licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.0
3331d7ed85874e3e4d73a01980c08f31068997f6
code
1863
@testset "Thermodynamics" begin @test mixing_ratio_to_specific_humidity(specific_humidity_to_mixing_ratio(0.5)) ≈ 0.5 @test get_saturation_vapor_pressure(273.15u"K") == 6.112u"hPa" @test get_saturation_vapor_pressure(273.15) == 6.112 @test get_partial_vapor_pressure(0,1000u"hPa") == 0u"hPa" @test get_partial_vapor_pressure(1,1000u"hPa") == 1000u"hPa"/(18.016/28.966 + 1.0) @test get_mixing_ratio(0u"hPa",1000u"hPa") == 0 @test get_mixing_ratio(get_partial_vapor_pressure(0.5,1000.0), 1000.0) == 0.5 @test get_partial_vapor_pressure(0,1000) == 0 @test get_partial_vapor_pressure(1,1000) == 1000/(18.016/28.966 + 1.0) @test get_mixing_ratio(0,1000) == 0 @test get_mixing_ratio(get_partial_vapor_pressure(0.5,1000.0), 1000.0) == 0.5 @test unit(get_specific_entropy(300u"K",0.2,1000u"hPa"))== u"J/K/kg" @test get_potential_temperature(300,1000,1000) == 300 @test get_potential_temperature(300,1010,1000) < 300 @test get_potential_temperature(300,900,1000) > 300 @test get_virtual_temperature(300,0) == 300 @test get_virtual_temperature(300,0) == 300 @test get_virtual_temperature(300,10) > 300 @test get_potential_temperature(300u"K",1000u"hPa",1000u"hPa") == 300u"K" @test get_potential_temperature(300u"K",1010u"hPa",1000u"hPa") < 300u"K" @test get_potential_temperature(300u"K",900u"hPa",1000u"hPa") > 300u"K" @test get_virtual_temperature(300u"K",0u"g/kg") == 300u"K" @test get_virtual_temperature(300u"K",0u"g/kg") == 300u"K" @test get_virtual_temperature(300u"K",10u"g/kg") > 300u"K" @test get_virtual_temperature(300,mixing_ratio_to_specific_humidity(0.10)) ≈ get_virtual_temperature(300,0.10,0.10) @test get_virtual_temperature(300,0.10) ≈ get_virtual_temperature(300,specific_humidity_to_mixing_ratio(0.10),specific_humidity_to_mixing_ratio(0.10)) end
TropicalCyclonePotentialIntensity
https://github.com/aramirezreyes/TropicalCyclonePotentialIntensity.jl.git
[ "MIT" ]
0.2.0
3331d7ed85874e3e4d73a01980c08f31068997f6
code
2538
pres = 1.0f0u"hPa" .* Float32.(readdlm("pressure_in_hpa")[:]) tabs = 1.0f0u"K" .* Float32.(readdlm("tabs_in_Kelvin")[:]) qv = 1.0f0u"kg/kg" .* Float32.(readdlm("specific_humidity_in_kgperkg")[:]) r = specific_humidity_to_mixing_ratio.(qv) pparcel = pres[1] tparcel = tabs[1] rparcel = r[1] pres_nu = ustrip.(pres) tabs_nu = ustrip.(tabs) qv_nu = ustrip.(qv) r_nu = specific_humidity_to_mixing_ratio.(qv_nu) pparcel_nu = pres_nu[1] tparcel_nu = tabs_nu[1] rparcel_nu = r_nu[1] #With these value, the fortran implementation yields: # include(joinpath(@__DIR__,"emanuel_potential_intensity_wrapper.jl")) # cape_fortran_implementation, temp_outflow_fortran_implementation = get_cape(ustrip(tparcel),ustrip(rparcel), ustrip(pparcel), ustrip.(tabs), ustrip.(r), ustrip.(pres)) # @show cape_fortran_implementation, temp_outflow_fortran_implementation # min_pres_fortran_implementation, max_speed_fortran_implementation = get_pcmin( ustrip(tparcel) .- 273.15f0,ustrip(pparcel),ustrip.(pres),ustrip.(tabs) .- 273.15f0, 1f3.*ustrip.(r)) # @show min_pres_fortran_implementation, max_speed_fortran_implementation cape_fortran_implementation, temp_outflow_fortran_implementation = (1106.4801f0, 240.90143f0) min_pres_fortran_implementation, max_speed_fortran_implementation = (991.1094f0, 26.201181f0) cape, temp_outflow, index_outflow = get_cape_and_outflow_temp_from_sounding(tparcel,rparcel,pparcel,tabs,r,pres) min_pres, max_speed = get_potential_intensity_of_tropical_cyclone(tparcel, pparcel, pres, tabs, r) @testset "Potential Intensity" begin @test unit(get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,tabs,r,pres)[1]) == u"K" @test get_buoyancy_of_lifted_parcel(tparcel_nu,rparcel_nu,pparcel_nu,tabs_nu,r_nu,pres_nu) == ustrip.(get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,tabs,r,pres)) @test get_potential_intensity_of_tropical_cyclone(tparcel_nu, pparcel_nu, pres_nu, tabs_nu, r_nu) == ustrip.(get_potential_intensity_of_tropical_cyclone(tparcel, pparcel, pres, tabs, r)) @test get_cape_and_outflow_temp_from_sounding(tparcel_nu,rparcel_nu,pparcel_nu,tabs_nu,r_nu,pres_nu) == ustrip.(get_cape_and_outflow_temp_from_sounding(tparcel,rparcel,pparcel,tabs,r,pres)) @test isapprox(cape, cape_fortran_implementation*u"J/kg", rtol = 0.01) @test isapprox(temp_outflow, temp_outflow_fortran_implementation*u"K", rtol = 0.01) @test isapprox(min_pres, min_pres_fortran_implementation*u"hPa", rtol = 0.01) @test isapprox(max_speed, max_speed_fortran_implementation*u"m/s", rtol = 0.01) end
TropicalCyclonePotentialIntensity
https://github.com/aramirezreyes/TropicalCyclonePotentialIntensity.jl.git
[ "MIT" ]
0.2.0
3331d7ed85874e3e4d73a01980c08f31068997f6
code
253
using TropicalCyclonePotentialIntensity using Test using Unitful: @u_str, unit, ustrip, Quantity using DelimitedFiles @testset "TropicalCyclonePotentialIntensity.jl" begin include("physicsfunctions.jl") include("potentialintensity.jl") end
TropicalCyclonePotentialIntensity
https://github.com/aramirezreyes/TropicalCyclonePotentialIntensity.jl.git
[ "MIT" ]
0.2.0
3331d7ed85874e3e4d73a01980c08f31068997f6
docs
2371
# TropicalCyclonePotentialIntensity [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](http://www.argelramirezreyes.com/TropicalCyclonePotentialIntensity.jl/dev/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](http://www.argelramirezreyes.com/TropicalCyclonePotentialIntensity.jl/dev/) [![Coverage](https://codecov.io/gh/aramirezreyes/TropicalCyclonePotentialIntensity.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/aramirezreyes/TropicalCyclonePotentialIntensity.jl) # TropicalCyclonePotentialIntensity.jl This package implements the functions of [Daniel Gliford](https://github.com/dgilford)'s [TCPyPI](https://github.com/dgilford/tcpyPI/blob/master/tcpyPI/pi.py) for the [JuliaLanguage](https://github.com/JuliaLang/julia). This are widely used routines in the Tropical Cyclone community. I hope this helps widen the atmospheric science ecosystem for Julia. # Installation This package is very lightweight and it is registered in the Julia General Registry so to install it in the Julia REPL just hit the ```]``` key to enter Pkg mode, then type ```julia Pkg> add TropicalCyclonePotentialIntensity ``` # Usage TropicalCyclonePotentialIntensity.jl has three main functions: In here, tparcel, pparcel and rparcel are the temperature (in Kelvin), pressure (in hPa) and mixing ratio (kg/kg) of a parcel and tabs, r and pres are environmental profiles (should be equally sized arrays). ```julia get_buoyancy_of_lifted_parcel(tparcel,rparcel,pparcel,tabs,r,pres) get_potential_intensity_of_tropical_cyclone(tparcel, pparcel, pres, tabs, r) get_cape_and_outflow_temp_from_sounding(tparcel,rparcel,pparcel,tabs,r,pres) ``` # Units This package uses [Unitful.jl](https://github.com/PainterQubits/Unitful.jl) to manage units. We recommend to use TropicalCyclonePotentialIntensity.jl with unitful quantities to help maintain your results consistent, although it should run without real numbers as well. ## Package under development This package is under development by Argel Ramírez Reyes. It is definitely not perfect. Bugs are expected as this has not been widely tested. Bug reports or collaborations are highly appreciated. ### Main reference Gilford, D. M., 2021: pyPI (v1.3): Tropical Cyclone Potential Intensity Calculations in Python. Geoscientific Model Development, 14, 2351–2369, https://doi.org/10.5194/gmd-14-2351-2021.
TropicalCyclonePotentialIntensity
https://github.com/aramirezreyes/TropicalCyclonePotentialIntensity.jl.git
[ "MIT" ]
0.2.0
3331d7ed85874e3e4d73a01980c08f31068997f6
docs
306
```@meta CurrentModule = TropicalCyclonePotentialIntensity ``` # TropicalCyclonePotentialIntensity Documentation for [TropicalCyclonePotentialIntensity](https://github.com/aramirezreyes/TropicalCyclonePotentialIntensity.jl). ```@index ``` ```@autodocs Modules = [TropicalCyclonePotentialIntensity] ```
TropicalCyclonePotentialIntensity
https://github.com/aramirezreyes/TropicalCyclonePotentialIntensity.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
827
###################################################################### # Example of how to create a window in borderless fullscreen mode. # ----- # Licensed under MIT License using Pkg Pkg.activate(".") using KirUtil using GLFWAbstraction let vidmode = videomode(monitor(1)) # Create window in borderless fullscreen mode @windowhint RedBits vidmode.bits.red @windowhint GreenBits vidmode.bits.green @windowhint BlueBits vidmode.bits.blue @windowhint RefreshRate vidmode.refresh_rate let wnd = window(:mywnd, "Hello, world!", vidmode.width, vidmode.height, monitor(1)) @assert !wnd.shouldclose use(wnd) while !wnd.shouldclose sleep(0.1) swapbuffers(wnd) pollevents() end end end
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
1454
###################################################################### # Example for various input methods # ----- # Licensed under MIT License using Pkg Pkg.activate(".") using GLFWAbstraction using GLFW buffer = "" function GLFWAbstraction.on_receive_char(::Window{:mywnd}, char::Char) global buffer buffer *= char end function GLFWAbstraction.on_key_press(::Window{:mywnd}, key::Key, scancode::Integer, modifiers::ModifierKey) global buffer if key === Key(:backspace) && !isempty(buffer) buffer = buffer[1:length(buffer)-1] elseif key === Key(:enter) println(buffer) buffer = "" end end function GLFWAbstraction.on_key_repeat(::Window{:mywnd}, key::Key, scancode::Integer, modifiers::ModifierKey) global buffer if key === Key(:backspace) && !isempty(buffer) buffer = buffer[1:length(buffer)-1] end end function GLFWAbstraction.on_mouse_press(::Window{:mywnd}, button::MouseButton, modifiers::ModifierKey) println(button) end function GLFWAbstraction.on_mouse_move(::Window{:mywnd}, xpos::AbstractFloat, ypos::AbstractFloat) println("mouse moved to $xpos, $ypos") end GLFWAbstraction.on_mouse_enter(::Window{:mywnd}) = println("hi mouse :)") GLFWAbstraction.on_mouse_leave(::Window{:mywnd}) = println("bye mouse :(") let wnd = window(:mywnd, "Input Example", 960, 480) while !wnd.shouldclose sleep(0.1) swapbuffers(wnd) pollevents() end end
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
860
###################################################################### # General example of how to create & manipulate a window. # ----- # Licensed under MIT License using Pkg Pkg.activate(".") using KirUtil using GLFWAbstraction GLFWAbstraction.on_window_move(::Window{:mywnd}, posx::Integer, posy::Integer) = println("window moved to $posx, $posy") GLFWAbstraction.on_window_resize(::Window{:mywnd}, sizex::Integer, sizey::Integer) = println("window resized to $sizex×$sizey") GLFWAbstraction.on_window_close(::Window{:mywnd}) = println("window closing") @windowhint TransparentFramebuffer true let wnd = window(:mywnd, "Hello, world!", 960, 480) @assert !wnd.shouldclose wnd.aspect_ratio = 16//9 use(wnd) while !wnd.shouldclose sleep(0.1) swapbuffers(wnd) pollevents() end end
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
568
###################################################################### # GLFWAbstraction central include hub # ----- # Licensed under MIT License module GLFWAbstraction const Optional{T} = Union{T, Nothing} abstract type GLFWWrapper{T} end wrapped(w::GLFWWrapper) = w.handle wrapped_type(::Type{GLFWWrapper{T}}) where T = T """`lhs×rhs` creates a 2-tuple (lhs, rhs) for a familiar and convenient notation of 2D measures.""" (×)(lhs::Real, rhs::Real) = (lhs, rhs) include("./monitors.jl") include("./windows.jl") include("./input.jl") end # module GLFWAbstraction
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
3490
###################################################################### # Input Abstraction Layer # ----- # Licensed under MIT License using BitFlags using GLFW export InputAction, Press, Release, Repeat @enum InputAction Press = Integer(GLFW.PRESS) Release = Integer(GLFW.RELEASE) Repeat = Integer(GLFW.REPEAT) InputAction(action::GLFW.Action) = InputAction(Integer(action)) export ModifierKey, NoMod, ShiftMod, ControlMod, AltMod, SuperMod, CapsLockMod, NumLockMod @bitflag ModifierKey::UInt16 NoMod = 0 ShiftMod ControlMod AltMod SuperMod CapsLockMod NumLockMod export pollevents, waitevents, post_empty_event pollevents() = GLFW.PollEvents() waitevents() = GLFW.WaitEvents() waitevents(timeout::AbstractFloat) = GLFW.WaitEvents(timeout) post_empty_event() = GLFW.PostEmptyEvent() include("./input.keyboard.jl") include("./input.mouse.jl") # It appears GLFW.jl does not support the latest version of GLFW? Gamepad support is incomplete. # include("./input.gamepad.jl") # ===== Events ===== """Called when a key is pressed down.""" function on_key_press(wnd::Window, key::Key, scancode::Integer, modifiers::ModifierKey) end """Called when a key is released.""" function on_key_release(wnd::Window, key::Key, scancode::Integer, modifiers::ModifierKey) end """Called when a key is being held, triggering continuous textual input.""" function on_key_repeat(wnd::Window, key::Key, scancode::Integer, modifiers::ModifierKey) end """Called when a key results in a Unicode character input.""" function on_receive_char(wnd::Window, char::Char) end """Called when the mouse cursor is moved while within the window's boundaries.""" function on_mouse_move(wnd::Window, xpos::AbstractFloat, ypos::AbstractFloat) end """Called when the mouse cursor enters the window's boundaries.""" function on_mouse_enter(wnd::Window) end """Called when the mouse cursor leaves the window's boundaries.""" function on_mouse_leave(wnd::Window) end """Called when a mouse button is pressed down.""" function on_mouse_press(wnd::Window, button::MouseButton, modifiers::ModifierKey) end """Called when a mouse button is released.""" function on_mouse_release(wnd::Window, button::MouseButton, modifiers::ModifierKey) end """Called when a new gamepad is connected.""" function register_default_input_callbacks(wnd::Window) register_key_callback(wnd) do _::Window, key::Key, scancode::Integer, action::InputAction, modifiers::ModifierKey if action === Press on_key_press(wnd, key, scancode, modifiers) elseif action === Release on_key_release(wnd, key, scancode, modifiers) elseif action === Repeat on_key_repeat(wnd, key, scancode, modifiers) else error("unknown key action $action") end end register_text_callback(wnd) do _::Window, char::Char; on_receive_char(wnd, char) end register_cursor_pos_callback(wnd) do _::Window, xpos::AbstractFloat, ypos::AbstractFloat; on_mouse_move(wnd, xpos, ypos) end register_cursor_enter_callback(wnd) do _::Window, entered::Bool if entered on_mouse_enter(wnd) else on_mouse_leave(wnd) end end register_mouse_button_callback(wnd) do _::Window, button::MouseButton, action::InputAction, modifiers::ModifierKey @assert action !== Repeat if action === Press on_mouse_press(wnd, button, modifiers) else on_mouse_release(wnd, button, modifiers) end end end
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
4669
###################################################################### # Keyboard-related input abstraction # ----- # Licensed under MIT License using GLFW export Key struct Key <: GLFWWrapper{GLFW.Key} wrapped::GLFW.Key end Key(::Nothing) = Key(GLFW.KEY_UNKNOWN) Key(special::Symbol) = resolve_key(Ident{special}()) function Key(digit::Integer; keypad::Bool = false) if digit ∉ 0:9 throw(ArgumentError("number key must be single digit integers")) end I = Base.Enums.basetype(GLFW.Key) Key(GLFW.Key(Integer(keypad ? GLFW.KEY_KP_0 : GLFW.KEY_0) + I(digit))) end function Key(char::Char) if char ∈ 'a':'z' || char ∈ 'A':'Z' I = Base.Enums.basetype(GLFW.Key) return Key(GLFW.Key(Integer(GLFW.KEY_A) + convert(I, codepoint(lowercase(char)) - codepoint('a')))) end resolve_key(Ident{char}()) end resolve_key(::Ident{K}) where K = throw(ArgumentError("unknown key \"$K\"")) resolve_key(::Ident{'\''}) = Key(GLFW.KEY_APOSTROPHE) resolve_key(::Ident{','}) = Key(GLFW.KEY_COMMA) resolve_key(::Ident{'-'}) = Key(GLFW.KEY_MINUS) resolve_key(::Ident{'.'}) = Key(GLFW.KEY_PERIOD) resolve_key(::Ident{'/'}) = Key(GLFW.KEY_SLASH) resolve_key(::Ident{';'}) = Key(GLFW.KEY_SEMICOLON) resolve_key(::Ident{'='}) = Key(GLFW.KEY_EQUAL) resolve_key(::Ident{'['}) = Key(GLFW.KEY_LEFT_BRACKET) resolve_key(::Ident{'\\'}) = Key(GLFW.KEY_BACKSLASH) resolve_key(::Ident{']'}) = Key(GLFW.KEY_RIGHT_BRACKET) resolve_key(::Ident{'`'}) = Key(GLFW.KEY_GRAVE_ACCENT) macro addresolvekeys(blk::Expr) @assert blk.head === :block "must be a block expression enumerating the various keys/mappings" result = Expr(:block) for expr ∈ blk.args if expr isa LineNumberNode continue end key, mapping = if expr isa Expr @assert expr.head === :call && expr.args[1] === :(=>) && expr.args[2] isa Symbol && expr.args[3] isa Symbol "must be an arrow pair (a=>b) assignment" QuoteNode(expr.args[2]), Expr(:., :GLFW, QuoteNode(Symbol("KEY_$(uppercase(string(expr.args[3])))"))) elseif expr isa Symbol QuoteNode(expr), Expr(:., :GLFW, QuoteNode(Symbol("KEY_$(uppercase(string(expr)))"))) else throw(ArgumentError("invalid key mapping $expr")) end push!(result.args, :($(esc(:resolve_key))(::Ident{$key}) = Key($mapping))) end result end # This one needs to be added manually because 'end' is a keyword which breaks the macro resolve_key(::Ident{:end}) = Key(GLFW.KEY_END) @addresolvekeys begin space world1 => WORLD_1 world2 => WORLD_2 escape; esc => ESCAPE enter; tab; backspace; insert; delete right; left; down; up pageup => PAGE_UP pagedown => PAGE_DOWN home capslock => CAPS_LOCK scrolllock => SCROLL_LOCK numlock => NUM_LOCK print => PRINT_SCREEN printscreen => PRINT_SCREEN pause f1; f2; f3; f4; f5; f6; f7; f8; f9; f10; f11; f12; f13; f14; f15; f16; f17; f18; f19; f20; f21; f22; f23; f24; f25 decimal => KP_DECIMAL divide => KP_DIVIDE multiply => KP_MULTIPLY subtract => KP_SUBTRACT add => KP_ADD keypad_enter => KP_ENTER keypad_equal => KP_EQUAL left_shift => LEFT_SHIFT lshift => LEFT_SHIFT left_control => LEFT_CONTROL lcontrol => LEFT_CONTROL lctrl => LEFT_CONTROL left_alt => LEFT_ALT lalt => LEFT_ALT left_super => LEFT_SUPER lsuper => LEFT_SUPER right_shift => RIGHT_SHIFT rshift => RIGHT_SHIFT right_control => RIGHT_CONTROL rcontrol => RIGHT_CONTROL rctrl => RIGHT_CONTROL right_alt => RIGHT_ALT ralt => RIGHT_ALT right_super => RIGHT_SUPER rsuper => RIGHT_SUPER menu => MENU end function register_key_callback(handler, wnd::Window) wrapper(::GLFW.Window, key::GLFW.Key, scancode::Integer, action::GLFW.Action, modifiers::Integer) = handler(wnd, Key(key), scancode, InputAction(action), ModifierKey(modifiers)) GLFW.SetKeyCallback(wnd.handle, wrapper) wnd end function register_text_callback(handler, wnd::Window) wrapper(::GLFW.Window, char::Char) = handler(wnd, char) GLFW.SetCharCallback(wnd.handle, wrapper) wnd end export getkeyname """`getkeyname(named::Key, scancode::Integer)` attempts to retrieve a key's human readable name. If `named` is not `Key(nothing)`, the name will be reminiscent of the named key. Otherwise, attempts to retrieve the key identified by `scancode`.""" getkeyname(named::Key, scancode::Integer) = GLFW.GetKeyName(named.wrapped, scancode)
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
2683
###################################################################### # Mouse-related input abstraction # TODO: Custom Cursor Image. This is currently not supported by GLFW.jl, # so may need to interface with GLFW_jll directly. # ----- # Licensed under MIT License using GLFW using KirUtil export CursorMode, CursorDisabled, CursorHidden, CursorNormal @enum CursorMode CursorDisabled = GLFW.CURSOR_DISABLED CursorHidden = GLFW.CURSOR_HIDDEN CursorNormal = GLFW.CURSOR_NORMAL export MouseButton struct MouseButton idx::Int32 function MouseButton(idx) idx = idx-1 if idx ∉ 0:7 throw(ArgumentError("GLFW only supports mouse buttons 0:7; given $idx")) end new(idx) end end # Using Ident{name} here because it allows injecting additional custom names. MouseButton(name::Symbol) = MouseButton(Ident{name}()) MouseButton(::Ident{:left}) = MouseButton(1) MouseButton(::Ident{:right}) = MouseButton(2) MouseButton(::Ident{:middle}) = MouseButton(3) export Mouse struct Mouse wnd::Window end @generate_properties Mouse begin @get position = (pos = GLFW.GetCursorPos(self.wnd.handle); (pos.x, pos.y)) @set position = GLFW.SetCursorPos(self.wnd.handle, value[1], value[2]) @get mode = GLFW.GetInputMode(self.wnd.handle, GLFW.CURSOR) @set mode = GLFW.SetInputMode(self.wnd.handle, GLFW.CURSOR, Integer(value)) end isbuttondown(mouse::Mouse, button::MouseButton) = GLFW.GetMouseButton(mouse.wnd.handle, GLFW.MouseButton(button.idx)) == GLFW.PRESS isbuttonup( mouse::Mouse, button::MouseButton) = GLFW.GetMouseButton(mouse.wnd.handle, GLFW.MouseButton(button.idx)) == GLFW.RELEASE function register_cursor_pos_callback(handler, wnd::Window) wrapper(::GLFW.Window, xpos::AbstractFloat, ypos::AbstractFloat) = handler(wnd, xpos, ypos) GLFW.SetCursorPosCallback(wnd.handle, wrapper) wnd end function register_cursor_enter_callback(handler, wnd::Window) wrapper(::GLFW.Window, entered::Integer) = handler(wnd, entered != 0) GLFW.SetCursorEnterCallback(wnd.handle, wrapper) wnd end function register_mouse_button_callback(handler, wnd::Window) wrapper(::GLFW.Window, button::GLFW.MouseButton, action::GLFW.Action, modifiers::Integer) = handler(wnd, MouseButton(Integer(button)), InputAction(action), ModifierKey(modifiers)) GLFW.SetMouseButtonCallback(wnd.handle, wrapper) wnd end function register_mouse_scroll_callback(handler, wnd::Window) wrapper(::GLFW.Window, scrollx::AbstractFloat, scrolly::AbstractFloat) = handler(wnd, scrollx, scrolly) GLFW.SetScrollCallback(wnd.handle, wrapper) wnd end
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
1436
###################################################################### # Abstraction of GLFW.Monitor # ----- # Licensed under MIT License using GLFW export VideoMode struct VideoMode width::Int height::Int bits::NamedTuple{(:red, :green, :blue), Tuple{UInt8, UInt8, UInt8}} refresh_rate::Int end export Monitor, monitor struct Monitor <: GLFWWrapper{GLFW.Monitor} handle::GLFW.Monitor end monitor(idx::Integer = 1) = Monitors[idx] monitor(::Nothing) = nothing export Monitors """`Monitors` is a meta type designed to query connected physical monitors using `Base.getindex` and `Base.iterate`.""" struct Monitors end Base.iterate(::Type{Monitors}, idx = 1) = Monitors[idx], idx < length(Monitors) ? idx+1 : nothing Base.getindex(::Type{Monitors}, idx::Integer) = collect(Monitors)[idx] Base.length(::Type{Monitors}) = length(GLFW.GetMonitors()) export videomode, videomodes videomode(monitor::Monitor) = videomode(GLFW.GetVideoMode(monitor.handle)) videomode(vidmode::GLFW.VidMode) = VideoMode(vidmode.width, vidmode.height, (red = vidmode.redbits, green = vidmode.greenbits, blue = vidmode.bluebits), vidmode.refreshrate) videomodes(monitor::Monitor) = videomode.(GLFW.GetVideoModes(monitor.handle)) Base.convert(::Type{GLFW.Monitor}, monitor::Monitor) = monitor.handle Base.convert(::Type{GLFW.Monitor}, ::Nothing) = GLFW.Monitor(C_NULL) Base.collect(::Type{Monitors}) = collect(Monitor.(GLFW.GetMonitors()))
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
code
13611
###################################################################### # Window built on GLFW library # ----- # Licensed under MIT License using KirUtil using GenerateProperties using GLFW export WindowEvent, FramebufferSizeEvent, WindowCloseEvent, WindowContentScaleEvent, WindowFocusEvent, WindowIconifyEvent, WindowMaximizeEvent, WindowPosEvent, WindowRefreshEvent, WindowSizeEvent """Enum of various window-related events. These are a relatively low-level abstraction used with the `register_window_callback` method. However, a more Julian solution exists. Refer to the documentation's *Event System* section for more details.""" @enum WindowEvent FramebufferSizeEvent WindowCloseEvent WindowContentScaleEvent WindowFocusEvent WindowIconifyEvent WindowMaximizeEvent WindowPosEvent WindowRefreshEvent WindowSizeEvent export ClientAPI, OpenGLAPI, OpenGLESAPI, NoAPI """Enum of the various possible client APIs which GLFW can use to create an OpenGL (ES) context.""" @enum ClientAPI OpenGLAPI = GLFW.OPENGL_API OpenGLESAPI = GLFW.OPENGL_ES_API NoAPI = GLFW.NO_API export ContextCreationAPI, NativeContextAPI, EGLContextAPI """Enum of the various OpenGL (ES) context creation APIs which GLFW may use.""" @enum ContextCreationAPI NativeContextAPI = GLFW.NATIVE_CONTEXT_API EGLContextAPI = GLFW.EGL_CONTEXT_API export OpenGLProfile, CoreProfile, CompatProfile, AnyProfile """Enum of possible OpenGL profiles.""" @enum OpenGLProfile CoreProfile = GLFW.OPENGL_CORE_PROFILE CompatProfile = GLFW.OPENGL_COMPAT_PROFILE AnyProfile = GLFW.OPENGL_ANY_PROFILE export ContextReleaseBehavior, AnyReleaseBehavior, FlushReleaseBehavior, NoReleaseBehavior """Enum of context release behaviors GLFW may employ upon destroying an OpenGL (ES) context.""" @enum ContextReleaseBehavior AnyReleaseBehavior = GLFW.ANY_RELEASE_BEHAVIOR FlushReleaseBehavior = GLFW.RELEASE_BEHAVIOR_FLUSH NoReleaseBehavior = GLFW.RELEASE_BEHAVIOR_NONE export ContextRobustness, LoseContextOnReset, NoResetNotification, NoRobustness """Context robustness solutions GLFW may employ when an OpenGL (ES) context fails.""" @enum ContextRobustness LoseContextOnReset = GLFW.LOSE_CONTEXT_ON_RESET NoResetNotification = GLFW.NO_RESET_NOTIFICATION NoRobustness = GLFW.NO_ROBUSTNESS export Window, window mutable struct Window{L} <: GLFWWrapper{GLFW.Window} handle::GLFW.Window function Window{L}(handle) where L inst = new(handle) register_default_window_callbacks(inst) register_default_input_callbacks(inst) inst end end function window(label::Symbol, title::AbstractString, width::Integer, height::Integer, monitor::Optional{Monitor} = nothing, share::Optional{Window} = nothing) Window{label}(GLFW.CreateWindow(width, height, title, convert(GLFW.Monitor, monitor), convert(GLFW.Window, share))) end # Use virtual properties to reduce namespace clutter @generate_properties Window begin # Getters & Setters @get auto_iconify = GLFW.GetWindowAttrib(self.handle, GLFW.AUTO_ICONIFY) @set auto_iconify = GLFW.SetWindowAttrib(self.handle, GLFW.AUTO_ICONIFY, value) @get decorated = GLFW.GetWindowAttrib(self.handle, GLFW.DECORATED) @set decorated = GLFW.SetWindowAttrib(self.handle, GLFW.DECORATED, value) @get floating = GLFW.GetWindowAttrib(self.handle, GLFW.FLOATING) @set floating = GLFW.SetWindowAttrib(self.handle, GLFW.FLOATING, value) @get focus_on_show = GLFW.GetWindowAttrib(self.handle, GLFW.FOCUS_ON_SHOW) @set focus_on_show = GLFW.SetWindowAttrib(self.handle, GLFW.FOCUS_ON_SHOW, value) @get opacity = GLFW.GetWindowOpacity(self.handle) @set opacity = GLFW.SetWindowOpacity(self.handle, value) @get position = (pos = GLFW.GetWindowPos(self.handle); pos.x × pos.y) @set position = GLFW.SetWindowPos(self.handle, value[1], value[2]) @get resizable = GLFW.GetWindowAttrib(self.handle, GLFW.RESIZABLE) @set resizable = GLFW.SetWindowAttrib(self.handle, GLFW.RESIZABLE, value) @get shouldclose = GLFW.WindowShouldClose(self.handle) @set shouldclose = GLFW.SetWindowShouldClose(self.handle, value) @get visible = GLFW.GetWindowAttrib(self.handle, GLFW.VISIBLE) @set visible = if value; GLFW.ShowWindow(self.handle) else; GLFW.HideWindow(self.handle) end # Setters Only @set aspect_ratio = set_aspect_ratio(self, value) @set icon = GLFW.SetWindowIcon(self.handle, value) # can be a single 2D matrix of pixels or an array of matrices of pixels. @set title = GLFW.SetWindowTitle(self.handle, value) # Getters Only @get content_scale = (scales = GLFW.GetWindowContentScale(self.handle); scales.xscale × scales.yscale) @get focused = GLFW.GetWindowAttrib(self.handle, GLFW.FOCUSED) @get framebuffer_size = (size = GLFW.GetFramebufferSize(self.handle); size.width × size.height) @get hovered = GLFW.GetWindowAttrib(self.handle, GLFW.HOVERED) @get iconified = GLFW.GetWindowAttrib(self.handle, GLFW.ICONIFIED) @get maximized = GLFW.GetWindowAttrib(self.handle, GLFW.MAXIMIZED) @get transparent = GLFW.GetWindowAttrib(self.handle, GLFW.TRANSPARENT_FRAMEBUFFER) # Context-related Properties @get client_api = ClientAPI(GLFW.GetWindowAttrib(self.handle, GLFW.CLIENT_API)) @get context_creation_api = ContextCreationAPI(GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_CREATION_API)) @get context_version = VersionNumber(GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_VERSION_MAJOR), GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_VERSION_MINOR), GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_REVISION)) @get context_forward_compatible = GLFW.GetWindowAttrib(self.handle, GLFW.OPENGL_FORWARD_COMPAT) != 0 @get context_debug = GLFW.GetWindowAttrib(self.handle, GLFW.OPENGL_DEBUG_CONTEXT) != 0 @get context_profile = OpenGLProfile(GLFW.GetWindowAttrib(self.handle, GLFW.OPENGL_PROFILE)) @get context_release_behavior = ContextReleaseBehavior(GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_RELEASE_BEHAVIOR)) @get context_generates_errors = GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_NO_ERROR) == 0 @get context_robustness = ContextRobustness(GLFW.GetWindowAttrib(self.handle, GLFW.CONTEXT_ROBUSTNESS)) end function Base.close(wnd::Window) GLFW.DestroyWindow(wnd.handle) wnd.handle = nothing end KirUtil.use(wnd::Window) = (GLFW.MakeContextCurrent(wnd.handle); nothing) monitor(wnd::Window) = monitor(GLFW.GetWindowMonitor(wnd.handle)) monitor(wnd::Window, monitor::Monitor, refresh_rate::Integer) = GLFW.SetWindowMonitor(wnd.handle, monitor.handle, 0, 0, size(wnd)..., refresh_rate) monitor(wnd::Window, ::Nothing; xpos::Integer = 0, ypos::Integer = 0) = GLFW.SetWindowMonitor(wnd.handle, nothing, xpos, ypos, size(wnd)..., GLFW.DONT_CARE) set_aspect_ratio(wnd::Window, ::Nothing) = GLFW.SetWindowAspectRatio(wnd.handle, GLFW.DONT_CARE, GLFW.DONT_CARE) set_aspect_ratio(wnd::Window, aspect_ratio::Rational) = GLFW.SetWindowAspectRatio(wnd.handle, numerator(aspect_ratio), denominator(aspect_ratio)) set_aspect_ratio(wnd::Window, values) = GLFW.SetWindowAspectRatio(wnd.handle, values[1], values[2]) export limitsize function limitsize(wnd::Window; min_width::Integer = -1, min_height::Integer = -1, max_width::Integer = -1, max_height::Integer = -1) real_limits(lim) = if lim < 1; GLFW.DONT_CARE else; lim end real_min_width, real_min_height, real_max_width, real_max_height = real_limits.((min_width, min_height, max_width, max_height)) GLFW.SetWindowSizeLimits(wnd.handle, real_min_width, real_min_height, real_max_width, real_max_height) wnd end export maximize, restore maximize(wnd::Window) = GLFW.MaximizeWindow(wnd.handle) restore(wnd::Window) = GLFW.RestoreWindow(wnd.handle) export swapbuffers swapbuffers(wnd::Window) = GLFW.SwapBuffers(wnd.handle) export request_attention request_attention(wnd::Window) = GLFW.RequestWindowAttention(wnd.handle) macro make_register_window_callback(event, registrar) esc(:(register_window_callback(handler, wnd::Window, ::Ident{$event}) = GLFW.$registrar(wnd.handle, handler))) end """Registers the default callbacks for the window. These callbacks forward events to concrete, semantic signatures in a more Julian approach.""" function register_default_window_callbacks(wnd::Window) register_window_callback(wnd, FramebufferSizeEvent) do _::GLFW.Window, width::Integer, height::Integer; on_framebuffer_resize(wnd, width, height) end register_window_callback(wnd, WindowCloseEvent) do _::GLFW.Window; on_window_close(wnd) end register_window_callback(wnd, WindowContentScaleEvent) do _::GLFW.Window, scalex::AbstractFloat, scaley::AbstractFloat; on_window_content_scale(wnd, scalex, scaley) end register_window_callback(wnd, WindowFocusEvent) do _::GLFW.Window, focused::Integer; if focused != 0; on_window_focus(wnd) else; on_window_defocus(wnd) end; end register_window_callback(wnd, WindowIconifyEvent) do _::GLFW.Window, iconified::Integer; if iconified != 0; on_window_iconify(wnd) else; on_window_restore(wnd) end; end register_window_callback(wnd, WindowMaximizeEvent) do _::GLFW.Window, maximized::Integer; if maximized != 0; on_window_maximize(wnd) else; on_window_restore(wnd) end; end register_window_callback(wnd, WindowPosEvent) do _::GLFW.Window, posx::Integer, posy::Integer; on_window_move(wnd, posx, posy) end register_window_callback(wnd, WindowRefreshEvent) do _::GLFW.Window; on_window_refresh(wnd) end register_window_callback(wnd, WindowSizeEvent) do _::GLFW.Window, sizex::Integer, sizey::Integer; on_window_resize(wnd, sizex, sizey) end end register_window_callback(handler, wnd::Window, event::WindowEvent) = register_window_callback(handler, wnd, Ident{event}()) @make_register_window_callback FramebufferSizeEvent SetFramebufferSizeCallback @make_register_window_callback WindowCloseEvent SetWindowCloseCallback @make_register_window_callback WindowContentScaleEvent SetWindowContentScaleCallback @make_register_window_callback WindowFocusEvent SetWindowFocusCallback @make_register_window_callback WindowIconifyEvent SetWindowIconifyCallback @make_register_window_callback WindowMaximizeEvent SetWindowMaximizeCallback @make_register_window_callback WindowPosEvent SetWindowPosCallback @make_register_window_callback WindowRefreshEvent SetWindowRefreshCallback @make_register_window_callback WindowSizeEvent SetWindowSizeCallback # Window Events """Called when the window's framebuffer has been resized.""" function on_framebuffer_resize(::Window, width::Integer, height::Integer) end """Called when the window is *requested* to close.""" function on_window_close(::Window) end """Called when the window's content scale is adjusted.""" function on_window_content_scale(::Window, scalex::AbstractFloat, scaley::AbstractFloat) end """Called when the window loses focus.""" function on_window_defocus(::Window) end """Called when the window gains focus.""" function on_window_focus(::Window) end """Called when the window is iconified (minimized to taskbar).""" function on_window_iconify(::Window) end """Called when the window is maximized.""" function on_window_maximize(::Window) end """Called when the window is moved.""" function on_window_move(::Window, posx::Integer, posy::Integer) end """Called when the window should refresh.""" function on_window_refresh(::Window) end """Called when the window is resized.""" function on_window_resize(::Window, sizex::Integer, sizey::Integer) end """Called when the window is restored, either from being iconified or maximized.""" function on_window_restore(::Window) end export @windowhint """`@windowhint hint value` is a more semantic & Julian, albeit comparatively low-level interface which sets the window creation hint. It is equivalent to `GLFW.WindowHint(...)`. However, most hints are can be adjusted post creation through `Window`'s virtual properties. Some, especially framebuffer context hints, can only be configured prior to creation through this macro. `hint` may be either the desired GLFW hint constant (e.g. `RED_BITS`) or a camel-cased version (e.g. `RedBits` or `redBits`). `value` may be the appropriate value (Integer/Bool) which is passed to the hint directly. If `value` is `nothing`, `GLFW.DONT_CARE` is passed instead. If `value` is an `Enum`, it's `Integer(value)` is passed in. This allows setting the hint to a value such as `OpenGLAPI` (a `ClientAPI` enum value) which is assigned the appropriate GLFW constant. Example ------- ```julia @windowhint TransparentFramebuffer true @windowhint ClientAPI OpenGLAPI""" macro windowhint(hint::Symbol, value) glfw_hint = Expr(:., :GLFW, QuoteNode(Symbol(decamelcase(string(hint))))) Expr(:call, :windowhint, glfw_hint, esc(value)) end windowhint(hint::UInt32, ::Union{Nothing, Missing}) = windowhint(hint, GLFW.DONT_CARE) windowhint(hint::UInt32, value::Enum) = windowhint(hint, Integer(value)) windowhint(hint::UInt32, value) = GLFW.WindowHint(hint, value) decamelcase(sym::AbstractString) = Symbol(uppercase(replace(sym, r"([a-z])([A-Z])" => s"\1_\2"))) Base.convert(::Type{GLFW.Window}, wnd::Window) = wnd.handle Base.convert(::Type{GLFW.Window}, ::Nothing) = GLFW.Window(C_NULL)
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.2.2
601805a1a8bf17062d598b847e1e74c9b5d14036
docs
22630
# GLFWAbstraction.jl Abstraction layer for [GLFW.jl](https://github.com/JuliaGL/GLFW.jl). **Call to Action:** I'd gladly appreciate some help with the documentation. :) There's only so much you can do with markdown. A proper website would help readability and maneuverability of the documentation a lot, but as a sole developer working on a couple very ambitious projects, time is a scarce luxury. # Mission *GLFWAbstraction* is designed to provide a more Julia-native and partly functional experience to working with the [GLFW](https://www.glfw.org/) library. # Abstractions Not every component of the GLFW library is abstracted here. Two reasons for this exist: A) GLFW.jl does not expose the feature itself; B) time pressure. Following are the GLFW components which have received abstractions: * Windows * Monitors * Input * Keyboard Input * Mouse Input These abstractions are not implemented for given reasons: * Joystick/Gamepad abstraction - GLFW.jl is not up-to-date. * Input: * Custom Cursor Images - GLFW.jl is not up-to-date. * Time & clipboard input - GLFW.jl intentionally does not expose these as there is standard Julia functionality. * Path dropping - lack of time. * Vulkan - lack of time. # Table of Contents - [GLFWAbstraction.jl](#glfwabstractionjl) - [Mission](#mission) - [Abstractions](#abstractions) - [Table of Contents](#table-of-contents) - [Documentation](#documentation) - [Monitors](#monitors) - [Video Modes](#video-modes) - [Windows](#windows) - [Window Creation](#window-creation) - [Entering & Leaving Fullscreen Mode](#entering--leaving-fullscreen-mode) - [Borderless Fullscreen Mode](#borderless-fullscreen-mode) - [Window Attributes](#window-attributes) - [Aspect Ratio](#aspect-ratio) - [Window Icon](#window-icon) - [Window Creation Hints](#window-creation-hints) - [Window Manipulation Functions](#window-manipulation-functions) - [Events](#events) - [Input](#input) - [Modifier Keys](#modifier-keys) - [Keyboard Input](#keyboard-input) - [Events](#events-1) - [Mouse Input](#mouse-input) - [Mouse Interface](#mouse-interface) - [Events](#events-2) # Documentation This preliminary documentation shall provide every information necessary to work with GLFWAbstraction.jl. ## Monitors Monitors revolve around the `Monitor` struct retrieved from the `monitor` function. Use `monitor(window::Window)` to retrieve the monitor associated with a fullscreen window. If none (i.e. the window is not in fullscreen mode), returns `nothing`. Use `monitor(n::Integer)` to retrieve the `n`-th connected monitor. Usually, you will simply call `monitor(1)` to assign a window to the primary monitor. A convenient `monitor(::Nothing) = nothing` exists if needed. Another abstraction exists through the `Monitors` meta type. Note the plural *s*. This meta type allows querying information on the collective of connected monitors. Use `length(Monitors)` to retrieve the total number of connected monitors. You may also use `Monitors[index]` in place of `monitor(index)`. You may also `collect(Monitors)` to retrieve a vector of all currently connected monitors, or `iterate(Monitors)` which allows usage with a regular `for` loop: ```julia for monitor in Monitors # do something end ``` ### Video Modes Monitors are associated with one or more `VideoMode`s. The current video mode of the monitor - either the default desktop video mode or the video mode of its current fullscreen application - can be retrieved through `videomode(monitor)`. All of its supported video modes can be queried through `videomodes(monitor)`, respectively. While the `VideoMode` contains the same information as `GLFW.VidMode`, it arranges it slightly differently: ```julia struct VideoMode width::Int height::Int bits::NamedTuple{(:red, :green, :blue), Tuple{UInt8, UInt8, UInt8}} refresh_rate::Int end ``` See section [Borderless Fullscreen Mode](#Borderless-Fullscreen-Mode) below to learn how to use this struct. ## Windows The centerpiece of GLFW is arguably the windowing system. *GLFWAbstraction* tries to simplify it as much as possible. Various GLFW constants were wrapped in their own enums. Updating & retrieving window attributes is accomplished through virtual properties. Events are delegated through Julia's native multiple dispatch. ### Window Creation `Window{ID}`s are created through the `window` factory. Every `Window` is decorated with an arbitrary `ID`entifier. These are used to hook into the multiple dispatch based event system. A window can be created as such: ```julia window(id::Symbol, title::AbstractString, width::Integer, height::Integer, [monitor::Monitor], [share::Window]) ``` If `monitor === nothing`, the window will be created in windowed mode. Otherwise, it will be created in fullscreen on the specified window. `share` may be provided if multiple windows need to share the same OpenGL context. One such use case is spanning multiple monitors in fullscreen with two distinct windows. The `title` will be displayed in the window's title bar - given it uses border decorations. `width` and `height` describe the desired window's drawing size - although the size of the window need not necessarily match the framebuffer's size. `id` is passed to the `Window{id}` such that it may be used to uniquely identify your window in the event system described below. ### Entering & Leaving Fullscreen Mode Entering and leaving fullscreen mode is as easy as setting the window's monitor to either a concrete instance or `nothing` respectively: ```julia monitor(window, monitor::Monitor, refresh_rate::Integer = 0) monitor(window, ::Nothing) ``` When `refresh_rate` is set to non-positive, it is synonymous for `GLFW.DONT_CARE`. ### Borderless Fullscreen Mode *Borderless Fullscreen Mode* is a special variant of fullscreen mode where the video mode of the window in fullscreen mode matches that of the monitor's video mode in desktop mode. Note that, if another application is already in fullscreen on the queried monitor, its video mode will be retrieved. Currently, there is no way to retrieve the desktop video mode directly from the OS through GLFW. ```julia let monitor = Monitor(1), vidmode = videomode(monitor) @windowhint redBits vidmode.bits.red @windowhint greenBits vidmode.bits.green @windowhint blueBits vidmode.bits.blue @windowhint refreshRate vidmode.refresh_rate wnd = window(:id, "Borderless Fullscreen Window", vidmode.width, vidmode.height, Monitor(1)) end ``` Unfortunately, window hints are still relatively low-level, lending the syntax almost directly from GLFW. ### Window Attributes GLFW exposes countless window attributes - some related to the window itself, others to its underlying OpenGL context. To the best of my knowledge, all window attributes have received virtual getters and setters for convenient use. Example: ```julia let wnd = window(...) wnd.decorated = false wnd.opacity = 0.5 if wnd.hovered println("mouse cursor is currently above window") end end ``` **Attributes with both getters & setters include:** | Virtual Property | Get | Set | | ---------------: | :----------------------------------------- | :------------------------------------------ | | `auto_iconify` | window attribute | window attribute | | `decorated` | window attribute | window attribute | | `floating` | window attribute | window attribute | | `focus_on_show` | window attribute | window attribute | | `opacity` | window attribute | window attribute | | `position` | (unnamed) 2-tuple of `GLFW.GetWindowPos()` | (unnamed) 2-tuple to `GLFW.SetWindowPos()` | | `resizable` | window attribute | window attribute | | `shouldclose` | `GLFW.WindowShouldClose()` | `GLFW.SetWindowShouldClose()` | | `visible` | window attribute | `GLFW.ShowWindow()` and `GLFW.HideWindow()` | **Attributes with only setters include:** | Virtual Property | Set | | ---------------: | :------------------------------------------------ | | `aspect_ratio` | `GLFW.SetWindowAspectRatio()` - see details below | | `icon` | `GLFW.SetWindowIcon()` - see details below | | `title` | `GLFW.SetWindowTitle()` | **Attributes with only getters include:** | Virtual Property | Get | | -----------------: | :-------------------------------------------------- | | `content_scale` | (unnamed) 2-tuple of `GLFW.GetWindowContentScale()` | | `focused` | window attribute | | `framebuffer_size` | (unnamed) 2-tuple of `GLFW.GetFramebufferSize()` | | `hovered` | window attribute | | `iconified` | window attribute | | `maximized` | window attribute | | `transparent` | window attribute `GLFW.TRANSPARENT_FRAMEBUFFER` | **Context Attributes with only getters include:** | Virtual Property | Get | | ---------------------------: | :------------------------------------------------------------------------------------------------------------------------- | | `client_api` | `ClientAPI` (enum) from window attribute | | `context_creation_api` | `ContextCreationAPI` (enum) from window attribute | | `context_version` | `VersionNumber` from window attributes `GLFW.CONTEXT_VERSION_MAJOR`, `GLFW.CONTEXT_VERSION_MINOR`, `GLFW.CONTEXT_REVISION` | | `context_forward_compatible` | `Bool` from window attribute | | `context_debug` | `Bool` from window attribute | | `context_profile` | `OpenGLProfile` (enum) from window attribute | | `context_release_behavior` | `ContextReleaseBehavior` (enum) from window attribute | | `context_generates_errors` | `Bool` from window attribute `GLFW.CONTEXT_NO_ERROR` | | `context_robustness` | `ContextRobustness` (enum) from window attribute | ### Aspect Ratio The `wnd.aspect_ratio` attribute has received special treatment. For convenient and semantic use, it can be written as such: ```julia let wnd = window(...) wnd.aspect_ratio = 16//9 # |-These are equivalent wnd.aspect_ratio = (16, 9) # | wnd.aspect_ratio = nothing # Clear aspect ratio end ``` When set, the windowing system will enforce the given aspect ratio upon attempting to resize it. The exact behavior is a platform-dependent implementation detail. ### Window Icon GLFW.jl already simplifies setting the application's icon. All that is needed is to pass in either a single 2-by-2 `Matrix` of pixels resembling the icon data, or a `Vector` of such images for animated icons. *TODO* ### Window Creation Hints Unfortunately, window creation hints are intertwined with the above [Window Attributes](#window-attributes) and difficult to simplify. As of the time of writing, the best solution I've come up with is the `@windowhint` macro, which is comparatively low-level and follows this syntax: ```julia @windowhint <attribute> <value> ``` Where `attribute` directly corresponds to the GLFW constants in camel-case, e.g. `TransparentFramebuffer` - although one may also choose to simply use `TRANSPARENT_FRAMEBUFFER`. `value` may then be any valid value - usually an integer. `Enum`s are converted to their integer values and `nothing` is synonymous for `GLFW.DONT_CARE`. ### Window Manipulation Functions Few manipulation functions for windows are exposed: | Function | Purpose | | -------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------- | | `maximize(wnd)` | Maximize the window. | | `restore(wnd)` | Restore a window from either maximized or iconified/minimized state. | | `limitsize(wnd; min_width, min_height, max_width, max_height)` | Adjust window's minimum and maximum dimensions. All components are optional. When non-positive, the respective limit is removed. | | `swapbuffers(wnd)` | Swap front & back buffers. | | `request_attention(wnd)` | Request the users attention. The exact behavior is dependent on the underlying platform. On windows, this will cause the window's icon in the taskbar to blink. | ### Events Events have shifted from callbacks to a Julia-native multiple dispatch based solution. This is where the `ID` in `Window{ID}` comes into play. Following are the signatures for all currently available event handlers: * `on_framebuffer_resize(::Window{ID}, width::Integer, height::Integer)` * `on_window_close(::Window{ID})` * `on_window_content_scale(::Window{ID}, scalex::AbstractFloat, scaley::AbstractFloat)` * `on_window_defocus(::Window{ID})` * `on_window_focus(::Window{ID})` * `on_window_iconify(::Window{ID})` * `on_window_maximize(::Window{ID})` * `on_window_move(::Window{ID}, posx::Integer, posy::Integer)` * `on_window_refresh(::Window{ID})` * `on_window_resize(::Window{ID}, sizex::Integer, sizey::Integer)` * `on_window_restore(::Window{ID})` ## Input Few global input functions exist: | Function | Purpose | | ----------------------: | :----------------------------------------------------------------------------------------------------------------- | | `pollevents()` | Poll events & trigger corresponding handlers. | | `waitevents([timeout])` | Wait for any event & trigger corresponding handlers. If `timeout` is supplied, wait at most for `timeout` seconds. | | `post_empty_event()` | Post an empty event to the event queue, waking up any `Task` or `Thread` waiting on events. | ### Modifier Keys Both keyboard & mouse events can come with `ModifierKey`s that were active at the moment the key or mouse button was pressed or released. The pseudo-enum is built using [BitFlags.jl](https://github.com/jmert/BitFlags.jl) which has various benefits over regular enums. The following modifier keys exist: * `NoMod` - no modifier key was held. * `ShiftMod` * `ControlMod` * `AltMod` * `SuperMod` * `CapsLockMod` * `NumLockMod` Note that caps lock and num lock may not be usable yet as *GLFW.jl* is not up-to-date. Test for specific modifier keys like such: ```julia function foo(modifiers::ModifierKey) if (modifier & ShiftMod) != NoMod # do something end end ``` ## Keyboard Input Keyboard input has been simplified through a more humanized `Key` wrapper and dynamic dispatch-style events. The `Key` wrapper provides both more human & programmatic access to all `GLFW.KEY_*` constants. Its signatures like as thus: ```julia Key(digit::Integer, numpad::Bool = false) Key(char::Char) Key(special::Symbol) ``` The `digit` overload retrieves Keys `GLFW.KEY_0` through `GLFW.KEY_9`. It throws an `ArgumentError` if `digit ∉ 0:9`. If `numpad` is true, returns the corresponding `GLFW.KEY_KP_*` instead. The `char` overload retrieves any key on a standard *US QWERTY* keyboard which produces a character. As with the `digit` overload, it throws an `ArgumentError` if the character is invalid. **Note** that, unfortunately, other languages are not supported by the underlying GLFW library itself. The `special` overload retrieves any key on a standard *US QWERTY* keyboard which *does not* produce a character, such as the *escape*, *print screen*, arrow keys, or *enter* key. Following is a full list of supported special characters: * Arrow keys (`:up`, `:down`, `:left`, `:right`) * F keys (`:f1`, `:f2`, ..., `:f25`) * Left/Right `shift`, `control`, `alt`, `super`, prefixed with `:left_`/`:l`/`:right_`/`:r` respectively * Numpad keys: `:add`, `:decimal`, `:divide`, `:keypad_enter`, `:keypad_equal`, `:multiply`, `:subtract` * `:capslock`, `:end`, `:enter`, `:escape`/`:esc`, `:home`, `:menu`, `:numlock`, `:pagedown`, `:pageup`, `:pause`, `:print`/`:printscreen`, `:scrolllock`, `:space`, `:world1`, `:world2` ### Events The following key input related events exist. One hooks into these by specializing on `ID` in `::Window{ID}`, as passed to `window(:ID, ...)`. | Event | Trigger | | ------------------------------------------------------------------- | --------------------------------------------------------------- | | `on_key_press(::Window, ::Key, scancode::Integer, ::ModifierKey)` | Triggered when a key is pressed down. | | `on_key_release(::Window, ::Key, scancode::Integer, ::ModifierKey)` | Triggered when a key is released. | | `on_key_repeat(::Window, ::Key, scancode::Integer, ::ModifierKey)` | Triggered when a key is held down and trigger's the OS' repeat. | | `on_receive_char(::Window, ::Char)` | Triggered when a key stroke produces a unicode character. | ## Mouse Input Akin to [Keyboard Input](#keyboard-input) above, mouse input is abstracted through three main interfaces: `MouseButton`, the `Mouse` meta type, and dynamic dispatch-style events. The `MouseButton` struct has the following signatures: ```julia MouseButton(idx::Integer) MouseButton(name::Symbol) ``` The underlying GLFW library only supports mouse buttons `1:8`. Any number beyond this range throws an `ArgumentError`. The three default named mouse buttons are `:left`, `:right`, and `:middle`, representing mouse buttons 1, 2, and 3 respectively. One may introduce new names for convenience by defining: ```julia MouseButton(::Ident{:new_button}) = MouseButton(4) ``` where `:new_button` is to be replaced with your desired name. ### Mouse Interface One may poll the state of the mouse at any point by constructing a `Mouse(window)` instance. It exposes two virtual properties and two traits functions. Its properties are: | Virtual Property | Get | Set | | ---------------: | :----------------------------------------- | :---------------------------------------------------- | | `position` | (unnamed) 2-tuple of `GLFW.GetCursorPos()` | `GLFW.SetCursorPos(wnd, values[1], values[2])` | | `mode` | `GLFW.GetInputMode(wnd, GLFW.CURSOR)` | `GLFW.SetInputMode(wnd, GLFW.Cursor, Integer(value))` | Note that `mode` should be assigned a value from the `CursorMode` enum, which exposes values `CursorDisabled`, `CursorHidden`, and `CursorNormal`. Both *hidden* and *disabled* modes show no cursor image. Difference being *disabled* prompts GLFW to recenter the cursor on the window whereas *hidden* allows it to leave the window. One would thus, for example, use *disabled* to control a 3D camera. The two global functions are concerned with testing `isbuttondown` and `isbuttonup` on a `Mouse(window)`. Their signatures are as follows: ```julia isbuttondown(mouse::Mouse, button::MouseButton)::InputAction isbuttonup( mouse::Mouse, button::MouseButton)::InputAction ``` The `InputAction` is an enum with values `Press`, `Release`, and `Repeat`; although `Repeat` will never be emitted for mouse buttons. ### Events As with keyboard input, various mouse events are triggered: | Event Signature | Trigger | | ---------------------------------------------------------- | -------------------------------------------------------------------------- | | `on_mouse_move(::Window, xpos, ypos)` | Triggered when the mouse is moved while within the confines of the window. | | `on_mouse_enter(::Window)` | Triggered when the mouse enters the window area. | | `on_mouse_leave(::Window)` | Triggered when the mouse leaves the window area. | | `on_mouse_press(::Window, ::MouseButton, ::ModifierKey)` | Triggered when a mouse button is pressed down. | | `on_mouse_release(::Window, ::MouseButton, ::ModifierKey)` | Triggered when a mouse button is released. | As with any event, one would hook into these by implementing a specialization on `ID` in `Window{ID}` as provided in the call to `window(:ID, ...)`.
GLFWAbstraction
https://github.com/VoxelPopuliEngine/GLFWAbstraction.jl.git
[ "MIT" ]
0.1.0
e4412e9fadd14220bcdf0dbb7d0644f86ae92f2f
code
6440
module CBSOData3 import HTTP import JSON import Tables export get_tables, get_meta, OdataTable BASE_URL = "http://opendata.cbs.nl" API = "ODataFeed/odata" CATALOG = "ODataCatalog" function get_odata(url) result = HTTP.get(url) data = JSON.parse(String(result.body)) end """ get_tables(base, catalog) Get all the tables in the catalog as a list of dicts. The `Identifier` can be used to get the actual data. If no parameters are given, the data is retrieved from the (CBS)[https://www.cbs.nl] OData3 portal. The optional parameters are: - base::String, basename of the OData3 server - catalog::String, path part of the OData3 server for catalog information """ function get_tables(base=BASE_URL, catalog=CATALOG) url = base * "/" * catalog * "/Tables?\$format=json" return get_odata(url)["value"] end """ get_meta(table; base, api) Get the metadata for a given `table`. The result is a dict with the keys `"TableInfos"`, `"DataProperties"` and all the classifications. Optional parameters are: - base::String, basename of the OData3 server - api::String, path part of the OData3 server for regular data """ function get_meta(table; base=BASE_URL, api=API) url = base * "/" * api * "/" * table * "?\$format=json" metalinks = get_odata(url)["value"] meta = Dict{String,Any}() for link in metalinks name = link["name"] if name in ("UntypedDataSet", "TypedDataSet") continue end linkurl = link["url"] * "?\$format=json" meta[name] = get_odata(linkurl)["value"] end return meta end struct OdataTable table::String block::Vector{Any} nextlink::Union{Nothing, String} names::Vector{Symbol} types::Vector{Type} length::Int end function firstline(t::OdataTable) datablock = getfield(t, :block) nextlink = getfield(t, :nextlink) row = 1 return (OdataRow(datablock[row], t), (datablock, nextlink, row)) end function nextline(t::OdataTable, status) datablock, nextlink, row = status if row == length(datablock) && !isnothing(nextlink) datablock, nextlink = get_block(nextlink) row = 0 end row += 1 if row > length(datablock) return nothing else return (OdataRow(datablock[row], t), (datablock, nextlink, row)) end end struct OdataRow <: Tables.AbstractRow row::Dict{String, Any} table::OdataTable end Tables.istable(::OdataTable) = true names(t::OdataTable) = getfield(t, :names) Tables.columnnames(t::OdataTable) = getfield(t, :names) types(t::OdataTable) = getfield(t, :types) Tables.schema(t::OdataTable) = Tables.Schema(names(t), types(t)) Tables.rowaccess(::OdataTable) = true Tables.rows(t::OdataTable) = t Base.eltype(t::OdataTable) = OdataRow Base.length(t::OdataTable) = getfield(t, :length) Base.iterate(t::OdataTable) = firstline(t) Base.iterate(t::OdataTable, st) = nextline(t, st) Tables.getcolumn(r::OdataRow, s::String) = something(getfield(r, :row)[s], missing) Tables.getcolumn(r::OdataRow, i::Int) = something(collect(values(getfield(r, :row)))[getfield(getfield(r, :table), :names)[i]], missing) Tables.getcolumn(r::OdataRow, s::Symbol) = something(getfield(r, :row)[String(s)], missing) Tables.columnnames(r::OdataRow) = collect(keys(getfield(r, :row))) Base.NamedTuple(r::OdataRow) = NamedTuple{Tuple(Symbol.(keys(getfield(r, :row))))}(values(getfield(r, :row))) function get_block(url) data = get_odata(url) nextlink = "odata.nextLink" in keys(data) ? data["odata.nextLink"] : nothing return (data["value"], nextlink) end function get_table(table; base=BASE_URL, api=API, kind="UntypedDataSet", columns=[], filter="") if length(columns) == 0 select = "" else select = "&\$select=" * join(columns, ",") end if length(filter) > 0 filter = "&\$filter=" * HTTP.escape(filter) end url = base * "/" * api * "/" * table * "/" * kind * "/?\$format=json" * select * filter data = get_odata(url) nextlink = "odata.nextLink" in keys(data) ? data["odata.nextLink"] : nothing return (data["value"], nextlink) end """ ODataTable(table; typed, columns, filters, base, api, catalog) Get a `Tables` object for the dataset defined by `table`. Optional parameters are: - typed::Bool, do we want a TypedDataSet (numbers as ints or floats) or an UntypedDataSet (everything string) - columns::Vector{String}, exact columnnames to select, empty for all columns - filters::String, OData3 specification for row filter - base::String, basename of the OData3 server - api::String, path part of the OData3 server for regular data - catalog::String, path part of the OData3 server for catalog information # Examples ```julia tbl = CBSOData3.ODataTable("82811NED", columns=["Perioden", "Onderzoekspopulatie_1", "Innovatoren_2"], filter="Perioden eq '2010X000'"); ``` """ function ODataTable(table; typed=true, columns=[], filter="", base=BASE_URL, api=API, catalog=CATALOG) kind = typed ? "TypedDataSet" : "UntypedDataSet" if length(filter) == 0 tabellen = get_tables(base, catalog) tabelinfo = [x for x in tabellen if x["Identifier"] == table] if length(tabelinfo) == 1 recordcount = tabelinfo[1]["RecordCount"] else recordcount = None end nextblock, nextlink = get_table(table, base=base, api=api, kind=kind, columns=columns) else # bij opgegeven filter alle blokken inlezen nextblock, nextlink = get_table(table, base=base, api=api, kind=kind, columns=columns, filter=filter) while !isnothing(nextlink) nxtblk, nextlink = get_block(nextlink) nextblock = vcat(nextblock, nxtblk) end recordcount = length(nextblock) end if length(columns) > 1 names = Symbol.(columns) else meta = get_meta(table) names = Symbol.(collect(keys(nextblock[1]))) dd = [Symbol(x["Key"])=>x["Position"] for x in meta["DataProperties"] if Symbol(x["Key"]) in names] sort!(dd, by=x->x.second) dd = [x.first=>nr for (nr, x) in enumerate(dd)] names = [x.first for x in dd] end types = [typeof(nextblock[1][String(name)]) for name in names] if typed types = [Union{Missing, x} for x in types] end return OdataTable(table, nextblock, nextlink, names, types, recordcount) end end # module
CBSOData3
https://github.com/HenricoWitvliet/CBSOData3.jl.git
[ "MIT" ]
0.1.0
e4412e9fadd14220bcdf0dbb7d0644f86ae92f2f
docs
1046
CBSOData3 ========= This is a simple [Tables](https://github.com/JuliaData/Tables.jl)-interface to use the [CBS](https://opendata.cbs.nl/statline/portal.html?_la=nl&_catalog=CBS) odata3 portal to download all CBS-datasets. How to use it ------------- If you know the exact dataset, you can directly use it: ```julia using DataFrames, CBSOData3 df = DataFrame(CBSOData3.ODataTable("82811NED")) ``` You can use the keyword argument `columns` to give a list of column names to select (case sensitive). And you can use `filter` to give a filter expression for the rows (as a String) using the [Odata3](https://www.odata.org/documentation/odata-version-3-0/) rules. For a given table you can get information about the columns in the dataset and about the used classifications by using `get_meta`: ```julia df_meta = CBSOData3.get_meta("82811NED") ``` This gives a dict with DataProperties and the classifications. Using `get_tables` you can get a list of dicts of all available tables. The `Identifier` can then be used to get the actual data.
CBSOData3
https://github.com/HenricoWitvliet/CBSOData3.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
256
module LinearSegmentation using DocStringExtensions, Statistics, Graphs # Write your package code here. include("utils.jl") include("slidingwindow.jl") include("topdown.jl") include("shortestpath.jl") export sliding_window, top_down, shortest_path end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
3680
""" $(TYPEDSIGNATURES) Partition `xs` into segments that are at least longer than `min_segment_length`, and that have a fit better than `fit_threshold`. By default, the goodness-of-fit is measured using the coefficient of determination. Each segment must have a minimum R² of `fit_threshold`. Root mean squared error can also be used by setting `fit_function = :rmse`, and adjusting `fit_threshold` to a dataset dependent error threshold. In this case, the root mean squared error must be smaller than `fit_threshold`. Builds a directed graph where nodes are the x-data points, and the edge weights are the goodness-of-fit measure associated with a linear model between these nodes. Nodes are connected only if their minimum length is greater than `min_segment_length`, and the goodness-of-fit better than `fit_threshold`. By default, the end of a segment is also the start of the next segment, but this can be changed by setting `overlap` to `false` (resulting in disjoint segmentations). Thereafter, the shortest weighted path spanning the entire dataset is found using the A-star algorithm. This more-or-less corresponds to the dynamic programming approach used by other segmentation algorithms. Sorts data internally as a precomputation step. This is the slowest algorithm, but should return a segmentation where the segments are as long as possible, balanced against their fit. Returns an array of indices `[idxs1, ...]`, where `idxs1` are the indices of `xs` in the first segment, etc. # Example ``` segments = shortest_path(xs, ys; min_segment_length=1.2) ``` See also: [`sliding_window`](@ref), [`top_down`](@ref). """ function shortest_path( xs, ys; min_segment_length = heuristic_min_segment_length(xs), fit_threshold = 0.9, fit_function = :r2, overlap = true, ) len_xs = length(xs) segments = Vector{Vector{Int64}}() sxs = sortperm(xs) # do this once g, w = build_digraph( xs[sxs], ys[sxs], min_segment_length, fit_threshold, fit_function, overlap, ) path_edges = a_star(g, 1, len_xs, w) for edge in path_edges i = edge.src j = edge.dst if overlap jj = j else jj = j == len_xs ? j : j - 1 end push!(segments, sxs[i:jj]) end segments end """ $(TYPEDSIGNATURES) Build a directed graph where each node represents an index, and edges are segments that link indices. Enumerates all possible segments that are at least `min_segment_length` long. Weights are assigned by mean squared error of the linear fit. If rmse is bigger than `max_rmse`, then weight is set to `Inf`. """ function build_digraph(xs, ys, min_segment_length, fit_threshold, fit_function, overlap) len_xs = length(xs) g = SimpleDiGraph(len_xs) weightmatrix = zeros(len_xs, len_xs) threshold = fit_function == :r2 ? -fit_threshold : fit_threshold for j in eachindex(xs) jj = overlap ? j : j - 1 for i in eachindex(xs) if i < j && i < jj && is_min_length(xs[i:jj], min_segment_length) add_edge!(g, i, j) # i -> j _xs = xs[i:jj] _ys = ys[i:jj] w = fit_function == :r2 ? -rsquared(_xs, _ys, least_squares(_xs, _ys)...) : rmse(_xs, _ys, least_squares(_xs, _ys)...) weightmatrix[i, j] = w > threshold ? Inf : w + 1.0 # add a constant offset to make r² all positive elseif i == j weightmatrix[i, j] = 0.0 else weightmatrix[i, j] = Inf end end end g, weightmatrix end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
2247
""" $(TYPEDSIGNATURES) Partition `xs` into segments that are at least longer than `min_segment_length`, and that have a fit better than `fit_threshold`. By default, the goodness-of-fit is measured using the coefficient of determination. Each segment must have a minimum R² of `fit_threshold`. Root mean squared error can also be used by setting `fit_function = :rmse`, and adjusting `fit_threshold` to a dataset dependent error threshold. In this case, the root mean squared error must be smaller than `fit_threshold`. Uses a sliding window approach to segment the data: initially an empty segment is made, and data added to it until `fit_threshold` is reached. Then a new segment is made, and the process repeats until the data is exhausted. By default, the end of a segment is also the start of the next segment, but this can be changed by setting `overlap` to `false` (resulting in disjoint segmentations). Sorts data internally as a precomputation step. Fastest segmentation algorithm implemented, but also the least accurate. Returns an array of indices `[idxs1, ...]`, where `idxs1` are the indices of `xs` in the first segment, etc. # Example ``` segments = sliding_window(xs, ys; min_segment_length=1.2, fit_threshold=0.9) ``` See also: [`top_down`](@ref), [`shortest_path`](@ref). """ function sliding_window( xs, ys; min_segment_length = heuristic_min_segment_length(xs), fit_threshold = 0.9, fit_function = :r2, overlap = true, ) sxs = sortperm(xs) # increasing order segments = Vector{Vector{Int64}}() start_idx = 1 for current_idx = 2:length(sxs) _xs = xs[sxs[start_idx:current_idx]] _ys = ys[sxs[start_idx:current_idx]] is_min_length(_xs, min_segment_length) || continue lmfit, threshold = fit_function == :r2 ? (-rsquared(_xs, _ys, least_squares(_xs, _ys)...), -fit_threshold) : (rmse(_xs, _ys, least_squares(_xs, _ys)...), fit_threshold) if lmfit >= threshold push!(segments, sxs[start_idx:(current_idx-1)]) start_idx = overlap ? current_idx - 1 : current_idx # start is previous end end end # clean up push!(segments, sxs[start_idx:end]) segments end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
4727
""" $(TYPEDSIGNATURES) Partition `xs` into segments that are at least longer than `min_segment_length`, and that have a fit better than `fit_threshold`. By default, the goodness-of-fit is measured using the coefficient of determination. Each segment must have a minimum R² of `fit_threshold`. Root mean squared error can also be used by setting `fit_function = :rmse`, and adjusting `fit_threshold` to a dataset dependent error threshold. In this case, the root mean squared error must be smaller than `fit_threshold`. Recursively splits the data into two parts with the best fit according to `fit_function`, while obeying the minimum segment length restrictions from `min_segment_length`, and goodness-off-fit restrictions from `fit_threshold`. Sorts data internally as a precomputation step. By default, the end of a segment is also the start of the next segment, but this can be changed by setting `overlap` to `false` (resulting in disjoint segmentations). Returns an array of indices `[idxs1, ...]`, where `idxs1` are the indices of `xs` in the first segment, etc. # Example ``` segments = top_down(xs, ys; min_segment_length=1.2) ``` See also: [`sliding_window`](@ref), [`shortest_path`](@ref). """ function top_down( xs, ys; min_segment_length = heuristic_min_segment_length(xs), fit_threshold = 0.9, fit_function = :r2, overlap = true, ) segments = Vector{Vector{Int64}}() sxs = sortperm(xs) # do this once _top_down!( segments, xs, ys, sxs, 1, length(xs), min_segment_length, fit_threshold, fit_function, overlap, ) segments end function _top_down!( segments, xs, ys, sxs, start_idx, stop_idx, min_segment_length, fit_threshold, fit_function, overlap, ) brkpnt1 = _find_optimum_break_point( xs, ys, sxs, start_idx, stop_idx, min_segment_length, fit_function, overlap, ) if isnothing(brkpnt1) push!(segments, sxs[start_idx:stop_idx]) return nothing end brkpnt2 = overlap ? brkpnt1 : brkpnt1 + 1 # end/start overlap? _xs1 = xs[sxs[start_idx:brkpnt1]] _ys1 = ys[sxs[start_idx:brkpnt1]] ls1, threshold = fit_function == :r2 ? (-rsquared(_xs1, _ys1, least_squares(_xs1, _ys1)...), -fit_threshold) : (rmse(_xs1, _ys1, least_squares(_xs1, _ys1)...), fit_threshold) _xs2 = xs[sxs[brkpnt2:stop_idx]] _ys2 = ys[sxs[brkpnt2:stop_idx]] ls2 = fit_function == :r2 ? -rsquared(_xs2, _ys2, least_squares(_xs1, _ys1)...) : rmse(_xs2, _ys2, least_squares(_xs2, _ys2)...) if ls1 <= threshold || !is_min_length(_xs1, min_segment_length) push!(segments, sxs[start_idx:brkpnt1]) else _top_down!( segments, xs, ys, sxs, start_idx, brkpnt1, min_segment_length, fit_threshold, fit_function, overlap, ) end if ls2 <= threshold || !is_min_length(_xs2, min_segment_length) push!(segments, sxs[brkpnt2:stop_idx]) else _top_down!( segments, xs, ys, sxs, brkpnt2, stop_idx, min_segment_length, fit_threshold, fit_function, overlap, ) end nothing end function _find_optimum_break_point( xs, ys, sxs, start1_idx, stop2_idx, min_segment_length, fit_function, overlap, ) brkpnts = Int64[] losses = Float64[] for current_idx1 = start1_idx:stop2_idx current_idx2 = overlap ? current_idx1 : current_idx1 + 1 current_idx2 == stop2_idx && break # done _xs1 = xs[sxs[start1_idx:current_idx1]] _xs2 = xs[sxs[current_idx2:stop2_idx]] # both segments need to have at least the minimum length is_min_length(_xs1, min_segment_length) || continue is_min_length(_xs2, min_segment_length) || break _ys1 = ys[sxs[start1_idx:current_idx1]] _ys2 = ys[sxs[current_idx2:stop2_idx]] # get minimum loss and break point v1 = fit_function == :r2 ? -rsquared(_xs1, _ys1, least_squares(_xs1, _ys1)...) : rmse(_xs1, _ys1, least_squares(_xs1, _ys1)...) v2 = fit_function == :r2 ? -rsquared(_xs2, _ys2, least_squares(_xs2, _ys2)...) : rmse(_xs2, _ys2, least_squares(_xs2, _ys2)...) push!(losses, min(v1, v2)) push!(brkpnts, current_idx1) end isempty(losses) ? nothing : brkpnts[argmin(losses)] end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
1201
""" $(TYPEDSIGNATURES) Return true if the interval is longer than `min_segment_length`. """ is_min_length(xs, min_segment_length) = abs(-(extrema(xs)...)) >= min_segment_length """ $(TYPEDSIGNATURES) Guess an appropriate minimum segment length, which the length of `xs` divided by 10. """ heuristic_min_segment_length(xs) = abs(-(extrema(xs)...)) / 10 """ $(TYPEDSIGNATURES) Calculate the least squares coefficients. """ function least_squares(xs, ys) ymean = mean(ys) xmean = mean(xs) b1 = sum((x - xmean) * (y - ymean) for (x, y) in zip(xs, ys)) / sum((x - xmean)^2 for x in xs) b0 = ymean - b1 * xmean b0, b1 end """ $(TYPEDSIGNATURES) Root mean square error of a fit. """ rmse(xs, ys, b0, b1) = sqrt(se(xs, ys, b0, b1) / length(xs)) """ $(TYPEDSIGNATURES) Squared error of the fit (the residuals). """ se(xs, ys, b0, b1) = sum((y - b0 - b1 * x)^2 for (x, y) in zip(xs, ys)) """ $(TYPEDSIGNATURES) Calculate the coefficient of determination (R²) for a linear fit of `b0`, `b1` on `xs` and `ys`. """ function rsquared(xs, ys, b0, b1) ymean = mean(ys) 1 - sum((y - b0 - b1 * x)^2 for (x, y) in zip(xs, ys)) / sum((y - ymean)^2 for y in ys) end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
473
using LinearSegmentation using Test using Graphs # test settings atol = 1e-6 # settings min_segment_length = 1.0 max_rmse = 0.10 # generate test data N = 100 xs = collect(range(0, 3 * pi, length = N)) ys = sin.(xs) @testset "LinearSegmentation.jl" begin @testset "Internals" begin include("utils.jl") end @testset "Segmentation" begin include("slidingwindow.jl") include("topdown.jl") include("shortestpath.jl") end end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
1077
@testset "Shortest path" begin #r2 segments = shortest_path(xs, ys; min_segment_length) @test length(segments) == 4 b0, b1 = LinearSegmentation.least_squares(xs[last(segments)], ys[last(segments)]) @test isapprox( LinearSegmentation.rsquared(xs[last(segments)], ys[last(segments)], b0, b1), 0.9787001222049421; atol, ) # rmse segments = shortest_path( xs, ys; min_segment_length, fit_threshold = max_rmse, fit_function = :rmse, ) @test length(segments) == 4 b0, b1 = LinearSegmentation.least_squares(xs[first(segments)], ys[first(segments)]) @test isapprox( LinearSegmentation.rmse(xs[first(segments)], ys[first(segments)], b0, b1), 0.06440621325389449; atol, ) @test N != length(reduce(vcat, segments)) segments = shortest_path( xs, ys; min_segment_length, fit_threshold = max_rmse, fit_function = :rmse, overlap = false, ) @test N == length(reduce(vcat, segments)) end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
1214
@testset "Sliding window" begin # test r2 segments = sliding_window( xs, ys; min_segment_length, # fit_threshold = 0.9, ) @test length(segments) == 4 b0, b1 = LinearSegmentation.least_squares(xs[last(segments)], ys[last(segments)]) @test isapprox( LinearSegmentation.rsquared(xs[last(segments)], ys[last(segments)], b0, b1), 0.9926778131496851; atol, ) @test N != length(reduce(vcat, segments)) # test root mean square segments = sliding_window( xs, ys; min_segment_length, fit_threshold = max_rmse, fit_function = :rmse, ) @test length(segments) == 4 b0, b1 = LinearSegmentation.least_squares(xs[first(segments)], ys[first(segments)]) @test isapprox( LinearSegmentation.rmse(xs[first(segments)], ys[first(segments)], b0, b1), 0.09975406785624195; atol, ) @test N != length(reduce(vcat, segments)) segments = sliding_window( xs, ys; min_segment_length, fit_threshold = max_rmse, fit_function = :rmse, overlap = false, ) @test N == length(reduce(vcat, segments)) end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
1019
@testset "Top down" begin #r2 segments = top_down(xs, ys; min_segment_length) @test length(segments) == 5 b0, b1 = LinearSegmentation.least_squares(xs[last(segments)], ys[last(segments)]) @test isapprox( LinearSegmentation.rsquared(xs[last(segments)], ys[last(segments)], b0, b1), 0.9926778131496851; atol, ) # rmse segments = top_down(xs, ys; min_segment_length, fit_threshold = max_rmse, fit_function = :rmse) @test length(segments) == 9 b0, b1 = LinearSegmentation.least_squares(xs[first(segments)], ys[first(segments)]) @test isapprox( LinearSegmentation.rmse(xs[first(segments)], ys[first(segments)], b0, b1), 0.023667594679358903; atol, ) @test N != length(reduce(vcat, segments)) segments = top_down( xs, ys; min_segment_length, fit_threshold = max_rmse, fit_function = :rmse, overlap = false, ) @test N == length(reduce(vcat, segments)) end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
code
691
@testset "Utils" begin xs = [1, 2, 3, 4, 5, 6] ys = [1.1, 1.9, 3.1, 4.2, 5.3, 5.9] b0, b1 = LinearSegmentation.least_squares(xs, ys) @test isapprox(b0, 0.0533333; atol) @test isapprox(b1, 1.0085714; atol) @test isapprox(LinearSegmentation.se(xs, ys, b0, b1), 0.1270476190476182; atol) @test isapprox(LinearSegmentation.rmse(xs, ys, b0, b1), 0.1455149585939639; atol) @test isapprox(LinearSegmentation.rsquared(xs, ys, b0, b1), 0.9929135845097545; atol) @test isapprox(LinearSegmentation.heuristic_min_segment_length(xs), 0.5; atol) @test !LinearSegmentation.is_min_length(xs[1:2], 3) @test LinearSegmentation.is_min_length(xs[1:2], 1) end
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
0.3.0
f53b547aa5bba38171c67d23b00623c6ecca06dc
docs
3914
# LinearSegmentation [repostatus-url]: https://www.repostatus.org/#active [repostatus-img]: https://www.repostatus.org/badges/latest/active.svg [![Build Status](https://github.com/stelmo/LinearSegmentation.jl/actions/workflows/CI.yml/badge.svg?branch=master)](https://github.com/stelmo/LinearSegmentation.jl/actions/workflows/CI.yml?query=branch%3Amaster) [![repostatus-img]][repostatus-url] [![LinearSegmentation Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/LinearSegmentation)](https://pkgs.genieframework.com?packages=LinearSegmentation) This is a small package that performs linear segmented regression: fitting piecewise linear functions to data, and simultaneously estimating the best breakpoints. Three algorithm are implemented, `sliding_window`, `top_down`, and `shortest_path`. ## Interface ```julia using LinearSegmentation segments = segmentation_function( x_values, y_values; min_segment_length = minimum_segment_x_length, fit_threshold = minimum_r2, fit_function = :r2, overlap = true, ) ``` Where `segments = [idxs1, idxs2, ...]` is an array of indices, with `idxs1` corresponding to the indices of `xs` in the first segment, `idxs2` the second segment, etc. Minimum segment lengths are specified with `min_segment_length`. By default, the goodness-of-fit is measured using the coefficient of determination (R²). Each segment must have a minimum R² of `fit_threshold`. Root mean squared error can also be used by setting `fit_function = :rmse`, and adjusting `fit_threshold` to a dataset dependent error threshold. In this case, the root mean squared error must be smaller than `fit_threshold` for each segment. By default, the end of a segment is also the start of the next segment, but this can be changed by setting `overlap` to `false` (resulting in disjoint segmentations). ## Generate some data ```julia N = 100 xs = collect(range(0, 3 * pi, length = N)) .+ 0.1 .* randn(N) ys = sin.(xs) .+ 0.1 .* randn(N) ``` ![Raw data to be segmented](imgs/data.png) ## Sliding window Uses a sliding window approach to segment the data: initially an empty segment is made, and data added to it until `fit_threshold` is reached. Then a new segment is made, and the process repeats until the data is exhausted. This algorithm is the cheapest to run, but may generate worse fits due to its simplicity. ```julia segments = sliding_window(xs, ys; min_segment_length=1.2) ``` ![Sliding window segmentation](imgs/sliding_window.png) ## Top down This algorithm recursively splits the data into two parts, attempting to find segments that are both long enough, and have a good enough fit (set via the kwargs). ```julia segments = top_down(xs, ys; min_segment_length=1.2) ``` ![Top down segmentation](imgs/top_down.png) ## Shortest path This algorithm is *my take* on the dynamic programming approaches used by the R packages listed below (NB: not equivalent implementations!). In essence, a weighted directional graph is constructed, where each node corresponds to an index of `xs`, and the edge weight between nodes corresponds to the goodness-of-fit measure between the two nodes (segment length restrictions and maximum error are both incorporated). The shortest weighted path that spans `xs` is the found with `Graphs.a_star` (see [Graphs.jl](https://github.com/JuliaGraphs/Graphs.jl)), and should correspond to the best segmentation. ```julia segments = shortest_path(xs, ys; min_segment_length=1.2) ``` ![Shortest Path segmentation](imgs/shortest_path.png) ## Other useful resources 1. https://cran.r-project.org/web/packages/dpseg/vignettes/dpseg.html 2. https://winvector.github.io/RcppDynProg/ 3. E. Keogh, S. Chu, D. Hart and M. Pazzani, "An online algorithm for segmenting time series," Proceedings 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 2001, pp. 289-296, doi: 10.1109/ICDM.2001.989531.
LinearSegmentation
https://github.com/stelmo/LinearSegmentation.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
1791
#using Pkg #Pkg.add(path="/home/dellint5/repos/SymbolicInference.jl") using SymbolicInference using Random , Distributions using RecurrenceAnalysis using CairoMakie using Colors cycles = 10 rec_rate = 0.3 sd_norm = 0.5 p_window_size = 12 linear_basis = (0:0.6:2*pi*cycles) n_sample = length(linear_basis) time_series_sin = map(sin,linear_basis) # White noise rng = Random.MersenneTwister(42) dist = Distributions.Normal(0,sd_norm) white_n_time_series = rand(dist,n_sample) # Noisy sine wave time_series_sin_nois = white_n_time_series .+ time_series_sin res_recs = map(x -> RecurrenceAnalysis.CrossRecurrenceMatrix(x,time_series_sin,rec_rate;fixedrate=true), [time_series_sin,white_n_time_series,time_series_sin_nois]) res_recs_joint = map(x -> RecurrenceAnalysis.JointRecurrenceMatrix(x,time_series_sin,rec_rate;fixedrate=true), [time_series_sin,white_n_time_series,time_series_sin_nois]) #rec_matrix_motifs(rec_matrix::RecurrenceMatrix;seqs="recurrences",max_window=6,n_motifs=2) all_probs = map(x-> rec_matrix_motifs(x; max_window=p_window_size,seqs="recurrences"),res_recs) all_probs_joint = map(x-> rec_matrix_motifs(x; max_window=p_window_size,seqs="recurrences"),res_recs_joint) motifs_dict = all_probs[3] motifs_dict_joint = all_probs_joint[3] coordinates = SymbolicInference.extract_recurrences_cross(time_series_sin_nois,time_series_sin, motifs_dict;num_windows = 12) coordinates_joint = SymbolicInference.extract_recurrences_cross(time_series_sin_nois,time_series_sin, motifs_dict_joint;num_windows = 12) CairoMakie.activate!(inline=false) p = plot_motifs_cross(time_series_sin_nois,time_series_sin, coordinates;n_motifs=2) p2 = plot_motifs_cross(time_series_sin_nois,time_series_sin, coordinates_joint;n_motifs=3)
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
1368
#using Pkg #Pkg.add(path="/home/dellint5/repos/SymbolicInference.jl") using SymbolicInference using Random , Distributions using RecurrenceAnalysis using CairoMakie using Colors cycles = 30 rec_rate = 0.6 sd_norm = 0.5 p_window_size = 30 linear_basis = (0:0.6:2*pi*cycles) n_sample = length(linear_basis) time_series_sin = map(sin,linear_basis) # White noise rng = Random.MersenneTwister(42) dist = Distributions.Normal(0,sd_norm) white_n_time_series = rand(dist,n_sample) # Noisy sine wave time_series_sin_nois = white_n_time_series .+ time_series_sin pl_persist_p = persistence_motifs(time_series_sin_nois;n_windows=30) pl_persist_bar = persistence_barcode(time_series_sin_nois;n_windows=30) #CairoMakie.save("../paper-vignettes/outputs/persist_sin_nois.png", res_recs = map(x -> RecurrenceAnalysis.RecurrenceMatrix(x,rec_rate;fixedrate=true), [time_series_sin,white_n_time_series,time_series_sin_nois]) #rec_matrix_motifs(rec_matrix::RecurrenceMatrix;seqs="recurrences",max_window=6,n_motifs=2) all_probs = map(x-> SymbolicInference.rec_matrix_motifs(x; max_window=p_window_size,seqs="recurrences",n_motifs=2),res_recs) motifs_dict = all_probs[3] coordinates = SymbolicInference.extract_recurrences(time_series_sin,motifs_dict;num_windows = 10) GLMakie.activate!(inline=false) p = plot_motifs(time_series_sin_nois,coordinates;n_motifs=3) p
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
697
using SymbolicInference using Documenter DocMeta.setdocmeta!(SymbolicInference, :DocTestSetup, :(using SymbolicInference); recursive=true) makedocs(; modules=[SymbolicInference], authors="= <=> and contributors", repo="https://github.com/fargolo/SymbolicInference.jl/blob/{commit}{path}#{line}", sitename="SymbolicInference.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://fargolo.github.io/SymbolicInference.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/fargolo/SymbolicInference.jl", devbranch="main", )
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
490
module SymbolicInference using StatsBase using RecurrenceAnalysis using AnalyticComb using Distributions using LinearAlgebra using Colors using CairoMakie include("rqa_interface.jl") include("explore.jl") include("tda.jl") export rec_matrix_probs, rec_matrix_motifs, extract_recurrences, plot_motifs, extract_recurrences_cross , plot_motifs_cross , extract_recurrences_joint , plot_motifs_joint , persistence_motifs, persistence_barcode end
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
12475
""" extract_recurrences(data_source::Vector{Float64}, motifs_dict::Dict{String, Vector}; num_windows::Int64 = 3) This function returns x and y coordinates for a given window considering start and size of each motif. The y coordinates are the values from data provided by the user. """ function extract_recurrences(data_source::Vector{Float64}, motifs_dict::Dict{String, Vector{Any}}; num_windows::Int64 = 3) probs_n = first(size(motifs_dict["Probs"][1])) probs_flat = vcat(motifs_dict["Probs"]...) sorted_probs_inds = sortperm(probs_flat) motifs_flat = vcat(motifs_dict["Motifs starts and duration"]...) motifs_by_window = motifs_flat[sorted_probs_inds[1:num_windows]] full_data_dict = [] for (index, motif) in enumerate(motifs_by_window) motif_start, motif_size = motif motif_range = motif_start:(motif_start+motif_size)-1 motif_y1 = data_source[motif_range] motif_window = div(sorted_probs_inds[index],probs_n) motif_rec_start = motif_start + motif_window motif_rec_range = motif_rec_start:(motif_rec_start+motif_size)-1 motif_y2 = data_source[motif_rec_range] push!(full_data_dict, Dict( "x1" => collect(motif_range), "y1" => motif_y1, "x2" => collect(motif_rec_range), "y2" => motif_y2, "window" => motif_window, "size" => motif_size, "prob" => probs_flat[sorted_probs_inds][index])) end return full_data_dict end """ plot_motifs(time_series::Vector{Float64},coordinates::Vector{Any}; plot_size=(2000, 1000), n_motifs=2) Plot motifs from coordinates extracted with `extract_recurrences`. """ function plot_motifs(time_series::Vector{Float64}, coordinates::Vector{Any}; plot_size=(2000, 1000), n_motifs=2) pl = CairoMakie.Figure(size = plot_size) p = Axis(pl[1, 1]) lines!(p,1:length(time_series), time_series, color=:black) if n_motifs == 1 R1, G1, B1 = rand(3) rcolor = Colors.RGB(R1, G1, B1) first_coordinate = coordinates[1] lines!(p, first_coordinate["x1"], first_coordinate["y1"], linewidth=5, color=rcolor) lines!(p, first_coordinate["x2"], first_coordinate["y2"], linewidth=5, color=rcolor) CairoMakie.scatter!(p, first_coordinate["x1"], first_coordinate["y1"], color=rcolor) CairoMakie.scatter!(p, first_coordinate["x2"], first_coordinate["y2"], color=rcolor) CairoMakie.bracket!(p, text = "window:"*string(first_coordinate["window"])* "; size:"*string(first_coordinate["size"])* "\n p-value: "*string(round(first_coordinate["prob"],digits=3)), first_coordinate["x1"][1], first_coordinate["y1"][1], first_coordinate["x2"][1], first_coordinate["y2"][1], color=rcolor) else for motif in coordinates[1:n_motifs] R1, G1, B1 = rand(3) rcolor = Colors.RGB(R1, G1, B1) lines!(p, motif["x1"], motif["y1"], linewidth=5, color=(rcolor,0.3)) lines!(p, motif["x2"], motif["y2"], linewidth=5, color=(rcolor,0.3)) CairoMakie.scatter!(p, motif["x1"], motif["y1"], color=rcolor) CairoMakie.scatter!(p, motif["x2"], motif["y2"], color=rcolor) CairoMakie.bracket!(p, text = "window:"*string(motif["window"])* "; size:"*string(motif["size"])* "\n p-value: "*string(round(motif["prob"],digits=3)), motif["x1"][1], motif["y1"][1], motif["x2"][1], motif["y2"][1], color=rcolor) end end return pl end """ extract_recurrences_cross(data_source::Vector{Float64}, data_source2::Vector{Float64}, motifs_dict::Dict{String, Vector}; num_windows::Int64 = 3) This function returns x and y coordinates for a given window considering start and size of each motif detected from two time-series in cross-recurrence matrices . The y coordinates are the values from data provided by the user. """ function extract_recurrences_cross(data_source::Vector{Float64}, data_source2::Vector{Float64}, motifs_dict::Dict{String, Vector{Any}}; num_windows::Int64 = 3) probs_n = first(size(motifs_dict["Probs"][1])) probs_flat = vcat(motifs_dict["Probs"]...) sorted_probs_inds = sortperm(probs_flat) motifs_flat = vcat(motifs_dict["Motifs starts and duration"]...) motifs_by_window = motifs_flat[sorted_probs_inds[1:num_windows]] full_data_dict = [] for (index, motif) in enumerate(motifs_by_window) motif_start, motif_size = motif motif_range = motif_start:(motif_start+motif_size)-1 motif_y1 = data_source[motif_range] motif_window = div(sorted_probs_inds[index],probs_n) motif_rec_start = motif_start + motif_window motif_rec_range = motif_rec_start:(motif_rec_start+motif_size)-1 motif_y2 = data_source2[motif_rec_range] push!(full_data_dict, Dict( "x1" => collect(motif_range), "y1" => motif_y1, "x2" => collect(motif_rec_range), "y2" => motif_y2, "window" => motif_window, "size" => motif_size, "prob" => probs_flat[sorted_probs_inds][index])) end return full_data_dict end """ plot_motifs_cross(time_series::Vector{Float64},time_series2::Vector{Float64}, coordinates::Vector{Any}; plot_size=(2000, 1000), n_motifs=2) Plot motifs from coordinates extracted with `extract_recurrences_cross`. """ function plot_motifs_cross(time_series::Vector{Float64}, time_series2::Vector{Float64}, coordinates::Vector{Any}; plot_size=(2000, 1000), n_motifs=2) pl = CairoMakie.Figure(size = plot_size) p = Axis(pl[1, 1]) lines!(p,1:length(time_series), time_series, color=:black) lines!(p,1:length(time_series2), time_series2, color=:gray) if n_motifs == 1 R1, G1, B1 = rand(3) rcolor = Colors.RGB(R1, G1, B1) first_coordinate = coordinates[1] lines!(p, first_coordinate["x1"], first_coordinate["y1"], linewidth=5, color=rcolor) lines!(p, first_coordinate["x2"], first_coordinate["y2"], linewidth=5, color=rcolor) CairoMakie.scatter!(p, first_coordinate["x1"], first_coordinate["y1"], color=rcolor) CairoMakie.scatter!(p, first_coordinate["x2"], first_coordinate["y2"], color=rcolor) CairoMakie.bracket!(p, text = "window:"*string(first_coordinate["window"])* "; size:"*string(first_coordinate["size"])* "\n p-value: "*string(round(first_coordinate["prob"],digits=3)), first_coordinate["x1"][1], first_coordinate["y1"][1], first_coordinate["x2"][1], first_coordinate["y2"][1], color=rcolor) else for motif in coordinates[1:n_motifs] R1, G1, B1 = rand(3) rcolor = Colors.RGB(R1, G1, B1) lines!(p, motif["x1"], motif["y1"], linewidth=5, color=(rcolor,0.3)) lines!(p, motif["x2"], motif["y2"], linewidth=5, color=(rcolor,0.3)) CairoMakie.scatter!(p, motif["x1"], motif["y1"], color=rcolor) CairoMakie.scatter!(p, motif["x2"], motif["y2"], color=rcolor) CairoMakie.bracket!(p, text = "window:"*string(motif["window"])* "; size:"*string(motif["size"])* "\n p-value: "*string(round(motif["prob"],digits=3)), motif["x1"][1], motif["y1"][1], motif["x2"][1], motif["y2"][1], color=rcolor) end end return pl end """ extract_recurrences_joint(data_source::Vector{Float64}, data_source2::Vector{Float64}, motifs_dict::Dict{String, Vector}; num_windows::Int64 = 3) This function returns x and y coordinates for a given window considering start and size of each motif detected from two time-series in joint-recurrence matrices . The y coordinates are the values from data provided by the user. """ function extract_recurrences_joint(data_source::Vector{Float64}, data_source2::Vector{Float64}, motifs_dict::Dict{String, Vector{Any}}; num_windows::Int64 = 3) probs_n = first(size(motifs_dict["Probs"][1])) probs_flat = vcat(motifs_dict["Probs"]...) sorted_probs_inds = sortperm(probs_flat) motifs_flat = vcat(motifs_dict["Motifs starts and duration"]...) motifs_by_window = motifs_flat[sorted_probs_inds[1:num_windows]] full_data_dict = [] for (index, motif) in enumerate(motifs_by_window) motif_start, motif_size = motif motif_range = motif_start:(motif_start+motif_size)-1 motif_ya1 = data_source[motif_range] motif_window = div(sorted_probs_inds[index],probs_n) motif_rec_start = motif_start + motif_window motif_rec_range = motif_rec_start:(motif_rec_start+motif_size)-1 motif_yb1 = data_source2[motif_range] motif_yb2 = data_source2[motif_rec_range] motif_ya2 = data_source[motif_rec_range] push!(full_data_dict, Dict( "x1" => collect(motif_range), "x2" => collect(motif_rec_range), "ya1" => motif_ya1, "ya2" => motif_ya2, "yb1" => motif_yb1, "yb2" => motif_yb2, "window" => motif_window, "size" => motif_size, "prob" => probs_flat[sorted_probs_inds][index])) end return full_data_dict end """ plot_motifs_joint(time_series::Vector{Float64},time_series2::Vector{Float64}, coordinates::Vector{Any}; plot_size=(2000, 1000), n_motifs=2) Plot motifs from coordinates extracted with `extract_recurrences_joint`. """ function plot_motifs_joint(time_series::Vector{Float64}, time_series2::Vector{Float64}, coordinates::Vector{Any}; plot_size=(2000, 1000), n_motifs=2) pl = CairoMakie.Figure(size = plot_size) p = Axis(pl[1, 1]) lines!(p,1:length(time_series), time_series, color=:black) lines!(p,1:length(time_series2), time_series2, color=:gray) if n_motifs == 1 R1, G1, B1 = rand(3) rcolor = Colors.RGB(R1, G1, B1) first_coordinate = coordinates[1] lines!(p, first_coordinate["x1"], first_coordinate["ya1"], linewidth=5, color=rcolor) lines!(p, first_coordinate["x1"], first_coordinate["yb1"], linewidth=5, color=rcolor) lines!(p, first_coordinate["x2"], first_coordinate["ya2"], linewidth=5, color=rcolor) lines!(p, first_coordinate["x2"], first_coordinate["yb2"], linewidth=5, color=rcolor) CairoMakie.scatter!(p, first_coordinate["x1"], first_coordinate["ya1"], color=rcolor) CairoMakie.scatter!(p, first_coordinate["x1"], first_coordinate["yb1"], color=rcolor) CairoMakie.scatter!(p, first_coordinate["x2"], first_coordinate["ya2"], color=rcolor) CairoMakie.scatter!(p, first_coordinate["x2"], first_coordinate["yb2"], color=rcolor) CairoMakie.bracket!(p, text = "window:"*string(first_coordinate["window"])* "; size:"*string(first_coordinate["size"])* "\n p-value: "*string(round(first_coordinate["prob"],digits=3)), first_coordinate["x1"][1], first_coordinate["ya1"][1], first_coordinate["x2"][1], first_coordinate["ya2"][1], color=rcolor) else for motif in coordinates[1:n_motifs] R1, G1, B1 = rand(3) rcolor = Colors.RGB(R1, G1, B1) lines!(p, motif["x1"], motif["ya1"], linewidth=5, color=(rcolor,0.3)) lines!(p, motif["x1"], motif["yb1"], linewidth=5, color=(rcolor,0.3)) lines!(p, motif["x2"], motif["ya2"], linewidth=5, color=(rcolor,0.3)) lines!(p, motif["x2"], motif["yb2"], linewidth=5, color=(rcolor,0.3)) CairoMakie.scatter!(p, motif["x1"], motif["ya1"], color=(rcolor,0.3)) CairoMakie.scatter!(p, motif["x1"], motif["yb1"], color=(rcolor,0.3)) CairoMakie.scatter!(p, motif["x2"], motif["ya2"], color=(rcolor,0.3)) CairoMakie.scatter!(p, motif["x2"], motif["yb2"], color=(rcolor,0.3)) CairoMakie.bracket!(p, text = "window:"*string(motif["window"])* "; size:"*string(motif["size"])* "\n p-value: "*string(round(motif["prob"],digits=3)), motif["x1"][1], motif["ya1"][1], motif["x2"][1], motif["ya2"][1], color=rcolor) end end return pl end
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
3586
""" rec_matrix_motifs(rec_matrix::RecurrenceMatrix;seqs="recurrences",window_range=collect(1:6),n_motifs=2) Returns set of probabilities associated with consecutive runs in off-diagonals. Argument `seqs` sets the type of consecutive sequences: either 'double' (recurrences and non-recurrences), 'recurrences' or 'poincare' (non-recurrences). The diagonals given by `window_range` argument are considered, along with n_motifs for each diagonal. See `AnalyticComb.weighted_bin_runs_prob` for definition of symbolic construction. """ function rec_matrix_motifs( rec_matrix::Union{RecurrenceMatrix,CrossRecurrenceMatrix,JointRecurrenceMatrix}; seqs="recurrences", window_range=collect(1:6), n_motifs=2) if seqs ∉ ["double","recurrences","poincare"] println("'seqs' must be either 'double', 'recurrences' or 'poincare'") return(NaN) end mat_len = size(rec_matrix,1) if mat_len < window_range[end] println("Largest range in 'window_range' must be smaller than matrix length") return(NaN) end probs = []#Vector{Union{Missing,Float64}}[] motifs_inds_duration = []#Vector{Union{Missing,{Tuple{Int64, Int64}}}}[] # p and q values p = RecurrenceAnalysis.recurrencerate(rec_matrix) q = 1-p println("\n RR is: ",p) println("P and Q are: ",p," and ",q) for i in window_range # add Try catch to entire loop over window try cur_len = mat_len - i col_counts = StatsBase.rle(LinearAlgebra.diag(Matrix(rec_matrix),i)) zipped_tups = collect(zip(col_counts[2],col_counts[1])) if seqs == "recurrences" zipped_tups = filter(x -> x[2] == 1, zipped_tups) # RECURRENCES: Tuples in which the 1st value is 1 elseif seqs == "poincare" zipped_tups = filter(x -> x[2] == 0, zipped_tups) # POINCARE TIMES: Tuples in which the 1st value is 1 end println("\n Zipped tuples: ") print(zipped_tups) println("\n Current segment length: ") print(cur_len) cur_counts = first.(zipped_tups) max_vals_inds = partialsortperm(cur_counts, 1:n_motifs, rev=true) max_vals = cur_counts[max_vals_inds] println("\n Diagonal largest sequences sizes and current total length are") print(max_vals," and ", cur_len) cur_probs = map(x -> AnalyticComb.weighted_bin_runs_pval(p,q,x,cur_len),max_vals) println("\n Probabilities:") print(cur_probs) push!(probs,cur_probs) # Sum counts (stored in col_counts[2]) of sequences appearing before current sequence col_counts[2][max_val_inds[x] - 1] # to obtain position of current sequence in original diagonal cur_inds = map(x -> sum(col_counts[2][1:(max_vals_inds[x]-1)]) + 1,1:n_motifs) zipped_motifs_inds_duration = collect(zip(cur_inds, max_vals)) push!(motifs_inds_duration, zipped_motifs_inds_duration) catch e println("\n Check if sequence has zero occurences or n_motifs is larger than the number of motifs in diagonal") push!(probs,missing) push!(motifs_inds_duration,missing) end end dict_keys = ["Window","Probs","Motifs starts and duration"] Dict(zip(dict_keys, [window_range, # Window probs, # Probs motifs_inds_duration])) #Motif starts end
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
2101
""" persistence_motifs(time_series; range = collect(0.1:0.1:0.9), n_windows=10) Returns curves for p-values vs. Recurrence rate in each window. """ function persistence_motifs(time_series; range = collect(0.1:0.1:0.9), n_windows=10) all_motifs = [] for cur_range in range time_series_mat = RecurrenceAnalysis.RecurrenceMatrix(time_series, cur_range; fixedrate=true) motifs_result = SymbolicInference.rec_matrix_motifs(time_series_mat; window_range = collect(1:n_windows), n_motifs=1) push!(all_motifs, motifs_result) end num_windows = length(all_motifs[1]["Probs"]) # Assuming all have the same number of motifs fig = Figure() ax = Axis(fig[1, 1], limits = (0, 1, 0, 1), xlabel="Recurrence Rates", ylabel="Probabilities") for j in 1:num_windows x_vals = range y_vals = [all_motifs[i]["Probs"][j] for i in 1:length(range)] lines!(ax, x_vals, vcat(y_vals...), label="Window $j") end Legend(fig[1, 2], ax, "Motifs") fig end """ persistence_barcode(time_series; range = collect(0.1:0.1:0.9), n_windows=10,alpha_thresh=0.05) Return barcode plot for each window. Points are plotted whenever the p-value is smaller than `alpha_thresh`. """ function persistence_barcode(time_series; range = collect(0.1:0.1:0.9), n_windows=10,alpha_thresh=0.05) all_motifs = [] for cur_range in range time_series_mat = RecurrenceMatrix(time_series, cur_range; fixedrate=true) motifs_result = rec_matrix_motifs(time_series_mat; window_range=collect(1:n_windows), n_motifs=1) push!(all_motifs, motifs_result) end fig = Figure() ax = Axis(fig[1, 1], limits=(0, 1, 0, n_windows + 1), xlabel="Recurrence Rates", ylabel="Windows") for cur_window in 1:n_windows x_vals = range y_vals = [all_motifs[j]["Probs"][cur_window] for j in 1:length(range)] inds = findall(x -> x < alpha_thresh, vcat(y_vals...)) scatter!(ax, x_vals[inds], fill(cur_window,length(inds)) , label="Window $cur_window") end fig end
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
code
107
using SymbolicInference using Test @testset "SymbolicInference.jl" begin # Write your tests here. end
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
docs
2357
# SymbolicInference [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://fargolo.github.io/SymbolicInference.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://fargolo.github.io/SymbolicInference.jl/dev/) [![Build Status](https://github.com/fargolo/SymbolicInference.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/fargolo/SymbolicInference.jl/actions/workflows/CI.yml?query=branch%3Amain) Probability-based inferences based on the symbolic method. This software implements algorithms that leverage analytic combinatorics to make inference about different types of objects. [See AnalyticComb.jl](https://fargolo.github.io/AnalyticComb.jl/dev/) ## Time-series ### Chaotic, non-linear systems and recurrence analysis See the [white-paper](https://osf.io/preprints/osf/3ws85) and it's [repo](https://github.com/fargolo/paper-vignettes/) The recurrence of states, in the meaning that states are again arbitrarily close after some time of divergence, is a fundamental property of deterministic dynamical systems and is typical for nonlinear or chaotic systems. Poincaré discusse this property in 1890 and it was later proved by Constantin Carathéodory (see Poincaré recurrence theorem). Further on, several techniques address recurrences in dynamical systems for inference. Recurrence plots (RPs) were creature to capture such patterns and several parameters that caractherize the underlying time-series can be obtained with recurrence quantification analysis (RQA). Since each pair of states is mapped into a binary value ('close enough',1, or 'not close enough',0), making probabilistic inference with symbolic methods is straightforward. The procedure in `rec_matrix_motifs()` iterates over [recurrence matrices](https://juliadynamics.github.io/DynamicalSystemsDocs.jl/recurrenceanalysis/stable/) diagonals and checks for repeated motifs. Specifically, whether the size of the longest consecutive sequence in each off-diagonal is unexpectedly large. This may hint at underlying patterns, such as autocorrelations and periodic components. ![](https://raw.githubusercontent.com/fargolo/paper-vignettes/master/outputs/anim3_fps15.gif) ![](https://raw.githubusercontent.com/fargolo/paper-vignettes/master/outputs/screen_peaks.png) ## Graphs ## Genomics
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
1.0.4
5873fd059b5562d0bc17a8e920e14fb1629e9c95
docs
220
```@meta CurrentModule = SymbolicInference ``` # SymbolicInference Documentation for [SymbolicInference](https://github.com/fargolo/SymbolicInference.jl). ```@index ``` ```@autodocs Modules = [SymbolicInference] ```
SymbolicInference
https://github.com/fargolo/SymbolicInference.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
301
module ElementaryChemistry include("GassLaws.jl") include("conversions/TempratureConversion.jl") include("conversions/PressureConversion.jl") export charles_law, boyles_law_solve_pressure, boyles_law_solve_volume, gay_lussacs_law, avogadros_law, absolute_temperature, grahams_law_velocity_ratio end
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
3339
``` The gas laws to calculate volume by temperature and/or pressure changes respectively : Charles, Boyles, Gay Lussacs and Avogadros laws ``` """ Calculate the volume by using charles law, stating that gas volume increases or decreases directly relative to change in temprature. curentVolume = Curent c.c of gas curenttemperature = The Curent temperature in either C or F newtemperature = temperature the gas is being heated, or cooled to temperatureUnit = (c)entigrade, (f)ahrenheit, or (a)bsolute """ function charles_law(curentVolume, curenttemperature, newtemperature, temperatureUnit) newVolume = 0; curenttemperature = absolute_temperature(curenttemperature, temperatureUnit) newtemperature = absolute_temperature(newtemperature, temperatureUnit) newVolume = curentVolume * (newtemperature / curenttemperature) return newVolume end """ When temperature remains contstant but pressure changes we can calculate new volume by using Boyles law when solving for pressure. Which simlpy states : New volume = old volume * old pressure devided by new pressure curentPressure = The curent pressure in mm curentVolume = The curent volume of the gas desiredPressure = The pressure we want to be at """ function boyles_law_solve_pressure(curentPressure, curentVolume, desiredPressure) newVolume = 0; newVolume = (curentVolume * curentPressure) / desiredPressure return newVolume end """ When temperature remains contstant but volume changes we can calculate new pressure by using Boyles law when solving for volume. Which simlpy states : New pressure = old pressure * curent volume devided by new volume curentPressure = The curent pressure in mm curentVolume = The curent volume of the gas desiredVolume = The volume we want to have """ function boyles_law_solve_volume(curentPressure, curentVolume, desiredVolume) newPressure = 0 newPressure = (curentPressure * curentVolume) / desiredVolume return newPressure end """ The pressure of a gas of fixed mass and fixed volume is directly proprtional to the gas's absolute temperature. If a gas's temperature increases, so does its pressure if the mass and volume are held constant. pressure = Curent pressure in atm temperature = Curent temperature of container newTemp = temperature at which we want to know the pressure temperatureUnit = (c)entigrade, (f)ahrenheit, or (a)bsolute """ function gay_lussacs_law(pressure, temperature, newTemp, temperatureUnit) newTemp = absolute_temperature(newTemp, temperatureUnit) temperature = absolute_temperature(temperature, temperatureUnit) newPressure = (pressure * newTemp) / temperature return newPressure end """ Avrogados law under the assumption of ideal gases teaches us that any gas, while having the same temperature, pressure and volume will have the same number of molecules. or : V1|N1 = V2|N2 """ function avogadros_law() return null end """ One of the use cases of grahams law is that we can calculate the ratio of diffusion rates of two gasses. the rate of effusion or diffusion of a gass in inversely proprtional to the square root of the molar mass of the gas. using g/mol give the molar masses of both gasses. """ function grahams_law_velocity_ratio(molar_mass_a,molar_mass_b) ratio = sqrt(molar_mass_a/molar_mass_b) return ratio end
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
1016
``` Chlorine, a gas first used by the Germans during the war, as it is an extremely irritating and poisonous gas. However, it can also sterilize germ-infected water, rendering it safe for consumption. It's made in a lab by heating Manganese dioxide and concentrated hydrochloric acid. ``` """ Given that we use enough hydrochloric acid, how much chlorine in Grams (default) or (L)iters at NTP do we get from x grams of Manganese dioxide. """ function magnese_dioxide_to_chlorine(magneseGrams,unit = "grams") if lowercase(unit) == "grams" return (magneseGrams/86.94) * 71 elseif lowercase(unit) == "litre" || unit == "liter" return (magneseGrams/86.94) * 22.4 end end """ How much hydrochloric acid do we need to convert X amount of Manganese dioxide into chlorine. """ function hydrochloric_acid_needed(magneseGrams) hydroc = (36.5 * 4) * magneseGrams / 86.94 return hydroc end
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
49
#This script will handle all pressure conversion.
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
484
""" Converts Fahrenheit or Centigrade to absolute temperature temperature = temperature to Convert temperatureUnit = (c)entigrade, (f)ahrenheit, or (a)bsolute """ function absolute_temperature(temperature,temperatureUnit) if lowercase(temperatureUnit) == "c" return round(temperature + 273) elseif lowercase(temperatureUnit) == "f" return round((temperature + 459) / 1.8) elseif lowercase(temperatureUnit) == "a" return temperature end end
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
879
using Test include("../src/GassLaws.jl") include("../src/Gasses/Chlorine.jl") include("../src/conversions/TempratureConversion.jl") @test 288 == absolute_temperature(15,"c") @test 288 == absolute_temperature(59,"f") @test 93.25 == charles_law(72,15,100,"c") @test 93.25 == charles_law(72,59,212,"F") @test 125 == boyles_law_solve_pressure(500,100,400) @test 67.0 == round(boyles_law_solve_pressure(500,100,750)) @test 200 == boyles_law_solve_volume(100,2,1) @test 50 == boyles_law_solve_volume(100,2,4) @test 11.25503355704698 == gay_lussacs_law(3,25,845,"c") @test 1.291 == round(grahams_law_velocity_ratio(20,12), digits = 3) @test 0.775 == round(grahams_law_velocity_ratio(12,20), digits =3) @test 8.166551644812515 == magnese_dioxide_to_chlorine(10) @test 2.576489533011272 == magnese_dioxide_to_chlorine(10,"litre") @test 73.0503795721187 == hydrochloric_acid_needed(43.5)
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
code
83
using Test @testset "Temperature, Gas laws" begin include("GassesTest.jl") end
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.2
1a27d437079ce4a5970fef69013565ea21424df9
docs
410
# chemistry.jl An elementary introduction into chemistry, Based on "An Elementary Chemistry" By Eric John Holmyard. Starting with Gas Laws : - [x] Charles law - [x] Boyles law - [x] Gay Lussac's law - [x] Avogadro's law - [x] Grahams law Specific Gasses : - [ ] Chlorine - in development Extra Functionalities - [x] Temparture (C°/F°) to K° (absolute) - [ ] Converting pressure units (atm,mmhg, etc.)
ElementaryChemistry
https://github.com/baobabfruit88/ElementaryChemistry.jl.git
[ "MIT" ]
0.1.0
30b6ee355f4fb9a79db85300f2d96e1582eb89aa
code
590
module SimpleGraphConverter using SimpleGraphs, Graphs import SimpleGraphs: UndirectedGraph, UG import Graphs: SimpleGraph function UndirectedGraph(g::SimpleGraph{T})::UG{T} where {T} G = UG{T}() for v in vertices(g) add!(G, v) end for e in edges(g) u = e.dst v = e.src add!(G, u, v) end return G end function SimpleGraph(G::UG)::SimpleGraph H = relabel(G) n = NV(H) g = SimpleGraph(n) for e in H.E u, v = e add_edge!(g, u, v) end return g end end # module SimpleGraphConverter
SimpleGraphConverter
https://github.com/scheinerman/SimpleGraphConverter.jl.git
[ "MIT" ]
0.1.0
30b6ee355f4fb9a79db85300f2d96e1582eb89aa
code
438
using Test, SimpleGraphs, Graphs, SimpleGraphConverter @testset "SimpleGraph to UndirectedGraph" begin g = path_graph(10) G = UG(g) @test G == Path(10) g = cycle_graph(8) G = UndirectedGraph(g) @test G == Cycle(8) end @testset "UndirectedGraph to SimpleGraph" begin G = Path(10) g = SimpleGraph(G) @test g == path_graph(10) G = Cycle(8) g = SimpleGraph(G) @test g == cycle_graph(8) end
SimpleGraphConverter
https://github.com/scheinerman/SimpleGraphConverter.jl.git
[ "MIT" ]
0.1.0
30b6ee355f4fb9a79db85300f2d96e1582eb89aa
docs
2398
# SimpleGraphConverter This package convertes graphs between the [`Graphs`](https://github.com/JuliaGraphs/Graphs.jl) and [`SimpleGraphs`](https://github.com/scheinerman/SimpleGraphs.jl.git) modules. ## Overview The Julia modules `Graphs` [formerly `LightGraphs`] and `SimpleGraphs` can be used for graph theory computations. Simple graphs (graphs without directions, loops, or multiple edges) are defined in both modules. * In `Graphs` the datatype is `SimpleGraph`. * In `SimpleGraphs` the data type is `UndirectedGraph` (which may be abbreviated `UG`). This `SimpleGraphConverter` module helps with conversion from one type to the other. * If `g` is a `SimpleGraph`, then `UndirectedGraph(g)` [or `UG(g)`] converts the graph to type `UndirectedGraph`. * If `G` is an `UndirectedGraph`, then `SimpleGraph(G)` converts the graph to a `SimpleGraph`. ## Examples #### Converting a `SimpleGraph` to an `UndirectedGraph` ``` julia> using Graphs, SimpleGraphs, SimpleGraphConverter julia> g = cycle_graph(6) {6, 6} undirected simple Int64 graph julia> G = UG(g) UndirectedGraph{Int64} (n=6, m=6) julia> G == Cycle(6) true ``` #### Converting an `UndirectedGraph` to a `SimpleGraph` ``` julia> G = Path(9) Path (n=9, m=8) julia> g = SimpleGraph(G) {9, 8} undirected simple Int64 graph julia> g == path_graph(9) true ``` ## Loss of vertex names The vertices of a `SimpleGraph` (from the `Graphs` module) is always a set of integers of the form `{1,2,...,n}`. The vertex set of an `UndirectedGraph` can contain arbitrary types. When converting from a `SimpleGraph` to an `UndirectedGraph`, the names of the vertices are converted to consecutive integers. In this example, the `Petersen()` function returns the Petersen graph as an `UndirectedGraph`. The ten vertices are the two-element subsets of `{1,2,3,4,5}`. When we convert to a `SimpleGraph`, the resulting graph has ten vertices that are the integers from `1` to `10`. When we convert that `SimpleGraph` back to an `UndirectedGraph`, the vertices are different (integers vs. two-element sets) from the original. ``` julia> using ShowSet julia> G = Petersen() Petersen (n=10, m=15) julia> g = SimpleGraph(G) {10, 15} undirected simple Int64 graph julia> H = UG(g) UndirectedGraph{Int64} (n=10, m=15) julia> G == H false julia> using SimpleGraphAlgorithms julia> is_iso(G,H) # lots of output deleted true ```
SimpleGraphConverter
https://github.com/scheinerman/SimpleGraphConverter.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
code
524
include(joinpath(dirname(@__DIR__), "src", "PenultimateDays.jl")) using Documenter, .PenultimateDays Documenter.makedocs( clean = true, doctest = true, modules = Module[PenultimateDays], repo = "", highlightsig = true, sitename = "PenultimateDays Documentation", expandfirst = [], pages = [ "Home" => "index.md", "Documentation" => "documentation.md", "Examples" => "examples.md" ] ) deploydocs(; repo = "github.com/jakewilliami/PenultimateDays.jl.git", )
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
code
3087
module PenultimateDays using Dates # Dates (stdlib) extended for m in (:first, :last), t in (:week, :month, :quarter, :year) f = Symbol("$(m)dayof$(t)") ms, ts = string(m), string(t) @eval begin import Dates: $f @doc """ $($f)(dt::TimeType, d::Int) -> TimeType Adjusts `dt` to the $($ms) `d`-day of its $($ts), given some `d`, the day of the week as an `Int`, with `1 = Monday, 2 = Tuesday, &c...` For example, the `$($f)(dt, 6)` will find the $($ms) Saturday of the $($ts). Dates also exports integer aliases `Monday`–`Sunday`, so you can write `$($f)(dt, Saturday)`. See also: `Dates.dayofweek` """ $f end end ## Week function firstdayofweek(dt::TimeType, d::Int) fd_date = firstdayofweek(dt) return fd_date + Day(d - 1) end lastdayofweek(dt::TimeType, d::Int) = firstdayofweek(dt, d) ## Month function firstdayofmonth(dt::TimeType, d::Int) fd_date = firstdayofmonth(dt) fd_i = dayofweek(fd_date) fd_day = d - fd_i + 1 + 7(fd_i > d) return fd_date + Day(fd_day - 1) end function lastdayofmonth(dt::TimeType, d::Int) ld_date = lastdayofmonth(dt) ld_i = dayofweek(ld_date) ld_day = 7(ld_i < d) - d + ld_i + 1 return ld_date - Day(ld_day - 1) end ## Quarter firstdayofquarter(dt::TimeType, d::Int) = firstdayofmonth(firstdayofquarter(dt), d) lastdayofquarter(dt::TimeType, d::Int) = lastdayofmonth(lastdayofquarter(dt), d) ## Year firstdayofyear(dt::TimeType, d::Int) = firstdayofmonth(firstdayofyear(dt), d) lastdayofyear(dt::TimeType, d::Int) = lastdayofmonth(lastdayofyear(dt), d) # Trivial Penultimate Functions for t in (:week, :month, :quarter, :year) f, f′ = Symbol("penultimatedayof$(t)"), Symbol("lastdayof$(t)") ts = string(t) @eval begin @doc """ $($f)(dt::TimeType) -> TimeType Adjusts `dt` to the penultimate (second-to-last) day of its $($ts). """ $f(dt::TimeType) = $f′(dt) - Day(1) export $f end end # Day-specific Penultimate Functions ## Week penultimatedayofweek(dt::TimeType, d::Int) = throw(ArgumentError("It is impossible to find the second-to-last day of a week (specifying the day) wth necessarily only one of each days in the week")) ## Month, Quarter, and Year for t in (:month, :quarter, :year) f, f′ = Symbol("penultimatedayof$(t)"), Symbol("lastdayof$(t)") ts = string(t) @eval begin @doc """ $($f)(dt::TimeType, d::Int) -> TimeType Adjusts `dt` to the penultimate (second-to-last) day of its $($ts), given some `d`, the day of the week as an `Int`, with `1 = Monday, 2 = Tuesday, &c...` For example, the `$($f)(dt, 6)` will find the penultimate Saturday of the $($ts). Dates also exports integer aliases `Monday`–`Sunday`, so you can write `$($f)(dt, Saturday)`. See also: `Dates.dayofweek`, `$($f′)` """ $f(dt::TimeType, d::Int) = $f′(dt, d) - Week(1) end end end # end module
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
code
9320
using Dates using PenultimateDays using Test #=Test.eval(quote function record(ts::DefaultTestSet, t::Error) # t::Union{Fail, Error} if t isa Error e = only(match(r"^(\w+)\(.*\)$", t.value).captures) if e == "ErrorException" # || e == "MethodError" push!(ts.results, t) end end end end) =# @testset "PenultimateDays.jl" begin d1 = Date(2022, 6, 24) d2 = Date(2023, 1, 12) d3 = Date(2033, 2, 7) dt = DateTime("1996-01-05T12:30:00") @testset "Trivial Penultimate Functions" begin # Week @test penultimatedayofweek(d1) == Date(2022, 6, 25) @test penultimatedayofweek(d2) == Date(2023, 1, 14) @test penultimatedayofweek(d3) == Date(2033, 2, 12) # Month @test penultimatedayofmonth(d1) == Date(2022, 6, 29) @test penultimatedayofmonth(d2) == Date(2023, 1, 30) @test penultimatedayofmonth(d3) == Date(2033, 2, 27) # Quarter @test penultimatedayofquarter(d1) == Date(2022, 6, 29) @test penultimatedayofquarter(d2) == Date(2023, 3, 30) @test penultimatedayofquarter(d3) == Date(2033, 3, 30) # Year @test penultimatedayofyear(d1) == Date(2022, 12, 30) @test penultimatedayofyear(d2) == Date(2023, 12, 30) @test penultimatedayofyear(d3) == Date(2033, 12, 30) # Time type @test penultimatedayofweek(dt) isa typeof(dt) @test penultimatedayofmonth(dt) isa typeof(dt) @test penultimatedayofquarter(dt) isa typeof(dt) @test penultimatedayofyear(dt) isa typeof(dt) end @testset "Day-specific Penultimate Functions" begin # Week ## Cannot have a second to last specified day in a week, which ## only contains one of each day @test_throws ArgumentError penultimatedayofweek(d1, Tuesday) # Month @test penultimatedayofmonth(d1, Monday) == Date(2022, 6, 20) @test penultimatedayofmonth(d1, Wednesday) == Date(2022, 6, 22) @test penultimatedayofmonth(d1, Sunday) == Date(2022, 6, 19) @test penultimatedayofmonth(d2, Monday) == Date(2023, 1, 23) @test penultimatedayofmonth(d2, Wednesday) == Date(2023, 1, 18) @test penultimatedayofmonth(d2, Sunday) == Date(2023, 1, 22) @test penultimatedayofmonth(d3, Monday) == Date(2033, 2, 21) @test penultimatedayofmonth(d3, Wednesday) == Date(2033, 2, 16) @test penultimatedayofmonth(d3, Sunday) == Date(2033, 2, 20) # Quarter @test penultimatedayofquarter(d1, Monday) == Date(2022, 6, 20) @test penultimatedayofquarter(d1, Wednesday) == Date(2022, 6, 22) @test penultimatedayofquarter(d1, Sunday) == Date(2022, 6, 19) @test penultimatedayofquarter(d2, Monday) == Date(2023, 3, 20) @test penultimatedayofquarter(d2, Wednesday) == Date(2023, 3, 22) @test penultimatedayofquarter(d2, Sunday) == Date(2023, 3, 19) @test penultimatedayofquarter(d3, Monday) == Date(2033, 3, 21) @test penultimatedayofquarter(d3, Wednesday) == Date(2033, 3, 23) @test penultimatedayofquarter(d3, Sunday) == Date(2033, 3, 20) # Year @test penultimatedayofyear(d1, Monday) == Date(2022, 12, 19) @test penultimatedayofyear(d1, Wednesday) == Date(2022, 12, 21) @test penultimatedayofyear(d1, Sunday) == Date(2022, 12, 18) @test penultimatedayofyear(d2, Monday) == Date(2023, 12, 18) @test penultimatedayofyear(d2, Wednesday) == Date(2023, 12, 20) @test penultimatedayofyear(d2, Sunday) == Date(2023, 12, 24) @test penultimatedayofyear(d3, Monday) == Date(2033, 12, 19) @test penultimatedayofyear(d3, Wednesday) == Date(2033, 12, 21) @test penultimatedayofyear(d3, Sunday) == Date(2033, 12, 18) # Time type @test penultimatedayofmonth(dt, Tuesday) isa typeof(dt) @test penultimatedayofquarter(dt, Tuesday) isa typeof(dt) @test penultimatedayofyear(dt, Tuesday) isa typeof(dt) end @testset "Dates (stdlib) Extended" begin # Week @test firstdayofweek(d1, Monday) == Date(2022, 6, 20) @test firstdayofweek(d1, Wednesday) == Date(2022, 6, 22) @test firstdayofweek(d1, Sunday) == Date(2022, 6, 26) @test firstdayofweek(d2, Monday) == Date(2023, 1, 9) @test firstdayofweek(d2, Wednesday) == Date(2023, 1, 11) @test firstdayofweek(d2, Sunday) == Date(2023, 1, 15) @test firstdayofweek(d3, Monday) == Date(2033, 2, 7) @test firstdayofweek(d3, Wednesday) == Date(2033, 2, 9) @test firstdayofweek(d3, Sunday) == Date(2033, 2, 13) @test lastdayofweek(d1, Monday) == Date(2022, 6, 20) @test lastdayofweek(d1, Wednesday) == Date(2022, 6, 22) @test lastdayofweek(d1, Sunday) == Date(2022, 6, 26) @test lastdayofweek(d2, Monday) == Date(2023, 1, 9) @test lastdayofweek(d2, Wednesday) == Date(2023, 1, 11) @test lastdayofweek(d2, Sunday) == Date(2023, 1, 15) @test lastdayofweek(d3, Monday) == Date(2033, 2, 7) @test lastdayofweek(d3, Wednesday) == Date(2033, 2, 9) @test lastdayofweek(d3, Sunday) == Date(2033, 2, 13) # Month @test firstdayofmonth(d1, Monday) == Date(2022, 6, 6) @test firstdayofmonth(d1, Wednesday) == Date(2022, 6, 1) @test firstdayofmonth(d1, Sunday) == Date(2022, 6, 5) @test firstdayofmonth(d2, Monday) == Date(2023, 1, 2) @test firstdayofmonth(d2, Wednesday) == Date(2023, 1, 4) @test firstdayofmonth(d2, Sunday) == Date(2023, 1, 1) @test firstdayofmonth(d3, Monday) == Date(2033, 2, 7) @test firstdayofmonth(d3, Wednesday) == Date(2033, 2, 2) @test firstdayofmonth(d3, Sunday) == Date(2033, 2, 6) @test lastdayofmonth(d1, Monday) == Date(2022, 6, 27) @test lastdayofmonth(d1, Wednesday) == Date(2022, 6, 29) @test lastdayofmonth(d1, Sunday) == Date(2022, 6, 26) @test lastdayofmonth(d2, Monday) == Date(2023, 1, 30) @test lastdayofmonth(d2, Wednesday) == Date(2023, 1, 25) @test lastdayofmonth(d2, Sunday) == Date(2023, 1, 29) @test lastdayofmonth(d3, Monday) == Date(2033, 2, 28) @test lastdayofmonth(d3, Wednesday) == Date(2033, 2, 23) @test lastdayofmonth(d3, Sunday) == Date(2033, 2, 27) # Quarter @test firstdayofquarter(d1, Monday) == Date(2022, 4, 4) @test firstdayofquarter(d1, Wednesday) == Date(2022, 4, 6) @test firstdayofquarter(d1, Sunday) == Date(2022, 4, 3) @test firstdayofquarter(d2, Monday) == Date(2023, 1, 2) @test firstdayofquarter(d2, Wednesday) == Date(2023, 1, 4) @test firstdayofquarter(d2, Sunday) == Date(2023, 1, 1) @test firstdayofquarter(d3, Monday) == Date(2033, 1, 3) @test firstdayofquarter(d3, Wednesday) == Date(2033, 1, 5) @test firstdayofquarter(d3, Sunday) == Date(2033, 1, 2) @test lastdayofquarter(d1, Monday) == Date(2022, 6, 27) @test lastdayofquarter(d1, Wednesday) == Date(2022, 6, 29) @test lastdayofquarter(d1, Sunday) == Date(2022, 6, 26) @test lastdayofquarter(d2, Monday) == Date(2023, 3, 27) @test lastdayofquarter(d2, Wednesday) == Date(2023, 3, 29) @test lastdayofquarter(d2, Sunday) == Date(2023, 3, 26) @test lastdayofquarter(d3, Monday) == Date(2033, 3, 28) @test lastdayofquarter(d3, Wednesday) == Date(2033, 3, 30) @test lastdayofquarter(d3, Sunday) == Date(2033, 3, 27) # Year @test firstdayofyear(d1, Monday) == Date(2022, 1, 3) @test firstdayofyear(d1, Wednesday) == Date(2022, 1, 5) @test firstdayofyear(d1, Sunday) == Date(2022, 1, 2) @test firstdayofyear(d2, Monday) == Date(2023, 1, 2) @test firstdayofyear(d2, Wednesday) == Date(2023, 1, 4) @test firstdayofyear(d2, Sunday) == Date(2023, 1, 1) @test firstdayofyear(d3, Monday) == Date(2033, 1, 3) @test firstdayofyear(d3, Wednesday) == Date(2033, 1, 5) @test firstdayofyear(d3, Sunday) == Date(2033, 1, 2) @test lastdayofyear(d1, Monday) == Date(2022, 12, 26) @test lastdayofyear(d1, Wednesday) == Date(2022, 12, 28) @test lastdayofyear(d1, Sunday) == Date(2022, 12, 25) @test lastdayofyear(d2, Monday) == Date(2023, 12, 25) @test lastdayofyear(d2, Wednesday) == Date(2023, 12, 27) @test lastdayofyear(d2, Sunday) == Date(2023, 12, 31) @test lastdayofyear(d3, Monday) == Date(2033, 12, 26) @test lastdayofyear(d3, Wednesday) == Date(2033, 12, 28) @test lastdayofyear(d3, Sunday) == Date(2033, 12, 25) # Time type @test firstdayofweek(dt, Tuesday) isa typeof(dt) @test lastdayofweek(dt, Tuesday) isa typeof(dt) @test firstdayofmonth(dt, Tuesday) isa typeof(dt) @test lastdayofmonth(dt, Tuesday) isa typeof(dt) @test firstdayofquarter(dt, Tuesday) isa typeof(dt) @test lastdayofquarter(dt, Tuesday) isa typeof(dt) @test firstdayofyear(dt, Tuesday) isa typeof(dt) @test lastdayofyear(dt, Tuesday) isa typeof(dt) end end
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
docs
2096
<h1 align="center">PenultimateDays.jl</h1> <!-- [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jakewilliami.github.io/PenultimateDays.jl/stable) --> [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jakewilliami.github.io/PenultimateDays.jl/dev) [![CI](https://github.com/invenia/PkgTemplates.jl/workflows/CI/badge.svg)](https://github.com/jakewilliami/PenultimateDays.jl/actions?query=workflow%3ACI) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) <!-- ![Project Status](https://img.shields.io/badge/status-maturing-green) --> Similar to [Dates](https://github.com/JuliaLang/julia/tree/master/stdlib/Dates)' `firstdayof*` and `lastdayof*`, I introduce to you `penultimatedayof*`; a useful function to find the second-to-last day of a measure of time. Unlike Dates' `*dayof*` functions, I have extended functionality to find, for example, the penultimate _Tuesday_ of a measure of time. We have also extended some of Dates' `*dayof*` functions to allow this functionality. ## Quick Start ```julia julia> using Dates, PenultimateDays julia> d = today() 2022-06-24 julia> penultimatedayofweek(d) # second-to-last day of the week 2022-06-25 julia> penultimatedayofmonth(d) # second-to-last day of the month 2022-06-29 julia> penultimatedayofmonth(d, Tuesday) # second-to-last Tuesday of the month 2022-06-21 julia> penultimatedayofquarter(d) # second-to-last day of the quarter 2022-06-29 julia> penultimatedayofquarter(d, Tuesday) # second-to-last Tuesday of the quarter 2022-06-21 julia> penultimatedayofyear(d) # second-to-last day of the year 2022-12-31 julia> penultimatedayofyear(d, Tuesday) # second-to-last Tuesday of the year 2022-12-20 ``` ## Extending the Dates standard library We have also extended the Dates standard library to allow specification of day for `*dayof*` functions: ```julia julia> using Dates, PenultimateDays julia> d = today() 2022-06-24 julia> firstdayofmonth(d, Tuesday) 2022-06-07 julia> lastdayofmonth(d, Tuesday) 2022-06-28 ```
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
docs
699
# Documentation ```@contents Depth = 3 ``` ```@meta CurrentModule = PenultimateDays DocTestSetup = quote using PenultimateDays end ``` ## Trivial Penultimate Functions ```@docs penultimatedayofweek(::TimeType) penultimatedayofmonth(::TimeType) penultimatedayofquarter(::TimeType) penultimatedayofyear(::TimeType) ``` ## Day-specific Penultimate Functions ```@docs penultimatedayofmonth(::TimeType, ::Int) penultimatedayofquarter(::TimeType, ::Int) penultimatedayofyear(::TimeType, ::Int) ``` ## Dates (Standard Library) Extended ```@docs firstdayofweek lastdayofweek firstdayofmonth lastdayofmonth firstdayofquarter lastdayofquarter firstdayofyear lastdayofyear ``` # Index ```@index ```
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
docs
1071
# Examples ## Basic examples ```julia julia> using Dates, PenultimateDays julia> d = today() 2022-06-24 julia> penultimatedayofweek(d) # second-to-last day of the week 2022-06-25 julia> penultimatedayofmonth(d) # second-to-last day of the month 2022-06-29 julia> penultimatedayofmonth(d, Tuesday) # second-to-last Tuesday of the month 2022-06-21 julia> penultimatedayofquarter(d) # second-to-last day of the quarter 2022-06-29 julia> penultimatedayofquarter(d, Tuesday) # second-to-last Tuesday of the quarter 2022-06-21 julia> penultimatedayofyear(d) # second-to-last day of the year 2022-12-31 julia> penultimatedayofyear(d, Tuesday) # second-to-last Tuesday of the year 2022-12-20 ``` ## Extending the Dates standard library We have also extended the Dates standard library to allow specification of day for `*dayof*` functions: ```julia julia> using Dates, PenultimateDays julia> d = today() 2022-06-24 julia> firstdayofmonth(d, Tuesday) 2022-06-07 julia> lastdayofmonth(d, Tuesday) 2022-06-28 ``` See also `test/runtests.jl` in the repository.
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.1.0
427088191e7fb0bd1935b74bb2d1dd69d23c3643
docs
230
# PenultimateDays.jl Documentation ```@contents ``` ```@meta CurrentModule = PenultimateDays DocTestSetup = quote using PenultimateDays end ``` ## Adding PenultimateDays.jl ```@repl using Pkg Pkg.add("PenultimateDays") ```
PenultimateDays
https://github.com/jakewilliami/PenultimateDays.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
247
using Documenter, FeatherLib makedocs( modules = [FeatherLib], sitename = "FeatherLib.jl", analytics="UA-132838790-1", pages = [ "Introduction" => "index.md" ] ) deploydocs( repo = "github.com/queryverse/FeatherLib.jl.git" )
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
391
module FeatherLib using Arrow, FlatBuffers, CategoricalArrays, Mmap export featherread, featherwrite import Dates const FEATHER_VERSION = 2 # wesm/feather/cpp/src/common.h const FEATHER_MAGIC_BYTES = Vector{UInt8}(codeunits("FEA1")) const MIN_FILE_LENGTH = 12 include("metadata.jl") # flatbuffer defintions include("loadfile.jl") include("read.jl") include("write.jl") end # module
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
1548
getoutputlength(version::Int32, x::Integer) = version < FEATHER_VERSION ? x : padding(x) function validatefile(filename::AbstractString, data::AbstractVector{UInt8}) if length(data) < MIN_FILE_LENGTH throw(ArgumentError("'$file' is not in feather format: total length of file: $(length(data))")) end header = data[1:4] footer = data[(end-3):end] if header ≠ FEATHER_MAGIC_BYTES || footer ≠ FEATHER_MAGIC_BYTES throw(ArgumentError(string("'$filename' is not in feather format: header = $header, ", "footer = $footer."))) end end function loadfile(filename::AbstractString; use_mmap::Bool=true) isfile(filename) || throw(ArgumentError("'$filename' is not a valid file.")) data = use_mmap ? Mmap.mmap(filename) : read(filename) validatefile(filename, data) data end function metalength(data::AbstractVector{UInt8}) read(IOBuffer(data[(length(data)-7):(length(data)-4)]), Int32) end function metaposition(data::AbstractVector{UInt8}, metalen::Integer=metalength(data)) length(data) - (metalen+7) end function rootposition(data::AbstractVector{UInt8}, mpos::Integer=metaposition(data)) read(IOBuffer(data[mpos:(mpos+4)]), Int32) end function getctable(data::AbstractVector{UInt8}) metapos = metaposition(data) rootpos = rootposition(data, metapos) ctable = FlatBuffers.read(Metadata.CTable, data, metapos + rootpos - 1) if ctable.version < FEATHER_VERSION @warn("This feather file is old and may not be readable.") end ctable end
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
5623
module Metadata import Dates using FlatBuffers @enum(DType, BOOL = 0, INT8 = 1, INT16 = 2, INT32 = 3, INT64 = 4, UINT8 = 5, UINT16 = 6, UINT32 = 7, UINT64 = 8, FLOAT = 9, DOUBLE = 10, UTF8 = 11, BINARY = 12, CATEGORY = 13, TIMESTAMP = 14, DATE = 15, TIME = 16) @enum(Encoding, PLAIN = 0, DICTIONARY = 1) @enum(TimeUnit, SECOND = 0, MILLISECOND = 1, MICROSECOND = 2, NANOSECOND = 3) # FlatBuffers.enumsizeof(::Type{TimeUnit}) = UInt8 mutable struct PrimitiveArray dtype::DType encoding::Encoding offset::Int64 length::Int64 null_count::Int64 total_bytes::Int64 end mutable struct CategoryMetadata levels::PrimitiveArray ordered::Bool end @DEFAULT CategoryMetadata ordered=false mutable struct TimestampMetadata unit::TimeUnit timezone::String end mutable struct DateMetadata end mutable struct TimeMetadata unit::TimeUnit end @UNION TypeMetadata (Nothing,CategoryMetadata,TimestampMetadata,DateMetadata,TimeMetadata) mutable struct Column name::String values::PrimitiveArray metadata_type::Int8 metadata::TypeMetadata user_metadata::String end function Column(name::String, values::PrimitiveArray, metadata::TypeMetadata=nothing, user_metadata::String="") Column(name, values, FlatBuffers.typeorder(TypeMetadata, typeof(metadata)), metadata, user_metadata) end mutable struct CTable description::String num_rows::Int64 columns::Vector{Column} version::Int32 metadata::String end end # module # wesm/feather/cpp/src/metadata_generated.h # wesm/feather/cpp/src/types.h const JULIA_TYPE_DICT = Dict{Metadata.DType,DataType}( Metadata.BOOL => Bool, Metadata.INT8 => Int8, Metadata.INT16 => Int16, Metadata.INT32 => Int32, Metadata.INT64 => Int64, Metadata.UINT8 => UInt8, Metadata.UINT16 => UInt16, Metadata.UINT32 => UInt32, Metadata.UINT64 => UInt64, Metadata.FLOAT => Float32, Metadata.DOUBLE => Float64, Metadata.UTF8 => String, # can also be WeakRefString{UInt8} Metadata.BINARY => Vector{UInt8}, Metadata.CATEGORY => Int64, Metadata.TIMESTAMP => Int64, Metadata.DATE => Int64, Metadata.TIME => Int64 ) const METADATA_TYPE_DICT = Dict{DataType,Metadata.DType}( Bool => Metadata.BOOL, Int8 => Metadata.INT8, Int16 => Metadata.INT16, Int32 => Metadata.INT32, Int64 => Metadata.INT64, UInt8 => Metadata.UINT8, UInt16 => Metadata.UINT16, UInt32 => Metadata.UINT32, UInt64 => Metadata.UINT64, Float32 => Metadata.FLOAT, Float64 => Metadata.DOUBLE, String => Metadata.UTF8, Vector{UInt8} => Metadata.BINARY, Dates.Time => Metadata.INT64, Dates.DateTime => Metadata.INT64, Dates.Date => Metadata.INT32, # WeakRefString{UInt8} => Metadata.UTF8 # not currently being used ) const NON_PRIMITIVE_TYPES = Set([Metadata.UTF8, Metadata.BINARY]) const JULIA_TIME_DICT = Dict{Metadata.TimeUnit,DataType}( Metadata.SECOND => Dates.Second, Metadata.MILLISECOND => Dates.Millisecond, Metadata.MICROSECOND => Dates.Microsecond, Metadata.NANOSECOND => Dates.Nanosecond ) const METADATA_TIME_DICT = Dict{DataType,Metadata.TimeUnit}(v=>k for (k,v) in JULIA_TIME_DICT) isprimitivetype(t::Metadata.DType) = t ∉ NON_PRIMITIVE_TYPES juliatype(meta::Nothing, values_type::Metadata.DType) = JULIA_TYPE_DICT[values_type] juliatype(values_type::Metadata.DType) = juliatype(nothing, values_type) function juliatype(meta::Metadata.CategoryMetadata, values_type::Metadata.DType) JULIA_TYPE_DICT[meta.levels.dtype] end function juliatype(meta::Metadata.TimestampMetadata, values_type::Metadata.DType) Timestamp{JULIA_TIME_DICT[meta.unit]} end function juliatype(meta::Metadata.TimeMetadata, values_type::Metadata.DType) TimeOfDay{JULIA_TIME_DICT[meta.unit],JULIA_TYPE_DICT[values_type]} end juliatype(meta::Metadata.DateMetadata, values_type::Metadata.DType) = Datestamp function juliatype(col::Metadata.Column) T = juliatype(col.metadata, col.values.dtype) col.values.null_count == 0 ? T : Union{T,Missing} end function feathertype(::Type{T}) where T if !haskey(METADATA_TYPE_DICT, T) throw(ArgumentError("Type $T is not supported by the Feather format.")) else return METADATA_TYPE_DICT[T] end end feathertype(::Type{Union{T,Missing}}) where T = feathertype(T) feathertype(::Type{<:Arrow.Datestamp}) = Metadata.INT32 feathertype(::Type{<:Arrow.Timestamp}) = Metadata.INT64 feathertype(::Type{<:Arrow.TimeOfDay{P,Int32}}) where P = Metadata.INT32 feathertype(::Type{<:Arrow.TimeOfDay{P,Int64}}) where P = Metadata.INT64 getmetadata(io::IO, ::Type{T}, A::ArrowVector) where T = nothing getmetadata(io::IO, ::Type{Union{T,Missing}}, A::ArrowVector) where T = getmetadata(io, T, A) getmetadata(io::IO, ::Type{Arrow.Datestamp}, A::ArrowVector) = Metadata.DateMetadata() function getmetadata(io::IO, ::Type{Arrow.Timestamp{T}}, A::ArrowVector) where T Metadata.TimestampMetadata(METADATA_TIME_DICT[T], "") end function getmetadata(io::IO, ::Type{Arrow.TimeOfDay{P,T}}, A::ArrowVector) where {P,T} Metadata.TimeMetadata(METADATA_TIME_DICT[P]) end # WARNINGMDATA_TYPE_DICT Arrow standard says nothing about specifying whether DictEncoding is ordered! function getmetadata(io::IO, ::Type{T}, A::DictEncoding) where T vals = writecontents(Metadata.PrimitiveArray, io, levels(A)) Metadata.CategoryMetadata(vals, true) end getmetadata(io::IO, ::Type{Union{Missing, T}}, A::DictEncoding) where T = getmetadata(io, T, A)
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
2760
struct ResultSet columns::AbstractVector{AbstractVector} names::Vector{Symbol} description::String metadata::String end function featherread(filename::AbstractString; use_mmap=true) data = loadfile(filename, use_mmap=use_mmap) ctable = getctable(data) ncols = length(ctable.columns) colnames = [Symbol(col.name) for col in ctable.columns] coltypes = [juliatype(col) for col in ctable.columns] columns = ArrowVector[constructcolumn(coltypes[i], data, ctable.columns[i].metadata, ctable.columns[i]) for i in 1:ncols] return ResultSet(columns, colnames, ctable.description, ctable.metadata) end #===================================================================================================== new column construction stuff =====================================================================================================# Base.length(p::Metadata.PrimitiveArray) = p.length startloc(p::Metadata.PrimitiveArray) = p.offset+1 Arrow.nullcount(p::Metadata.PrimitiveArray) = p.null_count function bitmasklength(p::Metadata.PrimitiveArray) nullcount(p) == 0 ? 0 : padding(bytesforbits(length(p))) end function offsetslength(p::Metadata.PrimitiveArray) isprimitivetype(p.dtype) ? 0 : padding((length(p)+1)*sizeof(Int32)) end valueslength(p::Metadata.PrimitiveArray) = p.total_bytes - offsetslength(p) - bitmasklength(p) function offsetsloc(p::Metadata.PrimitiveArray) if isprimitivetype(p.dtype) throw(ErrorException("Trying to obtain offset values for primitive array.")) end startloc(p) + bitmasklength(p) end # override default offset type Locate.Offsets(col::Metadata.PrimitiveArray) = Locate.Offsets{Int32}(offsetsloc(col)) Locate.length(col::Metadata.PrimitiveArray) = length(col) Locate.values(col::Metadata.PrimitiveArray) = startloc(col) + bitmasklength(col) + offsetslength(col) # this is only relevant for lists, values type must be UInt8 Locate.valueslength(col::Metadata.PrimitiveArray) = valueslength(col) Locate.bitmask(col::Metadata.PrimitiveArray) = startloc(col) function constructcolumn(::Type{T}, data::Vector{UInt8}, meta::Metadata.CategoryMetadata, col::Metadata.Column) where T reftype = juliatype(col.values.dtype) DictEncoding{T}(locate(data, reftype, col.values), locate(data, T, col.metadata.levels)) end function constructcolumn(::Type{Union{T,Missing}}, data::Vector{UInt8}, meta::Metadata.CategoryMetadata, col::Metadata.Column) where T reftype = Union{juliatype(col.values.dtype),Missing} DictEncoding{Union{T,Missing}}(locate(data, reftype, col.values), locate(data, T, col.metadata.levels)) end function constructcolumn(::Type{T}, data::Vector{UInt8}, meta, col::Metadata.Column) where T locate(data, T, col.values) end
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
2712
function featherwrite(filename::AbstractString, columns, colnames; description::AbstractString="", metadata::AbstractString="") ncol = length(columns) nrows = length(columns[1]) cols = ArrowVector[arrowformat(_first_col_convert_pass(col)) for col in columns] open(filename, "w+") do io writepadded(io, FEATHER_MAGIC_BYTES) colmetadata = Metadata.Column[writecolumn(io, string(colnames[i]), cols[i]) for i in 1:ncol] ctable = Metadata.CTable(description, nrows, colmetadata, FEATHER_VERSION, metadata) len = writemetadata(io, ctable) write(io, Int32(len)) # these two writes combined are properly aligned write(io, FEATHER_MAGIC_BYTES) end return nothing end # NOTE: the below is very inefficient, but we are forced to do it by the Feather format # Feather requires us to encode any vector that doesn't have a missing value # as a normal list. _first_col_convert_pass(col) = col function _first_col_convert_pass(col::AbstractVector{Union{T,Missing}}) where T hasmissing = findfirst(ismissing, col) return hasmissing == nothing ? convert(AbstractVector{T}, col) : col end function Metadata.PrimitiveArray(A::ArrowVector{J}, off::Integer, nbytes::Integer) where J Metadata.PrimitiveArray(feathertype(J), Metadata.PLAIN, off, length(A), nullcount(A), nbytes) end function Metadata.PrimitiveArray(A::DictEncoding, off::Integer, nbytes::Integer) Metadata.PrimitiveArray(feathertype(eltype(references(A))), Metadata.PLAIN, off, length(A), nullcount(A), nbytes) end writecontents(io::IO, A::Primitive) = writepadded(io, A) writecontents(io::IO, A::NullablePrimitive) = writepadded(io, A, bitmask, values) writecontents(io::IO, A::List) = writepadded(io, A, offsets, values) writecontents(io::IO, A::NullableList) = writepadded(io, A, bitmask, offsets, values) writecontents(io::IO, A::BitPrimitive) = writepadded(io, A, values) writecontents(io::IO, A::NullableBitPrimitive) = writepadded(io, A, bitmask, values) writecontents(io::IO, A::DictEncoding) = writecontents(io, references(A)) function writecontents(::Type{Metadata.PrimitiveArray}, io::IO, A::ArrowVector) a = position(io) writecontents(io, A) b = position(io) Metadata.PrimitiveArray(A, a, b-a) end function writecolumn(io::IO, name::AbstractString, A::ArrowVector{J}) where J vals = writecontents(Metadata.PrimitiveArray, io, A) Metadata.Column(String(name), vals, getmetadata(io, J, A), "") end function writemetadata(io::IO, ctable::Metadata.CTable) meta = FlatBuffers.build!(ctable) rng = (meta.head+1):length(meta.bytes) writepadded(io, view(meta.bytes, rng)) Int32(length(rng)) end
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
2720
using FeatherLib, Missings, Dates, CategoricalArrays, Random, Arrow using Test temps = [] @testset "FeatherLib" begin include("test_readwrite.jl") include("test_arrow.jl") GC.gc(); GC.gc() for t in temps try rm(t) catch GC.gc() try rm(t) catch end end end # issue #34 # data = DataFrame(A=Union{Missing, String}[randstring(10) for i ∈ 1:100], B=rand(100)) # data[2, :A] = missing # Feather.write("testfile.feather", data) # dfo = Feather.read("testfile.feather") # @test size(Data.schema(dfo)) == (100, 2) # GC.gc(); # rm("testfile.feather") # @testset "PythonRoundtrip" begin # try # println("Generate a test.feather file from python...") # run(`docker cp runtests.py feathertest:/home/runtests.py`) # run(`docker exec feathertest python /home/runtests.py`) # println("Read test.feather into julia...") # run(`docker cp feathertest:/home/test.feather test.feather`) # df = Feather.read("test.feather") # dts = [Dates.DateTime(2016,1,1), Dates.DateTime(2016,1,2), Dates.DateTime(2016,1,3)] # @test df[:Autf8][:] == ["hey","there","sailor"] # @test df[:Abool][:] == [true, true, false] # @test df[:Acat][:] == categorical(["a","b","c"]) # these violate Arrow standard by using Int8!! # @test df[:Acatordered][:] == categorical(["d","e","f"]) # these violate Arrow standard by using Int8!! # @test convert(Vector{Dates.DateTime}, df[:Adatetime][:]) == dts # @test isequal(df[:Afloat32][:], [1.0, missing, 0.0]) # @test df[:Afloat64][:] == [Inf,1.0,0.0] # df_ = Feather.read("test.feather"; use_mmap=false) # println("Writing test2.feather from julia...") # Feather.write("test2.feather", df) # df2 = Feather.read("test2.feather") # @test df2[:Autf8][:] == ["hey","there","sailor"] # @test df2[:Abool][:] == [true, true, false] # @test df2[:Acat][:] == categorical(["a","b","c"]) # these violate Arrow standard by using Int8!! # @test df2[:Acatordered][:] == categorical(["d","e","f"]) # these violate Arrow standard by using Int8!! # @test convert(Vector{Dates.DateTime}, df2[:Adatetime][:]) == dts # @test isequal(df2[:Afloat32][:], [1.0, missing, 0.0]) # @test df2[:Afloat64][:] == [Inf,1.0,0.0] # println("Read test2.feather into python...") # @test (run(`docker cp test2.feather feathertest:/home/test2.feather`); true) # @test (run(`docker cp runtests2.py feathertest:/home/runtests2.py`); true) # @test (run(`docker exec feathertest python /home/runtests2.py`); true) # finally # run(`docker stop feathertest`) # run(`docker rm feathertest`) # rm("test.feather") # rm("test2.feather") # end # end end
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
3389
using Random const SEED = 999 const NROWS = 128 const N_IDX_TESTS = 16 arrow_tempname = tempname() push!(temps, arrow_tempname) Random.seed!(SEED) randdate() = Date(rand(0:4000), rand(1:12), rand(1:27)) randtime() = Dates.Time(rand(0:23), rand(0:59), rand(0:59)) randdatetime() = randdate() + randtime() randstrings() = String[[randstring(rand(0:20)) for i ∈ 1:(NROWS-1)]; "a"] function randstrings(::Missing) Union{String,Missing}[[rand(Bool) ? missing : randstring(rand(0:20)) for i ∈ 1:(NROWS-1)]; "a"] end convstring(str::AbstractString) = String(str) convstring(::Missing) = missing @testset "ArrowTests" begin cols = [rand(Int32,NROWS), rand(Float64,NROWS), Date[randdate() for i ∈ 1:NROWS], DateTime[randdatetime() for i ∈ 1:NROWS], Dates.Time[randtime() for i ∈ 1:NROWS], Union{Int64,Missing}[rand(Bool) ? missing : rand(Int64) for i ∈ 1:NROWS], randstrings(), randstrings(missing), CategoricalArrays.categorical(randstrings()), CategoricalArrays.categorical(randstrings(missing))] colnames = [:ints,:floats,:dates,:datetimes,:times,:missingints,:strings, :missingstrings,:catstrings,:catstringsmissing] featherwrite(arrow_tempname, cols, colnames) ndf = featherread(arrow_tempname) @test ndf.names == colnames @test typeof(ndf.columns[1]) == Arrow.Primitive{Int32} @test typeof(ndf.columns[2]) == Arrow.Primitive{Float64} @test typeof(ndf.columns[3]) == Arrow.Primitive{Arrow.Datestamp} @test typeof(ndf.columns[4]) == Arrow.Primitive{Arrow.Timestamp{Dates.Millisecond}} @test typeof(ndf.columns[5]) == Arrow.Primitive{Arrow.TimeOfDay{Dates.Nanosecond,Int64}} @test typeof(ndf.columns[6]) == Arrow.NullablePrimitive{Int64} @test typeof(ndf.columns[7]) == Arrow.List{String,Arrow.DefaultOffset,Arrow.Primitive{UInt8}} @test typeof(ndf.columns[8]) == Arrow.NullableList{String,Arrow.DefaultOffset,Arrow.Primitive{UInt8}} @test typeof(ndf.columns[9]) == Arrow.DictEncoding{String,Arrow.Primitive{Int32}, Arrow.List{String,Arrow.DefaultOffset,Arrow.Primitive{UInt8}}} @test typeof(ndf.columns[10]) == Arrow.DictEncoding{Union{String,Missing},Arrow.NullablePrimitive{Int32},Arrow.List{String,Arrow.DefaultOffset, Arrow.Primitive{UInt8}}} for j ∈ 1:N_IDX_TESTS i = rand(1:NROWS) @test cols[1][i] == ndf.columns[1][i] @test cols[2][i] == ndf.columns[2][i] @test cols[3][i] == convert(Date, ndf.columns[3][i]) @test cols[4][i] == convert(DateTime, ndf.columns[4][i]) @test cols[5][i] == convert(Dates.Time, ndf.columns[5][i]) @test isequal(cols[6][i], ndf.columns[6][i]) @test cols[7][i] == ndf.columns[7][i] @test isequal(cols[8][i], ndf.columns[8][i]) @test cols[9][i] == String(ndf.columns[9][i]) @test isequal(cols[10][i], convstring(ndf.columns[10][i])) end for j ∈ 1:N_IDX_TESTS a, b = extrema(rand(1:NROWS, 2)) i = a:b @test cols[1][i] == ndf.columns[1][i] @test cols[2][i] == ndf.columns[2][i] @test cols[3][i] == convert.(Date, ndf.columns[3][i]) @test cols[4][i] == convert.(DateTime, ndf.columns[4][i]) @test cols[5][i] == convert.(Dates.Time, ndf.columns[5][i]) @test isequal(cols[6][i], ndf.columns[6][i]) @test cols[7][i] == ndf.columns[7][i] @test isequal(cols[8][i], ndf.columns[8][i]) @test cols[9][i] == String.(ndf.columns[9][i]) @test isequal(cols[10][i], convstring.(ndf.columns[10][i])) end end
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
code
1595
@testset "ReadWrite" begin testdir = joinpath(@__DIR__, "data") files = map(x -> joinpath(testdir, x), readdir(testdir)) for f in files res = featherread(f) columns, headers = res.columns, res.names ncols = length(columns) nrows = length(columns[1]) temp = tempname() push!(temps, temp) featherwrite(temp, columns, headers, description=res.description, metadata=res.metadata) res2 = featherread(temp) columns2, headers2 = res2.columns, res2.names @test length(columns2) == ncols @test headers==headers2 for (c1,c2) in zip(columns, columns2) @test length(c1)==nrows @test length(c2)==nrows for i = 1:nrows @test isequal(c1[i], c2[i]) end end @test res.description == res2.description @test res.metadata == res2.metadata # for (col1,col2) in zip(source.ctable.columns,sink.ctable.columns) # @test col1.name == col2.name # @test col1.metadata_type == col2.metadata_type # @test typeof(col1.metadata) == typeof(col2.metadata) # @test col1.user_metadata == col2.user_metadata # v1 = col1.values; v2 = col2.values # @test v1.dtype == v2.dtype # @test v1.encoding == v2.encoding # # @test v1.offset == v2.offset # currently not python/R compatible due to wesm/feather#182 # @test v1.length == v2.length # @test v1.null_count == v2.null_count # # @test v1.total_bytes == v2.total_bytes # end end end
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
docs
440
If you have a question or are unsure if the behavior you're experiencing is a bug, please search or post to the Data domain on the julia Discourse site: https://discourse.julialang.org/c/domain/data. I use the GitHub issue tracker for bug reports and feature requests only. By contributing code to FeatherLib.jl, you are agreeing to release it under the [MIT License](https://github.com/davidanthoff/FeatherLib.jl/blob/master/LICENSE.md).
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
docs
391
# FeatherLib.jl v0.2.0 * Drop julia 0.7 support * Move to Project.toml * Fix a test dependency # FeatherLib.jl v0.1.3 * Fix a method ambiguity bug on julia 1.1 # FeatherLib.jl v0.1.2 * Improve error message # FeatherLib.jl v0.1.1 * Fix remaining julia 0.7/1.0 compat issues # FeatherLib.jl v0.1.0 * Drop julia 0.6 support, add julia 0.7 support # FeatherLib.jl v0.0.1 * Initial release
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.2.0
a3d0c5ca2f08bc8fae4394775f371f8e032149ab
docs
2250
# FeatherLib [![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active) [![Build Status](https://travis-ci.org/queryverse/FeatherLib.jl.svg?branch=master)](https://travis-ci.org/queryverse/FeatherLib.jl) [![Build status](https://ci.appveyor.com/api/projects/status/wam48ho02aekt3gu/branch/master?svg=true)](https://ci.appveyor.com/project/queryverse/featherlib-jl/branch/master) [![codecov](https://codecov.io/gh/queryverse/FeatherLib.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/queryverse/FeatherLib.jl) ## Overview This is a low level package to read feather files. It is not meant to be used by end users, but rather as a building block for other packages that expose user friendly APIs for file IO. End users are encouraged to use either [FeatherFiles.jl](https://github.com/queryverse/FeatherFiles.jl) or [Feather.jl](https://github.com/JuliaData/Feather.jl) to interact with feather files. ## Getting Started The package exports two functions: ``featherread`` and ``featherwrite``. Use the ``featherread`` function to read a feather file: ````julia data = featherread("testfile.feather") ```` ``data`` will then be of type ``ResultSet``. The field ``columns`` is a vector of vectors and holds the actual data columns. The field ``names`` returns the names of the columns. The ``description`` and ``metadata`` fields return additional data from the feather file. Use the ``featherwrite`` function to write a feather file: ````julia featherwrite("testfile.feather", column_data, column_names) ```` ``columns`` should be a vector of vectors that holds the data to be written. ``column_names`` should be a vector of ``Symbol``s with the column names. ## Acknowledgements [Douglas Bates](https://github.com/dmbates), [ExpandingMan](https://github.com/ExpandingMan) and [Jacob Quinn](https://github.com/quinnj) deserve most of the credit for the code in this package: their code in the [Feather.jl](https://github.com/JuliaData/Feather.jl) package was the starting point for this package here. They are of course not responsible for any errors introduced by myself in this package here.
FeatherLib
https://github.com/queryverse/FeatherLib.jl.git
[ "MIT" ]
0.1.1
1b8256c863036512246d0df3677c0f0324176c7f
code
679
using LibGEOSMakie using Documenter DocMeta.setdocmeta!(LibGEOSMakie, :DocTestSetup, :(using LibGEOSMakie); recursive=true) makedocs(; modules=[LibGEOSMakie], authors="Jan Weidner <[email protected]> and contributors", repo="https://github.com/jw3126/LibGEOSMakie.jl/blob/{commit}{path}#{line}", sitename="LibGEOSMakie.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://jw3126.github.io/LibGEOSMakie.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/jw3126/LibGEOSMakie.jl", devbranch="main", )
LibGEOSMakie
https://github.com/jw3126/LibGEOSMakie.jl.git
[ "MIT" ]
0.1.1
1b8256c863036512246d0df3677c0f0324176c7f
code
116
module LibGEOSMakie import LibGEOS import GeoInterfaceMakie GeoInterfaceMakie.@enable(LibGEOS.AbstractGeometry) end
LibGEOSMakie
https://github.com/jw3126/LibGEOSMakie.jl.git
[ "MIT" ]
0.1.1
1b8256c863036512246d0df3677c0f0324176c7f
code
688
using Test import LibGEOSMakie import LibGEOS as LG using Makie @testset "smoketest" begin unitsquare = LG.readgeom("POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))") bigsquare = LG.readgeom("POLYGON((0 0, 11 0, 11 11, 0 11, 0 0))") smallsquare = LG.readgeom("POLYGON((5 5, 8 5, 8 8, 5 8, 5 5))") fig = Figure() geoms = [ unitsquare, LG.difference(bigsquare, smallsquare), LG.boundary(unitsquare), LG.union(smallsquare, unitsquare), LG.readgeom("POINT(1 0)"), LG.readgeom("MULTIPOINT(1 2, 2 3, 3 4)"), ] for (i,geom) in enumerate(geoms) Makie.plot!(Axis(fig[i,1], title="$(typeof(geom))"), geom) end fig end
LibGEOSMakie
https://github.com/jw3126/LibGEOSMakie.jl.git
[ "MIT" ]
0.1.1
1b8256c863036512246d0df3677c0f0324176c7f
docs
563
# LibGEOSMakie [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jw3126.github.io/LibGEOSMakie.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jw3126.github.io/LibGEOSMakie.jl/dev/) [![Build Status](https://github.com/jw3126/LibGEOSMakie.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/jw3126/LibGEOSMakie.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/jw3126/LibGEOSMakie.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/jw3126/LibGEOSMakie.jl)
LibGEOSMakie
https://github.com/jw3126/LibGEOSMakie.jl.git
[ "MIT" ]
0.1.1
1b8256c863036512246d0df3677c0f0324176c7f
docs
194
```@meta CurrentModule = LibGEOSMakie ``` # LibGEOSMakie Documentation for [LibGEOSMakie](https://github.com/jw3126/LibGEOSMakie.jl). ```@index ``` ```@autodocs Modules = [LibGEOSMakie] ```
LibGEOSMakie
https://github.com/jw3126/LibGEOSMakie.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
code
12587
############ # TimeData # ############ mutable struct TimeData ncalls::Int time::Int64 allocs::Int64 firstexec::Int64 end TimeData(ncalls, time, allocs) = TimeData(ncalls, time, allocs, time) Base.copy(td::TimeData) = TimeData(td.ncalls, td.time, td.allocs) TimeData() = TimeData(0, 0, 0, time_ns()) function Base.:+(self::TimeData, other::TimeData) TimeData(self.ncalls + other.ncalls, self.time + other.time, self.allocs + other.allocs, min(self.firstexec, other.firstexec)) end ############### # TimerOutput # ############### mutable struct TimerOutput start_data::TimeData accumulated_data::TimeData inner_timers::Dict{String,TimerOutput} timer_stack::Vector{TimerOutput} name::String flattened::Bool enabled::Bool totmeasured::Tuple{Int64,Int64} prev_timer_label::String prev_timer::Union{TimerOutput,Nothing} function TimerOutput(label::String = "root") start_data = TimeData(0, time_ns(), gc_bytes()) accumulated_data = TimeData() inner_timers = Dict{String,TimerOutput}() timer_stack = TimerOutput[] return new(start_data, accumulated_data, inner_timers, timer_stack, label, false, true, (0, 0), "", nothing) end # Jeez... TimerOutput(start_data, accumulated_data, inner_timers, timer_stack, name, flattened, enabled, totmeasured, prev_timer_label, prev_timer) = new(start_data, accumulated_data, inner_timers, timer_stack, name, flattened, enabled, totmeasured, prev_timer_label, prev_timer) end Base.copy(to::TimerOutput) = TimerOutput(copy(to.start_data), copy(to.accumulated_data), copy(to.inner_timers), copy(to.timer_stack), to.name, to.flattened, to.enabled, to.totmeasured, "", nothing) const DEFAULT_TIMER = TimerOutput() const _timers = Dict{String, TimerOutput}("Default" => DEFAULT_TIMER) const _timers_lock = ReentrantLock() # needed for adding new timers on different threads """ get_timer(name::String) Returns the `TimerOutput` associated with `name`. If no timers are associated with `name`, a new `TimerOutput` will be created. """ function get_timer(name::String) lock(_timers_lock) do if !haskey(_timers, name) _timers[name] = TimerOutput(name) end return _timers[name] end end # push! and pop! function Base.push!(to::TimerOutput, label::String) if length(to.timer_stack) == 0 # Root section current_timer = to else # Not a root section current_timer = to.timer_stack[end] end # Fast path if current_timer.prev_timer_label == label timer = current_timer.prev_timer else maybe_timer = get(current_timer.inner_timers, label, nothing) # this could be implemented more elegant using # get!(() -> TimerOutput(label), current_timer.inner_timers, label) # however that causes lots of allocations in # julia v1.3 if maybe_timer === nothing timer = TimerOutput(label) current_timer.inner_timers[label] = timer else timer = maybe_timer end end timer = timer::TimerOutput current_timer.prev_timer_label = label current_timer.prev_timer = timer push!(to.timer_stack, timer) return timer.accumulated_data end Base.pop!(to::TimerOutput) = pop!(to.timer_stack) # Only sum the highest parents function totmeasured(to::TimerOutput) t, b = Int64(0), Int64(0) for section in values(to.inner_timers) timedata = section.accumulated_data t += timedata.time b += timedata.allocs end return t, b end function longest_name(to::TimerOutput, indent = 0) m = textwidth(to.name) + indent for inner_timer in values(to.inner_timers) m = max(m, longest_name(inner_timer, indent + 2)) end return m end # merging timer outputs const merge_lock = ReentrantLock() # needed for merges of objects on different threads Base.merge(self::TimerOutput, others::TimerOutput...) = merge!(TimerOutput(), self, others...) function Base.merge!(self::TimerOutput, others::TimerOutput...; tree_point = String[]) lock(merge_lock) do for other in others self.accumulated_data += other.accumulated_data its = self.inner_timers for point in tree_point its = its[point].inner_timers end _merge(its, other.inner_timers) end return self end end function _merge(self::Dict{String,TimerOutput}, other::Dict{String,TimerOutput}) for key in keys(other) if haskey(self, key) self[key].accumulated_data += other[key].accumulated_data _merge(self[key].inner_timers, other[key].inner_timers) else self[key] = deepcopy(other[key]) end end end ####### # API # ####### # Accessors ncalls(to::TimerOutput) = to.accumulated_data.ncalls allocated(to::TimerOutput) = to.accumulated_data.allocs time(to::TimerOutput) = to.accumulated_data.time totallocated(to::TimerOutput) = totmeasured(to)[2] tottime(to::TimerOutput) = totmeasured(to)[1] time() = time(DEFAULT_TIMER) ncalls() = ncalls(DEFAULT_TIMER) allocated() = allocated(DEFAULT_TIMER) totallocated() = totmeasured(DEFAULT_TIMER)[2] tottime() = totmeasured(DEFAULT_TIMER)[1] get_defaulttimer() = DEFAULT_TIMER Base.@deprecate get_defaultimer get_defaulttimer # Macro macro timeit(args...) return timer_expr(__module__, false, args...) end macro timeit_debug(args...) if !isdefined(__module__, :timeit_debug_enabled) Core.eval(__module__, :(timeit_debug_enabled() = false)) end return timer_expr(__module__, true, args...) end function enable_debug_timings(m::Module) if !getfield(m, :timeit_debug_enabled)() Core.eval(m, :(timeit_debug_enabled() = true)) end end function disable_debug_timings(m::Module) if getfield(m, :timeit_debug_enabled)() Core.eval(m, :(timeit_debug_enabled() = false)) end end timer_expr(args...) = throw(ArgumentError("invalid macro usage for @timeit, use as @timeit [to] label codeblock")) function is_func_def(f) if isa(f, Expr) && (f.head === :function || Base.is_short_function_def(f)) return true else return false end end function timer_expr(m::Module, is_debug::Bool, ex::Expr) is_func_def(ex) && return timer_expr_func(m, is_debug, :($(TimerOutputs.DEFAULT_TIMER)), ex) return esc(_timer_expr(m, is_debug, :($(TimerOutputs).DEFAULT_TIMER), ex)) end function timer_expr(m::Module, is_debug::Bool, label_or_to, ex::Expr) is_func_def(ex) && return timer_expr_func(m, is_debug, label_or_to, ex) return esc(_timer_expr(m, is_debug, :($(TimerOutputs).DEFAULT_TIMER), label_or_to, ex)) end function timer_expr(m::Module, is_debug::Bool, label::String, ex::Expr) is_func_def(ex) && return timer_expr_func(m, is_debug, :($(TimerOutputs).DEFAULT_TIMER), ex, label) return esc(_timer_expr(m, is_debug, :($(TimerOutputs).DEFAULT_TIMER), label, ex)) end function timer_expr(m::Module, is_debug::Bool, to, label, ex::Expr) is_func_def(ex) && return timer_expr_func(m, is_debug, to, ex, label) return esc(_timer_expr(m, is_debug, to, label, ex)) end function _timer_expr(m::Module, is_debug::Bool, to::Union{Symbol, Expr, TimerOutput}, label, ex::Expr) @gensym local_to enabled accumulated_data b₀ t₀ val timeit_block = quote $local_to = $to $enabled = $local_to.enabled if $enabled $accumulated_data = $(push!)($local_to, $label) end $b₀ = $(gc_bytes)() $t₀ = $(time_ns)() $(Expr(:tryfinally, :($val = $ex), quote if $enabled $(do_accumulate!)($accumulated_data, $t₀, $b₀) $(pop!)($local_to) end end)) $val end if is_debug return quote if $m.timeit_debug_enabled() $timeit_block else $ex end end else return timeit_block end end function timer_expr_func(m::Module, is_debug::Bool, to, expr::Expr, label=nothing) expr = macroexpand(m, expr) def = splitdef(expr) label === nothing && (label = string(def[:name])) def[:body] = if is_debug quote @inline function inner() $(def[:body]) end $(_timer_expr(m, is_debug, to, label, :(inner()))) end else _timer_expr(m, is_debug, to, label, def[:body]) end return esc(combinedef(def)) end function do_accumulate!(accumulated_data, t₀, b₀) accumulated_data.time += time_ns() - t₀ accumulated_data.allocs += gc_bytes() - b₀ accumulated_data.ncalls += 1 end reset_timer!() = reset_timer!(DEFAULT_TIMER) function reset_timer!(to::TimerOutput) to.inner_timers = Dict{String,TimerOutput}() to.start_data = TimeData(0, time_ns(), gc_bytes()) to.accumulated_data = TimeData() to.prev_timer_label = "" to.prev_timer = nothing resize!(to.timer_stack, 0) return to end # We can remove this now that the @timeit macro is exception safe. # Doesn't hurt to keep it for a while though timeit(f::Function, label::String) = timeit(f, DEFAULT_TIMER, label) function timeit(f::Function, to::TimerOutput, label::String) accumulated_data = push!(to, label) b₀ = gc_bytes() t₀ = time_ns() local val try val = f() finally accumulated_data.time += time_ns() - t₀ accumulated_data.allocs += gc_bytes() - b₀ accumulated_data.ncalls += 1 pop!(to) end return val end Base.haskey(to::TimerOutput, name::String) = haskey(to.inner_timers, name) Base.getindex(to::TimerOutput, name::String) = to.inner_timers[name] function flatten(to::TimerOutput) t, b = totmeasured(to) inner_timers = Dict{String,TimerOutput}() for inner_timer in values(to.inner_timers) _flatten!(inner_timer, inner_timers) end toc = copy(to) return TimerOutput(toc.start_data, toc.accumulated_data, inner_timers, TimerOutput[], "Flattened", true, true, (t, b), "", to) end function _flatten!(to::TimerOutput, inner_timers::Dict{String,TimerOutput}) for inner_timer in values(to.inner_timers) _flatten!(inner_timer, inner_timers) end if haskey(inner_timers, to.name) timer = inner_timers[to.name] timer.accumulated_data += to.accumulated_data else toc = copy(to) toc.inner_timers = Dict{String,TimerOutput}() inner_timers[toc.name] = toc end end enable_timer!(to::TimerOutput=DEFAULT_TIMER) = to.enabled = true disable_timer!(to::TimerOutput=DEFAULT_TIMER) = to.enabled = false # Macro to selectively disable timer for expression macro notimeit(args...) notimeit_expr(args...) end # Default function throws an error for the benefit of the user notimeit_expr(args...) = throw(ArgumentError("invalid macro usage for @notimeit, use as @notimeit [to] codeblock")) complement!() = complement!(DEFAULT_TIMER) function complement!(to::TimerOutput) if length(to.inner_timers) == 0 return nothing end tot_time = to.accumulated_data.time tot_allocs = to.accumulated_data.allocs for timer in values(to.inner_timers) tot_time -= timer.accumulated_data.time tot_allocs -= timer.accumulated_data.allocs complement!(timer) end tot_time = max(tot_time, 0) tot_allocs = max(tot_allocs, 0) if !(to.name in ["root", "Flattened"]) name = string("~", to.name, "~") timer = TimerOutput(to.start_data, TimeData(max(1,to.accumulated_data.ncalls), tot_time, tot_allocs), Dict{String,TimerOutput}(), TimerOutput[], name, false, true, (tot_time, tot_allocs), to.name, to) to.inner_timers[name] = timer end return to end # If @notimeit was called without a TimerOutput instance, use default timer notimeit_expr(ex::Expr) = notimeit_expr(:($(TimerOutputs.DEFAULT_TIMER)), ex) # Disable timer, evaluate expression, restore timer to previous value, and return expression result function notimeit_expr(to, ex::Expr) return quote local to = $(esc(to)) local enabled = to.enabled $(disable_timer!)(to) local val $(Expr(:tryfinally, :(val = $(esc(ex))), quote if enabled $(enable_timer!)(to) end end)) val end end
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
code
737
module TimerOutputs using ExprTools import Base: show, time_ns export TimerOutput, @timeit, @timeit_debug, reset_timer!, print_timer, timeit, enable_timer!, disable_timer!, @notimeit, get_timer # https://github.com/JuliaLang/julia/pull/33717 if VERSION < v"1.4.0-DEV.475" gc_bytes() = Base.gc_bytes() else function gc_bytes() b = Ref{Int64}(0) Base.gc_bytes(b) return b[] end end using Printf include("TimerOutput.jl") include("show.jl") include("utilities.jl") if Base.VERSION >= v"1.4.2" include("compile.jl") _precompile_() end function __init__() # Reset DEFAULT_TIMER; otherwise starting time is the time of precompile reset_timer!() end end # module
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
code
863
# To make it less likely that users measure TimerOutputs compilation time. let to = TimerOutput() @timeit to "1" string(1) end function _precompile_() ccall(:jl_generating_output, Cint, ()) == 1 || return nothing @assert Base.precompile(Tuple{typeof(print_timer), typeof(stdout), TimerOutput}) @assert Base.precompile(Tuple{typeof(print_timer), TimerOutput}) @assert Base.precompile(Tuple{typeof(push!), TimerOutput, String}) @assert Base.precompile(Tuple{typeof(reset_timer!), TimerOutput}) @assert Base.precompile(Tuple{typeof(disable_timer!), TimerOutput}) @assert Base.precompile(Tuple{typeof(enable_timer!), TimerOutput}) @assert Base.precompile(Tuple{typeof(complement!), TimerOutput}) @assert Base.precompile(Tuple{typeof(do_accumulate!), TimeData, UInt64, Int64}) @assert Base.precompile(Tuple{Type{TimerOutput}, String}) end
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
code
6674
print_timer(; kwargs...) = print_timer(stdout; kwargs...) print_timer(to::TimerOutput; kwargs...) = print_timer(stdout, to; kwargs...) print_timer(io::IO; kwargs...) = print_timer(io, DEFAULT_TIMER; kwargs...) print_timer(io::IO, to::TimerOutput; kwargs...) = (show(io, to; kwargs...); println(io)) Base.show(to::TimerOutput; kwargs...) = show(stdout, to; kwargs...) function Base.show(io::IO, to::TimerOutput; allocations::Bool = true, sortby::Symbol = :time, linechars::Symbol = :unicode, compact::Bool = false, title::String = "") sortby in (:time, :ncalls, :allocations, :name, :firstexec) || throw(ArgumentError("sortby should be :time, :allocations, :ncalls, :name, or :firstexec, got $sortby")) linechars in (:unicode, :ascii) || throw(ArgumentError("linechars should be :unicode or :ascii, got $linechars")) t₀, b₀ = to.start_data.time, to.start_data.allocs t₁, b₁ = time_ns(), gc_bytes() Δt, Δb = t₁ - t₀, b₁ - b₀ ∑t, ∑b = to.flattened ? to.totmeasured : totmeasured(to) max_name = longest_name(to) available_width = displaysize(io)[2] requested_width = max_name if compact if allocations requested_width += 43 else requested_width += 25 end else if allocations requested_width += 59 else requested_width += 33 end end #requested_width = 34 + (allocations ? 27 : 0) + max_name name_length = max(9, max_name - max(0, requested_width - available_width)) print_header(io, Δt, Δb, ∑t, ∑b, name_length, true, allocations, linechars, compact, title) rev = !in(sortby, [:name, :firstexec]) by(x) = sortf(x, sortby) for timer in sort!(collect(values(to.inner_timers)); rev = rev, by = by) _print_timer(io, timer, ∑t, ∑b, 0, name_length, allocations, sortby, compact) end print_header(io, Δt, Δb, ∑t, ∑b, name_length, false, allocations, linechars, compact, title) end function sortf(x, sortby) sortby == :time && return x.accumulated_data.time sortby == :ncalls && return x.accumulated_data.ncalls sortby == :allocations && return x.accumulated_data.allocs sortby == :name && return x.name sortby == :firstexec && return x.accumulated_data.firstexec error("internal error") end # truncate string and add dots function truncdots(str, n) textwidth(str) <= n && return str n <= 3 && return "" io = IOBuffer() for (i, c) in enumerate(str) i == n - 2 && (write(io, "..."); break) write(io, c) end return String(take!(io)) end function print_header(io, Δt, Δb, ∑t, ∑b, name_length, header, allocations, linechars, compact, title) global BOX_MODE, ALLOCATIONS_ENABLED midrule = linechars == :unicode ? "─" : "-" topbottomrule = linechars == :unicode ? "─" : "-" sec_ncalls = string(rpad("Section", name_length, " "), " ncalls ") time_headers = " time %tot" * (compact ? "" : " avg") alloc_headers = allocations ? (" alloc %tot" * (compact ? "" : " avg")) : "" total_table_width = sum(textwidth.((sec_ncalls, time_headers, alloc_headers))) + 3 # Just hardcoded shit to make things look nice !allocations && (total_table_width -= 3) function center(str, len) x = (len - textwidth(str)) ÷ 2 return string(" "^x, str, " "^(len - textwidth(str) - x)) end if header time_alloc_pading = " "^(textwidth(sec_ncalls)) title = center(truncdots(title, textwidth(sec_ncalls)), textwidth(sec_ncalls)) if compact time_header = " Time " else time_header = " Time " end time_underline = midrule^textwidth(time_header) if compact allocation_header = " Allocations " else allocation_header = " Allocations " end alloc_underline = midrule^textwidth(allocation_header) #tot_meas_str = string(" ", rpad("Tot / % measured:", textwidth(sec_ncalls) - 1, " ")) if compact tot_meas_str = center("Total measured:", textwidth(sec_ncalls)) else tot_meas_str = center("Tot / % measured:", textwidth(sec_ncalls)) end str_time = center(string(prettytime(Δt), compact ? "" : string(" / ", prettypercent(∑t, Δt))), textwidth(time_header)) str_alloc = center(string(prettymemory(Δb), compact ? "" : string(" / ", prettypercent(∑b, Δb))), textwidth(allocation_header)) header_str = string(" time %tot %timed") tot_midstr = string(sec_ncalls, " ", header_str) printstyled(io, " ", topbottomrule^total_table_width, "\n"; bold=true) if ! (allocations == false && compact == true) printstyled(io, " ", title; bold=true) print(io, time_header) allocations && print(io, " ", allocation_header) print(io, "\n") print(io, " ", time_alloc_pading, time_underline) allocations && print(io, " ", alloc_underline) print(io, "\n") print(io, " ", tot_meas_str, str_time) allocations && print(io, " ", str_alloc) print(io, "\n\n") end print(io, " ", sec_ncalls, time_headers) allocations && print(io, " ", alloc_headers) print(io, "\n") print(io, " ", midrule^total_table_width, "\n") else printstyled(io, " ", topbottomrule^total_table_width; bold=true) end end function _print_timer(io::IO, to::TimerOutput, ∑t::Integer, ∑b::Integer, indent::Integer, name_length, allocations, sortby, compact) accum_data = to.accumulated_data t = accum_data.time b = accum_data.allocs name = truncdots(to.name, name_length - indent) print(io, " ") nc = accum_data.ncalls print(io, " "^indent, rpad(name, name_length + 2 - indent)) print(io, lpad(prettycount(nc), 5, " ")) print(io, " ", lpad(prettytime(t), 6, " ")) print(io, " ", lpad(prettypercent(t, ∑t), 5, " ")) !compact && print(io, " ", rpad(prettytime(t / nc), 6, " ")) if allocations print(io, " ", rpad(prettymemory(b), 9, " ")) print(io, rpad(prettypercent(b, ∑b), 5, " ")) !compact && print(io, " ", lpad(prettymemory(b / nc), 5, " ")) end print(io, "\n") rev = !in(sortby, [:name, :firstexec]) by(x) = sortf(x, sortby) for timer in sort!(collect(values(to.inner_timers)); rev = rev, by = by) _print_timer(io, timer, ∑t, ∑b, indent + 2, name_length, allocations, sortby, compact) end end
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
code
4319
################### # Pretty Printing # ################### function prettytime(t) if t < 1e3 value, units = t, "ns" elseif t < 1e6 value, units = t / 1e3, "μs" elseif t < 1e9 value, units = t / 1e6, "ms" elseif t < 3600e9 value, units = t / 1e9, "s" # We intentionally do not show minutes else value, units = t / 3600e9, "h" end if round(value) >= 100 str = string(@sprintf("%.0f", value), units) elseif round(value * 10) >= 100 str = string(@sprintf("%.1f", value), units) else str = string(@sprintf("%.2f", value), units) end return lpad(str, 6, " ") end function prettymemory(b) if b < 1000 value, units = b, "B" elseif b < 1000^2 value, units = b / 1024, "KiB" elseif b < 1000^3 value, units = b / 1024^2, "MiB" elseif b < 1000^4 value, units = b / 1024^3, "GiB" elseif b < 1000^5 value, units = b / 1024^4, "TiB" elseif b < 1000^6 value, units = b / 1024^5, "PiB" else value, units = b / 1024^6, "EiB" end if round(value) >= 100 str = string(@sprintf("%.0f", value), units) elseif round(value * 10) >= 100 str = string(@sprintf("%.1f", value), units) elseif value >= 0 str = string(@sprintf("%.2f", value), units) else str = "-" end return lpad(str, 7, " ") end function prettypercent(nominator, denominator) value = nominator / denominator * 100 if denominator == 0 && nominator == 0 str = " - %" elseif denominator == 0 str = "inf %" else str = string(@sprintf("%.1f", value), "%") end return lpad(str, 6, " ") end function prettycount(t::Integer) if t < 1000 return string(t) elseif t < 1000^2 value, units = t / 1000, "k" elseif t < 1000^3 value, units = t / 1e6, "M" else value, units = t / 1e9, "B" end if round(value) >= 100 str = string(@sprintf("%.0f", value), units) elseif round(value * 10) >= 100 str = string(@sprintf("%.1f", value), units) else str = string(@sprintf("%.2f", value), units) end return str end function rpad( s::Union{AbstractChar,AbstractString}, n::Integer, p::Union{AbstractChar,AbstractString}=' ', ) :: String n = Int(n)::Int m = signed(n) - Int(textwidth(s))::Int m ≤ 0 && return string(s) l = textwidth(p) q, r = divrem(m, l) r == 0 ? string(s, p^q) : string(s, p^q, first(p, r)) end ################# # Serialization # ################# """ todict(to::TimerOutput) -> Dict{String, Any} Converts a `TimerOutput` into a nested set of dictionaries, with keys and value types: * `"n_calls"`: `Int` * `"time_ns"`: `Int` * `"allocated_bytes"`: `Int` * `"total_allocated_bytes"`: `Int` * `"total_time_ns"`: `Int` * `"inner_timers"`: `Dict{String, Dict{String, Any}}` """ function todict(to::TimerOutput) return Dict{String,Any}( "n_calls" => ncalls(to), "time_ns" => time(to), "allocated_bytes" => allocated(to), "total_allocated_bytes" => totallocated(to), "total_time_ns" => tottime(to), "inner_timers" => Dict{String, Any}(k => todict(v) for (k,v) in to.inner_timers) ) end ########################## # Instrumented functions # ########################## # implemented as a callable type to get better error messages # (i.e. you see `F` explictly, which might be `typeof(f)` telling # you that `f` is involved). struct InstrumentedFunction{F} <: Function func::F t::TimerOutput name::String end function funcname(f::F) where {F} if @generated string(repr(F.instance)) else string(repr(f)) end end InstrumentedFunction(f, t) = InstrumentedFunction(f, t, funcname(f)) function (inst::InstrumentedFunction)(args...; kwargs...) @timeit inst.t inst.name inst.func(args...; kwargs...) end """ (t::TimerOutput)(f, name=string(repr(f))) -> InstrumentedFunction Instruments `f` by the [`TimerOutput`](@ref) `t` returning an `InstrumentedFunction`. This function can be used just like `f`, but whenever it is called it stores timing results in `t`. """ (t::TimerOutput)(f, name=funcname(f)) = InstrumentedFunction(f, t, name)
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
code
18999
using TimerOutputs using Test import TimerOutputs: DEFAULT_TIMER, ncalls, flatten, prettytime, prettymemory, prettypercent, prettycount, todict reset_timer!() # Timing from modules that don't import much baremodule NoImports using TimerOutputs using Base: sleep @timeit "baresleep" sleep(0.1) end @testset "TimerOutput" begin @test "baresleep" in keys(DEFAULT_TIMER.inner_timers) to = TimerOutput() @timeit to "sleep" sleep(0.1) @timeit "sleep" sleep(0.1) @test "sleep" in keys(to.inner_timers) @test "sleep" in keys(DEFAULT_TIMER.inner_timers) @timeit to "multi statement" begin 1+1 sleep(0.1) end @timeit "multi statement" begin 1+1 sleep(0.1) end @test "multi statement" in keys(to.inner_timers) @test "multi statement" in keys(DEFAULT_TIMER.inner_timers) @timeit to "sleep" sleep(0.1) @timeit to "sleep" sleep(0.1) @timeit to "sleep" sleep(0.1) @timeit "sleep" sleep(0.1) @timeit "sleep" sleep(0.1) @timeit "sleep" sleep(0.1) @test haskey(to, "sleep") @test !haskey(to, "slep") @test ncalls(to["sleep"]) == 4 @test ncalls(DEFAULT_TIMER["sleep"]) == 4 # Check reset works reset_timer!(to) reset_timer!() @test length(keys(to.inner_timers)) == 0 @test length(keys(DEFAULT_TIMER.inner_timers)) == 0 # Check return values get propagated function foo(a) a+a end to2 = TimerOutput() a = @timeit to2 "foo" foo(5) b = @timeit "foo" foo(5) @test a === 10 @test b === 10 @test "foo" in collect(keys(to2.inner_timers)) @test "foo" in collect(keys(DEFAULT_TIMER.inner_timers)) # Test nested c = @timeit to2 "nest 1" begin sleep(0.01) @timeit to2 "nest 2" sleep(0.02) @timeit to2 "nest 2" sleep(0.02) 5 end d = @timeit "nest 1" begin sleep(0.01) @timeit "nest 2" sleep(0.02) @timeit "nest 2" sleep(0.02) 5 end @test ncalls(to2["nest 1"]) == 1 @test ncalls(to2["nest 1"]["nest 2"]) == 2 @test ncalls(DEFAULT_TIMER["nest 1"])== 1 @test ncalls(DEFAULT_TIMER["nest 1"]["nest 2"]) == 2 @test c === 5 @test d == 5 # test throws function foo2(v) @timeit to "throwing" begin sleep(0.01) print(v[6]) # OOB end end function foo3(v) @timeit "throwing" begin sleep(0.01) print(v[6]) # OOB end end try foo2(rand(5)) catch e isa(e, BoundsError) || rethrow(e) end try foo3(rand(5)) catch e isa(e, BoundsError) || rethrow(e) end @test "throwing" in keys(to.inner_timers) @test "throwing" in keys(DEFAULT_TIMER.inner_timers) reset_timer!(to) @timeit to "foo" begin sleep(0.05) @timeit to "bar" begin @timeit to "foo" sleep(0.05) @timeit to "foo" sleep(0.05) @timeit to "baz" sleep(0.05) @timeit to "bar" sleep(0.05) end @timeit to "bur" sleep(0.025) end @timeit to "bur" sleep(0.025) tom = flatten(to) @test ncalls(tom["foo"]) == 3 @test ncalls(tom["bar"]) == 2 @test ncalls(tom["bur"]) == 2 @test ncalls(tom["baz"]) == 1 function many_loops() for i in 1:10^7 @timeit to "loop" 1+1 end end many_loops() a = 3 @timeit to "a$a" 1+1 @timeit "a$a" 1+1 @test "a3" in collect(keys(to.inner_timers)) @test "a3" in collect(keys(DEFAULT_TIMER.inner_timers)) reset_timer!(DEFAULT_TIMER) toz = TimerOutput() @timeit toz "foo" 1+1 reset_timer!(toz) @timeit toz "foo" 1+1 @test "foo" in keys(toz.inner_timers) tof = TimerOutput() @timeit tof ff1(x) = x @timeit tof ff2(x)::Float64 = x @timeit tof function ff3(x) x end @timeit tof function ff4(x)::Float64 x end @timeit ff5(x) = x @timeit ff6(x)::Float64 = x @timeit function ff7(x) x end @timeit function ff8(x)::Float64 x end @timeit ff9(x::T) where {T} = x @timeit (ff10(x::T)::Float64) where {T} = x @timeit function ff11(x::T) where {T} x end @timeit function ff12(x::T)::Float64 where {T} x end @timeit "foo" ff13(x::T) where {T} = x @timeit "bar" (ff14(x::T)::Float64) where {T} = x @timeit "baz" function ff15(x::T) where {T} x end @timeit "quz" function ff16(x::T)::Float64 where {T} x end @timeit tof "foo" ff17(x::T) where {T} = x @timeit tof "bar" (ff18(x::T)::Float64) where {T} = x @timeit tof "baz" function ff19(x::T) where {T} x end @timeit tof "quz" function ff20(x::T)::Float64 where {T} x end for i in 1:2 @test ff1(1) === 1 @test ff2(1) === 1.0 @test ff3(1) === 1 @test ff4(1) === 1.0 @test ff5(1) === 1 @test ff6(1) === 1.0 @test ff7(1) === 1 @test ff8(1) === 1.0 @test ff9(1) === 1 @test ff10(1) === 1.0 @test ff11(1) === 1 @test ff12(1) === 1.0 @test ff13(1) === 1 @test ff14(1) === 1.0 @test ff15(1) === 1 @test ff16(1) === 1.0 @test ff17(1) === 1 @test ff18(1) === 1.0 @test ff19(1) === 1 @test ff20(1) === 1.0 end @test ncalls(tof["ff1"]) == 2 @test ncalls(tof["ff2"]) == 2 @test ncalls(tof["ff3"]) == 2 @test ncalls(tof["ff4"]) == 2 @test ncalls(tof["foo"]) == 2 @test ncalls(tof["bar"]) == 2 @test ncalls(tof["baz"]) == 2 @test ncalls(tof["quz"]) == 2 @test ncalls(DEFAULT_TIMER["ff5"]) == 2 @test ncalls(DEFAULT_TIMER["ff6"]) == 2 @test ncalls(DEFAULT_TIMER["ff7"]) == 2 @test ncalls(DEFAULT_TIMER["ff8"]) == 2 @test ncalls(DEFAULT_TIMER["ff9"]) == 2 @test ncalls(DEFAULT_TIMER["ff10"]) == 2 @test ncalls(DEFAULT_TIMER["ff11"]) == 2 @test ncalls(DEFAULT_TIMER["ff12"]) == 2 @test ncalls(DEFAULT_TIMER["foo"]) == 2 @test ncalls(DEFAULT_TIMER["bar"]) == 2 @test ncalls(DEFAULT_TIMER["baz"]) == 2 @test ncalls(DEFAULT_TIMER["quz"]) == 2 function foo() reset_timer!() @timeit "asdf" bar() end bar() = print_timer() foo() io = IOBuffer() show(io, to) show(io, to; allocations = false) show(io, to; allocations = false, compact = true) show(io, to; sortby = :ncalls) show(io, to; sortby = :time) show(io, to; sortby = :allocations) show(io, to; sortby = :name) show(io, to; sortby = :firstexec) show(io, to; linechars = :ascii) show(io, to; title = "A short title") show(io, to; title = "A very long title that will be truncated") # issue 22: edge cases for rounding for (t, str) in ((9999, "10.0μs"), (99999, " 100μs"), (9999999, "10.0ms"), (99999999, " 100ms")) @test prettytime(t) == str end for (b, str) in ((9.999*1024, "10.0KiB"), (99.999*1024, " 100KiB"), (9.999*1024^2, "10.0MiB"), (99.999*1024^2, " 100MiB"), (9.999*1024^3, "10.0GiB"), (99.999*1024^3, " 100GiB")) @test prettymemory(b) == str end for (num, den, str) in ((0.9999, 1, "100.0%"), (0.09999, 1, " 10.0%")) @test prettypercent(num, den) == str end for (t, str) in ((9.999*1024, "10.0KiB"), (99.999*1024, " 100KiB"), (9.999*1024^2, "10.0MiB"), (99.999*1024^2, " 100MiB"), (9.999*1024^3, "10.0GiB"), (99.999*1024^3, " 100GiB")) @test prettymemory(t) == str end for (c, str) in ((9999, "10.0k"), (99999, "100k"), (9999999, "10.0M"), (99999999, "100M"), (9999999999, "10.0B"), (99999999999, "100B")) @test prettycount(c) == str end # `continue` inside a timeit section to_continue = TimerOutput() function continue_test() for i = 1:10 @timeit to_continue "x" @timeit to_continue "test" begin continue end end end continue_test() @test isempty(to_continue.inner_timers["x"].inner_timers["test"].inner_timers) # Test @timeit_debug to_debug = TimerOutput() function debug_test() @timeit_debug to_debug "sleep" sleep(0.001) end TimerOutputs.disable_debug_timings(@__MODULE__) debug_test() @test !("sleep" in keys(to_debug.inner_timers)) TimerOutputs.enable_debug_timings(@__MODULE__) debug_test() @test "sleep" in keys(to_debug.inner_timers) # Test functional-form @timeit_debug with @eval'ed functions to_debug = TimerOutput() @timeit_debug to_debug function baz(x, y) @timeit_debug to_debug "sleep" sleep(0.001) return x + y * x end TimerOutputs.disable_debug_timings(@__MODULE__) baz(1, 2.0) @test isempty(to_debug.inner_timers) TimerOutputs.enable_debug_timings(@__MODULE__) baz(1, 2.0) @test "baz" in keys(to_debug.inner_timers) @test "sleep" in keys(to_debug.inner_timers["baz"].inner_timers) TimerOutputs.disable_debug_timings(@__MODULE__) to = TimerOutput() @timeit to "section1" sleep(0.02) @timeit to "section2" begin @timeit to "section2.1" sleep(0.1) sleep(0.01) end TimerOutputs.complement!(to) tom = flatten(to) @test ncalls(tom["~section2~"]) == 1 end # testset struct Simulation timer::TimerOutput # state end @testset "Timer from argument" begin get_timer(sim) = sim.timer @timeit get_timer(sim) function step!(sim::Simulation) # important computation end sim = Simulation(TimerOutputs.TimerOutput()) step!(sim) @test TimerOutputs.ncalls(sim.timer["step!"]) == 1 step!(sim) @test TimerOutputs.ncalls(sim.timer["step!"]) == 2 @timeit get_timer(args...; kw...) step2!(args...; kw...) = nothing step2!(sim) @test TimerOutputs.ncalls(sim.timer["step!"]) == 2 @test TimerOutputs.ncalls(sim.timer["step2!"]) == 1 step2!(sim) @test TimerOutputs.ncalls(sim.timer["step2!"]) == 2 end # default timer without explicitly loading TimerOutputs TimerOutputs.reset_timer!() module TestModule using TimerOutputs: @timeit foo(x) = x @timeit "foo" foo(1) end @test "foo" in keys(DEFAULT_TIMER.inner_timers) TimerOutputs.reset_timer!() # Test sharing timers between modules @test !haskey(TimerOutputs._timers, "TestModule2") @test !haskey(TimerOutputs._timers, "my_timer") to = get_timer("my_timer") @timeit to "foo" sleep(0.1) @test ncalls(get_timer("my_timer")["foo"]) == 1 module TestModule2 using TimerOutputs: @timeit, get_timer foo(x) = x @timeit get_timer("TestModule2") "foo" foo(1) @timeit get_timer("my_timer") "foo" foo(1) end # Timer from module is accessible to root @test haskey(TimerOutputs._timers, "TestModule2") @test ncalls(get_timer("TestModule2")["foo"]) == 1 # Timer from root is accessible to module @test ncalls(get_timer("my_timer")["foo"]) == 2 # Broken #= # Type inference with @timeit_debug @timeit_debug function make_zeros() dims = (3, 4) zeros(dims) end @inferred make_zeros() TimerOutputs.enable_debug_timings(@__MODULE__) @inferred make_zeros() =# to = TimerOutput() @timeit_debug to function f(x) g(x) = 2x g(x) end @test f(3) == 6 TimerOutputs.enable_debug_timings(@__MODULE__) @test f(3) == 6 TimerOutputs.disable_debug_timings(@__MODULE__) @testset "Not too many allocations #59" begin function doit(timer, n) ret = 0 for i in 1:n @timeit timer "depth0" begin @timeit timer "depth1" begin @timeit timer "depth2" begin ret += sin(i) end @timeit timer "depth2b" begin ret += cos(i) end end @timeit timer "depth1b" begin end end end ret end to = TimerOutput() doit(to, 1) a0 = TimerOutputs.allocated(to["depth0"]) a1 = TimerOutputs.allocated(to["depth0"]["depth1"]) a2 = TimerOutputs.allocated(to["depth0"]["depth1"]["depth2"]) to = TimerOutput() doit(to, 100000) to0 = to["depth0"] to1 = to0["depth1"] to1b = to0["depth1b"] to2 = to1["depth2"] to2b = to1["depth2b"] # test that leaf timers add zero allocations # and other timers only add allocations once @test TimerOutputs.allocated(to0) == a0 @test TimerOutputs.allocated(to1) == a1 @test TimerOutputs.allocated(to2) == a2 @test TimerOutputs.allocated(to1b) == 0 @test TimerOutputs.allocated(to2) == 0 @test TimerOutputs.allocated(to2b) == 0 end @testset "disable enable" begin to = TimerOutput() ff1() = @timeit to "ff1" 1+1 ff1() @test ncalls(to["ff1"]) == 1 disable_timer!(to) ff1() @test ncalls(to["ff1"]) == 1 enable_timer!(to) ff1() @test ncalls(to["ff1"]) == 2 @notimeit to ff1() ff1() @test ncalls(to["ff1"]) == 3 end # Type inference with @timeit_debug @timeit_debug function make_zeros() dims = (3, 4) zeros(dims) end @inferred make_zeros() TimerOutputs.enable_debug_timings(@__MODULE__) @inferred make_zeros() @testset "merge" begin to1 = TimerOutput() to2 = TimerOutput() to3 = TimerOutput() @timeit to1 "foo" identity(nothing) @timeit to1 "baz" identity(nothing) @timeit to1 "foobar" begin @timeit to1 "foo" identity(nothing) @timeit to1 "baz" identity(nothing) end @timeit to1 "bar" identity(nothing) @timeit to2 "baz" identity(nothing) @timeit to2 "foobar" begin @timeit to2 "bar" identity(nothing) @timeit to2 "baz" identity(nothing) end @timeit to3 "bar" identity(nothing) @test_throws MethodError merge() to_merged = merge(to1, to2, to3) @test to_merged !== to1 merge!(to1, to2, to3) for to in [to1, to_merged] @test "foo" in collect(keys(to.inner_timers)) @test "bar" in collect(keys(to.inner_timers)) @test "foobar" in collect(keys(to.inner_timers)) subto = to["foobar"] @test "foo" in collect(keys(subto.inner_timers)) @test "bar" in collect(keys(subto.inner_timers)) @test ncalls(to["foo"]) == 1 @test ncalls(to["bar"]) == 2 @test ncalls(to["baz"]) == 2 @test ncalls(subto["foo"]) == 1 @test ncalls(subto["bar"]) == 1 @test ncalls(subto["baz"]) == 2 end end # Issue #118 let to = TimerOutput() @timeit to "foo" identity(nothing) @timeit to "foobar" begin @timeit to "foo" identity(nothing) @timeit to "baz" identity(nothing) end @timeit to "baz" identity(nothing) @test ncalls(to.inner_timers["foo"]) == 1 @test ncalls(to.inner_timers["foobar"]) == 1 @test ncalls(to.inner_timers["foobar"].inner_timers["foo"]) == 1 @test ncalls(to.inner_timers["foobar"].inner_timers["baz"]) == 1 @test ncalls(to.inner_timers["baz"]) == 1 end @testset "sortby firstexec" begin to = TimerOutput() @timeit to "cccc" sleep(0.1) @timeit to "cccc" sleep(0.1) @timeit to "bbbb" sleep(0.1) @timeit to "aaaa" sleep(0.1) @timeit to "cccc" sleep(0.1) table = sprint((io, to)->show(io, to, sortby = :firstexec), to) @test match(r"cccc", table).offset < match(r"bbbb", table).offset < match(r"aaaa", table).offset to = TimerOutput() @timeit to "group" begin @timeit to "aaaa" sleep(0.1) @timeit to "nested_group" begin sleep(0.1) @timeit to "bbbb" sleep(0.1) @timeit to "cccc" sleep(0.1) end end table = sprint((io, to)->show(io, to, sortby = :firstexec), to) @test match(r"aaaa", table).offset < match(r"bbbb", table).offset < match(r"cccc", table).offset end @static if isdefined(Threads, Symbol("@spawn")) @testset "merge at custom points during multithreading" begin to = TimerOutput() @timeit to "1" begin @timeit to "1.1" sleep(0.1) @timeit to "1.2" sleep(0.1) @timeit to "1.3" sleep(0.1) end @sync begin @timeit to "2" Threads.@spawn begin to2 = TimerOutput() @timeit to2 "2.1" sleep(0.1) @timeit to2 "2.2" sleep(0.1) @timeit to2 "2.3" sleep(0.1) merge!(to, to2, tree_point = ["2"]) end @timeit to "3" Threads.@spawn begin to3 = TimerOutput() @sync begin @timeit to3 "3.1" Threads.@spawn begin to31 = TimerOutput() @timeit to31 "3.1.1" sleep(0.1) @timeit to31 "3.1.2" sleep(0.1) @timeit to31 "3.1.3" sleep(0.1) merge!(to3, to31, tree_point = ["3.1"]) end @timeit to3 "3.2" Threads.@spawn begin to32 = TimerOutput() @timeit to32 "3.2.1" sleep(0.1) @timeit to32 "3.2.2" sleep(0.1) @timeit to32 "3.2.3" sleep(0.1) merge!(to3, to32, tree_point = ["3.2"]) end end merge!(to, to3, tree_point = ["3"]) end end @test "1" in collect(keys(to.inner_timers)) @test ncalls(to.inner_timers["1"]) == 1 @test "2" in collect(keys(to.inner_timers)) @test ncalls(to.inner_timers["2"]) == 1 @test "3" in collect(keys(to.inner_timers)) @test ncalls(to.inner_timers["3"]) == 1 @test !in("1.1", collect(keys(to.inner_timers))) @test !in("2.1", collect(keys(to.inner_timers))) @test !in("3.1", collect(keys(to.inner_timers))) @test !in("3.1.1", collect(keys(to.inner_timers))) @test !in("3.2", collect(keys(to.inner_timers))) @test !in("3.2.1", collect(keys(to.inner_timers))) to1 = to.inner_timers["1"] @test "1.1" in collect(keys(to1.inner_timers)) @test ncalls(to1.inner_timers["1.1"]) == 1 to2 = to.inner_timers["2"] @test "2.1" in collect(keys(to2.inner_timers)) @test ncalls(to2.inner_timers["2.1"]) == 1 @test !in("3.1", collect(keys(to2.inner_timers))) to3 = to.inner_timers["3"] @test "3.1" in collect(keys(to3.inner_timers)) @test ncalls(to3.inner_timers["3.1"]) == 1 @test "3.2" in collect(keys(to3.inner_timers)) @test ncalls(to3.inner_timers["3.2"]) == 1 @test !in("2.1", collect(keys(to3.inner_timers))) to31 = to3.inner_timers["3.1"] @test "3.1.1" in collect(keys(to31.inner_timers)) @test ncalls(to31.inner_timers["3.1.1"]) == 1 @test !in("3.2.1", collect(keys(to31.inner_timers))) to32 = to3.inner_timers["3.2"] @test "3.2.1" in collect(keys(to32.inner_timers)) @test ncalls(to32.inner_timers["3.2.1"]) == 1 @test !in("3.1.1", collect(keys(to32.inner_timers))) end end @testset "Serialization" begin # Setup a timer to = TimerOutput() @timeit to "foo" identity(nothing) @timeit to "foobar" begin @timeit to "foo" identity(nothing) @timeit to "baz" identity(nothing) end @timeit to "baz" identity(nothing) function compare(to, d) @test TimerOutputs.tottime(to) == d["total_time_ns"] @test TimerOutputs.ncalls(to) == d["n_calls"] @test TimerOutputs.totallocated(to) == d["total_allocated_bytes"] @test TimerOutputs.allocated(to) == d["allocated_bytes"] @test TimerOutputs.time(to) == d["time_ns"] for ((k1, timer), (k2, obj)) in zip(to.inner_timers, d["inner_timers"]) @test k1 == k2 compare(timer, obj) end end compare(to, todict(to)) end @testset "InstrumentedFunctions" begin to = TimerOutput() f = to(x -> x^2, "f") @test isempty(to.inner_timers) f(1) @test ncalls(to.inner_timers["f"]) == 1 h = to(x -> f(x) + 1, "h") h(1) @test ncalls(to.inner_timers["h"]) == 1 @test ncalls(to.inner_timers["h"].inner_timers["f"]) == 1 s = x -> x+1 t = to(s) t(1) ncalls(to.inner_timers[repr(s)]) == 1 end
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.5.24
5a13ae8a41237cff5ecf34f73eb1b8f42fff6531
docs
20663
# TimerOutputs [![Build Status](https://travis-ci.com/KristofferC/TimerOutputs.jl.svg?branch=master)](https://travis-ci.com/KristofferC/TimerOutputs.jl) [![codecov](https://codecov.io/gh/KristofferC/TimerOutputs.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/KristofferC/TimerOutputs.jl) `TimerOutputs` is a small Julia package that is used to generate formatted output from timings made in different sections of a program. It's main functionality is the `@timeit` macro, similar to the `@time` macro in Base except one also assigns a label to the code section being timed. Multiple calls to code sections with the same label (and in the same "scope") will accumulate the data for that label. After the program has executed, it is possible to print a nicely formatted table presenting how much time, allocations and number of calls were made in each section. The output can be customized as to only show the things you are interested in. If you find this package useful please give it a star. I like stars and it also helps me know where my development time is best spent. ## Example output An example of the output (used in a finite element simulation) is shown below ``` ─────────────────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 6.89s / 97.8% 5.20GiB / 85.0% Section ncalls time %tot avg alloc %tot avg ─────────────────────────────────────────────────────────────────────────────── assemble 6 3.27s 48.6% 545ms 3.65GiB 82.7% 624MiB inner assemble 240k 1.92s 28.4% 7.98μs 3.14GiB 71.1% 13.7KiB linear solve 5 2.73s 40.5% 546ms 108MiB 2.39% 21.6MiB create sparse matrix 6 658ms 9.77% 110ms 662MiB 14.6% 110MiB export 1 78.4ms 1.16% 78.4ms 13.1MiB 0.29% 13.1MiB ─────────────────────────────────────────────────────────────────────────────── ``` The first line shows the total (wall) time passed and allocations made since the start of the timer as well as the percentage of those totals spent inside timed sections. The following lines shows data for all the timed sections. The section label is shown first followed by the number of calls made to that section. Finally, the total time elapsed or allocations made in that section are shown together with the percentage of the total in that section and the average (time / allocations per call). ## Usage The easiest way to show how the package work is with a few examples of timing sections. ```julia using TimerOutputs # Create a TimerOutput, this is the main type that keeps track of everything. const to = TimerOutput() # Time a section code with the label "sleep" to the `TimerOutput` named "to" @timeit to "sleep" sleep(0.02) # Create a function to later time rands() = rand(10^7) # Time the function, @timeit returns the value being evaluated, just like Base @time rand_vals = @timeit to "randoms" rands(); # Nested sections (sections with same name are not accumulated # if they have different parents) function time_test() @timeit to "nest 1" begin sleep(0.1) # 3 calls to the same label @timeit to "level 2.1" sleep(0.03) @timeit to "level 2.1" sleep(0.03) @timeit to "level 2.1" sleep(0.03) @timeit to "level 2.2" sleep(0.2) end @timeit to "nest 2" begin @timeit to "level 2.1" sleep(0.3) @timeit to "level 2.2" sleep(0.4) end end time_test() # exception safe function i_will_throw() @timeit to "throwing" begin sleep(0.5) throw(error("this is fine...")) print("nope") end end i_will_throw() # Use disable_timer! to selectively turn off a timer, enable_timer! turns it on again disable_timer!(to) @timeit to "not recorded" sleep(0.1) enable_timer!(to) # Use @notimeit to disable timer and re-enable it afterwards (if it was enabled # before) @notimeit to time_test() # Call to a previously used label accumulates data for i in 1:100 @timeit to "sleep" sleep(0.01) end # Can also annotate function definitions @timeit to funcdef(x) = x funcdef(2) # Or to instrument an existing function: foo(x) = x + 1 timed_foo = to(foo) timed_foo(5) # Print the timings in the default way show(to) ``` Printing `to` shows a formatted table showing the number of calls, the total time spent in each section, and the percentage of the time spent in each section since `to` was created as well as averages (per call). Similar information is available for allocations: ``` ──────────────────────────────────────────────────────────────────────── Time Allocations ─────────────────────── ──────────────────────── Tot / % measured: 7.99s / 39.1% 207MiB / 46.7% Section ncalls time %tot avg alloc %tot avg ──────────────────────────────────────────────────────────────────────── sleep 101 1.36s 43.4% 13.4ms 23.3KiB 0.0% 236B nest 2 1 711ms 22.8% 711ms 2.05KiB 0.0% 2.05KiB level 2.2 1 405ms 13.0% 405ms 144B 0.0% 144B level 2.1 1 306ms 9.8% 306ms 448B 0.0% 448B throwing 1 517ms 16.6% 517ms 912B 0.0% 912B nest 1 1 417ms 13.4% 417ms 2.17KiB 0.0% 2.17KiB level 2.2 1 202ms 6.5% 202ms 144B 0.0% 144B level 2.1 3 108ms 3.5% 36.0ms 432B 0.0% 144B randoms 1 120ms 3.8% 120ms 96.5MiB 100.0% 96.5MiB funcdef 1 94.4μs 0.0% 94.4μs 0.00B 0.0% 0.00B foo 1 1.50μs 0.0% 1.50μs 0.00B 0.0% 0.00B ──────────────────────────────────────────────────────────────────────── ``` ## Settings for printing: The `print_timer([io::IO = stdout], to::TimerOutput, kwargs)`, (or `show`) takes a number of keyword arguments to change the output. They are listed here: * `title::String` ─ title for the timer * `allocations::Bool` ─ show the allocation columns (default `true`) * `sortby::Symbol` ─ sort the sections according to `:time` (default), `:ncalls`, `:allocations`, `:name` or `:firstexec` * `linechars::Symbol` ─ use either `:unicode` (default) or `:ascii` to draw the horizontal lines in the table * `compact::Bool` ─ hide the `avg` column (default `false`) ## Flattening If sections are nested like in the example below: ```julia to = TimerOutput() @timeit to "nest 1" begin sleep(0.1) @timeit to "level 2.1" sleep(0.1) for i in 1:20; @timeit to "level 2.2" sleep(0.02); end end @timeit to "nest 2" begin for i in 1:30; @timeit to "level 2.1" sleep(0.01); end @timeit to "level 2.2" sleep(0.1) end ``` the table is displayed as: ```julia julia> show(to, allocations = false, compact = true) ──────────────────────────────────── Section ncalls time %tot ──────────────────────────────────── nest 1 1 669ms 60.5% level 2.2 20 423ms 38.3% level 2.1 1 101ms 9.15% nest 2 1 437ms 39.5% level 2.1 30 335ms 30.3% level 2.2 1 101ms 9.16% ──────────────────────────────────── ``` It is possible to flatten this timer using the `TimerOutputs.flatten` function that accumulates the data for all sections with identical labels: ```julia julia> to_flatten = TimerOutputs.flatten(to); julia> show(to_flatten; compact = true, allocations = false) ────────────────────────────────── Section ncalls time %tot ────────────────────────────────── nest 1 1 669ms 60.5% level 2.2 21 525ms 47.5% nest 2 1 437ms 39.5% level 2.1 31 436ms 39.5% ────────────────────────────────── ``` ## Merging Two or more timers can be merged using `merge` or `merge!`: ```julia julia> to1 = TimerOutput(); to2 = TimerOutput(); julia> @timeit to1 "outer" begin @timeit to1 "inner" begin sleep(1) end end julia> @timeit to2 "outer" begin sleep(1) end julia> show(to1; compact=true, allocations=false) ──────────────────────────────── Section ncalls time %tot ──────────────────────────────── outer 1 1.00s 100% inner 1 1.00s 100% ──────────────────────────────── julia> show(to2; compact=true, allocations=false) ──────────────────────────────── Section ncalls time %tot ──────────────────────────────── outer 1 1.00s 100% ──────────────────────────────── julia> show(merge(to1, to2); compact=true, allocations=false) ──────────────────────────────── Section ncalls time %tot ──────────────────────────────── outer 2 2.00s 100% inner 1 1.00s 50.0% ──────────────────────────────── ``` Merging can be used to facilitate timing coverage throughout simple multi-threaded setups. For instance, use thread-local `TimerOutput` objects that are merged at custom merge points via the `tree_point` keyword arg, which is a vector of label strings used to navigate to the merge point in the timing tree. `merge!` is thread-safe via a lock. ```julia julia> using TimerOutputs julia> to = TimerOutput() julia> @timeit to "1" begin @timeit to "1.1" sleep(0.1) @timeit to "1.2" sleep(0.1) @timeit to "1.3" sleep(0.1) end julia> @timeit to "2" Threads.@spawn begin to2 = TimerOutput() @timeit to2 "2.1" sleep(0.1) @timeit to2 "2.2" sleep(0.1) @timeit to2 "2.3" sleep(0.1) merge!(to, to2, tree_point = ["2"]) end julia> to ────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 3.23s / 9.79% 13.5MiB / 36.9% Section ncalls time %tot avg alloc %tot avg ────────────────────────────────────────────────────────────────── 1 1 309ms 98.0% 309ms 4.55MiB 91.5% 4.55MiB 1.3 1 106ms 33.6% 106ms 320B 0.01% 320B 1.2 1 102ms 32.3% 102ms 320B 0.01% 320B 1.1 1 101ms 32.0% 101ms 4.54MiB 91.4% 4.54MiB 2 1 6.47ms 2.05% 6.47ms 435KiB 8.54% 435KiB 2.2 1 106ms 33.6% 106ms 480B 0.01% 480B 2.3 1 105ms 33.4% 105ms 144B 0.00% 144B 2.1 1 103ms 32.5% 103ms 5.03MiB 101% 5.03MiB ────────────────────────────────────────────────────────────────── ``` ## Resetting A timer is reset by calling `reset_timer!(to::TimerOutput)`. This will remove all sections and reset the start of the timer to the current time / allocation values. ## Indexing into a table Any `TimerOutput` can be indexed with the name of a section which returns a new `TimerOutput` with that section as the "root". For example: ```julia to = TimerOutput() @timeit to "nest 1" begin @timeit to "nest 2" begin @timeit to "nest 3.1" sleep(0.1) @timeit to "nest 3.2" sleep(0.1) @timeit to "nest 3.3" sleep(0.1) end sleep(0.3) end ``` ```julia julia> show(to; compact = true, allocations = false, linechars = :ascii) ------------------------------------- Section ncalls time %tot ------------------------------------- nest 1 1 605ms 100% nest 2 1 304ms 50.2% nest 3.2 1 101ms 16.7% nest 3.1 1 101ms 16.7% nest 3.3 1 101ms 16.7% ------------------------------------- julia> to_2 = to["nest 1"]["nest 2"]; julia> show(to_2; compact = true, allocations = false, linechars = :ascii) --------------------------------- Section ncalls time %tot --------------------------------- nest 3.2 1 101ms 33.3% nest 3.1 1 101ms 33.3% nest 3.3 1 101ms 33.3% --------------------------------- ``` The percentages showed are now relative to that "root". ## Querying data The (unexported) functions `ncalls`, `time`, `allocated` give the accumulated data for a section. The returned time has units in nano seconds and allocations in bytes. For example (using the `to` object from above): ```julia julia> TimerOutputs.ncalls(to["nest 1"]) 1 julia> TimerOutputs.time(to["nest 1"]["nest 2"]) 350441733 julia> TimerOutputs.allocated(to["nest 1"]["nest 2"]) 5280 ``` Furthermore, you can request the total time spent in the "root" timer: ```julia julia> TimerOutputs.tottime(to) 604937208 julia> TimerOutputs.totallocated(to) 7632 ``` ## Default Timer It is often the case that it is enough to only use one timer. For convenience, there is therefore a version of all the functions and macros that do not take a `TimerOutput` instance and then use a global timer defined in the package. Note that this global timer is shared among all users of the package. For example: ```julia reset_timer!() @timeit "section" sleep(0.02) @timeit "section2" sleep(0.1) print_timer() ``` which prints: ```julia julia> print_timer() ─────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 276ms / 44.3% 422KiB / 0.21% Section ncalls time %tot avg alloc %tot avg ─────────────────────────────────────────────────────────────────── section2 1 101ms 82.7% 101ms 464B 50.0% 464B section 1 21.1ms 17.3% 21.1ms 464B 50.0% 464B ─────────────────────────────────────────────────────────────────── ``` The default timer object can be retrieved with `TimerOutputs.get_defaulttimer()`. ## Measuring time consumed outside `@timeit` blocks Often, operations that we do not consider time consuming turn out to be relevant. However, adding additional timming blocks just to time initializations and other less important calls is annoying. The `TimerOutputs.complement!` function can be used to modify a timer and add values for complement of timed sections. For instance: ```julia to = TimerOutput() @timeit to "section1" sleep(0.02) @timeit to "section2" begin @timeit to "section2.1" sleep(0.1) sleep(0.01) end TimerOutputs.complement!(to) ``` We can print the result: ```julia julia> print_timer(to) ─────────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 144ms / 100% 6.11KiB / 22.0% Section ncalls time %tot avg alloc %tot avg ─────────────────────────────────────────────────────────────────────── section2 1 120ms 83.6% 120ms 1.17KiB 87.2% 1.17KiB section2.1 1 106ms 73.9% 106ms 176B 12.8% 176B ~section2~ 1 13.9ms 9.69% 13.9ms 1.00KiB 74.4% 1.00KiB section1 1 23.4ms 16.4% 23.4ms 176B 12.8% 176B ─────────────────────────────────────────────────────────────────────── ``` In order to complement the default timer simply call `TimerOutputs.complement!()`. ## Shared Timers It is sometimes desirable for a timer to be shared across all users of the package. For this purpose, `get_timer` maintains a collection of named timers defined in the package. `get_timer(timer_name::String)` retrieves the timer `timer_name` from the collection, creating a new timer if none already exists. For example: ```julia module UseTimer using TimerOutputs: @timeit, get_timer function foo() to = get_timer("Shared") @timeit get_timer("Shared") "foo" sleep(0.1) end end @timeit get_timer("Shared") "section1" begin UseTimer.foo() sleep(0.01) end ``` which prints: ```julia julia> print_timer(get_timer("Shared")) ─────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 17.1s / 0.82% 44.0MiB / 2.12% Section ncalls time %tot avg alloc %tot avg ─────────────────────────────────────────────────────────────────── section1 1 140ms 100% 140ms 956KiB 100% 956KiB foo 1 102ms 72.7% 102ms 144B 0.01% 144B ─────────────────────────────────────────────────────────────────── ``` Note that the result of `get_timer` should not be called from top-level in a package that is getting precompiled since the retrieved timer will no longer be shared with other users getting a timer with the same name. Also, this function is not recommended to be used extensively by libraries as the namespace is shared and collisions are possible if two libraries happen to use the same timer name. ## Serialization Timers may be converted to a nested set of dictionaries with the (unexported) `TimerOutputs.todict` function. This can be used to serialize a timer as JSON, for example. ```julia julia> to = TimerOutput(); julia> @timeit to "nest 1" begin sleep(0.1) @timeit to "level 2.1" sleep(0.1) for i in 1:20; @timeit to "level 2.2" sleep(0.02); end end julia> TimerOutputs.todict(to) Dict{String, Any} with 6 entries: "total_time_ns" => 726721166 "total_allocated_bytes" => 474662 "time_ns" => 0 "n_calls" => 0 "allocated_bytes" => 0 "inner_timers" => Dict{String, Any}("nest 1"=>Dict{String, Any}("total_time_ns"=>611383374, "total_allocated_bytes"=>11888, "time_ns"=>726721166, "n_calls"=>1, "allocated_bytes"=>474662, "inner_timers"=>Dict{String, Any}("level 2.1"=>Dict{String, Any}("total_time_ns"=>0, "total_allocated_bytes"=>0, "time_ns"=>115773750, "n_calls"=>1, "allocated_bytes"=>8064, "inner_timers"=>Dict{String, Any}()), "level 2.2"=>Dict{String, Any}("total_time_ns"=>0, "total_allocated_bytes"=>0, "time_ns"=>495609624, "n_calls"=>20, "allocated_bytes"=>3824, "inner_timers"=>Dict{String, Any}())))) julia> using JSON3 # or JSON julia> JSON3.write(TimerOutputs.todict(to)) "{\"total_time_ns\":712143250,\"total_allocated_bytes\":5680,\"time_ns\":0,\"n_calls\":0,\"allocated_bytes\":0,\"inner_timers\":{\"nest 1\":{\"total_time_ns\":605922416,\"total_allocated_bytes\":4000,\"time_ns\":712143250,\"n_calls\":1,\"allocated_bytes\":5680,\"inner_timers\":{\"level 2.1\":{\"total_time_ns\":0,\"total_allocated_bytes\":0,\"time_ns\":106111333,\"n_calls\":1,\"allocated_bytes\":176,\"inner_timers\":{}},\"level 2.2\":{\"total_time_ns\":0,\"total_allocated_bytes\":0,\"time_ns\":499811083,\"n_calls\":20,\"allocated_bytes\":3824,\"inner_timers\":{}}}}}}" ``` ## Overhead There is a small overhead in timing a section (0.25 μs) which means that this package is not suitable for measuring sections that finish very quickly. For proper benchmarking you want to use a more suitable tool like [*BenchmarkTools*](https://github.com/JuliaCI/BenchmarkTools.jl). It is sometimes desireable to be able "turn on and off" the `@timeit` macro, for instance you may wish to instrument a package with `@timeit` macros, but then not deal with the overhead of the timings during normal package operation. To enable this, we provide the `@timeit_debug` macro, which wraps the `@timeit` macro with a conditional, checking if debug timings have been enabled. Because you may wish to turn on only certain portions of your instrumented code base (or multiple codebases may have instrumented their code), debug timings are enabled on a module-by-module basis. By default, debug timings are disabled, and this conditional should be optimized away, allowing for truly zero-overhead. If a user calls `TimerOutputs.enable_debug_timings(<module>)`, the `<module>.timeit_debug_enabled()` method will be redefined, causing all dependent methods to be recompiled within that module. This may take a while, and hence is intended only for debugging usage, however all calls to `@timeit_debug` (within that Module) will thereafter be enabled. ## Author Kristoffer Carlsson - @KristofferC ## Acknowledgments This package is inspired by the `TimerOutput` class in [deal.ii](https://dealii.org/).
TimerOutputs
https://github.com/KristofferC/TimerOutputs.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
793
using Documenter using WannierIO # Generate the HTML pages by Documenter.jl makedocs(; sitename="WannierIO.jl", authors="Junfeng Qiao and contributors.", clean=true, modules=[WannierIO], pages=[ "Home" => "index.md", "API" => [ "Convention" => "api/convention.md", "Utilities" => "api/util.md", "Wannier90" => "api/w90.md", "Volumetric data" => "api/volumetric.md", "Quantum ESPRESSO" => "api/qe.md", "EPW" => "api/epw.md", "Index" => "api/index.md", ], ], ) # Documenter will auto dectect build environment; on local machine it will be # skipped, so it's safe to run this script deploydocs(; repo="github.com/qiaojunfeng/WannierIO.jl.git", devbranch="main")
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1035
""" `WannierIO.jl`: a package for reading and writing Wannier90 file formats. --- $(README) --- Exported functions: $(EXPORTS) """ module WannierIO using Printf: @printf, @sprintf using DocStringExtensions include("common/const.jl") include("common/type.jl") include("util/fortran.jl") include("util/lattice.jl") include("util/header.jl") include("util/toml.jl") include("util/parser.jl") include("util/compare.jl") using FortranFiles: FortranFile, FString, trimstring, Record include("w90/win.jl") include("w90/wout.jl") include("w90/nnkp.jl") include("w90/amn.jl") include("w90/mmn.jl") include("w90/eig.jl") include("w90/chk.jl") include("w90/unk.jl") include("w90/spn.jl") include("w90/uHu.jl") include("w90/band.jl") include("w90/tb.jl") include("w90/wsvec.jl") include("w90/hr.jl") include("w90/r.jl") include("w90/hh_r.jl") include("w90/u_mat.jl") # volumetric files include("volume/xsf.jl") include("volume/cube.jl") include("volume/bxsf.jl") include("qe/band.jl") include("qe/xml.jl") include("misc/epw.jl") end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
314
""" Bohr radius in Angstrom unit. This is the default CODATA2006 value in W90 `src/constants.F90`. """ const Bohr::Float64 = 0.52917721092 """ Bohr radius in Angstrom unit. This is the default (Physical constants, SI (NIST 2018)) value in QE `Modules/constants.f90`. """ const Bohr_QE::Float64 = 0.529177210903
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
2296
using StaticArrays """ 3 x 3 matrix type. For lattice and recip_lattice. """ const Mat3{T} = SMatrix{3,3,T,9} where {T} """ Length-3 vector type. For atom posistions, kpoints, etc. """ const Vec3{T} = SVector{3,T} where {T} """ `Vector{Vector}` -> `Mat3` """ Mat3(A::AbstractVector) = Mat3(reduce(hcat, A)) """ `Mat3` -> `Vec3{Vec3}` """ Vec3(A::Mat3) = Vec3(eachcol(A)) """ Pair type associating a `Symbol` with a `Vec3`. For win file `atoms_frac` and `kpoint_path`. """ const SymbolVec3{T} = Pair{Symbol,Vec3{T}} where {T} SymbolVec3(s, v) = SymbolVec3{eltype(v)}(s, v) SymbolVec3(s::AbstractString, v) = SymbolVec3(Symbol(s), v) SymbolVec3(p::Pair) = SymbolVec3(p.first, p.second) SymbolVec3(d::Dict) = SymbolVec3(only(d)) abstract type FileFormat end """ Fortran formatted IO. """ struct FortranText <: FileFormat end """ Fortran unformatted IO. """ struct FortranBinary <: FileFormat end """ Fortran unformatted IO with stream access. For example, file written using these Fortran code: ```fortran OPEN(UNIT=11, FILE="ustream.demo", STATUS="NEW", ACCESS="STREAM", FORM="UNFORMATTED") ``` """ struct FortranBinaryStream <: FileFormat end """ Plain text format for Wannier90 `win` and `nnkp` files. The W90 default `win` or `nnkp` are plain text files but are not simple arrays of numbers that can be read by `readdlm`, therefore this struct is used to indicate that the file is plain text but need to be handled by corresponding functions, e.g., [`read_win`](@ref), [`read_nnkp`](@ref), etc. This somewhat overlaps with [`FortranText`](@ref), but this one is only used for small input parameter files e.g. `win` and `nnkp` (in comparison with the [`Wannier90Toml`](@ref) format), while the [`FortranText`](@ref) (in comparison with the [`FortranBinary`](@ref) format) is used for large matrices e.g. `amn`, `mmn`, `eig`, etc. """ struct Wannier90Text <: FileFormat end """ TOML file format for Wannier90 `win` and `nnkp` files. Here we introduce a TOML format for `win` and `nnkp`, so that once the `win` or `nnkp` files are converted into TOML, the TOML files can be loaded by standard TOML parsers without the headache of writing custom parsers in other Julia packages. See also [`write_win`](@ref), [`write_nnkp`](@ref), etc. """ struct Wannier90Toml <: FileFormat end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
8920
""" $(SIGNATURES) Read the EPW mmn file. The EPW mmn format is different from that of W90. It does not contain the number of kpoints/bvectors/bands, so they need to be provided as keyword arguments. # Arguments - `filename`: the mmn file name # Keyword arguments - `n_kpts`: number of kpoints - `n_bvecs`: number of bvectors - `n_bands`: number of bands # Return - `M`: length-`n_kpts` vector of length-`n_bvecs` vector of `n_bands * n_bands` matrices """ function read_epw_mmn( filename::AbstractString; n_kpts::Integer, n_bvecs::Integer, n_bands::Integer ) return open(filename) do io M = [[zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_bvecs] for _ in 1:n_kpts] for ik in 1:n_kpts for ib in 1:n_bvecs for n in 1:n_bands for m in 1:n_bands line = readline(io) line = replace(strip(line), "(" => "", ")" => "", "," => " ") line = split(line) M[ik][ib][m, n] = parse(Float64, line[1]) + parse(Float64, line[2]) * im end end end end @assert eof(io) "Did not reach the end of the file, maybe wrong n_kpts, n_bvecs, or n_bands?" return M end end """ Struct for the EPW `.ukk` file. Similar to the W90 `.chk` file. $(TYPEDEF) # Fields $(FIELDS) """ struct Ukk{T<:Real} """index of the first band""" ibndstart::Int """index of the last band""" ibndend::Int """number of kpoints""" n_kpts::Int """number of bands""" n_bands::Int """number of wannier functions""" n_wann::Int """gauge matrices, length-`n_kpts` vector, each element is a `n_bands * n_wann` matrix""" U::Vector{Matrix{Complex{T}}} """flag for frozen bands, length-`n_kpts` vector, each element is a length-`n_bands` vector""" frozen_bands::Vector{BitVector} """flag for excluded bands, length-`n_bands + n_excl_bands` vector, where `n_excl_bands` is the number of excluded bands""" excluded_bands::BitVector """centers of WFs, length-`n_wann` vector of `Vec3`. Note that EPW uses Cartesian coordinates w.r.t the QE `alat`, so it is dimensionless.""" centers::Vector{Vec3{T}} end """ $(SIGNATURES) Compare two `Ukk` structs. """ function Base.isapprox(a::Ukk, b::Ukk) return _isapprox(a, b) end """ $(SIGNATURES) Read the EPW `.ukk` file. # Arguments - `filename`: the output file name # Return - `ukk`: the [`Ukk`](@ref) struct """ function read_epw_ukk(filename::AbstractString) # Need to 1st read the last part to get the number of WFs centers = open(filename) do io centers = Vec3{Float64}[] # note Julia 1.8 is required for reverse(eachline(io)) for line in Iterators.reverse(eachline(io)) r = split(strip(line)) if length(r) == 3 push!(centers, Vec3(parse.(Float64, r))) else break end end return reverse(centers) end n_wann = length(centers) @assert n_wann > 0 "n_wann = $n_wann ≤ 0" ibndstart, ibndend, Uflat, flags = open(filename) do io ibndstart, ibndend = parse.(Int, split(readline(io))) # the unitary matrices # now we don't know n_kpts and n_bands yet, so we can only read the # complex numbers into a flat vector Uflat = ComplexF64[] # both the frozen_bands and excluded_bands, still flat vector flags = Bool[] for line in eachline(io) line = replace(strip(line), "(" => "", ")" => "", "," => " ") line = split(line) if length(line) == 2 push!(Uflat, parse(Float64, line[1]) + parse(Float64, line[2]) * im) elseif length(line) == 1 push!(flags, parse_bool(line[1])) break else error("Wrong number of elements in line: $line") end end for line in eachline(io) line = strip(line) if length(split(line)) == 1 push!(flags, parse_bool(line)) else break end end return ibndstart, ibndend, Uflat, flags end n_kpts_bands_wann = length(Uflat) n_kpts_bands = n_kpts_bands_wann ÷ n_wann # the kept bands are false in the last part of flags excluded_bands = BitVector(flags[(n_kpts_bands + 1):end]) n_bands = count(!, excluded_bands) n_kpts = n_kpts_bands ÷ n_bands @assert n_kpts > 0 "n_kpts = $n_kpts ≤ 0" @assert n_bands > 0 "n_bands = $n_bands ≤ 0" @info "Reading ukk file" filename n_kpts n_bands n_wann U = [zeros(ComplexF64, n_bands, n_wann) for _ in 1:n_kpts] counter = 1 for ik in 1:n_kpts for ib in 1:n_bands for iw in 1:n_wann U[ik][ib, iw] = Uflat[counter] counter += 1 end end end frozen_bands = [trues(n_bands) for _ in 1:n_kpts] counter = 1 for ik in 1:n_kpts for ib in 1:n_bands frozen_bands[ik][ib] = flags[counter] end end return Ukk( ibndstart, ibndend, n_kpts, n_bands, n_wann, U, frozen_bands, excluded_bands, centers, ) end """ $(SIGNATURES) Write the EPW `.ukk` file. # Arguments - `filename`: the output file name - `ukk`: the [`Ukk`](@ref) struct # Examples See [`Ukk(chk::Chk, alat::Real)`](@ref) for how to construct a `Ukk` from a [`Chk`](@ref). """ function write_epw_ukk(filename::AbstractString, ukk::Ukk) open(filename, "w") do io @printf(io, "%d %d\n", ukk.ibndstart, ukk.ibndend) # the unitary matrices for ik in 1:(ukk.n_kpts) for ib in 1:(ukk.n_bands) for iw in 1:(ukk.n_wann) u = ukk.U[ik][ib, iw] @printf(io, "(%25.18E,%25.18E)\n", real(u), imag(u)) end end end # needs also lwindow when disentanglement is used for ik in 1:(ukk.n_kpts) for ib in 1:(ukk.n_bands) if ukk.frozen_bands[ik][ib] @printf(io, "T\n") else @printf(io, "F\n") end end end for ex in ukk.excluded_bands if ex @printf(io, "T\n") else @printf(io, "F\n") end end # now write the Wannier centers to files for iw in 1:(ukk.n_wann) # meed more precision other WS are not determined properly. @printf(io, "%22.12E %22.12E %22.12E\n", ukk.centers[iw]...) end end @printf("Written to %s\n", filename) end """ $(SIGNATURES) Construct a EPW [`Ukk`](@ref) from a W90 [`Chk`](@ref). # Arguments - `chk`: the [`Chk`](@ref) struct - `alat`: the QE `alat` in Å unit. Note that the `alat` from QE stdout file is in Bohr unit, you need to do the conversion by multiplying it with [`Bohr_QE`](@ref). # Examples Convert a W90 `.chk` file to a EPW `.ukk` file: ```julia using WannierIO chk = read_chk("BN.chk") # Note we need QE `alat` for ukk. You can get it # - either by inspecting the QE stdout file, from line like # lattice parameter (alat) = 6.8330 a.u. # where the 6.8330 is the alat in Bohr unit. However, the Bohr constant # in W90 and QE are slightly different, to be exact we need to do the unit # conversion using QE constant: alat = 6.8330 * WannierIO.Bohr_QE # - or better by parsing the QE xml file, and the unit conversion is done automatically alat = read_qe_xml("BN.xml").alat ukk = Ukk(chk, alat) WannierIO.write_epw_ukk("BN.ukk", ukk) ``` """ function Ukk(chk::Chk, alat::Real) n_bands = chk.n_bands exclude_band_indices = chk.exclude_bands n_kpts = chk.n_kpts n_wann = chk.n_wann frozen_bands = [trues(n_bands) for _ in 1:n_kpts] n_excl_bands = length(exclude_band_indices) n_bands_tot = n_bands + n_excl_bands included = trues(n_bands_tot) included[exclude_band_indices] .= false excluded_bands = .!included if n_excl_bands > 0 ibndstart = findfirst(included) ibndend = n_bands_tot - findfirst(reverse(included)) + 1 else ibndstart = 1 ibndend = n_bands_tot end # the centers in ukk file is dimensionless: Cartesian coordinates w.r.t alat # the centers in chk file is Cartesian coordinates in Å # the input arg `alat` should be in Å unit centers = chk.r / alat Uchk = get_U(chk) return Ukk( ibndstart, ibndend, n_kpts, n_bands, n_wann, Uchk, frozen_bands, excluded_bands, centers, ) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3249
using LinearAlgebra """ $(SIGNATURES) Read Quantum ESPRESSO `bands.x` output data file. The data file has format ``` &plot nbnd= 20, nks= 380 / -0.500000 0.500000 0.500000 -3.320 -0.666 5.173 5.173 7.994 9.725 9.725 14.147 16.993 16.993 17.841 17.841 17.902 19.666 25.961 26.563 28.186 28.186 28.368 28.368 -0.495000 0.495000 0.495000 -3.322 -0.664 5.173 5.173 7.994 9.725 9.725 14.148 16.980 16.980 ... ``` """ function read_qe_band(filename::AbstractString) res = open(filename) do io line = readline(io) regex = r"&plot nbnd=\s*(\d+), nks=\s*(\d+) /" m = match(regex, line) if m !== nothing n_bands, n_kpts = parse.(Int, m.captures) else # this is my customized version, with `alat` added to header, # so we can return kpoints in Å⁻¹ unit instead of arbitrary regex = r"&plot nbnd=\s*(\d+), nks=\s*(\d+) alat=\s*([+-]?([0-9]*[.])?[0-9]+) /" m = match(regex, line) n_bands, n_kpts = parse.(Int, m.captures[1:2]) alat = parse.(Float64, m.captures[3]) end kpoints = Vec3{Float64}[] eigenvalues = Vector{Float64}[] for _ in 1:n_kpts # QE kpt are in cartesian coordinates, but scaled by `alat` kpt = parse.(Float64, split(readline(io))) push!(kpoints, kpt) ib = 1 eig = zeros(Float64, n_bands) while ib <= n_bands e = parse.(Float64, split(readline(io))) n_e = length(e) eig[ib:(ib + n_e - 1)] = e ib += n_e end @assert ib == (n_bands + 1) push!(eigenvalues, eig) end @assert eof(io) return (; kpoints, eigenvalues) end return res end """ $(SIGNATURES) Guess high symmetry points from kpoint coordinates. If there is angle between two consecutive kpoints, then it is labeled as a high-symmetry point. # Arguments - `kpoints`: Vector of `Vector` or `Vec3`, in Cartesian coordinates # Keyword Arguments - `atol`: Absolute tolerance for checking cross product of two vectors # Returns - `symm_point_indices`: Vector of indices of high-symmetry points - `symm_point_labels`: Vector of labels of high-symmetry points, for the moment it is empty """ function guess_kpath(kpoints::AbstractVector{<:AbstractVector}; atol=2e-6) # of course index starts from 1 symm_point_indices = Vector{Int}() symm_point_labels = Vector{String}() n_kpts = length(kpoints) if n_kpts == 0 return (; symm_point_indices, symm_point_labels) end # push the first kpt push!(symm_point_indices, 1) push!(symm_point_labels, "") for ik in 2:(n_kpts - 1) u = kpoints[ik] - kpoints[ik - 1] v = kpoints[ik + 1] - kpoints[ik] if !all(isapprox.(cross(u, v), 0; atol)) push!(symm_point_indices, ik) push!(symm_point_labels, "") end end # push the last kpt push!(symm_point_indices, n_kpts) push!(symm_point_labels, "") return (; symm_point_indices, symm_point_labels) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3532
# using GarishPrint: GarishPrint # using Configurations: Configurations # Base.@kwdef mutable struct AtomicWavefunction # # to differentiate same kind of atoms # atom_index::Int # # e.g. "Si", use "Si1", "Si2" to differentiate same kind but different types (spin up, down) # atom_label::String # # orbital label, e.g. "3S" # wfc_label::String # # quantum numbers # n::Int # l::Int # m::Int # end # Base.@kwdef mutable struct Projectabilities # n_kpts::Int # n_bands::Int # # number of atomic wavefunctions # num_wfcs::Int # # atomic wavefunction types, size: num_wfcs # wfcs_type::Vector{AtomicWavefunction} # # projectability data, size: n_kpts * n_bands * num_wfcs # proj::Array{Float64,3} # end # function read_qe_projwfcup(filename::String) # fdat = open(filename) # splitline() = split(strip(readline(fdat))) # # header # title = strip(readline(fdat), '\n') # nr1x, nr2x, nr3x, nr1, nr2, nr3, nat, ntyp = parse.(Int, splitline()) # line = splitline() # ibrav = parse(Int, line[1]) # celldm = parse.(Float64, line[2:end]) # line = splitline() # # some version of projwfc.x output the unit_cell # if length(line) == 3 # readline(fdat) # readline(fdat) # line = splitline() # end # gcutm, dual, ecutwfc = parse.(Float64, line[1:(end - 1)]) # magicnum = parse(Int, line[end]) # @assert magicnum == 9 # atm = Vector{String}(undef, ntyp) # zv = zeros(Float64, ntyp) # for i in 1:ntyp # line = splitline() # nt = parse(Int, line[1]) # @assert nt == i # atm[i] = line[2] # zv[i] = parse(Float64, line[3]) # end # tau = zeros(Float64, 3, nat) # ityp = zeros(Int, nat) # for i in 1:nat # line = splitline() # na = parse(Int, line[1]) # @assert na == i # tau[:, i] = parse.(Float64, line[2:4]) # ityp[i] = parse(Int, line[5]) # end # natomwfc, nkstot, nbnd = parse.(Int, splitline()) # parsebool(s::Union{String,SubString}) = lowercase(s) == "t" ? true : false # noncolin, lspinorb = parsebool.(splitline()) # @assert !noncolin && !lspinorb # # projection data # nlmchi = Vector{Dict}() # proj = zeros(Float64, nkstot, nbnd, natomwfc) # for iw in 1:natomwfc # line = splitline() # nwfc = parse(Int, line[1]) # @assert nwfc == iw # na = parse(Int, line[2]) # atm_name = line[3] # @assert atm_name == atm[ityp[na]] # els = line[4] # n, l, m = parse.(Int, line[5:end]) # push!(nlmchi, Dict("na" => na, "els" => els, "n" => n, "l" => l, "m" => m)) # for ik in 1:nkstot # for ib in 1:nbnd # line = splitline() # k, b = parse.(Int, line[1:2]) # @assert k == ik && b == ib # p = parse(Float64, line[3]) # proj[ik, ib, iw] = p # end # end # end # wfcs_type = Vector{AtomicWavefunction}(undef, natomwfc) # for i in 1:natomwfc # atom_index = nlmchi[i]["na"] # atom_label = atm[ityp[atom_index]] # wfc_label = nlmchi[i]["els"] # n = nlmchi[i]["n"] # l = nlmchi[i]["l"] # m = nlmchi[i]["m"] # wfc = AtomicWavefunction(atom_index, atom_label, wfc_label, n, l, m) # wfcs_type[i] = wfc # end # return Projectabilities(nkstot, nbnd, natomwfc, wfcs_type, proj) # end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
4780
using EzXML """ $(SIGNATURES) Read atomic structure and band structure from QE's XML output. # Return - `lattice`: `3 * 3`, Å, each column is a lattice vector - `atom_positions`: length-`n_atoms` vector, each element is a fractional position - `atom_labels`: length-`n_atoms` vector, each element is the label of the corresponding atom - `recip_lattice`: `3 * 3`, Å⁻¹, each column is a reciprocal lattice vector - `kpoints`: length-`n_kpts` vector, each element is a fractional kpoint - `fermi_energy`: eV - `alat`: the `alat` of QE in Å - `eigenvalues`: length-`n_kpts` vector, each element is a length-`n_bands` vector of eigenvalue in eV. For spin-polarized but without SOC calculations, return two arries of `eigenvalues_up` and `eigenvalues_dn` for the two spin channels. """ function read_qe_xml(filename::AbstractString) # from qe/Modules/constants.f90 BOHR_RADIUS_ANGS = Bohr_QE # Angstrom HARTREE_SI = 4.3597447222071e-18 # J ELECTRONVOLT_SI = 1.602176634e-19 # J AUTOEV = HARTREE_SI / ELECTRONVOLT_SI doc = readxml(filename) output = findfirst("/qes:espresso/output", root(doc)) # atoms atomic_structure = findfirst("atomic_structure", output) alat = parse(Float64, atomic_structure["alat"]) # from bohr to angstrom alat *= BOHR_RADIUS_ANGS n_atoms = parse(Int, atomic_structure["nat"]) # structure info, each column is a vector for position or lattice vector atom_positions = Vec3{Float64}[] atom_labels = Vector{String}(undef, n_atoms) lattice = zeros(3, 3) for (i, atom) in enumerate(eachelement(findfirst("atomic_positions", atomic_structure))) pos = parse.(Float64, split(atom.content)) push!(atom_positions, pos) atom_labels[i] = atom["name"] end # lattice for i in 1:3 a = findfirst("cell/a$i", atomic_structure) lattice[:, i] = parse.(Float64, split(a.content)) end # from cartesian to fractional inv_lattice = inv(lattice) atom_positions = map(atom_positions) do pos Vec3(inv_lattice * pos) end # from bohr to angstrom lattice *= BOHR_RADIUS_ANGS # reciprocal lattice recip_lattice = zeros(3, 3) for i in 1:3 b = findfirst("basis_set/reciprocal_lattice/b$i", output) recip_lattice[:, i] = parse.(Float64, split(b.content)) end # to 1/angstrom recip_lattice *= 2π / alat band_structure = findfirst("band_structure", output) n_kpts = parse(Int, findfirst("nks", band_structure).content) lsda = parse(Bool, findfirst("lsda", band_structure).content) # noncolin = parse(Bool, findfirst("noncolin", band_structure).content) spinorbit = parse(Bool, findfirst("spinorbit", band_structure).content) # check spin-polarized case if lsda && !spinorbit nbnd_up = parse(Int, findfirst("nbnd_up", band_structure).content) nbnd_dn = parse(Int, findfirst("nbnd_dw", band_structure).content) # they should be the same in QE @assert nbnd_up == nbnd_dn n_bands = nbnd_up eigenvalues_up = Vector{Float64}[] eigenvalues_dn = Vector{Float64}[] else n_bands = parse(Int, findfirst("nbnd", band_structure).content) eigenvalues = Vector{Float64}[] end kpoints = Vec3{Float64}[] n_electrons = parse(Float64, findfirst("nelec", band_structure).content) fermi_energy = parse(Float64, findfirst("fermi_energy", band_structure).content) # Hartree to eV fermi_energy *= AUTOEV inv_recip = inv(recip_lattice) ks_energies = findall("ks_energies", band_structure) for ks_energy in ks_energies k_point = findfirst("k_point", ks_energy) kpt = parse.(Float64, split(k_point.content)) # to 1/angstrom kpt *= 2π / alat # from cartesian to fractional kpt = inv_recip * kpt push!(kpoints, kpt) qe_eigenvalues = findfirst("eigenvalues", ks_energy) if lsda && !spinorbit e = parse.(Float64, split(qe_eigenvalues.content)) # Hartree to eV e .*= AUTOEV push!(eigenvalues_up, e[1:n_bands]) push!(eigenvalues_dn, e[(n_bands + 1):end]) else e = parse.(Float64, split(qe_eigenvalues.content)) # Hartree to eV e .*= AUTOEV push!(eigenvalues, e) end end lattice = Mat3(lattice) recip_lattice = Mat3(recip_lattice) results = (; lattice, atom_positions, atom_labels, recip_lattice, kpoints, n_electrons, fermi_energy, alat, ) if lsda && !spinorbit return (; results..., eigenvalues_up, eigenvalues_dn) end return (; results..., eigenvalues) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
534
""" $(SIGNATURES) Compare two (same-type) structs. """ function _isapprox(a::T, b::T) where {T} for f in propertynames(a) va = getfield(a, f) vb = getfield(b, f) if va isa String va == vb || return false elseif va isa Vector if eltype(va) isa BitVector all(va .== vb) || return false else all(va .≈ vb) || return false end else va ≈ vb || return false end end return true end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
725
""" $(SIGNATURES) Check if a sequence of chars is binary. """ function isbinary(chars::AbstractVector{UInt8})::Bool # normal ASCII chars text_chars = Vector{UInt8}([7, 8, 9, 10, 12, 13, 27]) append!(text_chars, 0x20:0x99) # null character push!(text_chars, 0x00) deleteat!(text_chars, text_chars .== 0x7F) # remove normal ASCII filter!(x -> x ∉ text_chars, chars) # display([Char(_) for _ in chars]) return length(chars) > 0 end """ $(SIGNATURES) Check if the file is in binary format. """ function isbinary(filename::AbstractString) raw_data = zeros(UInt8, 1024) io = open(filename) readbytes!(io, raw_data) close(io) return isbinary(raw_data) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
143
using Dates: now """ Default header for writing wannier90 files. """ default_header() = @sprintf "# Created by WannierIO.jl %s" string(now())
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
253
""" $(SIGNATURES) Compute reciprocal lattice from lattice. """ get_recip_lattice(lattice::Mat3) = 2π * inv(lattice)' """ $(SIGNATURES) Compute lattice from reciprocal lattice. """ get_lattice(recip_lattice::Mat3) = inv(recip_lattice / (2π))'
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
2548
""" $(SIGNATURES) Parse a string as `Float64`. The is capable of parsing Fortran outputs, e.g. `1.0D-10`, to the ordinary `1e-10`. """ function parse_float(s::AbstractString) if occursin("*", s) return NaN else return parse(Float64, replace(lowercase(strip(s)), "d" => "e")) end end """ $(SIGNATURES) Parse a string as `bool`. This is capable of parsing Fortran outputs, e.g., `.true.`, `.false.`, `true`, `T`. """ function parse_bool(s::AbstractString) s = replace(lowercase(strip(s)), "." => "")[1] # only 1st char return s == 't' || s == '1' end """ $(SIGNATURES) Parse an integer as `bool`. - `0`: `false` - `1` or `-1`: `true` """ function parse_bool(i::Integer) return i != 0 end """ $(SIGNATURES) Parse a vector of `n_elements` elements of type `T` from `io`. # Arguments - `io`: input stream - `T`: type of elements - `n_elements::Int`: total number of elements # Examples Suppose a file `demo.txt` has the following content: ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ``` Then the following code parses the file and return a vector filled with 1 to 23: ```julia-repl julia> vector = open("demo.txt") do io parse_vector(io, Int, 23) end ``` The number of elements in each line can be different. """ function parse_vector(io::IO, T::Type, n_elements::Integer) vec = zeros(T, n_elements) counter = 0 while counter < n_elements @assert !eof(io) "unexpected end of file" line = strip(readline(io)) splitted = split(line) n_splitted = length(splitted) vec[(counter + 1):(counter + n_splitted)] = parse.(T, splitted) counter += n_splitted end return vec end """ $(SIGNATURES) Parse a string of comma-separated indices or range into a vector of integers. E.g., the `exclude_bands` tag of `win` file. # Examples ```julia-repl julia> parse_indices("1-2, 5,8 -10") 6-element Vector{Int64}: 1 2 5 8 9 10 ``` """ function parse_indices(str::AbstractString) segments = split(replace(strip(str), r"\s+" => ""), ",") indices = Vector{Int}() for s in segments if isempty(s) continue elseif occursin(r"^\d+-\d+$", s) start, stop = parse.(Int, split(s, "-")) push!(indices, start:stop...) elseif occursin(r"^\d+$", s) push!(indices, parse(Int, s)) else throw(ArgumentError("invalid index: $s while parsing $str")) end end return indices end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
351
""" $(SIGNATURES) Write `kwargs` into `io` as a TOML file. Do some type conversion before writing. """ function write_toml(io; kwargs...) TOML.print(io, kwargs) do x x isa Pair && return Dict(x) x isa Symbol && return String(x) x isa Mat3 && return eachcol(x) error("unhandled type $(typeof(x))") end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
5305
# BXSF format # Specification from http://www.xcrysden.org/doc/XSF.html#__toc__14 export read_bxsf, write_bxsf """ $(SIGNATURES) Read `bxsf` file. # Return - `fermi_energy`: Fermi energy in eV - `origin`: `3`, Å⁻¹, origin of the grid - `span_vectors`: `3 * 3`, Å⁻¹, each column is a spanning vector - `X`: `nx`, fractional coordinate of grid points along the first spanning vector - `Y`: `ny`, fractional coordinate of grid points along the second spanning vector - `Z`: `nz`, fractional coordinate of grid points along the third spanning vector - `E`: `n_bands * nx * ny * nz`, eigenvalues at each grid point """ function read_bxsf(filename::AbstractString) io = open(filename) fermi_energy = nothing origin = nothing span_vectors = nothing X = Y = Z = nothing E = nothing while !eof(io) line = strip(readline(io)) if isempty(line) || startswith(line, '#') continue end if occursin("BEGIN_INFO", line) # skip comments line = strip(readline(io)) while isempty(line) || startswith(line, '#') line = strip(readline(io)) end @assert startswith(line, "Fermi Energy:") fermi_energy = parse(Float64, split(line, ':')[2]) line = strip(readline(io)) @assert line == "END_INFO" elseif occursin("BEGIN_BLOCK_BANDGRID_3D", line) comment = strip(readline(io)) line = strip(readline(io)) # There should be only one data grid @assert startswith(line, "BEGIN_BANDGRID_3D") # identifier = chopprefix(line, "BEGIN_BANDGRID_3D_") n_bands = parse(Int, strip(readline(io))) n_x, n_y, n_z = parse.(Int, split(strip(readline(io)))) origin = parse.(Float64, split(strip(readline(io)))) # spanning vectors span_vectors = zeros(Float64, 3, 3) for i in 1:3 line = strip(readline(io)) span_vectors[:, i] = parse.(Float64, split(line)) end E = zeros(Float64, n_bands, n_x, n_y, n_z) # temp storage for each band, but in row-major Eib = similar(E, n_z, n_y, n_x) for ib in 1:n_bands line = strip(readline(io)) @assert split(line) == ["BAND:", string(ib)] idx = 1 while idx <= n_x * n_y * n_z line = split(strip(readline(io))) ncol = length(line) Eib[idx:(idx + ncol - 1)] = parse.(Float64, line) idx += ncol end @assert idx == n_x * n_y * n_z + 1 # to column-major E[ib, :, :, :] = permutedims(Eib, [3, 2, 1]) end @assert occursin("END_BANDGRID_3D", strip(readline(io))) @assert strip(readline(io)) == "END_BLOCK_BANDGRID_3D" end end if !isnothing(E) _, n_x, n_y, n_z = size(E) # the kpoint grid is a general grid, i.e., it includes the last kpoint # which is periodic to the first kpoint X = range(0, 1, n_x) Y = range(0, 1, n_y) Z = range(0, 1, n_z) end return (; fermi_energy, origin, span_vectors, X, Y, Z, E) end """ $(SIGNATURES) Write `bxsf` file. # Arguments - `fermi_energy`: Fermi energy in eV - `origin`: `3`, Å⁻¹, origin of the grid - `span_vectors`: `3 * 3`, Å⁻¹, each column is a spanning vector - `E`: `n_bands * nx * ny * nz`, eigenvalues at each grid point """ function write_bxsf( filename::AbstractString, fermi_energy::T, origin::AbstractVector{T}, span_vectors::AbstractMatrix{T}, E::AbstractArray{T,4}, ) where {T<:Real} size(origin) == (3,) || error("origin should be a 3-element vector") size(span_vectors) == (3, 3) || error("span_vectors should be a 3×3 matrix") @info "Writing bxsf file: " filename io = open(filename, "w") # header @printf(io, "BEGIN_INFO\n") @printf(io, " %s\n", default_header()) @printf(io, " Fermi Energy: %21.16f\n", fermi_energy) @printf(io, "END_INFO\n\n") @printf(io, "BEGIN_BLOCK_BANDGRID_3D\n") @printf(io, "from_WannierIO.jl_code\n") @printf(io, "BEGIN_BANDGRID_3D_fermi\n") n_bands, n_x, n_y, n_z = size(E) @printf(io, "%d\n", n_bands) @printf(io, "%d %d %d\n", n_x, n_y, n_z) @printf(io, "%12.7f %12.7f %12.7f\n", origin...) @printf(io, "%12.7f %12.7f %12.7f\n", span_vectors[:, 1]...) @printf(io, "%12.7f %12.7f %12.7f\n", span_vectors[:, 2]...) @printf(io, "%12.7f %12.7f %12.7f\n", span_vectors[:, 3]...) for ib in 1:n_bands @printf(io, "BAND: %d\n", ib) # row-major ncol = 0 for i in 1:n_x for j in 1:n_y for k in 1:n_z @printf(io, " %16.8e", E[ib, i, j, k]) ncol += 1 if ncol == 6 @printf(io, "\n") ncol = 0 end end end end ncol != 0 && @printf(io, "\n") end @printf(io, "END_BANDGRID_3D\n") @printf(io, "END_BLOCK_BANDGRID_3D\n") close(io) return nothing end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
4083
# Cube format # Specification from http://paulbourke.net/dataformats/cube/ export read_cube, write_cube """ $(SIGNATURES) Read `cube` file. !!! note By default, `cube` use Bohr unit, here all returns are in Cartesian coordinates, Å unit. """ function read_cube(filename::AbstractString) @info "Reading cube file: " filename io = open(filename) # header header = readline(io; keep=true) header *= readline(io; keep=true) print(header) line = split(strip(readline(io))) n_atoms = parse(Int, line[1]) origin = parse.(Float64, line[2:4]) # to Å unit origin .*= Bohr # number of voxels in domain n_voxels = zeros(Int, 3) voxel_vectors = zeros(Float64, 3, 3) for i in 1:3 line = split(strip(readline(io))) n_v = parse(Int, line[1]) n_voxels[i] = n_v # bohr unit voxel_vectors[:, i] = parse.(Float64, line[2:4]) end # to Å unit voxel_vectors .*= Bohr atom_positions = zeros(Float64, 3, n_atoms) atom_numbers = zeros(Int, n_atoms) for i in 1:n_atoms line = split(strip(readline(io))) atom_numbers[i] = parse(Int, line[1]) charge = parse(Float64, line[2]) # cartesian coordinates, Bohr unit atom_positions[:, i] = parse.(Float64, line[3:5]) end # to Å unit atom_positions .*= Bohr n_x, n_y, n_z = n_voxels # fractional w.r.t. voxel_vectors X = range(0, n_x-1, n_x) Y = range(0, n_y-1, n_y) Z = range(0, n_z-1, n_z) W = zeros(Float64, n_x, n_y, n_z) # 6 columns per line d, r = divrem(n_z, 6) if r > 0 nline = d + 1 else nline = d end for ix in 1:n_x for iy in 1:n_y iz = 1 for _ in 1:nline line = split(strip(readline(io))) n = length(line) # skip empty line if n == 0 line = split(strip(readline(io))) n = length(line) end W[ix, iy, iz:(iz + n - 1)] = parse.(Float64, line) iz += n end end end close(io) return (; atom_positions, atom_numbers, origin, voxel_vectors, X, Y, Z, W) end """ $(SIGNATURES) Write `cube` file. # Arguments - `atom_positions`: `3 * n_atoms`, Å, cartesian coordinates - `atom_numbers`: `n_atoms`, atomic numbers - `origin`: `3`, Å, origin of the grid - `voxel_vectors`: `3 * 3`, Å, each column is a voxel vector - `W`: `nx * ny * nz`, volumetric data """ function write_cube( filename::AbstractString, atom_positions::AbstractMatrix{T}, atom_numbers::AbstractVector{Int}, origin::AbstractVector{T}, voxel_vectors::AbstractMatrix{T}, W::AbstractArray{T,3}, ) where {T<:Real} n_atoms = length(atom_numbers) size(atom_positions, 2) == n_atoms || error("incompatible n_atoms") size(voxel_vectors) == (3, 3) || error("incompatible voxel_vectors") length(origin) == 3 || error("origin must be 3-vector") @info "Writing cube file: " filename io = open(filename, "w") # header @printf(io, "%s\n", default_header()) @printf(io, "outer loop: x, middle loop: y, inner loop: z\n") # to Bohr origin_bohr = origin ./ Bohr @printf(io, "%d %12.6f %12.6f %12.6f\n", n_atoms, origin_bohr...) n_xyz = size(W) for i in 1:3 # number of voxels n_v = n_xyz[i] ax = voxel_vectors[:, i] ./ Bohr @printf(io, "%d %12.6f %12.6f %12.6f\n", n_v, ax...) end for i in 1:n_atoms n = atom_numbers[i] charge = 1.0 pos = atom_positions[:, i] ./ Bohr @printf(io, "%d %12.6f %12.6f %12.6f %12.6f\n", n, charge, pos...) end for ix in 1:n_xyz[1] for iy in 1:n_xyz[2] for iz in 1:n_xyz[3] @printf(io, "%12.6g ", W[ix, iy, iz]) if (iz % 6 == 0) @printf(io, "\n") end end @printf(io, "\n") end end close(io) return nothing end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
6547
# XSF format # Specification from http://www.xcrysden.org/doc/XSF.html export read_xsf, write_xsf """ $(SIGNATURES) Read `xsf` file. # Return - `primvec`: `3 * 3`, Å, each column is a primitive lattice vector - `convvec`: `3 * 3`, Å, each column is a conventional lattice vector - `atoms`: `n_atoms` String, atomic symbols or numbers - `atom_positions`: length-`n_atoms` vector, Å, cartesian coordinates - `origin`: `3`, Å, origin of the grid - `span_vectors`: `3 * 3`, Å, each column is a spanning vector - `X`: `nx`, fractional coordinate of grid points along the first spanning vector - `Y`: `ny`, fractional coordinate of grid points along the second spanning vector - `Z`: `nz`, fractional coordinate of grid points along the third spanning vector - `W`: `nx * ny * nz`, volumetric data !!! note Only support reading 1 datagrid in `BLOCK_DATAGRID_3D`. """ function read_xsf(filename::AbstractString) io = open(filename) primvec = nothing convvec = nothing atoms = nothing atom_positions = nothing origin = nothing span_vectors = nothing X = Y = Z = nothing W = nothing while !eof(io) line = strip(readline(io)) if isempty(line) || startswith(line, '#') continue end if occursin("CRYSTAL", line) # primitive lattice, each column is a lattice vector @assert strip(readline(io)) == "PRIMVEC" primvec = zeros(Float64, 3, 3) for i in 1:3 line = strip(readline(io)) primvec[:, i] = parse.(Float64, split(line)) end # conventional lattice, each column is a lattice vector @assert strip(readline(io)) == "CONVVEC" convvec = zeros(Float64, 3, 3) for i in 1:3 line = strip(readline(io)) convvec[:, i] = parse.(Float64, split(line)) end # read atom positions @assert strip(readline(io)) == "PRIMCOORD" line = strip(readline(io)) n_atom = parse(Int, split(line)[1]) atoms = Vector{String}(undef, n_atom) # each column is a position vector atom_positions = zeros(Vec3{Float64}, n_atom) for i in 1:n_atom line = strip(readline(io)) # might be element label, or atomic number atoms[i] = split(line)[1] atom_positions[i] = Vec3(parse.(Float64, split(line)[2:4])...) end elseif occursin("BEGIN_BLOCK_DATAGRID_3D", line) comment = strip(readline(io)) line = strip(readline(io)) # I only read the 1st data grid, others are ignored @assert startswith(line, "BEGIN_DATAGRID_3D") # identifier = chopprefix(line, "BEGIN_DATAGRID_3D_") ngx, ngy, ngz = parse.(Int, split(strip(readline(io)))) origin = parse.(Float64, split(strip(readline(io)))) # spanning vectors span_vectors = zeros(Float64, 3, 3) for i in 1:3 line = strip(readline(io)) span_vectors[:, i] = parse.(Float64, split(line)) end # column-major W = zeros(Float64, ngx, ngy, ngz) idx = 1 while idx <= ngx * ngy * ngz line = split(strip(readline(io))) ncol = length(line) W[idx:(idx + ncol - 1)] = parse.(Float64, line) idx += ncol end @assert occursin("END_DATAGRID_3D", strip(readline(io))) @assert strip(readline(io)) == "END_BLOCK_DATAGRID_3D" end end if !isnothing(W) n_x, n_y, n_z = size(W) X = range(0, 1, n_x) Y = range(0, 1, n_y) Z = range(0, 1, n_z) end return (; primvec, convvec, atoms, atom_positions, origin, span_vectors, X, Y, Z, W) end """ $(SIGNATURES) Write `xsf` file. # Arguments - `lattice`: `3 * 3`, Å, each column is a lattice vector - `atom_positions`: length-`n_atoms` vector, fractional coordinates - `atom_numbers`: `n_atoms`, atomic numbers - `origin`: `3`, Å, origin of the grid - `span_vectors`: `3 * 3`, Å, each column is a spanning vector - `W`: `nx * ny * nz`, volumetric data """ function write_xsf( filename::AbstractString, lattice::AbstractMatrix{T}, atom_positions::Vector{Vec3{T}}, atom_numbers::AbstractVector{Int}, origin::AbstractVector{T}, span_vectors::AbstractMatrix{T}, W::AbstractArray{T,3}, ) where {T<:Real} n_atoms = length(atom_numbers) length(atom_positions) == n_atoms || error("incompatible n_atoms") size(lattice) == (3, 3) || error("incompatible lattice") size(span_vectors) == (3, 3) || error("incompatible span_vectors") @info "Writing xsf file: " filename io = open(filename, "w") # header @printf(io, "%s\n", default_header()) @printf(io, "CRYSTAL\n") @printf(io, "PRIMVEC\n") @printf(io, "%12.7f %12.7f %12.7f\n", lattice[:, 1]...) @printf(io, "%12.7f %12.7f %12.7f\n", lattice[:, 2]...) @printf(io, "%12.7f %12.7f %12.7f\n", lattice[:, 3]...) @printf(io, "CONVVEC\n") @printf(io, "%12.7f %12.7f %12.7f\n", lattice[:, 1]...) @printf(io, "%12.7f %12.7f %12.7f\n", lattice[:, 2]...) @printf(io, "%12.7f %12.7f %12.7f\n", lattice[:, 3]...) @printf(io, "PRIMCOORD\n") @printf(io, "%d 1\n", n_atoms) for i in 1:n_atoms pos = lattice * atom_positions[i] @printf(io, "%d %12.7f %12.7f %12.7f\n", atom_numbers[i], pos...) end @printf(io, "\n") @printf(io, "BEGIN_BLOCK_DATAGRID_3D\n") @printf(io, "3D_field\n") @printf(io, "BEGIN_DATAGRID_3D_UNKNOWN\n") n_x, n_y, n_z = size(W) @printf(io, "%d %d %d\n", n_x, n_y, n_z) @printf(io, "%12.7f %12.7f %12.7f\n", origin...) @printf(io, "%12.7f %12.7f %12.7f\n", span_vectors[:, 1]...) @printf(io, "%12.7f %12.7f %12.7f\n", span_vectors[:, 2]...) @printf(io, "%12.7f %12.7f %12.7f\n", span_vectors[:, 3]...) # column-major ncol = 0 for k in 1:n_z for j in 1:n_y for i in 1:n_x @printf(io, " %13.5e", W[i, j, k]) ncol += 1 if ncol == 6 @printf(io, "\n") ncol = 0 end end end end ncol != 0 && @printf(io, "\n") @printf(io, "END_DATAGRID_3D\n") @printf(io, "END_BLOCK_DATAGRID_3D\n") close(io) return nothing end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
5963
export read_amn, write_amn """ read_amn(filename) read_amn(filename, ::FortranText) read_amn(filename, ::FortranBinaryStream) Read wannier90 `amn` file. # Return - `A`: length-`n_kpts` vector, each element is a `n_bands * n_wann` matrix. - `header`: first line of the file Note there are three versions of this function: the 1st one is a wrapper function that automatically detect the format (text or binary) of the file, and does some additional pretty printing to give user a quick hint of the dimensions of the A matrix; it internally calls the 2nd or the 3rd version for actual reading. Wannier90 only has Fortran text format for `amn`, however I wrote a custom version of QE pw2wannier90.x that can output Fortran binary format (using Fortran stream IO) to save some disk space. The 1st function auto detect the file format so it is transparent to the user. """ function read_amn end function read_amn(filename::AbstractString, ::FortranText) res = open("$filename") do io header = strip(readline(io)) line = split(readline(io)) n_bands, n_kpts, n_wann = parse.(Int64, line[1:3]) A = [zeros(ComplexF64, n_bands, n_wann) for _ in 1:n_kpts] while !eof(io) line = split(readline(io)) m, n, k = parse.(Int64, line[1:3]) a = parse(Float64, line[4]) + im * parse(Float64, line[5]) A[k][m, n] = a end return (; A, header) end return res end function read_amn(filename::AbstractString, ::FortranBinaryStream) # I use stream io to write amn, so I should use plain julia `open` # io = FortranFile("$filename") res = open("$filename") do io header_len = 60 header = read(io, FString{header_len}) # From FString to String header = strip(String(header)) # gfortran default integer size = 4 # https://gcc.gnu.org/onlinedocs/gfortran/KIND-Type-Parameters.html Tint = Int32 n_bands = read(io, Tint) n_kpts = read(io, Tint) n_wann = read(io, Tint) A = [zeros(ComplexF64, n_bands, n_wann) for _ in 1:n_kpts] while !eof(io) m = read(io, Tint) n = read(io, Tint) k = read(io, Tint) r = read(io, Float64) i = read(io, Float64) A[k][m, n] = r + im * i end return (; A, header) end return res end function read_amn(filename::AbstractString) if isbinary(filename) format = FortranBinaryStream() else format = FortranText() end A, header = read_amn(filename, format) n_kpts = length(A) @assert n_kpts > 0 "A is empty" n_bands, n_wann = size(A[1]) @info "Reading amn file" filename header n_kpts n_bands n_wann # I do not return header here, since # - it is already printed by @info # - user can directly use `A = read_amn(filename)` to load it, without # the need to unpack the NamedTuple return A end """ write_amn(filename, A; header=default_header(), binary=false) write_amn(filename, A, ::FortranText; header=default_header()) write_amn(filename, A, ::FortranBinaryStream; header=default_header()) Write wannier90 `amn` file. # Arguments - `filename`: output filename - `A`: a length-`n_kpts` vector, each element is a `n_bands * n_wann` matrix # Keyword arguments - `header`: 1st line of the file - `binary`: write as Fortran unformatted file, which is the Wannier90 default. Here the `binary` kwargs is provided for convenience. Same as [`read_amn`](@ref) there are three versions of this function, the 1st one is a wrapper function, it calls the 2nd or the 3rd version depending on the `binary` kwargs. """ function write_amn end function write_amn( filename::AbstractString, A::AbstractVector, ::FortranText; header=default_header() ) n_kpts = length(A) @assert n_kpts > 0 "A is empty" n_bands, n_wann = size(A[1]) open(filename, "w") do io write(io, header, "\n") @printf(io, "%3d %4d %4d\n", n_bands, n_kpts, n_wann) for ik in 1:n_kpts for iw in 1:n_wann for ib in 1:n_bands a = A[ik][ib, iw] @printf( io, "%5d %4d %4d %16.12f %16.12f\n", ib, iw, ik, real(a), imag(a) ) end end end end return nothing end function write_amn( filename::AbstractString, A::AbstractVector, ::FortranBinaryStream; header=default_header(), ) n_kpts = length(A) @assert n_kpts > 0 "A is empty" n_bands, n_wann = size(A[1]) # I write in Fortran stream io format. open(filename, "w") do io # I need to convert to String instead of SubString, for FString header = String(header) header_len = 60 header = FString(header_len, header) write(io, header) # gfortran default integer is 4 bytes Tint = Int32 write(io, Tint(n_bands)) write(io, Tint(n_kpts)) write(io, Tint(n_wann)) for ik in 1:n_kpts for iw in 1:n_wann for ib in 1:n_bands write(io, Tint(ib)) write(io, Tint(iw)) write(io, Tint(ik)) a = A[ik][ib, iw] write(io, Float64(real(a))) write(io, Float64(imag(a))) end end end end return nothing end function write_amn( filename::AbstractString, A::AbstractVector; header=default_header(), binary=false ) n_kpts = length(A) @assert n_kpts > 0 "A is empty" n_bands, n_wann = size(A[1]) @info "Writing amn file" filename header n_kpts n_bands n_wann if binary format = FortranBinaryStream() else format = FortranText() end return write_amn(filename, A, format; header) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
9445
using DelimitedFiles: readdlm export read_w90_band, write_w90_band, read_w90_band_kpt, read_w90_band_dat, read_w90_band_labelinfo, write_w90_band_kpt, write_w90_band_dat, write_w90_band_labelinfo """ $(SIGNATURES) Read a `prefix_band.kpt` file. # Return - `kpoints`: a vector of length `n_kpts`, fractional coordinates - `kweights`: a vector of length `n_kpts`, weights of kpoints """ function read_w90_band_kpt(filename::AbstractString) # in fractional coordinates kpoints = readdlm(filename, Float64; skipstart=1) kweights = kpoints[:, 4] # remove weights kpoints = map(1:size(kpoints, 1)) do i Vec3(kpoints[i, 1:3]) end return (; kpoints, kweights) end """ $(SIGNATURES) Read `prefix_band.dat` file generated by `wannier90.x`, or `prefix-band.dat` file generated by `postw90.x`. # Return - `x`: `n_kpts`, x axis value of kpath, in cartesian length - `eigenvalues`: length-`n_kpts` vector, each elemnt is a length-`n_bands` vector of band energies - `extras`: optional (the `postw90.x` might generate a file with a third column), same size as `eigenvalues`, often the color of each eigenvalue, e.g., spin projection """ function read_w90_band_dat(filename::AbstractString) res = open(filename) do io # Unfortunately I need to read the whole file twice: # 1st time to get n_kpts, 2nd time to get data n_kpts = 0 while true line = strip(readline(io)) isempty(line) && break n_kpts += 1 end seekstart(io) dat = readdlm(io, Float64) x = reshape(dat[:, 1], n_kpts, :)[:, 1] eigenvalues = reshape(dat[:, 2], n_kpts, :) eigenvalues = [Vector(e) for e in eachrow(eigenvalues)] # the prefix-bands.dat generated by postw90.x might have an additional # column for the color of the bands, e.g., spin projection if size(dat, 2) == 3 extras = reshape(dat[:, 3], n_kpts, :) extras = [Vector(e) for e in eachrow(extras)] return (; x, eigenvalues, extras) end return (; x, eigenvalues) end return res end """ $(SIGNATURES) Read `prefix_band.labelinfo` file. # Return - `symm_point_indices`: index of high-symmetry points in `prefix_band.dat` - `symm_point_labels`: name of high-symmetry points """ function read_w90_band_labelinfo(filename::AbstractString) labels = open(filename) do io readlines(io) end n_symm = length(labels) symm_point_indices = Vector{Int}(undef, n_symm) symm_point_labels = Vector{String}(undef, n_symm) for (i, line) in enumerate(labels) lab, idx = split(line)[1:2] symm_point_indices[i] = parse(Int, idx) symm_point_labels[i] = lab end return (; symm_point_indices, symm_point_labels) end """ $(SIGNATURES) Read `prefix_band.dat`, `prefix_band.kpt`, `prefix_band.labelinfo.dat`. # Arguments - `prefix`: *prefix* of the filenames (or called seedname in wannier90), NOT the full filename. # Return - `x`: `n_kpts`, x axis value of kpath, in cartesian length - `eigenvalues`: length-`n_kpts` vector, each element is a length-`n_bands` vector of band energies - `kpoints`: a vector of length `n_kpts`, fractional coordinates - `kweights`: a vector of length `n_kpts`, weights of kpoints - `symm_point_indices`: index of high-symmetry points in `prefix_band.dat` - `symm_point_labels`: name of high-symmetry points """ function read_w90_band(prefix::AbstractString) band_dat = prefix * "_band.dat" band_kpt = prefix * "_band.kpt" band_labelinfo = prefix * "_band.labelinfo.dat" dat = read_w90_band_dat(band_dat) kpt = read_w90_band_kpt(band_kpt) labelinfo = read_w90_band_labelinfo(band_labelinfo) n_kpts = length(kpt.kpoints) n_symm = length(labelinfo.symm_point_indices) @info "Reading Wannier90 band files" band_dat band_kpt band_labelinfo n_kpts n_symm return (; dat..., kpt..., labelinfo...) end """ $(SIGNATURES) Wannier90 default kweights in `prefix_band.kpt` is all 1.0. """ default_band_kpt_kweights(kpoints::AbstractVector) = ones(length(kpoints)) """ $(SIGNATURES) Write `prefix_band.kpt` file. # Arguments - `filename`: filename of `prefix_band.kpt` # Keyword Arguments - `kpoints`: length-`n_kpts` vector, fractional coordinates - `kweights`: `n_kpts`, optional, weights of kpoints, default to 1.0. """ function write_w90_band_kpt( filename::AbstractString; kpoints::AbstractVector, kweights::AbstractVector=default_band_kpt_kweights(kpoints), ) n_kpts = length(kpoints) length(kweights) == n_kpts || error("kweights must have same length as kpoints") open(filename, "w") do io @printf(io, " %5d\n", n_kpts) for (k, w) in zip(kpoints, kweights) length(k) == 3 || error("kpoint must be 3-vector") @printf(io, " %10.6f %10.6f %10.6f %10.6f\n", k..., w) end end end """ $(SIGNATURES) Write `prefix_band.dat` file. # Arguments - `filename`: filename of `prefix_band.dat` # Keyword Arguments - `x`: `n_kpts`, x axis value, in cartesian length - `eigenvalues`: length-`n_kpts` vector, each element is a length-`n_bands` vector of band energies - `extras`: optional, same size as `eigenvalues`, will be written as the third column of `prefix_band.dat`. The `prefix-band.dat` file generated by `postw90.x` sometimes has a third column for e.g. the color of the eigenvalues """ function write_w90_band_dat( filename::AbstractString; x::AbstractVector, eigenvalues::AbstractVector{<:AbstractVector}, extras::Union{AbstractVector,Nothing}=nothing, ) n_kpts = length(eigenvalues) @assert n_kpts > 0 "eigenvalues is empty" n_bands = length(eigenvalues[1]) length(x) == n_kpts || error("x must has same length as eigenvalues") open(filename, "w") do io for ib in 1:n_bands for ik in 1:n_kpts if isnothing(extras) @printf(io, " %15.8E %15.8E\n", x[ik], eigenvalues[ik][ib]) else @printf( io, " %15.8E %15.8E %15.8E\n", x[ik], eigenvalues[ik][ib], extras[ik][ib] ) end end @printf(io, "\n") end end end """ $(SIGNATURES) Write `prefix_band.labelinfo` file. # Arguments - `filename`: filename of `prefix_band.labelinfo` # Keyword Arguments - `x`: `n_kpts`-vector, x axis value, in cartesian length - `kpoints`: length-`n_kpts` vector, fractional coordinates - `symm_point_indices`: index of high-symmetry points in `prefix_band.dat` - `symm_point_labels`: name of high-symmetry points """ function write_w90_band_labelinfo( filename::AbstractString; x::AbstractVector{<:Real}, kpoints::AbstractVector, symm_point_indices::AbstractVector{<:Integer}, symm_point_labels::AbstractVector, ) n_symm = length(symm_point_indices) n_symm == length(symm_point_labels) || error("symm_idx and symm_label must have same length") open(filename, "w") do io for i in 1:n_symm idx = symm_point_indices[i] kpt = kpoints[idx] length(kpt) == 3 || error("kpoint must be 3-vector") @printf( io, "%2s %31d %20.10f %17.10f %17.10f %17.10f\n", symm_point_labels[i], idx, x[idx], kpt... ) end end end """ $(SIGNATURES) Write `prefix_band.dat, prefix_band.kpt, prefix_band.labelinfo.dat`. # Arguments - `prefix`: prefix of `prefix_band.dat, prefix_band.kpt, prefix_band.labelinfo.dat` # Keyword Arguments - `x`: `n_kpts`, x axis value, in cartesian length - `eigenvalues`: length-`n_kpts` vector, each element is a length-`n_bands` vector of band energies - `kpoints`: length-`n_kpts` vector, fractional coordinates - `kweights`: a vector of length `n_kpts`, weights of kpoints - `symm_point_indices`: index of high-symmetry points in `prefix_band.dat` - `symm_point_labels`: name of high-symmetry points """ function write_w90_band( prefix::AbstractString; x::AbstractVector, eigenvalues::AbstractVector{<:AbstractVector}, kpoints::AbstractVector, kweights::AbstractVector=default_band_kpt_kweights(kpoints), symm_point_indices::AbstractVector, symm_point_labels::AbstractVector, ) n_kpts = length(kpoints) length(eigenvalues) == n_kpts || error("kpoints and eigenvalues have different n_kpts") length(kweights) == n_kpts || error("kpoints and kweights have different n_kpts") length(x) == n_kpts || error("kpoints and x have different n_kpts") n_symm = length(symm_point_indices) n_symm == length(symm_point_labels) || error("symm_idx and symm_label must have same length") band_kpt = "$(prefix)_band.kpt" band_dat = "$(prefix)_band.dat" band_labelinfo = "$(prefix)_band.labelinfo.dat" @info "Writing Wannier90 band files" band_kpt band_dat band_labelinfo n_kpts n_symm write_w90_band_dat(band_dat; x, eigenvalues) write_w90_band_kpt(band_kpt; kpoints, kweights) return write_w90_band_labelinfo( band_labelinfo; x, kpoints, symm_point_indices, symm_point_labels ) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
20049
export read_chk, write_chk, get_U, get_Udis """ Struct for storing matrices in `prefix.chk` file. $(TYPEDEF) One-to-one mapping to the wannier90 `chk` file, but renaming the variable names so that they are consistent with the rest of the code. # Fields $(FIELDS) """ struct Chk{T<:Real} "The header line, usually contains date and time" header::String """number of bands, can be auto set in constructor according to dimensions of other variables""" n_bands::Int "number of excluded bands, can be auto set in constructor" n_exclude_bands::Int """Indices of excluded bands, starts from 1. Vector of integers, size: `n_exclude_bands`""" exclude_bands::Vector{Int} "Matrix of size 3 x 3, each column is a lattice vector in Å unit" lattice::Mat3{T} "Matrix of size 3 x 3, each column is a reciprocal lattice vector in Å⁻¹ unit" recip_lattice::Mat3{T} "number of kpoints, can be auto set in constructor" n_kpts::Int "dimensions of kpoint grid, 3 integers" kgrid::Vec3{Int} "kpoint coordinates, fractional, length-`n_kpts` vector" kpoints::Vector{Vec3{T}} "number of b-vectors, can be auto set in constructor" n_bvecs::Int "number of Wannier functions, can be auto set in constructor" n_wann::Int """a string to indicate the current step (after disentanglement, after maximal localization, ...) in wannier90""" checkpoint::String """Have finished disentanglement or not""" have_disentangled::Bool "Omega invariant part of MV spreads, in Ų unit" ΩI::T """ Indices of bands taking part in disentanglement, not frozen bands! length-`n_kpts` vector, each element is a length-`n_bands` vector of bool. This is needed since W90 puts all the disentanglement bands in the first several rows of `Udis`, (and the first few columns of `Udis` are the frozen bands) so directly multiplying eigenvalues e.g. `(Udis * U)' * diag(eigenvalues) * (Udis * U)` is wrong! """ dis_bands::Vector{BitVector} """number of bands taking part in disentanglement at each kpoint. can be auto set in constructor from `dis_bands`""" n_dis::Vector{Int} """Semi-unitary matrix for disentanglement, length-`n_kpts` vector, each elment has size: `n_bands` x `n_wann`, i.e., the `u_matrix_opt` in wannier90""" Udis::Vector{Matrix{Complex{T}}} """Unitary matrix for maximal localization, length-`n_kpts` vector, each element has size: `n_wann` x `n_wann`, i.e., the `u_matrix` in wannier90. The abbreviation `ml` stands for maximal localization, so as to differentiate from the (combined) unitary matrix `U = Udis * Uml`.""" Uml::Vector{Matrix{Complex{T}}} """Wannier-gauge overlap matrix, length-`n_kpts` vector of length-`n_bvecs` vector, each element is a matrix of size `n_wann` x `n_wann`, i.e., the `m_matrix` in wannier90""" M::Vector{Vector{Matrix{Complex{T}}}} """Wannier function centers, length-`n_wann` vector, Cartesian coordinates in Å unit, i.e., the `wannier_centres` variable in wannier90""" r::Vector{Vec3{T}} """Wannier function spreads, length-`n_wann` vector, Ų unit, i.e., the `wannier_spreads` variable in wannier90""" ω::Vector{T} end """ $(SIGNATURES) Convenience constructor of [`Chk`](@ref) struct that auto set some fields. """ function Chk( header::AbstractString, exclude_bands::AbstractVector{Int}, lattice::AbstractMatrix, recip_lattice::AbstractMatrix, kgrid::AbstractVector{<:Integer}, kpoints::AbstractVector, checkpoint::AbstractString, have_disentangled::Bool, ΩI::Real, dis_bands::AbstractVector{BitVector}, Udis::AbstractVector, Uml::AbstractVector, M::AbstractVector, r::AbstractVector, ω::AbstractVector, ) if have_disentangled @assert length(Udis) > 0 "empty Udis" n_bands = size(Udis[1], 1) else @assert length(Uml) > 0 "empty Uml" n_bands = size(Uml[1], 1) end n_exclude_bands = length(exclude_bands) n_kpts = length(M) @assert n_kpts > 0 "empty M" n_bvecs = length(M[1]) @assert length(Uml) > 0 "empty Uml" n_wann = size(Uml[1], 1) if have_disentangled n_dis = zeros(Int, n_kpts) for ik in 1:n_kpts n_dis[ik] = count(dis_bands[ik]) end else n_dis = zeros(Int, 0) end return Chk( header, n_bands, n_exclude_bands, exclude_bands, Mat3(lattice), Mat3(recip_lattice), n_kpts, kgrid, kpoints, n_bvecs, n_wann, checkpoint, have_disentangled, ΩI, dis_bands, n_dis, collect.(Udis), collect.(Uml), M, r, ω, ) end """ read_chk(filename) read_chk(filename, ::FortranText) read_chk(filename, ::FortranBinary) Read wannier90 `chk` checkpoint file. Similar to [`read_amn`](@ref), the 1st version auto detect `chk` file format (binary or text) and read it. """ function read_chk(filename::AbstractString, ::FortranText) chk = open(filename) do io # strip and read line srline() = strip(readline(io)) # Read formatted chk file header = String(srline()) n_bands = parse(Int, srline()) n_exclude_bands = parse(Int, srline()) exclude_bands = zeros(Int, n_exclude_bands) if n_exclude_bands > 0 for i in 1:n_exclude_bands exclude_bands[i] = parse(Int, srline()) end end # Each column is a lattice vector # but W90 writes x components first, then y, z. NOT a1 first, then a2, a3. line = parse.(Float64, split(srline())) lattice = Mat3{Float64}(reshape(line, (3, 3))') # Each column is a lattice vector line = parse.(Float64, split(srline())) recip_lattice = Mat3{Float64}(reshape(line, (3, 3))') n_kpts = parse(Int, srline()) kgrid = Vec3{Int}(parse.(Int, split(srline()))) kpoints = zeros(Vec3{Float64}, n_kpts) for ik in 1:n_kpts kpoints[ik] = Vec3(parse.(Float64, split(srline()))...) end n_bvecs = parse(Int, srline()) n_wann = parse(Int, srline()) checkpoint = String(srline()) # 1 -> True, 0 -> False have_disentangled = Bool(parse(Int, srline())) if have_disentangled # omega_invariant ΩI = parse(Float64, srline()) dis_bands = [falses(n_bands) for _ in 1:n_kpts] for ik in 1:n_kpts for ib in 1:n_bands # 1 -> True, 0 -> False dis_bands[ik][ib] = Bool(parse(Int, srline())) end end n_dis = zeros(Int, n_kpts) for ik in 1:n_kpts n_dis[ik] = parse(Int, srline()) @assert n_dis[ik] == count(dis_bands[ik]) end # u_matrix_opt Udis = [zeros(ComplexF64, n_bands, n_wann) for _ in 1:n_kpts] for ik in 1:n_kpts for iw in 1:n_wann for ib in 1:n_bands vals = parse.(Float64, split(srline())) Udis[ik][ib, iw] = vals[1] + im * vals[2] end end end else ΩI = -1.0 dis_bands = BitVector[] n_dis = Int[] Udis = Matrix{ComplexF64}[] end # u_matrix Uml = [zeros(ComplexF64, n_wann, n_wann) for _ in 1:n_kpts] for ik in 1:n_kpts for iw in 1:n_wann for ib in 1:n_wann vals = parse.(Float64, split(srline())) Uml[ik][ib, iw] = vals[1] + im * vals[2] end end end # m_matrix M = [[zeros(ComplexF64, n_wann, n_wann) for _ in 1:n_bvecs] for _ in 1:n_kpts] for ik in 1:n_kpts for inn in 1:n_bvecs for iw in 1:n_wann for ib in 1:n_wann vals = parse.(Float64, split(srline())) M[ik][inn][ib, iw] = vals[1] + im * vals[2] end end end end # wannier_centres r = zeros(Vec3{Float64}, n_wann) for iw in 1:n_wann r[iw] = Vec3(parse.(Float64, split(srline()))...) end # wannier_spreads ω = zeros(Float64, n_wann) for iw in 1:n_wann ω[iw] = parse(Float64, srline()) end return Chk( header, exclude_bands, lattice, recip_lattice, kgrid, kpoints, checkpoint, have_disentangled, ΩI, dis_bands, Udis, Uml, M, r, ω, ) end return chk end function read_chk(filename::AbstractString, ::FortranBinary) io = FortranFile(filename) # strip and read line header_len = 33 header = trimstring(read(io, FString{header_len})) # gfortran default integer is 4 bytes Tint = Int32 n_bands = read(io, Tint) n_exclude_bands = read(io, Tint) exclude_bands = zeros(Int, n_exclude_bands) exclude_bands .= read(io, (Tint, n_exclude_bands)) # I don't know why but I need to skip a record here # probably because the FortranFiles.read does not handle 0-length arrays correctly n_exclude_bands == 0 && read(io) # Each column is a lattice vector # but W90 writes x components first, then y, z. Not a1 first, then a2, a3. lattice = read(io, (Float64, 3, 3)) lattice = Mat3{Float64}(lattice') # Each column is a lattice vector recip_lattice = read(io, (Float64, 3, 3)) recip_lattice = Mat3{Float64}(recip_lattice') n_kpts = read(io, Tint) kgrid = Vec3{Int}(read(io, (Tint, 3))) kpoints = zeros(Vec3{Float64}, n_kpts) read(io, kpoints) n_bvecs = read(io, Tint) n_wann = read(io, Tint) checkpoint = trimstring(read(io, FString{20})) # treat Bool as Int32 # 1 -> true, 0 -> false have_disentangled = parse_bool(read(io, Tint)) if have_disentangled # omega_invariant ΩI = read(io, Float64) tmp = parse_bool.(read(io, (Tint, n_bands, n_kpts))) dis_bands = [tmp[:, i] for i in 1:n_kpts] n_dis = zeros(Int, n_kpts) n_dis .= read(io, (Tint, n_kpts)) for ik in 1:n_kpts @assert n_dis[ik] == count(dis_bands[ik]) end # u_matrix_opt U_tmp = zeros(ComplexF64, n_bands, n_wann, n_kpts) read(io, U_tmp) Udis = [U_tmp[:, :, ik] for ik in 1:n_kpts] else ΩI = -1.0 dis_bands = BitVector[] n_dis = Int[] Udis = Matrix{ComplexF64}[] end # u_matrix Uml = zeros(ComplexF64, n_wann, n_wann, n_kpts) read(io, Uml) # m_matrix M = zeros(ComplexF64, n_wann, n_wann, n_bvecs, n_kpts) read(io, M) # wannier_centres r = zeros(Float64, 3, n_wann) read(io, r) # wannier_spreads ω = zeros(Float64, n_wann) read(io, ω) close(io) return Chk( header, exclude_bands, lattice, recip_lattice, kgrid, kpoints, checkpoint, have_disentangled, ΩI, dis_bands, Udis, [Uml[:, :, ik] for ik in 1:n_kpts], [[M[:, :, ib, ik] for ib in 1:n_bvecs] for ik in 1:n_kpts], [Vec3(r[:, iw]) for iw in 1:n_wann], ω, ) end function read_chk(filename::AbstractString) if isbinary(filename) format = FortranBinary() else format = FortranText() end chk = read_chk(filename, format) n_kpts = chk.n_kpts n_bands = chk.n_bands n_wann = chk.n_wann @info "Reading chk file" filename n_kpts n_bands n_wann return chk end """ write_chk(filename, chk::Chk; binary=false) write_chk(filename, chk::Chk, ::FortranText) write_chk(filename, chk::Chk, ::FortranBinary) Write wannier90 `chk` file. Similar to [`write_amn`](@ref), the 1st version is a convenience wrapper. # Keyword arguments - `binary`: write as Fortran binary file or not. Although wannier90 default is Fortran binary format, here the default is `false` since Fortran binary depends on compiler and platform, so it is not guaranteed to always work. """ function write_chk end function write_chk(filename::AbstractString, chk::Chk, ::FortranText) open(filename, "w") do io n_bands = chk.n_bands n_wann = chk.n_wann n_kpts = chk.n_kpts n_bvecs = chk.n_bvecs # Write formatted chk file @printf(io, "%33s\n", chk.header) @printf(io, "%d\n", n_bands) @printf(io, "%d\n", chk.n_exclude_bands) if chk.n_exclude_bands > 0 for i in 1:(chk.n_exclude_bands) @printf(io, "%d\n", chk.exclude_bands[i]) end end # Each column is a lattice vector # but W90 writes x components first, then y, z. Not a1 first, then a2, a3. for v in reshape(chk.lattice', 9) @printf(io, "%25.17f", v) end @printf(io, "\n") # Each column is a lattice vector for v in reshape(chk.recip_lattice', 9) @printf(io, "%25.17f", v) end @printf(io, "\n") @printf(io, "%d\n", n_kpts) @printf(io, "%d %d %d\n", chk.kgrid...) for kpt in chk.kpoints @printf(io, "%25.17f %25.17f %25.17f\n", kpt...) end @printf(io, "%d\n", n_bvecs) @printf(io, "%d\n", n_wann) # left-justified @printf(io, "%-20s\n", chk.checkpoint) # 1 -> True, 0 -> False # v = chk.have_disentangled ? 1 : 0 @printf(io, "%d\n", chk.have_disentangled) if chk.have_disentangled # omega_invariant @printf(io, "%25.17f\n", chk.ΩI) for ik in 1:n_kpts for ib in 1:n_bands # 1 -> True, 0 -> False @printf(io, "%d\n", chk.dis_bands[ik][ib]) end end for ik in 1:n_kpts @printf(io, "%d\n", chk.n_dis[ik]) end # u_matrix_opt for ik in 1:n_kpts for iw in 1:n_wann for ib in 1:n_bands v = chk.Udis[ik][ib, iw] @printf(io, "%25.17f %25.17f\n", real(v), imag(v)) end end end end # u_matrix for ik in 1:n_kpts for iw in 1:n_wann for ib in 1:n_wann v = chk.Uml[ik][ib, iw] @printf(io, "%25.17f %25.17f\n", real(v), imag(v)) end end end # m_matrix for ik in 1:n_kpts for inn in 1:n_bvecs for iw in 1:n_wann for ib in 1:n_wann v = chk.M[ik][inn][ib, iw] @printf(io, "%25.17f %25.17f\n", real(v), imag(v)) end end end end # wannier_centres for iw in 1:n_wann @printf(io, "%25.17f %25.17f %25.17f\n", chk.r[iw]...) end # wannier_spreads for iw in 1:n_wann @printf(io, "%25.17f\n", chk.ω[iw]) end end end function write_chk(filename::AbstractString, chk::Chk, ::FortranBinary) io = FortranFile(filename, "w") n_bands = chk.n_bands n_wann = chk.n_wann n_kpts = chk.n_kpts n_bvecs = chk.n_bvecs write(io, FString(33, chk.header)) # gfortran default integer is 4 bytes Tint = Int32 write(io, Tint(n_bands)) write(io, Tint(chk.n_exclude_bands)) write(io, Vector{Tint}(chk.exclude_bands)) # Each column is a lattice vector # but W90 writes x components first, then y, z. Not a1 first, then a2, a3. write(io, Vector{Float64}(reshape(chk.lattice', 9))) # Each column is a lattice vector write(io, Vector{Float64}(reshape(chk.recip_lattice', 9))) write(io, Tint(n_kpts)) write(io, Vector{Tint}(chk.kgrid)) # size = 3 * n_kpts # Use `reduce(hcat, kpoints)`, which is much faster than `hcat(kpoints...)` kpoints = reduce(hcat, chk.kpoints) write(io, Matrix{Float64}(kpoints)) write(io, Tint(n_bvecs)) write(io, Tint(n_wann)) # left-justified write(io, FString(20, chk.checkpoint)) # true -> 1, false -> 0 write(io, Tint(chk.have_disentangled)) # concatenate along dims=3 cat3(A...) = cat(A...; dims=3) if chk.have_disentangled # omega_invariant write(io, Float64(chk.ΩI)) # true -> 1, false -> 0 write(io, Matrix{Tint}(reduce(hcat, chk.dis_bands))) write(io, Vector{Tint}(chk.n_dis)) # u_matrix_opt write(io, Array{ComplexF64}(reduce(cat3, chk.Udis))) end # u_matrix write(io, Array{ComplexF64}(reduce(cat3, chk.Uml))) # m_matrix M = zeros(ComplexF64, n_wann, n_wann, n_bvecs, n_kpts) for ik in 1:n_kpts for ibvec in 1:n_bvecs M[:, :, ibvec, ik] = chk.M[ik][ibvec] end end write(io, M) # wannier_centres r = reduce(hcat, chk.r) write(io, Matrix{Float64}(r)) # wannier_spreads write(io, Vector{Float64}(chk.ω)) close(io) return nothing end function write_chk(filename::AbstractString, chk::Chk; binary=false) n_kpts = chk.n_kpts n_bands = chk.n_bands n_wann = chk.n_wann @info "Writing chk file" filename n_kpts n_bands n_wann if binary format = FortranBinary() else format = FortranText() end return write_chk(filename, chk, format) end """ $(SIGNATURES) Extract the combined `U = Udis * Uml` matrices from `Chk`. """ function get_U(chk::Chk) if !chk.have_disentangled # Return deepcopy for safety, so that chk.Uml is not modified return deepcopy(chk.Uml) end Udis = get_Udis(chk) return map(zip(Udis, chk.Uml)) do (d, m) d * m end end """ $(SIGNATURES) Extract disentanglement `Udis` matrices from `Chk`. """ function get_Udis(chk::Chk) n_kpts = chk.n_kpts n_bands = chk.n_bands n_wann = chk.n_wann T = eltype(chk.Uml[1]) if !chk.have_disentangled return [diagm(0 => ones(T, n_wann)) for _ in 1:n_kpts] end # Need to permute wavefunctions since Udis is stored in a way that # the bands taking part in disentanglement are in the first few rows. # Construct identity matrix Iᵏ = Matrix{T}(I, n_bands, n_bands) return map(1:n_kpts) do ik # sortperm is stable, and # need descending order (dis bands at the front) p = sortperm(chk.dis_bands[ik]; order=Base.Order.Reverse) # usually we don't need this permutation, but if # 1. the dis_win_min > minimum(E), then these below # dis_win_min bands are shifted to the last rows of Udis # 2. use projectability disentanglement, then # there might be cases that the lower (bonding) and # higher (anti-bonding) bands participate in disentanglement, # but some low-projectability bands are excluded from # disentanglement, then these low-proj bands are shifted to # the last rows of Udis # so we need to permute the Bloch states before multiplying Udis # chk.Udis: semi-unitary matrices from disentanglement # chk.Uml: unitary matrices from maximal localization Iᵏ[:, p] * chk.Udis[ik] end end """ $(SIGNATURES) Compare two `Chk` objects. """ function Base.isapprox(a::Chk, b::Chk) return _isapprox(a, b) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git