File size: 8,158 Bytes
8858ced ce7523f 8858ced ce7523f 8858ced aa41154 8858ced 253c4c9 8858ced ce7523f 4ea8496 ce7523f 8858ced 74efd62 8858ced ce7523f ea2c2e9 87f1454 5696574 87f1454 ea2c2e9 8858ced 4ea8496 8858ced 4ea8496 f88c143 4ea8496 d5c52c5 4ea8496 8858ced 4ea8496 8858ced 4ea8496 8858ced 4ea8496 8858ced 4ea8496 8858ced 4ea8496 8858ced 0f52549 8858ced ce7523f 8858ced 4ea8496 8858ced |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
"""Experiment.
```
python model_finetuning_ner.py -m "roberta-base" -d "ner_temporal"
```
"""
import argparse
import json
import logging
import math
import os
import re
from os.path import join as pj
from shutil import copyfile, rmtree
from glob import glob
import numpy as np
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
from huggingface_hub import Repository
logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
os.environ["WANDB_DISABLED"] = "true"
EVAL_STEP = 500
RANDOM_SEED = 42
N_TRIALS = 10
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
LABEL2ID = {
"B-corporation": 0,
"B-creative_work": 1,
"B-event": 2,
"B-group": 3,
"B-location": 4,
"B-person": 5,
"B-product": 6,
"I-corporation": 7,
"I-creative_work": 8,
"I-event": 9,
"I-group": 10,
"I-location": 11,
"I-person": 12,
"I-product": 13,
"O": 14
}
ID2LABEL = {v: k for k, v in LABEL2ID.items()}
def preprocess_bernice(text):
text = HANDLE_RE.sub("@USER", text)
text = URL_RE.sub("HTTPURL", text)
return text
def preprocess_timelm(text):
text = HANDLE_RE.sub("@user", text)
text = URL_RE.sub("http", text)
return text
def preprocess(model_name, text):
if model_name == "jhu-clsp/bernice":
return preprocess_bernice(text)
if "twitter-roberta-base" in model_name:
return preprocess_timelm(text)
return text
def sigmoid(x):
return 1 / (1 + math.exp(-x))
def main(
dataset: str = "tweettemposhift/tweet_temporal_shift",
dataset_type: str = "ner_temporal",
model: str = "roberta-base",
skip_train: bool = False,
skip_test: bool = False,
skip_upload: bool = False):
model_alias = f"ner-{dataset_type}-{os.path.basename(model)}"
output_dir = f"ckpt/{model_alias}"
best_model_path = pj(output_dir, "best_model")
tokenizer = AutoTokenizer.from_pretrained(model, add_prefix_space=True, use_fast=True)
def tokenize_and_align_labels(examples):
tokens = [[preprocess(model, w) for w in t] for t in examples["text_tokenized"]]
tokenized_inputs = tokenizer(
tokens,
truncation=True,
is_split_into_words=True,
padding="max_length",
max_length=128)
all_labels = examples["gold_label_sequence"]
new_labels = []
for token, label in zip(tokens, all_labels):
tmp_labels = [-100]
for to, la in zip(token, label):
to_tokenized = tokenizer.tokenize(to)
tmp_labels += [la] * len(to_tokenized)
if len(tmp_labels) > 128:
tmp_labels = tmp_labels[:128]
else:
tmp_labels = tmp_labels + [-100] * (128 - len(tmp_labels))
new_labels.append(tmp_labels)
tokenized_inputs["labels"] = new_labels
return tokenized_inputs
dataset = load_dataset(dataset, dataset_type)
tokenized_datasets = dataset.map(lambda x: tokenize_and_align_labels(x), batched=True)
seqeval = evaluate.load("seqeval")
def compute_metric_all(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
labels_new, predictions_new = [], []
for label, prediction in zip(labels, predictions):
prediction = [p for la, p in zip(label, prediction) if la != -100]
label = [la for la in label if la != -100]
labels_new.append([ID2LABEL[la] for la in label])
predictions_new.append([ID2LABEL[p] for p in prediction])
return seqeval.compute(predictions=predictions_new, references=labels_new)
def compute_metric_search(eval_pred):
return {"overall_f1": compute_metric_all(eval_pred)["overall_f1"]}
if not skip_train:
logging.info("training model")
trainer = Trainer(
model=AutoModelForTokenClassification.from_pretrained(model, num_labels=len(LABEL2ID)),
args=TrainingArguments(
output_dir=output_dir,
evaluation_strategy="steps",
eval_steps=EVAL_STEP,
seed=RANDOM_SEED
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
compute_metrics=compute_metric_search,
model_init=lambda x: AutoModelForTokenClassification.from_pretrained(
model, return_dict=True, num_labels=len(LABEL2ID),
)
)
best_run = trainer.hyperparameter_search(
hp_space=lambda trial: {
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
"per_device_train_batch_size": trial.suggest_categorical(
"per_device_train_batch_size", [8, 16, 32]
),
},
direction="maximize",
backend="optuna",
n_trials=N_TRIALS
)
for n, v in best_run.hyperparameters.items():
setattr(trainer.args, n, v)
trainer.train()
trainer.save_model(best_model_path)
if not skip_test:
logging.info("testing model")
test_split = ["test"]
if dataset_type.endswith("temporal"):
test_split += ["test_1", "test_2", "test_3", "test_4"]
summary_file = pj(best_model_path, "summary.json")
if os.path.exists(summary_file):
with open(summary_file) as f:
metric = json.load(f)
else:
metric = {}
for single_test in test_split:
trainer = Trainer(
model=AutoModelForTokenClassification.from_pretrained(best_model_path, num_labels=len(LABEL2ID)),
args=TrainingArguments(
output_dir=output_dir,
evaluation_strategy="no",
seed=RANDOM_SEED
),
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets[single_test],
compute_metrics=compute_metric_all
)
metric.update({f"{single_test}/{k}": v for k, v in trainer.evaluate().items()})
logging.info(json.dumps(metric, indent=4))
with open(summary_file, "w") as f:
json.dump(metric, f)
if not skip_upload:
logging.info("uploading to huggingface")
model_organization = "tweettemposhift"
model_instance = AutoModelForTokenClassification.from_pretrained(best_model_path, num_labels=len(LABEL2ID))
model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
repo = Repository(model_alias, f"{model_organization}/{model_alias}")
for i in glob(f"{best_model_path}/*"):
if os.path.basename(i) == "summary.json" and os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
os.remove(f"{model_alias}/{os.path.basename(i)}")
if not os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
copyfile(i, f"{model_alias}/{os.path.basename(i)}")
repo.push_to_hub()
rmtree(model_alias)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Fine-tuning language model.")
parser.add_argument("-m", "--model", help="transformer LM", default="roberta-base", type=str)
parser.add_argument("-d", "--dataset-type", help="dataset type", default="ner_temporal", type=str)
parser.add_argument("--skip-train", action="store_true")
parser.add_argument("--skip-test", action="store_true")
parser.add_argument("--skip-upload", action="store_true")
opt = parser.parse_args()
main(
dataset_type=opt.dataset_type,
model=opt.model,
skip_train=opt.skip_train,
skip_test=opt.skip_test,
skip_upload=opt.skip_upload,
)
|