licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
4458
export read_eig, write_eig """ $(SIGNATURES) Reshape a vector of eigenvalues into a matrix of eigenvalues. Auto detect the number of bands and kpoints. """ @inline function _reshape_eig( idx_b::AbstractVector, idx_k::AbstractVector, eig::AbstractVector ) # find unique elements n_bands = length(Set(idx_b)) n_kpts = length(Set(idx_k)) E = reshape(eig, (n_bands, n_kpts)) return map(ik -> E[:, ik], 1:n_kpts) end """ $(SIGNATURES) Check that eigenvalues are in order. Some times there are small noises, use `digits` to set the number of digits for comparisons. """ @inline function _check_eig_order(eigenvalues::AbstractVector; digits=7) round_digits(x) = round(x; digits) for (ik, eig) in enumerate(eigenvalues) if !issorted(eig; by=round_digits) @warn "Eigenvalues are not sorted at " ik eig end end end """ read_eig(filename) read_eig(filename, ::FortranText) read_eig(filename, ::FortranBinaryStream) Read the wannier90 `eig` file. # Return - `eigenvalues`: a lenth-`n_kpts` vector, each element is a length-`n_bands` vector The 1st version is a convenience wrapper function for the 2nd and 3rd versions. """ function read_eig end function read_eig(filename::AbstractString, ::FortranText) lines = open(filename) do io readlines(io) end n_lines = length(lines) idx_b = zeros(Int, n_lines) idx_k = zeros(Int, n_lines) eig = zeros(Float64, n_lines) for i in 1:n_lines arr = split(lines[i]) idx_b[i] = parse(Int, arr[1]) idx_k[i] = parse(Int, arr[2]) eig[i] = parse(Float64, arr[3]) end eigenvalues = _reshape_eig(idx_b, idx_k, eig) _check_eig_order(eigenvalues) return eigenvalues end function read_eig(filename::AbstractString, ::FortranBinaryStream) idx_b = Vector{Int}() idx_k = Vector{Int}() eig = Vector{Float64}() # gfortran integer is 4 bytes Tint = Int32 open(filename) do io while !eof(io) push!(idx_b, read(io, Tint)) push!(idx_k, read(io, Tint)) push!(eig, read(io, Float64)) end end eigenvalues = _reshape_eig(idx_b, idx_k, eig) _check_eig_order(eigenvalues) return eigenvalues end function read_eig(filename::AbstractString) if isbinary(filename) format = FortranBinaryStream() else format = FortranText() end eigenvalues = read_eig(filename, format) n_kpts = length(eigenvalues) @assert n_kpts > 0 "Empty eig file" n_bands = length(eigenvalues[1]) @info "Reading eig file" filename n_kpts n_bands return eigenvalues end """ write_eig(filename, eigenvalues; binary=false) write_eig(filename, eigenvalues, ::FortranText) write_eig(filename, eigenvalues, ::FortranBinaryStream) Write `eig` file. # Arguments - `eigenvalues`: a length-`n_kpts` vector, each element is a length-`n_bands` vector # Keyword arguments - `binary`: if true write in Fortran binary format. """ function write_eig end function write_eig(filename::AbstractString, eigenvalues::AbstractVector, ::FortranText) n_kpts = length(eigenvalues) @assert n_kpts > 0 "Empty eigenvalues" n_bands = length(eigenvalues[1]) open(filename, "w") do io for ik in 1:n_kpts for ib in 1:n_bands @printf(io, "%5d%5d%18.12f\n", ib, ik, eigenvalues[ik][ib]) end end end end function write_eig( filename::AbstractString, eigenvalues::AbstractVector, ::FortranBinaryStream ) n_kpts = length(eigenvalues) @assert n_kpts > 0 "Empty eigenvalues" n_bands = length(eigenvalues[1]) # gfortran integer is 4 bytes Tint = Int32 # I write in Fortran stream IO, so just plain julia `open` open(filename, "w") do io for ik in 1:n_kpts for ib in 1:n_bands write(io, Tint(ib)) write(io, Tint(ik)) write(io, Float64(eigenvalues[ik][ib])) end end end end function write_eig(filename::AbstractString, eigenvalues::AbstractVector; binary=false) if binary format = FortranBinaryStream() else format = FortranText() end write_eig(filename, eigenvalues, format) n_kpts = length(eigenvalues) @assert n_kpts > 0 "Empty eigenvalues" n_bands = length(eigenvalues[1]) @info "Writing eig file" filename n_kpts n_bands end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3178
# TODO update this file, use consistent variable names """ $(SIGNATURES) Write the real space Hamiltonian to a `prefix_HH_R.dat` file. # Arguments - `filename`: usually `prefix_HH_R.dat` - `H`: a `n_wann * n_wann * n_rvecs` array of Hamiltonian - `R`: a `n_rvecs * 3` array of integers # Keyword arguments - `N`: a `n_rvecs` vector of integers, the degeneracy of each R vector - `header`: a string, the header of the file !!! note `Wanier90` `postw90.x` has a hidden input parameter `effective_model`, setting it to `true` and `postw90.x` will read this `HH_R.dat` to fill the real space Hamiltonian, and do subsequent Wannier interpolation, e.g., in `BoltzWann`. However, the vanila `postw90.x` code does not take into account the degeneracy of R vectors, and also does not use MDRS interpolation. I have modified the `postw90.x` code to use MDRS, and also changed a bit the number of digits for the Hamiltonian in `HH_R.dat`, so that it is the same as the `prefix_tb.dat` file, i.e., from Fortran `F12.6` to `E15.8`. """ function write_HH_R( filename::AbstractString, H::AbstractArray{T,3}, R::AbstractMatrix{IT}; N::Union{AbstractVector{IT},Nothing}=nothing, header=default_header(), ) where {T<:Complex,IT<:Integer} n_wann, _, n_rvecs = size(H) size(H, 2) == n_wann || error("H must be a n_wann * n_wann * n_rvecs matrix") size(R) == (3, n_rvecs) || error("R must be a 3 * n_rvecs matrix") N === nothing || length(N) == n_rvecs || error("N must be a n_rvecs vector") io = open(filename, "w") write(io, header, "\n") @printf(io, "%d\n", n_wann) @printf(io, "%d\n", n_rvecs) vec2str(v) = join([@sprintf "%5d" x for x in v], "") for ir in 1:n_rvecs for j in 1:n_wann for i in 1:n_wann h = H[i, j, ir] # 12.6f is the wannier90 default, however, I change it to # 15.8e so that it has the same accuracy as tb.dat file. @printf( io, "%s %15.8e %15.8e\n", vec2str([R[:, ir]..., i, j]), real(h), imag(h) ) end end end close(io) @info "Written to file: $(filename)" # the vanila wannier90 code does not read the N array (the degeneracy # of R vector), and assume that N = 1 for all the R vectors. # I write it, and also implement the reading of wsvec.dat as well, # to use MDRS interpolation. if N !== nothing filename *= ".ndegen" io = open(filename, "w") # for aesthetic purpose, I write the N array in 15 columns n_col = 15 # 15 numbers per row for i in 0:(n_rvecs ÷ n_col - 1) s = i * n_col + 1 # start e = (i + 1) * n_col # end @printf(io, "%s\n", vec2str(N[s:e])) end if (n_rvecs % n_col) > 0 s = n_rvecs - n_rvecs % n_col + 1 # start e = n_rvecs # end @printf(io, "%s\n", vec2str(N[s:e])) end @info "Written to file: $(filename)" close(io) end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
2689
export read_w90_hrdat, write_w90_hrdat """ $(SIGNATURES) Read `prefix_hr.dat`. # Return - `Rvectors`: ``\\mathbf{R}``-vectors on which operators are defined - `Rdegens`: degeneracies of each ``\\mathbf{R}``-vector - `H`: Hamiltonian ``\\mathbf{H}(\\mathbf{R})`` - `header`: the first line of the file """ function read_w90_hrdat(filename::AbstractString) return open(filename) do io header = strip(readline(io)) n_wann = parse(Int, strip(readline(io))) n_Rvecs = parse(Int, strip(readline(io))) Rdegens = parse_vector(io, Int, n_Rvecs) Rvectors = zeros(Vec3{Int}, n_Rvecs) H = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] for iR in 1:n_Rvecs for n in 1:n_wann for m in 1:n_wann line = split(strip(readline(io))) Rvectors[iR] = parse.(Int, line[1:3]) @assert m == parse(Int, line[4]) line @assert n == parse(Int, line[5]) line H[iR][m, n] = complex(parse(Float64, line[6]), parse(Float64, line[7])) end end end @info "Reading hr.dat file" filename header n_wann n_Rvecs return (; Rvectors, Rdegens, H, header) end end """ $(SIGNATURES) Write `prefix_hr.dat`. # Keyword arguments See the return values of [`read_w90_hrdat`](@ref). """ function write_w90_hrdat( filename::AbstractString; Rvectors::AbstractVector, Rdegens::AbstractVector, H::AbstractVector, header=default_header(), ) n_Rvecs = length(H) @assert n_Rvecs > 0 "empty H" n_wann = size(H[1], 1) @info "Writing hr.dat file" filename header n_wann n_Rvecs return open(filename, "w") do io println(io, strip(header)) @printf(io, "%d\n", n_wann) @printf(io, "%d\n", n_Rvecs) n_columns = 15 for (iR, degen) in enumerate(Rdegens) @printf(io, "%5d", degen) if mod(iR, n_columns) == 0 println(io) end end if mod(n_Rvecs, n_columns) != 0 println(io) end for iR in 1:n_Rvecs for n in 1:n_wann for m in 1:n_wann reH = real(H[iR][m, n]) imH = imag(H[iR][m, n]) @printf( io, " %4d %4d %4d %4d %4d %11.6f %11.6f\n", Rvectors[iR]..., m, n, reH, imH ) end end end end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
9023
export read_mmn, write_mmn """ read_mmn(filename) read_mmn(filename, ::FortranText) read_mmn(filename, ::FortranBinaryStream) Read wannier90 `mmn` file. # Return - `M`: length-`n_kpts` vector, each element is a length-`n_bvecs` vector, then each element is a `n_bands * n_bands` matrix - `kpb_k`: length-`n_kpts` vector, each element is a length-`n_bvecs` vector of integers for the indices of the neighboring kpoints - `kpb_G`: length-`n_kpts` vector, each element is a lenght-`n_bvecs` vector of of `Vec3{Int}`, which are the translation vectors - `header`: 1st line of the file The translation vector `G` is defined as `b = kpoints[kpb_k[ik][ib]] + kpb_G[ik][ib] - kpoints[ik]`, where `b` is the `ib`-th bvector of the `ik`-th kpoint. The 1st version is a convenience wrapper for the other two. """ function read_mmn end function read_mmn(filename::AbstractString, ::FortranText) mmn = open(filename) do io header = strip(readline(io)) line = readline(io) n_bands, n_kpts, n_bvecs = map(x -> parse(Int, x), split(line)) # overlap matrix M = [[zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_bvecs] for _ in 1:n_kpts] # for each point, list of neighbors kpb_k = [zeros(Int, n_bvecs) for _ in 1:n_kpts] # the translation vector G so that the true bvector # b = kpoints[kpb_k] + kpb_G - kpoints[k] kpb_G = [zeros(Vec3{Int}, n_bvecs) for _ in 1:n_kpts] while !eof(io) for ib in 1:n_bvecs line = readline(io) arr = split(line) ik = parse(Int, arr[1]) kpb_k[ik][ib] = parse(Int, arr[2]) kpb_G[ik][ib] = Vec3(parse.(Int, arr[3:5])) for n in 1:n_bands for m in 1:n_bands line = readline(io) arr = split(line) o = parse(Float64, arr[1]) + im * parse(Float64, arr[2]) M[ik][ib][m, n] = o end end end end @assert all(Mk -> all(Mkb -> !any(isnan.(Mkb)), Mk), M) return (; M, kpb_k, kpb_G, header) end return mmn end function read_mmn(filename::AbstractString, ::FortranBinaryStream) # I use stream io to write mmn, so I should use plain julia `open` mmn = open(filename) do io header_len = 60 header = read(io, FString{header_len}) # from FString to String header = strip(String(header)) # gfortran default integer size = 4 # https://gcc.gnu.org/onlinedocs/gfortran/KIND-Type-Parameters.html Tint = Int32 n_bands = read(io, Tint) n_kpts = read(io, Tint) n_bvecs = read(io, Tint) # overlap matrix M = [[zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_bvecs] for _ in 1:n_kpts] # for each point, list of neighbors, (K) representation kpb_k = [zeros(Int, n_bvecs) for _ in 1:n_kpts] kpb_G = [zeros(Vec3{Int}, n_bvecs) for _ in 1:n_kpts] while !eof(io) for ib in 1:n_bvecs ik = read(io, Tint) kpb_k[ik][ib] = read(io, Tint) kpb_G[ik][ib] = Vec3{Int}(read(io, Tint), read(io, Tint), read(io, Tint)) for n in 1:n_bands for m in 1:n_bands r = read(io, Float64) i = read(io, Float64) M[ik][ib][m, n] = r + im * i end end end end @assert all(Mk -> all(Mkb -> !any(isnan.(Mkb)), Mk), M) return (; M, kpb_k, kpb_G, header) end return mmn end function read_mmn(filename::AbstractString) if isbinary(filename) format = FortranBinaryStream() else format = FortranText() end M, kpb_k, kpb_G, header = read_mmn(filename, format) _check_dimensions_M_kpb(M, kpb_k, kpb_G) n_kpts = length(M) n_bvecs = length(M[1]) n_bands = size(M[1][1], 1) @info "Reading mmn file" filename header n_kpts n_bvecs n_bands # Not returning header since it is printed # Note I am returning a Tuple instead of NamedTuple return M, kpb_k, kpb_G end """ write_mmn(filename; M, kpb_k, kpb_G; header=default_header(), binary=false) write_mmn(filename; M, kpb_k, kpb_G, ::FortranText; header=default_header(), binary=false) write_mmn(filename; M, kpb_k, kpb_G, ::FortranBinaryStream; header=default_header(), binary=false) Write wannier90 `mmn` file. # Arguments - `filename`: output file name - `M`: length-`n_kpts` vector of `n_bands * n_bands * n_bvecs` arrays - `kpb_k`: length-`n_kpts` vector of length-`n_bvecs` vector of integers - `kpb_G`: length-`n_kpts` vector of length-`n_bvecs` vector of `Vec3{Int}` for bvectors # Keyword arguments - `header`: header string - `binary`: if true write in Fortran binary format The 1st version is a convenience wrapper for the other two. """ function write_mmn end """ Check the dimensions between the quantities are consistent. """ @inline function _check_dimensions_kpb(kpb_k, kpb_G) n_kpts = length(kpb_k) @assert n_kpts > 0 "Empty kpb_k, n_kpts = 0" n_bvecs = length(kpb_k[1]) @assert n_bvecs > 0 "Empty kpb_k, n_bvecs = 0" @assert length(kpb_k) == n_kpts "kpb_k has wrong n_kpts" @assert length(kpb_G) == n_kpts "kpb_G has wrong n_kpts" @assert all(length.(kpb_k) .== n_bvecs) "kpb_k has different n_bvecs among kpts" @assert all(length.(kpb_G) .== n_bvecs) "kpb_G has different n_bvecs among kpts" @assert all(all(length.(Gk) .== 3) for Gk in kpb_G) "kpb_G[ib][ib] are not 3-vectors" end """ $(SIGNATURES) """ @inline function _check_dimensions_M_kpb(M, kpb_k, kpb_G) _check_dimensions_kpb(kpb_k, kpb_G) @assert length(M) == length(kpb_k) "M and kpb_k have different n_kpts" n_bvecs = length(kpb_k[1]) @assert all(length.(M) .== n_bvecs) "M and kpb_k have different n_bvecs" n_bands = size(M[1][1], 1) @assert n_bands > 0 "Empty M, n_bands = 0" @assert all(all(size.(Mk) .== Ref((n_bands, n_bands))) for Mk in M) "M[ik][ib] are not square matrices" end function write_mmn( filename::AbstractString, M::AbstractVector, kpb_k::AbstractVector, kpb_G::AbstractVector, ::FortranText; header=default_header(), ) _check_dimensions_M_kpb(M, kpb_k, kpb_G) n_kpts = length(M) n_bvecs = length(M[1]) n_bands = size(M[1][1], 1) open(filename, "w") do io header = strip(header) write(io, header, "\n") @printf(io, " %d %d %d \n", n_bands, n_kpts, n_bvecs) for ik in 1:n_kpts for ib in 1:n_bvecs @printf(io, "%d %d %d %d %d\n", ik, kpb_k[ik][ib], kpb_G[ik][ib]...) for n in 1:n_bands for m in 1:n_bands o = M[ik][ib][m, n] @printf(io, " %16.12f %16.12f\n", real(o), imag(o)) end end end end end end function write_mmn( filename::AbstractString, M::AbstractVector, kpb_k::AbstractVector, kpb_G::AbstractVector, ::FortranBinaryStream; header=default_header(), ) _check_dimensions_M_kpb(M, kpb_k, kpb_G) n_kpts = length(M) n_bvecs = length(M[1]) n_bands = size(M[1][1], 1) # gfortran default integer size = 4 Tint = Int32 # I use stream io to write mmn, so I should use plain julia `open` open(filename, "w") do io header_len = 60 header = FString(header_len, String(strip(header))) write(io, header) write(io, Tint(n_bands)) write(io, Tint(n_kpts)) write(io, Tint(n_bvecs)) for ik in 1:n_kpts kpb_k_ik = kpb_k[ik] kpb_G_ik = kpb_G[ik] for ib in 1:n_bvecs write(io, Tint(ik)) write(io, Tint(kpb_k_ik[ib])) write(io, Tint(kpb_G_ik[ib][1])) write(io, Tint(kpb_G_ik[ib][2])) write(io, Tint(kpb_G_ik[ib][3])) for n in 1:n_bands for m in 1:n_bands o = M[ik][ib][m, n] write(io, Float64(real(o))) write(io, Float64(imag(o))) end end end end end end function write_mmn( filename::AbstractString, M::AbstractVector, kpb_k::AbstractVector, kpb_G::AbstractVector; header::AbstractString=default_header(), binary::Bool=false, ) _check_dimensions_M_kpb(M, kpb_k, kpb_G) n_kpts = length(M) n_bvecs = length(M[1]) n_bands = size(M[1][1], 1) if binary format = FortranBinaryStream() else format = FortranText() end write_mmn(filename, M, kpb_k, kpb_G, format; header) @info "Writing mmn file" filename header n_kpts n_bvecs n_bands end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
9289
export read_nnkp, write_nnkp """ read_nnkp(filename) read_nnkp(filename, ::Wannier90Text) read_nnkp(filename, ::Wannier90Toml) Read wannier90 `nnkp` file. # Return - `lattice`: each column is a lattice vector - `recip_lattice`: each column is a reciprocal lattice vector - `kpoints`: length-`n_kpts` vector, each element is `Vec3`, in fractional coordinates - `kpb_k`: length-`n_kpts` vector, each element is a length-`n_bvecs` vector of integers, index of kpoints - `kpb_G`: length-`n_kpts` vector, each element is a length-`n_bvecs` vector, then each element is `Vec3` for translations, fractional w.r.t `recip_lattice` Wannier90 `nnkp` file is a plain text format, the 2nd version reads `nnkp` file in Wannier90 format. The thrid version read a TOML-format `nnkp` file, which is defined by this package, see [`write_nnkp`](@ref). The 1st version auto detects the format and parse it. """ function read_nnkp end function read_nnkp(filename::AbstractString, ::Wannier90Text) res = open(filename) do io read_array(type::Type) = map(x -> parse(type, x), split(readline(io))) lattice = zeros(Float64, 3, 3) recip_lattice = zeros(Float64, 3, 3) n_kpts = nothing kpoints = nothing kpb_k = nothing kpb_G = nothing while !eof(io) line = readline(io) if occursin("begin real_lattice", line) for i in 1:3 lattice[:, i] = read_array(Float64) end line = strip(readline(io)) @assert line == "end real_lattice" "`end real_lattice` not found" elseif occursin("begin recip_lattice", line) for i in 1:3 recip_lattice[:, i] = read_array(Float64) end line = strip(readline(io)) @assert line == "end recip_lattice" "`end recip_lattice` not found" elseif occursin("begin kpoints", line) n_kpts = parse(Int, readline(io)) kpoints = zeros(Vec3{Float64}, n_kpts) for i in 1:n_kpts kpoints[i] = Vec3(read_array(Float64)) end line = strip(readline(io)) @assert line == "end kpoints" "`end kpoints` not found" elseif occursin("begin nnkpts", line) @assert n_kpts !== nothing "no `kpoints` block before `nnkpts` block?" n_bvecs = parse(Int, readline(io)) kpb_k = [zeros(Int, n_bvecs) for _ in 1:n_kpts] kpb_G = [zeros(Vec3{Int}, n_bvecs) for _ in 1:n_kpts] for ik in 1:n_kpts for ib in 1:n_bvecs arr = read_array(Int) @assert ik == arr[1] "expected ik = $ik, got $(arr[1])" kpb_k[ik][ib] = arr[2] kpb_G[ik][ib] = Vec3(arr[3:end]) end end line = strip(readline(io)) @assert line == "end nnkpts" "`end nnkpts` not found" end end @assert !iszero(lattice) "`real_lattice` not found" @assert !iszero(recip_lattice) "`recip_lattice` not found" @assert kpoints !== nothing "`kpoints` not found" @assert kpb_k !== nothing "`nnkpts` not found" @assert kpb_G !== nothing "`nnkpts` not found" lattice = Mat3(lattice) recip_lattice = Mat3(recip_lattice) return (; lattice, recip_lattice, kpoints, kpb_k, kpb_G) end return res end function read_nnkp(filename::AbstractString, ::Wannier90Toml) # I can just reuse the read_win function, without fix win inputs nnkp = read_win(filename, Wannier90Toml(); fix_inputs=false) # Need to set value to Any, otherwise it is Dict{Symbol,Vector}, # then I cannot assign Mat3 to it. nnkp = Dict{Symbol,Any}(pairs(nnkp)) # Some following cleanups # Convert to Mat3 if haskey(nnkp, :lattice) || haskey(nnkp, :recip_lattice) for k in (:lattice, :recip_lattice) if haskey(nnkp, k) nnkp[k] = Mat3(nnkp[k]) end end end # Convert to Vec3 if haskey(nnkp, :kpb_G) nnkp[:kpb_G] = [[Vec3{Int}(G) for G in Gk] for Gk in nnkp[:kpb_G]] end # back to NamedTuple return NamedTuple(nnkp) end function read_nnkp(filename::AbstractString) format = Wannier90Text() try TOML.parsefile(filename) catch err err isa TOML.ParserError || rethrow() else format = Wannier90Toml() end nnkp = read_nnkp(filename, format) n_kpts = length(nnkp.kpb_k) @assert n_kpts > 0 "no kpoints found" n_bvecs = length(nnkp.kpb_k[1]) @info "Reading nnkp file" filename n_kpts n_bvecs return nnkp end """ write_nnkp(filename; toml=false, kwargs...) write_nnkp(filename, ::Wannier90Text; kwargs...) write_nnkp(filename, ::Wannier90Toml; kwargs...) Write a `nnkp` file that can be used by DFT codes, e.g., QE `pw2wannier90`. # Keyword Arguments - `toml`: write to a TOML file, otherwise write to a Wannier90 text file format - `recip_lattice`: each column is a reciprocal lattice vector - `kpoints`: length-`n_kpts` vector of `Vec3`, in fractional coordinates - `kpb_k`: length-`n_kpts` vector, each element is a length-`n_bvecs` vector of integers, index of kpoints - `kpb_G`: length-`n_kpts` vector, each element is a length-`n_bvecs` vector, then each element is a `Vec3` for translation vector, fractional w.r.t. `recip_lattice` - `n_wann`: if given, write an `auto_projections` block - `exclude_bands`: if given, write the specified band indices in the `exclude_bands` block - `header`: first line of the file !!! note Only use `auto_projections`, the `projections` block is not supported. """ function write_nnkp end function write_nnkp( filename::AbstractString, ::Wannier90Text; lattice::AbstractMatrix, recip_lattice::AbstractMatrix, kpoints::AbstractVector, kpb_k::AbstractVector, kpb_G::AbstractVector, n_wann::Union{Nothing,Integer}=nothing, exclude_bands::Union{Nothing,AbstractVector}=nothing, header=default_header(), ) @assert size(recip_lattice) == (3, 3) "size(recip_lattice) != (3, 3)" _check_dimensions_kpb(kpb_k, kpb_G) n_kpts = length(kpoints) @assert n_kpts == length(kpb_k) "kpoints and kpb_k have different length" n_bvecs = length(kpb_k[1]) @assert size(lattice) == (3, 3) "size(lattice) != (3, 3)" @assert size(recip_lattice) == (3, 3) "size(recip_lattice) != (3, 3)" open(filename, "w") do io @printf(io, "%s\n", header) @printf(io, "\n") # mysterious line, seems not used in W90 @printf(io, "calc_only_A : F\n") @printf(io, "\n") @printf(io, "begin real_lattice\n") for v in eachcol(lattice) @printf(io, "%12.7f %12.7f %12.7f\n", v...) end @printf(io, "end real_lattice\n") @printf(io, "\n") @printf(io, "begin recip_lattice\n") for v in eachcol(recip_lattice) @printf(io, "%12.7f %12.7f %12.7f\n", v...) end @printf(io, "end recip_lattice\n") @printf(io, "\n") @printf(io, "begin kpoints\n") @printf(io, "%d\n", n_kpts) for kpt in kpoints @printf(io, "%14.8f %14.8f %14.8f\n", kpt...) end @printf(io, "end kpoints\n") @printf(io, "\n") if !isnothing(n_wann) @printf(io, "begin projections\n") @printf(io, "%d\n", 0) @printf(io, "end projections\n") @printf(io, "\n") @printf(io, "begin auto_projections\n") @printf(io, "%d\n", n_wann) @printf(io, "%d\n", 0) @printf(io, "end auto_projections\n") @printf(io, "\n") end @printf(io, "begin nnkpts\n") @printf(io, "%d\n", n_bvecs) for ik in 1:n_kpts for ib in 1:n_bvecs @printf(io, "%6d %6d %6d %6d %6d\n", ik, kpb_k[ik][ib], kpb_G[ik][ib]...) end end @printf(io, "end nnkpts\n") @printf(io, "\n") @printf(io, "begin exclude_bands\n") if exclude_bands === nothing @printf(io, "%d\n", 0) else @printf(io, "%d\n", length(exclude_bands)) for b in exclude_bands @printf(io, "%d\n", b) end end @printf(io, "end exclude_bands\n") @printf(io, "\n") end end function write_nnkp( filename::AbstractString, ::Wannier90Toml; header=default_header(), kwargs... ) open(filename, "w") do io println(io, header, "\n") write_toml(io; kwargs...) end end function write_nnkp(filename::AbstractString; toml=false, kwargs...) @assert :kpb_k in keys(kwargs) "missing kpb_k" kpb_k = kwargs[:kpb_k] n_kpts = length(kpb_k) @assert n_kpts > 0 "empty kpb_k" n_bvecs = length(kpb_k[1]) @info "Writing nnkp file" filename n_kpts n_bvecs if toml format = Wannier90Toml() else format = Wannier90Text() end return write_nnkp(filename, format; kwargs...) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1740
export read_w90_rdat """ $(SIGNATURES) Read `prefix_r.dat`. # Return - `Rvectors`: ``\\mathbf{R}``-vectors on which operators are defined - `r_x`: ``x``-component of position operator - `r_y`: ``y``-component of position operator - `r_z`: ``z``-component of position operator - `header`: the first line of the file """ function read_w90_rdat(filename::AbstractString) return open(filename) do io header = strip(readline(io)) n_wann = parse(Int, strip(readline(io))) n_Rvecs = parse(Int, strip(readline(io))) Rvectors = zeros(Vec3{Int}, n_Rvecs) r_x = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] r_y = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] r_z = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] for iR in 1:n_Rvecs for n in 1:n_wann for m in 1:n_wann line = split(strip(readline(io))) Rvectors[iR] = parse.(Int, line[1:3]) @assert m == parse(Int, line[4]) line @assert n == parse(Int, line[5]) line r_x[iR][m, n] = complex( parse(Float64, line[6]), parse(Float64, line[7]) ) r_y[iR][m, n] = complex( parse(Float64, line[8]), parse(Float64, line[9]) ) r_z[iR][m, n] = complex( parse(Float64, line[10]), parse(Float64, line[11]) ) end end end @info "Reading r.dat file" filename header n_wann n_Rvecs return (; Rvectors, r_x, r_y, r_z, header) end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
6330
export read_spn, write_spn """ read_spn(filename) read_spn(filename, ::FortranText) read_spn(filename, ::FortranBinary) Read the wannier90 `spn` file. # Return - `Sx`: spin x, a length-`n_kpts` vector, each element is a `n_bands`-by-`n_bands` matrix - `Sy`: spin y, a length-`n_kpts` vector, each element is a `n_bands`-by-`n_bands` matrix - `Sz`: spin z, a length-`n_kpts` vector, each element is a `n_bands`-by-`n_bands` matrix - `header`: 1st line of the file """ function read_spn end function read_spn(filename::AbstractString, ::FortranText) spn = open("$filename") do io header = readline(io) arr = split(readline(io)) n_bands, n_kpts = parse.(Int64, arr[1:2]) Sx = [zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_kpts] Sy = [zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_kpts] Sz = [zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_kpts] for ik in 1:n_kpts for m in 1:n_bands for n in 1:m for Si in (Sx, Sy, Sz) line = split(readline(io)) x, y = parse.(Float64, line) Si[ik][n, m] = x + im * y # although each diagonal element of `S` should be real, # actually it has a very small imaginary part, # so we skip the conjugation on the diagonal elements. m == n && continue Si[ik][m, n] = x - im * y end end end end @assert eof(io) return (; Sx, Sy, Sz, header) end return spn end function read_spn(filename::AbstractString, ::FortranBinary) io = FortranFile(filename) # strip and read line header_len = 60 header = trimstring(read(io, FString{header_len})) # gfortran default integer is 4 bytes Tint = Int32 n_bands, n_kpts = read(io, (Tint, 2)) Sx = [zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_kpts] Sy = [zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_kpts] Sz = [zeros(ComplexF64, n_bands, n_bands) for _ in 1:n_kpts] # upper triangle part, at each kpoint spn_tmp = zeros(ComplexF64, 3, n_bands * (n_bands + 1) ÷ 2) for ik in 1:n_kpts read(io, spn_tmp) counter = 0 for m in 1:n_bands for n in 1:m counter += 1 for (i, Si) in enumerate((Sx, Sy, Sz)) Si[ik][n, m] = spn_tmp[i, counter] # although each diagonal element of `S` should be real, # actually it has a very small imaginary part, # so we skip the conjugation on the diagonal elements. m == n && continue Si[ik][m, n] = conj(Si[ik][n, m]) end end end end @assert eof(io) close(io) return (; Sx, Sy, Sz, header) end function read_spn(filename::AbstractString) if isbinary(filename) format = FortranBinary() else format = FortranText() end Sx, Sy, Sz, header = read_spn(filename, format) n_kpts = length(Sx) @assert n_kpts > 0 "empty spn matrix" n_bands = size(Sx[1], 1) @info "Reading spn file" filename header n_kpts n_bands return Sx, Sy, Sz end """ write_spn(filename, Sx, Sy, Sz; binary=false, header) write_spn(filename, Sx, Sy, Sz, ::FortranText; header) write_spn(filename, Sx, Sy, Sz, ::FortranBinary; header) Write the `spn` file. """ function write_spn end """ $(SIGNATURES) """ @inline function _check_dimensions_Sx_Sy_Sz(Sx, Sy, Sz) n_kpts = length(Sx) @assert n_kpts > 0 "empty spn matrix" @assert n_kpts == length(Sy) == length(Sz) "Sx, Sy, Sz must have the same length" n_bands = size(Sx[1], 1) @assert all(size.(Sx) .== Ref((n_bands, n_bands))) "Sx[ik] must be a square matrix" @assert all(size.(Sy) .== Ref((n_bands, n_bands))) "Sy[ik] must be a square matrix" @assert all(size.(Sz) .== Ref((n_bands, n_bands))) "Sz[ik] must be a square matrix" end function write_spn( filename::AbstractString, Sx::AbstractVector, Sy::AbstractVector, Sz::AbstractVector, ::FortranText; header=default_header(), ) _check_dimensions_Sx_Sy_Sz(Sx, Sy, Sz) n_kpts = length(Sx) n_bands = size(Sx[1], 1) open(filename, "w") do io header = strip(header) write(io, header, "\n") @printf(io, "%3d %4d\n", n_bands, n_kpts) for ik in 1:n_kpts for m in 1:n_bands for n in 1:m for Si in (Sx, Sy, Sz) s = Si[ik][n, m] @printf(io, "%26.16e %26.16e\n", real(s), imag(s)) end end end end end end function write_spn( filename::AbstractString, Sx::AbstractVector, Sy::AbstractVector, Sz::AbstractVector, ::FortranBinary; header=default_header(), ) _check_dimensions_Sx_Sy_Sz(Sx, Sy, Sz) n_kpts = length(Sx) n_bands = size(Sx[1], 1) io = FortranFile(filename, "w") header_len = 60 write(io, FString(header_len, string(strip(header)))) # gfortran default integer is 4 bytes Tint = Int32 write(io, Tint(n_bands), Tint(n_kpts)) # upper triangle part, at each kpoint spn_tmp = zeros(ComplexF64, 3, n_bands * (n_bands + 1) ÷ 2) for ik in 1:n_kpts counter = 0 for m in 1:n_bands for n in 1:m counter += 1 for (i, Si) in enumerate((Sx, Sy, Sz)) spn_tmp[i, counter] = Si[ik][n, m] end end end write(io, spn_tmp) end close(io) return nothing end function write_spn( filename::AbstractString, Sx::AbstractVector, Sy::AbstractVector, Sz::AbstractVector; binary=false, header=default_header(), ) if binary format = FortranBinary() else format = FortranText() end _check_dimensions_Sx_Sy_Sz(Sx, Sy, Sz) n_kpts = length(Sx) n_bands = size(Sx[1], 1) @info "Writing spn file" filename header n_kpts n_bands return write_spn(filename, Sx, Sy, Sz, format; header) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
5174
export read_w90_tbdat, write_w90_tbdat """ $(SIGNATURES) Read `prefix_tb.dat`. # Return - `lattice`: each column is a lattice vector in Å - `Rvectors`: ``\\mathbf{R}``-vectors on which operators are defined - `Rdegens`: degeneracies of each ``\\mathbf{R}``-vector - `H`: Hamiltonian ``\\mathbf{H}(\\mathbf{R})`` - `r_x`: ``x``-component of position operator - `r_x`: ``y``-component of position operator - `r_x`: ``z``-component of position operator - `header`: the first line of the file """ function read_w90_tbdat(filename::AbstractString) # convenice function ssrline(io) = split(strip(readline(io))) return open(filename) do io header = strip(readline(io)) # Å unit a1 = parse.(Float64, ssrline(io)) a2 = parse.(Float64, ssrline(io)) a3 = parse.(Float64, ssrline(io)) # column-major lattice = Mat3{Float64}(hcat(a1, a2, a3)) n_wann = parse(Int, strip(readline(io))) n_Rvecs = parse(Int, strip(readline(io))) Rdegens = parse_vector(io, Int, n_Rvecs) Rvectors = zeros(Vec3{Int}, n_Rvecs) H = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] # Hamiltonian for iR in 1:n_Rvecs line = strip(readline(io)) # empty line @assert line == "" Rvectors[iR] = Vec3(parse.(Int, ssrline(io))...) for n in 1:n_wann for m in 1:n_wann line = ssrline(io) @assert m == parse(Int, line[1]) line @assert n == parse(Int, line[2]) line reH, imH = parse.(Float64, line[3:4]) H[iR][m, n] = reH + im * imH end end end # WF position operator r_x = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] r_y = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] r_z = [Matrix{ComplexF64}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] for iR in 1:n_Rvecs line = strip(readline(io)) # empty line @assert line == "" @assert Rvectors[iR] == Vec3(parse.(Int, ssrline(io))...) for n in 1:n_wann for m in 1:n_wann line = ssrline(io) @assert m == parse(Int, line[1]) @assert n == parse(Int, line[2]) f = parse.(Float64, line[3:8]) r_x[iR][m, n] = f[1] + im * f[2] r_y[iR][m, n] = f[3] + im * f[4] r_z[iR][m, n] = f[5] + im * f[6] end end end @info "Reading tb.dat file" filename header n_wann n_Rvecs return (; lattice, Rvectors, Rdegens, H, r_x, r_y, r_z, header) end end """ $(SIGNATURES) Write `prefix_tb.dat`. # Keyword arguments See the return values of [`read_w90_tbdat`](@ref). """ function write_w90_tbdat( filename::AbstractString; lattice::AbstractMatrix, Rvectors::AbstractVector, Rdegens::AbstractVector, H::AbstractVector, r_x::AbstractVector, r_y::AbstractVector, r_z::AbstractVector, header=default_header(), ) n_Rvecs = length(H) @assert n_Rvecs > 0 "empty H" n_wann = size(H[1], 1) @info "Writing tb.dat file" filename header n_wann n_Rvecs open(filename, "w") do io println(io, strip(header)) # Å unit @printf(io, "%21.16f %21.16f %21.16f\n", lattice[:, 1]...) @printf(io, "%21.16f %21.16f %21.16f\n", lattice[:, 2]...) @printf(io, "%21.16f %21.16f %21.16f\n", lattice[:, 3]...) @printf(io, "%d\n", n_wann) @printf(io, "%d\n", n_Rvecs) n_columns = 15 for (iR, degen) in enumerate(Rdegens) @printf(io, "%5d", degen) if mod(iR, n_columns) == 0 println(io) end end if mod(n_Rvecs, n_columns) != 0 println(io) end # Hamiltonian for iR in 1:n_Rvecs @printf(io, "\n%5d %5d %5d\n", Rvectors[iR]...) for n in 1:n_wann for m in 1:n_wann reH = real(H[iR][m, n]) imH = imag(H[iR][m, n]) @printf(io, "%5d %5d %15.8e %15.8e\n", m, n, reH, imH) end end end # WF position operator for iR in 1:n_Rvecs @printf(io, "\n%5d %5d %5d\n", Rvectors[iR]...) for n in 1:n_wann for m in 1:n_wann x = r_x[iR][m, n] y = r_y[iR][m, n] z = r_z[iR][m, n] @printf( io, "%5d %5d %15.8e %15.8e %15.8e %15.8e %15.8e %15.8e\n", m, n, real(x), imag(x), real(y), imag(y), real(z), imag(z) ) end end end end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
6441
export read_uHu, write_uHu """ read_uHu(filename) read_uHu(filename, ::FortranText; transpose_band_indices=true) read_uHu(filename, ::FortranBinary; transpose_band_indices=true) Read the wannier90 `uHu` file. # Keyword Arguments - `transpose_band_indices`: QE pw2wannier90.x writes the matrix in a strange transposed manner; if reading a QE-generated `uHu` file, this flag should be true to restore the band indices order, so that the returned matrix has the correct order, i.e., `uHu[ik][ib1, ib2][m, n]` is ``\\langle u_{m, k + b_1}| H | u_{n, k + b_2} \\rangle`` # Return - `uHu`: a length-`n_kpts` vector, each element is a `n_bvecs * n_bvecs` matrix, then each element is a `n_bands * n_bands` matrix - `header`: 1st line of the file """ function read_uHu end function read_uHu(filename::AbstractString, ::FortranText; transpose_band_indices=true) return open("$filename") do io header = readline(io) arr = split(readline(io)) n_bands, n_kpts, n_bvecs = parse.(Int64, arr[1:3]) uHu = map(1:n_kpts) do _ map(CartesianIndices((n_bvecs, n_bvecs))) do _ zeros(ComplexF64, n_bands, n_bands) end end for ik in 1:n_kpts for ib2 in 1:n_bvecs for ib1 in 1:n_bvecs for n in 1:n_bands for m in 1:n_bands line = split(readline(io)) x, y = parse.(Float64, line) uHu[ik][ib1, ib2][m, n] = x + im * y end end if transpose_band_indices uHu[ik][ib1, ib2] .= transpose(uHu[ik][ib1, ib2]) end end end end @assert eof(io) return (; uHu, header) end end function read_uHu(filename::AbstractString, ::FortranBinary; transpose_band_indices=true) io = FortranFile(filename) # strip and read line header_len = 60 header = trimstring(read(io, FString{header_len})) # gfortran default integer is 4 bytes Tint = Int32 n_bands, n_kpts, n_bvecs = read(io, (Tint, 3)) uHu = map(1:n_kpts) do _ map(CartesianIndices((n_bvecs, n_bvecs))) do _ zeros(ComplexF64, n_bands, n_bands) end end # upper triangle part, at each kpoint, b1, and b2 uHu_tmp = zeros(ComplexF64, n_bands^2) for ik in 1:n_kpts for ib2 in 1:n_bvecs for ib1 in 1:n_bvecs read(io, uHu_tmp) uHu[ik][ib1, ib2] .= reshape(uHu_tmp, (n_bands, n_bands)) if transpose_band_indices uHu[ik][ib1, ib2] .= transpose(uHu[ik][ib1, ib2]) end end end end @assert eof(io) close(io) return (; uHu, header) end function read_uHu(filename::AbstractString; kwargs...) if isbinary(filename) format = FortranBinary() else format = FortranText() end uHu, header = read_uHu(filename, format; kwargs...) n_kpts = length(uHu) @assert n_kpts > 0 "empty uHu matrix" n_bvecs = size(uHu[1], 1) @assert n_bvecs > 0 "empty uHu matrix" n_bands = size(uHu[1][1, 1], 1) @info "Reading uHu file" filename header n_kpts n_bvecs n_bands return uHu end """ write_uHu(filename, uHu; binary=false, header) write_uHu(filename, uHu, ::FortranText; header) write_uHu(filename, uHu, ::FortranBinary; header) Write the `uHu` file. # Keyword Arguments - `transpose_band_indices`: see [`read_uHu`](@ref) """ function write_uHu end function write_uHu( filename::AbstractString, uHu::AbstractVector, ::FortranText; header=default_header(), transpose_band_indices=true, ) n_kpts = length(uHu) @assert n_kpts > 0 "empty uHu matrix" n_bvecs = size(uHu[1], 1) @assert n_bvecs > 0 "empty uHu matrix" n_bands = size(uHu[1][1, 1], 1) open(filename, "w") do io header = strip(header) write(io, header, "\n") @printf(io, "%3d %4d %4d\n", n_bands, n_kpts, n_bvecs) for ik in 1:n_kpts for ib2 in 1:n_bvecs for ib1 in 1:n_bvecs if transpose_band_indices out_uHu = transpose(uHu[ik][ib1, ib2]) else out_uHu = uHu[ik][ib1, ib2] end for n in 1:n_bands for m in 1:n_bands u = out_uHu[m, n] @printf(io, "%20.10e %20.10e\n", real(u), imag(u)) end end end end end end end function write_uHu( filename::AbstractString, uHu::AbstractVector, ::FortranBinary; header=default_header(), transpose_band_indices=true, ) n_kpts = length(uHu) @assert n_kpts > 0 "empty uHu matrix" n_bvecs = size(uHu[1], 1) @assert n_bvecs > 0 "empty uHu matrix" n_bands = size(uHu[1][1, 1], 1) io = FortranFile(filename, "w") header_len = 60 write(io, FString(header_len, string(strip(header)))) # gfortran default integer is 4 bytes Tint = Int32 write(io, Tint(n_bands), Tint(n_kpts), Tint(n_bvecs)) # upper triangle part, at each kpoint uHu_tmp = zeros(ComplexF64, n_bands^2) for ik in 1:n_kpts for ib2 in 1:n_bvecs for ib1 in 1:n_bvecs if transpose_band_indices out_uHu = transpose(uHu[ik][ib1, ib2]) else out_uHu = uHu[ik][ib1, ib2] end uHu_tmp .= reshape(out_uHu, (n_bands^2,)) write(io, uHu_tmp) end end end close(io) return nothing end function write_uHu( filename::AbstractString, uHu::AbstractVector; binary=false, header=default_header(), kwargs..., ) if binary format = FortranBinary() else format = FortranText() end n_kpts = length(uHu) @assert n_kpts > 0 "empty uHu matrix" n_bvecs = size(uHu[1], 1) @assert n_bvecs > 0 "empty uHu matrix" n_bands = size(uHu[1][1, 1], 1) @info "Writing uHu file" filename header n_kpts n_bands n_bvecs return write_uHu(filename, uHu, format; header, kwargs...) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3127
""" read_u_mat(filename) Read wannier90 `prefix_u.mat` or `prefix_u_dis.mat` file. # Arguments - `filename`: the input file name # Return - `U`: `Udis` (for disentanglement) or `U` (for maximal localization) matrices - `kpoints`: fractional kpoint coordinates - `header`: 1st line of the file !!! warning The `wannier90` output `prefix_u_dis.mat` internally sorts the band indices according to the disnentanglement window, therefore it can be different from the original Bloch states, see the code and comments in [`get_Udis`](@ref). """ function read_u_mat(filename::AbstractString) return open(filename) do io # strip and read line srline() = strip(readline(io)) header = String(srline()) # for u_dis.mat, nwann <= nbands # for u.mat, nbands == nwann nkpts, nwann, nbands = parse.(Int, split(srline())) @info "Reading u_mat file" filename header nkpts nbands nwann kpoints = zeros(Vec3{Float64}, nkpts) U = [zeros(ComplexF64, nbands, nwann) for _ in 1:nkpts] for ik in 1:nkpts # empty line srline() kpoints[ik] = Vec3(parse.(Float64, split(srline()))...) for iw in 1:nwann for ib in 1:nbands vals = parse.(Float64, split(srline())) U[ik][ib, iw] = vals[1] + im * vals[2] end end end return (; U, kpoints, header) end end """ write_u_mat(filename, U, kpoints; header=default_header()) Write wannier90 `prefix_u.mat` or `prefix_u_dis.mat` file. # Arguments - `filename`: the input file name - `U`: `Udis` (for disentanglement) or `U` (for maximal localization) matrices - `kpoints`: fractional kpoint coordinates # Keyword arguments - `header`: 1st line of the file, optional !!! warning The `wannier90` output `prefix_u_dis.mat` internally sorts the band indices according to the disnentanglement window, therefore it can be different from the original Bloch states, see the code and comments in [`get_Udis`](@ref). This function just writes whatever is inside the input `U` matrix, without consider the order of disentanglement window. """ function write_u_mat( filename::AbstractString, U::AbstractVector, kpoints::AbstractVector; header::AbstractString=default_header(), ) nkpts = length(U) @assert nkpts > 0 "U is empty" @assert nkpts == length(kpoints) "inconsistent number of kpoints" nbands, nwann = size(U[1]) @info "Writing u_mat file" filename header nkpts nbands nwann return open(filename, "w") do io write(io, header, "\n") @printf(io, "%d %d %d\n", nkpts, nwann, nbands) for ik in 1:nkpts # empty line write(io, "\n") @printf(io, " %15.10f %15.10f %15.10f\n", kpoints[ik]...) for iw in 1:nwann for ib in 1:nbands u = U[ik][ib, iw] @printf(io, " %15.10f %15.10f\n", real(u), imag(u)) end end end end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
4180
export read_unk, write_unk """ read_unk(filename) read_unk(filename, ::FortranText) read_unk(filename, ::FortranBinary) Read wannier90 `UNK` file for the periodic part of Bloch wavefunctions. # Return - `ik`: k-point index, start from 1 - `Ψ`: periodic part of Bloch wavefunctions in real space, size = `(n_gx, n_gy, n_gz, n_bands, n_spin)` """ function read_unk end function read_unk(filename::AbstractString, ::FortranText) n_spin = occursin("NC", filename) ? 2 : 1 res = open(filename) do io line = split(strip(readline(io))) n_gx, n_gy, n_gz, ik, n_bands = parse.(Int, line) Ψ = zeros(ComplexF64, n_gx, n_gy, n_gz, n_bands, n_spin) for ib in 1:n_bands for is in 1:n_spin for iz in 1:n_gz for iy in 1:n_gy for ix in 1:n_gx line = split(strip(readline(io))) v1, v2 = parse.(Float64, line) Ψ[ix, iy, iz, ib, is] = v1 + im * v2 end end end end end return ik, Ψ end return res end function read_unk(filename::AbstractString, ::FortranBinary) n_spin = occursin("NC", filename) ? 2 : 1 # unk files are not in Fortran stream io, so I need to open with FortranFile io = FortranFile(filename) # gfortran default integer is 4 bytes Tint = Int32 n_gx, n_gy, n_gz, ik, n_bands = read(io, (Tint, 5)) Ψ = zeros(ComplexF64, n_gx, n_gy, n_gz, n_bands, n_spin) for ib in 1:n_bands for is in 1:n_spin record = Record(io) read!(record, view(Ψ, :, :, :, ib, is)) close(record) end end close(io) return ik, Ψ end function read_unk(filename::AbstractString) if isbinary(filename) format = FortranBinary() else format = FortranText() end ik, Ψ = read_unk(filename, format) n_gx, n_gy, n_gz, n_bands, n_spin = size(Ψ) @info "Reading unk file" filename ik (n_gx, n_gy, n_gz) n_bands n_spin return ik, Ψ end """ write_unk(filename, ik, Ψ; binary=false) write_unk(filename, ik, Ψ, ::FortranText) write_unk(filename, ik, Ψ, ::FortranBinary) Write `UNK` file for the periodic part of Bloch wavefunctions. # Arguments - ik: at which kpoint? start from 1 - Ψ: Bloch wavefunctions, `size(Ψ) = (n_gx, n_gy, n_gz, n_bands, n_spin)` # Keyword arguments - `binary`: write as Fortran unformatted file """ function write_unk end function write_unk( filename::AbstractString, ik::Integer, Ψ::Array{<:Complex,5}, ::FortranText ) n_gx, n_gy, n_gz, n_bands, n_spin = size(Ψ) open(filename, "w") do io @printf(io, " %11d %11d %11d %11d %11d\n", n_gx, n_gy, n_gz, ik, n_bands) for ib in 1:n_bands for is in 1:n_spin for iz in 1:n_gz for iy in 1:n_gy for ix in 1:n_gx v1 = real(Ψ[ix, iy, iz, ib, is]) v2 = imag(Ψ[ix, iy, iz, ib, is]) @printf(io, " %18.10e %18.10e\n", v1, v2) end end end end end end end function write_unk( filename::AbstractString, ik::Integer, Ψ::Array{<:Complex,5}, ::FortranBinary ) n_gx, n_gy, n_gz, n_bands, n_spin = size(Ψ) # gfortran default integer is 4 bytes Tint = Int32 # not Fortran stream IO, so using `FortranFile` io = FortranFile(filename, "w") write(io, Tint(n_gx), Tint(n_gy), Tint(n_gz), Tint(ik), Tint(n_bands)) for ib in 1:n_bands for is in 1:n_spin write(io, ComplexF64.(Ψ[:, :, :, ib, is])) end end return close(io) end function write_unk(filename::AbstractString, ik, Ψ; binary=false) n_gx, n_gy, n_gz, n_bands, n_spin = size(Ψ) @info "Writing unk file" filename ik (n_gx, n_gy, n_gz) n_bands n_spin if binary format = FortranBinary() else format = FortranText() end return write_unk(filename, ik, Ψ, format) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
19694
using TOML export read_win, write_win """ read_win(filename; fix_inputs=true) read_win(filename, ::Wannier90Text; fix_inputs=true) read_win(filename, ::Wannier90Toml; fix_inputs=true) Read wannier90 input `win` file. # Arguments - `filename`: The name of the input file. # Keyword Arguments - `fix_inputs`: sanity check and fix the input parameters, e.g., set `num_bands = num_wann` if `num_bands` is not specified, convert `atoms_cart` always to `atoms_frac`, etc. See also [`fix_win!`](@ref). """ function read_win end function read_win(filename::AbstractString, ::Wannier90Text; fix_inputs::Bool=true) params = open(filename) do io # The win file uses "num_wann", so I keep it as is, and not using "n_wann". keys_int = [ :num_wann, :num_bands, :num_iter, :dis_num_iter, :dis_conv_window, :conv_window, :num_cg_steps, :wannier_plot_supercell, :num_print_cycles, :iprint, :search_shells, :bands_num_points, :ws_search_size, :num_guide_cycles, :num_no_guide_iter, ] keys_int3 = [:mp_grid] keys_float = [ :kmesh_tol, :conv_tol, :dis_froz_min, :dis_froz_max, :dis_win_min, :dis_win_max, :dis_mix_ratio, :dis_conv_tol, :fermi_energy, :fermi_energy_min, :fermi_energy_max, :fermi_energy_step, :ws_distance_tol, ] keys_bool = [ :use_ws_distance, :wannier_plot, :bands_plot, :wvfn_formatted, :spn_formatted, :write_hr, :write_tb, :write_xyz, :write_rmn, :guiding_centres, :gamma_only, :spinors, :postproc_setup, :auto_projections, :restart, ] keys_indices = [:exclude_bands, :select_projections] params = Dict{Symbol,Any}() read_line() = strip(readline(io)) function remove_comments(line::AbstractString) i = findfirst(r"!|#", line) if i !== nothing line = strip(line[1:(i.start - 1)]) end return line end # handle case insensitive win files (relic of Fortran) function read_line_until_nonempty(; lower=true, block_name=nothing) while !eof(io) line = read_line() lower && (line = lowercase(line)) line = remove_comments(line) if !isempty(line) return line end end # end of line reached if block_name !== nothing # in the middle of a block, raise error error("end of file reached while parsing block `$block_name`") end # else, outside of blocks, should be fine reaching end of file return nothing end function parse_array(line::AbstractString; T=Float64) return map(x -> parse(T, x), split(line)) end read_array(f::IOStream) = parse_array(readline(f)) while !eof(io) line = read_line_until_nonempty() line === nothing && break # first handle special cases, e.g., blocks if occursin(r"^begin\s+unit_cell_cart", line) block_name = "unit_cell_cart" unit_cell = zeros(Float64, 3, 3) unit = read_line_until_nonempty(; block_name) if !startswith(unit, "b") && !startswith(unit, "a") line = unit unit = "ang" else line = read_line_until_nonempty(; block_name) end for i in 1:3 # in win file, each line is a lattice vector, here it is stored as column vec unit_cell[:, i] = parse_array(line) line = read_line_until_nonempty(; block_name) end @assert occursin(r"^end\s+unit_cell_cart", line) "error parsing $block_name: `end $block_name` not found" if startswith(unit, "b") # convert to angstrom unit_cell .*= Bohr end unit_cell = Mat3{Float64}(unit_cell) push!(params, :unit_cell_cart => unit_cell) elseif occursin(r"^begin\s+atoms_(frac|cart)", line) iscart = occursin("cart", line) block_name = "atoms_$(iscart ? "cart" : "frac")" # do not lowercase due to atomic label line = read_line_until_nonempty(; lower=false, block_name) if iscart unit = lowercase(line) if !startswith(unit, "b") && !startswith(unit, "a") unit = "ang" else # do not lowercase due to atomic label line = read_line_until_nonempty(; lower=false, block_name) end end # I need to read all lines and get n_atoms lines = Vector{String}() while !occursin(Regex("^end\\s+" * block_name), lowercase(line)) push!(lines, line) line = read_line_until_nonempty(; lower=false, block_name) end n_atoms = length(lines) atoms_frac = SymbolVec3{Float64}[] for i in 1:n_atoms l = split(lines[i]) symbol = Symbol(l[1]) frac = Vec3(parse_float.(l[2:end])...) push!(atoms_frac, SymbolVec3(symbol, frac)) end if iscart if startswith(unit, "b") # convert to angstrom atoms_frac = map(atoms_frac) do (symbol, pos) SymbolVec3(symbol, pos .* Bohr) end end push!(params, :atoms_cart => atoms_frac) else push!(params, :atoms_frac => atoms_frac) end elseif occursin(r"^begin\s+projections", line) block_name = "projections" projections = Vector{String}() line = read_line_until_nonempty(; lower=false, block_name) while !occursin(r"^end\s+projections", lowercase(line)) push!(projections, line) line = read_line_until_nonempty(; lower=false, block_name) end push!(params, :projections => projections) elseif occursin(r"^begin\s+kpoints", line) block_name = "kpoints" line = read_line_until_nonempty(; block_name) # I need to read all lines and get n_kpts lines = Vector{String}() while !occursin(r"^end\s+kpoints", line) push!(lines, line) line = read_line_until_nonempty(; block_name) end n_kpts = length(lines) kpoints = zeros(Vec3{Float64}, n_kpts) for i in 1:n_kpts # There might be weight at 4th column, but we don't use it. kpoints[i] = Vec3(parse_array(lines[i])[1:3]) end push!(params, :kpoints => kpoints) elseif occursin(r"^begin\s+kpoint_path", line) block_name = "kpoint_path" kpoint_path = Vector{Vector{SymbolVec3{Float64}}}() # allow uppercase line = read_line_until_nonempty(; lower=false, block_name) while !occursin(r"^end\s+kpoint_path", lowercase(line)) l = split(line) length(l) == 8 || error("Invalid kpoint_path line: $line") # start kpoint start_label = Symbol(l[1]) start_kpt = Vec3{Float64}(parse.(Float64, l[2:4])) # end kpoint end_label = Symbol(l[5]) end_kpt = Vec3{Float64}(parse.(Float64, l[6:8])) # push to kpath push!(kpoint_path, [start_label => start_kpt, end_label => end_kpt]) line = read_line_until_nonempty(; lower=false, block_name) end push!(params, :kpoint_path => kpoint_path) elseif occursin(r"^begin\s+(.+)", line) # treat all remaining unknown blocks as Vector of String block_name = match(r"^begin\s+(.+)", line).captures[1] block_content = Vector{String}() # allow uppercase line = read_line_until_nonempty(; lower=false, block_name) while !occursin(Regex("^end\\s+" * block_name), lowercase(line)) push!(block_content, line) line = read_line_until_nonempty(; lower=false, block_name) end push!(params, Symbol(block_name) => block_content) else # now treat remaining lines as key-value pairs line = strip(replace(line, "=" => " ", ":" => " ")) key, value = split(line; limit=2) value = strip(value) # remove leading whitespaces key = Symbol(key) if key in keys_int value = parse(Int, value) elseif key in keys_int3 value = strip(replace(value, "," => " ")) value = parse_array(value; T=Int) elseif key in keys_float value = parse_float(value) elseif key in keys_bool value = parse_bool(value) elseif key in keys_indices value = parse_indices(value) end push!(params, key => value) end end return params end fix_inputs && fix_win!(params) # convert to NamedTuple, easier to access its fields with dot notation, # e.g., params.num_wann params = NamedTuple(params) return params end function read_win(filename::AbstractString, ::Wannier90Toml; fix_inputs::Bool=true) win = TOML.parsefile(filename) # I store atoms_frac and kpoint_path as Vector of SymbolVec3. # However, TOML.print does not accept Pair (specifically, SymbolVec3), # instead I convert SymbolVec3 to Dict in _write_win_toml. # On reading I convert it back. function convert_SymbolVec3(d::Dict) # SymbolVec3 are converted to Dict of length 1 when writing if length(d) == 1 k, v = only(d) isa(k, String) && isa(v, Vector{<:Real}) && return SymbolVec3(k, v) end # Need to do the conversion recursively for (k, v) in pairs(d) if isa(v, Dict) || isa(v, Vector) d[k] = convert_SymbolVec3(v) end end return d end function convert_SymbolVec3(v::Vector) if isa(v, Vector{<:Dict}) || isa(v, Vector{<:Vector}) return map(convert_SymbolVec3, v) end return v end win = convert_SymbolVec3(win) # Convert keys to Symbol win = Dict(Symbol(k) => v for (k, v) in pairs(win)) fix_inputs && fix_win!(win) # Vector{Vector} -> Mat3 if haskey(win, :unit_cell_cart) win[:unit_cell_cart] = Mat3(win[:unit_cell_cart]) end # Vector{Vector} -> Vector{Vec3} if haskey(win, :kpoints) win[:kpoints] = [Vec3(k) for k in win[:kpoints]] end return NamedTuple(win) end function read_win(filename::AbstractString; fix_inputs=true) format = Wannier90Text() try TOML.parsefile(filename) catch err err isa TOML.ParserError || rethrow() else format = Wannier90Toml() end win = read_win(filename, format; fix_inputs) num_wann = win[:num_wann] num_bands = nothing if :num_bands in keys(win) num_bands = win[:num_bands] end # I need to convert to tuple so that @info does not output its type mp_grid = Tuple(win[:mp_grid]) @info "Reading win file" filename num_wann num_bands mp_grid return win end """ $(SIGNATURES) Sanity check and add missing input parameters from a `win` file. See also [`read_win`](@ref). """ function fix_win!(params::Dict) !haskey(params, :num_wann) && error("num_wann not found") params[:num_wann] > 0 || error("num_wann must be positive") # add num_bands if not found !haskey(params, :num_bands) && push!(params, :num_bands => params[:num_wann]) params[:num_bands] > 0 || error("num_bands must be positive") if haskey(params, :mp_grid) length(params[:mp_grid]) != 3 && error("mp_grid has wrong length") any(i -> i <= 0, params[:mp_grid]) && error("mp_grid must be positive") else error("mp_grid not found") end if haskey(params, :kpoints) n_kpts = prod(params[:mp_grid]) length(params[:kpoints]) != n_kpts && error("kpoints has wrong shape") else error("kpoints not found") end if haskey(params, :unit_cell_cart) any(x -> ismissing(x), params[:unit_cell_cart]) && error("unit_cell_cart not found") else error("unit_cell_cart not found") end # if atoms_cart, convert to fractional if !haskey(params, :atoms_frac) !haskey(params, :atoms_cart) && error("both atoms_frac and atoms_cart are missing") atoms_cart = pop!(params, :atoms_cart) inv_cell = inv(params[:unit_cell_cart]) atoms_frac = map(atoms_cart) do (symbol, cart) SymbolVec3{Float64}(symbol, inv_cell * cart) end push!(params, :atoms_frac => atoms_frac) end return nothing end """ write_win(filename; toml=false, kwargs...) write_win(filename, ::Wannier90Text; kwargs...) write_win(filename, ::Wannier90Toml; kwargs...) Write input parameters into a wannier90 `win` file. The input parameters are keyword arguments, with key names same as that of wannier90. # Examples ```julia using WannierIO write_win( "silicon.win"; num_wann=4, num_bands=4, # unit_cell_cart is a matrix, its columns are the lattice vectors in angstrom unit_cell_cart=[ 0.0 2.71527 2.71527 2.71527 0.0 2.71527 2.71527 2.71527 0.0 ], # atoms_frac is a vector of pairs of atom_label and fractional coordinates atoms_frac=[ :Si => [0.0, 0.0, 0.0], :Si => [0.25, 0.25, 0.25], # both `:Si` and `"Si"` are allowed # "Si" => [0.25, 0.25, 0.25], ], # each element in projections will be written as a line in the win file projections=[ "random", ] kpoint_path=[ [:G => [0.0, 0.0, 0.0], :X => [0.5, 0.0, 0.5]], [:X => [0.5, 0.0, 0.5], :U => [0.625, 0.25, 0.625]], ], mp_grid=[2, 2, 2], # kpoints is a matrix, its columns are the fractional coordinates kpoints=[ [0.0, 0.0, 0.0], [0.0, 0.0, 0.5], [0.0, 0.5, 0.0], [0.0, 0.5, 0.5], [0.5, 0.0, 0.0], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0], [0.5, 0.5, 0.5], ], # additional parameters can be passed as keyword arguments, e.g., num_iter=500, ) ``` """ function write_win end """ $(SIGNATURES) """ @inline function _check_win_required_params(kwargs) required_keys = [:num_wann, :unit_cell_cart, :atoms_frac, :mp_grid, :kpoints] for k in required_keys @assert haskey(kwargs, k) "Required parameter $k not found" end end function write_win( filename::AbstractString, ::Wannier90Text; header=default_header(), kwargs... ) _check_win_required_params(kwargs) # convert immutable kwargs to Dict params = Dict(kwargs) num_wann = pop!(params, :num_wann) num_bands = pop!(params, :num_bands, nothing) unit_cell_cart = pop!(params, :unit_cell_cart) atoms_frac = pop!(params, :atoms_frac) projections = pop!(params, :projections, nothing) kpoint_path = pop!(params, :kpoint_path, nothing) mp_grid = pop!(params, :mp_grid) kpoints = pop!(params, :kpoints) # if !startswith(lstrip(header), "#") # header = "# $header" # end open(filename, "w") do io println(io, "$(header)\n") # First write most important parameters println(io, "num_wann = $num_wann") !isnothing(num_bands) && println(io, "num_bands = $num_bands") # a new line to separate from the rest println(io) # Drop remaining parameters for (key, value) in pairs(params) ismissing(value) && continue # @printf fp "%-20s = %-30s\n" string(key) value @printf io "%s = %s\n" string(key) value end println(io) # Lattice vectors are in rows in Wannier90 println(io, "begin unit_cell_cart\nangstrom") # for floats, e.g., unit_cell, kpoints, I need to write enough digits # to avoid rounding errors in finding bvectors for vec in eachcol(unit_cell_cart) @printf io "%14.8f %14.8f %14.8f\n" vec... end println(io, "end unit_cell_cart\n") println(io, "begin atoms_frac") for (element, position) in atoms_frac if isa(element, Symbol) element = string(element) end @printf io "%-3s %14.8f %14.8f %14.8f\n" element position... end println(io, "end atoms_frac\n") if !isnothing(projections) println(io, "begin projections") for proj in projections println(io, proj) end println(io, "end projections\n") end if !isnothing(kpoint_path) println(io, "begin kpoint_path") for segment in kpoint_path line = "" for (label, kpt) in segment seg = @sprintf "%-3s %14.8f %14.8f %14.8f " string(label) kpt... line *= seg end line = rstrip(line) println(io, line) end println(io, "end kpoint_path\n") end @printf io "mp_grid = %d %d %d\n\n" mp_grid... println(io, "begin kpoints") for kpt in kpoints @printf io "%14.8f %14.8f %14.8f\n" kpt... end println(io, "end kpoints") end end function write_win( filename::AbstractString, ::Wannier90Toml; header=default_header(), kwargs... ) _check_win_required_params(kwargs) open(filename, "w") do io println(io, header, "\n") write_toml(io; kwargs...) end end function write_win(filename::AbstractString; toml=false, kwargs...) if toml format = Wannier90Toml() else format = Wannier90Text() end num_wann = get(kwargs, :num_wann, nothing) num_bands = get(kwargs, :num_bands, nothing) mp_grid = get(kwargs, :mp_grid, nothing) # I need to convert to tuple so that @info does not output its type mp_grid !== nothing && (mp_grid = Tuple(mp_grid)) @info "Writing win file" filename num_wann num_bands mp_grid return write_win(filename, format; kwargs...) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
5682
export read_wout """ $(SIGNATURES) Parse wannire90 `wout` file. # Return - `lattice`: each column is a lattice vector in Å - `recip_lattice`: each column is a reciprocal lattice vector in Å⁻¹ - `atom_labels`: atomic symbols - `atom_positions`: in fractional coordinates - `centers`: final each WF centers in Å - `spreads`: final each WF spreads in Ų - `ΩI`, `ΩD`, `ΩOD`, `Ωtotal`: final spread (components) in Ų """ function read_wout(filename::AbstractString) return open(filename) do io start_lattice = "Lattice Vectors (" start_recip = "Reciprocal-Space Vectors (" start_atom = "| Site Fractional Coordinate Cartesian Coordinate" end_atom = "*----------------------------------------------------------------------------*" start_finalstate = "Final State" end_finalstate = "Sum of centres and spreads" marker_wfc = "WF centre and spread" marker_ΩI = "Omega I =" marker_ΩD = "Omega D =" marker_ΩOD = "Omega OD =" marker_Ωtotal = "Omega Total =" ang_unit = false lattice = nothing recip_lattice = nothing atom_labels = nothing atom_positions = nothing centers = nothing spreads = nothing ΩI = nothing ΩD = nothing ΩOD = nothing Ωtotal = nothing while !eof(io) line = strip(readline(io)) if occursin(start_lattice, line) @assert occursin("Ang", line) ang_unit = true lattice = zeros(Float64, 3, 3) line = split(strip(readline(io))) @assert line[1] == "a_1" lattice[:, 1] = parse_float.(line[2:end]) line = split(strip(readline(io))) @assert line[1] == "a_2" lattice[:, 2] = parse_float.(line[2:end]) line = split(strip(readline(io))) @assert line[1] == "a_3" lattice[:, 3] = parse_float.(line[2:end]) continue end if occursin(start_recip, line) @assert occursin("Ang^-1", line) recip_lattice = zeros(Float64, 3, 3) line = split(strip(readline(io))) @assert line[1] == "b_1" recip_lattice[:, 1] = parse_float.(line[2:end]) line = split(strip(readline(io))) @assert line[1] == "b_2" recip_lattice[:, 2] = parse_float.(line[2:end]) line = split(strip(readline(io))) @assert line[1] == "b_3" recip_lattice[:, 3] = parse_float.(line[2:end]) continue end if occursin(start_atom, line) @assert occursin("Ang", line) readline(io) lines = Vector{String}() line = strip(readline(io)) while line != end_atom push!(lines, line) line = strip(readline(io)) end n_atom = length(lines) atom_labels = Vector{String}() atom_positions = zeros(Vec3{Float64}, n_atom) for (i, line) in enumerate(lines) line = split(line) @assert line[1] == "|" line push!(atom_labels, line[2]) # cartesian # atom_positions[i] = Vec3(parse_float.(line[8:10])) # fractional atom_positions[i] = Vec3(parse_float.(line[4:6])) end continue end if occursin(start_finalstate, line) lines = Vector{String}() line = strip(readline(io)) while !occursin(end_finalstate, line) push!(lines, line) line = strip(readline(io)) end n_wann = length(lines) centers = zeros(Vec3{Float64}, n_wann) spreads = zeros(Float64, n_wann) for (i, line) in enumerate(lines) @assert startswith(line, marker_wfc) line line = split(line, r"[,()]") idx = strip(chopprefix(line[1], marker_wfc)) idx = parse(Int, idx) @assert i == idx "Wrong WF index at $(line[1])" vals = map(parse_float, line[2:end]) centers[i] = Vec3(vals[1:3]) spreads[i] = vals[4] end continue end if occursin(marker_ΩI, line) ΩI = parse_float(split(line, marker_ΩI)[2]) continue end if occursin(marker_ΩD, line) ΩD = parse_float(split(line, marker_ΩD)[2]) continue end if occursin(marker_ΩOD, line) ΩOD = parse_float(split(line, marker_ΩOD)[2]) continue end if occursin(marker_Ωtotal, line) Ωtotal = parse_float(split(line, marker_Ωtotal)[2]) continue end end @assert ang_unit "wout unit is not Angstrom, not supported yet" lattice = Mat3(lattice) recip_lattice = Mat3(recip_lattice) return (; lattice, recip_lattice, atom_labels, atom_positions, centers, spreads, ΩI, ΩD, ΩOD, Ωtotal, ) end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
5547
export read_w90_wsvec, write_w90_wsvec """ $(SIGNATURES) Read `prefix_wsvec.dat`. # Return - `mdrs`: whether use MDRS interpolation, i.e. the `use_ws_distance` in the header - `Rvectors`: the ``\\mathbf{R}``-vectors - `Tvectors`: the ``\\mathbf{T}_{m n \\mathbf{R}}``-vectors. Returned only `mdrs = true`. - `Tdegens`: the degeneracies of ``\\mathbf{T}_{m n \\mathbf{R}}``-vectors. Returned only `mdrs = true`. - `n_wann`: number of WFs - `header`: the first line of the file """ function read_w90_wsvec(filename::AbstractString) header, mdrs, Rmn, Tvectors_flat, Tdegens_flat = open(filename) do io header = strip(readline(io)) # check `use_ws_distance` mdrs = false mdrs_str = split(header)[end] if occursin("use_ws_distance=", mdrs_str) mdrs_str = lowercase(split(header, "use_ws_distance=")[2]) mdrs = parse_bool(mdrs_str) end Rmn = Vector{Vector{Int}}() # Tvectors_flat[iRmn][iT] is Vec3 for T-vector, where iRmn is the index for the # combination of Rvector and (m, n), iT is the index of T-vector at iRmn. # Later on we will reorder this flattened vector, i.e., unfold the # iRmn index into (iR, m, n). Tvectors_flat = Vector{Vector{Vec3{Int}}}() Tdegens_flat = Vector{Int}() while !eof(io) line = strip(readline(io)) # the last line is empty if length(line) == 0 continue end Rx, Ry, Rz, m, n = parse.(Int, split(line)) push!(Rmn, [Rx, Ry, Rz, m, n]) n_T = parse(Int, strip(readline(io))) push!(Tdegens_flat, n_T) T = zeros(Vec3{Int}, n_T) for iT in 1:n_T line = strip(readline(io)) T[iT] = Vec3(parse.(Int, split(line))...) end push!(Tvectors_flat, T) end return header, mdrs, Rmn, Tvectors_flat, Tdegens_flat end # get number of WFs n_wann = length(unique(i[end] for i in Rmn)) n_Rvecs = length(Rmn) ÷ n_wann^2 Rvectors = zeros(Vec3{Int}, n_Rvecs) iR = 1 for rmn in Rmn m, n = rmn[4:5] if m == 1 && n == 1 Rvectors[iR] = Vec3(rmn[1:3]) iR += 1 end end if !mdrs return (; mdrs, Rvectors, n_wann, header) end # Objective: reorder Tvectors_flat -> Tvectors, Tdegens_flat -> Tdegens # such that Tvectors[iR][m, n][iT] is Vec3 for T-vector Tvectors = [Matrix{Vector{Vec3{Int}}}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] # and Tdegens[iR][m, n] is the degeneracy of T-vector at iR-th Rvector & # between m-th and n-th WFs Tdegens = [Matrix{Int}(undef, n_wann, n_wann) for _ in 1:n_Rvecs] iR = 1 for (iRmn, rmn) in enumerate(Rmn) m, n = rmn[(end - 1):end] Tvectors[iR][m, n] = Tvectors_flat[iRmn] Tdegens[iR][m, n] = Tdegens_flat[iRmn] # next Rvector if m == n_wann && n == n_wann iR += 1 end end @info "Reading wsvec.dat file" filename header mdrs n_wann n_Rvecs return (; mdrs, Rvectors, Tvectors, Tdegens, n_wann, header) end """ $(SIGNATURES) Write `prefix_wsvec.dat`. # Keyword Arguments - `n_wann`: for Wigner-Seitz Rvectors, needs to provide a `n_wann` for number of Wannier functions; for MDRS Rvectors, the `n_wann` is optional and can be automatically determined from the `Tvectors` - `Tvectors` and `Tdegens`: if provided, write in MDRS format; otherwise, write in Wigner-Seitz format Also see the return values of [`read_w90_wsvec`](@ref). """ function write_w90_wsvec( filename::AbstractString; Rvectors::AbstractVector, n_wann::Union{Integer,Nothing}=nothing, Tvectors::Union{AbstractVector,Nothing}=nothing, Tdegens::Union{AbstractVector,Nothing}=nothing, header=default_header(), ) @assert (Tvectors !== nothing && Tdegens !== nothing) || (Tvectors === nothing && Tdegens === nothing) "Tvectors and Tdegens must be both nothing or both not nothing" mdrs = Tvectors !== nothing n_Rvecs = length(Rvectors) @assert n_Rvecs > 0 "empty Rvectors" if mdrs @assert length(Tvectors) == length(Tdegens) == n_Rvecs "different n_Rvecs in Rvectors, Tvectors, and Tdegens" if n_wann === nothing n_wann = size(Tvectors[1], 1) else @assert n_wann == size(Tvectors[1], 1) "different n_wann in Tvectors and n_wann" end else @assert n_wann !== nothing "n_wann must be provided for Wigner-Seitz format" end @info "Writing wsvec.dat file" filename header mdrs n_wann n_Rvecs open(filename, "w") do io if mdrs println(io, header * " with use_ws_distance=.true.") else println(io, header * " with use_ws_distance=.false.") end for iR in 1:n_Rvecs R = Rvectors[iR] for m in 1:n_wann for n in 1:n_wann @printf(io, "%5d %5d %5d %5d %5d\n", R..., m, n) if mdrs @printf(io, "%5d\n", Tdegens[iR][m, n]) for T in Tvectors[iR][m, n] @printf(io, "%5d %5d %5d\n", T...) end else @printf(io, "%5d\n", 1) @printf(io, "%5d %5d %5d\n", 0, 0, 0) end end end end end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
379
# using Aqua # only test ambiguities in current module, otherwise fails due to ambiguities in other packages # https://github.com/JuliaTesting/Aqua.jl/issues/77 # disable project_extras since we don't use julia < 1.2 # Aqua.test_all(WannierIO; ambiguities=false, project_extras=false) # Aqua.test_ambiguities(WannierIO) using TestItemRunner @run_package_tests verbose = true
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
758
@testitem "read EPW mmn" begin using LazyArtifacts M, kpb_k, kpb_G = read_mmn(artifact"BN/BN.mmn") n_kpts = length(M) n_bvecs = length(M[1]) n_bands = size(M[1][1], 1) M1 = WannierIO.read_epw_mmn(artifact"BN/reference/bn.mmn"; n_kpts, n_bvecs, n_bands) @test M ≈ M1 end @testitem "read/write EPW ukk" begin using LazyArtifacts chk = read_chk(artifact"BN/reference/bn.chk") alat = WannierIO.read_qe_xml(artifact"BN/reference/bn.xml").alat ukk_ref = WannierIO.Ukk(chk, alat) ukk = WannierIO.read_epw_ukk(artifact"BN/reference/bn.ukk") @test ukk ≈ ukk_ref tmpfile = tempname(; cleanup=true) WannierIO.write_epw_ukk(tmpfile, ukk) ukk2 = WannierIO.read_epw_ukk(tmpfile) @test ukk2 ≈ ukk end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3708
@testitem "read qe xml" begin using WannierIO: Vec3 using LazyArtifacts qe = WannierIO.read_qe_xml(artifact"Si2/reference/qe_bands.xml") lattice = [0.0 2.715265 2.715265; 2.715265 0.0 2.715265; 2.715265 2.715265 0.0] @test qe.lattice ≈ lattice atom_positions = Vec3[[0.0, 0.0, 0.0], [0.25, 0.25, 0.25]] @test qe.atom_positions ≈ atom_positions atom_labels = ["Si", "Si"] @test qe.atom_labels == atom_labels recip_lattice = [ -1.1570114348285685 1.1570114348285685 1.1570114348285685 1.1570114348285685 -1.1570114348285685 1.1570114348285685 1.1570114348285685 1.1570114348285685 -1.1570114348285685 ] @test qe.recip_lattice ≈ recip_lattice @test length(qe.kpoints) == 511 @test qe.kpoints[1] ≈ [0.0, 0.0, 0.0] @test qe.kpoints[end] ≈ [0.5, 0.0, 0.5] @test length(qe.eigenvalues) == 511 eigenvalues1 = [ -5.826225550687528, 6.165602316381265, 6.165602316381265, 6.165602316381303, 8.683797578503912, 8.683797578503947, 8.683797578503983, 9.477127583014145, 13.86461804570024, 13.864618045701016, 13.87950848504097, 17.27314636025589, 17.273146360255925, 17.273146360257257, 21.254697588478756, 29.07002686142792, ] eigenvalues511 = [ -1.6666776531834973, -1.6666776531834973, 3.2884932258593533, 3.2884932258593533, 6.758325832996588, 6.758325832996588, 16.220036706342146, 16.220036706342146, 17.107712425166522, 17.10771242516657, 18.670405795535505, 18.67040579553565, 19.10855942754898, 19.10855942754903, 24.841843066432848, 24.841843066563083, ] @test qe.eigenvalues[1] ≈ eigenvalues1 @test qe.eigenvalues[end] ≈ eigenvalues511 @test qe.n_electrons ≈ 8.0 @test qe.fermi_energy ≈ 6.528341904366175 @test qe.alat ≈ 3.8399645884368714 end @testitem "read qe xml spin-polarized" begin using WannierIO: Vec3 using LazyArtifacts qe = WannierIO.read_qe_xml(artifact"CrI3/reference/qe_bands.xml") lattice = [ 6.8171434485254725 -3.4085717242627362 0.0 0.0 5.903819407666132 0.0 0.0 0.0 20.078373841305446 ] @test qe.lattice ≈ lattice atom_positions = Vec3[ [0.33333333330000003, 0.6666666667000001, 0.0], [0.6666666667, 0.3333333332999999, 0.0], [-2.7755575615628914e-17, 0.35410773599999995, 0.0769313053], [0.0, 0.645892264, -0.07693127530000003], [0.354107736, 0.35410773599999995, -0.07693127530000003], [0.645892264, 0.645892264, 0.0769313053], [0.354107736, 0.0, 0.0769313053], [0.645892264, 0.0, -0.07693127530000003], ] @test qe.atom_positions ≈ atom_positions atom_labels = ["Cr", "Cr", "I", "I", "I", "I", "I", "I"] @test qe.atom_labels == atom_labels recip_lattice = [ 0.921674210704576 0.0 0.0 0.532128853655385 1.0642577073107704 0.0 0.0 0.0 0.31293297738354436 ] @test qe.recip_lattice ≈ recip_lattice @test length(qe.kpoints) == 274 kpoint2 = Vec3(0.0, 0.0049999999999999975, 0.0) @test qe.kpoints[2] ≈ kpoint2 @test length(qe.eigenvalues_up) == 274 eigenvalues_up2 = [-77.99192823029188, -77.99169805183234, -49.45736655071318] @test qe.eigenvalues_up[2][1:3] ≈ eigenvalues_up2 @test length(qe.eigenvalues_dn) == 274 eigenvalues_dn2 = [-74.843061971795, -74.84277910814951, -46.38172392618895] @test qe.eigenvalues_dn[2][1:3] ≈ eigenvalues_dn2 @test qe.fermi_energy ≈ -4.819375066024118 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
516
@testitem "isbinary file" begin using LazyArtifacts @test WannierIO.isbinary(artifact"Si2_valence/reference/binary/UNK00001.1") @test !WannierIO.isbinary(artifact"Si2_valence/UNK/UNK00001.1") end @testitem "parse_float" begin @test WannierIO.parse_float("1.0D-10") ≈ 1e-10 end @testitem "parse_bool" begin @test WannierIO.parse_bool(".true.") == true @test WannierIO.parse_bool("T") == true @test WannierIO.parse_bool("1") == true @test WannierIO.parse_bool(".false") == false end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
417
@testitem "parse_vector" begin io = IOBuffer("""1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23""") vec = WannierIO.parse_vector(io, Int, 23) @test vec == collect(1:23) close(io) # different number of elements per line io = IOBuffer("""1 2 3 4 5 6 7 8 9""") vec = WannierIO.parse_vector(io, Int, 9) @test vec == collect(1:9) close(io) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
893
@testitem "read/write bxsf" begin using LazyArtifacts bxsf = read_bxsf(artifact"Cu/reference/Cu.bxsf") @test bxsf.fermi_energy ≈ 16.8985 @test bxsf.origin ≈ [0.0, 0.0, 0.0] @test bxsf.span_vectors ≈ [0.0 2.1769775 2.1769775; 2.1769775 0.0 2.1769775; 2.304768 2.304768 0.0] @test bxsf.X ≈ range(0, 1, 31) @test bxsf.Y ≈ bxsf.X @test bxsf.Z ≈ bxsf.X @test size(bxsf.E) == (7, 31, 31, 31) E1234 = 8.26105181 @test bxsf.E[1, 2, 3, 4] ≈ E1234 tmpfile = tempname(; cleanup=true) write_bxsf(tmpfile, bxsf.fermi_energy, bxsf.origin, bxsf.span_vectors, bxsf.E) bxsf2 = read_bxsf(tmpfile) @test bxsf.fermi_energy ≈ bxsf2.fermi_energy @test bxsf.origin ≈ bxsf2.origin @test bxsf.span_vectors ≈ bxsf2.span_vectors @test bxsf.X ≈ bxsf2.X @test bxsf.Y ≈ bxsf2.Y @test bxsf.Z ≈ bxsf2.Z @test bxsf.E ≈ bxsf2.E end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1080
@testitem "read/write cube" begin using LazyArtifacts using WannierIO: Bohr cube = read_cube(artifact"Si2_valence/reference/Si2_valence_00001.cube") @test cube.origin ≈ [-7.10461, -9.47281, -9.47281]*Bohr @test cube.voxel_vectors ≈ transpose([0.0 0.39470 0.39470; 0.39470 0.00000 0.39470; 0.39470 0.39470 0.00000])*Bohr @test cube.X ≈ range(0, 19, 20) @test cube.Y ≈ cube.X @test cube.Z ≈ cube.X @test size(cube.W) == (20,20,20) @test size(cube.atom_positions) == (3,8) @test cube.atom_positions[:,1] ≈ transpose([0.00000 -5.13111 -5.13111])*Bohr tmpfile = tempname(; cleanup=true) write_cube(tmpfile, cube.atom_positions, cube.atom_numbers, cube.origin, cube.voxel_vectors, cube.W) cube2 = read_cube(tmpfile) @test cube.atom_positions ≈ cube2.atom_positions @test cube.atom_numbers ≈ cube2.atom_numbers @test cube.origin ≈ cube2.origin @test cube.voxel_vectors ≈ cube2.voxel_vectors @test cube.X ≈ cube2.X @test cube.Y ≈ cube2.Y @test cube.Z ≈ cube2.Z @test cube.W ≈ cube2.W end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1197
@testitem "read/write amn" begin using LazyArtifacts A = read_amn(artifact"Si2_valence/Si2_valence.amn") ref_A215 = ComplexF64[ 0.602605803842+0.466458612517im 0.709819979644+0.096505743176im 0.602605806825+0.466458612235im 0.271333571639+0.662974997524im -2.7652e-8+2.436e-9im -0.401551121567-0.311690904391im -1.7245e-8+1.8091e-8im -0.069156613881+0.503598920796im -0.009606395172-0.299196334599im 0.150309036867+0.2420558235im -0.009606388763-0.299196326647im -0.134471911066+0.251199304047im -0.392902559295+0.232501544615im 5.7803e-8-7.7606e-8im 0.39290241635-0.232501390525im 1.50756e-7-8.2322e-8im ] @test length(A) == 216 @test size(A[1]) == (4, 4) @test A[215] ≈ ref_A215 tmpfile = tempname(; cleanup=true) write_amn(tmpfile, A) A1 = read_amn(tmpfile) @test A ≈ A1 end @testitem "read/write amn binary" begin using LazyArtifacts A = read_amn(artifact"Si2_valence/Si2_valence.amn") A1 = read_amn(artifact"Si2_valence/reference/binary/Si2_valence.amn") @test A ≈ A1 tmpfile = tempname(; cleanup=true) write_amn(tmpfile, A; binary=true) A2 = read_amn(tmpfile) @test A ≈ A2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
679
@testitem "read/write w90 band dat" begin using LazyArtifacts band = read_w90_band(artifact"Si2_valence/reference/MDRS/Si2_valence") @test length(band.kpoints) == 511 @test length(band.kpoints[1]) == 3 @test band.kpoints[511] == [0.5, 0.0, 0.5] @test band.symm_point_indices == [1, 101, 136, 197, 303, 390, 461, 511] @test band.symm_point_labels == ["G", "X", "U", "K", "G", "L", "W", "X"] @test length(band.x) == 511 @test band.x[511] == 5.9004323 outdir = mktempdir(; cleanup=true) outprefix = joinpath(outdir, "Si2_valence") write_w90_band(outprefix; band...) band2 = read_w90_band(outprefix) @test band == band2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
5697
@testitem "read chk" begin using LazyArtifacts chk = read_chk(artifact"Si2_valence/reference/Si2_valence.chk.fmt") @test chk.n_wann == 4 @test chk.n_bands == 4 @test chk.n_kpts == 6^3 @test chk.n_bvecs == 8 @test length(chk.M) == 6^3 @test length(chk.M[1]) == 8 @test size(chk.M[1][1]) == (4, 4) ref_M12 = ComplexF64[ 0.9170561763002493-0.12073283760315105im 0.006084376539889745-0.0008009985221228121im 0.06241876168424332+0.02585491031881253im 0.006084587068619811-0.0008011618858289517im 0.006084880213061389-0.0008013918486074993im 0.9170555712700101-0.1207327246826146im 0.06241866709702579+0.025854802566432057im 0.006084809499489799-0.000800887926406555im 0.04089804920678168-0.005384004515382356im 0.040899090696488685-0.005384672958981166im 0.789621736965331+0.32707172642290266im 0.04089840122633419-0.005384316593360309im 0.006084658804818147-0.0008009811562424997im 0.0060846064084139105-0.0008007905091687038im 0.0624189360729618+0.02585459811803456im 0.9170558895434384-0.1207329088207673im ] @test chk.M[1][2] ≈ ref_M12 @test length(chk.Uml) == 216 @test size(chk.Uml[1]) == (4, 4) ref_U2 = ComplexF64[ -0.16235109810009157+0.47353334937462366im -0.3755805652160198+0.32735938468233533im -0.16235110057874652+0.4735333026272855im -0.16235112363576365+0.47353331917208363im 0.16956618931090092-0.23235535713863867im -0.7928314959724974+0.35098901875473565im 0.16956603006099888-0.23235524733459334im 0.16956607268060825-0.232355268156885im -0.3123360136432703+0.025184486826638694im -3.782746554514418e-8+1.6862208020401383e-8im -0.10111009556353681-0.6127313622218364im 0.41344612298635436+0.587546837211439im -0.6776552858574172-0.33054780770943226im -8.7307707370288e-8-6.01196661668837e-8im 0.30384128248067205+0.43437798438065095im 0.3738141419013159-0.10383009885606777im ] @test chk.Uml[2] ≈ ref_U2 @test chk.Udis == Matrix{ComplexF64}[] @test chk.checkpoint == "postwann" @test chk.dis_bands == BitVector[] @test chk.n_dis == Int64[] @test chk.exclude_bands == Int64[] @test chk.n_exclude_bands == 0 @test chk.have_disentangled == false @test chk.header == "written on 15Jun2023 at 10:39:45" win = read_win(artifact"Si2_valence/Si2_valence.win") @test chk.kgrid == win.mp_grid @test chk.kpoints == win.kpoints # make sure we read the lattice as column-major @test chk.lattice ≈ win.unit_cell_cart @test chk.recip_lattice ≈ WannierIO.get_recip_lattice(chk.lattice) ref_r = WannierIO.Vec3[ [0.6788160683908873, -0.678816205763796, -0.6788162184647731], [-0.6788164049684758, -0.6788163321814957, 0.6788162805858188], [-0.6788162635506181, 0.6788163021769287, -0.678816181780838], [0.6788160891131698, 0.6788160528597309, 0.6788162387951322], ] @test chk.r ≈ ref_r @test chk.ΩI == -1.0 ref_ω = [1.9291789239559392, 1.9291789959111603, 1.9291788335828866, 1.9291788667547383] @test chk.ω ≈ ref_ω end @testitem "read/write chk" begin using LazyArtifacts chk = read_chk(artifact"Si2_valence/reference/Si2_valence.chk.fmt") tmpfile = tempname(; cleanup=true) write_chk(tmpfile, chk) chk2 = read_chk(tmpfile) @test chk ≈ chk2 end @testitem "read/write chk binary" begin using LazyArtifacts chk = read_chk(artifact"Si2_valence/reference/Si2_valence.chk.fmt") chk1 = read_chk(artifact"Si2_valence/reference/binary/Si2_valence.chk") @test chk ≈ chk1 tmpfile = tempname(; cleanup=true) write_chk(tmpfile, chk; binary=true) chk2 = read_chk(tmpfile) @test chk ≈ chk2 end @testitem "read chk disentanglement" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk.fmt") @test chk.n_wann == 8 @test chk.n_bands == 16 @test chk.n_kpts == 9^3 @test chk.n_bvecs == 8 @test length(chk.M) == 9^3 @test length(chk.M[1]) == 8 @test size(chk.M[1][1]) == (8, 8) @test chk.dis_bands == [trues(16) for _ in 1:(9^3)] @test chk.n_dis == [16 for _ in 1:(9^3)] @test chk.have_disentangled == true end @testitem "read/write chk disentanglement" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk.fmt") tmpfile = tempname(; cleanup=true) write_chk(tmpfile, chk) chk2 = read_chk(tmpfile) @test chk ≈ chk2 end @testitem "read/write chk disentanglement binary" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk.fmt") chk1 = read_chk(artifact"Si2/reference/Si2.chk") @test chk ≈ chk1 tmpfile = tempname(; cleanup=true) write_chk(tmpfile, chk; binary=true) chk2 = read_chk(tmpfile) @test chk ≈ chk2 end @testitem "get_Udis" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk") Udis = get_Udis(chk) Udis_ref = read_amn(artifact"Si2/reference/Si2.chk_Udis.amn") @test Udis ≈ Udis_ref end @testitem "get_U" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk") U = get_U(chk) U_ref = read_amn(artifact"Si2/reference/Si2.chk_U.amn") @test U ≈ U_ref end # test chk lattice/recip_lattice are column-major @testitem "read/write chk lattice" begin using LazyArtifacts chk = read_chk(artifact"Fe_soc/reference/Fe.chk") wout = read_wout(artifact"Fe_soc/reference/Fe.wout") @test all(isapprox.(chk.lattice, wout.lattice; atol=3e-7)) @test all(isapprox.(chk.recip_lattice, wout.recip_lattice; atol=3e-7)) tmpfile = tempname(; cleanup=true) write_chk(tmpfile, chk; binary=true) chk2 = read_chk(tmpfile) @test chk ≈ chk2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
727
@testitem "read/write eig" begin using LazyArtifacts E = read_eig(artifact"Si2_valence/Si2_valence.eig") @test length(E) == 216 @test length(E[1]) == 4 ref_E2 = [-5.463742712458, 3.764318343758, 5.709948162634, 5.709948162651] @test E[2] ≈ ref_E2 tmpfile = tempname(; cleanup=true) write_eig(tmpfile, E) E1 = read_eig(tmpfile) @test E ≈ E1 end @testitem "read/write eig binary" begin using LazyArtifacts E = read_eig(artifact"Si2_valence/Si2_valence.eig") E1 = read_eig(artifact"Si2_valence/reference/binary/Si2_valence.eig") @test E ≈ E1 tmpfile = tempname(; cleanup=true) write_eig(tmpfile, E; binary=true) E2 = read_eig(tmpfile) @test E ≈ E2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1388
@testitem "read hr ws" begin using LazyArtifacts hrdat = read_w90_hrdat(artifact"Si2_valence/reference/WS/Si2_valence_hr.dat") # just some simple tests @test length(hrdat.Rvectors) == 279 @test hrdat.Rvectors[1] == [-4, 0, 2] @test length(hrdat.H) == 279 H1 = ComplexF64[ 0.000805+0.0im -0.000431-0.0im -0.000137+0.0im -0.000431+0.0im -0.000431-0.0im 0.000805+0.0im -0.000137+0.0im -0.000431-0.0im -0.000299+0.0im -0.000298+0.0im 0.000534+0.0im -0.000298-0.0im -0.000431+0.0im -0.000431+0.0im -0.000137-0.0im 0.000805-0.0im ] @test hrdat.H[1] ≈ H1 end @testitem "read hr mdrs" begin using LazyArtifacts # The two files are identical hrdat = read_w90_hrdat(artifact"Si2_valence/reference/WS/Si2_valence_hr.dat") hrdat_ws = read_w90_hrdat(artifact"Si2_valence/reference/WS/Si2_valence_hr.dat") for p in propertynames(hrdat) p == :header && continue @test hrdat_ws[p] ≈ hrdat[p] end end @testitem "write hr" begin using LazyArtifacts hrdat = read_w90_hrdat(artifact"Si2_valence/reference/WS/Si2_valence_hr.dat") tmpfile = tempname(; cleanup=true) write_w90_hrdat(tmpfile; hrdat...) hrdat2 = read_w90_hrdat(tmpfile) @test keys(hrdat) == keys(hrdat2) for (k, v) in pairs(hrdat) k == :header && continue @test hrdat2[k] == v end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1847
@testitem "read/write mmn" begin using LazyArtifacts M, kpb_k, kpb_G = read_mmn(artifact"Si2_valence/Si2_valence.mmn") @test length(M) == 216 @test length(M[1]) == 8 @test size(M[1][1]) == (4, 4) ref_M215_2 = ComplexF64[ 0.622355772788+0.779341618658im -0.015531265051+0.027176244708im -0.003508661654-0.015077859568im 0.021680417129+0.039444115733im -0.00654020394-0.043590860733im -0.716198599581+0.416420660955im -0.022335323703+0.073160414474im -0.011094081817+0.495937237686im 0.000395190251-0.001890191419im -0.473340195142+0.082043373917im 0.346341288525-0.454328488051im 0.219116863121-0.552770061648im 0.007094594145-0.002164553263im 0.15507683774+0.19419614694im 0.69754000164+0.104779280281im -0.363933244214+0.045670933434im ] @test M[215][2] ≈ ref_M215_2 ref_kpb_k_3 = [2, 4, 9, 39, 46, 33, 183, 212] @test kpb_k[3] == ref_kpb_k_3 ref_kpb_G_3 = WannierIO.Vec3[ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, -1, 0], [-1, 0, 0], [-1, -1, 0], ] @test kpb_G[3] == ref_kpb_G_3 tmpfile = tempname(; cleanup=true) write_mmn(tmpfile, M, kpb_k, kpb_G) M2, kpb_k2, kpb_G2 = read_mmn(tmpfile) @test M ≈ M2 @test kpb_k ≈ kpb_k2 @test kpb_G ≈ kpb_G2 end @testitem "read/write mmn binary" begin using LazyArtifacts M, kpb_k, kpb_G = read_mmn(artifact"Si2_valence/Si2_valence.mmn") M1, kpb_k1, kpb_G1 = read_mmn(artifact"Si2_valence/reference/binary/Si2_valence.mmn") @test M ≈ M1 @test kpb_k ≈ kpb_k1 @test kpb_G ≈ kpb_G1 tmpfile = tempname(; cleanup=true) write_mmn(tmpfile, M, kpb_k, kpb_G; binary=true) M2, kpb_k2, kpb_G2 = read_mmn(tmpfile) @test M ≈ M2 @test kpb_k ≈ kpb_k2 @test kpb_G ≈ kpb_G2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
998
@testitem "read nnkp" begin using LazyArtifacts nnkp = read_nnkp(artifact"Si2_valence/reference/Si2_valence.nnkp") WRITE_TOML = false WRITE_TOML && write_nnkp("/tmp/Si2_valence.nnkp.toml"; toml=true, nnkp...) test_data = read_nnkp(artifact"Si2_valence/reference/Si2_valence.nnkp.toml") # make their keys unordered for comparison @test pairs(nnkp) == pairs(test_data) end @testitem "read/write nnkp" begin using LazyArtifacts nnkp = read_nnkp(artifact"Si2_valence/reference/Si2_valence.nnkp") tmpfile = tempname(; cleanup=true) n_wann = 4 write_nnkp(tmpfile; nnkp..., n_wann) nnkp2 = read_nnkp(tmpfile) @test pairs(nnkp) == pairs(nnkp2) end @testitem "read/write nnkp toml" begin using LazyArtifacts nnkp = read_nnkp(artifact"Si2_valence/reference/Si2_valence.nnkp.toml") tmpfile = tempname(; cleanup=true) write_nnkp(tmpfile; toml=true, nnkp...) nnkp2 = read_nnkp(tmpfile) @test pairs(nnkp) == pairs(nnkp2) end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1535
@testitem "read r WS" begin using LazyArtifacts rdat = read_w90_rdat(artifact"Si2_valence/reference/WS/Si2_valence_r.dat") Rvectors1 = [-4, 0, 2] @test rdat.Rvectors[1] == Rvectors1 r_x_end = ComplexF64[ 0.0-0.0im -0.001846-0.0im 0.000296+0.0im 0.002093+0.0im -0.000806-0.0im -0.0-0.0im -0.000149+0.0im -0.000806+0.0im -4.4e-5-0.0im 0.00034+0.0im 0.0-0.0im -4.4e-5+0.0im 0.002093+0.0im -0.001846+0.0im 0.000296-0.0im -0.0-0.0im ] @test rdat.r_x[end] ≈ r_x_end r_y_end = ComplexF64[ -0.0+0.0im -0.002093-0.0im -0.000296-0.0im 0.001846-0.0im -0.002093+0.0im -0.0-0.0im -0.000296-0.0im 0.001846+0.0im 4.4e-5-0.0im 4.4e-5+0.0im -0.0+0.0im -0.00034+0.0im 0.000806+0.0im 0.000806+0.0im 0.000149+0.0im -0.0-0.0im ] @test rdat.r_y[end] ≈ r_y_end r_z_end = ComplexF64[ 0.0-0.0im -0.000806-0.0im -0.000149+0.0im -0.000806+0.0im -0.001846-0.0im 0.0+0.0im 0.000296-0.0im 0.002093+0.0im 0.00034+0.0im -4.4e-5+0.0im 0.0-0.0im -4.4e-5-0.0im -0.001846+0.0im 0.002093+0.0im 0.000296+0.0im -0.0+0.0im ] @test rdat.r_z[end] ≈ r_z_end end @testitem "read r MDRS" begin using LazyArtifacts # The two files are identical rdat = read_w90_rdat(artifact"Si2_valence/reference/MDRS/Si2_valence_r.dat") rdat_ws = read_w90_rdat(artifact"Si2_valence/reference/WS/Si2_valence_r.dat") for p in propertynames(rdat) p == :header && continue @test rdat_ws[p] ≈ rdat[p] end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1593
@testitem "read/write spn" begin using LazyArtifacts Sx, Sy, Sz = read_spn(artifact"Fe_soc/test/Fe.spn.fmt") ref_Sx_end = ComplexF64[ -1.045982416783206e-9+0.0im 1.8309573615290023e-9+1.8135039310434643e-9im -0.9143596596228599+0.39269798727353im 2.2580234889560057e-5+0.00012322780868176796im 1.8309573615290023e-9-1.8135039310434643e-9im 5.005565130696888e-9+0.0im -6.863936845424341e-5+0.00010788172874406267im 0.6996261651438792+0.7076597058385461im -0.9143596596228599-0.39269798727353im -6.863936845424341e-5-0.00010788172874406267im 8.544459741957264e-9+0.0im -1.1837183322351442e-8+7.277568287854686e-10im 2.2580234889560057e-5-0.00012322780868176796im 0.6996261651438792-0.7076597058385461im -1.1837183322351442e-8-7.277568287854686e-10im -1.3997437777976164e-8+0.0im ] @test length(Sx) == length(Sy) == length(Sz) == 8 @test size(Sx[1]) == size(Sy[1]) == size(Sz[1]) == (4, 4) @test Sx[end] ≈ ref_Sx_end tmpfile = tempname(; cleanup=true) write_spn(tmpfile, Sx, Sy, Sz; binary=false) Sx1, Sy1, Sz1 = read_spn(tmpfile) @test Sx ≈ Sx1 @test Sy ≈ Sy1 @test Sz ≈ Sz1 end @testitem "read/write spn binary" begin using LazyArtifacts Sx, Sy, Sz = read_spn(artifact"Fe_soc/test/Fe.spn") Sx1, Sy1, Sz1 = read_spn(artifact"Fe_soc/test/Fe.spn.fmt") @test Sx ≈ Sx1 @test Sy ≈ Sy1 @test Sz ≈ Sz1 tmpfile = tempname(; cleanup=true) write_spn(tmpfile, Sx, Sy, Sz; binary=true) Sx2, Sy2, Sz2 = read_spn(tmpfile) @test Sx ≈ Sx2 @test Sy ≈ Sy2 @test Sz ≈ Sz2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3897
@testitem "read tb WS" begin using LazyArtifacts tbdat = read_w90_tbdat(artifact"Si2_valence/reference/WS/Si2_valence_tb.dat") @test length(tbdat.Rvectors) == 279 @test tbdat.Rvectors[1] == [-4, 0, 2] @test length(tbdat.H) == 279 H1 = ComplexF64[ 0.00080451304+1.6092791e-9im -0.00043090632-8.9535509e-9im -0.00013727432+1.7830477e-10im -0.00043090075+2.7695627e-9im -0.0004309027-2.2505901e-9im 0.00080451732+3.968764e-9im -0.00013726424+5.6728313e-9im -0.00043091084-2.4100158e-9im -0.00029850062+3.3998938e-9im -0.00029849652+1.2885406e-9im 0.00053380915+6.5106419e-10im -0.00029849523-4.1141943e-9im -0.00043089878+6.7332791e-9im -0.00043091377+5.6168704e-9im -0.0001372618-4.1114441e-9im 0.00080451507-6.2301744e-9im ] @test tbdat.H[1] ≈ H1 @test length(tbdat.Rdegens) == 279 @test tbdat.Rdegens[1] == 3 @test tbdat.lattice == [0.0 2.715265 2.715265; 2.715265 0.0 2.715265; 2.715265 2.715265 0.0] @test length(tbdat.r_x) == length(tbdat.r_y) == length(tbdat.r_z) == 279 r_x1 = ComplexF64[ 3.6338163e-8+5.0525602e-8im -4.0150663e-5+1.506446e-8im 9.0607115e-5-5.4813038e-8im -0.0017405343-1.1882662e-8im 0.0011077989+2.2693247e-8im -6.4595459e-9+5.4150924e-9im 0.00025422758-1.6273951e-8im 0.0011078169+2.8407141e-8im 0.00012821382-2.969072e-8im 0.00013798637-2.1224108e-9im 5.4586044e-8+2.3435702e-8im 0.00012827449+8.9856419e-9im -0.0017405579-4.523964e-8im -4.007513e-5+3.8697593e-8im 9.0627952e-5+5.942338e-8im -1.6888038e-8+2.5373747e-9im ] r_y2 = ComplexF64[ -2.5598094e-10-3.8026624e-9im 0.00074239939-1.8853816e-8im -0.00017865222+3.344151e-8im 0.00017582479+1.5301678e-8im 0.00023456283+1.0709899e-8im -3.2666715e-8+4.7958915e-9im 0.00021987434-1.973943e-9im -1.3153397e-5+9.7076299e-9im 1.319145e-5-1.4937437e-8im -0.00021977894+3.1806597e-9im -3.5269004e-8-1.3967952e-8im -0.00023454332+3.0129073e-8im -0.00017582461+1.1143559e-8im 0.00017861969+4.0119904e-8im -0.00074232978-1.8613896e-8im -2.2552721e-8-4.7774167e-9im ] r_z3 = ComplexF64[ -2.7538102e-8-2.5754529e-9im 0.00017582603-4.8125766e-8im 0.00074233622-6.6380593e-9im -0.00017862626+1.7228737e-8im -0.00017585023-1.101898e-8im 6.7641871e-10-2.4185959e-8im 0.00017860646+3.7820915e-8im -0.00074235898-3.711759e-8im 0.00023460039-2.0712049e-8im -1.318695e-5-4.598068e-9im 9.1295798e-9+4.1513854e-11im 0.00021978738+2.8018558e-8im 1.3196588e-5+3.6553635e-9im -0.00023460902+3.2222708e-8im -0.00021979792-1.031378e-8im -3.1967074e-8-2.3895402e-8im ] @test tbdat.r_x[1] ≈ r_x1 @test tbdat.r_y[2] ≈ r_y2 @test tbdat.r_z[3] ≈ r_z3 end @testitem "read tb MDRS" begin using LazyArtifacts # The two files are identical tbdat = read_w90_tbdat(artifact"Si2_valence/reference/MDRS/Si2_valence_tb.dat") tbdat_ws = read_w90_tbdat(artifact"Si2_valence/reference/WS/Si2_valence_tb.dat") for p in propertynames(tbdat) p == :header && continue @test tbdat_ws[p] ≈ tbdat[p] end end @testitem "write tb WS" begin using LazyArtifacts tbdat = read_w90_tbdat(artifact"Si2_valence/reference/WS/Si2_valence_tb.dat") tmpfile = tempname(; cleanup=true) write_w90_tbdat(tmpfile; tbdat...) tbdat2 = read_w90_tbdat(tmpfile) @test keys(tbdat) == keys(tbdat2) for (k, v) in pairs(tbdat) k == :header && continue @test tbdat2[k] == v end end @testitem "write tb MDRS" begin using LazyArtifacts tbdat = read_w90_tbdat(artifact"Si2_valence/reference/MDRS/Si2_valence_tb.dat") tmpfile = tempname(; cleanup=true) write_w90_tbdat(tmpfile; tbdat...) tbdat2 = read_w90_tbdat(tmpfile) @test keys(tbdat) == keys(tbdat2) for (k, v) in pairs(tbdat) k == :header && continue @test tbdat2[k] == v end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1331
@testitem "read/write uHu" begin using LazyArtifacts uHu = read_uHu(artifact"Fe_soc/test/Fe.uHu.fmt") ref_uHu_end = ComplexF64[ 22.832600673-6.6071280391e-16im 0.00020289010265+0.00033152537834im 0.00015694794962+0.00019375661933im -0.011251642778-0.09153385574im 0.00020289010265-0.00033152537835im 26.088879829-6.3490879221e-16im -1.0614925817+0.14032143069im -0.0063702801404-0.0029107828891im 0.00015694794962-0.00019375661933im -1.0614925817-0.14032143069im 24.575166569-1.0842021725e-19im -0.0036277162277-0.0022592847918im -0.011251642778+0.09153385574im -0.0063702801404+0.0029107828891im -0.0036277162277+0.0022592847918im 28.464375953-1.1301723446e-15im ] @test length(uHu) == 8 @test size(uHu[1]) == (12, 12) @test size(uHu[1][1, 1]) == (4, 4) @test uHu[end][end, end][1:4, 1:4] ≈ ref_uHu_end tmpfile = tempname(; cleanup=true) write_uHu(tmpfile, uHu; binary=false) uHu1 = read_uHu(tmpfile) @test uHu ≈ uHu1 end @testitem "read/write uHu binary" begin using LazyArtifacts uHu = read_uHu(artifact"Fe_soc/test/Fe.uHu") uHu1 = read_uHu(artifact"Fe_soc/test/Fe.uHu.fmt") @test uHu ≈ uHu1 tmpfile = tempname(; cleanup=true) write_uHu(tmpfile, uHu; binary=true) uHu2 = read_uHu(tmpfile) @test uHu ≈ uHu2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1080
@testitem "read/write u.mat" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk.fmt") Udismat = WannierIO.read_u_mat(artifact"Si2/reference/Si2_u.mat") @assert Udismat.U ≈ chk.Uml @assert Udismat.kpoints ≈ chk.kpoints tmpfile = tempname(; cleanup=true) WannierIO.write_u_mat(tmpfile, chk.Uml, chk.kpoints) Udismat2 = WannierIO.read_u_mat(tmpfile) @assert Udismat2.U ≈ chk.Uml @assert Udismat2.kpoints ≈ chk.kpoints end @testitem "read/write u_dis.mat" begin using LazyArtifacts chk = read_chk(artifact"Si2/reference/Si2.chk.fmt") Udismat = WannierIO.read_u_mat(artifact"Si2/reference/Si2_u_dis.mat") # do not use `get_Udis` since it sorts the band indices, here we want to # compare the raw data @assert Udismat.U ≈ chk.Udis @assert Udismat.kpoints ≈ chk.kpoints tmpfile = tempname(; cleanup=true) WannierIO.write_u_mat(tmpfile, chk.Udis, chk.kpoints) Udismat2 = WannierIO.read_u_mat(tmpfile) @assert Udismat2.U ≈ chk.Udis @assert Udismat2.kpoints ≈ chk.kpoints end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
912
@testitem "read/write unk" begin using LazyArtifacts ik, ψ = read_unk(artifact"Si2_valence/UNK/UNK00001.1") @test ik == 1 @test size(ψ) == (13, 13, 13, 4, 1) ref_ψ234 = ComplexF64[ -0.82739368086-1.2362766865im; -1.1707908501+0.11631095198im; -0.25943725378+2.3452525646im; 1.090429898-1.8525861633im;; ] @test ψ[2, 3, 4, :, :] == ref_ψ234 tmpfile = tempname(; cleanup=true) write_unk(tmpfile, ik, ψ) ik2, ψ2 = read_unk(tmpfile) @test ik ≈ ik2 @test ψ ≈ ψ2 end @testitem "read/write unk binary" begin using LazyArtifacts ik, ψ = read_unk(artifact"Si2_valence/UNK/UNK00001.1") ik1, ψ1 = read_unk(artifact"Si2_valence/reference/binary/UNK00001.1") @test ik == ik1 @test ψ ≈ ψ1 tmpfile = tempname(; cleanup=true) write_unk(tmpfile, ik, ψ; binary=true) ik2, ψ2 = read_unk(tmpfile) @test ik == ik2 @test ψ ≈ ψ2 end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
1998
@testitem "read win" begin using LazyArtifacts win = read_win(artifact"Si2_valence/Si2_valence.win") # how to generate reference data: WRITE_TOML = false WRITE_TOML && write_win("/tmp/Si2_valence.win.toml"; toml=true, win...) test_data = read_win(artifact"Si2_valence/reference/Si2_valence.win.toml") @test win == test_data end @testitem "read/write win" begin using LazyArtifacts win = read_win(artifact"Si2_valence/Si2_valence.win") tmpfile = tempname(; cleanup=true) write_win(tmpfile; win...) win2 = read_win(tmpfile) @test win == win2 end @testitem "read/write win toml" begin using LazyArtifacts toml_path = artifact"Si2_valence/reference/Si2_valence.win.toml" win = read_win(toml_path) tmpfile = tempname(; cleanup=true) write_win(tmpfile; win...) win2 = read_win(tmpfile) @test win == win2 end @testitem "read win: special cases" begin windir = joinpath(@__DIR__, "win_testfiles") for win in readdir(windir) if endswith(win, ".win") # If it doesn't throw exceptions, it's good enough @test read_win(joinpath(windir, win)) isa NamedTuple end end end @testitem "read win: unknown blocks" begin windir = joinpath(@__DIR__, "win_testfiles") win = read_win(joinpath(windir, "unknown_blocks.win")) @test win.unknown_a == ["A1", "A2"] @test win.unknown_b == ["B1 B2"] end @testitem "read win: atoms_cart bohr" begin windir = joinpath(@__DIR__, "win_testfiles") ref_win = read_win(joinpath(windir, "unknown_blocks.win")) win = read_win(joinpath(windir, "atoms_cart_bohr.win")) for ((atom1, pos1), (atom2, pos2)) in zip(win.atoms_frac, ref_win.atoms_frac) @test atom1 == atom2 @test pos1 ≈ pos2 end end @testitem "read win: exclude_bands" begin windir = joinpath(@__DIR__, "win_testfiles") win = read_win(joinpath(windir, "exclude_bands.win")) @test win.exclude_bands == [1, 3, 4, 5, 6] end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
3618
@testitem "read wout" begin using WannierIO: Vec3 using LazyArtifacts wout = read_wout(artifact"Si2_valence/reference/Si2_valence.wout") ref_lattice = [ 0.000000 2.715265 2.715265 2.715265 0.000000 2.715265 2.715265 2.715265 0.000000 ] ref_atom_labels = ["Si", "Si"] ref_atom_positions = Vec3[[0.00000, 0.00000, 0.00000], [0.25000, 0.25000, 0.25000]] ref_centers = Vec3[ [0.678816, -0.678816, -0.678816], [-0.678816, -0.678816, 0.678816], [-0.678816, 0.678816, -0.678816], [0.678816, 0.678816, 0.678816], ] ref_spreads = [1.92917892, 1.92917900, 1.92917883, 1.92917887] @test wout.lattice ≈ ref_lattice @test wout.atom_labels == ref_atom_labels @test wout.atom_positions ≈ ref_atom_positions @test wout.centers ≈ ref_centers @test wout.spreads ≈ ref_spreads ref_ΩI = 7.153329184 ref_ΩD = 0.000000000 ref_ΩOD = 0.563386215 ref_Ωtotal = 7.716715399 @test wout.ΩI ≈ ref_ΩI @test wout.ΩD ≈ ref_ΩD @test wout.ΩOD ≈ ref_ΩOD @test wout.Ωtotal ≈ ref_Ωtotal end # test for non-symmetric lattice, with disentanglement @testitem "read wout disentanglement" begin using LazyArtifacts wout = read_wout(artifact"Fe_soc/reference/Fe.wout") ref_lattice = [ 1.434996 -1.434996 -1.434996 1.434996 1.434996 -1.434996 1.434996 1.434996 1.434996 ] ref_recip_lattice = [ 2.189269 -2.189269 0.0 0.0 2.189269 -2.189269 2.189269 0.0 2.189269 ] ref_atom_labels = ["Fe"] ref_atom_positions = [[0.00000, 0.00000, 0.00000]] ref_centers = [ [-0.001227, 0.761822, -1.210363], [-0.001132, 0.761153, 1.211403], [1.43403, 0.674118, -0.223106], [-1.436981, -0.000412, 0.95882], [-0.002088, -1.435412, 0.479468], [-0.001066, -0.761483, -1.210896], [0.00033, -0.000261, 0.000357], [8.5e-5, -0.019916, -0.01021], [-0.000258, -0.000766, 0.000475], [6.7e-5, -0.00072, -0.001011], [8.2e-5, 0.020905, 0.010305], [4.5e-5, 0.019902, -0.010005], [-0.000815, 0.00031, -0.000449], [0.000117, -0.020922, 0.010472], [-0.000259, 0.000986, 0.001254], [5.5e-5, 0.000493, -0.00047], ] ref_spreads = [ 1.11313978, 1.11389149, 1.11392684, 1.14257541, 1.14112348, 1.11318311, 0.40981481, 0.44675647, 0.48652472, 0.44072505, 0.45362382, 0.44649383, 0.4400766, 0.45389206, 0.48648695, 0.44062982, ] @test wout.lattice ≈ ref_lattice @test wout.recip_lattice ≈ ref_recip_lattice @test wout.atom_labels == ref_atom_labels @test wout.atom_positions ≈ ref_atom_positions @test wout.centers ≈ ref_centers @test wout.spreads ≈ ref_spreads ref_ΩI = 10.219635550 ref_ΩD = 0.055212384 ref_ΩOD = 0.968016319 ref_Ωtotal = 11.242864254 @test wout.ΩI ≈ ref_ΩI @test wout.ΩD ≈ ref_ΩD @test wout.ΩOD ≈ ref_ΩOD @test wout.Ωtotal ≈ ref_Ωtotal end @testitem "read wout fortran stars" begin woutdir = joinpath(@__DIR__, "wout_testfiles") wout = read_wout(joinpath(woutdir, "stars.wout")) ref_centers = [ [-0.866253, 1.973841, 1.973841], [-0.866253, 0.866253, 0.866253], [-99.973841, 1.973841, 0.866253], [NaN, 0.866253, 1.973841], ] @test wout.centers[1:3] ≈ ref_centers[1:3] @test isnan(wout.centers[end][1]) @test wout.centers[end][2:end] ≈ ref_centers[end][2:end] end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
code
2024
@testitem "read wsvec WS" begin using LazyArtifacts wsvec = read_w90_wsvec(artifact"Si2_valence/reference/WS/Si2_valence_wsvec.dat") @assert wsvec.mdrs == false @test length(wsvec.Rvectors) == 279 @test wsvec.Rvectors[1] == [-4, 0, 2] @test wsvec.n_wann == 4 end @testitem "read wsvec MDRS" begin using WannierIO: Vec3 using LazyArtifacts wsvec = read_w90_wsvec(artifact"Si2_valence/reference/MDRS/Si2_valence_wsvec.dat") @assert wsvec.mdrs == true @test length(wsvec.Rvectors) == 279 @test wsvec.Rvectors[1] == [-4, 0, 2] @test length(wsvec.Tvectors) == 279 @test wsvec.Tvectors[1][1, 1] == Vector{Vec3}([[0, 0, 0], [6, 0, -6], [6, 0, 0]]) @test length(wsvec.Tdegens) == 279 @test wsvec.Tdegens[1] == [3 1 1 1; 1 3 1 1; 2 2 3 2; 1 1 1 3] @test wsvec.n_wann == 4 end @testitem "write wsvec WS" begin using LazyArtifacts wsvec = read_w90_wsvec(artifact"Si2_valence/reference/WS/Si2_valence_wsvec.dat") tmpfile = tempname(; cleanup=true) write_w90_wsvec(tmpfile; wsvec.Rvectors, wsvec.n_wann) wsvec2 = read_w90_wsvec(tmpfile) @test keys(wsvec) == keys(wsvec2) for (k, v) in pairs(wsvec) k == :header && continue @test wsvec2[k] == v end end @testitem "write wsvec MDRS" begin using WannierIO: Vec3 using LazyArtifacts wsvec = read_w90_wsvec(artifact"Si2_valence/reference/MDRS/Si2_valence_wsvec.dat") tmpfile = tempname(; cleanup=true) write_w90_wsvec(tmpfile; wsvec.Rvectors, wsvec.Tvectors, wsvec.Tdegens) wsvec2 = read_w90_wsvec(tmpfile) @test keys(wsvec) == keys(wsvec2) for (k, v) in pairs(wsvec) k == :header && continue @test wsvec2[k] == v end # n_wann is optional write_w90_wsvec(tmpfile; wsvec.Rvectors, wsvec.Tvectors, wsvec.Tdegens, wsvec.n_wann) wsvec2 = read_w90_wsvec(tmpfile) @test keys(wsvec) == keys(wsvec2) for (k, v) in pairs(wsvec) k == :header && continue @test wsvec2[k] == v end end
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
1078
# WannierIO.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://io.wannierjl.org/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://io.wannierjl.org/dev) [![CI](https://github.com/qiaojunfeng/WannierIO.jl/workflows/CI/badge.svg)](https://github.com/qiaojunfeng/WannierIO.jl/actions?query=workflow%3ACI) [![codecov](https://codecov.io/gh/qiaojunfeng/WannierIO.jl/branch/main/graph/badge.svg?token=F7Tl05iVW9)](https://codecov.io/gh/qiaojunfeng/WannierIO.jl) A Julia package for reading/writing [Wannier90](https://github.com/wannier-developers/wannier90) file formats. The package is designed to be minimalistic to allow easy reuse in other packages. ## Quick examples ```julia using WannierIO A = read_amn("silicon.amn") write_amn("silicon_2.amn", A) chk = read_chk("silicon.chk") write_chk("silicon_2.chk", chk; binary=true) ``` ## Related packages - [Wannier.jl](https://github.com/qiaojunfeng/Wannier.jl): Wannierization and Wannier interpolation. The IO part of `Wannier.jl` was isolated and moved into this package.
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
157
# Documentation ## Writing The documentation is written in Markdown, then processed by `Documenter.jl`. ## Build See [`make_serve.sh`](./make_serve.sh).
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
933
# WannierIO.jl A Julia package for reading/writing [Wannier90](https://github.com/wannier-developers/wannier90) files. The package is designed to be minimalistic to allow easy reuse in other packages. This package originates from the IO part of the [Wannier.jl](https://github.com/qiaojunfeng/Wannier.jl) package. ## Wannier90 files Input files: - `amn` - `mmn` - `eig` - `chk` - `UNK` - `spn` Also support parsing both plain text and binary formats (in Fortran language, called `formatted` and `unformatted` IO, respectively) for some files, e.g., `chk` and `UNK`. Output files: - `*_band.dat` - `*_tb.dat` - `*_wsvec.dat` - `*_hr.dat` - `*_r.dat` - `xsf` - `cube` - ... ## Quantum ESPRESSO files To support comparing Wannier-interpolated band structures with density function theory (DFT) bands, there are also some functions to parse Quantum ESPRESSO (QE) output files: - `xml` - `bands.dat` generated by QE `bands.x`
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
4985
# Conventions ## Units In most cases, the units of the function arguments and returned values are in angstrom for lattice, and fractional (w.r.t. lattice) for atomic positions, etc. ## Variables Here are some variable conventions used throughout the code and documentation. ### Names - `U`: unitary transformation matrices - `A`: to differentiate between `U`, some times we use `A` specifically for the initial projection matrix, i.e., `amn` of Wannier90 - `M`: overlap matrices between neighboring kpoints, i.e., `mmn` of Wannier90 ### Dimensions Prefixed by `n_`, indicating this is an integer specifying the length of some quantities; then followed by a short acronym of the quantity, to avoid typing long names repeatedly. - `n_bands`: number of bands - `n_wann`: number of WFs - `n_kpts`: number of kpoints - `n_bvecs`: number of b-vectors - `n_atoms`: number of atoms ### Indices Usually, the returned quantities are `Vector`s of some types (`Matrix{Float64}`, `Vector{Float64}`, etc), and the indices follow the order of 1. kpoints 2. b-vectors (if needed) 3. bands 4. Wannier functions For instance, the energy eigenvalues `eigenvalues` is a length-`n_kpts` vector, with each element a length-`n_bands` vector of floats, i.e., `eigenvalues[ik][ib]` is the `ib`-th eigenvalue at `ik`-th kpoint. Here are some examples of indexing the vectors: - `eigenvalues[ik][m]` for energy eigenvalues ``\varepsilon_{m \mathbf{k}}`` - `U[ik][m, n]` for the gauge matrix ``U_{mn \mathbf{k}}`` - `M[ik][ib][m, n]` for the overlap matrix ``M_{mn \mathbf{k}, \mathbf{k} + \mathbf{b}}`` where - `ik`: index of kpoints - `ib`: index of b-vectors - `m`: index of bands - `n`: index of Wannier functions ## Functions In most cases, there are some multiple dispatches for the same function. For instance, there are three functions for reading the `chk` file: ```julia read_chk(filename::AbstractString) read_chk(filename::AbstractString, ::FortranText) read_chk(filename::AbstractString, ::FortranBinary) ``` Why do we need several functions for reading the same format? The reasons are: - Wannier90 is a Fortran code that accepts both Fortran text format and binary format (or called Fortran formatted and unformatted file, respectively). To avoid introducing lots of different function names for reading text or binary files, we use multiple dispatch to distinguish them: the type of the 2nd argument (`FortranText` or `FortranBinary`) is used to distinguish the file type we want to read. - However, asking the user to manually specify the file format is tedious, therefore, we provide a high-level user-friendly function (the 1st one), which - automatically detects the file format and calls the corresponding low-level (2nd or 3rd) function - prints some information of key quantities of the file, e.g., number of kpoints, number of Wannier functions, etc., to give user a hint of what have been parsed - hides some irrelevant return values, e.g., the header (the 1st line) of the file, since it has been printed in the stdout - The low-level functions parse everything in the file, while the high-level function aims at user ergonomics. Thus, - In most cases using the high-level function is enough, e.g., ```julia-repl julia> using WannierIO julia> A = read_amn("si2.amn") ┌ Info: Reading amn file │ filename = "si2.amn" │ header = "Created on 9Sep2022 at 16:41: 5" │ n_kpts = 8 │ n_bands = 4 └ n_wann = 4 8-element Vector{Matrix{ComplexF64}}: [...] ``` - Use the low-level functions if you - want to get the header of the file (or quantities not returned by high-level function) - do not want stdout to be "polluted" ```julia-repl julia> using WannierIO julia> A, header = read_amn("si2.amn", WannierIO.FortranText()) julia> typeof(A) Vector{Matrix{ComplexF64}} (alias for Array{Array{Complex{Float64}, 2}, 1}) julia> header "Created on 9Sep2022 at 16:41: 5" ``` Note that usually the high-level function directly returns the quantities, e.g., a single `A` to avoid the user unpacking return values; however, often the low-level functions return a `NamedTuple` of all the quantities, for the sake of clarity. ```julia-repl julia> amn = read_amn("si2.amn", WannierIO.FortranText()) julia> typeof(amn) NamedTuple{(:A, :header), Tuple{Vector{Matrix{ComplexF64}}, SubString{String}}} ``` Of course, when using low-level functions you can also directly access the quantity without unpacking by ```julia-repl julia> A = read_amn("si2.amn", WannierIO.FortranText()).A ``` When writing files, the user can specify whether to write in text or binary by a keyword argument `binary` of the high-level function ```julia-repl julia> write_amn("si2.amn", A; binary=true) ``` The `binary` keyword argument avoids the user specifying the file type when calling the low-level functions, e.g., ```julia-repl julia> write_amn("si2.amn", A, WannierIO.FortranBinaryStream()) ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
125
# EPW files ```@meta CurrentModule = WannierIO ``` ```@autodocs Modules = [WannierIO] Pages = [ "misc/epw.jl", ] ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
72
# Index of all functions and types ```@index Modules = [WannierIO] ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
154
# Quantum ESPRESSO files ```@meta CurrentModule = WannierIO ``` ```@autodocs Modules = [WannierIO] Pages = [ "qe/band.jl", "qe/xml.jl", ] ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
584
# Utility Some simple convenience functions for development. ```@meta CurrentModule = WannierIO ``` ## Fortran related ```@autodocs Modules = [WannierIO] Pages = ["util/fortran.jl"] ``` ## Lattice ```@autodocs Modules = [WannierIO] Pages = ["util/lattice.jl"] ``` ## Types ```@autodocs Modules = [WannierIO] Pages = ["common/type.jl"] ``` ## Constants ```@autodocs Modules = [WannierIO] Pages = ["common/const.jl"] ``` ## Misc ```@autodocs Modules = [WannierIO] Pages = ["util/header.jl", "util/toml.jl", "util/parser.jl", "util/compare.jl", "WannierIO.jl"] ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
198
# Volumetric data files ```@meta CurrentModule = WannierIO ``` ## Read/write ```@autodocs Modules = [WannierIO] Pages = [ "volume/xsf.jl", "volume/bxsf.jl", "volume/cube.jl", ] ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.2.6
3675a287430806f9b48d341eb0abf44e3074d1fa
docs
987
# Wannier90 files ```@meta CurrentModule = WannierIO ``` !!! warning Some of the functions, e.g. [`read_amn`](@ref), [`write_amn`](@ref), [`read_chk`](@ref), [`write_chk`](@ref), etc., support reading/writing Fortran unformatted files. However, the Fortran unformatted files are machine and compiler dependent. Therefore, it is not guaranteed that these functions work for all the cases. Currently, the functions are tested on the following platforms: - Linux + gfortran 11.2 ## Public API ```@autodocs Modules = [WannierIO] Private = false Pages = map(file -> joinpath("w90", file), readdir("../src/w90")) ``` ## Private API These are some lower-level types/functions that are (probably) less used, thus not exported. Of course, you can still use them by prefixing `WannierIO.`, e.g., `WannierIO.read_w90_band_dat(filename)`. ```@autodocs Modules = [WannierIO] Public = false Pages = map(file -> joinpath("w90", file), readdir("../src/w90")) ```
WannierIO
https://github.com/qiaojunfeng/WannierIO.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3036
module PFFRGSolver # load external modules using LinearAlgebra using StaticArrays using HDF5 using QuadGK using Cubature using LoopVectorization using Dates using Test using TimerOutputs # load source code include("Lattice/Lattice.jl") include("Frequency/Frequency.jl") include("Action/Action.jl") include("Flow/Flow.jl") include("Observable/Observable.jl") include("Launcher/Launcher.jl") include("Timers/Timers.jl") # export types, structs and functions export # from Lattice/unitcell.jl Unitcell, lattice_avail, get_unitcell, # from Lattice/site.jl Site, get_metric, get_nbs, # from Lattice/bond.jl Bond, # from Lattice/build.jl Lattice, get_lattice, model_avail, init_model!, get_site, get_bond, # from Lattice/reduced.jl Reduced_lattice, get_trafos_orig, get_trafos_uc, get_reduced_lattice, # from Lattice/disk.jl read_lattice, # from Lattice/test.jl test_lattice, # from Lattice/timers.jl get_lattice_timers, # from Frequency/param.jl Param, get_param, # from Frequency/mesh.jl Mesh, get_mesh, # from Frequency/buffer.jl Buffer, # from Frequency/test.jl test_frequencies, # from Frequency/timers.jl get_frequency_timers, # from Action/channel.jl Channel, get_abs_max, # from Action/vertex.jl Vertex, # from Action/Action.jl Action, Action_su2, Action_u1_dm, read_checkpoint, # from Action/disk.jl read_self, # from Action/test.jl test_action, # from Action/timers.jl get_action_timers, # from Flow/test.jl test_flow, # from Flow/timers.jl get_flow_timers, # from Observable/momentum.jl get_momenta, get_path, compute_structure_factor, # from Observable/disk.jl read_χ_labels, read_χ, read_χ_all, read_χ_flow_at_site, compute_structure_factor_flow!, compute_structure_factor_flow_all!, read_structure_factor_labels, read_structure_factor, read_structure_factor_all, read_structure_factor_flow_at_momentum, read_reference_momentum, # from Observable/fluctuations.jl compute_fluctuations, compute_fluctuations_flow, # from Observable/test.jl test_observable, # from Observable/timers.jl get_observable_timers, # from Launcher/Launcher.jl save_launcher!, make_job!, make_repository!, collect_repository!, launch!, # from Timers/Timers.jl get_PFFRG_timers end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
16138
# load code include("channel.jl") include("vertex.jl") abstract type Action end # get interpolated / extrapolated self energy for general action function get_Σ( w :: Float64, m :: Mesh, a :: Action ) :: Float64 # init value val = 0.0 # check if in bounds, otherwise extrapolate as 1 / w if abs(w) <= m.σ[end] p = get_param(abs(w), m.σ) val = sign(w) * (p.lower_weight * a.Σ[p.lower_index] + p.upper_weight * a.Σ[p.upper_index]) else val = m.σ[end] * a.Σ[end] / w end return val end # get interpolated vertex component for general action function get_Γ_comp( comp :: Int64, site :: Int64, bs :: Buffer, bt :: Buffer, bu :: Buffer, r :: Reduced_lattice, a :: Action, apply_flags :: Function ; ch_s :: Bool = true, ch_t :: Bool = true, ch_u :: Bool = true ) :: Float64 # init with bare value val = a.Γ[comp].bare[site] # add s channel if ch_s # check for site exchange site_s = site if bs.exchange_flag site_s = r.exchange[site_s] end # apply other flags comp_s = comp sgn_s, comp_s = apply_flags(bs, comp_s) # check for mapping to u channel and interpolate if bs.map_flag val += sgn_s * get_vertex(site_s, bs, a.Γ[comp_s], 3) else val += sgn_s * get_vertex(site_s, bs, a.Γ[comp_s], 1) end end # add t channel if ch_t # check for site exchange site_t = site if bt.exchange_flag site_t = r.exchange[site_t] end # apply other flags comp_t = comp sgn_t, comp_t = apply_flags(bt, comp_t) # interpolate val += sgn_t * get_vertex(site_t, bt, a.Γ[comp_t], 2) end # add u channel if ch_u # check for site exchange site_u = site if bu.exchange_flag site_u = r.exchange[site_u] end # apply other flags comp_u = comp sgn_u, comp_u = apply_flags(bu, comp_u) # check for mapping to s channel and interpolate if bu.map_flag val += sgn_u * get_vertex(site_u, bu, a.Γ[comp_u], 1) else val += sgn_u * get_vertex(site_u, bu, a.Γ[comp_u], 3) end end return val end # get interpolated vertex component on all lattice sites function get_Γ_comp_avx!( comp :: Int64, r :: Reduced_lattice, bs :: Buffer, bt :: Buffer, bu :: Buffer, a :: Action, apply_flags :: Function, temp :: SubArray{Float64, 1, Array{Float64, 3}} ; ch_s :: Bool = true, ch_t :: Bool = true, ch_u :: Bool = true ) :: Nothing # init with bare value @turbo temp .= a.Γ[comp].bare # add s channel if ch_s # apply flags comp_s = comp sgn_s, comp_s = apply_flags(bs, comp_s) # check for mapping to u channel and interpolate if bs.map_flag get_vertex_avx!(r, bs, a.Γ[comp_s], 3, temp, bs.exchange_flag, sgn_s) else get_vertex_avx!(r, bs, a.Γ[comp_s], 1, temp, bs.exchange_flag, sgn_s) end end # add t channel if ch_t # apply flags comp_t = comp sgn_t, comp_t = apply_flags(bt, comp_t) # interpolate get_vertex_avx!(r, bt, a.Γ[comp_t], 2, temp, bt.exchange_flag, sgn_t) end # add u channel if ch_u # apply flags comp_u = comp sgn_u, comp_u = apply_flags(bu, comp_u) # check for mapping to s channel and interpolate if bu.map_flag get_vertex_avx!(r, bu, a.Γ[comp_u], 1, temp, bu.exchange_flag, sgn_u) else get_vertex_avx!(r, bu, a.Γ[comp_u], 3, temp, bu.exchange_flag, sgn_u) end end return nothing end # load saving and reading for channels and vertices include("disk.jl") # load specialized code for different symmetries include("action_lib/action_su2.jl") ; include("checkpoint_lib/checkpoint_su2.jl") include("action_lib/action_u1_dm.jl"); include("checkpoint_lib/checkpoint_u1_dm.jl") # interface function to replace action with another action (except for bare) function replace_with!( a1 :: Action, a2 :: Action ) :: Nothing # replace self energy @turbo a1.Σ .= a2.Σ # replace vertices for i in eachindex(a1.Γ) replace_with!(a1.Γ[i], a2.Γ[i]) end return nothing end # interface function to replace action with another action only on the vertex level (except for bare) function replace_with_Γ!( a1 :: Action, a2 :: Action ) :: Nothing # replace vertices for i in eachindex(a1.Γ) replace_with!(a1.Γ[i], a2.Γ[i]) end return nothing end # interface function to multiply action with factor (except for bare) function mult_with!( a :: Action, fac :: Float64 ) :: Nothing # multiply self energy @turbo a.Σ .*= fac # multiply vertices for i in eachindex(a.Γ) mult_with!(a.Γ[i], fac) end return nothing end # interface function to multiply action with factor only on the vertex level (except for bare) function mult_with_Γ!( a :: Action, fac :: Float64 ) :: Nothing # multiply vertices for i in eachindex(a.Γ) mult_with!(a.Γ[i], fac) end return nothing end # interface function to reset an action to zero (except for bare) function reset!( a :: Action ) :: Nothing mult_with!(a, 0.0) return nothing end # interface function to reset an action to zero only on the vertex level (except for bare) function reset_Γ!( a :: Action ) :: Nothing mult_with_Γ!(a, 0.0) return nothing end # interface function to multiply action with some factor and add to other action (except for bare) function mult_with_add_to!( a2 :: Action, fac :: Float64, a1 :: Action ) :: Nothing # multiply add for the self energy @turbo a1.Σ .+= fac .* a2.Σ # multiply add for the vertices for i in eachindex(a1.Γ) mult_with_add_to!(a2.Γ[i], fac, a1.Γ[i]) end return nothing end # interface function to multiply action with some factor and add to other action only on the vertex level (except for bare) function mult_with_add_to_Γ!( a2 :: Action, fac :: Float64, a1 :: Action ) :: Nothing # multiply add for the vertices for i in eachindex(a1.Γ) mult_with_add_to!(a2.Γ[i], fac, a1.Γ[i]) end return nothing end # interface function to add two actions (except for bare) function add_to!( a2 :: Action, a1 :: Action ) :: Nothing mult_with_add_to!(a2, 1.0, a1) return nothing end # interface function to add two actions only on the vertex level (except for bare) function add_to_Γ!( a2 :: Action, a1 :: Action ) :: Nothing mult_with_add_to_Γ!(a2, 1.0, a1) return nothing end # interface function to subtract two actions (except for bare) function subtract_from!( a2 :: Action, a1 :: Action ) :: Nothing mult_with_add_to!(a2, -1.0, a1) return nothing end # interface function to subtract two actions only on the vertex level (except for bare) function subtract_from_Γ!( a2 :: Action, a1 :: Action ) :: Nothing mult_with_add_to_Γ!(a2, -1.0, a1) return nothing end """ get_abs_max( a :: Action ) :: Float64 Returns maximum absolute value of an action across all vertex components. """ function get_abs_max( a :: Action ) :: Float64 abs_max_Γ = zeros(Float64, length(a.Γ)) for i in eachindex(a.Γ) abs_max_Γ[i] = get_abs_max(a.Γ[i]) end abs_max = maximum(abs_max_Γ) return abs_max end # scan cut through channel, where x is assumed to be generated by the get_mesh function with linear fraction p0 # in order to optimize the frequency mesh we use the following heuristics: # a) the linear extent δ should be large enough to capture sharp peaks at finite frequencies, that is, δ >= 'point where channel has decayed to 10 percent of peak value' # b) the linear extent δ should be large enough to capture sign changes at finite frequencies, that is, δ >= zero crossing # c) the linear extent δ should be small enough to capture sharp peaks at the origin, that is, Δ should fulfill p1 < Δ < p2, # where Δ is the relative deviation between the values at the origin and the first finite frequency # d) the linear extent δ should be bounded to avoid overambitious shrinking or broadening of the mesh, that is, num_lin * p3 <= δ <= p4, # where num_lin is the number of linear frequencies function scan( Λ :: Float64, x :: Vector{Float64}, y :: Vector{Float64}, p0 :: Float64, p1 :: Float64, p2 :: Float64, p3 :: Float64, p4 :: Float64 ) :: Float64 # determine current mesh layout num_lin = ceil(Int64, p0 * (length(x) - 1)) # a) check for peaks at finite frequencies and set δa as 'point where channel has decayed to 10 percent of peak value' δa = Inf idx = argmax(abs.(y)) if idx > 1 for i in idx + 1 : length(x) if abs(y[i] / y[idx]) <= 0.1 δa = x[i] break end end end # b) check for sign change at finite frequencies and set δb accordingly δb = Inf for i in 2 : length(y) if sign(y[i]) != sign(y[1]) δb = x[i] break end end # c) check if the value at the origin is finite. If so, set δc such that p1 < Δ < p2 δc = num_lin * x[2] if abs(y[1]) / abs(y[idx]) > 1e-3 # compute Δ Δ = abs(y[2] - y[1]) / max(abs(y[2]), abs(y[1])) # adjust δc if Δ is out of required bounds while (p1 < Δ < p2) == false # if Δ is too large decrease δc by two percent if Δ >= p2 δc *= 0.98 # if Δ is too small increase δc by two percent elseif Δ <= p1 δc *= 1.02 end # ensure δc is within required bounds if δc < num_lin * p3 break elseif δc > p4 break end # generate new reference data xp = get_mesh(δc, x[end], length(x) - 1, p0) yp = similar(y) for i in eachindex(yp) p = get_param(xp[i], x) yp[i] = p.lower_weight * y[p.lower_index] + p.upper_weight * y[p.upper_index] end # recompute Δ Δ = abs(yp[2] - yp[1]) / max(abs(yp[2]), abs(yp[1])) end end # d) merge results from heuristics a), b) and c) and perform sanity checks δ = min(max(num_lin * p3, min(δa, δb, δc)), p4) return δ end # auxiliary function to scan a single channel function scan_channel( Λ :: Float64, p_Ω :: NTuple{5, Float64}, p_ν :: NTuple{5, Float64}, Ω :: Vector{Float64}, ν :: Vector{Float64}, ch :: Channel ) :: NTuple{2, Float64} # deref data q3 = ch.q3 # determine position of the maximum idxs = argmax(abs.(q3)) # get cuts through the maximum q3_Ω = q3[idxs[1], :, idxs[3], idxs[4]] q3_ν_1 = Float64[q3[idxs[1], idxs[2], x, x] - q3[idxs[1], idxs[2], end, end] for x in eachindex(ν)] q3_ν_2 = Float64[q3[idxs[1], idxs[2], x, idxs[4]] - q3[idxs[1], idxs[2], end, idxs[4]] for x in eachindex(ν)] q3_ν_3 = Float64[q3[idxs[1], idxs[2], idxs[3], x] - q3[idxs[1], idxs[2], idxs[3], end] for x in eachindex(ν)] # scan bosonic cut Ω_lin = scan(Λ, Ω, q3_Ω, p_Ω[1], p_Ω[2], p_Ω[3], p_Ω[4] * Λ, p_Ω[5] * Λ) # scan fermionic cuts ν_lin_1 = scan(Λ, ν, q3_ν_1, p_ν[1], p_ν[2], p_ν[3], p_ν[4] * Λ, p_ν[5] * Λ) ν_lin_2 = scan(Λ, ν, q3_ν_2, p_ν[1], p_ν[2], p_ν[3], p_ν[4] * Λ, p_ν[5] * Λ) ν_lin_3 = scan(Λ, ν, q3_ν_3, p_ν[1], p_ν[2], p_ν[3], p_ν[4] * Λ, p_ν[5] * Λ) ν_lin = min(ν_lin_1, ν_lin_2, ν_lin_3) return Ω_lin, ν_lin end # resample an action to new meshes via scanning and trilinear interpolation function resample_from_to( Λ :: Float64, p_σ :: NTuple{2, Float64}, p_Ωs :: NTuple{5, Float64}, p_νs :: NTuple{5, Float64}, p_Ωt :: NTuple{5, Float64}, p_νt :: NTuple{5, Float64}, p_χ :: NTuple{5, Float64}, lins :: NTuple{5, Float64}, bounds :: NTuple{5, Float64}, m_old :: Mesh, a_old :: Action, a_new :: Action, χ :: Vector{Matrix{Float64}} ) :: Mesh # scale linear bounds σ_lin = lins[2] * Λ Ωs_lin = lins[3] * Λ νs_lin = lins[4] * Λ Ωt_lin = lins[3] * Λ νt_lin = lins[4] * Λ χ_lin = lins[5] * Λ # adjust meshes via scanning once required scale is reached if Λ < lins[1] # scan self energy σ_lin = p_σ[2] * m_old.σ[argmax(abs.(a_old.Σ))] # scan the channels Ωs_lins, νs_lins = zeros(Float64, length(a_old.Γ)), zeros(length(a_old.Γ)) Ωt_lins, νt_lins = zeros(Float64, length(a_old.Γ)), zeros(length(a_old.Γ)) for i in eachindex(a_old.Γ) Ωs_lins[i], νs_lins[i] = scan_channel(Λ, p_Ωs, p_νs, m_old.Ωs, m_old.νs, a_old.Γ[i].ch_s) Ωt_lins[i], νt_lins[i] = scan_channel(Λ, p_Ωt, p_νt, m_old.Ωt, m_old.νt, a_old.Γ[i].ch_t) end Ωs_lin, νs_lin = minimum(Ωs_lins), minimum(νs_lins) Ωt_lin, νt_lin = minimum(Ωt_lins), minimum(νt_lins) # scan the correlations χ_lins = zeros(Float64, length(χ)) for i in eachindex(χ_lins) χ_lins[i] = scan(Λ, m_old.χ, χ[i][argmax(abs.(χ[i]))[1], :], p_χ[1], p_χ[2], p_χ[3], p_χ[4] * Λ, p_χ[5] * Λ) end χ_lin = minimum(χ_lins) end # build new frequency meshes according to scanning results σ = get_mesh( σ_lin, bounds[2] * max(Λ, bounds[1]), m_old.num_σ - 1, p_σ[1]) Ωs = get_mesh(Ωs_lin, bounds[3] * max(Λ, bounds[1]), m_old.num_Ω - 1, p_Ωs[1]) νs = get_mesh(νs_lin, bounds[4] * max(Λ, bounds[1]), m_old.num_ν - 1, p_νs[1]) Ωt = get_mesh(Ωt_lin, bounds[3] * max(Λ, bounds[1]), m_old.num_Ω - 1, p_Ωt[1]) νt = get_mesh(νt_lin, bounds[4] * max(Λ, bounds[1]), m_old.num_ν - 1, p_νt[1]) χ = get_mesh( χ_lin, bounds[5] * max(Λ, bounds[1]), m_old.num_χ - 1, p_χ[1]) m_new = Mesh(m_old.num_σ, m_old.num_Ω, m_old.num_ν, m_old.num_χ, σ, Ωs, νs, Ωt, νt, χ) # resample self energy for w in eachindex(m_new.σ) a_new.Σ[w] = get_Σ(m_new.σ[w], m_old, a_old) end # resample vertices for i in eachindex(a_new.Γ) resample_from_to!(m_old, a_old.Γ[i], m_new, a_new.Γ[i]) end return m_new end # generate action dummy function get_action_empty( symmetry :: String, r :: Reduced_lattice, m :: Mesh ; S :: Float64 = 0.5 ) :: Action if symmetry == "su2" return get_action_su2_empty(S, r, m) elseif symmetry == "u1-dm" return get_action_u1_dm_empty(r, m) end end """ read_checkpoint( file :: HDF5.File, Λ :: Float64 ) :: Tuple{Float64, Float64, Mesh, Action} Read checkpoint of FRG calculation from HDF5 file. Returns cutoff Λ, ODE stepwidth dΛ, frequency meshes (wrapped in Mesh struct) and vertices (wrapped in Action struct). """ function read_checkpoint( file :: HDF5.File, Λ :: Float64 ) :: Tuple{Float64, Float64, Mesh, Action} # read symmetry group from file symmetry = read(file, "symmetry") if symmetry == "su2" return read_checkpoint_su2(file, Λ) elseif symmetry == "u1-dm" return read_checkpoint_u1_dm(file, Λ) end end # load tests and timers include("test.jl") include("timers.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
15086
""" Channel Struct containing asymptotic kernels for a channel. * `q1 :: Matrix{Float64}` : kernel with both fermionic frequencies -> Inf * `q2_1 :: Array{Float64, 3}` : kernel with second fermionic frequency -> Inf * `q2_2 :: Array{Float64, 3}` : kernel with first fermionic frequency -> Inf * `q3 :: Array{Float64, 4}` : full channel """ struct Channel q1 :: Matrix{Float64} q2_1 :: Array{Float64, 3} q2_2 :: Array{Float64, 3} q3 :: Array{Float64, 4} end # generate channel dummy function get_channel_empty( r :: Reduced_lattice, m :: Mesh ) :: Channel num_sites = length(r.sites) # init kernels q1 = zeros(Float64, num_sites, m.num_Ω) q2_1 = zeros(Float64, num_sites, m.num_Ω, m.num_ν) q2_2 = zeros(Float64, num_sites, m.num_Ω, m.num_ν) q3 = zeros(Float64, num_sites, m.num_Ω, m.num_ν, m.num_ν) # build channel ch = Channel(q1, q2_1, q2_2, q3) return ch end # get interpolated value of q1 function get_q1( site :: Int64, p :: Param, ch :: Channel ) :: Float64 val = p.lower_weight * ch.q1[site, p.lower_index] val += p.upper_weight * ch.q1[site, p.upper_index] return val end # get interpolated value of q1 on all lattice sites function get_q1_avx!( r :: Reduced_lattice, p :: Param, ch :: Channel, temp :: SubArray{Float64, 1, Array{Float64, 3}}, exchange :: Bool, sgn :: Float64 ) :: Nothing # deref channel q1 = ch.q1 # deref param lower_index = p.lower_index upper_index = p.upper_index lower_weight = p.lower_weight upper_weight = p.upper_weight # check for site exchange if exchange indices = r.exchange @turbo unroll = 1 for i in eachindex(temp) val = lower_weight * q1[indices[i], lower_index] val += upper_weight * q1[indices[i], upper_index] temp[i] += sgn * val end else @turbo unroll = 1 for i in eachindex(temp) val = lower_weight * q1[i, lower_index] val += upper_weight * q1[i, upper_index] temp[i] += sgn * val end end return nothing end # get interpolated value of q2_1 function get_q2_1( site :: Int64, p1 :: Param, p2 :: Param, ch :: Channel ) :: Float64 val = p1.lower_weight * p2.lower_weight * ch.q2_1[site, p1.lower_index, p2.lower_index] val += p1.upper_weight * p2.lower_weight * ch.q2_1[site, p1.upper_index, p2.lower_index] val += p1.lower_weight * p2.upper_weight * ch.q2_1[site, p1.lower_index, p2.upper_index] val += p1.upper_weight * p2.upper_weight * ch.q2_1[site, p1.upper_index, p2.upper_index] return val end # get interpolated value of q2_1 on all lattice sites function get_q2_1_avx!( r :: Reduced_lattice, p1 :: Param, p2 :: Param, ch :: Channel, temp :: SubArray{Float64, 1, Array{Float64, 3}}, exchange :: Bool, sgn :: Float64 ) :: Nothing # deref channel q2_1 = ch.q2_1 # deref param lower_index1 = p1.lower_index upper_index1 = p1.upper_index lower_weight1 = p1.lower_weight upper_weight1 = p1.upper_weight lower_index2 = p2.lower_index upper_index2 = p2.upper_index lower_weight2 = p2.lower_weight upper_weight2 = p2.upper_weight # check for site exchange if exchange indices = r.exchange @turbo unroll = 1 for i in eachindex(temp) val = lower_weight1 * lower_weight2 * q2_1[indices[i], lower_index1, lower_index2] val += upper_weight1 * lower_weight2 * q2_1[indices[i], upper_index1, lower_index2] val += lower_weight1 * upper_weight2 * q2_1[indices[i], lower_index1, upper_index2] val += upper_weight1 * upper_weight2 * q2_1[indices[i], upper_index1, upper_index2] temp[i] += sgn * val end else @turbo unroll = 1 for i in eachindex(temp) val = lower_weight1 * lower_weight2 * q2_1[i, lower_index1, lower_index2] val += upper_weight1 * lower_weight2 * q2_1[i, upper_index1, lower_index2] val += lower_weight1 * upper_weight2 * q2_1[i, lower_index1, upper_index2] val += upper_weight1 * upper_weight2 * q2_1[i, upper_index1, upper_index2] temp[i] += sgn * val end end return nothing end # get interpolated value of q2_2 function get_q2_2( site :: Int64, p1 :: Param, p2 :: Param, ch :: Channel ) :: Float64 val = p1.lower_weight * p2.lower_weight * ch.q2_2[site, p1.lower_index, p2.lower_index] val += p1.upper_weight * p2.lower_weight * ch.q2_2[site, p1.upper_index, p2.lower_index] val += p1.lower_weight * p2.upper_weight * ch.q2_2[site, p1.lower_index, p2.upper_index] val += p1.upper_weight * p2.upper_weight * ch.q2_2[site, p1.upper_index, p2.upper_index] return val end # get interpolated value of q2_2 on all lattice sites function get_q2_2_avx!( r :: Reduced_lattice, p1 :: Param, p2 :: Param, ch :: Channel, temp :: SubArray{Float64, 1, Array{Float64, 3}}, exchange :: Bool, sgn :: Float64 ) :: Nothing # deref channel q2_2 = ch.q2_2 # deref param lower_index1 = p1.lower_index upper_index1 = p1.upper_index lower_weight1 = p1.lower_weight upper_weight1 = p1.upper_weight lower_index2 = p2.lower_index upper_index2 = p2.upper_index lower_weight2 = p2.lower_weight upper_weight2 = p2.upper_weight # check for site exchange if exchange indices = r.exchange @turbo unroll = 1 for i in eachindex(temp) val = lower_weight1 * lower_weight2 * q2_2[indices[i], lower_index1, lower_index2] val += upper_weight1 * lower_weight2 * q2_2[indices[i], upper_index1, lower_index2] val += lower_weight1 * upper_weight2 * q2_2[indices[i], lower_index1, upper_index2] val += upper_weight1 * upper_weight2 * q2_2[indices[i], upper_index1, upper_index2] temp[i] += sgn * val end else @turbo unroll = 1 for i in eachindex(temp) val = lower_weight1 * lower_weight2 * q2_2[i, lower_index1, lower_index2] val += upper_weight1 * lower_weight2 * q2_2[i, upper_index1, lower_index2] val += lower_weight1 * upper_weight2 * q2_2[i, lower_index1, upper_index2] val += upper_weight1 * upper_weight2 * q2_2[i, upper_index1, upper_index2] temp[i] += sgn * val end end return nothing end # get interpolated value of q3 function get_q3( site :: Int64, p1 :: Param, p2 :: Param, p3 :: Param, ch :: Channel ) :: Float64 val = p1.lower_weight * p2.lower_weight * p3.lower_weight * ch.q3[site, p1.lower_index, p2.lower_index, p3.lower_index] val += p1.upper_weight * p2.lower_weight * p3.lower_weight * ch.q3[site, p1.upper_index, p2.lower_index, p3.lower_index] val += p1.lower_weight * p2.upper_weight * p3.lower_weight * ch.q3[site, p1.lower_index, p2.upper_index, p3.lower_index] val += p1.upper_weight * p2.upper_weight * p3.lower_weight * ch.q3[site, p1.upper_index, p2.upper_index, p3.lower_index] val += p1.lower_weight * p2.lower_weight * p3.upper_weight * ch.q3[site, p1.lower_index, p2.lower_index, p3.upper_index] val += p1.upper_weight * p2.lower_weight * p3.upper_weight * ch.q3[site, p1.upper_index, p2.lower_index, p3.upper_index] val += p1.lower_weight * p2.upper_weight * p3.upper_weight * ch.q3[site, p1.lower_index, p2.upper_index, p3.upper_index] val += p1.upper_weight * p2.upper_weight * p3.upper_weight * ch.q3[site, p1.upper_index, p2.upper_index, p3.upper_index] return val end # get interpolated value of q3 on all lattice sites function get_q3_avx!( r :: Reduced_lattice, p1 :: Param, p2 :: Param, p3 :: Param, ch :: Channel, temp :: SubArray{Float64, 1, Array{Float64, 3}}, exchange :: Bool, sgn :: Float64 ) :: Nothing # deref channel q3 = ch.q3 # deref param lower_index1 = p1.lower_index upper_index1 = p1.upper_index lower_weight1 = p1.lower_weight upper_weight1 = p1.upper_weight lower_index2 = p2.lower_index upper_index2 = p2.upper_index lower_weight2 = p2.lower_weight upper_weight2 = p2.upper_weight lower_index3 = p3.lower_index upper_index3 = p3.upper_index lower_weight3 = p3.lower_weight upper_weight3 = p3.upper_weight # check for site exchange if exchange indices = r.exchange @turbo unroll = 1 for i in eachindex(temp) val = lower_weight1 * lower_weight2 * lower_weight3 * q3[indices[i], lower_index1, lower_index2, lower_index3] val += upper_weight1 * lower_weight2 * lower_weight3 * q3[indices[i], upper_index1, lower_index2, lower_index3] val += lower_weight1 * upper_weight2 * lower_weight3 * q3[indices[i], lower_index1, upper_index2, lower_index3] val += upper_weight1 * upper_weight2 * lower_weight3 * q3[indices[i], upper_index1, upper_index2, lower_index3] val += lower_weight1 * lower_weight2 * upper_weight3 * q3[indices[i], lower_index1, lower_index2, upper_index3] val += upper_weight1 * lower_weight2 * upper_weight3 * q3[indices[i], upper_index1, lower_index2, upper_index3] val += lower_weight1 * upper_weight2 * upper_weight3 * q3[indices[i], lower_index1, upper_index2, upper_index3] val += upper_weight1 * upper_weight2 * upper_weight3 * q3[indices[i], upper_index1, upper_index2, upper_index3] temp[i] += sgn * val end else @turbo unroll = 1 for i in eachindex(temp) val = lower_weight1 * lower_weight2 * lower_weight3 * q3[i, lower_index1, lower_index2, lower_index3] val += upper_weight1 * lower_weight2 * lower_weight3 * q3[i, upper_index1, lower_index2, lower_index3] val += lower_weight1 * upper_weight2 * lower_weight3 * q3[i, lower_index1, upper_index2, lower_index3] val += upper_weight1 * upper_weight2 * lower_weight3 * q3[i, upper_index1, upper_index2, lower_index3] val += lower_weight1 * lower_weight2 * upper_weight3 * q3[i, lower_index1, lower_index2, upper_index3] val += upper_weight1 * lower_weight2 * upper_weight3 * q3[i, upper_index1, lower_index2, upper_index3] val += lower_weight1 * upper_weight2 * upper_weight3 * q3[i, lower_index1, upper_index2, upper_index3] val += upper_weight1 * upper_weight2 * upper_weight3 * q3[i, upper_index1, upper_index2, upper_index3] temp[i] += sgn * val end end return nothing end # get interpolated value of channel for a given frequency buffer function get_channel( site :: Int64, b :: Buffer, ch :: Channel ) :: Float64 val = 0.0 if b.kernel == 1 val = get_q1(site, b.p1, ch) elseif b.kernel == 2 val = get_q2_1(site, b.p1, b.p2, ch) elseif b.kernel == 3 val = get_q2_2(site, b.p1, b.p3, ch) elseif b.kernel == 4 val = get_q3(site, b.p1, b.p2, b.p3, ch) end return val end # get interpolated value of channel for a given frequency buffer on all lattice sites function get_channel_avx!( r :: Reduced_lattice, b :: Buffer, ch :: Channel, temp :: SubArray{Float64, 1, Array{Float64, 3}}, exchange :: Bool, sgn :: Float64 ) :: Nothing if b.kernel == 1 get_q1_avx!(r, b.p1, ch, temp, exchange, sgn) elseif b.kernel == 2 get_q2_1_avx!(r, b.p1, b.p2, ch, temp, exchange, sgn) elseif b.kernel == 3 get_q2_2_avx!(r, b.p1, b.p3, ch, temp, exchange, sgn) elseif b.kernel == 4 get_q3_avx!(r, b.p1, b.p2, b.p3, ch, temp, exchange, sgn) end return nothing end # replace channel with another channel function replace_with!( ch1 :: Channel, ch2 :: Channel ) :: Nothing @turbo ch1.q1 .= ch2.q1 @turbo ch1.q2_1 .= ch2.q2_1 @turbo ch1.q2_2 .= ch2.q2_2 @turbo ch1.q3 .= ch2.q3 return nothing end # multiply channel with factor function mult_with!( ch :: Channel, fac :: Float64 ) :: Nothing @turbo ch.q1 .*= fac @turbo ch.q2_1 .*= fac @turbo ch.q2_2 .*= fac @turbo ch.q3 .*= fac return nothing end # multiply channel with factor and add to other channel function mult_with_add_to!( ch2 :: Channel, fac :: Float64, ch1 :: Channel ) :: Nothing @turbo ch1.q1 .+= fac .* ch2.q1 @turbo ch1.q2_1 .+= fac .* ch2.q2_1 @turbo ch1.q2_2 .+= fac .* ch2.q2_2 @turbo ch1.q3 .+= fac .* ch2.q3 return nothing end """ get_abs_max( ch :: Channel ) :: Float64 Returns maximum absolute value of a channel. """ function get_abs_max( ch :: Channel ) :: Float64 max_ch = maximum(abs.(ch.q3)) return max_ch end # resample a channel to new meshes via trilinear interpolation function resample_from_to!( Ω_old :: Vector{Float64}, ν_old :: Vector{Float64}, ch_old :: Channel, Ω_new :: Vector{Float64}, ν_new :: Vector{Float64}, ch_new :: Channel ) :: Nothing # get dimensions num_sites = size(ch_old.q2_1, 1) num_Ω = size(ch_old.q2_1, 2) num_ν = size(ch_old.q2_1, 3) # resample q1 for w in 1 : num_Ω # get interpolation parameters p1 = get_param(Ω_new[w], Ω_old) for site in 1 : num_sites ch_new.q1[site, w] = get_q1(site, p1, ch_old) end end # resample q2_1 and q2_2 for v in 1 : num_ν for w in 1 : num_Ω # get interpolation parameters p1 = get_param(Ω_new[w], Ω_old) p2 = get_param(ν_new[v], ν_old) for site in 1 : num_sites ch_new.q2_1[site, w, v] = get_q2_1(site, p1, p2, ch_old) ch_new.q2_2[site, w, v] = get_q2_2(site, p1, p2, ch_old) end end end # resample q3 for vp in 1 : num_ν for v in 1 : num_ν for w in 1 : num_Ω # get interpolation parameters p1 = get_param(Ω_new[w], Ω_old) p2 = get_param(ν_new[v], ν_old) p3 = get_param(ν_new[vp], ν_old) for site in 1 : num_sites ch_new.q3[site, w, v, vp] = get_q3(site, p1, p2, p3, ch_old) end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2384
# save channel to file function save!( file :: HDF5.File, label :: String, ch :: Channel ) :: Nothing file[label * "/q1"] = ch.q1 file[label * "/q2_1"] = ch.q2_1 file[label * "/q2_2"] = ch.q2_2 file[label * "/q3"] = ch.q3 return nothing end # read channel from file function read_channel( file :: HDF5.File, label :: String, ) :: Channel # read kernels q1 = read(file, label * "/q1") q2_1 = read(file, label * "/q2_1") q2_2 = read(file, label * "/q2_2") q3 = read(file, label * "/q3") # build channel ch = Channel(q1, q2_1, q2_2, q3) return ch end # save self energy to file function save_self!( file :: HDF5.File, Λ :: Float64, m :: Mesh, a :: Action ) :: Nothing # save self energy mesh to file file["σ/$(Λ)"] = m.σ # save self energy to file file["Σ/$(Λ)"] = a.Σ return nothing end """ read_self( file :: HDF5.File, Λ :: Float64, ) :: NTuple{2, Vector{Float64}} Read self energy mesh and values from HDF5 file at cutoff Λ. """ function read_self( file :: HDF5.File, Λ :: Float64, ) :: NTuple{2, Vector{Float64}} # filter out nearest available cutoff list = keys(file["σ"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) println("Λ was adjusted to $(cutoffs[index]).") # read self energy mesh σ = read(file, "σ/$(cutoffs[index])") # read self energy Σ = read(file, "Σ/$(cutoffs[index])") return σ, Σ end # save vertex to file function save!( file :: HDF5.File, label :: String, Γ :: Vertex ) :: Nothing # save bare vertex file[label * "/bare"] = Γ.bare # save channels save!(file, label * "/ch_s", Γ.ch_s) save!(file, label * "/ch_t", Γ.ch_t) save!(file, label * "/ch_u", Γ.ch_u) return nothing end # read vertex from file function read_vertex( file :: HDF5.File, label :: String ) :: Vertex # read bare vertex bare = read(file, label * "/bare") # read channels ch_s = read_channel(file, label * "/ch_s") ch_t = read_channel(file, label * "/ch_t") ch_u = read_channel(file, label * "/ch_u") # build vertex Γ = Vertex(bare, ch_s, ch_t, ch_u) return Γ end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
18074
# auxiliary function to perform tests for action function do_action_tests!( r :: Reduced_lattice, m :: Mesh, a :: Action ) :: Nothing # init test points on mesh w_idx = rand(1 : 31) v_idx = rand(1 : 31) vp_idx = rand(1 : 31) # init test points for interpolations ws = rand() * m.Ωs[end] vs = rand() * m.νs[end] vsp = rand() * m.νs[end] wt = rand() * m.Ωt[end] vt = rand() * m.νt[end] vtp = rand() * m.νt[end] wu = rand() * m.Ωs[end] vu = rand() * m.νs[end] vup = rand() * m.νs[end] # fill self energy with random values a.Σ .= rand(31) # ensure antisymmetry a.Σ[1] = 0.0 # generate coefficients for test function a111 = rand(3, length(a.Γ), length(r.sites)) a110 = rand(3, length(a.Γ), length(r.sites)) a101 = rand(3, length(a.Γ), length(r.sites)) a011 = rand(3, length(a.Γ), length(r.sites)) a100 = rand(3, length(a.Γ), length(r.sites)) a010 = rand(3, length(a.Γ), length(r.sites)) a001 = rand(3, length(a.Γ), length(r.sites)) a000 = rand(3, length(a.Γ), length(r.sites)) # define testfunction (linear in all frequencies, should interpolate exactly) f(ch, i, s, w, v, vp) = a111[ch, i, s] * w * v * vp + a110[ch, i, s] * w * v + a101[ch, i, s] * w * vp + a011[ch, i, s] * v * vp + a100[ch, i, s] * w + a010[ch, i, s] * v + a001[ch, i, s] * vp + a000[ch, i, s] # fill channels with values of testfunction for i in eachindex(a.Γ) for s in 1 : length(r.sites) for iw in 1 : m.num_Ω a.Γ[i].ch_s.q1[s, iw] = f(1, i, s, m.Ωs[iw], m.νs[end], m.νs[end]) a.Γ[i].ch_t.q1[s, iw] = f(2, i, s, m.Ωt[iw], m.νt[end], m.νt[end]) a.Γ[i].ch_u.q1[s, iw] = f(3, i, s, m.Ωs[iw], m.νs[end], m.νs[end]) for iv in 1 : m.num_ν a.Γ[i].ch_s.q2_1[s, iw, iv] = f(1, i, s, m.Ωs[iw], m.νs[iv], m.νs[end]) a.Γ[i].ch_t.q2_1[s, iw, iv] = f(2, i, s, m.Ωt[iw], m.νt[iv], m.νt[end]) a.Γ[i].ch_u.q2_1[s, iw, iv] = f(3, i, s, m.Ωs[iw], m.νs[iv], m.νs[end]) a.Γ[i].ch_s.q2_2[s, iw, iv] = f(1, i, s, m.Ωs[iw], m.νs[end], m.νs[iv]) a.Γ[i].ch_t.q2_2[s, iw, iv] = f(2, i, s, m.Ωt[iw], m.νt[end], m.νt[iv]) a.Γ[i].ch_u.q2_2[s, iw, iv] = f(3, i, s, m.Ωs[iw], m.νs[end], m.νs[iv]) for ivp in 1 : m.num_ν a.Γ[i].ch_s.q3[s, iw, iv, ivp] = f(1, i, s, m.Ωs[iw], m.νs[iv], m.νs[ivp]) a.Γ[i].ch_t.q3[s, iw, iv, ivp] = f(2, i, s, m.Ωt[iw], m.νt[iv], m.νt[ivp]) a.Γ[i].ch_u.q3[s, iw, iv, ivp] = f(3, i, s, m.Ωs[iw], m.νs[iv], m.νs[ivp]) end end end end end # test self energy interpolation and extrapolation @testset "interpolation / extrapolation Σ" begin outer = m.σ[end] + rand() @test get_Σ(m.σ[w_idx], m, a) ≈ a.Σ[w_idx] @test get_Σ(outer, m, a) ≈ a.Σ[end] * m.σ[end] / outer end # prepare buffer for vectorized routines temp = zeros(Float64, length(r.sites), length(a.Γ), 1) # test interpolations in s channel @testset "interpolations s channel" begin @testset "on mesh" begin # build buffers bs_q3 = get_buffer_s(m.Ωs[w_idx], m.νs[v_idx], m.νs[vp_idx], m) bs_q2_2 = get_buffer_s(m.Ωs[w_idx], Inf, m.νs[vp_idx], m) bs_q2_1 = get_buffer_s(m.Ωs[w_idx], m.νs[v_idx], Inf, m) bs_q1 = get_buffer_s(m.Ωs[w_idx], Inf, Inf, m) bs_bare = get_buffer_s( Inf, Inf, Inf, m) # test sequential routine @testset "sequential" begin idx = rand(1 : length(r.sites)) for i in eachindex(a.Γ) @test get_vertex(idx, bs_q3, a.Γ[i], 1) ≈ a.Γ[i].ch_s.q3[idx, w_idx, v_idx, vp_idx] @test get_vertex(idx, bs_q2_2, a.Γ[i], 1) ≈ a.Γ[i].ch_s.q2_2[idx, w_idx, vp_idx] @test get_vertex(idx, bs_q2_1, a.Γ[i], 1) ≈ a.Γ[i].ch_s.q2_1[idx, w_idx, v_idx] @test get_vertex(idx, bs_q1, a.Γ[i], 1) ≈ a.Γ[i].ch_s.q1[idx, w_idx] @test get_vertex(idx, bs_bare, a.Γ[i], 1) ≈ 0.0 end end # test vectorized routine @testset "vectorized" begin for i in eachindex(a.Γ) temp .= 0.0; get_vertex_avx!(r, bs_q3, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_s.q3[:, w_idx, v_idx, vp_idx] temp .= 0.0; get_vertex_avx!(r, bs_q2_2, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_s.q2_2[:, w_idx, vp_idx] temp .= 0.0; get_vertex_avx!(r, bs_q2_1, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_s.q2_1[:, w_idx, v_idx] temp .= 0.0; get_vertex_avx!(r, bs_q1, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_s.q1[:, w_idx] temp .= 0.0; get_vertex_avx!(r, bs_bare, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test norm(temp[:, i, 1]) ≈ 0.0 end end end @testset "interpolated" begin # build buffers bs_q3 = get_buffer_s( ws, vs, vsp, m) bs_q2_2 = get_buffer_s( ws, Inf, vsp, m) bs_q2_1 = get_buffer_s( ws, vs, Inf, m) bs_q1 = get_buffer_s( ws, Inf, Inf, m) bs_bare = get_buffer_s(Inf, Inf, Inf, m) # test sequential routine @testset "sequential" begin idx = rand(1 : length(r.sites)) for i in eachindex(a.Γ) @test get_vertex(idx, bs_q3, a.Γ[i], 1) ≈ f(1, i, idx, ws, vs, vsp) @test get_vertex(idx, bs_q2_2, a.Γ[i], 1) ≈ f(1, i, idx, ws, m.νs[end], vsp) @test get_vertex(idx, bs_q2_1, a.Γ[i], 1) ≈ f(1, i, idx, ws, vs, m.νs[end]) @test get_vertex(idx, bs_q1, a.Γ[i], 1) ≈ f(1, i, idx, ws, m.νs[end], m.νs[end]) @test get_vertex(idx, bs_bare, a.Γ[i], 1) ≈ 0.0 end end # test vectorized routine @testset "vectorized" begin for i in eachindex(a.Γ) temp .= 0.0; get_vertex_avx!(r, bs_q3, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(1, i, j, ws, vs, vsp) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bs_q2_2, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(1, i, j, ws, m.νs[end], vsp) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bs_q2_1, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(1, i, j, ws, vs, m.νs[end]) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bs_q1, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(1, i, j, ws, m.νs[end], m.νs[end]) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bs_bare, a.Γ[i], 1, view(temp, :, i, 1), false, 1.0); @test norm(temp[:, i, 1]) ≈ 0.0 end end end end # test interpolations in t channel @testset "interpolations t channel" begin @testset "on mesh" begin # build buffers bt_q3 = get_buffer_t(m.Ωt[w_idx], m.νt[v_idx], m.νt[vp_idx], m) bt_q2_2 = get_buffer_t(m.Ωt[w_idx], Inf, m.νt[vp_idx], m) bt_q2_1 = get_buffer_t(m.Ωt[w_idx], m.νt[v_idx], Inf, m) bt_q1 = get_buffer_t(m.Ωt[w_idx], Inf, Inf, m) bt_bare = get_buffer_t( Inf, Inf, Inf, m) # test sequential routine @testset "sequential" begin idx = rand(1 : length(r.sites)) for i in eachindex(a.Γ) @test get_vertex(idx, bt_q3, a.Γ[i], 2) ≈ a.Γ[i].ch_t.q3[idx, w_idx, v_idx, vp_idx] @test get_vertex(idx, bt_q2_2, a.Γ[i], 2) ≈ a.Γ[i].ch_t.q2_2[idx, w_idx, vp_idx] @test get_vertex(idx, bt_q2_1, a.Γ[i], 2) ≈ a.Γ[i].ch_t.q2_1[idx, w_idx, v_idx] @test get_vertex(idx, bt_q1, a.Γ[i], 2) ≈ a.Γ[i].ch_t.q1[idx, w_idx] @test get_vertex(idx, bt_bare, a.Γ[i], 2) ≈ 0.0 end end # test vectorized routine @testset "vectorized" begin for i in eachindex(a.Γ) temp .= 0.0; get_vertex_avx!(r, bt_q3, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_t.q3[:, w_idx, v_idx, vp_idx] temp .= 0.0; get_vertex_avx!(r, bt_q2_2, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_t.q2_2[:, w_idx, vp_idx] temp .= 0.0; get_vertex_avx!(r, bt_q2_1, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_t.q2_1[:, w_idx, v_idx] temp .= 0.0; get_vertex_avx!(r, bt_q1, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_t.q1[:, w_idx] temp .= 0.0; get_vertex_avx!(r, bt_bare, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test norm(temp[:, i, 1]) ≈ 0.0 end end end @testset "interpolated" begin # build buffers bt_q3 = get_buffer_t( wt, vt, vtp, m) bt_q2_2 = get_buffer_t( wt, Inf, vtp, m) bt_q2_1 = get_buffer_t( wt, vt, Inf, m) bt_q1 = get_buffer_t( wt, Inf, Inf, m) bt_bare = get_buffer_t(Inf, Inf, Inf, m) # test sequential routine @testset "sequential" begin idx = rand(1 : length(r.sites)) for i in eachindex(a.Γ) @test get_vertex(idx, bt_q3, a.Γ[i], 2) ≈ f(2, i, idx, wt, vt, vtp) @test get_vertex(idx, bt_q2_2, a.Γ[i], 2) ≈ f(2, i, idx, wt, m.νt[end], vtp) @test get_vertex(idx, bt_q2_1, a.Γ[i], 2) ≈ f(2, i, idx, wt, vt, m.νt[end]) @test get_vertex(idx, bt_q1, a.Γ[i], 2) ≈ f(2, i, idx, wt, m.νt[end], m.νt[end]) @test get_vertex(idx, bt_bare, a.Γ[i], 2) ≈ 0.0 end end # test vectorized routine @testset "vectorized" begin for i in eachindex(a.Γ) temp .= 0.0; get_vertex_avx!(r, bt_q3, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(2, i, j, wt, vt, vtp) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bt_q2_2, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(2, i, j, wt, m.νt[end], vtp) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bt_q2_1, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(2, i, j, wt, vt, m.νt[end]) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bt_q1, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(2, i, j, wt, m.νt[end], m.νt[end]) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bt_bare, a.Γ[i], 2, view(temp, :, i, 1), false, 1.0); @test norm(temp[:, i, 1]) ≈ 0.0 end end end end # test interpolations in u channel @testset "interpolations u channel" begin @testset "on mesh" begin # build buffers bu_q3 = get_buffer_u(m.Ωs[w_idx], m.νs[v_idx], m.νs[vp_idx], m) bu_q2_2 = get_buffer_u(m.Ωs[w_idx], Inf, m.νs[vp_idx], m) bu_q2_1 = get_buffer_u(m.Ωs[w_idx], m.νs[v_idx], Inf, m) bu_q1 = get_buffer_u(m.Ωs[w_idx], Inf, Inf, m) bu_bare = get_buffer_u( Inf, Inf, Inf, m) # test sequential routine @testset "sequential" begin idx = rand(1 : length(r.sites)) for i in eachindex(a.Γ) @test get_vertex(idx, bu_q3, a.Γ[i], 3) ≈ a.Γ[i].ch_u.q3[idx, w_idx, v_idx, vp_idx] @test get_vertex(idx, bu_q2_2, a.Γ[i], 3) ≈ a.Γ[i].ch_u.q2_2[idx, w_idx, vp_idx] @test get_vertex(idx, bu_q2_1, a.Γ[i], 3) ≈ a.Γ[i].ch_u.q2_1[idx, w_idx, v_idx] @test get_vertex(idx, bu_q1, a.Γ[i], 3) ≈ a.Γ[i].ch_u.q1[idx, w_idx] @test get_vertex(idx, bu_bare, a.Γ[i], 3) ≈ 0.0 end end # test vectorized routine @testset "vectorized" begin for i in eachindex(a.Γ) temp .= 0.0; get_vertex_avx!(r, bu_q3, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_u.q3[:, w_idx, v_idx, vp_idx] temp .= 0.0; get_vertex_avx!(r, bu_q2_2, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_u.q2_2[:, w_idx, vp_idx] temp .= 0.0; get_vertex_avx!(r, bu_q2_1, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_u.q2_1[:, w_idx, v_idx] temp .= 0.0; get_vertex_avx!(r, bu_q1, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ a.Γ[i].ch_u.q1[:, w_idx] temp .= 0.0; get_vertex_avx!(r, bu_bare, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test norm(temp[:, i, 1]) ≈ 0.0 end end end @testset "interpolated" begin # build buffers bu_q3 = get_buffer_u( wu, vu, vup, m) bu_q2_2 = get_buffer_u( wu, Inf, vup, m) bu_q2_1 = get_buffer_u( wu, vu, Inf, m) bu_q1 = get_buffer_u( wu, Inf, Inf, m) bu_bare = get_buffer_u(Inf, Inf, Inf, m) # test sequential routine @testset "sequential" begin idx = rand(1 : length(r.sites)) for i in eachindex(a.Γ) @test get_vertex(idx, bu_q3, a.Γ[i], 3) ≈ f(3, i, idx, wu, vu, vup) @test get_vertex(idx, bu_q2_2, a.Γ[i], 3) ≈ f(3, i, idx, wu, m.νs[end], vup) @test get_vertex(idx, bu_q2_1, a.Γ[i], 3) ≈ f(3, i, idx, wu, vu, m.νs[end]) @test get_vertex(idx, bu_q1, a.Γ[i], 3) ≈ f(3, i, idx, wu, m.νs[end], m.νs[end]) @test get_vertex(idx, bu_bare, a.Γ[i], 3) ≈ 0.0 end end # test vectorized routine @testset "vectorized" begin for i in eachindex(a.Γ) temp .= 0.0; get_vertex_avx!(r, bu_q3, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(3, i, j, wu, vu, vup) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bu_q2_2, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(3, i, j, wu, m.νs[end], vup) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bu_q2_1, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(3, i, j, wu, vu, m.νs[end]) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bu_q1, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test temp[:, i, 1] ≈ [f(3, i, j, wu, m.νs[end], m.νs[end]) for j in 1 : length(r.sites)] temp .= 0.0; get_vertex_avx!(r, bu_bare, a.Γ[i], 3, view(temp, :, i, 1), false, 1.0); @test norm(temp[:, i, 1]) ≈ 0.0 end end end end return nothing end """ test_action() :: Nothing Run consistency checks for available action implementations by benchmarking interpolation routines. """ function test_action() :: Nothing # init test dummys list = get_mesh(rand(), 1.0, 30, 0.4) m = Mesh(31, 31, 31, 31, list, list, list, list, list, list) # run tests for action_su2 @testset "action su2" begin # generate action dummy for square lattice Heisenberg model l = get_lattice("square", 5, verbose = false) r = get_reduced_lattice("heisenberg", [[1.0]], l, verbose = false) a = get_action_empty("su2", r, m) init_action!(l, r, a) # test if bare action is correctly initialized @testset "initialization" begin @test norm(a.Γ[1].bare) ≈ 0.25 @test norm(a.Γ[2].bare) ≈ 0.0 end # perform tests do_action_tests!(r, m, a) end # run tests for action_u1_dm @testset "action u1-dm" begin # generate action dummy for triangular lattice dm-c3 model l = get_lattice("triangular", 5, verbose = false) r = get_reduced_lattice("triangular-dm-c3", [[1.0, 1.0, 1.0]], l, verbose = false) a = get_action_empty("u1-dm", r, m) init_action!(l, r, a) # test if bare action is correctly initialized @testset "initialization" begin @test norm(a.Γ[1].bare) ≈ sqrt(0.125) @test norm(a.Γ[2].bare) ≈ sqrt(0.125) @test norm(a.Γ[3].bare) ≈ sqrt(0.125) @test norm(a.Γ[4].bare) ≈ 0.0 @test norm(a.Γ[5].bare) ≈ 0.0 @test norm(a.Γ[6].bare) ≈ 0.0 end # perform tests do_action_tests!(r, m, a) end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3559
""" get_action_timers() : Nothing Test performance of current interpolation routines. """ function get_action_timers() :: Nothing # init test dummys (taking action_su2 as an example) list = get_mesh(rand(), 1.0, 30, 0.4) m = Mesh(31, 31, 31, 31, list, list, list, list, list, list) p1 = get_param(rand(), list) p2 = get_param(rand(), list) p3 = get_param(rand(), list) l = get_lattice("square", 10, verbose = false) r = get_reduced_lattice("heisenberg", [[1.0]], l, verbose = false) a = get_action_empty("su2", r, m); init_action!(l, r, a) temp = zeros(Float64, length(r.sites), 1, 1) # fill self energy with random values a.Σ .= rand(31) # fill s channel with random values a.Γ[1].ch_s.q3 .= rand(length(r.sites), 31, 31, 31) # init timer to = TimerOutput() # time self energy interpolation and extrapolation val = rand() outer = m.σ[end] + val @timeit to "=> interpolation / extrapolation Σ" begin for rep in 1 : 10 @timeit to "-> interpolation" get_Σ(val, m, a) @timeit to "-> extrapolation" get_Σ(outer, m, a) end end # deref channel and generate temp view ch = a.Γ[1].ch_s vtemp = view(temp, :, 1, 1) # time q3 interpolations @timeit to "=> interpolation q3 kernel" begin # time sequential routine for rep in 1 : 10 @timeit to "-> sequential" begin for i in 1 : size(temp, 1) temp[i, 1, 1] = get_q3(i, p1, p2, p3, ch) end end end # time vectorized routine for rep in 1 : 10 @timeit to "-> vectorized" begin get_q3_avx!(r, p1, p2, p3, ch, vtemp, false, 1.0) end end end # time q2_2 interpolations @timeit to "=> interpolation q2_2 kernel" begin # time sequential routine for rep in 1 : 10 @timeit to "-> sequential" begin for i in 1 : size(temp, 1) temp[i, 1, 1] = get_q2_2(i, p1, p3, ch) end end end # time vectorized routine for rep in 1 : 10 @timeit to "-> vectorized" begin get_q2_2_avx!(r, p1, p3, ch, vtemp, false, 1.0) end end end # time q2_1 interpolations @timeit to "=> interpolation q2_1 kernel" begin # time sequential routine for rep in 1 : 10 @timeit to "-> sequential" begin for i in 1 : size(temp, 1) temp[i, 1, 1] = get_q2_1(i, p1, p2, ch) end end end # time vectorized routine for rep in 1 : 10 @timeit to "-> vectorized" begin get_q2_1_avx!(r, p1, p2, ch, vtemp, false, 1.0) end end end # time q1 interpolations @timeit to "=> interpolation q1 kernel" begin # time sequential routine for rep in 1 : 10 @timeit to "-> sequential" begin for i in 1 : size(temp, 1) temp[i, 1, 1] = get_q1(i, p1, ch) end end end # time vectorized routine for rep in 1 : 10 @timeit to "-> vectorized" begin get_q1_avx!(r, p1, ch, vtemp, false, 1.0) end end end show(to) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3622
""" Vertex Struct containing bare values of vertex component and the respective s, t and u channel. * `bare :: Vector{Float64}` : bare couplings on irreducible lattice sites * `ch_s :: Channel` : particle-particle (s) channel * `ch_t :: Channel` : direct particle-hole (t) channel * `ch_u :: Channel` : crossed particle-hole (u) channel """ struct Vertex bare :: Vector{Float64} ch_s :: Channel ch_t :: Channel ch_u :: Channel end # generate vertex dummy function get_vertex_empty( r :: Reduced_lattice, m :: Mesh ) :: Vertex # init bare bare = zeros(Float64, length(r.sites)) # init channels ch_s = get_channel_empty(r, m) ch_t = get_channel_empty(r, m) ch_u = get_channel_empty(r, m) # build vertex Γ = Vertex(bare, ch_s, ch_t, ch_u) return Γ end # get interpolated value of vertex in certain channel for a given frequency buffer function get_vertex( site :: Int64, b :: Buffer, Γ :: Vertex, ch :: Int64 ) :: Float64 val = 0.0 if ch == 1 val = get_channel(site, b, Γ.ch_s) elseif ch == 2 val = get_channel(site, b, Γ.ch_t) elseif ch == 3 val = get_channel(site, b, Γ.ch_u) end return val end # get interpolated value of vertex in certain channel for a given frequency buffer on all lattice sites function get_vertex_avx!( r :: Reduced_lattice, b :: Buffer, Γ :: Vertex, ch :: Int64, temp :: SubArray{Float64, 1, Array{Float64, 3}}, exchange :: Bool, sgn :: Float64 ) :: Nothing if ch == 1 get_channel_avx!(r, b, Γ.ch_s, temp, exchange, sgn) elseif ch == 2 get_channel_avx!(r, b, Γ.ch_t, temp, exchange, sgn) elseif ch == 3 get_channel_avx!(r, b, Γ.ch_u, temp, exchange, sgn) end return nothing end # replace vertex with another vertex (except for bare) function replace_with!( Γ1 :: Vertex, Γ2 :: Vertex ) :: Nothing replace_with!(Γ1.ch_s, Γ2.ch_s) replace_with!(Γ1.ch_t, Γ2.ch_t) replace_with!(Γ1.ch_u, Γ2.ch_u) return nothing end # multiply vertex with factor (except for bare) function mult_with!( Γ :: Vertex, fac :: Float64 ) :: Nothing mult_with!(Γ.ch_s, fac) mult_with!(Γ.ch_t, fac) mult_with!(Γ.ch_u, fac) return nothing end # multiply vertex with some factor and add to other vertex (except for bare) function mult_with_add_to!( Γ2 :: Vertex, fac :: Float64, Γ1 :: Vertex ) :: Nothing mult_with_add_to!(Γ2.ch_s, fac, Γ1.ch_s) mult_with_add_to!(Γ2.ch_t, fac, Γ1.ch_t) mult_with_add_to!(Γ2.ch_u, fac, Γ1.ch_u) return nothing end """ get_abs_max( Γ :: Vertex ) :: Float64 Returns maximum absolute value of a vertex component across channels. """ function get_abs_max( Γ :: Vertex ) :: Float64 max_s = get_abs_max(Γ.ch_s) max_t = get_abs_max(Γ.ch_t) max_u = get_abs_max(Γ.ch_u) Γ_max = max(max_s, max_t, max_u) return Γ_max end # resample a vertex component to new meshes via trilinear interpolation function resample_from_to!( m_old :: Mesh, Γ_old :: Vertex, m_new :: Mesh, Γ_new :: Vertex ) :: Nothing resample_from_to!(m_old.Ωs, m_old.νs, Γ_old.ch_s, m_new.Ωs, m_new.νs, Γ_new.ch_s) resample_from_to!(m_old.Ωt, m_old.νt, Γ_old.ch_t, m_new.Ωt, m_new.νt, Γ_new.ch_t) resample_from_to!(m_old.Ωs, m_old.νs, Γ_old.ch_u, m_new.Ωs, m_new.νs, Γ_new.ch_u) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
8566
""" Action_su2 <: Action Struct containing self energy and vertex components for SU(2) symmetric models. * `S :: Float64` : total spin quantum number * `Σ :: Vector{Float64}` : negative imaginary part of the self energy * `Γ :: Vector{Vertex}` : spin and density component of the full vertex """ struct Action_su2 <: Action S :: Float64 Σ :: Vector{Float64} Γ :: Vector{Vertex} end # generate action_su2 dummy function get_action_su2_empty( S :: Float64, r :: Reduced_lattice, m :: Mesh, ) :: Action_su2 # init self energy Σ = zeros(Float64, length(m.σ)) # init vertices Γ = Vertex[get_vertex_empty(r, m) for i in 1 : 2] # build action a = Action_su2(S, Σ, Γ) return a end # init action for su2 symmetry function init_action!( l :: Lattice, r :: Reduced_lattice, a :: Action_su2 ) :: Nothing # init bare action for spin component ref_int = SVector{4, Int64}(0, 0, 0, 1) ref = Site(ref_int, get_vec(ref_int, l.uc)) for i in eachindex(r.sites) # get bond from lattice b = get_bond(ref, r.sites[i], l) # set bare according to spin exchange, normalize with 2S a.Γ[1].bare[i] = b.exchange[1, 1] / 4.0 / (2.0 * a.S) end return nothing end # set repulsion for su2 symmetry function set_repulsion!( A :: Float64, a :: Action_su2 ) :: Nothing # init bare action onsite with level repulsion for spin component a.Γ[1].bare[1] = A / 4.0 / (2.0 * a.S) return nothing end # helper function to disentangle flags during interpolation for su2 models function apply_flags_su2( b :: Buffer, comp :: Int64 ) :: Tuple{Float64, Int64} # clarify sign of contribution sgn = 1.0 # -ξ(μ) = -1 for density component if comp == 2 && b.sgn_μ sgn *= -1.0 end # -ξ(ν) = -1 for density component if comp == 2 && b.sgn_ν sgn *= -1.0 end return sgn, comp end # get all interpolated vertex components for su2 models function get_Γ( site :: Int64, bs :: Buffer, bt :: Buffer, bu :: Buffer, r :: Reduced_lattice, a :: Action_su2 ; ch_s :: Bool = true, ch_t :: Bool = true, ch_u :: Bool = true ) :: NTuple{2, Float64} spin = get_Γ_comp(1, site, bs, bt, bu, r, a, apply_flags_su2, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) dens = get_Γ_comp(2, site, bs, bt, bu, r, a, apply_flags_su2, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) return spin, dens end # get all interpolated vertex components for su2 models on all lattice sites function get_Γ_avx!( r :: Reduced_lattice, bs :: Buffer, bt :: Buffer, bu :: Buffer, a :: Action_su2, temp :: Array{Float64, 3}, index :: Int64 ; ch_s :: Bool = true, ch_t :: Bool = true, ch_u :: Bool = true ) :: Nothing for comp in 1 : 2 get_Γ_comp_avx!(comp, r, bs, bt, bu, a, apply_flags_su2, view(temp, :, comp, index), ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) end return nothing end # symmetrize full loop contribution and central part function symmetrize!( r :: Reduced_lattice, a :: Action_su2 ) :: Nothing # get dimensions num_sites = size(a.Γ[1].ch_s.q2_1, 1) num_Ω = size(a.Γ[1].ch_s.q2_1, 2) num_ν = size(a.Γ[1].ch_s.q2_1, 3) # computation for q3 for v in 1 : num_ν for vp in v + 1 : num_ν @turbo for w in 1 : num_Ω for i in 1 : num_sites # get upper triangular matrix for (v, v') plane for s channel a.Γ[1].ch_s.q3[i, w, v, vp] = a.Γ[1].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_s.q3[i, w, v, vp] = a.Γ[2].ch_s.q3[r.exchange[i], w, vp, v] # get upper triangular matrix for (v, v') plane for t channel a.Γ[1].ch_t.q3[i, w, v, vp] = a.Γ[1].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_t.q3[i, w, v, vp] = a.Γ[2].ch_t.q3[r.exchange[i], w, vp, v] # get upper triangular matrix for (v, v') plane for u channel a.Γ[1].ch_u.q3[i, w, v, vp] = a.Γ[1].ch_u.q3[i, w, vp, v] a.Γ[2].ch_u.q3[i, w, v, vp] = a.Γ[2].ch_u.q3[i, w, vp, v] end end end end return nothing end # symmetrized addition for left part (right part symmetric to left part) function symmetrize_add_to!( r :: Reduced_lattice, a_l :: Action_su2, a :: Action_su2 ) :: Nothing # get dimensions num_sites = size(a_l.Γ[1].ch_s.q2_1, 1) num_Ω = size(a_l.Γ[1].ch_s.q2_1, 2) num_ν = size(a_l.Γ[1].ch_s.q2_1, 3) # computation for q1 @turbo for w in 1 : num_Ω for i in 1 : num_sites # add q1 to s channel (right part from v <-> v' exchange) a.Γ[1].ch_s.q1[i, w] += a_l.Γ[1].ch_s.q1[i, w] + a_l.Γ[1].ch_s.q1[r.exchange[i], w] a.Γ[2].ch_s.q1[i, w] += a_l.Γ[2].ch_s.q1[i, w] + a_l.Γ[2].ch_s.q1[r.exchange[i], w] # add q1 to t channel (right part from v <-> v' exchange) a.Γ[1].ch_t.q1[i, w] += a_l.Γ[1].ch_t.q1[i, w] + a_l.Γ[1].ch_t.q1[r.exchange[i], w] a.Γ[2].ch_t.q1[i, w] += a_l.Γ[2].ch_t.q1[i, w] + a_l.Γ[2].ch_t.q1[r.exchange[i], w] # add q1 to u channel (right part from v <-> v' exchange) a.Γ[1].ch_u.q1[i, w] += a_l.Γ[1].ch_u.q1[i, w] + a_l.Γ[1].ch_u.q1[i, w] a.Γ[2].ch_u.q1[i, w] += a_l.Γ[2].ch_u.q1[i, w] + a_l.Γ[2].ch_u.q1[i, w] end end # computation for q2_1 and q2_2 @turbo for v in 1 : num_ν for w in 1 : num_Ω for i in 1 : num_sites # add q2_1 and q2_2 to s channel (right part from v <-> v' exchange) a.Γ[1].ch_s.q2_1[i, w, v] += a_l.Γ[1].ch_s.q2_1[i, w, v] + a_l.Γ[1].ch_s.q2_2[r.exchange[i], w, v] a.Γ[2].ch_s.q2_1[i, w, v] += a_l.Γ[2].ch_s.q2_1[i, w, v] + a_l.Γ[2].ch_s.q2_2[r.exchange[i], w, v] a.Γ[1].ch_s.q2_2[i, w, v] += a_l.Γ[1].ch_s.q2_2[i, w, v] + a_l.Γ[1].ch_s.q2_1[r.exchange[i], w, v] a.Γ[2].ch_s.q2_2[i, w, v] += a_l.Γ[2].ch_s.q2_2[i, w, v] + a_l.Γ[2].ch_s.q2_1[r.exchange[i], w, v] # add q2_1 and q2_2 to t channel (right part from v <-> v' exchange) a.Γ[1].ch_t.q2_1[i, w, v] += a_l.Γ[1].ch_t.q2_1[i, w, v] + a_l.Γ[1].ch_t.q2_2[r.exchange[i], w, v] a.Γ[2].ch_t.q2_1[i, w, v] += a_l.Γ[2].ch_t.q2_1[i, w, v] + a_l.Γ[2].ch_t.q2_2[r.exchange[i], w, v] a.Γ[1].ch_t.q2_2[i, w, v] += a_l.Γ[1].ch_t.q2_2[i, w, v] + a_l.Γ[1].ch_t.q2_1[r.exchange[i], w, v] a.Γ[2].ch_t.q2_2[i, w, v] += a_l.Γ[2].ch_t.q2_2[i, w, v] + a_l.Γ[2].ch_t.q2_1[r.exchange[i], w, v] # add q2_1 and q2_2 to u channel (right part from v <-> v' exchange) a.Γ[1].ch_u.q2_1[i, w, v] += a_l.Γ[1].ch_u.q2_1[i, w, v] + a_l.Γ[1].ch_u.q2_2[i, w, v] a.Γ[2].ch_u.q2_1[i, w, v] += a_l.Γ[2].ch_u.q2_1[i, w, v] + a_l.Γ[2].ch_u.q2_2[i, w, v] a.Γ[1].ch_u.q2_2[i, w, v] += a_l.Γ[1].ch_u.q2_2[i, w, v] + a_l.Γ[1].ch_u.q2_1[i, w, v] a.Γ[2].ch_u.q2_2[i, w, v] += a_l.Γ[2].ch_u.q2_2[i, w, v] + a_l.Γ[2].ch_u.q2_1[i, w, v] end end end # computation for q3 @turbo for vp in 1 : num_ν for v in 1 : num_ν for w in 1 : num_Ω for i in 1 : num_sites # add q3 to s channel (right part from v <-> v' exchange) a.Γ[1].ch_s.q3[i, w, v, vp] += a_l.Γ[1].ch_s.q3[i, w, v, vp] + a_l.Γ[1].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_s.q3[i, w, v, vp] += a_l.Γ[2].ch_s.q3[i, w, v, vp] + a_l.Γ[2].ch_s.q3[r.exchange[i], w, vp, v] # add q3 to t channel (right part from v <-> v' exchange) a.Γ[1].ch_t.q3[i, w, v, vp] += a_l.Γ[1].ch_t.q3[i, w, v, vp] + a_l.Γ[1].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_t.q3[i, w, v, vp] += a_l.Γ[2].ch_t.q3[i, w, v, vp] + a_l.Γ[2].ch_t.q3[r.exchange[i], w, vp, v] # add q3 to u channel (right part from v <-> v' exchange) a.Γ[1].ch_u.q3[i, w, v, vp] += a_l.Γ[1].ch_u.q3[i, w, v, vp] + a_l.Γ[1].ch_u.q3[i, w, vp, v] a.Γ[2].ch_u.q3[i, w, v, vp] += a_l.Γ[2].ch_u.q3[i, w, v, vp] + a_l.Γ[2].ch_u.q3[i, w, vp, v] end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
16042
""" Action_u1_dm <: Action Struct containing self energy and vertex components for models with U(1) symmetric Dzyaloshinskii-Moriya interaction. * `Σ :: Vector{Float64}` : negative imaginary part of the self energy * `Γ :: Vector{Vertex}` : Γxx, Γzz, ΓDM (i.e Γxy), Γdd, Γzd, Γdz component of the full vertex """ struct Action_u1_dm <: Action Σ :: Vector{Float64} Γ :: Vector{Vertex} end # generate action_u1_dm dummy function get_action_u1_dm_empty( r :: Reduced_lattice, m :: Mesh, ) :: Action_u1_dm # init self energy Σ = zeros(Float64, length(m.σ)) # init vertices Γ = Vertex[get_vertex_empty(r, m) for comp in 1 : 6] # build action a = Action_u1_dm(Σ, Γ) return a end # init action for symmetric u1 models function init_action!( l :: Lattice, r :: Reduced_lattice, a :: Action_u1_dm ) :: Nothing # init bare action for Γxx, Γzz and ΓDM component ref_int = SVector{4, Int64}(0, 0, 0, 1) ref = Site(ref_int, get_vec(ref_int, l.uc)) for i in eachindex(r.sites) # get bond from lattice b = get_bond(ref, r.sites[i], l) # set Γxx bare according to spin exchange a.Γ[1].bare[i] = b.exchange[1, 1] / 4.0 # set Γzz bare according to spin exchange a.Γ[2].bare[i] = b.exchange[3, 3] / 4.0 # set ΓDM bare according to spin exchange a.Γ[3].bare[i] = b.exchange[1, 2] / 4.0 end return nothing end # set repulsion for u1-dm symmetry function set_repulsion!( A :: Float64, a :: Action_u1_dm ) :: Nothing # init bare action on-site with level repulsion for Γxx a.Γ[1].bare[1] = A / 4.0 # init bare action on-site with level repulsion for Γzz a.Γ[2].bare[1] = A / 4.0 return nothing end # helper function to disentangle flags during interpolation for u1 symmetric dm models function apply_flags_u1_dm( b :: Buffer, comp :: Int64 ) :: Tuple{Float64, Int64} # clarify sign of contribution sgn = 1.0 # ξ(μ) * ξ(ν) = -1 for Γzd & Γdz if comp in (5, 6) && b.sgn_μν sgn *= -1.0 end # -ξ(μ) = -1 for Γdd & Γdz if comp in (4, 6) && b.sgn_μ sgn *= -1.0 end # -ξ(ν) = -1 for Γdd & Γzd if comp in (4, 5) && b.sgn_ν sgn *= -1.0 end # clarify which component to interpolate if b.exchange_flag # ΓDM -> -ΓDM for spin exchange (since ΓDM = Γxy = -Γyx) if comp == 3 sgn *= -1.0 # Γzd -> Γdz for spin exchange elseif comp == 5 comp = 6 # Γdz -> Γzd for spin exchange elseif comp == 6 comp = 5 end end return sgn, comp end # get all interpolated vertex components for u1 symmetric dm models function get_Γ( site :: Int64, bs :: Buffer, bt :: Buffer, bu :: Buffer, r :: Reduced_lattice, a :: Action_u1_dm ; ch_s :: Bool = true, ch_t :: Bool = true, ch_u :: Bool = true ) :: NTuple{6, Float64} Γxx = get_Γ_comp(1, site, bs, bt, bu, r, a, apply_flags_u1_dm, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) Γzz = get_Γ_comp(2, site, bs, bt, bu, r, a, apply_flags_u1_dm, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) ΓDM = get_Γ_comp(3, site, bs, bt, bu, r, a, apply_flags_u1_dm, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) Γdd = get_Γ_comp(4, site, bs, bt, bu, r, a, apply_flags_u1_dm, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) Γzd = get_Γ_comp(5, site, bs, bt, bu, r, a, apply_flags_u1_dm, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) Γdz = get_Γ_comp(6, site, bs, bt, bu, r, a, apply_flags_u1_dm, ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) return Γxx, Γzz, ΓDM, Γdd, Γzd, Γdz end # get all interpolated vertex components for u1 symmetric dm models on all lattice sites function get_Γ_avx!( r :: Reduced_lattice, bs :: Buffer, bt :: Buffer, bu :: Buffer, a :: Action_u1_dm, temp :: Array{Float64, 3}, index :: Int64 ; ch_s :: Bool = true, ch_t :: Bool = true, ch_u :: Bool = true ) :: Nothing for comp in 1 : 6 get_Γ_comp_avx!(comp, r, bs, bt, bu, a, apply_flags_u1_dm, view(temp, :, comp, index), ch_s = ch_s, ch_t = ch_t, ch_u = ch_u) end return nothing end # symmetrize full loop contribution and central part function symmetrize!( r :: Reduced_lattice, a :: Action_u1_dm ) :: Nothing # get dimensions num_sites = size(a.Γ[1].ch_s.q2_1, 1) num_Ω = size(a.Γ[1].ch_s.q2_1, 2) num_ν = size(a.Γ[1].ch_s.q2_1, 3) # computation for q3 for v in 1 : num_ν for vp in v + 1 : num_ν @turbo for w in 1 : num_Ω for i in 1 : num_sites # get upper triangular matrix for (v, v') plane for s channel a.Γ[1].ch_s.q3[i, w, v, vp] = a.Γ[1].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_s.q3[i, w, v, vp] = a.Γ[2].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[3].ch_s.q3[i, w, v, vp] = -a.Γ[3].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[4].ch_s.q3[i, w, v, vp] = a.Γ[4].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[5].ch_s.q3[i, w, v, vp] = -a.Γ[6].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[6].ch_s.q3[i, w, v, vp] = -a.Γ[5].ch_s.q3[r.exchange[i], w, vp, v] # get upper triangular matrix for (v, v') plane for t channel a.Γ[1].ch_t.q3[i, w, v, vp] = a.Γ[1].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_t.q3[i, w, v, vp] = a.Γ[2].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[3].ch_t.q3[i, w, v, vp] = -a.Γ[3].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[4].ch_t.q3[i, w, v, vp] = a.Γ[4].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[5].ch_t.q3[i, w, v, vp] = -a.Γ[6].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[6].ch_t.q3[i, w, v, vp] = -a.Γ[5].ch_t.q3[r.exchange[i], w, vp, v] # get upper triangular matrix for (v, v') plane for u channel a.Γ[1].ch_u.q3[i, w, v, vp] = a.Γ[1].ch_u.q3[i, w, vp, v] a.Γ[2].ch_u.q3[i, w, v, vp] = a.Γ[2].ch_u.q3[i, w, vp, v] a.Γ[3].ch_u.q3[i, w, v, vp] = a.Γ[3].ch_u.q3[i, w, vp, v] a.Γ[4].ch_u.q3[i, w, v, vp] = a.Γ[4].ch_u.q3[i, w, vp, v] a.Γ[5].ch_u.q3[i, w, v, vp] = -a.Γ[5].ch_u.q3[i, w, vp, v] a.Γ[6].ch_u.q3[i, w, v, vp] = -a.Γ[6].ch_u.q3[i, w, vp, v] end end end end return nothing end # symmetrized addition for left part (right part symmetric to left part) function symmetrize_add_to!( r :: Reduced_lattice, a_l :: Action_u1_dm, a :: Action_u1_dm ) :: Nothing # get dimensions num_sites = size(a_l.Γ[1].ch_s.q2_1, 1) num_Ω = size(a_l.Γ[1].ch_s.q2_1, 2) num_ν = size(a_l.Γ[1].ch_s.q2_1, 3) # computation for q1 @turbo for w in 1 : num_Ω for i in 1 : num_sites # add q1 to s channel (right part from v <-> v' exchange) a.Γ[1].ch_s.q1[i, w] += a_l.Γ[1].ch_s.q1[i, w] + a_l.Γ[1].ch_s.q1[r.exchange[i], w] a.Γ[2].ch_s.q1[i, w] += a_l.Γ[2].ch_s.q1[i, w] + a_l.Γ[2].ch_s.q1[r.exchange[i], w] a.Γ[3].ch_s.q1[i, w] += a_l.Γ[3].ch_s.q1[i, w] - a_l.Γ[3].ch_s.q1[r.exchange[i], w] a.Γ[4].ch_s.q1[i, w] += a_l.Γ[4].ch_s.q1[i, w] + a_l.Γ[4].ch_s.q1[r.exchange[i], w] a.Γ[5].ch_s.q1[i, w] += a_l.Γ[5].ch_s.q1[i, w] - a_l.Γ[6].ch_s.q1[r.exchange[i], w] a.Γ[6].ch_s.q1[i, w] += a_l.Γ[6].ch_s.q1[i, w] - a_l.Γ[5].ch_s.q1[r.exchange[i], w] # add q1 to t channel (right part from v <-> v' exchange) a.Γ[1].ch_t.q1[i, w] += a_l.Γ[1].ch_t.q1[i, w] + a_l.Γ[1].ch_t.q1[r.exchange[i], w] a.Γ[2].ch_t.q1[i, w] += a_l.Γ[2].ch_t.q1[i, w] + a_l.Γ[2].ch_t.q1[r.exchange[i], w] a.Γ[3].ch_t.q1[i, w] += a_l.Γ[3].ch_t.q1[i, w] - a_l.Γ[3].ch_t.q1[r.exchange[i], w] a.Γ[4].ch_t.q1[i, w] += a_l.Γ[4].ch_t.q1[i, w] + a_l.Γ[4].ch_t.q1[r.exchange[i], w] a.Γ[5].ch_t.q1[i, w] += a_l.Γ[5].ch_t.q1[i, w] - a_l.Γ[6].ch_t.q1[r.exchange[i], w] a.Γ[6].ch_t.q1[i, w] += a_l.Γ[6].ch_t.q1[i, w] - a_l.Γ[5].ch_t.q1[r.exchange[i], w] # add q1 to u channel (right part from v <-> v' exchange) a.Γ[1].ch_u.q1[i, w] += a_l.Γ[1].ch_u.q1[i, w] + a_l.Γ[1].ch_u.q1[i, w] a.Γ[2].ch_u.q1[i, w] += a_l.Γ[2].ch_u.q1[i, w] + a_l.Γ[2].ch_u.q1[i, w] a.Γ[3].ch_u.q1[i, w] += a_l.Γ[3].ch_u.q1[i, w] + a_l.Γ[3].ch_u.q1[i, w] a.Γ[4].ch_u.q1[i, w] += a_l.Γ[4].ch_u.q1[i, w] + a_l.Γ[4].ch_u.q1[i, w] a.Γ[5].ch_u.q1[i, w] += a_l.Γ[5].ch_u.q1[i, w] - a_l.Γ[5].ch_u.q1[i, w] a.Γ[6].ch_u.q1[i, w] += a_l.Γ[6].ch_u.q1[i, w] - a_l.Γ[6].ch_u.q1[i, w] end end # computation for q2_1 and q2_2 @turbo for v in 1 : num_ν for w in 1 : num_Ω for i in 1 : num_sites # add q2_1 and q2_2 to s channel (right part from v <-> v' exchange) a.Γ[1].ch_s.q2_1[i, w, v] += a_l.Γ[1].ch_s.q2_1[i, w, v] + a_l.Γ[1].ch_s.q2_2[r.exchange[i], w, v] a.Γ[2].ch_s.q2_1[i, w, v] += a_l.Γ[2].ch_s.q2_1[i, w, v] + a_l.Γ[2].ch_s.q2_2[r.exchange[i], w, v] a.Γ[3].ch_s.q2_1[i, w, v] += a_l.Γ[3].ch_s.q2_1[i, w, v] - a_l.Γ[3].ch_s.q2_2[r.exchange[i], w, v] a.Γ[4].ch_s.q2_1[i, w, v] += a_l.Γ[4].ch_s.q2_1[i, w, v] + a_l.Γ[4].ch_s.q2_2[r.exchange[i], w, v] a.Γ[5].ch_s.q2_1[i, w, v] += a_l.Γ[5].ch_s.q2_1[i, w, v] - a_l.Γ[6].ch_s.q2_2[r.exchange[i], w, v] a.Γ[6].ch_s.q2_1[i, w, v] += a_l.Γ[6].ch_s.q2_1[i, w, v] - a_l.Γ[5].ch_s.q2_2[r.exchange[i], w, v] a.Γ[1].ch_s.q2_2[i, w, v] += a_l.Γ[1].ch_s.q2_2[i, w, v] + a_l.Γ[1].ch_s.q2_1[r.exchange[i], w, v] a.Γ[2].ch_s.q2_2[i, w, v] += a_l.Γ[2].ch_s.q2_2[i, w, v] + a_l.Γ[2].ch_s.q2_1[r.exchange[i], w, v] a.Γ[3].ch_s.q2_2[i, w, v] += a_l.Γ[3].ch_s.q2_2[i, w, v] - a_l.Γ[3].ch_s.q2_1[r.exchange[i], w, v] a.Γ[4].ch_s.q2_2[i, w, v] += a_l.Γ[4].ch_s.q2_2[i, w, v] + a_l.Γ[4].ch_s.q2_1[r.exchange[i], w, v] a.Γ[5].ch_s.q2_2[i, w, v] += a_l.Γ[5].ch_s.q2_2[i, w, v] - a_l.Γ[6].ch_s.q2_1[r.exchange[i], w, v] a.Γ[6].ch_s.q2_2[i, w, v] += a_l.Γ[6].ch_s.q2_2[i, w, v] - a_l.Γ[5].ch_s.q2_1[r.exchange[i], w, v] # add q2_1 and q2_2 to t channel (right part from v <-> v' exchange) a.Γ[1].ch_t.q2_1[i, w, v] += a_l.Γ[1].ch_t.q2_1[i, w, v] + a_l.Γ[1].ch_t.q2_2[r.exchange[i], w, v] a.Γ[2].ch_t.q2_1[i, w, v] += a_l.Γ[2].ch_t.q2_1[i, w, v] + a_l.Γ[2].ch_t.q2_2[r.exchange[i], w, v] a.Γ[3].ch_t.q2_1[i, w, v] += a_l.Γ[3].ch_t.q2_1[i, w, v] - a_l.Γ[3].ch_t.q2_2[r.exchange[i], w, v] a.Γ[4].ch_t.q2_1[i, w, v] += a_l.Γ[4].ch_t.q2_1[i, w, v] + a_l.Γ[4].ch_t.q2_2[r.exchange[i], w, v] a.Γ[5].ch_t.q2_1[i, w, v] += a_l.Γ[5].ch_t.q2_1[i, w, v] - a_l.Γ[6].ch_t.q2_2[r.exchange[i], w, v] a.Γ[6].ch_t.q2_1[i, w, v] += a_l.Γ[6].ch_t.q2_1[i, w, v] - a_l.Γ[5].ch_t.q2_2[r.exchange[i], w, v] a.Γ[1].ch_t.q2_2[i, w, v] += a_l.Γ[1].ch_t.q2_2[i, w, v] + a_l.Γ[1].ch_t.q2_1[r.exchange[i], w, v] a.Γ[2].ch_t.q2_2[i, w, v] += a_l.Γ[2].ch_t.q2_2[i, w, v] + a_l.Γ[2].ch_t.q2_1[r.exchange[i], w, v] a.Γ[3].ch_t.q2_2[i, w, v] += a_l.Γ[3].ch_t.q2_2[i, w, v] - a_l.Γ[3].ch_t.q2_1[r.exchange[i], w, v] a.Γ[4].ch_t.q2_2[i, w, v] += a_l.Γ[4].ch_t.q2_2[i, w, v] + a_l.Γ[4].ch_t.q2_1[r.exchange[i], w, v] a.Γ[5].ch_t.q2_2[i, w, v] += a_l.Γ[5].ch_t.q2_2[i, w, v] - a_l.Γ[6].ch_t.q2_1[r.exchange[i], w, v] a.Γ[6].ch_t.q2_2[i, w, v] += a_l.Γ[6].ch_t.q2_2[i, w, v] - a_l.Γ[5].ch_t.q2_1[r.exchange[i], w, v] # add q2_1 and q2_2 to u channel (right part from v <-> v' exchange) a.Γ[1].ch_u.q2_1[i, w, v] += a_l.Γ[1].ch_u.q2_1[i, w, v] + a_l.Γ[1].ch_u.q2_2[i, w, v] a.Γ[2].ch_u.q2_1[i, w, v] += a_l.Γ[2].ch_u.q2_1[i, w, v] + a_l.Γ[2].ch_u.q2_2[i, w, v] a.Γ[3].ch_u.q2_1[i, w, v] += a_l.Γ[3].ch_u.q2_1[i, w, v] + a_l.Γ[3].ch_u.q2_2[i, w, v] a.Γ[4].ch_u.q2_1[i, w, v] += a_l.Γ[4].ch_u.q2_1[i, w, v] + a_l.Γ[4].ch_u.q2_2[i, w, v] a.Γ[5].ch_u.q2_1[i, w, v] += a_l.Γ[5].ch_u.q2_1[i, w, v] - a_l.Γ[5].ch_u.q2_2[i, w, v] a.Γ[6].ch_u.q2_1[i, w, v] += a_l.Γ[6].ch_u.q2_1[i, w, v] - a_l.Γ[6].ch_u.q2_2[i, w, v] a.Γ[1].ch_u.q2_2[i, w, v] += a_l.Γ[1].ch_u.q2_2[i, w, v] + a_l.Γ[1].ch_u.q2_1[i, w, v] a.Γ[2].ch_u.q2_2[i, w, v] += a_l.Γ[2].ch_u.q2_2[i, w, v] + a_l.Γ[2].ch_u.q2_1[i, w, v] a.Γ[3].ch_u.q2_2[i, w, v] += a_l.Γ[3].ch_u.q2_2[i, w, v] + a_l.Γ[3].ch_u.q2_1[i, w, v] a.Γ[4].ch_u.q2_2[i, w, v] += a_l.Γ[4].ch_u.q2_2[i, w, v] + a_l.Γ[4].ch_u.q2_1[i, w, v] a.Γ[5].ch_u.q2_2[i, w, v] += a_l.Γ[5].ch_u.q2_2[i, w, v] - a_l.Γ[5].ch_u.q2_1[i, w, v] a.Γ[6].ch_u.q2_2[i, w, v] += a_l.Γ[6].ch_u.q2_2[i, w, v] - a_l.Γ[6].ch_u.q2_1[i, w, v] end end end # computation for q3 @turbo for vp in 1 : num_ν for v in 1 : num_ν for w in 1 : num_Ω for i in 1 : num_sites # add q3 to s channel (right part from v <-> v' exchange) a.Γ[1].ch_s.q3[i, w, v, vp] += a_l.Γ[1].ch_s.q3[i, w, v, vp] + a_l.Γ[1].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_s.q3[i, w, v, vp] += a_l.Γ[2].ch_s.q3[i, w, v, vp] + a_l.Γ[2].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[3].ch_s.q3[i, w, v, vp] += a_l.Γ[3].ch_s.q3[i, w, v, vp] - a_l.Γ[3].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[4].ch_s.q3[i, w, v, vp] += a_l.Γ[4].ch_s.q3[i, w, v, vp] + a_l.Γ[4].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[5].ch_s.q3[i, w, v, vp] += a_l.Γ[5].ch_s.q3[i, w, v, vp] - a_l.Γ[6].ch_s.q3[r.exchange[i], w, vp, v] a.Γ[6].ch_s.q3[i, w, v, vp] += a_l.Γ[6].ch_s.q3[i, w, v, vp] - a_l.Γ[5].ch_s.q3[r.exchange[i], w, vp, v] # add q3 to t channel (right part from v <-> v' exchange) a.Γ[1].ch_t.q3[i, w, v, vp] += a_l.Γ[1].ch_t.q3[i, w, v, vp] + a_l.Γ[1].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[2].ch_t.q3[i, w, v, vp] += a_l.Γ[2].ch_t.q3[i, w, v, vp] + a_l.Γ[2].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[3].ch_t.q3[i, w, v, vp] += a_l.Γ[3].ch_t.q3[i, w, v, vp] - a_l.Γ[3].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[4].ch_t.q3[i, w, v, vp] += a_l.Γ[4].ch_t.q3[i, w, v, vp] + a_l.Γ[4].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[5].ch_t.q3[i, w, v, vp] += a_l.Γ[5].ch_t.q3[i, w, v, vp] - a_l.Γ[6].ch_t.q3[r.exchange[i], w, vp, v] a.Γ[6].ch_t.q3[i, w, v, vp] += a_l.Γ[6].ch_t.q3[i, w, v, vp] - a_l.Γ[5].ch_t.q3[r.exchange[i], w, vp, v] # add q3 to u channel (right part from v <-> v' exchange) a.Γ[1].ch_u.q3[i, w, v, vp] += a_l.Γ[1].ch_u.q3[i, w, v, vp] + a_l.Γ[1].ch_u.q3[i, w, vp, v] a.Γ[2].ch_u.q3[i, w, v, vp] += a_l.Γ[2].ch_u.q3[i, w, v, vp] + a_l.Γ[2].ch_u.q3[i, w, vp, v] a.Γ[3].ch_u.q3[i, w, v, vp] += a_l.Γ[3].ch_u.q3[i, w, v, vp] + a_l.Γ[3].ch_u.q3[i, w, vp, v] a.Γ[4].ch_u.q3[i, w, v, vp] += a_l.Γ[4].ch_u.q3[i, w, v, vp] + a_l.Γ[4].ch_u.q3[i, w, vp, v] a.Γ[5].ch_u.q3[i, w, v, vp] += a_l.Γ[5].ch_u.q3[i, w, v, vp] - a_l.Γ[5].ch_u.q3[i, w, vp, v] a.Γ[6].ch_u.q3[i, w, v, vp] += a_l.Γ[6].ch_u.q3[i, w, v, vp] - a_l.Γ[6].ch_u.q3[i, w, vp, v] end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1938
# save current status to file function checkpoint!( file :: HDF5.File, Λ :: Float64, dΛ :: Float64, m :: Mesh, a :: Action_su2 ) :: Nothing # save step size file["dΛ/$(Λ)"] = dΛ # save frequency meshes file["σ/$(Λ)"] = m.σ file["Ωs/$(Λ)"] = m.Ωs file["νs/$(Λ)"] = m.νs file["Ωt/$(Λ)"] = m.Ωt file["νt/$(Λ)"] = m.νt file["χ/$(Λ)"] = m.χ # save spin length if haskey(file, "S") == false file["S"] = a.S end # save symmetry group if haskey(file, "symmetry") == false file["symmetry"] = "su2" end # save self energy file["a/$(Λ)/Σ"] = a.Σ # save vertex save!(file, "a/$(Λ)/Γ/spin", a.Γ[1]) save!(file, "a/$(Λ)/Γ/dens", a.Γ[2]) return nothing end # read checkpoint from file function read_checkpoint_su2( file :: HDF5.File, Λ :: Float64 ) :: Tuple{Float64, Float64, Mesh, Action_su2} # filter out nearest available cutoff list = keys(file["σ"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) println("Λ was adjusted to $(cutoffs[index]).") # read step size dΛ = read(file, "dΛ/$(cutoffs[index])") # read frequency meshes σ = read(file, "σ/$(cutoffs[index])") Ωs = read(file, "Ωs/$(cutoffs[index])") νs = read(file, "νs/$(cutoffs[index])") Ωt = read(file, "Ωt/$(cutoffs[index])") νt = read(file, "νt/$(cutoffs[index])") χ = read(file, "χ/$(cutoffs[index])") m = Mesh(length(σ), length(Ωs), length(νs), length(χ), σ, Ωs, νs, Ωt, νt, χ) # read spin length S = read(file, "S") # read self energy Σ = read(file, "a/$(cutoffs[index])/Σ") # read vertex Γ = Vertex[read_vertex(file, "a/$(cutoffs[index])/Γ/spin"), read_vertex(file, "a/$(cutoffs[index])/Γ/dens")] # build action a = Action_su2(S, Σ, Γ) return cutoffs[index], dΛ, m, a end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2214
# save current status to file function checkpoint!( file :: HDF5.File, Λ :: Float64, dΛ :: Float64, m :: Mesh, a :: Action_u1_dm ) :: Nothing # save step size file["dΛ/$(Λ)"] = dΛ # save frequency meshes file["σ/$(Λ)"] = m.σ file["Ωs/$(Λ)"] = m.Ωs file["νs/$(Λ)"] = m.νs file["Ωt/$(Λ)"] = m.Ωt file["νt/$(Λ)"] = m.νt file["χ/$(Λ)"] = m.χ # save symmetry group if haskey(file, "symmetry") == false file["symmetry"] = "u1-dm" end # save self energy file["a/$(Λ)/Σ"] = a.Σ # save vertex save!(file, "a/$(Λ)/Γ/Γxx", a.Γ[1]) save!(file, "a/$(Λ)/Γ/Γzz", a.Γ[2]) save!(file, "a/$(Λ)/Γ/ΓDM", a.Γ[3]) save!(file, "a/$(Λ)/Γ/Γdd", a.Γ[4]) save!(file, "a/$(Λ)/Γ/Γzd", a.Γ[5]) save!(file, "a/$(Λ)/Γ/Γdz", a.Γ[6]) return nothing end # read checkpoint from file function read_checkpoint_u1_dm( file :: HDF5.File, Λ :: Float64 ) :: Tuple{Float64, Float64, Mesh, Action_u1_dm} # filter out nearest available cutoff list = keys(file["σ"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) println("Λ was adjusted to $(cutoffs[index]).") # read step size dΛ = read(file, "dΛ/$(cutoffs[index])") # read frequency meshes σ = read(file, "σ/$(cutoffs[index])") Ωs = read(file, "Ωs/$(cutoffs[index])") νs = read(file, "νs/$(cutoffs[index])") Ωt = read(file, "Ωt/$(cutoffs[index])") νt = read(file, "νt/$(cutoffs[index])") χ = read(file, "χ/$(cutoffs[index])") m = Mesh(length(σ), length(Ωs), length(νs), length(χ), σ, Ωs, νs, Ωt, νt, χ) # read self energy Σ = read(file, "a/$(cutoffs[index])/Σ") # read vertex Γ = Vertex[read_vertex(file, "a/$(cutoffs[index])/Γ/Γxx"), read_vertex(file, "a/$(cutoffs[index])/Γ/Γzz"), read_vertex(file, "a/$(cutoffs[index])/Γ/ΓDM"), read_vertex(file, "a/$(cutoffs[index])/Γ/Γdd"), read_vertex(file, "a/$(cutoffs[index])/Γ/Γzd"), read_vertex(file, "a/$(cutoffs[index])/Γ/Γdz")] # build action a = Action_u1_dm(Σ, Γ) return cutoffs[index], dΛ, m, a end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1889
# compute the BSE in the s channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_s_BSE!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a1 :: Action, a2 :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments s, vs, vsp = get_kernel_args(1, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_s_BSE!(Λ, b, v, dv, s, vs, vsp, r, m, a1, temp) # compute integrals ref = Λ + 0.5 * s val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 1, w1]) integrand!(tbuff[1], val, corrs[2, 1, w1]) # parse result for i in eachindex(a2.Γ) if kernel == 1 @turbo a2.Γ[i].ch_s.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo a2.Γ[i].ch_s.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo a2.Γ[i].ch_s.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo a2.Γ[i].ch_s.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1888
# compute the BSE in the t channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_t_BSE!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a1 :: Action, a2 :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments t, vt, vtp = get_kernel_args(2, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_t_BSE!(Λ, b, v, dv, t, vt, vtp, r, m, a1, temp) # compute integral ref = Λ + 0.5 * t val = m.Ωt[end] + m.νt[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 2, w1]) integrand!(tbuff[1], val, corrs[2, 2, w1]) # parse result for i in eachindex(a2.Γ) if kernel == 1 @turbo a2.Γ[i].ch_t.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo a2.Γ[i].ch_t.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo a2.Γ[i].ch_t.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo a2.Γ[i].ch_t.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1888
# compute the BSE in the u channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_u_BSE!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a1 :: Action, a2 :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments u, vu, vup = get_kernel_args(3, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_u_BSE!(Λ, b, v, dv, u, vu, vup, r, m, a1, temp) # compute integral ref = Λ + 0.5 * u val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 3, w1]) integrand!(tbuff[1], val, corrs[2, 3, w1]) # parse result for i in eachindex(a2.Γ) if kernel == 1 @turbo a2.Γ[i].ch_u.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo a2.Γ[i].ch_u.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo a2.Γ[i].ch_u.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo a2.Γ[i].ch_u.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
941
# load propagator bubbles include("bubbles.jl") # load parquet equations for different symmetries include("parquet_lib/parquet_su2/parquet_su2.jl") include("parquet_lib/parquet_u1_dm/parquet_u1_dm.jl") # load flow equations for different symmetries include("flow_lib/flow_su2/flow_su2.jl") include("flow_lib/flow_u1_dm/flow_u1_dm.jl") # load quadrature rule for vertex integration include("quadrature.jl") # load SDE computation include("SDE.jl") # load BSE computation of channels for frequency tuples (w1, w2, w3) and kernels k include("BSE_s.jl") include("BSE_t.jl") include("BSE_u.jl") # load self energy derivative calculation include("flow_self.jl") # load flow computation of channels for frequency tuples (w1, w2, w3) and kernels k include("flow_s.jl") include("flow_t.jl") include("flow_u.jl") # load full BSE and flow computation include("compute.jl") # load tests and timers include("test.jl") include("timers.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3029
# compute reduced s bubble function compute_channel_s_reduced!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a1 :: Action, a2 :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments s, vsp = 0.0, 0.0 if kernel == 1 s, vsp = m.Ωs[w1], Inf else s, vsp = m.Ωs[w1], m.νs[w3] end # define integrand integrand!(b, v, dv) = compute_s_reduced!(Λ, b, v, dv, s, vsp, r, m, a1, temp) # compute integrals ref = Λ + 0.5 * s val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 1, w1]) integrand!(tbuff[1], val, corrs[2, 1, w1]) # parse result for i in eachindex(a2.Γ) if kernel == 1 @turbo a2.Γ[i].ch_s.q1[:, w1] .= view(tbuff[1], i, :) else @turbo a2.Γ[i].ch_s.q2_2[:, w1, w3] .= view(tbuff[1], i, :) end end return nothing end # compute self energy from SDE function compute_Σ!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a1 :: Action, a2 :: Action, tbuffs :: Vector{NTuple{3, Matrix{Float64}}}, temps :: Vector{Array{Float64, 3}}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64}, Σ_tol :: NTuple{2, Float64} ) :: Nothing # compute boundary corrections compute_corrs!(Λ, m, a1, corrs, Γ_tol) # compute reduced s bubble in q1 and q2_2 @sync begin for w1 in 1 : m.num_Ω # compute q1 Threads.@spawn compute_channel_s_reduced!(Λ, 1, w1, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) for w3 in 1 : m.num_ν # compute q2_2 Threads.@spawn compute_channel_s_reduced!(Λ, 3, w1, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end end end # compute self energy for all frequencies @sync for i in 2 : length(m.σ) Threads.@spawn begin integrand = v -> compute_Σ_kernel(Λ, m.σ[i], v, r, m, a1, a2) a2.Σ[i] = quadgk(integrand, -Inf, -2.0 * Λ, 0.0, 2.0 * Λ, Inf, atol = Σ_tol[1], rtol = Σ_tol[2])[1] end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
6677
# get bare propagator function get_G_bare( Λ :: Float64, w :: Float64 ) :: Float64 val = 0.0 if abs(w) > 1e-8 val = -expm1(-w^2 / Λ^2) / w end return val end # get dressed propagator function get_G( Λ :: Float64, w :: Float64, m :: Mesh, a :: Action ) :: Float64 val = 0.0 if abs(w) > 1e-8 Σ = get_Σ(w, m, a) G0 = get_G_bare(Λ, w) denom = 0.0 # ensure causality if w * Σ >= 0.0 denom = 1.0 / G0 + Σ else denom = 1.0 / G0 end val = 1.0 / denom end return val end # get single scale propagator function get_S( Λ :: Float64, w :: Float64, m :: Mesh, a :: Action ) :: Float64 val = 0.0 if abs(w) > 1e-8 G = get_G(Λ, w, m, a) G0 = get_G_bare(Λ, w) val = (G / G0)^2 * exp(-w^2 / Λ^2) * 2.0 * w / Λ^3 end return val end # get differentiated propagator bubble function get_propagator_kat( Λ :: Float64, w1 :: Float64, w2 :: Float64, m :: Mesh, a :: Action, da :: Action ) :: Float64 dΣ = get_Σ(w1, m, da) S1 = get_S(Λ, w1, m, a) G1 = get_G(Λ, w1, m, a) G2 = get_G(Λ, w2, m, a) val = (S1 + G1^2 * dΣ) * G2 / (2.0 * pi) return val end # get undifferentiated propagator bubble function get_propagator( Λ :: Float64, w1 :: Float64, w2 :: Float64, m :: Mesh, a :: Action ) :: Float64 G1 = get_G(Λ, w1, m, a) G2 = get_G(Λ, w2, m, a) val = G1 * G2 / (2.0 * pi) return val end # compute boundary corrections for vertex integrals function compute_corrs_kat!( Λ :: Float64, m :: Mesh, a :: Action, da :: Action, corrs :: Array{Float64, 3}, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer @turbo corrs .= 0.0 # compute boundary corrections @sync for i in size(corrs, 3) Threads.@spawn begin # compute boundary corrections for s channel s_propagator = v -> get_propagator_kat(Λ, v + 0.5 * m.Ωs[i], 0.5 * m.Ωs[i] - v, m, a, da) + get_propagator_kat(Λ, 0.5 * m.Ωs[i] - v, v + 0.5 * m.Ωs[i], m, a, da) s_val = m.Ωs[end] + m.νs[end] s_bound_minus = s_propagator(-s_val) s_bound_plus = s_propagator( s_val) if abs(s_bound_minus) > 1e-8 corrs[1, 1, i] = quadgk(s_propagator, Inf, -s_val, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / s_bound_minus end if abs(s_bound_plus) > 1e-8 corrs[2, 1, i] = quadgk(s_propagator, s_val, Inf, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / s_bound_plus end # compute boundary corrections for t channel t_propagator = v -> get_propagator_kat(Λ, v + 0.5 * m.Ωt[i], v - 0.5 * m.Ωt[i], m, a, da) + get_propagator_kat(Λ, v - 0.5 * m.Ωt[i], v + 0.5 * m.Ωt[i], m, a, da) t_val = m.Ωt[end] + m.νt[end] t_bound_minus = t_propagator(-t_val) t_bound_plus = t_propagator( t_val) if abs(t_bound_minus) > 1e-8 corrs[1, 2, i] = quadgk(t_propagator, -Inf, -t_val, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / t_bound_minus end if abs(t_bound_plus) > 1e-8 corrs[2, 2, i] = quadgk(t_propagator, t_val, Inf, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / t_bound_plus end # compute boundary corrections for u channel u_propagator = v -> get_propagator_kat(Λ, v - 0.5 * m.Ωs[i], v + 0.5 * m.Ωs[i], m, a, da) + get_propagator_kat(Λ, v + 0.5 * m.Ωs[i], v - 0.5 * m.Ωs[i], m, a, da) u_val = m.Ωs[end] + m.νs[end] u_bound_minus = u_propagator(-u_val) u_bound_plus = u_propagator( u_val) if abs(u_bound_minus) > 1e-8 corrs[1, 3, i] = quadgk(u_propagator, -Inf, -u_val, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / u_bound_minus end if abs(u_bound_plus) > 1e-8 corrs[2, 3, i] = quadgk(u_propagator, u_val, Inf, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / u_bound_plus end end end return nothing end # compute boundary corrections for vertex integrals function compute_corrs!( Λ :: Float64, m :: Mesh, a :: Action, corrs :: Array{Float64, 3}, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer @turbo corrs .= 0.0 # compute boundary corrections @sync for i in size(corrs, 3) Threads.@spawn begin # compute boundary corrections for s channel s_propagator = v -> -get_propagator(Λ, v + 0.5 * m.Ωs[i], 0.5 * m.Ωs[i] - v, m, a) s_val = m.Ωs[end] + m.νs[end] s_bound_minus = s_propagator(-s_val) s_bound_plus = s_propagator( s_val) if abs(s_bound_minus) > 1e-8 corrs[1, 1, i] = quadgk(s_propagator, -Inf, -s_val, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / s_bound_minus end if abs(s_bound_plus) > 1e-8 corrs[2, 1, i] = quadgk(s_propagator, s_val, Inf, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / s_bound_plus end # compute boundary corrections for t channel t_propagator = v -> -get_propagator(Λ, v + 0.5 * m.Ωt[i], v - 0.5 * m.Ωt[i], m, a) t_val = m.Ωt[end] + m.νt[end] t_bound_minus = t_propagator(-t_val) t_bound_plus = t_propagator( t_val) if abs(t_bound_minus) > 1e-8 corrs[1, 2, i] = quadgk(t_propagator, -Inf, -t_val, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / t_bound_minus end if abs(t_bound_plus) > 1e-8 corrs[2, 2, i] = quadgk(t_propagator, t_val, Inf, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / t_bound_plus end # compute boundary corrections for u channel u_propagator = v -> -get_propagator(Λ, v - 0.5 * m.Ωs[i], v + 0.5 * m.Ωs[i], m, a) u_val = m.Ωs[end] + m.νs[end] u_bound_minus = u_propagator(-u_val) u_bound_plus = u_propagator( u_val) if abs(u_bound_minus) > 1e-8 corrs[1, 3, i] = quadgk(u_propagator, -Inf, -u_val, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / u_bound_minus end if abs(u_bound_plus) > 1e-8 corrs[2, 3, i] = quadgk(u_propagator, u_val, Inf, atol = Γ_tol[1], rtol = Γ_tol[2])[1] / u_bound_plus end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
15109
# compute the full right side of the BSEs for all channels function compute_Γ!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a1 :: Action, a2 :: Action, tbuffs :: Vector{NTuple{3, Matrix{Float64}}}, temps :: Vector{Array{Float64, 3}}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing @sync begin for w1 in 1 : m.num_Ω # compute q1 Threads.@spawn begin compute_channel_s_BSE!(Λ, 1, w1, -1, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_BSE!(Λ, 1, w1, -1, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_BSE!(Λ, 1, w1, -1, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w3 in 1 : m.num_ν # compute q2_1 Threads.@spawn begin compute_channel_s_BSE!(Λ, 2, w1, w3, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_BSE!(Λ, 2, w1, w3, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_BSE!(Λ, 2, w1, w3, -1, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end # compute q2_2 Threads.@spawn begin compute_channel_s_BSE!(Λ, 3, w1, -1, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_BSE!(Λ, 3, w1, -1, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_BSE!(Λ, 3, w1, -1, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w2 in w3 : m.num_ν # compute q3 Threads.@spawn begin compute_channel_s_BSE!(Λ, 4, w1, w2, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_BSE!(Λ, 4, w1, w2, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_BSE!(Λ, 4, w1, w2, w3, r, m, a1, a2, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end end end end end symmetrize!(r, a2) return nothing end # compute the full right side of the Katanin truncated flow equations for all channels function compute_dΓ_1l!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, tbuffs :: Vector{NTuple{3, Matrix{Float64}}}, temps :: Vector{Array{Float64, 3}}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # compute boundary corrections compute_corrs_kat!(Λ, m, a, da, corrs, Γ_tol) @sync begin for w1 in 1 : m.num_Ω # compute q1 Threads.@spawn begin compute_channel_s_kat!(Λ, 1, w1, -1, -1, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_kat!(Λ, 1, w1, -1, -1, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_kat!(Λ, 1, w1, -1, -1, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w3 in 1 : m.num_ν # compute q2_1 Threads.@spawn begin compute_channel_s_kat!(Λ, 2, w1, w3, -1, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_kat!(Λ, 2, w1, w3, -1, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_kat!(Λ, 2, w1, w3, -1, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end # compute q2_2 Threads.@spawn begin compute_channel_s_kat!(Λ, 3, w1, -1, w3, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_kat!(Λ, 3, w1, -1, w3, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_kat!(Λ, 3, w1, -1, w3, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w2 in w3 : m.num_ν # compute q3 Threads.@spawn begin compute_channel_s_kat!(Λ, 4, w1, w2, w3, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_kat!(Λ, 4, w1, w2, w3, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_kat!(Λ, 4, w1, w2, w3, r, m, a, da, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end end end end end symmetrize!(r, da) return nothing end # compute the full right side of the two loop truncated flow equations for all channels function compute_dΓ_2l!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, da_l :: Action, tbuffs :: Vector{NTuple{3, Matrix{Float64}}}, temps :: Vector{Array{Float64, 3}}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # compute one loop compute_dΓ_1l!(Λ, r, m, a, da, tbuffs, temps, corrs, eval, Γ_tol) # compute boundary corrections compute_corrs!(Λ, m, a, corrs, Γ_tol) @sync begin for w1 in 1 : m.num_Ω # compute q1 Threads.@spawn begin compute_channel_s_left!(Λ, 1, w1, -1, -1, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 1, w1, -1, -1, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 1, w1, -1, -1, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w3 in 1 : m.num_ν # compute q2_1 Threads.@spawn begin compute_channel_s_left!(Λ, 2, w1, w3, -1, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 2, w1, w3, -1, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 2, w1, w3, -1, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end # compute q2_2 Threads.@spawn begin compute_channel_s_left!(Λ, 3, w1, -1, w3, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 3, w1, -1, w3, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 3, w1, -1, w3, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w2 in 1 : m.num_ν # compute q3 Threads.@spawn begin compute_channel_s_left!(Λ, 4, w1, w2, w3, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 4, w1, w2, w3, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 4, w1, w2, w3, r, m, a, da, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end end end end end symmetrize_add_to!(r, da_l, da) return nothing end # compute the full right side of the multiloop truncated flow equations for all channels function compute_dΓ_ml!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, loops :: Int64, a :: Action, da :: Action, da_l :: Action, da_c :: Action, da_temp :: Action, da_Σ :: Action, tbuffs :: Vector{NTuple{3, Matrix{Float64}}}, temps :: Vector{Array{Float64, 3}}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # compute two loop compute_dΓ_2l!(Λ, r, m, a, da, da_l, tbuffs, temps, corrs, eval, Γ_tol) # update temporary buffer and reset terms for self energy corrections reset_Γ!(da_temp) reset_Γ!(da_Σ) symmetrize_add_to!(r, da_l, da_temp) for loop in 3 : loops @sync begin for w1 in 1 : m.num_Ω # compute q1 Threads.@spawn begin compute_channel_s_central!(Λ, 1, w1, -1, -1, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_central!(Λ, 1, w1, -1, -1, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_central!(Λ, 1, w1, -1, -1, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w3 in 1 : m.num_ν # compute q2_1 Threads.@spawn begin compute_channel_s_central!(Λ, 2, w1, w3, -1, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_central!(Λ, 2, w1, w3, -1, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_central!(Λ, 2, w1, w3, -1, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end # compute q2_2 Threads.@spawn begin compute_channel_s_central!(Λ, 3, w1, -1, w3, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_central!(Λ, 3, w1, -1, w3, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_central!(Λ, 3, w1, -1, w3, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w2 in w3 : m.num_ν # compute q3 Threads.@spawn begin compute_channel_s_central!(Λ, 4, w1, w2, w3, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_central!(Λ, 4, w1, w2, w3, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_central!(Λ, 4, w1, w2, w3, r, m, a, da_l, da_c, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end end end end end @sync begin for w1 in 1 : m.num_Ω # compute q1 Threads.@spawn begin compute_channel_s_left!(Λ, 1, w1, -1, -1, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 1, w1, -1, -1, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 1, w1, -1, -1, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end for w3 in 1 : m.num_ν # compute q2_1 Threads.@spawn begin compute_channel_s_left!(Λ, 2, w1, w3, -1, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 2, w1, w3, -1, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 2, w1, w3, -1, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end # compute q2_2 Threads.@spawn begin compute_channel_s_left!(Λ, 3, w1, -1, w3, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 3, w1, -1, w3, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 3, w1, -1, w3, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end # compute q3 for w2 in 1 : m.num_ν Threads.@spawn begin compute_channel_s_left!(Λ, 4, w1, w2, w3, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_t_left!(Λ, 4, w1, w2, w3, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) compute_channel_u_left!(Λ, 4, w1, w2, w3, r, m, a, da_temp, da_l, tbuffs[Threads.threadid()], temps[Threads.threadid()], corrs, eval, Γ_tol) end end end end end # update temporary buffer symmetrize!(r, da_c) replace_with_Γ!(da_temp, da_c) symmetrize_add_to!(r, da_l, da_temp) # update self energy corrections and flow add_to_Γ!(da_c, da_Σ) add_to_Γ!(da_temp, da) end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5852
# compute the Katanin truncated flow equations in the s channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_s_kat!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments s, vs, vsp = get_kernel_args(1, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_s_kat!(Λ, b, v, dv, s, vs, vsp, r, m, a, da, temp) # compute integrals ref = Λ + 0.5 * s val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 1, w1]) integrand!(tbuff[1], val, corrs[2, 1, w1]) # parse result for i in eachindex(da.Γ) if kernel == 1 @turbo da.Γ[i].ch_s.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da.Γ[i].ch_s.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da.Γ[i].ch_s.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da.Γ[i].ch_s.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end # compute the left part of the flow equations in the s channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_s_left!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, da_l :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments s, vs, vsp = get_kernel_args(1, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_s_left!(Λ, b, v, dv, s, vs, vsp, r, m, a, da, temp) # compute integrals ref = Λ + 0.5 * s val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 1, w1]) integrand!(tbuff[1], val, corrs[2, 1, w1]) # parse result for i in eachindex(da_l.Γ) if kernel == 1 @turbo da_l.Γ[i].ch_s.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da_l.Γ[i].ch_s.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da_l.Γ[i].ch_s.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da_l.Γ[i].ch_s.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end # compute the central part of the flow equations in the s channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_s_central!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da_l :: Action, da_c :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments s, vs, vsp = get_kernel_args(1, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_s_central!(Λ, b, v, dv, s, vs, vsp, r, m, a, da_l, temp) # compute integrals ref = Λ + 0.5 * s val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 1, w1]) integrand!(tbuff[1], val, corrs[2, 1, w1]) # parse result for i in eachindex(da_c.Γ) if kernel == 1 @turbo da_c.Γ[i].ch_s.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da_c.Γ[i].ch_s.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da_c.Γ[i].ch_s.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da_c.Γ[i].ch_s.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1535
# compute self energy derivative function compute_dΣ!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, Σ_tol :: NTuple{2, Float64} ) :: Nothing # compute self energy derivative for all frequencies @sync for i in 2 : length(m.σ) Threads.@spawn begin integrand = v -> compute_dΣ_kernel(Λ, m.σ[i], v, r, m, a) da.Σ[i] = quadgk(integrand, -Inf, -2.0 * Λ, 0.0, 2.0 * Λ, Inf, atol = Σ_tol[1], rtol = Σ_tol[2])[1] end end return nothing end # compute corrections to self energy derivative function compute_dΣ_corr!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, da_Σ :: Action, Σ_tol :: NTuple{2, Float64} ) :: Nothing # compute first correction @sync for i in 2 : length(m.σ) Threads.@spawn begin integrand = v -> compute_dΣ_kernel_corr1(Λ, m.σ[i], v, r, m, a, da_Σ) da_Σ.Σ[i] = quadgk(integrand, -Inf, -2.0 * Λ, 0.0, 2.0 * Λ, Inf, atol = Σ_tol[1], rtol = Σ_tol[2])[1] end end # compute second correction and parse to da @sync for i in 2 : length(m.σ) Threads.@spawn begin integrand = v -> compute_dΣ_kernel_corr2(Λ, m.σ[i], v, r, m, a, da_Σ) da.Σ[i] += da_Σ.Σ[i] da.Σ[i] += quadgk(integrand, -Inf, -2.0 * Λ, 0.0, 2.0 * Λ, Inf, atol = Σ_tol[1], rtol = Σ_tol[2])[1] end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5849
# compute the Katanin truncated flow equations in the t channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_t_kat!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments t, vt, vtp = get_kernel_args(2, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_t_kat!(Λ, b, v, dv, t, vt, vtp, r, m, a, da, temp) # compute integral ref = Λ + 0.5 * t val = m.Ωt[end] + m.νt[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 2, w1]) integrand!(tbuff[1], val, corrs[2, 2, w1]) # parse result for i in eachindex(da.Γ) if kernel == 1 @turbo da.Γ[i].ch_t.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da.Γ[i].ch_t.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da.Γ[i].ch_t.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da.Γ[i].ch_t.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end # compute the left part of the flow equations in the t channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_t_left!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, da_l :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments t, vt, vtp = get_kernel_args(2, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_t_left!(Λ, b, v, dv, t, vt, vtp, r, m, a, da, temp) # compute integral ref = Λ + 0.5 * t val = m.Ωt[end] + m.νt[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 2, w1]) integrand!(tbuff[1], val, corrs[2, 2, w1]) # parse result for i in eachindex(da_l.Γ) if kernel == 1 @turbo da_l.Γ[i].ch_t.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da_l.Γ[i].ch_t.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da_l.Γ[i].ch_t.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da_l.Γ[i].ch_t.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end # compute the central part of the flow equations in the t channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_t_central!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da_l :: Action, da_c :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments t, vt, vtp = get_kernel_args(2, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_t_central!(Λ, b, v, dv, t, vt, vtp, r, m, a, da_l, temp) # compute integral ref = Λ + 0.5 * t val = m.Ωt[end] + m.νt[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 2, w1]) integrand!(tbuff[1], val, corrs[2, 2, w1]) # parse result for i in eachindex(da_c.Γ) if kernel == 1 @turbo da_c.Γ[i].ch_t.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da_c.Γ[i].ch_t.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da_c.Γ[i].ch_t.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da_c.Γ[i].ch_t.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5849
# compute the Katanin truncated flow equations in the u channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_u_kat!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments u, vu, vup = get_kernel_args(3, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_u_kat!(Λ, b, v, dv, u, vu, vup, r, m, a, da, temp) # compute integral ref = Λ + 0.5 * u val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 3, w1]) integrand!(tbuff[1], val, corrs[2, 3, w1]) # parse result for i in eachindex(da.Γ) if kernel == 1 @turbo da.Γ[i].ch_u.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da.Γ[i].ch_u.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da.Γ[i].ch_u.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da.Γ[i].ch_u.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end # compute the left part of the flow equations in the u channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_u_left!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da :: Action, da_l :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments u, vu, vup = get_kernel_args(3, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_u_left!(Λ, b, v, dv, u, vu, vup, r, m, a, da, temp) # compute integral ref = Λ + 0.5 * u val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 3, w1]) integrand!(tbuff[1], val, corrs[2, 3, w1]) # parse result for i in eachindex(da_l.Γ) if kernel == 1 @turbo da_l.Γ[i].ch_u.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da_l.Γ[i].ch_u.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da_l.Γ[i].ch_u.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da_l.Γ[i].ch_u.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end # compute the central part of the flow equations in the u channel for a frequency tuple (w1, w2, w3) and a given kernel on all lattice sites function compute_channel_u_central!( Λ :: Float64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, r :: Reduced_lattice, m :: Mesh, a :: Action, da_l :: Action, da_c :: Action, tbuff :: NTuple{3, Matrix{Float64}}, temp :: Array{Float64, 3}, corrs :: Array{Float64, 3}, eval :: Int64, Γ_tol :: NTuple{2, Float64} ) :: Nothing # reset buffer tbuff[1] .= 0.0 # get frequency arguments u, vu, vup = get_kernel_args(3, kernel, w1, w2, w3, m) # define integrand integrand!(b, v, dv) = compute_u_central!(Λ, b, v, dv, u, vu, vup, r, m, a, da_l, temp) # compute integral ref = Λ + 0.5 * u val = m.Ωs[end] + m.νs[end] integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2], sgn = -1.0) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, -2.0 * ref, 0.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_lin!((b, v, dv) -> integrand!(b, v, dv), tbuff, 0.0 * ref, 2.0 * ref, eval, Γ_tol[1], Γ_tol[2]) integrate_log!((b, v, dv) -> integrand!(b, v, dv), tbuff, 2.0 * ref, 1.0 * val, eval, Γ_tol[1], Γ_tol[2]) # correct boundaries integrand!(tbuff[1], -val, corrs[1, 3, w1]) integrand!(tbuff[1], val, corrs[2, 3, w1]) # parse result for i in eachindex(da_c.Γ) if kernel == 1 @turbo da_c.Γ[i].ch_u.q1[:, w1] .= view(tbuff[1], i, :) elseif kernel == 2 @turbo da_c.Γ[i].ch_u.q2_1[:, w1, w2] .= view(tbuff[1], i, :) elseif kernel == 3 @turbo da_c.Γ[i].ch_u.q2_2[:, w1, w3] .= view(tbuff[1], i, :) else @turbo da_c.Γ[i].ch_u.q3[:, w1, w2, w3] .= view(tbuff[1], i, :) end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
4225
# auxiliary function to compute necessary contributions for refined Simpson rule function residual!( f! :: Function, buff :: Matrix{Float64}, a :: Float64, b :: Float64, n :: Int64 ) :: Nothing # compute refined step size h = 0.5 * (b - a) / n # compute integral contributions for new nodes for i in 1 : n f!(buff, a + (2.0 * i - 1.0) * h, +4.0 * h / 3.0) end # compute integral contributions for reweighted nodes for i in 1 : n ÷ 2 f!(buff, a + (4.0 * i - 2.0) * h, -2.0 * h / 3.0) end return nothing end # integrate inplace function over an interval [a, b], with b >= a, using an adaptive Simpson rule with Richardson extrapolation on the converged result function simps!( f! :: Function, buff1 :: Matrix{Float64}, buff2 :: Matrix{Float64}, a :: Float64, b :: Float64, atol :: Float64, rtol :: Float64 ) :: Nothing # reset result buffer @turbo buff1 .= 0.0 # compute initial approximation m = 0.5 * (a + b) f!(buff1, a, 1.0 * (b - a) / 6.0) f!(buff1, m, 2.0 * (b - a) / 3.0) f!(buff1, b, 1.0 * (b - a) / 6.0) # compute improved approximation @turbo buff2 .= 0.5 .* buff1 residual!((b, x, dx) -> f!(b, x, dx), buff2, a, b, 2) n = 4 # continue improving the integral approximation until convergence is reached while true # perform Richardson extrapolation @turbo buff1 .*= -1.0 / 15.0 @turbo buff1 .+= 16.0 / 15.0 .* buff2 # compute errors norm1 = norm(buff1) norm2 = norm(buff2) @turbo buff1 .-= buff2 adiff = norm(buff1) rdiff = adiff / max(norm1, norm2) # if result has converged or maximum depth (= 20) is reached, terminate if adiff < atol || rdiff < rtol || n > 2^20 @turbo buff1 .+= buff2 break end # update current solution @turbo buff1 .= buff2 # compute improved approximation @turbo buff2 .= 0.5 .* buff1 residual!((b, x, dx) -> f!(b, x, dx), buff2, a, b, n) n *= 2 end return nothing end # integrate inplace function over an interval [a, b], with b >= a, by pre-discretizing the integration domain linearly and applying an adaptive Simpson rule to each subdomain # note: tbuff[1] is not reset for convenience in flow integration function integrate_lin!( f! :: Function, tbuff :: NTuple{3, Matrix{Float64}}, a :: Float64, b :: Float64, eval :: Int64, atol :: Float64, rtol :: Float64 ) :: Nothing @assert b >= a "Upper integration bound must be larger than or equal to lower bound." if b > a # split integration domain in subdomains of equal length h = (b - a) / eval # iterate over subdomains and apply adaptive Simpson rule for i in 1 : eval simps!((b, x, dx) -> f!(b, x, dx), tbuff[2], tbuff[3], a + (i - 1) * h, a + i * h, atol, rtol) tbuff[1] .+= tbuff[2] end end return nothing end # integrate inplace function over an interval [a, b], with b >= a and a > 0, by pre-discretizing the integration domain logarithmically and applying an adaptive Simpson rule to each subdomain # note: tbuff[1] is not reset for convenience in flow integration # note: the sgn keyword can be usend to map [a, b] -> [-b, -a] function integrate_log!( f! :: Function, tbuff :: NTuple{3, Matrix{Float64}}, a :: Float64, b :: Float64, eval :: Int64, atol :: Float64, rtol :: Float64 ; sgn :: Float64 = 1.0 ) :: Nothing @assert b >= a "Upper integration bound must be larger than or equal to lower bound." @assert a > 0.0 "Lower bound must be larger zero." if b > a # determine logarithmic factor ξ = (b / a)^(1.0 / eval) # iterate over subdomains and apply adaptive Simpson rule for i in 1 : eval simps!((b, x, dx) -> f!(b, sgn * x, dx), tbuff[2], tbuff[3], ξ^(i - 1) * a, ξ^i * a, atol, rtol) tbuff[1] .+= tbuff[2] end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1475
# define test kernel function test_kernel!( b :: Matrix{Float64}, x :: Float64, dx :: Float64 ) :: Nothing for i in eachindex(b) b[i] += dx * x^i * exp(-x^2) * sin(2.0 * pi * x) end return nothing end # define benchmark kernel function bench_kernel!( b :: Matrix{Float64}, x :: Float64 ) :: Nothing for i in eachindex(b) b[i] = x^i * exp(-x^2) * sin(2.0 * pi * x) end return nothing end """ test_flow() :: Nothing Run consistency checks for flow equations by testing integrators. """ function test_flow() :: Nothing # benchmark handcrafted integrators against QuadGK test_integrators() return nothing end """ test_integrators() :: Nothing Run consistency checks for integrators by computing test integrals and comparing to QuadGK. """ function test_integrators() :: Nothing # init test dummys b1 = zeros(Float64, 10, 10) b2 = (copy(b1), copy(b1), copy(b1)) b3 = (copy(b1), copy(b1), copy(b1)) @testset "quadrature" begin # compute integral with QuadGK quadgk!((b, x) -> bench_kernel!(b, x), b1, 1.0, 5.0, atol = 1e-8, rtol = 1e-8) # compute integral with simps! integrate_lin!((b, x, dx) -> test_kernel!(b, x, dx), b2, 1.0, 5.0, 100, 1e-8, 1e-8) integrate_log!((b, x, dx) -> test_kernel!(b, x, dx), b3, 1.0, 5.0, 100, 1e-8, 1e-8) @test b1 ≈ b2[1] @test b1 ≈ b3[1] end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5620
# auxiliary function to perform timings for action function time_kernels!( to :: TimerOutput, r :: Reduced_lattice, m :: Mesh, a :: Action, ap :: Action ) :: Nothing # get timer parameters Λ = rand() v = rand() dv = rand() wc = rand() vc = rand() vcp = rand() # init buffers for evaluation of rhs buff = zeros(Float64, length(a.Γ), length(r.sites)) temp = zeros(Float64, length(r.sites), length(a.Γ), 2) # fill self energy with random values a.Σ .= rand(31) ap.Σ .= rand(31) # fill channels with random values for i in eachindex(a.Γ) a.Γ[i].ch_s.q1 .= rand(length(r.sites), 31) a.Γ[i].ch_t.q1 .= rand(length(r.sites), 31) a.Γ[i].ch_u.q1 .= rand(length(r.sites), 31) a.Γ[i].ch_s.q2_1 .= rand(length(r.sites), 31, 31) a.Γ[i].ch_t.q2_1 .= rand(length(r.sites), 31, 31) a.Γ[i].ch_u.q2_1 .= rand(length(r.sites), 31, 31) a.Γ[i].ch_s.q2_2 .= rand(length(r.sites), 31, 31) a.Γ[i].ch_t.q2_2 .= rand(length(r.sites), 31, 31) a.Γ[i].ch_u.q2_2 .= rand(length(r.sites), 31, 31) a.Γ[i].ch_s.q3 .= rand(length(r.sites), 31, 31, 31) a.Γ[i].ch_t.q3 .= rand(length(r.sites), 31, 31, 31) a.Γ[i].ch_u.q3 .= rand(length(r.sites), 31, 31, 31) ap.Γ[i].ch_s.q1 .= rand(length(r.sites), 31) ap.Γ[i].ch_t.q1 .= rand(length(r.sites), 31) ap.Γ[i].ch_u.q1 .= rand(length(r.sites), 31) ap.Γ[i].ch_s.q2_1 .= rand(length(r.sites), 31, 31) ap.Γ[i].ch_t.q2_1 .= rand(length(r.sites), 31, 31) ap.Γ[i].ch_u.q2_1 .= rand(length(r.sites), 31, 31) ap.Γ[i].ch_s.q2_2 .= rand(length(r.sites), 31, 31) ap.Γ[i].ch_t.q2_2 .= rand(length(r.sites), 31, 31) ap.Γ[i].ch_u.q2_2 .= rand(length(r.sites), 31, 31) ap.Γ[i].ch_s.q3 .= rand(length(r.sites), 31, 31, 31) ap.Γ[i].ch_t.q3 .= rand(length(r.sites), 31, 31, 31) ap.Γ[i].ch_u.q3 .= rand(length(r.sites), 31, 31, 31) end for rep in 1 : 10 # time parquet equations @timeit to "=> parquet" begin # time SDE @timeit to "-> SDE" compute_Σ_kernel(Λ, v, wc, r, m, a, ap) # time BSE in all channels @timeit to "-> BSE s channel" compute_s_BSE!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, temp) @timeit to "-> BSE t channel" compute_t_BSE!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, temp) @timeit to "-> BSE u channel" compute_u_BSE!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, temp) end # time flow equations @timeit to "=> FRG" begin # time self energy @timeit to "-> Σ one loop" compute_dΣ_kernel(Λ, v, wc, r, m, a) @timeit to "-> Σ corr 1" compute_dΣ_kernel_corr1(Λ, v, wc, r, m, a, ap) @timeit to "-> Σ corr 2" compute_dΣ_kernel_corr2(Λ, v, wc, r, m, a, ap) # time Katanin part in all channels @timeit to "-> Katanin s channel" compute_s_kat!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) @timeit to "-> Katanin t channel" compute_t_kat!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) @timeit to "-> Katanin u channel" compute_u_kat!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) # time left part in all channels @timeit to "-> left s channel" compute_s_left!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) @timeit to "-> left t channel" compute_t_left!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) @timeit to "-> left u channel" compute_u_left!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) # time central part in all channels @timeit to "-> central s channel" compute_s_central!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) @timeit to "-> central t channel" compute_t_central!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) @timeit to "-> central u channel" compute_u_central!(Λ, buff, v, dv, wc, vc, vcp, r, m, a, ap, temp) end end return nothing end """ get_flow_timers() :: Nothing Time current implementation of flow equations by running the different integration kernels. """ function get_flow_timers() :: Nothing println("NOTE: TIMERS BETWEEN DIFFERENT SYMMETRIES SHALL NOT BE COMPARED (RESULTS ARE MODEL DEPENDENT).") println() # init test dummys list = get_mesh(rand(), 1.0, 30, 0.4) m = Mesh(31, 31, 31, 31, list, list, list, list, list, list) # init timer to = TimerOutput() # time evals of integration kernels for action_su2 @timeit to "=> action_su2" begin # generate action dummy for square lattice Heisenberg model l = get_lattice("square", 5, verbose = false) r = get_reduced_lattice("heisenberg", [[1.0]], l, verbose = false) a = get_action_empty("su2", r, m); init_action!(l, r, a) ap = get_action_empty("su2", r, m) # time integration kernels time_kernels!(to, r, m, a, ap) end # time evals of integration kernels for action_u1_dm @timeit to "=> action_u1_dm" begin # generate action dummy for triangular lattice dm-c3 model l = get_lattice("triangular", 5, verbose = false) r = get_reduced_lattice("triangular-dm-c3", [[1.0, 1.0, 1.0]], l, verbose = false) a = get_action_empty("u1-dm", r, m); init_action!(l, r, a) ap = get_action_empty("u1-dm", r, m) # time integration kernels time_kernels!(to, r, m, a, ap) end show(to) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
114
# load code include("flow_su2_self.jl") include("flow_su2_s.jl") include("flow_su2_t.jl") include("flow_su2_u.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
4723
# Katanin kernel function compute_s_kat!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = get_propagator_kat(Λ, v + 0.5 * s, 0.5 * s - v, m, a, da) + get_propagator_kat(Λ, 0.5 * s - v, v + 0.5 * s, m, a, da) # get buffers for left vertex bs1 = get_buffer_s(s, vs, -v, m) bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * ( 3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # left kernel (right part obtained by symmetries) function compute_s_left!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for left vertex bs1 = get_buffer_empty() bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, da, temp, 1, ch_s = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * ( 3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # central kernel function compute_s_central!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da_l :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for left vertex bs1 = get_buffer_s(s, vs, -v, m) bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_empty() bu2 = get_buffer_empty() # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, da_l, temp, 2, ch_t = false, ch_u = false) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * ( 3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3447
# integration kernel for loop function function compute_dΣ_kernel( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2 ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s( v + w, 0.5 * (-v + w), 0.5 * (v - w), m) b1t = get_buffer_t(0.0, w, v, m) b1u = get_buffer_u(-v + w, 0.5 * ( v + w), 0.5 * (v + w), m) # get buffers for local vertex b2s = get_buffer_s(v + w, 0.5 * (-v + w), 0.5 * (-v + w), m) b2t = get_buffer_t(v - w, 0.5 * ( v + w), 0.5 * ( v + w), m) b2u = get_buffer_u(0.0, w, v, m) # compute local contributions val = 3.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, a, apply_flags_su2) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, a, apply_flags_su2) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * (2.0 * a.S) * get_Γ_comp(2, j, b1s, b1t, b1u, r, a, apply_flags_su2) end # multiply with single scale propagator val *= get_S(Λ, v, m, a) / (2.0 * pi) return val end # first integration kernel for loop function for self energy corrections function compute_dΣ_kernel_corr1( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da_Σ :: Action_su2 ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s( v + w, 0.5 * (-v + w), 0.5 * (v - w), m) b1t = get_buffer_t(0.0, w, v, m) b1u = get_buffer_u(-v + w, 0.5 * ( v + w), 0.5 * (v + w), m) # get buffers for local vertex b2s = get_buffer_s(v + w, 0.5 * (-v + w), 0.5 * (-v + w), m) b2t = get_buffer_t(v - w, 0.5 * ( v + w), 0.5 * ( v + w), m) b2u = get_buffer_u(0.0, w, v, m) # compute local contributions val = 3.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, da_Σ, apply_flags_su2, ch_u = false) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, da_Σ, apply_flags_su2, ch_u = false) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * (2.0 * a.S) * get_Γ_comp(2, j, b1s, b1t, b1u, r, da_Σ, apply_flags_su2, ch_t = false) end # multiply with full propagator val *= -get_G(Λ, v, m, a) / (2.0 * pi) return val end # second integration kernel for loop function for self energy corrections function compute_dΣ_kernel_corr2( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da_Σ :: Action_su2 ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s( v + w, 0.5 * (-v + w), 0.5 * (v - w), m) b1t = get_buffer_t(0.0, w, v, m) b1u = get_buffer_u(-v + w, 0.5 * ( v + w), 0.5 * (v + w), m) # get buffers for local vertex b2s = get_buffer_s(v + w, 0.5 * (-v + w), 0.5 * (-v + w), m) b2t = get_buffer_t(v - w, 0.5 * ( v + w), 0.5 * ( v + w), m) b2u = get_buffer_u(0.0, w, v, m) # compute local contributions val = 3.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, a, apply_flags_su2) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, a, apply_flags_su2) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * (2.0 * a.S) * get_Γ_comp(2, j, b1s, b1t, b1u, r, a, apply_flags_su2) end # multiply with full propagator val *= get_G(Λ, v, m, a)^2 * get_Σ(v, m, da_Σ) / (2.0 * pi) return val end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
8649
# Katanin kernel function compute_t_kat!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = get_propagator_kat(Λ, v + 0.5 * t, v - 0.5 * t, m, a, da) + get_propagator_kat(Λ, v - 0.5 * t, v + 0.5 * t, m, a, da) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_t(t, vt, v, m) bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_s(v + vtp, 0.5 * (-t + v - vtp), 0.5 * (-t - v + vtp), m) bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_u(v - vtp, 0.5 * (-t + v + vtp), 0.5 * ( t + v + vtp), m) # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_u(t, v, vt, m) # get buffers for local right vertex bs4 = get_buffer_s(v + vtp, 0.5 * (t - v + vtp), 0.5 * (-t - v + vtp), m) bt4 = get_buffer_t(v - vtp, 0.5 * (t + v + vtp), 0.5 * (-t + v + vtp), m) bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3s, v3d = get_Γ(1, bs3, bt3, bu3, r, a) v4s, v4d = get_Γ(1, bs4, bt4, bu4, r, a) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-1.0 * v1s * v4s + v1s * v4d - 1.0 * v3s * v2s + v3d * v2s) Γd = -p * ( 3.0 * v1d * v4s + v1d * v4d + 3.0 * v3s * v2d + v3d * v2d) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1s = temp[overlap_i[j, 1], 1, 1]; v1d = temp[overlap_i[j, 1], 2, 1] v2s = temp[overlap_i[j, 2], 1, 2]; v2d = temp[overlap_i[j, 2], 2, 2] # compute contribution at inner site Γs += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1s * v2s Γd += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1d * v2d end # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # left kernel (right part obtained by symmetries) function compute_t_left!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = -get_propagator(Λ, v + 0.5 * t, v - 0.5 * t, m, a) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_empty() bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_s(v + vtp, 0.5 * (-t + v - vtp), 0.5 * (-t - v + vtp), m) bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_u(v - vtp, 0.5 * (-t + v + vtp), 0.5 * ( t + v + vtp), m) # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_empty() # get buffers for local right vertex bs4 = get_buffer_s(v + vtp, 0.5 * (t - v + vtp), 0.5 * (-t - v + vtp), m) bt4 = get_buffer_t(v - vtp, 0.5 * (t + v + vtp), 0.5 * (-t + v + vtp), m) bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3s, v3d = get_Γ(1, bs3, bt3, bu3, r, da, ch_u = false) v4s, v4d = get_Γ(1, bs4, bt4, bu4, r, a) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, da, temp, 1, ch_t = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-1.0 * v1s * v4s + v1s * v4d - 1.0 * v3s * v2s + v3d * v2s) Γd = -p * ( 3.0 * v1d * v4s + v1d * v4d + 3.0 * v3s * v2d + v3d * v2d) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1s = temp[overlap_i[j, 1], 1, 1]; v1d = temp[overlap_i[j, 1], 2, 1] v2s = temp[overlap_i[j, 2], 1, 2]; v2d = temp[overlap_i[j, 2], 2, 2] # compute contribution at inner site Γs += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1s * v2s Γd += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1d * v2d end # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # central kernel function compute_t_central!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da_l :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = -get_propagator(Λ, v + 0.5 * t, v - 0.5 * t, m, a) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_t(t, vt, v, m) bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_empty() bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_empty() # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_u(t, v, vt, m) # get buffers for local right vertex bs4 = get_buffer_empty() bt4 = get_buffer_empty() bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3s, v3d = get_Γ(1, bs3, bt3, bu3, r, a) v4s, v4d = get_Γ(1, bs4, bt4, bu4, r, da_l, ch_s = false, ch_t = false) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, da_l, temp, 2, ch_s = false, ch_u = false) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-1.0 * v1s * v4s + v1s * v4d - 1.0 * v3s * v2s + v3d * v2s) Γd = -p * ( 3.0 * v1d * v4s + v1d * v4d + 3.0 * v3s * v2d + v3d * v2d) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1s = temp[overlap_i[j, 1], 1, 1]; v1d = temp[overlap_i[j, 1], 2, 1] v2s = temp[overlap_i[j, 2], 1, 2]; v2d = temp[overlap_i[j, 2], 2, 2] # compute contribution at inner site Γs += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1s * v2s Γd += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1d * v2d end # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
4725
# Katanin kernel function compute_u_kat!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = get_propagator_kat(Λ, v - 0.5 * u, v + 0.5 * u, m, a, da) + get_propagator_kat(Λ, v + 0.5 * u, v - 0.5 * u, m, a, da) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_u(u, vu, v, m) # get buffers for right vertex bs2 = get_buffer_s( v + vup, 0.5 * (u + v - vup), 0.5 * (-u + v - vup), m) bt2 = get_buffer_t(-v + vup, 0.5 * (u + v + vup), 0.5 * (-u + v + vup), m) bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * (3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # left kernel (right part obtained by symmetries) function compute_u_left!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v - 0.5 * u, v + 0.5 * u, m, a) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_empty() # get buffers for right vertex bs2 = get_buffer_s( v + vup, 0.5 * (u + v - vup), 0.5 * (-u + v - vup), m) bt2 = get_buffer_t(-v + vup, 0.5 * (u + v + vup), 0.5 * (-u + v + vup), m) bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, da, temp, 1, ch_u = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * (3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # central kernel function compute_u_central!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, da_l :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v - 0.5 * u, v + 0.5 * u, m, a) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_u(u, vu, v, m) # get buffers for right vertex bs2 = get_buffer_empty() bt2 = get_buffer_empty() bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, da_l, temp, 2, ch_s = false, ch_t = false) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * (3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
122
# load code include("flow_u1_dm_self.jl") include("flow_u1_dm_s.jl") include("flow_u1_dm_t.jl") include("flow_u1_dm_u.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
7726
# Katanin kernel function compute_s_kat!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = get_propagator_kat(Λ, v + 0.5 * s, 0.5 * s - v, m, a, da) + get_propagator_kat(Λ, 0.5 * s - v, v + 0.5 * s, m, a, da) # get buffers for left vertex bs1 = get_buffer_s(s, vs, -v, m) bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx - v1xx * v2zz - v1dz * v2DM + v1zd * v2DM - v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd - 2.0 * v1xx * v2xx - 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx - v1xx * v2dz - v1zz * v2DM + v1xx * v2zd - v1DM * v2zz + v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd + 2.0 * v1DM * v2xx + v1dz * v2dd - 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end # left kernel (right part obtained by symmetries) function compute_s_left!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for left vertex bs1 = get_buffer_empty() bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, da, temp, 1, ch_s = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx - v1xx * v2zz - v1dz * v2DM + v1zd * v2DM - v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd - 2.0 * v1xx * v2xx - 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx - v1xx * v2dz - v1zz * v2DM + v1xx * v2zd - v1DM * v2zz + v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd + 2.0 * v1DM * v2xx + v1dz * v2dd - 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end # central kernel function compute_s_central!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da_l :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for left vertex bs1 = get_buffer_s(s, vs, -v, m) bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_empty() bu2 = get_buffer_empty() # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, da_l, temp, 2, ch_t = false, ch_u = false) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx - v1xx * v2zz - v1dz * v2DM + v1zd * v2DM - v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd - 2.0 * v1xx * v2xx - 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx - v1xx * v2dz - v1zz * v2DM + v1xx * v2zd - v1DM * v2zz + v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd + 2.0 * v1DM * v2xx + v1dz * v2dd - 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3725
# integration kernel for loop function function compute_dΣ_kernel( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s( v + w, 0.5 * (-v + w), 0.5 * (v - w), m) b1t = get_buffer_t(0.0, w, v, m) b1u = get_buffer_u(-v + w, 0.5 * ( v + w), 0.5 * (v + w), m) # get buffers for local vertex b2s = get_buffer_s(v + w, 0.5 * (-v + w), 0.5 * (-v + w), m) b2t = get_buffer_t(v - w, 0.5 * ( v + w), 0.5 * ( v + w), m) b2u = get_buffer_u(0.0, w, v, m) # compute local contributions val = 2.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, a, apply_flags_u1_dm) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, a, apply_flags_u1_dm) + get_Γ_comp(4, 1, b2s, b2t, b2u, r, a, apply_flags_u1_dm) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * get_Γ_comp(4, j, b1s, b1t, b1u, r, a, apply_flags_u1_dm) end # multiply with single scale propagator val *= get_S(Λ, v, m, a) / (2.0 * pi) return val end # first integration kernel for loop function for self energy corrections function compute_dΣ_kernel_corr1( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da_Σ :: Action_u1_dm ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s( v + w, 0.5 * (-v + w), 0.5 * (v - w), m) b1t = get_buffer_t(0.0, w, v, m) b1u = get_buffer_u(-v + w, 0.5 * ( v + w), 0.5 * (v + w), m) # get buffers for local vertex b2s = get_buffer_s(v + w, 0.5 * (-v + w), 0.5 * (-v + w), m) b2t = get_buffer_t(v - w, 0.5 * ( v + w), 0.5 * ( v + w), m) b2u = get_buffer_u(0.0, w, v, m) # compute local contributions val = 2.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, da_Σ, apply_flags_u1_dm, ch_u = false) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, da_Σ, apply_flags_u1_dm, ch_u = false) + get_Γ_comp(4, 1, b2s, b2t, b2u, r, da_Σ, apply_flags_u1_dm, ch_u = false) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * get_Γ_comp(4, j, b1s, b1t, b1u, r, da_Σ, apply_flags_u1_dm, ch_t = false) end # multiply with full propagator val *= -get_G(Λ, v, m, a) / (2.0 * pi) return val end # second integration kernel for loop function for self energy corrections function compute_dΣ_kernel_corr2( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da_Σ :: Action_u1_dm ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s( v + w, 0.5 * (-v + w), 0.5 * (v - w), m) b1t = get_buffer_t(0.0, w, v, m) b1u = get_buffer_u(-v + w, 0.5 * ( v + w), 0.5 * (v + w), m) # get buffers for local vertex b2s = get_buffer_s(v + w, 0.5 * (-v + w), 0.5 * (-v + w), m) b2t = get_buffer_t(v - w, 0.5 * ( v + w), 0.5 * ( v + w), m) b2u = get_buffer_u(0.0, w, v, m) # compute local contributions val = 2.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, a, apply_flags_u1_dm) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, a, apply_flags_u1_dm) + get_Γ_comp(4, 1, b2s, b2t, b2u, r, a, apply_flags_u1_dm) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * get_Γ_comp(4, j, b1s, b1t, b1u, r, a, apply_flags_u1_dm) end # multiply with full propagator val *= get_G(Λ, v, m, a)^2 * get_Σ(v, m, da_Σ) / (2.0 * pi) return val end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
15396
# Katanin kernel function compute_t_kat!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = get_propagator_kat(Λ, v + 0.5 * t, v - 0.5 * t, m, a, da) + get_propagator_kat(Λ, v - 0.5 * t, v + 0.5 * t, m, a, da) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_t(t, vt, v, m) bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_s(v + vtp, 0.5 * (-t + v - vtp), 0.5 * (-t - v + vtp), m) bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_u(v - vtp, 0.5 * (-t + v + vtp), 0.5 * ( t + v + vtp), m) # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_u(t, v, vt, m) # get buffers for local right vertex bs4 = get_buffer_s(v + vtp, 0.5 * (t - v + vtp), 0.5 * (-t - v + vtp), m) bt4 = get_buffer_t(v - vtp, 0.5 * (t + v + vtp), 0.5 * (-t + v + vtp), m) bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3xx, v3zz, v3DM, v3dd, v3zd, v3dz = get_Γ(1, bs3, bt3, bu3, r, a) v4xx, v4zz, v4DM, v4dd, v4zd, v4dz = get_Γ(1, bs4, bt4, bu4, r, a) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v4dz - v1DM * v4zd + v1xx * v4dd - v1xx * v4zz + v3dd * v2xx + v3dz * v2DM - v3zd * v2DM - v3zz * v2xx) Γzz = -p * (v1zz * v4dd + 2.0 * v1zd * v4DM - v1zd * v4zd + v1zz * v4zz - 2.0 * v1zz * v4xx - v1zd * v4dz - 2.0 * v3DM * v2dz - v3dz * v2dz + v3dd * v2zz - 2.0 * v3xx * v2zz + v3zz * v2zz - v3zd * v2dz) ΓDM = -p * (v1DM * v4dd - v1xx * v4dz + v1xx * v4zd - v1DM * v4zz - v3dz * v2xx + v3dd * v2DM + v3zd * v2xx - v3zz * v2DM) Γdd = -p * (-v1dz * v4dz + 2.0 * v1dd * v4xx + v1dd * v4zz - v1dz * v4zd - 2.0 * v1dz * v4DM + v1dd * v4dd + 2.0 * v3DM * v2zd + 2.0 * v3xx * v2dd + v3zz * v2dd - v3dz * v2zd + v3dd * v2dd - v3zd * v2zd) Γzd = -p * (v1zd * v4zz + v1zd * v4dd + 2.0 * v1zd * v4xx + v1zz * v4zd + 2.0 * v1zz * v4DM + v1zz * v4dz + v3zd * v2dd + 2.0 * v3DM * v2dd + v3dd * v2zd + v3zz * v2zd - 2.0 * v3xx * v2zd + v3dz * v2dd) Γdz = -p * (-2.0 * v1dd * v4DM + v1dd * v4zd + v1dd * v4dz + v1dz * v4zz + v1dz * v4dd - 2.0 * v1dz * v4xx + v3zd * v2zz + 2.0 * v3xx * v2dz + v3dd * v2dz + v3dz * v2zz - 2.0 * v3DM * v2zz + v3zz * v2dz) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1xx = temp[overlap_i[j, 1], 1, 1] v1zz = temp[overlap_i[j, 1], 2, 1] v1DM = temp[overlap_i[j, 1], 3, 1] v1dd = temp[overlap_i[j, 1], 4, 1] v1zd = temp[overlap_i[j, 1], 5, 1] v1dz = temp[overlap_i[j, 1], 6, 1] v2xx = temp[overlap_i[j, 2], 1, 2] v2zz = temp[overlap_i[j, 2], 2, 2] v2DM = temp[overlap_i[j, 2], 3, 2] v2dd = temp[overlap_i[j, 2], 4, 2] v2zd = temp[overlap_i[j, 2], 5, 2] v2dz = temp[overlap_i[j, 2], 6, 2] # compute contribution at inner site Γxx += -p * (-2.0) * overlap_i[j, 3] * (v1xx * v2xx - v1DM * v2DM) Γzz += -p * (-2.0) * overlap_i[j, 3] * (v1zz * v2zz - v1zd * v2dz) ΓDM += -p * (-2.0) * overlap_i[j, 3] * (v1DM * v2xx + v1xx * v2DM) Γdd += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dd - v1dz * v2zd) Γzd += -p * (-2.0) * overlap_i[j, 3] * (v1zd * v2dd + v1zz * v2zd) Γdz += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dz + v1dz * v2zz) end # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end # left kernel (right part obtained by symmetries) function compute_t_left!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = -get_propagator(Λ, v + 0.5 * t, v - 0.5 * t, m, a) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_empty() bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_s(v + vtp, 0.5 * (-t + v - vtp), 0.5 * (-t - v + vtp), m) bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_u(v - vtp, 0.5 * (-t + v + vtp), 0.5 * ( t + v + vtp), m) # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_empty() # get buffers for local right vertex bs4 = get_buffer_s(v + vtp, 0.5 * (t - v + vtp), 0.5 * (-t - v + vtp), m) bt4 = get_buffer_t(v - vtp, 0.5 * (t + v + vtp), 0.5 * (-t + v + vtp), m) bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3xx, v3zz, v3DM, v3dd, v3zd, v3dz = get_Γ(1, bs3, bt3, bu3, r, da, ch_u = false) v4xx, v4zz, v4DM, v4dd, v4zd, v4dz = get_Γ(1, bs4, bt4, bu4, r, a) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, da, temp, 1, ch_t = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v4dz - v1DM * v4zd + v1xx * v4dd - v1xx * v4zz + v3dd * v2xx + v3dz * v2DM - v3zd * v2DM - v3zz * v2xx) Γzz = -p * (v1zz * v4dd + 2.0 * v1zd * v4DM - v1zd * v4zd + v1zz * v4zz - 2.0 * v1zz * v4xx - v1zd * v4dz - 2.0 * v3DM * v2dz - v3dz * v2dz + v3dd * v2zz - 2.0 * v3xx * v2zz + v3zz * v2zz - v3zd * v2dz) ΓDM = -p * (v1DM * v4dd - v1xx * v4dz + v1xx * v4zd - v1DM * v4zz - v3dz * v2xx + v3dd * v2DM + v3zd * v2xx - v3zz * v2DM) Γdd = -p * (-v1dz * v4dz + 2.0 * v1dd * v4xx + v1dd * v4zz - v1dz * v4zd - 2.0 * v1dz * v4DM + v1dd * v4dd + 2.0 * v3DM * v2zd + 2.0 * v3xx * v2dd + v3zz * v2dd - v3dz * v2zd + v3dd * v2dd - v3zd * v2zd) Γzd = -p * (v1zd * v4zz + v1zd * v4dd + 2.0 * v1zd * v4xx + v1zz * v4zd + 2.0 * v1zz * v4DM + v1zz * v4dz + v3zd * v2dd + 2.0 * v3DM * v2dd + v3dd * v2zd + v3zz * v2zd - 2.0 * v3xx * v2zd + v3dz * v2dd) Γdz = -p * (-2.0 * v1dd * v4DM + v1dd * v4zd + v1dd * v4dz + v1dz * v4zz + v1dz * v4dd - 2.0 * v1dz * v4xx + v3zd * v2zz + 2.0 * v3xx * v2dz + v3dd * v2dz + v3dz * v2zz - 2.0 * v3DM * v2zz + v3zz * v2dz) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1xx = temp[overlap_i[j, 1], 1, 1] v1zz = temp[overlap_i[j, 1], 2, 1] v1DM = temp[overlap_i[j, 1], 3, 1] v1dd = temp[overlap_i[j, 1], 4, 1] v1zd = temp[overlap_i[j, 1], 5, 1] v1dz = temp[overlap_i[j, 1], 6, 1] v2xx = temp[overlap_i[j, 2], 1, 2] v2zz = temp[overlap_i[j, 2], 2, 2] v2DM = temp[overlap_i[j, 2], 3, 2] v2dd = temp[overlap_i[j, 2], 4, 2] v2zd = temp[overlap_i[j, 2], 5, 2] v2dz = temp[overlap_i[j, 2], 6, 2] # compute contribution at inner site Γxx += -p * (-2.0) * overlap_i[j, 3] * (v1xx * v2xx - v1DM * v2DM) Γzz += -p * (-2.0) * overlap_i[j, 3] * (v1zz * v2zz - v1zd * v2dz) ΓDM += -p * (-2.0) * overlap_i[j, 3] * (v1DM * v2xx + v1xx * v2DM) Γdd += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dd - v1dz * v2zd) Γzd += -p * (-2.0) * overlap_i[j, 3] * (v1zd * v2dd + v1zz * v2zd) Γdz += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dz + v1dz * v2zz) end # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end # central kernel function compute_t_central!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da_l :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = -get_propagator(Λ, v + 0.5 * t, v - 0.5 * t, m, a) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_t(t, vt, v, m) bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_empty() bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_empty() # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_u(t, v, vt, m) # get buffers for local right vertex bs4 = get_buffer_empty() bt4 = get_buffer_empty() bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3xx, v3zz, v3DM, v3dd, v3zd, v3dz = get_Γ(1, bs3, bt3, bu3, r, a) v4xx, v4zz, v4DM, v4dd, v4zd, v4dz = get_Γ(1, bs4, bt4, bu4, r, da_l, ch_s = false, ch_t = false) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, da_l, temp, 2, ch_s = false, ch_u = false) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v4dz - v1DM * v4zd + v1xx * v4dd - v1xx * v4zz + v3dd * v2xx + v3dz * v2DM - v3zd * v2DM - v3zz * v2xx) Γzz = -p * (v1zz * v4dd + 2.0 * v1zd * v4DM - v1zd * v4zd + v1zz * v4zz - 2.0 * v1zz * v4xx - v1zd * v4dz - 2.0 * v3DM * v2dz - v3dz * v2dz + v3dd * v2zz - 2.0 * v3xx * v2zz + v3zz * v2zz - v3zd * v2dz) ΓDM = -p * (v1DM * v4dd - v1xx * v4dz + v1xx * v4zd - v1DM * v4zz - v3dz * v2xx + v3dd * v2DM + v3zd * v2xx - v3zz * v2DM) Γdd = -p * (-v1dz * v4dz + 2.0 * v1dd * v4xx + v1dd * v4zz - v1dz * v4zd - 2.0 * v1dz * v4DM + v1dd * v4dd + 2.0 * v3DM * v2zd + 2.0 * v3xx * v2dd + v3zz * v2dd - v3dz * v2zd + v3dd * v2dd - v3zd * v2zd) Γzd = -p * (v1zd * v4zz + v1zd * v4dd + 2.0 * v1zd * v4xx + v1zz * v4zd + 2.0 * v1zz * v4DM + v1zz * v4dz + v3zd * v2dd + 2.0 * v3DM * v2dd + v3dd * v2zd + v3zz * v2zd - 2.0 * v3xx * v2zd + v3dz * v2dd) Γdz = -p * (-2.0 * v1dd * v4DM + v1dd * v4zd + v1dd * v4dz + v1dz * v4zz + v1dz * v4dd - 2.0 * v1dz * v4xx + v3zd * v2zz + 2.0 * v3xx * v2dz + v3dd * v2dz + v3dz * v2zz - 2.0 * v3DM * v2zz + v3zz * v2dz) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1xx = temp[overlap_i[j, 1], 1, 1] v1zz = temp[overlap_i[j, 1], 2, 1] v1DM = temp[overlap_i[j, 1], 3, 1] v1dd = temp[overlap_i[j, 1], 4, 1] v1zd = temp[overlap_i[j, 1], 5, 1] v1dz = temp[overlap_i[j, 1], 6, 1] v2xx = temp[overlap_i[j, 2], 1, 2] v2zz = temp[overlap_i[j, 2], 2, 2] v2DM = temp[overlap_i[j, 2], 3, 2] v2dd = temp[overlap_i[j, 2], 4, 2] v2zd = temp[overlap_i[j, 2], 5, 2] v2dz = temp[overlap_i[j, 2], 6, 2] # compute contribution at inner site Γxx += -p * (-2.0) * overlap_i[j, 3] * (v1xx * v2xx - v1DM * v2DM) Γzz += -p * (-2.0) * overlap_i[j, 3] * (v1zz * v2zz - v1zd * v2dz) ΓDM += -p * (-2.0) * overlap_i[j, 3] * (v1DM * v2xx + v1xx * v2DM) Γdd += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dd - v1dz * v2zd) Γzd += -p * (-2.0) * overlap_i[j, 3] * (v1zd * v2dd + v1zz * v2zd) Γdz += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dz + v1dz * v2zz) end # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
7716
# Katanin kernel function compute_u_kat!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = get_propagator_kat(Λ, v - 0.5 * u, v + 0.5 * u, m, a, da) + get_propagator_kat(Λ, v + 0.5 * u, v - 0.5 * u, m, a, da) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_u(u, vu, v, m) # get buffers for right vertex bs2 = get_buffer_s( v + vup, 0.5 * (u + v - vup), 0.5 * (-u + v - vup), m) bt2 = get_buffer_t(-v + vup, 0.5 * (u + v + vup), 0.5 * (-u + v + vup), m) bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (-v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx + v1xx * v2zz + v1dz * v2DM + v1zd * v2DM + v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd + 2.0 * v1xx * v2xx + 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx + v1xx * v2dz + v1zz * v2DM + v1xx * v2zd + v1DM * v2zz - v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd - 2.0 * v1DM * v2xx + v1dz * v2dd + 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end # left kernel (right part obtained by symmetries) function compute_u_left!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v - 0.5 * u, v + 0.5 * u, m, a) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_empty() # get buffers for right vertex bs2 = get_buffer_s( v + vup, 0.5 * (u + v - vup), 0.5 * (-u + v - vup), m) bt2 = get_buffer_t(-v + vup, 0.5 * (u + v + vup), 0.5 * (-u + v + vup), m) bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, da, temp, 1, ch_u = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (-v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx + v1xx * v2zz + v1dz * v2DM + v1zd * v2DM + v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd + 2.0 * v1xx * v2xx + 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx + v1xx * v2dz + v1zz * v2DM + v1xx * v2zd + v1DM * v2zz - v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd - 2.0 * v1DM * v2xx + v1dz * v2dd + 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end # central kernel function compute_u_central!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, da_l :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v - 0.5 * u, v + 0.5 * u, m, a) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_u(u, vu, v, m) # get buffers for right vertex bs2 = get_buffer_empty() bt2 = get_buffer_empty() bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1) get_Γ_avx!(r, bs2, bt2, bu2, da_l, temp, 2, ch_s = false, ch_t = false) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (-v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx + v1xx * v2zz + v1dz * v2DM + v1zd * v2DM + v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd + 2.0 * v1xx * v2xx + 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx + v1xx * v2dz + v1zz * v2DM + v1xx * v2zd + v1DM * v2zz - v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd - 2.0 * v1DM * v2xx + v1dz * v2dd + 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1550
# BSE kernel for the s channel function compute_s_BSE!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for left vertex bs1 = get_buffer_empty() bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1, ch_s = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * ( 3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2885
# BSE kernel for the t channel function compute_t_BSE!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = -get_propagator(Λ, v + 0.5 * t, v - 0.5 * t, m, a) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_empty() bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_s(v + vtp, 0.5 * (-t + v - vtp), 0.5 * (-t - v + vtp), m) bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_u(v - vtp, 0.5 * (-t + v + vtp), 0.5 * ( t + v + vtp), m) # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_empty() # get buffers for local right vertex bs4 = get_buffer_s(v + vtp, 0.5 * (t - v + vtp), 0.5 * (-t - v + vtp), m) bt4 = get_buffer_t(v - vtp, 0.5 * (t + v + vtp), 0.5 * (-t + v + vtp), m) bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3s, v3d = get_Γ(1, bs3, bt3, bu3, r, a, ch_u = false) v4s, v4d = get_Γ(1, bs4, bt4, bu4, r, a) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1, ch_t = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-1.0 * v1s * v4s + v1s * v4d - 1.0 * v3s * v2s + v3d * v2s) Γd = -p * ( 3.0 * v1d * v4s + v1d * v4d + 3.0 * v3s * v2d + v3d * v2d) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1s = temp[overlap_i[j, 1], 1, 1]; v1d = temp[overlap_i[j, 1], 2, 1] v2s = temp[overlap_i[j, 2], 1, 2]; v2d = temp[overlap_i[j, 2], 2, 2] # compute contribution at inner site Γs += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1s * v2s Γd += -p * (-2.0) * overlap_i[j, 3] * (2.0 * a.S) * v1d * v2d end # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1552
# BSE kernel for the u channel function compute_u_BSE!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v - 0.5 * u, v + 0.5 * u, m, a) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_empty() # get buffers for right vertex bs2 = get_buffer_s( v + vup, 0.5 * (u + v - vup), 0.5 * (-u + v - vup), m) bt2 = get_buffer_t(-v + vup, 0.5 * (u + v + vup), 0.5 * (-u + v + vup), m) bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1, ch_u = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = temp[i, 1, 1]; v1d = temp[i, 2, 1] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * (3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2389
# reduced kernel for the s channel function compute_s_reduced!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for right vertex (left vertex is given by bare) bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1s = a.Γ[1].bare[i]; v1d = a.Γ[2].bare[i] v2s = temp[i, 1, 2]; v2d = temp[i, 2, 2] # compute contribution at site i Γs = -p * (-2.0 * v1s * v2s + v1s * v2d + v1d * v2s) Γd = -p * ( 3.0 * v1s * v2s + v1d * v2d) # parse result to output buffer buff[1, i] += dv * Γs buff[2, i] += dv * Γd end return nothing end # integration kernel for loop function function compute_Σ_kernel( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a1 :: Action_su2, a2 :: Action_su2 ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s(v + w, Inf, 0.5 * (v - w), m) b1t = get_buffer_empty() b1u = get_buffer_empty() # get buffers for local vertex b2s = get_buffer_s(v + w, Inf, 0.5 * (-v + w), m) b2t = get_buffer_empty() b2u = get_buffer_empty() # compute local contributions val = 3.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, a2, apply_flags_su2, ch_t = false, ch_u = false) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, a2, apply_flags_su2, ch_t = false, ch_u = false) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * (2.0 * a2.S) * get_Γ_comp(2, j, b1s, b1t, b1u, r, a2, apply_flags_su2, ch_t = false, ch_u = false) end # multiply with full propagator val *= -get_G(Λ, v, m, a1) / (2.0 * pi) return val end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
105
# load code include("SDE_su2.jl") include("BSE_su2_s.jl") include("BSE_su2_t.jl") include("BSE_su2_u.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2549
# BSE kernel for the s channel function compute_s_BSE!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vs :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for left vertex bs1 = get_buffer_empty() bt1 = get_buffer_t(v - vs, 0.5 * (s + v + vs), 0.5 * (s - v - vs), m) bu1 = get_buffer_u(v + vs, 0.5 * (s - v + vs), 0.5 * (s + v - vs), m) # get buffers for right vertex bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1, ch_s = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx - v1xx * v2zz - v1dz * v2DM + v1zd * v2DM - v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd - 2.0 * v1xx * v2xx - 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx - v1xx * v2dz - v1zz * v2DM + v1xx * v2zd - v1DM * v2zz + v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd + 2.0 * v1DM * v2xx + v1dz * v2dd - 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5132
# BSE kernel for the t channel function compute_t_BSE!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, t :: Float64, vt :: Float64, vtp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator and overlap p = -get_propagator(Λ, v + 0.5 * t, v - 0.5 * t, m, a) overlap = r.overlap # get buffers for left non-local vertex bs1 = get_buffer_s( v + vt, 0.5 * (-t - v + vt), 0.5 * (-t + v - vt), m) bt1 = get_buffer_empty() bu1 = get_buffer_u(-v + vt, 0.5 * (-t + v + vt), 0.5 * ( t + v + vt), m) # get buffers for right non-local vertex bs2 = get_buffer_s(v + vtp, 0.5 * (-t + v - vtp), 0.5 * (-t - v + vtp), m) bt2 = get_buffer_t(t, v, vtp, m) bu2 = get_buffer_u(v - vtp, 0.5 * (-t + v + vtp), 0.5 * ( t + v + vtp), m) # get buffers for local left vertex bs3 = get_buffer_s( v + vt, 0.5 * (t + v - vt), 0.5 * (-t + v - vt), m) bt3 = get_buffer_t(-v + vt, 0.5 * (t + v + vt), 0.5 * (-t + v + vt), m) bu3 = get_buffer_empty() # get buffers for local right vertex bs4 = get_buffer_s(v + vtp, 0.5 * (t - v + vtp), 0.5 * (-t - v + vtp), m) bt4 = get_buffer_t(v - vtp, 0.5 * (t + v + vtp), 0.5 * (-t + v + vtp), m) bu4 = get_buffer_u(t, vtp, v, m) # cache local vertex values v3xx, v3zz, v3DM, v3dd, v3zd, v3dz = get_Γ(1, bs3, bt3, bu3, r, a, ch_u = false) v4xx, v4zz, v4DM, v4dd, v4zd, v4dz = get_Γ(1, bs4, bt4, bu4, r, a) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1, ch_t = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v4dz - v1DM * v4zd + v1xx * v4dd - v1xx * v4zz + v3dd * v2xx + v3dz * v2DM - v3zd * v2DM - v3zz * v2xx) Γzz = -p * (v1zz * v4dd + 2.0 * v1zd * v4DM - v1zd * v4zd + v1zz * v4zz - 2.0 * v1zz * v4xx - v1zd * v4dz - 2.0 * v3DM * v2dz - v3dz * v2dz + v3dd * v2zz - 2.0 * v3xx * v2zz + v3zz * v2zz - v3zd * v2dz) ΓDM = -p * (v1DM * v4dd - v1xx * v4dz + v1xx * v4zd - v1DM * v4zz - v3dz * v2xx + v3dd * v2DM + v3zd * v2xx - v3zz * v2DM) Γdd = -p * (-v1dz * v4dz + 2.0 * v1dd * v4xx + v1dd * v4zz - v1dz * v4zd - 2.0 * v1dz * v4DM + v1dd * v4dd + 2.0 * v3DM * v2zd + 2.0 * v3xx * v2dd + v3zz * v2dd - v3dz * v2zd + v3dd * v2dd - v3zd * v2zd) Γzd = -p * (v1zd * v4zz + v1zd * v4dd + 2.0 * v1zd * v4xx + v1zz * v4zd + 2.0 * v1zz * v4DM + v1zz * v4dz + v3zd * v2dd + 2.0 * v3DM * v2dd + v3dd * v2zd + v3zz * v2zd - 2.0 * v3xx * v2zd + v3dz * v2dd) Γdz = -p * (-2.0 * v1dd * v4DM + v1dd * v4zd + v1dd * v4dz + v1dz * v4zz + v1dz * v4dd - 2.0 * v1dz * v4xx + v3zd * v2zz + 2.0 * v3xx * v2dz + v3dd * v2dz + v3dz * v2zz - 2.0 * v3DM * v2zz + v3zz * v2dz) # determine overlap for site i overlap_i = overlap[i] # determine range for inner sum Range = size(overlap_i, 1) # compute inner sum @turbo unroll = 1 for j in 1 : Range # read cached values for inner site v1xx = temp[overlap_i[j, 1], 1, 1] v1zz = temp[overlap_i[j, 1], 2, 1] v1DM = temp[overlap_i[j, 1], 3, 1] v1dd = temp[overlap_i[j, 1], 4, 1] v1zd = temp[overlap_i[j, 1], 5, 1] v1dz = temp[overlap_i[j, 1], 6, 1] v2xx = temp[overlap_i[j, 2], 1, 2] v2zz = temp[overlap_i[j, 2], 2, 2] v2DM = temp[overlap_i[j, 2], 3, 2] v2dd = temp[overlap_i[j, 2], 4, 2] v2zd = temp[overlap_i[j, 2], 5, 2] v2dz = temp[overlap_i[j, 2], 6, 2] # compute contribution at inner site Γxx += -p * (-2.0) * overlap_i[j, 3] * (v1xx * v2xx - v1DM * v2DM) Γzz += -p * (-2.0) * overlap_i[j, 3] * (v1zz * v2zz - v1zd * v2dz) ΓDM += -p * (-2.0) * overlap_i[j, 3] * (v1DM * v2xx + v1xx * v2DM) Γdd += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dd - v1dz * v2zd) Γzd += -p * (-2.0) * overlap_i[j, 3] * (v1zd * v2dd + v1zz * v2zd) Γdz += -p * (-2.0) * overlap_i[j, 3] * (v1dd * v2dz + v1dz * v2zz) end # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2547
# BSE kernel for the u channel function compute_u_BSE!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, u :: Float64, vu :: Float64, vup :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v - 0.5 * u, v + 0.5 * u, m, a) # get buffers for left vertex bs1 = get_buffer_s(v + vu, 0.5 * (u - v + vu), 0.5 * (-u - v + vu), m) bt1 = get_buffer_t(v - vu, 0.5 * (u + v + vu), 0.5 * (-u + v + vu), m) bu1 = get_buffer_empty() # get buffers for right vertex bs2 = get_buffer_s( v + vup, 0.5 * (u + v - vup), 0.5 * (-u + v - vup), m) bt2 = get_buffer_t(-v + vup, 0.5 * (u + v + vup), 0.5 * (-u + v + vup), m) bu2 = get_buffer_u(u, v, vup, m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs1, bt1, bu1, a, temp, 1, ch_u = false) get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = temp[i, 1, 1] v1zz = temp[i, 2, 1] v1DM = temp[i, 3, 1] v1dd = temp[i, 4, 1] v1zd = temp[i, 5, 1] v1dz = temp[i, 6, 1] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (-v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx + v1xx * v2zz + v1dz * v2DM + v1zd * v2DM + v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd + 2.0 * v1xx * v2xx + 2.0 * v1DM * v2DM - v1zd * v2dz) ΓDM = -p * (v1dd * v2DM + v1DM * v2dd - v1zd * v2xx + v1xx * v2dz + v1zz * v2DM + v1xx * v2zd + v1DM * v2zz - v1dz * v2xx) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) Γzd = -p * (v1zd * v2dd + v1dd * v2zd - 2.0 * v1DM * v2xx + v1dz * v2zz + v1zz * v2dz + 2.0 * v1xx * v2DM) Γdz = -p * (v1zd * v2zz + v1dd * v2dz + v1zz * v2zd - 2.0 * v1DM * v2xx + v1dz * v2dd + 2.0 * v1xx * v2DM) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[3, i] += dv * ΓDM buff[4, i] += dv * Γdd buff[5, i] += dv * Γzd buff[6, i] += dv * Γdz end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3038
# reduced kernel for the s channel function compute_s_reduced!( Λ :: Float64, buff :: Matrix{Float64}, v :: Float64, dv :: Float64, s :: Float64, vsp :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, temp :: Array{Float64, 3} ) :: Nothing # get propagator p = -get_propagator(Λ, v + 0.5 * s, 0.5 * s - v, m, a) # get buffers for right vertex (left vertex is given by bare) bs2 = get_buffer_s(s, v, vsp, m) bt2 = get_buffer_t(-v - vsp, 0.5 * (s + v - vsp), 0.5 * (s - v + vsp), m) bu2 = get_buffer_u( v - vsp, 0.5 * (s + v + vsp), 0.5 * (s - v - vsp), m) # cache vertex values for all lattice sites in temporary buffer get_Γ_avx!(r, bs2, bt2, bu2, a, temp, 2) # compute contributions for all lattice sites @turbo unroll = 1 for i in eachindex(r.sites) # read cached values for site i v1xx = a.Γ[1].bare[i] v1zz = a.Γ[2].bare[i] v1DM = a.Γ[3].bare[i] v1dd = a.Γ[4].bare[i] v1zd = a.Γ[5].bare[i] v1dz = a.Γ[6].bare[i] v2xx = temp[i, 1, 2] v2zz = temp[i, 2, 2] v2DM = temp[i, 3, 2] v2dd = temp[i, 4, 2] v2zd = temp[i, 5, 2] v2dz = temp[i, 6, 2] # compute contribution at site i Γxx = -p * (v1DM * v2dz - v1DM * v2zd + v1xx * v2dd + v1dd * v2xx - v1xx * v2zz - v1dz * v2DM + v1zd * v2DM - v1zz * v2xx) Γzz = -p * (v1zz * v2dd + v1dd * v2zz - v1dz * v2zd - 2.0 * v1xx * v2xx - 2.0 * v1DM * v2DM - v1zd * v2dz) Γdd = -p * (-v1dz * v2dz + 2.0 * v1xx * v2xx + v1dd * v2dd + 2.0 * v1DM * v2DM - v1zd * v2zd + v1zz * v2zz) # parse result to output buffer buff[1, i] += dv * Γxx buff[2, i] += dv * Γzz buff[4, i] += dv * Γdd end return nothing end # integration kernel for loop function function compute_Σ_kernel( Λ :: Float64, w :: Float64, v :: Float64, r :: Reduced_lattice, m :: Mesh, a1 :: Action_u1_dm, a2 :: Action_u1_dm, ) :: Float64 # get buffers for non-local vertex b1s = get_buffer_s(v + w, Inf, 0.5 * (v - w), m) b1t = get_buffer_empty() b1u = get_buffer_empty() # get buffers for local vertex b2s = get_buffer_s(v + w, Inf, 0.5 * (-v + w), m) b2t = get_buffer_empty() b2u = get_buffer_empty() # compute local contributions val = 2.0 * get_Γ_comp(1, 1, b2s, b2t, b2u, r, a2, apply_flags_u1_dm, ch_t = false, ch_u = false) + get_Γ_comp(2, 1, b2s, b2t, b2u, r, a2, apply_flags_u1_dm, ch_t = false, ch_u = false) + get_Γ_comp(4, 1, b2s, b2t, b2u, r, a2, apply_flags_u1_dm, ch_t = false, ch_u = false) # compute contributions for all lattice sites for j in eachindex(r.sites) val -= 2.0 * r.mult[j] * get_Γ_comp(4, j, b1s, b1t, b1u, r, a2, apply_flags_u1_dm, ch_t = false, ch_u = false) end # multiply with full propagator val *= -get_G(Λ, v, m, a1) / (2.0 * pi) return val end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
113
# load code include("SDE_u1_dm.jl") include("BSE_u1_dm_s.jl") include("BSE_u1_dm_t.jl") include("BSE_u1_dm_u.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
112
# load code include("param.jl") include("mesh.jl") include("buffer.jl") include("test.jl") include("timers.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5400
""" Buffer Struct used for reading out vertices from Action struct. Contains symmetry related flags, (asymptotic) kernel specification and interpolation parameters. * `exchange_flag :: Bool` : flag for site [(i0, j) <-> (j, i0)] and spin [(μ, ν) <-> (ν, μ)] exchange * `map_flag :: Bool` : flag for channel mapping s <-> u * `sgn_μν :: Bool` : sign function for combined spin indices * `sgn_μ :: Bool` : sign function for first spin index * `sgn_ν :: Bool` : sign function for second spin index * `kernel :: Int64` : specification of asymptotic kernel to be interpolated * `p1 :: Param` : interpolation parameters for bosonic frequency argument * `p2 :: Param` : interpolation parameters for first fermionic frequency argument * `p3 :: Param` : interpolation parameters for second fermionic frequency argument """ struct Buffer exchange_flag :: Bool map_flag :: Bool sgn_μν :: Bool sgn_μ :: Bool sgn_ν :: Bool kernel :: Int64 p1 :: Param p2 :: Param p3 :: Param end # function to invert flag function set_flag( flag :: Bool ) :: Bool if flag flag = false else flag = true end return flag end # generate buffer dummy function get_buffer_empty() :: Buffer b = Buffer(false, false, false, false, false, 0, get_param_empty(), get_param_empty(), get_param_empty()) return b end # generate generic access buffer for Action struct given flags function get_buffer( w :: Float64, v :: Float64, vp :: Float64, Ω :: Vector{Float64}, ν :: Vector{Float64}, exchange_flag :: Bool, map_flag :: Bool, sgn_μν :: Bool, sgn_μ :: Bool, sgn_ν :: Bool ) :: Buffer if Ω[end] < abs(w) return get_buffer_empty() else if ν[end] < abs(v) if ν[end] < abs(vp) # interpolation for q1 return Buffer(exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν, 1, get_param(w, Ω), get_param_empty(), get_param_empty()) else # interpolation for q2_2 return Buffer(exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν, 3, get_param(w, Ω), get_param_empty(), get_param(vp, ν)) end else if ν[end] < abs(vp) # interpolation for q2_1 return Buffer(exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν, 2, get_param(w, Ω), get_param(v, ν), get_param_empty()) else # interpolation for q3 return Buffer(exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν, 4, get_param(w, Ω), get_param(v, ν), get_param(vp, ν)) end end end end # generate access buffer for s channel of Action struct function get_buffer_s( w :: Float64, v :: Float64, vp :: Float64, m :: Mesh ) :: Buffer # init flags exchange_flag = false map_flag = false sgn_μν = false sgn_μ = false sgn_ν = false # do -w -> w if w < 0.0 w *= -1.0 exchange_flag = set_flag(exchange_flag) end # do -v -> v if v < 0.0 v *= -1.0 exchange_flag = set_flag(exchange_flag) map_flag = set_flag(map_flag) sgn_μ = set_flag(sgn_μ) end # do -vp -> vp if vp < 0.0 vp *= -1.0 map_flag = set_flag(map_flag) sgn_ν = set_flag(sgn_ν) end return get_buffer(w, v, vp, m.Ωs, m.νs, exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν) end # generate access buffer for t channel of Action struct function get_buffer_t( w :: Float64, v :: Float64, vp :: Float64, m :: Mesh ) :: Buffer # init flags exchange_flag = false map_flag = false sgn_μν = false sgn_μ = false sgn_ν = false # do -w -> w if w < 0.0 w *= -1.0 sgn_μν = set_flag(sgn_μν) end # do -v -> v if v < 0.0 v *= -1.0 sgn_μ = set_flag(sgn_μ) end # do -vp -> vp if vp < 0.0 vp *= -1.0 sgn_ν = set_flag(sgn_ν) end return get_buffer(w, v, vp, m.Ωt, m.νt, exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν) end # generate access buffer for u channel of Action struct function get_buffer_u( w :: Float64, v :: Float64, vp :: Float64, m :: Mesh ) :: Buffer # init flags exchange_flag = false map_flag = false sgn_μν = false sgn_μ = false sgn_ν = false # do -w -> w if w < 0.0 w *= -1.0 exchange_flag = set_flag(exchange_flag) sgn_μν = set_flag(sgn_μν) end # do -v -> v if v < 0.0 v *= -1.0 exchange_flag = set_flag(exchange_flag) map_flag = set_flag(map_flag) sgn_ν = set_flag(sgn_ν) end # do -vp -> vp if vp < 0.0 vp *= -1.0 map_flag = set_flag(map_flag) sgn_ν = set_flag(sgn_ν) end return get_buffer(w, v, vp, m.Ωs, m.νs, exchange_flag, map_flag, sgn_μν, sgn_μ, sgn_ν) end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3666
""" Mesh Struct containing frequency meshes for the self energy, vertices and correlations. * `num_σ :: Int64` : total number of frequencies in the self energy mesh * `num_Ω :: Int64` : total number of frequencies in the bosonic meshes * `num_ν :: Int64` : total number of frequencies in the fermionic meshes * `num_χ :: Int64` : total number of frequencies in the correlation mesh * `σ :: Vector{Float64}` : self energy mesh * `Ωs :: Vector{Float64}` : bosonic mesh for the s (u) channel * `νs :: Vector{Float64}` : fermionic mesh for the s (u) channel * `Ωt :: Vector{Float64}` : bosonic mesh for the t channel * `νt :: Vector{Float64}` : fermionic mesh for the t channel * `χ :: Vector{Float64}` : correlation mesh """ struct Mesh num_σ :: Int64 num_Ω :: Int64 num_ν :: Int64 num_χ :: Int64 σ :: Vector{Float64} Ωs :: Vector{Float64} νs :: Vector{Float64} Ωt :: Vector{Float64} νt :: Vector{Float64} χ :: Vector{Float64} end # auxiliary function to fetch frequency arguments for a specific channel and kernel function get_kernel_args( ch :: Int64, kernel :: Int64, w1 :: Int64, w2 :: Int64, w3 :: Int64, m :: Mesh ) :: NTuple{3, Float64} # fetch arguments for s channel if ch == 1 if kernel == 1 return m.Ωs[w1], Inf, Inf elseif kernel == 2 return m.Ωs[w1], m.νs[w2], Inf elseif kernel == 3 return m.Ωs[w1], Inf, m.νs[w3] else return m.Ωs[w1], m.νs[w2], m.νs[w3] end # fetch arguments for t channel elseif ch == 2 if kernel == 1 return m.Ωt[w1], Inf, Inf elseif kernel == 2 return m.Ωt[w1], m.νt[w2], Inf elseif kernel == 3 return m.Ωt[w1], Inf, m.νt[w3] else return m.Ωt[w1], m.νt[w2], m.νt[w3] end # fetch arguments for u channel else if kernel == 1 return m.Ωs[w1], Inf, Inf elseif kernel == 2 return m.Ωs[w1], m.νs[w2], Inf elseif kernel == 3 return m.Ωs[w1], Inf, m.νs[w3] else return m.Ωs[w1], m.νs[w2], m.νs[w3] end end end """ get_mesh( linear :: Float64, upper :: Float64, num :: Int64, p :: Float64 ) :: Vector{Float64} Generate a mesh of (num + 1) linearly (0.0 to linear) and logarithmically (linear to upper) spaced frequencies. Thereby linear and upper are explicitly included and p * num frequencies of the grid are devoted to the linear part. """ function get_mesh( linear :: Float64, upper :: Float64, num :: Int64, p :: Float64 ) :: Vector{Float64} # sanity checks @assert linear > 0.0 "Linear bound must be larger than zero." @assert upper > 0.0 "Upper bound must be larger than zero." @assert linear < upper "Linear bound must be smaller than upper bound." # compute number of linear and logarithmic points num_lin = ceil(Int64, p * num) num_log = num - num_lin # sanity check @assert num_log > 0 "Number of frequencies is too small." # determine linear width and logarithmic factor h = linear / num_lin ξ = (upper / linear)^(1.0 / num_log) # allocate list mesh = zeros(Float64, num + 1) # compute frequencies for i in 1 : num_lin mesh[i + 1] = i * h end for i in 1 : num_log mesh[num_lin + 1 + i] = ξ^i * linear end return mesh end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2277
""" Param Struct containing interpolation parameters for a single point in a mesh. * `lower_index :: Int64` : index of nearest neighbor in mesh with smaller value * `upper_index :: Int64` : index of nearest neighbor in mesh with larger value * `lower_weight :: Float64` : interpolation weight for mesh[lower_index] * `upper_weight :: Float64` : interpolation weight for mesh[upper_index] """ struct Param lower_index :: Int64 upper_index :: Int64 lower_weight :: Float64 upper_weight :: Float64 end # generate param dummy function get_param_empty() :: Param p = Param(0, 0, 0.0, 0.0) return p end # find nearest neighbor (lower and upper) indices in sorted list including zero function get_indices( val :: Float64, list :: Vector{Float64} ) :: NTuple{2, Int64} # init indices lower_index = 0 upper_index = 0 # check if in bounds otherwise search list if val >= list[end] lower_index, upper_index = length(list), length(list) else # iterate over list until upper_index is found (lower_index is then also determined) index_current = 1 while val > list[index_current] index_current += 1 end lower_index = index_current upper_index = index_current if val < list[index_current] lower_index -= 1 end end return lower_index, upper_index end """ get_param( val :: Float64, list :: Vector{Float64} ) :: Param Compute interpolation parameters of val in a set of discrete points (list) and buffer result in Param struct. """ function get_param( val :: Float64, list :: Vector{Float64} ) :: Param # get neighbors and init weights lower_index, upper_index = get_indices(val, list) lower_weight, upper_weight = 0.0, 0.0 # compute weights if lower_index < upper_index d = 1.0 / (list[upper_index] - list[lower_index]) lower_weight = d * (list[upper_index] - val) upper_weight = d * (val - list[lower_index]) else lower_weight = 1.0 end # build param p = Param(lower_index, upper_index, lower_weight, upper_weight) return p end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1774
""" test_frequencies() :: Nothing Run consistency checks for current frequency implementation for meshes with 30 positive frequencies. """ function test_frequencies() :: Nothing # init test dummys list = get_mesh(rand(), 1.0, 30, 0.4) m = Mesh(31, 31, 31, 31, list, list, list, list, list, list) w = rand() v = rand() vp = rand() # test list bounds @testset "list bounds" begin @test list[1] ≈ 0.0 @test list[end] ≈ 1.0 end # test frequency buffers @testset "buffers" begin @testset "s channel" begin b = get_buffer_s(w, v, vp, m); @test b.kernel == 4 b = get_buffer_s(w, Inf, vp, m); @test b.kernel == 3 b = get_buffer_s(w, v, Inf, m); @test b.kernel == 2 b = get_buffer_s(w, Inf, Inf, m); @test b.kernel == 1 b = get_buffer_s(Inf, Inf, Inf, m); @test b.kernel == 0 end @testset "t channel" begin b = get_buffer_t(w, v, vp, m); @test b.kernel == 4 b = get_buffer_t(w, Inf, vp, m); @test b.kernel == 3 b = get_buffer_t(w, v, Inf, m); @test b.kernel == 2 b = get_buffer_t(w, Inf, Inf, m); @test b.kernel == 1 b = get_buffer_t(Inf, Inf, Inf, m); @test b.kernel == 0 end @testset "u channel" begin b = get_buffer_u(w, v, vp, m); @test b.kernel == 4 b = get_buffer_u(w, Inf, vp, m); @test b.kernel == 3 b = get_buffer_u(w, v, Inf, m); @test b.kernel == 2 b = get_buffer_u(w, Inf, Inf, m); @test b.kernel == 1 b = get_buffer_u(Inf, Inf, Inf, m); @test b.kernel == 0 end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1014
""" get_frequency_timers() :: Nothing Test performance of current frequency implementation for meshes with 30 positive frequencies. """ function get_frequency_timers() :: Nothing # init test dummys list = get_mesh(rand(), 1.0, 30, 0.4) m = Mesh(31, 31, 31, 31, list, list, list, list, list, list) w = rand() v = rand() vp = rand() # init timer to = TimerOutput() # time single interpolation @timeit to "=> single interpolation" begin for rep in 1 : 10 @timeit to "-> index search" get_indices(w, list) @timeit to "-> param build" get_param(w, list) end end # time buffer building @timeit to "=> buffer building" begin for rep in 1 : 10 @timeit to "-> s channel" get_buffer_s(w, v, vp, m) @timeit to "-> t channel" get_buffer_t(w, v, vp, m) @timeit to "-> u channel" get_buffer_u(w, v, vp, m) end end show(to) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
173
# load code include("unitcell.jl") include("site.jl") include("bond.jl") include("build.jl") include("reduced.jl") include("disk.jl") include("test.jl") include("timers.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
856
""" Bond Struct encapsulating the interactions between two lattice sites in matrix form. * `sites :: Tuple{Int64, Int64}` : indices of interacting lattice sites * `exchange :: Matrix{Float64}` : interaction matrix """ struct Bond sites :: Tuple{Int64, Int64} exchange :: Matrix{Float64} end # generate a bond with vanishing interactions function get_bond_empty( i :: Int64, j :: Int64 ) :: Bond b = Bond((i, j), zeros(Float64, 3, 3)) return b end # modify bond matrix in place function add_bond!( J :: Float64, b :: Bond, μ :: Int64, ν :: Int64 ) :: Nothing b.exchange[μ, ν] += J return nothing end # check if bonds are equal function are_equal( b1 :: Bond, b2 :: Bond ) :: Bool equal = norm(b1.exchange .- b2.exchange) <= 1e-8 return equal end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git