licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.1
1467be4e01897dae9b5c739643d2de0d790d25e0
code
14521
module ReusePatterns using InteractiveUtils using Combinatorics export forward, @forward, @copy_fields, @quasiabstract, concretetype, isquasiabstract, isquasiconcrete """ `forward(sender::Tuple{Type,Symbol}, receiver::Type, method::Method; withtypes=true, allargs=true)` Return a `Vector{String}` containing the Julia code to properly forward `method` calls from a `sender` type to a receiver type. The `sender` tuple must contain a structure type, and a symbol with the name of one of its fields. The `withtypes` keyword controls whether the forwarding method has type annotated arguments. The `allargs` keyword controls whether all arguments should be used, or just the first ones up to the last containing the `receiver` type. Both keywords are `true` by default, but they can be set to `false` to decrease the number of forwarded methods. # Example: Implement a wrapper for an `Int` object, and forward the `+` method accepting `Int`: ```julia-repl struct Wrapper{T} wrappee::T extra Wrapper{T}(args...; kw...) where T = new(T(args...; kw...), nothing) end # Prepare and evaluate forwarding methods: m = forward((Wrapper, :wrappee), Int, which(+, (Int, Int))) eval.(Meta.parse.(m)) # Instantiate two wrapped `Int` i1 = Wrapper{Int}(1) i2 = Wrapper{Int}(2) # And add them seamlessly println(i1 + 2) println( 1 + i2) println(i1 + i2) ``` """ function forward(sender::Tuple{Type,Symbol}, receiver::Type, method::Method; withtypes=true, allargs=true) function newmethod(sender_type, sender_symb, argid, method, withtypes, allargs) s = "p" .* string.(1:method.nargs-1) (withtypes) && (s .*= "::" .* string.(fieldtype.(Ref(method.sig), 2:method.nargs))) s[argid] .= "p" .* string.(argid) .* "::$sender_type" if !allargs s = s[1:argid[end]] push!(s, "args...") end # Module where the method is defined ff = fieldtype(method.sig, 1) if isabstracttype(ff) # costructors m = string(method.module) # m = string(method.module.eval(:(parentmodule($(method.name))))) # Constructor else # all methods except constructors m = string(parentmodule(ff)) end m *= "." l = "$m:(" * string(method.name) * ")(" * join(s,", ") * "; kw..." m = string(method.module) * "." l *= ") = $m:(" * string(method.name) * ")(" s = "p" .* string.(1:method.nargs-1) if !allargs s = s[1:argid[end]] push!(s, "args...") end s[argid] .= "getfield(" .* s[argid] .* ", :$sender_symb)" l *= join(s, ", ") * "; kw...)" l = join(split(l, "#")) return l end @assert isstructtype(sender[1]) @assert sender[2] in fieldnames(sender[1]) sender_type = string(parentmodule(sender[1])) * "." * string(nameof(sender[1])) sender_symb = string(sender[2]) code = Vector{String}() # Search for receiver type in method arguments foundat = Vector{Int}() for i in 2:method.nargs argtype = fieldtype(method.sig, i) (sender[1] == argtype) && (return code) if argtype != Any (typeintersect(receiver, argtype) != Union{}) && (push!(foundat, i-1)) end end (length(foundat) == 0) && (return code) if string(method.name)[1] == '@' @warn "Forwarding macros is not yet supported." # TODO display(method) println() return code end for ii in combinations(foundat) push!(code, newmethod(sender_type, sender_symb, ii, method, withtypes, allargs)) end tmp = split(string(method.module), ".")[1] code = "@eval " .* tmp .* " " .* code .* " # " .* string(method.file) .* ":" .* string(method.line) if (tmp != "Base") && (tmp != "Main") pushfirst!(code, "using $tmp") end code = unique(code) return code end """ `forward(sender::Tuple{Type,Symbol}, receiver::Type; super=true, kw...)` """ function forward(sender::Tuple{Type,Symbol}, receiver::Type; kw...) code = Vector{String}() for m in methodswith(receiver, supertypes=true) append!(code, forward(sender, receiver, m; kw...)) end return unique(code) end """ `@forward(sender, receiver, ekws...)` Evaluate the Julia code to forward methods. The syntax is exactly the same as the `forward` function. # Example: ```julia-repl julia> struct Book title::String author::String end julia> Base.show(io::IO, b::Book) = println(io, "\$(b.title) (by \$(b.author))") julia> Base.print(b::Book) = println("In a hole in the ground there lived a hobbit...") julia> author(b::Book) = b.author julia> struct PaperBook b::Book number_of_pages::Int end julia> @forward((PaperBook, :b), Book) julia> pages(book::PaperBook) = book.number_of_pages julia> struct Edition b::PaperBook year::Int end julia> @forward((Edition, :b), PaperBook) julia> year(book::Edition) = book.year julia> book = Edition(PaperBook(Book("The Hobbit", "J.R.R. Tolkien"), 374), 2013) julia> print(author(book), ", ", pages(book), " pages, Ed. ", year(book)) J.R.R. Tolkien, 374 pages, Ed. 2013 julia> print(book) In a hole in the ground there lived a hobbit... ``` """ macro forward(sender, receiver, ekws...) kws = Vector{Pair{Symbol,Any}}() for kw in ekws if isa(kw, Expr) && (kw.head == :(=)) push!(kws, Pair(kw.args[1], kw.args[2])) else error("The @forward macro requires two arguments and (optionally) the same keywords accepted by forward()") end end out = quote counterr = 0 mylist = forward($sender, $receiver; $kws...) for line in mylist try eval(Meta.parse("$line")) catch err global counterr += 1 println() println("$line") @error err; end end if counterr > 0 println(counterr, " method(s) raised an error") end end return esc(out) end """ `@copy_fields T` Copy all field definitions from a structure into another. # Example ```julia-repl julia> struct First field1 field2::Int end julia> struct Second @copy_fields(First) field3::String end julia> println(fieldnames(Second)) (:field1, :filed2, :field3) julia> println(fieldtype.(Second, fieldnames(Second))) (Any, Int64, String) ``` """ macro copy_fields(T) out = Expr(:block) for name in fieldnames(__module__.eval(T)) e = Expr(Symbol("::")) push!(e.args, name) push!(e.args, fieldtype(__module__.eval(T), name)) push!(out.args, e) end return esc(out) end # New methods for the following functions will be implemented when the @quasiabstract macro is invoked """ `concretetype(T::Type)` Return the concrete type associated with the *quasi abstract* type `T`. If `T` is not *quasi abstract* returns nothing. See also: `@quasiabstract` """ concretetype(T::Type) = nothing """ `isquasiabstract(T::Type)` Return `true` if `T` is *quasi abstract*, `false` otherwise. See also: `@quasiabstract` """ isquasiabstract(T::Type) = false """ `isquasiconcrete(T::Type)` Return `true` if `T` is a concrete type associated to a *quasi abstract* type, `false` otherwise. See also: `@quasiabstract` """ isquasiconcrete(T::Type) = false """ `@quasiabstract expression` Create a *quasi abstract* type. This macro accepts an expression defining a (mutable or immutable) structure, and outputs the code for two new type definitions: - an abstract type with the same name and (if given) supertype of the input structure; - a concrete structure definition with name prefix `Concrete_`, subtyping the abstract type defined above. The relation between the types ensure there will be a single concrete type associated to the abstract one, hence you can use the abstract type to annotate method arguments, and be sure to receive the associated concrete type, or one of its subtypes (which shares all field names and types of the ancestors). The concrete type associated to an *quasi abstract* type can be retrieved with the `concretetype` function. The `Concrete_` prefix can be customized passing a second symbol argument to the macro. These newly defined types allows to easily implement concrete subtyping: simply use the *quasi abstract* type name for both object construction and to annotate method arguments. # Example: ```julia-repl julia> @quasiabstract struct Book title::String author::String end julia> Base.show(io::IO, b::Book) = println(io, "\$(b.title) (by \$(b.author))") julia> Base.print(b::Book) = println("In a hole in the ground there lived a hobbit...") julia> author(b::Book) = b.author julia> @quasiabstract struct PaperBook <: Book number_of_pages::Int end julia> pages(book::PaperBook) = book.number_of_pages julia> @quasiabstract struct Edition <: PaperBook year::Int end julia> year(book::Edition) = book.year julia> println(fieldnames(concretetype(Edition))) (:title, :author, :number_of_pages, :year) julia> book = Edition("The Hobbit", "J.R.R. Tolkien", 374, 2013) julia> print(author(book), ", ", pages(book), " pages, Ed. ", year(book)) J.R.R. Tolkien, 374 pages, Ed. 2013 julia> print(book) In a hole in the ground there lived a hobbit... julia> @assert isquasiconcrete(typeof(book)) julia> @assert isquasiabstract(supertype(typeof(book))) julia> @assert concretetype(supertype(typeof(book))) === typeof(book) ``` """ macro quasiabstract(expr, prefix::Symbol=:Concrete_) function change_symbol!(expr, from::Symbol, to::Symbol) if isa(expr, Expr) for i in 1:length(expr.args) if isa(expr.args[i], Symbol) && (expr.args[i] == from) expr.args[1] = to else if isa(expr.args[i], Expr) change_symbol!(expr.args[i], from, to) end end end end end drop_parameter_types(expr::Symbol) = expr function drop_parameter_types(_aaa::Expr) aaa = deepcopy(_aaa) for ii in 1:length(aaa.args) if isa(aaa.args[ii], Expr) && (aaa.args[ii].head == :<:) insert!(aaa.args, ii, aaa.args[ii].args[1]) deleteat!(aaa.args, ii+1) end end return aaa end function prepare_where(expr::Expr, orig::Expr) @assert expr.head == :curly whereclause = Expr(:where) push!(whereclause.args, orig) for i in 2:length(expr.args) @assert (isa(expr.args[i], Symbol) || (isa(expr.args[i], Expr) && (expr.args[i].head == :<:))) push!(whereclause.args, expr.args[i]) end return whereclause end @assert isa(expr, Expr) @assert expr.head == :struct "Expression must be a `struct`" # Ensure there is room for the super type in the expression if isa(expr.args[2], Symbol) name = deepcopy(expr.args[2]) deleteat!(expr.args, 2) insert!(expr.args, 2, Expr(:<:, name, :Any)) end if isa(expr.args[2], Expr) && (expr.args[2].head != :<:) insert!(expr.args, 2, Expr(:<:, expr.args[2], :Any)) deleteat!(expr.args, 3) end @assert isa(expr.args[2], Expr) @assert expr.args[2].head == :<: # Get name and super type tmp = expr.args[2].args[1] @assert (isa(tmp, Symbol) || (isa(tmp, Expr) && (tmp.head == :curly))) name = deepcopy(tmp) name_symb = (isa(tmp, Symbol) ? tmp : tmp.args[1]) tmp = expr.args[2].args[2] @assert (isa(tmp, Symbol) || (isa(tmp, Expr) && ((tmp.head == :curly) || (tmp.head == :(.))))) super = deepcopy(tmp) super_symb = ((isa(tmp, Expr) && (tmp.head == :curly)) ? tmp.args[1] : tmp) # Output abstract type out = Expr(:block) push!(out.args, :(abstract type $name <: $super end)) # Change name in input expression concrete_symb = Symbol(prefix, name_symb) if isa(name, Symbol) concrete = concrete_symb else concrete = deepcopy(name) change_symbol!(concrete, name_symb, concrete_symb) end change_symbol!(expr, name_symb, concrete_symb) # Drop all types from parameters in `name`, or they'll raise syntax errors name = drop_parameter_types(name) # Change super type in input expression to actual name deleteat!(expr.args[2].args, 2) insert!( expr.args[2].args, 2, name) # If an ancestor type is quasi abstract retrieve the associated # concrete type and add its fields as members p = __module__.eval(super_symb) while (p != Any) if isquasiabstract(p) parent = concretetype(p) for i in fieldcount(parent):-1:1 e = Expr(Symbol("::")) push!(e.args, fieldname(parent, i)) push!(e.args, fieldtype(parent, i)) pushfirst!(expr.args[3].args, e) end break end p = __module__.eval(supertype(p)) end # Add modified input structure to output push!(out.args, expr) # Add a constructor whose name is the same as the abstract type if isa(name, Expr) whereclause = prepare_where(name, :($name(args...; kw...))) push!(out.args, :($whereclause = $concrete(args...; kw...))) else push!(out.args, :($name(args...; kw...) = $concrete(args...; kw...))) end # Add `concretetype`, `isquasiabstract` and `isquasiconcrete` methods push!(out.args, :(ReusePatterns.concretetype(::Type{$name_symb}) = $concrete_symb)) push!(out.args, :(ReusePatterns.isquasiabstract(::Type{$name_symb}) = true)) push!(out.args, :(ReusePatterns.isquasiconcrete(::Type{$concrete_symb}) = true)) if isa(name, Expr) whereclause = prepare_where(name, :(ReusePatterns.concretetype(::Type{$name}))) push!(out.args, :($whereclause = $concrete)) whereclause = prepare_where(name, :(ReusePatterns.isquasiabstract(::Type{$name}))) push!(out.args, :($whereclause = true)) # Drop all types from parameters in `concrete`, or they'll raise syntax errors concrete = drop_parameter_types(concrete) whereclause = prepare_where(name, :(ReusePatterns.isquasiconcrete(::Type{$concrete}))) push!(out.args, :($whereclause = true)) end return esc(out) end end # module
ReusePatterns
https://github.com/gcalderone/ReusePatterns.jl.git
[ "MIT" ]
0.3.1
1467be4e01897dae9b5c739643d2de0d790d25e0
code
4148
using ReusePatterns using Test @quasiabstract struct Rectangle1 width::Real height::Real end @quasiabstract struct Rectangle2{T<:Real} width::T height::T end @quasiabstract struct Rectangle3{T} <: Number width::T height::T end @quasiabstract struct Rectangle4{T<:Real} <: Number width::T height::T end @quasiabstract struct Box1 <: Rectangle1 depth::Real end @quasiabstract struct Box2{T<:Real} <: Rectangle2{T} depth::T end @quasiabstract struct Box3{T} <: Rectangle3{T} depth::T end @quasiabstract struct Box4{T<:Real} <: Rectangle4{T} depth::T end #_____________________________________________________________________ # Alice's code # using Statistics, ReusePatterns abstract type AbstractPolygon end @quasiabstract mutable struct Polygon <: AbstractPolygon x::Vector{Float64} y::Vector{Float64} end # Retrieve the number of vertices, and their X and Y coordinates vertices(p::Polygon) = length(p.x) coords_x(p::Polygon) = p.x coords_y(p::Polygon) = p.y # Move, scale and rotate a polygon function move!(p::Polygon, dx::Real, dy::Real) p.x .+= dx p.y .+= dy end function scale!(p::Polygon, scale::Real) m = mean(p.x); p.x = (p.x .- m) .* scale .+ m m = mean(p.y); p.y = (p.y .- m) .* scale .+ m end function rotate!(p::Polygon, angle_deg::Real) θ = float(angle_deg) * pi / 180 R = [cos(θ) -sin(θ); sin(θ) cos(θ)] x = p.x .- mean(p.x) y = p.y .- mean(p.y) (x, y) = R * [x, y] p.x = x .+ mean(p.x) p.y = y .+ mean(p.y) end #_____________________________________________________________________ # Bob's code # @quasiabstract mutable struct RegularPolygon <: Polygon radius::Float64 end function RegularPolygon(n::Integer, radius::Real) @assert n >= 3 θ = range(0, stop=2pi-(2pi/n), length=n) c = radius .* exp.(im .* θ) return RegularPolygon(real(c), imag(c), radius) end # Compute length of a side and the polygon area side(p::RegularPolygon) = 2 * p.radius * sin(pi / vertices(p)) area(p::RegularPolygon) = side(p)^2 * vertices(p) / 4 / tan(pi / vertices(p)) function scale!(p::RegularPolygon, scale::Real) invoke(scale!, Tuple{supertype(RegularPolygon), typeof(scale)}, p, scale) # call "super" method p.radius *= scale # update internal state end # Attach a label to a polygon mutable struct Named{T} <: AbstractPolygon polygon::T name::String end Named{T}(name, args...; kw...) where T = Named{T}(T(args...; kw...), name) name(p::Named) = p.name # Forward methods from `Named` to `Polygon` @forward (Named, :polygon) RegularPolygon #_____________________________________________________________________ # Charlie's code # # Here I use `Gnuplot.jl`, but any other package would work... #= using Gnuplot Gnuplot.setverb(false) @gp "set size ratio -1" "set grid" "set key bottom right" xr=(-1.5, 2.5) :- =# # Methods to plot a Polygon plotlabel(p::Polygon) = "Polygon (" * string(length(p.x)) * " vert.)" plotlabel(p::RegularPolygon) = "RegularPolygon (" * string(vertices(p)) * " vert., area=" * string(round(area(p) * 100) / 100) * ")" plotlabel(p::Named) = name(p) * " (" * string(vertices(p)) * " vert., area=" * string(round(area(p) * 100) / 100) * ")" function plot(p::AbstractPolygon; dt=1, color="black") x = coords_x(p); x = [x; x[1]] y = coords_y(p); y = [y; y[1]] title = plotlabel(p) # @gp :- x y "w l tit '$title' dt $dt lw 2 lc rgb '$color'" end # Finally, let's have fun with the shapes! line = Polygon([0., 1.], [0., 1.]) triangle = RegularPolygon(3, 1) square = Named{RegularPolygon}("Square", 4, 1) plot(line, color="black") plot(triangle, color="blue") plot(square, color="red") rotate!(triangle, 90) move!(triangle, 1, 1) scale!(triangle, 0.32) scale!(square, sqrt(2)) plot(triangle, color="blue", dt=2) plot(square, color="red", dt=2) # Increase number of vertices p = Named{RegularPolygon}("Heptagon", 7, 1) plot(p, color="orange", dt=4) circle = Named{RegularPolygon}("Circle", 1000, 1) plot(circle, color="dark-green", dt=4)
ReusePatterns
https://github.com/gcalderone/ReusePatterns.jl.git
[ "MIT" ]
0.3.1
1467be4e01897dae9b5c739643d2de0d790d25e0
docs
18891
# ReusePatterns.jl ## Simple tools to implement *composition* and *concrete subtyping* patterns in Julia. [![Build Status](https://travis-ci.org/gcalderone/ReusePatterns.jl.svg?branch=master)](https://travis-ci.org/gcalderone/ReusePatterns.jl) ### Warning The **ReusePatterns.jl** package provides an implementation for the concepts described below, namely method forwarding and concrete subtyping, to pursue code reusing in the Julia language. However the approaches suggested here are essentially workarounds, i.e. they work perfectly in most cases, but may not work as expected in some corner case. A more fundamental tool, possibly built-in into the language, is required to solve the problem in all cases (a recent discussion is available [here](https://discourse.julialang.org/t/dataframes-jl-metadata/84544/94), see also the links at the end of this page). As a consequence, this package **is no longer** actively maintained, and will be updated only occasionally. **Use it at your own risk!** ______ Assume an author **A** (say, Alice) wrote a very powerful Julia code, extensively used by user **C** (say, Charlie). The best code reusing practice in this "two actors" scenario is the package deployment, thoroughly discussed in the Julia manual. Now assume a third person **B** (say, Bob) slips between Alice and Charlie: he wish to reuse Alice's code to provide more complex/extended functionalities to Charlie. Most likely Bob will need a more sophisticated reuse pattern... This package provides a few tools to facilitate Bob's work in reusing Alice's code, by mean of two of the most common reuse patterns: *composition* and *subtyping* ([implementation inheritance](https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)) is not supported in Julia), and check which one provides the best solution. Also, it aims to relieve Charlie from dealing with the underlying details, and seamlessly use the new functionalities introduced by Bob. The motivation to develop this package stems from the following posts on the Discourse: - https://discourse.julialang.org/t/how-to-add-metadata-info-to-a-dataframe/11168 - https://discourse.julialang.org/t/composition-and-inheritance-the-julian-way/11231 but several other topics apply as well (see list in the *Links* section below). ## Installation Latest version of **ReusePatterns.jl** is 0.3.1, which you may install with: ```julia ] add ReusePatterns ``` ## Composition With [composition](https://en.wikipedia.org/wiki/Object_composition) we wrap an Alice's object into a structure implemented by Bob, and let Charlie use the latter without even knowing if it actually is the original Alice's object, or the wrapped one by Bob. We pursue this goal by automatically forwarding all methods calls from Bob's structure to the appropriate Alice's object. ### Example: Alice implemented a code to keep track of all her books, but forgot to add room for the number of pages and the issue year of each book. Bob wishes to add these informations, and to provide the final functionalities to Charlie: ```julia # ##### Alice's code ##### julia> struct Book title::String author::String end julia> Base.show(io::IO, b::Book) = println(io, "$(b.title) (by $(b.author))") julia> Base.print(b::Book) = println("In a hole in the ground there lived a hobbit...") julia> author(b::Book) = b.author # ##### Bob's code ##### julia> using ReusePatterns julia> struct PaperBook b::Book number_of_pages::Int end julia> @forward((PaperBook, :b), Book) julia> pages(book::PaperBook) = book.number_of_pages julia> struct Edition b::PaperBook year::Int end julia> @forward((Edition, :b), PaperBook) julia> year(book::Edition) = book.year # ##### Charlie's code ##### julia> book = Edition(PaperBook(Book("The Hobbit", "J.R.R. Tolkien"), 374), 2013) julia> print(author(book), ", ", pages(book), " pages, Ed. ", year(book)) J.R.R. Tolkien, 374 pages, Ed. 2013 julia> print(book) In a hole in the ground there lived a hobbit... ``` The key lines here are: ```julia @forward((PaperBook, :b), Book) @forward((Edition, :b), PaperBook) ``` The `@forward` macro identifies all methods accepting a `Book` object, and defines new methods with the same name and arguments, but accepting `PaperBook` arguments in place of the `Book` ones. The purpose of each newly defined method is simply to forward the call to the original method, passing the `Book` object stored in the `:p` field. The second line does the same job, forwarding calls from `Edition` objects to `PaperBook` ones. The **ReusePatterns.jl** package exports the following functions and macros aimed at supporting *composition* in Julia: - `@forward`: forward method calls from an object to a field structure; - `forward`: returns a `Vector{String}` with the Julia code to properly forward method calls. To preview the forwarding code without actually evaluating it you can use the `forward` function, which has the same syntax as the `@forward` macro. Continuing from previous example: ``` julia> println.(sort(forward((Edition, :b), PaperBook))); @eval Main Base.:(print)(p1::Main.Edition; kw...) = Main.:(print)(getfield(p1, :b); kw...) # none:1 @eval Main Base.:(show)(p1::IO, p2::Main.Edition; kw...) = Main.:(show)(p1, getfield(p2, :b); kw...) # none:1 @eval Main Main.:(Edition)(p1::Main.Edition, p2::Int64; kw...) = Main.:(Edition)(getfield(p1, :b), p2; kw...) # REPL[10]:2 @eval Main Main.:(PaperBook)(p1::Main.Edition, p2::Int64; kw...) = Main.:(PaperBook)(getfield(p1, :b), p2; kw...) # none:1 @eval Main Main.:(author)(p1::Main.Edition; kw...) = Main.:(author)(getfield(p1, :b); kw...) # none:1 @eval Main Main.:(pages)(p1::Main.Edition; kw...) = Main.:(pages)(getfield(p1, :b); kw...) # REPL[9]:1 ``` Each function and macro has its own online documentation accessible by prepending `?` to the name. The *composition* approach has the following advantages: - It is applicable even if Alice and Bob do not agree on a particular type architecture; - it is the recommended Julian way to pursue code reusing; ...and disadvantages: - It may be cumbersome to apply if the number of involved methods is very high, or if the method definitions are spread across many modules; - *composition* is not recursive, i.e. if further users (**D**an, **E**mily, etc.) build composite layers on top of Bob's one they'll need to implement new forwarding methods; - It may introduces tiny overheads for each composition layer, resulting in performance loss. **NOTE:** The `@forward` has been tested and successfully used on many types defined in the Julia package ecosystem. However there may be corner cases where it fails to identify the proper methods to forward. In this case the best option is to have a look to the output of the `forward()` function for the methods which are automatically identified, and manually add the missing ones. ## Concrete subtyping Julia supports [subtyping](https://en.wikipedia.org/wiki/Subtyping) of abstract types, allowing to build type hierarchies where each node represents, for any given *function*, a desired behaviour for the node itself, and a fall back behaviour for all its subtypes. This is one of the most powerful feature in Julia: in a function argument you may require an *AbstractArray* and seamlessly work with any of its concrete implementations (e.g. dense, strided or sparse arrays, ranges, etc.). This mechanism actually stem from a **rigid separation** of the desired behavior for a type (represented by the abstract type and the [interface](https://docs.julialang.org/en/v1/manual/interfaces) definition) and the actual machine implementation (represented by the concrete type and the interface implementations). However, in Julia you can only subtype abstract types, hence this powerful substitutability mechanism can not be pushed beyond a concrete type. Citing the [manual](https://docs.julialang.org/en/v1/manual/types): *this [limitation] might at first seem unduly restrictive, [but] it has many beneficial consequences with surprisingly few drawbacks.* The most striking drawback pops out in case Alice defines an abstract type with only one subtype, namely a concrete one. Clearly, in all methods requiring access to the actual data representation, the argument types will be annotated with the concrete type, not the abstract one. This is an important protection against Alice's package misuse: those methods require **exactly** that concrete type, not something else, even if it is a subtype of the same parent abstract type. However, this is a serious problem for Bob, since he can not reuse those methods even if he defines concrete structures with the same contents as Alice's one (plus something else). The **ReusePatterns.jl** package allows to overtake this limitation by introducing the concept of *quasi-abstract* type, i.e. an abstract type without a rigid separation between a type behaviour and its concrete implementation. Operatively, a *quasi-abstract* type is an abstract type satisfying the following constraints: 1 - it can have as many abstract or *quasi-abstract* subtypes as desired, but it can have **only one** concrete subtype (the so called *associated concrete type*); 2 - if a *quasi-abstract* type has another *quasi-abstract* type among its ancestors, its associated concrete type must have (at least) the same field names and types of the ancestor associated data structure. Note that for the example discussed above constraint 1 is not an actual limitation, since Alice already defined only one concrete type. Also note that constraint 2 implies *concrete structure subtyping*. The `@quasiabstract` macro provided by the **ReusePatterns.jl** package, ensure the above constraints are properly satisfied. The guidelines to exploit *quasi-abstract* types are straightforward: - define the *quasi-abstract* type as a simple structure, possibly with a parent type; - use the *quasi-abstract* type name for object creation, method argument annotations, etc. Finally note that although two types are actually defined under the hood (an abstract one and an associated concrete one), you may simply forget about the concrete one, and safely use the abstract one everywhere in the code. ### Example: As for the *composition* case discussed above, assume alice implemented a code to keep track of all her books, but forgot to add room for the number of pages and the issue year of each book. Bob wishes to add these informations, and to provide the final functionalities to Charlie. ```julia # ##### Alice's code ##### julia> @quasiabstract struct Book title::String author::String end julia> Base.show(io::IO, b::Book) = println(io, "$(b.title) (by $(b.author))") julia> Base.print(b::Book) = println("In a hole in the ground there lived a hobbit...") julia> author(b::Book) = b.author # ##### Bob's code ##### julia> using ReusePatterns julia> @quasiabstract struct PaperBook <: Book number_of_pages::Int end julia> pages(book::PaperBook) = book.number_of_pages julia> @quasiabstract struct Edition <: PaperBook year::Int end julia> year(book::Edition) = book.year julia> println(fieldnames(concretetype(Edition))) (:title, :author, :number_of_pages, :year) # ##### Charlie's code ##### julia> book = Edition("The Hobbit", "J.R.R. Tolkien", 374, 2013) julia> print(author(book), ", ", pages(book), " pages, Ed. ", year(book)) J.R.R. Tolkien, 374 pages, Ed. 2013 julia> print(book) In a hole in the ground there lived a hobbit... ``` The **ReusePatterns.jl** package exports the following functions and macros aimed at supporting *concrete subtyping* in Julia: - `@quasiabstract`: define a new *quasi-abstract* type, i.e. a pair of an abstract and an exclusively associated concrete types; - `concretetype`: return the concrete type associated to a *quasi-abstract* type; - `isquasiabstract`: test whether a type is *quasi-abstract*; - `isquasiconcrete`: test whether a type is the concrete type associated to a *quasi-abstract* type. Continuing the previous example: ```julia julia> isquasiconcrete(typeof(book)) true julia> isquasiabstract(supertype(typeof(book))) true julia> concretetype(supertype(typeof(book))) === typeof(book) true ``` Each function and macro has its own online documentation accessible by prepending `?` to the name. This *concrete subtyping* approach has the following advantages: - It is a recursive approach, i.e. if further users (**D**an, **E**mily, etc.) subtype Bob's structure they will have all the inherited behavior for free; - There is no overhead or performance loss. ...and disadvantages: - it is applicable **only if** both Alice and Bob agree to use *quasi-abstract* types; - Charlie may break Alice's or Bob's code by using a concrete type with the *quasi-abstract* type as ancestor, but without the required fields. However, this problem can be easily fixed by adding the following check to the methods accepting a *quasi-abstract* type, e.g. in the `pages` method shown above: ```julia function pages(book::PaperBook) @assert isquasiconcrete(typeof(book)) book.number_of_pages end ``` Note also that `isquasiconcrete` is a pure function, hence it can be used as a trait. ## Complete examples ### Adding metadata to a `DataFrame` object This [topic](https://discourse.julialang.org/t/how-to-add-metadata-info-to-a-dataframe/11168) raised a long discussion about the possibility to extend the functionalities provided by the [DataFrames](https://github.com/JuliaData/DataFrames.jl) package by adding a simple metadata dictionary, and the approaches to follow. With the *composition* tools provided by **ReusePatterns.jl** this problem can now be solved with just 8 lines of code: ```julia using DataFrames, ReusePatterns struct DataFrameMeta <: AbstractDataFrame p::DataFrame meta::Dict{String, Any} DataFrameMeta(args...; kw...) = new(DataFrame(args...; kw...), Dict{Symbol, Any}()) end meta(d::DataFrameMeta) = getfield(d,:meta) # <-- new functionality added to DataFrameMeta @forward((DataFrameMeta, :p), DataFrame) # <-- reuse all existing DataFrame functionalities ``` (see the complete example [here](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/dataframes.jl)). ### Polygon drawings (a comparison of the *composition* and *concrete subtyping* approaches) We will consider the problem of implementing the code to draw several polygons on a plot. The objects and methods implemented by Alice are: - `Polygon`: a structure to store the 2D cartesian coordinates of a **generic polygon**; - `vertices`, `coords_x` and `coords_y`: methods to retrieve the number of vertices and the X and Y coordinates; - `move!`, `scale!` and `rotate!`: methods to move, scale and rotate a polygon. The objects and methods implemented by Bob are: - `RegularPolygon`: a structure including (in the *composition* case) or subtyping (in the *concrete subtyping* case) a `Polygon` object, and represeting a **regular polygon**; - `side`, `area`: methods to caluclate the length of a side and the area of a regular polygon; - `Named`: a generic wrapper for an object (either a `Polygon`, or `RegularPolygon`), providing the possibility to attach a label for plotting purposes. Finally, Charlie's code will: - Instantiate several regular polygons; - Move, scale and rotate them; - and produce the final plot. The same problem has been implemented following both the *composition* and the *concrete subtype* approaches in order to highlight the differences. Also, each approach has been implemented both with and without **ReusePatterns.jl** facilities, in order to clearly show the code being generated by the macros. The four complete examples are available here: - [*composition*](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/composition.jl) (without using **ReusePatterns.jl** facilities); - [*composition*](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/composition_wmacro.jl) (with **ReusePatterns.jl** facilities); - [*concrete subtyping*](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/subtyping.jl) (without using **ReusePatterns.jl** facilities); - [*concrete subtyping*](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/subtyping_wmacro.jl) (with **ReusePatterns.jl** facilities); Note that in all files the common statements appears on the same line, in order to make clear how much code is being saved by the considered approaches. Finally, [Charlie's code](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/charlie.jl) is identical for all of the above cases, and can be used to produce the final plot: ![polygons](https://github.com/gcalderone/ReusePatterns.jl/blob/master/examples/polygons.png) ## Links The above discussion reflects my personal view of how I understood code reusing patterns in Julia, and **ReusePatterns.jl** is just the framework I use to implement those patterns. But there is a lot of ongoing discussion on these topics, hence I encourage the reader to give a look around to see whether there are better solutions. Below, you will find a (non-exhaustive) list of the links I found very useful to develoip this package. ### Related topics on Discourse and other websites: The topics mentioned here, or related ones, have been thorougly discussed in many places, e.g.: - https://discourse.julialang.org/t/how-to-add-metadata-info-to-a-dataframe/11168 - https://discourse.julialang.org/t/composition-and-inheritance-the-julian-way/11231 - https://discourse.julialang.org/t/workaround-for-traditional-inheritance-features-in-object-oriented-languages/1195 - https://github.com/mauro3/SimpleTraits.jl - http://www.stochasticlifestyle.com/type-dispatch-design-post-object-oriented-programming-julia/ - https://discourse.julialang.org/t/why-doesnt-julia-allow-multiple-inheritance/14342/4 - https://discourse.julialang.org/t/oop-in-julia-inherit-from-parametric-composite-type/1841/ - https://discourse.julialang.org/t/wrap-and-inherit-number/4799 - https://discourse.julialang.org/t/guidelines-to-distinguish-concrete-from-abstract-types/19162 ### Pacakges providing similar functionalities: Also, there are several packages related to the code reuse topic, or which provide similar functionalities as **ReusePatterns.jl** (in no particolar order): - https://github.com/WschW/StructuralInheritance.jl - https://github.com/JeffreySarnoff/TypedDelegation.jl - https://github.com/AleMorales/ModularTypes.jl - https://github.com/JuliaCollections/DataStructures.jl/blob/master/src/delegate.jl - https://github.com/rjplevin/Classes.jl - https://github.com/jasonmorton/Typeclass.jl - https://github.com/KlausC/TypeEmulator.jl - https://github.com/MikeInnes/Lazy.jl (`@forward` macro) - https://github.com/tbreloff/ConcreteAbstractions.jl
ReusePatterns
https://github.com/gcalderone/ReusePatterns.jl.git
[ "MIT" ]
0.1.0
5fbd28f4de5d850d07adb040790b240190c706dd
code
533
module SignalTemporalLogic const STL = SignalTemporalLogic export STL, ¬, ∧, ∨, ⟹, Formula, Interval, eventually, always, Atomic, ⊤, ⊥, Predicate, FlippedPredicate, Negation, Conjunction, Disjunction, Implication, Biconditional, Eventually, Always, Until, ρ, ρ̃, robustness, smooth_robustness, TemporalOperator, smoothmin, smoothmax, get_interval, ∇ρ, ∇ρ̃, @formula include("stl.jl") end # module
SignalTemporalLogic
https://github.com/sisl/SignalTemporalLogic.jl.git
[ "MIT" ]
0.1.0
5fbd28f4de5d850d07adb040790b240190c706dd
code
38904
### A Pluto.jl notebook ### # v0.19.29 using Markdown using InteractiveUtils # ╔═╡ 9adccf3d-1b74-4abb-87c4-cb066c65b3b6 using Zygote # ╔═╡ 8be19ab0-6d8c-11ec-0e32-fb14ef6c2970 md""" # Signal Temporal Logic This notebook defines all of the code for the `SignalTemporalLogic.jl` package. """ # ╔═╡ a5d51b71-3685-4e1f-a4be-374623e3702b md""" ## Propositional Logic """ # ╔═╡ ad439cdd-8d94-4c9f-8519-aa4077d11c8e begin ¬ = ! # \neg ∧(a,b) = a && b # \wedge ∨(a,b) = a || b # \vee ⟹(p,q) = ¬p ∨ q # \implies ⟺(p,q) = (p ⟹ q) ∧ (q ⟹ p) # \iff end; # ╔═╡ 3003c9d3-df19-45ba-a37a-3111f473cb1a md""" ## Formulas """ # ╔═╡ 579f207a-7ad6-45de-b4f0-30062ec1c8af abstract type Formula end # ╔═╡ 331fa4f8-b02c-4c30-bcc5-4d09c9234f37 const Interval = Union{UnitRange, Missing} # ╔═╡ bae83d07-50ec-4f03-bd84-36fc41fa44f0 md""" ## Eventually $\lozenge$ $$\lozenge_{[a,b]}\phi = \top \mathcal{U}_{[a,b]} \phi$$ ```julia ◊(x, ϕ, I) = any(ϕ(x[i]) for i in I) any(ϕ(x.[I])) ``` ```julia function eventually(ϕ, x, I=[1,length(x)]) T = xₜ->true return 𝒰(T, ϕ, x, I) end ``` """ # ╔═╡ f0db9fff-59c8-439e-ba03-0a9fb09383a6 md""" ## Always $\square$ $$\square_{[a,b]}\phi = \neg\lozenge_{[a,b]}(\neg\phi)$$ ```julia all(ϕ(x[i]) for i in I) ``` ```julia function always(ϕ, x, I=[1,length(x)]) return ¬◊(¬ϕ, x, I) end ``` ```julia □(ϕ, x, I=1:length(x)) = all(ϕ(x[t]) for t in I) ``` """ # ╔═╡ 8c2a500b-8d62-48a3-ac22-b6466858eef9 md""" ## Combining STL formulas """ # ╔═╡ dc6bec3c-4ca0-457e-886d-0b2a3f8845e8 begin ∧(ϕ1::Formula, ϕ2::Formula) = xᵢ->ϕ1(xᵢ) ∧ ϕ2(xᵢ) ∨(ϕ1::Formula, ϕ2::Formula) = xᵢ->ϕ1(xᵢ) ∨ ϕ2(xᵢ) end # ╔═╡ 50e69922-f07e-48dd-981d-d68c8cd07f7f md""" # Robustness The notion of _robustness_ is defined to be some _quantitative semantics_ (i.e., numerical meaning) that calculates the degree of satisfaction or violation a signal has for a given STL formula. Positive values indicate satisfaction, while negative values indicate violation. The quantitative semantics of a formula with respect to a signal $x_t$ is defined as: $$\begin{align} \rho(x_t, \top) &= \rho_\text{max} \qquad \text{where } \rho_\text{max} > 0\\ \rho(x_t, \mu_c) &= \mu(x_t) - c\\ \rho(x_t, \neg\phi) &= -\rho(x_t, \phi)\\ \rho(x_t, \phi \wedge \psi) &= \min\Bigl(\rho(x_t, \phi), \rho(x_t, \psi)\Bigr)\\ \rho(x_t, \phi \vee \psi) &= \max\Bigl(\rho(x_t, \phi), \rho(x_t, \psi)\Bigr)\\ \rho(x_t, \phi \implies \psi) &= \max\Bigl(-\rho(x_t, \phi), \rho(x_t, \psi)\Bigr)\\ \rho(x_t, \lozenge_{[a,b]}\phi) &= \max_{t^\prime \in [t+a,t+b]} \rho(x_{t^\prime}, \phi)\\ \rho(x_t, \square_{[a,b]}\phi) &= \min_{t^\prime \in [t+a,t+b]} \rho(x_{t^\prime}, \phi)\\ \rho(x_t, \phi\mathcal{U}_{[a,b]}\psi) &= \max_{t^\prime \in [t+a,t+b]} \biggl(\min\Bigl(\rho(x_{t^\prime},\psi), \min_{t^{\prime\prime}\in[0,t^\prime]} \rho(x_{t^{\prime\prime}}, \phi)\Bigr)\biggr) \end{align}$$ """ # ╔═╡ 175946fd-9de7-4efb-811d-1b52d6444614 md""" ## Atomic Operator (Truth/False) """ # ╔═╡ a7af8bca-1870-4ce5-8cce-9d9d04604f31 md""" $$\rho(x_t, \top) = \rho_\text{max} \qquad \text{where } \rho_\text{max} > 0$$ $$\rho(x_t, \bot) = -\rho_\text{max} \qquad \text{where } \rho_\text{max} > 0$$ """ # ╔═╡ 851997de-b0f5-4273-a15b-0e1440c2e6cd begin Base.@kwdef struct Atomic <: Formula value::Bool ρ_bound = value ? Inf : -Inf end (ϕ::Atomic)(x) = ϕ.value ρ(xₜ, ϕ::Atomic) = ϕ.ρ_bound ρ̃(xₜ, ϕ::Atomic; kwargs...) = ρ(xₜ, ϕ) end # ╔═╡ 296c7321-db0d-4878-a4d9-6e2b6ee76e4e md""" ## Predicate """ # ╔═╡ 0158daf7-bc8d-4764-81b1-b5e73e02dc8a md""" $$\rho(x_t, \mu_c) = \mu(x_t) - c \qquad (\text{when}\; \mu(x_t) > c)$$ """ # ╔═╡ 1ec0bddb-28d8-420b-856d-2c1ed70a77a4 begin mutable struct Predicate <: Formula μ::Function # ℝⁿ → ℝ c::Union{Real, Vector} end (ϕ::Predicate)(x) = map(xₜ->all(xₜ .> ϕ.c), ϕ.μ(x)) ρ(x, ϕ::Predicate) = map(xₜ->xₜ - ϕ.c, ϕ.μ(x)) ρ̃(x, ϕ::Predicate; kwargs...) = ρ(x, ϕ) end # ╔═╡ 5d2e634f-c483-4707-a53d-aa71e17dd3f5 md""" $$\rho(x_t, \mu_c) = c - \mu(x_t) \qquad (\text{when}\; \mu(x_t) < c)$$ """ # ╔═╡ 3ed8b19e-6518-40b6-9320-3ab01d03f8f6 begin mutable struct FlippedPredicate <: Formula μ::Function # ℝⁿ → ℝ c::Union{Real, Vector} end (ϕ::FlippedPredicate)(x) = map(xₜ->all(xₜ .< ϕ.c), ϕ.μ(x)) ρ(x, ϕ::FlippedPredicate) = map(xₜ->ϕ.c - xₜ, ϕ.μ(x)) ρ̃(x, ϕ::FlippedPredicate; kwargs...) = ρ(x, ϕ) end # ╔═╡ 00189191-c0ec-41c2-85f0-f362c4b8bb69 md""" ## Negation """ # ╔═╡ 944e81cc-ef05-4541-bf04-441d2a59af0c md""" $$\rho(x_t, \neg\phi) = -\rho(x_t, \phi)$$ """ # ╔═╡ 9e477ba3-9e0e-42ae-9fe2-97adc7ae8faa begin mutable struct Negation <: Formula ϕ_inner::Formula end (ϕ::Negation)(x) = .¬ϕ.ϕ_inner(x) ρ(xₜ, ϕ::Negation) = -ρ(xₜ, ϕ.ϕ_inner) ρ̃(xₜ, ϕ::Negation; kwargs...) = -ρ̃(xₜ, ϕ.ϕ_inner; kwargs...) end # ╔═╡ 94cb97f7-ddc0-4ab3-bf90-9e38d2a19de0 md""" ## Conjunction """ # ╔═╡ b04f0e12-06a0-4955-add4-ae3dcbb5c25a md""" $$\rho(x_t, \phi \wedge \psi) = \min\Bigl(\rho(x_t, \phi), \rho(x_t, \psi)\Bigr)$$ """ # ╔═╡ e75cafd9-1d30-496e-82d5-f7b353036d81 md""" ## Disjunction """ # ╔═╡ 8330f2e8-c6a5-45ac-a812-ffc358f06ea6 md""" $$\rho(x_t, \phi \vee \psi) = \max\Bigl(\rho(x_t, \phi), \rho(x_t, \psi)\Bigr)$$ """ # ╔═╡ f45fbd6d-f02b-44ca-a846-f8f8792e7c32 md""" ## Implication """ # ╔═╡ 413d8927-cae0-4425-ab2b-f22cac074ac6 md""" $$\rho(x_t, \phi \implies \psi) = \max\Bigl(-\rho(x_t, \phi), \rho(x_t, \psi)\Bigr)$$ """ # ╔═╡ 4ec409ed-24cd-4b23-93aa-34da33644289 md""" ## Biconditional """ # ╔═╡ a0653887-537c-4792-acfc-4849b79d6970 md""" $$\rho(x_t, \phi \iff \psi) = \rho\bigl(x_t, (\phi \implies \psi) \wedge (\psi \implies \phi)\bigr)$$ """ # ╔═╡ acbe9641-ac0b-43c6-9cb2-2aea65efb431 md""" ## Eventually """ # ╔═╡ 3829b9dc-bbba-48aa-9e95-996589886bfa md""" $$\rho(x_t, \lozenge_{[a,b]}\phi) = \max_{t^\prime \in [t+a,t+b]} \rho(x_{t^\prime}, \phi)$$ """ # ╔═╡ baed163f-b9f6-4c34-9432-529c683ae43e get_interval(ϕ::Formula, x) = ismissing(ϕ.I) ? (1:length(x)) : ϕ.I # ╔═╡ 15870045-7238-4e75-9aea-3d6824e21bbe md""" ## Always """ # ╔═╡ 069b6736-bc83-4a9b-8319-bcb6dedadcc6 md""" $$\rho(x_t, \square_{[a,b]}\phi) = \min_{t^\prime \in [t+a,t+b]} \rho(x_{t^\prime}, \phi)$$ """ # ╔═╡ fef07e51-227b-4558-b8bd-aa33d7a6c8ce md""" ## Until """ # ╔═╡ 31589b2c-e0ad-478a-9a51-c18d83b67d07 md""" $$\rho(x_t, \phi\mathcal{U}_{[a,b]}\psi) = \max_{t^\prime \in [t+a,t+b]} \biggl(\min\Bigl(\rho(x_{t^\prime},\psi), \min_{t^{\prime\prime}\in[0,t^\prime]} \rho(x_{t^{\prime\prime}}, \phi)\Bigr)\biggr)$$ """ # ╔═╡ d72cffdc-60d9-4b0a-a787-89e2ba3ca858 md""" # Minimum/maximum approximations """ # ╔═╡ ba0a977e-3dea-4b87-900d-d7e2e4281f79 global W = 1 # ╔═╡ 053e0902-559f-4ac9-98dc-4b59f11e4056 function logsumexp(x) m = maximum(x) return m + log(sum(exp(xᵢ - m) for xᵢ in x)) end # ╔═╡ 4c07b312-8fa3-48bb-95e7-5005674265aa md""" ## Smooth minimum $$\widetilde{\min}(x; w) = \frac{\sum_i^n x_i \exp(-x_i/w)}{\sum_j^n \exp(-x_j/w)}$$ This approximates the $\min$ function and will return the true solution when $w = 0$ and will return the mean of $x$ when $w\to\infty$. """ # ╔═╡ 93539199-d2b4-450c-97d2-c1df2ed5cf51 function _smoothmin(x, w; stable=false) if stable xw = -x / w e = exp.(xw .- logsumexp(xw)) # used for numerical stability return sum(x .* e) / sum(e) else return sum(xᵢ*exp(-xᵢ/w) for xᵢ in x) / sum(exp(-xⱼ/w) for xⱼ in x) end end # ╔═╡ 8c9c3777-30f9-4de2-b80d-cc05aaf21ea5 smoothmin(x; w=W) = w == 0 ? minimum(x) : _smoothmin(x, w) # ╔═╡ f7c4d4a1-c3f4-4196-8a92-50294480555c smoothmin(x1, x2; w=W) = smoothmin([x1,x2]; w=w) # ╔═╡ c93b2ad2-1b5c-490e-b7fc-9fc0495fe6fa begin mutable struct Conjunction <: Formula ϕ::Formula ψ::Formula end (q::Conjunction)(x) = all(q.ϕ(x) .∧ q.ψ(x)) ρ(xₜ, q::Conjunction) = min.(ρ(xₜ, q.ϕ), ρ(xₜ, q.ψ)) ρ̃(xₜ, q::Conjunction; w=W) = smoothmin.(ρ̃(xₜ, q.ϕ), ρ̃(xₜ, q.ψ); w) end # ╔═╡ 967af87a-d0d7-42ea-871d-492d9406f9c6 begin mutable struct Always <: Formula ϕ::Formula I::Interval end (□::Always)(x) = all(□.ϕ(x[t]) for t ∈ get_interval(□, x)) ρ(x, □::Always) = minimum(ρ(x[t′], □.ϕ) for t′ ∈ get_interval(□, x)) ρ̃(x, □::Always; w=W) = smoothmin(ρ̃(x[t′], □.ϕ; w) for t′ ∈ get_interval(□, x); w) end # ╔═╡ 980379f9-3544-4363-aa6c-595d0c509124 md""" ## Smooth maximum $$\widetilde{\max}(x; w) = \frac{\sum_i^n x_i \exp(x_i/w)}{\sum_j^n \exp(x_j/w)}$$ """ # ╔═╡ b9118811-80aa-4984-8f84-779a89aa94bc function _smoothmax(x, w; stable=false) if stable xw = x / w e = exp.(xw .- logsumexp(xw)) # used for numerical stability return sum(x .* e) / sum(e) else return sum(xᵢ*exp(xᵢ/w) for xᵢ in x) / sum(exp(xⱼ/w) for xⱼ in x) end end # ╔═╡ 0bbd170b-ef3d-4a4a-99f7-df6cfd16dcc6 smoothmax(x; w=W) = w == 0 ? maximum(x) : _smoothmax(x, w) # ╔═╡ e5e59d1d-f6ec-4bde-90fe-4715b15239a2 smoothmax(x1, x2; w=W) = smoothmax([x1,x2]; w=w) # ╔═╡ e4df40fb-dc10-421c-9cab-39ebfc73b320 begin mutable struct Disjunction <: Formula ϕ::Formula ψ::Formula end (q::Disjunction)(x) = any(q.ϕ(x) .∨ q.ψ(x)) ρ(xₜ, q::Disjunction) = max.(ρ(xₜ, q.ϕ), ρ(xₜ, q.ψ)) ρ̃(xₜ, q::Disjunction; w=W) = smoothmax.(ρ̃(xₜ, q.ϕ; w), ρ̃(xₜ, q.ψ; w); w) end # ╔═╡ b0b10df8-07f0-4317-8f3a-3620a3cb8e8e begin mutable struct Implication <: Formula ϕ::Formula ψ::Formula end (q::Implication)(x) = q.ϕ(x) .⟹ q.ψ(x) ρ(xₜ, q::Implication) = max.(-ρ(xₜ, q.ϕ), ρ(xₜ, q.ψ)) ρ̃(xₜ, q::Implication; w=W) = smoothmax.(-ρ̃(xₜ, q.ϕ; w), ρ̃(xₜ, q.ψ; w); w) end # ╔═╡ f1f170a8-2902-41f7-8c21-99c90d752459 begin mutable struct Biconditional <: Formula ϕ::Formula ψ::Formula end (q::Biconditional)(x) = q.ϕ(x) .⟺ q.ψ(x) ρ(xₜ, q::Biconditional) = ρ(xₜ, Conjunction(Implication(q.ϕ, q.ψ), Implication(q.ψ, q.ϕ))) ρ̃(xₜ, q::Biconditional; w=W) = ρ̃(xₜ, Conjunction(Implication(q.ϕ, q.ψ), Implication(q.ψ, q.ϕ)); w) end # ╔═╡ d2e95e25-f1df-4807-bc41-fb7ebb7a3d55 begin mutable struct Eventually <: Formula ϕ::Formula I::Interval end (◊::Eventually)(x) = any(◊.ϕ(x[t]) for t ∈ get_interval(◊, x)) ρ(x, ◊::Eventually) = maximum(ρ(x[t′], ◊.ϕ) for t′ ∈ get_interval(◊, x)) ρ̃(x, ◊::Eventually; w=W) = smoothmax(ρ̃(x[t′], ◊.ϕ; w) for t′∈get_interval(◊,x); w) end # ╔═╡ b12507a8-1a50-4e88-9271-1fa5413c93a8 begin mutable struct Until <: Formula ϕ::Formula ψ::Formula I::Interval end function (𝒰::Until)(x) ϕ, ψ, I = 𝒰.ϕ, 𝒰.ψ, get_interval(𝒰, x) return any(ψ(x[i]) && all(ϕ(x[j]) for j ∈ I[1]:i-1) for i ∈ I) end function ρ(x, 𝒰::Until) ϕ, ψ, I = 𝒰.ϕ, 𝒰.ψ, get_interval(𝒰, x) return maximum(map(I) do t′ ρ1 = ρ(x[t′], ψ) ρ2_trace = [ρ(x[t′′], ϕ) for t′′ ∈ 1:t′-1] ρ2 = isempty(ρ2_trace) ? 10e100 : minimum(ρ2_trace) min(ρ1, ρ2) end) end function ρ̃(x, 𝒰::Until; w=W) ϕ, ψ, I = 𝒰.ϕ, 𝒰.ψ, get_interval(𝒰, x) return smoothmax(map(I) do t′ ρ̃1 = ρ̃(x[t′], ψ; w) ρ̃2_trace = [ρ̃(x[t′′], ϕ; w) for t′′ ∈ 1:t′-1] ρ̃2 = isempty(ρ̃2_trace) ? 10e100 : smoothmin(ρ̃2_trace; w) smoothmin([ρ̃1, ρ̃2]; w) end; w) end end # ╔═╡ d57941cf-655b-45f8-b5e2-b39d3cfeb9fb robustness(xₜ, ϕ::Formula; w=0) = w == 0 ? ρ(xₜ, ϕ) : ρ̃(xₜ, ϕ; w) # ╔═╡ 5c1e16b3-1b3c-4c7a-a484-44b935eaa2a9 smooth_robustness = ρ̃ # ╔═╡ ef7fc726-3a27-463b-8c40-4eb549d983be const TemporalOperator = Union{Eventually, Always, Until} # ╔═╡ 182aa82d-302a-4719-9ec2-b8df937acb7b md""" # Gradients """ # ╔═╡ 80787178-e17d-4066-8544-609a4ed76613 ∇ρ(x, ϕ) = first(jacobian(x->ρ(x, ϕ), x)) # ╔═╡ f5b37004-f30b-4a59-8aab-ecc775e856b3 ∇ρ̃(x, ϕ; kwargs...) = first(jacobian(x->ρ̃(x, ϕ; kwargs...), x)) # ╔═╡ 067dadb1-1312-4035-930c-65b1068f7013 md""" # Robustness helpers """ # ╔═╡ 2dae8ed0-3bd6-44e1-a762-a75b5cc9f9f0 is_conjunction(head) = head ∈ [:(&&), :∧] # ╔═╡ 7bc35b0b-fdbe-46d2-83c1-0c056772761e is_disjunction(head) = head ∈ [:(||), :∨] # ╔═╡ 512f0bdc-7e4c-4a01-ae68-adbd57d63cb0 is_junction(head) = is_conjunction(head) || is_disjunction(head) # ╔═╡ 4bba7170-e7b7-4ccf-b6f4-a32b7ee4b809 function split_lambda(λ) var, body = λ.args if body.head == :block body = body.args[1] end return var, body end # ╔═╡ 15dc4645-b08e-4a5a-a65d-1858b948f324 function split_predicate(ϕ) var, body = split_lambda(ϕ) μ_body, c = body.args[2:3] μ = Expr(:(->), var, μ_body) return μ, c end # ╔═╡ b90947cb-2cbe-4410-abbe-4869b5caa313 function strip_negation(ϕ) if ϕ.head == :call # negation outside lambda definition ¬(x->x) return ϕ.args[2] else var, body = split_lambda(ϕ) formula = body.args[end] if formula.args[1] ∈ [:(¬), :(!)] inner = formula.args[end] else inner = formula end return Expr(:(->), var, inner) end end # ╔═╡ 982ac681-79a0-4c69-a5cc-0546a5ebd3be function split_junction(ϕ_ψ) if ϕ_ψ.head == :(->) var = ϕ_ψ.args[1] head = ϕ_ψ.args[2].args[1].head ϕ = Expr(:(->), var, ϕ_ψ.args[2].args[1].args[1]) ψ = Expr(:(->), var, ϕ_ψ.args[2].args[1].args[2]) else head = ϕ_ψ.head ϕ, ψ = ϕ_ψ.args[end-1:end] end return ϕ, ψ, head end # ╔═╡ 84effb59-b744-4bd7-b724-6f3e4056a737 function split_interval(interval_ex) interval = eval(interval_ex) a, b = first(interval), last(interval) a, b = ceil(Int, a), floor(Int, b) I = a:b return I end # ╔═╡ 78f8ce9c-9563-4ea1-89fc-c5c65ce4bb29 function split_temporal(temporal_ϕ) if length(temporal_ϕ.args) == 3 interval_ex = temporal_ϕ.args[2] I = split_interval(interval_ex) ϕ_ex = temporal_ϕ.args[3] else I = missing ϕ_ex = temporal_ϕ.args[2] end return (ϕ_ex, I) end # ╔═╡ 460bba5d-ebac-46b1-80fc-72fe845046a7 function split_until(until) if length(until.args) == 4 interval_ex = until.args[2] I = split_interval(interval_ex) ϕ_ex, ψ_ex = until.args[3:4] else I = missing ϕ_ex, ψ_ex = until.args[2:3] end return (ϕ_ex, ψ_ex, I) end # ╔═╡ e44e21ed-36f6-4d2c-82bd-fa1575cc49f8 function parse_formula(ex) ex = Base.remove_linenums!(ex) if ex isa Formula return ex elseif ex isa Symbol local sym = string(ex) return quote error("Symbol `$($sym)` needs to be a Formula type.") end elseif is_junction(ex.head) return parse_junction(ex) else var, body = ex.args body = Base.remove_linenums!(body) if var ∈ [:◊, :□] ϕ_ex, I = split_temporal(ex) ϕ = parse_formula(ϕ_ex) if var == :◊ return :(Eventually($ϕ, $I)) elseif var == :□ return :(Always($ϕ, $I)) end elseif var == :𝒰 ϕ_ex, ψ_ex, I = split_until(ex) ϕ = parse_formula(ϕ_ex) ψ = parse_formula(ψ_ex) return :(Until($ϕ, $ψ, $I)) else core = body.head == :block ? body.args[end] : body if typeof(core) == Bool return :(Atomic(value=$(esc(core)))) else if is_junction(core.head) return parse_junction(ex) elseif var ∈ (:⟺, :(==), :(!=), :⟹) || is_junction(var) ϕ_ex, ψ_ex, _ = split_junction(ex) ϕ = parse_formula(ϕ_ex) ψ = parse_formula(ψ_ex) if var ∈ [:⟺, :(==)] return :(Biconditional($ϕ, $ψ)) elseif var == :(!=) return :(Negation(Biconditional($ϕ, $ψ))) elseif var == :⟹ return :(Implication($ϕ, $ψ)) elseif is_conjunction(var) return :(Conjunction($ϕ, $ψ)) elseif is_disjunction(var) return :(Disjunction($ϕ, $ψ)) end elseif var ∈ [:¬, :!] ϕ_inner = parse_formula(strip_negation(ex)) return :(Negation($ϕ_inner)) else formula_type = core.args[1] if formula_type ∈ [:¬, :!] ϕ_inner = parse_formula(strip_negation(ex)) return :(Negation($ϕ_inner)) elseif formula_type == :> μ, c = split_predicate(ex) return :(Predicate($(esc(μ)), $c)) elseif formula_type == :< μ, c = split_predicate(ex) return :(FlippedPredicate($(esc(μ)), $c)) elseif formula_type ∈ [:⟺, :(==)] μ, c = split_predicate(ex) return :(Conjunction(Negation(Predicate($(esc(μ)), $c)), Negation(FlippedPredicate($(esc(μ)), $c)))) elseif formula_type == :(!=) μ, c = split_predicate(ex) return :(Disjunction(FlippedPredicate($(esc(μ)), $c), Predicate($(esc(μ)), $c))) elseif is_junction(formula_type) return parse_junction(ex) else error(""" No formula parser for: formula_type = $(formula_type) var = $var core = $core core.head = $(core.head) core.args = $(core.args) body = $body ex = $ex""") end end end end end end # ╔═╡ 97adec7a-75fd-40b1-9e46-e302c1dd6b9e macro formula(ex) return parse_formula(ex) end # ╔═╡ 7b96179d-1a55-42b4-a934-74b57a1d0cc6 eventually = @formula 𝒰(xₜ->true, xₜ -> xₜ > 0) # alternate derived form # ╔═╡ 5c454ece-de05-4cce-9996-037df54024e5 always = @formula ¬◊(¬(xₜ -> xₜ > 0)) # ╔═╡ 916d7fae-6599-41c6-b909-4e1dd66e48f1 ⊤ = @formula xₜ -> true # ╔═╡ c1e17481-91c3-430f-99f3-1b328ec31417 ⊥ = @formula xₜ -> false # ╔═╡ 40603feb-ebd6-47c6-97c4-c27b5211ff9e function parse_junction(ex) ϕ_ex, ψ_ex, head = split_junction(ex) ϕ = parse_formula(ϕ_ex) ψ = parse_formula(ψ_ex) if is_conjunction(head) return :(Conjunction($ϕ, $ψ)) elseif is_disjunction(head) return :(Disjunction($ϕ, $ψ)) else error("No junction head for $(head).") end end # ╔═╡ ca6b2f11-e0ef-404b-b487-584bd52fe936 Broadcast.broadcastable(ϕ::Formula) = Ref(ϕ) # ╔═╡ e16f2079-f028-46c6-b4e7-bf23fe9dcbfb md""" # Notebook """ # ╔═╡ c66d8ffa-44d0-4550-9456-870aae5db796 IS_NOTEBOOK = @isdefined PlutoRunner # ╔═╡ eeabb14a-7ca8-4446-b3d6-39a41b5b452c if IS_NOTEBOOK using PlutoUI end # ╔═╡ 210d23f1-2374-4511-a012-852f1f2dc3be IS_NOTEBOOK && TableOfContents() # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f" [compat] PlutoUI = "~0.7.54" Zygote = "~0.6.67" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.9.2" manifest_format = "2.0" project_hash = "b812503fc48fba4e7cb474f0de7cda4f60f8f461" [[deps.AbstractFFTs]] deps = ["LinearAlgebra"] git-tree-sha1 = "d92ad398961a3ed262d8bf04a1a2b8340f915fef" uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c" version = "1.5.0" weakdeps = ["ChainRulesCore", "Test"] [deps.AbstractFFTs.extensions] AbstractFFTsChainRulesCoreExt = "ChainRulesCore" AbstractFFTsTestExt = "Test" [[deps.AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "559826a2e9fe0c4434982e0fc72b675fda8028f9" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.2.1" [[deps.Adapt]] deps = ["LinearAlgebra", "Requires"] git-tree-sha1 = "02f731463748db57cc2ebfbd9fbc9ce8280d3433" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.7.1" [deps.Adapt.extensions] AdaptStaticArraysExt = "StaticArrays" [deps.Adapt.weakdeps] StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" version = "1.1.1" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.CEnum]] git-tree-sha1 = "eb4cb44a499229b3b8426dcfb5dd85333951ff90" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" version = "0.4.2" [[deps.ChainRules]] deps = ["Adapt", "ChainRulesCore", "Compat", "Distributed", "GPUArraysCore", "IrrationalConstants", "LinearAlgebra", "Random", "RealDot", "SparseArrays", "SparseInverseSubset", "Statistics", "StructArrays", "SuiteSparse"] git-tree-sha1 = "006cc7170be3e0fa02ccac6d4164a1eee1fc8c27" uuid = "082447d4-558c-5d27-93f4-14fc19e9eca2" version = "1.58.0" [[deps.ChainRulesCore]] deps = ["Compat", "LinearAlgebra"] git-tree-sha1 = "e0af648f0692ec1691b5d094b8724ba1346281cf" uuid = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" version = "1.18.0" weakdeps = ["SparseArrays"] [deps.ChainRulesCore.extensions] ChainRulesCoreSparseArraysExt = "SparseArrays" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "eb7f0f8307f71fac7c606984ea5fb2817275d6e4" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.4" [[deps.CommonSubexpressions]] deps = ["MacroTools", "Test"] git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7" uuid = "bbf7d656-a473-5ed7-a52c-81e309532950" version = "0.3.0" [[deps.Compat]] deps = ["UUIDs"] git-tree-sha1 = "8a62af3e248a8c4bad6b32cbbe663ae02275e32c" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "4.10.0" weakdeps = ["Dates", "LinearAlgebra"] [deps.Compat.extensions] CompatLinearAlgebraExt = "LinearAlgebra" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" version = "1.0.5+0" [[deps.ConstructionBase]] deps = ["LinearAlgebra"] git-tree-sha1 = "c53fc348ca4d40d7b371e71fd52251839080cbc9" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" version = "1.5.4" [deps.ConstructionBase.extensions] ConstructionBaseIntervalSetsExt = "IntervalSets" ConstructionBaseStaticArraysExt = "StaticArrays" [deps.ConstructionBase.weakdeps] IntervalSets = "8197267c-284f-5f27-9208-e0e47529a953" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.DataAPI]] git-tree-sha1 = "8da84edb865b0b5b0100c0666a9bc9a0b71c553c" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.15.0" [[deps.DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.DiffResults]] deps = ["StaticArraysCore"] git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621" uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5" version = "1.1.0" [[deps.DiffRules]] deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"] git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272" uuid = "b552c78f-8df3-52c6-915a-8e097449b14b" version = "1.15.1" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.DocStringExtensions]] deps = ["LibGit2"] git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d" uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae" version = "0.9.3" [[deps.Downloads]] deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" version = "1.6.0" [[deps.FileWatching]] uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee" [[deps.FillArrays]] deps = ["LinearAlgebra", "Random"] git-tree-sha1 = "35f0c0f345bff2c6d636f95fdb136323b5a796ef" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" version = "1.7.0" weakdeps = ["SparseArrays", "Statistics"] [deps.FillArrays.extensions] FillArraysSparseArraysExt = "SparseArrays" FillArraysStatisticsExt = "Statistics" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[deps.ForwardDiff]] deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"] git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad" uuid = "f6369f11-7733-5829-9624-2563aa707210" version = "0.10.36" [deps.ForwardDiff.extensions] ForwardDiffStaticArraysExt = "StaticArrays" [deps.ForwardDiff.weakdeps] StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" [[deps.GPUArrays]] deps = ["Adapt", "GPUArraysCore", "LLVM", "LinearAlgebra", "Printf", "Random", "Reexport", "Serialization", "Statistics"] git-tree-sha1 = "85d7fb51afb3def5dcb85ad31c3707795c8bccc1" uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7" version = "9.1.0" [[deps.GPUArraysCore]] deps = ["Adapt"] git-tree-sha1 = "2d6ca471a6c7b536127afccfa7564b5b39227fe0" uuid = "46192b85-c4d5-4398-a991-12ede77f4527" version = "0.1.5" [[deps.Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[deps.HypertextLiteral]] deps = ["Tricks"] git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.5" [[deps.IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "d75853a0bdbfb1ac815478bacd89cd27b550ace6" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.3" [[deps.IRTools]] deps = ["InteractiveUtils", "MacroTools", "Test"] git-tree-sha1 = "8aa91235360659ca7560db43a7d57541120aa31d" uuid = "7869d1d1-7146-5819-86e3-90919afe41df" version = "0.4.11" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.IrrationalConstants]] git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2" uuid = "92d709cd-6900-40b7-9082-c6be49f344b6" version = "0.2.2" [[deps.IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[deps.JLLWrappers]] deps = ["Artifacts", "Preferences"] git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.5.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.4" [[deps.LLVM]] deps = ["CEnum", "LLVMExtra_jll", "Libdl", "Preferences", "Printf", "Requires", "Unicode"] git-tree-sha1 = "c879e47398a7ab671c782e02b51a4456794a7fa3" uuid = "929cbde3-209d-540e-8aea-75f648917ca0" version = "6.4.0" [deps.LLVM.extensions] BFloat16sExt = "BFloat16s" [deps.LLVM.weakdeps] BFloat16s = "ab4f0b2a-ad5b-11e8-123f-65d77653426b" [[deps.LLVMExtra_jll]] deps = ["Artifacts", "JLLWrappers", "LazyArtifacts", "Libdl", "TOML"] git-tree-sha1 = "98eaee04d96d973e79c25d49167668c5c8fb50e2" uuid = "dad2f222-ce93-54a1-a47d-0025e8a3acab" version = "0.0.27+1" [[deps.LazyArtifacts]] deps = ["Artifacts", "Pkg"] uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" version = "0.6.3" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" version = "7.84.0+0" [[deps.LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" version = "1.10.2+0" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.LinearAlgebra]] deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.LogExpFunctions]] deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"] git-tree-sha1 = "7d6dd4e9212aebaeed356de34ccf262a3cd415aa" uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688" version = "0.3.26" [deps.LogExpFunctions.extensions] LogExpFunctionsChainRulesCoreExt = "ChainRulesCore" LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables" LogExpFunctionsInverseFunctionsExt = "InverseFunctions" [deps.LogExpFunctions.weakdeps] ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4" ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0" InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.MIMEs]] git-tree-sha1 = "65f28ad4b594aebe22157d6fac869786a255b7eb" uuid = "6c6e2e6c-3030-632d-7369-2d6c69616d65" version = "0.1.4" [[deps.MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "9ee1618cbf5240e6d4e0371d6f24065083f60c48" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.11" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" version = "2.28.2+0" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" version = "2022.10.11" [[deps.NaNMath]] deps = ["OpenLibm_jll"] git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "1.0.2" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" version = "1.2.0" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" version = "0.3.21+4" [[deps.OpenLibm_jll]] deps = ["Artifacts", "Libdl"] uuid = "05823500-19ac-5b8b-9628-191a04bc5112" version = "0.8.1+0" [[deps.OpenSpecFun_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1" uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e" version = "0.5.5+0" [[deps.OrderedCollections]] git-tree-sha1 = "2e73fe17cac3c62ad1aebe70d44c963c3cfdc3e3" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.6.2" [[deps.Parsers]] deps = ["Dates", "PrecompileTools", "UUIDs"] git-tree-sha1 = "a935806434c9d4c506ba941871b327b96d41f2bf" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.8.0" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" version = "1.9.2" [[deps.PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "FixedPointNumbers", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "MIMEs", "Markdown", "Random", "Reexport", "URIs", "UUIDs"] git-tree-sha1 = "bd7c69c7f7173097e7b5e1be07cee2b8b7447f51" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.54" [[deps.PrecompileTools]] deps = ["Preferences"] git-tree-sha1 = "03b4c25b43cb84cee5c90aa9b5ea0a78fd848d2f" uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a" version = "1.2.0" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "00805cd429dcb4870060ff49ef443486c262e38e" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.4.1" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.RealDot]] deps = ["LinearAlgebra"] git-tree-sha1 = "9f0a1b71baaf7650f4fa8a1d168c7fb6ee41f0c9" uuid = "c1ae055f-0cd5-4b69-90a6-9a35b1a98df9" version = "0.1.0" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" version = "0.7.0" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SparseArrays]] deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SparseInverseSubset]] deps = ["LinearAlgebra", "SparseArrays", "SuiteSparse"] git-tree-sha1 = "91402087fd5d13b2d97e3ef29bbdf9d7859e678a" uuid = "dc90abb0-5640-4711-901d-7e5b23a2fada" version = "0.1.1" [[deps.SpecialFunctions]] deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"] git-tree-sha1 = "e2cfc4012a19088254b3950b85c3c1d8882d864d" uuid = "276daf66-3868-5448-9aa4-cd146d93841b" version = "2.3.1" weakdeps = ["ChainRulesCore"] [deps.SpecialFunctions.extensions] SpecialFunctionsChainRulesCoreExt = "ChainRulesCore" [[deps.StaticArraysCore]] git-tree-sha1 = "36b3d696ce6366023a0ea192b4cd442268995a0d" uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c" version = "1.4.2" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" version = "1.9.0" [[deps.StructArrays]] deps = ["Adapt", "ConstructionBase", "DataAPI", "GPUArraysCore", "StaticArraysCore", "Tables"] git-tree-sha1 = "0a3db38e4cce3c54fe7a71f831cd7b6194a54213" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.6.16" [[deps.SuiteSparse]] deps = ["Libdl", "LinearAlgebra", "Serialization", "SparseArrays"] uuid = "4607b0f0-06f3-5cda-b6b1-a6196a1729e9" [[deps.SuiteSparse_jll]] deps = ["Artifacts", "Libdl", "Pkg", "libblastrampoline_jll"] uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c" version = "5.10.1+6" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" version = "1.0.3" [[deps.TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[deps.Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"] git-tree-sha1 = "cb76cf677714c095e535e3501ac7954732aeea2d" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.11.1" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" version = "1.10.0" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.Tricks]] git-tree-sha1 = "eae1bb484cd63b36999ee58be2de6c178105112f" uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" version = "0.1.8" [[deps.URIs]] git-tree-sha1 = "67db6cc7b3821e19ebe75791a9dd19c9b1188f2b" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.5.1" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" version = "1.2.13+0" [[deps.Zygote]] deps = ["AbstractFFTs", "ChainRules", "ChainRulesCore", "DiffRules", "Distributed", "FillArrays", "ForwardDiff", "GPUArrays", "GPUArraysCore", "IRTools", "InteractiveUtils", "LinearAlgebra", "LogExpFunctions", "MacroTools", "NaNMath", "PrecompileTools", "Random", "Requires", "SparseArrays", "SpecialFunctions", "Statistics", "ZygoteRules"] git-tree-sha1 = "5ded212acd815612df112bb895ef3910c5a03f57" uuid = "e88e6eb3-aa80-5325-afca-941959d7151f" version = "0.6.67" [deps.Zygote.extensions] ZygoteColorsExt = "Colors" ZygoteDistancesExt = "Distances" ZygoteTrackerExt = "Tracker" [deps.Zygote.weakdeps] Colors = "5ae59095-9a9b-59fe-a467-6f913c188581" Distances = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7" Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c" [[deps.ZygoteRules]] deps = ["ChainRulesCore", "MacroTools"] git-tree-sha1 = "9d749cd449fb448aeca4feee9a2f4186dbb5d184" uuid = "700de1a5-db45-46bc-99cf-38207098b444" version = "0.2.4" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" version = "5.8.0+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" version = "1.48.0+0" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" version = "17.4.0+0" """ # ╔═╡ Cell order: # ╟─8be19ab0-6d8c-11ec-0e32-fb14ef6c2970 # ╠═210d23f1-2374-4511-a012-852f1f2dc3be # ╟─a5d51b71-3685-4e1f-a4be-374623e3702b # ╠═ad439cdd-8d94-4c9f-8519-aa4077d11c8e # ╟─3003c9d3-df19-45ba-a37a-3111f473cb1a # ╠═579f207a-7ad6-45de-b4f0-30062ec1c8af # ╠═331fa4f8-b02c-4c30-bcc5-4d09c9234f37 # ╟─bae83d07-50ec-4f03-bd84-36fc41fa44f0 # ╠═7b96179d-1a55-42b4-a934-74b57a1d0cc6 # ╟─f0db9fff-59c8-439e-ba03-0a9fb09383a6 # ╠═5c454ece-de05-4cce-9996-037df54024e5 # ╟─8c2a500b-8d62-48a3-ac22-b6466858eef9 # ╠═dc6bec3c-4ca0-457e-886d-0b2a3f8845e8 # ╟─50e69922-f07e-48dd-981d-d68c8cd07f7f # ╠═d57941cf-655b-45f8-b5e2-b39d3cfeb9fb # ╠═5c1e16b3-1b3c-4c7a-a484-44b935eaa2a9 # ╟─175946fd-9de7-4efb-811d-1b52d6444614 # ╟─a7af8bca-1870-4ce5-8cce-9d9d04604f31 # ╠═851997de-b0f5-4273-a15b-0e1440c2e6cd # ╠═916d7fae-6599-41c6-b909-4e1dd66e48f1 # ╠═c1e17481-91c3-430f-99f3-1b328ec31417 # ╟─296c7321-db0d-4878-a4d9-6e2b6ee76e4e # ╟─0158daf7-bc8d-4764-81b1-b5e73e02dc8a # ╠═1ec0bddb-28d8-420b-856d-2c1ed70a77a4 # ╟─5d2e634f-c483-4707-a53d-aa71e17dd3f5 # ╠═3ed8b19e-6518-40b6-9320-3ab01d03f8f6 # ╟─00189191-c0ec-41c2-85f0-f362c4b8bb69 # ╟─944e81cc-ef05-4541-bf04-441d2a59af0c # ╠═9e477ba3-9e0e-42ae-9fe2-97adc7ae8faa # ╟─94cb97f7-ddc0-4ab3-bf90-9e38d2a19de0 # ╟─b04f0e12-06a0-4955-add4-ae3dcbb5c25a # ╠═c93b2ad2-1b5c-490e-b7fc-9fc0495fe6fa # ╟─e75cafd9-1d30-496e-82d5-f7b353036d81 # ╟─8330f2e8-c6a5-45ac-a812-ffc358f06ea6 # ╠═e4df40fb-dc10-421c-9cab-39ebfc73b320 # ╟─f45fbd6d-f02b-44ca-a846-f8f8792e7c32 # ╟─413d8927-cae0-4425-ab2b-f22cac074ac6 # ╠═b0b10df8-07f0-4317-8f3a-3620a3cb8e8e # ╟─4ec409ed-24cd-4b23-93aa-34da33644289 # ╟─a0653887-537c-4792-acfc-4849b79d6970 # ╠═f1f170a8-2902-41f7-8c21-99c90d752459 # ╟─acbe9641-ac0b-43c6-9cb2-2aea65efb431 # ╟─3829b9dc-bbba-48aa-9e95-996589886bfa # ╠═ef7fc726-3a27-463b-8c40-4eb549d983be # ╠═baed163f-b9f6-4c34-9432-529c683ae43e # ╠═d2e95e25-f1df-4807-bc41-fb7ebb7a3d55 # ╟─15870045-7238-4e75-9aea-3d6824e21bbe # ╟─069b6736-bc83-4a9b-8319-bcb6dedadcc6 # ╠═967af87a-d0d7-42ea-871d-492d9406f9c6 # ╟─fef07e51-227b-4558-b8bd-aa33d7a6c8ce # ╟─31589b2c-e0ad-478a-9a51-c18d83b67d07 # ╠═b12507a8-1a50-4e88-9271-1fa5413c93a8 # ╟─d72cffdc-60d9-4b0a-a787-89e2ba3ca858 # ╠═ba0a977e-3dea-4b87-900d-d7e2e4281f79 # ╠═053e0902-559f-4ac9-98dc-4b59f11e4056 # ╟─4c07b312-8fa3-48bb-95e7-5005674265aa # ╠═93539199-d2b4-450c-97d2-c1df2ed5cf51 # ╠═8c9c3777-30f9-4de2-b80d-cc05aaf21ea5 # ╠═f7c4d4a1-c3f4-4196-8a92-50294480555c # ╟─980379f9-3544-4363-aa6c-595d0c509124 # ╠═b9118811-80aa-4984-8f84-779a89aa94bc # ╠═0bbd170b-ef3d-4a4a-99f7-df6cfd16dcc6 # ╠═e5e59d1d-f6ec-4bde-90fe-4715b15239a2 # ╟─182aa82d-302a-4719-9ec2-b8df937acb7b # ╠═9adccf3d-1b74-4abb-87c4-cb066c65b3b6 # ╠═80787178-e17d-4066-8544-609a4ed76613 # ╠═f5b37004-f30b-4a59-8aab-ecc775e856b3 # ╟─067dadb1-1312-4035-930c-65b1068f7013 # ╠═97adec7a-75fd-40b1-9e46-e302c1dd6b9e # ╠═e44e21ed-36f6-4d2c-82bd-fa1575cc49f8 # ╠═2dae8ed0-3bd6-44e1-a762-a75b5cc9f9f0 # ╠═7bc35b0b-fdbe-46d2-83c1-0c056772761e # ╠═512f0bdc-7e4c-4a01-ae68-adbd57d63cb0 # ╠═40603feb-ebd6-47c6-97c4-c27b5211ff9e # ╠═4bba7170-e7b7-4ccf-b6f4-a32b7ee4b809 # ╠═15dc4645-b08e-4a5a-a65d-1858b948f324 # ╠═b90947cb-2cbe-4410-abbe-4869b5caa313 # ╠═982ac681-79a0-4c69-a5cc-0546a5ebd3be # ╠═84effb59-b744-4bd7-b724-6f3e4056a737 # ╠═78f8ce9c-9563-4ea1-89fc-c5c65ce4bb29 # ╠═460bba5d-ebac-46b1-80fc-72fe845046a7 # ╠═ca6b2f11-e0ef-404b-b487-584bd52fe936 # ╟─e16f2079-f028-46c6-b4e7-bf23fe9dcbfb # ╠═c66d8ffa-44d0-4550-9456-870aae5db796 # ╠═eeabb14a-7ca8-4446-b3d6-39a41b5b452c # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
SignalTemporalLogic
https://github.com/sisl/SignalTemporalLogic.jl.git
[ "MIT" ]
0.1.0
5fbd28f4de5d850d07adb040790b240190c706dd
code
25631
### A Pluto.jl notebook ### # v0.19.29 using Markdown using InteractiveUtils # ╔═╡ 752d2f6b-a2bb-45bc-9fac-299f88d13f00 using Test # ╔═╡ 39ceaac5-1084-44fa-9388-18593600eb11 using Plots; default(fontfamily="Computer Modern", framestyle=:box) # LaTex-style # ╔═╡ e74099af-ea14-46d6-a61d-d71d176f5e45 using LaTeXStrings # ╔═╡ ab57fd9b-9bec-48fc-8530-483a5d4ddb11 using Statistics # ╔═╡ d06d3ce6-d13b-4ab6-bb66-8a07835e1ce7 using LinearAlgebra # ╔═╡ d8a7facd-1ad8-413d-9037-054472fdc50f md""" # STL Formula Testing """ # ╔═╡ d383bf0a-3ff1-46d5-b285-63a803463bc0 x = [-0.25, 0, 0.1, 0.6, 0.75, 1.0] # ╔═╡ c27ce933-8a2f-4384-bb3f-d843c1112740 t = 1 # ╔═╡ 0259067a-b538-4dd2-8665-d308273c1a21 md""" ## Truth """ # ╔═╡ 3846c63f-32e7-4f96-8e7a-ff62a5b5a21c md""" ## Predicate """ # ╔═╡ 0398e51a-7c72-4fd9-8884-387ee256a9cb md""" ## Negation """ # ╔═╡ 016fa961-5f8a-4993-9fdf-a0c2c8d3c540 md""" ## Conjunction """ # ╔═╡ 3e02651f-fffd-47d7-956d-5ba405ecbfaa md""" ## Disjunction """ # ╔═╡ 74fabd52-861f-46dd-a509-cb10914ba332 md""" ## Implication """ # ╔═╡ e9cad561-10d3-48dd-ac13-090906b7c1e0 md""" ## Eventually """ # ╔═╡ d5fb1b62-574f-4025-9cf8-8e62e357f29f md""" ## Always """ # ╔═╡ 00b37481-0a05-4f5a-a6d0-2fdddaa6ee97 md""" ## Until $\mathcal{U}$ > Note, Julia v1.8 will allow `∃` and `∀` as allowable identifiers. $$\phi\;\mathcal{U}_{[a,b]}\;\psi$$ $\phi$ holds until $\psi$ holds, in interval $I=[a,b]$. $$\exists i: \psi(x_i) \wedge \bigl(\forall j < i: \phi(x_j)\bigr)$$ """ # ╔═╡ 1d0e135e-6cc3-422e-ba44-fee53cc1965f μ(x) = x # ╔═╡ 2305b206-0c6d-440d-81b7-0f485cc8a6a8 # U = @formula 𝒰(_ϕ, _ψ); NOTE: does not work like this. # ╔═╡ 2d65db96-f8cf-4ccc-b4f5-1c642249ed7b md""" ### Plotting Until """ # ╔═╡ ef4d7b05-d4b3-4498-9e5f-c26d9b47fb60 miss(ϕₓ) = map(v->v ? v : missing, ϕₓ) # ╔═╡ d1c3412a-373b-47e2-b3d1-383d4ce1fa61 md""" ### More Until Testing """ # ╔═╡ 56d37e18-c978-4757-9ed4-e4bd412af310 x2 = [1, 2, 3, 4, -9, -8] # ╔═╡ b30d0b1e-493b-48c0-b492-5f7dd2ad872b md""" # Extra Testing """ # ╔═╡ ce82cf55-0e32-412e-b6c6-f95563796e7e md""" ## Combining STL Formulas """ # ╔═╡ ec6ff814-1179-4525-b138-094ca6bec408 md""" ## Satisfying an STL formula The notation $x_t \in \phi$ denotes that signal $x_t$ satisfies an STL formula $\phi$. """ # ╔═╡ 78c782a1-0db2-4c97-a10d-8df036d1c409 x # ╔═╡ d68f9268-b807-4a76-a1ba-707938b1a589 md""" ## Other Rules - $\vee$ disjunction/or - $\phi \vee \psi = \neg(\neg\phi \wedge \neg\psi)$ - $\implies$ implies - $\phi \implies \psi = \neg\phi \vee \psi$ - $\lozenge$ eventually - $\square$ always """ # ╔═╡ 31317201-432b-47fa-818d-6690010788b0 md""" # Min/Max Approximation Testing """ # ╔═╡ 86cb96ff-5291-4617-848f-36fc1181d122 md""" ## Smooth Min/Max Testing """ # ╔═╡ daac79e3-5f16-49ff-9200-6ef1279eaf0d sm = [1,2,3,4,0.2] # ╔═╡ 1681bbe3-0327-495c-a3e4-0fc34cc9f298 md""" # Gradient Testing """ # ╔═╡ cb623b6e-f91a-4dab-95a7-525ed0cf3476 # diagonal(A) = [A[i,i] for i in 1:minimum(size(A))] # ╔═╡ b70197e9-7cc1-44d0-82d8-96cfe3a5de76 max.([1,2,3,4], [0,1,2,5]) # ╔═╡ 084904b0-1c60-4358-8369-50d56c456b2a md""" ## Until gradients """ # ╔═╡ 9c354e0c-4e11-4611-81db-b87bd4c5854b md""" # Multidimensional signals Where $x_t \in \mathbb{R}^n$ and $\mu:\mathbb{R}^n \to \mathbb{R}$. """ # ╔═╡ 8ac3d316-6048-42c5-8c80-a75baa5b32b2 X = [[1,1], [2,2], [3,3], [4,5]] # ╔═╡ c0e942a5-1c67-403a-abd2-8d9805a304e2 mu3(𝐱) = 𝐱[1] - 𝐱[2] # norm(x) # ╔═╡ c8084849-b06c-465a-a69d-1051ab4b085e mu3.(X) # ╔═╡ 1c5eaf4b-68aa-4ec1-95d0-268cff0bebf6 md""" ## Automatic transmission example $$\square_{1,10} v < 120 \wedge \square_{1,5} \omega < 4750$$ """ # ╔═╡ 88403601-59c3-4e67-9e02-90fdf5800e4a # transmission = @formula □(x -> x[1] < 120) ∧ □(x -> x[2] < 4750) # ╔═╡ f4ccd76d-fdf8-436a-83d3-5b062e45152e begin speeds = Real[114, 117, 100, 96, 92, 88, 108, 101, 118, 119] rpms = Real[4719, 4747, 4706, 4744, 4701, 4744, 4743, 4753, 4712, 4704] end # ╔═╡ 46036c23-797f-4f62-b9fa-64f43950747f speeds # ╔═╡ 811f6836-e5c8-447f-aa26-dda644fecc1b rpms # ╔═╡ d0b29940-303b-41ac-9313-ee290bde89c5 signals = collect(zip(speeds, rpms)) # ╔═╡ 84496823-db6a-4070-b4e3-c8aff24c54a7 function fill2size(arr, val, n) while length(arr) < n push!(arr, val) end return arr end # ╔═╡ d143a411-7824-411c-be71-a7fb6b9745a5 # with_terminal() do # T = length(signals) # ab = I -> (first(I), last(I)) # trans = deepcopy(transmission) # ϕa, ϕb = ab(trans.ϕ.I) # ψa, ψb = ab(trans.ψ.I) # for t in 1:T # trans.ϕ.I = clamp(max(1,ϕa),1,T):clamp(min(t, ϕb),1,T) # trans.ψ.I = clamp(max(1,ψa),1,T):clamp(min(t, ψb),1,T) # @info ρ(signals[1:t], trans) # end # end # ╔═╡ 3903012f-d2d9-4a8a-b246-ec778459a06e md""" # Unit Tests """ # ╔═╡ bea105c3-14c9-411a-a125-d70f905fdf07 x_stl = [1,2,3,4] # ╔═╡ 61d62b0c-7ea9-4220-87aa-150d801d2f10 max.([1, 2, 3], [-1, -2, 4]) # broadcasting is important here! # ╔═╡ 4b8cddcd-b180-4e97-b897-ef47a471d941 neg_ex = Expr(:(->), :xₜ, :(¬(μ(xₜ) > 0.5))) # ╔═╡ 9ce4cb7e-7ec6-429d-99a8-e5c523c45ba9 non_neg_ex = Expr(:(->), :xₜ, :(μ(xₜ) > 0.5)) # ╔═╡ d0722372-8e7a-409a-abd6-088b9a49ec8b md""" # Variable testing """ # ╔═╡ fda28f2d-255f-4fd6-b08f-59d61c20eb08 md""" # Junction testing """ # ╔═╡ 41dd7143-8783-45ea-9414-fa80b68b4a6c md""" # README Example Tests Sample tests shown in the README file. """ # ╔═╡ cc3e80a3-b3e6-46ab-888c-2b1795d8d3d4 md""" ## Example formula """ # ╔═╡ c8441616-025f-4755-9925-2b68ab49f341 md""" ## Example robustness """ # ╔═╡ fafeca97-78e5-4a7d-8dd2-ee99b1d41cc3 # ϕ = @formula ◊(xᵢ->xᵢ > 0.5) # x2 = [1, 2, 3, 4, -9, -8] # ╔═╡ 319a2bf8-8761-4367-a3f8-c896bd144ee4 md""" # Notebook """ # ╔═╡ bf3977db-5fd3-4440-9c01-39d5268181b9 IS_NOTEBOOK = @isdefined PlutoRunner # ╔═╡ b04a190f-948f-48d6-a173-f2c8ef5f1280 begin if IS_NOTEBOOK using Revise using PlutoUI using Pkg Pkg.develop(path="../.") end using SignalTemporalLogic import SignalTemporalLogic: # Pluto triggers @formula, ⊤, ⊥, ⟹, smoothmax, smoothmin end # ╔═╡ 09e292b6-d253-471b-9985-97485b8be5b6 ⊤(x) # ╔═╡ bfa42119-da7c-492c-ac80-83d9f765645e ρ(x[t], ⊤) # ╔═╡ c321f5cc-d35c-4ef9-9411-6bfec0ed4a70 ϕ_predicate = @formula xₜ -> μ(xₜ) > 0.5; # ╔═╡ 82a6d9d9-6693-4c7e-88b5-3a9776a51df7 ϕ_predicate(x) # ╔═╡ ac98fe7e-378c-44a2-940e-1acb805b7ad7 ρ(x, ϕ_predicate) # ╔═╡ 499161ae-ee5b-43ae-b313-203c70318771 ρ(x, @formula xₜ -> xₜ > 0.5) # without μ # ╔═╡ 745b4f91-2671-4b11-a8af-84f1d98f3c1f ρ(x, @formula xₜ -> xₜ < 0.5) # flipped # ╔═╡ 674ff4b6-e832-4c98-bcc9-bf240a9dd45d ϕ_negation = @formula xₜ -> ¬(xₜ > 0.5) # ╔═╡ 6cf6b47a-64da-4967-be77-190e192e3771 ϕ_negation(x) # ╔═╡ 3a212a95-32f2-49f2-9903-114b8da8e4cf ρ(x, ϕ_negation) # ╔═╡ e67582ba-ea43-4a78-b49e-dd1bc40ca5d9 ρ(x, @formula xₜ -> !(xₜ > 0.5)) # ╔═╡ 6062be75-cacb-4d7b-90fa-be76a9a3adf0 ϕ_conjunction = @formula (xₜ -> μ(xₜ) > 0.5) && (xₜ -> μ(xₜ) > 0); # ╔═╡ bfdbe9f2-6288-4c00-923b-6cdd7b865f16 ϕ_conjunction(x) # ╔═╡ 13a7ce7f-62c7-419f-a961-84257fd087dd ρ(x, ϕ_conjunction) # ╔═╡ 9b04cffe-a87e-4b6f-b2ca-e9f158f3767e ρ̃(x, ϕ_conjunction) # ╔═╡ 00847a03-890f-4397-b162-607251ecbe70 ∇ρ̃(x, ϕ_conjunction) # ╔═╡ d30a3fd9-4719-426d-b766-01eda690b76d ρ(x[t], @formula (xₜ -> μ(xₜ) > 0.5) && (xₜ -> μ(xₜ) > 0)) # ╔═╡ 31851f20-4030-404e-9dc2-46c8cb099ed8 ρ(x[t], @formula (xₜ -> μ(xₜ) > 0.5) ∧ (xₜ -> μ(xₜ) > 0)) # ╔═╡ 758e16d1-c2f9-4051-9af1-7270e5794699 ρ(x[t], @formula (xₜ -> ¬(μ(xₜ) > 0.5)) ∧ (xₜ -> μ(xₜ) > 0)) # ╔═╡ 8e4780db-ec27-4db9-a5ab-3360db1a69e6 ϕ_disjunction = @formula (xₜ -> μ(xₜ) > 0.5) || (xₜ -> μ(xₜ) > 0); # ╔═╡ dba58b15-fcb5-4627-bcce-9225302e1a6c ϕ_disjunction(x) # ╔═╡ 8b9ee613-8036-43b1-bb0f-a4c3df72ca55 ρ(x, ϕ_disjunction) # ╔═╡ c9d104b4-3c07-4994-b652-3fa2fdc5c8fc ρ̃(x, ϕ_disjunction) # ╔═╡ f512b6c6-c726-4a3d-8fbe-1177f9105c99 ρ(x, @formula (xₜ -> μ(xₜ) > 0.5) ∨ (xₜ -> μ(xₜ) > 0)) # ╔═╡ 2543584d-28d3-4e3c-bb35-59ffb693c3fb ϕ_implies = @formula (xₜ -> μ(xₜ) > 0.5) ⟹ (xₜ -> μ(xₜ) > 0) # ╔═╡ b998a448-b4f7-4cce-8f8f-80e6f4728f78 ϕ_implies(x) # ╔═╡ 6933b884-ecc0-40ac-851b-5d30d24be2e2 ρ(x, ϕ_implies) # ╔═╡ 28168ab3-1401-4867-845f-2d6a5df705ec ρ̃(x, ϕ_implies) # ╔═╡ f58a9304-aca8-4524-ae7d-f5bf7d556714 ϕ_eventually = @formula ◊([3,5], xₜ -> μ(xₜ) > 0.5) # ╔═╡ 08d19d11-678f-40a8-86c4-41f5635cd01d ρ(x, ϕ_eventually) # ╔═╡ 4519edec-4540-456a-9717-a0434d9b5343 ∇ρ(x, ϕ_eventually) # ╔═╡ f0347915-6f10-4a28-8797-76e13c61481e ∇ρ̃(x, ϕ_eventually) # ╔═╡ 735b1f6e-278e-4566-8d1b-5222ff203160 ρ(x, @formula ◊(0.1:4.4, xₜ -> μ(xₜ) > 0.5)) # ╔═╡ 40269dfd-c968-431b-a74b-9956cafe6614 ϕ_always = @formula □(xₜ -> xₜ > 0.5) # ╔═╡ 6da89434-ff90-4aa7-8c75-f578efc12009 ρ(x, ϕ_always) # ╔═╡ 53ef7008-3c1e-4fb6-9a8d-91796a9ea55e ρ̃(x, ϕ_always) # ╔═╡ 0ef85cb2-a2e5-4ebe-a27e-6b6177bf870f @test ρ(x, ϕ_always) == robustness(x, ϕ_always) # ╔═╡ 96a1a2f6-294f-4645-a53f-a67c30416aeb @test ρ̃(x, ϕ_always) == smooth_robustness(x, ϕ_always) # ╔═╡ 8235f0a4-87fd-4c5c-8d19-eb0e0d2e93a6 smooth_robustness(x, ϕ_always) # ╔═╡ 52b8d155-dfcf-4f3a-a8e0-93399ef48b5c ∇ρ(x, ϕ_always) # ╔═╡ d1051f1d-dc34-4e3d-bc85-71e738f1a835 ∇ρ̃(x, ϕ_always) # ╔═╡ 6dd5301b-a641-4343-91d3-3b442bb7c90f ρ(x, @formula □(5:6, xₜ -> xₜ > 0.5)) # ╔═╡ 0f661852-d1b4-4e48-946f-33c111230047 _ϕ = @formula xₜ -> μ(xₜ) > 0; # ╔═╡ b74bd2ee-eb33-4c41-b3b0-e2544166a8ae _ϕ.μ(x) # ╔═╡ 64e31569-5749-448b-836d-0714d5fd12bd _ϕ.(x) # ╔═╡ 66ac721c-2392-4420-943d-cebdc9710d9a _ϕ(x[1]) # ╔═╡ 14f52f51-ec7b-4a30-af2d-4dfeed8618c0 _ψ = @formula xₜ -> -μ(xₜ) > 0; # ╔═╡ 2c8c423e-ed23-4be9-90f6-d96e9ca8c3cb U = @formula 𝒰(xₜ -> μ(xₜ) > 0, xₜ -> -μ(xₜ) > 0); # ╔═╡ ba9e4d5a-e791-4f04-9be1-bbdd5de09d6c U([0.1, 1, 2, 3, -10, -9, -8]) # ╔═╡ d79856be-3c2f-4ff7-a9c6-94a3a4bf8ffe U(x) # ╔═╡ 4efe597d-a2b3-4a2e-916a-323e4c86a823 begin x1 = [0.001, 1, 2, 3, 4, 5, 6, 7, -8, -9, -10] ϕ1 = @formula xᵢ -> xᵢ > 0 ψ1 = @formula xᵢ -> -xᵢ > 0 # xᵢ < 0 end; # ╔═╡ b9643ca4-58aa-4902-a103-2c8140eb6e74 x1 # ╔═╡ 562d3796-bf48-4260-9683-0999f628b43c U(x1) # ╔═╡ 482600d2-e1a7-446c-934d-3234885ba14c begin time = 1:length(x1) steptype = :steppost plot(time, miss(ϕ1.(x1)) .+ 1, lw=5, c=:blue, lab=false, lt=steptype) plot!(time, miss(ψ1.(x1)), lw=5, c=:red, lab=false, lt=steptype) plot!(time, .∨(ϕ1.(x1), ψ1.(x1)) .- 1, lw=5, c=:purple, lab=false, lt=steptype) plot!(ytickfont=12, xtickfont=12) yticks!(0:2, [L"\phi \mathcal{U} \psi", L"\psi", L"\phi"]) ylims!(-1.1, 3) xlabel!("time") xticks!(time) title!("Until: $(U(x1))") end # ╔═╡ 6af6965b-22a4-44dd-ac6f-2aefca4e3b80 ϕ_until = @formula 𝒰(xₜ -> μ(xₜ) > 0, xₜ -> -μ(xₜ) > 0) # ╔═╡ 83eda8b3-1cf0-44e1-91af-c2140e8c8f50 ϕ_until(x2) # ╔═╡ 532cb215-740e-422a-8d36-0ecf8b7a528f ϕ_until # ╔═╡ 4a66d029-dfcb-4480-8807-88ce28289722 ρ(x2, ϕ_until) # ╔═╡ 71cf4068-e617-4604-a2cb-295cbd6d82b8 ρ̃(x2, ϕ_until) # ╔═╡ fbf26cbf-ec93-478d-8677-f79e1382802e ∇ρ(x2, ϕ_until) # ╔═╡ d32bf800-51d5-455f-ab50-91bb31f67e83 ∇ρ̃(x2, ϕ_until) # ╔═╡ c738c26d-10a7-488a-976e-cc5f69fc4526 ρ(x, @formula 𝒰(2:4, xₜ -> xₜ > 0, xₜ -> -xₜ > 0)) # ╔═╡ 26a3441c-9128-46c6-8b5a-6858d642509c begin plot(1:length(x2), fill(ρ(x2, ϕ_until), length(x2)), label="ρ(x,ϕ)") plot!(1:length(x2), vec(∇ρ(x2, ϕ_until)), label="∇ρ(x,ϕ)") plot!(1:length(x2), vec(∇ρ̃(x2, ϕ_until)), label="soft ∇ρ̃(x,ϕ; w=1)") plot!(1:length(x2), vec(∇ρ̃(x2, ϕ_until; w=2)), label="soft ∇ρ̃(x,ϕ; w=2)") end # ╔═╡ ab72fec1-8266-4064-8a58-6de08b318ada begin x_comb = [4, 3, 2, 1, 0, -1, -2, -3, -4] ϕ₁ = @formula xₜ -> xₜ > 0 ϕ₂ = @formula xₜ -> -xₜ > 0 ϕc1 = ϕ₁ ∨ ϕ₂ ϕ₃ = @formula xₜ -> xₜ > 0 ϕ₄ = @formula xₜ -> xₜ > 1 ϕc2 = ϕ₃ ∧ ϕ₄ end # ╔═╡ e0b079d5-8527-4e81-a8c5-f1e354e21717 ϕc1.(x_comb) # ╔═╡ 4ee8c66a-394c-4ad1-aa69-7121835611bc ϕc2.(x_comb) # ╔═╡ ee8e2823-72bc-420d-8069-767a2c31bdec begin @assert (false ⟹ false) == true @assert (false ⟹ true) == true @assert (true ⟹ false) == false @assert (true ⟹ true) == true end # ╔═╡ e9910277-56ea-44f0-b36e-a9f7e689b736 @test smoothmin(sm; w=0) == minimum(sm) # ╔═╡ f7e01cce-635a-4897-923e-f62127e784ef @test smoothmin(sm; w=Inf) == mean(sm) # ╔═╡ 8a33e8ee-5ba7-4a00-9c0b-a2722f3d0c39 @test smoothmax(sm; w=0) == maximum(sm) # ╔═╡ eb2a96f7-7635-49de-a967-604658d4905d @test smoothmax(sm; w=Inf) == mean(sm) # ╔═╡ e28af833-ebc3-4767-a5ba-0c2f5dbbc028 @test robustness(x, ϕ_always; w=1) == smooth_robustness(x, ϕ_always) # ╔═╡ dded9b53-c9d4-47b1-9cd2-ca5a3cd245fb @test robustness(x, ϕ_always) == ρ(x, ϕ_always) # ╔═╡ c5101fe8-6617-434e-817e-eeac1caa3170 q = @formula ◊(xᵢ->μ(xᵢ) > 0.5) # ╔═╡ 7ea907bd-d46e-42dc-8bfa-12264f9935b7 ∇ρ(x2, q) # ╔═╡ e0b47a72-6e21-4751-a441-a49b5bad9175 ∇ρ̃(x2, q) # ╔═╡ af384ae1-a6bc-4f5c-a19d-3b90bf50254f ρ(x2,q) # ╔═╡ 9f692e34-ecf1-44ae-8f99-68606e8a1b09 ρ̃(x2,q) # ╔═╡ ea0be409-4fc6-42a8-a1d9-98aa8db843d6 smoothmax.([1,2,3,4], [0,1,2,5]) # ╔═╡ e2a50d76-07df-40b6-9b82-0fddd3785208 ∇ρ(x2, ϕ_until) # ╔═╡ fe39c9df-ecc3-43ac-aa75-0a4ca704afb7 ρ(x2, ϕ_until) # ╔═╡ 405f53c4-e273-42f8-9465-e70370d9ec5c ∇ρ̃(x2, ϕ_until) # ╔═╡ cdbad3c0-375c-486f-86e9-991ce660f76e ρ̃(x,ϕ_until) # ╔═╡ 4cce6436-76f7-4b19-831f-b0c63757c16e ϕ_md = @formula ¬(xₜ->mu3(xₜ) > 0) && ¬(xₜ->-mu3(xₜ) > 0) # ╔═╡ 53775e8e-c933-4fe1-b23e-28218633ad82 ϕ_md.(X) # ╔═╡ 0c8e5d02-377c-4e47-98b9-dceeef518e77 map(x->ρ(x, ϕ_md), X) # ρ.(X, ϕ) doesn't work # ╔═╡ 29b0e762-9b4e-4cde-adc3-9ead18115917 map(x->ρ̃(x, ϕ_md), X) # ρ.(X, ϕ) doesn't work # ╔═╡ 8ebb7717-7563-4202-ae47-2d6c6646a874 transmission = @formula □(1:10, x -> x[1] < 120) ∧ □(1:5, x -> x[2] < 4750) # ╔═╡ fb56bf20-317b-41bc-b0ad-33fac8d54dc2 @test transmission(signals) # ╔═╡ 61a54891-d15d-4747-bd29-ee9d3d24fb2e # Get the robustness at each time step. function ρ_overtime(x, ϕ) return [ρ(fill2size(x[1:t], (-Inf, -Inf), length(x)), ϕ) for t in 1:length(x)] end # ╔═╡ 01ea793a-52b4-45a8-b829-4b7acfb5b49d ρ_overtime(signals, transmission) # ╔═╡ 67d1440d-42f6-4255-ba27-d041b45fec78 @test ρ(signals, transmission) == 1 # ╔═╡ 324c7c0a-b627-46d3-945d-573c960d57e6 ∇ρ(signals, transmission) # ╔═╡ e0cc216e-8565-4ca5-8ee8-fe9516bc6c1a ∇ρ̃(signals, transmission) # ╔═╡ 3d155de2-0614-4561-b0f7-b5788c557539 ϕ_stl = @formula □(x->x < 5) # ╔═╡ c69a2c61-ffe6-47d0-bda7-b12183a96d95 STL.robustness(x_stl, ϕ_stl) == ρ(x_stl, ϕ_stl) # ╔═╡ 282fa1af-7670-4384-b303-3b5359a31fc0 ρ(x, @formula □(1:3, (xₜ -> xₜ > 0.5) ⟹ ◊(xₜ -> xₜ > 0.5))) # ╔═╡ 7fe34fde-7a21-44bb-8965-d680cfed8aab ρ(x, @formula □(1:3, ◊(xₜ -> ¬(xₜ > 0.5)) ⟹ (xₜ -> xₜ > 0.5))) # ╔═╡ 45e19fc0-5819-4df9-8eea-5460dcc5543b big_formula = @formula □(1:10, (xᵢ -> xᵢ[1] > 0.5) ⟹ ◊(3:5, xᵢ -> xᵢ[2] > 0.5)) # ╔═╡ 5f18a00a-b7d0-482a-8201-0905b8857d90 get_type = SignalTemporalLogic.parse_formula # ╔═╡ a5f918e4-81a7-410d-81b0-3a31acdff7ec @formula(xₜ -> true) # ╔═╡ f67bfa55-3d82-4783-8f8d-34288b05229c @test isa(@formula(xₜ -> true), Atomic) # ╔═╡ fbf51c72-4e21-4918-a928-10defa4832dd @test isa(@formula(xₜ -> ¬(μ(xₜ) > 0.5)), Negation) # ╔═╡ 1d6af625-92a5-45bc-ade3-d0a3ace4b9f1 @test isa(@formula(xₜ -> μ(xₜ) > 0.5), Predicate) # ╔═╡ bc7cca16-207b-4ddc-a204-f1ecacd6985a @test isa(@formula(xₜ -> ¬(xₜ > 0.5)), Negation) # ╔═╡ 0bf6dd4c-c750-4e17-9bb3-31436d3dfa67 @test isa(@formula(xₜ -> xₜ > 0.5), Predicate) # ╔═╡ 3fb98fd1-94f0-4b0f-b721-af0bfc8cacde @test isa(@formula(xₜ -> xₜ > 0.5), Predicate) # ╔═╡ ff2b7631-2325-4580-9cf0-1caee91add30 @test isa(@formula((xₜ -> xₜ > 0.5) && (xₜ -> xₜ > 0)), Conjunction) # ╔═╡ 9874e9ab-4431-45c4-8ece-e2b8f4a4cd43 @test isa(@formula((xₜ -> xₜ > 0.5) || (xₜ -> xₜ > 0)), Disjunction) # ╔═╡ dd8dc778-e87a-4f62-9041-6be2ba9eb6a9 @test isa(@formula(◊(xₜ -> xₜ > 0.5)), Eventually) # ╔═╡ b2a24987-1518-4542-9f6c-50e700759e12 @test isa(@formula(□(xₜ -> xₜ > 0.5)), Always) # ╔═╡ fa5eaecc-e9bd-4d0f-9be5-5515f4e4fd10 @test isa(@formula(𝒰(xₜ -> xₜ > 0.5, xₜ -> xₜ < 0.5)), Until) # ╔═╡ 71027432-bc47-4de8-bb34-8a3e20e619b0 @test SignalTemporalLogic.strip_negation(neg_ex) == non_neg_ex # ╔═╡ aea4bd82-6a4f-4347-b8f0-f0e2870c3401 @test (@formula x->¬(x > 0))(x) == (@formula ¬(x->x > 0))(x) # ╔═╡ 473ef134-f689-4eeb-b4e9-d116cbda4101 @test isa(@formula((xₜ -> xₜ > 0.5) ⟺ (xₜ -> xₜ < 1.0)), Biconditional) # ╔═╡ a087ed1a-ef52-423e-83c7-9669ff42ccc0 @test begin local ϕ = @formula(xₜ -> xₜ == 0.5) ϕ(0.5) && !ϕ(1000) end # ╔═╡ 5833958c-53cb-4ed5-8416-97168f6425de function test_local_variable(λ) return @eval @formula s->s > $λ # Note to interpolate variable with $ end # ╔═╡ f725ac4b-d8b7-4955-bea0-f3d3d83265aa @test test_local_variable(1234).c == 1234 # ╔═╡ 5ccc7a0f-c3b2-4429-9bd5-d7fd9bcb97b5 @test begin local upright = @formula s -> abs(s[1]) < π / 4 local ψ = @eval @formula □($upright) # input anonymous function MUST be a Formula ψ([π/10]) && !(ψ([π/3])) end # ╔═╡ e2313bcd-dd8f-4ffd-ac1e-7e08304c37b5 @test_throws "Symbol " begin local variable local ψ = @formula □(variable) end # ╔═╡ aea96bbd-d006-4933-a8cb-5165a0158499 @test begin local conjunc_test = @formula s->(s[1] < 50) && (s[4] < 1) conjunc_test([49, 0, 0, 0.9]) == true && conjunc_test([49, 0, 0, 1.1]) == false end # ╔═╡ 781e31e0-1688-48e0-9a22-b5aea40ffb87 @test begin local conjunc_test2 = @formula (s->s[1] < 50) && (s->s[4] < 1) conjunc_test2([49, 0, 0, 0.9]) == true && conjunc_test2([49, 0, 0, 1.1]) == false end # ╔═╡ 6c843d45-4c30-4dcd-a30b-27a12c2e1195 @test begin local ϕ = @formula □(s->s[1] < 50 && s[4] < 1) ϕ([[49, 0, 0, 0], [49, 0, 0, -1]]) && ϕ([(49, 0, 0, 0), (49, 0, 0, -1)]) && ϕ(([49, 0, 0, 0], [49, 0, 0, -1])) && ϕ(((49, 0, 0, 0), (49, 0, 0, -1))) end # ╔═╡ c4f343f7-8c63-4f71-8f46-668675841de7 @test begin # Signals (i.e., trace) # x = [-0.25, 0, 0.1, 0.6, 0.75, 1.0] # STL formula: "eventually the signal will be greater than 0.5" ϕ = @formula ◊(xₜ -> xₜ > 0.5) # Check if formula is satisfied ϕ(x) end # ╔═╡ 0705ce64-9e9d-427e-8cdf-6d958a10c238 ∇ρ(x2, q) # ╔═╡ 38e9a99b-c89c-4973-9538-90d5c4bbb017 ∇ρ̃(x2, q) # ╔═╡ 450f79d5-3393-4aa0-85d6-9bbd8b0b3224 IS_NOTEBOOK && TableOfContents() # ╔═╡ Cell order: # ╟─d8a7facd-1ad8-413d-9037-054472fdc50f # ╠═752d2f6b-a2bb-45bc-9fac-299f88d13f00 # ╠═b04a190f-948f-48d6-a173-f2c8ef5f1280 # ╠═450f79d5-3393-4aa0-85d6-9bbd8b0b3224 # ╠═d383bf0a-3ff1-46d5-b285-63a803463bc0 # ╠═c27ce933-8a2f-4384-bb3f-d843c1112740 # ╟─0259067a-b538-4dd2-8665-d308273c1a21 # ╠═09e292b6-d253-471b-9985-97485b8be5b6 # ╠═bfa42119-da7c-492c-ac80-83d9f765645e # ╟─3846c63f-32e7-4f96-8e7a-ff62a5b5a21c # ╠═c321f5cc-d35c-4ef9-9411-6bfec0ed4a70 # ╠═82a6d9d9-6693-4c7e-88b5-3a9776a51df7 # ╠═ac98fe7e-378c-44a2-940e-1acb805b7ad7 # ╠═499161ae-ee5b-43ae-b313-203c70318771 # ╠═745b4f91-2671-4b11-a8af-84f1d98f3c1f # ╟─0398e51a-7c72-4fd9-8884-387ee256a9cb # ╠═674ff4b6-e832-4c98-bcc9-bf240a9dd45d # ╠═b9643ca4-58aa-4902-a103-2c8140eb6e74 # ╠═6cf6b47a-64da-4967-be77-190e192e3771 # ╠═3a212a95-32f2-49f2-9903-114b8da8e4cf # ╠═e67582ba-ea43-4a78-b49e-dd1bc40ca5d9 # ╟─016fa961-5f8a-4993-9fdf-a0c2c8d3c540 # ╠═6062be75-cacb-4d7b-90fa-be76a9a3adf0 # ╠═bfdbe9f2-6288-4c00-923b-6cdd7b865f16 # ╠═13a7ce7f-62c7-419f-a961-84257fd087dd # ╠═9b04cffe-a87e-4b6f-b2ca-e9f158f3767e # ╠═00847a03-890f-4397-b162-607251ecbe70 # ╠═d30a3fd9-4719-426d-b766-01eda690b76d # ╠═31851f20-4030-404e-9dc2-46c8cb099ed8 # ╠═758e16d1-c2f9-4051-9af1-7270e5794699 # ╟─3e02651f-fffd-47d7-956d-5ba405ecbfaa # ╠═8e4780db-ec27-4db9-a5ab-3360db1a69e6 # ╠═dba58b15-fcb5-4627-bcce-9225302e1a6c # ╠═8b9ee613-8036-43b1-bb0f-a4c3df72ca55 # ╠═c9d104b4-3c07-4994-b652-3fa2fdc5c8fc # ╠═f512b6c6-c726-4a3d-8fbe-1177f9105c99 # ╟─74fabd52-861f-46dd-a509-cb10914ba332 # ╠═2543584d-28d3-4e3c-bb35-59ffb693c3fb # ╠═b998a448-b4f7-4cce-8f8f-80e6f4728f78 # ╠═6933b884-ecc0-40ac-851b-5d30d24be2e2 # ╠═28168ab3-1401-4867-845f-2d6a5df705ec # ╟─e9cad561-10d3-48dd-ac13-090906b7c1e0 # ╠═f58a9304-aca8-4524-ae7d-f5bf7d556714 # ╠═08d19d11-678f-40a8-86c4-41f5635cd01d # ╠═4519edec-4540-456a-9717-a0434d9b5343 # ╠═f0347915-6f10-4a28-8797-76e13c61481e # ╠═735b1f6e-278e-4566-8d1b-5222ff203160 # ╟─d5fb1b62-574f-4025-9cf8-8e62e357f29f # ╠═40269dfd-c968-431b-a74b-9956cafe6614 # ╠═6da89434-ff90-4aa7-8c75-f578efc12009 # ╠═53ef7008-3c1e-4fb6-9a8d-91796a9ea55e # ╠═0ef85cb2-a2e5-4ebe-a27e-6b6177bf870f # ╠═96a1a2f6-294f-4645-a53f-a67c30416aeb # ╠═8235f0a4-87fd-4c5c-8d19-eb0e0d2e93a6 # ╠═52b8d155-dfcf-4f3a-a8e0-93399ef48b5c # ╠═d1051f1d-dc34-4e3d-bc85-71e738f1a835 # ╠═6dd5301b-a641-4343-91d3-3b442bb7c90f # ╟─00b37481-0a05-4f5a-a6d0-2fdddaa6ee97 # ╠═1d0e135e-6cc3-422e-ba44-fee53cc1965f # ╠═0f661852-d1b4-4e48-946f-33c111230047 # ╠═14f52f51-ec7b-4a30-af2d-4dfeed8618c0 # ╠═2305b206-0c6d-440d-81b7-0f485cc8a6a8 # ╠═2c8c423e-ed23-4be9-90f6-d96e9ca8c3cb # ╠═b74bd2ee-eb33-4c41-b3b0-e2544166a8ae # ╠═ba9e4d5a-e791-4f04-9be1-bbdd5de09d6c # ╠═d79856be-3c2f-4ff7-a9c6-94a3a4bf8ffe # ╠═4efe597d-a2b3-4a2e-916a-323e4c86a823 # ╠═562d3796-bf48-4260-9683-0999f628b43c # ╟─2d65db96-f8cf-4ccc-b4f5-1c642249ed7b # ╠═39ceaac5-1084-44fa-9388-18593600eb11 # ╠═e74099af-ea14-46d6-a61d-d71d176f5e45 # ╠═ef4d7b05-d4b3-4498-9e5f-c26d9b47fb60 # ╠═482600d2-e1a7-446c-934d-3234885ba14c # ╟─d1c3412a-373b-47e2-b3d1-383d4ce1fa61 # ╠═6af6965b-22a4-44dd-ac6f-2aefca4e3b80 # ╠═56d37e18-c978-4757-9ed4-e4bd412af310 # ╠═83eda8b3-1cf0-44e1-91af-c2140e8c8f50 # ╠═4a66d029-dfcb-4480-8807-88ce28289722 # ╠═71cf4068-e617-4604-a2cb-295cbd6d82b8 # ╠═fbf26cbf-ec93-478d-8677-f79e1382802e # ╠═d32bf800-51d5-455f-ab50-91bb31f67e83 # ╠═c738c26d-10a7-488a-976e-cc5f69fc4526 # ╠═26a3441c-9128-46c6-8b5a-6858d642509c # ╟─b30d0b1e-493b-48c0-b492-5f7dd2ad872b # ╟─ce82cf55-0e32-412e-b6c6-f95563796e7e # ╠═ab72fec1-8266-4064-8a58-6de08b318ada # ╠═e0b079d5-8527-4e81-a8c5-f1e354e21717 # ╠═4ee8c66a-394c-4ad1-aa69-7121835611bc # ╟─ec6ff814-1179-4525-b138-094ca6bec408 # ╠═78c782a1-0db2-4c97-a10d-8df036d1c409 # ╠═64e31569-5749-448b-836d-0714d5fd12bd # ╠═66ac721c-2392-4420-943d-cebdc9710d9a # ╟─d68f9268-b807-4a76-a1ba-707938b1a589 # ╠═ee8e2823-72bc-420d-8069-767a2c31bdec # ╟─31317201-432b-47fa-818d-6690010788b0 # ╠═ab57fd9b-9bec-48fc-8530-483a5d4ddb11 # ╟─86cb96ff-5291-4617-848f-36fc1181d122 # ╠═daac79e3-5f16-49ff-9200-6ef1279eaf0d # ╠═e9910277-56ea-44f0-b36e-a9f7e689b736 # ╠═f7e01cce-635a-4897-923e-f62127e784ef # ╠═8a33e8ee-5ba7-4a00-9c0b-a2722f3d0c39 # ╠═eb2a96f7-7635-49de-a967-604658d4905d # ╠═e28af833-ebc3-4767-a5ba-0c2f5dbbc028 # ╠═dded9b53-c9d4-47b1-9cd2-ca5a3cd245fb # ╟─1681bbe3-0327-495c-a3e4-0fc34cc9f298 # ╠═c5101fe8-6617-434e-817e-eeac1caa3170 # ╠═7ea907bd-d46e-42dc-8bfa-12264f9935b7 # ╠═e0b47a72-6e21-4751-a441-a49b5bad9175 # ╠═af384ae1-a6bc-4f5c-a19d-3b90bf50254f # ╠═9f692e34-ecf1-44ae-8f99-68606e8a1b09 # ╠═cb623b6e-f91a-4dab-95a7-525ed0cf3476 # ╠═b70197e9-7cc1-44d0-82d8-96cfe3a5de76 # ╠═ea0be409-4fc6-42a8-a1d9-98aa8db843d6 # ╟─084904b0-1c60-4358-8369-50d56c456b2a # ╠═532cb215-740e-422a-8d36-0ecf8b7a528f # ╠═e2a50d76-07df-40b6-9b82-0fddd3785208 # ╠═fe39c9df-ecc3-43ac-aa75-0a4ca704afb7 # ╠═405f53c4-e273-42f8-9465-e70370d9ec5c # ╠═cdbad3c0-375c-486f-86e9-991ce660f76e # ╟─9c354e0c-4e11-4611-81db-b87bd4c5854b # ╠═d06d3ce6-d13b-4ab6-bb66-8a07835e1ce7 # ╠═8ac3d316-6048-42c5-8c80-a75baa5b32b2 # ╠═c0e942a5-1c67-403a-abd2-8d9805a304e2 # ╠═c8084849-b06c-465a-a69d-1051ab4b085e # ╠═4cce6436-76f7-4b19-831f-b0c63757c16e # ╠═53775e8e-c933-4fe1-b23e-28218633ad82 # ╠═0c8e5d02-377c-4e47-98b9-dceeef518e77 # ╠═29b0e762-9b4e-4cde-adc3-9ead18115917 # ╟─1c5eaf4b-68aa-4ec1-95d0-268cff0bebf6 # ╠═8ebb7717-7563-4202-ae47-2d6c6646a874 # ╠═88403601-59c3-4e67-9e02-90fdf5800e4a # ╠═f4ccd76d-fdf8-436a-83d3-5b062e45152e # ╠═46036c23-797f-4f62-b9fa-64f43950747f # ╠═811f6836-e5c8-447f-aa26-dda644fecc1b # ╠═d0b29940-303b-41ac-9313-ee290bde89c5 # ╠═fb56bf20-317b-41bc-b0ad-33fac8d54dc2 # ╠═84496823-db6a-4070-b4e3-c8aff24c54a7 # ╠═61a54891-d15d-4747-bd29-ee9d3d24fb2e # ╠═01ea793a-52b4-45a8-b829-4b7acfb5b49d # ╠═67d1440d-42f6-4255-ba27-d041b45fec78 # ╠═324c7c0a-b627-46d3-945d-573c960d57e6 # ╠═e0cc216e-8565-4ca5-8ee8-fe9516bc6c1a # ╠═d143a411-7824-411c-be71-a7fb6b9745a5 # ╟─3903012f-d2d9-4a8a-b246-ec778459a06e # ╠═3d155de2-0614-4561-b0f7-b5788c557539 # ╠═bea105c3-14c9-411a-a125-d70f905fdf07 # ╠═c69a2c61-ffe6-47d0-bda7-b12183a96d95 # ╠═282fa1af-7670-4384-b303-3b5359a31fc0 # ╠═7fe34fde-7a21-44bb-8965-d680cfed8aab # ╠═61d62b0c-7ea9-4220-87aa-150d801d2f10 # ╠═45e19fc0-5819-4df9-8eea-5460dcc5543b # ╠═5f18a00a-b7d0-482a-8201-0905b8857d90 # ╠═a5f918e4-81a7-410d-81b0-3a31acdff7ec # ╠═f67bfa55-3d82-4783-8f8d-34288b05229c # ╠═fbf51c72-4e21-4918-a928-10defa4832dd # ╠═1d6af625-92a5-45bc-ade3-d0a3ace4b9f1 # ╠═bc7cca16-207b-4ddc-a204-f1ecacd6985a # ╠═0bf6dd4c-c750-4e17-9bb3-31436d3dfa67 # ╠═3fb98fd1-94f0-4b0f-b721-af0bfc8cacde # ╠═ff2b7631-2325-4580-9cf0-1caee91add30 # ╠═9874e9ab-4431-45c4-8ece-e2b8f4a4cd43 # ╠═dd8dc778-e87a-4f62-9041-6be2ba9eb6a9 # ╠═b2a24987-1518-4542-9f6c-50e700759e12 # ╠═fa5eaecc-e9bd-4d0f-9be5-5515f4e4fd10 # ╠═4b8cddcd-b180-4e97-b897-ef47a471d941 # ╠═9ce4cb7e-7ec6-429d-99a8-e5c523c45ba9 # ╠═71027432-bc47-4de8-bb34-8a3e20e619b0 # ╠═aea4bd82-6a4f-4347-b8f0-f0e2870c3401 # ╠═473ef134-f689-4eeb-b4e9-d116cbda4101 # ╠═a087ed1a-ef52-423e-83c7-9669ff42ccc0 # ╟─d0722372-8e7a-409a-abd6-088b9a49ec8b # ╠═5833958c-53cb-4ed5-8416-97168f6425de # ╠═f725ac4b-d8b7-4955-bea0-f3d3d83265aa # ╠═5ccc7a0f-c3b2-4429-9bd5-d7fd9bcb97b5 # ╠═e2313bcd-dd8f-4ffd-ac1e-7e08304c37b5 # ╟─fda28f2d-255f-4fd6-b08f-59d61c20eb08 # ╠═aea96bbd-d006-4933-a8cb-5165a0158499 # ╠═781e31e0-1688-48e0-9a22-b5aea40ffb87 # ╠═6c843d45-4c30-4dcd-a30b-27a12c2e1195 # ╟─41dd7143-8783-45ea-9414-fa80b68b4a6c # ╟─cc3e80a3-b3e6-46ab-888c-2b1795d8d3d4 # ╠═c4f343f7-8c63-4f71-8f46-668675841de7 # ╟─c8441616-025f-4755-9925-2b68ab49f341 # ╠═fafeca97-78e5-4a7d-8dd2-ee99b1d41cc3 # ╠═0705ce64-9e9d-427e-8cdf-6d958a10c238 # ╠═38e9a99b-c89c-4973-9538-90d5c4bbb017 # ╟─319a2bf8-8761-4367-a3f8-c896bd144ee4 # ╠═bf3977db-5fd3-4440-9c01-39d5268181b9
SignalTemporalLogic
https://github.com/sisl/SignalTemporalLogic.jl.git
[ "MIT" ]
0.1.0
5fbd28f4de5d850d07adb040790b240190c706dd
docs
1809
# SignalTemporalLogic.jl This package can define _signal temporal logic_ (STL) formulas using the `@formula` macro and then check if the formulas satisfy a signal trace. It can also measure the _robustness_ of a trace through an STL formula and compute the gradient of the robustness (as well as an approximate gradient using smooth min and max functions). [![Pluto source](https://img.shields.io/badge/pluto-source/docs-4063D8)](https://sisl.github.io/SignalTemporalLogic.jl/notebooks/stl.html) [![Build Status](https://github.com/sisl/SignalTemporalLogic.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/sisl/SignalTemporalLogic.jl/actions/workflows/CI.yml) <!-- [![codecov](https://codecov.io/gh/sisl/SignalTemporalLogic.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/sisl/SignalTemporalLogic.jl) --> ## Installation ```julia ] add https://github.com/sisl/SignalTemporalLogic.jl ``` ## Examples [![Pluto tests](https://img.shields.io/badge/pluto-tests-4063D8)](https://sisl.github.io/SignalTemporalLogic.jl/notebooks/runtests.html) See the tests for more elaborate examples: https://sisl.github.io/SignalTemporalLogic.jl/notebooks/runtests.html ### Example STL formula ```julia # Signals (i.e., trace) x = [-0.25, 0, 0.1, 0.6, 0.75, 1.0] # STL formula: "eventually the signal will be greater than 0.5" ϕ = @formula ◊(xₜ -> xₜ > 0.5) # Check if formula is satisfied ϕ(x) ``` ### Example robustness ```julia # Signals x = [1, 2, 3, 4, -9, -8] # STL formula: "eventually the signal will be greater than 0.5" ϕ = @formula ◊(xₜ -> xₜ > 0.5) # Robustness ∇ρ(x, ϕ) # Outputs: [0.0 0.0 0.0 1.0 0.0 0.0] # Smooth approximate robustness ∇ρ̃(x, ϕ) # Outputs: [-0.0478501 -0.0429261 0.120196 0.970638 -1.67269e-5 -4.15121e-5] ``` --- [Robert Moss](https://github.com/mossr)
SignalTemporalLogic
https://github.com/sisl/SignalTemporalLogic.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1108
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1144
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1257
using BenchmarkTools, FinancialMonteCarlo, Statistics; S0 = 100.0; K = 100.0; r = [0.00, 0.02]; T = 1.0; d = FinancialMonteCarlo.Curve([0.00, 0.02], T); D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8 rfCurve = FinancialMonteCarlo.ZeroRateCurve(r, T); FwdData = Forward(T) EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1127
using BenchmarkTools, FinancialMonteCarlo, DualNumbers S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1147
using BenchmarkTools, FinancialMonteCarlo, ForwardDiff S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = ForwardDiff.Dual{Float64}(0.2, 1.0) mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
970
using BenchmarkTools, FinancialMonteCarlo, ForwardDiff S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 100000; Nstep = 30; sigma = 0.2 mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); f__1(x::Vector) = pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, EuropeanOption(x[5], K)); x = Float64[sigma, S0, r, d, T] g__1 = x -> ForwardDiff.gradient(f__1, x); y0 = g__1(x); @btime f__1(x); @btime g__1(x); f_(x::Vector) = pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, AmericanOption(x[5], K)); g_ = x -> ForwardDiff.gradient(f_, x); y0 = g_(x); @btime f_(x); @btime g_(x);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
567
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime EuPrice = pricer(Model, rfCurve, mc, EUData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
651
using BenchmarkTools @everywhere using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.MultiProcess(FinancialMonteCarlo.SerialMode(), 12)); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime EuPrice = pricer(Model, rfCurve, mc, EUData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
605
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.MultiThreading()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @btime EuPrice = pricer(Model, rfCurve, mc, EUData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1162
using BenchmarkTools, FinancialMonteCarlo, ReverseDiff S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 100000; Nstep = 30; sigma = 0.2 mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); f(x) = pricer(BlackScholesProcess(x[1], Underlying(x[2], d)), ZeroRate(r), mc, EuropeanOption(x[3], K)); #f(x) = pricer(BlackScholesProcess(x[1]),ZeroRate(x[2],r,d),mc,EuropeanOption(T,K),Underlying(S0,d)); #x=Float64[sigma,S0,r,d,T] x = Float64[sigma, S0, T] g = x -> ReverseDiff.gradient(f, x); y0 = g(x); @btime f(x); @btime g(x); #f1_(x) = pricer(BlackScholesProcess(x[1]),ZeroRate(x[2],x[3],x[4]),mc,AmericanOption(x[5],K),Underlying(S0,d)); f1_(x) = pricer(BlackScholesProcess(x[1], Underlying(x[2], d)), ZeroRate(r), mc, AmericanOption(x[3], K)); g_ = x -> ReverseDiff.gradient(f1_, x); #y0=g(x); @btime f1_(x); #@btime g_(x);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
794
using BenchmarkTools, FinancialMonteCarlo, DualNumbers S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T * 2.0) EUData = EuropeanOption(T * 1.1, K) AMData = AmericanOption(T * 4.0, K) BarrierData = BarrierOptionDownOut(T * 0.5, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T * 3.3) AsianFixedStrikeData = AsianFixedStrikeOption(T * 1.2, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1208
using BenchmarkTools, FinancialMonteCarlo; S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho, theta, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1232
using BenchmarkTools, FinancialMonteCarlo, DualNumbers; S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = dual(0.2, 1.0); kappa = 0.01; theta = 0.03; lambda = 0.01; rho = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho, theta, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1164
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1238
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = [0.00, 0.02]; T = 1.0; d = FinancialMonteCarlo.Curve([0.00, 0.02], T); D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = FinancialMonteCarlo.ZeroRateCurve(r, T); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1201
using BenchmarkTools, DualNumbers using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); #sigma=0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1326
using BenchmarkTools, FinancialMonteCarlo, ReverseDiff S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2 p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); Model = KouProcess(x[1], lam, p, lamp, lamm, Underlying(S0, d)); #f(x) = pricer(KouProcess(x[1],lam,p,lamp,lamm,Underlying(S0,d)),ZeroRate(x[2],x[3],x[4]),mc,EuropeanOption(x[5],K)); f(x) = pricer(KouProcess(x[1], lam, p, lamp, lamm, Underlying(S0, d)), ZeroRate(x[2], r, d), mc, EuropeanOption(T, K)); #x=Float64[sigma,S0,r,d,T] x = Float64[sigma, S0] g = x -> ReverseDiff.gradient(f, x); y0 = g(x); @btime f(x); @btime g(x); #f1_(x) = pricer(BlackScholesProcess(x[1],Underlying(S0,d)),ZeroRate(x[2],x[3],x[4]),mc,AmericanOption(x[5],K)); f1_(x) = pricer(KouProcess(x[1], lam, p, lamp, lamm, Underlying(S0, d)), ZeroRate(x[2], r, d), mc, AmericanOption(T, K)); g_ = x -> ReverseDiff.gradient(f1_, x); #y0=g(x); @btime f1_(x); #@btime g_(x);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1157
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; lam = 5.0; mu1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = MertonProcess(sigma, lam, mu1, sigma1, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1169
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = NormalInverseGaussianProcess(sigma, theta1, k1, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1463
using Test, FinancialMonteCarlo, DualNumbers, BenchmarkTools; S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" underlying_name_2 = "ABPL" underlying_ = underlying_name * "_" * underlying_name_2 * "_TESL" Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOptionND(T, K) Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_enj_2 = BlackScholesProcess(dual(sigma, 1.0), Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); Model_tesl = BlackScholesProcess(sigma, Underlying(S0, d)); rho_1 = [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]; Model = GaussianCopulaNVariateProcess(rho_1, Model_enj, Model_abpl, Model_tesl) ModelDual = GaussianCopulaNVariateProcess(rho_1, Model_enj_2, Model_abpl, Model_tesl) Model2 = GaussianCopulaNVariateProcess([1.0 0.3 0.0; 0.3 1.0 0.0; 0.0 0.0 1.0], Model_enj_2, Model_abpl, Model_tesl) # display(Model) mktdataset = underlying_ → Model mktdataset_dual = underlying_ → ModelDual mktdataset_aug = underlying_ → Model2 portfolio_ = [EUData]; portfolio = underlying_ → EUData @btime price_mkt = pricer(mktdataset, rfCurve, mc, portfolio) @btime price_mkt = pricer(mktdataset_dual, rfCurve, mc, portfolio) @btime price_mkt = pricer(mktdataset_aug, rfCurve, mc, portfolio)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1161
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1197
using BenchmarkTools using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1185
using BenchmarkTools, DualNumbers using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @btime AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @btime AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); optionDatas = [FwdData, EUData, AMData, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData] @btime (FwdPrice, EuPrice, AMPrice, BarrierPrice, AsianPrice1, AsianPrice2) = pricer(Model, rfCurve, mc, optionDatas)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
872
using Pkg, FinancialMonteCarlo; #get(ENV, "CI", nothing) == "true" ? Pkg.instantiate() : nothing; path1 = joinpath(dirname(pathof(FinancialMonteCarlo)), "..", "benchmark") test_listTmp = readdir(path1); BlackList = ["Project.toml", "benchmarks.jl", "runner.jl", "cuda", "af", "Manifest.toml", "bench_kou_rev_diff_grad.jl", "bench_black_mp.jl", "bench_black_mn.jl", "bench_black_mt.jl"] test_list = [test_element for test_element in test_listTmp if !Bool(sum(test_element .== BlackList))] println("Running tests:\n") for (current_test, i) in zip(test_list, 1:length(test_list)) println("------------------------------------------------------------") println(" * $(current_test) *") include(joinpath(path1, current_test)) println("------------------------------------------------------------") if (i < length(test_list)) println("") end end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1036
using BenchmarkTools using FinancialMonteCarlo, ArrayFire S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc_ = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AFMode()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); #@show "Fwd" FwdPrice = pricer(Model, rfCurve, mc_, FwdData); @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @btime FwdPrice = pricer(Model, rfCurve, mc_, FwdData); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @btime EuPrice = pricer(Model, rfCurve, mc_, EUData); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @btime AmPrice = pricer(Model, rfCurve, mc_, AMData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1101
using BenchmarkTools using FinancialMonteCarlo, CUDA CUDA.allowscalar(false) S0 = 100.0f0; K = 100.0f0; r = 0.02f0; T = 1.0f0; d = 0.01f0; D = 90.0f0; Nsim = 10000; Nstep = 30; sigma = 0.2f0; mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA fwd" @btime (CUDA.@sync FwdPrice = pricer(Model, rfCurve, mc_2, FwdData)); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA eu" @btime (CUDA.@sync EuPrice = pricer(Model, rfCurve, mc_2, EUData)); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA am" @btime (CUDA.@sync AmPrice = pricer(Model, rfCurve, mc_2, AMData));
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
788
using BenchmarkTools using FinancialMonteCarlo, CUDA CUDA.allowscalar(false) S0 = 100.0f0; K = 100.0f0; r = 0.02f0; T = 1.0f0; d = 0.01f0; D = 90.0f0; Nsim = 10000; Nstep = 30; sigma = 0.2f0; mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show "CUDA_2 fwd" @btime FwdPrice = pricer(Model, rfCurve, mc_2, FwdData); @show "CUDA_2 eu" @btime EuPrice = pricer(Model, rfCurve, mc_2, EUData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1152
using BenchmarkTools, FinancialMonteCarlo, DualNumbers, CUDA CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 100000; Nstep = 30; sigma = dual(0.2, 1.0); mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show "CUDA_1 fwd" @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA_1 fwd" @show "CUDA_2 fwd" @btime FwdPrice = pricer(Model, rfCurve, mc_2, FwdData); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA_1 eu" @show "CUDA_2 eu" @btime EuPrice = pricer(Model, rfCurve, mc_2, EUData); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA_1 am" @show "CUDA_2 am" @btime AmPrice = pricer(Model, rfCurve, mc_2, AMData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1063
using BenchmarkTools, FinancialMonteCarlo, CUDA, ForwardDiff CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 100000; Nstep = 30; sigma = 0.2 mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); f(x::Vector) = pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc_2, EuropeanOption(x[5], K)); x = Float64[sigma, S0, r, d, T] g = x -> ForwardDiff.gradient(f, x); y0 = g(x); @btime f(x); @btime g(x); f_(x::Vector) = pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc_2, AmericanOption(x[5], K)); g_ = x -> ForwardDiff.gradient(f_, x); y0 = g_(x); @btime f_(x); @btime g_(x);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1091
using BenchmarkTools, FinancialMonteCarlo, CUDA, ReverseDiff S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 100000; Nstep = 30; sigma = 0.2 mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 1e-3; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); f(x) = pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, EuropeanOption(x[5], K), FinancialMonteCarlo.CudaMode()); x = Float64[sigma, S0, r, d, T] g = x -> ReverseDiff.gradient(f, x); y0 = g(x); @btime f(x); @btime g(x); f_(x::Vector) = pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, AmericanOption(x[5], K), FinancialMonteCarlo.CudaMode()); g_ = x -> ReverseDiff.gradient(f_, x); y0 = g(x); @btime f_(x); @btime g_(x);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1171
using BenchmarkTools, FinancialMonteCarlo, DualNumbers, CUDA; CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho, theta, Underlying(S0, d)); @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA_2 fwd" @btime FwdPrice = pricer(Model, rfCurve, mc_2, FwdData); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA_2 eu" @btime EuPrice = pricer(Model, rfCurve, mc_2, EUData); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA_2 am" @btime AmPrice = pricer(Model, rfCurve, mc_2, AMData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1189
using BenchmarkTools using FinancialMonteCarlo, CUDA CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); @show "CUDA_1 fwd" @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA_1 fwd" @show "CUDA_2 fwd" @btime FwdPrice = pricer(Model, rfCurve, mc_2, FwdData); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA_1 eu" @show "CUDA_2 eu" @btime EuPrice = pricer(Model, rfCurve, mc_2, EUData); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA_1 am" @show "CUDA_2 am" @btime AmPrice = pricer(Model, rfCurve, mc_2, AMData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1183
using BenchmarkTools using FinancialMonteCarlo, CUDA CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; lam = 5.0; mu1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = MertonProcess(sigma, lam, mu1, sigma1, Underlying(S0, d)); @show "CUDA_1 fwd" @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA_1 fwd" @show "CUDA_2 fwd" @btime FwdPrice = pricer(Model, rfCurve, mc_2, FwdData); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA_1 eu" @show "CUDA_2 eu" @btime EuPrice = pricer(Model, rfCurve, mc_2, EUData); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA_1 am" @show "CUDA_2 am" @btime AmPrice = pricer(Model, rfCurve, mc_2, AMData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1236
using BenchmarkTools using FinancialMonteCarlo, CUDA CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; mc = MonteCarloConfiguration(Nsim, Nstep); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = NormalInverseGaussianProcess(sigma, theta1, k1, Underlying(S0, d)); @show "CUDA_1 fwd" @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA_1 fwd" @show "CUDA_2 fwd" @btime FwdPrice = pricer(Model, rfCurve, mc_2, FwdData); @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA_1 eu" @show "CUDA_2 eu" @btime EuPrice = pricer(Model, rfCurve, mc_2, EUData); @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA_1 am" @show "CUDA_2 am" @btime AmPrice = pricer(Model, rfCurve, mc_2, AMData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
942
using BenchmarkTools using FinancialMonteCarlo, CUDA CUDA.allowscalar(false) S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); @show "CUDA_1 fwd" @show "STD fwd" @btime FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show "CUDA_1 fwd" @show "CUDA_2 fwd" @show "std eu" @btime EuPrice = pricer(Model, rfCurve, mc, EUData); @show "CUDA_1 eu" @show "CUDA_2 eu" @show "std am" @btime AmPrice = pricer(Model, rfCurve, mc, AMData); @show "CUDA_1 am" @show "CUDA_2 am"
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2659
#Number Type (just sigma tested) ---> Model type ----> Mode ---> zero rate type using BenchmarkTools, DualNumbers, FinancialMonteCarlo, VectorizedRNG, JLD2 rebase = true; const sigma_dual = dual(0.2, 1.0); const sigma_no_dual = 0.2; suite_num = BenchmarkGroup() const und = Underlying(100.0, 0.01); const p = 0.3; const lam = 5.0; const lamp = 30.0; const lamm = 20.0; mu1 = 0.03; sigma1 = 0.02; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho = 0.0; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; T = 1.0; K = 100.0; const Nsim = 10000; const Nstep = 30; const std_mc = MonteCarloConfiguration(Nsim, Nstep); const anti_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); const sobol_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SobolMode()); const cv_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.ControlVariates(Forward(T), MonteCarloConfiguration(100, 3))); const vect_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SerialMode(), 10, local_rng()); const r = 0.02; const r_prev = 0.019999; lam_vec = Float64[0.999999999]; const zr_scalar = ZeroRate(r); const zr_imp = FinancialMonteCarlo.ImpliedZeroRate([r_prev, r], 2.0); const opt_ = EuropeanOption(T, K); bs(sigma) = BlackScholesProcess(sigma, und) kou(sigma) = KouProcess(sigma, lam, p, lamp, lamm, und); hest(sigma) = HestonProcess(sigma, sigma_zero, lambda, kappa, rho, theta, und); vg(sigma) = VarianceGammaProcess(sigma, theta1, k1, und) merton(sigma) = MertonProcess(sigma, lambda, mu1, sigma1, und) nig(sigma) = NormalInverseGaussianProcess(sigma, theta1, k1, und); shift_mixture(sigma) = ShiftedLogNormalMixture([sigma, 0.2], lam_vec, 0.0, und); for sigma in Number[sigma_no_dual, sigma_dual] for model_ in [bs(sigma), kou(sigma), hest(sigma), vg(sigma), merton(sigma), nig(sigma), shift_mixture(sigma)] for mode_ in [std_mc, anti_mc, sobol_mc, cv_mc, vect_mc] for zero_ in [zr_scalar, zr_imp] suite_num[string(typeof(sigma)), string(typeof(model_).name), string(typeof(mode_.monteCarloMethod)), string(typeof(mode_.rng)), string(typeof(zero_))] = @benchmarkable pricer($model_, $zero_, $mode_, $opt_) end end end end #loadparams!(suite, BenchmarkTools.load("params.json")[1], :evals, :samples); results = run(suite_num, verbose = true) median_current = median(results); if rebase save_object("median_old.jld2", median_current) end median_old = load("median_old.jld2")["single_stored_object"] judgement_ = judge(median_current, median_old) [println(judgement_el.first, " ", judgement_el.second) for judgement_el in judgement_];
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
813
using Documenter, FinancialMonteCarlo, Literate EXAMPLE = joinpath(@__DIR__, "..", "examples", "getting_started.jl") OUTPUT = joinpath(@__DIR__, "src") Literate.markdown(EXAMPLE, OUTPUT; documenter = true) makedocs(format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true", assets = ["assets/favicon.ico"], repolink = "https://gitlab.com/rcalxrc08/FinancialMonteCarlo.jl"), repo = "https://gitlab.com/rcalxrc08/FinancialMonteCarlo.jl.git", sitename = "FinancialMonteCarlo.jl", modules = [FinancialMonteCarlo], pages = ["index.md", "getting_started.md", "types.md", "stochproc.md", "parallel_vr.md", "payoffs.md", "metrics.md", "multivariate.md", "intdiffeq.md", "extends.md"]) get(ENV, "CI", nothing) == "true" ? deploydocs(repo = "https://gitlab.com/rcalxrc08/FinancialMonteCarlo.jl.git") : nothing
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1276
# # Getting Started # # ## Installation # The FinancialMonteCarlo package is available through the Julia package system # by running `]add FinancialMonteCarlo`. # Throughout, we assume that you have installed the package. # ## Basic syntax # The basic syntax for FinancialMonteCarlo is simple. Here is an example of pricing a European Option with a Black Scholes model: using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; # Define FinancialMonteCarlo Parameters: Nsim = 10000; Nstep = 30; # Define Model Parameters. σ = 0.2; # Build the MonteCarlo configuration and the zero rate. mcConfig = MonteCarloConfiguration(Nsim, Nstep); rfCurve = ZeroRate(r); # Define The Option EuOption = EuropeanOption(T, K) # Define the Model of the Underlying Model = BlackScholesProcess(σ, Underlying(S0, d)); # Call the pricer metric @show EuPrice = pricer(Model, rfCurve, mcConfig, EuOption); # ## Using Other Models and Options # The package contains a large number of models of three main types: # * `Ito Process` # * `Jump-Diffusion Process` # * `Infinity Activity Process` # And the following types of options: # * `European Options` # * `Asian Options` # * `Barrier Options` # * `American Options` # The usage is analogous to the above example.
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1070
__precompile__() module FinancialMonteCarlo using Requires # for conditional dependencies using Random # for randn! and related using LinearAlgebra # for Longstaff Schwartz using Accessors # setting fields using ChainRulesCore function __init__() @require CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" include("deps/cuda_dependencies.cujl") @require DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa" include("deps/diffeq_dependencies.jl") @require VectorizedRNG = "33b4df10-0173-11e9-2a0c-851a7edac40e" include("deps/vectorizedrng_dependencies.jl") @require Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b" include("deps/distributed_dependencies.jl") @require TaylorSeries = "6aa5eb33-94cf-58f4-a9d0-e4b2c4fc25ea" include("deps/taylorseries_dependencies.jl") end include("utils.jl") include("models.jl") include("options.jl") include("io_utils.jl") include("operations.jl") include("metrics.jl") include("output_type.jl") include("multi_threading.jl") export pricer, variance, confinter, delta, simulate, payoff, → end#End Module
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3935
############### Display Function import Base.Multimedia.display; import Base.Multimedia.print; function print(p::Union{AbstractMonteCarloProcess, AbstractPayoff}) fldnames = collect(fieldnames(typeof(p))) Base.print(typeof(p), "(") if (length(fldnames) > 0) Base.print(fldnames[1], "=", getfield(p, fldnames[1])) popfirst!(fldnames) for name in fldnames Base.print(",", name, "=", getfield(p, name)) end end print(")") end function display(p::Union{AbstractMonteCarloProcess, AbstractPayoff}) fldnames = collect(fieldnames(typeof(p))) Base.print(typeof(p), "(") if (length(fldnames) > 0) Base.print(fldnames[1], "=", getfield(p, fldnames[1])) popfirst!(fldnames) for name in fldnames Base.print(",", name, "=", getfield(p, name)) end end println(")") end # Agnostic getters and setters, useful for testing and calibration function get_parameters(model::XProcess) where {XProcess <: AbstractPayoff} fields_ = fieldnames(XProcess) N1 = length(fields_) param_ = [] for i = 1:N1 tmp_ = getproperty(model, fields_[i]) append!(param_, tmp_) end if (N1 > 0) typecheck_ = typeof(sum(param_) + prod(param_)) param_ = convert(Array{typecheck_}, param_) end return param_ end function get_parameters(model::XProcess) where {XProcess <: BaseProcess} fields_ = fieldnames(XProcess) N1 = length(fields_) param_ = [] for i = 1:N1 tmp_ = getproperty(model, fields_[i]) typeof(tmp_) <: AbstractUnderlying ? continue : nothing append!(param_, tmp_) end typecheck_ = typeof(sum(param_) + prod(param_)) param_ = convert(Array{typecheck_}, param_) return param_ end function get_parameters(model::XProcess) where {XProcess <: VectorialMonteCarloProcess} fields_ = fieldnames(XProcess) N1 = length(fields_) param_ = [] for i = 1:N1 tmp_ = getproperty(model, fields_[i]) typeof(tmp_) <: Tuple ? continue : nothing append!(param_, tmp_) end typecheck_ = typeof(sum(param_) + prod(param_)) param_ = convert(Array{typecheck_}, param_) return param_ end function set_parameters!(model::XProcess, param::Array{num}) where {XProcess <: BaseProcess, num <: Number} fields_ = fieldnames(XProcess) N1 = length(fields_) - 1 ChainRulesCore.@ignore_derivatives @assert N1 == length(param) "Check number of parameters of the model" for (symb, nval) in zip(fields_, param) if (symb != :underlying) new_lens = PropertyLens{symb}() model = Accessors.set(model, new_lens, nval) end end return model end function set_parameters!(model::LogNormalMixture, param::Array{num}) where {num <: Number} N1 = div(length(param) + 1, 2) ChainRulesCore.@ignore_derivatives @assert !(N1 * 2 != length(param) + 1 || N1 < 2) "Check number of parameters of the model" eta = param[1:N1] lam = param[(N1+1):end] fields_ = fieldnames(LogNormalMixture) # setproperty!(model, fields_[1], eta) model = Accessors.set(model, PropertyLens{fields_[1]}(), eta) model = Accessors.set(model, PropertyLens{fields_[2]}(), lam) # setproperty!(model, fields_[2], lam) return model end function set_parameters!(model::ShiftedLogNormalMixture, param::Array{num}) where {num <: Number} N1 = div(length(param), 2) ChainRulesCore.@ignore_derivatives @assert !(N1 * 2 != length(param) || N1 < 2) "Check number of parameters of the model" eta = param[1:N1] lam = param[(N1+1):(2*N1-1)] alfa = param[end] fields_ = fieldnames(ShiftedLogNormalMixture) model = Accessors.set(model, PropertyLens{fields_[1]}(), eta) model = Accessors.set(model, PropertyLens{fields_[2]}(), lam) model = Accessors.set(model, PropertyLens{fields_[3]}(), alfa) return model end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
243
include("metrics/seed.jl") include("metrics/pricer.jl") include("metrics/pricer_cv.jl") include("metrics/distribution.jl") include("metrics/delta.jl") include("metrics/rho.jl") include("metrics/confinterval.jl") include("metrics/variance.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
61
include("models/base_models.jl") include("models/models.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2944
abstract type AbstractMultiThreading <: ParallelMode end struct MultiThreading{abstractMode <: BaseMode} <: AbstractMultiThreading numberOfBatch::Int64 sub_mod::abstractMode seeds::Array{Int64} function MultiThreading(sub_mod::abstractMode = SerialMode(), numberOfBatch::Int64 = Int64(Threads.nthreads()), seeds::Array{Int64} = collect(1:Threads.nthreads())) where {abstractMode <: BaseMode} ChainRulesCore.@ignore_derivatives @assert length(seeds) == numberOfBatch return new{abstractMode}(numberOfBatch, sub_mod, seeds) end end function pricer_macro_multithreading(model_type, payoff_type) @eval begin function pricer(mcProcess::$model_type, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:AbstractMultiThreading}, abstractPayoff::$payoff_type) zero_typed = predict_output_type_zero(mcProcess, rfCurve, mcConfig, abstractPayoff) numberOfBatch = mcConfig.parallelMode.numberOfBatch price = zeros(typeof(zero_typed), numberOfBatch) Threads.@threads for i = 1:numberOfBatch mc_config_i = MonteCarloConfiguration(div(mcConfig.Nsim, numberOfBatch), mcConfig.Nstep, mcConfig.monteCarloMethod, mcConfig.parallelMode.sub_mod) mc_config_i = @views @set mc_config_i.parallelMode.seed = mcConfig.parallelMode.seeds[i] @views price[i] = pricer(mcProcess, rfCurve, mc_config_i, abstractPayoff) end Out = sum(price) / numberOfBatch return Out end end end pricer_macro_multithreading(BaseProcess, AbstractPayoff) pricer_macro_multithreading(BaseProcess, Dict{AbstractPayoff, Number}) pricer_macro_multithreading(Dict{String, AbstractMonteCarloProcess}, Dict{String, Dict{AbstractPayoff, Number}}) pricer_macro_multithreading(VectorialMonteCarloProcess, Array{Dict{AbstractPayoff, Number}}) function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:AbstractMultiThreading}, abstractPayoffs::Array{abstractPayoff_}) where {abstractPayoff_ <: AbstractPayoff} zero_typed = predict_output_type_zero(mcProcess, rfCurve, mcConfig, abstractPayoffs) numberOfBatch = mcConfig.parallelMode.numberOfBatch price = zeros(typeof(zero_typed), length(abstractPayoffs), numberOfBatch) mc_configs = [MonteCarloConfiguration(div(mcConfig.Nsim, numberOfBatch), mcConfig.Nstep, mcConfig.monteCarloMethod, mcConfig.parallelMode.sub_mod) for _ = 1:numberOfBatch] for i = 1:numberOfBatch mc_configs[i] = @views @set mc_configs[i].parallelMode.seed = mcConfig.parallelMode.seeds[i] end Threads.@threads for i = 1:numberOfBatch price[:, i] = pricer(mcProcess, rfCurve, mc_configs[i], abstractPayoffs) end Out = sum(price, dims = 2) / numberOfBatch return Out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
131
### Operations and Strategies include("operations/models.jl") include("operations/options.jl") include("operations/portfolios.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
124
### Operations and Strategies include("options/payoff_base.jl") include("options/engines.jl") include("options/payoffs.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1765
function predict_output_type_zero(x...)::Number zero_out_ = sum(y -> predict_output_type_zero(y), x) return zero_out_ end function predict_output_type_zero(x::abstractArray)::Number where {abstractArray <: AbstractArray{T}} where {T} zero_out_ = sum(y -> predict_output_type_zero(y), x) return zero_out_ end function predict_output_type_zero(::num)::num where {num <: Number} return zero(num) end function predict_output_type_zero(und::AbstractUnderlying)::Number return predict_output_type_zero(und.S0) + predict_output_type_zero(und.d) end function predict_output_type_zero(::CurveType{num1, num2})::Number where {num1 <: Number, num2 <: Number} return zero(num1) + zero(num2) end function predict_output_type_zero(rfCurve::AbstractZeroRateCurve)::Number return predict_output_type_zero(rfCurve.r) end function predict_output_type_zero(::Any)::Int8 zero(Int8) end function predict_output_type_zero(::Spot)::Int8 return zero(Int8) end function predict_output_type_zero(::basePayoff) where {basePayoff <: AbstractPayoff{num}} where {num <: Number} return zero(num) end function predict_output_type_zero(x::baseProcess) where {baseProcess <: ScalarMonteCarloProcess{num}} where {num <: Number} return zero(num) + predict_output_type_zero(x.underlying) end function predict_output_type_zero(::baseProcess) where {baseProcess <: AbstractMonteCarloEngine{num}} where {num <: Number} return zero(num) end function predict_output_type_zero(::baseProcess) where {baseProcess <: VectorialMonteCarloProcess{num}} where {num <: Number} return zero(num) end ##Vectorization "utils" Base.broadcastable(x::Union{BaseProcess, AbstractZeroRateCurve, AbstractPayoff, AbstractMonteCarloConfiguration}) = Ref(x)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
242
include("utils/curves.jl") include("utils/dict_utils.jl") include("utils/rng_number.jl") include("utils/zero_rates.jl") include("utils/mc_mode.jl") include("utils/mc_config.jl") include("utils/sim_result.jl") include("utils/underlying.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2246
abstract type AbstractCudaMode <: ParallelMode end # struct CudaMode <: AbstractCudaMode end struct CudaMode{rngType <: Random.AbstractRNG} <: AbstractCudaMode seed_cpu::Int64 seed_gpu::Int64 rng::rngType function CudaMode(seed_cpu::num = 0, seed_gpu::num2 = 0, rng::rngType = MersenneTwister()) where {num <: Integer, num2 <: Integer, rngType <: Random.AbstractRNG} return new{rngType}(Int64(seed_cpu), Int64(seed_gpu), rng) end end CudaMonteCarloConfig = MonteCarloConfiguration{num1, num2, num3, ser_mode} where {num1 <: Integer, num2 <: Integer, num3 <: FinancialMonteCarlo.StandardMC, ser_mode <: FinancialMonteCarlo.CudaMode{rng_}} where {rng_ <: Random.AbstractRNG} CudaAntitheticMonteCarloConfig = MonteCarloConfiguration{num1, num2, num3, ser_mode} where {num1 <: Integer, num2 <: Integer, num3 <: FinancialMonteCarlo.AntitheticMC, ser_mode <: FinancialMonteCarlo.CudaMode{rng_}} where {rng_ <: Random.AbstractRNG} using .CUDA include("../models/cuda/cuda_models.jl") function set_seed!(mcConfig::MonteCarloConfiguration{type1, type2, type3, type4}) where {type1 <: Integer, type2 <: Integer, type3 <: AbstractMonteCarloMethod, type4 <: AbstractCudaMode} if mcConfig.init_rng inner_seed!(mcConfig.parallelMode.rng, mcConfig.parallelMode.seed_cpu) CUDA.CURAND.seed!(mcConfig.parallelMode.seed_gpu) end end get_matrix_type(mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:AbstractCudaMode}, ::BaseProcess, price) = CuMatrix{typeof(price)}(undef, mcConfig.Nsim, mcConfig.Nstep + 1); get_array_type(mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:AbstractCudaMode}, ::BaseProcess, price) = CuArray{typeof(price)}(undef, mcConfig.Nsim); get_matrix_type(::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:AbstractCudaMode}, ::VectorialMonteCarloProcess, price) = Array{CuMatrix{typeof(price)}}; function payoff(S::CuMatrix{num}, payoff_::PathDependentPayoff, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(payoff_)) where {num <: Number, num2 <: Number} S_ = collect(S) return payoff(S_, payoff_, rfCurve, mcBaseData, T1) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
204
using .DifferentialEquations include("../models/diff_eq_monte_carlo.jl") function predict_output_type_zero(::absdiffeqmodel) where {absdiffeqmodel <: MonteCarloDiffEqModel} return zero(Float64) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2643
using .Distributed abstract type AbstractMultiProcess <: ParallelMode end struct MultiProcess{abstractMode <: BaseMode} <: AbstractMultiProcess nbatches::Int64 sub_mod::abstractMode seeds::Array{Int64} function MultiProcess(sub_mod::abstractMode = SerialMode(), nbatches::Int64 = Int64(nworkers()), seeds::Array{Int64} = collect(1:nbatches)) where {abstractMode <: BaseMode} ChainRulesCore.@ignore_derivatives @assert length(seeds) == nbatches return new{abstractMode}(nbatches, sub_mod, seeds) end end function pricer_macro_multiprocesses(model_type, payoff_type) @eval begin function pricer(mcProcess::$model_type, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:MultiProcess}, abstractPayoff::$payoff_type) zero_typed = predict_output_type_zero(mcProcess, rfCurve, mcConfig, abstractPayoff) nbatches = mcConfig.parallelMode.nbatches mc_configs = [MonteCarloConfiguration(div(mcConfig.Nsim, nbatches), mcConfig.Nstep, mcConfig.monteCarloMethod, mcConfig.parallelMode.sub_mod) for _ = 1:nbatches] for i = 1:nbatches @set mc_configs[i].parallelMode.seed = mcConfig.parallelMode.seeds[i] end price::typeof(zero_typed) = @sync @distributed (+) for i = 1:nbatches pricer(mcProcess, rfCurve, mc_configs[i], abstractPayoff)::typeof(zero_typed) end Out = price / nbatches return Out end end end pricer_macro_multiprocesses(BaseProcess, AbstractPayoff) pricer_macro_multiprocesses(BaseProcess, Dict{AbstractPayoff, Number}) pricer_macro_multiprocesses(Dict{String, AbstractMonteCarloProcess}, Dict{String, Dict{AbstractPayoff, Number}}) pricer_macro_multiprocesses(VectorialMonteCarloProcess, Array{Dict{AbstractPayoff, Number}}) function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:MultiProcess}, abstractPayoffs::Array{abstractPayoff_}) where {abstractPayoff_ <: AbstractPayoff} nbatches = mcConfig.parallelMode.nbatches mc_configs = [MonteCarloConfiguration(div(mcConfig.Nsim, nbatches), mcConfig.Nstep, mcConfig.monteCarloMethod, mcConfig.parallelMode.sub_mod) for _ = 1:nbatches] for i = 1:nbatches @set mc_configs[i].parallelMode.seed = mcConfig.parallelMode.seeds[i] end price = @distributed (+) for i = 1:nbatches pricer(mcProcess, rfCurve, mc_configs[i], abstractPayoffs) end Out = price ./ nbatches return Out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1274
using .TaylorSeries import Base.max,Base.min,Base.isless value_taylor(x::Taylor1)=@inbounds @views x[0]; value_taylor(x::AbstractSeries)=@inbounds @views x[0][1]; !hasmethod(max,(AbstractSeries,Number)) ? (max(x::AbstractSeries,t::Number)=ifelse(value_taylor(x)>=t,x,t)) : nothing !hasmethod(max,(Number,AbstractSeries)) ? (max(t::Number,x::AbstractSeries)=max(x,t)) : nothing !hasmethod(max,(AbstractSeries,AbstractSeries)) ? (max(x::AbstractSeries,t::AbstractSeries)=ifelse(value_taylor(x)>value_taylor(t),x,t)) : nothing !hasmethod(min,(AbstractSeries,Number)) ? (max(x::AbstractSeries,t::Number)=ifelse(value_taylor(x)<=t,x,t)) : nothing !hasmethod(min,(Number,AbstractSeries)) ? (max(t::Number,x::AbstractSeries)=min(x,t)) : nothing !hasmethod(min,(AbstractSeries,AbstractSeries)) ? (max(x::AbstractSeries,t::AbstractSeries)=ifelse(value_taylor(x)<value_taylor(t),x,t)) : nothing !hasmethod(isless,(AbstractSeries,Number)) ? (isless(x::AbstractSeries,t::Number)=isless(value_taylor(x),t)) : nothing !hasmethod(isless,(Number,AbstractSeries)) ? (isless(t::Number, x::AbstractSeries)=isless(t,value_taylor(x))) : nothing !hasmethod(isless,(AbstractSeries,AbstractSeries)) ? (isless(x::AbstractSeries,t::AbstractSeries)=isless(value_taylor(x),value_taylor(t))) : nothing
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
102
using .VectorizedRNG inner_seed!(tmp_rng::VectorizedRNG.AbstractVRNG,seed)= VectorizedRNG.seed!(seed);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1928
using Distributions """ General Interface for Computation of confidence interval of price IC=confinter(mcProcess,rfCurve,mcConfig,abstractPayoff,alpha) Where:\n mcProcess = Process to be simulated. rfCurve = Zero Rate Data. mcConfig = Basic properties of MonteCarlo simulation abstractPayoff = Payoff(s) to be priced alpha = confidence level [Optional, default to 99%] Price = Price of the derivative """ function confinter(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoff::AbstractPayoff, alpha::Real = 0.99) set_seed!(mcConfig) T = maturity(abstractPayoff) Nsim = mcConfig.Nsim S = simulate(mcProcess, rfCurve, mcConfig, T) Payoff = payoff(S, abstractPayoff, rfCurve, mcConfig) mean1 = mean(Payoff) var1 = var(Payoff) alpha_ = 1 - alpha dist1 = Distributions.TDist(Nsim) tstar = quantile(dist1, 1 - alpha_ / 2.0) IC = (mean1 - tstar * sqrt(var1) / Nsim, mean1 + tstar * sqrt(var1) / Nsim) return IC end function confinter(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoffs::Array{abstractPayoff_}, alpha::Real = 0.99) where {abstractPayoff_ <: AbstractPayoff} set_seed!(mcConfig) maxT = maximum([maturity(abstractPayoff) for abstractPayoff in abstractPayoffs]) Nsim = mcConfig.Nsim S = simulate(mcProcess, rfCurve, mcConfig, maxT) Means = [mean(payoff(S, abstractPayoff, rfCurve, mcConfig, maxT)) for abstractPayoff in abstractPayoffs] Vars = [var(payoff(S, abstractPayoff, rfCurve, mcConfig, maxT)) for abstractPayoff in abstractPayoffs] alpha_ = 1 - alpha dist1 = Distributions.TDist(Nsim) tstar = quantile(dist1, 1 - alpha_ / 2.0) IC = [(mean1 - tstar * sqrt(var1) / Nsim, mean1 + tstar * sqrt(var1) / Nsim) for (mean1, var1) in zip(Means, Vars)] return IC end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3521
""" General Interface for Delta Delta=delta(mcProcess,rfCurve,mcConfig,abstractPayoff,dS0) Where:\n mcProcess = Process to be simulated. rfCurve = Zero Rate Data. mcConfig = Basic properties of MonteCarlo simulation abstractPayoff = Payoff(s) to be priced dS0 = increment [optional, default to 1e-7] Delta = Delta of the derivative """ function delta(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoff::AbstractPayoff, dS0::Real = 1e-7) Price = pricer(mcProcess, rfCurve, mcConfig, abstractPayoff) mcProcess_up = @set mcProcess.underlying.S0 += dS0 set_seed!(mcConfig) PriceUp = pricer(mcProcess_up, rfCurve, mcConfig, abstractPayoff) Delta = (PriceUp - Price) / dS0 return Delta end function delta(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoffs::Array{abstractPayoff}, dS0::Real = 1e-7) where {abstractPayoff <: AbstractPayoff} Prices = pricer(mcProcess, rfCurve, mcConfig, abstractPayoffs) mcProcess_up = @set mcProcess.underlying.S0 += dS0 PricesUp = pricer(mcProcess_up, rfCurve, mcConfig, abstractPayoffs) Delta = @. (PricesUp - Prices) / dS0 return Delta end function delta(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoffs::Dict{AbstractPayoff, Number}, dS0::Real = 1e-7) Prices = pricer(mcProcess, rfCurve, mcConfig, abstractPayoffs) mcProcess_up = @set mcProcess.underlying.S0 += dS0 set_seed!(mcConfig) PricesUp = pricer(mcProcess_up, rfCurve, mcConfig, abstractPayoffs) Delta = @. (PricesUp - Prices) / dS0 return Delta end function delta(mcProcess::Dict{String, AbstractMonteCarloProcess}, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, dict_::Dict{String, Dict{AbstractPayoff, Number}}, underl_::String, dS::Real = 1e-7) ChainRulesCore.@ignore_derivatives @assert isnothing(findfirst("_", underl_)) "deltas are defined on single name" set_seed!(mcConfig) price0 = pricer(mcProcess, rfCurve, mcConfig, dict_) price2 = 0.0 set_seed!(mcConfig) mcProcess_up = deepcopy(mcProcess) keys_mkt = collect(keys(mcProcess_up)) idx_supp = 0 idx_1 = findfirst(y -> y == underl_, keys_mkt) if (isnothing(idx_1)) idx_1 = findfirst(out_el -> any(out_el_sub -> out_el_sub == underl_, split(out_el, "_")), keys_mkt) if (isnothing(idx_1)) return 0.0 end multi_name = keys_mkt[idx_1] idx_supp = findfirst(x_ -> x_ == underl_, split(multi_name, "_")) model_ = mcProcess_up[multi_name] ok_m = model_.models[idx_supp] ok_m = @set ok_m.underlying.S0 += dS # model_.models[idx_supp].underlying.S0 += dS models_ = model_.models new_models = @set models_[idx_supp] = ok_m new_model = @set model_.models = new_models delete!(mcProcess_up, multi_name) tmp_mkt = multi_name → new_model mcProcess_up = mcProcess_up + tmp_mkt price2 = pricer(mcProcess_up, rfCurve, mcConfig, dict_) else model = mcProcess_up[keys_mkt[idx_1]] model_up = @set model.underlying.S0 += dS delete!(mcProcess_up, keys_mkt[idx_1]) tmp_mkt = keys_mkt[idx_1] → model_up mcProcess_up = mcProcess_up + tmp_mkt price2 = pricer(mcProcess_up, rfCurve, mcConfig, dict_) end return (price2 - price0) / dS end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
540
""" General Interface for distribution S=distribution(mcProcess,rfCurve,mcConfig,payoff_) Where:\n mcProcess = Process to be simulated. rfCurve = Zero Rate Data. mcConfig = Basic properties of MonteCarlo simulation T = Time of simulation S = distribution """ function distribution(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, T::num_) where {num_ <: Number} set_seed!(mcConfig) S = simulate(mcProcess, rfCurve, mcConfig, T) return S[:, end] end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3813
include("utils.jl") """ Low Level Interface for Pricing Price=pricer(mcProcess,rfCurve,mcConfig,abstractPayoff) Where: mcProcess = Process to be simulated. rfCurve = Zero Rate Data. mcConfig = Basic properties of MonteCarlo simulation abstractPayoff = Payoff(s) to be priced Price = Price of the derivative """ function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::AbstractMonteCarloConfiguration, abstractPayoff::AbstractPayoff) set_seed!(mcConfig) T = maturity(abstractPayoff) S = simulate(mcProcess, rfCurve, mcConfig, T) Payoff = payoff(S, abstractPayoff, rfCurve, mcConfig) Price = mean(Payoff) return Price end get_matrix_type(mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:BaseMode}, ::BaseProcess, price) = Matrix{typeof(price)}(undef, mcConfig.Nsim, mcConfig.Nstep + 1); get_array_type(mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:BaseMode}, ::BaseProcess, price) = Array{typeof(price)}(undef, mcConfig.Nstep); get_matrix_type(::MonteCarloConfiguration{<:Integer, <:Integer, <:AbstractMonteCarloMethod, <:BaseMode}, ::VectorialMonteCarloProcess, price) = Array{Matrix{typeof(price)}}; function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoffs::Array{abstractPayoff_}) where {abstractPayoff_ <: AbstractPayoff} set_seed!(mcConfig) maxT = maximum(maturity.(abstractPayoffs)) S = simulate(mcProcess, rfCurve, mcConfig, maxT) zero_typed = predict_output_type_zero(mcProcess, rfCurve, mcConfig, abstractPayoffs) Prices::Array{typeof(zero_typed)} = [mean(payoff(S, abstractPayoff, rfCurve, mcConfig, maxT)) for abstractPayoff in abstractPayoffs] return Prices end function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, dict_::Position) set_seed!(mcConfig) abstractPayoffs = keys(dict_) maxT = maximum([maturity(abstractPayoff) for abstractPayoff in abstractPayoffs]) S = simulate(mcProcess, rfCurve, mcConfig, maxT) price = sum(weight_ * mean(payoff(S, abstractPayoff, rfCurve, mcConfig, maxT)) for (abstractPayoff, weight_) in dict_) return price end #####Pricer for multivariate function pricer(mcProcess::VectorialMonteCarloProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, special_array_payoff::Array{Position}) set_seed!(mcConfig) N_ = length(mcProcess.models) idx_ = compute_indices(N_) ## Filter special_array_payoff for undef IND_ = collect(1:length(special_array_payoff)) filter!(i -> isassigned(special_array_payoff, i), IND_) dict_cl = special_array_payoff[IND_] #Compute Maximum time to maturity, all of the underlyings will be simulated till maxT. maxT = maximum([maximum(maturity.(collect(keys(ar_el)))) for ar_el in dict_cl]) S = simulate(mcProcess, rfCurve, mcConfig, maxT) price = sum(sum(weight_ * mean(payoff(S[idx_[i]], abstractPayoff, rfCurve, mcConfig, maxT)) for (abstractPayoff, weight_) in special_array_payoff[i]) for i in IND_) return price end function pricer(mcProcess::MarketDataSet, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, dict_::Portfolio) set_seed!(mcConfig) underlyings_payoff = keys(dict_) underlyings_payoff_cpl = get_underlyings_identifier(underlyings_payoff, keys(mcProcess)) zero_typed = predict_output_type_zero(rfCurve, mcConfig, collect(keys(collect(values(dict_)))), collect(values(mcProcess))) price::typeof(zero_typed) = sum(pricer(mcProcess[under_cpl], rfCurve, mcConfig, extract_option_from_portfolio(under_cpl, dict_)) for under_cpl in unique(underlyings_payoff_cpl)) return price end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2401
function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:ControlVariates, <:BaseMode}, abstractPayoff::AbstractPayoff) set_seed!(mcConfig) variate_handl = mcConfig.monteCarloMethod variate_conf = variate_handl.conf_variate variate_payoff = variate_handl.variate ChainRulesCore.@ignore_derivatives @assert maturity(abstractPayoff) == variate_payoff.T T = maturity(abstractPayoff) S_var = simulate(mcProcess, rfCurve, variate_conf, T) Payoff_var = payoff(S_var, variate_payoff, rfCurve, variate_conf) Payoff_opt_var = payoff(S_var, abstractPayoff, rfCurve, variate_conf) #c=-cov(Payoff_var,Payoff_opt_var)/var(Payoff_var)[1]; c = -collect(cov(Payoff_var, Payoff_opt_var) / var(Payoff_var))[1] price_var = mean(Payoff_var) mcConfig_mod = MonteCarloConfiguration(mcConfig.Nsim, mcConfig.Nstep, variate_handl.curr_method, mcConfig.parallelMode) #END OF VARIATE SECTION Prices = pricer(mcProcess, rfCurve, mcConfig_mod, [abstractPayoff, variate_payoff]) Price = Prices[1] + c * (Prices[2] - price_var) return Price end function pricer(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration{<:Integer, <:Integer, <:ControlVariates{Forward{num}, <:AbstractMonteCarloConfiguration, <:AbstractMonteCarloMethod}, <:BaseMode}, abstractPayoff::AbstractPayoff) where {num <: Number} set_seed!(mcConfig) variate_handl = mcConfig.monteCarloMethod variate_conf = variate_handl.conf_variate variate_payoff = variate_handl.variate ChainRulesCore.@ignore_derivatives @assert maturity(abstractPayoff) == variate_payoff.T T = maturity(abstractPayoff) S_var = simulate(mcProcess, rfCurve, variate_conf, T) Payoff_var = payoff(S_var, variate_payoff, rfCurve, variate_conf) Payoff_opt_var = payoff(S_var, abstractPayoff, rfCurve, variate_conf) c = -collect(cov(Payoff_var, Payoff_opt_var) / var(Payoff_var))[1] price_var = mcProcess.underlying.S0 * exp(-integral(mcProcess.underlying.d, T)) mcConfig_mod = MonteCarloConfiguration(mcConfig.Nsim, mcConfig.Nstep, variate_handl.curr_method, mcConfig.parallelMode) #END OF VARIATE SECTION Prices = pricer(mcProcess, rfCurve, mcConfig_mod, [abstractPayoff, variate_payoff]) Price = Prices[1] - c * (Prices[2] - price_var) return Price end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1231
""" General Interface for Rho computation Rho=rho(mcProcess,rfCurve,mcConfig,abstractPayoff,dr) Where: mcProcess = Process to be simulated. rfCurve = Zero Rate Data. mcConfig = Basic properties of MonteCarlo simulation abstractPayoff = Payoff(s) to be priced dr = increment [optional, default to 1e-7] Rho = Rho of the derivative """ function rho(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoff::AbstractPayoff, dr::Real = 1e-7) Price = pricer(mcProcess, rfCurve, mcConfig, abstractPayoff) rfCurve_1 = ZeroRate(rfCurve.r + dr) PriceUp = pricer(mcProcess, rfCurve_1, mcConfig, abstractPayoff) rho = (PriceUp - Price) / dr return rho end function rho(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoffs::Array{abstractPayoff_}, dr::Real = 1e-7) where {abstractPayoff_ <: AbstractPayoff} Prices = pricer(mcProcess, rfCurve, mcConfig, abstractPayoffs) rfCurve_1 = ZeroRate(rfCurve.r + dr) PricesUp = pricer(mcProcess, rfCurve_1, mcConfig, abstractPayoffs) rho = @. (PricesUp - Prices) / dr return rho end export rho;
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
343
inner_seed!(rng, seed) = Random.seed!(rng, seed) function set_seed!(mcConfig::MonteCarloConfiguration{type1, type2, type3, type4}) where {type1 <: Integer, type2 <: Integer, type3 <: AbstractMonteCarloMethod, type4 <: SerialMode} if mcConfig.init_rng inner_seed!(mcConfig.parallelMode.rng, mcConfig.parallelMode.seed) end end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2052
using IterTools #My implementation of lexicographic less function, not sure if it is the most performant but it works function lex_less(x, y) if (length(x) != length(y)) return length(y) > length(x) else x_s = sort(x) y_s = sort(y) for i = 1:length(x) if (x_s[i] != y_s[i]) return y_s[i] > x_s[i] end end end end #This function solves the vectorial problem: #Multi dimensional models have no clue of the name of the underlying process and no clue of the name of themselves, #A pricer implemented for a multidimensional model with a single name option makes little sense since there his no #way to map the option to the right underlying. #In order to solve this problem the pricer is implemented in a strange way: #A vector of integer is computed in the following way: #Assuming 3 underlyings #1st element ---> option referred to model[1] #2nd element ---> option referred to model[2] #3rd element ---> option referred to model[3] #4th element ---> option referred to (model[1],model[2]) #5th element ---> option referred to (model[1],model[3]) #6th element ---> option referred to (model[2],model[3]) #7th element ---> option referred to (model[1],model[2],model[3]) function compute_indices(x::Integer) X = collect(1:x) #Subsets will return the empty set as well f(y) = filter(x -> !(length(x) == 0), y) k = subsets(X) |> collect |> f out = sort(k, lt = (x, y) -> lex_less(x, y)) return out end #Following function returns the names (duplicated as well) of the underlying names that must simulate. #An underlying to be simulated must have an option in the portfolio that is referred to it (directly or in a basket). function get_underlyings_identifier(payoffs_underlyings, models_underlyings) out = String[] for x_ in payoffs_underlyings for y_ in models_underlyings if (any(z -> z == x_, split(y_, "_")) || y_ == x_) push!(out, y_) end end end return out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1244
""" General Interface for Computation of variance interval of price variance_=variance(mcProcess,rfCurve,mcConfig,abstractPayoff) Where:\n mcProcess = Process to be simulated. rfCurve = Zero Rate Data. mcConfig = Basic properties of MonteCarlo simulation abstractPayoff = Payoff(s) to be priced variance_ = variance of the payoff of the derivative """ function variance(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoff::AbstractPayoff) set_seed!(mcConfig) T = maturity(abstractPayoff) S = simulate(mcProcess, rfCurve, mcConfig, T) Payoff = payoff(S, abstractPayoff, rfCurve, mcConfig) variance_ = var(Payoff) return variance_ end function variance(mcProcess::BaseProcess, rfCurve::AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoffs::Array{abstractPayoff_}) where {abstractPayoff_ <: AbstractPayoff} set_seed!(mcConfig) maxT = maximum([maturity(abstractPayoff) for abstractPayoff in abstractPayoffs]) S = simulate(mcProcess, rfCurve, mcConfig, maxT) variance_ = [var(payoff(S, abstractPayoff, rfCurve, mcConfig, maxT)) for abstractPayoff in abstractPayoffs] return variance_ end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
4130
# The following contains just abstract types regarding models and "virtual" method #The most basic type, needed in order to support DifferentialEquations.jl abstract type BaseProcess{T <: Number} end # There will inherit from this type just processes, i.e. models that know what is a zeroCurve and a divided abstract type AbstractMonteCarloProcess{T <: Number} <: BaseProcess{T} end # Just engines will inherit from this, Brownian Motion et al. abstract type AbstractMonteCarloEngine{T <: Number} <: BaseProcess{T} end # Abstract type representing scalar montecarlo processes abstract type ScalarMonteCarloProcess{T <: Number} <: AbstractMonteCarloProcess{T} end # Abstract type representing multi dimensional montecarlo processes abstract type VectorialMonteCarloProcess{T <: Number} <: AbstractMonteCarloProcess{T} end # Abstract type representing N dimensional montecarlo processes (??) abstract type NDimensionalMonteCarloProcess{T <: Number} <: VectorialMonteCarloProcess{T} end # Abstract type for Levy (useful in FinancialFFT.jl) abstract type LevyProcess{T <: Number} <: ScalarMonteCarloProcess{T} end # Abstract type for Ito, an Ito process is always a Levy abstract type ItoProcess{T <: Number} <: LevyProcess{T} end # Abstract type for FA processes abstract type FiniteActivityProcess{T <: Number} <: LevyProcess{T} end # Abstract type for IA processes abstract type InfiniteActivityProcess{T <: Number} <: LevyProcess{T} end # Utility for dividends (implemented just for mono dimensional processes) dividend(x::mc) where {mc <: ScalarMonteCarloProcess} = x.underlying.d; """ General Interface for Stochastic Process simulation S=simulate(mcProcess,zeroCurve,mcBaseData,T) Where: mcProcess = Process to be simulated. zeroCurve = Datas of the Zero Rate Curve. mcBaseData = Basic properties of MonteCarlo simulation T = Final time of the process S = Matrix with path of underlying. """ function simulate(mcProcess::AbstractMonteCarloProcess, zeroCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) price_type = predict_output_type_zero(mcProcess, zeroCurve, mcBaseData, T) S = get_matrix_type(mcBaseData, mcProcess, price_type) simulate!(S, mcProcess, zeroCurve, mcBaseData, T) return S end function simulate(mcProcess::VectorialMonteCarloProcess, zeroCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) price_type = predict_output_type_zero(mcProcess, zeroCurve, mcBaseData, T) matrix_type = get_matrix_type(mcBaseData, mcProcess, price_type) S = matrix_type(undef, length(mcProcess.models)) for i = 1:length(mcProcess.models) S[i] = eltype(S)(undef, mcBaseData.Nsim, mcBaseData.Nstep + 1) end simulate!(S, mcProcess, zeroCurve, mcBaseData, T) return S end """ General Interface for Stochastic Engine simulation S=simulate(mcProcess,mcBaseData,T) Where: mcProcess = Process to be simulated. mcBaseData = Basic properties of MonteCarlo simulation T = Final time of the process S = Matrix with path of underlying. """ function simulate(mcProcess::AbstractMonteCarloEngine, mcBaseData::AbstractMonteCarloConfiguration, T::Number) price_type = predict_output_type_zero(mcProcess, mcBaseData, T) S = get_matrix_type(mcBaseData, mcProcess, price_type) simulate!(S, mcProcess, mcBaseData, T) return S end # function simulate_per_path(Nsim,Nstep,rn) # S0=100.0; # X=Matrix{Float64}(undef,Nsim,Nstep+1); # for i=1:Nsim # @views simulate_path!(X[i,:],rn) # end # return X; # end # function simulate_per_path(mcProcess::AbstractMonteCarloProcess, zeroCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) # price_type = predict_output_type_zero(mcProcess, zeroCurve, mcBaseData, T) # S = get_matrix_type(mcBaseData, mcProcess, price_type) # #simulate!(S, mcProcess, zeroCurve, mcBaseData, T) # for i=1:mcBaseData.Nsim # # @views simulate_path!(X[i,:],rn) # @views simulate_path!(S[i,:], mcProcess, zeroCurve, mcBaseData, T) # end # return S # end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1399
""" Struct for Black Scholes Process bsProcess=BlackScholesProcess(σ::num1) where {num1 <: Number} Where: σ = volatility of the process. """ struct BlackScholesProcess{num <: Number, abstrUnderlying <: AbstractUnderlying} <: ItoProcess{num} σ::num underlying::abstrUnderlying function BlackScholesProcess(σ::num, underlying::abstrUnderlying) where {num <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert σ > 0 "Volatility must be positive" return new{num, abstrUnderlying}(σ, underlying) end end export BlackScholesProcess; function simulate!(S, mcProcess::BlackScholesProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) ChainRulesCore.@ignore_derivatives @assert T > 0.0 r = rfCurve.r d = dividend(mcProcess) σ = mcProcess.σ μ = r - d simulate!(S, GeometricBrownianMotion(σ, μ, mcProcess.underlying.S0), mcBaseData, T) nothing end # function simulate_path!(S, mcProcess::BlackScholesProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) # ChainRulesCore.@ignore_derivatives @assert T > 0.0 # r = rfCurve.r # d = dividend(mcProcess) # σ = mcProcess.σ # μ = r - d # simulate_path!(S, GeometricBrownianMotion(σ, μ, mcProcess.underlying.S0), mcBaseData, T) # nothing # end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2695
""" Struct for Brownian Motion bmProcess=BrownianMotion(σ::num1,μ::num2) where {num1,num2 <: Number} Where: σ = volatility of the process. μ = drift of the process. """ struct BrownianMotion{num <: Number, num1 <: Number, numtype <: Number} <: AbstractMonteCarloEngine{numtype} σ::num μ::num1 function BrownianMotion(σ::num, μ::num1) where {num <: Number, num1 <: Number} ChainRulesCore.@ignore_derivatives @assert σ > 0 "Volatility must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) return new{num, num1, typeof(zero_typed)}(σ, μ) end end export BrownianMotion; # function simulate_path!(X, mcProcess::BrownianMotion, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} # Nstep = mcBaseData.Nstep # σ = mcProcess.σ # μ = mcProcess.μ # ChainRulesCore.@ignore_derivatives @assert T > 0 # dt = T / Nstep # mean_bm = μ * dt # stddev_bm = σ * sqrt(dt) # isDualZero = mean_bm * stddev_bm * 0 # @views X[1] = isDualZero # @inbounds for j = 1:Nstep # @views X[j+1] = X[j] + mean_bm + stddev_bm * randn(mcBaseData.parallelMode.rng) # end # return # end function simulate!(X, mcProcess::BrownianMotion, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep mean_bm = μ * dt stddev_bm = σ * sqrt(dt) isDualZero = mean_bm * stddev_bm * 0 view(X, :, 1) .= isDualZero Z = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) @inbounds for j = 1:Nstep randn!(mcBaseData.parallelMode.rng, Z) @views @. X[:, j+1] = X[:, j] + mean_bm + stddev_bm * Z end return end function simulate!(X, mcProcess::BrownianMotion, mcBaseData::SerialAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep mean_bm = μ * dt stddev_bm = σ * sqrt(dt) isDualZero = mean_bm * stddev_bm * 0 view(X, :, 1) .= isDualZero Nsim_2 = div(Nsim, 2) zero_typed = predict_output_type_zero(σ, μ) Z = Array{typeof(get_rng_type(zero_typed))}(undef, Nsim_2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] @inbounds for j = 1:Nstep randn!(mcBaseData.parallelMode.rng, Z) @. @views Xp[:, j+1] = Xp[:, j] + mean_bm + stddev_bm * Z @. @views Xm[:, j+1] = Xm[:, j] + mean_bm - stddev_bm * Z end nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2501
""" Struct for Brownian Motion bmProcess=BrownianMotionVec(σ::num1,μ::num2) where {num1,num2 <: Number} Where: σ = volatility of the process. μ = drift of the process. """ struct BrownianMotionVec{num <: Number, num1 <: Number, num4 <: Number, numtype <: Number} <: AbstractMonteCarloEngine{numtype} σ::num μ::CurveType{num1, num4} function BrownianMotionVec(σ::num, μ::CurveType{num1, num4}) where {num <: Number, num1 <: Number, num4 <: Number} ChainRulesCore.@ignore_derivatives @assert σ > 0 "Volatility must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num4) return new{num, num1, num4, typeof(zero_typed)}(σ, μ) end end function BrownianMotion(σ::num, μ::CurveType{num1, num4}) where {num <: Number, num1 <: Number, num4 <: Number} return BrownianMotionVec(σ, μ) end function simulate!(X, mcProcess::BrownianMotionVec, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep stddev_bm = σ * sqrt(dt) zero_drift = incremental_integral(μ, dt * 0, dt) isDualZero = stddev_bm * 0 * zero_drift view(X, :, 1) .= isDualZero Z = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) @inbounds for j = 1:Nstep tmp_ = incremental_integral(μ, (j - 1) * dt, dt) randn!(mcBaseData.parallelMode.rng, Z) @views @. X[:, j+1] = X[:, j] + tmp_ + stddev_bm * Z end nothing end function simulate!(X, mcProcess::BrownianMotionVec, mcBaseData::SerialAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep stddev_bm = σ * sqrt(dt) zero_drift = incremental_integral(μ, dt * 0, dt) isDualZero = stddev_bm * 0 * zero_drift view(X, :, 1) .= isDualZero Nsim_2 = div(Nsim, 2) Z = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] @inbounds for j = 1:Nstep tmp_ = incremental_integral(μ, (j - 1) * dt, dt) randn!(mcBaseData.parallelMode.rng, Z) @views @. Xp[:, j+1] = Xp[:, j] + tmp_ + stddev_bm * Z @views @. Xm[:, j+1] = Xm[:, j] + tmp_ - stddev_bm * Z end nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1649
using Sobol, StatsFuns function simulate!(X, mcProcess::BrownianMotion, mcBaseData::SerialSobolMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep mean_bm = μ * dt stddev_bm = σ * sqrt(dt) isDualZero = mean_bm * stddev_bm * 0 view(X, :, 1) .= isDualZero seq = SobolSeq(Nstep) skip(seq, Nstep * Nsim) vec = Array{typeof(get_rng_type(isDualZero))}(undef, Nstep) @inbounds for i = 1:Nsim next!(seq, vec) @. vec = norminvcdf(vec) @inbounds for j = 1:Nstep @views X[i, j+1] = X[i, j] + mean_bm + stddev_bm * vec[j] end end nothing end function simulate!(X, mcProcess::BrownianMotionVec, mcBaseData::SerialSobolMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep stddev_bm = σ * sqrt(dt) zero_drift = incremental_integral(μ, dt * 0, dt) isDualZero = stddev_bm * 0 * zero_drift view(X, :, 1) .= isDualZero seq = SobolSeq(Nstep) skip(seq, Nstep * Nsim) vec = Array{typeof(get_rng_type(isDualZero))}(undef, Nstep) tmp_ = [incremental_integral(μ, (j - 1) * dt, dt) for j = 1:Nstep] @inbounds for i = 1:Nsim next!(seq, vec) @. vec = norminvcdf(vec) @inbounds for j = 1:Nstep @views X[i, j+1] = X[i, j] + tmp_[j] + stddev_bm * vec[j] end end nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1406
struct MonteCarloDiffEqModel{absdiffeqmodel <: DiffEqBase.AbstractEnsembleProblem} <: ScalarMonteCarloProcess{Float64} model::absdiffeqmodel final_trasform::Function underlying::AbstractUnderlying function MonteCarloDiffEqModel(model::absdiffeqmodel, final_trasform::Function, underlying::AbstractUnderlying) where {absdiffeqmodel <: DiffEqBase.AbstractEnsembleProblem} return new{absdiffeqmodel}(model, final_trasform, underlying) end function MonteCarloDiffEqModel(model::absdiffeqmodel, underlying::AbstractUnderlying) where {absdiffeqmodel <: DiffEqBase.AbstractEnsembleProblem} func(x) = identity(x) return new{absdiffeqmodel}(model, func, underlying) end end export MonteCarloDiffeEqModel; function simulate!(X, mcProcess::MonteCarloDiffEqModel, rfCurve::ZeroRate, mcBaseData::MonteCarloConfiguration{type1, type2, type3, type4}, T::numb) where {numb <: Number, type1 <: Number, type2 <: Number, type3 <: AbstractMonteCarloMethod, type4 <: BaseMode} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep Dt = T / Nstep ChainRulesCore.@ignore_derivatives @assert T > 0.0 diffeqmodel = mcProcess.model sol = solve(diffeqmodel, SOSRI(), EnsembleThreads(), trajectories = Nsim, dt = Dt, adaptive = false) X .= [path.u[j] for path in sol.u, j = 1:(Nstep+1)] f(x) = mcProcess.final_trasform(x) @. X = f(X) nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1336
function add_jump_matrix!(X, mcProcess::finiteActivityProcess, mcBaseData::AbstractMonteCarloConfiguration, T::numb) where {finiteActivityProcess <: FiniteActivityProcess, numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep λ = mcProcess.λ dt = T / Nstep @inbounds for i = 1:Nsim t_i = randexp(mcBaseData.parallelMode.rng) / λ while t_i < T jump_size = compute_jump_size(mcProcess, mcBaseData) jump_idx = ceil(UInt32, t_i / dt) + 1 @views @. X[i, jump_idx:end] += jump_size #add jump component t_i += randexp(mcBaseData.parallelMode.rng) / λ end end end function simulate!(X, mcProcess::finiteActivityProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::numb) where {finiteActivityProcess <: FiniteActivityProcess, numb <: Number} r = rfCurve.r d = dividend(mcProcess) σ = mcProcess.σ λ = mcProcess.λ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate # r-d-psi(-i) drift_rn = (r - d) - σ^2 / 2 - λ * compute_drift(mcProcess) simulate!(X, BrownianMotion(σ, drift_rn), mcBaseData, T) add_jump_matrix!(X, mcProcess, mcBaseData, T) ## Conclude S0 = mcProcess.underlying.S0 @. X = S0 * exp(X) nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1671
# Abstract type for GeometricBrownianMotion, an Ito process is always a Levy abstract type AbstractGeometricBrownianMotion{T <: Number} <: AbstractMonteCarloEngine{T} end """ Struct for Geometric Brownian Motion gbmProcess=GeometricBrownianMotion(σ::num1,μ::num2) where {num1,num2 <: Number} Where: σ = volatility of the process. μ = drift of the process. x0 = initial value. """ struct GeometricBrownianMotion{num <: Number, num1 <: Number, num2 <: Number, numtype <: Number} <: AbstractGeometricBrownianMotion{numtype} σ::num μ::num1 x0::num2 function GeometricBrownianMotion(σ::num, μ::num1, x0::num2) where {num <: Number, num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert σ > 0 "Volatility must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) return new{num, num1, num2, typeof(zero_typed)}(σ, μ, x0) end end export GeometricBrownianMotion; function simulate!(X, mcProcess::AbstractGeometricBrownianMotion, mcBaseData::AbstractMonteCarloConfiguration, T::Number) ChainRulesCore.@ignore_derivatives @assert T > 0 σ = mcProcess.σ μ = mcProcess.μ - σ^2 / 2 simulate!(X, BrownianMotion(σ, μ), mcBaseData, T) S0 = mcProcess.x0 @. X = S0 * exp(X) nothing end # function simulate_path!(X, mcProcess::AbstractGeometricBrownianMotion, mcBaseData::AbstractMonteCarloConfiguration, T::Number) # ChainRulesCore.@ignore_derivatives @assert T > 0 # σ = mcProcess.σ # μ = mcProcess.μ - σ^2 / 2 # simulate_path!(X, BrownianMotion(σ, μ), mcBaseData, T) # S0 = mcProcess.x0 # @. X = S0 * exp(X) # nothing # end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1080
""" Struct for Geometric Brownian Motion gbmProcess=GeometricBrownianMotionVec(σ::num1,μ::num2) where {num1,num2 <: Number} Where: σ = volatility of the process. μ = drift of the process. """ struct GeometricBrownianMotionVec{num <: Number, num1 <: Number, num4 <: Number, num2 <: Number, numtype <: Number} <: AbstractGeometricBrownianMotion{numtype} σ::num μ::CurveType{num1, num4} x0::num2 function GeometricBrownianMotionVec(σ::num, μ::CurveType{num1, num4}, x0::num2) where {num <: Number, num1 <: Number, num4 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert σ > 0 "Volatility must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num4) + zero(num2) return new{num, num1, num4, num2, typeof(zero_typed)}(σ, μ, x0) end end function GeometricBrownianMotion(σ::num, μ::CurveType{num1, num4}, x0::num2) where {num <: Number, num1 <: Number, num4 <: Number, num2 <: Number} return GeometricBrownianMotionVec(σ, μ, x0) end export GeometricBrownianMotionVec;
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
5009
""" Struct for Heston Process hstProcess=HestonProcess(σ::num1,σ₀::num2,λ::num3,κ::num4,ρ::num5,θ::num6) where {num1,num2,num3,num4,num5,num6 <: Number} Where: σ = volatility of volatility of the process. σ₀ = initial volatility of the process. λ = shift value of the process. κ = mean reversion of the process. ρ = correlation between brownian motions. θ = long value of square of volatility of the process. """ struct HestonProcess{num <: Number, num1 <: Number, num2 <: Number, num3 <: Number, num4 <: Number, num5 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: ItoProcess{numtype} σ::num σ₀::num1 λ::num2 κ::num3 ρ::num4 θ::num5 underlying::abstrUnderlying function HestonProcess(σ::num, σ₀::num1, λ::num2, κ::num3, ρ::num4, θ::num5, underlying::abstrUnderlying) where {num <: Number, num1 <: Number, num2 <: Number, num3 <: Number, num4 <: Number, num5 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert σ₀ > 0.0 "initial volatility must be positive" ChainRulesCore.@ignore_derivatives @assert σ > 0.0 "volatility of volatility must be positive" ChainRulesCore.@ignore_derivatives @assert abs(κ + λ) > 1e-14 "unfeasible parameters" ChainRulesCore.@ignore_derivatives @assert (-1.0 <= ρ <= 1.0) "ρ must be a correlation" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num2) + zero(num3) + zero(num4) + zero(num5) return new{num, num1, num2, num3, num4, num5, abstrUnderlying, typeof(zero_typed)}(σ, σ₀, λ, κ, ρ, θ, underlying) end end export HestonProcess; function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRate, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ## Simulate κ_s = κ + λ1 θ_s = κ * θ / κ_s dt = T / Nstep isDualZeroVol = zero(T * r * σ₀ * θ_s * κ_s * σ * ρ) isDualZero = isDualZeroVol * S0 view(X, :, 1) .= isDualZero v_m = [σ₀^2 + isDualZero for _ = 1:Nsim] isDualZero_eps = isDualZeroVol + eps(isDualZeroVol) e1 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) #Wrong, is dual zero shouldn't have rho e2_rho = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2 = Array{typeof(get_rng_type(isDualZero) + zero(ρ))}(undef, Nsim) tmp_cost = sqrt(1 - ρ * ρ) #TODO: acnaoicna for j = 1:Nstep randn!(mcBaseData.parallelMode.rng, e1) randn!(mcBaseData.parallelMode.rng, e2_rho) @. e2 = e1 * ρ + e2_rho * tmp_cost @views @. X[:, j+1] = X[:, j] + ((r - d) - 0.5 * v_m) * dt + sqrt(v_m) * sqrt(dt) * e1 @. v_m += κ_s * (θ_s - v_m) * dt + σ * sqrt(v_m) * sqrt(dt) * e2 #when v_m = 0.0, the derivative becomes NaN @. v_m = max(v_m, isDualZero_eps) end ## Conclude @. X = S0 * exp(X) return end function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRate, mcBaseData::SerialAntitheticMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / κ_s dt = T / Nstep isDualZeroVol = zero(T * r * σ₀ * κ * θ * λ1 * σ * ρ) isDualZero = isDualZeroVol * S0 view(X, :, 1) .= isDualZero isDualZero_eps = isDualZeroVol + eps(isDualZeroVol) Nsim_2 = div(Nsim, 2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] v_m_1 = [σ₀^2 + isDualZero for _ = 1:Nsim_2] v_m_2 = [σ₀^2 + isDualZero for _ = 1:Nsim_2] e1 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2_rho = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) for j = 1:Nstep randn!(mcBaseData.parallelMode.rng, e1) randn!(mcBaseData.parallelMode.rng, e2_rho) @. e2 = -(e1 * ρ + e2_rho * sqrt(1 - ρ * ρ)) @views @. Xp[:, j+1] = Xp[:, j] + ((r - d) - 0.5 * v_m_1) * dt + sqrt(v_m_1) * sqrt(dt) * e1 @views @. Xm[:, j+1] = Xm[:, j] + ((r - d) - 0.5 * v_m_2) * dt - sqrt(v_m_2) * sqrt(dt) * e1 @. v_m_1 += κ_s * (θ_s - v_m_1) * dt + σ * sqrt(v_m_1) * sqrt(dt) * e2 @. v_m_2 += κ_s * (θ_s - v_m_2) * dt - σ * sqrt(v_m_2) * sqrt(dt) * e2 @. v_m_1 = max(v_m_1, isDualZero_eps) @. v_m_2 = max(v_m_2, isDualZero_eps) end ## Conclude @. X = S0 * exp(X) return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3417
function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRateCurve, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) r_d = r - d dt = T / Nstep zero_drift = incremental_integral(r_d, dt * 0.0, dt) isDualZeroVol = zero(T * σ₀ * κ * θ * λ1 * σ * ρ * zero_drift) isDualZero = S0 * isDualZeroVol X[:, 1] .= isDualZero v_m = [σ₀^2 + isDualZero for _ = 1:Nsim] isDualZeroVol_eps = isDualZeroVol + eps(isDualZeroVol) e1 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2_rho = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) @inbounds for j = 1:Nstep randn!(mcBaseData.parallelMode.rng, e1) randn!(mcBaseData.parallelMode.rng, e2_rho) @. e2 = e1 * ρ + e2_rho * sqrt(1 - ρ * ρ) tmp_ = incremental_integral(r_d, (j - 1) * dt, dt) @. @views X[:, j+1] = X[:, j] + (tmp_ - 0.5 * v_m * dt) + sqrt(v_m) * sqrt(dt) * e1 @. v_m += κ_s * (θ_s - v_m) * dt + σ * sqrt(v_m) * sqrt(dt) * e2 @. v_m = max(v_m, isDualZeroVol_eps) end ## Conclude @. X = S0 * exp(X) return end function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRateCurve, mcBaseData::SerialAntitheticMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) dt = T / Nstep isDualZeroVol = zero(T * σ₀ * κ * θ * λ1 * σ * ρ) isDualZero = S0 * isDualZeroVol X[:, 1] .= isDualZero Nsim_2 = div(Nsim, 2) r_d = r - d Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] v_mp = [σ₀^2 + isDualZero for _ = 1:Nsim_2] v_mm = [σ₀^2 + isDualZero for _ = 1:Nsim_2] e1 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2_rho = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2 = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) isDualZeroVol_eps = isDualZeroVol + eps(isDualZeroVol) for j = 1:Nstep randn!(mcBaseData.parallelMode.rng, e1) randn!(mcBaseData.parallelMode.rng, e2_rho) @. e2 = e1 * ρ + e2_rho * sqrt(1 - ρ * ρ) tmp_ = incremental_integral(r_d, (j - 1) * dt, dt) @. @views Xp[:, j+1] = Xp[:, j] + (tmp_ - 0.5 * v_mp * dt) + sqrt(v_mp) * sqrt(dt) * e1 @. @views Xm[:, j+1] = Xm[:, j] + (tmp_ - 0.5 * v_mm * dt) - sqrt(v_mm) * sqrt(dt) * e1 @. v_mp += κ_s * (θ_s - v_mp) * dt + (σ * sqrt(dt)) * sqrt(v_mp) * e2 @. v_mm += κ_s * (θ_s - v_mm) * dt - (σ * sqrt(dt)) * sqrt(v_mm) * e2 @. v_mp = max(v_mp, isDualZeroVol_eps) @. v_mm = max(v_mm, isDualZeroVol_eps) end ## Conclude @. X = S0 * exp(X) return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2924
using Sobol, StatsFuns function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRate, mcBaseData::SerialSobolMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / κ_s seq = SobolSeq(2 * Nstep) skip(seq, Nstep * Nsim) dt = T / Nstep isDualZero = T * r * σ₀ * θ_s * κ_s * σ * ρ * 0.0 * S0 view(X, :, 1) .= isDualZero vec = Array{typeof(get_rng_type(isDualZero))}(undef, 2 * Nstep) for i = 1:Nsim v_m = σ₀^2 next!(seq, vec) vec .= norminvcdf.(vec) for j = 1:Nstep @views e1 = vec[j] @views e2 = e1 * ρ + vec[Nstep+j] * sqrt(1 - ρ * ρ) @views X[i, j+1] = X[i, j] + ((r - d) - 0.5 * v_m) * dt + sqrt(v_m) * sqrt(dt) * e1 v_m += κ_s * (θ_s - v_m) * dt + σ * sqrt(v_m) * sqrt(dt) * e2 #when v_m = 0.0, the derivative becomes NaN v_m = max(v_m, isDualZero) end end ## Conclude @. X = S0 * exp(X) return end function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRateCurve, mcBaseData::SerialSobolMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) r_d = r - d dt = T / Nstep seq = SobolSeq(2 * Nstep) skip(seq, Nstep * Nsim) zero_drift = incremental_integral(r_d, dt * 0.0, dt) isDualZeroVol = T * σ₀ * κ * θ * λ1 * σ * ρ * 0.0 * zero_drift isDualZero = S0 * isDualZeroVol view(X, :, 1) .= isDualZero vec = Array{typeof(get_rng_type(isDualZero))}(undef, 2 * Nstep) tmp_ = [incremental_integral(r_d, (j - 1) * dt, dt) for j = 1:Nstep] isDualZeroVol_eps = isDualZeroVol + eps(isDualZeroVol) for i = 1:Nsim v_m = σ₀^2 next!(seq, vec) @. vec = norminvcdf(vec) for j = 1:Nstep @views e1 = vec[j] @views e2 = e1 * ρ + vec[Nstep+j] * sqrt(1 - ρ * ρ) @views X[i, j+1] = X[i, j] + (tmp_[j] - 0.5 * v_m) * dt + sqrt(v_m) * sqrt(dt) * e1 v_m += κ_s * (θ_s - v_m) * dt + σ * sqrt(v_m) * sqrt(dt) * e2 #when v_m = 0.0, the derivative becomes NaN v_m = max(v_m, isDualZeroVol_eps) end end ## Conclude @. X = S0 * exp(X) return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1845
""" Struct for Kou Process kouProcess=KouProcess(σ::num1,λ::num2,p::num3,λ₊::num4,λ₋::num5) where {num1,num2,num3,num4,num5 <: Number} Where: σ = volatility of the process. λ = jumps intensity. p = prob. of having positive jump. λ₊ = positive jump size. λ₋ = negative jump size. """ struct KouProcess{num <: Number, num1 <: Number, num2 <: Number, num3 <: Number, num4 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: FiniteActivityProcess{numtype} σ::num λ::num1 p::num2 λ₊::num3 λ₋::num4 underlying::abstrUnderlying function KouProcess(σ::num, λ::num1, p::num2, λ₊::num3, λ₋::num4, underlying::abstrUnderlying) where {num <: Number, num1 <: Number, num2 <: Number, num3 <: Number, num4 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert σ > 0 "volatility must be positive" ChainRulesCore.@ignore_derivatives @assert λ > 0 "λ, i.e. jump intensity, must be positive" ChainRulesCore.@ignore_derivatives @assert 0 <= p <= 1 "p must be a probability" ChainRulesCore.@ignore_derivatives @assert λ₊ > 0 "λ₊ must be positive" ChainRulesCore.@ignore_derivatives @assert λ₋ > 0 "λ₋ must be positive" zero_typed = promote_type(num, num1, num2, num3, num4) return new{num, num1, num2, num3, num4, abstrUnderlying, zero_typed}(σ, λ, p, λ₊, λ₋, underlying) end end export KouProcess; function compute_jump_size(mcProcess::KouProcess, mcBaseData::MonteCarloConfiguration) if rand(mcBaseData.parallelMode.rng) < mcProcess.p return randexp(mcBaseData.parallelMode.rng) / mcProcess.λ₊ end return -randexp(mcBaseData.parallelMode.rng) / mcProcess.λ₋ end compute_drift(mcProcess::KouProcess) = mcProcess.p / (mcProcess.λ₊ - 1) - (1 - mcProcess.p) / (mcProcess.λ₋ + 1)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1771
""" Struct for LogNormalMixture lnmModel=LogNormalMixture(η::Array{num1},λ::Array{num2}) where {num1,num2<: Number} Where: η = Array of volatilities. λ = Array of weights. """ struct LogNormalMixture{num <: Number, num2 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: ItoProcess{numtype} η::Array{num, 1} λ::Array{num2, 1} underlying::abstrUnderlying function LogNormalMixture(η::Array{num, 1}, λ::Array{num2, 1}, underlying::abstrUnderlying) where {num <: Number, num2 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert minimum(η) > 0.0 "Volatilities must be positive" ChainRulesCore.@ignore_derivatives @assert minimum(λ) > 0.0 "weights must be positive" ChainRulesCore.@ignore_derivatives @assert sum(λ) <= 1.0 "λs must be weights" ChainRulesCore.@ignore_derivatives @assert length(λ) == length(η) - 1 "Check vector lengths" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num2) return new{num, num2, abstrUnderlying, typeof(zero_typed)}(η, λ, underlying) end end export LogNormalMixture; function simulate!(S, mcProcess::LogNormalMixture, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) ChainRulesCore.@ignore_derivatives @assert T > 0.0 r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) η_gbm = mcProcess.η λ_gmb = copy(mcProcess.λ) push!(λ_gmb, 1.0 - sum(mcProcess.λ)) mu_gbm = r - d S .= 0 tmp_s = similar(S) for (η_gbm_, λ_gmb_) in zip(η_gbm, λ_gmb) simulate!(tmp_s, GeometricBrownianMotion(η_gbm_, mu_gbm, S0), mcBaseData, T) @. S += λ_gmb_ * tmp_s end return nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1516
""" Struct for Merton Process mertonProcess=MertonProcess(σ::num1,λ::num2,μ_jump::num3,σ_jump::num4) where {num1,num2,num3,num4<: Number} Where: σ = volatility of the process. λ = jumps intensity. μ_jump = jumps mean. σ_jump = jumps variance. """ struct MertonProcess{num <: Number, num1 <: Number, num2 <: Number, num3 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: FiniteActivityProcess{numtype} σ::num λ::num1 μ_jump::num2 σ_jump::num3 underlying::abstrUnderlying function MertonProcess(σ::num, λ::num1, μ_jump::num2, σ_jump::num3, underlying::abstrUnderlying) where {num <: Number, num1 <: Number, num2 <: Number, num3 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert σ > 0 "volatility must be positive" ChainRulesCore.@ignore_derivatives @assert λ > 0 "jump intensity must be positive" ChainRulesCore.@ignore_derivatives @assert σ_jump > 0 "positive λ must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num2) + zero(num3) return new{num, num1, num2, num3, abstrUnderlying, typeof(zero_typed)}(σ, λ, μ_jump, σ_jump, underlying) end end export MertonProcess; compute_jump_size(mcProcess::MertonProcess, mcBaseData::MonteCarloConfiguration) = mcProcess.μ_jump + mcProcess.σ_jump * randn(mcBaseData.parallelMode.rng); compute_drift(mcProcess::MertonProcess) = exp(mcProcess.μ_jump + mcProcess.σ_jump^2 / 2.0) - 1.0
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
860
using Distributions; using Statistics ### Utils include("utils.jl") ### Ito Processes include("brownian_motion.jl") include("brownian_motion_aug.jl") include("brownian_motion_sobol.jl") include("geometric_brownian_motion.jl") include("geometric_brownian_motion_aug.jl") include("black_scholes.jl") include("heston.jl") include("heston_aug.jl") include("heston_sobol.jl") include("log_normal_mixture.jl") include("shifted_log_normal_mixture.jl") ### Finite Activity Levy Processes include("fa_levy.jl") include("kou.jl") include("merton.jl") ### Infinite Activity Levy Processes include("subordinated_brownian_motion.jl") include("subordinated_brownian_motion_aug.jl") include("subordinated_brownian_motion_sobol.jl") include("variance_gamma.jl") include("normal_inverse_gaussian.jl") ### MultiDimensional include("nvariate.jl") include("nvariate_log.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1906
""" Struct for NIG Process nigProcess=NormalInverseGaussianProcess(σ::num1,θ::num2,κ::num3) where {num1,num2,num3<: Number} Where: σ = volatility of the process. θ = variance of volatility. κ = skewness of volatility. """ struct NormalInverseGaussianProcess{num <: Number, num1 <: Number, num2 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: InfiniteActivityProcess{numtype} σ::num θ::num1 κ::num2 underlying::abstrUnderlying function NormalInverseGaussianProcess(σ::num, θ::num1, κ::num2, underlying::abstrUnderlying) where {num <: Number, num1 <: Number, num2 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert σ > 0 "volatility must be positive" ChainRulesCore.@ignore_derivatives @assert κ > 0 "κappa must be positive" ChainRulesCore.@ignore_derivatives @assert 1 - (σ^2 + 2 * θ) * κ > 0 "Parameters with unfeasible values" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num2) return new{num, num1, num2, abstrUnderlying, typeof(zero_typed)}(σ, θ, κ, underlying) end end export NormalInverseGaussianProcess; function simulate!(X, mcProcess::NormalInverseGaussianProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nstep = mcBaseData.Nstep σ = mcProcess.σ θ = mcProcess.θ κ = mcProcess.κ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep ψ = (1 - sqrt(1 - (σ^2 + 2 * θ) * κ)) / κ drift = r - d - ψ #Define subordinator IGRandomVariable = InverseGaussian(dt, (dt^2) / κ) #Call SubordinatedBrownianMotion simulate!(X, SubordinatedBrownianMotion(σ, drift, θ, IGRandomVariable), mcBaseData, T) @. X = S0 * exp(X) return nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2750
""" Struct for MultiVariate Copula Process gaussianCopulaNVariateProcess=GaussianCopulaNVariateProcess(models::num1,λ::num2,p::num3,λ₊::num4,λ₋::num5) where {num1,num2,num3,num4,num5 <: Number} Where: models = the processes. rho = correlation matrix. """ struct GaussianCopulaNVariateProcess{num3 <: Number, numtype <: Number} <: NDimensionalMonteCarloProcess{numtype} rho::Matrix{num3} models::Tuple{Vararg{BaseProcess}} function GaussianCopulaNVariateProcess(rho::Matrix{num3}, models::Tuple) where {num3 <: Number} sz = size(rho) ChainRulesCore.@ignore_derivatives @assert sz[1] == sz[2] ChainRulesCore.@ignore_derivatives @assert length(models) == sz[1] ChainRulesCore.@ignore_derivatives @assert isposdef(rho) zero_typed = predict_output_type_zero(models...) + zero(num3) return new{num3, typeof(zero_typed)}(rho, models) end function GaussianCopulaNVariateProcess(rho::Matrix{num3}, models::BaseProcess...) where {num3 <: Number} sz = size(rho) ChainRulesCore.@ignore_derivatives @assert sz[1] == sz[2] ChainRulesCore.@ignore_derivatives @assert length(models) == sz[1] ChainRulesCore.@ignore_derivatives @assert isposdef(rho) zero_typed = predict_output_type_zero(models...) + zero(num3) return new{num3, typeof(zero_typed)}(rho, models) end function GaussianCopulaNVariateProcess(models::BaseProcess...) len_ = length(models) return GaussianCopulaNVariateProcess(Matrix{Float64}(I, len_, len_), models...) end function GaussianCopulaNVariateProcess(model1::BaseProcess, model2::BaseProcess, rho::num3) where {num3 <: Number} corr_matrix_ = [1 rho; rho 1] ChainRulesCore.@ignore_derivatives @assert isposdef(corr_matrix_) return GaussianCopulaNVariateProcess(corr_matrix_, model1, model2) end end export GaussianCopulaNVariateProcess; function simulate!(S_total, mcProcess::GaussianCopulaNVariateProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep ChainRulesCore.@ignore_derivatives @assert T > 0 ####Simulation ## Simulate len_ = length(mcProcess.models) for i = 1:len_ simulate!(S_total[i], mcProcess.models[i], rfCurve, mcBaseData, T) end rho = mcProcess.rho if (isdiag(rho)) return end U_joint = Matrix{eltype(rho)}(undef, len_, Nsim) for j = 1:Nstep gausscopulagen2!(U_joint, rho, mcBaseData) for i = 1:len_ @views tmp_ = S_total[i][:, j+1] @views Statistics.quantile!(tmp_, U_joint[i, :]) end end ## Conclude return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2584
""" Struct for MultiVariate (log moneyness x-> S0*exp(x) ) Copula Process gaussianCopulaNVariateLogProcess=GaussianCopulaNVariateLogProcess(models::num1,λ::num2,p::num3,λ₊::num4,λ₋::num5) where {num1,num2,num3,num4,num5 <: Number} Where: models = the processes. rho = correlation matrix. """ struct GaussianCopulaNVariateLogProcess{num3 <: Number, numtype <: Number} <: NDimensionalMonteCarloProcess{numtype} models::Tuple{Vararg{BaseProcess}} rho::Matrix{num3} function GaussianCopulaNVariateLogProcess(rho::Matrix{num3}, models::BaseProcess...) where {num3 <: Number} sz = size(rho) ChainRulesCore.@ignore_derivatives @assert sz[1] == sz[2] ChainRulesCore.@ignore_derivatives @assert length(models) == sz[1] ChainRulesCore.@ignore_derivatives @assert isposdef(rho) zero_typed = predict_output_type_zero(models...) + zero(num3) return new{num3, typeof(zero_typed)}(models, rho) end function GaussianCopulaNVariateLogProcess(models::BaseProcess...) len_ = length(models) return GaussianCopulaNVariateLogProcess(Matrix{Float64}(I, len_, len_), models...) end function GaussianCopulaNVariateLogProcess(model1::BaseProcess, model2::BaseProcess, rho::num3) where {num3 <: Number} corr_matrix_ = [1.0 rho; rho 1.0] ChainRulesCore.@ignore_derivatives @assert isposdef(corr_matrix_) return GaussianCopulaNVariateLogProcess(corr_matrix_, model1, model2) end end export GaussianCopulaNVariateLogProcess; function simulate!(S_Total, mcProcess::GaussianCopulaNVariateLogProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate len_ = length(mcProcess.models) @inbounds for i = 1:len_ @views simulate!(S_Total[i], mcProcess.models[i], rfCurve, mcBaseData, T) end rho = mcProcess.rho if (isdiag(rho)) return end @inbounds for i = 1:len_ @. S_Total[i] = log(S_Total[i] / mcProcess.models[i].underlying.S0) end U_joint = Matrix{eltype(rho)}(undef, len_, Nsim) @inbounds for j = 1:Nstep gausscopulagen2!(U_joint, rho, mcBaseData) for i = 1:len_ @views tmp_ = S_Total[i][:, j+1] sort!(tmp_) @views tmp_ .= (mcProcess.models[i].underlying.S0) .* exp.(Statistics.quantile(tmp_, U_joint[i, :]; sorted = true)) end end ## Conclude return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2116
""" Struct for ShiftedLogNormalMixture lnmModel=ShiftedLogNormalMixture(η::Array{num1},λ::Array{num2},num3) where {num1,num2,num3<: Number} Where: η = Array of volatilities. λ = Array of weights. α = shift. """ struct ShiftedLogNormalMixture{num <: Number, num2 <: Number, num3 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: ItoProcess{numtype} η::Array{num, 1} λ::Array{num2, 1} α::num3 underlying::abstrUnderlying function ShiftedLogNormalMixture(η::Array{num, 1}, λ::Array{num2, 1}, α::num3, underlying::abstrUnderlying) where {num <: Number, num2 <: Number, num3 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert minimum(η) > 0 "Volatilities must be positive" ChainRulesCore.@ignore_derivatives @assert minimum(λ) > 0 "weights must be positive" ChainRulesCore.@ignore_derivatives @assert sum(λ) <= 1.0 "λs must be weights" ChainRulesCore.@ignore_derivatives @assert length(λ) == length(η) - 1 "Check vector lengths" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num2) + zero(num3) return new{num, num2, num3, abstrUnderlying, typeof(zero_typed)}(η, λ, α, underlying) end end export ShiftedLogNormalMixture; function simulate!(X, mcProcess::ShiftedLogNormalMixture, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) ChainRulesCore.@ignore_derivatives @assert T > 0 r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nstep = mcBaseData.Nstep η_gbm = copy(mcProcess.η) λ_gmb = copy(mcProcess.λ) mu_gbm = r - d dt = T / Nstep A0 = S0 * (1 - mcProcess.α) simulate!(X, LogNormalMixture(η_gbm, λ_gmb, Underlying(A0, d)), rfCurve, mcBaseData, T) zero_typed = ChainRulesCore.@ignore_derivatives zero(typeof(integral(mu_gbm, dt) * dt)) array_type = get_array_type(mcBaseData, mcProcess, zero_typed) tmp_::typeof(array_type) = exp.(integral(mu_gbm, t_) for t_ = 0:dt:T) @. X = X + mcProcess.α * S0 * (tmp_') return nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2946
""" Struct for SubordinatedBrownianMotion subordinatedBrownianMotion=SubordinatedBrownianMotion(sigma::num,drift::num1,underlying::abstrUnderlying) Where: sigma = Volatility. drift = drift. underlying = underlying. """ struct SubordinatedBrownianMotion{num <: Number, num1 <: Number, num2 <: Number, Distr <: Distribution{Univariate, Continuous}, numtype <: Number} <: AbstractMonteCarloProcess{numtype} sigma::num drift::num1 θ::num2 subordinator_::Distr function SubordinatedBrownianMotion(sigma::num, drift::num1, θ::num2, dist::Distr) where {num <: Number, num1 <: Number, num2 <: Number, Distr <: Distribution{Univariate, Continuous}} ChainRulesCore.@ignore_derivatives @assert sigma > 0 "volatility must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) return new{num, num1, num2, Distr, typeof(zero_typed)}(sigma, drift, θ, dist) end end export SubordinatedBrownianMotion; function simulate!(X, mcProcess::SubordinatedBrownianMotion, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep dt = T / Nstep drift = mcProcess.drift * dt sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0.0 type_sub = typeof(rand(mcBaseData.parallelMode.rng, mcProcess.subordinator_)) isDualZero = drift * zero(type_sub) @views X[:, 1] .= isDualZero Z = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) dt_s = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim) θ = mcProcess.θ @inbounds for i = 1:Nstep rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s) randn!(mcBaseData.parallelMode.rng, Z) @views @. X[:, i+1] = X[:, i] + drift + θ * dt_s + sigma * sqrt(dt_s) * Z end end function simulate!(X, mcProcess::SubordinatedBrownianMotion, mcBaseData::SerialAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep dt = T / Nstep drift = mcProcess.drift * dt sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0.0 type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) isDualZero = drift * sigma * zero(type_sub) * 0.0 @views X[:, 1] .= isDualZero Nsim_2 = div(Nsim, 2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] Z = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) dt_s = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) θ = mcProcess.θ @inbounds for j = 1:Nstep rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s) randn!(mcBaseData.parallelMode.rng, Z) sqrt_dt_s = sqrt.(dt_s) @views @. Xp[:, j+1] = Xp[:, j] + dt_s * θ + drift + sqrt_dt_s * Z * sigma @views @. Xm[:, j+1] = Xm[:, j] + dt_s * θ + drift - sqrt_dt_s * Z * sigma end end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3778
""" Struct for SubordinatedBrownianMotion subordinatedBrownianMotion=SubordinatedBrownianMotion(sigma::num,drift::num1) Where: sigma = Volatility. drift = drift. underlying = underlying. """ struct SubordinatedBrownianMotionVec{num <: Number, num1 <: Number, num4 <: Number, num2 <: Number, Distr <: Distribution{Univariate, Continuous}, numtype <: Number} <: AbstractMonteCarloProcess{numtype} sigma::num drift::CurveType{num1, num4} θ::num2 subordinator_::Distr function SubordinatedBrownianMotionVec(sigma::num, drift::CurveType{num1, num4}, θ::num2, dist::Distr) where {num <: Number, num1 <: Number, num2 <: Number, num4 <: Number, Distr <: Distribution{Univariate, Continuous}} ChainRulesCore.@ignore_derivatives @assert sigma > 0 "volatility must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num4) return new{num, num1, num4, num2, Distr, typeof(zero_typed)}(sigma, drift, θ, dist) end end function SubordinatedBrownianMotion(σ::num, drift::CurveType{num1, num4}, θ::num2, subordinator_::Distr) where {num <: Number, num1 <: Number, num2 <: Number, num4 <: Number, Distr <: Distribution{Univariate, Continuous}} return SubordinatedBrownianMotionVec(σ, drift, θ, subordinator_) end function simulate!(X, mcProcess::SubordinatedBrownianMotionVec, mcBaseData::SerialMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep drift = mcProcess.drift sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) dt_s = Array{type_sub}(undef, Nsim) dt = T / Nstep zero_drift = incremental_integral(drift, zero(type_sub), zero(type_sub) + dt) * 0 isDualZero = sigma * zero(type_sub) * zero_drift @views X[:, 1] .= isDualZero Z = Array{Float64}(undef, Nsim) θ = mcProcess.θ @inbounds for i = 1:Nstep randn!(mcBaseData.parallelMode.rng, Z) rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s) tmp_drift = incremental_integral(drift, (i - 1) * dt, dt) # SUBORDINATED BROWNIAN MOTION (dt_s=time change) @views @. X[:, i+1] = X[:, i] + tmp_drift + θ * dt_s + sigma * sqrt(dt_s) * Z end return end function simulate!(X, mcProcess::SubordinatedBrownianMotionVec, mcBaseData::SerialAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) drift = mcProcess.drift sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep zero_drift = incremental_integral(drift, zero(type_sub), zero(type_sub) + dt) * 0 isDualZero = sigma * zero(type_sub) * zero_drift @views X[:, 1] .= isDualZero Nsim_2 = div(Nsim, 2) dt_s = Array{type_sub}(undef, Nsim_2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] Z = Array{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) tmp_drift = Array{typeof(zero_drift)}(undef, Nsim_2) θ = mcProcess.θ @inbounds for i = 1:Nstep randn!(mcBaseData.parallelMode.rng, Z) rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s) # tmp_drift .= [incremental_integral(drift, t_, dt_) for (t_, dt_) in zip(t_s, dt_s)] tmp_drift = incremental_integral(drift, (i - 1) * dt, dt) # @. t_s += dt_s # SUBORDINATED BROWNIAN MOTION (dt_s=time change) @. @views Xp[:, i+1] = Xp[:, i] + tmp_drift + dt_s * θ + sigma * sqrt(dt_s) * Z @. @views Xm[:, i+1] = Xm[:, i] + tmp_drift + dt_s * θ - sigma * sqrt(dt_s) * Z end return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2141
using Sobol, StatsFuns function simulate!(X, mcProcess::SubordinatedBrownianMotion, mcBaseData::SerialSobolMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep drift = mcProcess.drift * T / Nstep sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) isDualZero = drift * zero(type_sub) * 0.0 @views X[:, 1] .= isDualZero seq = SobolSeq(Nstep) skip(seq, Nstep * Nsim) vec = Array{typeof(get_rng_type(isDualZero))}(undef, Nstep) θ = mcProcess.θ @inbounds for i = 1:Nsim next!(seq, vec) @. vec = norminvcdf(vec) @inbounds for j = 1:Nstep dt_s = rand(mcBaseData.parallelMode.rng, mcProcess.subordinator_) @views X[i, j+1] = X[i, j] + drift + θ * dt_s + sigma * sqrt(dt_s) * vec[j] end end end function simulate!(X, mcProcess::SubordinatedBrownianMotionVec, mcBaseData::SerialSobolMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep drift = mcProcess.drift dt = T / Nstep sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) zero_drift = incremental_integral(drift, zero(type_sub), zero(type_sub) + T / Nstep) * 0 isDualZero = zero_drift * zero(type_sub) * 0 @views X[:, 1] .= isDualZero seq = SobolSeq(Nstep) skip(seq, Nstep * Nsim) vec = Array{typeof(get_rng_type(isDualZero))}(undef, Nstep) θ = mcProcess.θ @inbounds for i = 1:Nsim # t_s = zero(type_sub) next!(seq, vec) @. vec = norminvcdf(vec) @inbounds for j = 1:Nstep dt_s = rand(mcBaseData.parallelMode.rng, mcProcess.subordinator_) # tmp_drift = incremental_integral(drift, t_s, dt_s) tmp_drift = incremental_integral(drift, (j - 1) * dt, dt) # t_s += dt_s @views X[i, j+1] = X[i, j] + tmp_drift + θ * dt_s + sigma * sqrt(dt_s) * vec[j] end end return X end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
276
function gausscopulagen2!(z, Σ::Matrix{Float64}, mcBaseData::AbstractMonteCarloConfiguration) rand!(mcBaseData.parallelMode.rng, MvNormal(Σ), z) @inbounds for i = 1:size(Σ, 2) d = Normal(0, sqrt(Σ[i, i])) @views @. z[i, :] = cdf(d, z[i, :]) end end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1789
""" Struct for VG Process vgProcess=VarianceGammaProcess(σ::num1,θ::num2,κ::num3) where {num1,num2,num3<: Number} Where: σ = volatility of the process. θ = variance of volatility. κ = skewness of volatility. """ struct VarianceGammaProcess{num <: Number, num1 <: Number, num2 <: Number, abstrUnderlying <: AbstractUnderlying, numtype <: Number} <: InfiniteActivityProcess{numtype} σ::num θ::num1 κ::num2 underlying::abstrUnderlying function VarianceGammaProcess(σ::num, θ::num1, κ::num2, underlying::abstrUnderlying) where {num <: Number, num1 <: Number, num2 <: Number, abstrUnderlying <: AbstractUnderlying} ChainRulesCore.@ignore_derivatives @assert σ > 0 "volatility must be positive" ChainRulesCore.@ignore_derivatives @assert κ > 0 "κappa must be positive" ChainRulesCore.@ignore_derivatives @assert 1 - σ * σ * κ / 2 - θ * κ >= 0 "Parameters with unfeasible values" zero_typed = ChainRulesCore.@ignore_derivatives zero(num) + zero(num1) + zero(num2) return new{num, num1, num2, abstrUnderlying, typeof(zero_typed)}(σ, θ, κ, underlying) end end export VarianceGammaProcess; function simulate!(X, mcProcess::VarianceGammaProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T::Number) r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nstep = mcBaseData.Nstep σ = mcProcess.σ θ = mcProcess.θ κ = mcProcess.κ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep ψ = -1 / κ * log(1 - σ^2 * κ / 2 - θ * κ) drift = r - d - ψ gammaRandomVariable = Gamma(dt / κ, κ) simulate!(X, SubordinatedBrownianMotion(σ, drift, θ, gammaRandomVariable), mcBaseData, T) @. X = S0 * exp(X) nothing end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1632
function simulate!(X_cu, mcProcess::BrownianMotion, mcBaseData::CudaMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep mean_bm = μ * dt stddev_bm = σ * sqrt(dt) isDualZero = mean_bm * stddev_bm * zero(Int8) @views fill!(X_cu[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) @inbounds for i = 1:Nstep randn!(CUDA.CURAND.default_rng(), Z) @views @. X_cu[:, i+1] = X_cu[:, i] + mean_bm + stddev_bm * Z end return end function simulate!(X_cu, mcProcess::BrownianMotion, mcBaseData::CudaAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep mean_bm = μ * dt stddev_bm = σ * sqrt(dt) isDualZero = mean_bm * stddev_bm * zero(Int8) Nsim_2 = div(Nsim, 2) @views fill!(X_cu[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero X_cu_p = view(X_cu, 1:Nsim_2, :) X_cu_m = view(X_cu, (Nsim_2+1):Nsim, :) Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) for i = 1:Nstep randn!(CUDA.CURAND.default_rng(), Z) @views @inbounds @. X_cu_p[:, i+1] = X_cu_p[:, i] + mean_bm + stddev_bm * Z @views @inbounds @. X_cu_m[:, i+1] = X_cu_m[:, i] + mean_bm - stddev_bm * Z end return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1770
function simulate!(X_cu, mcProcess::BrownianMotionVec, mcBaseData::CudaMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep stddev_bm = σ * sqrt(dt) zero_drift = incremental_integral(μ, dt * 0, dt) isDualZero = stddev_bm * 0 * zero_drift Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) @views fill!(X_cu[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero for i = 1:Nstep tmp_ = incremental_integral(μ, (i - 1) * dt, dt) randn!(CUDA.CURAND.default_rng(), Z) @inbounds @. X_cu[:, i+1] = X_cu[:, i] + tmp_ + stddev_bm * Z end return end function simulate!(X_cu, mcProcess::BrownianMotionVec, mcBaseData::CudaAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ μ = mcProcess.μ ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep stddev_bm = σ * sqrt(dt) zero_drift = incremental_integral(μ, dt * 0, dt) isDualZero = stddev_bm * 0 * zero_drift Nsim_2 = div(Nsim, 2) @views fill!(X_cu[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero X_cu_p = view(X_cu, 1:Nsim_2, :) X_cu_m = view(X_cu, (Nsim_2+1):Nsim, :) Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) for i = 1:Nstep randn!(CUDA.CURAND.default_rng(), Z) tmp_ = incremental_integral(μ, (i - 1) * dt, dt) @views @. X_cu_p[:, i+1] = X_cu_p[:, i] + tmp_ + stddev_bm * Z @views @. X_cu_m[:, i+1] = X_cu_m[:, i] + tmp_ - stddev_bm * Z end return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
256
include("brownian_motion_cuda.jl") include("brownian_motion_cuda_aug.jl") include("heston_cuda.jl") include("heston_aug_cuda.jl") include("fa_levy_cuda.jl") include("subordinated_brownian_motion_cuda.jl") include("subordinated_brownian_motion_aug_cuda.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
869
function simulate!(X, mcProcess::finiteActivityProcess, rfCurve::AbstractZeroRateCurve, mcBaseData::MonteCarloConfiguration{type1, type2, type3, CudaMode}, T::numb) where {finiteActivityProcess <: FiniteActivityProcess, numb <: Number, type1 <: Number, type2 <: Number, type3 <: AbstractMonteCarloMethod} r = rfCurve.r d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ λ = mcProcess.λ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ## Simulate # r-d-psi(-i) drift_rn = (r - d) - σ^2 / 2 - λ * compute_drift(mcProcess) simulate!(X, BrownianMotion(σ, drift_rn), mcBaseData, T) X_incr = zeros(Nsim, Nstep + 1) add_jump_matrix!(X_incr, mcProcess, mcBaseData, T) ## Conclude S0 = mcProcess.underlying.S0 X_incr_cu = cu(X_incr) @. X = S0 * exp(X + X_incr_cu) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3460
function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRateCurve, mcBaseData::CudaMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) r_d = r - d dt = T / Nstep zero_drift = incremental_integral(r_d, dt * 0.0, dt) isDualZeroVol = zero(T * σ₀ * κ * θ * λ1 * σ * ρ * zero_drift) isDualZero = S0 * isDualZeroVol X[:, 1] .= isDualZero v_m = CUDA.zeros(typeof(isDualZero), Nsim) .+ σ₀^2 isDualZeroVol_eps = isDualZeroVol + eps(isDualZeroVol) e1 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2_rho = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) @inbounds for j = 1:Nstep randn!(CUDA.CURAND.default_rng(), e1) randn!(CUDA.CURAND.default_rng(), e2_rho) @. e2 = e1 * ρ + e2_rho * sqrt(1 - ρ * ρ) tmp_ = incremental_integral(r_d, (j - 1) * dt, dt) @. @views X[:, j+1] = X[:, j] + (tmp_ - 0.5 * v_m * dt) + sqrt(v_m) * sqrt(dt) * e1 @. v_m += κ_s * (θ_s - v_m) * dt + σ * sqrt(v_m) * sqrt(dt) * e2 @. v_m = max(v_m, isDualZeroVol_eps) end ## Conclude X .= S0 .* exp.(X) return end function simulate!(X, mcProcess::HestonProcess, rfCurve::ZeroRateCurve, mcBaseData::CudaAntitheticMonteCarloConfig, T::numb) where {numb <: Number} r = rfCurve.r S0 = mcProcess.underlying.S0 d = dividend(mcProcess) Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ₀ = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0.0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) dt = T / Nstep isDualZeroVol = zero(T * σ₀ * θ_s * σ * ρ) isDualZero = S0 * isDualZeroVol X[:, 1] .= isDualZero Nsim_2 = div(Nsim, 2) r_d = r - d Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] v_mp = CUDA.zeros(typeof(isDualZero), Nsim_2) .+ σ₀^2 v_mm = CUDA.zeros(typeof(isDualZero), Nsim_2) .+ σ₀^2 e1 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2_rho = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) isDualZeroVol_eps = isDualZeroVol + eps(isDualZeroVol) for j = 1:Nstep randn!(CUDA.CURAND.default_rng(), e1) randn!(CUDA.CURAND.default_rng(), e2_rho) @. e2 = e1 * ρ + e2_rho * sqrt(1 - ρ * ρ) tmp_ = incremental_integral(r_d, (j - 1) * dt, dt) @. @views Xp[:, j+1] = Xp[:, j] + (tmp_ - 0.5 * v_mp .* dt) + sqrt(max.(v_mp, 0)) * sqrt(dt) * e1 @. @views Xm[:, j+1] = Xm[:, j] + (tmp_ - 0.5 * v_mm .* dt) - sqrt(max.(v_mm, 0)) * sqrt(dt) * e1 @. v_mp += κ_s * (θ_s - v_mp) * dt + (σ * sqrt(dt)) * sqrt(v_mp) * e2 @. v_mm += κ_s * (θ_s - v_mm) * dt - (σ * sqrt(dt)) * sqrt(v_mm) * e2 @. v_mp = max(v_mp, isDualZeroVol_eps) @. v_mm = max(v_mm, isDualZeroVol_eps) end ## Conclude @. X = S0 * exp(X) return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3525
function simulate!(X, mcProcess::HestonProcess, spotData::ZeroRate, mcBaseData::CudaMonteCarloConfig, T::numb) where {numb <: Number} r = spotData.r S0 = mcProcess.underlying.S0 d = mcProcess.underlying.d Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ_zero = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) r_d = r - d dt = T / Nstep isDualZeroVol = zero(T * r * σ_zero * κ * θ * λ1 * σ * ρ) isDualZero = zero(S0 * isDualZeroVol) @views fill!(X[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero v_m = CUDA.zeros(typeof(isDualZeroVol), Nsim) .+ σ_zero^2 e1 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2_rho = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) e2 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) isDualZero_eps = isDualZeroVol + eps(isDualZeroVol) for j = 1:Nstep randn!(CUDA.CURAND.default_rng(), e1) randn!(CUDA.CURAND.default_rng(), e2_rho) @. e2 = e1 * ρ + e2_rho * sqrt(1 - ρ * ρ) @views @inbounds @. X[:, j+1] = X[:, j] + (r_d - 0.5 * v_m) * dt + sqrt(v_m) * sqrt(dt) * e1 @. v_m += κ_s * (θ_s - v_m) * dt + σ * sqrt(v_m) * sqrt(dt) * e2 #when v_m = 0.0, the derivative becomes NaN @. v_m = max(v_m, isDualZero_eps) end ## Conclude @. X = S0 * exp(X) return end function simulate!(X, mcProcess::HestonProcess, spotData::ZeroRate, mcBaseData::CudaAntitheticMonteCarloConfig, T::numb) where {numb <: Number} r = spotData.r S0 = mcProcess.underlying.S0 d = mcProcess.underlying.d Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep σ = mcProcess.σ σ_zero = mcProcess.σ₀ λ1 = mcProcess.λ κ = mcProcess.κ ρ = mcProcess.ρ θ = mcProcess.θ ChainRulesCore.@ignore_derivatives @assert T > 0 ####Simulation ## Simulate κ_s = κ + λ1 θ_s = κ * θ / (κ + λ1) r_d = r - d dt = T / Nstep isDualZeroVol = zero(T * r * σ_zero * κ * θ * λ1 * σ * ρ) isDualZero = zero(S0 * isDualZeroVol) @views fill!(X[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero Nsim_2 = div(Nsim, 2) e1 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2_rho = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) e2 = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] v_m_1 = CUDA.zeros(typeof(isDualZeroVol), Nsim_2) .+ σ_zero^2 v_m_2 = CUDA.zeros(typeof(isDualZeroVol), Nsim_2) .+ σ_zero^2 isDualZero_eps = isDualZeroVol + eps(isDualZeroVol) @inbounds for j = 1:Nstep randn!(CUDA.CURAND.default_rng(), e1) randn!(CUDA.CURAND.default_rng(), e2_rho) @. e2 = -(e1 * ρ + e2_rho * sqrt(1 - ρ * ρ)) @views @. Xp[:, j+1] = Xp[:, j] + (r_d - 0.5 * v_m_1) * dt + sqrt(v_m_1) * sqrt(dt) * e1 @views @. Xm[:, j+1] = Xm[:, j] + (r_d - 0.5 * v_m_2) * dt - sqrt(v_m_2) * sqrt(dt) * e1 @. v_m_1 += κ_s * (θ_s - v_m_1) * dt + σ * sqrt(v_m_1) * sqrt(dt) * e2 @. v_m_2 += κ_s * (θ_s - v_m_2) * dt - σ * sqrt(v_m_2) * sqrt(dt) * e2 @. v_m_1 = max(v_m_1, isDualZero_eps) @. v_m_2 = max(v_m_2, isDualZero_eps) end ## Conclude @. X = S0 * exp(X) return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3233
function simulate!(X, mcProcess::SubordinatedBrownianMotionVec, mcBaseData::CudaMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep drift = mcProcess.drift sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) dt_s_cpu = Array{type_sub}(undef, Nsim) dt_s = CuArray{type_sub}(undef, Nsim) # t_s = zeros(type_sub, Nsim) dt = T / Nstep zero_drift = incremental_integral(drift, zero(type_sub), zero(type_sub) + dt) * 0 isDualZero = sigma * zero(type_sub) * 0 * zero_drift @views fill!(X[:, 1], isDualZero) #more efficient than @views X[:, 1] .= isDualZero Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) # tmp_drift = Array{typeof(zero_drift)}(undef, Nsim) # tmp_drift_gpu = CuArray{typeof(zero_drift)}(undef, Nsim) θ = mcProcess.θ @inbounds for i = 1:Nstep randn!(CUDA.CURAND.default_rng(), Z) rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s_cpu) # tmp_drift .= [incremental_integral(drift, t_, dt_) for (t_, dt_) in zip(t_s, dt_s_cpu)] tmp_drift = incremental_integral(drift, (i - 1) * dt, dt) # tmp_drift_gpu .= cu(tmp_drift) # @. t_s += dt_s_cpu dt_s .= cu(dt_s_cpu) # SUBORDINATED BROWNIAN MOTION (dt_s=time change) @views @. X[:, i+1] = X[:, i] + tmp_drift + θ * dt_s + sigma * sqrt(dt_s) * Z end return end function simulate!(X, mcProcess::SubordinatedBrownianMotionVec, mcBaseData::CudaAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep type_sub = typeof(quantile(mcProcess.subordinator_, 0.5)) drift = mcProcess.drift sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 dt = T / Nstep zero_drift = incremental_integral(drift, zero(type_sub), zero(type_sub) + dt) isDualZero = sigma * zero(type_sub) * 0 * zero_drift @views fill!(X[:, 1], isDualZero) #more efficient than @views X[:, 1] .= isDualZero Nsim_2 = div(Nsim, 2) dt_s = CuArray{type_sub}(undef, Nsim_2) dt_s_cpu = Array{type_sub}(undef, Nsim_2) # tmp_drift = Array{typeof(zero_drift)}(undef, Nsim_2) # tmp_drift_gpu = CuArray{typeof(zero_drift)}(undef, Nsim_2) # t_s = zeros(type_sub, Nsim_2) Xp = @views X[1:Nsim_2, :] Xm = @views X[(Nsim_2+1):end, :] Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) θ = mcProcess.θ @inbounds for i = 1:Nstep randn!(CUDA.CURAND.default_rng(), Z) rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s_cpu) # tmp_drift .= [incremental_integral(drift, t_, dt_) for (t_, dt_) in zip(t_s, dt_s_cpu)] tmp_drift = incremental_integral(drift, (i - 1) * dt, dt) # @. t_s += dt_s_cpu dt_s .= cu(dt_s_cpu) # tmp_drift_gpu .= cu(tmp_drift) # SUBORDINATED BROWNIAN MOTION (dt_s=time change) @. @views Xp[:, i+1] = Xp[:, i] + tmp_drift + θ * dt_s + sigma * sqrt(dt_s) * Z @. @views Xm[:, i+1] = Xm[:, i] + tmp_drift + θ * dt_s - sigma * sqrt(dt_s) * Z end return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git