File size: 8,158 Bytes
8858ced
 
 
 
 
 
 
 
 
 
 
ce7523f
8858ced
ce7523f
8858ced
 
 
 
 
aa41154
8858ced
 
 
253c4c9
 
8858ced
 
 
ce7523f
 
4ea8496
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce7523f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8858ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74efd62
8858ced
 
ce7523f
ea2c2e9
 
 
 
 
 
 
 
87f1454
 
 
 
 
5696574
 
 
 
87f1454
ea2c2e9
 
8858ced
 
4ea8496
 
8858ced
 
 
 
 
4ea8496
 
 
f88c143
4ea8496
 
d5c52c5
4ea8496
 
 
 
 
8858ced
 
 
 
4ea8496
8858ced
 
 
 
 
 
 
 
 
4ea8496
 
8858ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea8496
8858ced
 
 
 
 
 
 
4ea8496
8858ced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea8496
8858ced
 
 
 
0f52549
 
8858ced
 
 
ce7523f
8858ced
 
 
 
 
4ea8496
8858ced
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""Experiment.

```
python model_finetuning_ner.py -m "roberta-base" -d "ner_temporal"
```
"""
import argparse
import json
import logging
import math
import os
import re
from os.path import join as pj
from shutil import copyfile, rmtree
from glob import glob

import numpy as np
import evaluate
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
from huggingface_hub import Repository

logging.basicConfig(format="%(asctime)s %(levelname)-8s %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S")
os.environ["WANDB_DISABLED"] = "true"

EVAL_STEP = 500
RANDOM_SEED = 42
N_TRIALS = 10
URL_RE = re.compile(r"https?:\/\/[\w\.\/\?\=\d&#%_:/-]+")
HANDLE_RE = re.compile(r"@\w+")
LABEL2ID = {
    "B-corporation": 0,
    "B-creative_work": 1,
    "B-event": 2,
    "B-group": 3,
    "B-location": 4,
    "B-person": 5,
    "B-product": 6,
    "I-corporation": 7,
    "I-creative_work": 8,
    "I-event": 9,
    "I-group": 10,
    "I-location": 11,
    "I-person": 12,
    "I-product": 13,
    "O": 14
}
ID2LABEL = {v: k for k, v in LABEL2ID.items()}


def preprocess_bernice(text):
    text = HANDLE_RE.sub("@USER", text)
    text = URL_RE.sub("HTTPURL", text)
    return text


def preprocess_timelm(text):
    text = HANDLE_RE.sub("@user", text)
    text = URL_RE.sub("http", text)
    return text


def preprocess(model_name, text):
    if model_name == "jhu-clsp/bernice":
        return preprocess_bernice(text)
    if "twitter-roberta-base" in model_name:
        return preprocess_timelm(text)
    return text


def sigmoid(x):
    return 1 / (1 + math.exp(-x))


def main(
        dataset: str = "tweettemposhift/tweet_temporal_shift",
        dataset_type: str = "ner_temporal",
        model: str = "roberta-base",
        skip_train: bool = False,
        skip_test: bool = False,
        skip_upload: bool = False):

    model_alias = f"ner-{dataset_type}-{os.path.basename(model)}"
    output_dir = f"ckpt/{model_alias}"
    best_model_path = pj(output_dir, "best_model")

    tokenizer = AutoTokenizer.from_pretrained(model, add_prefix_space=True, use_fast=True)

    def tokenize_and_align_labels(examples):
        tokens = [[preprocess(model, w) for w in t] for t in examples["text_tokenized"]]
        tokenized_inputs = tokenizer(
            tokens,
            truncation=True,
            is_split_into_words=True,
            padding="max_length",
            max_length=128)
        all_labels = examples["gold_label_sequence"]
        new_labels = []
        for token, label in zip(tokens, all_labels):
            tmp_labels = [-100]
            for to, la in zip(token, label):
                to_tokenized = tokenizer.tokenize(to)
                tmp_labels += [la] * len(to_tokenized)
            if len(tmp_labels) > 128:
                tmp_labels = tmp_labels[:128]
            else:
                tmp_labels = tmp_labels + [-100] * (128 - len(tmp_labels))
            new_labels.append(tmp_labels)
        tokenized_inputs["labels"] = new_labels
        return tokenized_inputs

    dataset = load_dataset(dataset, dataset_type)
    tokenized_datasets = dataset.map(lambda x: tokenize_and_align_labels(x), batched=True)
    seqeval = evaluate.load("seqeval")


    def compute_metric_all(eval_pred):
        logits, labels = eval_pred
        predictions = np.argmax(logits, axis=-1)
        labels_new, predictions_new = [], []
        for label, prediction in zip(labels, predictions):
            prediction = [p for la, p in zip(label, prediction) if la != -100]
            label = [la for la in label if la != -100]
            labels_new.append([ID2LABEL[la] for la in label])
            predictions_new.append([ID2LABEL[p] for p in prediction])
        return seqeval.compute(predictions=predictions_new, references=labels_new)


    def compute_metric_search(eval_pred):
        return {"overall_f1": compute_metric_all(eval_pred)["overall_f1"]}


    if not skip_train:
        logging.info("training model")
        trainer = Trainer(
            model=AutoModelForTokenClassification.from_pretrained(model, num_labels=len(LABEL2ID)),
            args=TrainingArguments(
                output_dir=output_dir,
                evaluation_strategy="steps",
                eval_steps=EVAL_STEP,
                seed=RANDOM_SEED
            ),
            train_dataset=tokenized_datasets["train"],
            eval_dataset=tokenized_datasets["validation"],
            compute_metrics=compute_metric_search,
            model_init=lambda x: AutoModelForTokenClassification.from_pretrained(
                model, return_dict=True, num_labels=len(LABEL2ID),
            )
        )

        best_run = trainer.hyperparameter_search(
            hp_space=lambda trial: {
                "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
                "per_device_train_batch_size": trial.suggest_categorical(
                    "per_device_train_batch_size", [8, 16, 32]
                ),
            },
            direction="maximize",
            backend="optuna",
            n_trials=N_TRIALS
        )
        for n, v in best_run.hyperparameters.items():
            setattr(trainer.args, n, v)
        trainer.train()
        trainer.save_model(best_model_path)

    if not skip_test:
        logging.info("testing model")
        test_split = ["test"]
        if dataset_type.endswith("temporal"):
            test_split += ["test_1", "test_2", "test_3", "test_4"]
        summary_file = pj(best_model_path, "summary.json")
        if os.path.exists(summary_file):
            with open(summary_file) as f:
                metric = json.load(f)
        else:
            metric = {}
        for single_test in test_split:
            trainer = Trainer(
                model=AutoModelForTokenClassification.from_pretrained(best_model_path, num_labels=len(LABEL2ID)),
                args=TrainingArguments(
                    output_dir=output_dir,
                    evaluation_strategy="no",
                    seed=RANDOM_SEED
                ),
                train_dataset=tokenized_datasets["train"],
                eval_dataset=tokenized_datasets[single_test],
                compute_metrics=compute_metric_all
            )
            metric.update({f"{single_test}/{k}": v for k, v in trainer.evaluate().items()})
        logging.info(json.dumps(metric, indent=4))
        with open(summary_file, "w") as f:
            json.dump(metric, f)

    if not skip_upload:
        logging.info("uploading to huggingface")
        model_organization = "tweettemposhift"
        model_instance = AutoModelForTokenClassification.from_pretrained(best_model_path, num_labels=len(LABEL2ID))
        model_instance.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
        tokenizer.push_to_hub(f"{model_organization}/{model_alias}", use_auth_token=True)
        repo = Repository(model_alias, f"{model_organization}/{model_alias}")
        for i in glob(f"{best_model_path}/*"):
            if os.path.basename(i) == "summary.json" and os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
                os.remove(f"{model_alias}/{os.path.basename(i)}")
            if not os.path.exists(f"{model_alias}/{os.path.basename(i)}"):
                copyfile(i, f"{model_alias}/{os.path.basename(i)}")
        repo.push_to_hub()
        rmtree(model_alias)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Fine-tuning language model.")
    parser.add_argument("-m", "--model", help="transformer LM", default="roberta-base", type=str)
    parser.add_argument("-d", "--dataset-type", help="dataset type", default="ner_temporal", type=str)
    parser.add_argument("--skip-train", action="store_true")
    parser.add_argument("--skip-test", action="store_true")
    parser.add_argument("--skip-upload", action="store_true")
    opt = parser.parse_args()
    main(
        dataset_type=opt.dataset_type,
        model=opt.model,
        skip_train=opt.skip_train,
        skip_test=opt.skip_test,
        skip_upload=opt.skip_upload,
    )