licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 3393 | using Revise
using StatsBase
using Statistics
using OnlineStats
using BenchmarkTools
using WeightedOnlineStats
x = (collect(reverse((1:10_000_000)*0.0000001)))
w = (collect((1:10_000_000)*0.0000001))
x1 = x[1:5_000_000]
x2 = (x[5_000_001:end])
w1 = w[1:5_000_000]
w2 = (w[5_000_001:end])
vw = WeightedVariance()
vw1 = WeightedVariance()
vw2 = WeightedVariance()
fit!(vw, x, w)
fit!(vw1, x1, w1)
fit!(vw2, x2, w2)
@code_warntype merge!(vw1, vw2)
@benchmark merge($vw1, $vw2)
#=
BenchmarkTools.Trial.1.1:
ll. 133-145 (w/o 135-138)
memory estimate: 544 bytes
allocs estimate: 7
--------------
minimum time: 3.140 μs (0.00% GC)
median time: 3.257 μs (0.00% GC)
mean time: 3.476 μs (1.52% GC)
maximum time: 272.601 μs (97.37% GC)
--------------
samples: 10000
evals/sample: 8
BenchmarkTools.Trial.1.2:
ll. 133-145 (w/o 139-141)
memory estimate: 544 bytes
allocs estimate: 7
--------------
minimum time: 3.141 μs (0.00% GC)
median time: 3.206 μs (0.00% GC)
mean time: 3.380 μs (1.54% GC)
maximum time: 268.521 μs (97.16% GC)
--------------
samples: 10000
evals/sample: 8
BenchmarkTools.Trial.2:
ll. 151-161
memory estimate: 544 bytes
allocs estimate: 7
--------------
minimum time: 3.136 μs (0.00% GC)
median time: 3.229 μs (0.00% GC)
mean time: 3.347 μs (1.53% GC)
maximum time: 262.741 μs (97.26% GC)
--------------
samples: 10000
evals/sample: 8
=#
x = (collect(reverse((1:10_000_000)*0.0000001)))
w = (collect((1:10_000_000)*0.0000001))
x1 = x[1:5_000_000]
x2 = BigFloat.(x[5_000_001:end])
w1 = w[1:5_000_000]
w2 = BigFloat.(w[5_000_001:end])
vw = WeightedVariance()
vw1 = WeightedVariance()
vw2 = WeightedVariance(BigFloat)
fit!(vw, x, w)
fit!(vw1, x1, w1)
fit!(vw2, x2, w2)
@code_warntype merge(vw1, vw2)
merge(vw1, vw2)
merge(vw2, vw1)
@benchmark merge($vw1, $vw2)
@benchmark merge($vw2, $vw1)
#=
BenchmarkTools.Trial.1.1:
ll. 133-145 (w/o 135-138)
memory estimate: 2.28 KiB
allocs estimate: 39
--------------
minimum time: 4.955 μs (0.00% GC)
median time: 5.060 μs (0.00% GC)
mean time: 5.603 μs (3.95% GC)
maximum time: 346.025 μs (94.78% GC)
--------------
samples: 10000
evals/sample: 7
BenchmarkTools.Trial.1.2:
ll. 133-145 (w/o 139-141)
memory estimate: 2.06 KiB
allocs estimate: 35
--------------
minimum time: 4.779 μs (0.00% GC)
median time: 4.861 μs (0.00% GC)
mean time: 5.366 μs (3.63% GC)
maximum time: 348.297 μs (96.43% GC)
--------------
samples: 10000
evals/sample: 7
BenchmarkTools.Trial.2:
ll. 151-161
memory estimate: 2.50 KiB
allocs estimate: 43
--------------
minimum time: 5.398 μs (0.00% GC)
median time: 5.515 μs (0.00% GC)
mean time: 6.042 μs (3.80% GC)
maximum time: 426.032 μs (96.56% GC)
--------------
samples: 10000
evals/sample: 6
=#
using Traceur
x = rand(100)
x2 = rand(100, 2)
w = rand(100)
@trace fit!(WeightedSum(), x, w)
@trace fit!(WeightedSum(Float32), x, w)
@trace fit!(WeightedMean(), x, w)
@trace fit!(WeightedMean(Float32), x, w)
@trace fit!(WeightedVariance(), x, w)
@trace fit!(WeightedVariance(Float32), x, w)
@trace fit!(WeightedCovMatrix(), x2, w)
@trace fit!(WeightedCovMatrix(Float32), x2, w)
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1085 | module WeightedOnlineStats
export WeightedSum, WeightedMean,
WeightedVariance, WeightedCovMatrix,
WeightedHist, WeightedAdaptiveHist, WeightedAdaptiveBins,
fit!, merge!, weightsum, value,
mean, std, cov, cor, median, quantile
import OnlineStats
import OnlineStats: Tup, VectorOb,
TwoThings,
Algorithm, Extrema,
smooth, smooth!, smooth_syr!
import OnlineStatsBase
import OnlineStatsBase:
OnlineStat, name,
fit!, merge!,
_fit!, _merge!,
eachrow, eachcol,
nobs, value
import Statistics
import Statistics: mean, var, std, cov, cor, median, quantile
import LinearAlgebra
import LinearAlgebra: Hermitian, lmul!, rmul!, Diagonal, diag
import StatsBase: midpoints
include("interface.jl")
include("sum.jl")
include("mean.jl")
include("var.jl")
include("covmatrix.jl")
export pca
"""
`pca` creates a PCA object from a `WeightedCovMatrix` object. Requires MultivariateStats to be loaded!
"""
function pca end
if !isdefined(Base, :get_extension)
include("../ext/PcaExt.jl")
end
include("histogram.jl")
end # module WeightedOnlineStats
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 4470 | """
WeightedCovMatrix(T = Float64)
Weighted covariance matrix, tracked as a matrix of type `T`.
*After* a call to `cov` the covariance matrix is stored in `o.C`.
# Example:
o = fit!(WeightedCovMatrix(), rand(100, 4) |> eachrow, rand(100))
o = fit!(WeightedCovMatrix(), rand(4, 100) |> eachcol, rand(100))
sum(o)
mean(o)
var(o)
std(o)
cov(o)
cor(o)
"""
mutable struct WeightedCovMatrix{T} <: WeightedOnlineStat{VectorOb}
C::Matrix{T}
A::Matrix{T}
b::Vector{T}
W::T
W2::T
n::Int
function WeightedCovMatrix{T}(
C = zeros(T, 0, 0),
A = zeros(T, 0, 0),
b = zeros(T, 0),
W = T(0),
W2 = T(0),
n = 0
) where {T}
new{T}(C, A, b, W, W2, n)
end
end
function WeightedCovMatrix(
C::Matrix{T},
A::Matrix{T},
b::Vector{T},
W::T,
W2::T,
n::Int
) where {T}
WeightedCovMatrix{T}(C, A, b, W, W2, n)
end
WeightedCovMatrix(::Type{T}, p::Int = 0) where {T} =
WeightedCovMatrix(zeros(T, p, p), zeros(T, p, p), zeros(T, p), T(0), T(0), 0)
WeightedCovMatrix() = WeightedCovMatrix(Float64)
function _fit!(o::WeightedCovMatrix{T}, x, w) where {T}
if eltype(x) != T
xx = convert(Array{T}, x)
else
xx = x
end
ww = convert(T, w)
o.n += 1
γ1 = T(1) / o.n
o.W = smooth(o.W, ww, γ1)
o.W2 = smooth(o.W2, ww * ww, γ1)
γ2 = ww / (o.W * o.n)
if isempty(o.A)
p = length(xx)
o.b = zeros(T, p)
o.A = zeros(T, p, p)
o.C = zeros(T, p, p)
end
smooth!(o.b, xx, γ2)
smooth_syr!(o.A, xx, γ2)
end
function _fit!(o::WeightedCovMatrix{T1},
x::AbstractVector{Union{T2,Missing}}, w) where {T1,T2}
if !mapreduce(ismissing, |, x)
xx = convert(Vector{T1}, x)
_fit!(o, xx, w)
end
return o
end
_fit!(o::WeightedCovMatrix, x, w::Missing) = o
function _merge!(o::WeightedCovMatrix{T}, o2::WeightedCovMatrix) where {T}
o2_A = convert(Matrix{T}, o2.A)
o2_b = convert(Vector{T}, o2.b)
o2_W = convert(T, o2.W)
o2_W2 = convert(T, o2.W2)
if isempty(o.A)
o.C = convert(Matrix{T}, o2.C)
o.A = o2_A
o.b = o2_b
o.W = o2_W
o.W2 = o2_W2
o.n = o2.n
else
n = o.n + o2.n
W = smooth(o.W, o2_W, o2.n / n)
γ = (o2_W * o2.n) / (W * n)
smooth!(o.A, o2_A, γ)
smooth!(o.b, o2_b, γ)
o.n = n
o.W = W
o.W2 = smooth(o.W2, o2_W2, o2.n / o.n)
end
return o
end
nvars(o::WeightedCovMatrix) = size(o.A, 1)
function OnlineStatsBase.value(o::WeightedCovMatrix)
# o.A is only the upper triangle:
# o.C .= o.A .- o.b .* o.b'
@inbounds for i in 1:size(o.A, 1)
for j in 1:i
o.C[j, i] = o.A[j, i] - o.b[i] * o.b[j]
end
end
LinearAlgebra.copytri!(o.C, 'U')
o.C
end
function Statistics.cov(o::WeightedCovMatrix; corrected = true, weight_type = :analytic)
if corrected
if weight_type == :analytic
LinearAlgebra.rmul!(
value(o), 1 / (1 - (o.W2 * nobs(o)) / (weightsum(o)^2))
)
elseif weight_type == :frequency
LinearAlgebra.rmul!(
value(o), 1 / (weightsum(o) - 1) * weightsum(o)
)
elseif weight_type == :probability
error("If you need this, please make a PR or open an issue")
else
throw(ArgumentError("weight type $weight_type not implemented"))
end
else
value(o)
end
end
function Statistics.cor(o::WeightedCovMatrix; kw...)
cov(o; kw...)
v = diag(o.C)
v .= 1 ./ sqrt.(v)
return o.C .* v .* v'
end
Base.sum(o::WeightedCovMatrix) = o.b .* (meanweight(o) * nobs(o))
Statistics.mean(o::WeightedCovMatrix) = copy(o.b)
Statistics.var(o::WeightedCovMatrix; kw...) = diag(cov(o; kw...))
Statistics.std(o::WeightedCovMatrix; kw...) = sqrt.(var(o; kw...))
Base.eltype(o::WeightedCovMatrix{T}) where {T} = T
Base.copy(o::WeightedCovMatrix) =
WeightedCovMatrix(copy(o.C), copy(o.A), copy(o.b), o.W, o.W2, o.n)
Base.size(x::WeightedCovMatrix, i) = size(x.C, i)
Base.size(x::WeightedCovMatrix) = size(x.C)
function Base.convert(::Type{WeightedCovMatrix{T}}, o::WeightedCovMatrix) where {T}
WeightedCovMatrix{T}(
convert(Matrix{T}, o.C),
convert(Matrix{T}, o.A),
convert(Vector{T}, o.b),
convert(T, o.W),
convert(T, o.W2),
o.n
)
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 11888 | ##############################################################
# Using the code from OnlineStats.jl/src/stats/hist.jl
# Modifying it to work with WeightedOnlineStats
##############################################################
import LinearAlgebra
abstract type WeightedHistogramStat{T} <: WeightedOnlineStat{T} end
abstract type WeightedHist{T} <: WeightedHistogramStat{T} end
split_candidates(o::WeightedHistogramStat) = midpoints(o)
Statistics.mean(o::WeightedHistogramStat) = mean(midpoints(o), fweights(counts(o)))
Statistics.var(o::WeightedHistogramStat) = var(midpoints(o), fweights(counts(o)); corrected=true)
Statistics.std(o::WeightedHistogramStat) = sqrt.(var(o))
Statistics.median(o::WeightedHistogramStat) = quantile(o, .5)
function Base.show(io::IO, o::WeightedHistogramStat)
print(io, name(o, false, false), ": ")
print(io, "∑wᵢ=", nobs(o))
print(io, " | value=")
show(IOContext(io, :compact => true), value(o))
end
#-----------------------------------------------------------------------# WeightedHist
"""
WeightedHist(edges; left = true, closed = true)
Create a histogram with bin partition defined by `edges`.
- If `left`, the bins will be left-closed.
- If `closed`, the bin on the end will be closed.
- E.g. for a two bin histogram ``[a, b), [b, c)`` vs. ``[a, b), [b, c]``
If `edges` is a tuple instead of an array, a multidimensional histogram will be
generated that behaves like a `WeightedOnlineStat{VectorOb}`.
# Examples
o = fit!(WeightedHist(-5:.1:5), randn(10^6))
# approximate statistics
using Statistics
mean(o)
var(o)
std(o)
quantile(o)
median(o)
extrema(o)
area(o)
pdf(o)
## 2d Histogram
hist2d = fit!(WeightedHist((-5:1:5, -5:1:5) ), randn(10000,2), rand(10000))
value(hist2d).y
"""
struct WeightedHist1D{R} <: WeightedHist{Float64}
edges::R
counts::Vector{Int}
meanw::Vector{Float64}
outcount::Vector{Int}
meanwout::Vector{Float64}
left::Bool
closed::Bool
end
struct WeightedHistND{R, N} <: WeightedHist{OnlineStats.VectorOb}
edges::R
counts::Array{Int,N}
meanw::Array{Float64,N}
outcount::Array{Int,N}
meanwout::Array{Float64,N}
left::Bool
closed::Bool
end
function WeightedHist(edges; left::Bool=true, closed::Bool = true)
edges = isa(edges,Tuple) ? edges : (edges,)
counts = zeros(Int, map(i->length(i)-1, edges))
meanw = zeros(Float64, map(i->length(i)-1, edges))
outcount = zeros(Int,ntuple(_->3,length(edges)))
meanwout = zeros(Float64,ntuple(_->3,length(edges)))
if length(edges) == 1
WeightedHist1D(edges[1],counts,meanw,outcount,meanwout,left,closed)
else
WeightedHistND{typeof(edges),length(edges)}(edges, counts, meanw,outcount,meanwout, left, closed)
end
end
# Special case for 1D Histogram
nobs(o::WeightedHist) = sum(o.counts) + sum(o.outcount)
weightsum(o::WeightedHist) = LinearAlgebra.dot(o.counts, o.meanw) + LinearAlgebra.dot(o.outcount,o.meanwout)
value(o::WeightedHist) = (x=edges(o), y=o.counts .* o.meanw)
binindices(o::WeightedHistND{<:Any,N}, x::AbstractVector) where N = binindices(o, ntuple(i->x[i],N))
binindices(o::WeightedHist1D,x) = OnlineStats.binindex(o.edges, x, o.left, o.closed)
binindices(o::WeightedHistND,x) = CartesianIndex(map((e,ix)->OnlineStats.binindex(e, ix, o.left, o.closed), o.edges, x))
midpoints(o::WeightedHistND) = Iterators.product(map(midpoints,o.edges)...)
midpoints(o::WeightedHist1D) = midpoints(edges(o))
counts(o::WeightedHist) = o.counts
edges(o::WeightedHist) = o.edges
function Statistics.mean(o::WeightedHist)
weights = value(o).y
N = ndims(o.counts)
r = ntuple(N) do idim
a = map(i->i[idim],midpoints(o))
mean(a,fweights(weights))
end
N==1 ? r[1] : r
end
function Statistics.var(o::WeightedHist)
weights = value(o).y
N = ndims(o.counts)
r = ntuple(N) do idim
a = map(i->i[idim],midpoints(o))
var(a,fweights(weights),corrected=true)
end
N==1 ? r[1] : r
end
Statistics.std(o::WeightedHist) = sqrt.(var(o))
Statistics.median(o::WeightedHist) = quantile(o, .5)
function Base.extrema(o::WeightedHist1D)
x, y = midpoints(o), counts(o)
x[findfirst(!iszero,y)],x[findlast(!iszero,y)]
end
function Base.extrema(o::WeightedHistND{<:Any,N}) where N
x, y = midpoints(o), counts(o)
ntuple(N) do idim
avalue = any(!iszero, y, dims = setdiff(1:N,idim))[:]
x.iterators[idim][findfirst(avalue)],x.iterators[idim][findlast(avalue)]
end
end
function Statistics.quantile(o::WeightedHist, p = [0, .25, .5, .75, 1])
x, y = midpoints(o), counts(o)
N = ndims(y)
inds = findall(!iszero, y)
yweights = fweights(y[inds])
subset = collect(x)[inds]
r = ntuple(N) do idim
data = map(i->i[idim],subset)
quantile(data, fweights(y[inds]), p)
end
if N==1
return r[1]
else
return r
end
end
function area(o::WeightedHist)
c = o.counts
e = o.edges
return mapreduce(+, CartesianIndices(c)) do I
ar = prod(map((ed,i)->ed[i+1]-ed[i],e,I.I))
c[I]*ar
end
end
outindex(o, ci::CartesianIndex) = CartesianIndex(map((i,l)->i < 1 ? 1 : i > l ? 3 : 2, ci.I, size(o.counts)))
outindex(o, ci::Int) = CartesianIndex(ci < 1 ? 1 : ci > length(o.counts) ? 3 : 2)
function pdf(o::WeightedHist, y)
ci = binindices(o, y)
if all(isequal(2),outindex(o,ci).I)
return o.counts[ci]*o.meanw[ci] / area(o) / weightsum(o)
else
return 0.0
end
end
function _fit!(o::WeightedHist, x, wt)
#length(x) == N || error("You must provide $(N) values for the histogram")
ci = binindices(o, x)
oi = outindex(o,ci)
if all(isequal(2),oi.I)
o.counts[ci] += 1
o.meanw[ci] = smooth(o.meanw[ci], wt, 1.0 / o.counts[ci])
else
o.outcount[oi] += 1
o.meanwout[oi] = smooth(o.meanwout[oi], wt, 1.0 / o.outcount[oi])
end
end
function _merge!(o::WeightedHist, o2::WeightedHist)
if o.edges == o2.edges
for j in eachindex(o.counts)
newcount = o.counts[j] + o2.counts[j]
if newcount > 0
o.meanw[j] = (o.meanw[j]*o.counts[j] + o2.meanw[j]*o2.counts[j])/newcount
end
o.counts[j] = newcount
end
for j in eachindex(o.outcount)
newcount = o.outcount[j] + o2.outcount[j]
if newcount > 0
o.meanwout[j] = (o.meanwout[j]*o.outcount[j] + o2.meanwout[j]*o2.outcount[j])/newcount
end
o.outcount[j] = newcount
end
else
@warn("WeightedHistogram edges do not align. Merging is approximate.")
for (yi, wi) in zip(midpoints(o2.edges), o2.counts)
for k in 1:wi
_fit!(o, yi)
end
end
end
end
#-----------------------------------------------------------------------# Adaptive Hist
abstract type WeightedHistAlgorithm{N} <: Algorithm end
Base.show(io::IO, o::WeightedHistAlgorithm) = print(io, name(o, false, false))
make_alg(o::WeightedHistAlgorithm) = o
"""
Weighted Histogram
Calculate a histogram of weighted data.
# Example
# A weighted histogram with 4 bins:
o = fit!(WeightedAdaptiveHist(4), rand(1000), rand(1000))
mean(o)
var(o)
std(o)
median(o)
quantile(o, [0, 0.25, 0.5, 0.25, 1.0])
extrema(o)
"""
struct WeightedAdaptiveHist{N, H <: WeightedHistAlgorithm{N}} <: WeightedHistogramStat{N}
alg::H
WeightedAdaptiveHist{H}(alg::H) where {N, H<:WeightedHistAlgorithm{N}} = new{N, H}(alg)
end
WeightedAdaptiveHist(args...; kw...) = (alg = make_alg(args...; kw...); WeightedAdaptiveHist{typeof(alg)}(alg))
for f in [:nobs, :counts, :midpoints, :edges, :area]
@eval $f(o::WeightedAdaptiveHist) = $f(o.alg)
end
for f in [:(_fit!), :pdf, :cdf, :(Base.getindex)]
@eval $f(o::WeightedAdaptiveHist, y, w) = $f(o.alg, y, w)
end
Base.copy(o::WeightedAdaptiveHist) = WeightedAdaptiveHist(copy(o.alg))
# Base.show(io::IO, o::Hist) = print(io, "Hist: ", o.alg)
OnlineStatsBase._merge!(o::WeightedAdaptiveHist, o2::WeightedAdaptiveHist) = _merge!(o.alg, o2.alg)
function OnlineStatsBase.value(o::WeightedAdaptiveHist)
(midpoints(o), counts(o))
end
function Base.extrema(o::WeightedAdaptiveHist)
mids, counts = value(o)
inds = findall(x->x!=0, counts) # filter out zero weights
mids[inds[1]], mids[inds[end]]
end
function Statistics.quantile(o::WeightedAdaptiveHist, p = [0, .25, .5, .75, 1])
mids, counts = value(o)
inds = findall(x->x!=0, counts) # filter out zero weights
quantile(mids[inds], fweights(counts[inds]), p)
end
function weightsum(o::WeightedAdaptiveHist)
nobs(o)
end
#-----------------------------------------------------------------------# WeightedAdaptiveBins
struct WeightedAdaptiveBins{T} <: WeightedHistAlgorithm{T}
value::Vector{Pair{T, T}}
b::Int
ex::Extrema{T}
function WeightedAdaptiveBins{T}(value = Pair{T, T}[], b = 10, ex = Extrema(T)) where T
new{T}(value, b, ex)
end
end
Base.copy(o::T) where T <: WeightedAdaptiveBins = T(copy(o.value), copy(o.b), copy(o.ex))
make_alg(T::Type, b::Int) = WeightedAdaptiveBins{T}(Pair{T, T}[], b, Extrema(T))
make_alg(b::Int) = WeightedAdaptiveBins{Float64}(Pair{Float64, Float64}[], b, Extrema(Float64))
midpoints(o::WeightedAdaptiveBins) = first.(o.value)
counts(o::WeightedAdaptiveBins) = last.(o.value)
OnlineStatsBase.nobs(o::WeightedAdaptiveBins) =
isempty(o.value) ? 0 : sum(last, o.value)
function Base.:(==)(a::T, b::T) where {T<:WeightedAdaptiveBins}
(a.value == b.value) && (a.b == b.b) && (a.ex == b.ex)
end
Base.extrema(o::WeightedAdaptiveHist{<:Any, <:WeightedAdaptiveBins}) = extrema(o.alg.ex)
# Doesn't happen with weighted stats
OnlineStatsBase._fit!(o::WeightedAdaptiveBins, y::Number, w::Number) =
_fit!(o, Pair(y, w))
function OnlineStatsBase._fit!(o::WeightedAdaptiveBins{T}, y::Pair) where T
y2 = convert(Pair{T, T}, y)
fit!(o.ex, first(y2))
v = o.value
i = searchsortedfirst(v, y2)
insert!(v, i, y2)
if length(v) > o.b
# find minimum difference
i = 0
mindiff = T(Inf)
for k in 1:(length(v) - 1)
@inbounds diff = first(v[k + 1]) - first(v[k])
if diff < mindiff
mindiff = diff
i = k
end
end
# merge bins i, i+1
q2, k2 = v[i + 1]
if k2 > 0
q1, k1 = v[i]
k3 = k1 + k2
v[i] = Pair(smooth(q1, q2, k2 / k3), k3)
end
deleteat!(o.value, i + 1)
end
end
function OnlineStatsBase._merge!(o::T, o2::T) where {T <: WeightedAdaptiveBins}
for v in o2.value
_fit!(o, v)
end
fit!(o.ex, extrema(o2.ex))
end
function Base.getindex(o::WeightedAdaptiveBins, i)
if i == 0
return Pair(minimum(o.ex), 0)
elseif i == (length(o.value) + 1)
return Pair(maximum(o.ex), 0)
else
return o.value[i]
end
end
# based on linear interpolation
function pdf(o::WeightedAdaptiveBins, x::Number)
v = o.value
if x ≤ minimum(o.ex)
return 0.0
elseif x ≥ maximum(o.ex)
return 0.0
else
i = searchsortedfirst(v, Pair(x, 0.0))
x1, y1 = o[i - 1]
x2, y2 = o[i]
return smooth(y1, y2, (x - x1) / (x2 - x1)) / area(o)
end
end
function cdf(o::WeightedAdaptiveBins, x::Number)
if x ≤ minimum(o.ex)
return 0.0
elseif x ≥ maximum(o.ex)
return 1.0
else
i = searchsortedfirst(o.value, Pair(x, 0.0))
x1, y1 = o[i - 1]
x2, y2 = o[i]
w = x - x1
h = smooth(y1, y2, (x2 - x) / (x2 - x1))
return (area(o, i-2) + w * h) / area(o)
end
end
function area(o::WeightedAdaptiveBins, ind = length(o.value))
out = 0.0
for i in 1:ind
w = first(o[i+1]) - first(o[i])
h = (last(o[i+1]) + last(o[i])) / 2
out += h * w
end
out
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1714 | abstract type WeightedOnlineStat{T} <: OnlineStat{T} end
using OnlineStats: fweights
meanweight(o::WeightedOnlineStat) = o.W
weightsum(o::WeightedOnlineStat) = meanweight(o) * nobs(o)
Base.eltype(o::WeightedOnlineStat{T}) where T = T
##############################################################
# Define our own interface so that it accepts two inputs.
##############################################################
function OnlineStatsBase.fit!(o::WeightedOnlineStat, xi::Number, wi::Number)
_fit!(o, xi, wi)
return o
end
OnlineStatsBase.fit!(o::WeightedOnlineStat, xi::Missing, wi::Number) = o
OnlineStatsBase.fit!(o::WeightedOnlineStat, xi::Number, wi::Missing) = o
# The missing cases in x are dealt with in the dispatch of _fit!
function OnlineStatsBase.fit!(o::WeightedOnlineStat{VectorOb}, x::VectorOb, w::Number)
_fit!(o, x, w)
return o
end
OnlineStatsBase.fit!(o::WeightedOnlineStat{VectorOb}, xi::VectorOb, wi::Missing) = o
function OnlineStatsBase.fit!(o::WeightedOnlineStat, y, w::AbstractVector)
for (yy, ww) in zip(y, w)
fit!(o, yy, ww)
end
o
end
OnlineStatsBase.fit!(o::WeightedOnlineStat, x::TwoThings) = fit!(o, x[1], x[2])
OnlineStatsBase.fit!(o::WeightedOnlineStat{VectorOb}, x::AbstractMatrix, w::AbstractVector) =
fit!(o, eachrow(x), w)
function OnlineStatsBase.merge!(o::WeightedOnlineStat, o2::WeightedOnlineStat)
(weightsum(o) > 0 || weightsum(o2) > 0) && _merge!(o, o2)
o
end
function Base.show(io::IO, o::WeightedOnlineStat)
print(io, name(o, false, false), ": ")
print(io, "∑wᵢ=")
show(IOContext(io, :compact => true), weightsum(o))
print(io, " | value=")
show(IOContext(io, :compact => true), value(o))
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1212 | """
WeightedMean(T = Float64)
Simple weighted mean, tracked as type `T`.
# Example:
o = fit!(WeightedMean(), rand(100), rand(100))
sum(o)
mean(o)
"""
mutable struct WeightedMean{T} <: WeightedOnlineStat{T}
μ::T
W::T
n::Int
function WeightedMean{T}(μ = T(0), W = T(0), n = 0) where T
new{T}(T(μ), T(W), Int(n))
end
end
WeightedMean(μ::T, W::T, n::Int) where T = WeightedMean{T}(μ, W, n)
WeightedMean(::Type{T}) where T = WeightedMean(T(0), T(0), 0)
WeightedMean() = WeightedMean(Float64)
function OnlineStatsBase._fit!(o::WeightedMean{T}, x, w) where T
xx = convert(T, x)
ww = convert(T, w)
o.n += 1
o.W = smooth(o.W, ww, T(1) / o.n)
o.μ = smooth(o.μ, xx, ww / (o.W * o.n))
o
end
function OnlineStatsBase._merge!(o::WeightedMean{T}, o2::WeightedMean) where T
o2_W = convert(T, o2.W)
o2_μ = convert(T, o2.μ)
o.n += o2.n
o.W = smooth(o.W, o2_W, o2.n / o.n)
o.μ = smooth(o.μ, o2_μ, (o2_W * o2.n) / (o.W * o.n))
o
end
OnlineStatsBase.value(o::WeightedMean) = o.μ
Statistics.mean(o::WeightedMean) = value(o)
Base.sum(o::WeightedMean) = mean(o) * weightsum(o)
Base.copy(o::WeightedMean) = WeightedMean(o.μ, o.W, o.n)
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1044 | """
WeightedSum(T = Float64)
Simple weighted sum, tracked as type `T`.
# Example:
o = fit!(WeightedSum(), rand(100), rand(100))
sum(o)
"""
mutable struct WeightedSum{T} <: WeightedOnlineStat{T}
∑::T
W::T
n::Int
function WeightedSum{T}(∑ = T(0), W = T(0), n = 0) where T
new{T}(T(∑), T(W), Int(n))
end
end
WeightedSum(∑::T, W::T, n::Int) where T = WeightedSum{T}(∑, W, n)
WeightedSum(::Type{T}) where T = WeightedSum(T(0), T(0), 0)
WeightedSum() = WeightedSum(Float64)
function WeightedOnlineStats._fit!(o::WeightedSum{T}, x, w) where T
ww = convert(T, w)
xx = convert(T, x)
o.n += 1
o.W += smooth(o.W, ww, T(1) / o.n)
o.∑ += xx * ww
o
end
function WeightedOnlineStats._merge!(o::WeightedSum{T}, o2::WeightedSum) where T
o.n += o2.n
o.W = smooth(o.W, convert(T, o2.W), convert(T, o2.n / o.n))
o.∑ += convert(T, o2.∑)
o
end
OnlineStatsBase.value(o::WeightedSum) = o.∑
Base.sum(o::WeightedSum) = value(o)
Base.copy(o::WeightedSum) = WeightedSum(o.∑, o.W, o.n)
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 2975 | """
WeightedVariance(T = Float64)
Simple weighted variance, tracked as type `T`.
# Example:
o = fit!(WeightedVariance(), rand(100), rand(100))
sum(o)
mean(o)
var(o)
std(o)
"""
mutable struct WeightedVariance{T} <: WeightedOnlineStat{T}
μ::T
σ2::T
W::T
W2::T
n::Int
function WeightedVariance{T}(
μ = T(0), σ2 = T(0), W = T(0), W2 = T(0), n = 0
) where T
new{T}(T(μ), T(σ2), T(W), T(W2), Int(n))
end
end
WeightedVariance(μ::T, σ2::T, W::T, W2::T, n::Int) where T =
WeightedVariance{T}(μ, σ2, W, W2, n)
WeightedVariance(::Type{T}) where T = WeightedVariance(T(0), T(0), T(0), T(0), 0)
WeightedVariance() = WeightedVariance(Float64)
function OnlineStatsBase._fit!(o::WeightedVariance{T}, x, w) where T
xx = convert(T, x)
ww = convert(T, w)
o.n += 1
γ1 = T(1) / o.n
o.W = smooth(o.W, ww, γ1)
o.W2 = smooth(o.W2, ww * ww, γ1)
γ = ww / (o.W * o.n)
μ = o.μ
o.μ = smooth(o.μ, xx, γ)
o.σ2 = smooth(o.σ2, (xx - o.μ) * (xx - μ), γ)
return o
end
function OnlineStatsBase._merge!(
o::WeightedVariance{T},
o2::WeightedVariance
) where T
o2_μ = convert(T, o2.μ)
o2_σ2 = convert(T, o2.σ2)
o2_W = convert(T, o2.W)
o2_W2 = convert(T, o2.W2)
n = o.n + o2.n
W = smooth(o.W, o2_W, o2.n / n)
γ1 = (o.W * o.n) / (W * n)
γ2 = (o2_W * o2.n) / (W * n)
μ = smooth(o.μ, o2_μ, γ2)
# o.σ2 =
# γ1 * ( o.σ2 + o.μ ^ 2) +
# γ2 * (o2_σ2 + o2_μ ^ 2) -
# μ ^ 2
o.σ2 =
γ1 * ( o.σ2 + (o.μ - μ) ^ 2) +
γ2 * (o2_σ2 + (o2_μ - μ) ^ 2)
o.n = n
o.μ = μ
o.W = W
o.W2 = OnlineStats.smooth(o.W2, o2_W2, o2.n / o.n)
###########################################
# μ = o.μ
#
# γ = o2_W / (o2_W + o.W)
# δ = o2_μ - o.μ
#
# o.σ2 = OnlineStats.smooth(o.σ2, o2_σ2, γ) + (δ ^ 2) * γ * (1.0 - γ)
# o.μ = OnlineStats.smooth(o.μ, o2_μ, γ)
# # o.σ2 = o.σ2 + (o.W + o2_W) * (μ)
#
# o.W += o2_W
# o.W2 += o2_W2
return o
end
OnlineStatsBase.value(o::WeightedVariance) = o.σ2
Base.sum(o::WeightedVariance) = mean(o) * meanweight(o) * nobs(o)
Statistics.mean(o::WeightedVariance) = o.μ
function Statistics.var(
o::WeightedVariance;
corrected = true,
weight_type = :analytic
)
if corrected
if weight_type == :analytic
value(o) / (1 - (o.W2 * nobs(o)) / (weightsum(o) ^ 2))
elseif weight_type == :frequency
value(o) / (weightsum(o) - 1) * weightsum(o)
elseif weight_type == :probability
error("If you need this, please make a PR or open an issue")
else
throw(ArgumentError("weight type $weight_type not implemented"))
end
else
value(o)
end
end
Statistics.std(o::WeightedVariance; kw...) = sqrt.(var(o; kw...))
Base.copy(o::WeightedVariance) = WeightedVariance(o.μ, o.σ2, o.W, o.W2, o.n)
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1225 | # using Revise
# using Pkg
# cd("..")
# Pkg.activate(".")
using Test
using WeightedOnlineStats
import OnlineStatsBase: eachcol, eachrow
using StatsBase
import OnlineStats: Extrema
using Statistics
using Random
using MultivariateStats
Random.seed!(124)
l = 1000
x = rand(l);
xmis = convert(Array{Union{Float64,Missing}}, x);
x2 = rand(l, 5)
x2mis = convert(Array{Union{Float64,Missing}}, x2)
x2mis[end, 1] = missing
x2mis[end-1, 1] = missing
w = rand(l);
wmis = convert(Array{Union{Float64,Missing}}, w);
wmis[end] = missing
wmis[end-2] = missing
Base.isapprox(x::Tuple, y::Tuple) =
reduce(&, map((a, b) -> a ≈ b, x, y))
missing_to_nan(x::Array{Union{Missing,T}}) where {T} = map(y -> y === missing ? T(NaN) : y, x)
function test_fit(
T::Type{<:WeightedOnlineStats.WeightedOnlineStat{S}},
data, weights, unpack_fun, jfun
) where {S}
l = length(data)
@assert l == length(weights)
o = T()
for (xi, wi) in zip(data, weights)
fit!(o, xi, wi)
end
@test unpack_fun(o) ≈ jfun(data, weights)
@test eltype(unpack_fun(o)) == eltype(o)
end
include("test_hist.jl")
include("test_sum.jl")
include("test_mean.jl")
include("test_var.jl")
include("test_cov.jl")
include("test_pca.jl")
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 4801 | @testset "WeightedCovMatrix fit!" begin
s, m, c = (map(x -> sum(x .* w), eachcol(x2)),
map(x -> mean(x, weights(w)), eachcol(x2)),
cov(x2, aweights(w), corrected = true))
ma, ca = map(x -> mean(x, weights(w)), eachcol(x2)), cov(x2, aweights(w), corrected = true)
mf, cf = map(x -> mean(x, weights(w)), eachcol(x2)), cov(x2, fweights(w), corrected = true)
mp, cp = map(x -> mean(x, weights(w)), eachcol(x2)), cov(x2, pweights(w), corrected = true)
o = WeightedCovMatrix()
for i in 1:l
fit!(o, x2[i, :], w[i])
end
o
sfor, mfor, cfor = sum(o), mean(o), cov(o)
o_32 = WeightedCovMatrix(Float32)
for i in 1:l
fit!(o_32, x2[i, :], w[i])
end
o_32
sfor_32, mfor_32, cfor_32 = sum(o_32), mean(o_32), cov(o_32)
sval, mval, cval = fit!(WeightedCovMatrix(), x2, w) |>
x -> (sum(x), mean(x), cov(x))
svalt, mvalt, cvalt = fit!(WeightedCovMatrix(), eachcol(permutedims(x2)), w) |>
x -> (sum(x), mean(x), cov(x))
szip, mzip, czip = fit!(WeightedCovMatrix(), zip(eachrow(x2), w)) |>
x -> (sum(x), mean(x), cov(x))
mvala, cvala = fit!(WeightedCovMatrix(), x2, w) |>
x -> (mean(x), cov(x, corrected = true, weight_type = :analytic))
mvalf, cvalf = fit!(WeightedCovMatrix(), x2, w) |>
x -> (mean(x), cov(x, corrected = true, weight_type = :frequency))
@test_throws ArgumentError fit!(WeightedCovMatrix(), x2, w) |>
x -> (mean(x), cov(x, corrected = true, weight_type = :something))
@test c ≈ czip
@test c ≈ cfor
@test c ≈ cfor_32
@test c ≈ cval
@test c ≈ cvalt
@test m ≈ mzip
@test m ≈ mfor
@test m ≈ mfor_32
@test m ≈ mval
@test m ≈ mvalt
@test ca ≈ cvala
@test cf ≈ cvalf
@test ma ≈ mvala
@test mf ≈ mvalf
@test s ≈ sfor
@test s ≈ sfor_32
@test s ≈ sval
@test s ≈ svalt
@test s ≈ szip
# After implementing :probability, these should pass/not throw any more:
@test_throws ErrorException mvalp, vvalp = fit!(WeightedCovMatrix(), x2, w) |>
x -> (mean(x), cov(x, corrected = true, weight_type = :probability))
@test_broken vp ≈ vvalp
@test_broken mp ≈ mvalp
@test eltype(o) == Float64
@test eltype(o_32) == Float32
oold = copy(o)
fit!(o, [missing, 1, 2, 3, 4], 1)
@test o == oold
fit!(o, [1, 2, 3, 4, 5], missing)
@test o == oold
# issue #29
fit!(o, eachrow([missing 1 2 3 4
missing 2 3 4 5]),
[1.0, 1.0])
@test o == oold
end
@testset "WeightedCovMatrix merge!" begin
c = cov(x2, aweights(w), corrected = true)
wc = fit!(WeightedCovMatrix(), x2, w)
oc = map(eachrow(x2), w) do xi, wi
fit!(WeightedCovMatrix(), xi, wi)
end
rc = reduce(merge!, deepcopy(oc))
rc2 = merge!(
fit!(WeightedCovMatrix(), x2[1:end÷2, :], w[1:end÷2]),
fit!(WeightedCovMatrix(), x2[end÷2+1:end, :], w[end÷2+1:end]))
rc_32 = reduce(merge!, deepcopy(oc), init = WeightedCovMatrix(Float32))
rc2_32 = merge!(
fit!(WeightedCovMatrix(Float32), x2[1:end÷2, :], w[1:end÷2]),
fit!(WeightedCovMatrix(), x2[end÷2+1:end, :], w[end÷2+1:end]))
@test rc.b ≈ wc.b
@test rc.C ≈ wc.C
@test rc.W ≈ wc.W
@test rc.W2 ≈ wc.W2
@test rc2.b ≈ wc.b
@test rc2.C ≈ wc.C
@test rc2.W ≈ wc.W
@test rc2.W2 ≈ wc.W2
@test cov(rc) ≈ c
@test cov(rc2) ≈ c
@test rc_32.b ≈ wc.b
@test rc_32.C ≈ wc.C
@test rc_32.W ≈ wc.W
@test rc_32.W2 ≈ wc.W2
@test rc2_32.b ≈ wc.b
@test rc2_32.C ≈ wc.C
@test rc2_32.W ≈ wc.W
@test rc2_32.W2 ≈ wc.W2
@test cov(rc_32) ≈ c
@test cov(rc2_32) ≈ c
@test eltype(rc) == Float64
@test eltype(rc2) == Float64
@test eltype(rc_32) == Float32
@test eltype(rc2_32) == Float32
end
@testset "WeightedCovMatrix copy" begin
o = fit!(WeightedCovMatrix(), x2, w)
o2 = copy(o)
@test o !== o2
@test o.C !== o2.C
@test o.A !== o2.A
@test o.b !== o2.b
# @test o.W !== o2.W
# @test o.W2 !== o2.W2
# @test o.n !== o2.n
@test o.C == o2.C
@test o.A == o2.A
@test o.b == o2.b
@test o.W == o2.W
@test o.W2 == o2.W2
@test o.n == o2.n
end
@testset "WeightedCovMatrix constructor" begin
@test WeightedCovMatrix{Float64}() == WeightedCovMatrix()
@test WeightedCovMatrix{Float32}() == WeightedCovMatrix(Float32)
@test WeightedCovMatrix() == WeightedCovMatrix(zeros(Float64, 0, 0),
zeros(Float64, 0, 0),
zeros(Float64, 0),
0.0, 0.0, 0)
@test convert(WeightedCovMatrix{Float32}, WeightedCovMatrix()) ==
WeightedCovMatrix{Float32}()
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 4936 | using Statistics
import OnlineStats
d1, w1 = fill(1, 40), fill(4, 40)
d2, w2 = fill(2, 30), fill(3, 30)
d3, w3 = fill(3, 20), fill(2, 20)
d4, w4 = fill(4, 10), fill(1, 10)
d, wh = vcat(d1, d2, d3, d4), vcat(w1, w2, w3, w4)
@testset "WeightedAdaptiveHist fit!" begin
h = (unique(d),
map(*,
sort(collect(keys(countmap(wh))), rev = true),
sort(collect(values(countmap(wh))), rev = true)
)
)
ws = sum(wh)
o = WeightedAdaptiveHist(4)
for i in 1:length(d)
fit!(o, d[i], wh[i])
end
hfor, vsfor = value(o), weightsum(o)
hval, vsval = value(fit!(WeightedAdaptiveHist(4), d, wh)),
weightsum(fit!(WeightedAdaptiveHist(4), d, wh))
hzip, vszip = value(fit!(WeightedAdaptiveHist(4), zip(d, wh))),
weightsum(fit!(WeightedAdaptiveHist(4), zip(d, wh)))
@test (h, ws) == (hfor, vsfor)
@test (h, ws) == (hval, vsval)
@test (h, ws) == (hzip, vszip)
end
@testset "WeightedAdaptiveHist merge" begin
h = (unique(d),
map(*,
sort(collect(keys(countmap(wh))), rev = true),
sort(collect(values(countmap(wh))), rev = true)
)
)
ws = sum(wh)
oh = map(d, wh) do di, whi
fit!(WeightedAdaptiveHist(4), di, whi)
end;
r = reduce(merge!, oh)
r2 = merge!(
fit!(WeightedAdaptiveHist(4), d[1:end ÷ 2], wh[1:end ÷ 2]),
fit!(WeightedAdaptiveHist(4), d[end ÷ 2 + 1:end], wh[end ÷ 2 + 1:end])
)
rh, rws = value(r), weightsum(r)
rh2, rws2 = value(r2), weightsum(r2)
@test (h, ws) == (rh, rws)
@test (h, ws) == (rh2, rws2)
end
@testset "WeightedAdaptiveHist copy" begin
o1 = WeightedAdaptiveHist(20)
o2 = copy(o1)
@test o1 !== o2
@test o2.alg.value !== o1.alg.value
# @test o2.alg.b !== o1.alg.b
@test o2.alg.ex !== o1.alg.ex
end
@testset "WeightedAdaptiveHist constructor" begin
@test WeightedAdaptiveHist{WeightedAdaptiveBins{Float64}}(
WeightedAdaptiveBins{Float64}(
Pair{Float64, Float64}[], 20, Extrema(Float64)
)
) == WeightedAdaptiveHist(20)
@test WeightedAdaptiveHist{WeightedAdaptiveBins{Float32}}(
WeightedAdaptiveBins{Float32}(
Pair{Float32, Float32}[], 20, Extrema(Float32)
)
) == WeightedAdaptiveHist(Float32, 20)
@test WeightedAdaptiveHist(20) == WeightedAdaptiveHist(Float64, 20)
end
@testset "WeightedHist" begin
@testset "fit!" begin
h = WeightedHist(-3:1:1)
fit!(h, -2.5,1.3)
@test h.counts == [1,0,0,0]
@test h.meanw == [1.3,0,0,0]
fit!(h, (-2.1, 1.0))
@test value(h).y == [2.3, 0,0,0]
@test h.counts == [2,0,0,0]
@test h.meanw == [1.15,0,0,0]
fit!(h, (-20, 2.0))
@test value(h).y == [2.3, 0,0,0]
@test h.outcount == [1, 0, 0]
@test h.meanwout == [2.0,0,0]
fit!(h, 20, 1.7)
@test value(h).y == [2.3, 0,0,0]
@test h.meanwout == [2.0, 0.0, 1.7]
@test h.outcount == [1, 0, 1]
fit!(h, -0.1, 1.1)
@test value(h).y == [2.3, 0,1.1,0]
@test h.edges === -3:1:1
end
@testset "merge!" begin
h1 = WeightedHist(-2:2:2)
fit!(h1, (-1, 5))
fit!(h1, (1, 10))
h1_copy = deepcopy(h1)
@test merge!(h1, WeightedHist([-2,0,2])) == h1_copy
@test value(merge!(h1_copy, h1)).y == [10, 20.]
end
@testset "stats" begin
h = WeightedHist(-2:2:2)
ho = OnlineStats.Hist(-2.:2:2)
for _ in 1:rand(1:20)
x = randn()
fit!(h, x, 1.0)
fit!(ho, x)
end
@test mean(h) ≈ mean(ho)
@test std(h) ≈ std(ho)
@test median(h) ≈ median(ho)
@test nobs(h) ≈ nobs(ho)
@test var(h) ≈ var(ho)
@test all(extrema(h) .≈ extrema(ho))
end
@testset "N-dimensional Hist" begin
h = WeightedHist((-2:2:2,0:3:6))
fit!(h,(-1.5,1.5),1.5)
@test h.counts == [1 0; 0 0]
@test h.meanw == [1.5 0; 0 0]
fit!(h,(-0.5,0.2),1.1)
@test h.counts == [2 0; 0 0]
@test h.meanw == [1.3 0;0 0]
fit!(h,(-3.0,0.0),1.5)
@test h.counts == [2 0; 0 0]
@test h.meanw == [1.3 0;0 0]
@test h.outcount == [0 1 0; 0 0 0; 0 0 0]
fit!(h,(-10,-10),1.1)
@test h.counts == [2 0; 0 0]
@test h.meanw == [1.3 0;0 0]
@test h.outcount == [1 1 0; 0 0 0; 0 0 0]
fit!(h,(1.5,4.5),2.6)
@test h.counts == [2 0; 0 1]
@test h.meanw == [1.3 0; 0 2.6]
@test value(h) == (x=(-2:2:2, 0:3:6),y=[2.6 0;0 2.6])
@test mean(h) == (0.0,3.0)
@test var(h) == (1.2380952380952381, 2.785714285714286)
@test std(h) == (1.1126972805283737, 1.6690459207925605)
@test median(h) == (-1.0, 1.5)
@test nobs(h) == 5
@test extrema(h) == ((-1,1),(1.5,4.5))
end
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1961 | @testset "WeighedMean fit!" begin
test_fit(WeightedMean{Float64}, x, w, mean, (x, w) -> mean(x, weights(w)))
test_fit(WeightedMean{Float32}, x, w, mean, (x, w) -> mean(x, weights(w)))
test_fit(WeightedMean{Float64}, xmis, wmis, mean,
(x, w) -> sum(skipmissing(x .* w)) / sum(skipmissing(w)))
m = mean(x, weights(w))
s = sum(broadcast(*, w, x))
mval = mean(fit!(WeightedMean(), x, w))
mzip = mean(fit!(WeightedMean(), zip(x, w)))
sval = sum(fit!(WeightedMean(), x, w))
szip = sum(fit!(WeightedMean(), zip(x, w)))
@test m ≈ mzip
@test m ≈ mval
@test s ≈ szip
@test s ≈ sval
m2val = mean(fit!(WeightedMean(Float32), x, w))
m2zip = mean(fit!(WeightedMean(Float32), zip(x, w)))
@test m ≈ m2zip
@test m ≈ m2val
@test typeof(m2val) == Float32
@test typeof(m2zip) == Float32
end
@testset "WeighedMean merge!" begin
m = mean(x, weights(w))
wm = fit!(WeightedMean(), x, w) |> mean
om = map(x, w) do xi, wi
fit!(WeightedMean(), xi, wi)
end
rm = reduce(merge!, om) |> mean
rm_32 = reduce(merge!, om, init = WeightedMean(Float32)) |> mean
rm2 = merge!(
fit!(WeightedMean(), x[1:end÷2], w[1:end÷2]),
fit!(WeightedMean(), x[end÷2+1:end], w[end÷2+1:end])
) |> mean
rm2_32 = merge!(
fit!(WeightedMean(Float32), x[1:end÷2], w[1:end÷2]),
fit!(WeightedMean(), x[end÷2+1:end], w[end÷2+1:end])
) |> mean
@test wm ≈ m
@test rm ≈ m
@test rm2 ≈ m
@test rm_32 ≈ m
@test rm2_32 ≈ m
@test typeof(rm) == Float64
@test typeof(rm2) == Float64
@test typeof(rm_32) == Float32
@test typeof(rm2_32) == Float32
end
@testset "WeightedMean constructor" begin
@test WeightedMean{Float64}() == WeightedMean()
@test WeightedMean{Float32}() == WeightedMean(Float32)
@test WeightedMean() == WeightedMean(0.0, 0.0, 0)
@test WeightedMean() == WeightedMean{Float64}(0, 0, 0)
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 2126 | using StatsBase
"""
the eigenvectors have arbitrary directions.
"""
function test_proj(v1, v2; atol = 0.0)
all(isapprox(v1[:, i], v2[:, i], atol = atol) ||
isapprox(v1[:, i], -v2[:, i], atol = atol) for i in 1:size(v1, 2))
end
@testset "PCA" begin
x = rand(4, 100)
w = ones(100)
zsm = fit(ZScoreTransform, x, dims = 2)
zm = fit(ZScoreTransform, x, scale = false, dims = 2)
c = fit!(WeightedCovMatrix(), x', w)
t, p = pca(c, cov_pca = true)
p6 = fit(
PCA,
StatsBase.transform(zm, x),
method = :cov,
maxoutdim = 4,
pratio = 1.0,
mean = nothing
)
@test t.mean ≈ zm.mean
@test t.scale ≈ zm.scale
@test isapprox(p.prinvars, p6.prinvars, atol = 1.0e-2)
@test isapprox(p.tprinvar, p6.tprinvar, atol = 1.0e-2)
@test isapprox(p.tvar, p6.tvar, atol = 1.0e-2)
@test test_proj(p.proj, p6.proj)
# @test x === StatsBase.transform((), x)
# @test x === StatsBase.reconstruct((), x)
# @test x === StatsBase.transform([], x)
# @test x === StatsBase.reconstruct([], x)
y = StatsBase.transform(t, x)
x2 = StatsBase.reconstruct(t, y)
@test isapprox(x2, x)
x2 = StatsBase.transform(t, x)
y = StatsBase.predict(p, x2)
x3 = MultivariateStats.reconstruct(p, y)
x4 = StatsBase.reconstruct(t, x3)
@test isapprox(x4, x)
t, p = pca(c, cov_pca = false)
p4 = fit(
PCA,
StatsBase.transform(zsm, x),
method = :cov,
maxoutdim = 4,
pratio = 1.0,
mean = 0
)
@test t.mean ≈ zsm.mean
@test isapprox(t.scale, zsm.scale, atol = 1.0e-2)
@test isapprox(p.prinvars, p4.prinvars, atol = 1.0e-2)
@test isapprox(p.tprinvar, p4.tprinvar, atol = 1.0e-2)
@test isapprox(p.tvar, p4.tvar, atol = 1.0e-2)
@test test_proj(p.proj, p4.proj)
y = StatsBase.transform(t, x)
x2 = StatsBase.reconstruct(t, y)
@test isapprox(x2, x)
x2 = StatsBase.transform(t, x)
y = StatsBase.predict(p, x2)
x3 = MultivariateStats.reconstruct(p, y)
x4 = StatsBase.reconstruct(t, x3)
@test isapprox(x4, x)
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 1737 | @testset "WeightedSum fit!" begin
test_fit(WeightedSum{Float64}, x, w, sum, (x, w) -> sum(x .* w))
test_fit(WeightedSum{Float32}, x, w, sum, (x, w) -> sum(x .* w))
test_fit(WeightedSum{Float64}, xmis, wmis, sum, (x, w) -> sum(skipmissing(x .* w)))
s = sum(broadcast(*, x, w))
szip = sum(fit!(WeightedSum(), zip(x, w)))
sval = sum(fit!(WeightedSum(), x, w))
s2val = sum(fit!(WeightedSum(Float32), x, w))
s2zip = sum(fit!(WeightedSum(Float32), zip(x, w)))
@test s ≈ szip
@test s ≈ sval
@test s ≈ s2zip
@test s ≈ s2val
@test typeof(s2val) == Float32
@test typeof(s2zip) == Float32
end
@testset "WeightedSum merge!" begin
s = sum(broadcast(*, x, w))
smap = map(x, w) do xi, wi
fit!(WeightedSum(), xi, wi)
end;
rs = reduce(merge!, smap) |> sum
rs2 = merge!(
fit!(WeightedSum(), x[1:end ÷ 2], w[1:end ÷ 2]),
fit!(WeightedSum(), x[end ÷ 2 + 1:end], w[end ÷ 2 + 1:end])
) |> sum
# Float32
smap2 = map(x, w) do xi, wi
fit!(WeightedSum(), xi, wi)
end;
rs_32 = reduce(merge!, smap2, init = WeightedSum(Float32)) |> sum
rs2_32 = merge!(
fit!(WeightedSum(Float32), x[1:end ÷ 2], w[1:end ÷ 2]),
fit!(WeightedSum(), x[end ÷ 2 + 1:end], w[end ÷ 2 + 1:end])
) |> sum
@test rs ≈ s
@test rs2 ≈ s
@test rs_32 ≈ s
@test rs2_32 ≈ s
@test typeof(rs) == Float64
@test typeof(rs2) == Float64
@test typeof(rs_32) == Float32
@test typeof(rs2_32) == Float32
end
@testset "WeightedSum constructor" begin
@test WeightedSum{Float64}() == WeightedSum()
@test WeightedSum{Float32}() == WeightedSum(Float32)
@test WeightedSum() == WeightedSum(0.0, 0.0, 0)
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 4246 | @testset "WeightedVariance fit!" begin
test_fit(WeightedVariance{Float64},
x, w,
x -> (var(x), mean(x)),
(x, w) -> (var(x, aweights(w), corrected = true), mean(x, weights(w))))
test_fit(WeightedVariance{Float32},
x, w,
x -> (var(x), mean(x)),
(x, w) -> (var(x, aweights(w), corrected = true), mean(x, weights(w))))
test_fit(WeightedVariance{Float64},
xmis, wmis,
x -> (var(x), mean(x)),
(x, w) -> begin
## doesn't work:
# idx = findall((x) -> !ismissing(x[1]) & !ismissing(x[2]), zip(x, w))
idx = findall(.!ismissing(x) .& .!ismissing.(w))
xx = Float64.(x[idx])
ww = Float64.(w[idx])
(var(xx, aweights(ww), corrected = true), mean(xx, aweights(ww)))
end
)
s, m, v = sum(x .* w), mean(x, weights(w)), var(x, aweights(w), corrected = true)
sa, ma, va = sum(x .* w), mean(x, weights(w)), var(x, aweights(w), corrected = true)
sf, mf, vf = sum(x .* w), mean(x, weights(w)), var(x, fweights(w), corrected = true)
sp, mp, vp = sum(x .* w), mean(x, weights(w)), var(x, pweights(w), corrected = true)
sval, mval, vval = fit!(WeightedVariance(), x, w) |> x -> (sum(x), mean(x), var(x))
szip, mzip, vzip = fit!(WeightedVariance(), zip(x, w)) |> x -> (sum(x), mean(x), var(x))
svala, mvala, vvala = fit!(WeightedVariance(), x, w) |>
x -> (sum(x), mean(x), var(x, corrected = true, weight_type = :analytic))
svalf, mvalf, vvalf = fit!(WeightedVariance(), x, w) |>
x -> (sum(x), mean(x), var(x, corrected = true, weight_type = :frequency))
@test_throws ArgumentError fit!(WeightedVariance(), x, w) |>
x -> (sum(x), mean(x), var(x, corrected = true, weight_type = :something))
@test v ≈ vzip
@test v ≈ vval
@test m ≈ mzip
@test m ≈ mval
@test va ≈ vvala
@test vf ≈ vvalf
@test ma ≈ mvala
@test mf ≈ mvalf
@test s ≈ sval
@test s ≈ szip
@test s ≈ svala
@test s ≈ svalf
# After implementing :probability, these should pass/not throw any more:
@test_throws ErrorException mvalp, vvalp = fit!(WeightedVariance(), x, w) |>
x -> (mean(x), var(x, corrected = true, weight_type = :probability))
@test_broken vp ≈ vvalp
@test_broken mp ≈ mvalp
end
@testset "WeighedVariance merge!" begin
v = var(x, aweights(w), corrected = true)
wv = fit!(WeightedVariance(), x, w)
ov = map(x, w) do xi, wi
fit!(WeightedVariance(), xi, wi)
end;
rv = reduce(merge!, deepcopy(ov))
rv2 = merge!(
fit!(WeightedVariance(), x[1:end ÷ 2], w[1:end ÷ 2]),
fit!(WeightedVariance(), x[end ÷ 2 + 1:end], w[end ÷ 2 + 1:end]))
rv_32 = reduce(merge!, deepcopy(ov), init = WeightedVariance(Float32))
rv2_32 = merge!(
fit!(WeightedVariance(Float32), x[1:end ÷ 2], w[1:end ÷ 2]),
fit!(WeightedVariance(), x[end ÷ 2 + 1:end], w[end ÷ 2 + 1:end]))
@test rv.μ ≈ wv.μ
@test rv.σ2 ≈ wv.σ2
@test rv.W ≈ wv.W
@test rv.W2 ≈ wv.W2
@test rv2.μ ≈ wv.μ
@test rv2.σ2 ≈ wv.σ2
@test rv2.W ≈ wv.W
@test rv2.W2 ≈ wv.W2
@test var(rv) ≈ v
@test var(rv2) ≈ v
@test var(rv_32) ≈ v
@test var(rv2_32) ≈ v
@test mean(rv_32) ≈ wv.μ
@test mean(rv2_32) ≈ wv.μ
@test eltype(rv) == Float64
@test eltype(rv2) == Float64
@test eltype(rv_32) == Float32
@test eltype(rv2_32) == Float32
end
@testset "WeightedVariance copy" begin
o = fit!(WeightedVariance(), x2, w)
o2 = copy(o)
@test o !== o2
# @test o.μ !== o.μ
# @test o.σ2 !== o.σ2
# @test o.W !== o2.W
# @test o.W2 !== o2.W2
# @test o.n !== o2.n
@test o.μ == o2.μ
@test o.σ2 == o2.σ2
@test o.W == o2.W
@test o.W2 == o2.W2
@test o.n == o2.n
end
@testset "WeightedVariance constructor" begin
@test WeightedVariance{Float64}() == WeightedVariance()
@test WeightedVariance{Float32}() == WeightedVariance(Float32)
@test WeightedVariance() == WeightedVariance(0.0, 0.0, 0.0, 0.0, 0)
@test WeightedVariance() == WeightedVariance{Float64}(0, 0, 0, 0, 0)
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | code | 266 | # only push coverage from one bot
get(ENV, "TRAVIS_OS_NAME", nothing) == "linux" || exit(0)
get(ENV, "TRAVIS_JULIA_VERSION", nothing) == "1.3" || exit(0)
using Coverage
cd(joinpath(@__DIR__, "..", "..")) do
Codecov.submit(Codecov.process_folder())
end
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | docs | 199 |
# WeightedOnlineStats.jl v0.3.0
* Renamed `WeightedHist` to `WeightedAdaptiveHist` and added `WeightedHist` similar to `OnlineStats.Hist` (Thanks Jan Weidner!)
* Removed support for `Julia 0.7`.
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | docs | 1190 | # `WeightedOnlineStats.jl`
[](https://zenodo.org/badge/latestdoi/156201284)
[](https://github.com/gdkrmr/WeightedOnlineStats.jl/actions/workflows/CI.yml)
[](http://codecov.io/github/gdkrmr/WeightedOnlineStats.jl?branch=master)
An extension of `OnlineStatsBase.jl` that supports proper statistical weighting
and arbitrary numerical precision.
# Usage
```julia
using WeightedOnlineStats
values = rand(100)
weights = rand(100)
# fit using arrays:
o1 = fit!(WeightedMean(), values, weights)
# fit using an iterator that returns a tuple (value, weight):
o2 = fit!(WeightedMean(), zip(values, weights))
# fit single values at a time:
o3 = WeightedMean()
for i in 1:length(values)
fit!(o3, values[i], weights[i])
end
mean(o1)
mean(o2)
mean(o3)
```
# Statistics
`WeightedOnlineStats.jl` currently implements the following Statistics:
- `WeightedSum`
- `WeightedMean`
- `WeightedVariance`
- `WeightedCovMatrix`
- `WeightedHist`
- `WeightedAdaptiveHist`
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | docs | 71 | # API
```@index
```
```@autodocs
Modules = [WeightedOnlineStats]
```
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.6.3 | 97af6ba86935292d5ed4a76cfee6e47d7ce02366 | docs | 387 |
# WeightedOnlineStats.jl
A version onf OnlineStats.jl allowing observations with custom weights.
## Basics
### Creating
```@repl index
using WeightedOnlineStats
m = WeightedMean()
x = randn(100);
w = randn(100);
```
### Updating
```@repl index
fit!(m, x, w)
```
### Merging
```@repl index
m2 = WeightedMean()
x2 = rand(100);
w2 = rand(100);
fit!(m2, x2, w2)
merge!(m, m2)
```
| WeightedOnlineStats | https://github.com/gdkrmr/WeightedOnlineStats.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 598 | import Pkg
Pkg.activate(@__DIR__)
using LiveServer
servedocs(; literate_dir = joinpath("docs", "src", "literate"),
skip_dirs = [
joinpath("docs", "src", "notebooks"),
joinpath("docs", "src", "tutorials"),
joinpath("docs", "src", "applications"),
],
skip_files = [
joinpath("docs", "src", "api", "logical.md"),
joinpath("docs", "src", "api", "memberships.md"),
joinpath("docs", "src", "assets", "indigo.css"),
],
launch_browser = true,
verbose = true)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 5208 | ENV["GKSwstype"] = "100"
const IS_CI = get(ENV, "CI", "false") == "true"
import Pkg
Pkg.activate(@__DIR__)
using Documenter
using DocThemeIndigo
using InteractiveUtils
using FuzzyLogic
using Literate
###############################
# GENERATE LITERATE NOTEBOOKS #
###############################
const jldir = joinpath(@__DIR__, "src", "literate") # input directory for literate scripts.
const mddir = joinpath(@__DIR__, "src") # output directory for markdown files.
const nbdir = joinpath(@__DIR__, "src", "notebooks") # output directory for notebooks.
# fix edit links (only locally)
function fix_edit_link(content)
replace(content,
"EditURL = \"<unknown>" => "EditURL = \"https://github.com/lucaferranti/FuzzyLogic.jl/blob/main")
end
# Adds link from markdown to notebook.
# Points to local path locally and to nbviewer when deployed.
notebook_link(file) = content -> notebook_link(file, content)
function notebook_link(file, content)
root = IS_CI ? "@__NBVIEWER_ROOT_URL__" :
"https://nbviewer.org/github/lucaferranti/FuzzyLogic.jl/blob/gh-pages/dev"
path = joinpath(root, "notebooks", replace(file, ".jl" => ".ipynb"))
note = """!!! tip "Try it yourself!"\n Read this as Jupyter notebook [here]($path)"""
replace(content, "DOWNLOAD_NOTE" => note)
end
for (root, _, files) in walkdir(jldir), file in files
endswith(file, ".jl") || continue
ipath = joinpath(root, file)
opath = splitdir(replace(ipath, jldir => mddir))[1]
Literate.markdown(ipath, opath;
preprocess = notebook_link(file),
postprocess = IS_CI ? identity : fix_edit_link,
credit = false)
Literate.notebook(ipath, nbdir; execute = IS_CI, credit = false)
end
###################
# CREATE API DOCS #
###################
function generate_memberships()
mfs = subtypes(FuzzyLogic.AbstractMembershipFunction)
open(joinpath(@__DIR__, "src", "api", "memberships.md"), "w") do f
write(f,
"""```@setup memberships
using FuzzyLogic
using Plots
```
# Membership functions
""")
for mf in mfs
sec = string(mf)[1:(end - 2)] * " membership function"
write(f,
"""## $sec
```@docs
$mf
```
""")
docstring = match(r"```julia\nmf = (.+)\n```", string(Docs.doc(mf)))
if !isnothing(docstring)
mfex = only(docstring.captures)
write(f,
"""
```@example memberships
plot($mfex, 0, 10) # hide
```
""")
end
end
end
end
function generate_norms()
connectives = [
subtypes(FuzzyLogic.AbstractAnd),
subtypes(FuzzyLogic.AbstractOr),
subtypes(FuzzyLogic.AbstractImplication),
]
titles = ["Conjuction", "Disjunction", "Implication"]
open(joinpath(@__DIR__, "src", "api", "logical.md"), "w") do f
write(f,
"""```@setup logicals
using FuzzyLogic
using Plots
```
# Logical connectives
""")
for (t, c) in zip(titles, connectives)
write(f,
"""
## $t methods
""")
for ci in c
write(f,
"""
### $(nameof(ci))
```@docs
$ci
```
```@example logicals
x = y = 0:0.01:1 # hide
contourf(x, y, (x, y) -> $ci()(x, y)) # hide
```
""")
end
end
end
end
# Logical connectives
generate_memberships()
generate_norms()
###############
# CREATE HTML #
###############
makedocs(;
modules = [FuzzyLogic], authors = "Luca Ferranti",
sitename = "FuzzyLogic.jl",
doctest = false, checkdocs = :exports,
format = Documenter.HTML(;
assets = [
DocThemeIndigo.install(FuzzyLogic),
"assets/favicon.ico",
],
prettyurls = IS_CI, collapselevel = 1,
canonical = "https://lucaferranti.github.io/FuzzyLogic.jl"),
pages = [
"Home" => "index.md",
"Tutorials" => [
"Build a Mamdani inference system" => "tutorials/mamdani.md",
"Build a Sugeno inference system" => "tutorials/sugeno.md",
"Build a type-2 inference system" => "tutorials/type2.md",
],
"Applications" => [
"Edge detection" => "applications/edge_detector.md",
],
"API" => [
"Inference system API" => [
"Types" => "api/fis.md",
"Logical connectives" => "api/logical.md",
"Aggregation methods" => "api/aggregation.md",
"Defuzzification methods" => "api/defuzzification.md",
],
"Membership functions" => "api/memberships.md",
"Reading/Writing" => "api/readwrite.md",
"Learning fuzzy models" => "api/genfis.md",
"Plotting" => "api/plotting.md",
],
"Contributor's Guide" => "contributing.md",
"Release notes" => "changelog.md",
])
##########
# DEPLOY #
##########
IS_CI && deploydocs(; repo = "github.com/lucaferranti/FuzzyLogic.jl", push_preview = true)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 115 | import Pkg
Pkg.activate(@__DIR__)
Pkg.develop(Pkg.PackageSpec(path = joinpath(@__DIR__, "..")))
Pkg.instantiate()
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 3962 | #=
# Fuzzy edge detector
This tutorial shows how fuzzy logic can be applied to image processing. It showcases how
`FuzzyLogic.jl` seamlessly composes with common Julia image processing libraries and works
out-of-the box.
This tutorial builds a fuzzy edge detector and it is inspired from the matlab tutorial
available [here](https://www.mathworks.com/help/fuzzy/fuzzy-logic-image-processing.html).
DOWNLOAD_NOTE
## Introduction
We want to design an edge detector. That is, a function that takes an image as input and finds
the edges in the image.
Our function should produce a new image, with edges highlighted in black and flat areas in white.
First, let's load the image processing tools we need in this tutorial.
=#
using TestImages, ImageFiltering, ImageShow, ImageCore
img = Gray.(testimage("house"))
#=
Next, we need to model our problem. When we cross an edge, we have a transition from a clearly delimited area to another.
Hence, a pixel is on an edge if moving in its neighborhood we see some change in intensity.
If, on the other hand, in the pixel neighborhood there is no change, then it belongs to a flat area.
Hence, to detect edges we need to compute the gradient of the image at each pixel.
This can be done using `imgradients` from [ImageFiltering](https://github.com/JuliaImages/ImageFiltering.jl).
This function will return two images, one containg the gradient x-component at each pixel, and one containing the y-component at each pixel.
For better visualization, these gradient images are renormalized so that their maximum in absolute value is ``1``.
=#
img_y, img_x = imgradients(img, KernelFactors.sobel)
img_y /= Float64(maximum(abs.(img_y)))
img_x /= Float64(maximum(abs.(img_x)))
img_y
#-
img_x
#=
## Fuzzy system design
Now we want to design a fuzzy system that takes as input the gradient x- and y- components and produces as output the intensity of the new image.
Particularly, in the output image we want to plot flat areas in white (intensity close to ``1``) and edges in black (intensity close to ``0``).
Based on our previous discussion, a pixel belongs to a flat area if it has zero gradient (i.e. both x- and y-components are zero).
If the gradient is non-zero (either x- or y-component is non-zero) then it belongs to an edge.
Hence for our fuzzy edge detector we can use the following rules
- If the gradient x-component is zero and the gradient y-component is zero, then the output intensity is white.
- If the gradient x-component is nonzero or the gradient y-compnent is non-zero, then the output intensity is black.
Hence, for the input, we will use a single membership function `zero`, which is a sharp Gaussian centered at zero.
For the outupt, we have two membership functions, `black` and `white`.
Recalling that a black pixel means intensity zero and a white pixel intensity one, we will use for `black` a linear membership function, that decreases from ``1``
to ``0`` as the intensity increases. Similarly, for `white` we can use a linear membership function that increases as the intensity increases.
We can now implement and visualize our inference system.
=#
using FuzzyLogic, Plots
fis = @mamfis function edge_detector(dx, dy)::Iout
dx := begin
domain = -1:1
zero = GaussianMF(0.0, 0.1)
end
dy := begin
domain = -1:1
zero = GaussianMF(0.0, 0.1)
end
Iout := begin
domain = 0:1
black = LinearMF(0.7, 0.0)
white = LinearMF(0.1, 1.0)
end
dx == zero && dy == zero --> Iout == white
dx != zero || dy != zero --> Iout == black
end
plot(fis)
#-
plot(plot(fis, :dx), plot(fis, :Iout), layout = (1, 2))
#=
We are now ready to apply our fuzzy edge detector to the input image.
We will create a new image `Iout` and assign to each pixel the intensity value computed with our fuzzy system.
=#
Iout = copy(img)
for idx in eachindex(Iout)
Iout[idx] = fis(dx = img_x[idx], dy = img_y[idx])[:Iout]
end
Iout
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 7272 |
#=
# Build a Mamdani inference system
This tutorial gives a general overiew of FuzzyLogic.jl basic functionalities by showing how
to implement and use a type-1 Mamdani inference system.
DOWNLOAD_NOTE
## Setup
To follow the tutorial, you should have [installed Julia](https://julialang.org/downloads/).
Next, you can install `FuzzyLogic.jl` with
```julia
using Pkg; Pkg.add("FuzzyLogic")
```
## Building the inference system
First, we need to load the library.
=#
using FuzzyLogic
# The Mamdani inference system can be constructed with the [`@mamfis`](@ref) macro.
# We will first give a full example and then explain every step.
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
and = ProdAnd
or = ProbSumOr
implication = ProdImplication
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
aggregator = ProbSumAggregator
defuzzifier = CentroidDefuzzifier
end
#=
As you can see, defining a fuzzy inference system with `@mamfis` looks a lot like writing
Julia code. Let us now take a closer look at the components. The first line
```julia
function tipper(service, food)::tip
```
specifies the basic properties of the system, particularly
- the function name `tipper` will be the name of the system
- the input arguments `service, food` represent the input variables of the system
- the output type annotation `::tip` represents the output variable of the system. If the system has multiple outputs, they should be enclosed in braces, i.e. `::{tip1, tip2}`
The next block is the variable specifications block, identified by the `:=` operator.
This block is used to specify the domain and membership functions of a variable, for example
```julia
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
```
The order of the statements inside the `begin ... end` block is irrelevant.
- The line `domain = 0:10` sets the domain of the variable to the interval ``[0, 10]``. Note that setting the domain is required
- The other lines specify the membership functions of the variable.
For example, `poor = GaussianMF(0.0, 1.5)` means that the variable has a Gaussian
membership function called `poor` with mean ``0.0`` and stanrdard devisation ``1.5``.
A complete list of supported dmembership functions and their parameters can be found in the
[Membership functions](@ref) section of the API documentation.
Next, we describe rule blocks. A fuzzy relation such as `service is poor` is described with
the `==` operator, for example `service == poor`.
The *premise* i.e. left-hand side, of the rule can be any logical proposition connecting
fuzzy relations with the `&&` (AND) and `||` (OR) operators. The *consequence* i.e. right-hand side,
of the rule is a fuzzy relation for the output variable. Premise and consequence are connected with
the `-->` operator. For example, the rule
```julia
service == poor || food == rancid --> tip == cheap
```
reads *If the service is poor or the food is rancid, then the tip is cheap*.
Note that in the premise can be any logical proposition, you can have both `&&` and `||` connectives
and you can also have nested propositions. For example, the following is a valid rule
```julia
service == poor || food = rancid && service == good
```
The connectives follow Julia precedence rules, so `&&` binds stronger than `||`.
If you have multiple outputs, then the consequence should be a tuple, for example
```julia
service == poor || food == rancid --> (tip1 == cheap, tip2 == cheap)
```
Finally, assignment lines like
```julia
and = ProdAnd
```
are used to set the settings of the inference system. For a Mamdani inference system,
the following settings are available
- `and`: algorithm to evaluate `&&`. Must be one of the available [Conjuction methods](@ref). Default [`MinAnd`](@ref).
- `or`: algorithm to evaluate `||`. Must be one of the available [Disjunction methods](@ref). Default [`MaxOr`](@ref)
- `implication`: algorithm to evalute `-->`. Must be one of the available [Implication methods](@ref). Default [`MinImplication`](@ref).
- `aggregato`: algorithm to perform outputs aggregation. Must be one of the available [Aggregation methods](@ref). Default [`MaxAggregator`](@ref).
- `defuzzifier`: algorithm to perform defuzzification. Must be one of the available [Defuzzification methods](@ref). Default [`CentroidDefuzzifier`](@ref).
If one of the above settings is not specified, the corresponding default value is used.
Some of the above settings may have internal parameters.
For example, [`CentroidDefuzzifier`](@ref) has an integer parameter `N`, the number of points used to perform numerical integration.
If the parameter is not specified, as in `defuzzifier = CentroidDefuzzifier`, then the default value for `N` can be used.
This parameter can be overwritten with custom values, for example
```julia
defuzzifier = CentroidDefuzzifier(50)
```
will use ``50`` as value of `N` instead of the default one (``100`` in this case).
## Visualization
The library offers tools to visualize your fuzzy inference system. This requires installing
and importing the `Plots.jl` library.
=#
using Plots
#=
The membership functions of a given variable can be plotted by calling `plot(fis, varname)`,
where `fis` is the inference system you created and `varname` is the name of the variable you
want to visualize, given as a symbol. For example,
=#
plot(fis, :service)
# Giving only the inference system object to `plot` will plot the inference rules, one per line.
plot(fis)
# If the FIS has at most 2 inputs, we can plot the generating surface of the system using the function [`gensurf`](@ref).
# This is a surface visualizing how the output changes as a function of the input.
gensurf(fis)
#=
## Inference
To perform inference, you can call the above constructed inference system as a function, passing th input values as parameters.
Note that the system does not accept positional arguments, but inputs should be passed as name-value pairs.
For example
=#
res = fis(service = 2, food = 3)
# The result is a Dictionary containing the output value corresponding to each output variable.
# The value of a specific output variable can be extracted using the variable name as key.
res[:tip]
#=
## Code generation
The model can be compiled to native Julia code using the [`compilefis`](@ref) function.
This produces optimized Julia code independent of the library, that can be executed as
stand-alone function.
=#
fis_ex = compilefis(fis)
# The new expression can now be evaluated as normal Julia code. Notice that the generated
# function uses positional arguments.
eval(fis_ex)
tipper(2, 3)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 2853 | #=
# Build a Sugeno inference system
This tutorial describes how to construct a type-1 Sugeno inference system.
The reader is assumed to be familiar with the basic syntax to build a fuzzy system, which
is described in the [Build a Mamdani inference system](@ref) tutorial.
DOWNLOAD_NOTE
A Sugeno inference system can be built using the [`@sugfis`](@ref) macro.
The following example shows the macro in action
=#
using FuzzyLogic, Plots
fis = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 5.002
average = 15
generous = 2service, 0.5food, 5.0
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
#=
The result is an object of type [`SugenoFuzzySystem`](@ref). This is similar to a Mamdani, with the main difference being in
the output definition.
In a Sugeno system, the output "membership functions" can be:
- A [`ConstantSugenoOutput`](@ref), e.g. `average = 15`. This means that if the tip is average, then it has constant value ``15``,
- A [`LinearSugenoOutput`](@ref), e.g. `generous = 2service, 0.5food, 5.0`. This means that if the tip is generous, then its value will be ``2service+0.5food + 5.0``.
It is good to highlight that these functions return the value of the output variable and not a membership degree, like in a Mamdani system.
The second difference from a Mandani system is in the settings that can be tuned. A Sugeno system only has the following options:
- `and`: algorithm to evaluate `&&`. Must be one of the available [Conjuction methods](@ref). Default [`ProdAnd`](@ref).
- `or`: algorithm to evaluate `||`. Must be one of the available [Disjunction methods](@ref). Default [`ProbSumOr`](@ref)
The created model can be evaluated the same way of a Mamdani system.
=#
fis(service = 2, food = 3)
# Let's see the plotting of output variables, as it differs from the Mamdani system
plot(fis, :tip)
#=
As you can see
- If the membership function is constant, then the plot simply shows a horizontal line at the output value level.
- For `LinearSugenoOutput`, the plot is a bar plot, showing for each input variable the corresponding coefficient.
This gives a visual indication of how much each input contributes to the output.
Like the Mamdani case, we can plot the whole system.
=#
plot(fis)
# Similarly to Mamdani, we can also generate stand-alone Julia code
fis_ex = compilefis(fis)
#
eval(fis_ex)
tipper(2, 3)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 2428 | #=
# Build a type-2 inference system
This tutorial explains how to build a type-2 inference system.
The reader is assumed to be familiar with the basic syntax to build a fuzzy system, which
is described in the [Build a Mamdani inference system](@ref) tutorial.
DOWNLOAD_NOTE
## Interval membership function
While a normal membership function associates each element of a fuzzy set ot a membership
degree $\mu \in [0, 1]$, an interval membership function associates each element to an
*interval membership degeee* $\overline{\mu}\subseteq[0, 1]$.
The following example shows how to contruct an interval membership function in the library
and displays the result.
=#
using FuzzyLogic, Plots
mf = 0.7 * TriangularMF(1, 2, 3) .. TriangularMF(0, 2, 4)
plot(mf, -1, 5)
#=
An interval membership function can be constructed using the `..` operator. The left input
is the lower bound and the right input is the upper bound. The expression `0.5 * TriangularMF(1, 2, 3)`
constructs a scaled membership.
## Type-2 inference systems
A type-2 Mamdani system can be built with the [`@mamfis`](@ref) macro, just like type-1, with two differences
- membership functions can be interval membership funcions
- the defuzzifier should be one of the [Type-2 defuzzifiers](@ref)
The following code shows an example of building a type-2 system and performing inference with it.
=#
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = 0.8 * GaussianMF(0.0, 1.2) .. GaussianMF(0.0, 1.5)
good = 0.8 * GaussianMF(5.0, 1.2) .. GaussianMF(5.0, 1.5)
excellent = 0.8 * GaussianMF(10.0, 1.2) .. GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = 0.9 * TrapezoidalMF(-1.8, 0.0, 1.0, 2.8) .. TrapezoidalMF(-2, 0, 1, 3)
delicious = 0.9 * TrapezoidalMF(8, 9, 10, 12) .. TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 0.8 * TriangularMF(1, 5, 9) .. TriangularMF(0, 5, 10)
average = 0.8 * TriangularMF(11, 15, 19) .. TriangularMF(10, 15, 20)
generous = 0.8 * TriangularMF(22, 25, 29) .. TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
defuzzifier = KarnikMendelDefuzzifier()
end
plot(fis)
#-
fis(service = 2, food = 3)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 1444 | module FuzzyLogic
using Dictionaries, Reexport
include("docstrings.jl")
include("intervals.jl")
include("membership_functions.jl")
include("variables.jl")
include("rules.jl")
include("options.jl")
include("InferenceSystem.jl")
include("parser.jl")
include("evaluation.jl")
include("plotting.jl")
include("genfis.jl")
include("tojulia.jl")
include("readwrite.jl")
export DifferenceSigmoidMF, LinearMF, GeneralizedBellMF, GaussianMF, ProductSigmoidMF,
SigmoidMF, SingletonMF, TrapezoidalMF, TriangularMF, SShapeMF, ZShapeMF, PiShapeMF,
SemiEllipticMF, PiecewiseLinearMF, WeightedMF, Type2MF, ..,
ProdAnd, MinAnd, LukasiewiczAnd, DrasticAnd, NilpotentAnd, HamacherAnd, EinsteinAnd,
ProbSumOr, MaxOr, BoundedSumOr, DrasticOr, NilpotentOr, EinsteinOr, HamacherOr,
MinImplication, ProdImplication,
MaxAggregator, ProbSumAggregator,
CentroidDefuzzifier, BisectorDefuzzifier, LeftMaximumDefuzzifier,
RightMaximumDefuzzifier, MeanOfMaximaDefuzzifier,
KarnikMendelDefuzzifier, EKMDefuzzifier, IASCDefuzzifier, EIASCDefuzzifier,
@mamfis, MamdaniFuzzySystem, @sugfis, SugenoFuzzySystem, set,
LinearSugenoOutput, ConstantSugenoOutput,
fuzzy_cmeans,
compilefis,
readfis
## parsers
include("parsers/fcl.jl")
include("parsers/matlab_fis.jl")
include("parsers/fml.jl")
@reexport using .FCLParser
@reexport using .MatlabParser
@reexport using .FMLParser
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 7168 | # Fuzzy Inference System
abstract type AbstractFuzzySystem end
"""
Create a copy of the given fuzzy systems, but with the new settings as specified in the
keyword arguments.
### Inputs
- `fis::AbstractFuzzySystem` -- input fuzzy system
### Keyword arguments
- `kwargs...` -- new settings of the inference system to be tuned
"""
function set(fis::AbstractFuzzySystem; kwargs...)
typeof(fis).name.wrapper(NamedTuple(f => get(kwargs, f, getproperty(fis, f))
for f in fieldnames(typeof(fis)))...)
end
###########
# Mamdani #
###########
"""
Data structure representing a type-1 Mamdani fuzzy inference system.
It can be created using the [`@mamfis`](@ref) macro.
It can be called as a function to evaluate the system at a given input.
The inputs should be given as keyword arguments.
$(TYPEDFIELDS)
# Extended help
### Example
```jldoctest; filter=r"Dictionaries\\."
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
fis(service=1, food=2)
# output
1-element Dictionaries.Dictionary{Symbol, Float64}
:tip │ 5.558585929783786
```
"""
Base.@kwdef struct MamdaniFuzzySystem{And <: AbstractAnd, Or <: AbstractOr,
Impl <: AbstractImplication,
Aggr <: AbstractAggregator,
Defuzz <: AbstractDefuzzifier,
R <: AbstractRule} <: AbstractFuzzySystem
"name of the system."
name::Symbol
"input variables and corresponding domain."
inputs::Dictionary{Symbol, Variable} = Dictionary{Symbol, Variable}()
"output variables and corresponding domain."
outputs::Dictionary{Symbol, Variable} = Dictionary{Symbol, Variable}()
"inference rules."
rules::Vector{R} = FuzzyRule[]
"method used to compute conjuction in rules, default [`MinAnd`](@ref)."
and::And = MinAnd()
"method used to compute disjunction in rules, default [`MaxOr`](@ref)."
or::Or = MaxOr()
"method used to compute implication in rules, default [`MinImplication`](@ref)"
implication::Impl = MinImplication()
"method used to aggregate fuzzy outputs, default [`MaxAggregator`](@ref)."
aggregator::Aggr = MaxAggregator()
"method used to defuzzify the result, default [`CentroidDefuzzifier`](@ref)."
defuzzifier::Defuzz = CentroidDefuzzifier()
end
implication(fis::MamdaniFuzzySystem) = fis.implication
print_title(io::IO, s::String) = println(io, "\n$s\n", repeat('-', length(s)))
function Base.show(io::IO, fis::AbstractFuzzySystem)
print(io, fis.name, "\n")
if !isempty(fis.inputs)
print_title(io, "Inputs:")
for (name, var) in pairs(fis.inputs)
println(io, name, " ∈ ", domain(var), " with membership functions:")
for (name, mf) in pairs(memberships(var))
println(io, " ", name, " = ", mf)
end
println(io)
end
end
if !isempty(fis.outputs)
print_title(io, "Outputs:")
for (name, var) in pairs(fis.outputs)
println(io, name, " ∈ ", domain(var), " with membership functions:")
for (name, mf) in pairs(memberships(var))
println(io, " ", name, " = ", mf)
end
println(io)
end
end
if !isempty(fis.rules)
print_title(io, "Inference rules:")
for rule in fis.rules
println(io, rule)
end
println(io)
end
settings = setdiff(fieldnames(typeof(fis)), (:name, :inputs, :outputs, :rules))
if !isempty(settings)
print_title(io, "Settings:")
for setting in settings
println(io, "- ", getproperty(fis, setting))
end
end
end
##########
# SUGENO #
##########
"""
Data structure representing a type-1 Sugeno fuzzy inference system.
It can be created using the [`@sugfis`](@ref) macro.
It can be called as a function to evaluate the system at a given input.
The inputs should be given as keyword arguments.
$(TYPEDFIELDS)
"""
Base.@kwdef struct SugenoFuzzySystem{And <: AbstractAnd, Or <: AbstractOr,
R <: AbstractRule} <: AbstractFuzzySystem
"name of the system."
name::Symbol
"input variables and corresponding domain."
inputs::Dictionary{Symbol, Variable} = Dictionary{Symbol, Variable}()
"output variables and corresponding domain."
outputs::Dictionary{Symbol, Variable} = Dictionary{Symbol, Variable}()
"inference rules."
rules::Vector{R} = FuzzyRule[]
"method used to compute conjuction in rules, default [`MinAnd`](@ref)."
and::And = ProdAnd()
"method used to compute disjunction in rules, default [`MaxOr`](@ref)."
or::Or = ProbSumOr()
end
const SETTINGS = (MamdaniFuzzySystem = (:and, :or, :implication, :aggregator,
:defuzzifier),
SugenoFuzzySystem = (:and, :or))
# sugeno output functions
abstract type AbstractSugenoOutputFunction <: AbstractPredicate end
"""
Represents constant output in Sugeno inference systems.
$(TYPEDFIELDS)
"""
struct ConstantSugenoOutput{T <: Real} <: AbstractSugenoOutputFunction
"value of the constant output."
c::T
end
(csmf::ConstantSugenoOutput)(inputs) = csmf.c
(csmf::ConstantSugenoOutput)(; inputs...) = csmf.c
Base.show(io::IO, csmf::ConstantSugenoOutput) = print(io, csmf.c)
"""
Represents an output variable that has a first-order polynomial relation on the inputs.
Used for Sugeno inference systems.
$(TYPEDFIELDS)
"""
struct LinearSugenoOutput{T} <: AbstractSugenoOutputFunction
"coefficients associated with each input variable."
coeffs::Dictionary{Symbol, T}
"offset of the output."
offset::T
end
function Base.:(==)(m1::LinearSugenoOutput, m2::LinearSugenoOutput)
m1.offset == m2.offset && m1.coeffs == m2.coeffs
end
function (fsmf::LinearSugenoOutput)(inputs)
sum(val * fsmf.coeffs[name] for (name, val) in pairs(inputs)) + fsmf.offset
end
(fsmf::LinearSugenoOutput)(; inputs...) = fsmf(inputs)
function Base.show(io::IO, lsmf::LinearSugenoOutput)
started = false
for (var, c) in pairs(lsmf.coeffs)
iszero(c) && continue
if started
print(io, c < 0 ? " - " : " + ", isone(abs(c)) ? "" : abs(c), var)
else
print(io, isone(c) ? "" : c, var)
end
started = true
end
if started
iszero(lsmf.offset) || print(io, lsmf.offset < 0 ? " - " : " + ", abs(lsmf.offset))
else
print(io, lsmf.offset)
end
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 356 | ## Docstring Templates
using DocStringExtensions
@template (FUNCTIONS, METHODS, MACROS) = """
$(TYPEDSIGNATURES)
$(DOCSTRING)
"""
@template TYPES = """
$(TYPEDEF)
$(DOCSTRING)
"""
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 2835 | # utilities to evaluate a fuzzy inference system
function (fr::FuzzyRelation)(fis::AbstractFuzzySystem,
inputs::T) where {T <: NamedTuple}
memberships(fis.inputs[fr.subj])[fr.prop](inputs[fr.subj])
end
function (fr::FuzzyNegation)(fis::AbstractFuzzySystem,
inputs::T)::float(eltype(T)) where {T <: NamedTuple}
1 - memberships(fis.inputs[fr.subj])[fr.prop](inputs[fr.subj])
end
function (fa::FuzzyAnd)(fis::AbstractFuzzySystem, inputs)
fis.and(fa.left(fis, inputs), fa.right(fis, inputs))
end
function (fo::FuzzyOr)(fis::AbstractFuzzySystem, inputs)
fis.or(fo.left(fis, inputs), fo.right(fis, inputs))
end
function (fis::MamdaniFuzzySystem)(inputs::T) where {T <: NamedTuple}
Npoints = fis.defuzzifier.N + 1
S = outputtype(typeof(fis.defuzzifier), T)
res = Dictionary{Symbol, Vector{S}}(keys(fis.outputs),
[zeros(S, Npoints) for _ in 1:length(fis.outputs)])
@inbounds for rule in fis.rules
w = rule.antecedent(fis, inputs)
for con in rule.consequent
var = fis.outputs[con.subj]
l, h = low(var.domain), high(var.domain)
mf = map(var.mfs[con.prop], LinRange(l, h, Npoints))
ruleres = scale(map(Base.Fix1(implication(fis), w), mf), rule)
res[con.subj] = broadcast(fis.aggregator, res[con.subj], ruleres)
end
end
Dictionary{Symbol, float(S)}(keys(fis.outputs), map(zip(res, fis.outputs)) do (y, var)
fis.defuzzifier(y, var.domain)
end)
end
(fis::MamdaniFuzzySystem)(; inputs...) = fis(values(inputs))
@inline function (fis::MamdaniFuzzySystem)(inputs::Union{AbstractVector, Tuple})
fis((; zip(collect(keys(fis.inputs)), inputs)...))
end
function (fis::SugenoFuzzySystem)(inputs::T) where {T <: NamedTuple}
S = float(eltype(T))
res = Dictionary{Symbol, Union{S, Interval{S}}}(keys(fis.outputs),
zeros(float(eltype(T)),
length(fis.outputs)))
weights_sum = zero(S)
for rule in fis.rules
w = scale(rule.antecedent(fis, inputs), rule)
weights_sum += w
for con in rule.consequent
res[con.subj] += w * memberships(fis.outputs[con.subj])[con.prop](inputs)
end
end
map(Base.Fix2(/, weights_sum), res)
end
(fis::SugenoFuzzySystem)(; inputs...) = fis(values(inputs))
@inline function (fis::SugenoFuzzySystem)(inputs::Union{AbstractVector, Tuple})
fis((; zip(collect(keys(fis.inputs)), inputs)...))
end
outputtype(::Type{T}, S) where {T <: AbstractDefuzzifier} = float(eltype(S))
outputtype(::Type{T}, S) where {T <: Type2Defuzzifier} = Interval{float(eltype(S))}
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 1869 | """
Performs fuzzy clustering on th data `X` using `N` clusters.
### Input
- `X` -- ``d × M`` matrix of data, each column is a data point
- `N` -- number of clusters used.
### Keyword argumes
- `m` -- exponent of the fuzzy membership function, default `2.0`
- `maxiter` -- maximum number of iterations, default `100`
- `tol` -- absolute error for stopping condition. Stop if ``|Eₖ - Eₖ₊₁|≤tol``, where ``Eₖ``
is the cost function value at the ``k``:th iteration.
### Output
- `C` -- ``d × N``matrix of centers, each column is the center of a cluster.
- `U` -- ``M × N`` matrix of membership degrees, `Uᵢⱼ`` tells has the membership degree of
the ``j``th point to the ``i``th cluster.
"""
function fuzzy_cmeans(X::Matrix{T}, N::Int; m = 2.0, maxiter = 100,
tol = 1e-5) where {T <: Real}
m > 1 || throw(ArgumentError("m must be greater than 1"))
e = 1 / (m - 1)
M = size(X, 2)
U = rand(float(T), M, N)
C = X * U .^ m ./ sum(U .^ m; dims = 1)
J = zero(float(T))
@inbounds for (j, cj) in enumerate(eachcol(C))
for (i, xi) in enumerate(eachcol(X))
J += U[i, j]^m * sum(abs2(k) for k in xi - cj)
end
end
@inbounds for i in 1:maxiter
for (j, cj) in enumerate(eachcol(C))
for (i, xi) in enumerate(eachcol(X))
U[i, j] = 1 /
sum(sum(abs2.(xi - cj)) / sum(abs2.(xi - ck))
for ck in eachcol(C))^e
end
end
C .= X * U .^ m ./ sum(U .^ m; dims = 1)
Jnew = zero(float(T))
for (j, cj) in enumerate(eachcol(C))
for (i, xi) in enumerate(eachcol(X))
Jnew += U[i, j]^m * sum(abs2(k) for k in xi - cj)
end
end
abs(J - Jnew) <= tol && break
J = Jnew
end
return C, U
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 1382 | struct Interval{T <: Real}
lo::T
hi::T
end
inf(a::Interval) = a.lo
sup(a::Interval) = a.hi
inf(a::Real) = a
sup(a::Real) = a
mid(a::Interval) = (a.lo + a.hi) / 2
mid(a::Real) = a
diam(a::Interval) = a.hi - a.lo
diam(x::Real) = zero(x)
Base.convert(::Type{Interval{T}}, x::Real) where {T <: Real} = Interval(T(x), T(x))
Base.float(::Type{Interval{T}}) where {T <: Real} = T
Base.:+(a::Interval) = a
Base.:-(a::Interval) = Interval(-a.hi, -a.lo)
Base.:+(a::Interval, b::Interval) = Interval(a.lo + b.lo, a.hi + b.hi)
Base.:-(a::Interval, b::Interval) = Interval(a.lo - b.hi, a.hi - b.lo)
function Base.:*(a::Interval, b::Interval)
Interval(extrema((a.lo * b.lo, a.lo * b.hi, a.hi * b.lo, a.hi * b.hi))...)
end
function Base.:/(a::Interval, b::Interval)
Interval(extrema((a.lo / b.lo, a.lo / b.hi, a.hi / b.lo, a.hi / b.hi))...)
end
Base.min(a::Interval, b::Interval) = Interval(min(a.lo, b.lo), min(a.hi, b.hi))
Base.max(a::Interval, b::Interval) = Interval(max(a.lo, b.lo), max(a.hi, b.hi))
Base.zero(::Type{Interval{T}}) where {T <: Real} = Interval(zero(T), zero(T))
for op in (:+, :-, :*, :/, :min, :max)
@eval Base.$op(a::Interval, b::Real) = $op(a, Interval(b, b))
@eval Base.$op(a::Real, b::Interval) = $op(Interval(a, a), b)
end
function Base.:≈(a::Interval, b::Interval; kwargs...)
≈(a.lo, b.lo; kwargs...) && ≈(a.hi, b.hi; kwargs...)
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 8073 | # Membership functions
abstract type AbstractPredicate end
abstract type AbstractMembershipFunction <: AbstractPredicate end
"""
Singleton membership function. Equal to one at a single point and zero elsewhere.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = SingletonMF(4)
```
"""
struct SingletonMF{T <: Real} <: AbstractMembershipFunction
"Point at which the membership function has value 1."
c::T
end
(mf::SingletonMF)(x::Real) = mf.c == x ? one(x) : zero(x)
"""
Generalized Bell membership function ``\\frac{1}{1+\\vert\\frac{x-c}{a}\\vert^{2b}}``.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = GeneralizedBellMF(2, 4, 5)
```
"""
struct GeneralizedBellMF{T <: Real, S <: Real} <: AbstractMembershipFunction
"Width of the curve, the bigger the wider."
a::T
"Slope of the curve, the bigger the steeper."
b::S
"Center of the curve."
c::T
end
(mf::GeneralizedBellMF)(x) = 1 / (1 + abs((x - mf.c) / mf.a)^(2mf.b))
"""
Gaussian membership function ``e^{-\\frac{(x-μ)²}{2σ²}}``.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = GaussianMF(5.0, 1.5)
```
"""
struct GaussianMF{T <: Real} <: AbstractMembershipFunction
"mean ``μ``."
mu::T
"standard deviation ``σ``."
sig::T
end
(mf::GaussianMF)(x) = exp(-(x - mf.mu)^2 / (2mf.sig^2))
"""
Triangular membership function.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = TriangularMF(3, 5, 7)
```
"""
struct TriangularMF{T <: Real} <: AbstractMembershipFunction
"left foot."
a::T
"peak."
b::T
"right foot."
c::T
end
(mf::TriangularMF)(x) = max(min((x - mf.a) / (mf.b - mf.a), (mf.c - x) / (mf.c - mf.b)), 0)
"""
Trapezoidal membership function.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = TrapezoidalMF(1, 3, 7, 9)
```
"""
struct TrapezoidalMF{T <: Real} <: AbstractMembershipFunction
"left foot."
a::T
"left shoulder."
b::T
"right shoulder."
c::T
"right foot."
d::T
end
function (mf::TrapezoidalMF)(x)
return max(min((x - mf.a) / (mf.b - mf.a), 1, (mf.d - x) / (mf.d - mf.c)), 0)
end
"""
Linear membership function.
If ``a < b``, it is increasing (S-shaped), otherwise it is decreasing (Z-shaped).
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = LinearMF(2, 8)
```
"""
struct LinearMF{T <: Real} <: AbstractMembershipFunction
"foot."
a::T
"shoulder."
b::T
end
(mf::LinearMF)(x) = max(min((x - mf.a) / (mf.b - mf.a), 1), 0)
"""
Sigmoid membership function ``\\frac{1}{1+e^{-a(x-c)}}``.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = SigmoidMF(2, 5)
```
"""
struct SigmoidMF{T <: Real} <: AbstractMembershipFunction
"parameter controlling the slope of the curve."
a::T
"center of the slope."
c::T
end
(mf::SigmoidMF)(x) = 1 / (1 + exp(-mf.a * (x - mf.c)))
"""
Difference of two sigmoids. See also [`SigmoidMF`](@ref).
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = DifferenceSigmoidMF(5, 2, 5, 7)
```
"""
struct DifferenceSigmoidMF{T <: Real} <: AbstractMembershipFunction
"slope of the first sigmoid."
a1::T
"center of the first sigmoid."
c1::T
"slope of the second sigmoid."
a2::T
"center of the second sigmoid."
c2::T
end
function (mf::DifferenceSigmoidMF)(x)
return max(min(1 / (1 + exp(-mf.a1 * (x - mf.c1))) -
1 / (1 + exp(-mf.a2 * (x - mf.c2))), 1), 0)
end
"""
Product of two sigmoids. See also [`SigmoidMF`](@ref).
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = ProductSigmoidMF(2, 3, -5, 8)
```
"""
struct ProductSigmoidMF{T <: Real} <: AbstractMembershipFunction
"slope of the first sigmoid."
a1::T
"center of the first sigmoid."
c1::T
"slope of the second sigmoid."
a2::T
"center of the second sigmoid."
c2::T
end
function (mf::ProductSigmoidMF)(x)
return 1 / ((1 + exp(-mf.a1 * (x - mf.c1))) * (1 + exp(-mf.a2 * (x - mf.c2))))
end
"""
S-shaped membership function.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = SShapeMF(1, 8)
```
"""
struct SShapeMF{T <: Real} <: AbstractMembershipFunction
"foot."
a::T
"shoulder."
b::T
end
function (s::SShapeMF)(x::T) where {T <: Real}
x <= s.a && return zero(float(T))
x >= s.b && return one(float(T))
x >= (s.a + s.b) / 2 && return 1 - 2 * ((x - s.b) / (s.b - s.a))^2
return 2 * ((x - s.a) / (s.b - s.a))^2
end
"""
Z-shaped membership function.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = ZShapeMF(3, 7)
```
"""
struct ZShapeMF{T <: Real} <: AbstractMembershipFunction
"shoulder."
a::T
"foot."
b::T
end
function (z::ZShapeMF)(x::T) where {T <: Real}
x <= z.a && return one(float(T))
x >= z.b && return zero(float(T))
x >= (z.a + z.b) / 2 && return 2 * ((x - z.b) / (z.b - z.a))^2
return 1 - 2 * ((x - z.a) / (z.b - z.a))^2
end
"""
Π-shaped membership function.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = PiShapeMF(1, 4, 5, 10)
```
"""
struct PiShapeMF{T <: Real} <: AbstractMembershipFunction
"left foot."
a::T
"left shoulder."
b::T
"right shoulder."
c::T
"right foot."
d::T
end
function (p::PiShapeMF)(x::T) where {T <: Real}
(x <= p.a || x >= p.d) && return zero(float(T))
p.b <= x <= p.c && return one(float(T))
x <= (p.a + p.b) / 2 && return 2 * ((x - p.a) / (p.b - p.a))^2
x <= p.b && return 1 - 2 * ((x - p.b) / (p.b - p.a))^2
x <= (p.c + p.d) / 2 && return 1 - 2 * ((x - p.c) / (p.d - p.c))^2
return 2 * ((x - p.d) / (p.d - p.c))^2
end
"""
Semi-elliptic membership function.
### Fields
$(TYPEDFIELDS)
### Example
```julia
mf = SemiEllipticMF(5.0, 4.0)
```
"""
struct SemiEllipticMF{T <: Real} <: AbstractMembershipFunction
"center."
cd::T
"semi-axis."
rd::T
end
function (semf::SemiEllipticMF)(x::Real)
cd, rd = semf.cd, semf.rd
cd - rd <= x <= cd + rd || return zero(x)
sqrt(1 - (cd - x)^2 / rd^2)
end
"""
Piecewise linear membership function.
### Fields
$(TYPEDFIELDS)
### Notes
If the input is between two points, its membership degree is computed by linear interpolation.
If the input is before the first point, it has the same membership degree of the first point.
If the input is after the last point, it has the same membership degree of the first point.
### Example
```julia
mf = PiecewiseLinearMF([(1, 0), (2, 1), (3, 0), (4, 0.5), (5, 0), (6, 1)])
```
"""
struct PiecewiseLinearMF{T <: Real, S <: Real} <: AbstractMembershipFunction
points::Vector{Tuple{T, S}}
end
function (plmf::PiecewiseLinearMF)(x::Real)
x <= plmf.points[1][1] && return float(plmf.points[1][2])
x >= plmf.points[end][1] && return float(plmf.points[end][2])
idx = findlast(p -> x >= p[1], plmf.points)
x1, y1 = plmf.points[idx]
x2, y2 = plmf.points[idx + 1]
(y2 - y1) / (x2 - x1) * (x - x1) + y1
end
# TODO: more robust soultion for all mfs
Base.:(==)(mf1::PiecewiseLinearMF, mf2::PiecewiseLinearMF) = mf1.points == mf2.points
"""
A membership function scaled by a parameter ``0 ≤ w ≤ 1``.
$(TYPEDFIELDS)
### Example
```julia
mf = 0.5 * TriangularMF(1, 2, 3)
```
"""
struct WeightedMF{MF <: AbstractMembershipFunction, T <: Real} <: AbstractMembershipFunction
"membership function."
mf::MF
"scaling factor."
w::T
end
(wmf::WeightedMF)(x) = wmf.w * wmf.mf(x)
Base.show(io::IO, wmf::WeightedMF) = print(io, wmf.w, wmf.mf)
Base.:*(w::Real, mf::AbstractMembershipFunction) = WeightedMF(mf, w)
Base.:*(mf::AbstractMembershipFunction, w::Real) = WeightedMF(mf, w)
"""
A type-2 membership function.
$(TYPEDFIELDS)
### Example
```julia
mf = 0.7 * TriangularMF(3, 5, 7) .. TriangularMF(1, 5, 9)
```
"""
struct Type2MF{MF1 <: AbstractMembershipFunction, MF2 <: AbstractMembershipFunction} <:
AbstractMembershipFunction
"lower membership function."
lo::MF1
"upper membership function."
hi::MF2
end
(mf2::Type2MF)(x) = Interval(mf2.lo(x), mf2.hi(x))
..(mf1::AbstractMembershipFunction, mf2::AbstractMembershipFunction) = Type2MF(mf1, mf2)
Base.show(io::IO, mf2::Type2MF) = print(io, mf2.lo, " .. ", mf2.hi)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 14623 | # Fuzzy inference system options
abstract type AbstractFISSetting end
## T-Norms
abstract type AbstractAnd <: AbstractFISSetting end
"""
Minimum T-norm defining conjuction as ``A ∧ B = \\min(A, B)``.
"""
struct MinAnd <: AbstractAnd end
(ma::MinAnd)(x, y) = min(x, y)
"""
Product T-norm defining conjuction as ``A ∧ B = AB``.
"""
struct ProdAnd <: AbstractAnd end
(pa::ProdAnd)(x, y) = x * y
"""
Lukasiewicz T-norm defining conjuction as ``A ∧ B = \\max(0, A + B - 1)``.
"""
struct LukasiewiczAnd <: AbstractAnd end
(la::LukasiewiczAnd)(x, y) = max(0, x + y - 1)
"""
Drastic T-norm defining conjuction as ``A ∧ B = \\min(A, B)`` is ``A = 1`` or ``B = 1`` and
``A ∧ B = 0`` otherwise.
"""
struct DrasticAnd <: AbstractAnd end
function (da::DrasticAnd)(x::T, y::S) where {T <: Real, S <: Real}
TS = promote_type(T, S)
isone(x) && return TS(y)
isone(y) && return TS(x)
zero(TS)
end
"""
Nilpotent T-norm defining conjuction as ``A ∧ B = \\min(A, B)`` when ``A + B > 1`` and
``A ∧ B = 0`` otherwise.
"""
struct NilpotentAnd <: AbstractAnd end
function (na::NilpotentAnd)(x::T, y::S) where {T <: Real, S <: Real}
m = min(x, y)
x + y > 1 && return m
return zero(m)
end
"""
Hamacher T-norm defining conjuction as ``A ∧ B = \\frac{AB}{A + B - AB}`` if ``A \\neq 0 \\neq B``
and ``A ∧ B = 0`` otherwise.
"""
struct HamacherAnd <: AbstractAnd end
function (ha::HamacherAnd)(x::T, y::S) where {T <: Real, S <: Real}
iszero(x) && iszero(y) && return zero(float(promote_type(T, S)))
(x * y) / (x + y - x * y)
end
"""
Einstein T-norm defining conjuction as ``A ∧ B = \\frac{AB}{2 - A - B + AB}``.
"""
struct EinsteinAnd <: AbstractAnd end
(ha::EinsteinAnd)(x::Real, y::Real) = (x * y) / (2 - x - y + x * y)
## S-Norms
abstract type AbstractOr <: AbstractFISSetting end
"""
Maximum S-norm defining disjunction as ``A ∨ B = \\max(A, B)``.
"""
struct MaxOr <: AbstractOr end
(mo::MaxOr)(x, y) = max(x, y)
"""
Probabilistic sum S-norm defining disjunction as ``A ∨ B = A + B - AB``.
"""
struct ProbSumOr <: AbstractOr end
(pso::ProbSumOr)(x, y) = x + y - x * y
"""
Bounded sum S-norm defining disjunction as ``A ∨ B = \\min(1, A + B)``.
"""
struct BoundedSumOr <: AbstractOr end
(la::BoundedSumOr)(x, y) = min(1, x + y)
"""
Drastic S-norm defining disjunction as ``A ∨ B = \\min(1, A + B)``.
"""
struct DrasticOr <: AbstractOr end
function (da::DrasticOr)(x::T, y::S) where {T <: Real, S <: Real}
TS = promote_type(T, S)
iszero(x) && return TS(y)
iszero(y) && return TS(x)
one(TS)
end
"""
Nilpotent S-norm defining disjunction as ``A ∨ B = \\max(A, B)`` when ``A + B < 1`` and
``A ∧ B = 1`` otherwise.
"""
struct NilpotentOr <: AbstractOr end
function (na::NilpotentOr)(x::T, y::S) where {T <: Real, S <: Real}
m = max(x, y)
x + y < 1 && return m
return one(m)
end
"""
Einstein S-norm defining disjunction as ``A ∨ B = \\frac{A + B}{1 + AB}``.
"""
struct EinsteinOr <: AbstractOr end
(ha::EinsteinOr)(x, y) = (x + y) / (1 + x * y)
"""
Hamacher S-norm defining conjuction as ``A ∨ B = \\frac{A + B - AB}{1 - AB}`` if ``A \\neq 1 \\neq B``
and ``A ∨ B = 1`` otherwise.
"""
struct HamacherOr <: AbstractOr end
function (ha::HamacherOr)(x::T, y::S) where {T <: Real, S <: Real}
isone(x) && isone(y) && return one(float(promote_type(T, S)))
(x + y - 2 * x * y) / (1 - x * y)
end
## Implication
abstract type AbstractImplication <: AbstractFISSetting end
"""
Minimum implication defined as ``A → B = \\min(A, B)``.
"""
struct MinImplication <: AbstractImplication end
(mini::MinImplication)(x, y) = min(x, y)
"""
Product implication defined as ``A → B = AB``.
"""
struct ProdImplication <: AbstractImplication end
(pim::ProdImplication)(x, y) = x * y
## Aggregation
abstract type AbstractAggregator <: AbstractFISSetting end
"""
Aggregator that combines fuzzy rules output by taking their maximum.
"""
struct MaxAggregator <: AbstractAggregator end
(ma::MaxAggregator)(x, y) = max(x, y)
"""
Aggregator that combines fuzzy rules output by taking their probabilistic sum.
See also [`ProbSumOr`](@ref).
"""
struct ProbSumAggregator <: AbstractAggregator end
(psa::ProbSumAggregator)(x, y) = x + y - x * y
## Defuzzification
abstract type AbstractDefuzzifier <: AbstractFISSetting end
"""
Centroid defuzzifier. Given the aggregated output function ``f`` and the output
variable domain ``[a, b]`` the defuzzified output is the centroid computed as
```math
\\frac{∫_a^bxf(x)\\textrm{d}x}{∫_a^bf(x)\\textrm{d}x}.
```
### Parameters
$(TYPEDFIELDS)
## Algorithm
The integrals are computed numerically using the trapezoidal rule.
"""
struct CentroidDefuzzifier <: AbstractDefuzzifier
"number of subintervals for integration, default 100."
N::Int
end
CentroidDefuzzifier() = CentroidDefuzzifier(100)
function (cd::CentroidDefuzzifier)(y, dom::Domain{T})::float(T) where {T}
dx = (high(dom) - low(dom)) / cd.N
_trapz(dx, LinRange(low(dom), high(dom), cd.N + 1) .* y) / _trapz(dx, y)
end
"""
Bisector defuzzifier. Given the aggregated output function ``f`` and the output
variable domain ``[a, b]`` the defuzzified output is the value ``t ∈ [a, b]`` that divides
the area under ``f`` into two equal parts. That is
```math
∫_a^tf(x)\\textrm{d}x = ∫_t^af(x)\\textrm{d}x.
```
### Parameters
$(TYPEDFIELDS)
## Algorithm
The domain is partitioned into N equal subintervals. For each subinterval endpoint, the left
and right area are approximated using the trapezoidal rule.
The end point leading to the best approximation is the final result.
"""
struct BisectorDefuzzifier <: AbstractDefuzzifier
"number of subintervals for integration, default 100."
N::Int
end
BisectorDefuzzifier() = BisectorDefuzzifier(100)
function (bd::BisectorDefuzzifier)(y, dom::Domain{T})::float(T) where {T}
area_left = zero(T)
h = (high(dom) - low(dom)) / bd.N
area_right = _trapz(h, y)
cand = LinRange(low(dom), high(dom), bd.N + 1)
i = firstindex(y)
while area_left < area_right
trap = (y[i] + y[i + 1]) * h / 2
area_left += trap
area_right -= trap
i += 1
end
(y[i - 1] + y[i]) * h / 2 >= area_left - area_right ? cand[i] : cand[i - 1]
end
"""
Left maximum defuzzifier. Returns the smallest value in the domain for which the membership function
reaches its maximum.
### Parameters
$(TYPEDFIELDS)
"""
Base.@kwdef struct LeftMaximumDefuzzifier <: AbstractDefuzzifier
"number of subintervals, default 100."
N::Int = 100
"absolute tolerance to determine if a value is maximum, default `eps(Float64)`."
tol::Float64 = eps(Float64)
end
function (lmd::LeftMaximumDefuzzifier)(y, dom::Domain{T}) where {T}
res = float(low(dom))
maxval = first(y)
for (xi, yi) in zip(LinRange(low(dom), high(dom), lmd.N + 1), y)
if yi > maxval + lmd.tol
res = xi
maxval = yi
end
end
res
end
"""
Right maximum defuzzifier. Returns the largest value in the domain for which the membership function
reaches its maximum.
### Parameters
$(TYPEDFIELDS)
"""
Base.@kwdef struct RightMaximumDefuzzifier <: AbstractDefuzzifier
"number of subintervals, default 100."
N::Int = 100
"absolute tolerance to determine if a value is maximum, default `eps(Float64)`."
tol::Float64 = eps(Float64)
end
function (lmd::RightMaximumDefuzzifier)(y, dom::Domain{T}) where {T}
res = float(low(dom))
maxval = first(y)
for (xi, yi) in zip(LinRange(low(dom), high(dom), lmd.N + 1), y)
if yi >= maxval - lmd.tol
res = xi
maxval = yi
end
end
res
end
"""
Mean of maxima defuzzifier. Returns the mean of the values in the domain for which the
membership function reaches its maximum.
### Parameters
$(TYPEDFIELDS)
"""
Base.@kwdef struct MeanOfMaximaDefuzzifier <: AbstractDefuzzifier
"number of subintervals, default 100."
N::Int = 100
"absolute tolerance to determine if a value is maximum, default `eps(Float64)`."
tol::Float64 = eps(Float64)
end
function (lmd::MeanOfMaximaDefuzzifier)(y, dom::Domain{T}) where {T}
res = zero(float(T))
maxcnt = 0
maxval = first(y)
for (xi, yi) in zip(LinRange(low(dom), high(dom), lmd.N + 1), y)
if yi - maxval > lmd.tol # reset mean calculation
res = xi
maxval = yi
maxcnt = 1
elseif abs(yi - maxval) <= lmd.tol
res += xi
maxcnt += 1
end
end
return res / maxcnt
end
_trapz(dx, y) = (2sum(y) - first(y) - last(y)) * dx / 2
abstract type Type2Defuzzifier <: AbstractDefuzzifier end
"""
Karnik-Mendel type-reduction/defuzzification algorithm for Type-2 fuzzy systems.
### Parameters
$(TYPEDFIELDS)
# Extended help
The algorithm was introduced in
- Karnik, Nilesh N., and Jerry M. Mendel. ‘Centroid of a Type-2 Fuzzy Set’. Information Sciences 132, no. 1–4 (February 2001): 195–220
"""
Base.@kwdef struct KarnikMendelDefuzzifier <: Type2Defuzzifier
"number of subintervals for integration, default 100."
N::Int = 100
"maximum number of iterations, default 100."
maxiter::Int = 100
"absolute tolerance for stopping iterations"
atol::Float64 = 1e-6
end
function (kmd::KarnikMendelDefuzzifier)(w, dom::Domain{T})::float(T) where {T}
x = LinRange(low(dom), high(dom), length(w))
m = map(mid, w)
x0 = sum(xi * mi for (xi, mi) in zip(x, m)) / sum(m)
xl = x0
xr = x0
idx = searchsortedlast(x, x0)
@inbounds for _ in 1:(kmd.maxiter)
num = zero(eltype(m))
den = zero(eltype(m))
for i in firstindex(x):idx
den += sup(w[i])
num += sup(w[i]) * x[i]
end
for i in (idx + 1):length(x)
den += inf(w[i])
num += inf(w[i]) * x[i]
end
cand = num / den
if abs(cand - xl) <= kmd.atol
xl = cand
break
end
xl = cand
idx = searchsortedlast(x, xl)
end
@inbounds for _ in 1:(kmd.maxiter)
num = zero(eltype(m))
den = zero(eltype(m))
for i in firstindex(x):idx
den += inf(w[i])
num += inf(w[i]) * x[i]
end
for i in (idx + 1):length(x)
den += sup(w[i])
num += sup(w[i]) * x[i]
end
cand = num / den
if abs(cand - xr) <= kmd.atol
xr = cand
break
end
xr = cand
idx = searchsortedlast(x, xr)
end
return (xl + xr) / 2
end
"""
Enhanced Karnik-Mendel type-reduction/defuzzification algorithm for Type-2 fuzzy systems.
### Parameters
$(TYPEDFIELDS)
# Extended help
The algorithm was introduced in
- Wu, D. and J.M. Mendel, "Enhanced Karnik-Mendel algorithms," IEEE Transactions on Fuzzy Systems, vol. 17, pp. 923-934. (2009)
"""
Base.@kwdef struct EKMDefuzzifier <: Type2Defuzzifier
"number of subintervals for integration, default 100."
N::Int = 100
"maximum number of iterations, default 100."
maxiter::Int = 100
end
function (ekmd::EKMDefuzzifier)(w, dom::Domain{T})::float(T) where {T}
Np = length(w)
x = LinRange(low(dom), high(dom), Np)
k = round(Int, Np / 2.4)
a = sum(x[i] * sup(w[i]) for i in 1:k) + sum(x[i] * inf(w[i]) for i in (k + 1):Np)
b = sum(sup(w[i]) for i in 1:k) + sum(inf(w[i]) for i in (k + 1):Np)
yl = a / b
@inbounds for _ in 1:(ekmd.maxiter)
knew = searchsortedlast(x, yl)
k == knew && break
s = sign(knew - k)
a += s * sum(x[i] * diam(w[i]) for i in (min(k, knew) + 1):max(k, knew))
b += s * sum(diam(w[i]) for i in (min(k, knew) + 1):max(k, knew))
yl = a / b
k = knew
end
k = round(Int, Np / 1.7)
a = sum(x[i] * inf(w[i]) for i in 1:k) + sum(x[i] * sup(w[i]) for i in (k + 1):Np)
b = sum(inf(w[i]) for i in 1:k) + sum(sup(w[i]) for i in (k + 1):Np)
yr = a / b
@inbounds for _ in 1:(ekmd.maxiter)
knew = searchsortedlast(x, yr)
k == knew && break
s = sign(knew - k)
a -= s * sum(x[i] * diam(w[i]) for i in (min(k, knew) + 1):max(k, knew))
b -= s * sum(diam(w[i]) for i in (min(k, knew) + 1):max(k, knew))
yr = a / b
k = knew
end
return (yl + yr) / 2
end
"""
Defuzzifier for type-2 inference systems using Iterative Algorithm with Stopping Condition (IASC).
### PARAMETERS
$(TYPEDFIELDS)
# Extended help
The algorithm was introduced in
- Duran, K., H. Bernal, and M. Melgarejo, "Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set," Annual Meeting of the North American Fuzzy Information Processing Society, pp. 190-194. (2008)
"""
Base.@kwdef struct IASCDefuzzifier <: Type2Defuzzifier
"number of subintervals for integration, default 100."
N::Int = 100
end
function (iasc::IASCDefuzzifier)(w, dom::Domain{T})::float(T) where {T}
Np = length(w)
x = LinRange(low(dom), high(dom), Np)
a = sum(xi * inf(wi) for (xi, wi) in zip(x, w))
b = sum(inf, w)
yl = last(x)
@inbounds for (xi, wi) in zip(x, w)
a += xi * diam(wi)
b += diam(wi)
c = a / b
c > yl && break
yl = c
end
a = sum(xi * sup(wi) for (xi, wi) in zip(x, w))
b = sum(sup, w)
yr = first(x)
@inbounds for (xi, wi) in zip(x, w)
a -= xi * diam(wi)
b -= diam(wi)
c = a / b
c < yr && break
yr = c
end
return (yl + yr) / 2
end
"""
Defuzzifier for type-2 inference systems using Iterative Algorithm with Stopping Condition (IASC).
### PARAMETERS
$(TYPEDFIELDS)
# Extended help
The algorithm was introduced in
- Wu, D. and M. Nie, "Comparison and practical implementations of type-reduction algorithms for type-2 fuzzy sets and systems," Proceedings of FUZZ-IEEE, pp. 2131-2138 (2011)
"""
Base.@kwdef struct EIASCDefuzzifier <: Type2Defuzzifier
"number of subintervals for integration, default 100."
N::Int = 100
end
function (eiasc::EIASCDefuzzifier)(w, dom::Domain{T})::float(T) where {T}
Np = length(w)
x = LinRange(low(dom), high(dom), Np)
a = sum(xi * inf(wi) for (xi, wi) in zip(x, w))
b = sum(inf, w)
yl = last(x)
@inbounds for (xi, wi) in zip(x, w)
a += xi * diam(wi)
b += diam(wi)
c = a / b
c > yl && break
yl = c
end
a = sum(xi * inf(wi) for (xi, wi) in zip(x, w))
b = sum(inf, w)
yr = first(x)
@inbounds for i in reverse(eachindex(x))
a += x[i] * diam(w[i])
b += diam(w[i])
c = a / b
c < yr && break
yr = c
end
return (yl + yr) / 2
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 10116 | using MacroTools
"""
$(TYPEDSIGNATURES)
Parse julia code into a [`MamdaniFuzzySystem`](@ref). See extended help for an example.
# Extended help
### Example
```jldoctest
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
and = ProdAnd
or = ProbSumOr
implication = ProdImplication
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
aggregator = ProbSumAggregator
defuzzifier = BisectorDefuzzifier
end
# output
tipper
Inputs:
-------
service ∈ [0, 10] with membership functions:
poor = GaussianMF{Float64}(0.0, 1.5)
good = GaussianMF{Float64}(5.0, 1.5)
excellent = GaussianMF{Float64}(10.0, 1.5)
food ∈ [0, 10] with membership functions:
rancid = TrapezoidalMF{Int64}(-2, 0, 1, 3)
delicious = TrapezoidalMF{Int64}(7, 9, 10, 12)
Outputs:
--------
tip ∈ [0, 30] with membership functions:
cheap = TriangularMF{Int64}(0, 5, 10)
average = TriangularMF{Int64}(10, 15, 20)
generous = TriangularMF{Int64}(20, 25, 30)
Inference rules:
----------------
(service is poor ∨ food is rancid) --> tip is cheap
service is good --> tip is average
(service is excellent ∨ food is delicious) --> tip is generous
Settings:
---------
- ProdAnd()
- ProbSumOr()
- ProdImplication()
- ProbSumAggregator()
- BisectorDefuzzifier(100)
```
"""
macro mamfis(ex::Expr)
return _fis(ex, :MamdaniFuzzySystem)
end
"""
$(TYPEDSIGNATURES)
Parse julia code into a [`SugenoFuzzySystem`](@ref). See extended help for an example.
# Extended help
### Example
```jldoctest
fis = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 0
average = food
generous = 2service, food, -2
end
service == poor && food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
# output
tipper
Inputs:
-------
service ∈ [0, 10] with membership functions:
poor = GaussianMF{Float64}(0.0, 1.5)
good = GaussianMF{Float64}(5.0, 1.5)
excellent = GaussianMF{Float64}(10.0, 1.5)
food ∈ [0, 10] with membership functions:
rancid = TrapezoidalMF{Int64}(-2, 0, 1, 3)
delicious = TrapezoidalMF{Int64}(7, 9, 10, 12)
Outputs:
--------
tip ∈ [0, 30] with membership functions:
cheap = 0
average = food
generous = 2service + food - 2
Inference rules:
----------------
(service is poor ∧ food is rancid) --> tip is cheap
service is good --> tip is average
(service is excellent ∨ food is delicious) --> tip is generous
Settings:
---------
- ProdAnd()
- ProbSumOr()
```
"""
macro sugfis(ex::Expr)
return _fis(ex, :SugenoFuzzySystem)
end
function _fis(ex::Expr, type)
@capture ex function name_(argsin__)::({argsout__} | argsout__)
body_
end
argsin, argsout = process_args(argsin), process_args(argsout)
inputs, outputs, opts, rules = parse_body(body, argsin, argsout, type)
fis = :($type(; name = $(QuoteNode(name)), inputs = $inputs,
outputs = $outputs, rules = $rules))
append!(fis.args[2].args, opts)
return fis
end
process_args(x::Symbol) = [x]
function process_args(ex::Expr)
if @capture(ex, x_[start_:stop_])
[Symbol(x, i) for i in start:stop]
else
throw(ArgumentError("invalid expression $ex"))
end
end
process_args(v::Vector) = mapreduce(process_args, vcat, v)
"""
convert a symbol or expression to variable name. A symbol is returned as such.
An expression in the form `:(x[i])` is converted to a symbol `:xi`.
"""
to_var_name(ex::Symbol) = ex
function to_var_name(ex::Expr)
if @capture(ex, x_[i_])
return Symbol(x, eval(i))
else
throw(ArgumentError("Invalid variable name $ex"))
end
end
function parse_variable(var, args)
mfs = :(dictionary([]))
ex = :(Variable())
for arg in args
if @capture(arg, domain=low_:high_)
push!(ex.args, :(Domain($low, $high)))
elseif @capture(arg, mfname_=mfex_)
push!(mfs.args[2].args, :($(QuoteNode(mfname)) => $mfex))
else
throw(ArgumentError("Invalid expression $arg"))
end
end
push!(ex.args, mfs)
return :($(QuoteNode(var)) => $ex)
end
function parse_body(body, argsin, argsout, type)
opts = Expr[]
rules = Expr(:vect)
inputs = :(dictionary([]))
outputs = :(dictionary([]))
for line in body.args
line isa LineNumberNode && continue
parse_line!(inputs, outputs, rules, opts, line, argsin, argsout, type)
end
return inputs, outputs, opts, rules
end
function parse_line!(inputs, outputs, rules, opts, line, argsin, argsout, type)
if @capture(line, var_:=begin args__ end)
var = to_var_name(var)
if var in argsin
push!(inputs.args[2].args, parse_variable(var, args))
elseif var in argsout
# TODO: makes this more scalable
push!(outputs.args[2].args,
type == :SugenoFuzzySystem ? parse_sugeno_output(var, args, argsin) :
parse_variable(var, args))
else
throw(ArgumentError("Undefined variable $var"))
end
elseif @capture(line, for i_ in start_:stop_
sts__
end)
for j in start:stop
for st in sts
ex = MacroTools.postwalk(x -> x == i ? j : x, st)
parse_line!(inputs, outputs, rules, opts, ex, argsin, argsout, type)
end
end
elseif @capture(line, var_=value_)
var in SETTINGS[type] ||
throw(ArgumentError("Invalid keyword $var in line $line"))
push!(opts, Expr(:kw, var, value isa Symbol ? :($value()) : value))
elseif @capture(line, ant_-->(cons__,) * w_Number)
push!(rules.args, parse_rule(ant, cons, w))
elseif @capture(line, ant_-->p_ == q_ * w_Number)
push!(rules.args, parse_rule(ant, [:($p == $q)], w))
elseif @capture(line, ant_-->(cons__,) | cons__)
push!(rules.args, parse_rule(ant, cons))
else
throw(ArgumentError("Invalid expression $line"))
end
end
#################
# RULES PARSING #
#################
function parse_rule(ant, cons, w)
Expr(:call, :WeightedFuzzyRule, parse_antecedent(ant), parse_consequents(cons), w)
end
function parse_rule(ant, cons)
Expr(:call, :FuzzyRule, parse_antecedent(ant), parse_consequents(cons))
end
function parse_antecedent(ant)
if @capture(ant, left_&&right_)
return Expr(:call, :FuzzyAnd, parse_antecedent(left), parse_antecedent(right))
elseif @capture(ant, left_||right_)
return Expr(:call, :FuzzyOr, parse_antecedent(left), parse_antecedent(right))
elseif @capture(ant, subj_==prop_)
return Expr(:call, :FuzzyRelation, QuoteNode(to_var_name(subj)),
QuoteNode(to_var_name(prop)))
elseif @capture(ant, subj_!=prop_)
return Expr(:call, :FuzzyNegation, QuoteNode(to_var_name(subj)),
QuoteNode(to_var_name(prop)))
else
throw(ArgumentError("Invalid premise $ant"))
end
end
function parse_consequents(cons)
newcons = map(cons) do c
@capture(c, subj_==prop_) || throw(ArgumentError("Invalid consequence $c"))
Expr(:call, :FuzzyRelation, QuoteNode(to_var_name(subj)),
QuoteNode(to_var_name(prop)))
end
return Expr(:vect, newcons...)
end
############################
# PARSE SUGENO EXPRESSIONS #
############################
function parse_sugeno_coeffs(exs::Vector, argsin::Vector, mfname::Symbol)
coeffs = :([$([0 for _ in 1:length(argsin)]...)])
offsets = []
for ex in exs
if @capture(ex, c_Number*var_Symbol)
idx = findfirst(==(var), argsin)
isnothing(idx) &&
throw(ArgumentError("Unkonwn variable $var in $mfname definition"))
coeffs.args[idx] = c
elseif ex isa Number
push!(offsets, ex)
elseif ex isa Symbol
idx = findfirst(==(ex), argsin)
isnothing(idx) &&
throw(ArgumentError("Unkonwn variable $ex in $mfname definition"))
coeffs.args[idx] = 1
else
throw(ArgumentError("Invalid expression $ex in $mfname definition"))
end
end
length(offsets) < 2 ||
throw(ArgumentError("multiple constants in $(Expr(:tuple, exs...))"))
coeffs, isempty(offsets) ? 0 : only(offsets)
end
function parse_sugeno_output(var, args, argsin)
mfs = :(dictionary([]))
ex = :(Variable())
inputs = Expr(:vect, map(QuoteNode, argsin)...)
for arg in args
if @capture(arg, domain=low_:high_)
push!(ex.args, :(Domain($low, $high)))
elseif @capture(arg, mfname_=c_Number)
push!(mfs.args[2].args, :($(QuoteNode(mfname)) => $(ConstantSugenoOutput(c))))
elseif @capture(arg, mfname_=(mfex__,) | mfex__)
coeffs, offset = parse_sugeno_coeffs(mfex, argsin, mfname)
mf = :(LinearSugenoOutput(Dictionary($inputs, $coeffs), $offset))
push!(mfs.args[2].args, :($(QuoteNode(mfname)) => $mf))
else
throw(ArgumentError("Invalid expression $arg"))
end
end
push!(ex.args, mfs)
return :($(QuoteNode(var)) => $ex)
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 5618 | using RecipesBase
# plot membership function
@recipe function f(mf::AbstractMembershipFunction, low::Real, high::Real)
legend --> nothing
x -> mf(x), low, high
end
# special case: singleton mf
@recipe function f(mf::SingletonMF, low::Real, high::Real)
legend --> nothing
line --> :stem
marker --> :circle
markersize --> 10
xlims --> (low, high)
[mf.c], [1]
end
@recipe function f(mf::Type2MF, low::Real, high::Real)
legend --> nothing
@series begin
fillrange := x -> mf.hi(x)
fillalpha --> 0.5
linealpha --> 1
linewidth --> 2
x -> mf.lo(x), low, high
end
@series begin
primary := false
linewidth --> 2
x -> mf.hi(x), low, high
end
end
@recipe f(mf::AbstractPredicate, dom::Domain) = mf, low(dom), high(dom)
# plot sugeno membership functions
@recipe function f(mf::ConstantSugenoOutput, low::Real, high::Real)
legend --> nothing
ylims --> (low, high)
yticks --> [low, mf.c, high]
xticks --> nothing
x -> mf(x), low, high
end
@recipe function f(mf::LinearSugenoOutput, low::Real, high::Real)
legend --> nothing
line --> :stem
framestyle --> :origin
x = 1:2:(2 * length(mf.coeffs) + 2)
xticks --> (x, push!(collect(keys(mf.coeffs)), :offset))
xlims --> (0, x[end] + 1)
x, push!(collect(mf.coeffs), mf.offset)
end
# plot variables
@recipe function f(var::Variable, varname::Union{Symbol, Nothing} = nothing)
issugeno = first(var.mfs) isa AbstractSugenoOutputFunction
if !isnothing(varname)
plot_title --> string(varname)
end
dom = domain(var)
mfs = memberships(var)
if issugeno
legend --> false
layout --> (1, length(var.mfs))
else
legend --> true
end
for (name, mf) in pairs(mfs)
@series begin
if issugeno
title --> string(name)
else
label --> string(name)
end
mf, dom
end
end
nothing
end
@recipe function f(fis::AbstractFuzzySystem, varname::Symbol)
if haskey(fis.inputs, varname)
fis.inputs[varname], varname
elseif haskey(fis.outputs, varname)
fis.outputs[varname], varname
end
end
# plot fis
@recipe function f(fis::AbstractFuzzySystem)
plot_title := string(fis.name)
nout = length(fis.outputs)
nin = length(fis.inputs)
nrules = length(fis.rules)
layout := (nrules, nin + nout)
size --> (300 * (nin + nout), 200 * nrules)
for (i, rule) in enumerate(fis.rules)
ants = leaves(rule.antecedent)
for (j, (varname, var)) in enumerate(pairs(fis.inputs))
idx = findall(x -> subject(x) == varname, ants)
length(idx) > 1 &&
throw(ArgumentError("Cannot plot repeated variables in rules"))
@series if length(idx) == 1
rel = ants[first(idx)]
title := string(rel)
subplot := (i - 1) * (nin + nout) + j
# TODO: use own recipes for negation and relation
if rel isa FuzzyNegation
legend --> false
x -> 1 - var.mfs[predicate(rel)](x), low(var.domain), high(var.domain)
else
var.mfs[predicate(rel)], var.domain
end
else
subplot := (i - 1) * (nin + nout) + j
grid --> false
axis --> false
legend --> false
()
end
end
for (j, (varname, var)) in enumerate(pairs(fis.outputs))
idx = findall(x -> subject(x) == varname, rule.consequent)
length(idx) > 1 &&
throw(ArgumentError("Cannot plot repeated variables in rules"))
@series if length(idx) == 1
subplot := (i - 1) * (nin + nout) + nin + j
rel = rule.consequent[first(idx)]
title := string(rel)
var.mfs[predicate(rel)], var.domain
else
subplot := (i - 1) * (nin + nout) + nin + j
grid --> false
axis --> false
legend --> false
()
end
end
end
end
@userplot GenSurf
@recipe function f(plt::GenSurf;
Npoints = 100)
fis = first(plt.args)
if length(fis.inputs) > 2
throw(ArgumentError("Cannot plot generating surface for a system with more than 2 inputs"))
end
if length(fis.outputs) > 1
throw(ArgumentError("Cannot plot generating surface for a system with more than one output."))
end
o = first(keys(fis.outputs))
if length(fis.inputs) == 2
x, y = fis.inputs
seriestype := :surface
xlabel --> first(keys(fis.inputs))
ylabel --> last(keys(fis.inputs))
zlabel --> o
range(x.domain.low, x.domain.high, Npoints),
range(x.domain.low, x.domain.high, Npoints), (x, y) -> fis((x, y))[o]
else
x = first(fis.inputs)
xlabel --> first(keys(fis.inputs))
ylabel --> o
legend --> nothing
range(x.domain.low, x.domain.high, Npoints), x -> fis((x,))[o]
end
end
"""
gensurf(fis::AbstractFuzzySystem; Npoints=100)
Plots the generating surface of the given fuzzy inference system.
The given FIS must have exactly one output and at most two inputs.
### Inputs
- `fis::AbstractFuzzySystem` -- fuzzy inference system to plot
- `Npoints::Int64 (default 100)` -- number of sample points used for each input to plot the generating surface.
"""
gensurf
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 1096 | """
Read a fuzzy system from a file using a specified format.
### Inputs
- `file::String` -- path to the file to read.
- `fmt::Union{Symbol,Nothing}` -- input format of the file. If `nothing`, it is inferred from the file extension.
Supported formats are
- `:fcl` -- Fuzzy Control Language (corresponding file extension `.fcl`)
- `:fml` -- Fuzzy Markup Language (corresponding file extension `.xml`)
- `:matlab` -- Matlab fis (corresponding file extension `.fis`)
"""
function readfis(file::String, fmt::Union{Symbol, Nothing} = nothing)::AbstractFuzzySystem
if isnothing(fmt)
ex = split(file, ".")[end]
fmt = if ex == "fcl"
:fcl
elseif ex == "fis"
:matlab
elseif ex == "xml"
:fml
else
throw(ArgumentError("Unrecognized extension $ex."))
end
end
s = read(file, String)
if fmt === :fcl
parse_fcl(s)
elseif fmt === :matlab
parse_matlabfis(s)
elseif fmt === :fml
parse_fml(s)
else
throw(ArgumentError("Unknown format $fmt."))
end
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 3285 | # Data structure to describe fuzzy rules.
abstract type AbstractFuzzyProposition end
"""
Describes a fuzzy relation like "food is good".
"""
struct FuzzyRelation <: AbstractFuzzyProposition
"subject of the relation."
subj::Symbol
"property of the relation."
prop::Symbol
end
Base.show(io::IO, fr::FuzzyRelation) = print(io, fr.subj, " is ", fr.prop)
subject(fr::FuzzyRelation) = fr.subj
predicate(fr::FuzzyRelation) = fr.prop
"""
Describes a fuzzy relation like "food is good".
"""
struct FuzzyNegation <: AbstractFuzzyProposition
"subject of the relation."
subj::Symbol
"property of the relation."
prop::Symbol
end
Base.show(io::IO, fr::FuzzyNegation) = print(io, fr.subj, " is not ", fr.prop)
subject(fr::FuzzyNegation) = fr.subj
predicate(fr::FuzzyNegation) = fr.prop
"""
Describes the conjuction of two propositions.
"""
struct FuzzyAnd{T <: AbstractFuzzyProposition, S <: AbstractFuzzyProposition} <:
AbstractFuzzyProposition
left::T
right::S
end
Base.show(io::IO, fa::FuzzyAnd) = print(io, '(', fa.left, " ∧ ", fa.right, ')')
"""
Describe disjunction of two propositions.
"""
struct FuzzyOr{T <: AbstractFuzzyProposition, S <: AbstractFuzzyProposition} <:
AbstractFuzzyProposition
left::T
right::S
end
Base.show(io::IO, fo::FuzzyOr) = print(io, '(', fo.left, " ∨ ", fo.right, ')')
abstract type AbstractRule end
"""
Describes a fuzzy implication rule IF antecedent THEN consequent.
"""
struct FuzzyRule{T <: AbstractFuzzyProposition} <: AbstractRule
"premise of the inference rule."
antecedent::T
"consequences of the inference rule."
consequent::Vector{FuzzyRelation}
end
Base.show(io::IO, r::FuzzyRule) = print(io, r.antecedent, " --> ", join(r.consequent, ", "))
"""
Weighted fuzzy rule. In Mamdani systems, the result of implication is scaled by the weight.
In Sugeno systems, the result of the antecedent is scaled by the weight.
"""
struct WeightedFuzzyRule{T <: AbstractFuzzyProposition, S <: Real} <: AbstractRule
"premise of the inference rule."
antecedent::T
"consequences of the inference rule."
consequent::Vector{FuzzyRelation}
"weight of the rule."
weight::S
end
function Base.show(io::IO, r::WeightedFuzzyRule)
print(io, r.antecedent, " --> ", join(r.consequent, ", "), " (", r.weight, ")")
end
@inline scale(w, ::FuzzyRule) = w
@inline scale(w, r::WeightedFuzzyRule) = w * r.weight
# comparisons (for testing)
Base.:(==)(r1::FuzzyRelation, r2::FuzzyRelation) = r1.subj == r2.subj && r1.prop == r2.prop
Base.:(==)(r1::FuzzyNegation, r2::FuzzyNegation) = r1.subj == r2.subj && r1.prop == r2.prop
function Base.:(==)(p1::T, p2::T) where {T <: AbstractFuzzyProposition}
p1.left == p2.left && p1.right == p2.right
end
Base.:(==)(p1::AbstractFuzzyProposition, p2::AbstractFuzzyProposition) = false
function Base.:(==)(r1::FuzzyRule, r2::FuzzyRule)
r1.antecedent == r2.antecedent && r1.consequent == r1.consequent
end
function Base.:(==)(r1::WeightedFuzzyRule, r2::WeightedFuzzyRule)
r1.antecedent == r2.antecedent && r1.consequent == r1.consequent &&
r1.weight == r2.weight
end
# utilities
leaves(fr::Union{FuzzyNegation, FuzzyRelation}) = (fr,)
leaves(fp::AbstractFuzzyProposition) = [leaves(fp.left)..., leaves(fp.right)...]
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 13092 |
"""
Compile the fuzzy inference system into stand-alone Julia code.
If the first argument is a string, it write the code in the given file, otherwise it returns
the Julia expression of the code.
### Inputs
- `fname::AbstractString` -- file where to write
- `fis::AbstractFuzzySystem` -- fuzzy system to compile
- `name::Symbol` -- name of the generated function, default `fis.name`
### Notes
Only type-1 inference systems are supported
"""
function compilefis(fname::AbstractString, fis::AbstractFuzzySystem,
name::Symbol = fis.name)
open(fname, "w") do io
write(io, string(to_expr(fis, name)))
end
end
@inline compilefis(fis::AbstractFuzzySystem, name::Symbol = fis.name) = to_expr(fis, name)
function to_expr(fis::MamdaniFuzzySystem, name::Symbol = fis.name)
body = quote end
for (varname, var) in pairs(fis.inputs)
for (mfname, mf) in pairs(var.mfs)
push!(body.args, :($mfname = $(to_expr(mf, varname))))
end
end
# parse rules. Antecedents are stored in local variables, which can be useful if one has
# multiple outputs. Each rule is converted to a dictionary indexed by output variable.
rules = Vector{Dict{Symbol, Expr}}(undef, length(fis.rules))
for (i, rule) in enumerate(fis.rules)
ant_name = Symbol(:ant, i)
ant_body = to_expr(fis, rule.antecedent)
push!(body.args, :($ant_name = $ant_body))
rules[i] = to_expr(fis, rule; antidx = i)
end
# construct expression that computes each output
for (varname, var) in pairs(fis.outputs)
varagg = Symbol(varname, :_agg)
out_dom = LinRange(low(var.domain), high(var.domain), fis.defuzzifier.N + 1)
push!(body.args, :($varagg = collect($out_dom))) # vector for aggregated output
# evaluate output membership functions.
rule_eval = quote end
for (mfname, mf) in pairs(var.mfs)
push!(rule_eval.args, :($mfname = $(to_expr(mf))))
end
# construct expression that performs implication and aggregation of all rules
agg = :()
for rule in rules
if haskey(rule, varname)
if agg == :()
agg = rule[varname]
else
agg = to_expr(fis.aggregator, agg, rule[varname])
end
end
end
defuzz = to_expr(fis.defuzzifier, Symbol(varname, :_agg), var.domain) # defuzzifier
ex = quote
@inbounds for (i, x) in enumerate($varagg)
$rule_eval
$varagg[i] = $agg
end
$varname = $defuzz
end
push!(body.args, ex)
end
prettify(:(function $name($(collect(keys(fis.inputs))...))
$body
return $(keys(fis.outputs)...)
end))
end
function to_expr(fis::SugenoFuzzySystem, name::Symbol = fis.name)
body = quote end
for (varname, var) in pairs(fis.inputs)
for (mfname, mf) in pairs(var.mfs)
push!(body.args, :($mfname = $(to_expr(mf, varname))))
end
end
rules = Vector{Dict{Symbol, Expr}}(undef, length(fis.rules))
tot_weight = Expr(:call, :+)
for (i, rule) in enumerate(fis.rules)
ant, res = to_expr(fis, rule, i)
push!(body.args, ant)
push!(tot_weight.args, Symbol(:ant, i))
rules[i] = res
end
push!(body.args, :(tot_weight = $tot_weight))
for (varname, var) in pairs(fis.outputs)
num = Expr(:call, :+)
for (mfname, mf) in pairs(var.mfs)
push!(body.args, :($mfname = $(to_expr(mf))))
end
for rule in rules
if haskey(rule, varname)
push!(num.args, rule[varname])
end
end
ex = :($varname = $num / tot_weight)
push!(body.args, ex)
end
prettify(:(function $name($(collect(keys(fis.inputs))...))
$body
return $(keys(fis.outputs)...)
end))
end
########################################
# MEMBERSHIP FUNCTIONS CODE GENERATION #
########################################
to_expr(mf::SingletonMF, x = :x) = :($x == $(mf.c) ? one($x) : zero($x))
to_expr(mf::GaussianMF, x = :x) = :(exp(-($x - $(mf.mu))^2 / $(2 * mf.sig^2)))
function to_expr(mf::TriangularMF, x = :x)
:(max(min(($x - $(mf.a)) / $(mf.b - mf.a), ($(mf.c) - $x) / $(mf.c - mf.b)), 0))
end
function to_expr(mf::TrapezoidalMF, x = :x)
:(max(min(($x - $(mf.a)) / $(mf.b - mf.a), 1, ($(mf.d) - $x) / $(mf.d - mf.c)), 0))
end
function to_expr(mf::LinearMF, x = :x)
:(max(min(($x - $(mf.a)) / ($(mf.b) - $(mf.a)), 1), 0))
end
function to_expr(mf::SigmoidMF, x = :x)
:(1 / (1 + exp(-$(mf.a) * ($x - $(mf.c)))))
end
function to_expr(mf::DifferenceSigmoidMF, x = :x)
:(max(min(1 / (1 + exp(-$(mf.a1) * ($x - $(mf.c1)))) -
1 / (1 + exp(-$(mf.a2) * ($x - $(mf.c2)))), 1), 0))
end
function to_expr(mf::ProductSigmoidMF, x = :x)
:(1 / ((1 + exp(-$(mf.a1) * ($x - $(mf.c1)))) * (1 + exp(-$(mf.a2) * ($x - $(mf.c2))))))
end
function to_expr(mf::GeneralizedBellMF, x = :x)
:(1 / (1 + abs(($x - $(mf.c)) / $(mf.a))^$(2mf.b)))
end
function to_expr(s::SShapeMF, x = :x)
:(if $x <= $(s.a)
zero(float(typeof($x)))
elseif $x >= $(s.b)
one(float(typeof($x)))
elseif $x >= $((s.a + s.b) / 2)
1 - $(2 / (s.b - s.a)^2) * ($x - $(s.b))^2
else
$(2 / (s.b - s.a)^2) * ($x - $(s.a))^2
end)
end
function to_expr(mf::ZShapeMF, x = :x)
:(if $x <= $(mf.a)
one(float(typeof($x)))
elseif $x >= $(mf.b)
zero(float(typeof($x)))
elseif $x >= $((mf.a + mf.b) / 2)
$(2 / (mf.b - mf.a)^2) * ($x - $(mf.b))^2
else
1 - $(2 / (mf.b - mf.a)^2) * ($x - $(mf.a))^2
end)
end
function to_expr(p::PiShapeMF, x = :x)
:(if $x <= $(p.a) || $x >= $(p.d)
zero(float(typeof($x)))
elseif $(p.b) <= $x <= $(p.c)
one(float(typeof($x)))
elseif $x <= $((p.a + p.b) / 2)
$(2 / (p.b - p.a)^2) * ($x - $(p.a))^2
elseif $x <= $(p.b)
1 - $(2 / (p.b - p.a)^2) * ($x - $(p.b))^2
elseif $x <= $((p.c + p.d) / 2)
1 - $(2 / (p.d - p.c)^2) * ($x - $(p.c))^2
else
$(2 / (p.d - p.c)^2) * ($x - $(p.d))^2
end)
end
function to_expr(se::SemiEllipticMF, x = :x)
:(if $(se.cd - se.rd) <= $x <= $(se.cd + se.rd)
sqrt(1 - ($(se.cd) - $x)^2 / $(se.rd)^2)
else
zero($x)
end)
end
function to_expr(plmf::PiecewiseLinearMF, x = :x)
:(if $x <= $(plmf.points[1][1])
$(float(plmf.points[1][2]))
elseif $x >= $(plmf.points[end][1])
$(float(plmf.points[end][2]))
else
pnts = $(plmf.points)
idx = findlast(p -> $x >= p[1], pnts)
x1, y1 = pnts[idx]
x2, y2 = pnts[idx + 1]
(y2 - y1) / (x2 - x1) * ($x - x1) + y1
end)
end
function to_expr(mf::WeightedMF, x = :x)
:($(mf.w) * $(to_expr(mf.mf, x)))
end
to_expr(mf::ConstantSugenoOutput) = mf.c
function to_expr(mf::LinearSugenoOutput)
ex = Expr(:call, :+, mf.offset)
for (varname, coeff) in pairs(mf.coeffs)
push!(ex.args, :($coeff * $varname))
end
return ex
end
#####################################
# LOGICAL OPERATORS CODE GENERATION #
#####################################
to_expr(::MinAnd, x = :y, y = :y) = :(min($x, $y))
to_expr(::ProdAnd, x = :x, y = :y) = :($x * $y)
to_expr(::LukasiewiczAnd, x = :x, y = :y) = :(max(0, $x + $y - 1))
function to_expr(::DrasticAnd, x = :x, y = :y)
:(isone($x) || isone($y) ? min($x, $y) : zero(promote_type(typeof($x), typeof($y))))
end
function to_expr(::NilpotentAnd, x = :x, y = :y)
:($x + $y > 1 ? min($x, $y) : zero(promote_type(typeof($x), typeof($y))))
end
function to_expr(::HamacherAnd, x = :x, y = :y)
:(let z = ($x * $y) / ($x + $y - $x * $y)
isfinite(z) ? z : zero(z)
end)
end
to_expr(::EinsteinAnd, x = :x, y = :y) = :(($x * $y) / (2 - $x - $y + $x * $y))
to_expr(::MaxOr, x = :x, y = :y) = :(max($x, $y))
to_expr(::ProbSumOr, x = :x, y = :y) = :($x + $y - $x * $y)
to_expr(::BoundedSumOr, x = :x, y = :y) = :(min(1, $x + $y))
function to_expr(::DrasticOr, x = :x, y = :y)
:(iszero($x) || iszero($y) ? max($x, $y) : one(promote_type(typeof($x), typeof($y))))
end
function to_expr(::NilpotentOr, x = :x, y = :y)
:($x + $y < 1 ? max($x, $y) : one(promote_type(typeof($x), typeof($y))))
end
function to_expr(::HamacherOr, x = :x, y = :y)
:(let z = ($x + $y - 2 * $x * $y) / (1 - $x * $y)
isfinite(z) ? z : one(z)
end)
end
to_expr(::EinsteinOr, x = :x, y = :y) = :(($x + $y) / (1 + $x * $y))
to_expr(::MinImplication, x = :x, y = :y) = :(min($x, $y))
to_expr(::ProdImplication, x = :x, y = :y) = :($x * $y)
to_expr(::MaxAggregator, x = :x, y = :y) = :(max($x, $y))
to_expr(::ProbSumAggregator, x = :x, y = :y) = :($x + $y - $x * $y)
#########################
# RULES CODE GENERATION #
#########################
function to_expr(fis::MamdaniFuzzySystem, rule::FuzzyRule; antidx = nothing)
res = Dict{Symbol, Expr}()
for cons in rule.consequent
ant = isnothing(antidx) ? to_expr(fis, rule.antecedent) : Symbol(:ant, antidx)
res[cons.subj] = to_expr(fis.implication, ant, to_expr(fis, cons))
end
res
end
function to_expr(fis::MamdaniFuzzySystem, rule::WeightedFuzzyRule; antidx = nothing)
res = to_expr(fis, FuzzyRule(rule.antecedent, rule.consequent); antidx)
for (var, ex) in res
res[var] = :($(rule.weight) * $ex)
end
res
end
to_expr(::AbstractFuzzySystem, r::FuzzyRelation) = r.prop
to_expr(::AbstractFuzzySystem, r::FuzzyNegation) = :(1 - $(r.prop))
function to_expr(fis::AbstractFuzzySystem, r::FuzzyAnd)
to_expr(fis.and, to_expr(fis, r.left), to_expr(fis, r.right))
end
function to_expr(fis::AbstractFuzzySystem, r::FuzzyOr)
to_expr(fis.or, to_expr(fis, r.left), to_expr(fis, r.right))
end
function to_expr(fis::SugenoFuzzySystem, rule::AbstractRule, antidx)
antbody = to_expr(fis, rule.antecedent)
if rule isa WeightedFuzzyRule
antbody = :($(rule.weight) * $antbody)
end
antname = Symbol(:ant, antidx)
ant = Expr(:(=), antname, antbody)
res = Dict{Symbol, Expr}()
for cons in rule.consequent
res[cons.subj] = Expr(:call, :*, antname, to_expr(fis, cons))
end
return ant, res
end
################################
# DEFUZZIFIERS CODE GENERATION #
################################
function to_expr(defuzz::CentroidDefuzzifier, mf, dom::Domain)
:((2sum(mfi * xi
for (mfi, xi) in zip($mf, $(LinRange(low(dom), high(dom), defuzz.N + 1)))) -
first($mf) * $(low(dom)) - last($mf) * $(high(dom))) /
(2sum($mf) - first($mf) - last($mf)))
end
function to_expr(defuzz::BisectorDefuzzifier, mf, dom::Domain{T}) where {T <: Real}
area_left = zero(T)
h = (high(dom) - low(dom)) / defuzz.N
area_right = :((2sum($mf) - first(mf) - last(mf)) * $(h / 2))
cand = LinRange(low(dom), high(dom), defuzz.N + 1)
:(let
mf = $mf
area_left = $area_left
h = $h
area_right = (2sum(mf) - first(mf) - last(mf)) * $(h / 2)
cand = $cand
i = firstindex(mf)
while area_left < area_right
trap = (mf[i] + mf[i + 1]) * $(h / 2)
area_left += trap
area_right -= trap
i += 1
end
(mf[i - 1] + mf[i]) * $(h / 2) >= area_left - area_right ? cand[i] : cand[i - 1]
end)
end
function to_expr(defuzz::LeftMaximumDefuzzifier, mf, dom::Domain{T}) where {T <: Real}
:(let
res = $(float(low(dom)))
y = $mf
maxval = first(y)
for (xi, yi) in zip($(LinRange(low(dom), high(dom), defuzz.N + 1)), y)
if yi > maxval + $(defuzz.tol)
res = xi
maxval = yi
end
end
res
end)
end
function to_expr(defuzz::RightMaximumDefuzzifier, mf, dom::Domain{T}) where {T <: Real}
:(let
res = $(float(low(dom)))
y = $mf
maxval = first(y)
for (xi, yi) in zip($(LinRange(low(dom), high(dom), defuzz.N + 1)), y)
if yi >= maxval - $(defuzz.tol)
res = xi
maxval = yi
end
end
res
end)
end
function to_expr(defuzz::MeanOfMaximaDefuzzifier, mf, dom::Domain{T}) where {T <: Real}
:(let
res = $(zero(float(T)))
y = $mf
maxval = first(y)
maxcnt = 0
for (xi, yi) in zip($(LinRange(low(dom), high(dom), defuzz.N + 1)), y)
if yi - maxval > $(defuzz.tol) # reset mean calculation
res = xi
maxval = yi
maxcnt = 1
elseif abs(yi - maxval) <= $(defuzz.tol)
res += xi
maxcnt += 1
end
end
res / maxcnt
end)
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 514 | """
An interval representing the domain of a given variable.
"""
struct Domain{T <: Real}
"lower bound."
low::T
"upper bound."
high::T
end
Base.show(io::IO, d::Domain) = print(io, '[', low(d), ", ", high(d), ']')
low(d::Domain) = d.low
high(d::Domain) = d.high
struct Variable
domain::Domain
mfs::Dictionary{Symbol, AbstractPredicate}
end
Base.:(==)(x::Variable, y::Variable) = x.domain == y.domain && x.mfs == y.mfs
domain(var::Variable) = var.domain
memberships(var::Variable) = var.mfs
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 7019 |
module FCLParser
using PEG, Dictionaries
using ..FuzzyLogic
using ..FuzzyLogic: Variable, Domain
export parse_fcl, @fcl_str
const FCL_JULIA = Dict("COG" => CentroidDefuzzifier(),
"COGS" => "COGS", # dummy since hardcoded for sugeno
"COA" => BisectorDefuzzifier(),
"LM" => LeftMaximumDefuzzifier(),
"RM" => RightMaximumDefuzzifier(),
"MOM" => MeanOfMaximaDefuzzifier(),
"ANDMIN" => MinAnd(),
"ANDPROD" => ProdAnd(),
"ANDBDIF" => LukasiewiczAnd(),
"ORMAX" => MaxOr(),
"ORASUM" => ProbSumOr(),
"ORBSUM" => BoundedSumOr(),
"ACTPROD" => ProdImplication(),
"ACTMIN" => MinImplication())
function fcl_julia(s::AbstractString)
haskey(FCL_JULIA, s) ? FCL_JULIA[s] : throw(ArgumentError("Option $s not supported."))
end
function parse_rule(x)
if isempty(x[5])
FuzzyLogic.FuzzyRule(x[2], x[4])
else
FuzzyLogic.WeightedFuzzyRule(x[2], x[4], x[5][1][2])
end
end
@rule id = r"[a-zA-Z_]+[a-zA-z0-9_]*"p |> Symbol
@rule function_block = r"FUNCTION_BLOCK"p & id & var_input_block & var_output_block &
fuzzify_block[1:end] & defuzzify_block[1:end] & rule_block &
r"END_FUNCTION_BLOCK"p |> x -> x[2:7]
@rule var_input_block = r"VAR_INPUT"p & var_def[1:end] & r"END_VAR"p |>
x -> Vector{Symbol}(x[2])
@rule var_output_block = r"VAR_OUTPUT"p & var_def[1:end] & r"END_VAR"p |>
x -> Vector{Symbol}(x[2])
@rule var_def = id & r":"p & r"REAL"p & r";"p |> first
@rule fuzzify_block = r"FUZZIFY"p & id & linguistic_term[1:end] & range_term &
r"END_FUZZIFY"p |> x -> x[2] => Variable(x[4], dictionary(x[3]))
@rule range_term = r"RANGE\s*:=\s*\("p & numeral & r".."p & numeral & r"\)\s*;"p |>
x -> Domain(x[2], x[4])
@rule linguistic_term = r"TERM"p & id & r":="p & membership_function & r";"p |>
x -> x[2] => x[4]
@rule membership_function = singleton, points
@rule singleton = r"[+-]?\d+\.?\d*([eE][+-]?\d+)?"p |>
ConstantSugenoOutput ∘ Base.Fix1(parse, Float64)
@rule numeral = r"[+-]?\d+(\.\d+)?([eE][+-]?\d+)?"p |> Base.Fix1(parse, Float64)
@rule point = r"\("p & numeral & r","p & numeral & r"\)"p |> x -> tuple(x[2], x[4])
@rule points = point[2:end] |> PiecewiseLinearMF ∘ Vector{Tuple{Float64, Float64}}
@rule defuzzify_block = r"DEFUZZIFY"p & id & linguistic_term[1:end] & defuzzify_method &
range_term & r"END_DEFUZZIFY"p |>
(x -> (x[2] => Variable(x[5], dictionary(x[3])), x[4]))
@rule defuzzify_method = r"METHOD\s*:"p & (r"COGS"p, r"COG"p, r"COA"p, r"LM"p, r"RM"p) &
r";"p |> x -> fcl_julia(x[2])
@rule rule_block = r"RULEBLOCK"p & id & operator_definition & activation_method[:?] &
rule[1:end] & r"END_RULEBLOCK"p |>
x -> (x[3], x[4], identity.(x[5]))
@rule or_definition = r"OR"p & r":"p & (r"MAX"p, r"ASUM"p, r"BSUM"p) & r";"p
@rule and_definition = r"AND"p & r":"p & (r"MIN"p, r"PROD"p, r"BDIF"p) & r";"p
@rule operator_definition = (and_definition, or_definition) |>
x -> fcl_julia(join([x[1], x[3]]))
@rule activation_method = r"ACT"p & r":"p & (r"MIN"p, r"PROD"p) & r";"p |>
x -> fcl_julia(join([x[1], x[3]]))
@rule rule = r"RULE\s+\d+\s*:\s*IF"p & condition & r"THEN"p & conclusion &
(r"WITH"p & numeral)[:?] & r";"p |> parse_rule
@rule relation = negrel, posrel
@rule posrel = id & r"IS"p & id |> x -> FuzzyLogic.FuzzyRelation(x[1], x[3])
@rule negrel = (id & r"IS\s+NOT"p & id |> x -> FuzzyLogic.FuzzyNegation(x[1], x[3])),
r"NOT\s*\("p & id & r"IS"p & id & r"\)"p |>
x -> FuzzyLogic.FuzzyNegation(x[2], x[4])
@rule conclusion = posrel & (r","p & posrel)[*] |> x -> append!([x[1]], map(last, x[2]))
@rule condition = orcondition
@rule orcondition = andcondition & (r"OR"p & andcondition)[*] |>
x -> reduce(FuzzyLogic.FuzzyOr, vcat(x[1], map(last, x[2])))
@rule andcondition = term & (r"AND"p & term)[*] |>
x -> reduce(FuzzyLogic.FuzzyAnd, vcat(x[1], map(last, x[2])))
@rule term = relation, r"\("p & condition & r"\)"p |> x -> x[2]
"""
parse_fcl(s::String)::AbstractFuzzySystem
Parse a fuzzy inference system from a string representation in Fuzzy Control Language (FCL).
### Inputs
- `s::String` -- string describing a fuzzy system in FCL conformant to the IEC 1131-7 standard.
### Notes
The parsers can read FCL comformant to IEC 1131-7, with the following remarks:
- Sugeno (system with singleton outputs) shall use COGS as defuzzifier.
- the `RANGE` keyword is required for both fuzzification and defuzzification blocks.
- Only the required `MAX` accumulator is supported.
- Default value for defuzzification not supported.
- Optional local variables are not supported.
With the exceptions above, the parser supports all required and optional features of the standard (tables 6.1-1 and 6.1-2).
In addition, it also supports the following features:
- Piecewise linear functions can have any number of points.
- Membership degrees in piecewise linear functions points can be any number between ``0`` and ``1``.
"""
function parse_fcl(s::String)::FuzzyLogic.AbstractFuzzySystem
name, inputs, outputs, inputsmfs, outputsmf, (op, imp, rules) = parse_whole(function_block,
s)
varsin = dictionary(inputsmfs)
@assert sort(collect(keys(varsin)))==sort(inputs) "Mismatch between declared and fuzzified input variables."
varsout = dictionary(first.(outputsmf))
@assert sort(collect(keys(varsout)))==sort(outputs) "Mismatch between declared and defuzzified output variables."
@assert all(==(outputsmf[1][2]), last.(outputsmf)) "All output variables should use the same defuzzification method."
defuzzifier = outputsmf[1][2]
and, or = ops_pairs(op)
if defuzzifier == "COGS" # sugeno
SugenoFuzzySystem(name, varsin, varsout, rules, and, or)
else # mamdani
imp = isempty(imp) ? MinImplication() : first(imp)
MamdaniFuzzySystem(name, varsin, varsout, rules, and, or, imp, MaxAggregator(),
defuzzifier)
end
end
ops_pairs(::MinAnd) = MinAnd(), MaxOr()
ops_pairs(::ProdAnd) = ProdAnd(), ProbSumOr()
ops_pairs(::LukasiewiczAnd) = LukasiewiczAnd(), BoundedSumOr()
ops_pairs(::MaxOr) = MinAnd(), MaxOr()
ops_pairs(::ProbSumOr) = ProdAnd(), ProbSumOr()
ops_pairs(::BoundedSumOr) = LukasiewiczAnd(), BoundedSumOr()
"""
String macro to parse Fuzzy Control Language (FCL). See [`parse_fcl`](@ref) for more details.
"""
macro fcl_str(s::AbstractString)
parse_fcl(s)
end
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 8255 | module FMLParser
using Dictionaries, LightXML
using ..FuzzyLogic
using ..FuzzyLogic: FuzzyAnd, FuzzyOr, FuzzyRule, FuzzyRelation, FuzzyNegation, Domain,
WeightedFuzzyRule, Variable, memberships, AbstractMembershipFunction,
AbstractSugenoOutputFunction
export parse_fml, @fml_str
XML_JULIA = Dict("mamdaniRuleBase" => MamdaniFuzzySystem,
"tskRuleBase" => SugenoFuzzySystem,
"triangularShape" => TriangularMF,
"trapezoidShape" => TrapezoidalMF,
"piShape" => PiShapeMF,
"sShape" => SShapeMF,
"zShape" => ZShapeMF,
"gaussianShape" => GaussianMF,
"rightGaussianShape" => GaussianMF,
"leftGaussianShape" => GaussianMF,
"rightLinearShape" => LinearMF,
"leftLinearShape" => LinearMF,
"rightLinearShape" => LinearMF,
"COG" => CentroidDefuzzifier(),
"COA" => BisectorDefuzzifier(),
"MOM" => MeanOfMaximaDefuzzifier(),
"LM" => LeftMaximumDefuzzifier(),
"RM" => RightMaximumDefuzzifier(),
"ACCMAX" => MaxAggregator(),
"andMIN" => MinAnd(),
"andPROD" => ProdAnd(),
"andBDIF" => LukasiewiczAnd(),
"andDRP" => DrasticAnd(),
"andHPROD" => HamacherAnd(),
"andEPROD" => EinsteinAnd(),
"andNILMIN" => DrasticAnd(),
"orMAX" => MaxOr(),
"orPROBOR" => ProbSumOr(),
"orBSUM" => BoundedSumOr(),
"orDRS" => DrasticOr(),
"orNILMAX" => NilpotentOr(),
"orESUM" => EinsteinOr(),
"orHSUM" => HamacherOr(),
"impMIN" => MinImplication(),
"and" => FuzzyAnd,
"or" => FuzzyOr)
get_attribute(x, s, d) = has_attribute(x, s) ? attribute(x, s) : d
to_key(s, pre) = isempty(pre) ? s : pre * uppercasefirst(s)
function process_params(mf, params)
if mf == "rightLinearShape"
reverse(params)
else
params
end
end
# Parse variable from xml. FML does not have negated relations, but negated mfs,
# so we store in the set `negated` what relations will have to be `FuzzyNegation`.
function parse_variable!(var, negated::Set)
varname = Symbol(attribute(var, "name"))
dom = Domain(parse(Float64, attribute(var, "domainleft")),
parse(Float64, attribute(var, "domainright")))
mfs = AbstractMembershipFunction[]
mfnames = Symbol[]
for term in get_elements_by_tagname(var, "fuzzyTerm")
mfname = Symbol(attribute(term, "name"))
push!(mfnames, mfname)
if has_attribute(term, "complement") &&
lowercase(attribute(term, "complement")) == "true"
push!(negated, (varname, mfname))
end
mf = only(child_elements(term))
params = process_params(name(mf), parse.(Float64, value.(collect(attributes(mf)))))
push!(mfs, XML_JULIA[name(mf)](params...))
end
return varname => Variable(dom, Dictionary(mfnames, identity.(mfs)))
end
function parse_sugeno_output(var, input_names)
varname = Symbol(attribute(var, "name"))
dom = Domain(parse(Float64, get_attribute(var, "domainleft", "-Inf")),
parse(Float64, get_attribute(var, "domainright", "Inf")))
mfs = AbstractSugenoOutputFunction[]
mfnames = Symbol[]
for term in get_elements_by_tagname(var, "tskTerm")
push!(mfnames, Symbol(attribute(term, "name")))
mf = if attribute(term, "order") == "0"
ConstantSugenoOutput(parse(Float64, content(find_element(term, "tskValue"))))
elseif attribute(term, "order") == "1"
coeffs = map(get_elements_by_tagname(term, "tskValue")) do t
parse(Float64, content(t))
end
LinearSugenoOutput(Dictionary(input_names, coeffs[1:(end - 1)]), coeffs[end])
end
push!(mfs, mf)
end
return varname => Variable(dom, Dictionary(mfnames, identity.(mfs)))
end
function parse_knowledgebase(kb, settings)
negated = Set{Tuple{Symbol, Symbol}}()
inputs = Pair{Symbol, Variable}[]
outputs = Pair{Symbol, Variable}[]
for var in get_elements_by_tagname(kb, "fuzzyVariable")
if attribute(var, "type") == "input"
push!(inputs, parse_variable!(var, negated))
elseif attribute(var, "type") == "output"
settings[:defuzzifier] = XML_JULIA[get_attribute(var, "defuzzifier", "COG")]
settings[:aggregator] = XML_JULIA["ACC" * get_attribute(var, "accumulation",
"MAX")]
push!(outputs, parse_variable!(var, negated))
end
end
for var in get_elements_by_tagname(kb, "tskVariable")
push!(outputs, parse_sugeno_output(var, first.(inputs)))
end
settings[:inputs] = dictionary(identity.(inputs))
settings[:outputs] = dictionary(identity.(outputs))
return negated
end
function parse_rules!(settings, rulebase, negated)
pre = name(rulebase) == "tskRuleBase" ? "tsk" : ""
settings[:and] = XML_JULIA["and" * get_attribute(rulebase, "andMethod", "MIN")]
settings[:or] = XML_JULIA["or" * get_attribute(rulebase, "orMethod", "MAX")]
if isempty(pre)
settings[:implication] = XML_JULIA["imp" * get_attribute(rulebase,
"activationMethod",
"MIN")]
end
settings[:rules] = identity.([parse_rule(rule, negated, pre)
for rule in get_elements_by_tagname(rulebase,
to_key("rule", pre))])
end
function parse_rule(rule, negated, pre = "")
op = XML_JULIA[lowercase(get_attribute(rule, "connector", "and"))]
ant = find_element(rule, "antecedent")
ant = mapreduce(op, get_elements_by_tagname(ant, "clause")) do clause
var = Symbol(content(find_element(clause, "variable")))
t = Symbol(content(find_element(clause, "term")))
(var, t) in negated ? FuzzyNegation(var, t) : FuzzyRelation(var, t)
end
cons = find_element(find_element(rule, to_key("consequent", pre)), to_key("then", pre))
cons = map(get_elements_by_tagname(cons, to_key("clause", pre))) do clause
var = Symbol(content(find_element(clause, "variable")))
t = Symbol(content(find_element(clause, "term")))
(var, t) in negated ? FuzzyNegation(var, t) : FuzzyRelation(var, t)
end
w = parse(Float64, get_attribute(rule, "weight", "1.0"))
if isone(w)
FuzzyRule(ant, cons)
else
WeightedFuzzyRule(ant, cons, w)
end
end
function get_rulebase(f)
rules = find_element(f, "mamdaniRuleBase")
isnothing(rules) || return rules
rules = find_element(f, "tskRuleBase")
isnothing(rules) || return rules
end
"""
parse_fml(s::String)::AbstractFuzzySystem
Parse a fuzzy inference system from a string representation in Fuzzy Markup Language (FML).
### Inputs
- `s::String` -- string describing a fuzzy system in FML conformant to the IEEE 1855-2016 standard.
### Notes
The parsers can read FML comformant to IEEE 1855-2016, with the following remarks:
- only Mamdani and Sugeno are supported.
- Operators `and` and `or` definitions should be set in the rule base block.
Definitions at individual rules are ignored.
- Modifiers are not supported.
"""
function parse_fml(s::String)
parse_fml(root(parse_string(s)))
end
function parse_fml(f::XMLElement)
settings = Dict()
kb = only(get_elements_by_tagname(f, "knowledgeBase"))
settings[:name] = Symbol(attribute(f, "name"))
negated = parse_knowledgebase(kb, settings)
rulebase = get_rulebase(f)
parse_rules!(settings, rulebase, negated)
settings
XML_JULIA[name(rulebase)](; settings...)
end
"""
String macro to parse Fuzzy Markup Language (FML). See [`parse_fml`](@ref) for more details.
"""
macro fml_str(s)
parse_fml(s)
end
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 5916 | module MatlabParser
using Dictionaries
using ..FuzzyLogic
using ..FuzzyLogic: FuzzyAnd, FuzzyOr, FuzzyRule, FuzzyRelation, FuzzyNegation, Domain,
WeightedFuzzyRule, Variable, memberships, AbstractMembershipFunction
export parse_matlabfis, @matlabfis_str
const MATLAB_JULIA = Dict("'mamdani'" => MamdaniFuzzySystem,
"'sugeno'" => SugenoFuzzySystem,
"and'min'" => MinAnd(), "and'prod'" => ProdAnd(),
"or'max'" => MaxOr(), "or'probor'" => ProbSumOr(),
"imp'min'" => MinImplication(), "imp'prod'" => ProdImplication(),
"agg'max'" => MaxAggregator(),
"agg'probor'" => ProbSumAggregator(),
"'centroid'" => CentroidDefuzzifier(),
"'bisector'" => BisectorDefuzzifier(),
"'mom'" => MeanOfMaximaDefuzzifier(),
"'lom'" => RightMaximumDefuzzifier(),
"'som'" => LeftMaximumDefuzzifier(),
"'trapmf'" => TrapezoidalMF,
"'trimf'" => TriangularMF,
"'gaussmf'" => GaussianMF,
"'gbellmf'" => GeneralizedBellMF,
"'sigmf'" => SigmoidMF,
"'dsigmf'" => DifferenceSigmoidMF,
"'psigmf'" => ProductSigmoidMF,
"'zmf'" => ZShapeMF,
"'smf'" => SShapeMF,
"'pimf'" => PiShapeMF,
"'linzmf'" => LinearMF,
"'linsmf'" => LinearMF,
"'constant'" => ConstantSugenoOutput,
"'linear'" => LinearSugenoOutput)
# Handle special cases where FuzzyLogic.jl and matlab dont store parameters the same way.
function preprocess_params(mftype, mfparams; inputs = nothing)
mftype in ("'gaussmf'", "'linzmf'") && return reverse(mfparams)
mftype == "'linear'" &&
return [Dictionary(inputs, mfparams[1:(end - 1)]), mfparams[end]]
mfparams
end
function parse_mf(line::AbstractString; inputs = nothing)
mfname, mftype, mfparams = split(line, r"[:,]")
mfname = Symbol(mfname[2:(end - 1)])
mfparams = parse.(Float64, split(mfparams[2:(end - 1)]))
mfparams = preprocess_params(mftype, mfparams; inputs)
mfname, MATLAB_JULIA[mftype](mfparams...)
end
function parse_var(var; inputs = nothing)
dom = Domain(parse.(Float64, split(var["Range"][2:(end - 1)]))...)
name = Symbol(var["Name"][2:(end - 1)])
mfs = map(1:parse(Int, var["NumMFs"])) do i
mfname, mf = parse_mf(var["MF$i"]; inputs)
mfname => mf
end |> dictionary
name, Variable(dom, mfs)
end
function parse_rule(line, inputnames, outputnames, inputmfs, outputmfs)
ants, consw, op = split(line, r"[,:] ")
consw = split(consw)
considx = parse.(Int, consw[1:length(outputnames)])
w = parse(Float64, consw[end][2:(end - 1)])
antsidx = filter!(!iszero, parse.(Int, split(ants)))
filter!(!iszero, considx)
op = op == "1" ? FuzzyAnd : FuzzyOr
length(antsidx) == 1 && (op = identity)
ant = mapreduce(op, enumerate(antsidx)) do (var, mf)
if mf > 0
FuzzyRelation(inputnames[var], inputmfs[var][mf])
else
FuzzyNegation(inputnames[var], inputmfs[var][-mf])
end
end
con = map(enumerate(considx)) do (var, mf)
FuzzyRelation(outputnames[var], outputmfs[var][mf])
end
if isone(w)
FuzzyRule(ant, con)
else
WeightedFuzzyRule(ant, con, w)
end
end
function parse_rules(lines, inputs, outputs)
inputnames = collect(keys(inputs))
outputnames = collect(keys(outputs))
inputmfs = collect.(keys.(memberships.(collect(inputs))))
outputmfs = collect.(keys.(memberships.(collect(outputs))))
identity.([parse_rule(line, inputnames, outputnames, inputmfs, outputmfs)
for line in lines])
end
"""
parse_matlabfis(s::AbstractString)
Parse a fuzzy inference system from a string in Matlab FIS format.
"""
function parse_matlabfis(s::AbstractString)
lines = strip.(split(s, "\n"))
key = ""
fis = Dict()
for line in lines
if occursin(r"\[[a-zA-Z0-9_]+\]", line)
key = line
fis[key] = ifelse(key == "[Rules]", [], Dict())
elseif !isempty(line)
if key != "[Rules]"
k, v = split(line, "=")
fis[key][k] = v
else
push!(fis[key], line)
end
end
end
sysinfo = fis["[System]"]
inputs = Dictionary{Symbol, Variable}()
for i in 1:parse(Int, sysinfo["NumInputs"])
varname, var = parse_var(fis["[Input$i]"])
insert!(inputs, varname, var)
end
outputs = Dictionary{Symbol, Variable}()
for i in 1:parse(Int, sysinfo["NumOutputs"])
varname, var = parse_var(fis["[Output$i]"]; inputs = collect(keys(inputs)))
insert!(outputs, varname, var)
end
rules = parse_rules(fis["[Rules]"], inputs, outputs)
opts = (; name = Symbol(sysinfo["Name"][2:(end - 1)]), inputs = inputs,
outputs = outputs, rules = rules,
and = MATLAB_JULIA["and" * sysinfo["AndMethod"]],
or = MATLAB_JULIA["or" * sysinfo["OrMethod"]])
if sysinfo["Type"] == "'mamdani'"
opts = (; opts..., implication = MATLAB_JULIA["imp" * sysinfo["ImpMethod"]],
aggregator = MATLAB_JULIA["agg" * sysinfo["AggMethod"]],
defuzzifier = MATLAB_JULIA[sysinfo["DefuzzMethod"]])
end
MATLAB_JULIA[sysinfo["Type"]](; opts...)
end
"""
String macro to parse Matlab fis formats. See [`parse_matlabfis`](@ref) for more details.
"""
macro matlabfis_str(s::AbstractString)
parse_matlabfis(s)
end
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 478 | using SafeTestsets, Test
testfiles = [
"test_intervals.jl",
"test_membership_functions.jl",
"test_settings.jl",
"test_parser.jl",
"test_evaluation.jl",
"test_plotting.jl",
"test_genfis.jl",
"test_compilation.jl",
"test_parsers/test_fcl.jl",
"test_parsers/test_matlab.jl",
"test_parsers/test_fml.jl",
"test_aqua.jl",
"test_doctests.jl",
]
for file in testfiles
@eval @time @safetestset $file begin include($file) end
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 105 | using FuzzyLogic, Aqua
Aqua.test_all(FuzzyLogic; ambiguities = false)
Aqua.test_ambiguities(FuzzyLogic)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 4965 | using FuzzyLogic, MacroTools, Test
@testset "compile Mamdani fuzzy system" begin
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap * 0.5
service == good && food != rancid --> tip == average
service == excellent || food == delicious --> tip == generous
end
fis_ex = compilefis(fis)
# construct output range outside, since LinRange repr changed between 1.6 and 1.8
out_dom = LinRange(0.0, 30.0, 101)
ref_ex = prettify(:(function tipper(service, food)
poor = exp(-((service - 0.0)^2) / 4.5)
good = exp(-((service - 5.0)^2) / 4.5)
excellent = exp(-((service - 10.0)^2) / 4.5)
rancid = max(min((food - -2) / 2, 1, (3 - food) / 2), 0)
delicious = max(min((food - 7) / 2, 1, (12 - food) / 2), 0)
ant1 = max(poor, rancid)
ant2 = min(good, 1 - rancid)
ant3 = max(excellent, delicious)
tip_agg = collect($out_dom)
@inbounds for (i, x) in enumerate(tip_agg)
cheap = max(min((x - 0) / 5, (10 - x) / 5), 0)
average = max(min((x - 10) / 5, (20 - x) / 5), 0)
generous = max(min((x - 20) / 5, (30 - x) / 5), 0)
tip_agg[i] = max(max(0.5 * min(ant1, cheap),
min(ant2, average)),
min(ant3, generous))
end
tip = ((2 *
sum((mfi * xi
for (mfi, xi) in zip(tip_agg, $out_dom))) -
first(tip_agg) * 0) - last(tip_agg) * 30) /
((2 * sum(tip_agg) - first(tip_agg)) - last(tip_agg))
return tip
end))
@test string(fis_ex) == string(ref_ex)
fname = joinpath(tempdir(), "tmp.jl")
compilefis(fname, fis, :tipper2)
include(fname)
@test fis((2, 7))[:tip] ≈ tipper2(2, 7)
rm(fname)
end
@testset "compile sugeno system" begin
fis = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 5.002
average = 15
generous = 2service, 0.5food, 5.0
end
service == poor || food == rancid --> tip == cheap * 0.5
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
fis_ex = compilefis(fis)
ref_ex = prettify(:(function tipper(service, food)
poor = exp(-((service - 0.0)^2) / 4.5)
good = exp(-((service - 5.0)^2) / 4.5)
excellent = exp(-((service - 10.0)^2) / 4.5)
rancid = max(min((food - -2) / 2, 1, (3 - food) / 2), 0)
delicious = max(min((food - 7) / 2, 1, (12 - food) / 2), 0)
ant1 = 0.5 * ((poor + rancid) - poor * rancid)
ant2 = good
ant3 = (excellent + delicious) - excellent * delicious
tot_weight = ant1 + ant2 + ant3
cheap = 5.002
average = 15
generous = 5.0 + 2.0service + 0.5 * food
tip = (ant1 * cheap + ant2 * average + ant3 * generous) /
tot_weight
return tip
end))
@test string(fis_ex) == string(ref_ex)
fname = joinpath(tempdir(), "tmp.jl")
compilefis(fname, fis, :tipper2)
include(fname)
@test fis((2, 7))[:tip] ≈ tipper2(2, 7)
rm(fname)
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 179 | using Documenter, FuzzyLogic, Test
DocMeta.setdocmeta!(FuzzyLogic, :DocTestSetup, :(using FuzzyLogic);
recursive = true)
doctest(FuzzyLogic; manual = false)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 6120 | using FuzzyLogic, Test
@testset "test Mamdani evaluation" begin
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
@test fis(service = 1, food = 2)[:tip]≈5.55 atol=1e-2
@test fis(service = 3, food = 5)[:tip]≈12.21 atol=1e-2
@test fis(service = 2, food = 7)[:tip]≈7.79 atol=1e-2
@test fis(service = 3, food = 1)[:tip]≈8.95 atol=1e-2
# with weighted rules and negation
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap * 0.5
service == good && food != rancid --> tip == average
service == excellent || food == delicious --> tip == generous
end
@test fis(service = 2, food = 7)[:tip]≈9.36 atol=1e-2
@test fis([2, 7])[:tip]≈9.36 atol=1e-2
end
@testset "test Sugeno evaluation" begin
fis = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 5.002
average = 15
generous = 24.998
end
service == poor || food == rancid --> tip == cheap * 0.5
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
@test fis(service = 2, food = 3)[:tip]≈8.97 atol=5e-3
fis2 = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 5.002
average = 15
generous = 2service, 0.5food, 5.0
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
@test fis2(service = 7, food = 8)[:tip]≈19.639 atol=1e-3
@test fis2((7, 8))[:tip]≈19.639 atol=1e-3
end
@testset "Type-2 Mamdani" begin
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = 0.9 * GaussianMF(0.0, 1.2) .. GaussianMF(0.0, 1.5)
good = 0.9 * GaussianMF(5.0, 1.2) .. GaussianMF(5.0, 1.5)
excellent = 0.9 * GaussianMF(10.0, 1.2) .. GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = 0.9 * TrapezoidalMF(-1.8, 0.0, 1.0, 2.8) .. TrapezoidalMF(-2, 0, 1, 3)
delicious = 0.9 * TrapezoidalMF(8, 9, 10, 12) .. TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 0.9 * TriangularMF(1, 5, 9) .. TriangularMF(0, 5, 10)
average = 0.9 * TriangularMF(11, 15, 19) .. TriangularMF(10, 15, 20)
generous = 0.9 * TriangularMF(22, 25, 29) .. TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
defuzzifier = KarnikMendelDefuzzifier()
end
for defuzzifier in (KarnikMendelDefuzzifier(), EKMDefuzzifier(), IASCDefuzzifier(),
EIASCDefuzzifier())
fis = set(fis; defuzzifier)
@test fis(service = 2, food = 3)[:tip]≈7.439 atol=1e-3
end
end
@testset "Type-2 Sugeno" begin
fis = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = 0.6 * GaussianMF(0.0, 1.5) .. GaussianMF(0.0, 1.5)
good = 0.6 * GaussianMF(5.0, 1.5) .. GaussianMF(5.0, 1.5)
excellent = 0.9 * GaussianMF(10.0, 1.5) .. GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = 0.8 * TrapezoidalMF(-2, 0, 1, 3) .. TrapezoidalMF(-2, 0, 1, 4)
delicious = 0.8 * TrapezoidalMF(8, 9, 10, 12) .. TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 5.002
average = 15
generous = 24.998
end
service == poor || food == rancid --> tip == cheap * 0.5
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
@test fis(service = 2, food = 3)[:tip]≈FuzzyLogic.Interval(2.94, 28.613) atol=1e-3
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 312 | using FuzzyLogic, Test
@testset "fuzzy c-means" begin
X = [-3 -3 -3 -2 -2 -2 -1 0 1 2 2 2 3 3 3;
-2 0 2 -1 0 1 0 0 0 -1 0 1 -2 0 2]
C, U = fuzzy_cmeans(X, 2; m = 3)
@test sortslices(C; dims = 2)≈[-2.02767 2.02767; 0 0] atol=1e-3
@test_throws ArgumentError fuzzy_cmeans(X, 3; m = 1)
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 874 | using FuzzyLogic, Test
using FuzzyLogic: Interval, inf, sup, mid, diam
@testset "interval operations" begin
a = Interval(0.1, 1.0)
b = Interval(0.2, 0.8)
@test inf(a) == 0.1
@test sup(a) == 1.0
@test mid(a) ≈ 0.55
@test inf(0.1) == sup(0.1) == mid(0.1) == 0.1
@test diam(a) ≈ 0.9
@test diam(0.1) == 0.0
@test Interval(1.0, 2.0) ≈ Interval(nextfloat(1.0), prevfloat(2.0))
@test +a == a
@test -a == Interval(-1.0, -0.1)
@test a + b ≈ Interval(0.3, 1.8)
@test a - b ≈ Interval(-0.7, 0.8)
@test a * b ≈ Interval(0.02, 0.8)
@test a / b ≈ Interval(0.125, 5.0)
@test min(a, b) == Interval(0.1, 0.8)
@test max(a, b) == Interval(0.2, 1.0)
@test zero(Interval{Float64}) == Interval(0.0, 0.0)
@test convert(Interval{Float64}, 1.0) == Interval(1.0, 1.0)
@test float(Interval{BigFloat}) == BigFloat
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 5618 | using FuzzyLogic, Test
using FuzzyLogic: Interval, to_expr
@testset "Difference of sigmoids MF" begin
f = DifferenceSigmoidMF(5, 2, 5, 7)
@test f(5)≈1 atol=1e-3
@test f(4)≈1 atol=1e-3
@test f(10)≈0 atol=1e-3
@test eval(to_expr(f, 5))≈1 atol=1e-3
@test eval(to_expr(f, 4))≈1 atol=1e-3
@test eval(to_expr(f, 10))≈0 atol=1e-3
end
@testset "Linear MF" begin
f = LinearMF(4, 6)
@test f(3) == eval(to_expr(f, 3)) == 0
@test f(4) == eval(to_expr(f, 4)) == 0
@test f(5) == eval(to_expr(f, 5)) == 0.5
@test f(6) == eval(to_expr(f, 6)) == 1
@test f(7) == eval(to_expr(f, 7)) == 1
g = LinearMF(6, 4)
@test g(3) == eval(to_expr(g, 3)) == 1
@test g(4) == eval(to_expr(g, 4)) == 1
@test g(5) == eval(to_expr(g, 5)) == 0.5
@test g(6) == eval(to_expr(g, 6)) == 0
@test g(7) == eval(to_expr(g, 7)) == 0
end
@testset "Generalized Bell MF" begin
f = GeneralizedBellMF(2, 4, 6)
@test f(0) ≈ eval(to_expr(f, 0)) ≈ 0.00015239256324291374
@test f(4) == eval(to_expr(f, 4)) == 0.5
@test f(6) == eval(to_expr(f, 6)) == 1
@test f(8) == eval(to_expr(f, 8)) == 0.5
end
@testset "Gaussian MF" begin
f = GaussianMF(5, 2)
@test f(3) == eval(to_expr(f, 3)) == 1 / √ℯ
@test f(5) == eval(to_expr(f, 5)) == 1
@test f(7) == eval(to_expr(f, 7)) == 1 / √ℯ
end
@testset "Product of sigmoids MF" begin
f = ProductSigmoidMF(2, 3, -5, 8)
f1 = SigmoidMF(2, 3)
f2 = SigmoidMF(-5, 8)
for val in 2:2:8
@test f(val) ≈ eval(to_expr(f, val)) ≈ f1(val) * f2(val)
end
end
@testset "Sigmoid MF" begin
f = SigmoidMF(2, 4)
@test f(4) == eval(to_expr(f, 4)) == 0.5
@test f(9) == eval(to_expr(f, 9)) == 1 / (1 + exp(-10))
@test f(0) == eval(to_expr(f, 0)) == 1 / (1 + exp(8))
@test f(2) == eval(to_expr(f, 2)) == 1 / (1 + exp(4))
end
@testset "Singleton MF" begin
f = SingletonMF(4)
@test f(4) === eval(to_expr(f, 4)) === 1
@test f(4.0) === eval(to_expr(f, 4.0)) === 1.0
@test iszero(f(3))
@test iszero(eval(to_expr(f, 3)))
@test iszero(f(5))
end
@testset "Trapezoidal MF" begin
f = TrapezoidalMF(1, 5, 7, 8)
@test f(0) == eval(to_expr(f, 0)) == 0
@test f(1) == eval(to_expr(f, 1)) == 0
@test f(3) == eval(to_expr(f, 3)) == 0.5
@test f(5) == eval(to_expr(f, 5)) == 1
@test f(6) == eval(to_expr(f, 6)) == 1
@test f(7) == eval(to_expr(f, 7)) == 1
@test f(8) == eval(to_expr(f, 8)) == 0
@test f(9) == eval(to_expr(f, 9)) == 0
end
@testset "Triangular MF" begin
f = TriangularMF(3, 6, 8)
@test f(2) == eval(to_expr(f, 2)) == 0
@test f(3) == eval(to_expr(f, 3)) == 0
@test f(4.5) == eval(to_expr(f, 4.5)) == 0.5
@test f(6) == eval(to_expr(f, 6)) == 1
@test f(7) == eval(to_expr(f, 7)) == 0.5
@test f(8) == eval(to_expr(f, 8)) == 0
@test f(9) == eval(to_expr(f, 9)) == 0
end
@testset "S-shaped MF" begin
mf = SShapeMF(1, 8)
@test mf(0) == eval(to_expr(mf, 0)) == 0
@test mf(1) == eval(to_expr(mf, 1)) == 0
@test mf(2.75) ≈ eval(to_expr(mf, 2.75)) ≈ 0.125
@test mf(4.5) ≈ eval(to_expr(mf, 4.5)) ≈ 0.5
@test mf(6.25) ≈ eval(to_expr(mf, 6.25)) ≈ 0.875
@test mf(8) == eval(to_expr(mf, 8)) == 1
@test mf(9) == eval(to_expr(mf, 9)) == 1
end
@testset "Z-shaped MF" begin
mf = ZShapeMF(3, 7)
@test mf(2) == eval(to_expr(mf, 2)) == 1
@test mf(3) == eval(to_expr(mf, 3)) == 1
@test mf(4) ≈ eval(to_expr(mf, 4)) ≈ 0.875
@test mf(5) ≈ eval(to_expr(mf, 5)) ≈ 0.5
@test mf(6) ≈ eval(to_expr(mf, 6)) ≈ 0.125
@test mf(7) == eval(to_expr(mf, 7)) == 0
@test mf(9) == eval(to_expr(mf, 9)) == 0
end
@testset "Pi-shaped MF" begin
mf = PiShapeMF(1, 4, 5, 10)
@test mf(1) == eval(to_expr(mf, 1)) == 0
@test mf(2.5) == eval(to_expr(mf, 2.5)) == 0.5
@test mf(4) == eval(to_expr(mf, 4)) == 1
@test mf(4.5) == eval(to_expr(mf, 4.5)) == 1
@test mf(5) == eval(to_expr(mf, 5)) == 1
@test mf(7.5) == eval(to_expr(mf, 7.5)) == 0.5
@test mf(8.75) == eval(to_expr(mf, 8.75)) == 0.125
@test mf(10) == eval(to_expr(mf, 10)) == 0
end
@testset "Semi-Elliptic MF" begin
mf = SemiEllipticMF(5.0, 4.0)
@test mf(0) == eval(to_expr(mf, 0)) == 0
@test mf(1) == eval(to_expr(mf, 1)) == 0
@test mf(5) == eval(to_expr(mf, 5)) == 1
@test mf(9) == eval(to_expr(mf, 9)) == 0
@test mf(10) == eval(to_expr(mf, 10)) == 0
end
@testset "Piecewise linear Membership function" begin
mf = PiecewiseLinearMF([(1, 0), (2, 1), (3, 0), (4, 0.5), (5, 0), (6, 1)])
@test mf(0.0) == eval(to_expr(mf, 0.0)) == 0
@test mf(1.0) == eval(to_expr(mf, 1.0)) == 0
@test mf(1.5) == eval(to_expr(mf, 1.5)) == 0.5
@test mf(2) == eval(to_expr(mf, 2)) == 1
@test mf(3.5) == eval(to_expr(mf, 3.5)) == 0.25
@test mf(7) == eval(to_expr(mf, 7)) == 1
end
@testset "Weighted Membership function" begin
mf = TriangularMF(1, 2, 3)
mf1 = 0.5 * mf
mf2 = mf * 0.5
@test mf1(1) == mf2(1) == eval(to_expr(mf1, 1)) == 0
@test mf1(3) == mf2(3) == eval(to_expr(mf1, 3)) == 0
@test mf1(2) == mf2(2) == eval(to_expr(mf1, 2)) == 0.5
@test mf1(0.3) == mf2(0.3) == eval(to_expr(mf1, 0.3)) == 0.5 * mf(0.3)
end
@testset "Type-2 membership function" begin
mf = 0.5 * TriangularMF(1, 2, 3) .. TriangularMF(0, 2, 4)
@test mf(-1) == Interval(0.0, 0.0)
@test mf(0) == Interval(0.0, 0.0)
@test mf(1) == Interval(0.0, 0.5)
@test mf(1.5) == Interval(0.25, 0.75)
@test mf(2) == Interval(0.5, 1.0)
@test mf(3) == Interval(0.0, 0.5)
@test mf(4) == Interval(0.0, 0.0)
@test mf(5) == Interval(0.0, 0.0)
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 5981 | using Dictionaries, FuzzyLogic, Test
using FuzzyLogic: FuzzyRelation, FuzzyAnd, FuzzyOr, FuzzyRule, WeightedFuzzyRule, Domain,
Variable
# TODO: write more low level tests
@testset "test Mamdani parser" begin
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
and = ProdAnd
or = ProbSumOr
implication = ProdImplication
service == poor && food == rancid --> tip == cheap * 0.2
service == good --> (tip == average, tip == average) * 0.3
service == excellent || food == delicious --> tip == generous
service == excellent || food == delicious --> (tip == generous, tip == generous)
aggregator = ProbSumAggregator
defuzzifier = BisectorDefuzzifier
end
@test fis isa
MamdaniFuzzySystem{ProdAnd, ProbSumOr, ProdImplication, ProbSumAggregator,
BisectorDefuzzifier}
@test fis.name == :tipper
service = Variable(Domain(0, 10),
Dictionary([:poor, :good, :excellent],
[GaussianMF(0.0, 1.5), GaussianMF(5.0, 1.5),
GaussianMF(10.0, 1.5)]))
food = Variable(Domain(0, 10),
Dictionary([:rancid, :delicious],
[TrapezoidalMF(-2, 0, 1, 3), TrapezoidalMF(7, 9, 10, 12)]))
tip = Variable(Domain(0, 30),
Dictionary([:cheap, :average, :generous],
[
TriangularMF(0, 5, 10),
TriangularMF(10, 15, 20),
TriangularMF(20, 25, 30),
]))
@test fis.inputs == Dictionary([:service, :food], [service, food])
@test fis.outputs == Dictionary([:tip], [tip])
@test fis.rules ==
[
WeightedFuzzyRule(FuzzyAnd(FuzzyRelation(:service, :poor),
FuzzyRelation(:food, :rancid)),
[FuzzyRelation(:tip, :cheap)], 0.2),
WeightedFuzzyRule(FuzzyRelation(:service, :good),
[FuzzyRelation(:tip, :average), FuzzyRelation(:tip, :average)],
0.3),
FuzzyRule(FuzzyOr(FuzzyRelation(:service, :excellent),
FuzzyRelation(:food, :delicious)),
[FuzzyRelation(:tip, :generous)]),
FuzzyRule(FuzzyOr(FuzzyRelation(:service, :excellent),
FuzzyRelation(:food, :delicious)),
[FuzzyRelation(:tip, :generous), FuzzyRelation(:tip, :generous)]),
]
end
@testset "test Sugeno parser" begin
fis = @sugfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = 0
average = food
generous = 2service, food, -2
end
service == poor && food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
@test fis isa
SugenoFuzzySystem{ProdAnd, ProbSumOr}
@test fis.name == :tipper
mfs = Dictionary([:cheap, :average, :generous],
[
ConstantSugenoOutput(0),
LinearSugenoOutput(Dictionary([:service, :food], [0, 1]), 0),
LinearSugenoOutput(Dictionary([:service, :food], [2, 1]), -2),
])
@test fis.outputs[:tip].mfs == mfs
end
@testset "parse vector-like notation" begin
fis = @mamfis function denoise(x[1:3])::y[1:2]
for i in 1:3
x[i] := begin
domain = -1000:1000
POS = TriangularMF(-255.0, 255.0, 765.0)
NEG = TriangularMF(-765.0, -255.0, 255.0)
end
end
y1 := begin
domain = -1000:1000
POS = TriangularMF(-255.0, 255.0, 765.0)
NEG = TriangularMF(-765.0, -255.0, 255.0)
end
y2 := begin
domain = -1000:1000
POS = TriangularMF(-255.0, 255.0, 765.0)
NEG = TriangularMF(-765.0, -255.0, 255.0)
end
for i in 1:2
x[i] == POS && x[i + 1] == NEG --> (y[i] == POS, y[i % 2 + 1] == NEG)
end
end
var = Variable(Domain(-1000, 1000),
Dictionary([:POS, :NEG],
[
TriangularMF(-255.0, 255.0, 765.0),
TriangularMF(-765.0, -255.0, 255.0),
]))
for x in (:x1, :x2, :x3)
@test fis.inputs[x] == var
end
for y in (:y1, :y2)
@test fis.outputs[y] == var
end
@test fis.rules == [
FuzzyRule(FuzzyAnd(FuzzyRelation(:x1, :POS), FuzzyRelation(:x2, :NEG)),
[FuzzyRelation(:y1, :POS), FuzzyRelation(:y2, :NEG)]),
FuzzyRule(FuzzyAnd(FuzzyRelation(:x2, :POS), FuzzyRelation(:x3, :NEG)),
[FuzzyRelation(:y2, :POS), FuzzyRelation(:y1, :NEG)]),
]
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 6254 | using FuzzyLogic
using FuzzyLogic: Domain, Variable, GenSurf
using RecipesBase
using Dictionaries
using Test
@testset "Plotting variables" begin
mf1 = TriangularMF(1, 2, 3)
mf2 = TrapezoidalMF(1, 2, 3, 4)
dom = Domain(0, 5)
rec = RecipesBase.apply_recipe(Dict{Symbol, Any}(), mf1, dom)
@test isempty(only(rec).plotattributes)
@test only(rec).args == (mf1, 0, 5)
rec = RecipesBase.apply_recipe(Dict{Symbol, Any}(), mf1, 0, 5)
@test only(rec).plotattributes == Dict(:legend => nothing)
@test only(rec).args[2:3] == (0, 5)
@test only(rec).args[1](0) == mf1(0)
mfnames = [:mf1, :mf2]
mfs = [mf1, mf2]
var = Variable(dom, Dictionary(mfnames, mfs))
rec = RecipesBase.apply_recipe(Dict{Symbol, Any}(), var, :var)
@test length(rec) == 2
for i in 1:2
@test rec[i].plotattributes ==
Dict(:legend => true, :label => string(mfnames[i]), :plot_title => "var")
@test rec[i].args == (mfs[i], dom)
end
end
@testset "Plotting Mamdani inference system" begin
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
rec = RecipesBase.apply_recipe(Dict{Symbol, Any}(), fis)
dom_in = Domain(0, 10)
dom_out = Domain(0, 30)
data = [
(GaussianMF(0.0, 1.5), dom_in),
(TrapezoidalMF(-2, 0, 1, 3), dom_in),
(TriangularMF(0, 5, 10), dom_out),
(GaussianMF(5.0, 1.5), dom_in),
(),
(TriangularMF(10, 15, 20), dom_out),
(GaussianMF(10.0, 1.5), dom_in),
(TrapezoidalMF(7, 9, 10, 12), dom_in),
(TriangularMF(20, 25, 30), dom_out)
]
titles = [
"service is poor",
"food is rancid",
"tip is cheap",
"service is good",
"",
"tip is average",
"service is excellent",
"food is delicious",
"tip is generous"
]
for (i, (p, d, t)) in enumerate(zip(rec, data, titles))
@test p.args == d
if isempty(d)
@test p.plotattributes == Dict(:plot_title => "tipper", :grid => false,
:legend => false, :axis => false, :layout => (3, 3),
:size => (900, 600), :subplot => i)
else
@test p.plotattributes ==
Dict(:plot_title => "tipper", :size => (900, 600), :title => t,
:layout => (3, 3), :subplot => i)
end
end
end
@testset "Plotting sugeno output variables" begin
mfnames = [:average, :generous]
mfs = [
ConstantSugenoOutput(15),
LinearSugenoOutput(Dictionary([:service, :food], [2.0, 0.5]), 5.0)
]
var = Variable(Domain(0, 30), Dictionary(mfnames, mfs))
plts = RecipesBase.apply_recipe(Dict{Symbol, Any}(), var, :tip)
for (plt, mfname, mf) in zip(plts, mfnames, mfs)
@test plt.args == (mf, Domain(0, 30))
@test plt.plotattributes == Dict(:plot_title => "tip", :legend => false,
:title => string(mfname), :layout => (1, 2))
end
end
@testset "Plotting type-2 membership functions" begin
mf = 0.5 * TriangularMF(1, 2, 3) .. TriangularMF(0, 2, 4)
plt = RecipesBase.apply_recipe(Dict{Symbol, Any}(), mf, 0, 4)
@test plt[1].args[1](0.0) == mf.lo(0.0)
@test keys(plt[1].plotattributes) ==
Set([:fillrange, :legend, :fillalpha, :linewidth, :linealpha])
@test plt[1].plotattributes[:fillrange](0.0) == mf.hi(0.0)
@test plt[2].args[1](2) == 1.0
end
# @testset "Plotting generating surface" begin
# fis = @mamfis function tipper(service, food)::tip
# service := begin
# domain = 0:10
# poor = GaussianMF(0.0, 1.5)
# good = GaussianMF(5.0, 1.5)
# excellent = GaussianMF(10.0, 1.5)
# end
# food := begin
# domain = 0:10
# rancid = TrapezoidalMF(-2, 0, 1, 3)
# delicious = TrapezoidalMF(7, 9, 10, 12)
# end
# tip := begin
# domain = 0:30
# cheap = TriangularMF(0, 5, 10)
# average = TriangularMF(10, 15, 20)
# generous = TriangularMF(20, 25, 30)
# end
# service == poor || food == rancid --> tip == cheap
# service == good --> tip == average
# service == excellent || food == delicious --> tip == generous
# end
# plt = RecipesBase.apply_recipe(Dict{Symbol, Any}(), GenSurf((fis,)))[1]
# @test plt.args[1] == range(0, 10, 100)
# @test plt.args[2] == range(0, 10, 100)
# @test plt.args[3](1, 2) == fis((1, 2))[:tip]
# @test plt.plotattributes[:seriestype] == :surface
# @test plt.plotattributes[:xlabel] == :service
# @test plt.plotattributes[:ylabel] == :food
# @test plt.plotattributes[:zlabel] == :tip
# fis1 = @mamfis function fis1(x)::y
# x := begin
# domain = 0:10
# low = TriangularMF(0, 2, 4)
# med = TriangularMF(4, 6, 8)
# high = TriangularMF(8, 9, 10)
# end
# y := begin
# domain = 0:10
# low = TriangularMF(0, 2, 4)
# med = TriangularMF(4, 6, 8)
# high = TriangularMF(8, 9, 10)
# end
# x == low --> y == low
# x == med --> y == med
# x == high --> y == high
# end
# plt = RecipesBase.apply_recipe(Dict{Symbol, Any}(), FuzzyLogic.GenSurf((fis1,)))[1]
# @test plt.args[1] == range(0, 10, 100)
# @test plt.args[2](2.5) == 2.0
# @test plt.plotattributes ==
# Dict{Symbol, Any}(:ylabel => :y, :legend => nothing, :xlabel => :x)
# end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 5655 | using FuzzyLogic
using FuzzyLogic: to_expr
using Test
@testset "update fuzzy systems" begin
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
and = ProdAnd
or = ProbSumOr
implication = ProdImplication
service == poor && food == rancid --> tip == cheap * 0.2
service == good --> (tip == average, tip == average) * 0.3
service == excellent || food == delicious --> tip == generous
service == excellent || food == delicious --> (tip == generous, tip == generous)
aggregator = ProbSumAggregator
defuzzifier = BisectorDefuzzifier
end
fis2 = set(fis; name = :tipper2, defuzzifier = CentroidDefuzzifier())
@test fis2.name == :tipper2
@test fis2 isa
MamdaniFuzzySystem{ProdAnd, ProbSumOr, ProdImplication, ProbSumAggregator,
CentroidDefuzzifier}
end
@testset "test T--norms" begin
@test MinAnd()(0.4, 0.2) == eval(to_expr(MinAnd(), 0.4, 0.2)) == 0.2
@test MinAnd()(1.0, 1.0) == eval(to_expr(MinAnd(), 1.0, 1.0)) == 1.0
@test MinAnd()(0.0, 0.0) == eval(to_expr(MinAnd(), 0.0, 0.0)) == 0.0
@test ProdAnd()(0.4, 0.2) ≈ eval(to_expr(ProdAnd(), 0.4, 0.2)) ≈ 0.08
@test ProdAnd()(1.0, 1.0) == eval(to_expr(ProdAnd(), 1.0, 1.0)) == 1.0
@test ProdAnd()(0.0, 0.0) == eval(to_expr(ProdAnd(), 0.0, 0.0)) == 0.0
@test DrasticAnd()(1.0, 0.2) == eval(to_expr(DrasticAnd(), 1.0, 0.2)) == 0.2
@test DrasticAnd()(0.3, 1.0) == eval(to_expr(DrasticAnd(), 0.3, 1.0)) == 0.3
@test DrasticAnd()(0.9, 0.9) == eval(to_expr(DrasticAnd(), 0.9, 0.9)) == 0.0
@test LukasiewiczAnd()(0.4, 0.2) == eval(to_expr(LukasiewiczAnd(), 0.4, 0.2)) == 0
@test LukasiewiczAnd()(0.7, 0.5) ≈ eval(to_expr(LukasiewiczAnd(), 0.7, 0.5)) ≈ 0.2
@test LukasiewiczAnd()(0.5, 0.5) ≈ eval(to_expr(LukasiewiczAnd(), 0.5, 0.5)) ≈ 0
@test NilpotentAnd()(0.4, 0.2) == eval(to_expr(NilpotentAnd(), 0.4, 0.2)) == 0.0
@test NilpotentAnd()(0.5, 0.7) == eval(to_expr(NilpotentAnd(), 0.5, 0.7)) == 0.5
@test NilpotentAnd()(0.5, 0.5) == eval(to_expr(NilpotentAnd(), 0.5, 0.5)) == 0.0
@test HamacherAnd()(0.0, 0.0) == eval(to_expr(HamacherAnd(), 0.0, 0.0)) == 0.0
@test HamacherAnd()(0.4, 0.2) ≈ eval(to_expr(HamacherAnd(), 0.4, 0.2)) ≈
0.15384615384615388
@test HamacherAnd()(1.0, 1.0) == eval(to_expr(HamacherAnd(), 1.0, 1.0)) == 1.0
@test EinsteinAnd()(0.0, 0.0) == eval(to_expr(EinsteinAnd(), 0.0, 0.0)) == 0.0
@test EinsteinAnd()(1.0, 0.0) == eval(to_expr(EinsteinAnd(), 1.0, 0.0)) == 0.0
@test EinsteinAnd()(0.5, 0.5) ≈ eval(to_expr(EinsteinAnd(), 0.5, 0.5)) ≈ 0.2
end
@testset "test S-norms" begin
@test MaxOr()(0.4, 0.2) == eval(to_expr(MaxOr(), 0.4, 0.2)) == 0.4
@test MaxOr()(1.0, 1.0) == eval(to_expr(MaxOr(), 1.0, 1.0)) == 1.0
@test MaxOr()(0.0, 0.0) == eval(to_expr(MaxOr(), 0.0, 0.0)) == 0.0
@test ProbSumOr()(0.5, 0.5) == eval(to_expr(ProbSumOr(), 0.5, 0.5)) == 0.75
@test ProbSumOr()(1.0, 0.2) == eval(to_expr(ProbSumOr(), 1.0, 0.2)) == 1.0
@test ProbSumOr()(1.0, 0.0) == eval(to_expr(ProbSumOr(), 1.0, 0.0)) == 1.0
@test BoundedSumOr()(0.2, 0.3) == eval(to_expr(BoundedSumOr(), 0.2, 0.3)) == 0.5
@test BoundedSumOr()(0.6, 0.6) == eval(to_expr(BoundedSumOr(), 0.6, 0.6)) == 1.0
@test BoundedSumOr()(0.0, 0.0) == eval(to_expr(BoundedSumOr(), 0.0, 0.0)) == 0.0
@test DrasticOr()(0.2, 0.0) == eval(to_expr(DrasticOr(), 0.2, 0.0)) == 0.2
@test DrasticOr()(0.0, 0.2) == eval(to_expr(DrasticOr(), 0.0, 0.2)) == 0.2
@test DrasticOr()(0.01, 0.01) == eval(to_expr(DrasticOr(), 0.01, 0.01)) == 1.0
@test NilpotentOr()(0.2, 0.3) == eval(to_expr(NilpotentOr(), 0.2, 0.3)) == 0.3
@test NilpotentOr()(0.5, 0.6) == eval(to_expr(NilpotentOr(), 0.5, 0.6)) == 1.0
@test NilpotentOr()(0.7, 0.1) == eval(to_expr(NilpotentOr(), 0.7, 0.1)) == 0.7
@test EinsteinOr()(0.0, 0.0) == eval(to_expr(EinsteinOr(), 0.0, 0.0)) == 0.0
@test EinsteinOr()(0.5, 0.5) == eval(to_expr(EinsteinOr(), 0.5, 0.5)) == 0.8
@test EinsteinOr()(1.0, 1.0) == eval(to_expr(EinsteinOr(), 1.0, 1.0)) == 1.0
@test HamacherOr()(0.0, 0.0) == eval(to_expr(HamacherOr(), 0.0, 0.0)) == 0.0
@test HamacherOr()(0.5, 0.5) ≈ eval(to_expr(HamacherOr(), 0.5, 0.5)) ≈ 2 / 3
@test HamacherOr()(1.0, 1.0) == eval(to_expr(HamacherOr(), 1.0, 1.0)) == 1.0
end
@testset "test type-1 defuzzifiers" begin
N = 800
mf = TrapezoidalMF(1, 2, 5, 7)
x = LinRange(0, 8, N + 1)
y = mf.(x)
dom = FuzzyLogic.Domain(0, 8)
@test BisectorDefuzzifier(N)(y, dom) ≈ eval(to_expr(BisectorDefuzzifier(N), y, dom)) ≈
3.75
@test CentroidDefuzzifier(N)(y, dom) ≈ eval(to_expr(CentroidDefuzzifier(N), y, dom)) ≈
3.7777777777777772
@test LeftMaximumDefuzzifier(; N)(y, dom) ≈
eval(to_expr(LeftMaximumDefuzzifier(; N), y, dom)) ≈ 2
@test RightMaximumDefuzzifier(; N)(y, dom) ≈
eval(to_expr(RightMaximumDefuzzifier(; N), y, dom)) ≈ 5
@test MeanOfMaximaDefuzzifier(; N)(y, dom) ≈
eval(to_expr(MeanOfMaximaDefuzzifier(; N), y, dom)) ≈ 3.5
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 6191 | using Dictionaries, FuzzyLogic, PEG, Test
using FuzzyLogic: Variable, Domain, FuzzyRelation, FuzzyAnd, FuzzyOr, FuzzyNegation,
FuzzyRule, WeightedFuzzyRule
@testset "parse propositions" begin
s = [
"a IS b OR Ix IS black AND th IS NOT red",
"(a IS b OR Ix IS black) AND th IS NOT red",
"a IS ai AND (b IS bi OR NOT (c IS ci))",
]
r = [
FuzzyOr(FuzzyRelation(:a, :b),
FuzzyAnd(FuzzyRelation(:Ix, :black), FuzzyNegation(:th, :red))),
FuzzyAnd(FuzzyOr(FuzzyRelation(:a, :b), FuzzyRelation(:Ix, :black)),
FuzzyNegation(:th, :red)),
FuzzyAnd(FuzzyRelation(:a, :ai),
FuzzyOr(FuzzyRelation(:b, :bi), FuzzyNegation(:c, :ci))),
]
for (si, ri) in zip(s, r)
@test parse_whole(FuzzyLogic.FCLParser.condition, si) == ri
end
end
@testset "Parse Sugeno FIS from FCL" begin
fis1 = fcl"""
FUNCTION_BLOCK container_crane
VAR_INPUT
distance: REAL;
angle: REAL;
END_VAR
VAR_OUTPUT
power: REAL;
END_VAR
FUZZIFY distance
TERM too_far:= (-5, 1) ( 0, 0);
TERM zero := (-5, 0) ( 0, 1) ( 5,0);
TERM close := ( 0, 0) ( 5, 1) (10,0);
TERM medium := ( 5, 0) (10, 1) (22,0);
TERM far := (10, 0) (22,1);
RANGE := (-7 .. 23);
END_FUZZIFY
FUZZIFY angle
TERM neg_big := (-50, 1) (-5, 0);
TERM neg_small := (-50, 0) (-5, 1) ( 0,0);
TERM zero := ( -5, 0) ( 0, 1) ( 5,0);
TERM pos_small := ( 0, 0) ( 5, 1) (50,0);
TERM pos_big := ( 5, 0) (50, 1);
RANGE := (-50..50);
END_FUZZIFY
DEFUZZIFY power
TERM neg_high := -27;
TERM neg_medium := -12;
TERM zero := 0;
TERM pos_medium := 12;
TERM pos_high := 27;
METHOD : COGS;
RANGE := (-27..27);
END_DEFUZZIFY
RULEBLOCK No1
AND: MIN;
RULE 1: IF distance IS far AND angle IS zero THEN power IS pos_medium;
RULE 2: IF distance IS far AND angle IS neg_small THEN power IS pos_big;
RULE 3: IF distance IS far AND angle IS neg_big THEN power IS pos_medium;
RULE 4: IF distance IS medium AND angle IS neg_small THEN power IS neg_medium;
RULE 5: IF distance IS close AND angle IS pos_small THEN power IS pos_medium;
RULE 6: IF distance IS zero AND angle IS zero THEN power IS zero;
END_RULEBLOCK
END_FUNCTION_BLOCK
"""
fis2 = readfis(joinpath(@__DIR__, "data", "container_crane.fcl"))
for fis in (fis1, fis2)
@test fis isa SugenoFuzzySystem{MinAnd, MaxOr}
mfs_dist = Dictionary([:too_far, :zero, :close, :medium, :far],
[
PiecewiseLinearMF([(-5.0, 1.0), (0.0, 0.0)]),
PiecewiseLinearMF([(-5.0, 0.0), (0.0, 1.0), (5.0, 0.0)]),
PiecewiseLinearMF([(0.0, 0.0), (5.0, 1.0), (10.0, 0.0)]),
PiecewiseLinearMF([(5.0, 0.0), (10.0, 1.0), (22.0, 0.0)]),
PiecewiseLinearMF([(10.0, 0.0), (22.0, 1.0)]),
])
@test fis.inputs[:distance] == Variable(Domain(-7.0, 23.0), mfs_dist)
mfs_power = Dictionary([:neg_high, :neg_medium, :zero, :pos_medium, :pos_high],
[
ConstantSugenoOutput(-27.0),
ConstantSugenoOutput(-12.0),
ConstantSugenoOutput(0.0),
ConstantSugenoOutput(12.0),
ConstantSugenoOutput(27.0)])
@test fis.outputs[:power] == Variable(Domain(-27.0, 27.0), mfs_power)
_parse_rule(exs::Tuple) = eval(FuzzyLogic.parse_rule(exs...))
rules = [(:(distance == far && angle == zero), [:(power == pos_medium)]),
(:(distance == far && angle == neg_small), [:(power == pos_big)]),
(:(distance == far && angle == neg_big), [:(power == pos_medium)]),
(:(distance == medium && angle == neg_small), [:(power == neg_medium)]),
(:(distance == close && angle == pos_small), [:(power == pos_medium)]),
(:(distance == zero && angle == zero), [:(power == zero)]),
]
@test fis.rules == map(_parse_rule, rules)
end
end
@testset "parse Mamdani system" begin
fis = fcl"""
FUNCTION_BLOCK edge_detector
VAR_INPUT
Ix: REAL;
Iy: REAL;
END_VAR
VAR_OUTPUT
Iout: REAL;
END_VAR
FUZZIFY Ix
TERM zero := (-0.3, 0.0) (0.0, 1.0) (0.3, 0.0);
RANGE := (-1..1);
END_FUZZIFY
FUZZIFY Iy
TERM zero := (-0.3, 0.0) (0.0, 1.0) (0.3, 0.0);
RANGE := (-1..1);
END_FUZZIFY
DEFUZZIFY Iout
TERM black := (0.0, 1.0) (0.7, 0.0);
TERM white := (0.1, 0.0) (1.0, 1.0);
METHOD: COA;
RANGE := (0.0..1.0);
END_DEFUZZIFY
RULEBLOCK rules
OR: ASUM;
ACT: PROD;
RULE 1: IF Ix IS zero AND Iy IS zero THEN Iout IS white WITH 0.5;
RULE 2: IF Ix IS NOT zero OR Iy IS NOT zero THEN Iout IS black;
END_RULEBLOCK
END_FUNCTION_BLOCK
"""
@test fis isa MamdaniFuzzySystem{ProdAnd, ProbSumOr, ProdImplication, MaxAggregator,
BisectorDefuzzifier}
@test fis.inputs[:Ix] == fis.inputs[:Iy] ==
Variable(Domain(-1.0, 1.0),
Dictionary([:zero],
[PiecewiseLinearMF([(-0.3, 0.0), (0.0, 1.0), (0.3, 0.0)])]))
@test fis.outputs[:Iout] == Variable(Domain(0.0, 1.0),
Dictionary([:black, :white],
[
PiecewiseLinearMF([(0.0, 1.0), (0.7, 0.0)]),
PiecewiseLinearMF([(0.1, 0.0), (1.0, 1.0)]),
]))
@test fis.rules == [
WeightedFuzzyRule(FuzzyAnd(FuzzyRelation(:Ix, :zero), FuzzyRelation(:Iy, :zero)),
[FuzzyRelation(:Iout, :white)], 0.5),
FuzzyRule(FuzzyOr(FuzzyNegation(:Ix, :zero), FuzzyNegation(:Iy, :zero)),
[FuzzyRelation(:Iout, :black)]),
]
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 7545 | using Dictionaries, FuzzyLogic, PEG, Test
using FuzzyLogic: Variable, Domain, FuzzyRelation, FuzzyAnd, FuzzyOr, FuzzyNegation,
WeightedFuzzyRule, FuzzyRule
@testset "parse Mamdani infernce system" begin
fis = readfis(joinpath(@__DIR__, "data", "tipper.xml"))
@test fis isa MamdaniFuzzySystem{MinAnd, MaxOr, MinImplication, MaxAggregator,
CentroidDefuzzifier}
@test fis.name == :tipper
service = Variable(Domain(0.0, 10.0),
Dictionary([:poor, :good, :excellent],
[GaussianMF(0.0, 2.0), GaussianMF(5.0, 2.0),
GaussianMF(10.0, 2.0)]))
food = Variable(Domain(0.0, 10.0),
Dictionary([:rancid, :delicious],
[
LinearMF(5.5, 0.0),
LinearMF(5.5, 10.0),
]))
tip = Variable(Domain(0.0, 20.0),
Dictionary([:cheap, :average, :generous],
[
TriangularMF(0.0, 5.0, 10.0),
TriangularMF(5.0, 10.0, 15.0),
TriangularMF(10.0, 15.0, 20.0),
]))
@test fis.inputs == Dictionary([:food, :service], [food, service])
@test fis.outputs == Dictionary([:tip], [tip])
@test fis.rules ==
[
FuzzyRule(FuzzyOr(FuzzyRelation(:food, :rancid), FuzzyRelation(:service, :poor)),
[FuzzyRelation(:tip, :cheap)]),
FuzzyRule(FuzzyRelation(:service, :good), [FuzzyRelation(:tip, :average)]),
FuzzyRule(FuzzyOr(FuzzyRelation(:service, :excellent),
FuzzyRelation(:food, :delicious)),
[FuzzyRelation(:tip, :generous)]),
]
end
@testset "Test Sugeno inference system" begin
fis = fml"""
<?xml version="1.0" encoding="UTF-8"?>
<fuzzySystem name="tipper" networkAddress="127.0.0.1">
<knowledgeBase>
<fuzzyVariable name="food" domainleft="0.0" domainright="10.0" scale=""
type="input">
<fuzzyTerm name="rancid" complement="false">
<rightLinearShape param1="0.0" param2="5.5" />
</fuzzyTerm>
<fuzzyTerm name="rancid2" complement="true">
<rightLinearShape param1="0.0" param2="5.5" />
</fuzzyTerm>
<fuzzyTerm name="delicious" complement="false">
<leftLinearShape param1="5.5" param2="10.0" />
</fuzzyTerm>
</fuzzyVariable>
<fuzzyVariable name="service" domainleft="0.0" domainright="10.0" scale=""
type="input">
<fuzzyTerm name="poor" complement="false">
<rightGaussianShape param1="0.0" param2="2.0" />
</fuzzyTerm>
<fuzzyTerm name="good" complement="false">
<gaussianShape param1="5.0" param2="2.0" />
</fuzzyTerm>
<fuzzyTerm name="excellent" complement="false">
<leftGaussianShape param1="10.0" param2="2.0" />
</fuzzyTerm>
</fuzzyVariable>
<tskVariable name="tip" scale="null" combination="WA" type="output">
<tskTerm name="average" order="0">
<tskValue>1.6</tskValue>
</tskTerm>
<tskTerm name="cheap" order="1">
<tskValue>1.9</tskValue>
<tskValue>5.6</tskValue>
<tskValue>6.0</tskValue>
</tskTerm>
<tskTerm name="generous" order="1">
<tskValue>0.6</tskValue>
<tskValue>1.3</tskValue>
<tskValue>1.0</tskValue>
</tskTerm>
</tskVariable>
</knowledgeBase>
<tskRuleBase name="No1" andMethod="PROD" orMethod="PROBOR">
<tskRule name="reg1" connector="or" orMethod="MAX" weight="1.0">
<antecedent>
<clause>
<variable>food</variable>
<term>rancid</term>
</clause>
<clause>
<variable>service</variable>
<term>poor</term>
</clause>
</antecedent>
<tskConsequent>
<tskThen>
<tskClause>
<variable>tip</variable>
<term>cheap</term>
</tskClause>
</tskThen>
</tskConsequent>
</tskRule>
<tskRule name="reg2" connector="and" weight="0.75">
<antecedent>
<clause>
<variable>service</variable>
<term>good</term>
</clause>
<clause>
<variable>food</variable>
<term>rancid2</term>
</clause>
</antecedent>
<tskConsequent>
<tskThen>
<tskClause>
<variable>tip</variable>
<term>average</term>
</tskClause>
</tskThen>
</tskConsequent>
</tskRule>
<tskRule name="reg3" connector="or" orMethod="MAX" weight="1.0">
<antecedent>
<clause>
<variable>food</variable>
<term>delicious</term>
</clause>
<clause>
<variable>service</variable>
<term>excellent</term>
</clause>
</antecedent>
<tskConsequent>
<tskThen>
<tskClause>
<variable>tip</variable>
<term>generous</term>
</tskClause>
</tskThen>
</tskConsequent>
</tskRule>
</tskRuleBase>
</fuzzySystem>
"""
@test fis isa SugenoFuzzySystem{ProdAnd, ProbSumOr}
@test fis.outputs[:tip] == Variable(Domain(-Inf, Inf),
Dictionary([:average, :cheap, :generous],
[
ConstantSugenoOutput(1.6),
LinearSugenoOutput(Dictionary([:food, :service],
[1.9, 5.6]), 6.0),
LinearSugenoOutput(Dictionary([:food, :service],
[0.6, 1.3]), 1.0),
]))
@test fis.rules ==
[
FuzzyRule(FuzzyOr(FuzzyRelation(:food, :rancid), FuzzyRelation(:service, :poor)),
[FuzzyRelation(:tip, :cheap)]),
WeightedFuzzyRule(FuzzyAnd(FuzzyRelation(:service, :good),
FuzzyNegation(:food, :rancid2)),
[FuzzyRelation(:tip, :average)], 0.75),
FuzzyRule(FuzzyOr(FuzzyRelation(:food, :delicious),
FuzzyRelation(:service, :excellent)),
[FuzzyRelation(:tip, :generous)]),
]
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | code | 4172 | using Dictionaries, FuzzyLogic, PEG, Test
using FuzzyLogic: Variable, Domain, FuzzyRelation, FuzzyAnd, FuzzyOr, FuzzyNegation,
WeightedFuzzyRule, FuzzyRule
@testset "parse Mamdani infernce system" begin
fis = readfis(joinpath(@__DIR__, "data", "tipper.fis"))
@test fis isa MamdaniFuzzySystem{MinAnd, MaxOr, MinImplication, MaxAggregator,
CentroidDefuzzifier}
@test fis.name == :tipper
service = Variable(Domain(0.0, 10.0),
Dictionary([:poor, :good, :excellent],
[GaussianMF(0.0, 1.5), GaussianMF(5.0, 1.5),
GaussianMF(10.0, 1.5)]))
food = Variable(Domain(0.0, 10.0),
Dictionary([:rancid, :delicious],
[
TrapezoidalMF(-2.0, 0.0, 1.0, 3.0),
TrapezoidalMF(7.0, 9.0, 10.0, 12.0),
]))
tip = Variable(Domain(0.0, 30.0),
Dictionary([:cheap, :average, :generous],
[
TriangularMF(0.0, 5.0, 10.0),
TriangularMF(10.0, 15.0, 20.0),
TriangularMF(20.0, 25.0, 30.0),
]))
@test fis.inputs == Dictionary([:service, :food], [service, food])
@test fis.outputs == Dictionary([:tip], [tip])
@test fis.rules ==
[
FuzzyRule(FuzzyOr(FuzzyRelation(:service, :poor),
FuzzyRelation(:food, :rancid)),
[FuzzyRelation(:tip, :cheap)]),
FuzzyRule(FuzzyRelation(:service, :good), [FuzzyRelation(:tip, :average)]),
FuzzyRule(FuzzyOr(FuzzyRelation(:service, :excellent),
FuzzyRelation(:food, :delicious)),
[FuzzyRelation(:tip, :generous)]),
]
fis = matlabfis"""
[System]
Name='edgefis'
Type='mamdani'
Version=2.0
NumInputs=2
NumOutputs=1
NumRules=2
AndMethod='min'
OrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='bisector'
[Input1]
Name='Ix'
Range=[-1 1]
NumMFs=1
MF1='zero':'gaussmf',[0.1 0]
[Input2]
Name='Iy'
Range=[-1 1]
NumMFs=1
MF1='zero':'gaussmf',[0.1 0]
[Output1]
Name='Iout'
Range=[0 1]
NumMFs=2
MF1='white':'linsmf',[0.1 1]
MF2='black':'linzmf',[0 0.7]
[Rules]
1 1, 1 (1) : 1
-1 -1, 2 (1) : 2
"""
@test fis isa MamdaniFuzzySystem{MinAnd, MaxOr, MinImplication, MaxAggregator,
BisectorDefuzzifier}
@test fis.outputs[:Iout].mfs ==
Dictionary([:white, :black], [LinearMF(0.1, 1.0), LinearMF(0.7, 0.0)])
@test fis.rules[2] ==
FuzzyRule(FuzzyOr(FuzzyNegation(:Ix, :zero), FuzzyNegation(:Iy, :zero)),
[FuzzyRelation(:Iout, :black)])
end
@testset "Test Sugeno inference system" begin
fis = matlabfis"""
[System]
Name='sugfis'
Type='sugeno'
Version=2.0
NumInputs=1
NumOutputs=1
NumRules=2
AndMethod='prod'
OrMethod='probor'
ImpMethod='prod'
AggMethod='sum'
DefuzzMethod='wtaver'
[Input1]
Name='input'
Range=[-5 5]
NumMFs=2
MF1='low':'gaussmf',[4 -5]
MF2='high':'gaussmf',[4 5]
[Output1]
Name='output'
Range=[0 1]
NumMFs=2
MF1='line1':'linear',[-1 -1]
MF2='line2':'constant',[0.5]
[Rules]
1, 1 (0.5) : 1
2, 2 (0.5) : 1
"""
@test fis isa SugenoFuzzySystem{ProdAnd, ProbSumOr}
@test fis.outputs[:output].mfs == Dictionary([:line1, :line2],
[
LinearSugenoOutput(Dictionary([:input], [-1.0]), -1.0),
ConstantSugenoOutput(0.5),
])
@test fis.rules == [
WeightedFuzzyRule(FuzzyRelation(:input, :low), [FuzzyRelation(:output, :line1)],
0.5),
WeightedFuzzyRule(FuzzyRelation(:input, :high), [FuzzyRelation(:output, :line2)],
0.5),
]
end
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 6871 | # FuzzyLogic.jl
|**Info**|**Build status**|**Documentation**|**Contributing**|**Citation**|
|:------:|:--------------:|:---------------:|:--------------:|:----------:|
|[![version][ver-img]][ver-url]|[![CI Status][ci-img]][ci-url]|[![Stable docs][stable-img]][stable-url]|[![contributing guidelines][contrib-img]][contrib-url]|[![bibtex][bibtex-img]][bibtex-url]
|[![Licese: MIT][license-img]][license-url]|[![Coverage][cov-img]][cov-url]|[![Dev docs][dev-img]][dev-url]|[![SciML Code Style][style-img]][style-url]|[![paper][paper-img]][paper-url]|
|[![downloads][download-img]][download-url]|[![pkgeval-img]][pkgeval-url]|[![JuliaCon video][video-img]][video-url]|[![gitter-chat][chat-img]][chat-url]|[![zenodo][zenodo-img]][zenodo-url]
<p align="center">
<img src="./docs/src/assets/logo.svg"/>
</p>
A Julia library for fuzzy logic and applications.
If you use this in your research, please cite it as
```bibtex
@INPROCEEDINGS{ferranti2023fuzzylogicjl,
author={Ferranti, Luca and Boutellier, Jani},
booktitle={2023 IEEE International Conference on Fuzzy Systems (FUZZ)},
title={FuzzyLogic.jl: A Flexible Library for Efficient and Productive Fuzzy Inference},
year={2023},
pages={1-5},
doi={10.1109/FUZZ52849.2023.10309777}}
```
## Features
- **Rich!** Mamdani and Sugeno inference systems, both Type-1 and Type-2, several [membership functions](https://lucaferranti.github.io/FuzzyLogic.jl/stable/api/memberships) and [algoritms options](https://lucaferranti.github.io/FuzzyLogic.jl/stable/api/fis) available.
- **Compatible!** Read your models from [IEC 61131-7 Fuzzy Control Language](https://ffll.sourceforge.net/fcl.htm), [IEEE 1855-2016 Fuzzy Markup Language](https://en.wikipedia.org/wiki/Fuzzy_markup_language) and Matlab Fuzzy toolbox `.fis` files.
- **Expressive!** Clear Domain Specific Language to write your model as human readable Julia code
- **Productive!** Several visualization tools to help debug and tune your model.
- **Portable!** Compile your final model to Julia code.
## Installation
1. If you haven't already, install Julia. The easiest way is to install [Juliaup](https://github.com/JuliaLang/juliaup#installation). This allows to easily manage julia versions.
2. Open the terminal and start a julia session by simply typing `julia`
3. Install the library by typing
```julia
using Pkg; Pkg.add("FuzzyLogic")
```
4. The package can now be loaded (in the interactive REPL or in a script file) with the command
```julia
using FuzzyLogic
```
5. That's it, have fun!
## Quickstart example
```julia
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
fis(service=1, food=2)
```
## Documentation
- [**STABLE**][stable-url]: Documentation of the latest release
- [**DEV**][dev-url]: Documentation of the version on main
[](https://youtu.be/6WfX3e-aOBc)
## Contributing
Contributions are welcome! Here is a small decision tree with useful links.
- To chat withe the core dev(s), you can use the [element chat][chat-url]. This is a good entry point for less structured queries.
- If you find a bug or want to request a feature, [open an issue](https://github.com/lucaferranti/FuzzyLogic.jl/issues).
- There is a [discussion section](https://github.com/lucaferranti/FuzzyLogic.jl/discussions) on GitHub. You can use the [helpdesk](https://github.com/lucaferranti/FuzzyLogic.jl/discussions/categories/helpdesk) for asking for help on how to use the software or the [show and tell](https://github.com/lucaferranti/FuzzyLogic.jl/discussions/categories/show-and-tell) to share with the world your work using FuzzyLogic.jl.
- You are also encouraged to send pull requests (PRs). For small changes, it is ok to open a PR directly. For bigger changes, it is advisable to discuss it in an issue first. Before opening a PR, make sure to check the [contributing guidelines](https://lucaferranti.github.io/FuzzyLogic.jl/dev/contributing).
## Copyright
- Copyright (c) 2022 [Luca Ferranti](https://github.com/lucaferranti), released under MIT license.
[ver-img]: https://juliahub.com/docs/FuzzyLogic/version.svg
[ver-url]: https://github.com/lucaferranti/FuzzyLogic.jl/releases/latest
[license-img]: https://img.shields.io/badge/license-MIT-yellow.svg
[license-url]: https://github.com/lucaferranti/FuzzyLogic.jl/blob/main/LICENSE
[download-img]: https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/FuzzyLogic&label=downloads
[download-url]: https://pkgs.genieframework.com/?packages=FuzzyLogic
[stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
[stable-url]:https://lucaferranti.github.io/FuzzyLogic.jl/stable/
[dev-img]: https://img.shields.io/badge/docs-dev-blue.svg
[dev-url]: https://lucaferranti.github.io/FuzzyLogic.jl/dev/
[video-img]: https://img.shields.io/badge/JuliaCon-video-red.svg
[video-url]: https://www.youtube.com/watch?v=6WfX3e-aOBc
[ci-img]: https://github.com/lucaferranti/FuzzyLogic.jl/actions/workflows/CI.yml/badge.svg?branch=main
[ci-url]: https://github.com/lucaferranti/FuzzyLogic.jl/actions/workflows/CI.yml?query=branch%3Amain
[cov-img]: https://codecov.io/gh/lucaferranti/FuzzyLogic.jl/branch/main/graph/badge.svg
[cov-url]: https://codecov.io/gh/lucaferranti/FuzzyLogic.jl
[pkgeval-img]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/F/FuzzyLogic.svg
[pkgeval-url]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/F/FuzzyLogic.html
[contrib-img]: https://img.shields.io/badge/Contributor-Guide-blueviolet
[contrib-url]: https://lucaferranti.github.io/FuzzyLogic.jl/dev/contributing
[style-img]: https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826
[style-url]: https://github.com/SciML/SciMLStyle
[chat-img]: https://badges.gitter.im/badge.svg
[chat-url]: https://app.gitter.im/#/room/#FuzzyLogic-jl:gitter.im
[bibtex-img]: https://img.shields.io/badge/BibTeX-citation-orange
[bibtex-url]: https://github.com/lucaferranti/FuzzyLogic.jl/blob/main/CITATION.bib
[paper-img]: https://img.shields.io/badge/FUZZIEEE-paper-blue
[paper-url]: https://arxiv.org/abs/2306.10316
[zenodo-img]: https://img.shields.io/badge/Zenodo-archive-blue
[zenodo-url]: https://doi.org/10.5281/zenodo.7570243 | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 3187 | # Code of Conduct
Interactions with people in the community must always follow the [Julia community standards](https://julialang.org/community/standards/), including in pull requests, issues, and discussions.
> ## Julia Community Standards
>
> The Julia community is committed to maintaining a welcoming, civil and constructive environment. We expect the following standards to be observed and upheld by all participants in any community forum (mailing lists, GitHub, IRC, etc.).
>
> ### Be respectful and inclusive
>
> Please do not use overtly sexual language or imagery. Do not attack anyone based on any aspect of personal identity, including gender, sexuality, politics, religion, ethnicity, race, age, or ability. Keep in mind that what you write or say in public forums is read or heard by many people who don't know you personally, so please refrain from making prejudiced or sexual jokes and comments – even ones that you might consider acceptable in private. Ask yourself if a comment or statement might make someone feel unwelcomed or like an outsider.
>
> In particular, do not sexualize the term "Julia" or any other aspects of the project. While "Julia" is a female name in many parts of the world, the programming language is not a person and does not have a gender.
>
> ### Give credit
>
> All participants in the Julia community are expected to respect copyright laws and ethical attribution standards. This applies to both code and written materials, such as documentation or blog posts. Materials that violate the law, are plagiaristic, or ethically dubious in some way will be removed from officially-maintained lists of resources.
>
> ### Be concise
>
> Constructive criticism and suggestions are welcome, but high-traffic forums do not generally have the bandwidth for extensive discourse. Consider writing a blog post if you feel that you have enough to say on a particular subject.
>
> ### For Researchers
>
> We welcome the participation of researchers of all kinds in the Julia community. However, please remember that open source development is a social process and that the participants on the other side of any interaction are (obviously) humans. If you are doing research *on the community or its processes*, you are likely performing Human Subjects Research (HSR) and are expected to abide by the highest standards of ethics and professional practice. Meeting this expectation is your responsibility. In particular, please be aware that Institutional Review Boards (IRBs) or other review committees may not have sufficient context or experience to understand the social processes of an open source community. We consider engaging in unethical research (human subject or otherwise) to be a cause for bans or other sanctions from the community.
>
> ### Get involved
>
> The Julia community is built on a foundation of reciprocity and collaboration. Be aware that most community members contribute on a voluntary basis, so ideas and bug reports are ok, but demands are not. Pull requests are always welcomed – see the [guidelines for contributing](https://lucaferranti.github.io/FuzzyLogic.jl/dev/contributing) to read about how to get started.
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 469 | ## Contributing
Contributions are welcome! If you find a bug or want to request a feature, [open an issue](https://github.com/lucaferranti/FuzzyLogic.jl/issues). You are also encouraged to send pull requests (PRs). For small changes, it is ok to open a PR directly. For bigger changes, it is advisable to discuss it in an issue first. Before opening a PR, make sure to check the [contributing guidelines](https://lucaferranti.github.io/FuzzyLogic.jl/dev/contributing). | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 803 | ## PR description
<!-- A short description of what is done in this PR. -->
## Before
<!-- Small example showing the functionality before this PR.
Needed only if you are changing existing source code (e.g. bug fix) -->
## After
<!-- Small example showing the functionality added/changed in this PR.
Needed only if you change the source code. -->
## Related issues
<!--
List the issues related to this PR. E.g.
- #01
- #02
If you are closing some issues add "fixes" before the issue number, e.g.
- fixes #01
- #02
-->
## Checklist
<!-- Needed only if you change the source code.
You don't need to get everything done before opening the PR :) -->
- [ ] Updated/added tests
- [ ] Updated/added docstring (needed only for exported functions)
## Other
<!-- Add here any other relevant information. --> | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 949 | ---
name: Bug report
about: Report a bug for this project
title: "[bug]"
labels: bug
assignees: ''
---
## Bug description
<!-- A clear and concise description of what the bug is. -->
## Minimum (non-)working example
<!-- A short code snippet demonstrating the bug, e.g. a snapshot from the REPL (make sure to include the whole error stracktrace) or a link to a notebook/script to reproduce the bug -->
## Expected behavior
<!-- A clear and concise description of what you expected to happen. -->
## Version info
<!-- you can get the package version with `]st FuzzyLogic` from the REPL. For the system information, enter `versioninfo()` in the Julia REPL and copy-paste the output. -->
- FuzzyLogic.jl version:
- System information:
## Related issues
<!-- if you already know or suspect some existing issues are related to this, please mention those here, otherwise leave blank -->
## Additional information
Add any other useful information | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 521 | ---
name: Feature request
about: Suggest an idea for this project
title: "[enhancement]: "
labels: enhancement
assignees: ''
---
## Feature description
<!-- A clear and concise description of the feature you would like to be added. Try to also give motivation why it would be a nice addition. -->
## Minimum working example
<!-- If you already have in mind what the code for your feature could look like, paste an example code snippet here -->
## Additional information
<!-- Add any other useful information here -->
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 3680 | # Release Notes
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## Unreleased
-  fix bug in Julia code generation of ZShape and SShape mf
-  disallow implicit conversion from interval to float
-  added semi-elliptic and singleton membership functions
-  added `gensurf` to plot generating surface
-  fix plotting of systems with several rules and membership functions.
-  fix plotting of Type-2 systems
## v0.1.2 -- 2023-03-12
[view release on GitHub](https://github.com/lucaferranti/FuzzyLogic.jl/releases/tag/v0.1.2)
-  support for weighted rules.
-  allow to specify input and output variables as vectors (e.g. `x[1:10]`) and support for loops to avoid repetitive code.
-  added support for type-2 membership functions and type-2 systems.
-  added parser for Fuzzy Markup Language.
-  added generation of native Julia code.
-  added left maximum, right maximum and mean of maxima defuzzifiers.
## v0.1.1 -- 2023-02-25
[view release on GitHub](https://github.com/lucaferranti/FuzzyLogic.jl/releases/tag/v0.1.1)
-  Added fuzzy c-means
-  added Lukasiewicz, drastic, nilpotent and Hamacher T-norms and corresponding S-norms.
-  dont build anonymous functions during mamdani inference, but evaluate output directly. Now defuzzifiers don't take a function as input, but an array.
-  added piecewise linear membership function
-  added parser for Fuzzy Control Language and matlab fis.
## v0.1.0 -- 2023-01-10
**initial public release**
- initial domain specific language design and parser
- initial membership functions: triangular, trapezoidal, gaussian, bell, linear, sigmoid, sum of sigmoids, product of sigmoids, s-shaped, z-shaped, pi-shaped.
- initial implementation of Mamdani and Sugeno inference systems (type 1)
- min and prod t-norms with corresponding conorms
- min and prod implication
- max and probabilistic sum aggregation method
- centroid and bisector defuzzifier
- linear and constant output for Sugeno
- initial plotting functionalities
- plotting variables and membership functions
- plotting rules of fuzzy inference system
[badge-breaking]: https://img.shields.io/badge/BREAKING-red.svg
[badge-deprecation]: https://img.shields.io/badge/deprecation-orange.svg
[badge-feature]: https://img.shields.io/badge/new%20feature-green.svg
[badge-enhancement]: https://img.shields.io/badge/enhancement-blue.svg
[badge-bugfix]: https://img.shields.io/badge/bugfix-purple.svg
[badge-security]: https://img.shields.io/badge/security-black.svg
[badge-experimental]: https://img.shields.io/badge/experimental-lightgrey.svg
[badge-maintenance]: https://img.shields.io/badge/maintenance-gray.svg | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 5777 | # Contributor's guide
First of all, huge thanks for your interest in the package! ✨
This page has some tips and guidelines on how to contribute. For more unstructured discussions, you can chat with the developers in the [element chat](https://app.gitter.im/#/room/#FuzzyLogic-jl:gitter.im).
## Discussions
If you are using FuzzyLogic.jl in your work and get stuck, you can use the [helpdesk](https://github.com/lucaferranti/FuzzyLogic.jl/discussions/categories/helpdesk) to ask for help. This is preferable over issues, which are meant for bugs and feature requests, because discussions do not get closed once fixed and remain browsable for others.
There is also a [show and tell](https://github.com/lucaferranti/FuzzyLogic.jl/discussions/categories/show-and-tell) section to share with the world your work using FuzzyLogic.jl. If your work involves a new application of FuzzyLogic.jl and you also want it featured in the Applications section in the documentation, let us know (in the element chat or in an issue). You will get help with the workflow and setup, but you are expected to do the writing 😃 .
## Opening issues
If you spot something strange in the software (something doesn't work or doesn't behave as expected) do not hesitate to open a [bug issue](https://github.com/lucaferranti/FuzzyLogic.jl/issues/new?assignees=&labels=bug&template=bug_report.md&title=%5Bbug%5D).
If have an idea of how to make the package better (a new feature, a new piece of documentation, an idea to improve some existing feature), you can open an [enhancement issue](https://github.com/lucaferranti/FuzzyLogic.jl/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=%5Benhancement%5D%3A+).
In both cases, try to follow the template, but do not worry if you don't know how to fill something.
If you feel like your issue does not fit any of the above mentioned templates (e.g. you just want to ask something), you can also open a [blank issue](https://github.com/lucaferranti/FuzzyLogic.jl/issues/new).
## Collaborative Practices
We follow the [ColPrac guide for collaborative practices](https://github.com/SciML/ColPrac). New contributors should make sure to read that guide. Below are some additional practices we follow.
## Git workflow
All contributions should go through git branches. If you are not familiar with git practices, you will find some references at the end of this file. Here is a short cheat-sheet.
### Setup
**1.** Clone the repository
```
git clone https://github.com/lucaferranti/FuzzyLogic.jl.git
```
and enter it with
```
cd FuzzyLogic.jl
```
!!! warning "Warning"
From now on, these instructions assume you are in the `FuzzyLogic.jl` folder
**2.** [Fork the repository](https://github.com/lucaferranti/FuzzyLogic.jl).
**3.** Add your fork as remote with
```
git remote add $new_remote_name $your_fork_link
```
for example
```
git remote add johndoe https://github.com/johndoe/FuzzyLogic.jl.git
```
after this running `git remote -v` should produce
```
lucaferranti https://github.com/lucaferranti/FuzzyLogic.jl.git (fetch)
lucaferranti https://github.com/lucaferranti/FuzzyLogic.jl.git (push)
johndoe https://github.com/johndoe/FuzzyLogic.jl.git (fetch)
johndoe https://github.com/johndoe/FuzzyLogic.jl.git (push)
```
### Working with branches
**0.** Run `git branch` and check you are on `main`. If you are not, switch to `main` via
```
git switch main
```
Next, make sure your local version is up to date by running
```
git fetch origin
git merge origin/main
```
**1.** Create a new branch with
```
git switch -c $new-branch-name
```
**3.** Now let the fun begin! Fix bugs, add the new features, modify the docs, whatever you do, it's gonna be awesome!
**4.** When you are ready, go to the [package main repository](https://github.com/lucaferranti/FuzzyLogic.jl) (not your fork!) and open a pull request.
**5.** If nothing happens within 7 working days feel free to ping Luca Ferranti (@lucaferranti) every 1-2 days until you get his attention.
## Coding guideline
* The package follows [SciMLStyle](https://github.com/sciml/SciMLStyle).
* You can run the tests locally from the Julia REPL with
```julia
include("test/runtests.jl")
```
* Each test file is stand-alone, hence you can also run individual files, e.g. `include("test/test_parser.jl")`
* To make finding tests easier, the test folder structure should (roughly) reflect the structure of the `src` folder.
## Working on the documentation
### Local setup
The first time you start working on the documentation locally, you will need to install all needed dependencies. To do so, run
```
julia docs/setup.jl
```
This needs to be done only the fist time (if you don't have `docs/Manifest.toml`) or any time the Manifest becomes outdated.
Next, you can build the documentation locally by running
```
julia docs/liveserver.jl
```
This will open a preview of the documentation in your browser and watch the documentation source files, meaning the preview will automatically update on every documentation change.
### Working with literate.
* Tutorials and applications are written using [Literate.jl](https://github.com/fredrikekre/Literate.jl). Hence, do not directly edit the markdown files under `docs/src/tutorials` and `docs/src/applications`, edit instead the corresponding julia files under `docs/src/literate`.
## Further reading
Here is a list of useful resources for contributors.
* [Making a first Julia pull request](https://kshyatt.github.io/post/firstjuliapr/) <-- read this if you are not familiar with the git workflow!
* [JuliaReach developers docs](https://github.com/JuliaReach/JuliaReachDevDocs)
* [Julia contributing guideline](https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md)
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 4783 | # FuzzyLogic.jl
|**Info**|**Build status**|**Documentation**|**Contributing**|**Citation**|
|:------:|:--------------:|:---------------:|:--------------:|:----------:|
|[](https://github.com/lucaferranti/FuzzyLogic.jl/releases/latest)|[](https://github.com/lucaferranti/FuzzyLogic.jl/actions/workflows/CI.yml?query=branch%3Amain)|[](https://lucaferranti.github.io/FuzzyLogic.jl/stable/)|[](https://lucaferranti.github.io/FuzzyLogic.jl/dev/contributing)|[](https://github.com/lucaferranti/FuzzyLogic.jl/blob/main/CITATION.bib)
|[](https://github.com/lucaferranti/FuzzyLogic.jl/blob/main/LICENSE)|[](https://codecov.io/gh/lucaferranti/FuzzyLogic.jl)|[](https://lucaferranti.github.io/FuzzyLogic.jl/dev/)|[](https://github.com/SciML/SciMLStyle)|[](https://arxiv.org/abs/2306.10316)
|[](https://pkgs.genieframework.com/?packages=FuzzyLogic)|[](https://juliaci.github.io/NanosoldierReports/pkgeval_badges/F/FuzzyLogic.html)|[](https://www.youtube.com/watch?v=6WfX3e-aOBc)|[](https://app.gitter.im/#/room/#FuzzyLogic-jl:gitter.im)|[](https://doi.org/10.5281/zenodo.7570243)
A Julia library for fuzzy logic and applications.
If you use this in your research, please cite it as
```bibtex
@INPROCEEDINGS{ferranti2023fuzzylogicjl,
author={Ferranti, Luca and Boutellier, Jani},
booktitle={2023 IEEE International Conference on Fuzzy Systems (FUZZ)},
title={FuzzyLogic.jl: A Flexible Library for Efficient and Productive Fuzzy Inference},
year={2023},
pages={1-5},
doi={10.1109/FUZZ52849.2023.10309777}}
```
## Features
- **Rich!** Mamdani and Sugeno inference systems, both Type-1 and Type-2, several [membership functions](https://lucaferranti.github.io/FuzzyLogic.jl/stable/api/memberships) and [algoritms options](https://lucaferranti.github.io/FuzzyLogic.jl/stable/api/fis) available.
- **Compatible!** Read your models from [IEC 61131-7 Fuzzy Control Language](https://ffll.sourceforge.net/fcl.htm), [IEEE 1855-2016 Fuzzy Markup Language](https://en.wikipedia.org/wiki/Fuzzy_markup_language) and Matlab Fuzzy toolbox `.fis` files.
- **Expressive!** Clear Domain Specific Language to write your model as human readable Julia code
- **Productive!** Several visualization tools to help debug and tune your model.
- **Portable!** Compile your final model to Julia code.
## Installation
1. If you haven't already, install Julia. The easiest way is to install [Juliaup](https://github.com/JuliaLang/juliaup#installation). This allows to easily manage julia versions.
2. Open the terminal and start a julia session by simply typing `julia`
3. Install the library by typing
```julia
using Pkg; Pkg.add("FuzzyLogic")
```
4. The package can now be loaded (in the interactive REPL or in a script file) with the command
```julia
using FuzzyLogic
```
5. That's it, have fun!
## Quickstart example
```julia
fis = @mamfis function tipper(service, food)::tip
service := begin
domain = 0:10
poor = GaussianMF(0.0, 1.5)
good = GaussianMF(5.0, 1.5)
excellent = GaussianMF(10.0, 1.5)
end
food := begin
domain = 0:10
rancid = TrapezoidalMF(-2, 0, 1, 3)
delicious = TrapezoidalMF(7, 9, 10, 12)
end
tip := begin
domain = 0:30
cheap = TriangularMF(0, 5, 10)
average = TriangularMF(10, 15, 20)
generous = TriangularMF(20, 25, 30)
end
service == poor || food == rancid --> tip == cheap
service == good --> tip == average
service == excellent || food == delicious --> tip == generous
end
fis(service=1, food=2)
```
## Copyright
- Copyright (c) 2022 [Luca Ferranti](https://github.com/lucaferranti), released under MIT license. | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 137 | # Aggregation methods
```@autodocs
Modules = [FuzzyLogic]
Filter = t -> typeof(t) === DataType && t <: FuzzyLogic.AbstractAggregator
``` | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 343 | # Defuzzification methods
## Type-1 defuzzifiers
```@autodocs
Modules = [FuzzyLogic]
Filter = t -> typeof(t) === DataType && t <: FuzzyLogic.AbstractDefuzzifier && !(t <: FuzzyLogic.Type2Defuzzifier)
```
## Type-2 defuzzifiers
```@autodocs
Modules = [FuzzyLogic]
Filter = t -> typeof(t) === DataType && t <: FuzzyLogic.Type2Defuzzifier
```
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 221 | # Inference Systems
## Mamdani inference system
```@docs
MamdaniFuzzySystem
```
## Sugeno inference system
```@docs
SugenoFuzzySystem
ConstantSugenoOutput
LinearSugenoOutput
```
## General functions
```@docs
set
``` | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 50 | # Learning fuzzy models
```@docs
fuzzy_cmeans
``` | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 49 | # Plotting functionalities
```@docs
gensurf
``` | FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.1.3 | a115d9472101bda97aa1c48b304ed8d8626d5bd7 | docs | 333 | # Reading / writing functionalities
## Parse Julia code
```@docs
@mamfis
@sugfis
```
## Generate Julia code
```@docs
compilefis
```
## Read from file
```@docs
readfis
```
## Parse FCL
```@docs
parse_fcl
@fcl_str
```
## Parse FML
```@docs
parse_fml
@fml_str
```
## Parse Matlab
```@docs
parse_matlabfis
@matlabfis_str
```
| FuzzyLogic | https://github.com/lucaferranti/FuzzyLogic.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 601 | # Retrieve name of example and output directory
if length(ARGS) != 2
error("please specify the name of the example and the output directory")
end
const EXAMPLE = ARGS[1]
const OUTDIR = ARGS[2]
# Activate environment
# Note that each example's Project.toml must include Literate as a dependency
using Pkg: Pkg
const EXAMPLEPATH = joinpath(@__DIR__, "..", "examples", EXAMPLE)
Pkg.activate(EXAMPLEPATH)
Pkg.instantiate()
using Literate: Literate
# Convert to markdown and notebook
const SCRIPTJL = joinpath(EXAMPLEPATH, "script.jl")
Literate.markdown(SCRIPTJL, OUTDIR; name=EXAMPLE, execute=true)
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 2479 | #
# With minor changes from https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/docs
#
### Process examples
# Always rerun examples
const EXAMPLES_OUT = joinpath(@__DIR__, "src", "examples")
ispath(EXAMPLES_OUT) && rm(EXAMPLES_OUT; recursive=true)
mkpath(EXAMPLES_OUT)
# Install and precompile all packages
# Workaround for https://github.com/JuliaLang/Pkg.jl/issues/2219
examples = filter!(isdir, readdir(joinpath(@__DIR__, "..", "examples"); join=true))
above = joinpath(@__DIR__, "..")
let script = "using Pkg; Pkg.activate(ARGS[1]); Pkg.instantiate(); Pkg.develop(path=\"$(above)\");"
for example in examples
if !success(`$(Base.julia_cmd()) -e $script $example`)
error(
"project environment of example ",
basename(example),
" could not be instantiated",
)
end
end
end
# Run examples asynchronously
processes = let literatejl = joinpath(@__DIR__, "literate.jl")
map(examples) do example
return run(
pipeline(
`$(Base.julia_cmd()) $literatejl $(basename(example)) $EXAMPLES_OUT`;
stdin=devnull,
stdout=devnull,
stderr=stderr,
);
wait=false,
)::Base.Process
end
end
# Check that all examples were run successfully
isempty(processes) || success(processes) || error("some examples were not run successfully")
# Building Documenter
using Documenter
using AdvancedPS
DocMeta.setdocmeta!(AdvancedPS, :DocTestSetup, :(using AdvancedPS); recursive=true)
makedocs(;
sitename="AdvancedPS",
format=Documenter.HTML(),
modules=[AdvancedPS],
pages=[
"Home" => "index.md",
"api.md",
"Examples" => [
"example.md",
map(
(x) -> joinpath("examples", x),
filter!(filename -> endswith(filename, ".md"), readdir(EXAMPLES_OUT)),
)...,
],
],
#strict=true,
checkdocs=:exports,
doctestfilters=[
# Older versions will show "0 element Array" instead of "Type[]".
r"(Any\[\]|0-element Array{.+,[0-9]+})",
# Older versions will show "Array{...,1}" instead of "Vector{...}".
r"(Array{.+,\s?1}|Vector{.+})",
# Older versions will show "Array{...,2}" instead of "Matrix{...}".
r"(Array{.+,\s?2}|Matrix{.+})",
],
)
deploydocs(; repo="github.com/TuringLang/AdvancedPS.jl.git", push_preview=true)
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 2222 | # # Gaussian Process State-Space Model (GP-SSM)
using LinearAlgebra
using Random
using AdvancedPS
using AbstractGPs
using Plots
using Distributions
using Libtask
using SSMProblems
Parameters = @NamedTuple begin
a::Float64
q::Float64
kernel
end
mutable struct GPSSM <: SSMProblems.AbstractStateSpaceModel
X::Vector{Float64}
observations::Vector{Float64}
θ::Parameters
GPSSM(params::Parameters) = new(Vector{Float64}(), params)
GPSSM(y::Vector{Float64}, params::Parameters) = new(Vector{Float64}(), y, params)
end
seed = 1
T = 100
Nₚ = 20
Nₛ = 250
a = 0.9
q = 0.5
params = Parameters((a, q, SqExponentialKernel()))
f(θ::Parameters, x, t) = Normal(θ.a * x, θ.q)
h(θ::Parameters) = Normal(0, θ.q)
g(θ::Parameters, x, t) = Normal(0, exp(0.5 * x)^2)
rng = Random.MersenneTwister(seed)
x = zeros(T)
y = similar(x)
x[1] = rand(rng, h(params))
for t in 1:T
if t < T
x[t + 1] = rand(rng, f(params, x[t], t))
end
y[t] = rand(rng, g(params, x[t], t))
end
function gp_update(model::GPSSM, state, step)
gp = GP(model.θ.kernel)
prior = gp(1:(step - 1))
post = posterior(prior, model.X[1:(step - 1)])
μ, σ = mean_and_cov(post, [step])
return Normal(μ[1], σ[1])
end
SSMProblems.transition!!(rng::AbstractRNG, model::GPSSM) = rand(rng, h(model.θ))
function SSMProblems.transition!!(rng::AbstractRNG, model::GPSSM, state, step)
return rand(rng, gp_update(model, state, step))
end
function SSMProblems.emission_logdensity(model::GPSSM, state, step)
return logpdf(g(model.θ, state, step), model.observations[step])
end
function SSMProblems.transition_logdensity(model::GPSSM, prev_state, current_state, step)
return logpdf(gp_update(model, prev_state, step), current_state)
end
AdvancedPS.isdone(::GPSSM, step) = step > T
model = GPSSM(y, params)
pg = AdvancedPS.PGAS(Nₚ)
chains = sample(rng, model, pg, Nₛ)
particles = hcat([chain.trajectory.model.X for chain in chains]...)
mean_trajectory = mean(particles; dims=2);
scatter(particles; label=false, opacity=0.01, color=:black, xlabel="t", ylabel="state")
plot!(x; color=:darkorange, label="Original Trajectory")
plot!(mean_trajectory; color=:dodgerblue, label="Mean trajectory", opacity=0.9)
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 4750 | # # Particle Gibbs for Gaussian state-space model
using AdvancedPS
using Random
using Distributions
using Plots
using SSMProblems
# We consider the following linear state-space model with Gaussian innovations. The latent state is a simple gaussian random walk
# and the observation is linear in the latent states, namely:
#
# ```math
# x_{t+1} = a x_{t} + \epsilon_t \quad \epsilon_t \sim \mathcal{N}(0,q^2)
# ```
# ```math
# y_{t} = x_{t} + \nu_{t} \quad \nu_{t} \sim \mathcal{N}(0, r^2)
# ```
#
# Here we assume the static parameters $\theta = (a, q^2, r^2)$ are known and we are only interested in sampling from the latent states $x_t$.
# To use particle gibbs with the ancestor sampling update step we need to provide both the transition and observation densities.
#
# From the definition above we get:
# ```math
# x_{t+1} \sim f_{\theta}(x_{t+1}|x_t) = \mathcal{N}(a x_t, q^2)
# ```
# ```math
# y_t \sim g_{\theta}(y_t|x_t) = \mathcal{N}(x_t, q^2)
# ```
# as well as the initial distribution $f_0(x) = \mathcal{N}(0, q^2/(1-a^2))$.
# To use `AdvancedPS` we first need to define a model type that subtypes `AdvancedPS.AbstractStateSpaceModel`.
Parameters = @NamedTuple begin
a::Float64
q::Float64
r::Float64
end
mutable struct LinearSSM <: SSMProblems.AbstractStateSpaceModel
X::Vector{Float64}
observations::Vector{Float64}
θ::Parameters
LinearSSM(θ::Parameters) = new(Vector{Float64}(), θ)
LinearSSM(y::Vector, θ::Parameters) = new(Vector{Float64}(), y, θ)
end
# and the densities defined above.
f(θ::Parameters, state, t) = Normal(θ.a * state, θ.q) # Transition density
g(θ::Parameters, state, t) = Normal(state, θ.r) # Observation density
f₀(θ::Parameters) = Normal(0, θ.q^2 / (1 - θ.a^2)) # Initial state density
#md nothing #hide
# We also need to specify the dynamics of the system through the transition equations:
# - `AdvancedPS.initialization`: the initial state density
# - `AdvancedPS.transition`: the state transition density
# - `AdvancedPS.observation`: the observation score given the observed data
# - `AdvancedPS.isdone`: signals the end of the execution for the model
SSMProblems.transition!!(rng::AbstractRNG, model::LinearSSM) = rand(rng, f₀(model.θ))
function SSMProblems.transition!!(
rng::AbstractRNG, model::LinearSSM, state::Float64, step::Int
)
return rand(rng, f(model.θ, state, step))
end
function SSMProblems.emission_logdensity(modeL::LinearSSM, state::Float64, step::Int)
return logpdf(g(model.θ, state, step), model.observations[step])
end
function SSMProblems.transition_logdensity(
model::LinearSSM, prev_state, current_state, step
)
return logpdf(f(model.θ, prev_state, step), current_state)
end
# We need to think seriously about how the data is handled
AdvancedPS.isdone(::LinearSSM, step) = step > Tₘ
# Everything is now ready to simulate some data.
a = 0.9 # Scale
q = 0.32 # State variance
r = 1 # Observation variance
Tₘ = 200 # Number of observation
Nₚ = 20 # Number of particles
Nₛ = 500 # Number of samples
seed = 1 # Reproduce everything
θ₀ = Parameters((a, q, r))
rng = Random.MersenneTwister(seed)
x = zeros(Tₘ)
y = zeros(Tₘ)
x[1] = rand(rng, f₀(θ₀))
for t in 1:Tₘ
if t < Tₘ
x[t + 1] = rand(rng, f(θ₀, x[t], t))
end
y[t] = rand(rng, g(θ₀, x[t], t))
end
# Here are the latent and obseravation timeseries
plot(x; label="x", xlabel="t")
plot!(y; seriestype=:scatter, label="y", xlabel="t", mc=:red, ms=2, ma=0.5)
# `AdvancedPS` subscribes to the `AbstractMCMC` API. To sample we just need to define a Particle Gibbs kernel
# and a model interface.
model = LinearSSM(y, θ₀)
pgas = AdvancedPS.PGAS(Nₚ)
chains = sample(rng, model, pgas, Nₛ; progress=false);
#md nothing #hide
#
particles = hcat([chain.trajectory.model.X for chain in chains]...)
mean_trajectory = mean(particles; dims=2);
#md nothing #hide
# This toy model is small enough to inspect all the generated traces:
scatter(particles; label=false, opacity=0.01, color=:black, xlabel="t", ylabel="state")
plot!(x; color=:darkorange, label="Original Trajectory")
plot!(mean_trajectory; color=:dodgerblue, label="Mean trajectory", opacity=0.9)
# We used a particle gibbs kernel with the ancestor updating step which should help with the particle
# degeneracy problem and improve the mixing.
# We can compute the update rate of $x_t$ vs $t$ defined as the proportion of times $t$ where $x_t$ gets updated:
update_rate = sum(abs.(diff(particles; dims=2)) .> 0; dims=2) / Nₛ
#md nothing #hide
# and compare it to the theoretical value of $1 - 1/Nₚ$.
plot(
update_rate;
label=false,
ylim=[0, 1],
legend=:bottomleft,
xlabel="Iteration",
ylabel="Update rate",
)
hline!([1 - 1 / Nₚ]; label="N: $(Nₚ)")
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 6413 | # # Levy-SSM latent state inference
using AdvancedPS: SSMProblems
using AdvancedPS
using Random
using Plots
using Distributions
using AdvancedPS
using LinearAlgebra
using SSMProblems
struct GammaProcess
C::Float64
β::Float64
tol::Float64
end
struct GammaPath{T}
jumps::Vector{T}
times::Vector{T}
end
struct LangevinDynamics{T}
A::Matrix{T}
L::Vector{T}
θ::T
H::Vector{T}
σe::T
end
struct NormalMeanVariance{T}
μ::T
σ::T
end
function simulate(
rng::AbstractRNG,
process::GammaProcess,
rate::Float64,
start::Float64,
finish::Float64,
t0::Float64=0.0,
)
let β = process.β, C = process.C, tolerance = process.tol
jumps = Float64[]
last_jump = Inf
t = t0
truncated = last_jump < tolerance
while !truncated
t += rand(rng, Exponential(1.0 / rate))
xi = 1.0 / (β * (exp(t / C) - 1))
prob = (1.0 + β * xi) * exp(-β * xi)
if rand(rng) < prob
push!(jumps, xi)
last_jump = xi
end
truncated = last_jump < tolerance
end
times = rand(rng, Uniform(start, finish), length(jumps))
return GammaPath(jumps, times)
end
end
function integral(times::Array{Float64}, path::GammaPath)
let jumps = path.jumps, jump_times = path.times
return [sum(jumps[jump_times .<= t]) for t in times]
end
end
# Gamma Process
C = 1.0
β = 1.0
ϵ = 1e-10
process = GammaProcess(C, β, ϵ)
# Normal Mean-Variance representation
μw = 0.0
σw = 1.0
nvm = NormalMeanVariance(μw, σw)
# Levy SSM with Langevin dynamics
# dx(t) = A x(t) dt + L dW(t)
# y(t) = H x(t) + ϵ(t)
θ = -0.5
A = [
0.0 1.0
0.0 θ
]
L = [0.0; 1.0]
σe = 1.0
H = [1.0, 0]
dyn = LangevinDynamics(A, L, θ, H, σe)
# Simulation parameters
start, finish = 0, 100
N = 200
ts = range(start, finish; length=N)
seed = 4
rng = Random.MersenneTwister(seed)
Np = 50
Ns = 100
f(dt, θ) = exp(θ * dt)
function Base.exp(dyn::LangevinDynamics, dt::Real)
let θ = dyn.θ
f_val = f(dt, θ)
return [1.0 (f_val - 1)/θ; 0 f_val]
end
end
function meancov(
t::T, dyn::LangevinDynamics, path::GammaPath, nvm::NormalMeanVariance
) where {T<:Real}
μ = zeros(T, 2)
Σ = zeros(T, (2, 2))
let times = path.times, jumps = path.jumps, μw = nvm.μ, σw = nvm.σ
for (v, z) in zip(times, jumps)
ft = exp(dyn, (t - v)) * dyn.L
μ += ft .* μw .* z
Σ += ft * transpose(ft) .* σw^2 .* z
end
return μ, Σ
end
end
X = zeros(Float64, (N, 2))
Y = zeros(Float64, N)
for (i, t) in enumerate(ts)
if i > 1
s = ts[i - 1]
dt = t - s
path = simulate(rng, process, dt, s, t, ϵ)
μ, Σ = meancov(t, dyn, path, nvm)
X[i, :] .= rand(rng, MultivariateNormal(exp(dyn, dt) * X[i - 1, :] + μ, Σ))
end
let H = dyn.H, σe = dyn.σe
Y[i] = transpose(H) * X[i, :] + rand(rng, Normal(0, σe))
end
end
# AdvancedPS
Parameters = @NamedTuple begin
dyn::LangevinDynamics
process::GammaProcess
nvm::NormalMeanVariance
times::Vector{Float64}
end
struct MixedState{T}
x::Vector{T}
path::GammaPath{T}
end
mutable struct LevyLangevin <: SSMProblems.AbstractStateSpaceModel
X::Vector{MixedState{Float64}}
observations::Vector{Float64}
θ::Parameters
LevyLangevin(θ::Parameters) = new(Vector{MixedState{Float64}}(), θ)
function LevyLangevin(y::Vector{Float64}, θ::Parameters)
return new(Vector{MixedState{Float64}}(), y, θ)
end
end
function SSMProblems.transition!!(rng::AbstractRNG, model::LevyLangevin)
return MixedState(
rand(rng, MultivariateNormal([0, 0], I)), GammaPath(Float64[], Float64[])
)
end
function SSMProblems.transition!!(
rng::AbstractRNG, model::LevyLangevin, state::MixedState, step
)
times = model.θ.times
s = times[step - 1]
t = times[step]
dt = t - s
path = simulate(rng, model.θ.process, dt, s, t)
μ, Σ = meancov(t, model.θ.dyn, path, model.θ.nvm)
Σ += 1e-6 * I
return MixedState(rand(rng, MultivariateNormal(exp(dyn, dt) * state.x + μ, Σ)), path)
end
function SSMProblems.transition_logdensity(
model::LevyLangevin, prev_state::MixedState, current_state::MixedState, step
)
times = model.θ.times
s = times[step - 1]
t = times[step]
dt = t - s
path = simulate(rng, model.θ.process, dt, s, t)
μ, Σ = meancov(t, model.θ.dyn, path, model.θ.nvm)
Σ += 1e-6 * I
return logpdf(MultivariateNormal(exp(dyn, dt) * prev_state.x + μ, Σ), current_state.x)
end
function SSMProblems.emission_logdensity(model::LevyLangevin, state::MixedState, step)
return logpdf(Normal(transpose(H) * state.x, σe), model.observations[step])
end
AdvancedPS.isdone(model::LevyLangevin, step) = step > length(model.θ.times)
θ₀ = Parameters((dyn, process, nvm, ts))
model = LevyLangevin(Y, θ₀)
pg = AdvancedPS.PGAS(Np)
chains = sample(rng, model, pg, Ns; progress=false);
# Concat all sampled states
particles = hcat([chain.trajectory.model.X for chain in chains]...)
marginal_states = map(s -> s.x, particles);
jump_times = map(s -> s.path.times, particles);
jump_intensities = map(s -> s.path.jumps, particles);
# Plot marginal state and jump intensities for one trajectory
p1 = plot(
ts,
[state[1] for state in marginal_states[:, end]];
color=:darkorange,
label="Marginal State (x1)",
)
plot!(
ts,
[state[2] for state in marginal_states[:, end]];
color=:dodgerblue,
label="Marginal State (x2)",
)
p2 = scatter(
vcat([t for t in jump_times[:, end]]...),
vcat([j for j in jump_intensities[:, end]]...);
color=:darkorange,
label="Jumps",
)
plot(
p1, p2; plot_title="Marginal State and Jump Intensities", layout=(2, 1), size=(600, 600)
)
# Plot mean trajectory with standard deviation
mean_trajectory = transpose(hcat(mean(marginal_states; dims=2)...))
std_trajectory = dropdims(std(stack(marginal_states); dims=3); dims=3)
ps = []
for d in 1:2
p = plot(
ts,
mean_trajectory[:, d];
ribbon=2 * std_trajectory[:, d]',
color=:darkorange,
label="Mean Trajectory (±2σ)",
fillalpha=0.2,
title="Marginal State Trajectories (X$d)",
)
plot!(p, ts, X[:, d]; color=:dodgerblue, label="True Trajectory")
push!(ps, p)
end
plot(ps...; layout=(2, 1), size=(600, 600))
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 5481 | # # Particle Gibbs for non-linear models
using AdvancedPS
using Random
using Distributions
using Plots
using AbstractMCMC
using Random123
using SSMProblems
"""
plot_update_rate(update_rate, N)
Plot empirical update rate against theoretical value
"""
function plot_update_rate(update_rate::AbstractVector{Float64}, Nₚ::Int)
plt = plot(
update_rate;
label=false,
ylim=[0, 1],
legend=:bottomleft,
xlabel="Iteration",
ylabel="Update rate",
)
return hline!(plt, [1 - 1 / Nₚ]; label="N: $(Nₚ)")
end
"""
update_rate(trajectories, N)
Compute latent state update rate
"""
function update_rate(particles::AbstractMatrix{Float64}, Nₛ)
return sum(abs.(diff(particles; dims=2)) .> 0; dims=2) / Nₛ
end
#md nothing #hide
# We consider the following stochastic volatility model:
#
# ```math
# x_{t+1} = a x_t + v_t \quad v_{t} \sim \mathcal{N}(0, r^2)
# ```
# ```math
# y_{t} = e_t \exp(\frac{1}{2}x_t) \quad e_t \sim \mathcal{N}(0, 1)
# ```
#
# We can reformulate the above in terms of transition and observation densities:
# ```math
# x_{t+1} \sim f_{\theta}(x_{t+1}|x_t) = \mathcal{N}(a x_t, r^2)
# ```
# ```math
# y_t \sim g_{\theta}(y_t|x_t) = \mathcal{N}(0, \exp(\frac{1}{2}x_t)^2)
# ```
# with the initial distribution $f_0(x) = \mathcal{N}(0, q^2)$.
# Here we assume the static parameters $\theta = (q^2, r^2)$ are known and we are only interested in sampling from the latent state $x_t$.
Parameters = @NamedTuple begin
a::Float64
q::Float64
T::Int
end
f(θ::Parameters, state, t) = Normal(θ.a * state, θ.q)
g(θ::Parameters, state, t) = Normal(0, exp(0.5 * state))
f₀(θ::Parameters) = Normal(0, θ.q)
#md nothing #hide
# Let's simulate some data
a = 0.9 # State Variance
q = 0.5 # Observation variance
Tₘ = 200 # Number of observation
Nₚ = 20 # Number of particles
Nₛ = 200 # Number of samples
seed = 1 # Reproduce everything
θ₀ = Parameters((a, q, Tₘ))
rng = Random.MersenneTwister(seed)
x = zeros(Tₘ)
y = zeros(Tₘ)
x[1] = 0
for t in 1:Tₘ
if t < Tₘ
x[t + 1] = rand(rng, f(θ₀, x[t], t))
end
y[t] = rand(rng, g(θ₀, x[t], t))
end
# Here are the latent and observation series:
plot(x; label="x", xlabel="t")
#
plot(y; label="y", xlabel="t")
# Each model takes an `AbstractRNG` as input and generates the logpdf of the current transition:
mutable struct NonLinearTimeSeries <: SSMProblems.AbstractStateSpaceModel
X::Vector{Float64}
observations::Vector{Float64}
θ::Parameters
NonLinearTimeSeries(θ::Parameters) = new(Float64[], θ)
NonLinearTimeSeries(y::Vector{Float64}, θ::Parameters) = new(Float64[], y, θ)
end
# The dynamics of the model is defined through the `AbstractStateSpaceModel` interface:
function SSMProblems.transition!!(rng::AbstractRNG, model::NonLinearTimeSeries)
return rand(rng, f₀(model.θ))
end
function SSMProblems.transition!!(
rng::AbstractRNG, model::NonLinearTimeSeries, state::Float64, step::Int
)
return rand(rng, f(model.θ, state, step))
end
function SSMProblems.emission_logdensity(
modeL::NonLinearTimeSeries, state::Float64, step::Int
)
return logpdf(g(model.θ, state, step), model.observations[step])
end
function SSMProblems.transition_logdensity(
model::NonLinearTimeSeries, prev_state, current_state, step
)
return logpdf(f(model.θ, prev_state, step), current_state)
end
# We need to tell AdvancedPS when to stop the execution of the model
# TODO
AdvancedPS.isdone(::NonLinearTimeSeries, step) = step > Tₘ
# Here we use the particle gibbs kernel without adaptive resampling.
model = NonLinearTimeSeries(y, θ₀)
pg = AdvancedPS.PG(Nₚ, 1.0)
chains = sample(rng, model, pg, Nₛ; progress=false);
#md nothing #hide
particles = hcat([chain.trajectory.model.X for chain in chains]...) # Concat all sampled states
mean_trajectory = mean(particles; dims=2);
#md nothing #hide
# We can now plot all the generated traces.
# Beyond the last few timesteps all the trajectories collapse into one. Using the ancestor updating step can help with the degeneracy problem, as we show below.
scatter(
particles[:, 1:50]; label=false, opacity=0.5, color=:black, xlabel="t", ylabel="state"
)
plot!(x; color=:darkorange, label="Original Trajectory")
plot!(mean_trajectory; color=:dodgerblue, label="Mean trajectory", opacity=0.9)
# We can also check the mixing as defined in the Gaussian State Space model example. As seen on the
# scatter plot above, we are mostly left with a single trajectory before timestep 150. The orange
# bar is the optimal mixing rate for the number of particles we use.
plot_update_rate(update_rate(particles, Nₛ)[:, 1], Nₚ)
# Let's see if ancestor sampling can help with the degeneracy problem. We use the same number of particles, but replace the sampler with PGAS.
pgas = AdvancedPS.PGAS(Nₚ)
chains = sample(rng, model, pgas, Nₛ; progress=false);
particles = hcat([chain.trajectory.model.X for chain in chains]...);
mean_trajectory = mean(particles; dims=2);
# The ancestor sampling has helped with the degeneracy problem and we now have a much more diverse set of trajectories, also at earlier time periods.
scatter(
particles[:, 1:50]; label=false, opacity=0.5, color=:black, xlabel="t", ylabel="state"
)
plot!(x; color=:darkorange, label="Original Trajectory")
plot!(mean_trajectory; color=:dodgerblue, label="Mean trajectory", opacity=0.9)
# The update rate is now much higher throughout time.
plot_update_rate(update_rate(particles, Nₛ)[:, 1], Nₚ)
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 6889 | module AdvancedPSLibtaskExt
if isdefined(Base, :get_extension)
using AdvancedPS: AdvancedPS
using AdvancedPS: Random123
using AdvancedPS: AbstractMCMC
using AdvancedPS: Random
using AdvancedPS: Distributions
using Libtask: Libtask
else
using ..AdvancedPS: AdvancedPS
using ..AdvancedPS: Random123
using ..AdvancedPS: AbstractMCMC
using ..AdvancedPS: Random
using ..AdvancedPS: Distributions
using ..Libtask: Libtask
end
"""
LibtaskModel{F}
State wrapper to hold `Libtask.CTask` model initiated from `f`.
"""
function AdvancedPS.LibtaskModel(
f::AdvancedPS.AbstractGenericModel, rng::Random.AbstractRNG, args...
) # Changed the API, need to take care of the RNG properly
return AdvancedPS.LibtaskModel(
f,
Libtask.TapedTask(
f, rng, args...; deepcopy_types=Union{AdvancedPS.TracedRNG,typeof(f)}
),
)
end
"""
copy(model::AdvancedPS.LibtaskModel)
The task is copied (forked) and the inner model is deepcopied.
"""
function Base.copy(model::AdvancedPS.LibtaskModel)
return AdvancedPS.LibtaskModel(deepcopy(model.f), copy(model.ctask))
end
const LibtaskTrace{R} = AdvancedPS.Trace{<:AdvancedPS.LibtaskModel,R}
function AdvancedPS.Trace(
model::AdvancedPS.AbstractGenericModel, rng::Random.AbstractRNG, args...
)
return AdvancedPS.Trace(AdvancedPS.LibtaskModel(model, rng, args...), rng)
end
# step to the next observe statement and
# return the log probability of the transition (or nothing if done)
function AdvancedPS.advance!(t::LibtaskTrace, isref::Bool=false)
isref ? AdvancedPS.load_state!(t.rng) : AdvancedPS.save_state!(t.rng)
AdvancedPS.inc_counter!(t.rng)
# Move to next step
return Libtask.consume(t.model.ctask)
end
# create a backward reference in task_local_storage
function AdvancedPS.addreference!(task::Task, trace::LibtaskTrace)
if task.storage === nothing
task.storage = IdDict()
end
task.storage[:__trace] = trace
return task
end
function AdvancedPS.update_rng!(trace::LibtaskTrace)
rng, = trace.model.ctask.args
trace.rng = rng
return trace
end
# Task copying version of fork for Trace.
function AdvancedPS.fork(trace::LibtaskTrace, isref::Bool=false)
newtrace = copy(trace)
AdvancedPS.update_rng!(newtrace)
isref && AdvancedPS.delete_retained!(newtrace.model.f)
isref && delete_seeds!(newtrace)
# add backward reference
AdvancedPS.addreference!(newtrace.model.ctask.task, newtrace)
return newtrace
end
# PG requires keeping all randomness for the reference particle
# Create new task and copy randomness
function AdvancedPS.forkr(trace::LibtaskTrace)
newf = AdvancedPS.reset_model(trace.model.f)
Random123.set_counter!(trace.rng, 1)
ctask = Libtask.TapedTask(
newf, trace.rng; deepcopy_types=Union{AdvancedPS.TracedRNG,typeof(trace.model.f)}
)
new_tapedmodel = AdvancedPS.LibtaskModel(newf, ctask)
# add backward reference
newtrace = AdvancedPS.Trace(new_tapedmodel, trace.rng)
AdvancedPS.addreference!(ctask.task, newtrace)
AdvancedPS.gen_refseed!(newtrace)
return newtrace
end
AdvancedPS.update_ref!(::LibtaskTrace) = nothing
"""
observe(dist::Distribution, x)
Observe sample `x` from distribution `dist` and yield its log-likelihood value.
"""
function AdvancedPS.observe(dist::Distributions.Distribution, x)
return Libtask.produce(Distributions.loglikelihood(dist, x))
end
"""
AbstractMCMC interface. We need libtask to sample from arbitrary callable AbstractModel
"""
function AbstractMCMC.step(
rng::Random.AbstractRNG,
model::AdvancedPS.AbstractGenericModel,
sampler::AdvancedPS.PG,
state::Union{AdvancedPS.PGState,Nothing}=nothing;
kwargs...,
)
# Create a new set of particles.
nparticles = sampler.nparticles
isref = !isnothing(state)
traces = map(1:nparticles) do i
if i == nparticles && isref
# Create reference trajectory.
AdvancedPS.forkr(copy(state.trajectory))
else
trng = AdvancedPS.TracedRNG()
trace = AdvancedPS.Trace(deepcopy(model), trng)
AdvancedPS.addreference!(trace.model.ctask.task, trace) # TODO: Do we need it here ?
trace
end
end
particles = AdvancedPS.ParticleContainer(traces, AdvancedPS.TracedRNG(), rng)
# Perform a particle sweep.
reference = isref ? particles.vals[nparticles] : nothing
logevidence = AdvancedPS.sweep!(rng, particles, sampler.resampler, sampler, reference)
# Pick a particle to be retained.
newtrajectory = rand(rng, particles)
replayed = AdvancedPS.replay(newtrajectory)
return AdvancedPS.PGSample(replayed.model.f, logevidence),
AdvancedPS.PGState(newtrajectory)
end
function AbstractMCMC.sample(
model::AdvancedPS.AbstractGenericModel, sampler::AdvancedPS.SMC; kwargs...
)
return AbstractMCMC.sample(Random.GLOBAL_RNG, model, sampler; kwargs...)
end
function AbstractMCMC.sample(
rng::Random.AbstractRNG,
model::AdvancedPS.AbstractGenericModel,
sampler::AdvancedPS.SMC;
kwargs...,
)
if !isempty(kwargs)
@warn "keyword arguments $(keys(kwargs)) are not supported by `SMC`"
end
traces = map(1:(sampler.nparticles)) do i
trng = AdvancedPS.TracedRNG()
trace = AdvancedPS.Trace(deepcopy(model), trng)
AdvancedPS.addreference!(trace.model.ctask.task, trace) # Do we need it here ?
trace
end
# Create a set of particles.
particles = AdvancedPS.ParticleContainer(traces, AdvancedPS.TracedRNG(), rng)
# Perform particle sweep.
logevidence = AdvancedPS.sweep!(rng, particles, sampler.resampler, sampler)
replayed = map(particle -> AdvancedPS.replay(particle).model.f, particles.vals)
return AdvancedPS.SMCSample(
collect(replayed), AdvancedPS.getweights(particles), logevidence
)
end
"""
replay(particle::AdvancedPS.Particle)
Rewind the particle and regenerate all sampled values. This ensures that the returned trajectory has the correct values.
"""
function AdvancedPS.replay(particle::AdvancedPS.Particle)
trng = deepcopy(particle.rng)
Random123.set_counter!(trng.rng, 0)
trng.count = 1
trace = AdvancedPS.Trace(
AdvancedPS.LibtaskModel(deepcopy(particle.model.f), trng), trng
)
score = AdvancedPS.advance!(trace, true)
while !isnothing(score)
score = AdvancedPS.advance!(trace, true)
end
return trace
end
"""
delete_seeds!(particle::Particle)
Truncate the seed history from the `particle` rng. When forking the reference Particle
we need to keep the seeds up to the current model iteration but generate new seeds
and random values afterward.
"""
function delete_seeds!(particle::AdvancedPS.Particle)
return particle.rng.keys = particle.rng.keys[1:(particle.rng.count - 1)]
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 951 | module AdvancedPS
using AbstractMCMC: AbstractMCMC
using Distributions: Distributions
using Random: Random
using StatsFuns: StatsFuns
using Random123: Random123
using SSMProblems: SSMProblems
abstract type AbstractParticleModel <: AbstractMCMC.AbstractModel end
abstract type AbstractParticleSampler <: AbstractMCMC.AbstractSampler end
""" Abstract type for an abstract model formulated in the state space form
"""
abstract type AbstractStateSpaceModel <: AbstractParticleModel end
abstract type AbstractGenericModel <: AbstractParticleModel end
include("resampling.jl")
include("rng.jl")
include("model.jl")
include("container.jl")
include("smc.jl")
include("pgas.jl")
if !isdefined(Base, :get_extension)
using Requires
end
@static if !isdefined(Base, :get_extension)
function __init__()
@require Libtask = "6f1fad26-d15e-5dc8-ae53-837a1d7b8c9f" include(
"../ext/AdvancedPSLibtaskExt.jl"
)
end
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 10806 | """
Data structure for particle filters
- `effectiveSampleSize(pc :: ParticleContainer)`: Return the effective sample size of the particles in `pc`
"""
mutable struct ParticleContainer{T<:Particle,R<:TracedRNG}
"Particles."
vals::Vector{T}
"Unnormalized logarithmic weights."
logWs::Vector{Float64}
"Traced RNG to replay the resampling step"
rng::R
end
function ParticleContainer(particles::Vector{<:Particle})
return ParticleContainer(particles, zeros(length(particles)), TracedRNG())
end
function ParticleContainer(particles::Vector{<:Particle}, rng::TracedRNG)
return ParticleContainer(particles, zeros(length(particles)), rng)
end
function ParticleContainer(
particles::Vector{<:Particle}, trng::TracedRNG, rng::Random.AbstractRNG
)
pc = ParticleContainer(particles, trng)
return seed_from_rng!(pc, rng)
end
Base.collect(pc::ParticleContainer) = pc.vals
Base.length(pc::ParticleContainer) = length(pc.vals)
Base.@propagate_inbounds Base.getindex(pc::ParticleContainer, i::Int) = pc.vals[i]
function Base.rand(rng::Random.AbstractRNG, pc::ParticleContainer)
index = randcat(rng, getweights(pc))
return pc[index]
end
# registers a new x-particle in the container
function Base.push!(pc::ParticleContainer, p::Particle)
push!(pc.vals, p)
push!(pc.logWs, 0.0)
return pc
end
# clones a theta-particle
function Base.copy(pc::ParticleContainer)
# fork particles
vals = eltype(pc.vals)[fork(p) for p in pc.vals]
# copy weights
logWs = copy(pc.logWs)
# Copy rng and states
rng = copy(pc.rng)
return ParticleContainer(vals, logWs, rng)
end
"""
update_ref!(particle::Trace, pc::ParticleContainer)
Update reference trajectory. Defaults to `nothing`
"""
function update_ref!(
particle::Trace, pc::ParticleContainer, sampler::T
) where {T<:AbstractMCMC.AbstractSampler}
return nothing
end
"""
reset_logweights!(pc::ParticleContainer)
Reset all unnormalized logarithmic weights to zero.
"""
function reset_logweights!(pc::ParticleContainer)
fill!(pc.logWs, 0.0)
return pc
end
"""
increase_logweight!(pc::ParticleContainer, i::Int, x)
Increase the unnormalized logarithmic weight of the `i`th particle with `x`.
"""
function increase_logweight!(pc::ParticleContainer, i, logw)
pc.logWs[i] += logw
return pc
end
"""
getweights(pc::ParticleContainer)
Compute the normalized weights of the particles.
"""
getweights(pc::ParticleContainer) = StatsFuns.softmax(pc.logWs)
"""
getweight(pc::ParticleContainer, i)
Compute the normalized weight of the `i`th particle.
"""
getweight(pc::ParticleContainer, i) = exp(pc.logWs[i] - logZ(pc))
"""
logZ(pc::ParticleContainer)
Return the logarithm of the normalizing constant of the unnormalized logarithmic weights.
"""
logZ(pc::ParticleContainer) = StatsFuns.logsumexp(pc.logWs)
"""
effectiveSampleSize(pc::ParticleContainer)
Compute the effective sample size ``1 / ∑ wᵢ²``, where ``wᵢ```are the normalized weights.
"""
function effectiveSampleSize(pc::ParticleContainer)
Ws = getweights(pc)
return inv(sum(abs2, Ws))
end
"""
update_keys!(pc::ParticleContainer)
Create new unique keys for the particles in the ParticleContainer
"""
function update_keys!(pc::ParticleContainer, ref::Union{Particle,Nothing}=nothing)
# Update keys to new particle ids
nparticles = length(pc)
n = ref === nothing ? nparticles : nparticles - 1
for i in 1:n
pi = pc.vals[i]
k = split(state(pi.rng.rng))
Random.seed!(pi.rng, k[1])
end
return nothing
end
"""
seed_from_rng!(pc::ParticleContainer, rng::Random.AbstractRNG, ref::Union{Particle,Nothing}=nothing)
Set seeds of particle rng from user-provided `rng`
"""
function seed_from_rng!(
pc::ParticleContainer{T,<:TracedRNG{R,N,<:Random123.AbstractR123{I}}},
rng::Random.AbstractRNG,
ref::Union{Particle,Nothing}=nothing,
) where {T,R,N,I}
n = length(pc.vals)
nseeds = isnothing(ref) ? n : n - 1
sampler = Random.Sampler(rng, I)
for i in 1:nseeds
subrng = pc.vals[i].rng
Random.seed!(subrng, gen_seed(rng, subrng, sampler))
end
Random.seed!(pc.rng, gen_seed(rng, pc.rng, sampler))
return pc
end
"""
resample_propagate!(rng, pc::ParticleContainer[, randcat = resample_systematic,
ref = nothing; weights = getweights(pc)])
Resample and propagate the particles in `pc`.
Function `randcat` is used for sampling ancestor indices from the categorical distribution
of the particle `weights`. For Particle Gibbs sampling, one can provide a reference particle
`ref` that is ensured to survive the resampling step.
"""
function resample_propagate!(
::Random.AbstractRNG,
pc::ParticleContainer,
sampler::T,
randcat=DEFAULT_RESAMPLER,
ref::Union{Particle,Nothing}=nothing;
weights=getweights(pc),
) where {T<:AbstractMCMC.AbstractSampler}
# sample ancestor indices
n = length(pc)
nresamples = ref === nothing ? n : n - 1
indx = randcat(pc.rng, weights, nresamples)
# count number of children for each particle
num_children = zeros(Int, n)
@inbounds for i in indx
num_children[i] += 1
end
# fork particles
particles = collect(pc)
children = similar(particles)
j = 0
@inbounds for i in 1:n
ni = num_children[i]
if ni > 0
# fork first child
pi = particles[i]
isref = pi === ref
p = isref ? fork(pi, isref) : pi
key = isref ? safe_get_refseed(ref.rng) : state(p.rng.rng) # Pick up the alternative rng stream if using the reference particle
nsplits = isref ? ni + 1 : ni # We need one more seed to refresh the alternative rng stream
seeds = split(key, nsplits)
isref && safe_set_refseed!(ref.rng, seeds[end]) # Refresh the alternative rng stream
Random.seed!(p.rng, seeds[1])
children[j += 1] = p
# fork additional children
for k in 2:ni
part = fork(p, isref)
Random.seed!(part.rng, seeds[k])
children[j += 1] = part
end
end
end
if ref !== nothing
# Insert the retained particle. This is based on the replaying trick for efficiency
# reasons. If we implement PG using task copying, we need to store Nx * T particles!
update_ref!(ref, pc, sampler)
@inbounds children[n] = ref
end
# replace particles and log weights in the container with new particles and weights
pc.vals = children
reset_logweights!(pc)
return pc
end
function resample_propagate!(
rng::Random.AbstractRNG,
pc::ParticleContainer,
sampler::T,
resampler::ResampleWithESSThreshold,
ref::Union{Particle,Nothing}=nothing;
weights=getweights(pc),
) where {T<:AbstractMCMC.AbstractSampler}
# Compute the effective sample size ``1 / ∑ wᵢ²`` with normalized weights ``wᵢ``
ess = inv(sum(abs2, weights))
if ess ≤ resampler.threshold * length(pc)
resample_propagate!(rng, pc, sampler, resampler.resampler, ref; weights=weights)
else
update_keys!(pc, ref)
end
return pc
end
"""
reweight!(pc::ParticleContainer)
Check if the final time step is reached, and otherwise reweight the particles by
considering the next observation.
"""
function reweight!(pc::ParticleContainer, ref::Union{Particle,Nothing}=nothing)
n = length(pc)
particles = collect(pc)
numdone = 0
for i in 1:n
p = particles[i]
# Obtain ``\\log p(yₜ | y₁, …, yₜ₋₁, x₁, …, xₜ, θ₁, …, θₜ)``, or `nothing` if the
# the execution of the model is finished.
# Here ``yᵢ`` are observations, ``xᵢ`` variables of the particle filter, and
# ``θᵢ`` are variables of other samplers.
isref = p === ref
score = advance!(p, isref) # SSMProblems.transition!!
if score === nothing
numdone += 1
else
# Increase the unnormalized logarithmic weights.
increase_logweight!(pc, i, score)
# Reset the accumulator of the log probability in the model so that we can
# accumulate log probabilities of variables of other samplers until the next
# observation.
reset_logprob!(p)
end
end
# Check if all particles are propagated to the final time point.
numdone == n && return true
# The posterior for models with random number of observations is not well-defined.
if numdone != 0
error(
"mis-aligned execution traces: # particles = ",
n,
" # completed trajectories = ",
numdone,
". Please make sure the number of observations is NOT random.",
)
end
return false
end
"""
sweep!(rng, pc::ParticleContainer, resampler)
Perform a particle sweep and return an unbiased estimate of the log evidence.
The resampling steps use the given `resampler`.
# Reference
Del Moral, P., Doucet, A., & Jasra, A. (2006). Sequential monte carlo samplers.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(3), 411-436.
"""
function sweep!(
rng::Random.AbstractRNG,
pc::ParticleContainer,
resampler,
sampler::AbstractMCMC.AbstractSampler,
ref::Union{Particle,Nothing}=nothing,
)
# Initial step:
# Resample and propagate particles.
resample_propagate!(rng, pc, sampler, resampler, ref)
# Compute the current normalizing constant ``Z₀`` of the unnormalized logarithmic
# weights.
# Usually it is equal to the number of particles in the beginning but this
# implementation covers also the unlikely case of a particle container that is
# initialized with non-zero logarithmic weights.
logZ0 = logZ(pc)
# Reweight the particles by including the first observation ``y₁``.
isdone = reweight!(pc, ref)
# Compute the normalizing constant ``Z₁`` after reweighting.
logZ1 = logZ(pc)
# Compute the estimate of the log evidence ``\\log p(y₁)``.
logevidence = logZ1 - logZ0
# For observations ``y₂, …, yₜ``:
while !isdone
# Resample and propagate particles.
resample_propagate!(rng, pc, sampler, resampler, ref)
# Compute the current normalizing constant ``Z₀`` of the unnormalized logarithmic
# weights.
logZ0 = logZ(pc)
# Reweight the particles by including the next observation ``yₜ``.
isdone = reweight!(pc, ref)
# Compute the normalizing constant ``Z₁`` after reweighting.
logZ1 = logZ(pc)
# Compute the estimate of the log evidence ``\\log p(y₁, …, yₜ)``.
logevidence += logZ1 - logZ0
end
return logevidence
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 1365 | """
Trace{F,R}
"""
mutable struct Trace{F,R}
model::F
rng::R
end
const Particle = Trace
const SSMTrace{R} = Trace{<:SSMProblems.AbstractStateSpaceModel,R}
const GenericTrace{R} = Trace{<:AbstractGenericModel,R}
reset_logprob!(::AdvancedPS.Particle) = nothing
reset_model(f) = deepcopy(f)
delete_retained!(f) = nothing
"""
isdone(model::SSMProblems.AbstractStateSpaceModel, step)
Returns `true` if we reached the end of the model execution
"""
function isdone end
"""
copy(trace::Trace)
Copy a trace. The `TracedRNG` is deep-copied. The inner model is shallow-copied.
"""
Base.copy(trace::Trace) = Trace(copy(trace.model), deepcopy(trace.rng))
"""
gen_refseed!(particle::Particle)
Generate a new seed for the reference particle.
"""
function gen_refseed!(particle::Particle)
seed = split(state(particle.rng.rng), 1)
return safe_set_refseed!(particle.rng, seed[1])
end
# A few internal functions used in the Libtask extension. Since it is not possible to access objects defined
# in an extension, we just define dummy in the main module and implement them in the extension.
function observe end
function replay end
function addreference! end
current_trace() = current_task().storage[:__trace]
# We need this one to be visible outside of the extension for dispatching (Turing.jl).
struct LibtaskModel{F,T}
f::F
ctask::T
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 3577 | """
previous_state(trace::SSMTrace)
Return `Xₜ₋₁` or `nothing` from `model`
"""
function previous_state(trace::SSMTrace)
return trace.model.X[current_step(trace) - 1]
end
function past_idx(trace::SSMTrace)
return 1:(current_step(trace) - 1)
end
"""
current_step(model::AbstractStateSpaceModel)
Return current model step
"""
current_step(trace::SSMTrace) = trace.rng.count
"""
transition_logweight(model::AbstractStateSpaceModel, x)
Get the log weight of the transition from previous state of `model` to `x`
"""
function transition_logweight(particle::SSMTrace, x)
score = SSMProblems.transition_logdensity(
particle.model,
particle.model.X[current_step(particle) - 2],
x,
current_step(particle) - 1,
)
return score
end
"""
get_ancestor_logweights(pc::ParticleContainer{F,R}, x) where {F<:SSMTrace,R}
Get the ancestor log weights for each particle in `pc`
"""
function get_ancestor_logweights(pc::ParticleContainer{<:SSMTrace}, x, weights)
nparticles = length(pc.vals)
logweights = map(1:nparticles) do i
transition_logweight(pc.vals[i], x) + weights[i]
end
return logweights
end
"""
advance!(particle::SSMTrace, isref::Bool=false)
Return the log-probability of the transition nothing if done
"""
function advance!(particle::SSMTrace, isref::Bool=false)
isref ? load_state!(particle.rng) : save_state!(particle.rng)
model = particle.model
running_step = current_step(particle)
isdone(model, running_step) && return nothing
if !isref
if running_step == 1
new_state = SSMProblems.transition!!(particle.rng, model)
else
current_state = model.X[running_step - 1]
new_state = SSMProblems.transition!!(
particle.rng, model, current_state, running_step
)
end
else
new_state = model.X[running_step] # We need the current state from the reference particle
end
score = SSMProblems.emission_logdensity(model, new_state, running_step)
# accept transition
!isref && push!(model.X, new_state)
inc_counter!(particle.rng) # Increase rng counter, we use it as the model `time` index instead of handling two distinct counters
return score
end
function truncate!(particle::SSMTrace)
model = particle.model
idx = past_idx(particle)
model.X = model.X[idx]
particle.rng.keys = particle.rng.keys[idx]
return model
end
function fork(particle::SSMTrace, isref::Bool)
model = deepcopy(particle.model)
new_particle = Trace(model, deepcopy(particle.rng))
isref && truncate!(new_particle) # Forget the rest of the reference trajectory
return new_particle
end
function forkr(particle::SSMTrace)
Random123.set_counter!(particle.rng, 1)
newtrace = Trace(deepcopy(particle.model), deepcopy(particle.rng))
gen_refseed!(newtrace)
return newtrace
end
function update_ref!(ref::SSMTrace, pc::ParticleContainer{<:SSMTrace}, sampler::PGAS)
current_step(ref) <= 2 && return nothing # At the beginning of step + 1 since we start at 1
isdone(ref.model, current_step(ref)) && return nothing
ancestor_weights = get_ancestor_logweights(
pc, ref.model.X[current_step(ref) - 1], pc.logWs
)
norm_weights = StatsFuns.softmax(ancestor_weights)
ancestor_index = rand(pc.rng, Distributions.Categorical(norm_weights))
ancestor = pc.vals[ancestor_index]
idx = past_idx(ref)
ref.model.X[idx] = ancestor.model.X[idx]
return ref.rng.keys[idx] = ancestor.rng.keys[idx]
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 5914 | ####
#### Resampling schemes for particle filters
####
# Some references
# - http://arxiv.org/pdf/1301.4019.pdf
# - http://people.isy.liu.se/rt/schon/Publications/HolSG2006.pdf
# Code adapted from: http://uk.mathworks.com/matlabcentral/fileexchange/24968-resampling-methods-for-particle-filtering
# More stable, faster version of rand(Categorical)
function randcat(rng::Random.AbstractRNG, p::AbstractVector{<:Real})
T = eltype(p)
r = rand(rng, T)
cp = p[1]
s = 1
n = length(p)
while cp <= r && s < n
@inbounds cp += p[s += 1]
end
return s
end
"""
resample_multinomial(rng, weights, n)
Return a vector of `n` samples `x₁`, ..., `xₙ` from the numbers 1, ..., `length(weights)`,
generated by multinomial resampling.
The new indices are sampled from the multinomial distribution with probabilities equal to `weights`
"""
function resample_multinomial(
rng::Random.AbstractRNG, w::AbstractVector{<:Real}, num_particles::Integer=length(w)
)
return rand(rng, Distributions.sampler(Distributions.Categorical(w)), num_particles)
end
"""
resample_residual(rng, weights, n)
Return a vector of `n` samples `x₁`, ..., `xₙ` from the numbers 1, ..., `length(weights)`,
generated by residual resampling.
In residual resampling we start by duplicating all the particles whose weight is bigger
than `1/n`. We copy each of these particles ``N_i`` times where
``N_i = \\left\\lfloor n w_i \\right\\rfloor``
We then duplicate the ``R_t = n - \\sum_i N_i`` missing particles using multinomial resampling
with the residual weights given by:
``\\tilde{w} = w_i - \\frac{N_i}{N}``
"""
function resample_residual(
rng::Random.AbstractRNG,
w::AbstractVector{<:Real},
num_particles::Integer=length(weights),
)
# Pre-allocate array for resampled particles
indices = Vector{Int}(undef, num_particles)
# deterministic assignment
residuals = similar(w)
i = 1
@inbounds for j in 1:length(w)
x = num_particles * w[j]
floor_x = floor(Int, x)
for k in 1:floor_x
indices[i] = j
i += 1
end
residuals[j] = x - floor_x
end
# sampling from residuals
if i <= num_particles
residuals ./= sum(residuals)
rand!(rng, Distributions.Categorical(residuals), view(indices, i:num_particles))
end
return indices
end
"""
resample_stratified(rng, weights, n)
Return a vector of `n` samples `x₁`, ..., `xₙ` from the numbers 1, ..., `length(weights)`,
generated by stratified resampling.
In stratified resampling `n` ordered random numbers `u₁`, ..., `uₙ` are generated, where
``uₖ \\sim U[(k - 1) / n, k / n)``.
Based on these numbers the samples `x₁`, ..., `xₙ` are selected according to
the multinomial distribution defined by the normalized `weights`, i.e., `xᵢ = j` if and only if
``uᵢ \\in \\left[\\sum_{s=1}^{j-1} weights_{s}, \\sum_{s=1}^{j} weights_{s}\\right)``.
"""
function resample_stratified(
rng::Random.AbstractRNG, weights::AbstractVector{<:Real}, n::Integer=length(weights)
)
# check input
m = length(weights)
m > 0 || error("weight vector is empty")
# pre-calculations
@inbounds v = n * weights[1]
# generate all samples
samples = Array{Int}(undef, n)
sample = 1
@inbounds for i in 1:n
# sample next `u` (scaled by `n`)
u = oftype(v, i - 1 + rand(rng))
# as long as we have not found the next sample
while v < u
# increase and check the sample
sample += 1
sample > m &&
error("sample could not be selected (are the weights normalized?)")
# update the cumulative sum of weights (scaled by `n`)
v += n * weights[sample]
end
# save the next sample
samples[i] = sample
end
return samples
end
"""
resample_systematic(rng, weights, n)
Return a vector of `n` samples `x₁`, ..., `xₙ` from the numbers 1, ..., `length(weights)`,
generated by systematic resampling.
In systematic resampling a random number ``u \\sim U[0, 1)`` is used to generate `n` ordered
numbers `u₁`, ..., `uₙ` where
``uₖ = (u + k − 1) / n``.
Based on these numbers the samples `x₁`, ..., `xₙ` are selected according to
the multinomial distribution defined by the normalized `weights`, i.e., `xᵢ = j` if and only if
``uᵢ \\in \\left[\\sum_{s=1}^{j-1} weights_{s}, \\sum_{s=1}^{j} weights_{s}\\right)``
"""
function resample_systematic(
rng::Random.AbstractRNG, weights::AbstractVector{<:Real}, n::Integer=length(weights)
)
# check input
m = length(weights)
m > 0 || error("weight vector is empty")
# pre-calculations
@inbounds v = n * weights[1]
u = oftype(v, rand(rng))
# find all samples
samples = Array{Int}(undef, n)
sample = 1
@inbounds for i in 1:n
# as long as we have not found the next sample
while v < u
# increase and check the sample
sample += 1
sample > m &&
error("sample could not be selected (are the weights normalized?)")
# update the cumulative sum of weights (scaled by `n`)
v += n * weights[sample]
end
# save the next sample
samples[i] = sample
# update `u`
u += one(u)
end
return samples
end
const DEFAULT_RESAMPLER = resample_systematic
"""
ResampleWithESSThreshold{R,T<:Real}
Perform resampling using `R` if the effective sample size is below `T`.
By default we use `resample_systematic` with a threshold of 0.5
"""
struct ResampleWithESSThreshold{R,T<:Real}
resampler::R
threshold::T
end
function ResampleWithESSThreshold(resampler=DEFAULT_RESAMPLER)
return ResampleWithESSThreshold(resampler, 0.5)
end
function ResampleWithESSThreshold(threshold::T) where {T<:Real}
return ResampleWithESSThreshold(DEFAULT_RESAMPLER, threshold)
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 3691 | # Default RNG type for when nothing is specified
const _BASE_RNG = Random123.Philox2x # Rng with state bigger than 1 are broken because of Split
"""
TracedRNG{R,N,T}
Wrapped random number generator from Random123 to keep track of random streams during model evaluation
"""
mutable struct TracedRNG{R,N,T<:Random123.AbstractR123} <: Random.AbstractRNG
"Model step counter"
count::Int
"Inner RNG"
rng::T
"Array of keys"
keys::Array{R,N}
"Reference particle alternative seed"
refseed::Union{R,Nothing}
end
"""
TracedRNG(r::Random123.AbstractR123=AdvancedPS._BASE_RNG())
Create a `TracedRNG` with `r` as the inner RNG.
"""
function TracedRNG(r::Random123.AbstractR123=_BASE_RNG())
Random123.set_counter!(r, 0)
return TracedRNG(1, r, Random123.seed_type(r)[], nothing)
end
# Connect to the Random API
Random.rng_native_52(rng::TracedRNG) = Random.rng_native_52(rng.rng)
Base.rand(rng::TracedRNG, ::Type{T}) where {T} = Base.rand(rng.rng, T)
"""
split(key::Integer, n::Integer=1)
Split `key` into `n` new keys
"""
function split(key::Integer, n::Integer=1)
T = typeof(key) # Make sure the type of `key` is consistent on W32 and W64 systems.
return T[hash(key, i) for i in UInt(1):UInt(n)]
end
"""
load_state!(r::TracedRNG)
Load state from current model iteration. Random streams are now replayed
"""
function load_state!(rng::TracedRNG)
key = rng.keys[rng.count]
Random.seed!(rng.rng, key)
return Random123.set_counter!(rng.rng, 0)
end
"""
Random.seed!(rng::TracedRNG, key)
Set key and counter of inner rng in `rng` to `key` and the running model step to 0
"""
function Random.seed!(rng::TracedRNG, key)
Random.seed!(rng.rng, key)
return Random123.set_counter!(rng.rng, 0)
end
"""
gen_seed(rng::Random.AbstractRNG, subrng::TracedRNG, sampler::Random.Sampler)
Generate a `seed` for the subrng based on top-level `rng` and `sampler`
"""
function gen_seed(rng::Random.AbstractRNG, ::TracedRNG{<:Integer}, sampler::Random.Sampler)
return rand(rng, sampler)
end
function gen_seed(
rng::Random.AbstractRNG, ::TracedRNG{<:NTuple{N}}, sampler::Random.Sampler
) where {N}
return Tuple(rand(rng, sampler, N))
end
"""
save_state!(r::TracedRNG)
Add current key of the inner rng in `r` to `keys`.
"""
function save_state!(r::TracedRNG)
return push!(r.keys, state(r.rng))
end
state(rng::Random123.Philox2x) = rng.key
state(rng::Random123.Philox4x) = (rng.key1, rng.key2)
function Base.copy(rng::TracedRNG)
return TracedRNG(rng.count, copy(rng.rng), deepcopy(rng.keys), rng.refseed)
end
# Add an extra seed to the reference particle keys array to use as an alternative stream
# (we don't need to tack this one)
#
# We have to be careful when spliting the reference particle.
# Since we don't know the seed tree from the previous SMC run we cannot reuse any of the intermediate seed
# in the TracedRNG container. We might collide with a previous seed and the children particle would collapse
# to the reference particle. A solution to solve this is to have an extra stream attached to the reference particle
# that we only use to seed the children of the reference particle.
#
safe_set_refseed!(rng::TracedRNG{R}, seed::R) where {R} = rng.refseed = seed
safe_get_refseed(rng::TracedRNG) = rng.refseed
"""
set_counter!(r::TracedRNG, n::Integer)
Set the counter of the inner rng in `r`, used to keep track of the current model step
"""
Random123.set_counter!(r::TracedRNG, n::Integer) = r.count = n
"""
inc_counter!(r::TracedRNG, n::Integer=1)
Increase the model step counter by `n`
"""
inc_counter!(r::TracedRNG, n::Integer=1) = r.count += n
function update_rng! end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 3780 | struct SMC{R} <: AbstractParticleSampler
nparticles::Int
resampler::R
end
"""
SMC(n[, resampler = ResampleWithESSThreshold()])
SMC(n, [resampler = resample_systematic, ]threshold)
Create a sequential Monte Carlo (SMC) sampler with `n` particles.
If the algorithm for the resampling step is not specified explicitly, systematic resampling
is performed if the estimated effective sample size per particle drops below 0.5.
"""
SMC(nparticles::Int) = SMC(nparticles, ResampleWithESSThreshold())
# Convenient constructors with ESS threshold
function SMC(nparticles::Int, resampler, threshold::Real)
return SMC(nparticles, ResampleWithESSThreshold(resampler, threshold))
end
SMC(nparticles::Int, threshold::Real) = SMC(nparticles, DEFAULT_RESAMPLER, threshold)
struct SMCSample{P,W,L}
trajectories::P
weights::W
logevidence::L
end
function AbstractMCMC.sample(
model::SSMProblems.AbstractStateSpaceModel, sampler::SMC; kwargs...
)
return AbstractMCMC.sample(Random.GLOBAL_RNG, model, sampler; kwargs...)
end
function AbstractMCMC.sample(
rng::Random.AbstractRNG,
model::SSMProblems.AbstractStateSpaceModel,
sampler::SMC;
kwargs...,
)
if !isempty(kwargs)
@warn "keyword arguments $(keys(kwargs)) are not supported by `SMC`"
end
traces = map(1:(sampler.nparticles)) do i
trng = TracedRNG()
Trace(deepcopy(model), trng)
end
# Create a set of particles.
particles = ParticleContainer(traces, TracedRNG(), rng)
# Perform particle sweep.
logevidence = sweep!(rng, particles, sampler.resampler, sampler)
return SMCSample(collect(particles), getweights(particles), logevidence)
end
struct PG{R} <: AbstractParticleSampler
"""Number of particles."""
nparticles::Int
"""Resampling algorithm."""
resampler::R
end
"""
PG(n, [resampler = ResampleWithESSThreshold()])
PG(n, [resampler = resample_systematic, ]threshold)
Create a Particle Gibbs sampler with `n` particles.
If the algorithm for the resampling step is not specified explicitly, systematic resampling
is performed if the estimated effective sample size per particle drops below 0.5.
"""
PG(nparticles::Int) = PG(nparticles, ResampleWithESSThreshold())
# Convenient constructors with ESS threshold
function PG(nparticles::Int, resampler, threshold::Real)
return PG(nparticles, ResampleWithESSThreshold(resampler, threshold))
end
PG(nparticles::Int, threshold::Real) = PG(nparticles, DEFAULT_RESAMPLER, threshold)
struct PGState{T}
trajectory::T
end
struct PGSample{T,L}
trajectory::T
logevidence::L
end
struct PGAS{R} <: AbstractParticleSampler
"""Number of particles."""
nparticles::Int
"""Resampling algorithm."""
resampler::R
end
PGAS(nparticles::Int) = PGAS(nparticles, ResampleWithESSThreshold(1.0))
function AbstractMCMC.step(
rng::Random.AbstractRNG,
model::SSMProblems.AbstractStateSpaceModel,
sampler::Union{PGAS,PG},
state::Union{PGState,Nothing}=nothing;
kwargs...,
)
# Create a new set of particles.
nparticles = sampler.nparticles
isref = !isnothing(state)
traces = map(1:nparticles) do i
if i == nparticles && isref
# Create reference trajectory.
forkr(deepcopy(state.trajectory))
else
Trace(deepcopy(model), TracedRNG())
end
end
particles = ParticleContainer(traces, TracedRNG(), rng)
# Perform a particle sweep.
reference = isref ? particles.vals[nparticles] : nothing
logevidence = sweep!(rng, particles, sampler.resampler, sampler, reference)
# Pick a particle to be retained.
newtrajectory = rand(particles.rng, particles)
return PGSample(newtrajectory, logevidence), PGState(newtrajectory)
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 7238 | @testset "container.jl" begin
# Since the extension would hide the low level function call API
mutable struct LogPModel{T} <: SSMProblems.AbstractStateSpaceModel
logp::T
X::Array{T}
end
SSMProblems.transition!!(rng::AbstractRNG, model::LogPModel) = rand(rng, Uniform())
function SSMProblems.transition!!(rng::AbstractRNG, model::LogPModel, state, step)
return rand(rng, Uniform())
end
SSMProblems.emission_logdensity(model::LogPModel, state, step) = model.logp
AdvancedPS.isdone(model::LogPModel, step) = false
@testset "copy particle container" begin
pc = AdvancedPS.ParticleContainer(AdvancedPS.Trace[])
newpc = copy(pc)
@test newpc.logWs == pc.logWs
@test typeof(pc) === typeof(newpc)
end
@testset "particle container" begin
# Create particle container.
logps = [0.0, -1.0, -2.0]
particles = map(logps) do logp
trng = AdvancedPS.TracedRNG()
AdvancedPS.Trace(LogPModel(logp, []), trng)
end
pc = AdvancedPS.ParticleContainer(particles)
# Push!
pc2 = deepcopy(pc)
particle = AdvancedPS.Trace(LogPModel(0, []), AdvancedPS.TracedRNG())
push!(pc2, particle)
@test length(pc2.vals) == 4
@test pc2.logWs ≈ zeros(4)
# Initial state.
@test pc.logWs == zeros(3)
@test AdvancedPS.getweights(pc) == fill(1 / 3, 3)
@test all(AdvancedPS.getweight(pc, i) == 1 / 3 for i in 1:3)
@test AdvancedPS.logZ(pc) ≈ log(3)
@test AdvancedPS.effectiveSampleSize(pc) == 3
# Reweight particles.
AdvancedPS.reweight!(pc)
@test pc.logWs == logps
@test AdvancedPS.getweights(pc) ≈ exp.(logps) ./ sum(exp, logps)
@test all(
AdvancedPS.getweight(pc, i) ≈ exp(logps[i]) / sum(exp, logps) for i in 1:3
)
@test AdvancedPS.logZ(pc) ≈ log(sum(exp, logps))
# Reweight particles.
AdvancedPS.reweight!(pc)
@test pc.logWs == 2 .* logps
@test AdvancedPS.getweights(pc) == exp.(2 .* logps) ./ sum(exp, 2 .* logps)
@test all(
AdvancedPS.getweight(pc, i) ≈ exp(2 * logps[i]) / sum(exp, 2 .* logps) for
i in 1:3
)
@test AdvancedPS.logZ(pc) ≈ log(sum(exp, 2 .* logps))
# Resample and propagate particles with reference particle
particles_ref = map(logps) do logp
trng = AdvancedPS.TracedRNG()
AdvancedPS.Trace(LogPModel(logp, []), trng)
end
pc_ref = AdvancedPS.ParticleContainer(particles_ref)
selected = particles_ref[end] # Replicate life cycle of the reference particle
AdvancedPS.advance!(selected)
ref = AdvancedPS.forkr(selected)
pc_ref.vals[end] = ref
sampler = AdvancedPS.PG(length(logps))
AdvancedPS.resample_propagate!(
Random.GLOBAL_RNG, pc_ref, sampler, AdvancedPS.resample_systematic, ref
)
@test pc_ref.logWs == zeros(3)
@test AdvancedPS.getweights(pc_ref) == fill(1 / 3, 3)
@test all(AdvancedPS.getweight(pc_ref, i) == 1 / 3 for i in 1:3)
@test AdvancedPS.logZ(pc_ref) ≈ log(3)
@test AdvancedPS.effectiveSampleSize(pc_ref) == 3
@test pc_ref.vals[end] === particles_ref[end]
# Resample and propagate particles.
AdvancedPS.resample_propagate!(Random.GLOBAL_RNG, pc, sampler)
@test pc.logWs == zeros(3)
@test AdvancedPS.getweights(pc) == fill(1 / 3, 3)
@test all(AdvancedPS.getweight(pc, i) == 1 / 3 for i in 1:3)
@test AdvancedPS.logZ(pc) ≈ log(3)
@test AdvancedPS.effectiveSampleSize(pc) == 3
# Reweight particles.
AdvancedPS.reweight!(pc)
@test pc.logWs ⊆ logps
@test AdvancedPS.getweights(pc) == exp.(pc.logWs) ./ sum(exp, pc.logWs)
@test all(
AdvancedPS.getweight(pc, i) ≈ exp(pc.logWs[i]) / sum(exp, pc.logWs) for i in 1:3
)
@test AdvancedPS.logZ(pc) ≈ log(sum(exp, pc.logWs))
# Increase unnormalized logarithmic weights.
logws = copy(pc.logWs)
AdvancedPS.increase_logweight!(pc, 2, 1.41)
@test pc.logWs == logws + [0, 1.41, 0]
# Reset unnormalized logarithmic weights.
logws = pc.logWs
AdvancedPS.reset_logweights!(pc)
@test pc.logWs === logws
@test all(iszero, pc.logWs)
end
@testset "trace" begin
struct Model <: AdvancedPS.AbstractGenericModel
val::Ref{Int}
end
function (model::Model)(rng::Random.AbstractRNG)
t = [0]
while true
model.val[] += 1
produce(t[1])
model.val[] += 1
t[1] += 1
end
end
# Test task copy version of trace
trng = AdvancedPS.TracedRNG()
tr = AdvancedPS.Trace(Model(Ref(0)), trng)
consume(tr.model.ctask)
consume(tr.model.ctask)
a = AdvancedPS.fork(tr)
consume(a.model.ctask)
consume(a.model.ctask)
@test consume(tr.model.ctask) == 2
@test consume(a.model.ctask) == 4
end
@testset "current trace" begin
struct TaskIdModel <: AdvancedPS.AbstractGenericModel end
function (model::TaskIdModel)(rng::Random.AbstractRNG)
# Just print the task it's running in
id = objectid(AdvancedPS.current_trace())
return Libtask.produce(id)
end
trace = AdvancedPS.Trace(TaskIdModel(), AdvancedPS.TracedRNG())
AdvancedPS.addreference!(trace.model.ctask.task, trace)
@test AdvancedPS.advance!(trace, false) === objectid(trace)
end
@testset "seed container" begin
seed = 1
n = 3
rng = Random.MersenneTwister(seed)
particles = map(1:n) do _
trng = AdvancedPS.TracedRNG()
AdvancedPS.Trace(LogPModel(1.0, []), trng)
end
pc = AdvancedPS.ParticleContainer(particles, AdvancedPS.TracedRNG())
AdvancedPS.seed_from_rng!(pc, rng)
old_seeds = vcat([part.rng.rng.key for part in pc.vals], [pc.rng.rng.key])
Random.seed!(rng, seed)
AdvancedPS.seed_from_rng!(pc, rng)
new_seeds = vcat([part.rng.rng.key for part in pc.vals], [pc.rng.rng.key])
# Check if we reset the seeds properly
@test old_seeds ≈ new_seeds
Random.seed!(rng, 2)
AdvancedPS.seed_from_rng!(pc, rng, pc.vals[n])
ref_seeds = vcat([part.rng.rng.key for part in pc.vals], [pc.rng.rng.key])
# Dont reset reference particle
@test ref_seeds[n] ≈ new_seeds[n]
end
@testset "seed history" begin
# Test task copy version of trace
trng = AdvancedPS.TracedRNG()
tr = AdvancedPS.Trace(LogPModel(1.0, []), trng)
AdvancedPS.advance!(tr)
AdvancedPS.advance!(tr)
AdvancedPS.advance!(tr)
ref = AdvancedPS.forkr(tr) # Ref particle
new_tr = AdvancedPS.fork(ref, true)
@test length(new_tr.rng.keys) == 0
AdvancedPS.advance!(ref)
child = AdvancedPS.fork(ref, true)
@test length(child.rng.keys) == 1
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 3418 | """
Unit tests for the validity of the SMC algorithms included in this package.
We test each SMC algorithm on a one-dimensional linear Gaussian state space model for which
an analytic filtering distribution can be computed using the Kalman filter provided by the
`Kalman.jl` package.
The validity of the algorithm is tested by comparing the final estimated filtering
distribution ground truth using a one-sided Kolmogorov-Smirnov test.
"""
using DynamicIterators
using GaussianDistributions
using HypothesisTests
using Kalman
function test_algorithm(rng, algorithm, model, N_SAMPLES, Xf)
chains = sample(rng, model, algorithm, N_SAMPLES; progress=false)
particles = hcat([chain.trajectory.model.X for chain in chains]...)
final_particles = particles[:, end]
test = ExactOneSampleKSTest(final_particles, Normal(Xf.x[end].μ, sqrt(Xf.x[end].Σ)))
return pvalue(test)
end
@testset "linear-gaussian.jl" begin
T = 3
N_PARTICLES = 100
N_SAMPLES = 50
# Model dynamics
a = 0.5
b = 0.2
q = 0.1
E = LinearEvolution(a, Gaussian(b, q))
H = 1.0
R = 0.1
Obs = LinearObservationModel(H, R)
x0 = 0.0
P0 = 1.0
G0 = Gaussian(x0, P0)
M = LinearStateSpaceModel(E, Obs)
O = LinearObservation(E, H, R)
# Simulate from model
rng = StableRNG(1234)
initial = rand(rng, StateObs(G0, M.obs))
trajectory = trace(DynamicIterators.Sampled(M, rng), 1 => initial, endtime(T))
y_pairs = collect(t => y for (t, (x, y)) in pairs(trajectory))
ys = [y for (t, (x, y)) in pairs(trajectory)]
# Ground truth smoothing
Xf, ll = kalmanfilter(M, 1 => G0, y_pairs)
# Define AdvancedPS model
mutable struct LinearGaussianParams
a::Float64
b::Float64
q::Float64
h::Float64
r::Float64
x0::Float64
p0::Float64
end
mutable struct LinearGaussianModel <: SSMProblems.AbstractStateSpaceModel
X::Vector{Float64}
observations::Vector{Float64}
θ::LinearGaussianParams
function LinearGaussianModel(y::Vector{Float64}, θ::LinearGaussianParams)
return new(Vector{Float64}(), y, θ)
end
end
function SSMProblems.transition!!(rng::AbstractRNG, model::LinearGaussianModel)
return rand(rng, Normal(model.θ.x0, model.θ.p0))
end
function SSMProblems.transition!!(
rng::AbstractRNG, model::LinearGaussianModel, state, step
)
return rand(rng, Normal(model.θ.a * state + model.θ.b, model.θ.q))
end
function SSMProblems.transition_logdensity(
model::LinearGaussianModel, prev_state, current_state, step
)
return logpdf(Normal(model.θ.a * prev_state + model.θ.b, model.θ.q), current_state)
end
function SSMProblems.emission_logdensity(model::LinearGaussianModel, state, step)
return logpdf(Normal(model.θ.h * state, model.θ.r), model.observations[step])
end
AdvancedPS.isdone(::LinearGaussianModel, step) = step > T
params = LinearGaussianParams(a, b, q, H, R, x0, P0)
model = LinearGaussianModel(ys, params)
@testset "PGAS" begin
pgas = AdvancedPS.PGAS(N_PARTICLES)
p = test_algorithm(rng, pgas, model, N_SAMPLES, Xf)
@test p > 0.05
end
@testset "PG" begin
pg = AdvancedPS.PG(N_PARTICLES)
p = test_algorithm(rng, pg, model, N_SAMPLES, Xf)
@test p > 0.05
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 4324 | @testset "pgas.jl" begin
mutable struct Params
a::Float64
q::Float64
r::Float64
end
mutable struct BaseModel <: SSMProblems.AbstractStateSpaceModel
X::Vector{Float64}
θ::Params
BaseModel(params::Params) = new(Vector{Float64}(), params)
end
function SSMProblems.transition!!(rng::AbstractRNG, model::BaseModel)
return rand(rng, Normal(0, model.θ.q))
end
function SSMProblems.transition!!(rng::AbstractRNG, model::BaseModel, state, step)
return rand(rng, Normal(model.θ.a * state, model.θ.q))
end
function SSMProblems.emission_logdensity(model::BaseModel, state, step)
return logpdf(Distributions.Normal(state, model.θ.r), 0)
end
function SSMProblems.transition_logdensity(
model::BaseModel, prev_state, current_state, step
)
return logpdf(Normal(model.θ.a * prev_state, model.θ.q), current_state)
end
AdvancedPS.isdone(::BaseModel, step) = step > 3
@testset "fork reference" begin
model = BaseModel(Params(0.9, 0.32, 1))
part = AdvancedPS.Trace(model, AdvancedPS.TracedRNG())
AdvancedPS.advance!(part)
AdvancedPS.advance!(part)
AdvancedPS.advance!(part)
@test length(part.model.X) == 3
trajectory = deepcopy(part.model.X)
ref = AdvancedPS.forkr(part)
@test all(trajectory .≈ ref.model.X)
AdvancedPS.advance!(ref)
new_part = AdvancedPS.fork(ref, true)
@test length(new_part.model.X) == 1
@test new_part.model.X[1] ≈ ref.model.X[1]
end
@testset "update reference" begin
base_rng = Random.MersenneTwister(31)
particles = [
AdvancedPS.Trace(BaseModel(Params(0.9, 0.31, 1)), AdvancedPS.TracedRNG()) for
_ in 1:3
]
sampler = AdvancedPS.PGAS(3)
resampler = AdvancedPS.ResampleWithESSThreshold(1.0)
part = particles[3]
AdvancedPS.advance!(part)
AdvancedPS.advance!(part)
AdvancedPS.advance!(part)
ref = AdvancedPS.forkr(part)
particles[3] = ref
pc = AdvancedPS.ParticleContainer(particles, AdvancedPS.TracedRNG(), base_rng)
AdvancedPS.reweight!(pc, ref)
AdvancedPS.resample_propagate!(base_rng, pc, sampler, resampler, ref)
AdvancedPS.reweight!(pc, ref)
pc.logWs = [-Inf, 0, -Inf] # Force ancestor update to second particle
AdvancedPS.resample_propagate!(base_rng, pc, sampler, resampler, ref)
AdvancedPS.reweight!(pc, ref)
@test all(pc.vals[2].model.X[1:2] .≈ ref.model.X[1:2])
terminal_values = [part.model.X[3] for part in pc.vals]
@test length(Set(terminal_values)) == 3 # All distinct
end
@testset "constructor" begin
sampler = AdvancedPS.PGAS(10)
@test sampler.nparticles == 10
@test sampler.resampler === AdvancedPS.ResampleWithESSThreshold(1.0) # adaptive PG-AS ?
end
@testset "rng stability" begin
model = BaseModel(Params(0.9, 0.32, 1))
seed = 10
rng = Random.MersenneTwister(seed)
for sampler in [AdvancedPS.PGAS(10), AdvancedPS.PG(10)]
Random.seed!(rng, seed)
chain1 = sample(rng, model, sampler, 10)
vals1 = hcat([chain.trajectory.model.X for chain in chain1]...)
Random.seed!(rng, seed)
chain2 = sample(rng, model, sampler, 10)
vals2 = hcat([chain.trajectory.model.X for chain in chain2]...) # TODO: Create proper chains
@test vals1 ≈ vals2
end
# Test stability for SMC
sampler = AdvancedPS.SMC(10)
Random.seed!(rng, seed)
chain1 = sample(rng, model, sampler)
vals1 = hcat([trace.model.X for trace in chain1.trajectories]...)
Random.seed!(rng, seed)
chain2 = sample(rng, model, sampler)
vals2 = hcat([trace.model.X for trace in chain2.trajectories]...)
@test vals1 ≈ vals2
end
# Smoke test mostly
@testset "smc sampler" begin
model = BaseModel(Params(0.9, 0.32, 1))
npart = 10
sampler = AdvancedPS.SMC(npart)
chains = sample(model, sampler)
@test length(chains.trajectories) == npart
@test length(chains.trajectories[1].model.X) == 3
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 776 | @testset "resampling.jl" begin
D = [0.3, 0.4, 0.3]
num_samples = Int(1e6)
rng = Random.GLOBAL_RNG
resSystematic = AdvancedPS.resample_systematic(rng, D, num_samples)
resStratified = AdvancedPS.resample_stratified(rng, D, num_samples)
resMultinomial = AdvancedPS.resample_multinomial(rng, D, num_samples)
resResidual = AdvancedPS.resample_residual(rng, D, num_samples)
AdvancedPS.resample_systematic(rng, D)
@test sum(resSystematic .== 2) ≈ (num_samples * 0.4) atol = 1e-3 * num_samples
@test sum(resStratified .== 2) ≈ (num_samples * 0.4) atol = 1e-3 * num_samples
@test sum(resMultinomial .== 2) ≈ (num_samples * 0.4) atol = 1e-2 * num_samples
@test sum(resResidual .== 2) ≈ (num_samples * 0.4) atol = 1e-2 * num_samples
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 604 | @testset "rng.jl" begin
@testset "sample distribution" begin
rng = AdvancedPS.TracedRNG()
vns = rand(rng, Distributions.Normal())
AdvancedPS.save_state!(rng)
rand(rng, Distributions.Normal())
AdvancedPS.load_state!(rng)
new_vns = rand(rng, Distributions.Normal())
@test new_vns ≈ vns
end
@testset "split" begin
rng = AdvancedPS.TracedRNG()
key = rng.rng.key
new_key, = AdvancedPS.split(key, 1)
@test key ≠ new_key
Random.seed!(rng, new_key)
@test rng.rng.key === new_key
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 613 | using AdvancedPS
using AbstractMCMC
using Distributions
using Libtask
using Random
using StableRNGs
using Test
using SSMProblems
@testset "AdvancedPS.jl" begin
@testset "Resampling tests" begin
include("resampling.jl")
end
@testset "Container tests" begin
include("container.jl")
end
@testset "SMC and PG tests" begin
include("smc.jl")
end
@testset "RNG tests" begin
include("rng.jl")
end
@testset "PG-AS" begin
include("pgas.jl")
end
@testset "Linear Gaussian SSM tests" begin
include("linear-gaussian.jl")
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | code | 5569 | @testset "smc.jl" begin
@testset "SMC constructor" begin
sampler = AdvancedPS.SMC(10)
@test sampler.nparticles == 10
@test sampler.resampler == AdvancedPS.ResampleWithESSThreshold()
sampler = AdvancedPS.SMC(15, 0.6)
@test sampler.nparticles == 15
@test sampler.resampler ===
AdvancedPS.ResampleWithESSThreshold(AdvancedPS.resample_systematic, 0.6)
sampler = AdvancedPS.SMC(20, AdvancedPS.resample_multinomial, 0.6)
@test sampler.nparticles == 20
@test sampler.resampler ===
AdvancedPS.ResampleWithESSThreshold(AdvancedPS.resample_multinomial, 0.6)
sampler = AdvancedPS.SMC(25, AdvancedPS.resample_systematic)
@test sampler.nparticles == 25
@test sampler.resampler === AdvancedPS.resample_systematic
end
# Smoke tests
@testset "models" begin
mutable struct NormalModel <: AdvancedPS.AbstractGenericModel
a::Float64
b::Float64
NormalModel() = new()
end
function (m::NormalModel)(rng::Random.AbstractRNG)
# First latent variable.
m.a = a = rand(rng, Normal(4, 5))
# First observation.
AdvancedPS.observe(Normal(a, 2), 3)
# Second latent variable.
m.b = b = rand(rng, Normal(a, 1))
# Second observation.
return AdvancedPS.observe(Normal(b, 2), 1.5)
end
sample(NormalModel(), AdvancedPS.SMC(100))
# failing test
mutable struct FailSMCModel <: AdvancedPS.AbstractGenericModel
a::Float64
b::Float64
FailSMCModel() = new()
end
function (m::FailSMCModel)(rng::Random.AbstractRNG)
m.a = a = rand(rng, Normal(4, 5))
m.b = b = rand(rng, Normal(a, 1))
if a >= 4
AdvancedPS.observe(Normal(b, 2), 1.5)
end
end
@test_throws ErrorException sample(FailSMCModel(), AdvancedPS.SMC(100))
end
@testset "logevidence" begin
Random.seed!(100)
mutable struct TestModel <: AdvancedPS.AbstractGenericModel
a::Float64
x::Bool
b::Float64
c::Float64
TestModel() = new()
end
function (m::TestModel)(rng::Random.AbstractRNG)
# First hidden variables.
m.a = rand(rng, Normal(0, 1))
m.x = x = rand(rng, Bernoulli(1))
m.b = rand(rng, Gamma(2, 3))
# First observation.
AdvancedPS.observe(Bernoulli(x / 2), 1)
# Second hidden variable.
m.c = rand(rng, Beta())
# Second observation.
return AdvancedPS.observe(Bernoulli(x / 2), 0)
end
chains_smc = sample(TestModel(), AdvancedPS.SMC(100))
@test all(isone(particle.x) for particle in chains_smc.trajectories)
@test chains_smc.logevidence ≈ -2 * log(2)
end
@testset "PG constructor" begin
sampler = AdvancedPS.PG(10)
@test sampler.nparticles == 10
@test sampler.resampler == AdvancedPS.ResampleWithESSThreshold()
sampler = AdvancedPS.PG(60, 0.6)
@test sampler.nparticles == 60
@test sampler.resampler ===
AdvancedPS.ResampleWithESSThreshold(AdvancedPS.resample_systematic, 0.6)
sampler = AdvancedPS.PG(80, AdvancedPS.resample_multinomial, 0.6)
@test sampler.nparticles == 80
@test sampler.resampler ===
AdvancedPS.ResampleWithESSThreshold(AdvancedPS.resample_multinomial, 0.6)
sampler = AdvancedPS.PG(100, AdvancedPS.resample_systematic)
@test sampler.nparticles == 100
@test sampler.resampler === AdvancedPS.resample_systematic
end
@testset "logevidence" begin
Random.seed!(100)
mutable struct TestModel <: AdvancedPS.AbstractGenericModel
a::Float64
x::Bool
b::Float64
c::Float64
TestModel() = new()
end
function (m::TestModel)(rng::Random.AbstractRNG)
# First hidden variables.
m.a = rand(rng, Normal(0, 1))
m.x = x = rand(rng, Bernoulli(1))
m.b = rand(rng, Gamma(2, 3))
# First observation.
AdvancedPS.observe(Bernoulli(x / 2), 1)
# Second hidden variable.
m.c = rand(rng, Beta())
# Second observation.
return AdvancedPS.observe(Bernoulli(x / 2), 0)
end
chains_pg = sample(TestModel(), AdvancedPS.PG(10), 100)
@test all(isone(p.trajectory.x) for p in chains_pg)
@test mean(x.logevidence for x in chains_pg) ≈ -2 * log(2) atol = 0.01
end
@testset "Replay reference" begin
mutable struct DummyModel <: AdvancedPS.AbstractGenericModel
a::Float64
b::Float64
DummyModel() = new()
end
function (m::DummyModel)(rng)
m.a = rand(rng, Normal())
AdvancedPS.observe(Normal(), m.a)
m.b = rand(rng, Normal())
return AdvancedPS.observe(Normal(), m.b)
end
pg = AdvancedPS.PG(1)
first, second = sample(DummyModel(), pg, 2)
first_model = first.trajectory
second_model = second.trajectory
# Single Particle - must be replaying
@test first_model.a ≈ second_model.a
@test first_model.b ≈ second_model.b
@test first.logevidence ≈ second.logevidence
end
end
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | docs | 2390 | # AdvancedPS
[](https://turinglang.github.io/AdvancedPS.jl/stable)
[](https://turinglang.github.io/AdvancedPS.jl/dev)
[](https://github.com/TuringLang/AdvancedPS.jl/actions?query=workflow%3ACI%20branch%3Amaster)
[](https://codecov.io/gh/TuringLang/AdvancedPS.jl)
[](https://github.com/invenia/BlueStyle)
AdvancedPS provides an efficient implementation of common particle-based Monte Carlo samplers using the [AbstractMCMC](https://github.com/TuringLang/AbstractMCMC.jl) interface.
The package also relies on [Libtask](https://github.com/TuringLang/Libtask.jl) for task manipulation.
AdvancedPS is part of the [Turing](https://turinglang.org/stable/) ecosystem.
Detailed examples are available in the [documentation](https://turinglang.github.io/AdvancedPS.jl/dev/)
### Reference
1. Doucet, Arnaud, and Adam M. Johansen. "A tutorial on particle filtering and smoothing: Fifteen years later." Handbook of nonlinear filtering 12, no. 656-704 (2009): 3.
2. Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. "Particle Markov chain Monte Carlo methods." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, no. 3 (2010): 269-342.
3. Tripuraneni, Nilesh, Shixiang Shane Gu, Hong Ge, and Zoubin Ghahramani. "Particle Gibbs for infinite hidden Markov models." In Advances in Neural Information Processing Systems, pp. 2395-2403. 2015.
4. Lindsten, Fredrik, Michael I. Jordan, and Thomas B. Schön. "Particle Gibbs with ancestor sampling." The Journal of Machine Learning Research 15, no. 1 (2014): 2145-2184.
5. Pitt, Michael K., and Neil Shephard. "Filtering via simulation: Auxiliary particle filters." Journal of the American Statistical Association 94, no. 446 (1999): 590-599.
6. Doucet, Arnaud, Nando de Freitas, and Neil Gordon. "Sequential Monte Carlo Methods in Practice."
7. Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra. "Sequential Monte Carlo samplers." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68, no. 3 (2006): 411-436.
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | docs | 3333 | # API
## Samplers
AdvancedPS introduces a few samplers extending [AbstractMCMC](https://github.com/TuringLang/AbstractMCMC.jl).
The `sample` method expects a custom type that subtypes `AbstractMCMC.AbstractModel`.
The available samplers are listed below:
### SMC
```@docs
AdvancedPS.SMC
```
The SMC sampler populates a set of particles in a [`AdvancedPS.ParticleContainer`](@ref) and performs a [`AdvancedPS.sweep!`](@ref) which
propagates the particles and provides an estimation of the log-evidence
```julia
sampler = SMC(nparticles)
chains = sample(model, sampler)
```
### Particle Gibbs
```@docs
AdvancedPS.PG
```
The Particle Gibbs introduced in [^2] runs a sequence of conditional SMC steps where a pre-selected particle, the reference particle, is replayed and propagated through
the SMC step.
```julia
sampler = PG(nparticles)
chains = sample(model, sampler, nchains)
```
For more detailed examples please refer to the [Examples](@ref) page.
## Resampling
AdvancedPS implements adaptive resampling for both [`AdvancedPS.PG`](@ref) and [`AdvancedPS.SMC`](@ref).
The following resampling schemes are implemented:
```@docs
AdvancedPS.resample_multinomial
AdvancedPS.resample_residual
AdvancedPS.resample_stratified
AdvancedPS.resample_systematic
```
Each of these schemes is wrapped in a [`AdvancedPS.ResampleWithESSThreshold`](@ref) struct to trigger a resampling step whenever the ESS is below a certain threshold.
```@docs
AdvancedPS.ResampleWithESSThreshold
```
## RNG
AdvancedPS replays the individual trajectories instead of storing the intermediate values. This way we can build efficient samplers.
However in order to replay the trajectories we need to reproduce most of the random numbers generated
during the execution of the program while also generating diverging traces after each resampling step.
To solve these two issues AdvancedPS uses counter-based RNG introduced in [^1] and widely used in large parallel systems see
[StochasticDifferentialEquations](https://github.com/SciML/StochasticDiffEq.jl) or [JAX](https://jax.readthedocs.io/en/latest/jax-101/05-random-numbers.html?highlight=random)
for other implementations.
Under the hood AdvancedPS is using [Random123](https://github.com/JuliaRandom/Random123.jl) for the generators.
Using counter-based RNG allows us to split generators thus creating new independent random streams. These generators are also wrapped in a [`AdvancedPS.TracedRNG`](@ref) type.
The `TracedRNG` keeps track of the keys generated at every `split` and can be reset to replay random streams.
```@docs
AdvancedPS.TracedRNG
AdvancedPS.split
AdvancedPS.load_state!
AdvancedPS.save_state!
```
## Internals
### Particle Sweep
```@docs
AdvancedPS.ParticleContainer
AdvancedPS.sweep!
```
[^1]: John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel random numbers: as easy as 1, 2, 3. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11). Association for Computing Machinery, New York, NY, USA, Article 16, 1–12. DOI:https://doi.org/10.1145/2063384.2063405
[^2]: Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. "Particle Markov chain Monte Carlo methods." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72, no. 3 (2010): 269-342.
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | docs | 106 | # Examples
The following pages walk you through some examples using AdvancedPS and the Turing ecosystem.
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | docs | 398 | # AdvancedPS: Particle Samplers for Julia
This is a lightweight package that implements particle based Monte Carlo algorithms for the [Turing](https://turing.ml/stable/) ecosystem.
### Installing from Julia
To install the package, use the following command inside the Julia REPL:
```julia
using Pkg
Pkg.add("AdvancedPS")
```
To load the package, use the command:
```julia
using AdvancedPS
```
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | docs | 77 | # Examples
The examples in this directory are stored in Literate.jl format.
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
|
[
"MIT"
] | 0.6.0 | 5dcd3de7e7346f48739256e71a86d0f96690b8c8 | docs | 448 | ### Guidelines
Extensions allow you to take advantage of any structure your models might have.
API:
- `AdvancedPS.Trace`: Trace container for your custom model type
- `AdvancedPS.advance!`: Emits logdensity
- `AdvancedPS.fork`: Fork particle and create independent child
- `AdvancedPS.forkr`: Fork particle while keeping generated randomness, used for the reference particle in particle MCMC
- `AdvancedPS.update_ref!`: Update reference particle
| AdvancedPS | https://github.com/TuringLang/AdvancedPS.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.