licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 146 | abstract type AbstractContext end
abstract type AbstractDeviceOrTrigger end
abstract type AbstractBuffer end
abstract type AbstractChannel end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 5520 | module CLibIIO
using libiio_jll
const libiio = libiio_jll.libiio
const BUF_SIZE = 16384
const DST_BUFFER = Vector{Cchar}(undef, BUF_SIZE)
include("ctypes.jl")
export iio_scan_context,
iio_scan_block,
iio_context_info,
iio_context,
iio_device,
iio_channel,
iio_buffer,
iio_data_format,
iio_modifier,
iio_chan_type
# enum exports
for s in instances(iio_modifier)
@eval export $(Symbol(s))
end
for s in instances(iio_chan_type)
@eval export $(Symbol(s))
end
include("util.jl")
export dev_is_buffer_capable
include("scan.jl")
export iio_context_info_get_description,
iio_context_info_get_uri,
iio_context_info_list_free,
iio_create_scan_block,
iio_create_scan_context,
iio_scan_block_destroy,
iio_scan_block_get_info,
iio_scan_block_scan,
iio_scan_context_destroy,
iio_scan_context_get_info_list
include("toplevel.jl")
export iio_get_backend,
iio_get_backends_count,
iio_has_backend,
iio_library_get_version,
iio_strerror
include("context.jl")
export iio_context_clone,
iio_context_destroy,
iio_context_find_device,
iio_context_get_attr,
iio_context_get_attr_value,
iio_context_get_attrs_count,
iio_context_get_description,
iio_context_get_device,
iio_context_get_devices_count,
iio_context_get_name,
iio_context_get_version,
iio_context_get_xml,
iio_context_set_timeout,
iio_create_context_from_uri,
iio_create_default_context,
iio_create_local_context,
iio_create_network_context,
iio_create_xml_context,
iio_create_xml_context_mem
include("device.jl")
export iio_device_attr_read,
iio_device_attr_read_all,
iio_device_attr_read_bool,
iio_device_attr_read_double,
iio_device_attr_read_longlong,
iio_device_attr_write,
iio_device_attr_write_all,
iio_device_attr_write_bool,
iio_device_attr_write_double,
iio_device_attr_write_longlong,
iio_device_attr_write_raw,
iio_device_buffer_attr_read,
iio_device_buffer_attr_read_all,
iio_device_buffer_attr_read_bool,
iio_device_buffer_attr_read_double,
iio_device_buffer_attr_read_longlong,
iio_device_buffer_attr_write,
iio_device_buffer_attr_write_all,
iio_device_buffer_attr_write_bool,
iio_device_buffer_attr_write_double,
iio_device_buffer_attr_write_longlong,
iio_device_buffer_attr_write_raw,
iio_device_find_attr,
iio_device_find_buffer_attr,
iio_device_find_channel,
iio_device_get_attr,
iio_device_get_attrs_count,
iio_device_get_buffer_attr,
iio_device_get_buffer_attrs_count,
iio_device_get_channel,
iio_device_get_channels_count,
iio_device_get_context,
iio_device_get_data,
iio_device_get_id,
iio_device_get_name,
iio_device_get_label,
iio_device_get_trigger,
iio_device_is_trigger,
iio_device_set_data,
iio_device_set_kernel_buffers_count,
iio_device_set_trigger
include("channel.jl")
export iio_channel_attr_get_filename,
iio_channel_attr_read,
iio_channel_attr_read_all,
iio_channel_attr_read_bool,
iio_channel_attr_read_double,
iio_channel_attr_read_longlong,
iio_channel_attr_write,
iio_channel_attr_write_all,
iio_channel_attr_write_bool,
iio_channel_attr_write_double,
iio_channel_attr_write_longlong,
iio_channel_attr_write_raw,
iio_channel_disable,
iio_channel_enable,
iio_channel_find_attr,
iio_channel_get_attr,
iio_channel_get_attrs_count,
iio_channel_get_data,
iio_channel_get_device,
iio_channel_get_id,
iio_channel_get_modifier,
iio_channel_get_name,
iio_channel_get_type,
iio_channel_is_enabled,
iio_channel_is_output,
iio_channel_is_scan_element,
iio_channel_read,
iio_channel_read_raw,
iio_channel_set_data,
iio_channel_write,
iio_channel_write_raw
include("buffer.jl")
export iio_buffer_cancel,
iio_buffer_destroy,
iio_buffer_end,
iio_buffer_first,
iio_buffer_foreach_sample,
iio_buffer_get_data,
iio_buffer_get_device,
iio_buffer_get_poll_fd,
iio_buffer_push,
iio_buffer_push_partial,
iio_buffer_refill,
iio_buffer_set_blocking_mode,
iio_buffer_set_data,
iio_buffer_start,
iio_buffer_step,
iio_device_create_buffer
include("debug.jl")
export iio_device_get_sample_size,
iio_channel_get_index,
iio_channel_get_data_format,
iio_channel_convert,
iio_channel_convert_inverse,
iio_device_get_debug_attrs_count,
iio_device_get_debug_attr,
iio_device_find_debug_attr,
iio_device_debug_attr_read,
iio_device_debug_attr_read_all,
iio_device_debug_attr_write,
iio_device_debug_attr_write_raw,
iio_device_debug_attr_write_all,
iio_device_debug_attr_read_bool,
iio_device_debug_attr_read_longlong,
iio_device_debug_attr_read_double,
iio_device_debug_attr_write_bool,
iio_device_debug_attr_write_longlong,
iio_device_debug_attr_write_double,
iio_device_identify_filename,
iio_device_reg_write,
iio_device_reg_read
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 12437 | """
iio_buffer_get_device(buffer)
Retrieves a pointer to the [`iio_device`](@ref) structure.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- A pointer to an [`iio_device`](@ref) structure
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga42367567d47f501d1922d1b331cf64fb)
"""
function iio_buffer_get_device(buffer::Ptr{iio_buffer})
return ccall((:iio_buffer_get_device, libiio),
Ptr{iio_device},
(Ptr{iio_device},),
buffer)
end
"""
iio_device_create_buffer(dev, samples_count, cyclic)
Create an input or output buffer associated to the given device.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `samples_count::Csize_t` : The number of samples that the buffer should contain
- `cyclic::Bool` : If true, enable cyclic mode
# Returns
- On success, a pointer to an [`iio_buffer`](@ref) structure
- On error, an error is raised
!!! note
Channels that have to be written to / read from must be enabled before creating the buffer.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gaea8067aca27b93a1260a0c563607a501)
"""
function iio_device_create_buffer(dev::Ptr{iio_device}, samples_count::Csize_t,
cyclic::Bool)
return @check_null ccall((:iio_device_create_buffer, libiio),
Ptr{iio_buffer},
(Ptr{iio_device}, Csize_t, Cuchar),
dev, samples_count, cyclic)
end
"""
iio_buffer_destroy(buf)
Destroy the given buffer.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- A pointer corresponding to the address that follows the last sample present in the buffer
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gaba58dc2780be63fead6f09397ce90d10)
"""
function iio_buffer_destroy(buf::Ptr{iio_buffer})
ccall((:iio_buffer_destroy, libiio),
Cvoid,
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_get_poll_fd(buf)
Get a pollable file descriptor.
Can be used to know when [`iio_buffer_refill`](@ref) or [`iio_buffer_push`](@ref) can be called
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- On success, valid file descriptor
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga2ae96ee9f0748e55dfad996d6e9883f2)
"""
function iio_buffer_get_poll_fd(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_get_poll_fd, libiio),
Cint,
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_set_blocking_mode(buf, blocking)
Make [`iio_buffer_refill`](@ref) and [`iio_buffer_push`](@ref) blocking or not.
After this function has been called with blocking == false, [`iio_buffer_refill`](@ref)
and [`iio_buffer_push`](@ref) will return `-EAGAIN` if no data is ready. A device is
blocking by default.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `blocking::Bool` : true if the buffer API should be blocking, else false
# Returns
- On success, 0
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gadf834d825ece149886283bcb8c2a5466)
"""
function iio_buffer_set_blocking_mode(buf::Ptr{iio_buffer}, blocking::Bool)
return ccall((:iio_buffer_set_blocking_mode, libiio),
Cint,
(Ptr{iio_buffer}, Cuchar),
buf, blocking)
end
"""
iio_buffer_refill(buf)
Fetch more samples from the hardware.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- On success, the number of bytes read is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gac999e5244b5a2cbbca5ecaef8303a4ff)
"""
function iio_buffer_refill(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_refill, libiio),
Cssize_t,
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_push(buf)
Send the samples to the hardware.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- On success, the number of bytes written is returned
- On error, a negative errno code is returned
!!! note
Only valid for output buffers
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gae7033c625d128667a56cf482aa3149bd)
"""
function iio_buffer_push(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_push, libiio),
Cssize_t,
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_push_partial(buf, samples_count)
Send a given number of samples to the hardware.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `samples_count::Csize_t` : The number of samples to submit
# Returns
- On success, the number of bytes written is returned
- On error, a negative errno code is returned
!!! note
Only valid for output buffers
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga367b7368532aebb35a0d56bccc550570)
"""
function iio_buffer_push_partial(buf::Ptr{iio_buffer}, samples_count::Csize_t)
return ccall((:iio_buffer_push_partial, libiio),
Cssize_t,
(Ptr{iio_buffer}, Csize_t),
buf, samples_count)
end
"""
iio_buffer_cancel(buf)
Cancel all buffer operations.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
This function cancels all outstanding buffer operations previously scheduled.
This means any pending [`iio_buffer_push`](@ref) or [`iio_buffer_refill`](@ref)
operation will abort and return immediately, any further invocations of these functions
on the same buffer will return immediately with an error.
Usually [`iio_buffer_push`](@ref) and [`iio_buffer_refill`](@ref) will block until
either all data has been transferred or a timeout occurs. This can depending on the
configuration take a significant amount of time. [`iio_buffer_cancel`](@ref) is useful to
bypass these conditions if the buffer operation is supposed to be stopped in response to an
external event (e.g. user input).
To be able to capture additional data after calling this function the buffer should
be destroyed and then re-created.
This function can be called multiple times for the same buffer, but all but the first
invocation will be without additional effect.
This function is thread-safe, but not signal-safe, i.e. it must not be called
from a signal handler.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga0e42431688750313cfa077ab4f6e0282)
"""
function iio_buffer_cancel(buf::Ptr{iio_buffer})
ccall((:iio_buffer_cancel, libiio),
Cvoid,
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_start(buf)
Get the start address of the buffer.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- A pointer corresponding to the start address of the buffer
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga7fdacbfda79aa5120f34ea73ae2ea5ab)
"""
function iio_buffer_start(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_start, libiio),
Ptr{Cuchar},
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_first(buf, chn)
Find the first sample of a channel in a buffer.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `chn::Ptr{iio_channel}` :A pointer to an [`iio_channel`](@ref) structure
# Returns
- A pointer to the first sample found, or to the end of the buffer if no sample for the given
channel is present in the buffer
!!! note
This function, coupled with iio_buffer_step and iio_buffer_end, can be used to
iterate on all the samples of a given channel present in the buffer, doing the following:
```julia
# Note that you have to adjust the end of the range for Julia, as the last value is included
for ptr in iio_buffer_first(buf, chn):iio_buffer_step(buf):(iio_buffer_end(buf) - iio_buffer_step(buf))
....
end
```
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga000d2f4c8b72060db1c38ec905bf4156)
"""
function iio_buffer_first(buf::Ptr{iio_buffer}, chn::Ptr{iio_channel})
return ccall((:iio_buffer_first, libiio),
Ptr{Cuchar},
(Ptr{iio_channel}, Ptr{iio_channel}),
buf, chn)
end
"""
iio_buffer_step(buf)
Get the step size between two samples of one channel.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- The difference between the addresses of two consecutive samples of one same channel
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga5532665a8776cec1c209d6cf8d0bb409)
"""
function iio_buffer_step(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_step, libiio),
Cssize_t,
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_end(buf)
Get the address that follows the last sample in a buffer.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- A pointer corresponding to the address that follows the last sample present in the buffer
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gab5300f917bbdfc5dafc093a60138f131)
"""
function iio_buffer_end(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_end, libiio),
Ptr{Cuchar},
(Ptr{iio_buffer},),
buf)
end
"""
iio_buffer_foreach_sample(buf, callback, data)
Call the supplied callback each sample found in a buffer.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `callback::Ptr{Cvoid}` : A pointer to a function to call for each sample found
- `data::Ptr{Cvoid}` : A user-specified pointer that will be passed to the callback
# Returns
- Number of bytes processed
!!! note
The callback receives four arguments:
- A pointer to the [`iio_channel`](@ref) structure corresponding to the sample,
- A pointer to the sample itself,
- The length of the sample in bytes,
- The user-specified pointer passed to [`iio_buffer_foreach_sample`](@ref).
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga810ec50155e82331b18ec71d3c507104)
"""
function iio_buffer_foreach_sample(buf::Ptr{iio_buffer}, callback::Ptr{Cvoid},
data::Ptr{Cvoid})
return ccall((:iio_buffer_foreach_sample, libiio),
Cssize_t,
(Ptr{iio_buffer}, Ptr{Cvoid}, Ptr{Cvoid}),
buf, callback, data)
end
"""
iio_buffer_set_data(buf, data)
Associate a pointer to an [`iio_buffer`](@ref) structure.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `data::Ptr{Cuchar}` : The pointer to be associated
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#ga07f485e4e2de57c8c1cd0141611187dc)
"""
function iio_buffer_set_data(buf::Ptr{iio_buffer}, data::Ptr{Cuchar})
return ccall((:iio_buffer_set_data, libiio),
Cvoid,
(Ptr{iio_buffer}, Ptr{Cuchar}),
buf, data)
end
"""
iio_buffer_get_data(buf)
Retrieve a pointer to the [`iio_device`](@ref) structure.
# Parameters
- `buf::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
# Returns
- A pointer to an [`iio_device`](@ref) structure
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Buffer.html#gac110da795a50dc45fe998cace656329b)
"""
function iio_buffer_get_data(buf::Ptr{iio_buffer})
return ccall((:iio_buffer_get_data, libiio),
Ptr{iio_device},
(Ptr{iio_buffer},),
buf)
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 24778 | """
iio_channel_get_device(chn)
Retrieve a pointer to the [`iio_device`](@ref) structure.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- A pointer to a [`iio_device`](@ref) structure
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gaf2800d7a6953c5dd3271df390c062439)
"""
function iio_channel_get_device(chn::Ptr{iio_channel})
return ccall((:iio_channel_get_device, libiio),
Ptr{iio_device},
(Ptr{iio_channel},),
chn)
end
"""
iio_channel_get_id(chn)
Retrieve the channel ID (e.g. `voltage0`)
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- A string with the channel ID
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gafda1782de4655905ad08a40492f3dc64)
"""
function iio_channel_get_id(chn::Ptr{iio_channel})
return unsafe_string(ccall((:iio_channel_get_id, libiio),
Cstring,
(Ptr{iio_channel},),
chn))
end
"""
iio_channel_get_name(chn)
Retrieve the channel name (e.g. `vccint`)
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- A string with the channel name
!!! note
If the channel has no name, an empty string is returned.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga37346a6f3fcfb1eb40572aec6c3b39ac)
"""
function iio_channel_get_name(chn::Ptr{iio_channel})
name = ccall((:iio_channel_get_name, libiio),
Cstring,
(Ptr{iio_channel},),
chn)
return name == C_NULL ? "" : unsafe_string(name)
end
"""
iio_channel_is_output(chn)
Return true if the given channel is an output channel
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- True if the channel is an output channel, false otherweise
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga3c24e9c93e2217c9506073d04b878461)
"""
function iio_channel_is_output(chn::Ptr{iio_channel})
return convert(Bool,
ccall((:iio_channel_is_output, libiio),
Cuchar,
(Ptr{iio_channel},),
chn))
end
"""
iio_channel_is_scan_element(chn)
Return true of the given channel is a scan element.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- True if the channel is a scan element, false otherweise
!!! note
A channel that is a scan element is a channel that can generate samples
(for an input channel) or receive samples (for an output channel) after being enabled.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga07892a3c0c31e7a3eecf76ec72a8669d)
"""
function iio_channel_is_scan_element(chn::Ptr{iio_channel})
return convert(Bool,
ccall((:iio_channel_is_scan_element, libiio),
Cuchar,
(Ptr{iio_channel},),
chn))
end
"""
iio_channel_get_attrs_count(chn)
Enumerate the channel-specific attributes of the given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- The number of channel-specific attributes found
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga14869c3fda8b04f413a02f15dfa6ef7c)
"""
function iio_channel_get_attrs_count(chn::Ptr{iio_channel})
return ccall((:iio_channel_get_attrs_count, libiio),
Cuint,
(Ptr{iio_channel},),
chn)
end
"""
iio_channel_get_attr(chn, index)
Get the channel-specific attribute present at the given index.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `index::Cuint` : The index corresponding to the attribute
# Returns
- On success, a string containing the attribute name
- If the index is invalid, an empty string will be returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gafc3c52f360424c097a24d1925923d772)
"""
function iio_channel_get_attr(chn::Ptr{iio_channel}, index::Cuint)
attr = ccall((:iio_channel_get_attr, libiio),
Cstring,
(Ptr{iio_channel}, Cuint),
chn, index)
return attr == C_NULL ? "" : unsafe_string(attr)
end
"""
iio_channel_find_attr(chn, name)
Try to find a channel-specific attribute by its name.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `name::String` : A string corresponding to the name of the attribute
# Returns
- On succes, a string containing the attribute name
- If the name does not correspond to any know atribute of the channel, an empty string is returned
!!! note
This function is useful to detect the presence of an attribute.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga13b2db3252a2380a2b0b1bb15b8034a4)
"""
function iio_channel_find_attr(chn::Ptr{iio_channel}, name::String)
attr = ccall((:iio_channel_find_attr, libiio),
Cstring,
(Ptr{iio_channel}, Cstring),
chn, name)
return attr == C_NULL ? "" : unsafe_string(attr)
end
"""
iio_channel_attr_get_filename(chn, attr)
Retrieve the filename of an attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` ; A string corresponding to the name of the attribute
# Returns
- On success, a string with the filename
- If the attribute is unknown, an empty string is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gab6462404bb6667e9e9241a18e09a1638)
"""
function iio_channel_attr_get_filename(chn::Ptr{iio_channel}, attr::String)
name = ccall((:iio_channel_attr_get_filename, libiio),
Cstring,
(Ptr{iio_channel}, Cstring),
chn, attr)
return name == C_NULL ? "" : unsafe_string(name)
end
"""
iio_channel_attr_read(dev, attr)
Read the content of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, a string with the attribute value.
- On error, a negative errno code is returned
!!! note
This function deviates from the C library [`iio_channel_attr_read`](@ref).
Instead of passing an empty string, call the function without the attr argument.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga2c2ca5696d1341067051eb390d5014ae)
"""
function iio_channel_attr_read(chn::Ptr{iio_channel}, attr::String)
dst = DST_BUFFER
ret = ccall((:iio_channel_attr_read, libiio),
Cssize_t,
(Ptr{iio_channel}, Cstring, Cstring, Csize_t),
chn, attr, pointer(dst), BUF_SIZE)
attrs = unsafe_string(pointer(dst))
return ret, attrs
end
"""
iio_channel_attr_read(dev)
Read the content of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- On success, a Vector of Tuples of attribute index and value.
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga2c2ca5696d1341067051eb390d5014ae)
"""
function iio_channel_attr_read(chn::Ptr{iio_channel})
attr = C_NULL
dst = DST_BUFFER
ret = ccall((:iio_channel_attr_read, libiio),
Cssize_t,
(Ptr{iio_channel}, Cstring, Cstring, Csize_t),
chn, attr, pointer(dst), BUF_SIZE)
attrs = iio_parse_attr(dst, ret)
return ret, attrs
end
"""
iio_channel_attr_read_all(dev, cb, data)
Read the content of all channel-specific attributes.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the channel-specific attributes are read in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gab9c28b0cd94c0607bcc7cac16219eb48)
"""
function iio_channel_attr_read_all(chn::Ptr{iio_channel}, cb::Ptr{Cvoid}, data::Ptr{Cvoid})
return ccall((:iio_channel_attr_read_all, libiio),
Cint,
(Ptr{iio_channel}, Ptr{Cvoid}, Ptr{Cvoid}),
chn, cb, data)
end
"""
iio_channel_attr_read_bool(dev, attr)
Read the content of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the bool value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga319f39c313bbd4d331e23df51e4d3ce6)
"""
function iio_channel_attr_read_bool(chn::Ptr{iio_channel}, attr::String)
value = Ref{Cuchar}(0)
ret = ccall((:iio_channel_attr_read_bool, libiio),
Cint,
(Ptr{iio_channel}, Cstring, Ptr{Cuchar}),
chn, attr, value)
return ret, convert(Bool, value[])
end
"""
iio_channel_attr_read_longlong(dev, attr)
Read the content of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Clonglong value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga116c61892bf3d20ff07efd642c5dfbe1)
"""
function iio_channel_attr_read_longlong(chn::Ptr{iio_channel}, attr::String)
value = Ref{Clonglong}(0)
ret = ccall((:iio_channel_attr_read_longlong, libiio),
Cint,
(Ptr{iio_channel}, Cstring, Ptr{Clonglong}),
chn, attr, value)
return ret, value[]
end
"""
iio_channel_attr_read_double(dev, attr)
Read the content of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Cdouble value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga75ac9b81eb7e7e8a961afb67748e4102)
"""
function iio_channel_attr_read_double(chn::Ptr{iio_channel}, attr::String)
value = Ref{Cdouble}(0)
ret = ccall((:iio_channel_attr_read_double, libiio),
Cint,
(Ptr{iio_channel}, Cstring, Ptr{Cdouble}),
chn, attr, value)
return ret, value[]
end
"""
iio_channel_attr_write(dev, attr, src)
Set the value of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::String` A string to set the attribute to
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
!!! note
By passing `C_NULL` as the "attr" argument to [`iio_channel_attr_write`](@ref),
it is now possible to write all of the attributes of a device.
The buffer must contain one block of data per attribute of the device,
by the order they appear in the iio_device structure.
The first four bytes of one block correspond to a 32-bit signed value
in network order. If negative, the attribute is not written;
if positive, it corresponds to the length of the data to write.
In that case, the rest of the block must contain the data.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga35c76ce5fcae4c551b7c78d648665a41)
"""
function iio_channel_attr_write(chn::Ptr{iio_channel}, attr::String, src::String)
return ccall((:iio_channel_attr_write, libiio),
Cssize_t,
(Ptr{iio_channel}, Cstring, Cstring),
chn, attr, src)
end
"""
iio_channel_attr_write_raw(dev, attr, src, len)
Set the value of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::Ptr{Cvoid}` : A pointer to the data to be written
- `len::Csize_t` : The number of bytes that should be written
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gacd0d3dd36bdc64a9f967e21a891230eb)
"""
function iio_channel_attr_write_raw(chn::Ptr{iio_channel}, attr::String, src::Ptr{Cvoid},
len::Csize_t)
return ccall((:iio_channel_attr_write_raw, libiio),
Cssize_t,
(Ptr{iio_channel}, Cstring, Ptr{Cvoid}, Csize_t),
chn, attr, src, len)
end
"""
iio_channel_attr_write_all(dev, cb, data)
Set the values of all channel-specifc attributes.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the chsnnel-specific attributes are written in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga6df693ee4f0c329d957f7c7ca3588f3f)
"""
function iio_channel_attr_write_all(chn::Ptr{iio_channel}, cb::Ptr{Cvoid}, data::Ptr{Cvoid})
return ccall((:iio_channel_attr_write_all, libiio),
Cint,
(Ptr{iio_channel}, Ptr{Cvoid}, Ptr{Cvoid}),
chn, cb, data)
end
"""
iio_channel_attr_write_bool(dev, attr, val)
Set the value of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Bool` : A bool value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga9a385b9b05d20f33f8e587feb2ebe81a)
"""
function iio_channel_attr_write_bool(chn::Ptr{iio_channel}, attr::String, val::Bool)
return ccall((:iio_channel_attr_write_bool, libiio),
Cint,
(Ptr{iio_channel}, Cstring, Cuchar),
chn, attr, val)
end
"""
iio_channel_attr_write_longlong(dev, attr, val)
Set the value of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Clonglong` : A Clonglong value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gac55cb77a1baf797e54a8a4e31b2f4680)
"""
function iio_channel_attr_write_longlong(chn::Ptr{iio_channel}, attr::String,
val::Clonglong)
return ccall((:iio_channel_attr_write_longlong, libiio),
Cint,
(Ptr{iio_channel}, Cstring, Clonglong),
chn, attr, val)
end
"""
iio_channel_attr_write_double(dev, attr, val)
Set the value of the given channel-specific attribute.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Cdouble` : A Cdouble value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gad9d6ec4a02948c6416cc99254bdbfa50)
"""
function iio_channel_attr_write_double(chn::Ptr{iio_channel}, attr::String, val::Cdouble)
return ccall((:iio_channel_attr_write_double, libiio),
Cint,
(Ptr{iio_channel}, Cstring, Cdouble),
chn, attr, val)
end
"""
iio_channel_enable(chn)
Enable the given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
!!! note
Before creating an [`iio_buffer`](@ref) structure with [`iio_device_create_buffer`](@ref),
it is required to enable at least one channel of the device to read from.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga2b787983683d37966b5e1e5c6c121d6a)
"""
function iio_channel_enable(chn::Ptr{iio_channel})
ccall((:iio_channel_enable, libiio),
Cvoid,
(Ptr{iio_channel},),
chn)
end
"""
iio_channel_disable(chn)
Disable the given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gad7c7c91c61b8a97187dc73cbcdb60c06)
"""
function iio_channel_disable(chn::Ptr{iio_channel})
ccall((:iio_channel_disable, libiio),
Cvoid,
(Ptr{iio_channel},),
chn)
end
"""
iio_channel_is_enabled(chn)
Returns true of the channel is enabled.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- True if the channel is enabled, false otherwise
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gaf10427dc35adaa0991cd34a9dd45a82f)
"""
function iio_channel_is_enabled(chn::Ptr{iio_channel})
return convert(Bool,
ccall((:iio_channel_is_enabled, libiio),
Cuchar,
(Ptr{iio_channel},),
chn))
end
"""
iio_channel_read_raw(chn, buffer, dst)
Demultiplex the samples of a given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `buffer::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `dst::Vector{Cuchar}` : A destination memory area where the demultiplexed data will be stored
# Returns
- The size of the demultiplexed data, in bytes
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gacd227a6861960ea2fb49d957f62887dd)
"""
function iio_channel_read_raw(chn::Ptr{iio_channel}, buffer::Ptr{iio_buffer},
dst::Vector{Cuchar})
return ccall((:iio_channel_read_raw, libiio),
Csize_t,
(Ptr{iio_channel}, Ptr{iio_buffer}, Ptr{Cuchar}, Csize_t),
chn, buffer, pointer(dst), length(dst))
end
"""
iio_channel_read(chn, buffer, dst)
Demultiplex and convert the samples of a given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `buffer::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `dst::Vector{Cuchar}` : A destination memory area where the converted data will be stored
# Returns
- The size of the converted data, in bytes
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga5c01edc37b0b57aef503abd5989a6a30)
"""
function iio_channel_read(chn::Ptr{iio_channel}, buffer::Ptr{iio_buffer},
dst::Vector{Cuchar})
return ccall((:iio_channel_read, libiio),
Csize_t,
(Ptr{iio_channel}, Ptr{iio_buffer}, Ptr{Cuchar}, Csize_t),
chn, buffer, pointer(dst), length(dst))
end
"""
iio_channel_write_raw(chn, buffer, dst)
Multiplex the samples of a given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `buffer::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `src::Vector{Cuchar}` : A source memory area where the sequential data will be read from
# Returns
- The number of bytes actually multiplexed
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga350e81855764c159c6aefa12fb78e1c2)
"""
function iio_channel_write_raw(chn::Ptr{iio_channel}, buffer::Ptr{iio_buffer},
src::Vector{Cuchar})
return ccall((:iio_channel_write_raw, libiio),
Csize_t,
(Ptr{iio_channel}, Ptr{iio_buffer}, Ptr{Cuchar}, Csize_t),
chn, buffer, pointer(src), length(src))
end
"""
iio_channel_write(chn, buffer, dst)
Convert and multiplex the samples of a given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `buffer::Ptr{iio_buffer}` : A pointer to an [`iio_buffer`](@ref) structure
- `src::Vector{Cuchar}` : A source memory area where the sequential data will be read from
# Returns
- The number of bytes actually converted and multiplexed
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga350e81855764c159c6aefa12fb78e1c2)
"""
function iio_channel_write(chn::Ptr{iio_channel}, buffer::Ptr{iio_buffer},
src::Vector{Cuchar})
return ccall((:iio_channel_write, libiio),
Csize_t,
(Ptr{iio_channel}, Ptr{iio_buffer}, Ptr{Cuchar}, Csize_t),
chn, buffer, pointer(src), length(src))
end
"""
iio_channel_set_data(dev, data)
Associate a pointer to an [`iio_channel`](@ref) structure.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `data::Ptr{Cvoid}` : The pointer to be associated
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga5150c9b73386d899460ebafbe614f338)
"""
function iio_channel_set_data(chn::Ptr{iio_channel}, data::Ptr{Cvoid})
ccall((:iio_channel_set_data, libiio),
Cvoid,
(Ptr{iio_channel}, Ptr{Cvoid}),
chn, data)
end
"""
iio_channel_get_data(dev)
Retrieve a previously associated pointer of an [`iio_channel`](@ref) structure.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- The pointer previously associated if present, or C_NULL
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#gacbce92eaefb8d61c1e4f0dc042b211e6)
"""
function iio_channel_get_data(chn::Ptr{iio_channel})
return ccall((:iio_channel_get_data, libiio),
Ptr{Cvoid},
(Ptr{iio_channel},),
chn)
end
"""
iio_channel_get_type(chn)
Get the type of the given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- The type of the channel
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga281660051fb40b5b4055227466a3be36)
"""
function iio_channel_get_type(chn::Ptr{iio_channel})
return ccall((:iio_channel_get_type, libiio),
iio_chan_type,
(Ptr{iio_channel},),
chn)
end
"""
iio_channel_get_modifier(chn)
Get the modifier type of the given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- The modifier type of the channel
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Channel.html#ga4c3179cee86d8992ee6c6bdbcaa44156)
"""
function iio_channel_get_modifier(chn::Ptr{iio_channel})
return ccall((:iio_channel_get_modifier, libiio),
iio_modifier,
(Ptr{iio_channel},),
chn)
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 15733 | """
iio_create_default_context()
Create a context from local or remote IIO devices.
# Returns
- On success, a pointer to an [`iio_context`](@ref) structure
- On failure, an error is raised
!!! note
This function will create a context with the URI provided in the IIOD_REMOTE
environment variable. If not set, a local context will be created instead.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga21076125f817a680e0c01d4a490f0416)
"""
function iio_create_default_context()
return @check_null ccall((:iio_create_default_context, libiio),
Ptr{iio_context},
())
end
"""
iio_create_local_context()
Create a context from local IIO devices (Linux only)
# Returns
- On success, a pointer to an [`iio_context`](@ref) structure
- On failure, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gaf31acec2d0f9f498870cc52a1d49783e)
"""
function iio_create_local_context()
return @check_null ccall((:iio_create_local_context, libiio),
Ptr{iio_context},
())
end
"""
iio_create_xml_context(xml_file)
Create a context from a XML file.
# Parameters
- `xml_file::String` : Path to the XML file to open
# Returns
- On success, a pointer to an [`iio_context`](@ref) structure
- On failure, an error is raised
!!! note
The format of the XML must comply to the one returned by iio_context_get_xml.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga9925a84e596c3003e30b1cdd2b65d029)
"""
function iio_create_xml_context(xml_file::String)
return @check_null ccall((:iio_create_xml_context, libiio),
Ptr{iio_context},
(Cstring,),
xml_file)
end
"""
iio_create_xml_context_mem(xml, len)
Create a context from a XML data in memory.
# Parameters
- `xml::String` : String with the XML data in memory
- `len::Csize_t` : Length of the XML string in memory
# Returns
- On success, a pointer to an [`iio_context`](@ref)
- On failure, an error is raised
!!! note
The format of the XML must comply to the one returned by iio_context_get_xml.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gabaa848ca554af5723a44b9b7fd0ba6a3)
"""
function iio_create_xml_context_mem(xml::String, len::Csize_t)
return @check_null ccall((:iio_create_xml_context_mem, libiio),
Ptr{iio_context},
(Cstring, Csize_t),
xml, len)
end
"""
iio_create_network_context(host)
Create a context from the network.
# Parameters
- `host::String` : Hostname, IPv4 or IPv6 address where the IIO Daemon is running
# Returns
- On success, a pointer to an [`iio_context`](@ref) structure
- On failure, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga8adf2ef4d2b62aa34201469cd7049617)
"""
function iio_create_network_context(host::String)
return @check_null ccall((:iio_create_network_context, libiio),
Ptr{iio_context},
(Cstring,),
host)
end
"""
iio_create_context_from_uri(uri)
Create a context from an URI description.
# Parameters
- `uri::String` : An URI describing the context location
# Returns
- On success, a pointer to an [`iio_context`](@ref) structure
- On failure, an error is raised
!!! note
The following URIs are supported based on compile time backend support:
- Local backend, "local:"
Does not have an address part. For example "local:"
- XML backend, "xml:"
Requires a path to the XML file for the address part. For example "xml:/home/user/file.xml"
- Network backend, "ip:"
Requires a hostname, IPv4, or IPv6 to connect to a specific running IIO Daemon or
no address part for automatic discovery when library is compiled with ZeroConf support.
For example "ip:192.168.2.1", or "ip:localhost", or "ip:" or "ip:plutosdr.local".
To support alternative port numbers the standard ip:host:port format is used.
A special format is required as defined in RFC2732 for IPv6 literal hostnames,
(adding '[]' around the host) to use a ip:[x:x:x:x:x:x:x:x]:port format.
Valid examples would be:
- ip: Any host on default port
- ip::40000 Any host on port 40000
- ip:analog.local Default port
- ip:brain.local:40000 Port 40000
- ip:192.168.1.119 Default Port
- ip:192.168.1.119:40000 Port 40000
- ip:2601:190:400:da:47b3:55ab:3914:bff1 Default Port
- ip:[2601:190:400:da:9a90:96ff:feb5:acaa]:40000 Port 40000
- USB backend, "usb:"
When more than one usb device is attached, requires bus, address, and interface parts
separated with a dot. For example "usb:3.32.5". Where there is only one USB device attached,
the shorthand "usb:" can be used.
- Serial backend, "serial:"
Requires:
- a port (/dev/ttyUSB0),
- baud_rate (default 115200)
- serial port configuration
- data bits (5 6 7 8 9)
- parity ('n' none, 'o' odd, 'e' even, 'm' mark, 's' space)
- stop bits (1 2)
- flow control ('\0' none, 'x' Xon Xoff, 'r' RTSCTS, 'd' DTRDSR)
For example "serial:/dev/ttyUSB0,115200" or "serial:/dev/ttyUSB0,115200,8n1"
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gafdcee40508700fa395370b6c636e16fe)
"""
function iio_create_context_from_uri(uri::String)
return @check_null ccall((:iio_create_context_from_uri, libiio),
Ptr{iio_context},
(Cstring,),
uri)
end
"""
iio_context_clone(ctx)
Duplicate a pre-existing IIO context.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- On success, a pointer to an [`iio_context`](@ref) structure
- On failure, an error is raised
!!! note
This function is not supported on 'usb:' contexts, since libusb can only claim the
interface once. "Function not implemented" is the expected errno. Any context
which is cloned, must be destroyed via calling [`iio_context_destroy()`](@ref)
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga1815e7c39b9a69aa11cf948b0433df01)
"""
function iio_context_clone(ctx::Ptr{iio_context})
return @check_null ccall((:iio_context_clone, libiio),
Ptr{iio_context},
(Ptr{iio_context},),
ctx)
end
"""
iio_context_destroy(ctx)
Destroy the given context.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
!!! note
After that function, the iio_context pointer shall be invalid.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga75de8dae515c539818e52b408830d3ba)
"""
function iio_context_destroy(ctx::Ptr{iio_context})
return @check_null ccall((:iio_context_destroy, libiio),
Cvoid,
(Ptr{iio_context},),
ctx)
end
"""
iio_context_get_version(ctx)
Get the version of the backend in use.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- On success, A 4-Tuple of (0, major, minor, git_tag) is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga342bf90d946e7ed3815372db22c4d3a6)
"""
function iio_context_get_version(ctx::Ptr{iio_context})
major, minor, git_tag = Ref{Cuint}(0), Ref{Cuint}(0), Vector{Cchar}(undef, 8)
ret = ccall((:iio_context_get_version, libiio),
Cint,
(Ptr{iio_context}, Ref{Cuint}, Ref{Cuint}, Ptr{Cchar}),
ctx, major, minor, pointer(git_tag))
return ret, UInt(major[]), UInt(minor[]), unsafe_string(pointer(git_tag))
end
"""
iio_context_get_xml(ctx)
Obtain a XML representation of the given context.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- A `String` containing the XML content.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga86554706f17faf41e61e3295dc68a70c)
"""
function iio_context_get_xml(ctx::Ptr{iio_context})
return unsafe_string(ccall((:iio_context_get_xml, libiio),
Cstring,
(Ptr{iio_context},),
ctx))
end
"""
iio_context_get_name(ctx)
Get the name of the given context.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- A `String` containing the name
!!! note
The returned string will be local, xml or network when the context has been
created with the local, xml and network backends respectively.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gafed8e036873ad6f70c3db92c7136ad31)
"""
function iio_context_get_name(ctx::Ptr{iio_context})
return unsafe_string(ccall((:iio_context_get_name, libiio),
Cstring,
(Ptr{iio_context},),
ctx))
end
"""
iio_context_get_description(ctx)
Get a description of the given context.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- A `String` containing the description
!!! note
The returned string will contain human-readable information about the current context.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga5591da0927887e88be4ef7d670cb60a9)
"""
function iio_context_get_description(ctx::Ptr{iio_context})
return unsafe_string(ccall((:iio_context_get_description, libiio),
Cstring,
(Ptr{iio_context},),
ctx))
end
"""
iio_context_get_attrs_count(ctx)
Get the number of context-specific attributes.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- The number of context-specific attributes
Introduced in version 0.9
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga91e0c4ed91d760b411d4cbea28c993da)
"""
function iio_context_get_attrs_count(ctx::Ptr{iio_context})
return ccall((:iio_context_get_attrs_count, libiio),
Cuint,
(Ptr{iio_context},),
ctx)
end
"""
iio_context_get_attr(ctx, index)
Retrieve the name and value of a context-specific attribute.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
- `index::Cuint` : The index corresponding to the attribute
# Returns
- On success, a 3-Tuple of (0, name, value) is returned
- On error, a negative errno code is returned
Introduced in version 0.9
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga477dfddaefe0acda401f600247e13fc7)
"""
function iio_context_get_attr(ctx::Ptr{iio_context}, index::Cuint)
name, value = Ref{Cstring}(), Ref{Cstring}()
ret = ccall((:iio_context_get_attr, libiio),
Cint,
(Ptr{iio_context}, Cuint, Ptr{Cstring}, Ptr{Cstring}),
ctx, index, name, value)
return (ret == 0) ? (ret, unsafe_string(name[]), unsafe_string(value[])) : (ret, "", "")
end
"""
iio_context_get_attr_value(ctx, name)
Retrieve the value of a context-specific attribute.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
- `name::String` : The name of the context attribute to read
# Returns
- On success, a `String` with the value of the attribute
- If the name does not correspond to any attribute, C_NULL is returned
Introduced in version 0.9
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga6394d108d425e4a6ed28d00c0e93d6ed)
"""
function iio_context_get_attr_value(ctx::Ptr{iio_context}, name::String)
value = ccall((:iio_context_get_attr_value, libiio),
Cstring,
(Ptr{iio_context}, Cstring),
ctx, name)
return value != C_NULL ? unsafe_string(value) : ""
end
"""
iio_context_get_devices_count(ctx)
Enumerate the devices found in the given context.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
# Returns
- The number of devices found
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gab4fc2a93fd5824f3c9e06aa81e8097d1)
"""
function iio_context_get_devices_count(ctx::Ptr{iio_context})
return ccall((:iio_context_get_devices_count, libiio),
Cuint,
(Ptr{iio_context},),
ctx)
end
"""
iio_context_get_device(ctx, index)
Get the device present at the given index.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
- `index::Cuint` : The index corresponding to the device
# Returns
- On success, a pointer to an [`iio_device`](@ref) structure
- If the index is invalid, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#ga3f2813ff34bf96c7c85dd05909f1c709)
"""
function iio_context_get_device(ctx::Ptr{iio_context}, index::Cuint)
return @check_null ccall((:iio_context_get_device, libiio),
Ptr{iio_device},
(Ptr{iio_context}, Cuint),
ctx, index)
end
"""
iio_context_find_device(ctx, name)
Try to find a device structure by its ID, label or name.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
- `name::String` : A string corresponding to the ID, label or name of the device to search for
# Returns
- On success, a pointer to an [`iio_device`](@ref) structure
- If the parameter does not correspond to the ID, label or name of any known device, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gade1dadfb5bc3c3b236add67f803c50c3)
"""
function iio_context_find_device(ctx::Ptr{iio_context}, name::String)
return @check_null ccall((:iio_context_find_device, libiio),
Ptr{iio_device},
(Ptr{iio_context}, Cstring),
ctx, name)
end
"""
iio_context_set_timeout(ctx, timeout_ms)
Set a timeout for I/O operations.
# Parameters
- `ctx::Ptr{iio_context}` : A pointer to an [`iio_context`](@ref) structure
- `timeout_ms::Cuint` : A positive integer representing the time in milliseconds after which a timeout occurs. A value of 0 is used to specify that no timeout should occur.
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Context.html#gaba3f4c4f9f885f41a6c0b9ac79b7f28d)
"""
function iio_context_set_timeout(ctx::Ptr{iio_context}, timeout_ms::Cuint)
return ccall((:iio_context_set_timeout, libiio),
Cint,
(Ptr{iio_context}, Cuint),
ctx, timeout_ms)
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 4719 | #=
Empty structs for C pointers
=#
mutable struct iio_scan_context end
mutable struct iio_scan_block end
"""
The information related to a discovered context
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/structiio__context__info.html#details)
"""
mutable struct iio_context_info end
"""
Contains the representation of an IIO context
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/structiio__context.html#details)
"""
mutable struct iio_context end
"""
Represents a device in the IIO context
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/structiio__device.html#details)
"""
mutable struct iio_device end
"""
Represents an input or output channel of a device
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/structiio__channel.html#details)
"""
mutable struct iio_channel end
"""
An input or output buffer, used to read or write samples
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/structiio__buffer.html#details)
"""
mutable struct iio_buffer end
"""
iio_data_format
Contains the format of a data sample.
# Data Fields
- `length::Cuint` : Total length of the sample in bits
- `bits::Cuint` : Length of the valuable data in the samples, in bits
- `shift:Cuint` : Right-shift to apply when converting sample
- `is_signed::Cuchar` : Contains true if the sample is signed
- `is_fully_defined::Cuchar` : Contains true if the sample is fully defoned, sign extended, etc.
- `is_be::Cuchar` : Contains true if the sample is in big-endian format
- `with_scale::Cuchar` : Contains true if the sample should be scaled or converted
- `scale::Cdouble` : Contains the scale to apply if `with_scale` is set
- `repeat::Cuint` : Numver of times length repeats
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/structiio__data__format.html)
"""
mutable struct iio_data_format
length::Cuint
bits::Cuint
shift::Cuint
is_signed::Cuchar
is_fully_defined::Cuchar
is_be::Cuchar
with_scale::Cuchar
scale::Cdouble
repeat::Cuint
end
"""
iio_modifier
IIO channel type.
An IIO channel has a type specifying the type of data associated with the channel.
See [libiio] (https://analogdevicesinc.github.io/libiio/master/libiio/iio_8h.html#a944ad22f426e09cdbb493081a05472e5)
"""
@enum iio_modifier begin
IIO_NO_MOD
IIO_MOD_X
IIO_MOD_Y
IIO_MOD_Z
IIO_MOD_X_AND_Y
IIO_MOD_X_AND_Z
IIO_MOD_Y_AND_Z
IIO_MOD_X_AND_Y_AND_Z
IIO_MOD_X_OR_Y
IIO_MOD_X_OR_Z
IIO_MOD_Y_OR_Z
IIO_MOD_X_OR_Y_OR_Z
IIO_MOD_LIGHT_BOTH
IIO_MOD_LIGHT_IR
IIO_MOD_ROOT_SUM_SQUARED_X_Y
IIO_MOD_SUM_SQUARED_X_Y_Z
IIO_MOD_LIGHT_CLEAR
IIO_MOD_LIGHT_RED
IIO_MOD_LIGHT_GREEN
IIO_MOD_LIGHT_BLUE
IIO_MOD_QUATERNION
IIO_MOD_TEMP_AMBIENT
IIO_MOD_TEMP_OBJECT
IIO_MOD_NORTH_MAGN
IIO_MOD_NORTH_TRUE
IIO_MOD_NORTH_MAGN_TILT_COMP
IIO_MOD_NORTH_TRUE_TILT_COMP
IIO_MOD_RUNNING
IIO_MOD_JOGGING
IIO_MOD_WALKING
IIO_MOD_STILL
IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z
IIO_MOD_I
IIO_MOD_Q
IIO_MOD_CO2
IIO_MOD_VOC
IIO_MOD_LIGHT_UV
IIO_MOD_LIGHT_DUV
IIO_MOD_PM1
IIO_MOD_PM2P5
IIO_MOD_PM4
IIO_MOD_PM10
IIO_MOD_ETHANOL
IIO_MOD_H2
IIO_MOD_O2
IIO_MOD_LINEAR_X
IIO_MOD_LINEAR_Y
IIO_MOD_LINEAR_Z
IIO_MOD_PITCH
IIO_MOD_YAW
IIO_MOD_ROLL
end
"""
iio_chan_type
IIO channel type
An IIO channel has a type specifying the type of data associated with the channel.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/iio_8h.html#a29714c3a5add6b599e29be0485ca548b)
"""
@enum iio_chan_type begin
IIO_VOLTAGE
IIO_CURRENT
IIO_POWER
IIO_ACCEL
IIO_ANGL_VEL
IIO_MAGN
IIO_LIGHT
IIO_INTENSITY
IIO_PROXIMITY
IIO_TEMP
IIO_INCLI
IIO_ROT
IIO_ANGL
IIO_TIMESTAMP
IIO_CAPACITANCE
IIO_ALTVOLTAGE
IIO_CCT
IIO_PRESSURE
IIO_HUMIDITYRELATIVE
IIO_ACTIVITY
IIO_STEPS
IIO_ENERGY
IIO_DISTANCE
IIO_VELOCITY
IIO_CONCENTRATION
IIO_RESISTANCE
IIO_PH
IIO_UVINDEX
IIO_ELECTRICALCONDUCTIVITY
IIO_COUNT
IIO_INDEX
IIO_GRAVITY
IIO_POSITIONRELATIVE
IIO_PHASE
IIO_MASSCONCENTRATION
IIO_CHAN_TYPE_UNKNOWN = typemax(Cint)
end
function check_null(input)
if input == C_NULL
@static if Sys.iswindows()
err = Libc.GetLastError()
error(Libc.FormatMessage(err))
else
err = Libc.errno()
error(Libc.strerror(err))
end
end
return input
end
macro check_null(ex)
quote
local val = $(esc(ex))
check_null(val)
end
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 19097 | """
iio_device_get_sample_size(dev)
Get the current sample size.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- On success, the sample size in bytes
- On error, a negative errno code is returned
!!! note
The sample size is not constant and will change when channels get enabled or disabled.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga52b3e955c10d6f962b2c2e749c7c02fb)
"""
function iio_device_get_sample_size(dev::Ptr{iio_device})
return ccall((:iio_device_get_sample_size, libiio),
Cssize_t,
(Ptr{iio_device},),
dev)
end
"""
iio_channel_get_index(chn)
Get the index of the given channel.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- On success, a the index of the specified channel
- On error, an negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gaf9cc94902b5081bdacc4aed05e7d2412)
"""
function iio_channel_get_index(chn::Ptr{iio_channel})
return convert(Int,
ccall((:iio_channel_get_index, libiio),
Clong,
(Ptr{iio_channel},),
chn))
end
"""
iio_channel_get_data_format(chn)
Get a pointer to a channel's data format structure.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
# Returns
- A pointer to the channel's [`iio_data_format`](@ref) structure
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gadbb2dabfdd85c3f2c6b168f0512c7748)
"""
function iio_channel_get_data_format(chn::Ptr{iio_channel})
df = ccall((:iio_channel_get_data_format, libiio),
Ptr{iio_data_format},
(Ptr{iio_channel},),
chn)
return unsafe_load(df)
end
"""
iio_channel_convert(chn, dst, src)
Convert the sample from hardware format to host format.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `dst::Ptr{Cvoid}` : A pointer to the destination buffer where the converted sample should be written
- `src::Ptr{Cvoid}` : A pointer to the source buffer containing the sample
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gaf910dce06335badc1ba307526c4112a6)
"""
function iio_channel_convert(chn::Ptr{iio_channel}, dst::Ptr{Cvoid}, src::Ptr{Cvoid})
ccall((:iio_channel_convert, libiio),
Cvoid,
(Ptr{iio_channel_convert}, Ptr{Cvoid}, Ptr{Cvoid}),
chn, dst, src)
end
"""
iio_channel_convert_inverse(chn, dst, src)
Convert the sample from host format to hardware format.
# Parameters
- `chn::Ptr{iio_channel}` : A pointer to an [`iio_channel`](@ref) structure
- `dst::Ptr{Cvoid}` : A pointer to the destination buffer where the converted sample should be written
- `src::Ptr{Cvoid}` : A pointer to the source buffer containing the sample
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gaf0a9a659af18b62ffa0520301402eabb)
"""
function iio_channel_convert_inverse(chn::Ptr{iio_channel}, dst::Ptr{Cvoid},
src::Ptr{Cvoid})
ccall((:iio_channel_convert_inverse, libiio),
Cvoid,
(Ptr{iio_channel_convert}, Ptr{Cvoid}, Ptr{Cvoid}),
chn, dst, src)
end
"""
iio_device_get_debug_attrs_count(dev)
Enumerate the debug attributes of the given deivce.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- The number of debug attributes found
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gabacd0e63720d19e7335088c2fd19bbdc)
"""
function iio_device_get_debug_attrs_count(dev::Ptr{iio_device})
return ccall((:iio_device_get_debug_attrs_count, libiio),
Cuint,
(Ptr{iio_device},),
dev)
end
"""
iio_device_get_debug_attr(dev, index)
Get the debug attribute present at the given index.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`] structure
- `index::Cuint` : The index corresponding to the debug attribute
# Returns
- On succes, a string containing the attribute value
- If the index is invalid, an empty string is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gafe451e9a078ed5588b43a4a34cf3b2bc)
"""
function iio_device_get_debug_attr(dev::Ptr{iio_device}, index::Cuint)
attr = ccall((:iio_device_get_debug_attr, libiio),
Cstring,
(Ptr{iio_device}, Cuint),
dev, index)
return attr != C_NULL ? unsafe_string(attr) : ""
end
"""
iio_device_find_debug_attr(dev, name)
Try to find a debug attribute by its name.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`] structure
# Returns
- On success, a string with the attribute name
- If the name does not correspond to any known debug attribute of the given device, an empty string is returned
!!! note
This function is useful to detect the presence of a debug attribute.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga2923f184fc57071db9fda14e16c40a9c)
"""
function iio_device_find_debug_attr(dev::Ptr{iio_device}, name::String)
attr = ccall((:iio_device_find_debug_attr, libiio),
Cstring,
(Ptr{iio_device}, Cstring),
dev, name)
return attr != C_NULL ? unsafe_string(attr) : ""
end
"""
iio_device_debug_attr_read(dev, attr)
Read the content of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, a Vector of Tuples of attribute index and value if
`attr` is an empty string, otherwise a string with the attribute value.
- On error, a negative errno code is returned
!!! note
By an empty string as the "attr" argument to [`iio_device_debug_attr_read`](@ref), it is now
possible to read all of the buffer attributes of a device.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga8d786ee19093f86da4feb92fb91dd5d7)
"""
function iio_device_debug_attr_read(dev::Ptr{iio_device}, attr::String)
attr == "" && (attr = C_NULL)
dst = Vector{Cchar}(undef, BUF_SIZE)
ret = ccall((:iio_device_debug_attr_read, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring, Csize_t),
dev, attr, pointer(dst), BUF_SIZE)
attr == C_NULL ? attrs = iio_parse_attr(dst, ret) : attrs = unsafe_string(pointer(dst))
return ret, attrs
end
"""
iio_device_debug_attr_read_all(dev, cb, data)
Read the content of all debug attributes.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the debug attributes are read in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga1fb487123cf36ea55b650165d49a91ff)
"""
function iio_device_debug_attr_read_all(dev::Ptr{iio_device}, cb::Ptr{Cvoid},
data::Ptr{Cvoid})
return ccall((:iio_device_debug_attr_read_all, libiio),
Cint,
(Ptr{iio_device}, Ptr{Cvoid}, Ptr{Cvoid}),
dev, cb, data)
end
"""
iio_device_debug_attr_write(dev, attr, src)
Set the value of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::String` A string to set the attribute to
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
!!! note
By passing `C_NULL` as the "attr" argument to [`iio_device_debug_attr_write`](@ref),
it is now possible to write all of the debug attributes of a device.
The buffer must contain one block of data per attribute of the device,
by the order they appear in the iio_device structure.
The first four bytes of one block correspond to a 32-bit signed value
in network order. If negative, the attribute is not written;
if positive, it corresponds to the length of the data to write.
In that case, the rest of the block must contain the data.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gaea7f639edb7efd15b718be4c7faaeae5)
"""
function iio_device_debug_attr_write(dev::Ptr{iio_device}, attr::String, src::String)
return ccall((:iio_device_debug_attr_write, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring),
dev, attr, src)
end
"""
iio_device_debug_attr_write_raw(dev, attr, src, len)
Set the value of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::Ptr{Cvoid}` : A pointer to the data to be written
- `len::Csize_t` : The number of bytes that should be written
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga1eac5d59a58b6c8e2db892adce7a05a3)
"""
function iio_device_debug_attr_write_raw(dev::Ptr{iio_device}, attr::String,
src::Ptr{Cvoid},
len::Csize_t)
return ccall((:iio_device_debug_attr_write_raw, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Ptr{Cvoid}, Csize_t),
dev, attr, src, len)
end
"""
iio_device_debug_attr_write_all(dev, cb, data)
Set the values of all debug attributes.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the debug attributes are written in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga57e3af5219859303c2a8629e9b80f9ca)
"""
function iio_device_debug_attr_write_all(dev::Ptr{iio_device}, cb::Ptr{Cvoid},
data::Ptr{Cvoid})
return ccall((:iio_device_debug_attr_write_all, libiio),
Cint,
(Ptr{iio_device}, Ptr{Cvoid}, Ptr{Cvoid}),
dev, cb, data)
end
"""
iio_device_debug_attr_read_bool(dev, attr)
Read the content of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the bool value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gadffd69effb8ff8ddb504ea9492a29529)
"""
function iio_device_debug_attr_read_bool(dev::Ptr{iio_device}, attr::String)
value = Ref{Cuchar}(0)
ret = ccall((:iio_device_debug_attr_read_bool, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Cuchar}),
dev, attr, value)
return ret, convert(Bool, value[])
end
"""
iio_device_debug_attr_read_longlong(dev, attr)
Read the content of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Clonglong value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#gaff27d1a48f8469531c25471918d0b6de)
"""
function iio_device_debug_attr_read_longlong(dev::Ptr{iio_device}, attr::String)
value = Ref{Clonglong}(0)
ret = ccall((:iio_device_debug_attr_read_longlong, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Clonglong}),
dev, attr, value)
return ret, value[]
end
"""
iio_device_debug_attr_read_double(dev, attr)
Read the content of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Cdouble value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga1356356c2eebcb56df2d72e93042d896)
"""
function iio_device_debug_attr_read_double(dev::Ptr{iio_device}, attr::String)
value = Ref{Cdouble}(0)
ret = ccall((:iio_device_debug_attr_read_double, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Cdouble}),
dev, attr, value)
return ret, value[]
end
"""
iio_device_debug_attr_write_bool(dev, attr, val)
Set the value of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Bool` : A bool value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga40579d97ca0b68f2244bed67ece80ce6)
"""
function iio_device_debug_attr_write_bool(dev::Ptr{iio_device}, attr::String, val::Bool)
return ccall((:iio_device_debug_attr_write_bool, libiio),
Cint,
(Ptr{iio_device}, Cstring, Cuchar),
dev, attr, val)
end
"""
iio_device_debug_attr_write_longlong(dev, attr, val)
Set the value of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Clonglong` : A Clonglong value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga22df5b7b0606a9e453fac421d15e6fb2)
"""
function iio_device_debug_attr_write_longlong(dev::Ptr{iio_device}, attr::String,
val::Clonglong)
return ccall((:iio_device_debug_attr_write_longlong, libiio),
Cint,
(Ptr{iio_device}, Cstring, Clonglong),
dev, attr, val)
end
"""
iio_device_debug_attr_write_double(dev, attr, val)
Set the value of the given debug attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Cdouble` : A Cdouble value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga2a4e26d2d33db7fe9fc76d3034cb264f)
"""
function iio_device_debug_attr_write_double(dev::Ptr{iio_device}, attr::String,
val::Cdouble)
return ccall((:iio_device_debug_attr_write_double, libiio),
Cint,
(Ptr{iio_device}, Cstring, Cdouble),
dev, attr, val)
end
"""
iio_device_identify_filename(dev, filename, chn, attr)
Identify the channel or debug attribute corresponding to a filename.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `filename::String` : A string corresponding to the filename
- `chn::Ptr{Ptr{iio_channel}}` : A pointer to a pointer of an [`iio_channel`](@ref).
The pointed pointer will be set to the address of the
[`iio_channel`](@ref) structure if the filename correspond
to the attribute of a channel, or `C_NULL` otherwise.
- `attr::String` : A string field. The string will be set to the name of the attribute
corresponding to the filename.
# Returns
- On success, 0 is returned, and chn and attr are modified
- On error, a negative errno code is returned. chn and attr are not modified.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga87ef46fa578c7be7b3e2a6f9f16fdf7e)
"""
function iio_device_identify_filename(dev::Ptr{iio_device}, filename::String,
chn::Ptr{Ptr{iio_channel}}, attr::String)
return ccall((:iio_device_identify_filename, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Ptr{iio_channel}}, Cstring),
dev, filename, chn, attr)
end
"""
iio_device_reg_write(dev, address, value)
Set the value of a hardware register.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `address::Cuint` : The address of the register
- `value::Cuint` : The value to set the register to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga170d5a84de1d5fdb987113aa90e2a19b)
"""
function iio_device_reg_write(dev::Ptr{iio_device}, address::Cuint, value::Cuint)
return ccall((:iio_device_reg_write, libiio),
Cint,
(Ptr{iio_device}, Cuint, Cuint),
dev, address, value)
end
"""
iio_device_reg_read(dev, address)
Get the value of a hardware register.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `address::Cuint` : The address of the register
# Returns
- On success, 0 and the register value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Debug.html#ga70829552f676ef9fc74e755933da05d8)
"""
function iio_device_reg_read(dev::Ptr{iio_device}, address::Cuint)
value = Ref{Cuint}()
ret = ccall((:iio_device_reg_read, libiio),
Cint,
(Ptr{iio_device}, Cuint, Ptr{Cuint}),
dev, address, value)
return ret, value[]
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 35087 | """
iio_device_get_context(dev)
Retrieve a pointer to the [`iio_context`](@ref) structure.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- A pointer to an [`iio_context`](@ref)
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gacc7d7b43ca5a1e228ef4c3a4952195fd)
"""
function iio_device_get_context(dev::Ptr{iio_device})
return ccall((:iio_device_get_context, libiio),
Ptr{iio_context},
(Ptr{iio_device},),
dev)
end
"""
iio_device_get_id(dev)
Retrieve the device ID (e.g. **iio:device0**)
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- A string containing the id
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga9e6610c3dd7cc45bebcc7ed7a1b064c6)
"""
function iio_device_get_id(dev::Ptr{iio_device})
return unsafe_string(ccall((:iio_device_get_id, libiio),
Cstring,
(Ptr{iio_device},),
dev))
end
"""
iio_device_get_name(dev)
Retrieve the device name (e.g. `xadc`)
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- A string containing the name
!!! note
If the device has no name, an empty string is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga711666b3b3b6314fbe7e592b4632ab85)
"""
function iio_device_get_name(dev::Ptr{iio_device})
name = ccall((:iio_device_get_name, libiio),
Cstring,
(Ptr{iio_device},),
dev)
return name != C_NULL ? unsafe_string(name) : ""
end
"""
iio_device_get_label(dev)
Retrieve the device label (e.g. `lo_pll0_rx_adf4351`)
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- A string containing the label
!!! note
If the device has no label, an empty string is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaa7dfffe6431d1f36abf523470e866641)
"""
function iio_device_get_label(dev::Ptr{iio_device})
label = ccall((:iio_device_get_label, libiio),
Cstring,
(Ptr{iio_device},),
dev)
label != C_NULL ? unsafe_string(label) : ""
end
"""
iio_device_get_channels_count(dev)
Enumerate the channels of the given device.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- The number of channels found
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gae10ff440f64dac52b4229eb3f2ebea76)
"""
function iio_device_get_channels_count(dev::Ptr{iio_device})
return ccall((:iio_device_get_channels_count, libiio),
Cuint,
(Ptr{iio_device},),
dev)
end
"""
iio_device_get_attrs_count(dev)
Enumerate the device-specific attributes of the given device.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- The number of device-specific attributes found
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga36c2d0f703a803f44a578bc83fdab6a0)
"""
function iio_device_get_attrs_count(dev::Ptr{iio_device})
return ccall((:iio_device_get_attrs_count, libiio),
Cuint,
(Ptr{iio_device},),
dev)
end
"""
iio_device_get_buffer_attrs_count(dev)
Enumerate the buffer-specific attributes of the given device.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- The number of buffer-specific attributes found
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga6d4bd3c4f9791c706d9baa4454e0f1d3)
"""
function iio_device_get_buffer_attrs_count(dev::Ptr{iio_device})
return ccall((:iio_device_get_buffer_attrs_count, libiio),
Cuint,
(Ptr{iio_device},),
dev)
end
"""
iio_device_get_channel(dev, index)
Get the channel present at the given index.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `index::Cuint` : The index corresponding to the channel
# Returns
- On success, a pointer to an [`iio_channel`](@ref)
- If the index is invalid, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga67289d735b7d8e1ed12ae0ea642bd1ac)
"""
function iio_device_get_channel(dev::Ptr{iio_device}, index::Cuint)
return @check_null ccall((:iio_device_get_channel, libiio),
Ptr{iio_channel},
(Ptr{iio_device}, Cuint),
dev, index)
end
"""
iio_device_get_attr(dev, index)
Get the device-specific attribute present at the given index.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `index::Cuint` : The index corresponding to the attribute
# Returns
- On success, a string containing the attribute name
- If the index is invalid, an empty string will be returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga70b03d4cb3cc3c4fb1b6451764c8ccec)
"""
function iio_device_get_attr(dev::Ptr{iio_device}, index::Cuint)
attr = ccall((:iio_device_get_attr, libiio),
Cstring,
(Ptr{iio_device}, Cuint),
dev, index)
return attr != C_NULL ? unsafe_string(attr) : ""
end
"""
iio_device_get_buffer_attr(dev, index)
Get the buffer-specific attribute present at the given index.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `index::Cuint` : The index corresponding to the attribute
# Returns
- On success, a string containing the attribute name
- If the index is invalid, an empty string will be returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga7225b9df06559012d549d627fb451c2a)
"""
function iio_device_get_buffer_attr(dev::Ptr{iio_device}, index::Cuint)
attr = ccall((:iio_device_get_buffer_attr, libiio),
Cstring,
(Ptr{iio_device}, Cuint),
dev, index)
return attr != C_NULL ? unsafe_string(attr) : ""
end
"""
iio_device_find_channel(dev, name, output)
Try to find a channel structure by its name or ID.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `name::String` : A string corresponding to the name or ID of the channel to search for
- `output::Bool` : True if the searched channel is output, false otherwise
# Returns
- On success, a pointer to an [`iio_channel`](@ref) structure
- If the name or ID does not correspond to any known channel of the given device, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaffc6086189ba801ab5e95341d68f882b)
"""
function iio_device_find_channel(dev::Ptr{iio_device}, name::String, output::Bool)
return @check_null ccall((:iio_device_find_channel, libiio),
Ptr{iio_channel},
(Ptr{iio_device}, Cstring, Cuchar),
dev, name, output)
end
"""
iio_device_find_attr(dev, name)
Try to find a device-specific attribute by its name.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `name::String` : A string corresponding to the name of the attribute
# Returns
- On succes, a string containing the attribute name
- If the name does not correspond to any know aatribute of the device, an empty string is returned
!!! note
This function is useful to detect the presence of an attribute.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gafcbece1ac6260b06bcdf02d9eb55e5fd)
"""
function iio_device_find_attr(dev::Ptr{iio_device}, name::String)
attr = ccall((:iio_device_find_attr, libiio),
Cstring,
(Ptr{iio_device}, Cstring),
dev, name)
return attr != C_NULL ? unsafe_string(attr) : ""
end
"""
iio_device_find_buffer_attr(dev, name)
Try to find a buffer-specific attribute by its name.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `name::String` : A string corresponding to the name of the attribute
# Returns
- On succes, a string containing the attribute name
- If the name does not correspond to any know aatribute of the device, an empty string is returned
!!! note
This function is useful to detect the presence of an attribute.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga58baa15da06b2d497fb0334f35264240)
"""
function iio_device_find_buffer_attr(dev::Ptr{iio_device}, name::String)
attr = ccall((:iio_device_find_buffer_attr, libiio),
Cstring,
(Ptr{iio_device}, Cstring),
dev, name)
return attr != C_NULL ? unsafe_string(attr) : ""
end
"""
iio_device_attr_read(dev, attr)
Read the content of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, a string with the attribute value.
- On error, a negative errno code is returned
!!! note
This function deviates from the C library [`iio_device_attr_read`](@ref).
Instead of passing an empty string, call the function without the attr argument.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaf0233eb0ef4a64ad70ebaef6328b0494)
"""
function iio_device_attr_read(dev::Ptr{iio_device}, attr::String)
dst = DST_BUFFER
ret = ccall((:iio_device_attr_read, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring, Csize_t),
dev, attr, pointer(dst), BUF_SIZE)
attrs = unsafe_string(pointer(dst))
return ret, attrs
end
"""
iio_device_attr_read(dev)
Read the content of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- On success, a Vector of Tuples of attribute index and value
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaf0233eb0ef4a64ad70ebaef6328b0494)
"""
function iio_device_attr_read(dev::Ptr{iio_device})
attr = C_NULL
dst = DST_BUFFER
ret = ccall((:iio_device_attr_read, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring, Csize_t),
dev, attr, pointer(dst), BUF_SIZE)
attrs = iio_parse_attr(dst, ret)
return ret, attrs
end
"""
iio_device_attr_read_all(dev, cb, data)
Read the content of all device-specific attributes.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the device-specific attributes are read in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga5b1fef1333c4835942384b661f148b36)
"""
function iio_device_attr_read_all(dev::Ptr{iio_device}, cb::Ptr{Cvoid}, data::Ptr{Cvoid})
return ccall((:iio_device_attr_read_all, libiio),
Cint,
(Ptr{iio_device}, Ptr{Cvoid}, Ptr{Cvoid}),
dev, cb, data)
end
"""
iio_device_attr_read_bool(dev, attr)
Read the content of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the bool value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga96364b7c7097bb8e4656924ea896a502)
"""
function iio_device_attr_read_bool(dev::Ptr{iio_device}, attr::String)
value = Ref{Cuchar}(0)
ret = ccall((:iio_device_attr_read_bool, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Cuchar}),
dev, attr, value)
return ret, convert(Bool, value[])
end
"""
iio_device_attr_read_longlong(dev, attr)
Read the content of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Clonglong value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga0f7b5d21a4e40efac68e1ece44d7ba74)
"""
function iio_device_attr_read_longlong(dev::Ptr{iio_device}, attr::String)
value = Ref{Clonglong}(0)
ret = ccall((:iio_device_attr_read_longlong, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Clonglong}),
dev, attr, value)
return ret, value[]
end
"""
iio_device_attr_read_double(dev, attr)
Read the content of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Cdouble value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gab1b150a5bfa7b1ab7fd76c538e15e4da)
"""
function iio_device_attr_read_double(dev::Ptr{iio_device}, attr::String)
value = Ref{Cdouble}(0)
ret = ccall((:iio_device_attr_read_double, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Cdouble}),
dev, attr, value)
return ret, value[]
end
"""
iio_device_attr_write(dev, attr, src)
Set the value of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::String` A string to set the attribute to
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
!!! note
By passing `C_NULL` as the "attr" argument to [`iio_device_attr_write`](@ref),
it is now possible to write all of the attributes of a device.
The buffer must contain one block of data per attribute of the device,
by the order they appear in the iio_device structure.
The first four bytes of one block correspond to a 32-bit signed value
in network order. If negative, the attribute is not written;
if positive, it corresponds to the length of the data to write.
In that case, the rest of the block must contain the data.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaaa2d1867c15ef8f8424164d0ccea4dd8)
"""
function iio_device_attr_write(dev::Ptr{iio_device}, attr::String, src::String)
return ccall((:iio_device_attr_write, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring),
dev, attr, src)
end
"""
iio_device_attr_write_raw(dev, attr, src, len)
Set the value of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::Ptr{Cvoid}` : A pointer to the data to be written
- `len::Csize_t` : The number of bytes that should be written
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga30829a67dcdffc902c4ba6801233e79a)
"""
function iio_device_attr_write_raw(dev::Ptr{iio_device}, attr::String, src::Ptr{Cvoid},
len::Csize_t)
return ccall((:iio_device_attr_write_raw, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Ptr{Cvoid}, Csize_t),
dev, attr, src, len)
end
"""
iio_device_attr_write_all(dev, cb, data)
Set the values of all device-specifc attributes.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the device-specific attributes are written in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gadfbbfafabc32d6954d3f3dfcda957735)
"""
function iio_device_attr_write_all(dev::Ptr{iio_device}, cb::Ptr{Cvoid}, data::Ptr{Cvoid})
return ccall((:iio_device_attr_write_all, libiio),
Cint,
(Ptr{iio_device}, Ptr{Cvoid}, Ptr{Cvoid}),
dev, cb, data)
end
"""
iio_device_attr_write_bool(dev, attr, val)
Set the value of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Bool` : A bool value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga9f53f9d1c3dc9f87191943fcbd1a7324)
"""
function iio_device_attr_write_bool(dev::Ptr{iio_device}, attr::String, val::Bool)
return ccall((:iio_device_attr_write_bool, libiio),
Cint,
(Ptr{iio_device}, Cstring, Cuchar),
dev, attr, val)
end
"""
iio_device_attr_write_longlong(dev, attr, val)
Set the value of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Clonglong` : A Clonglong value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga3fcba684f6b07d3f6295759bb788c4d2)
"""
function iio_device_attr_write_longlong(dev::Ptr{iio_device}, attr::String, val::Clonglong)
return ccall((:iio_device_attr_write_longlong, libiio),
Cint,
(Ptr{iio_device}, Cstring, Clonglong),
dev, attr, val)
end
"""
iio_device_attr_write_double(dev, attr, val)
Set the value of the given device-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Cdouble` : A Cdouble value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gacdaf529f12b46ba2a5290bbc590c8b9e)
"""
function iio_device_attr_write_double(dev::Ptr{iio_device}, attr::String, val::Cdouble)
return ccall((:iio_device_attr_write_double, libiio),
Cint,
(Ptr{iio_device}, Cstring, Cdouble),
dev, attr, val)
end
"""
iio_device_buffer_attr_read(dev, attr)
Read the content of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, a Vector of Tuples of attribute index and value if
`attr` is an empty string, otherwise a string with the attribute value.
- On error, a negative errno code is returned
!!! note
By an empty string as the "attr" argument to [`iio_device_buffer_attr_read`](@ref), it is now
possible to read all of the buffer attributes of a device.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaa77d52bb9dea248cc3de682778a08a6f)
"""
function iio_device_buffer_attr_read(dev::Ptr{iio_device}, attr::String)
attr == "" && (attr = C_NULL)
dst = Vector{Cchar}(undef, BUF_SIZE)
ret = ccall((:iio_device_buffer_attr_read, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring, Csize_t),
dev, attr, pointer(dst), BUF_SIZE)
attr == C_NULL ? attrs = iio_parse_attr(dst, ret) : attrs = unsafe_string(pointer(dst))
return ret, attrs
end
"""
iio_device_buffer_attr_read_all(dev, cb, data)
Read the content of all buffer-specific attributes.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the buffer-specific attributes are read in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gaae5bf33ad1bd1b14155eab4a018c576c)
"""
function iio_device_buffer_attr_read_all(dev::Ptr{iio_device}, cb::Ptr{Cvoid},
data::Ptr{Cvoid})
return ccall((:iio_device_buffer_attr_read_all, libiio),
Cint,
(Ptr{iio_device}, Ptr{Cvoid}, Ptr{Cvoid}),
dev, cb, data)
end
"""
iio_device_buffer_attr_read_bool(dev, attr)
Read the content of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the bool value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga92ee863b94e6f841efec3919f57f5193)
"""
function iio_device_buffer_attr_read_bool(dev::Ptr{iio_device}, attr::String)
value = Ref{Cuchar}(0)
ret = ccall((:iio_device_buffer_attr_read_bool, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Cuchar}),
dev, attr, value)
return ret, convert(Bool, value[])
end
"""
iio_device_buffer_attr_read_longlong(dev, attr)
Read the content of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Clonglong value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gae5b9be890edb372d3e30a14ce1c79874)
"""
function iio_device_buffer_attr_read_longlong(dev::Ptr{iio_device}, attr::String)
value = Ref{Clonglong}(0)
ret = ccall((:iio_device_buffer_attr_read_longlong, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Clonglong}),
dev, attr, value)
return ret, value[]
end
"""
iio_device_buffer_attr_read_double(dev, attr)
Read the content of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
# Returns
- On success, 0 and the Cdouble value is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga44952198b73ff6b0c0c0b53d3cd6d1bd)
"""
function iio_device_buffer_attr_read_double(dev::Ptr{iio_device}, attr::String)
value = Ref{Cdouble}(0)
ret = ccall((:iio_device_buffer_attr_read_double, libiio),
Cint,
(Ptr{iio_device}, Cstring, Ptr{Cdouble}),
dev, attr, value)
return ret, value[]
end
"""
iio_device_buffer_attr_write(dev, attr, src)
Set the value of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::String` A string to set the attribute to
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
!!! note
By passing `C_NULL` as the "attr" argument to [`iio_device_buffer_attr_write`](@ref),
it is now possible to write all of the attributes of a device.
The buffer must contain one block of data per attribute of the device,
by the order they appear in the iio_device structure.
The first four bytes of one block correspond to a 32-bit signed value
in network order. If negative, the attribute is not written;
if positive, it corresponds to the length of the data to write.
In that case, the rest of the block must contain the data.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga3d77bb90c22eb1d0a13805bf69def068)
"""
function iio_device_buffer_attr_write(dev::Ptr{iio_device}, attr::String, src::String)
return ccall((:iio_device_buffer_attr_write, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Cstring),
dev, attr, src)
end
"""
iio_device_buffer_attr_write_raw(dev, attr, src, len)
Set the value of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `src::Ptr{Cvoid}` : A pointer to the data to be written
- `len::Csize_t` : The number of bytes that should be written
# Returns
- On success, the number of bytes written
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga982e2bcb890aab88eabf833a00ba841a)
"""
function iio_device_buffer_attr_write_raw(dev::Ptr{iio_device}, attr::String,
src::Ptr{Cvoid},
len::Csize_t)
return ccall((:iio_device_buffer_attr_write_raw, libiio),
Cssize_t,
(Ptr{iio_device}, Cstring, Ptr{Cvoid}, Csize_t),
dev, attr, src, len)
end
"""
iio_device_buffer_attr_write_all(dev, cb, data)
Set the values of all buffer-specific attributes.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `cb::Ptr{Cvoid}` : A pointer to a callback function
- `data::Ptr{Cvoid}` : A pointer that will be passed to the callback function
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
!!! note
This function is especially useful when used with the network backend,
as all the buffer-specific attributes are written in one single command.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga3d77bb90c22eb1d0a13805bf69def068)
"""
function iio_device_buffer_attr_write_all(dev::Ptr{iio_device}, cb::Ptr{Cvoid},
data::Ptr{Cvoid})
return ccall((:iio_device_buffer_attr_write_all, libiio),
Cint,
(Ptr{iio_device}, Ptr{Cvoid}, Ptr{Cvoid}),
dev, cb, data)
end
"""
iio_device_buffer_attr_write_bool(dev, attr, val)
Set the value of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Bool` : A bool value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga3fad39798014287c24c36bac4a67648e)
"""
function iio_device_buffer_attr_write_bool(dev::Ptr{iio_device}, attr::String, val::Bool)
return ccall((:iio_device_buffer_attr_write_bool, libiio),
Cint,
(Ptr{iio_device}, Cstring, Cuchar),
dev, attr, val)
end
"""
iio_device_buffer_attr_write_longlong(dev, attr, val)
Set the value of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Clonglong` : A Clonglong value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gac05869aa707121328dd72cdad10cedf2)
"""
function iio_device_buffer_attr_write_longlong(dev::Ptr{iio_device}, attr::String,
val::Clonglong)
return ccall((:iio_device_buffer_attr_write_longlong, libiio),
Cint,
(Ptr{iio_device}, Cstring, Clonglong),
dev, attr, val)
end
"""
iio_device_buffer_attr_write_double(dev, attr, val)
Set the value of the given buffer-specific attribute.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `attr::String` : A string corresponding to the name of the attribute
- `val::Cdouble` : A Cdouble value to set the attribute to
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga10d47af8de4ad1f9dc4b63ce0aa0ff7d)
"""
function iio_device_buffer_attr_write_double(dev::Ptr{iio_device}, attr::String,
val::Cdouble)
return ccall((:iio_device_buffer_attr_write_double, libiio),
Cint,
(Ptr{iio_device}, Cstring, Cdouble),
dev, attr, val)
end
"""
iio_device_set_data(dev, data)
Associate a pointer to an [`iio_device`](@ref) structure.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `data::Ptr{Cvoid}` : The pointer to be associated
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gab566248f50503d8975cf258a1f218275)
"""
function iio_device_set_data(dev::Ptr{iio_device}, data::Ptr{Cvoid})
ccall((:iio_device_set_data, libiio),
Cvoid,
(Ptr{iio_device}, Ptr{Cvoid}),
dev, data)
end
"""
iio_device_get_data(dev)
Retrieve a previously associated pointer of an [`iio_device`](@ref) structure.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- The pointer previously associated if present, or C_NULL
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga87cff8d90e1a68e73410e4a527cc5334)
"""
function iio_device_get_data(dev::Ptr{iio_device})
return ccall((:iio_device_get_data, libiio),
Ptr{Cvoid},
(Ptr{iio_device},),
dev)
end
"""
iio_device_get_trigger(dev)
Retrieve the trigger of a given device.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `trigger::Ptr{iio_device}` : A pointer to an [`iio_device`][@ref] structure. The pointer
will be set to the address of the [`iio_device`](@ref)
structure corresponding to the associated trigger device.
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#gae3ce1d7385ca02a9f6c36768fa41c610)
"""
function iio_device_get_trigger(dev::Ptr{iio_device})
trigger = Ptr{iio_device}()
ret = ccall((:iio_device_get_trigger, libiio),
Cint,
(Ptr{iio_device}, Ref{Ptr{iio_device}}),
dev, Ref(trigger))
return ret, trigger
end
"""
iio_device_set_trigger(dev, trigger)
Associate a trigger to a given device.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `trigger::Ptr{iio_device` : A pointer to an [`iio_device`](@ref) structure corresponding
to the trigger that should be associated.
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga3b8d1e621357f0755925d98555f53d9a)
"""
function iio_device_set_trigger(dev::Ptr{iio_device}, trigger::Ptr{iio_device})
return ccall((:iio_device_set_trigger, libiio),
Cint,
(Ptr{iio_device}, Ptr{iio_device}),
dev, trigger)
end
"""
iio_device_is_trigger(dev)
Returns true of the given device is a trigger.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
# Returns
- True if the deivce is a trigger, false otherwise
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga7e3e5dee1ac8c082de038829c88edda8)
"""
function iio_device_is_trigger(dev::Ptr{iio_device})
return convert(Bool,
ccall((:iio_device_is_trigger, libiio),
Cuchar,
(Ptr{iio_device},),
dev))
end
"""
iio_device_set_kernel_buffers_count(dev, nb_buffers)
Configure the number of kernel buffers for a device.
This function allows to change the number of buffers on kernel side.
# Parameters
- `dev::Ptr{iio_device}` : A pointer to an [`iio_device`](@ref) structure
- `nb_buffers::Cuint` : The number of buffers
# Returns
- On success, 0 is returned
- On error, a negative errno code is returned
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Device.html#ga8ad2357c4caf7afc778060a08e6e2209)
"""
function iio_device_set_kernel_buffers_count(dev::Ptr{iio_device}, nb_buffers::Cuint)
return ccall((:iio_device_set_kernel_buffers_count, libiio),
Cint,
(Ptr{iio_device}, Cuint),
dev, nb_buffers)
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 7402 | """
iio_create_scan_context(backend, flags = 0)
Create a scan context.
# Parameters
- `backend::String` : A string containing a comma-separated list of the backend(s) to use for scanning.
- `flags::Cuint` : Unused for now. Set to 0.
# Returns
- on success, a pointer to a `iio_scan_context` structure
- On failure, an error is raised
!!! note
Libiio version 0.20 and above can handle multiple strings,
for instance "local:usb:", "ip:usb:", "local:usb:ip:",
and require a colon as the delimiter. Libiio version 0.24
and above prefer a comma instead of colon as the delimiter,
and handle specifying backend-specific information. For instance,
"local,usb=0456:*" will scan the local backend and limit scans on
USB to vendor ID 0x0456, and accept all product IDs. The "usb=0456:b673"
string would limit the scan to the device with this particular VID/PID.
Both IDs are expected in hexadecimal, no 0x prefix needed.
"""
function iio_create_scan_context(backend::String, flags::Cuint = Cuint(0))
_backend = isempty(backend) ? C_NULL : backend
@check_null ccall((:iio_create_scan_context, libiio),
Ptr{iio_scan_context},
(Cstring, Cuint),
_backend, flags)
end
"""
iio_scan_context_destroy(ctx)
Destroy the given scan context.
# Parameters
- `ctx::Ptr{iio_scan_context}` : A pointer to an `iio_scan_context` structure
!!! note
After that function, the `iio_scan_context` pointer shall be invalid.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#ga649d7821636c744753067e8301a84e6d)
"""
function iio_scan_context_destroy(ctx::Ptr{iio_scan_context})
ccall((:iio_scan_context_destroy, libiio),
Cvoid,
(Ptr{iio_scan_context},),
ctx)
end
"""
iio_scan_context_get_info_list(ctx, info)
Enumerate available contexts.
# Parameters
- `ctx::Ptr{iio_scan_context}` : A pointer to an `iio_scan_context` structure
- `info::Ref{Ptr{Ptr{iio_context_info}}}` : A pointer to a list of [`iio_context_info`](@ref) pointers.
The pointed variable will be initialized on success.
# Returns
- On success, the number of contexts found.
- On failure, a negative error number.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#ga5d364d8d008bdbfe5486e6329d06257f)
"""
function iio_scan_context_get_info_list(ctx::Ptr{iio_scan_context},
info::Ref{Ptr{Ptr{iio_context_info}}})
return convert(Int,
ccall((:iio_scan_context_get_info_list, libiio),
Cssize_t,
(Ptr{iio_scan_context}, Ptr{Ptr{Ptr{iio_context_info}}}),
ctx, info))
end
"""
iio_context_info_list_free(info)
Free a context info list.
# Parameters
- `info::Ptr{Ptr{iio_context_info}}` : A pointer to a [`iio_context_info`](@ref) pointer.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#ga4e618c6efb5a62e04a664f53f1b80d99)
"""
function iio_context_info_list_free(info::Ptr{Ptr{iio_context_info}})
ccall((:iio_context_info_list_free, libiio),
Cvoid,
(Ptr{Ptr{iio_context_info}},),
info)
end
"""
iio_context_info_get_description(info)
Get a description of a discovered context.
# Parameters
- `Ptr{iio_context_info}`: A pointer to a [`iio_context_info`](@ref) structure.
# Returns
- A `String` containing the description.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#ga885558697d0e4dad11a4a5b6f5fbc4d6)
"""
function iio_context_info_get_description(info::Ptr{iio_context_info})
return unsafe_string(ccall((:iio_context_info_get_description, libiio),
Cstring,
(Ptr{iio_context_info},),
info))
end
"""
iio_context_info_get_uri(info)
Get the URI of a discovered context.
# Parameters
- `Ptr{iio_context_info}`: A pointer to a [`iio_context_info`](@ref) structure.
# Returns
- A `String` containing the URI.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#ga6a142a62112a0f84370d22facb2f2a37)
"""
function iio_context_info_get_uri(info::Ptr{iio_context_info})
return unsafe_string(ccall((:iio_context_info_get_uri, libiio),
Cstring,
(Ptr{iio_context_info},),
info))
end
"""
iio_create_scan_block(backend, flags = 0)
# Parameters
- `backend::String` : A string containing the backend to use for scanning. Can be empty
to use all available backends.
- `flags::Cuint` (optional) : Unused for now. Set to 0.
# Returns
- on success, a pointer to an `iio_scan_block` structure
- on failure, an error is raised
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#gad7fd2ea05bf5a8cebaff26b60edb8a13)
"""
function iio_create_scan_block(backend::String, flags::Cuint = Cuint(0))
_backend = isempty(backend) ? C_NULL : backend
return @check_null scan_block = ccall((:iio_create_scan_block, libiio),
Ptr{iio_scan_block},
(Cstring, Cuint),
_backend, flags)
end
"""
iio_scan_block_destroy(blk)
Destroy the given scan block.
# Parameters
- `blk::Ptr{iio_scan_block}` : A pointer to an `iio_scan_block` structure
!!! note
After that function, the iio_scan_block pointer shall be invalid.
Introduced in version 0.20.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#ga91f6902ca18c491f96627cadb88c5c0a)
"""
function iio_scan_block_destroy(blk::Ptr{iio_scan_block})
ccall((:iio_scan_block_destroy, libiio),
Cvoid,
(Ptr{iio_scan_block},),
blk)
end
"""
iio_scan_block_scan(blk)
Enumerate available contexts via scan block.
# Parameters
- `blk::Ptr{iio_scan_block}` : A pointer to an `iio_scan_block` structure
# Returns
- On success, the number of contexts found.
- On failure, a negative error number.
See [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__Scan.html#gaee7e04572c3b4d202cd0043bb8cee642)
"""
function iio_scan_block_scan(blk::Ptr{iio_scan_block})
return convert(Int,
ccall((:iio_scan_block, libiio),
Cssize_t,
(Ptr{iio_scan_block},),
blk))
end
"""
iio_scan_block_get_info(blk, index)
Get the [`iio_context_info`](@ref) for a particular context.
# Parameters
- `blk::Ptr{iio_scan_block}` : A pointer to an `iio_scan_block` structure
- `index::Cuint` : The index corresponding to the context.
# Returns
- A pointer to the [`iio_context_info`](@ref) for the context
- On success, a pointer to the specified [`iio_context_info`](@ref)
- On failure, an error is raised
"""
function iio_scan_block_get_info(blk::Ptr{iio_scan_block}, index::Cuint)
return @check_null ccall((:iio_scan_block_get_info, libiio),
Ptr{iio_context_info},
(Ptr{iio_scan_block}, Cuint),
blk, index)
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 2852 | """
iio_library_get_version()
Get the version of the libiio library.
# Returns
- `major::UInt` : The major version
- `minor::UInt` : The minor version
- `git_tag::String` : The version's git tag
See: [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__TopLevel.html#gaaa29e5bac86d00a1cef6e2d00b0ea24c)
"""
function iio_library_get_version()
major, minor, git_tag = Ref{Cuint}(0), Ref{Cuint}(0), Vector{Cchar}(undef, 8)
ccall((:iio_library_get_version, libiio),
Cvoid,
(Ref{Cuint}, Ref{Cuint}, Ptr{Cchar}),
major, minor, pointer(git_tag))
return UInt(major[]), UInt(minor[]), unsafe_string(pointer(git_tag))
end
"""
iio_strerror(err)
Get a string description of an error code.
# Parameters
- `err::Int` : The error code
# Returns
- `dst::String` : The string description of the error
See: [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__TopLevel.html#ga4a117b0ac02e97aeda92e33c063f7cf0)
"""
function iio_strerror(err::Cint)
dst = Vector{Cchar}(undef, 256)
ccall((:iio_strerror, libiio),
Cvoid,
(Cint, Ptr{Cchar}, Csize_t),
err, pointer(dst), length(dst))
return unsafe_string(pointer(dst))
end
"""
iio_has_backend(backend)
Check if the specified backend is available.
# Parameters
- `backend::String` : The name of the backend to query
# Returns
- True if the backend is available, false otherwise
See: [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__TopLevel.html#ga8cf6a3818d471333f4115f3d0d8d95a2)
"""
function iio_has_backend(backend::String)
return convert(Bool,
ccall((:iio_has_backend, libiio),
Cuchar,
(Cstring,),
backend))
end
"""
iio_get_backends_count_count()
Get the number of available backends.
# Returns
- The number of available backends
See: [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__TopLevel.html#gabe08d9f1e10801b0334575063a66a56c)
"""
function iio_get_backends_count()
return ccall((:iio_get_backends_count, libiio),
Cuint, ())
end
"""
iio_get_backend(index)
Retrieve the name of a given backend.
# Parameters
- `index` : The index corresponding to the attribute
# Returns:
- On success, a string containing the backend
- If the index is invalid, an empty string is returned
See: [libiio](https://analogdevicesinc.github.io/libiio/master/libiio/group__TopLevel.html#ga0b950d578c5e4e06232949159c491dab)
"""
function iio_get_backend(index::Cuint)
out = ccall((:iio_get_backend, libiio),
Cstring,
(Cuint,),
index)
return out != C_NULL ? unsafe_string(out) : ""
end
iio_get_backend(index::Int) = iio_get_backend(convert(Cuint, index))
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 898 | function iio_parse_attr(buffer::Vector{Cchar}, size::Cssize_t)
# prepare output
attributes = Tuple{Int, String}[]
parsed = 0
while parsed < size
index = parsed + 1
block_prefix = reinterpret(Int32, ntoh(buffer[index:(index + 3)]))
if block_prefix < 0
# error
push!(attributes, (block_prefix, ""))
parsed += 4
else
# success (and Julia can do pointer arithmetics :)
push!(attributes, (block_prefix, unsafe_string(pointer(buffer) + (4 + parsed))))
parsed += 4 + block_prefix
end
end
return attributes
end
function dev_is_buffer_capable(dev::Ptr{iio_device})
for i in 0:(iio_device_get_channels_count(dev) - 1)
chn = iio_device_get_channel(dev, convert(Cuint, i))
iio_channel_is_scan_element(chn) && return true
end
return false
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | code | 240 | using LibIIO
using Test
# As libiio does not have tests or a test mode, this package is hardly testable as
# most of the calls end up in a ccall immediately...
@testset "LibIIO.jl" begin
@test_nowarn LibIIO._get_library_version()
end
| LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 4403 | # LibIIO.jl
[](https://github.com/tachawkes/LibIIO.jl/actions/workflows/CI.yml?query=branch%3Amain)
[](https://ci.appveyor.com/project/tachawkes/LibIIO-jl)
LibIIO.jl provides Julia bindings for [libiio](https://wiki.analog.com/resources/tools-software/linux-software/libiio) which is a library for interfacing with Linux industrial I/O devices. This packages is meant to
give you an easy-to-use high-level API interface matching the [Python-bindings](https://github.com/analogdevicesinc/libiio/tree/master/bindings/python) with some adaptions to Julia-specifics. If you prefer to work directly with libiio, all C-functions are exposed (but not exported) as a Julia function matching the C functions exactly in name. These function mostly match their C-counterparts but have some added convenience around them and convert their results to Julia types where applicable.
## Documentation
[](https://tachawkes.github.io/LibIIO.jl/stable/)
[](https://tachawkes.github.io/LibIIO.jl/dev/)
## Installation
Install the package using:
```julia
] add LibIIO
```
## Example
The package prints information about the objects in the same fashion as `iio_info` does. For example, if you have the [IIO Demo](https://wiki.analog.com/resources/eval/user-guides/iio_demo/no-os-setup) installed, you can connect to the IIO network context using:
```julia
using LibIIO
# Adjust to your settings
uri = "ip:127.0.0.1"
# Connect to the context using the network backend.
ctx = Context(uri)
```
This will print (note, that the trigger errors are correct here!):
```
IIO context created with network backend.
Backend version: 1.1 (git tag: 0000000)
Backend description string: 127.0.0.1 no-OS analog 1.1.0-g0000000 #1 Tue Nov 26 09:52:32 IST 2019 armv7l
IIO context has 3 attributes:
no-OS: 1.1.0-g0000000
ip,ip-addr: 192.168.64.2
uri: ip:192.168.64.2
IIO context has 2 devices:
iio:device0: adc_demo (buffer capable)
2 channels found:
voltage0: adc_in_ch0 (input, index: 0, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: adc_channel_attr value: 1111
voltage1: adc_in_ch1 (input, index: 1, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: adc_channel_attr value: 1112
1 device-specific attributes found:
attr 0: adc_global_attr value: 3333
1 debug-specific attributes found:
attr 0: direct_reg_access value: 0
ERROR: checking for trigger : Invalid argument (22)
iio:device1: dac_demo (buffer capable)
2 channels found:
voltage0: dac_out_ch0 (output, index: 0, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: dac_channel_attr value: 1111
voltage1: dac_out_ch1 (output, index: 1, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: dac_channel_attr value: 1112
1 device-specific attributes found:
attr 0: dac_global_attr value: 4444
1 debug-specific attributes found:
attr 0: direct_reg_access value: 0
ERROR: checking for trigger : Invalid argument (22)
```
See the examples folder for more details or the documentation.
## Similar packages
The [AdalmPluto.jl](https://github.com/JuliaTelecom/AdalmPluto.jl) package is focussed on just interfacing an [AdalmPluto](https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/adalm-pluto.html) but actually has a quite complete libiio implementation in its internals. Actually this package uses their libiio_jll package (Kudos for that!) to provide the C binaries. However, that package is not focussed on exposing the libiio API and only gives low-level access. | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 94 | ```@index
Pages = ["buffer.md"]
```
```@autodocs
Modules = [LibIIO]
Pages = ["buffer.jl"]
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 446 | ```@meta
CurrentModule = LibIIO.CLibIIO
```
# Index
```@index
Pages = ["cbuffer.md"]
```
# Documentation
```@docs
iio_buffer_get_device
iio_device_create_buffer
iio_buffer_destroy
iio_buffer_get_poll_fd
iio_buffer_set_blocking_mode
iio_buffer_refill
iio_buffer_push
iio_buffer_push_partial
iio_buffer_cancel
iio_buffer_start
iio_buffer_first
iio_buffer_step
iio_buffer_end
iio_buffer_foreach_sample
iio_buffer_set_data
iio_buffer_get_data
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 866 | ```@meta
CurrentModule = LibIIO.CLibIIO
```
# Index
```@index
Pages = ["cchannel.md"]
```
# Documentation
```@docs
iio_channel_get_device
iio_channel_get_id
iio_channel_get_name
iio_channel_is_output
iio_channel_is_scan_element
iio_channel_get_attrs_count
iio_channel_get_attr
iio_channel_find_attr
iio_channel_attr_get_filename
iio_channel_attr_read
iio_channel_attr_read_all
iio_channel_attr_read_bool
iio_channel_attr_read_longlong
iio_channel_attr_read_double
iio_channel_attr_write
iio_channel_attr_write_raw
iio_channel_attr_write_all
iio_channel_attr_write_bool
iio_channel_attr_write_longlong
iio_channel_attr_write_double
iio_channel_enable
iio_channel_disable
iio_channel_is_enabled
iio_channel_read_raw
iio_channel_read
iio_channel_write_raw
iio_channel_write
iio_channel_set_data
iio_channel_get_data
iio_channel_get_type
iio_channel_get_modifier
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 146 | ```@meta
CurrentModule = LibIIO
```
```@index
Pages = ["ccontext.md"]
```
```@autodocs
Modules = [LibIIO.CLibIIO]
Pages = ["context.jl"]
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 758 | ```@meta
CurrentModule = LibIIO.CLibIIO
```
# Index
```@index
Pages = ["cdebug.md"]
```
# Documentation
```@docs
iio_device_get_sample_size
iio_channel_get_index
iio_channel_get_data_format
iio_channel_convert
iio_channel_convert_inverse
iio_device_get_debug_attrs_count
iio_device_get_debug_attr
iio_device_find_debug_attr
iio_device_debug_attr_read
iio_device_debug_attr_read_all
iio_device_debug_attr_write
iio_device_debug_attr_write_raw
iio_device_debug_attr_write_all
iio_device_debug_attr_read_bool
iio_device_debug_attr_read_longlong
iio_device_debug_attr_read_double
iio_device_debug_attr_write_bool
iio_device_debug_attr_write_longlong
iio_device_debug_attr_write_double
iio_device_identify_filename
iio_device_reg_write
iio_device_reg_read
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 1240 | ```@meta
CurrentModule = LibIIO.CLibIIO
```
# Index
```@index
Pages = ["cdevice.md"]
```
# Documentation
```@docs
iio_device_get_context
iio_device_get_id
iio_device_get_name
iio_device_get_label
iio_device_get_channels_count
iio_device_get_attrs_count
iio_device_get_buffer_attrs_count
iio_device_get_channel
iio_device_get_attr
iio_device_get_buffer_attr
iio_device_find_channel
iio_device_find_attr
iio_device_find_buffer_attr
iio_device_attr_read
iio_device_attr_read_all
iio_device_attr_read_bool
iio_device_attr_read_longlong
iio_device_attr_read_double
iio_device_attr_write
iio_device_attr_write_raw
iio_device_attr_write_all
iio_device_attr_write_bool
iio_device_attr_write_longlong
iio_device_attr_write_double
iio_device_buffer_attr_read
iio_device_buffer_attr_read_all
iio_device_buffer_attr_read_bool
iio_device_buffer_attr_read_longlong
iio_device_buffer_attr_read_double
iio_device_buffer_attr_write
iio_device_buffer_attr_write_raw
iio_device_buffer_attr_write_all
iio_device_buffer_attr_write_bool
iio_device_buffer_attr_write_longlong
iio_device_buffer_attr_write_double
iio_device_set_data
iio_device_get_data
iio_device_get_trigger
iio_device_set_trigger
iio_device_is_trigger
iio_device_set_kernel_buffers_count
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 96 | ```@index
Pages = ["channel.md"]
```
```@autodocs
Modules = [LibIIO]
Pages = ["channel.jl"]
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 1085 | ```@meta
CurrentModule = LibIIO
```
# [Introduction](@id clib-index)
The package wraps all of the libiio C-functions in Julia functions with the same name. You can load them into your current namespace with
```julia
using LibIIO.CLibIIO
```
Usage of these low-level functions is recommended for advanced users who are familiar with the inner workings of iio/libiio.
Please not that while the provided functions are _almost_ identical to their C counterparts, they have been modified for some convenience.
All functions working with char pointers, take Julia Strings as their inputs and also return Julia strings if the C function would require a modifiable
C-pointer. Furthermore, most functions requiring pointers (e.g. buffers) to be passed to the C function will create them within the wrapper and return
a Julia-type to the user with the value instead. This requires a bit more allocations but in turn you do not have to take care of pointers and garbage collection issues.
```@index
Pages = ["cindex.md"]
```
```@autodocs
Modules = [LibIIO.CLibIIO]
Pages = ["ctypes.jl"]
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 133 | ```@meta
CurrentModule = LibIIO
```
```@index
Pages = ["context.md"]
```
```@autodocs
Modules = [LibIIO]
Pages = ["context.jl"]
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 373 | ```@meta
CurrentModule = LibIIO.CLibIIO
```
# Index
```@index
Pages = ["cscan.md"]
```
# Documentation
```@docs
iio_create_scan_context
iio_scan_context_destroy
iio_scan_context_get_info_list
iio_context_info_list_free
iio_context_info_get_description
iio_context_info_get_uri
iio_create_scan_block
iio_scan_block_destroy
iio_scan_block_scan
iio_scan_block_get_info
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 214 | ```@meta
CurrentModule = LibIIO.CLibIIO
```
# Index
```@index
Pages = ["ctoplevel.md"]
```
# Documentation
```@docs
iio_library_get_version
iio_strerror
iio_has_backend
iio_get_backends_count
iio_get_backend
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 131 | ```@meta
CurrentModule = LibIIO
```
```@index
Pages = ["device.md"]
```
```@autodocs
Modules = [LibIIO]
Pages = ["device.jl"]
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 9531 | # [Setting up the libiio and the IIO demo project](@id iio_demo)
For this example you need a linux system with [libiio](https://wiki.analog.com/resources/tools-software/linux-software/libiio) installed. Many distros have a bundled package. If you prefer to build it from source, you can follow this [build guide](https://wiki.analog.com/resources/tools-software/linux-software/libiio#building_on_the_linux_host_target).
If you want to setup a sandbox for testing IIO, using [multipass](https://multipass.run) (she knows it's a multipass) is a quick way to set up an Ubuntu VM where the IIO demo project can be installed.
The IIO demo project is a small demo of the IIO framework where a 16 bit ADC and a 16 bit DAC is simulated with buffer support. With default settings there is a loopback between DAC/ADC, i.e. data you send to the DAC is piped back into the ADC.
Furthermore you need to build the [IIO Demo](https://wiki.analog.com/resources/eval/user-guides/iio_demo/no-os-setup). This can be done with these stepse:
1. Clone the `no-os` git repostitory from Analog Devices:
```bash
git clone --recursive https://github.com/analogdevicesinc/no-OS
```
2. Enter into the projects folder with
```bash
cd no-OS/projects/iio_demo
```
3. Compile the demo project using
```bash
make PLATFORM = linux
```
4. Execute the demo project using
```bash
./build/iio_demo.out
```
Now you can use the demo devices either on the same system or from a different system. If you use another system you need to have a network connection between these two systems.
# Using LibIIO.jl with the IIO demo devices
This example will send a sine wave signal to the DAC device using buffers and reads the signal back using the ADC device with another buffer and checks that data is identical.
Create a new Julia environment with `LibIIO.jl` installed as package. Then create a new Julia file and load the package with
```julia
using LibIIO
```
Now we try to connect with the IIO daemon using the network context. This is done the following way:
```julia
uri = "ip:192.168.64.2"
ctx = Context(uri)
```
!!! note
Do not forget to change the IP address to your settings. For a local connection use `127.0.0.1`.
This should print the details of the context (attributes, devices, channels etc.) on the REPL console like this:
```
IIO context created with network backend.
Backend version: 1.1 (git tag: 0000000)
Backend description string: 192.168.64.2 no-OS analog 1.1.0-g0000000 #1 Tue Nov 26 09:52:32 IST 2019 armv7l
IIO context has 3 attributes:
no-OS: 1.1.0-g0000000
ip,ip-addr: 192.168.64.2
uri: ip:192.168.64.2
IIO context has 2 devices:
iio:device0: adc_demo (buffer capable)
2 channels found:
voltage0: adc_in_ch0 (input, index: 0, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: adc_channel_attr value: 1111
voltage1: adc_in_ch1 (input, index: 1, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: adc_channel_attr value: 1112
1 device-specific attributes found:
attr 0: adc_global_attr value: 3333
1 debug-specific attributes found:
attr 0: direct_reg_access value: 0
ERROR: checking for trigger : Invalid argument (22)
iio:device1: dac_demo (buffer capable)
2 channels found:
voltage0: dac_out_ch0 (output, index: 0, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: dac_channel_attr value: 1111
voltage1: dac_out_ch1 (output, index: 1, format: le:S16/16>>0)
1 channel-specific attributes found:
attr 0: dac_channel_attr value: 1112
1 device-specific attributes found:
attr 0: dac_global_attr value: 4444
1 debug-specific attributes found:
attr 0: direct_reg_access value: 0
ERROR: checking for trigger : Invalid argument (22)
```
!!! info
Do not worry about the errors. This demo is built without trigger support, therefore the error message is actually correct.
The context has two devices, called `adc_demo` and `dac_demo`. It would be also possible to address them using their IDs `iio:device0` and `iio:devic1` instead of their names. To retrieve a device handle we use the code:
```julia
dac = find_device(ctx, "dac_demo")
adc = find_device(ctx, "adc_demo")
```
Now we need to get a handle to the channel of each device respectively. Note that for the DAC, the argument `is_output` of the [`find_channel`](@ref) function has to be set to `true`. The demo devices each have two channels, we use only the first channel (`voltage0`). The channels are named `adc_in_ch0` and `dac_out_ch0` for this example.
```julia
dac_chn = find_channel(dac, "dac_out_ch0", true)
adc_chn = find_channel(adc, "adc_in_ch0")
```
Before creating a buffer for writing/reading channels, the channels have to be enabled:
```julia
enabled!(dac_chn, true)
enabled!(adc_chn, true)
```
In the next step a buffer for each device for 400 samples is set up.
```julia
dac_buf = Buffer(dac, 400)
adc_buf = Buffer(adc, 400)
```
!!! warning
The buffer creation can be done only once, otherwise a "busy"-error will be issued.
The buffer object should be stored savely. If you delete the buffer (e.g. with `dac_buf = nothing`)
the Julia garbage collector does not run immediately (you can explicitly run it with `GC.gc()`) and so the C-pointer and connected ressources are not freed immediately. In general `LibIIO.jl` tries to properly cleanup the C-pointers using the libiio `destroy` functions but due to the nature of the garbage collector this is not done immediately upon deleting the Julia references to the objects.
For the sake of this example, we now generate 400 samples of a sine wave with two full periods:
```julia
y = round.(Int16, 10000*sin.(2π*1/200*(1:400)))
```
This data can now be written to the `dac_buffer` object which just copies the data into the buffer's memory but this memory is still on the host computer and not on the physical device. This transfer to the device is issued by calling the [`push`](@ref) function on the buffer.
```julia
write(dac_buffer, y)
push(dac_buffer)
```
For a real device the data would be physically sent to the DAC device and would be measurable as an analog signal (i.e. using an oscilloscope). In this demo the data can be immediately read back using the ADC device.
First we have to issue the physical transfer from the ADC device to the buffer memory and then read the data into a Julia variable:
```julia
refill(adc_buf)
data = read(adc_buf)
```
The data is returned as bytes, so for our 16 bit ADC/DAC devices we will receive 800 bytes of data when sending/requestion 400 samples. The data is returned as `Cuchar`/`UInt8` and has to be reinterpreted to the device sample format:
```
d2 = reinterpret(Int16, data)
```
!!! note
In general this can be way more complex depending on the device. `iio_info` or using this package you get an info string for each channel which tells you how to interpret the raw binary data from the device. In this example the ADC channel has the info `voltage0: adc_in_ch0 (input, index: 0, format: le:S16/16>>0)`. The `format` part tells you that this device transmit in little Endian format (the library takes care of conversion when not using the `raw` mode) and signed 16 bit samples are transfered where the full 16 bits represent one sample, so a right-shift of zero (i.e. no shift at all) is required to interpet the sample. You can get a structured information of the data format of a channel using the [`data_format`](@ref LibIIO.data_format) function. This function will also give you a scaling factor, i.e. for temperature sensors where the integer data has to be scale to a float value.
Now the variable `d2` contains the samples read from the ADC in the correct format. To check if this matches our original signal in `y` you can use:
```julia
if all(d2 .== y)
@info "Loopback successful"
else
@error "Loopback failed"
end
```
# The full example
```julia
using LibIIO
# Adjust to your settings
uri = "ip:192.168.64.2"
# create context
ctx = Context(uri)
# get both device handles by their name
dac = find_device(ctx, "dac_demo")
adc = find_device(ctx, "adc_demo")
# get both channels (adc/dac)
dac_chn = find_channel(dac, "dac_out_ch0", true)
adc_chn = find_channel(adc, "adc_in_ch0")
# enable the channels
enabled!(dac_chn, true)
enabled!(adc_chn, true)
# create DAC buffer with 400 samples
dac_buf = Buffer(dac, 400)
# create the ADC buffer for reading
adc_buf = Buffer(adc, 400)
# dummy signal to feed into the DAC and read back using the ADC
y = round.(Int16, 10000*sin.(2π*1/200*(1:400)))
# write the test signal into the buffer
write(dac_buf, y)
# push the buffer to the hardware
push(dac_buf)
# Read samples from the ADC hardware into the buffer
refill(adc_buf)
# Retrieve the samples from the buffer
data = read(adc_buf)
# Reinterpret as Int16, the actual sample format
d2 = reinterpret(Int16, data)
# Verify that the read signal matches the original signal
if all(d2 .== y)
@info "Loopback successful"
else
@error "Loopback failed"
end
``` | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.2 | 47a08b35777450039eaa8e971e1278369931b431 | docs | 2535 | ```@meta
CurrentModule = LibIIO
```
# LibIIO
LibIIO.jl provides Julia bindings for [libiio](https://wiki.analog.com/resources/tools-software/linux-software/libiio) which is a library for interfacing with Linux industrial I/O devices. This packages is meant to give you an easy-to-use high-level API interface matching the [Python-bindings](https://github.com/analogdevicesinc/libiio/tree/master/bindings/python) with some adaptions to Julia-specifics. If you prefer to work directly with libiio, all C-functions are exposed (but not exported) as a Julia function matching the C functions exactly in name. These function mostly match their C-counterparts but have some added convenience around them and convert their results to Julia types where applicable.
# Installation
Install the packing using the package manager with:
```julia
] add LibIIO
```
# Usage
There are two ways to use this package:
1. If you want an easy experience, almost identical to the libiio Python bindings, use the high-level wrappers for the IIO concepts, like contexts, devices, channels, buffers and attributes. You will be only using Julia types and do not have to deal with the C pointers and C data types. See the [IIO Demo](@ref iio_demo) page for an example.
2. If you are well familiar with the C libary, this package wraps all libiio C functions an exposes them with exactly the same names. However, they are not eported by `using LibIIO`. You must address them by prefixing them with the package name or load them explicitly by writing `using LibIIO.CLibIIO`. See the [low-level documentation](@ref clib-index) pages for further documentation. The documentation is mainly copied over (and linked) from the original C-library documentation but there are small adaptions for easier use of the library in Julia. Therefore it is recommend to read the docs of this package.
# Libiio 1.0
In the near future [libiio 1.0](https://www.youtube.com/watch?v=Y7JhEeWma_s) will be released with libiio 0.24 being the last 0.x release. The new version will have some (partially breaking) changes to the buffer interface, which will also affect language bindings. There will be a compatibility layer for libiio so that 0.x and 1.x version will be up-/downwards compatible. When libiio 1.0 is released, these bindings will be updated to the new interface. If you want to have a look, what will be coming, you can checkout the updated Python bindings on the `dev` branch of libiio: <https://github.com/analogdevicesinc/libiio/blob/dev/bindings/python/iio.py> | LibIIO | https://github.com/TacHawkes/LibIIO.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 4014 | using Plots, SparseArrays, Symbolics, SparseDiffTools, Printf, ExactFieldSolutions
import LinearAlgebra: norm
import Statistics: mean
function Residual!(F, T, T0, k, ρ, Cp, Δx, Δt, x, t)
ncx = length(F)
params = (T0=1.0, K=1.0, σ=0.1)
for i in eachindex(T)
# West boundary
if i==1
sol = Diffusion1D_Gaussian([x.min-Δx/2.0; t]; params )
Ta = sol.u
qxW = -k*(T[i] - Ta)/Δx
end
# East boundary
if i==ncx
sol = Diffusion1D_Gaussian([x.min+Δx/2.0; t]; params )
Ta = sol.u
qxE = -k*(Ta - T[i])/Δx
end
# West flux
if i>1 # Left flux
qxW = -k*(T[i] - T[i-1])/Δx
end
# East
if i<ncx # Right flux
qxE = -k*(T[i+1] - T[i])/Δx
end
# Balance
F[i] = ρ*Cp*(T[i] - T0[i])/Δt + (qxE - qxW)/Δx
end
return nothing
end
function main(Δx, Δt, ncx, nt, L)
# Parameters
x = (min=-L/2, max=L/2)
xc = LinRange(x.min+Δx/2., x.max-Δx/2., ncx)
ρ = 1.0
Cp = 1.0
k = 1.0
t = 0.
# Allocations
T = zeros(ncx)
T0 = zeros(ncx)
F = zeros(ncx)
δT = zeros(ncx)
Ta = zeros(ncx)
# Sparsity pattern
input = rand(ncx)
output = similar(input)
Res_closed! = (F, T) -> Residual!(F, T, T0, k, ρ, Cp, Δx, Δt, x, t)
sparsity = Symbolics.jacobian_sparsity(Res_closed!, output, input)
J = Float64.(sparse(sparsity))
# Makes coloring
colors = matrix_colors(J)
# Initial condition: Evaluate exact initial solution
params = (T0=1.0, K=1.0, σ=0.1)
for i in eachindex(T)
sol = Diffusion1D_Gaussian([xc[i]; t]; params )
T[i] = sol.u
end
# Time loop
for it=1:nt
T0 .= T
t += Δt
# @printf("########### Step %06d ###########\n", it)
for iter=1:10
# Residual evaluation: T is found if F = 0
Residual!(F, T, T0, k, ρ, Cp, Δx, Δt, x, t)
Res_closed! = (F, T) -> Residual!(F, T, T0, k, ρ, Cp, Δx, Δt, x, t)
r = norm(F)/ncx
# @printf("## Iteration %06d: r = %1.2e ##\n", iter, r)
if r < 1e-10 break end
# Jacobian assembly
forwarddiff_color_jacobian!(J, Res_closed!, T, colorvec = colors)
# Solve
δT .= .-J\F
# update
T .+= δT
end
end
# Evaluate exact solution
for i in eachindex(T)
sol = Diffusion1D_Gaussian([xc[i]; t]; params )
Ta[i] = sol.u
end
# Error
return mean(abs.(T .- Ta))
end
function ConvergenceAnalysis()
L = 2.
tt = 0.01
K = 1.
# Time
ncx = 1000
Δx = L/ncx
Nt = [10, 20, 40, 80, 160, 320, 640]
Δtv = 0.01 ./ Nt
ϵt = zero(Δtv)
for i in eachindex(Nt)
Δx = sqrt(Δtv[i]*sqrt(K))
ncx = Int64(floor(L/Δx))
L = ncx*Δx
ϵt[i] = main(Δx, Δtv[i], ncx, Nt[i], L)
end
# Time
L = 2.
nt = 100
Ncx = [ 40, 80, 160, 320, 640]
Δxv = 2.0 ./ Ncx
ϵx = zero(Δtv)
for i in eachindex(Ncx)
Δt = Δxv[i]^2/sqrt(K)
nt = Int64(floor(tt/Δt))
ϵx[i] = main(Δxv[i], Δt, Ncx[i], nt, L)
end
p1 = plot(xlabel="log10(1/Δx)", ylabel="log10(ϵx)")
p1 = scatter!( log10.( 1.0./Δxv ), log10.(ϵx), label="ϵ")
p1 = plot!( log10.( 1.0./Δxv ), log10.(ϵx[1]) .- 1.0* ( log10.( 1.0./Δxv ) .- log10.( 1.0./Δxv[1] ) ), label="O1" )
p1 = plot!( log10.( 1.0./Δxv ), log10.(ϵx[1]) .- 2.0* ( log10.( 1.0./Δxv ) .- log10.( 1.0./Δxv[1] ) ), label="O2" )
p2 = plot(xlabel="log10(1/Δt)", ylabel="log10(ϵt)")
p2 = scatter!( log10.( 1.0./Δtv ), log10.(ϵt), label="ϵ")
p2 = plot!( log10.( 1.0./Δtv ), log10.(ϵt[1]) .- 1.0* ( log10.( 1.0./Δtv ) .- log10.( 1.0./Δtv[1] ) ), label="O1" )
display(plot(p1, p2))
end
ConvergenceAnalysis() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1578 | using ExactFieldSolutions, Plots, Printf
import LinearAlgebra: norm
function main()
# Define domain
Nx = 50
x = LinRange(-1/2, 1/2, Nx)
xc = 0.5*(x[2:end] .+ x[1:end-1])
# Allocate arrays
t = [0.0 1e3 1e4 1e5]
u = zeros(length(t), Nx-1)
s = zeros(length(t), Nx-1)
∂u∂x = zeros(length(t), Nx-1)
# Evaluate solution
for it in eachindex(t)
for i=1:Nx-1
sol = Diffusion1D_Gaussian( [xc[i]; t[it]] )
u[it,i] = sol.u
s[it,i] = sol.s
∂u∂x[it,i] = sol.∇u[1]
end
@printf("Net source term should be 0.0: norm(s) = %1.2e\n", norm(s[it,:,:]))
end
# Visualise
p1 = plot(xlabel = "x", ylabel= "u")
p1 = plot!(xc, u[1,:], title=@sprintf("u @ t = %1.2e", t[1]), label="u₀")
p1 = plot!(xc, u[1,:], title=@sprintf("u @ t = %1.2e", t[1]), label="u")
p2 = plot(xlabel = "x", ylabel= "u")
p2 = plot!(xc, u[1,:], title=@sprintf("u @ t = %1.2e", t[1]), label="u₀")
p2 = plot!(xc, u[2,:], title=@sprintf("u @ t = %1.2e", t[2]), label="u")
p3 = plot(xlabel = "x", ylabel= "u")
p3 = plot!(xc, u[1,:], title=@sprintf("u @ t = %1.2e", t[1]), label="u₀")
p3 = plot!(xc, u[3,:], title=@sprintf("u @ t = %1.2e", t[3]), label="u")
p4 = plot(xlabel = "x", ylabel= "u")
p4 = plot!(xc, u[1,:], title=@sprintf("u @ t = %1.2e", t[1]), label="u₀")
p4 = plot!(xc, u[4,:], title=@sprintf("u @ t = %1.2e", t[4]), label="u")
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1532 | using ExactFieldSolutions, Plots, Printf
import LinearAlgebra: norm
function main()
# Define domain
Nx, Ny = 50, 50
x = LinRange(-1/2, 1/2, Nx)
y = LinRange(-1/2, 1/2, Ny)
xc = 0.5*(x[2:end] .+ x[1:end-1])
yc = 0.5*(y[2:end] .+ y[1:end-1])
# Allocate arrays
t = [0.0 1e3 1e4 1e5]
u = zeros(length(t), Nx-1, Ny-1)
s = zeros(length(t), Nx-1, Ny-1)
∂u∂x = zeros(length(t), Nx-1, Ny-1)
∂u∂y = zeros(length(t), Nx-1, Ny-1)
# Evaluate solution
for it in eachindex(t)
for i=1:Nx-1, j=1:Ny-1
sol = Diffusion2D_Gaussian( [xc[i]; yc[j]; t[it]] )
u[it,i,j] = sol.u
s[it,i,j] = sol.s
∂u∂x[it,i,j] = sol.∇u[1]
∂u∂y[it,i,j] = sol.∇u[2]
end
@printf("Net source term should be 0.0: norm(s) = %1.2e\n", norm(s[it,:,:]))
end
# Visualise
p1 = heatmap(x, y, u[1,:,:]', aspect_ratio=1, xlims=(-1/2,1/2), color=cgrad(:roma, rev=true), title=@sprintf("u @ t = %1.2e", t[1]))
p2 = heatmap(x, y, u[2,:,:]', aspect_ratio=1, xlims=(-1/2,1/2), color=cgrad(:roma, rev=true), title=@sprintf("u @ t = %1.2e", t[2]))
p3 = heatmap(x, y, u[3,:,:]', aspect_ratio=1, xlims=(-1/2,1/2), color=cgrad(:roma, rev=true), title=@sprintf("u @ t = %1.2e", t[3]))
p4 = heatmap(x, y, u[4,:,:]', aspect_ratio=1, xlims=(-1/2,1/2), color=cgrad(:roma, rev=true), title=@sprintf("u @ t = %1.2e", t[4]))
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 950 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 100, 100
x = LinRange(-0.5, 0.5, Nx)
y = LinRange(-0.5, 0.5, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
τxx = zeros(Nx, Ny)
τyy = zeros(Nx, Ny)
τxy = zeros(Nx, Ny)
# Evaluate solution
for i=1:Nx, j=1:Ny
sol = Elasticity2D_Hole( [x[i]; y[j]] )
p[i,j] = sol.p
τxx[i,j] = sol.τ[1,1]
τyy[i,j] = sol.τ[2,2]
τxy[i,j] = sol.τ[1,2]
end
# Visualise
p1 = heatmap(x, y, p', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="p")
p2 = heatmap(x, y, τxy', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="τxy")
p3 = heatmap(x, y, τxx', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="τxx")
p4 = heatmap(x, y, τyy', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="τyy")
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1018 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 9, 9
x = LinRange(0, 1, Nx)
y = LinRange(0, 1, Ny)
xc = 0.5*(x[2:end] .+ x[1:end-1])
yc = 0.5*(y[2:end] .+ y[1:end-1])
# Allocate arrays
u = zeros(Nx-1, Ny-1)
s = zeros(Nx-1, Ny-1)
∂u∂x = zeros(Nx-1, Ny-1)
∂u∂y = zeros(Nx-1, Ny-1)
# Evaluate solution
for i=1:Nx-1, j=1:Ny-1
sol = Poisson2D_Sevilla2018( [xc[i]; yc[j]] )
u[i,j] = sol.u
s[i,j] = sol.s
∂u∂x[i,j] = sol.∇u[1]
∂u∂y[i,j] = sol.∇u[2]
end
# Visualise
p1 = heatmap(x, y, u', aspect_ratio=1, xlims=(0,1), color=:jet, title="u")
p2 = heatmap(x, y, s', aspect_ratio=1, xlims=(0,1), color=:jet, title="s")
p3 = heatmap(x, y, ∂u∂x', aspect_ratio=1, xlims=(0,1), color=:jet, title="∂u∂x")
p4 = heatmap(x, y, ∂u∂y', aspect_ratio=1, xlims=(0,1), color=:jet, title="∂u∂y")
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1078 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny, Nz = 8, 8, 8
x = LinRange(0, 1, Nx)
y = LinRange(0, 1, Ny)
z = LinRange(0, 1, Ny)
# Allocate arrays
u = zeros(Nx, Ny, Nz)
s = zeros(Nx, Ny, Nz)
∂u∂x = zeros(Nx, Ny, Nz)
∂u∂y = zeros(Nx, Ny, Nz)
∂u∂z = zeros(Nx, Ny, Nz)
# Evaluate solution
for i=1:Nx, j=1:Ny, k=1:Ny
sol = Poisson3D_Sevilla2018( [x[i]; y[j]; z[j]] )
u[i,j,k] = sol.u
s[i,j,k] = sol.s
∂u∂x[i,j,k] = sol.∇u[1]
∂u∂y[i,j,k] = sol.∇u[2]
∂u∂z[i,j,k] = sol.∇u[3]
end
# Visualise
p1 = heatmap(x, y, u[:,:,Int64(ceil(Nz/2))]', aspect_ratio=1, xlims=(0,1), color=:jet, title="u - xy middle cut")
p2 = heatmap(x, y, u[:,Int64(ceil(Ny/2)),:]', aspect_ratio=1, xlims=(0,1), color=:jet, title="u - xz middle cut")
p3 = heatmap(x, y, u[Int64(ceil(Nx/2)),:,:]', aspect_ratio=1, xlims=(0,1), color=:jet, title="u - yz middle cut")
display( plot(p1,p2,p3, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1748 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 100, 100
x = LinRange(-1.0, 1.0, Nx)
y = LinRange(-1.0, 1.0, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
Vx = zeros(Nx, Ny)
Vy = zeros(Nx, Ny)
Vm = zeros(Nx, Ny)
ε̇II = zeros(Nx, Ny)
δ = 1.1
γ = sqrt( (sqrt(δ) - 1) / (sqrt(δ) + 1) )
ε̇0 = 1.0
r = 0.1
# Evaluate solution
for i=1:Nx, j=1:Ny
X = x[i] + im*y[j]
X̄ = conj(X)
Xm = X - γ*X̄
Xp = X + γ*X̄
# X̄m = X̄ - γ*conj(X̄)
# X̄p = X̄ + γ*conj(X̄)
X̄m = conj(Xm)
X̄p = conj(Xp)
V = im*ε̇0*r/(4*γ^2) * (γ*(sqrt(Xp - 4*γ) - sqrt(Xm + 4*γ) + Xm - Xp) + (sqrt(X̄p - 4*γ) + sqrt(X̄m + 4*γ) + X̄m - X̄p))
Vx[i,j] = real(V) #- ε̇0/2*y[j]
Vy[i,j] = imag(V) #- ε̇0/2*x[j]
Vm[i,j] = sqrt( Vx[i,j]^2 + Vy[i,j]^2 )
if (x[i]^2 + y[j]^2)<r
Vx[i,j] = NaN
Vy[i,j] = NaN
Vm[i,j] = NaN
end
# sol = Stokes2D_Schmid2003( [x[i]; y[j]] )
# p[i,j] = sol.p
# Vx[i,j] = sol.V[1]
# Vy[i,j] = sol.V[2]
# ε̇II[i,j] = sqrt( 1/2*(sol.ε̇[1,1]^2 + sol.ε̇[2,2]^2) + sol.ε̇[1,2]^2 )
end
# Visualise
p1 = heatmap(x, y, Vm', aspect_ratio=1, xlims=(-1.0,1.0), color=:jet, title="|V|")
p2 = heatmap(x, y, ε̇II', aspect_ratio=1, xlims=(-1.0,1.0), color=:jet, title="ε̇II")
p3 = heatmap(x, y, Vx', aspect_ratio=1, xlims=(-1.0,1.0), color=:jet, title="Vx")
p4 = heatmap(x, y, Vy', aspect_ratio=1, xlims=(-1.0,1.0), color=:jet, title="Vy")
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 996 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 100, 100
x = LinRange(0, 1, Nx)
y = LinRange(0, 1, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
Vx = zeros(Nx, Ny)
Vy = zeros(Nx, Ny)
ε̇II = zeros(Nx, Ny)
# Evaluate solution
for i=1:Nx, j=1:Ny
sol = Stokes2D_Donea2003( [x[i]; y[j]] )
p[i,j] = sol.p
Vx[i,j] = sol.V[1]
Vy[i,j] = sol.V[2]
ε̇II[i,j] = sqrt( 1/2*(sol.ε̇[1,1]^2 + sol.ε̇[2,2]^2) + sol.ε̇[1,2]^2 )
end
# Visualise
p1 = heatmap(x, y, p', aspect_ratio=1, xlims=(-0,1), color=:jet, title="p")
p2 = heatmap(x, y, ε̇II', aspect_ratio=1, xlims=(-0,1), color=:jet, title="ε̇II")
p3 = heatmap(x, y, sqrt.(Vx.^2 .+ Vy.^2)', aspect_ratio=1, xlims=(-0,1), color=:jet, title="|V|")
# p3 = heatmap(x, y, Vx', aspect_ratio=1, xlims=(-0,1), color=:jet, title="Vx")
display( plot(p1,p2,p3, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1447 | using ExactFieldSolutions, Plots
function main()
params = (
θ1 = 30π/180,
θ2 = 180π/180,
η1 = 1e0,
η2 = 1e3,
Vr0 = -1.,
Vt0 = 0.,
Vr2 = 0.,
Vt2 = 0.,
)
# Define domain
Lx = 10.
Ly = 5.
Nx = 400
Ny = Int64(round(abs(Ly)/(Lx)*Nx))
x = LinRange(-Lx/2, Lx/2, Nx)
y = LinRange( 0, Ly, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
Vx = zeros(Nx, Ny)
Vy = zeros(Nx, Ny)
V = zeros(Nx, Ny)
ε̇II = zeros(Nx, Ny)
# Evaluate solution
for i=1:Nx, j=1:Ny
sol = Stokes2D_Moulas2021( [x[i]; y[j]]; params )
V[i,j] = sqrt(sol.V[1]^2 + sol.V[2]^2)
p[i,j] = sol.p
Vx[i,j] = sol.V[1]
Vy[i,j] = sol.V[2]
ε̇II[i,j] = sqrt( 1/2*(sol.ε̇[1,1]^2 + sol.ε̇[2,2]^2) + sol.ε̇[1,2]^2 )
end
# Visualise
p1 = heatmap(x, y, p', ylims=(0,Ly), aspect_ratio=1, color=:vik, clims=(-20,20), title="p - Fig. 4 Moulas et al. (2021)", titlefontsize=10)
p2 = heatmap(x, y, ε̇II', ylims=(0,Ly), aspect_ratio=1, color=:vik, clims=(0,1), title="ε̇II", titlefontsize=10)
p3 = heatmap(x, y, Vx', ylims=(0,Ly), aspect_ratio=1 , color=:vik, title="Vx", titlefontsize=10)
p4 = heatmap(x, y, Vy', ylims=(0,Ly), aspect_ratio=1 , color=:vik, title="Vy", titlefontsize=10)
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1004 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 100, 100
x = LinRange(-0.5, 0.5, Nx)
y = LinRange(-0.5, 0.5, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
Vx = zeros(Nx, Ny)
Vy = zeros(Nx, Ny)
ε̇II = zeros(Nx, Ny)
# Evaluate solution
for i=1:Nx, j=1:Ny
sol = Stokes2D_Schmid2003( [x[i]; y[j]] )
p[i,j] = sol.p
Vx[i,j] = sol.V[1]
Vy[i,j] = sol.V[2]
ε̇II[i,j] = sqrt( 1/2*(sol.ε̇[1,1]^2 + sol.ε̇[2,2]^2) + sol.ε̇[1,2]^2 )
end
# Visualise
p1 = heatmap(x, y, p', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="p")
p2 = heatmap(x, y, ε̇II', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="ε̇II")
p3 = heatmap(x, y, Vx', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="Vx")
p4 = heatmap(x, y, Vy', aspect_ratio=1, xlims=(-0.5,0.5), color=:jet, title="Vy")
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 784 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 100, 100
x = LinRange(0, 1.0, Nx)
y = LinRange(0, 1.0, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
Vx = zeros(Nx, Ny)
Vy = zeros(Nx, Ny)
# Evaluate solution
for j=1:Ny, i=1:Nx
sol = Stokes2D_SolCx_Zhong1996( [x[i], y[j]] )
p[i,j] = sol.p
Vx[i,j] = sol.V[1]
Vy[i,j] = sol.V[2]
end
# Visualise
p1 = heatmap(x, y, p', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="p")
p2 = heatmap(x, y, Vx', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="Vx")
p3 = heatmap(x, y, Vy', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="Vy")
display( plot(p1,p2,p3, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 930 | using ExactFieldSolutions, Plots
function main()
# Define domain
Nx, Ny = 100, 100
x = LinRange(0, 1.0, Nx)
y = LinRange(0, 1.0, Ny)
# Allocate arrays
p = zeros(Nx, Ny)
Vx = zeros(Nx, Ny)
Vy = zeros(Nx, Ny)
ρ = zeros(Nx, Ny)
# Evaluate solution
for i=1:Nx, j=1:Ny
sol = Stokes2D_SolKz_Zhong1996( [x[i]; y[j]] )
p[i,j] = sol.p
Vx[i,j] = sol.V[1]
Vy[i,j] = sol.V[2]
ρ[i,j] = sol.ρ
end
# Visualise
p1 = heatmap(x, y, p', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="p")
p2 = heatmap(x, y, ρ', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="ρ")
p3 = heatmap(x, y, Vx', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="Vx")
p4 = heatmap(x, y, Vy', aspect_ratio=1, xlims=(0,1.0), color=:jet, title="Vy")
display( plot(p1,p2,p3,p4, layout=(2,2)) )
end
main() | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 910 | module ExactFieldSolutions
using Plots, SpecialFunctions, ForwardDiff, UnPack, StaticArrays
include("Diffusion1D/Diffusion1D_Gaussian.jl")
export Diffusion1D_Gaussian
include("Diffusion2D/Diffusion2D_Gaussian.jl")
export Diffusion2D_Gaussian
include("Poisson2D/Poisson2D_Sevilla2018.jl")
# export Poisson2D_Sevilla2018_enz
export Poisson2D_Sevilla2018
include("Poisson3D/Poisson3D_Sevilla2018.jl")
export Poisson3D_Sevilla2018
include("Stokes2D/Stokes2D_Donea2003.jl")
export Stokes2D_Donea2003
include("Stokes2D/Stokes2D_Schmid2003.jl")
export Stokes2D_Schmid2003
include("Stokes2D/Stokes2D_Moulas2021.jl")
export Stokes2D_Moulas2021
include("Stokes2D/Stokes2D_SolKz_Zhong1996.jl")
export Stokes2D_SolKz_Zhong1996
include("Stokes2D/Stokes2D_SolCx_Zhong1996.jl")
export Stokes2D_SolCx_Zhong1996
include("Elasticity2D/Elasticity2D_Hole.jl")
export Elasticity2D_Hole
end # module ExactFieldSolutions
| ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1211 |
function Diffusion1D_Gaussian_u_fwd(x, params)
@unpack T0, K, σ = params
return T0 / sqrt(1 + 2*x[2]*K/σ^2) * exp.(-x[1]^2 / (2*(σ^2 + 2*x[2]*K)) )
end
@doc raw"""
sol = Diffusion1D_Gaussian(x; params)
Evaluates the manufactured solution of an initial 2D Gaussian anomaly:
x : is the coordinate and time vector, x[1] is space and x[2] is time
params : optional parameter array, default: (T0 = 100., K = 1e-6, σ = 0.1 )
and returns:
sol : tuple containing the solution fields u, ∇u and the source term s = -Δu
# Examples
```julia-repl
julia> Diffusion1D_Gaussian([0 0])
(u = 100.0, ∇u = [0.0 0.0 -0.06283185307179585], s = 0.0)
```
```julia-repl
julia> params = (T0 = 1., K = 1.0, σ = 0.1 )
(T0 = 1.0, K = 1.0, σ = 0.1)
julia> Diffusion1D_Gaussian([0 0])
(u = 1.0, ∇u = [0.0 -99.99999999999999], s = 0.0)
```
"""
function Diffusion1D_Gaussian(x;
params = (T0 = 100., K = 1e-6, σ = 0.1 ) )
u = Diffusion1D_Gaussian_u_fwd(x, params)
f_cl = x -> Diffusion1D_Gaussian_u_fwd(x, params)
gradu = ForwardDiff.gradient(f_cl, x)
hessu = ForwardDiff.hessian(f_cl, x)
s = gradu[2] - params.K*(hessu[1,1])
return (u=u, ∇u=gradu, s=s)
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1004 |
function DiffusionReaction1D_Stefan_u_fwd(x, params)
@unpack T0, K, σ = params
λ = s/(2*sqrt(K*x[2]))
return T0 - T0/erf(λ) * erf(x[1]/(2*sqrt(K*x[2])))
end
@doc raw"""
sol = Diffusion1D_Gaussian(x; params)
Evaluates the manufactured solution of an initial 2D Gaussian anomaly:
x : is the coordinate and time vector, x[1] is space and x[2] is time
params : optional parameter array
and returns:
sol : tuple containing the solution fields u, ∇u and the source term s = -Δu
# Examples
```julia-repl
julia> Diffusion1D_Gaussian([0 0])
(u = 100.0, ∇u = [0.0 0.0 -0.06283185307179585], s = 0.0)
```
"""
function Diffusion1D_Gaussian(x;
params = (T0 = 100., K = 1e-6, σ = 0.1 ) )
u = Diffusion1D_Gaussian_u_fwd(x, params)
f_cl = x -> Diffusion1D_Gaussian_u_fwd(x, params)
gradu = ForwardDiff.gradient(f_cl, x)
hessu = ForwardDiff.hessian(f_cl, x)
s = gradu[2] - params.K*(hessu[1,1])
return (u=u, ∇u=gradu, s=s)
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1009 |
function Diffusion2D_Gaussian_u_fwd(x, params)
@unpack T0, K, σ = params
return T0/(1 + 2*π*K*x[3]/σ^2)*exp(-(x[1]^2 + x[2]^2) /( 2*σ^2/π + 4*K*x[3]))
end
@doc raw"""
sol = Diffusion2D_Gaussian(x; params)
Evaluates the manufactured solution of an initial 2D Gaussian anomaly:
x : is the coordinate and time vector, x[1:2] is space and x[3] is time
params : optional parameter array
and returns:
sol : tuple containing the solution fields u, ∇u and the source term s = -Δu
# Examples
```julia-repl
julia> Diffusion2D_Gaussian([0 0 0])
(u = 100.0, ∇u = [0.0 0.0 -0.06283185307179585], s = 0.0)
```
"""
function Diffusion2D_Gaussian(x;
params = (T0 = 100., K = 1e-6, σ = 0.1 ) )
u = Diffusion2D_Gaussian_u_fwd(x, params)
f_cl = x -> Diffusion2D_Gaussian_u_fwd(x, params)
gradu = ForwardDiff.gradient(f_cl, x)
hessu = ForwardDiff.hessian(f_cl, x)
s = gradu[3] - params.K*(hessu[1,1] + hessu[2,2])
return (u=u, ∇u=gradu, s=s)
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1316 | @doc raw"""
sol = Elasticity2D_Hole(x; params)
Evaluates the solution for an elastic medium with a circular hole under far field stress (derived from Kirsch solution, Jaeger & Cook etc...):
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields u, ∇u and the source term s = -Δu
# Examples
```julia-repl
julia> Elasticity2D_Hole([0,0])
(p = -0.01, τ = [0.0 -0.0; -0.0 -0.0])
```
"""
function Elasticity2D_Hole(x;
params = (r0 = 0.2, P_inf = 1e-2, P0 = -1e-2, tau_inf = -1e-2))
@unpack r0, P_inf, P0, tau_inf = params
rad = sqrt(x[1]^2 + x[2]^2)
irad = 1.0/max(rad,r0/2);
irad>1/r0 ? irad = 0 : nothing
r0_r = r0*irad
cost = x[1]*irad
sint = x[2]*irad
C1 = -3*r0_r^4 + 2*r0_r^2
C2 = -3*r0_r^4 + 2*r0_r^2
cos2t = cost^2 - sint^2
sin2t = 2*cost*sint
Pt = P_inf - 2*tau_inf* r0_r^2.0.*cos2t
tau_rr = (P_inf-P0)*r0_r^2 + tau_inf*(C1 - 1)*cos2t
tau_rt = tau_inf*(C2 + 1)*sin2t
tau_tt = -tau_rr
Txx = cos2t*tau_rr - sin2t*tau_rt
Txy = -sin2t*tau_tt + tau_rt*cos2t
Tyy = -Txx
rad.<r0 ? Pt = P0 : nothing
return (p= Pt, τ=[Txx Txy; Txy Tyy])
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 3267 |
function Poisson2D_Sevilla2018_u_fwd(x, params)
@unpack α, β, a, b, c, d = params
return exp(α*sin(a*x[1] + c*x[2]) + β*cos(b*x[1] + d*x[2]))
end
@doc raw"""
sol = Poisson2D_Sevilla2018(x; params)
Evaluates the manufactured solution of [Sevilla et al. (2018)](https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5833):
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields u, ∇u and the source term s = -Δu
# Examples
```julia-repl
julia> Poisson2D_Sevilla2018( [0, 0] )
(u = 1.3498588075760032, ∇u = [0.6884279918637617, -0.8369124606971221], s = 11.298993148814933)
```
"""
function Poisson2D_Sevilla2018(x;
params = (α = 0.1, β = 0.3, a = 5.1, b = 4.3, c = -6.2, d = 3.4) )
u = Poisson2D_Sevilla2018_u_fwd(x, params)
f_cl = x -> Poisson2D_Sevilla2018_u_fwd(x, params)
gradu = ForwardDiff.gradient(f_cl, x)
hessu = ForwardDiff.hessian(f_cl, x)
s = -(hessu[1,1] + hessu[2,2])
# T = u
# @unpack α, β, a, b, c, d = params
# s = T*(-a*α*cos(a*x[1] + c*x[2]) + b*β*sin(b*x[1] + d*x[2]))*(a*α*cos(a*x[1] + c*x[2]) - b*β*sin(b*x[1] + d*x[2])) + T*(a^2*α*sin(a*x[1] + c*x[2]) + b^2*β*cos(b*x[1] + d*x[2])) + T*(-α*c*cos(a*x[1] + c*x[2]) + β*d*sin(b*x[1] + d*x[2]))*(α*c*cos(a*x[1] + c*x[2]) - β*d*sin(b*x[1] + d*x[2])) + T*(α*c^2*sin(a*x[1] + c*x[2]) + β*d^2*cos(b*x[1] + d*x[2]))
return (u=u, ∇u=gradu, s=s)
end
# I've tried to use Enzyme BUT:
# 1) outputs are difficult gradient components end nested in complicated data structures (arrays of arrays or tuples of arrays)
# 2) never managed to compute higher order derivatives
# 3) overall package compilation seemed much slower than with ForwardDiff
# Poisson2D_Sevilla2018_gradu(x, y, params) = autodiff(Reverse, Poisson2D_Sevilla2018_u, Active(x), Active(y), Const(params))
# Poisson2D_Sevilla2018_dudx( x, y, params) = autodiff(Reverse, Poisson2D_Sevilla2018_u, Active(x), Const(y), Const(params))
# Poisson2D_Sevilla2018_d2udx2( x, y, params) = autodiff_deferred(Reverse, Poisson2D_Sevilla2018_dudx, Active(x), Const(y), Const(params))
# Poisson2D_Sevilla2018_dudx(x, y, params) = autodiff(Reverse, Poisson2D_Sevilla2018_u, Active(x), Const(y), Const(params))
# Poisson2D_Sevilla2018_d2udx2(x, y, params) = autodiff_deferred(Reverse, Poisson2D_Sevilla2018_dudx, Active(x), Const(y), Const(params))
# Poisson2D_Sevilla2018_d2udy2(x, y, params) = autodiff_deferred(Reverse, Poisson2D_Sevilla2018_dudx, Const(x), Active(y), Const(params))
# function Poisson2D_Sevilla2018_s(x, y, params)
# end
# function Poisson2D_Sevilla2018_u(x, y, params)
# @unpack α, β, a, b, c, d = params
# return exp(α*sin(a*x + c*y) + β*cos(b*x + d*y))
# end
# function Poisson2D_Sevilla2018_enz(x, y;
# params = (α = 0.1, β = 0.3, a = 5.1, b = 4.3, c = -6.2, d = 3.4) )
# u = Poisson2D_Sevilla2018_u(x, y, params)
# gradu = Poisson2D_Sevilla2018_gradu(x, y, params)
# # ∂2u∂x2 = Poisson2D_Sevilla2018_d2udx2(x, y, params)
# # ∂2u∂y2 = Poisson2D_Sevilla2018_d2udy2(x, y, params)
# # Poisson2D_Sevilla2018_d2udx2(x, y, params)
# s = 1
# # @show ∂2u∂y2[1][1]
# return (u=u, ∂u∂x=gradu[1][1], ∂u∂y=gradu[1][2], s=s)
# end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 1122 |
function Poisson3D_Sevilla2018_u(x, params)
@unpack α, β, a, b, c, d, e, f = params
return exp(α*sin(a*x[1] + c*x[2] + e*x[3]) + β*cos(b*x[1] + d*x[2] + f*x[3]))
end
@doc raw"""
sol = Poisson3D_Sevilla2018(x; params)
Evaluates the manufactured solution of [Sevilla et al. (2018)](https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5833):
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields u, ∇u and the source term s = -Δu
# Examples
```julia-repl
julia> Poisson3D_Sevilla2018( [0; 0; 0])
(u = 1.3498588075760032, ∇u = [0.6884279918637617, -0.8369124606971221, 0.2429745853636806], s = 12.425585309617865)
```
"""
function Poisson3D_Sevilla2018(x;
params = (α = 0.1, β = 0.3, a = 5.1, b = 4.3, c = -6.2, d = 3.4, e = 1.8, f = 1.7) )
u = Poisson3D_Sevilla2018_u(x, params)
f_cl = x -> Poisson3D_Sevilla2018_u(x, params)
gradu = ForwardDiff.gradient(f_cl, x)
hessu = ForwardDiff.hessian(f_cl, x)
s = -(hessu[1,1] + hessu[2,2] + hessu[3,3])
return (u=u, ∇u=gradu, s=s)
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 2455 | function Stokes2D_Donea2003_p(x, params)
return x[1]*(1-x[1])
end
function Stokes2D_Donea2003_V(x, params)
vx = x[1]^2*(1 - x[1])^2*(4*x[2]^3 - 6*x[2]^2 + 2*x[2])
vy = -x[2]^2*(1 - x[2])^2*(4*x[1]^3 - 6*x[1]^2 + 2*x[1])
return [vx; vy]
end
function TotalStress( x,;
params = (η=1,) )
p = Stokes2D_Donea2003_p(x, params)
v = Stokes2D_Donea2003_V(x, params)
f_cl = x -> Stokes2D_Donea2003_V(x, params)
L = ForwardDiff.jacobian(f_cl, x)
# Deviatoric strain rate
ε̇ = 1/2*(L + L')
# Deviatoric stress
τ = 2*params.η*ε̇
# Total stress
return τ - [1 0; 0 1].*p
end
@doc raw"""
sol = Stokes2D_Donea2003(x; params)
Evaluates a manufactured solution from [Donea & Huerta (2003)](https://onlinelibrary.wiley.com/doi/book/10.1002/0470013826):
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields p (pressure), V (velocity vector), L (velocity gratdient tensor), ε̇ (deviatoric strain rate tensor) and τ (deviatoric stress tensor)
# Examples
```julia-repl
julia> Stokes2D_Donea2003([1/4;1/4])
(p = 0.1875, V = [0.006591796875, -0.006591796875], L = [0.03515625 -0.0087890625; 0.0087890625 -0.03515625], ε̇ = [0.03515625 0.0; 0.0 -0.03515625], τ = [0.0703125 0.0; 0.0 -0.0703125])
```
"""
function Stokes2D_Donea2003(X;
params = (η=1,) )
p = Stokes2D_Donea2003_p(X, params)
v = Stokes2D_Donea2003_V(X, params)
f_cl = X -> Stokes2D_Donea2003_V(X, params)
L = ForwardDiff.jacobian(f_cl, X)
# Deviatoric strain rate
ε̇ = 1/2*(L + L')
# Deviatoric stress
τ = 2*params.η*ε̇
# Total stress
σ = TotalStress( X )
g_cl = X -> TotalStress(X; params)
∂σ∂x = ForwardDiff.jacobian(g_cl, X)
# Stokes residual is the source for this solution
s = -[∂σ∂x[1] + ∂σ∂x[3,2]; ∂σ∂x[2,1] + ∂σ∂x[4,2]]
# # Just to check
# x, y = X[1], X[2]
# sx = -p^2*(24*y - 12) - 4*x^2*(4*y^3 - 6*y^2 + 2*y) - 8*x*(2*x - 2)*(4*y^3 - 6*y^2 + 2*y) - 2*x + 1.0*y^2*(2*y - 2)*(12*x^2 - 12*x + 2) + 2.0*y*(1 - y)^2*(12*x^2 - 12*x + 2) - 4*(1 - x)^2*(4*y^3 - 6*y^2 + 2*y) + 1
# sy = -2*p*(1 - x)*(12*y^2 - 12*y + 2) - x^2*(2*x - 2)*(12*y^2 - 12*y + 2) + 1.0*y^2*(1 - y)^2*(24*x - 12) + 4*y^2*(4*x^3 - 6*x^2 + 2*x) + 8*y*(2*y - 2)*(4*x^3 - 6*x^2 + 2*x) + 4*(1 - y)^2*(4*x^3 - 6*x^2 + 2*x)
# @show sy-s[2]
return (p=p, V=v, L=L, ε̇=ε̇, τ=τ, s=s)
end
| ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 17362 | function ComputeConstants( params )
@unpack θ1, θ2, η1, η2, Vr0, Vt0, Vr2, Vt2 = params
A1 = -Vt0
B1 = ((sin(θ1)^2*(η1*η2*cos(θ2)^2+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1*η2*sin(θ2)^2+η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)))*Vr0+(
sin(θ1)^2*(η1*η2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+θ1*(η1*η2*(cos(θ2)^2+sin(θ2)^2)+η2^2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)^2*
(η1*η2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+θ1*(η1*η2*(cos(θ2)^2+sin(θ2)^2)+η2^2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)*sin(θ1)*
(η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1*η2*(sin(θ2)^2+cos(θ2)^2)))*Vt0+cos(θ1)*sin(θ1)*(η2^2*(sin(θ2)*Vr2+cos(θ2)*Vt2)+η1*η2*(-1.0*sin(θ2)*Vr2-1.0*cos(θ2)*Vt2))+
sin(θ1)^2*
(θ1*(η1*η2*(-1.0*cos(θ2)*Vt2-1.0*sin(θ2)*Vr2)+η2^2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η2^2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2)+η1*η2*((θ2*sin(θ2)+cos(θ2))*Vr2+θ2*cos(θ2)*Vt2))
+cos(θ1)^2*(θ1*(η1*η2*(-1.0*cos(θ2)*Vt2-1.0*sin(θ2)*Vr2)+η2^2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η1*η2*(θ2*sin(θ2)*Vr2+θ2*cos(θ2)*Vt2+sin(θ2)*Vt2)))/(sin(θ1)^2*(2.0*η1*
η2*cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
C1 = -(1.0*((sin(θ1)^2*(η2^2*(sin(θ2)^2+cos(θ2)^2)-1.0*η1*η2*cos(θ2)^2)+η1*η2*cos(θ1)^2*sin(θ2)^2)*Vr0+(sin(θ1)^2*
(η1*η2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+θ1*(η1*η2*(cos(θ2)^2+sin(θ2)^2)+η2^2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)^2*
(η1*η2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+θ1*(η1*η2*(cos(θ2)^2+sin(θ2)^2)+η2^2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)*sin(θ1)*
(η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1*η2*(sin(θ2)^2+cos(θ2)^2)))*Vt0+cos(θ1)*sin(θ1)*(η2^2*(sin(θ2)*Vr2+cos(θ2)*Vt2)+η1*η2*(-1.0*sin(θ2)*Vr2-1.0*cos(θ2)*Vt2))+
sin(θ1)^2*
(θ1*(η1*η2*(-1.0*cos(θ2)*Vt2-1.0*sin(θ2)*Vr2)+η2^2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η2^2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2)+η1*η2*((θ2*sin(θ2)+cos(θ2))*Vr2+θ2*cos(θ2)*Vt2))
+cos(θ1)^2*(θ1*(η1*η2*(-1.0*cos(θ2)*Vt2-1.0*sin(θ2)*Vr2)+η2^2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η1*η2*(θ2*sin(θ2)*Vr2+θ2*cos(θ2)*Vt2+sin(θ2)*Vt2))))/(sin(θ1)^2*(2.0*η1*
η2*cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
D1 = -(1.0*((sin(θ1)^2*(η1*η2*(θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*cos(θ2)^2)+θ1*(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)^2*
(η1*η2*(θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*cos(θ2)^2)+θ1*(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)*sin(θ1)*
(η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1*η2*(sin(θ2)^2+cos(θ2)^2)))*Vr0+(sin(θ1)^2*(η1*η2*cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2))-1.0*η1*η2*cos(θ1)^2*sin(θ2)^2)*
Vt0+cos(θ1)*sin(θ1)*(η1*η2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2)+η2^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2))+cos(θ1)^2*
(θ1*(η1*η2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η2^2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2))+η1*η2*((sin(θ2)-1.0*θ2*cos(θ2))*Vr2+θ2*sin(θ2)*Vt2))+sin(θ1)^2*(θ1*
(η1*η2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η2^2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2))+η1*η2*(-1.0*θ2*cos(θ2)*Vr2-1.0*cos(θ2)*Vt2+θ2*sin(θ2)*Vt2)+η2^2*(sin(θ2)*Vr2+cos(θ2)*Vt2))
))/(sin(θ1)^2*(2.0*η1*η2*cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
A2 = -(1.0*((sin(θ1)^2*
(θ1*(η1*η2*sin(θ2)^2-1.0*η1^2*sin(θ2)^2)+η1*η2*(-1.0*θ2*sin(θ2)^2+cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+η1^2*(θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*cos(θ2)^2))+θ1*
cos(θ1)^2*(η1*η2*sin(θ2)^2-1.0*η1^2*sin(θ2)^2)+cos(θ1)*sin(θ1)*(η1^2*sin(θ2)^2-1.0*η1*η2*sin(θ2)^2))*Vr0+(sin(θ1)^2*(-1.0*η1*η2*sin(θ2)^2+η1^2*
(θ2^2*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1*(η1*η2*(θ2*cos(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*sin(θ2)^2)+η1^2*(-1.0*θ2*cos(θ2)^2+cos(θ2)*sin(θ2)-1.0*θ2*sin(θ2)^2)))+cos(θ1)^2*
(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1*(η1*η2*(θ2*cos(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*sin(θ2)^2)+η1^2*(-1.0*θ2*cos(θ2)^2+cos(θ2)*sin(θ2)-1.0*θ2*sin(θ2)^2)))+
cos(θ1)*sin(θ1)*(η1^2*(-1.0*θ2*sin(θ2)^2+cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+η1*η2*(θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*cos(θ2)^2)))*Vt0+cos(θ1)*sin(θ1)*
(η1^2*(θ2*sin(θ2)*Vr2+θ2*cos(θ2)*Vt2+sin(θ2)*Vt2)+η1*η2*(-1.0*θ2*sin(θ2)*Vr2-1.0*θ2*cos(θ2)*Vt2-1.0*sin(θ2)*Vt2))+cos(θ1)^2*(θ1*
(η1^2*(-1.0*sin(θ2)*Vt2-1.0*θ2*cos(θ2)*Vt2-1.0*θ2*sin(θ2)*Vr2)+η1*η2*(sin(θ2)*Vt2+θ2*cos(θ2)*Vt2+θ2*sin(θ2)*Vr2))+θ1^2*
(η1*η2*(-2.0*cos(θ2)*Vt2-2.0*sin(θ2)*Vr2)+η1^2*(cos(θ2)*Vt2+sin(θ2)*Vr2)+η2^2*(cos(θ2)*Vt2+sin(θ2)*Vr2)))+sin(θ1)^2*(θ1*
(η1^2*(-1.0*sin(θ2)*Vt2-1.0*θ2*cos(θ2)*Vt2-1.0*θ2*sin(θ2)*Vr2)+η1*η2*(sin(θ2)*Vt2+θ2*cos(θ2)*Vt2+θ2*sin(θ2)*Vr2))+θ1^2*
(η1*η2*(-2.0*cos(θ2)*Vt2-2.0*sin(θ2)*Vr2)+η1^2*(cos(θ2)*Vt2+sin(θ2)*Vr2)+η2^2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η1^2*(-1.0*θ2*cos(θ2)*Vr2-1.0*cos(θ2)*Vt2+θ2*sin(θ2)*Vt2)+
η1*η2*((sin(θ2)+θ2*cos(θ2))*Vr2+2.0*cos(θ2)*Vt2-1.0*θ2*sin(θ2)*Vt2)+η2^2*(-1.0*sin(θ2)*Vr2-1.0*cos(θ2)*Vt2))))/(sin(θ1)^2*(2.0*η1*η2*cos(θ2)^2+η2^2*
(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+
θ1*(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
B2 = ((cos(θ1)^2*
(η1^2*(θ2^2*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1*(η1*η2*(θ2*cos(θ2)^2+cos(θ2)*sin(θ2)+θ2*sin(θ2)^2)+η1^2*(-1.0*θ2*cos(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*sin(θ2)^2)))+sin(θ1)^2*(
η1*η2*cos(θ2)^2+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1*
(η1*η2*(θ2*cos(θ2)^2+cos(θ2)*sin(θ2)+θ2*sin(θ2)^2)+η1^2*(-1.0*θ2*cos(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*
(η1*η2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+η1^2*(θ2*sin(θ2)^2+cos(θ2)*sin(θ2)+θ2*cos(θ2)^2)))*Vr0+(sin(θ1)^2*
(θ1*(η1^2*cos(θ2)^2-1.0*η1*η2*cos(θ2)^2)+η1*η2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2))+cos(θ1)^2*
(θ1*(η1^2*cos(θ2)^2-1.0*η1*η2*cos(θ2)^2)+η1^2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2))+cos(θ1)*sin(θ1)*(η1^2*cos(θ2)^2-1.0*η1*η2*cos(θ2)^2))*Vt0+
cos(θ1)*sin(θ1)*(η1^2*(-1.0*θ2*cos(θ2)*Vr2-1.0*cos(θ2)*Vt2+θ2*sin(θ2)*Vt2)+η1*η2*(θ2*cos(θ2)*Vr2+cos(θ2)*Vt2-1.0*θ2*sin(θ2)*Vt2))+sin(θ1)^2*(θ1*
(η1*η2*(-1.0*θ2*sin(θ2)*Vt2+cos(θ2)*Vt2+θ2*cos(θ2)*Vr2)+η1^2*(θ2*sin(θ2)*Vt2-1.0*cos(θ2)*Vt2-1.0*θ2*cos(θ2)*Vr2))+θ1^2*
(η1^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η2^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η1*η2*(2.0*sin(θ2)*Vt2-2.0*cos(θ2)*Vr2))+η2^2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2)+η1*η2*
((θ2*sin(θ2)+cos(θ2))*Vr2+θ2*cos(θ2)*Vt2))+cos(θ1)^2*(θ1*
(η1*η2*(-1.0*θ2*sin(θ2)*Vt2+cos(θ2)*Vt2+θ2*cos(θ2)*Vr2)+η1^2*(θ2*sin(θ2)*Vt2-1.0*cos(θ2)*Vt2-1.0*θ2*cos(θ2)*Vr2))+θ1^2*
(η1^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η2^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η1*η2*(2.0*sin(θ2)*Vt2-2.0*cos(θ2)*Vr2))+η1^2*(θ2*sin(θ2)*Vr2+θ2*cos(θ2)*Vt2+sin(θ2)*Vt2)))/(
sin(θ1)^2*(2.0*η1*η2*cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
C2 = -(1.0*((sin(θ1)^2*(η1*η2*(sin(θ2)^2+cos(θ2)^2)-1.0*η1^2*cos(θ2)^2)+η1^2*cos(θ1)^2*sin(θ2)^2)*Vr0+(sin(θ1)^2*
(η1^2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+θ1*(η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)^2*
(η1^2*(-1.0*θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)-1.0*θ2*cos(θ2)^2)+θ1*(η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)*sin(θ1)*
(η1*η2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(sin(θ2)^2+cos(θ2)^2)))*Vt0+cos(θ1)*sin(θ1)*(η1*η2*(sin(θ2)*Vr2+cos(θ2)*Vt2)+η1^2*(-1.0*sin(θ2)*Vr2-1.0*cos(θ2)*Vt2))+
sin(θ1)^2*
(θ1*(η1^2*(-1.0*cos(θ2)*Vt2-1.0*sin(θ2)*Vr2)+η1*η2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η1*η2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2)+η1^2*((θ2*sin(θ2)+cos(θ2))*Vr2+θ2*cos(θ2)*Vt2))
+cos(θ1)^2*(θ1*(η1^2*(-1.0*cos(θ2)*Vt2-1.0*sin(θ2)*Vr2)+η1*η2*(cos(θ2)*Vt2+sin(θ2)*Vr2))+η1^2*(θ2*sin(θ2)*Vr2+θ2*cos(θ2)*Vt2+sin(θ2)*Vt2))))/(sin(θ1)^2*(2.0*η1*η2*
cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
D2 = -(1.0*((sin(θ1)^2*(η1^2*(θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*cos(θ2)^2)+θ1*(η1*η2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)^2*
(η1^2*(θ2*sin(θ2)^2-1.0*cos(θ2)*sin(θ2)+θ2*cos(θ2)^2)+θ1*(η1*η2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(-1.0*cos(θ2)^2-1.0*sin(θ2)^2)))+cos(θ1)*sin(θ1)*
(η1*η2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(sin(θ2)^2+cos(θ2)^2)))*Vr0+(sin(θ1)^2*(η1^2*cos(θ2)^2+η1*η2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2))-1.0*η1^2*cos(θ1)^2*sin(θ2)^2)*Vt0+
cos(θ1)*sin(θ1)*(η1^2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2)+η1*η2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2))+cos(θ1)^2*
(θ1*(η1^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η1*η2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2))+η1^2*((sin(θ2)-1.0*θ2*cos(θ2))*Vr2+θ2*sin(θ2)*Vt2))+sin(θ1)^2*(θ1*
(η1^2*(cos(θ2)*Vr2-1.0*sin(θ2)*Vt2)+η1*η2*(sin(θ2)*Vt2-1.0*cos(θ2)*Vr2))+η1^2*(-1.0*θ2*cos(θ2)*Vr2-1.0*cos(θ2)*Vt2+θ2*sin(θ2)*Vt2)+η1*η2*(sin(θ2)*Vr2+cos(θ2)*Vt2))
))/(sin(θ1)^2*(2.0*η1*η2*cos(θ2)^2+η2^2*(-1.0*sin(θ2)^2-1.0*cos(θ2)^2)+η1^2*(θ2^2*sin(θ2)^2+(θ2^2-1.0)*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)^2*(η1^2*((θ2^2-1.0)*sin(θ2)^2+θ2^2*cos(θ2)^2)+θ1^2*
(η2^2*(cos(θ2)^2+sin(θ2)^2)+η1^2*(cos(θ2)^2+sin(θ2)^2)+η1*η2*(-2.0*cos(θ2)^2-2.0*sin(θ2)^2))+θ1*
(η1*η2*(2.0*θ2*cos(θ2)^2+2.0*θ2*sin(θ2)^2)+η1^2*(-2.0*θ2*cos(θ2)^2-2.0*θ2*sin(θ2)^2)))+cos(θ1)*sin(θ1)*(2.0*η1^2*cos(θ2)*sin(θ2)-2.0*η1*η2*cos(θ2)*sin(θ2)));
return (A1, B1, C1, D1, A2, B2, C2, D2)
end
function ComputeLocation( X, c, params )
@unpack θ1, θ2, η1, η2, Vr0, Vt0, Vr2, Vt2 = params
r = sqrt(X[1]^2 + X[2]^2)
θ = atan(X[2]/X[1])
# Corner facing up or
if sign(θ1) == -1
if (θ >= 0.) θ -= π end
else
if (θ <= 0.) θ += π end
end
# Define which corner is which
ind1, ind2 = false, false
if sign(θ1) == -1
if (θ>=θ1) ind1 = true end
if (θ<θ1 && θ>θ2) ind2 = true end
else
if (θ<=θ1) ind1 = true end
if (θ>θ1 && θ<θ2) ind2 = true end
end
η, A, B, C, D = NaN, NaN, NaN, NaN, NaN
if ind1 == true
η = η1
A = c[1]
B = c[2]
C = c[3]
D = c[4]
elseif ind2 == true
η = η2
A = c[5]
B = c[6]
C = c[7]
D = c[8]
end
return r, θ, η, A, B, C, D, ind1, ind2
end
function Stokes2D_Moulas2021_p( X, c, params )
@unpack θ1, θ2, η1, η2, Vr0, Vt0, Vr2, Vt2 = params
# Compute location
r, θ, η, A, B, C, D, ind1, ind2 = ComputeLocation( X, c, params )
# Pressure in both corners
p = -(-2*η*cos(θ)*C - 2*η*sin(θ)*D)/r
return p
end
function Stokes2D_Moulas2021_V( X, c, params )
@unpack θ1, θ2, η1, η2, Vr0, Vt0, Vr2, Vt2 = params
# Compute location
r, θ, η, A, B, C, D, ind1, ind2 = ComputeLocation( X, c, params )
# Velocity in both corners
Vr = -A*sin(θ) + B*cos(θ) +C*cos(θ)-C*θ*sin(θ)+D*sin(θ)+D*θ*cos(θ)
Vt = -A*cos(θ) - B*sin(θ) - C*θ*cos(θ) - D*θ*sin(θ)
𝑉 = @SVector([Vr; Vt])
R = @SMatrix([cos(θ) -sin(θ); sin(θ) cos(θ)])
return V = R*𝑉
end
function Stokes2D_Moulas2021_σrt( X, c, params )
@unpack θ1, θ2, η1, η2, Vr0, Vt0, Vr2, Vt2 = params
r, θ, η, A, B, C, D, ind1, ind2 = ComputeLocation( X, c, params )
σrt = η*((cos(θ)*A+sin(θ)*B+θ*cos(θ)*C+θ*sin(θ)*D)/r+
(-cos(θ)*A-sin(θ)*B-θ*cos(θ)*C-2*sin(θ)*C+2*cos(θ)*D-θ*sin(θ)*D)/r);
return σrt
end
@doc raw"""
sol = Stokes2D_Moulas2021(x; params)
Evaluates the analytical solution of [Moulas et al. (2021)](https://academic.oup.com/gji/article/227/1/576/6309899):
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields p (pressure), V (velocity vector), L (velocity gratdient tensor), ε̇ (deviatoric strain rate tensor) and τ (deviatoric stress tensor)
# Examples
```julia-repl
julia> Stokes2D_Moulas2021( [1, 1] )
(p = 12.53061977287755, V = [-0.010899335607440476, 0.02773892842336736], L = [0.0028483768768197255 -0.0028483768768197255; 0.0028483768768197246 -0.0028483768768197246], ε̇ = [0.0028483768768197255 -4.336808689942018e-19; -4.336808689942018e-19 -0.0028483768768197246], τ = [5.696753753639451 -8.673617379884035e-16; -8.673617379884035e-16 -5.696753753639449], η = 1000.0)
```
"""
function Stokes2D_Moulas2021(X;
params = (
θ1 = 30π/180,
θ2 = 180π/180,
η1 = 1e0,
η2 = 1e3,
Vr0 = -1.,
Vt0 = 0.,
Vr2 = 0.,
Vt2 = 0.,) )
# Constants
c = ComputeConstants( params )
# Check position
r, θ, η, ind1, ind2 = ComputeLocation( X, c, params)
p = Stokes2D_Moulas2021_p(X, c, params)
v = Stokes2D_Moulas2021_V(X, c, params)
# L = Stokes2D_Schmid2003_L(x, params) # just to check if automatic derivatives are correct
f_cl = x -> Stokes2D_Moulas2021_V(x, c, params)
L = ForwardDiff.jacobian(f_cl, X)
# Postprocess deviatoric stress and strain rate
ε̇ = 1/2*(L + L')
τ = 2*η*ε̇
# # CHECK: normal deviatoric stress components should vanish in polar coordinates
# # Rotation matrix
# R = @SMatrix([cos(θ) -sin(θ); sin(θ) cos(θ)])
# τ_rot = R'*τ*R
# # CHECK: shear stress in polar coordinates should equate the analytical solution
# τ = Stokes2D_Moulas2021_σrt( X, c, params )
# τrt[i,j] = τ_rot[1,2]
# @show τ_rot[1,1], abs(τ_rot[1,2] - τ), ε̇[1,1]+ε̇[2,2]
return (p=p, V=v, L=L, ε̇=ε̇, τ=τ, η=η)
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 5237 | function Stokes2D_Schmid2003_p(x, params)
@unpack mm, mc, rc, gr, er = params
# Check position
(x[1]^2 + x[2]^2) < rc^2 ? in=true : in=false
# Outside
pmat = (4*mm*rc^2*(mm - mc)*(er*x[1]^2 + gr*x[1]*x[2] - er*x[2]^2))/((x[1]^2 + x[2]^2)^2*(mm + mc))
# Inside
pinc = 0.0
# Where it's needed
p = (in==0)*pmat + (in==1)*pinc
return p
end
function Stokes2D_Schmid2003_V(x, params)
@unpack mm, mc, rc, gr, er = params
# Check position
(x[1]^2 + x[2]^2) < rc^2 ? in=true : in=false
# Outside
A = mm*(mc-mm)/(mc+mm);
v1mat = (2*A*er*rc^4*x[1]^3 + 3*A*gr*rc^4*x[1]^2*x[2] - 6*A*er*rc^4*x[1]*x[2]^2 - A*gr*rc^4*x[2]^3 - 4*A*er*rc^2*x[1]^5 -
4*A*gr*rc^2*x[1]^4*x[2] - 4*A*gr*rc^2*x[1]^2*x[2]^3 + 4*A*er*rc^2*x[1]*x[2]^4 + 2*er*mm*x[1]^7 + 2*gr*mm*x[1]^6*x[2] +
6*er*mm*x[1]^5*x[2]^2 + 6*gr*mm*x[1]^4*x[2]^3 + 6*er*mm*x[1]^3*x[2]^4 + 6*gr*mm*x[1]^2*x[2]^5 + 2*er*mm*x[1]*x[2]^6 +
2*gr*mm*x[2]^7)/(2*mm*(x[1]^2 + x[2]^2)^3)
v2mat = -(A*gr*rc^4*x[1]^3 - 6*A*er*rc^4*x[1]^2*x[2] - 3*A*gr*rc^4*x[1]*x[2]^2 + 2*A*er*rc^4*x[2]^3 + 4*A*er*rc^2*x[1]^4*x[2] +
4*A*gr*rc^2*x[1]^3*x[2]^2 + 4*A*gr*rc^2*x[1]*x[2]^4 - 4*A*er*rc^2*x[2]^5 + 2*er*mm*x[1]^6*x[2] + 6*er*mm*x[1]^4*x[2]^3 +
6*er*mm*x[1]^2*x[2]^5 + 2*er*mm*x[2]^7)/(2*mm*(x[1]^2 + x[2]^2)^3)
# Inside
v1inc = (4*er*mm*x[1] + 3*gr*mm*x[2] + gr*mc*x[2])/(2*(mm + mc));
v2inc = -(4*er*mm*x[2] - gr*mm*x[1] + gr*mc*x[1])/(2*(mm + mc));
# Where it's needed
vx = (in==0)*v1mat + (in==1)*v1inc
vy = (in==0)*v2mat + (in==1)*v2inc
return [vx; vy]
end
function Stokes2D_Schmid2003_L(x, params) # just to check if automatic derivatives are correct
@unpack mm, mc, rc, gr, er = params
# Check position
(x[1]^2 + x[2]^2) < rc^2 ? in=true : in=false
# Outside
A = mm*(mc-mm)/(mc+mm);
dvxdxmat = (- 3*A*er*rc^4*x[1]^4 - 6*A*gr*rc^4*x[1]^3*x[2] + 18*A*er*rc^4*x[1]^2*x[2]^2 + 6*A*gr*rc^4*x[1]*x[2]^3 - 3*A*er*rc^4*x[2]^4 + 2*A*er*rc^2*x[1]^6 + 4*A*gr*rc^2*x[1]^5*x[2] - 10*A*er*rc^2*x[1]^4*x[2]^2 - 10*A*er*rc^2*x[1]^2*x[2]^4 - 4*A*gr*rc^2*x[1]*x[2]^5 + 2*A*er*rc^2*x[2]^6 + er*mm*x[1]^8 + 4*er*mm*x[1]^6*x[2]^2 + 6*er*mm*x[1]^4*x[2]^4 + 4*er*mm*x[1]^2*x[2]^6 + er*mm*x[2]^8)/(mm*(x[1]^2 + x[2]^2)^4);
dvxdymat = (3*A*gr*rc^4*x[1]^4 - 24*A*er*rc^4*x[1]^3*x[2] - 18*A*gr*rc^4*x[1]^2*x[2]^2 + 24*A*er*rc^4*x[1]*x[2]^3 + 3*A*gr*rc^4*x[2]^4 - 4*A*gr*rc^2*x[1]^6 + 24*A*er*rc^2*x[1]^5*x[2] + 8*A*gr*rc^2*x[1]^4*x[2]^2 + 16*A*er*rc^2*x[1]^3*x[2]^3 + 12*A*gr*rc^2*x[1]^2*x[2]^4 - 8*A*er*rc^2*x[1]*x[2]^5 + 2*gr*mm*x[1]^8 + 8*gr*mm*x[1]^6*x[2]^2 + 12*gr*mm*x[1]^4*x[2]^4 + 8*gr*mm*x[1]^2*x[2]^6 + 2*gr*mm*x[2]^8)/(2*mm*(x[1]^2 + x[2]^2)^4);
dvydxmat = (A*rc^2*(3*gr*rc^2*x[1]^4 - 24*er*rc^2*x[1]^3*x[2] - 18*gr*rc^2*x[1]^2*x[2]^2 + 24*er*rc^2*x[1]*x[2]^3 + 3*gr*rc^2*x[2]^4 + 8*er*x[1]^5*x[2] + 12*gr*x[1]^4*x[2]^2 - 16*er*x[1]^3*x[2]^3 + 8*gr*x[1]^2*x[2]^4 - 24*er*x[1]*x[2]^5 - 4*gr*x[2]^6))/(2*mm*(x[1]^2 + x[2]^2)^4);
dvydymat = -(- 3*A*er*rc^4*x[1]^4 - 6*A*gr*rc^4*x[1]^3*x[2] + 18*A*er*rc^4*x[1]^2*x[2]^2 + 6*A*gr*rc^4*x[1]*x[2]^3 - 3*A*er*rc^4*x[2]^4 + 2*A*er*rc^2*x[1]^6 + 4*A*gr*rc^2*x[1]^5*x[2] - 10*A*er*rc^2*x[1]^4*x[2]^2 - 10*A*er*rc^2*x[1]^2*x[2]^4 - 4*A*gr*rc^2*x[1]*x[2]^5 + 2*A*er*rc^2*x[2]^6 + er*mm*x[1]^8 + 4*er*mm*x[1]^6*x[2]^2 + 6*er*mm*x[1]^4*x[2]^4 + 4*er*mm*x[1]^2*x[2]^6 + er*mm*x[2]^8)/(mm*(x[1]^2 + x[2]^2)^4);
# Inside
dvxdxinc = (2*er*mm)/(mm + mc);
dvxdyinc = (gr*(3*mm + mc))/(2*(mm + mc));
dvydxinc = (gr*(mm - mc))/(2*(mm + mc));
dvydyinc = -(2*er*mm)/(mm + mc);
# Where it's needed
dvxdx = (in==0)*dvxdxmat + (in==1)*dvxdxinc
dvxdy = (in==0)*dvxdymat + (in==1)*dvxdyinc
dvydx = (in==0)*dvydxmat + (in==1)*dvydxinc
dvydy = (in==0)*dvydymat + (in==1)*dvydyinc
return [dvxdx dvxdy; dvydx dvydy]
end
@doc raw"""
sol = Stokes2D_Schmid2003(x; params)
Evaluates the analytical solution of [Schmid & Podladchikov (2003)](https://academic.oup.com/gji/article/155/1/269/713923):
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields p (pressure), V (velocity vector), L (velocity gratdient tensor), ε̇ (deviatoric strain rate tensor) and τ (deviatoric stress tensor)
# Examples
```julia-repl
julia> Stokes2D_Schmid2003( [0, 0] )
(p = 0.0, V = [0.0, 0.0], L = [-0.019801980198019802 0.0; 0.0 0.019801980198019802], ε̇ = [-0.019801980198019802 0.0; 0.0 0.019801980198019802], τ = [-3.9603960396039604 0.0; 0.0 3.9603960396039604])
```
"""
function Stokes2D_Schmid2003(x;
params = (mm = 1.0, mc = 100, rc = 0.2, gr = 0.0, er =-1.0) )
p = Stokes2D_Schmid2003_p(x, params)
v = Stokes2D_Schmid2003_V(x, params)
# L = Stokes2D_Schmid2003_L(x, params) # just to check if automatic derivatives are correct
f_cl = x -> Stokes2D_Schmid2003_V(x, params)
L = ForwardDiff.jacobian(f_cl, x)
# Postprocess deviatoric stress and strain rate
ε̇ = 1/2*(L + L')
# Check position
(x[1]^2 + x[2]^2) < params.rc^2 ? η=params.mc : η=params.mm
τ = 2*η*ε̇
return (p=p, V=v, L=L, ε̇=ε̇, τ=τ, η=η)
end
| ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 119576 | @doc raw"""
sol = Stokes2D_SolCx_Zhong1996(x; params)
Evaluates the manufactured solution of [Zhong et al., (1996)](https://booksite.elsevier.com/brochures/geophysics/PDFs/00118.pdf).
Analytical solution adapted from Underworld (https://github.com/underworldcode, LGPL-3 license).
The solution requires the following expressions the density and viscosity fields:
ρ = sin(π * x[2]) * cos(π * x[1])
η = if 0 ≤ x ≤ 0.5
A
elseif 0.5 < x ≤ 1
B
end
Input parameters are:
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields p (pressure) and V (velocity vector)
# Examples
```julia-repl
julia> Stokes2D_SolCx_Zhong1996( [0; 0] )
(V = [0.0, 0.0], p = -0.18450665902742763)
```
"""
function Stokes2D_SolCx_Zhong1996(x; params=(; ηA=1, ηB=2))
sol = SolCx_solution(x[1], x[2], params.ηA, params.ηB)
return sol
end
#=
Analytical solution adapted from Underworld (https://github.com/underworldcode). As stated in the Underworld repository,
the code is released under the GNU LESSER GENERAL PUBLIC LICENSE (LGPL-3) license
=#
function SolCx_solution(x, z, ηA, ηB)
n, nx = 1, 1
ZA = ηA # left column viscosity
ZB = ηB # right column viscosity
xc = 0.5
_C1A = 0
t1 = nx * 0.3141592654e1
t2 = sin(t1)
t3 = nx * t2
t4 = n * n
t5 = t4 * t4
t6 = 0.3141592654e1 * 0.3141592654e1
t8 = t3 * t5 * t6
t9 = ZA * xc
t12 = exp(xc * n * 0.3141592654e1)
t13 = t12 * t12
t15 = n * 0.3141592654e1
t16 = exp(t15)
t17 = t16 * t16
t18 = t17 * t16
t19 = ZB * t13 * t18
t20 = t9 * t19
t23 = ZA * ZA
t24 = nx * nx
t25 = t24 * nx
t26 = t23 * t25
t28 = t13 * t13
t29 = t28 * t13
t33 = nx * ZB
t34 = t1 * xc
t35 = sin(t34)
t36 = t4 * n
t37 = t35 * t36
t38 = t33 * t37
t39 = 0.3141592654e1 * ZA
t40 = t13 * t12
t41 = t17 * t40
t45 = ZB * ZB
t46 = t45 * t24
t47 = t46 * t4
t48 = 0.3141592654e1 * xc
t49 = t13 * t17
t53 = xc * xc
t54 = t36 * t53
t56 = t54 * t6 * t45
t57 = cos(t34)
t58 = t57 * t24
t59 = t28 * t12
t60 = t17 * t59
t61 = t58 * t60
t64 = t25 * t2
t65 = t64 * t15
t72 = nx * t23
t74 = t72 * t2 * t5
t75 = t6 * t53
t76 = t16 * t29
t80 = t23 * n
t81 = t80 * 0.3141592654e1
t82 = t18 * t28
t86 = nx * t5
t87 = t23 * t6
t89 = xc * t2
t90 = t13 * t18
t91 = t89 * t90
t94 = t28 * t28
t96 = t24 * n
t98 = t4 * t45
t99 = t98 * 0.3141592654e1
t100 = t58 * t41
t104 = 0.3141592654e1 * t25
t105 = ZA * n * t104
t106 = t2 * ZB
t110 = t17 * t17
t111 = ZA * t110
t116 = n * t28
t122 = t64 * t4 * t6
t126 = t23 * t29 * t4
t128 = t24 * xc
t132 = t36 * t23
t133 = t6 * t57
t135 = t128 * t41
t138 = t6 * xc
t142 = t72 * t2
t147 =
0.4e1 * t8 * t20 - 0.2e1 * t26 * t2 * t16 * t29 - 0.8e1 * t38 * t39 * t41 +
0.4e1 * t47 * t48 * t49 - 0.8e1 * t56 * t61 - 0.4e1 * t65 * t20 +
0.2e1 * t26 * t2 * t18 * t28 - 0.4e1 * t74 * t75 * t76 - 0.2e1 * t81 * t64 * t82 -
0.4e1 * t86 * t87 * t91 - t23 * t94 * t96 + 0.8e1 * t99 * t100 -
0.2e1 * t105 * t106 * t82 - 0.4e1 * t38 * t48 * t111 * t12 +
0.2e1 * t116 * ZB * t111 * t24 +
0.4e1 * t122 * t20 +
0.4e1 * t126 * 0.3141592654e1 * t17 * t128 +
0.8e1 * t132 * t133 * t135 +
0.4e1 * t74 * t138 * t76 - 0.2e1 * t142 * t4 * t18 * t28
t149 = ZA * t25 * t2
t150 = ZB * t28
t154 = t35 * t5
t155 = t72 * t154
t156 = t75 * t41
t159 = nx * ZA
t160 = t2 * t36
t161 = t159 * t160
t162 = 0.3141592654e1 * ZB
t163 = t28 * t16
t167 = t23 * t57
t168 = t167 * t24
t169 = n * t110
t170 = t169 * t40
t173 = ZA * ZB
t174 = t173 * t90
t177 = t36 * 0.3141592654e1
t181 = t80 * t104
t184 = n * t17
t188 = t17 * t29
t190 = t4 * 0.3141592654e1
t191 = t190 * t24
t206 = t138 * t60
t209 = t23 * t4
t211 = t209 * t6 * t25
t212 = t89 * t76
t216 = ZB * t16 * t29
t217 = t9 * t216
t220 = ZB * t110
t221 = ZA * t24
t222 = t221 * n
t225 = t132 * t75
t232 = t45 * t28
t233 = t110 * t24
t234 = t233 * n
t236 = t209 * 0.3141592654e1
t237 = t17 * xc
t239 = t237 * t13 * t24
t242 =
-0.2e1 * t149 * t150 * t16 - 0.8e1 * t155 * t156 - 0.2e1 * t161 * t162 * t163 +
0.2e1 * t168 * t170 +
0.2e1 * t65 * t174 - 0.2e1 * t142 * t177 * t76 + 0.4e1 * t181 * t91 -
0.4e1 * t168 * t184 * t59 - 0.4e1 * t188 * t23 * t191 +
0.4e1 * t38 * t48 * ZA * t17 * t40 +
0.4e1 * t49 * t23 * t191 +
0.2e1 * t26 * t2 * t13 * t18 - 0.8e1 * t155 * t206 + 0.4e1 * t211 * t212 -
0.4e1 * t8 * t217 + 0.2e1 * t220 * t222 - 0.8e1 * t225 * t100 +
0.2e1 * t142 * t4 * t16 * t29 +
t232 * t234 - 0.4e1 * t236 * t239
t244 = nx * t45
t245 = t244 * t37
t246 = t110 * t40
t251 = t237 * t59
t256 = t64 * t90
t260 = t36 * t45 * t133
t263 = t45 * t57
t264 = t263 * t24
t265 = t169 * t12
t269 = t6 * t36
t270 = t17 * t24
t274 = t110 * t13
t276 = t190 * t128
t279 = nx * t36
t281 = t28 * t40
t282 = t281 * t35
t286 = t138 * t41
t289 = t75 * t60
t296 = t190 * t173
t305 = t86 * t45 * t35
t312 = t33 * t154
t313 = t6 * ZA
t324 = t232 * t270
t327 =
-0.2e1 * t245 * t48 * t246 +
0.4e1 * t159 * t37 * t162 * t251 +
0.4e1 * t209 * t75 * t256 +
0.8e1 * t260 * t135 +
0.2e1 * t264 * t265 +
0.32e2 * t9 * t150 * t269 * t270 +
0.4e1 * t274 * t23 * t276 +
0.2e1 * t279 * t45 * t282 * t48 +
0.8e1 * t155 * t286 +
0.8e1 * t155 * t289 - 0.8e1 * t150 * ZA * t96 * t17 + 0.8e1 * t296 * t61 -
0.2e1 * t105 * t106 * t163 - 0.2e1 * t81 * t256 - 0.8e1 * t305 * t156 -
0.4e1 * t33 * t282 * t177 * t9 - 0.16e2 * t312 * t313 * t237 * t40 -
0.4e1 * t168 * t184 * t40 +
0.2e1 * t168 * t265 +
0.16e2 * t269 * t53 * t324
t328 = t3 * t4
t331 = t72 * t37
t332 = t48 * t60
t335 = n * t94
t345 = t72 * t35
t349 = t173 * t57
t355 = t53 * t17
t364 = t54 * t6 * ZB
t365 = t28 * t17
t369 = xc * ZB
t370 = t269 * t369
t371 = ZA * t57
t373 = t371 * t270 * t40
t385 = nx * t35
t396 = t4 * xc
t397 = t396 * t162
t415 = t37 * t48
t418 =
-0.32e2 * t364 * t365 * t221 - 0.16e2 * t370 * t373 - 0.4e1 * t331 * t48 * t41 +
0.4e1 * t86 * t23 * t53 * t6 * t2 * t90 +
0.2e1 * t385 * t177 * t23 * xc * t246 +
0.16e2 * t132 * t53 * t6 * t28 * t270 - 0.4e1 * t397 * t371 * t233 * t12 -
0.12e2 * t173 * t58 * t190 * t251 +
0.2e1 * t385 * t36 * 0.3141592654e1 * t23 * xc * t59 - 0.8e1 * t99 * t61 -
0.2e1 * t244 * t59 * t415
t427 = t371 * t270 * t59
t439 = t209 * t48
t440 = t110 * t12
t441 = t58 * t440
t447 = t36 * xc
t455 = t48 * t440
t471 = ZB * t17
t492 =
0.12e2 * t397 * t373 - 0.4e1 * t122 * t217 +
0.16e2 * t364 * t427 +
0.16e2 * t312 * t313 * t355 * t40 - 0.8e1 * t279 * t39 * t35 * ZB * t60 +
0.2e1 * t439 * t441 - 0.2e1 * t81 * t64 * t163 +
0.8e1 * t447 * t87 * t61 +
0.2e1 * t23 * t59 * t57 * t276 +
0.2e1 * t245 * t455 - 0.4e1 * t349 * t96 * t440 - 0.16e2 * t370 * t427 +
0.4e1 * t181 * t212 - 0.16e2 * t365 * t23 * t269 * t128 +
0.16e2 * t86 * t138 * ZA * t35 * t471 * t59 +
0.8e1 * t305 * t289 - 0.4e1 * t439 * t100 +
0.2e1 * ZB * t25 * t2 * ZA * t18 * t28 +
0.2e1 * t142 * t4 * t28 * t16 - 0.8e1 * t56 * t100
t499 = ZA * t53 * t19
t505 = t396 * 0.3141592654e1
t518 = t173 * t53 * t16 * t29
t533 = t23 * t28
t535 = t188 * t45
t538 = t24 * t4
t545 = t3 * t177
t546 = t173 * t76
t555 = t45 * t110
t557 = t72 * t160
t561 =
-0.8e1 * t225 * t61 - 0.2e1 * t161 * t162 * t82 +
t533 * t234 +
0.4e1 * t535 * t191 +
0.4e1 * t167 * t538 * t332 +
0.4e1 * t349 * t96 * t60 +
0.2e1 * t545 * t546 - 0.2e1 * t264 * t170 + 0.4e1 * t397 * t281 * ZA * t58 -
t555 * t96 - 0.4e1 * t557 * t48 * t76
t567 = t396 * 0.3141592654e1 * t45
t568 = t58 * t246
t597 = t58 * n
t615 = t13 * t45
t616 = t615 * t233
t619 = t94 * t45
t621 = t45 * t59
t625 =
0.2e1 * t149 * t216 + 0.2e1 * t567 * t568 - 0.16e2 * t269 * xc * t324 -
0.2e1 * t236 * xc * t281 * t58 - 0.2e1 * t142 * t177 * t90 - 0.8e1 * t567 * t100 +
0.2e1 * t65 * t546 - 0.8e1 * t305 * t206 + 0.2e1 * n * t45 * t281 * t57 * t24 -
t23 * t110 * t96 - 0.8e1 * t296 * t100 +
0.2e1 * t23 * t281 * t597 +
0.4e1 * t545 * t20 +
0.2e1 * t159 * t2 * t4 * ZB * t163 - 0.4e1 * t557 * t48 * t90 +
0.4e1 * t122 * t518 +
0.8e1 * t263 * t538 * t332 - 0.4e1 * t505 * t616 - t619 * t96 -
0.2e1 * t621 * t57 * t276
t626 = t49 * t45
t660 = t29 * t45
t685 =
0.2e1 * t545 * t174 - 0.4e1 * t126 * 0.3141592654e1 * t24 * xc -
0.4e1 * t47 * t48 * t188 + 0.4e1 * t505 * t660 * t24 - 0.2e1 * t142 * t177 * t163 -
0.2e1 * t142 * t4 * t13 * t18 + 0.8e1 * t260 * t128 * t60 - 0.2e1 * t328 * t546 -
0.2e1 * t26 * t2 * t28 * t16 + 0.4e1 * t545 * t217 - 0.4e1 * t209 * t138 * t256
t690 = t6 * 0.3141592654e1
t691 = ZA * t690
t693 = t24 * t24
t694 = t693 * xc
t695 = t188 * t694
t698 = t23 * ZA
t699 = t698 * t690
t700 = t699 * t5
t704 = t5 * t4
t705 = t691 * t704
t709 = t691 * t5
t713 = t5 * n
t714 = t713 * ZB
t718 = t698 * t6
t719 = t713 * t28
t722 = t699 * t704
t726 = t713 * t94
t733 = t713 * t45
t736 = t87 * t36
t740 =
-0.4e1 * t691 * t98 * t695 +
0.8e1 * t700 * t270 * t13 +
0.4e1 * t705 * t660 * xc +
0.8e1 * t709 * t660 * t128 +
0.2e1 * t87 * t714 * t110 +
t718 * t719 * t110 - 0.4e1 * t722 * t237 * t13 - t313 * t726 * t45 -
0.4e1 * t699 * t704 * xc * t29 +
t313 * t733 * t28 +
0.4e1 * t736 * t150 * t233
t746 = t313 * t36
t752 = t6 * t6
t753 = t23 * t752
t759 = t698 * t752
t760 = t759 * t36
t761 = t17 * t693
t762 = xc * t28
t763 = t761 * t762
t766 = t87 * t713
t773 = t699 * t4
t774 = t110 * t693
t775 = xc * t13
t785 = t704 * t17
t789 =
-0.16e2 * t736 * t150 * t270 + t718 * t116 * t693 - 0.2e1 * t746 * t555 * t24 +
0.4e1 * t705 * t535 +
0.64e2 * t753 * t713 * t17 * t150 * t128 - 0.16e2 * t760 * t763 +
0.2e1 * t766 * t150 * t110 +
0.4e1 * t722 * t274 * xc +
0.4e1 * t773 * t774 * t775 - 0.8e1 * t766 * t150 * t17 +
0.8e1 * t700 * t233 * t775 +
0.4e1 * t699 * t785 * t13
t791 = t691 * t4
t792 = t45 * t693
t793 = t49 * t792
t796 = t759 * t713
t797 = t53 * t28
t798 = t270 * t797
t801 = t87 * n
t818 = t5 * t36
t819 = t753 * t818
t827 = t753 * t36 * ZB
t830 = xc * t45
t834 =
-0.4e1 * t791 * t793 +
0.32e2 * t796 * t798 +
0.2e1 * t801 * ZB * t693 * t110 +
0.2e1 * t718 * t36 * t28 * t24 - 0.8e1 * t700 * t128 * t29 - 0.8e1 * t700 * t239 -
0.8e1 * t801 * t150 * t761 + 0.32e2 * t819 * t365 * t369 -
0.64e2 * t753 * t714 * t798 +
0.32e2 * t827 * t763 +
0.4e1 * t705 * t830 * t49
t842 = xc * t29
t843 = t270 * t842
t849 = t759 * t818
t853 = t691 * t396
t857 = t691 * t5 * t45
t869 = t313 * n
t874 =
-0.2e1 * t718 * t36 * t94 * t24 - 0.4e1 * t773 * t761 * t29 +
0.8e1 * t700 * t843 +
0.2e1 * t87 * t726 * ZB +
0.16e2 * t849 * t797 * t17 +
0.4e1 * t853 * t793 +
0.8e1 * t857 * t239 +
0.2e1 * t801 * t150 * t693 - 0.8e1 * t700 * t270 * t29 - 0.8e1 * t709 * t49 * t46 -
t869 * t619 * t693 + t869 * t232 * t693
t877 = ZA * t752
t878 = t877 * t818
t911 =
0.16e2 * t878 * t53 * t45 * t365 - 0.4e1 * t699 * t785 * t29 -
0.4e1 * t705 * t188 * t830 + 0.2e1 * t801 * t94 * t693 * ZB - 0.8e1 * t857 * t843 -
t718 * t726 + 0.4e1 * t773 * t761 * t13 - 0.4e1 * t705 * t775 * t555 +
0.2e1 * t746 * t232 * t233 - 0.16e2 * t878 * t830 * t365 - 0.2e1 * t746 * t619 * t24
t916 = t110 * t28
t945 = t28 * t693 * t45 * t17
t948 =
0.32e2 * t877 * t733 * t798 + 0.2e1 * t718 * t36 * t916 * t24 -
0.4e1 * t705 * t626 + t718 * n * t916 * t693 - t869 * t792 * t110 -
0.4e1 * t773 * t761 * t775 +
t718 * t719 +
0.2e1 * t746 * t232 * t24 - 0.16e2 * t849 * t365 * xc - t718 * t713 * t110 -
0.4e1 * t773 * t694 * t29 + 0.16e2 * t877 * t54 * t945
t974 = t761 * t797
t987 =
0.4e1 * t773 * t695 + 0.4e1 * t736 * t150 * t24 + 0.4e1 * t722 * t842 * t17 -
0.16e2 * t877 * t447 * t945 +
0.2e1 * t87 * t714 * t28 +
t313 * t713 * t916 * t45 - 0.4e1 * t853 * t615 * t774 -
0.32e2 * t877 * t713 * xc * t324 +
0.16e2 * t760 * t974 +
0.4e1 * t736 * t94 * t24 * ZB +
t869 * t792 * t916 - 0.8e1 * t691 * t5 * xc * t616
t1021 =
-t718 * t169 * t693 - 0.32e2 * t827 * t974 +
0.2e1 * t801 * t150 * t774 +
0.4e1 * t791 * t188 * t792 +
0.4e1 * t736 * t220 * t24 +
0.4e1 * t791 * t842 * t792 +
0.8e1 * t709 * t660 * t270 - t718 * t335 * t693 - 0.2e1 * t718 * t36 * t110 * t24 -
0.32e2 * t819 * t797 * t471 - t313 * t733 * t110 - 0.32e2 * t796 * t270 * t762
_C2A =
(
t147 - 0.4e1 * t65 * t217 + t418 + 0.2e1 * t150 * t222 + t327 -
0.2e1 * t149 * t19 + 0.2e1 * t335 * ZB * t24 * ZA -
0.16e2 * t312 * t313 * t355 * t59 - 0.4e1 * t281 * ZB * ZA * t597 -
0.2e1 * t505 * t45 * t281 * t58 - 0.4e1 * t211 * t2 * t53 * t76 +
0.8e1 * t305 * t286 - 0.4e1 * t122 * t499 - 0.4e1 * t331 * t332 +
0.8e1 * t345 * t177 * t60 - 0.2e1 * t142 * t177 * t82 +
0.2e1 * t72 * t281 * t415 +
0.4e1 * t349 * t96 * t41 - 0.2e1 * t81 * t64 * t76 +
0.2e1 * t58 * t80 * t59 +
0.8e1 * t345 * t177 * t41 - 0.4e1 * t8 * t499 +
t242 +
0.4e1 * t8 * t518 +
t625 +
t685 +
0.2e1 * t328 * t174 +
0.2e1 * t331 * t455 - 0.2e1 * t33 * t2 * t4 * ZA * t82 - 0.4e1 * t626 * t191 +
0.16e2 * t364 * t373 - 0.2e1 * t621 * t597 - 0.2e1 * t439 * t568 +
t492 +
t533 * t96 +
t232 * t96 +
0.2e1 * t567 * t441 +
t561
) / (t740 + t789 + t834 + t874 + t911 + t948 + t987 + t1021)
t1 = n * n
t2 = t1 * n
t3 = t2 * 0.3141592654e1
t4 = t3 * xc
t5 = ZB * ZB
t7 = exp(n * 0.3141592654e1)
t8 = t7 * t7
t9 = t5 * t8
t12 = exp(xc * n * 0.3141592654e1)
t13 = t12 * t12
t14 = t13 * t13
t15 = t14 * t13
t19 = nx * nx
t21 = nx * 0.3141592654e1
t22 = sin(t21)
t23 = t19 * nx * t22
t24 = t23 * 0.3141592654e1
t25 = ZA * ZB
t26 = t7 * t15
t27 = t25 * t26
t30 = t21 * xc
t31 = sin(t30)
t32 = t31 * nx
t33 = t32 * n
t34 = ZA * ZA
t35 = t8 * t8
t36 = t34 * t35
t40 = t2 * t34
t41 = 0.3141592654e1 * t8
t42 = t41 * t15
t45 = t1 * t5
t46 = t14 * t14
t49 = t19 * t5
t51 = t19 * t46
t53 = t19 * t34
t55 = t8 * t7
t56 = t13 * t55
t57 = t25 * t56
t60 = t2 * nx
t61 = 0.3141592654e1 * 0.3141592654e1
t63 = t60 * t31 * t61
t64 = xc * xc
t65 = ZA * t64
t66 = ZB * t8
t67 = t14 * t12
t68 = t66 * t67
t69 = t65 * t68
t72 =
-0.4e1 * t4 * t9 * t15 + 0.4e1 * t24 * t27 + 0.4e1 * t33 * t36 * t12 -
0.4e1 * t40 * t42 - t45 * t46 + t45 * t14 - t49 * t14 + t51 * t5 - t53 * t14 +
0.4e1 * t24 * t57 +
0.32e2 * t63 * t69
t73 = t1 * nx
t75 = t73 * t31 * 0.3141592654e1
t76 = t8 * t67
t77 = t25 * t76
t80 = t1 * t1
t81 = t80 * t34
t83 = t61 * t14
t87 = t1 * t19
t88 = cos(t30)
t90 = t87 * t88 * t61
t91 = t5 * t64
t92 = t13 * t12
t93 = t8 * t92
t94 = t91 * t93
t100 = ZB * t64 * ZA * t8 * t92
t103 = n * t19
t105 = t103 * t88 * 0.3141592654e1
t106 = ZA * xc
t107 = ZB * t35
t109 = t106 * t107 * t12
t112 = t34 * xc
t113 = t112 * t93
t116 = t35 * t14
t118 = t1 * ZA
t119 = ZB * t14
t122 = t1 * t46
t125 = t19 * ZB
t126 = t35 * ZA
t127 = t125 * t126
t129 = t1 * ZB
t132 =
-0.16e2 * t75 * t77 + 0.16e2 * t81 * t64 * t83 * t8 + 0.16e2 * t90 * t94 -
0.32e2 * t90 * t100 + 0.8e1 * t105 * t109 - 0.8e1 * t75 * t113 +
t45 * t116 +
0.2e1 * t118 * t119 +
0.2e1 * t122 * t25 - 0.2e1 * t127 + 0.2e1 * t129 * t126
t134 = t1 * t34
t136 = t34 * t64
t137 = t136 * t76
t141 = t91 * t76
t145 = t103 * t34
t146 = 0.3141592654e1 * xc
t147 = t8 * t13
t153 = t14 * ZA
t156 = xc * t5
t157 = t156 * t93
t160 = t103 * t5
t162 = t146 * t8 * t15
t166 = t34 * t7 * t15
t169 =
t134 * t116 - 0.16e2 * t63 * t137 - t49 * t116 - 0.16e2 * t63 * t141 - t53 * t116 +
0.4e1 * t145 * t146 * t147 - 0.2e1 * t51 * t25 - 0.2e1 * t125 * t153 -
0.16e2 * t75 * t157 + 0.4e1 * t160 * t162 - 0.4e1 * t24 * t166
t170 = t106 * t68
t177 = t35 * t92
t178 = t112 * t177
t181 = t156 * t76
t186 = t35 * t12
t187 = t112 * t186
t193 = t5 * 0.3141592654e1
t206 = t34 * t14
t207 = t206 * t7
t210 =
-0.32e2 * t63 * t170 +
0.32e2 * t90 * t170 +
0.8e1 * t75 * t109 +
0.4e1 * t105 * t178 - 0.16e2 * t75 * t181 - 0.16e2 * t90 * t113 -
0.4e1 * t75 * t187 + 0.16e2 * t90 * t141 - 0.4e1 * t103 * t15 * t193 * xc +
0.16e2 * t73 * t22 * t34 * t146 * t26 +
0.4e1 * t32 * n * t34 * t67 +
0.4e1 * t24 * t207
t217 = t106 * t66 * t92
t226 = t88 * t19 * n
t227 = 0.3141592654e1 * t34
t229 = t227 * xc * t67
t232 = t73 * t31
t234 = t146 * t5 * t67
t238 = t61 * ZB
t239 = t14 * t8
t240 = t238 * t239
t243 = t136 * t93
t246 =
-0.8e1 * t33 * t25 * t186 + 0.32e2 * t90 * t217 - t45 * t35 + t53 * t35 -
t134 * t35 - t134 * t46 + t134 * t14 - 0.4e1 * t226 * t229 +
0.4e1 * t232 * t234 +
0.32e2 * t87 * t65 * t240 +
0.16e2 * t63 * t243
t247 = t14 * t92
t249 = t227 * t247 * xc
t254 = t73 * t22
t259 = t60 * t22 * t61
t260 = t112 * t26
t264 = t146 * t247 * t5
t268 = xc * t14
t274 = t5 * t14
t275 = t274 * t8
t280 = n * nx
t281 = t280 * t22
t282 = t55 * t14
t283 = t25 * t282
t290 = ZA * t247 * xc * ZB
t295 = t22 * nx * t1 * 0.3141592654e1
t298 =
-0.4e1 * t232 * t249 + 0.8e1 * t105 * t217 - 0.4e1 * t254 * t227 * t26 -
0.8e1 * t259 * t260 - 0.4e1 * t232 * t264 - 0.16e2 * t81 * t61 * t268 * t8 +
0.16e2 * t80 * t64 * t61 * t275 - 0.4e1 * t232 * t229 + 0.8e1 * t281 * t283 -
0.4e1 * t105 * t187 +
0.8e1 * t75 * t290 +
0.4e1 * t295 * t27
t301 = t61 * t5
t307 = t87 * t34
t312 = t61 * xc
t313 = t312 * t239
t317 = t34 * t55 * t14
t329 = ZB * t13 * t55
t330 = t65 * t329
t337 =
-0.16e2 * t87 * t64 * t301 * t239 - 0.32e2 * t90 * t69 -
0.16e2 * t307 * t64 * t61 * t239 +
0.16e2 * t307 * t313 +
0.4e1 * t24 * t317 +
t53 * t46 +
t49 * t35 - 0.32e2 * t63 * t100 - 0.4e1 * t280 * t31 * t34 * t247 +
0.8e1 * t259 * t330 - 0.4e1 * t280 * t31 * t247 * t5
t340 = t5 * t35
t344 = t25 * t93
t356 = t41 * t13
t360 = t23 * n * t61
t363 = t25 * t64 * t7 * t15
t366 = t156 * t177
t369 = t14 * t7
t370 = t25 * t369
t373 = t156 * t186
t378 =
0.4e1 * t24 * t283 + 0.4e1 * t33 * t340 * t12 - 0.16e2 * t75 * t344 -
0.4e1 * t280 * t31 * t5 * t67 +
0.8e1 * t33 * t25 * t247 +
0.32e2 * t63 * t217 +
0.4e1 * t40 * t356 - 0.8e1 * t360 * t363 +
0.4e1 * t75 * t366 +
0.4e1 * t295 * t370 - 0.4e1 * t75 * t373 - 0.4e1 * t105 * t366
t382 = t112 * t76
t387 = t80 * t61
t391 = t136 * t26
t409 =
0.16e2 * t63 * t382 + 0.4e1 * t226 * t234 - 0.16e2 * t387 * xc * t275 +
0.8e1 * t259 * t391 - 0.16e2 * t105 * t344 + 0.4e1 * t226 * t264 -
0.8e1 * t105 * t170 +
0.16e2 * t232 * t193 * t76 +
0.8e1 * t360 * t330 - 0.8e1 * t105 * t290 + 0.16e2 * t90 * t243
t423 = t153 * t8
t426 = t34 * t13
t427 = t426 * t55
t430 = t34 * t8
t437 = t80 * ZA
t441 =
0.4e1 * t145 * t42 - 0.16e2 * t90 * t157 +
0.24e2 * t75 * t217 +
0.4e1 * t226 * t249 +
0.4e1 * t254 * t227 * t282 +
0.4e1 * t160 * t356 - 0.8e1 * t129 * t423 - 0.8e1 * t281 * t427 -
0.8e1 * t33 * t430 * t67 +
0.8e1 * t33 * t430 * t92 +
0.32e2 * t437 * ZB * t313
t453 = t106 * ZB * t7 * t15
t456 = t2 * t5
t459 = t112 * t56
t462 = t126 * t14
t474 = t40 * 0.3141592654e1
t475 = xc * t8
t480 = t146 * t13 * t35
t483 =
-0.4e1 * t103 * xc * t193 * t147 +
0.16e2 * t87 * t61 * t156 * t239 +
0.8e1 * t259 * t453 - 0.4e1 * t456 * t356 + 0.8e1 * t259 * t459 -
0.2e1 * t125 * t462 - 0.8e1 * t281 * t207 + 0.16e2 * t295 * t459 -
0.8e1 * t60 * t22 * ZA * t312 * t329 +
0.4e1 * t474 * t475 * t15 +
0.4e1 * t160 * t480
t497 = t136 * t56
t504 = t9 * t13
t509 = t475 * t13
t512 =
-0.8e1 * t105 * t113 - 0.4e1 * t254 * t227 * t56 +
0.8e1 * t281 * t57 +
0.4e1 * t295 * t283 +
0.2e1 * t129 * t462 +
0.4e1 * t24 * t370 - 0.8e1 * t360 * t497 - 0.4e1 * t24 * t427 -
0.4e1 * t145 * t162 + 0.4e1 * t4 * t504 - 0.8e1 * t281 * t370 - 0.4e1 * t474 * t509
t528 = t5 * t13
t529 = t528 * t35
t532 = t106 * t329
t542 =
-0.16e2 * t295 * t453 - 0.32e2 * t437 * t64 * t240 +
0.8e1 * t281 * t317 +
0.24e2 * t75 * t170 - 0.4e1 * t75 * t178 + 0.8e1 * t360 * t453 - 0.4e1 * t4 * t529 -
0.16e2 * t295 * t532 - 0.8e1 * t33 * t344 - 0.16e2 * t90 * t181 +
0.4e1 * t33 * t340 * t92
t557 = t146 * t15
t562 = xc * t15
t563 = t562 * t5
t573 =
0.16e2 * t232 * t193 * t93 - 0.8e1 * t259 * t363 - 0.8e1 * t259 * t497 +
0.8e1 * t33 * t77 +
0.8e1 * t360 * t391 +
0.4e1 * t254 * t227 * t369 +
0.4e1 * t145 * t557 +
0.8e1 * t281 * t166 +
0.4e1 * t3 * t563 +
0.8e1 * t105 * t382 - 0.4e1 * t145 * t480 - 0.4e1 * t33 * t36 * t92
t600 =
0.4e1 * t456 * t42 - 0.8e1 * t360 * t260 - 0.4e1 * t40 * t557 -
0.4e1 * t105 * t373 + 0.16e2 * t226 * t227 * t93 - 0.16e2 * t90 * t382 -
0.4e1 * t145 * t356 - 0.16e2 * t63 * t157 - 0.32e2 * t87 * t25 * t313 -
0.16e2 * t226 * t227 * t76 - 0.16e2 * t63 * t113
t623 = xc * t13
t627 =
0.8e1 * t125 * t423 - 0.8e1 * t360 * t532 + 0.16e2 * t90 * t137 -
0.4e1 * t160 * t42 +
0.16e2 * t63 * t94 +
0.16e2 * t63 * t181 - 0.8e1 * t281 * t27 - 0.8e1 * t75 * t382 +
0.8e1 * t360 * t459 +
0.4e1 * t295 * t57 +
0.16e2 * t105 * t77 +
0.4e1 * t474 * t623 * t35
t632 = t61 * 0.3141592654e1
t633 = t632 * t8
t634 = t80 * n
t638 = t632 * t634
t639 = t638 * xc
t642 = t61 * t34
t643 = t122 * t19
t649 = t61 * t61
t650 = t649 * t1
t652 = t19 * t19
t653 = t14 * t652
t654 = t653 * t9
t657 = t14 * t1
t658 = t657 * t19
t665 = t632 * t34
t666 = t665 * t2
t667 = t8 * t19
t668 = t667 * t623
t674 = t665 * n
t675 = t652 * xc
t682 =
0.8e1 * t633 * t426 * t634 - 0.8e1 * t639 * t529 - 0.4e1 * t642 * t643 +
0.2e1 * t642 * t116 * t80 +
0.32e2 * t650 * t64 * t654 +
0.4e1 * t301 * t658 +
0.4e1 * t387 * t46 * ZA * ZB - 0.16e2 * t666 * t668 - 0.16e2 * t666 * t667 * t15 -
0.8e1 * t674 * t675 * t15 + 0.4e1 * t238 * t153 * t80
t683 = t46 * t652
t686 = t633 * t15
t691 = t35 * t80
t698 = t35 * t652
t705 = t14 * t80
t708 = t61 * t35
t717 =
-0.2e1 * t642 * t683 - 0.8e1 * t686 * t5 * t634 * xc - 0.2e1 * t301 * t691 +
0.8e1 * t638 * t563 - 0.2e1 * t642 * t691 - 0.2e1 * t642 * t698 -
0.2e1 * t301 * t698 - 0.2e1 * t301 * t683 +
0.2e1 * t642 * t705 +
0.2e1 * t708 * t274 * t80 +
0.2e1 * t301 * t653 - 0.2e1 * t642 * t80 * t46
t727 = t61 * t46
t737 = t649 * t34
t738 = t737 * t1
t739 = t8 * t652
t740 = t739 * t268
t746 = t61 * ZA
t754 = t632 * n * xc
t758 =
0.2e1 * t301 * t705 + 0.2e1 * t642 * t653 - 0.8e1 * t665 * xc * t634 * t15 -
0.2e1 * t727 * t5 * t80 - 0.32e2 * t650 * xc * t654 + 0.2e1 * t301 * t698 * t14 -
0.32e2 * t738 * t740 +
0.8e1 * t674 * t739 * t562 +
0.4e1 * t746 * t119 * t652 +
0.8e1 * t674 * t698 * t623 - 0.8e1 * t754 * t528 * t698
t762 = t633 * t13
t764 = t5 * n * t652
t767 = t80 * t1
t768 = t649 * t767
t772 = t649 * ZA
t773 = t772 * t129
t777 = t35 * t1 * t19
t780 = t632 * t5
t781 = t780 * t15
t786 = t698 * ZA
t790 = t64 * t14
t800 = t649 * t8
t809 =
0.4e1 * t238 * t126 * t80 - 0.8e1 * t762 * t764 - 0.32e2 * t768 * xc * t275 +
0.64e2 * t773 * t740 - 0.4e1 * t301 * t777 - 0.8e1 * t781 * n * t8 * t675 +
0.4e1 * t238 * t786 +
0.32e2 * t768 * t34 * t790 * t8 - 0.8e1 * t633 * t528 * t634 +
0.8e1 * t754 * t528 * t739 +
0.128e3 * t800 * t119 * t80 * t19 * t106 +
0.8e1 * t674 * t739 * t13
t812 = t649 * t80
t817 = t83 * ZB
t824 = t746 * ZB
t828 = t800 * t14
t855 =
-0.64e2 * t812 * xc * t274 * t667 +
0.4e1 * t817 * t786 +
0.4e1 * t727 * ZA * t652 * ZB - 0.32e2 * t824 * t657 * t667 -
0.32e2 * t828 * t34 * t767 * xc - 0.8e1 * t633 * t15 * t34 * t634 -
0.8e1 * t674 * t739 * t15 +
0.32e2 * t768 * t64 * t275 +
0.4e1 * t708 * t14 * t307 +
0.2e1 * t708 * t206 * t652 +
0.8e1 * t632 * t35 * t13 * t34 * t634 * xc
t858 = t35 * t19
t873 = t2 * t8
t878 = t61 * t1
t901 =
-0.16e2 * t632 * t2 * xc * t528 * t858 +
0.8e1 * t824 * t658 +
0.4e1 * t301 * t14 * t777 - 0.8e1 * t665 * t634 * t509 -
0.8e1 * t674 * t739 * t623 - 0.16e2 * t781 * t873 * t19 * xc +
0.8e1 * t878 * t14 * t127 +
0.8e1 * t878 * ZA * t51 * ZB +
0.8e1 * t686 * t764 +
0.8e1 * t665 * xc * t634 * t15 * t8 +
0.8e1 * t633 * t15 * t5 * t634 +
0.4e1 * t387 * t14 * t107 * ZA
t903 = t739 * t790
t923 = t737 * t80
t924 = t667 * t790
t927 = t780 * t2
t937 = t15 * t19 * xc
t943 =
0.32e2 * t738 * t903 +
0.16e2 * t781 * t873 * t19 +
0.8e1 * t754 * t15 * t652 * t5 +
0.16e2 * t666 * t858 * t623 +
0.64e2 * t828 * t25 * t767 * xc - 0.16e2 * t762 * t456 * t19 +
0.64e2 * t923 * t924 +
0.16e2 * t927 * t668 - 0.64e2 * t768 * ZA * t790 * t66 - 0.64e2 * t773 * t903 +
0.16e2 * t927 * t937 +
0.16e2 * t666 * t667 * t562
t977 =
0.64e2 * t812 * t5 * t924 +
0.8e1 * t639 * t504 +
0.8e1 * t238 * t35 * t118 * t19 +
0.4e1 * t642 * t658 - 0.16e2 * t817 * t437 * t8 - 0.128e3 * t772 * ZB * t80 * t924 +
0.16e2 * t666 * t667 * t13 - 0.4e1 * t301 * t643 - 0.16e2 * t824 * t653 * t8 -
0.4e1 * t642 * t777 - 0.64e2 * t923 * t667 * t268 - 0.16e2 * t666 * t937
_C3A =
(
t72 +
t132 +
t169 +
t210 +
t246 +
t298 +
t337 +
t378 +
t409 +
t441 +
t483 +
t512 +
t542 +
t573 +
t600 +
t627
) / (t682 + t717 + t758 + t809 + t855 + t901 + t943 + t977)
#**************************************************************************************
_C4A = 0
#**************************************************************************************
t1 = nx * 0.3141592654e1
t2 = t1 * xc
t3 = cos(t2)
t4 = nx * nx
t6 = n * 0.3141592654e1
t7 = t3 * t4 * t6
t8 = ZA * ZB
t9 = exp(t6)
t10 = t9 * t9
t11 = xc * n
t13 = exp(t11 * 0.3141592654e1)
t14 = t13 * t13
t15 = t14 * t13
t16 = t14 * t14
t17 = t16 * t15
t18 = t10 * t17
t19 = t8 * t18
t22 = sin(t2)
t23 = nx * t22
t24 = t23 * n
t25 = ZB * ZB
t30 = n * n
t31 = t30 * n
t32 = t31 * nx
t33 = 0.3141592654e1 * 0.3141592654e1
t35 = t32 * t22 * t33
t36 = ZA * ZA
t37 = t36 * xc
t38 = t16 * t13
t39 = t10 * t38
t40 = t37 * t39
t43 = sin(t1)
t44 = nx * t43
t45 = t30 * 0.3141592654e1
t46 = t44 * t45
t47 = ZA * xc
t49 = ZB * t16 * t9
t54 = t4 * nx * t43
t55 = xc * xc
t57 = t54 * t30 * t55
t58 = t33 * 0.3141592654e1
t59 = t58 * t25
t60 = t16 * t9
t61 = t59 * t60
t64 = xc * t25
t65 = t14 * t9
t66 = t64 * t65
t70 = t44 * t31 * t33
t71 = t37 * t65
t74 = t10 * t15
t75 = t64 * t74
t78 = t25 * t10
t83 = t54 * n * t33
t84 = t55 * t25
t85 = t10 * t9
t86 = t14 * t85
t87 = t84 * t86
t90 = t30 * t30
t92 = t44 * t90 * t58
t93 = t55 * xc
t94 = t93 * t25
t95 = t85 * t16
t96 = t94 * t95
t102 = t23 * t45
t103 = t10 * t10
t104 = ZB * t103
t106 = t47 * t104 * t15
t111 = t54 * 0.3141592654e1
t112 = t25 * t85
t113 = t112 * t16
t115 = t8 * t39
t118 = t16 * t14
t119 = t85 * t118
t120 = t37 * t119
t123 = t16 * t16
t124 = t36 * t123
t125 = t124 * t9
t127 =
-0.8e1 * t7 * t19 + 0.2e1 * t24 * t25 * t13 * t10 - 0.16e2 * t35 * t40 -
0.16e2 * t46 * t47 * t49 - 0.8e1 * t57 * t61 +
0.4e1 * t46 * t66 +
0.2e1 * t70 * t71 - 0.16e2 * t35 * t75 + 0.6e1 * t24 * t78 * t38 -
0.2e1 * t83 * t87 - 0.8e1 * t92 * t96 - 0.8e1 * t46 * t37 * t95 -
0.12e2 * t102 * t106 +
0.2e1 * t83 * t71 +
t111 * t113 +
0.8e1 * t7 * t115 +
0.2e1 * t83 * t120 +
t111 * t125
t128 = t37 * t74
t131 = t44 * n
t133 = t25 * t9 * t118
t136 = t36 * t14
t137 = t136 * t9
t140 = t30 * t4
t142 = t140 * t3 * t33
t143 = t64 * t39
t147 = t30 * nx * t43
t148 = 0.3141592654e1 * t36
t149 = t9 * t118
t153 = t44 * t31 * ZA
t154 = t33 * xc
t155 = t154 * t49
t160 = ZA * t17 * xc * ZB
t163 = t103 * t13
t164 = t64 * t163
t170 = t44 * t90 * t55
t171 = t58 * ZB
t172 = ZA * t16
t174 = t171 * t172 * t9
t177 = t36 * t55
t178 = t177 * t149
t181 = t54 * t11
t182 = t33 * t25
t186 = t25 * t14
t187 = t186 * t9
t193 = t186 * t85
t198 = ZB * t55
t199 = ZA * t103
t201 = t198 * t199 * t15
t204 =
0.2e1 * t7 * t128 - 0.2e1 * t131 * t133 - 0.2e1 * t131 * t137 +
0.16e2 * t142 * t143 - t147 * t148 * t149 + 0.8e1 * t153 * t155 -
0.4e1 * t7 * t160 +
0.2e1 * t7 * t164 +
0.10e2 * t102 * t40 +
0.16e2 * t170 * t174 +
0.2e1 * t83 * t178 - 0.2e1 * t181 * t182 * t65 - t111 * t187 - 0.2e1 * t70 * t87 +
0.4e1 * t102 * t160 - 0.2e1 * t131 * t193 - 0.16e2 * t142 * t75 +
0.16e2 * t35 * t201
t210 = t32 * t22
t211 = t33 * t55
t212 = t25 * t38
t213 = t211 * t212
t216 = n * nx
t217 = t22 * t25
t222 = ZB * t85 * t16
t226 = t23 * t30
t227 = t13 * t10
t228 = t148 * t227
t233 = t37 * t163
t237 = n * t4 * t3
t238 = t148 * t74
t241 = t64 * t86
t245 = t148 * xc * t15
t248 = t112 * t118
t250 = t22 * t36
t256 = 0.3141592654e1 * t25
t257 = t256 * t39
t262 = t38 * t103
t263 = t37 * t262
t267 = t148 * t17 * xc
t270 =
-0.6e1 * t7 * t143 - 0.4e1 * t24 * t19 - 0.8e1 * t210 * t213 -
0.2e1 * t216 * t217 * t15 - 0.32e2 * t153 * t211 * t222 +
0.4e1 * t226 * t228 +
0.16e2 * t142 * t201 +
0.2e1 * t7 * t233 - 0.4e1 * t237 * t238 - 0.2e1 * t83 * t241 - 0.2e1 * t237 * t245 +
t111 * t248 +
0.2e1 * t216 * t250 * t15 - 0.2e1 * t131 * t125 - 0.4e1 * t226 * t257 +
t147 * t148 * t95 - 0.2e1 * t102 * t263 + 0.2e1 * t237 * t267
t273 = t37 * t149
t277 = t47 * t104 * t13
t285 = t31 * t36
t286 = t44 * t285
t291 = t25 * t123 * t9
t304 = 0.3141592654e1 * xc
t305 = t304 * t212
t312 = t256 * t18
t315 = t8 * t60
t319 = t54 * t30 * t58
t323 = t90 * t36
t324 = t44 * t323
t325 = t55 * t58
t326 = t325 * t60
t329 =
0.2e1 * t102 * t164 + 0.2e1 * t83 * t273 - 0.4e1 * t102 * t277 - 0.2e1 * t7 * t263 +
0.4e1 * t24 * t8 * t17 - 0.4e1 * t286 * t154 * t60 - 0.2e1 * t131 * t291 -
t147 * t148 * t119 +
0.2e1 * t24 * t78 * t17 +
0.2e1 * t54 * t85 * 0.3141592654e1 * ZA * ZB - 0.4e1 * t226 * t305 -
0.2e1 * t70 * t66 +
t147 * t256 * t95 +
0.4e1 * t237 * t312 +
0.2e1 * t111 * t315 - 0.8e1 * t319 * t96 - t111 * t193 - 0.8e1 * t324 * t326
t332 = t8 * t95
t335 = t136 * t85
t337 = t256 * t227
t340 = t177 * t119
t346 = t37 * t86
t351 = t103 * t15
t352 = t177 * t351
t355 = t64 * t119
t358 = t8 * t227
t361 = t85 * 0.3141592654e1
t365 = t84 * t39
t372 = ZB * t10
t373 = t372 * t38
t374 = t47 * t373
t379 = t177 * t39
t384 =
-0.2e1 * t46 * t332 + t111 * t335 + 0.4e1 * t237 * t337 - 0.2e1 * t83 * t340 +
0.16e2 * t286 * t211 * t95 +
0.2e1 * t70 * t346 - 0.8e1 * t170 * t61 - 0.8e1 * t142 * t352 - 0.2e1 * t83 * t355 -
0.4e1 * t24 * t358 +
0.2e1 * t147 * t361 * t8 +
0.8e1 * t35 * t365 - 0.2e1 * t226 * t267 + 0.8e1 * t102 * t115 -
0.12e2 * t102 * t374 + 0.16e2 * t142 * t40 - 0.8e1 * t142 * t379 +
0.4e1 * t237 * t228
t386 = t54 * t30 * t93
t387 = ZA * t85
t389 = t171 * t387 * t16
t394 = t64 * t60
t398 = t304 * t25 * t15
t401 = t361 * t25
t405 = t84 * t65
t410 = t148 * t18
t414 = t25 * t16 * t9
t417 = t84 * t74
t422 = t177 * t86
t428 = ZB * t38
t429 = t47 * t428
t432 = t148 * t39
t439 =
0.16e2 * t386 * t389 - 0.16e2 * t386 * t174 +
0.8e1 * t46 * t394 +
0.2e1 * t237 * t398 - t147 * t401 +
0.4e1 * t7 * t374 +
0.2e1 * t83 * t405 - 0.4e1 * t46 * t241 - 0.4e1 * t226 * t410 +
0.2e1 * t131 * t414 +
0.8e1 * t35 * t417 - 0.8e1 * t142 * t365 + 0.2e1 * t70 * t422 -
0.4e1 * t181 * t182 * t60 + 0.12e2 * t102 * t429 - 0.4e1 * t226 * t432 +
0.32e2 * t35 * t374 - 0.4e1 * t7 * t106
t442 = t36 * t9 * t118
t444 = t123 * t9
t445 = t8 * t444
t448 = t361 * t36
t451 = t47 * t372 * t17
t454 = t94 * t60
t457 = t25 * t103
t465 = t47 * t372 * t15
t468 = t36 * t85
t469 = t468 * t16
t474 = t43 * t85
t478 = t8 * t74
t484 = t256 * t74
t489 = t198 * ZA * t10 * t15
t501 =
-t111 * t442 + 0.4e1 * t131 * t445 - t147 * t448 +
0.4e1 * t7 * t451 +
0.8e1 * t92 * t454 - 0.2e1 * t24 * t457 * t13 - 0.2e1 * t286 * t211 * t65 +
0.4e1 * t7 * t465 +
t111 * t469 - 0.2e1 * t216 * t250 * t17 - 0.2e1 * t216 * t474 * t25 -
0.4e1 * t24 * t478 +
0.4e1 * t24 * t8 * t38 +
0.4e1 * t226 * t484 - 0.16e2 * t142 * t489 - 0.2e1 * t24 * t212 * t103 -
0.2e1 * t216 * t22 * t17 * t25 + 0.2e1 * t70 * t120
t504 = t33 * t36 * t55 * t38
t507 = t37 * t18
t512 = t47 * ZB * t13 * t10
t518 = t59 * t95
t530 = t84 * t351
t534 = t37 * t227
t549 =
-0.8e1 * t210 * t504 + 0.2e1 * t102 * t507 + 0.4e1 * t7 * t512 + t111 * t133 -
0.16e2 * t35 * t489 +
0.8e1 * t170 * t518 +
0.2e1 * t24 * t36 * t13 * t10 +
0.4e1 * t131 * t387 * ZB +
0.12e2 * t102 * t465 - 0.8e1 * t142 * t530 + t111 * t291 - 0.2e1 * t102 * t534 -
0.4e1 * t70 * t394 - 0.10e2 * t102 * t128 +
0.4e1 * t237 * t305 +
0.8e1 * t102 * t19 +
0.2e1 * t83 * t346 - 0.16e2 * t35 * t128
t557 = t468 * t118
t562 = t93 * t58
t563 = t562 * t60
t567 = t44 * t90 * t93
t575 = ZA * t55
t576 = t575 * t428
t583 = t37 * t60
t590 = t140 * t3
t601 =
-0.2e1 * t226 * t398 - 0.2e1 * t70 * t340 - 0.2e1 * t131 * t557 -
0.4e1 * t24 * t115 +
0.8e1 * t324 * t563 +
0.16e2 * t567 * t389 +
0.16e2 * t70 * t84 * t95 +
0.2e1 * t70 * t178 - 0.16e2 * t142 * t576 - 0.4e1 * t237 * t257 -
0.4e1 * t226 * t312 +
0.8e1 * t46 * t583 +
0.2e1 * t24 * t36 * t38 * t103 +
0.8e1 * t590 * t213 +
0.2e1 * t102 * t143 - 0.16e2 * t35 * t143 +
0.2e1 * t131 * t248 +
0.4e1 * t46 * t346
t604 = n * t36
t606 = t154 * t95
t625 = t36 * t103
t640 = t30 * t36
t641 = t54 * t640
t642 = t325 * t95
t647 =
-0.4e1 * t131 * t315 - 0.4e1 * t54 * t604 * t606 - t147 * t148 * t60 +
0.16e2 * t35 * t576 - 0.8e1 * t102 * t478 + 0.32e2 * t142 * t465 -
0.4e1 * t237 * t484 - 0.2e1 * t70 * t355 +
0.2e1 * t70 * t273 +
0.2e1 * t102 * t233 - 0.2e1 * t24 * t625 * t13 - 0.8e1 * t7 * t358 -
0.2e1 * t111 * t445 - 0.4e1 * t7 * t429 +
0.16e2 * t46 * t47 * t222 +
0.2e1 * t131 * t113 +
0.8e1 * t641 * t642 - 0.2e1 * t7 * t534
t652 = t36 * t16
t653 = t652 * t9
t655 = t64 * t227
t658 = t182 * t95
t663 = t562 * t95
t684 = t64 * t351
t689 = t36 * t10
t695 = t154 * t222
t698 =
-0.4e1 * t216 * t217 * t38 - t111 * t653 - 0.2e1 * t7 * t655 - 0.4e1 * t181 * t658 +
0.2e1 * t131 * t469 - 0.8e1 * t641 * t663 - 0.4e1 * t83 * t583 -
0.2e1 * t83 * t177 * t65 - 0.4e1 * t24 * t457 * t15 +
0.16e2 * t70 * t84 * t60 +
0.8e1 * t57 * t518 - 0.32e2 * t142 * t374 +
0.4e1 * t24 * t8 * t351 +
0.4e1 * t102 * t684 - t147 * t256 * t86 - 0.2e1 * t24 * t689 * t15 -
0.2e1 * t70 * t241 + 0.8e1 * t153 * t695
t711 = t575 * t373
t717 = t304 * t17 * t25
t736 = t177 * t74
t739 =
0.2e1 * t226 * t245 - 0.8e1 * t102 * t358 - 0.16e2 * t57 * t389 -
0.2e1 * t102 * t655 + 0.8e1 * t590 * t504 - 0.8e1 * t641 * t326 -
0.16e2 * t35 * t711 - t111 * t557 + t111 * t137 - 0.2e1 * t226 * t717 +
0.8e1 * t102 * t37 * t351 +
0.2e1 * t131 * t335 - 0.4e1 * t131 * t332 - 0.2e1 * t216 * t474 * t36 -
0.2e1 * t111 * t332 + 0.16e2 * t142 * t711 - t147 * t256 * t60 + 0.8e1 * t142 * t736
t750 = t64 * t262
t763 = t44 * t640
t770 = t84 * t119
t782 =
0.4e1 * t102 * t512 + 0.8e1 * t142 * t417 + 0.8e1 * t641 * t563 -
0.2e1 * t7 * t507 + 0.2e1 * t7 * t750 - 0.8e1 * t35 * t352 +
0.4e1 * t237 * t410 +
0.4e1 * t7 * t684 - 0.2e1 * t46 * t445 +
t147 * t148 * t65 +
0.4e1 * t763 * t304 * t119 +
0.16e2 * t70 * t177 * t60 +
0.2e1 * t70 * t770 - t111 * t414 - 0.16e2 * t567 * t174 - 0.4e1 * t46 * t71 -
0.4e1 * t46 * t355 - 0.4e1 * t7 * t277
t797 = t64 * t149
t821 =
-t54 * t448 + 0.2e1 * t131 * t442 + 0.8e1 * t7 * t478 + 0.8e1 * t35 * t379 -
0.2e1 * t181 * t182 * t149 +
0.2e1 * t70 * t405 +
0.2e1 * t83 * t770 - 0.2e1 * t70 * t797 - 0.6e1 * t7 * t75 - 0.4e1 * t286 * t606 -
0.4e1 * t237 * t432 + t147 * t256 * t149 - 0.4e1 * t763 * t304 * t149 -
0.2e1 * t102 * t75 +
0.2e1 * t237 * t717 +
0.8e1 * t324 * t642 - 0.16e2 * t170 * t389 + 0.2e1 * t83 * t422
t827 = t84 * t149
t846 = t54 * n * ZA
t854 = t64 * t18
t867 =
-0.16e2 * t142 * t128 + 0.32e2 * t35 * t465 - 0.2e1 * t83 * t827 +
0.2e1 * t46 * t315 +
t147 * t148 * t86 - 0.4e1 * t102 * t451 - 0.8e1 * t226 * t148 * xc * t38 -
0.2e1 * t24 * t689 * t38 +
0.2e1 * t131 * t187 +
0.8e1 * t846 * t155 +
0.8e1 * t35 * t736 +
0.2e1 * t24 * t689 * t17 - 0.2e1 * t7 * t854 +
t147 * t256 * t119 +
0.2e1 * t102 * t854 - 0.8e1 * t35 * t530 +
0.4e1 * t46 * t797 +
0.2e1 * t102 * t750
t909 =
-0.8e1 * t324 * t663 + t147 * t256 * t444 - t147 * t256 * t65 +
0.4e1 * t226 * t238 +
0.2e1 * t7 * t40 - t54 * t401 +
0.16e2 * t57 * t174 +
0.4e1 * t226 * t337 +
0.4e1 * t24 * t8 * t163 +
0.8e1 * t846 * t695 +
0.8e1 * t319 * t454 +
0.2e1 * t131 * t653 - 0.8e1 * t46 * t64 * t95 + 0.6e1 * t24 * t78 * t15 -
0.4e1 * t44 * t31 * xc * t658 - 0.32e2 * t153 * t211 * t49 - 0.2e1 * t70 * t827 +
t147 * t148 * t444
t914 = t25 * ZB
t915 = t33 * t914
t919 = t4 * t4
t920 = t16 * t919
t929 = t123 * t90
t932 = t919 * t103
t935 = t33 * ZB
t939 = t652 * t919
t942 = t16 * t30
t943 = t942 * t4
t949 = t103 * t16
t950 = t949 * t90
t953 =
-0.2e1 * t915 * t103 * t90 + 0.2e1 * t915 * t920 - 0.2e1 * t915 * t123 * t919 +
0.2e1 * t915 * t16 * t90 - 0.2e1 * t915 * t929 - 0.2e1 * t915 * t932 -
0.2e1 * t935 * t323 * t123 +
0.2e1 * t935 * t939 +
0.4e1 * t915 * t943 +
0.4e1 * t182 * t172 * t90 +
0.2e1 * t915 * t950
t954 = t171 * t36
t955 = t90 * n
t956 = xc * t955
t957 = t118 * t10
t964 = t33 * t33
t965 = t964 * ZB
t966 = t965 * t640
t967 = t10 * t919
t968 = t55 * t16
t969 = t967 * t968
t972 = t935 * t36
t974 = t103 * t30 * t4
t977 = xc * t16
t978 = t967 * t977
t981 = t90 * t30
t983 = t16 * t10
t987 = t182 * ZA
t988 = t4 * t10
t992 = t171 * t604
t993 = xc * t14
t994 = t932 * t993
t997 = t182 * t30
t1005 = t171 * t285
t1006 = t988 * t993
t1009 = t58 * t914
t1010 = t1009 * t31
t1013 =
0.8e1 * t954 * t956 * t957 + 0.2e1 * t915 * t932 * t16 + 0.32e2 * t966 * t969 -
0.4e1 * t972 * t974 - 0.32e2 * t966 * t978 + 0.32e2 * t965 * t981 * t177 * t983 -
0.32e2 * t987 * t942 * t988 +
0.8e1 * t992 * t994 +
0.8e1 * t997 * t949 * ZA * t4 - 0.2e1 * t935 * t124 * t919 -
0.16e2 * t1005 * t1006 + 0.16e2 * t1010 * t1006
t1015 = t964 * t25
t1016 = ZA * t30
t1017 = t1015 * t1016
t1020 = t967 * t993
t1031 = t1009 * t118
t1032 = t31 * t10
t1040 = t964 * t914
t1041 = t1040 * t90
t1044 = t55 * t10 * t4 * t16
t1047 = t1040 * t30
t1050 = t123 * ZA
t1054 = t977 * t988
t1057 =
0.64e2 * t1017 * t978 - 0.8e1 * t992 * t1020 +
0.2e1 * t972 * t950 +
0.4e1 * t182 * t929 * ZA +
0.4e1 * t182 * t199 * t90 - 0.16e2 * t1031 * t1032 * t4 * xc +
0.4e1 * t182 * t172 * t919 +
0.64e2 * t1041 * t1044 +
0.32e2 * t1047 * t969 +
0.4e1 * t182 * t1050 * t919 - 0.64e2 * t1041 * t1054
t1058 = t1009 * n
t1063 = t932 * ZA
t1069 = t123 * t30 * t4
t1080 = t993 * t103 * t4
t1088 = t935 * t103
t1094 =
-0.8e1 * t1058 * t994 - 0.32e2 * t1047 * t978 + 0.4e1 * t182 * t1063 -
0.4e1 * t915 * t974 - 0.4e1 * t915 * t1069 - 0.2e1 * t935 * t625 * t90 -
0.8e1 * t1009 * t10 * t14 * t955 - 0.16e2 * t1010 * t1080 -
0.2e1 * t935 * t625 * t919 - 0.64e2 * t1017 * t969 +
0.2e1 * t1088 * t939 +
0.8e1 * t1009 * t957 * t955
t1113 = t955 * t118 * xc
t1120 = t4 * t118
t1125 = t981 * xc
t1133 = n * t10
t1140 =
-0.8e1 * t954 * t955 * t10 * t993 + 0.2e1 * t935 * t652 * t90 -
0.64e2 * t1015 * t981 * t575 * t983 +
0.8e1 * t182 * t103 * t1016 * t4 +
0.8e1 * t1009 * t1113 +
0.16e2 * t954 * t1032 * t4 * t14 - 0.16e2 * t954 * t1032 * t1120 +
0.64e2 * t1015 * t10 * t172 * t1125 +
0.8e1 * t171 * t103 * t136 * t956 - 0.8e1 * t1031 * t1133 * t919 * xc +
0.8e1 * t1058 * t1020
t1153 = xc * t118
t1165 = t182 * t16
t1170 = t171 * t10
t1178 = ZA * t90
t1182 =
0.4e1 * t1088 * t652 * t140 +
0.8e1 * t954 * t1133 * t919 * t14 +
0.4e1 * t972 * t943 - 0.4e1 * t972 * t1069 - 0.16e2 * t954 * t31 * t4 * t1153 -
0.8e1 * t954 * n * t919 * t1153 - 0.8e1 * t954 * t1133 * t919 * t118 +
0.4e1 * t1165 * t1063 +
0.16e2 * t1005 * t1080 - 0.8e1 * t1170 * t118 * t36 * t955 -
0.16e2 * t987 * t920 * t10 - 0.16e2 * t1165 * t1178 * t10
t1195 = t1040 * t981
t1199 = t1009 * t955
t1203 = t1009 * t10
t1211 = t965 * t323
t1225 =
-0.32e2 * t965 * t10 * t652 * t1125 +
0.4e1 * t915 * t16 * t974 +
0.4e1 * t182 * t90 * t949 * ZA +
0.32e2 * t1195 * t968 * t10 - 0.8e1 * t1199 * t993 * t103 +
0.8e1 * t1203 * t118 * n * t919 +
0.8e1 * t1170 * t136 * t955 +
0.64e2 * t1211 * t1044 +
0.16e2 * t1031 * t1032 * t4 +
0.8e1 * t987 * t943 +
0.8e1 * t1199 * t993 * t10 +
0.8e1 * t997 * t1050 * t4
t1263 =
-0.128e3 * t1015 * t1178 * t1044 +
0.16e2 * t1005 * t988 * t1153 +
0.8e1 * t1058 * t1153 * t919 +
0.16e2 * t1010 * t1120 * xc - 0.8e1 * t954 * t1113 -
0.8e1 * t1203 * t14 * n * t919 - 0.16e2 * t1203 * t14 * t31 * t4 -
0.8e1 * t1203 * t1113 - 0.32e2 * t1195 * t977 * t10 - 0.64e2 * t1211 * t1054 +
0.8e1 * t992 * t967 * t1153 +
0.128e3 * t1015 * t983 * t90 * t4 * t47
_C1B =
(
t127 +
t204 +
t270 +
t329 +
t384 +
t439 +
t501 +
t549 +
t601 +
t647 +
t698 +
t739 +
t782 +
t821 +
t867 +
t909
) / (t953 + t1013 + t1057 + t1094 + t1140 + t1182 + t1225 + t1263)
t1 = n * n
t2 = t1 * n
t3 = nx * t2
t4 = 0.3141592654e1 * ZA
t5 = t3 * t4
t6 = nx * 0.3141592654e1
t7 = t6 * xc
t8 = sin(t7)
t9 = t8 * ZB
t10 = n * 0.3141592654e1
t11 = exp(t10)
t12 = t11 * t11
t15 = exp(xc * n * 0.3141592654e1)
t16 = t15 * t15
t17 = t16 * t16
t18 = t17 * t15
t19 = t12 * t18
t23 = t1 * t1
t24 = nx * t23
t25 = ZB * ZB
t27 = t18 * t8
t28 = 0.3141592654e1 * 0.3141592654e1
t29 = xc * xc
t30 = t28 * t29
t34 = t1 * xc
t35 = 0.3141592654e1 * ZB
t36 = t34 * t35
t37 = cos(t7)
t38 = ZA * t37
t39 = nx * nx
t40 = t39 * t12
t41 = t16 * t15
t43 = t38 * t40 * t41
t46 = t25 * n
t47 = t46 * 0.3141592654e1
t48 = t39 * nx
t49 = sin(t6)
t50 = t48 * t49
t51 = t12 * t11
t52 = t51 * t17
t53 = t50 * t52
t56 = t34 * 0.3141592654e1 * t25
t57 = t37 * t39
t58 = t17 * t41
t59 = t12 * t58
t60 = t57 * t59
t63 = t25 * t18
t64 = t57 * n
t67 = ZA * ZA
t68 = t67 * n
t69 = 0.3141592654e1 * t48
t70 = t68 * t69
t71 = t49 * xc
t72 = t17 * t16
t73 = t11 * t72
t74 = t71 * t73
t77 = t1 * t67
t78 = t77 * 0.3141592654e1
t81 = nx * t25
t82 = t81 * t49
t83 = t17 * t17
t85 = t1 * t83 * t11
t87 = nx * ZB
t88 = t8 * t2
t89 = t87 * t88
t90 = 0.3141592654e1 * xc
t91 = t12 * t12
t92 = ZA * t91
t97 = ZB * ZA
t98 = t97 * t37
t99 = t39 * n
t100 = t12 * t41
t104 =
0.8e1 * t5 * t9 * t19 + 0.8e1 * t24 * t25 * t27 * t30 + 0.12e2 * t36 * t43 -
t47 * t53 - 0.2e1 * t56 * t60 - 0.4e1 * t63 * t64 +
0.6e1 * t70 * t74 +
0.4e1 * t78 * t60 - t82 * t85 +
0.4e1 * t89 * t90 * t92 * t41 +
0.4e1 * t98 * t99 * t100
t105 = t67 * t48
t106 = t49 * t51
t107 = t106 * t72
t109 = t1 * 0.3141592654e1
t110 = t109 * xc
t115 = nx * t67
t116 = t115 * t49
t117 = t1 * t16
t118 = t117 * t11
t120 = t2 * t25
t121 = t28 * 0.3141592654e1
t122 = t121 * t29
t123 = t120 * t122
t129 = t1 * ZB
t130 = t129 * t4
t131 = t57 * t100
t134 = t12 * t16
t136 = t109 * t39
t139 = ZB * t18
t141 = t39 * t1
t142 = t141 * t90
t145 = t77 * t90
t146 = t91 * t41
t147 = t57 * t146
t151 = t25 * t39 * t1
t152 = t72 * t12
t156 = t49 * t2
t158 = t83 * t11
t162 =
-t105 * t107 + 0.8e1 * t110 * t72 * t25 * t39 - t116 * t118 +
0.8e1 * t123 * t53 +
0.8e1 * t5 * t9 * t59 - 0.8e1 * t130 * t131 - 0.8e1 * t134 * t25 * t136 -
0.12e2 * t139 * t38 * t142 - 0.8e1 * t145 * t147 - 0.8e1 * t151 * t90 * t152 -
0.2e1 * t87 * t156 * t4 * t158
t164 = t115 * t88
t165 = t90 * t19
t168 = t25 * t48
t169 = t49 * t16
t170 = t169 * t11
t174 = ZA * n * t69
t175 = ZB * t51
t176 = t175 * t17
t177 = t71 * t176
t180 = t1 * t29
t181 = t28 * t25
t182 = t180 * t181
t183 = t50 * t73
t186 = ZA * t1
t187 = t28 * t48
t188 = t186 * t187
t189 = ZB * t17
t190 = t189 * t11
t191 = t71 * t190
t194 = t50 * t158
t196 = t115 * t156
t197 = t90 * t73
t201 = t49 * t17 * t11
t204 = t88 * t90
t207 = t68 * 0.3141592654e1
t208 = t17 * t11
t209 = t50 * t208
t211 =
-0.2e1 * t164 * t165 - t168 * t170 +
t168 * t107 +
0.8e1 * t174 * t177 +
0.2e1 * t182 * t183 +
0.8e1 * t188 * t191 +
t47 * t194 - 0.6e1 * t196 * t197 - t168 * t201 - 0.4e1 * t81 * t18 * t204 -
t207 * t209
t212 = t2 * 0.3141592654e1
t213 = t212 * t52
t215 = t81 * t8
t216 = t212 * t59
t219 = t3 * t90
t220 = t25 * t8
t221 = t18 * t91
t225 = t71 * t52
t231 = t16 * t51
t232 = t50 * t231
t237 = ZA * t12
t243 = t67 * t28
t244 = t24 * t243
t245 = t71 * t231
t249 =
-t116 * t213 - 0.4e1 * t215 * t216 + 0.2e1 * t219 * t220 * t221 -
0.4e1 * t70 * t225 +
0.4e1 * t98 * t99 * t146 +
t47 * t232 - 0.2e1 * t145 * t57 * t221 + 0.4e1 * t89 * t90 * t237 * t41 -
t105 * t201 - 0.6e1 * t244 * t245 + t105 * t170
t252 = t25 * t37
t253 = t252 * t39
t255 = n * t15 * t12
t258 = t2 * t29
t259 = ZB * t28
t260 = t258 * t259
t263 = t106 * t17
t265 = xc * t25
t269 = t25 * t49
t270 = t269 * t52
t273 = t1 * t25
t274 = t273 * 0.3141592654e1
t275 = t57 * t19
t278 = t24 * t30
t288 = t1 * t11 * t72
t290 = t212 * t208
t292 = t2 * xc
t296 =
0.2e1 * t253 * t255 + 0.16e2 * t260 * t43 + t105 * t263 - 0.4e1 * t10 * t265 * t53 +
0.4e1 * t219 * t270 - 0.12e2 * t274 * t275 + 0.8e1 * t278 * t270 -
0.2e1 * ZB * n * t69 * t49 * ZA * t158 - t82 * t288 - t116 * t290 +
0.16e2 * t292 * t243 * t275
t301 = t50 * t176
t304 = t51 * t72
t305 = t71 * t304
t308 = t25 * t41
t311 = ZA * t48
t312 = t311 * t49
t317 = t91 * t15
t318 = t57 * t317
t321 = t81 * t88
t322 = t90 * t59
t325 = t212 * t231
t327 = t15 * t12
t328 = t57 * t327
t331 = t77 * t187
t334 = t2 * ZA
t335 = t334 * t122
t336 = t50 * t190
t339 =
0.8e1 * t151 * t90 * t134 + 0.16e2 * t186 * t30 * t301 - 0.2e1 * t70 * t305 +
0.2e1 * t308 * t64 - 0.2e1 * t312 * ZB * t83 * t11 +
0.2e1 * t56 * t318 +
0.2e1 * t321 * t322 - t116 * t325 - 0.4e1 * t274 * t328 + 0.2e1 * t331 * t305 -
0.16e2 * t335 * t336
t341 = t169 * t51
t344 = t49 * t11 * t72
t346 = t77 * t30
t347 = t50 * t304
t350 = t25 * t51
t352 = nx * ZA
t353 = t49 * t23
t354 = t352 * t353
t355 = t28 * xc
t362 = t25 * t91
t365 = t23 * n
t366 = nx * t365
t367 = t366 * t122
t368 = ZB * t49
t369 = ZA * t51
t370 = t369 * t17
t371 = t368 * t370
t374 = t115 * t353
t375 = t355 * t73
t381 =
t105 * t341 - t105 * t344 - 0.2e1 * t346 * t347 - t350 * t50 -
0.8e1 * t354 * t355 * t176 - 0.4e1 * t98 * t99 * t317 - 0.2e1 * t362 * t99 -
0.16e2 * t367 * t371 + 0.6e1 * t374 * t375 - 0.8e1 * t182 * t53 - t82 * t290
t382 = t71 * t208
t394 = t2 * t67
t395 = t394 * t122
t398 = t352 * t156
t402 = t17 * t12
t403 = t39 * ZA
t404 = t402 * t403
t407 = t269 * t208
t411 = t49 * t83 * t11
t413 = t46 * t69
t419 =
-0.4e1 * t331 * t382 + 0.2e1 * t115 * t58 * t204 - 0.2e1 * t145 * t60 +
0.12e2 * t274 * t131 +
0.2e1 * t346 * t232 +
0.8e1 * t395 * t53 - 0.8e1 * t398 * t90 * t176 - 0.64e2 * t260 * t404 +
0.4e1 * t219 * t407 +
t168 * t411 - 0.6e1 * t413 * t74 - 0.2e1 * t110 * t308 * t57
t424 = t16 * t11
t425 = t212 * t424
t427 = t258 * t181
t430 = t67 * t29
t431 = t366 * t430
t432 = t121 * t49
t433 = t432 * t52
t436 = n * t12
t437 = t436 * t18
t440 = t29 * xc
t441 = t440 * t121
t442 = t394 * t441
t445 = t67 * t37
t446 = t445 * t39
t448 = n * t18 * t91
t453 = t352 * t49
t458 = t8 * t23
t462 = t81 * t458
t463 = t30 * t19
t466 =
-t47 * t209 + t116 * t425 - 0.8e1 * t427 * t275 + 0.8e1 * t431 * t433 -
0.2e1 * t253 * t437 - 0.8e1 * t442 * t53 - 0.2e1 * t446 * t448 +
0.2e1 * t175 * t312 +
0.6e1 * t453 * t129 * t208 +
0.8e1 * t115 * t18 * t458 * t30 +
0.8e1 * t462 * t463
t470 = t436 * t58
t475 = t2 * t121 * t440 * t25
t485 = t212 * t73
t488 = t67 * t72 * t1
t490 = t39 * xc
t501 =
0.4e1 * t374 * t355 * t52 + 0.2e1 * t446 * t470 - 0.8e1 * t475 * t53 -
0.2e1 * t446 * t437 - 0.4e1 * t36 * t38 * t39 * t15 * t12 - t116 * t485 +
0.8e1 * t488 * 0.3141592654e1 * t12 * t490 - t207 * t183 - 0.2e1 * t182 * t232 -
0.6e1 * t413 * t245 - 0.4e1 * t413 * t382
t503 = t115 * t8
t510 = t355 * t19
t513 = t432 * t208
t525 = t38 * t40 * t18
t533 =
-0.4e1 * t503 * t216 - 0.4e1 * t89 * t90 * t92 * t15 - 0.16e2 * t462 * t510 +
0.8e1 * t431 * t513 - 0.4e1 * t78 * t131 + t47 * t183 - 0.2e1 * t67 * t83 * t99 +
0.4e1 * t331 * t225 +
0.16e2 * t260 * t525 - 0.4e1 * t89 * t90 * t237 * t58 - t207 * t53
t536 = t28 * t37
t538 = t490 * t100
t541 = t334 * t441
t547 = t394 * t30
t550 = t212 * t19
t553 = t366 * t441
t556 = n * t17
t571 =
-0.8e1 * t427 * t131 +
0.16e2 * t394 * t536 * t538 +
0.16e2 * t541 * t336 +
0.2e1 * t453 * t129 * t158 - 0.8e1 * t547 * t147 + 0.4e1 * t503 * t550 -
0.8e1 * t553 * t270 + 0.4e1 * t556 * ZB * t92 * t39 - 0.2e1 * t67 * t91 * t99 -
t82 * t425 +
0.4e1 * t78 * t275 +
0.2e1 * t78 * xc * t41 * t57
t583 = t90 * t317
t594 = t212 * t158
t596 = t152 * t67
t602 = t67 * t17
t607 =
0.8e1 * t367 * t407 - 0.4e1 * t98 * t99 * t59 +
0.16e2 * t260 * t18 * ZA * t57 +
0.2e1 * t321 * t583 - 0.6e1 * t174 * t368 * t52 -
0.4e1 * t89 * t90 * ZA * t15 * t12 + t116 * t594 - 0.8e1 * t596 * t136 -
0.4e1 * t98 * t99 * t327 +
0.2e1 * t602 * t99 +
0.2e1 * t164 * t583
t613 = t83 * t25
t616 = t81 * t156
t627 = t90 * t231
t630 = t91 * t16
t638 =
0.4e1 * t196 * t90 * t208 - 0.8e1 * t130 * t60 - 0.2e1 * t613 * t99 +
0.6e1 * t616 * t197 - 0.8e1 * t547 * t131 +
0.8e1 * t67 * t18 * t37 * t142 +
0.2e1 * t145 * t328 - 0.6e1 * t196 * t627 + 0.8e1 * t630 * t67 * t142 -
0.8e1 * t547 * t275 + 0.8e1 * t395 * t209
t643 = t77 * t355
t648 = t115 * t458
t651 = t134 * t67
t657 = t30 * t304
t660 = t30 * t146
t665 = t25 * t17
t668 = t50 * t424
t671 =
-0.4e1 * t321 * t90 * t146 - 0.6e1 * t643 * t232 + 0.8e1 * t182 * t209 -
0.16e2 * t648 * t510 +
0.8e1 * t651 * t136 +
0.8e1 * t89 * t4 * t100 - 0.2e1 * t374 * t657 - 0.8e1 * t648 * t660 +
0.8e1 * t130 * t328 +
0.2e1 * t665 * t99 +
0.2e1 * t346 * t668
t672 = t90 * t424
t676 = t120 * t536
t680 = t436 * t41
t688 = t366 * t67 * t440
t696 = xc * t12
t697 = t696 * t18
t701 = t252 * t141
t702 = t90 * t221
t705 =
0.2e1 * t196 * t672 - t47 * t347 + 0.16e2 * t676 * t538 - t116 * t85 -
0.2e1 * t253 * t680 +
t207 * t194 +
0.4e1 * t98 * t99 * t19 - 0.8e1 * t688 * t433 + 0.16e2 * t541 * t301 -
0.6e1 * t312 * t190 +
0.4e1 * t352 * t88 * t35 * t697 +
0.2e1 * t701 * t702
t712 = t24 * t430
t713 = t28 * t49
t721 = t1 * t17 * t11
t726 = ZB * xc
t737 = n * t91
t741 =
0.8e1 * t346 * t209 + 0.2e1 * t712 * t713 * t424 + 0.8e1 * t130 * t275 -
t47 * t668 + t116 * t721 - 0.8e1 * t688 * t513 +
0.4e1 * t352 * t27 * t212 * t726 +
0.8e1 * t648 * t463 +
0.4e1 * t274 * t60 - 0.4e1 * t374 * t355 * t208 - 0.4e1 * t253 * t737 * t41
t745 = t269 * t231
t749 = t1 * t28 * t265
t757 = t16 * t39
t758 = t696 * t757
t762 = t69 * t49
t772 = t355 * t100
t775 = t81 * t353
t778 =
-0.8e1 * t398 * t90 * t190 - 0.2e1 * t278 * t745 +
0.4e1 * t749 * t53 +
0.32e2 * t394 * t29 * t28 * t17 * t40 - 0.8e1 * t78 * t758 + t350 * n * t762 -
0.6e1 * t87 * t49 * t186 * t52 - 0.8e1 * t553 * t407 - 0.4e1 * t749 * t209 +
0.16e2 * t648 * t772 - 0.6e1 * t775 * t375
t790 = t212 * t304
t793 = t156 * 0.3141592654e1
t795 = t355 * t304
t800 = t91 * t39
t801 = t800 * n
t807 = t2 * t28
t808 = t807 * t726
t811 =
-0.2e1 * t616 * t672 - 0.2e1 * t446 * t680 - 0.2e1 * t78 * xc * t58 * t57 +
0.8e1 * t367 * t270 - t82 * t790 + t115 * t51 * t793 - 0.2e1 * t775 * t795 +
0.8e1 * t123 * t209 +
0.2e1 * t665 * t801 - 0.2e1 * t67 * t41 * t64 - 0.32e2 * t808 * t43
t812 = t117 * t51
t821 = t24 * t355
t827 = t90 * t304
t840 = t800 * t41
t844 =
-t116 * t812 - 0.2e1 * t110 * t25 * t58 * t57 - 0.4e1 * t78 * t328 + t82 * t485 -
0.4e1 * t821 * t407 +
0.4e1 * t196 * t90 * t52 +
0.2e1 * t196 * t827 +
t82 * t325 +
0.2e1 * t253 * t448 - 0.32e2 * t402 * t67 * t807 * t490 - t207 * t232 +
0.12e2 * t186 * t90 * ZB * t37 * t840
t849 = t1 * t51
t850 = t849 * t17
t860 = t269 * t424
t863 = t273 * t187
t874 =
0.16e2 * t462 * t772 - t116 * t850 + 0.16e2 * t553 * t371 + t116 * t288 -
0.12e2 * t97 * t57 * t109 * t697 + t82 * t594 - 0.2e1 * t278 * t860 -
0.2e1 * t863 * t305 - 0.16e2 * t180 * t259 * t311 * t201 - 0.6e1 * t863 * t74 +
0.8e1 * t174 * t191
t879 = xc * ZA
t888 = t67 * t51
t901 = ZA * t17
t903 = t368 * t901 * t11
t908 =
-0.2e1 * t352 * t51 * t156 * t35 +
0.64e2 * t879 * t189 * t807 * t40 +
0.2e1 * t46 * t58 * t37 * t39 - t888 * t50 + t105 * t411 - 0.16e2 * t335 * t301 +
0.8e1 * t152 * t25 * t136 - 0.8e1 * t278 * t407 + 0.2e1 * t712 * t713 * t231 -
0.16e2 * t367 * t903 + 0.2e1 * t145 * t318
t923 = t71 * t424
t926 = t87 * t458
t927 = t28 * ZA
t944 =
0.8e1 * t354 * t355 * t190 - 0.8e1 * t110 * t16 * t25 * t800 -
0.2e1 * t374 * t30 * t73 - 0.16e2 * t354 * t30 * t176 - 0.2e1 * t244 * t923 -
0.32e2 * t926 * t927 * t696 * t41 - 0.32e2 * t808 * t525 + 0.6e1 * t749 * t232 -
0.8e1 * t188 * t177 +
0.4e1 * t36 * t58 * ZA * t57 +
0.4e1 * t821 * t270
t948 = t90 * t327
t961 = t30 * t100
t964 = t29 * t49
t981 = t106 * t1
t983 =
-0.2e1 * t219 * t220 * t100 + 0.2e1 * t321 * t948 - 0.16e2 * t189 * ZA * t99 * t12 -
0.2e1 * t369 * n * t69 * t368 + 0.2e1 * t374 * t795 - 0.8e1 * t462 * t961 -
0.8e1 * t244 * t964 * t208 +
0.2e1 * t413 * t923 +
0.4e1 * t36 * t38 * t40 * t58 - 0.2e1 * t87 * t51 * t49 * t1 * ZA +
t888 * n * t762 +
t115 * t981
t1012 =
0.6e1 * t616 * t627 - t82 * t213 + 0.2e1 * t775 * t657 - 0.12e2 * t215 * t550 -
0.6e1 * t145 * t131 +
0.2e1 * t81 * t41 * t204 +
0.6e1 * ZB * t48 * t49 * t370 - 0.4e1 * t70 * t382 +
0.2e1 * t446 * t255 +
0.8e1 * t89 * t4 * t327 - 0.4e1 * t56 * t147
t1018 = t212 * t100
t1029 = t212 * t327
t1040 =
0.6e1 * t70 * t245 +
0.2e1 * t56 * t328 +
t207 * t668 +
0.4e1 * t503 * t1018 +
0.2e1 * t253 * t470 - 0.6e1 * t398 * t35 * t208 - 0.8e1 * t331 * t964 * t52 -
0.4e1 * t503 * t1029 +
0.6e1 * t821 * t745 +
0.4e1 * t63 * t37 * t142 +
0.16e2 * t260 * t38 * t840
t1068 =
t207 * t347 - 0.2e1 * t164 * t702 - 0.2e1 * t331 * t964 * t73 +
0.8e1 * t374 * t30 * t52 +
0.16e2 * t278 * t903 +
0.2e1 * t863 * t923 +
0.6e1 * t445 * t141 * t165 - 0.2e1 * t164 * t90 * t100 + 0.6e1 * t331 * t74 -
0.2e1 * t182 * t668 - 0.2e1 * t115 * t41 * t204
t1079 = t58 * t8
t1091 = t807 * t29
t1092 = t665 * t40
t1101 = ZB * t91
t1102 = t403 * n
t1105 =
-0.4e1 * t58 * ZB * ZA * t64 - t82 * t850 +
0.2e1 * t821 * t860 +
t81 * t51 * t793 +
0.2e1 * t3 * t25 * t1079 * t90 +
t82 * t721 - 0.2e1 * t643 * t668 +
0.16e2 * t926 * t927 * t29 * t91 * t41 +
0.32e2 * t1091 * t1092 - 0.2e1 * t219 * t220 * t19 +
0.4e1 * t139 * ZA * t64 +
0.4e1 * t1101 * t1102
t1108 = t849 * t72
t1121 = t737 * t15
t1124 = t29 * t12
t1133 =
t116 * t1108 - 0.8e1 * t475 * t209 - 0.32e2 * t807 * xc * t1092 +
0.2e1 * t278 * t269 * t73 +
t82 * t812 - 0.6e1 * t56 * t131 +
0.2e1 * t253 * t1121 +
0.16e2 * t926 * t927 * t1124 * t41 +
t168 * t263 - 0.2e1 * t616 * t827 + t81 * t981
t1134 = t394 * t28
t1159 =
-0.8e1 * t1134 * t29 * t18 * t57 + t82 * t118 - 0.12e2 * t215 * t1018 +
0.2e1 * t602 * t801 - t168 * t341 +
0.2e1 * t67 * t58 * t64 +
t168 * t344 - 0.6e1 * t174 * t368 * t208 +
0.16e2 * t553 * t903 +
t116 * t790 - 0.4e1 * t36 * t38 * t800 * t15
t1161 = n * t83
t1173 = ZB * t12
t1196 =
0.4e1 * t1161 * ZB * t39 * ZA - 0.4e1 * t215 * t1029 -
0.8e1 * t488 * 0.3141592654e1 * t39 * xc + 0.32e2 * t821 * ZA * t8 * t1173 * t18 -
0.8e1 * t427 * t147 + 0.6e1 * t701 * t165 - 0.16e2 * t926 * t927 * t1124 * t18 -
0.8e1 * t1091 * t63 * t57 - 0.8e1 * t442 * t209 - 0.8e1 * t462 * t660 -
0.6e1 * t398 * t35 * t52
t1228 =
0.2e1 * t413 * t305 - 0.8e1 * t648 * t961 -
0.16e2 * t87 * t27 * t23 * t28 * ZA * t29 + 0.4e1 * t189 * t1102 -
0.4e1 * t87 * t1079 * t212 * t879 + 0.2e1 * t164 * t948 - 0.2e1 * t70 * t923 +
0.2e1 * t164 * t322 +
0.2e1 * t446 * t1121 +
0.2e1 * t863 * t964 * t304 - t82 * t1108 + 0.16e2 * t676 * t490 * t19
t1234 = t25 * ZB
t1235 = t1234 * t28
t1236 = t365 * t91
t1240 = ZB * t121
t1241 = t1240 * t77
t1242 = t39 * t39
t1243 = t12 * t1242
t1244 = xc * t72
t1245 = t1243 * t1244
t1248 = t365 * t25
t1252 = t243 * n
t1257 = t23 * t1
t1258 = t1240 * t1257
t1259 = t67 * t12
t1260 = xc * t16
t1268 = t1234 * t121
t1269 = t1268 * t23
t1272 = t1242 * t91
t1280 = t67 * xc
t1284 = t28 * t28
t1285 = t67 * t1284
t1287 = t1285 * t2 * ZB
t1288 = t17 * xc
t1289 = t1243 * t1288
t1292 =
0.2e1 * t1235 * t1236 * t17 + 0.8e1 * t1241 * t1245 + 0.4e1 * t927 * t1248 * t91 -
0.2e1 * t1252 * ZB * t1242 * t91 - 0.8e1 * t1258 * t1259 * t1260 -
0.4e1 * t1235 * t2 * t83 * t39 +
0.16e2 * t1269 * t758 +
0.2e1 * t1252 * t189 * t1272 - 0.2e1 * t1252 * t83 * t1242 * ZB +
0.8e1 * t1258 * t630 * t1280 - 0.32e2 * t1287 * t1289
t1293 = t365 * t83
t1300 = ZA * t1284
t1304 = t17 * t1242 * t25 * t12
t1307 = t927 * t2
t1311 = t23 * t2
t1312 = t1300 * t1311
t1316 = t1234 * t1284
t1317 = t1316 * t1311
t1321 = t1240 * t23
t1331 = t1240 * t23 * t67
t1332 = t40 * t1244
t1338 = t1243 * t1260
t1344 =
-0.2e1 * t1235 * t1293 - 0.16e2 * t181 * t365 * t901 * t12 -
0.64e2 * t1300 * t258 * t1304 +
0.8e1 * t1307 * t613 * t39 +
0.64e2 * t1312 * t265 * t402 - 0.32e2 * t1317 * t1288 * t12 -
0.16e2 * t1321 * t67 * t39 * t1244 +
0.2e1 * t1235 * n * t1272 * t17 +
0.16e2 * t1331 * t1332 +
0.64e2 * t1300 * t292 * t1304 - 0.8e1 * t1241 * t1338 - 0.2e1 * t243 * t1293 * ZB
t1346 = t1316 * t2
t1349 = t927 * n
t1350 = t25 * t1242
t1354 = t1268 * t1257
t1366 = t1268 * t1
t1370 = t29 * t17
t1371 = t1243 * t1370
t1386 =
-0.32e2 * t1346 * t1289 +
0.4e1 * t1349 * t1350 * t91 +
0.8e1 * t1354 * t1260 * t12 - 0.16e2 * t181 * n * t901 * t1243 -
0.4e1 * t1235 * t2 * t91 * t39 +
0.8e1 * t1366 * t152 * t1242 +
0.32e2 * t1287 * t1371 +
0.8e1 * t1258 * t1280 * t152 - 0.8e1 * t1354 * t1260 * t91 +
0.128e3 * t1300 * t365 * xc * t1092 +
0.8e1 * t1366 * t1338
t1387 = t1257 * t12
t1391 = t1240 * t1
t1399 = t1272 * t1260
t1412 = t1285 * t1311
t1427 =
-0.8e1 * t1268 * t1387 * t16 - 0.8e1 * t1391 * t67 * t1242 * t1244 -
0.4e1 * t1134 * t1101 * t39 + 0.8e1 * t1241 * t1399 - 0.8e1 * t1258 * t596 +
0.4e1 * t927 * t1293 * t25 - 0.16e2 * t1331 * t758 +
0.8e1 * t1307 * t665 * t39 +
0.32e2 * t1412 * t1370 * t1173 +
0.8e1 * t1307 * t665 * t800 +
0.8e1 * t1391 * t1259 * t1242 * t16 - 0.8e1 * t1391 * t1259 * t1242 * t72
t1456 = t365 * ZB
t1468 =
0.4e1 * t927 * t1248 * t17 - 0.2e1 * t1235 * n * t1242 * t91 +
0.8e1 * t1366 * t1244 * t1242 - 0.16e2 * t1269 * t134 * t39 +
0.8e1 * t1268 * t1257 * t72 * xc +
0.16e2 * t1321 * t1259 * t757 +
0.32e2 * t1317 * t1370 * t12 +
0.4e1 * t1349 * t613 * t1242 +
0.2e1 * t243 * t1456 * t17 - 0.64e2 * t1285 * t365 * t12 * t189 * t490 -
0.8e1 * t1354 * t152 * xc
t1472 = t1316 * t365
t1474 = t1124 * t39 * t17
t1478 = t17 * t91
t1504 = t72 * t39
t1511 =
0.4e1 * t1134 * t189 * t800 +
0.64e2 * t1472 * t1474 +
0.4e1 * t1235 * t2 * t1478 * t39 +
0.4e1 * t1349 * t665 * t1242 - 0.8e1 * t1258 * t1280 * t72 +
0.2e1 * t1252 * t189 * t1242 +
0.2e1 * t243 * t365 * t189 * t91 +
0.4e1 * t927 * t365 * t1478 * t25 - 0.128e3 * t1300 * t1248 * t1474 -
0.2e1 * t1235 * t1236 +
0.16e2 * t1269 * t1504 * xc +
0.2e1 * t1235 * t365 * t17
t1545 =
-0.2e1 * t1235 * t1161 * t1242 + 0.4e1 * t1349 * t1350 * t1478 -
0.8e1 * t1366 * t1245 + 0.2e1 * t1235 * t556 * t1242 -
0.32e2 * t1412 * t402 * t726 - 0.8e1 * t1366 * t1399 + 0.8e1 * t1258 * t651 -
0.2e1 * t243 * t1456 * t91 + 0.8e1 * t1268 * t1387 * t72 - 0.16e2 * t1269 * t1332 +
0.4e1 * t1134 * t189 * t39 +
0.16e2 * t1269 * t152 * t39
t1564 = t1260 * t800
t1583 =
0.64e2 * t1285 * t1456 * t1474 - 0.64e2 * t1472 * t1288 * t40 -
0.8e1 * t1366 * t134 * t1242 +
0.8e1 * t1307 * t362 * t39 +
0.4e1 * t1235 * t2 * t17 * t39 +
0.32e2 * t1346 * t1371 - 0.16e2 * t1269 * t1564 - 0.16e2 * t1321 * t1259 * t1504 +
0.16e2 * t1331 * t1564 - 0.64e2 * t1312 * t29 * t25 * t402 -
0.4e1 * t1134 * t83 * t39 * ZB - 0.32e2 * t181 * t2 * t404
_C2B =
(
t1133 +
t1196 +
t1068 +
t811 +
t466 +
t1012 +
t381 +
t162 +
t249 +
t533 +
t844 +
t104 +
t1159 +
t571 +
t211 +
t874 +
t607 +
t339 +
t296 +
t638 +
t908 +
t671 +
t419 +
t983 +
t705 +
t1105 +
t501 +
t778 +
t1040 +
t1228 +
t741 +
t944
) / (t1292 + t1344 + t1386 + t1427 + t1468 + t1511 + t1545 + t1583)
#**************************************************************************************
t1 = n * n
t2 = t1 * n
t3 = t2 * nx
t4 = nx * 0.3141592654e1
t5 = t4 * xc
t6 = sin(t5)
t7 = 0.3141592654e1 * 0.3141592654e1
t9 = t3 * t6 * t7
t10 = xc * xc
t11 = ZA * ZA
t12 = t10 * t11
t13 = n * 0.3141592654e1
t14 = exp(t13)
t15 = t14 * t14
t16 = xc * n
t18 = exp(t16 * 0.3141592654e1)
t19 = t18 * t18
t20 = t19 * t18
t21 = t15 * t20
t22 = t12 * t21
t25 = nx * t6
t26 = t1 * 0.3141592654e1
t27 = t25 * t26
t28 = ZA * ZB
t29 = t18 * t15
t30 = t28 * t29
t33 = t25 * n
t34 = t11 * t15
t35 = t19 * t19
t36 = t35 * t18
t40 = t25 * t1
t41 = 0.3141592654e1 * t11
t42 = t15 * t36
t43 = t41 * t42
t46 = nx * nx
t47 = t1 * t46
t48 = t47 * t11
t49 = t7 * xc
t50 = t35 * t15
t51 = t49 * t50
t55 = sin(t4)
t56 = t46 * nx * t55
t58 = t56 * n * t7
t59 = ZB * ZB
t60 = t10 * t59
t61 = t15 * t14
t62 = t19 * t61
t63 = t60 * t62
t66 = t19 * t14
t67 = t60 * t66
t70 = t28 * t42
t73 = cos(t5)
t74 = t47 * t73
t75 = t7 * t11
t77 = t75 * t10 * t36
t80 = t73 * t46
t81 = t80 * n
t82 = 0.3141592654e1 * t59
t83 = t82 * t42
t87 = xc * t11
t88 = t87 * t62
t91 = n * nx
t92 = t55 * t61
t96 = nx * t55
t98 = t96 * t2 * t7
t101 = xc * t59
t102 = t101 * t62
t108 = t1 * t1
t109 = t108 * t7
t111 = t59 * t35
t112 = t111 * t15
t115 = t35 * t20
t123 = t1 * nx * t55
t124 = t61 * t35
t127 = t35 * t19
t128 = t61 * t127
t129 = t60 * t128
t132 = t56 * t16
t133 = t7 * t59
t134 = t133 * t124
t137 =
0.6e1 * t58 * t88 - 0.2e1 * t91 * t92 * t11 + 0.2e1 * t98 * t63 -
0.6e1 * t58 * t102 - 0.2e1 * t91 * t92 * t59 - 0.16e2 * t109 * xc * t112 -
0.2e1 * t91 * t6 * t115 * t59 +
0.12e2 * t40 * t83 +
t123 * t41 * t124 - 0.2e1 * t58 * t129 + 0.4e1 * t132 * t134
t139 = t56 * 0.3141592654e1
t140 = t111 * t14
t144 = t49 * t124
t147 = t91 * t55
t148 = t61 * ZA
t154 = ZA * t115 * xc * ZB
t157 = t7 * 0.3141592654e1
t159 = t96 * t108 * t157
t160 = t10 * xc
t161 = t160 * t59
t162 = t35 * t14
t163 = t161 * t162
t166 = t28 * t162
t169 = t80 * t13
t170 = t101 * t42
t173 = t2 * t11
t174 = t96 * t173
t175 = t7 * t10
t179 = t59 * t15
t184 = t15 * t15
t193 =
t139 * t140 +
0.4e1 * t56 * n * t11 * t144 +
0.4e1 * t147 * t148 * ZB +
0.4e1 * t27 * t154 +
0.8e1 * t159 * t163 - 0.12e2 * t147 * t166 + 0.2e1 * t169 * t170 -
0.16e2 * t174 * t175 * t124 + 0.2e1 * t33 * t179 * t20 -
0.2e1 * t33 * t11 * t36 * t184 + 0.2e1 * t56 * t61 * 0.3141592654e1 * ZA * ZB
t194 = t173 * 0.3141592654e1
t195 = xc * t15
t196 = t195 * t19
t202 = t15 * t115
t203 = t28 * t202
t206 = t96 * t26
t207 = t14 * t127
t208 = t101 * t207
t211 = t12 * t128
t218 = t11 * t61
t219 = t218 * t35
t221 = t108 * ZA
t223 = t7 * ZB
t224 = t223 * t50
t227 = ZA * xc
t228 = ZB * t15
t229 = t228 * t36
t230 = t227 * t229
t233 = t87 * t207
t236 = t6 * t11
t240 =
-0.4e1 * t194 * t196 + 0.4e1 * t194 * t195 * t127 + 0.4e1 * t33 * t203 -
0.12e2 * t206 * t208 + 0.2e1 * t58 * t211 - 0.16e2 * t47 * t10 * t133 * t50 +
t139 * t219 - 0.32e2 * t221 * t10 * t224 - 0.4e1 * t169 * t230 -
0.6e1 * t98 * t233 + 0.2e1 * t91 * t236 * t20
t244 = t227 * t228 * t20
t252 = t184 * t18
t253 = t101 * t252
t256 = t35 * t35
t257 = t256 * t14
t258 = t28 * t257
t261 = t108 * t11
t263 = t7 * t35
t268 = ZB * t61 * t35
t273 = t96 * t108 * t160
t274 = t157 * ZB
t276 = t274 * t148 * t35
t279 = t101 * t21
t282 = 0.3141592654e1 * xc
t283 = t59 * t36
t284 = t282 * t283
t289 =
0.4e1 * t169 * t244 - 0.4e1 * t132 * t133 * t162 - 0.2e1 * t147 * t140 -
0.2e1 * t27 * t253 +
0.2e1 * t139 * t258 +
0.16e2 * t261 * t10 * t263 * t15 - 0.16e2 * t206 * t227 * t268 -
0.16e2 * t273 * t276 - 0.6e1 * t27 * t279 - 0.4e1 * t40 * t284 - 0.32e2 * t9 * t230
t290 = t1 * t11
t291 = t96 * t290
t297 = t59 * t61
t298 = t297 * t127
t300 = ZB * t36
t301 = t227 * t300
t304 = t1 * t59
t305 = t184 * t35
t310 = t46 * ZB
t311 = t184 * ZA
t312 = t310 * t311
t314 = t60 * t21
t317 = t1 * ZA
t318 = ZB * t35
t321 = t1 * t256
t324 = t96 * t261
t325 = t10 * t157
t326 = t325 * t124
t329 =
-0.4e1 * t291 * t282 * t128 + t123 * t82 * t62 - t139 * t298 +
0.12e2 * t27 * t301 +
t304 * t305 - 0.2e1 * t58 * t12 * t66 - 0.2e1 * t312 +
0.8e1 * t9 * t314 +
0.2e1 * t317 * t318 +
0.2e1 * t321 * t28 - 0.8e1 * t324 * t326
t331 = t28 * t124
t334 = 0.3141592654e1 * t15
t335 = t334 * t127
t338 = t35 * ZA
t341 = t46 * t256
t344 = t46 * t11
t346 = t46 * t59
t348 = t297 * t35
t351 = ZA * t10
t352 = t351 * t300
t355 = t1 * ZB
t362 =
0.12e2 * t147 * t331 - 0.4e1 * t173 * t335 - 0.2e1 * t310 * t338 -
0.2e1 * t341 * t28 - t344 * t305 - t346 * t305 +
0.2e1 * t147 * t348 +
0.16e2 * t9 * t352 +
0.2e1 * t355 * t311 +
t290 * t305 +
0.2e1 * t33 * t34 * t20
t363 = t36 * t184
t364 = t87 * t363
t368 = t47 * t73 * t7
t373 = t160 * t157
t374 = t373 * t124
t377 = t311 * t35
t380 = t12 * t62
t386 = ZB * t10 * ZA * t15 * t20
t389 = t87 * t66
t393 = t56 * t1 * t10
t401 =
0.2e1 * t27 * t364 - 0.16e2 * t368 * t279 - t123 * t41 * t257 +
0.8e1 * t324 * t374 +
0.2e1 * t355 * t377 - 0.2e1 * t98 * t380 - 0.16e2 * t9 * t386 +
0.2e1 * t58 * t389 +
0.16e2 * t393 * t276 +
t123 * t82 * t162 - 0.2e1 * t33 * t179 * t36
t412 = t11 * t14 * t127
t416 = t11 * t19
t417 = t416 * t61
t421 = t96 * t2 * ZA
t426 = t56 * n * ZA
t427 = t318 * t14
t428 = t49 * t427
t431 = t82 * t29
t434 = t87 * t21
t442 =
0.2e1 * t33 * t11 * t184 * t18 + 0.4e1 * t81 * t284 - t139 * t412 +
0.2e1 * t147 * t219 - 0.2e1 * t147 * t417 +
0.32e2 * t421 * t175 * t268 +
0.8e1 * t426 * t428 +
0.4e1 * t81 * t431 - 0.2e1 * t169 * t434 - 0.2e1 * t98 * t129 -
0.32e2 * t47 * t28 * t51
t443 = t184 * t20
t447 = t61 * 0.3141592654e1
t448 = t447 * t11
t450 = t49 * t268
t453 = t60 * t42
t456 = t41 * t202
t463 = t101 * t443
t469 = t41 * xc * t20
t474 =
-0.8e1 * t27 * t87 * t443 - t56 * t448 - 0.8e1 * t426 * t450 +
0.8e1 * t368 * t453 +
0.4e1 * t40 * t456 +
0.4e1 * t40 * t431 - 0.4e1 * t81 * t456 - 0.4e1 * t27 * t463 +
0.6e1 * t139 * t331 +
0.2e1 * t40 * t469 - 0.16e2 * t9 * t434
t482 = t108 * t10
t492 = n * t46
t493 = t492 * t11
t495 = t282 * t19 * t184
t498 = t56 * t290
t499 = t325 * t162
t502 = t416 * t14
t504 = t60 * t207
t507 =
-t123 * t82 * t257 - 0.4e1 * t169 * t301 +
t123 * t41 * t162 +
0.16e2 * t482 * t7 * t112 - 0.12e2 * t206 * t102 - t123 * t82 * t66 -
0.4e1 * t147 * t258 - 0.4e1 * t493 * t495 - 0.8e1 * t498 * t499 + t139 * t502 -
0.2e1 * t98 * t504
t508 = t101 * t162
t512 = t41 * t115 * xc
t515 = t87 * t42
t520 = ZB * t184
t522 = t227 * t520 * t18
t525 = t492 * t59
t528 = t6 * t59
t532 = t520 * t20
t533 = t351 * t532
t539 = t447 * t59
t544 =
0.8e1 * t206 * t508 - 0.2e1 * t40 * t512 - 0.16e2 * t368 * t515 +
0.12e2 * t206 * t88 +
0.4e1 * t27 * t522 +
0.4e1 * t525 * t495 - 0.4e1 * t91 * t528 * t36 - 0.16e2 * t368 * t533 -
0.16e2 * t206 * t227 * t427 - t56 * t539 - 0.2e1 * t132 * t133 * t66
t551 = t87 * t162
t554 = t351 * t229
t560 = t59 * t19
t561 = t560 * t14
t564 = t101 * t202
t567 = t87 * t252
t573 = t227 * t228 * t115
t578 =
0.4e1 * t33 * t70 + 0.4e1 * t493 * t335 - 0.4e1 * t58 * t551 + 0.16e2 * t9 * t554 -
0.4e1 * t33 * t28 * t252 +
0.2e1 * t147 * t561 +
0.2e1 * t169 * t564 - 0.2e1 * t27 * t567 - 0.8e1 * t324 * t499 -
0.4e1 * t169 * t573 + 0.12e2 * t27 * t244
t579 = t82 * t202
t591 = t282 * t115 * t59
t598 = t101 * t66
t606 =
-0.4e1 * t81 * t579 - 0.2e1 * t169 * t567 - 0.6e1 * t27 * t170 +
0.8e1 * t169 * t203 +
0.2e1 * t98 * t67 +
0.2e1 * t81 * t591 +
0.32e2 * t368 * t244 - 0.2e1 * t27 * t564 +
0.4e1 * t206 * t598 +
0.16e2 * t9 * t170 +
0.2e1 * t33 * t283 * t184
t608 = t373 * t162
t611 = t59 * t184
t617 = t101 * t29
t624 = t227 * ZB * t18 * t15
t629 = t157 * t59
t630 = t629 * t124
t633 = t3 * t6
t634 = t175 * t283
t644 =
0.8e1 * t498 * t608 + 0.2e1 * t33 * t611 * t18 - 0.4e1 * t206 * t389 -
0.2e1 * t27 * t617 - 0.4e1 * t169 * t154 +
0.4e1 * t27 * t624 +
0.12e2 * t27 * t230 - 0.8e1 * t393 * t630 - 0.8e1 * t633 * t634 +
0.16e2 * t47 * t7 * t101 * t50 +
0.2e1 * t123 * t447 * t28
t645 = t41 * t29
t648 = t2 * 0.3141592654e1
t649 = t648 * xc
t650 = t560 * t184
t656 = t56 * t1 * t157
t659 = t87 * t128
t662 = t96 * t482
t663 = t629 * t162
t671 = t161 * t124
t674 = t218 * t127
t679 =
0.4e1 * t81 * t645 - 0.4e1 * t649 * t650 - 0.8e1 * t169 * t70 +
0.8e1 * t656 * t163 - 0.2e1 * t98 * t659 - 0.8e1 * t662 * t663 -
0.32e2 * t421 * t175 * t427 - 0.2e1 * t147 * t502 +
0.8e1 * t656 * t671 +
0.2e1 * t147 * t674 - 0.16e2 * t368 * t386
t714 = t334 * t19
t719 = t12 * t42
t722 =
t304 * t35 - t346 * t35 + t341 * t59 - t344 * t35 + t344 * t256 + t346 * t184 -
0.16e2 * t368 * t554 - 0.16e2 * t48 * t175 * t50 + 0.4e1 * t525 * t714 -
0.2e1 * t58 * t659 + 0.8e1 * t368 * t719
t730 = xc * t19
t735 = t59 * t256 * t14
t752 =
0.4e1 * t173 * t714 - 0.6e1 * t27 * t515 - 0.16e2 * t9 * t279 +
0.4e1 * t194 * t730 * t184 - t139 * t735 - 0.4e1 * t492 * t127 * t82 * xc -
0.4e1 * t98 * t508 - t123 * t41 * t207 - 0.2e1 * t147 * t298 +
0.8e1 * t368 * t314 +
0.6e1 * t132 * t133 * t207
t755 = t28 * t21
t759 = t274 * t338 * t14
t767 = t11 * t35
t768 = t767 * t14
t778 = t560 * t61
t781 =
-0.2e1 * t58 * t504 - 0.8e1 * t27 * t755 +
0.16e2 * t662 * t759 +
0.12e2 * t291 * t282 * t207 - 0.6e1 * t27 * t434 + t139 * t768 -
0.8e1 * t498 * t326 +
0.4e1 * t33 * t611 * t20 +
0.2e1 * t81 * t512 - t139 * t561 + 0.2e1 * t147 * t778
t786 = t12 * t443
t790 = t282 * t59 * t20
t796 = t59 * t14 * t127
t806 = t41 * t21
t811 =
-0.8e1 * t393 * t663 +
0.8e1 * t368 * t786 +
0.2e1 * t81 * t790 +
0.4e1 * t169 * t624 +
t139 * t796 +
0.2e1 * t206 * t258 - 0.2e1 * t40 * t591 - 0.8e1 * t662 * t630 - 0.4e1 * t33 * t30 -
0.4e1 * t40 * t806 + 0.8e1 * t9 * t786
t819 = t282 * t15 * t127
t822 = t101 * t363
t830 = t11 * t256 * t14
t835 = t227 * t532
t842 =
0.2e1 * t33 * t11 * t18 * t15 + t123 * t41 * t66 - 0.4e1 * t493 * t819 -
0.2e1 * t27 * t822 - 0.16e2 * t368 * t170 - 0.4e1 * t169 * t463 - t139 * t830 -
0.4e1 * t649 * t179 * t127 + 0.12e2 * t27 * t835 - 0.16e2 * t368 * t434 -
0.2e1 * t40 * t790
t845 = t87 * t202
t854 = t338 * t15
t859 = t12 * t207
t868 =
t139 * t348 - 0.2e1 * t27 * t845 + 0.8e1 * t169 * t755 - 0.2e1 * t58 * t380 +
0.6e1 * t206 * t331 +
0.8e1 * t310 * t854 - 0.2e1 * t169 * t822 +
0.2e1 * t98 * t859 +
0.8e1 * t159 * t671 +
0.8e1 * t74 * t634 - 0.2e1 * t169 * t253
t880 = t60 * t443
t891 = t101 * t128
t894 =
-t123 * t539 - 0.2e1 * t147 * t796 + 0.32e2 * t368 * t230 + t139 * t674 -
0.16e2 * t98 * t60 * t124 +
0.32e2 * t9 * t244 +
0.8e1 * t368 * t880 - 0.8e1 * t40 * t41 * xc * t36 - t123 * t82 * t128 -
0.6e1 * t58 * t233 + 0.2e1 * t58 * t891
t903 = t179 * t19
t920 = t56 * t1 * t160
t925 =
-0.2e1 * t174 * t175 * t66 - 0.4e1 * t493 * t714 + 0.4e1 * t649 * t903 -
0.4e1 * t81 * t43 +
t123 * t82 * t207 +
0.4e1 * t206 * t891 - 0.16e2 * t273 * t759 - 0.8e1 * t27 * t203 +
0.32e2 * t221 * ZB * t51 - 0.16e2 * t920 * t759 - 0.8e1 * t9 * t453
t932 = t87 * t29
t945 = t82 * t21
t953 =
-0.16e2 * t920 * t276 - 0.8e1 * t169 * t30 - 0.8e1 * t633 * t77 -
0.2e1 * t27 * t932 - 0.4e1 * t174 * t49 * t162 + 0.8e1 * t206 * t87 * t124 -
0.2e1 * t147 * t768 + 0.4e1 * t169 * t522 - 0.12e2 * t81 * t945 +
0.4e1 * t33 * t28 * t115 +
0.4e1 * t525 * t819
t971 = t282 * t127
t978 =
-0.6e1 * t98 * t102 + 0.2e1 * t169 * t515 - 0.2e1 * t310 * t377 +
0.2e1 * t147 * t830 +
0.8e1 * t368 * t22 - 0.2e1 * t169 * t617 + 0.16e2 * t662 * t276 -
0.8e1 * t355 * t854 + 0.4e1 * t493 * t971 - 0.16e2 * t9 * t533 - 0.2e1 * t169 * t279
t997 = xc * t127
t998 = t997 * t59
t1003 =
0.4e1 * t40 * t579 +
0.2e1 * t169 * t845 +
0.16e2 * t9 * t515 +
0.8e1 * t206 * t551 +
t123 * t41 * t128 +
0.16e2 * t98 * t60 * t162 +
0.2e1 * t169 * t364 - 0.2e1 * t169 * t932 +
t139 * t778 +
0.4e1 * t648 * t998 +
0.2e1 * t147 * t412
t1006 = t2 * t59
t1017 = xc * t35
t1033 =
0.4e1 * t1006 * t335 + 0.4e1 * t81 * t806 - 0.2e1 * t33 * t34 * t115 +
0.8e1 * t498 * t374 - 0.16e2 * t261 * t7 * t1017 * t15 +
0.8e1 * t206 * t101 * t124 - t123 * t448 +
0.2e1 * t147 * t735 +
0.6e1 * t98 * t208 +
0.6e1 * t98 * t88 - 0.4e1 * t33 * t755
t1055 =
-0.4e1 * t173 * t971 +
0.2e1 * t98 * t891 +
0.8e1 * t9 * t880 +
0.4e1 * t169 * t835 - t304 * t184 + t344 * t184 - t123 * t41 * t62 -
0.2e1 * t98 * t598 +
0.2e1 * t58 * t859 +
0.32e2 * t47 * t351 * t224 +
0.2e1 * t98 * t389
t1070 = t15 * t19
t1089 =
-0.16e2 * t368 * t352 - 0.8e1 * t9 * t719 + 0.4e1 * t96 * t2 * xc * t134 -
0.2e1 * t91 * t236 * t115 +
0.4e1 * t27 * t573 +
0.4e1 * t493 * t282 * t1070 +
0.2e1 * t33 * t59 * t18 * t15 +
0.12e2 * t40 * t945 - 0.4e1 * t492 * xc * t82 * t1070 - 0.2e1 * t91 * t528 * t20 +
0.8e1 * t324 * t608
t1113 =
t123 * t82 * t124 + 0.8e1 * t421 * t428 - t139 * t417 +
0.4e1 * t40 * t645 +
0.16e2 * t393 * t759 - 0.2e1 * t33 * t179 * t115 - 0.4e1 * t525 * t335 +
0.4e1 * t33 * t28 * t36 - 0.4e1 * t1006 * t714 + 0.6e1 * t206 * t166 -
0.8e1 * t421 * t450
t1119 = t321 * t46
t1122 = t157 * t11
t1123 = t1122 * t2
t1124 = t184 * t46
t1128 = t108 * n
t1132 = t7 * t7
t1133 = t1132 * t11
t1134 = t1133 * t108
t1135 = t15 * t46
t1139 = t7 * ZA
t1140 = t1139 * ZB
t1141 = t1 * t35
t1145 = t629 * t2
t1146 = t1135 * t730
t1149 = t157 * t1128
t1150 = t1149 * xc
t1153 = t46 * xc
t1154 = t1153 * t127
t1158 = t184 * t1 * t46
t1161 = t46 * t46
t1162 = t35 * t1161
t1166 = t7 * t1
t1170 =
-0.4e1 * t133 * t1119 + 0.16e2 * t1123 * t1124 * t730 -
0.8e1 * t1122 * t1128 * t196 - 0.64e2 * t1134 * t1135 * t1017 -
0.32e2 * t1140 * t1141 * t1135 + 0.16e2 * t1145 * t1146 - 0.8e1 * t1150 * t650 -
0.16e2 * t1123 * t1154 - 0.4e1 * t133 * t1158 - 0.16e2 * t1140 * t1162 * t15 +
0.8e1 * t1166 * t35 * t312
t1171 = t1161 * t184
t1175 = t1122 * n
t1176 = t15 * t1161
t1180 = t1132 * ZA
t1181 = t1180 * t355
t1182 = t1176 * t1017
t1185 = t1161 * xc
t1189 = t1133 * t1
t1192 = t108 * t1
t1193 = t1132 * t1192
t1195 = t10 * t35
t1199 = t157 * t15
t1203 = t1141 * t46
t1211 = t184 * t108
t1218 =
0.2e1 * t133 * t1171 * t35 + 0.8e1 * t1175 * t1176 * t997 + 0.64e2 * t1181 * t1182 -
0.8e1 * t1175 * t1185 * t127 - 0.32e2 * t1189 * t1182 -
0.64e2 * t1193 * ZA * t1195 * t228 +
0.8e1 * t1199 * t416 * t1128 +
0.8e1 * t1140 * t1203 - 0.4e1 * t75 * t1158 - 0.8e1 * t1199 * t560 * t1128 -
0.2e1 * t133 * t1211 - 0.8e1 * t1199 * t127 * t11 * t1128
t1221 = t256 * t1161
t1224 = t35 * t108
t1233 = t7 * t256
t1236 =
-t75 * t1211 - t75 * t1221 - t133 * t1221 + t75 * t1224 - t75 * t1171 -
t133 * t1171 +
t133 * t1224 +
t75 * t1162 - t75 * t108 * t256 + t133 * t1162 - t1233 * t59 * t108
t1240 = t1135 * t1195
t1252 = t629 * t127
t1263 = t1171 * ZA
t1280 =
-0.128e3 * t1180 * ZB * t108 * t1240 +
0.32e2 * t1193 * t10 * t112 +
0.4e1 * t133 * t1203 +
0.4e1 * t109 * t256 * ZA * ZB - 0.8e1 * t1252 * n * t15 * t1185 +
0.8e1 * t1175 * t1171 * t730 - 0.8e1 * t1175 * t1176 * t127 + 0.4e1 * t223 * t1263 -
0.8e1 * t1175 * t1176 * t730 +
0.8e1 * t1166 * ZA * t341 * ZB +
0.64e2 * t1134 * t1240 +
0.8e1 * t1122 * xc * t1128 * t127 * t15
t1283 = t1199 * t19
t1287 = t1199 * t127
t1289 = t59 * n * t1161
t1293 = t157 * n * xc
t1304 = t1132 * t108
t1310 = t263 * ZB
t1316 = t2 * t15
t1323 =
-0.16e2 * t1283 * t1006 * t46 +
0.8e1 * t1287 * t1289 +
0.8e1 * t1293 * t127 * t1161 * t59 +
0.16e2 * t1123 * t1135 * t19 +
0.8e1 * t1293 * t560 * t1176 +
0.64e2 * t1304 * t59 * t1240 +
0.4e1 * t75 * t1203 +
0.4e1 * t1310 * t1263 +
0.4e1 * t223 * t338 * t108 - 0.16e2 * t1252 * t1316 * t1153 -
0.16e2 * t1310 * t221 * t15
t1330 = t1132 * t15
t1336 = t1132 * t1
t1338 = t1162 * t179
t1370 =
0.8e1 * t1175 * t1176 * t19 +
0.4e1 * t1139 * t318 * t1161 +
0.128e3 * t1330 * t318 * t108 * t46 * t227 - 0.32e2 * t1336 * xc * t1338 +
0.4e1 * t1233 * ZA * t1161 * ZB - 0.8e1 * t1287 * t59 * t1128 * xc +
0.2e1 * t75 * t305 * t108 +
0.8e1 * t1199 * t127 * t59 * t1128 - 0.8e1 * t1283 * t1289 -
0.8e1 * t1293 * t560 * t1171 +
0.4e1 * t133 * t35 * t1158 +
0.8e1 * t157 * t184 * t19 * t11 * t1128 * xc
t1376 = t7 * t184
t1380 = t1176 * t1195
t1393 = t1330 * t35
t1411 =
0.16e2 * t1145 * t1154 +
0.8e1 * t1149 * t998 +
0.4e1 * t1376 * t35 * t48 +
0.32e2 * t1189 * t1380 +
0.32e2 * t1193 * t11 * t1195 * t15 - 0.64e2 * t1304 * xc * t111 * t1135 -
0.16e2 * t1123 * t1146 + 0.64e2 * t1393 * t28 * t1192 * xc -
0.16e2 * t1123 * t1135 * t127 - 0.8e1 * t1122 * xc * t1128 * t127 -
0.32e2 * t1193 * xc * t112 + 0.16e2 * t1252 * t1316 * t46
t1450 =
0.2e1 * t1376 * t767 * t1161 +
0.2e1 * t1376 * t111 * t108 +
0.4e1 * t223 * t311 * t108 +
0.4e1 * t109 * t35 * t520 * ZA +
0.16e2 * t1123 * t1135 * t997 - 0.64e2 * t1181 * t1380 + 0.8e1 * t1150 * t903 -
0.32e2 * t1393 * t11 * t1192 * xc - 0.16e2 * t157 * t2 * xc * t560 * t1124 +
0.8e1 * t223 * t184 * t317 * t46 +
0.32e2 * t1336 * t10 * t1338 - 0.4e1 * t75 * t1119
_C3B =
(
t606 + t722 + t1089 + t781 + 0.16e2 * t48 * t51 + t978 + t868 + t507 -
t304 * t256 +
0.8e1 * t9 * t22 +
t752 +
0.4e1 * t174 * t144 - 0.2e1 * t81 * t469 +
0.6e1 * t139 * t166 +
t362 +
0.2e1 * t98 * t211 +
t925 +
t137 - t290 * t184 +
0.12e2 * t81 * t83 +
t842 +
0.8e1 * t74 * t77 +
0.16e2 * t98 * t12 * t162 - 0.4e1 * t33 * t28 * t443 - 0.8e1 * t27 * t70 -
0.2e1 * t33 * t34 * t36 - 0.8e1 * t27 * t30 + 0.2e1 * t58 * t67 -
0.4e1 * t40 * t43 +
0.2e1 * t58 * t63 +
t1033 - t290 * t256 +
t290 * t35 +
t193 +
t1113 +
t578 +
t442 +
t474 +
t544 +
t329 +
t679 +
t401 +
t953 +
t811 +
t644 +
t894 +
t289 +
t240 +
t1055 +
t1003
) / (t1170 + t1218 + 0.2e1 * t1236 + t1280 + t1323 + t1370 + t1411 + t1450)
t1 = n * n
t2 = t1 * xc
t3 = ZB * ZB
t5 = t2 * 0.3141592654e1 * t3
t6 = nx * 0.3141592654e1
t7 = t6 * xc
t8 = cos(t7)
t9 = nx * nx
t10 = t8 * t9
t11 = n * 0.3141592654e1
t12 = exp(t11)
t13 = t12 * t12
t16 = exp(xc * n * 0.3141592654e1)
t17 = t16 * t16
t18 = t17 * t16
t19 = t17 * t17
t20 = t19 * t18
t21 = t13 * t20
t22 = t10 * t21
t25 = ZA * ZA
t26 = t1 * t25
t27 = xc * 0.3141592654e1
t28 = t26 * t27
t29 = t19 * t16
t30 = t13 * t13
t31 = t29 * t30
t35 = t9 * nx
t36 = t3 * t35
t37 = sin(t6)
t38 = t13 * t12
t39 = t37 * t38
t40 = t39 * t19
t42 = t1 * t1
t43 = nx * t42
t44 = xc * xc
t45 = t25 * t44
t46 = t43 * t45
t47 = 0.3141592654e1 * 0.3141592654e1
t48 = t47 * t37
t49 = t17 * t38
t54 = 0.3141592654e1 * t35
t55 = ZA * n * t54
t56 = t37 * ZB
t57 = t19 * t12
t61 = t25 * t8
t62 = t61 * t9
t63 = n * t30
t64 = t63 * t16
t67 = t1 * n
t69 = t47 * ZB
t70 = t67 * t44 * t69
t75 = nx * t3
t76 = t75 * t37
t77 = t67 * 0.3141592654e1
t78 = t19 * t19
t79 = t78 * t12
t80 = t77 * t79
t82 = t3 * t38
t84 = t54 * t37
t87 = sin(t7)
t88 = t29 * t87
t89 = t47 * t44
t93 = nx * t25
t94 = t87 * t42
t95 = t93 * t94
t96 = t47 * xc
t97 = t13 * t29
t98 = t96 * t97
t101 = t87 * t67
t102 = t93 * t101
t103 = t13 * t18
t107 = t47 * t35
t108 = t26 * t107
t109 = t37 * t44
t110 = t19 * t17
t111 = t12 * t110
t116 = t37 * t19 * t12
t118 = t37 * xc
t119 = ZB * t19
t120 = t119 * t12
t121 = t118 * t120
t125 = xc * t3
t126 = t1 * t47 * t125
t127 = t35 * t37
t128 = t38 * t19
t129 = t127 * t128
t132 = t26 * 0.3141592654e1
t133 = t16 * t13
t134 = t10 * t133
t137 = 0.3141592654e1 * ZB
t138 = t2 * t137
t139 = ZA * t8
t140 = t9 * t13
t145 = t30 * t18
t146 = t10 * t145
t149 = t3 * t8
t150 = t149 * t9
t153 =
0.2e1 * t5 * t22 + 0.2e1 * t28 * t10 * t31 + t36 * t40 - 0.2e1 * t46 * t48 * t49 -
0.2e1 * t55 * t56 * t57 - 0.2e1 * t62 * t64 + 0.16e2 * t70 * t29 * ZA * t10 -
t76 * t80 +
t82 * n * t84 +
0.8e1 * t43 * t3 * t88 * t89 +
0.16e2 * t95 * t98 +
0.2e1 * t102 * t27 * t103 - 0.2e1 * t108 * t109 * t111 +
t36 * t116 +
0.8e1 * t55 * t121 - 0.4e1 * t126 * t129 - 0.4e1 * t132 * t134 -
0.4e1 * t138 * t139 * t140 * t20 + 0.8e1 * t28 * t146 - 0.2e1 * t150 * t64
t154 = t42 * n
t155 = nx * t154
t156 = t44 * xc
t157 = t47 * 0.3141592654e1
t158 = t156 * t157
t159 = t155 * t158
t162 = t56 * ZA * t19 * t12
t165 = t77 * t49
t167 = t1 * t3
t168 = t167 * t89
t169 = t127 * t49
t172 = t37 * t67
t173 = t75 * t172
t174 = t38 * t110
t175 = t27 * t174
t179 = t47 * t25
t181 = t10 * t97
t184 = t27 * t31
t187 = t67 * t47
t188 = t44 * t3
t189 = t187 * t188
t192 = t25 * t35
t193 = t37 * t17
t194 = t193 * t12
t196 = nx * ZA
t197 = t196 * t172
t198 = ZB * t38
t199 = t198 * t19
t204 = t1 * t12 * t110
t207 = nx * ZB
t209 = t1 * ZA
t215 = t67 * t3
t216 = t47 * t8
t217 = t215 * t216
t218 = t9 * xc
t222 = nx * t67
t223 = t222 * t27
t224 = t3 * t87
t228 = t167 * t107
t232 = t26 * t96
t235 = t207 * t94
t236 = t47 * ZA
t243 = xc * t13
t244 = t243 * t29
t248 = t25 * n
t249 = t248 * 0.3141592654e1
t253 = ZB * ZA
t254 = t253 * t8
t255 = t9 * n
t256 = t30 * t16
t260 =
0.2e1 * t207 * t37 * t209 * t128 + 0.2e1 * t5 * t134 - 0.16e2 * t217 * t218 * t97 -
0.2e1 * t223 * t224 * t31 - 0.2e1 * t228 * t109 * t174 - 0.2e1 * t232 * t169 -
0.16e2 * t235 * t236 * t44 * t30 * t18 - 0.4e1 * t196 * t101 * t137 * t244 +
t249 * t169 +
0.8e1 * t168 * t129 +
0.4e1 * t254 * t255 * t256
t263 = t43 * t179
t267 = t3 * n
t268 = t267 * t54
t269 = t118 * t57
t272 = t39 * t1
t274 = t67 * t25
t275 = t274 * t158
t278 = t75 * t87
t279 = t77 * t103
t282 = t25 * t38
t285 = ZA * t38
t290 = t267 * 0.3141592654e1
t296 = t77 * t111
t298 = t196 * t37
t299 = t1 * ZB
t303 = t37 * t42
t304 = t196 * t303
t308 = t77 * t57
t310 = t26 * t89
t313 = t77 * t128
t316 = t101 * t27
t319 = t93 * t87
t320 = t77 * t97
t323 = t127 * t57
t326 = t10 * n
t329 = t118 * t174
t332 =
-0.8e1 * t263 * t109 * t57 - 0.4e1 * t268 * t269 +
t93 * t272 +
0.8e1 * t275 * t129 - 0.4e1 * t278 * t279 + t282 * n * t84 -
0.2e1 * t285 * n * t54 * t56 - t290 * t169 - 0.2e1 * t196 * t38 * t172 * t137 +
t76 * t296 - 0.2e1 * t298 * t299 * t79 +
0.8e1 * t304 * t96 * t120 +
t76 * t308 - 0.2e1 * t310 * t169 - t76 * t313 +
0.2e1 * t75 * t18 * t316 +
0.4e1 * t319 * t320 +
t249 * t323 - 0.2e1 * t25 * t18 * t326 + 0.2e1 * t228 * t329
t335 = t75 * t101
t336 = t27 * t21
t342 = t77 * t133
t347 = t209 * t137
t350 = t9 * t1
t351 = t149 * t350
t355 = t37 * t78 * t12
t359 = t93 * t303
t367 = t172 * 0.3141592654e1
t369 = t96 * t103
t376 = t209 * t107
t379 = t10 * t103
t383 = t207 * t101
t389 = 0.3141592654e1 * ZA
t390 = t222 * t389
t391 = t87 * ZB
t398 =
-0.2e1 * t102 * t336 + t93 * t38 * t367 + 0.16e2 * t95 * t369 - t82 * t127 -
0.8e1 * t197 * t27 * t120 + 0.8e1 * t376 * t121 - 0.8e1 * t189 * t379 -
t249 * t129 - 0.4e1 * t383 * t27 * ZA * t16 * t13 - 0.8e1 * t390 * t391 * t21 -
0.2e1 * t197 * t137 * t57
t402 = t39 * t110
t404 = t193 * t38
t406 = t127 * t174
t408 = t167 * 0.3141592654e1
t411 = t44 * t157
t412 = t155 * t411
t413 = t285 * t19
t414 = t56 * t413
t417 = ZA * t30
t424 = t93 * t37
t426 = t248 * t54
t427 = t17 * t12
t428 = t118 * t427
t431 = t77 * t21
t438 = ZA * t13
t443 = t93 * t172
t444 = t27 * t427
t448 = t1 * t78 * t12
t455 = t274 * t89
t461 = t118 * t111
t464 =
-t36 * t402 + t36 * t404 - t249 * t406 - 0.4e1 * t408 * t134 +
0.16e2 * t412 * t414 - 0.4e1 * t383 * t27 * t417 * t18 + 0.2e1 * t28 * t22 -
t424 * t80 - 0.2e1 * t426 * t428 +
0.4e1 * t278 * t431 +
0.4e1 * t254 * t255 * t103 +
t290 * t323 +
0.4e1 * t383 * t27 * t438 * t20 +
0.2e1 * t443 * t444 +
t424 * t448 - t36 * t194 - 0.32e2 * t235 * t236 * t243 * t18 + 0.8e1 * t455 * t181 -
0.4e1 * t359 * t96 * t128 - 0.2e1 * t426 * t461
t469 = n * t16 * t13
t474 = t1 * t38
t475 = t474 * t19
t480 = t89 * t103
t483 = t67 * ZA
t484 = t483 * t411
t485 = t127 * t120
t488 = t127 * t111
t497 = t77 * t427
t502 = t27 * t97
t508 = t1 * t19 * t12
t511 = t155 * t25 * t156
t512 = t157 * t37
t513 = t512 * t128
t527 = t1 * t17
t528 = t527 * t38
t530 =
-t76 * t497 - 0.4e1 * t254 * t255 * t97 - 0.2e1 * t102 * t502 -
0.4e1 * t108 * t269 - t76 * t508 +
0.8e1 * t511 * t513 +
0.4e1 * t150 * t63 * t18 +
0.4e1 * t383 * t27 * t438 * t18 +
0.4e1 * t132 * t379 +
0.2e1 * t168 * t488 - t76 * t528
t535 = t44 * t13
t542 = t527 * t12
t544 = n * t13
t545 = t544 * t20
t548 = t75 * t303
t549 = t96 * t111
t552 = ZA * t35
t553 = t552 * t37
t562 = t43 * t96
t563 = t3 * t37
t564 = t563 * t128
t579 = t474 * t110
t590 = t9 * t30
t591 = t590 * t18
t595 = t127 * t427
t598 = t77 * t174
t600 =
0.4e1 * t5 * t146 +
0.16e2 * t235 * t236 * t535 * t18 +
0.8e1 * t455 * t146 +
t76 * t542 - 0.2e1 * t150 * t545 + 0.2e1 * t548 * t549 - 0.2e1 * t553 * t120 +
t290 * t488 - 0.8e1 * t274 * t47 * t44 * t29 * t10 - 0.4e1 * t562 * t564 -
0.2e1 * t132 * xc * t20 * t10 - 0.32e2 * t562 * ZA * t87 * ZB * t13 * t29 -
0.8e1 * t347 * t379 + t76 * t579 - 0.4e1 * t359 * t96 * t57 + 0.4e1 * t408 * t181 -
0.4e1 * t223 * t564 - 0.12e2 * t209 * t27 * ZB * t8 * t591 +
0.2e1 * t310 * t595 +
t76 * t598
t601 = t27 * t49
t604 = t127 * t79
t606 = ZB * t29
t616 = t139 * t140 * t18
t638 = t10 * t256
t643 = t118 * t199
t653 = t544 * t29
t658 = t3 * t29
t660 = t350 * t27
t663 =
-0.4e1 * t254 * t255 * t145 + 0.2e1 * t267 * t20 * t8 * t9 -
0.4e1 * t138 * t139 * t9 * t16 * t13 - 0.2e1 * t5 * t638 +
0.2e1 * t126 * t169 +
0.8e1 * t376 * t643 +
0.4e1 * t335 * t27 * t145 +
0.16e2 * t235 * t236 * t535 * t29 +
0.6e1 * t150 * t653 - 0.4e1 * t426 * t269 + 0.4e1 * t658 * t8 * t660
t670 = t274 * t411
t673 = t118 * t49
t694 = t155 * t45
t713 = n * t29 * t30
t717 = t20 * t87
t723 = t512 * t57
t728 =
-0.2e1 * t443 * t175 - 0.8e1 * t670 * t129 + 0.2e1 * t426 * t673 -
0.16e2 * t207 * t88 * t42 * t47 * ZA * t44 +
0.4e1 * t254 * t255 * t21 +
t249 * t595 +
0.8e1 * t25 * t29 * t8 * t660 +
0.2e1 * t268 * t461 +
0.8e1 * t189 * t181 - 0.8e1 * t694 * t513 + 0.2e1 * t198 * t553 -
0.12e2 * t606 * t139 * t660 - 0.2e1 * t359 * t549 +
0.4e1 * t138 * t139 * t590 * t16 +
0.8e1 * t93 * t29 * t94 * t89 - 0.2e1 * t150 * t713 +
0.2e1 * t222 * t3 * t717 * t27 +
0.8e1 * t670 * t323 +
0.8e1 * t694 * t723 - 0.2e1 * t62 * t653
t734 = t43 * t89
t735 = t563 * t427
t740 = t75 * t94
t744 = ZB * xc
t750 = t563 * t57
t754 = t218 * t103
t771 = t127 * t199
t776 = t89 * t174
t791 =
-0.4e1 * t207 * t717 * t77 * xc * ZA + 0.4e1 * t443 * t27 * t57 + t192 * t40 -
0.8e1 * t55 * t643 - 0.16e2 * t209 * t89 * t771 - 0.8e1 * t275 * t323 +
0.2e1 * t359 * t776 +
0.16e2 * t304 * t89 * t199 +
0.4e1 * t278 * t320 +
0.2e1 * t207 * t172 * t389 * t79 - 0.8e1 * t390 * t391 * t97
t794 = t483 * t158
t801 = t2 * 0.3141592654e1
t818 = t215 * t411
t827 = t96 * t174
t837 = t37 * t12 * t110
t845 =
0.16e2 * t794 * t485 + 0.8e1 * t159 * t564 - 0.8e1 * t455 * t379 -
0.2e1 * t801 * t3 * t20 * t10 - 0.4e1 * t132 * t22 - 0.8e1 * t734 * t564 -
0.8e1 * t187 * t44 * t658 * t10 - 0.8e1 * t412 * t564 + 0.4e1 * t132 * t181 -
0.8e1 * t818 * t129 + 0.2e1 * t46 * t48 * t427 - 0.4e1 * t75 * t29 * t316 -
0.2e1 * t359 * t827 - t290 * t595 + 0.16e2 * t217 * t754 - t424 * t542 -
0.8e1 * t734 * t750 - t192 * t837 - 0.4e1 * t254 * t255 * t133 +
0.8e1 * t304 * t96 * t199
t864 = t544 * t18
t867 = t3 * t18
t884 = t27 * t256
t891 = t187 * t744
t894 = t563 * t49
t900 =
-0.2e1 * t263 * t428 + 0.2e1 * t228 * t428 - 0.6e1 * t223 * t224 * t103 -
t192 * t404 + 0.2e1 * t268 * t428 - 0.2e1 * t335 * t884 - t424 * t296 +
0.2e1 * t93 * t20 * t316 - 0.32e2 * t891 * t616 + 0.2e1 * t562 * t894 -
0.2e1 * t801 * t867 * t10
t904 = t27 * t111
t907 = t118 * t128
t915 = t89 * t145
t947 = t139 * t140 * t29
t952 =
-0.2e1 * t173 * t904 +
0.4e1 * t426 * t907 +
0.12e2 * t253 * t10 * t1 * 0.3141592654e1 * t244 +
0.8e1 * t95 * t915 - t36 * t355 - 0.16e2 * t794 * t771 - 0.8e1 * t511 * t723 +
0.16e2 * t734 * t162 +
t36 * t837 +
0.2e1 * t298 * t299 * t57 - 0.2e1 * t28 * t638 - 0.2e1 * t62 * t545 +
0.2e1 * t310 * t406 +
0.12e2 * t138 * t616 +
0.4e1 * t223 * t750 +
t424 * t497 +
0.2e1 * t734 * t894 +
0.2e1 * t132 * xc * t18 * t10 - 0.16e2 * t70 * t947 + 0.32e2 * t891 * t947
t969 = t67 * t157 * t156 * t3
t974 = t27 * t133
t1001 =
-0.8e1 * t159 * t750 - 0.16e2 * t412 * t162 - t290 * t129 + 0.8e1 * t310 * t323 -
0.4e1 * t319 * t342 +
t75 * t272 +
t192 * t402 - 0.8e1 * t359 * t89 * t128 - 0.10e2 * t61 * t350 * t502 +
0.8e1 * t818 * t323 - 0.4e1 * t108 * t907
t1042 = t89 * t97
t1055 =
-0.2e1 * t168 * t595 + 0.16e2 * t484 * t771 + 0.4e1 * t11 * t125 * t129 -
0.2e1 * t173 * t444 + 0.2e1 * ZB * n * t54 * t37 * ZA * t79 - t424 * t475 +
0.2e1 * t562 * t735 - 0.2e1 * t548 * t776 +
t424 * t204 +
0.2e1 * t25 * t20 * t326 +
0.8e1 * t383 * t389 * t133 +
t75 * t38 * t367 +
0.2e1 * t62 * t469 +
0.2e1 * t197 * t137 * t128 - 0.2e1 * t102 * t884 - 0.2e1 * t5 * t379 -
0.8e1 * t740 * t1042 - 0.16e2 * t159 * t414 - 0.2e1 * ZB * t35 * t37 * t413 +
0.2e1 * t553 * ZB * t78 * t12
t1096 =
0.2e1 * t443 * t904 - 0.2e1 * t268 * t329 - 0.2e1 * t443 * t601 +
0.2e1 * t102 * t974 - 0.2e1 * t263 * t673 +
t424 * t165 +
0.2e1 * t62 * t713 +
t424 * t308 - t424 * t313 + 0.8e1 * t347 * t22 - t424 * t598
t1103 = t42 * t1 * t157
t1104 = t1103 * t25
t1108 = t3 * t19
t1112 = n * t47
t1113 = t9 * t9
t1118 = t42 * t157
t1119 = t1118 * t9
t1120 = t25 * xc
t1121 = t13 * t110
t1122 = t1120 * t1121
t1125 = t47 * t47
t1126 = t67 * t1125
t1127 = t1113 * ZA
t1128 = t1126 * t1127
t1129 = t19 * t13
t1130 = t744 * t1129
t1133 = t154 * t1125
t1134 = t1133 * t9
t1135 = t45 * t1129
t1138 = t154 * t47
t1139 = t25 * t30
t1142 = t1126 * t1113
t1145 = t125 * t1129
t1148 = t1103 * xc
t1149 = t3 * t13
t1150 = t1149 * t17
t1153 = t25 * t78
t1156 =
-0.8e1 * t1104 * t243 * t17 + 0.4e1 * t187 * t1108 * t9 -
0.2e1 * t1112 * t3 * t1113 * t30 +
0.16e2 * t1119 * t1122 +
0.64e2 * t1128 * t1130 +
0.64e2 * t1134 * t1135 - 0.2e1 * t1138 * t1139 + 0.32e2 * t1142 * t1135 -
0.32e2 * t1142 * t1145 + 0.8e1 * t1148 * t1150 - 0.2e1 * t1138 * t1153
t1157 = t25 * t13
t1158 = t1157 * t17
t1161 = t13 * t17
t1162 = t1120 * t1161
t1165 = t3 * t78
t1170 = t42 * t67 * t1125
t1172 = t1108 * t13
t1175 = t1 * t157
t1176 = t1175 * t1113
t1182 = t1120 * t1129
t1189 = t110 * t9 * xc
t1192 = t1149 * t110
t1201 =
0.8e1 * t1103 * t1158 - 0.16e2 * t1119 * t1162 - 0.2e1 * t1112 * t1165 * t1113 +
0.32e2 * t1170 * t44 * t1172 - 0.8e1 * t1176 * t1162 + 0.8e1 * t1104 * t243 * t110 -
0.64e2 * t1134 * t1182 - 0.64e2 * t1134 * t1145 +
0.16e2 * t1118 * t3 * t1189 +
0.16e2 * t1119 * t1192 - 0.4e1 * t187 * t1165 * t9 - 0.4e1 * t187 * t1139 * t9
t1209 = t17 * t30
t1210 = t125 * t1209
t1213 = t1138 * ZA
t1214 = ZB * t30
t1218 = t1157 * t110
t1226 = t3 * t30
t1237 = t1170 * t25
t1242 =
0.4e1 * t1112 * ZA * t119 * t1113 - 0.16e2 * t1119 * t1150 - 0.8e1 * t1176 * t1210 +
0.4e1 * t1213 * t1214 * t19 - 0.16e2 * t1119 * t1218 - 0.32e2 * t1142 * t1182 -
0.8e1 * t1103 * t1120 * t110 - 0.4e1 * t187 * t1226 * t9 +
0.8e1 * t1103 * t1192 +
0.4e1 * t1112 * ZB * t1113 * t30 * ZA - 0.32e2 * t1237 * xc * t19 * t13
t1251 = t125 * t1121
t1260 = t1120 * t1209
t1263 = t1139 * t19
t1282 =
0.8e1 * t1103 * t110 * t3 * xc + 0.8e1 * t1104 * xc * t17 * t30 -
0.8e1 * t1176 * t1251 +
0.16e2 * t1119 * t1158 +
0.4e1 * t1112 * t78 * t1127 * ZB +
0.16e2 * t1119 * t1260 +
0.2e1 * t1138 * t1263 - 0.32e2 * t1170 * xc * t1172 - 0.16e2 * t1213 * t119 * t13 +
0.4e1 * t1138 * t1214 * ZA +
0.32e2 * t1237 * t44 * t19 * t13 - 0.16e2 * t1118 * t25 * t1189
t1287 = t188 * t1129
t1292 = t25 * t19
t1296 = t187 * t9
t1297 = t1226 * t19
t1311 = t1112 * t1113
t1317 =
-0.8e1 * t1176 * t1150 + 0.32e2 * t1142 * t1287 - 0.8e1 * t1103 * t1150 +
0.2e1 * t1112 * t1292 * t1113 +
0.4e1 * t1296 * t1297 +
0.8e1 * t1176 * t1192 +
0.4e1 * t1296 * t1263 +
0.8e1 * t1176 * t1158 - 0.8e1 * t1175 * t25 * t1113 * xc * t110 +
0.2e1 * t1311 * t1297 +
0.2e1 * t1112 * t1108 * t1113
t1320 = t253 * t1129
t1328 = t253 * t30 * t19
t1333 = t125 * t1161
t1343 = ZB * t44 * t1129
t1350 =
-0.8e1 * t1176 * t1218 - 0.16e2 * t1311 * t1320 + 0.8e1 * t1176 * t1260 -
0.16e2 * t1119 * t1210 +
0.4e1 * t1311 * t1328 +
0.2e1 * t1311 * t1263 +
0.8e1 * t1176 * t1333 +
0.8e1 * t187 * ZB * t417 * t9 - 0.2e1 * t1138 * t1165 - 0.64e2 * t1128 * t1343 +
0.64e2 * t1134 * t1287 +
0.2e1 * t1138 * t1108
t1369 = t1133 * t9 * ZA
t1378 = t187 * ZA
t1383 = t1170 * ZA
t1388 =
0.2e1 * t1138 * t1297 - 0.8e1 * t1148 * t1192 + 0.2e1 * t1138 * t1292 -
0.16e2 * t1119 * t1251 + 0.8e1 * t1175 * xc * t110 * t1113 * t3 -
0.2e1 * t1112 * t1153 * t1113 +
0.128e3 * t1369 * t1130 +
0.16e2 * t1119 * t1333 +
0.4e1 * t1138 * t78 * ZA * ZB +
0.8e1 * t1378 * t78 * t9 * ZB - 0.64e2 * t1383 * t1343 + 0.64e2 * t1383 * t1130
t1420 =
0.4e1 * t1138 * t119 * ZA - 0.128e3 * t1369 * t1343 - 0.4e1 * t187 * t1153 * t9 -
0.2e1 * t1138 * t1226 + 0.8e1 * t1296 * t1328 - 0.2e1 * t1112 * t1139 * t1113 -
0.8e1 * t1148 * t3 * t17 * t30 - 0.32e2 * t1296 * t1320 +
0.8e1 * t1176 * t1122 +
0.4e1 * t187 * t1292 * t9 +
0.8e1 * t1378 * t119 * t9 - 0.8e1 * t1103 * t1218
_C4B =
(
-t424 * t508 + 0.8e1 * t412 * t750 - 0.2e1 * t232 * t595 - 0.4e1 * t126 * t323 +
t1096 - t76 * t204 +
t728 +
0.2e1 * t548 * t827 +
0.2e1 * t150 * t469 +
t398 +
0.8e1 * t189 * t146 +
t260 - 0.2e1 * t351 * t184 - 0.2e1 * t268 * t673 - 0.4e1 * t319 * t279 + t464 -
0.2e1 * t108 * t461 +
0.16e2 * t740 * t369 +
0.16e2 * t274 * t216 * t754 - 0.16e2 * t70 * t139 * t591 +
0.2e1 * t55 * t56 * t128 - 0.2e1 * t359 * t89 * t111 +
0.2e1 * t734 * t563 * t111 +
0.6e1 * t223 * t224 * t97 +
0.8e1 * t383 * t389 * t103 +
0.4e1 * t606 * ZA * t326 - 0.2e1 * t93 * t18 * t316 -
0.4e1 * t443 * t27 * t128 +
0.8e1 * t197 * t27 * t199 +
0.8e1 * t108 * t109 * t128 - t249 * t604 + 0.16e2 * t70 * t616 -
0.8e1 * t969 * t323 + t845 - t424 * t579 +
0.16e2 * t159 * t162 +
t290 * t406 - 0.6e1 * t150 * t864 +
t192 * t116 +
0.2e1 * t867 * t326 - 0.4e1 * t658 * t326 - 0.2e1 * t351 * t502 - t76 * t165 +
t900 +
0.8e1 * t168 * t323 +
t791 +
0.8e1 * t740 * t915 - 0.4e1 * t562 * t750 - 0.4e1 * t278 * t342 +
0.4e1 * t319 * t431 +
0.2e1 * t173 * t175 +
t424 * t528 +
0.8e1 * t969 * t129 - 0.8e1 * t347 * t181 +
t332 +
t530 - 0.2e1 * t108 * t329 - 0.2e1 * t207 * t38 * t37 * t1 * ZA +
t1001 +
0.4e1 * t408 * t379 +
t76 * t448 +
0.2e1 * t102 * t184 +
0.2e1 * t426 * t329 +
0.16e2 * t740 * t98 - t282 * t127 - 0.16e2 * t1 * t44 * t69 * t552 * t116 +
0.2e1 * t168 * t169 +
0.2e1 * t28 * t134 - t290 * t604 - 0.16e2 * t484 * t485 - 0.8e1 * t740 * t480 +
0.2e1 * t173 * t601 - 0.2e1 * t335 * t336 +
t600 +
0.2e1 * t62 * t864 +
t952 +
0.8e1 * t347 * t134 - t192 * t355 +
t192 * t194 +
0.2e1 * t228 * t461 +
t663 +
0.4e1 * t383 * t27 * t417 * t16 +
0.4e1 * t138 * t20 * ZA * t10 - 0.4e1 * t20 * ZB * ZA * t326 +
0.4e1 * t196 * t88 * t77 * t744 - 0.16e2 * t67 * xc * t179 * t181 -
0.8e1 * t95 * t480 - t249 * t488 - t76 * t475 + t1055 - 0.4e1 * t408 * t22 -
0.10e2 * t28 * t379 +
0.2e1 * t335 * t974 +
t153 - 0.8e1 * t95 * t1042 - 0.2e1 * t734 * t735
) / (t1156 + t1201 + t1242 + t1282 + t1317 + t1350 + t1388 + t1420)
if x > xc
_C1 = _C1B
_C2 = _C2B
_C3 = _C3B
_C4 = _C4B
Z = ZB
else
_C1 = _C1A
_C2 = _C2A
_C3 = _C3A
_C4 = _C4A
Z = ZA
end
t1 = n * n
t2 = t1 * t1
t3 = t2 * n
t4 = x * t3
t5 = 0.3141592654e1 * 0.3141592654e1
t6 = t5 * 0.3141592654e1
t11 = _C3 * t6
t12 = x * n
t13 = nx * nx
t14 = t13 * t13
t15 = t12 * t14
t19 = exp(t12 * 0.3141592654e1)
t20 = t19 * t19
t21 = t4 * t20
t24 = _C1 * t5
t25 = Z * t20
t29 = _C1 * t6
t30 = t29 * Z
t31 = t1 * n
t32 = x * t31
t33 = t32 * t13
t36 = t11 * x
t41 = n * t20
t45 = t6 * _C4
t49 = t20 * t1
t51 = _C2 * Z
t55 =
-0.2e1 * t4 * t6 * _C2 * Z - 0.2e1 * t11 * t15 - 0.2e1 * t11 * t21 +
0.2e1 * t24 * t25 * t14 - t13 + 0.4e1 * t30 * t33 - 0.4e1 * t36 * t31 * t20 * t13 -
0.2e1 * t36 * t41 * t14 - 0.2e1 * t4 * t45 * t20 - t49 - 0.2e1 * t4 * t6 * t51 * t20
t58 = t32 * t6
t59 = _C4 * t20
t63 = t20 * t13
t67 = t12 * t6
t68 = t20 * t14
t87 = t49 * t13
t90 =
-0.4e1 * t11 * t33 - 0.4e1 * t58 * t59 * t13 - 0.4e1 * t58 * t51 * t63 -
0.2e1 * t67 * t51 * t68 + 0.4e1 * t32 * t45 * t13 - 0.2e1 * t67 * t59 * t14 -
0.2e1 * t30 * t21 +
t1 +
0.2e1 * t24 * t25 * t2 +
0.2e1 * t12 * t45 * t14 +
0.4e1 * t24 * Z * t87
t106 = _C3 * t5
t120 =
-0.4e1 * t30 * t32 * t63 +
t63 +
0.4e1 * t24 * Z * t1 * t13 +
0.2e1 * t29 * Z * x * t3 - 0.4e1 * t58 * t51 * t13 - 0.2e1 * t106 * t2 +
t32 * 0.3141592654e1 - 0.2e1 * t106 * t14 - 0.2e1 * t30 * t12 * t68 -
0.2e1 * t67 * t51 * t14 + 0.4e1 * t106 * t87
t129 = sin(nx * 0.3141592654e1 * x)
t155 =
0.2e1 * t30 * t15 + x * 0.3141592654e1 * t41 * t13 - 0.4e1 * t19 * nx * t129 * n +
t32 * 0.3141592654e1 * t20 +
0.2e1 * t106 * t68 +
0.2e1 * t106 * t20 * t2 - 0.4e1 * t106 * t1 * t13 - 0.2e1 * t11 * t4 +
0.2e1 * t4 * t45 +
0.2e1 * t24 * Z * t2 +
0.2e1 * t24 * Z * t14 +
t12 * 0.3141592654e1 * t13
t158 = t5 * Z
u1 =
(t55 + t90 + t120 + t155) /
(0.4e1 * t158 * t19 * t2 + 0.8e1 * t158 * t19 * t1 * t13 + 0.4e1 * t158 * t19 * t14)
t1 = n * n
t2 = t1 * n
t3 = x * t2
t4 = 0.3141592654e1 * 0.3141592654e1
t5 = t4 * 0.3141592654e1
t6 = t3 * t5
t7 = _C2 * Z
t8 = nx * nx
t12 = t1 * t1
t13 = t12 * n
t14 = x * t13
t15 = t5 * _C4
t16 = x * n
t18 = exp(t16 * 0.3141592654e1)
t19 = t18 * t18
t23 = t16 * t5
t24 = t8 * t8
t28 = _C3 * t5
t29 = t14 * t19
t32 = _C1 * t5
t33 = t32 * Z
t34 = t16 * t24
t37 = _C4 * t19
t45 = _C2 * t4
t53 = t19 * t8
t58 = _C4 * t4
t60 = t1 * t19 * t8
t63 = t19 * t24
t67 = t3 * t8
t73 = n * t19
t86 = t28 * x
t91 =
0.4e1 * t58 * t60 +
0.2e1 * t33 * t16 * t63 +
0.4e1 * t33 * t67 +
0.2e1 * t33 * t29 - x * 0.3141592654e1 * t73 * t8 - 0.2e1 * t53 +
0.2e1 * t32 * Z * x * t13 - 0.2e1 * t58 * t12 - 0.2e1 * t58 * t24 +
t3 * 0.3141592654e1 +
0.4e1 * t86 * t2 * t19 * t8
t94 = Z * t12
t121 =
-0.2e1 * t8 +
0.2e1 * t45 * t94 * t19 +
0.2e1 * t14 * t5 * t7 * t19 +
0.4e1 * t6 * t7 * t53 +
0.2e1 * t23 * t7 * t63 - 0.4e1 * t28 * t67 +
0.2e1 * t45 * t94 +
0.2e1 * t58 * t12 * t19 +
t16 * 0.3141592654e1 * t8 +
0.2e1 * t14 * t15 - 0.2e1 * t28 * t14
t146 = cos(nx * 0.3141592654e1 * x)
t156 =
-t3 * 0.3141592654e1 * t19 + 0.2e1 * t58 * t63 - 0.4e1 * t58 * t1 * t8 +
0.4e1 * t45 * Z * t1 * t8 - 0.2e1 * t28 * t34 +
0.2e1 * t86 * t73 * t24 +
0.4e1 * t3 * t15 * t8 +
0.4e1 * t45 * Z * t60 +
0.4e1 * t18 * t146 * t8 +
0.2e1 * t45 * Z * t24 +
0.2e1 * t16 * t15 * t24
t159 = t4 * Z
u2 =
(
-0.4e1 * t6 * t7 * t8 + 0.2e1 * t14 * t15 * t19 - 0.2e1 * t23 * t7 * t24 +
0.2e1 * t28 * t29 +
0.2e1 * t33 * t34 +
0.4e1 * t6 * t37 * t8 - 0.2e1 * t14 * t5 * _C2 * Z +
0.2e1 * t45 * Z * t19 * t24 +
0.2e1 * t23 * t37 * t24 +
0.4e1 * t33 * t3 * t53 +
t91 +
t121 +
t156
) /
(0.4e1 * t159 * t18 * t12 + 0.8e1 * t159 * t18 * t1 * t8 + 0.4e1 * t159 * t18 * t24)
t1 = 0.3141592654e1 * 0.3141592654e1
t2 = t1 * 0.3141592654e1
t3 = _C1 * t2
t4 = t3 * Z
t5 = n * n
t6 = t5 * t5
t7 = t6 * n
t8 = x * t7
t9 = x * n
t11 = exp(t9 * 0.3141592654e1)
t12 = t11 * t11
t13 = t8 * t12
t16 = t5 * n
t17 = x * t16
t18 = t17 * t2
t19 = _C4 * t12
t20 = nx * nx
t24 = t2 * _C4
t28 = _C3 * t2
t29 = t28 * x
t30 = t12 * n
t31 = t20 * t20
t40 = _C2 * Z
t44 = t9 * t2
t48 = t12 * t20
t52 = t17 * t20
t57 =
-0.2e1 * t4 * t13 - 0.4e1 * t18 * t19 * t20 - 0.2e1 * t8 * t24 * t12 -
0.2e1 * t29 * t30 * t31 + 0.2e1 * t8 * t2 * _C2 * Z - 0.2e1 * t8 * t2 * t40 * t12 -
0.2e1 * t44 * t19 * t31 - 0.4e1 * t18 * t40 * t48 +
t20 +
0.4e1 * t28 * t52 +
t17 * 0.3141592654e1 * t12
t58 = t9 * t31
t61 = _C3 * t1
t62 = t12 * t31
t73 = t5 * t20
t78 = _C1 * t1
t90 = Z * t12
t94 =
0.2e1 * t28 * t58 + 0.2e1 * t61 * t62 + 0.2e1 * t61 * t12 * t6 -
0.4e1 * t4 * t17 * t48 +
0.2e1 * t28 * t8 +
0.4e1 * t61 * t73 - 0.2e1 * t8 * t24 - 0.2e1 * t78 * Z * t6 -
0.2e1 * t44 * t40 * t62 - 0.2e1 * t78 * Z * t31 - t9 * 0.3141592654e1 * t20 +
0.2e1 * t78 * t90 * t6
t101 = cos(nx * 0.3141592654e1 * x)
t102 = t11 * t101
t109 = t12 * t5
t110 = t109 * t20
t128 =
0.2e1 * t61 * t6 - t17 * 0.3141592654e1 + 0.2e1 * t102 * t5 -
0.4e1 * t17 * t24 * t20 + 0.4e1 * t78 * Z * t110 - 0.2e1 * t9 * t24 * t31 -
0.4e1 * t4 * t52 - 0.2e1 * t4 * t9 * t62 + x * 0.3141592654e1 * t30 * t20 - t5 -
0.4e1 * t78 * Z * t5 * t20
t156 =
0.2e1 * t78 * t90 * t31 - 0.2e1 * t3 * Z * x * t7 +
t48 +
0.4e1 * t61 * t110 +
0.4e1 * t18 * t40 * t20 - 0.2e1 * t102 * t20 +
0.2e1 * t61 * t31 +
0.2e1 * t44 * t40 * t31 - t109 - 0.2e1 * t4 * t58 - 0.2e1 * t28 * t13 -
0.4e1 * t29 * t16 * t12 * t20
t159 = t1 * t11
u3 =
(t57 + t94 + t128 + t156) /
(0.4e1 * t159 * t6 + 0.8e1 * t159 * t73 + 0.4e1 * t159 * t31)
t1 = _C2 * Z
t2 = 0.3141592654e1 * 0.3141592654e1
t3 = t2 * 0.3141592654e1
t4 = n * n
t5 = t4 * t4
t6 = t5 * t4
t8 = t3 * t6 * x
t11 = x * t4
t12 = t11 * t3
t15 = exp(x * n * 0.3141592654e1)
t16 = t15 * t15
t17 = _C3 * t16
t18 = nx * nx
t19 = t18 * t18
t23 = t5 * n
t24 = t2 * t23
t28 = t1 * t3
t29 = t6 * x
t30 = t29 * t16
t33 = _C4 * t3
t34 = t5 * x
t35 = t34 * t18
t41 = sin(nx * 0.3141592654e1 * x)
t47 = t11 * t19
t54 = t3 * _C3
t57 =
0.2e1 * t1 * t8 +
0.2e1 * t12 * t17 * t19 +
0.2e1 * t1 * t24 * t16 +
0.2e1 * t28 * t30 - 0.4e1 * t33 * t35 +
0.2e1 * t15 * nx * t41 * t4 +
0.4e1 * t28 * t35 - 0.2e1 * t33 * t47 - 0.2e1 * t1 * t24 - 0.2e1 * t33 * t29 +
0.2e1 * t29 * t54
t58 = 0.3141592654e1 * t16
t60 = t2 * _C4
t69 = t4 * n
t73 = t1 * t2
t75 = t69 * t16 * t18
t79 = x * t16
t83 = n * t16
t84 = t83 * t19
t95 =
-t34 * t58 + 0.2e1 * t60 * t23 * t16 + 0.2e1 * t60 * n * t19 -
t11 * 0.3141592654e1 * t18 +
0.4e1 * t60 * t69 * t18 +
0.4e1 * t73 * t75 +
0.4e1 * t33 * t5 * t79 * t18 +
0.2e1 * t73 * t84 +
0.2e1 * t60 * t84 +
0.2e1 * t33 * t4 * t79 * t19 +
0.4e1 * t60 * t75
t97 = t34 * t3
t101 = Z * _C1
t102 = t16 * t19
t106 = t16 * t18
t127 = t2 * t69
t131 = t2 * n
t135 =
0.4e1 * t97 * t17 * t18 +
0.2e1 * t12 * t101 * t102 +
0.4e1 * t28 * t34 * t106 +
0.2e1 * t28 * t11 * t102 - 0.2e1 * t29 * t3 * Z * _C1 - 0.4e1 * t97 * t101 * t18 -
0.2e1 * t12 * t101 * t19 + 0.2e1 * t60 * t23 - 0.2e1 * t83 * t18 -
0.4e1 * t1 * t127 * t18 - 0.2e1 * t1 * t131 * t19
t164 =
0.2e1 * t28 * t47 +
0.2e1 * t11 * t54 * t19 +
0.2e1 * t8 * t101 * t16 +
0.2e1 * t33 * t30 - t11 * t58 * t18 +
0.2e1 * t29 * t54 * t16 +
0.4e1 * t34 * t54 * t18 +
0.4e1 * t97 * t101 * t106 - 0.2e1 * t15 * t18 * nx * t41 - t34 * 0.3141592654e1 +
0.2e1 * n * t18
u4 =
(t57 + t95 + t135 + t164) /
(0.4e1 * t24 * t15 + 0.8e1 * t127 * t15 * t18 + 0.4e1 * t131 * t15 * t19)
u5 = (-2 * Z * n * π * u2 - u3 * 2 * n * π) * cos(n * π * z) # pressure
u6 = (u3 * 2 * n * π + 4 * Z * n * π * u2) * cos(n * π * z) # zz stress
sum5 = u5
sum6 = u6
u1 *= cos(n * π * z) # x velocity
sum1 = u1
u2 *= sin(n * π * z) # z velocity
sum2 = u2
u3 *= 2 * n * π * cos(n * π * z) # xx stress
sum3 = u3
u4 *= 2 * n * π * sin(n * π * z) # zx stress
sum4 = u4
vx = sum1
vz = sum2
p = sum5
return (; V=[vx, vz], p)
end
| ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | code | 15131 | @doc raw"""
sol = Stokes2D_SolKz_Zhong1996(x; params)
Evaluates the manufactured solution of [Zhong et al., (1996)](https://booksite.elsevier.com/brochures/geophysics/PDFs/00118.pdf).
Analytical solution adapted from Underworld (https://github.com/underworldcode, LGPL-3 license).
The solution requires the following expressions the density and viscosity fields:
ρ = -σ*sin(km*x[2])*cos(kn*x[1])
η = exp(2*B*x[2])
Input parameters are:
x : is the coordinate vector
params : optional parameter array
and returns:
sol : tuple containing the solution fields p (pressure), V (velocity vector), ρ (density) and η (viscosity)
# Examples
```julia-repl
julia> Stokes2D_SolKz_Zhong1996([0; 0])
(p = -0.017494712727797308, V = [0.0, 0.0], ρ = 0.0, η = 1.0)
```
"""
function Stokes2D_SolKz_Zhong1996(x;
params = (Δη=1e6, B = 6.9, km = 1.6*π, n = 3, σ = 1.0 ) )
@unpack Δη, B, km, n, σ = params
#************************************************************************%
#************************************************************************%
kn = 3*π
a = B*B + kn*kn
b = 2.0*kn*B
r = sqrt(a*a + b*b)
Rp = sqrt( (r+a)/2.0 )
Rm = sqrt( (r-a)/2.0 )
UU = Rp - B
VV = Rp + B
sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
sum4 = 0.0;
sum5 = 0.0;
sum6 = 0.0;
sum7 = 0.0;
#*******************************************%
# calculate the constants %
#*******************************************%
t3 = kn * kn;
t4 = km * km;
t6 = B * B;
t8 = 0.4e1 * t3 * t6;
t10 = 0.4e1 * t4 * t6;
t13 = 0.8e1 * kn * t6 * km;
t14 = t4 * t4;
t16 = 0.2e1 * t3 * t4;
t17 = t3 * t3;
aa = -0.4e1 * B * km * kn * (t3 + t4) / (t8 + t10 + t13 + t14 + t16 + t17) / (-t13 + t8 + t10 + t14 + t16 + t17);
t1 = kn * kn;
t2 = t1 * t1;
t3 = B * B;
t5 = 0.4e1 * t1 * t3;
t6 = km * km;
t7 = t6 * t6;
t9 = 0.2e1 * t1 * t6;
t11 = 0.4e1 * t3 * t6;
t16 = 0.8e1 * kn * t3 * km;
bb = kn * (t2 + t5 + t7 + t9 - t11) / (t5 + t11 + t16 + t7 + t9 + t2) / (-t16 + t5 + t11 + t7 + t9 + t2);
AA = aa;
BB = bb;
t1 = B * B;
t2 = t1 * Rp;
t4 = Rm * Rm;
t5 = t4 * Rp;
t7 = t4 * B;
t8 = km * km;
t12 = Rp * Rp;
t13 = B * t12;
t21 = 0.8e1 * t1 * km * BB * Rp;
t23 = 0.2e1 * Rm;
t24 = cos(t23);
t26 = Rm * Rp;
t38 = sin(t23);
t51 = exp(-0.2e1 * Rp);
t53 = B + Rp;
t54 = Rm * t53;
t55 = Rm * B;
t57 = 0.2e1 * B * km;
t58 = t55 + t57 - t26;
t62 = 0.3e1 * t1;
t64 = 0.2e1 * Rp * B;
t65 = t62 + t64 + t4 - t8 - t12;
t67 = t54 * t65 * BB;
t69 = Rm - km;
t70 = cos(t69);
t72 = -t57 + t55 - t26;
t77 = Rm + km;
t78 = cos(t77);
t81 = t54 * t65 * AA;
t86 = sin(t77);
t92 = sin(t69);
t96 = exp(-t53);
t98 = B - Rp;
t99 = Rm * t98;
t100 = t55 + t57 + t26;
t104 = t62 - t64 + t4 - t8 - t12;
t106 = t99 * t104 * BB;
t109 = -t57 + t55 + t26;
t116 = t99 * t104 * AA;
t130 = exp(-0.3e1 * Rp - B);
t135 = exp(-0.4e1 * Rp);
t144 = t4 * t1;
t150 = t4 * t12;
C1 = (((0.2e1 * Rp * (0.2e1 * t2 + 0.2e1 * t5 + t7 + B * t8 - 0.3e1 * t1 * B + t13) * AA + t21) * t24 + (-0.2e1 * t26 * (t4 - t8 - t12 + 0.5e1 * t1) * AA + 0.8e1 * B * BB * km * Rm * Rp) * t38 - 0.2e1 * B * (0.2e1 * t13 + t12 * Rp - 0.3e1 * t2 + t5 + 0.2e1 * t7 + t8 * Rp) * AA - t21) * t51 + ((0.2e1 * t54 * t58 * AA + t67) * t70 + (0.2e1 * t54 * t72 * AA - t67) * t78 + (t81 + 0.2e1 * t54 * t72 * BB) * t86 + (t81 - 0.2e1 * t54 * t58 * BB) * t92) * t96 + ((-0.2e1 * t99 * t100 * AA - t106) * t70 + (-0.2e1 * t99 * t109 * AA + t106) * t78 + (-t116 - 0.2e1 * t99 * t109 * BB) * t86 + (-t116 + 0.2e1 * t99 * t100 * BB) * t92) * t130 + 0.4e1 * t4 * t98 * t53 * AA * t135) / (((-0.8e1 * t4 - 0.8e1 * t1) * t12 * t24 + 0.8e1 * t144 + 0.8e1 * t12 * t1) * t51 + (0.4e1 * t150 - 0.4e1 * t144) * t135 + 0.4e1 * t150 - 0.4e1 * t144);
t1 = Rm * Rp;
t2 = Rm * Rm;
t3 = km * km;
t4 = Rp * Rp;
t5 = B * B;
t12 = km * Rm;
t17 = 0.2e1 * Rm;
t18 = cos(t17);
t22 = t2 * Rp;
t25 = B * t3;
t26 = t5 * B;
t33 = t5 * km;
t38 = sin(t17);
t40 = Rm * B;
t41 = 0.3e1 * t5;
t51 = exp(-0.2e1 * Rp);
t53 = B + Rp;
t54 = Rm * t53;
t57 = t41 + 0.2e1 * Rp * B + t2 - t3 - t4;
t59 = t54 * t57 * AA;
t60 = B * km;
t61 = 0.2e1 * t60;
t62 = t40 + t61 - t1;
t67 = Rm - km;
t68 = cos(t67);
t70 = -t61 + t40 - t1;
t75 = Rm + km;
t76 = cos(t75);
t82 = t54 * t57 * BB;
t84 = sin(t75);
t90 = sin(t67);
t94 = exp(-t53);
t97 = 0.3e1 * Rm * t26;
t98 = t2 * Rm;
t99 = t98 * B;
t100 = t3 * Rm;
t101 = t100 * Rp;
t103 = Rm * t4 * B;
t104 = t4 * Rp;
t105 = Rm * t104;
t107 = 0.8e1 * t33 * Rp;
t109 = 0.5e1 * t1 * t5;
t110 = t98 * Rp;
t111 = t100 * B;
t112 = t97 + t99 - t101 + t103 - t105 + t107 + t109 + t110 - t111;
t114 = t2 * t4;
t116 = 0.2e1 * t60 * t1;
t117 = t2 * t5;
t119 = 0.3e1 * t26 * Rp;
t120 = t104 * B;
t121 = t4 * t5;
t122 = 0.2e1 * t121;
t123 = t22 * B;
t125 = 0.2e1 * t33 * Rm;
t126 = t25 * Rp;
t127 = t114 + t116 + t117 - t119 + t120 + t122 + t123 + t125 + t126;
t132 = -t107 + t103 - t105 - t101 + t97 - t111 + t110 + t109 + t99;
t134 = t120 - t125 + t123 - t116 + t122 + t117 + t114 + t126 - t119;
t152 = exp(-0.3e1 * Rp - B);
t161 = exp(-0.4e1 * Rp);
C2 = (((0.2e1 * t1 * (t2 - t3 - t4 + 0.5e1 * t5) * AA - 0.8e1 * B * BB * t12 * Rp) * t18 + (0.2e1 * Rp * (0.2e1 * t5 * Rp + 0.2e1 * t22 + t2 * B + t25 - 0.3e1 * t26 + B * t4) * AA + 0.8e1 * t33 * BB * Rp) * t38 + 0.2e1 * t40 * (t41 + t4 + t2 - t3) * AA - 0.8e1 * t5 * BB * t12) * t51 + ((-t59 + 0.2e1 * t54 * t62 * BB) * t68 + (-t59 - 0.2e1 * t54 * t70 * BB) * t76 + (0.2e1 * t54 * t70 * AA - t82) * t84 + (0.2e1 * t54 * t62 * AA + t82) * t90) * t94 + ((t112 * AA - 0.2e1 * t127 * BB) * t68 + (t132 * AA + 0.2e1 * t134 * BB) * t76 + (-0.2e1 * t134 * AA + t132 * BB) * t84 + (-0.2e1 * t127 * AA - t112 * BB) * t90) * t152 + (-0.2e1 * t59 + 0.8e1 * t40 * km * t53 * BB) * t161) / (((-0.8e1 * t2 - 0.8e1 * t5) * t4 * t18 + 0.8e1 * t117 + 0.8e1 * t121) * t51 + (0.4e1 * t114 - 0.4e1 * t117) * t161 + 0.4e1 * t114 - 0.4e1 * t117);
t1 = B * B;
t2 = t1 * Rp;
t4 = Rm * Rm;
t5 = t4 * Rp;
t7 = Rp * Rp;
t8 = B * t7;
t11 = km * km;
t13 = t4 * B;
t21 = 0.8e1 * t1 * km * BB * Rp;
t23 = 0.2e1 * Rm;
t24 = cos(t23);
t26 = Rm * Rp;
t38 = sin(t23);
t51 = exp(-0.2e1 * Rp);
t53 = B + Rp;
t54 = Rm * t53;
t55 = Rm * B;
t57 = 0.2e1 * B * km;
t58 = t55 + t57 - t26;
t62 = 0.3e1 * t1;
t64 = 0.2e1 * Rp * B;
t65 = t62 + t64 + t4 - t11 - t7;
t67 = t54 * t65 * BB;
t69 = Rm - km;
t70 = cos(t69);
t72 = -t57 + t55 - t26;
t77 = Rm + km;
t78 = cos(t77);
t81 = t54 * t65 * AA;
t86 = sin(t77);
t92 = sin(t69);
t96 = exp(-t53);
t98 = B - Rp;
t99 = Rm * t98;
t100 = t55 + t57 + t26;
t104 = t62 - t64 + t4 - t11 - t7;
t106 = t99 * t104 * BB;
t109 = -t57 + t55 + t26;
t116 = t99 * t104 * AA;
t130 = exp(-0.3e1 * Rp - B);
t141 = t4 * t1;
t147 = t4 * t7;
t151 = exp(-0.4e1 * Rp);
C3 = (((-0.2e1 * Rp * (-0.2e1 * t2 - 0.2e1 * t5 + t8 - 0.3e1 * t1 * B + B * t11 + t13) * AA - t21) * t24 + (0.2e1 * t26 * (t4 - t11 - t7 + 0.5e1 * t1) * AA - 0.8e1 * B * BB * km * Rm * Rp) * t38 - 0.2e1 * B * (0.2e1 * t8 + 0.2e1 * t13 + 0.3e1 * t2 - t7 * Rp - t5 - t11 * Rp) * AA + t21) * t51 + ((-0.2e1 * t54 * t58 * AA - t67) * t70 + (-0.2e1 * t54 * t72 * AA + t67) * t78 + (-t81 - 0.2e1 * t54 * t72 * BB) * t86 + (-t81 + 0.2e1 * t54 * t58 * BB) * t92) * t96 + ((0.2e1 * t99 * t100 * AA + t106) * t70 + (0.2e1 * t99 * t109 * AA - t106) * t78 + (t116 + 0.2e1 * t99 * t109 * BB) * t86 + (t116 - 0.2e1 * t99 * t100 * BB) * t92) * t130 + 0.4e1 * t4 * t98 * t53 * AA) / (((-0.8e1 * t4 - 0.8e1 * t1) * t7 * t24 + 0.8e1 * t141 + 0.8e1 * t7 * t1) * t51 + (0.4e1 * t147 - 0.4e1 * t141) * t151 + 0.4e1 * t147 - 0.4e1 * t141);
t1 = Rm * Rp;
t2 = Rm * Rm;
t3 = km * km;
t4 = Rp * Rp;
t5 = B * B;
t12 = km * Rm;
t17 = 0.2e1 * Rm;
t18 = cos(t17);
t22 = t2 * Rp;
t25 = t5 * B;
t27 = B * t3;
t33 = t5 * km;
t38 = sin(t17);
t40 = Rm * B;
t41 = 0.3e1 * t5;
t51 = exp(-0.2e1 * Rp);
t53 = t2 * Rm;
t54 = t53 * B;
t56 = 0.5e1 * t1 * t5;
t58 = Rm * t4 * B;
t59 = t3 * Rm;
t60 = t59 * Rp;
t62 = 0.8e1 * t33 * Rp;
t64 = 0.3e1 * Rm * t25;
t65 = t53 * Rp;
t66 = t59 * B;
t67 = t4 * Rp;
t68 = Rm * t67;
t69 = t54 - t56 + t58 + t60 - t62 + t64 - t65 - t66 + t68;
t71 = t2 * t4;
t73 = 0.3e1 * t25 * Rp;
t74 = t2 * t5;
t75 = t27 * Rp;
t76 = B * km;
t78 = 0.2e1 * t76 * t1;
t80 = 0.2e1 * t33 * Rm;
t81 = t22 * B;
t82 = t4 * t5;
t83 = 0.2e1 * t82;
t84 = t67 * B;
t85 = t71 + t73 + t74 - t75 - t78 + t80 - t81 + t83 - t84;
t89 = Rm - km;
t90 = cos(t89);
t92 = t60 - t66 - t65 + t58 + t54 - t56 + t62 + t68 + t64;
t94 = t73 + t78 - t81 + t74 - t80 - t84 - t75 + t83 + t71;
t98 = Rm + km;
t99 = cos(t98);
t105 = sin(t98);
t111 = sin(t89);
t115 = exp(-Rp - B);
t117 = B - Rp;
t118 = Rm * t117;
t121 = t41 - 0.2e1 * Rp * B + t2 - t3 - t4;
t123 = t118 * t121 * AA;
t124 = 0.2e1 * t76;
t125 = t40 + t124 + t1;
t131 = -t124 + t40 + t1;
t141 = t118 * t121 * BB;
t152 = exp(-0.3e1 * Rp - B);
t171 = exp(-0.4e1 * Rp);
C4 = (((-0.2e1 * t1 * (t2 - t3 - t4 + 0.5e1 * t5) * AA + 0.8e1 * B * BB * t12 * Rp) * t18 + (-0.2e1 * Rp * (-0.2e1 * t5 * Rp - 0.2e1 * t22 + t4 * B - 0.3e1 * t25 + t27 + t2 * B) * AA - 0.8e1 * t33 * BB * Rp) * t38 + 0.2e1 * t40 * (t41 + t4 + t2 - t3) * AA - 0.8e1 * t5 * BB * t12) * t51 + ((t69 * AA - 0.2e1 * t85 * BB) * t90 + (t92 * AA + 0.2e1 * t94 * BB) * t99 + (-0.2e1 * t94 * AA + t92 * BB) * t105 + (-0.2e1 * t85 * AA - t69 * BB) * t111) * t115 + ((-t123 + 0.2e1 * t118 * t125 * BB) * t90 + (-t123 - 0.2e1 * t118 * t131 * BB) * t99 + (0.2e1 * t118 * t131 * AA - t141) * t105 + (0.2e1 * t118 * t125 * AA + t141) * t111) * t152 - 0.2e1 * t123 + 0.8e1 * t40 * km * t117 * BB) / (((-0.8e1 * t2 - 0.8e1 * t5) * t4 * t18 + 0.8e1 * t74 + 0.8e1 * t82) * t51 + (0.4e1 * t71 - 0.4e1 * t74) * t171 + 0.4e1 * t71 - 0.4e1 * t74);
#******************************************************************%
#******************************************************************%
#*******************************************%
#* calculate the velocities etc *%
#*******************************************%
t2 = exp(UU * x[2]);
t3 = Rm * x[2];
t4 = cos(t3);
t6 = sin(t3);
t11 = exp(-VV * x[2]);
t18 = exp(-0.2e1 * x[2] * B);
t19 = km * x[2];
t20 = cos(t19);
t22 = sin(t19);
u1 = kn * (t2 * (C1 * t4 + C2 * t6) + t11 * (C3 * t4 + C4 * t6) + t18 * (AA * t20 + BB * t22));
t1 = Rm * x[2];
t2 = cos(t1);
t4 = sin(t1);
t14 = exp(UU * x[2]);
t26 = exp(-VV * x[2]);
t28 = km * x[2];
t29 = cos(t28);
t31 = sin(t28);
t43 = exp(-0.2e1 * x[2] * B);
u2 = (-UU * (C1 * t2 + C2 * t4) + C1 * t4 * Rm - C2 * t2 * Rm) * t14 + (VV * (C3 * t2 + C4 * t4) + C3 * t4 * Rm - C4 * t2 * Rm) * t26 + (0.2e1 * B * (AA * t29 + BB * t31) + AA * t31 * km - BB * t29 * km) * t43;
t2 = 0.2e1 * x[2] * B;
t3 = exp(t2);
t4 = t3 * kn;
t5 = Rm * x[2];
t6 = cos(t5);
t8 = sin(t5);
t18 = exp(UU * x[2]);
t31 = exp(-VV * x[2]);
t34 = km * x[2];
t35 = cos(t34);
t37 = sin(t34);
t47 = exp(-t2);
u3 = 0.2e1 * t4 * (UU * (C1 * t6 + C2 * t8) - C1 * t8 * Rm + C2 * t6 * Rm) * t18 + 0.2e1 * t4 * (-VV * (C3 * t6 + C4 * t8) - C3 * t8 * Rm + C4 * t6 * Rm) * t31 + 0.2e1 * t4 * (-0.2e1 * B * (AA * t35 + BB * t37) - AA * t37 * km + BB * t35 * km) * t47;
t1 = Rm * Rm;
t3 = UU * UU;
t8 = kn * kn;
t11 = Rm * x[2];
t12 = sin(t11);
t14 = cos(t11);
t20 = t14 * Rm;
t27 = 0.2e1 * x[2] * B;
t28 = exp(t27);
t31 = exp(UU * x[2]);
t38 = VV * VV;
t54 = exp(-VV * x[2]);
t56 = km * km;
t59 = B * B;
t66 = km * x[2];
t67 = sin(t66);
t69 = cos(t66);
t83 = exp(-t27);
u4 = ((C2 * t1 - t3 * C2 + 0.2e1 * UU * C1 * Rm - C2 * t8) * t12 + C1 * t14 * t1 - t3 * C1 * t14 - 0.2e1 * UU * C2 * t20 - t8 * C1 * t14) * t28 * t31 + ((-0.2e1 * VV * C3 * Rm + C4 * t1 - C4 * t8 - t38 * C4) * t12 + 0.2e1 * VV * C4 * t20 + C3 * t14 * t1 - t8 * C3 * t14 - t38 * C3 * t14) * t28 * t54 + ((BB * t56 - t8 * BB - 0.4e1 * t59 * BB - 0.4e1 * B * AA * km) * t67 + AA * t69 * t56 - t8 * AA * t69 - 0.4e1 * t59 * AA * t69 + 0.4e1 * B * BB * t69 * km) * t28 * t83;
t1 = Rm * x[2];
t2 = sin(t1);
t3 = Rm * Rm;
t4 = t3 * Rm;
t5 = t2 * t4;
t6 = UU * UU;
t7 = t6 * UU;
t8 = cos(t1);
t15 = 0.2e1 * B * t8 * t3;
t19 = B * UU;
t20 = t2 * Rm;
t23 = kn * kn;
t24 = B * t23;
t26 = 0.2e1 * t24 * t8;
t27 = t23 * UU;
t29 = B * t6;
t33 = t23 * t2 * Rm;
t35 = 0.1e1 / kn;
t42 = 0.2e1 * B * t2 * t3;
t43 = t8 * t4;
t45 = 0.2e1 * t24 * t2;
t52 = t23 * t8 * Rm;
t53 = t8 * Rm;
t64 = 0.2e1 * x[2] * B;
t65 = exp(t64);
t68 = exp(UU * x[2]);
t70 = B * VV;
t76 = t23 * VV;
t78 = VV * VV;
t79 = t78 * VV;
t84 = B * t78;
t108 = exp(-VV * x[2]);
t111 = km * x[2];
t112 = sin(t111);
t113 = km * km;
t118 = cos(t111);
t119 = t118 * km;
t121 = B * B;
t123 = t112 * km;
t130 = t113 * km;
t148 = exp(-t64);
u5 = (-(-t5 - t7 * t8 + 0.3e1 * UU * t8 * t3 + t15 + 0.3e1 * t6 * t2 * Rm + 0.4e1 * t19 * t20 - t26 + t27 * t8 - 0.2e1 * t29 * t8 - t33) * t35 * C1 - (-t7 * t2 + t27 * t2 + t42 + t43 - t45 + 0.3e1 * UU * t2 * t3 - 0.2e1 * t29 * t2 + t52 - 0.4e1 * t19 * t53 - 0.3e1 * t6 * t8 * Rm) * t35 * C2) * t65 * t68 + (-(t15 - 0.4e1 * t70 * t20 - t33 - 0.3e1 * VV * t8 * t3 - t76 * t8 + t79 * t8 + 0.3e1 * t78 * t2 * Rm - 0.2e1 * t84 * t8 - t26 - t5) * t35 * C3 - (t52 - 0.3e1 * VV * t2 * t3 + t79 * t2 + 0.4e1 * t70 * t53 - 0.3e1 * t78 * t8 * Rm - 0.2e1 * t84 * t2 + t43 - t76 * t2 + t42 - t45) * t35 * C4) * t65 * t108 - t65 * (-0.4e1 * B * BB * t112 * t113 + t23 * BB * t119 + 0.4e1 * t121 * AA * t123 - 0.4e1 * t121 * BB * t119 + BB * t118 * t130 - AA * t112 * t130 - 0.4e1 * B * AA * t118 * t113 - t23 * AA * t123 - 0.4e1 * t24 * AA * t118 - 0.4e1 * t24 * BB * t112) * t35 * t148;
t2 = 0.2e1 * x[2] * B;
t3 = exp(t2);
t4 = t3 * kn;
t5 = Rm * x[2];
t6 = cos(t5);
t8 = sin(t5);
t18 = exp(UU * x[2]);
t31 = exp(-VV * x[2]);
t34 = km * x[2];
t35 = cos(t34);
t37 = sin(t34);
t47 = exp(-t2);
u6 = -0.2e1 * t4 * (UU * (C1 * t6 + C2 * t8) - C1 * t8 * Rm + C2 * t6 * Rm) * t18 - 0.2e1 * t4 * (-VV * (C3 * t6 + C4 * t8) - C3 * t8 * Rm + C4 * t6 * Rm) * t31 - 0.2e1 * t4 * (-0.2e1 * B * (AA * t35 + BB * t37) - AA * t37 * km + BB * t35 * km) * t47;
#******************************************************************%
#******************************************************************%
u1 = u1 * cos(n*π*x[1]); # x[2] velocity
sum1 = sum1 + u1;
u2 = u2 * sin(n*π*x[1]); # x[1] velocity
sum2 = sum2 + u2;
sum5 = sum5 + u5*cos(n*π*x[1]); # pressure
u6 = u6 - u5; # get total stress
sum6 = sum6 + u6*cos(n*π*x[1]); # xx stress
u3 = u3 - u5; # get total stress
u3 = u3 * cos(n*π*x[1]); # zz stress
sum3 = sum3 + u3;
u4 = u4 * sin(n*π*x[1]); # zx stress
sum4 = sum4 + u4;
ρ = -σ*sin(km*x[2])*cos(kn*x[1]); # density
sum7 = sum7 + ρ;
SS = exp(UU*x[2])*(C1*cos(Rm*x[2])+C2*sin(Rm*x[2])) +exp(-VV*x[2])*(C3*cos(Rm*x[2])+C4*sin(Rm*x[2])) + exp(-2*x[2]*B)*(AA*cos(km*x[2])+BB*sin(km*x[2]));
SS = SS * sin(kn*x[1]); # stream function
mag = sqrt(u1*u1+u2*u2);
# Output
vx = sum2;
vz = sum1;
p = sum5;
ρ = sum7;
η = exp( 2.0 * B * x[2] );
return ( p=p, V=[vx, vz], ρ=ρ, η=η)
end | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.3 | d62c0014dfc5d64ecd16190fa069a8bb04627006 | docs | 3153 | ## ExactFieldSolutions.jl
Full field solutions are essential for the verification of numerical codes that are based on the solution of Partial Differential Equations (PDE).
They allow for checking if numerical solutions are meaningful in eyeball norm but, more importantly, they allow for the quantification of discretisation errors.
This quantification further enables to check whether numerical solutions converge to exact solutions at expected theoretical rates.
`ExactFieldSolutions` compiles full field solutions for 1D, 2D and 3D PDE problems including Poisson-type and mechanical problems (Stokes, elasticity).
Contributions are welcome and full field solutions to other problems (electric, magnetic, MHD) are more than welcome. Feel free to make a PR.
`ExactFieldSolutions` benefits from automatic differentiation tools available within the Julia ecosystem (e.g., ForwardDiff). These allow to evaluate fluxes and sources terms in a simplified way. [See this manufactured solution for the 2D Poisson problem](src/Poisson2D_Sevilla2018.jl).
Please note that `ExactFieldSolutions` is a registered package, so you can install it simply by typing `add ExactFieldSolutions` in package mode.
### Poisson 2D
[Sevilla et al. (2018)](examples/visualisations/Visualize_Poisson2D_Sevilla2018.jl)
")
### Poisson 3D
[Sevilla et al. (2018)](examples/visualisations/Visualize_Poisson3D_Sevilla2018.jl)
")
### Diffusion 1D
[Diffusion of a 1D Gaussian](examples/visualisations/Visualize_Diffusion1D_Gaussian.jl)

### Diffusion 2D
[Diffusion of a 2D Gaussian](examples/visualisations/Visualize_Diffusion2D_Gaussian.jl)

### Stokes 2D
[Viscous inclusion - Schmid & Podladchikov (2003)](examples/visualisations/Visualize_Stokes2D_Schmid2003.jl)
")
[Double corner flow - Moulas et al., (2021)](examples/visualisations/Visualize_Stokes2D_Moulas2021.jl)
")
[Donea & Huerta (2003)](examples/visualisations/Visualize_Stokes2D_Donea2003.jl)
")
[SolKz - Zhong et al. (1996)](examples/visualisations/Visualize_Stokes2D_SolKz_Zhong1996.jl)
")
[SolCx - Zhong et al. (1996)](examples/visualisations/Visualize_Stokes2D_SolCx_Zhong1996.jl)
")
### Elasticity 2D
[Elastic plate with a hole](examples/visualisations/Visualize_Elasticity2D_Hole.jl)

### Benchmarking
[1D diffusion: Finite Difference Method (FDM) with backward-Euler integration and spatial staggering](examples/benchmarks/Benchmark_Thermal1D.jl)
: backward-Euler and spatial staggering") | ExactFieldSolutions | https://github.com/tduretz/ExactFieldSolutions.jl.git |
|
[
"MIT"
] | 0.1.0 | ce4c98fdd7977797f62a1d80cdae7c3fffdfce37 | code | 208 | module Geocoder
include("geocode.jl")
include("geom.jl")
export geocode
export geometry
export address
export geomgoogle
export geomOSM
export longitude
export latitude
end | Geocoder | https://github.com/arubhardwaj/Geocoder.jl.git |
|
[
"MIT"
] | 0.1.0 | ce4c98fdd7977797f62a1d80cdae7c3fffdfce37 | code | 2387 | using HTTP
using JSON
using DataFrames
"""
For obtaining the address in the format to use with the API key `address()` can be used.
Example:
julia> address("1600 Amphitheatre Parkway, Mountain View, CA")
"""
function address(street_address::Vector{String})
street_address = replace.(street_address, r"\s*(,)?\s+" => "+")
return(street_address)
end
"""
`julia> geocode(street_address::String, api_key::String, method::String)`
JuliaMaps has `geocode()` for obtaining the coordingates of locations. It will produce `longitude` and `latitude` of location in `Dict`.
Usage:
`julia> geocode("full address", "api key", "method")`
Note: Currently, `geocode()` can call from two methods: "google" and "osm".
If there are more than one addresses, it'd be reueired to use broadcasting operator with `geocode()`.
Example:
`julia> geocode.(address_list, "api","method")`
Method:
- google: Calls data from google maps. In this case, it'd be reqired to use google maps api key.
- osm: Calls data from open street maps, using MapQuest api. Visit: https://developer.mapquest.com/documentation/
"""
function geocode(street_address::String, api_key::String, method::String)
street_address = replace.(street_address, r"\s*(,)?\s+" => "+")
if method == "google"
url = "https://maps.googleapis.com/maps/api/geocode/json?address=$street_address&key=$api_key"
response = HTTP.get(url)
gem = geomgoogle(JSON.parse(String(response.body)))
elseif method == "osm"
url = "http://www.mapquestapi.com/geocoding/v1/address?key=$api_key&location=$street_address"
response = HTTP.get(url)
gem = geomOSM(JSON.parse(String(response.body)))
else
gem = error("Please use method correctly. Currently JuliaMaps.jl only supports two methods: google and osm")
end
return(gem)
end
"""
If there were more than one addresses in geocoding, while using `geocode()`, all the longitudes and latitudes can be printed in a data frame using `geometry(geocod_output)`.
Usage:
`julia> geometry(geocode_output)`
Note: This function can only be used if there were more than one addresses in `geocode()`.
"""
function geometry(geocode_output)
lat = getindex.(geocode_output, "lat")
lng = getindex.(geocode_output, "lng")
d = DataFrame(Longitude = lng, Latitude = lat)
return(d)
end | Geocoder | https://github.com/arubhardwaj/Geocoder.jl.git |
|
[
"MIT"
] | 0.1.0 | ce4c98fdd7977797f62a1d80cdae7c3fffdfce37 | code | 870 |
function geomgoogle(json_response::Dict{String, Any})
gem = json_response["results"][1]["geometry"]["location"]
return((gem))
end
function geomOSM(json_response::Dict{String, Any})
gem = json_response["results"][1]["locations"][1]["latLng"]
return((gem))
end
"""
Print all the longitudes from geocode output.
Usage:
`julia> longitude(geocode_output)`
Note: This function can only be used if there were more than one addresses in `geocode()`.
"""
function longitude(geocode_output)
lng = getindex.(geocode_output, "lng")
return(lng)
end
"""
Print all the latitudes from geocode output.
Usage:
`julia> latitude(geocode_output)`
Note: This function can only be used if there were more than one addresses in `geocode()`.
"""
function latitude(geocode_output)
lat = getindex.(geocode_output, "lat")
return(lat)
end | Geocoder | https://github.com/arubhardwaj/Geocoder.jl.git |
|
[
"MIT"
] | 0.1.0 | ce4c98fdd7977797f62a1d80cdae7c3fffdfce37 | docs | 1913 | # Geocoder
Geocoder.jl is a packag for geocoding. It is a part of [JuliaMaps.jl](https://github.com/arubhardwaj/JuliaMaps.jl). The idea of this project is to create something like [ggmap](https://github.com/dkahle/ggmap) for plotting maps in Julia.
Currently, `Geocoder.jl` it can only be used as a geocoding client for Google Maps API and Open Street Maps API. It is needed to have an API key for using this package, which can be requested from [Google Cloud Console](https://console.cloud.google.com/) (for google maps) and from [Maps Quest](https://developer.mapquest.com/) (for Open Streets Map).
For more information on requesting an API visit:
- [Google Maps Documentation](https://developers.google.com/maps/gmp-get-started)
- [MapQuest Documentation]("https://developer.mapquest.com/documentation/geocoding-api/)
# Installation
` pkg> add Geocoder`
# Usage
```julia
using JuliaMaps
geocode("Address", "Api Key", "method")
````
Right now, JuliaMaps.jl supports only two methods: `google` and `osm`. `google` as method supports api from google maps, and `osm` supports api from Open Streets Map.
For example:
```julia
geocode("1600 Amphitheatre Parkway, Mountain View, CA", "API Key", "method")
```
For a vector, it'd be required to use [broadcasting](https://julia.guide/broadcasting) feature. For example:
```julia
geocode.(addresses, "API Key", "method")
```
`geocode()` will call the data from Google Maps API. For printing coordinates of longitudes and latitudes, execute `geometry(geocode_output)`. Example:
```julia
geocode_output = geocode("1600 Amphitheatre Parkway, Mountain View, CA", "API Key", "method")
geometry(geocode_output)
```
It is also possible to print only longitudes and only latitudes using `longitude(geocode_output)` and `latitude(geocode_output)`
# Credits
Thanks to [@dzonimn](https://github.com/dzonimn) for help in writing and checkin the functions. | Geocoder | https://github.com/arubhardwaj/Geocoder.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 594 | using StaticTrafficAssignment
using Documenter
makedocs(;
modules=[StaticTrafficAssignment],
authors="Sai Kiran Mayakuntla",
repo="https://github.com/SaiKiran92/StaticTrafficAssignment.jl/blob/{commit}{path}#L{line}",
sitename="StaticTrafficAssignment.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://SaiKiran92.github.io/StaticTrafficAssignment.jl",
assets=String[],
),
pages=[
"Home" => "index.md",
],
)
deploydocs(;
repo="github.com/SaiKiran92/StaticTrafficAssignment.jl",
)
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 585 | module StaticTrafficAssignment
using DataFrames: nrow
using LightGraphs: Edge, add_edge!, edges, src, dst, nv, ne
using LightGraphs.Parallel: dijkstra_shortest_paths
using MetaGraphs: MetaDiGraph, set_prop!, set_props!, get_prop, props
using SparseArrays: sparse
export readtntpdata, CostFunctionGenerator, ProblemType, UEProblem, SOProblem, BPR, allornothing, frankwolfe
include("utils.jl")
include("data_loaders/TNTP_loader.jl")
include("costfunctions/generator.jl")
include("costfunctions/bprfn.jl")
include("algorithms/allornothing.jl")
include("algorithms/frankwolfe.jl")
end
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 408 | Base.convert(::Type{Tuple}, e::Edge) = (src(e), dst(e))
Base.:*(d::Dict, p::Real) = Dict(k => (v*p) for (k,v) in d)
Base.zero(d::Dict) = d * 0.
NamedTuple(d::Dict) = (; zip(keys(d), values(d))...)
function bisection(fn; a=0., b=1., ϵ=1e-05)
μ = 0.
while (b - a) > ϵ
μ = 0.5*(a + b)
if fn(μ) > 0
b = μ
else
a = μ
end
end
return μ
end
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 1706 | function allornothing(network::MetaDiGraph, trips::Array{<:Real,2}, costs::Array)
# Initialization
nnodes = nv(network)
nzones = get_prop(network, :nzones)
flows = zeros(ne(network))
# Making cost matrix
costmx = sparse([], [], Float64[], nnodes, nnodes)
#costmx = zeros(nnodes, nnodes)
for (c,e) in zip(costs,edges(network))
costmx[src(e),dst(e)] = c
end
flowmx = zero(costmx) # for computational purposes
# Computing shortest paths
shortpaths = dijkstra_shortest_paths(network, 1:nzones, costmx)
parentmx = shortpaths.parents
# Determining flows
tripswaiting = copy(trips)
for orig in 1:nzones
for dest in 1:nzones
t = tripswaiting[orig,dest]
if isapprox(t, 0.)
continue
end
tripswaiting[orig,dest] = 0.
# Finding the shortest path
path = [dest]
currnode = dest
while currnode != orig
prevnode = parentmx[orig,currnode]
currnode = prevnode
push!(path, currnode)
end
# Assigning flows
currnode = orig
for nextnode in path[(end-1):-1:1]
flowmx[currnode, nextnode] += t
t += tripswaiting[nextnode,dest]
tripswaiting[nextnode,dest] = 0.
currnode = nextnode
end
end
end
for (i,e) in enumerate(edges(network))
flows[i] = flowmx[src(e),dst(e)]
end
return flows
end
allornothing(network::MetaDiGraph, trips::Array{<:Real,2}, costfn::Function) = allornothing(network, trips, costfn(zeros(ne(network))).costs)
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 718 | function frankwolfe(network::MetaDiGraph, trips::Array{<:Real,2}, costfn::Function; reltol=1e-04)
# initialize
flows = allornothing(network, trips, costfn)
relerr = 1
while relerr > reltol
# compute costs
costs = costfn(flows)[:costs]
# update flows
## calculate shortpathflows
shortpathflows = allornothing(network, trips, costs)
## determining μ
μ = bisection((μ) -> sum(costfn(μ * shortpathflows + (1 - μ) * flows).costs .* (shortpathflows - flows)))
## update
flows += μ * (shortpathflows - flows)
# relerr update
relerr = sum(flows .* costs)/sum(shortpathflows .* costs) - 1
end
return flows
end
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 243 | function BPR(data)
b, C, F, p = data[:b], data[:capacity], data[:free_flow_time], data[:power]
fn(x) = F*(1 + b*(x/C)^p)
dfn(x) = F*b*(p/C)*(x/C)^(p-1)
ddfn(x) = F*b*(p*(p-1)/(C^2))*(x/C)^(p-2)
return (fn, dfn, ddfn)
end
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 2180 | struct CostFunctionGenerator <: Function
times::Function
dtimes::Function
ddtimes::Function
function CostFunctionGenerator(network, timefn)
fns = []
dfns = []
ddfns = []
for e in edges(network)
edata = props(network, e)
rv = timefn(edata)
push!(fns, rv[1])
try
push!(dfns, rv[2])
catch
push!(dfns, nothing)
end
try
push!(ddfns, rv[3])
catch
push!(ddfns, nothing)
end
end
times(x) = [fn(xi) for (fn,xi) in zip(fns,x)]
dtimes(x) = [((dfn == nothing) ? nothing : dfn(xi)) for (dfn,xi) in zip(dfns,x)]
ddtimes(x) = [((ddfn == nothing) ? nothing : ddfn(xi)) for (ddfn,xi) in zip(ddfns,x)]
return new(times, dtimes, ddtimes)
end
end
abstract type ProblemType end
abstract type UEProblem <: ProblemType end
abstract type SOProblem <: ProblemType end
function (f::CostFunctionGenerator)(::Type{UEProblem})
function fn(x::Array{<:Real,1}; returntsc::Bool=false, returnhessian::Bool=false, tolls=nothing)
times = f.times(x)
rv = Dict()
rv[:costs] = times
if tolls != nothing
rv[:costs] += tolls
end
if returntsc
rv[:tsc] = totalsystemcost(x, times)
end
if returnhessian
rv[:hessian] = Diagonal(f.dtimes(x))
end
return NamedTuple(rv)
end
fn
end
function (f::CostFunctionGenerator)(::Type{SOProblem})
function fn(x::Array{<:Real,1}; returntsc=true, returnhessian=false)
times = f.times(x)
dtimes = f.dtimes(x)
rv = Dict()
rv[:costs] = times .+ x .* dtimes
if returntsc
rv[:tsc] = totalsystemcost(x, times)
end
if returnhessian
rv[:hessian] = Diagonal(2 * dtimes + x .* f.ddtimes(x))
end
return NamedTuple(rv)
end
fn
end
totalsystemcost(x::Array{<:Real,1}, timesfn::Function) = sum(x .* timesfn(x))
totalsystemcost(x::Array{<:Real,1}, times::Array{<:Real,1}) = sum(x .* times)
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 4461 | using CSV: read
struct InputError <: Exception
s::String
end
Base.showerror(io::IO, ex::InputError) = print(io, ex.s)
# helper function
function readvalue(io, s::String, dtype=Int)
l = strip(readline(io))
occursin(s, l) || throw(InputError(filepath))
parse(dtype, split(l)[end])
end
function readnettntp(filepath::String;
_dtypes = Dict(:init_node => Int, :term_node => Int, :capacity => Float64,
:length => Float64, :free_flow_time => Float64, :power => Float64,
:b => Float64, :speed => Float64, :toll => Float64, :link_type => Int))
# reading metadata
nzones, nnodes, ftnode, nlinks, headerrow = open(filepath) do io
nzones = readvalue(io, "<NUMBER OF ZONES>")
nnodes = readvalue(io, "<NUMBER OF NODES>")
ftnode = readvalue(io, "<FIRST THRU NODE>")
nlinks = readvalue(io, "<NUMBER OF LINKS>")
headerrow = 4
while(headerrow += 1; ((line = strip(readline(io))) == "") || !startswith(line, "~"))
if eof(io)
throw(InputError("network data"))
end
end
return (nzones, nnodes, ftnode, nlinks, headerrow)
end
# reading network-link data
linkdf = read(filepath, skipto=headerrow+1, header=headerrow, types=_dtypes)
linkdf = linkdf[:,2:(end-1)]
return (nzones, nnodes, ftnode, nlinks, linkdf)
end
function readtriptntp(filepath::String)
nzones, totalflow, trips = open(filepath) do io
# reading metadata
nzones = readvalue(io, "<NUMBER OF ZONES>")
totalflow = readvalue(io, "<TOTAL OD FLOW>", Float64)
# reading trip data
while (line = strip(readline(io)); ~occursin("Origin", line)) end
trips = zeros(nzones, nzones)
i = parse(Int, split(line)[end])
while !eof(io)
line = strip(readline(io))
if occursin("Origin", line)
i = parse(Int, split(line)[end])
elseif (line == "")
else
line = line[1:(end - (line[end] == ';'))]
for traw in split(line, ";")
ttmp = split(traw)
trips[i, parse(Int, ttmp[1])] = parse(Float64, ttmp[end])
end
end
end
return (nzones, totalflow, trips)
end
return (nzones, totalflow, trips)
end
function readnodetntp(filepath::String)
data = read(filepath)
data = data[:, 1:(end-1)]
return data
end
readflowtntp(filepath::String) = read(filepath)
function readtntpdata(folderpath::String)
contents = filter((f) -> endswith(f, ".tntp"), readdir(folderpath))
filetypes = [:net, :trips, :flow, :node]
filepaths = Dict()
for ft in filetypes
files = filter(x -> endswith(x, "_$ft.tntp"), contents)
if length(files) > 1
throw("More than one $ft files found in the folder!")
elseif length(files) == 0
throw("No $ft files found in the folder!")
else
f = files[1]
end
filepaths[ft] = folderpath*f
end
nzones, nnodes, ftnode, nlinks, linkdf = readnettntp(filepaths[:net])
nzones2, totalflow, trips = readtriptntp(filepaths[:trips])
@assert nzones == nzones2 "Number of zones inconsistent"
@assert totalflow ≈ sum(trips) "Number of trips inconsistent"
@assert nlinks == nrow(linkdf) "Number of links inconsistent"
@assert all((1 .<= linkdf.init_node .<= nnodes) .& (1 .<= linkdf.term_node .<= nnodes)) "Number of nodes inconsistent"
@assert ftnode <= nnodes "First through node inconsistent"
# building the network
network = MetaDiGraph(nnodes)
set_prop!(network, :nzones, nzones)
for row in eachrow(linkdf)
e = Edge(row[:init_node], row[:term_node])
add_edge!(network, e)
set_props!(network, e, Dict(Symbol(n) => row[n] for n in names(row) if ~(n in (row[:init_node], row[:term_node]))))
end
if :node in keys(filepaths)
geometry = readnodetntp(filepaths[:node])
set_prop!(network, :geometry, geometry)
end
bestsolution = nothing
if :flow in keys(filepaths)
bestsolution = readflowtntp(filepaths[:flow])
@assert nlinks == nrow(bestsolution) "Number of links inconsistent with flow file"
end
return (network = network, trips = trips, firstthroughnode = ftnode, bestsolution = bestsolution)
end
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | code | 119 | using StaticTrafficAssignment
using Test
@testset "StaticTrafficAssignment.jl" begin
# Write your tests here.
end
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | docs | 1416 | # StaticTrafficAssignment
[](https://travis-ci.org/SaiKiran92/StaticTrafficAssignment.jl)
[](https://codecov.io/gh/SaiKiran92/StaticTrafficAssignment.jl)
[](https://SaiKiran92.github.io/StaticTrafficAssignment.jl/stable)
[](https://SaiKiran92.github.io/StaticTrafficAssignment.jl/dev)
This package contains functions to load road network data in TNTP format. Check out [this GitHub repository](https://github.com/bstabler/TransportationNetworks) to learn more about the format and download some standard networks.
I have implemented two assignment algorithms: All-Or-Nothing and Frank-Wolfe. More will be coming soon.
No support yet for nodes that do not allow through flows, i.e. for networks with \<FIRST THRU NODE\> > 1 (in \*_net.tntp).
Custom delay functions are supported. Both UE and SO assignments can be easily calculated.
Sorry about the lack of documentation. But I think the package is pretty readable for anyone with some experience with Julia. Will try to add a couple more examples soon.
## Coming soon
### Algorithms
- Conjugate Frank-Wolfe
- Biconjugate Frank-Wolfe
- Algorithm B
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | docs | 149 | ```@meta
CurrentModule = StaticTrafficAssignment
```
# StaticTrafficAssignment
```@index
```
```@autodocs
Modules = [StaticTrafficAssignment]
```
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.1.0 | e89bd057bffc25399668e48067458eb93a12998e | docs | 4563 | # Sioux Falls Network
WARNING: The Sioux-Falls network is not considered as a realistic one. However, this network was used in many publications. It is good for code debugging.
## Source / History
Via: [http://www.bgu.ac.il/~bargera/tntp/](http://www.bgu.ac.il/~bargera/tntp/)
All network data including the link numbers indicated on the map (but excluding node coordinates), are taken from the following paper: “An efficient approach to solving the road network equilibrium traffic assignment problem” by LeBlanc, L.J., Morlok, E.K., Pierskalla, W.P., Transportation Research Vol. 9, pp. 309-318, 1975. The links in the network file are sorted by their tail node, thus they do not follow the same order as the original publication. OD flows in the original paper (Table 1) are given in thousands of vehicles per day, with integer values up to 44. OD flows here are the values form the table multiplied by 100. They are therefore 0.1 of the original daily flows, and in that sense might be viewed as approximate hourly flows. This conversion was done to enable comparison of objective values with papers published during the 1980's and the 1990's. The units of free flow travel times are 0.01 hours, but they are often viewed as if they were minutes. Link lengths are set arbitrarily equal to free flow travel times. The parameters in the paper are given in the format of `t=a+b*flow^4`. The original parameter a is the free flow travel time given here. The original parameter b is equal to (free flow travel time)*B/(capacity^Power) in the format used here. In the data here the “traditional” BPR value of B=0.15 is assumed, and the given capacities are computed accordingly. Node coordinates were generated artificially to reproduce the diagram shown in the paper.
[Walter Wong](mailto://[email protected]) points out that another version of the Sioux-Falls network appears in a different publication, “An algorithm for the Discrete Network,” LeBlanc, L.J., Transportation Science, Vol 9, pp 183-199, 1975. The difference between the two versions is that the free-flow travel times on links 15-19, 19-15, 15-22 and 22-15 are 4 instead of 3, and the free-flow travel time on links 10-16 and 16-10 are 5 instead of 4.
[Andrew Koh](mailto://[email protected]) reports that a third version of the Sioux-Falls network has appeared in “Equilibrium Decomposed Optimization: A Heuristic for the Continuous Equilibrium Network Design Problem,” Suwansirikul, C., Friesz, T.L., Tobin, R.L., Transportation Science, Vol. 21(4), 1987, pp. 254-263. Click here for a list of differences between the two versions.
[Gregor Laemmel](mailto://[email protected]) reports that the first published version of the Sioux-Falls network appears in "Development and Application of a Highway Network Design Model - Volumes 1 and 2," Morlok, E.K., Schofer, J.L., Pierskalla, Marsten, R.E., W.P., Agarwal, S.K., Stoner, J.W., Edwards, J.L., LeBlanc, L.J., and Spacek, D.T., Final Report to the Federal Highway Administration under contract number DOT-FH-11-7862, Department of Civil Engineering, Northwestern University, Evanston, Illinois, July 1973. Link lengths (in miles) are given the following file: Sioux-Falls Network, which is identical to the first version given here in all other attributes.
[David Boyce](mailto://[email protected]) comments that yet another slightly different version of the Sioux Falls network appears in LeBlanc’s Ph.D. thesis. The main difference from the published paper version is that flows in the published paper are multiplied by 100, rounded in an unclear manner, and presented as integers, while flows in the thesis are in tenths.
See also: [Sioux Falls Variants for Network Design](http://www.bgu.ac.il/~bargera/tntp/SiouxFalls_CNDP/SiouxFallsVariantsForNetworkDesign.html)
## Scenario
## Contents
- `SiouxFalls_net.tntp` Network
- `SiouxFalls_trips.tntp` Demand
- `SiouxFalls_node.tntp` Node Coordinates
- `SiouxFalls_flow.tntp` Best known flow solution
- `Sioux-Falls-Network.pdf` Picture of Network
- `SiouxFallsMap_AAA1998.jpg` Picture of actual Sioux Falls from 1998
## Dimensions
Zones: 24
Nodes: 24
Links: 76
Trips: 360,600.0
## Units
Time:
Distance:
Speed:
Cost:
Coordinates:
## Generalized Cost Weights
Toll: 0
Distance: 0
## Solutions
`SiouxFalls_flow.tntp` contains best known link flows solution with Average Excess Cost (normalized gap) of 3.9E-15. Optimal objective function value: 42.31335287107440
## Known Issues
FIXME translate to Github Issues
| StaticTrafficAssignment | https://github.com/SaiKiran92/StaticTrafficAssignment.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 2268 | using Documenter, Literate, RegularizedLeastSquares
# Generate examples
OUTPUT_BASE = joinpath(@__DIR__(), "src/generated")
INPUT_BASE = joinpath(@__DIR__(), "src/literate")
for (_, dirs, _) in walkdir(INPUT_BASE)
for dir in dirs
OUTPUT = joinpath(OUTPUT_BASE, dir)
INPUT = joinpath(INPUT_BASE, dir)
for file in filter(f -> endswith(f, ".jl"), readdir(INPUT))
Literate.markdown(joinpath(INPUT, file), OUTPUT)
end
end
end
makedocs(
format = Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl",
assets=String[],
collapselevel=1,
),
repo="https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl/blob/{commit}{path}#{line}",
modules = [RegularizedLeastSquares],
sitename = "RegularizedLeastSquares.jl",
authors = "Tobias Knopp, Mirco Grosser, Martin Möddel, Niklas Hackelberg, Andrew Mao, Jakob Assländer",
pages = [
"Home" => "index.md",
"Getting Started" => "generated/examples/getting_started.md",
"Examples" => Any["Compressed Sensing" => "generated/examples/compressed_sensing.md", "Computed Tomography" => "generated/examples/computed_tomography.md"],
"Solvers" => "solvers.md",
"Regularization" => "generated/explanations/regularization.md",
"How to" => Any[
"Weighting" => "generated/howto/weighting.md",
"Normal Operator" => "generated/howto/normal_operator.md",
"Multi-Threading" => "generated/howto/multi_threading.md",
"GPU Acceleration" => "generated/howto/gpu_acceleration.md",
"Efficient Kaczmarz" => "generated/howto/efficient_kaczmarz.md",
"Callbacks" => "generated/howto/callbacks.md",
"Plug-and-Play Regularization" => "generated/howto/plug-and-play.md"
],
"API Reference" => Any["Solvers" => "API/solvers.md",
"Regularization Terms" => "API/regularization.md"],
],
pagesonly = true,
checkdocs = :none,
doctest = false,
doctestfilters = [r"(\d*)\.(\d{4})\d+"]
)
deploydocs(repo = "github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git", push_preview = true) | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 3371 | # # Compressed Sensing Example
# In this example we will go through a simple example from the field of Compressed Sensing.
# In addtion to RegularizedLeastSquares.jl, we will need the packages [LinearOperatorCollection.jl](https://github.com/JuliaImageRecon/LinearOperatorCollection.jl), [ImagePhantoms.jl](https://github.com/JuliaImageRecon/ImagePhantoms.jl), [ImageGeoms.jl](https://github.com/JuliaImageRecon/ImageGeoms.jl) and Random.jl, as well as [CairoMakie.jl](https://docs.makie.org/stable/) for visualization. We can install them the same way we did RegularizedLeastSquares.jl.
# ## Preparing the Inverse Problem
# To get started, let us generate a simple phantom using the ImagePhantoms and ImageGeom packages:
using ImagePhantoms, ImageGeoms
N = 256
image = shepp_logan(N, SheppLoganToft())
size(image)
# This produces a 256x256 image of a Shepp-Logan phantom.
# In this example, we consider a problem in which we randomly sample a third of the pixels in the image. Such a problem and the corresponding measurement can be constructed with the packages LinearOperatorCollection and Random:
# We first randomly shuffle the indices of the image and then select the first third of the indices to sample.
using Random, LinearOperatorCollection
randomIndices = shuffle(eachindex(image))
sampledIndices = sort(randomIndices[1:div(end, 3)])
# Afterwards we build a sampling operator which samples the image at the selected indices.
A = SamplingOp(eltype(image), pattern = sampledIndices , shape = size(image));
# Then we apply the sampling operator to the vectorized image to obtain the sampled measurement vector
b = A*vec(image);
# To visualize our image we can use CairoMakie:
using CairoMakie
function plot_image(figPos, img; title = "", width = 150, height = 150)
ax = CairoMakie.Axis(figPos; yreversed=true, title, width, height)
hidedecorations!(ax)
heatmap!(ax, img)
end
fig = Figure()
plot_image(fig[1,1], image, title = "Image")
samplingMask = fill(false, size(image))
samplingMask[sampledIndices] .= true
plot_image(fig[1,2], image .* samplingMask, title = "Sampled Image")
resize_to_layout!(fig)
fig
# As we can see in the right image, only a third of the pixels are sampled. The goal of the inverse problem is to recover the original image from this measurement vector.
# ## Solving the Inverse Problem
# To recover the image from the measurement vector, we solve the TV-regularized least squares problem:
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert_2^2 + \lambda\vert\vert\mathbf{x}\vert\vert_{\text{TV}} .
# \end{equation}
# ```
# For this purpose we build a TV regularizer with regularization parameter $λ=0.01$
using RegularizedLeastSquares
reg = TVRegularization(0.01; shape=size(image));
# We will use the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) to solve our inverse problem. Thus, we build the corresponding solver
solver = createLinearSolver(FISTA, A; reg=reg, iterations=20);
# and apply it to our measurement vector
img_approx = solve!(solver,b)
# To visualize the reconstructed image, we need to reshape the result vector to the correct shape. Afterwards we can use CairoMakie again:
img_approx = reshape(img_approx,size(image));
plot_image(fig[1,3], img_approx, title = "Reconstructed Image")
resize_to_layout!(fig)
fig | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 3373 | # # Computed Tomography Example
# In this example we will go through a simple example from the field of Computed Tomography.
# In addtion to RegularizedLeastSquares.jl, we will need the packages [LinearOperatorCollection.jl](https://github.com/JuliaImageRecon/LinearOperatorCollection.jl), [ImagePhantoms.jl](https://github.com/JuliaImageRecon/ImagePhantoms.jl), [ImageGeoms.jl](https://github.com/JuliaImageRecon/ImageGeoms.jl)
# and [RadonKA.jl](https://github.com/roflmaostc/RadonKA.jl/tree/main), as well as [CairoMakie.jl](https://docs.makie.org/stable/) for visualization. We can install them the same way we did RegularizedLeastSquares.jl.
# RadonKA is a package for the computation of the Radon transform and its adjoint. It is implemented with KernelAbstractions.jl and supports GPU acceleration. See the GPU acceleration [how-to](../howto/gpu_acceleration.md) for more information.
# ## Preparing the Inverse Problem
# To get started, let us generate a simple phantom using the ImagePhantoms and ImageGeom packages:
using ImagePhantoms, ImageGeoms
N = 256
image = shepp_logan(N, SheppLoganToft())
size(image)
# This produces a 256x256 image of a Shepp-Logan phantom.
using RadonKA, LinearOperatorCollection
angles = collect(range(0, π, 256))
sinogram = Array(RadonKA.radon(image, angles))
# Afterwards we build a Radon operator implementing both the forward and adjoint Radon transform
A = RadonOp(eltype(image); angles, shape = size(image));
# To visualize our image we can use CairoMakie:
using CairoMakie
function plot_image(figPos, img; title = "", width = 150, height = 150)
ax = CairoMakie.Axis(figPos[1, 1]; yreversed=true, title, width, height)
hidedecorations!(ax)
hm = heatmap!(ax, img)
Colorbar(figPos[2, 1], hm, vertical = false, flipaxis = false)
end
fig = Figure()
plot_image(fig[1,1], image, title = "Image")
plot_image(fig[1,2], sinogram, title = "Sinogram")
plot_image(fig[1,3], backproject(sinogram, angles), title = "Backprojection")
resize_to_layout!(fig)
fig
# In the figure we can see our original image, the sinogram, and the backprojection of the sinogram. The goal of the inverse problem is to recover the original image from the sinogram.
# ## Solving the Inverse Problem
# To recover the image from the measurement vector, we solve the $l^2_2$-regularized least squares problem
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert_2^2 + \lambda\vert\vert\mathbf{x}\vert\vert^2_2 .
# \end{equation}
# ```
# For this purpose we build a $l^2_2$ with regularization parameter $λ=0.001$
using RegularizedLeastSquares
reg = L2Regularization(0.001);
# To solve this inverse problem, the Conjugate Gradient Normal Residual (CGNR) algorithm can be used. This solver is based on the normal operator of the Radon operator and uses both the forward and adjoint Radon transform internally.
# We now build the corresponding solver
solver = createLinearSolver(CGNR, A; reg=reg, iterations=20);
# and apply it to our measurement vector
img_approx = solve!(solver, vec(sinogram))
# To visualize the reconstructed image, we need to reshape the result vector to the correct shape. Afterwards we can use CairoMakie again:
img_approx = reshape(img_approx,size(image));
plot_image(fig[1,4], img_approx, title = "Reconstructed Image")
resize_to_layout!(fig)
fig | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 2281 | # # Getting Started
# In this example we will go through a simple random inverse problem to get familiar with RegularizedLeastSquares.jl.
# ## Installation
# To install RegularizedLeastSquares.jl, you can use the Julia package manager. Open a Julia REPL and run the following command:
# ```julia
# using Pkg
# Pkg.add("RegularizedLeastSquares")
# ```
# This will download and install the RegularizedLeastSquares.jl package and its dependencies. To install a different version, please consult the [Pkg documentation](https://pkgdocs.julialang.org/dev/managing-packages/#Adding-packages).
# Once the installation is complete, you can import the package with the `using` keyword:
using RegularizedLeastSquares
# RegularizedLeastSquares aims to solve inverse problems of the form:
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert_2^2 + \mathbf{R(x)} .
# \end{equation}
# ```
# where $\mathbf{A}$ is a linear operator, $\mathbf{b}$ is the measurement vector, and $\mathbf{R(x)}$ is an (optional) regularization term.
# The goal is to retrieve an approximation of the unknown vector $\mathbf{x}$. In this first exampel we will just work with simple random arrays. For more advanced examples, please refer to the examples.
A = rand(32, 16)
x = rand(16)
b = A*x;
# To approximate x from b, we can use the Conjugate Gradient Normal Residual (CGNR) algorithm. We first build the corresponding solver:
solver = createLinearSolver(CGNR, A; iterations=32);
# and apply it to our measurement vector
x_approx = solve!(solver, b)
isapprox(x, x_approx, rtol = 0.001)
# Usually the inverse problems are ill-posed and require regularization. RegularizedLeastSquares.jl provides a variety of regularization terms.
# The CGNR algorithm can solve optimzation problems of the form:
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert_2^2 + \lambda\vert\vert\mathbf{x}\vert\vert^2_2 .
# \end{equation}
# ```
# The corresponding solver can be built with the $l^2_2$-regularization term:
solver = createLinearSolver(CGNR, A; reg = L2Regularization(0.0001), iterations=32);
x_approx = solve!(solver, b)
isapprox(x, x_approx, rtol = 0.001)
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 4708 | # # Regularization
# When formulating inverse problems, a regulariser is formulated as an additional cost function which has to be minimised.
# Many algorithms deal with a regularizers $g$, by computing the proximal map:
# ```math
# \begin{equation}
# prox_g (\mathbf{x}) = \underset{\mathbf{u}}{argmin} \frac{1}{2}\vert\vert \mathbf{u}-\mathbf{x} \vert {\vert}^2 + g(\mathbf{x}).
# \end{equation}
# ```
# For many regularizers, the proximal map can be computed efficiently in a closed form.
# In order to implement these proximal mappings, RegularizedLeastSquares.jl defines the following type hierarchy:
# ```julia
# abstract type AbstractRegularization
# prox!(reg::AbstractRegularization, x)
# norm(reg::AbstractRegularization, x)
# ```
# Here `prox!(reg, x)` is an in-place function which computes the proximal map on the input-vector `x`. The function `norm` computes the value of the corresponding term in the inverse problem. RegularizedLeastSquares.jl provides `AbstractParameterizedRegularization` and `AbstractProjectionRegularization` as core regularization types.
# ## Parameterized Regularization Terms
# This group of regularization terms features a regularization parameter `λ` that is used during the `prox!` and `norm `computations. Examples of this regulariztion group are `L1`, `L2` or `LLR` (locally low rank) regularization terms.
# These terms are constructed by supplying a `λ` and optionally term specific keyword arguments:
using RegularizedLeastSquares
l2 = L2Regularization(0.3)
# Parameterized regularization terms implement:
# ```julia
# prox!(reg::AbstractParameterizedRegularization, x, λ)
# norm(reg::AbstractParameterizedRegularization, x, λ)
# ```
# where `λ` by default is filled with the value used during construction.
# Invoking `λ` on a parameterized term retrieves its regularization parameter. This can be used in a solver to scale and overwrite the parameter as follows:
prox!(l2, [1.0])
#
param = λ(l2)
prox!(l2, [1.0], param*0.2)
# ## Projection Regularization Terms
# This group of regularization terms implement projections, such as a positivity constraint or a projection with a given convex projection function.
# These are essentially proximal maps where $g(\mathbf{x})$ is the indicator function of a convex set.
positive = PositiveRegularization()
prox!(positive, [2.0, -0.2])
# ## Nested Regularization Terms
# Nested regularization terms are terms that act as decorators to the core regularization terms.
# These terms can be nested around other terms and add functionality to a regularization term, such as scaling `λ` based on the provided operator or applying a transform, such as the Wavelet, to `x`.
# As an example, we can nest a `L1` regularization term around a `Wavelet` operator.
# First we generate an image and apply a wavelet operator to it:
using Wavelets, LinearOperatorCollection, ImagePhantoms, ImageGeoms
N = 256
image = shepp_logan(N, SheppLoganToft())
wop = WaveletOp(Float32, shape = size(image))
wavelet_image = reshape(wop*vec(image), size(image))
wavelet_image = log.(abs.(wavelet_image) .+ 0.01)
# We will use CairoMakie for visualization:
using CairoMakie
function plot_image(figPos, img; title = "", width = 150, height = 150)
ax = CairoMakie.Axis(figPos; yreversed=true, title, width, height)
hidedecorations!(ax)
heatmap!(ax, img)
end
fig = Figure()
plot_image(fig[1,1], image, title = "Image")
plot_image(fig[1,2], wavelet_image, title = "Wavelet Image")
resize_to_layout!(fig)
fig
# To apply soft-thresholding in the wavelet domain, we can nest a `L1` regularization term around the `Wavelet` operator:
core = L1Regularization(0.1)
reg = TransformedRegularization(core, wop);
# We can then apply the proximal map to the image or the image in the wavelet domain:
img_prox_image = prox!(core, copy(vec(image)));
img_prox_wavelet = prox!(reg, copy(vec(image)));
# We can visualize the result:
img_prox_image = reshape(img_prox_image, size(image))
img_prox_wavelet = reshape(img_prox_wavelet, size(image))
plot_image(fig[1,3], img_prox_image, title = "Reg. Image Domain")
plot_image(fig[1,4], img_prox_wavelet, title = "Reg. Wavelet Domain")
resize_to_layout!(fig)
fig
# Generally, regularization terms can be nested arbitrarly deep, adding new functionality with each layer. Each nested regularization term can return its `inner` regularization term.
# Furthermore, all regularization terms implement the iteration interface to iterate over the nesting. The innermost regularization term of a nested term must be a core regularization term and it can be returned by the `sink` function:
RegularizedLeastSquares.innerreg(reg) == core
#
sink(reg) == core
#
foreach(r -> println(nameof(typeof(r))), reg) | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 2618 | # # Callbacks
# For certain optimization it is important to monitor the internal state of the solver. RegularizedLeastSquares.jl provides a callback mechanism to allow developres to access this state after each iteration.
# The package provides a variety of default callbacks, which for example store the solution after each iteration. More information can be found in the API reference for the `solve!` function.
# In this example we will revist the compressed sensing compressed sensing [example](../examples/compressed_sensing.md) and implement a custom callback using the do-syntax of the `solve!` function.
# This allows us to implement our callback inline and access the solver state after each iteration.
# We first recreate the operator `A` and the measurement vector `b`:
using ImagePhantoms, ImageGeoms
N = 256
image = shepp_logan(N, SheppLoganToft())
size(image)
using Random, LinearOperatorCollection
randomIndices = shuffle(eachindex(image))
sampledIndices = sort(randomIndices[1:div(end, 3)])
A = SamplingOp(eltype(image), pattern = sampledIndices , shape = size(image));
b = A*vec(image);
# Next we prepare our visualization helper function:
using CairoMakie
function plot_image(figPos, img; title = "", width = 150, height = 150, clim = extrema(img))
ax = CairoMakie.Axis(figPos; yreversed=true, title, width, height)
hidedecorations!(ax)
heatmap!(ax, img, colorrange = clim)
end
# Now we construct the solver with the TV regularization term:
using RegularizedLeastSquares
reg = TVRegularization(0.01; shape=size(image));
solver = createLinearSolver(FISTA, A; reg=reg, iterations=20);
# We will now implement a callback that plots the solution every four iteration:
fig = Figure()
idx = 1
solve!(solver, b) do solver, iteration
if iteration % 4 == 0
img_approx = copy(solversolution(solver))
img_approx = reshape(img_approx, size(image))
plot_image(fig[div(idx -1, 3) + 1, mod1(idx, 3)], img_approx, clim = extrema(image), title = "$iteration")
global idx += 1
end
end
# In the callback we have to copy the solution, as the solver will update it in place.
# As is explained in the solver section, each features fields that are intended to be immutable during a `solve!` call and a state that is modified in each iteration.
# Depending on the solvers parameters and the measurement input, the state can differ in its fields and their type. Ideally, one tries to avoid accessing the state directly and uses the provided functions to access the state.
# The resulting figure shows the reconstructed image after 0, 4, 8, 12, 16 and 20 iterations:
resize_to_layout!(fig)
fig
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 1972 | # # Efficient Kaczmarz
# Unlike many of the other solvers provided by RegularizedLeastSquares.jl, the Kaczmarz method does not utilize a matrix-vector product with the operator $\mathbf{A}$ nor the normal operator $\mathbf{A*A}$. Instead, it uses the rows of $\mathbf{A}$ to update the solution iteratively.
# Efficient Kaczmarz implementation therefore require very efficient dot products with the rows of $\mathbf{A}$. In RegularizedLeastSquares.jl, this is achieved with the `dot_with_matrix_row` function.
using RegularizedLeastSquares
A = randn(256, 256)
x = randn(256)
b = A*x;
# The `dot_with_matrix_row` function calculates the dot product between a row of A and the current approximate solution of x:
row = 1
isapprox(RegularizedLeastSquares.dot_with_matrix_row(A, x, row), sum(A[row, :] .* x))
# Since in Julia, dense arrays are stored in column-major order, such a row-based operation is quite inefficient. A workaround is to transpose the matrix then pass it to a Kaczmarz solver.
At = collect(transpose(A))
A_eff = transpose(At)
# Note that the transpose function can return a lazy transpose object, so we first collect the transpose into a dense matrix.
# Then we transpose it again to get the efficient representation of the matrix.
# We can compare the performance using the BenchmarkTools.jl package. First for the original matrix:
using BenchmarkTools
solver = createLinearSolver(Kaczmarz, A; reg = L2Regularization(0.0001), iterations=100)
@benchmark solve!(solver, b) samples = 100
# And then for the efficient matrix:
solver_eff = createLinearSolver(Kaczmarz, A_eff; reg = L2Regularization(0.0001), iterations=100)
@benchmark solve!(solver_eff, b) samples = 100
# We can also combine the efficient matrix with a weighting matrix, as is shown in the [Weighting](weighting.md) example.
# Custom operators need to implement the `dot_with_matrix_row` function to be used with the Kaczmarz solver. Ideally, such an implementation is allocation free. | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 3919 | # # GPU Acceleration
# RegularizedLeastSquares.jl supports generic GPU acceleration. This means that the user can use any GPU array type that supports the GPUArrays interface. This includes [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl), [AMDGPU.jl](https://github.com/JuliaGPU/AMDGPU.jl), and [Metal.jl](https://github.com/JuliaGPU/Metal.jl).
# In this example we will use the package JLArrays.jl which provides a reference implementation for GPUArrays, that can runs on CPUs.
using JLArrays
gpu = JLArray;
# To use the following examples on an actual GPU, load the appropraite package replace `JLArray` with the respective GPU array type, for example:
# ```julia
# using CUDA
# gpu = CuArray
# ```
# At first we will look at an example of dense GPU arrays.
using RegularizedLeastSquares
A = gpu(rand(Float32, 32, 16))
x = gpu(rand(Float32, 16))
b = A*x;
# Solvers adapt their states based on the type of the given measurement vector. This means that the solver will automatically switch to GPU acceleration if a GPU array is passed as the measurement vector.
solver = createLinearSolver(CGNR, A; reg = L2Regularization(0.0001), iterations=32);
x_approx = solve!(solver, b)
# This adaption does not include the operator. So if we want to compare with CPU result, we need to construct a new solver with a CPU operator.
solver = createLinearSolver(CGNR, Array(A); reg = L2Regularization(0.0001), iterations=32);
x_cpu = solve!(solver, Array(b))
isapprox(Array(x_approx), x_cpu)
# ## Matrix-Free Operators
# A special case is the usage of matrix-free operators. Since these operators do not have a concrete matrix representation, their GPU support depends on their implementation.
# Since not all multiplications within a solver approximation are in-place, the operator also needs to support the `*` operation and construct an appropriate result vector.
# For matrix-free operators based on LinearOperators.jl, this can be achieved by implementing the `LinearOperators.storage_type` method.
# In the following, we will take another look at the CS example and execute it on the GPU. Note that for the JLArray example we chose a small phantom, since the JLArray implementation is not optimized for performance:
using ImagePhantoms, ImageGeoms
N = 32
image = shepp_logan(N, SheppLoganToft())
using Random, LinearOperatorCollection
randomIndices = shuffle(eachindex(image))
sampledIndices = sort(randomIndices[1:div(end, 3)]);
# To construct the operator, we need to convert the indices to a GPU array.
# We also need to specify the correct storage type. In both LinearOperators.jl and LinearOperatorCollection.jl this is done with the `S` keyword argument.
gpu_indices = gpu(sampledIndices)
A = SamplingOp(eltype(image), pattern = gpu_indices, shape = size(image), S = typeof(b));
# Let's inspect the storage type of the operator:
using LinearOperatorCollection.LinearOperators
LinearOperators.storage_type(A)
# Afterwards we can use the operator as usual:
b = A*vec(gpu(image));
# And use it in the solver:
using RegularizedLeastSquares
reg = TVRegularization(0.01; shape=size(image))
solver = createLinearSolver(FISTA, A; reg=reg, iterations=20)
img_approx = solve!(solver,b);
# To visualize the reconstructed image, we need to reshape the result vector to the correct shape and convert it to a CPU array:
img_approx = reshape(Array(img_approx),size(image))
# We will again use CairoMakie for visualization:
using CairoMakie
function plot_image(figPos, img; title = "", width = 150, height = 150)
ax = CairoMakie.Axis(figPos; yreversed=true, title, width, height)
hidedecorations!(ax)
heatmap!(ax, img)
end
fig = Figure()
plot_image(fig[1,1], image, title = "Image")
samplingMask = fill(false, size(image))
samplingMask[sampledIndices] .= true
plot_image(fig[1,2], image .* samplingMask, title = "Sampled Image")
plot_image(fig[1,3], img_approx, title = "Reconstructed Image")
resize_to_layout!(fig)
fig | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 4030 | # # Multi-Threading
# There are different ways multi-threading can be used with RegularizedLeastSquares.jl. To use multi-threading in Julia, one needs to start their session with multi-threads, see the [Julia documentation](https://docs.julialang.org/en/v1/manual/multi-threading/) for more information.
# ## Solver Based Multi-Threading
# This type of multi-threading is transparent to the solver and is applicable if the total solution is composed of individual solutions that can be solved in parallel.
# In particular, this approach also allows for using solvers with different parameters, such as their operator or regularization parameters.
using RegularizedLeastSquares
As = [rand(32, 16) for _ in 1:4]
xs = [rand(16) for _ in 1:4]
bs = [A*x for (A, x) in zip(As, xs)]
xs_approx = similar(xs)
Threads.@threads for i in 1:4
solver = createLinearSolver(CGNR, As[i]; iterations=32)
xs_approx[i] = solve!(solver, bs[i])
end
# ## Operator Based Multi-Threading
# This type of multi-threading involves linear operators or proximal maps that can be implemnted in parallel.
# Examples of this include the proximal map of the TV regularization term, which is based on the multi-threaded GradientOp from LinearOperatorCollection.
# GPU acceleration also falls under this approach, see [GPU Acceleration](gpu_acceleration.md) for more information.
# ## Measurement Based Multi-Threading
# This level of multi-threading applies the same solver (and its parameters) to multiple measurement vectors or rather a measurement matrix B.
# This is useful in the case of multiple measurements that can be solved in parallel and can reuse the same solver. This approach is not applicable if the operator is stateful.
# To use this approach we first build a measurement matrix B and a corresponding solver:
A = first(As)
B = mapreduce(x -> A*x, hcat, xs)
solver = createLinearSolver(CGNR, A; iterations=32)
# We can then simply pass the measurement matrix to the solver. The result will be the same as if we passed each colument of B seperately:
x_approx = solve!(solver, B)
size(x_approx)
# The previous `solve!` call was still executed sequentially. To execute it in parallel, we have to specify a multi-threaded `scheduler` as a keyword-argument of the `solve!` call.
# RegularizedLeastSquares.jl provides a `MultiThreadingState` scheduler that can be used for this purpose. This scheduler is based on the `Threads.@threads` macro:
x_multi = solve!(solver, B; scheduler = MultiThreadingState)
x_approx == x_multi
# ## Custom Scheduling
# It is possible to implement custom scheduling. The following code shows how to implement this for the `Threads.@spawn` macro. Usually one this to implement multi-threading with a package such as FLoop.jl or ThreadPools.jl for thread pinning:
# Since most solver have conv. criteria, they can finish at different iteration numbers, which we track this information with flags.
mutable struct SpawnState{S, ST <: AbstractSolverState{S}} <: RegularizedLeastSquares.AbstractMatrixSolverState{S}
states::Vector{ST}
active::Vector{Bool}
SpawnState(states::Vector{ST}) where {S, ST <: AbstractSolverState{S}} = new{S, ST}(states, fill(true, length(states)))
end
# To hook into the existing init! code we only have to supply a method that gets a copyable "vector" state. This will invoke our SpawnState constructor with copies of the given state.
prepareMultiStates(solver::AbstractLinearSolver, state::SpawnState, b::AbstractMatrix) = prepareMultiStates(solver, first(state.states), b);
# We specialise the iterate function which is called with the idx of still active states
function Base.iterate(solver::AbstractLinearSolver, state::SpawnState, activeIdx)
@sync Threads.@spawn for i in activeIdx
res = iterate(solver, state.states[i])
if isnothing(res)
state.active[i] = false
end
end
return state.active, state
end
# Now we can simply use the SpawnState scheduler in the solve! call:
x_custom = solve!(solver, B; scheduler = SpawnState)
x_approx == x_multi | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 3150 | # # Normal Operator
# Many solvers in RegularizedLeastSquares.jl are based on the normal operator $\mathbf{A}^*\mathbf{A}$ of the linear operator $\mathbf{A}$.
#
# Solvers such as ADMM, FISTA and POGM generally solve optimization problems of the form:
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \mathbf{f(x)}+ \mathbf{R(x)}
# \end{equation}
# ```
# and require the gradient of the function $\mathbf{f(x)}$. In this package we specialise the function $\mathbf{f(x)}$ to the least squares norm:
# ```math
# \begin{equation}
# \mathbf{f(x)} = \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert^2_2
# \end{equation}
# ```
# The gradient of this function is:
# ```math
# \begin{equation}
# \nabla \mathbf{f(x)} = \mathbf{A}^*(\mathbf{A}\mathbf{x}-\mathbf{b}) = \mathbf{A}^*\mathbf{Ax} - \mathbf{A}^*\mathbf{b}
# \end{equation}
# ```
# Similarily, the conjugate gradient normal residual (CGNR) algorithm applies conjugate gradient algorithm to:
# ```math
# \begin{equation}
# \mathbf{A}^*\mathbf{A}\mathbf{x} = \mathbf{A}^*\mathbf{b}
# \end{equation}
# ```
# The normal operator can be passed directly to these solvers, otherwise it is computed internally.
using RegularizedLeastSquares
A = randn(32, 16)
x = randn(16)
b = A*x
solver = createLinearSolver(CGNR, A; AHA = adjoint(A) * A, reg = L2Regularization(0.0001), iterations=32);
x_approx = solve!(solver, b)
# The normal operator can also be computed using the `normalOperator` function from LinearOperatorCollection.jl. This is useful if the normal operator is not directly available or shouldn't be stored in memory.
# This function is opinionated and attempts to optimize the resulting operator for iterative applications. Specifying a custom method for a custom operator allows one to control this optimization.
# An example of such an optimization is a matrix-free weighting of $\mathbf{A}$ as shown in the [Weighting](weighting.md) example:
using LinearOperatorCollection
weights = rand(32)
WA = ProdOp(WeightingOp(weights), A)
AHA = LinearOperatorCollection.normalOperator(WA)
# Without an optimization a matrix-free product would apply the following operator each iteration:
# ```math
# \begin{equation}
# (\mathbf{WA})^*\mathbf{WA} = \mathbf{A}^*\mathbf{W}^*\mathbf{W}\mathbf{A}
# \end{equation}
# ```
# This is not efficient and instead the normal operator can be optimized by initially computing the weights:
# ```math
# \begin{equation}
# \tilde{\mathbf{W}} = \mathbf{W}^*\mathbf{W}
# \end{equation}
# ```
# and then applying the following each iteration:
# ```math
# \begin{equation}
# \mathbf{A}^*\tilde{\mathbf{W}}\mathbf{A}
# \end{equation}
# ```
# The optimized normal operator can then be passed to the solver:
solver = createLinearSolver(CGNR, WA; AHA = AHA, reg = L2Regularization(0.0001), iterations=32);
x_approx2 = solve!(solver, weights .* b)
# Of course it is also possible to optimize a normal operator with other means and pass it to the solver via the AHA keyword argument.
# It is also possible to only supply the normal operator to these solvers, however on then needs to supply $\mathbf{A^*b}$ intead of $\mathbf{b}$. | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 1485 | # # Plug-and-Play Regularization
# A group of regularization terms that can not be directly written down as function are learned plug-and-play (PnP) priors.
# These are terms based on deep neural networks, which are trainted to implement the proximal map corresponding to the regularization term.
# Such a PnP prior can be used in the same way as any other regularization term.
# The following example shows how to use a PnP prior in the context of the `Kaczmarz` solver.
using RegularizedLeastSquares
A = randn(32, 16)
x = randn(16)
b = A*x;
# For the documentation we will just use the identity function as a placeholder for the PnP prior.
model = identity
# In practice, you would replace this with a neural network:
# ```julia
# using Flux
# model = Flux.loadmodel!(model, ...)
# ```
# The model can then be used together with the `PnPRegularization` term:
reg = PnPRegularization(1.0; model = model, shape = [16]);
# Since models often expect a specific input range, we can use the `MinMaxTransform` to normalize the input:
reg = PnPRegularization(1.0; model = model, shape = [16], input_transform = RegularizedLeastSquares.MinMaxTransform);
# Custom input transforms can be implemented by passing something callable as the `input_transform` keyword argument. For more details see the PnPRegularization documentation.
# The regularization term can then be used in the solver:
solver = createLinearSolver(Kaczmarz, A; reg = reg, iterations = 32)
x_approx = solve!(solver, b)
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 2071 | # # Weighting
# Often time one wants to solve a weighted least squares problem of the form:
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert^2_{\mathbf{W}} + \mathbf{R(x)} .
# \end{equation}
# ```
# where $\mathbf{W}$ is a symmetric, positive weighting matrix and $\vert\vert\mathbf{y}\vert\vert^2_\mathbf{W}$ denotes the weighted Euclidean norm.
# An example of such a weighting matrix is a noise whitening matrix. Another example could be a scaling of the matrix rows by the reciprocal of their row energy.
# In the following, we will solve a weighted least squares problem of the form:
# ```math
# \begin{equation}
# \underset{\mathbf{x}}{argmin} \frac{1}{2}\vert\vert \mathbf{A}\mathbf{x}-\mathbf{b} \vert\vert_\mathbf{W}^2 + \lambda\vert\vert\mathbf{x}\vert\vert^2_2 .
# \end{equation}
# ```
using RegularizedLeastSquares, LinearOperatorCollection, LinearAlgebra
A = rand(32, 16)
x = rand(16)
b = A*x;
# As a weighting matrix, we will use the reciprocal of the row energy of the matrix A.
weights = map(row -> 1/rownorm²(A, row), 1:size(A, 1));
# First, let us solve the problem with matrices we manually weighted.
WA = diagm(weights) * A
solver = createLinearSolver(Kaczmarz, WA; reg = L2Regularization(0.0001), iterations=10)
x_approx = solve!(solver, weights .* b);
# The operator A is not always a dense matrix and the product between the operator and the weighting matrix is not always efficient or possible.
# The package [LinearOperatorCollection.jl](https://github.com/JuliaImageRecon/LinearOperatorCollection.jl) provides a matrix-free implementation of a diagonal weighting matrix, as well as a matrix free product between two matrices.
# This weighted operator has efficient implementations of the normal operator and also for the row-action operations of the Kaczmarz solver.
W = WeightingOp(weights)
P = ProdOp(W, A)
solver = createLinearSolver(Kaczmarz, P; reg = L2Regularization(0.0001), iterations=10)
x_approx2 = solve!(solver, W * b)
isapprox(x_approx, x_approx2) | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 551 | # CuSparseArrays are not part of the AbstractGPUArrays hierarchy
function RegularizedLeastSquares.normalize(::SystemMatrixBasedNormalization, A::AbstractCuSparseMatrix, b)
N = size(A, 2)
energy = sqrt.(mapreduce(abs2, +, A, dims = 2))
return norm(energy)^2/N
end
function RegularizedLeastSquares.normalize(::SystemMatrixBasedNormalization, P::ProdOp{T, <:WeightingOp, matT}, b) where {T, matT <: AbstractCuSparseMatrix}
N = size(P, 2)
A = P.B
energy = sqrt.(P.A.weights.^2 .* mapreduce(abs2, +, A, dims = 2))
return norm(energy)^2/N
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 237 | module RegularizedLeastSquaresCUDAExt
using RegularizedLeastSquares, RegularizedLeastSquares.LinearAlgebra, RegularizedLeastSquares.LinearOperatorCollection
using CUDA, CUDA.CUSPARSE
include("NormalizedRegularization.jl")
end # module | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 1191 | function RegularizedLeastSquares.iterate_row_index(solver::Kaczmarz, state::RegularizedLeastSquares.KaczmarzState{T, vecT}, A, row, index) where {T, vecT <: AbstractGPUArray}
state.τl = RegularizedLeastSquares.dot_with_matrix_row(A,state.x,row)
@allowscalar state.αl = solver.denom[index]*(state.u[row]-state.τl-state.ɛw*state.vl[row])
RegularizedLeastSquares.kaczmarz_update!(A,state.x,row,state.αl)
@allowscalar state.vl[row] += state.αl*state.ɛw
end
function RegularizedLeastSquares.kaczmarz_update!(A::matT, x::vecT, row, beta) where {T, matT <: AbstractGPUArray{T}, vecT <: AbstractGPUVector{T}}
x[:] .= x .+ beta * conj.(view(A, row, :))
end
function RegularizedLeastSquares.kaczmarz_update!(B::Transpose{T, S}, x::vecT, row, beta) where {T, S <: AbstractGPUArray{T}, vecT <: AbstractGPUVector{T}}
A = B.parent
x[:] .= x .+ beta * conj.(view(A, :, row))
end
function RegularizedLeastSquares.kaczmarz_update!(prod::ProdOp{Tc, WeightingOp{T, vecT}}, x, k, beta) where {T, Tc<:Union{T, Complex{T}}, vecT <: AbstractGPUVector{T}}
weight = @allowscalar prod.A.weights[k]
RegularizedLeastSquares.kaczmarz_update!(prod.B, x, k, weight*beta) # only for real weights
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 474 | function RegularizedLeastSquares.normalize(::SystemMatrixBasedNormalization, A::AbstractGPUArray, b)
N = size(A, 2)
energy = sqrt.(mapreduce(abs2, +, A, dims = 2))
return norm(energy)^2/N
end
function RegularizedLeastSquares.normalize(::SystemMatrixBasedNormalization, P::ProdOp{T, <:WeightingOp, matT}, b) where {T, matT <: AbstractGPUArray}
N = size(P, 2)
A = P.B
energy = sqrt.(P.A.weights.^2 .* mapreduce(abs2, +, A, dims = 2))
return norm(energy)^2/N
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 555 | function RegularizedLeastSquares.proxL21!(x::vecT, λ::T, slices::Int64) where {T, vecT <: Union{AbstractGPUVector{T}, AbstractGPUVector{Complex{T}}}}
sliceLength = div(length(x),slices)
groupNorm = copyto!(similar(x, Float32, sliceLength), [Float32(norm(x[i:sliceLength:end])) for i=1:sliceLength])
gpu_call(x, λ, groupNorm, sliceLength) do ctx, x_, λ_, groupNorm_, sliceLength_
i = @linearidx(x_)
@inbounds x_[i] = x_[i]*max( (groupNorm_[mod1(i,sliceLength_)]-λ_)/groupNorm_[mod1(i,sliceLength_)],0)
return nothing
end
return x
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 528 | function RegularizedLeastSquares.tv_restrictMagnitude!(x::vecT) where {T, vecT <: AbstractGPUVector{T}}
gpu_call(x) do ctx, x_
i = @linearidx(x_)
@inbounds x_[i] /= max(1, abs(x_[i]))
return nothing
end
end
function RegularizedLeastSquares.tv_linearcomb!(rs::vecT, t3, pq::vecT, t2, pqOld::vecT) where {T, vecT <: AbstractGPUVector{T}}
gpu_call(rs, t3, pq, t2, pqOld) do ctx, rs_, t3_, pq_, t2_, pqOld_
i = @linearidx(rs_)
@inbounds rs_[i] = t3_ * pq_[i] - t2_ * pqOld_[i]
return nothing
end
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 309 | module RegularizedLeastSquaresGPUArraysExt
using RegularizedLeastSquares, RegularizedLeastSquares.LinearAlgebra, RegularizedLeastSquares.LinearOperatorCollection
using GPUArrays
include("Utils.jl")
include("ProxTV.jl")
include("ProxL21.jl")
include("NormalizedRegularization.jl")
include("Kaczmarz.jl")
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 2413 | """
This function enforces the constraint of a real solution.
"""
function RegularizedLeastSquares.enfReal!(x::arrT) where {N, T<:Complex, arrGPUT <: AbstractGPUArray{T}, arrT <: Union{arrGPUT, SubArray{T, N, arrGPUT}}}
#Returns x as complex vector with imaginary part set to zero
gpu_call(x) do ctx, x_
i = @linearidx(x_)
@inbounds (x_[i] = complex(x_[i].re))
return nothing
end
end
"""
This function enforces the constraint of a real solution.
"""
RegularizedLeastSquares.enfReal!(x::arrT) where {N, T<:Real, arrGPUT <: AbstractGPUArray{T}, arrT <: Union{arrGPUT, SubArray{T, N, arrGPUT}}} = nothing
"""
This function enforces positivity constraints on its input.
"""
function RegularizedLeastSquares.enfPos!(x::arrT) where {N, T<:Complex, arrGPUT <: AbstractGPUArray{T}, arrT <: Union{arrGPUT, SubArray{T, N, arrGPUT}}}
#Return x as complex vector with negative parts projected onto 0
gpu_call(x) do ctx, x_
i = @linearidx(x_)
@inbounds (x_[i].re < 0) && (x_[i] = im*x_[i].im)
return nothing
end
end
"""
This function enforces positivity constraints on its input.
"""
function RegularizedLeastSquares.enfPos!(x::arrT) where {T<:Real, arrT <: AbstractGPUArray{T}}
#Return x as complex vector with negative parts projected onto 0
gpu_call(x) do ctx, x_
i = @linearidx(x_)
@inbounds (x_[i] < 0) && (x_[i] = zero(T))
return nothing
end
end
RegularizedLeastSquares.rownorm²(A::AbstractGPUMatrix,row::Int64) = sum(map(abs2, @view A[row, :]))
RegularizedLeastSquares.rownorm²(B::Transpose{T,S},row::Int64) where {T,S<:AbstractGPUArray} = sum(map(abs2, @view B.parent[:, row]))
RegularizedLeastSquares.rownorm²(A::ProdOp{T, WeightingOp{T2, vecT2}, matT}, row::Int64) where {T, T2, vecT2 <: AbstractGPUArray, matT} = GPUArrays.@allowscalar A.A.weights[row]^2 * rownorm²(A.B, row)
RegularizedLeastSquares.dot_with_matrix_row(A::AbstractGPUMatrix{T}, x::AbstractGPUVector{T}, k::Int64) where {T} = reduce(+, x .* view(A, k, :))
RegularizedLeastSquares.dot_with_matrix_row(B::Transpose{T,S}, x::AbstractGPUVector{T}, k::Int64) where {T,S<:AbstractGPUArray} = reduce(+, x .* view(B.parent, :, k))
RegularizedLeastSquares.dot_with_matrix_row(A::ProdOp{T, WeightingOp{T2, vecT2}, matT}, x::AbstractGPUVector{T}, k::Int64) where {T, T2, vecT2 <: AbstractGPUArray, matT} = GPUArrays.@allowscalar A.A.weights[k] * RegularizedLeastSquares.dot_with_matrix_row(A.B, x, k) | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 11536 | export ADMM
mutable struct ADMM{matT,opT,R,ropT,P,preconT} <: AbstractPrimalDualSolver
A::matT
reg::Vector{R}
regTrafo::Vector{ropT}
proj::Vector{P}
AHA::opT
precon::preconT
normalizeReg::AbstractRegularizationNormalization
vary_ρ::Symbol
verbose::Bool
iterations::Int64
iterationsCG::Int64
state::AbstractSolverState{<:ADMM}
end
mutable struct ADMMState{rT <: Real, rvecT <: AbstractVector{rT}, vecT <: Union{AbstractVector{rT}, AbstractVector{Complex{rT}}}} <: AbstractSolverState{ADMM}
# fields and operators for x update
β::vecT
β_y::vecT
# fields for primal & dual variables
x::vecT
xᵒˡᵈ::vecT
z::Vector{vecT}
zᵒˡᵈ::Vector{vecT}
u::Vector{vecT}
uᵒˡᵈ::Vector{vecT}
# other paremters
ρ::rvecT
iteration::Int64
# state variables for CG
cgStateVars::CGStateVariables
# convergence parameters
rᵏ::rvecT
sᵏ::rvecT
ɛᵖʳⁱ::rvecT
ɛᵈᵘᵃ::rvecT
σᵃᵇˢ::rT
Δ::rvecT
absTol::rT
relTol::rT
tolInner::rT
end
"""
ADMM(A; AHA = A'*A, precon = Identity(), reg = L1Regularization(zero(real(eltype(AHA)))), regTrafo = opEye(eltype(AHA), size(AHA,1)), normalizeReg = NoNormalization(), rho = 1e-1, vary_rho = :none, iterations = 10, iterationsCG = 10, absTol = eps(real(eltype(AHA))), relTol = eps(real(eltype(AHA))), tolInner = 1e-5, verbose = false)
ADMM( ; AHA = , precon = Identity(), reg = L1Regularization(zero(real(eltype(AHA)))), regTrafo = opEye(eltype(AHA), size(AHA,1)), normalizeReg = NoNormalization(), rho = 1e-1, vary_rho = :none, iterations = 10, iterationsCG = 10, absTol = eps(real(eltype(AHA))), relTol = eps(real(eltype(AHA))), tolInner = 1e-5, verbose = false)
Creates an `ADMM` object for the forward operator `A` or normal operator `AHA`.
# Required Arguments
* `A` - forward operator
OR
* `AHA` - normal operator (as a keyword argument)
# Optional Keyword Arguments
* `AHA` - normal operator is optional if `A` is supplied
* `precon` - preconditionner for the internal CG algorithm
* `reg::AbstractParameterizedRegularization` - regularization term; can also be a vector of regularization terms
* `regTrafo` - transformation to a space in which `reg` is applied; if `reg` is a vector, `regTrafo` has to be a vector of the same length. Use `opEye(eltype(AHA), size(AHA,1))` if no transformation is desired.
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - penalty of the augmented Lagrangian
* `vary_rho::Symbol` - vary rho to balance primal and dual feasibility; options `:none`, `:balance`, `:PnP`
* `iterations::Int` - maximum number of (outer) ADMM iterations
* `iterationsCG::Int` - maximum number of (inner) CG iterations
* `absTol::Real` - absolute tolerance for stopping criterion
* `relTol::Real` - relative tolerance for stopping criterion
* `tolInner::Real` - relative tolerance for CG stopping criterion
* `verbose::Bool` - print residual in each iteration
ADMM differs from ISTA-type algorithms in the sense that the proximal operation is applied separately from the transformation to the space in which the penalty is applied. This is reflected by the interface which has `reg` and `regTrafo` as separate arguments. E.g., for a TV penalty, you should NOT set `reg=TVRegularization`, but instead use `reg=L1Regularization(λ), regTrafo=RegularizedLeastSquares.GradientOp(Float64; shape=(Nx,Ny,Nz))`.
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
ADMM(; AHA, kwargs...) = ADMM(nothing; kwargs..., AHA = AHA)
function ADMM(A
; AHA = A'*A
, precon = Identity()
, reg = L1Regularization(zero(real(eltype(AHA))))
, regTrafo = opEye(eltype(AHA), size(AHA,1), S = LinearOperators.storage_type(AHA))
, normalizeReg::AbstractRegularizationNormalization = NoNormalization()
, rho = 1e-1
, vary_rho::Symbol = :none
, iterations::Int = 10
, iterationsCG::Int = 10
, absTol::Real = eps(real(eltype(AHA)))
, relTol::Real = eps(real(eltype(AHA)))
, tolInner::Real = 1e-5
, verbose = false
)
T = eltype(AHA)
rT = real(T)
reg = isa(reg, AbstractVector) ? reg : [reg]
regTrafo = isa(regTrafo, AbstractVector) ? regTrafo : [regTrafo]
@assert length(reg) == length(regTrafo) "reg and regTrafo must have the same length"
indices = findsinks(AbstractProjectionRegularization, reg)
proj = [reg[i] for i in indices]
proj = identity.(proj)
deleteat!(reg, indices)
deleteat!(regTrafo, indices)
if typeof(rho) <: Number
rho = [rT.(rho) for _ ∈ eachindex(reg)]
else
rho = rT.(rho)
end
x = Vector{T}(undef, size(AHA,2))
xᵒˡᵈ = similar(x)
β = similar(x)
β_y = similar(x)
# fields for primal & dual variables
z = [similar(x, size(regTrafo[i],1)) for i ∈ eachindex(reg)]
zᵒˡᵈ = [similar(z[i]) for i ∈ eachindex(reg)]
u = [similar(z[i]) for i ∈ eachindex(reg)]
uᵒˡᵈ = [similar(u[i]) for i ∈ eachindex(reg)]
# statevariables for CG
# we store them here to prevent CG from allocating new fields at each call
cgStateVars = CGStateVariables(zero(x),similar(x),similar(x))
# convergence parameters
rᵏ = Array{rT}(undef, length(reg))
sᵏ = similar(rᵏ)
ɛᵖʳⁱ = similar(rᵏ)
ɛᵈᵘᵃ = similar(rᵏ)
Δ = similar(rᵏ)
# normalization parameters
reg = normalize(ADMM, normalizeReg, reg, A, nothing)
state = ADMMState(β, β_y, x, xᵒˡᵈ, z, zᵒˡᵈ, u, uᵒˡᵈ, rho, 0, cgStateVars, rᵏ, sᵏ, ɛᵖʳⁱ, ɛᵈᵘᵃ, rT(0), Δ, rT(absTol), rT(relTol), rT(tolInner))
return ADMM(A, reg, regTrafo, proj, AHA, precon, normalizeReg, vary_rho, verbose, iterations, iterationsCG, state)
end
function init!(solver::ADMM, state::ADMMState{rT, rvecT, vecT}, b::otherT; kwargs...) where {rT, rvecT, vecT, otherT <: AbstractVector}
x = similar(b, size(state.x)...)
xᵒˡᵈ = similar(b, size(state.xᵒˡᵈ)...)
β = similar(b, size(state.β)...)
β_y = similar(b, size(state.β_y)...)
z = [similar(b, size(state.z[i])...) for i ∈ eachindex(solver.reg)]
zᵒˡᵈ = [similar(b, size(state.zᵒˡᵈ[i])...) for i ∈ eachindex(solver.reg)]
u = [similar(b, size(state.u[i])...) for i ∈ eachindex(solver.reg)]
uᵒˡᵈ = [similar(b, size(state.uᵒˡᵈ[i])...) for i ∈ eachindex(solver.reg)]
cgStateVars = CGStateVariables(zero(x),similar(x),similar(x))
state = ADMMState(β, β_y, x, xᵒˡᵈ, z, zᵒˡᵈ, u, uᵒˡᵈ, state.ρ, state.iteration, cgStateVars,
state.rᵏ, state.sᵏ, state.ɛᵖʳⁱ, state.ɛᵈᵘᵃ, state.σᵃᵇˢ, state.Δ, state.absTol, state.relTol, state.tolInner)
solver.state = state
init!(solver, state, b; kwargs...)
end
"""
init!(solver::ADMM, b; x0 = 0)
(re-) initializes the ADMM iterator
"""
function init!(solver::ADMM, state::ADMMState{rT, rvecT, vecT}, b::vecT; x0 = 0) where {rT, rvecT, vecT <: AbstractVector}
state.x .= x0
# right hand side for the x-update
if solver.A === nothing
state.β_y .= b
else
mul!(state.β_y, adjoint(solver.A), b)
end
# primal and dual variables
for i ∈ eachindex(solver.reg)
state.z[i] .= solver.regTrafo[i] * state.x
state.u[i] .= 0
end
# convergence parameter
state.rᵏ .= Inf
state.sᵏ .= Inf
state.ɛᵖʳⁱ .= 0
state.ɛᵈᵘᵃ .= 0
state.σᵃᵇˢ = sqrt(length(b)) * state.absTol
state.Δ .= Inf
state.iteration = 0
# normalization of regularization parameters
solver.reg = normalize(solver, solver.normalizeReg, solver.reg, solver.A, b)
end
solverconvergence(state::ADMMState) = (; :primal => state.rᵏ, :dual => state.sᵏ)
"""
iterate(it::ADMM, iteration::Int=0)
performs one ADMM iteration.
"""
function iterate(solver::ADMM, state::ADMMState)
done(solver, state) && return nothing
solver.verbose && println("Outer ADMM Iteration #$(state.iteration)")
# 1. solve arg min_x 1/2|| Ax-b ||² + ρ/2 Σ_i||Φi*x+ui-zi||²
# <=> (A'A+ρ Σ_i Φi'Φi)*x = A'b+ρΣ_i Φi'(zi-ui)
state.β .= state.β_y
AHA = solver.AHA
for i ∈ eachindex(solver.reg)
mul!(state.β, adjoint(solver.regTrafo[i]), state.z[i], state.ρ[i], 1)
mul!(state.β, adjoint(solver.regTrafo[i]), state.u[i], -state.ρ[i], 1)
AHA += state.ρ[i] * adjoint(solver.regTrafo[i]) * solver.regTrafo[i]
end
solver.verbose && println("conjugated gradients: ")
state.xᵒˡᵈ .= state.x
cg!(state.x, AHA, state.β, Pl=solver.precon, maxiter=solver.iterationsCG, reltol=state.tolInner, statevars=state.cgStateVars, verbose=solver.verbose)
for proj in solver.proj
prox!(proj, state.x)
end
# proximal map for regularization terms
for i ∈ eachindex(solver.reg)
# swap z and zᵒˡᵈ w/o copying data
tmp = state.zᵒˡᵈ[i]
state.zᵒˡᵈ[i] = state.z[i]
state.z[i] = tmp
# 2. update z using the proximal map of 1/ρ*g(x)
mul!(state.z[i], solver.regTrafo[i], state.x)
state.z[i] .+= state.u[i]
if state.ρ[i] != 0
prox!(solver.reg[i], state.z[i], λ(solver.reg[i])/2state.ρ[i]) # λ is divided by 2 to match the ISTA-type algorithms
end
# 3. update u
state.uᵒˡᵈ[i] .= state.u[i]
mul!(state.u[i], solver.regTrafo[i], state.x, 1, 1)
state.u[i] .-= state.z[i]
# update convergence criteria (one for each constraint)
state.rᵏ[i] = norm(solver.regTrafo[i] * state.x - state.z[i]) # primal residual (x-z)
state.sᵏ[i] = norm(state.ρ[i] * adjoint(solver.regTrafo[i]) * (state.z[i] .- state.zᵒˡᵈ[i])) # dual residual (concerning f(x))
state.ɛᵖʳⁱ[i] = max(norm(solver.regTrafo[i] * state.x), norm(state.z[i]))
state.ɛᵈᵘᵃ[i] = norm(state.ρ[i] * adjoint(solver.regTrafo[i]) * state.u[i])
Δᵒˡᵈ = state.Δ[i]
state.Δ[i] = norm(state.x .- state.xᵒˡᵈ ) +
norm(state.z[i] .- state.zᵒˡᵈ[i]) +
norm(state.u[i] .- state.uᵒˡᵈ[i])
if (solver.vary_ρ == :balance && state.rᵏ[i]/state.ɛᵖʳⁱ[i] > 10state.sᵏ[i]/state.ɛᵈᵘᵃ[i]) || # adapt ρ according to Boyd et al.
(solver.vary_ρ == :PnP && state.Δ[i]/Δᵒˡᵈ > 0.9) # adapt ρ according to Chang et al.
state.ρ[i] *= 2
state.u[i] ./= 2
elseif solver.vary_ρ == :balance && state.sᵏ[i]/state.ɛᵈᵘᵃ[i] > 10state.rᵏ[i]/state.ɛᵖʳⁱ[i]
state.ρ[i] /= 2
state.u[i] .*= 2
end
if solver.verbose
println("rᵏ[$i]/ɛᵖʳⁱ[$i] = $(state.rᵏ[i]/state.ɛᵖʳⁱ[i])")
println("sᵏ[$i]/ɛᵈᵘᵃ[$i] = $(state.sᵏ[i]/state.ɛᵈᵘᵃ[i])")
println("Δ[$i]/Δᵒˡᵈ[$i] = $(state.Δ[i]/Δᵒˡᵈ)")
println("new ρ[$i] = $(state.ρ[i])")
flush(stdout)
end
end
state.iteration += 1
return state.x, state
end
function converged(solver::ADMM, state::ADMMState)
for i ∈ eachindex(solver.reg)
(state.rᵏ[i] >= state.σᵃᵇˢ + state.relTol * state.ɛᵖʳⁱ[i]) && return false
(state.sᵏ[i] >= state.σᵃᵇˢ + state.relTol * state.ɛᵈᵘᵃ[i]) && return false
end
return true
end
@inline done(solver::ADMM, state::ADMMState) = converged(solver, state) || state.iteration >= solver.iterations | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 5854 | export cgnr, CGNR
mutable struct CGNR{matT,opT, R,PR} <: AbstractKrylovSolver
A::matT
AHA::opT
L2::R
constr::PR
normalizeReg::AbstractRegularizationNormalization
iterations::Int64
state::AbstractSolverState{<:CGNR}
end
mutable struct CGNRState{T, Tc, vecTc} <: AbstractSolverState{CGNR} where {T, Tc <: Union{T, Complex{T}}, vecTc<:AbstractArray{Tc}}
x::vecTc
x₀::vecTc
pl::vecTc
vl::vecTc
αl::Tc
βl::Tc
ζl::Tc
iteration::Int64
relTol::T
z0::T
end
"""
CGNR(A; AHA = A' * A, reg = L2Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), iterations = 10, relTol = eps(real(eltype(AHA))))
CGNR( ; AHA = , reg = L2Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), iterations = 10, relTol = eps(real(eltype(AHA))))
creates an `CGNR` object for the forward operator `A` or normal operator `AHA`.
# Required Arguments
* `A` - forward operator
OR
* `AHA` - normal operator (as a keyword argument)
# Optional Keyword Arguments
* `AHA` - normal operator is optional if `A` is supplied
* `reg::AbstractParameterizedRegularization` - regularization term; can also be a vector of regularization terms
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `iterations::Int` - maximum number of iterations
* `relTol::Real` - tolerance for stopping criterion
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
CGNR(; AHA, kwargs...) = CGNR(nothing; AHA = AHA, kwargs...)
function CGNR(A
; AHA = A'*A
, reg = L2Regularization(zero(real(eltype(AHA))))
, normalizeReg::AbstractRegularizationNormalization = NoNormalization()
, iterations::Int = 10
, relTol::Real = eps(real(eltype(AHA)))
)
T = eltype(AHA)
x = Vector{T}(undef, size(AHA, 2))
x₀ = similar(x) #temporary vector
pl = similar(x) #temporary vector
vl = similar(x) #temporary vector
αl = zero(T) #temporary scalar
βl = zero(T) #temporary scalar
ζl = zero(T) #temporary scalar
# Prepare regularization terms
reg = isa(reg, AbstractVector) ? reg : [reg]
reg = normalize(CGNR, normalizeReg, reg, A, nothing)
idx = findsink(L2Regularization, reg)
if isnothing(idx)
L2 = L2Regularization(zero(T))
else
L2 = reg[idx]
deleteat!(reg, idx)
end
indices = findsinks(RealRegularization, reg)
push!(indices, findsinks(PositiveRegularization, reg)...)
other = [reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) > 0
error("CGNR does not allow for more additional regularization terms, found $(length(reg))")
end
other = identity.(other)
state = CGNRState(x, x₀, pl, vl, αl, βl, ζl, 0, real(T)(relTol), zero(real(T)))
return CGNR(A, AHA, L2, other, normalizeReg, iterations, state)
end
function init!(solver::CGNR, state::CGNRState{T, Tc, vecTc}, b::otherTc; kwargs...) where {T, Tc, vecTc, otherTc <: AbstractVector{Tc}}
x = similar(b, size(state.x)...)
x₀ = similar(b, size(state.x₀)...)
pl = similar(b, size(state.pl)...)
vl = similar(b, size(state.vl)...)
state = CGNRState(x, x₀, pl, vl, state.αl, state.βl, state.ζl, state.iteration, state.relTol, state.z0)
solver.state = state
init!(solver, state, b; kwargs...)
end
"""
init!(solver::CGNR, b; x0 = 0)
(re-) initializes the CGNR iterator
"""
function init!(solver::CGNR, state::CGNRState{T, Tc, vecTc}, b::vecTc; x0 = 0) where {T, Tc <: Union{T, Complex{T}}, vecTc<:AbstractVector{Tc}}
state.pl .= 0 #temporary vector
state.vl .= 0 #temporary vector
state.αl = 0 #temporary scalar
state.βl = 0 #temporary scalar
state.ζl = 0 #temporary scalar
state.iteration = 0
if all(x0 .== 0)
state.x .= 0
else
solver.A === nothing && error("providing x0 requires solver.A to be defined")
state.x .= x0
mul!(b, solver.A, solver.x, -1, 1)
end
#x₀ = Aᶜ*rl, where ᶜ denotes complex conjugation
initCGNR(state.x₀, solver.A, b)
state.z0 = norm(state.x₀)
copyto!(state.pl, state.x₀)
# normalization of regularization parameters
solver.L2 = normalize(solver, solver.normalizeReg, solver.L2, solver.A, b)
end
initCGNR(x₀, A, b) = mul!(x₀, adjoint(A), b)
#initCGNR(x₀, prod::ProdOp{T, <:WeightingOp, matT}, b) where {T, matT} = mul!(x₀, adjoint(prod.B), b)
initCGNR(x₀, ::Nothing, b) = x₀ .= b
solverconvergence(state::CGNRState) = (; :residual => norm(state.x₀))
"""
iterate(solver::CGNR{vecT,T,Tsparse}, iteration::Int=0) where {vecT,T,Tsparse}
performs one CGNR iteration.
"""
function iterate(solver::CGNR, state::CGNRState)
if done(solver, state)
for r in solver.constr
prox!(r, state.x)
end
return nothing
end
mul!(state.vl, solver.AHA, state.pl)
state.ζl = norm(state.x₀)^2
normvl = dot(state.pl, state.vl)
λ_ = λ(solver.L2)
if λ_ > 0
state.αl = state.ζl / (normvl + λ_ * norm(state.pl)^2)
else
state.αl = state.ζl / normvl
end
state.x .+= state.pl .* state.αl
state.x₀ .+= state.vl .* -state.αl
if λ_ > 0
state.x₀ .+= state.pl .* -λ_ * state.αl
end
state.βl = dot(state.x₀, state.x₀) / state.ζl
rmul!(state.pl, state.βl)
state.pl .+= state.x₀
state.iteration += 1
return state.x, state
end
function converged(::CGNR, state::CGNRState)
return norm(state.x₀) / state.z0 <= state.relTol
end
@inline done(solver::CGNR, state::CGNRState) = converged(solver, state) || state.iteration >= min(solver.iterations, size(solver.AHA, 2)) | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 1678 | export CompareSolutionCallback
mutable struct CompareSolutionCallback{T, F}
ref::Vector{T}
cmp::F
results::Vector{Float64}
end
"""
CompareSolutionCallback(ref, cmp)
Callback that compares the solvers current `solution` with the given reference via `cmp(ref, solution)` per iteration. Results are stored in the `results` field.
"""
CompareSolutionCallback(ref::Vector{T}, cmp = nrmsd) where T = CompareSolutionCallback(ref, cmp, Vector{Float64}())
function (cb::CompareSolutionCallback)(solver::AbstractLinearSolver, _)
x = solversolution(solver)
push!(cb.results, cb.cmp(cb.ref, x))
end
export StoreSolutionCallback
mutable struct StoreSolutionCallback{T}
solutions::Vector{Vector{T}}
end
"""
StoreSolutionCallback(T)
Callback that accumlates the solvers `solution` per iteration. Results are stored in the `solutions` field.
"""
StoreSolutionCallback(T::Type=Number) = StoreSolutionCallback(Vector{Vector{T}}())
function (cb::StoreSolutionCallback)(solver::AbstractLinearSolver, _)
x = solversolution(solver)
push!(cb.solutions, deepcopy(x))
end
export StoreConvergenceCallback
mutable struct StoreConvergenceCallback
convMeas::Dict{Symbol, Any}
end
"""
StoreConvergenceCallback()
Callback that accumlates the solvers convergence metrics per iteration. Results are stored in the `convMeas` field.
"""
StoreConvergenceCallback() = StoreConvergenceCallback(Dict{Symbol, Any}())
function (cb::StoreConvergenceCallback)(solver::AbstractLinearSolver, _)
meas = solverconvergence(solver)
for key in keys(meas)
values = get(cb.convMeas, key, Vector{typeof(meas[key])}())
push!(values, meas[key])
cb.convMeas[key] = values
end
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 6340 | export DaxConstrained
mutable struct DaxConstrained{matT,T,Tsparse,U} <: AbstractRowActionSolver
A::matT
u::Vector{T}
λ::Float64
B::Tsparse
Bnorm²::Vector{Float64}
denom::Vector{U}
rowindex::Vector{Int64}
x::Vector{T}
bk::Vector{T}
bc::Vector{T}
xl::Vector{T}
yl::Vector{T}
yc::Vector{T}
δc::Vector{T}
εw::Vector{T}
τl::T
αl::T
weights::Vector{U}
iterations::Int64
iterationsInner::Int64
end
"""
DaxConstrained(A; b=nothing, λ=0, weights=ones(real(eltype(A)),size(A,1)), sparseTrafo=nothing, iterations=3, iterationsInner=2)
Creates an `DaxConstrained` object for the forward operator `A`. Solves a constrained linear least squares problem using an algorithm proposed in [1]. Returns an approximate solution to Sᵀx = u s.t. Bx>=0 (each component >=0).
[1] Dax, A. On Row Relaxation Methods for Large Constrained Least Squares Problems. SIAM J. Sci. Comput. 14, 570–584 (1993).
# Required Arguments
* `A` - forward operator
# Optional Keyword Arguments
* `b::AbstractMatrix` - transpose of basistransformation if solving in dual space
* `λ::Real` - regularization parameter ɛ>0 influences the speed of convergence but not the solution.
* `weights::AbstractVector` - the larger the weight the more one 'trusts' a sqecific equation
* `iterations::Int` - maximum number of (outer) ADMM iterations
* `iterationsInner::Int` - max number of (inner) dax iterations
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
function DaxConstrained(A
; b=nothing
, λ::Real=0
, weights::AbstractVector=ones(real(eltype(A)),size(A,1))
, sparseTrafo=nothing
, iterations::Int=3
, iterationsInner::Int=2
)
T = eltype(A)
rT = real(eltype(A))
M,N = size(A)
# setup denom and rowindex
denom, rowindex = initkaczmarzconstraineddax(A,λ,weights)
# set basis transformation
sparseTrafo === nothing ? B=Matrix{rT}(I, size(A,2), size(A,2)) : B=sparseTrafo
Bnorm² = [rownorm²(B,i) for i=1:size(B,2)]
if b !== nothing
u = b
else
u = zeros(T,M)
end
x = zeros(T,N)
bk = zeros(T,M)
bc = zeros(rT,size(B,2))
xl = zeros(T,N)
yl = zeros(T,M)
yc = zeros(T,N)
δc = zeros(T,N)
εw = zeros(T,length(rowindex))
τl = zero(T)
αl = zero(T)
return DaxConstrained(A,u,Float64(λ),B,Bnorm²,denom,rowindex,x,bk,bc,xl,yl,yc,δc,εw,τl,αl
,rT.(weights),iterations,iterationsInner)
end
function init!(solver::DaxConstrained, b; x0 = 0)
solver.u .= b
solver.x .= x0
solver.bk .= 0
solver.bc .= 0
solver.xl .= 0
solver.yl .= 0
solver.yc .= 0
solver.δc .= 0
solver.αl = 0
solver.τl = 0
for i=1:length(solver.rowindex)
j = solver.rowindex[i]
solver.ɛw[i] = sqrt(solver.λ)/solver.weights[j]
end
end
solverconvergence(solver::DaxConstrained) = (; :residual => norm(solver.bk))
function iterate(solver::DaxConstrained, iteration::Int=0)
if done(solver,iteration) return nothing end
# bk = u-A'*x
copyto!(solver.bk,solver.u)
gemv!('N',-1.0,solver.A,solver.x,1.0,solver.bk)
# solve min ɛ|x|²+|W*A*x-W*bk|² with weightingmatrix W=diag(wᵢ), i=1,...,M.
for l=1:solver.iterationsInner
for i=1:length(solver.rowindex) # perform kaczmarz for all rows, which receive an update.
j = solver.rowindex[i]
solver.τl = dot_with_matrix_row(solver.A,solver.xl,j)
solver.αl = solver.denom[i]*(solver.bk[j]-solver.τl-solver.ɛw[i]*solver.yl[j])
kaczmarz_update!(solver.A,solver.xl,j,solver.αl)
solver.yl[j] += solver.αl*solver.ɛw[i]
end
#Lent-Censor scheme for ensuring B(xl+x) >= 0
# copyto!(solver.δc,solver.xl)
# BLAS.axpy!(1.0,solver.x,solver.δc)
# lmul!(solver.B, solver.δc)
# lentcensormin!(solver.δc,solver.yc)
#
# BLAS.axpy!(1.0,solver.δc,solver.yc) # yc += δc
#
# δc = gemv('T',solver.B,solver.δc)
# BLAS.axpy!(1.0,solver.solver.δc,solver.xl) # xl += Bᵀ*δc
#Lent-Censor scheme for solving Bx >= 0
# bc = xl + x
copyto!(solver.bc,solver.x)
BLAS.axpy!(1.0,solver.xl,solver.bc)
for i=1:size(solver.B,2)
δ = dot_with_matrix_row(solver.B,solver.bc,i)/solver.Bnorm²[i]
δ = δ<solver.yc[i] ? -δ : -solver.yc[i]
solver.yc[i] += δ
kaczmarz_update!(solver.B,solver.xl,i,δ) # update xl
kaczmarz_update!(solver.B,solver.bc,i,δ) # update bc
end
end
BLAS.axpy!(1.0,solver.xl,solver.x) # x += xl
# reset xl and yl for next Kaczmarz run
rmul!(solver.xl,0.0)
rmul!(solver.yl,0.0)
rmul!(solver.yc,0.0)
return solver.bk, iteration+1
end
@inline done(solver::DaxConstrained,iteration::Int) = iteration>=solver.iterations
function lentcensormin!(x::Vector{T},y::Vector{T}) where {T<:Real}
α = -one(T)
@simd for i=1:length(x)
@inbounds x[i]<=y[i] ? x[i] = α*x[i] : x[i] = α*y[i]
end
end
"""This function saves the denominators to compute αl in denom and the rowindices,
which lead to an update of cl in rowindex."""
function initkaczmarzconstraineddax(A::AbstractMatrix,ɛ::Number,weights::Vector)
length(weights)==size(A,1) ? nothing : error("number of weights must equal number of equations")
denom = Float64[]
rowindex = Int64[]
for i=1:size(A,1)
s² = rownorm²(A,i)*weights[i]^2
if s²>0
push!(denom,weights[i]^2/(s²+ɛ))
push!(rowindex,i)
end
end
return denom, rowindex
end
"""
This function saves the denominators to compute αl in denom and the rowindices,
which lead to an update of cl in rowindex.
"""
function initkaczmarzconstraineddaxfft(A::AbstractMatrix,ɛ::Number,weights::Vector)
length(weights)==size(A,1) ? nothing : error("number of weights must equal number of equations")
denom = Float64[]
rowindex = Int64[]
for i=1:2:size(A,1)
s²a = (rownorm²(A,i)+rownorm²(A,i+1))*weights[i]^2
s²b = (rownorm²(A,i)+rownorm²(A,i+1))*weights[i+1]^2
if s²a>0 && s²b>0
push!(denom,weights[i]^2/(s²a+ɛ))
push!(denom,weights[i+1]^2/(s²b+ɛ))
push!(rowindex,i)
push!(rowindex,i+1)
end
end
return denom, rowindex
end
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 5444 | export DaxKaczmarz
mutable struct DaxKaczmarz{matT,T,U} <: AbstractRowActionSolver
A::matT
u::Vector{T}
reg::Vector{<:AbstractRegularization}
λ::Float64
denom::Vector{U}
rowindex::Vector{Int64}
sumrowweights::Vector{Float64}
x::Vector{T}
bk::Vector{T}
xl::Vector{T}
yl::Vector{T}
εw::Vector{T}
τl::T
αl::T
weights::Vector{U}
iterations::Int64
iterationsInner::Int64
end
"""
DaxKaczmarz(A; b=nothing, λ=0, weights=ones(real(eltype(A)),size(A,1)), sparseTrafo=nothing, enforceReal=false, enforcePositive=false, iterations=3, iterationsInner=2)
Creates an `DaxKaczmarz` object for the forward operator `A`. Solves a unconstrained linear least squares problem using an algorithm proposed in [1] combined with a randomized version of kaczmarz [2]. Returns an approximate solution to the linear least squares problem Sᵀx = u.
[1] Dax, A. On Row Relaxation Methods for Large Constrained Least Squares Problems. SIAM J. Sci. Comput. 14, 570–584 (1993).
[2] Strohmer, T. & Vershynin, R. A Randomized Kaczmarz Algorithm with Exponential Convergence. J. Fourier Anal. Appl. 15, 262–278 (2008).
# Required Arguments
* `A` - forward operator
# Optional Keyword Arguments
* `b::AbstractMatrix` - transpose of basistransformation if solving in dual space
* `λ::Real` - regularization parameter ɛ>0 influences the speed of convergence but not the solution.
* `sparseTrafo` - TODO
* `enforceReal::Bool` - TODO
* `enforcePositive::Bool` - TODO
* `iterations::Int` - maximum number of (outer) ADMM iterations
* `iterationsInner::Int` - max number of (inner) dax iterations
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
function DaxKaczmarz(A
; b=nothing
, λ::Real=0
, weights::Vector=ones(real(eltype(A)),size(A,1))
, sparseTrafo=nothing
, enforceReal::Bool=false
, enforcePositive::Bool=false
, iterations::Int=3
, iterationsInner::Int=2
)
# setup denom and rowindex
sumrowweights, denom, rowindex = initkaczmarzdax(A,λ,weights)
T = typeof(real(A[1]))
M,N = size(A)
if b != nothing
u = b
else
u = zeros(eltype(A),M)
end
x = zeros(eltype(A),N)
bk = zeros(eltype(A),M)
xl = zeros(eltype(A),N)
yl = zeros(eltype(A),M)
εw = zeros(eltype(A),length(rowindex))
τl = zero(eltype(A))
αl = zero(eltype(A))
reg = AbstractRegularization[]
if enforcePositive && enforceReal
push!(reg, PositiveRegularization())
elseif enforceReal
push!(reg, RealRegularization())
end
if !isempty(reg) && !isnothing(sparseTrafo)
reg = map(r -> TransformedRegularization(r, sparseTrafo), reg)
end
return DaxKaczmarz(A,u,reg, Float64(λ), denom,rowindex,sumrowweights,x,bk,xl,yl,εw,τl,αl
,T.(weights) ,iterations,iterationsInner)
end
function init!(solver::DaxKaczmarz, b; x0 = 0)
solver.u .= b
solver.x .= x0
solver.bk .= 0
solver.xl .= 0
solver.yl .= 0
solver.αl = 0
solver.τl = 0
for i=1:length(solver.rowindex)
j = solver.rowindex[i]
solver.ɛw[i] = sqrt(solver.λ)/solver.weights[j]
end
end
function iterate(solver::DaxKaczmarz, iteration::Int=0)
if done(solver,iteration)
for r in solver.reg
prox!(r, solver.x)
end
return nothing
end
copyto!(solver.bk, solver.u)
gemv!('N',-1.0,solver.A,solver.x,1.0,solver.bk)
# solve min ɛ|x|²+|W*A*x-W*bk|² with weightingmatrix W=diag(wᵢ), i=1,...,M.
for l=1:length(solver.rowindex)*solver.iterationsInner
i::Int64 = getrandindex(solver.sumrowweights,rand()*solver.sumrowweights[end]) #choose row with propability proportional to its weight.
j = solver.rowindex[i]
solver.τl = dot_with_matrix_row(solver.A,solver.xl,j)
solver.αl = solver.denom[i]*(solver.bk[j]-solver.τl-solver.ɛw[i]*solver.yl[j])
kaczmarz_update!(solver.A,solver.xl,j,solver.αl)
solver.yl[j] += solver.αl*solver.ɛw[i]
end
BLAS.axpy!(1.0,solver.xl,solver.x) # x += xl
# reset xl and yl for next Kaczmarz run
rmul!(solver.xl,0.0)
rmul!(solver.yl,0.0)
return solver.bk, iteration+1
end
@inline done(solver::DaxKaczmarz,iteration::Int) = iteration>=solver.iterations
"""This function saves the denominators to compute αl in denom and the rowindices,
which lead to an update of cl in rowindex.
"""
function initkaczmarzdax(A::AbstractMatrix, ɛ, weights::Vector)
length(weights)==size(A,1) ? nothing : error("number of weights must equal number of equations")
denom = Float64[]
sumrowweights = Float64[]
rowindex = Int64[]
push!(sumrowweights,0.0)
for i=1:size(A,1)
s² = rownorm²(A,i)*weights[i]^2
if s²>0
push!(denom,weights[i]^2/(s²+ɛ))
push!(sumrowweights,s²+ɛ+sumrowweights[end])
push!(rowindex,i)
end
end
return sumrowweights, denom, rowindex
end
"This function returns the next index for the randomized Kaczmarz algorithm."
function getrandindex(v::AbstractVector, x)
lo::Int64 = 0
hi::Int64 = length(v)+1
while lo < hi-1
m = (lo+hi)>>>1
x<v[m] ? hi = m : lo = m
end
return lo
end
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 4968 | export PseudoInverse, DirectSolver
### Direct Solver ###
mutable struct DirectSolver{matT, R, PR} <: AbstractDirectSolver
A::matT
l2::R
normalizeReg::AbstractRegularizationNormalization
proj::Vector{PR}
state::AbstractSolverState{<:AbstractDirectSolver}
end
mutable struct DirectSolverState{vecT} <: AbstractSolverState{DirectSolver}
x::vecT
b::vecT
end
function DirectSolver(A; reg::Vector{<:AbstractRegularization} = [L2Regularization(zero(real(eltype(A))))], normalizeReg::AbstractRegularizationNormalization = NoNormalization())
reg = normalize(DirectSolver, normalizeReg, reg, A, nothing)
idx = findsink(L2Regularization, reg)
if isnothing(idx)
L2 = L2Regularization(zero(T))
else
L2 = reg[idx]
deleteat!(reg, idx)
end
indices = findsinks(AbstractProjectionRegularization, reg)
other = AbstractRegularization[reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) == 1
push!(other, reg[1])
elseif length(reg) > 1
error("PseudoInverse does not allow for more than one L2 regularization term, found $(length(reg))")
end
other = identity.(other)
T = eltype(A)
x = Vector{T}(undef,size(A, 2))
b = zeros(T, size(A,1))
return DirectSolver(A, L2, normalizeReg, other, DirectSolverState(x, b))
end
function init!(solver::DirectSolver, state::DirectSolverState{vecT}, b::otherT; kwargs...) where {vecT, otherT <: AbstractVector}
x = similar(b, size(state.x)...)
bvecT = similar(b, size(state.b)...)
solver.state = DirectSolverState(x, bvecT)
init!(solver, solver.state, b; kwargs...)
end
function init!(solver::DirectSolver, state::DirectSolverState{vecT}, b::vecT; x0=0) where vecT <: AbstractVector
solver.l2 = normalize(solver, solver.normalizeReg, solver.l2, solver.A, b)
state.b .= b
state.x .= x0
end
function iterate(solver::DirectSolver, state::DirectSolverState)
A = solver.A
λ_ = λ(solver.l2)
lufact = lu(A'*A .+ λ_)
x = \(lufact,A' * state.b)
for p in solver.proj
prox!(p, x)
end
state.x .= x
return nothing
end
#type for Gauß elimination
mutable struct tikhonovLU
S::Matrix
LUfact
end
tikhonovLU(S::AbstractMatrix) = tikhonovLU(S, lufact(S'*S))
Base.size(A::tikhonovLU) = size(A.S)
Base.length(A::tikhonovLU) = length(A.S)
"""
This function can be used to calculate the singular values used for Tikhonov regularization.
"""
function setlambda(A::tikhonovLU, λ::Real)
A.LUfact = lufact(A.S'*A.S + λ*speye(size(A,2),size(A,2)))
return nothing
end
# Simple Tikonov regularized reconstruction
function directSolver(A::tikhonovLU, b::Vector; enforceReal=false, enforcePositive=false, kargs...)
x = \(A.LUfact,A.S' * b)
enforceReal ? enfReal!(x) : nothing
enforcePositive ? enfPos!(x) : nothing
return x
end
### Pseudoinverse ###
mutable struct PseudoInverse{R, PR} <: AbstractDirectSolver
svd::SVD
l2::R
normalizeReg::AbstractRegularizationNormalization
proj::Vector{PR}
state::AbstractSolverState{<:AbstractDirectSolver}
end
function PseudoInverse(A; reg::Vector{<:AbstractRegularization} = [L2Regularization(zero(real(eltype(A))))], normalizeReg::AbstractRegularizationNormalization = NoNormalization())
reg = normalize(PseudoInverse, normalizeReg, reg, A, nothing)
idx = findsink(L2Regularization, reg)
if isnothing(idx)
L2 = L2Regularization(zero(T))
else
L2 = reg[idx]
deleteat!(reg, idx)
end
indices = findsinks(AbstractProjectionRegularization, reg)
other = AbstractRegularization[reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) == 1
push!(other, reg[1])
elseif length(reg) > 1
error("PseudoInverse does not allow for more than one L2 regularization term, found $(length(reg))")
end
other = identity.(other)
T = eltype(A)
x = Vector{T}(undef,size(A, 2))
b = zeros(T, size(A,1))
return PseudoInverse(A, x, b, L2, normalizeReg, other)
end
function PseudoInverse(A::AbstractMatrix, x, b, l2, norm, proj)
u, s, v = svd(A)
temp = SVD(u, s, v)
return PseudoInverse(temp, l2, norm, proj, DirectSolverState(x, b))
end
function init!(solver::PseudoInverse, state::DirectSolverState{vecT}, b::otherT; kwargs...) where {vecT, otherT <: AbstractVector}
x = similar(b, size(state.x)...)
bvecT = similar(b, size(state.b)...)
solver.state = DirectSolverState(x, bvecT)
init!(solver, solver.state, b; kwargs...)
end
function init!(solver::PseudoInverse, state::DirectSolverState{vecT}, b::vecT; x0=0) where vecT <: AbstractVector
solver.l2 = normalize(solver, solver.normalizeReg, solver.l2, solver.svd, b)
state.b .= b
end
function iterate(solver::PseudoInverse, state::DirectSolverState)
# Inversion by using the pseudoinverse of the SVD
svd = solver.svd
# Calculate singular values used for tikhonov regularization
λ_ = λ(solver.l2)
D = svd.S ./ (svd.S.*svd.S .+ λ_ )
tmp = adjoint(svd.U)*state.b
tmp .*= D
x = svd.Vt * tmp
for p in solver.proj
prox!(p, x)
end
state.x = x
return nothing
end | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 7223 | export FISTA
mutable struct FISTA{matA, matAHA, R, RN} <: AbstractProximalGradientSolver
A::matA
AHA::matAHA
reg::R
proj::Vector{RN}
normalizeReg::AbstractRegularizationNormalization
verbose::Bool
restart::Symbol
iterations::Int64
state::AbstractSolverState{<:FISTA}
end
mutable struct FISTAState{rT <: Real, vecT <: Union{AbstractVector{rT}, AbstractVector{Complex{rT}}}} <: AbstractSolverState{FISTA}
x::vecT
x₀::vecT
xᵒˡᵈ::vecT
res::vecT
ρ::rT
theta::rT
thetaᵒˡᵈ::rT
iteration::Int64
relTol::rT
norm_x₀::rT
rel_res_norm::rT
end
"""
FISTA(A; AHA=A'*A, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho = 0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))), restart = :none)
FISTA( ; AHA=, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho = 0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))), restart = :none)
creates a `FISTA` object for the forward operator `A` or normal operator `AHA`.
# Required Arguments
* `A` - forward operator
OR
* `AHA` - normal operator (as a keyword argument)
# Optional Keyword Arguments
* `AHA` - normal operator is optional if `A` is supplied
* `precon` - preconditionner for the internal CG algorithm
* `reg::AbstractParameterizedRegularization` - regularization term; can also be a vector of regularization terms
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - step size for gradient step; the default is `0.95 / max_eigenvalue` as determined with power iterations.
* `theta::Real` - parameter for predictor-corrector step
* `relTol::Real` - tolerance for stopping criterion
* `iterations::Int` - maximum number of iterations
* `restart::Symbol` - `:none`, `:gradient` options for restarting
* `verbose::Bool` - print residual in each iteration
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
FISTA(; AHA, kwargs...) = FISTA(nothing; AHA = AHA, kwargs...)
function FISTA(A
; AHA = A'*A
, reg = L1Regularization(zero(real(eltype(AHA))))
, normalizeReg = NoNormalization()
, iterations = 50
, verbose = false
, rho = 0.95 / power_iterations(AHA; verbose)
, theta = 1
, relTol = eps(real(eltype(AHA)))
, restart = :none
)
T = eltype(AHA)
rT = real(T)
x = Vector{T}(undef,size(AHA,2))
x₀ = similar(x)
xᵒˡᵈ = similar(x)
res = similar(x)
res[1] = Inf # avoid spurious convergence in first iterations
# Prepare regularization terms
reg = isa(reg, AbstractVector) ? reg : [reg]
indices = findsinks(AbstractProjectionRegularization, reg)
other = [reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) != 1
error("FISTA does not allow for more additional regularization terms, found $(length(reg))")
end
other = identity.(other)
reg = normalize(FISTA, normalizeReg, reg, A, nothing)
state = FISTAState(x, x₀, xᵒˡᵈ, res, rT(rho), rT(theta), rT(theta), 0, rT(relTol), one(rT), rT(Inf))
return FISTA(A, AHA, reg[1], other, normalizeReg, verbose, restart, iterations, state)
end
function init!(solver::FISTA, state::FISTAState{rT, vecT}, b::otherT; kwargs...) where {rT, vecT, otherT <: AbstractVector}
x = similar(b, size(state.x)...)
x₀ = similar(b, size(state.x₀)...)
xᵒˡᵈ = similar(b, size(state.xᵒˡᵈ)...)
res = similar(b, size(state.res)...)
state = FISTAState(x, x₀, xᵒˡᵈ, res, state.ρ, state.theta, state.theta, state.iteration, state.relTol, state.norm_x₀, state.rel_res_norm)
solver.state = state
init!(solver, state, b; kwargs...)
end
"""
init!(it::FISTA, b; x0 = 0, theta = 1)
(re-) initializes the FISTA iterator
"""
function init!(solver::FISTA, state::FISTAState{rT, vecT}, b::vecT; x0 = 0, theta=1) where {rT, vecT <: AbstractVector}
if solver.A === nothing
state.x₀ .= b
else
mul!(state.x₀, adjoint(solver.A), b)
end
state.iteration = 0
state.norm_x₀ = norm(state.x₀)
state.x .= x0
state.xᵒˡᵈ .= 0 # makes no difference in 1st iteration what this is set to
state.res[:] .= rT(Inf)
state.theta = theta
state.thetaᵒˡᵈ = theta
state.rel_res_norm = rT(Inf)
# normalization of regularization parameters
solver.reg = normalize(solver, solver.normalizeReg, solver.reg, solver.A, state.x₀)
end
solverconvergence(state::FISTAState) = (; :residual => norm(state.res))
"""
iterate(it::FISTA, iteration::Int=0)
performs one fista iteration.
"""
function iterate(solver::FISTA, state::FISTAState)
if done(solver, state) return nothing end
# momentum / Nesterov step
# this implementation mimics BART, saving memory by first swapping x and xᵒˡᵈ before calculating x + α * (x - xᵒˡᵈ)
tmp = state.xᵒˡᵈ
state.xᵒˡᵈ = state.x
state.x = tmp # swap x and xᵒˡᵈ
state.x .*= ((1 - state.thetaᵒˡᵈ)/state.theta) # here we calculate -α * xᵒˡᵈ, where xᵒˡᵈ is now stored in x
state.x .+= ((state.thetaᵒˡᵈ-1)/state.theta + 1) .* (state.xᵒˡᵈ) # add (α+1)*x, where x is now stored in xᵒˡᵈ
# calculate residuum and do gradient step
# solver.x .-= solver.ρ .* (solver.AHA * solver.x .- solver.x₀)
mul!(state.res, solver.AHA, state.x)
state.res .-= state.x₀
state.x .-= state.ρ .* state.res
state.rel_res_norm = norm(state.res) / state.norm_x₀
solver.verbose && println("Iteration $(state.iteration); rel. residual = $(state.rel_res_norm)")
# the two lines below are equivalent to the ones above and non-allocating, but require the 5-argument mul! function to implemented for AHA, i.e. if AHA is LinearOperator, it requires LinearOperators.jl v2
# mul!(solver.x, solver.AHA, solver.xᵒˡᵈ, -solver.ρ, 1)
# solver.x .+= solver.ρ .* solver.x₀
# proximal map
prox!(solver.reg, state.x, state.ρ * λ(solver.reg))
for proj in solver.proj
prox!(proj, state.x)
end
# gradient restart conditions
if solver.restart == :gradient
if real(state.res ⋅ (state.x .- state.xᵒˡᵈ) ) > 0 #if momentum is at an obtuse angle to the negative gradient
solver.verbose && println("Gradient restart at iter $(state.iteration)")
state.theta = 1
end
end
# predictor-corrector update
state.thetaᵒˡᵈ = state.theta
state.theta = (1 + sqrt(1 + 4 * state.thetaᵒˡᵈ^2)) / 2
state.iteration += 1
# return the residual-norm as item and iteration number as state
return state.x, state
end
@inline converged(::FISTA, state::FISTAState) = (state.rel_res_norm < state.relTol)
@inline done(solver::FISTA, state::FISTAState) = converged(solver, state) || state.iteration>=solver.iterations | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 12185 | export kaczmarz
export Kaczmarz
mutable struct Kaczmarz{matT,R,U,RN} <: AbstractRowActionSolver
A::matT
L2::R
reg::Vector{RN}
denom::Vector{U}
rowindex::Vector{Int64}
rowIndexCycle::Vector{Int64}
randomized::Bool
subMatrixSize::Int64
probabilities::Vector{U}
shuffleRows::Bool
seed::Int64
normalizeReg::AbstractRegularizationNormalization
iterations::Int64
state::AbstractSolverState{<:Kaczmarz}
end
mutable struct KaczmarzState{T, vecT <: AbstractArray{T}} <: AbstractSolverState{Kaczmarz}
u::vecT
x::vecT
vl::vecT
εw::T
τl::T
αl::T
iteration::Int64
end
"""
Kaczmarz(A; reg = L2Regularization(0), normalizeReg = NoNormalization(), randomized=false, subMatrixFraction=0.15, shuffleRows=false, seed=1234, iterations=10)
Creates a Kaczmarz object for the forward operator `A`.
# Required Arguments
* `A` - forward operator
# Optional Keyword Arguments
* `reg::AbstractParameterizedRegularization` - regularization term
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `randomized::Bool` - randomize Kacmarz algorithm
* `subMatrixFraction::Real` - fraction of rows used in randomized Kaczmarz algorithm
* `shuffleRows::Bool` - randomize Kacmarz algorithm
* `seed::Int` - seed for randomized algorithm
* `iterations::Int` - number of iterations
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
function Kaczmarz(A
; reg = L2Regularization(zero(real(eltype(A))))
, normalizeReg::AbstractRegularizationNormalization = NoNormalization()
, randomized::Bool = false
, subMatrixFraction::Real = 0.15
, shuffleRows::Bool = false
, seed::Int = 1234
, iterations::Int = 10
)
T = real(eltype(A))
# Prepare regularization terms
reg = isa(reg, AbstractVector) ? reg : [reg]
reg = normalize(Kaczmarz, normalizeReg, reg, A, nothing)
idx = findsink(L2Regularization, reg)
if isnothing(idx)
L2 = L2Regularization(zero(T))
else
L2 = reg[idx]
deleteat!(reg, idx)
end
# Tikhonov matrix is only valid with NoNormalization or SystemMatrixBasedNormalization
if λ(L2) isa AbstractVector && !(normalizeReg isa NoNormalization || normalizeReg isa SystemMatrixBasedNormalization)
error("Tikhonov matrix for Kaczmarz is only valid with no or system matrix based normalization")
end
indices = findsinks(AbstractProjectionRegularization, reg)
other = AbstractRegularization[reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) == 1
push!(other, reg[1])
elseif length(reg) > 1
error("Kaczmarz does not allow for more than one additional regularization term, found $(length(reg))")
end
other = identity.(other)
# setup denom and rowindex
A, denom, rowindex = initkaczmarz(A, λ(L2))
rowIndexCycle = collect(1:length(rowindex))
probabilities = eltype(denom)[]
if randomized
probabilities = T.(rowProbabilities(A, rowindex))
end
M,N = size(A)
subMatrixSize = round(Int, subMatrixFraction*M)
u = zeros(eltype(A),M)
x = zeros(eltype(A),N)
vl = zeros(eltype(A),M)
εw = zero(eltype(A))
τl = zero(eltype(A))
αl = zero(eltype(A))
state = KaczmarzState(u, x, vl, εw, τl, αl, 0)
return Kaczmarz(A, L2, other, denom, rowindex, rowIndexCycle,
randomized, subMatrixSize, probabilities, shuffleRows,
Int64(seed), normalizeReg, iterations, state)
end
function init!(solver::Kaczmarz, state::KaczmarzState{T, vecT}, b::otherT; kwargs...) where {T, vecT, otherT <: AbstractVector}
u = similar(b, size(state.u)...)
x = similar(b, size(state.x)...)
vl = similar(b, size(state.vl)...)
state = KaczmarzState(u, x, vl, state.εw, state.τl, state.αl, state.iteration)
solver.state = state
init!(solver, state, b; kwargs...)
end
"""
init!(solver::Kaczmarz, b; x0 = 0)
(re-) initializes the Kacmarz iterator
"""
function init!(solver::Kaczmarz, state::KaczmarzState{T, vecT}, b::vecT; x0 = 0) where {T, vecT <: AbstractVector}
λ_prev = λ(solver.L2)
solver.L2 = normalize(solver, solver.normalizeReg, solver.L2, solver.A, b)
solver.reg = normalize(solver, solver.normalizeReg, solver.reg, solver.A, b)
λ_ = λ(solver.L2)
# λ changed => recompute denoms
if λ_ != λ_prev
# A must be unchanged, since we do not store the original SM
_, solver.denom, solver.rowindex = initkaczmarz(solver.A, λ_)
solver.rowIndexCycle = collect(1:length(rowindex))
if solver.randomized
solver.probabilities = T.(rowProbabilities(solver.A, rowindex))
end
end
if solver.shuffleRows || solver.randomized
Random.seed!(solver.seed)
end
if solver.shuffleRows
shuffle!(solver.rowIndexCycle)
end
# start vector
state.x .= x0
state.vl .= 0
state.u .= b
if λ_ isa AbstractVector
state.ɛw = 0
else
state.ɛw = sqrt(λ_)
end
state.iteration = 0
end
function solversolution(solver::Kaczmarz{matT, RN}) where {matT, R<:L2Regularization{<:AbstractVector}, RN <: Union{R, AbstractNestedRegularization{<:R}}}
return solversolution(solver.state) .* (1 ./ sqrt.(λ(solver.L2)))
end
solversolution(solver::Kaczmarz) = solversolution(solver.state)
solverconvergence(state::KaczmarzState) = (; :residual => norm(state.vl))
function iterate(solver::Kaczmarz, state::KaczmarzState)
if done(solver,state) return nothing end
if solver.randomized
usedIndices = Int.(StatsBase.sample!(Random.GLOBAL_RNG, solver.rowIndexCycle, weights(solver.probabilities), zeros(solver.subMatrixSize), replace=false))
else
usedIndices = solver.rowIndexCycle
end
for i in usedIndices
row = solver.rowindex[i]
iterate_row_index(solver, state, solver.A, row, i)
end
for r in solver.reg
prox!(r, state.x)
end
state.iteration += 1
return state.x, state
end
iterate_row_index(solver::Kaczmarz, state::KaczmarzState, A::AbstractLinearSolver, row, index) = iterate_row_index(solver, Matrix(A[row, :]), row, index)
function iterate_row_index(solver::Kaczmarz, state::KaczmarzState, A, row, index)
state.τl = dot_with_matrix_row(A,state.x,row)
state.αl = solver.denom[index]*(state.u[row]-state.τl-state.ɛw*state.vl[row])
kaczmarz_update!(A,state.x,row,state.αl)
state.vl[row] += state.αl*state.ɛw
end
@inline done(solver::Kaczmarz,state::KaczmarzState) = state.iteration>=solver.iterations
"""
This function calculates the probabilities of the rows of the system matrix
"""
function rowProbabilities(A, rowindex)
normA² = rownorm²(A, 1:size(A, 1))
p = zeros(length(rowindex))
for i=1:length(rowindex)
j = rowindex[i]
p[i] = rownorm²(A, j) / (normA²)
end
return p
end
### initkaczmarz ###
"""
initkaczmarz(A::AbstractMatrix,λ)
This function saves the denominators to compute αl in denom and the rowindices,
which lead to an update of x in rowindex.
"""
function initkaczmarz(A,λ)
T = real(eltype(A))
denom = T[]
rowindex = Int64[]
for i = 1:size(A, 1)
s² = rownorm²(A,i)
if s²>0
push!(denom,1/(s²+λ))
push!(rowindex,i)
end
end
return A, denom, rowindex
end
function initkaczmarz(A, λ::AbstractVector)
λ = real(eltype(A)).(λ)
A = initikhonov(A, λ)
return initkaczmarz(A, 0)
end
initikhonov(A, λ) = transpose((1 ./ sqrt.(λ)) .* transpose(A)) # optimize structure for row access
initikhonov(prod::ProdOp{Tc, <:WeightingOp, matT}, λ) where {T, Tc<:Union{T, Complex{T}}, matT} = ProdOp(prod.A, initikhonov(prod.B, λ))
### kaczmarz_update! ###
"""
kaczmarz_update!(A::DenseMatrix{T}, x::Vector, k::Integer, beta) where T
This function updates x during the kaczmarz algorithm for dense matrices.
"""
function kaczmarz_update!(A::DenseMatrix{T}, x::Vector, k::Integer, beta) where T
@simd for n=1:size(A,2)
@inbounds x[n] += beta*conj(A[k,n])
end
end
"""
kaczmarz_update!(B::Transpose{T,S}, x::Vector,
k::Integer, beta) where {T,S<:DenseMatrix}
This function updates x during the kaczmarz algorithm for dense matrices.
"""
function kaczmarz_update!(B::Transpose{T,S}, x::Vector,
k::Integer, beta) where {T,S<:DenseMatrix}
A = B.parent
@inbounds @simd for n=1:size(A,1)
x[n] += beta*conj(A[n,k])
end
end
function kaczmarz_update!(prod::ProdOp{Tc, WeightingOp{T, vecT}}, x, k, beta) where {T, Tc<:Union{T, Complex{T}}, vecT}
weight = prod.A.weights[k]
kaczmarz_update!(prod.B, x, k, weight*beta) # only for real weights
end
# kaczmarz_update! with manual simd optimization
for (T,W, WS,shufflevectorMask,vσ) in [(Float32,:WF32,:WF32S,:shufflevectorMaskF32,:vσF32),(Float64,:WF64,:WF64S,:shufflevectorMaskF64,:vσF64)]
eval(quote
const $WS = VectorizationBase.pick_vector_width($T)
const $W = Int(VectorizationBase.pick_vector_width($T))
const $shufflevectorMask = Val(ntuple(k -> iseven(k-1) ? k : k-2, $W))
const $vσ = Vec(ntuple(k -> (-1f0)^(k+1),$W)...)
function kaczmarz_update!(A::Transpose{Complex{$T},S}, b::Vector{Complex{$T}}, k::Integer, beta::Complex{$T}) where {S<:DenseMatrix}
b = reinterpret($T,b)
A = reinterpret($T,A.parent)
N = length(b)
Nrep, Nrem = divrem(N,4*$W) # main loop
Mrep, Mrem = divrem(Nrem,$W) # last iterations
idx = MM{$W}(1)
iOffset = 4*$W
vβr = vbroadcast($WS, beta.re) * $vσ # vector containing (βᵣ,-βᵣ,βᵣ,-βᵣ,...)
vβi = vbroadcast($WS, beta.im) # vector containing (βᵢ,βᵢ,βᵢ,βᵢ,...)
GC.@preserve b A begin # protect A and y from GC
vptrA = stridedpointer(A)
vptrb = stridedpointer(b)
for _ = 1:Nrep
Base.Cartesian.@nexprs 4 i -> vb_i = vload(vptrb, ($W*(i-1) + idx,))
Base.Cartesian.@nexprs 4 i -> va_i = vload(vptrA, ($W*(i-1) + idx,k))
Base.Cartesian.@nexprs 4 i -> begin
vb_i = muladd(va_i, vβr, vb_i)
va_i = shufflevector(va_i, $shufflevectorMask)
vb_i = muladd(va_i, vβi, vb_i)
vstore!(vptrb, vb_i, ($W*(i-1) + idx,))
end
idx += iOffset
end
for _ = 1:Mrep
vb = vload(vptrb, (idx,))
va = vload(vptrA, (idx,k))
vb = muladd(va, vβr, vb)
va = shufflevector(va, $shufflevectorMask)
vb = muladd(va, vβi, vb)
vstore!(vptrb, vb, (idx,))
idx += $W
end
if Mrem!=0
vloadMask = VectorizationBase.mask($T, Mrem)
vb = vload(vptrb, (idx,), vloadMask)
va = vload(vptrA, (idx,k), vloadMask)
vb = muladd(va, vβr, vb)
va = shufflevector(va, $shufflevectorMask)
vb = muladd(va, vβi, vb)
vstore!(vptrb, vb, (idx,), vloadMask)
end
end # GC.@preserve
end
end)
end
#=
@doc "This function updates x during the kaczmarz algorithm for dense matrices." ->
function kaczmarz_update!{T}(A::Matrix{T}, x::Vector{T}, k::Integer, beta::T)
BLAS.axpy!(length(x), beta, pointer(A,sub2ind(size(A),1,k)), 1, pointer(x), 1)
end
=#
"""
kaczmarz_update!(B::Transpose{T,S}, x::Vector,
k::Integer, beta) where {T,S<:SparseMatrixCSC}
This funtion updates x during the kaczmarz algorithm for sparse matrices.
"""
function kaczmarz_update!(B::Transpose{T,S}, x::Vector,
k::Integer, beta) where {T,S<:SparseMatrixCSC}
A = B.parent
N = A.colptr[k+1]-A.colptr[k]
for n=A.colptr[k]:N-1+A.colptr[k]
@inbounds x[A.rowval[n]] += beta*conj(A.nzval[n])
end
end
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 3067 | export SequentialState, MultiThreadingState, prepareMatrixStates
abstract type AbstractMatrixSolverState{S} <: AbstractSolverState{S} end
"""
SequentialState(states::Vector{ST}) where {S, ST <: AbstractSolverState{S}}
SequentialState is a scheduler that runs each active state sequentially per iteration.
"""
mutable struct SequentialState{S, ST <: AbstractSolverState{S}} <: AbstractMatrixSolverState{S}
states::Vector{ST}
active::Vector{Bool}
SequentialState(states::Vector{ST}) where {S, ST <: AbstractSolverState{S}} = new{S, ST}(states, fill(true, length(states)))
end
"""
MultiThreadingState(states::Vector{ST}) where {S, ST <: AbstractSolverState{S}}
MultiThreadingState is a scheduler that runs each active state in parallel per iteration.
"""
mutable struct MultiThreadingState{S, ST <: AbstractSolverState{S}} <: AbstractMatrixSolverState{S}
states::Vector{ST}
active::Vector{Bool}
MultiThreadingState(states::Vector{ST}) where {S, ST <: AbstractSolverState{S}} = new{S, ST}(states, fill(true, length(states)))
end
"""
init!(solver::AbstractLinearSolver, state::AbstractSolverState, b::AbstractMatrix; scheduler = SequentialState, kwargs...)
Initialize the solver with each column of `b` and pass the corresponding states to the scheduler.
"""
function init!(solver::AbstractLinearSolver, state::AbstractSolverState, b::AbstractMatrix; scheduler = SequentialState, kwargs...)
states = prepareMatrixStates(solver, state, b)
multiState = scheduler(states)
solver.state = multiState
for (i, s) in enumerate(solver.state.states)
init!(solver, s, b[:, i]; kwargs...)
end
solver.state.active .= true
end
function init!(solver::AbstractLinearSolver, state::AbstractMatrixSolverState, b::AbstractVector; kwargs...)
singleState = first(state.states)
solver.state = singleState
init!(solver, singleState, b; kwargs...)
end
function prepareMatrixStates(solver::AbstractLinearSolver, state::AbstractSolverState, b::AbstractMatrix)
states = [deepcopy(state) for _ in 1:size(b, 2)]
return states
end
prepareMatrixStates(solver::AbstractLinearSolver, state::Union{SequentialState, MultiThreadingState}, b::AbstractMatrix) = prepareMatrixStates(solver, first(state.states), b)
function iterate(solver::S, state::AbstractMatrixSolverState) where {S <: AbstractLinearSolver}
activeIdx = findall(state.active)
if isempty(activeIdx)
return nothing
end
return iterate(solver, state, activeIdx)
end
function iterate(solver::AbstractLinearSolver, state::SequentialState, activeIdx)
for i in activeIdx
res = iterate(solver, state.states[i])
if isnothing(res)
state.active[i] = false
end
end
return state.active, state
end
function iterate(solver::AbstractLinearSolver, state::MultiThreadingState, activeIdx)
Threads.@threads for i in activeIdx
res = iterate(solver, state.states[i])
if isnothing(res)
state.active[i] = false
end
end
return state.active, state
end
solversolution(state::AbstractMatrixSolverState) = mapreduce(solversolution, hcat, state.states) | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 7509 | export optista, OptISTA
mutable struct OptISTA{matA, matAHA, R, RN} <: AbstractProximalGradientSolver
A::matA
AHA::matAHA
reg::R
proj::Vector{RN}
normalizeReg::AbstractRegularizationNormalization
verbose::Bool
iterations::Int64
state::AbstractSolverState{<:OptISTA}
end
mutable struct OptISTAState{rT <: Real, vecT <: Union{AbstractVector{rT}, AbstractVector{Complex{rT}}}} <: AbstractSolverState{OptISTA}
x::vecT
x₀::vecT
y::vecT
z::vecT
zᵒˡᵈ::vecT
res::vecT
ρ::rT
θ::rT
θᵒˡᵈ::rT
θn::rT
α::rT
β::rT
γ::rT
iteration::Int64
relTol::rT
norm_x₀::rT
rel_res_norm::rT
end
"""
OptISTA(A; AHA=A'*A, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho=0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))))
OptISTA( ; AHA=, reg=L1Regularization(zero(real(eltype(AHA)))), normalizeReg=NoNormalization(), iterations=50, verbose = false, rho=0.95 / power_iterations(AHA), theta=1, relTol=eps(real(eltype(AHA))))
creates a `OptISTA` object for the forward operator `A` or normal operator `AHA`. OptISTA has a 2x better worst-case bound than FISTA, but actual performance varies by application. It stores 2 extra intermediate variables the size of the image compared to FISTA.
Reference:
- Uijeong Jang, Shuvomoy Das Gupta, Ernest K. Ryu, "Computer-Assisted Design of Accelerated Composite Optimization Methods: OptISTA," arXiv:2305.15704, 2023, [https://arxiv.org/abs/2305.15704]
# Required Arguments
* `A` - forward operator
OR
* `AHA` - normal operator (as a keyword argument)
# Optional Keyword Arguments
* `AHA` - normal operator is optional if `A` is supplied
* `reg::AbstractParameterizedRegularization` - regularization term
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - step size for gradient step; the default is `0.95 / max_eigenvalue` as determined with power iterations.
* `theta::Real` - parameter for predictor-corrector step
* `relTol::Real` - tolerance for stopping criterion
* `iterations::Int` - maximum number of iterations
* `verbose::Bool` - print residual in each iteration
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
OptISTA(; AHA, kwargs...) = OptISTA(nothing; AHA = AHA, kwargs...)
function OptISTA(A
; AHA = A'*A
, reg = L1Regularization(zero(real(eltype(AHA))))
, normalizeReg = NoNormalization()
, iterations = 50
, verbose = false
, rho = 0.95 / power_iterations(AHA; verbose)
, theta = 1
, relTol = eps(real(eltype(AHA)))
)
T = eltype(AHA)
rT = real(T)
x = Vector{T}(undef,size(AHA,2))
x₀ = similar(x)
y = similar(x)
z = similar(x)
zᵒˡᵈ = similar(x)
res = similar(x)
res[1] = Inf # avoid spurious convergence in first iterations
θn = 1
for _ = 1:(iterations-1)
θn = (1 + sqrt(1 + 4 * θn^2)) / 2
end
θn = (1 + sqrt(1 + 8 * θn^2)) / 2
# Prepare regularization terms
reg = isa(reg, AbstractVector) ? reg : [reg]
indices = findsinks(AbstractProjectionRegularization, reg)
other = [reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) != 1
error("OptISTA does not allow for more additional regularization terms, found $(length(reg))")
end
other = identity.(other)
reg = normalize(OptISTA, normalizeReg, reg, A, nothing)
state = OptISTAState(x, x₀, y, z, zᵒˡᵈ, res, rT(rho),rT(theta),rT(theta),rT(θn),rT(0),rT(1),rT(1),
0,rT(relTol), one(rT),rT(Inf))
return OptISTA(A, AHA, reg[1], other, normalizeReg, verbose, iterations, state)
end
function init!(solver::OptISTA, state::OptISTAState{rT, vecT}, b::otherT; kwargs...) where {rT, vecT, otherT <: AbstractVector}
x = similar(b, size(state.x)...)
x₀ = similar(b, size(state.x₀)...)
y = similar(b, size(state.y)...)
z = similar(b, size(state.z)...)
zᵒˡᵈ = similar(b, size(state.zᵒˡᵈ)...)
res = similar(b, size(state.res)...)
state = OptISTAState(x, x₀, y, z, zᵒˡᵈ, res, state.ρ, state.θ, state.θᵒˡᵈ, state.θn, state.α, state.β, state.γ, state.iteration, state.relTol, state.norm_x₀, state.rel_res_norm)
solver.state = state
init!(solver, state, b; kwargs...)
end
"""
init!(it::OptISTA, b::vecT
; A=solver.A
, x::vecT=similar(b,0)
, t::Float64=1.0) where T
(re-) initializes the OptISTA iterator
"""
function init!(solver::OptISTA, state::OptISTAState{rT, vecT}, b::vecT; x0 = 0, θ=1) where {rT, vecT <: AbstractVector}
if solver.A === nothing
state.x₀ .= b
else
mul!(state.x₀, adjoint(solver.A), b)
end
state.norm_x₀ = norm(state.x₀)
state.x .= x0
state.y .= state.x
state.z .= state.x
state.zᵒˡᵈ .= state.x
state.res[:] .= rT(Inf)
state.θ = θ
state.θᵒˡᵈ = θ
state.θn = θ
for _ = 1:(solver.iterations-1)
state.θn = (1 + sqrt(1 + 4 * state.θn^2)) / 2
end
state.θn = (1 + sqrt(1 + 8 * state.θn^2)) / 2
state.rel_res_norm = rT(Inf)
state.iteration = 0
# normalization of regularization parameters
solver.reg = normalize(solver, solver.normalizeReg, solver.reg, solver.A, state.x₀)
end
solverconvergence(state::OptISTAState) = (; :residual => norm(state.res))
"""
iterate(it::OptISTA, iteration::Int=0)
performs one OptISTA iteration.
"""
function iterate(solver::OptISTA, state::OptISTAState)
if done(solver, state) return nothing end
# inertial parameters
state.γ = 2state.θ / state.θn^2 * (state.θn^2 - 2state.θ^2 + state.θ)
state.θᵒˡᵈ = state.θ
if state.iteration == solver.iterations - 1 #the convergence rate depends on choice of # iterations!
state.θ = (1 + sqrt(1 + 8 * state.θᵒˡᵈ^2)) / 2
else
state.θ = (1 + sqrt(1 + 4 * state.θᵒˡᵈ^2)) / 2
end
state.α = (state.θᵒˡᵈ - 1) / state.θ
state.β = state.θᵒˡᵈ / state.θ
# calculate residuum and do gradient step
# state.y .-= state.ρ * state.γ .* (solver.AHA * state.x .- state.x₀)
state.zᵒˡᵈ .= state.z #store this for inertia step
state.z .= state.y #save yᵒˡᵈ in the variable z
mul!(state.res, solver.AHA, state.x)
state.res .-= state.x₀
state.y .-= state.ρ * state.γ .* state.res
state.rel_res_norm = norm(state.res) / state.norm_x₀
solver.verbose && println("Iteration $(state.iteration); rel. residual = $(state.rel_res_norm)")
# proximal map
prox!(solver.reg, state.y, state.ρ * state.γ * λ(solver.reg))
# inertia steps
# z = x + (y - yᵒˡᵈ) / γ
# x = z + α * (z - zᵒˡᵈ) + β * (z - x)
state.z ./= -state.γ #yᵒˡᵈ is already stored in z
state.z .+= state.x .+ state.y ./ state.γ
state.x .*= -state.β
state.x .+= (1 + state.α + state.β) .* state.z
state.x .-= state.α .* state.zᵒˡᵈ
state.iteration += 1
# return the residual-norm as item and iteration number as state
return state.x, state
end
@inline converged(solver::OptISTA, state::OptISTAState) = (state.rel_res_norm < state.relTol)
@inline done(solver::OptISTA, state::OptISTAState) = converged(solver, state) || state.iteration >= solver.iterations | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 8885 | export pogm, POGM
mutable struct POGM{matA,matAHA,R,RN} <: AbstractProximalGradientSolver
A::matA
AHA::matAHA
reg::R
proj::Vector{RN}
normalizeReg::AbstractRegularizationNormalization
verbose::Bool
restart::Symbol
iterations::Int64
state::AbstractSolverState{<:POGM}
end
mutable struct POGMState{rT <: Real, vecT <: Union{AbstractVector{rT}, AbstractVector{Complex{rT}}}} <: AbstractSolverState{POGM}
x::vecT
x₀::vecT
xᵒˡᵈ::vecT
y::vecT
z::vecT
w::vecT
res::vecT
ρ::rT
theta::rT
thetaᵒˡᵈ::rT
α::rT
β::rT
γ::rT
γᵒˡᵈ::rT
σ::rT
σ_fac::rT
iteration::Int64
relTol::rT
norm_x₀::rT
rel_res_norm::rT
end
"""
POGM(A; AHA = A'*A, reg = L1Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), iterations = 50, verbose = false, rho = 0.95 / power_iterations(AHA), theta = 1, sigma_fac = 1, relTol = eps(real(eltype(AHA))), restart = :none)
POGM( ; AHA = , reg = L1Regularization(zero(real(eltype(AHA)))), normalizeReg = NoNormalization(), iterations = 50, verbose = false, rho = 0.95 / power_iterations(AHA), theta = 1, sigma_fac = 1, relTol = eps(real(eltype(AHA))), restart = :none)
Creates a `POGM` object for the forward operator `A` or normal operator `AHA`. POGM has a 2x better worst-case bound than FISTA, but actual performance varies by application. It stores 3 extra intermediate variables the size of the image compared to FISTA. Only gradient restart scheme is implemented for now.
# References:
- A.B. Taylor, J.M. Hendrickx, F. Glineur,
"Exact worst-case performance of first-order algorithms
for composite convex optimization," Arxiv:1512.07516, 2015,
SIAM J. Opt. 2017
[http://doi.org/10.1137/16m108104x]
- Kim, D., & Fessler, J. A. (2018).
Adaptive Restart of the Optimized Gradient Method for Convex Optimization.
Journal of Optimization Theory and Applications, 178(1), 240–263.
[https://doi.org/10.1007/s10957-018-1287-4]
# Required Arguments
* `A` - forward operator
OR
* `AHA` - normal operator (as a keyword argument)
# Optional Keyword Arguments
* `AHA` - normal operator is optional if `A` is supplied
* `reg::AbstractParameterizedRegularization` - regularization term
* `normalizeReg::AbstractRegularizationNormalization` - regularization normalization scheme; options are `NoNormalization()`, `MeasurementBasedNormalization()`, `SystemMatrixBasedNormalization()`
* `rho::Real` - step size for gradient step; the default is `0.95 / max_eigenvalue` as determined with power iterations.
* `theta::Real` - parameter for predictor-corrector step
* `sigma_fac::Real` - parameter for decreasing γ-momentum ∈ [0,1]
* `relTol::Real` - tolerance for stopping criterion
* `iterations::Int` - maximum number of iterations
* `restart::Symbol` - `:none`, `:gradient` options for restarting
* `verbose::Bool` - print residual in each iteration
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
POGM(; AHA, kwargs...) = POGM(nothing; kwargs..., AHA = AHA)
function POGM(A
; AHA = A'*A
, reg = L1Regularization(zero(real(eltype(AHA))))
, normalizeReg = NoNormalization()
, iterations = 50
, verbose = false
, rho = 0.95 / power_iterations(AHA; verbose)
, theta = 1
, sigma_fac = 1
, relTol = eps(real(eltype(AHA)))
, restart = :none
)
T = eltype(AHA)
rT = real(T)
x = Vector{T}(undef, size(AHA, 2))
x₀ = similar(x)
xᵒˡᵈ = similar(x)
y = similar(x)
z = similar(x)
w = similar(x)
res = similar(x)
res[1] = Inf # avoid spurious convergence in first iterations
reg = isa(reg, AbstractVector) ? reg : [reg]
indices = findsinks(AbstractProjectionRegularization, reg)
other = [reg[i] for i in indices]
deleteat!(reg, indices)
if length(reg) != 1
error("POGM does not allow for more additional regularization terms, found $(length(reg))")
end
other = identity.(other)
reg = normalize(POGM, normalizeReg, reg, A, nothing)
state = POGMState(x, x₀, xᵒˡᵈ, y, z, w, res, rT(rho), rT(theta), rT(theta), rT(0), rT(1), rT(1),
rT(1), rT(1), rT(sigma_fac), 0, rT(relTol), one(rT), rT(Inf))
return POGM(A, AHA, reg[1], other, normalizeReg, verbose, restart, iterations, state)
end
function init!(solver::POGM, state::POGMState{rT, vecT}, b::otherT; kwargs...) where {rT, vecT, otherT <: AbstractVector}
x = similar(b, size(state.x)...)
x₀ = similar(b, size(state.x₀)...)
xᵒˡᵈ = similar(b, size(state.xᵒˡᵈ)...)
y = similar(b, size(state.y)...)
z = similar(b, size(state.z)...)
w = similar(b, size(state.w)...)
res = similar(b, size(state.res)...)
state = POGMState(x, x₀, xᵒˡᵈ, y, z, w, res, state.ρ, state.theta, state.theta,
state.α, state.β, state.γ, state.γᵒˡᵈ, state.σ, state.σ_fac,
state.iteration, state.relTol, state.norm_x₀, state.rel_res_norm)
solver.state = state
init!(solver, state, b; kwargs...)
end
"""
init!(it::POGM, b::vecT, x::vecT=similar(b,0), theta::Number=1)
(re-) initializes the POGM iterator
"""
function init!(solver::POGM, state::POGMState{rT, vecT}, b::vecT; x0 = 0, theta=1) where {rT, vecT <: AbstractVector}
if solver.A === nothing
state.x₀ .= b
else
mul!(state.x₀, adjoint(solver.A), b)
end
state.norm_x₀ = norm(state.x₀)
state.x .= x0
state.xᵒˡᵈ .= 0 # makes no difference in 1st iteration what this is set to
state.y .= 0
state.z .= 0
if solver.restart != :none #save time if not using restart
state.w .= 0
end
state.res[:] .= rT(Inf)
state.theta = theta
state.thetaᵒˡᵈ = theta
state.σ = 1
state.rel_res_norm = rT(Inf)
state.iteration = 0
# normalization of regularization parameters
solver.reg = normalize(solver, solver.normalizeReg, solver.reg, solver.A, state.x₀)
end
solverconvergence(state::POGMState) = (; :residual => norm(state.res))
"""
iterate(it::POGM, iteration::Int=0)
performs one POGM iteration.
"""
function iterate(solver::POGM, state::POGMState)
if done(solver, state)
return nothing
end
# calculate residuum and do gradient step
# solver.x .-= solver.ρ .* (solver.AHA * solver.x .- solver.x₀)
state.xᵒˡᵈ .= state.x #save this for inertia step later
mul!(state.res, solver.AHA, state.x)
state.res .-= state.x₀
state.x .-= state.ρ .* state.res
state.rel_res_norm = norm(state.res) / state.norm_x₀
solver.verbose && println("Iteration $(state.iteration); rel. residual = $(state.rel_res_norm)")
# inertial parameters
state.thetaᵒˡᵈ = state.theta
if state.iteration == solver.iterations - 1 && solver.restart != :none #the convergence rate depends on choice of # iterations!
state.theta = (1 + sqrt(1 + 8 * state.thetaᵒˡᵈ^2)) / 2
else
state.theta = (1 + sqrt(1 + 4 * state.thetaᵒˡᵈ^2)) / 2
end
state.α = (state.thetaᵒˡᵈ - 1) / state.theta
state.β = state.σ * state.thetaᵒˡᵈ / state.theta
state.γᵒˡᵈ = state.γ
if solver.restart == :gradient
state.γ = state.ρ * (1 + state.α + state.β)
else
state.γ = state.ρ * (2state.thetaᵒˡᵈ + state.theta - 1) / state.theta
end
# inertia steps
# x + α * (x - y) + β * (x - xᵒˡᵈ) + ρα/γᵒˡᵈ * (z - xᵒˡᵈ)
tmp = state.y
state.y = state.x
state.x = tmp # swap x and y
state.x .*= -state.α # here we calculate -α * y, where y is now stored in x
state.x .+= (1 + state.α + state.β) .* state.y
state.x .-= (state.β + state.ρ * state.α / state.γᵒˡᵈ) .* state.xᵒˡᵈ
state.x .+= state.ρ * state.α / state.γᵒˡᵈ .* state.z
state.z .= state.x #store this for next iteration and GR
# proximal map
prox!(solver.reg, state.x, state.γ * λ(solver.reg))
for proj in solver.proj
prox!(proj, state.x)
end
# gradient restart conditions
if solver.restart == :gradient
state.w .+= state.y .+ state.ρ ./ state.γ .* (state.x .- state.z)
if real((state.w ⋅ state.x - state.w ⋅ state.z) / state.γ - state.w ⋅ state.res) < 0
solver.verbose && println("Gradient restart at iter $(state.iteration)")
state.σ = 1
state.theta = 1
else # decreasing γ
state.σ *= state.σ_fac
end
state.w .= state.ρ / state.γ .* (state.z .- state.x) .- state.y
end
# return the residual-norm as item and iteration number as state
state.iteration += 1
return state.x, state
end
@inline converged(solver::POGM, state::POGMState) = (state.rel_res_norm < state.relTol)
@inline done(solver::POGM, state::POGMState) = converged(solver, state) || state.iteration >= solver.iterations | RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
|
[
"MIT"
] | 0.16.5 | 7c4d085f436b699e746e19173a3c640a79ceec8a | code | 11273 | export PrimalDualSolver
mutable struct PrimalDualSolver{T,A} <: AbstractPrimalDualSolver
A::Matrix{T}
reg::Vector{<:AbstractRegularization}
gradientOp::A
u::Vector{T}
x::Vector{T}
cO::Vector{T}
y1::Vector{T}
y2::Vector{T}
σ::T
τ::T
ϵ::T
PrimalDualGap::T
enforceReal::Bool
enforcePositive::Bool
iterations::Int64
shape::NTuple{2,Int64}
normalizeReg::AbstractRegularizationNormalization
end
"""
PrimalDualSolver(A; λ = 1e-4, reg = L1Regularization(λ), gradientOp = nothing, enforceReal=false, enforcePositive=false, iterations=10, σ=1, τ=1, ϵ=1e-10, PrimalDualGap=1, shape=(size(A,2),1), normalizeReg = NoNormalization())
creates a `PrimalDualSolver` object for the forward operator `A`.
# Required Arguments
* `A` - forward operator
# Optional Keyword Arguments
* TODO
See also [`createLinearSolver`](@ref), [`solve!`](@ref).
"""
# TODO: replace keywords with ASCII symbols
function PrimalDualSolver(A::Matrix{T}
; λ = 1e-4
, reg = L1Regularization(λ)
, normalizeReg::AbstractRegularizationNormalization = NoNormalization()
, gradientOp = nothing
, enforceReal::Bool=false
, enforcePositive::Bool=false
, iterations::Int64=10
, σ=1
, τ=1
, ϵ=1e-10
, PrimalDualGap=1
, shape::NTuple{2,Int64}=(size(A,2),1)
) where T
M,N = size(A)
reg = isa(reg, AbstractVector) ? reg : [reg]
if reg[1] isa L1Regularization
gradientOp = opEye(T,N) #UniformScaling(one(T))
elseif reg[1] isa TVRegularization
gradientOp = gradientOperator(T,shape)
end
u = zeros(T,M)
x = zeros(T,N)
cO = zeros(T,N)
y1 = zeros(T,M)
y2 = zeros(T,size(gradientOp*x,1))
# normalization parameters
reg = normalize(PrimalDualSolver, normalizeReg, reg, A, nothing)
return PrimalDualSolver(A,reg,gradientOp,u,x,cO,y1,y2,T(σ),T(τ),T(ϵ),T(PrimalDualGap),enforceReal,enforcePositive,iterations,shape,
normalizeReg)
end
function init!(solver::PrimalDualSolver, b; x0 = 0)
solver.u .= b
solver.PrimalDualGap = (1/2)*(norm(solver.u,2))^2
solver.x .= x0
solver.cO .= 0
solver.y1 .= 0
solver.y2 .= 0
solver.reg = normalize(solver, solver.normalizeReg, solver.reg, solver.A, b)
end
function iterate(solver::PrimalDualSolver, iteration=0)
if done(solver,iteration) return nothing end
# updating dual variables
for i=1:length(solver.reg)
solver.y1 .= (solver.y1 + solver.σ*(solver.A*solver.x - solver.u))./(1+solver.σ)
if solver.reg[1] isa L1Regularization
solver.y2 .= ProxL1Conj(solver.y2 + solver.σ*solver.gradientOp*solver.x, solver.reg[1].λ, solver.shape)
elseif solver.reg[1] isa TVRegularization
solver.y2 .= ProxTVConj(solver.y2 + solver.σ*solver.gradientOp*solver.x, solver.reg[1].λ, solver.shape)
end
end
# updating primal variable
for i=1:length(solver.reg)
solver.x += - solver.τ*(adjoint(solver.A)*solver.y1 + adjoint(solver.gradientOp)*solver.y2)
end
applyConstraints(solver.x, nothing, solver.enforceReal, solver.enforcePositive) # todo remove constraints
# updating convergence measure
for i=1:length(solver.reg) # todo how to handle projection reg
solver.PrimalDualGap = abs((1/2)*norm(solver.A*solver.x-solver.u)^2 + solver.reg[1].λ*norm(solver.x,1) + (1/2)*norm(solver.y1,2)^2 + dot(solver.y1,solver.u))
end
return solver.y1, iteration+1
end
function converged(solver::PrimalDualSolver)
if (solver.PrimalDualGap) >= solver.ϵ
return false
end
return true
end
@inline done(solver::PrimalDualSolver,iteration::Int) = converged(solver) || iteration>=solver.iterations
# Proximal map of the convex conjugate of the l1 norm
function ProxL1Conj(x::Vector{T},α::T,shape::NTuple{2,Int64}) where T
m,n = shape
p1 = reshape(x,m,n)
# threshold p1
for j=1:n, i=1:m
p1[i,j] = sign(p1[i,j])*min(norm(p1[i,j]),α)
end
for i=1:m
p1[i,n] = sign(p1[i,n])*min(abs(p1[i,n]),α)
end
return vcat(vec(p1))
end
# Gradient
function BB(u::Vector{T}, shape::NTuple{2,Int64}) where T
m,n = shape
u = reshape(u,m,n)
p1 = zeros(T,m,n); p2 = zeros(T,m,n); p3 = zeros(T,m,n); p4 = zeros(T,m,n)
p5 = zeros(T,m,n); p6 = zeros(T,m,n); p7 = zeros(T,m,n); p8 = zeros(T,m,n)
p1[1:m-1,1:n] = u[1:m-1,1:n]-u[2:m,1:n]
p2[1:m,1:n-1] = u[1:m,1:n-1]-u[1:m,2:n]
p3[1:m-1,1:n-1] = u[1:m-1,1:n-1]-u[2:m,2:n]
p4[1:m-1,2:n] = u[1:m-1,2:n]-u[2:m,1:n-1]
p5[1:m-2,1:n-1] = u[1:m-2,1:n-1]-u[3:m,2:n]
p6[1:m-2,2:n] = u[1:m-2,2:n]-u[3:m,1:n-1]
p7[1:m-1,1:n-2] = u[1:m-1,1:n-2]-u[2:m,3:n]
p8[1:m-1,3:n] = u[1:m-1,3:n]-u[2:m,1:n-2]
return vcat(vec(p1),vec(p2),vec(p3),vec(p4),vec(p5),vec(p6),vec(p7),vec(p8))
end
# Divergence
function BBS(u::Array{T},shape::NTuple{2,Int64}) where T
m,n = shape
p1 = reshape(u[1:m*n],m,n); p2 = reshape(u[m*n+1:2*n*m],m,n)
p3 = reshape(u[2*m*n+1:3*m*n],m,n); p4 = reshape(u[3*m*n+1:4*m*n],m,n)
p5 = reshape(u[4*m*n+1:5*m*n],m,n); p6 = reshape(u[5*m*n+1:6*m*n],m,n)
p7 = reshape(u[6*m*n+1:7*m*n],m,n); p8 = reshape(u[7*m*n+1:end],m,n)
x = zeros(T, m, n)
# points in the corners
x[1,1] = p1[1,1]+p2[1,1]+p3[1,1]+p4[1,1]+p5[1,1]+p6[1,1]+p7[1,1]+p8[1,1]
x[m,1] = p2[m,1]-p1[m-1,1]+p3[m,1]+p4[m,1]-p4[m-1,2]+p5[m,1]+p6[m,1]-p6[m-2,2]+p7[m,1]+p8[m,1]-p8[m-1,3]
x[1,n] = p1[1,n]-p2[1,n-1]+p3[1,n]+p4[1,n]+p5[1,n]+p6[1,n]+p7[1,n]+p8[1,n]
x[m,n] = -p1[m-1,n]-p2[m,n-1]-p3[m-1,n-1]-p5[m-2,n-1]-p7[m-1,n-2]
# remaining points with i=1 (first row)
x[1,2:n-1] = p1[1,2:n-1]+p2[1,2:n-1]-p2[1,1:n-2]+p3[1,2:n-1]+p4[1,2:n-1]+p5[1,2:n-1]+p6[1,2:n-1]+p7[1,2:n-1]+p8[1,2:n-1]
# remaining points with i=2 (second row)
x[2,3:n-2] = p1[2,3:n-2]-p1[1,3:n-2]+p2[2,3:n-2]-p2[2,2:n-3]+p3[2,3:n-2]-p3[1,2:n-3]+p4[2,3:n-2]-p4[1,4:n-1]+p5[2,3:n-2]+p6[2,3:n-2]+p7[2,3:n-2]-p7[1,1:n-4]+p8[2,3:n-2]-p8[1,5:n]
#remaining points with i=m (last row)
x[m,3:n-2] = -p1[m-1,3:n-2]+p2[m,3:n-2]-p2[m,2:n-3]-p3[m-1,2:n-3]+p4[m,3:n-2]-p4[m-1,4:n-1]+p5[m,3:n-2]-p5[m-2,2:n-3]+p6[m,3:n-2]-p6[m-2,4:n-1]+p7[m,3:n-2]-p7[m-1,1:n-4]+p8[m,3:n-2]-p8[m-1,5:n]
# remaingin points with j=1 (first column)
x[3:m,1] = p1[3:m,1]-p1[2:m-1,1]+p2[3:m,1]+p3[3:m,1]+p4[3:m,1]-p4[2:m-1,2]+p5[3:m,1]+p6[3:m,1]-p6[1:m-2,2]+p7[3:m,1]+p8[3:m,1]-p8[2:m-1,3]
# remaingin points with j=2 (second column)
x[3:m,2] = p1[3:m,2]-p1[2:m-1,2]+p2[3:m,2]-p2[3:m,1]+p3[3:m,2]-p3[2:m-1,1]+p4[3:m,2]-p4[2:m-1,3]+p5[3:m,2]-p5[1:m-2,1]+p6[3:m,2]-p6[1:m-2,3]+p7[3:m,2]+p8[3:m,2]-p8[2:m-1,4]
#remaingin points with j=n (last column)
x[3:m,n] = p1[3:m,n]-p1[2:m-1,n]-p2[3:m,n-1]-p3[2:m-1,n-1]+p4[3:m,n]+p5[3:m,n]-p5[1:m-2,n-1]+p6[3:m,n]+p7[3:m,n]-p7[2:m-1,n-2]+p8[3:m,n]
#remaingin points with j=n-1
x[3:m,n-1] = p1[3:m,n-1]-p1[2:m-1,n-1]+p2[3:m,n-1]-p2[3:m,n-2]+p3[3:m,n-1]-p3[2:m-1,n-2]+p4[3:m,n-1]-p4[2:m-1,n]+p5[3:m,n-1]-p5[1:m-2,n-2]+p6[3:m,n-1]-p6[1:m-2,n]+p7[3:m,n-1]-p7[2:m-1,n-3]+p8[3:m,n-1]
#remaingin points with j=n-2
x[3:m,n-2] = p1[3:m,n-2]-p1[2:m-1,n-2]+p2[3:m,n-2]-p2[3:m,n-3]+p3[3:m,n-2]-p3[2:m-1,n-3]+p4[3:m,n-2]-p4[2:m-1,n-1]+p5[3:m,n-2]-p5[1:m-2,n-3]+p6[3:m,n-2]-p6[1:m-2,n-1]+p7[3:m,n-2]-p7[2:m-1,n-4]+p8[3:m,n-2]-p8[2:m-1,n]
#all remaining (inner) matrix elements
x[3:m-1,3:n-3] = p1[3:m-1,3:n-3]-p1[2:m-2,3:n-3]+p2[3:m-1,3:n-3]-p2[3:m-1,2:n-4]+p3[3:m-1,3:n-3]-p3[2:m-2,2:n-4]+p4[3:m-1,3:n-3]-p4[2:m-2,4:n-2]+p5[3:m-1,3:n-3]-p5[1:m-3,2:n-4]+p6[3:m-1,3:n-3]-p6[1:m-3,4:n-2]+p7[3:m-1,3:n-3]-p7[2:m-2,1:n-5]+p8[3:m-1,3:n-3]-p8[2:m-2,5:n-1]
return vec(x)
end
function gradientOperator(::Type{T},shape::NTuple{2,Int64}) where T
M,N = shape
ncol = M*N
nrow = 8*M*N
return LinearOperator{T}(nrow,ncol,false,false,x->BB(x,shape),nothing,x->BBS(x,shape))
end
# Proximal map of the convex conjugate of the debiasing function
function ProxTVConj(x::Vector{T},α::T,shape::NTuple{2,Int64}) where T
m,n = shape
p1 = reshape(x[1:m*n],m,n)
p2 = reshape(x[m*n+1:2*m*n],m,n)
p3 = reshape(x[2*m*n+1:3*m*n],m,n)
p4 = reshape(x[3*m*n+1:4*m*n],m,n)
p5 = reshape(x[4*m*n+1:5*m*n],m,n)
p6 = reshape(x[5*m*n+1:6*m*n],m,n)
p7 = reshape(x[6*m*n+1:7*m*n],m,n)
p8 = reshape(x[7*m*n+1:end],m,n)
# threshold p1
for j=1:n, i=1:m
p1[i,j] = (sqrt(5)-2)*sign(p1[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p1[i,n] = (sqrt(5)-2)*sign(p1[i,n])*min(abs(p1[i,n]),α)
end
# threshold p2
for j=1:n, i=1:m
p2[i,j] = (sqrt(5)-2)*sign(p2[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for j=1:n
p2[m,j] = (sqrt(5)-2)*sign(p2[m,j])*min(abs(p2[m,j]),α)
end
# threshold p3
for j=1:n, i=1:m
p3[i,j] = (sqrt(5)-3*sqrt(2)/2)*sign(p3[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p3[i,n] = (sqrt(5)-3*sqrt(2)/2)*sign(p3[i,n])*min(abs(p3[i,n]),α)
end
for j=1:n
p3[m,j] = (sqrt(5)-3*sqrt(2)/2)*sign(p3[m,j])*min(abs(p3[m,j]),α)
end
# threshold p4
for j=1:n, i=1:m
p4[i,j] = (sqrt(5)-3*sqrt(2)/2)*sign(p4[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p4[i,n] = (sqrt(5)-3*sqrt(2)/2)*sign(p4[i,n])*min(abs(p4[i,n]),α)
end
for j=1:n
p4[m,j] = (sqrt(5)-3*sqrt(2)/2)*sign(p4[m,j])*min(abs(p4[m,j]),α)
end
# threshold p5
for j=1:n, i=1:m
p5[i,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p5[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p5[i,n] = ((1+sqrt(2)-sqrt(5))/2)*sign(p5[i,n])*min(abs(p5[i,n]),α)
end
for j=1:n
p5[m,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p5[m,j])*min(abs(p5[m,j]),α)
end
# threshold p6
for j=1:n, i=1:m
p6[i,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p6[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p6[i,n] = ((1+sqrt(2)-sqrt(5))/2)*sign(p6[i,n])*min(abs(p6[i,n]),α)
end
for j=1:n
p6[m,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p6[m,j])*min(abs(p6[m,j]),α)
end
# threshold p7
for j=1:n, i=1:m
p7[i,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p7[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p7[i,n] = ((1+sqrt(2)-sqrt(5))/2)*sign(p7[i,n])*min(abs(p7[i,n]),α)
end
for j=1:n
p7[m,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p7[m,j])*min(abs(p7[m,j]),α)
end
# threshold p8
for j=1:n, i=1:m
p8[i,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p8[i,j])*min(norm([p1[i,j],p2[i,j],p3[i,j],p4[i,j],p5[i,j],p6[i,j],p7[i,j],p8[i,j]]),α)
end
for i=1:m
p8[i,n] = ((1+sqrt(2)-sqrt(5))/2)*sign(p8[i,n])*min(abs(p8[i,n]),α)
end
for j=1:n
p8[m,j] = ((1+sqrt(2)-sqrt(5))/2)*sign(p8[m,j])*min(abs(p8[m,j]),α)
end
return vcat(vec(p1),vec(p2),vec(p3),vec(p4),vec(p5),vec(p6),vec(p7),vec(p8))
end
| RegularizedLeastSquares | https://github.com/JuliaImageRecon/RegularizedLeastSquares.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.