licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
766
module SatelliteToolboxLegendre ############################################################################################ # Includes # ############################################################################################ include("./misc.jl") include("./dlegendre/fully_normalized_dlegendre.jl") include("./dlegendre/schmidt_quasi_normalized_dlegendre.jl") include("./dlegendre/unnormalized_dlegendre.jl") include("./dlegendre/dlegendre.jl") include("./legendre/fully_normalized_legendre.jl") include("./legendre/schmidt_quasi_normalized_legendre.jl") include("./legendre/unnormalized_legendre.jl") include("./legendre/legendre.jl") end # module SatelliteToolboxLegendre
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
1825
## Description ############################################################################# # # Miscellaneous functions. # ############################################################################################ # Return the maximum degree and order to compute the Legendre associated functions given the # matrix `P` and the configuration values `n_max` and `m_max`. function _get_degree_and_order(P::AbstractMatrix, n_max::Integer, m_max::Integer) # Get the size of the matrix. rows, cols = size(P) # If the order or degree is less than 0, then the user wants to use all the available # memory. if n_max < 0 n_max = rows - 1 end if m_max < 0 m_max = (cols <= rows) ? cols - 1 : n_max end # Make sure that the degree and order fits the matrix. if n_max > rows - 1 n_max = rows - 1 end if (m_max > cols - 1) || (m_max > n_max) m_max = min(cols - 1, n_max) end return n_max, m_max end # Return the maximum degree and order to compute the Legendre associated functions given the # matrices `dP`, `P`, and the configuration values `n_max` and `m_max`. function _get_degree_and_order(dP, P, n_max, m_max) # Get the size of the matrices. Prows, Pcols = size(P) dProws, dPcols = size(dP) rows = min(Prows, dProws) cols = min(Pcols, dPcols) # If the order or degree is less than 0, then the user wants to use all the available # memory. if n_max < 0 n_max = rows - 1 end if m_max < 0 m_max = (cols <= rows) ? cols - 1 : n_max end # Make sure that the degree and order fits the matrix. if n_max > rows - 1 n_max = rows - 1 end if (m_max > cols - 1) || (m_max > n_max) m_max = min(cols - 1, n_max) end return n_max, m_max end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
4853
## Description ############################################################################# # # Functions related to the first-order derivative of associated Legendre functions. # ## References ############################################################################## # # [1] Du, J., Chen, C., Lesur, V., and Wang, L (2015). Non-singular spherical harmonic # expressions of geomagnetic vector and gradient tensor fields in the local # north-oriented reference frame. Geoscientific Model Development, 8, pp. 1979-1990. # # [2] Ilk, K. H.: Ein Beitrag zur Dynamik ausgedehnter Körper-Gravitationswechselwirkung, # Deutsche Geodätische Kommission. Reihe C, Heft Nr. 288, München, 1983. # ############################################################################################ export dlegendre!, dlegendre """ dlegendre!(dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing Compute the first-order derivative of the associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `dP` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The derivatives will be stored in the matrix `dP`. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. This algorithm needs the matrix `P` with the values of the associated Legendre function using the same normalization `N`, which can be computed using the function [`legendre`](@ref). !!! warning The user is responsible to pass a matrix `P` with the correct values. For example, if `ph_term` is `true`, `P` must also be computed with `ph_term` set to `true`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) """ function dlegendre!( ::Val{:full}, dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) return fully_normalized_dlegendre!(dP, ϕ, P, n_max, m_max; ph_term = ph_term) end function dlegendre!( ::Val{:schmidt}, dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) return schmidt_quasi_normalized_dlegendre!(dP, ϕ, P, n_max, m_max; ph_term = ph_term) end function dlegendre!( ::Val{:unnormalized}, dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) return unnormalized_dlegendre!(dP, ϕ, P, n_max, m_max; ph_term = ph_term) end """ dlegendre(N, ϕ::T, n_max::Integer, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)}, Matrix{float(T)} Compute the first-order derivative of the associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative (default), it is set to `n_max`. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the first-order derivative of the Legendre associated functions `P_n,m[cos(ϕ)]`. - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. """ function dlegendre( ::Val{:full}, ϕ::Number, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) return fully_normalized_dlegendre(ϕ, n_max, m_max; ph_term = ph_term) end function dlegendre( ::Val{:schmidt}, ϕ::Number, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) return schmidt_quasi_normalized_dlegendre(ϕ, n_max, m_max; ph_term = ph_term) end function dlegendre( ::Val{:unnormalized}, ϕ::Number, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) return unnormalized_dlegendre(ϕ, n_max, m_max; ph_term = ph_term) end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
7229
## Description ############################################################################# # # Compute the first-order derivative of associated Legendre functions with full # normalization. # ## References ############################################################################## # # [1] Du, J., Chen, C., Lesur, V., and Wang, L (2015). Non-singular spherical harmonic # expressions of geomagnetic vector and gradient tensor fields in the local # north-oriented reference frame. Geoscientific Model Development, 8, pp. 1979-1990. # # [2] Ilk, K. H.: Ein Beitrag zur Dynamik ausgedehnter Körper-Gravitationswechselwirkung, # Deutsche Geodätische Kommission. Reihe C, Heft Nr. 288, München, 1983. # ############################################################################################ """ fully_normalized_dlegendre!(dP::AbstractMatrix{T}, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; kwargs...) where T<:Number -> Nothing Compute the first-order derivative of the fully normalized associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `dP` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The derivatives will be stored in the matrix `dP`. This algorithm needs the matrix `P` with the values of the fully normalized associated Legendre function. This can be computed using the function [`fully_normalized_legendre!`](@ref). !!! warning The user is responsible to pass a matrix `P` with the correct values. For example, if `ph_term` is `true`, `P` must also be computed with `ph_term` set to `true`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) """ function fully_normalized_dlegendre!( dP::AbstractMatrix{T}, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number # Obtain the maximum degree and order that must be computed. n_max, m_max = _get_degree_and_order(dP, P, n_max, m_max) # The derivative is compute using the following equation [1, p. 1981]: # # ∂P(n, m) # ──────── = a_nm . P(n,m-1) + b_nm . P(n,m+1), # ∂ϕ # # a_nm = ¹/₂ . √(n + m) . √(n - m + 1) . √(C_{m} / C_{m-1}) # # b_nm = -¹/₂ . √(n + m + 1) . √(n - m) . √(C_{m} / C_{m+1}) # # ┌ # │ 1, m = 0 # C_{m} = │ # │ 2, m != 0 # └ # # NOTE: The conversion of the coefficients between the full normalization and the # Schmidt quasi-normalization is performed using: # # √(2n + 1), # # which depends only on `n`. Since the derivative equation only has terms related to the # order `n`, the same algorithm will work for both full normalization and Schmidt # quasi-normalization. # # TODO: This algorithm is based on eq. Z.1.44 of [2]. However, it was verified that it # does not provide the correct sign when ϕ ∈ [π, 2π]. This makes sense because the # algorithm uses only the values of the coefficients, which are equal for ϕ and -ϕ. # However, the derivative with respect to ϕ does change. This hack was used so that the # values are correct, but further verification is needed. # # In fact, in [2, p. 119], it is mentioned that `0 <= ϕ <= π`. However, further # clarification is required. ϕ = mod(ϕ, T(2π)) fact = ϕ > π ? -1 : 1 if ph_term fact *= -1 end # Get the first indices in `P` to take into account offset arrays. i₀, j₀ = first.(axes(P)) # Get the first indices in `dP` to take into account offset arrays. di₀, dj₀ = first.(axes(dP)) dP[di₀, dj₀] = 0 m_max < 0 && return nothing @inbounds for n in 1:n_max for m in 0:n if m == 0 aux = √(T(n) * T(n + 1) / 2) a_nm = aux / 2 b_nm = -a_nm # Notice that [1, p. 1985]: # # m # P_(n, -m) = (-1) . P_(n, m), # dP[di₀+n, dj₀] = -a_nm * P[i₀+n, j₀+1] + b_nm * P[i₀+n, j₀+1] # We should consider the case `m == 1` separately from `n == m` because of the # coefficient `C_{m}`. elseif m == 1 a_nm = √(T(2n) * T(n + 1)) / 2 dP[di₀+n, dj₀+1] = a_nm * P[i₀+n, j₀] # Only compute `b_nm` if `n > 1`. Otherwise, we could access an invalid # memory region if `P` is 2 × 2. if n > 1 b_nm = -√(T(n + 2) * T(n - 1)) / 2 dP[di₀+n, dj₀+1] += b_nm * P[i₀+n, j₀+2] end elseif n != m a_nm = +√(T(n + m) * T(n - m + 1)) / 2 b_nm = -√(T(n + m + 1) * T(n - m)) / 2 dP[di₀+n, dj₀+m] = a_nm * P[i₀+n, j₀+m-1] + b_nm * P[i₀+n, j₀+m+1] else a_nm = +√(T(n + m) * T(n - m + 1)) / 2 dP[di₀+n, dj₀+m] = a_nm * P[i₀+n, j₀+m-1] end dP[di₀+n, dj₀+m] *= fact # Check if the maximum desired order has been reached. m >= m_max && break end end return nothing end """ dlegendre_fully_normalized(ϕ::T, n_max::Integer, m_max::Integer = -1, ph_term::Bool = false) where T<:Number -> Matrix{float(T)}, Matrix{float(T)} Compute the first-order derivative of the fully normalized associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative (default), it is set to `n_max`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the first-order derivative of the Legendre associated functions `P_n,m[cos(ϕ)]`. - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. """ function fully_normalized_dlegendre( ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number if (m_max < 0) || (m_max > n_max) m_max = n_max end # Check if we need to compute and additional degree in `P` to provide the desire order # in `dP`. if n_max == m_max n_max_P = m_max_P = n_max else n_max_P = n_max m_max_P = m_max + 1 end # First, compute the matrix with the associated Legendre functions. P = fully_normalized_legendre(ϕ, n_max_P, m_max_P; ph_term = ph_term) # Now, compute and return the derivative of the associated Legendre functions. dP = zeros(float(T), n_max + 1, m_max + 1) fully_normalized_dlegendre!(dP, ϕ, P; ph_term = ph_term) return dP, P end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
3673
## Description ############################################################################# # # Compute the first-order derivative of associated Legendre functions with the Schmidt # quasi-normalization. # ############################################################################################ """ schmidt_quasi_normalized_dlegendre!(dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing Compute the first-order derivative of the Schmidt quasi-normalized associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `dP` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The derivatives will be stored in the matrix `dP`. This algorithm needs the matrix `P` with the values of the Schmidt quasi-normalized associated Legendre function. This can be computed using the function [`schmidt_quase_normalized_legendre!`](@ref). !!! warning The user is responsible to pass a matrix `P` with the correct values. For example, if `ph_term` is `true`, `P` must also be computed with `ph_term` set to `true`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) """ function schmidt_quasi_normalized_dlegendre!( dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) # The algorithm to compute the first-order derivative using Schmidt normalization is # precisely the same as the one that computes using full normalization, given that `P` # has the correct coefficients. return fully_normalized_dlegendre!(dP, ϕ, P, n_max, m_max; ph_term = ph_term) end """ schmidt_quasi_normalized_dlegendre(ϕ::T, n_max::Integer, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)}, Matrix{float(T)} Compute the first-order derivative of the Schmidt quasi-normalized associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative (default), it is set to `n_max`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the first-order derivative of the Legendre associated functions `P_n,m[cos(ϕ)]`. - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. """ function schmidt_quasi_normalized_dlegendre( ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number if (m_max < 0) || (m_max > n_max) m_max = n_max end # Check if we need to compute and additional degree in `P` to provide the desire order # in `dP`. if n_max == m_max n_max_P = m_max_P = n_max else n_max_P = n_max m_max_P = m_max + 1 end # First, compute the matrix with the associated Legendre functions. P = schmidt_quasi_normalized_legendre(ϕ, n_max_P, m_max_P; ph_term = ph_term) # Now, compute and return the derivative of the associated Legendre # functions. dP = zeros(float(T), n_max + 1, m_max + 1) schmidt_quasi_normalized_dlegendre!(dP, ϕ, P; ph_term = ph_term) return dP, P end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
5585
## Description ############################################################################# # # Compute the first-order derivative of associated Legendre functions without # normalization. # ## References ############################################################################## # # [1] Du, J., Chen, C., Lesur, V., and Wang, L (2015). Non-singular spherical harmonic # expressions of geomagnetic vector and gradient tensor fields in the local # north-oriented reference frame. Geoscientific Model Development, 8, pp. 1979-1990. # # [2] Ilk, K. H.: Ein Beitrag zur Dynamik ausgedehnter Körper-Gravitationswechselwirkung, # Deutsche Geodätische Kommission. Reihe C, Heft Nr. 288, München, 1983. # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # """ unnormalized_dlegendre!(dP::AbstractMatrix{T}, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; kwargs...) where T<:Number -> Nothing Compute the first-order derivative of the unnormalized (or conventional) associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `dP` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The derivatives will be stored in the matrix `dP`. This algorithm needs the matrix `P` with the values of the unnormalized associated Legendre function. This can be computed using the function [`unnormalized_legendre!`](@ref). !!! warning The user is responsible to pass a matrix `P` with the correct values. For example, if `ph_term` is `true`, `P` must also be computed with `ph_term` set to `true`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) """ function unnormalized_dlegendre!( dP::AbstractMatrix{T}, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number # Obtain the maximum degree and order that must be computed. n_max, m_max = _get_degree_and_order(dP, P, n_max, m_max) # The derivative is computed using the following equation [1, p. 1981]: # # ∂P(n, m) # ──────── = ¹/₂ . ((n + m) . (n - m + 1) . P(n, m-1) - P(n, m+1)), # ∂θ # # TODO: This algorithm is based on eq. Z.1.44 of [2]. However, it was verified that it # does not provide the correct sign when ϕ ∈ [π, 2π]. This makes sense because the # algorithm uses only the values of the coefficients, which are equal for ϕ and -ϕ. # However, the derivative w.r.t. ϕ does change. This hack was used so that the values # are correct, but further verification is needed. # # In fact, in [2, p. 119], it is mentioned that `0 <= ϕ <= π`. However, further # clarification is required. ϕ = mod(ϕ, T(2π)) fact = ϕ > π ? -1 : 1 if ph_term fact *= -1 end # Get the first indices in `P` to take into account offset arrays. i₀, j₀ = first.(axes(P)) # Get the first indices in `dP` to take into account offset arrays. di₀, dj₀ = first.(axes(dP)) dP[di₀, dj₀] = 0 m_max < 0 && return nothing @inbounds for n in 1:n_max for m in 0:n if m == 0 dP[di₀+n, dj₀+m] = -P[i₀+n, j₀+1] elseif n != m dP[di₀+n, dj₀+m] = ((n + m) * (n - m + 1) * P[i₀+n, j₀+m-1] - P[i₀+n, j₀+m+1]) / 2 else dP[di₀+n, dj₀+m] = ((n + m) * (n - m + 1) * P[i₀+n, j₀+m-1]) / 2 end dP[di₀+n, dj₀+m] *= fact # Check if the maximum desired order has been reached. m >= m_max && break end end nothing end """ unnormalized_dlegendre(ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false) where T<:Number -> Matrix{float(T)}, Matrix{float(T)} Compute the first-order derivative of the unnormalized (or conventional) associated Legendre function `P_n,m[cos(ϕ)]` with respect to `ϕ` [rad]: ∂P_n,m[cos(ϕ)] ────────────── ∂ϕ The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative, it is set to `n_max`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the first-order derivative of the Legendre associated functions `P_n,m[cos(ϕ)]`. - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. """ function unnormalized_dlegendre( ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number if (m_max < 0) || (m_max > n_max) m_max = n_max end # Check if we need to compute and additional degree in `P` to provide the desire order # in `dP`. if n_max == m_max n_max_P = m_max_P = n_max else n_max_P = n_max m_max_P = m_max + 1 end # First, compute the matrix with the associated Legendre functions. P = unnormalized_legendre(ϕ, n_max_P, m_max_P; ph_term = ph_term) # Now, compute and return the derivative of the associated Legendre functions. dP = zeros(float(T), n_max + 1, m_max + 1) unnormalized_dlegendre!(dP, ϕ, P; ph_term = ph_term) return dP, P end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
6325
## Description ############################################################################# # # Compute the associated Legendre functions with full normalization. # ## References ############################################################################## # # [1] Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw # summation and the recursive computation of very high degree and order normalised # associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. # # For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html # # [2] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, # Hawthorn, CA, USA. # ############################################################################################ """ fully_normalized_legendre!(P::AbstractMatrix{T}, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; kwargs...) where T<:Number -> Nothing Compute the fully normalized associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree and order that will be computed are given by the arguments `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `P` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The result will be stored in the matrix `P`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Remarks This algorithm was based on **[1]**. Our definition of fully normalized associated Legendre function can be seen in **[2, p. 546]**. The conversion is obtained by: ┌ ┐ │ (n-m)! . k . (2n+1) │ K_n,m = √│ ───────────────────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̄_n,m = P_n,m * K_n,m, where `P̄_n,m` is the fully normalized Legendre associated function. # References - **[1]** Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html - **[2]** Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorn, CA, USA. """ function fully_normalized_legendre!( P::AbstractMatrix{T}, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number # Obtain the maximum degree and order that must be computed. n_max, m_max = _get_degree_and_order(P, n_max, m_max) # Auxiliary variables to improve code performance. s, c = sincos(T(ϕ)) # The sine must be always positive. In fact, `s` was previously computed using # `√(1 - c^2)`. However, we had numerical problems for very small angles that lead to # `cos(ϕ) = 1`. if s < 0 s = -s end s_fact = !ph_term ? +s : -s # Get the first indices in `P` to take into account offset arrays. i₀, j₀ = first.(axes(P)) sq3 = √T(3) @inbounds for n in 0:n_max # Starting values. if n == 0 P[i₀, j₀] = 1 continue elseif n == 1 P[i₀+1, j₀] = +sq3 * c if m_max > 0 P[i₀+1, j₀+1] = +sq3 * s_fact end continue end aux_an = T(2n - 1) * T(2n + 1) aux_bn = T(2n + 1) / T(2n - 3) for m in 0:n if n == m P[i₀+n, j₀+n] = s_fact * √(T(2n + 1) / T(2n)) * P[i₀+n-1, j₀+n-1] else aux_nm = T(n - m) * T(n + m) a_nm = √(aux_an / aux_nm) * c b_nm = √(T(n + m - 1) * T(n - m - 1) * aux_bn / aux_nm) # We assume that the matrix is not initialized. Hence, we must not access # elements on the upper triangle. if m != n - 1 P[i₀+n, j₀+m] = a_nm * P[i₀+n-1, j₀+m] - b_nm * P[i₀+n-2, j₀+m] else P[i₀+n, j₀+m] = a_nm * P[i₀+n-1, j₀+m] end end # Check if the maximum desired order has been reached. m == m_max && break end end return nothing end """ fully_normalized_legendre!(ϕ::T, n_max::Integer, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)} Compute the fully normalized associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative, it is set to `n_max`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. # Remarks This algorithm was based on **[1]**. Our definition of fully normalized associated Legendre function can be seen in **[2, p. 546]**. The conversion is obtained by: ┌ ┐ │ (n-m)! . k . (2n+1) │ K_n,m = √│ ───────────────────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̄_n,m = P_n,m * K_n,m, where `P̄_n,m` is the fully normalized Legendre associated function. # References - **[1]** Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html - **[2]** Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorn, CA, USA. """ function fully_normalized_legendre( ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number n_max < 0 && throw(ArgumentError("n_max must be positive.")) if (m_max < 0) || (m_max > n_max) m_max = n_max end P = zeros(float(T), n_max + 1, m_max + 1) fully_normalized_legendre!(P, ϕ; ph_term = ph_term) return P end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
7518
## Description ############################################################################# # # Functions related to the associated Legendre functions. # ## References ############################################################################## # # [1] Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw # summation and the recursive computation of very high degree and order normalised # associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. # # For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html # # [2] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, # Hawthorn, CA, USA. # # [3] Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. # # [4] Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and # Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504. # ############################################################################################ export legendre!, legendre """ legendre!(N, P::AbstractMatrix, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing Compute the associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `P` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The result will be stored at matrix `P`. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Remarks ## Full normalization This algorithm was based on **[1]**. Our definition of fully normalized associated Legendre function can be seen in **[2, p. 546]**. The conversion is obtained by: ┌ ┐ │ (n-m)! . k . (2n+1) │ K_n,m = √│ ───────────────────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̄_n,m = P_n,m * K_n,m, where `P̄_n,m` is the fully normalized Legendre associated function. ## Schmidt quasi-normalization This algorithm was based on **[3, 4]**. The conversion is obtained by: ┌ ┐ │ (n-m)! │ K_n,m = √│ k . ──────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̂_n,m = P_n,m * K_n,m, where `P̂_n,m` is the Schmidt quasi-normalized Legendre associated function. # References - **[1]** Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html - **[2]** Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorn, CA, USA. - **[3]** Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. - **[4]** Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504. """ function legendre!( ::Val{:full}, P::AbstractMatrix, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) return fully_normalized_legendre!(P, ϕ, n_max, m_max; ph_term = ph_term) end function legendre!( ::Val{:schmidt}, P::AbstractMatrix, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) return schmidt_quasi_normalized_legendre!(P, ϕ, n_max, m_max; ph_term = ph_term) end function legendre!( ::Val{:unnormalized}, P::AbstractMatrix, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) return unnormalized_legendre!(P, ϕ, n_max, m_max; ph_term = ph_term) end """ legendre(N, ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false) where T<:Number -> Matrix{float(T)} Compute the associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative (default), it is set to `n_max`. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. # Remarks ## Full normalization This algorithm was based on **[1]**. Our definition of fully normalized associated Legendre function can be seen in **[2, p. 546]**. The conversion is obtained by: ┌ ┐ │ (n-m)! . k . (2n+1) │ K_n,m = √│ ───────────────────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̄_n,m = P_n,m * K_n,m, where `P̄_n,m` is the fully normalized Legendre associated function. ## Schmidt quasi-normalization This algorithm was based on **[3, 4]**. The conversion is obtained by: ┌ ┐ │ (n-m)! │ K_n,m = √│ k . ──────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̂_n,m = P_n,m * K_n,m, where `P̂_n,m` is the Schmidt quasi-normalized Legendre associated function. # References - **[1]** Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html - **[2]** Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorn, CA, USA. - **[3]** Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. - **[4]** Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504. """ function legendre( ::Val{:full}, ϕ::Number, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) return fully_normalized_legendre(ϕ, n_max, m_max; ph_term = ph_term) end function legendre( ::Val{:schmidt}, ϕ::Number, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) return schmidt_quasi_normalized_legendre(ϕ, n_max, m_max; ph_term = ph_term) end function legendre( ::Val{:unnormalized}, ϕ::Number, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) return unnormalized_legendre(ϕ, n_max, m_max; ph_term = ph_term) end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
5589
## Description ############################################################################# # # Compute the associated Legendre functions with the Schmidt quasi-normalization. # ## References ############################################################################## # # [1] Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. # # [2] Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and # Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504. # ############################################################################################ """ schmidt_quasi_normalized_legendre!(P::AbstractMatrix{T}, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; kwargs...) where T<:Number -> Nothing Compute the Schmidt quasi-normalized associated Legendre function `P_n,m[cos(ϕ)]` **[1, 2]**. The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `P` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The result will be stored at matrix `P`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Remarks This algorithm was based on **[1, 2]**. The conversion is obtained by: ┌ ┐ │ (n-m)! │ K_n,m = √│ k . ──────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̂_n,m = P_n,m * K_n,m, where `P̂_n,m` is the Schmidt quasi-normalized Legendre associated function. # References - **[1]** Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. - **[2]** Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504. """ function schmidt_quasi_normalized_legendre!( P::AbstractMatrix{T}, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number # Obtain the maximum degree and order that must be computed. n_max, m_max = _get_degree_and_order(P, n_max, m_max) # Auxiliary variables to improve code performance. s, c = sincos(T(ϕ)) # The sine must be always positive. In fact, `s` was previously computed using # `√(1 - c^2)`. However, we had numerical problems for very small angles that lead to # `cos(ϕ) = 1`. if (s < 0) s = -s end s_fact = !ph_term ? +s : -s # Get the first indices in `P` to take into account offset arrays. i₀, j₀ = first.(axes(P)) @inbounds for n in 0:n_max # Starting values. if n == 0 P[i₀, j₀] = 1 continue elseif n == 1 P[i₀+1, j₀] = +c if m_max > 0 P[i₀+1, j₀+1] = +s_fact end continue end aux_n = T(2n - 1) # ......................................... √((2n - 1) * (2n - 1)) for m in 0:n if m == n P[i₀+n, j₀+n] = s_fact * √(aux_n / T(2n)) * P[i₀+n-1, j₀+n-1] else aux_nm = √(T(n - m) * T(n + m)) a_nm = aux_n / aux_nm * c b_nm = √(T(n + m - 1) * T(n - m - 1)) / aux_nm # We assume that the matrix is not initialized. Hence, we must not access # elements on the upper triangle. if m != n - 1 P[i₀+n, j₀+m] = a_nm * P[i₀+n-1, j₀+m] - b_nm * P[i₀+n-2, j₀+m] else P[i₀+n, j₀+m] = a_nm * P[i₀+n-1, j₀+m] end end # Check if the maximum desired order has been reached. m == m_max && break end end return nothing end """ schmidt_quasi_normalized_legendre(ϕ::T, n_max::Integer = -1, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)} Compute the Schmidt quasi-normalized associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative, it is set to `n_max`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. # Remarks This algorithm was based on **[1, 2]**. The conversion is obtained by: ┌ ┐ │ (n-m)! │ K_n,m = √│ k . ──────── │, k = (m = 0) ? 1 : 2. │ (n+m)! │ └ ┘ P̂_n,m = P_n,m * K_n,m, where `P̂_n,m` is the Schmidt quasi-normalized Legendre associated function. # References - **[1]** Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. - **[2]** Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504. """ function schmidt_quasi_normalized_legendre( ϕ::T, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number n_max < 0 && throw(ArgumentError("n_max must be positive.")) if (m_max < 0) || (m_max > n_max) m_max = n_max end P = zeros(float(T), n_max + 1, m_max + 1) schmidt_quasi_normalized_legendre!(P, ϕ; ph_term = ph_term) return P end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
4454
## Description ############################################################################# # # Compute the associated Legendre functions without normalization. # ## References ############################################################################## # # [1] Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw # summation and the recursive computation of very high degree and order normalised # associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. # # For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html # # [2] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, # Hawthorn, CA, USA. # ############################################################################################ """ unnormalized_legendre!(P::AbstractMatrix{T}, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; kwargs...) where T<:Number -> Nothing Compute the unnormalized (or conventional) associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `P` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The result will be stored at matrix `P`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) """ function unnormalized_legendre!( P::AbstractMatrix{T}, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number # Obtain the maximum degree and order that must be computed. n_max, m_max = _get_degree_and_order(P, n_max, m_max) # Auxiliary variables to improve code performance. s, c = sincos(T(ϕ)) # The sine must be always positive. In fact, `s` was previously computed using # `√(1 - c^2)`. However, we had numerical problems for very small angles that lead to # `cos(ϕ) = 1`. if s < 0 s = -s end s_fact = !ph_term ? +s : -s # Get the first indices in `P` to take into account offset arrays. i₀, j₀ = first.(axes(P)) @inbounds for n in 0:n_max # Starting values. if n == 0 P[i₀, j₀] = 1 continue elseif n == 1 P[i₀+1, j₀] = +c if m_max > 0 P[i₀+1, j₀+1] = +s_fact end continue end aux_n = T(2n - 1) # ......................................... √((2n - 1) * (2n - 1)) for m in 0:n if n == m P[i₀+n, j₀+n] = s_fact * aux_n * P[i₀+n-1, j₀+n-1] else aux_nm = T(n - m) # ...................... √((n - m) * (n - m)) a_nm = aux_n / aux_nm * c b_nm = T(n + m - 1) / aux_nm # ..... √((n + m - 1) * (n + m - 1)) / aux_nm # We assume that the matrix is not initialized. Hence, we must # not access elements on the upper triangle. if m != n-1 P[i₀+n, j₀+m] = a_nm * P[i₀+n-1, j₀+m] - b_nm * P[i₀+n-2, j₀+m] else P[i₀+n, j₀+m] = a_nm * P[i₀+n-1, j₀+m] end end # Check if the maximum desired order has been reached. m == m_max && break end end return nothing end """ unnormalized_legendre(ϕ::T, n_max::Integer, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)} Compute the unnormalized (or conventional) associated Legendre function `P_n,m[cos(ϕ)]`. The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative, it is set to `n_max`. # Keywords - `ph_term::Bool`: If `true`, the Condon-Shortley phase term `(-1)^m` will be included. (**Default** = `false`) # Returns - `Matrix{float(T)}`: A matrix with the Legendre associated functions `P_n,m[cos(ϕ)]`. """ function unnormalized_legendre( ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false ) where T<:Number n_max < 0 && throw(ArgumentError("n_max must be positive.")) if (m_max < 0) || (m_max > n_max) m_max = n_max end P = zeros(float(T), n_max + 1, m_max + 1) unnormalized_legendre!(P, ϕ; ph_term = ph_term) return P end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
13478
## Description ############################################################################# # # Tests related to the functions to create the matrices with the values of the Legendre # associated function derivatives. # ############################################################################################ # == File: ./src/dlegendre.jl ============================================================== # -- Functions: dlegendre and dlegendre! --------------------------------------------------- @testset "Unnormalized" begin # == Float64 =========================================================================== # -- Default --------------------------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 0.9924450321351935 0.0 0.0 -0.36528951101055424 2.909682850858952 0.7305790220211085 0.0 -0.7222892661973235 5.618539670379986 3.5975950570380495 0.6722610448623454 ] result, ~ = dlegendre(Val(:unnormalized), 0.123, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Order Higher than Degree ---------------------------------------------------------- result, ~ = dlegendre(Val(:unnormalized), 0.123, 3, 5) @test result ≈ expected @test eltype(result) == Float64 # -- Order Lower than Degree ----------------------------------------------------------- expected_dP = [ 0.0 0.0 -0.12269009002431533 0.9924450321351935 -0.36528951101055424 2.909682850858952 -0.7222892661973235 5.618539670379986 ] expected_P = [ 1.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.9774207127147378 0.36528951101055424 0.0451585745705238 0.9550971963095074 0.7222892661973235 0.22408701495411515 ] result_dP, result_P = dlegendre(Val(:unnormalized), 0.123, 3, 1) @test result_dP ≈ expected_dP @test result_P ≈ expected_P @test eltype(result_dP) == Float64 @test eltype(result_P) == Float64 # -- Angle with Negative Sine ---------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 0.9589242746631385 -0.28366218546322625 0.0 0.0 0.8160316663340547 2.517214587229357 -1.6320633326681093 0.0 -0.8596930972959173 4.166871190282159 10.911704231754335 -11.737688606123031 ] result, ~ = dlegendre(Val(:unnormalized), 5, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Phase Term ------------------------------------------------------------------------ expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 -0.9924450321351935 0.0 0.0 -0.36528951101055424 -2.909682850858952 0.7305790220211085 0.0 -0.7222892661973235 -5.618539670379986 3.5975950570380495 -0.6722610448623454 ] result, ~ = dlegendre(Val(:unnormalized), 0.123, 3; ph_term = true) @test result ≈ expected @test eltype(result) == Float64 # -- In-Place -------------------------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 0.9924450321351935 0.0 0.0 -0.36528951101055424 2.909682850858952 0.0 0.0 -0.7222892661973235 5.618539670379986 0.0 0.0 ] P = legendre(Val(:unnormalized), 0.123, 3, 2) result = zeros(Float64, 4, 4) dlegendre!(Val(:unnormalized), result, 0.123, P, 3, 1) @test result ≈ expected @test eltype(result) == Float64 expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 0.9924450321351935 0.0 0.0 -0.36528951101055424 2.909682850858952 0.7305790220211085 0.0 -0.7222892661973235 5.618539670379986 3.5975950570380495 0.6722610448623454 ] P = legendre(Val(:unnormalized), 0.123, 4, 4) result = zeros(Float64, 4, 4) dlegendre!(Val(:unnormalized), result, 0.123, P, 10, 20) @test result ≈ expected @test eltype(result) == Float64 # == Float32 =========================================================================== expected = Float32[ 0.0 0.0 0.0 0.0 -0.1226901 0.99244505 0.0 0.0 -0.36528954 2.9096832 0.7305791 0.0 -0.7222893 5.618541 3.5975955 0.6722612 ] result, ~ = dlegendre(Val(:unnormalized), 0.123f0, 3) @test result ≈ expected @test eltype(result) == Float32 end @testset "Schmidt Quasi-Normalization" begin # == Float64 =========================================================================== # -- Default --------------------------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 0.9924450321351935 0.0 0.0 -0.36528951101055424 1.6799061771998531 0.21089999751409028 0.0 -0.7222892661973236 2.293759215336026 0.46444752474354967 0.03543126806616079 ] result, ~ = dlegendre(Val(:schmidt), 0.123, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Order Higher than Degree ---------------------------------------------------------- result, ~ = dlegendre(Val(:schmidt), 0.123, 3, 5) @test result ≈ expected @test eltype(result) == Float64 # -- Order Lower than Degree ----------------------------------------------------------- expected_dP = [ 0.0 0.0 -0.12269009002431533 0.9924450321351935 -0.36528951101055424 1.6799061771998531 -0.7222892661973236 2.293759215336026 ] expected_P = [ 1.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.9774207127147378 0.21089999751409028 0.013036157592255852 0.9550971963095074 0.29487335814545546 0.028929509233954008 ] result_dP, result_P = dlegendre(Val(:schmidt), 0.123, 3, 1) @test result_dP ≈ expected_dP @test result_P ≈ expected_P @test eltype(result_dP) == Float64 @test eltype(result_P) == Float64 # -- Angle with Negative Sine ---------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 0.9589242746631385 -0.28366218546322625 0.0 0.0 0.8160316663340547 1.453314519544922 -0.47113610222522534 0.0 -0.8596930972959171 1.7011180400158135 1.4086949589441842 -0.6186305076859298 ] result, ~ = dlegendre(Val(:schmidt), 5, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Phase Term ------------------------------------------------------------------------ expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 -0.9924450321351935 0.0 0.0 -0.36528951101055424 -1.6799061771998531 0.21089999751409028 0.0 -0.7222892661973236 -2.293759215336026 0.46444752474354967 -0.03543126806616079 ] result, ~ = dlegendre(Val(:schmidt), 0.123, 3; ph_term = true) @test result ≈ expected @test eltype(result) == Float64 # -- In-Place -------------------------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 0.9924450321351935 0.0 0.0 -0.36528951101055424 1.6799061771998531 0.0 0.0 -0.7222892661973236 2.293759215336026 0.0 0.0 ] P = legendre(Val(:schmidt), 0.123, 3, 2) result = zeros(Float64, 4, 4) dlegendre!(Val(:schmidt), result, 0.123, P, 3, 1) @test result ≈ expected @test eltype(result) == Float64 expected = [ 0.0 0.0 0.0 0.0 -0.12269009002431533 0.9924450321351935 0.0 0.0 -0.36528951101055424 1.6799061771998531 0.21089999751409028 0.0 -0.7222892661973236 2.293759215336026 0.46444752474354967 0.03543126806616079 ] P = legendre(Val(:schmidt), 0.123, 4, 4) result = zeros(Float64, 4, 4) dlegendre!(Val(:schmidt), result, 0.123, P, 10, 20) @test result ≈ expected @test eltype(result) == Float64 # == Float32 =========================================================================== expected = Float32[ 0.0 0.0 0.0 0.0 -0.1226901 0.99244505 0.0 0.0 -0.36528954 1.6799064 0.21090002 0.0 -0.7222894 2.2937596 0.46444756 0.035431273 ] result, ~ = dlegendre(Val(:schmidt), 0.123f0, 3) @test result ≈ expected @test eltype(result) == Float32 end @testset "Full Normalization" begin # == Float64 =========================================================================== # -- Default --------------------------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 -0.2125054695073136 1.7189652193774823 0.0 0.0 -0.816812178087257 3.7563844080406796 0.4715867308960424 0.0 -1.9109977730094496 6.068716451241777 1.2288126475109502 0.09374232393872588 ] result, ~ = dlegendre(Val(:full), 0.123, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Order Higher than Degree ---------------------------------------------------------- result, ~ = dlegendre(Val(:full), 0.123, 3, 5) @test result ≈ expected @test eltype(result) == Float64 # -- Order Lower than Degree ----------------------------------------------------------- expected_dP = [ 0.0 0.0 -0.2125054695073136 1.7189652193774823 -0.816812178087257 3.7563844080406796 -1.9109977730094496 6.068716451241777 ] expected_P = [ 1.0 0.0 0.0 1.7189652193774823 0.2125054695073136 0.0 2.185579156246447 0.4715867308960424 0.029149734541684073 2.526949659329994 0.7801615739113572 0.07654028698418901 ] result_dP, result_P = dlegendre(Val(:full), 0.123, 3, 1) @test result_dP ≈ expected_dP @test result_P ≈ expected_P @test eltype(result_dP) == Float64 @test eltype(result_P) == Float64 # -- Angle with Negative Sine ---------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 1.6609055643276887 -0.4913173174083336 0.0 0.0 1.8247022777153725 3.2497100583898924 -1.0534923512298937 0.0 -2.2745341392838507 4.500735284647465 3.727056534516655 -1.6367424767746024 ] result, ~ = dlegendre(Val(:full), 5, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Phase Term ------------------------------------------------------------------------ expected = [ 0.0 0.0 0.0 0.0 -0.2125054695073136 -1.7189652193774823 0.0 0.0 -0.816812178087257 -3.7563844080406796 0.4715867308960424 0.0 -1.9109977730094496 -6.068716451241777 1.2288126475109502 -0.09374232393872588 ] result, ~ = dlegendre(Val(:full), 0.123, 3; ph_term = true) @test result ≈ expected @test eltype(result) == Float64 # -- In-Place -------------------------------------------------------------------------- expected = [ 0.0 0.0 0.0 0.0 -0.2125054695073136 1.7189652193774823 0.0 0.0 -0.816812178087257 3.7563844080406796 0.0 0.0 -1.9109977730094496 6.068716451241777 0.0 0.0 ] P = legendre(Val(:full), 0.123, 3, 2) result = zeros(Float64, 4, 4) dlegendre!(Val(:full), result, 0.123, P, 3, 1) @test result ≈ expected @test eltype(result) == Float64 expected = [ 0.0 0.0 0.0 0.0 -0.2125054695073136 1.7189652193774823 0.0 0.0 -0.816812178087257 3.7563844080406796 0.4715867308960424 0.0 -1.9109977730094496 6.068716451241777 1.2288126475109502 0.09374232393872588 ] P = legendre(Val(:full), 0.123, 4, 4) result = zeros(Float64, 4, 4) dlegendre!(Val(:full), result, 0.123, P, 10, 20) @test result ≈ expected @test eltype(result) == Float64 # == Float32 =========================================================================== expected = Float32[ 0.0 0.0 0.0 0.0 -0.21250547 1.7189652 0.0 0.0 -0.8168122 3.7563846 0.47158676 0.0 -1.910998 6.0687184 1.2288128 0.09374233 ] result, ~ = dlegendre(Val(:full), 0.123f0, 3) @test result ≈ expected @test eltype(result) == Float32 end @testset "Errors" begin @test_throws ArgumentError dlegendre(Val(:unnormalized), 0.123, -2) @test_throws ArgumentError dlegendre(Val(:schmidt), 0.123, -2) @test_throws ArgumentError dlegendre(Val(:full), 0.123, -2) end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
11799
## Description ############################################################################# # # Tests related to the functions to create the matrices with the values of the Legendre # associated functions. # ############################################################################################ # == File: ./src/legendre.jl =============================================================== # -- Functions: legendre and legendre! ----------------------------------------------------- @testset "Unnormalized" begin # == Float64 =========================================================================== # -- Default --------------------------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.0 0.9774207127147378 0.36528951101055424 0.0451585745705238 0.0 0.9550971963095074 0.7222892661973235 0.22408701495411515 0.02770254789713661 ] result = legendre(Val(:unnormalized), 0.123, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Order Higher than Degree ---------------------------------------------------------- result = legendre(Val(:unnormalized), 0.123, 3, 5) @test result ≈ expected @test eltype(result) == Float64 # -- Order Lower than Degree ----------------------------------------------------------- expected = [ 1.0 0.0 0.9924450321351935 0.12269009002431533 0.9774207127147378 0.36528951101055424 0.9550971963095074 0.7222892661973235 ] result = legendre(Val(:unnormalized), 0.123, 3, 1) @test result ≈ expected @test eltype(result) == Float64 # -- Angle with Negative Sine ---------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.28366218546322625 0.9589242746631385 0.0 0.0 -0.37930364680733936 0.8160316663340547 2.7586072936146784 0.0 -0.36843162598805346 -0.8596930972959173 3.912562868707677 13.226477490549495 ] result = legendre(Val(:unnormalized), 5, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Phase Term ------------------------------------------------------------------------ expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 -0.12269009002431533 0.0 0.0 0.9774207127147378 -0.36528951101055424 0.0451585745705238 0.0 0.9550971963095074 -0.7222892661973235 0.22408701495411515 -0.02770254789713661 ] result = legendre(Val(:unnormalized), 0.123, 3; ph_term = true) @test result ≈ expected @test eltype(result) == Float64 # -- In-Place -------------------------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.0 0.9774207127147378 0.36528951101055424 0.0 0.0 0.9550971963095074 0.7222892661973235 0.0 0.0 ] result = zeros(Float64, 4, 4) legendre!(Val(:unnormalized), result, 0.123, 3, 1) @test result ≈ expected expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.0 0.9774207127147378 0.36528951101055424 0.0451585745705238 0.0 0.9550971963095074 0.7222892661973235 0.22408701495411515 0.02770254789713661 ] result = zeros(Float64, 4, 4) legendre!(Val(:unnormalized), result, 0.123, 10, 20) @test result ≈ expected # == Float32 =========================================================================== expected = Float32[ 1.0 0.0 0.0 0.0 0.99244505 0.1226901 0.0 0.0 0.9774208 0.36528954 0.04515858 0.0 0.9550973 0.7222893 0.22408706 0.027702551 ] result = legendre(Val(:unnormalized), 0.123f0, 3) @test result ≈ expected @test eltype(result) == Float32 end @testset "Schmidt Quasi-Normalization" begin # == Float64 =========================================================================== # -- Default --------------------------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.0 0.9774207127147378 0.21089999751409028 0.013036157592255852 0.0 0.9550971963095074 0.29487335814545546 0.028929509233954008 0.001460052472414327 ] result = legendre(Val(:schmidt), 0.123, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Order Higher than Degree ---------------------------------------------------------- result = legendre(Val(:schmidt), 0.123, 3, 5) @test result ≈ expected @test eltype(result) == Float64 # -- Order Lower than Degree ----------------------------------------------------------- expected = [ 1.0 0.0 0.9924450321351935 0.12269009002431533 0.9774207127147378 0.21089999751409028 0.9550971963095074 0.29487335814545546 ] result = legendre(Val(:schmidt), 0.123, 3, 1) @test result ≈ expected @test eltype(result) == Float64 # -- Angle with Negative Sine ---------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.28366218546322625 0.9589242746631385 0.0 0.0 -0.37930364680733936 0.47113610222522534 0.7963413317784498 0.0 -0.36843162598805346 -0.35096823729464166 0.505109694383145 0.6970965715180766 ] result = legendre(Val(:schmidt), 5, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Phase Term ------------------------------------------------------------------------ expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 -0.12269009002431533 0.0 0.0 0.9774207127147378 -0.21089999751409028 0.013036157592255852 0.0 0.9550971963095074 -0.29487335814545546 0.028929509233954008 -0.001460052472414327 ] result = legendre(Val(:schmidt), 0.123, 3; ph_term = true) @test result ≈ expected @test eltype(result) == Float64 # -- In-Place -------------------------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.0 0.9774207127147378 0.21089999751409028 0.0 0.0 0.9550971963095074 0.29487335814545546 0.0 0.0 ] result = zeros(Float64, 4, 4) legendre!(Val(:schmidt), result, 0.123, 3, 1) @test result ≈ expected expected = [ 1.0 0.0 0.0 0.0 0.9924450321351935 0.12269009002431533 0.0 0.0 0.9774207127147378 0.21089999751409028 0.013036157592255852 0.0 0.9550971963095074 0.29487335814545546 0.028929509233954008 0.001460052472414327 ] result = zeros(Float64, 4, 4) legendre!(Val(:schmidt), result, 0.123, 10, 20) @test result ≈ expected # == Float32 =========================================================================== expected = Float32[ 1.0 0.0 0.0 0.0 0.99244505 0.1226901 0.0 0.0 0.9774208 0.21090002 0.013036159 0.0 0.9550973 0.2948734 0.028929513 0.0014600528 ] result = legendre(Val(:schmidt), 0.123f0, 3) @test result ≈ expected @test eltype(result) == Float32 end @testset "Full Normalization" begin # == Float64 =========================================================================== # -- Default --------------------------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 1.7189652193774823 0.2125054695073136 0.0 0.0 2.185579156246447 0.4715867308960424 0.029149734541684073 0.0 2.526949659329994 0.7801615739113572 0.07654028698418901 0.003862935743113303 ] result = legendre(Val(:full), 0.123, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Order Higher than Degree ---------------------------------------------------------- result = legendre(Val(:full), 0.123, 3, 5) @test result ≈ expected @test eltype(result) == Float64 # -- Order Lower than Degree ----------------------------------------------------------- expected = [ 1.0 0.0 1.7189652193774823 0.2125054695073136 2.185579156246447 0.4715867308960424 2.526949659329994 0.7801615739113572 ] result = legendre(Val(:full), 0.123, 3, 1) @test result ≈ expected @test eltype(result) == Float64 # -- Angle with Negative Sine ---------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 0.4913173174083336 1.6609055643276887 0.0 0.0 -0.8481487383747819 1.0534923512298937 1.7806733511493273 0.0 -0.9747784574955511 -0.9285746739643262 1.336394636145641 1.8443441680325823 ] result = legendre(Val(:full), 5, 3) @test result ≈ expected @test eltype(result) == Float64 # -- Phase Term ------------------------------------------------------------------------ expected = [ 1.0 0.0 0.0 0.0 1.7189652193774823 -0.2125054695073136 0.0 0.0 2.185579156246447 -0.4715867308960424 0.029149734541684073 0.0 2.526949659329994 -0.7801615739113572 0.07654028698418901 -0.003862935743113303 ] result = legendre(Val(:full), 0.123, 3; ph_term = true) @test result ≈ expected @test eltype(result) == Float64 # -- In-Place -------------------------------------------------------------------------- expected = [ 1.0 0.0 0.0 0.0 1.7189652193774823 0.2125054695073136 0.0 0.0 2.185579156246447 0.4715867308960424 0.0 0.0 2.526949659329994 0.7801615739113572 0.0 0.0 ] result = zeros(Float64, 4, 4) legendre!(Val(:full), result, 0.123, 3, 1) @test result ≈ expected expected = [ 1.0 0.0 0.0 0.0 1.7189652193774823 0.2125054695073136 0.0 0.0 2.185579156246447 0.4715867308960424 0.029149734541684073 0.0 2.526949659329994 0.7801615739113572 0.07654028698418901 0.003862935743113303 ] result = zeros(Float64, 4, 4) legendre!(Val(:full), result, 0.123, 10, 20) @test result ≈ expected # == Float32 =========================================================================== expected = Float32[ 1.0 0.0 0.0 0.0 1.7189652 0.21250547 0.0 0.0 2.1855793 0.47158676 0.029149737 0.0 2.5269504 0.7801616 0.07654029 0.0038629363 ] result = legendre(Val(:full), 0.123f0, 3) @test result ≈ expected @test eltype(result) == Float32 end @testset "Errors" begin @test_throws ArgumentError legendre(Val(:unnormalized), 0.123, -2) @test_throws ArgumentError legendre(Val(:schmidt), 0.123, -2) @test_throws ArgumentError legendre(Val(:full), 0.123, -2) end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
code
254
using Test using SatelliteToolboxLegendre @testset "Legendre Associated Functions" verbose = true begin include("./legendre.jl") end @testset "Derivative of the Legendre Associated Functions" verbose = true begin include("./dlegendre.jl") end
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
docs
1347
SatelliteToolboxLegendre.jl Changelog ===================================== Version 1.0.3 ------------- - ![Enhancement][badge-enhancement] Minor source-code updates. Version 1.0.2 ------------- - ![Enhancement][badge-enhancement] Documentation update. Version 1.0.1 ------------- - ![Bugfix][badge-bugfix] Fix keyword argument when computing Legendre associated functions with full normalization using the API. Version 1.0.0 ------------- - ![Enhancement][badge-enhancement] The documentation received some minor improvements. - ![Info][badge-info] This algorithm has been stable in **SatelliteToolbox.jl** for over six years. Hence, we are setting the current version as 1.0.0. The API modifications from the current version in **SatelliteToolbox.jl** are breaking but subtle. Therefore, we do not expect any problems. Version 0.1.0 ------------- - Initial version. - This version was based on the code in **SatelliteToolbox.jl**. [badge-breaking]: https://img.shields.io/badge/BREAKING-red.svg [badge-deprecation]: https://img.shields.io/badge/Deprecation-orange.svg [badge-feature]: https://img.shields.io/badge/Feature-green.svg [badge-enhancement]: https://img.shields.io/badge/Enhancement-blue.svg [badge-bugfix]: https://img.shields.io/badge/Bugfix-purple.svg [badge-info]: https://img.shields.io/badge/Info-gray.svg
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
1.0.3
5ff0e4fee0b4144ad3393177f449108cd07556d1
docs
10070
<p align="center"> <img src="./docs/src/assets/logo.png" width="150" title="SatelliteToolboxTransformations.jl"><br> <small><i>This package is part of the <a href="https://github.com/JuliaSpace/SatelliteToolbox.jl">SatelliteToolbox.jl</a> ecosystem.</i></small> </p> # SatelliteToolboxLegendre.jl [![CI](https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl/actions/workflows/ci.yml) [![codecov](https://codecov.io/gh/JuliaSpace/SatelliteToolboxLegendre.jl/branch/main/graph/badge.svg?token=AUE8ZZ5IXJ)](https://codecov.io/gh/JuliaSpace/SatelliteToolboxLegendre.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![DOI](https://zenodo.org/badge/634988889.svg)](https://zenodo.org/doi/10.5281/zenodo.11246481) This package contains function to compute the Legendre associated functions and its derivatives for the models in the **SatelliteToolbox.jl** ecosystem. ## Installation ```julia julia> using Pkg julia> Pkg.add("SatelliteToolboxLegendre") ``` ## Usage ### Legendre Associated Functions This package exports two methods to compute the Legendre associated functions: `legendre` and `legendre!`. --- ```julia legendre(N, ϕ::T, n_max::Integer, m_max::Integer = -1; ph_term::Bool = false) where T<:Number -> Matrix{float(T)} ``` Compute the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$. The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative (default), it is set to `n_max`. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. This function has the following keywords: - `ph_term::Bool`: If `true`, the Condon-Shortley phase term $(-1)^m$ will be included. (**Default** = `false`) It returns a `Matrix{float(T)}` with the Legendre associated functions $P_{n,m}\left[\cos(\phi)\right]$. ```julia julia> legendre(Val(:unnormalized), 0.45, 4) 5×5 Matrix{Float64}: 1.0 0.0 0.0 0.0 0.0 0.900447 0.434966 0.0 0.0 0.0 0.716207 1.17499 0.567585 0.0 0.0 0.474547 1.99259 2.5554 1.2344 0.0 0.210627 2.61987 6.63455 7.78058 3.75845 julia> legendre(Val(:schmidt), 0.45, 4, 3; ph_term = true) 5×4 Matrix{Float64}: 1.0 0.0 0.0 0.0 0.900447 -0.434966 0.0 0.0 0.716207 -0.678381 0.163848 0.0 0.474547 -0.813473 0.329901 -0.0650586 0.210627 -0.828476 0.49451 -0.154993 julia> legendre(Val(:full), 0.45, 4, 1) 5×2 Matrix{Float64}: 1.0 0.0 1.55962 0.753382 1.60149 1.51691 1.25553 2.15225 0.631881 2.48543 ``` --- ```julia legendre!(N, P::AbstractMatrix, ϕ::Number, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing ``` Compute the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$. The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `P` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The result will be stored at matrix `P`. Hence, this function can be used to reduce allocations. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. This function has the following keywords: - `ph_term::Bool`: If `true`, the Condon-Shortley phase term $(-1)^m$ will be included. (**Default** = `false`) ### Derivative of the Legendre Associated Functions This package exports two methods to compute the derivative of the Legendre associated functions: `dlegendre` and `dlegendre!`. --- ```julia dlegendre(N, ϕ::T, n_max::Integer, m_max::Integer = -1; kwargs...) where T<:Number -> Matrix{float(T)}, Matrix{float(T)} ``` Compute the first-order derivative of the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$ with respect to $\phi$ [rad]: $$\frac{\partial P_{n,m} \left[\cos(\phi)\right]}{\partial\phi}$$ The maximum degree that will be computed is `n_max` and the maximum order is `m_max`. Notice that if `m_max` is higher than `n_max` or negative (default), it is set to `n_max`. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. This function has the following keywords: - `ph_term::Bool`: If `true`, the Condon-Shortley phase term $(-1)^m$ will be included. (**Default** = `false`) It returns the following objects: - `Matrix{float(T)}`: A matrix with the first-order derivative of the Legendre associated functions $P_{n,m}\left[\cos(\phi)\right]$. - `Matrix{float(T)}`: A matrix with the Legendre associated functions $P_{n,m}\left[\cos(\phi)\right]$`. ```julia julia> dP, P = dlegendre(Val(:unnormalized), 0.45, 4) julia> dP 5×5 Matrix{Float64}: 0.0 0.0 0.0 0.0 0.0 -0.434966 0.900447 0.0 0.0 0.0 -1.17499 1.86483 2.34998 0.0 0.0 -1.99259 1.56958 9.34577 7.6662 0.0 -2.61987 -1.21101 19.6885 44.5626 31.1223 julia> P 5×5 Matrix{Float64}: 1.0 0.0 0.0 0.0 0.0 0.900447 0.434966 0.0 0.0 0.0 0.716207 1.17499 0.567585 0.0 0.0 0.474547 1.99259 2.5554 1.2344 0.0 0.210627 2.61987 6.63455 7.78058 3.75845 julia> dP, P = dlegendre(Val(:schmidt), 0.45, 4, 3; ph_term = true) julia> dP 5×4 Matrix{Float64}: 0.0 0.0 0.0 0.0 -0.434966 -0.900447 0.0 0.0 -1.17499 -1.07666 0.678381 0.0 -1.99259 -0.640778 1.20653 -0.404044 -2.61987 0.382954 1.4675 -0.887709 julia> P 5×5 Matrix{Float64}: 1.0 0.0 0.0 0.0 0.0 0.900447 -0.434966 0.0 0.0 0.0 0.716207 -0.678381 0.163848 0.0 0.0 0.474547 -0.813473 0.329901 -0.0650586 0.0 0.210627 -0.828476 0.49451 -0.154993 0.0264706 julia> dP, P = dlegendre(Val(:full), 0.45, 4, 1) julia> dP 5×2 Matrix{Float64}: 0.0 0.0 -0.753382 1.55962 -2.62736 2.40749 -5.27191 1.69534 -7.85961 -1.14886 julia> P 5×3 Matrix{Float64}: 1.0 0.0 0.0 1.55962 0.753382 0.0 1.60149 1.51691 0.366375 1.25553 2.15225 0.872836 0.631881 2.48543 1.48353 ``` --- ```julia dlegendre!(dP::AbstractMatrix, ϕ::Number, P::AbstractMatrix, n_max::Integer = -1, m_max::Integer = -1; kwargs...) -> Nothing ``` Compute the first-order derivative of the associated Legendre function $P_{n,m}\left[\cos(\phi)\right]$ with respect to $\phi$ [rad]: $$\frac{\partial P_{n,m} \left[\cos(\phi)\right]}{\partial\phi}$$ The maximum degree and order that will be computed are given by the parameters `n_max` and `m_max`. If they are negative (default), the dimensions of matrix `dP` will be used: maximum degree -> number of rows - 1 maximum order -> number of columns - 1 The derivatives will be stored in the matrix `dP`. Hence, this function can be used to reduce allocations. The parameter `N` selects the normalization. The following values are valid: - `Val(:full)`: Compute the fully normalized associated Legendre function. - `Val(:schmidt)`: Compute the Schmidt quasi-normalized associated Legendre function. - `Val(:unnormalized)`: Compute the unnormalized associated Legendre function. This algorithm needs the matrix `P` with the values of the associated Legendre function using the same normalization `N`, which can be computed using the function `legendre`. > **Warning** > The user is responsible to pass a matrix `P` with the correct values. For example, if > `ph_term` is `true`, `P` must also be computed with `ph_term` set to `true`. This function has the following keywords: - `ph_term::Bool`: If `true`, the Condon-Shortley phase term $(-1)^m$ will be included. (**Default** = `false`) ## Normalizations ### Full normalization This algorithm was based on **[1]**. Our definition of fully normalized associated Legendre function can be seen in **[2, p. 546]**. The conversion is obtained by: $$K_{n,m} = \sqrt{k \cdot \frac{(n - m)! \cdot (2n + 1)}{(n + m)!}}~,$$ where $k = 1$ if $m = 0$ or $k = 2$ otherwise. Hence: $$P^f_{n,m} = P_{n,m} \cdot K_{n,m}$$ where $P^f_{n,m}$ is the fully normalized Legendre associated function. ### Schmidt quasi-normalization This algorithm was based on **[3, 4]**. The conversion is obtained by: $$K_{n,m} = \sqrt{k \cdot \frac{(n - m)!}{(n + m)!}}~,$$ where $k = 1$ if $m = 0$ or $k = 2$ otherwise. Hence: $$P^s_{n,m} = P_{n,m} \cdot K_{n,m}$$ where $P^s_{n,m}$ is the Schmidt quasi-normalized Legendre associated function. ## References - **[1]** Holmes, S. A. and W. E. Featherstone, 2002. A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76(5), pp. 279-299. For more info.: http://mitgcm.org/~mlosch/geoidcookbook/node11.html - **[2]** Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. Microcosm Press, Hawthorn, CA, USA. - **[3]** Schmidt, A (1917). Erdmagnetismus, Enzykl. Math. Wiss., 6, pp. 265–396. - **[4]** Winch, D. E., Ivers, D. J., Turner, J. P. R., Stening R. J (2005). Geomagnetism and Schmidt quasi-normalization. Geophysical Journal International, 160(2), pp. 487-504.
SatelliteToolboxLegendre
https://github.com/JuliaSpace/SatelliteToolboxLegendre.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
474
ENV["PLOTS_TEST"] = "true" ENV["GKSwstype"] = "100" using SymPyPythonCall using Documenter makedocs( sitename = "SymPyPythonCall", format = Documenter.HTML(), modules = [SymPyPythonCall], warnonly = [:missing_docs], ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. deploydocs( repo = "github.com/jverzani/SymPyPythonCall.jl.git" )
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
4506
module SymPyPythonCallSymbolicsExt # from https://github.com/JuliaSymbolics/Symbolics.jl/pull/957/ # by @jClugstor import SymPyPythonCall sp = SymPyPythonCall._sympy_ const PythonCall = SymPyPythonCall.PythonCall import PythonCall: pyconvert, pyimport, pyisinstance import Symbolics import Symbolics: @variables PythonCall.pyconvert(::Type{T}, x::SymPyPythonCall.Sym) where {T} = pyconvert(T, x.o) # rule functions function pyconvert_rule_sympy_symbol(::Type{Symbolics.Num}, x) if !pyisinstance(x,sp.Symbol) return PythonCall.pyconvert_unconverted() end name = PythonCall.pyconvert(Symbol,x.name) return PythonCall.pyconvert_return(Symbolics.variable(name)) end function pyconvert_rule_sympy_pow(::Type{Symbolics.Num}, x) if !pyisinstance(x,sp.Pow) return PythonCall.pyconvert_unconverted() end expbase = pyconvert(Symbolics.Num,x.base) exp = pyconvert(Symbolics.Num,x.exp) return PythonCall.pyconvert_return(expbase^exp) end function pyconvert_rule_sympy_mul(::Type{Symbolics.Num}, x) if !pyisinstance(x,sp.Mul) return PythonCall.pyconvert_unconverted() end mult = reduce(*,PythonCall.pyconvert.(Symbolics.Num,x.args)) return PythonCall.pyconvert_return(mult) end function pyconvert_rule_sympy_add(::Type{Symbolics.Num}, x) if !pyisinstance(x,sp.Add) return PythonCall.pyconvert_unconverted() end sum = reduce(+, PythonCall.pyconvert.(Symbolics.Num,x.args)) return PythonCall.pyconvert_return(sum) end function pyconvert_rule_sympy_derivative(::Type{Symbolics.Num}, x) if !pyisinstance(x,sp.Derivative) return PythonCall.pyconvert_unconverted() end variables = pyconvert.(Symbolics.Num,x.variables) derivatives = prod(var -> Differential(var), variables) expr = pyconvert(Symbolics.Num, x.expr) return PythonCall.pyconvert_return(derivatives(expr)) end function pyconvert_rule_sympy_function(::Type{Symbolics.Num}, x) if !pyisinstance(x,sp.Function) return PythonCall.pyconvert_unconverted() end nm = PythonCall.pygetattr(x, "func", nothing) isnothing(nm) && return PythonCall.pyconvert_unconverted() # XXX name = pyconvert(Symbol, nm) args = pyconvert.(Symbolics.Num, x.args) func = @variables $name(..) return PythonCall.pyconvert_return(first(func)(args...)) end function pyconvert_rule_sympy_equality(::Type{Symbolics.Equation}, x) if !pyisinstance(x,sp.Equality) return PythonCall.pyconvert_unconverted() end rhs = pyconvert(Symbolics.Num,x.rhs) lhs = pyconvert(Symbolics.Num,x.lhs) return PythonCall.pyconvert_return(rhs ~ lhs) end function __init__() # added rules # T = Symbolics.Num PythonCall.pyconvert_add_rule("sympy.core.symbol:Symbol", Symbolics.Num, pyconvert_rule_sympy_symbol) PythonCall.pyconvert_add_rule("sympy.core.power:Pow", Symbolics.Num, pyconvert_rule_sympy_pow) PythonCall.pyconvert_add_rule("sympy.core.mul:Mul", Symbolics.Num, pyconvert_rule_sympy_mul) PythonCall.pyconvert_add_rule("sympy.core.add:Add", Symbolics.Num, pyconvert_rule_sympy_add) PythonCall.pyconvert_add_rule("sympy.core.function:Derivative", Symbolics.Num, pyconvert_rule_sympy_derivative) PythonCall.pyconvert_add_rule("sympy.core.function:Function", Symbolics.Num, pyconvert_rule_sympy_function) # T = Symbolics.Equation PythonCall.pyconvert_add_rule("sympy.core.relational:Equality", Symbolics.Equation, pyconvert_rule_sympy_equality) # core numbers add_pyconvert_rule(f, cls, T=Symbolics.Num) = PythonCall.pyconvert_add_rule(cls, T, f) add_pyconvert_rule("sympy.core.numbers:Pi") do T::Type{Symbolics.Num}, x PythonCall.pyconvert_return(Symbolics.Num(pi)) end add_pyconvert_rule("sympy.core.numbers:Exp1") do T::Type{Symbolics.Num}, x PythonCall.pyconvert_return(Symbolics.Num(ℯ)) end add_pyconvert_rule("sympy.core.numbers:Infinity") do T::Type{Symbolics.Num}, x PythonCall.pyconvert_return(Symbolics.Num(Inf)) end # Complex{Num} add_pyconvert_rule("sympy.core.numbers:ImaginaryUnit", Complex{Symbolics.Num}) do T::Type{Complex{Symbolics.Num}}, x PythonCall.pyconvert_return(Complex(Symbolics.Num(0), Symbolics.Num{1})) end add_pyconvert_rule("sympy.core.numbers:ComplexInfinity", Complex{Symbolics.Num}) do T::Type{Complex{Symbolics.Num}}, x PythonCall.pyconvert_return(Complex(Symbolics.Num(0), Symbolics.Num(Inf)) ) end end end
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
647
""" SymPyPythonCall Module to call Python's SymPy package from Julia using PythonCall """ module SymPyPythonCall using SymPyCore using PythonCall const _PyType = PythonCall.Py _pynull() = PythonCall.pynew() _copy!(a, b) = PythonCall.pycopy!(a,b) _pyimport(a) = PythonCall.pyimport(a) _pyimport_conda(a,b) = PythonCall.pyimport(a) # XXX lose things _pyobject(x) = PythonCall.pyconvert(Py, x) _pytype_mapping(typ,a) = nothing const _pybuiltin = PythonCall.pybuiltins core_src_path = joinpath(pathof(SymPyCore), "../../src/SymPy") include(joinpath(core_src_path, "sympy.jl")) include("python_connection.jl") include("deprecated.jl") end
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
1388
# deprecations # exported in 1.0.3 # [Symbol("@syms"), :Differential, :E, :Eq, :FALSE, :Ge, :Gt, :IM, :Le, :Lt, :N, :Ne, :PI, :Sym, :SymPyPythonCall, :TRUE, :VectorField, :Wild, :apart, :ask, :cancel, :degree, :doit, :dsolve, :elements, :expand, :expand_trig, :factor, :free_symbols, :hessian, :integrate, :lambdify, :lhs, :limit, :linsolve, :nonlinsolve, :nroots, :nsolve, :oo, :plot_implicit, :plot_parametric_surface, :real_roots, :refine, :rewrite, :rhs, :roots, :series, :simplify, :solve, :solveset, :subs, :summation, :symbols, :sympy, :sympy_plotting, :together, :zoo, :¬, :∧, :∨, :≦, :≧, :≪, :≫, :≶, :≷, :⩵, :𝑄] Base.@deprecate expand_trig(x) x.expand_trig() true Base.@deprecate_binding Q 𝑄 function unSym(x) Base.depwarn("`unSym` is deprecated. Use `↓(x)`.", :unSym) ↓(x) end function asSymbolic(x) Base.depwarn("`asSymbolic` is deprecated. Use `↑(x)`.", :asSymbolic) ↑(x) end function VectorField(args...; kwargs...) Base.depwarn("`VectorField` has been removed", :VectorField) nothing end function plot_implicit(args...; kwargs...) Base.depwarn("`plot_implicit` has been removed. See `sympy.plotting.plot_implicit`", :VectorField) nothing end function plot_parametric_surface(args...; kwargs...) Base.depwarn("`VectorField` has been removed. See `sympy.plotting.plot3d_parametric_surface`", :plot_parametric_surface) nothing end
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
3304
## PythonCall specific usage Base.convert(::Type{S}, x::Sym{T}) where {T <: PythonCall.Py, S<:Sym} = x Base.convert(::Type{S}, x::Sym{T}) where {T <: PythonCall.Py, S<:Sym{PythonCall.Py}} = x Base.convert(::Type{S}, x::T) where {T<:PythonCall.Py, S <: SymbolicObject} = Sym(x) SymPyCore._convert(::Type{T}, x) where {T} = pyconvert(T, x) function SymPyCore._convert(::Type{Bool}, x::Py) pyisinstance(x, _sympy_.logic.boolalg.BooleanTrue) && return true pyisinstance(x, _sympy_.logic.boolalg.BooleanFalse) && return false pyconvert(Bool, pybool(x)) end function SymPyCore.Bool3(x::Sym{T}) where {T <: PythonCall.Py} y = ↓(x) isnothing(y) && return nothing if hasproperty(y, "is_Boolean") if pyconvert(Bool, y.is_Boolean) return SymPyCore._convert(Bool, y) end elseif hasproperty(y, "__bool__") if pyconvert(Bool, y.__bool__ != ↓(Sym(nothing))) return pyconvert(Bool, y.__bool__()) end end return nothing end ## Modifications for ↓, ↑ Sym(x::Nothing) = Sym(pybuiltins.None) SymPyCore.:↓(x::PythonCall.Py) = x SymPyCore.:↓(d::Dict) = pydict((↓(k) => ↓(v) for (k,v) ∈ pairs(d))) SymPyCore.:↓(x::Set) = _sympy_.sympify(pyset(↓(sᵢ) for sᵢ ∈ x)) SymPyCore.:↑(::Type{<:AbstractString}, x) = Sym(Py(x)) function SymPyCore.:↑(::Type{PythonCall.Py}, x) # this lower level approach shouldn't allocate pyisinstance(x, pybuiltins.set) && return Set(Sym.(collect(x))) #Set(↑(xᵢ) for xᵢ ∈ x) pyisinstance(x, pybuiltins.tuple) && return Tuple(↑(xᵢ) for xᵢ ∈ x) pyisinstance(x, pybuiltins.list) && return [↑(xᵢ) for xᵢ ∈ x] pyisinstance(x, pybuiltins.dict) && return Dict(↑(k) => ↑(x[k]) for k ∈ x) # add more sympy containers in sympy.jl and here pyisinstance(x, _FiniteSet_) && return Set(Sym.(collect(x))) pyisinstance(x, _MutableDenseMatrix_) && return _up_matrix(x) #map(↑, x.tolist()) # fallback Sym(x) end function _up_matrix(m) # ↑ for matrices sh = m.shape r, c = SymPyCore._convert(Int, sh.__getitem__(0)), SymPyCore._convert(Int, sh.__getitem__(1)) out = [↑(m.__getitem__(i*c + j)) for i ∈ 0:(r-1), j ∈ 0:(c-1)] out end function Base.hash(x::SymbolicObject{T}, h::UInt) where {T <: PythonCall.Py} o = ↓(x) hash(o, h) end # should we also have different code path for a::String like PyCall? function Base.getproperty(x::SymbolicObject{T}, a::Symbol) where {T <: PythonCall.Py} a == :o && return getfield(x, a) if a == :py Base.depwarn("The field `.py` has been renamed `.o`", :getproperty) return getfield(x,:o) end val = ↓(x) 𝑎 = string(a) hasproperty(val, 𝑎) || return nothing # not a property meth = getproperty(val, 𝑎) pyis(meth, pybuiltins.None) && return nothing ## __call__ if pycallable(meth) # "__call__") #hasproperty(meth, "__call__") return SymPyCore.SymbolicCallable(meth) end # __class__ dispatch if pyisinstance(meth, _bool_) return pyconvert(Bool, meth) end if pyisinstance(meth, _ModuleType_) return Sym(meth) end # just convert return ↑(convert(PythonCall.Py, meth)) end # do we need this conversion? #Base.convert(::Type{T}, o::Py) where {T <: Sym} = T(o)
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
194
using SymPyPythonCall path = joinpath(pathof(SymPyPythonCall.SymPyCore), "../../test") include(joinpath(path, "runtests-sympycore.jl")) ## VERSION >= v"1.9.0" && include("test-extensions.jl")
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
code
190
using SymPyPythonCall import Symbolics using Test @testset "Symbolics" begin @syms x 𝑥 = SymPyPythonCall.PythonCall.pyconvert(Symbolics.Num, x) @test isa(𝑥, Symbolics.Num) end
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
docs
1237
# SymPyPythonCall [![Docs](https://img.shields.io/badge/docs-dev-blue.svg)](https://jverzani.github.io/SymPyCore.jl/dev) [![Build Status](https://github.com/jverzani/SymPyPythonCall.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/jverzani/SymPyPythonCall.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/jverzani/SymPyPythonCall.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/jverzani/SymPyPythonCall.jl) [SymPyCore](https://github.com/jverzani/SymPyCore.jl) provides a `Julia`n interface to the [SymPy](https://www.sympy.org/) library of Python. [SymPyPythonCall](https://github.com/jverzani/SymPyPythonCall.jl) utilizes `SymPyCore` and the `PythonCall` package (to provide the interop between `Julia` and `Python`) to enable access to Python's SymPy library using the practices and idioms of `Julia`. The package [SymPyPyCall](https://github.com/jverzani/SymPyPyCall.jl) does a similar thing with the `PyCall` package providing the interop. ## Installation Installing this package should install the `SymPyCore` package and the `PythonCall` package. The `PythonCall` package installs a `CondaPkg` package that installs the underlying SymPy library for Python.
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
docs
1134
--- name: Bug report about: Create a report to help us improve title: '' labels: '' assignees: '' --- **Wait** Most all issues are actually issues with [SymPyCore](https://github.com/jverzani/SymPyCore.jl/issues). If so please report them there. `SymPyPythonCall` contains very little code. Basically only that necessary to support the "glue" package `PythonCall` to interop `Julia` with `Python`. **Describe the bug** A clear and concise description of what the bug is. **To Reproduce** Steps to reproduce the behavior: 1. Go to '...' 2. Click on '....' 3. Scroll down to '....' 4. See error **Expected behavior** A clear and concise description of what you expected to happen. **Screenshots** If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - OS: [e.g. iOS] - Browser [e.g. chrome, safari] - Version [e.g. 22] **Smartphone (please complete the following information):** - Device: [e.g. iPhone6] - OS: [e.g. iOS8.1] - Browser [e.g. stock browser, safari] - Version [e.g. 22] **Additional context** Add any other context about the problem here.
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
docs
595
--- name: Feature request about: Suggest an idea for this project title: '' labels: '' assignees: '' --- **Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
docs
185
--- name: Question about SymPyCore about: An issue or question about using the SymPyPythonCall.jl package title: '' labels: '' assignees: '' --- (*Please be as specific as possible*)
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
0.4.0
a8e887c6a810ce59f68e7640bb12732d5c32f092
docs
289
```@meta CurrentModule = SymPyPythonCall ``` # SymPyPythonCall This is a package providing access to the SymPy library of `Python` from within `Julia` utilizing `PythonCall` as the glue package between the two systems. See docs at [SymPyCore](https://github.com/jverzani/SymPyCore.jl).
SymPyPythonCall
https://github.com/jverzani/SymPyPythonCall.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
2067
module SerializationExt using LRUCache using Serialization function Serialization.serialize(s::AbstractSerializer, lru::LRU{K, V}) where {K, V} Serialization.writetag(s.io, Serialization.OBJECT_TAG) serialize(s, typeof(lru)) @assert lru.currentsize == length(lru) serialize(s, lru.currentsize) serialize(s, lru.maxsize) serialize(s, lru.hits) serialize(s, lru.misses) serialize(s, lru.lock) serialize(s, lru.by) serialize(s, lru.finalizer) for (k, val) in lru serialize(s, k) serialize(s, val) sz = lru.dict[k][3] serialize(s, sz) end end function Serialization.deserialize(s::AbstractSerializer, ::Type{LRU{K, V}}) where {K, V} currentsize = Serialization.deserialize(s) maxsize = Serialization.deserialize(s) hits = Serialization.deserialize(s) misses = Serialization.deserialize(s) lock = Serialization.deserialize(s) by = Serialization.deserialize(s) finalizer = Serialization.deserialize(s) dict = Dict{K, Tuple{V, LRUCache.LinkedNode{K}, Int}}() sizehint!(dict, currentsize) # Create node chain first = nothing node = nothing for i in 1:currentsize prev = node k = deserialize(s) node = LRUCache.LinkedNode{K}(k) val = deserialize(s) sz = deserialize(s) dict[k] = (val, node, sz) if i == 1 first = node continue else prev.next = node node.prev = prev end end # close the chain if any node exists if node !== nothing node.next = first first.prev = node end # Createa cyclic ordered set from the node chain keyset = LRUCache.CyclicOrderedSet{K}() keyset.first = first keyset.length = currentsize # Create the LRU lru = LRU{K,V}(maxsize=maxsize) lru.dict = dict lru.keyset = keyset lru.currentsize = currentsize lru.hits = hits lru.misses = misses lru.lock = lock lru.by = by lru.finalizer = finalizer lru end end
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
8560
module LRUCache include("cyclicorderedset.jl") export LRU, cache_info using Base.Threads using Base: Callable _constone(x) = 1 # Default cache size mutable struct LRU{K,V} <: AbstractDict{K,V} dict::Dict{K, Tuple{V, LinkedNode{K}, Int}} keyset::CyclicOrderedSet{K} currentsize::Int maxsize::Int hits::Int misses::Int lock::SpinLock by::Any finalizer::Any function LRU{K, V}(; maxsize::Int, by = _constone, finalizer = nothing) where {K, V} dict = Dict{K, V}() keyset = CyclicOrderedSet{K}() new{K, V}(dict, keyset , 0, maxsize, 0, 0, SpinLock(), by, finalizer) end end Base.@kwdef struct CacheInfo hits::Int misses::Int currentsize::Int maxsize::Int end function Base.show(io::IO, c::CacheInfo) return print(io, "CacheInfo(; hits=$(c.hits), misses=$(c.misses), currentsize=$(c.currentsize), maxsize=$(c.maxsize))") end """ cache_info(lru::LRU) -> CacheInfo Returns a `CacheInfo` object holding a snapshot of information about the cache hits, misses, current size, and maximum size, current as of when the function was called. To access the values programmatically, use property access, e.g. `info.hits`. Note that only `get!` and `get` contribute to hits and misses, and `empty!` resets the counts of hits and misses to 0. ## Example ```jldoctest lru = LRU{Int, Float64}(maxsize=10) get!(lru, 1, 1.0) # miss get!(lru, 1, 1.0) # hit get(lru, 2, 2) # miss get(lru, 2, 2) # miss info = cache_info(lru) # output CacheInfo(; hits=1, misses=3, currentsize=1, maxsize=10) ``` """ function cache_info(lru::LRU) lock(lru.lock) do return CacheInfo(; hits=lru.hits, misses=lru.misses, currentsize=lru.currentsize, maxsize=lru.maxsize) end end LRU(; maxsize::Int, by = _constone, finalizer = nothing) = LRU{Any,Any}(maxsize = maxsize, by = by, finalizer = finalizer) Base.show(io::IO, lru::LRU{K, V}) where {K, V} = print(io, "LRU{$K, $V}(; maxsize = $(lru.maxsize))") function Base.iterate(lru::LRU, state...) next = iterate(lru.keyset, state...) if next === nothing return nothing else k, state = next v, = lru.dict[k] return k=>v, state end end function Base.iterate(lru::Iterators.Reverse{<:LRU}, state...) next = iterate(Iterators.Reverse(lru.itr.keyset), state...) if next === nothing return nothing else k, state = next v, = lru.itr.dict[k] return k=>v, state end end Base.length(lru::LRU) = length(lru.keyset) Base.isempty(lru::LRU) = isempty(lru.keyset) function Base.sizehint!(lru::LRU, n::Integer) lock(lru.lock) do sizehint!(lru.dict, n) end return lru end _unsafe_haskey(lru::LRU, key) = haskey(lru.dict, key) function Base.haskey(lru::LRU, key) lock(lru.lock) do return _unsafe_haskey(lru, key) end end function Base.get(lru::LRU, key, default) lock(lru.lock) do if _unsafe_haskey(lru, key) v = _unsafe_getindex(lru, key) lru.hits += 1 return v else lru.misses += 1 return default end end end function Base.get(default::Callable, lru::LRU, key) lock(lru.lock) try if _unsafe_haskey(lru, key) lru.hits += 1 return _unsafe_getindex(lru, key) end lru.misses += 1 finally unlock(lru.lock) end return default() end function Base.get!(lru::LRU{K, V}, key, default) where {K, V} evictions = Tuple{K, V}[] v = lock(lru.lock) do if _unsafe_haskey(lru, key) lru.hits += 1 v = _unsafe_getindex(lru, key) return v end v = default _unsafe_addindex!(lru, v, key) _unsafe_resize!(lru, evictions) lru.misses += 1 return v end _finalize_evictions!(lru.finalizer, evictions) return v end function Base.get!(default::Callable, lru::LRU{K, V}, key) where {K, V} evictions = Tuple{K, V}[] lock(lru.lock) try if _unsafe_haskey(lru, key) lru.hits += 1 return _unsafe_getindex(lru, key) end finally unlock(lru.lock) end v = default() lock(lru.lock) try if _unsafe_haskey(lru, key) lru.hits += 1 # should we test that this yields the same result as default() v = _unsafe_getindex(lru, key) else _unsafe_addindex!(lru, v, key) _unsafe_resize!(lru, evictions) lru.misses += 1 end finally unlock(lru.lock) end _finalize_evictions!(lru.finalizer, evictions) return v end function _unsafe_getindex(lru::LRU, key) v, n, s = lru.dict[key] _move_to_front!(lru.keyset, n) return v end function Base.getindex(lru::LRU, key) lock(lru.lock) do if _unsafe_haskey(lru, key) v = _unsafe_getindex(lru, key) return v else throw(KeyError(key)) end end end function _unsafe_addindex!(lru::LRU{K}, v, key) where K s = lru.by(v)::Int # If entry is larger than entire cache, don't add it s > lru.maxsize && return n = LinkedNode{K}(key) rotate!(_push!(lru.keyset, n)) lru.currentsize += s lru.dict[key] = (v, n, s) return end function Base.setindex!(lru::LRU{K, V}, v, key) where {K, V} evictions = Tuple{K, V}[] lock(lru.lock) do if _unsafe_haskey(lru, key) old_v, n, s = lru.dict[key] if lru.finalizer !== nothing push!(evictions, (key, old_v)) end lru.currentsize -= s s = lru.by(v)::Int # If new entry is larger than entire cache, don't add it # (but still evict the old entry!) if s > lru.maxsize # We are inside the lock still, so we will remove it manually rather than # `delete!(lru, key)` which would need the lock again. delete!(lru.dict, key) _delete!(lru.keyset, n) else # add the new entry lru.currentsize += s lru.dict[key] = (v, n, s) _move_to_front!(lru.keyset, n) end else _unsafe_addindex!(lru, v, key) end _unsafe_resize!(lru, evictions) end _finalize_evictions!(lru.finalizer, evictions) return lru end function _unsafe_resize!(lru::LRU{K, V}, evictions::Vector{Tuple{K, V}}, maxsize::Integer = lru.maxsize) where {K, V} lru.maxsize = maxsize while lru.currentsize > lru.maxsize key = pop!(lru.keyset) v, n, s = pop!(lru.dict, key) if lru.finalizer !== nothing push!(evictions, (key, v)) end lru.currentsize -= s end return end function Base.resize!(lru::LRU{K, V}; maxsize::Integer = lru.maxsize) where {K, V} @assert 0 <= maxsize evictions = Tuple{K, V}[] lock(lru.lock) do _unsafe_resize!(lru, evictions, maxsize) end _finalize_evictions!(lru.finalizer, evictions) return lru end function Base.delete!(lru::LRU{K, V}, key) where {K, V} v = lock(lru.lock) do v, n, s = pop!(lru.dict, key) lru.currentsize -= s _delete!(lru.keyset, n) return v end if lru.finalizer !== nothing lru.finalizer(key, v) end return lru end function Base.pop!(lru::LRU{K, V}, key) where {K, V} (key, v) = lock(lru.lock) do v, n, s = pop!(lru.dict, key) lru.currentsize -= s _delete!(lru.keyset, n) return (key, v) end if lru.finalizer !== nothing lru.finalizer(key, v) end return v end function Base.empty!(lru::LRU{K, V}) where {K, V} evictions = Tuple{K, V}[] lock(lru.lock) do if lru.finalizer === nothing lru.currentsize = 0 empty!(lru.dict) empty!(lru.keyset) else sizehint!(evictions, length(lru)) maxsize = lru.maxsize _unsafe_resize!(lru, evictions, 0) lru.maxsize = maxsize # restore `maxsize` end lru.hits = 0 lru.misses = 0 end _finalize_evictions!(lru.finalizer, evictions) return lru end function _finalize_evictions!(finalizer, evictions) for (key, value) in evictions finalizer(key, value) end return end if !isdefined(Base, :get_extension) include("../ext/SerializationExt.jl") end end # module
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
4485
using Base: IteratorEltype, HasEltype, HasLength, EltypeUnknown mutable struct LinkedNode{T} val::T next::LinkedNode{T} prev::LinkedNode{T} # All new created nodes are self referential only function LinkedNode{T}(k::T) where {T} x = new{T}(k) x.next = x x.prev = x return x end end mutable struct CyclicOrderedSet{T} <: AbstractSet{T} first::Union{LinkedNode{T}, Nothing} length::Int CyclicOrderedSet{T}() where {T} = new{T}(nothing, 0) end CyclicOrderedSet(itr) = _CyclicOrderedSet(itr, IteratorEltype(itr)) _CyclicOrderedSet(itr, ::HasEltype) = CyclicOrderedSet{eltype(itr)}(itr) function _CyclicOrderedSet(itr, ::EltypeUnknown) T = Base.@default_eltype(itr) (isconcretetype(T) || T === Union{}) || return grow_to!(CyclicOrderedSet{T}(), itr) return CyclicOrderedSet{T}(itr) end CyclicOrderedSet{T}(itr) where {T} = union!(CyclicOrderedSet{T}(), itr) Base.IteratorSize(::Type{<:CyclicOrderedSet}) = HasLength() Base.IteratorEltype(::Type{<:CyclicOrderedSet}) = HasEltype() Base.length(s::CyclicOrderedSet) = s.length Base.isempty(s::CyclicOrderedSet) = length(s) == 0 Base.empty(s::CyclicOrderedSet{T}, ::Type{U}=T) where {T,U} = CyclicOrderedSet{U}() function Base.iterate(s::CyclicOrderedSet, state = s.first) if state === nothing return nothing else return state.val, state.next == s.first ? nothing : state.next end end function Base.iterate(s::Iterators.Reverse{<:LRUCache.CyclicOrderedSet}, state = (s.itr.first isa Nothing) ? nothing : s.itr.first.prev) if state === nothing return nothing else return state.val, state.prev == s.itr.first.prev ? nothing : state.prev end end function Base.last(s::CyclicOrderedSet) isempty(s) && throw(ArgumentError("collection must be non-empty")) return s.first.prev.val end function Base.show(io::IO, s::CyclicOrderedSet) print(io, typeof(s)) print(io, "([") if s.first !== nothing f = s.first show(io, f.val) n = f.next while n !== f print(io, ", ") show(io, n.val) n = n.next end end print(io, "])") end function _findnode(s::CyclicOrderedSet, x) isempty(s) && return nothing n = s.first while !isequal(n.val, x) n = n.next n == s.first && return nothing end return n end # adding items function _push!(s::CyclicOrderedSet{T}, n::LinkedNode{T}) where {T} if isempty(s) s.first = n else list = s.first n.next = list n.prev = list.prev list.prev.next = n list.prev = n end s.length += 1 return s end function Base.push!(s::CyclicOrderedSet{T}, x) where T n = _findnode(s, x) if n === nothing _push!(s, LinkedNode{T}(x)) else _delete!(s, n) _push!(s, n) end return s end Base.pushfirst!(s::CyclicOrderedSet, x) = rotate!(push!(s, x)) # removing items function _delete!(s::CyclicOrderedSet{T}, n::LinkedNode{T}) where {T} n.next.prev = n.prev n.prev.next = n.next s.length -= 1 if n == s.first s.first = s.length == 0 ? nothing : n.next end return s end function Base.pop!(s::CyclicOrderedSet) isempty(s) && throw(ArgumentError("collection must be non-empty")) n = s.first.prev _delete!(s, n) return n.val end function Base.pop!(s::CyclicOrderedSet, x) n = _findnode(s, x) if n === nothing throw(KeyError(x)) else _delete!(s, n) return x end end function Base.pop!(s::CyclicOrderedSet, x, default) n = _findnode(s, x) if n === nothing return default else _delete!(s, n) return x end end function Base.delete!(s::CyclicOrderedSet, x) n = _findnode(s, x) if n !== nothing _delete!(s, n) end return s end function Base.empty!(s::CyclicOrderedSet) s.first = nothing s.length = 0 return s end # Rotate one step forward, so last element is now first function rotate!(s::CyclicOrderedSet) if length(s) > 1 s.first = s.first.prev end return s end function _move_to_front!(s::CyclicOrderedSet{T}, n::LinkedNode{T}) where {T} if s.first !== n n.next.prev = n.prev n.prev.next = n.next n.next = s.first n.prev = s.first.prev s.first.prev.next = n s.first.prev = n s.first = n end return s end
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
2372
module Benchmark using LRUCache # This benchmark is a simple recursive Fibonnaci calculation. While not # comparable to most real world problems, the simplicity of the underlying # calculation means that most of the time is spent in the cacheing operations, # rather than on the function itself. Which is optimal for comparing # improvements to the cache speed. const FIBCACHE = LRU{Int, Int}(; maxsize = 10) function fib(a::Int) get!(FIBCACHE, a) do if a < 2 a else fib(a - 1) + fib(a - 2) end end end function fib_benchmark(cachesize) resize!(FIBCACHE; maxsize = cachesize) empty!(FIBCACHE) println("Cache Size = $cachesize") @time fib(50) end println("========== BENCHMARKS ==========") println() println("Toss this timing, things are still compiling") fib_benchmark(5) println() println("Fibonnaci Benchmarks") println("--------------------") for n in (10, 50, 100) fib_benchmark(n) end println() # Now we benchmark individual operations function setup_cache(cachesize, items) resize!(FIBCACHE; maxsize = cachesize) empty!(FIBCACHE) for i in items FIBCACHE[i] = i end end function benchmark_get(n) @time FIBCACHE[n] end function benchmark_set(k, v) @time FIBCACHE[k] = v end println("Access Benchmarks") println("-----------------") # Cache is [10, 9, 8, ...., 1] in order of use, and is full setup_cache(10, 1:10) println("Access for elements at head of cache") for i in 1:5 benchmark_get(10) end println() # Cache is [10, 9, 8, ...., 1] in order of use, and is full println("Access for elements not at head of cache") for i in 1:5 benchmark_get(i) end println() println("Insertion Benchmarks") println("--------------------") # Cache is empty, with size 5 resize!(FIBCACHE; maxsize = 5) empty!(FIBCACHE) println("Insertion when cache is not full, element not in cache") for i in 1:5 benchmark_set(i, i) end println() # Cache is [5, 4, 3, 2, 1] println("Insertion when element already in cache, not at head") for i in 1:5 benchmark_set(i, i) end println() # Cache is [5, 4, 3, 2, 1] println("Insertion when element already in cache, at head") for i in 1:5 benchmark_set(5, 5) end println() # Cache is [5, 4, 3, 2, 1] println("Insertion when cache is full, element not in cache") for i in 6:10 benchmark_set(i, i) end end
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
1538
@testset "Original tests" begin function test_order(lru, keys, vals) for (i, (k,v)) = enumerate(lru) @test k == keys[i] @test v == vals[i] end end CACHE = LRU{Int, Int}(; maxsize = 20) # Test insertion ordering kvs = 1:10 for i in reverse(kvs) CACHE[i] = i end test_order(CACHE, 1:10, 1:10) # Test reinsertion ordering kvs = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10] for i in reverse(kvs) CACHE[i] = i end test_order(CACHE, kvs, kvs) # Test least recently used items are evicted resize!(CACHE; maxsize = 5) test_order(CACHE, kvs[1:5], kvs[1:5]) resize!(CACHE; maxsize = 10) test_order(CACHE, kvs[1:5], kvs[1:5]) kvs = 1:11 for i in reverse(kvs) CACHE[i] = i end test_order(CACHE, kvs[1:end-1], kvs[1:end-1]) # Test lookups, and that lookups reorder kvs = 1:10 for i in reverse(kvs) CACHE[i] = 2*i end for i in kvs @test CACHE[i] == 2*i end test_order(CACHE, reverse(kvs), reverse(2*kvs)) # Test empty! empty!(CACHE) @test length(CACHE) == 0 # Test get! with default parameter @test get!(CACHE, 1, 2) == 2 # not in cache @test get!(CACHE, 1, 2) == 2 # in cache # Test get! with function call val = get!(CACHE, 2) do 3 end @test val == 3 get!(CACHE, 2) do error("this shouldn't have been called!") end # Test Abstract typed cache. All we're checking for here is that the container # is able to hold abstract types without issue. Insertion order is already # tested above. CACHE2 = LRU{String, Integer}(; maxsize = 5) CACHE2["test"] = 4 @test CACHE2["test"] == 4 end
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
9063
using LRUCache using LRUCache: CacheInfo using Test using Random using Base.Threads # Test insertion and reinsertion ordering @testset "Single-threaded insertion and reinsertion" begin for cache in [LRU(; maxsize = 100), LRU{Int, Int}(; maxsize = 100)] r = 1:100 for i in reverse(r) cache[i] = i end @test collect(cache) == collect(i=>i for i in r) for i = 1:10:100 @test haskey(cache, i) @test !haskey(cache, 100+i) end # reinsert in random order p = randperm(100) for i in reverse(p) cache[i] = i end @test collect(cache) == collect(i=>i for i in p) end end @testset "Multi-threaded insertion and reinsertion" begin cache = LRU{Int, Int}(; maxsize = 100) r = 1:100 @threads for i in reverse(r) cache[i] = i end @threads for i = 1:10:100 @test haskey(cache, i) @test !haskey(cache, 100+i) end @test Set(cache) == Set(i=>i for i=1:100) @threads for i in 100:-1:1 cache[i] = 2*i end @test Set(cache) == Set(i=>2*i for i=1:100) end @testset "Single-threaded getting and setting" begin cache = LRU{Int, Int}(; maxsize = 50*sizeof(Int), by = sizeof) for i in 100:-1:1 @test 2*i == get(cache, i, 2*i) @test 2*i == get(()->2*i, cache, i) @test i == (iseven(i) ? get!(cache, i, i) : get!(()->i, cache, i)) @test i == get!(cache, i, 2*i) @test i == get!(()->error("this should not happen"), cache, i) @test i == get(cache, i, 2*i) @test i == get(()->2*i, cache, i) end for i in 1:50 @test haskey(cache, i) @test !haskey(cache, i+50) @test_throws KeyError getindex(cache, i+50) end @test collect(cache) == collect(i=>i for i in 1:50) p = randperm(50) for i in reverse(p) cache[i] = i end @test collect(cache) == collect(i=>i for i in p) p10 = p[1:10] resize!(cache; maxsize = 10*sizeof(Int)) @test collect(cache) == collect(i=>i for i in p10) resize!(cache; maxsize = 50*sizeof(Int)) @test collect(cache) == collect(i=>i for i in p10) for i in 50:-1:1 @test get!(cache, i, 2*i) == (i in p10 ? i : 2*i) end for i in reverse(p10) @test cache[i] == i end resize!(cache; maxsize = 10*sizeof(Int)) @test collect(cache) == collect(i=>i for i in p10) delete!(cache, p10[1]) @test !haskey(cache, p10[1]) @test p10[10] == pop!(cache, p10[10]) @test !haskey(cache, p10[10]) @test length(empty!(cache)) == 0 @test isempty(cache) for i in p10 @test !haskey(cache, p10) end end @testset "Multi-threaded getting and setting" begin cache = LRU{Int, Int}(; maxsize = 50*sizeof(Int), by = sizeof) @threads for i in 50:-1:1 @test 2*i == get(cache, i, 2*i) @test 2*i == get(()->2*i, cache, i) @test i == (iseven(i) ? get!(cache, i, i) : get!(()->i, cache, i)) @test i == get!(cache, i, 2*i) @test i == get!(()->error("this should not happen"), cache, i) @test i == get(cache, i, 2*i) @test i == get(()->2*i, cache, i) end p = randperm(50) p10 = p[1:10] @threads for i in p10 @test cache[i] == i end resize!(cache; maxsize = 10*sizeof(Int)) @test Set(cache) == Set(i=>i for i in p10) resize!(cache; maxsize = 50*sizeof(Int)) @test Set(cache) == Set(i=>i for i in p10) delete!(cache, p10[1]) @test !haskey(cache, p10[1]) @test_throws KeyError getindex(cache, p10[1]) @test p10[10] == pop!(cache, p10[10]) @test !haskey(cache, p10[10]) @test_throws KeyError getindex(cache, p10[1]) end @testset "Recursive lock in get(!)" begin cache = LRU{Int,Int}(; maxsize = 100) p = randperm(100) cache[1] = 1 f!(cache, i) = get!(()->(f!(cache, i-1) + 1), cache, i) @threads for i = 1:100 f!(cache, p[i]) end @threads for i = 1:100 @test haskey(cache, i) @test cache[i] == i end end @testset "Eviction callback" begin # Julia 1.0 and 1.1 crash with multiple threads on this # combination of @threads and Channel. if VERSION >= v"1.2" || Threads.nthreads() == 1 resources = Channel{Matrix{Float64}}(11) for _ = 1:11 put!(resources, zeros(5, 5)) end callback = (key, value) -> put!(resources, value) cache = LRU{Int,Matrix{Float64}}(; maxsize = 10, finalizer = callback) @threads for i = 1:100 cache[i ÷ gcd(i, 60)] = take!(resources) end # Note: It's not ideal to rely on the Channel internals but there # doesn't seem to be a public way to check how much is occupied. @test length(resources.data) == 1 cache[101] = take!(resources) @test length(resources.data) == 1 pop!(cache, 101) @test length(resources.data) == 2 cache[101] = take!(resources) @test length(resources.data) == 1 delete!(cache, 101) @test length(resources.data) == 2 get!(cache, 101, take!(resources)) @test length(resources.data) == 1 get!(() -> take!(resources), cache, 102) @test length(resources.data) == 1 get!(() -> take!(resources), cache, 102) @test length(resources.data) == 1 resize!(cache, maxsize = 5) @test length(resources.data) == 6 empty!(cache) @test length(resources.data) == 11 @test cache.maxsize == 5 end end @testset "Reverse iterator" begin lru = LRU(;maxsize = 4) # Instantiate lazy reverse iterator rlru = Iterators.reverse(lru) # Did we handle the empty cache? @test [k => v for (k,v) in lru] == [] @test [k => v for (k,v) in rlru] == [] # Fill in some data lru["first"] = 1 # Does a single element cache work @test [k => v for (k,v) in lru] == ["first" => 1] @test [k => v for (k,v) in rlru] == ["first" => 1] lru["second"] = 2 # Does a partially filled cache work @test [k => v for (k,v) in lru] == ["second" => 2, "first" => 1] @test [k => v for (k,v) in rlru] == ["first" => 1, "second" => 2] lru["third"] = 3 lru["fourth"] = 4 # Does forward iteration give us the expected result? @test [k => v for (k,v) in lru] == ["fourth" => 4, "third" => 3, "second" => 2, "first" => 1] @test [k => v for (k,v) in rlru] == ["first" => 1, "second" => 2, "third" => 3, "fourth" => 4] # Evict first by inserting fifth lru["fifth"] = 5 @test [k => v for (k,v) in lru] == ["fifth" => 5, "fourth" => 4, "third" => 3, "second" => 2] @test [k => v for (k,v) in rlru] == ["second" => 2, "third" => 3, "fourth" => 4, "fifth" => 5] end # https://github.com/JuliaCollections/LRUCache.jl/issues/37 @testset "Large entries" begin lru = LRU{Int, Vector{Int}}(; maxsize=10, by=length) get!(lru, 1, 1:9) @test !isempty(lru) @test lru[1] == 1:9 # Add too-big entry get!(lru, 2, 1:11) # did not add entry 2, it is too big @test !haskey(lru, 2) # Still have old entries @test !isempty(lru) @test lru[1] == 1:9 # Same with `setindex!` lru[2] = 1:11 @test !haskey(lru, 2) @test !isempty(lru) @test lru[1] == 1:9 # Add a second small entry lru[2] = 1:1 @test haskey(lru, 2) @test lru[1] == 1:9 @test lru[2] == 1:1 # Re-assign it to a too-big entry lru[2] = 1:11 @test !haskey(lru, 2) # don't keep the old entry! @test lru[1] == 1:9 end @testset "cache_info" begin lru = LRU{Int, Float64}(; maxsize=10) get!(lru, 1, 1.0) # miss @test cache_info(lru) == CacheInfo(; hits=0, misses=1, currentsize=1, maxsize=10) get!(lru, 1, 1.0) # hit @test cache_info(lru) == CacheInfo(; hits=1, misses=1, currentsize=1, maxsize=10) get(lru, 1, 1.0) # hit @test cache_info(lru) == CacheInfo(; hits=2, misses=1, currentsize=1, maxsize=10) get(lru, 2, 1.0) # miss info = CacheInfo(; hits=2, misses=2, currentsize=1, maxsize=10) @test cache_info(lru) == info @test sprint(show, info) == "CacheInfo(; hits=2, misses=2, currentsize=1, maxsize=10)" # These don't change the hits and misses @test haskey(lru, 1) @test cache_info(lru) == info @test lru[1] == 1.0 @test cache_info(lru) == info @test !haskey(lru, 2) @test cache_info(lru) == info # This affects `currentsize` but not hits or misses delete!(lru, 1) @test cache_info(lru) == CacheInfo(; hits=2, misses=2, currentsize=0, maxsize=10) # Likewise setindex! does not affect hits or misses, just `currentsize` lru[1] = 1.0 @test cache_info(lru) == info # Only affects size pop!(lru, 1) @test cache_info(lru) == CacheInfo(; hits=2, misses=2, currentsize=0, maxsize=10) # Resets counts empty!(lru) @test cache_info(lru) == CacheInfo(; hits=0, misses=0, currentsize=0, maxsize=10) end include("originaltests.jl") include("serializationtests.jl")
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
code
1920
using Serialization @testset "Large Serialize and Deserialize" begin cache = LRU{Int, Int}(maxsize=100_000) # Populate the cache with dummy data num_entries_to_test = [0, 1, 2, 3, 4, 5, 100_000, 1_000_000] for i in 0:maximum(num_entries_to_test) # Add dummy data on all but the first iteration, # to test an empty cache i > 0 && (cache[i] = i+1) i ∈ num_entries_to_test || continue io = IOBuffer() serialize(io, cache) seekstart(io) deserialized_cache = deserialize(io) # Check that the cache is the same @test cache.maxsize == deserialized_cache.maxsize @test cache.currentsize == deserialized_cache.currentsize @test cache.hits == deserialized_cache.hits @test cache.misses == deserialized_cache.misses @test cache.by == deserialized_cache.by @test cache.finalizer == deserialized_cache.finalizer @test cache.keyset.length == deserialized_cache.keyset.length @test issetequal(collect(cache), collect(deserialized_cache)) # Check that the cache has the same keyset @test length(cache.keyset) == length(deserialized_cache.keyset) @test all(((c_val, d_val),) -> c_val == d_val, zip(cache.keyset, deserialized_cache.keyset)) # Check that the cache keys, values, and sizes are the same for (key, (c_value, c_node, c_s)) in cache.dict d_value, d_node, d_s = deserialized_cache.dict[key] c_value == d_value || @test false c_node.val == d_node.val || @test false c_s == d_s || @test false end end end @testset "Serialize mutable references" begin lru = LRU(; maxsize=5) a = b = [1] lru[1] = a lru[2] = b @test lru[1] === lru[2] io = IOBuffer() serialize(io, lru) seekstart(io) lru2 = deserialize(io) @test lru2[1] === lru2[2] end
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
1.6.1
b3cc6698599b10e652832c2f23db3cab99d51b59
docs
4957
# LRUCache.jl [![CI](https://github.com/JuliaCollections/LRUCache.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaCollections/LRUCache.jl/actions/workflows/ci.yml) [![CI (Julia nightly)](https://github.com/JuliaCollections/LRUCache.jl/actions/workflows/ci-julia-nightly.yml/badge.svg)](https://github.com/JuliaCollections/LRUCache.jl/actions/workflows/ci-julia-nightly.yml) [![License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](LICENSE.md) [![codecov.io](http://codecov.io/github/JuliaCollections/LRUCache.jl/coverage.svg?branch=master)](http://codecov.io/github/JuliaCollections/LRUCache.jl?branch=master) Provides a thread-safe implementation of a Least Recently Used (LRU) Cache for Julia. An LRU Cache is a useful associative data structure (`AbstractDict` in Julia) that has a set maximum size (as measured by number of elements or a custom size measure for items). Once that size is reached, the least recently used items are removed first. A lock ensures that data access does not lead to race conditions. A particular use case of this package is to implement function memoization for functions that can simultaneously be called from different threads. ## Installation Install with the package manager via `]add LRUCache` or ```julia using Pkg Pkg.add("LRUCache") ``` ## Interface `LRU` supports the standard `AbstractDict` interface. Some examples of common operations are shown below: **Creation** ```julia lru = LRU{K, V}(, maxsize = size [, by = ...] [,finalizer = ...]) ``` Create an LRU Cache with a maximum size (number of items) specified by the *required* keyword argument `maxsize`. Here, the size can be the number of elements (default), or the maximal total size of the values in the dictionary, as counted by an arbitrary user function (which should return a single value of type `Int`) specified with the keyword argument `by`. Sensible choices would for example be `by = sizeof` for e.g. values which are `Array`s of bitstypes, or `by = Base.summarysize` for values of some arbitrary user type. If `finalizer` is set, it is called for each entry that leaves the cache, with `key` and `value` as arguments. This is useful if the cached values contain some resource that you want to recover. **Add an item to the cache** ```julia setindex!(lru, value, key) lru[key] = value ``` **Lookup an item in the cache** ```julia getindex(lru, key) lru[key] ``` **Change the maxsize** ```julia resize!(lru; maxsize = size) ``` Here, the maximal size is specified via a required keyword argument. Remember that the maximal size is not necessarily the same as the maximal length, if a custom function was specified using the keyword argument `by` in the construction of the LRU cache. **Empty the cache** ```julia empty!(lru) ``` ### Caching Use To effectively use `LRU` as a cache, several functions from the `AbstractDict` interface can be used for easy checking if an item is present, and if not quickly calculating a default. #### get!(lru::LRU, key, default) Returns the value stored in `lru` for `key` if present. If not, stores `key => default`, and returns `default`. #### get!(default::Callable, lru::LRU, key) Like above, except if `key` is not present, stores `key => default()`, and returns the result. This is intended to be used in `do` block syntax: ```julia get!(lru, key) do ... end ``` #### get(lru::LRU, key, default) Returns the value stored in `lru` for `key` if present. If not, returns default without storing this value in `lru`. Also comes in the following form: #### get(default::Callable, lru::LRU, key) #### cache_info(lru::LRU) Returns an object holding a snapshot of information about hits, misses, current size, and total size in its properties. The caching functions `get` and `get!` each contribute a cache hit or miss on every function call (depending on whether or not the key was found). `empty!` resets the counts of hits and misses to 0. The other functions, e.g. `getindex` `iterate`, `haskey`, `setindex!`, `delete!`, and `pop!` do not contribute cache hits or misses, regardless of whether or not a key is retrieved. This is because it is not possible to use these functions for caching. ## Example Commonly, you may have some long running function that sometimes gets called with the same parameters more than once. As such, it may benefit from caching the results. Here's our example, long running calculation: ```julia function foo(a::Float64, b::Float64) sleep(100) result = a * b end ``` As this function requires more than one parameter, we need a cache from `(Float64, Float64)` to `Float64`. A cached version is then: ```julia const lru = LRU{Tuple{Float64, Float64}, Float64}(maxsize=10) function cached_foo(a::Float64, b::Float64) get!(lru, (a, b)) do foo(a,b) end end ``` If we want to see how our cache is performing, we can call `cache_info` to see the number of cache hits and misses.
LRUCache
https://github.com/JuliaCollections/LRUCache.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
402
using CodeInfoTools using Documenter makedocs(; modules=[CodeInfoTools], sitename="CodeInfoTools", authors="McCoy R. Becker, Xiu-Zhe (Roger) Luo, and Valentin Churavy", pages=["API Documentation" => "index.md"], format = Documenter.HTML(prettyurls = true), clean = true) deploydocs(; repo="github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git", push_preview=true)
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
289
using JuliaFormatter function main() perfect = format(joinpath(@__DIR__, ".."); verbose=true) if perfect @info "Linting complete - no files altered" else @info "Linting complete - files altered" run(`git status`) end return nothing end main()
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
20699
module CodeInfoTools using Core: CodeInfo import Base: iterate, push!, pushfirst!, insert!, delete!, getindex, lastindex, setindex!, display, +, length, identity, isempty, show import Core.Compiler: AbstractInterpreter, OptimizationState, OptimizationParams ##### ##### Exports ##### export code_info, code_inferred, walk, var, Variable, slot, get_slot, Statement, stmt, Canvas, Builder, slot!, return!, renumber, verify, finish, unwrap, lambda, λ ##### ##### Utilities ##### const Variable = Core.SSAValue var(id::Int) = Variable(id) @doc( """ const Variable = Core.SSAValue var(id::Int) = Variable(id) Alias for `Core.SSAValue` -- represents a primitive register in lowered code. See the section of Julia's documentation on [lowered forms](https://docs.julialang.org/en/v1/devdocs/ast/#Lowered-form) for more information. """, Variable) Base.:(+)(v::Variable, id::Int) = Variable(v.id + id) Base.:(+)(id::Int, v::Variable) = Variable(v.id + id) function code_info(f, tt::Type{T}; generated=true, debuginfo=:default) where T <: Tuple ir = code_lowered(f, tt; generated = generated, debuginfo = :default) isempty(ir) && return nothing return ir[1] end function code_info(f, t::Type...; generated = true, debuginfo = :default) return code_info(f, Tuple{t...}; generated = generated, debuginfo = debuginfo) end @doc( """ code_info(f::Function, tt::Type{T}; generated = true, debuginfo = :default) where T <: Tuple code_info(f::Function, t::Type...; generated = true, debuginfo = :default) Return lowered code for function `f` with tuple type `tt`. Equivalent to `InteractiveUtils.@code_lowered` -- but a function call and requires a tuple type `tt` as input. """, code_info) slot(ind::Int) = Core.SlotNumber(ind) function get_slot(ci::CodeInfo, s::Symbol) ind = findfirst(el -> el == s, ci.slotnames) ind === nothing && return return slot(ind) end @doc( """ get_slot(ci::CodeInfo, s::Symbol) Get the `Core.Compiler.SlotNumber` associated with the `s::Symbol` in `ci::CodeInfo`. If there is no associated `Core.Compiler.SlotNumber`, returns `nothing`. """, get_slot) walk(fn, x, guard) = fn(x) walk(fn, x::Variable, guard) = fn(x) walk(fn, x::Core.SlotNumber, guard) = fn(x) walk(fn, x::Core.NewvarNode, guard) = Core.NewvarNode(walk(fn, x.slot, guard)) walk(fn, x::Core.ReturnNode, guard) = Core.ReturnNode(walk(fn, x.val, guard)) walk(fn, x::Core.GotoNode, guard) = Core.GotoNode(walk(fn, x.label, guard)) walk(fn, x::Core.GotoIfNot, guard) = Core.GotoIfNot(walk(fn, x.cond, guard), walk(fn, x.dest, guard)) walk(fn, x::Expr, guard) = Expr(x.head, map(a -> walk(fn, a, guard), x.args)...) function walk(fn, x::Vector, guard) map(x) do el walk(fn, el, guard) end end walk(fn, x) = walk(fn, x, Val(:no_catch)) @doc( """ walk(fn::Function, x) A generic dispatch-based tree-walker which applies `fn::Function` to `x`, specialized to `Code` node types (like `Core.ReturnNode`, `Core.GotoNode`, `Core.GotoIfNot`, etc). Applies `fn::Function` to sub-fields of nodes, and then zips the result back up into the node. """, walk) resolve(x) = x resolve(gr::GlobalRef) = getproperty(gr.mod, gr.name) ##### ##### Canvas ##### struct Statement{T} node::T type::Any end Statement(node::T) where T = Statement(node, Union{}) unwrap(stmt::Statement) = stmt.node walk(fn, stmt::Statement{T}, guard) where T = Statement(walk(fn, stmt.node, guard), stmt.type) const stmt = Statement @doc( """ struct Statement{T} node::T type::Any end A wrapper around `Core` nodes with an optional `type` field to allow for user-based local propagation and other forms of analysis. Usage of [`Builder`](@ref) or [`Canvas`](@ref) will automatically wrap or unwrap nodes when inserting or calling [`finish`](@ref) -- so the user should never see `Statement` instances directly unless they are working on type propagation. For more information on `Core` nodes, please see Julia's documentation on [lowered forms](https://docs.julialang.org/en/v1/devdocs/ast/#Lowered-form). """, Statement) struct Canvas defs::Vector{Tuple{Int, Int}} code::Vector{Any} codelocs::Vector{Int32} end Canvas() = Canvas(Tuple{Int, Int}[], [], Int32[]) Base.isempty(canv::Canvas) = Base.isempty(canv.defs) @doc( """ ```julia struct Canvas defs::Vector{Tuple{Int, Int}} code::Vector{Any} codelocs::Vector{Int32} end Canvas() = Canvas(Tuple{Int, Int}[], [], Int32[]) ``` A `Vector`-like abstraction for `Core` code nodes. Properties to keep in mind: 1. Insertion anywhere is slow. 2. Pushing to beginning is slow. 2. Pushing to end is fast. 3. Deletion is fast. 4. Accessing elements is fast. 5. Setting elements is fast. Thus, if you build up a `Canvas` instance incrementally, everything should be fast. """, Canvas) length(c::Canvas) = length(filter(x -> x[2] > 0, c.defs)) function getindex(c::Canvas, idx::Int) r, ind = c.defs[idx] @assert ind > 0 getindex(c.code, r) end getindex(c::Canvas, v::Variable) = getindex(c, v.id) function push!(c::Canvas, stmt::Statement) push!(c.code, stmt) push!(c.codelocs, Int32(1)) l = length(c.defs) + 1 push!(c.defs, (l, l)) return Variable(length(c.defs)) end function push!(c::Canvas, node) push!(c.code, Statement(node)) push!(c.codelocs, Int32(1)) l = length(c.defs) + 1 push!(c.defs, (l, l)) return Variable(length(c.defs)) end function insert!(c::Canvas, idx::Int, x::Statement) r, ind = c.defs[idx] @assert(ind > 0) push!(c.code, x) push!(c.codelocs, Int32(1)) for i in 1 : length(c.defs) r, k = c.defs[i] if k > 0 && k >= ind c.defs[i] = (r, k + 1) end end push!(c.defs, (length(c.defs) + 1, ind)) return Variable(length(c.defs)) end function insert!(c::Canvas, idx::Int, x) r, ind = c.defs[idx] @assert(ind > 0) push!(c.code, Statement(x)) push!(c.codelocs, Int32(1)) for i in 1 : length(c.defs) r, k = c.defs[i] if k > 0 && k >= ind c.defs[i] = (r, k + 1) end end push!(c.defs, (length(c.defs) + 1, ind)) return Variable(length(c.defs)) end insert!(c::Canvas, v::Variable, x) = insert!(c, v.id, x) pushfirst!(c::Canvas, x) = isempty(c.defs) ? push!(c, x) : insert!(c, 1, x) setindex!(c::Canvas, x::Statement, v::Int) = setindex!(c.code, x, v) setindex!(c::Canvas, x, v::Int) = setindex!(c, Statement(x), v) setindex!(c::Canvas, x, v::Variable) = setindex!(c, x, v.id) function delete!(c::Canvas, idx::Int) c.code[idx] = nothing c.defs[idx] = (idx, -1) return nothing end delete!(c::Canvas, v::Variable) = delete!(c, v.id) _get(d::Dict, c, k) = c _get(d::Dict, c::Variable, k) = haskey(d, c.id) ? Variable(getindex(d, c.id)) : nothing function _get(d::Dict, c::Core.GotoIfNot, k) v = c.dest if haskey(d, v) nv = getindex(d, v) else nv = findfirst(l -> l > v, d) if nv === nothing nv = maximum(d)[1] end nv = getindex(d, nv) end c = _get(d, c.cond, c.cond) return Core.GotoIfNot(c, nv) end function _get(d::Dict, c::Core.GotoNode, k) v = c.label if haskey(d, v) nv = getindex(d, v) else nv = findfirst(l -> l > v, d) if nv === nothing nv = maximum(d)[1] end nv = getindex(d, nv) end return Core.GotoNode(nv) end # Override for renumber. walk(fn, c::Core.GotoIfNot, ::Val{:catch_jumps}) = fn(c) walk(fn, c::Core.GotoNode, ::Val{:catch_jumps}) = fn(c) function renumber(c::Canvas) s = sort(filter(v -> v[2] > 0, c.defs); by = x -> x[2]) d = Dict((s[i][1], i) for i in 1 : length(s)) ind = first.(s) swap = walk(k -> _get(d, k, k), c.code, Val(:catch_jumps)) return Canvas(Tuple{Int, Int}[(i, i) for i in 1 : length(s)], getindex(swap, ind), getindex(c.codelocs, ind)) end ##### ##### Pretty printing ##### print_stmt(io::IO, ex) = print(io, ex) print_stmt(io::IO, ex::Expr) = print_stmt(io::IO, Val(ex.head), ex) const tab = " " function show(io::IO, c::Canvas) indent = get(io, :indent, 0) bs = get(io, :bindings, Dict()) for (r, ind) in sort(c.defs; by = x -> x[2]) ind > 0 || continue println(io) print(io, tab^indent, " ") print(io, string("%", r), " = ") ex = get(c.code, r, nothing) ex == nothing ? print(io, "nothing") : print_stmt(io, unwrap(ex)) if unwrap(ex) isa Expr ex.type !== Union{} && print(io, "::$(ex.type)") end end end print_stmt(io::IO, ::Val, ex) = print(io, ex) function print_stmt(io::IO, ::Val{:enter}, ex) print(io, "try (outer %$(ex.args[1]))") end function print_stmt(io::IO, ::Val{:leave}, ex) print(io, "end try (start %$(ex.args[1]))") end function print_stmt(io::IO, ::Val{:pop_exception}, ex) print(io, "pop exception $(ex.args[1])") end ##### ##### Builder ##### struct NewVariable id::Int end mutable struct Builder from::CodeInfo to::Canvas map::Dict{Any, Any} slots::Vector{Symbol} var::Int end function Builder(ci::CodeInfo) canv = Canvas() p = Builder(ci, canv, Dict(), Symbol[], 0) return p end function Builder(fn::Function, t::Type...) src = code_info(fn, t...) return Builder(src) end function Builder() dummy = () -> return return Builder(dummy) end @doc( """ Builder(ci::Core.CodeInfo) Builder(fn::Function, t::Type...) Builder() A wrapper around a [`Canvas`](@ref) instance. Call [`finish`](@ref) when done to produce a new `CodeInfo` instance. """, Builder) function get_slot(b::Builder, s::Symbol) s = get_slot(b.from, s) s === nothing || return s ind = findfirst(k -> k == s, b.slots) return ind === nothing ? s : slot(ind) end # This is used to handle NewVariable instances. substitute!(b::Builder, x, y) = (b.map[x] = y; x) substitute(b::Builder, x) = get(b.map, x, x) substitute(b::Builder, x::Expr) = Expr(x.head, substitute.((b, ), x.args)...) substitute(b::Builder, x::Core.GotoNode) = Core.GotoNode(substitute(b, x.label)) substitute(b::Builder, x::Core.GotoIfNot) = Core.GotoIfNot(substitute(b, x.cond), substitute(b, x.dest)) substitute(b::Builder, x::Core.ReturnNode) = Core.ReturnNode(substitute(b, x.val)) length(b::Builder) = length(b.to) getindex(b::Builder, v) = getindex(b.to, v) function getindex(b::Builder, v::Union{Variable, NewVariable}) tg = substitute(b, v) return getindex(b.to, tg) end lastindex(b::Builder) = length(b.to) function pipestate(ci::CodeInfo) ks = sort([Variable(i) => v for (i, v) in enumerate(ci.code)], by = x -> x[1].id) return first.(ks) end function iterate(b::Builder, (ks, i) = (pipestate(b.from), 1)) i > length(ks) && return v = ks[i] st = walk(resolve, b.from.code[v.id]) substitute!(b, v, push!(b.to, substitute(b, st))) return ((v, st), (ks, i + 1)) end @doc( """ iterate(b::Builder, (ks, i) = (pipestate(p.from), 1)) Iterate over the original `CodeInfo` and add statements to a target [`Canvas`](@ref) held by `b::Builder`. `iterate` builds the [`Canvas`](@ref) in place -- it also resolves local `GlobalRef` instances to their global values in-place at the function argument (the 1st argument) of `Expr(:call, ...)` instances. `iterate` is the key to expressing idioms like: ```julia for (v, st) in b b[v] = swap(st) end ``` At each step of the iteration, a new node is copied from the original `CodeInfo` to the target [`Canvas`](@ref) -- and the user is allowed to `setindex!`, `push!`, or otherwise change the target [`Canvas`](@ref) before the next iteration. The naming of `Core.SSAValues` is taken care of to allow this. """, iterate) var!(b::Builder) = NewVariable(b.var += 1) function Base.push!(b::Builder, x) tmp = var!(b) v = push!(b.to, substitute(b, x)) substitute!(b, tmp, v) return tmp end function Base.pushfirst!(b::Builder, x) tmp = var!(b) v = pushfirst!(b.to, substitute(b, x)) substitute!(b, tmp, v) return tmp end function setindex!(b::Builder, x, v::Union{Variable, NewVariable}) k = substitute(b, v) setindex!(b.to, substitute(b, x), k) end function insert!(b::Builder, v::Union{Variable, NewVariable}, x; after = false) v′ = substitute(b, v).id x = substitute(b, x) tmp = var!(b) substitute!(b, tmp, insert!(b.to, v′ + after, x)) return tmp end function Base.delete!(b::Builder, v::Union{Variable, NewVariable}) v′ = substitute(b, v) substitute!(b, v′, delete!(b.to, v′)) end function slot!(b::Builder, name::Symbol; arg = false) @assert(get_slot(b, name) === nothing) push!(b.slots, name) ind = length(b.from.slotnames) + length(b.slots) s = slot(ind) arg || pushfirst!(b, Core.NewvarNode(s)) return s end @doc( """ slot!(b::Builder, name::Symbol; arg = false)::Core.SlotNumber Add a new `Core.SlotNumber` with associated `name::Symbol` to the in-progress `Core.CodeInfo` on the `c::Canvas` inside `b::Builder`. If `arg == false`, also performs a `pushfirst!` with a `Core.NewvarNode` for consistency in the in-progress `Core.CodeInfo`. (`arg` controls whether or not we interpreter the new slot as an argument) `name::Symbol` must not already be associated with a `Core.SlotNumber`. """, slot!) return!(b::Builder, v) = push!(b, Core.ReturnNode(v)) return!(b::Builder, v::Variable) = push!(b, Core.ReturnNode(v)) return!(b::Builder, v::NewVariable) = push!(b, Core.ReturnNode(v)) @doc( """ return!(b::Builder, v::Variable) return!(b::Builder, v::NewVariable) Push a `Core.ReturnNode` to the current end of `b.to::Canvas`. Requires that the user pass in a `v::Variable` or `v::NewVariable` instance -- so perform the correct unpack/tupling before creating a `Core.ReturnNode`. """, return!) function verify(src::Core.CodeInfo) Core.Compiler.validate_code(src) @assert(!isempty(src.linetable)) end @doc( """ verify(src::Core.CodeInfo) Validate `Core.CodeInfo` instances using `Core.Compiler.verify`. Also explicitly checks that the linetable in `src::Core.CodeInfo` is not empty. """, verify) function check_empty_canvas(b::Builder) isempty(b.to) && error("Builder has empty `c::Canvas` instance. This means you haven't added anything, or you've accidentally wiped the :defs subfield of `c::Canvas`.") end function finish(b::Builder; validate = true) check_empty_canvas(b) new_ci = copy(b.from) c = renumber(b.to) new_ci.code = map(unwrap, c.code) new_ci.codelocs = c.codelocs new_ci.slotnames = copy(b.from.slotnames) append!(new_ci.slotnames, b.slots) new_ci.slotflags = copy(b.from.slotflags) append!(new_ci.slotflags, [0x18 for _ in b.slots]) new_ci.inferred = false new_ci.inlineable = b.from.inlineable new_ci.ssavaluetypes = length(b.to) validate && verify(new_ci) return new_ci end @doc( """ finish(b::Builder) Create a new `CodeInfo` instance from a [`Builder`](@ref). Renumbers the wrapped [`Canvas`](@ref) in-place -- then copies information from the original `CodeInfo` instance and inserts modifications from the wrapped [`Canvas`](@ref) """, finish) function Base.show(io::IO, b::Builder) print("1: $((b.from.slotnames..., b.slots...))") Base.show(io, b.to) end function Base.identity(b::Builder) for (v, st) in b end return b end ##### ##### Inference ##### # Experimental interfaces which exposes several **stateful** parts of Core.Compiler. # If you're using this stuff, you should really know what you're doing. function code_inferred(mi::Core.Compiler.MethodInstance; world=Base.get_world_counter(), interp=Core.Compiler.NativeInterpreter(world)) ccall(:jl_typeinf_begin, Cvoid, ()) result = Core.Compiler.InferenceResult(mi) src = Core.Compiler.retrieve_code_info(mi) src === nothing && return nothing src.inferred && return src Core.Compiler.validate_code_in_debug_mode(result.linfo, src, "lowered") frame = @static if VERSION < v"1.8.0-DEV.472" Core.Compiler.InferenceState(result, src, false, interp) else Core.Compiler.InferenceState(result, src, :no, interp) end frame === nothing && return nothing if Core.Compiler.typeinf(interp, frame) opt_params = Core.Compiler.OptimizationParams(interp) opt = Core.Compiler.OptimizationState(frame, opt_params, interp) Core.Compiler.optimize(interp, opt, opt_params, result) end ccall(:jl_typeinf_end, Cvoid, ()) frame.inferred || return nothing return src end function code_inferred(@nospecialize(f), types::Type{T}; world=Base.get_world_counter(), interp=Core.Compiler.NativeInterpreter(world)) where T <: Tuple return pop!([code_inferred(mi; world=world, interp=interp) for mi in Base.method_instances(f, types, world)]) end function code_inferred(@nospecialize(f), t::Type...; world = Base.get_world_counter(), interp = Core.Compiler.NativeInterpreter(world)) return code_inferred(f, Tuple{t...}; world = world, interp = interp) end @doc( """ code_inferred(@nospecialize(f), t::Type...; world = Base.get_world_counter(), interp = Core.Compiler.NativeInterpreter(world)) Derives a `Core.MethodInstance` specialization for signature `Tuple{typeof(f), t::Type...}` and infers it with `interp`. Can be used to derive inferred lowered code with custom interpreters, either as parts of custom compilation pipelines or for debugging purposes. `code_inferred` includes explicit checks which prevent the user from inadvertedly running inference multiple times on the same cached `Core.CodeInfo` associated with the specialization. !!! warning Inference and optimization are stateful -- if you try to do "dumb" things like grab the inferred `Core.CodeInfo`, wipe it, and shove it through [`lambda`](@ref) ... it is highly unlikely to work and very likely to explode in your face. Inference also caches the inferred `Core.CodeInfo` associated with the `Core.MethodInstance` specialization _irrespective of the interpreter_. That means (at least as far as I know at this time) you can't quickly infer with multiple interpreters without forcing a cache invalidation in between inference runs. """, code_inferred) ##### ##### Evaluation ##### function lambda(m::Module, src::Core.CodeInfo) ci = copy(src) verify(ci) inds = findall(==(0x00), src.slotflags) @assert(inds !== nothing) args = getindex(src.slotnames, inds)[2 : end] @eval m @generated function $(gensym())($(args...)) return $ci end end function lambda(m::Module, src::Core.CodeInfo, nargs::Int) ci = copy(src) verify(ci) @debug "Warning: using explicit `nargs` to construct the generated function. If this number does not match the correct number of arguments in the :slotflags field of `src::Core.CodeInfo`, this can lead to segfaults and other bad behavior." args = src.slotnames[2 : 1 + nargs] @eval m @generated function $(gensym())($(args...)) return $ci end end lambda(src::Core.CodeInfo) = lambda(Main, src) lambda(src::Core.CodeInfo, nargs::Int) = lambda(Main, src, nargs) const λ = lambda @doc( """ !!! warning It is relatively difficult to prevent the user from shooting themselves in the foot with this sort of functionality. Please be aware of this. Segfaults should be cautiously expected. ```julia lambda(m::Module, src::Core.CodeInfo) lambda(m::Module, src::Core.CodeInfo, nargs::Int) const λ = lambda ``` Create an anonymous `@generated` function from a piece of `src::Core.CodeInfo`. The `src::Core.CodeInfo` is checked for consistency by [`verify`](@ref). `lambda` has a 2 different forms. The first form, given by signature: ```julia lambda(m::Module, src::Core.CodeInfo) ``` tries to detect the correct number of arguments automatically. This may fail (for any number of internal reasons). Expecting this, the second form, given by signature: ```julia lambda(m::Module, src::Core.CodeInfo, nargs::Int) ``` allows the user to specify the number of arguments via `nargs`. `lambda` also has the shorthand `λ` for those lovers of Unicode. """, lambda) end # module
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
3418
##### ##### Builder ##### f(x) = begin y = 10 + x z = 20 + y q = 20 + z return q + 50 end function g(x) try if x > 1 x + g(x - 1) else return 1 end while true println("Nice!") end return catch e return 0 end end function fn(x, y) z = 10 if z > 10 n = 10 return x + y else return x + y + z end end @testset "Builder -- iterate" begin ir = code_info(f, Tuple{Int}) p = CodeInfoTools.Builder(ir) local c = 1 for (v, st) in p @test v == var(c) println(getindex(p, v)) c += 1 end ir = code_info(g, Tuple{Int}) p = CodeInfoTools.Builder(ir) c = 1 for (v, st) in p @test v == var(c) c += 1 end end @testset "Builder -- setindex!" begin ir = code_info(f, Tuple{Int}) p = CodeInfoTools.Builder(ir) len = length(p.from.code) for (v, st) in p p[v] = st end ir = finish(p) @test length(p.to.code) == len for (v, st) in CodeInfoTools.Builder(ir) st isa Expr && st.head == :call || continue @test st.args[1] == Base.:(+) end ir = code_info(g, Tuple{Int}) p = CodeInfoTools.Builder(ir) len = length(p.from.code) for (v, st) in p p[v] = st end ir = finish(p) @test length(p.to.code) == len for (v, st) in CodeInfoTools.Builder(ir) st isa Expr && st.head == :call || continue @test (st.args[1] in (g, Base.:(+), Base.:(-), Base.:(>), Base.println)) end end @testset "Builder -- push!" begin ir = code_info(f, Tuple{Int}) p = CodeInfoTools.Builder(ir) c = deepcopy(p.from.code) for (v, st) in p end push!(p, Expr(:call, rand)) @test length(p.to.code) == length(c) + 1 push!(p, Expr(:call, rand)) @test length(p.to.code) == length(c) + 2 push!(p, Expr(:call, rand)) @test length(p.to.code) == length(c) + 3 @test unwrap(p[end - 3]) isa Core.ReturnNode ir = code_info(g, Tuple{Int}) p = CodeInfoTools.Builder(ir) c = deepcopy(p.from.code) for (v, st) in p end push!(p, Expr(:call, rand)) @test length(p.to.code) == length(c) + 1 push!(p, Expr(:call, rand)) @test length(p.to.code) == length(c) + 2 push!(p, Expr(:call, rand)) @test length(p.to.code) == length(c) + 3 @test unwrap(p[end - 3]) isa Core.ReturnNode end @testset "Builder -- pushfirst!" begin ir = code_info(f, Tuple{Int}) p = CodeInfoTools.Builder(ir) push!(p, Expr(:call, rand)) @test length(p.to.code) == 1 pushfirst!(p, Expr(:call, rand)) @test length(p.to.code) == 2 pushfirst!(p, Expr(:call, rand)) @test length(p.to.code) == 3 ir = code_info(g, Tuple{Int}) p = CodeInfoTools.Builder(ir) push!(p, Expr(:call, rand)) @test length(p.to.code) == 1 pushfirst!(p, Expr(:call, rand)) @test length(p.to.code) == 2 pushfirst!(p, Expr(:call, rand)) @test length(p.to.code) == 3 end @testset "Builder -- delete!" begin ir = code_info(f, Tuple{Int}) p = CodeInfoTools.Builder(ir) for (v, st) in p end display(p) println() delete!(p, var(1)) display(p) println() insert!(p, var(2), Expr(:call, rand)) display(p) println() display(renumber(p.to)) println() display(finish(p)) println() end
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
3879
##### ##### Canvas ##### @testset "Canvas -- push!" begin c = Canvas() @test Variable(1) == push!(c, Statement(Expr(:call, rand))) @test Variable(2) == push!(c, Expr(:call, rand)) @test Variable(3) == push!(c, Expr(:call, rand)) @test Variable(4) == push!(c, Expr(:call, rand)) @test Variable(5) == push!(c, Expr(:call, rand)) @test length(c) == 5 for i in 1 : 5 @test c.defs[i] == (i, i) @test c.codelocs[i] == Int32(1) @test unwrap(getindex(c, i)) == Expr(:call, rand) end end @testset "Canvas -- insert!" begin c = Canvas() @test Variable(1) == push!(c, Expr(:call, rand)) @test Variable(2) == insert!(c, 1, Statement(Expr(:call, rand))) @test Variable(3) == insert!(c, 1, Expr(:call, rand)) @test Variable(4) == insert!(c, 1, Expr(:call, rand)) @test Variable(5) == insert!(c, 1, Expr(:call, rand)) @test length(c) == 5 v = [5, 1, 2, 3, 4] for i in 1 : 5 @test c.defs[i][2] == v[i] end c = Canvas() @test Variable(1) == push!(c, Expr(:call, rand)) @test Variable(2) == pushfirst!(c, Expr(:call, rand)) @test Variable(3) == pushfirst!(c, Expr(:call, rand)) @test Variable(4) == pushfirst!(c, Expr(:call, rand)) @test Variable(5) == pushfirst!(c, Expr(:call, rand)) @test length(c) == 5 for i in 1 : 5 @test c.defs[i][1] == i end end @testset "Canvas -- delete!" begin c = Canvas() push!(c, Expr(:call, +, 5, 5)) push!(c, Expr(:call, +, 10, 10)) push!(c, Expr(:call, +, 15, 15)) push!(c, Expr(:call, +, 20, 20)) push!(c, Expr(:call, +, 25, 25)) delete!(c, 4) @test c.defs == [(1,1), (2,2), (3,3), (4, -1), (5, 5)] @test unwrap(c[1]) == Expr(:call, +, 5, 5) @test unwrap(c[2]) == Expr(:call, +, 10, 10) @test unwrap(c[3]) == Expr(:call, +, 15, 15) @test unwrap(c[5]) == Expr(:call, +, 25, 25) push!(c, Expr(:call, +, 10, 10)) delete!(c, 4) @test c.defs == [(1,1), (2,2), (3,3), (4, -1), (5, 5), (6, 6)] @test unwrap(c[1]) == Expr(:call, +, 5, 5) @test unwrap(c[2]) == Expr(:call, +, 10, 10) @test unwrap(c[3]) == Expr(:call, +, 15, 15) @test unwrap(c[6]) == Expr(:call, +, 10, 10) end @testset "Canvas -- setindex!" begin c = Canvas() push!(c, Expr(:call, +, 5, 5)) pushfirst!(c, Expr(:call, +, 10, 10)) pushfirst!(c, Expr(:call, +, 15, 15)) pushfirst!(c, Expr(:call, +, 20, 20)) pushfirst!(c, Expr(:call, +, 25, 25)) @test unwrap(getindex(c, 1)) == Expr(:call, +, 5, 5) setindex!(c, Expr(:call, *, 10, 10), 1) @test unwrap(getindex(c, 1)) == Expr(:call, *, 10, 10) @test unwrap(getindex(c, 2)) == Expr(:call, +, 10, 10) setindex!(c, Expr(:call, *, 5, 5), 2) @test unwrap(getindex(c, 2)) == Expr(:call, *, 5, 5) @test unwrap(getindex(c, 3)) == Expr(:call, +, 15, 15) setindex!(c, Expr(:call, *, 10, 10), 3) @test unwrap(getindex(c, 3)) == Expr(:call, *, 10, 10) end @testset "Canvas -- renumber" begin c = Canvas() push!(c, Expr(:call, +, 5, 5)) pushfirst!(c, Expr(:call, +, 10, 10)) pushfirst!(c, Expr(:call, +, 15, 15)) pushfirst!(c, Expr(:call, +, 20, 20)) pushfirst!(c, Expr(:call, +, 25, 25)) delete!(c, 4) display(c) println() c = renumber(c) display(c) println() @test c.defs == [(1, 1), (2, 2), (3, 3), (4, 4)] @test unwrap(c[1]) == Expr(:call, +, 10, 10) @test unwrap(c[2]) == Expr(:call, +, 15, 15) @test unwrap(c[3]) == Expr(:call, +, 25, 25) @test unwrap(c[4]) == Expr(:call, +, 5, 5) end @testset "Canvas -- misc." begin c = Canvas() push!(c, Expr(:call, +, 5, 5)) pushfirst!(c, Expr(:call, +, 10, 10)) pushfirst!(c, Expr(:call, +, 15, 15)) pushfirst!(c, Expr(:call, +, 20, 20)) pushfirst!(c, Expr(:call, +, 25, 25)) insert!(c, var(1), Expr(:call, rand)) end
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
1723
##### ##### Evaluation ##### function thunk() return 120 end @testset "Evaluation - slots = (#self)" begin b = Builder(code_info(thunk)) identity(b) fn = λ(finish(b)) @test thunk() == fn() end function foo(x::Int) y = 0 while x > 10 y += 1 x -= 1 end return y end @testset "Evaluation - slots = (#self, :x)" begin b = Builder(code_info(foo, Int)) identity(b) fn = λ(finish(b)) @test foo(5) == fn(5) end @testset "Evaluation with nargs - slots = (#self, :x)" begin b = Builder(code_info(foo, Int)) identity(b) fn = λ(finish(b), 1) @test foo(5) == fn(5) end foo(x::Int64, y, z) = x <= 1 ? 1 : x * foo(x - 1, y, z) @testset "Evaluation with nargs - slots = (#self, :x, :y, :z)" begin b = Builder(code_info(foo, Int, Any, Any)) identity(b) fn = λ(finish(b), 3) @test foo(5, nothing, nothing) == fn(5, nothing, nothing) end rosenbrock(x, y, a, b) = (a - x)^2 + b * (y - x^2)^2 @testset "Evaluation with nargs - slots = (#self, :x, :y, :a, :b)" begin b = Builder(code_info(rosenbrock, Float64, Float64, Float64, Float64)) identity(b) fn = λ(finish(b), 4) @test rosenbrock(1.0, 1.0, 1.0, 1.0) == fn(1.0, 1.0, 1.0, 1.0) end @testset "Evaluation with nargs -- from lambda" begin l = (x, y) -> x + y b = Builder(l, Int, Int) identity(b) fn = λ(finish(b), 2) @test l(5, 5) == fn(5, 5) end @testset "Evaluation with nargs -- blank build" begin b = Builder() x = slot!(b, :x; arg = true) y = slot!(b, :y; arg = true) v = push!(b, Expr(:call, Base.:(+), x, y)) return!(b, v) src = finish(b) fn = λ(src, 2) @test fn(5, 5) == 10 end
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
1964
##### ##### Misc (usually for coverage) ##### @testset "Base.:(+) -- SSAValues" begin @test (+)(Core.SSAValue(1), 1) == Core.SSAValue(2) @test (+)(1, Core.SSAValue(1)) == Core.SSAValue(2) end @testset "`walk` -- misc." begin v = Core.NewvarNode(Core.SlotNumber(5)) walk(x -> x isa Core.SlotNumber ? Core.SlotNumber(x.id + 1) : x, v) end @testset "Builder -- misc." begin ir = code_info(g, Int) p = CodeInfoTools.Builder(ir) for (v, st) in p end display(p) p = CodeInfoTools.Builder(ir) p = identity(p) get_slot(p, :x) println() println(length(p)) println() slot!(p, :m) get_slot(p, :m) end @testset "code_info on constructor -- misc." begin struct T i::Int end ir = code_info(T, Int) @test Meta.isexpr(ir.code[1], :new) end @testset "code_inferred -- misc." begin b = CodeInfoTools.Builder(g, Int) identity(b) l = λ(finish(b), 1) src = code_inferred(l, Int) display(src) end @testset "Coverage removal -- misc." begin b = CodeInfoTools.Builder() push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:call, :foo, 2)) v = push!(b, Expr(:call, :measure, 2)) push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:code_coverage_effect)) k = push!(b, Expr(:call, :measure_cmp, v, 1)) push!(b, Core.GotoIfNot(k, 14)) push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:code_coverage_effect)) push!(b, Expr(:call, :foo, 2)) push!(b, Expr(:code_coverage_effect)) push!(b, Core.GotoNode(14)) return!(b, nothing) start = finish(b) display(start) new = CodeInfoTools.Builder(start) for (v, st) in new if st isa Expr && st.head == :code_coverage_effect delete!(new, v) end end src = finish(new) display(src) end
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
code
159
module TestCodeInfoTools using CodeInfoTools using Test include("canvas.jl") include("builder.jl") include("evaluation.jl") include("misc.jl") end # module
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
docs
4009
# CodeInfoTools.jl | **Build Status** | **Coverage** | **Documentation** | |:------------------------------------------------------:|:-------------------------------:|:-----------------:| | [![][gha-ci-img]][gha-url] [![][gha-nightly-img]][gha-url] | [![][codecov-img]][codecov-url] | [![][dev-docs-img]][dev-docs-url] | [gha-ci-img]: https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl/workflows/CI/badge.svg?branch=master [gha-nightly-img]: https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl/workflows/JuliaNightly/badge.svg?branch=master [gha-url]: https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl/actions [codecov-img]: https://codecov.io/github/JuliaCompilerPlugins/CodeInfoTools.jl/badge.svg?branch=master [codecov-url]: https://codecov.io/github/JuliaCompilerPlugins/CodeInfoTools.jl?branch=master [dev-docs-img]: https://img.shields.io/badge/docs-dev-blue.svg [dev-docs-url]: https://JuliaCompilerPlugins.github.io/CodeInfoTools.jl/dev ``` ] add CodeInfoTools ``` > **Note**: A curated collection of tools for the discerning `Core.CodeInfo` connoisseur. > > The architecture of this package is based closely on the [Pipe construct in IRTools.jl](https://github.com/FluxML/IRTools.jl/blob/1f3f43be654a41d0db154fd16b31fdf40f30748c/src/ir/ir.jl#L814-L973). Many (if not all) of the same idioms apply. ## Motivation Working with `Core.CodeInfo` is often not fun. E.g. when examining the untyped lowered form of the [Rosenbrock function](https://en.wikipedia.org/wiki/Rosenbrock_function) ``` CodeInfo( @ /Users/mccoybecker/dev/CodeInfoTools.jl/examples/simple.jl:7 within `rosenbrock' 1 ─ a = 1.0 │ b = 100.0 │ result = 0.0 │ %4 = (length)(x) │ %5 = (-)(%4, 1) │ %6 = (Colon())(1, %5) │ @_3 = (iterate)(%6) │ %8 = (===)(@_3, nothing) │ %9 = (Core.Intrinsics.not_int)(%8) └── goto #4 if not %9 2 ┄ %11 = @_3 │ i = (getfield)(%11, 1) │ %13 = (getfield)(%11, 2) │ . │ . │ . │ │ %36 = (===)(@_3, nothing) │ %37 = (Core.Intrinsics.not_int)(%36) └── goto #4 if not %37 3 ─ goto #2 4 ┄ return result ) ``` Do you ever wonder -- is there another (perhaps, any) way to work with this object? A `Builder` perhaps? Where I might load my `CodeInfo` into -- iterate, make local changes, and produce a new copy? ## Contribution `CodeInfoTools.jl` provides a `Builder` abstraction which allows you to safely iterate over and manipulate `Core.CodeInfo`. It also provides more advanced functionality for creating and evaluating `Core.CodeInfo` -- [which is a bit on the experimental side.](https://juliacompilerplugins.github.io/CodeInfoTools.jl/dev/#Evaluation) How might you use this in practice? ```julia using CodeInfoTools function f(x, y) z = 10 if z > 10 n = 10 return x + y else return x + y + z end end src = code_info(f, Int, Int) function transform(src) b = CodeInfoTools.Builder(src) for (v, st) in b st isa Expr || continue st.head == :call || continue st.args[1] == Base.:(+) || continue b[v] = Expr(:call, Base.:(*), st.args[2:end]...) end return finish(b) end display(src) display(transform(src)) ``` Here, we've lowered a function directly to a `Core.CodeInfo` instance and created a `Builder` instance `b`. You can now safely iterate over this object, perform local changes, press `finish` and - _(la di da!)_ - out comes a new `Core.CodeInfo` with your changes fresh. ``` # Before: CodeInfo( 1 ─ Core.NewvarNode(:(n)) │ z = 10 │ %3 = z > 10 └── goto #3 if not %3 2 ─ n = 10 │ %6 = x + y └── return %6 3 ─ %8 = x + y + z └── return %8 ) # After: CodeInfo( 1 ─ Core.NewvarNode(:(n)) │ z = 10 │ %3 = (>)(z, 10) └── goto #3 if not %3 2 ─ n = 10 │ %6 = (*)(x, y) └── return %6 3 ─ %8 = (*)(x, y, z) └── return %8 ) ```
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
0.3.5
91018794af6e76d2d42b96b25f5479bca52598f5
docs
396
# API Documentation Below is the API documentation for [CodeInfoTools.jl](https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl) ```@meta CurrentModule = CodeInfoTools ``` ## Utilities ```@docs code_info walk get_slot code_inferred ``` ## Working with `Core.CodeInfo` ```@docs Variable Statement Canvas Builder slot! return! iterate verify finish ``` ## Evaluation ```@docs lambda ```
CodeInfoTools
https://github.com/JuliaCompilerPlugins/CodeInfoTools.jl.git
[ "MIT" ]
1.0.0
6e4e531a8ba163d95a38ab1de41c655812dc9e7d
code
1964
module ResistanceDistance using Graphs: laplacian_matrix,nv using LinearAlgebra: pinv,det export resistance_distance_matrix,resistance_distance """ resistance_distance_matrix(g) Calculate the resistance distance matrix for a graph. # Arguments - `g`: The graph for which the resistance distance matrix is to be calculated. # Returns - A matrix where the element at the i-th row and j-th column represents the resistance distance between nodes `i` and `j`. # Notes - The resistance distance matrix is calculated using the formula for resistance distance in terms of the Laplacian matrix of the graph. - The Laplacian matrix of the graph is calculated using the `laplacian_matrix` function. - The pseudoinverse of the Laplacian matrix is calculated using the `pinv` function from the LinearAlgebra module. """ function resistance_distance_matrix(g) il=pinv(Matrix(laplacian_matrix(g))) out=zeros(Float64,(nv(g),nv(g))) for i in axes(out,1) for j in axes(out,2) if j>=i break end out[i,j]=il[i,i]+il[j,j]-2il[i,j] out[j,i]=out[i,j] end end return out end """ resistance_distance(g, i::Int64, j::Int64) Calculate the resistance distance between two nodes in a graph. # Arguments - `g`: The graph in which the resistance distance is to be calculated. - `i`: The first node. - `j`: The second node. # Returns - The resistance distance between nodes `i` and `j`. # Notes - Implements: Bapat, Ravindra B., Gutmana, Ivan and Xiao, Wenjun. "A Simple Method for Computing Resistance Distance" Zeitschrift für Naturforschung A, vol. 58, no. 9-10, 2003, pp. 494-498. https://doi.org/10.1515/zna-2003-9-1003 """ function resistance_distance(g,i::Int64,j::Int64) if i==j return 0 end lg=laplacian_matrix(g) return det(@view lg[setdiff(1:end, [i,j]), setdiff(1:end, [i,j])])/det(@view lg[setdiff(1:end, i), setdiff(1:end, i)]) end end
ResistanceDistance
https://github.com/jeanfdp/ResistanceDistance.jl.git
[ "MIT" ]
1.0.0
6e4e531a8ba163d95a38ab1de41c655812dc9e7d
code
1060
using ResistanceDistance,Graphs using Test # Define a custom tolerance tolerance = 1e-6 @testset "ResistanceDistance.jl" begin @testset "resistance_distance_matrix function" begin # Create a test graph g = ladder_graph(2) # Calculate the resistance distance matrix matrix = resistance_distance_matrix(g) # Define the expected result expected = [0.0 0.75 0.75 1.0 0.75 0.0 1.0 0.75 0.75 1.0 0.0 0.75 1.0 0.75 0.75 0.0] # Test that the function returns the expected result @test isapprox(matrix, expected, atol=tolerance) end @testset "resistance_distance function" begin # Create a test graph g = ladder_graph(2) # Calculate the resistance distance between nodes 1 and 2 distance = resistance_distance(g,1,2) # Define the expected result expected = 0.75 # Test that the function returns the expected result @test isapprox(distance, expected, atol=tolerance) end end
ResistanceDistance
https://github.com/jeanfdp/ResistanceDistance.jl.git
[ "MIT" ]
1.0.0
6e4e531a8ba163d95a38ab1de41c655812dc9e7d
docs
2264
# ResistanceDistance.jl This is a Julia package for calculating the resistance distance matrix of a graph. ## Installation To install the package, use the following command in the Julia package manager: ```julia using Pkg Pkg.add(url="https://github.com/jeanfdp/ResistanceDistance.jl") ``` ## Usage This package provides functions to calculate resistance distances in a graph. You can use the following functions in your Julia code: ### `resistance_distance_matrix(g)` This function calculates the resistance distance matrix for a given graph, which represents the resistance distances between all pairs of nodes in the graph. #### Arguments - `g`: The graph for which the resistance distance matrix is to be calculated. #### Returns - A matrix where the element at the i-th row and j-th column represents the resistance distance between nodes `i` and `j`. #### Example ```julia using Graphs,ResistanceDistance # Create a graph (replace with your own graph creation code) g = ladder_graph(4) # Calculate the resistance distance matrix matrix = resistance_distance_matrix(g) println(matrix) ``` ### `resistance_distance(g, i::Int64, j::Int64)` This function calculates the resistance distance between two nodes in a graph. #### Arguments - `g`: The graph in which the resistance distance is to be calculated. - `i`: The first node. - `j`: The second node. #### Returns - The resistance distance between nodes `i` and `j`. #### Example ```julia using Graphs,ResistanceDistance # Create a graph (replace with your own graph creation code) g = ladder_graph(4) # Calculate the resistance distance between nodes 1 and 5 distance = resistance_distance(g, 1, 5) println("Resistance Distance between Node 1 and Node 5: $distance") ``` ### References - The package implements the resistance distance calculation method described in the paper: "A Simple Method for Computing Resistance Distance" by Bapat, Ravindra B., Gutman, Ivan, and Xiao, Wenjun. You can find the paper at [this link](https://doi.org/10.1515/zna-2003-9-1003). [![Build Status](https://github.com/jeanfdp/ResistanceDistance.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/jeanfdp/ResistanceDistance.jl/actions/workflows/CI.yml?query=branch%3Amaster)
ResistanceDistance
https://github.com/jeanfdp/ResistanceDistance.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
958
using Documenter using PiGPIO using Literate Literate.markdown(joinpath(@__DIR__, "..", "examples", "01_blink.jl"), joinpath(@__DIR__, "src", "examples")) Literate.markdown(joinpath(@__DIR__, "..", "examples", "02_blink_twice.jl"),joinpath(@__DIR__, "src", "examples")) Literate.markdown(joinpath(@__DIR__, "..", "examples", "03_rgb.jl"), joinpath(@__DIR__, "src", "examples")) makedocs( sitename = "PiGPIO", format = Documenter.HTML(), modules = [PiGPIO], pages = [ "index.md", "API Docs" => "api.md", "Examples" => [ "Blink Once" => "examples/01_blink.md", "Blink Twice" => "examples/02_blink_twice.md", "Red-Green-Blue" => "examples/03_rgb.md" ] ] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. #=deploydocs( repo = "<repository url>" )=#
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
364
using PiGPIO red_pin = 18 #change this accordingly with your GPIO pin number p=Pi() set_mode(p, red_pin, PiGPIO.OUTPUT) try for i in 1:10 PiGPIO.write(p, red_pin, PiGPIO.HIGH) sleep(0.5) PiGPIO.write(p, red_pin, PiGPIO.LOW) sleep(0.5) end finally println("Cleaning up!") set_mode(p, red_pin, PiGPIO.INPUT) end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
556
using PiGPIO red_pin1 = 18 #change these numbers accordingly with your GPIO pins red_pin2 = 23 p=Pi() set_mode(p, red_pin1, PiGPIO.OUTPUT) set_mode(p, red_pin2, PiGPIO.OUTPUT) try for i in 1:10 PiGPIO.write(p, red_pin1, PiGPIO.HIGH) PiGPIO.write(p, red_pin2, PiGPIO.LOW) sleep(0.5) PiGPIO.write(p, red_pin1, PiGPIO.LOW) PiGPIO.write(p, red_pin2, PiGPIO.HIGH) sleep(0.5) end finally println("Cleaning up!") set_mode(p, red_pin1, PiGPIO.INPUT) set_mode(p, red_pin2, PiGPIO.INPUT) end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
1204
using PiGPIO red_pin = 23 green_pin = 24 blue_pin = 25 p=Pi() using Colors dc = distinguishable_colors(10) for r in dc set_PWM_dutycycle(p, red_pin, round(Int, r.r*255)) set_PWM_dutycycle(p, green_pin, round(Int,r.g*255)) set_PWM_dutycycle(p, blue_pin, round(Int,r.b*255)) sleep(0.5) end set_PWM_dutycycle(p, red_pin, 0) set_PWM_dutycycle(p, green_pin, 0) set_PWM_dutycycle(p, blue_pin, 0) using SIUnits using SIUnits.ShortUnits function normalize0(c::XYZ) d=convert(xyY, c) xyY(d.x, d.y, 1.0) end const hc_k = 0.0143877696*K*m const twohc²= 1.19104287e-16*Watt*m^2 planck{S1<:Real, S2<:Real}(λ::quantity(S1,Meter); T::quantity(S2,Kelvin)=5778.0K) = λ≤0m ? zero(λ)*Watt*m^-4 : twohc²*λ^-5.0/(exp(hc_k/(λ*T))-1) Base.convert{S<:Real}(::Type{xyY}, T::quantity(S, K)) = mapreduce(λ->planck(λ*nm,T=T)*m^3/Watt*colormatch(λ), +, 380:780) |> normalize0 blackbodies = xyY[convert(xyY, T) for T in 100K:200K:10000K] for b in blackbodies r=convert(RGB, b) set_PWM_dutycycle(p, red_pin, round(Int, r.r*255)) set_PWM_dutycycle(p, green_pin, round(Int,r.g*255)) set_PWM_dutycycle(p, blue_pin, round(Int,r.b*255)) sleep(0.5) end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
207
# https://github.com/joan2937/pigpio/blob/master/pigpio.py module PiGPIO export Pi using Sockets include("constants.jl") include("pi.jl") include("wave.jl") include("i2c.jl") include("spiSerial.jl") end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
12620
# GPIO levels OFF = 0 LOW = 0 CLEAR = 0 ON = 1 HIGH = 1 SET = 1 TIMEOUT = 2 # GPIO edges RISING_EDGE = 0 FALLING_EDGE = 1 EITHER_EDGE = 2 # GPIO modes INPUT = 0 OUTPUT = 1 ALT0 = 4 ALT1 = 5 ALT2 = 6 ALT3 = 7 ALT4 = 3 ALT5 = 2 # GPIO Pull Up Down PUD_OFF = 0 PUD_DOWN = 1 PUD_UP = 2 # script run status PI_SCRIPT_INITING=0 PI_SCRIPT_HALTED =1 PI_SCRIPT_RUNNING=2 PI_SCRIPT_WAITING=3 PI_SCRIPT_FAILED =4 # notification flags NTFY_FLAGS_ALIVE = (1 << 6) NTFY_FLAGS_WDOG = (1 << 5) NTFY_FLAGS_GPIO = 31 # wave modes WAVE_MODE_ONE_SHOT =0 WAVE_MODE_REPEAT =1 WAVE_MODE_ONE_SHOT_SYNC=2 WAVE_MODE_REPEAT_SYNC =3 WAVE_NOT_FOUND = 9998 # Transmitted wave not found. NO_TX_WAVE = 9999 # No wave being transmitted. # pigpio command numbers _PI_CMD_MODES= 0 _PI_CMD_MODEG= 1 _PI_CMD_PUD= 2 _PI_CMD_READ= 3 _PI_CMD_WRITE= 4 _PI_CMD_PWM= 5 _PI_CMD_PRS= 6 _PI_CMD_PFS= 7 _PI_CMD_SERVO= 8 _PI_CMD_WDOG= 9 _PI_CMD_BR1= 10 _PI_CMD_BR2= 11 _PI_CMD_BC1= 12 _PI_CMD_BC2= 13 _PI_CMD_BS1= 14 _PI_CMD_BS2= 15 _PI_CMD_TICK= 16 _PI_CMD_HWVER=17 _PI_CMD_NO= 18 _PI_CMD_NB= 19 _PI_CMD_NP= 20 _PI_CMD_NC= 21 _PI_CMD_PRG= 22 _PI_CMD_PFG= 23 _PI_CMD_PRRG= 24 _PI_CMD_HELP= 25 _PI_CMD_PIGPV=26 _PI_CMD_WVCLR=27 _PI_CMD_WVAG= 28 _PI_CMD_WVAS= 29 _PI_CMD_WVGO= 30 _PI_CMD_WVGOR=31 _PI_CMD_WVBSY=32 _PI_CMD_WVHLT=33 _PI_CMD_WVSM= 34 _PI_CMD_WVSP= 35 _PI_CMD_WVSC= 36 _PI_CMD_TRIG= 37 _PI_CMD_PROC= 38 _PI_CMD_PROCD=39 _PI_CMD_PROCR=40 _PI_CMD_PROCS=41 _PI_CMD_SLRO= 42 _PI_CMD_SLR= 43 _PI_CMD_SLRC= 44 _PI_CMD_PROCP=45 _PI_CMD_MICRO=46 _PI_CMD_MILLI=47 _PI_CMD_PARSE=48 _PI_CMD_WVCRE=49 _PI_CMD_WVDEL=50 _PI_CMD_WVTX =51 _PI_CMD_WVTXR=52 _PI_CMD_WVNEW=53 _PI_CMD_I2CO =54 _PI_CMD_I2CC =55 _PI_CMD_I2CRD=56 _PI_CMD_I2CWD=57 _PI_CMD_I2CWQ=58 _PI_CMD_I2CRS=59 _PI_CMD_I2CWS=60 _PI_CMD_I2CRB=61 _PI_CMD_I2CWB=62 _PI_CMD_I2CRW=63 _PI_CMD_I2CWW=64 _PI_CMD_I2CRK=65 _PI_CMD_I2CWK=66 _PI_CMD_I2CRI=67 _PI_CMD_I2CWI=68 _PI_CMD_I2CPC=69 _PI_CMD_I2CPK=70 _PI_CMD_SPIO =71 _PI_CMD_SPIC =72 _PI_CMD_SPIR =73 _PI_CMD_SPIW =74 _PI_CMD_SPIX =75 _PI_CMD_SERO =76 _PI_CMD_SERC =77 _PI_CMD_SERRB=78 _PI_CMD_SERWB=79 _PI_CMD_SERR =80 _PI_CMD_SERW =81 _PI_CMD_SERDA=82 _PI_CMD_GDC =83 _PI_CMD_GPW =84 _PI_CMD_HC =85 _PI_CMD_HP =86 _PI_CMD_CF1 =87 _PI_CMD_CF2 =88 _PI_CMD_NOIB =99 _PI_CMD_BI2CC=89 _PI_CMD_BI2CO=90 _PI_CMD_BI2CZ=91 _PI_CMD_I2CZ =92 _PI_CMD_WVCHA=93 _PI_CMD_SLRI =94 _PI_CMD_CGI =95 _PI_CMD_CSI =96 _PI_CMD_FG =97 _PI_CMD_FN =98 _PI_CMD_WVTXM=100 _PI_CMD_WVTAT=101 # pigpio error numbers _PI_INIT_FAILED =-1 PI_BAD_USER_GPIO =-2 PI_BAD_GPIO =-3 PI_BAD_MODE =-4 PI_BAD_LEVEL =-5 PI_BAD_PUD =-6 PI_BAD_PULSEWIDTH =-7 PI_BAD_DUTYCYCLE =-8 _PI_BAD_TIMER =-9 _PI_BAD_MS =-10 _PI_BAD_TIMETYPE =-11 _PI_BAD_SECONDS =-12 _PI_BAD_MICROS =-13 _PI_TIMER_FAILED =-14 PI_BAD_WDOG_TIMEOUT =-15 _PI_NO_ALERT_FUNC =-16 _PI_BAD_CLK_PERIPH =-17 _PI_BAD_CLK_SOURCE =-18 _PI_BAD_CLK_MICROS =-19 _PI_BAD_BUF_MILLIS =-20 PI_BAD_DUTYRANGE =-21 _PI_BAD_SIGNUM =-22 _PI_BAD_PATHNAME =-23 PI_NO_HANDLE =-24 PI_BAD_HANDLE =-25 _PI_BAD_IF_FLAGS =-26 _PI_BAD_CHANNEL =-27 _PI_BAD_PRIM_CHANNEL=-27 _PI_BAD_SOCKET_PORT =-28 _PI_BAD_FIFO_COMMAND=-29 _PI_BAD_SECO_CHANNEL=-30 _PI_NOT_INITIALISED =-31 _PI_INITIALISED =-32 _PI_BAD_WAVE_MODE =-33 _PI_BAD_CFG_INTERNAL=-34 PI_BAD_WAVE_BAUD =-35 PI_TOO_MANY_PULSES =-36 PI_TOO_MANY_CHARS =-37 PI_NOT_SERIAL_GPIO =-38 _PI_BAD_SERIAL_STRUC=-39 _PI_BAD_SERIAL_BUF =-40 PI_NOT_PERMITTED =-41 PI_SOME_PERMITTED =-42 PI_BAD_WVSC_COMMND =-43 PI_BAD_WVSM_COMMND =-44 PI_BAD_WVSP_COMMND =-45 PI_BAD_PULSELEN =-46 PI_BAD_SCRIPT =-47 PI_BAD_SCRIPT_ID =-48 PI_BAD_SER_OFFSET =-49 PI_GPIO_IN_USE =-50 PI_BAD_SERIAL_COUNT =-51 PI_BAD_PARAM_NUM =-52 PI_DUP_TAG =-53 PI_TOO_MANY_TAGS =-54 PI_BAD_SCRIPT_CMD =-55 PI_BAD_VAR_NUM =-56 PI_NO_SCRIPT_ROOM =-57 PI_NO_MEMORY =-58 PI_SOCK_READ_FAILED =-59 PI_SOCK_WRIT_FAILED =-60 PI_TOO_MANY_PARAM =-61 PI_SCRIPT_NOT_READY =-62 PI_BAD_TAG =-63 PI_BAD_MICS_DELAY =-64 PI_BAD_MILS_DELAY =-65 PI_BAD_WAVE_ID =-66 PI_TOO_MANY_CBS =-67 PI_TOO_MANY_OOL =-68 PI_EMPTY_WAVEFORM =-69 PI_NO_WAVEFORM_ID =-70 PI_I2C_OPEN_FAILED =-71 PI_SER_OPEN_FAILED =-72 PI_SPI_OPEN_FAILED =-73 PI_BAD_I2C_BUS =-74 PI_BAD_I2C_ADDR =-75 PI_BAD_SPI_CHANNEL =-76 PI_BAD_FLAGS =-77 PI_BAD_SPI_SPEED =-78 PI_BAD_SER_DEVICE =-79 PI_BAD_SER_SPEED =-80 PI_BAD_PARAM =-81 PI_I2C_WRITE_FAILED =-82 PI_I2C_READ_FAILED =-83 PI_BAD_SPI_COUNT =-84 PI_SER_WRITE_FAILED =-85 PI_SER_READ_FAILED =-86 PI_SER_READ_NO_DATA =-87 PI_UNKNOWN_COMMAND =-88 PI_SPI_XFER_FAILED =-89 _PI_BAD_POINTER =-90 PI_NO_AUX_SPI =-91 PI_NOT_PWM_GPIO =-92 PI_NOT_SERVO_GPIO =-93 PI_NOT_HCLK_GPIO =-94 PI_NOT_HPWM_GPIO =-95 PI_BAD_HPWM_FREQ =-96 PI_BAD_HPWM_DUTY =-97 PI_BAD_HCLK_FREQ =-98 PI_BAD_HCLK_PASS =-99 PI_HPWM_ILLEGAL =-100 PI_BAD_DATABITS =-101 PI_BAD_STOPBITS =-102 PI_MSG_TOOBIG =-103 PI_BAD_MALLOC_MODE =-104 _PI_TOO_MANY_SEGS =-105 _PI_BAD_I2C_SEG =-106 PI_BAD_SMBUS_CMD =-107 PI_NOT_I2C_GPIO =-108 PI_BAD_I2C_WLEN =-109 PI_BAD_I2C_RLEN =-110 PI_BAD_I2C_CMD =-111 PI_BAD_I2C_BAUD =-112 PI_CHAIN_LOOP_CNT =-113 PI_BAD_CHAIN_LOOP =-114 PI_CHAIN_COUNTER =-115 PI_BAD_CHAIN_CMD =-116 PI_BAD_CHAIN_DELAY =-117 PI_CHAIN_NESTING =-118 PI_CHAIN_TOO_BIG =-119 PI_DEPRECATED =-120 PI_BAD_SER_INVERT =-121 _PI_BAD_EDGE =-122 _PI_BAD_ISR_INIT =-123 PI_BAD_FOREVER =-124 PI_BAD_FILTER =-125 # pigpio error text _errors=[ [_PI_INIT_FAILED , "pigpio initialisation failed"], [PI_BAD_USER_GPIO , "GPIO not 0-31"], [PI_BAD_GPIO , "GPIO not 0-53"], [PI_BAD_MODE , "mode not 0-7"], [PI_BAD_LEVEL , "level not 0-1"], [PI_BAD_PUD , "pud not 0-2"], [PI_BAD_PULSEWIDTH , "pulsewidth not 0 or 500-2500"], [PI_BAD_DUTYCYCLE , "dutycycle not 0-range (default 255)"], [_PI_BAD_TIMER , "timer not 0-9"], [_PI_BAD_MS , "ms not 10-60000"], [_PI_BAD_TIMETYPE , "timetype not 0-1"], [_PI_BAD_SECONDS , "seconds < 0"], [_PI_BAD_MICROS , "micros not 0-999999"], [_PI_TIMER_FAILED , "gpioSetTimerFunc failed"], [PI_BAD_WDOG_TIMEOUT , "timeout not 0-60000"], [_PI_NO_ALERT_FUNC , "DEPRECATED"], [_PI_BAD_CLK_PERIPH , "clock peripheral not 0-1"], [_PI_BAD_CLK_SOURCE , "DEPRECATED"], [_PI_BAD_CLK_MICROS , "clock micros not 1, 2, 4, 5, 8, or 10"], [_PI_BAD_BUF_MILLIS , "buf millis not 100-10000"], [PI_BAD_DUTYRANGE , "dutycycle range not 25-40000"], [_PI_BAD_SIGNUM , "signum not 0-63"], [_PI_BAD_PATHNAME , "can't open pathname"], [PI_NO_HANDLE , "no handle available"], [PI_BAD_HANDLE , "unknown handle"], [_PI_BAD_IF_FLAGS , "ifFlags > 3"], [_PI_BAD_CHANNEL , "DMA channel not 0-14"], [_PI_BAD_SOCKET_PORT , "socket port not 1024-30000"], [_PI_BAD_FIFO_COMMAND , "unknown fifo command"], [_PI_BAD_SECO_CHANNEL , "DMA secondary channel not 0-14"], [_PI_NOT_INITIALISED , "function called before gpioInitialise"], [_PI_INITIALISED , "function called after gpioInitialise"], [_PI_BAD_WAVE_MODE , "waveform mode not 0-1"], [_PI_BAD_CFG_INTERNAL , "bad parameter in gpioCfgInternals call"], [PI_BAD_WAVE_BAUD , "baud rate not 50-250000(RX)/1000000(TX)"], [PI_TOO_MANY_PULSES , "waveform has too many pulses"], [PI_TOO_MANY_CHARS , "waveform has too many chars"], [PI_NOT_SERIAL_GPIO , "no bit bang serial read in progress on GPIO"], [PI_NOT_PERMITTED , "no permission to update GPIO"], [PI_SOME_PERMITTED , "no permission to update one or more GPIO"], [PI_BAD_WVSC_COMMND , "bad WVSC subcommand"], [PI_BAD_WVSM_COMMND , "bad WVSM subcommand"], [PI_BAD_WVSP_COMMND , "bad WVSP subcommand"], [PI_BAD_PULSELEN , "trigger pulse length not 1-100"], [PI_BAD_SCRIPT , "invalid script"], [PI_BAD_SCRIPT_ID , "unknown script id"], [PI_BAD_SER_OFFSET , "add serial data offset > 30 minute"], [PI_GPIO_IN_USE , "GPIO already in use"], [PI_BAD_SERIAL_COUNT , "must read at least a byte at a time"], [PI_BAD_PARAM_NUM , "script parameter id not 0-9"], [PI_DUP_TAG , "script has duplicate tag"], [PI_TOO_MANY_TAGS , "script has too many tags"], [PI_BAD_SCRIPT_CMD , "illegal script command"], [PI_BAD_VAR_NUM , "script variable id not 0-149"], [PI_NO_SCRIPT_ROOM , "no more room for scripts"], [PI_NO_MEMORY , "can't allocate temporary memory"], [PI_SOCK_READ_FAILED , "socket read failed"], [PI_SOCK_WRIT_FAILED , "socket write failed"], [PI_TOO_MANY_PARAM , "too many script parameters (> 10)"], [PI_SCRIPT_NOT_READY , "script initialising"], [PI_BAD_TAG , "script has unresolved tag"], [PI_BAD_MICS_DELAY , "bad MICS delay (too large)"], [PI_BAD_MILS_DELAY , "bad MILS delay (too large)"], [PI_BAD_WAVE_ID , "non existent wave id"], [PI_TOO_MANY_CBS , "No more CBs for waveform"], [PI_TOO_MANY_OOL , "No more OOL for waveform"], [PI_EMPTY_WAVEFORM , "attempt to create an empty waveform"], [PI_NO_WAVEFORM_ID , "No more waveform ids"], [PI_I2C_OPEN_FAILED , "can't open I2C device"], [PI_SER_OPEN_FAILED , "can't open serial device"], [PI_SPI_OPEN_FAILED , "can't open SPI device"], [PI_BAD_I2C_BUS , "bad I2C bus"], [PI_BAD_I2C_ADDR , "bad I2C address"], [PI_BAD_SPI_CHANNEL , "bad SPI channel"], [PI_BAD_FLAGS , "bad i2c/spi/ser open flags"], [PI_BAD_SPI_SPEED , "bad SPI speed"], [PI_BAD_SER_DEVICE , "bad serial device name"], [PI_BAD_SER_SPEED , "bad serial baud rate"], [PI_BAD_PARAM , "bad i2c/spi/ser parameter"], [PI_I2C_WRITE_FAILED , "I2C write failed"], [PI_I2C_READ_FAILED , "I2C read failed"], [PI_BAD_SPI_COUNT , "bad SPI count"], [PI_SER_WRITE_FAILED , "ser write failed"], [PI_SER_READ_FAILED , "ser read failed"], [PI_SER_READ_NO_DATA , "ser read no data available"], [PI_UNKNOWN_COMMAND , "unknown command"], [PI_SPI_XFER_FAILED , "SPI xfer/read/write failed"], [_PI_BAD_POINTER , "bad (NULL) pointer"], [PI_NO_AUX_SPI , "no auxiliary SPI on Pi A or B"], [PI_NOT_PWM_GPIO , "GPIO is not in use for PWM"], [PI_NOT_SERVO_GPIO , "GPIO is not in use for servo pulses"], [PI_NOT_HCLK_GPIO , "GPIO has no hardware clock"], [PI_NOT_HPWM_GPIO , "GPIO has no hardware PWM"], [PI_BAD_HPWM_FREQ , "hardware PWM frequency not 1-125M"], [PI_BAD_HPWM_DUTY , "hardware PWM dutycycle not 0-1M"], [PI_BAD_HCLK_FREQ , "hardware clock frequency not 4689-250M"], [PI_BAD_HCLK_PASS , "need password to use hardware clock 1"], [PI_HPWM_ILLEGAL , "illegal, PWM in use for main clock"], [PI_BAD_DATABITS , "serial data bits not 1-32"], [PI_BAD_STOPBITS , "serial (half) stop bits not 2-8"], [PI_MSG_TOOBIG , "socket/pipe message too big"], [PI_BAD_MALLOC_MODE , "bad memory allocation mode"], [_PI_TOO_MANY_SEGS , "too many I2C transaction segments"], [_PI_BAD_I2C_SEG , "an I2C transaction segment failed"], [PI_BAD_SMBUS_CMD , "SMBus command not supported"], [PI_NOT_I2C_GPIO , "no bit bang I2C in progress on GPIO"], [PI_BAD_I2C_WLEN , "bad I2C write length"], [PI_BAD_I2C_RLEN , "bad I2C read length"], [PI_BAD_I2C_CMD , "bad I2C command"], [PI_BAD_I2C_BAUD , "bad I2C baud rate, not 50-500k"], [PI_CHAIN_LOOP_CNT , "bad chain loop count"], [PI_BAD_CHAIN_LOOP , "empty chain loop"], [PI_CHAIN_COUNTER , "too many chain counters"], [PI_BAD_CHAIN_CMD , "bad chain command"], [PI_BAD_CHAIN_DELAY , "bad chain delay micros"], [PI_CHAIN_NESTING , "chain counters nested too deeply"], [PI_CHAIN_TOO_BIG , "chain is too long"], [PI_DEPRECATED , "deprecated function removed"], [PI_BAD_SER_INVERT , "bit bang serial invert not 0 or 1"], [_PI_BAD_EDGE , "bad ISR edge value, not 0-2"], [_PI_BAD_ISR_INIT , "bad ISR initialisation"], [PI_BAD_FOREVER , "loop forever must be last chain command"], [PI_BAD_FILTER , "bad filter parameter"], ]
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
19533
""" Returns a handle (>=0) for the device at the I2C bus address. i2c_bus:= >=0. i2c_address:= 0-0x7F. i2c_flags:= 0, no flags are currently defined. Normally you would only use the [*i2c_**] functions if you are or will be connecting to the Pi over a network. If you will always run on the local Pi use the standard SMBus module instead. Physically buses 0 and 1 are available on the Pi. Higher numbered buses will be available if a kernel supported bus multiplexor is being used. For the SMBus commands the low level transactions are shown at the end of the function description. The following abbreviations are used. . . S (1 bit) : Start bit P (1 bit) : Stop bit Rd/Wr (1 bit) : Read/Write bit. Rd equals 1, Wr equals 0. A, NA (1 bit) : Accept and not accept bit. Addr (7 bits): I2C 7 bit address. reg (8 bits): Command byte, which often selects a register. Data (8 bits): A data byte. Count (8 bits): A byte defining the length of a block operation. [..]: Data sent by the device. . . ... h = i2c_open(pi, 1, 0x53) # open device at address 0x53 on bus 1 ... """ function i2c_open(self::Pi, i2c_bus, i2c_address, i2c_flags=0) # I p1 i2c_bus # I p2 i2c_addr # I p3 4 ## extension ## # I i2c_flags extents = [pack("I", i2c_flags)] return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CO, i2c_bus, i2c_address, 4, extents)) end """ Closes the I2C device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). ... i2c_close(pi, h) ... """ function i2c_close(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_I2CC, handle, 0)) end """ Sends a single bit to the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). bit:= 0 or 1, the value to write. SMBus 2.0 5.5.1 - Quick command. . . S Addr bit [A] P . . ... i2c_write_quick(pi, 0, 1) # send 1 to device 0 i2c_write_quick(pi, 3, 0) # send 0 to device 3 ... """ function i2c_write_quick(self::Pi, handle, bit) return _u2i(_pigpio_command(self.sl, _PI_CMD_I2CWQ, handle, bit)) end """ Sends a single byte to the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). byte_val:= 0-255, the value to write. SMBus 2.0 5.5.2 - Send byte. . . S Addr Wr [A] byte_val [A] P . . ... i2c_write_byte(pi, 1, 17) # send byte 17 to device 1 i2c_write_byte(pi, 2, 0x23) # send byte 0x23 to device 2 ... """ function i2c_write_byte(self::Pi, handle, byte_val) return _u2i( _pigpio_command(self.sl, _PI_CMD_I2CWS, handle, byte_val)) end """ Reads a single byte from the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). SMBus 2.0 5.5.3 - Receive byte. . . S Addr Rd [A] [Data] NA P . . ... b = i2c_read_byte(pi, 2) # read a byte from device 2 ... """ function i2c_read_byte(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_I2CRS, handle, 0)) end """ Writes a single byte to the specified register of the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. byte_val:= 0-255, the value to write. SMBus 2.0 5.5.4 - Write byte. . . S Addr Wr [A] reg [A] byte_val [A] P . . ... # send byte 0xC5 to reg 2 of device 1 i2c_write_byte_data(pi, 1, 2, 0xC5) # send byte 9 to reg 4 of device 2 i2c_write_byte_data(pi, 2, 4, 9) ... """ function i2c_write_byte_data(self::Pi, handle, reg, byte_val) # I p1 handle # I p2 reg # I p3 4 ## extension ## # I byte_val extents = IOBuffer write(extents, byte_val) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CWB, handle, reg, 4, extents)) end """ Writes a single 16 bit word to the specified register of the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. word_val:= 0-65535, the value to write. SMBus 2.0 5.5.4 - Write word. . . S Addr Wr [A] reg [A] word_val_Low [A] word_val_High [A] P . . ... # send word 0xA0C5 to reg 5 of device 4 i2c_write_word_data(pi, 4, 5, 0xA0C5) # send word 2 to reg 2 of device 5 i2c_write_word_data(pi, 5, 2, 23) ... """ function i2c_write_word_data(self::Pi, handle, reg, word_val) # I p1 handle # I p2 reg # I p3 4 ## extension ## # I word_val extents = IOBuffer write(extents, word_val) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CWW, handle, reg, 4, extents)) end """ Reads a single byte from the specified register of the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. SMBus 2.0 5.5.5 - Read byte. . . S Addr Wr [A] reg [A] S Addr Rd [A] [Data] NA P . . ... # read byte from reg 17 of device 2 b = i2c_read_byte_data(pi, 2, 17) # read byte from reg 1 of device 0 b = i2c_read_byte_data(pi, 0, 1) ... """ function i2c_read_byte_data(self, handle, reg) return _u2i(_pigpio_command(self.sl, _PI_CMD_I2CRB, handle, reg)) end """ Reads a single 16 bit word from the specified register of the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. SMBus 2.0 5.5.5 - Read word. . . S Addr Wr [A] reg [A] S Addr Rd [A] [DataLow] A [DataHigh] NA P . . ... # read word from reg 2 of device 3 w = i2c_read_word_data(pi, 3, 2) # read word from reg 7 of device 2 w = i2c_read_word_data(pi, 2, 7) ... """ function i2c_read_word_data(self, handle, reg) return _u2i(_pigpio_command(self.sl, _PI_CMD_I2CRW, handle, reg)) end """ Writes 16 bits of data to the specified register of the device associated with handle and reads 16 bits of data in return. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. word_val:= 0-65535, the value to write. SMBus 2.0 5.5.6 - Process call. . . S Addr Wr [A] reg [A] word_val_Low [A] word_val_High [A] S Addr Rd [A] [DataLow] A [DataHigh] NA P . . ... r = i2c_process_call(pi, h, 4, 0x1231) r = i2c_process_call(pi, h, 6, 0) ... """ function i2c_process_call(self, handle, reg, word_val) # I p1 handle # I p2 reg # I p3 4 ## extension ## # I word_val extents = IOBuffer write(extents, word_val) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CPC, handle, reg, 4, extents)) end """ Writes up to 32 bytes to the specified register of the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. data:= the bytes to write. SMBus 2.0 5.5.7 - Block write. . . S Addr Wr [A] reg [A] length(data) [A] data0 [A] data1 [A] ... [A] datan [A] P . . ... i2c_write_block_data(pi, 4, 5, b'hello') i2c_write_block_data(pi, 4, 5, "data bytes") i2c_write_block_data(pi, 5, 0, b'\\x00\\x01\\x22') i2c_write_block_data(pi, 6, 2, [0, 1, 0x22]) ... """ function i2c_write_block_data(self, handle, reg, data) # I p1 handle # I p2 reg # I p3 len ## extension ## # s len data bytes if length(data) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CWK, handle, reg, length(data), data)) else return 0 end end """ Reads a block of up to 32 bytes from the specified register of the device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. SMBus 2.0 5.5.7 - Block read. . . S Addr Wr [A] reg [A] S Addr Rd [A] [Count] A [Data] A [Data] A ... A [Data] NA P . . The amount of returned data is set by the device. The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (b, d) = i2c_read_block_data(pi, h, 10) if b >= 0 # process data else # process read failure ... """ function i2c_read_block_data(self::Pi, handle, reg) # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command(self.sl, _PI_CMD_I2CRK, handle, reg, false)) if bytes > 0 data = rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Writes data bytes to the specified register of the device associated with handle and reads a device specified number of bytes of data in return. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. data:= the bytes to write. The SMBus 2.0 documentation states that a minimum of 1 byte may be sent and a minimum of 1 byte may be received. The total number of bytes sent/received must be 32 or less. SMBus 2.0 5.5.8 - Block write-block read. . . S Addr Wr [A] reg [A] length(data) [A] data0 [A] ... datan [A] S Addr Rd [A] [Count] A [Data] ... A P . . The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (b, d) = i2c_block_process_call(pi, h, 10, b'\\x02\\x05\\x00') (b, d) = i2c_block_process_call(pi, h, 10, b'abcdr') (b, d) = i2c_block_process_call(pi, h, 10, "abracad") (b, d) = i2c_block_process_call(pi, h, 10, [2, 5, 16]) ... """ function i2c_block_process_call(self::Pi, handle, reg, data) # I p1 handle # I p2 reg # I p3 len ## extension ## # s len data bytes # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CPK, handle, reg, length(data), data, false)) if bytes > 0 data = rxbuf(self, bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Writes data bytes to the specified register of the device associated with handle . 1-32 bytes may be written. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. data:= the bytes to write. . . S Addr Wr [A] reg [A] data0 [A] data1 [A] ... [A] datan [NA] P . . ... i2c_write_i2c_block_data(pi, 4, 5, 'hello') i2c_write_i2c_block_data(pi, 4, 5, b'hello') i2c_write_i2c_block_data(pi, 5, 0, b'\\x00\\x01\\x22') i2c_write_i2c_block_data(pi, 6, 2, [0, 1, 0x22]) ... """ function i2c_write_i2c_block_data(self::Pi, handle, reg, data) # I p1 handle # I p2 reg # I p3 len ## extension ## # s len data bytes if length(data) > 0 return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CWI, handle, reg, length(data), [data])) else return 0 end end """ Reads count bytes from the specified register of the device associated with handle . The count may be 1-32. handle:= >=0 (as returned by a prior call to [*i2c_open*]). reg:= >=0, the device register. count:= >0, the number of bytes to read. . . S Addr Wr [A] reg [A] S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P . . The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (b, d) = i2c_read_i2c_block_data(pi, h, 4, 32) if b >= 0 # process data else # process read failure ... """ function i2c_read_i2c_block_data(self::Pi, handle, reg, count) # I p1 handle # I p2 reg # I p3 4 ## extension ## # I count extents = IOBuffer() write(extents, count) # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CRI, handle, reg, 4, extents, false)) if bytes > 0 data = rxbuf(self, bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Returns count bytes read from the raw device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). count:= >0, the number of bytes to read. . . S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P . . The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (count, data) = i2c_read_device(pi, h, 12) ... """ function i2c_read_device(self::Pi, handle, count) # Don't raise exception. Must release lock. bytes = u2i( _pigpio_command(self.sl, _PI_CMD_I2CRD, handle, count, false)) if bytes > 0 data = rxbuf(self, bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Writes the data bytes to the raw device associated with handle. handle:= >=0 (as returned by a prior call to [*i2c_open*]). data:= the bytes to write. . . S Addr Wr [A] data0 [A] data1 [A] ... [A] datan [A] P . . ... i2c_write_device(pi, h, b"\\x12\\x34\\xA8") i2c_write_device(pi, h, b"help") i2c_write_device(pi, h, 'help') i2c_write_device(pi, h, [23, 56, 231]) ... """ function i2c_write_device(self::Pi, handle, data) # I p1 handle # I p2 0 # I p3 len ## extension ## # s len data bytes if length(data) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CWD, handle, 0, length(data), data)) else return 0 end end """ This function executes a sequence of I2C operations. The operations to be performed are specified by the contents of data which contains the concatenated command codes and associated data. handle:= >=0 (as returned by a prior call to [*i2c_open*]). data:= the concatenated I2C commands, see below The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (count, data) = i2c_zip(pi, h, [4, 0x53, 7, 1, 0x32, 6, 6, 0]) ... The following command codes are supported Name @ Cmd & Data @ Meaning End @ 0 @ No more commands Escape @ 1 @ Next P is two bytes On @ 2 @ Switch combined flag on Off @ 3 @ Switch combined flag off Address @ 4 P @ Set I2C address to P Flags @ 5 lsb msb @ Set I2C flags to lsb + (msb << 8) Read @ 6 P @ Read P bytes of data Write @ 7 P ... @ Write P bytes of data The address, read, and write commands take a parameter P. Normally P is one byte (0-255). If the command is preceded by the Escape command then P is two bytes (0-65535, least significant byte first). The address defaults to that associated with the handle. The flags default to 0. The address and flags maintain their previous value until updated. Any read I2C data is concatenated in the returned bytearray. ... Set address 0x53, write 0x32, read 6 bytes Set address 0x1E, write 0x03, read 6 bytes Set address 0x68, write 0x1B, read 8 bytes End 0x04 0x53 0x07 0x01 0x32 0x06 0x06 0x04 0x1E 0x07 0x01 0x03 0x06 0x06 0x04 0x68 0x07 0x01 0x1B 0x06 0x08 0x00 ... """ function i2c_zip(self::Pi, handle, data) # I p1 handle # I p2 0 # I p3 len ## extension ## # s len data bytes # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command_ext( self.sl, _PI_CMD_I2CZ, handle, 0, length(data), data, false)) if bytes > 0 data = self._rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ This function selects a pair of GPIO for bit banging I2C at a specified baud rate. Bit banging I2C allows for certain operations which are not possible with the standard I2C driver. o baud rates as low as 50 o repeated starts o clock stretching o I2C on any pair of spare GPIO SDA:= 0-31 SCL:= 0-31 baud:= 50-500000 Returns 0 if OK, otherwise PI_BAD_USER_GPIO, PI_BAD_I2C_BAUD, or PI_GPIO_IN_USE. NOTE The GPIO used for SDA and SCL must have pull-ups to 3V3 connected. As a guide the hardware pull-ups on pins 3 and 5 are 1k8 in value. ... h = bb_i2c_open(pi, 4, 5, 50000) # bit bang on GPIO 4/5 at 50kbps ... """ function bb_i2c_open(self::Pi, SDA, SCL, baud=100000) # I p1 SDA # I p2 SCL # I p3 4 ## extension ## # I baud extents = IOBuffer() write(extents, baud) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_BI2CO, SDA, SCL, 4, extents)) end """ This function stops bit banging I2C on a pair of GPIO previously opened with [*bb_i2c_open*]. SDA:= 0-31, the SDA GPIO used in a prior call to [*bb_i2c_open*] Returns 0 if OK, otherwise PI_BAD_USER_GPIO, or PI_NOT_I2C_GPIO. ... bb_i2c_close(pi, SDA) ... """ function bb_i2c_close(self::Pi, SDA) return _u2i(_pigpio_command(self.sl, _PI_CMD_BI2CC, SDA, 0)) end """ This function executes a sequence of bit banged I2C operations. The operations to be performed are specified by the contents of data which contains the concatenated command codes and associated data. SDA:= 0-31 (as used in a prior call to [*bb_i2c_open*]) data:= the concatenated I2C commands, see below The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (count, data) = pi.bb_i2c_zip( h, [4, 0x53, 2, 7, 1, 0x32, 2, 6, 6, 3, 0]) ... The following command codes are supported Name @ Cmd & Data @ Meaning End @ 0 @ No more commands Escape @ 1 @ Next P is two bytes Start @ 2 @ Start condition Stop @ 3 @ Stop condition Address @ 4 P @ Set I2C address to P Flags @ 5 lsb msb @ Set I2C flags to lsb + (msb << 8) Read @ 6 P @ Read P bytes of data Write @ 7 P ... @ Write P bytes of data The address, read, and write commands take a parameter P. Normally P is one byte (0-255). If the command is preceded by the Escape command then P is two bytes (0-65535, least significant byte first). The address and flags default to 0. The address and flags maintain their previous value until updated. No flags are currently defined. Any read I2C data is concatenated in the returned bytearray. ... Set address 0x53 start, write 0x32, (re)start, read 6 bytes, stop Set address 0x1E start, write 0x03, (re)start, read 6 bytes, stop Set address 0x68 start, write 0x1B, (re)start, read 8 bytes, stop End 0x04 0x53 0x02 0x07 0x01 0x32 0x02 0x06 0x06 0x03 0x04 0x1E 0x02 0x07 0x01 0x03 0x02 0x06 0x06 0x03 0x04 0x68 0x02 0x07 0x01 0x1B 0x02 0x06 0x08 0x03 0x00 ... """ function bb_i2c_zip(self::Pi, SDA, data) # I p1 SDA # I p2 0 # I p3 len ## extension ## # s len data bytes # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command_ext( self.sl, _PI_CMD_BI2CZ, SDA, 0, length(data), [data], false)) if bytes > 0 data = self._rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
32313
export set_mode, get_mode, set_pull_up_down exceptions = true """ A class to store socket and lock. """ mutable struct SockLock s::TCPSocket l::ReentrantLock end """ A class to store pulse information. gpio_on: the GPIO to switch on at the start of the pulse. gpio_off: the GPIO to switch off at the start of the pulse. delay: the delay in microseconds before the next pulse. """ mutable struct Pulse gpio_on::Int gpio_off::Int delay::Int end """ Returns a text description of a pigpio error. errnum:= <0, the error number ... print(pigpio.error_text(-5)) level not 0-1 ... """ function error_text(errnum) for e in _errors if e[0] == errnum return e[1] end end return "unknown error ($ernum)" end """ Returns the microsecond difference between two ticks. t1:= the earlier tick t2:= the later tick ... print(pigpio.tickDiff(4294967272, 12)) 36 ... """ function tickDiff(t1, t2) tDiff = t2 - t1 if tDiff < 0 tDiff += (1 << 32) end return tDiff end """ Converts a 32 bit unsigned number to signed. If the number is negative it indicates an error. On error a pigpio exception will be raised if exceptions is true. """ function _u2i(x::UInt32) v = convert(Int32, x) if v < 0 if exceptions error(error_text(v)) end end return v end struct InMsg cmd::Cuint # a bits type p1::Cuint # an array of bits types p2::Cuint # a string with a fixed number of bytes d::Cuint end struct OutMsg dummy::Array{UInt8,1} # a bits type res::Cuint # an array of bits types end """ Runs a pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). """ function _pigpio_command(sl::SockLock, cmd::Integer, p1::Integer, p2::Integer, rl=true) lock(sl.l) Base.write(sl.s, UInt32.([cmd, p1, p2, 0])) out = IOBuffer(Base.read(sl.s, 16)) msg = reinterpret(Cuint, take!(out))[4] if rl unlock(sl.l) end return msg end """ Runs an extended pigpio socket command. sl:= command socket and lock. cmd:= the command to be executed. p1:= command parameter 1 (if applicable). p2:= command parameter 2 (if applicable). p3:= total size in bytes of following extents extents:= additional data blocks """ function _pigpio_command_ext(sl, cmd, p1, p2, p3, extents, rl=true) ext = IOBuffer() Base.write(ext, Array(reinterpret(UInt8, [cmd, p1, p2, p3]))) for x in extents write(ext, string(x)) end lock(sl.l) write(sl.s, ext) msg = reinterpret(Cuint, sl.s)[4] if rl unlock(sl.l) end return res end """An ADT class to hold callback information gpio:= Broadcom GPIO number. edge:= EITHER_EDGE, RISING_EDGE, or FALLING_EDGE. func:= a user function taking three arguments (GPIO, level, tick). """ mutable struct Callback_ADT gpio::Int edge::Int func::Function bit::Int Callback_ADT(gpio, edge, func) = new(gpio, edge, func, 1<<gpio) end """A class to encapsulate pigpio notification callbacks.""" mutable struct CallbackThread #(threading.Thread) control::SockLock sl::SockLock go::Bool daemon::Bool monitor::Int handle::Cuint callbacks::Array{Any, 1} end """Initialises notifications.""" function CallbackThread(control, host, port) socket = connect(host, port) sl = SockLock(socket, ReentrantLock()) self = CallbackThread(control, sl, false, true, 0, 0, Any[]) self.handle = _pigpio_command(sl, _PI_CMD_NOIB, 0, 0) self.go = true return self #self.start() #TODO end """Stops notifications.""" function stop(self::CallbackThread) if self.go self.go = false Base.write(self.sl.s, _PI_CMD_NC, self.handle, 0, 0) end end """Adds a callback to the notification thread.""" function append(self::CallbackThread, callb) push!(self.callbacks, callb) self.monitor = self.monitor | callb.bit _pigpio_command(self.control, _PI_CMD_NB, self.handle, self.monitor) end """Removes a callback from the notification thread.""" function remove(self::CallbackThread, callb) if callb in self.callbacks self.callbacks.remove(callb) newMonitor = 0 for c in self.callbacks newMonitor |= c.bit end if newMonitor != self.monitor self.monitor = newMonitor _pigpio_command( self.control, _PI_CMD_NB, self.handle, self.monitor) end end end struct CallbMsg seq::Cushort flags::Cushort tick::Cuint level::Cuint end """Runs the notification thread.""" function run(self::CallbackThread) lastLevel = _pigpio_command(self.control, _PI_CMD_BR1, 0, 0) MSG_SIZ = 12 while self.go buf = readbytes(self.sl.s, MSG_SIZ, all=true) if self.go msg = reinterpret(CallbMsg, buf) seq = msg.seq seq, flags, tick, level = (msg.seq, msg.flags, msg.tick, msg.level) if flags == 0 changed = level ^ lastLevel lastLevel = level for cb in self.callbacks if cb.bit && changed newLevel = 0 elseif cb.bit & level newLevel = 1 end if (cb.edge ^ newLevel) cb.func(cb.gpio, newLevel, tick) end end else if flags & NTFY_FLAGS_WDOG gpio = flags & NTFY_FLAGS_GPIO for cb in self.callbacks if cb.gpio == gpio cb.func(cb.gpio, TIMEOUT, tick) end end end end end end close(self.sl.s) end """A class to provide GPIO level change callbacks.""" mutable struct Callback notify::Array{Callback_ADT, 1} count::Int reset::Bool callb::Callback_ADT end function Callback(notify, user_gpio::Int, edge::Int=RISING_EDGE, func=nothing) self = Callback(notify, 0, false, nothing) if func == nothing func = _tally end self.callb = Callback_ADT(user_gpio, edge, func) push!(self.notify, self.callb) end """Cancels a callback by removing it from the notification thread.""" function cancel(self) filter(x->x!=self.callb, self.notify) end """Increment the callback called count.""" function _tally(self::Callback, user_gpio, level, tick) if self.reset self.reset = false self.count = 0 end self.count += 1 end """ Provides a count of how many times the default tally callback has triggered. The count will be zero if the user has supplied their own callback function. """ function tally(self::Callback) return self.count end """ Resets the tally count to zero. """ function reset_tally(self::Callback) self._reset = true self.count = 0 end """Encapsulates waiting for GPIO edges.""" mutable struct WaitForEdge notify callb::Function trigger start end """Initialises a wait_for_edge.""" function WaitForEdge( notify, gpio::Int, edge, timeout) callb = _callback_ADT(gpio, edge, self.func) self = WaitForEdge(notify, callb, false, time()) push!(self.notify, self.callb) while (self.trigger == false) && ((time()-self.start) < timeout) time.sleep(0.05) end self._notify.remove(self.callb) end """Sets wait_for_edge triggered.""" function func(self::WaitForEdge, gpio, level, tick) self.trigger = true end mutable struct Pi host::String port::Int connected::Bool sl::SockLock notify::CallbackThread end """Returns count bytes from the command socket.""" function rxbuf(self::Pi, count) ext = readbytes(self.sl.s, count, all) return ext end """ Sets the GPIO mode. gpio:= 0-53. mode:= INPUT, OUTPUT, ALT0, ALT1, ALT2, ALT3, ALT4, ALT5. ... set_mode(pi, 4, pigpio.INPUT) # GPIO 4 as input set_mode(pi, 17, pigpio.OUTPUT) # GPIO 17 as output set_mode(pi, 24, pigpio.ALT2) # GPIO 24 as ALT2 ... """ function set_mode(self::Pi, gpio, mode) return _u2i(_pigpio_command(self.sl, _PI_CMD_MODES, gpio, mode)) end """ Returns the GPIO mode. gpio:= 0-53. Returns a value as follows . . 0 = INPUT 1 = OUTPUT 2 = ALT5 3 = ALT4 4 = ALT0 5 = ALT1 6 = ALT2 7 = ALT3 . . ... print(get_mode(pi, 0)) 4 ... """ function get_mode(self::Pi, gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_MODEG, gpio, 0)) end """ Sets or clears the internal GPIO pull-up/down resistor. gpio:= 0-53. pud:= PUD_UP, PUD_DOWN, PUD_OFF. ... set_pull_up_down(pi, 17, pigpio.PUD_OFF) set_pull_up_down(pi, 23, pigpio.PUD_UP) set_pull_up_down(pi, 24, pigpio.PUD_DOWN) ... """ function set_pull_up_down(self::Pi, gpio, pud) return _u2i(_pigpio_command(self.sl, _PI_CMD_PUD, gpio, pud)) end """ Returns the GPIO level. gpio:= 0-53. ... set_mode(pi, 23, pigpio.INPUT) set_pull_up_down(pi, 23, pigpio.PUD_DOWN) print(read(pi, 23)) 0 set_pull_up_down(pi, 23, pigpio.PUD_UP) print(read(pi, 23)) 1 ... """ function read(self::Pi, gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_READ, gpio, 0)) end """ Sets the GPIO level. GPIO:= 0-53. level:= 0, 1. If PWM or servo pulses are active on the GPIO they are switched off. ... set_mode(pi, 17, pigpio.OUTPUT) write(pi, 17,0) print(read(pi, 17)) 0 write(pi, 17,1) print(read(pi, 17)) 1 ... """ function write(self::Pi, gpio, level) return _u2i(_pigpio_command(self.sl, _PI_CMD_WRITE, gpio, level)) end """ Starts (non-zero dutycycle) or stops (0) PWM pulses on the GPIO. user_gpio:= 0-31. dutycycle:= 0-range (range defaults to 255). The [*set_PWM_range*] function can change the default range of 255. ... set_PWM_dutycycle(pi, 4, 0) # PWM off set_PWM_dutycycle(pi, 4, 64) # PWM 1/4 on set_PWM_dutycycle(pi, 4, 128) # PWM 1/2 on set_PWM_dutycycle(pi, 4, 192) # PWM 3/4 on set_PWM_dutycycle(pi, 4, 255) # PWM full on ... """ function set_PWM_dutycycle(self::Pi, user_gpio, dutycycle) return _u2i(_pigpio_command( self.sl, _PI_CMD_PWM, user_gpio, Int(dutycycle))) end """ Returns the PWM dutycycle being used on the GPIO. user_gpio:= 0-31. Returns the PWM dutycycle. For normal PWM the dutycycle will be out of the defined range for the GPIO (see [*get_PWM_range*]). If a hardware clock is active on the GPIO the reported dutycycle will be 500000 (500k) out of 1000000 (1M). If hardware PWM is active on the GPIO the reported dutycycle will be out of a 1000000 (1M). ... set_PWM_dutycycle(pi, 4, 25) print(get_PWM_dutycycle(pi, 4)) 25 set_PWM_dutycycle(pi, 4, 203) print(get_PWM_dutycycle(pi, 4)) 203 ... """ function get_PWM_dutycycle(self::Pi, user_gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_GDC, user_gpio, 0)) end """ Sets the range of PWM values to be used on the GPIO. user_gpio:= 0-31. range_:= 25-40000. ... set_PWM_range(pi, 9, 100) # now 25 1/4, 50 1/2, 75 3/4 on set_PWM_range(pi, 9, 500) # now 125 1/4, 250 1/2, 375 3/4 on set_PWM_range(pi, 9, 3000) # now 750 1/4, 1500 1/2, 2250 3/4 on ... """ function set_PWM_range(self::Pi, user_gpio, range_) return _u2i(_pigpio_command(self.sl, _PI_CMD_PRS, user_gpio, range_)) end """ Returns the range of PWM values being used on the GPIO. user_gpio:= 0-31. If a hardware clock or hardware PWM is active on the GPIO the reported range will be 1000000 (1M). ... set_PWM_range(pi, 9, 500) print(get_PWM_range(pi, 9)) 500 ... """ function get_PWM_range(self::Pi, user_gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_PRG, user_gpio, 0)) end """ Returns the real (underlying) range of PWM values being used on the GPIO. user_gpio:= 0-31. If a hardware clock is active on the GPIO the reported real range will be 1000000 (1M). If hardware PWM is active on the GPIO the reported real range will be approximately 250M divided by the set PWM frequency. ... set_PWM_frequency(pi, 4, 800) print(get_PWM_real_range(pi, 4)) 250 ... """ function get_PWM_real_range(self::Pi, user_gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_PRRG, user_gpio, 0)) end """ Sets the frequency (in Hz) of the PWM to be used on the GPIO. user_gpio:= 0-31. frequency:= >=0 Hz Returns the numerically closest frequency if OK, otherwise PI_BAD_USER_GPIO or PI_NOT_PERMITTED. If PWM is currently active on the GPIO it will be switched off and then back on at the new frequency. Each GPIO can be independently set to one of 18 different PWM frequencies. The selectable frequencies depend upon the sample rate which may be 1, 2, 4, 5, 8, or 10 microseconds (default 5). The sample rate is set when the pigpio daemon is started. The frequencies for each sample rate are . . Hertz 1: 40000 20000 10000 8000 5000 4000 2500 2000 1600 1250 1000 800 500 400 250 200 100 50 2: 20000 10000 5000 4000 2500 2000 1250 1000 800 625 500 400 250 200 125 100 50 25 4: 10000 5000 2500 2000 1250 1000 625 500 400 313 250 200 125 100 63 50 25 13 sample rate (us) 5: 8000 4000 2000 1600 1000 800 500 400 320 250 200 160 100 80 50 40 20 10 8: 5000 2500 1250 1000 625 500 313 250 200 156 125 100 63 50 31 25 13 6 10: 4000 2000 1000 800 500 400 250 200 160 125 100 80 50 40 25 20 10 5 . . ... set_PWM_frequency(pi, 4,0) print(get_PWM_frequency(pi, 4)) 10 set_PWM_frequency(pi, 4,100000) print(get_PWM_frequency(pi, 4)) 8000 ... """ function set_PWM_frequency(self::Pi, user_gpio, frequency) return _u2i( _pigpio_command(self.sl, _PI_CMD_PFS, user_gpio, frequency)) end """ Returns the frequency of PWM being used on the GPIO. user_gpio:= 0-31. Returns the frequency (in Hz) used for the GPIO. For normal PWM the frequency will be that defined for the GPIO by [*set_PWM_frequency*]. If a hardware clock is active on the GPIO the reported frequency will be that set by [*hardware_clock*]. If hardware PWM is active on the GPIO the reported frequency will be that set by [*hardware_PWM*]. ... set_PWM_frequency(pi, 4,0) print(get_PWM_frequency(pi, 4)) 10 set_PWM_frequency(pi, 4, 800) print(get_PWM_frequency(pi, 4)) 800 ... """ function get_PWM_frequency(self::Pi, user_gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_PFG, user_gpio, 0)) end """ Starts (500-2500) or stops (0) servo pulses on the GPIO. user_gpio:= 0-31. pulsewidth:= 0 (off), 500 (most anti-clockwise) - 2500 (most clockwise). The selected pulsewidth will continue to be transmitted until changed by a subsequent call to set_servo_pulsewidth. The pulsewidths supported by servos varies and should probably be determined by experiment. A value of 1500 should always be safe and represents the mid-point of rotation. You can DAMAGE a servo if you command it to move beyond its limits. ... set_servo_pulsewidth(pi, 17, 0) # off set_servo_pulsewidth(pi, 17, 1000) # safe anti-clockwise set_servo_pulsewidth(pi, 17, 1500) # centre set_servo_pulsewidth(pi, 17, 2000) # safe clockwise ... """ function set_servo_pulsewidth(self::Pi, user_gpio, pulsewidth) return _u2i(_pigpio_command( self.sl, _PI_CMD_SERVO, user_gpio, int(pulsewidth))) end """ Returns the servo pulsewidth being used on the GPIO. user_gpio:= 0-31. Returns the servo pulsewidth. ... set_servo_pulsewidth(pi, 4, 525) print(get_servo_pulsewidth(pi, 4)) 525 set_servo_pulsewidth(pi, 4, 2130) print(get_servo_pulsewidth(pi, 4)) 2130 ... """ function get_servo_pulsewidth(self::Pi, user_gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_GPW, user_gpio, 0)) end """ Returns a notification handle (>=0). A notification is a method for being notified of GPIO state changes via a pipe. Pipes are only accessible from the local machine so this function serves no purpose if you are using Python from a remote machine. The in-built (socket) notifications provided by [*callback*] should be used instead. Notifications for handle x will be available at the pipe named /dev/pigpiox (where x is the handle number). E.g. if the function returns 15 then the notifications must be read from /dev/pigpio15. Notifications have the following structure. . . I seqno I flags I tick I level . . seqno: starts at 0 each time the handle is opened and then increments by one for each report. flags: two flags are defined, PI_NTFY_FLAGS_WDOG and PI_NTFY_FLAGS_ALIVE. If bit 5 is set (PI_NTFY_FLAGS_WDOG) then bits 0-4 of the flags indicate a GPIO which has had a watchdog timeout; if bit 6 is set (PI_NTFY_FLAGS_ALIVE) this indicates a keep alive signal on the pipe/socket and is sent once a minute in the absence of other notification activity. tick: the number of microseconds since system boot. It wraps around after 1h12m. level: indicates the level of each GPIO. If bit 1<<x is set then GPIO x is high. ... h = notify_open(pi, ) if h >= 0 notify_begin(pi, h, 1234) ... """ function notify_open(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_NO, 0, 0)) end """ Starts notifications on a handle. handle:= >=0 (as returned by a prior call to [*notify_open*]) bits:= a 32 bit mask indicating the GPIO to be notified. The notification sends state changes for each GPIO whose corresponding bit in bits is set. The following code starts notifications for GPIO 1, 4, 6, 7, and 10 (1234 = 0x04D2 = 0b0000010011010010). ... h = notify_open(pi, ) if h >= 0 notify_begin(pi, h, 1234) ... """ function notify_begin(self::Pi, handle, bits) return _u2i(_pigpio_command(self.sl, _PI_CMD_NB, handle, bits)) end """ Pauses notifications on a handle. handle:= >=0 (as returned by a prior call to [*notify_open*]) Notifications for the handle are suspended until [*notify_begin*] is called again. ... h = notify_open(pi, ) if h >= 0 notify_begin(pi, h, 1234) ... notify_pause(pi, h) ... notify_begin(pi, h, 1234) ... ... """ function notify_pause(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_NB, handle, 0)) end """ Stops notifications on a handle and releases the handle for reuse. handle:= >=0 (as returned by a prior call to [*notify_open*]) ... h = notify_open(pi, ) if h >= 0 notify_begin(pi, h, 1234) ... notify_close(pi, h) ... ... """ function notify_close(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_NC, handle, 0)) end """ Sets a watchdog timeout for a GPIO. user_gpio:= 0-31. wdog_timeout:= 0-60000. The watchdog is nominally in milliseconds. Only one watchdog may be registered per GPIO. The watchdog may be cancelled by setting timeout to 0. If no level change has been detected for the GPIO for timeout milliseconds any notification for the GPIO has a report written to the fifo with the flags set to indicate a watchdog timeout. The callback class interprets the flags and will call registered callbacks for the GPIO with level TIMEOUT. ... set_watchdog(pi, 23, 1000) # 1000 ms watchdog on GPIO 23 set_watchdog(pi, 23, 0) # cancel watchdog on GPIO 23 ... """ function set_watchdog(self::Pi, user_gpio, wdog_timeout) return _u2i(_pigpio_command( self.sl, _PI_CMD_WDOG, user_gpio, Int(wdog_timeout))) end """ Returns the levels of the bank 1 GPIO (GPIO 0-31). The returned 32 bit integer has a bit set if the corresponding GPIO is high. GPIO n has bit value (1<<n). ... print(bin(read_bank_1(pi, ))) 0b10010100000011100100001001111 ... """ function read_bank_1(self::Pi) return _pigpio_command(self.sl, _PI_CMD_BR1, 0, 0) end """ Returns the levels of the bank 2 GPIO (GPIO 32-53). The returned 32 bit integer has a bit set if the corresponding GPIO is high. GPIO n has bit value (1<<(n-32)). ... print(bin(read_bank_2(pi, ))) 0b1111110000000000000000 ... """ function read_bank_2(self::Pi) return _pigpio_command(self.sl, _PI_CMD_BR2, 0, 0) end """ Clears GPIO 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding GPIO is to be cleared. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the GPIO. ... clear_bank_1(int(pi, "111110010000",2)) ... """ function clear_bank_1(self::Pi, bits) return _u2i(_pigpio_command(self.sl, _PI_CMD_BC1, bits, 0)) end """ Clears GPIO 32-53 if the corresponding bit (0-21) in bits is set. bits:= a 32 bit mask with 1 set if the corresponding GPIO is to be cleared. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the GPIO. ... clear_bank_2(pi, 0x1010) ... """ function clear_bank_2(self::Pi, bits) return _u2i(_pigpio_command(self.sl, _PI_CMD_BC2, bits, 0)) end """ Sets GPIO 0-31 if the corresponding bit in bits is set. bits:= a 32 bit mask with 1 set if the corresponding GPIO is to be set. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the GPIO. ... set_bank_1(int(pi, "111110010000",2)) ... """ function set_bank_1(self::Pi, bits) return _u2i(_pigpio_command(self.sl, _PI_CMD_BS1, bits, 0)) end """ Sets GPIO 32-53 if the corresponding bit (0-21) in bits is set. bits:= a 32 bit mask with 1 set if the corresponding GPIO is to be set. A returned status of PI_SOME_PERMITTED indicates that the user is not allowed to write to one or more of the GPIO. ... set_bank_2(pi, 0x303) ... """ function set_bank_2(self::Pi, bits) return _u2i(_pigpio_command(self.sl, _PI_CMD_BS2, bits, 0)) end """ Starts a hardware clock on a GPIO at the specified frequency. Frequencies above 30MHz are unlikely to work. gpio:= see description clkfreq:= 0 (off) or 4689-250000000 (250M) Returns 0 if OK, otherwise PI_NOT_PERMITTED, PI_BAD_GPIO, PI_NOT_HCLK_GPIO, PI_BAD_HCLK_FREQ,or PI_BAD_HCLK_PASS. The same clock is available on multiple GPIO. The latest frequency setting will be used by all GPIO which share a clock. The GPIO must be one of the following. . . 4 clock 0 All models 5 clock 1 All models but A and B (reserved for system use) 6 clock 2 All models but A and B 20 clock 0 All models but A and B 21 clock 1 All models but A and Rev.2 B (reserved for system use) 32 clock 0 Compute module only 34 clock 0 Compute module only 42 clock 1 Compute module only (reserved for system use) 43 clock 2 Compute module only 44 clock 1 Compute module only (reserved for system use) . . Access to clock 1 is protected by a password as its use will likely crash the Pi. The password is given by or'ing 0x5A000000 with the GPIO number. ... hardware_clock(pi, 4, 5000) # 5 KHz clock on GPIO 4 hardware_clock(pi, 4, 40000000) # 40 MHz clock on GPIO 4 ... """ function hardware_clock(self::Pi, gpio, clkfreq) return _u2i(_pigpio_command(self.sl, _PI_CMD_HC, gpio, clkfreq)) end """ Starts hardware PWM on a GPIO at the specified frequency and dutycycle. Frequencies above 30MHz are unlikely to work. NOTE: Any waveform started by [*wave_send_once*], [*wave_send_repeat*], or [*wave_chain*] will be cancelled. This function is only valid if the pigpio main clock is PCM. The main clock defaults to PCM but may be overridden when the pigpio daemon is started (option -t). gpio:= see descripton PWMfreq:= 0 (off) or 1-125000000 (125M). PWMduty:= 0 (off) to 1000000 (1M)(fully on). Returns 0 if OK, otherwise PI_NOT_PERMITTED, PI_BAD_GPIO, PI_NOT_HPWM_GPIO, PI_BAD_HPWM_DUTY, PI_BAD_HPWM_FREQ. The same PWM channel is available on multiple GPIO. The latest frequency and dutycycle setting will be used by all GPIO which share a PWM channel. The GPIO must be one of the following. . . 12 PWM channel 0 All models but A and B 13 PWM channel 1 All models but A and B 18 PWM channel 0 All models 19 PWM channel 1 All models but A and B 40 PWM channel 0 Compute module only 41 PWM channel 1 Compute module only 45 PWM channel 1 Compute module only 52 PWM channel 0 Compute module only 53 PWM channel 1 Compute module only . . The actual number of steps beween off and fully on is the integral part of 250 million divided by PWMfreq. The actual frequency set is 250 million / steps. There will only be a million steps for a PWMfreq of 250. Lower frequencies will have more steps and higher frequencies will have fewer steps. PWMduty is automatically scaled to take this into account. ... hardware_PWM(pi, 18, 800, 250000) # 800Hz 25% dutycycle hardware_PWM(pi, 18, 2000, 750000) # 2000Hz 75% dutycycle ... """ function hardware_PWM(self::Pi, gpio, PWMfreq, PWMduty) # pigpio message format # I p1 gpio # I p2 PWMfreq # I p3 4 ## extension ## # I PWMdutycycle extents = IOBuffer() extents =write(extents, 10) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_HP, gpio, PWMfreq, 4, extents)) end """ Returns the current system tick. Tick is the number of microseconds since system boot. As an unsigned 32 bit quantity tick wraps around approximately every 71.6 minutes. ... t1 = get_current_tick(pi, ) time.sleep(1) t2 = get_current_tick(pi, ) ... """ function get_current_tick(self::Pi) return _pigpio_command(self.sl, _PI_CMD_TICK, 0, 0) end """ Returns the Pi's hardware revision number. The hardware revision is the last few characters on the Revision line of /proc/cpuinfo. The revision number can be used to determine the assignment of GPIO to pins (see [*gpio*]). There are at least three types of board. Type 1 boards have hardware revision numbers of 2 and 3. Type 2 boards have hardware revision numbers of 4, 5, 6, and 15. Type 3 boards have hardware revision numbers of 16 or greater. If the hardware revision can not be found or is not a valid hexadecimal number the function returns 0. ... print(get_hardware_revision(pi, )) 2 ... """ function get_hardware_revision(self::Pi) return _pigpio_command(self.sl, _PI_CMD_HWVER, 0, 0) end """ Returns the pigpio software version. ... v = get_pigpio_version(pi, ) ... """ function get_pigpio_version(self::Pi) return _pigpio_command(self.sl, _PI_CMD_PIGPV, 0, 0) end """ Calls a pigpio function customised by the user. arg1:= >=0, default 0. arg2:= >=0, default 0. argx:= extra arguments (each 0-255), default empty. The returned value is an integer which by convention should be >=0 for OK and <0 for error. ... value = custom_1(pi, ) value = custom_1(pi, 23) value = custom_1(pi, 0, 55) value = custom_1(pi, 23, 56, [1, 5, 7]) value = custom_1(pi, 23, 56, b"hello") value = custom_1(pi, 23, 56, "hello") ... """ function custom_1(self, arg1=0, arg2=0, argx=[]) # I p1 arg1 # I p2 arg2 # I p3 len ## extension ## # s len argx bytes return u2i(_pigpio_command_ext( self.sl, _PI_CMD_CF1, arg1, arg2, length(argx), [argx])) end """ Calls a pigpio function customised by the user. arg1:= >=0, default 0. argx:= extra arguments (each 0-255), default empty. retMax:= >=0, maximum number of bytes to return, default 8192. The returned value is a tuple of the number of bytes returned and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (count, data) = custom_2(pi, ) (count, data) = custom_2(pi, 23) (count, data) = custom_2(pi, 23, [1, 5, 7]) (count, data) = custom_2(pi, 23, b"hello") (count, data) = custom_2(pi, 23, "hello", 128) ... """ function custom_2(self, arg1=0, argx=[], retMax=8192) # I p1 arg1 # I p2 retMax # I p3 len ## extension ## # s len argx bytes # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command_ext( self.sl, _PI_CMD_CF2, arg1, retMax, length(argx), [argx], false)) if bytes > 0 data = rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Calls a user supplied function (a callback) whenever the specified GPIO edge is detected. user_gpio:= 0-31. edge:= EITHER_EDGE, RISING_EDGE (default), or FALLING_EDGE. func:= user supplied callback function. The user supplied callback receives three parameters, the GPIO, the level, and the tick. If a user callback is not specified a default tally callback is provided which simply counts edges. The count may be retrieved by calling the tally function. The count may be reset to zero by calling the reset_tally function. The callback may be cancelled by calling the cancel function. A GPIO may have multiple callbacks (although I can't think of a reason to do so). ... end function cbf(gpio, level, tick) print(gpio, level, tick) cb1 = callback(pi, 22, pigpio.EITHER_EDGE, cbf) cb2 = callback(pi, 4, pigpio.EITHER_EDGE) cb3 = callback(pi, 17) print(cb3.tally()) cb3.reset_tally() cb1.cancel() # To cancel callback cb1. ... """ function callback(self::Pi, user_gpio, edge=RISING_EDGE, func=nothing) return _callback(self._notify, user_gpio, edge, func) end """ Wait for an edge event on a GPIO. user_gpio:= 0-31. edge:= EITHER_EDGE, RISING_EDGE (default), or FALLING_EDGE. wait_timeout:= >=0.0 (default 60.0). The function returns when the edge is detected or after the number of seconds specified by timeout has expired. Do not use this function for precise timing purposes, the edge is only checked 20 times a second. Whenever you need to know the accurate time of GPIO events use a [*callback*] function. The function returns true if the edge is detected, otherwise false. ... if wait_for_edge(pi, 23) print("Rising edge detected") else print("wait for edge timed out") if wait_for_edge(pi, 23, pigpio.FALLING_EDGE, 5.0) print("Falling edge detected") else print("wait for falling edge timed out") ... """ function wait_for_edge(self::Pi, user_gpio, edge=RISING_EDGE, wait_timeout=60.0) a = _wait_for_edge(self.notify, user_gpio, edge, wait_timeout) return a.trigger end """ Grants access to a Pi's GPIO. host:= the host name of the Pi on which the pigpio daemon is running. The default is localhost unless overridden by the PIGPIO_ADDR environment variable. port:= the port number on which the pigpio daemon is listening. The default is 8888 unless overridden by the PIGPIO_PORT environment variable. The pigpio daemon must have been started with the same port number. This connects to the pigpio daemon and reserves resources to be used for sending commands and receiving notifications. An instance attribute [*connected*] may be used to check the success of the connection. If the connection is established successfully [*connected*] will be true, otherwise false. ... pi = pigpio.pi() # use defaults pi = pigpio.pi('mypi') # specify host, default port pi = pigpio.pi('mypi', 7777) # specify host and port pi = pigpio.pi() # exit script if no connection if not pi.connected exit() ... """ function Pi(; host = get(ENV, "PIGPIO_ADDR", ""), port = get(ENV, "PIGPIO_PORT", 8888)) port = Int(port) if host == "" || host == nothing host = "localhost" end try sock = connect(host, port) ccall(:uv_tcp_nodelay, Cint, (Ptr{Cvoid}, Cuint), sock, 1) # Disable Nagle's Algorithm sl = SockLock(sock, ReentrantLock()) notify = CallbackThread(sl, host, port) self = Pi(host, port, true, sl, notify) @info "Successfully connected!" return self #atexit.register(self.stop) #TODO catch error println("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") println("Can't connect to pigpio at $host:$port") println("Did you start the pigpio daemon? E.g. sudo pigpiod\n") println("Did you specify the correct Pi host/port in the environment") println("variables PIGPIO_ADDR/PIGPIO_PORT?") println("E.g. export PIGPIO_ADDR=soft, export PIGPIO_PORT=8888\n") println("Did you specify the correct Pi host/port in the") println("Pi() function? E.g. Pi('soft', 8888))") println("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") throw(error) end end """Release pigpio resources. ... stop(pi) ... """ function stop(self::Pi) self.connected = false stop(self.notify) close(self.sl.s) end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
11914
""" Returns a handle for the SPI device on channel. Data will be transferred at baud bits per second. The flags may be used to modify the default behaviour of 4-wire operation, mode 0, active low chip select. An auxiliary SPI device is available on all models but the A and B and may be selected by setting the A bit in the flags. The auxiliary device has 3 chip selects and a selectable word size in bits. spi_channel:= 0-1 (0-2 for the auxiliary SPI device). baud:= 32K-125M (values above 30M are unlikely to work). spi_flags:= see below. Normally you would only use the [*spi_**] functions if you are or will be connecting to the Pi over a network. If you will always run on the local Pi use the standard SPI module instead. spi_flags consists of the least significant 22 bits. . . 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 b b b b b b R T n n n n W A u2 u1 u0 p2 p1 p0 m m . . mm defines the SPI mode. WARNING: modes 1 and 3 do not appear to work on the auxiliary device. . . Mode POL PHA 0 0 0 1 0 1 2 1 0 3 1 1 . . px is 0 if CEx is active low (default) and 1 for active high. ux is 0 if the CEx GPIO is reserved for SPI (default) and 1 otherwise. A is 0 for the standard SPI device, 1 for the auxiliary SPI. W is 0 if the device is not 3-wire, 1 if the device is 3-wire. Standard SPI device only. nnnn defines the number of bytes (0-15) to write before switching the MOSI line to MISO to read data. This field is ignored if W is not set. Standard SPI device only. T is 1 if the least significant bit is transmitted on MOSI first, the default (0) shifts the most significant bit out first. Auxiliary SPI device only. R is 1 if the least significant bit is received on MISO first, the default (0) receives the most significant bit first. Auxiliary SPI device only. bbbbbb defines the word size in bits (0-32). The default (0) sets 8 bits per word. Auxiliary SPI device only. The [*spi_read*], [*spi_write*], and [*spi_xfer*] functions transfer data packed into 1, 2, or 4 bytes according to the word size in bits. For bits 1-8 there will be one byte per character. For bits 9-16 there will be two bytes per character. For bits 17-32 there will be four bytes per character. E.g. 32 12-bit words will be transferred in 64 bytes. The other bits in flags should be set to zero. ... # open SPI device on channel 1 in mode 3 at 50000 bits per second h = spi_open(pi, 1, 50000, 3) ... """ function spi_open(self::Pi, spi_channel, baud, spi_flags=0) # I p1 spi_channel # I p2 baud # I p3 4 ## extension ## # I spi_flags extents=IOBuffer() write(extents, spi_flags::Cint) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_SPIO, spi_channel, baud, 4, extents)) end """ Closes the SPI device associated with handle. handle:= >=0 (as returned by a prior call to [*spi_open*]). ... spi_close(pi, h) ... """ function spi_close(self, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_SPIC, handle, 0)) end """ Reads count bytes from the SPI device associated with handle. handle:= >=0 (as returned by a prior call to [*spi_open*]). count:= >0, the number of bytes to read. The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (b, d) = spi_read(pi, h, 60) # read 60 bytes from device h if b == 60 # process read data else # error path ... """ function spi_read(self::Pi, handle, count) # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command( self.sl, _PI_CMD_SPIR, handle, count, false)) if bytes > 0 data = rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Writes the data bytes to the SPI device associated with handle. handle:= >=0 (as returned by a prior call to [*spi_open*]). data:= the bytes to write. ... spi_write(pi, 0, b'\\x02\\xc0\\x80') # write 3 bytes to device 0 spi_write(pi, 0, b'defgh') # write 5 bytes to device 0 spi_write(pi, 0, "def") # write 3 bytes to device 0 spi_write(pi, 1, [2, 192, 128]) # write 3 bytes to device 1 ... """ function spi_write(self::Pi, handle, data) # I p1 handle # I p2 0 # I p3 len ## extension ## # s len data bytes return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_SPIW, handle, 0, length(data), data)) end """ Writes the data bytes to the SPI device associated with handle, returning the data bytes read from the device. handle:= >=0 (as returned by a prior call to [*spi_open*]). data:= the bytes to write. The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (count, rx_data) = spi_xfer(pi, h, b'\\x01\\x80\\x00') (count, rx_data) = spi_xfer(pi, h, [1, 128, 0]) (count, rx_data) = spi_xfer(pi, h, b"hello") (count, rx_data) = spi_xfer(pi, h, "hello") ... """ function spi_xfer(self::Pi, handle, data) # I p1 handle # I p2 0 # I p3 len ## extension ## # s len data bytes # Don't raise exception. Must release lock. bytes = u2i(_pigpio_command_ext( self.sl, _PI_CMD_SPIX, handle, 0, length(data), data, false)) if bytes > 0 data = rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Returns a handle for the serial tty device opened at baud bits per second. tty:= the serial device to open. baud:= baud rate in bits per second, see below. ser_flags:= 0, no flags are currently defined. Normally you would only use the [*serial_**] functions if you are or will be connecting to the Pi over a network. If you will always run on the local Pi use the standard serial module instead. The baud rate must be one of 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, or 230400. ... h1 = serial_open(pi, "/dev/ttyAMA0", 300) h2 = serial_open(pi, "/dev/ttyUSB1", 19200, 0) ... """ function serial_open(self::Pi, tty, baud, ser_flags=0) # I p1 baud # I p2 ser_flags # I p3 len ## extension ## # s len data bytes return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_SERO, baud, ser_flags, length(tty), [tty])) end """ Closes the serial device associated with handle. handle:= >=0 (as returned by a prior call to [*serial_open*]). ... serial_close(pi, h1) ... """ function serial_close(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_SERC, handle, 0)) end """ Returns a single byte from the device associated with handle. handle:= >=0 (as returned by a prior call to [*serial_open*]). ... b = serial_read_byte(pi, h1) ... """ function serial_read_byte(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_SERRB, handle, 0)) end """ Writes a single byte to the device associated with handle. handle:= >=0 (as returned by a prior call to [*serial_open*]). byte_val:= 0-255, the value to write. ... serial_write_byte(pi, h1, 23) serial_write_byte(h1, ord(pi, 'Z')) ... """ function serial_write_byte(self::Pi, handle, byte_val) return _u2i( _pigpio_command(self.sl, _PI_CMD_SERWB, handle, byte_val)) end """ Reads up to count bytes from the device associated with handle. handle:= >=0 (as returned by a prior call to [*serial_open*]). count:= >0, the number of bytes to read. The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). ... (b, d) = serial_read(pi, h2, 100) if b > 0 # process read data ... """ function serial_read(self::Pi, handle, count) # Don't raise exception. Must release lock. bytes = u2i( _pigpio_command(self.sl, _PI_CMD_SERR, handle, count, false)) if bytes > 0 data = rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Writes the data bytes to the device associated with handle. handle:= >=0 (as returned by a prior call to [*serial_open*]). data:= the bytes to write. ... serial_write(pi, h1, b'\\x02\\x03\\x04') serial_write(pi, h2, b'help') serial_write(pi, h2, "hello") serial_write(pi, h1, [2, 3, 4]) ... """ function serial_write(self::Pi, handle, data) # I p1 handle # I p2 0 # I p3 len ## extension ## # s len data bytes return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_SERW, handle, 0, length(data), [data])) end """ Returns the number of bytes available to be read from the device associated with handle. handle:= >=0 (as returned by a prior call to [*serial_open*]). ... rdy = serial_data_available(pi, h1) if rdy > 0 (b, d) = serial_read(pi, h1, rdy) ... """ function serial_data_available(self::Pi, handle) return _u2i(_pigpio_command(self.sl, _PI_CMD_SERDA, handle, 0)) end """ Opens a GPIO for bit bang reading of serial data. user_gpio:= 0-31, the GPIO to use. baud:= 50-250000, the baud rate. bb_bits:= 1-32, the number of bits per word, default 8. The serial data is held in a cyclic buffer and is read using [*bb_serial_read*]. It is the caller's responsibility to read data from the cyclic buffer in a timely fashion. ... status = bb_serial_read_open(pi, 4, 19200) status = bb_serial_read_open(pi, 17, 9600) ... """ function bb_serial_read_open(self, user_gpio, baud, bb_bits=8) # pigpio message format # I p1 user_gpio # I p2 baud # I p3 4 ## extension ## # I bb_bits extents = IOBuffer() write(extents, bb_bits::Cuint) return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_SLRO, user_gpio, baud, 4, extents)) end """ Returns data from the bit bang serial cyclic buffer. user_gpio:= 0-31 (opened in a prior call to [*bb_serial_read_open*]) The returned value is a tuple of the number of bytes read and a bytearray containing the bytes. If there was an error the number of bytes read will be less than zero (and will contain the error code). The bytes returned for each character depend upon the number of data bits [*bb_bits*] specified in the [*bb_serial_read_open*] command. For [*bb_bits*] 1-8 there will be one byte per character. For [*bb_bits*] 9-16 there will be two bytes per character. For [*bb_bits*] 17-32 there will be four bytes per character. ... (count, data) = bb_serial_read(pi, 4) ... """ function bb_serial_read(self, user_gpio) # Don't raise exception. Must release lock. bytes = u2i( _pigpio_command(self.sl, _PI_CMD_SLR, user_gpio, 10000, false)) if bytes > 0 data = self._rxbuf(bytes) else data = "" end unlock(self.sl.l) return bytes, data end """ Closes a GPIO for bit bang reading of serial data. user_gpio:= 0-31 (opened in a prior call to [*bb_serial_read_open*]) ... status = bb_serial_read_close(pi, 17) ... """ function bb_serial_read_close(self, user_gpio) return _u2i(_pigpio_command(self.sl, _PI_CMD_SLRC, user_gpio, 0)) end """ Invert serial logic. user_gpio:= 0-31 (opened in a prior call to [*bb_serial_read_open*]) invert:= 0-1 (1 invert, 0 normal) ... status = bb_serial_invert(pi, 17, 1) ... """ function bb_serial_invert(self, user_gpio, invert) return _u2i(_pigpio_command(self.sl, _PI_CMD_SLRI, user_gpio, invert)) end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
13467
""" Clears all waveforms and any data added by calls to the [*wave_add_**] functions. ... wave_clear(pi, ) ... """ function wave_clear(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVCLR, 0, 0)) end """ Starts a new empty waveform. You would not normally need to call this function as it is automatically called after a waveform is created with the [*wave_create*] function. ... wave_add_new(pi, ) ... """ function wave_add_new(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVNEW, 0, 0)) end """ Adds a list of pulses to the current waveform. pulses:= list of pulses to add to the waveform. Returns the new total number of pulses in the current waveform. The pulses are interleaved in time order within the existing waveform (if any). Merging allows the waveform to be built in parts, that is the settings for GPIO#1 can be added, and then GPIO#2 etc. If the added waveform is intended to start after or within the existing waveform then the first pulse should consist solely of a delay. ... G1=4 G2=24 set_mode(pi, G1, pigpio.OUTPUT) set_mode(pi, G2, pigpio.OUTPUT) flash_500=[] # flash every 500 ms flash_100=[] # flash every 100 ms # ON OFF DELAY flash_500.append(pigpio.pulse(1<<G1, 1<<G2, 500000)) flash_500.append(pigpio.pulse(1<<G2, 1<<G1, 500000)) flash_100.append(pigpio.pulse(1<<G1, 1<<G2, 100000)) flash_100.append(pigpio.pulse(1<<G2, 1<<G1, 100000)) wave_clear(pi, ) # clear any existing waveforms wave_add_generic(pi, flash_500) # 500 ms flashes f500 = wave_create(pi, ) # create and save id wave_add_generic(pi, flash_100) # 100 ms flashes f100 = wave_create(pi, ) # create and save id wave_send_repeat(pi, f500) time.sleep(4) wave_send_repeat(pi, f100) time.sleep(4) wave_send_repeat(pi, f500) time.sleep(4) wave_tx_stop(pi, ) # stop waveform wave_clear(pi, ) # clear all waveforms ... """ function wave_add_generic(self::Pi, pulses) # pigpio message format # I p1 0 # I p2 0 # I p3 pulses * 12 ## extension ## # III on/off/delay * pulses if length(pulses) ext = bytearray() for p in pulses ext.extend(pack("III", p.gpio_on, p.gpio_off, p.delay)) end extents = [ext] return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_WVAG, 0, 0, length(pulses)*12, extents)) else return 0 end end """ Adds a waveform representing serial data to the existing waveform (if any). The serial data starts [*offset*] microseconds from the start of the waveform. user_gpio:= GPIO to transmit data. You must set the GPIO mode to output. baud:= 50-1000000 bits per second. data:= the bytes to write. offset:= number of microseconds from the start of the waveform, default 0. bb_bits:= number of data bits, default 8. bb_stop:= number of stop half bits, default 2. Returns the new total number of pulses in the current waveform. The serial data is formatted as one start bit, [*bb_bits*] data bits, and [*bb_stop*]/2 stop bits. It is legal to add serial data streams with different baud rates to the same waveform. The bytes required for each character depend upon [*bb_bits*]. For [*bb_bits*] 1-8 there will be one byte per character. For [*bb_bits*] 9-16 there will be two bytes per character. For [*bb_bits*] 17-32 there will be four bytes per character. ... wave_add_serial(pi, 4, 300, 'Hello world') wave_add_serial(pi, 4, 300, b"Hello world") wave_add_serial(pi, 4, 300, b'\\x23\\x01\\x00\\x45') wave_add_serial(pi, 17, 38400, [23, 128, 234], 5000) ... """ function wave_add_serial( self::Pi, user_gpio, baud, data, offset=0, bb_bits=8, bb_stop=2) if length(data) extents = [pack("III", bb_bits, bb_stop, offset), data] return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_WVAS, user_gpio, baud, length(data)+12, extents)) else return 0 end end """ Creates a waveform from the data provided by the prior calls to the [*wave_add_**] functions. Returns a wave id (>=0) if OK, otherwise PI_EMPTY_WAVEFORM, PI_TOO_MANY_CBS, PI_TOO_MANY_OOL, or PI_NO_WAVEFORM_ID. The data provided by the [*wave_add_**] functions is consumed by this function. As many waveforms may be created as there is space available. The wave id is passed to [*wave_send_**] to specify the waveform to transmit. Normal usage would be Step 1. [*wave_clear*] to clear all waveforms and added data. Step 2. [*wave_add_**] calls to supply the waveform data. Step 3. [*wave_create*] to create the waveform and get a unique id Repeat steps 2 and 3 as needed. Step 4. [*wave_send_**] with the id of the waveform to transmit. A waveform comprises one or more pulses. A pulse specifies 1) the GPIO to be switched on at the start of the pulse. 2) the GPIO to be switched off at the start of the pulse. 3) the delay in microseconds before the next pulse. Any or all the fields can be zero. It doesn't make any sense to set all the fields to zero (the pulse will be ignored). When a waveform is started each pulse is executed in order with the specified delay between the pulse and the next. ... wid = wave_create(pi, ) ... """ function wave_create(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVCRE, 0, 0)) end """ This function deletes the waveform with id wave_id. wave_id:= >=0 (as returned by a prior call to [*wave_create*]). Wave ids are allocated in order, 0, 1, 2, etc. ... wave_delete(pi, 6) # delete waveform with id 6 wave_delete(pi, 0) # delete waveform with id 0 ... """ function wave_delete(self::Pi, wave_id) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVDEL, wave_id, 0)) end """ This function is deprecated and has been removed. Use [*wave_create*]/[*wave_send_**] instead. """ function wave_tx_start(self::Pi) # DEPRECATED return _u2i(_pigpio_command(self.sl, _PI_CMD_WVGO, 0, 0)) end """ This function is deprecated and has beeen removed. Use [*wave_create*]/[*wave_send_**] instead. """ function wave_tx_repeat(self::Pi) # DEPRECATED return _u2i(_pigpio_command(self.sl, _PI_CMD_WVGOR, 0, 0)) end """ Transmits the waveform with id wave_id. The waveform is sent once. NOTE: Any hardware PWM started by [*hardware_PWM*] will be cancelled. wave_id:= >=0 (as returned by a prior call to [*wave_create*]). Returns the number of DMA control blocks used in the waveform. ... cbs = wave_send_once(pi, wid) ... """ function wave_send_once(self::Pi, wave_id) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVTX, wave_id, 0)) end """ Transmits the waveform with id wave_id. The waveform repeats until wave_tx_stop is called or another call to [*wave_send_**] is made. NOTE: Any hardware PWM started by [*hardware_PWM*] will be cancelled. wave_id:= >=0 (as returned by a prior call to [*wave_create*]). Returns the number of DMA control blocks used in the waveform. ... cbs = wave_send_repeat(pi, wid) ... """ function wave_send_repeat(self::Pi, wave_id) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVTXR, wave_id, 0)) end """ Transmits the waveform with id wave_id using mode mode. wave_id:= >=0 (as returned by a prior call to [*wave_create*]). mode:= WAVE_MODE_ONE_SHOT, WAVE_MODE_REPEAT, WAVE_MODE_ONE_SHOT_SYNC, or WAVE_MODE_REPEAT_SYNC. WAVE_MODE_ONE_SHOT: same as [*wave_send_once*]. WAVE_MODE_REPEAT same as [*wave_send_repeat*]. WAVE_MODE_ONE_SHOT_SYNC same as [*wave_send_once*] but tries to sync with the previous waveform. WAVE_MODE_REPEAT_SYNC same as [*wave_send_repeat*] but tries to sync with the previous waveform. WARNING: bad things may happen if you delete the previous waveform before it has been synced to the new waveform. NOTE: Any hardware PWM started by [*hardware_PWM*] will be cancelled. wave_id:= >=0 (as returned by a prior call to [*wave_create*]). Returns the number of DMA control blocks used in the waveform. ... cbs = wave_send_using_mode(pi, wid, WAVE_MODE_REPEAT_SYNC) ... """ function wave_send_using_mode(self::Pi, wave_id, mode) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVTXM, wave_id, mode)) end """ Returns the id of the waveform currently being transmitted. Returns the waveform id or one of the following special values WAVE_NOT_FOUND (9998) - transmitted wave not found. NO_TX_WAVE (9999) - no wave being transmitted. ... wid = wave_tx_at(pi, ) ... """ function wave_tx_at(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVTAT, 0, 0)) end """ Returns 1 if a waveform is currently being transmitted, otherwise 0. ... wave_send_once(pi, 0) # send first waveform while wave_tx_busy(pi, ): # wait for waveform to be sent time.sleep(0.1) wave_send_once(pi, 1) # send next waveform ... """ function wave_tx_busy(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVBSY, 0, 0)) end """ Stops the transmission of the current waveform. This function is intended to stop a waveform started with wave_send_repeat. ... wave_send_repeat(pi, 3) time.sleep(5) wave_tx_stop(pi, ) ... """ function wave_tx_stop(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVHLT, 0, 0)) end """ This function transmits a chain of waveforms. NOTE: Any hardware PWM started by [*hardware_PWM*] will be cancelled. The waves to be transmitted are specified by the contents of data which contains an ordered list of [*wave_id*]s and optional command codes and related data. Returns 0 if OK, otherwise PI_CHAIN_NESTING, PI_CHAIN_LOOP_CNT, PI_BAD_CHAIN_LOOP, PI_BAD_CHAIN_CMD, PI_CHAIN_COUNTER, PI_BAD_CHAIN_DELAY, PI_CHAIN_TOO_BIG, or PI_BAD_WAVE_ID. Each wave is transmitted in the order specified. A wave may occur multiple times per chain. A blocks of waves may be transmitted multiple times by using the loop commands. The block is bracketed by loop start and end commands. Loops may be nested. Delays between waves may be added with the delay command. The following command codes are supported Name @ Cmd & Data @ Meaning Loop Start @ 255 0 @ Identify start of a wave block Loop Repeat @ 255 1 x y @ loop x + y*256 times Delay @ 255 2 x y @ delay x + y*256 microseconds Loop Forever @ 255 3 @ loop forever If present Loop Forever must be the last entry in the chain. The code is currently dimensioned to support a chain with roughly 600 entries and 20 loop counters. ... #!/usr/bin/env python import time import pigpio WAVES=5 GPIO=4 wid=[0]*WAVES pi = pigpio.pi() # Connect to local Pi. set_mode(pi, GPIO, pigpio.OUTPUT); for i in range(WAVES) pi.wave_add_generic([ pigpio.pulse(1<<GPIO, 0, 20), pigpio.pulse(0, 1<<GPIO, (i+1)*200)]); wid[i] = wave_create(pi, ); pi.wave_chain([ wid[4], wid[3], wid[2], # transmit waves 4+3+2 255, 0, # loop start wid[0], wid[0], wid[0], # transmit waves 0+0+0 255, 0, # loop start wid[0], wid[1], # transmit waves 0+1 255, 2, 0x88, 0x13, # delay 5000us 255, 1, 30, 0, # loop end (repeat 30 times) 255, 0, # loop start wid[2], wid[3], wid[0], # transmit waves 2+3+0 wid[3], wid[1], wid[2], # transmit waves 3+1+2 255, 1, 10, 0, # loop end (repeat 10 times) 255, 1, 5, 0, # loop end (repeat 5 times) wid[4], wid[4], wid[4], # transmit waves 4+4+4 255, 2, 0x20, 0x4E, # delay 20000us wid[0], wid[0], wid[0], # transmit waves 0+0+0 ]) while wave_tx_busy(pi, ) time.sleep(0.1); for i in range(WAVES) wave_delete(pi, wid[i]) stop(pi, ) ... """ function wave_chain(self::Pi, data) # I p1 0 # I p2 0 # I p3 len ## extension ## # s len data bytes return _u2i(_pigpio_command_ext( self.sl, _PI_CMD_WVCHA, 0, 0, length(data), [data])) end """ Returns the length in microseconds of the current waveform. ... micros = wave_get_micros(pi, ) ... """ function wave_get_micros(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVSM, 0, 0)) end """ Returns the maximum possible size of a waveform in microseconds. ... micros = wave_get_max_micros(pi, ) ... """ function wave_get_max_micros(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVSM, 2, 0)) end """ Returns the length in pulses of the current waveform. ... pulses = wave_get_pulses(pi, ) ... """ function wave_get_pulses(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVSP, 0, 0)) end """ Returns the maximum possible size of a waveform in pulses. ... pulses = wave_get_max_pulses(pi, ) ... """ function wave_get_max_pulses(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVSP, 2, 0)) end """ Returns the length in DMA control blocks of the current waveform. ... cbs = wave_get_cbs(pi, ) ... """ function wave_get_cbs(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVSC, 0, 0)) end """ Returns the maximum possible size of a waveform in DMA control blocks. ... cbs = wave_get_max_cbs(pi, ) ... """ function wave_get_max_cbs(self::Pi) return _u2i(_pigpio_command(self.sl, _PI_CMD_WVSC, 2, 0)) end
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
code
55
using PiGPIO # write your own tests here @test 1 == 1
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
docs
2038
# PiGPIO.jl #### Control GPIO pins on the Raspberry Pi from Julia [![][docs-stable-img]][docs-stable-url] [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://juliahub.com/docs/PiGPIO/ [![PiGPIO](https://img.youtube.com/vi/UmSQjkaATk8/0.jpg)](https://www.youtube.com/watch?v=UmSQjkaATk8) PiGPIO.jl is a Julia package for the Raspberry which communicates with the pigpio daemon to allow control of the general purpose input outputs (GPIO). This package is an effective translation of the python package for the same. Which can be found [here](http://abyz.me.uk/rpi/pigpio/python.html) Click [here](https://medium.com/@imkimfung/using-julia-to-control-leds-on-a-raspberry-pi-b320be83e503) for an **in-depth tutorial** on how you can control GPIO pins such as LEDs from Julia on the Raspberry Pi. ### Features * OS independent. Only Julia 1.0+ required. * Controls one or more Pi's. * Hardware timed pulse width modulation. * Hardware timed servo pulse. * Callbacks when any of GPIO change state. * Create and transmit precise waveforms. * Read/Write GPIO and set their modes. * Wrappers for I2C, SPI, and serial links. Once a pigpio daemon is launched on the pi this package can connect to it and communicate with it to manipulate the GPIO pins of the pi. The actual work is done by the daemon. One benefit of working this way is that you can remotely access the pi over a network and multiple instances can be connected to the daemon simultaneously. ## Launching the Daemon Launching the daemon requires sudo privileges. Launch by typing `sudo pigpiod` in the terminal. ## Installation and Usage ```julia using Pkg Pkg.add("PiGPIO") using PiGPIO pi=Pi() #connect to pigpiod daemon on localhost ``` ## Example Usage ```julia set_mode(p::Pi, pin::Int, mode) get_mode(p::Pi, pin::Int) # mode can be INPUT or OUTPUT PiGPIO.read(p, pin) PiGPIO.write(p, pin, state) #state can be HIGH, LOW, ON, OFF PiGPIO.set_PWM_dutycycle(p, pin, dutycyle) #dutycyle defaults to a range 0-255 ```
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
docs
2994
## Overview Via this tutorial, we shall be going over the entire process of installation and use of the Julia Programming language on a Raspberry Pi. We will be using the [PiGPIO.jl](https://github.com/JuliaBerry/PiGPIO.jl) library for controlling GPIO elements (namely LEDs). We shall be building a simple circuit of two alternately blinking LEDs. ## What you'll need You will require a Raspberry Pi (I am using a Raspberry Pi 3 model B+), along with the standard peripherals(keyboard, mouse, display, power supply), 1 breadboard, 2 resistors, 2 LEDs and jumper wires. I am assuming that you have the Raspbian OS set up and running on the Raspberry Pi. If not, take a look at [this tutorial.](https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up) ## Setting up Julia In your __Raspbian commmand line__, simply run: ``` sudo apt install julia ``` Next, we need to launch a __pigpio daemon__, which PiGPIO.jl can connect to and control the GPIO pins. To do this, run the following command. ``` sudo pigpiod ``` Then, run this to enter the __Julia REPL__ ``` julia ``` now run the following commands to install the __PiGPIO__ library: ``` using Pkg Pkg.add("PiGPIO") ``` You should now be ready to start with the circuit ## Building the Circuit connect the __cathode__ of both the LEDs to the __ground rail__ of the breadboard. Connect the __anode__, via an appropriate resistor (I used 82 ohm) to __GPIO pins 2 and 3__ of the Raspberry Pi. ### circuit diagram for reference: ![](https://github.com/NandVinchhi/JuliaGPIO/blob/master/circuit.png) You are now ready to launch Julia and start coding. PiGPIO.jl should be installed by now. ## The Code You can run this code through an __external text editor__ or in the __Julia REPL__ itself. First we need to import the package with the __using__ keyword. Next, we need to initialize the Raspberry Pi by creating an object variable and initialising it to __Pi()__ ```Julia using PiGPIO pi = Pi() ``` Next, we need to intitialize the GPIO pins and their state (__INPUT/OUTPUT__ --> in this case __OUTPUT__). ```Julia pin1 = 2 # GPIO pin 2 pin2 = 3 # GPIO pin 3 set_mode(pi, pin1, PiGPIO.OUTPUT) set_mode(pi, pin2, PiGPIO.OUTPUT) # ^ initialization ``` Now we shall use a for loop to implement the blinking LEDs ```Julia num_loops = 20 # The number of times you want the lights to blink. for i = 1:num_loops PiGPIO.write(pi, pin1, HIGH) # setting GPIO pin state PiGPIO.write(pi, pin2, LOW) sleep(1) # delay in seconds PiGPIO.write(pi, pin1, LOW) PiGPIO.write(pi, pin2, HIGH) sleep(1) end ``` You should be getting blinking LEDs when you run this code. ### pictures of the final working model: ![](https://github.com/NandVinchhi/JuliaGPIO/blob/master/pic1.jpg) ![](https://github.com/NandVinchhi/JuliaGPIO/blob/master/pic2.jpg) This project was made by Nand Vinchhi for the purpose of __GCI 2019__. Circuit diagrams drawn with [circuit-diagram.org](https://www.circuit-diagram.org/)
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
docs
65
# PiGPIO API ```@index ``` ```@autodocs Modules = [PiGPIO] ```
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
d1a06655265b3ca5a4af73ecdd1a3d60e04711f6
docs
1862
# PiGPIO.jl Documentation for PiGPIO.jl #### Control GPIO pins on the Raspberry Pi from Julia [![][docs-stable-img]][docs-stable-url] [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://pkg.julialang.org/docs/PiGPIO/ [![PiGPIO](https://img.youtube.com/vi/UmSQjkaATk8/0.jpg)](https://www.youtube.com/watch?v=UmSQjkaATk8) PiGPIO.jl is a Julia package for the Raspberry which communicates with the pigpio daemon to allow control of the general purpose input outputs (GPIO). This package is an effective translation of the python package for the same. Which can be found [here](http://abyz.me.uk/rpi/pigpio/python.html) ### Features * OS independent. Only Julia 1.0+ required. * Controls one or more Pi's. * Hardware timed pulse width modulation. * Hardware timed servo pulse. * Callbacks when any of GPIO change state. * Create and transmit precise waveforms. * Read/Write GPIO and set their modes. * Wrappers for I2C, SPI, and serial links. Once a pigpio daemon is launched on the pi this package can connect to it and communicate with it to manipulate the GPIO pins of the pi. The actual work is done by the daemon. One benefit of working this way is that you can remotely access the pi over a network and multiple instances can be connected to the daemon simultaneously. ## Launching the Daemon Launching the daemon requires sudo privileges. Launch by typing `sudo pigpiod` in the terminal. ## Installation and Usage ```julia using Pkg Pkg.add("PiGPIO") using PiGPIO pi=Pi() #connect to pigpiod daemon on localhost ``` ## Example Usage ```julia set_mode(p::Pi, pin::Int, mode) get_mode(p::Pi, pin::Int) # mode can be INPUT or OUTPUT PiGPIO.read(p, pin) PiGPIO.write(p, pin, state) #state can be HIGH, LOW, ON, OFF PiGPIO.set_PWM_dutycycle(p, pin, dutycyle) #dutycyle defaults to a range 0-255 ```
PiGPIO
https://github.com/JuliaBerry/PiGPIO.jl.git
[ "MIT" ]
0.2.0
225ff13b22f4c88aeb70ce20e89b016c1897790b
code
2597
module ComoniconZSHCompletion using ComoniconTypes const tab = " " function emit_zshcompletion(cmd::Entry) name = cmd.root.name "#compdef _$name $name \n" * emit_zshcompletion("_", cmd.root, true) end function emit_zshcompletion(prefix::String, cmd::NodeCommand, entry::Bool) lines = [ "# These are set by _arguments", "local context state state_descr line", "typeset -A opt_args", "", ] args = basic_arguments(entry) hints = map(values(cmd.subcmds)) do x str = x.name * "\\:" str *= "'" * x.description.brief * "'" end hints = "((" * join(hints, " ") * "))" push!(args, "\"1: :$hints\"") push!(args, "\"*:: :->args\"") push!(lines, "_arguments -C \\") append!(lines, map(x -> tab * x * " \\", args)) push!(lines, "") push!(lines, raw"case $state in") push!(lines, tab * "(args)") push!(lines, tab * tab * raw"case ${words[1]} in") commands = [] for (_, each) in cmd.subcmds name = each.name push!(commands, name * ")") push!(commands, tab * prefix * cmd.name * "_" * name) push!(commands, ";;") end append!(lines, map(x -> tab^3 * x, commands)) push!(lines, tab^2 * "esac") push!(lines, "esac") body = join(map(x -> tab * x, lines), "\n") script = [] push!( script, """ function $prefix$(cmd.name)() { $body } """, ) for (_, each) in cmd.subcmds push!(script, emit_zshcompletion(prefix * cmd.name * "_", each, false)) end return join(script, "\n\n") end function emit_zshcompletion(prefix::String, cmd::LeafCommand, entry::Bool) lines = ["_arguments \\"] args = basic_arguments(entry) for (_, option) in cmd.options name = option.name doc = option.description.brief token = "--$name" if option.short token = "{-$(name[1]),--$name}" end push!(args, "$token'[$doc]'") end append!(lines, map(x -> tab * x * " \\", args)) body = join(map(x -> tab * x, lines), "\n") return """ function $prefix$(cmd.name)() { $body } """ end function basic_arguments(entry) args = ["'(- 1 *)'{-h,--help}'[show help information]'"] if entry push!(args, "'(- 1 *)'{-V,--version}'[show version information]'") end return args end function actions(args) hints = map(args) do x str = cmd_name(x) * "\\:" str *= "'" * cmd_doc(x).first * "'" end return "((" * join(hints, " ") * "))" end end
ComoniconZSHCompletion
https://github.com/comonicon/ComoniconZSHCompletion.jl.git
[ "MIT" ]
0.2.0
225ff13b22f4c88aeb70ce20e89b016c1897790b
code
358
using ComoniconTestUtils using ComoniconZSHCompletion: emit_zshcompletion using Test using Random Random.seed!(42) @testset "test completion" for _ in 1:5 cmd = rand_command() script = emit_zshcompletion(cmd) @test occursin("#compdef _$(cmd.root.name) $(cmd.root.name)", script) @test occursin("function _$(cmd.root.name)() {", script) end
ComoniconZSHCompletion
https://github.com/comonicon/ComoniconZSHCompletion.jl.git
[ "MIT" ]
0.2.0
225ff13b22f4c88aeb70ce20e89b016c1897790b
docs
1004
# ComoniconZSHCompletion [![Build Status](https://github.com/comonicon/ComoniconZSHCompletion.jl/workflows/CI/badge.svg)](https://github.com/comonicon/ComoniconZSHCompletion.jl/actions) [![Coverage](https://codecov.io/gh/comonicon/ComoniconZSHCompletion.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/comonicon/ComoniconZSHCompletion.jl) The ZSH auto-complete support for Comonicon. ## Installation <p> ComoniconZSHCompletion is a &nbsp; <a href="https://julialang.org"> <img src="https://raw.githubusercontent.com/JuliaLang/julia-logo-graphics/master/images/julia.ico" width="16em"> Julia Language </a> &nbsp; package. To install ComoniconZSHCompletion, please <a href="https://docs.julialang.org/en/v1/manual/getting-started/">open Julia's interactive session (known as REPL)</a> and press <kbd>]</kbd> key in the REPL to use the package mode, then type the following command </p> ```julia pkg> add ComoniconZSHCompletion ``` ## License MIT License
ComoniconZSHCompletion
https://github.com/comonicon/ComoniconZSHCompletion.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
585
module GraphPlot using Compose # for plotting features using Graphs const gadflyjs = joinpath(dirname(Base.source_path()), "gadfly.js") export gplot, gplothtml, random_layout, circular_layout, collapse_layout, community_layout, spring_layout, spectral_layout, shell_layout, stressmajorize_layout, saveplot, mm, cm, inch include("deprecations.jl") # layout algorithms include("layout.jl") include("stress.jl") # ploting utilities include("shape.jl") include("lines.jl") include("plot.jl") include("collapse_plot.jl") end # module
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
2712
using GraphPlot function collapse_graph(g::AbstractGraph, membership::Vector{Int}) nb_comm = maximum(membership) collapsed_edge_weights = Vector{Dict{Int,Float64}}(undef, nb_comm) for i=1:nb_comm collapsed_edge_weights[i] = Dict{Int,Float64}() end for e in edges(g) u = src(e) v = dst(e) u_comm = membership[u] v_comm = membership[v] # for special case of undirected network if !is_directed(g) u_comm, v_comm = minmax(u_comm, v_comm) end if haskey(collapsed_edge_weights[u_comm], v_comm) collapsed_edge_weights[u_comm][v_comm] += 1 else collapsed_edge_weights[u_comm][v_comm] = 1 end end collapsed_graph = SimpleGraph(nb_comm) collapsed_weights = Float64[] for u=1:nb_comm for (v,w) in collapsed_edge_weights[u] add_edge!(collapsed_graph, u, v) push!(collapsed_weights, w) end end return collapsed_graph, collapsed_weights end function community_layout(g::AbstractGraph, membership::Vector{Int}) N = length(membership) lx = zeros(N) ly = zeros(N) comms = Dict{Int,Vector{Int}}() for (idx,lbl) in enumerate(membership) if haskey(comms, lbl) push!(comms[lbl], idx) else comms[lbl] = Int[idx] end end h, w = collapse_graph(g, membership) clx, cly = spring_layout(h) for (lbl, nodes) in comms θ = range(0, stop=2pi, length=(length(nodes) + 1))[1:end-1] for (idx, node) in enumerate(nodes) lx[node] = 1.8*length(nodes)/N*cos(θ[idx]) + clx[lbl] ly[node] = 1.8*length(nodes)/N*sin(θ[idx]) + cly[lbl] end end return lx, ly end function collapse_layout(g::AbstractGraph, membership::Vector{Int}) sg = Graphs.SimpleGraph(nv(g)) for e in edges(g) u = src(e) v = dst(e) Graphs.add_edge!(sg, u, v) end N = length(membership) lx = zeros(N) ly = zeros(N) comms = Dict{Int,Vector{Int}}() for (idx,lbl) in enumerate(membership) if haskey(comms, lbl) push!(comms[lbl], idx) else comms[lbl] = Int[idx] end end h, w = collapse_graph(g, membership) clx, cly = spring_layout(h) for (lbl, nodes) in comms subg = sg[nodes] sublx, subly = spring_layout(subg) θ = range(0, stop=2pi, length=(length(nodes) + 1))[1:end-1] for (idx, node) in enumerate(nodes) lx[node] = 1.8*length(nodes)/N*sublx[idx] + clx[lbl] ly[node] = 1.8*length(nodes)/N*subly[idx] + cly[lbl] end end return lx, ly end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
3023
using Base: depwarn function _nv(g) depwarn("`GraphPlot._nv(g)` is deprectated. Use `Graphs.nv(g)` instead.", :_nv) return Graphs.nv(g) end function _ne(g) depwarn("`GraphPlot._ne(g)` is deprectated. Use `Graphs.ne(g)` instead.", :_ne) return Graphs.ne(g) end function _vertices(g) depwarn("`GraphPlot._vertices(g)` is deprectated. Use `Graphs.vertices(g)` instead.", :_vertices) return Graphs.vertices(g) end function _edges(g) depwarn("`GraphPlot._edges(g)` is deprectated. Use `Graphs.edges(g)` instead.", :_edges) return Graphs.edges(g) end function _src_index(e, g) depwarn("`GraphPlot._src_index(g)` is deprectated. Use `Graphs.src(e)` instead.", :_src_index) return Graphs.src(e) end function _dst_index(e, g) depwarn("`GraphPlot._dst_index(g)` is deprectated. Use `Graphs.dst(e)` instead.", :_dst_index) return Graphs.dst(e) end function _adjacency_matrix(g) depwarn("`GraphPlot._adjacency_matrix(g)` is deprectated. Use `Graphs.adjacency_matrix(g)` instead.", :_adjacency_matrix) return Graphs.adjacency_matrix(g) end function _is_directed(g) depwarn("`GraphPlot._is_directed(g)` is deprectated. Use `Graphs.is_directed(g)` instead.", :_is_directed) return Graphs.is_directed(g) end function _laplacian_matrix(g) depwarn("`GraphPlot._laplacian_matrix(g)` is deprectated. Use `Graphs.laplacian_matrix(g)` instead.", :_laplacian_matrix) return Graphs.laplacian_matrix(g) end """ read some famous graphs **Paramenters** *graphname* Currently, `graphname` can be one of ["karate", "football", "dolphins", "netscience", "polbooks", "power", "cond-mat"] **Return** a graph **Example** julia> g = graphfamous("karate") """ function graphfamous(graphname::AbstractString) depwarn(""" `graphfamous` has been deprecated and will be removed in the future. Consider the package `GraphIO.jl` for loading graphs. """, :graphfamous) file = joinpath(dirname(@__DIR__), "data", graphname*".dat") readedgelist(file) end export graphfamous using DelimitedFiles: readdlm """read graph from in edgelist format""" function readedgelist(filename; is_directed::Bool=false, start_index::Int=0, delim::Char=' ') depwarn(""" `graphfamous` has been deprecated and will be removed in the future. Consider the package `GraphIO.jl` for loading graphs. """, :graphfamous) es = readdlm(filename, delim, Int) es = unique(es, dims=1) if start_index == 0 es = es .+ 1 end N = maximum(es) if is_directed g = DiGraph(N) for i=1:size(es,1) add_edge!(g, es[i,1], es[i,2]) end return g else for i=1:size(es,1) if es[i,1] > es[i,2] es[i,1], es[i,2] = es[i,2], es[i,1] end end es = unique(es, dims=1) g = Graph(N) for i=1:size(es,1) add_edge!(g, es[i,1], es[i,2]) end return g end end export readedgelist
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
7491
using SparseArrays: SparseMatrixCSC, sparse using ArnoldiMethod: SR using Base: OneTo using LinearAlgebra: eigen """ Position nodes uniformly at random in the unit square. For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0). **Parameters** *G* graph or list of nodes, A position will be assigned to every node in G **Return** *locs_x, locs_y* Locations of the nodes. Can be any units you want, but will be normalized and centered anyway **Examples** ``` julia> g = simple_house_graph() julia> loc_x, loc_y = random_layout(g) ``` """ function random_layout(g) rand(nv(g)), rand(nv(g)) end """ This function wrap from [NetworkX](https://github.com/networkx/networkx) Position nodes on a circle. **Parameters** *g* a graph **Returns** *locs_x, locs_y* Locations of the nodes. Can be any units you want, but will be normalized and centered anyway **Examples** ``` julia> g = smallgraph(:house) julia> locs_x, locs_y = circular_layout(g) ``` """ function circular_layout(g) if nv(g) == 1 return [0.0], [0.0] else # Discard the extra angle since it matches 0 radians. θ = range(0, stop=2pi, length=nv(g)+1)[1:end-1] return cos.(θ), sin.(θ) end end """ This function is copy from [IainNZ](https://github.com/IainNZ)'s [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl) Use a modified version of the spring/repulsion model of Fruchterman and Reingold (1991): + Attractive force: f_a(d) = d / k + Repulsive force: f_r(d) = -k^2 / d^2 where d is distance between two vertices and the optimal distance between vertices k is defined as C * sqrt( area / num_vertices ) where C is a parameter we can adjust **Parameters** *g* a graph *C* Constant to fiddle with density of resulting layout *MAXITER* Number of iterations we apply the forces *INITTEMP* Initial "temperature", controls movement per iteration *seed* Integer seed for pseudorandom generation of locations (default = 0). **Examples** ``` julia> g = smallgraph(:karate) julia> locs_x, locs_y = spring_layout(g) ``` """ function spring_layout(g::AbstractGraph, locs_x_in::AbstractVector{R1}=2*rand(nv(g)).-1.0, locs_y_in::AbstractVector{R2}=2*rand(nv(g)).-1.0; C=2.0, MAXITER=100, INITTEMP=2.0) where {R1 <: Real, R2 <: Real} nvg = nv(g) adj_matrix = adjacency_matrix(g) # The optimal distance bewteen vertices k = C * sqrt(4.0 / nvg) k² = k * k # Store forces and apply at end of iteration all at once force_x = zeros(nvg) force_y = zeros(nvg) # Convert locs to float locs_x = convert(Vector{Float64}, locs_x_in) locs_y = convert(Vector{Float64}, locs_y_in) # Iterate MAXITER times @inbounds for iter = 1:MAXITER # Calculate forces for i = 1:nvg force_vec_x = 0.0 force_vec_y = 0.0 for j = 1:nvg i == j && continue d_x = locs_x[j] - locs_x[i] d_y = locs_y[j] - locs_y[i] dist² = (d_x * d_x) + (d_y * d_y) dist = sqrt(dist²) if !( iszero(adj_matrix[i,j]) && iszero(adj_matrix[j,i]) ) # Attractive + repulsive force # F_d = dist² / k - k² / dist # original FR algorithm F_d = dist / k - k² / dist² else # Just repulsive # F_d = -k² / dist # original FR algorithm F_d = -k² / dist² end force_vec_x += F_d*d_x force_vec_y += F_d*d_y end force_x[i] = force_vec_x force_y[i] = force_vec_y end # Cool down temp = INITTEMP / iter # Now apply them, but limit to temperature for i = 1:nvg fx = force_x[i] fy = force_y[i] force_mag = sqrt((fx * fx) + (fy * fy)) scale = min(force_mag, temp) / force_mag locs_x[i] += force_x[i] * scale locs_y[i] += force_y[i] * scale end end # Scale to unit square min_x, max_x = minimum(locs_x), maximum(locs_x) min_y, max_y = minimum(locs_y), maximum(locs_y) function scaler(z, a, b) 2.0*((z - a)/(b - a)) - 1.0 end map!(z -> scaler(z, min_x, max_x), locs_x, locs_x) map!(z -> scaler(z, min_y, max_y), locs_y, locs_y) return locs_x, locs_y end using Random: MersenneTwister function spring_layout(g::AbstractGraph, seed::Integer; kws...) rng = MersenneTwister(seed) spring_layout(g, 2 .* rand(rng, nv(g)) .- 1.0, 2 .* rand(rng,nv(g)) .- 1.0; kws...) end """ This function is copy from [IainNZ](https://github.com/IainNZ)'s [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl) Position nodes in concentric circles. **Parameters** *g* a graph *nlist* Vector of Vector, Vector of node Vector for each shell. **Examples** ``` julia> g = smallgraph(:karate) julia> nlist = Vector{Vector{Int}}() julia> push!(nlist, collect(1:5)) julia> push!(nlist, collect(6:nv(g))) julia> locs_x, locs_y = shell_layout(g, nlist) ``` """ function shell_layout(g, nlist::Union{Nothing, Vector{Vector{Int}}} = nothing) if nv(g) == 1 return [0.0], [0.0] end if isnothing(nlist) nlist = [collect(1:nv(g))] end radius = 0.0 if length(nlist[1]) > 1 radius = 1.0 end locs_x = zeros(nv(g)) locs_y = zeros(nv(g)) for nodes in nlist # Discard the extra angle since it matches 0 radians. θ = range(0, stop=2pi, length=length(nodes)+1)[1:end-1] locs_x[nodes] = radius*cos.(θ) locs_y[nodes] = radius*sin.(θ) radius += 1.0 end return locs_x, locs_y end """ This function wrap from [NetworkX](https://github.com/networkx/networkx) Position nodes using the eigenvectors of the graph Laplacian. **Parameters** *g* a graph *weight* array or nothing, optional (default=nothing) The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1. **Examples** ``` julia> g = smallgraph(:karate) julia> weight = rand(ne(g)) julia> locs_x, locs_y = spectral_layout(g, weight) ``` """ function spectral_layout(g::AbstractGraph, weight=nothing) if nv(g) == 1 return [0.0], [0.0] elseif nv(g) == 2 return [0.0, 1.0], [0.0, 0.0] end if weight == nothing weight = ones(ne(g)) end if nv(g) > 500 A = sparse(Int[src(e) for e in edges(g)], Int[dst(e) for e in edges(g)], weight, nv(g), nv(g)) if is_directed(g) A = A + transpose(A) end return _spectral(A) else L = laplacian_matrix(g) return _spectral(Matrix(L)) end end function _spectral(L::Matrix) eigenvalues, eigenvectors = eigen(L) index = sortperm(eigenvalues)[2:3] return eigenvectors[:, index[1]], eigenvectors[:, index[2]] end function _spectral(A::SparseMatrixCSC) data = vec(sum(A, dims=1)) D = sparse(Base.OneTo(length(data)), Base.OneTo(length(data)), data) L = D - A eigenvalues, eigenvectors = Graphs.LinAlg.eigs(L, nev=3, which=SR()) index = sortperm(real(eigenvalues))[2:3] return real(eigenvectors[:, index[1]]), real(eigenvectors[:, index[2]]) end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
10979
""" Return lines and arrow heads """ function midpoint(pt1,pt2) x = (pt1[1] + pt2[1]) / 2 y = (pt1[2] + pt2[2]) / 2 return x,y end function interpolate_bezier(x::Vector,t) #TODO: since this is only being used for `curve` which has 4 points (n = 3), the calculation can be simplified for this case. n = length(x)-1 x_loc = sum(binomial(n,i)*(1-t)^(n-i)*t^i*x[i+1][1] for i in 0:n) y_loc = sum(binomial(n,i)*(1-t)^(n-i)*t^i*x[i+1][2] for i in 0:n) return x_loc.value, y_loc.value end interpolate_bezier(x::Compose.CurvePrimitive,t) = interpolate_bezier([x.anchor0, x.ctrl0, x.ctrl1, x.anchor1], t) function interpolate_line(locs_x,locs_y,i,j,t) x_loc = locs_x[i] + (locs_x[j]-locs_x[i])*t y_loc = locs_y[i] + (locs_y[j]-locs_y[i])*t return x_loc, y_loc end function graphline(edge_list, locs_x, locs_y, nodesize::Vector{T}, arrowlength, angleoffset) where {T<:Real} num_edges = length(edge_list) lines = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) arrows = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize[i]*cos(θ) starty = locs_y[i] + nodesize[i]*sin(θ) endx = locs_x[j] + nodesize[j]*cos(θ+π) endy = locs_y[j] + nodesize[j]*sin(θ+π) arr1, arr2 = arrowcoords(θ, endx, endy, arrowlength, angleoffset) endx0, endy0 = midpoint(arr1, arr2) e_idx2 = findfirst(==(Edge(j,i)), collect(edge_list)) #get index of reverse arc if !isnothing(e_idx2) && e_idx2 < e_idx #only make changes if lines/arrows have already been defined for that arc startx, starty = midpoint(arrows[e_idx2][[1,3]]...) #get midopint of reverse arc and use as new start point lines[e_idx2][1] = (endx0, endy0) #update endpoint of reverse arc end lines[e_idx] = [(startx, starty), (endx0, endy0)] arrows[e_idx] = [arr1, (endx, endy), arr2] end lines, arrows end function graphline(edge_list, locs_x, locs_y, nodesize::Real, arrowlength, angleoffset) num_edges = length(edge_list) lines = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) arrows = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize*cos(θ) starty = locs_y[i] + nodesize*sin(θ) endx = locs_x[j] + nodesize*cos(θ+π) endy = locs_y[j] + nodesize*sin(θ+π) arr1, arr2 = arrowcoords(θ, endx, endy, arrowlength, angleoffset) endx0, endy0 = midpoint(arr1, arr2) e_idx2 = findfirst(==(Edge(j,i)), collect(edge_list)) #get index of reverse arc if !isnothing(e_idx2) && e_idx2 < e_idx #only make changes if lines/arrows have already been defined for that arc startx, starty = midpoint(arrows[e_idx2][[1,3]]...) #get midopint of reverse arc and use as new start point lines[e_idx2][1] = (endx0, endy0) #update endpoint of reverse arc end lines[e_idx] = [(startx, starty), (endx0, endy0)] arrows[e_idx] = [arr1, (endx, endy), arr2] end lines, arrows end function graphline(edge_list, locs_x, locs_y, nodesize::Vector{T}) where {T<:Real} num_edges = length(edge_list) lines = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize[i]*cos(θ) starty = locs_y[i] + nodesize[i]*sin(θ) endx = locs_x[j] + nodesize[j]*cos(θ+π) endy = locs_y[j] + nodesize[j]*sin(θ+π) lines[e_idx] = [(startx, starty), (endx, endy)] end lines end function graphline(edge_list, locs_x, locs_y, nodesize::Real) num_edges = length(edge_list) lines = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize*cos(θ) starty = locs_y[i] + nodesize*sin(θ) endx = locs_x[j] + nodesize*cos(θ+π) endy = locs_y[j] + nodesize*sin(θ+π) lines[e_idx] = [(startx, starty), (endx, endy)] end return lines end function graphcurve(edge_list, locs_x, locs_y, nodesize::Vector{T}, arrowlength, angleoffset, outangle=pi/5) where {T<:Real} num_edges = length(edge_list) curves = Matrix{Tuple{Float64,Float64}}(undef, num_edges, 4) arrows = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize[i]*cos(θ+outangle) starty = locs_y[i] + nodesize[i]*sin(θ+outangle) endx = locs_x[j] + nodesize[j]*cos(θ+π-outangle) endy = locs_y[j] + nodesize[j]*sin(θ+π-outangle) d = hypot(endx-startx, endy-starty) if i == j d = 2 * π * nodesize[i] end arr1, arr2 = arrowcoords(θ-outangle, endx, endy, arrowlength, angleoffset) endx0 = (arr1[1] + arr2[1]) / 2 endy0 = (arr1[2] + arr2[2]) / 2 curves[e_idx, :] = curveedge(startx, starty, endx0, endy0, θ, outangle, d) arrows[e_idx] = [arr1, (endx, endy), arr2] end return curves, arrows end function graphcurve(edge_list, locs_x, locs_y, nodesize::Real, arrowlength, angleoffset, outangle=pi/5) num_edges = length(edge_list) curves = Matrix{Tuple{Float64,Float64}}(undef, num_edges, 4) arrows = Array{Vector{Tuple{Float64,Float64}}}(undef, num_edges) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize*cos(θ+outangle) starty = locs_y[i] + nodesize*sin(θ+outangle) endx = locs_x[j] + nodesize*cos(θ+π-outangle) endy = locs_y[j] + nodesize*sin(θ+π-outangle) d = hypot(endx-startx, endy-starty) if i == j d = 2 * π * nodesize end arr1, arr2 = arrowcoords(θ-outangle, endx, endy, arrowlength, angleoffset) endx0 = (arr1[1] + arr2[1]) / 2 endy0 = (arr1[2] + arr2[2]) / 2 curves[e_idx, :] = curveedge(startx, starty, endx0, endy0, θ, outangle, d) arrows[e_idx] = [arr1, (endx, endy), arr2] end return curves, arrows end function graphcurve(edge_list, locs_x, locs_y, nodesize::Real, outangle) num_edges = length(edge_list) curves = Matrix{Tuple{Float64,Float64}}(undef, num_edges, 4) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize*cos(θ+outangle) starty = locs_y[i] + nodesize*sin(θ+outangle) endx = locs_x[j] + nodesize*cos(θ+π-outangle) endy = locs_y[j] + nodesize*sin(θ+π-outangle) d = hypot(endx-startx, endy-starty) if i == j d = 2 * π * nodesize end curves[e_idx, :] = curveedge(startx, starty, endx, endy, θ, outangle, d) end return curves end function graphcurve(edge_list, locs_x, locs_y, nodesize::Vector{T}, outangle) where {T<:Real} num_edges = length(edge_list) curves = Matrix{Tuple{Float64,Float64}}(undef, num_edges, 4) for (e_idx, e) in enumerate(edge_list) i = src(e) j = dst(e) Δx = locs_x[j] - locs_x[i] Δy = locs_y[j] - locs_y[i] θ = atan(Δy,Δx) startx = locs_x[i] + nodesize[i]*cos(θ+outangle) starty = locs_y[i] + nodesize[i]*sin(θ+outangle) endx = locs_x[j] + nodesize[j]*cos(θ+π-outangle) endy = locs_y[j] + nodesize[j]*sin(θ+π-outangle) d = hypot(endx-startx, endy-starty) if i == j d = 2 * π * nodesize[i] end curves[e_idx, :] = curveedge(startx, starty, endx, endy, θ, outangle, d) end return curves end # this function is copy from [IainNZ](https://github.com/IainNZ)'s [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl) function arrowcoords(θ, endx, endy, arrowlength, angleoffset=20.0/180.0*π) arr1x = endx - arrowlength*cos(θ+angleoffset) arr1y = endy - arrowlength*sin(θ+angleoffset) arr2x = endx - arrowlength*cos(θ-angleoffset) arr2y = endy - arrowlength*sin(θ-angleoffset) return (arr1x, arr1y), (arr2x, arr2y) end function curveedge(x1, y1, x2, y2, θ, outangle, d; k=0.5) r = d * k # Control points for left bending curve. xc1 = x1 + r * cos(θ + outangle) yc1 = y1 + r * sin(θ + outangle) xc2 = x2 + r * cos(θ + π - outangle) yc2 = y2 + r * sin(θ + π - outangle) return [(x1,y1) (xc1, yc1) (xc2, yc2) (x2, y2)] end function build_curved_edges(edge_list, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset, outangle) if arrowlengthfrac > 0.0 curves_cord, arrows_cord = graphcurve(edge_list, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset, outangle) curves = curve(curves_cord[:,1], curves_cord[:,2], curves_cord[:,3], curves_cord[:,4]) carrows = polygon(arrows_cord) else curves_cord = graphcurve(edge_list, locs_x, locs_y, nodesize, outangle) curves = curve(curves_cord[:,1], curves_cord[:,2], curves_cord[:,3], curves_cord[:,4]) carrows = nothing end return curves, carrows end function build_straight_edges(edge_list, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset) if arrowlengthfrac > 0.0 lines_cord, arrows_cord = graphline(edge_list, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset) lines = line(lines_cord) larrows = polygon(arrows_cord) else lines_cord = graphline(edge_list, locs_x, locs_y, nodesize) lines = line(lines_cord) larrows = nothing end return lines, larrows end function build_straight_curved_edges(g, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset, outangle) edge_list1 = filter(e -> src(e) != dst(e), collect(edges(g))) edge_list2 = filter(e -> src(e) == dst(e), collect(edges(g))) lines, larrows = build_straight_edges(edge_list1, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset) curves, carrows = build_curved_edges(edge_list2, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset, outangle) return lines, larrows, curves, carrows end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
1012
# to do mutable struct PIENODE x::Float64 y::Float64 r::Float64 prop::Vector{Float64} colors strokes end function pie(pn::PIENODE) p = [0.0;2pi*pn.prop/sum(pn.prop)] θ = cumsum(p) s = Vector[] for i=1:length(θ)-1 push!(s, sector(pn.x, pn.y, pn.r, θ[i], θ[i+1])) end compose(context(),path(s), fill(pn.colors), stroke(pn.strokes)) end function sector(x, y, r, θ1, θ2) if θ2-θ1<=pi [:M, x+r*cos(θ1),y-r*sin(θ1), :A, r, r, 0, false, false, x+r*cos(θ2), y-r*sin(θ2), :L, x, y, :Z] else [ :M, x+r*cos(θ1),y-r*sin(θ1), :A, r, r, 0, false, false, x+r*cos(θ1+pi), y-r*sin(θ1+pi), :A, r, r, 0, false, false, x+r*cos(θ2), y-r*sin(θ2), :L, x, y, :Z ] end end function sector(x::Vector{T}, y::Vector{T}, r::Vector{T}, θ1::Vector{T}, θ2::Vector{T}) where {T} s = Vector[] for i=1:length(x) push!(s, sector(x[i],y[i],r[i],θ1[i],θ2[i])) end s end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
11072
using Colors # this function is copy from [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl) and make some modifications. """ Given a graph and two vectors of X and Y coordinates, returns a Compose tree of the graph layout **Arguments** `G` Graph to draw `locs_x, locs_y` Locations of the nodes. Can be any units you want, but will be normalized and centered anyway. If not provided, will be obtained from `layout` kwarg. **Keyword Arguments** `layout` Layout algorithm. Currently can be one of [`random_layout`, `circular_layout`, `spring_layout`, `shell_layout`, `stressmajorize_layout`, `spectral_layout`]. Default: `spring_layout` `title` Plot title. Default: `""` `title_color` Plot title color. Default: `colorant"black"` `title_size` Plot title size. Default: `4.0` `font_family` Font family for all text. Default: `"Helvetica"` `NODESIZE` Max size for the nodes. Default: `3.0/sqrt(N)` `nodesize` Relative size for the nodes, can be a Vector. Default: `1.0` `nodelabel` Labels for the vertices, a Vector or nothing. Default: `nothing` `nodelabelc` Color for the node labels, can be a Vector. Default: `colorant"black"` `nodelabeldist` Distances for the node labels from center of nodes. Default: `0.0` `nodelabelangleoffset` Angle offset for the node labels. Default: `π/4.0` `NODELABELSIZE` Largest fontsize for the vertex labels. Default: `4.0` `nodelabelsize` Relative fontsize for the vertex labels, can be a Vector. Default: `1.0` `nodefillc` Color to fill the nodes with, can be a Vector. Default: `colorant"turquoise"` `nodestrokec` Color for the nodes stroke, can be a Vector. Default: `nothing` `nodestrokelw` Line width for the nodes stroke, can be a Vector. Default: `0.0` `edgelabel` Labels for the edges, a Vector or nothing. Default: `[]` `edgelabelc` Color for the edge labels, can be a Vector. Default: `colorant"black"` `edgelabeldistx, edgelabeldisty` Distance for the edge label from center of edge. Default: `0.0` `EDGELABELSIZE` Largest fontsize for the edge labels. Default: `4.0` `edgelabelsize` Relative fontsize for the edge labels, can be a Vector. Default: `1.0` `EDGELINEWIDTH` Max line width for the edges. Default: `0.25/sqrt(N)` `edgelinewidth` Relative line width for the edges, can be a Vector. Default: `1.0` `edgestrokec` Color for the edge strokes, can be a Vector. Default: `colorant"lightgray"` `arrowlengthfrac` Fraction of line length to use for arrows. Equal to 0 for undirected graphs. Default: `0.1` for the directed graphs `arrowangleoffset` Angular width in radians for the arrows. Default: `π/9 (20 degrees)` `linetype` Type of line used for edges ("straight", "curve"). Default: "straight" `outangle` Angular width in radians for the edges (only used if `linetype = "curve`). Default: `π/5 (36 degrees)` `background_color` Color for the plot background. Default: `nothing` `plot_size` Tuple of measures for width x height for plot area. Default: `(10cm, 10cm)` `leftpad, rightpad, toppad, bottompad` Padding for the plot margins. Default: `0mm` `pad` Padding for plot margins (overrides individual padding if given). Default: `nothing` """ function gplot(g::AbstractGraph{T}, locs_x_in::AbstractVector{R1}, locs_y_in::AbstractVector{R2}; title = "", title_color = colorant"black", title_size = 4.0, font_family = "Helvetica", nodelabel = nothing, nodelabelc = colorant"black", nodelabelsize = 1.0, NODELABELSIZE = 4.0, nodelabeldist = 0.0, nodelabelangleoffset = π / 4.0, edgelabel = [], edgelabelc = colorant"black", edgelabelsize = 1.0, EDGELABELSIZE = 4.0, edgestrokec = colorant"lightgray", edgelinewidth = 1.0, EDGELINEWIDTH = 3.0 / sqrt(nv(g)), edgelabeldistx = 0.0, edgelabeldisty = 0.0, nodesize = 1.0, NODESIZE = 0.25 / sqrt(nv(g)), nodefillc = colorant"turquoise", nodestrokec = nothing, nodestrokelw = 0.0, arrowlengthfrac = is_directed(g) ? 0.1 : 0.0, arrowangleoffset = π / 9, linetype = "straight", outangle = π / 5, background_color = nothing, plot_size = (10cm, 10cm), leftpad = 0mm, rightpad = 0mm, toppad = 0mm, bottompad = 0mm, pad = nothing ) where {T <:Integer, R1 <: Real, R2 <: Real} length(locs_x_in) != length(locs_y_in) && error("Vectors must be same length") N = nv(g) NE = ne(g) if !isnothing(nodelabel) && length(nodelabel) != N error("Must have one label per node (or none)") end if !isempty(edgelabel) && length(edgelabel) != NE error("Must have one label per edge (or none)") end locs_x = convert(Vector{Float64}, locs_x_in) locs_y = convert(Vector{Float64}, locs_y_in) # Scale to unit square min_x, max_x = extrema(locs_x) min_y, max_y = extrema(locs_y) function scaler(z, a, b) if (a - b) == 0.0 return 0.5 else return 2.0 * ((z - a) / (b - a)) - 1.0 end end map!(z -> scaler(z, min_x, max_x), locs_x, locs_x) map!(z -> scaler(z, min_y, max_y), locs_y, locs_y) # Determine sizes #NODESIZE = 0.25/sqrt(N) #LINEWIDTH = 3.0/sqrt(N) max_nodesize = NODESIZE / maximum(nodesize) nodesize *= max_nodesize max_edgelinewidth = EDGELINEWIDTH / maximum(edgelinewidth) edgelinewidth *= max_edgelinewidth max_edgelabelsize = EDGELABELSIZE / maximum(edgelabelsize) edgelabelsize *= max_edgelabelsize max_nodelabelsize = NODELABELSIZE / maximum(nodelabelsize) nodelabelsize *= max_nodelabelsize max_nodestrokelw = maximum(nodestrokelw) if max_nodestrokelw > 0.0 max_nodestrokelw = EDGELINEWIDTH / max_nodestrokelw nodestrokelw *= max_nodestrokelw end # Create nodes nodecircle = fill(0.4*2.4, length(locs_x)) #40% of the width of the unit box if isa(nodesize, Real) for i = 1:length(locs_x) nodecircle[i] *= nodesize end else for i = 1:length(locs_x) nodecircle[i] *= nodesize[i] end end nodes = circle(locs_x, locs_y, nodecircle) # Create node labels if provided texts = nothing if !isnothing(nodelabel) text_locs_x = deepcopy(locs_x) text_locs_y = deepcopy(locs_y) texts = text(text_locs_x .+ nodesize .* (nodelabeldist * cos(nodelabelangleoffset)), text_locs_y .- nodesize .* (nodelabeldist * sin(nodelabelangleoffset)), map(string, nodelabel), [hcenter], [vcenter]) end # Create lines and arrow heads lines, larrows = nothing, nothing curves, carrows = nothing, nothing if linetype == "curve" curves, carrows = build_curved_edges(edges(g), locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset, outangle) elseif has_self_loops(g) lines, larrows, curves, carrows = build_straight_curved_edges(g, locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset, outangle) else lines, larrows = build_straight_edges(edges(g), locs_x, locs_y, nodesize, arrowlengthfrac, arrowangleoffset) end # Create edge labels if provided edgetexts = nothing if !isempty(edgelabel) edge_locs_x = zeros(R1, NE) edge_locs_y = zeros(R2, NE) self_loop_idx = 1 for (e_idx, e) in enumerate(edges(g)) i, j = src(e), dst(e) if linetype == "curve" mid_x, mid_y = interpolate_bezier(curves.primitives[e_idx], 0.5) elseif src(e) == dst(e) mid_x, mid_y = interpolate_bezier(curves.primitives[self_loop_idx], 0.5) self_loop_idx += 1 else mid_x, mid_y = interpolate_line(locs_x,locs_y,i,j,0.5) end edge_locs_x[e_idx] = mid_x + edgelabeldistx * NODESIZE edge_locs_y[e_idx] = mid_y + edgelabeldisty * NODESIZE end edgetexts = text(edge_locs_x, edge_locs_y, map(string, edgelabel), [hcenter], [vcenter]) end # Set plot_size if length(plot_size) != 2 || !isa(plot_size[1], Compose.AbsoluteLength) || !isa(plot_size[2], Compose.AbsoluteLength) error("`plot_size` must be a Tuple of lengths") end Compose.set_default_graphic_size(plot_size...) # Plot title title_offset = isempty(title) ? 0 : 0.1*title_size/4 #Fix title offset title = text(0, -1.2 - title_offset/2, title, hcenter, vcenter) # Plot padding if !isnothing(pad) leftpad, rightpad, toppad, bottompad = pad, pad, pad, pad end # Plot area size plot_area = (-1.2, -1.2 - title_offset, +2.4, +2.4 + title_offset) # Build figure compose( context(units=UnitBox(plot_area...; leftpad, rightpad, toppad, bottompad)), compose(context(), title, fill(title_color), fontsize(title_size), font(font_family)), compose(context(), texts, fill(nodelabelc), fontsize(nodelabelsize), font(font_family)), compose(context(), nodes, fill(nodefillc), stroke(nodestrokec), linewidth(nodestrokelw)), compose(context(), edgetexts, fill(edgelabelc), fontsize(edgelabelsize)), compose(context(), larrows, fill(edgestrokec)), compose(context(), carrows, fill(edgestrokec)), compose(context(), lines, stroke(edgestrokec), linewidth(edgelinewidth)), compose(context(), curves, stroke(edgestrokec), linewidth(edgelinewidth)), compose(context(units=UnitBox(plot_area...)), rectangle(plot_area...), fill(background_color)) ) end function gplot(g; layout::Function=spring_layout, keyargs...) gplot(g, layout(g)...; keyargs...) end # take from [Gadfly.jl](https://github.com/dcjones/Gadfly.jl) function open_file(filename) if Sys.isapple() #apple run(`open $(filename)`) elseif Sys.islinux() || Sys.isbsd() #linux run(`xdg-open $(filename)`) elseif Sys.iswindows() #windows run(`$(ENV["COMSPEC"]) /c start $(filename)`) else @warn("Showing plots is not supported on OS $(string(Sys.KERNEL))") end end # taken from [Gadfly.jl](https://github.com/dcjones/Gadfly.jl) function gplothtml(args...; keyargs...) filename = string(tempname(), ".html") output = open(filename, "w") plot_output = IOBuffer() draw(SVGJS(plot_output, Compose.default_graphic_width, Compose.default_graphic_width, false), gplot(args...; keyargs...)) plotsvg = String(take!(plot_output)) write(output, """ <!DOCTYPE html> <html> <head> <title>GraphPlot Plot</title> <meta charset="utf-8"> </head> <body> <script charset="utf-8"> $(read(Compose.snapsvgjs, String)) </script> <script charset="utf-8"> $(read(gadflyjs, String)) </script> $(plotsvg) </body> </html> """) close(output) open_file(filename) end function saveplot(gplot::Compose.Context, filename::String) draw(SVG(filename), gplot) return nothing end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
328
# draw a regular n-gon function ngon(x, y, r, n=3, θ=0.0) αs = linspace(0,2pi,n+1)[1:end-1] [(r*cos(α-θ)+x, r*sin(α-θ)+y) for α in αs] end function ngon(xs::Vector, ys::Vector, rs::Vector, ns::Vector=fill(3,length(xs)), θs::Vector=zeros(length(xs))) [ngon(xs[i], ys[i], rs[i], ns[i], θs[i]) for i=1:length(xs)] end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
5519
using LinearAlgebra # This layout algorithm is copy from [IainNZ](https://github.com/IainNZ)'s [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl) @doc """ Compute graph layout using stress majorization Inputs: δ: Matrix of pairwise distances p: Dimension of embedding (default: 2) w: Matrix of weights. If not specified, defaults to w[i,j] = δ[i,j]^-2 if δ[i,j] is nonzero, or 0 otherwise X0: Initial guess for the layout. Coordinates are given in rows. If not specified, default to random matrix of Gaussians Additional optional keyword arguments control the convergence of the algorithm and the additional output as requested: maxiter: Maximum number of iterations. Default: 400size(X0, 1)^2 abstols: Absolute tolerance for convergence of stress. The iterations terminate if the difference between two successive stresses is less than abstol. Default: √(eps(eltype(X0)) reltols: Relative tolerance for convergence of stress. The iterations terminate if the difference between two successive stresses relative to the current stress is less than reltol. Default: √(eps(eltype(X0)) abstolx: Absolute tolerance for convergence of layout. The iterations terminate if the Frobenius norm of two successive layouts is less than abstolx. Default: √(eps(eltype(X0)) verbose: If true, prints convergence information at each iteration. Default: false returnall: If true, returns all iterates and their associated stresses. If false (default), returns the last iterate Output: The final layout X, with coordinates given in rows, unless returnall=true. Reference: The main equation to solve is (8) of: @incollection{ author = {Emden R Gansner and Yehuda Koren and Stephen North}, title = {Graph Drawing by Stress Majorization} year={2005}, isbn={978-3-540-24528-5}, booktitle={Graph Drawing}, seriesvolume={3383}, series={Lecture Notes in Computer Science}, editor={Pach, J\'anos}, doi={10.1007/978-3-540-31843-9_25}, publisher={Springer Berlin Heidelberg}, pages={239--250}, } """ function stressmajorize_layout(g::AbstractGraph, p::Int=2, w=nothing, X0=randn(nv(g), p); maxiter = 400size(X0, 1)^2, abstols=√(eps(eltype(X0))), reltols=√(eps(eltype(X0))), abstolx=√(eps(eltype(X0))), verbose = false, returnall = false) @assert size(X0, 2)==p δ = fill(1.0, nv(g), nv(g)) if w == nothing w = δ.^-2 w[.!isfinite.(w)] .= 0 end @assert size(X0, 1)==size(δ, 1)==size(δ, 2)==size(w, 1)==size(w, 2) Lw = weightedlaplacian(w) pinvLw = pinv(Lw) newstress = stress(X0, δ, w) Xs = Matrix[X0] stresses = [newstress] iter = 0 for outer iter = 1:maxiter #TODO the faster way is to drop the first row and col from the iteration X = pinvLw * (LZ(X0, δ, w)*X0) @assert all(isfinite.(X)) newstress, oldstress = stress(X, δ, w), newstress verbose && @info("""Iteration $iter Change in coordinates: $(norm(X - X0)) Stress: $newstress (change: $(newstress-oldstress)) """) push!(Xs, X) push!(stresses, newstress) abs(newstress - oldstress) < reltols * newstress && break abs(newstress - oldstress) < abstols && break norm(X - X0) < abstolx && break X0 = X end iter == maxiter && @warn("Maximum number of iterations reached without convergence") #returnall ? (Xs, stresses) : Xs[end] Xs[end][:,1], Xs[end][:,2] end @doc """ Stress function to majorize Input: X: A particular layout (coordinates in rows) d: Matrix of pairwise distances w: Weights for each pairwise distance See (1) of Reference """ function stress(X, d=fill(1.0, size(X, 1), size(X, 1)), w=nothing) s = 0.0 n = size(X, 1) if w==nothing w = d.^-2 w[!isfinite.(w)] = 0 end @assert n==size(d, 1)==size(d, 2)==size(w, 1)==size(w, 2) for j=1:n, i=1:j-1 s += w[i, j] * (norm(X[i,:] - X[j,:]) - d[i,j])^2 end @assert isfinite(s) return s end @doc """ Compute weighted Laplacian given ideal weights w Lʷ defined in (4) of the Reference """ function weightedlaplacian(w) n = LinearAlgebra.checksquare(w) T = eltype(w) Lw = zeros(T, n, n) for i=1:n D = zero(T) for j=1:n i==j && continue Lw[i, j] = -w[i, j] D += w[i, j] end Lw[i, i] = D end return Lw end @doc """ Computes L^Z defined in (5) of the Reference Input: Z: current layout (coordinates) d: Ideal distances (default: all 1) w: weights (default: d.^-2) """ function LZ(Z, d, w) n = size(Z, 1) L = zeros(n, n) for i=1:n D = 0.0 for j=1:n i==j && continue nrmz = norm(Z[i,:] - Z[j,:]) nrmz==0 && continue δ = w[i, j] * d[i, j] L[i, j] = -δ/nrmz D -= -δ/nrmz end L[i, i] = D end @assert all(isfinite.(L)) L end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
code
5797
@info "Importing test packages..." # This should fix an error, see : https://github.com/JuliaIO/ImageMagick.jl/issues/133 (Sys.islinux() || Sys.iswindows()) && import ImageMagick using GraphPlot using GraphPlot.Graphs using Cairo using GraphPlot.Colors using GraphPlot.Compose using Random using Test using VisualRegressionTests using ImageMagick # global variables istravis = "TRAVIS" ∈ keys(ENV) datadir = joinpath(@__DIR__, "data") @info "Starting tests..." # TODO smallgraph(:karate) has already been added to Graphs # but as there hasn't been any new version tagged, we relay on this instead karate_edges = Edge.([ 1 => 2, 1 => 3, 1 => 4, 1 => 5, 1 => 6, 1 => 7, 1 => 8, 1 => 9, 1 => 11, 1 => 12, 1 => 13, 1 => 14, 1 => 18, 1 => 20, 1 => 22, 1 => 32, 2 => 3, 2 => 4, 2 => 8, 2 => 14, 2 => 18, 2 => 20, 2 => 22, 2 => 31, 3 => 4, 3 => 8, 3 => 9, 3 => 10, 3 => 14, 3 => 28, 3 => 29, 3 => 33, 4 => 8, 4 => 13 , 4 => 14, 5 => 7, 5 => 11, 6 => 7, 6 => 11, 6 => 17 , 7 => 17, 9 => 31, 9 => 33, 9 => 34, 10 => 34, 14 => 34, 15 => 33, 15 => 34, 16 => 33, 16 => 34, 19 => 33, 19 => 34, 20 => 34, 21 => 33, 21 => 34, 23 => 33, 23 => 34, 24 => 26, 24 => 28, 24 => 30, 24 => 33, 24 => 34, 25 => 26, 25 => 28, 25 => 32, 26 => 32, 27 => 30, 27 => 34, 28 => 34, 29 => 32, 29 => 34, 30 => 33, 30 => 34, 31 => 33, 31 => 34, 32 => 33, 32 => 34, 33 => 34, ]) # graphs to test #g = smallgraph(:karate) g = SimpleGraph(karate_edges) h = Graphs.wheel_graph(10) test_layout(g::AbstractGraph; kws...) = spring_layout(g, 2017, kws...) # plot and save function for visual regression tests function plot_and_save(fname, g; gplot_kwargs...) draw(PNG(fname, 8inch, 8inch), gplot(g; layout=test_layout, gplot_kwargs...)) end function save_comparison(result::VisualTestResult) grid = hcat(result.refImage, result.testImage) path = joinpath(datadir, string(basename(result.refFilename)[1:end-length(".png")], "-comparison.png")) ImageMagick.save(path, grid) return result end @testset "Karate Net" begin # auxiliary variables nodelabel = collect(1:nv(g)) nodesize = outdegree(g) .* 1.0 # test nodesize plot_and_save1(fname) = plot_and_save(fname, g, nodesize=nodesize.^0.3, nodelabel=nodelabel, nodelabelsize=nodesize.^0.3) refimg1 = joinpath(datadir, "karate_different_nodesize.png") @test test_images(VisualTest(plot_and_save1, refimg1), popup=!istravis) |> save_comparison |> success # test directed graph plot_and_save2(fname) = plot_and_save(fname, g, arrowlengthfrac=0.05, nodelabel=nodelabel, font_family="Sans") refimg2 = joinpath(datadir, "karate_straight_directed.png") @test test_images(VisualTest(plot_and_save2, refimg2), popup=!istravis) |> save_comparison |> success # test node membership membership = [1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2] nodecolor = [colorant"lightseagreen", colorant"orange"] nodefillc = nodecolor[membership] plot_and_save3(fname) = plot_and_save(fname, g, nodelabel=nodelabel, nodefillc=nodefillc) refimg3 = joinpath(datadir, "karate_groups.png") @test test_images(VisualTest(plot_and_save3, refimg3), popup=!istravis) |> save_comparison |> success # test background color plot_and_save4(fname) = plot_and_save(fname, g, background_color=colorant"lightyellow") refimg4 = joinpath(datadir, "karate_background_color.png") @test test_images(VisualTest(plot_and_save4, refimg4), popup=!istravis) |> save_comparison |> success end @testset "WheelGraph" begin # default options plot_and_save1(fname) = plot_and_save(fname, h) refimg1 = joinpath(datadir, "wheel10.png") @test test_images(VisualTest(plot_and_save1, refimg1), popup=!istravis) |> save_comparison |> success end @testset "Curves" begin g2 = DiGraph(2) add_edge!(g2, 1,2) add_edge!(g2, 2,1) plot_and_save1(fname) = plot_and_save(fname, g2, linetype="curve", arrowlengthfrac=0.2, pad=5mm) refimg1 = joinpath(datadir, "curve.png") @test test_images(VisualTest(plot_and_save1, refimg1), popup=!istravis) |> save_comparison |> success g3 = DiGraph(2) add_edge!(g3, 1,1) add_edge!(g3, 1,2) add_edge!(g3, 2,1) plot_and_save2(fname) = plot_and_save(fname, g3, linetype="curve", arrowlengthfrac=0.2, leftpad=20mm, toppad=3mm, bottompad=3mm) refimg2 = joinpath(datadir, "self_directed.png") @test test_images(VisualTest(plot_and_save2, refimg2), popup=!istravis) |> save_comparison |> success end @testset "Spring Layout" begin g1 = path_digraph(3) x1, y1 = spring_layout(g1, 0; C = 1) @test all(isapprox.(x1, [1.0, -0.014799825222963192, -1.0])) @test all(isapprox.(y1, [-1.0, 0.014799825222963303, 1.0])) end @testset "Circular Layout" begin #single node g1 = SimpleGraph(1) x1,y1 = circular_layout(g1) @test iszero(x1) @test iszero(y1) #2 nodes g2 = SimpleGraph(2) x2,y2 = circular_layout(g2) @test all(isapprox.(x2, [1.0, -1.0])) @test all(isapprox.(y2, [0.0, 1.2246467991473532e-16])) end @testset "Shell Layout" begin #continuous nlist g = SimpleGraph(6) x1,y1 = shell_layout(g,[[1,2,3],[4,5,6]]) @test all(isapprox.(x1, [1.0, -0.4999999999999998, -0.5000000000000004, 2.0, -0.9999999999999996, -1.0000000000000009])) @test all(isapprox.(y1, [0.0, 0.8660254037844387, -0.8660254037844385, 0.0, 1.7320508075688774, -1.732050807568877])) #skipping positions x2,y2 = shell_layout(g,[[1,3,5],[2,4,6]]) @test all(isapprox.(x2, [1.0, 2.0, -0.4999999999999998, -0.9999999999999996, -0.5000000000000004, -1.0000000000000009])) @test all(isapprox.(y2, [0.0, 0.0, 0.8660254037844387, 1.7320508075688774, -0.8660254037844385, -1.732050807568877])) end
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT", "BSD-3-Clause" ]
0.6.0
f76a7a0f10af6ce7f227b7a921bfe351f628ed45
docs
7373
# GraphPlot ![CI](https://github.com/JuliaGraphs/GraphPlot.jl/workflows/CI/badge.svg?branch=master) [![version](https://juliahub.com/docs/GraphPlot/version.svg)](https://juliahub.com/ui/Packages/GraphPlot/bUwXr) Graph layout and visualization algorithms based on [Compose.jl](https://github.com/dcjones/Compose.jl) and inspired by [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl). The `spring_layout` and `stressmajorize_layout` function are copy from [IainNZ](https://github.com/IainNZ)'s [GraphLayout.jl](https://github.com/IainNZ/GraphLayout.jl). Other layout algorithms are wrapped from [NetworkX](https://github.com/networkx/networkx). `gadfly.js` is copied from [Gadfly.jl](https://github.com/dcjones/Gadfly.jl) # Getting Started From the Julia REPL the latest version can be installed with ```julia Pkg.add("GraphPlot") ``` GraphPlot is then loaded with ```julia using GraphPlot ``` # Usage ## karate network ```julia using Graphs: smallgraph g = smallgraph(:karate) gplot(g) ``` ## Add node label ```julia using Graphs nodelabel = 1:nv(g) gplot(g, nodelabel=nodelabel) ``` ## Adjust node labels ```julia gplot(g, nodelabel=nodelabel, nodelabeldist=1.5, nodelabelangleoffset=π/4) ``` ## Control the node size ```julia # nodes size proportional to their degree nodesize = [Graphs.outdegree(g, v) for v in Graphs.vertices(g)] gplot(g, nodesize=nodesize) ``` ## Control the node color Feed the keyword argument `nodefillc` a color array, ensure each node has a color. `length(nodefillc)` must be equal `|V|`. ```julia using Colors # Generate n maximally distinguishable colors in LCHab space. nodefillc = distinguishable_colors(nv(g), colorant"blue") gplot(g, nodefillc=nodefillc, nodelabel=nodelabel, nodelabeldist=1.8, nodelabelangleoffset=π/4) ``` ## Transparent ```julia # stick out large degree nodes alphas = nodesize/maximum(nodesize) nodefillc = [RGBA(0.0,0.8,0.8,i) for i in alphas] gplot(g, nodefillc=nodefillc) ``` ## Control the node label size ```julia nodelabelsize = nodesize gplot(g, nodelabelsize=nodelabelsize, nodesize=nodesize, nodelabel=nodelabel) ``` ## Draw edge labels ```julia edgelabel = 1:Graphs.ne(g) gplot(g, edgelabel=edgelabel, nodelabel=nodelabel) ``` ## Adjust edge labels ```julia edgelabel = 1:Graphs.ne(g) gplot(g, edgelabel=edgelabel, nodelabel=nodelabel, edgelabeldistx=0.5, edgelabeldisty=0.5) ``` ## Color the graph ```julia # nodes membership membership = [1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,2,1,1,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2] nodecolor = [colorant"lightseagreen", colorant"orange"] # membership color nodefillc = nodecolor[membership] gplot(g, nodefillc=nodefillc) ``` ## Different layout ### spring layout (default) This is the defaut layout and will be chosen if no layout is specified. The [default parameters to the spring layout algorithm](https://github.com/JuliaGraphs/GraphPlot.jl/blob/master/src/layout.jl#L78) can be changed by supplying an anonymous function, e.g., if nodes appear clustered too tightly together, try ```julia layout=(args...)->spring_layout(args...; C=20) gplot(g, layout=layout, nodelabel=nodelabel) ``` where `C` influences the desired distance between nodes. ### random layout ```julia gplot(g, layout=random_layout, nodelabel=nodelabel) ``` ### circular layout ```julia gplot(g, layout=circular_layout, nodelabel=nodelabel) ``` ### spectral layout ```julia gplot(g, layout=spectral_layout) ``` ### shell layout ```julia nlist = Vector{Vector{Int}}(undef, 2) # two shells nlist[1] = 1:5 # first shell nlist[2] = 6:nv(g) # second shell locs_x, locs_y = shell_layout(g, nlist) gplot(g, locs_x, locs_y, nodelabel=nodelabel) ``` ## Curve edge ```julia gplot(g, linetype="curve") ``` ## Show plot When using an IDE such as VSCode, `Cairo.jl` is required to visualize the plot inside the IDE. When using the REPL, `gplothtml` will allow displaying the plot on a browser. ## Save to figure ```julia using Compose # save to pdf draw(PDF("karate.pdf", 16cm, 16cm), gplot(g)) # save to png draw(PNG("karate.png", 16cm, 16cm), gplot(g)) # save to svg draw(SVG("karate.svg", 16cm, 16cm), gplot(g)) # alternate way of saving to svg without loading Compose saveplot(gplot(g, plot_size = (16cm, 16cm)), "karate.svg") ``` # Graphs.jl integration ```julia using Graphs h = watts_strogatz(50, 6, 0.3) gplot(h) ``` # Arguments + `G` Graph to draw + `locs_x, locs_y` Locations of the nodes (will be normalized and centered). If not specified, will be obtained from `layout` kwarg. # Keyword Arguments + `layout` Layout algorithm: `random_layout`, `circular_layout`, `spring_layout`, `shell_layout`, `stressmajorize_layout`, `spectral_layout`. Default: `spring_layout` + `title` Plot title. Default: `""` + `title_color` Plot title color. Default: `colorant"black"` + `title_size` Plot title size. Default: `4.0` + `font_family` Font family for all text. Default: `"Helvetica"` + `NODESIZE` Max size for the nodes. Default: `3.0/sqrt(N)` + `nodesize` Relative size for the nodes, can be a Vector. Default: `1.0` + `nodelabel` Labels for the vertices, a Vector or nothing. Default: `nothing` + `nodelabelc` Color for the node labels, can be a Vector. Default: `colorant"black"` + `nodelabeldist` Distances for the node labels from center of nodes. Default: `0.0` + `nodelabelangleoffset` Angle offset for the node labels. Default: `π/4.0` + `NODELABELSIZE` Largest fontsize for the vertice labels. Default: `4.0` + `nodelabelsize` Relative fontsize for the vertice labels, can be a Vector. Default: `1.0` + `nodefillc` Color to fill the nodes with, can be a Vector. Default: `colorant"turquoise"` + `nodestrokec` Color for the nodes stroke, can be a Vector. Default: `nothing` + `nodestrokelw` Line width for the nodes stroke, can be a Vector. Default: `0.0` + `edgelabel` Labels for the edges, a Vector or nothing. Default: `[]` + `edgelabelc` Color for the edge labels, can be a Vector. Default: `colorant"black"` + `edgelabeldistx, edgelabeldisty` Distance for the edge label from center of edge. Default: `0.0` + `EDGELABELSIZE` Largest fontsize for the edge labels. Default: `4.0` + `edgelabelsize` Relative fontsize for the edge labels, can be a Vector. Default: `1.0` + `EDGELINEWIDTH` Max line width for the edges. Default: `0.25/sqrt(N)` + `edgelinewidth` Relative line width for the edges, can be a Vector. Default: `1.0` + `edgestrokec` Color for the edge strokes, can be a Vector. Default: `colorant"lightgray"` + `arrowlengthfrac` Fraction of line length to use for arrows. Equal to 0 for undirected graphs. Default: `0.1` for the directed graphs + `arrowangleoffset` Angular width in radians for the arrows. Default: `π/9 (20 degrees)` + `linetype` Type of line used for edges ("straight", "curve"). Default: "straight" + `outangle` Angular width in radians for the edges (only used if `linetype = "curve`). Default: `π/5 (36 degrees)` + `background_color` Color for the plot background. Default: `nothing` + `plot_size` Tuple of measures for width x height of plot area. Default: `(10cm, 10cm)` + `leftpad, rightpad, toppad, bottompad` Padding for the plot margins. Default: `0mm` + `pad` Padding for plot margins (overrides individual padding if given). Default: `nothing` # Reporting Bugs Filing an issue to report a bug, counterintuitive behavior, or even to request a feature is extremely valuable in helping me prioritize what to work on, so don't hestitate.
GraphPlot
https://github.com/JuliaGraphs/GraphPlot.jl.git
[ "MIT" ]
0.1.4
9bb6a6efd74e0f315a6e5bd73c15b58ac5a6de2c
code
802
push!(LOAD_PATH,"../src") using Documenter: Documenter, makedocs, deploydocs, doctest, DocMeta using Tries using Test DocMeta.setdocmeta!(Tries, :DocTestSetup, quote using Tries end; recursive=true) ## doctest(Tries; fix=true) makedocs(; modules=[Tries], authors="Gregor Kappler", repo="https://github.com/gkappler/Tries.jl/blob/{commit}{path}#L{line}", sitename="Tries.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://gkappler.github.io/Tries.jl", assets=String[], ), pages=[ "Home" => "index.md", "Library" => Any[ "Public" => "lib/public.md", ], # "Developer Guide" => "developer.md" ], ) deploydocs(; repo="github.com/gkappler/Tries.jl", )
Tries
https://github.com/gkappler/Tries.jl.git
[ "MIT" ]
0.1.4
9bb6a6efd74e0f315a6e5bd73c15b58ac5a6de2c
code
12067
""" Implemented of a Trie data structure. This is an associative data structure with keys of type `NTuple{N,K} where N` and values of type `V`. """ module Tries import Base: get!, show, get, isempty, haskey, setindex!, getindex, pairs, keys, values, keytype, eltype, valtype import AbstractTrees import AbstractTrees: children, printnode, PreOrderDFS, print_tree ##using VectorDicts export AbstractTrie, Trie, SubTrie, nodes, subtrie abstract type AbstractTrie{K,T} end """ Base.length(x::Tries.AbstractTrie) Cumulative count of all nodes. """ Base.length(x::AbstractTrie) = 1+_length(x) _length(x::AbstractTrie) = isempty(nodes(x)) ? 0 : (0+length(nodes(x)) + (sum)(_length.(values(nodes(x)))))::Int """ Base.iterate(x::Tries.AbstractTrie, a...) `iterate(pairs(x), a...)`. """ Base.iterate(x::AbstractTrie, a...) = iterate(pairs(x), a...) struct Trie{K,T} <: AbstractTrie{K,T} value::Union{Missing,T} nodes::Dict{K,Trie{K,T}} end """ nodes(x::AbstractTrie{K,T}) Getter for node dictionary. """ nodes(x::Trie) = x.nodes """ A Trie with a path. """ struct SubTrie{K,T} <: AbstractTrie{K,T} path::NTuple{N,K} where N value::Trie{K,T} SubTrie(path::NTuple{N,K} where N, t::Trie{K,V}) where {K,V} = new{K,V}(path, t) SubTrie(path::NTuple{N,K} where N, st::SubTrie{K,V}) where {K,V} = new{K,V}((path..., st.path...), st.value) end nodes(x::SubTrie) = x.value.nodes subtrie(x::SubTrie, a...) = SubTrie(x.path,subtrie(x.value,a...)) subtrie!(x::SubTrie, a...) = SubTrie(x.path,subtrie!(x.value,a...)) subtrie!(f::Function, x::SubTrie, a...) = SubTrie(x.path,subtrie!(f,x.value,a...)) """ Trie{K,T}() Construct an empty `Trie{K,T}` with root value `missing`. """ Trie{K,T}() where {K,T} = Trie{K,T}(missing, Dict{K,Trie{K,T}}()) """ Trie{K,T}(value) Construct an empty `Trie{K,T}` with root value is `value`. """ Trie{K,T}(value) where {K,T} = Trie{K,T}(value, Dict{K,Trie{K,T}}()) """ Trie(values::Vararg{Pair{NTuple{N,K},T} where N}) where {K,T} Trie(values::Vararg{Pair{Vector{K},T}}) where {K,T} Trie(values::Vararg{Pair{NTuple{N,K},<:Any} where N}) where {K} Trie(values::Base.Generator) Construct a `Trie{K,T}` and populate it with `r[k...]=v`. ```jldoctest julia> Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>1) Trie{Symbol,Any} └─ :a => "a" ├─ :b => "c" │ └─ :d => 1 └─ :c └─ :d => "z" julia> Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>"y") Trie{Symbol,String} └─ :a => "a" ├─ :b => "c" │ └─ :d => "y" └─ :c └─ :d => "z" ``` See also [`setindex!`](@ref). """ function Trie(values::Vararg{Pair{NTuple{N,K},T} where N}) where {K,T} r = Trie{K,T}(missing, Dict{K,Trie{K,T}}()) for (k,v) in values r[k...]=v end r end function Trie(values::Vararg{Pair{Vector{K},T}}) where {K,T} r = Trie{K,T}(missing, Dict{K,Trie{K,T}}()) for (k,v) in values r[k...]=v end r end function Trie(values::Vararg{Pair{NTuple{N,K},<:Any} where N}) where {K} r = Trie{K,Any}(missing, Dict{K,Trie{K,Any}}()) for (k,v) in values r[k...]=v end r end Trie(values::Base.Generator) = Trie(values...) # struct ETrie{K,T,D<:AbstractDict} # value::Union{Missing,T} # nodes::D{K,ETrie{K,T,D}} # end # ETrie{K,T}() where {K,T} = # ETrie{K,T,}(missing, @show VectorDict{K,ETrie{K,T,VectorDict}}()) """ Base.get(x::Trie) Base.get(x::SubTrie) Return `value::Union{Missing,valtype(x)}` of `x`. """ function Base.get(x::Trie) x.value end Base.get(x::SubTrie) = get(x.value) """ Base.show(x::Trie) Base.show(x::SubTrie) Display `x` with `AbstractTrees.print_tree`. """ function Base.show(io::IO, x::Trie) print(io,"Trie{$(keytype(x)),$(valtype(x))}") ## error("should print key") print_tree(io,x) end function Base.show(io::IO, x::SubTrie) print(io,"SubTrie{$(keytype(x)),$(valtype(x))} @ ") ## error("should print key") if length(x.path)>1 for p in x.path[1:end-1] show(io,p) print(io,", ") end end print_tree(io,x) end AbstractTrees.children(x::Trie{K,V}) where {K,V} = [ SubTrie(tuple(k), v) for (k,v) in pairs(x.nodes) ] function AbstractTrees.printnode(io::IO, x::Trie) if get(x) !== missing print(io, " => ") show(io, get(x)) end end AbstractTrees.children(x::SubTrie{K,V}) where {K,V} = [ SubTrie(tuple(x.path..., k), v) for (k,v) in pairs(x.value.nodes) ] function AbstractTrees.printnode(io::IO, x::SubTrie) !isempty(x.path) && show(io,x.path[end]) if get(x) !== missing print(io, " => ") show(io, get(x)) end end """ Base.keytype(::Type{Trie{K,V}}) where {K,V} Base.keytype(::Trie{K,V}) where {K,V} Returns `K`. !!! warning please review: should this return `NTuple{N,K} where N`? """ Base.keytype(::Type{<:AbstractTrie{K,V}}) where {K,V} = K Base.keytype(x::AbstractTrie) = keytype(typeof(x)) """ Base.eltype(::Type{<:AbstractTrie{K,V}}) where {K,V} Base.etype(::AbstractTrie{K,V}) where {K,V} Returns `Pair{Tuple{Vararg{K,N} where N},Union{Missing,V}}` for `iterate` and `collect`. """ Base.eltype(::Type{<:AbstractTrie{K,V}}) where {K,V} = Pair{Tuple{Vararg{K,N} where N},Union{Missing,V}} Base.eltype(x::AbstractTrie) = eltype(typeof(x)) """ Base.valtype(::Type{AbstractTrie{K,V}}) where {K,V} Base.valtype(::AbstractTrie{K,V}) where {K,V} Returns `V`. """ Base.valtype(::Type{<:AbstractTrie{K,V}}) where {K,V} = V Base.valtype(x::AbstractTrie) = valtype(typeof(x)) """ Base.get!(x::Trie,k) Returns `subtrie!(x,k).value`. See also [`subtrie!`](@ref) """ Base.get!(x::Trie{K,T},k) where {K,T} = get(subtrie!(x, k...)) """ Base.get(x::Trie,k) Returns `subtrie(x,k).value`. See also [`subtrie`](@ref) """ Base.get(x::Trie{K,T}, k) where {K,T} = get(subtrie(x, k...)) """ Base.get!(x::Trie,k) Returns `subtrie!(x,k).value`. See also [`subtrie!`](@ref) """ Base.get!(f::Function, x::Trie{K,T}, k) where {K,T} = get(subtrie!(f, x, k...)) """ Base.isempty(x::Trie) Returns `true` iif x has no nodes. """ Base.isempty(x::Trie) = isempty(x.nodes) """ Base.haskey(x::Trie,path) Returns `true` iif x has nodes along `path`. """ Base.haskey(x::Trie,path) = isempty(path) || ( haskey(x.nodes,path[1]) && ( length(path)==1 || haskey(x[path[1]],path[2:end]) ) ) export subtrie! """ subtrie!(x::Trie,path...) Return a subtree at `path`. Nodes missing in `x` along path are created and populated with values `missing`. """ subtrie!(x::Trie{K,V},path::K...) where {K,V} = subtrie!((_,_)->missing, x,path...) """ subtrie!(f::Function,x::Trie,path...) Return a subtree at `path`. Nodes missing in `x` along path are created and populated with values `f(path, index)`. ```jldoctest julia> a = Trie{Int,Int}(0) Trie{Int64,Int64} => 0 julia> subtrie!((p,i)->i, a, 4,3,2,1) SubTrie{Int64,Int64} @ 4, 3, 2, 1 => 4 julia> a Trie{Int64,Int64} => 0 └─ 4 => 1 └─ 3 => 2 └─ 2 => 3 └─ 1 => 4 ``` """ function subtrie!(f::Function,x::Trie{K,T},path::K...) where {K,T} isempty(path) && return SubTrie(tuple(),x) x_::Trie{K,T} = x for i in 1:(lastindex(path)-1) k = path[i] x_ = get!(() -> Trie{K,T}(f(path,i)), nodes(x_), k) end ##if length(path) >= 1 x_ = get!(() -> Trie{K,T}(f(path,lastindex(path))), nodes(x_), path[end]) ##end SubTrie(path, x_) end """ subtrie(x::Trie{K,T},path...) Return a subtree at `path`. ```jldoctest julia> a = Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>"y") Trie{Symbol,String} └─ :a => "a" ├─ :b => "c" │ └─ :d => "y" └─ :c └─ :d => "z" julia> subtrie(a, :a, :b) SubTrie{Symbol,String} @ :a, :b => "c" └─ :d => "y" julia> subtrie(a, :a, :d, :b) ERROR: KeyError: key (:d, :b) not found Stacktrace: [1] (::Tries.var"#41#42")(::Tuple{Symbol,Symbol,Symbol}, ::Int64) at /home/gregor/dev/julia/Tries/src/Tries.jl:334 [2] subtrie(::Tries.var"#41#42", ::Trie{Symbol,String}, ::Symbol, ::Vararg{Symbol,N} where N) at /home/gregor/dev/julia/Tries/src/Tries.jl:386 [3] subtrie(::Trie{Symbol,String}, ::Symbol, ::Symbol, ::Vararg{Symbol,N} where N) at /home/gregor/dev/julia/Tries/src/Tries.jl:334 [4] top-level scope at REPL[12]:1 ``` """ function subtrie(x::AbstractTrie,path...) subtrie((path,i)->throw(KeyError(path[i:end])),x,path...) end """ subtrie(::Nothing,x::Trie{K,T},path...) Return a subtree at `path`, or `nothing`, if `path` does not exist in `x`. Does not modify `x`. ```jldoctest julia> a = Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>"y") Trie{Symbol,String} └─ :a => "a" ├─ :b => "c" │ └─ :d => "y" └─ :c └─ :d => "z" julia> subtrie(nothing, a, :a, :d) ``` """ function subtrie(::Nothing,x::AbstractTrie{K,T},path::K...) where {K,T} subtrie((p,i)->nothing,x,path...) end """ subtrie(notfound::Function,x::Trie{K,T},path...) Return a subtree at `path`, or `notfound(path,error_index)`, if `path` does not exist in `x` (default `(path,i)->throw(KeyError(path[i:end]))`). Does not modify `x`. ```jldoctest julia> a = Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>"y") Trie{Symbol,String} └─ :a => "a" ├─ :b => "c" │ └─ :d => "y" └─ :c └─ :d => "z" julia> subtrie((x...) -> x, a, :a, :d) ((:a, :d), 2) ``` """ function subtrie(f::Function,x::AbstractTrie{K,T},path::K...) where {K,T} x_ = x for (i,k) in enumerate(path) !(haskey(nodes(x_),k)) && return f(path,i) # && @warn "no key $k" collect(keys(x_.nodes)) # k haskey(x_.nodes,k) x_.nodes x_ = nodes(x_)[k] end SubTrie(path, x_) end import Base.setindex! """ Base.setindex!(x::Trie{K,T}, v::T, path...) where {K,T} Set value at `path` to `v and return previous value or missing. !!! note To retrieve last value you need to call `setindex!` explicitly. ```jldoctest julia> x = Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>"y") Trie{Symbol,String} └─ :a => "a" ├─ :b => "c" │ └─ :d => "y" └─ :c └─ :d => "z" julia> x[:a,:b,:z]="node added" "node added" julia> setindex!(x,"value set",:a,:c) Trie{Symbol,String} └─ :d => "z" julia> x Trie{Symbol,String} └─ :a => "a" ├─ :b => "c" │ ├─ :d => "y" │ └─ :z => "node added" └─ :c => "value set" └─ :d => "z" ``` See also [`subtrie!`](@ref) """ function Base.setindex!(x::Trie{K,T}, v::T, path::K...) where {K,T} x_=subtrie!(x,path[1:end-1]...) leaf=subtrie!(x_,path[end]) x_.value.nodes[path[end]] = Trie{K,T}(v,leaf.value.nodes) leaf.value end """ Base.getindex(x::Trie{K,T}, path...) where {K,T} Get `SubTrie` at `path`. See also [`SubTrie`](@ref). """ function Base.getindex(x::Trie{K,T}, path::K...) where {K,T} subtrie(x,path...) end """ Base.getindex(x::SubTrie, path...) Get `SubTrie` at `(x.path...,path...)`. See also [`SubTrie`](@ref). """ function Base.getindex(x::SubTrie{K,V}, path::K...) where {K,V} SubTrie(tuple(x.path...,path...),subtrie(x,path...)) end """ Base.pairs(x::Trie{K,V}) where {K,V} Base.pairs(x::SubTrie) Generator returning `path => value` pairs. See also [`AbstractTrees.PreOrderDFS`](https://juliacollections.github.io/AbstractTrees.jl/stable/api/#AbstractTrees.PreOrderDFS) """ Base.pairs(x::Trie) = pairs(SubTrie(tuple(),x)) function Base.pairs(x::SubTrie{K,V}) where {K,V} ( Pair{Tuple{Vararg{K,N} where N},Union{Missing,V}}(x.path, get(x)) for x in PreOrderDFS(x) ) end """ Base.keys(x::AbstractTrie) Generator returning `path`s as `first` fields from `pairs(x)`. See also [`pairs`](@ref) """ Base.keys(x::AbstractTrie) = ( kv.first for kv in pairs(x) ) """ Base.values(x::Union{Trie,SubTrie}) Generator returning `value`s as `second` fields from `pairs(x)`. See also [`pairs`](@ref) """ Base.values(x::AbstractTrie) = ( kv.second for kv in pairs(x) ) end # module
Tries
https://github.com/gkappler/Tries.jl.git
[ "MIT" ]
0.1.4
9bb6a6efd74e0f315a6e5bd73c15b58ac5a6de2c
code
3317
using Tries using Test @testset "Tries.jl" begin x=Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>1) x=Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>"y") @test length(x) == 6 @test [ n for n in x if n.second!==missing ] == [ (:a,)=>"a", (:a,:b)=>"c", (:a,:b,:d)=>"y", (:a,:c,:d)=>"z" ] @test isempty(x) == false @test haskey(x,(:a,)) == true @test collect(keys(nodes(x[:a]))) == [:b,:c] @testset "eltype, keytype" begin @test eltype(x) == Pair{Tuple{Vararg{Symbol,N} where N},Union{Missing,String}} @test eltype(typeof(x)) == Pair{Tuple{Vararg{Symbol,N} where N},Union{Missing,String}} @test eltype(x[:a]) == Pair{Tuple{Vararg{Symbol,N} where N},Union{Missing,String}} @test eltype(typeof(x[:a])) == Pair{Tuple{Vararg{Symbol,N} where N},Union{Missing,String}} @test valtype(x) == String @test valtype(typeof(x)) == String @test valtype(x[:a]) == String @test valtype(typeof(x[:a])) == String @test keytype(x) == Symbol @test keytype(typeof(x)) == Symbol @test keytype(x[:a]) == Symbol @test keytype(typeof(x[:a])) == Symbol @test_broken keytype(x) == Vararg{Symbol} end @testset "getting subtries and values" begin @test x[:a] isa SubTrie @test x[:a].path == (:a,) ## method? @test get(x[:a])=="a" @test get(x[:a,:b])=="c" @test get(x[:a,:b,:d])=="y" @test get(x[:a][:b,:d])=="y" end @testset "keys as vectors" begin x=Trie([:a]=>"a", [:a,:b]=>"c", [:a,:c,:d]=>"z", [:a,:b,:d]=>"y") @test get(x[:a][:b,:d])=="y" end @testset "Generator constructor" begin x=Trie(kv for kv in ([:a]=>"a", [:a,:b]=>"c", [:a,:c,:d]=>"z", [:a,:b,:d]=>"y")) @test_throws KeyError subtrie(x,:z,:y) @test subtrie((p,i)->1,x,:z,:y)==1 @test subtrie(nothing,x,:z,:y)===nothing @test get(x[:a][:b,:d])=="y" subtrie!(x,:z,:y) @test get(x[:z][:y])===missing get!(x,(:z2,:y2)) @test get(x,(:z2,:y2)) === missing @test get!(x,(:z3,:y3)) do k,i string(k[1:i]) end == "(:z3, :y3)" end @testset "setting values" begin x[:z]="added" @test get(x[:z])=="added" x[:z,:n]="n" @test get(x[:z,:n])=="n" x[:z,:n]="m" @test get(x[:z,:n])=="m" @testset "changing value preserves subtrie" begin x[:z]="changed" @test get(x[:z,:n])=="m" end end show(x[:a,:b]) @testset "populating path" begin x=Trie{Int,Int}() leaf = subtrie!(x, 1,2,3,4,5) do x,i x[i]+1 end @test get(leaf)==6 @test get(x[1])==2 @test get(x[1,2])==3 leaf2 = subtrie!(x[1,2],9,10) do x,i x[i]-1 end @test get(x[1,2,9,10])==9 end show(Trie{Symbol,Int}(1)) @testset "pairs, keys, values" begin x=Trie(tuple(:a,:b) => 1, (:a,) => 2) @test collect(values(x))[2:3] == [2,1] @test collect(keys(x)) == [tuple(), (:a,),(:a,:b)] ## @test collect(pairs(x))[1] == ( tuple()=>missing ) @test collect(pairs(x))[2] == ( (:a,)=>2 ) @test collect(pairs(x))[3] == ( (:a,:b)=>1 ) end end
Tries
https://github.com/gkappler/Tries.jl.git
[ "MIT" ]
0.1.4
9bb6a6efd74e0f315a6e5bd73c15b58ac5a6de2c
docs
3470
# Tries <!-- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://gkappler.github.io/Tries.jl/stable) --> [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://gkappler.github.io/Tries.jl/dev) [![Build Status](https://travis-ci.org/gkappler/Tries.jl.svg?branch=master)](https://travis-ci.com/github/gkappler/Tries.jl) [![Codecov](https://codecov.io/gh/gkappler/Tries.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/gkappler/Tries.jl) [Trie](https://en.wikipedia.org/wiki/Trie) is a small package providing a tree-like data structure implemented on a `Dict` backend and using [AbstractTrees](https://github.com/JuliaCollections/AbstractTrees.jl) for printing and traversal. `Trie` generalizes [DataStructures.Trie](https://juliacollections.github.io/DataStructures.jl/latest/trie/) from `AbstractString` keys to arbitrary `NTuple{N,K} where N` key types. Some design decisions for a `trie::Trie{K,V}` regarding `keytype` and `getindex` might change in future versions based on discussions with the community. : - `getindex(trie, ks::K...)` and `setindex!(trie, v, ks::K...)` consider `Trie` as sparse representation of an object with values`::Union{V,Missing}` referenced by any finite `N`-dimensional key `ks::NTuple{N,K} where N`. - `keytype(trie)` currently is `K`, should it be `ks::NTuple{N,K} where N`? - Future versions might switch backend to Andy Ferris [Dictionaries.jl](https://github.com/andyferris/Dictionaries.jl). Contributions, thoughts and suggestions very welcome! <pre><code class="language-julia-repl"> julia&gt; using Tries julia&gt; x=Trie((:a,)=&gt;&quot;a&quot;, (:a,:b)=&gt;&quot;c&quot;, (:a,:c,:d)=&gt;&quot;z&quot;, (:a,:b,:d)=&gt;1) Trie{Symbol,Any} └─ :a =&gt; &quot;a&quot; ├─ :b =&gt; &quot;c&quot; │ └─ :d =&gt; 1 └─ :c └─ :d =&gt; &quot;z&quot; julia&gt; eltype(x) Any julia&gt; x[:a,:b] SubTrie{Symbol,Any} @ :a, :b =&gt; &quot;c&quot; └─ :d =&gt; 1 julia&gt; x[:a,:b].path (:a, :b) julia&gt; get(x[:a,:b]) &quot;c&quot; julia&gt; get(x[:a][:b,:d]) 1 julia&gt; # get(x,[:a,:b]) &quot;c&quot; julia&gt; x[:z]=&quot;added&quot; &quot;added&quot; julia&gt; get(x[:z]) &quot;added&quot; julia&gt; x[:z,:n]=&quot;n&quot; &quot;n&quot; julia&gt; x[:z] SubTrie{Symbol,Any} @ :z =&gt; &quot;added&quot; └─ :n =&gt; &quot;n&quot; julia&gt; x[:z,:n]=&quot;m&quot; &quot;m&quot; julia&gt; x[:z] SubTrie{Symbol,Any} @ :z =&gt; &quot;added&quot; └─ :n =&gt; &quot;m&quot; julia&gt; x Trie{Symbol,Any} ├─ :a =&gt; &quot;a&quot; │ ├─ :b =&gt; &quot;c&quot; │ │ └─ :d =&gt; 1 │ └─ :c │ └─ :d =&gt; &quot;z&quot; └─ :z =&gt; &quot;added&quot; └─ :n =&gt; &quot;m&quot;</code></pre><pre><code class="language-julia-repl">julia&gt; using Tries julia&gt; x=Trie{Int,Int}(0) Trie{Int64,Int64} =&gt; 0 julia&gt; subtrie!(x, 1,2,3,4,5) do x x[end]+1 end SubTrie{Int64,Int64} @ 1, 2, 3, 4, 5 =&gt; 6 julia&gt; x Trie{Int64,Int64} =&gt; 0 └─ 1 =&gt; 2 └─ 2 =&gt; 3 └─ 3 =&gt; 4 └─ 4 =&gt; 5 └─ 5 =&gt; 6 ⋮ julia&gt; collect(keys(x)) 6-element Array{Tuple{Vararg{Int64,N} where N},1}: () (1,) (1, 2) (1, 2, 3) (1, 2, 3, 4) (1, 2, 3, 4, 5) </code></pre> `Tries` is used in [CombinedParsers.jl](https://github.com/gkappler/CombinedParsers.jl) for fast prefix tree matching (see [docs](https://gkappler.github.io/CombinedParsers.jl/dev/man/example-either-trie/)).
Tries
https://github.com/gkappler/Tries.jl.git
[ "MIT" ]
0.1.4
9bb6a6efd74e0f315a6e5bd73c15b58ac5a6de2c
docs
1025
# Tries.jl Documentation Implemented of a Trie data structure. This is an associative data structure with keys of type `NTuple{N,K} where N` and values of type `V`. ## Package Features - General trie data structure building on `Dict`. - Generalizes [DataStructures Trie](https://juliacollections.github.io/DataStructures.jl/latest/trie/) from `AbstractString` to arbitrary key types. !!! note Future versions might switch backend to Andy Ferris [Dictionaries.jl](https://github.com/andyferris/Dictionaries.jl). ## Using Tries ```@repl using Tries x=Trie((:a,)=>"a", (:a,:b)=>"c", (:a,:c,:d)=>"z", (:a,:b,:d)=>1) eltype(x) x[:a,:b] x[:a,:b].path get(x[:a,:b]) get(x[:a][:b,:d]) # get(x,[:a,:b]) x[:z]="added" get(x[:z]) x[:z,:n]="n" x[:z] x[:z,:n]="m" x[:z] x ``` ```@repl using Tries x=Trie{Int,Int}(0) subtrie!(x, 1,2,3,4,5) do x x[end]+1 end x collect(keys(x)) ``` ## Library Outline ```@contents Pages = [ "lib/public.md" ] Depth = 5 ``` ```@index Pages = ["lib/public.md"] ```
Tries
https://github.com/gkappler/Tries.jl.git
[ "MIT" ]
0.1.4
9bb6a6efd74e0f315a6e5bd73c15b58ac5a6de2c
docs
199
# Public Interface Documentation for `Tries.jl`'s public interface. ```@docs Tries Trie SubTrie get get! show isempty keytype eltype haskey subtrie subtrie! getindex setindex! pairs values keys ```
Tries
https://github.com/gkappler/Tries.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
1342
# Copyright (c) 2024 Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using Tar, Inflate, SHA, TOML function get_artifact(data) dir = "$(data.arch)-$(data.platform)" filename = "$(dir).tar.bz2" run(`tar -cjf $filename $dir`) sha256 = bytes2hex(open(sha256, filename)) url = "https://github.com/chkwon/PATHSolver.jl/releases/download/v5.0.3-path-binaries/$filename" ret = Dict( "git-tree-sha1" => Tar.tree_hash(`gzcat $filename`), "arch" => data.arch, "os" => data.os, "download" => Any[Dict("sha256" => sha256, "url" => url)], ) return ret end function main() platforms = [ (os = "linux", arch = "x86_64", platform = "linux-gnu"), (os = "macos", arch = "x86_64", platform = "apple-darwin"), (os = "macos", arch = "aarch64", platform = "apple-darwin"), (os = "windows", arch = "x86_64", platform = "w64-mingw32"), ] output = Dict("PATHSolver" => get_artifact.(platforms)) open(joinpath(dirname(@__DIR__), "Artifacts.toml"), "w") do io return TOML.print(io, output) end return end # julia --project=scripts scripts/update_artifacts.jl # # Update the Artifacts.toml file. main()
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
27985
# Copyright (c) 2016 Changhyun Kwon, Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. # PATH uses the Float64 value 1e20 to represent +infinity. const INFINITY = 1e20 ### ### License.h ### function c_api_License_SetString(license::String) return @ccall PATH_SOLVER.License_SetString(license::Ptr{Cchar})::Cint end ### ### Output_Interface.h ### const c_api_Output_Log = Cint(1 << 0) const c_api_Output_Status = Cint(1 << 1) const c_api_Output_Listing = Cint(1 << 2) mutable struct OutputData io::IO end mutable struct OutputInterface output_data::Ptr{Cvoid} print::Ptr{Cvoid} flush::Ptr{Cvoid} end # flush argument is optional and appears unused. I could not trigger # a test that used it. # function _c_flush(data::Ptr{Cvoid}, mode::Cint) # output_data = unsafe_pointer_to_objref(data)::OutputData # flush(output_data.io) # return # end function _c_print(data::Ptr{Cvoid}, mode::Cint, msg::Ptr{Cchar}) if ( mode & c_api_Output_Log == c_api_Output_Log || # TODO(odow): decide whether to print the Output_Status. It has a lot of # information... # mode & c_api_Output_Status == c_api_Output_Status || mode & c_api_Output_Listing == c_api_Output_Listing ) output_data = unsafe_pointer_to_objref(data)::OutputData print(output_data.io, unsafe_string(msg)) end return end function OutputInterface(output_data) _C_PRINT = @cfunction(_c_print, Cvoid, (Ptr{Cvoid}, Cint, Ptr{Cchar})) _C_FLUSH = C_NULL # flush argument is optional # To make pointer_from_objref legal, you must ensure that output_data AND # the Output_Interface object outlive any ccalls. We do this in solve_mcp # using `gc_root`. return OutputInterface(pointer_from_objref(output_data), _C_PRINT, _C_FLUSH) end function c_api_Output_SetInterface(o::OutputInterface) return @ccall( PATH_SOLVER.Output_SetInterface(o::Ref{OutputInterface})::Cvoid, ) end ### ### Options.h ### mutable struct Options ptr::Ptr{Cvoid} function Options(ptr::Ptr{Cvoid}) o = new(ptr) finalizer(c_api_Options_Destroy, o) return o end end Base.cconvert(::Type{Ptr{Cvoid}}, x::Options) = x Base.unsafe_convert(::Type{Ptr{Cvoid}}, x::Options) = x.ptr function c_api_Options_Create() return Options(@ccall PATH_SOLVER.Options_Create()::Ptr{Cvoid}) end function c_api_Options_Destroy(o::Options) return @ccall PATH_SOLVER.Options_Destroy(o::Ptr{Cvoid})::Cvoid end function c_api_Options_Default(o::Options) return @ccall PATH_SOLVER.Options_Default(o::Ptr{Cvoid})::Cvoid end function c_api_Options_Display(o::Options) return @ccall PATH_SOLVER.Options_Display(o::Ptr{Cvoid})::Cvoid end function c_api_Options_Read(o::Options, filename::String) return @ccall( PATH_SOLVER.Options_Read(o::Ptr{Cvoid}, filename::Ptr{Cchar})::Cvoid, ) end function c_api_Path_AddOptions(o::Options) return @ccall PATH_SOLVER.Path_AddOptions(o::Ptr{Cvoid})::Cvoid end ### ### Presolve_Interface.h ### const PRESOLVE_LINEAR = 0 const PRESOLVE_NONLINEAR = 1 mutable struct PresolveData jac_typ::Function end function _c_jac_typ(data_ptr::Ptr{Cvoid}, nnz::Cint, typ_ptr::Ptr{Cint}) data = unsafe_pointer_to_objref(data_ptr)::PresolveData data.jac_typ(nnz, unsafe_wrap(Array{Cint}, typ_ptr, nnz)) return end mutable struct Presolve_Interface presolve_data::Ptr{Cvoid} start_pre::Ptr{Cvoid} start_post::Ptr{Cvoid} finish_pre::Ptr{Cvoid} finish_post::Ptr{Cvoid} jac_typ::Ptr{Cvoid} con_typ::Ptr{Cvoid} # To make pointer_from_objref legal, you must ensure that presolve_data AND # the Presolve_Interface object outlive any ccalls. We do this in solve_mcp # using `gc_root`. function Presolve_Interface(presolve_data::PresolveData) return new( pointer_from_objref(presolve_data), C_NULL, C_NULL, C_NULL, C_NULL, @cfunction(_c_jac_typ, Cvoid, (Ptr{Cvoid}, Cint, Ptr{Cint})), C_NULL, ) end end ### ### MCP_Interface.h ### mutable struct InterfaceData n::Cint nnz::Cint F::Function J::Function lb::Vector{Cdouble} ub::Vector{Cdouble} z::Vector{Cdouble} variable_names::Vector{String} constraint_names::Vector{String} end function _c_problem_size( id_ptr::Ptr{Cvoid}, n_ptr::Ptr{Cint}, nnz_ptr::Ptr{Cint}, ) id_data = unsafe_pointer_to_objref(id_ptr)::InterfaceData unsafe_store!(n_ptr, id_data.n) unsafe_store!(nnz_ptr, id_data.nnz) return end function _c_bounds( id_ptr::Ptr{Cvoid}, n::Cint, z_ptr::Ptr{Cdouble}, lb_ptr::Ptr{Cdouble}, ub_ptr::Ptr{Cdouble}, ) id_data = unsafe_pointer_to_objref(id_ptr)::InterfaceData copy!(unsafe_wrap(Array{Cdouble}, z_ptr, n), id_data.z) copy!(unsafe_wrap(Array{Cdouble}, lb_ptr, n), id_data.lb) copy!(unsafe_wrap(Array{Cdouble}, ub_ptr, n), id_data.ub) return end function _c_function_evaluation( id_ptr::Ptr{Cvoid}, n::Cint, x_ptr::Ptr{Cdouble}, f_ptr::Ptr{Cdouble}, ) id_data = unsafe_pointer_to_objref(id_ptr)::InterfaceData x = unsafe_wrap(Array{Cdouble}, x_ptr, n) f = unsafe_wrap(Array{Cdouble}, f_ptr, n) return id_data.F(n, x, f) end function _c_jacobian_evaluation( id_ptr::Ptr{Cvoid}, n::Cint, x_ptr::Ptr{Cdouble}, wantf::Cint, f_ptr::Ptr{Cdouble}, nnz_ptr::Ptr{Cint}, col_ptr::Ptr{Cint}, len_ptr::Ptr{Cint}, row_ptr::Ptr{Cint}, data_ptr::Ptr{Cdouble}, ) id_data = unsafe_pointer_to_objref(id_ptr)::InterfaceData x = unsafe_wrap(Array{Cdouble}, x_ptr, n) err = Cint(0) if wantf > 0 f = unsafe_wrap(Array{Cdouble}, f_ptr, n) err += id_data.F(n, x, f) end nnz = unsafe_load(nnz_ptr)::Cint col = unsafe_wrap(Array{Cint}, col_ptr, n) len = unsafe_wrap(Array{Cint}, len_ptr, n) row = unsafe_wrap(Array{Cint}, row_ptr, nnz) data = unsafe_wrap(Array{Cdouble}, data_ptr, nnz) err += id_data.J(n, nnz, x, col, len, row, data) unsafe_store!(nnz_ptr, Cint(sum(len))) return err end function _c_variable_name( id_ptr::Ptr{Cvoid}, i::Cint, buf_ptr::Ptr{UInt8}, buf_size::Cint, ) id_data = unsafe_pointer_to_objref(id_ptr)::InterfaceData data = fill(UInt8('\0'), buf_size) units = codeunits(id_data.variable_names[i]) for j in 1:min(length(units), buf_size)-1 data[j] = units[j] end GC.@preserve data begin unsafe_copyto!(buf_ptr, pointer(data), buf_size) end return end function _c_constraint_name( id_ptr::Ptr{Cvoid}, i::Cint, buf_ptr::Ptr{UInt8}, buf_size::Cint, ) id_data = unsafe_pointer_to_objref(id_ptr)::InterfaceData data = fill(UInt8('\0'), buf_size) units = codeunits(id_data.constraint_names[i]) for j in 1:min(length(units), buf_size)-1 data[j] = units[j] end GC.@preserve data begin unsafe_copyto!(buf_ptr, pointer(data), buf_size) end return end """ MCP_Interface A storage struct that is used to pass problem-specific functions to PATH. """ mutable struct MCP_Interface interface_data::Ptr{Cvoid} problem_size::Ptr{Cvoid} bounds::Ptr{Cvoid} function_evaluation::Ptr{Cvoid} jacobian_evaluation::Ptr{Cvoid} # TODO(odow): the .h files I have don't include the hessian evaluation in # MCP_Interface, but Standalone_Path.c includes it. Ask M. # Ferris to look at the source. # Answer: there is an #ifdef to turn it on or off. In the GAMS builds it # appears to be on, but we should be careful when updating PATH # versions. hessian_evaluation::Ptr{Cvoid} start::Ptr{Cvoid} finish::Ptr{Cvoid} variable_name::Ptr{Cvoid} constraint_name::Ptr{Cvoid} basis::Ptr{Cvoid} function MCP_Interface(interface_data::InterfaceData) _C_PROBLEM_SIZE = @cfunction( _c_problem_size, Cvoid, (Ptr{Cvoid}, Ptr{Cint}, Ptr{Cint}) ) _C_BOUNDS = @cfunction( _c_bounds, Cvoid, (Ptr{Cvoid}, Cint, Ptr{Cdouble}, Ptr{Cdouble}, Ptr{Cdouble}) ) _C_FUNCTION_EVALUATION = @cfunction( _c_function_evaluation, Cint, (Ptr{Cvoid}, Cint, Ptr{Cdouble}, Ptr{Cdouble}) ) _C_JACOBIAN_EVALUATION = @cfunction( _c_jacobian_evaluation, Cint, ( Ptr{Cvoid}, Cint, Ptr{Cdouble}, Cint, Ptr{Cdouble}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cint}, Ptr{Cdouble}, ) ) if isempty(interface_data.variable_names) _C_VARIABLE_NAME = C_NULL else _C_VARIABLE_NAME = @cfunction( _c_variable_name, Cvoid, (Ptr{Cvoid}, Cint, Ptr{Cuchar}, Cint) ) end if isempty(interface_data.constraint_names) _C_CONSTRAINT_NAME = C_NULL else _C_CONSTRAINT_NAME = @cfunction( _c_constraint_name, Cvoid, (Ptr{Cvoid}, Cint, Ptr{Cuchar}, Cint) ) end # To make pointer_from_objref legal, you must ensure that interface_data # AND the MCP_Interface object outlive any ccalls. We do this in # solve_mcp using `gc_root`. return new( pointer_from_objref(interface_data), _C_PROBLEM_SIZE, _C_BOUNDS, _C_FUNCTION_EVALUATION, _C_JACOBIAN_EVALUATION, C_NULL, C_NULL, # See TODO note in definition of fields above. C_NULL, _C_VARIABLE_NAME, _C_CONSTRAINT_NAME, C_NULL, ) end end mutable struct MCP n::Int ptr::Ptr{Cvoid} function MCP(n::Int, ptr::Ptr{Cvoid}) m = new(n, ptr) finalizer(c_api_MCP_Destroy, m) return m end end Base.cconvert(::Type{Ptr{Cvoid}}, x::MCP) = x Base.unsafe_convert(::Type{Ptr{Cvoid}}, x::MCP) = x.ptr function c_api_MCP_Create(n::Int, nnz::Int) ptr = @ccall PATH_SOLVER.MCP_Create(n::Cint, nnz::Cint)::Ptr{Cvoid} return MCP(n, ptr) end function c_api_MCP_Jacobian_Structure_Constant(m::MCP, flag::Bool) @ccall PATH_SOLVER.MCP_Jacobian_Structure_Constant( m::Ptr{Cvoid}, flag::Cint, )::Cvoid return end function c_api_MCP_Jacobian_Data_Contiguous(m::MCP, flag::Bool) @ccall PATH_SOLVER.MCP_Jacobian_Data_Contiguous( m::Ptr{Cvoid}, flag::Cint, )::Cvoid return end function c_api_MCP_Destroy(m::MCP) if m.ptr === C_NULL return end @ccall PATH_SOLVER.MCP_Destroy(m::Ptr{Cvoid})::Cvoid return end function c_api_MCP_SetInterface(m::MCP, interface::MCP_Interface) @ccall PATH_SOLVER.MCP_SetInterface( m::Ptr{Cvoid}, interface::Ref{MCP_Interface}, )::Cvoid return end function c_api_MCP_SetPresolveInterface(m::MCP, interface::Presolve_Interface) @ccall PATH_SOLVER.MCP_SetPresolveInterface( m::Ptr{Cvoid}, interface::Ref{Presolve_Interface}, )::Cvoid return end function c_api_MCP_GetX(m::MCP) ptr = @ccall PATH_SOLVER.MCP_GetX(m::Ptr{Cvoid})::Ptr{Cdouble} return copy(unsafe_wrap(Array{Cdouble}, ptr, m.n)) end ### ### Types.h ### @enum( MCP_Termination, MCP_Solved = 1, MCP_NoProgress, MCP_MajorIterationLimit, MCP_MinorIterationLimit, MCP_TimeLimit, MCP_UserInterrupt, MCP_BoundError, MCP_DomainError, MCP_Infeasible, MCP_Error, MCP_LicenseError, MCP_OK ) mutable struct Information # Double residual; /* Value of residual at final point */ residual::Cdouble # Double distance; /* Distance between initial and final point */ distance::Cdouble # Double steplength; /* Steplength taken */ steplength::Cdouble # Double total_time; /* Amount of time spent in the code */ total_time::Cdouble # Double basis_time; /* Amount of time spent factoring */ basis_time::Cdouble # Double maximum_distance; /* Maximum distance from init point allowed */ maximum_distance::Cdouble # Int major_iterations; /* Major iterations taken */ major_iterations::Cint # Int minor_iterations; /* Minor iterations taken */ minor_iterations::Cint # Int crash_iterations; /* Crash iterations taken */ crash_iterations::Cint # Int function_evaluations; /* Function evaluations performed */ function_evaluations::Cint # Int jacobian_evaluations; /* Jacobian evaluations performed */ jacobian_evaluations::Cint # Int gradient_steps; /* Gradient steps taken */ gradient_steps::Cint # Int restarts; /* Restarts used */ restarts::Cint # Int generate_output; /* Mask where output can be displayed. */ generate_output::Cint # Int generated_output; /* Mask where output displayed. */ generated_output::Cint # Boolean forward; /* Move forward? */ forward::Bool # Boolean backtrace; /* Back track? */ backtrace::Bool # Boolean gradient; /* Take gradient step? */ gradient::Bool # Boolean use_start; /* Use the starting point provided? */ use_start::Bool # Boolean use_basics; /* Use the basis provided? */ use_basics::Bool # Boolean used_start; /* Was the starting point given used? */ used_start::Bool # Boolean used_basics; /* Was the initial basis given used? */ used_basics::Bool function Information(; generate_output::Integer = 0, use_start::Bool = true, use_basics::Bool = false, ) return new( 0.0, # residual 0.0, # distance 0.0, # steplength 0.0, # total_time 0.0, # basis_time 0.0, # maximum_distance 0, # major_iterations 0, # minor_iterations 0, # crash_iterations 0, # function_evaluations 0, # jacobian_evaluations 0, # gradient_steps 0, # restarts generate_output, # generate_output 0, # generated_output false, # forward false, # backtrace false, # gradient use_start, # use_start use_basics, # use_basics false, # used_start false, # used_basics ) end end ### ### Path.h ### """ c_api_Path_CheckLicense(n::Int, nnz::Int) Check that the current license (stored in the environment variable `PATH_LICENSE_STRING` if present) is valid for problems with `n` variables and `nnz` non-zeros in the Jacobian. Returns a nonzero value on successful completion, and a zero value on failure. """ function c_api_Path_CheckLicense(n::Int, nnz::Int) return @ccall PATH_SOLVER.Path_CheckLicense(n::Cint, nnz::Cint)::Cint end """ c_api_Path_Version() Return a string of the PATH version. """ function c_api_Path_Version() return unsafe_string(@ccall PATH_SOLVER.Path_Version()::Ptr{Cchar}) end """ c_api_Path_Solve(m::MCP, info::Information) Returns a MCP_Termination status. """ function c_api_Path_Solve(m::MCP, info::Information) return @ccall( PATH_SOLVER.Path_Solve(m::Ptr{Cvoid}, info::Ref{Information})::Cint, ) end ### ### Standalone interface ### """ solve_mcp( F::Function, J::Function lb::Vector{Cdouble}, ub::Vector{Cdouble}, z::Vector{Cdouble}; nnz::Int = length(lb)^2, variable_name::Vector{String}=String[], constraint_name::Vector{String}=String[], silent::Bool = false, generate_output::Integer = 0, use_start::Bool = true, use_basics::Bool = false, jacobian_structure_constant::Bool = false, jacobian_data_contiguous::Bool = false, jacobian_linear_elements::Vector{Int} = Int[], kwargs... ) Mathematically, the mixed complementarity problem is to find an x such that for each i, at least one of the following hold: 1. F_i(x) = 0, lb_i <= (x)_i <= ub_i 2. F_i(x) > 0, (x)_i = lb_i 3. F_i(x) < 0, (x)_i = ub_i where F is a given function from R^n to R^n, and lb and ub are prescribed lower and upper bounds. ## The `F` argument `F` is a function that calculates the value of function ``F(x)`` and stores the result in `f`. It must have the signature: ```julia function F(n::Cint, x::Vector{Cdouble}, f::Vector{Cdouble}) for i in 1:n f[i] = ... do stuff ... end return Cint(0) end ``` ## The `J` argument `J` is a function that calculates the Jacobiann of the function ``F(x)``. The Jacobian is a square sparse matrix. It must have the signature: ```julia function J( n::Cint, nnz::Cint, x::Vector{Cdouble}, col::Vector{Cint}, len::Vector{Cint}, row::Vector{Cint}, data::Vector{Cdouble}, ) # ... return Cint(0) end ``` where: * `n` is the number of variables (which is also the number rows and columns in the Jacobian matrix). * `nnz` is the maximum number of non-zero terms in the Jacobian. This value is chosen by the user as the `nnz` argumennt to `solve_mcp`. * `x` is the value of the decision variables at which to evaluate the Jacobian. The remaining arguments, `col`, `len`, `row`, and `data`, specify a sparse column representation of the Jacobian matrix. These must be filled in by your function. * `col` is a length `n` vector, where `col[i]` is the 1-indexed position of the start of the non-zeros in column `i` in the `data` vector. * `len` is a length `n` vector, where `len[i]` is the number of non-zeros in column `i`. Together, `col` and `len` can be used to form a range of indices in `row` and `data` corresponding to the non-zero elements of column `i` in the Jacobian. Thus, we can iterate over the non-zeros in the Jacobian using: ```julia for i in 1:n for k in (col[i]):(col[i] + len[i] - 1) row[k] = ... the 1-indexed row of the k'th non-zero in the Jacobian data[k] = ... the value of the k'th non-zero in the Jacobian end end ``` To improve performance, see the `jacobian_structure_constant` and `jacobian_data_contiguous` keyword arguments. ## Other positional arguments * `lb`: a vector of the variable lower bounds * `ub`: a vector of the variable upper bounds * `z`: an initial starting point for the search. You can disable this by passing an empty vector and settig `use_start = false` ## Keyword arguments * `nnz`: the maximum number of non-zeros in the Jacobian matrix. If not specified if defaults to the dense estimate of `n^2` where `n` is the number of variables. * `variable_name`: a vector of variable names. This can improve the legibility of the output printed by PATH, particularly if there are issues associated with a particular variable. * `constraint_name`: a vector of constraint names. This can improve the legibility of the output printed by PATH, particularly if there are issues associated with a particular row of the `F` function. * `silent`: set `silent = true` to disable printing. * `generate_output`: an integer mask passed to the C API of PATH to dictate with output can be displayed. * `use_start`: set `use_start = false` to disable the use of the startint point `z`. * `use_basics`: set `use_basics = true` to use the basis provided. * `jacobian_structure_constant`: if `true`, the sparsity pattern of the Jacobian matrix must be constant between evaluations. You can improve performance by setting this to `true` and filling the `col`, `len` and `row` on the first evaluation only. * `jacobian_data_contiguous`: if `true`, the Jacobian data is stored contiguously from `1..nnz` in the `row` and `data` arrays of the Jacobian callback. In most cases, you can improve performance by settinng this to `true`. It is `false` by default for the general case. * `jacobian_linear_elements`: a vector of the 1-indexed indices of the Jacobian `data` array that appear linearly in the Jacobian, that is, their value is independent of the point `x` at which the Jacobian is evaluated. If you set this option, you must also set `jacobian_structure_constant = true`. * `kwargs`: other options passed to directly to PATH. """ function solve_mcp( F::Function, J::Function, lb::Vector{Cdouble}, ub::Vector{Cdouble}, z::Vector{Cdouble}; nnz::Int = length(lb)^2, variable_names::Vector{String} = String[], constraint_names::Vector{String} = String[], silent::Bool = false, generate_output::Integer = 0, use_start::Bool = true, use_basics::Bool = false, jacobian_structure_constant::Bool = false, jacobian_data_contiguous::Bool = false, jacobian_linear_elements::Vector{Int} = Int[], kwargs..., ) @assert length(z) == length(lb) == length(ub) n = length(z) if nnz > typemax(Cint) return MCP_Error, nothing, nothing elseif n == 0 return MCP_Solved, nothing, nothing end # gc_root is used to store various objects to prevent them from being GC'd. gc_root = IdDict() GC.@preserve gc_root begin out_io = silent ? IOBuffer() : stdout output_data = OutputData(out_io) # We shouldn't GC output_data until we exit the GC.@preserve block. gc_root[output_data] = true output_interface = OutputInterface(output_data) # We shouldn't GC output_interface until we exit the GC.@preserve block. gc_root[output_interface] = true c_api_Output_SetInterface(output_interface) # We need to call `c_api_Path_CheckLicense` _after_ setting the output # interface because CheckLicense may try to print to the screen. if c_api_Path_CheckLicense(n, nnz) == 0 return MCP_LicenseError, nothing, nothing end o = c_api_Options_Create() # Options has a finalizer. We don't want that to run until we exit the # GC.@preserve block. gc_root[o] = true c_api_Path_AddOptions(o) c_api_Options_Default(o) m = c_api_MCP_Create(n, nnz) if jacobian_structure_constant c_api_MCP_Jacobian_Structure_Constant(m, true) end if jacobian_data_contiguous c_api_MCP_Jacobian_Data_Contiguous(m, true) end id_data = InterfaceData( Cint(n), Cint(nnz), F, J, lb, ub, z, variable_names, constraint_names, ) # We shouldn't GC id_data until we exit the GC.@preserve block. gc_root[id_data] = true m_interface = MCP_Interface(id_data) # We shouldn't GC m_interface until we exit the GC.@preserve block. gc_root[m_interface] = true c_api_MCP_SetInterface(m, m_interface) if jacobian_structure_constant && !isempty(jacobian_linear_elements) function presolve_fn(::Cint, types::Vector{Cint}) types[jacobian_linear_elements] .= PRESOLVE_LINEAR return end presolve_data = PresolveData(presolve_fn) # We shouldn't GC presolve_data until we exit the GC.@preserve block. gc_root[presolve_data] = true presolve_interface = Presolve_Interface(presolve_data) # We shouldn't GC presolve_interface until we exit the GC.@preserve # block. gc_root[presolve_interface] = true c_api_MCP_SetPresolveInterface(m, presolve_interface) end if length(kwargs) > 0 mktemp() do path, io println( io, "* Automatically generated by PATH.jl. Do not edit.", ) for (key, val) in kwargs println(io, key, " ", val) end close(io) return c_api_Options_Read(o, path) end end c_api_Options_Display(o) info = Information(; generate_output = generate_output, use_start = use_start, use_basics = use_basics, ) status = c_api_Path_Solve(m, info) X = c_api_MCP_GetX(m) end # GC.@preserve # TODO(odow): I don't know why, but manually calling MCP_Destroy was # necessary to avoid a segfault on Julia 1.0 when using LUSOL. I guess it's # something to do with the timing of when things need to get freed on the # PATH side? i.e., MCP_Destroy before other things? c_api_MCP_Destroy(m) m.ptr = C_NULL return MCP_Termination(status), X, info end function _linear_function(M::AbstractMatrix, q::Vector) if size(M, 1) != size(M, 2) error("M not square! size = $(size(M))") elseif size(M, 1) != length(q) error("q is wrong shape. Expected $(size(M, 1)), got $(length(q)).") end return function F(n::Cint, x::Vector{Cdouble}, f::Vector{Cdouble}) f .= M * x .+ q return Cint(0) end end function _linear_jacobian(M::SparseArrays.SparseMatrixCSC{Cdouble,Cint}) # Size is checked with error message in _linear_function. @assert size(M, 1) == size(M, 2) return function J( n::Cint, nnz::Cint, x::Vector{Cdouble}, col::Vector{Cint}, len::Vector{Cint}, row::Vector{Cint}, data::Vector{Cdouble}, ) @assert n == length(x) == length(col) == length(len) == size(M, 1) @assert nnz == length(row) == length(data) @assert nnz >= SparseArrays.nnz(M) for i in 1:n col[i] = M.colptr[i] len[i] = M.colptr[i+1] - M.colptr[i] end for (i, v) in enumerate(SparseArrays.rowvals(M)) row[i] = v end for (i, v) in enumerate(SparseArrays.nonzeros(M)) data[i] = v end return Cint(0) end end """ solve_mcp(; M::SparseArrays.SparseMatrixCSC{Cdouble, Cint}, q::Vector{Cdouble}, lb::Vector{Cdouble}, ub::Vector{Cdouble}, z::Vector{Cdouble}; kwargs... ) Mathematically, the mixed complementarity problem is to find an x such that for each i, at least one of the following hold: 1. F_i(x) = 0, lb_i <= (x)_i <= ub_i 2. F_i(x) > 0, (x)_i = lb_i 3. F_i(x) < 0, (x)_i = ub_i where F is a function `F(x) = M * x + q` from R^n to R^n, and lb and ub are prescribed lower and upper bounds. `z` is an initial starting point for the search. """ function solve_mcp( M::SparseArrays.SparseMatrixCSC{Cdouble,Cint}, q::Vector{Cdouble}, lb::Vector{Cdouble}, ub::Vector{Cdouble}, z::Vector{Cdouble}; nnz = SparseArrays.nnz(M), kwargs..., ) return solve_mcp( _linear_function(M, q), _linear_jacobian(M), lb, ub, z; nnz = nnz, jacobian_structure_constant = true, jacobian_data_contiguous = true, jacobian_linear_elements = collect(1:nnz), kwargs..., ) end
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
15010
# Copyright (c) 2016 Changhyun Kwon, Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. MOI.Utilities.@model( Optimizer, (), # Scalar sets (), # Typed scalar sets (MOI.Complements,), # Vector sets (), # Typed vector sets (), # Scalar functions (), # Typed scalar functions (MOI.VectorOfVariables, MOI.VectorNonlinearFunction), # Vector functions (MOI.VectorAffineFunction, MOI.VectorQuadraticFunction), # Typed vector functions true, # is_optimizer ) function MOI.supports_constraint( ::Optimizer, ::Type{MOI.VariableIndex}, ::Type{<:MOI.AbstractScalarSet}, ) return false end function MOI.supports_constraint( ::Optimizer, ::Type{MOI.VariableIndex}, ::Type{S}, ) where { S<:Union{ MOI.LessThan{Float64}, MOI.GreaterThan{Float64}, MOI.EqualTo{Float64}, MOI.Interval{Float64}, }, } return true end function MOI.supports( ::Optimizer, ::MOI.ObjectiveFunction{F}, ) where {F<:MOI.AbstractFunction} return false end """ Optimizer() Define a new PATH optimizer. Pass options using `MOI.RawOptimizerAttribute`. Common options include: - output => "yes" - convergence_tolerance => 1e-6 - time_limit => 3600 A full list of options can be found at http://pages.cs.wisc.edu/~ferris/path/options.pdf. ### Example ```julia import PATHSolver import MathOptInterface as MOI model = PATHSolver.Optimizer() MOI.set(model, MOI.RawOptimizerAttribute("output"), "no") ``` """ function Optimizer() model = Optimizer{Float64}() model.ext[:silent] = false model.ext[:kwargs] = Dict{Symbol,Any}() model.ext[:solution] = nothing model.ext[:user_defined_functions] = Dict{MOI.UserDefinedFunction,Any}() return model end # MOI.RawOptimizerAttribute MOI.supports(::Optimizer, ::MOI.RawOptimizerAttribute) = true function MOI.set(model::Optimizer, p::MOI.RawOptimizerAttribute, v) model.ext[:kwargs][Symbol(p.name)] = v return end function MOI.get(model::Optimizer, p::MOI.RawOptimizerAttribute) return get(model.ext[:kwargs], Symbol(p.name), nothing) end # MOI.Silent MOI.supports(model::Optimizer, ::MOI.Silent) = true MOI.get(model::Optimizer, ::MOI.Silent) = model.ext[:silent] function MOI.set(model::Optimizer, ::MOI.Silent, x::Bool) model.ext[:silent] = x return end # MOI.SolverName MOI.get(model::Optimizer, ::MOI.SolverName) = c_api_Path_Version() # MOI.VariablePrimalStart function MOI.supports( ::Optimizer, ::MOI.VariablePrimalStart, ::Type{MOI.VariableIndex}, ) return true end function MOI.get( model::Optimizer, ::MOI.VariablePrimalStart, x::MOI.VariableIndex, ) initial = get(model.ext, :variable_primal_start, nothing) if initial === nothing return nothing end return get(initial, x, nothing) end function MOI.set( model::Optimizer, ::MOI.VariablePrimalStart, x::MOI.VariableIndex, value, ) initial = get(model.ext, :variable_primal_start, nothing) if initial === nothing model.ext[:variable_primal_start] = Dict{MOI.VariableIndex,Float64}() initial = model.ext[:variable_primal_start] end if value === nothing delete!(initial, x) else initial[x] = value end return end # MOI.UserDefinedFunction MOI.supports(::Optimizer, ::MOI.UserDefinedFunction) = true function MOI.get(model::Optimizer, attr::MOI.UserDefinedFunction) return model.ext[:user_defined_functions][attr] end function MOI.set(model::Optimizer, attr::MOI.UserDefinedFunction, value) model.ext[:user_defined_functions][attr] = value return end # Operators function _F_linear_operator(model::Optimizer) n = MOI.get(model, MOI.NumberOfVariables()) I, J, V = Int32[], Int32[], Float64[] q = zeros(n) has_term = fill(false, n) names = fill("", n) for index in MOI.get( model, MOI.ListOfConstraintIndices{ MOI.VectorAffineFunction{Float64}, MOI.Complements, }(), ) Fi = MOI.get(model, MOI.ConstraintFunction(), index) Si = MOI.get(model, MOI.ConstraintSet(), index) var_i = div(Si.dimension, 2) + 1 if Si.dimension != length(Fi.constants) error( "Dimension of constant vector $(length(Fi.constants)) does not match the " * "required dimension of the complementarity set $(Si.dimension).", ) elseif any(!iszero, Fi.constants[var_i:end]) error( "VectorAffineFunction malformed: a constant associated with a " * "complemented variable is not zero: $(Fi.constants[var_i:end]).", ) end # First pass: get rows vector and check for invalid functions. rows = fill(0, Si.dimension) for term in Fi.terms if term.output_index <= div(Si.dimension, 2) # No-op: leave for second pass. continue elseif term.output_index > Si.dimension error( "VectorAffineFunction malformed: output_index $(term.output_index) " * "is too large.", ) end dimension_i = term.output_index - div(Si.dimension, 2) row_i = term.scalar_term.variable.value if rows[dimension_i] != 0 || has_term[row_i] error( "The variable $(term.scalar_term.variable) appears in more " * "than one complementarity constraint.", ) elseif term.scalar_term.coefficient != 1.0 error( "VectorAffineFunction malformed: variable " * "$(term.scalar_term.variable) has a coefficient that is not 1 " * "in row $(term.output_index) of the VectorAffineFunction.", ) end rows[dimension_i] = row_i has_term[row_i] = true q[row_i] = Fi.constants[dimension_i] end # Second pass: add to sparse array for term in Fi.terms s_term = term.scalar_term if term.output_index >= var_i || iszero(s_term.coefficient) continue end row_i = rows[term.output_index] if iszero(row_i) error( "VectorAffineFunction malformed: expected variable in row " * "$(div(Si.dimension, 2) + term.output_index).", ) end push!(I, row_i) push!(J, s_term.variable.value) push!(V, s_term.coefficient) end c_name = MOI.get(model, MOI.ConstraintName(), index) if length(rows) == 2 names[rows[1]] = c_name else for i in 1:div(Si.dimension, 2) names[rows[i]] = "$(c_name)[$i]" end end end M = SparseArrays.sparse(I, J, V, n, n) return M, q, SparseArrays.nnz(M), names end _to_f(f) = convert(MOI.ScalarNonlinearFunction, f) _to_x(f::MOI.VariableIndex) = f _to_x(f::MOI.ScalarAffineFunction) = convert(MOI.VariableIndex, f) _to_x(f::MOI.ScalarQuadraticFunction) = convert(MOI.VariableIndex, f) function _to_x(f::MOI.ScalarNonlinearFunction) # Hacky way to ensure that f is a standalone variable @assert f isa MOI.ScalarNonlinearFunction @assert f.head == :+ && length(f.args) == 1 @assert f.args[1] isa MOI.VariableIndex return return f.args[1] end function _F_nonlinear_operator(model::Optimizer) x = MOI.get(model, MOI.ListOfVariableIndices()) f_map = Vector{MOI.ScalarNonlinearFunction}(undef, length(x)) names = fill("", length(x)) for (FType, SType) in MOI.get(model, MOI.ListOfConstraintTypesPresent()) if SType != MOI.Complements continue end for ci in MOI.get(model, MOI.ListOfConstraintIndices{FType,SType}()) f = MOI.get(model, MOI.ConstraintFunction(), ci) s = MOI.get(model, MOI.ConstraintSet(), ci) N = div(MOI.dimension(s), 2) scalars = MOI.Utilities.scalarize(f) c_name = MOI.get(model, MOI.ConstraintName(), ci) for i in 1:N fi, xi = _to_f(scalars[i]), _to_x(scalars[i+N]) if isassigned(f_map, xi.value) error( "The variable $xi appears in more than one " * "complementarity constraint.", ) end f_map[xi.value] = fi if N == 1 names[xi.value] = c_name else names[xi.value] = "$(c_name)[$i]" end end end end for i in 1:length(x) if !isassigned(f_map, i) f_map[i] = MOI.ScalarNonlinearFunction(:+, Any[0.0]) end end nlp = MOI.Nonlinear.Model() for (attr, value) in model.ext[:user_defined_functions] MOI.Nonlinear.register_operator(nlp, attr.name, attr.arity, value...) end for fi in f_map MOI.Nonlinear.add_constraint(nlp, fi, MOI.EqualTo(0.0)) end evaluator = MOI.Nonlinear.Evaluator(nlp, MOI.Nonlinear.SparseReverseMode(), x) MOI.initialize(evaluator, [:Jac]) J_structure = MOI.jacobian_structure(evaluator) forward_perm = sortperm(J_structure; by = reverse) inverse_perm = invperm(forward_perm) jacobian_called = false function F(::Cint, x::Vector{Cdouble}, f::Vector{Cdouble}) MOI.eval_constraint(evaluator, f, x) return Cint(0) end function J( ::Cint, nnz::Cint, x::Vector{Cdouble}, col::Vector{Cint}, len::Vector{Cint}, row::Vector{Cint}, data::Vector{Cdouble}, ) if !jacobian_called k = 1 last_col = 0 # We need to zero all entries up front in case some rows do not # appear in the Jacobian. len .= Cint(0) for p in forward_perm r, c = J_structure[p] if c != last_col col[c], last_col = k, c end len[c] += 1 row[k] = r k += 1 end jacobian_called = true # Seems like a potential bug in PATH. If the Jacobian is empty, PATH # still passes `nnz = 1`. @assert (nnz == k - 1) || (nnz == k == 1) end MOI.eval_constraint_jacobian(evaluator, view(data, inverse_perm), x) return Cint(0) end return F, J, length(J_structure), names end _finite(x, y) = isfinite(x) ? x : y function _bounds_and_starting(model::Optimizer) x = MOI.get(model, MOI.ListOfVariableIndices()) lower = fill(-INFINITY, length(x)) upper = fill(INFINITY, length(x)) initial = fill(0.0, length(x)) for (i, xi) in enumerate(x) l, u = MOI.Utilities.get_bounds(model, Float64, xi) z = MOI.get(model, MOI.VariablePrimalStart(), xi) lower[i] = l upper[i] = u initial[i] = something(z, _finite(l, _finite(u, 0.0))) end names = MOI.get.(model, MOI.VariableName(), x) return lower, upper, initial, names end # MOI.optimize! struct Solution status::MCP_Termination x::Vector{Float64} info::Information end function solution(model::Optimizer) return get(model.ext, :solution, nothing)::Union{Nothing,Solution} end function MOI.optimize!(model::Optimizer) con_types = MOI.get(model, MOI.ListOfConstraintTypesPresent()) is_nlp = (MOI.VectorNonlinearFunction, MOI.Complements) in con_types || (MOI.VectorQuadraticFunction{Float64}, MOI.Complements) in con_types F, J, nnz, c_names = if is_nlp _F_nonlinear_operator(model) else _F_linear_operator(model) end model.ext[:solution] = nothing lower, upper, initial, names = _bounds_and_starting(model) status, x, info = solve_mcp( F, J, lower, upper, initial; nnz = nnz, silent = model.ext[:silent], jacobian_structure_constant = true, jacobian_data_contiguous = true, variable_names = names, constraint_names = c_names, [k => v for (k, v) in model.ext[:kwargs]]..., ) if x === nothing x = fill(NaN, length(initial)) end if info === nothing info = Information() end model.ext[:solution] = Solution(status, x, info) return end const _MCP_TERMINATION_STATUS_MAP = Dict{MCP_Termination,Tuple{MOI.TerminationStatusCode,String}}( MCP_Solved => (MOI.LOCALLY_SOLVED, "The problem was solved"), MCP_NoProgress => (MOI.SLOW_PROGRESS, "A stationary point was found"), MCP_MajorIterationLimit => (MOI.ITERATION_LIMIT, "Major iteration limit met"), MCP_MinorIterationLimit => (MOI.ITERATION_LIMIT, "Cumulative minor iterlim met"), MCP_TimeLimit => (MOI.TIME_LIMIT, "Ran out of time"), MCP_UserInterrupt => (MOI.INTERRUPTED, "Control-C, typically"), MCP_BoundError => (MOI.INVALID_MODEL, "Problem has a bound error"), MCP_DomainError => (MOI.NUMERICAL_ERROR, "Could not find a starting point"), MCP_Infeasible => (MOI.INFEASIBLE, "Problem has no solution"), MCP_Error => (MOI.OTHER_ERROR, "An error occured within the code"), MCP_LicenseError => (MOI.OTHER_ERROR, "License could not be found"), MCP_OK => (MOI.OTHER_ERROR, ""), ) function MOI.get(model::Optimizer, ::MOI.TerminationStatus) if solution(model) === nothing return MOI.OPTIMIZE_NOT_CALLED end status, _ = _MCP_TERMINATION_STATUS_MAP[solution(model).status] return status end function MOI.get(model::Optimizer, attr::MOI.PrimalStatus) if solution(model) === nothing || attr.result_index != 1 return MOI.NO_SOLUTION end if MOI.get(model, MOI.TerminationStatus()) == MOI.LOCALLY_SOLVED return MOI.FEASIBLE_POINT end return MOI.UNKNOWN_RESULT_STATUS end MOI.get(::Optimizer, ::MOI.DualStatus) = MOI.NO_SOLUTION function MOI.get(model::Optimizer, ::MOI.RawStatusString) if solution(model) === nothing return "MOI.optimize! was not called yet" end _, reason = _MCP_TERMINATION_STATUS_MAP[solution(model).status] return reason end function MOI.get(model::Optimizer, ::MOI.ResultCount) return solution(model) !== nothing ? 1 : 0 end function MOI.get( model::Optimizer, attr::MOI.VariablePrimal, x::MOI.VariableIndex, ) MOI.check_result_index_bounds(model, attr) return solution(model).x[x.value] end function MOI.get(model::Optimizer, ::MOI.SolveTimeSec) return solution(model).info.total_time end
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
1175
# Copyright (c) 2016 Changhyun Kwon, Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. module PATHSolver import LazyArtifacts import MathOptInterface as MOI import SparseArrays function _get_artifact_path(file) root = LazyArtifacts.artifact"PATHSolver" if Sys.iswindows() # There's a permission error with the artifact chmod(root, 0o755; recursive = true) end triplet = join(split(Base.BUILD_TRIPLET, "-")[1:3], "-") ext = ifelse(Sys.iswindows(), "dll", ifelse(Sys.isapple(), "dylib", "so")) filename = joinpath(root, triplet, "$file.$ext") if !isfile(filename) error("Unsupported platform: $triplet") end return filename end function __init__() if haskey(ENV, "PATH_JL_LOCATION") global PATH_SOLVER = ENV["PATH_JL_LOCATION"] global LUSOL_LIBRARY_PATH = "" else global PATH_SOLVER = _get_artifact_path("libpath") global LUSOL_LIBRARY_PATH = _get_artifact_path("liblusol") end return end include("C_API.jl") include("MOI_wrapper.jl") end
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
7415
# Copyright (c) 2016 Changhyun Kwon, Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. module TestCAPI using Test import PATHSolver import SparseArrays function runtests() for name in names(@__MODULE__; all = true) if startswith("$(name)", "test_") @testset "$(name)" begin getfield(@__MODULE__, name)() end end end return end function _check_info_sanity(info) @test info.residual < 1e-5 @test iszero(info.restarts) @test info.function_evaluations > 0 return end function test_License_SetString() @test PATHSolver.c_api_License_SetString("bad_license") != 0 return end function test_CheckLicense() out_io = IOBuffer() output_data = PATHSolver.OutputData(out_io) output_interface = PATHSolver.OutputInterface(output_data) GC.@preserve output_data output_interface begin # The output_interface needs to be set before calling CheckLicense PATHSolver.c_api_Output_SetInterface(output_interface) @test PATHSolver.c_api_Path_CheckLicense(1, 1) == 1 @test PATHSolver.c_api_Path_CheckLicense(1_000, 1_000) == 0 end n = 1_000 M = zeros(n, n) for i in 1:n M[i, i] = 1.0 end ret = PATHSolver.solve_mcp( SparseArrays.SparseMatrixCSC{Float64,Int32}(M), ones(n), # q zeros(n), # lb ones(n), # ub ones(n), # z ) @test ret == (PATHSolver.MCP_LicenseError, nothing, nothing) return end function test_PathVersion() s = PATHSolver.c_api_Path_Version() @test match(r"Path [0-9]\.[0-9]\.[0-9][0-9]", s) !== nothing return end function test_Example() M = convert( SparseArrays.SparseMatrixCSC{Cdouble,Cint}, SparseArrays.sparse([ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ]), ) status, z, info = PATHSolver.solve_mcp( M, Float64[2, 2, -2, -6], fill(0.0, 4), fill(10.0, 4), [0.0, 0.0, 0.0, 0.0]; output = "yes", ) @test status == PATHSolver.MCP_Solved @test isapprox(z, [2.8, 0.0, 0.8, 1.2]) _check_info_sanity(info) return end function test_M_not_square() M = convert( SparseArrays.SparseMatrixCSC{Cdouble,Cint}, SparseArrays.sparse([ 1 -1 2 -2 1 2 -2 4 ]), ) err = ErrorException("M not square! size = $(size(M))") @test_throws err PATHSolver.solve_mcp( M, Float64[2, 2], fill(0.0, 4), fill(10.0, 4), [0.0, 0.0, 0.0, 0.0]; output = "yes", ) return end function test_q_wrong_shape() M = convert( SparseArrays.SparseMatrixCSC{Cdouble,Cint}, SparseArrays.sparse([ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ]), ) q = [2.0, 2.0] err = ErrorException( "q is wrong shape. Expected $(size(M, 1)), got $(length(q)).", ) @test_throws err PATHSolver.solve_mcp( M, q, fill(0.0, 4), fill(10.0, 4), [0.0, 0.0, 0.0, 0.0]; output = "yes", ) return end function test_Example_LUSOL() M = convert( SparseArrays.SparseMatrixCSC{Cdouble,Cint}, SparseArrays.sparse([ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ]), ) status, z, info = PATHSolver.solve_mcp( M, Float64[2, 2, -2, -6], fill(0.0, 4), fill(10.0, 4), [0.0, 0.0, 0.0, 0.0]; output = "yes", # TODO(odow): when enabled, I get segfaults :( factorization_method = "blu_lusol", factorization_library_name = PATHSolver.LUSOL_LIBRARY_PATH, ) @test status == PATHSolver.MCP_Solved @test isapprox(z, [2.8, 0.0, 0.8, 1.2]) _check_info_sanity(info) return end function test_Example_II() M = [ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ] q = [2; 2; -2; -6] function F(n::Cint, x::Vector{Cdouble}, f::Vector{Cdouble}) @assert n == length(x) == length(f) == 4 f[1] = -x[3]^2 - x[4] + q[1] f[2] = x[3]^3 - 2x[4]^2 + q[2] f[3] = x[1]^5 - x[2] + 2x[3] - 2x[4] + q[3] f[4] = x[1] + 2x[2]^3 - 2x[3] + 4x[4] + q[4] return Cint(0) end function J( n::Cint, nnz::Cint, x::Vector{Cdouble}, col::Vector{Cint}, len::Vector{Cint}, row::Vector{Cint}, data::Vector{Cdouble}, ) JAC = [ 0 0 -2x[3] -1 0 0 3x[3]^2 -4x[4] 5x[1]^4 -1 2 -2 1 6x[2] -2 4 ] @assert n == length(x) == length(col) == length(len) == 4 @assert nnz == length(row) == length(data) i = 1 for c in 1:n col[c] = i len[c] = 0 for r in 1:n if !iszero(JAC[r, c]) data[i] = JAC[r, c] row[i] = r len[c] += 1 i += 1 end end end @test sum(len) == nnz return Cint(0) end status, z, info = PATHSolver.solve_mcp( F, J, fill(0.0, 4), fill(10.0, 4), [1.0, 1.0, 1.0, 1.0]; output = "yes", nnz = 12, ) @test status == PATHSolver.MCP_Solved @test isapprox(z, [1.28475, 0.972916, 0.909376, 1.17304], atol = 1e-4) _check_info_sanity(info) return end function test_Name() M = convert( SparseArrays.SparseMatrixCSC{Cdouble,Cint}, SparseArrays.sparse([ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ]), ) z0 = [-10.0, 10.0, -5.0, 5.0] status, z, info = PATHSolver.solve_mcp( M, Float64[2, 2, -2, -6], fill(0.0, 4), fill(10.0, 4), z0; variable_names = ["x1", "x2", "x3", "x4"], constraint_names = ["F1", "F2", "F3", "F4"], output = "yes", ) @test status == PATHSolver.MCP_Solved @test isapprox(z, [2.8, 0.0, 0.8, 1.2]) _check_info_sanity(info) status, z, info = PATHSolver.solve_mcp( M, Float64[2, 2, -2, -6], fill(0.0, 4), fill(10.0, 4), z0; variable_names = ["x1", "x2", "x3", "x4"], constraint_names = [ "A2345678901234567890", "B23456789012345678901234567", "C234567890", "D234567890", ], output = "yes", ) @test status == PATHSolver.MCP_Solved @test isapprox(z, [2.8, 0.0, 0.8, 1.2]) _check_info_sanity(info) status, z, info = PATHSolver.solve_mcp( M, Float64[2, 2, -2, -6], fill(0.0, 4), fill(10.0, 4), z0; variable_names = ["x1", "x2", "x3", "x4"], constraint_names = [ "A2345678901234567890", "B23456789012345678901234567", "C🤖λ⚽️⚽️⚽️⚽️🏸⚽️⚽️⚽️⚽️🏸", "D도레미파솔", ], output = "yes", ) @test status == PATHSolver.MCP_Solved @test isapprox(z, [2.8, 0.0, 0.8, 1.2]) _check_info_sanity(info) return end end TestCAPI.runtests()
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
18623
# Copyright (c) 2016 Changhyun Kwon, Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. module TestMOIWrapper using Test import MathOptInterface as MOI import PATHSolver function runtests() for name in names(@__MODULE__; all = true) if startswith("$(name)", "test_") @testset "$(name)" begin getfield(@__MODULE__, name)() end end end return end function test_Name() model = PATHSolver.Optimizer() @test MOI.get(model, MOI.SolverName()) == PATHSolver.c_api_Path_Version() return end function test_AbstractOptimizer() @test PATHSolver.Optimizer() isa MOI.AbstractOptimizer return end function test_DualStatus() @test MOI.get(PATHSolver.Optimizer(), MOI.DualStatus()) == MOI.NO_SOLUTION return end function test_RawOptimizerAttribute() model = PATHSolver.Optimizer() @test MOI.supports(model, MOI.RawOptimizerAttribute("output")) @test MOI.get(model, MOI.RawOptimizerAttribute("output")) === nothing MOI.set(model, MOI.RawOptimizerAttribute("output"), "no") @test MOI.get(model, MOI.RawOptimizerAttribute("output")) == "no" return end function test_infeasible() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint(model, x, MOI.Interval(0.0, -1.0)) MOI.optimize!(model) @test MOI.get(model, MOI.TerminationStatus()) == MOI.INVALID_MODEL @test MOI.get(model, MOI.RawStatusString()) == "Problem has a bound error" @test MOI.get(model, MOI.PrimalStatus()) == MOI.UNKNOWN_RESULT_STATUS return end function test_ZeroOne() model = PATHSolver.Optimizer() x = MOI.add_variable(model) @test !MOI.supports_constraint(model, MOI.VariableIndex, MOI.ZeroOne) return end function test_wrong_dimension() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint( model, MOI.VectorAffineFunction(MOI.VectorAffineTerm{Float64}[], [0.0]), MOI.Complements(2), ) @test_throws( ErrorException( "Dimension of constant vector 1 does not match the required dimension of " * "the complementarity set 2.", ), MOI.optimize!(model) ) return end function test_nonzero_variable_offset() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint( model, MOI.VectorAffineFunction( [ MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)), MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x)), ], [0.0, 1.0], ), MOI.Complements(2), ) @test_throws( ErrorException( "VectorAffineFunction malformed: a constant associated with a " * "complemented variable is not zero: [1.0].", ), MOI.optimize!(model) ) return end function test_output_dimension_too_large() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint( model, MOI.VectorAffineFunction( [ MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)), MOI.VectorAffineTerm(3, MOI.ScalarAffineTerm(1.0, x)), ], [0.0, 0.0], ), MOI.Complements(2), ) @test_throws( ErrorException( "VectorAffineFunction malformed: output_index 3 is too large.", ), MOI.optimize!(model) ) return end function test_missing_complement_variable() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint( model, MOI.VectorAffineFunction( [MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x))], [0.0, 0.0], ), MOI.Complements(2), ) @test_throws( ErrorException( "VectorAffineFunction malformed: expected variable in row 2.", ), MOI.optimize!(model) ) return end function test_malformed_complement_variable() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint( model, MOI.VectorAffineFunction( [ MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)), MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(2.0, x)), ], [0.0, 0.0], ), MOI.Complements(2), ) @test_throws( ErrorException( "VectorAffineFunction malformed: variable $(x) has a coefficient that is " * "not 1 in row 2 of the VectorAffineFunction.", ), MOI.optimize!(model) ) return end function test_variable_in_multiple_constraints() model = PATHSolver.Optimizer() x = MOI.add_variable(model) MOI.add_constraint( model, MOI.VectorAffineFunction( [ MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, x)), MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x)), MOI.VectorAffineTerm(3, MOI.ScalarAffineTerm(1.0, x)), MOI.VectorAffineTerm(4, MOI.ScalarAffineTerm(1.0, x)), ], [0.0, 0.0, 0.0, 0.0], ), MOI.Complements(4), ) @test_throws( ErrorException( "The variable $(x) appears in more than one complementarity constraint.", ), MOI.optimize!(model) ) return end function test_variable_primal_start() model = PATHSolver.Optimizer() x = MOI.add_variable(model) @test MOI.supports(model, MOI.VariablePrimalStart(), MOI.VariableIndex) @test MOI.get(model, MOI.VariablePrimalStart(), x) === nothing MOI.set(model, MOI.VariablePrimalStart(), x, 1.0) @test MOI.get(model, MOI.VariablePrimalStart(), x) === 1.0 MOI.set(model, MOI.VariablePrimalStart(), x, nothing) @test MOI.get(model, MOI.VariablePrimalStart(), x) === nothing return end function _test_Example_I(use_primal_start::Bool) model = PATHSolver.Optimizer() MOI.set(model, MOI.RawOptimizerAttribute("time_limit"), 60) @test MOI.supports(model, MOI.Silent()) == true @test MOI.get(model, MOI.Silent()) == false MOI.set(model, MOI.Silent(), true) @test MOI.get(model, MOI.Silent()) == true x = MOI.add_variables(model, 4) @test MOI.supports(model, MOI.VariablePrimalStart(), MOI.VariableIndex) @test MOI.get(model, MOI.VariablePrimalStart(), x[1]) === nothing MOI.add_constraint.(model, x, MOI.Interval(0.0, 10.0)) if use_primal_start MOI.set.(model, MOI.VariablePrimalStart(), x, 0.0) end M = Float64[ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ] q = [2; 2; -2; -6] for i in 1:4 terms = [MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x[i]))] for j in 1:4 iszero(M[i, j]) && continue push!( terms, MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(M[i, j], x[j])), ) end MOI.add_constraint( model, MOI.VectorAffineFunction(terms, [q[i], 0.0]), MOI.Complements(2), ) end @test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMIZE_NOT_CALLED @test MOI.get(model, MOI.PrimalStatus()) == MOI.NO_SOLUTION @test MOI.get(model, MOI.RawStatusString()) == "MOI.optimize! was not called yet" MOI.optimize!(model) @test MOI.get(model, MOI.TerminationStatus()) == MOI.LOCALLY_SOLVED @test MOI.get(model, MOI.PrimalStatus()) == MOI.FEASIBLE_POINT @test MOI.get(model, MOI.RawStatusString()) == "The problem was solved" x_val = MOI.get.(model, MOI.VariablePrimal(), x) @test isapprox(x_val, [2.8, 0.0, 0.8, 1.2]) @test 0 <= MOI.get(model, MOI.SolveTimeSec()) < 1 return end test_Example_I() = _test_Example_I(true) test_Example_I_no_start() = _test_Example_I(false) # An implementation of the GAMS model transmcp.gms: transporation model # as an equilibrium problem. # # https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_transmcp.html # # Transportation model as equilibrium problem (TRANSMCP,SEQ=126) # # Dantzig's original transportation model (TRNSPORT) is # reformulated as a linear complementarity problem. We first # solve the model with fixed demand and supply quantities, and # then we incorporate price-responsiveness on both sides of the # market. # # Dantzig, G B, Chapter 3.3. In Linear Programming and Extensions. # Princeton University Press, Princeton, New Jersey, 1963. function test_transmcp() plants = ["seattle", "san-diego"] P = length(plants) capacity = Dict("seattle" => 350, "san-diego" => 600) markets = ["new-york", "chicago", "topeka"] M = length(markets) demand = Dict("new-york" => 325, "chicago" => 300, "topeka" => 275) distance = Dict( ("seattle" => "new-york") => 2.5, ("seattle" => "chicago") => 1.7, ("seattle" => "topeka") => 1.8, ("san-diego" => "new-york") => 2.5, ("san-diego" => "chicago") => 1.8, ("san-diego" => "topeka") => 1.4, ) model = PATHSolver.Optimizer() MOI.set(model, MOI.Silent(), true) # w[i in plants] >= 0 w = MOI.add_variables(model, P) MOI.add_constraint.(model, w, MOI.GreaterThan(0.0)) # p[j in markets] >= 0 p = MOI.add_variables(model, M) MOI.add_constraint.(model, p, MOI.GreaterThan(0.0)) # x[i in plants, j in markets] >= 0 x = reshape(MOI.add_variables(model, P * M), P, M) MOI.add_constraint.(model, x, MOI.GreaterThan(0.0)) # w[i] + 90 * distance[i => j] / 1000 - p[j] ⟂ x[i, j] for (i, plant) in enumerate(plants), (j, market) in enumerate(markets) MOI.add_constraint( model, MOI.VectorAffineFunction( [ MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(1.0, w[i])), MOI.VectorAffineTerm(1, MOI.ScalarAffineTerm(-1.0, p[j])), MOI.VectorAffineTerm(2, MOI.ScalarAffineTerm(1.0, x[i, j])), ], [90 * distance[plant=>market] / 1000, 0.0], ), MOI.Complements(2), ) end # capacity[i] - sum(x[i, :]) ⟂ w[i] terms = MOI.VectorAffineTerm{Float64}[] for (i, plant) in enumerate(plants) for j in 1:M push!( terms, MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-1.0, x[i, j])), ) end push!( terms, MOI.VectorAffineTerm(P + i, MOI.ScalarAffineTerm(1.0, w[i])), ) end q = vcat([capacity[p] for p in plants], zeros(P)) MOI.add_constraint( model, MOI.VectorAffineFunction(terms, q), MOI.Complements(2 * P), ) # sum(x[:, j]) - demand[j] ⟂ p[j] terms = MOI.VectorAffineTerm{Float64}[] for (j, market) in enumerate(markets) for i in 1:P push!( terms, MOI.VectorAffineTerm(j, MOI.ScalarAffineTerm(1.0, x[i, j])), ) end push!( terms, MOI.VectorAffineTerm(M + j, MOI.ScalarAffineTerm(1.0, p[j])), ) end q = vcat([-demand[m] for m in markets], zeros(M)) MOI.add_constraint( model, MOI.VectorAffineFunction(terms, q), MOI.Complements(2 * M), ) MOI.optimize!(model) @test isapprox( MOI.get.(model, MOI.VariablePrimal(), p), [0.225, 0.153, 0.126], atol = 1e-3, ) return end function test_supports() model = PATHSolver.Optimizer() F = MOI.VariableIndex @test !MOI.supports(model, MOI.ObjectiveFunction{F}()) @test MOI.supports_constraint(model, F, MOI.GreaterThan{Float64}) return end function test_VectorOfVariables_nonlinear_operator() model = PATHSolver.Optimizer() MOI.Utilities.loadfromstring!( model, """ variables: x, y, z VectorNonlinearFunction([0, z]) in Complements(2) [y, x] in Complements(2) x in GreaterThan(0.0) y in GreaterThan(0.0) """, ) x = MOI.get(model, MOI.ListOfVariableIndices()) MOI.set.(model, MOI.VariablePrimalStart(), x, 1.0) MOI.optimize!(model) y = MOI.get.(model, MOI.VariablePrimal(), x) @test abs(y[1] * y[2]) <= 1e-8 return end function test_VectorQuadraticFunction_VectorNonlinearFunction() model = PATHSolver.Optimizer() MOI.Utilities.loadfromstring!( model, """ variables: v, w, x, y, z VectorNonlinearFunction([0, v]) in Complements(2) [-1.0 * y * y + -1.0 * z + 2, w] in Complements(2) VectorNonlinearFunction([ScalarNonlinearFunction(y^3 - 2z^2 + 2), ScalarNonlinearFunction(w^5 - x + 2y - 2z - 2), x, y]) in Complements(4) VectorNonlinearFunction([ScalarNonlinearFunction(w + 2x^3 - 2y + 4z - 6), z]) in Complements(2) v in EqualTo(1.0) w in Interval(0.0, 10.0) x in GreaterThan(0.0) z in Interval(1.0, 2.0) """, ) x = MOI.get(model, MOI.ListOfVariableIndices()) MOI.set.(model, MOI.VariablePrimalStart(), x, 1.0) MOI.optimize!(model) @test ≈( MOI.get.(model, MOI.VariablePrimal(), x), [1.0, 1.2847523, 0.9729164, 0.9093761, 1.1730350]; atol = 1e-6, ) return end function test_nonlinear_duplicate_rows() model = PATHSolver.Optimizer() MOI.Utilities.loadfromstring!( model, """ variables: x VectorNonlinearFunction([0.0, x]) in Complements(2) VectorNonlinearFunction([0.0, x]) in Complements(2) """, ) @test_throws( ErrorException( "The variable $(MOI.VariableIndex(1)) appears in more than one " * "complementarity constraint.", ), MOI.optimize!(model), ) return end function test_missing_rows() model = PATHSolver.Optimizer() MOI.Utilities.loadfromstring!( model, """ variables: x, y VectorNonlinearFunction([0.0, x]) in Complements(2) """, ) MOI.optimize!(model) @test MOI.get(model, MOI.TerminationStatus()) == MOI.LOCALLY_SOLVED return end function test_user_defined_function() f(x...) = (1 - x[1]) function ∇f(g, x...) g[1] = -1 return end model = MOI.instantiate(PATHSolver.Optimizer) MOI.set(model, MOI.Silent(), true) x = MOI.add_variables(model, 2) MOI.add_constraint.(model, x, MOI.GreaterThan(0.0)) @test MOI.supports(model, MOI.UserDefinedFunction(:op_f, 2)) MOI.set(model, MOI.UserDefinedFunction(:op_f, 2), (f, ∇f)) @test MOI.get(model, MOI.UserDefinedFunction(:op_f, 2)) == (f, ∇f) MOI.add_constraint( model, MOI.VectorNonlinearFunction([ MOI.ScalarNonlinearFunction(:op_f, Any[x...]), MOI.ScalarNonlinearFunction(:+, Any[x[1]]), ]), MOI.Complements(2), ) MOI.add_constraint( model, MOI.Utilities.operate(vcat, Float64, 1.0 - x[2], x[2]), MOI.Complements(2), ) MOI.optimize!(model) sol = MOI.get(model, MOI.VariablePrimal(), x) @test all(abs.(sol .* (1 .- sol)) .< 1e-4) return end function test_empty_model() model = PATHSolver.Optimizer() MOI.optimize!(model) @test MOI.get(model, MOI.TerminationStatus()) == MOI.LOCALLY_SOLVED return end function test_solve_with_names() model = PATHSolver.Optimizer() MOI.set(model, MOI.RawOptimizerAttribute("output_linear_model"), "yes") MOI.Utilities.loadfromstring!( model, """ variables: v, w, x, y, z c2: [0.0, -1.0 * y * y + -1.0 * z + 2, v, w] in Complements(4) c3: VectorNonlinearFunction([ScalarNonlinearFunction(y^3 - 2z^2 + 2), ScalarNonlinearFunction(w^5 - x + 2y - 2z - 2), x, y]) in Complements(4) c4: VectorNonlinearFunction([ScalarNonlinearFunction(w + 2x^3 - 2y + 4z - 6), z]) in Complements(2) v in EqualTo(1.0) w in Interval(0.0, 10.0) x in GreaterThan(0.0) z in Interval(1.0, 2.0) """, ) x = MOI.get(model, MOI.ListOfVariableIndices()) MOI.set.(model, MOI.VariablePrimalStart(), x, 1.0) MOI.optimize!(model) @test ≈( MOI.get.(model, MOI.VariablePrimal(), x), [1.0, 1.2847523, 0.9729164, 0.9093761, 1.1730350]; atol = 1e-6, ) return end function test_solve_with_names_nonlinear() model = PATHSolver.Optimizer() MOI.set(model, MOI.RawOptimizerAttribute("output_linear_model"), "yes") MOI.Utilities.loadfromstring!( model, """ variables: v, w, x, y, z cnl2: VectorNonlinearFunction([0.0, -1.0 * y * y + -1.0 * z + 2, v, w]) in Complements(4) c3: VectorNonlinearFunction([ScalarNonlinearFunction(y^3 - 2z^2 + 2), ScalarNonlinearFunction(w^5 - x + 2y - 2z - 2), x, y]) in Complements(4) c4: VectorNonlinearFunction([ScalarNonlinearFunction(w + 2x^3 - 2y + 4z - 6), z]) in Complements(2) v in EqualTo(1.0) w in Interval(0.0, 10.0) x in GreaterThan(0.0) z in Interval(1.0, 2.0) """, ) x = MOI.get(model, MOI.ListOfVariableIndices()) MOI.set.(model, MOI.VariablePrimalStart(), x, 1.0) MOI.optimize!(model) @test ≈( MOI.get.(model, MOI.VariablePrimal(), x), [1.0, 1.2847523, 0.9729164, 0.9093761, 1.1730350]; atol = 1e-6, ) return end function test_nonlinear_blank_row() model = PATHSolver.Optimizer() MOI.Utilities.loadfromstring!( model, """ variables: a, x [1.0 * x * x + 2.0 * x + -1.0, x] in Complements(2) a in GreaterThan(0.0) x in GreaterThan(0.0) """, ) x = MOI.get(model, MOI.ListOfVariableIndices()) MOI.optimize!(model) @test ≈( MOI.get.(model, MOI.VariablePrimal(), x), [0.0, -1 + sqrt(2)]; atol = 1e-6, ) return end function test_linear_blank_row() model = PATHSolver.Optimizer() MOI.Utilities.loadfromstring!( model, """ variables: a, x c: [2.0 * x + -1.0, x] in Complements(2) a in GreaterThan(0.0) x in GreaterThan(0.0) """, ) x = MOI.get(model, MOI.ListOfVariableIndices()) MOI.optimize!(model) @test ≈(MOI.get.(model, MOI.VariablePrimal(), x), [0.0, 0.5]; atol = 1e-6) return end end TestMOIWrapper.runtests()
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
code
389
# Copyright (c) 2016 Changhyun Kwon, Oscar Dowson, and contributors # # Use of this source code is governed by an MIT-style license that can be found # in the LICENSE.md file or at https://opensource.org/licenses/MIT. using Test @testset "PATH" begin @testset "$(file)" for file in ["C_API.jl", "MOI_wrapper.jl"] println("Running: $(file)") include(file) end end
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
1.7.8
ced77ccd05871211833ae690698488c52eb38680
docs
9170
# PATHSolver.jl [![Build Status](https://github.com/chkwon/PATHSolver.jl/workflows/CI/badge.svg?branch=master)](https://github.com/chkwon/PATHSolver.jl/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/chkwon/PATHSolver.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/chkwon/PATHSolver.jl) [PATHSolver.jl](https://github.com/chkwon/PATHSolver.jl) is a wrapper for the [PATH solver](http://pages.cs.wisc.edu/~ferris/path.html). The wrapper has two components: * a thin wrapper around the C API * an interface to [MathOptInterface](https://github.com/jump-dev/MathOptInterface.jl) You can solve any complementarity problem using the wrapper around the C API, although you must manually provide the callback functions, including the Jacobian. The MathOptInterface wrapper is more limited, supporting only linear complementarity problems, but it enables PATHSolver to be used with [JuMP](https://github.com/jump-dev/JuMP.jl). ## Affiliation This wrapper is maintained by the JuMP community and is not an official wrapper of PATH. However, we are in close contact with the PATH developers, and they have given us permission to re-distribute the PATH binaries for automatic installation. ## License `PATHSolver.jl` is licensed under the [MIT License](https://github.com/chkwon/PATHSolver.jl/blob/master/LICENSE.md). The underlying solver, [path](https://pages.cs.wisc.edu/~ferris/path.html) is closed source and requires a license. Without a license, the PATH Solver can solve problem instances up to with up to 300 variables and 2000 non-zeros. For larger problems, [this web page](http://pages.cs.wisc.edu/~ferris/path/julia/LICENSE) provides a temporary license that is valid for a year. You can either store the license in the `PATH_LICENSE_STRING` environment variable, or you can use the `PATHSolver.c_api_License_SetString` function immediately after importing the `PATHSolver` package: ```julia import PATHSolver PATHSolver.c_api_License_SetString("<LICENSE STRING>") ``` where `<LICENSE STRING>` is replaced by the current license string. ## Installation Install `PATHSolver.jl` as follows: ```julia import Pkg Pkg.add("PATHSolver") ``` By default, `PATHSolver.jl` will download a copy of the underlying PATH solver. To use a different version of PATH, see the Manual Installation section below. ## Use with JuMP ```julia julia> using JuMP, PATHSolver julia> M = [ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ] 4×4 Array{Int64,2}: 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 julia> q = [2, 2, -2, -6] 4-element Array{Int64,1}: 2 2 -2 -6 julia> model = Model(PATHSolver.Optimizer) A JuMP Model Feasibility problem with: Variables: 0 Model mode: AUTOMATIC CachingOptimizer state: EMPTY_OPTIMIZER Solver name: Path 5.0.00 julia> set_optimizer_attribute(model, "output", "no") julia> @variable(model, x[1:4] >= 0) 4-element Array{VariableRef,1}: x[1] x[2] x[3] x[4] julia> @constraint(model, M * x .+ q ⟂ x) [-x[3] - x[4] + 2, x[3] - 2 x[4] + 2, x[1] - x[2] + 2 x[3] - 2 x[4] - 2, x[1] + 2 x[2] - 2 x[3] + 4 x[4] - 6, x[1], x[2], x[3], x[4]] ∈ MOI.Complements(4) julia> optimize!(model) Reading options file /var/folders/bg/dzq_hhvx1dxgy6gb5510pxj80000gn/T/tmpiSsCRO Read of options file complete. Path 5.0.00 (Mon Aug 19 10:57:18 2019) Written by Todd Munson, Steven Dirkse, Youngdae Kim, and Michael Ferris julia> value.(x) 4-element Array{Float64,1}: 2.8 0.0 0.7999999999999998 1.2 julia> termination_status(model) LOCALLY_SOLVED::TerminationStatusCode = 4 ``` Note that options are set using `JuMP.set_optimizer_attribute`. The list of options supported by PATH can be found here: https://pages.cs.wisc.edu/~ferris/path/options.pdf ## MathOptInterface API The Path 5.0.03 optimizer supports the following constraints and attributes. List of supported variable types: * [`MOI.Reals`](@ref) List of supported constraint types: * [`MOI.VariableIndex`](@ref) in [`MOI.EqualTo{Float64}`](@ref) * [`MOI.VariableIndex`](@ref) in [`MOI.GreaterThan{Float64}`](@ref) * [`MOI.VariableIndex`](@ref) in [`MOI.Interval{Float64}`](@ref) * [`MOI.VariableIndex`](@ref) in [`MOI.LessThan{Float64}`](@ref) * [`MOI.VectorOfVariables`](@ref) in [`MOI.Complements`](@ref) * [`MOI.VectorAffineFunction{Float64}`](@ref) in [`MOI.Complements`](@ref) * [`MOI.VectorQuadraticFunction{Float64}`](@ref) in [`MOI.Complements`](@ref) * [`MOI.VectorNonlinearFunction`](@ref) in [`MOI.Complements`](@ref) List of supported model attributes: * [`MOI.Name()`](@ref) ## Use with the C API `PATHSolver.jl` wraps the PATH C API using `PATHSolver.c_api_XXX` for the C method `XXX`. However, using the C API directly from Julia can be challenging, particularly with respect to avoiding issues with Julia's garbage collector. Instead, we recommend that you use the `PATHSolver.solve_mcp` function, which wrappers the C API into a single call. See the docstring of `PATHSolver.solve_mcp` for a detailed description of the arguments. Here is the same example using `PATHSolver.solve_mcp`. Note that you must manually construct the sparse Jacobian callback. ```julia julia> import PATHSolver julia> M = [ 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 ] 4×4 Matrix{Int64}: 0 0 -1 -1 0 0 1 -2 1 -1 2 -2 1 2 -2 4 julia> q = [2, 2, -2, -6] 4-element Vector{Int64}: 2 2 -2 -6 julia> function F(n::Cint, x::Vector{Cdouble}, f::Vector{Cdouble}) @assert n == length(x) == length(f) f .= M * x .+ q return Cint(0) end F (generic function with 1 method) julia> function J( n::Cint, nnz::Cint, x::Vector{Cdouble}, col::Vector{Cint}, len::Vector{Cint}, row::Vector{Cint}, data::Vector{Cdouble}, ) @assert n == length(x) == length(col) == length(len) == 4 @assert nnz == length(row) == length(data) i = 1 for c in 1:n col[c], len[c] = i, 0 for r in 1:n if !iszero(M[r, c]) row[i], data[i] = r, M[r, c] len[c] += 1 i += 1 end end end return Cint(0) end J (generic function with 1 method) julia> status, z, info = PATHSolver.solve_mcp( F, J, fill(0.0, 4), # Lower bounds fill(Inf, 4), # Upper bounds fill(0.0, 4); # Starting point nnz = 12, # Number of nonzeros in the Jacobian output = "yes", ) Reading options file /var/folders/bg/dzq_hhvx1dxgy6gb5510pxj80000gn/T/jl_iftYBS > output yes Read of options file complete. Path 5.0.03 (Fri Jun 26 09:58:07 2020) Written by Todd Munson, Steven Dirkse, Youngdae Kim, and Michael Ferris Crash Log major func diff size residual step prox (label) 0 0 1.2649e+01 0.0e+00 (f[ 4]) 1 2 4 2 1.0535e+01 8.0e-01 0.0e+00 (f[ 1]) 2 3 2 4 8.4815e-01 1.0e+00 0.0e+00 (f[ 4]) 3 4 0 3 4.4409e-16 1.0e+00 0.0e+00 (f[ 3]) pn_search terminated: no basis change. Major Iteration Log major minor func grad residual step type prox inorm (label) 0 0 5 4 4.4409e-16 I 0.0e+00 4.4e-16 (f[ 3]) Major Iterations. . . . 0 Minor Iterations. . . . 0 Restarts. . . . . . . . 0 Crash Iterations. . . . 3 Gradient Steps. . . . . 0 Function Evaluations. . 5 Gradient Evaluations. . 4 Basis Time. . . . . . . 0.000016 Total Time. . . . . . . 0.044383 Residual. . . . . . . . 4.440892e-16 (PATHSolver.MCP_Solved, [2.8, 0.0, 0.8, 1.2], PATHSolver.Information(4.4408920985006247e-16, 0.0, 0.0, 0.044383, 1.6e-5, 0.0, 0, 0, 3, 5, 4, 0, 0, 0, 0, false, false, false, true, false, false, false)) julia> status MCP_Solved::MCP_Termination = 1 julia> z 4-element Vector{Float64}: 2.8 0.0 0.8 1.2 ``` ## Thread safety PATH is not thread-safe and there are no known work-arounds. Do not run it in parallel using `Threads.@threads`. See [issue #62](https://github.com/chkwon/PATHSolver.jl/issues/62) for more details. ## Factorization methods By default, `PATHSolver.jl` will download the [LUSOL](https://web.stanford.edu/group/SOL/software/lusol/) shared library. To use LUSOL, set the following options: ```julia model = Model(PATHSolver.Optimizer) set_optimizer_attribute(model, "factorization_method", "blu_lusol") set_optimizer_attribute(model, "factorization_library_name", PATHSolver.LUSOL_LIBRARY_PATH) ``` To use `factorization_method umfpack` you will need the `umfpack` shared library that is available directly from the [developers of that code for academic use](http://faculty.cse.tamu.edu/davis/suitesparse.html). ## Manual installation By default `PATHSolver.jl` will download a copy of the `libpath` library. If you already have one installed and want to use that, set the `PATH_JL_LOCATION` environment variable to point to the `libpath50.xx` library.
PATHSolver
https://github.com/chkwon/PATHSolver.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
1250
using LibIIO using LibIIO.CLibIIO using Documenter makedocs(; modules=[LibIIO], authors="Oliver Kliebisch <[email protected]> and contributors", repo="https://github.com/tachawkes/LibIIO.jl/blob/{commit}{path}#{line}", sitename="LibIIO.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", edit_link="main", assets=String[], ), pages=[ "Introduction" => "index.md", "Examples" => [ "IIO Demo" => "iio_demo.md" ], "High-level libiio bindings" => [ "Context" => "context.md", "Devices" => "device.md", "Channel" => "channel.md", "Buffer" => "buffer.md", ], "Low-level libiio access (for advanced users)" => [ "Overview" => "cindex.md", "Functions for scanning available contexts" => "cscan.md", "Top-level functions" => "ctoplevel.md", "Context" => "ccontext.md", "Device" => "cdevice.md", "Channel" => "cchannel.md", "Buffer" => "cbuffer.md", "Debug" => "cdebug.md" ] ], ) deploydocs(; repo="github.com/TacHawkes/LibIIO.jl.gi", devbranch="main", )
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
1514
#= This examples assumes that the IIO Demo application is installed on a linux host. Find details here: https://wiki.analog.com/resources/eval/user-guides/iio_demo/no-os-setup A simple signal is sent to the virtual DAC device which is looped back into the virtual ADC. This shows how to use buffers for high-speed data transfer. =# using LibIIO # Adjust to your settings uri = "ip:192.168.64.2" # create context ctx = Context(uri) # get both device handles by their name dac = find_device(ctx, "dac_demo") adc = find_device(ctx, "adc_demo") # get both channels (adc/dac) dac_chn = find_channel(dac, "dac_out_ch0", true) adc_chn = find_channel(adc, "adc_in_ch0") # enable the channels enabled!(dac_chn, true) enabled!(adc_chn, true) # create DAC buffer with 400 samples dac_buf = Buffer(dac, 400) # create the ADC buffer for reading adc_buf = Buffer(adc, 400) # dummy signal to feed into the DAC and read back using the ADC y = round.(Int16, 10000*sin.(2π*1/200*(1:400))) # write the test signal into the buffer write(dac_buf, y) # push the buffer to the hardware push(dac_buf) # Read samples from the ADC hardware into the buffer refill(adc_buf) # Retrieve the samples from the buffer data = read(adc_buf) # Reinterpret as Int16, the actual sample format d2 = reinterpret(Int16, data) # Verify that the read signal matches the original signal if all(d2 .== y) @info "Loopback successful" else @error "Loopback failed" end ## atr = attrs(adc_chn)["adc_channel_attr"] ret, v = read(atr)
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
661
module LibIIO include("clib/CLibIIO.jl") using .CLibIIO import Base: read, write, show const ENOENT = -34 include("types.jl") include("alias.jl") include("attrs.jl") include("channel.jl") include("buffer.jl") include("device.jl") include("context.jl") export Context, LocalContext, XMLContext, NetworkContext, Buffer, Device, Channel, Trigger, name, id, label, attrs, buffer_attrs, debug_attrs, description, xml, find_channel, find_device, devices, channels, enabled, enabled!, push, refill end
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
4037
#= Aliases matching the Python bindings =# const _get_backends_count = iio_get_backends_count const _get_backend = iio_get_backend const _create_scan_context = iio_create_scan_context const _destroy_scan_context = iio_scan_context_destroy const _has_backend = iio_has_backend const _get_context_info_list = iio_scan_context_get_info_list const _context_info_list_free = iio_context_info_list_free const _context_info_get_description = iio_context_info_get_description const _context_info_get_uri = iio_context_info_get_uri const _new_local = iio_create_local_context const _new_xml = iio_create_xml_context const _new_network = iio_create_network_context const _new_default = iio_create_default_context const _new_uri = iio_create_context_from_uri const _destroy = iio_context_destroy const _get_name = iio_context_get_name const _get_description = iio_context_get_description const _get_xml = iio_context_get_xml const _get_library_version = iio_library_get_version const _get_version = iio_context_get_version const _get_attrs_count = iio_context_get_attrs_count const _get_attr = iio_context_get_attr const _devices_count = iio_context_get_devices_count const _get_device = iio_context_get_device const _find_device = iio_context_find_device const _set_timeout = iio_context_set_timeout const _clone = iio_context_clone const _d_get_id = iio_device_get_id const _d_get_name = iio_device_get_name const _d_get_label = iio_device_get_label const _d_attr_count = iio_device_get_attrs_count const _d_get_attr = iio_device_get_attr const _d_read_attr = iio_device_attr_read const _d_write_attr = iio_device_attr_write const _d_debug_attr_count = iio_device_get_debug_attrs_count const _d_get_debug_attr = iio_device_get_debug_attr const _d_read_debug_attr = iio_device_debug_attr_read const _d_write_debug_attr = iio_device_debug_attr_write const _d_buffer_attr_count = iio_device_get_buffer_attrs_count const _d_get_buffer_attr = iio_device_get_buffer_attr const _d_read_buffer_attr = iio_device_buffer_attr_read const _d_write_buffer_attr = iio_device_attr_write const _d_get_context = iio_device_get_context const _d_find_channel = iio_device_find_channel const _d_reg_write = iio_device_reg_write const _d_reg_read = iio_device_reg_read const _channels_count = iio_device_get_channels_count const _get_channel = iio_device_get_channel const _get_sample_size = iio_device_get_sample_size const _d_is_trigger = iio_device_is_trigger const _d_get_trigger = iio_device_get_trigger const _d_set_trigger = iio_device_set_trigger const _d_set_buffers_count = iio_device_set_kernel_buffers_count const _c_get_id = iio_channel_get_id const _c_get_name = iio_channel_get_name const _c_is_output = iio_channel_is_output const _c_is_scan_element = iio_channel_is_scan_element const _c_attr_count = iio_channel_get_attrs_count const _c_get_attr = iio_channel_get_attr const _c_get_filename = iio_channel_attr_get_filename const _c_read_attr = iio_channel_attr_read const _c_write_attr = iio_channel_attr_write const _c_enable = iio_channel_enable const _c_disable = iio_channel_disable const _c_is_enabled = iio_channel_is_enabled const _c_read = iio_channel_read const _c_read_raw = iio_channel_read_raw const _c_write = iio_channel_write const _c_write_raw = iio_channel_write_raw const _channel_get_device = iio_channel_get_device const _channel_get_index = iio_channel_get_index const _channel_get_data_format = iio_channel_get_data_format const _channel_get_modifier = iio_channel_get_modifier const _channel_get_type = iio_channel_get_type const _create_buffer = iio_device_create_buffer const _buffer_destroy = iio_buffer_destroy const _buffer_refill = iio_buffer_refill const _buffer_push_partial = iio_buffer_push_partial const _buffer_start = iio_buffer_start const _buffer_end = iio_buffer_end const _buffer_cancel = iio_buffer_cancel const _buffer_get_device = iio_buffer_get_device const _buffer_get_poll_fd = iio_buffer_get_poll_fd const _buffer_step = iio_buffer_step const _buffer_set_blocking_mode = iio_buffer_set_blocking_mode
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
940
""" Abstract super-type for all Attributes-like types """ abstract type Attr end """ read(::Attr) The current value of this attribute (as string). """ read(a::Attr) = error(typeof(a), " does not support reading") """ write(::Attr, value) Sets the value of the attribute to the passed value. """ write(a::Attr, value) = error(typeof(a), " does not support writing") """ name(:Attr) """ name(a::Attr) = a.name """ filename(:Attr) The filename in sysfs to which this attribute is bound. """ filename(a::Attr) = a.filename function show(io::IO, ::MIME"text/plain", attr::Attr, tree_depth = 0, k = -1) ret, value = read(attr) _name = name(attr) print(io, "\t"^tree_depth, "attr") k >= 0 ? print(io, " $k:") : print(io, ":") print(io, " ", _name, " ") if ret > 0 println(io, "value: $value") else err_str = iio_strerror(-ret) println(io, "ERROR: $err_str") end end
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
3544
import Base: length """ This class is used for all I/O operations of buffer capable devices. """ mutable struct Buffer{T <: AbstractDeviceOrTrigger} <: AbstractBuffer buffer::Ptr{iio_buffer} length::Int samples_count::Int dev::T end """ Buffer(device::T, samples_count, cyclic::Bool = false) where {T <: AbstractDeviceOrTrigger} Initializes a new Buffer instance. # Parameters - `device::AbstractDeviceOrTrigger` : A device instance (either [`Device`](@ref) or [`Trigger`](@ref) to which the buffer belongs - `samples_count` : The size of the buffer in samples - `cyclic` : If set to true, the buffer is circular """ function Buffer(device::T, samples_count, cyclic::Bool = false) where {T <: AbstractDeviceOrTrigger} buf = _create_buffer(device_or_trigger(device).device, convert(Csize_t, samples_count), cyclic) buffer = Buffer(buf, samples_count * sample_size(device), samples_count, device) # register finalizer finalizer(buffer) do x _buffer_destroy(x.buffer) end return buffer end """ length(buf::Buffer) Size of this buffer, in bytes. """ length(buf::Buffer) = buf.length """ refill(buf::Buffer) Fetch a new set of samples from the hardware. """ refill(buf::Buffer) = _buffer_refill(buf.buffer) """ push(buf::Buffer [, samples_count]) Submit the samples contained in this buffer to the hardware. # Parameters - `buf::Buffer` : The buffer struct - `samples_count` (optional) : The number of samples to submit, default = full buffer """ push(buf::Buffer) = _buffer_push_partial(buf.buffer, convert(Csize_t, buf.samples_count)) function push(buf::Buffer, samples_count) _buffer_push_partial(buf.buffer, convert(Csize_t, samples_count)) end """ read(buf::Buffer) Retrieves the samples contained inside the Buffer. # Returns - A `Vector{Cuchar}` containing the samples """ function read(buf::Buffer) _start = _buffer_start(buf.buffer) _end = _buffer_end(buf.buffer) len = _end - _start src = Ptr{Cuchar}(_start) dst = Vector{Cuchar}(undef, len) n = len * Base.aligned_sizeof(Cuchar) unsafe_copyto!(pointer(dst), src, n) return dst end """ write(buf::Buffer, data::Vector{T}) where {T} Copy the given vector of samples into the buffer # Parameters - `data` : The data vector containing the samples to copy # Returns - The number of bytes written into the buffer """ function write(buf::Buffer, data::Vector{T}) where {T} _data = reinterpret(Cuchar, data) _start = _buffer_start(buf.buffer) _end = _buffer_end(buf.buffer) len = _end - _start (len > length(_data)) && (len = length(_data)) n = len * Base.aligned_sizeof(Cuchar) src = Ptr{Cuchar}(_start) unsafe_copyto!(src, pointer(_data), n) return len end """ cancel(buf::Buffer) Cancel the current buffer. """ cancel(buf::Buffer) = _buffer_cancel(buf.buffer) """ set_blocking_mode(buf::Buffer, blocking) Set the buffer's blocking mode. # Parameters: - `blocking` : True if in blocking mode else false. """ set_blocking_mode(buf::Buffer, blocking) = _buffer_set_blocking_mode(buf.buffer, blocking) """ device(buf::Buffer) [`Device`](@ref) for the buffer. """ device(buf::Buffer) = buf.dev """ poll_fd(buf::Buffer) Poll_fd for the buffer. """ poll_fd(buf::Buffer) = _buffer_get_poll_fd(buf.buffer) """ step(buf::Buffer) Step size for the buffer. """ step(buf::Buffer) = _buffer_step(buf.buffer)
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
6785
""" ChannelAttr <: Attr Represents an attribute of a IIO channel """ struct ChannelAttr <: Attr channel::Ptr{iio_channel} name::String filename::String end """ ChannelAttr(chn::Ptr{iio_channel}, name::String) Initializes a new instance of a ChannelAttr. # Parameters - `chn::Ptr{iio_channel}` : A valid pointer to an [`iio_channel`](@ref) - `name::String` : The channel attribute's name # Returns - A new instance of this type """ function ChannelAttr(chn::Ptr{iio_channel}, name::String) return ChannelAttr(chn, name, _c_get_filename(chn, name)) end read(a::ChannelAttr) = _c_read_attr(a.channel, a.name) write(a::ChannelAttr, value) = _c_write_attr(a.channel, a.name, value) function show(io::IO, ::MIME"text/plain", chn::AbstractChannel, tree_depth = 0) _chn = iio_channel(chn) if chn.output type_name = "output" else type_name = "input" end _name = name(chn) _id = id(chn) print(io, "\t"^tree_depth, "$_id: $_name ($type_name") (type(chn) == IIO_CHAN_TYPE_UNKNOWN) && print(io, ", WARN::iio_channel_get_type()=UNKNOWN") if chn.scan_element format = _channel_get_data_format(_chn) _sign = convert(Bool, format.is_signed) ? 's' : 'u' _repeat = "" convert(Bool, format.is_fully_defined) && (_sign += 'A' - 'a') _idx = iio_channel_get_index(_chn) _endianness = convert(Bool, format.is_be) ? 'b' : 'l' if format.repeat > 1 _repeat = "X$(format.repeat)" end println(io, ", index: $_idx, format: $(_endianness)e:$(_sign)$(format.bits)/$(format.length)$_repeat>>$(format.shift))") else println(io, ")") end nb_attrs = iio_channel_get_attrs_count(_chn) if nb_attrs > 0 println(io, "\t"^tree_depth, "$nb_attrs channel-specific attributes found:") k = 0 for (_name, attr) in chn.attrs show(io, MIME("text/plain"), attr, tree_depth + 1, k) k += 1 end end end iio_channel(chn::AbstractChannel) = chn.channel """ read(chn::AbstractChannel, buf::AbstractBuffer, raw=false) Extract the samples corresponding to this channel from the given buffer. # Parameters - `chn::Channel` : The channel instance - `buf::AbstractBuffer` : A buffer instance - `raw::Bool`: If set to true, the samples are not converted from their native format to their host format # Returns - A `Vector{Cuchar}` containing the samples for this channel """ function read(chn::AbstractChannel, buf::AbstractBuffer, raw = false) dst = Vector{Cuchar}(undef, length(buf)) if raw len = _c_read_raw(iio_channel(chn), buf.buffer, dst) else len = _c_read(iio_channel(chn), buf.buffer, dst) end return dst end """ read(chn::AbstractChannel, buf::AbstractBuffer, data::Vector{T}, raw=false) where {T} Write the specified vector of samples into the buffer the specified channel. # Parameters - `chn::Channel` : The channel instance - `buf::AbstractBuffer` : A buffer instance - `data::Vector{T}` : A data vector containing the samples to copy - `raw::Bool`: If set to true, the samples are not converted from their host format to their native format # Returns - The number of bytes written """ function write(chn::AbstractChannel, buf::AbstractBuffer, data::Vector{T}, raw = false) where {T} _data = reinterpret(Cuchar, data) if raw return _c_write_raw(iio_channel(chn), buf.buffer, _data) end return _c_write(iio_channel(chn), buf.buffer, _data) end name(chn::AbstractChannel) = chn.name """ id(chn) An identifier of this channel. Note that it is possible that two channels have the same ID, if one is an input channel and the other is an output channel. """ id(chn::AbstractChannel) = chn.id """ attrs(chn) List of attributes for the given channel. """ attrs(chn::AbstractChannel) = chn.attrs """ output(chn) Contains true if the channel is an output channel, false otherwise. """ output(chn::AbstractChannel) = chn.output """ scan_element(chn) Contains true if the channel is a scan element, false otherwise. """ scan_element(chn::AbstractChannel) = chn.scan_element """ enabled(chn) Returns true if the channel is enabled, false otherwise. """ enabled(chn::AbstractChannel) = _c_is_enabled(iio_channel(chn)) """ enabled!(chn, state) Sets the channel state to enabled if true, disabled otherwise. """ enabled!(chn::AbstractChannel, state) = state ? _c_enable(iio_channel(chn)) : _c_disable(iio_channel(chn)) """ device(chn) Retrieves the corresponding `AbstractDeviceOrTrigger` for this channel. """ device(chn::AbstractChannel) = chn.dev """ index(chn) Returns the index of the channel. """ index(chn::AbstractChannel) = _channel_get_index(iio_channel(chn)) """ data_format(chn) Returns the channel data format as a C-struct. See [`iio_data_format`](@ref). """ data_format(chn::AbstractChannel) = _channel_get_data_format(iio_channel(chn)) """ modifier(chn)::iio_modifier Returns the channel modifier as an enum value. """ modifier(chn::AbstractChannel) = _channel_get_modifier(iio_channel(chn)) """ type(chn)::iio_chan_type Returns the channel type as an enum value. """ type(chn::AbstractChannel) = _channel_get_type(iio_channel(chn)) """ Channel{T <: AbstractDeviceOrTrigger} <: AbstractChannel Represents a channel of an IIO device. """ struct Channel{T <: AbstractDeviceOrTrigger} <: AbstractChannel channel::Ptr{iio_channel} dev::T attrs::Dict{String, ChannelAttr} id::String name::String output::Bool scan_element::Bool end """ Channel(dev::AbstractDeviceOrTrigger, channel::Ptr{iio_channel}) Initializes a new instance of the Channel type. # Parameters - `dev::AbstractDeviceOrTrigger` : The parent device handle (`Device` or `Trigger`) - `channel::Ptr{iio_channel}` : A valid pointer to an IIO channel. # Returns - A new instance of this type """ function Channel(dev::AbstractDeviceOrTrigger, channel::Ptr{iio_channel}) attrs = Dict{String, ChannelAttr}(name => ChannelAttr(channel, name) for name in [_c_get_attr(channel, convert(Cuint, x - 1)) for x in 1:_c_attr_count(channel)]) id = _c_get_id(channel) name = _c_get_name(channel) output = _c_is_output(channel) scan_element = _c_is_scan_element(channel) return Channel(channel, dev, attrs, id, name, output, scan_element) end
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
7007
# internal method, get underlying pointer to iio_context iio_context(ctx::AbstractContext) = ctx.context """ set_timeout(ctx::AbstractContext, timeout) Set a timeout for I/O operations. # Parameters - `value` : The timeout value, in milliseconds """ set_timeout(ctx::AbstractContext, timeout) = _set_timeout(iio_context(ctx), timeout) """ clone(ctx::T) where {T <: AbstractContext} Clones the IIO context. """ clone(ctx::T) where {T <: AbstractContext} = T(_clone(iio_context(ctx))) """ name(ctx::AbstractContext) Name of the IIO context. """ name(ctx::AbstractContext) = ctx.name """ description(ctx::AbstractContext) Description of this IIO context. """ description(ctx::AbstractContext) = ctx.description """ xml(ctx::AbstractContext) XML representation of the IIO context. """ xml(ctx::AbstractContext) = ctx.xml_file """ version(ctx::AbstractContext) Version of the context backed, as `Tuple(UInt, UInt, String)`` """ version(ctx::AbstractContext) = ctx.version """ attrs(ctx::AbstractContext) Lost of context-specific attributes. """ attrs(ctx::AbstractContext) = ctx.attrs """ find_device(ctx::AbstractContext, name_or_id_or_label) Find an IIO device by its name, ID or label. """ function find_device(ctx::AbstractContext, name_or_id_or_label) dev = _find_device(iio_context(ctx), name_or_id_or_label) return _d_is_trigger(dev) ? Trigger(ctx, dev) : Device(ctx, dev) end """ devices(ctx::AbstractContext) List of devices contained in this context. """ function devices(ctx::AbstractContext) return [(_d_is_trigger(dev) ? Trigger(ctx, dev) : Device(ctx, dev)) for dev in [_get_device(iio_context(ctx), convert(Cuint, x - 1)) for x in 1:_devices_count(iio_context(ctx))]] end function show(io::IO, ::MIME"text/plain", ctx::AbstractContext) _ctx = iio_context(ctx) name = _get_name(_ctx) println(io, "IIO context created with ", name, " backend.") ret, major, minor, git_tag = _get_version(_ctx) if ret == 0 println(io, "Backend version: $major.$minor (git tag: $git_tag)") else err_str = iio_strerror(-ret) println(io, "Unable to get backend version: $err_str") end println(io, "Backend description string: $(_get_description(_ctx))") nb_ctx_attrs = _get_attrs_count(_ctx) nb_ctx_attrs > 0 && println(io, "IIO context has $nb_ctx_attrs attributes:") for i in 0:(nb_ctx_attrs - 1) ret, name, value = _get_attr(_ctx, convert(Cuint, i)) if ret == 0 println(io, "\t$name: $value") else err_str = iio_strerror(-ret) println(io, "\tUnable to read IIO context attributes: $err_str") end end nb_devices = _devices_count(_ctx) println(io, "IIO context has $nb_devices devices:") devs = devices(ctx) for dev in devs show(io, MIME("text/plain"), dev, 1) end end """ Contains the representation of an IIO context. """ mutable struct Context <: AbstractContext context::Ptr{iio_context} name::String description::String xml::String version::Tuple{Int, Int, String} attrs::Dict{String, String} end """ Context(ptr_uri_or_nothing = nothing) Initializes a new Context using the local or the network backend of the IIO library. This function will create a network context if the IIOD_REMOTE environment variable is set to the hostname where the IIOD server runs. If set to an empty string, the server will be discovered using ZeroConf. If the environment variable is not set, a local context will be created instead. # Parameters - `ptr_uri_or_nothing` : Either a `Ptr{iio_context}`, an URI string (recommended) or `nothing` to construct the default context (Linux only). """ function Context(ptr_uri_or_nothing = nothing) # init context ctx = init_ctx(ptr_uri_or_nothing) # init attributes attrs = Dict{String, String}() for index in 1:_get_attrs_count(ctx) ret, name, value = _get_attr(ctx, convert(Cuint, index - 1)) push!(attrs, name => value) end name = _get_name(ctx) description = _get_description(ctx) xml = _get_xml(ctx) ret, major, minor, git_tag = _get_version(ctx) _context = Context(ctx, name, description, xml, (major, minor, git_tag), attrs) # register finalizer finalizer(_context) do x _destroy(x.context) end end init_ctx(ctx::Ptr{iio_context}) = ctx init_ctx(ctx::String) = _new_uri(ctx) init_ctx(::Nothing) = _new_default() abstract type AbstractBackendContext <: AbstractContext end iio_context(ctx::AbstractBackendContext) = iio_context(ctx.context) name(ctx::AbstractBackendContext) = name(ctx.context) description(ctx::AbstractBackendContext) = description(ctx.context) xml(ctx::AbstractBackendContext) = xml(ctx.context) version(ctx::AbstractBackendContext) = version(ctx.context) attrs(ctx::AbstractBackendContext) = attrs(ctx.context) """ Local IIO Context. """ struct LocalContext <: AbstractBackendContext context::Context end """ LocalContext([ctx::Ptr{iio_context}]) Initializes a new LocalContext using the local backend if the IIO library. Can be constructed from an existing pointer to an `iio_context`. """ function LocalContext() ctx = _new_local() return LocalContext(Context(ctx)) end LocalContext(ctx::Ptr{iio_context}) = LocalContext(Context(ctx)) """ XML IIO Context. """ struct XMLContext <: AbstractBackendContext context::Context end """ XMLContext(xml_file) Initializes a new XMLContext using the XML backend if the IIO library. # Parameters - `xmlfile` : Filename of the XML file to build the context from. """ function XMLContext(xmlfile::String) ctx = _new_xml(xmlfile) return XMLContext(Context(ctx)) end XMLContext(ctx::Ptr{iio_context}) = XMLContext(Context(ctx)) """ Network IIO context """ struct NetworkContext <: AbstractBackendContext context::Context end """ XMLContext(xml_file) Initializes a new NetworkContext using the network backend if the IIO library. # Parameters - `hostname` : Hostname, IPv4 or IPv6 address where the IIO Daemon is running """ function NetworkContext(hostname::Union{String, Nothing} = nothing) ctx = !isnothing(hostname) ? _new_network(hostname) : nothing return NetworkContext(Context(ctx)) end NetworkContext(ctx::Ptr{iio_context}) = NetworkContext(Context(ctx)) """ scan_contexts() Scan Context. """ function scan_contexts() scan_ctx = Dict{String, String}() ptr = Ptr{Ptr{iio_context_info}}(0) ctx = _create_scan_context("") ctx_nb = _get_context_info_list(ctx, Ref(ptr)) for i in 1:ctx_nb info = unsafe_load(ptr[], i) scan_ctx[_context_info_get_uri(info)] = _context_info_get_description(info) end _context_info_list_free(ptr) _destroy_scan_context(ctx) return scan_ctx end
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git
[ "MIT" ]
0.1.2
47a08b35777450039eaa8e971e1278369931b431
code
10766
""" DeviceAttr <: Attr Represents an attribute of an IIO device """ struct DeviceAttr <: Attr device::Ptr{iio_device} name::String end filename(a::DeviceAttr) = a.name read(a::DeviceAttr) = _d_read_attr(a.device, a.name) write(a::DeviceAttr, value) = _d_write_attr(a.device, a.name, value) """ DeviceAttr <: Attr Represents a debug attribute of an IIO device """ struct DeviceDebugAttr <: Attr device::Ptr{iio_device} name::String end filename(a::DeviceDebugAttr) = a.name read(a::DeviceDebugAttr) = _d_read_debug_attr(a.device, a.name) write(a::DeviceDebugAttr, value) = _d_write_debug_attr(a.device, a.name, value) """ DeviceAttr <: Attr Represents a buffer attribute of an IIO device """ struct DeviceBufferAttr <: Attr device::Ptr{iio_device} name::String end filename(a::DeviceBufferAttr) = a.name read(a::DeviceBufferAttr) = _d_read_buffer_attr(a.device, a.name) write(a::DeviceBufferAttr, value) = _d_write_buffer_attr(a.device, a.name, value) device_or_trigger(d::AbstractDeviceOrTrigger) = d """ id(d::AbstractDeviceOrTrigger) An identifier of the device, only valid in this IIO context. """ id(d::AbstractDeviceOrTrigger) = device_or_trigger(d).id """ name(d::AbstractDeviceOrTrigger) The name of the device. """ name(d::AbstractDeviceOrTrigger) = device_or_trigger(d).name """ label(d::AbstractDeviceOrTrigger) The label of the device. """ label(d::AbstractDeviceOrTrigger) = device_or_trigger(d).label """ attrs(d::AbstractDeviceOrTrigger) List of attributes for the IIO device. """ attrs(d::AbstractDeviceOrTrigger) = device_or_trigger(d).attrs """ debug_attrs(d::AbstractDeviceOrTrigger) List of debug attributes for the IIO device. """ debug_attrs(d::AbstractDeviceOrTrigger) = device_or_trigger(d).debug_attrs """ buffer_attrs(d::AbstractDeviceOrTrigger) List of buffer attributes for the IIO device. """ buffer_attrs(d::AbstractDeviceOrTrigger) = device_or_trigger(d).buffer_attrs """ channels(d::AbstractDeviceOrTrigger) List of channels available with this IIO device. """ function channels(d::AbstractDeviceOrTrigger) _dt = device_or_trigger(d) chns = [Channel(_dt, _get_channel(_dt.device, convert(Cuint, x - 1))) for x in 1:_channels_count(_dt.device)] sort!(chns, by = x -> id(x)) return chns end """ reg_write(d::AbstractDeviceOrTrigger, reg, value) Set a valie to one register of the device. # Parameters - `d` : The device instance - `reg` : The register address - `value` ; The value that will be used for this register """ function reg_write(d::AbstractDeviceOrTrigger, reg, value) _d_reg_write(device_or_trigger(d).device, reg, value) end """ reg_read(d::AbstractDeviceOrTrigger, reg) Read the content of a register of this device. # Parameters - `d` : The device instance - `reg` : The register address # Returns - The value of the register """ reg_read(d::AbstractDeviceOrTrigger, reg) = _d_reg_read(device_or_trigger(d).device, reg) """ find_channel(d::AbstractDeviceOrTrigger, name_or_id, is_output = false) Find an IIO channel by its name or ID. # Parameters - `d` : The device instance - `name_or_id` : The name or ID of the channel to find - `is_output` : Set to true to search for an output channel # Returns - The IIO channel as `Channel` """ function find_channel(d::AbstractDeviceOrTrigger, name_or_id, is_output = false) chn = _d_find_channel(device_or_trigger(d).device, name_or_id, is_output) return chn == C_NULL ? nothing : Channel(d, chn) end """ set_kernel_buffers_count(d::AbstractDeviceOrTrigger, count) Set the number of kernel buffers to use with the specified device # Parameters - `d` : The device instance - `count` : The number of kernel buffers """ function set_kernel_buffers_count(d::AbstractDeviceOrTrigger, count) _d_set_buffers_count(device_or_trigger(d).device, count) end """ sample_size(d::AbstractDeviceOrTrigger) Sample size of the device. The sample size varies each time channels get enabled or disabled. """ sample_size(d::AbstractDeviceOrTrigger) = _get_sample_size(device_or_trigger(d).device) function show(io::IO, ::MIME"text/plain", dev::AbstractDeviceOrTrigger, tree_depth = 0) d_o_t = device_or_trigger(dev) _dev = d_o_t.device _name = name(dev) _label = label(dev) _id = id(dev) print(io, "\t"^tree_depth, "$_id:") !isempty(_name) && print(io, " $_name") !isempty(_label) && print(io, " (label: $_label") dev_is_buffer_capable(_dev) && print(io, " (buffer capable)") println(io) tree_depth += 1 nb_channels = _channels_count(_dev) println(io, "\t"^tree_depth, "$nb_channels channels found:") chns = channels(dev) for chn in chns show(io, MIME("text/plain"), chn, tree_depth + 1) end nb_attrs = _d_attr_count(_dev) if nb_attrs > 0 println(io, "\t"^tree_depth, "$nb_attrs device-specific attributes found:") j = 0 for (_name, attr) in attrs(dev) show(io, MIME("text/plain"), attr, tree_depth + 2, j) j += 1 end end nb_attrs = _d_buffer_attr_count(_dev) if nb_attrs > 0 println(io, "\t"^tree_depth, "$nb_attrs buffer-specific attributes found:") j = 0 for (_name, attr) in buffer_attrs(dev) show(io, MIME("text/plain"), attr, tree_depth + 2, j) j += 1 end end nb_attrs = _d_debug_attr_count(_dev) if nb_attrs > 0 println(io, "\t"^tree_depth, "$nb_attrs debug-specific attributes found:") j = 0 for (_name, attr) in debug_attrs(dev) show(io, MIME("text/plain"), attr, tree_depth + 2, j) j += 1 end end ret, trig = _d_get_trigger(_dev) if ret == 0 if trig == C_NULL println(io, "\t"^tree_depth, "No trigger assigned to device") else _name = _d_get_name(trig) _id = _d_get_id(trig) println("\t"^tree_depth, "Current trigger: $_name($_id)") end elseif ret == -ENOENT println(io, "\t"^tree_depth, "No trigger on this device") elseif ret < 0 err_str = iio_strerror(-ret) println("ERROR: checking for trigger : $err_str") end end struct DeviceOrTrigger{T <: AbstractContext} <: AbstractDeviceOrTrigger ctx::T context::Ptr{iio_context} device::Ptr{iio_device} attrs::Dict{String, DeviceAttr} debug_attrs::Dict{String, DeviceDebugAttr} buffer_attrs::Dict{String, DeviceBufferAttr} id::String name::String label::String end function DeviceOrTrigger(ctx::AbstractContext, device::Ptr{iio_device}) context = _d_get_context(device) attrs = Dict{String, DeviceAttr}(name => DeviceAttr(device, name) for name in [_d_get_attr(device, convert(Cuint, x - 1)) for x in 1:_d_attr_count(device)]) debug_attrs = Dict{String, DeviceDebugAttr}(name => DeviceDebugAttr(device, name) for name in [_d_get_debug_attr(device, convert(Cuint, x - 1)) for x in 1:_d_debug_attr_count(device)]) buffer_attrs = Dict{String, DeviceBufferAttr}(name => DeviceBufferAttr(device, name) for name in [_d_get_buffer_attr(device, convert(Cuint, x - 1)) for x in 1:_d_buffer_attr_count(device)]) id = _d_get_id(device) name = _d_get_name(device) label = _d_get_label(device) return DeviceOrTrigger(ctx, context, device, attrs, debug_attrs, buffer_attrs, id, name, label) end """ Contains the representation of an IIO device that can act as a trigger. """ struct Trigger{T <: AbstractContext} <: AbstractDeviceOrTrigger trigger::DeviceOrTrigger{T} end """ Trigger(ctx::AbstractContext, device::Ptr{iio_device}) Initializes a new Trigger instance. # Parameters - `ctx` : The IIO context instance with which the device is accessed - `device` : A pointer to an iio_device which represents this trigger """ function Trigger(ctx::AbstractContext, device::Ptr{iio_device}) return Trigger(DeviceOrTrigger(ctx, device)) end device_or_trigger(t::Trigger) = t.trigger """ frequency(t::Trigger) Configured frequency (in Hz) of the trigger. """ frequency(t::Trigger) = parse(Int, read(attrs(t)["sampling_frequency"])) """ frequency!(t::Trigger, value) Set the trigger rate. """ frequency!(t::Trigger, value) = write(attrs(t)["sampling_frequency"], string(value)) """ Contains the representation of an IIO device. """ struct Device{T <: AbstractContext} <: AbstractDeviceOrTrigger device::DeviceOrTrigger{T} end """ Device(ctx::AbstractContext, device::Ptr{iio_device}) Initializes a new Device instance. # Parameters - `ctx` : The IIO context instance with which the device is accessed - `device` : A pointer to an iio_device which represents this device """ function Device(ctx::AbstractContext, device::Ptr{iio_device}) return Device(DeviceOrTrigger(ctx, device)) end device_or_trigger(d::Device) = d.device hwmon(d::Device) = error("TODO") """ context(d::Device) Context for the device. """ iio_context(d::Device) = device_or_trigger(d).ctx """ trigger!(d::Device, trigger::Trigger) Sets the configured trigger for this IIO device. """ function trigger!(d::Device, trigger::Trigger) _d_set_trigger(d.device.device, trigger.device.device) end """ trigger(d::Device) Returns the configured trigger for this IIO device, if present in the current context. """ function trigger(d::Device) ret, _trig = _d_get_trigger(d.device.device) trig = Trigger(iio_context(d), _trig) for dev in devices(iio_context(d)) if id(trig.id) == id(dev) return dev end end return nothing end
LibIIO
https://github.com/TacHawkes/LibIIO.jl.git