licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2305
function simulate!(X_cu, mcProcess::SubordinatedBrownianMotion, mcBaseData::CudaMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep drift = mcProcess.drift * T / Nstep sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 type_sub = typeof(Float32(quantile(mcProcess.subordinator_, 0.5))) dt_s = CuArray{type_sub}(undef, Nsim) dt_s_cpu = Array{type_sub}(undef, Nsim) isDualZero = drift * sigma * zero(eltype(dt_s)) * 0 @views fill!(X_cu[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim) θ = mcProcess.θ @inbounds for i = 1:Nstep # SUBORDINATED BROWNIAN MOTION (dt_s=time change) rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s_cpu) dt_s .= cu(dt_s_cpu) randn!(CUDA.CURAND.default_rng(), Z) @views @. X_cu[:, i+1] = X_cu[:, i] + drift + θ * dt_s + sigma * sqrt(dt_s) * Z end return end function simulate!(X_cu, mcProcess::SubordinatedBrownianMotion, mcBaseData::CudaAntitheticMonteCarloConfig, T::numb) where {numb <: Number} Nsim = mcBaseData.Nsim Nstep = mcBaseData.Nstep drift = mcProcess.drift sigma = mcProcess.sigma ChainRulesCore.@ignore_derivatives @assert T > 0 type_sub = typeof(Float32(quantile(mcProcess.subordinator_, 0.5))) Nsim_2 = div(Nsim, 2) dt_s = CuArray{type_sub}(undef, Nsim_2) dt_s_cpu = Array{type_sub}(undef, Nsim_2) isDualZero = drift * sigma * zero(eltype(dt_s)) * 0 @views fill!(X_cu[:, 1], isDualZero) #more efficient than @views X_cu[:, 1] .= isDualZero X_cu_p = view(X_cu, 1:Nsim_2, :) X_cu_m = view(X_cu, (Nsim_2+1):Nsim, :) Z = CuArray{typeof(get_rng_type(isDualZero))}(undef, Nsim_2) θ = mcProcess.θ @inbounds for i = 1:Nstep randn!(CUDA.CURAND.default_rng(), Z) # SUBORDINATED BROWNIAN MOTION (dt_s=time change) rand!(mcBaseData.parallelMode.rng, mcProcess.subordinator_, dt_s_cpu) dt_s .= cu(dt_s_cpu) @views @. X_cu_p[:, i+1] = X_cu_p[:, i] + drift + θ * dt_s + sigma * sqrt(dt_s) * Z @views @. X_cu_m[:, i+1] = X_cu_m[:, i] + drift + θ * dt_s - sigma * sqrt(dt_s) * Z end return end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1119
import Base.+; const MarketDataSet = Dict{String, AbstractMonteCarloProcess}; export MarketDataSet; #Link an underlying to a single name model function →(x::String, y::AbstractMonteCarloProcess) out = MarketDataSet(x => y) return out end #Link an multiname underlying to a multi variate model function →(x::String, y::NDimensionalMonteCarloProcess) sep = findfirst("_", x) ChainRulesCore.@ignore_derivatives @assert !isnothing(sep) "Nvariate process must follow the format: INDEX1_INDEX2" len_ = length(y.models) sep = split(x, "_") ChainRulesCore.@ignore_derivatives @assert len_ == length(sep) out = MarketDataSet(x => y) return out end #Joins two different MarketDataSet s function +(x::MarketDataSet, y::MarketDataSet) out = copy(x) y_keys = keys(y) for y_key in y_keys ChainRulesCore.@ignore_derivatives @assert !(haskey(out, y_key) || any(out_el -> any(out_el_sub -> out_el_sub == y_key, split(out_el, "_")), keys(out)) || any(y_key_el -> haskey(out, y_key_el), split(y_key, "_"))) "check keys" out[y_key] = y[y_key] end return out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2847
import Base.+; import Base.*; import Base.-; import Base./; const Position = Dict{AbstractPayoff, Number}; # "sum" AbstractPayoff s function +(x::AbstractPayoff, y::AbstractPayoff) out = Position(x => 1.0) if haskey(out, y) out[x] = 2.0 else out[y] = 1.0 end return out end # "sum" Position and AbstractPayoff function +(x::Position, y::AbstractPayoff) out = copy(x) if haskey(out, y) out[y] += 1.0 else out[y] = 1.0 end return out end # "sum" Position s function +(x::Position, y::Position) out = copy(x) y_keys = keys(y) for y_key in y_keys if haskey(out, y_key) out[y_key] += y[y_key] else out[y_key] = y[y_key] end end return out end # scalar multiplication function *(x::Position, y::Number) out = copy(x) for a in keys(out) out[a] *= y end return out end # scalar multiplication function *(x::AbstractPayoff, y::Number) return Position(x => y) end *(y::Number, out::AbstractPayoff) = out * y; *(y::Number, out::Position) = out * y; /(out::AbstractPayoff, y::Number) = out * (1.0 / y); /(out::Position, y::Number) = out * (1.0 / y); +(y::AbstractPayoff, out::Position) = out + y; -(x::AbstractPayoff) = return -1 * x; -(x::Position) = return -1 * x; -(y::AbstractPayoff, out::AbstractPayoff) = y + (-1 * out); -(y::AbstractPayoff, out::Position) = y + (-1 * out); -(y::Position, out::AbstractPayoff) = y + (-1 * out); -(y::Position, out::Position) = y + (-1 * out); #+(x::AbstractPayoff,y::Tuple{AbstractPayoff,AbstractPayoff,typeof(+)})=(x,y,+) #+(x::Position,AbstractPayoff) import Base.hash; import Base.isequal; # Needed for Dict hash(x::Payoff) where {Payoff <: AbstractPayoff} = sum(hash(get_parameters(x))) + hash(string(Payoff)) isequal(x::Payoff1, y::Payoff2) where {Payoff1 <: AbstractPayoff, Payoff2 <: AbstractPayoff} = hash(x) == hash(y) # Overload for show import Base.show; function show(io::IO, p::Position) keys_ = collect(keys(p)) for idx_ in eachindex(keys_) key_ = keys_[idx_] val_ = p[key_] iszero(val_) ? continue : nothing if typeof(val_) <: Real if (idx_ != 1) val_ > 0.0 ? print(io, +) : print(io, -) end if (abs(val_) != 1.0) idx_ != 1 ? print(io, abs(val_)) : print(io, val_) print(io, *) print(io, key_) else idx_ == 1 && val_ < 0.0 ? print(io, -) : nothing print(io, key_) end else if (idx_ != 1) print(io, +) end print(io, "(") print(io, val_) print(io, ")") print(io, *) print(io, key_) end end #println("") end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2313
import Base.+; #Strategies Implementation const Portfolio = Dict{String, Position}; #Link an underlying name to a Position function →(x::String, y::Position) out = Portfolio(x => y) return out end #Link an underlying name to a SingleNamePayoff function →(x::String, y::SingleNamePayoff) sep = findfirst("_", x) ChainRulesCore.@ignore_derivatives @assert isnothing(sep) "NO UNDERSCORE ALLOWED IN SINGLE NAME OPTIONS" return x → (1.0 * y) end #Link an underlying name to a BasketPayoff function →(x::String, y::BasketPayoff) sep = findfirst("_", x)[1] ChainRulesCore.@ignore_derivatives @assert !isnothing(sep) "Bivariate payoff underlying must follow the format: INDEX1_INDEX2" return x → (1.0 * y) end #Join Portfolio s function +(x::Portfolio, y::Portfolio) out = copy(x) y_keys = keys(y) for y_key in y_keys if haskey(out, y_key) out[y_key] = out[y_key] + y[y_key] else out[y_key] = y[y_key] end end return out end #Overload for display import Base.Multimedia.display; function display(p::Portfolio) keys_ = keys(p) for key_ in keys_ print(key_) print(" => ") print(p[key_]) end println("") end #Overload for extraction, output needs particular shape. function extract_option_from_portfolio(x::String, dict_::Portfolio) keys_ = keys(dict_) out = Position() out_vec = Position[] ap_keys = String[] for key_ in keys_ if ((x == key_) || (any(z -> z == key_, split(x, "_")))) out = dict_[key_] push!(out_vec, out) push!(ap_keys, key_) end end if (length(out_vec) == 1) && (x == ap_keys[1]) return out else str_v = split(x, "_") X = compute_indices(length(str_v)) #tmp_map=Dict( str_v .=> collect(1:length(str_v))) tmp_map_rev = Dict(collect(1:length(str_v)) .=> str_v) out__ = Array{Position}(undef, length(X)) for i_ = 1:length(X) idx_ = X[i_] str_underlv = [tmp_map_rev[idx_2] for idx_2 in idx_] str_underl = join(str_underlv, "_") if (haskey(dict_, str_underl)) out__[i_] = dict_[str_underl] end end return out__ end end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
229
####### Payoffs definition ## Engines include("engines/general_european_engine.jl") include("engines/general_american_engine.jl") include("engines/general_path_dependent_engine.jl") include("engines/general_bermudan_engine.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2991
## Payoffs abstract type AbstractPayoff{numtype <: Number} end struct ControlVariates{abstractPayoff <: AbstractPayoff{<:Number}, abstractMonteCarloConfiguration <: AbstractMonteCarloConfiguration, abstractMonteCarloMethod <: AbstractMonteCarloMethod} <: AbstractMonteCarloMethod variate::abstractPayoff conf_variate::abstractMonteCarloConfiguration curr_method::abstractMonteCarloMethod function ControlVariates(variate::T1, conf_variate::abstractMonteCarloConfiguration, curr_method::abstractMonteCarloMethod = StandardMC()) where {T1 <: AbstractPayoff{<:Number}, abstractMonteCarloConfiguration <: AbstractMonteCarloConfiguration, abstractMonteCarloMethod <: AbstractMonteCarloMethod} return new{T1, abstractMonteCarloConfiguration, abstractMonteCarloMethod}(variate, conf_variate, curr_method) end end abstract type SingleNamePayoff{numtype <: Number} <: AbstractPayoff{numtype} end abstract type EuropeanPayoff{numtype <: Number} <: SingleNamePayoff{numtype} end abstract type AmericanPayoff{numtype <: Number} <: SingleNamePayoff{numtype} end abstract type BermudanPayoff{numtype <: Number} <: SingleNamePayoff{numtype} end abstract type PathDependentPayoff{numtype <: Number} <: SingleNamePayoff{numtype} end abstract type BarrierPayoff{numtype <: Number} <: PathDependentPayoff{numtype} end abstract type AsianPayoff{numtype <: Number} <: PathDependentPayoff{numtype} end #No multiple inheritance, sigh abstract type BasketPayoff{numtype <: Number} <: AbstractPayoff{numtype} end abstract type EuropeanBasketPayoff{numtype <: Number} <: BasketPayoff{numtype} end abstract type AmericanBasketPayoff{numtype <: Number} <: BasketPayoff{numtype} end abstract type BarrierBasketPayoff{numtype <: Number} <: BasketPayoff{numtype} end abstract type AsianBasketPayoff{numtype <: Number} <: BasketPayoff{numtype} end function maturity(x::abstractPayoff) where {abstractPayoff <: AbstractPayoff{<:Number}} return x.T end """ General Interface for Payoff computation from MonteCarlo paths Payoff=payoff(S,optionData,rfCurve,T1=optionData.T) Where: S = Paths of the Underlying. optionData = Datas of the Option. rfCurve = Datas of the Risk Free Curve. T1 =Final Time of Spot Simulation (default equals Time to Maturity of the option)[Optional, default to optionData.T] Payoff = payoff of the Option. """ function payoff(::AbstractMatrix, ::AbstractPayoff, ::AbstractZeroRateCurve, ::AbstractMonteCarloConfiguration, T1::Number = 0.0) error("Function used just for documentation") end function payoff(S::Array{Array{num, 2}, 1}, optionData::SingleNamePayoff, rfCurve::abstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = optionData.T) where {abstractZeroRateCurve <: AbstractZeroRateCurve, num <: Number, num2 <: Number} #switch to only in julia 1.4 ChainRulesCore.@ignore_derivatives @assert length(S) == 1 return payoff(S[1], optionData, rfCurve, mcBaseData, T1) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
780
####### Payoffs definition ### Spot include("payoffs/spot.jl") ### European Payoffs include("payoffs/forward.jl") include("payoffs/european_option.jl") include("payoffs/binary_european_option.jl") ### Barrier Payoffs include("payoffs/barrier_do_option.jl") include("payoffs/barrier_di_option.jl") include("payoffs/barrier_uo_option.jl") include("payoffs/barrier_ui_option.jl") include("payoffs/double_barrier_option.jl") ### American Payoffs include("payoffs/american_option.jl") include("payoffs/binary_american_option.jl") ### Path Dependent Payoffs include("payoffs/bermudan_option.jl") ### Asian Payoffs include("payoffs/asian_fixed_strike_option.jl") include("payoffs/asian_floating_strike_option.jl") ### Basket Payoffs include("payoffs/basket/n_european_option.jl")
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2171
function payoff(S1::AbstractMatrix{num}, amPayoff::AmericanPayoff, rfCurve::abstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(amPayoff)) where {abstractZeroRateCurve <: AbstractZeroRateCurve, num <: Number, num2 <: Number} T = amPayoff.T NStep = mcBaseData.Nstep Nsim = mcBaseData.Nsim index1 = round(Int, T / T1 * NStep) + 1 S = collect(S1[:, 1:index1]) Nstep = index1 - 1 r = rfCurve.r dt = T / Nstep # initialize vectors exerciseTimes = (Nstep) .* ones(Int64, Nsim) df_exerciseTimes = [exp(-integral(r, dt * j_)) for j_ = 0:NStep] #define payout phi(Sti::numtype_) where {numtype_ <: Number} = payout(Sti, amPayoff) #compute payout @views V = @. phi(S[:, end]) # Backward Procedure s_type = eltype(S) b_type = typeof(zero(eltype(S)) + zero(eltype(V))) A_2 = Matrix{s_type}(undef, 3, 3) Btilde = Array{b_type}(undef, 3) alpha = Array{b_type}(undef, 3) @inbounds for j = Nstep:-1:2 @views Tmp = @. phi(S[:, j]) inMoneyIndexes = findall(Tmp .> 0.0) if !isempty(inMoneyIndexes) @views S_I = S[inMoneyIndexes, j] #- Linear Regression on Quadratic Form A = Matrix{eltype(A_2)}(undef, length(S_I), 3) @views @. A[:, 1] = 1 @views @. A[:, 2] = S_I @views @. A[:, 3] = S_I^2 b = [V[j_] * df_exerciseTimes[exerciseTimes[j_]-j+1] for j_ in inMoneyIndexes] A_2 .= A' * A LuMat = lu!(A_2) Btilde .= A' * b alpha .= LuMat \ Btilde #alpha=A\b; #Continuation Value CV = A * alpha #-- Intrinsic Value @views IV = Tmp[inMoneyIndexes] #---------- # Find premature exercise times Index = findall(IV .> CV) @views exercisePositions = inMoneyIndexes[Index] # Update the outputs @views @. V[exercisePositions] = IV[Index] @views @. exerciseTimes[exercisePositions] = j - 1 end end Out = @. V * df_exerciseTimes[exerciseTimes+1] return Out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2180
function payoff(S1::AbstractMatrix{num}, bmPayoff::BermudanPayoff, rfCurve::abstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(bmPayoff)) where {abstractZeroRateCurve <: AbstractZeroRateCurve, num <: Number, num2 <: Number} T_opt = bmPayoff.T_ex T = maturity(bmPayoff) NStep = mcBaseData.Nstep Nsim = mcBaseData.Nsim index1 = round(Int, T / T1 * NStep) + 1 S = collect(S1[:, 1:index1]) Nstep = index1 - 1 r = rfCurve.r dt = T / Nstep # initialize exerciseTimes = Nstep .* ones(Nsim) phi(Sti::numtype_) where {numtype_ <: Number} = payout(Sti, bmPayoff) idx_opt = round.(Int, T_opt ./ dt) @views V = phi.(S[:, end]) #payoff # Backward Procedure for j in reverse(idx_opt) @views Tmp = phi.(S[:, j]) inMoneyIndexes = findall(Tmp .> 0.0) if !isempty(inMoneyIndexes) #S_I=S[inMoneyIndexes,j]; S_I = view(S, inMoneyIndexes, j) #-- Intrinsic Value @views IV = Tmp[inMoneyIndexes] #-- Continuation Value #- Linear Regression on Quadratic Form A = [ones(length(S_I)) S_I S_I .^ 2] #@views b=V[inMoneyIndexes].*exp.(-r*dt*(exerciseTimes[inMoneyIndexes].-j)); @views b = V[inMoneyIndexes] .* exp.(-[integral(r, dt * (exerciseTime - j + 1)) for exerciseTime in exerciseTimes[inMoneyIndexes]]) #@views b = V[inMoneyIndexes] .* exp.(-1.0*integral.(r, dt .* (exerciseTimes[inMoneyIndexes]. - j + 1))) #MAT=A'*A; LuMat = lu(A' * A) Btilde = A' * b alpha = LuMat \ Btilde #alpha=A\b; #Continuation Value CV = A * alpha #---------- # Find premature exercise times Index = findall(IV .> CV) @views exercisePositions = inMoneyIndexes[Index] # Update the outputs @views V[exercisePositions] = IV[Index] @views exerciseTimes[exercisePositions] .= j - 1 end end Out = V .* exp.(-[integral(r, dt * exerciseTime) for exerciseTime in exerciseTimes]) return Out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
547
function payoff(S::AbstractMatrix{num}, euPayoff::EuropeanPayoff, rfCurve::abstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(euPayoff)) where {abstractZeroRateCurve <: AbstractZeroRateCurve, num <: Number, num2 <: Number} r = rfCurve.r T = euPayoff.T NStep = mcBaseData.Nstep index1 = round(UInt, T / T1 * NStep) + 1 @views ST = S[:, index1] phi(Sti::numtype_) where {numtype_ <: Number} = payout(Sti, euPayoff) payoff2 = @. phi(ST) return payoff2 * exp(-integral(r, T)) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
636
function payoff(S::AbstractMatrix{num}, payoff_::PathDependentPayoff, rfCurve::abstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(payoff_)) where {abstractZeroRateCurve <: AbstractZeroRateCurve, num <: Number, num2 <: Number} r = rfCurve.r T = payoff_.T Nsim = mcBaseData.Nsim NStep = mcBaseData.Nstep index1 = round(Int, T / T1 * NStep) + 1 @inbounds f(S::abstractArray) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} = payout(S, payoff_) @inbounds payoff2 = [f(view(S, i, 1:index1)) for i = 1:Nsim] return payoff2 * exp(-integral(r, T)) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1197
""" Struct for Standard American Option amOption=AmericanOption(T::num1,K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct AmericanOption{num1 <: Number, num2 <: Number, numtype <: Number} <: AmericanPayoff{numtype} T::num1 K::num2 isCall::Bool function AmericanOption(T::num1, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T, K, isCall) end end export AmericanOption; function payout(Sti::numtype_, amPayoff::AmericanOption) where {numtype_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(amPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(Sti) * amPayoff.K return max(iscall * (Sti - amPayoff.K), zero_typed) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1273
""" Struct for Asian Fixed Strike Option asOption=AsianFixedStrikeOption(T::num1,K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct AsianFixedStrikeOption{num1 <: Number, num2 <: Number, numtype <: Number} <: AsianPayoff{numtype} T::num1 K::num2 isCall::Bool function AsianFixedStrikeOption(T::num1, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T, K, isCall) end end export AsianFixedStrikeOption; function payout(S::abstractArray, opt_::AsianFixedStrikeOption) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(opt_.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) * opt_.K return max(iscall * (mean(S) - opt_.K), zero_typed) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
942
""" Struct for Asian Floating Strike Option asOption=AsianFloatingStrikeOption(T::num1,isCall::Bool=true) where {num1 <: Number} Where: T = Time to maturity of the Option. isCall = true for CALL, false for PUT. """ struct AsianFloatingStrikeOption{num <: Number} <: AsianPayoff{num} T::num isCall::Bool function AsianFloatingStrikeOption(T::num, isCall::Bool = true) where {num <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" return new{num}(T, isCall) end end export AsianFloatingStrikeOption; function payout(S::abstractArray, opt_::AsianFloatingStrikeOption) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(opt_.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) return max(iscall * (S[end] - mean(S)), zero_typed) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1635
""" Struct for Barrier Down and In Option barOption=BarrierOptionDownIn(T::num1,K::num2,barrier::num3,isCall::Bool=true) where {num1 <: Number,num2 <: Number,num3 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. barrier = Down Barrier of the Option. isCall = true for CALL, false for PUT. """ struct BarrierOptionDownIn{num1 <: Number, num2 <: Number, num3 <: Number, numtype <: Number} <: BarrierPayoff{numtype} T::num1 K::num2 barrier::num3 isCall::Bool function BarrierOptionDownIn(T::num1, K::num2, barrier::num3, isCall::Bool = true) where {num1 <: Number, num2 <: Number, num3 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" ChainRulesCore.@ignore_derivatives @assert barrier > 0 "Barrier must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) + zero(num3) return new{num1, num2, num3, typeof(zero_typed)}(T, K, barrier, isCall) end end export BarrierOptionDownIn; function payout(S::abstractArray, barrierPayoff::BarrierOptionDownIn) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(barrierPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) * barrierPayoff.K * barrierPayoff.barrier return max(iscall * (S[end] - barrierPayoff.K), zero_typed) * !(findfirst(x -> x < barrierPayoff.barrier, S) === nothing) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1647
""" Struct for Barrier Down and Out Option barOption=BarrierOptionDownOut(T::num1,K::num2,barrier::num3,isCall::Bool=true) where {num1 <: Number,num2 <: Number,num3 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. barrier = Down Barrier of the Option. isCall = true for CALL, false for PUT. """ struct BarrierOptionDownOut{num1 <: Number, num2 <: Number, num3 <: Number, numtype <: Number} <: BarrierPayoff{numtype} T::num1 K::num2 barrier::num3 isCall::Bool function BarrierOptionDownOut(T::num1, K::num2, barrier::num3, isCall::Bool = true) where {num1 <: Number, num2 <: Number, num3 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" ChainRulesCore.@ignore_derivatives @assert barrier > 0 "Barrier must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) + zero(num3) return new{num1, num2, num3, typeof(zero_typed)}(T, K, barrier, isCall) end end export BarrierOptionDownOut; function payout(S::abstractArray, barrierPayoff::BarrierOptionDownOut) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(barrierPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) * barrierPayoff.K * barrierPayoff.barrier return @views max(iscall * (S[end] - barrierPayoff.K), zero_typed) * (findfirst(x -> x < barrierPayoff.barrier, S) === nothing) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1621
""" Struct for Barrier Up and In Option barOption=BarrierOptionUpIn(T::num1,K::num2,barrier::num3,isCall::Bool=true) where {num1 <: Number,num2 <: Number,num3 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. barrier = Up Barrier of the Option. isCall = true for CALL, false for PUT. """ struct BarrierOptionUpIn{num1 <: Number, num2 <: Number, num3 <: Number, numtype <: Number} <: BarrierPayoff{numtype} T::num1 K::num2 barrier::num3 isCall::Bool function BarrierOptionUpIn(T::num1, K::num2, barrier::num3, isCall::Bool = true) where {num1 <: Number, num2 <: Number, num3 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" ChainRulesCore.@ignore_derivatives @assert barrier > 0 "Barrier must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) + zero(num3) return new{num1, num2, num3, typeof(zero_typed)}(T, K, barrier, isCall) end end export BarrierOptionUpIn; function payout(S::abstractArray, barrierPayoff::BarrierOptionUpIn) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(barrierPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) * barrierPayoff.K * barrierPayoff.barrier return max(iscall * (S[end] - barrierPayoff.K), zero_typed) * !(findfirst(x -> x > barrierPayoff.barrier, S) === nothing) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1626
""" Struct for Barrier Up and Out Option barOption=BarrierOptionUpOut(T::num1,K::num2,barrier::num3,isCall::Bool=true) where {num1 <: Number,num2 <: Number,num3 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. barrier = Up Barrier of the Option. isCall = true for CALL, false for PUT. """ struct BarrierOptionUpOut{num1 <: Number, num2 <: Number, num3 <: Number, numtype <: Number} <: BarrierPayoff{numtype} T::num1 K::num2 barrier::num3 isCall::Bool function BarrierOptionUpOut(T::num1, K::num2, barrier::num3, isCall::Bool = true) where {num1 <: Number, num2 <: Number, num3 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" ChainRulesCore.@ignore_derivatives @assert barrier > 0 "Barrier must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) + zero(num3) return new{num1, num2, num3, typeof(zero_typed)}(T, K, barrier, isCall) end end export BarrierOptionUpOut; function payout(S::abstractArray, barrierPayoff::BarrierOptionUpOut) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(barrierPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) * barrierPayoff.K * barrierPayoff.barrier return max(iscall * (S[end] - barrierPayoff.K), zero_typed) * (findfirst(x -> x > barrierPayoff.barrier, S) === nothing) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1294
""" Struct for Standard Bermudan Option bmOption=BermudanOption(T::AbstractArray{num1},K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct BermudanOption{num1 <: Number, num2 <: Number, numtype <: Number} <: BermudanPayoff{numtype} T::num1 T_ex::Array{num1} K::num2 isCall::Bool function BermudanOption(T::AbstractArray{num1}, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert minimum(T) > 0 "Times to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" ChainRulesCore.@ignore_derivatives @assert issorted(T) "Times to Maturity must be sorted" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T[end], T, K, isCall) end end export BermudanOption; function payout(Sti::numtype_, bmPayoff::BermudanOption) where {numtype_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(bmPayoff.isCall, Int8(1), Int8(-1)) return max((Sti - bmPayoff.K) * iscall, zero(numtype_)) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1181
""" Struct for Binary American Option binAmOption=BinaryAmericanOption(T::num1,K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct BinaryAmericanOption{num1 <: Number, num2 <: Number, numtype <: Number} <: AmericanPayoff{numtype} T::num1 K::num2 isCall::Bool function BinaryAmericanOption(T::num1, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T, K, isCall) end end export BinaryAmericanOption; function payout(Sti::numtype_, amPayoff::BinaryAmericanOption) where {numtype_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(amPayoff.isCall, Int8(1), Int8(-1)) return ifelse((Sti - amPayoff.K) * iscall > 0.0, one(numtype_), zero(numtype_)) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1345
""" Struct for Binary European Option binOption=BinaryEuropeanOption(T::num1,K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct BinaryEuropeanOption{num1 <: Number, num2 <: Number, numtype <: Number} <: EuropeanPayoff{numtype} T::num1 K::num2 isCall::Bool function BinaryEuropeanOption(T::num1, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T, K, isCall) end end export BinaryEuropeanOption; function payout_untyped(ST::numtype_, euPayoff::BinaryEuropeanOption) where {numtype_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(euPayoff.isCall, Int8(1), Int8(-1)) res = ifelse((ST - 1) * iscall > 0, one(numtype_), zero(numtype_)) return res end function payout(ST::numtype_, euPayoff::BinaryEuropeanOption) where {numtype_ <: Number} K = euPayoff.K return payout_untyped(ST / K, euPayoff) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1912
""" Struct for Double Barrier Option dbOption=DoubleBarrierOption(T::num1,K::num2,D::num3,U::num4,isCall::Bool=true) where {num1 <: Number,num2 <: Number,num3 <: Number,num4 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. D = Low Barrier of the Option. U = Up Barrier of the Option. isCall = true for CALL, false for PUT. """ struct DoubleBarrierOption{num1 <: Number, num2 <: Number, num3 <: Number, num4 <: Number, numtype <: Number} <: BarrierPayoff{numtype} T::num1 K::num2 D::num3 U::num4 isCall::Bool function DoubleBarrierOption(T::num1, K::num2, D::num3, U::num4, isCall::Bool = true) where {num1 <: Number, num2 <: Number, num3 <: Number, num4 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" ChainRulesCore.@ignore_derivatives @assert D > 0 "Low Barrier must be positive" ChainRulesCore.@ignore_derivatives @assert U > D "High Barrier must be positive and greater then Low barrier" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) + zero(num3) + zero(num4) return new{num1, num2, num3, num4, typeof(zero_typed)}(T, K, D, U, isCall) end end export DoubleBarrierOption; function payout(S::abstractArray, barrierPayoff::DoubleBarrierOption) where {abstractArray <: AbstractArray{num_}} where {num_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(barrierPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(eltype(S)) * barrierPayoff.K * barrierPayoff.U * barrierPayoff.D return max(iscall * (S[end] - barrierPayoff.K), zero_typed) * (findfirst(x -> x < barrierPayoff.D, S) === nothing) * (findfirst(x -> x > barrierPayoff.U, S) === nothing) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1346
""" Struct for European Option euOption=EuropeanOption(T::num1,K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct EuropeanOption{num1 <: Number, num2 <: Number, numtype <: Number} <: EuropeanPayoff{numtype} T::num1 K::num2 isCall::Bool function EuropeanOption(T::num1, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T, K, isCall) end end export EuropeanOption; function payout_untyped(ST::numtype_, euPayoff::EuropeanOption) where {numtype_ <: Number} iscall = ChainRulesCore.@ignore_derivatives ifelse(euPayoff.isCall, Int8(1), Int8(-1)) zero_typed = ChainRulesCore.@ignore_derivatives zero(ST) return max(iscall * (ST - 1), zero_typed) end function payout(ST::numtype_, euPayoff::EuropeanOption) where {numtype_ <: Number} K = euPayoff.K result = K * payout_untyped(ST / K, euPayoff) return result end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
800
""" Class for Dispatching Forward Payoff forward=Forward(T::num) where {num <: Number} Where: T = Time to maturity of the Forward. """ struct Forward{num <: Number} <: EuropeanPayoff{num} T::num function Forward(T::num) where {num <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" return new{num}(T) end end export Forward; function payoff(S::AbstractMatrix{num}, optionData::Forward, rfCurve::AbstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(optionData)) where {num <: Number, num2 <: Number} r = rfCurve.r T = optionData.T NStep = mcBaseData.Nstep index1 = round(Int, T / T1 * NStep) + 1 @views ST = S[:, index1] return ST * exp(-integral(r, T)) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
570
""" Class for Dispatching Spot Payoff spot=Spot() """ struct Spot <: EuropeanPayoff{Float16} function Spot() return new() end end export Spot; function payoff(S::AbstractMatrix{num}, optionData::Spot, ::ZeroRate, ::AbstractMonteCarloConfiguration, T1::num2 = maturity(optionData)) where {num <: Number, num2 <: Number} S0_vec = S[:, 1] return S0_vec end function pricer(mcProcess::BaseProcess, ::AbstractZeroRateCurve, ::MonteCarloConfiguration, ::Spot) return mcProcess.underlying.S0 end function maturity(::Spot) return 0.0 end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1710
""" Struct for European Option euOption=EuropeanOptionND(T::num1,K::num2,isCall::Bool=true) where {num1 <: Number,num2 <: Number} Where: T = Time to maturity of the Option. K = Strike Price of the Option. isCall = true for CALL, false for PUT. """ struct EuropeanOptionND{num1 <: Number, num2 <: Number, numtype <: Number} <: EuropeanBasketPayoff{numtype} T::num1 K::num2 isCall::Bool function EuropeanOptionND(T::num1, K::num2, isCall::Bool = true) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert T > 0 "Time to Maturity must be positive" ChainRulesCore.@ignore_derivatives @assert K > 0 "Strike Price must be positive" zero_typed = ChainRulesCore.@ignore_derivatives zero(num1) + zero(num2) return new{num1, num2, typeof(zero_typed)}(T, K, isCall) end end export EuropeanOptionND; function payoff(S::Array{abstractMatrix}, euPayoff::EuropeanOptionND, rfCurve::abstractZeroRateCurve, mcBaseData::AbstractMonteCarloConfiguration, T1::num2 = maturity(euPayoff)) where {abstractMatrix <: AbstractMatrix, num2 <: Number, abstractZeroRateCurve <: AbstractZeroRateCurve} r = rfCurve.r T = euPayoff.T iscall = ChainRulesCore.@ignore_derivatives ifelse(euPayoff.isCall, Int8(1), Int8(-1)) NStep = mcBaseData.Nstep index1 = round(Int, T / T1 * NStep) + 1 K = euPayoff.K #ST_all=[ sum(x_i[j,index1] for x_i in S) for j in 1:Nsim] # ST_all = S[1][:, index1] # for i = 2:length(S) # ST_all += S[i][:, index1] # end ST_all = sum(S[i][:, index1] for i = 1:length(S)) payoff2 = max.(iscall * (ST_all .- K), 0.0) return payoff2 * exp(-integral(r, T)) end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3183
########### Curve Section using Dictionaries const DictTypeInternal = Dictionaries.Dictionary const CurveType = DictTypeInternal{num1, num2} where {num1 <: Number, num2 <: Number} function extract_keys(x::CurveType{num1, num2}) where {num1 <: Number, num2 <: Number} return sort(collect(keys(x))) end function extract_values(x::CurveType{num1, num2}) where {num1 <: Number, num2 <: Number} T_d = collect(keys(x)) idx_ = sortperm(T_d) return collect(values(x))[idx_] end function Curve(r_::Array{num1}, T::num2) where {num1 <: Number, num2 <: Number} r = DictTypeInternal{num2, num1}() Nstep = length(r_) - 1 dt = T / Nstep for i = 1:length(r_) insert!(r, (i - 1) * dt, r_[i]) end return r end function Curve(r_::Array{num1}, T::Array{num2}) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert length(r_) == length(T) ChainRulesCore.@ignore_derivatives @assert T == sort(T) r = DictTypeInternal{num2, num1}() for i = 1:length(r_) insert!(r, T[i], r_[i]) end return r end function ImpliedCurve(r_::Array{num1}, T::Array{num2}) where {num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert length(r_) == length(T) ChainRulesCore.@ignore_derivatives @assert length(r_) >= 1 ChainRulesCore.@ignore_derivatives @assert T == sort(T) r = DictTypeInternal{num2, num1}() insert!(r, 0.0, 0.0) insert!(r, T[1], r_[1] * 2.0) prec_r = r_[1] * 2.0 for i = 2:length(r_) tmp_r = (r_[i] * T[i] - r_[i-1] * T[i-1]) * 2 / (T[i] - T[i-1]) - prec_r insert!(r, T[i], tmp_r) prec_r = tmp_r end return r end function ImpliedCurve(r_::Array{num1}, T::num2) where {num1 <: Number, num2 <: Number} N = length(r_) dt_ = T / N t_ = collect(dt_:dt_:T) return ImpliedCurve(r_, t_) end function incremental_integral(x::CurveType{num1, num2}, t::Number, dt::Number) where {num1 <: Number, num2 <: Number} T = extract_keys(x) r = extract_values(x) return internal_definite_integral(t + dt, T, r) - internal_definite_integral(t, T, r) end using Interpolations function internal_definite_integral(x::num, T::Array{num1}, r::Array{num2}) where {num <: Number, num1 <: Number, num2 <: Number} ChainRulesCore.@ignore_derivatives @assert length(T) == length(r) if x == 0.0 return 0.0 end ChainRulesCore.@ignore_derivatives @assert x >= 0.0 idx_ = findlast(y -> y < x, T) out = sum([(r[i] + r[i+1]) * 0.5 * (T[i+1] - T[i]) for i = 1:(idx_-1)]) if x <= T[end] itp = linear_interpolation([T[idx_], T[idx_+1]], [r[idx_], r[idx_+1]], extrapolation_bc = Flat()) out = out + (r[idx_] + itp(x)) * 0.5 * (x - T[idx_]) else #continuation out = out + (r[idx_] + r[idx_-1]) * 0.5 * (x - T[idx_]) end return out end function integral(r::DictTypeInternal{num1, num2}, t::Number) where {num1 <: Number, num2 <: Number} T = extract_keys(r) values = extract_values(r) return internal_definite_integral(t, T, values) end integral(x::num1, t::num2) where {num1 <: Number, num2 <: Number} = x * t; ### end curve section
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1597
function oper(+) @eval import Base.$+ @eval function $+(r::DictTypeInternal{num1, num2}, d::DictTypeInternal{num1, num3}) where {num1 <: Number, num2 <: Number, num3 <: Number} T_r = extract_keys(r) T_d = extract_keys(d) if (length(T_d) > length(T_r)) return $+(d, r) end d_complete = complete_curve(T_r, d) val_type = typeof(zero(num2) + zero(num3)) out = DictTypeInternal{num1, val_type}() for t in T_r insert!(out, t, $+(r[t], d_complete[t])) end return out end @eval function $+(r::DictTypeInternal{num1, num2}, d::num3) where {num1 <: Number, num2 <: Number, num3 <: Number} return $+.(r, d) end end function oper2(+) @eval import Base.$+ @eval function $+(d::num3, r::DictTypeInternal{num1, num2}) where {num1 <: Number, num2 <: Number, num3 <: Number} return $+(r, d) end end import Base.- function -(d::num3, r::DictTypeInternal{num1, num2}) where {num1 <: Number, num2 <: Number, num3 <: Number} return +(-1 * r, d) end oper(Symbol(+)) oper(Symbol(-)) oper(Symbol(/)) oper(Symbol(*)) oper2(Symbol(*)) oper2(Symbol(+)) function complete_curve(T::Array{num}, d::DictTypeInternal{num1, num2}) where {num <: Number, num1 <: Number, num2 <: Number} T_d = extract_keys(d) idx_ = sortperm(T_d) T_d = T_d[idx_] d_val = extract_values(d) d_val = d_val[idx_] out = DictTypeInternal{num1, num2}() itp = linear_interpolation(T_d, d_val) for t in T insert!(out, t, itp(t)) end return out end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3976
abstract type AbstractMonteCarloConfiguration end struct MonteCarloConfiguration{num1 <: Integer, num2 <: Integer, abstractMonteCarloMethod <: AbstractMonteCarloMethod, baseMode <: BaseMode} <: AbstractMonteCarloConfiguration Nsim::num1 Nstep::num2 monteCarloMethod::abstractMonteCarloMethod parallelMode::baseMode init_rng::Bool function MonteCarloConfiguration(Nsim::num1, Nstep::num2, seed::Number) where {num1 <: Integer, num2 <: Integer} return MonteCarloConfiguration(Nsim, Nstep, StandardMC(), SerialMode(seed)) end function MonteCarloConfiguration(Nsim::num1, Nstep::num2, monteCarloMethod::abstractMonteCarloMethod = StandardMC(), seed::Number = 0) where {num1 <: Integer, num2 <: Integer, abstractMonteCarloMethod <: AbstractMonteCarloMethod} return MonteCarloConfiguration(Nsim, Nstep, monteCarloMethod, SerialMode(Int64(seed), MersenneTwister())) end function MonteCarloConfiguration(Nsim::num1, Nstep::num2, parallelMethod::baseMode) where {num1 <: Integer, num2 <: Integer, baseMode <: BaseMode} return MonteCarloConfiguration(Nsim, Nstep, StandardMC(), parallelMethod) end #Most General, no default argument function GeneralMonteCarloConfiguration(Nsim::num1, Nstep::num2, monteCarloMethod::abstractMonteCarloMethod, parallelMethod::baseMode, init_rng::Bool = true) where {num1 <: Integer, num2 <: Integer, abstractMonteCarloMethod <: AbstractMonteCarloMethod, baseMode <: BaseMode} ChainRulesCore.@ignore_derivatives @assert Nsim > zero(num1) "Number of Simulations must be positive" ChainRulesCore.@ignore_derivatives @assert Nstep > zero(num2) "Number of Steps must be positive" return new{num1, num2, abstractMonteCarloMethod, baseMode}(Nsim, Nstep, monteCarloMethod, parallelMethod, init_rng) end function MonteCarloConfiguration(Nsim::num1, Nstep::num2, monteCarloMethod::abstractMonteCarloMethod, parallelMethod::baseMode, init_rng::Bool) where {num1 <: Integer, num2 <: Integer, abstractMonteCarloMethod <: AbstractMonteCarloMethod, baseMode <: BaseMode} ChainRulesCore.@ignore_derivatives @assert Nsim > zero(num1) "Number of Simulations must be positive" ChainRulesCore.@ignore_derivatives @assert Nstep > zero(num2) "Number of Steps must be positive" return GeneralMonteCarloConfiguration(Nsim, Nstep, monteCarloMethod, parallelMethod, init_rng) end function MonteCarloConfiguration(Nsim::num1, Nstep::num2, monteCarloMethod::abstractMonteCarloMethod, parallelMethod::baseMode) where {num1 <: Integer, num2 <: Integer, abstractMonteCarloMethod <: AbstractMonteCarloMethod, baseMode <: BaseMode} return GeneralMonteCarloConfiguration(Nsim, Nstep, monteCarloMethod, parallelMethod) end function MonteCarloConfiguration(Nsim::num1, Nstep::num2, monteCarloMethod::AntitheticMC, parallelMethod::baseMode = SerialMode()) where {num1 <: Integer, num2 <: Integer, baseMode <: BaseMode} ChainRulesCore.@ignore_derivatives @assert iseven(Nsim) "Antithetic support only even number of simulations" return GeneralMonteCarloConfiguration(Nsim, Nstep, monteCarloMethod, parallelMethod) end end SerialMonteCarloConfig = MonteCarloConfiguration{num1, num2, num3, ser_mode} where {num1 <: Integer, num2 <: Integer, num3 <: FinancialMonteCarlo.AbstractMonteCarloMethod, ser_mode <: FinancialMonteCarlo.SerialMode{rng_}} where {rng_ <: Random.AbstractRNG} SerialAntitheticMonteCarloConfig = MonteCarloConfiguration{num1, num2, num3, ser_mode} where {num1 <: Integer, num2 <: Integer, num3 <: FinancialMonteCarlo.AntitheticMC, ser_mode <: FinancialMonteCarlo.SerialMode{rng_}} where {rng_ <: Random.AbstractRNG} SerialSobolMonteCarloConfig = MonteCarloConfiguration{num1, num2, num3, ser_mode} where {num1 <: Integer, num2 <: Integer, num3 <: FinancialMonteCarlo.SobolMode, ser_mode <: FinancialMonteCarlo.SerialMode{rng_}} where {rng_ <: Random.AbstractRNG} export MonteCarloConfiguration;
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
727
#Parallel Modes abstract type BaseMode end struct SerialMode{rngType <: Random.AbstractRNG} <: BaseMode seed::Int64 rng::rngType function SerialMode(seed::num = 0, rng::rngType = MersenneTwister()) where {num <: Integer, rngType <: Random.AbstractRNG} return new{rngType}(Int64(seed), rng) end end abstract type ParallelMode <: BaseMode end #Numerical Modes, keyholes for modes different than Monte Carlo abstract type AbstractMethod end abstract type AbstractMonteCarloMethod <: AbstractMethod end struct StandardMC <: AbstractMonteCarloMethod end struct AntitheticMC <: AbstractMonteCarloMethod end struct SobolMode <: AbstractMonteCarloMethod end struct PrescribedMC <: AbstractMonteCarloMethod end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
93
get_rng_type(::T) where {T <: AbstractFloat} = zero(T); get_rng_type(::Any) = zero(Float64);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
258
abstract type AbstractSimResult end struct SimResult{num_ <: Number, num_2 <: Number, time_array <: AbstractArray{num_}, sim_matrix <: AbstractMatrix{num_2}} <: AbstractSimResult times::time_array sim_result::sim_matrix initial_value::num_2 end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1202
###########Underlying Types #Abstract abstract type AbstractUnderlying end #Scalar dividend struct UnderlyingScalar{num <: Number, num2 <: Number} <: AbstractUnderlying S0::num d::num2 function UnderlyingScalar(S0::num_, d::num_2 = 0.0) where {num_ <: Number, num_2 <: Number} ChainRulesCore.@ignore_derivatives @assert S0 >= zero(num_) "Underlying starting value must be positive" return new{num_, num_2}(S0, d) end end #Curve dividend struct UnderlyingVec{num <: Number, num2 <: Number, num3 <: Number} <: AbstractUnderlying S0::num d::CurveType{num2, num3} function UnderlyingVec(S0::num_, d::CurveType{num2, num3}) where {num_ <: Number, num2 <: Number, num3 <: Number} ChainRulesCore.@ignore_derivatives @assert S0 >= zero(num_) "Underlying starting value must be positive" return new{num_, num2, num3}(S0, d) end end #Common Constructors function Underlying(S0::num_, d::CurveType{num2, num3}) where {num_ <: Number, num2 <: Number, num3 <: Number} return UnderlyingVec(S0, d) end function Underlying(S0::num_, d::num_2 = 0.0) where {num_ <: Number, num_2 <: Number} return UnderlyingScalar(S0, d) end export Underlying;
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1100
###########Zero Rate Curve Types #Abstract abstract type AbstractZeroRateCurve end #Scalar struct ZeroRate{T2 <: Number} <: AbstractZeroRateCurve r::T2 function ZeroRate(r::T2) where {T2 <: Number} return new{T2}(r) end end #Curve struct ZeroRateCurve{num1 <: Number, num2 <: Number} <: AbstractZeroRateCurve r::CurveType{num1, num2} function ZeroRateCurve(r_::Array{num1}, T::num2) where {num1 <: Number, num2 <: Number} new{num2, num1}(Curve(r_, T)) end function ZeroRateCurve(r_::CurveType{num1, num2}) where {num1 <: Number, num2 <: Number} new{num2, num1}(r_) end end #Common Constructors function ZeroRate(r_::Array{num1}, T::num2) where {num1 <: Number, num2 <: Number} return ZeroRateCurve(r_, T) end function ImpliedZeroRate(r_::Array{num1}, T::num2) where {num1 <: Number, num2 <: Number} return ZeroRateCurve(ImpliedCurve(r_, T)) end function ImpliedZeroRate(r_::Array{num1}, T::Array{num2}) where {num1 <: Number, num2 <: Number} return ZeroRateCurve(ImpliedCurve(r_, T)) end export ZeroRateCurve; export ZeroRate;
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
810
using FinancialMonteCarlo path1 = joinpath(dirname(pathof(FinancialMonteCarlo)), "..", "test") test_listTmp = readdir(path1); BlackList = ["REQUIRE", "runtests.jl", "Project.toml", "Manifest.toml", "cuda", "af", "wip", "test_black_rev_diff.jl", "test_black_pre.jl"]; func_scope(x::String) = include(x); return nothing; test_list = [test_element for test_element in test_listTmp if !any(x -> x == test_element, BlackList)] println("Running tests:\n") for (current_test, i) in zip(test_list, 1:length(test_list)) println("------------------------------------------------------------") println(" * $(current_test) *") func_scope(joinpath(path1, current_test)) println("------------------------------------------------------------") if (i < length(test_list)) println("") end end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
4915
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) @test FinancialMonteCarlo.get_parameters(FwdData)[1] == T EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(0.1, Underlying(S0, d)); param_ = FinancialMonteCarlo.get_parameters(Model) @test param_[1] == 0.1 Model = FinancialMonteCarlo.set_parameters!(Model, [sigma]) @test Model.σ == sigma display(Model) @show spot = pricer(Model, rfCurve, mc, Spot()); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show EuBinPrice = pricer(Model, rfCurve, mc, EUBin); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show AmBinPrice = pricer(Model, rfCurve, mc, AmBin); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianFixedStrikeData); tollanti = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollanti @test abs(EuPrice - 8.43005524824866) < tollanti @test abs(AmPrice - 8.450489415187354) < tollanti @test abs(BarrierPrice - 7.5008664470880735) < tollanti @test abs(AsianPrice1 - 4.774451704549382) < tollanti EUDataPut = EuropeanOption(T, K, false) AMDataPut = AmericanOption(T, K, false) BarrierDataPut = BarrierOptionDownOut(T, K, D, false) AsianFloatingStrikeDataPut = AsianFloatingStrikeOption(T, false) AsianFixedStrikeDataPut = AsianFixedStrikeOption(T, K, false) @show EuPrice = pricer(Model, rfCurve, mc, EUDataPut); @show AmPrice = pricer(Model, rfCurve, mc, AMDataPut); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataPut); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeDataPut); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeDataPut); tollPut = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollPut @test abs(EuPrice - 7.342077422567968) < tollPut @test abs(AmPrice - 7.467065889603365) < tollPut @test abs(BarrierPrice - 0.29071929104261723) < tollPut @test abs(AsianPrice1 - 4.230547012372306) < tollPut @test abs(AsianPrice2 - 4.236220218194027) < tollPut @test_throws(AssertionError, MonteCarloConfiguration(Nsim + 1, Nstep, FinancialMonteCarlo.AntitheticMC())); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); @test variance(Model, rfCurve, mc, EUDataPut) > variance(Model, rfCurve, mc1, EUDataPut); @test prod(variance(Model, rfCurve, mc, [EUDataPut, AMDataPut]) .>= variance(Model, rfCurve, mc1, [EUDataPut, AMDataPut])); IC1 = confinter(Model, rfCurve, mc, EUDataPut); IC2 = confinter(Model, rfCurve, mc1, EUDataPut, 0.99); L1 = IC1[2] - IC1[1] L2 = IC2[2] - IC2[1] @test L1 > L2 IC1 = confinter(Model, rfCurve, mc, [EUDataPut, AMDataPut]); IC2 = confinter(Model, rfCurve, mc1, [EUDataPut, AMDataPut], 0.99); L1 = IC1[2][2] - IC1[2][1] L2 = IC2[2][2] - IC2[2][1] @test L1 > L2 ############## Complete Options EUDataBin = BinaryEuropeanOption(T, K) BinAMData = BinaryAmericanOption(T, K) BarrierDataDI = BarrierOptionDownIn(T, K, D) BarrierDataUI = BarrierOptionUpIn(T, K, D) BarrierDataUO = BarrierOptionUpOut(T, K, D) BermData = BermudanOption(collect(0.2:0.1:T), K); doubleBarrierOptionDownOut = DoubleBarrierOption(T, K, K / 10.0, 1.2 * K) @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataDI); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataUI); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataUO); @show BermPrice = pricer(Model, rfCurve, mc, BermData); @show AmBinPrice = pricer(Model, rfCurve, mc, BinAMData); @show EuBinPrice = pricer(Model, rfCurve, mc, EUDataBin); @show doubleBarrier = pricer(Model, rfCurve, mc, doubleBarrierOptionDownOut); @show "Test Black Scholes Parameters" @test_throws(AssertionError, BlackScholesProcess(-sigma, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1649
using Test, FinancialMonteCarlo, Statistics; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = [0.00, 0.02]; T = 1.0; d = FinancialMonteCarlo.Curve([0.019, 0.019, 0.02], T); D = 90.0; Nsim = 100000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 1.8 rfCurve = ZeroRate(r, T); FwdData = Forward(T) EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); display(Model) @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show EuBinPrice = pricer(Model, rfCurve, mc, EUBin); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show AmBinPrice = pricer(Model, rfCurve, mc, AmBin); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show "Test Black Scholes Parameters" @test_throws(AssertionError, BlackScholesProcess(-sigma, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1882
using Test, FinancialMonteCarlo, DualNumbers; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianFixedStrikeData); tollanti = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollanti @test abs(EuPrice - 8.43005524824866) < tollanti @test abs(AmPrice - 8.450489415187354) < tollanti @test abs(BarrierPrice - 7.5008664470880735) < tollanti @test abs(AsianPrice1 - 4.774451704549382) < tollanti
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
786
using FinancialMonteCarlo, ForwardDiff; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2 mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); f(x::Vector) = pricer(BlackScholesProcess(x[1], Underlying(x[2], d)), ZeroRate(r), mc, EUData); x = Float64[sigma, S0] g = x -> ForwardDiff.gradient(f, x); @show g(x)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1856
using Test, FinancialMonteCarlo, ForwardDiff; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = ForwardDiff.Dual{Float64}(0.2, 1.0) mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianFixedStrikeData); tollanti = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollanti @test abs(EuPrice - 8.43005524824866) < tollanti @test abs(AmPrice - 8.450489415187354) < tollanti @test abs(BarrierPrice - 7.5008664470880735) < tollanti @test abs(AsianPrice1 - 4.774451704549382) < tollanti
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
678
using FinancialMonteCarlo, Distributed S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.MultiProcess()); toll = 1.0; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); EuPrice = pricer(Model, rfCurve, mc, EUData); pricer(Model, rfCurve, mc, [EUData, EUData]); @test abs(EuPrice - 8.43005524824866) < toll
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
673
using FinancialMonteCarlo, Test S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.MultiThreading()); toll = 1.0; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); EuPrice = pricer(Model, rfCurve, mc, EUData); pricer(Model, rfCurve, mc, [EUData, EUData]); @test abs(EuPrice - 8.43005524824866) < toll
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
4581
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 1000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.PrescribedMC()); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); display(Model) @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show EuBinPrice = pricer(Model, rfCurve, mc, EUBin); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show AmBinPrice = pricer(Model, rfCurve, mc, AmBin); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianFixedStrikeData); tollanti = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollanti @test abs(EuPrice - 8.43005524824866) < tollanti @test abs(AmPrice - 8.450489415187354) < tollanti @test abs(BarrierPrice - 7.5008664470880735) < tollanti @test abs(AsianPrice1 - 4.774451704549382) < tollanti EUDataPut = EuropeanOption(T, K, false) AMDataPut = AmericanOption(T, K, false) BarrierDataPut = BarrierOptionDownOut(T, K, D, false) AsianFloatingStrikeDataPut = AsianFloatingStrikeOption(T, false) AsianFixedStrikeDataPut = AsianFixedStrikeOption(T, K, false) @show EuPrice = pricer(Model, rfCurve, mc, EUDataPut); @show AmPrice = pricer(Model, rfCurve, mc, AMDataPut); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataPut); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeDataPut); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeDataPut); tollPut = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollPut @test abs(EuPrice - 7.342077422567968) < tollPut @test abs(AmPrice - 7.467065889603365) < tollPut @test abs(BarrierPrice - 0.29071929104261723) < tollPut @test abs(AsianPrice1 - 4.230547012372306) < tollPut @test abs(AsianPrice2 - 4.236220218194027) < tollPut @test_throws(AssertionError, MonteCarloConfiguration(Nsim + 1, Nstep, FinancialMonteCarlo.AntitheticMC())); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); @test variance(Model, rfCurve, mc, EUDataPut) > variance(Model, rfCurve, mc1, EUDataPut); @test prod(variance(Model, rfCurve, mc, [EUDataPut, AMDataPut]) .>= variance(Model, rfCurve, mc1, [EUDataPut, AMDataPut])); IC1 = confinter(Model, rfCurve, mc, EUDataPut); IC2 = confinter(Model, rfCurve, mc1, EUDataPut, 0.99); L1 = IC1[2] - IC1[1] L2 = IC2[2] - IC2[1] @test L1 > L2 IC1 = confinter(Model, rfCurve, mc, [EUDataPut, AMDataPut]); IC2 = confinter(Model, rfCurve, mc1, [EUDataPut, AMDataPut], 0.99); L1 = IC1[2][2] - IC1[2][1] L2 = IC2[2][2] - IC2[2][1] @test L1 > L2 ############## Complete Options EUDataBin = BinaryEuropeanOption(T, K) BinAMData = BinaryAmericanOption(T, K) BarrierDataDI = BarrierOptionDownIn(T, K, D) BarrierDataUI = BarrierOptionUpIn(T, K, D) BarrierDataUO = BarrierOptionUpOut(T, K, D) doubleBarrierOptionDownOut = DoubleBarrierOption(T, K, K / 10.0, 1.2 * K) @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataDI); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataUI); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierDataUO); @show AmBinPrice = pricer(Model, rfCurve, mc, BinAMData); @show EuBinPrice = pricer(Model, rfCurve, mc, EUDataBin); @show doubleBarrier = pricer(Model, rfCurve, mc, doubleBarrierOptionDownOut); @show "Test Black Scholes Parameters" @test_throws(AssertionError, BlackScholesProcess(-sigma, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1194
using FinancialMonteCarlo, ReverseDiff; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2 mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); Model = BlackScholesProcess(sigma, Underlying(S0, d)); x = Float64[sigma, S0, r, d, T] @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1]), ZeroRate(x[2], x[3], x[4]), mc, Forward(x[5])), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1]), ZeroRate(x[2], x[3], x[4]), mc, EuropeanOption(x[5], K)), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1]), ZeroRate(x[2], x[3], x[4]), mc, AmericanOption(x[5], K)), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1]), ZeroRate(x[2], x[3], x[4]), mc, BarrierOptionDownOut(x[5], K, D)), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1]), ZeroRate(x[2], x[3], x[4]), mc, AsianFloatingStrikeOption(x[5])), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1]), ZeroRate(x[2], x[3], x[4]), mc, AsianFixedStrikeOption(x[5], K)), x)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1457
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; d_ = FinancialMonteCarlo.Curve([0.009999, 0.01], T); D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SobolMode()); toll = 0.8 spotData1 = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); display(Model) @show FwdPrice = pricer(Model, spotData1, mc, FwdData); @show EuPrice = pricer(Model, spotData1, mc, EUData); @show EuBinPrice = pricer(Model, spotData1, mc, EUBin); @show AmPrice = pricer(Model, spotData1, mc, AMData); @show AmBinPrice = pricer(Model, spotData1, mc, AmBin); @show BarrierPrice = pricer(Model, spotData1, mc, BarrierData); @show AsianPrice1 = pricer(Model, spotData1, mc, AsianFloatingStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show FwdPrice = pricer(BlackScholesProcess(sigma, Underlying(S0, d_)), spotData1, mc, FwdData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1904
using Test, FinancialMonteCarlo, TaylorSeries; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = taylor_expand(identity,0.2,order=3); mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianFixedStrikeData); tollanti = 0.6; @test abs(FwdPrice - 99.1078451563562) < tollanti @test abs(EuPrice - 8.43005524824866) < tollanti @test abs(AmPrice - 8.450489415187354) < tollanti @test abs(BarrierPrice - 7.5008664470880735) < tollanti @test abs(AsianPrice1 - 4.774451704549382) < tollanti
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
693
using FinancialMonteCarlo, VectorizedRNG S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SerialMode(10, local_rng())); toll = 1.0; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); EuPrice = pricer(Model, rfCurve, mc, EUData); pricer(Model, rfCurve, mc, [EUData, EUData]); @test abs(EuPrice - 8.43005524824866) < toll
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
579
using FinancialMonteCarlo, Test; @show "Test Parameters" S0 = 100.0; K = 100.0; r = 0.02; Tneg = -1.0; d = 0.01; T = -Tneg; Nsim = 10000; Nstep = 30; mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); rfCurve2 = ZeroRate([0.00, 0.02], T); sigma = 0.2; McConfig = MonteCarloConfiguration(Nsim, Nstep); rfCurve = ZeroRate(r); @show "Test Brownian Motion Parameters" drift = 0.0 @test_throws(AssertionError, BrownianMotion(-sigma, drift)) @test_throws(AssertionError, BrownianMotion(-sigma, rfCurve2.r)) S=simulate(BrownianMotion(0.2, 0.01),mc1,1.0);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1021
using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 300; sigma = 0.2; variate_ = FinancialMonteCarlo.ControlVariates(Forward(T), MonteCarloConfiguration(1000, 100)) variate_2 = FinancialMonteCarlo.ControlVariates(AsianFloatingStrikeOption(T), MonteCarloConfiguration(1000, 100)) mc = MonteCarloConfiguration(Nsim, Nstep, variate_); mc2 = MonteCarloConfiguration(Nsim, Nstep, variate_2); mc1 = MonteCarloConfiguration(Nsim, Nstep); toll = 1e-3; spotData1 = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); AsianPrice1 = pricer(Model, spotData1, mc, AsianFloatingStrikeData); AsianPrice2 = pricer(Model, spotData1, mc, AsianFixedStrikeData); AsianPrice2 = pricer(Model, spotData1, mc2, AsianFixedStrikeData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2448
using Test, FinancialMonteCarlo, DualNumbers; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" underlying_name_2 = "ABPL" underlying_ = underlying_name * "_" * underlying_name_2 * "_TESL" Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOptionND(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); Model_tesl = BlackScholesProcess(sigma, Underlying(S0, d)); rho_1 = [1.0 0.0 0.1; 0.0 1.0 0.0; 0.1 0.0 1.0]; Model = GaussianCopulaNVariateProcess(rho_1, Model_enj, Model_abpl, Model_tesl) display(Model) mktdataset = underlying_ → Model mktdataset_1 = underlying_name → Model_enj portfolio_ = [EUData]; portfolio = underlying_ → EUData portfolio_1 = underlying_name → AMData price_mkt = FinancialMonteCarlo.delta(mktdataset, rfCurve, mc, portfolio, underlying_name, 1e-7) price_mkt_1 = FinancialMonteCarlo.delta(mktdataset_1, rfCurve, mc, portfolio_1, underlying_name, 1e-7) Model_enj_dual = BlackScholesProcess(sigma, Underlying(dual(S0, 1.0), d)); Model_dual = GaussianCopulaNVariateProcess(rho_1, Model_enj_dual, Model_abpl, Model_tesl) mktdataset_dual = underlying_ → Model_dual mktdataset_1_dual = underlying_name → Model_enj_dual price_mkt_dual = pricer(mktdataset_dual, rfCurve, mc, portfolio) price_mkt_1_dual = pricer(mktdataset_1_dual, rfCurve, mc, portfolio_1) @test(abs(price_mkt_dual.epsilon - price_mkt) < 1e-4) @test(abs(price_mkt_1_dual.epsilon - price_mkt_1) < 1e-4) @test(abs(price_mkt_1_dual.epsilon - FinancialMonteCarlo.delta(Model_enj, rfCurve, mc, AMData, 1e-7)) < 1e-4) @test(abs(price_mkt_1_dual.epsilon - FinancialMonteCarlo.delta(Model_enj, rfCurve, mc, AMData * 1.0, 1e-7)) < 1e-4) @test(abs(price_mkt_1_dual.epsilon - FinancialMonteCarlo.delta(Model_enj, rfCurve, mc, [AMData], 1e-7)[1]) < 1e-4) @test_throws(AssertionError, FinancialMonteCarlo.delta(mktdataset_1, rfCurve, mc, portfolio_1, underlying_, 1e-7)) @test(FinancialMonteCarlo.delta(mktdataset_1, rfCurve, mc, portfolio_1, "ciao", 1e-7) == 0.0)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1149
using Test, FinancialMonteCarlo, DifferentialEquations; @show "Differential Equation Junctor" Nsim = 10000; Nstep = 30; toll = 0.8; mc = MonteCarloConfiguration(Nsim, Nstep); S0 = 100.0 K = 100.0; D = 90.0; r = 0.02 sigma = 0.2 T = 1.0; d = 0.01; # Drift dr_(u, p, t) = (r - d) * u # Diffusion g_1(u, p, t) = sigma * u # Time Window tspan = (0.0, T) # Definition of the SDE prob = SDEProblem(dr_, g_1, S0, tspan) monte_prob = EnsembleProblem(prob) rfCurve = ZeroRate(r); model = FinancialMonteCarlo.MonteCarloDiffEqModel(monte_prob, Underlying(S0, d)) FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) @show FwdPrice = pricer(model, rfCurve, mc, FwdData); @show EuPrice = pricer(model, rfCurve, mc, EUData); @show AmPrice = pricer(model, rfCurve, mc, AMData); @show BarrierPrice = pricer(model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(model, rfCurve, mc, AsianFixedStrikeData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1882
using Test, FinancialMonteCarlo, DifferentialEquations, Random; @show "Differential Equation Junctor" Nsim = 10000; Nstep = 30; toll = 0.8; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); S0 = 100.0 K = 100.0; D = 90.0; r = 0.02 sigma = 0.2 T = 1.0; d = 0.01; u0 = 0.0; p1 = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; #Drift dr_(u, p, t) = (r - d - sigma^2 / 2.0 - lam * (p1 / (lamp - 1) - (1 - p1) / (lamm + 1))) #Diffusion g_1(u, p, t) = sigma #Time Window tspan = (0.0, T) rate(u, p, t) = lam * T affect!(integrator) = (integrator.u = integrator.u + ((rand(mc.parallelMode.rng) < p1) ? randexp(mc.parallelMode.rng) / lamp : -randexp(mc.parallelMode.rng) / lamm)) jump = ConstantRateJump(rate, affect!) #Definition of the SDE prob = SDEProblem(dr_, g_1, u0, tspan) jump_prob = JumpProblem(prob, Direct(), jump, rng = mc.parallelMode.rng) monte_prob = EnsembleProblem(jump_prob) rfCurve = ZeroRate(r); func(x) = S0 * exp(x); model = FinancialMonteCarlo.MonteCarloDiffEqModel(monte_prob, func, Underlying(S0, d)) FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) @show FwdPrice = pricer(model, rfCurve, mc, FwdData); @show EuPrice = pricer(model, rfCurve, mc, EUData); @show AmPrice = pricer(model, rfCurve, mc, AMData); @show BarrierPrice = pricer(model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 98.8436678850961) < toll Tneg = -T; tspanNeg = (0.0, Tneg) probNeg = SDEProblem(dr_, g_1, u0, tspanNeg, rng = mc.parallelMode.rng) monte_probNeg = EnsembleProblem(probNeg)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
857
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); display(Model) ST = FinancialMonteCarlo.distribution(Model, rfCurve, mc, T); @show FwdPrice = exp(-r * T) * sum(ST) / length(ST); @test abs(FwdPrice - 99.1078451563562) < toll
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
501
using FinancialMonteCarlo, Test @show "Test Parameters" S0 = 100.0; K = 100.0; r = 0.02; Tneg = -1.0; T = -Tneg; d = 0.01; Nsim = 10000; Nstep = 30; sigma = 0.2; McConfig = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8; rfCurve2 = ZeroRate([0.00, 0.02], T); rfCurve = ZeroRate(r); @show "Test Geometric Brownian Motion Parameters" drift = 0.0 @test_throws(AssertionError, GeometricBrownianMotion(-sigma, drift, 1.0)) @test_throws(AssertionError, GeometricBrownianMotion(-sigma, rfCurve2.r, 1.0))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2230
using Test, FinancialMonteCarlo; @show "HestonModel" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho_ = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData1 = AsianFloatingStrikeOption(T) AsianData2 = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho_, theta, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianData2); @test abs(FwdPrice - 98.8790717426047) < toll @test abs(EuPrice - 7.9813557592924) < toll @test abs(BarrierPrice - 7.006564636309922) < toll @test abs(AsianPrice1 - 4.242256952013707) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianData2); tollanti = 0.8 @test abs(FwdPrice - 98.8790717426047) < tollanti @test abs(EuPrice - 7.9813557592924) < tollanti @test abs(BarrierPrice - 7.006564636309922) < tollanti @test abs(AsianPrice1 - 4.242256952013707) < tollanti @test_throws(AssertionError, HestonProcess(-sigma, sigma_zero, lambda, kappa, rho_, theta, Underlying(S0, d))) @test_throws(AssertionError, HestonProcess(sigma, -sigma_zero, lambda, kappa, rho_, theta, Underlying(S0, d))) @test_throws(AssertionError, HestonProcess(sigma, sigma_zero, lambda, kappa, -5.0, theta, Underlying(S0, d))) @test_throws(AssertionError, HestonProcess(sigma, sigma_zero, 1e-16, 1e-16, rho_, theta, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
922
using Test, FinancialMonteCarlo; @show "HestonModel" S0 = 100.0; K = 100.0; r = [0.02; 0.02]; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho_ = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r, T); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData1 = AsianFloatingStrikeOption(T) AsianData2 = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho_, theta, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @test abs(FwdPrice - 98.72567723404445) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); tollanti = 0.8 @test abs(FwdPrice - 98.72567723404445) < tollanti
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1812
using Test, FinancialMonteCarlo, DualNumbers; @show "HestonModel" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = dual(0.2, 1.0); kappa = 0.01; theta = 0.03; lambda = 0.01; rho_ = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData1 = AsianFloatingStrikeOption(T) AsianData2 = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho_, theta, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianData2); @test abs(FwdPrice - 98.8790717426047) < toll @test abs(EuPrice - 7.9813557592924) < toll @test abs(BarrierPrice - 7.006564636309922) < toll @test abs(AsianPrice1 - 4.242256952013707) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianData2); tollanti = 0.8 @test abs(FwdPrice - 98.8790717426047) < tollanti @test abs(EuPrice - 7.9813557592924) < tollanti @test abs(BarrierPrice - 7.006564636309922) < tollanti @test abs(AsianPrice1 - 4.242256952013707) < tollanti
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1415
using Test, FinancialMonteCarlo; @show "HestonModel" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho_ = 0.0; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SobolMode()); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData1 = AsianFloatingStrikeOption(T) AsianData2 = AsianFixedStrikeOption(T, K) Model = HestonProcess(sigma, sigma_zero, lambda, kappa, rho_, theta, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianData2); @test abs(FwdPrice - 98.8790717426047) < toll @test abs(EuPrice - 7.9813557592924) < toll @test abs(BarrierPrice - 7.006564636309922) < toll @test abs(AsianPrice1 - 4.242256952013707) < toll @show FwdPrice = pricer(Model, FinancialMonteCarlo.ImpliedZeroRate([0.01], [0.5]), MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SobolMode()), FwdData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2211
using Test, FinancialMonteCarlo; @show "KouModel" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData1 = AsianFloatingStrikeOption(T) AsianData2 = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianData2); @test abs(FwdPrice - 99.41332633109904) < toll @test abs(EuPrice - 10.347332240535199) < toll @test abs(BarrierPrice - 8.860123655599818) < toll @test abs(AsianPrice1 - 5.81798437145069) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianData2); tollanti = 0.8 @test abs(FwdPrice - 99.41332633109904) < tollanti @test abs(EuPrice - 10.347332240535199) < tollanti @test abs(BarrierPrice - 8.860123655599818) < tollanti @test abs(AsianPrice1 - 5.81798437145069) < tollanti @show "Test Kou Parameters" @test_throws(AssertionError, KouProcess(-sigma, lam, p, lamp, lamm, Underlying(S0, d))) @test_throws(AssertionError, KouProcess(sigma, -lam, p, lamp, lamm, Underlying(S0, d))) @test_throws(AssertionError, KouProcess(sigma, lam, -p, lamp, lamm, Underlying(S0, d))) @test_throws(AssertionError, KouProcess(sigma, lam, p, -lamp, lamm, Underlying(S0, d))) @test_throws(AssertionError, KouProcess(sigma, lam, p, lamp, -lamm, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1777
using Test, DualNumbers, FinancialMonteCarlo @show "KouModel" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); #sigma=0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData1 = AsianFloatingStrikeOption(T) AsianData2 = AsianFixedStrikeOption(T, K) Model = KouProcess(sigma, lam, p, lamp, lamm, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianData2); @test abs(FwdPrice - 99.41332633109904) < toll @test abs(EuPrice - 10.347332240535199) < toll @test abs(BarrierPrice - 8.860123655599818) < toll @test abs(AsianPrice1 - 5.81798437145069) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc1, AsianData1); @show AsianPrice2 = pricer(Model, rfCurve, mc1, AsianData2); tollanti = 0.8 @test abs(FwdPrice - 99.41332633109904) < tollanti @test abs(EuPrice - 10.347332240535199) < tollanti @test abs(BarrierPrice - 8.860123655599818) < tollanti @test abs(AsianPrice1 - 5.81798437145069) < tollanti
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1919
using Test, FinancialMonteCarlo; @show "LogNormalMixture Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = [0.2, 0.2]; lam = Float64[0.999999999]; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = LogNormalMixture(sigma, lam, Underlying(S0, d)); param_ = FinancialMonteCarlo.get_parameters(Model) Model = FinancialMonteCarlo.set_parameters!(Model, param_) display(Model) # @test_throws(AssertionError, FinancialMonteCarlo.set_parameters!(Model, [1, 4])) @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show "Test LogNormalMixture Parameters" eta = [0.2, 0.2] lam11 = [0.9999] @test_throws(AssertionError, LogNormalMixture(-0.2 * ones(3), 0.1 * ones(2), Underlying(S0, d))) @test_throws(AssertionError, LogNormalMixture(0.2 * ones(3), -0.1 * ones(2), Underlying(S0, d))) @test_throws(AssertionError, LogNormalMixture(0.2 * ones(3), ones(2), Underlying(S0, d))) @test_throws(AssertionError, LogNormalMixture(0.2 * ones(3), 0.2 * ones(3), Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1868
using Test, FinancialMonteCarlo; @show "MertonProcess" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; lam = 5.0; mu1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData = AsianFloatingStrikeOption(T) Model = MertonProcess(sigma, lam, mu1, sigma1, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc, AsianData); @test abs(FwdPrice - 99.1188767166039) < toll @test abs(EuPrice - 9.084327245917533) < toll @test abs(BarrierPrice - 7.880881290426765) < toll @test abs(AsianPrice - 5.129020349580892) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc1, AsianData); tollanti = 0.6; @test abs(FwdPrice - 99.1188767166039) < tollanti @test abs(EuPrice - 9.084327245917533) < tollanti @test abs(BarrierPrice - 7.880881290426765) < tollanti @test abs(AsianPrice - 5.129020349580892) < tollanti @show "Test Merton Parameters" @test_throws(AssertionError, MertonProcess(-sigma, lam, mu1, sigma1, Underlying(S0, d))) @test_throws(AssertionError, MertonProcess(sigma, lam, mu1, -sigma1, Underlying(S0, d))) @test_throws(AssertionError, MertonProcess(sigma, -lam, mu1, sigma1, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1904
using Test, FinancialMonteCarlo; @show "NormalInverseGaussianProcess" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData = AsianFloatingStrikeOption(T) Model = NormalInverseGaussianProcess(sigma, theta1, k1, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc, AsianData); @test abs(FwdPrice - 99.16322764791194) < toll @test abs(EuPrice - 8.578451710277706) < toll @test abs(BarrierPrice - 7.561814171846508) < toll @test abs(AsianPrice - 4.86386704425551) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc1, AsianData); tollanti = 0.8; @test abs(FwdPrice - 99.16322764791194) < tollanti @test abs(EuPrice - 8.578451710277706) < tollanti @test abs(BarrierPrice - 7.561814171846508) < tollanti @test abs(AsianPrice - 4.86386704425551) < tollanti @show "Test NIG Parameters" @test_throws(AssertionError, NormalInverseGaussianProcess(-sigma, theta1, k1, Underlying(S0, d))) @test_throws(AssertionError, NormalInverseGaussianProcess(sigma, theta1, -k1, Underlying(S0, d))) @test_throws(AssertionError, NormalInverseGaussianProcess(sigma, 10000.0, k1, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2277
using Test, FinancialMonteCarlo, DualNumbers; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); display(Model) port_ = EUData * 2.0 + FwdData - FwdData / 2.0 - FwdData; port_ = port_ * 2.0; port_ = 2.0 * port_; display(port_) print(port_) display(FwdData) display(-FwdData) print(FwdData) print(-FwdData) display(Forward(dual(T, 1.0))) display(-Forward(dual(T, 1.0))) print(Forward(dual(T, 1.0))) print(-Forward(dual(T, 1.0))) display(Forward(dual(T, 1.0)) + EUData) display(-Forward(dual(T, 1.0)) + EUData) print(Forward(dual(T, 1.0)) + EUData) print(-Forward(dual(T, 1.0)) + EUData) display(Forward(dual(T, 1.0)) - EUData) display(-Forward(dual(T, 1.0)) - EUData) print(Forward(dual(T, 1.0)) - EUData) print(-Forward(dual(T, 1.0)) - EUData) fwd = Forward(dual(T, 1.0)) * 1.0 fwd = 1.0 * Forward(dual(T, 1.0)) ok = FwdData - fwd; display(fwd) print(fwd) fwd = 1.0 * fwd fwd = fwd * 1.0 fwd = fwd / 1.0 fwd = -fwd fwd = Forward(dual(T, 1.0)) * dual(1.0, 1.0) + EUData * 2.0 + AMData display(fwd) print(fwd) fwd = -Forward(dual(T, 1.0)) * dual(1.0, 1.0) + EUData * 2.0 + AMData display(fwd) print(fwd) mktdataset = underlying_name → Model portfolio_ = [FwdData; EUData; AMData; BarrierData; AsianFloatingStrikeData; AsianFixedStrikeData; Spot()]; portfolio = underlying_name → FwdData portfolio += underlying_name → EUData portfolio += underlying_name → AMData portfolio += underlying_name → Spot() portfolio += underlying_name → BarrierData portfolio += underlying_name → AsianFloatingStrikeData portfolio += underlying_name → AsianFixedStrikeData display(portfolio) price_mkt = pricer(mktdataset, rfCurve, mc, portfolio) price_old = sum(pricer(Model, rfCurve, mc, portfolio_)) @test abs(price_mkt - price_old) < 1e-8
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
991
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" underlying_name_2 = "ABPL" underlying_ = underlying_name * "_" * underlying_name_2 Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); toll = 0.8 rfCurve = ZeroRate(r); EUData = EuropeanOptionND(T, K) Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); Model = GaussianCopulaNVariateProcess(Model_enj, Model_abpl, 0.4) @test GaussianCopulaNVariateProcess(Model_enj, Model_abpl).rho == GaussianCopulaNVariateProcess(Model_enj, Model_abpl, 0.0).rho display(Model) FinancialMonteCarlo.get_parameters(Model) mktdataset = underlying_ → Model portfolio_ = [EUData]; portfolio = underlying_ → EUData price_mkt = pricer(mktdataset, rfCurve, mc, portfolio) price_old = pricer(Model, rfCurve, mc, EUData) @test abs(price_mkt - price_old) < 1e-8
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1434
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" underlying_name_2 = "ABPL" underlying_ = underlying_name * "_" * underlying_name_2 Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); Model_n = BlackScholesProcess(sigma, Underlying(S0, d)); Model1 = GaussianCopulaNVariateLogProcess(Model_enj, Model_abpl) Model = GaussianCopulaNVariateLogProcess(Model_enj, Model_abpl, 0.0) @test Model1.rho == Model.rho display(Model) mktdataset = underlying_ → Model mktdataset_2 = underlying_name → Model_enj mktdataset += "notneeded" → Model_n portfolio = underlying_name → 1.0 * EUData portfolio += underlying_name → 1.0 * AMData portfolio += underlying_name → -1.0 * (-1.0) * BarrierData price_mkt = pricer(mktdataset, rfCurve, mc, portfolio) price_old = pricer(mktdataset_2, rfCurve, mc, portfolio) @test abs(price_mkt - price_old) < 1e-8
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1243
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" underlying_name_2 = "ABPL" underlying_ = underlying_name * "_" * underlying_name_2 * "_TESL" Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOptionND(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); Model_tesl = BlackScholesProcess(sigma, Underlying(S0, d)); rho_1 = [1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]; Model = GaussianCopulaNVariateProcess(rho_1, Model_enj, Model_abpl, Model_tesl) display(Model) mktdataset = underlying_ → Model portfolio_ = [EUData]; portfolio = underlying_ → EUData price_mkt = pricer(mktdataset, rfCurve, mc, portfolio) price_old = sum(pricer(Model, rfCurve, mc, portfolio_)) @test abs(price_mkt - price_old) < 1e-8
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1493
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; underlying_name = "ENJ" underlying_name_2 = "ABPL" underlying_ = underlying_name * "_" * underlying_name_2 * "_TESL" Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOptionND(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); Model_tesl = BlackScholesProcess(sigma, Underlying(S0, d)); rho_1 = [1.0 0.0 0.1; 0.0 1.0 0.0; 0.1 0.0 1.0]; Model2 = GaussianCopulaNVariateLogProcess(Model_enj, Model_abpl, Model_tesl) Model = GaussianCopulaNVariateLogProcess(rho_1, Model_enj, Model_abpl, Model_tesl) display(Model) mktdataset = underlying_ → Model mktdataset2 = underlying_ → Model2 portfolio_ = [EUData]; portfolio = underlying_ → EUData price_mkt = pricer(mktdataset, rfCurve, mc, portfolio) price_mkt2 = pricer(mktdataset2, rfCurve, mc, portfolio) price_old = sum(pricer(Model, rfCurve, mc, portfolio_)) @test_throws(AssertionError, BlackScholesProcess(-sigma, Underlying(S0, d))) @test abs(price_mkt - price_old) < 1e-8
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1312
using FinancialMonteCarlo, ReverseDiff; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 100; Nstep = 30; sigma = 0.2; p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); Model = BlackScholesProcess(sigma, Underlying(S0, d)); x = Float64[sigma, S0, r, d, T] @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, Forward(x[5])), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, EuropeanOption(x[5], K)), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, AmericanOption(x[5], K)), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, BarrierOptionDownOut(x[5], K, D)), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, AsianFloatingStrikeOption(x[5])), x) @show ReverseDiff.gradient(x -> pricer(BlackScholesProcess(x[1], Underlying(x[2], x[4])), ZeroRate(x[3]), mc, AsianFixedStrikeOption(x[5], K)), x)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1465
using Test, FinancialMonteCarlo, DualNumbers; @show "Black Scholes Model" S0 = 100.0; K = 100.0; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; mc = MonteCarloConfiguration(Nsim, Nstep); dr__ = 1e-7; mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 der_toll = 1e-2; rfCurve = ZeroRate(dual(0.02, 1.0)); rfCurve1 = ZeroRate(0.02); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = BlackScholesProcess(sigma, Underlying(S0, d)); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show EuPrice_der = rho(Model, rfCurve1, mc, EUData, dr__); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show AmPrice_der = rho(Model, rfCurve1, mc, AMData, dr__); @test abs(EuPrice - 8.43005524824866) < toll @test abs(EuPrice.epsilon - EuPrice_der) < der_toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(AmPrice.epsilon - AmPrice_der) < der_toll @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show EuPrice_der = rho(Model, rfCurve1, mc1, EUData, dr__); @show EuPrice_der_vec = rho(Model, rfCurve1, mc1, [EUData], dr__)[1]; tollanti = 0.6; @test abs(EuPrice - 8.43005524824866) < tollanti @test abs(EuPrice.epsilon - EuPrice_der) < der_toll @test abs(EuPrice.epsilon - EuPrice_der_vec) < der_toll
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1988
using Test, FinancialMonteCarlo; @show "ShiftedLogNormalMixture Model" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = [0.2, 0.2]; lam = Float64[0.999999999]; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8 rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = ShiftedLogNormalMixture(sigma, lam, 0.0, Underlying(S0, d)); param_ = FinancialMonteCarlo.get_parameters(Model) Model = FinancialMonteCarlo.set_parameters!(Model, param_) display(Model) # @test_throws(AssertionError, FinancialMonteCarlo.set_parameters!(Model, [1, 2])) @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData); @test abs(FwdPrice - 99.1078451563562) < toll @test abs(EuPrice - 8.43005524824866) < toll @test abs(AmPrice - 8.450489415187354) < toll @test abs(BarrierPrice - 7.5008664470880735) < toll @test abs(AsianPrice1 - 4.774451704549382) < toll @show "Test LogNormalMixture Parameters" eta = [0.2, 0.2] lam11 = [0.9999] @test_throws(AssertionError, ShiftedLogNormalMixture(-0.2 * ones(3), 0.1 * ones(2), 0.0, Underlying(S0, d))) @test_throws(AssertionError, ShiftedLogNormalMixture(0.2 * ones(3), -0.1 * ones(2), 0.0, Underlying(S0, d))) @test_throws(AssertionError, ShiftedLogNormalMixture(0.2 * ones(3), ones(2), 0.0, Underlying(S0, d))) @test_throws(AssertionError, ShiftedLogNormalMixture(0.2 * ones(3), 0.2 * ones(3), 0.0, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3974
using FinancialMonteCarlo, Test @show "Test Structs Building" S0 = 100.0; K = 100.0; Kneg = -100.0; r = 0.02; T = 1.0; Tneg = -1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; underlying_name = "ENJ" mc = MonteCarloConfiguration(Nsim, Nstep, 1); mc2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SerialMode(1)); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; Model_enj = BlackScholesProcess(sigma, Underlying(S0, d)); Model_abpl = BlackScholesProcess(sigma, Underlying(S0, d)); FinancialMonteCarlo.Curve([0.0, 0.1], [0.0, 0.1]); Model = GaussianCopulaNVariateProcess(Model_enj, Model_abpl, 0.0) param_ = FinancialMonteCarlo.get_parameters(Model_abpl); # @test_throws(AssertionError, FinancialMonteCarlo.set_parameters!(Model_abpl, [1, 2, 3, 4])) port_ = "eni_aap" → Model; rfCurve = ZeroRate(r); rfCurve2 = ZeroRate([0.00, 0.02], T); @test_throws(AssertionError, port_ + port_) @test_throws(AssertionError, underlying_name → Model) @test_throws(AssertionError, Underlying(-S0, rfCurve2.r)) @test_throws(AssertionError, "c_i" → Forward(1.0)) @test_throws(AssertionError, Underlying(-S0)) @test_throws(AssertionError, EuropeanOptionND(-1.0, 1.0)) @test_throws(AssertionError, EuropeanOptionND(1.0, -1.0)) @test_throws(AssertionError, MonteCarloConfiguration(-Nsim, Nstep)) @test_throws(AssertionError, MonteCarloConfiguration(Nsim + 1, Nstep, FinancialMonteCarlo.AntitheticMC())); @test_throws(AssertionError, MonteCarloConfiguration(Nsim, -Nstep)) ##################################################################### #Payoff Structs Test: Negative TTM @test_throws(AssertionError, Forward(Tneg)); @test_throws(AssertionError, EuropeanOption(Tneg, K)); @test_throws(AssertionError, AmericanOption(Tneg, K)); @test_throws(AssertionError, BermudanOption([Tneg], K)); @test_throws(AssertionError, BinaryAmericanOption(Tneg, K)); @test_throws(AssertionError, BinaryEuropeanOption(Tneg, K)); @test_throws(AssertionError, BarrierOptionDownOut(Tneg, K, D)); @test_throws(AssertionError, BarrierOptionUpOut(Tneg, K, D)); @test_throws(AssertionError, BarrierOptionUpIn(Tneg, K, D)); @test_throws(AssertionError, BarrierOptionDownIn(Tneg, K, D)); @test_throws(AssertionError, AsianFloatingStrikeOption(Tneg)); @test_throws(AssertionError, AsianFixedStrikeOption(Tneg, K)); @test_throws(AssertionError, DoubleBarrierOption(Tneg, K, K * 10, D)); # Negative Strike and Barriers @test_throws(AssertionError, EuropeanOption(T, Kneg)); @test_throws(AssertionError, AmericanOption(T, Kneg)); @test_throws(AssertionError, BermudanOption([T], Kneg)); @test_throws(AssertionError, BinaryEuropeanOption(T, Kneg)); @test_throws(AssertionError, BinaryAmericanOption(T, Kneg)); @test_throws(AssertionError, AsianFixedStrikeOption(T, Kneg)); @test_throws(AssertionError, BarrierOptionDownOut(T, Kneg, D)); @test_throws(AssertionError, BarrierOptionDownOut(T, K, Kneg)); @test_throws(AssertionError, BarrierOptionDownIn(T, Kneg, D)); @test_throws(AssertionError, BarrierOptionDownIn(T, K, Kneg)); @test_throws(AssertionError, BarrierOptionUpIn(T, Kneg, D)); @test_throws(AssertionError, BarrierOptionUpIn(T, K, Kneg)); @test_throws(AssertionError, BarrierOptionUpOut(T, Kneg, D)); @test_throws(AssertionError, BarrierOptionUpOut(T, K, Kneg)); @test_throws(AssertionError, DoubleBarrierOption(T, K, K, Kneg)); @test_throws(AssertionError, DoubleBarrierOption(T, Kneg, K, K)); @test_throws(AssertionError, DoubleBarrierOption(T, K, Kneg, K)); @test FinancialMonteCarlo.maturity(Spot()) == 0.0 @test 2.0 * EuropeanOption(T, K) == EuropeanOption(T, K) + 1.0 * EuropeanOption(T, K) @test 2.0 * EuropeanOption(T, K) == EuropeanOption(T, K) + EuropeanOption(T, K) ######## import FinancialMonteCarlo.AbstractPayoff struct tmptype2 <: FinancialMonteCarlo.AbstractPayoff{Float64} T::Float64 end @test_throws(ErrorException, payoff([1.0 1.0; 1.0 1.0], tmptype2(1.0), rfCurve, mc1));
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
624
using FinancialMonteCarlo, Distributions, Test; @show "Test Parameters" S0 = 100.0; r = 0.02; d = 0.01; T = 1.0; Nsim = 100; Nstep = 30; sigma = 0.2; McConfig = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); rfCurve = ZeroRate(r); rfCurve2 = ZeroRate([0.00, 0.02], T); @show "Test Subordinated Brownian Motion Parameters" drift = 0.0; @test_throws(AssertionError, SubordinatedBrownianMotion(-sigma, drift, 0.01, InverseGaussian(1.0, 1.0))) @test_throws(AssertionError, SubordinatedBrownianMotion(-sigma, rfCurve2.r, 0.01, InverseGaussian(1.0, 1.0)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1966
using Test, FinancialMonteCarlo, RandomNumbers; @show "VarianceGammaProcess" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SerialMode(1, RandomNumbers.Xorshifts.Xoroshiro128Plus())); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData = AsianFloatingStrikeOption(T) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc, AsianData); @test abs(FwdPrice - 99.09861035102614) < toll @test abs(EuPrice - 8.368903690692187) < toll @test abs(BarrierPrice - 7.469024475794258) < toll @test abs(AsianPrice - 4.779663836736272) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc1, AsianData); @test abs(FwdPrice - 99.09861035102614) < toll @test abs(EuPrice - 8.368903690692187) < toll @test abs(BarrierPrice - 7.469024475794258) < toll @test abs(AsianPrice - 4.779663836736272) < toll print(Model); println(""); @show "Test Variance Gamma Parameters" @test_throws(AssertionError, VarianceGammaProcess(-sigma, theta1, k1, Underlying(S0, d))) @test_throws(AssertionError, VarianceGammaProcess(sigma, theta1, -k1, Underlying(S0, d))) @test_throws(AssertionError, VarianceGammaProcess(sigma, 10000.0, k1, Underlying(S0, d)))
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1672
using Test, FinancialMonteCarlo, Statistics; @show "Black Scholes Model" S0 = 100.0; K = 100.0; r = [0.00, 0.02]; T = 1.0; d = FinancialMonteCarlo.Curve([0.0, 0.02], T); d2 = FinancialMonteCarlo.Curve([0.0, 0.01, 0.02], T); D = 90.0; Nsim = 10000; Nstep = 30; sigma = 0.2; theta1 = 0.01; k1 = 0.03; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); toll = 0.8; rfCurve = FinancialMonteCarlo.ImpliedZeroRate(r, T); rfCurve2 = ZeroRate(r, T); FwdData = Forward(T) EUData = EuropeanOption(T, K) EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); Model2 = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d2)); display(Model) @show FwdPrice = pricer(Model, ZeroRate(r[end]), mc, FwdData); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show FwdPrice = pricer(Model, rfCurve2, mc, FwdData); @show FwdPrice = pricer(Model2, rfCurve, mc, FwdData); @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show EuBinPrice = pricer(Model, rfCurve, mc, EUBin); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show AmBinPrice = pricer(Model, rfCurve, mc, AmBin); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice1 = pricer(Model, rfCurve, mc, AsianFloatingStrikeData); @show AsianPrice2 = pricer(Model, rfCurve, mc, AsianFixedStrikeData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
2068
using Test, DualNumbers, FinancialMonteCarlo @show "VarianceGammaProcess" S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; Nsim = 10000; Nstep = 30; sigma = dual(0.2, 1.0); theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; mc = MonteCarloConfiguration(Nsim, Nstep); mc1 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); mc2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SobolMode()); toll = 0.8; rfCurve = ZeroRate(r); FwdData = Forward(T) EUData = EuropeanOption(T, K) AMData = AmericanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianData = AsianFloatingStrikeOption(T) Model = VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, d)); @show FwdPrice = pricer(Model, rfCurve, mc, FwdData); @show EuPrice = pricer(Model, rfCurve, mc, EUData); @show AmPrice = pricer(Model, rfCurve, mc, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc, AsianData); @test abs(FwdPrice - 99.09861035102614) < toll @test abs(EuPrice - 8.368903690692187) < toll @test abs(BarrierPrice - 7.469024475794258) < toll @test abs(AsianPrice - 4.779663836736272) < toll @show FwdPrice = pricer(Model, rfCurve, mc1, FwdData); @show EuPrice = pricer(Model, rfCurve, mc1, EUData); @show AmPrice = pricer(Model, rfCurve, mc1, AMData); @show BarrierPrice = pricer(Model, rfCurve, mc1, BarrierData); @show AsianPrice = pricer(Model, rfCurve, mc1, AsianData); @test abs(FwdPrice - 99.09861035102614) < toll @test abs(EuPrice - 8.368903690692187) < toll @test abs(BarrierPrice - 7.469024475794258) < toll @test abs(AsianPrice - 4.779663836736272) < toll @show FwdPrice = pricer(Model, rfCurve, mc2, FwdData); # @show FwdPrice = pricer(VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, FinancialMonteCarlo.Curve([0.009999, 0.01], T))), FinancialMonteCarlo.ImpliedZeroRate([0.01], [1.0]), mc2, FwdData); # @show FwdPrice = pricer.([VarianceGammaProcess(sigma, theta1, k1, Underlying(S0, FinancialMonteCarlo.Curve([0.009999, 0.01], T))), Model], rfCurve, mc2, FwdData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3114
using Test, FinancialMonteCarlo,CUDA; @show "Black Scholes Model" S0=100.0; K=100.0; r=0.02; T=1.0; d=0.01; D=90.0; Nsim=10000; Nstep=30; sigma=0.2; mc=MonteCarloConfiguration(Nsim,Nstep,FinancialMonteCarlo.CudaMode()); toll=0.8 rfCurve=ZeroRate(r); FwdData=Forward(T) EUData=EuropeanOption(T,K) AMData=AmericanOption(T,K) BarrierData=BarrierOptionDownOut(T,K,D) AsianFloatingStrikeData=AsianFloatingStrikeOption(T) AsianFixedStrikeData=AsianFixedStrikeOption(T,K) Model=BlackScholesProcess(sigma,Underlying(S0,d)); display(Model) @show FwdPrice=pricer(Model,rfCurve,mc,FwdData); @show EuPrice=pricer(Model,rfCurve,mc,EUData); @show AmPrice=pricer(Model,rfCurve,mc,AMData); @show BarrierPrice=pricer(Model,rfCurve,mc,BarrierData); @show AsianPrice1=pricer(Model,rfCurve,mc,AsianFloatingStrikeData); @show AsianPrice2=pricer(Model,rfCurve,mc,AsianFixedStrikeData); @test abs(FwdPrice-99.1078451563562)<toll @test abs(EuPrice-8.43005524824866)<toll @test abs(AmPrice-8.450489415187354)<toll @test abs(BarrierPrice-7.5008664470880735)<toll @test abs(AsianPrice1-4.774451704549382)<toll @show FwdPrice=pricer(Model,rfCurve,mc1,FwdData); @show EuPrice=pricer(Model,rfCurve,mc1,EUData); @show AmPrice=pricer(Model,rfCurve,mc1,AMData); @show BarrierPrice=pricer(Model,rfCurve,mc1,BarrierData); @show AsianPrice1=pricer(Model,rfCurve,mc1,AsianFloatingStrikeData); @show AsianPrice2=pricer(Model,rfCurve,mc1,AsianFixedStrikeData); tollanti=0.6; @test abs(FwdPrice-99.1078451563562)<tollanti @test abs(EuPrice-8.43005524824866)<tollanti @test abs(AmPrice-8.450489415187354)<tollanti @test abs(BarrierPrice-7.5008664470880735)<tollanti @test abs(AsianPrice1-4.774451704549382)<tollanti EUDataPut=EuropeanOption(T,K,false) AMDataPut=AmericanOption(T,K,false) BarrierDataPut=BarrierOptionDownOut(T,K,D,false) AsianFloatingStrikeDataPut=AsianFloatingStrikeOption(T,false) AsianFixedStrikeDataPut=AsianFixedStrikeOption(T,K,false) @show EuPrice=pricer(Model,rfCurve,mc,EUDataPut); @show AmPrice=pricer(Model,rfCurve,mc,AMDataPut); @show BarrierPrice=pricer(Model,rfCurve,mc,BarrierDataPut); @show AsianPrice1=pricer(Model,rfCurve,mc,AsianFloatingStrikeDataPut); @show AsianPrice2=pricer(Model,rfCurve,mc,AsianFixedStrikeDataPut); tollPut=0.6; @test abs(FwdPrice-99.1078451563562)<tollPut @test abs(EuPrice-7.342077422567968)<tollPut @test abs(AmPrice-7.467065889603365)<tollPut @test abs(BarrierPrice-0.29071929104261723)<tollPut @test abs(AsianPrice1-4.230547012372306)<tollPut @test abs(AsianPrice2-4.236220218194027)<tollPut @test variance(Model,rfCurve,mc,EUDataPut)>variance(Model,rfCurve,mc1,EUDataPut); @test prod(variance(Model,rfCurve,mc,[EUDataPut,AMDataPut]).>=variance(Model,rfCurve,mc1,[EUDataPut,AMDataPut])); ############################################################## IC1=confinter(Model,rfCurve,mc,EUDataPut,0.99); IC2=confinter(Model,rfCurve,mc1,EUDataPut,0.99); L1=IC1[2]-IC1[1] L2=IC2[2]-IC2[1] @test L1>L2 IC1=confinter(Model,rfCurve,mc,[EUDataPut,AMDataPut],0.99); IC2=confinter(Model,rfCurve,mc1,[EUDataPut,AMDataPut],0.99); L1=IC1[2][2]-IC1[2][1] L2=IC2[2][2]-IC2[2][1] @test L1>L2
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1015
using Test, FinancialMonteCarlo,Statistics; @show "Black Scholes Model" S0=100.0; K=100.0; r=[0.00,0.02]; T=1.0; d=0.01; D=90.0; Nsim=100000; Nstep=30; sigma=0.2; mc=MonteCarloConfiguration(Nsim,Nstep); toll=0.8 rfCurve=ZeroRate(r,T); FwdData=Forward(T) EUData=EuropeanOption(T,K) EUBin=BinaryEuropeanOption(T,K) AMData=AmericanOption(T,K) AmBin=BinaryEuropeanOption(T,K) BarrierData=BarrierOptionDownOut(T,K,D) AsianFloatingStrikeData=AsianFloatingStrikeOption(T) AsianFixedStrikeData=AsianFixedStrikeOption(T,K) Model=BlackScholesProcess(sigma,Underlying(S0,d)); display(Model) @show FwdPrice=pricer(Model,rfCurve,mc,FwdData); @show EuPrice=pricer(Model,rfCurve,mc,EUData); @show EuBinPrice=pricer(Model,rfCurve,mc,EUBin); @show AmPrice=pricer(Model,rfCurve,mc,AMData); @show AmBinPrice=pricer(Model,rfCurve,mc,AmBin); @show BarrierPrice=pricer(Model,rfCurve,mc,BarrierData); @show AsianPrice1=pricer(Model,rfCurve,mc,AsianFloatingStrikeData); @show AsianPrice2=pricer(Model,rfCurve,mc,AsianFixedStrikeData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
584
using Test, FinancialMonteCarlo,Statistics; @show "Black Scholes Model" S0=100.0; K=100.0; r=[0.00,0.02]; T=1.0; d=0.01; r=0.02; D=90.0; Nsim=100000; Nstep=30; sigma=0.2; mc=MonteCarloConfiguration(Nsim,Nstep); toll=0.8 rfCurve=ZeroRate(r); FwdData=Forward(T) EUData=EuropeanOption(T,K) Model_base=BrownianMotion(sigma,r-d-sigma*sigma*0.5,Underlying(0.0,0.0)) S=S0.*exp.(simulate(Model_base,mc,T)); Payoff=exp(-FinancialMonteCarlo.integral(r,T))*S[:,end]; @show Price=mean(Payoff) Model=BlackScholesProcess(sigma,Underlying(S0,d)); @show FwdPrice=pricer(Model,rfCurve,mc,FwdData);
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
1058
using Test, FinancialMonteCarlo; @show "Black Scholes Model" S0=100.0; K=100.0; r=0.02; T=1.0; d=0.01; D=90.0; underlying_name="ENJ" underlying_name_2="ABPL" underlying_=underlying_name*"_"*underlying_name_2*"_TESL" Nsim=10000; Nstep=30; sigma=0.2; mc=MonteCarloConfiguration(Nsim,Nstep); mc1=MonteCarloConfiguration(Nsim,Nstep,FinancialMonteCarlo.AntitheticMC()); toll=0.8 rfCurve=ZeroRate(r); FwdData=Forward(T) EUData=EuropeanOptionND(T,K) AMData=AmericanOption(T,K) BarrierData=BarrierOptionDownOut(T,K,D) AsianFloatingStrikeData=AsianFloatingStrikeOption(T) AsianFixedStrikeData=AsianFixedStrikeOption(T,K) Model_enj=BlackScholesProcess(sigma,Underlying(S0,d)); Model_abpl=BlackScholesProcess(sigma,Underlying(S0,d)); Model_tesl=BlackScholesProcess(sigma,Underlying(S0,d)); rho=[1.0 0.0 0.0; 0.0 1.0 0.0; 0.0 0.0 1.0]; Model=GaussianCopulaNVariateProcess(rho,Model_enj,Model_abpl,Model_tesl) ############### p=EuropeanOption(1.0,70.0)+Forward(1.0) p2=3.0*p; port_=Array{typeof(p)}(undef,7) port_[1]=p port_[2]=p2 pricer(Model,rfCurve,mc,port_)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
694
using FinancialMonteCarlo,Nabla; @show "Black Scholes Model" S0=100.0; K=100.0; r=0.02; T=1.0; d=0.01; D=90.0; Nsim=10000; Nstep=30; sigma=0.2 mc=MonteCarloConfiguration(Nsim,Nstep); toll=0.8 rfCurve=ZeroRate(S0,r,d); FwdData=Forward(T) EUData=EuropeanOption(T,K) AMData=AmericanOption(T,K) BarrierData=BarrierOptionDownOut(T,K,D) AsianFloatingStrikeData=AsianFloatingStrikeOption(T) AsianFixedStrikeData=AsianFixedStrikeOption(T,K) Model=BlackScholesProcess(sigma); #f__(x) = pricer(BlackScholesProcess(x[1]),ZeroRate(x[2],x[3],d),mc,EUData); f__(x) = pricer(BlackScholesProcess(x[1]),ZeroRate(x[2],x[3],d),mc,FwdData); #x=Float64[sigma,S0] x=Float64[sigma,S0,r] gradient(x -> f__(x), x)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
807
using FinancialMonteCarlo,Zygote; @show "Black Scholes Model" S0=100.0; K=100.0; r=0.02; T=1.0; d=0.01; D=90.0; Nsim=100; Nstep=3; sigma=0.2 mc=MonteCarloConfiguration(Nsim,Nstep); toll=0.8 rfCurve=ZeroRate(r); FwdData=Forward(T) EUData=EuropeanOption(T,K) AMData=AmericanOption(T,K) BarrierData=BarrierOptionDownOut(T,K,D) AsianFloatingStrikeData=AsianFloatingStrikeOption(T) AsianFixedStrikeData=AsianFixedStrikeOption(T,K) Model=BlackScholesProcess(sigma,Underlying(S0,d)); #f__(x) = pricer(BlackScholesProcess(x[1]),ZeroRate(x[2],x[3],d),mc,EUData); #f__(x) = pricer(BlackScholesProcess(x[1],Underlying(x[2],d)),ZeroRate(x[3]),mc,FwdData); f__(x) = sum(simulate(BlackScholesProcess(x[1],Underlying(x[2],d)),ZeroRate(x[3]),mc,T)); #x=Float64[sigma,S0] x=Float64[sigma,S0,r] gradient(x -> f__(x), x)
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3665
#Number Type (just sigma tested) ---> Model type ----> Mode ---> zero rate type using Test, DualNumbers, FinancialMonteCarlo, VectorizedRNG, JLD2 rebase = false; sigma_dual = dual(0.2, 1.0); sigma_no_dual = 0.2; suite_num = Dict{String, Number}() und = Underlying(100.0, 0.01); p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mu1 = 0.03; sigma1 = 0.02; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho = 0.0; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; T = 1.0; K = 100.0; Nsim = 10_000; Nstep = 30; std_mc = MonteCarloConfiguration(Nsim, Nstep); anti_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC()); sobol_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SobolMode()); cv_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.ControlVariates(Forward(T), MonteCarloConfiguration(100, 3))); cv_mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.ControlVariates(AsianFloatingStrikeOption(T), MonteCarloConfiguration(100, 3))); vect_mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.SerialMode(10, local_rng())); mc_modes = [std_mc, anti_mc, sobol_mc, cv_mc, cv_mc_2, vect_mc] r = 0.02; r_prev = 0.019999; D = 60; lam_vec = Float64[0.99]; zr_scalar = ZeroRate(r); zr_imp = FinancialMonteCarlo.ImpliedZeroRate([r_prev, r], 2.0); eur_opt_ = EuropeanOption(T, K); EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) BinAMData = BinaryAmericanOption(T, K) BarrierDataDI = BarrierOptionDownIn(T, K, D) BarrierDataUI = BarrierOptionUpIn(T, K, D) BarrierDataUO = BarrierOptionUpOut(T, K, D) BermData = BermudanOption(collect(0.2:0.1:T), K); doubleBarrierOptionDownOut = DoubleBarrierOption(T, K, K / 10.0, 1.2 * K) opt_vec = [eur_opt_, EUBin, AMData, AmBin, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData, BinAMData, BarrierDataDI, BarrierDataUO, BermData, doubleBarrierOptionDownOut]; bs(sigma) = BlackScholesProcess(sigma, und) kou(sigma) = KouProcess(sigma, lam, p, lamp, lamm, und); hest(sigma) = HestonProcess(sigma, sigma_zero, lambda, kappa, rho, theta, und); vg(sigma) = VarianceGammaProcess(sigma, theta1, k1, und) merton(sigma) = MertonProcess(sigma, lambda, mu1, sigma1, und) nig(sigma) = NormalInverseGaussianProcess(sigma, theta1, k1, und); log_mixture(sigma) = LogNormalMixture([sigma, 0.2], lam_vec, und); shift_mixture(sigma) = ShiftedLogNormalMixture([sigma, 0.2], lam_vec, 0.0, und); create_str_lam(x...) = join([string(typeof(y)) for y in x], "_"); for sigma in Number[sigma_no_dual, sigma_dual] for model_ in [bs(sigma), kou(sigma), hest(sigma), vg(sigma), merton(sigma), nig(sigma), log_mixture(sigma), shift_mixture(sigma)] for mode_ in mc_modes for zero_ in [zr_scalar, zr_imp] for opt in opt_vec key_tmp1 = create_str_lam(sigma, model_, mode_.monteCarloMethod, mode_.parallelMode.rng, zero_, opt) result = pricer(model_, zero_, mode_, opt) @assert !isnan(result) "Result for provided simulation is nan $(result) $(key_tmp1)\n" suite_num[key_tmp1] = result end end end end end OUTPUT = joinpath(@__DIR__, "test_results.jld2") if rebase save(OUTPUT, suite_num) end suite_num_old_results = load(OUTPUT) toll = 0.4 for key_tmp in unique([collect(keys(suite_num_old_results)); collect(keys(suite_num))]) @test abs(suite_num[key_tmp] - suite_num_old_results[key_tmp]) < toll end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
code
3170
#Number Type (just sigma tested) ---> Model type ----> Mode ---> zero rate type using Test, DualNumbers, FinancialMonteCarlo, JLD2, CUDA rebase = false; sigma_dual = dual(0.2, 1.0); sigma_no_dual = 0.2; suite_num = Dict{String, Number}() und = Underlying(100.0, 0.01); p = 0.3; lam = 5.0; lamp = 30.0; lamm = 20.0; mu1 = 0.03; sigma1 = 0.02; sigma_zero = 0.2; kappa = 0.01; theta = 0.03; lambda = 0.01; rho = 0.0; theta1 = 0.01; k1 = 0.03; sigma1 = 0.02; T = 1.0; K = 100.0; Nsim = 10_000; Nstep = 30; mc = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.CudaMode()); mc_2 = MonteCarloConfiguration(Nsim, Nstep, FinancialMonteCarlo.AntitheticMC(), FinancialMonteCarlo.CudaMode()); r = 0.02; r_prev = 0.019999; D = 60; lam_vec = Float64[0.99]; zr_scalar = ZeroRate(r); zr_imp = FinancialMonteCarlo.ImpliedZeroRate([r_prev, r], 2.0); eur_opt_ = EuropeanOption(T, K); EUBin = BinaryEuropeanOption(T, K) AMData = AmericanOption(T, K) AmBin = BinaryEuropeanOption(T, K) BarrierData = BarrierOptionDownOut(T, K, D) AsianFloatingStrikeData = AsianFloatingStrikeOption(T) AsianFixedStrikeData = AsianFixedStrikeOption(T, K) BinAMData = BinaryAmericanOption(T, K) BarrierDataDI = BarrierOptionDownIn(T, K, D) BarrierDataUI = BarrierOptionUpIn(T, K, D) BarrierDataUO = BarrierOptionUpOut(T, K, D) BermData = BermudanOption(collect(0.2:0.1:T), K); doubleBarrierOptionDownOut = DoubleBarrierOption(T, K, K / 10.0, 1.2 * K) bs(sigma) = BlackScholesProcess(sigma, und) kou(sigma) = KouProcess(sigma, lam, p, lamp, lamm, und); hest(sigma) = HestonProcess(sigma, sigma_zero, lambda, kappa, rho, theta, und); vg(sigma) = VarianceGammaProcess(sigma, theta1, k1, und) merton(sigma) = MertonProcess(sigma, lambda, mu1, sigma1, und) nig(sigma) = NormalInverseGaussianProcess(sigma, theta1, k1, und); log_mixture(sigma) = LogNormalMixture([sigma, 0.2], lam_vec, und); shift_mixture(sigma) = ShiftedLogNormalMixture([sigma, 0.2], lam_vec, 0.0, und); create_str_lam(x...) = join([string(typeof(y)) for y in x], "_"); for sigma in Number[sigma_no_dual, sigma_dual] for model_ in [bs(sigma), kou(sigma), hest(sigma), vg(sigma), merton(sigma), nig(sigma), log_mixture(sigma), shift_mixture(sigma)] for mode_ in [mc, mc_2] for zero_ in [zr_scalar, zr_imp] for opt in [eur_opt_, EUBin, AMData, AmBin, BarrierData, AsianFloatingStrikeData, AsianFixedStrikeData, BinAMData, BarrierDataDI, BarrierDataUO, BermData, doubleBarrierOptionDownOut] key_tmp1 = create_str_lam(sigma, model_, mode_.monteCarloMethod, mode_.parallelMode.rng, zero_, opt) result = pricer(model_, zero_, mode_, opt) @assert !isnan(result) "Result for provided simulation is nan $(key_tmp1)" suite_num[key_tmp1] = result end end end end end OUTPUT = joinpath(@__DIR__, "test_results_cuda.jld2") if rebase save(OUTPUT, suite_num) end suite_num_old_results = load(OUTPUT) toll = 1.0 for key_tmp in unique([collect(keys(suite_num_old_results)); collect(keys(suite_num))]) @test abs(suite_num[key_tmp] - suite_num_old_results[key_tmp]) < toll end
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
4200
# FinancialMonteCarlo.jl <img src="etc/logo.png" width="40"> [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://rcalxrc08.gitlab.io/FinancialMonteCarlo.jl/) [![pipeline status](https://gitlab.com/rcalxrc08/FinancialMonteCarlo.jl/badges/master/pipeline.svg)](https://gitlab.com/rcalxrc08/FinancialMonteCarlo.jl/commits/master) [![codecov](https://codecov.io/gl/rcalxrc08/FinancialMonteCarlo.jl/branch/master/graph/badge.svg?token=PypZinZKqB)](https://codecov.io/gl/rcalxrc08/FinancialMonteCarlo.jl) ##### This is a Julia package containing some useful Financial function for Pricing and Risk Management for Equity products. It currently contains the following capabilities: - Support for the following Single Name Models: - Black Scholes - Kou - Merton - Normal Inverse Gaussian - Variance Gamma - Heston - LogNormal Mixture - Shifted LogNormal Mixture - Support for Multivariate processes through Gaussian Copula - Support for non costant zero rates and dividends - Support for the following Option families: - European Options - Barrier Options - Asian Options - Bermudan Options (Using Longstaff-Schwartz) - American Options (Using Longstaff-Schwartz) - Partial Support for the following Parallelization: - CUDA using [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl) - Thread based (Native julia) - Process based (Native julia) It also supports the pricing directly from the definition of the Stochastic Differential Equation, using the package [DifferentiatialEquations.jl](https://github.com/JuliaDiffEq/DifferentialEquations.jl). Currently supports [DualNumbers.jl](https://github.com/JuliaDiff/DualNumbers.jl), [HyperDualNumbers.jl](https://github.com/JuliaDiff/HyperDualNumbers.jl), [TaylorSeries.jl](https://github.com/JuliaDiff/TaylorSeries.jl), [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) and [ReverseDiff.jl](https://github.com/JuliaDiff/ReverseDiff.jl) for Automatic Differentiation (where it makes sense). ## How to Install To install the package simply type on the Julia REPL the following: ```julia ] add FinancialMonteCarlo ``` ## How to Test After the installation, to test the package type on the Julia REPL the following: ```julia ] test FinancialMonteCarlo ``` ## Hello World: Pricing European Call Option in Black Scholes Model The following example shows how to price a european call option with underlying varying according to the Black Scholes Model, given the volatility: ```julia #Import the Package using FinancialMonteCarlo; #Define Spot Datas S0=100.0; K=100.0; r=0.02; T=1.0; d=0.01; D=90.0; #Define FinancialMonteCarlo Parameters Nsim=10000; Nstep=30; #Define Model Parameters σ=0.2; #Build the Structs mcConfig=MonteCarloConfiguration(Nsim,Nstep); #Configurator zeroRate=ZeroRate(r); underlying=Underlying(S0,d); #Underlying relative data #Define The Option EU_payoff=EuropeanOption(T,K) #Define the Model Model=BlackScholesProcess(σ,underlying); #Price @show EuPrice=pricer(Model,zeroRate,mcConfig,EU_payoff); ``` ## Curve Support Non constant zero rates and dividend are managed. An implied curve is built at time zero, such implied curve is able to return the right implied zero/dividend at a given time, Without the need to carry the integral structure of the curve. No support for multicurrency. ## Contracts Algebra Contracts that refer to the same underlying can be sum togheter in order to build a "new instrument". In this sense assuming the same underlying, the set of contracts form a vectorial space over "Real" Numbers. ## Market Data and Multivariate Support A market data set is a dictionary containing all of the process for which we have a view (or a model). ( "KEY" => MODEL) The portofolio is a dictionary as well but it carries the structure of the portfolio. ( "KEY" => CONTRACTS_ON_MODEL) ## Keep in mind There are few things that you should keep in mind when using this library: - First Order Automatic Differentiation is enabled for any kind of option, also for such that there is no sense (e.g. Binary, Barriers). - Second Order Automatic Differentiation is enabled for any kind of option but the results are useless most of the time.
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
1826
# Create New Models and Payoffs Whereas this package already provides a large collection of common models/payoffs out of box, there are still occasions where you want to create new models/payoffs (*e.g* your application requires a special kind of models/payoffs, or you want to contribute to this package). Generally, you don't have to implement every API method listed in the documentation. This package provides a series of generic functions that turn a small number of internal methods into user-end API methods. What you need to do is to implement this small set of internal methods for your models/payoffs. ## Create a Model To use your model inside the package, you must implement a struct, that is inheriting from one of the abstract classes defined in the Type section. Such struct must contain the parameters of your model, then you have to implement a function called `simulate` or `simulate!` that is representing how your model simulates. You can easily copy the signature of the function from one of the implementation in the models folder. Pay attention to the distinction between Engine and Model. ## Create a Payoff To use your payoff inside the package, you must implement a struct, that is inheriting from one of the abstract classes defined in the Type section. Such struct must contain the parameters (strike, time to maturity, barriers, etc) of your payoff, then you have to implement a function called `payoff` that is representing how your payoff acts. You can easily copy the signature of the function from one of the implementation in the payoffs folder. ## Finalize the interaction Once you have implemented your own payoff/model, you can directly use the functionalities provided already by the package, e.g. `pricer`,`var`,`ci` and all of the models/payoffs that have been already implemented.
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
1720
```@meta EditURL = "../../examples/getting_started.jl" ``` # Getting Started ## Installation The FinancialMonteCarlo package is available through the Julia package system by running `]add FinancialMonteCarlo`. Throughout, we assume that you have installed the package. ## Basic syntax The basic syntax for FinancialMonteCarlo is simple. Here is an example of pricing a European Option with a Black Scholes model: ````@example getting_started using FinancialMonteCarlo S0 = 100.0; K = 100.0; r = 0.02; T = 1.0; d = 0.01; D = 90.0; nothing #hide ```` Define FinancialMonteCarlo Parameters: ````@example getting_started Nsim = 10000; Nstep = 30; nothing #hide ```` Define Model Parameters. ````@example getting_started σ = 0.2; nothing #hide ```` Build the MonteCarlo configuration and the zero rate. ````@example getting_started mcConfig = MonteCarloConfiguration(Nsim, Nstep); rfCurve = ZeroRate(r); nothing #hide ```` Define The Option ````@example getting_started EuOption = EuropeanOption(T, K) ```` Define the Model of the Underlying ````@example getting_started Model = BlackScholesProcess(σ, Underlying(S0, d)); nothing #hide ```` Call the pricer metric ````@example getting_started @show EuPrice = pricer(Model, rfCurve, mcConfig, EuOption); nothing #hide ```` ## Using Other Models and Options The package contains a large number of models of three main types: * `Ito Process` * `Jump-Diffusion Process` * `Infinity Activity Process` And the following types of options: * `European Options` * `Asian Options` * `Barrier Options` * `American Options` The usage is analogous to the above example. --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
2062
# FinancialMonteCarlo.jl FinancialMonteCarlo.jl contains the following capabilities: - Support for the following Single Name Models: - Black Scholes - Kou - Merton - Normal Inverse Gaussian - Variance Gamma - Heston - LogNormal Mixture - Support for Sobol and Vectorized RNG. - Support for Multivariate processes through Gaussian Copula - Support for non costant zero rates and dividends - Support for the following Option families: - European Options - Barrier Options - Asian Options - Bermudan Options (Using Longstaff-Schwartz) - American Options (Using Longstaff-Schwartz) - Partial Support for the following Parallelization: - CUDA using [CUDA.jl](https://github.com/JuliaGPU/CUDA.jl) - Thread based (Native julia) - Process based (Native julia) It also supports the pricing directly from the definition of the Stochastic Differential Equation, using the package [DifferentiatialEquations.jl](https://github.com/JuliaDiffEq/DifferentialEquations.jl). Currently supports [DualNumbers.jl](https://github.com/JuliaDiff/DualNumbers.jl), [HyperDualNumbers.jl](https://github.com/JuliaDiff/HyperDualNumbers.jl), [TaylorSeries.jl](https://github.com/JuliaDiff/TaylorSeries.jl), [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) and [ReverseDiff.jl](https://github.com/JuliaDiff/ReverseDiff.jl) for Automatic Differentiation (where it makes sense). ## How to Install To install the package simply type on the Julia REPL the following: ```julia ] add FinancialMonteCarlo ``` ## How to Test After the installation, to test the package type on the Julia REPL the following: ```julia ] test FinancialMonteCarlo ``` ## Keep in mind There are few things that you should keep in mind when using this library: - First Order Automatic Differentiation is enabled for any kind of option, also for such that there is no sense (e.g. Binary, Barriers). - Second Order Automatic Differentiation is enabled for any kind of option but the results are useless most of the time. ## Index ```@index ```
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
1434
# Interaction with [DifferentialEquations.jl](https://diffeq.sciml.ai/stable/) The following example shows how to price different kind of options with underlying varying according to the Black Scholes Model, simulated using DifferentialEquations.jl. ```julia #Import the Package using FinancialMonteCarlo,DifferentialEquations; #Define Spot Datas S0=100.0; K=100.0; r=0.02; T=1.0; d=0.01; D=90.0; u0=S0; #Define FinancialMonteCarlo Parameters Nsim=10000; Nstep=30; #Define Model Parameters σ=0.2; #Build the Structs mcConfig=MonteCarloConfiguration(Nsim,Nstep); rfCurve=ZeroRate(S0,r,d); #Define The Options Fwd_payoff=Forward(T) EU_payoff=EuropeanOption(T,K) AM_payoff=AmericanOption(T,K) Barrier_payoff=BarrierOptionDownOut(T,K,D) AsianFloatingStrike_payoff=AsianFloatingStrikeOption(T) AsianFixedStrike_payoff=AsianFixedStrikeOption(T,K) ##Define the Model #Drift f(u,p,t) = (r-d)*u #Diffusion g(u,p,t) = σ*u #Time Window tspan = (0.0,T) #Definition of the SDE prob = SDEProblem(f,g,u0,tspan) Model = MonteCarloProblem(prob) #Price @show FwdPrice=pricer(Model,rfCurve,mcConfig,Fwd_payoff); @show EuPrice=pricer(Model,rfCurve,mcConfig,EU_payoff); @show AmPrice=pricer(Model,rfCurve,mcConfig,AM_payoff); @show BarrierPrice=pricer(Model,rfCurve,mcConfig,Barrier_payoff); @show AsianPrice1=pricer(Model,rfCurve,mcConfig,AsianFloatingStrike_payoff); @show AsianPrice2=pricer(Model,rfCurve,mcConfig,AsianFixedStrike_payoff); ```
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
1327
# [Metrics](@id Metric) The following type of *Metric* are supported from the package: * `pricer` * `delta` * `rho` * `variance` * `confinter` ## Common Interface Each Metric must implement its own *Metric* method; the general interface is the following: ```@docs pricer(mcProcess::FinancialMonteCarlo.BaseProcess,spotData::ZeroRate,mcConfig::MonteCarloConfiguration,abstractPayoff::FinancialMonteCarlo.AbstractPayoff) variance(mcProcess::FinancialMonteCarlo.BaseProcess,spotData::ZeroRate,mcConfig::MonteCarloConfiguration,abstractPayoff::FinancialMonteCarlo.AbstractPayoff) confinter(mcProcess::FinancialMonteCarlo.BaseProcess,spotData::ZeroRate,mcConfig::MonteCarloConfiguration,abstractPayoff::FinancialMonteCarlo.AbstractPayoff,alpha::Real=0.99) delta(mcProcess::FinancialMonteCarlo.BaseProcess,spotData::ZeroRate,mcConfig::MonteCarloConfiguration,abstractPayoff::FinancialMonteCarlo.AbstractPayoff,dS0::Real=1e-7) rho(mcProcess::FinancialMonteCarlo.BaseProcess, rfCurve::FinancialMonteCarlo.AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, abstractPayoff::FinancialMonteCarlo.AbstractPayoff, dr::Real = 1e-7) FinancialMonteCarlo.distribution(mcProcess::FinancialMonteCarlo.BaseProcess, rfCurve::FinancialMonteCarlo.AbstractZeroRateCurve, mcConfig::MonteCarloConfiguration, T::num_) where {num_ <: Number} ```
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
372
# [Multivariates](@id Multivariate) The following types of *Multivariate* are supported from the package using package "DatagenCopulaBased.jl": * `N dimensional Gaussian copula` * `N dimensional Gaussian copula for log processes` ## Common Interface The following option structs are provided: ```@docs GaussianCopulaNVariateLogProcess GaussianCopulaNVariateProcess ```
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
1284
# Variance Reduction, Parallel Mode and Random Number Generators The package provides functionalities regarding variance reduction and parallel mode. ## Parallel Mode The package provides the BaseMode type to represent the type of parallel processe that is going to simulate: * `SerialMode`: classical serial mode with no parallelization * `CudaMode`: support for CUDA using CUDA.jl * `MultiThreading`: Threads parallelization with julia built in costructs * `MultiProcess`: Processes parallelization with julia built in costructs ## Random Number Generator and seed control You can provide your own rng (that must inherit from Base.AbstractRNG), or choose the built in one controlling the seed. Seed is controlled from inside the package, each call to the constructor of MonteCarloConfiguration or pricer(...) automatically set the seed. If you want to control the seed from outside, just provide already build rng to constructor of MonteCarloConfiguration and avoid calls to pricer(...). ## Variance Reduction The variance reduction is achieved using antithetic variables approach and control variates. ## How to In order to impose a particular parallel mode, rng or variance reduction tecnique you should provide additional parameters to MonteCarloConfiguration constructor.
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
980
# [Payoffs](@id payoff) The following type of *Payoff* are supported from the package: * `European Options` * `Asian Options` * `Barrier Options` * `American Options` * `Bermudan Options` ## Common Interface Each payoff must implement its own *payout* method; that will be called by the following general interface: ```@docs payoff(S::AbstractMatrix, p::FinancialMonteCarlo.AbstractPayoff, r::FinancialMonteCarlo.AbstractZeroRateCurve, mc::FinancialMonteCarlo.AbstractMonteCarloConfiguration, T1::Number = p.T) ``` Depending on the type of AbstractPayoff, a different type of S must be specified. Look into the engines for more details. The following option structs are provided: ```@docs BinaryEuropeanOption AsianFloatingStrikeOption BarrierOptionDownOut AsianFixedStrikeOption DoubleBarrierOption BarrierOptionUpOut BarrierOptionUpIn BinaryAmericanOption EuropeanOption Forward BarrierOptionDownIn AmericanOption Spot EuropeanOptionND FinancialMonteCarlo.BermudanOption ```
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
1352
# [Stochastic Processes](@id stochproc) The package support the following processes: * `Black Scholes Process` * `Heston Process` * `Kou Process` * `Merton Process` * `Variance Gamma Process` * `Normal Inverse Gaussian Process` * `Lognormal Mixture Process` * `Shifted Lognormal Mixture Process` ## Common Interface A single method is implemented for each process, which provide the simulation output. ### Simulation Each process behave in its own different way but returning the same kind of object after simulation, the generic interfaces for simulating are the following: ```@docs simulate(mcProcess::FinancialMonteCarlo.AbstractMonteCarloProcess,spotData::FinancialMonteCarlo.AbstractZeroRateCurve,mcBaseData::FinancialMonteCarlo.AbstractMonteCarloConfiguration, T::Number) ``` ```@docs simulate(mcProcess::FinancialMonteCarlo.AbstractMonteCarloEngine,mcBaseData::FinancialMonteCarlo.AbstractMonteCarloConfiguration, T::Number) ``` The following process are already implemented: ```@docs BlackScholesProcess BrownianMotion FinancialMonteCarlo.BrownianMotionVec GeometricBrownianMotion FinancialMonteCarlo.GeometricBrownianMotionVec HestonProcess KouProcess LogNormalMixture MertonProcess NormalInverseGaussianProcess SubordinatedBrownianMotion FinancialMonteCarlo.SubordinatedBrownianMotionVec ShiftedLogNormalMixture VarianceGammaProcess ```
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
0.3.2
728c49a9de6ffe78fceb7bcba3b53db070fa5532
docs
2359
# Type Hierarchy All models, payoffs and modes provided in this package are organized into a type hierarchy described as follows. ## Models Remember that each model must have a `simulate` method implemented that specifies the way that the model behaves. From that abstract class the followings are derived and decomposed as follows: `AbstractMonteCarloProcess` is used to represent any model that is implemented completely inside this package: ```julia abstract type AbstractMonteCarloProcess <: AbstractMonteCarloProblem end ``` `ItoProcess` is used to represent any Ito Process: ```julia abstract type ItoProcess<:AbstractMonteCarloProcess end ``` `LevyProcess` is used to represent any Levy Process: ```julia abstract type LevyProcess<:AbstractMonteCarloProcess end ``` `FiniteActivityProcess` is used to represent any Finite Activity Levy Process: ```julia abstract type FiniteActivityProcess<:LevyProcess end ``` `InfiniteActivityProcess` is used to represent any Infinite Activity Levy Process: ```julia abstract type InfiniteActivityProcess<:LevyProcess end ``` Each concrete model that is implemented inside this package inherits from one of these above models. Remember that the model type is used to carry the parameters of the model and the dispatch when it's time to simulate, i.e., there is just one function `simulate` that is overloaded with respect to the model type. ## Payoffs The type hierarchy has a root type called `AbstractPayoff`, that type is used whenever it is not necessary to know the model type, like in `pricer`,`var` and `ci`. Each payoff must have a `payoff` method implemented that specifies the way that the payoff behaves. From that abstract class the followings are derived and decomposed as follows: ```julia abstract type AbstractPayoff end ``` ```julia abstract type EuropeanPayoff<:AbstractPayoff end ``` ```julia abstract type AmericanPayoff<:AbstractPayoff end ``` ```julia abstract type BarrierPayoff<:AbstractPayoff end ``` ```julia abstract type AsianPayoff<:AbstractPayoff end ``` Each concrete payoff that is implemented inside this package inherits from one of these above payoffs. Remember that the payoff type is used to carry the parameters of the model and the dispatch when it's time to price, i.e., there is just one function `payoff` that is overloaded with respect to the payoff type.
FinancialMonteCarlo
https://github.com/rcalxrc08/FinancialMonteCarlo.jl.git
[ "MIT" ]
2.0.12
49f3d06de40de20ff0d8c7d855bd461d5061e96d
code
1564
using Documenter, Literate, NaiveNASflux const nndir = joinpath(dirname(pathof(NaiveNASflux)), "..") function literate_example(sourcefile; rootdir=nndir, sourcedir = "test/examples", destdir="docs/src/examples") fullpath = Literate.markdown(joinpath(rootdir, sourcedir, sourcefile), joinpath(rootdir, destdir); flavor=Literate.DocumenterFlavor(), mdstrings=true, codefence="````julia" => "````") dirs = splitpath(fullpath) srcind = findfirst(==("src"), dirs) joinpath(dirs[srcind+1:end]...) end quicktutorial = literate_example("quicktutorial.jl") xorpruning = literate_example("xorpruning.jl") makedocs( sitename="NaiveNASflux", root = joinpath(nndir, "docs"), format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true" ), pages = [ "index.md", quicktutorial, xorpruning, "API Reference" => [ "reference/createvertex.md", "reference/layerwrappers.md", "reference/misc.md" ] ], modules = [NaiveNASflux], ) function touchfile(filename, rootdir=nndir, destdir="test/examples") filepath = joinpath(rootdir, destdir, filename) isfile(filepath) && return write(filepath, """ md\"\"\" # Markdown header \"\"\" """) end if get(ENV, "CI", nothing) == "true" deploydocs( repo = "github.com/DrChainsaw/NaiveNASflux.jl.git", push_preview=true ) end
NaiveNASflux
https://github.com/DrChainsaw/NaiveNASflux.jl.git
[ "MIT" ]
2.0.12
49f3d06de40de20ff0d8c7d855bd461d5061e96d
code
1112
module NaiveNASflux using Reexport @reexport using NaiveNASlib using NaiveNASlib.Extend, NaiveNASlib.Advanced import Flux using Flux: Dense, Conv, ConvTranspose, CrossCor, LayerNorm, BatchNorm, InstanceNorm, GroupNorm, MaxPool, MeanPool, Dropout, AlphaDropout, GlobalMaxPool, GlobalMeanPool, cpu, @layer import Optimisers import Functors using Statistics using Setfield: @set, setproperties using LinearAlgebra import JuMP import JuMP: @variable, @constraint, @expression, SOS1, MOI import ChainRulesCore import ChainRulesCore: rrule_via_ad, RuleConfig, HasReverseMode, Tangent, NoTangent export denseinputvertex, rnninputvertex, fluxvertex, concat export convinputvertex, conv1dinputvertex, conv2dinputvertex, conv3dinputvertex export ActivationContribution, LazyMutable export layer export KernelSizeAligned export NeuronUtilityEvery include("types.jl") include("util.jl") include("constraints.jl") include("select.jl") include("mutable.jl") include("vertex.jl") include("neuronutility.jl") # Stuff to integrate with Zygote include("chainrules.jl") include("precompile.jl") end # module
NaiveNASflux
https://github.com/DrChainsaw/NaiveNASflux.jl.git
[ "MIT" ]
2.0.12
49f3d06de40de20ff0d8c7d855bd461d5061e96d
code
1151
# Stuff to make things play nice with AD (typically Zygote) # Not exported, but I ended up using this in NaiveGAflux and don't want to update it now... # Consider it deprecated const nograd = ChainRulesCore.ignore_derivatives ChainRulesCore.@non_differentiable mutate(args...) # Temp workaround for https://github.com/FluxML/Zygote.jl/issues/1111 # Whole function can be deleted if/when issue is resolved function ChainRulesCore.rrule(config::RuleConfig{>:HasReverseMode}, m::MutableLayer, args...) res, back = rrule_via_ad(config, m.layer, args...) function MutableLayer_back(Δ) δs = back(Δ) Tangent{MutableLayer}(layer=δs[1]), δs[2:end]... end return res, MutableLayer_back end # Not just a workaround! # We do forcemutation so that we don't end up trying to differentiate through it function ChainRulesCore.rrule(config::RuleConfig{>:HasReverseMode}, m::LazyMutable, args...) forcemutation(m) res, back = rrule_via_ad(config, m.mutable, args...) function LazyMutable_back(Δ) δs = back(Δ) Tangent{LazyMutable}(mutable=δs[1]), δs[2:end]... end return res, LazyMutable_back end
NaiveNASflux
https://github.com/DrChainsaw/NaiveNASflux.jl.git
[ "MIT" ]
2.0.12
49f3d06de40de20ff0d8c7d855bd461d5061e96d
code
19151
usesos1(model::JuMP.Model) = usesos1(JuMP.backend(model)) usesos1(m) = JuMP.MOI.supports_constraint(m, JuMP.MOI.VectorOfVariables, JuMP.MOI.SOS1) """ GroupedConvAllowNinChangeStrategy(newoutputsmax::Integer, multipliersmax::Integer, base, [fallback]) GroupedConvAllowNinChangeStrategy(allowed_new_outgroups::AbstractVector{<:Integer}, allowed_multipliers::AbstractVector{<:Integer}, base, [fallback]) `DecoratingJuMPΔSizeStrategy` which allows both nin and nout of grouped `Conv` layers (i.e `Conv` with `groups` != 1) to change independently. Might cause optimization to take very long time so use with care! Use [`GroupedConvSimpleΔSizeStrategy`](@ref) if `GroupedConvAllowNinChangeStrategy` takes too long. The elements of `allowed_new_outgroups` determine how many extra elements in the output dimension of the weight shall be tried for each existing output element. For example, for a `Conv((k1,k2), nin=>nout; groups=nin))` one must insert integer multiples of `nout / nin` elements at the time. With `nin/nout = k` and `allowed_new_outgroups = 0:3` it is allowed to insert 0, `k`, `2k` or `3k` new elements in the output dimension between each already existing element. The elements of `allowed_multipliers` determine the total number of allowed output elements, i.e the allowed ratios of `nout / nin`. If `fallback` is not provided, it will be derived from `base`. """ struct GroupedConvAllowNinChangeStrategy{S,F} <: DecoratingJuMPΔSizeStrategy allowed_new_outgroups::Vector{Int} allowed_multipliers::Vector{Int} base::S fallback::F end GroupedConvAllowNinChangeStrategy(newoutputsmax::Integer, multipliersmax::Integer,base,fb...) = GroupedConvAllowNinChangeStrategy(0:newoutputsmax, 1:multipliersmax, base, fb...) function GroupedConvAllowNinChangeStrategy( allowed_new_outgroups::AbstractVector{<:Integer}, allowed_multipliers::AbstractVector{<:Integer}, base, fb= recurse_fallback(s -> GroupedConvAllowNinChangeStrategy(allowed_new_outgroups, allowed_multipliers, s), base)) return GroupedConvAllowNinChangeStrategy(collect(Int, allowed_new_outgroups), collect(Int, allowed_multipliers), base, fb) end NaiveNASlib.base(s::GroupedConvAllowNinChangeStrategy) = s.base NaiveNASlib.fallback(s::GroupedConvAllowNinChangeStrategy) = s.fallback NaiveNASlib.add_participants!(s::GroupedConvAllowNinChangeStrategy, vs=AbstractVertex[]) = NaiveNASlib.add_participants!(base(s), vs) """ GroupedConvSimpleΔSizeStrategy(base, [fallback]) `DecoratingJuMPΔSizeStrategy` which only allows nout of grouped `Conv` layers (i.e `Conv` with `groups` != 1) to change. Use if [`GroupedConvAllowNinChangeStrategy`](@ref) takes too long to solve. The elements of `allowed_multipliers` determine the total number of allowed output elements, i.e the allowed ratios of `nout / nin` (where `nin` is fixed). If `fallback` is not provided, it will be derived from `base`. """ struct GroupedConvSimpleΔSizeStrategy{S, F} <: DecoratingJuMPΔSizeStrategy allowed_multipliers::Vector{Int} base::S fallback::F end GroupedConvSimpleΔSizeStrategy(maxms::Integer, base, fb...) = GroupedConvSimpleΔSizeStrategy(1:maxms, base, fb...) function GroupedConvSimpleΔSizeStrategy(ms::AbstractVector{<:Integer}, base, fb=recurse_fallback(s -> GroupedConvSimpleΔSizeStrategy(ms, s), base)) return GroupedConvSimpleΔSizeStrategy(collect(Int, ms), base, fb) end NaiveNASlib.base(s::GroupedConvSimpleΔSizeStrategy) = s.base NaiveNASlib.fallback(s::GroupedConvSimpleΔSizeStrategy) = s.fallback NaiveNASlib.add_participants!(s::GroupedConvSimpleΔSizeStrategy, vs=AbstractVertex[]) = NaiveNASlib.add_participants!(base(s), vs) recurse_fallback(f, s::AbstractJuMPΔSizeStrategy) = wrap_fallback(f, NaiveNASlib.fallback(s)) recurse_fallback(f, s::NaiveNASlib.DefaultJuMPΔSizeStrategy) = s recurse_fallback(f, s::NaiveNASlib.ThrowΔSizeFailError) = s recurse_fallback(f, s::NaiveNASlib.ΔSizeFailNoOp) = s recurse_fallback(f, s::NaiveNASlib.LogΔSizeExec) = NaiveNASlib.LogΔSizeExec(s.msgfun, s.level, f(s.andthen)) wrap_fallback(f, s) = f(s) wrap_fallback(f, s::NaiveNASlib.LogΔSizeExec) = NaiveNASlib.LogΔSizeExec(s.msgfun, s.level, f(s.andthen)) function NaiveNASlib.compconstraint!(case, s, ::FluxLayer, data) end function NaiveNASlib.compconstraint!(case, s::DecoratingJuMPΔSizeStrategy, lt::FluxLayer, data) NaiveNASlib.compconstraint!(case, NaiveNASlib.base(s), lt, data) end # To avoid ambiguity function NaiveNASlib.compconstraint!(case::NaiveNASlib.ScalarSize, s::DecoratingJuMPΔSizeStrategy, lt::FluxConvolutional, data) NaiveNASlib.compconstraint!(case, NaiveNASlib.base(s), lt, data) end function NaiveNASlib.compconstraint!(::NaiveNASlib.ScalarSize, s::AbstractJuMPΔSizeStrategy, ::FluxConvolutional, data, ms=allowed_multipliers(s)) ngroups(data.vertex) == 1 && return # Add constraint that nout(l) == n * nin(l) where n is integer ins = filter(vin -> vin in keys(data.noutdict), inputs(data.vertex)) # "data.noutdict[data.vertex] == data.noutdict[ins[i]] * x" where x is an integer variable is not linear # Instead we use the good old big-M strategy to set up a series of "or" constraints (exactly one of them must be true). # This is combined with the abs value formulation to force equality. # multiplier[j] is false if and only if data.noutdict[data.vertex] == ms[j]*data.noutdict[ins[i]] # all but one of multiplier must be true # Each constraint below is trivially true if multiplier[j] is true since 1e6 is way bigger than the difference between the two variables multipliers = @variable(data.model, [1:length(ms)], Bin) @constraint(data.model, sum(multipliers) == length(multipliers)-1) @constraint(data.model, [i=1:length(ins),j=1:length(ms)], data.noutdict[data.vertex] - ms[j]*data.noutdict[ins[i]] + multipliers[j] * 1e6 >= 0) @constraint(data.model, [i=1:length(ins),j=1:length(ms)], data.noutdict[data.vertex] - ms[j]*data.noutdict[ins[i]] - multipliers[j] * 1e6 <= 0) # Inputs which does not have a variable, possibly because all_in_Δsize_graph did not consider it to be part of the set of vertices which may change # We will constrain data.vertex to have integer multiple of its current size fixedins = filter(vin -> vin ∉ ins, inputs(data.vertex)) if !isempty(fixedins) fv_out = @variable(data.model, integer=true) @constraint(data.model, [i=1:length(fixedins)], data.noutdict[data.vertex] == nout(fixedins[i]) * fv_out) end end allowed_multipliers(s::GroupedConvAllowNinChangeStrategy) = s.allowed_multipliers allowed_multipliers(s::GroupedConvSimpleΔSizeStrategy) = s.allowed_multipliers allowed_multipliers(::AbstractJuMPΔSizeStrategy) = 1:10 function NaiveNASlib.compconstraint!(case::NaiveNASlib.NeuronIndices, s::DecoratingJuMPΔSizeStrategy, t::FluxConvolutional, data) NaiveNASlib.compconstraint!(case, base(s), t, data) end function NaiveNASlib.compconstraint!(case::NaiveNASlib.NeuronIndices, s::AbstractJuMPΔSizeStrategy, t::FluxConvolutional, data) ngroups(data.vertex) == 1 && return # Fallbacks don't matter here since we won't call it from below here, just add default so we don't accidentally crash due to some # strategy which hasn't defined a fallback if 15 < sum(keys(data.outselectvars)) do v ngroups(v) == 1 && return 0 return log2(nout(v)) # Very roughly determined... end return NaiveNASlib.compconstraint!(case, GroupedConvSimpleΔSizeStrategy(10, s, NaiveNASlib.DefaultJuMPΔSizeStrategy()), t, data) end # The number of allowed multipliers can probably be better tuned, perhaps based on current size. return NaiveNASlib.compconstraint!(case, GroupedConvAllowNinChangeStrategy(10, 10, s, NaiveNASlib.DefaultJuMPΔSizeStrategy()), t, data) #= For benchmarking: using NaiveNASflux, Flux, NaiveNASlib.Advanced function timedwc(ds, ws) for w in ws for d in ds iv = conv2dinputvertex("in", w) dv = reduce((v, i) -> fluxvertex("dv$i", DepthwiseConv((1,1), nout(v) => fld1(i, 3) * nout(v)), v), 1:d; init=iv) metric = sum(ancestors(dv)) do v layer(v) isa Conv || return 0 return log2(nout(v)) end res = @timed Δsize!(ΔNoutRelaxed(outputs(iv)[1] => w; fallback = ΔSizeFailNoOp())) println((width=w, depth = d, metric=metric, time=res.time)) res.time < 5 || break end end end =# end function NaiveNASlib.compconstraint!(::NaiveNASlib.NeuronIndices, s::GroupedConvSimpleΔSizeStrategy, t::FluxConvolutional, data) model = data.model v = data.vertex select = data.outselectvars[v] insert = data.outinsertvars[v] ngroups(v) == 1 && return nin(v)[] == 1 && return # Special case, no restrictions as we only need to be an integer multple of 1 if size(weights(layer(v)), indim(v)) != 1 @warn "Handling of convolutional layers with groups != nin not implemented. Model might not be size aligned after mutation!" end # Neurons mapped to the same weight are interleaved, i.e layer.weight[:,:,1,:] maps to y[1:ngroups:end] where y = layer(x) ngrps = div(nout(v), nin(v)[]) for group in 1:ngrps neurons_in_group = select[group : ngrps : end] @constraint(model, neurons_in_group[1] == neurons_in_group[end]) @constraint(model, [i=2:length(neurons_in_group)], neurons_in_group[i] == neurons_in_group[i-1]) insert_in_group = insert[group : ngrps : end] @constraint(model, insert_in_group[1] == insert_in_group[end]) @constraint(model, [i=2:length(insert_in_group)], insert_in_group[i] == insert_in_group[i-1]) end NaiveNASlib.compconstraint!(NaiveNASlib.ScalarSize(), s, t, data, allowed_multipliers(s)) end function NaiveNASlib.compconstraint!(case::NaiveNASlib.NeuronIndices, s::GroupedConvAllowNinChangeStrategy, t::FluxConvolutional, data) model = data.model v = data.vertex select = data.outselectvars[v] insert = data.outinsertvars[v] ngroups(v) == 1 && return nin(v)[] == 1 && return # Special case, no restrictions as we only need to be an integer multple of 1? # Step 0: # Flux 0.13 changed the grouping of weigths so that size(layer.weight) = (..., nin / ngroups, nout) # We can get back the shape expected here through weightgroups = reshape(layer.weight, ..., nout / groups, nin) # Step 1: # Neurons mapped to the same weight are interleaved, i.e layer.weight[:,:,1,:] maps to y[1:ngroups:end] where y = layer(x) # where ngroups = nout / nin. For example, nout = 12 and nin = 4 mean size(layer.weight) == (..,3, 4) # Thus we have ngroups = 3 and with groupsize of 4. # Now, if we were to change nin to 3, we would still have ngroups = 3 but with groupsize 3 and thus nout = 9 # ins = filter(vin -> vin in keys(data.noutdict), inputs(v)) # If inputs to v are not part of problem we have to keep nin(v) fixed! isempty(ins) && return NaiveNASlib.compconstraint!(case, GroupedConvSimpleΔSizeStrategy(allowed_multipliers(s), base(s)), t, data) # TODO: Check if input is immutable and do simple strat then too? inselect = data.outselectvars[ins[]] ininsert = data.outinsertvars[ins[]] #ngroups = div(nout(v), nin(v)[]) if size(weights(layer(v)), indim(v)) != 1 @warn "Handling of convolutional layers with groups != nin not implemented. Model might not be size aligned after mutation!" end ningroups = nin(v)[] add_depthwise_constraints(model, inselect, ininsert, select, insert, ningroups, s.allowed_new_outgroups, s.allowed_multipliers) end function add_depthwise_constraints(model, inselect, ininsert, select, insert, ningroups, allowed_new_outgroups, allowed_multipliers) # ningroups is the number of "input elements" in the weight array, last dimension at the time of writing # noutgroups is the number of "output elements" in the weight array, second to last dimension at time of writing # nin is == ningroups while nout == ningroups * noutgroups # When changing nin by Δ, we will get ningroups += Δ which just means that we insert/remove Δ input elements. # Inserting one new input element at position i will get us noutgroups new consecutive outputputs at position i # Thus nout change by Δ * noutgroups. # Note: Flux 0.13 changed the grouping of weigths so that size(layer.weight) = (..., nin / ngroups, nout) # We can get back the shape expected here through weightgroups = reshape(layer.weight, ..., nout / groups, nin) # All examples below assume the pre-0.13 representation! # Example: # dc = DepthwiseConv((1,1), 3 => 9; bias=false); # size(dc.weight) # (1, 1, 3, 3) # indata = randn(Float32, 1,1,3, 1); # reshape(dc(indata),:)' # 1×9 adjoint(::Vector{Float32}) with eltype Float32: # 0.315234 0.267166 -0.227757 0.03523 0.0516438 -0.124007 -0.63409 0.0273361 -0.457146 # Inserting zeros instead of adding/removing just as it is less verbose to do so. # dc.weight[:,:,:,2] .= 0; # reshape(dc(indata),:)' # 1×9 adjoint(::Vector{Float32}) with eltype Float32: # 0.315234 0.267166 -0.227757 0.0 0.0 0.0 -0.63409 0.0273361 -0.457146 # When changing nout by Δ where Δ == k * ningroups where k is an integer we can simply just add/remove k output elements # Output elements are interleaved in the output of the layer, so if we add/remove output element i, the elements i:ningroups:end # will be added/dropped from the layer output. # When Δ is not an integer multiple things get pretty hairy and I'm not sure the constraints below handle all causes # We then basically need to change nin so that the new nout is an integer multiple of the new nin. # Example # dc = DepthwiseConv((1,1), 3 => 9; bias=false); # reshape(dc(indata),:)' # 1×9 adjoint(::Vector{Float32}) with eltype Float32: # 0.109549 0.273408 -0.299883 0.0131096 0.00240822 -0.0461159 -0.138605 -0.557134 0.0246111 # julia> dc.weight[:,:,2,:] .= 0; # reshape(dc(indata),:)' # 1×9 adjoint(::Vector{Float32}) with eltype Float32: # 0.109549 0.0 -0.299883 0.0131096 0.0 -0.0461159 -0.138605 0.0 0.0246111 # One thing which makes this a bit tricky is that while noutgruops and ningroups can change # we are here stuck with the select and insert arrays that correspond to the original sizes # As such, keep in mind that noutgroups and ningroups in this function always relate to the # lengths of the arrays of JuMP variables that we have right now. M = 1e6 noutgroups = div(length(select), ningroups) # select_none_in_group[g] == 1 if we drop group g # TODO: Replace by just sum(select_in_group[g,:]) below? select_none_in_group = @variable(model, [1:noutgroups], Bin) select_in_group = reshape(select, noutgroups, ningroups) @constraint(model, sum(select_in_group, dims=2) .<= M .* (1 .- select_none_in_group)) # Tie selected input indices to selected output indices. If we are to drop any layer output indices, we need to drop the whole group # as one whole group is tied to a single element in the output element dimension of the weight array. @constraint(model, [g=1:noutgroups, i=1:ningroups], inselect[i] - select_in_group[g, i] + select_none_in_group[g] * M >= 0) @constraint(model, [g=1:noutgroups, i=1:ningroups], inselect[i] - select_in_group[g, i] - select_none_in_group[g] * M <= 0) # This variable handles the constraint that if we add a new input, we need to add noutgroups new outputs # Note that for now, it is only connected to the insert variable through the sum constraint below. insert_new_inoutgroups = @variable(model, [[1], 1:ningroups], Int, lower_bound=0, upper_bound=ningroups * maximum(allowed_multipliers)) insize = @expression(model, sum(inselect) + sum(ininsert)) outsize = @expression(model, sum(select) + sum(insert)) # inmultipliers[j] == 1 if nout(v) == allowed_multipliers[j] * nin(v)[] inmultipliers = @variable(model, [1:length(allowed_multipliers)], Bin) if usesos1(model) #SOS1 == Only one can be non-zero. Not strictly needed, but it seems like it speeds up the solver @constraint(model, inmultipliers in SOS1(1:length(inmultipliers))) end @constraint(model, sum(inmultipliers) == 1) @constraint(model,[i=1:length(ininsert), j=1:length(inmultipliers)], allowed_multipliers[j] * ininsert[i] - insert_new_inoutgroups[1, i] + (1-inmultipliers[j]) * M >= 0) @constraint(model,[i=1:length(ininsert), j=1:length(inmultipliers)], allowed_multipliers[j] * ininsert[i] - insert_new_inoutgroups[1, i] - (1-inmultipliers[j]) * M <= 0) @constraint(model, [j=1:length(inmultipliers)], allowed_multipliers[j] * insize - outsize + (1-inmultipliers[j]) * M >= 0) @constraint(model, [j=1:length(inmultipliers)], allowed_multipliers[j] * insize - outsize - (1-inmultipliers[j]) * M <= 0) insert_new_inoutgroups_all_inds = vcat(zeros(noutgroups-1,ningroups), insert_new_inoutgroups) # This variable handles the constraint that if we want to increase the output size without changing # the input size, we need to insert whole outgroups since all noutgroup outputs are tied to a single # output element in the weight array. insert_new_outgroups = @variable(model, [1:noutgroups, 1:ningroups], Int, lower_bound = 0, upper_bound=noutgroups * maximum(allowed_new_outgroups)) # insert_no_outgroup[g] == 1 if we don't insert a new output group after group g # TODO: Replace by just sum(insert_new_outgroups[g,:]) below? insert_no_outgroup = @variable(model, [1:noutgroups], Bin) @constraint(model, sum(insert_new_outgroups, dims=2) .<= M .* (1 .- insert_no_outgroup)) # When adding a new output group, all inserts must be identical # If we don't add any, all inserts are just 0 @constraint(model, [g=1:noutgroups, i=2:ningroups], insert_new_outgroups[g,i] == insert_new_outgroups[g,i-1]) @constraint(model, [g=1:noutgroups], insert_new_outgroups[g,1] == insert_new_outgroups[g,end]) # new_outgroup[g,j] == 1 if we are inserting allowed_new_outgroups[j] new output groups after output group g noutmults = 1:length(allowed_new_outgroups) new_outgroup = @variable(model, [1:noutgroups, noutmults], Bin) if usesos1(model) #SOS1 == Only one can be non-zero. Not strictly needed, but it seems like it speeds up the solver @constraint(model,[g=1:noutgroups], new_outgroup[g,:] in SOS1(1:length(allowed_new_outgroups))) end @constraint(model,[g=1:noutgroups], sum(new_outgroup[g,:]) == 1) groupsum = @expression(model, [g=1:noutgroups], sum(insert_new_outgroups[g,:]) - sum(insert_new_inoutgroups_all_inds[g,:])) @constraint(model, [g=1:noutgroups, j=noutmults], groupsum[g] - allowed_new_outgroups[j]*insize + (1-new_outgroup[g,j] + insert_no_outgroup[g]) * M >= 0) @constraint(model, [g=1:noutgroups, j=noutmults], groupsum[g] - allowed_new_outgroups[j]*insize - (1-new_outgroup[g,j] + insert_no_outgroup[g]) * M <= 0) # Finally, we say what the inserts shall be: the sum of inserts from new inputs and new outputs # I think this allows for them to be somewhat independent, but there are still cases when they # can't change simultaneously. TODO: Check those cases @constraint(model, insert .== reshape(insert_new_outgroups, :) .+ reshape(insert_new_inoutgroups_all_inds,:)) end
NaiveNASflux
https://github.com/DrChainsaw/NaiveNASflux.jl.git
[ "MIT" ]
2.0.12
49f3d06de40de20ff0d8c7d855bd461d5061e96d
code
13931
""" AbstractMutableComp Abstract base type for computation units (read layers) which may mutate. """ abstract type AbstractMutableComp end Base.Broadcast.broadcastable(m::AbstractMutableComp) = Ref(m) # Generic forwarding methods. Just implement layer(t::Type) and wrapped(t::Type) to enable # Not possible in julia <= 1.1. See #14919 # (m::AbstractMutableComp)(x...) = layer(m)(x...) layer(m::AbstractMutableComp) = layer(wrapped(m)) layertype(m::AbstractMutableComp) = layertype(layer(m)) NaiveNASlib.op(m::AbstractMutableComp) = layer(m) NaiveNASlib.nin(m::AbstractMutableComp) = nin(wrapped(m)) NaiveNASlib.nout(m::AbstractMutableComp) = nout(wrapped(m)) function NaiveNASlib.Δsize!(m::AbstractMutableComp, inputs::AbstractVector, outputs::AbstractVector;kwargs...) NaiveNASlib.Δsize!(wrapped(m), inputs, outputs;kwargs...) end mutate_weights(m::AbstractMutableComp, w) = mutate_weights(wrapped(m), w) function NaiveNASlib.compconstraint!(case, s::AbstractJuMPΔSizeStrategy, m::AbstractMutableComp, data) NaiveNASlib.compconstraint!(case, s, layertype(m), data) end function NaiveNASlib.defaultutility(m::AbstractMutableComp) util = neuronutility_safe(m) return util === 1 ? NaiveNASlib.NoDefaultUtility() : util end """ MutableLayer Wraps a layer in order to allow for mutation as layer structures are typically immutable """ mutable struct MutableLayer <: AbstractMutableComp layer # Can't specialize as this might mutate into something else, e.g. Dense{Float32} -> Dense{Float64} thanks to mutable functor. Try to make functor rebuild everything? end (m::MutableLayer)(x...) = layer(m)(x...) wrapped(m::MutableLayer) = m.layer layer(m::MutableLayer) = wrapped(m) layertype(m::MutableLayer) = layertype(layer(m)) @layer :expand MutableLayer function NaiveNASlib.Δsize!(m::MutableLayer, inputs::AbstractVector, outputs::AbstractVector; insert=neuroninsert, kwargs...) @assert length(inputs) == 1 "Only one input per layer!" mutate(m; inputs=inputs[1], outputs=outputs, insert=insert, kwargs...) nothing end mutate_weights(m::MutableLayer, w) = mutate(layertype(m), m, other=w) function mutate(m::MutableLayer; inputs, outputs, other = l -> (), insert=neuroninsert) if inputs === missing mutate(layertype(m), m; outputs, other, insert) else mutate(layertype(m), m; inputs, outputs, other, insert) end end mutate(lt::FluxParLayer, m::MutableLayer; kwargs...) = _mutate(lt, m; kwargs...) function _mutate(lt::FluxParLayer, m::MutableLayer; inputs=1:nin(m)[], outputs=1:nout(m), other= l -> (), insert=neuroninsert) l = layer(m) otherdims = other(l) w = select(weights(l), indim(l) => inputs, outdim(l) => outputs, otherdims...; newfun=insert(lt, WeightParam())) b = select(bias(l), 1 => outputs; newfun=insert(lt, BiasParam())) newlayer(m, w, b, otherpars(other, l)) end otherpars(o, l) = () function mutate(lt::FluxConvolutional{N}, m::MutableLayer; inputs=1:nin(m)[], outputs=1:nout(m), other= l -> (), insert=neuroninsert) where N if ngroups(lt, layer(m)) == 1 return _mutate(lt, m; inputs, outputs, other, insert) end l = layer(m) otherdims = other(l) # TODO: Handle other cases than ngroups == nin newingroups = 1 # inputs and outputs are coupled through the constraints (which hopefully were enforced) so we only need to consider outputs currsize =size(weights(l)) wo = select(reshape(weights(l), currsize[1:N]...,:), N+1 => outputs, otherdims...; newfun=insert(lt, WeightParam())) newks = size(wo)[1:N] w = collect(reshape(wo, newks...,newingroups, :)) b = select(bias(l), 1 => outputs; newfun=insert(lt, BiasParam())) newlayer(m, w, b, (;groups= length(inputs) ÷ newingroups, otherpars(other, l)...)) end function mutate(lt::FluxRecurrent, m::MutableLayer; inputs=1:nin(m)[], outputs=1:nout(m), other=missing, insert=neuroninsert) l = layer(m) outputs_scaled = mapfoldl(vcat, 1:outscale(l)) do i offs = (i-1) * nout(l) return map(x -> x > 0 ? x + offs : x, outputs) end wi = select(weights(l), indim(l) => inputs, outdim(l) => outputs_scaled, newfun=insert(lt, WeightParam())) wh = select(hiddenweights(l), 2 => outputs, 1 => outputs_scaled, newfun=insert(lt, RecurrentWeightParam())) b = select(bias(l), 1 => outputs_scaled, newfun=insert(lt, BiasParam())) mutate_recurrent_state(lt, m, outputs, wi, wh, b, insert) end function mutate_recurrent_state(lt::FluxRecurrent, m::MutableLayer, outputs, wi, wh, b, insert) l = layer(m) state0 = select(hiddenstate(l), 1 => outputs, newfun=insert(lt, RecurrentState())) s = select(state(l), 1 => outputs; newfun=insert(lt, RecurrentState())) cellnew = setproperties(layer(m).cell, (Wi=wi, Wh=wh, b = b, state0 = state0)) lnew = setproperties(layer(m), (cell=cellnew, state = s)) m.layer = lnew end function mutate_recurrent_state(lt::FluxLstm, m::MutableLayer, outputs, wi, wh, b, insert) l = layer(m) s0curr, scurr = hiddenstate(l), state(l) s0 = select.(s0curr, repeat([1 => outputs], length(s0curr)); newfun=insert(lt, RecurrentState())) s = select.(scurr, repeat([1 => outputs], length(scurr)); newfun=insert(lt, RecurrentState())) cellnew = setproperties(layer(m).cell, (Wi=wi, Wh=wh, b = b, state0 = Tuple(s0))) lnew = setproperties(layer(m), (cell=cellnew, state = Tuple(s))) m.layer = lnew return (;state0 = Tuple(s0)), Tuple(s) end function mutate(t::FluxParInvLayer, m::MutableLayer; inputs=missing, outputs=missing, other=missing, insert=neuroninsert) @assert any(ismissing.((inputs, outputs))) || inputs == outputs "Try to mutate $inputs and $outputs for invariant layer $(m)!" ismissing(inputs) || return mutate(t, m, inputs; insert=insert) ismissing(outputs) || return mutate(t, m, outputs; insert=insert) end function mutate(lt::FluxScale, m::MutableLayer, inds; insert=neuroninsert) l = layer(m) w = select(weights(l), 1 => inds, newfun=insert(lt, WeightParam())) b = select(bias(l), 1 => inds; newfun=insert(lt, BiasParam())) newlayer(m, w, b) end function mutate(::FluxLayerNorm, m::MutableLayer, inds; insert=neuroninsert) # LayerNorm is only a wrapped Scale. Just mutate the Scale and make a new LayerNorm of it proxy = MutableLayer(layer(m).diag) mutate(proxy; inputs=inds, outputs=inds, other=l->(), insert=insert) updatelayer = layer(m) m.layer = @set updatelayer.diag = layer(proxy) end function mutate(lt::FluxParNorm, m::MutableLayer, inds; insert=neuroninsert) # Filter out the parameters which need to change and decide for each name (e.g. γ, β etc) what to do (typically insert 1 for scaling things and 0 for offset things) parselect(p::Pair) = parselect(p...) parselect(pname, x::AbstractArray) = select(x, 1 => inds; newfun = neuroninsert(lt, pname)) parselect(pname, x) = x fs, re = Flux.functor(m.layer) newlayer = re(map(parselect, pairs(fs) |> collect)) newlayer = @set newlayer.chs = length(inds) m.layer = newlayer end function mutate(lt::FluxGroupNorm, m::MutableLayer, inds; insert=neuroninsert) # TODO: This alg was from when Flux used a different way to represent the parameters of GroupNorm # For some reason it still produces correct results in testcases, but it might very well do so for # the wrong reasons... l = m.layer ngroups = l.G nchannels = length(inds) # Make a "best fit" to new group size, but don't allow 1 as group size # Step 1: Possible group sizes are all integers which divde the new number of channels evenly g_alts = filter(ga -> ga > 1, findall(r -> r == 0, nchannels .% (1:nchannels))) # Step 2: Select the size which is closest to the original number of groups ngroups = g_alts[argmin(abs.(g_alts .- ngroups))] nchannels_per_group = div(nchannels, ngroups) # Map indices to (new) groups inds_groups = ceil.(Int, map(ind -> ind > 0 ? ind / nchannels_per_group : ind, inds)) # TODO: Select the most commonly occuring index in each column (except -1) inds_groups = reshape(inds_groups, nchannels_per_group, ngroups)[1,:] sizetoinds = Dict(nin(l)[] => inds, l.G => inds_groups) parselect(p::Pair) = parselect(p...) parselect(pname, x::AbstractArray) = select(x, 1 => sizetoinds[length(x)]; newfun = insert(lt, pname)) parselect(pname, x) = x fs, re = Flux.functor(m.layer) newlayer = re(map(parselect, pairs(fs) |> collect)) newlayer.G = ngroups newlayer = @set newlayer.chs = length(inds) m.layer = newlayer m.layer.G = ngroups end newlayer(m::MutableLayer, w, b, other=nothing) = m.layer = newlayer(layertype(m), m, w, b, other) newlayer(::FluxDense, m::MutableLayer, w, b, other) = Dense(w, b, deepcopy(layer(m).σ)) newlayer(::FluxConvolutional, m::MutableLayer, w, b, other) = setproperties(layer(m), (weight=w, bias=b, σ=deepcopy(layer(m).σ), other...)) newlayer(::FluxScale, m::MutableLayer, w, b, other) = Flux.Scale(w, b) """ LazyMutable LazyMutable(m::AbstractMutableComp) Lazy version of MutableLayer in the sense that it does not perform any mutations until invoked to perform a computation. This reduces the need to garbage collect when multiple mutations might be applied to a vertex before evaluating the model. Also useable for factory-like designs where the actual layers of a computation graph are not instantiated until the graph is used. # Examples ```jldoctest julia> using NaiveNASflux, Flux julia> struct DenseConfig end julia> lazy = LazyMutable(DenseConfig(), 2, 3); julia> layer(lazy) DenseConfig() julia> function NaiveNASflux.dispatch!(m::LazyMutable, ::DenseConfig, x) m.mutable = Dense(nin(m)[1], nout(m), relu) return m.mutable(x) end; julia> lazy(ones(Float32, 2, 5)) |> size (3, 5) julia> layer(lazy) Dense(2 => 3, relu) # 9 parameters ``` """ mutable struct LazyMutable <: AbstractMutableComp mutable # May change at any time (see example) inputs::Vector{Vector{Int}} outputs::Vector{Int} other # May change at any time insert # May change at any time end LazyMutable(m::AbstractMutableComp) = LazyMutable(m, nin(m), nout(m)) LazyMutable(m, nin::Integer, nout::Integer) = LazyMutable(m, [nin], nout) function LazyMutable(m, nins::AbstractVector{<:Integer}, nout::Integer) inputs = map(nin -> collect(Int, 1:nin), nins) outputs = collect(Int, 1:nout) LazyMutable(m, inputs, outputs, m -> (), neuroninsert) end function Base.show(io::IO, lm::LazyMutable) print(io, "LazyMutable(") show(io, lm.mutable) print(io, '[') for inpt in lm.inputs print(io, NaiveNASlib.compressed_string(inpt)) end print(io, ']', NaiveNASlib.compressed_string(lm.outputs)) show(io, lm.other) show(io, lm.insert) end wrapped(m::LazyMutable) = m.mutable layer(m::LazyMutable) = layer(wrapped(m)) function Functors.functor(::Type{<:LazyMutable}, m) forcemutation(m) return (mutable=m.mutable,), y -> LazyMutable(y.mutable) end (m::LazyMutable)(x...) = dispatch!(m, m.mutable, x...) dispatch!(::LazyMutable, m::AbstractMutableComp, x...) = m(x...) NaiveNASlib.nin(m::LazyMutable) = length.(m.inputs) NaiveNASlib.nout(m::LazyMutable) = length(m.outputs) function NaiveNASlib.Δsize!(m::LazyMutable, inputs::AbstractVector, outputs::AbstractVector; insert=neuroninsert) (all((i,k)::Tuple -> ismissing(i) || i == 1:k, zip(inputs, nin(m))) && outputs == 1:nout(m)) && return m.insert = insert m.mutable = ResetLazyMutable(trigger_mutation(m.mutable)) m.inputs = map(m.inputs, inputs) do currins, newins ismissing(newins) && return currins select(currins, 1 => newins, newfun = (args...) -> -1) end m.outputs = select(m.outputs, 1=>outputs, newfun = (args...) -> -1) nothing end function mutate_weights(m::LazyMutable, w) m.other == w && return m.mutable = ResetLazyMutable(trigger_mutation(m.mutable)) m.other = w end function forcemutation(x) end function forcemutation(::InputVertex) end forcemutation(g::CompGraph) = forcemutation.(vertices(g::CompGraph)) forcemutation(v::AbstractVertex) = forcemutation(base(v)) forcemutation(v::CompVertex) = forcemutation(v.computation) forcemutation(m::AbstractMutableComp) = forcemutation(NaiveNASflux.wrapped(m)) forcemutation(m::LazyMutable) = m(NoComp()) struct NoComp end function (::MutableLayer)(::NoComp) end """ MutationTriggered Dispatches mutation for LazyMutable. """ struct MutationTriggered{T} wrapped::T end # Functionality is opt-in trigger_mutation(m) = m trigger_mutation(m::AbstractMutableComp) = MutationTriggered(m) function dispatch!(lm::LazyMutable, m::MutationTriggered, x...) NaiveNASlib.Δsize!(m.wrapped, lm.inputs, lm.outputs; other=lm.other, insert=lm.insert) lm.mutable = m.wrapped return lm(x...) end layer(m::MutationTriggered) = layer(m.wrapped) layertype(m::MutationTriggered) = layertype(layer(m)) @layer :expand MutationTriggered """ ResetLazyMutable Reset a `LazyMutable` when dispatching. """ struct ResetLazyMutable{T} wrapped::T end ResetLazyMutable(r::ResetLazyMutable) = r function dispatch!(lm::LazyMutable, m::ResetLazyMutable, x...) lm.mutable = m.wrapped output = lm(x...) lm.inputs = map(i -> collect(1:i), nin(lm)) lm.outputs = 1:nout(lm) lm.other = m -> () lm.insert = neuroninsert return output end layer(m::ResetLazyMutable) = layer(m.wrapped) layertype(m::ResetLazyMutable) = layertype(layer(m)) @layer :expand ResetLazyMutable """ NoParams Ignores size mutation. Useful for layers which don't have parameters. """ struct NoParams{T} layer::T end (i::NoParams)(x...) = layer(i)(x...) layer(i::NoParams) = i.layer layertype(i::NoParams) = layertype(layer(i)) NaiveNASlib.op(i::NoParams) = layer(i) LazyMutable(m::NoParams) = m function mutate_weights(::NoParams, w) end
NaiveNASflux
https://github.com/DrChainsaw/NaiveNASflux.jl.git