1: int
Degree in the X direction
f_p2: int
Degree in the Y direction
k1: int
Number of evaluation points in the X direction
k2: int
Number of evaluation points in the Y direction
global_basis_1: ndarray of floats
Basis functions values at each cell and quadrature points in the X direction
global_basis_2: ndarray of floats
Basis functions values at each cell and quadrature points in the Y direction
global_spans_1: ndarray of ints
Spans in the X direction
global_spans_2: ndarray of ints
Spans in the Y direction
global_arr_coeff_x: ndarray of floats
Coefficients of the X field
global_arr_coeff_y: ndarray of floats
Coefficients of the Y field
global_arr_coeff_weights: ndarray of floats
Coefficients of the weights field
jacobians_inv: ndarray of floats
Inverse of the Jacobian matrix at every point of the grid<|endoftext|> |
5478164fcab40a880ecee12ab22ffef6f5d7cd94d6a112c88a8a18aa4dd609bf | def pushforward_2d_l2(fields_to_push: 'float[:,:,:]', jac_dets: 'float[:,:]', pushed_fields: 'float[:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (n_x1, n_x2, n_f) where:\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the L2 space.\n\n jac_dets: ndarray\n Values of the Jacobian determinant of the Mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[2]):
pushed_fields[(:, :, i_f)] = (fields_to_push[(:, :, i_f)] / jac_dets[(:, :)]) | Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (n_x1, n_x2, n_f) where:
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_f is the number of fields to push-forward in the L2 space.
jac_dets: ndarray
Values of the Jacobian determinant of the Mapping
pushed_fields: ndarray
Push forwarded fields | psydac/core/kernels.py | pushforward_2d_l2 | mayuri-dhote/psydac | 0 | python | def pushforward_2d_l2(fields_to_push: 'float[:,:,:]', jac_dets: 'float[:,:]', pushed_fields: 'float[:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (n_x1, n_x2, n_f) where:\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the L2 space.\n\n jac_dets: ndarray\n Values of the Jacobian determinant of the Mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[2]):
pushed_fields[(:, :, i_f)] = (fields_to_push[(:, :, i_f)] / jac_dets[(:, :)]) | def pushforward_2d_l2(fields_to_push: 'float[:,:,:]', jac_dets: 'float[:,:]', pushed_fields: 'float[:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (n_x1, n_x2, n_f) where:\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the L2 space.\n\n jac_dets: ndarray\n Values of the Jacobian determinant of the Mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[2]):
pushed_fields[(:, :, i_f)] = (fields_to_push[(:, :, i_f)] / jac_dets[(:, :)])<|docstring|>Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (n_x1, n_x2, n_f) where:
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_f is the number of fields to push-forward in the L2 space.
jac_dets: ndarray
Values of the Jacobian determinant of the Mapping
pushed_fields: ndarray
Push forwarded fields<|endoftext|> |
0ee9aac1fb956f0957be9cd043136c014e948370a1957776e9aaf08d81fadd0a | def pushforward_3d_l2(fields_to_push: 'float[:,:,:,:]', jac_dets: 'float[:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (n_x1, n_x2, n_x3, n_f) where:\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid.\n * n_f is the number of fields to push-forward in the L2 space.\n\n jac_dets: ndarray\n Values of the Jacobian determinant of the Mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, :, i_f)] = (fields_to_push[(:, :, :, i_f)] / jac_dets[(:, :, :)]) | Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (n_x1, n_x2, n_x3, n_f) where:
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_x3 is the number of points in direction 3 of the implicit grid.
* n_f is the number of fields to push-forward in the L2 space.
jac_dets: ndarray
Values of the Jacobian determinant of the Mapping
pushed_fields: ndarray
Push forwarded fields | psydac/core/kernels.py | pushforward_3d_l2 | mayuri-dhote/psydac | 0 | python | def pushforward_3d_l2(fields_to_push: 'float[:,:,:,:]', jac_dets: 'float[:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (n_x1, n_x2, n_x3, n_f) where:\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid.\n * n_f is the number of fields to push-forward in the L2 space.\n\n jac_dets: ndarray\n Values of the Jacobian determinant of the Mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, :, i_f)] = (fields_to_push[(:, :, :, i_f)] / jac_dets[(:, :, :)]) | def pushforward_3d_l2(fields_to_push: 'float[:,:,:,:]', jac_dets: 'float[:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (n_x1, n_x2, n_x3, n_f) where:\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid.\n * n_f is the number of fields to push-forward in the L2 space.\n\n jac_dets: ndarray\n Values of the Jacobian determinant of the Mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, :, i_f)] = (fields_to_push[(:, :, :, i_f)] / jac_dets[(:, :, :)])<|docstring|>Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (n_x1, n_x2, n_x3, n_f) where:
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_x3 is the number of points in direction 3 of the implicit grid.
* n_f is the number of fields to push-forward in the L2 space.
jac_dets: ndarray
Values of the Jacobian determinant of the Mapping
pushed_fields: ndarray
Push forwarded fields<|endoftext|> |
e036acc054f5234109be8a7e4b8f4a70fc6a7d402fb16f0b05ffb5f003f92d44 | def pushforward_2d_hcurl(fields_to_push: 'float[:,:,:,:]', inv_jac_mats: 'float[:,:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (2, n_x1, n_x2, n_f) where:\n * 2 is the logical dimension of the problem (2 here)\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the Hcurl space.\n\n inv_jac_mats: ndarray\n Inverses of the Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, 0, i_f)] = (((+ inv_jac_mats[(:, :, 0, 0)]) * fields_to_push[(0, :, :, i_f)]) + (inv_jac_mats[(:, :, 1, 0)] * fields_to_push[(1, :, :, i_f)]))
pushed_fields[(:, :, 1, i_f)] = (((+ inv_jac_mats[(:, :, 0, 1)]) * fields_to_push[(0, :, :, i_f)]) + (inv_jac_mats[(:, :, 1, 1)] * fields_to_push[(1, :, :, i_f)])) | Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (2, n_x1, n_x2, n_f) where:
* 2 is the logical dimension of the problem (2 here)
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_f is the number of fields to push-forward in the Hcurl space.
inv_jac_mats: ndarray
Inverses of the Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields | psydac/core/kernels.py | pushforward_2d_hcurl | mayuri-dhote/psydac | 0 | python | def pushforward_2d_hcurl(fields_to_push: 'float[:,:,:,:]', inv_jac_mats: 'float[:,:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (2, n_x1, n_x2, n_f) where:\n * 2 is the logical dimension of the problem (2 here)\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the Hcurl space.\n\n inv_jac_mats: ndarray\n Inverses of the Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, 0, i_f)] = (((+ inv_jac_mats[(:, :, 0, 0)]) * fields_to_push[(0, :, :, i_f)]) + (inv_jac_mats[(:, :, 1, 0)] * fields_to_push[(1, :, :, i_f)]))
pushed_fields[(:, :, 1, i_f)] = (((+ inv_jac_mats[(:, :, 0, 1)]) * fields_to_push[(0, :, :, i_f)]) + (inv_jac_mats[(:, :, 1, 1)] * fields_to_push[(1, :, :, i_f)])) | def pushforward_2d_hcurl(fields_to_push: 'float[:,:,:,:]', inv_jac_mats: 'float[:,:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (2, n_x1, n_x2, n_f) where:\n * 2 is the logical dimension of the problem (2 here)\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the Hcurl space.\n\n inv_jac_mats: ndarray\n Inverses of the Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, 0, i_f)] = (((+ inv_jac_mats[(:, :, 0, 0)]) * fields_to_push[(0, :, :, i_f)]) + (inv_jac_mats[(:, :, 1, 0)] * fields_to_push[(1, :, :, i_f)]))
pushed_fields[(:, :, 1, i_f)] = (((+ inv_jac_mats[(:, :, 0, 1)]) * fields_to_push[(0, :, :, i_f)]) + (inv_jac_mats[(:, :, 1, 1)] * fields_to_push[(1, :, :, i_f)]))<|docstring|>Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (2, n_x1, n_x2, n_f) where:
* 2 is the logical dimension of the problem (2 here)
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_f is the number of fields to push-forward in the Hcurl space.
inv_jac_mats: ndarray
Inverses of the Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields<|endoftext|> |
a8bfc125fc1271ebf9bfa3c0ea58cb52e176877b58eceb256a745b12f8b6c718 | def pushforward_3d_hcurl(fields_to_push: 'float[:,:,:,:,:]', inv_jac_mats: 'float[:,:,:,:,:]', pushed_fields: 'float[:,:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (3, n_x1, n_x2, n_x3, n_f) where:\n * 3 is the logical dimension of the problem\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid\n * n_f is the number of fields to push-forward in the Hcurl space.\n\n inv_jac_mats: ndarray\n Inverses of the Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[4]):
x = fields_to_push[(0, :, :, :, i_f)]
y = fields_to_push[(1, :, :, :, i_f)]
z = fields_to_push[(2, :, :, :, i_f)]
pushed_fields[(:, :, :, 0, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 0)]) * x) + (inv_jac_mats[(:, :, :, 1, 0)] * y)) + (inv_jac_mats[(:, :, :, 2, 0)] * z))
pushed_fields[(:, :, :, 1, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 1)]) * x) + (inv_jac_mats[(:, :, :, 1, 1)] * y)) + (inv_jac_mats[(:, :, :, 2, 1)] * z))
pushed_fields[(:, :, :, 2, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 2)]) * x) + (inv_jac_mats[(:, :, :, 1, 2)] * y)) + (inv_jac_mats[(:, :, :, 2, 2)] * z)) | Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (3, n_x1, n_x2, n_x3, n_f) where:
* 3 is the logical dimension of the problem
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_x3 is the number of points in direction 3 of the implicit grid
* n_f is the number of fields to push-forward in the Hcurl space.
inv_jac_mats: ndarray
Inverses of the Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields | psydac/core/kernels.py | pushforward_3d_hcurl | mayuri-dhote/psydac | 0 | python | def pushforward_3d_hcurl(fields_to_push: 'float[:,:,:,:,:]', inv_jac_mats: 'float[:,:,:,:,:]', pushed_fields: 'float[:,:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (3, n_x1, n_x2, n_x3, n_f) where:\n * 3 is the logical dimension of the problem\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid\n * n_f is the number of fields to push-forward in the Hcurl space.\n\n inv_jac_mats: ndarray\n Inverses of the Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[4]):
x = fields_to_push[(0, :, :, :, i_f)]
y = fields_to_push[(1, :, :, :, i_f)]
z = fields_to_push[(2, :, :, :, i_f)]
pushed_fields[(:, :, :, 0, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 0)]) * x) + (inv_jac_mats[(:, :, :, 1, 0)] * y)) + (inv_jac_mats[(:, :, :, 2, 0)] * z))
pushed_fields[(:, :, :, 1, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 1)]) * x) + (inv_jac_mats[(:, :, :, 1, 1)] * y)) + (inv_jac_mats[(:, :, :, 2, 1)] * z))
pushed_fields[(:, :, :, 2, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 2)]) * x) + (inv_jac_mats[(:, :, :, 1, 2)] * y)) + (inv_jac_mats[(:, :, :, 2, 2)] * z)) | def pushforward_3d_hcurl(fields_to_push: 'float[:,:,:,:,:]', inv_jac_mats: 'float[:,:,:,:,:]', pushed_fields: 'float[:,:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (3, n_x1, n_x2, n_x3, n_f) where:\n * 3 is the logical dimension of the problem\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid\n * n_f is the number of fields to push-forward in the Hcurl space.\n\n inv_jac_mats: ndarray\n Inverses of the Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[4]):
x = fields_to_push[(0, :, :, :, i_f)]
y = fields_to_push[(1, :, :, :, i_f)]
z = fields_to_push[(2, :, :, :, i_f)]
pushed_fields[(:, :, :, 0, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 0)]) * x) + (inv_jac_mats[(:, :, :, 1, 0)] * y)) + (inv_jac_mats[(:, :, :, 2, 0)] * z))
pushed_fields[(:, :, :, 1, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 1)]) * x) + (inv_jac_mats[(:, :, :, 1, 1)] * y)) + (inv_jac_mats[(:, :, :, 2, 1)] * z))
pushed_fields[(:, :, :, 2, i_f)] = ((((+ inv_jac_mats[(:, :, :, 0, 2)]) * x) + (inv_jac_mats[(:, :, :, 1, 2)] * y)) + (inv_jac_mats[(:, :, :, 2, 2)] * z))<|docstring|>Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (3, n_x1, n_x2, n_x3, n_f) where:
* 3 is the logical dimension of the problem
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_x3 is the number of points in direction 3 of the implicit grid
* n_f is the number of fields to push-forward in the Hcurl space.
inv_jac_mats: ndarray
Inverses of the Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields<|endoftext|> |
303a12cbd3d9176551d57d926d553b05e2bab2860dd50c56090798c1c0fceeb1 | def pushforward_2d_hdiv(fields_to_push: 'float[:,:,:,:]', jac_mats: 'float[:,:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (2, n_x1, n_x2, n_f) where:\n * 2 is the logical dimension of the problem (2 here)\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the Hdiv space.\n\n jac_mats: ndarray\n Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, 0, i_f)] = (((+ jac_mats[(:, :, 0, 0)]) * fields_to_push[(0, :, :, i_f)]) + (jac_mats[(:, :, 0, 1)] * fields_to_push[(1, :, :, i_f)]))
pushed_fields[(:, :, 1, i_f)] = (((+ jac_mats[(:, :, 1, 0)]) * fields_to_push[(0, :, :, i_f)]) + (jac_mats[(:, :, 1, 1)] * fields_to_push[(1, :, :, i_f)])) | Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (2, n_x1, n_x2, n_f) where:
* 2 is the logical dimension of the problem (2 here)
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_f is the number of fields to push-forward in the Hdiv space.
jac_mats: ndarray
Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields | psydac/core/kernels.py | pushforward_2d_hdiv | mayuri-dhote/psydac | 0 | python | def pushforward_2d_hdiv(fields_to_push: 'float[:,:,:,:]', jac_mats: 'float[:,:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (2, n_x1, n_x2, n_f) where:\n * 2 is the logical dimension of the problem (2 here)\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the Hdiv space.\n\n jac_mats: ndarray\n Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, 0, i_f)] = (((+ jac_mats[(:, :, 0, 0)]) * fields_to_push[(0, :, :, i_f)]) + (jac_mats[(:, :, 0, 1)] * fields_to_push[(1, :, :, i_f)]))
pushed_fields[(:, :, 1, i_f)] = (((+ jac_mats[(:, :, 1, 0)]) * fields_to_push[(0, :, :, i_f)]) + (jac_mats[(:, :, 1, 1)] * fields_to_push[(1, :, :, i_f)])) | def pushforward_2d_hdiv(fields_to_push: 'float[:,:,:,:]', jac_mats: 'float[:,:,:,:]', pushed_fields: 'float[:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (2, n_x1, n_x2, n_f) where:\n * 2 is the logical dimension of the problem (2 here)\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_f is the number of fields to push-forward in the Hdiv space.\n\n jac_mats: ndarray\n Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[3]):
pushed_fields[(:, :, 0, i_f)] = (((+ jac_mats[(:, :, 0, 0)]) * fields_to_push[(0, :, :, i_f)]) + (jac_mats[(:, :, 0, 1)] * fields_to_push[(1, :, :, i_f)]))
pushed_fields[(:, :, 1, i_f)] = (((+ jac_mats[(:, :, 1, 0)]) * fields_to_push[(0, :, :, i_f)]) + (jac_mats[(:, :, 1, 1)] * fields_to_push[(1, :, :, i_f)]))<|docstring|>Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (2, n_x1, n_x2, n_f) where:
* 2 is the logical dimension of the problem (2 here)
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_f is the number of fields to push-forward in the Hdiv space.
jac_mats: ndarray
Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields<|endoftext|> |
e6ef1442fa8b22830e674ca23c8a4ebb9d96c88c50771f459b16ca2aa4f76f34 | def pushforward_3d_hdiv(fields_to_push: 'float[:,:,:,:,:]', jac_mats: 'float[:,:,:,:,:]', pushed_fields: 'float[:,:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (3, n_x1, n_x2, n_x3, n_f) where:\n * 3 is the logical dimension of the problem\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid\n * n_f is the number of fields to push-forward in the Hdiv space.\n\n jac_mats: ndarray\n Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[4]):
x = fields_to_push[(0, :, :, :, i_f)]
y = fields_to_push[(1, :, :, :, i_f)]
z = fields_to_push[(2, :, :, :, i_f)]
pushed_fields[(:, :, :, 0, i_f)] = ((((+ jac_mats[(:, :, :, 0, 0)]) * x) + (jac_mats[(:, :, :, 0, 1)] * y)) + (jac_mats[(:, :, :, 0, 2)] * z))
pushed_fields[(:, :, :, 1, i_f)] = ((((+ jac_mats[(:, :, :, 1, 0)]) * x) + (jac_mats[(:, :, :, 1, 1)] * y)) + (jac_mats[(:, :, :, 1, 2)] * z))
pushed_fields[(:, :, :, 2, i_f)] = ((((+ jac_mats[(:, :, :, 2, 0)]) * x) + (jac_mats[(:, :, :, 2, 1)] * y)) + (jac_mats[(:, :, :, 2, 2)] * z)) | Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (3, n_x1, n_x2, n_x3, n_f) where:
* 3 is the logical dimension of the problem
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_x3 is the number of points in direction 3 of the implicit grid
* n_f is the number of fields to push-forward in the Hdiv space.
jac_mats: ndarray
Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields | psydac/core/kernels.py | pushforward_3d_hdiv | mayuri-dhote/psydac | 0 | python | def pushforward_3d_hdiv(fields_to_push: 'float[:,:,:,:,:]', jac_mats: 'float[:,:,:,:,:]', pushed_fields: 'float[:,:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (3, n_x1, n_x2, n_x3, n_f) where:\n * 3 is the logical dimension of the problem\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid\n * n_f is the number of fields to push-forward in the Hdiv space.\n\n jac_mats: ndarray\n Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[4]):
x = fields_to_push[(0, :, :, :, i_f)]
y = fields_to_push[(1, :, :, :, i_f)]
z = fields_to_push[(2, :, :, :, i_f)]
pushed_fields[(:, :, :, 0, i_f)] = ((((+ jac_mats[(:, :, :, 0, 0)]) * x) + (jac_mats[(:, :, :, 0, 1)] * y)) + (jac_mats[(:, :, :, 0, 2)] * z))
pushed_fields[(:, :, :, 1, i_f)] = ((((+ jac_mats[(:, :, :, 1, 0)]) * x) + (jac_mats[(:, :, :, 1, 1)] * y)) + (jac_mats[(:, :, :, 1, 2)] * z))
pushed_fields[(:, :, :, 2, i_f)] = ((((+ jac_mats[(:, :, :, 2, 0)]) * x) + (jac_mats[(:, :, :, 2, 1)] * y)) + (jac_mats[(:, :, :, 2, 2)] * z)) | def pushforward_3d_hdiv(fields_to_push: 'float[:,:,:,:,:]', jac_mats: 'float[:,:,:,:,:]', pushed_fields: 'float[:,:,:,:,:]'):
'\n\n Parameters\n ----------\n fields_to_push: ndarray\n Field values to push forward on the mapping\n This array as shape (3, n_x1, n_x2, n_x3, n_f) where:\n * 3 is the logical dimension of the problem\n * n_x1 is the number of points in direction 1 of the implicit grid.\n * n_x2 is the number of points in direction 2 of the implicit grid.\n * n_x3 is the number of points in direction 3 of the implicit grid\n * n_f is the number of fields to push-forward in the Hdiv space.\n\n jac_mats: ndarray\n Jacobian matrix of the mapping\n\n pushed_fields: ndarray\n Push forwarded fields\n '
for i_f in range(pushed_fields.shape[4]):
x = fields_to_push[(0, :, :, :, i_f)]
y = fields_to_push[(1, :, :, :, i_f)]
z = fields_to_push[(2, :, :, :, i_f)]
pushed_fields[(:, :, :, 0, i_f)] = ((((+ jac_mats[(:, :, :, 0, 0)]) * x) + (jac_mats[(:, :, :, 0, 1)] * y)) + (jac_mats[(:, :, :, 0, 2)] * z))
pushed_fields[(:, :, :, 1, i_f)] = ((((+ jac_mats[(:, :, :, 1, 0)]) * x) + (jac_mats[(:, :, :, 1, 1)] * y)) + (jac_mats[(:, :, :, 1, 2)] * z))
pushed_fields[(:, :, :, 2, i_f)] = ((((+ jac_mats[(:, :, :, 2, 0)]) * x) + (jac_mats[(:, :, :, 2, 1)] * y)) + (jac_mats[(:, :, :, 2, 2)] * z))<|docstring|>Parameters
----------
fields_to_push: ndarray
Field values to push forward on the mapping
This array as shape (3, n_x1, n_x2, n_x3, n_f) where:
* 3 is the logical dimension of the problem
* n_x1 is the number of points in direction 1 of the implicit grid.
* n_x2 is the number of points in direction 2 of the implicit grid.
* n_x3 is the number of points in direction 3 of the implicit grid
* n_f is the number of fields to push-forward in the Hdiv space.
jac_mats: ndarray
Jacobian matrix of the mapping
pushed_fields: ndarray
Push forwarded fields<|endoftext|> |
aefc9a4718a37d026dc989f2dc1776bb949ec473bdadf4e5d6aa501f1acbd9b3 | def test_sqpdfo_truncated_cg(self):
'\n Test comparing matlab results with python results\n '
(u, info_t) = sqpdfo_truncated_cg_(self.A, self.b, self.delta, self.max_iter, self.tol)
self.assertEqual(u, 0.816496580927725)
self.assertEqual(info_t.flag, 0)
self.assertEqual(info_t.iter, 2)
self.assertEqual(info_t.prec, 0)
self.assertEqual(info_t.curv, 1) | Test comparing matlab results with python results | tests/sqpdfo_truncated_cg_test.py | test_sqpdfo_truncated_cg | DLR-SC/sqpdfo | 10 | python | def test_sqpdfo_truncated_cg(self):
'\n \n '
(u, info_t) = sqpdfo_truncated_cg_(self.A, self.b, self.delta, self.max_iter, self.tol)
self.assertEqual(u, 0.816496580927725)
self.assertEqual(info_t.flag, 0)
self.assertEqual(info_t.iter, 2)
self.assertEqual(info_t.prec, 0)
self.assertEqual(info_t.curv, 1) | def test_sqpdfo_truncated_cg(self):
'\n \n '
(u, info_t) = sqpdfo_truncated_cg_(self.A, self.b, self.delta, self.max_iter, self.tol)
self.assertEqual(u, 0.816496580927725)
self.assertEqual(info_t.flag, 0)
self.assertEqual(info_t.iter, 2)
self.assertEqual(info_t.prec, 0)
self.assertEqual(info_t.curv, 1)<|docstring|>Test comparing matlab results with python results<|endoftext|> |
4791d8d39aa70310f1b8d298d60014f5df48dc0a41722f87775b8c61a0c1354c | def vgg16(pretrained=False, progress=True, **kwargs):
'VGG 16-layer model (configuration "D")\n `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>\'_\n Args:\n pretrained (bool): If True, returns a model pre-trained on ImageNet\n progress (bool): If True, displays a progress bar of the download to stderr\n '
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) | VGG 16-layer model (configuration "D")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr | CDS_pretraining/models/vgg.py | vgg16 | VisionLearningGroup/CDS | 7 | python | def vgg16(pretrained=False, progress=True, **kwargs):
'VGG 16-layer model (configuration "D")\n `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>\'_\n Args:\n pretrained (bool): If True, returns a model pre-trained on ImageNet\n progress (bool): If True, displays a progress bar of the download to stderr\n '
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs) | def vgg16(pretrained=False, progress=True, **kwargs):
'VGG 16-layer model (configuration "D")\n `"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>\'_\n Args:\n pretrained (bool): If True, returns a model pre-trained on ImageNet\n progress (bool): If True, displays a progress bar of the download to stderr\n '
return _vgg('vgg16', 'D', False, pretrained, progress, **kwargs)<|docstring|>VGG 16-layer model (configuration "D")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr<|endoftext|> |
4671c165072e6e9da11c8ef778b5ef1c7eb659cfcf98a40db2db757ab8bdf351 | def load_templates(self):
'\n Loads templates from configuration templates file.\n '
with open(SETTINGS['TEMPLATESFILE'], 'r') as stream:
try:
self.templates = yaml.load(stream)
except yaml.YAMLError as exc:
print(exc) | Loads templates from configuration templates file. | virtapi/model/template.py | load_templates | spiperac/virtapi | 11 | python | def load_templates(self):
'\n \n '
with open(SETTINGS['TEMPLATESFILE'], 'r') as stream:
try:
self.templates = yaml.load(stream)
except yaml.YAMLError as exc:
print(exc) | def load_templates(self):
'\n \n '
with open(SETTINGS['TEMPLATESFILE'], 'r') as stream:
try:
self.templates = yaml.load(stream)
except yaml.YAMLError as exc:
print(exc)<|docstring|>Loads templates from configuration templates file.<|endoftext|> |
7546d8919afdfbc73cd6a5de39d1ce0950728e3613245fa7494d21b21063d0b6 | def save_templates(self):
'\n Save templates from templates object.\n '
with open(SETTINGS['TEMPLATESFILE'], 'w') as stream:
try:
yaml.dump(self.templates, stream)
except yaml.YAMLError as exc:
print(exc) | Save templates from templates object. | virtapi/model/template.py | save_templates | spiperac/virtapi | 11 | python | def save_templates(self):
'\n \n '
with open(SETTINGS['TEMPLATESFILE'], 'w') as stream:
try:
yaml.dump(self.templates, stream)
except yaml.YAMLError as exc:
print(exc) | def save_templates(self):
'\n \n '
with open(SETTINGS['TEMPLATESFILE'], 'w') as stream:
try:
yaml.dump(self.templates, stream)
except yaml.YAMLError as exc:
print(exc)<|docstring|>Save templates from templates object.<|endoftext|> |
7fc7ef37fed9c4307f3e0fe22235a41caab7a71aaadb203430fb39d5d1dc358a | def load_operating_systems(self):
'\n Loading operating systems from templates.\n '
if (self.templates == None):
pass
else:
for template in self.templates:
self.operating_systems.append(str(template['os'])) | Loading operating systems from templates. | virtapi/model/template.py | load_operating_systems | spiperac/virtapi | 11 | python | def load_operating_systems(self):
'\n \n '
if (self.templates == None):
pass
else:
for template in self.templates:
self.operating_systems.append(str(template['os'])) | def load_operating_systems(self):
'\n \n '
if (self.templates == None):
pass
else:
for template in self.templates:
self.operating_systems.append(str(template['os']))<|docstring|>Loading operating systems from templates.<|endoftext|> |
7b6bb83a53d5ff641471cb0c9c9dc13fc1eb079919822a039025a41672a2e91c | def get_os_list(self):
'\n Returns just loaded list of operating systems.\n '
return self.operating_systems | Returns just loaded list of operating systems. | virtapi/model/template.py | get_os_list | spiperac/virtapi | 11 | python | def get_os_list(self):
'\n \n '
return self.operating_systems | def get_os_list(self):
'\n \n '
return self.operating_systems<|docstring|>Returns just loaded list of operating systems.<|endoftext|> |
b2f4a9fa6e0dc6cbaa27b33093ebf2244d554ebde83253c24137c3edec28a592 | def get_os_versions(self, os):
'\n Returns a list of versions for operating system.\n '
versions = []
for template in self.templates:
if (template['os'] == os):
versions.append(template['version'])
return versions | Returns a list of versions for operating system. | virtapi/model/template.py | get_os_versions | spiperac/virtapi | 11 | python | def get_os_versions(self, os):
'\n \n '
versions = []
for template in self.templates:
if (template['os'] == os):
versions.append(template['version'])
return versions | def get_os_versions(self, os):
'\n \n '
versions = []
for template in self.templates:
if (template['os'] == os):
versions.append(template['version'])
return versions<|docstring|>Returns a list of versions for operating system.<|endoftext|> |
d1c70d04b13ae12e3e993d11827b74e770d2b3ba7631334ef1296a99563bf433 | def get_iso_link(self, os, version):
'\n Returns iso path for selected os and version.\n '
iso_link = None
for template in self.templates:
if ((template['os'] == os) and (str(template['version']) == str(version))):
iso_link = template['iso']
return iso_link | Returns iso path for selected os and version. | virtapi/model/template.py | get_iso_link | spiperac/virtapi | 11 | python | def get_iso_link(self, os, version):
'\n \n '
iso_link = None
for template in self.templates:
if ((template['os'] == os) and (str(template['version']) == str(version))):
iso_link = template['iso']
return iso_link | def get_iso_link(self, os, version):
'\n \n '
iso_link = None
for template in self.templates:
if ((template['os'] == os) and (str(template['version']) == str(version))):
iso_link = template['iso']
return iso_link<|docstring|>Returns iso path for selected os and version.<|endoftext|> |
abe5ecd75bb1563eaca36b7f332071f186942573604920ca5efea91d535b615c | def fetch_template(self, os, version):
'\n Checks if template exist and if not, download and save it in the standard templates path.\n '
link = self.get_iso_link(os, version)
save_path = SETTINGS['TEMPLATESPATH']
if self.check_exists(link):
print('Template already exists.')
return os.path.basename(link)
try:
filename = download(link, save_path)
return filename
except Exception as e:
print('Download of the template failed.')
raise e | Checks if template exist and if not, download and save it in the standard templates path. | virtapi/model/template.py | fetch_template | spiperac/virtapi | 11 | python | def fetch_template(self, os, version):
'\n \n '
link = self.get_iso_link(os, version)
save_path = SETTINGS['TEMPLATESPATH']
if self.check_exists(link):
print('Template already exists.')
return os.path.basename(link)
try:
filename = download(link, save_path)
return filename
except Exception as e:
print('Download of the template failed.')
raise e | def fetch_template(self, os, version):
'\n \n '
link = self.get_iso_link(os, version)
save_path = SETTINGS['TEMPLATESPATH']
if self.check_exists(link):
print('Template already exists.')
return os.path.basename(link)
try:
filename = download(link, save_path)
return filename
except Exception as e:
print('Download of the template failed.')
raise e<|docstring|>Checks if template exist and if not, download and save it in the standard templates path.<|endoftext|> |
bd2a77b643eac32f49fe6f49cddf93cdd3020974eeebc196b21d11fce7752604 | def check_exists(self, template_iso):
'\n Check if template exists.\n '
template_file = '{}/{}'.format(SETTINGS['TEMPLATESPATH'], os.path.basename(template_iso))
exists = os.path.exists(template_file)
return exists | Check if template exists. | virtapi/model/template.py | check_exists | spiperac/virtapi | 11 | python | def check_exists(self, template_iso):
'\n \n '
template_file = '{}/{}'.format(SETTINGS['TEMPLATESPATH'], os.path.basename(template_iso))
exists = os.path.exists(template_file)
return exists | def check_exists(self, template_iso):
'\n \n '
template_file = '{}/{}'.format(SETTINGS['TEMPLATESPATH'], os.path.basename(template_iso))
exists = os.path.exists(template_file)
return exists<|docstring|>Check if template exists.<|endoftext|> |
da4015206e4c77c296b18f3cad705e565f26e8b6137117faf99aa35a47334e40 | def uninstall(project_list):
"Uninstall a list of projects.\n\n Returns a dictionary with the following keys and values:\n\n * `'uninstalled'` - a list of strings containing the names of the projects\n that were successfully uninstalled.\n\n * `'failed'` - a list of strings containing the names of the projects that\n failed to uninstall.\n\n :param project_list: the names of the projects to uninstall.\n :type project_list: iterable of strings\n :rtype: dictionary\n\n "
result = {'uninstalled': [], 'failed': []}
for project in project_list:
try:
success = packaging.install.remove(project)
except Exception as e:
logger.exception(e)
raise
if success:
result['uninstalled'].append(project)
else:
result['failed'].append(project)
return result | Uninstall a list of projects.
Returns a dictionary with the following keys and values:
* `'uninstalled'` - a list of strings containing the names of the projects
that were successfully uninstalled.
* `'failed'` - a list of strings containing the names of the projects that
failed to uninstall.
:param project_list: the names of the projects to uninstall.
:type project_list: iterable of strings
:rtype: dictionary | pip2/commands/uninstall.py | uninstall | osupython/pip2 | 4 | python | def uninstall(project_list):
"Uninstall a list of projects.\n\n Returns a dictionary with the following keys and values:\n\n * `'uninstalled'` - a list of strings containing the names of the projects\n that were successfully uninstalled.\n\n * `'failed'` - a list of strings containing the names of the projects that\n failed to uninstall.\n\n :param project_list: the names of the projects to uninstall.\n :type project_list: iterable of strings\n :rtype: dictionary\n\n "
result = {'uninstalled': [], 'failed': []}
for project in project_list:
try:
success = packaging.install.remove(project)
except Exception as e:
logger.exception(e)
raise
if success:
result['uninstalled'].append(project)
else:
result['failed'].append(project)
return result | def uninstall(project_list):
"Uninstall a list of projects.\n\n Returns a dictionary with the following keys and values:\n\n * `'uninstalled'` - a list of strings containing the names of the projects\n that were successfully uninstalled.\n\n * `'failed'` - a list of strings containing the names of the projects that\n failed to uninstall.\n\n :param project_list: the names of the projects to uninstall.\n :type project_list: iterable of strings\n :rtype: dictionary\n\n "
result = {'uninstalled': [], 'failed': []}
for project in project_list:
try:
success = packaging.install.remove(project)
except Exception as e:
logger.exception(e)
raise
if success:
result['uninstalled'].append(project)
else:
result['failed'].append(project)
return result<|docstring|>Uninstall a list of projects.
Returns a dictionary with the following keys and values:
* `'uninstalled'` - a list of strings containing the names of the projects
that were successfully uninstalled.
* `'failed'` - a list of strings containing the names of the projects that
failed to uninstall.
:param project_list: the names of the projects to uninstall.
:type project_list: iterable of strings
:rtype: dictionary<|endoftext|> |
850534c40c30e2162d03710742cc7aa43c7263cd86fac3a93bfd4408b8507364 | def get_predicate_subject_complement_phrases(doc, sent):
'\n extract predicates with:\n -subject phrase\n -complement phrase\n\n :param spacy.tokens.Sent sent: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, complement)\n '
output = []
predicates = {}
for token in sent:
if (token.dep_ == 'nsubj'):
predicates[token.head.i] = token.i
for (pred_token, pred_info) in predicates.items():
subject_id = pred_info
subject_tokens = get_dependent_tokens(subject_id, pred_token, sent)
subject_tokens.extend([subject_id])
subject_tokens.sort()
subject_phrase = ''
for token in subject_tokens:
subject_phrase += (' ' + doc[token].text)
complement_tokens = get_dependent_tokens(pred_token, subject_id, sent)
complement_tokens.sort()
if complement_tokens:
complement_phrase = ''
for token in complement_tokens:
complement_phrase += (' ' + doc[token].text)
one_row = (doc[pred_token].lemma_, subject_phrase, complement_phrase)
output.append(one_row)
return output | extract predicates with:
-subject phrase
-complement phrase
:param spacy.tokens.Sent sent: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, complement) | src/cltl/triple_extraction/spacy_triples/dep_to_triple.py | get_predicate_subject_complement_phrases | leolani/cltl-knowledgeextraction | 0 | python | def get_predicate_subject_complement_phrases(doc, sent):
'\n extract predicates with:\n -subject phrase\n -complement phrase\n\n :param spacy.tokens.Sent sent: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, complement)\n '
output = []
predicates = {}
for token in sent:
if (token.dep_ == 'nsubj'):
predicates[token.head.i] = token.i
for (pred_token, pred_info) in predicates.items():
subject_id = pred_info
subject_tokens = get_dependent_tokens(subject_id, pred_token, sent)
subject_tokens.extend([subject_id])
subject_tokens.sort()
subject_phrase =
for token in subject_tokens:
subject_phrase += (' ' + doc[token].text)
complement_tokens = get_dependent_tokens(pred_token, subject_id, sent)
complement_tokens.sort()
if complement_tokens:
complement_phrase =
for token in complement_tokens:
complement_phrase += (' ' + doc[token].text)
one_row = (doc[pred_token].lemma_, subject_phrase, complement_phrase)
output.append(one_row)
return output | def get_predicate_subject_complement_phrases(doc, sent):
'\n extract predicates with:\n -subject phrase\n -complement phrase\n\n :param spacy.tokens.Sent sent: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, complement)\n '
output = []
predicates = {}
for token in sent:
if (token.dep_ == 'nsubj'):
predicates[token.head.i] = token.i
for (pred_token, pred_info) in predicates.items():
subject_id = pred_info
subject_tokens = get_dependent_tokens(subject_id, pred_token, sent)
subject_tokens.extend([subject_id])
subject_tokens.sort()
subject_phrase =
for token in subject_tokens:
subject_phrase += (' ' + doc[token].text)
complement_tokens = get_dependent_tokens(pred_token, subject_id, sent)
complement_tokens.sort()
if complement_tokens:
complement_phrase =
for token in complement_tokens:
complement_phrase += (' ' + doc[token].text)
one_row = (doc[pred_token].lemma_, subject_phrase, complement_phrase)
output.append(one_row)
return output<|docstring|>extract predicates with:
-subject phrase
-complement phrase
:param spacy.tokens.Sent sent: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, complement)<|endoftext|> |
63a0bccf23d109b81348716082facc6aea56979a062ef9c63a11b1a0bd440723 | def get_subj_obj_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_obj_triples_with_spacy')
rels = {'nsubj', 'dobj', 'xcomp'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if (head_id not in predicates):
predicates[head_id] = dict()
predicates[head_id]['head'] = None
predicates[head_id]['tail'] = None
if (token.dep_ == 'nsubj'):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'dobj') or (token.dep == 'xcomp')):
if (token.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN') or (token.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - obj', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object) | src/cltl/triple_extraction/spacy_triples/dep_to_triple.py | get_subj_obj_triples_with_spacy | leolani/cltl-knowledgeextraction | 0 | python | def get_subj_obj_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_obj_triples_with_spacy')
rels = {'nsubj', 'dobj', 'xcomp'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if (head_id not in predicates):
predicates[head_id] = dict()
predicates[head_id]['head'] = None
predicates[head_id]['tail'] = None
if (token.dep_ == 'nsubj'):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'dobj') or (token.dep == 'xcomp')):
if (token.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN') or (token.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - obj', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | def get_subj_obj_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_obj_triples_with_spacy')
rels = {'nsubj', 'dobj', 'xcomp'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if (head_id not in predicates):
predicates[head_id] = dict()
predicates[head_id]['head'] = None
predicates[head_id]['tail'] = None
if (token.dep_ == 'nsubj'):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'dobj') or (token.dep == 'xcomp')):
if (token.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN') or (token.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - obj', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions))<|docstring|>extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object)<|endoftext|> |
d5ab5e0908fd639e259adcf9351bf82480039c2bd19212f932ee7611d08dbec3 | def get_subj_amod_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_amod_triples_with_spacy')
rels = {'nsubj', 'nsubjpass', 'acomp'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if ((token.dep_ == 'nsubj') or (token.dep_ == 'nsubjpass')):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif (token.pos_ == 'PROPN'):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'acomp') or (token.dep == 'auxpass')):
predicates[head_id]['tail'] = token.lemma_
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - aux - amod', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object) | src/cltl/triple_extraction/spacy_triples/dep_to_triple.py | get_subj_amod_triples_with_spacy | leolani/cltl-knowledgeextraction | 0 | python | def get_subj_amod_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_amod_triples_with_spacy')
rels = {'nsubj', 'nsubjpass', 'acomp'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if ((token.dep_ == 'nsubj') or (token.dep_ == 'nsubjpass')):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif (token.pos_ == 'PROPN'):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'acomp') or (token.dep == 'auxpass')):
predicates[head_id]['tail'] = token.lemma_
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - aux - amod', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | def get_subj_amod_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_amod_triples_with_spacy')
rels = {'nsubj', 'nsubjpass', 'acomp'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if ((token.dep_ == 'nsubj') or (token.dep_ == 'nsubjpass')):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif (token.pos_ == 'PROPN'):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'acomp') or (token.dep == 'auxpass')):
predicates[head_id]['tail'] = token.lemma_
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - aux - amod', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions))<|docstring|>extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object)<|endoftext|> |
3f46ac1daacfbdf0c8a0b1b238849695b5580746022b1f806b0548e0df556865 | def get_subj_attr_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_attr_triples_with_spacy')
rels = {'nsubj', 'intj', 'apposattr'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if ((token.dep_ == 'nsubj') or (token.dep_ == 'intj')):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'attr') or (token.dep_ == 'appos')):
if (token.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN') or (token.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
print(predicate, pred_info)
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - attr', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object) | src/cltl/triple_extraction/spacy_triples/dep_to_triple.py | get_subj_attr_triples_with_spacy | leolani/cltl-knowledgeextraction | 0 | python | def get_subj_attr_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_attr_triples_with_spacy')
rels = {'nsubj', 'intj', 'apposattr'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if ((token.dep_ == 'nsubj') or (token.dep_ == 'intj')):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'attr') or (token.dep_ == 'appos')):
if (token.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN') or (token.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
print(predicate, pred_info)
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - attr', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | def get_subj_attr_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_attr_triples_with_spacy')
rels = {'nsubj', 'intj', 'apposattr'}
doc = nlp(utterance)
triples = []
predicates = {}
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if ((token.dep_ == 'nsubj') or (token.dep_ == 'intj')):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
if ((token.dep_ == 'attr') or (token.dep_ == 'appos')):
if (token.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN') or (token.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
for (pred_token, pred_info) in predicates.items():
predicate = doc[pred_token].lemma_
print(predicate, pred_info)
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - attr', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions))<|docstring|>extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object)<|endoftext|> |
66a043b964881eee94c84606e4dc1e4e9bfcb79bc8bd727de9d23d57c9871674 | def get_subj_prep_pobj_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_prep_pobj_triples_with_spacy')
rels = {'nsubj', 'nsubjpass', 'prep', 'pobj'}
doc = nlp(utterance)
triples = []
predicates = {}
acomp = []
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if (token.dep_ == 'nsubj'):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
elif (token.dep_ == 'prep'):
predicates[head_id]['prep'] = token.lemma_
for token_dep in doc:
if ((token_dep.dep_ == 'pobj') and (token_dep.head.i == token.i)):
if (token_dep.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token_dep)
speaker_mentions.append(token_dep.text)
elif (token_dep.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token_dep)
hearer_mentions.append(token_dep.text)
elif ((token_dep.pos_ == 'PROPN') or (token_dep.pos_ == 'NOUN') or (token_dep.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token_dep.lemma_
subject_tokens.append(token_dep)
subject_mentions.append(token_dep.text)
for (pred_token, pred_info) in predicates.items():
predicate = ((doc[pred_token].lemma_ + '-') + pred_info.get('prep', str(None)))
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - prep-obj', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object) | src/cltl/triple_extraction/spacy_triples/dep_to_triple.py | get_subj_prep_pobj_triples_with_spacy | leolani/cltl-knowledgeextraction | 0 | python | def get_subj_prep_pobj_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_prep_pobj_triples_with_spacy')
rels = {'nsubj', 'nsubjpass', 'prep', 'pobj'}
doc = nlp(utterance)
triples = []
predicates = {}
acomp = []
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if (token.dep_ == 'nsubj'):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
elif (token.dep_ == 'prep'):
predicates[head_id]['prep'] = token.lemma_
for token_dep in doc:
if ((token_dep.dep_ == 'pobj') and (token_dep.head.i == token.i)):
if (token_dep.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token_dep)
speaker_mentions.append(token_dep.text)
elif (token_dep.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token_dep)
hearer_mentions.append(token_dep.text)
elif ((token_dep.pos_ == 'PROPN') or (token_dep.pos_ == 'NOUN') or (token_dep.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token_dep.lemma_
subject_tokens.append(token_dep)
subject_mentions.append(token_dep.text)
for (pred_token, pred_info) in predicates.items():
predicate = ((doc[pred_token].lemma_ + '-') + pred_info.get('prep', str(None)))
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - prep-obj', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions)) | def get_subj_prep_pobj_triples_with_spacy(nlp, utterance: str, SPEAKER: str, HEARER: str):
'\n extract predicates with:\n -subject\n -object\n\n :param spacy.tokens.doc.Doc doc: spaCy object after processing text\n\n :rtype: list\n :return: list of tuples (predicate, subject, object)\n '
print('get_subj_prep_pobj_triples_with_spacy')
rels = {'nsubj', 'nsubjpass', 'prep', 'pobj'}
doc = nlp(utterance)
triples = []
predicates = {}
acomp = []
subject_tokens = []
subject_mentions = []
object_tokens = []
object_mentions = []
speaker_mentions = []
hearer_mentions = []
speaker_tokens = []
hearer_tokens = []
for token in doc:
if (token.dep_ == 'ROOT'):
predicates[token.i] = dict()
predicates[token.i]['head'] = None
predicates[token.i]['tail'] = None
for token in doc:
if predicates.get(token.head.i):
head_id = token.head.i
if (token.dep_ == 'nsubj'):
if (token.text.lower() == 'i'):
predicates[head_id]['head'] = SPEAKER
speaker_tokens.append(token)
speaker_mentions.append(token.text)
elif (token.text.lower() == 'you'):
predicates[head_id]['head'] = HEARER
hearer_tokens.append(token)
hearer_mentions.append(token.text)
elif ((token.pos_ == 'PROPN') or (token.pos_ == 'NOUN')):
predicates[head_id]['head'] = token.lemma_
subject_tokens.append(token)
subject_mentions.append(token.text)
elif (token.dep_ == 'prep'):
predicates[head_id]['prep'] = token.lemma_
for token_dep in doc:
if ((token_dep.dep_ == 'pobj') and (token_dep.head.i == token.i)):
if (token_dep.text.lower() == 'i'):
predicates[head_id]['tail'] = SPEAKER
speaker_tokens.append(token_dep)
speaker_mentions.append(token_dep.text)
elif (token_dep.text.lower() == 'you'):
predicates[head_id]['tail'] = HEARER
hearer_tokens.append(token_dep)
hearer_mentions.append(token_dep.text)
elif ((token_dep.pos_ == 'PROPN') or (token_dep.pos_ == 'NOUN') or (token_dep.pos_ == 'ADJ')):
predicates[head_id]['tail'] = token_dep.lemma_
subject_tokens.append(token_dep)
subject_mentions.append(token_dep.text)
for (pred_token, pred_info) in predicates.items():
predicate = ((doc[pred_token].lemma_ + '-') + pred_info.get('prep', str(None)))
triple = predicateInfoToTriple(pred_info, predicate)
if (triple and (not (triple in triples))):
triples.append(triple)
print('Triples subj - pred - prep-obj', triples)
return (triples, zip(speaker_tokens, speaker_mentions), zip(hearer_tokens, hearer_mentions), zip(subject_tokens, subject_mentions), zip(object_tokens, object_mentions))<|docstring|>extract predicates with:
-subject
-object
:param spacy.tokens.doc.Doc doc: spaCy object after processing text
:rtype: list
:return: list of tuples (predicate, subject, object)<|endoftext|> |
ac8fd136bb68e15a4a8fa229cb06291029ea1ea3d8e0e1507a39d83c77b93647 | def get(self, spider, **params):
"Get a spider object for a given spider name.\n\n The method gets/sets spider id (and checks if spider exists).\n\n :param spider: a string spider name.\n :return: a spider object.\n :rtype: :class:`scrapinghub.client.spiders.Spider`\n\n Usage::\n\n >>> project.spiders.get('spider2')\n <scrapinghub.client.spiders.Spider at 0x106ee3748>\n >>> project.spiders.get('non-existing')\n NotFound: Spider non-existing doesn't exist.\n "
project = self._client._hsclient.get_project(self.project_id)
spider_id = project.ids.spider(spider, **params)
if (spider_id is None):
raise NotFound("Spider {} doesn't exist.".format(spider))
return Spider(self._client, self.project_id, spider_id, spider) | Get a spider object for a given spider name.
The method gets/sets spider id (and checks if spider exists).
:param spider: a string spider name.
:return: a spider object.
:rtype: :class:`scrapinghub.client.spiders.Spider`
Usage::
>>> project.spiders.get('spider2')
<scrapinghub.client.spiders.Spider at 0x106ee3748>
>>> project.spiders.get('non-existing')
NotFound: Spider non-existing doesn't exist. | scrapinghub/client/spiders.py | get | noviluni/python-scrapinghub | 163 | python | def get(self, spider, **params):
"Get a spider object for a given spider name.\n\n The method gets/sets spider id (and checks if spider exists).\n\n :param spider: a string spider name.\n :return: a spider object.\n :rtype: :class:`scrapinghub.client.spiders.Spider`\n\n Usage::\n\n >>> project.spiders.get('spider2')\n <scrapinghub.client.spiders.Spider at 0x106ee3748>\n >>> project.spiders.get('non-existing')\n NotFound: Spider non-existing doesn't exist.\n "
project = self._client._hsclient.get_project(self.project_id)
spider_id = project.ids.spider(spider, **params)
if (spider_id is None):
raise NotFound("Spider {} doesn't exist.".format(spider))
return Spider(self._client, self.project_id, spider_id, spider) | def get(self, spider, **params):
"Get a spider object for a given spider name.\n\n The method gets/sets spider id (and checks if spider exists).\n\n :param spider: a string spider name.\n :return: a spider object.\n :rtype: :class:`scrapinghub.client.spiders.Spider`\n\n Usage::\n\n >>> project.spiders.get('spider2')\n <scrapinghub.client.spiders.Spider at 0x106ee3748>\n >>> project.spiders.get('non-existing')\n NotFound: Spider non-existing doesn't exist.\n "
project = self._client._hsclient.get_project(self.project_id)
spider_id = project.ids.spider(spider, **params)
if (spider_id is None):
raise NotFound("Spider {} doesn't exist.".format(spider))
return Spider(self._client, self.project_id, spider_id, spider)<|docstring|>Get a spider object for a given spider name.
The method gets/sets spider id (and checks if spider exists).
:param spider: a string spider name.
:return: a spider object.
:rtype: :class:`scrapinghub.client.spiders.Spider`
Usage::
>>> project.spiders.get('spider2')
<scrapinghub.client.spiders.Spider at 0x106ee3748>
>>> project.spiders.get('non-existing')
NotFound: Spider non-existing doesn't exist.<|endoftext|> |
c41375c4222812872d9b01acdfdbb71e59202a2b6a56d60914c980470a66de76 | def list(self):
"Get a list of spiders for a project.\n\n :return: a list of dictionaries with spiders metadata.\n :rtype: :class:`list[dict]`\n\n Usage::\n\n >>> project.spiders.list()\n [{'id': 'spider1', 'tags': [], 'type': 'manual', 'version': '123'},\n {'id': 'spider2', 'tags': [], 'type': 'manual', 'version': '123'}]\n "
project = self._client._connection[self.project_id]
return project.spiders() | Get a list of spiders for a project.
:return: a list of dictionaries with spiders metadata.
:rtype: :class:`list[dict]`
Usage::
>>> project.spiders.list()
[{'id': 'spider1', 'tags': [], 'type': 'manual', 'version': '123'},
{'id': 'spider2', 'tags': [], 'type': 'manual', 'version': '123'}] | scrapinghub/client/spiders.py | list | noviluni/python-scrapinghub | 163 | python | def list(self):
"Get a list of spiders for a project.\n\n :return: a list of dictionaries with spiders metadata.\n :rtype: :class:`list[dict]`\n\n Usage::\n\n >>> project.spiders.list()\n [{'id': 'spider1', 'tags': [], 'type': 'manual', 'version': '123'},\n {'id': 'spider2', 'tags': [], 'type': 'manual', 'version': '123'}]\n "
project = self._client._connection[self.project_id]
return project.spiders() | def list(self):
"Get a list of spiders for a project.\n\n :return: a list of dictionaries with spiders metadata.\n :rtype: :class:`list[dict]`\n\n Usage::\n\n >>> project.spiders.list()\n [{'id': 'spider1', 'tags': [], 'type': 'manual', 'version': '123'},\n {'id': 'spider2', 'tags': [], 'type': 'manual', 'version': '123'}]\n "
project = self._client._connection[self.project_id]
return project.spiders()<|docstring|>Get a list of spiders for a project.
:return: a list of dictionaries with spiders metadata.
:rtype: :class:`list[dict]`
Usage::
>>> project.spiders.list()
[{'id': 'spider1', 'tags': [], 'type': 'manual', 'version': '123'},
{'id': 'spider2', 'tags': [], 'type': 'manual', 'version': '123'}]<|endoftext|> |
8bd57f0c3e3e73e378561e363cc5441d62ceaf6f96e5184b7d9e6600e614c5d8 | def iter(self):
'Iterate through a list of spiders for a project.\n\n :return: an iterator over spiders list where each spider is represented\n as a dict containing its metadata.\n :rtype: :class:`collection.Iterable[dict]`\n\n Provided for the sake of API consistency.\n '
return iter(self.list()) | Iterate through a list of spiders for a project.
:return: an iterator over spiders list where each spider is represented
as a dict containing its metadata.
:rtype: :class:`collection.Iterable[dict]`
Provided for the sake of API consistency. | scrapinghub/client/spiders.py | iter | noviluni/python-scrapinghub | 163 | python | def iter(self):
'Iterate through a list of spiders for a project.\n\n :return: an iterator over spiders list where each spider is represented\n as a dict containing its metadata.\n :rtype: :class:`collection.Iterable[dict]`\n\n Provided for the sake of API consistency.\n '
return iter(self.list()) | def iter(self):
'Iterate through a list of spiders for a project.\n\n :return: an iterator over spiders list where each spider is represented\n as a dict containing its metadata.\n :rtype: :class:`collection.Iterable[dict]`\n\n Provided for the sake of API consistency.\n '
return iter(self.list())<|docstring|>Iterate through a list of spiders for a project.
:return: an iterator over spiders list where each spider is represented
as a dict containing its metadata.
:rtype: :class:`collection.Iterable[dict]`
Provided for the sake of API consistency.<|endoftext|> |
64ba6fcf4d4ff7351ae67e294e61c6e076e2280764dbefbb6fef38ebf1201914 | @_wrap_http_errors
def update_tags(self, add=None, remove=None):
'Update tags for the spider.\n\n :param add: (optional) a list of string tags to add.\n :param remove: (optional) a list of string tags to remove.\n '
params = get_tags_for_update(add=add, remove=remove)
path = 'v2/projects/{}/spiders/{}/tags'.format(self.project_id, self._id)
url = urljoin(self._client._connection.url, path)
response = self._client._connection._session.patch(url, json=params)
response.raise_for_status() | Update tags for the spider.
:param add: (optional) a list of string tags to add.
:param remove: (optional) a list of string tags to remove. | scrapinghub/client/spiders.py | update_tags | noviluni/python-scrapinghub | 163 | python | @_wrap_http_errors
def update_tags(self, add=None, remove=None):
'Update tags for the spider.\n\n :param add: (optional) a list of string tags to add.\n :param remove: (optional) a list of string tags to remove.\n '
params = get_tags_for_update(add=add, remove=remove)
path = 'v2/projects/{}/spiders/{}/tags'.format(self.project_id, self._id)
url = urljoin(self._client._connection.url, path)
response = self._client._connection._session.patch(url, json=params)
response.raise_for_status() | @_wrap_http_errors
def update_tags(self, add=None, remove=None):
'Update tags for the spider.\n\n :param add: (optional) a list of string tags to add.\n :param remove: (optional) a list of string tags to remove.\n '
params = get_tags_for_update(add=add, remove=remove)
path = 'v2/projects/{}/spiders/{}/tags'.format(self.project_id, self._id)
url = urljoin(self._client._connection.url, path)
response = self._client._connection._session.patch(url, json=params)
response.raise_for_status()<|docstring|>Update tags for the spider.
:param add: (optional) a list of string tags to add.
:param remove: (optional) a list of string tags to remove.<|endoftext|> |
27c2426c9006902fb585e482b6c61aafb8f0feed41778f3000a2a3e17b34e3c3 | @_wrap_http_errors
def list_tags(self):
'List spider tags.\n\n :return: a list of spider tags.\n :rtype: :class:`list[str]`\n '
path = 'v2/projects/{}/spiders/{}'.format(self.project_id, self._id)
url = urljoin(self._client._connection.url, path)
response = self._client._connection._session.get(url)
response.raise_for_status()
return response.json().get('tags', []) | List spider tags.
:return: a list of spider tags.
:rtype: :class:`list[str]` | scrapinghub/client/spiders.py | list_tags | noviluni/python-scrapinghub | 163 | python | @_wrap_http_errors
def list_tags(self):
'List spider tags.\n\n :return: a list of spider tags.\n :rtype: :class:`list[str]`\n '
path = 'v2/projects/{}/spiders/{}'.format(self.project_id, self._id)
url = urljoin(self._client._connection.url, path)
response = self._client._connection._session.get(url)
response.raise_for_status()
return response.json().get('tags', []) | @_wrap_http_errors
def list_tags(self):
'List spider tags.\n\n :return: a list of spider tags.\n :rtype: :class:`list[str]`\n '
path = 'v2/projects/{}/spiders/{}'.format(self.project_id, self._id)
url = urljoin(self._client._connection.url, path)
response = self._client._connection._session.get(url)
response.raise_for_status()
return response.json().get('tags', [])<|docstring|>List spider tags.
:return: a list of spider tags.
:rtype: :class:`list[str]`<|endoftext|> |
5be92139adfbb5db2af3119b7e913d9db6add8799a51dde490d0913cda81f65a | def series(power: float, units: Tuple[str], fallback: Optional[str]=None):
"Define a callable to format units in a series.\n\n A series is a collection of units of values increasing linearly from an\n initial unit. For example there're 1024 bytes in 1 KB, 1024 KB in 1 MB,\n 1024 MB in 1 GB. In this case every time we multiply a number by 1024 we\n move to the next unit in the series.\n\n Parameters\n ----------\n power\n The power by which numbers in the series will increase.\n units\n The units in the power series from smallest to largest values.\n fallback\n The unit value to return when a given input is too large to\n fit into any of the specified units.\n\n "
def series_wrapper(count: float, limit: float=power) -> Tuple[(float, str)]:
"Return the value of count in the current series.\n\n Parameters\n ----------\n count\n The numerical value to reduce to a unit value in the current\n series.\n limit\n The maximum possible value in a given unit that's acceptable.\n For example if this is value is set to 100 then the returned\n count is guaranteed to be the first unit value less than 100.\n\n "
for unit in units:
if (count < limit):
return (count, unit)
count /= power
return (count, fallback)
return series_wrapper | Define a callable to format units in a series.
A series is a collection of units of values increasing linearly from an
initial unit. For example there're 1024 bytes in 1 KB, 1024 KB in 1 MB,
1024 MB in 1 GB. In this case every time we multiply a number by 1024 we
move to the next unit in the series.
Parameters
----------
power
The power by which numbers in the series will increase.
units
The units in the power series from smallest to largest values.
fallback
The unit value to return when a given input is too large to
fit into any of the specified units. | bin/lib/python/hurry.py | series | MoHKale/.dotfiles | 9 | python | def series(power: float, units: Tuple[str], fallback: Optional[str]=None):
"Define a callable to format units in a series.\n\n A series is a collection of units of values increasing linearly from an\n initial unit. For example there're 1024 bytes in 1 KB, 1024 KB in 1 MB,\n 1024 MB in 1 GB. In this case every time we multiply a number by 1024 we\n move to the next unit in the series.\n\n Parameters\n ----------\n power\n The power by which numbers in the series will increase.\n units\n The units in the power series from smallest to largest values.\n fallback\n The unit value to return when a given input is too large to\n fit into any of the specified units.\n\n "
def series_wrapper(count: float, limit: float=power) -> Tuple[(float, str)]:
"Return the value of count in the current series.\n\n Parameters\n ----------\n count\n The numerical value to reduce to a unit value in the current\n series.\n limit\n The maximum possible value in a given unit that's acceptable.\n For example if this is value is set to 100 then the returned\n count is guaranteed to be the first unit value less than 100.\n\n "
for unit in units:
if (count < limit):
return (count, unit)
count /= power
return (count, fallback)
return series_wrapper | def series(power: float, units: Tuple[str], fallback: Optional[str]=None):
"Define a callable to format units in a series.\n\n A series is a collection of units of values increasing linearly from an\n initial unit. For example there're 1024 bytes in 1 KB, 1024 KB in 1 MB,\n 1024 MB in 1 GB. In this case every time we multiply a number by 1024 we\n move to the next unit in the series.\n\n Parameters\n ----------\n power\n The power by which numbers in the series will increase.\n units\n The units in the power series from smallest to largest values.\n fallback\n The unit value to return when a given input is too large to\n fit into any of the specified units.\n\n "
def series_wrapper(count: float, limit: float=power) -> Tuple[(float, str)]:
"Return the value of count in the current series.\n\n Parameters\n ----------\n count\n The numerical value to reduce to a unit value in the current\n series.\n limit\n The maximum possible value in a given unit that's acceptable.\n For example if this is value is set to 100 then the returned\n count is guaranteed to be the first unit value less than 100.\n\n "
for unit in units:
if (count < limit):
return (count, unit)
count /= power
return (count, fallback)
return series_wrapper<|docstring|>Define a callable to format units in a series.
A series is a collection of units of values increasing linearly from an
initial unit. For example there're 1024 bytes in 1 KB, 1024 KB in 1 MB,
1024 MB in 1 GB. In this case every time we multiply a number by 1024 we
move to the next unit in the series.
Parameters
----------
power
The power by which numbers in the series will increase.
units
The units in the power series from smallest to largest values.
fallback
The unit value to return when a given input is too large to
fit into any of the specified units.<|endoftext|> |
4a92bd8495836270eaf283e6f154ee96cbccd7bda02928daa3e4e1cc5293f802 | def series_wrapper(count: float, limit: float=power) -> Tuple[(float, str)]:
"Return the value of count in the current series.\n\n Parameters\n ----------\n count\n The numerical value to reduce to a unit value in the current\n series.\n limit\n The maximum possible value in a given unit that's acceptable.\n For example if this is value is set to 100 then the returned\n count is guaranteed to be the first unit value less than 100.\n\n "
for unit in units:
if (count < limit):
return (count, unit)
count /= power
return (count, fallback) | Return the value of count in the current series.
Parameters
----------
count
The numerical value to reduce to a unit value in the current
series.
limit
The maximum possible value in a given unit that's acceptable.
For example if this is value is set to 100 then the returned
count is guaranteed to be the first unit value less than 100. | bin/lib/python/hurry.py | series_wrapper | MoHKale/.dotfiles | 9 | python | def series_wrapper(count: float, limit: float=power) -> Tuple[(float, str)]:
"Return the value of count in the current series.\n\n Parameters\n ----------\n count\n The numerical value to reduce to a unit value in the current\n series.\n limit\n The maximum possible value in a given unit that's acceptable.\n For example if this is value is set to 100 then the returned\n count is guaranteed to be the first unit value less than 100.\n\n "
for unit in units:
if (count < limit):
return (count, unit)
count /= power
return (count, fallback) | def series_wrapper(count: float, limit: float=power) -> Tuple[(float, str)]:
"Return the value of count in the current series.\n\n Parameters\n ----------\n count\n The numerical value to reduce to a unit value in the current\n series.\n limit\n The maximum possible value in a given unit that's acceptable.\n For example if this is value is set to 100 then the returned\n count is guaranteed to be the first unit value less than 100.\n\n "
for unit in units:
if (count < limit):
return (count, unit)
count /= power
return (count, fallback)<|docstring|>Return the value of count in the current series.
Parameters
----------
count
The numerical value to reduce to a unit value in the current
series.
limit
The maximum possible value in a given unit that's acceptable.
For example if this is value is set to 100 then the returned
count is guaranteed to be the first unit value less than 100.<|endoftext|> |
4b669446e5648852a79514c09a09ff44c87b616511c2fc48b40a43fa52fcd284 | def forward(self, hidden, encoder_outputs):
'\n hidden : Previous hidden state of the Decoder (Num. Layers * Num. Directions x Batch Size x Hidden Size)\n encoder_outputs: Outputs from Encoder (Sequence Length x Batch Size x Hidden Size)\n\n return: Attention energies in shape (Batch Size x Sequence Length)\n '
max_len = encoder_outputs.size(0)
batch_size = encoder_outputs.size(1)
H = hidden.repeat(max_len, 1, 1).transpose(0, 1)
attn_energies = self.score(H, encoder_outputs.transpose(0, 1))
return F.softmax(attn_energies, dim=1).unsqueeze(1) | hidden : Previous hidden state of the Decoder (Num. Layers * Num. Directions x Batch Size x Hidden Size)
encoder_outputs: Outputs from Encoder (Sequence Length x Batch Size x Hidden Size)
return: Attention energies in shape (Batch Size x Sequence Length) | attention.py | forward | fionn-mac/seq2seq-PyTorch | 1 | python | def forward(self, hidden, encoder_outputs):
'\n hidden : Previous hidden state of the Decoder (Num. Layers * Num. Directions x Batch Size x Hidden Size)\n encoder_outputs: Outputs from Encoder (Sequence Length x Batch Size x Hidden Size)\n\n return: Attention energies in shape (Batch Size x Sequence Length)\n '
max_len = encoder_outputs.size(0)
batch_size = encoder_outputs.size(1)
H = hidden.repeat(max_len, 1, 1).transpose(0, 1)
attn_energies = self.score(H, encoder_outputs.transpose(0, 1))
return F.softmax(attn_energies, dim=1).unsqueeze(1) | def forward(self, hidden, encoder_outputs):
'\n hidden : Previous hidden state of the Decoder (Num. Layers * Num. Directions x Batch Size x Hidden Size)\n encoder_outputs: Outputs from Encoder (Sequence Length x Batch Size x Hidden Size)\n\n return: Attention energies in shape (Batch Size x Sequence Length)\n '
max_len = encoder_outputs.size(0)
batch_size = encoder_outputs.size(1)
H = hidden.repeat(max_len, 1, 1).transpose(0, 1)
attn_energies = self.score(H, encoder_outputs.transpose(0, 1))
return F.softmax(attn_energies, dim=1).unsqueeze(1)<|docstring|>hidden : Previous hidden state of the Decoder (Num. Layers * Num. Directions x Batch Size x Hidden Size)
encoder_outputs: Outputs from Encoder (Sequence Length x Batch Size x Hidden Size)
return: Attention energies in shape (Batch Size x Sequence Length)<|endoftext|> |
4cb00dbb1e3b0e2c35b46665a2605a03e1037847c09be22616b13bcc4ce2e516 | def loss_func(y_true, y_pred):
'Content loss based on VGG19'
c_loss = content_loss_22(y_true, y_pred)
l1 = tf.keras.losses.mean_absolute_error(y_true, y_pred)
l2 = tf.keras.losses.mean_squared_error(y_true, y_pred)
total_loss = (((loss_weights[0] * c_loss) + (loss_weights[1] * l1)) + (loss_weights[2] * l2))
return total_loss | Content loss based on VGG19 | DFCAN_SR.py | loss_func | m-bizhani/Digital-rock-image-processing | 0 | python | def loss_func(y_true, y_pred):
c_loss = content_loss_22(y_true, y_pred)
l1 = tf.keras.losses.mean_absolute_error(y_true, y_pred)
l2 = tf.keras.losses.mean_squared_error(y_true, y_pred)
total_loss = (((loss_weights[0] * c_loss) + (loss_weights[1] * l1)) + (loss_weights[2] * l2))
return total_loss | def loss_func(y_true, y_pred):
c_loss = content_loss_22(y_true, y_pred)
l1 = tf.keras.losses.mean_absolute_error(y_true, y_pred)
l2 = tf.keras.losses.mean_squared_error(y_true, y_pred)
total_loss = (((loss_weights[0] * c_loss) + (loss_weights[1] * l1)) + (loss_weights[2] * l2))
return total_loss<|docstring|>Content loss based on VGG19<|endoftext|> |
8b60aa3dd3a19ab4c9973e9c5f23cb03cfb45c9a0ab1de4b923cb4608325c8b8 | def make_video(images, outvid=None, fps=5, size=None, is_color=True, format='XVID'):
'\n Create a video from a list of images.\n\n @param outvid output video\n @param images list of images to use in the video\n @param fps frame per second\n @param size size of each frame\n @param is_color color\n @param format see http://www.fourcc.org/codecs.php\n @return see http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html\n\n The function relies on http://opencv-python-tutroals.readthedocs.org/en/latest/.\n By default, the video will have the size of the first image.\n It will resize every image to this size before adding them to the video.\n '
from cv2 import VideoWriter, VideoWriter_fourcc, imread, resize
fourcc = VideoWriter_fourcc(*format)
vid = None
for image in images:
if (not os.path.exists(image)):
raise FileNotFoundError(image)
img = cv2.imread(image)
if (vid is None):
if (size is None):
size = (img.shape[1], img.shape[0])
vid = VideoWriter(outvid, fourcc, float(fps), size, is_color)
if ((size[0] != img.shape[1]) and (size[1] != img.shape[0])):
img = resize(img, size)
vid.write(img)
vid.release()
return vid | Create a video from a list of images.
@param outvid output video
@param images list of images to use in the video
@param fps frame per second
@param size size of each frame
@param is_color color
@param format see http://www.fourcc.org/codecs.php
@return see http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
The function relies on http://opencv-python-tutroals.readthedocs.org/en/latest/.
By default, the video will have the size of the first image.
It will resize every image to this size before adding them to the video. | PCA_method/Result_PCA/make_video.py | make_video | YingnanMa/Background_Subtraction_with_a_Freely_Moving_Camera | 0 | python | def make_video(images, outvid=None, fps=5, size=None, is_color=True, format='XVID'):
'\n Create a video from a list of images.\n\n @param outvid output video\n @param images list of images to use in the video\n @param fps frame per second\n @param size size of each frame\n @param is_color color\n @param format see http://www.fourcc.org/codecs.php\n @return see http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html\n\n The function relies on http://opencv-python-tutroals.readthedocs.org/en/latest/.\n By default, the video will have the size of the first image.\n It will resize every image to this size before adding them to the video.\n '
from cv2 import VideoWriter, VideoWriter_fourcc, imread, resize
fourcc = VideoWriter_fourcc(*format)
vid = None
for image in images:
if (not os.path.exists(image)):
raise FileNotFoundError(image)
img = cv2.imread(image)
if (vid is None):
if (size is None):
size = (img.shape[1], img.shape[0])
vid = VideoWriter(outvid, fourcc, float(fps), size, is_color)
if ((size[0] != img.shape[1]) and (size[1] != img.shape[0])):
img = resize(img, size)
vid.write(img)
vid.release()
return vid | def make_video(images, outvid=None, fps=5, size=None, is_color=True, format='XVID'):
'\n Create a video from a list of images.\n\n @param outvid output video\n @param images list of images to use in the video\n @param fps frame per second\n @param size size of each frame\n @param is_color color\n @param format see http://www.fourcc.org/codecs.php\n @return see http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html\n\n The function relies on http://opencv-python-tutroals.readthedocs.org/en/latest/.\n By default, the video will have the size of the first image.\n It will resize every image to this size before adding them to the video.\n '
from cv2 import VideoWriter, VideoWriter_fourcc, imread, resize
fourcc = VideoWriter_fourcc(*format)
vid = None
for image in images:
if (not os.path.exists(image)):
raise FileNotFoundError(image)
img = cv2.imread(image)
if (vid is None):
if (size is None):
size = (img.shape[1], img.shape[0])
vid = VideoWriter(outvid, fourcc, float(fps), size, is_color)
if ((size[0] != img.shape[1]) and (size[1] != img.shape[0])):
img = resize(img, size)
vid.write(img)
vid.release()
return vid<|docstring|>Create a video from a list of images.
@param outvid output video
@param images list of images to use in the video
@param fps frame per second
@param size size of each frame
@param is_color color
@param format see http://www.fourcc.org/codecs.php
@return see http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
The function relies on http://opencv-python-tutroals.readthedocs.org/en/latest/.
By default, the video will have the size of the first image.
It will resize every image to this size before adding them to the video.<|endoftext|> |
7b2792e9669dc7309532e11d0a6a61d29b9688307e2afbe139b678042f1fd49e | @commands.group(autohelp=True, aliases=['userlog'])
@commands.guild_only()
@checks.admin()
async def userlogset(self, ctx: commands.Context):
'Various User Log settings.' | Various User Log settings. | userlog/userlog.py | userlogset | salazar-brodart/enclave-cog | 0 | python | @commands.group(autohelp=True, aliases=['userlog'])
@commands.guild_only()
@checks.admin()
async def userlogset(self, ctx: commands.Context):
| @commands.group(autohelp=True, aliases=['userlog'])
@commands.guild_only()
@checks.admin()
async def userlogset(self, ctx: commands.Context):
<|docstring|>Various User Log settings.<|endoftext|> |
1f6f4b4924cb85751529a70a240bef486c313b46bd6b7c6da1e4334805385172 | @userlogset.command(name='channel')
async def user_channel_log(self, ctx: commands.Context, channel: typing.Optional[discord.TextChannel]):
'Set the channel for logs.\n\n If the channel is not provided, logging will be disabled.'
if channel:
(await self.config.guild(ctx.guild).channel.set(channel.id))
else:
(await self.config.guild(ctx.guild).channel.clear())
(await ctx.tick()) | Set the channel for logs.
If the channel is not provided, logging will be disabled. | userlog/userlog.py | user_channel_log | salazar-brodart/enclave-cog | 0 | python | @userlogset.command(name='channel')
async def user_channel_log(self, ctx: commands.Context, channel: typing.Optional[discord.TextChannel]):
'Set the channel for logs.\n\n If the channel is not provided, logging will be disabled.'
if channel:
(await self.config.guild(ctx.guild).channel.set(channel.id))
else:
(await self.config.guild(ctx.guild).channel.clear())
(await ctx.tick()) | @userlogset.command(name='channel')
async def user_channel_log(self, ctx: commands.Context, channel: typing.Optional[discord.TextChannel]):
'Set the channel for logs.\n\n If the channel is not provided, logging will be disabled.'
if channel:
(await self.config.guild(ctx.guild).channel.set(channel.id))
else:
(await self.config.guild(ctx.guild).channel.clear())
(await ctx.tick())<|docstring|>Set the channel for logs.
If the channel is not provided, logging will be disabled.<|endoftext|> |
905227055cbb32267608c906ea19dcc8ffa7d4e7959fa58d8c426b09523a46ae | @userlogset.command(name='join')
async def user_join_log(self, ctx: commands.Context, on_off: typing.Optional[bool]):
'Toggle logging when users join the current server.\n\n If `on_off` is not provided, the state will be flipped.'
target_state = (on_off or (not (await self.config.guild(ctx.guild).join())))
(await self.config.guild(ctx.guild).join.set(target_state))
if target_state:
(await ctx.send('Logging users joining is now enabled.'))
else:
(await ctx.send('Logging users joining is now disabled.')) | Toggle logging when users join the current server.
If `on_off` is not provided, the state will be flipped. | userlog/userlog.py | user_join_log | salazar-brodart/enclave-cog | 0 | python | @userlogset.command(name='join')
async def user_join_log(self, ctx: commands.Context, on_off: typing.Optional[bool]):
'Toggle logging when users join the current server.\n\n If `on_off` is not provided, the state will be flipped.'
target_state = (on_off or (not (await self.config.guild(ctx.guild).join())))
(await self.config.guild(ctx.guild).join.set(target_state))
if target_state:
(await ctx.send('Logging users joining is now enabled.'))
else:
(await ctx.send('Logging users joining is now disabled.')) | @userlogset.command(name='join')
async def user_join_log(self, ctx: commands.Context, on_off: typing.Optional[bool]):
'Toggle logging when users join the current server.\n\n If `on_off` is not provided, the state will be flipped.'
target_state = (on_off or (not (await self.config.guild(ctx.guild).join())))
(await self.config.guild(ctx.guild).join.set(target_state))
if target_state:
(await ctx.send('Logging users joining is now enabled.'))
else:
(await ctx.send('Logging users joining is now disabled.'))<|docstring|>Toggle logging when users join the current server.
If `on_off` is not provided, the state will be flipped.<|endoftext|> |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.