body_hash
stringlengths
64
64
body
stringlengths
23
109k
docstring
stringlengths
1
57k
path
stringlengths
4
198
name
stringlengths
1
115
repository_name
stringlengths
7
111
repository_stars
float64
0
191k
lang
stringclasses
1 value
body_without_docstring
stringlengths
14
108k
unified
stringlengths
45
133k
b2a71ea80fb5dcb3a9d4be4dfff42c19c21ad98acdfcfa84f1c3aa137000c99a
@userlogset.command(name='leave') async def user_leave_log(self, ctx: commands.Context, on_off: typing.Optional[bool]): 'Toggle logging when users leave the current server.\n\n If `on_off` is not provided, the state will be flipped.' target_state = (on_off or (not (await self.config.guild(ctx.guild).leave()))) (await self.config.guild(ctx.guild).leave.set(target_state)) if target_state: (await ctx.send('Logging users leaving is now enabled.')) else: (await ctx.send('Logging users leaving is now disabled.'))
Toggle logging when users leave the current server. If `on_off` is not provided, the state will be flipped.
userlog/userlog.py
user_leave_log
salazar-brodart/enclave-cog
0
python
@userlogset.command(name='leave') async def user_leave_log(self, ctx: commands.Context, on_off: typing.Optional[bool]): 'Toggle logging when users leave the current server.\n\n If `on_off` is not provided, the state will be flipped.' target_state = (on_off or (not (await self.config.guild(ctx.guild).leave()))) (await self.config.guild(ctx.guild).leave.set(target_state)) if target_state: (await ctx.send('Logging users leaving is now enabled.')) else: (await ctx.send('Logging users leaving is now disabled.'))
@userlogset.command(name='leave') async def user_leave_log(self, ctx: commands.Context, on_off: typing.Optional[bool]): 'Toggle logging when users leave the current server.\n\n If `on_off` is not provided, the state will be flipped.' target_state = (on_off or (not (await self.config.guild(ctx.guild).leave()))) (await self.config.guild(ctx.guild).leave.set(target_state)) if target_state: (await ctx.send('Logging users leaving is now enabled.')) else: (await ctx.send('Logging users leaving is now disabled.'))<|docstring|>Toggle logging when users leave the current server. If `on_off` is not provided, the state will be flipped.<|endoftext|>
03d5f295144ac5445d09674efdc5d1f82430d2b766f7f752aae1459cd0d3eab2
@userlogset.command(name='settings') async def user_settings(self, ctx: commands.Context): 'See current settings.' data = (await self.config.guild(ctx.guild).all()) channel = ctx.guild.get_channel((await self.config.guild(ctx.guild).channel())) channel = ('None' if (not channel) else channel.mention) embed = discord.Embed(colour=(await ctx.embed_colour()), timestamp=datetime.datetime.now()) embed.set_author(name=ctx.guild.name, icon_url=ctx.guild.icon_url) embed.title = '**__User Log settings:__**' embed.set_footer(text='*required to function properly') embed.add_field(name='Channel*:', value=channel) embed.add_field(name='Join:', value=str(data['join'])) embed.add_field(name='Leave:', value=str(data['leave'])) (await ctx.send(embed=embed))
See current settings.
userlog/userlog.py
user_settings
salazar-brodart/enclave-cog
0
python
@userlogset.command(name='settings') async def user_settings(self, ctx: commands.Context): data = (await self.config.guild(ctx.guild).all()) channel = ctx.guild.get_channel((await self.config.guild(ctx.guild).channel())) channel = ('None' if (not channel) else channel.mention) embed = discord.Embed(colour=(await ctx.embed_colour()), timestamp=datetime.datetime.now()) embed.set_author(name=ctx.guild.name, icon_url=ctx.guild.icon_url) embed.title = '**__User Log settings:__**' embed.set_footer(text='*required to function properly') embed.add_field(name='Channel*:', value=channel) embed.add_field(name='Join:', value=str(data['join'])) embed.add_field(name='Leave:', value=str(data['leave'])) (await ctx.send(embed=embed))
@userlogset.command(name='settings') async def user_settings(self, ctx: commands.Context): data = (await self.config.guild(ctx.guild).all()) channel = ctx.guild.get_channel((await self.config.guild(ctx.guild).channel())) channel = ('None' if (not channel) else channel.mention) embed = discord.Embed(colour=(await ctx.embed_colour()), timestamp=datetime.datetime.now()) embed.set_author(name=ctx.guild.name, icon_url=ctx.guild.icon_url) embed.title = '**__User Log settings:__**' embed.set_footer(text='*required to function properly') embed.add_field(name='Channel*:', value=channel) embed.add_field(name='Join:', value=str(data['join'])) embed.add_field(name='Leave:', value=str(data['leave'])) (await ctx.send(embed=embed))<|docstring|>See current settings.<|endoftext|>
b46e04333c185697ae9c73fc730ea95897c4b129ac5616876fc2066a8beba52c
def __init__(self, name='User', *args, **kwargs): '\n start the instance of dataView main window when it is called \n ' tk.Tk.__init__(self, *args, **kwargs) self.user = name self.resizable(0, 0) self.title(setup.app_name) self.iconbitmap(setup.icon) self.check = False self.protocol('WM_DELETE_WINDOW', self.quit) self.container = ttk.Frame() self.container.grid(column=0, row=0, sticky='NW') self.container.grid_rowconfigure(0, weight=1) self.container.grid_columnconfigure(0, weight=1) self.frames = {} menubar = tk.Menu(self.container) filemenu = tk.Menu(menubar, tearoff=0) filemenu.add_command(label='Choose Data Source', command=(lambda : selectFile('open', self))) filemenu.add_command(label='Merge database', command=(lambda : self.openUpload())) filemenu.add_command(label='Sign out', command=(lambda : showinfo('Unavailable', 'Function is not available, please come back for it later'))) filemenu.add_separator() filemenu.add_command(label='Exit', command=self.quit) DESmenu = tk.Menu(menubar, tearoff=0) DESmenu.add_command(label='Gender', command=(lambda : self.show_frame(genderDES))) DESmenu.add_separator() DESmenu.add_command(label='Feature', command=(lambda : self.show_frame(featureDES))) DESmenu.add_separator() DESmenu.add_command(label='Location', command=(lambda : self.show_frame(locationDES))) menubar.add_cascade(label='File', menu=filemenu) menubar.add_cascade(label='Data view', menu=DESmenu) tk.Tk.config(self, menu=menubar) self.chatSession = Session(self.user) self.loadDES() self.userControl = UserControl() self.dataHandler = DataHandler() self.lastModified = self.dataHandler.checkRecord()
start the instance of dataView main window when it is called
view/dataView.py
__init__
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def __init__(self, name='User', *args, **kwargs): '\n \n ' tk.Tk.__init__(self, *args, **kwargs) self.user = name self.resizable(0, 0) self.title(setup.app_name) self.iconbitmap(setup.icon) self.check = False self.protocol('WM_DELETE_WINDOW', self.quit) self.container = ttk.Frame() self.container.grid(column=0, row=0, sticky='NW') self.container.grid_rowconfigure(0, weight=1) self.container.grid_columnconfigure(0, weight=1) self.frames = {} menubar = tk.Menu(self.container) filemenu = tk.Menu(menubar, tearoff=0) filemenu.add_command(label='Choose Data Source', command=(lambda : selectFile('open', self))) filemenu.add_command(label='Merge database', command=(lambda : self.openUpload())) filemenu.add_command(label='Sign out', command=(lambda : showinfo('Unavailable', 'Function is not available, please come back for it later'))) filemenu.add_separator() filemenu.add_command(label='Exit', command=self.quit) DESmenu = tk.Menu(menubar, tearoff=0) DESmenu.add_command(label='Gender', command=(lambda : self.show_frame(genderDES))) DESmenu.add_separator() DESmenu.add_command(label='Feature', command=(lambda : self.show_frame(featureDES))) DESmenu.add_separator() DESmenu.add_command(label='Location', command=(lambda : self.show_frame(locationDES))) menubar.add_cascade(label='File', menu=filemenu) menubar.add_cascade(label='Data view', menu=DESmenu) tk.Tk.config(self, menu=menubar) self.chatSession = Session(self.user) self.loadDES() self.userControl = UserControl() self.dataHandler = DataHandler() self.lastModified = self.dataHandler.checkRecord()
def __init__(self, name='User', *args, **kwargs): '\n \n ' tk.Tk.__init__(self, *args, **kwargs) self.user = name self.resizable(0, 0) self.title(setup.app_name) self.iconbitmap(setup.icon) self.check = False self.protocol('WM_DELETE_WINDOW', self.quit) self.container = ttk.Frame() self.container.grid(column=0, row=0, sticky='NW') self.container.grid_rowconfigure(0, weight=1) self.container.grid_columnconfigure(0, weight=1) self.frames = {} menubar = tk.Menu(self.container) filemenu = tk.Menu(menubar, tearoff=0) filemenu.add_command(label='Choose Data Source', command=(lambda : selectFile('open', self))) filemenu.add_command(label='Merge database', command=(lambda : self.openUpload())) filemenu.add_command(label='Sign out', command=(lambda : showinfo('Unavailable', 'Function is not available, please come back for it later'))) filemenu.add_separator() filemenu.add_command(label='Exit', command=self.quit) DESmenu = tk.Menu(menubar, tearoff=0) DESmenu.add_command(label='Gender', command=(lambda : self.show_frame(genderDES))) DESmenu.add_separator() DESmenu.add_command(label='Feature', command=(lambda : self.show_frame(featureDES))) DESmenu.add_separator() DESmenu.add_command(label='Location', command=(lambda : self.show_frame(locationDES))) menubar.add_cascade(label='File', menu=filemenu) menubar.add_cascade(label='Data view', menu=DESmenu) tk.Tk.config(self, menu=menubar) self.chatSession = Session(self.user) self.loadDES() self.userControl = UserControl() self.dataHandler = DataHandler() self.lastModified = self.dataHandler.checkRecord()<|docstring|>start the instance of dataView main window when it is called<|endoftext|>
694779e0e433f3d853c0e6d646a168e71218564273cc583cbcaf29b1b7597e5b
def loadDES(self): '\n Load the data explorer screen with the given data source else load the default data source\n ' for DES in (genderDES, locationDES, featureDES): frame = DES(self.container, self) frame.thread.start() self.frames[DES] = frame frame.grid(row=0, column=0, sticky='nsew') self.updateDES = False self.show_frame(featureDES)
Load the data explorer screen with the given data source else load the default data source
view/dataView.py
loadDES
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def loadDES(self): '\n \n ' for DES in (genderDES, locationDES, featureDES): frame = DES(self.container, self) frame.thread.start() self.frames[DES] = frame frame.grid(row=0, column=0, sticky='nsew') self.updateDES = False self.show_frame(featureDES)
def loadDES(self): '\n \n ' for DES in (genderDES, locationDES, featureDES): frame = DES(self.container, self) frame.thread.start() self.frames[DES] = frame frame.grid(row=0, column=0, sticky='nsew') self.updateDES = False self.show_frame(featureDES)<|docstring|>Load the data explorer screen with the given data source else load the default data source<|endoftext|>
5bb98767a96e45e60beee775235d2cd153f748657cc5ebba2da3ea7ac9e01108
def refresh(self): 'redraw the graph to retrieve the latest data or render the upload data\n ' for DES in (genderDES, locationDES, featureDES): frame = self.frames[DES] frame.draw_graph(frame.DES)
redraw the graph to retrieve the latest data or render the upload data
view/dataView.py
refresh
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def refresh(self): '\n ' for DES in (genderDES, locationDES, featureDES): frame = self.frames[DES] frame.draw_graph(frame.DES)
def refresh(self): '\n ' for DES in (genderDES, locationDES, featureDES): frame = self.frames[DES] frame.draw_graph(frame.DES)<|docstring|>redraw the graph to retrieve the latest data or render the upload data<|endoftext|>
889bd72587d8bd0cd13ebf7418bd2ad38f63800f8ac664dcb59c4e99b0924d86
def show_frame(self, newFrame): 'moving between data explorer screen \n Args:\n newFrame (object): the screen to be presented \n ' frame = self.frames[newFrame] self.DES = frame.frametype self.chatSession.switch_DES(self.DES) frame.tkraise()
moving between data explorer screen Args: newFrame (object): the screen to be presented
view/dataView.py
show_frame
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def show_frame(self, newFrame): 'moving between data explorer screen \n Args:\n newFrame (object): the screen to be presented \n ' frame = self.frames[newFrame] self.DES = frame.frametype self.chatSession.switch_DES(self.DES) frame.tkraise()
def show_frame(self, newFrame): 'moving between data explorer screen \n Args:\n newFrame (object): the screen to be presented \n ' frame = self.frames[newFrame] self.DES = frame.frametype self.chatSession.switch_DES(self.DES) frame.tkraise()<|docstring|>moving between data explorer screen Args: newFrame (object): the screen to be presented<|endoftext|>
1d0b4cd88bbdab67ecd1869f81180414e002f13b69af6bb2a8a9fcd41a06a5d4
def uploadWindow(self): '\n start a Top level window (pop up window) which attached to the Tk(main window)\n ' self.check = True self.upload = tk.Toplevel() self.upload.title(setup.app_name) self.upload.iconbitmap(setup.icon) options = {'padx': 10, 'pady': 5} label = ttk.Label(self.upload, text='Upload').grid(column=0, row=0, **options, columnspan=5) self.upload.geometry('420x200+1000+200') self.upload.protocol('WM_DELETE_WINDOW', self.closeUpload) target = tk.StringVar() label = ttk.Label(self.upload, text='Upload File').grid(column=0, row=2, **options) text = tk.Entry() self.target_entry = tk.Entry(self.upload, textvariable=target) self.target_entry.grid(column=1, row=2, **options, columnspan=3) browse_file = ttk.Button(self.upload, text='Select', command=(lambda : selectFile('upload', self.target_entry))).grid(column=4, row=2, **setup.pad10) merge_btn = ttk.Button(self.upload, text='Upload', command=(lambda : mergeFiles(self.target_entry.get(), self))).grid(column=1, row=4, **setup.pad10) quit_btn = ttk.Button(self.upload, text='Quit', command=(lambda : self.closeUpload())).grid(column=2, row=4, **setup.pad10)
start a Top level window (pop up window) which attached to the Tk(main window)
view/dataView.py
uploadWindow
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def uploadWindow(self): '\n \n ' self.check = True self.upload = tk.Toplevel() self.upload.title(setup.app_name) self.upload.iconbitmap(setup.icon) options = {'padx': 10, 'pady': 5} label = ttk.Label(self.upload, text='Upload').grid(column=0, row=0, **options, columnspan=5) self.upload.geometry('420x200+1000+200') self.upload.protocol('WM_DELETE_WINDOW', self.closeUpload) target = tk.StringVar() label = ttk.Label(self.upload, text='Upload File').grid(column=0, row=2, **options) text = tk.Entry() self.target_entry = tk.Entry(self.upload, textvariable=target) self.target_entry.grid(column=1, row=2, **options, columnspan=3) browse_file = ttk.Button(self.upload, text='Select', command=(lambda : selectFile('upload', self.target_entry))).grid(column=4, row=2, **setup.pad10) merge_btn = ttk.Button(self.upload, text='Upload', command=(lambda : mergeFiles(self.target_entry.get(), self))).grid(column=1, row=4, **setup.pad10) quit_btn = ttk.Button(self.upload, text='Quit', command=(lambda : self.closeUpload())).grid(column=2, row=4, **setup.pad10)
def uploadWindow(self): '\n \n ' self.check = True self.upload = tk.Toplevel() self.upload.title(setup.app_name) self.upload.iconbitmap(setup.icon) options = {'padx': 10, 'pady': 5} label = ttk.Label(self.upload, text='Upload').grid(column=0, row=0, **options, columnspan=5) self.upload.geometry('420x200+1000+200') self.upload.protocol('WM_DELETE_WINDOW', self.closeUpload) target = tk.StringVar() label = ttk.Label(self.upload, text='Upload File').grid(column=0, row=2, **options) text = tk.Entry() self.target_entry = tk.Entry(self.upload, textvariable=target) self.target_entry.grid(column=1, row=2, **options, columnspan=3) browse_file = ttk.Button(self.upload, text='Select', command=(lambda : selectFile('upload', self.target_entry))).grid(column=4, row=2, **setup.pad10) merge_btn = ttk.Button(self.upload, text='Upload', command=(lambda : mergeFiles(self.target_entry.get(), self))).grid(column=1, row=4, **setup.pad10) quit_btn = ttk.Button(self.upload, text='Quit', command=(lambda : self.closeUpload())).grid(column=2, row=4, **setup.pad10)<|docstring|>start a Top level window (pop up window) which attached to the Tk(main window)<|endoftext|>
239ccec46d206177fc1173589d28535cd06daa7ad2ccd28f1b11c2b2918f616c
def openUpload(self): 'check if an instance of upload event is exist, then open the upload window\n ' if (self.check == False): self.uploadWindow()
check if an instance of upload event is exist, then open the upload window
view/dataView.py
openUpload
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def openUpload(self): '\n ' if (self.check == False): self.uploadWindow()
def openUpload(self): '\n ' if (self.check == False): self.uploadWindow()<|docstring|>check if an instance of upload event is exist, then open the upload window<|endoftext|>
722cd2405f33b0470d36557b505f6c9233604bbb662db741c47b9a0a6865db97
def closeUpload(self): 'close the upload window and ensure the check if turn off to open new window\n ' self.check = False self.upload.destroy()
close the upload window and ensure the check if turn off to open new window
view/dataView.py
closeUpload
johndao1005/SDV602-Milestone3-QuangThanhDao
1
python
def closeUpload(self): '\n ' self.check = False self.upload.destroy()
def closeUpload(self): '\n ' self.check = False self.upload.destroy()<|docstring|>close the upload window and ensure the check if turn off to open new window<|endoftext|>
bb5b64e9565f743c41d827daa5797a6493e0d96276b6431806e7aad108d31ee5
def setup_platform(hass, config, add_entities, discovery_info=None): 'Validate configuration, create devices and start monitoring thread.' bt_device_id = config.get('bt_device_id') beacons = config.get(CONF_BEACONS) devices = [] for (dev_name, properties) in beacons.items(): namespace = get_from_conf(properties, CONF_NAMESPACE, 20) instance = get_from_conf(properties, CONF_INSTANCE, 12) name = properties.get(CONF_NAME, dev_name) if ((instance is None) or (namespace is None)): _LOGGER.error('Skipping %s', dev_name) continue devices.append(EddystoneTemp(name, namespace, instance)) if devices: mon = Monitor(hass, devices, bt_device_id) def monitor_stop(_service_or_event): 'Stop the monitor thread.' _LOGGER.info('Stopping scanner for Eddystone beacons') mon.stop() def monitor_start(_service_or_event): 'Start the monitor thread.' _LOGGER.info('Starting scanner for Eddystone beacons') mon.start() add_entities(devices) mon.start() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, monitor_stop) hass.bus.listen_once(EVENT_HOMEASSISTANT_START, monitor_start) else: _LOGGER.warning('No devices were added')
Validate configuration, create devices and start monitoring thread.
homeassistant/components/eddystone_temperature/sensor.py
setup_platform
carlos-sarmiento/core
7
python
def setup_platform(hass, config, add_entities, discovery_info=None): bt_device_id = config.get('bt_device_id') beacons = config.get(CONF_BEACONS) devices = [] for (dev_name, properties) in beacons.items(): namespace = get_from_conf(properties, CONF_NAMESPACE, 20) instance = get_from_conf(properties, CONF_INSTANCE, 12) name = properties.get(CONF_NAME, dev_name) if ((instance is None) or (namespace is None)): _LOGGER.error('Skipping %s', dev_name) continue devices.append(EddystoneTemp(name, namespace, instance)) if devices: mon = Monitor(hass, devices, bt_device_id) def monitor_stop(_service_or_event): 'Stop the monitor thread.' _LOGGER.info('Stopping scanner for Eddystone beacons') mon.stop() def monitor_start(_service_or_event): 'Start the monitor thread.' _LOGGER.info('Starting scanner for Eddystone beacons') mon.start() add_entities(devices) mon.start() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, monitor_stop) hass.bus.listen_once(EVENT_HOMEASSISTANT_START, monitor_start) else: _LOGGER.warning('No devices were added')
def setup_platform(hass, config, add_entities, discovery_info=None): bt_device_id = config.get('bt_device_id') beacons = config.get(CONF_BEACONS) devices = [] for (dev_name, properties) in beacons.items(): namespace = get_from_conf(properties, CONF_NAMESPACE, 20) instance = get_from_conf(properties, CONF_INSTANCE, 12) name = properties.get(CONF_NAME, dev_name) if ((instance is None) or (namespace is None)): _LOGGER.error('Skipping %s', dev_name) continue devices.append(EddystoneTemp(name, namespace, instance)) if devices: mon = Monitor(hass, devices, bt_device_id) def monitor_stop(_service_or_event): 'Stop the monitor thread.' _LOGGER.info('Stopping scanner for Eddystone beacons') mon.stop() def monitor_start(_service_or_event): 'Start the monitor thread.' _LOGGER.info('Starting scanner for Eddystone beacons') mon.start() add_entities(devices) mon.start() hass.bus.listen_once(EVENT_HOMEASSISTANT_STOP, monitor_stop) hass.bus.listen_once(EVENT_HOMEASSISTANT_START, monitor_start) else: _LOGGER.warning('No devices were added')<|docstring|>Validate configuration, create devices and start monitoring thread.<|endoftext|>
7d5d9ad53365bcee0fde09b29860f5162b665701d791b026bf7e677adcff0156
def get_from_conf(config, config_key, length): 'Retrieve value from config and validate length.' string = config.get(config_key) if (len(string) != length): _LOGGER.error('Error in configuration parameter %s: Must be exactly %d bytes. Device will not be added', config_key, (length / 2)) return None return string
Retrieve value from config and validate length.
homeassistant/components/eddystone_temperature/sensor.py
get_from_conf
carlos-sarmiento/core
7
python
def get_from_conf(config, config_key, length): string = config.get(config_key) if (len(string) != length): _LOGGER.error('Error in configuration parameter %s: Must be exactly %d bytes. Device will not be added', config_key, (length / 2)) return None return string
def get_from_conf(config, config_key, length): string = config.get(config_key) if (len(string) != length): _LOGGER.error('Error in configuration parameter %s: Must be exactly %d bytes. Device will not be added', config_key, (length / 2)) return None return string<|docstring|>Retrieve value from config and validate length.<|endoftext|>
9d6151fd0d1c9625c867943c79f8e34cc5b4be85502a8ffd1ff2ace89dd04fe8
def __init__(self, name, namespace, instance): 'Initialize a sensor.' self._name = name self.namespace = namespace self.instance = instance self.bt_addr = None self.temperature = STATE_UNKNOWN
Initialize a sensor.
homeassistant/components/eddystone_temperature/sensor.py
__init__
carlos-sarmiento/core
7
python
def __init__(self, name, namespace, instance): self._name = name self.namespace = namespace self.instance = instance self.bt_addr = None self.temperature = STATE_UNKNOWN
def __init__(self, name, namespace, instance): self._name = name self.namespace = namespace self.instance = instance self.bt_addr = None self.temperature = STATE_UNKNOWN<|docstring|>Initialize a sensor.<|endoftext|>
c2acbec88b5ad13d0f458e2f3155e56fd2fabdb29665addbac450039553aa2e4
@property def name(self): 'Return the name of the sensor.' return self._name
Return the name of the sensor.
homeassistant/components/eddystone_temperature/sensor.py
name
carlos-sarmiento/core
7
python
@property def name(self): return self._name
@property def name(self): return self._name<|docstring|>Return the name of the sensor.<|endoftext|>
2332aa175059d2918f49427e214b876d8f44ca7e5ff2b4fd703bdce3ff585c16
@property def state(self): 'Return the state of the device.' return self.temperature
Return the state of the device.
homeassistant/components/eddystone_temperature/sensor.py
state
carlos-sarmiento/core
7
python
@property def state(self): return self.temperature
@property def state(self): return self.temperature<|docstring|>Return the state of the device.<|endoftext|>
6a1f8d39aa337235b71592b72b36a4861e76cf3dbec96ea5123b2885d4b9bcfb
@property def unit_of_measurement(self): 'Return the unit the value is expressed in.' return TEMP_CELSIUS
Return the unit the value is expressed in.
homeassistant/components/eddystone_temperature/sensor.py
unit_of_measurement
carlos-sarmiento/core
7
python
@property def unit_of_measurement(self): return TEMP_CELSIUS
@property def unit_of_measurement(self): return TEMP_CELSIUS<|docstring|>Return the unit the value is expressed in.<|endoftext|>
e000b475afe38a8230ddadcf9d07474574da9ed13136a395c60ad5b7fc8a111d
@property def should_poll(self): 'Return the polling state.' return False
Return the polling state.
homeassistant/components/eddystone_temperature/sensor.py
should_poll
carlos-sarmiento/core
7
python
@property def should_poll(self): return False
@property def should_poll(self): return False<|docstring|>Return the polling state.<|endoftext|>
58250094990d31f0d499d6a592a55ed336ba23d01d34f9264af778f2a4c6b619
def __init__(self, hass, devices, bt_device_id): 'Construct interface object.' self.hass = hass self.devices = devices self.bt_device_id = bt_device_id def callback(bt_addr, _, packet, additional_info): 'Handle new packets.' self.process_packet(additional_info['namespace'], additional_info['instance'], packet.temperature) device_filters = [EddystoneFilter(d.namespace, d.instance) for d in devices] self.scanner = BeaconScanner(callback, bt_device_id, device_filters, EddystoneTLMFrame) self.scanning = False
Construct interface object.
homeassistant/components/eddystone_temperature/sensor.py
__init__
carlos-sarmiento/core
7
python
def __init__(self, hass, devices, bt_device_id): self.hass = hass self.devices = devices self.bt_device_id = bt_device_id def callback(bt_addr, _, packet, additional_info): 'Handle new packets.' self.process_packet(additional_info['namespace'], additional_info['instance'], packet.temperature) device_filters = [EddystoneFilter(d.namespace, d.instance) for d in devices] self.scanner = BeaconScanner(callback, bt_device_id, device_filters, EddystoneTLMFrame) self.scanning = False
def __init__(self, hass, devices, bt_device_id): self.hass = hass self.devices = devices self.bt_device_id = bt_device_id def callback(bt_addr, _, packet, additional_info): 'Handle new packets.' self.process_packet(additional_info['namespace'], additional_info['instance'], packet.temperature) device_filters = [EddystoneFilter(d.namespace, d.instance) for d in devices] self.scanner = BeaconScanner(callback, bt_device_id, device_filters, EddystoneTLMFrame) self.scanning = False<|docstring|>Construct interface object.<|endoftext|>
db290430865c48974604eeeabbd046850d758e354548814e688e07c2642fcbf0
def start(self): 'Continuously scan for BLE advertisements.' if (not self.scanning): self.scanner.start() self.scanning = True else: _LOGGER.debug('start() called, but scanner is already running')
Continuously scan for BLE advertisements.
homeassistant/components/eddystone_temperature/sensor.py
start
carlos-sarmiento/core
7
python
def start(self): if (not self.scanning): self.scanner.start() self.scanning = True else: _LOGGER.debug('start() called, but scanner is already running')
def start(self): if (not self.scanning): self.scanner.start() self.scanning = True else: _LOGGER.debug('start() called, but scanner is already running')<|docstring|>Continuously scan for BLE advertisements.<|endoftext|>
d2c3e2d07bc3d65502ea285bdf07d3e8dde7072153d8b81fbcaa7b7cb481441f
def process_packet(self, namespace, instance, temperature): 'Assign temperature to device.' _LOGGER.debug('Received temperature for <%s,%s>: %d', namespace, instance, temperature) for dev in self.devices: if ((dev.namespace == namespace) and (dev.instance == instance)): if (dev.temperature != temperature): dev.temperature = temperature dev.schedule_update_ha_state()
Assign temperature to device.
homeassistant/components/eddystone_temperature/sensor.py
process_packet
carlos-sarmiento/core
7
python
def process_packet(self, namespace, instance, temperature): _LOGGER.debug('Received temperature for <%s,%s>: %d', namespace, instance, temperature) for dev in self.devices: if ((dev.namespace == namespace) and (dev.instance == instance)): if (dev.temperature != temperature): dev.temperature = temperature dev.schedule_update_ha_state()
def process_packet(self, namespace, instance, temperature): _LOGGER.debug('Received temperature for <%s,%s>: %d', namespace, instance, temperature) for dev in self.devices: if ((dev.namespace == namespace) and (dev.instance == instance)): if (dev.temperature != temperature): dev.temperature = temperature dev.schedule_update_ha_state()<|docstring|>Assign temperature to device.<|endoftext|>
3bdecc18621538af1f8b5515e65e1993a432f3a7bd7a85d85738e9ea6d8bb0a5
def stop(self): 'Signal runner to stop and join thread.' if self.scanning: _LOGGER.debug('Stopping...') self.scanner.stop() _LOGGER.debug('Stopped') self.scanning = False else: _LOGGER.debug('stop() called but scanner was not running')
Signal runner to stop and join thread.
homeassistant/components/eddystone_temperature/sensor.py
stop
carlos-sarmiento/core
7
python
def stop(self): if self.scanning: _LOGGER.debug('Stopping...') self.scanner.stop() _LOGGER.debug('Stopped') self.scanning = False else: _LOGGER.debug('stop() called but scanner was not running')
def stop(self): if self.scanning: _LOGGER.debug('Stopping...') self.scanner.stop() _LOGGER.debug('Stopped') self.scanning = False else: _LOGGER.debug('stop() called but scanner was not running')<|docstring|>Signal runner to stop and join thread.<|endoftext|>
c2a4bd0a60976825e993ec164f065c0ed128cfa7b5f3a9af6b510802d16ebb6d
def monitor_stop(_service_or_event): 'Stop the monitor thread.' _LOGGER.info('Stopping scanner for Eddystone beacons') mon.stop()
Stop the monitor thread.
homeassistant/components/eddystone_temperature/sensor.py
monitor_stop
carlos-sarmiento/core
7
python
def monitor_stop(_service_or_event): _LOGGER.info('Stopping scanner for Eddystone beacons') mon.stop()
def monitor_stop(_service_or_event): _LOGGER.info('Stopping scanner for Eddystone beacons') mon.stop()<|docstring|>Stop the monitor thread.<|endoftext|>
e374e97e8437fbf3f763b1a6abb241d4d4309ed51c786ff417a65edc3ef6cdca
def monitor_start(_service_or_event): 'Start the monitor thread.' _LOGGER.info('Starting scanner for Eddystone beacons') mon.start()
Start the monitor thread.
homeassistant/components/eddystone_temperature/sensor.py
monitor_start
carlos-sarmiento/core
7
python
def monitor_start(_service_or_event): _LOGGER.info('Starting scanner for Eddystone beacons') mon.start()
def monitor_start(_service_or_event): _LOGGER.info('Starting scanner for Eddystone beacons') mon.start()<|docstring|>Start the monitor thread.<|endoftext|>
d339d705e6ba46320b27ff39362fe4d8fcb85b43015358deb76d9e623c281bef
def callback(bt_addr, _, packet, additional_info): 'Handle new packets.' self.process_packet(additional_info['namespace'], additional_info['instance'], packet.temperature)
Handle new packets.
homeassistant/components/eddystone_temperature/sensor.py
callback
carlos-sarmiento/core
7
python
def callback(bt_addr, _, packet, additional_info): self.process_packet(additional_info['namespace'], additional_info['instance'], packet.temperature)
def callback(bt_addr, _, packet, additional_info): self.process_packet(additional_info['namespace'], additional_info['instance'], packet.temperature)<|docstring|>Handle new packets.<|endoftext|>
c6f8ab3e7b8afcead1f6569b6ad32dd8cc1ca0e40d8ffe4f43a17caa206ae13b
def apply_kNNO(Xs, Xt, ys=None, yt=None, scaling=True, k=10, contamination=0.1): ' Apply kNNO.\n k-distance is the distance of its k-th nearest neighbour in the dataset\n \n KNNO ranks all instances in a dataset by their k-distance, with higher distances signifying\n more anomalous instances\n Parameters\n ----------\n Xs : np.array of shape (n_samples, n_features), optional (default=None)\n The source instances.\n Xt : np.array of shape (n_samples, n_features), optional (default=None)\n The target instances.\n ys : np.array of shape (n_samples,), optional (default=None)\n The ground truth of the source instances.\n yt : np.array of shape (n_samples,), optional (default=None)\n The ground truth of the target instances.\n \n k : int (default=10)\n Number of nearest neighbors.\n\n contamination : float (default=0.1)\n The expected contamination in the data.\n\n Returns\n -------\n yt_scores : np.array of shape (n_samples,)\n Anomaly scores for the target instances.\n ' if (Xs is not None): if (ys is None): ys = np.zeros(Xs.shape[0]) (Xs, ys) = check_X_y(Xs, ys) if (yt is None): yt = np.zeros(Xt.shape[0]) (Xt, yt) = check_X_y(Xt, yt) if scaling: scaler = StandardScaler() Xt = scaler.fit_transform(Xt) tree = BallTree(Xt, leaf_size=16, metric='euclidean') (D, _) = tree.query(Xt, k=(k + 1)) outlier_scores = D[(:, (- 1))].flatten() gamma = (np.percentile(outlier_scores, int((100 * (1.0 - contamination)))) + 1e-10) yt_scores = _squashing_function(outlier_scores, gamma) return yt_scores
Apply kNNO. k-distance is the distance of its k-th nearest neighbour in the dataset KNNO ranks all instances in a dataset by their k-distance, with higher distances signifying more anomalous instances Parameters ---------- Xs : np.array of shape (n_samples, n_features), optional (default=None) The source instances. Xt : np.array of shape (n_samples, n_features), optional (default=None) The target instances. ys : np.array of shape (n_samples,), optional (default=None) The ground truth of the source instances. yt : np.array of shape (n_samples,), optional (default=None) The ground truth of the target instances. k : int (default=10) Number of nearest neighbors. contamination : float (default=0.1) The expected contamination in the data. Returns ------- yt_scores : np.array of shape (n_samples,) Anomaly scores for the target instances.
models/knno.py
apply_kNNO
weelingtan/LocIT
0
python
def apply_kNNO(Xs, Xt, ys=None, yt=None, scaling=True, k=10, contamination=0.1): ' Apply kNNO.\n k-distance is the distance of its k-th nearest neighbour in the dataset\n \n KNNO ranks all instances in a dataset by their k-distance, with higher distances signifying\n more anomalous instances\n Parameters\n ----------\n Xs : np.array of shape (n_samples, n_features), optional (default=None)\n The source instances.\n Xt : np.array of shape (n_samples, n_features), optional (default=None)\n The target instances.\n ys : np.array of shape (n_samples,), optional (default=None)\n The ground truth of the source instances.\n yt : np.array of shape (n_samples,), optional (default=None)\n The ground truth of the target instances.\n \n k : int (default=10)\n Number of nearest neighbors.\n\n contamination : float (default=0.1)\n The expected contamination in the data.\n\n Returns\n -------\n yt_scores : np.array of shape (n_samples,)\n Anomaly scores for the target instances.\n ' if (Xs is not None): if (ys is None): ys = np.zeros(Xs.shape[0]) (Xs, ys) = check_X_y(Xs, ys) if (yt is None): yt = np.zeros(Xt.shape[0]) (Xt, yt) = check_X_y(Xt, yt) if scaling: scaler = StandardScaler() Xt = scaler.fit_transform(Xt) tree = BallTree(Xt, leaf_size=16, metric='euclidean') (D, _) = tree.query(Xt, k=(k + 1)) outlier_scores = D[(:, (- 1))].flatten() gamma = (np.percentile(outlier_scores, int((100 * (1.0 - contamination)))) + 1e-10) yt_scores = _squashing_function(outlier_scores, gamma) return yt_scores
def apply_kNNO(Xs, Xt, ys=None, yt=None, scaling=True, k=10, contamination=0.1): ' Apply kNNO.\n k-distance is the distance of its k-th nearest neighbour in the dataset\n \n KNNO ranks all instances in a dataset by their k-distance, with higher distances signifying\n more anomalous instances\n Parameters\n ----------\n Xs : np.array of shape (n_samples, n_features), optional (default=None)\n The source instances.\n Xt : np.array of shape (n_samples, n_features), optional (default=None)\n The target instances.\n ys : np.array of shape (n_samples,), optional (default=None)\n The ground truth of the source instances.\n yt : np.array of shape (n_samples,), optional (default=None)\n The ground truth of the target instances.\n \n k : int (default=10)\n Number of nearest neighbors.\n\n contamination : float (default=0.1)\n The expected contamination in the data.\n\n Returns\n -------\n yt_scores : np.array of shape (n_samples,)\n Anomaly scores for the target instances.\n ' if (Xs is not None): if (ys is None): ys = np.zeros(Xs.shape[0]) (Xs, ys) = check_X_y(Xs, ys) if (yt is None): yt = np.zeros(Xt.shape[0]) (Xt, yt) = check_X_y(Xt, yt) if scaling: scaler = StandardScaler() Xt = scaler.fit_transform(Xt) tree = BallTree(Xt, leaf_size=16, metric='euclidean') (D, _) = tree.query(Xt, k=(k + 1)) outlier_scores = D[(:, (- 1))].flatten() gamma = (np.percentile(outlier_scores, int((100 * (1.0 - contamination)))) + 1e-10) yt_scores = _squashing_function(outlier_scores, gamma) return yt_scores<|docstring|>Apply kNNO. k-distance is the distance of its k-th nearest neighbour in the dataset KNNO ranks all instances in a dataset by their k-distance, with higher distances signifying more anomalous instances Parameters ---------- Xs : np.array of shape (n_samples, n_features), optional (default=None) The source instances. Xt : np.array of shape (n_samples, n_features), optional (default=None) The target instances. ys : np.array of shape (n_samples,), optional (default=None) The ground truth of the source instances. yt : np.array of shape (n_samples,), optional (default=None) The ground truth of the target instances. k : int (default=10) Number of nearest neighbors. contamination : float (default=0.1) The expected contamination in the data. Returns ------- yt_scores : np.array of shape (n_samples,) Anomaly scores for the target instances.<|endoftext|>
61eebc5276bd4ad8983a63a3052e7c6af86e4eff078dd52fee7b422aea933ca7
def _squashing_function(x, p): ' Compute the value of x under squashing function with parameter p. ' return (1.0 - np.exp((np.log(0.5) * np.power((x / p), 2))))
Compute the value of x under squashing function with parameter p.
models/knno.py
_squashing_function
weelingtan/LocIT
0
python
def _squashing_function(x, p): ' ' return (1.0 - np.exp((np.log(0.5) * np.power((x / p), 2))))
def _squashing_function(x, p): ' ' return (1.0 - np.exp((np.log(0.5) * np.power((x / p), 2))))<|docstring|>Compute the value of x under squashing function with parameter p.<|endoftext|>
9ae3ff01aa7e5fea1e449f329211975dad8fa53c7b6099ecc357ee78e55a267c
def _pos_embeding(self, img, patched_img, pos_embed): "Positiong embeding method.\n\n Resize the pos_embed, if the input image size doesn't match\n the training size.\n Args:\n img (torch.Tensor): The inference image tensor, the shape\n must be [B, C, H, W].\n patched_img (torch.Tensor): The patched image, it should be\n shape of [B, L1, C].\n pos_embed (torch.Tensor): The pos_embed weighs, it should be\n shape of [B, L2, c].\n Return:\n torch.Tensor: The pos encoded image feature.\n " assert ((patched_img.ndim == 3) and (pos_embed.ndim == 3)), 'the shapes of patched_img and pos_embed must be [B, L, C]' (x_len, pos_len) = (patched_img.shape[1], pos_embed.shape[1]) if (x_len != pos_len): if (pos_len == (((self.img_size[0] // self.patch_size) * (self.img_size[1] // self.patch_size)) + 1)): pos_h = (self.img_size[0] // self.patch_size) pos_w = (self.img_size[1] // self.patch_size) else: raise ValueError('Unexpected shape of pos_embed, got {}.'.format(pos_embed.shape)) pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:], (pos_h, pos_w), self.patch_size, self.interpolate_mode) return self.pos_drop((patched_img + pos_embed))
Positiong embeding method. Resize the pos_embed, if the input image size doesn't match the training size. Args: img (torch.Tensor): The inference image tensor, the shape must be [B, C, H, W]. patched_img (torch.Tensor): The patched image, it should be shape of [B, L1, C]. pos_embed (torch.Tensor): The pos_embed weighs, it should be shape of [B, L2, c]. Return: torch.Tensor: The pos encoded image feature.
semantic_segmentation/mmseg/models/backbones/vit.py
_pos_embeding
YangYangGirl/UniFormer
367
python
def _pos_embeding(self, img, patched_img, pos_embed): "Positiong embeding method.\n\n Resize the pos_embed, if the input image size doesn't match\n the training size.\n Args:\n img (torch.Tensor): The inference image tensor, the shape\n must be [B, C, H, W].\n patched_img (torch.Tensor): The patched image, it should be\n shape of [B, L1, C].\n pos_embed (torch.Tensor): The pos_embed weighs, it should be\n shape of [B, L2, c].\n Return:\n torch.Tensor: The pos encoded image feature.\n " assert ((patched_img.ndim == 3) and (pos_embed.ndim == 3)), 'the shapes of patched_img and pos_embed must be [B, L, C]' (x_len, pos_len) = (patched_img.shape[1], pos_embed.shape[1]) if (x_len != pos_len): if (pos_len == (((self.img_size[0] // self.patch_size) * (self.img_size[1] // self.patch_size)) + 1)): pos_h = (self.img_size[0] // self.patch_size) pos_w = (self.img_size[1] // self.patch_size) else: raise ValueError('Unexpected shape of pos_embed, got {}.'.format(pos_embed.shape)) pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:], (pos_h, pos_w), self.patch_size, self.interpolate_mode) return self.pos_drop((patched_img + pos_embed))
def _pos_embeding(self, img, patched_img, pos_embed): "Positiong embeding method.\n\n Resize the pos_embed, if the input image size doesn't match\n the training size.\n Args:\n img (torch.Tensor): The inference image tensor, the shape\n must be [B, C, H, W].\n patched_img (torch.Tensor): The patched image, it should be\n shape of [B, L1, C].\n pos_embed (torch.Tensor): The pos_embed weighs, it should be\n shape of [B, L2, c].\n Return:\n torch.Tensor: The pos encoded image feature.\n " assert ((patched_img.ndim == 3) and (pos_embed.ndim == 3)), 'the shapes of patched_img and pos_embed must be [B, L, C]' (x_len, pos_len) = (patched_img.shape[1], pos_embed.shape[1]) if (x_len != pos_len): if (pos_len == (((self.img_size[0] // self.patch_size) * (self.img_size[1] // self.patch_size)) + 1)): pos_h = (self.img_size[0] // self.patch_size) pos_w = (self.img_size[1] // self.patch_size) else: raise ValueError('Unexpected shape of pos_embed, got {}.'.format(pos_embed.shape)) pos_embed = self.resize_pos_embed(pos_embed, img.shape[2:], (pos_h, pos_w), self.patch_size, self.interpolate_mode) return self.pos_drop((patched_img + pos_embed))<|docstring|>Positiong embeding method. Resize the pos_embed, if the input image size doesn't match the training size. Args: img (torch.Tensor): The inference image tensor, the shape must be [B, C, H, W]. patched_img (torch.Tensor): The patched image, it should be shape of [B, L1, C]. pos_embed (torch.Tensor): The pos_embed weighs, it should be shape of [B, L2, c]. Return: torch.Tensor: The pos encoded image feature.<|endoftext|>
4e4d4b2b202d16ef3f28b09e62164773f354ae8d31257cb03c32552fe6826ca8
@staticmethod def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode): 'Resize pos_embed weights.\n\n Resize pos_embed using bicubic interpolate method.\n Args:\n pos_embed (torch.Tensor): pos_embed weights.\n input_shpae (tuple): Tuple for (input_h, intput_w).\n pos_shape (tuple): Tuple for (pos_h, pos_w).\n patch_size (int): Patch size.\n Return:\n torch.Tensor: The resized pos_embed of shape [B, L_new, C]\n ' assert (pos_embed.ndim == 3), 'shape of pos_embed must be [B, L, C]' (input_h, input_w) = input_shpae (pos_h, pos_w) = pos_shape cls_token_weight = pos_embed[(:, 0)] pos_embed_weight = pos_embed[(:, (((- 1) * pos_h) * pos_w):)] pos_embed_weight = pos_embed_weight.reshape(1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) pos_embed_weight = F.interpolate(pos_embed_weight, size=[(input_h // patch_size), (input_w // patch_size)], align_corners=False, mode=mode) cls_token_weight = cls_token_weight.unsqueeze(1) pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) return pos_embed
Resize pos_embed weights. Resize pos_embed using bicubic interpolate method. Args: pos_embed (torch.Tensor): pos_embed weights. input_shpae (tuple): Tuple for (input_h, intput_w). pos_shape (tuple): Tuple for (pos_h, pos_w). patch_size (int): Patch size. Return: torch.Tensor: The resized pos_embed of shape [B, L_new, C]
semantic_segmentation/mmseg/models/backbones/vit.py
resize_pos_embed
YangYangGirl/UniFormer
367
python
@staticmethod def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode): 'Resize pos_embed weights.\n\n Resize pos_embed using bicubic interpolate method.\n Args:\n pos_embed (torch.Tensor): pos_embed weights.\n input_shpae (tuple): Tuple for (input_h, intput_w).\n pos_shape (tuple): Tuple for (pos_h, pos_w).\n patch_size (int): Patch size.\n Return:\n torch.Tensor: The resized pos_embed of shape [B, L_new, C]\n ' assert (pos_embed.ndim == 3), 'shape of pos_embed must be [B, L, C]' (input_h, input_w) = input_shpae (pos_h, pos_w) = pos_shape cls_token_weight = pos_embed[(:, 0)] pos_embed_weight = pos_embed[(:, (((- 1) * pos_h) * pos_w):)] pos_embed_weight = pos_embed_weight.reshape(1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) pos_embed_weight = F.interpolate(pos_embed_weight, size=[(input_h // patch_size), (input_w // patch_size)], align_corners=False, mode=mode) cls_token_weight = cls_token_weight.unsqueeze(1) pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) return pos_embed
@staticmethod def resize_pos_embed(pos_embed, input_shpae, pos_shape, patch_size, mode): 'Resize pos_embed weights.\n\n Resize pos_embed using bicubic interpolate method.\n Args:\n pos_embed (torch.Tensor): pos_embed weights.\n input_shpae (tuple): Tuple for (input_h, intput_w).\n pos_shape (tuple): Tuple for (pos_h, pos_w).\n patch_size (int): Patch size.\n Return:\n torch.Tensor: The resized pos_embed of shape [B, L_new, C]\n ' assert (pos_embed.ndim == 3), 'shape of pos_embed must be [B, L, C]' (input_h, input_w) = input_shpae (pos_h, pos_w) = pos_shape cls_token_weight = pos_embed[(:, 0)] pos_embed_weight = pos_embed[(:, (((- 1) * pos_h) * pos_w):)] pos_embed_weight = pos_embed_weight.reshape(1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2) pos_embed_weight = F.interpolate(pos_embed_weight, size=[(input_h // patch_size), (input_w // patch_size)], align_corners=False, mode=mode) cls_token_weight = cls_token_weight.unsqueeze(1) pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2) pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1) return pos_embed<|docstring|>Resize pos_embed weights. Resize pos_embed using bicubic interpolate method. Args: pos_embed (torch.Tensor): pos_embed weights. input_shpae (tuple): Tuple for (input_h, intput_w). pos_shape (tuple): Tuple for (pos_h, pos_w). patch_size (int): Patch size. Return: torch.Tensor: The resized pos_embed of shape [B, L_new, C]<|endoftext|>
c8481a9d1cc3c42fb647ce776c240f12c826afe221abf723b4244cb5d29fa7f0
def __init__(self, in_chans, out_chans, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input.\n out_chans (int): Number of channels in the output.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.drop_prob = drop_prob self.layers = nn.Sequential(nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1), nn.InstanceNorm2d(out_chans), nn.ReLU(), nn.Dropout2d(drop_prob), nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1), nn.InstanceNorm2d(out_chans), nn.ReLU(), nn.Dropout2d(drop_prob))
Args: in_chans (int): Number of channels in the input. out_chans (int): Number of channels in the output. drop_prob (float): Dropout probability.
models/unet_v2v/unet_model.py
__init__
seansegal/fastMRI
2
python
def __init__(self, in_chans, out_chans, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input.\n out_chans (int): Number of channels in the output.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.drop_prob = drop_prob self.layers = nn.Sequential(nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1), nn.InstanceNorm2d(out_chans), nn.ReLU(), nn.Dropout2d(drop_prob), nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1), nn.InstanceNorm2d(out_chans), nn.ReLU(), nn.Dropout2d(drop_prob))
def __init__(self, in_chans, out_chans, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input.\n out_chans (int): Number of channels in the output.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.drop_prob = drop_prob self.layers = nn.Sequential(nn.Conv2d(in_chans, out_chans, kernel_size=3, padding=1), nn.InstanceNorm2d(out_chans), nn.ReLU(), nn.Dropout2d(drop_prob), nn.Conv2d(out_chans, out_chans, kernel_size=3, padding=1), nn.InstanceNorm2d(out_chans), nn.ReLU(), nn.Dropout2d(drop_prob))<|docstring|>Args: in_chans (int): Number of channels in the input. out_chans (int): Number of channels in the output. drop_prob (float): Dropout probability.<|endoftext|>
846259ea34fe15411e507626e7399dad3868fdc9e12f3c5bb713e3002b687825
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' return self.layers(input)
Args: input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width] Returns: (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]
models/unet_v2v/unet_model.py
forward
seansegal/fastMRI
2
python
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' return self.layers(input)
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' return self.layers(input)<|docstring|>Args: input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width] Returns: (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]<|endoftext|>
b40dde620709494b04cdd13caa13b6b90fb1efd370728477ce6a4b6ed3333d83
def __init__(self, in_chans, out_chans, kv, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input.\n out_chans (int): Number of channels in the output.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.drop_prob = drop_prob self.layers = nn.Sequential(nn.Conv3d(in_chans, out_chans, kernel_size=(kv, 3, 3), padding=(((kv - 1) // 2), 1, 1)), nn.InstanceNorm3d(out_chans), nn.ReLU(), nn.Dropout3d(drop_prob), nn.Conv3d(out_chans, out_chans, kernel_size=(kv, 3, 3), padding=(((kv - 1) // 2), 1, 1)), nn.InstanceNorm3d(out_chans), nn.ReLU(), nn.Dropout3d(drop_prob))
Args: in_chans (int): Number of channels in the input. out_chans (int): Number of channels in the output. drop_prob (float): Dropout probability.
models/unet_v2v/unet_model.py
__init__
seansegal/fastMRI
2
python
def __init__(self, in_chans, out_chans, kv, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input.\n out_chans (int): Number of channels in the output.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.drop_prob = drop_prob self.layers = nn.Sequential(nn.Conv3d(in_chans, out_chans, kernel_size=(kv, 3, 3), padding=(((kv - 1) // 2), 1, 1)), nn.InstanceNorm3d(out_chans), nn.ReLU(), nn.Dropout3d(drop_prob), nn.Conv3d(out_chans, out_chans, kernel_size=(kv, 3, 3), padding=(((kv - 1) // 2), 1, 1)), nn.InstanceNorm3d(out_chans), nn.ReLU(), nn.Dropout3d(drop_prob))
def __init__(self, in_chans, out_chans, kv, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input.\n out_chans (int): Number of channels in the output.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.drop_prob = drop_prob self.layers = nn.Sequential(nn.Conv3d(in_chans, out_chans, kernel_size=(kv, 3, 3), padding=(((kv - 1) // 2), 1, 1)), nn.InstanceNorm3d(out_chans), nn.ReLU(), nn.Dropout3d(drop_prob), nn.Conv3d(out_chans, out_chans, kernel_size=(kv, 3, 3), padding=(((kv - 1) // 2), 1, 1)), nn.InstanceNorm3d(out_chans), nn.ReLU(), nn.Dropout3d(drop_prob))<|docstring|>Args: in_chans (int): Number of channels in the input. out_chans (int): Number of channels in the output. drop_prob (float): Dropout probability.<|endoftext|>
846259ea34fe15411e507626e7399dad3868fdc9e12f3c5bb713e3002b687825
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' return self.layers(input)
Args: input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width] Returns: (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]
models/unet_v2v/unet_model.py
forward
seansegal/fastMRI
2
python
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' return self.layers(input)
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' return self.layers(input)<|docstring|>Args: input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width] Returns: (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]<|endoftext|>
bc7c409c8ce4a584e071e10d9916742818710fdee70cf1f58d1489fa0c97417a
def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input to the U-Net model.\n out_chans (int): Number of channels in the output to the U-Net model.\n chans (int): Number of output channels of the first convolution layer.\n num_pool_layers (int): Number of down-sampling and up-sampling layers.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob self.down_sample_layers = nn.ModuleList([Conv3dBlock(in_chans, chans, 1, drop_prob)]) ch = chans for i in range((num_pool_layers - 1)): self.down_sample_layers += [Conv3dBlock(ch, (ch * 2), 3, drop_prob)] ch *= 2 self.conv = Conv3dBlock(ch, ch, 1, drop_prob) self.up_sample_layers = nn.ModuleList() for i in range((num_pool_layers - 1)): self.up_sample_layers += [Conv3dBlock((ch * 2), (ch // 2), 3, drop_prob)] ch //= 2 self.up_sample_layers += [Conv3dBlock((ch * 2), ch, 1, drop_prob)] self.conv2 = nn.Sequential(nn.Conv3d(ch, (ch // 2), padding=(1, 1, 1), kernel_size=(3, 3, 3)), nn.Conv3d((ch // 2), out_chans, padding=(0, 1, 1), kernel_size=(1, 3, 3)), nn.Conv3d(out_chans, out_chans, padding=(1, 1, 1), kernel_size=(3, 3, 3)))
Args: in_chans (int): Number of channels in the input to the U-Net model. out_chans (int): Number of channels in the output to the U-Net model. chans (int): Number of output channels of the first convolution layer. num_pool_layers (int): Number of down-sampling and up-sampling layers. drop_prob (float): Dropout probability.
models/unet_v2v/unet_model.py
__init__
seansegal/fastMRI
2
python
def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input to the U-Net model.\n out_chans (int): Number of channels in the output to the U-Net model.\n chans (int): Number of output channels of the first convolution layer.\n num_pool_layers (int): Number of down-sampling and up-sampling layers.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob self.down_sample_layers = nn.ModuleList([Conv3dBlock(in_chans, chans, 1, drop_prob)]) ch = chans for i in range((num_pool_layers - 1)): self.down_sample_layers += [Conv3dBlock(ch, (ch * 2), 3, drop_prob)] ch *= 2 self.conv = Conv3dBlock(ch, ch, 1, drop_prob) self.up_sample_layers = nn.ModuleList() for i in range((num_pool_layers - 1)): self.up_sample_layers += [Conv3dBlock((ch * 2), (ch // 2), 3, drop_prob)] ch //= 2 self.up_sample_layers += [Conv3dBlock((ch * 2), ch, 1, drop_prob)] self.conv2 = nn.Sequential(nn.Conv3d(ch, (ch // 2), padding=(1, 1, 1), kernel_size=(3, 3, 3)), nn.Conv3d((ch // 2), out_chans, padding=(0, 1, 1), kernel_size=(1, 3, 3)), nn.Conv3d(out_chans, out_chans, padding=(1, 1, 1), kernel_size=(3, 3, 3)))
def __init__(self, in_chans, out_chans, chans, num_pool_layers, drop_prob): '\n Args:\n in_chans (int): Number of channels in the input to the U-Net model.\n out_chans (int): Number of channels in the output to the U-Net model.\n chans (int): Number of output channels of the first convolution layer.\n num_pool_layers (int): Number of down-sampling and up-sampling layers.\n drop_prob (float): Dropout probability.\n ' super().__init__() self.in_chans = in_chans self.out_chans = out_chans self.chans = chans self.num_pool_layers = num_pool_layers self.drop_prob = drop_prob self.down_sample_layers = nn.ModuleList([Conv3dBlock(in_chans, chans, 1, drop_prob)]) ch = chans for i in range((num_pool_layers - 1)): self.down_sample_layers += [Conv3dBlock(ch, (ch * 2), 3, drop_prob)] ch *= 2 self.conv = Conv3dBlock(ch, ch, 1, drop_prob) self.up_sample_layers = nn.ModuleList() for i in range((num_pool_layers - 1)): self.up_sample_layers += [Conv3dBlock((ch * 2), (ch // 2), 3, drop_prob)] ch //= 2 self.up_sample_layers += [Conv3dBlock((ch * 2), ch, 1, drop_prob)] self.conv2 = nn.Sequential(nn.Conv3d(ch, (ch // 2), padding=(1, 1, 1), kernel_size=(3, 3, 3)), nn.Conv3d((ch // 2), out_chans, padding=(0, 1, 1), kernel_size=(1, 3, 3)), nn.Conv3d(out_chans, out_chans, padding=(1, 1, 1), kernel_size=(3, 3, 3)))<|docstring|>Args: in_chans (int): Number of channels in the input to the U-Net model. out_chans (int): Number of channels in the output to the U-Net model. chans (int): Number of output channels of the first convolution layer. num_pool_layers (int): Number of down-sampling and up-sampling layers. drop_prob (float): Dropout probability.<|endoftext|>
46cb722c72ed444fda1773288020672de336a8f9ca1d8d45a259b38a7dd53202
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' stack = [] output = input for (i, layer) in enumerate(self.down_sample_layers): output = layer(output) stack.append(output) output = F.max_pool3d(output, kernel_size=2) output = self.conv(output) for (j, layer) in enumerate(self.up_sample_layers): output = F.interpolate(output, scale_factor=2, mode='trilinear', align_corners=False) skip_tensor = stack.pop() d_diff = (skip_tensor.shape[2] - output.shape[2]) assert (d_diff <= 1) padding = (0, 0, 0, 0, d_diff, 0) output_padded = F.pad(output, padding) output = torch.cat([output_padded, skip_tensor], dim=1) output = layer(output) output = self.conv2(output) return output
Args: input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width] Returns: (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]
models/unet_v2v/unet_model.py
forward
seansegal/fastMRI
2
python
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' stack = [] output = input for (i, layer) in enumerate(self.down_sample_layers): output = layer(output) stack.append(output) output = F.max_pool3d(output, kernel_size=2) output = self.conv(output) for (j, layer) in enumerate(self.up_sample_layers): output = F.interpolate(output, scale_factor=2, mode='trilinear', align_corners=False) skip_tensor = stack.pop() d_diff = (skip_tensor.shape[2] - output.shape[2]) assert (d_diff <= 1) padding = (0, 0, 0, 0, d_diff, 0) output_padded = F.pad(output, padding) output = torch.cat([output_padded, skip_tensor], dim=1) output = layer(output) output = self.conv2(output) return output
def forward(self, input): '\n Args:\n input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width]\n\n Returns:\n (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]\n ' stack = [] output = input for (i, layer) in enumerate(self.down_sample_layers): output = layer(output) stack.append(output) output = F.max_pool3d(output, kernel_size=2) output = self.conv(output) for (j, layer) in enumerate(self.up_sample_layers): output = F.interpolate(output, scale_factor=2, mode='trilinear', align_corners=False) skip_tensor = stack.pop() d_diff = (skip_tensor.shape[2] - output.shape[2]) assert (d_diff <= 1) padding = (0, 0, 0, 0, d_diff, 0) output_padded = F.pad(output, padding) output = torch.cat([output_padded, skip_tensor], dim=1) output = layer(output) output = self.conv2(output) return output<|docstring|>Args: input (torch.Tensor): Input tensor of shape [batch_size, self.in_chans, height, width] Returns: (torch.Tensor): Output tensor of shape [batch_size, self.out_chans, height, width]<|endoftext|>
7f72a153c37b7628ab511dca3782f757d2e41ee910e0419fa573d5c64f11cbec
def load_iris(iris_path, shuffle=True, tsize=0.8): '\n 加载iris数据\n ' data = pd.read_csv(iris_path, header=0, delimiter=',') if shuffle: data = utils.shuffle(data) species_dict = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2} data['Species'] = data['Species'].map(species_dict) data_x = np.array([data['SepalLengthCm'], data['SepalWidthCm'], data['PetalLengthCm'], data['PetalWidthCm']]).T data_y = np.array(data['Species']) (x_train, x_test, y_train, y_test) = train_test_split(data_x, data_y, train_size=tsize, test_size=(1 - tsize), shuffle=False) return (x_train, x_test, y_train, y_test)
加载iris数据
coding/classifier/decision_boundary.py
load_iris
deep-learning-algorithm/cs231n
1
python
def load_iris(iris_path, shuffle=True, tsize=0.8): '\n \n ' data = pd.read_csv(iris_path, header=0, delimiter=',') if shuffle: data = utils.shuffle(data) species_dict = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2} data['Species'] = data['Species'].map(species_dict) data_x = np.array([data['SepalLengthCm'], data['SepalWidthCm'], data['PetalLengthCm'], data['PetalWidthCm']]).T data_y = np.array(data['Species']) (x_train, x_test, y_train, y_test) = train_test_split(data_x, data_y, train_size=tsize, test_size=(1 - tsize), shuffle=False) return (x_train, x_test, y_train, y_test)
def load_iris(iris_path, shuffle=True, tsize=0.8): '\n \n ' data = pd.read_csv(iris_path, header=0, delimiter=',') if shuffle: data = utils.shuffle(data) species_dict = {'Iris-setosa': 0, 'Iris-versicolor': 1, 'Iris-virginica': 2} data['Species'] = data['Species'].map(species_dict) data_x = np.array([data['SepalLengthCm'], data['SepalWidthCm'], data['PetalLengthCm'], data['PetalWidthCm']]).T data_y = np.array(data['Species']) (x_train, x_test, y_train, y_test) = train_test_split(data_x, data_y, train_size=tsize, test_size=(1 - tsize), shuffle=False) return (x_train, x_test, y_train, y_test)<|docstring|>加载iris数据<|endoftext|>
742f9b3c2bc22f7def11eb61507ac1802f484c8a797d8d376129c7c47c8bbf5c
def pca(X, ratio=0.99, **kwargs): '\n pca降维\n :param X: 大小为NxM,其中M是个数,N是维度,每个字段已是零均值\n :param ratio: 表示投影均方误差和方差比值,默认为0.99,保持99%的方差\n :param kwargs: 字典参数,如果指定了k值,则直接计算\n :return: 降维后数据\n ' (N, M) = X.shape[:2] C = (X.dot(X.T) / M) (u, s, v) = np.linalg.svd(C) k = 1 if ('k' in kwargs): k = kwargs['k'] else: while (k < N): s_k = np.sum(s[:k]) s_N = np.sum(s) if (((s_k * 1.0) / s_N) >= ratio): break k += 1 p = u.transpose()[:k] y = p.dot(X) return (y, p)
pca降维 :param X: 大小为NxM,其中M是个数,N是维度,每个字段已是零均值 :param ratio: 表示投影均方误差和方差比值,默认为0.99,保持99%的方差 :param kwargs: 字典参数,如果指定了k值,则直接计算 :return: 降维后数据
coding/classifier/decision_boundary.py
pca
deep-learning-algorithm/cs231n
1
python
def pca(X, ratio=0.99, **kwargs): '\n pca降维\n :param X: 大小为NxM,其中M是个数,N是维度,每个字段已是零均值\n :param ratio: 表示投影均方误差和方差比值,默认为0.99,保持99%的方差\n :param kwargs: 字典参数,如果指定了k值,则直接计算\n :return: 降维后数据\n ' (N, M) = X.shape[:2] C = (X.dot(X.T) / M) (u, s, v) = np.linalg.svd(C) k = 1 if ('k' in kwargs): k = kwargs['k'] else: while (k < N): s_k = np.sum(s[:k]) s_N = np.sum(s) if (((s_k * 1.0) / s_N) >= ratio): break k += 1 p = u.transpose()[:k] y = p.dot(X) return (y, p)
def pca(X, ratio=0.99, **kwargs): '\n pca降维\n :param X: 大小为NxM,其中M是个数,N是维度,每个字段已是零均值\n :param ratio: 表示投影均方误差和方差比值,默认为0.99,保持99%的方差\n :param kwargs: 字典参数,如果指定了k值,则直接计算\n :return: 降维后数据\n ' (N, M) = X.shape[:2] C = (X.dot(X.T) / M) (u, s, v) = np.linalg.svd(C) k = 1 if ('k' in kwargs): k = kwargs['k'] else: while (k < N): s_k = np.sum(s[:k]) s_N = np.sum(s) if (((s_k * 1.0) / s_N) >= ratio): break k += 1 p = u.transpose()[:k] y = p.dot(X) return (y, p)<|docstring|>pca降维 :param X: 大小为NxM,其中M是个数,N是维度,每个字段已是零均值 :param ratio: 表示投影均方误差和方差比值,默认为0.99,保持99%的方差 :param kwargs: 字典参数,如果指定了k值,则直接计算 :return: 降维后数据<|endoftext|>
ca018593104d6b0dd61e4217621e13539160c2609a5e06c020c095c244014be4
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): 'Persist instance data.' super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
295188694246f118f97e5b6b2195c517e2108aa00d9230f499edebf85ae46703
def call(self, tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[(bytes, str)](returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[(bytes, str)](returned)
def call(self, tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[(bytes, str)](returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
9ea0157eb6440eac095230a57efab5746974fbf6138037de26bad21761597b37
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
6f2a541c7014fdc8f155b3763c2bdb103b684bbe9b83febdadafc5995b919d1d
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
11d4f9b449306eaf388ea7867de46d23b67cc54826ff61b156b8775f61102218
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
d096226231897f3522f857a359839dfd4c5a68386432b970451a0ddc46142c92
def validate_and_normalize_inputs(self, to: str, token_id: int): 'Validate the inputs to the approve method.' self.validator.assert_valid(method_name='approve', parameter_name='to', argument_value=to) to = self.validate_and_checksum_address(to) self.validator.assert_valid(method_name='approve', parameter_name='tokenId', argument_value=token_id) token_id = int(token_id) return (to, token_id)
Validate the inputs to the approve method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, to: str, token_id: int): self.validator.assert_valid(method_name='approve', parameter_name='to', argument_value=to) to = self.validate_and_checksum_address(to) self.validator.assert_valid(method_name='approve', parameter_name='tokenId', argument_value=token_id) token_id = int(token_id) return (to, token_id)
def validate_and_normalize_inputs(self, to: str, token_id: int): self.validator.assert_valid(method_name='approve', parameter_name='to', argument_value=to) to = self.validate_and_checksum_address(to) self.validator.assert_valid(method_name='approve', parameter_name='tokenId', argument_value=token_id) token_id = int(token_id) return (to, token_id)<|docstring|>Validate the inputs to the approve method.<|endoftext|>
36c8f3ba57fe3dc1b90d3d21591312c2622594992500be387484b8d764d9b109
def call(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> None: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(to, token_id).call(tx_params.as_dict())
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> None: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(to, token_id).call(tx_params.as_dict())
def call(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> None: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) self._underlying_method(to, token_id).call(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
9be56c4eb4109ae96c46899792792ce4246198dc3a699318c09deb0d458376a0
def send_transaction(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).transact(tx_params.as_dict())
def send_transaction(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
08680449adc58a1ba97d56f1e874f032dbcce34d0cd33e1e91577932a2de3ab6
def build_transaction(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> dict: (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).buildTransaction(tx_params.as_dict())
def build_transaction(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> dict: (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
c7b48fe710d2a11cab114e08e02b77e3b9d477ca729656a5036caaa6d3151411
def estimate_gas(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> int: (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).estimateGas(tx_params.as_dict())
def estimate_gas(self, to: str, token_id: int, tx_params: Optional[TxParams]=None) -> int: (to, token_id) = self.validate_and_normalize_inputs(to, token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(to, token_id).estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
58ced37a6e6c38ba0edf1b248f83c0d3d6bfda199c6181f7721dbeb9928fa395
def validate_and_normalize_inputs(self, owner: str): 'Validate the inputs to the balanceOf method.' self.validator.assert_valid(method_name='balanceOf', parameter_name='owner', argument_value=owner) owner = self.validate_and_checksum_address(owner) return owner
Validate the inputs to the balanceOf method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, owner: str): self.validator.assert_valid(method_name='balanceOf', parameter_name='owner', argument_value=owner) owner = self.validate_and_checksum_address(owner) return owner
def validate_and_normalize_inputs(self, owner: str): self.validator.assert_valid(method_name='balanceOf', parameter_name='owner', argument_value=owner) owner = self.validate_and_checksum_address(owner) return owner<|docstring|>Validate the inputs to the balanceOf method.<|endoftext|>
62d1890204bd88d3124baa73394717841e7ae93d4c1bdd708deb52cc9c09ed09
def call(self, owner: str, tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(owner).call(tx_params.as_dict()) return int(returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, owner: str, tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(owner).call(tx_params.as_dict()) return int(returned)
def call(self, owner: str, tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(owner).call(tx_params.as_dict()) return int(returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
35ee0d658b2cb40c70a30aa7cfe66f791ccdbb8352ca070b7d8458b6c0580ffe
def send_transaction(self, owner: str, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, owner: str, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).transact(tx_params.as_dict())
def send_transaction(self, owner: str, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
bb4de28c739cfa68029f5b225ed2570406e93e15090d27b844220ed39a3ed74c
def build_transaction(self, owner: str, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, owner: str, tx_params: Optional[TxParams]=None) -> dict: owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).buildTransaction(tx_params.as_dict())
def build_transaction(self, owner: str, tx_params: Optional[TxParams]=None) -> dict: owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
e0475dae447f41abd0f357f8f398528e17692f0443a2fe534d022f53010c53b6
def estimate_gas(self, owner: str, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, owner: str, tx_params: Optional[TxParams]=None) -> int: owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).estimateGas(tx_params.as_dict())
def estimate_gas(self, owner: str, tx_params: Optional[TxParams]=None) -> int: owner = self.validate_and_normalize_inputs(owner) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(owner).estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
ca018593104d6b0dd61e4217621e13539160c2609a5e06c020c095c244014be4
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): 'Persist instance data.' super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
295188694246f118f97e5b6b2195c517e2108aa00d9230f499edebf85ae46703
def call(self, tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[(bytes, str)](returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[(bytes, str)](returned)
def call(self, tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return Union[(bytes, str)](returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
9ea0157eb6440eac095230a57efab5746974fbf6138037de26bad21761597b37
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
6f2a541c7014fdc8f155b3763c2bdb103b684bbe9b83febdadafc5995b919d1d
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
11d4f9b449306eaf388ea7867de46d23b67cc54826ff61b156b8775f61102218
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
ca018593104d6b0dd61e4217621e13539160c2609a5e06c020c095c244014be4
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): 'Persist instance data.' super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
ca32d6807ebd9ceb15a2b64a172e6e81cfc9485bd1945b8aaf7461f0c2f67e87
def call(self, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return str(returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return str(returned)
def call(self, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return str(returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
9ea0157eb6440eac095230a57efab5746974fbf6138037de26bad21761597b37
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
6f2a541c7014fdc8f155b3763c2bdb103b684bbe9b83febdadafc5995b919d1d
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
11d4f9b449306eaf388ea7867de46d23b67cc54826ff61b156b8775f61102218
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
ca018593104d6b0dd61e4217621e13539160c2609a5e06c020c095c244014be4
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): 'Persist instance data.' super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
0d1feb2b3a7b114d5d1bcc63471ea6bd5ae2bbae2a964758f4d2e917c7d5b29a
def call(self, tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return int(returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return int(returned)
def call(self, tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return int(returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
9ea0157eb6440eac095230a57efab5746974fbf6138037de26bad21761597b37
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
6f2a541c7014fdc8f155b3763c2bdb103b684bbe9b83febdadafc5995b919d1d
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
11d4f9b449306eaf388ea7867de46d23b67cc54826ff61b156b8775f61102218
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
b76b77deb7e8872b038fde53d1ad6ca36fcbd1a4f84057fa077f59488b979bc7
def validate_and_normalize_inputs(self, token_id: int): 'Validate the inputs to the getApproved method.' self.validator.assert_valid(method_name='getApproved', parameter_name='tokenId', argument_value=token_id) token_id = int(token_id) return token_id
Validate the inputs to the getApproved method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, token_id: int): self.validator.assert_valid(method_name='getApproved', parameter_name='tokenId', argument_value=token_id) token_id = int(token_id) return token_id
def validate_and_normalize_inputs(self, token_id: int): self.validator.assert_valid(method_name='getApproved', parameter_name='tokenId', argument_value=token_id) token_id = int(token_id) return token_id<|docstring|>Validate the inputs to the getApproved method.<|endoftext|>
b4ffa91a77acf497f87845e803e7008e5aac6ef4505645f6d2a013bf16ca4e81
def call(self, token_id: int, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(token_id).call(tx_params.as_dict()) return str(returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, token_id: int, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(token_id).call(tx_params.as_dict()) return str(returned)
def call(self, token_id: int, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(token_id).call(tx_params.as_dict()) return str(returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
e27f80815f34ab833e17016d58c78e88a1e64dce6c8824207fba04df6aa3d88e
def send_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).transact(tx_params.as_dict())
def send_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
687dfac0950732365c580176289be1f67bed0b6a35eea8671dbe2d8d8c5059ec
def build_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> dict: token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).buildTransaction(tx_params.as_dict())
def build_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> dict: token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
97cb33886d64af0a51559709537b845f521d6110be3b37d16b1d9830eccf83f5
def estimate_gas(self, token_id: int, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, token_id: int, tx_params: Optional[TxParams]=None) -> int: token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).estimateGas(tx_params.as_dict())
def estimate_gas(self, token_id: int, tx_params: Optional[TxParams]=None) -> int: token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
ca018593104d6b0dd61e4217621e13539160c2609a5e06c020c095c244014be4
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): 'Persist instance data.' super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction): super().__init__(web3_or_provider, contract_address) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
81d7fc00919098be3d7a12dc56a12ed81c98758fc8d7a6478e724579ba03a321
def call(self, tx_params: Optional[TxParams]=None) -> Tuple[(str, int)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return (returned[0], returned[1])
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, tx_params: Optional[TxParams]=None) -> Tuple[(str, int)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return (returned[0], returned[1])
def call(self, tx_params: Optional[TxParams]=None) -> Tuple[(str, int)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method().call(tx_params.as_dict()) return (returned[0], returned[1])<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
9ea0157eb6440eac095230a57efab5746974fbf6138037de26bad21761597b37
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())
def send_transaction(self, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
6f2a541c7014fdc8f155b3763c2bdb103b684bbe9b83febdadafc5995b919d1d
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())
def build_transaction(self, tx_params: Optional[TxParams]=None) -> dict: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
11d4f9b449306eaf388ea7867de46d23b67cc54826ff61b156b8775f61102218
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())
def estimate_gas(self, tx_params: Optional[TxParams]=None) -> int: tx_params = super().normalize_tx_params(tx_params) return self._underlying_method().estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
d0a6aab9a762954195f1451db2de2f436f8fee91627198f7885f2c494e7a82ab
def validate_and_normalize_inputs(self, role: Union[(bytes, str)]): 'Validate the inputs to the getRoleAdmin method.' self.validator.assert_valid(method_name='getRoleAdmin', parameter_name='role', argument_value=role) return role
Validate the inputs to the getRoleAdmin method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, role: Union[(bytes, str)]): self.validator.assert_valid(method_name='getRoleAdmin', parameter_name='role', argument_value=role) return role
def validate_and_normalize_inputs(self, role: Union[(bytes, str)]): self.validator.assert_valid(method_name='getRoleAdmin', parameter_name='role', argument_value=role) return role<|docstring|>Validate the inputs to the getRoleAdmin method.<|endoftext|>
ccfdc990ea95831deb6f60c2470cf669df55073a05ddce2700c51a57616c243d
def call(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return Union[(bytes, str)](returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return Union[(bytes, str)](returned)
def call(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(bytes, str)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return Union[(bytes, str)](returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
ed5e7bb8efebffc5294bf0de4ed2024b31fea35791d6445d835f8dc6fad520a4
def send_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict())
def send_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
e561df63cd344b14609b0e8e8ad178be3f709174a1d45687017f6dfc69efb8aa
def build_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> dict: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction(tx_params.as_dict())
def build_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> dict: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
01d5c30486f6f3e438e4b89cbce5830e7c0c7f2d9cd5f8cce6beff9e1da6608a
def estimate_gas(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict())
def estimate_gas(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
15b140b7e9c481d65c5df1a4e949d004d121973ce236d036c00934994c2a9bc7
def validate_and_normalize_inputs(self, role: Union[(bytes, str)], index: int): 'Validate the inputs to the getRoleMember method.' self.validator.assert_valid(method_name='getRoleMember', parameter_name='role', argument_value=role) self.validator.assert_valid(method_name='getRoleMember', parameter_name='index', argument_value=index) index = int(index) return (role, index)
Validate the inputs to the getRoleMember method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, role: Union[(bytes, str)], index: int): self.validator.assert_valid(method_name='getRoleMember', parameter_name='role', argument_value=role) self.validator.assert_valid(method_name='getRoleMember', parameter_name='index', argument_value=index) index = int(index) return (role, index)
def validate_and_normalize_inputs(self, role: Union[(bytes, str)], index: int): self.validator.assert_valid(method_name='getRoleMember', parameter_name='role', argument_value=role) self.validator.assert_valid(method_name='getRoleMember', parameter_name='index', argument_value=index) index = int(index) return (role, index)<|docstring|>Validate the inputs to the getRoleMember method.<|endoftext|>
72853995c228f42af1f9c5e446ac9f1579e37e11c464429cf596dea520ec4a82
def call(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role, index).call(tx_params.as_dict()) return str(returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role, index).call(tx_params.as_dict()) return str(returned)
def call(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> str: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role, index).call(tx_params.as_dict()) return str(returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
3b704dafa01bd6d7c8da0469749dca0f128de5ac5db10f2439232fbdd75d9083
def send_transaction(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).transact(tx_params.as_dict())
def send_transaction(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
8758304db4e5eeb44fc2717379bce41d25f2045e04e325e998d45961f9c885be
def build_transaction(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> dict: (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).buildTransaction(tx_params.as_dict())
def build_transaction(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> dict: (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
8e9746150ea08da633cfb40c4c4f13e2c4ea4dfdfe0b215ef09c787318956d22
def estimate_gas(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> int: (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).estimateGas(tx_params.as_dict())
def estimate_gas(self, role: Union[(bytes, str)], index: int, tx_params: Optional[TxParams]=None) -> int: (role, index) = self.validate_and_normalize_inputs(role, index) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role, index).estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
7d9347292f0bd8cd5383905c728696c4c1551669b7059b3aadffc13714500266
def validate_and_normalize_inputs(self, role: Union[(bytes, str)]): 'Validate the inputs to the getRoleMemberCount method.' self.validator.assert_valid(method_name='getRoleMemberCount', parameter_name='role', argument_value=role) return role
Validate the inputs to the getRoleMemberCount method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, role: Union[(bytes, str)]): self.validator.assert_valid(method_name='getRoleMemberCount', parameter_name='role', argument_value=role) return role
def validate_and_normalize_inputs(self, role: Union[(bytes, str)]): self.validator.assert_valid(method_name='getRoleMemberCount', parameter_name='role', argument_value=role) return role<|docstring|>Validate the inputs to the getRoleMemberCount method.<|endoftext|>
3547b7860fddf17b978eaf703beb35cf850b9bbfedb1ef6bbfd641a272117308
def call(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return int(returned)
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return int(returned)
def call(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(role).call(tx_params.as_dict()) return int(returned)<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
ed5e7bb8efebffc5294bf0de4ed2024b31fea35791d6445d835f8dc6fad520a4
def send_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict())
def send_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>
e561df63cd344b14609b0e8e8ad178be3f709174a1d45687017f6dfc69efb8aa
def build_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> dict: 'Construct calldata to be used as input to the method.' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction(tx_params.as_dict())
Construct calldata to be used as input to the method.
thirdweb/abi/multiwrap.py
build_transaction
nftlabs/nftlabs-sdk-python
30
python
def build_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> dict: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction(tx_params.as_dict())
def build_transaction(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> dict: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).buildTransaction(tx_params.as_dict())<|docstring|>Construct calldata to be used as input to the method.<|endoftext|>
01d5c30486f6f3e438e4b89cbce5830e7c0c7f2d9cd5f8cce6beff9e1da6608a
def estimate_gas(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: 'Estimate gas consumption of method call.' role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict())
Estimate gas consumption of method call.
thirdweb/abi/multiwrap.py
estimate_gas
nftlabs/nftlabs-sdk-python
30
python
def estimate_gas(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict())
def estimate_gas(self, role: Union[(bytes, str)], tx_params: Optional[TxParams]=None) -> int: role = self.validate_and_normalize_inputs(role) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(role).estimateGas(tx_params.as_dict())<|docstring|>Estimate gas consumption of method call.<|endoftext|>
bd6ecbd21737798857673ddd577f664fcc7a46e09b0c38a5ecabaa08667bed75
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): 'Persist instance data.' super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
Persist instance data.
thirdweb/abi/multiwrap.py
__init__
nftlabs/nftlabs-sdk-python
30
python
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function
def __init__(self, web3_or_provider: Union[(Web3, BaseProvider)], contract_address: str, contract_function: ContractFunction, validator: Validator=None): super().__init__(web3_or_provider, contract_address, validator) self._underlying_method = contract_function<|docstring|>Persist instance data.<|endoftext|>
8573862374b35b69c41524565a33ff357c192a42df89da0a366b862e2b20cb0e
def validate_and_normalize_inputs(self, token_id: int): 'Validate the inputs to the getRoyaltyInfoForToken method.' self.validator.assert_valid(method_name='getRoyaltyInfoForToken', parameter_name='_tokenId', argument_value=token_id) token_id = int(token_id) return token_id
Validate the inputs to the getRoyaltyInfoForToken method.
thirdweb/abi/multiwrap.py
validate_and_normalize_inputs
nftlabs/nftlabs-sdk-python
30
python
def validate_and_normalize_inputs(self, token_id: int): self.validator.assert_valid(method_name='getRoyaltyInfoForToken', parameter_name='_tokenId', argument_value=token_id) token_id = int(token_id) return token_id
def validate_and_normalize_inputs(self, token_id: int): self.validator.assert_valid(method_name='getRoyaltyInfoForToken', parameter_name='_tokenId', argument_value=token_id) token_id = int(token_id) return token_id<|docstring|>Validate the inputs to the getRoyaltyInfoForToken method.<|endoftext|>
996e491e56b4350c42aaab82112ca2bc09289b9d4d54c085a81590b6aa55bc08
def call(self, token_id: int, tx_params: Optional[TxParams]=None) -> Tuple[(str, int)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(token_id).call(tx_params.as_dict()) return (returned[0], returned[1])
Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.
thirdweb/abi/multiwrap.py
call
nftlabs/nftlabs-sdk-python
30
python
def call(self, token_id: int, tx_params: Optional[TxParams]=None) -> Tuple[(str, int)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(token_id).call(tx_params.as_dict()) return (returned[0], returned[1])
def call(self, token_id: int, tx_params: Optional[TxParams]=None) -> Tuple[(str, int)]: 'Execute underlying contract method via eth_call.\n\n :param tx_params: transaction parameters\n :returns: the return value of the underlying method.\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) returned = self._underlying_method(token_id).call(tx_params.as_dict()) return (returned[0], returned[1])<|docstring|>Execute underlying contract method via eth_call. :param tx_params: transaction parameters :returns: the return value of the underlying method.<|endoftext|>
e27f80815f34ab833e17016d58c78e88a1e64dce6c8824207fba04df6aa3d88e
def send_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).transact(tx_params.as_dict())
Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters
thirdweb/abi/multiwrap.py
send_transaction
nftlabs/nftlabs-sdk-python
30
python
def send_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).transact(tx_params.as_dict())
def send_transaction(self, token_id: int, tx_params: Optional[TxParams]=None) -> Union[(HexBytes, bytes)]: 'Execute underlying contract method via eth_sendTransaction.\n\n :param tx_params: transaction parameters\n ' token_id = self.validate_and_normalize_inputs(token_id) tx_params = super().normalize_tx_params(tx_params) return self._underlying_method(token_id).transact(tx_params.as_dict())<|docstring|>Execute underlying contract method via eth_sendTransaction. :param tx_params: transaction parameters<|endoftext|>