licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
2888
# CubedSphere.jl Documentation ## Conformal cubed sphere mapping The conformal method for projecting the cube on the sphere was first described by [Rancic-etal-1996](@citet). > Rančić et al., (1996). A global shallow-water model using an expanded spherical cube - Gnomonic versus conformal coordinates, _Quarterly Journal of the Royal Meteorological Society_, **122 (532)**, 959-982. doi:[10.1002/qj.49712253209](https://doi.org/10.1002/qj.49712253209) Imagine a cube inscribed into a sphere. Using [`conformal_cubed_sphere_mapping`](@ref) we can map the face of the cube onto the sphere. [`conformal_cubed_sphere_mapping`](@ref) maps the face that corresponds to the sphere's sector that includes the North Pole, that is, the face of the cube is oriented normal to the ``z`` axis. This cube's face is parametrized with orthogonal coordinates ``(x, y) \in [-1, 1] \times [-1, 1]`` with ``(x, y) = (0, 0)`` being in the center of the cube's face, that is on the ``z`` axis. We can visualize the mapping. ```@setup 1 using Rotations using GLMakie using CubedSphere ``` ```@example 1 using GLMakie using CubedSphere N = 16 x = range(-1, 1, length=N) y = range(-1, 1, length=N) X = zeros(length(x), length(y)) Y = zeros(length(x), length(y)) Z = zeros(length(x), length(y)) for (j, y′) in enumerate(y), (i, x′) in enumerate(x) X[i, j], Y[i, j], Z[i, j] = conformal_cubed_sphere_mapping(x′, y′) end fig = Figure(size = (800, 400)) ax2D = Axis(fig[1, 1], aspect = 1, title = "Cubed Sphere Panel") ax3D = Axis3(fig[1, 2], aspect = (1, 1, 1), limits = ((-1, 1), (-1, 1), (-1, 1)), title = "Cubed Sphere Panel") for ax in [ax2D, ax3D] wireframe!(ax, X, Y, Z) end colsize!(fig.layout, 1, Auto(0.8)) colgap!(fig.layout, 40) current_figure() ``` Above, we plotted the mapping from the cube's face onto the sphere both in a 2D projection (e.g., overlooking the sphere down to its North Pole) and in 3D space. We can then use [Rotations.jl](https://github.com/JuliaGeometry/Rotations.jl) to rotate the face of the sphere that includes the North Pole and obtain all six faces of the sphere. ```@example 1 using Rotations fig = Figure(resolution = (800, 400)) ax2D = Axis(fig[1, 1], aspect = 1, title = "Cubed Sphere") ax3D = Axis3(fig[1, 2], aspect = (1, 1, 1), limits = ((-1, 1), (-1, 1), (-1, 1)), title = "Cubed Sphere") identity = one(RotMatrix{3}) rotations = (RotY(π/2), RotX(-π/2), identity, RotY(-π/2), RotX(π/2), RotX(π)) for rotation in rotations X′ = similar(X) Y′ = similar(Y) Z′ = similar(Z) for I in CartesianIndices(X) X′[I], Y′[I], Z′[I] = rotation * [X[I], Y[I], Z[I]] end wireframe!(ax2D, X′, Y′, Z′) wireframe!(ax3D, X′, Y′, Z′) end colsize!(fig.layout, 1, Auto(0.8)) colgap!(fig.layout, 40) current_figure() ```
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
198
# CubedSphere.jl Documentation ## Overview CubedSphere.jl provides tools for generating cubed sphere grids. The package is developed by the [Climate Modeling Alliance](https://clima.caltech.edu).
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
35
# References ```@bibliography ```
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
102
### [Index](@id main-index) ```@index Pages = ["public.md", "internals.md", "function_index.md"] ```
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
161
# Private types and functions Documentation for `CubedSphere.jl`'s internal interface. ## CubedSphere ```@autodocs Modules = [CubedSphere] Public = false ```
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
96
## Library Outline ```@contents Pages = ["public.md", "internals.md", "function_index.md"] ```
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
245
# Public Documentation Documentation for `CubedSphere.jl`'s public interface. See the Internals section of the manual for internal package docs covering all submodules. ## CubedSphere ```@autodocs Modules = [CubedSphere] Private = false ```
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
3.0.2
f7736d86d7e8e80be3ac9685380e83e17dba3b81
code
3250
module LaTeXDatax using Unitful, UnitfulLatexify, Latexify export @datax """ ```julia @datax ``` Print the arguments to a data file to be read by pgfkeys. Best used with the [`datax` LaTeX package](https://ctan.org/pkg/datax). Variables can be supplied either by name or as assignments, and meta-arguments are supplied using the `:=` operator. The meta-arguments include all the keyword arguments from `Latexify.jl` and `UnitfulLatexify.jl` (for instance `unitformat := :siunitx`, `fmt := "%.2e"`), as well as a few extra: # Meta-arguments * `filename`: The path to a file that will be written. * `io`: an `IO` object to write to instead of a file. Overrides the `filename` argument. If neither this nor `filename` is given, `stdout` is used. * `permissions`: Defaults to `"w"`. Can be given as `"a"` to append to a file instead of overwriting. Only meaningful with a `filename` argument. # Examples ```julia julia> a = 2; julia> b = 3.2u"m"; julia> @datax a b c=3*a d=27 unitformat:=:siunitx \\pgfkeyssetvalue{/datax/a}{\\num{2}} \\pgfkeyssetvalue{/datax/b}{\\qty{3.2}{\\meter}} \\pgfkeyssetvalue{/datax/c}{\\num{6}} \\pgfkeyssetvalue{/datax/d}{\\num{27}} ``` """ macro datax(args...) return esc(datax_helper(args...)) end function datax_helper(args...) metaargs = Expr[] names = Symbol[] values = Any[] for a in args if a isa Symbol push!(names, a) push!(values, a) continue end if a.head == :(=) push!(names, a.args[1]) push!(values, a.args[2]) continue end if a.head == :(:=) push!(metaargs, Expr(:kw, a.args[1], a.args[2])) continue end error("I don't know what to do with argument $a") end names = Expr(:tuple, QuoteNode.(names)...) values = Expr(:tuple, values...) quote LaTeXDatax.datax($names, $values; $(metaargs...)) nothing end end function datax(names, values; kwargs...) if haskey(kwargs, :io) datax(kwargs[:io], names, values; kwargs...) return nothing end if haskey(kwargs, :filename) datax(kwargs[:filename], names, values; kwargs...) return nothing end datax(stdout, names, values; kwargs...) return nothing end datax(io::IO, names, values; kwargs...) = printkeyval.(Ref(io), names, values; kwargs...) function datax(filename::String, names, values; permissions="w", kwargs...) if haskey(kwargs, :overwrite) if kwargs[:overwrite] permissions = "w" else permissions = "a" end end open(filename, permissions) do io permissions == "w" && println(io, "% Autogenerated by LaTeXDatax.jl, will be overwritten") datax(io, names, values; kwargs...) end end function printkeyval(io::IO, name, value; kwargs...) print(io, "\\pgfkeyssetvalue{/datax/", name, "}{") printdata(io, value; kwargs...) print(io, "}\n") return nothing end printdata(io::IO, v::String; kwargs...) = print(io, v) printdata(io::IO, v::Number; kwargs...) = print(io, latexify(v * u"one"; kwargs...)) printdata(io::IO, v; kwargs...) = print(io, latexify(v; kwargs...)) end # module
LaTeXDatax
https://github.com/Datax-package/LaTeXDatax.jl.git
[ "MIT" ]
3.0.2
f7736d86d7e8e80be3ac9685380e83e17dba3b81
code
1760
using Unitful, LaTeXDatax, JuliaFormatter using Test # Supply "overwrite" as a commandline argument to overwrite in formatting step overwrite = get(ARGS, 1, "") == "overwrite" cd(@__DIR__) @testset "LaTeXDatax.jl" begin io = IOBuffer() # Basic data printing LaTeXDatax.printdata(io, "String") @test String(take!(io)) == "String" LaTeXDatax.printdata(io, 1.25) @test String(take!(io)) == "\$1.25\$" LaTeXDatax.printdata(io, 3.141592; fmt="%.2f", unitformat=:siunitx) @test String(take!(io)) == "\\num{3.14}" # keyval printing LaTeXDatax.printkeyval(io, :a, 612.2u"nm") @test String(take!(io)) == "\\pgfkeyssetvalue{/datax/a}{\$612.2\\;\\mathrm{nm}\$}\n" # complete macro a = 2 b = 3.2u"m" @datax a b c = 3 * a d = 27 unitformat := :siunitx io := io @test String(take!(io)) == """ \\pgfkeyssetvalue{/datax/a}{\\num{2}} \\pgfkeyssetvalue{/datax/b}{\\qty{3.2}{\\meter}} \\pgfkeyssetvalue{/datax/c}{\\num{6}} \\pgfkeyssetvalue{/datax/d}{\\num{27}} """ # Write to file rm.(("data.tex", "test.pdf", "test.log"); force=true) @datax a b c = 3 * a d = 27 unitformat := :siunitx filename := "data.tex" @test isfile("data.tex") @test_nowarn run(`pdflatex --file-line-error --interaction=nonstopmode test.tex`) rm("test.aux"; force=true) end @testset "Formatting" begin is_formatted = JuliaFormatter.format(LaTeXDatax; overwrite) @test is_formatted if ~is_formatted if overwrite println("The package has now been formatted. Review the changes and commit.") else println( "The package failed formatting check. Try `JuliaFormatter.format(LaTeXDatax)`", ) end end end
LaTeXDatax
https://github.com/Datax-package/LaTeXDatax.jl.git
[ "MIT" ]
3.0.2
f7736d86d7e8e80be3ac9685380e83e17dba3b81
docs
666
# LaTeXDatax Save specified variables to a data file to be read into a LaTeX document using the accompanying package `datax.sty`. ## Installation `using Pkg;Pkg.add("LaTeXDatax")`, and install [the datax package [ctan]](https://ctan.org/tex-archive/macros/latex/contrib/datax). ## Usage ```julia using LaTeXDatax, Unitful a = 25; @datax a b=3a c=3e8u"m/s" d="Raw string" filename:="data.tex" ``` ```latex \documentclass{article} \usepackage{siunitx} \usepackage[dataxfile=data.tex]{datax} \begin{document} The speed of light is \datax{c}. \end{document} ``` More detailed usage information is in the docstrings of the code, run `?@datax` in REPL to read them.
LaTeXDatax
https://github.com/Datax-package/LaTeXDatax.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
492
using SententialDecisionDiagrams const SDD = SententialDecisionDiagrams var_count = 4 var_order = [2,1,4,3] vtree_type = "balanced" vtree = SDD.vtree(var_count, var_order, vtree_type) manager = SDD.sdd_manager(vtree) println("constructing SDD ... ") a, b, c, d = [SDD.literal(i,manager) for i in 1:4] α = (a & b) | (b & c) | (c & d) println("done") println("saving sdd and vtree ... ") SDD.dot("$(@__DIR__)/output/sdd.dot",α) SDD.dot("$(@__DIR__)/output/vtree.dot",vtree) println("done")
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
1236
using SententialDecisionDiagrams const SDD = SententialDecisionDiagrams # set up vtree and manager var_count = 4 vtree_type = "right" vtree = SDD.vtree(var_count, vtree_type) manager = SDD.sdd_manager(vtree) x = [SDD.literal(i,manager) for i in 1:5] # construct the term X_1 ^ X_2 ^ X_3 ^ X_4 α = x[1] & x[2] & x[3] & x[4] # construct the term ~X_1 ^ X_2 ^ X_3 ^ X_4 β = ~x[1] & x[2] & x[3] & x[4] # construct the term ~X_1 ^ ~X_2 ^ X_3 ^ X_4 γ = ~x[1] & ~x[2] & x[3] & x[4] println("before referencing:") println("live sdd size = $(SDD.live_size(manager))") println("dead sdd size = $(SDD.dead_size(manager))") # ref SDDs so that they are not garbage collected SDD.ref(α) SDD.ref(β) SDD.ref(γ) println("after referencing:") println("live sdd size = $(SDD.live_size(manager))") println("dead sdd size = $(SDD.dead_size(manager))") # garbage collect SDD.garbage_collect(manager) println("after garbage collection:"); println("live sdd size = $(SDD.live_size(manager))") println("dead sdd size = $(SDD.dead_size(manager))") SDD.deref(α) SDD.deref(β) SDD.deref(γ) println("saving vtree & shared sdd ...") SDD.dot("$(@__DIR__)/output/shared-vtree.dot", vtree) SDD.shared_save_as_dot("$(@__DIR__)/output/shared.dot", manager)
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
896
using SententialDecisionDiagrams const SDD = SententialDecisionDiagrams # set up vtree and manager vtree = SDD.read_vtree("$(@__DIR__)/input/opt-swap.vtree") manager = SDD.sdd_manager(vtree) println("reading sdd from file ...") α = SDD.read_sdd("$(@__DIR__)/input/opt-swap.sdd", manager) println("sdd size = $(SDD.size(α))") # ref, perform the minimization, and then de-ref SDD.ref(α) println("minimizing sdd size ... ") SDD.minimize(manager) # see also SDD.minimize(m,limited=true) println("done!") println("sdd size = $(SDD.size(α))") SDD.deref(α) # augment the SDD println("augmenting sdd ...") β = α & (SDD.literal(4,manager) | SDD.literal(5,manager)) println("sdd size = $(SDD.size(β))") # ref, perform the minimization again on new SDD, and then de-ref SDD.ref(β) println("minimizing sdd ... ") SDD.minimize(manager) println("done!") println("sdd size = $(SDD.size(β))") SDD.deref(β)
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
1322
using SDD const SDD = SententialDecisionDiagrams # set up vtree and manager vtree = SDD.read_vtree("$(@__DIR__)/input/rotate-left.vtree") manager = SDD.sdd_manager(vtree) # construct the term X_1 ^ X_2 ^ X_3 ^ X_4 x = [SDD.literal(i,manager) for i in 1:5] α = x[1] & x[2] & x[3] & x[4] # to perform a rotate, we need the manager's vtree manager_vtree = SDD.vtree(manager) manager_vtree_right = SDD.right(manager_vtree) println("saving vtree & sdd ...") SDD.dot("$(@__DIR__)/output/before-rotate-vtree.dot", α) # ref alpha (so it is not gc'd) SDD.ref(α) # garbage collect (no dead nodes when performing vtree operations) println("dead sdd nodes = $(SDD.dead_count(manager))") println("garbage collection ...") SDD.garbage_collect(manager) println("dead sdd nodes = $(SDD.dead_count(manager))") println("left rotating ... ") succeeded = SDD.rotate_left(manager_vtree_right,manager,0) if succeeded == 1; println("succeeded!") else println("did not succeed!") end # deref alpha, since ref's are no longer needed SDD.deref(α) # the root changed after rotation, so get the manager's vtree again # this time using root_location manager_vtree = SDD.vtree(manager) println("saving vtree & sdd ...") SDD.dot("$(@__DIR__)/output/after-rotate-vtree.dot", manager_vtree) SDD.dot("$(@__DIR__)/output/after-rotate-sdd.dot", α)
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
1895
using SententialDecisionDiagrams const SDD = SententialDecisionDiagrams # set up vtree and manager vtree = SDD.read_vtree("$(@__DIR__)/input/big-swap.vtree") manager = SDD.sdd_manager(vtree) println("reading sdd from file ...") α = SDD.read_sdd("$(@__DIR__)/input/big-swap.sdd", manager) println("sdd size = $(SDD.size(α))") # to perform a swap, we need the manager's vtree manager_vtree = SDD.vtree(manager) # ref alpha (no dead nodes when swapping) SDD.ref(α) # # # using size of sdd normalized for manager_vtree as baseline for limit SDD.init_vtree_size_limit(manager_vtree, manager) # limit = 2.0 SDD.set_vtree_operation_size_limit(limit, manager) println("modifying vtree (swap node 7) (limit growth by $(limit)x) ... ") succeeded = SDD.swap(manager_vtree, manager, 1) if succeeded == 1; println("succeeded!") else println("did not succeed!") end println("sdd size = $(SDD.size(α))") println("modifying vtree (swap node 7) (no limit) ... ") succeeded = SDD.swap(manager_vtree, manager, 0) if succeeded == 1; println("succeeded!") else println("did not succeed!") end println("sdd size = $(SDD.size(α))") println("updating baseline of size limit ...") SDD.update_vtree_size_limit(manager) left_vtree = SDD.left(manager_vtree) limit = 1.2 SDD.set_vtree_operation_size_limit(limit, manager) println("modifying vtree (swap node 5) (limit growth by $(limit)x) ... ") succeeded = SDD.swap(left_vtree, manager, 1) if succeeded == 1; println("succeeded!") else println("did not succeed!") end println("sdd size = $(SDD.size(α))") limit = 1.3 SDD.set_vtree_operation_size_limit(limit, manager) println("modifying vtree (swap node 5) (limit growth by $(limit)x) ... ") succeeded = SDD.swap(left_vtree, manager, 1) if succeeded == 1; println("succeeded!") else println("did not succeed!") end println("sdd size = $(SDD.size(α))") # deref alpha, since ref's are no longer needed SDD.deref(α)
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
1342
using SententialDecisionDiagrams # set up vtree and manager vtree = SententialDecisionDiagrams.read_vtree("$(@__DIR__)/input/simple.vtree") sdd = SententialDecisionDiagrams.sdd_manager(vtree) println("Created an SententialDecisionDiagrams with $(SententialDecisionDiagrams.var_count(sdd)) variables") root = SententialDecisionDiagrams.read_cnf("$(@__DIR__)/input/simple.cnf", sdd, compiler_options=SententialDecisionDiagrams.CompilerOptions(vtree_search_mode=-1)) # For DNF functions use `read_dnf_file` # Model Counting wmc = SententialDecisionDiagrams.wmc_manager(root, log_mode=true) w = SententialDecisionDiagrams.propagate(wmc) println("Model count: $(convert(Int32,exp(w)))") # Weighted Model Counting lits = [SententialDecisionDiagrams.literal(i,sdd) for i in 1:SententialDecisionDiagrams.var_count(sdd)] # Positive literal weight SententialDecisionDiagrams.set_literal_weight(lits[1], log(0.5), wmc) # Negative literal weight SententialDecisionDiagrams.set_literal_weight(~lits[1], log(0.5), wmc) w = SententialDecisionDiagrams.propagate(wmc) println("Weighted model count: $(exp(w))") # Visualize SententialDecisionDiagrams and VTREE println("saving sdd and vtree ... ") SententialDecisionDiagrams.dot("$(@__DIR__)/output/simple-vtree.dot", vtree) SententialDecisionDiagrams.dot("$(@__DIR__)/output/simple-sdd-cnf.dot", root)
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
20189
#TODO add bangs for functions that modify argument(s) module SententialDecisionDiagrams using Parameters include("sddapi.jl") include("fnf.jl") using .SddLibrary struct VTree vtree::Ptr{SddLibrary.VTree_c} end struct SddManager manager::Ptr{SddLibrary.SddManager_c} end struct SddNode node::Ptr{SddLibrary.SddNode_c} manager::Ptr{SddLibrary.SddManager_c} end struct PrimeSub prime::SddNode sub::SddNode end struct WmcManager manager::Ptr{SddLibrary.WmcManager_c} end function str_to_char(vtree_type::String)::Ptr{UInt8} return pointer(vtree_type) end # SDD MANAGER FUNCTIONS function sdd_manager(vtree::VTree)::SddManager manager = SddLibrary.sdd_manager_new(vtree.vtree) return SddManager(manager) end function sdd_manager(var_count::Integer, auto_gc_and_minimize::Bool)::SddManager manager = SddLibrary.sdd_manager_create(convert(SddLibrary.SddLiteral, var_count), auto_gc_and_minimize) return SddManager(manager) end # TODO function manager_new function free(manager::SddManager) SddLibrary.sdd_manager_free(manager.manager) end function Base.print(manager::SddManager) SddLibrary.sdd_manager_print(manager.manager) end function auto_gc_and_minimize_on(manager::SddManager) SddLibrary.sdd_manager_auto_gc_and_minimize_on(manager.manager) end function sdd_manager_auto_gc_and_minimize_off(manager::SddManager) SddLibrary.sdd_manager_auto_gc_and_minimize_off(manager.manager) end function is_auto_gc_and_minimize_on(manager::SddManager)::Bool return convert(Bool, SddLibrary.sdd_manager_is_auto_gc_and_minimize_on(manager.manager)) end # TODO void sdd_manager_set_minimize_function function unset_minimize_function(manager::SddManager) SddLI.sdd_manager_unset_minimize_function(manager.manager) end function options(manager::SddManager) SddLI.sdd_manager_options(manager.manager) end # TODO void sdd_manager_set_options(void* options, SddManager* manager); function is_var_used(var::Integer, manager::SddManager)::Bool return convert(Bool, SddLibrary.sdd_manager_is_var_used(convert(SddLibrary.SddLiteral, var),manager.manager)) end function vtree_of_var(var::Integer, manager::SddManager)::VTree vtree = SddLibrary.sdd_manager_vtree_of_var(convert(SddLibrary.SddLiteral, var), manager.manager) return VTree(vtree) end # TODO Vtree* sdd_manager_lca_of_literals(int count, SddLiteral* literals, SddManager* manager); function var_count(manager::SddManager)::SddLibrary.SddLiteral return SddLibrary.sdd_manager_var_count(manager.manager) end # TODO void sdd_manager_var_order(SddLiteral* var_order, SddManager *manager); function add_var_before_first(manager::SddManager) SddLibrary.sdd_manager_add_var_before_first(manager.manager) end function add_var_after_last(manager::SddManager) SddLibrary.sdd_manager_add_var_after_last(manager.manager) end function add_var_before(manager::SddManager) SddLibrary.sdd_manager_add_var_before(manager.manager) end function add_var_after(manager::SddManager) SddLibrary.sdd_manager_add_var_after(manager.manager) end # TERMINAL SDDS function literal(tf::Bool, manager::SddManager)::SddNode if tf node = SddLibrary.sdd_manager_false(manager.manager) elseif !tf node = SddLibrary.sdd_manager_true(manager.manager) end return SddNode(node, manager.manager) end function literal(literal::Integer, manager::SddManager)::SddNode node = SddLibrary.sdd_manager_literal(convert(SddLibrary.SddLiteral, literal), manager.manager) return SddNode(node, manager.manager) end # SDD QUERIES AND TRANSFORMATIONS function apply(node1::SddNode, node2::SddNode, op::Bool, manager::SddManager)::SddNode node = SddLibrary.sdd_apply(node1.node, node2.node, convert(SddLibrary.SddBoolOp, op), manager.manager) return SddNode(node, node1.manager) end function conjoin(node1::SddNode, node2::SddNode, manager::SddManager)::SddNode node = SddLibrary.sdd_conjoin(node1.node, node2.node, manager.manager) return SddNode(node, manager.manager) end function disjoin(node1::SddNode, node2::SddNode, manager::SddManager)::SddNode node = SddLibrary.sdd_disjoin(node1.node, node2.node, manager.manager) return SddNode(node, manager.manager) end function negate(node::SddNode, manager::SddManager)::SddNode node = SddLibrary.sdd_negate(node.node, node.manager) return SddNode(node, manager.manager) end function condition(lit::Integer, node::SddNode, manager::SddManager)::SddNode node = SddLibrary.sdd_condition(convert(SddLibrary.SddLiteral,lit), node.node, manager.manager) return SddNode(node, manager.manager) end function exists(lit::Integer, node::SddNode, manager::SddManager)::SddNode node = SddLibrary.sdd_exists(convert(SddLibrary.SddLiteral,lit), node.node, manager.manager) return SddNode(node, manager.manager) end function exists_multiple(exists_map::Array{Integer,1}, node::SddNode, manager::SddManager; static::Bool=false)::SddNode if !static node = SddLibrary.sdd_exists(convert(Array{Cint,1},exists_map), node.node, manager.manager) else node = SddLibrary.sdd_exists_multiple_static(convert(Array{Cint,1},exists_map), node.node, manager.manager) end return SddNode(node, manager.manager) end function for_all(lit::Integer, node::SddNode, manager::SddManager)::SddNode node = SddLibrary.sdd_forall(convert(SddLibrary.SddLiteral,lit), node.node, manager.manager) return SddNode(node, manager.manager) end function minimize_cardinality(node::SddNode, manager::SddManager; globally::Bool=false)::SddNode if !globally node = SddLibrary.sdd_minimize_cardinality(node.node, manager.manager) else node = SddLibrary.sdd_global_minimize_cardinality(node.node, manager.manager) end return SddNode(node, manager.manager) end function minimum_cardinality(node::SddNode)::SddLibrary.SddLiteral return SddLibrary.sdd_minimum_cardinality(node.node) end function model_count(node::SddNode, manager::SddManager; globally::Bool=false)::SddLibrary.SddModelCount if !globally return SddLibrary.sdd_model_count(node.node, manager.manager) else return SddLibrary.sdd_global_model_count(node.node, manager.manager) end end # SDD NAVIGATION function is_true(node::SddNode)::Bool res = SddLibrary.sdd_node_is_true(node.node) return convert(Bool, res) end function is_false(node::SddNode)::Bool res = SddLibrary.sdd_node_is_false(node.node) return convert(Bool, res) end function is_literal(node::SddNode)::Bool res = SddLibrary.sdd_node_is_literal(node.node) return convert(Bool, res) end function is_decision(node::SddNode)::Bool res = SddLibrary.sdd_node_is_decision(node.node) return convert(Bool, res) end function node_size(node::SddNode)::SddLibrary.SddNodeSize return SddLibrary.sdd_node_size(node.node) end function literal(node::SddNode)::SddLibrary.SddLiteral return SddLibrary.sdd_node_literal(node.node) end function elements(node::SddNode)::Array{PrimeSub,1} # TODO make abstract array for primesubs and avoid copying elements_ptr = SddLibrary.sdd_node_elements(node.node) m = size(node) primesubs = PrimeSub[] for i in 0:m-1 e = unsafe_load(elements_ptr+i) p = SddNode(e, node.manager) s = SddNode(e+1, node.manager) push!(primesubs, PrimeSub(p, s)) end return primesubs end function set_bit(bit::Int32, node::SddNode) SddLibrary.sdd_node_set_bit(bit, node.node) end function bit(node::SddNode)::Int32 return SddLibrary.sdd_node_bit(node.node) end # # # SDD FUNCTIONS # SDD FILE I/O # TODO make this safer function read_sdd(filename::String, manager::SddManager)::SddNode node = SddLibrary.sdd_read(str_to_char(filename), manager.manager) return SddNode(node, manager.manager) end function save(filename::String, node::SddNode) SddLibrary.sdd_save(str_to_char(filename), node.node) end function save_as_dot(filename::String, node::SddNode) SddLibrary.sdd_save_as_dot(str_to_char(filename), node.node) end function shared_save_as_dot(filename::String, manager::SddManager) SddLibrary.sdd_shared_save_as_dot(str_to_char(filename), manager.manager) end # SDD SIZE AND NODE COUNT # SDD function count(node::SddNode)::SddLibrary.SddSize return SddLibrary.sdd_count(node.node) end function size(node::SddNode)::SddLibrary.SddSize return SddLibrary.sdd_size(node.node) end # SDD OF MANAGER manager_size_fnames_c = [ "size", "live_size", "dead_size", "count", "live_count", "dead_count" ] for (fnj,fnc) in zip(manager_size_fnames_c, SddLibrary.manager_size_fnames_c) @eval begin function $(Symbol(fnj))(manager::SddManager)::SddLibrary.SddSize return ((SddLibrary).$(Symbol(fnc)))(manager.manager) end end end # SDD SIZE OF VTREE vtree_size_fnames_j = [ "size", "live_size", "dead_size", "size_at", "live_size_at", "dead_size_at", "size_above", "live_size_above", "dead_size_above", "count", "live_count", "dead_count", "count_at", "live_count_at", "dead_count_at", "count_above", "live_count_above", "dead_count_above" ] for (fnj,fnc) in zip(vtree_size_fnames_j, SddLibrary.vtree_size_fnames_c) @eval begin function $(Symbol(fnj))(vtree::VTree)::SddLibrary.SddSize return ((SddLibrary).$(Symbol(fnc)))(vtree.vtree) end end end # CREATING VTREES function vtree(var_count::Integer, vtree_type::String)::VTree vtree = SddLibrary.sdd_vtree_new(convert(SddLibrary.SddLiteral,var_count), str_to_char(vtree_type)) return VTree(vtree) end function vtree(var_count::Integer, order::Array{<:Integer,1}, vtree_type::String; order_type::String="var_order")::VTree @assert order_type in Set(["var_order", "is_X_var"]) "$order_type not in a valid order type (var_order, is_X_var]" if order_type=="var_order" vtree = SddLibrary.sdd_vtree_new_with_var_order(convert(SddLibrary.SddLiteral,var_count), convert(Array{SddLibrary.SddLiteral,1},order), str_to_char(vtree_type)) elseif order_type=="is_X_var" vtree = SddLibrary.sdd_vtree_new_X_constrained(convert(SddLibrary.SddLiteral,var_count), convert(Array{SddLibrary.SddLiteral,1},order), str_to_char(vtree_type)) end return VTree(vtree) end function free(vtree::VTree) SddLibrary.sdd_vtree_free(vtree.vtree) end # VTREE FILE I/O # TODO make this safer function read_vtree(filename::String)::VTree vtree = SddLibrary.sdd_vtree_read(str_to_char(filename)) return VTree(vtree) end function save(filename::String, vtree::VTree) SddLibrary.sdd_vtree_save(str_to_char(filename), vtree.vtree) end function save_as_dot(filename::String, vtree::VTree) SddLibrary.sdd_vtree_save_as_dot(str_to_char(filename), vtree.vtree) end # SDD MANAGER VTREE function vtree(manager::SddManager; copy::Bool=false)::VTree if !copy vtree = SddLibrary.sdd_manager_vtree(manager.manager) return VTree(vtree) else vtree = SddLibrary.sdd_manager_vtree_copy(manager.manager) return VTree(vtree) end end # VTREE NAVIGATION function left(vtree::VTree)::VTree vtree = SddLibrary.sdd_vtree_left(vtree.vtree) return VTree(vtree) end function right(vtree::VTree)::VTree vtree = SddLibrary.sdd_vtree_right(vtree.vtree) return VTree(vtree) end function parent(vtree::VTree)::VTree vtree = SddLibrary.sdd_vtree_parent(vtree.vtree) return VTree(vtree) end # VTREE FUNCTIONS function is_leaf(vtree::VTree)::Bool return convert(Bool, SddLibrary.sdd_vtree_is_leaf(vtree.vtree)) end function is_sub(vtree1::VTree, vtree2::VTree)::Bool return convert(Bool, SddLibrary.sdd_vtree_is_sub(vtree1.vtree, vtree2.vtree)) end function lca(vtree1::VTree, vtree2::VTree)::VTree vtree = SddLibrary.sdd_vtree_lca(vtree1.vtree, vtree2.vtree) return VTree(vtree) end function var_count(vtree::VTree)::SddLibrary.SddLiteral return SddLibrary.sdd_vtree_var_count(vtree.vtree) end function var(vtree::VTree)::SddLibrary.SddLiteral return SddLibrary.sdd_vtree_var(vtree.vtree) end function position(vtree::VTree)::SddLibrary.SddLiteral return SddLibrary.sdd_vtree_position(vtree.vtree) end # Vtree** sdd_vtree_location(Vtree* vtree, SddManager* manager); # VTREE/SDD EDIT OPERATIONS function rotate_left(vtree::VTree, manager::SddManager, limited::Union{Bool,Integer})::Bool return convert(Bool, SddLibrary.sdd_vtree_rotate_left(vtree.vtree, manager.manager, convert(Cint, limited))) end function rotate_right(vtree::VTree, manager::SddManager, limited::Union{Bool,Integer})::Bool return convert(Bool, SddLibrary.sdd_vtree_rotate_right(vtree.vtree, manager.manager, convert(Cint, limited))) end function swap(vtree::VTree, manager::SddManager, limited::Union{Bool,Integer})::Bool return convert(Bool, SddLibrary.sdd_vtree_swap(vtree.vtree, manager.manager, convert(Cint, limited))) end # LIMITS FOR VTREE/SDD EDIT OPERATIONS function init_vtree_size_limit(vtree::VTree, manager::SddManager) SddLibrary.sdd_manager_init_vtree_size_limit(vtree.vtree, manager.manager) end function update_vtree_size_limit(manager::SddManager) SddLibrary.sdd_manager_update_vtree_size_limit(manager.manager) end # # VTREE STATE # GARBAGE COLLECTION function ref_count(node::SddNode)::SddLibrary.SddRefCount return SddLibrary.sdd_ref_count(node.node) end function ref(node::SddNode, manager::SddManager)::SddNode ref_node = SddLibrary.sdd_ref(node.node, manager.manager) return SddNode(ref_node, manager.manager) end function deref(node::SddNode, manager::SddManager)::SddNode ref_node = SddLibrary.sdd_deref(node.node, manager.manager) return SddNode(ref_node, manager.manager) end function garbage_collect(manager::SddManager) SddLibrary.sdd_manager_garbage_collect(manager.manager) end function garbage_collect(vtree::VTree, manager::SddManager) SddLibrary.sdd_manager_garbage_collect(vtree.vtree, manager.manager) end function garbage_collect_if(dead_node_threshold::Real, manager::SddManager)::Int32 return SddLibrary.sdd_manager_garbage_collect_if(convert(Float32, dead_node_threshold), manager.manager) end function garbage_collect_if(dead_node_threshold::Real, vtree::VTree, manager::SddManager)::Int32 return SddLibrary.sdd_manager_garbage_collect_if(convert(Float32, dead_node_threshold), vtree.vtree, manager.manager) end # MINIMIZATION function minimize(manager::SddManager; limited::Bool=false) if !limited SddLibrary.sdd_manager_minimize(manager.manager) else SddLibrary.sdd_manager_minimize_limited(manager.manager) end end function minimize(vtree::VTree, manager::SddManager; limited::Bool=false)::VTree if !limited vtree = SddLibrary.sdd_vtree_minimize(vtree.vtree, manager.manager) else vtree = SddLibrary.sdd_vtree_minimize_limited(vtree.vtree, manager.manager) end return VTree(vtree) end function set_vtree_search_convergence_threshold(threshold::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_search_convergence_threshold(convert(Float32, threshold), manager.manager) end function set_vtree_search_time_limit(time_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_search_time_limit(convert(Float32, time_limit), manager.manager) end function set_vtree_fragment_time_limit(time_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_fragment_time_limit(convert(Float32, time_limit), manager.manager) end function set_vtree_operation_time_limit(time_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_operation_time_limit(convert(Float32, time_limit), manager.manager) end function set_vtree_apply_time_limit(time_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_apply_time_limit(convert(Float32, time_limit), manager.manager) end function set_vtree_operation_memory_limit(memory_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_operation_memory_limit(convert(Float32, memory_limit), manager.manager) end function set_vtree_operation_size_limit(size_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_operation_size_limit(convert(Float32, size_limit), manager.manager) end function set_vtree_cartesian_product_limit(size_limit::Real, manager::SddManager) SddLibrary.sdd_manager_set_vtree_cartesian_product_limit(convert(Float32, size_limit), manager.manager) end # WMC function wmc_manager(node::SddNode, log_mode::Bool, manager::SddManager)::WmcManager wmc = SddLibrary.wmc_manager_new(node.node, convert(Cint, log_mode), manager.manager) return WmcManager(wmc) end function free(manager::WmcManager) SddLibrary.wmc_manager_free(manager.manager) end function set_literal_weight(node::SddNode, weight::Real, manager::WmcManager) literal = SddLibrary.sdd_node_literal(node.node) SddLibrary.wmc_set_literal_weight(literal, convert(SddLibrary.SddWmc, weight), manager.manager) end function propagate(manager::WmcManager)::SddLibrary.SddWmc return SddLibrary.wmc_propagate(manager.manager) end function zero(manager::WmcManager)::SddLibrary.SddWmc return SddLibrary.wmc_zero_weight(manager.manager) end function one(manager::WmcManager)::SddLibrary.SddWmc return SddLibrary.wmc_one_weight(manager.manager) end function weight(literal::Integer, manager::WmcManager)::SddLibrary.SddWmc return SddLibrary.wmc_literal_weight(convert(SddLibrary.SddLiteral, literal), manager.manager) end function derivative(literal::Integer, manager::WmcManager)::SddLibrary.SddWmc return SddLibrary.wmc_literal_derivative(convert(SddLibrary.SddLiteral, literal), manager.manager) end function probability(literal::Integer, manager::WmcManager)::SddLibrary.SddWmc return SddLibrary.wmc_literal_pr(convert(SddLibrary.SddLiteral, literal), manager.manager) end # CONVENIENCE METHODS function conjoin(node1::SddNode, node2::SddNode)::SddNode node = SddLibrary.sdd_conjoin(node1.node, node2.node, node1.manager) return SddNode(node, node1.manager) end function disjoin(node1::SddNode, node2::SddNode)::SddNode node = SddLibrary.sdd_disjoin(node1.node, node2.node, node1.manager) return SddNode(node, node1.manager) end function negate(node::SddNode)::SddNode nodeptr = SddLibrary.sdd_negate(node.node, node.manager) return SddNode(nodeptr, node.manager) end function equiv(left::SddNode, right::SddNode)::SddNode return (!left | right) & (left | !right) end function model_count(node::SddNode; globally::Bool=false)::SddLibrary.SddModelCount if !globally return SddLibrary.sdd_model_count(node.node, node.manager) else return SddLibrary.sdd_global_model_count(node.node, node.manager) end end function ref(node::SddNode)::SddNode ref_node = SddLibrary.sdd_ref(node.node, node.manager) return SddNode(ref_node, node.manager) end function deref(node::SddNode)::SddNode ref_node = SddLibrary.sdd_deref(node.node, node.manager) return SddNode(ref_node, node.manager) end function dot(filename::String, structure::Union{VTree,SddNode}) save_as_dot(filename, structure) end function wmc_manager(node::SddNode; log_mode::Bool=true)::WmcManager wmc = SddLibrary.wmc_manager_new(node.node, convert(Cint, log_mode), node.manager) return WmcManager(wmc) end Base.:&(node1::SddNode, node2::SddNode) = conjoin(node1,node2) Base.:|(node1::SddNode, node2::SddNode) = disjoin(node1,node2) Base.:~(node::SddNode) = negate(node) ↔(left::SddNode, right::SddNode) = equiv(left,right) # FNF methods @with_kw struct CompilerOptions vtree_search_mode::Int32 = -1 post_search::Bool = false verbose::Bool = false end function read_cnf(filename::String, manager::SddManager; compiler_options=CompilerOptions())::SddNode cnf = read_cnf(filename) sdd_node = fnf_to_sdd(cnf, manager.manager, compiler_options) return SddNode(sdd_node, manager.manager) end function read_dnf(filename::String, manager::SddManager; compiler_options=CompilerOptions())::SddNode dnf = read_dnf(filename) sdd_node = fnf_to_sdd(dnf, manager.manager, compiler_options) return SddNode(sdd_node, manager.manager) end export ↔ end
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
5927
# structures mutable struct LitSet id::SddLibrary.SddSize literal_count::SddLibrary.SddLiteral literals::Array{SddLibrary.SddLiteral} op::SddLibrary.BoolOp vtree::Ptr{SddLibrary.VTree_c} litset_bit::UInt8 LitSet() = new() end mutable struct Fnf var_count::SddLibrary.SddLiteral litset_count::SddLibrary.SddSize litsets::Array{LitSet} op::SddLibrary.BoolOp end # i/o function read_cnf(filename::String)::Fnf return parse_fnf(filename, convert(SddLibrary.BoolOp,0)) end function read_dnf(filename::String)::Fnf return parse_fnf(filename, convert(SddLibrary.BoolOp,1)) end function parse_fnf(filename::String, op::SddLibrary.BoolOp)::Fnf f = open(filename) lines = readlines(f) close(f) id::SddLibrary.SddSize = 0 var_count::SddLibrary.SddLiteral = 0 litset_count::SddLibrary.SddSize = 0 n_extra_lines = 0 for l in lines l_split = split(l) n_extra_lines += 1 if l_split[1]=="c" continue elseif l_split[1]=="p" # if op==0 @assert(l_split[2]=="cnf") else @assert(l_split[2]=="dnf") end @assert(l_split[2]=="cnf") var_count = parse(SddLibrary.SddLiteral, l_split[3]) litset_count = parse(SddLibrary.SddSize, l_split[4]) break end end litsets = Array{LitSet}(undef, litset_count) for c in 1:litset_count id += 1 terms = split(lines[c+n_extra_lines]) literals = Array{SddLibrary.SddLiteral}(undef, 2var_count) for i in 1:length(terms) if terms[i]== "0" break end literals[i] = parse(SddLibrary.SddLiteral,terms[i]) #TODO add test if i>2varcount raise end clause = LitSet() clause.id = id clause.literal_count = length(terms)-1 clause.op = convert(SddLibrary.BoolOp, 1-op) clause.literals = literals clause.litset_bit = 0 litsets[c] = clause end return Fnf(var_count, litset_count, litsets, op) end # compiling ZERO(M,OP) = (OP==SddLibrary.CONJOIN ? SddLibrary.sdd_manager_false(M) : SddLibrary.sdd_manager_true(M)) ONE(M,OP) = (OP==SddLibrary.CONJOIN ? SddLibrary.sdd_manager_true(M) : SddLibrary.sdd_manager_false(M)) function fnf_to_sdd(fnf::Fnf, manager::Ptr{SddLibrary.SddManager_c}, options)::Ptr{SddLibrary.SddNode_c} # degenarate fnf if fnf.litset_count==0 return ONE(manager,fnf.op) end for ls in fnf.litsets if ls.literal_count==0 return ZERO(manager,fnf.op) end end # non-degenarate fnf if options.vtree_search_mode<0 SddLibrary.sdd_manager_auto_gc_and_minimize_on(manager) return fnf_to_sdd_auto(fnf, manager, options) else SddLibrary.sdd_manager_auto_gc_and_minimize_off(manager) return fnf_to_sdd_manual(fnf, manager, options) end end function fnf_to_sdd_auto(fnf::Fnf, manager::Ptr{SddLibrary.SddManager_c}, options)::Ptr{SddLibrary.SddNode_c} # TODO verbose print stuff verbose = options.verbose op = fnf.op node = ONE(manager,fnf.op) count = fnf.litset_count litsets = view(fnf.litsets,:) # need to convert count to Int64 other sort! does not work for i in 1:convert(Int64,count) litsets[i:count] = sort_litsets_by_lca(view(litsets,i:convert(Int64,count)), manager) SddLibrary.sdd_ref(node, manager) l = apply_litset(litsets[i], manager) SddLibrary.sdd_deref(node, manager) node = SddLibrary.sdd_apply(l,node,op,manager) end return node end function fnf_to_sdd_manual(fnf::Fnf, manager::Ptr{SddLibrary.SddManager_c}, options)::Ptr{SddLibrary.SddNode_c} verbose = options.verbose period = options.vtree_search_mode op = fnf.op count = fnf.litset_count litsets = view(fnf.litsets,:) node = ONE(manager, op) # need to convert count to Int64 other sort! does not work for i in 1:convert(Int64,count) if (period>0) && (i>1) && ((i-1)%period==0) SddLibrary.sdd_ref(node, manager) SddLibrary.sdd_manager_minimize_limited(manager) SddLibrary.sdd_deref(node, manager) #TODO possible without copying? sort_litsets_by_lca(view(litsets,i:convert(Int64,count)), manager) end l = apply_litset(litsets[i], manager) node = SddLibrary.sdd_apply(l, node, op, manager) end return node end function apply_litset(litset::LitSet, manager::Ptr{SddLibrary.SddManager_c})::Ptr{SddLibrary.SddNode_c} op = litset.op literals = litset.literals node = ONE(manager,op) for i in 1:litset.literal_count literal = SddLibrary.sdd_manager_literal(literals[i], manager) node = SddLibrary.sdd_apply(node, literal, op, manager) end return node end # sorting function sort_litsets_by_lca(litsets::SubArray{LitSet}, manager::Ptr{SddLibrary.SddManager_c}) for ls in litsets ls.vtree = SddLibrary.sdd_manager_lca_of_literals(ls.literal_count, ls.literals, manager) end sort!(litsets) end function Base.isless(litset1, litset2)::Bool vtree1 = litset1.vtree vtree2 = litset2.vtree p1 = SddLibrary.sdd_vtree_position(vtree1) p2 = SddLibrary.sdd_vtree_position(vtree2) sub12 = convert(Bool, SddLibrary.sdd_vtree_is_sub(vtree1,vtree2)) sub21 = convert(Bool, SddLibrary.sdd_vtree_is_sub(vtree2,vtree1)) if ((vtree1!=vtree2) && (sub21 || (!sub12 && (p1>p2)))) return true elseif ((vtree1!=vtree2) && (sub12 || (!sub21 && (p1<p2)))) return false else l1 = litset1.literal_count l2 = litset2.literal_count if l1>l2 return true elseif l1<l2 return false else id1 = litset.id id2 = litset.id if id1>id2 return true elseif id1<id2 return false else return false end end end end
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
code
22632
module SddLibrary @static if Sys.isunix() @static if Sys.islinux() const LIBSDD = "$(@__DIR__)/../deps/sdd-2.0/lib/Linux/libsdd" elseif Sys.isapple() const LIBSDD = "$(@__DIR__)/../deps/sdd-2.0/lib/Darwin/libsdd" else LoadError("sddapi.jl", 0, "Sdd library only available on Linux and Darwin") end else LoadError("sddapi.jl", 0, "Sdd library only available on Linux and Darwin") end const SddSize = Csize_t const SddNodeSize = Cuint const SddRefCount = Cuint const SddModelCount = Culonglong const SddWmc = Cdouble const SddLiteral = Clong const SddID = SddSize const BoolOp = Cushort const CONJOIN = convert(BoolOp, 0) const DISJOIN = convert(BoolOp, 1) struct VTree_c end struct SddNode_c end struct SddManager_c end struct WmcManager_c end # SDD MANAGER FUNCTIONS function sdd_manager_new(vtree::Ptr{VTree_c})::Ptr{SddManager_c} return ccall((:sdd_manager_new, LIBSDD), Ptr{SddManager_c}, (Ptr{VTree_c},), vtree) end function sdd_manager_create(var_count::SddLiteral, auto_gc_and_minimize::Cint)::Ptr{SddManager_c} return ccall((:sdd_manager_create, LIBSDD),Ptr{SddManager_c}, (SddLiteral,Cint), var_count, auto_gc_and_minimize) end # function sdd_manager_new(size::SddSize, nodes::Array{Ptr{SddNode_c}}, from_manager::Ptr{SddManager_c})::Ptr{SddManager_c} # return ccall((:sdd_manager_copy, LIBSDD), Ptr{SddManager_c}, (SddSize,Array{Ptr{SddNode_c}},Ptr{SddManager_c}), size, nodes, from_manager) # end function sdd_manager_free(manager::Ptr{SddManager_c}) ccall((:sdd_manager_free, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_print(manager::Ptr{SddManager_c}) ccall((:sdd_manager_print, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_auto_gc_and_minimize_on(manager::Ptr{SddManager_c}) ccall((:sdd_manager_auto_gc_and_minimize_on, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_auto_gc_and_minimize_off(manager::Ptr{SddManager_c}) ccall((:sdd_manager_auto_gc_and_minimize_off, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_is_auto_gc_and_minimize_on(manager::Ptr{SddManager_c})::Cint return ccall((:sdd_manager_is_auto_gc_and_minimize_on, LIBSDD), Cint, (Ptr{SddManager_c},), manager) end # TODO void sdd_manager_set_minimize_function(SddVtreeSearchFunc func, SddManager* manager); function sdd_manager_unset_minimize_function(manager::Ptr{SddManager_c}) ccall((:sdd_manager_unset_minimize_function, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end # function sdd_manager_options(manager::Ptr{SddManager_c}) # ccall((:sdd_manager_options, LIBSDD), Ptr{Cvoid}, (Ptr{SddManager_c},), manager) # end # void sdd_manager_set_options(void* options, SddManager* manager); function sdd_manager_is_var_used(var::SddLiteral, manager::Ptr{SddManager_c})::Cint return ccall((:sdd_manager_is_var_used, LIBSDD), Cint, (SddLiteral, Ptr{SddManager_c}), var, manager) end function sdd_manager_vtree_of_var(var::SddLiteral, manager::Ptr{SddManager_c})::Ptr{VTree_c} return ccall((:sdd_manager_vtree_of_var, LIBSDD), Ptr{VTree_c}, (SddLiteral, Ptr{SddManager_c}), var, manager) end function sdd_manager_lca_of_literals(count::SddLiteral, literals::Array{SddLiteral,1}, manager::Ptr{SddManager_c})::Ptr{VTree_c} return ccall((:sdd_manager_lca_of_literals, LIBSDD), Ptr{VTree_c}, (Int32, Ptr{SddLiteral}, Ptr{SddManager_c}), count, literals, manager) end function sdd_manager_var_count(manager::Ptr{SddManager_c})::SddLiteral return ccall((:sdd_manager_var_count, LIBSDD), SddLiteral, (Ptr{SddManager_c},), manager) end # TODO void sdd_manager_var_order(SddLiteral* var_order, SddManager *manager); function sdd_manager_add_var_before_first(manager::Ptr{SddManager_c}) ccall((:sdd_manager_add_var_before_first, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_add_var_after_last(manager::Ptr{SddManager_c}) ccall((:sdd_manager_add_var_after_last, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_add_var_before(manager::Ptr{SddManager_c}) ccall((:sdd_manager_add_var_before, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_manager_add_var_after(manager::Ptr{SddManager_c}) ccall((:sdd_manager_add_var_after, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end # TERMINAL SDDS function sdd_manager_true(manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_manager_true, LIBSDD), Ptr{SddNode_c}, (Ptr{SddManager_c},), manager) end function sdd_manager_false(manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_manager_false, LIBSDD), Ptr{SddNode_c}, (Ptr{SddManager_c},), manager) end function sdd_manager_literal(literal::SddLiteral, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_manager_literal, LIBSDD), Ptr{SddNode_c}, (SddLiteral, Ptr{SddManager_c}), literal, manager) end # SDD QUERIES AND TRANSFORMATIONS function sdd_apply(node1::Ptr{SddNode_c}, node2::Ptr{SddNode_c}, op::BoolOp ,manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_apply, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c}, Ptr{SddNode_c}, BoolOp, Ptr{SddManager_c}), node1, node2, op, manager) end function sdd_conjoin(node1::Ptr{SddNode_c}, node2::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_conjoin, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c}, Ptr{SddNode_c}, Ptr{SddManager_c}), node1, node2, manager) end function sdd_disjoin(node1::Ptr{SddNode_c}, node2::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_disjoin, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c}, Ptr{SddNode_c}, Ptr{SddManager_c}), node1, node2, manager) end function sdd_negate(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_negate, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c}, Ptr{SddManager_c}), node, manager) end function sdd_condition(lit::SddLiteral, node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_condition, LIBSDD), Ptr{SddNode_c}, (SddLiteral, Ptr{SddNode_c}, Ptr{SddManager_c}), lit, node, manager) end function sdd_exists(lit::SddLiteral, node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_exists, LIBSDD), Ptr{SddNode_c}, (SddLiteral, Ptr{SddNode_c}, Ptr{SddManager_c}), lit, node, manager) end function sdd_exists_multiple(exists_map::Array{Cint,1}, node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_exists_multiple, LIBSDD), Ptr{SddNode_c}, (Array{Cint,1}, Ptr{SddNode_c}, Ptr{SddManager_c}), exists_map, node, manager) end function sdd_exists_multiple_static(exists_map::Array{Cint,1}, node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_exists_multiple_static, LIBSDD), Ptr{SddNode_c}, (Array{Cint,1}, Ptr{SddNode_c}, Ptr{SddManager_c}), exists_map, node, manager) end function sdd_forall(lit::SddLiteral, node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_forall, LIBSDD), Ptr{SddNode_c}, (SddLiteral, Ptr{SddNode_c}, Ptr{SddManager_c}), lit, node, manager) end function sdd_minimize_cardinality(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_minimize_cardinality, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c}, Ptr{SddManager_c}), node, manager) end function sdd_global_minimize_cardinality(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_global_minimize_cardinality, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c}, Ptr{SddManager_c}), node, manager) end function sdd_minimum_cardinality(node::Ptr{SddNode_c})::SddLiteral return ccall((:sdd_minimum_cardinality, LIBSDD), SddLiteral, (Ptr{SddNode_c}, ), node) end function sdd_model_count(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::SddModelCount return ccall((:sdd_model_count, LIBSDD), SddModelCount, (Ptr{SddNode_c}, Ptr{SddManager_c}), node, manager) end function sdd_global_model_count(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::SddModelCount return ccall((:sdd_global_model_count, LIBSDD), SddModelCount, (Ptr{SddNode_c}, Ptr{SddManager_c}), node, manager) end # // SDD NAVIGATION function sdd_node_is_true(node::Ptr{SddNode_c})::Int32 return ccall((:sdd_node_is_true, LIBSDD), Cint, (Ptr{SddNode_c}, ), node) end function sdd_node_is_false(node::Ptr{SddNode_c})::Int32 return ccall((:sdd_node_is_false, LIBSDD), Cint, (Ptr{SddNode_c}, ), node) end function sdd_node_is_literal(node::Ptr{SddNode_c})::Int32 return ccall((:sdd_node_is_literal, LIBSDD), Cint, (Ptr{SddNode_c}, ), node) end function sdd_node_is_decision(node::Ptr{SddNode_c})::Int32 return ccall((:sdd_node_is_decision, LIBSDD), Cint, (Ptr{SddNode_c}, ), node) end function sdd_node_size(node::Ptr{SddNode_c})::SddNodeSize return ccall((:sdd_node_size, LIBSDD), SddNodeSize, (Ptr{SddNode_c}, ), node) end function sdd_node_literal(node::Ptr{SddNode_c})::SddLiteral return ccall((:sdd_node_literal, LIBSDD), SddLiteral, (Ptr{SddNode_c}, ), node) end function sdd_node_elements(node::Ptr{SddNode_c})::Ptr{Ptr{SddNode_c}} return ccall((:sdd_node_elements, LIBSDD), Ptr{Ptr{SddNode_c}}, (Ptr{SddNode_c}, ), node) end function sdd_node_set_bit(bit::Int32, node::Ptr{SddNode_c}) ccall((:sdd_node_set_bit, LIBSDD), Cvoid, (Cint, Ptr{SddNode_c}), bit, node) end function sdd_node_bit(node::Ptr{SddNode_c})::Int32 return ccall((:sdd_node_bit, LIBSDD), Int32, (Ptr{SddNode_c}, ), node) end # # SDD FUNCTIONS # # SDD FILE I/O function sdd_read(filename::Ptr{UInt8}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_read, LIBSDD), Ptr{SddNode_c}, (Ptr{UInt8}, Ptr{SddManager_c}), filename, manager) end function sdd_save(filename::Ptr{UInt8}, node::Ptr{SddNode_c}) ccall((:sdd_save, LIBSDD), Cvoid, (Ptr{UInt8}, Ptr{SddNode_c}), filename, node) end function sdd_save_as_dot(filename::Ptr{UInt8}, node::Ptr{SddNode_c}) ccall((:sdd_save_as_dot, LIBSDD), Cvoid, (Ptr{UInt8}, Ptr{SddNode_c}), filename, node) end function sdd_shared_save_as_dot(filename::Ptr{UInt8}, manager::Ptr{SddManager_c}) ccall((:sdd_shared_save_as_dot, LIBSDD), Cvoid, (Ptr{UInt8}, Ptr{SddManager_c}), filename, manager) end # // SDD SIZE AND NODE COUNT # //SDD function sdd_count(node::Ptr{SddNode_c})::SddSize return ccall((:sdd_count, LIBSDD), SddSize, (Ptr{SddNode_c},), node) end function sdd_size(node::Ptr{SddNode_c})::SddSize return ccall((:sdd_size, LIBSDD), SddSize, (Ptr{SddNode_c},), node) end # TODO SddSize sdd_shared_size(SddNode** nodes, SddSize count); # //SDD OF MANAGER manager_size_fnames_c = [ "sdd_manager_size", "sdd_manager_live_size", "sdd_manager_dead_size", "sdd_manager_count", "sdd_manager_live_count", "sdd_manager_dead_count" ] for fnc in manager_size_fnames_c @eval begin function $(Symbol(fnc))(manager::Ptr{SddManager_c})::SddSize return ccall(($(:($(fnc))), LIBSDD), SddSize, (Ptr{SddManager_c},), manager) end end end # SDD SIZE OF VTREE vtree_size_fnames_c = [ "sdd_vtree_size", "sdd_vtree_live_size", "sdd_vtree_dead_size", "sdd_vtree_size_at", "sdd_vtree_live_size_at", "sdd_vtree_dead_size_at", "sdd_vtree_size_above", "sdd_vtree_live_size_above", "sdd_vtree_dead_size_above", "sdd_vtree_count", "sdd_vtree_live_count", "sdd_vtree_dead_count", "sdd_vtree_count_at", "sdd_vtree_live_count_at", "sdd_vtree_dead_count_at", "sdd_vtree_count_above", "sdd_vtree_live_count_above", "sdd_vtree_dead_count_above" ] for fnc in vtree_size_fnames_c @eval begin function $(Symbol(fnc))(vtree::Ptr{VTree_c})::SddSize return ccall(($(:($(fnc))), LIBSDD), SddSize, (Ptr{VTree_c},), vtree) end end end # CREATING VTREES function sdd_vtree_new(var_count::SddLiteral, vtree_type::Ptr{UInt8})::Ptr{VTree_c} return ccall((:sdd_vtree_new, LIBSDD), Ptr{VTree_c}, (SddLiteral, Ptr{UInt8}), var_count, vtree_type) end function sdd_vtree_new_with_var_order(var_count::SddLiteral, var_order::Array{SddLiteral,1}, vtree_type::Ptr{UInt8})::Ptr{VTree_c} return ccall((:sdd_vtree_new_with_var_order, LIBSDD), Ptr{VTree_c}, (SddLiteral, Ptr{SddLiteral}, Ptr{UInt8}), var_count, var_order, vtree_type) end function sdd_vtree_new_X_constrained(var_count::SddLiteral, is_X_var::Array{SddLiteral,1}, vtree_type::Ptr{UInt8})::Ptr{VTree_c} return ccall((:sdd_vtree_new_X_constrained, LIBSDD), Ptr{VTree_c}, (SddLiteral, Ptr{SddLiteral}, Ptr{UInt8}), var_count, is_X_var, vtree_type) end function sdd_vtree_free(vtree::Ptr{VTree_c}) ccall((:sdd_vtree_free, LIBSDD), Cvoid, (Ptr{VTree_c},), vtree) end # VTREE FILE I/O function sdd_vtree_read(filename::Ptr{UInt8})::Ptr{VTree_c} return ccall((:sdd_vtree_read, LIBSDD), Ptr{VTree_c}, (Ptr{UInt8},), filename) end function sdd_vtree_save(filename::Ptr{UInt8}, vtree::Ptr{VTree_c}) ccall((:sdd_vtree_save, LIBSDD), Cvoid, (Ptr{UInt8}, Ptr{VTree_c}), filename, vtree) end function sdd_vtree_save_as_dot(filename::Ptr{UInt8}, vtree::Ptr{VTree_c}) ccall((:sdd_vtree_save_as_dot, LIBSDD), Cvoid, (Ptr{UInt8}, Ptr{VTree_c}), filename, vtree) end # // SDD MANAGER VTREE function sdd_manager_vtree(manager::Ptr{SddManager_c})::Ptr{VTree_c} return ccall((:sdd_manager_vtree, LIBSDD), Ptr{VTree_c}, (Ptr{SddManager_c},), manager) end function sdd_manager_vtree_copy(manager::Ptr{SddManager_c})::Ptr{VTree_c} return ccall((:sdd_manager_vtree_copy, LIBSDD), Ptr{VTree_c}, (Ptr{SddManager_c},), manager) end # // VTREE NAVIGATION function sdd_vtree_left(vtree::Ptr{VTree_c})::Ptr{VTree_c} return ccall((:sdd_vtree_left, LIBSDD), Ptr{VTree_c}, (Ptr{VTree_c},), vtree) end function sdd_vtree_right(vtree::Ptr{VTree_c})::Ptr{VTree_c} return ccall((:sdd_vtree_right, LIBSDD), Ptr{VTree_c}, (Ptr{VTree_c},), vtree) end function sdd_vtree_parent(vtree::Ptr{VTree_c})::Ptr{VTree_c} return ccall((:sdd_vtree_parent, LIBSDD), Ptr{VTree_c}, (Ptr{VTree_c},), vtree) end # VTREE FUNCTIONS function sdd_vtree_is_leaf(vtree::Ptr{VTree_c})::Cint return ccall((:sdd_vtree_is_leaf, LIBSDD), Cint, (Ptr{VTree_c}, ), vtree) end function sdd_vtree_is_sub(vtree1::Ptr{VTree_c}, vtree2::Ptr{VTree_c})::Cint return ccall((:sdd_vtree_is_sub, LIBSDD), Cint, (Ptr{VTree_c}, Ptr{VTree_c}), vtree1, vtree2) end function sdd_vtree_lca(vtree1::Ptr{VTree_c}, vtree2::Ptr{VTree_c}, root::Ptr{VTree_c})::Ptr{VTree_c} return ccall((:sdd_vtree_lca, LIBSDD), Ptr{VTree_c}, (Ptr{VTree_c}, Ptr{VTree_c}, Ptr{VTree_c}), vtree1, vtree2, root) end function sdd_vtree_var_count(vtree::Ptr{VTree_c})::SddLiteral return ccall((:sdd_vtree_var_count, LIBSDD), SddLiteral, (Ptr{VTree_c}, ), vtree) end function sdd_vtree_var(vtree::Ptr{VTree_c})::SddLiteral return ccall((:sdd_vtree_var, LIBSDD), SddLiteral, (Ptr{VTree_c}, ), vtree) end function sdd_vtree_position(vtree::Ptr{VTree_c})::SddLiteral return ccall((:sdd_vtree_position, LIBSDD), SddLiteral, (Ptr{VTree_c}, ), vtree) end # Vtree** sdd_vtree_location(Vtree* vtree, SddManager* manager); # VTREE/SDD EDIT OPERATIONS function sdd_vtree_rotate_left(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c}, limited::Cint)::Cint return ccall((:sdd_vtree_rotate_left, LIBSDD), Cint, (Ptr{VTree_c},Ptr{SddManager_c}, Cint), vtree, manager, limited) end function sdd_vtree_rotate_right(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c}, limited::Cint)::Cint return ccall((:sdd_vtree_rotate_right, LIBSDD), Cint, (Ptr{VTree_c},Ptr{SddManager_c}, Cint), vtree, manager, limited) end function sdd_vtree_swap(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c}, limited::Cint)::Cint return ccall((:sdd_vtree_swap, LIBSDD), Cint, (Ptr{VTree_c}, Ptr{SddManager_c}, Cint), vtree, manager, limited) end # LIMITS FOR VTREE/SDD EDIT OPERATIONS function sdd_manager_init_vtree_size_limit(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c}) ccall((:sdd_manager_init_vtree_size_limit, LIBSDD), Cvoid, (Ptr{VTree_c}, Ptr{SddManager_c}), vtree, manager) end function sdd_manager_update_vtree_size_limit(manager::Ptr{SddManager_c}) ccall((:sdd_manager_update_vtree_size_limit, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end # # VTREE STATE # GARBAGE COLLECTION function sdd_ref_count(node::Ptr{SddNode_c})::SddRefCount return ccall((:sdd_ref_count, LIBSDD), SddRefCount, (Ptr{SddNode_c},), node) end function sdd_ref(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_ref, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c},Ptr{SddManager_c}), node, manager) end function sdd_deref(node::Ptr{SddNode_c}, manager::Ptr{SddManager_c})::Ptr{SddNode_c} return ccall((:sdd_deref, LIBSDD), Ptr{SddNode_c}, (Ptr{SddNode_c},Ptr{SddManager_c}), node, manager) end function sdd_manager_garbage_collect(manager::Ptr{SddManager_c}) ccall((:sdd_manager_garbage_collect, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_vtree_garbage_collect(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c}) ccall((:sdd_vtree_garbage_collect, LIBSDD), Cvoid, (Ptr{VTree_c}, Ptr{SddManager_c}), vtree, manager) end function sdd_manager_garbage_collect_if(dead_node_threshold::Float32, manager::Ptr{SddManager_c})::Int32 return ccall((:sdd_manager_garbage_collect_if, LIBSDD), Int32, (Float32, Ptr{SddManager_c}), dead_node_threshold, manager) end function sdd_vtree_garbage_collect_if(dead_node_threshold::Float32, vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c})::Int32 return ccall((:sdd_manager_garbage_collect_if, LIBSDD), Int32, (Float32, Ptr{VTree_c}, Ptr{SddManager_c}), dead_node_threshold, vtree, manager) end # MINIMIZATION function sdd_manager_minimize(manager::Ptr{SddManager_c}) ccall((:sdd_manager_minimize, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_vtree_minimize(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c})::Ptr{VTree_c} return ccall((:sdd_manager_minimize, LIBSDD), Ptr{VTree_c}, (Ptr{VTree_c}, Ptr{SddManager_c}), vtree, manager) end function sdd_manager_minimize_limited(manager::Ptr{SddManager_c}) ccall((:sdd_manager_minimize_limited, LIBSDD), Cvoid, (Ptr{SddManager_c},), manager) end function sdd_vtree_minimize_limited(vtree::Ptr{VTree_c}, manager::Ptr{SddManager_c})::Ptr{VTree_c} return ccall((:sdd_vtree_minimize_limited, LIBSDD), Ptr{VTree_c}, (Ptr{VTree_c}, Ptr{SddManager_c}), vtree, manager) end function sdd_manager_set_vtree_search_convergence_threshold(threshold::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_search_convergence_threshold, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), threshold, manager) end function sdd_manager_set_vtree_search_time_limit(time_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_search_time_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), time_limit, manager) end function sdd_manager_set_vtree_fragment_time_limit(time_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_fragment_time_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), time_limit, manager) end function sdd_manager_set_vtree_operation_time_limit(time_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_operation_time_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), time_limit, manager) end function sdd_manager_set_vtree_apply_time_limit(time_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_apply_time_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), time_limit, manager) end function sdd_manager_set_vtree_operation_memory_limit(memory_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_operation_memory_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), memory_limit, manager) end function sdd_manager_set_vtree_operation_size_limit(size_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_operation_size_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), size_limit, manager) end function sdd_manager_set_vtree_cartesian_product_limit(size_limit::Float32, manager::Ptr{SddManager_c}) ccall((:sdd_manager_set_vtree_cartesian_product_limit, LIBSDD), Cvoid, (Float32, Ptr{SddManager_c}), size_limit, manager) end # WMC function wmc_manager_new(node::Ptr{SddNode_c}, log_mode::Cint, manager::Ptr{SddManager_c})::Ptr{WmcManager_c} return ccall((:wmc_manager_new, LIBSDD), Ptr{WmcManager_c}, (Ptr{SddNode_c}, Cint, Ptr{SddManager_c}), node, log_mode, manager) end function wmc_manager_free(wmc_manager::Ptr{WmcManager_c}) ccall((:wmc_manager_free, LIBSDD), Cvoid, (Ptr{WmcManager_c},), wmc_manager) end function wmc_set_literal_weight(literal::SddLiteral, weight::SddWmc, wmc_manager::Ptr{WmcManager_c}) ccall((:wmc_set_literal_weight, LIBSDD), Cvoid, (SddLiteral, SddWmc, Ptr{WmcManager_c}), literal, weight, wmc_manager) end function wmc_propagate(wmc_manager::Ptr{WmcManager_c})::SddWmc return ccall((:wmc_propagate, LIBSDD), SddWmc, (Ptr{WmcManager_c},), wmc_manager) end function wmc_zero_weight(wmc_manager::Ptr{WmcManager_c})::SddWmc return ccall((:wmc_zero_weight, LIBSDD), SddWmc, (Ptr{WmcManager_c},), wmc_manager) end function wmc_one_weight(wmc_manager::Ptr{WmcManager_c})::SddWmc return ccall((:wmc_one_weight, LIBSDD), SddWmc, (Ptr{WmcManager_c},), wmc_manager) end function wmc_literal_weight(literal::SddLiteral, wmc_manager::Ptr{WmcManager_c})::SddWmc return ccall((:wmc_literal_weight, LIBSDD), SddWmc, (SddLiteral, Ptr{WmcManager_c}), literal, wmc_manager) end function wmc_literal_derivative(literal::SddLiteral, wmc_manager::Ptr{WmcManager_c})::SddWmc return ccall((:wmc_literal_derivative, LIBSDD), SddWmc, (SddLiteral, Ptr{WmcManager_c}), literal, wmc_manager) end function wmc_literal_pr(literal::SddLiteral, wmc_manager::Ptr{WmcManager_c})::SddWmc return ccall((:wmc_literal_pr, LIBSDD), SddWmc, (SddLiteral, Ptr{WmcManager_c}), literal, wmc_manager) end end # TO BE WRAPPED # // SDD FUNCTIONS # SddSize sdd_id(SddNode* node); # int sdd_garbage_collected(SddNode* node, SddSize id); # Vtree* sdd_vtree_of(SddNode* node); # SddNode* sdd_copy(SddNode* node, SddManager* dest_manager); # SddNode* sdd_rename_variables(SddNode* node, SddLiteral* variable_map, SddManager* manager); # int* sdd_variables(SddNode* node, SddManager* manager); # // VTREE STATE # int sdd_vtree_bit(const Vtree* vtree); # void sdd_vtree_set_bit(int bit, Vtree* vtree); # void* sdd_vtree_data(Vtree* vtree); # void sdd_vtree_set_data(void* data, Vtree* vtree); # void* sdd_vtree_search_state(const Vtree* vtree); # void sdd_vtree_set_search_state(void* search_state, Vtree* vtree);
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "Apache-2.0" ]
0.1.2
1282e7eb111aed8b74f0bf5b9b7a27fa1424088e
docs
902
# SententialDecisionDiagrams.jl Julia wrapper package to interactively use [Sententical Decision Diagrams (SDD)](http://reasoning.cs.ucla.edu/sdd/). ## Installtion ``` pkg> add SententialDecisionDiagrams ``` ## Test Clone the repo: ``` git clone https://github.com/pedrozudo/SententialDecisionDiagrams.jl ``` cd into the cloned directory and run any of the test files ``` cd SententialDecisionDiagrams.jl julia examples/test-1.jl ``` ## References Other languages: * C: http://reasoning.cs.ucla.edu/sdd/ * Java: https://github.com/jessa/JSDD * Python: https://github.com/wannesm/PySDD ## Contact * Pedro Zuidberg Dos Martires, KU Leuven, https://pedrozudo.github.io/ ## License Julia SDD wrapper: Copyright 2019, KU Leuven under the Apache License, Version 2.0. SDD package: Copyright 2013-2018, Regents of the University of California Licensed under the Apache License, Version 2.0.
SententialDecisionDiagrams
https://github.com/pedrozudo/SententialDecisionDiagrams.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
code
252
using Documenter using POMDPTesting makedocs( format =:html, sitename = "POMDPTesting.jl" ) deploydocs( repo = "github.com/JuliaPOMDP/POMDPTesting.jl.git", julia = "1.0", target = "build", deps = nothing, make = nothing )
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
code
86
module POMDPTesting using Reexport @reexport using POMDPTools.Testing end # module
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
code
1605
using Test using POMDPs using POMDPTesting using POMDPModelTools import POMDPs: transition, observation, initialstate, updater, states, actions, observations struct TestPOMDP <: POMDP{Bool, Bool, Bool} end updater(problem::TestPOMDP) = DiscreteUpdater(problem) initialstate(::TestPOMDP) = BoolDistribution(0.0) transition(p::TestPOMDP, s, a) = BoolDistribution(0.5) observation(p::TestPOMDP, a, sp) = BoolDistribution(0.5) states(p::TestPOMDP) = (true, false) actions(p::TestPOMDP) = (true, false) observations(p::TestPOMDP) = (true, false) @testset "model" begin m = TestPOMDP() @test has_consistent_initial_distribution(m) @test has_consistent_transition_distributions(m) @test has_consistent_observation_distributions(m) @test has_consistent_distributions(m) end @testset "old model" begin probability_check(TestPOMDP()) end @testset "support mismatch" begin struct SupportMismatchPOMDP <: POMDP{Int, Int, Int} end POMDPs.states(::SupportMismatchPOMDP) = 1:2 POMDPs.actions(::SupportMismatchPOMDP) = 1:2 POMDPs.observations(::SupportMismatchPOMDP) = 1:2 POMDPs.initialstate(::SupportMismatchPOMDP) = Deterministic(3) POMDPs.transition(::SupportMismatchPOMDP, s, a) = SparseCat([1, 2, 3], [1.0, 0.0, 0.1]) POMDPs.observation(::SupportMismatchPOMDP, s, a, sp) = SparseCat([1, 2, 3], [1.0, 0.0, 0.1]) @test !has_consistent_transition_distributions(SupportMismatchPOMDP()) @test !has_consistent_observation_distributions(SupportMismatchPOMDP()) @test !has_consistent_distributions(SupportMismatchPOMDP()) end
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
docs
203
# ~~POMDPTesting.jl~~ POMDPTesting has been deprecated and its functionality has been moved to [POMDPTools](https://github.com/JuliaPOMDP/POMDPs.jl/tree/master/lib/POMDPTools). Please use that instead.
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
docs
167
# About POMDPTesting is a collection of utilities for testing various models and solvers for [POMDPs.jl](https://github.com/JuliaPOMDP/POMDPs.jl). ```@contents ```
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
docs
168
# Model ```@docs has_consistent_distributions has_consistent_initial_distribution has_consistent_transition_distributions has_consistent_observation_distributions ```
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.2.6
e5acfa4a9c84252491860939a2af7f4ffe501057
docs
35
# Solver ```@docs test_solver ```
POMDPTesting
https://github.com/JuliaPOMDP/POMDPTesting.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
code
662
using Documenter, Distributions, InitialMassFunctions # The `format` below makes it so that urls are set to "pretty" if you are pushing them to a hosting service, and basic if you are just using them locally to make browsing easier. makedocs( sitename="InitialMassFunctions.jl", modules = [InitialMassFunctions], format = Documenter.HTML(;prettyurls = get(ENV, "CI", nothing) == "true"), authors = "Chris Garling", pages = ["index.md","types.md","utilities.md","docindex.md"], doctest=true ) deploydocs(; repo = "github.com/cgarling/InitialMassFunctions.jl.git", versions = ["stable" => "v^", "v#.#"], push_preview=true, )
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
code
1089
module InitialMassFunctions import Distributions: ContinuousUnivariateDistribution, Pareto, LogNormal, truncated, Truncated, mean, median, var, skewness, kurtosis, pdf, logpdf, cdf, ccdf, minimum, maximum, partype, quantile, cquantile, sampler, rand, Sampleable, Univariate, Continuous, eltype, params import Random: AbstractRNG import SpecialFunctions: erf, erfinv """ Abstract type for IMFs; a subtype of `Distributions.ContinuousUnivariateDistribution`, as all IMF models can be described as continuous, univariate PDFs. """ abstract type AbstractIMF <: ContinuousUnivariateDistribution end include("powerlaw.jl") include("lognormal.jl") export PowerLawIMF, Salpeter1955, Kroupa2001, Chabrier2001BPL # power law constructors export LogNormalIMF, Chabrier2003, Chabrier2003System, Chabrier2001LogNormal # lognormal constructors export BrokenPowerLaw, LogNormalBPL, mean, median, var, skewness, kurtosis, pdf, logpdf, cdf, ccdf, partype, minimum, maximum, quantile, quantile!, cquantile # export normalization, slope, logslope, dndm, dndlogm, pdf, logpdf, cdf, median end # module
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
code
19685
""" LogNormalIMF(μ::Real, σ::Real, mmin::Real, mmax::Real) Describes a lognormal IMF with probability distribution ```math \\frac{dn(m)}{dm} = \\frac{A}{x} \\, \\exp \\left[ \\frac{ -\\left( \\log(x) - \\mu \\right)^2}{2\\sigma^2} \\right] ``` truncated such that the probability distribution is 0 below `mmin` and above `mmax`. `A` is a normalization constant such that the distribution integrates to 1 from the minimum valid stellar mass `mmin` to the maximum valid stellar mass `mmax`. This is simply `Distributions.truncated(Distributions.LogNormal(μ,σ);lower=mmin,upper=mmax)`. See the documentation for [`LogNormal`](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.LogNormal) and [`truncated`](https://juliastats.org/Distributions.jl/latest/truncate/#Distributions.truncated). # Arguments - `μ`; see [Distributions.LogNormal](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.LogNormal) - `σ`; see [Distributions.LogNormal](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.LogNormal) """ LogNormalIMF(μ::Real, σ::Real, mmin::Real, mmax::Real) = truncated(LogNormal(μ,σ);lower=mmin,upper=mmax) function mean(d::Truncated{LogNormal{T}, Continuous, T}) where T mmin, mmax = extrema(d) μ, σ = params( d.untruncated ) # return (α * θ^α / (1-α) / d.ucdf) * (mmax^(1-α) - mmin^(1-α)) return -exp(μ + σ^2/2) / 2 / (d.ucdf - d.lcdf) * ( erf( (μ + σ^2 - log(mmax)) / (sqrt(2)*σ) ) - erf( (μ + σ^2 - log(mmin)) / (sqrt(2)*σ) ) ) end """ Chabrier2001LogNormal(mmin::Real=0.08, mmax::Real=Inf) Function to instantiate the [Chabrier 2001](https://ui.adsabs.harvard.edu/abs/2001ApJ...554.1274C/abstract) lognormal IMF for single stars. Returns an instance of `Distributions.Truncated(Distributions.LogNormal)`. See also [`Chabrier2003`](@ref) which has the same lognormal form for masses below one solar mass, but a power law extension at higher masses. """ Chabrier2001LogNormal(mmin::Real=0.08, mmax::Real=Inf) = LogNormalIMF(log(0.1), 0.627*log(10), mmin, mmax) """ lognormal_integral(μ, σ, b1, b2) Definite integral of the lognormal probability distribution from `b1` to `b2`. ```math \\int_{b1}^{b2} \\, \\frac{A}{x} \\, \\exp \\left[ \\frac{ -\\left( \\log(x) - \\mu \\right)^2}{2\\sigma^2} \\right] \\, dx ``` """ lognormal_integral(A::T,μ::T,σ::T,b1::T,b2::T) where {T<:Number} = A * sqrt(T(π)/2) * σ * (erf( (μ-log(b1))/(sqrt(T(2))*σ)) - erf( (μ-log(b2))/(sqrt(T(2))*σ))) lognormal_integral(A::Number,μ::Number,σ::Number,b1::Number,b2::Number) = lognormal_integral(promote(A,μ,σ,b1,b2)...) # lognormal_integral(A,μ,σ,b1,b2) = A * sqrt(π/2) * σ * (erf( (μ-log(b1))/(sqrt(2)*σ)) - erf( (μ-log(b2))/(sqrt(2)*σ))) """ LogNormalBPL(μ::Real,σ::Real,α::AbstractVector{<:Real},breakpoints::AbstractVector{<:Real}) LogNormalBPL(μ::Real,σ::Real,α::Tuple,breakpoints::Tuple) A LogNormal distribution at low masses, with a broken power law extension at high masses. This uses the natural log base like [Distributions.LogNormal](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.LogNormal); if you have σ and μ in base 10, then multiply them both by `log(10)`. Must have `length(α) == length(breakpoints)-2`. The probability distribution for this IMF model is ```math \\frac{dn(m)}{dm} = \\frac{A}{x} \\, \\exp \\left[ \\frac{ -\\left( \\log(x) - \\mu \\right)^2}{2\\sigma^2} \\right] ``` for `m < breakpoints[2]`, with a broken power law extension above this mass. See [`BrokenPowerLaw`](@ref) for interface details; the `α` and `breakpoints` are the same here as there. # Arguments - `μ`; see [Distributions.LogNormal](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.LogNormal) - `σ`; see [Distributions.LogNormal](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.LogNormal) - `α`; list of power law indices with `length(α) == length(breakpoints)-2`. - `breakpoints`; list of masses that signal breaks in the IMF. MUST BE SORTED and bracketed with `breakpoints[1]` being the minimum valid mass and `breakpoints[end]` being the maximum valid mass. # Examples If you want a `LogNormalBPL` with a characteristic mass of 0.5 solar masses, log10 standard deviation of 0.6, and a single power law extension with slope `α=2.35` with a break at 1 solar mass, you would do `LogNormalBPL(log(0.5),0.6*log(10),[2.35],[0.08,1.0,Inf]` where we set the minimum mass to `0.08` and maximum mass to `Inf`. If, instead, you know that `log10(m)=x`, where `m` is the characteristic mass of the `LogNormal` component, you would do `LogNormalBPL(x*log(10),0.6*log(10),[2.35],[0.08,1.0,Inf]`. # Notes There is some setup necessary for `quantile` and other derived methods, so it is more efficient to call these methods directly with an array via the call signature `quantile(d::LogNormalBPL{T}, x::AbstractArray{S})` rather than broadcasting over `x`. This behavior is now deprecated for `quantile(d::Distributions.UnivariateDistribution, X::AbstractArray)` in Distributions.jl. # Methods - `Base.convert(::Type{LogNormalBPL{T}}, d::LogNormalBPL)` - `minimum(d::LogNormalBPL)` - `maximum(d::LogNormalBPL)` - `partype(d::LogNormalBPL)` - `eltype(d::LogNormalBPL)` - `mean(d::LogNormalBPL)` - `median(d::LogNormalBPL)` - `pdf(d::LogNormalBPL,x::Real)` - `logpdf(d::LogNormalBPL,x::Real)` - `cdf(d::LogNormalBPL,x::Real)` - `ccdf(d::LogNormalBPL,x::Real)` - `quantile(d::LogNormalBPL{S},x::T) where {S,T<:Real}` - `quantile!(result::AbstractArray,d::LogNormalBPL{S},x::AbstractArray{T}) where {S,T<:Real}` - `quantile(d::LogNormalBPL{T},x::AbstractArray{S})` - `cquantile(d::LogNormalBPL{S},x::T) where {S,T<:Real}` - `rand(rng::AbstractRNG, d::LogNormalBPL,s...)` - Other methods from `Distributions.jl` should also work because `LogNormalBPL <: AbstractIMF <: Distributions.ContinuousUnivariateDistribution`. For example, `rand!(rng::AbstractRNG, d::LogNormalBPL, x::AbstractArray)`. """ struct LogNormalBPL{T} <: AbstractIMF μ::T σ::T A::Vector{T} # normalization parameters α::Vector{T} # power law indexes breakpoints::Vector{T} # bounds of each break LogNormalBPL{T}(μ::T, σ::T, A::Vector{T}, α::Vector{T}, breakpoints::Vector{T}) where {T} = new{T}(μ, σ, A, α, breakpoints) end function LogNormalBPL(μ::T, σ::T, α::Vector{T}, breakpoints::Vector{T}) where T <: Real @assert length(breakpoints) == length(α)+2 @assert breakpoints[1] > 0 nbreaks = length(α) + 1 A = Vector{T}(undef,nbreaks) A[1] = one(T) # solve for the prefactor for the first power law after the lognormal component A[2] = breakpoints[2]^(α[1]-1) * exp( -(log(breakpoints[2])-μ)^2/(2*σ^2)) # if there is more than one power law component if nbreaks > 2 for i in 3:nbreaks A[i] = A[i-1]*breakpoints[i]^-α[i-2] / breakpoints[i]^-α[i-1] end end # now A contains prefactors for each distribution component that makes them continuous # with the first lognormal component having a prefactor of 1. Now we need to normalize # the integral from minimum(breaks) to maximum(breaks) to equal 1 by dividing # the entire A array by a common factor. total_integral = zero(T) total_integral += lognormal_integral(A[1], μ, σ, breakpoints[1], breakpoints[2]) for i in 2:nbreaks total_integral += pl_integral(A[i], α[i-1], breakpoints[i], breakpoints[i+1]) end A ./= total_integral return LogNormalBPL{T}(μ, σ, A, α, breakpoints) end LogNormalBPL(μ::Real, σ::Real, α::Tuple, breakpoints::Tuple) = LogNormalBPL(μ,σ,collect(promote(α...)),collect(promote(breakpoints...))) LogNormalBPL(μ::T,σ::T,α::AbstractVector{T},breakpoints::AbstractVector{T}) where T<:Real = LogNormalBPL(μ,σ,convert(Vector{T},α),convert(Vector{T},breakpoints)) function LogNormalBPL(μ::A, σ::B, α::AbstractVector{C}, breakpoints::AbstractVector{D}) where {A<:Real, B<:Real, C<:Real, D<:Real} X = promote_type(A, B, C, D) LogNormalBPL(convert(X,μ),convert(X,σ),convert(Vector{X},α), convert(Vector{X},breakpoints)) end #### Conversions Base.convert(::Type{LogNormalBPL{T}}, d::LogNormalBPL) where T <: Real = LogNormalBPL{T}(convert(T,d.μ), convert(T,d.σ), convert(Vector{T},d.A), convert(Vector{T},d.α), convert(Vector{T},d.breakpoints)) Base.convert(::Type{LogNormalBPL{T}}, d::LogNormalBPL{T}) where T <: Real = d #### Parameters params(d::LogNormalBPL) = d.μ, d.σ, d.A, d.α, d.breakpoints minimum(d::LogNormalBPL) = minimum(d.breakpoints) maximum(d::LogNormalBPL) = maximum(d.breakpoints) partype(d::LogNormalBPL{T}) where T = T eltype(d::LogNormalBPL{T}) where T = T #### Statistics function mean(d::LogNormalBPL{T}) where T μ,σ,A,α,breakpoints = params(d) m = zero(T) # m += A[1] * exp(μ + σ^2/2) * sqrt(π/2) * σ * (erf( (μ+σ^2-log(breakpoints[1])) / (sqrt(2)*σ) ) - # erf( (μ+σ^2-log(breakpoints[2])) / (sqrt(2)*σ) ) ) m += A[1] * exp(μ + σ^2/2) * sqrt(T(π)/2) * σ * (erf( (μ+σ^2-log(breakpoints[1])) / (sqrt(T(2))*σ) ) - erf( (μ+σ^2-log(breakpoints[2])) / (sqrt(T(2))*σ) ) ) m += sum( (A[i]*breakpoints[i+1]^(2-α[i-1])/(2-α[i-1]) - A[i]*breakpoints[i]^(2-α[i-1])/(2-α[i-1]) for i in 2:length(A) ) ) return m end median(d::LogNormalBPL{T}) where T = quantile(d, T(0.5)) # this is temporary # mode(d::BrokenPowerLaw) = d.breakpoints[argmin(d.α)] # this is not always correct #### Evaluation function pdf(d::LogNormalBPL, x::Real) ((x < minimum(d)) || (x > maximum(d))) && (return zero(partype(d))) μ, σ, A, α, breakpoints = params(d) idx = findfirst(>=(x), breakpoints) ((idx==1) || (idx==2)) ? (return A[1] / x * exp(-(log(x)-μ)^2/(2*σ^2))) : (return A[idx-1] * x^-α[idx-2]) end function logpdf(d::LogNormalBPL, x::Real) if ((x >= minimum(d)) && (x <= maximum(d))) μ, σ, A, α, breakpoints = params(d) idx = findfirst(>=(x), breakpoints) ((idx==1) || (idx==2)) ? (return log(A[1]) - log(x) - (log(x)-μ)^2/(2*σ^2)) : (return log(A[idx-1]) - α[idx-2]*log(x)) else T = partype(d) return -T(Inf) end end function cdf(d::LogNormalBPL, x::Real) if x <= minimum(d) return zero(partype(d)) elseif x >= maximum(d) return one(partype(d)) end μ, σ, A, α, breakpoints = params(d) idx = findfirst(>=(x), breakpoints) result = lognormal_integral(A[1], μ, σ, breakpoints[1], min(x,breakpoints[2])) idx > 2 && (result += sum(pl_integral(A[i],α[i-1],breakpoints[i],min(x,breakpoints[i+1])) for i in 2:idx-1)) return result end ccdf(d::LogNormalBPL, x::Real) = one(partype(d)) - cdf(d,x) function quantile(d::LogNormalBPL{S}, x::T) where {S, T <: Real} U = promote_type(S, T) x <= zero(T) && (return U(minimum(d))) x >= one(T) && (return U(maximum(d))) μ, σ, A, α, breakpoints = params(d) nbreaks = length(A) # this works but the tuple interpolation is slow and allocating, so switch to a vector # integrals = cumsum( (lognormal_integral(A[1],μ,σ,breakpoints[1],breakpoints[2]), (pl_integral(A[i],α[i-1],breakpoints[i],breakpoints[i+1]) for i in 2:nbreaks)...) ) # calculate the cumulative integral up to each breakpoint integrals = Array{U}(undef,nbreaks) integrals[1] = lognormal_integral(A[1],μ,σ,breakpoints[1],breakpoints[2]) for i in 2:nbreaks integrals[i] = pl_integral(A[i],α[i-1],breakpoints[i],breakpoints[i+1]) end cumsum!(integrals, integrals) idx = findfirst(>=(x), integrals) # find the first breakpoint where the cumulative integral if idx == 1 # return exp(μ - sqrt(2) * σ * erfinv( (A[1] * π * σ * erf((μ-log(breakpoints[1]))/(sqrt(2)*σ)) - sqrt(2π)*x) / (A[1]*π*σ) )) return exp(μ - sqrt(U(2)) * σ * erfinv( (A[1] * π * σ * erf((μ-log(breakpoints[1]))/(sqrt(U(2))*σ)) - sqrt(U(2π))*x) / (A[1]*π*σ) )) else x -= integrals[idx-1] # If this is not the first breakpoint, then subtract off the cumulative integral and solve a = one(S) - α[idx-1] # using power law CDF inversion return (x*a/A[idx] + breakpoints[idx]^a)^inv(a) end end function quantile!(result::AbstractArray{U}, d::LogNormalBPL{S}, x::AbstractArray{T}) where {S, T<:Real, U<:Real} @assert axes(result) == axes(x) μ, σ, A, α, breakpoints = params(d) nbreaks = length(A) # this works but the tuple interpolation is slow and allocating, so switch to a vector # integrals = cumsum( (lognormal_integral(A[1],μ,σ,breakpoints[1],breakpoints[2]), (pl_integral(A[i],α[i-1],breakpoints[i],breakpoints[i+1]) for i in 2:nbreaks)...) ) # calculate the cumulative integral up to each breakpoint integrals = Array{eltype(result)}(undef,nbreaks) integrals[1] = lognormal_integral(A[1],μ,σ,breakpoints[1],breakpoints[2]) @inbounds for i in 2:nbreaks integrals[i] = pl_integral(A[i],α[i-1],breakpoints[i],breakpoints[i+1]) end cumsum!(integrals, integrals) @inbounds for i in eachindex(x) xi = x[i] xi <= zero(T) && (result[i]=minimum(d); continue) xi >= one(T) && (result[i]=maximum(d); continue) idx = findfirst(>=(xi), integrals) # find the first breakpoint where the cumulative integral # up to each breakpoint if idx == 1 # result[i] = exp(μ - sqrt(2) * σ * erfinv( (A[1] * π * σ * erf((μ-log(breakpoints[1]))/(sqrt(2)*σ)) - sqrt(2π)*xi) / (A[1]*π*σ) )) result[i] = exp(μ - sqrt(U(2)) * σ * erfinv( (A[1] * π * σ * erf((μ-log(breakpoints[1]))/(sqrt(U(2))*σ)) - sqrt(U(2π))*xi) / (A[1]*π*σ) )) else xi -= integrals[idx-1] # If this is not the first breakpoint, then subtract off the cumulative integral and solve a = one(S) - α[idx-1] # using power law CDF inversion result[i] = (xi*a/A[idx] + breakpoints[idx]^a)^inv(a) end end return result end quantile(d::LogNormalBPL{T}, x::AbstractArray{S}) where {T, S <: Real} = quantile!(Array{promote_type(T,S)}(undef,size(x)), d, x) cquantile(d::LogNormalBPL,x::Real) = quantile(d, 1-x) #### Random sampling struct LogNormalBPLSampler{T} <: Sampleable{Univariate,Continuous} μ::T # lognormal mean σ::T # lognormal standard deviation A::Vector{T} # normalization parameters α::Vector{T} # power law indexes breakpoints::Vector{T} # bounds of each break integrals::Vector{T} # cumulative integral up to each breakpoint end function LogNormalBPLSampler(d::LogNormalBPL) μ, σ, A, α, breakpoints = params(d) nbreaks = length(A) # this works but the tuple interpolation is slow and allocating, so switch to a vector # integrals = cumsum( (lognormal_integral(A[1],μ,σ,breakpoints[1],breakpoints[2]), (pl_integral(A[i],α[i-1],breakpoints[i],breakpoints[i+1]) for i in 2:nbreaks)...) ) # calculate the cumulative integral up to each breakpoint integrals = Array{partype(d)}(undef,nbreaks) integrals[1] = lognormal_integral(A[1],μ,σ,breakpoints[1],breakpoints[2]) @inbounds for i in 2:nbreaks integrals[i] = pl_integral(A[i],α[i-1],breakpoints[i],breakpoints[i+1]) end cumsum!(integrals, integrals) LogNormalBPLSampler(μ, σ, A, α, breakpoints, integrals) end function rand(rng::AbstractRNG, s::LogNormalBPLSampler{T}) where T x = rand(rng, T) μ, σ, A, α, breakpoints, integrals = s.μ, s.σ, s.A, s.α, s.breakpoints, s.integrals idx = findfirst(>=(x), integrals) # find the first breakpoint where the cumulative integral # up to each breakpoint if idx == 1 # return exp(μ - sqrt(2) * σ * erfinv( (A[1] * π * σ * erf((μ-log(breakpoints[1]))/(sqrt(2)*σ)) - sqrt(2π)*x) / (A[1]*π*σ) )) return exp(μ - sqrt(T(2)) * σ * erfinv( (A[1] * π * σ * erf((μ-log(breakpoints[1]))/(sqrt(T(2))*σ)) - sqrt(T(2π))*x) / (A[1]*π*σ) )) else x -= integrals[idx-1] # If this is not the first breakpoint, then subtract off the cumulative integral and solve a = one(T) - α[idx-1] # using power law CDF inversion return (x*a/A[idx] + breakpoints[idx]^a)^inv(a) end end sampler(d::LogNormalBPL) = LogNormalBPLSampler(d) rand(rng::AbstractRNG, d::LogNormalBPL) = rand(rng, sampler(d)) ####################################################### # Specific types of LogNormalBPL ####################################################### const chabrier2003_α = [2.3] const chabrier2003_breakpoints = [0.0,1.0,Inf] const chabrier2003_μ = log(0.079)#*log(10) const chabrier2003_σ = 0.69*log(10) """ Chabrier2003(mmin::Real=0.08, mmax::Real=Inf) Function to instantiate the [Chabrier 2003](https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C/abstract) IMF for single stars. This is a lognormal IMF with a power-law extension for masses greater than one solar mass. This IMF is valid for single stars and takes parameters from the "Disk and Young Clusters" column of Table 2 in the above paper. This will return an instance of [`LogNormalBPL`](@ref). See also [`Chabrier2003System`](@ref) which implements the IMF for general stellar systems with multiplicity from this same paper, and [`Chabrier2001LogNormal`](@ref) which has the same lognormal form as this model but without a high-mass power law extension. """ function Chabrier2003(mmin::T=0.08, mmax::T=Inf) where T <: Real @assert mmin > 0 mmin > one(T) && return PowerLaw(2.3,mmin,mmax) # if mmin>1, we are ONLY using the power law extension, so return power law IMF. mmax < one(T) && return truncated(LogNormal(chabrier2003_μ,chabrier2003_σ);lower=mmin,upper=mmax) # if mmax<1, we are ONLY using the lognormal component, so return lognormal IMF. idx1 = findfirst(>(mmin), chabrier2003_breakpoints)-1 idx2 = findfirst(>=(mmax), chabrier2003_breakpoints) bp = convert(Vector{T}, chabrier2003_breakpoints[idx1:idx2]) bp[1] = mmin bp[end] = mmax LogNormalBPL(convert(T,chabrier2003_μ), convert(T,chabrier2003_σ), convert(Vector{T},chabrier2003_α[idx1:(idx2-2)]), bp) end Chabrier2003(mmin::Real, mmax::Real) = Chabrier2003(promote(mmin,mmax)...) ####################################################### const chabrier2003_system_μ = log(0.22) const chabrier2003_system_σ = 0.57*log(10) """ Chabrier2003System(mmin::Real=0.08, mmax::Real=Inf) Function to instantiate the [Chabrier 2003](https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C/abstract) system IMF. This is a lognormal IMF with a power-law extension for masses greater than one solar mass. This IMF is valid for general star systems with stellar multiplicity (e.g., binaries) and differs from the typical single-star models. Parameters for this distribution are taken from Equation 18 in the above paper. This will return an instance of [`LogNormalBPL`](@ref). See also [`Chabrier2003`](@ref) for the single star IMF. """ function Chabrier2003System(mmin::T=0.08, mmax::T=Inf) where T <: Real @assert mmin > 0 mmin > one(T) && return PowerLaw(2.3,mmin,mmax) # if mmin>1, we are ONLY using the power law extension, so return power law IMF. mmax < one(T) && return truncated(LogNormal(chabrier2003_system_μ,chabrier2003_system_σ);lower=mmin,upper=mmax) # if mmax<1, we are ONLY using the lognormal component, so return lognormal IMF. idx1 = findfirst(>(mmin), chabrier2003_breakpoints)-1 idx2 = findfirst(>=(mmax), chabrier2003_breakpoints) bp = convert(Vector{T}, chabrier2003_breakpoints[idx1:idx2]) bp[1] = mmin bp[end] = mmax LogNormalBPL(convert(T,chabrier2003_system_μ), convert(T,chabrier2003_system_σ), convert(Vector{T},chabrier2003_α[idx1:(idx2-2)]), bp) end Chabrier2003System(mmin::Real, mmax::Real) = Chabrier2003System(promote(mmin,mmax)...)
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
code
15379
########################################################################################### # Power Law ########################################################################################### """ PowerLawIMF(α::Real, mmin::Real, mmax::Real) Descibes a single power-law IMF with probability distribution ```math \\frac{dn(m)}{dm} = A \\times m^{-\\alpha} ``` truncated such that the probability distribution is 0 below `mmin` and above `mmax`. `A` is a normalization constant such that the distribution integrates to 1 from the minimum valid stellar mass `mmin` to the maximum valid stellar mass `mmax`. This is simply `Distributions.truncated(Distributions.Pareto(α-1,mmin);upper=mmax)`. See the documentation for [`Pareto`](https://juliastats.org/Distributions.jl/latest/univariate/#Distributions.Pareto) and [`truncated`](https://juliastats.org/Distributions.jl/latest/truncate/#Distributions.truncated). """ PowerLawIMF(α::Real, mmin::Real, mmax::Real) = truncated(Pareto(α-1, mmin); upper=mmax) function mean(d::Truncated{Pareto{T}, Continuous, T}) where T mmin, mmax = extrema(d) α, θ = params( d.untruncated ) return (α * θ^α / (1-α) / d.ucdf) * (mmax^(1-α) - mmin^(1-α)) end """ Salpeter1955(mmin::Real=0.4, mmax::Real=Inf) The IMF model of [Salpeter 1955](https://ui.adsabs.harvard.edu/abs/1955ApJ...121..161S/abstract), a [`PowerLawIMF`](@ref) with `α=2.35`. """ Salpeter1955(mmin::T, mmax::T) where T <: Real= PowerLawIMF(T(2.35), mmin, mmax) Salpeter1955(mmin::Real=0.4, mmax::Real=Inf) = Salpeter1955(promote(mmin, mmax)...) ########################################################################################### # Broken Power Law ########################################################################################### """ pl_integral(A,α,b1,b2) Definite integral of power law ``A*x^{-α}`` from b1 (lower) to b2 (upper). ```math \\int_{b1}^{b2} \\, A \\times x^{-\\alpha} \\, dx = \\frac{A}{1-\\alpha} \\times \\left( b2^{1-\\alpha} - b1^{1-\\alpha} \\right) ``` """ pl_integral(A, α, b1, b2) = A/(1-α) * (b2^(1-α) - b1^(1-α)) """ BrokenPowerLaw(α::AbstractVector{T}, breakpoints::AbstractVector{S}) where {T<:Real,S<:Real} BrokenPowerLaw(α::Tuple, breakpoints::Tuple) BrokenPowerLaw{T}(A::Vector{T}, α::Vector{T}, breakpoints::Vector{T}) where {T} An `AbstractIMF <: Distributions.ContinuousUnivariateDistribution` that describes a broken power-law IMF with probability distribution ```math \\frac{dn(m)}{dm} = A \\times m^{-\\alpha} ``` that is defined piecewise with different normalizations `A` and power law slopes `α` in different mass ranges. The normalization constants `A` will be calculated automatically after you provide the power law slopes and break points. # Arguments - `α`; the power-law slopes of the different segments of the broken power law. - `breakpoints`; the masses at which the power law slopes change. If `length(α)=n`, then `length(breakpoints)=n+1`. # Examples `BrokenPowerLaw([1.35,2.35],[0.08,1.0,Inf])` will instantiate a broken power law defined from a minimum mass of `0.08` to a maximum mass of `Inf` with a single switch in `α` at `m=1.0`. From `0.08 ≤ m ≤ 1.0`, `α = 1.35` and from `1.0 ≤ m ≤ Inf`, `α = 2.35`. # Notes There is some setup necessary for `quantile` and other derived methods, so it is more efficient to call these methods directly with an array via the call signature `quantile(d::BrokenPowerLaw{T}, x::AbstractArray{S})` rather than broadcasting over `x`. This behavior is now deprecated for `quantile(d::Distributions.UnivariateDistribution, X::AbstractArray)` in Distributions.jl. # Methods - `Base.convert(::Type{BrokenPowerLaw{T}}, d::BrokenPowerLaw)` - `minimum(d::BrokenPowerLaw)` - `maximum(d::BrokenPowerLaw)` - `partype(d::BrokenPowerLaw)` - `eltype(d::BrokenPowerLaw)` - `mean(d::BrokenPowerLaw)` - `median(d::BrokenPowerLaw)` - `var(d::BrokenPowerLaw)`, may not function correctly for large `mmax` - `skewness(d::BrokenPowerLaw)`, may not function correctly for large `mmax` - `kurtosis(d::BrokenPowerLaw)`, may not function correctly for large `mmax` - `pdf(d::BrokenPowerLaw,x::Real)` - `logpdf(d::BrokenPowerLaw,x::Real)` - `cdf(d::BrokenPowerLaw,x::Real)` - `ccdf(d::BrokenPowerLaw,x::Real)` - `quantile(d::BrokenPowerLaw{S},x::T) where {S,T<:Real}` - `quantile!(result::AbstractArray,d::BrokenPowerLaw{S},x::AbstractArray{T}) where {S,T<:Real}` - `quantile(d::BrokenPowerLaw{T},x::AbstractArray{S})` - `cquantile(d::BrokenPowerLaw{S},x::T) where {S,T<:Real}` - `rand(rng::AbstractRNG, d::BrokenPowerLaw,s...)` - Other methods from `Distributions.jl` should also work because `BrokenPowerLaw <: AbstractIMF <: Distributions.ContinuousUnivariateDistribution`. For example, `rand!(rng::AbstractRNG, d::BrokenPowerLaw, x::AbstractArray)`. """ struct BrokenPowerLaw{T} <: AbstractIMF A::Vector{T} # normalization parameters α::Vector{T} # power law indexes breakpoints::Vector{T} # bounds of each break BrokenPowerLaw{T}(A::Vector{T}, α::Vector{T}, breakpoints::Vector{T}) where {T} = new{T}(A,α,breakpoints) end function BrokenPowerLaw(α::Vector{T}, breakpoints::Vector{T}) where T <: Real @assert length(breakpoints) == length(α)+1 @assert breakpoints[1] > 0 nbreaks = length(α) A = Vector{T}(undef, nbreaks) A[1] = one(T) for i in 2:nbreaks A[i] = A[i-1] * breakpoints[i]^-α[i-1] / breakpoints[i]^-α[i] end # Now A contains prefactors for each power law that makes them continuous # with the first power law having a prefactor of 1. Now we need to normalize # the integral from minimum(breaks) to maximum(breaks) to equal 1 by dividing # the entire A array by a common factor. total_integral = zero(T) for i in 1:nbreaks total_integral += pl_integral(A[i], α[i], breakpoints[i], breakpoints[i+1]) end A ./= total_integral return BrokenPowerLaw{T}(A, α, breakpoints) end BrokenPowerLaw(α::Tuple, breakpoints::Tuple) = BrokenPowerLaw(collect(promote(α...)), collect(promote(breakpoints...))) BrokenPowerLaw(α::AbstractVector{T}, breakpoints::AbstractVector{T}) where T <: Real = BrokenPowerLaw(convert(Vector{T}, α), convert(Vector{T}, breakpoints)) function BrokenPowerLaw(α::AbstractVector{T}, breakpoints::AbstractVector{S}) where {T <: Real, S <: Real} X = promote_type(T, S) return BrokenPowerLaw(convert(Vector{X},α), convert(Vector{X},breakpoints)) end #### Conversions Base.convert(::Type{BrokenPowerLaw{T}}, d::BrokenPowerLaw) where T = BrokenPowerLaw{T}(convert(Vector{T},d.A), convert(Vector{T},d.α), convert(Vector{T},d.breakpoints)) Base.convert(::Type{BrokenPowerLaw{T}}, d::BrokenPowerLaw{T}) where T <: Real = d #### Parameters params(d::BrokenPowerLaw) = d.A, d.α, d.breakpoints minimum(d::BrokenPowerLaw) = minimum(d.breakpoints) maximum(d::BrokenPowerLaw) = maximum(d.breakpoints) partype(d::BrokenPowerLaw{T}) where T = T eltype(d::BrokenPowerLaw{T}) where T = T #### Statistics function mean(d::BrokenPowerLaw) A, α, breakpoints = params(d) return sum( (A[i]*breakpoints[i+1]^(2-α[i])/(2-α[i]) - A[i]*breakpoints[i]^(2-α[i])/(2-α[i]) for i in 1:length(A) ) ) end median(d::BrokenPowerLaw{T}) where T = quantile(d, T(0.5)) # this is temporary # mode(d::BrokenPowerLaw) = d.breakpoints[argmin(d.α)] # this is not always correct function var(d::BrokenPowerLaw) A, α, breakpoints = params(d) return sum( (A[i]*breakpoints[i+1]^(3-α[i])/(3-α[i]) - A[i]*breakpoints[i]^(3-α[i])/(3-α[i]) for i in 1:length(A) ) ) - mean(d)^2 end function skewness(d::BrokenPowerLaw) A, α, breakpoints = params(d) m = mean(d) v = var(d) return ( sum( (A[i]*breakpoints[i+1]^(4-α[i])/(4-α[i]) - A[i]*breakpoints[i]^(4-α[i])/(4-α[i]) for i in 1:length(A) ) ) - 3 * m * v - m^3) / v^(3/2) end function kurtosis(d::BrokenPowerLaw) A, α, breakpoints = params(d) X4 = sum( (A[i]*breakpoints[i+1]^(5-α[i])/(5-α[i]) - A[i]*breakpoints[i]^(5-α[i])/(5-α[i]) for i in 1:length(A) ) ) X3 = sum( (A[i]*breakpoints[i+1]^(4-α[i])/(4-α[i]) - A[i]*breakpoints[i]^(4-α[i])/(4-α[i]) for i in 1:length(A) ) ) X2 = sum( (A[i]*breakpoints[i+1]^(3-α[i])/(3-α[i]) - A[i]*breakpoints[i]^(3-α[i])/(3-α[i]) for i in 1:length(A) ) ) X = sum( (A[i]*breakpoints[i+1]^(2-α[i])/(2-α[i]) - A[i]*breakpoints[i]^(2-α[i])/(2-α[i]) for i in 1:length(A) ) ) μ4 = X4 - 4*X*X3 + 6*X^2*X2 - 3*X^4 return μ4 / var(d)^2 end #### Evaluation function pdf(d::BrokenPowerLaw{S}, x::T) where {S, T <: Real} ((x < minimum(d)) || (x > maximum(d))) && (return zero(promote_type(S,T))) idx = findfirst(>=(x), d.breakpoints) idx != 1 && (idx-=1) return d.A[idx] * x^-d.α[idx] end function logpdf(d::BrokenPowerLaw{S}, x::T) where {S, T <: Real} if ((x >= minimum(d)) && (x <= maximum(d))) A, α, breakpoints = params(d) idx = findfirst(>=(x), breakpoints) idx != 1 && (idx-=1) return log(A[idx]) - α[idx]*log(x) else U = promote_type(S, T) return -U(Inf) end end function cdf(d::BrokenPowerLaw{S}, x::T) where {S, T <: Real} U = promote_type(S, T) if x <= minimum(d) return zero(U) elseif x >= maximum(d) return one(U) end A,α,breakpoints = params(d) idx = findfirst(>=(x),breakpoints) idx != 1 && (idx-=1) return sum(pl_integral(A[i],α[i],breakpoints[i],min(x,breakpoints[i+1])) for i in 1:idx) end ccdf(d::BrokenPowerLaw, x::Real) = one(partype(d)) - cdf(d,x) function quantile(d::BrokenPowerLaw{S}, x::T) where {S, T <: Real} U = promote_type(S, T) if x <= zero(T) return U(minimum(d)) elseif x >= one(T) return U(maximum(d)) end A, α, breakpoints = params(d) nbreaks = length(A) integrals = cumsum(pl_integral(A[i],α[i],breakpoints[i],breakpoints[i+1]) for i in 1:nbreaks) # calculate the cumulative integral idx = findfirst(>=(x), integrals) # find the first breakpoint where the cumulative integral # up to each breakpoint idx != 1 && (x-=integrals[idx-1]) # is greater than x. If this is not the first breakpoint, then subtract off the cumulative integral a = one(S) - α[idx] return (x*a/A[idx] + breakpoints[idx]^a)^inv(a) end function quantile!(result::AbstractArray, d::BrokenPowerLaw{S}, x::AbstractArray{T}) where {S, T <: Real} @assert axes(result) == axes(x) A, α, breakpoints = params(d) nbreaks = length(A) integrals = cumsum(pl_integral(A[i],α[i],breakpoints[i],breakpoints[i+1]) for i in 1:nbreaks) # calculate the cumulative integral @inbounds for i in eachindex(x) xi = x[i] xi<=zero(T) && (result[i]=minimum(d); continue) xi>=one(T) && (result[i]=maximum(d); continue) idx = findfirst(>=(xi), integrals) # find the first breakpoint where the cumulative integral # up to each breakpoint idx != 1 && (xi-=integrals[idx-1]) # is greater than x. If this is not the first breakpoint, then subtract off a = one(S) - α[idx] # the cumulative integral result[i] = (xi*a/A[idx] + breakpoints[idx]^a)^inv(a) end return result end quantile(d::BrokenPowerLaw{T}, x::AbstractArray{S}) where {T, S <: Real} = quantile!(Array{promote_type(T,S)}(undef,size(x)),d,x) cquantile(d::BrokenPowerLaw, x::Real) = quantile(d, one(x)-x) ##### Random sampling ########################################################################################## # Implementing efficient sampler. We need the cumulative integral up to each breakpoint in # order to transform a uniform random point in (0,1] to a random mass, but we dont want to # recompute it every time. We could just use the method of # quantile(d::BrokenPowerLaw, x::AbstractArray) # for this purpose but the "correct" way to do it is to implement a `sampler` method as below. # By default (e.g., without `rand(rng::AbstractRNG, d::BrokenPowerLaw)`), # Distributions seems to call the efficient # `quantile(d::BrokenPowerLaw, x::AbstractArray)` method anyway, but it doesn't respect # the type of `d`, so a bit better to do it this way anyway. struct BPLSampler{T} <: Sampleable{Univariate, Continuous} A::Vector{T} # normalization parameters α::Vector{T} # power law indexes breakpoints::Vector{T} # bounds of each break integrals::Vector{T} # cumulative integral up to each breakpoint end function BPLSampler(d::BrokenPowerLaw) A, α, breakpoints = params(d) nbreaks = length(A) integrals = cumsum(pl_integral(A[i],α[i],breakpoints[i],breakpoints[i+1]) for i in 1:nbreaks) # calculate the cumulative integral return BPLSampler(A, α, breakpoints, integrals) end function rand(rng::AbstractRNG, s::BPLSampler{T}) where T x = rand(rng, T) A, α, breakpoints,integrals = s.A,s.α,s.breakpoints,s.integrals idx = findfirst(>=(x), integrals) # find the first breakpoint where the cumulative integral # up to each breakpoint idx != 1 && (x-=integrals[idx-1]) # is greater than x. If this is not the first breakpoint, then subtract off the cumulative integral a = one(T) - α[idx] return (x*a/A[idx] + breakpoints[idx]^a)^inv(a) end sampler(d::BrokenPowerLaw) = BPLSampler(d) rand(rng::AbstractRNG, d::BrokenPowerLaw) = rand(rng, sampler(d)) ####################################################### # Specific types of BrokenPowerLaw ####################################################### const kroupa2001_α = [0.3, 1.3, 2.3] const kroupa2001_breakpoints = [0.0, 0.08, 0.50, Inf] """ Kroupa2001(mmin::Real=0.08, mmax::Real=Inf) Function to instantiate a [`BrokenPowerLaw`](@ref) IMF for single stars with the parameters from Equation 2 of [Kroupa 2001](https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..231K/abstract). This is equivalent to the relation given in [Kroupa 2002](https://ui.adsabs.harvard.edu/abs/2002Sci...295...82K/abstract). """ function Kroupa2001(mmin::T=0.08, mmax::T=Inf) where T <: Real @assert mmin > zero(T) # idx1 = max(1, findfirst(>(mmin),kroupa2001_breakpoints)-1) idx1 = findfirst(>(mmin), kroupa2001_breakpoints) - 1 idx2 = findfirst(>=(mmax), kroupa2001_breakpoints) bp = convert(Vector{T}, kroupa2001_breakpoints[idx1:idx2]) bp[1] = mmin bp[end] = mmax BrokenPowerLaw(convert(Vector{T}, kroupa2001_α[idx1:idx2-1]), bp) end Kroupa2001(mmin::Real, mmax::Real) = Kroupa2001(promote(mmin,mmax)...) const chabrier2001bpl_α = [1.55, 2.70] const chabrier2001bpl_breakpoints = [0.00, 1.0, Inf] """ Chabrier2001BPL(mmin::T=0.08, mmax::T=Inf) Function to instantiate a [`BrokenPowerLaw`](@ref) IMF for single stars with the parameters from the first column of Table 1 in [Chabrier 2001](https://ui.adsabs.harvard.edu/abs/2001ApJ...554.1274C/abstract). """ function Chabrier2001BPL(mmin::T=0.08, mmax::T=Inf) where {T<:Real} @assert mmin > 0 # idx1 = max(1, findfirst(>(mmin),kroupa2001_breakpoints)-1) idx1 = findfirst(>(mmin), chabrier2001bpl_breakpoints) - 1 idx2 = findfirst(>=(mmax), chabrier2001bpl_breakpoints) bp = convert(Vector{T}, chabrier2001bpl_breakpoints[idx1:idx2]) bp[1] = mmin bp[end] = mmax BrokenPowerLaw(convert(Vector{T}, chabrier2001bpl_α[idx1:idx2-1]), bp) end Chabrier2001BPL(mmin::Real, mmax::Real) = Chabrier2001BPL(promote(mmin,mmax)...)
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
code
11594
using InitialMassFunctions using QuadGK using Test function test_bpl(d::BrokenPowerLaw) mmin,mmax = extrema(d) integral = quadgk(x->pdf(d,x),mmin,mmax) # test that the pdf is properly normalized # integral = quadgk(x->exp(x)*pdf(d,exp(x)),log(mmin),log(mmax)) @test integral[1] ≈ oneunit(integral[1]) rtol=1e-12 atol=integral[2] # test normalization meanmass_gk = quadgk(x->x*pdf(d,x),mmin,mmax) # meanmass_gk = quadgk(x->exp(x)^2*pdf(d,exp(x)),log(mmin),log(mmax)) @test meanmass_gk[1] ≈ mean(d) rtol=1e-12 atol=meanmass_gk[2] # test mean var_gk = quadgk(x->x^2*pdf(d,x),mmin,mmax) @test var_gk[1]-mean(d)^2 ≈ var(d) rtol=1e-12 atol=var_gk[2] # test variance skew_gk = quadgk(x->x^3*pdf(d,x),mmin,mmax) @test (skew_gk[1]-3*mean(d)*var(d)-mean(d)^3)/var(d)^(3/2) ≈ skewness(d) rtol=1e-5 atol=var_gk[2] # test skewness; higher error dmean = mean(d) var_d = var(d) kurt_gk = quadgk(x->(x-dmean)^4 / var_d^2 * pdf(d,x),mmin,mmax) @test kurt_gk[1] ≈ kurtosis(d) rtol=1e-10 atol=kurt_gk[2] # test kurtosis # test correctness of CDF, quantile, etc. test_points = [0.1,0.2,0.3,1.0,1.5,10.0,100.0] test_points = test_points[mmin .< test_points .< mmax] for i in test_points x = cdf(d,i) integral = quadgk(x->pdf(d,x),mmin,i) @test integral[1] ≈ x rtol=1e-12 atol=integral[2] @test quantile(d,x) ≈ i rtol=1e-12 @test cquantile(d,x) ≈ quantile(d,1-x) rtol=1e-12 @test logpdf(d,i) ≈ log(pdf(d,i)) rtol=1e-12 @test x ≈ 1 - ccdf(d,i) rtol=1e-12 end end function test_lognormalbpl(d::LogNormalBPL) mmin,mmax = extrema(d) integral = quadgk(x->pdf(d,x),mmin,mmax) # integral = quadgk(x->exp(x)*pdf(d,exp(x)),log(mmin),log(mmax)) @test integral[1] ≈ oneunit(integral[1]) rtol=1e-12 atol=integral[2] # test normalization meanmass_gk = quadgk(x->x*pdf(d,x),mmin,mmax) # meanmass_gk = quadgk(x->exp(x)^2*pdf(d,exp(x)),log(mmin),log(mmax)) @test meanmass_gk[1] ≈ mean(d) rtol=1e-12 atol=meanmass_gk[2] # test mean # these are not defined yet for LogNormalBPL # var_gk = quadgk(x->x^2*pdf(d,x),mmin,mmax) # @test var_gk[1]-mean(d)^2 ≈ var(d) rtol=1e-12 atol=var_gk[2] # test variance # skew_gk = quadgk(x->x^3*pdf(d,x),mmin,mmax) # @test (skew_gk[1]-3*mean(d)*var(d)-mean(d)^3)/var(d)^(3/2) ≈ skewness(d) rtol=1e-5 atol=var_gk[2] # test skewness; higher error # dmean = mean(d) # var_d = var(d) # kurt_gk = quadgk(x->(x-dmean)^4 / var_d^2 * pdf(d,x),mmin,mmax) # @test kurt_gk[1] ≈ kurtosis(d) rtol=1e-10 atol=kurt_gk[2] # test kurtosis # test correctness of CDF, quantile, etc. test_points = [0.1,0.2,0.3,1.0,1.5,10.0,100.0] test_points = test_points[mmin .< test_points .< mmax] for i in test_points x = cdf(d,i) integral = quadgk(x->pdf(d,x),mmin,i) @test integral[1] ≈ x rtol=1e-12 atol=integral[2] @test quantile(d,x) ≈ i rtol=1e-12 @test cquantile(d,x) ≈ quantile(d,1-x) rtol=1e-12 @test logpdf(d,i) ≈ log(pdf(d,i)) rtol=1e-12 @test x ≈ 1 - ccdf(d,i) rtol=1e-12 end end # function test_type(T::Type,d::BrokenPowerLaw) # @test d isa BrokenPowerLaw{T} # @test partype(d) == T # @test convert(BrokenPowerLaw{Float32},d) isa BrokenPowerLaw{Float32} # @test convert(BrokenPowerLaw{T},d) === d # end # include("single_powerlaw.jl") @testset "BrokenPowerLaw" begin @testset "Float64" begin d = BrokenPowerLaw([1.3,2.35],[0.08,1.0,100.0]) @test d isa BrokenPowerLaw{Float64} @test partype(d) == Float64 @test convert(BrokenPowerLaw{Float32},d) isa BrokenPowerLaw{Float32} @test convert(BrokenPowerLaw{Float64},d) === d @test pdf(d,1.0) isa Float64 @test pdf(d,1.0f0) isa Float64 @test pdf(d, -1.0) === 0.0 # Test out of range inputs @test pdf(d, -1.0f0) === 0.0 # Test out of range inputs @test pdf(d, 1e3) === 0.0 # Test out of range inputs @test pdf(d, 1f3) === 0.0 # Test out of range inputs @test logpdf(d,1.0) isa Float64 @test logpdf(d,1.0f0) isa Float64 @test logpdf(d, -1.0) === -Inf # Test out of range inputs @test logpdf(d, -1.0f0) === -Inf # Test out of range inputs @test logpdf(d, 1e3) === -Inf # Test out of range inputs @test logpdf(d, 1f3) === -Inf # Test out of range inputs @test cdf(d,1.0) isa Float64 @test cdf(d,1.0f0) isa Float64 @test cdf(d, -1.0) === 0.0 # Test out of range inputs @test cdf(d, -1.0f0) === 0.0 # Test out of range inputs @test cdf(d, 1e3) === 1.0 # Test out of range inputs @test cdf(d, 1f3) === 1.0 # Test out of range inputs @test ccdf(d,1.0) isa Float64 @test ccdf(d,1.0f0) isa Float64 @test ccdf(d, -1.0) === 1.0 # Test out of range inputs @test ccdf(d, -1.0f0) === 1.0 # Test out of range inputs @test ccdf(d, 1e3) === 0.0 # Test out of range inputs @test ccdf(d, 1f3) === 0.0 # Test out of range inputs @test quantile(d,0.5) isa Float64 @test quantile(d,0.5f0) isa Float64 @test quantile(d,1.2) === Float64(maximum(d)) # Test out of range inputs @test quantile(d,1.2f0) === maximum(d) # Test out of range inputs @test quantile(d,-1.0) === Float64(minimum(d)) # Test out of range inputs @test quantile(d,-1.0f0) === minimum(d) # Test out of range inputs @test quantile(d,[0.5f0,0.75f0]) isa Vector{Float64} @test quantile(d,[0.5,0.75]) isa Vector{Float64} @test cquantile(d,0.5) isa Float64 @test cquantile(d,0.5f0) isa Float64 @test rand(d) isa Float64 @test mean(d) isa Float64 @test median(d) isa Float64 end @testset "Float32" begin d = BrokenPowerLaw([1.3f0,2.35f0],[0.08f0,1.0f0,100.0f0]) @test d isa BrokenPowerLaw{Float32} @test partype(d) == Float32 @test convert(BrokenPowerLaw{Float32},d) === d @test convert(BrokenPowerLaw{Float64},d) isa BrokenPowerLaw{Float64} @test pdf(d,1.0) isa Float64 @test pdf(d,1.0f0) isa Float32 @test pdf(d, -1.0) === 0.0 # Test out of range inputs @test pdf(d, -1.0f0) === 0.0f0 # Test out of range inputs @test pdf(d, 1e3) === 0.0 # Test out of range inputs @test pdf(d, 1f3) === 0.0f0 # Test out of range inputs @test logpdf(d,1.0) isa Float64 @test logpdf(d,1.0f0) isa Float32 @test logpdf(d, -1.0) === -Inf # Test out of range inputs @test logpdf(d, -1.0f0) === -Inf32 # Test out of range inputs @test logpdf(d, 1e3) === -Inf # Test out of range inputs @test logpdf(d, 1f3) === -Inf32 # Test out of range inputs @test cdf(d,1.0) isa Float64 @test cdf(d,1.0f0) isa Float32 @test cdf(d, -1.0) === 0.0 # Test out of range inputs @test cdf(d, -1.0f0) === 0.0f0 # Test out of range inputs @test cdf(d, 1e3) === 1.0 # Test out of range inputs @test cdf(d, 1f3) === 1.0f0 # Test out of range inputs @test ccdf(d,1.0) isa Float64 @test ccdf(d,1.0f0) isa Float32 @test ccdf(d, -1.0) === 1.0 # Test out of range inputs @test ccdf(d, -1.0f0) === 1.0f0 # Test out of range inputs @test ccdf(d, 1e3) === 0.0 # Test out of range inputs @test ccdf(d, 1f3) === 0.0f0 # Test out of range inputs @test quantile(d,0.5) isa Float64 @test quantile(d,0.5f0) isa Float32 @test quantile(d,1.2) === Float64(maximum(d)) # Test out of range inputs @test quantile(d,1.2f0) === maximum(d) # Test out of range inputs @test quantile(d,-1.0) === Float64(minimum(d)) # Test out of range inputs @test quantile(d,-1.0f0) === minimum(d) # Test out of range inputs @test quantile(d,[0.5f0,0.75f0]) isa Vector{Float32} @test quantile(d,[0.5,0.75]) isa Vector{Float64} @test cquantile(d,0.5) isa Float64 @test cquantile(d,0.5f0) isa Float32 @test rand(d) isa Float32 @test mean(d) isa Float32 @test median(d) isa Float32 end @testset "Params" begin d = BrokenPowerLaw([1.3,2.35],[0.08,1.0,100.0]) @test minimum(d) == 0.08 @test maximum(d) == 100.0 end # test tuple constructor d = BrokenPowerLaw((1.3,2.35),(0.08,1.0,100.0)) @test BrokenPowerLaw((1.3f0,2.35f0),(0.08,1.0,100.0)) isa BrokenPowerLaw{Float64} @test BrokenPowerLaw((1.3f0,2.35f0),(0.08f0,1.0f0,100.0f0)) isa BrokenPowerLaw{Float32} # test named types of BPLs @testset "Chabrier2001BPL" begin d = Chabrier2001BPL(0.08,100.0) test_bpl(d) end @testset "Kroupa2001" begin d = Kroupa2001(0.08,100.0) test_bpl(d) end end ############################################################################## @testset "LogNormalBPL" begin @testset "Float64" begin d = LogNormalBPL(-5.0,1.5,[2.35],[0.08,1.0,100.0]) @test d isa LogNormalBPL{Float64} @test partype(d) == Float64 @test convert(LogNormalBPL{Float32},d) isa LogNormalBPL{Float32} @test convert(LogNormalBPL{Float64},d) === d @test pdf(d,1.0) isa Float64 @test pdf(d,1.0f0) isa Float64 @test logpdf(d,1.0) isa Float64 @test logpdf(d,1.0f0) isa Float64 @test cdf(d,1.0) isa Float64 @test cdf(d,1.0f0) isa Float64 @test ccdf(d,1.0) isa Float64 @test ccdf(d,1.0f0) isa Float64 @test quantile(d,0.5) isa Float64 @test quantile(d,0.5f0) isa Float64 @test cquantile(d,0.5) isa Float64 @test cquantile(d,0.5f0) isa Float64 @test quantile(d,[0.5f0,0.75f0]) isa Vector{Float64} @test quantile(d,[0.5,0.75]) isa Vector{Float64} @test rand(d) isa Float64 @test mean(d) isa Float64 end @testset "Float32" begin d = LogNormalBPL(-5.0f0,1.5f0,[2.35f0],[0.08f0,1.0f0,100.0f0]) @test d isa LogNormalBPL{Float32} @test partype(d) == Float32 @test convert(LogNormalBPL{Float32},d) === d @test convert(LogNormalBPL{Float64},d) isa LogNormalBPL{Float64} @test pdf(d,1.0) isa Float64 @test pdf(d,1.0f0) isa Float32 @test logpdf(d,1.0) isa Float64 @test logpdf(d,1.0f0) isa Float32 @test cdf(d,1.0) isa Float64 @test cdf(d,1.0f0) isa Float32 @test ccdf(d,1.0) isa Float64 @test ccdf(d,1.0f0) isa Float32 @test quantile(d,0.5) isa Float64 @test quantile(d,0.5f0) isa Float32 @test quantile(d,[0.5f0,0.75f0]) isa Vector{Float32} @test quantile(d,[0.5,0.75]) isa Vector{Float64} @test rand(d) isa Float32 @test mean(d) isa Float32 end @testset "Params" begin d = LogNormalBPL(-5.0,1.5,[2.35],[0.08,1.0,100.0]) @test minimum(d) == 0.08 @test maximum(d) == 100.0 end # test tuple constructor d = LogNormalBPL(-5.0,1.5,(2.35,),(0.08,1.0,100.0)) @test LogNormalBPL(-5.0f0,1.5f0,(2.35f0,),(0.08,1.0,100.0)) isa LogNormalBPL{Float64} @test LogNormalBPL(-5.0,1.5f0,(2.35f0,),(0.08f0,1.0f0,100.0f0)) isa LogNormalBPL{Float64} # test named types of BPLs @testset "Chabrier2003" begin d = Chabrier2003(0.08,100.0) test_lognormalbpl(d) end @testset "Chabrier2003System" begin d = Chabrier2003System(0.08,100.0) test_lognormalbpl(d) end end
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
docs
3803
InitialMassFunctions.jl ================ [![Build Status](https://github.com/cgarling/InitialMassFunctions.jl/workflows/CI/badge.svg)](https://github.com/cgarling/InitialMassFunctions.jl/actions) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://cgarling.github.io/InitialMassFunctions.jl/stable/) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://cgarling.github.io/InitialMassFunctions.jl/dev/) [![codecov](https://codecov.io/gh/cgarling/InitialMassFunctions.jl/branch/main/graph/badge.svg?token=XY3O7IQPZH)](https://codecov.io/gh/cgarling/InitialMassFunctions.jl) Stellar initial mass functions describe the distribution of initial masses that stars are born with. This package aims to implement and provide interfaces for working with initial mass functions, including but not limited to evaluating and sampling from published distributions. See the linked documentation above for more details. Published IMFs we include are ```julia Salpeter1955(mmin::Real=0.4, mmax::Real=Inf) Chabrier2001BPL(mmin::Real=0.08, mmax::Real=Inf) Chabrier2001LogNormal(mmin::Real=0.08, mmax::Real=Inf) Chabrier2003(mmin::Real=0.08, mmax::Real=Inf) Chabrier2003System(mmin::Real=0.08, mmax::Real=Inf) Kroupa2001(mmin::Real=0.08, mmax::Real=Inf) ``` These all return subtypes of [`Distributions.ContinuousUnivariateDistribution`](https://juliastats.org/Distributions.jl/latest/univariate/#univariates) and have many of the typical methods from [`Distributions.jl`](https://github.com/JuliaStats/Distributions.jl) defined for them. These include * pdf, logpdf * cdf, ccdf * `quantile(d, x::Real), quantile(d,x::AbstractArray), quantile!(y::AbstractArray, d, x::AbstractArray)` * rand * minimum, maximum, extrema * mean, median, var, skewness, kurtosis (some of the higher moments don't work for `mmax=Inf` with instances of `BrokenPowerLaw`) Note that `var`, `skewness`, and `kurtosis` are not currently defined for instances of `LogNormalBPL`, such as those returned by the `Chabrier2003` function. Many other functions that work on [`Distributions.ContinuousUnivariateDistribution`](https://juliastats.org/Distributions.jl/latest/univariate/#univariates) will also work transparently on these `AbstractIMF` instances. Continuous broken-power-law distributions (such as those used in [Chabrier 2001](https://ui.adsabs.harvard.edu/abs/2001ApJ...554.1274C/abstract) and [Kroupa 2001](https://ui.adsabs.harvard.edu/abs/2001MNRAS.322..231K/abstract)) are provided through a new `BrokenPowerLaw` type. The lognormal distribution for masses `m<1.0` with a power law extension for higher masses as given in [Chabrier 2003](https://ui.adsabs.harvard.edu/abs/2003PASP..115..763C/abstract) is provided by a new `LogNormalBPL` type. Simpler models (e.g., `Salpeter1955` and `Chabrier2001LogNormal`) are implemented using built-in distributions from [`Distributions.jl`](https://github.com/JuliaStats/Distributions.jl) in concert with their [`truncated`](https://juliastats.org/Distributions.jl/stable/truncate/#Distributions.truncated) function. Efficient samplers are implemented for the new types `BrokenPowerLaw` and `LogNormalBPL` such that batched calls (e.g., `rand(Chabrier2003(),1000)`) are more efficient than single calls (e.g., `d=Chabrier2003(); [rand(d) for i in 1:1000]`). These samplers can be created explicitly by calling `Distributions.sampler(d)`, with `d` being a `BrokenPowerLaw` or `LogNormalBPL` instance. ## Versioning `InitialMassFunctions.jl` follows Julia's [recommended versioning strategy](https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0), where breaking changes prior to version 1.0 will result in a bump of the minor version (e.g., 0.1.x |> 0.2.0) whereas feature additions and bug patches will increment the patch version (0.1.0 |> 0.1.1).
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
docs
3415
# Convenience Constructors for Published IMFs We provide convenience constructors for published IMFs that can be called without arguments, or with positional arguments to set different minimum and maximum stellar masses. The provided constructors are ```@docs Salpeter1955 Chabrier2001BPL Kroupa2001 Chabrier2001LogNormal Chabrier2003 Chabrier2003System ``` ```@setup pdfcompare # @setup ensures input and output are hidden from final output using Distributions, InitialMassFunctions import GR # Display figures as SVGs GR.inline("svg") # Write function to make comparison plot of provided literature IMF PDFs function pdfcompare(Mmin, Mmax, npoints; kws...) GR.figure(; title="Literature IMF PDFs", xlabel="M\$_\\odot\$", ylabel="PDF (dN/dM)", xlog=true, ylog=true, grid=false, backgroundcolor=0, # white instead of transparent background for dark Documenter scheme # font="Helvetica_Regular", # work around https://github.com/JuliaPlots/Plots.jl/issues/2596 linewidth=2.0, # thicker lines size=(800,600), xlim=(Mmin, 10.0), ylim=(1e-4,20.0), kws...) imfs = [Salpeter1955(Mmin, Mmax), Chabrier2001BPL(Mmin, Mmax), Kroupa2001(Mmin, Mmax), Chabrier2001LogNormal(Mmin, Mmax), Chabrier2003(Mmin, Mmax), Chabrier2003System(Mmin, Mmax)] imf_labels = ["Salpeter1955", "Chabrier2001BPL", "Kroupa2001", "Chabrier2001LogNormal", "Chabrier2003", "Chabrier2003System"] masses = exp10.(range(log10(Mmin), log10(Mmax); length=npoints)) pdfs = [pdf.(imf, masses) for imf in imfs] # # Normalization test # using Test # import QuadGK: quadgk # let Mmin = 0.08, Mmax = 100.0, # imfs = [Chabrier2001BPL(Mmin, Mmax), # Kroupa2001(Mmin, Mmax), # Chabrier2001LogNormal(Mmin, Mmax), # Chabrier2003(Mmin, Mmax), # Chabrier2003System(Mmin, Mmax)] # @test all( isapprox.([quadgk(Base.Fix1(pdf, imf), Mmin, Mmax)[1] for imf in imfs],1) ) # end # # Plot first IMF # GR.plot(masses, Base.Fix1(pdf,Salpeter1955(Mmin, Mmax))) # # Hold open # GR.hold(true) # for imf in imfs # GR.plot(masses, Base.Fix1(pdf, imf)) # end # GR.hold(false) # # GR.legend(imf_labels...) # Switch to plotting all lines at same time, easier for legend # Call is GR.plot(x1, y1, x2, y2, ...and so on) # Legend labels are then keyword `labels` and legend location is # `location` with 1 = upper right, 2 = upper left, # 3 = lower left, 4 = lower right, 11 = top right (outside of axes), # 12 = half right (outside of axes), 13 = bottom right (outside of axes), GR.plot( (collect((masses, i) for i in pdfs)...)..., labels=imf_labels, location=3) end ``` Below is a comparison plot of the probability density functions of the literature IMFs we provide, all normalized to integrate to 1 over the initial mass range (0.08, 100.0) solar masses. ```@example pdfcompare pdfcompare(0.08, 100.0, 1000) # hide ``` \ We also provide a constructor for a single-power-law IMF, ```@docs PowerLawIMF ``` which internally creates a truncated [Pareto](https://juliastats.org/Distributions.jl/stable/univariate/#Distributions.Pareto) distribution. Similarly, we provide a constructor for a single-component `LogNormal` IMF, ```@docs LogNormalIMF ```
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
docs
415
# Defined Types We provide two new types that are subtypes of [`AbstractIMF`](@ref InitialMassFunctions.AbstractIMF), which itself is a subtype of [`Distributions.ContinuousUnivariateDistribution`](https://juliastats.org/Distributions.jl/latest/univariate/#univariates) and generally follow the API provided by `Distributions.jl`. These are ```@docs InitialMassFunctions.AbstractIMF BrokenPowerLaw LogNormalBPL ```
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.1.4
ea00ee2ef140aa82b63037bef01e1baf91cdaa4d
docs
98
# Utilities ```@docs InitialMassFunctions.pl_integral InitialMassFunctions.lognormal_integral ```
InitialMassFunctions
https://github.com/cgarling/InitialMassFunctions.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
591
push!(LOAD_PATH, "../src/") using Documenter, CEDICT makedocs( sitename="CEDICT.jl Documentation", format=Documenter.HTML( prettyurls=get(ENV, "CI", nothing) == "true" ), modules=[CEDICT], pages=[ "Home" => "index.md", "API Reference" => [ "Loading Dictionaries" => "api_dictionaries.md", "Searching in Dictionaries" => "api_searching.md", "Convenience Functions" => "api_convenience.md" ] ] ) deploydocs( repo="github.com/JuliaCJK/CEDICT.jl.git", devbranch="main", devurl="latest" )
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
43695
### A Pluto.jl notebook ### # v0.15.0 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing el end end # ╔═╡ ada79ea0-f796-11ea-1aa2-eddd747b2c83 begin using PlutoUI using CEDICT using LightGraphs using Plots, GraphPlot end # ╔═╡ fc1f2d1e-f799-11ea-2606-f5046723c160 using LongestPaths # ╔═╡ 6269f9b0-f778-11ea-2004-394d3bf5ff7c md""" # Making 成語接龍 ## Idiom Source Here, I've just filtered the CEDICT for only entries that have "(idiom)" in one of the definitions. """ # ╔═╡ 89e768e0-f775-11ea-02b9-5b07cf88d0b4 dict = ChineseDictionary(); # ╔═╡ 04c116f0-f77c-11ea-305e-cf13b0d83a8f trad_idioms = [entry.trad for entry in idioms(dict)] # ╔═╡ afabceb0-f778-11ea-0b9a-bb3cbcdf2836 md""" ## Creating the Graph Now, to make the computations easier, I'm going to represent all the 成語 that I have in a graph. We could make the graph have an edge between idiom A and idiom B if the last character in A is the first character in B. There can be different ideas of being the "same": being the exact same character, have the exact same pronounciation, having the same primary pronounciation but a different tone, etc. But this graph is awkward to create (to add an edge from an idiom, I need to scan through all the other **terminal characters** (ones either at the beginning or the end of idioms) to figure out which ones to add as destinations. This would be a slow $O(n^2)$ algorithm. Instead, the vertices will represent terminal characters, and an idiom is represented as an edge from its starting character to its ending character. Because LightGraphs is optimized for integer-like vertices, first we'll create some mappings between the traditional terminal characters and the first $n$ positive natural numbers (where $n$ is the number of these characters). """ # ╔═╡ d62e2d50-f77b-11ea-0f69-ab7371ff50d6 terminal_chars = union( # initials Set(first(idiom) for idiom in trad_idioms), # finals Set(last(idiom) for idiom in trad_idioms) ) # ╔═╡ e94d86d0-f783-11ea-0e6c-5d774a41d58c num2term = collect(terminal_chars) # ╔═╡ ef8a82f0-f783-11ea-3e6c-d5591033c789 term2num = Dict(term_char => UInt16(index) for (index, term_char) in pairs(num2term)) # ╔═╡ 85e6c400-f77c-11ea-27f5-e7f9846cadcb let num_idioms = length(trad_idioms), num_term_chars = length(terminal_chars) md""" *Brief aside*: It's a little interesting to me that even though there are $num_idioms idioms in the dictionary, there are only $num_term_chars total terminal characters. That means on average each terminal character is repeated $(round(2*num_idioms/num_term_chars; digits=2)) times. """ end # ╔═╡ 021f2dce-f77a-11ea-3bc3-1770604ce10a idiom_graph = SimpleDiGraph(UInt16(length(terminal_chars))); # ╔═╡ 3417ba30-f786-11ea-2d30-a9df1f9ca6a0 edge_idioms = Dict{Tuple{Char, Char}, Vector{String}}(); # ╔═╡ c670e330-f776-11ea-22c6-598dabb22ca4 for idiom in trad_idioms edge = (first(idiom), last(idiom)) add_edge!(idiom_graph, term2num[first(edge)], term2num[last(edge)]) if haskey(edge_idioms, edge) push!(edge_idioms[edge], idiom) else edge_idioms[edge] = [idiom] end end # ╔═╡ dd133a30-f784-11ea-1d08-c9224043fcd8 md""" Now to use the graph to access information about the connectedness of different idioms, we can do things like query the neighbors (converting between our graph vertices as needed). """ # ╔═╡ 9d70c340-f787-11ea-3b52-4302490de06a initial = '叫'; # ╔═╡ e7634a5e-f780-11ea-1bab-8308a9188fd7 initial_outneighbors = num2term[outneighbors(idiom_graph, term2num[initial])] # ╔═╡ 0a65dba2-f785-11ea-2112-ad09bee3f657 md""" Here, this means that there are idioms that start with 叫 and end with either 天 or 迭. To see which ones, we'll have to query the `edge_idioms` dictionary. """ # ╔═╡ a1395970-f786-11ea-3273-c3cabe974073 [edge_idioms[(initial, final)] for final in initial_outneighbors] # ╔═╡ 863059b0-f788-11ea-1466-173304238a3c md""" So there are two idioms for each final terminal character in this case. We can also figure out what idioms end with that character. """ # ╔═╡ d8490b20-f788-11ea-0dc4-f31128f26958 initial_inneighbors = num2term[inneighbors(idiom_graph, term2num[initial])] # ╔═╡ edda218e-f788-11ea-087e-63329996b830 [edge_idioms[(final, initial)] for final in initial_inneighbors] # ╔═╡ 207b4070-f789-11ea-2f23-6945d91c5dc7 md""" ## Basic Chains We can just iterate through the graph, choosing a random path to go down in order to create some Markov chain dragons. First, let's figure out how to get to the next idiom. """ # ╔═╡ 59036480-f78f-11ea-1d45-9f33c884a7d1 function random_idiom(prev_idiom) # get the last character of the previous idiom first_char = last(prev_idiom) # all possible end characters end_chars = outneighbors(idiom_graph, term2num[first_char]) length(end_chars) == 0 && return nothing # out of all possible end characters, choose a random one last_char = num2term[rand(end_chars)] # all possible idioms that start and end with these characters possible_idioms = edge_idioms[(first_char, last_char)] length(possible_idioms) == 0 && return nothing # choose randomly from all possible idioms that start and end with these chars rand(possible_idioms) end; # ╔═╡ d3786f40-f793-11ea-28f4-83043da67d5c md""" (A slight issue with this implementation is that all idioms starting with a certain character are not necessarily chosen with equal probability.) Now, let's try it out on some idioms from our list. """ # ╔═╡ 6b7a0340-f789-11ea-2677-b967a8665cce initial_idiom = rand(trad_idioms) # ╔═╡ fbc7ad60-f790-11ea-2396-2d60b71ebb36 random_idiom(initial_idiom) # ╔═╡ 73a9207e-f78b-11ea-3bd3-29cc530a2cdb md"To make it repeat the process..." # ╔═╡ 7adba030-f78b-11ea-2833-6d4cfe471978 function random_idiom_walk(idiom, len = 100) idioms = Vector{String}() i = 0 while idiom != nothing && i <= len push!(idioms, idiom) i += 1 idiom = random_idiom(idiom) end idioms end; # ╔═╡ a2c3faa0-f792-11ea-01c6-1fa82522f5ea random_idiom_walk(initial_idiom) # ╔═╡ 97e74cc0-f794-11ea-25f5-e73f194a7d6e md""" Wait a minute! These are all really short! It's really hard to actually connect them, even when repeating this experiment many times: """ # ╔═╡ 87d1cc50-f796-11ea-1777-1f8e16901fd9 maximum(length.(random_idiom_walk.(rand(trad_idioms, 100)))) # ╔═╡ a4cd7ee0-f795-11ea-0532-211a33e21562 md""" Let's plot the distributions as histograms to see what's going on. """ # ╔═╡ c109a010-f796-11ea-170b-5de0f28d25b3 md""" Number of Samples: $(@bind samples Slider(10:2000, default=20, show_value=true)) """ # ╔═╡ d1048c40-f797-11ea-3c3d-6383874745c1 md""" Maximum Number of Iterations: $(@bind len Slider(20:500, default=250, show_value=true)) """ # ╔═╡ 56e84882-f796-11ea-0720-d1ee3698265e histogram(length.(random_idiom_walk.(rand(trad_idioms, samples), len)), bins=15) # ╔═╡ 13bf3850-f798-11ea-0591-57e00345f4c2 md""" So it's very rare in general that we ever hit the limit on the number of iterations. Although when we do, we *really* hit it, so maybe there's something else going on, like it's a cycle in the graph (which we currently don't detect). """ # ╔═╡ e96e21a0-f798-11ea-3f54-ff0b05d1eb35 md""" # Longest Cycles & Paths If we want to prove there is a cycle, the easiest way is to see if there's an idiom that starts and ends with the same character (these are actually already excluded as LightGraphs graphs by default exclude self-loops). """ # ╔═╡ 42d03620-f799-11ea-3669-69a09bd1facf [idiom for idiom in trad_idioms if first(idiom) == last(idiom)] # ╔═╡ c4de4760-f799-11ea-21cf-d9d374c89e67 md""" Voila! So there are already some self-loops (technically, we could have self-loops, but no cycles of length 2, but that's unlikely, so we'll just keep moving on). What's more interesting is the longest cycle in this graph. However, this (and the similar longest path problem) is an NP-hard problem. We can still try the brute force method and hope our graph is sufficiently small and well-behaved. """ # ╔═╡ 1aa5b380-f79b-11ea-0a27-b5b7d7091b9f find_longest_cycle(idiom_graph) # ╔═╡ 33068bc0-f79b-11ea-1c88-e9d151c04ead find_longest_path(idiom_graph) # ╔═╡ cafc4c00-f7a8-11ea-205d-2f425d554032 gplot(idiom_graph) # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [compat] CEDICT = "~0.2.1" GraphPlot = "~0.4.4" LightGraphs = "~1.3.5" LongestPaths = "~0.1.0" Plots = "~1.16.6" PlutoUI = "~0.7.9" [deps] CEDICT = "76a33514-0aea-4d2f-abaf-6a43b94fc20c" GraphPlot = "a2cc645c-3eea-5389-862e-a155d0052231" LightGraphs = "093fc24a-ae57-5d10-9952-331d41423f4d" LongestPaths = "3a25c17e-307c-411a-a047-890a9a5fbb4d" Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised [[Adapt]] deps = ["LinearAlgebra"] git-tree-sha1 = "84918055d15b3114ede17ac6a7182f68870c16f7" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" version = "3.3.1" [[ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[ArnoldiMethod]] deps = ["LinearAlgebra", "Random", "StaticArrays"] git-tree-sha1 = "f87e559f87a45bece9c9ed97458d3afe98b1ebb9" uuid = "ec485272-7323-5ecc-a04f-4719b315124d" version = "0.1.0" [[Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[BenchmarkTools]] deps = ["JSON", "Logging", "Printf", "Statistics", "UUIDs"] git-tree-sha1 = "01ca3823217f474243cc2c8e6e1d1f45956fe872" uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" version = "1.0.0" [[BinaryProvider]] deps = ["Libdl", "Logging", "SHA"] git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058" uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232" version = "0.5.10" [[Bzip2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c3598e525718abcc440f69cc6d5f60dda0a1b61e" uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0" version = "1.0.6+5" [[CEDICT]] deps = ["LazyArtifacts", "Pipe"] git-tree-sha1 = "bc1353298886fea3126be2c440a0d6455d68c6b2" uuid = "76a33514-0aea-4d2f-abaf-6a43b94fc20c" version = "0.2.1" [[Cairo_jll]] deps = ["Artifacts", "Bzip2_jll", "Fontconfig_jll", "FreeType2_jll", "Glib_jll", "JLLWrappers", "LZO_jll", "Libdl", "Pixman_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "e2f47f6d8337369411569fd45ae5753ca10394c6" uuid = "83423d85-b0ee-5818-9007-b63ccbeb887a" version = "1.16.0+6" [[Cbc]] deps = ["BinaryProvider", "Libdl", "MathOptInterface", "MathProgBase", "SparseArrays", "Test"] git-tree-sha1 = "62d80f448b5d77b3f0a59cecf6197aad2a3aa280" uuid = "9961bab8-2fa3-5c5a-9d89-47fab24efd76" version = "0.6.7" [[Clp]] deps = ["BinaryProvider", "Clp_jll", "Libdl", "LinearAlgebra", "MathOptInterface", "MathProgBase", "SparseArrays"] git-tree-sha1 = "08ca3c2fb7321ccab2f512f4fb77291e696a7d9b" uuid = "e2554f3b-3117-50c0-817c-e040a3ddf72d" version = "0.7.2" [[Clp_jll]] deps = ["Artifacts", "CoinUtils_jll", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "OpenBLAS32_jll", "Osi_jll", "Pkg"] git-tree-sha1 = "d9eca9fa2435959b5542b13409a8ec5f64c947c8" uuid = "06985876-5285-5a41-9fcb-8948a742cc53" version = "1.17.6+7" [[CodecBzip2]] deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"] git-tree-sha1 = "2e62a725210ce3c3c2e1a3080190e7ca491f18d7" uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd" version = "0.7.2" [[CodecZlib]] deps = ["TranscodingStreams", "Zlib_jll"] git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da" uuid = "944b1d66-785c-5afd-91f1-9de20f533193" version = "0.7.0" [[CoinUtils_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "OpenBLAS32_jll", "Pkg"] git-tree-sha1 = "5186155a8609b71eae7e104fa2b8fbf6ecd5d9bb" uuid = "be027038-0da8-5614-b30d-e42594cb92df" version = "2.11.3+4" [[ColorSchemes]] deps = ["ColorTypes", "Colors", "FixedPointNumbers", "Random", "StaticArrays"] git-tree-sha1 = "c8fd01e4b736013bc61b704871d20503b33ea402" uuid = "35d6a980-a343-548e-a6ea-1d62b119f2f4" version = "3.12.1" [[ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "32a2b8af383f11cbb65803883837a149d10dfe8a" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.10.12" [[Colors]] deps = ["ColorTypes", "FixedPointNumbers", "Reexport"] git-tree-sha1 = "417b0ed7b8b838aa6ca0a87aadf1bb9eb111ce40" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" version = "0.12.8" [[Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "dc7dedc2c2aa9faf59a55c622760a25cbefbe941" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.31.0" [[CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" [[Compose]] deps = ["Base64", "Colors", "DataStructures", "Dates", "IterTools", "JSON", "LinearAlgebra", "Measures", "Printf", "Random", "Requires", "Statistics", "UUIDs"] git-tree-sha1 = "c6461fc7c35a4bb8d00905df7adafcff1fe3a6bc" uuid = "a81c6b42-2e10-5240-aca2-a61377ecd94b" version = "0.9.2" [[Contour]] deps = ["StaticArrays"] git-tree-sha1 = "9f02045d934dc030edad45944ea80dbd1f0ebea7" uuid = "d38c429a-6771-53c6-b99e-75d170b6e991" version = "0.5.7" [[DataAPI]] git-tree-sha1 = "ee400abb2298bd13bfc3df1c412ed228061a2385" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" version = "1.7.0" [[DataStructures]] deps = ["Compat", "InteractiveUtils", "OrderedCollections"] git-tree-sha1 = "4437b64df1e0adccc3e5d1adbc3ac741095e4677" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" version = "0.18.9" [[DataValueInterfaces]] git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6" uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464" version = "1.0.0" [[Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[EarCut_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "92d8f9f208637e8d2d28c664051a00569c01493d" uuid = "5ae413db-bbd1-5e63-b57d-d24a61df00f5" version = "2.1.5+1" [[Expat_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "b3bfd02e98aedfa5cf885665493c5598c350cd2f" uuid = "2e619515-83b5-522b-bb60-26c02a35a201" version = "2.2.10+0" [[FFMPEG]] deps = ["FFMPEG_jll"] git-tree-sha1 = "b57e3acbe22f8484b4b5ff66a7499717fe1a9cc8" uuid = "c87230d0-a227-11e9-1b43-d7ebe4e7570a" version = "0.4.1" [[FFMPEG_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "LAME_jll", "LibVPX_jll", "Libdl", "Ogg_jll", "OpenSSL_jll", "Opus_jll", "Pkg", "Zlib_jll", "libass_jll", "libfdk_aac_jll", "libvorbis_jll", "x264_jll", "x265_jll"] git-tree-sha1 = "3cc57ad0a213808473eafef4845a74766242e05f" uuid = "b22a6f82-2f65-5046-a5b2-351ab43fb4e5" version = "4.3.1+4" [[FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[Fontconfig_jll]] deps = ["Artifacts", "Bzip2_jll", "Expat_jll", "FreeType2_jll", "JLLWrappers", "Libdl", "Libuuid_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "35895cf184ceaab11fd778b4590144034a167a2f" uuid = "a3f928ae-7b40-5064-980b-68af3947d34b" version = "2.13.1+14" [[Formatting]] deps = ["Printf"] git-tree-sha1 = "8339d61043228fdd3eb658d86c926cb282ae72a8" uuid = "59287772-0a20-5a39-b81b-1366585eb4c0" version = "0.4.2" [[FreeType2_jll]] deps = ["Artifacts", "Bzip2_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "cbd58c9deb1d304f5a245a0b7eb841a2560cfec6" uuid = "d7e528f0-a631-5988-bf34-fe36492bcfd7" version = "2.10.1+5" [[FriBidi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "aa31987c2ba8704e23c6c8ba8a4f769d5d7e4f91" uuid = "559328eb-81f9-559d-9380-de523a88c83c" version = "1.0.10+0" [[GLFW_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libglvnd_jll", "Pkg", "Xorg_libXcursor_jll", "Xorg_libXi_jll", "Xorg_libXinerama_jll", "Xorg_libXrandr_jll"] git-tree-sha1 = "dba1e8614e98949abfa60480b13653813d8f0157" uuid = "0656b61e-2033-5cc2-a64a-77c0f6c09b89" version = "3.3.5+0" [[GR]] deps = ["Base64", "DelimitedFiles", "GR_jll", "HTTP", "JSON", "Libdl", "LinearAlgebra", "Pkg", "Printf", "Random", "Serialization", "Sockets", "Test", "UUIDs"] git-tree-sha1 = "b83e3125048a9c3158cbb7ca423790c7b1b57bea" uuid = "28b8d3ca-fb5f-59d9-8090-bfdbd6d07a71" version = "0.57.5" [[GR_jll]] deps = ["Artifacts", "Bzip2_jll", "Cairo_jll", "FFMPEG_jll", "Fontconfig_jll", "GLFW_jll", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pixman_jll", "Pkg", "Qt5Base_jll", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "e14907859a1d3aee73a019e7b3c98e9e7b8b5b3e" uuid = "d2c73de3-f751-5644-a686-071e5b155ba9" version = "0.57.3+0" [[GeometryBasics]] deps = ["EarCut_jll", "IterTools", "LinearAlgebra", "StaticArrays", "StructArrays", "Tables"] git-tree-sha1 = "4136b8a5668341e58398bb472754bff4ba0456ff" uuid = "5c1252a2-5f33-56bf-86c9-59e7332b4326" version = "0.3.12" [[Gettext_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "9b02998aba7bf074d14de89f9d37ca24a1a0b046" uuid = "78b55507-aeef-58d4-861c-77aaff3498b1" version = "0.21.0+0" [[Glib_jll]] deps = ["Artifacts", "Gettext_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Libiconv_jll", "Libmount_jll", "PCRE_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "47ce50b742921377301e15005c96e979574e130b" uuid = "7746bdde-850d-59dc-9ae8-88ece973131d" version = "2.68.1+0" [[GraphPlot]] deps = ["ArnoldiMethod", "ColorTypes", "Colors", "Compose", "DelimitedFiles", "LightGraphs", "LinearAlgebra", "Random", "SparseArrays"] git-tree-sha1 = "dd8f15128a91b0079dfe3f4a4a1e190e54ac7164" uuid = "a2cc645c-3eea-5389-862e-a155d0052231" version = "0.4.4" [[Grisu]] git-tree-sha1 = "53bb909d1151e57e2484c3d1b53e19552b887fb2" uuid = "42e2da0e-8278-4e71-bc24-59509adca0fe" version = "1.0.2" [[HTTP]] deps = ["Base64", "Dates", "IniFile", "MbedTLS", "NetworkOptions", "Sockets", "URIs"] git-tree-sha1 = "86ed84701fbfd1142c9786f8e53c595ff5a4def9" uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3" version = "0.9.10" [[Inflate]] git-tree-sha1 = "f5fc07d4e706b84f72d54eedcc1c13d92fb0871c" uuid = "d25df0c9-e2be-5dd7-82c8-3ad0b3e990b9" version = "0.1.2" [[IniFile]] deps = ["Test"] git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8" uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f" version = "0.5.0" [[InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[IterTools]] git-tree-sha1 = "05110a2ab1fc5f932622ffea2a003221f4782c18" uuid = "c8e1da08-722c-5040-9ed9-7db0dc04731e" version = "1.3.0" [[IteratorInterfaceExtensions]] git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856" uuid = "82899510-4779-5014-852e-03e436cf321d" version = "1.0.0" [[JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "642a199af8b68253517b80bd3bfd17eb4e84df6e" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.3.0" [[JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "81690084b6198a2e1da36fcfda16eeca9f9f24e4" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.1" [[JSONSchema]] deps = ["HTTP", "JSON", "ZipFile"] git-tree-sha1 = "b84ab8139afde82c7c65ba2b792fe12e01dd7307" uuid = "7d188eb4-7ad8-530c-ae41-71a32a6d4692" version = "0.3.3" [[JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d735490ac75c5cb9f1b00d8b5509c11984dc6943" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "2.1.0+0" [[LAME_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "f6250b16881adf048549549fba48b1161acdac8c" uuid = "c1c5ebd0-6772-5130-a774-d5fcae4a789d" version = "3.100.1+0" [[LZO_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e5b909bcf985c5e2605737d2ce278ed791b89be6" uuid = "dd4b983a-f0e5-5f8d-a1b7-129d4a5fb1ac" version = "2.10.1+0" [[LaTeXStrings]] git-tree-sha1 = "c7f1c695e06c01b95a67f0cd1d34994f3e7db104" uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f" version = "1.2.1" [[Latexify]] deps = ["Formatting", "InteractiveUtils", "LaTeXStrings", "MacroTools", "Markdown", "Printf", "Requires"] git-tree-sha1 = "a4b12a1bd2ebade87891ab7e36fdbce582301a92" uuid = "23fbe1c1-3f47-55db-b15f-69d7ec21a316" version = "0.15.6" [[LazyArtifacts]] deps = ["Artifacts", "Pkg"] uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3" [[LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[LibVPX_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "12ee7e23fa4d18361e7c2cde8f8337d4c3101bc7" uuid = "dd192d2f-8180-539f-9fb4-cc70b1dcf69a" version = "1.10.0+0" [[Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[Libffi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "761a393aeccd6aa92ec3515e428c26bf99575b3b" uuid = "e9f186c6-92d2-5b65-8a66-fee21dc1b490" version = "3.2.2+0" [[Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"] git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.7+0" [[Libglvnd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll", "Xorg_libXext_jll"] git-tree-sha1 = "7739f837d6447403596a75d19ed01fd08d6f56bf" uuid = "7e76a0d4-f3c7-5321-8279-8d96eeed0f29" version = "1.3.0+3" [[Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.42.0+0" [[Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.1+1" [[Libmount_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "9c30530bf0effd46e15e0fdcf2b8636e78cbbd73" uuid = "4b2f31a3-9ecc-558c-b454-b3730dcb73e9" version = "2.35.0+0" [[Libtiff_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"] git-tree-sha1 = "340e257aada13f95f98ee352d316c3bed37c8ab9" uuid = "89763e89-9b03-5906-acba-b20f662cd828" version = "4.3.0+0" [[Libuuid_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7f3efec06033682db852f8b3bc3c1d2b0a0ab066" uuid = "38a345b3-de98-5d2b-a5d3-14cd9215e700" version = "2.36.0+0" [[LightGraphs]] deps = ["ArnoldiMethod", "DataStructures", "Distributed", "Inflate", "LinearAlgebra", "Random", "SharedArrays", "SimpleTraits", "SparseArrays", "Statistics"] git-tree-sha1 = "432428df5f360964040ed60418dd5601ecd240b6" uuid = "093fc24a-ae57-5d10-9952-331d41423f4d" version = "1.3.5" [[LinearAlgebra]] deps = ["Libdl"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[LongestPaths]] deps = ["Cbc", "Clp", "LightGraphs", "MathProgBase", "Printf", "Random", "SparseArrays", "Test"] git-tree-sha1 = "a1224131e9193721a56abbfbc44825c120a2bc8e" uuid = "3a25c17e-307c-411a-a047-890a9a5fbb4d" version = "0.1.0" [[MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "6a8a2a625ab0dea913aba95c11370589e0239ff0" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.6" [[Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[MathOptInterface]] deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "JSON", "JSONSchema", "LinearAlgebra", "MutableArithmetics", "OrderedCollections", "SparseArrays", "Test", "Unicode"] git-tree-sha1 = "575644e3c05b258250bb599e57cf73bbf1062901" uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee" version = "0.9.22" [[MathProgBase]] deps = ["LinearAlgebra", "SparseArrays"] git-tree-sha1 = "9abbe463a1e9fc507f12a69e7f29346c2cdc472c" uuid = "fdba3010-5040-5b88-9595-932c9decdf73" version = "0.7.8" [[MbedTLS]] deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"] git-tree-sha1 = "1c38e51c3d08ef2278062ebceade0e46cefc96fe" uuid = "739be429-bea8-5141-9913-cc70e7f3736d" version = "1.0.3" [[MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[Measures]] git-tree-sha1 = "e498ddeee6f9fdb4551ce855a46f54dbd900245f" uuid = "442fdcdd-2543-5da2-b0f3-8c86c306513e" version = "0.3.1" [[Missings]] deps = ["DataAPI"] git-tree-sha1 = "4ea90bd5d3985ae1f9a908bd4500ae88921c5ce7" uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28" version = "1.0.0" [[Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[MutableArithmetics]] deps = ["LinearAlgebra", "SparseArrays", "Test"] git-tree-sha1 = "3927848ccebcc165952dc0d9ac9aa274a87bfe01" uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0" version = "0.2.20" [[NaNMath]] git-tree-sha1 = "bfe47e760d60b82b66b61d2d44128b62e3a369fb" uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3" version = "0.3.5" [[NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[Ogg_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7937eda4681660b4d6aeeecc2f7e1c81c8ee4e2f" uuid = "e7412a2a-1a6e-54c0-be00-318e2571c051" version = "1.3.5+0" [[OpenBLAS32_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "ba4a8f683303c9082e84afba96f25af3c7fb2436" uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2" version = "0.3.12+1" [[OpenSSL_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "15003dcb7d8db3c6c857fda14891a539a8f2705a" uuid = "458c3c95-2e84-50aa-8efc-19380b2a3a95" version = "1.1.10+0" [[Opus_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "51a08fb14ec28da2ec7a927c4337e4332c2a4720" uuid = "91d4177d-7536-5919-b921-800302f37372" version = "1.3.2+0" [[OrderedCollections]] git-tree-sha1 = "85f8e6578bf1f9ee0d11e7bb1b1456435479d47c" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" version = "1.4.1" [[Osi_jll]] deps = ["Artifacts", "CoinUtils_jll", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "OpenBLAS32_jll", "Pkg"] git-tree-sha1 = "ef540e28c9b82cb879e33c0885e1bbc9a1e6c571" uuid = "7da25872-d9ce-5375-a4d3-7a845f58efdd" version = "0.108.5+4" [[PCRE_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "b2a7af664e098055a7529ad1a900ded962bca488" uuid = "2f80f16e-611a-54ab-bc61-aa92de5b98fc" version = "8.44.0+0" [[Parsers]] deps = ["Dates"] git-tree-sha1 = "c8abc88faa3f7a3950832ac5d6e690881590d6dc" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "1.1.0" [[Pipe]] git-tree-sha1 = "6842804e7867b115ca9de748a0cf6b364523c16d" uuid = "b98c9c47-44ae-5843-9183-064241ee97a0" version = "1.3.0" [[Pixman_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "b4f5d02549a10e20780a24fce72bea96b6329e29" uuid = "30392449-352a-5448-841d-b1acce4e97dc" version = "0.40.1+0" [[Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[PlotThemes]] deps = ["PlotUtils", "Requires", "Statistics"] git-tree-sha1 = "a3a964ce9dc7898193536002a6dd892b1b5a6f1d" uuid = "ccf2f8ad-2431-5c83-bf29-c5338b663b6a" version = "2.0.1" [[PlotUtils]] deps = ["ColorSchemes", "Colors", "Dates", "Printf", "Random", "Reexport", "Statistics"] git-tree-sha1 = "ae9a295ac761f64d8c2ec7f9f24d21eb4ffba34d" uuid = "995b91a9-d308-5afd-9ec6-746e21dbc043" version = "1.0.10" [[Plots]] deps = ["Base64", "Contour", "Dates", "FFMPEG", "FixedPointNumbers", "GR", "GeometryBasics", "JSON", "Latexify", "LinearAlgebra", "Measures", "NaNMath", "PlotThemes", "PlotUtils", "Printf", "REPL", "Random", "RecipesBase", "RecipesPipeline", "Reexport", "Requires", "Scratch", "Showoff", "SparseArrays", "Statistics", "StatsBase", "UUIDs"] git-tree-sha1 = "a680b659a1ba99d3663a40aa9acffd67768a410f" uuid = "91a5bcdd-55d7-5caf-9e0b-520d859cae80" version = "1.16.6" [[PlutoUI]] deps = ["Base64", "Dates", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "Suppressor"] git-tree-sha1 = "44e225d5837e2a2345e69a1d1e01ac2443ff9fcb" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.9" [[Preferences]] deps = ["TOML"] git-tree-sha1 = "00cfd92944ca9c760982747e9a1d0d5d86ab1e5a" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.2.2" [[Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[Qt5Base_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Fontconfig_jll", "Glib_jll", "JLLWrappers", "Libdl", "Libglvnd_jll", "OpenSSL_jll", "Pkg", "Xorg_libXext_jll", "Xorg_libxcb_jll", "Xorg_xcb_util_image_jll", "Xorg_xcb_util_keysyms_jll", "Xorg_xcb_util_renderutil_jll", "Xorg_xcb_util_wm_jll", "Zlib_jll", "xkbcommon_jll"] git-tree-sha1 = "ad368663a5e20dbb8d6dc2fddeefe4dae0781ae8" uuid = "ea2cea3b-5b76-57ae-a6ef-0a8af62496e1" version = "5.15.3+0" [[REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[Random]] deps = ["Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[RecipesBase]] git-tree-sha1 = "b3fb709f3c97bfc6e948be68beeecb55a0b340ae" uuid = "3cdcf5f2-1ef4-517c-9805-6587b60abb01" version = "1.1.1" [[RecipesPipeline]] deps = ["Dates", "NaNMath", "PlotUtils", "RecipesBase"] git-tree-sha1 = "9b8e57e3cca8828a1bc759840bfe48d64db9abfb" uuid = "01d81517-befc-4cb6-b9ec-a95719d0359c" version = "0.3.3" [[Reexport]] git-tree-sha1 = "5f6c21241f0f655da3952fd60aa18477cf96c220" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.1.0" [[Requires]] deps = ["UUIDs"] git-tree-sha1 = "4036a3bd08ac7e968e27c203d45f5fff15020621" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.1.3" [[SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[Scratch]] deps = ["Dates"] git-tree-sha1 = "0b4b7f1393cff97c33891da2a0bf69c6ed241fda" uuid = "6c6a2e73-6563-6170-7368-637461726353" version = "1.1.0" [[Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[Showoff]] deps = ["Dates", "Grisu"] git-tree-sha1 = "91eddf657aca81df9ae6ceb20b959ae5653ad1de" uuid = "992d4aef-0814-514b-bc4d-f2e9a6c4116f" version = "1.0.3" [[SimpleTraits]] deps = ["InteractiveUtils", "MacroTools"] git-tree-sha1 = "daf7aec3fe3acb2131388f93a4c409b8c7f62226" uuid = "699a6c99-e7fa-54fc-8d76-47d257e15c1d" version = "0.9.3" [[Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[SortingAlgorithms]] deps = ["DataStructures"] git-tree-sha1 = "2ec1962eba973f383239da22e75218565c390a96" uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c" version = "1.0.0" [[SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[StaticArrays]] deps = ["LinearAlgebra", "Random", "Statistics"] git-tree-sha1 = "745914ebcd610da69f3cb6bf76cb7bb83dcb8c9a" uuid = "90137ffa-7385-5640-81b9-e52037218182" version = "1.2.4" [[Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[StatsAPI]] git-tree-sha1 = "1958272568dc176a1d881acb797beb909c785510" uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0" version = "1.0.0" [[StatsBase]] deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "StatsAPI"] git-tree-sha1 = "2f6792d523d7448bbe2fec99eca9218f06cc746d" uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" version = "0.33.8" [[StructArrays]] deps = ["Adapt", "DataAPI", "Tables"] git-tree-sha1 = "44b3afd37b17422a62aea25f04c1f7e09ce6b07f" uuid = "09ab397b-f2b6-538f-b94a-2f83cf4a842a" version = "0.5.1" [[Suppressor]] git-tree-sha1 = "a819d77f31f83e5792a76081eee1ea6342ab8787" uuid = "fd094767-a336-5f1f-9728-57cf17d0bbfb" version = "0.2.0" [[TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[TableTraits]] deps = ["IteratorInterfaceExtensions"] git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39" uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c" version = "1.0.1" [[Tables]] deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"] git-tree-sha1 = "8ed4a3ea724dac32670b062be3ef1c1de6773ae8" uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c" version = "1.4.4" [[Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[TranscodingStreams]] deps = ["Random", "Test"] git-tree-sha1 = "7c53c35547de1c5b9d46a4797cf6d8253807108c" uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa" version = "0.9.5" [[URIs]] git-tree-sha1 = "97bbe755a53fe859669cd907f2d96aee8d2c1355" uuid = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4" version = "1.3.0" [[UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[Wayland_jll]] deps = ["Artifacts", "Expat_jll", "JLLWrappers", "Libdl", "Libffi_jll", "Pkg", "XML2_jll"] git-tree-sha1 = "3e61f0b86f90dacb0bc0e73a0c5a83f6a8636e23" uuid = "a2964d1f-97da-50d4-b82a-358c7fce9d89" version = "1.19.0+0" [[Wayland_protocols_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll"] git-tree-sha1 = "2839f1c1296940218e35df0bbb220f2a79686670" uuid = "2381bf8a-dfd0-557d-9999-79630e7b1b91" version = "1.18.0+4" [[XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "1acf5bdf07aa0907e0a37d3718bb88d4b687b74a" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.9.12+0" [[XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"] git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.34+0" [[Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.6.9+4" [[Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.9+4" [[Xorg_libXcursor_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXfixes_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "12e0eb3bc634fa2080c1c37fccf56f7c22989afd" uuid = "935fb764-8cf2-53bf-bb30-45bb1f8bf724" version = "1.2.0+4" [[Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.3+4" [[Xorg_libXext_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "b7c0aa8c376b31e4852b360222848637f481f8c3" uuid = "1082639a-0dae-5f34-9b06-72781eeb8cb3" version = "1.3.4+4" [[Xorg_libXfixes_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "0e0dc7431e7a0587559f9294aeec269471c991a4" uuid = "d091e8ba-531a-589c-9de9-94069b037ed8" version = "5.0.3+4" [[Xorg_libXi_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXfixes_jll"] git-tree-sha1 = "89b52bc2160aadc84d707093930ef0bffa641246" uuid = "a51aa0fd-4e3c-5386-b890-e753decda492" version = "1.7.10+4" [[Xorg_libXinerama_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll"] git-tree-sha1 = "26be8b1c342929259317d8b9f7b53bf2bb73b123" uuid = "d1454406-59df-5ea1-beac-c340f2130bc3" version = "1.1.4+4" [[Xorg_libXrandr_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libXext_jll", "Xorg_libXrender_jll"] git-tree-sha1 = "34cea83cb726fb58f325887bf0612c6b3fb17631" uuid = "ec84b674-ba8e-5d96-8ba1-2a689ba10484" version = "1.5.2+4" [[Xorg_libXrender_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "19560f30fd49f4d4efbe7002a1037f8c43d43b96" uuid = "ea2f1a96-1ddc-540d-b46f-429655e07cfa" version = "0.9.10+4" [[Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.0+3" [[Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.13.0+3" [[Xorg_libxkbfile_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "926af861744212db0eb001d9e40b5d16292080b2" uuid = "cc61e674-0454-545c-8b26-ed2c68acab7a" version = "1.1.0+4" [[Xorg_xcb_util_image_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "0fab0a40349ba1cba2c1da699243396ff8e94b97" uuid = "12413925-8142-5f55-bb0e-6d7ca50bb09b" version = "0.4.0+1" [[Xorg_xcb_util_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll"] git-tree-sha1 = "e7fd7b2881fa2eaa72717420894d3938177862d1" uuid = "2def613f-5ad1-5310-b15b-b15d46f528f5" version = "0.4.0+1" [[Xorg_xcb_util_keysyms_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "d1151e2c45a544f32441a567d1690e701ec89b00" uuid = "975044d2-76e6-5fbe-bf08-97ce7c6574c7" version = "0.4.0+1" [[Xorg_xcb_util_renderutil_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "dfd7a8f38d4613b6a575253b3174dd991ca6183e" uuid = "0d47668e-0667-5a69-a72c-f761630bfb7e" version = "0.3.9+1" [[Xorg_xcb_util_wm_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xcb_util_jll"] git-tree-sha1 = "e78d10aab01a4a154142c5006ed44fd9e8e31b67" uuid = "c22f9ab0-d5fe-5066-847c-f4bb1cd4e361" version = "0.4.1+1" [[Xorg_xkbcomp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxkbfile_jll"] git-tree-sha1 = "4bcbf660f6c2e714f87e960a171b119d06ee163b" uuid = "35661453-b289-5fab-8a00-3d9160c6a3a4" version = "1.4.2+4" [[Xorg_xkeyboard_config_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_xkbcomp_jll"] git-tree-sha1 = "5c8424f8a67c3f2209646d4425f3d415fee5931d" uuid = "33bec58e-1273-512f-9401-5d533626f822" version = "2.27.0+4" [[Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.4.0+3" [[ZipFile]] deps = ["Libdl", "Printf", "Zlib_jll"] git-tree-sha1 = "c3a5637e27e914a7a445b8d0ad063d701931e9f7" uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea" version = "0.9.3" [[Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[Zstd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "cc4bf3fdde8b7e3e9fa0351bdeedba1cf3b7f6e6" uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" version = "1.5.0+0" [[libass_jll]] deps = ["Artifacts", "Bzip2_jll", "FreeType2_jll", "FriBidi_jll", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "acc685bcf777b2202a904cdcb49ad34c2fa1880c" uuid = "0ac62f75-1d6f-5e53-bd7c-93b484bb37c0" version = "0.14.0+4" [[libfdk_aac_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "7a5780a0d9c6864184b3a2eeeb833a0c871f00ab" uuid = "f638f0a6-7fb0-5443-88ba-1cc74229b280" version = "0.1.6+4" [[libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "94d180a6d2b5e55e447e2d27a29ed04fe79eb30c" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.38+0" [[libvorbis_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Ogg_jll", "Pkg"] git-tree-sha1 = "c45f4e40e7aafe9d086379e5578947ec8b95a8fb" uuid = "f27f6e37-5d2b-51aa-960f-b287f2bc3b7a" version = "1.3.7+0" [[nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" [[x264_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d713c1ce4deac133e3334ee12f4adff07f81778f" uuid = "1270edf5-f2f9-52d2-97e9-ab00b5d0237a" version = "2020.7.14+2" [[x265_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "487da2f8f2f0c8ee0e83f39d13037d6bbf0a45ab" uuid = "dfaa095f-4041-5dcd-9319-2fabd8486b76" version = "3.0.0+3" [[xkbcommon_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Wayland_jll", "Wayland_protocols_jll", "Xorg_libxcb_jll", "Xorg_xkeyboard_config_jll"] git-tree-sha1 = "ece2350174195bb31de1a63bea3a41ae1aa593b6" uuid = "d8fb68d0-12a3-5cfd-a85a-d49703b185fd" version = "0.9.1+5" """ # ╔═╡ Cell order: # ╠═ada79ea0-f796-11ea-1aa2-eddd747b2c83 # ╟─6269f9b0-f778-11ea-2004-394d3bf5ff7c # ╠═89e768e0-f775-11ea-02b9-5b07cf88d0b4 # ╠═04c116f0-f77c-11ea-305e-cf13b0d83a8f # ╟─afabceb0-f778-11ea-0b9a-bb3cbcdf2836 # ╠═d62e2d50-f77b-11ea-0f69-ab7371ff50d6 # ╠═e94d86d0-f783-11ea-0e6c-5d774a41d58c # ╠═ef8a82f0-f783-11ea-3e6c-d5591033c789 # ╟─85e6c400-f77c-11ea-27f5-e7f9846cadcb # ╠═021f2dce-f77a-11ea-3bc3-1770604ce10a # ╠═3417ba30-f786-11ea-2d30-a9df1f9ca6a0 # ╠═c670e330-f776-11ea-22c6-598dabb22ca4 # ╟─dd133a30-f784-11ea-1d08-c9224043fcd8 # ╠═9d70c340-f787-11ea-3b52-4302490de06a # ╠═e7634a5e-f780-11ea-1bab-8308a9188fd7 # ╟─0a65dba2-f785-11ea-2112-ad09bee3f657 # ╠═a1395970-f786-11ea-3273-c3cabe974073 # ╟─863059b0-f788-11ea-1466-173304238a3c # ╠═d8490b20-f788-11ea-0dc4-f31128f26958 # ╠═edda218e-f788-11ea-087e-63329996b830 # ╟─207b4070-f789-11ea-2f23-6945d91c5dc7 # ╠═59036480-f78f-11ea-1d45-9f33c884a7d1 # ╟─d3786f40-f793-11ea-28f4-83043da67d5c # ╠═6b7a0340-f789-11ea-2677-b967a8665cce # ╠═fbc7ad60-f790-11ea-2396-2d60b71ebb36 # ╟─73a9207e-f78b-11ea-3bd3-29cc530a2cdb # ╠═7adba030-f78b-11ea-2833-6d4cfe471978 # ╠═a2c3faa0-f792-11ea-01c6-1fa82522f5ea # ╟─97e74cc0-f794-11ea-25f5-e73f194a7d6e # ╠═87d1cc50-f796-11ea-1777-1f8e16901fd9 # ╟─a4cd7ee0-f795-11ea-0532-211a33e21562 # ╟─c109a010-f796-11ea-170b-5de0f28d25b3 # ╟─d1048c40-f797-11ea-3c3d-6383874745c1 # ╠═56e84882-f796-11ea-0720-d1ee3698265e # ╟─13bf3850-f798-11ea-0591-57e00345f4c2 # ╟─e96e21a0-f798-11ea-3f54-ff0b05d1eb35 # ╟─42d03620-f799-11ea-3669-69a09bd1facf # ╟─c4de4760-f799-11ea-21cf-d9d374c89e67 # ╠═fc1f2d1e-f799-11ea-2606-f5046723c160 # ╠═1aa5b380-f79b-11ea-0a27-b5b7d7091b9f # ╠═33068bc0-f79b-11ea-1c88-e9d151c04ead # ╠═cafc4c00-f7a8-11ea-205d-2f425d554032 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
507
module CEDICT export DictionaryEntry, traditional_headword, simplified_headword, pinyin_pronunciation, word_senses, ChineseDictionary, search_headwords, search_senses, search_pinyin, idioms include("dictionary.jl") include("searching.jl") """ idioms([dict]) Retrieves the set of idioms in the provided dictionary (by looking for a label of "(idiom)" in any of the senses) or in the default dictionary if none provided. """ idioms(dict=ChineseDictionary()) = search_senses(dict, "(idiom)") end
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
3307
using LazyArtifacts #=============================================================================== # Dictionary Entries ===============================================================================# struct DictionaryEntry trad::String simp::String pinyin::String senses::Vector{String} end traditional_headword(entry::DictionaryEntry) = entry.trad simplified_headword(entry::DictionaryEntry) = entry.simp pinyin_pronunciation(entry::DictionaryEntry) = entry.pinyin word_senses(entry::DictionaryEntry) = entry.senses function Base.print(io::IO, entry::DictionaryEntry) char_str = entry.trad == entry.simp ? entry.trad : "$(entry.trad) ($(entry.simp))" print(io, "$char_str: [$(entry.pinyin)]\n") print(io, join(map(w -> "\t" * w, entry.senses), "\n")) return nothing end #=============================================================================== # Dictionary ===============================================================================# """ ChineseDictionary([filename]) Load a text-based dictionary either from the default dictionary file or from the provided filename. The format of the text file must be the same as [that used by the CC-CEDICT project](https://cc-cedict.org/wiki/format:syntax) for compatibility reasons. For general use, it's the easiest to just use the default dictionary (from the CC-CEDICT project). This is loaded if you don't specify a filename. This dictionary is updated from the official project page every so often. """ struct ChineseDictionary entries::Dict{String, Vector{DictionaryEntry}} metadata::Dict{String, String} function ChineseDictionary(filename=joinpath(artifact"cedict", "cedict_ts.u8")) dict = Dict{String, Vector{DictionaryEntry}}() metadata_dict = Dict{String, String}() pattern = r"^([^#\s]+) ([^\s]+) \[(.*)\] /(.+)/$" for line in eachline(filename) # process lines containing metadata if startswith(line, "#!") && count(==('='), line) == 1 key, val = split(strip(line[3:end]), "=") metadata_dict[key] = val # process lines actually containing dictionary entries elseif (m = match(pattern, line)) !== nothing trad, simp, pinyin, defns = String.(m.captures) entry = DictionaryEntry(trad, simp, pinyin, split(defns, "/")) dict[trad] = push!(get(dict, trad, []), entry) simp != trad && (dict[simp] = push!(get(dict, simp, []), entry)) end end return new(dict, metadata_dict) end end # iteration Base.iterate(dict::ChineseDictionary) = iterate(dict.entries) Base.IteratorSize(::Type{ChineseDictionary}) = HasLength() Base.IteratorEltype(::Type{ChineseDictionary}) = HasEltype() Base.length(dict::ChineseDictionary) = length(dict.entries) Base.eltype(::Type{ChineseDictionary}) = Pair{String, Vector{DictionaryEntry}} # indexing Base.getindex(dict::ChineseDictionary, i) = getindex(dict.entries, i) Base.setindex!(dict::ChineseDictionary, v, i) = setindex!(dict.entries, v, i) # dictionaries Base.keys(dict::ChineseDictionary) = keys(dict.entries) Base.values(dict::ChineseDictionary) = values(dict.entries) Base.haskey(dict::ChineseDictionary, key) = haskey(dict.entries, key)
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
2953
using Pipe """ search_filtered(func, dict) Produce a set of entries for which `func(entry)` returns `true`. This is considered an internal function and not part of the public API for this package; use at your own risk! """ function search_filtered(filter_func, dict::ChineseDictionary) word_entries = Set{DictionaryEntry}() for entry_list in values(dict) for entry in entry_list filter_func(entry) && push!(word_entries, entry) end end word_entries end """ search_headwords(dict, keyword) Search for the given `keyword` in the dictionary as a headword, in either traditional or simplified characters (will only return results where the headword is an exact match for `keyword`; this behavior may change in future releases). ## Examples ```julia-repl julia> search_headwords(dict, "2019冠狀病毒病") .|> println; 2019冠狀病毒病 (2019冠状病毒病): [er4 ling2 yi1 jiu3 guan1 zhuang4 bing4 du2 bing4] COVID-19, the coronavirus disease identified in 2019 ``` """ search_headwords(dict::ChineseDictionary, keyword) = search_filtered(dict) do entry occursin(keyword, entry.trad) || occursin(keyword, entry.simp) end """ search_senses(dict, keyword) Search for the given `keyword` in the dictionary among the meanings/senses (the `keyword` must appear exactly in one or more of the definition senses; this behavior may change in future releases). ## Examples ```julia-repl julia> search_senses(dict, "fishnet") .|> println; 漁網 (渔网): [yu2 wang3] fishing net fishnet 扳罾: [ban1 zeng1] to lift the fishnet 網襪 (网袜): [wang3 wa4] fishnet stockings ``` """ search_senses(dict::ChineseDictionary, keyword) = search_filtered(dict) do entry any(occursin.(keyword, entry.senses)) end """ search_pinyin(dict, keyword) Search the dictionary for terms that fuzzy match the pinyin search key provided. The language that is understood for the search key is described below. # Examples ```julia-repl julia> search_pinyin(dict, "yi2 han4") .|> println; 遺憾 (遗憾): [yi2 han4] regret to regret to be sorry that julia> search_pinyin(dict, "bang shou") .|> println; 榜首: [bang3 shou3] top of the list 幫手 (帮手): [bang1 shou3] helper assistant ``` """ function search_pinyin(dict::ChineseDictionary, pinyin_searchkey) search_regex = _prepare_pinyin_regex(pinyin_searchkey) search_filtered(dict) do entry match(search_regex, entry.pinyin) != nothing end end function _prepare_pinyin_regex(searchkey) re = @pipe split(searchkey, " ") |> map(w -> (w == "*" ? raw"(\w+\d\s*)*" : w), _) |> # TODO: doesn't handle spaces correctly' map(w -> (w == "+" ? raw"\w+\d(\s+\w+\d)*" : w), _) |> map(w -> (w == "?" ? raw"(\w+\d)?" : w), _) |> map(w -> (endswith(w, r"\d") ? w : w * raw"\d?"), _) |> join(_, raw"\s+") Regex("^$(re)\$") end
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
1206
@testset "dictionary loading: tiny" begin dict = ChineseDictionary("res/tiny_dict.txt") @test length(dict) == 39 @test all(haskey.(Ref(dict), ["展销会", "反目成仇", "村民", "歐巴桑", "可恃", "戄"])) end @testset "dictionary loading: mini" begin dict = ChineseDictionary("res/mini_dict.txt") @test length(dict) == 115 @test all(haskey.(Ref(dict), ["仁术", "周遊世界", "和睦", "代數拓撲", "未冠", "棒冰"])) end @testset "dictionary loading: small" begin dict = ChineseDictionary("res/small_dict.txt") @test length(dict) == 744 @test all(haskey.(Ref(dict), ["代數拓撲", "做事", "優惠券", "优惠券"])) end @testset "dictionary headword search" begin end @testset "dictionary sense/meaning search" begin dict = ChineseDictionary("res/tiny_dict.txt") ids = idioms(dict) @test length(ids) == 2 villager_defn = first(search_senses(dict, "villager")) @test traditional_headword(villager_defn) == simplified_headword(villager_defn) == "村民" @test pinyin_pronunciation(villager_defn) == "cun1 min2" @test length(word_senses(villager_defn)) == 1 @test first(word_senses(villager_defn)) == "villager" with_terms = search_senses(dict, "with") @test length(with_terms) == 2 end
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
code
531
using CEDICT using Test @testset "all tests" begin include("dict_dict_tests.jl") @testset "pinyin fuzzy matching" begin re = CEDICT._prepare_pinyin_regex("jue2 dai4 shuang1 jiao1") @test match(re, "jue2 dai4 shuang1 jiao1") !== nothing @test match(re, "jue2 dai4 shuang1 jiao2") === nothing @test match(re, "wu2 jue2 dai4 shuang1 jiao1") === nothing @test match(re, "jue2 shuang1 jiao1") === nothing @test match(re, "jue2 dai4 shuang1 jiao1 ji4") === nothing end end
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
574
# NEWS.md - Changes since v0.2.2 ## Public API Four new exported functions for the DictionaryEntry struct: * traditional_headword * simplified_headword * pinyin_pronunciation * word_senses These are preferred instead of directly accessing the fields of the struct, as those may change. * `search_pinyin` function is more capable of using wildcards ## Other Changes (not necessarily public) * metadata from the dictionary file is also saved (not currently used for anything) ## Behind the Scenes * more testing of dictionary loading and basic dictionary functionality
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
993
# CEDICT.jl [![Unit Tests](https://github.com/JuliaCJK/CEDICT.jl/actions/workflows/tests.yml/badge.svg)](https://github.com/JuliaCJK/CEDICT.jl/actions/workflows/tests.yml) [![Documentation](https://github.com/JuliaCJK/CEDICT.jl/actions/workflows/docs.yml/badge.svg)](https://JuliaCJK.github.io/CEDICT.jl/latest/) [![Nightly Tests](https://github.com/JuliaCJK/CEDICT.jl/actions/workflows/nightly.yaml/badge.svg)](https://github.com/JuliaCJK/CEDICT.jl/actions/workflows/nightly.yaml) A Julia package for programmatically using the CC-CEDICT Chinese-English dictionary. See the [documentation](https://JuliaCJK.github.io/CEDICT.jl/latest/) for details. ## Licensing This package is provided under the MIT License; however, the required data file from the CC-CEDICT project (supplied as a Pkg artifact) is redistributed under its CC BY-SA 3.0 license. This package provides functions that can modify/build on the original data, so be aware of this especially if used in a commercial setting.
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
136
# Convenience Functions There are some functions (really light wrappers) for certain common functionality. ```@docs idioms ```
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
728
# Creating & Loading Dictionaries Dictionaries can be loaded using the `ChineseDictionary` constructor. Currently, dictionaries can only be loaded from text files, but there may be support for other formats in the future. ```@docs ChineseDictionary ``` ## File Format for a Text-Based Dictionary See the [formatting guide for the CC-CEDICT project](https://cc-cedict.org/wiki/format:syntax) for how each line should be formatted (just consider the formatting elements and not necessarily the other notes on translation/dictionary entry creation). Each line of the file should be a single entry; for examples, see the small test dictionaries in the repository. Lines starting with a "#" are treated as comments and ignored.
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
2432
# Searching within a Dictionary There are several ways to search in a dictionary, depending on what part of the dictionary entries are used and what the user is searching for. (All the examples are using the default dictionary.) ```@docs search_headwords search_senses search_pinyin ``` ## Advanced Pinyin Searching The `search_pinyin` function also supports a certain flavor of fuzzy matching and searches with missing information. For example, tone numbers are not required. In addition, - "*" will match any additional characters, - "?" will match up to one additional character, and - "+" will match one or more additional characters. If these characters are separated by spaces (not attached to any other word character), "character" means a Chinese character; if these characters are attached to other word characters, "character" means a pinyin character. For example, using these metacharacters on their own (separated by spaces), we can search where we may not know all the characters in the phrase. ```julia-repl julia> search_pinyin(dict, "si ma dang huo ma yi") .|> println; 死馬當活馬醫 (死马当活马医): [si3 ma3 dang4 huo2 ma3 yi1] lit. to give medicine to a dead horse (idiom) fig. to keep trying everything in a desperate situation julia> search_pinyin(dict, "si ma dang ? ma yi") .|> println; 死馬當活馬醫 (死马当活马医): [si3 ma3 dang4 huo2 ma3 yi1] lit. to give medicine to a dead horse (idiom) fig. to keep trying everything in a desperate situation julia> search_pinyin(dict, "si + ma yi") .|> println; 死馬當活馬醫 (死马当活马医): [si3 ma3 dang4 huo2 ma3 yi1] lit. to give medicine to a dead horse (idiom) fig. to keep trying everything in a desperate situation julia> search_pinyin(dict, "si ma dang * huo ma yi") .|> println; 死馬當活馬醫 (死马当活马医): [si3 ma3 dang4 huo2 ma3 yi1] lit. to give medicine to a dead horse (idiom) fig. to keep trying everything in a desperate situation ``` The above examples all return the same result. We could also instead use the metacharacters attached to pinyin letters if we don't know the full sound of a word. ## More Advanced Searching The un-exported method `search_filtered` can be used if none of the above options are powerful/flexible enough. However, this requires working with the raw `DictionaryEntry` struct and is subject to breakage in future releases (not a part of the public API). ```@docs CEDICT.search_filtered ```
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
366
# CEDICT.jl Documentation Based on the CC-CEDICT project, this package provides convenient ways to programmatically access the dictionary, and do operations like searching, etc. Still in early development! ```@contents ``` ## Installation This package can be installed in the usual way via Pkg from the General Registry: ```julia-repl julia> ] add CCEDICT ```
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.3.0
724d117af1440b595a40daaff70dcf98b4a06b51
docs
205
# Examples using the CEDICT.jl package This directory contains example use cases of this package for learning or analysis. These examples are all [Pluto.jl](https://github.com/fonsp/Pluto.jl) notebooks.
CEDICT
https://github.com/JuliaCJK/CEDICT.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
857
using Documenter, MatrixPolynomials, LinearAlgebra, Statistics isdefined(Main, :NOPLOTS) && NOPLOTS || include("plots.jl") makedocs(; modules=[MatrixPolynomials], format = Documenter.HTML(assets = ["assets/latex.js"], mathengine = Documenter.MathJax()), pages=[ "Home" => "index.md", "Functions of matrices" => "funcv.md", "Leja points" => "leja.md", "Divided differences" => "divided_differences.md", "Newton polynomials" => "newton_polynomials.md", "φₖ functions" => "phi_functions.md", ], repo=Remotes.GitHub("jagot", "MatrixPolynomials.jl"), sitename="MatrixPolynomials.jl", authors="Stefanos Carlström <[email protected]>", doctest=false, checkdocs=:exports ) deploydocs(; repo="github.com/jagot/MatrixPolynomials.jl", )
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
3769
using PythonPlot using Jagot.plotting plot_style("ggplot") import MatrixPolynomials: φ₁, φ, std_div_diff, ⏃, Leja, FastLeja, points, NewtonPolynomial using SpecialFunctions function leja() m = 10 a,b = -2,2 l = Leja(range(a, stop=b, length=1000), m) fl = FastLeja(a, b, m) ζ = points(l) fζ = points(fl) cfigure("leja") do csubplot(211,nox=true) do plot(1:m, ζ, ".-", label="Leja points") plot(1:m, fζ, ".--", label="Fast Leja points") ylabel(L"\zeta_m") legend() end csubplot(212) do plot(1:m, abs.(l.∏ζ).^(1 ./ (1:m)), ".-", label="Leja points") plot(1:m, abs.(fl.∏ζ).^(1 ./ (1:m)), ".--", label="Fast Leja points") xlabel(L"m") ylabel(L"C(\{\zeta_{1:m}\})") end end savefig("docs/src/figures/leja_points.svg") end function φ₁_accuracy() φnaïve(x) = (exp(x) - 1)/x x = 10 .^ range(-18, stop=0, length=1000) cfigure("φ₁") do csubplot(211,nox=true) do semilogx(x, φnaïve.(x)) semilogx(x, φ₁.(x), "--") end csubplot(212) do loglog(x, abs.(φnaïve.(x) - φ₁.(x))./abs.(φ₁.(x))) xlabel(L"x") ylabel("Relative error") end end savefig("docs/src/figures/phi_1_accuracy.svg") end function φₖ_accuracy() x = vcat(0,10 .^ range(-18,stop=2.5,length=1000)) cfigure("φ") do for k = 100:-1:0 loglog(x, φ.(k,x)) end xlabel(L"x") end savefig("docs/src/figures/phi_k_accuracy.svg") function φnaïve(k,z) if k == 0 exp(z) elseif k == 1 (exp(z)-1)/z else (φnaïve(k-1,z) - 1/gamma(k))/z end end x = vcat(0,10 .^ range(-18,stop=0,length=1000)) cfigure("φ naïve") do for k = 4:-1:0 loglog(x, φnaïve.(k,x)) end ylim(1e-3,10) xlabel(L"x") end savefig("docs/src/figures/phi_k_naive_accuracy.svg") end function div_differences_cancellation() x = range(-2, stop=2, length=100) ξ = collect(x) f = exp d_std = @time std_div_diff(f, ξ, 1, 0, 1) d_std_big = @time std_div_diff(f, big.(ξ), 1, 0, 1) d_auto = @time ⏃(f, ξ, 1, 0, 1) cfigure("div differences cancellation") do loglog(d_std, label="Recursive") loglog(Float64.(d_std_big), label="Recursive, BigFloat") loglog(d_auto, "--", color="black", label="Taylor series") xlabel(L"j") ylabel(L"\Delta\!\!\!|\,(\zeta_{1:j})\exp") end legend(framealpha=0.75) savefig("docs/src/figures/div_differences_cancellation.svg") end function div_differences_sine() μ = 10.0 # Extent of interval m = 40 # Number of Leja points ζ = points(Leja(μ*range(-1,stop=1,length=1000),m)) d = ⏃(sin, ζ, 1, 0, 1) np = NewtonPolynomial(sin, ζ) x = range(-μ, stop=μ, length=1000) f_np = np.(x) f_exact = sin.(x) cfigure("div differences sine") do csubplot(211, nox=true) do plot(x, f_np, "-", label=L"$\sin(x)$ approximation") plot(x, f_exact, "--", label=L"\sin(x)") legend() end csubplot(212) do semilogy(x, abs.(f_np - f_exact), label="Absolute error") semilogy(x, abs.(f_np - f_exact)./abs.(f_exact), label="Relative error") xlabel(L"x") legend() end end savefig("docs/src/figures/div_differences_sine.svg") end macro echo(expr) println(expr) :(@time $expr) end @info "Documentation plots" mkpath("docs/src/figures") @echo leja() @echo φ₁_accuracy() @echo φₖ_accuracy() @echo div_differences_cancellation() @echo div_differences_sine()
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
570
module MatrixPolynomials using Parameters using LinearAlgebra using ArnoldiMethod using ArnoldiMethod: SR, SI, LR, LI using SpecialFunctions const Γ = gamma const lnΓ = loggamma using Statistics using UnicodeFun using Formatting using Compat include("spectral_shapes.jl") include("spectral_ranges.jl") include("leja.jl") include("fast_leja.jl") include("phi_functions.jl") include("matrix_closures.jl") include("taylor_series.jl") include("propagate_divided_differences.jl") include("divided_differences.jl") include("newton.jl") include("funcv.jl") end # module
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
4531
""" std_div_diff(f, ζ, h, c, γ) Compute the divided differences of `f` at `h*(c .+ γ*ζ)`, where `ζ` is a vector of (possibly complex) interpolation points, using the standard recursion formula. """ function std_div_diff(f, ζ::AbstractVector{T}, h, c, γ) where T m = length(ζ) d = Vector{T}(undef, m) for i = 1:m d[i] = f(h*(c + γ*ζ[i])) for j = 2:i d[i] = (d[i]-d[j-1])/(ζ[i]-ζ[j-1]) end end d end """ ts_div_diff_table(f, ζ, h, c, γ; kwargs...) Compute the divided differences of `f` at `h*(c .+ γ*ζ)`, where `ζ` is a vector of (possibly complex) interpolation points, by forming the full divided differences table using the Taylor series of `f(H)` (computed using [`taylor_series`](@ref)). If there is a scaling relationship available for `f`, the Taylor series of `f(τ*H)` is computed instead, and the full solution is recovered using [`propagate_div_diff`](@ref). """ function ts_div_diff_table(f, ζ::AbstractVector{T}, h, c, γ; kwargs...) where T ts = taylor_series(f) m = length(ζ) Ζ = Bidiagonal(ζ, ones(T, m-1), :L) H = h*(c*I + γ*Ζ) # Scale the step taken, if there is a functional relationship for # f which permits this. xmax = maximum(ζᵢ -> abs(h*(c + γ*ζᵢ)), ζ) J = num_steps(f, xmax) τ = one(T)/J fH = ts(τ*H; kwargs...) if J > 1 propagate_div_diff(f, fH, J, H, τ) else fH[:,1] end end """ ⏃(f, ζ, args...) Compute the divided differences of `f` at `ζ`, using a method that is optimized for the function `f`, if one is available, otherwise fallback to [`MatrixPolynomials.ts_div_diff_table`](@ref). """ ⏃(args...) = ts_div_diff_table(args...) # * Special cases for φₖ(z) # These are linear fits that are always above the values of Table 3.1 of # # - Al-Mohy, A. H., & Higham, N. J. (2011). Computing the action of the # matrix exponential, with an application to exponential # integrators. SIAM Journal on Scientific Computing, 33(2), # 488–511. http://dx.doi.org/10.1137/100788860 """ min_degree(::typeof(exp), θ) Minimum degree of Taylor polynomial to represent `exp` to machine precision, within a circle of radius `θ`. """ min_degree(::typeof(exp), θ::Float64) = ceil(Int, 4.1666θ + 15.0) min_degree(::typeof(exp), θ::Float32) = ceil(Int, 3.7037θ + 6.8519) """ taylor_series(::Type{T}, ::typeof(exp), n; s=1, θ=3.5) where T Compute the Taylor series of `exp(z/s)`, with `n` terms, or as many terms as required to achieve convergence within a circle of radius `θ`, whichever is largest. """ function taylor_series(::Type{T}, ::typeof(exp), n; s=1, θ=3.5) where T N = max(n, min_degree(exp, θ)) vcat(one(T), one(T) ./ [Γ(s*k+1) for k = 1:N]) end """ div_diff_table_basis_change(f, ζ[; kwargs...]) Construct the table of divided differences of `f` at the interpolation points `ζ`, based on the algorithm on page 26 of - Zivcovich, F. (2019). Fast and accurate computation of divided differences for analytic functions, with an application to the exponential function. Dolomites Research Notes on Approximation, 12(1), 28–42. """ function div_diff_table_basis_change(f, ζ::AbstractVector{T}; s=1, kwargs...) where T n = length(ζ)-1 ts = taylor_series(T, f, n+1; s=s, kwargs...) N = length(ts)-1 F = zeros(T, n+1, n+1) for i = 1:n F[i+1:n+1,i] .= ζ[i] .- ζ[i+1:n+1] end for j = n:-1:0 for k = N:-1:(n-j+1) ts[k] += ζ[j+1]*ts[k+1] end for k = (n-j):-1:1 ts[k] += F[k+j+1,j+1]*ts[k+1] end F[j+1,j+1:n+1] .= ts[1:n-j+1] end F[1:n+2:(n+1)^2] .= f.(ζ/s) UpperTriangular(F) end """ φₖ_div_diff_basis_change(k, ζ[; θ=3.5, s=1]) Specialized interface to [`div_diff_table_basis_change`](@ref) for the `φₖ` functions. `θ` is the desired radius of convergence of the Taylor series of `φₖ`, and `s` is the scaling-and-squaring parameter, which if set to zero, will be calculated to fulfill `θ`. """ function φₖ_div_diff_basis_change(k, ζ::AbstractVector{T}; θ=real(T(3.5)), s=1) where T μ = mean(ζ) z = vcat(zeros(k), ζ) .- μ n = length(z) - 1 # Scaling if s == 0 Δz = maximum(a -> maximum(b -> abs(a-b), z), z) s = max(1, ceil(Int, Δz/θ)) end # The Taylor series of φₖ is just a shifted version of exp. F = div_diff_table_basis_change(exp, z; s=s, θ=θ) dd = F[1,:] # Squaring for j = 1:s-1 lmul!(F', dd) end exp(μ)*dd[k+1:end] end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
2251
""" Leja(ζ, ∏ζ, ζs, ia, ib) Generate the approximate Leja points `ζ` along a line; `∏ζ[i]` is the product of the distances of `ζ[i]`, and `ζs` are candidate points. The quality of the fast Leja points for large amounts is not dependent on a preexisting discretization of a set, as is the case for [`Leja`](@ref), however fast Leja points are restricted to lying on a line in the complex plane instead. This is a Julia port of the Matlab algorithm published in - Baglama, J., Calvetti, D., & Reichel, L. (1998). Fast Leja points. Electron. Trans. Numer. Anal, 7(124-140), 119–120. """ struct FastLeja{T} ζ::Vector{T} ∏ζ::Vector{T} ζs::Vector{T} ia::Vector{Int} ib::Vector{Int} end meanζ(ζ) = (i,j) -> (ζ[i]+ζ[j])/2 """ fast_leja!(fl::FastLeja, n) Generate `n` fast Leja points, can be used add more fast Leja points to an already formed sequence. """ function fast_leja!(fl::FastLeja, n) @unpack ζ, ∏ζ, ζs, ia, ib = fl mζ = meanζ(ζ) curn = length(ζ) if curn < n resize!(ζ, n) resize!(∏ζ, n) resize!(ζs, n) resize!(ia, n) resize!(ib, n) end for i = curn+1:n maxi = argmax(abs.(view(∏ζ, 1:i-2))) ζ[i] = ζs[maxi] ia[i-1] = i ib[i-1] = ib[maxi] ib[maxi] = i ζs[maxi] = mζ(ia[maxi], ib[maxi]) ζs[i-1] = mζ(ia[i-1], ib[i-1]) sel = 1:i-1 ∏ζ[maxi] = prod(ζs[maxi] .- ζ[sel]) ∏ζ[i-1] = prod(ζs[i-1] .- ζ[sel]) ∏ζ[sel] .*= ζs[sel] .- ζ[i] end fl end """ FastLeja(a, b, n) Generate the `n` first approximate Leja points along the line `a–b`. """ function FastLeja(a, b, n) T = float(promote_type(typeof(a),typeof(b))) ζ = zeros(T, 3) ∏ζ = zeros(T, 3) ζs = zeros(T, 3) ia = zeros(Int, 3) ib = zeros(Int, 3) ζ[1:2] = abs(a) > abs(b) ? [a,b] : [b,a] ζ[3] = (a+b)/2 mζ = meanζ(ζ) ζs[1] = mζ(2,3) ζs[2] = mζ(3,1) ∏ζ[1] = prod(ζs[1] .- ζ[1:3]) ∏ζ[2] = prod(ζs[2] .- ζ[1:3]) ia[1] = 2 ib[1] = 3 ia[2] = 3 ib[2] = 1 fl = FastLeja(ζ, ∏ζ, ζs, ia, ib) fast_leja!(fl, n) end """ points(fl::FastLeja) Return the fast Leja points generated so far. """ points(fl::FastLeja) = fl.ζ
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
3407
""" FuncV{f,T}(s⁻¹Amc, c, s) Structure for applying the action of a polynomial approximation of the function `f` with a matrix argument acting on a vector, i.e. `w ← p(A)*v` where `p(z) ≈ f(z)`. Various properties of `f` may be used, such as shifting and scaling of the argument, to improve convergence and/or accuracy. `s⁻¹Amc` is the shifted linear operator ``s⁻¹(A-c)``, `c` and `s` are the shift and scaling, respectively. """ struct FuncV{f,Op,P,C,S} "Shifted and scaled linear operator that is iterated" s⁻¹Amc::Op "Polynomial approximation of `f`" p::P "Numeric shift employed in iterations" c::C "Scaling employed in iterations" s::S FuncV(f::Function, s⁻¹Amc::Op, p::P, c::C, s::S) where {Op,P,C,S} = new{f,Op,P,C,S}(s⁻¹Amc, p, c, s) end Base.size(f::FuncV, args...) = size(f.s⁻¹Amc, args...) # For arbitrary functions, we do not scale or shift, since there are # no universal scaling and/or shifting laws. scaling(::Function, λ) = 1 shift(::Function, λ) = 0 scale(A, h) = isone(h) ? A : h*A shift(A, c) = iszero(c) ? A : A - I*c """ FuncV(f, A, m[, t=1; distribution=:leja, kwargs...]) Create a [`FuncV`](@ref) that is used to compute `f(t*A)*v` using a polynomial approximation of `f` formed using `m` interpolation points. `kwargs...` are passed on to [`spectral_range`](@ref) which estimates the range over which `f` has to be interpolated. """ function FuncV(f::Function, A, m::Integer, t=one(eltype(A)); distribution=:leja, leja_multiplier=100, λ=nothing, scale_and_shift=true, tol=1e-15, spectral_fun=identity, kwargs...) if isnothing(λ) λ = spectral_range(t, spectral_fun(A); kwargs...) end ζ = if distribution == :leja points(Leja(range(λ, m*leja_multiplier), m)) elseif distribution == :fast_leja points(FastLeja(λ.a, λ.b, m)) else throw(ArgumentError("Invalid distribution of interpolation points $(distribution); valid choices are :leja and :fast_leja")) end At = scale(A, t) s,c,s⁻¹Amc = if scale_and_shift s = scaling(f, λ) c = shift(f, λ) s⁻¹Amc = scale(shift(At, c), 1/s) s,c,s⁻¹Amc else 1, 0, At end n = size(A,1) p = if n > 1 d = ⏃(f, ζ, 1, 0, 1) np = NewtonPolynomial(ζ, d) NewtonMatrixPolynomial(np, n, error_estimator(f, np, n, tol)) else @warn "Scalar case, no interpolation polynomial necessary" nothing end FuncV(f, s⁻¹Amc, p, c, s) end function Base.show(io::IO, funcv::FuncV{f}) where f write(io, "$(funcv.p) of $f") end # This does not yet consider substepping matvecs(f::FuncV) = matvecs(f.p) unshift!(w, funcv::FuncV) = @assert iszero(funcv.c) single_step!(w, funcv::FuncV, v, α::Number=true) = mul!(w, funcv.p, funcv.s⁻¹Amc, v, α) """ mul!(w, funcv::FuncV, v) Evaluate the action of the matrix polynomial `funcv` on `v` and store the result in `w`. """ function LinearAlgebra.mul!(w, funcv::FuncV, v, α::Number=true, β::Number=false) @assert iszero(β) single_step!(w, funcv, v, α) unshift!(w, funcv) end scalar(A::AbstractMatrix) = A[1] function scalar(A) v = ones(eltype(A),1) w = similar(v) mul!(w, A, v)[1] end function single_step!(w, funcv::FuncV{f,<:Any,Nothing}, v) where f copyto!(w, v) lmul!(f(scalar(funcv.s⁻¹Amc)), w) end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
1872
""" Leja(S, ζ, ∏ζ) Generate the Leja points `ζ` from the discretized set `S`; `∏ζ[i]` is the product of the distances of `ζ[i]` to all preceding points, it can be used to estimate the capacity of the set `S`. This is an implementation of the algorithm described in - Reichel, L. (1990). Newton Interpolation At Leja Points. BIT, 30(2), 332–346. [DOI: 10.1007/bf02017352](http://dx.doi.org/10.1007/bf02017352) """ struct Leja{T} S::Vector{T} ζ::Vector{T} ∏ζ::Vector{T} end """ leja!(l::Leja, n) Generate `n` Leja points in the [`Leja`](@ref) sequence `l`, i.e. can be used to add more Leja points an already formed sequence. Cannot generate more Leja points than the underlying discretization `l.S` contains; furthermore, the quality of the Leja points may deteriorate when `n` approaches `length(l.S)`. """ function leja!(l::Leja, n) @unpack S,ζ,∏ζ = l curn = length(ζ) n-curn > length(S) && throw(DimensionMismatch("Cannot generate more Leja points than underlying discretization contains")) if curn < n resize!(ζ, n) resize!(∏ζ, n) end if curn == 0 && n > 0 maxi = argmax(eachindex(S)) ζ[1] = S[maxi] deleteat!(S, maxi) ∏ζ[1] = 0 curn += 1 end for i = curn+1:n maxi = argmax(eachindex(S)) do j ζs = S[j] prod(ζₖ -> abs(ζs-ζₖ), view(ζ, 1:i-1)) end ζ[i] = S[maxi] deleteat!(S, maxi) ∏ζ[i] = prod(j -> abs(ζ[j]-ζ[i]), 1:i-1) end l end """ Leja(S, n) Construct a Leja sequence generator from the discretized set `S` and generate `n` Leja points. """ function Leja(S::AbstractVector{T}, n::Integer) where T l = Leja(collect(S), Vector{T}(), Vector{T}()) leja!(l, n) end """ points(l::Leja) Return the Leja points generated so far. """ points(l::Leja) = l.ζ
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
1375
""" closure(x::Number) Generates the closure type of `xⁿ` as `n → ∞`, i.e. a scalar. """ closure(::T) where {T<:Number} = T for Mat = [:Matrix, :Diagonal, :LowerTriangular, :UpperTriangular] docstring = """ closure(x::$Mat) Generates the closure type of `xⁿ` as `n → ∞`, i.e. a `$Mat`. """ @eval begin @doc $docstring closure(::M) where {M<:$Mat} = M end end for Mat = [:Tridiagonal, :SymTridiagonal] docstring = """ closure(x::$Mat) Generates the closure type of `xⁿ` as `n → ∞`, i.e. a `Matrix`. """ @eval closure(::$Mat{T}) where T = Matrix{T} end """ closure(x::Bidiagonal) Generates the closure type of `xⁿ` as `n → ∞`, i.e. a `UpperTriangular` or `LowerTriangular`, depending on `x.uplo`. """ function closure(B::Bidiagonal{T}) where T if B.uplo == 'L' LowerTriangular{T,Matrix{T}} else UpperTriangular{T,Matrix{T}} end end function Base.zero(::Type{Mat}, m, n) where {T,Mat<:Diagonal{T}} @assert m == n Mat(zeros(m)) end function Base.zero(::Type{Mat}, m, n) where {T,Mat<:Tridiagonal{T}} @assert m == n Mat(zeros(T,m-1),zeros(T,m),zeros(T,m-1)) end function Base.zero(::Type{Mat}, m, n) where {T,Mat<:SymTridiagonal{T}} @assert m == n Mat(zeros(T,m),zeros(T,m-1)) end Base.zero(::Type{Mat}, m, n) where {T,Mat<:AbstractMatrix{T}} = Mat(zeros(T, m, n))
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
8646
# * Scalar Newton polynomial @doc raw""" NewtonPolynomial(ζ, d) The unique interpolation polynomial of a function in its Newton form, i.e. ```math f(z) \approx p(z) = \sum_{j=1}^m \divdiff(\zeta_{1:j})f \prod_{i=1}^{j-1}(z - \zeta_i), ``` where `ζ` are the interpolation points and `d[j]=⏃(ζ[1:j])f` is the ``j``th divided difference of the interpolated function `f`. """ struct NewtonPolynomial{T,ZT<:AbstractVector{T},DT<:AbstractVector{T}} "Interpolation points of the Newton polynomial" ζ::ZT "Divided differences for the function interpolated by the Newton polynomial" d::DT end """ NewtonPolynomial(f, ζ) Construct the Newton polynomial interpolating `f` at `ζ`, automatically deriving the divided differences using [`⏃`](@ref). """ NewtonPolynomial(f::Function, ζ::AbstractVector) = NewtonPolynomial(ζ, ⏃(f, ζ, 1, 0, 1)) Base.view(np::NewtonPolynomial, args...) = NewtonPolynomial(view(np.ζ, args...), view(np.d, args...)) """ (np::NewtonPolynomial)(z[, error=false]) Evaluate the Newton polynomial `np` at `z`. If `error` is set to `true`, a second return value will contain an estimate of the error in the polynomial approximation. """ function (np::NewtonPolynomial{T})(z::Number, error) where T update_error = zero(real(T)) p = np.d[1] r = z - np.ζ[1] m = length(np.ζ) for i = 2:m p += np.d[i]*r error && (update_error = abs(np.d[i])*norm(r)) r *= z - np.ζ[i] end p,update_error end (np::NewtonPolynomial)(z) = first(np(z,false)) function Base.show(io::IO, np::NewtonPolynomial) degree = length(np.ζ)-1 ar,br = extrema(real(np.ζ)) ai,bi = extrema(imag(np.ζ)) compl_str(r,i) = if iszero(i) r elseif iszero(r) && iszero(i) 0 else r + im*i end write(io, "Newton polynomial of degree $(degree) on $(compl_str(ar,ai))..$(compl_str(br,bi))") end # * Newton matrix polynomial """ NewtonMatrixPolynomial(np, pv, r, Ar, error, m) This structure aids in the computation of the action of a matrix polynomial on a vector. `np` is the [`NewtonPolynomial`](@ref), `pv` is the desired result, `r` and `Ar` are recurrence vectors, and `error` is an optional error estimator algorithm that can be used to terminate the iterations early. `m` records how many matrix–vector multiplications were used when evaluating the matrix polynomial. """ mutable struct NewtonMatrixPolynomial{T,NP<:NewtonPolynomial{T},Vec,ErrorEstim} np::NP "Action of the Newton polynomial `np` on a vector `v`" pv::Vec "Recurrence vector" r::Vec "Matrix–Recurrence vector product" Ar::Vec error::ErrorEstim m::Int end function NewtonMatrixPolynomial(np::NewtonPolynomial{T}, n::Integer, res=nothing) where T pv = Vector{T}(undef, n) r = Vector{T}(undef, n) Ar = Vector{T}(undef, n) NewtonMatrixPolynomial(np, pv, r, Ar, res, 0) end function Base.show(io::IO, nmp::NewtonMatrixPolynomial) n = length(nmp.r) write(io, "$(n)×$(n) matrix $(nmp.np)") end matvecs(nmp::NewtonMatrixPolynomial) = nmp.m + matvecs(nmp.error) estimate_converged!(::Nothing, args...) = false matvecs(::Nothing) = 0 """ mul!(w, p::NewtonMatrixPolynomial, A, v) Compute the action of the [`NewtonMatrixPolynomial`](@ref) `p` evaluated for the matrix (or linear operator) `A` acting on `v` and storing the result in `w`, i.e. `w ← p(A)*v`. """ function LinearAlgebra.mul!(w, nmp::NewtonMatrixPolynomial, A, v, α::Number=true) # Equation numbers refer to # # - Kandolf, P., Ostermann, A., & Rainer, S. (2014). A residual based # error estimate for leja interpolation of matrix functions. Linear # Algebra and its Applications, 456(nil), # 157–173. http://dx.doi.org/10.1016/j.laa.2014.04.023 @unpack pv,r,Ar = nmp @unpack d,ζ = nmp.np nmp.m = 0 pv .= d[1] .* v # Equation (3c) r .= v # r is initialized using the normal iteration, below m = length(ζ) for i = 2:m # Equations (3a,b) are applied in reverse order, since at the # beginning of each iteration, r is actually lagging one # iteration behind, because r is initialized to v, not # (A-ζ[1])*v. # Equation (3b) mul!(Ar, A, r) isone(α) || lmul!(α, Ar) nmp.m += 1 lmul!(-ζ[i-1], r) r .+= Ar # Equation (3a) BLAS.axpy!(d[i], r, pv) estimate_converged!(nmp.error, A, pv, v, Ar, i-1) && break end w .= pv end # ** Newton matrix polynomial derivative """ NewtonMatrixPolynomialDerivative(np, p′v, r′, Ar′, m) This strucyture aids in the computation of the first derivative of the [`NewtonPolynomial`](@ref) `np`. It is to be used in lock-step with the evaluation of the polynomial, i.e. when evaluating the ``m``th degree of `np`, this structure will provide the first derivative of the ``m``th degree polynomial, storing the result in `p′v`. `r′` and `Ar′` are recurrence vectors. Its main application is in [`φₖResidualEstimator`](@ref). `m` records how many matrix–vector multiplications were used when evaluating the matrix polynomial. """ mutable struct NewtonMatrixPolynomialDerivative{T,NP<:NewtonPolynomial{T},Vec} np::NP "Action of the time-derivative of the Newton polynomial `np` on a vector `v`" p′v::Vec "Recurrence vector" r′::Vec "Matrix–Recurrence vector product" Ar′::Vec m::Int end function NewtonMatrixPolynomialDerivative(np::NewtonPolynomial{T}, n::Integer) where T p′v = Vector{T}(undef, n) r′ = Vector{T}(undef, n) Ar′ = Vector{T}(undef, n) NewtonMatrixPolynomialDerivative(np, p′v, r′, Ar′, 0) end matvecs(nmpd::NewtonMatrixPolynomialDerivative) = nmpd.m function step!(nmpd::NewtonMatrixPolynomialDerivative, A, Ar, i) @unpack p′v,r′,Ar′ = nmpd @unpack d,ζ = nmpd.np if i == 1 # Equation (18c) p′v .= false copyto!(r′, Ar) nmpd.m = 0 end # Equation (18a) BLAS.axpy!(d[i], r′, p′v) # Equation (18b) mul!(Ar′, A, r′) nmpd.m += 1 lmul!(-ζ[i], r′) r′ .+= Ar′ p′v end # ** Residual error estimator for φₖ functions """ φₖResidualEstimator{T,k}(nmpd, ρ, vscaled, estimate, tol) An implementation of the residual error estimate of the φₖ functions, as presented in - Kandolf, P., Ostermann, A., & Rainer, S. (2014). A residual based error estimate for Leja interpolation of matrix functions. Linear Algebra and its Applications, 456(nil), 157–173. [DOI: 10.1016/j.laa.2014.04.023](http://dx.doi.org/10.1016/j.laa.2014.04.023) `nmpd` is a [`NewtonMatrixPolynomialDerivative`](@ref) that successively computes the time-derivative of the [`NewtonMatrixPolynomial`](@ref) used to interpolate ``\\varphi_k(tA)`` (the time-step ``t`` is subsequently set to unity), `ρ` is the residual vector, `vscaled` an auxiliary vector for `k>0`, and `estimate` and `tol` are the estimated error and tolerance, respectively. """ mutable struct φₖResidualEstimator{T,k,NMPD<:NewtonMatrixPolynomialDerivative{T},Vec,R} nmpd::NMPD "Residual vector" ρ::Vec "``v/(k-1)!`` cache" vscaled::Vec estimate::R tol::R m::Int end φₖResidualEstimator(k, nmpd::NMPD, ρ::Vec, vscaled::Vec, estimate::R, tol::R) where {T,NMPD<:NewtonMatrixPolynomialDerivative{T},Vec,R} = φₖResidualEstimator{T,k,NMPD,Vec,R}(nmpd, ρ, vscaled, estimate, tol, 0) function φₖResidualEstimator(k::Integer, np::NewtonPolynomial{T}, n::Integer, tol::R) where {T,R<:AbstractFloat} nmpd = NewtonMatrixPolynomialDerivative(np, n) ρ = Vector{T}(undef, n) vscaled = Vector{T}(undef, k > 0 ? n : 0) φₖResidualEstimator(k, nmpd, ρ, vscaled, convert(R, Inf), tol) end matvecs(error::φₖResidualEstimator) = error.m + matvecs(error.nmpd) function estimate_converged!(error::φₖResidualEstimator{T,k}, A, pv, v, Ar, m) where {T,k} @unpack ρ, vscaled = error if m == 1 error.m = 0 if k > 0 vscaled .= v/Γ(k) end end mul!(ρ, A, pv) error.m += 1 ρ .-= step!(error.nmpd, A, Ar, m) # # TODO: Figure out why this does not work as intended. # if k > 0 # ρ .+= vscaled # ρ .-= k*pv # @. ρ += vscaled - k*pv # end error.estimate = norm(ρ) if k > 0 error.estimate /= k end error.estimate < error.tol end error_estimator(::typeof(exp), args...) = φₖResidualEstimator(0, args...) error_estimator(::typeof(φ₁), args...) = φₖResidualEstimator(1, args...) error_estimator(fix::Base.Fix1{typeof(φ),<:Integer}, args...) = φₖResidualEstimator(fix.x, args...) export error_estimator
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
2576
@doc raw""" φ₁(z) Special case of [`φ`](@ref) for `k=1`, taking care to avoid numerical rounding errors for small ``|z|``. """ function φ₁(z::T) where T if abs(z) < eps(real(T)) one(T) else y = exp(z) if abs(z) ≥ one(real(T)) (y - 1)/z else (y-1)/log(y) end end end @doc raw""" φ(k, z) Compute the entire function ``\varphi_k(z)``, ``z\in\mathbb{C}``, which is recursively defined as [Eq. (2.11) of [Hochbruck2010](http://dx.doi.org/10.1017/s0962492910000048)] ```math \varphi_{k+1}(z) \equiv \frac{\varphi_k(z)-\varphi_k(0)}{z}, ``` with the base cases ```math \varphi_{0}(z) = \exp(z), \quad \varphi_{1}(z) = \frac{\exp(z)-1}{z}, ``` and the special case ```math \varphi_k(0) = \frac{1}{k!}. ``` This function, as the base case [`φ₁`](@ref), is implemented to avoid rounding errors for small ``|z|``. """ function φ(k, z::T) where T if k == 0 exp(z) elseif k == 1 φ₁(z) else abs(z) < eps(real(T)) && return 1/gamma(k+1) # Eq. (2.11) of # # - Hochbruck, M., & Ostermann, A. (2010). Exponential Integrators. Acta # Numerica, 19(nil), # 209–286. http://dx.doi.org/10.1017/s0962492910000048 # if abs(z) > k*one(real(T)) (φ(k-1, z) - φ(k-1, zero(T)))/z else # Horner's rule applied to the Taylor expansion of φₖ = ∑ zⁱ/(k+i)! # Truncating the Taylor expansion at k+1 terms seems to work well. n = 10k b = one(T)/gamma(k+n+1) for i = n-1:-1:0 b = muladd(b, z, 1/gamma(k+i+1)) end b end end end """ φ(k) Return a function corresponding to `φₖ`. # Examples ```jldoctest julia> φ(0) exp (generic function with 14 methods) julia> φ(1) φ₁ (generic function with 1 method) julia> φ(2) φ₂ (generic function with 1 method) julia> φ(15) φ₁₅ (generic function with 1 method) julia> φ(15)(5.0 + im) 1.0931836313419128e-12 + 9.301475570434819e-14im ``` """ function φ(k::Integer) if k == 0 exp elseif k == 1 φ₁ else Base.Fix1(φ, k) end end Base.string(f::Base.Fix1{typeof(φ),<:Integer}) = "φ$(to_subscript(f.x))" function Base.show(io::IO, f::Base.Fix1{typeof(φ),<:Integer}) write(io, "φ") write(io, to_subscript(f.x)) n = length(methods(f)) write(io, " (generic function with $n method$(n > 1 ? "s" : ""))") end Base.show(io::IO, ::MIME"text/plain", f::Base.Fix1{typeof(φ),<:Integer}) = show(io, f)
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
2881
num_steps(f, xmax) = 1 num_steps(::Union{typeof(exp),typeof(φ₁)# ,Base.Fix1{typeof(φ),<:Integer} }, xmax) = max(1, ceil(Int, xmax/0.3)) # This number is more conservative # that actually is necessary, however, # since ts_div_diff_table currently is # implemented via repeated matrix # powers, truncation of very small # numbers occur. With a proper routine # for powers of Bidiagonal matrices # (c.f. McCurdy 1984), this value can # be increased. function num_steps(::Union{typeof(sin),typeof(cos)}, xmax) J = 1 while xmax/J > 1.59 J = nextpow(2, J+1) end J end """ propagate_div_diff(::typeof(exp), expτH, J, args...) Find the divided differences of `exp` by utilizing that ``\\exp(a+b)=\\exp(a)\\exp(b)``. """ function propagate_div_diff(::typeof(exp), expτH, J, args...) d = expτH[:,1] for j = 1:J-1 lmul!(expτH, d) end d end @doc raw""" propagate_div_diff(::typeof(φ₁), φ₁H, J, H, τ) Find the divided differences of `φ₁` by solving the ODE ```math \dot{\vec{y}}(t) = \mat{H} \vec{y}(t) + \vec{e}_1, \quad \vec{y}(0) = 0, ``` by iterating ```math \vec{y}_{j+1} = \vec{y}_j + \tau\varphi_1(\tau\mat{H})(\mat{H}\vec{y}_j + \vec{e}_1), \quad j=0,...,J-1. ``` """ function propagate_div_diff(::typeof(φ₁), φ₁H, J, H, τ) d = φ₁H[:,1] tmp = similar(d) lmul!(τ, d) for j = 1:J-1 mul!(tmp, H, d) tmp[1] += 1 d .+= lmul!(τ, lmul!(φ₁H, tmp)) end d end @doc raw""" propagate_div_diff_sin_cos(sinH, cosH, J) Find the divided differences tables of `sin` and `cos` simultaneously, by utilizing the double-angle formulæ ```math \sin2\theta = 2\sin\theta\cos\theta, \quad \cos2\theta = 1 - \sin^2\theta, ``` recursively, doubling the angle at each iteration until the desired angle is achieved. """ function propagate_div_diff_sin_cos(sinH, cosH, J) S = 2sinH*cosH C = I - 2sinH^2 while J > 2 tmp = 2S*C C = I - 2S^2 S = tmp J >>= 1 end S,C end """ propagate_div_diff(::typeof(sin), sinH, J, H, τ) Find the divided differences of `sin`; see [`propagate_div_diff_sin_cos`](@ref). """ function propagate_div_diff(::typeof(sin), sinH, J, H, τ) @assert ispow2(J) propagate_div_diff_sin_cos(sinH, taylor_series(cos)(τ*H), J)[1][:,1] end """ propagate_div_diff(::typeof(cos), cosH, J, H, τ) Find the divided differences of `cos`; see [`propagate_div_diff_sin_cos`](@ref). """ function propagate_div_diff(::typeof(cos), cosH, J, H, τ) @assert ispow2(J) propagate_div_diff_sin_cos(taylor_series(sin)(τ*H), cosH, J)[2][:,1] end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
6477
mutable struct Lanczos{T,Op} A::Op Q::Matrix{T} α::Vector{T} β::Vector{T} k::Int end function Lanczos(A, K; kwargs...) T = real(eltype(A)) Q = zeros(T, size(A,1), K) α = zeros(T, K) β = zeros(T, K) reset!(Lanczos(A, Q, α, β, 1); kwargs...) end function reset!(l::Lanczos{T}; v=nothing) where T if isnothing(v) v = rand(T, size(l.A,1)) end l.Q[:,1] = normalize(v) l.k = 1 l end function step!(l::Lanczos; verbosity=0) @unpack A,Q,α,β,k = l k == size(Q,2) && return v = view(Q, :, k) w = view(Q, :, k+1) mul!(w, A, v) α[k] = dot(v, w) w .-= α[k] .* v if k > 1 w .-= β[k-1] .* view(Q, :, k-1) end β[k] = norm(w) w ./= β[k] verbosity > 0 && printfmtln("iter {1:d}, α[{1:d}] {2:e}, β[{1:d}] {3:e}", k, α[k], β[k]) l.k += 1 end LinearAlgebra.SymTridiagonal(L::Lanczos) = SymTridiagonal(view(L.α, 1:L.k-1), view(L.β, 1:L.k-2)) """ hermitian_spectral_range(A;[ K=20]) Estimate the spectral range of a Hermitian operator `A` using Algorithm 1 of - Zhou, Y., & Li, R. (2011). Bounding the spectrum of large hermitian matrices. Linear Algebra and its Applications, 435(3), 480–493. http://dx.doi.org/10.1016/j.laa.2010.06.034 """ function hermitian_spectral_range(A; K=min(20,size(A,1)-1), ctol=√(eps(real(eltype(A)))), verbosity=0, kwargs...) verbosity > 0 && @info "Trying to estimate spectral interval for allegedly Hermitian operator" l = Lanczos(A, K+1; kwargs...) K̃ = min(4,K-1) for k = 1:K̃ step!(l; verbosity=verbosity-1) end U = real(eltype(A)) βₖ = zero(U) λₘᵢₙₖ = zero(U) λₘₐₓₖ = zero(U) zₘᵢₙₖ = zero(U) zₘₐₓₖ = zero(U) for k = K̃+1:K step!(l; verbosity=verbosity-1) ee = eigen(SymTridiagonal(l)) Z = ee.vectors βₖ = l.β[k] zₘᵢₙₖ = abs(Z[k,1]) zₘₐₓₖ = abs(Z[k,k]) λₘᵢₙₖ = ee.values[1] λₘₐₓₖ = ee.values[k] verbosity > 0 && printfmtln("k = {1:3d} β[k] = {2:e} λₘᵢₙ(Tₖ) = {3:+e} λₘₐₓ(Tₖ) = {4:+e} zₘᵢₙ[k]β[k] = {5:e} zₘₐₓ[k]β[k] = {6:e}", k, βₖ, λₘᵢₙₖ, λₘₐₓₖ, zₘᵢₙₖ*βₖ, zₘₐₓₖ*βₖ) if zₘₐₓₖ*βₖ < ctol # Zhou et al. (2011), bound (2.8) return Line(λₘᵢₙₖ - min(zₘᵢₙₖ, abs(Z[k,2]), abs(Z[k,3]))*βₖ, λₘₐₓₖ + max(zₘₐₓₖ, abs(Z[k,k-1]), abs(Z[k,k-2]))*βₖ) end end # Zhou et al. (2011), mean of bounds (2.5,6) Line(λₘᵢₙₖ - (1+zₘᵢₙₖ)*βₖ/2, λₘₐₓₖ + (1+zₘₐₓₖ)*βₖ/2) end """ spectral_range(A[; ctol=√ε, verbosity=0]) Estimate the spectral range of the matrix/linear operator `A` using [ArnoldiMethod.jl](https://github.com/haampie/ArnoldiMethod.jl). If the spectral range along the real/imaginary axis is smaller than `ctol`, it is compressed into a line. Returns a spectral [`Shape`](@ref). # Examples ```julia-repl julia> A = Diagonal(1.0:6) 6×6 Diagonal{Float64,StepRangeLen{Float64,Base.TwicePrecision{Float64},Base.TwicePrecision{Float64}}}: 1.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 3.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 5.0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 6.0 julia> MatrixPolynomials.spectral_range(A, verbosity=2) Converged: 1 of 1 eigenvalues in 6 matrix-vector products Converged: 1 of 1 eigenvalues in 6 matrix-vector products Converged: 1 of 1 eigenvalues in 6 matrix-vector products Converged: 1 of 1 eigenvalues in 6 matrix-vector products [ Info: Imaginary extent of spectral range 0.0 below tolerance 1.4901161193847656e-8, conflating. [ Info: 0.0 below tolerance 1.4901161193847656e-8, truncating. [ Info: 0.0 below tolerance 1.4901161193847656e-8, truncating. MatrixPolynomials.Line{Float64}(0.9999999999999998 + 0.0im, 6.0 + 0.0im) julia> MatrixPolynomials.spectral_range(exp(im*π/4)*A, verbosity=2) Converged: 1 of 1 eigenvalues in 6 matrix-vector products Converged: 1 of 1 eigenvalues in 6 matrix-vector products Converged: 1 of 1 eigenvalues in 6 matrix-vector products Converged: 1 of 1 eigenvalues in 6 matrix-vector products MatrixPolynomials.Rectangle{Float64}(0.7071067811865468 + 0.7071067811865478im, 4.242640687119288 + 4.242640687119283im) ``` The second example should also be a [`Line`](@ref), but the algorithm is not yet clever enough. """ function spectral_range(A; ctol=√(eps(real(eltype(A)))), ishermitian=false, verbosity=0, kwargs...) ishermitian && return hermitian_spectral_range(A; ctol=ctol, verbosity=verbosity, kwargs...) r = map([(SR(),real),(SI(),imag),(LR(),real),(LI(),imag)]) do (which,comp) schurQR,history = partialschur(A; which=which, nev = 1, kwargs...) verbosity > 0 && println(history) comp(first(schurQR.eigenvalues)) end for (label,(i,j)) in [("Real", (1,3)),("Imaginary", (2,4))] if abs(r[i]-r[j]) < ctol verbosity > 1 && @info "$label extent of spectral range $(abs(r[i]-r[j])) below tolerance $(ctol), conflating." r[i] = r[j] = (r[i]+r[j])/2 end end for i = 1:4 if abs(r[i]) < ctol verbosity > 1 && @info "$(abs(r[i])) below tolerance $(ctol), truncating." r[i] = zero(r[i]) end end a,b = (r[1]+im*r[2], r[3]+im*r[4]) if real(a) == real(b) || imag(a) == imag(b) Line(a,b) else # There could be cases where all the eigenvalues fall on a # sloped line in the complex plane, but we don't know how to # deduce that yet. The user is free to define such sloped # lines manually, though. Rectangle(a,b) end end function spectral_range(A::SymTridiagonal{<:Real}; kwargs...) n = size(A,1) a,b = minmax(first(eigvals(A, 1:1)), first(eigvals(A, n:n))) Line(a,b) end spectral_range(A::Diagonal{<:Real}; kwargs...) = Line(minimum(A.diag), maximum(A.diag)) function spectral_range(A::Diagonal{<:Complex}; kwargs...) d = A.diag rd = real(d) id = imag(d) a = minimum(rd) + im*minimum(id) b = maximum(rd) + im*maximum(id) if real(a) == real(b) || imag(a) == imag(b) Line(a,b) else Rectangle(a, b) end end """ spectral_range(t, A) Finds the spectral range of `t*A`; if `t` is a vector, find the largest such range. """ function spectral_range(t, A; kwargs...) λ = spectral_range(A; kwargs...) ta,tb = extrema(t) ta*λ ∪ tb*λ end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
3984
""" Shape Abstract base type for different shapes in the complex plane encircling the spectra of linear operators. """ abstract type Shape{T} end # * Line """ Line(a, b) For spectra falling on a line in the complex plane from `a` to `b`. """ struct Line{T} <: Shape{T} a::Complex{T} b::Complex{T} function Line(a::A, b::B) where {A,B} T = real(promote_type(A,B)) new{T}(Complex{T}(a), Complex{T}(b)) end end """ n * l::Line Scale the [`Line`](@ref) `l` by `n`. """ Base.:(*)(n::Number, l::Line) = Line(n*l.a, n*l.b) Base.iszero(l::Line) = iszero(l.a) && iszero(l.b) """ range(l::Line, n) Generate a uniform distribution of `n` values along the [`Line`](@ref) `l`. If the line is on the real axis, the resulting values will be real as well. # Examples ```julia-repl julia> range(MatrixPolynomials.Line(0, 1.0im), 5) 5-element LinRange{Complex{Float64}}: 0.0+0.0im,0.0+0.25im,0.0+0.5im,0.0+0.75im,0.0+1.0im julia> range(MatrixPolynomials.Line(0, 1.0), 5) 0.0:0.25:1.0 ``` """ function Base.range(l::Line, n) a,b = if isreal(l.a) && isreal(l.b) real(l.a), real(l.b) else l.a, l.b end range(a,stop=b,length=n) end """ mean(l::Line) Return the mean value along the [`Line`](@ref) `l`. """ function Statistics.mean(l::Line) μ = (l.a + l.b)/2 isreal(μ) ? real(μ) : μ end function LinearAlgebra.normalize(z::Number) N = norm(z) iszero(N) ? z : z/N end """ a::Line ∪ b::Line Form the union of the [`Line`](@ref)s `a` and `b`, which need to be collinear. """ function Base.union(a::Line, b::Line) a == b && return a da = normalize(a.b - a.a) db = normalize(b.b - b.a) # Every line is considered "parallel" with the origin if !iszero(a) && !iszero(b) cosθ = da'db cosθ ≈ 1 || cosθ ≈ -1 || throw(ArgumentError("Lines $a and $b not parallel")) end # If the lengths of both lines are zero, then they are "collinear" # by definition. Otherwise, the points of one line have to lie on # the extension of the other line. if !iszero(da) || !iszero(db) t = (b.a - a.a)/(iszero(da) ? db : da) isapprox(imag(t), zero(t), atol=eps(real(t))) || throw(ArgumentError("Lines $a and $b not collinear")) end ra,rb = extrema([real(a.a),real(a.b),real(b.a),real(b.b)]) ia,ib = extrema([imag(a.a),imag(a.b),imag(b.a),imag(b.b)]) Line(ra+im*ia, rb+im*ib) end # * Rectangle """ Rectangle(a,b) For spectra falling within a rectangle in the complex plane with corners `a` and `b`. """ struct Rectangle{T} <: Shape{T} a::Complex{T} b::Complex{T} function Rectangle(a::A, b::B) where {A,B} T = real(promote_type(A,B)) new{T}(Complex{T}(a), Complex{T}(b)) end end """ n * r::Rectangle Scale the [`Rectangle`](@ref) `r` by `n`. """ Base.:(*)(n::Number, r::Rectangle) = Rectangle(n*r.a, n*r.b) """ range(r::Rectangle, n) Generate a uniform distribution of `n` values along the diagonal of the [`Rectangle`](@ref) `r`. This assumes that the eigenvalues lie on the diagonal of the rectangle, i.e. that the spread is negligible. It would be more correct to instead generate samples along the sides of the rectangle, however, [`spectral_range`](@ref) needs to be modified to correctly identify spectral ranges falling on a line that is not lying on the real or imaginary axis. """ Base.range(r::Rectangle, n) = range(r.a,stop=r.b,length=n) """ mean(r::Rectangle) Return the middle value of the [`Rectangle`](@ref) `r`. """ function Statistics.mean(r::Rectangle) μ = (r.a + r.b)/2 isreal(μ) ? real(μ) : μ end """ a::Rectangle ∪ b::Rectangle Find the smalling [`Rectangle`](@ref) encompassing `a` and `b`. """ function Base.union(a::Rectangle, b::Rectangle) ra,rb = extrema([real(a.a),real(a.b),real(b.a),real(b.b)]) ia,ib = extrema([imag(a.a),imag(a.b),imag(b.a),imag(b.b)]) Rectangle(ra+im*ia, rb+im*ib) end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
2395
@doc raw""" TaylorSeries(d, c) Represents the Taylor series of a function as ```math f(x) = \sum_{k=0}^\infty c_k x^{d_k}, ``` where `dₖ = d(k)` and `cₖ = c(k)`. """ struct TaylorSeries{D,C} d::D c::C end function Base.show(io::IO, ts::TaylorSeries) for k = 0:3 d = ts.d(k) c = ts.c(k) k > 0 && write(io, " ") write(io, c < 0 ? "- " : (k > 0 ? "+ " : "")) !isone(abs(c)) && write(io, "$(abs(c))") if d == 0 isone(abs(c)) && write(io, "1") elseif d == 1 write(io, "x") else write(io, "x^$(d)") end end write(io, " + ...") end function bisect_find_last(f, r::UnitRange{<:Integer}) f(r[1]) || return nothing f(r[end]) && return r[end] while length(r) > 2 i = div(length(r),2) if isodd(i) i = length(r) - i end fhalf = f(r[i]) r = fhalf ? (r[i]:r[end]) : (r[1]:r[i]) end r[1] end """ (ts)(x; max_degree=17) Evaluate the Taylor series represented by `ts` up to a maximum degree in `x` (default 17). """ function (ts::TaylorSeries)(x; max_degree=17) kmax = bisect_find_last(k -> ts.d(k) ≤ max_degree, 0:max_degree) v = zero(closure(x), size(x)...) + ts.c(kmax)*I d_prev = ts.d(kmax) # This is a special version of Horner's rule that takes into # account that some powers may be absent from the Taylor # polynomial. for k = kmax-1:-1:0 d = ts.d(k) for j = 1:(d_prev-d) v *= x end d_prev = d v += ts.c(k)*I # Handle odd cases, e.g. sine if k == 0 && d == 1 v *= x end end v end macro taylor_series(f, d, c) docstring = """ taylor_series(::typeof($f)) Generates the [`TaylorSeries`](@ref) of `$f(x) = ∑ₖ x^($d) $c`. # Example ```julia-repl julia> taylor_series($f) """ quote @doc $docstring*string(TaylorSeries(k -> $d, k -> $c))*"\n```" taylor_series(::typeof($f)) = TaylorSeries(k -> $d, k -> $c) end |> esc end @taylor_series exp k 1/Γ(k+1) @taylor_series sin 2k+1 (-1)^k/Γ(2k+2) @taylor_series cos 2k (-1)^k/Γ(2k+1) @taylor_series sinh 2k+1 1/Γ(2k+2) @taylor_series cosh 2k 1/Γ(2k+1) @taylor_series φ₁ k 1/Γ(k+2) taylor_series(fix::Base.Fix1{typeof(φ),<:Integer}) = TaylorSeries(k -> k, k -> 1/Γ(k+fix.x+1))
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
2680
@testset "Divided differences" begin @testset "Infinitesimal divided differences" begin # This will lead to catastrophic cancellation for the standard # recursive formulation of divided differences; the goal is to # ascertain the accuracy of the optimized methods, which # should converge to the Taylor expansion of φₖ(z) for # infinitesimal |z|. @testset "$label" for (label,μ) in [("Real", 1.0), ("Imaginary", 1.0im), ("Complex", exp(im*π/4))] m = 100 ξ = μ*eps(Float64)*range(-1,stop=1,length=m) x = μ*eps(Float64)*range(-1,stop=1,length=1000) @testset "k = $k" for k = 0:6 f = φ(k) f_exact = f.(x) taylor_expansion = vcat(1.0 ./ [Γ(k+n+1) for n = 0:m-1]) @testset "$method" for (method, func) in [ ("Taylor series", (k,ξ) -> ts_div_diff_table(f, collect(ξ), 1, 0, 1)), ("Basis change", (k,ξ) -> φₖ_div_diff_basis_change(k, ξ)), ("Auto", (k,ξ) -> ⏃(f, collect(ξ), 1, 0, 1)) ] d = func(k, ξ) @test d ≈ taylor_expansion atol=1e-15 # The Taylor expansion coefficients for φₖ(z) # should all be real, to machine precision, even # for complex z. @test norm(imag(d)) ≈ 0 atol=1e-15 f_d = NewtonPolynomial(ξ, d).(x) @test f_d ≈ f_exact atol=1e-14 end end end end @testset "Finite divided differences" begin @testset "$label" for (label,μ) in [("Real", 1.0), ("Imaginary", 1.0im), ("Complex", exp(im*π/4))] m = 100 dx = 1.0 ξ = μ*dx*range(-1,stop=1,length=m) x = μ*dx*range(-1,stop=1,length=1000) @testset "k = $k" for k = 0:6 f = φ(k) f_exact = f.(x) @testset "$method" for (method, func) in [ ("Taylor series", (k,ξ) -> ts_div_diff_table(f, collect(ξ), 1, 0, 1)), ("Basis change", (k,ξ) -> φₖ_div_diff_basis_change(k, ξ)), ("Auto", (k,ξ) -> ⏃(f, collect(ξ), 1, 0, 1)) ] d = func(k, ξ) f_d = NewtonPolynomial(ξ, d).(x) @test f_d ≈ f_exact atol=1e-12 end end end end end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
1959
function test_stepping(f, x, m, μ, x̃, h̃; kwargs...) @info "Reference solution" ỹ = @time reduce(hcat, h̃.(x̃)) n = size(ỹ,1) t = μ*step(x̃) f̂ = FuncV(f, x, m, t; kwargs...) y = similar(ỹ) y[:,1] = ỹ[:,1] @info "Leja/Newton solution" @time for i = 2:length(x̃) mul!(view(y,:,i), f̂, view(y,:,i-1)) end global_error = abs.(y-ỹ) # This is only a rough estimate of the local error local_error = vcat(0, abs.(diff(global_error, dims=2))) @info "Maximum global error: $(maximum(global_error))" @info "Maximum local error: $(maximum(local_error))" global_error, local_error end function tdse(N, ρ, ℓ) j = 1:N r = (j .- 1/2)*ρ j² = j.^2 α = (j²./(j² .- 1/4))[1:end-1] β = (j² - j .+ 1/2)./(j² - j .+ 1/4) # T = Tridiagonal(α, -2β, α)/(-2ρ^2) T = SymTridiagonal(-2β, α)/(-2ρ^2) V = Diagonal(-1 ./ r + ℓ*(ℓ + 1) ./ 2r.^2) ψ₀ = exp.(-r.^2) lmul!(1/√ρ, normalize!(ψ₀)) T,V,ψ₀ end @testset "FuncV" begin @testset "TDSE" begin N = 7 ρ = 0.1 L = 1 tmax = 1.0 t = range(0, stop=tmax, length=1000) T,V,ψ₀ = tdse(N, ρ, L) H = T+V B = -im*H # Exact solution F̃ = t -> exp(t*Matrix(B))*ψ₀ m = 40 # Number of Leja points @testset "Tolerance = $tol" for (tol,exp_error) in [(3e-14,7e-12), (1e-12,1e-9)] @testset "Scaling and shifting: $(scale_and_shift)" for scale_and_shift=[true,false] global_error, local_error = test_stepping(exp, H, m, -im, t, F̃, tol=tol, scale_and_shift=scale_and_shift) @test all(global_error .≤ exp_error) @test all(local_error .≤ 10tol) # Should test number of Leja points used end end end end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
988
@testset "Leja points" begin @testset "$llabel Leja points" for (llabel,LejaType,extra_func!) = [("Discretized", (a,b,n)->Leja(range(a,stop=b,length=1001),n), leja!), ("Fast", (a,b,n)->FastLeja(a,b,n), fast_leja!)] @testset "$label Leja points" for (label,comp,factor) = [("Real", real, 1.0), ("Imaginary", imag, 1.0im)] a = -2*factor b = 2*factor n = 100 l = LejaType(a, b, n) ζ = points(l) @test abs(ζ[1]) == 2 @test ζ[2] == -ζ[1] @test ζ[3] == 0 @test length(ζ) == n @test allunique(ζ) @test all(comp(a) .≤ comp(ζ) .≤ comp(b)) extra_func!(l, 300) @test length(ζ) == 300 @test allunique(ζ) @test all(comp(a) .≤ comp(ζ) .≤ comp(b)) end end end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
3905
function test_scalar_newton_leja(f, x, m, x̃, h, h̃) ξ = points(Leja(x, m)) @info "$m $(eltype(ξ)) Leja points" np = NewtonPolynomial(f, ξ) y = h.(x̃,Ref(np)) ỹ = h̃.(x̃) ms = 1:m errors = zeros(m) error_estimates = zeros(m,1) for m = ms np′ = view(np, 1:m) p = x -> begin val,err = np′(x, true) error_estimates[m,1] = max(error_estimates[m,1], err) val end y′ = similar(y) for i = eachindex(x̃) y′[i] = h(x̃[i],p) end errors[m] = norm(y′ - h̃.(x̃)) end norm(y-ỹ),errors,error_estimates end function test_mat_newton_leja(f, x, m, x̃, h!, h̃) ξ = points(Leja(x, m)) @info "$m $(eltype(ξ)) Leja points" np = NewtonPolynomial(f, ξ) @info "Reference solution" ỹ = @time reduce(hcat, h̃.(x̃)) n = size(ỹ, 1) nmp = NewtonMatrixPolynomial(np, n) y = similar(ỹ) hh! = h!(nmp) @info "Leja/Newton solution" @time for i = eachindex(x̃) hh!(view(y,:,i), x̃[i]) end ms = 1:m errors = zeros(m) for m = ms np′ = view(np, 1:m) nmp′ = NewtonMatrixPolynomial(np′, n) hh! = h!(nmp′) y′ = similar(y) for i = eachindex(x̃) hh!(view(y′,:,i), x̃[i]) end errors[m] = norm(y′ - ỹ) end norm(y-ỹ),errors end @testset "Newton polynomials" begin @testset "Scalar polynomials" begin dx = 2 x = dx*range(-1,stop=1,length=1000) @testset "Quadratic function" begin ξ = points(Leja(x, 10)) f = x -> x^2 d = std_div_diff(f, ξ, 1, 0, 1) np = NewtonPolynomial(ξ, d) @test np.d[1:3] ≈ [4,0,1] @test all(d -> isapprox(d, 0, atol=√(eps(d))), np.d[4:end]) end @testset "Exponential function" begin Δy,errors,error_estimates = test_scalar_newton_leja(exp, x, 20, x, (t, p) -> p(t), exp) @test Δy < 7e-14 @test all(errors[end-2:end] .< 1e-13) end @testset "Inhomogeneous ODE, $kind" for (kind,m,tol) in [(:real,43,1e-13), (:complex,60,5e-13)] y₀ = 1.0 g = -3.0 tmax = 10.0 b,tmin = if kind == :real -2, 0 else -2im, -tmax end t = range(tmin, stop=tmax, length=1000) h = (t, p) -> y₀ + t*p(t*b)*(b*y₀ + g) h̃ = t -> exp(t*b)*(y₀ + g/b) - g/b Δy,errors,error_estimates = test_scalar_newton_leja(φ₁, b*t, m, t, h, h̃) @test Δy < tol @test all(errors[end-12:end] .< 3tol) # Should also look at error estimates end end @testset "Matrix polynomials" begin @testset "Inhomogeneous coupled ODEs, $kind" for (kind,m,tol) in [(:real,43,1e-12), (:complex,60,1e-12)] n = 10 # Number of ODEs Y₀ = 1.0*ones(kind == :real ? Float64 : ComplexF64, n) G = -3*ones(n) # Inhomogeneous terms n_discr = 1000 # Number of points spanning eigenspectrum interval m = 60 # Number of Leja points tmax = 10.0 b,c,tmin = if kind == :real -2, 0.2, 0 else -2im, 0.2im, -tmax end Bdiag = Diagonal(b./(1:n)) o = ones(n) B = Bdiag + Tridiagonal(c*o[2:end], 0c*o, c*o[2:end]) t = range(tmin, stop=tmax, length=1000) @show λ = spectral_range(t, B, verbosity=2) H! = function(p) (w,t) -> BLAS.axpy!(1, Y₀, lmul!(t, mul!(w, p, t*B, B*Y₀ + G))) end H̃ = t -> exp(t*Matrix(B))*(Y₀ + B\G) - B\G Δy,errors = test_mat_newton_leja(φ₁, range(λ, n_discr), m, t, H!, H̃) @test errors[end] < 5e-12 end end end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
417
using MatrixPolynomials using Test using LinearAlgebra import MatrixPolynomials: Line, Rectangle, spectral_range, Leja, leja!, FastLeja, fast_leja!, points, φ₁, φ, Γ, std_div_diff, ts_div_diff_table, φₖ_div_diff_basis_change, ⏃, NewtonPolynomial, NewtonMatrixPolynomial, FuncV include("spectral.jl") include("leja.jl") include("divided_differences.jl") include("newton.jl") include("funcv.jl")
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
code
1492
@testset "Spectral shapes" begin @testset "Lines" begin l = Line(0.1, 1.0) @test 2l == Line(0.2, 2.0) @test range(l, 11) == range(0.1, stop=1.0, length=11) @test range(im*l, 11) == range(0.1im, stop=1.0im, length=11) @test l ∪ l == l @test l ∪ Line(0.0, 0.9) == Line(0.0, 1.0) @test l ∪ Line(0.0, 0.0) == Line(0.0, 1.0) @test Line(0.5(1+im),1+im) ∪ Line(0.0, 0.0) == Line(0.0, 1+im) @test Line(0.1+im, 0.1+im) ∪ Line(0.0,0.0) == Line(0,0.1+im) @test_throws ArgumentError l ∪ Line(0.0, 1+im) @test_throws ArgumentError l ∪ Line(0.1+im, 1+im) @test_throws ArgumentError Line(0.1+im, 1+im) ∪ Line(0.0,0.0) end @testset "Rectangles" begin r = Rectangle(0.0, 1.0+im) @test 0.5r == Rectangle(0.0, 0.5+0.5im) @test range(r, 11) == range(0.0, stop=1.0+im, length=11) @test r ∪ Rectangle(0.5*(1+im), 1.5*(1+im)) == Rectangle(0, 1.5*(1+im)) end end @testset "Spectral ranges" begin A = Diagonal([1.0, 2]) λ = spectral_range(A) @test λ isa Line @test λ.a ≈ 1.0 @test λ.b ≈ 2.0 λim = spectral_range(-im*A) @test λim isa Line @test λim.a ≈ -2.0im @test λim.b ≈ -1.0im λcomp = spectral_range(exp(-im*π/4)*A) @test λcomp isa Rectangle @test λcomp.a ≈ √2*(0.5 - im) @test λcomp.b ≈ √2*(1 - 0.5im) λt = spectral_range(-1:0.1:1, A) @test λt isa Line @test λt.a ≈ -2.0 @test λt.b ≈ 2.0 end
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
2641
# MatrixPolynomials.jl [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jagot.github.io/MatrixPolynomials.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jagot.github.io/MatrixPolynomials.jl/dev) [![Build Status](https://github.com/jagot/MatrixPolynomials.jl/workflows/CI/badge.svg)](https://github.com/jagot/MatrixPolynomials.jl/actions) [![Coverage](https://codecov.io/gh/jagot/MatrixPolynomials.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jagot/MatrixPolynomials.jl) This package aids in the computation of the action of a matrix polynomial on a vector, i.e. `p(A)v`, where `A` is a (square) matrix (or a linear operator) that is supplied to the polynomial `p`. The matrix polynomial `p(A)` is never formed explicitly, instead only its action on `v` is evaluated. This is commonly used in time-stepping algorithms for ordinary differential equations (ODEs) and discretized partial differential equations (PDEs) where `p` is an approximation of the exponential function (or the related `φ` functions: `φ₀(z) = exp(z)`, `φₖ₊₁ = [φₖ(z)-φₖ(0)]/z`, `φₖ(0)=1/k!`) on the field-of-values of the matrix `A`, which for the methods in this package needs to be known before-hand. ## Alternatives Other packages with similar goals, but instead based on matrix polynomials found via Krylov iterations are - https://github.com/JuliaDiffEq/ExponentialUtilities.jl - https://github.com/Jutho/KrylovKit.jl Krylov iterations do not need to know the field-of-values of the matrix `A` before-hand, instead, an orthogonal basis is built-up on-the-fly, by repeated action of `A` on test vectors: `Aⁿ*v`. This process is however very sensitive to the condition number of `A`, something that can be alleviated by iterating a shifted and inverted matrix instead: `(A-σI)⁻¹` (rational Krylov). Not all matrices/linear operators are easily inverted/factorized, however. Moreover, the Krylov iterations for general matrices (then called Arnoldi iterations) require long-term recurrences with mutual orthogonalization along with inner products, all of which can be costly to compute. Finally, a subspace approximation of the polynomial `p` of a upper Hessenberg matrix needs to computed. The real-symmetric/complex-Hermitian case (Lanczos iterations) reduces to three-term recurrences and a tridiagonal subspace matrix. In contrast, the polynomial methods of this packages two-term recurrences only, no orthogonalization (and hence no inner products), and finally no evaluation of the polynomial on a subspace matrix. This could potentially mean that the methods are easier to implement on a GPU.
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
8303
# Divided differences The divided differences of a function ``f`` with respect to a set of interpolation points ``\{\zeta_i\}`` is defined as [^McCurdy] ```math \begin{equation} \label{eqn:div-diff-def} \divdiff(\zeta_{i:j})f \defd \frac{1}{2\pi\im} \oint \diff{z} \frac{f(z)}{(z-\zeta_i)(z-\zeta_{i+1})...(z-\zeta_j)}, \end{equation} ``` where the integral is taken along a simple contour encircling the poles once. A common approach to evaluate the divided differences of ``f``, and an alternative definition, is the recursive scheme ```math \begin{equation} \label{eqn:div-diff-recursive} \tag{\ref{eqn:div-diff-def}*} \divdiff(\zeta_{i:j},z)f \defd \frac{\divdiff(\zeta_{i:j-1},z)f-\divdiff(\zeta_{i:j})f}{z - \zeta_j}, \quad \divdiff(\zeta_i,z)f \defd \frac{\divdiff(z)f-\divdiff(\zeta_i)f}{z - \zeta_i}, \quad \divdiff(z)f \defd f(z), \end{equation} ``` which, however, is prone to catastrophic cancellation for very small ``\abs{\zeta_i-\zeta_j}``. This can be partially alleviated by employing `BigFloat`s, but that will only postpone the breakdown, albeit with ~40 orders of magnitude, which might be enough for practical purposes (but much slower). [`MatrixPolynomials.ts_div_diff_table`](@ref) is based upon the fact the divided differences in a third way can be computed as [^McCurdy][^Opitz] ```math \begin{equation} \label{eqn:div-diff-mat-fun} \tag{\ref{eqn:div-diff-def}†} \divdiff(\zeta_{i:j})f \defd \vec{e}_1^\top f(\mat{Z}_{i:j}), \end{equation} ``` i.e. the first row of the function ``f`` applied to the matrix ```math \begin{equation} \mat{Z}_{i:j}\defd \bmat{ \zeta_i&1&\\ &\zeta_{i+1}&1\\ &&\ddots&\ddots\\ &&&\ddots&1\\ &&&&\zeta_j}. \end{equation} ``` The right-eigenvectors are given by [^Opitz] ```math \begin{equation} \label{eqn:div-diff-mat-right-eigen} \mat{Q}_\zeta = \{q_{ik}\}, \quad q_{ik} = \begin{cases} \prod_{j=i}^{k-1} (\zeta_k - \zeta_j)^{-1}, & i < k,\\ 1, & i = k,\\ 0, & \textrm{else}, \end{cases} \end{equation} ``` and similarly, the left-eigenvectors are given by ```math \begin{equation} \label{eqn:div-diff-mat-left-eigen} \tag{\ref{eqn:div-diff-mat-right-eigen}*} \mat{Q}_\zeta^{-1} = \{\conj{q}_{ik}\}, \quad \conj{q}_{ik} = \begin{cases} \prod_{j=i+1}^k (\zeta_i - \zeta_j)^{-1}, & i < k,\\ 1, & i = k,\\ 0, & \textrm{else}, \end{cases} \end{equation} ``` such that ```math \begin{equation} \divdiff(\zeta_{i:j})f= \mat{Q}_\zeta\mat{F}_\zeta\mat{Q}_\zeta^{-1},\quad \mat{F}_\zeta \defd \bmat{f(\zeta_i)\\&f(\zeta_{i+1})\\&&\ddots\\&&&f(\zeta_j)}. \end{equation} ``` However, straight evaluation of ``(\ref{eqn:div-diff-mat-right-eigen},\ref{eqn:div-diff-mat-left-eigen})`` is prone to the same kind of catastrophic cancellation as is ``\eqref{eqn:div-diff-recursive}``, so to evaluate ``\eqref{eqn:div-diff-mat-fun}``, one instead turns to Taylor or [Padé](https://en.wikipedia.org/wiki/Pad%C3%A9_approximant) expansions of ``f(\mat{Z}_{i:j})`` [^McCurdy][^Caliari], or interpolation polynomial basis changes [^Zivcovich]. As an illustration, we show the divided differences of `exp` over 100 points uniformly spread over ``[-2,2]``, calculated using ``\eqref{eqn:div-diff-recursive}``, in `Float64` and `BigFloat` precision, along with a Taylor expansion of ``\eqref{eqn:div-diff-mat-fun}``: ![Illustration of divided differences accuracy](figures/div_differences_cancellation.svg) It can clearly be seen that the Taylor expansion is not susceptible to the catastrophic cancellation. Thanks to the general implementation of divided differences using Taylor expansions of the desired function, it is very easy to generate [Newton polynomials](@ref) approximating the function on an interval: ```julia-repl julia> import MatrixPolynomials: Leja, points, NewtonPolynomial, ⏃ julia> μ = 10.0 # Extent of interval 10.0 julia> m = 40 # Number of Leja points 40 julia> ζ = points(Leja(μ*range(-1,stop=1,length=1000),m)) 40-element Array{Float64,1}: 10.0 -10.0 -0.01001001001001001 5.7757757757757755 -6.596596596596597 8.398398398398399 -8.6986986986987 -3.053053053053053 3.2132132132132134 9.43943943943944 -9.51951951951952 -4.794794794794795 7.137137137137137 1.5515515515515514 -7.757757757757758 9.7997997997998 -1.6116116116116117 -9.83983983983984 4.614614614614615 8.91891891891892 -5.7157157157157155 2.3723723723723724 -9.11911911911912 7.757757757757758 -3.873873873873874 6.416416416416417 -8.218218218218219 9.91991991991992 -0.8108108108108109 -9.93993993993994 3.973973973973974 -7.137137137137137 9.1991991991992 -2.3523523523523524 0.8108108108108109 -9.67967967967968 9.63963963963964 5.235235235235235 -5.275275275275275 8.078078078078079 julia> d = ⏃(sin, ζ, 1, 0, 1) 40-element Array{Float64,1}: -0.5440211108893093 -0.05440211108893093 0.00010554419095304635 0.00042707706157334835 0.00017816519362596795 -0.00015774261733182256 -3.046393737965622e-6 -1.7726427136510242e-6 -1.2091185654301347e-7 8.298167162094031e-8 1.623156704750302e-9 -2.1182984780033414e-9 3.072198477098241e-11 2.690974958064657e-11 7.708729505182354e-13 -1.385345395017015e-13 2.081712029555509e-15 6.103669805230243e-16 4.2232933731665444e-18 -2.098152059762693e-18 7.153277579328475e-21 6.390881616124369e-21 7.322223484376659e-23 -1.3419887223602703e-23 -4.050939196813086e-26 2.4794777140850798e-26 1.268544482329477e-28 -3.581342740292682e-29 2.7876085130074983e-31 4.786776652095869e-32 8.943705105911237e-36 -5.432439158165548e-35 9.88206793819289e-38 5.559232062626121e-38 -1.2016071877913981e-41 -4.710497689585078e-41 7.660823607389171e-45 3.728816926131357e-44 -4.378275580359998e-48 -2.577149389756008e-47 julia> np = NewtonPolynomial(ζ, d) Newton polynomial of degree 39 on -10.0..10.0 julia> x = range(-μ, stop=μ, length=1000) -10.0:0.02002002002002002:10.0 julia> f_np = np.(x); julia> f_exact = sin.(x); ``` Behind the scenes, [`MatrixPolynomials.taylor_series`](@ref) is used to generate the Taylor expansion of ``\sin(x)``, and when an approximation of ``\sin(\tau \mat{Z})`` has been computed, the full divided difference table ``\sin(\mat{Z})`` is recovered using [`MatrixPolynomials.propagate_div_diff`](@ref). ![Reconstruction of sine using divided differences](figures/div_differences_sine.svg) ## Reference ```@docs MatrixPolynomials.⏃ MatrixPolynomials.std_div_diff MatrixPolynomials.ts_div_diff_table MatrixPolynomials.φₖ_div_diff_basis_change MatrixPolynomials.div_diff_table_basis_change MatrixPolynomials.min_degree ``` ### Taylor series ```@docs MatrixPolynomials.TaylorSeries MatrixPolynomials.taylor_series MatrixPolynomials.closure ``` ### Scaling For the computation of ``\exp(A)``, a common approach when ``|A|`` is large is to compute ``[\exp(A/s)]^s`` instead. This is known as _scaling and squaring_, if ``s`` is selected to be a power-of-two. Similar relationships can be found for other functions and are implemented for some using [`MatrixPolynomials.propagate_div_diff`](@ref). ```@docs MatrixPolynomials.propagate_div_diff MatrixPolynomials.propagate_div_diff_sin_cos ``` ## Bibliography [^Caliari]: Caliari, M. (2007). Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing, 80(2), 189–201. [DOI: 10.1007/s00607-007-0227-1](http://dx.doi.org/10.1007/s00607-007-0227-1) [^McCurdy]: McCurdy, A. C., Ng, K. C., & Parlett, B. N. (1984). Accurate computation of divided differences of the exponential function. Mathematics of Computation, 43(168), 501–501. [DOI: 10.1090/s0025-5718-1984-0758198-0](http://dx.doi.org/10.1090/s0025-5718-1984-0758198-0) [^Opitz]: Opitz, G. (1964). Steigungsmatrizen. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 44(S1), [DOI: 10.1002/zamm.19640441321](http://dx.doi.org/10.1002/zamm.19640441321) [^Zivcovich]: Zivcovich, F. (2019). Fast and accurate computation of divided differences for analytic functions, with an application to the exponential function. Dolomites Research Notes on Approximation, 12(1), 28–42. [PDF: Zivcovich_2019_FAC.pdf](https://drna.padovauniversitypress.it/system/files/papers/Zivcovich_2019_FAC.pdf)
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
1260
# Functions of matrices ```@docs MatrixPolynomials.FuncV MatrixPolynomials.FuncV(f::Function, A, m::Integer, t=one(eltype(A)); distribution=:leja, leja_multiplier=100, tol=1e-15, kwargs...) LinearAlgebra.mul!(w, funcv::MatrixPolynomials.FuncV, v) ``` ## Spectral ranges and shapes ```@docs MatrixPolynomials.spectral_range MatrixPolynomials.hermitian_spectral_range ``` ### Shapes The shapes in the complex plane are mainly used to generate suitable distributions of [Leja points](@ref), which are in turn used to generate [Newton polynomials](@ref) that efficiently approximate various functions on the field-of-values of a matrix ``\mat{A}`` which is contained within the spectral shape. ```@docs MatrixPolynomials.Shape ``` #### Lines ```@docs MatrixPolynomials.Line Base.:(*)(n::Number, l::MatrixPolynomials.Line) Base.range(l::MatrixPolynomials.Line, n) Statistics.mean(l::MatrixPolynomials.Line) Base.union(a::MatrixPolynomials.Line, b::MatrixPolynomials.Line) ``` #### Rectangles ```@docs MatrixPolynomials.Rectangle Base.:(*)(n::Number, l::MatrixPolynomials.Rectangle) Base.range(l::MatrixPolynomials.Rectangle, n) Statistics.mean(l::MatrixPolynomials.Rectangle) Base.union(a::MatrixPolynomials.Rectangle, b::MatrixPolynomials.Rectangle) ```
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
740
# MatrixPolynomials.jl The main purpose of this package is to provide polynomial approximations to ``f(\mat{A})``, i.e. the function of a matrix ``\mat{A}`` for which the field-of-values ``W(\mat{A}) \subset \Complex`` (or equivalently the distribution of eigenvalues) is known _a priori_. If this is the case, a polynomial approximation ``p(z) \approx f(z)`` for ``z \in W(\mat{A})`` can be constructed, and this can subsequently be used, substituting ``\mat{A}`` for ``z``. This is in contrast to Krylov-based methods, where the matrix polynomials are generated on-the-fly, without any prior knowledge of ``W(\mat{A})`` (even though knowledge _can_ be used to speed up the convergence of the Krylov iterations). ## Index ```@index ```
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
4288
# Leja points A common problem in polynomial interpolation of functions, is that when the number of interpolation points is increased, the interpolation polynomial becomes ill-conditioned ([overfitting](https://en.wikipedia.org/wiki/Overfitting)). It can be shown that interpolation at the roots of the [Chebyshev polynomials ](https://en.wikipedia.org/wiki/Chebyshev_polynomials) yields the best approximation, however, it is difficult to generate successively better approximations, since the roots of the Chebyshev polynomial of degree ``m`` are not related to those of the polynomial of degree ``m-1``. The Leja points [^Leja] ``\{\zeta_i\}`` are generated from a set ``E \subset \Complex`` such that the next point in the sequence is maximally distant from all previously generated points: ```math \begin{equation} w(\zeta_j) \prod_{k=0}^{j-1} \abs{\zeta_j-\zeta_k} = \max_{\zeta\in E} w(\zeta) \prod_{k=0}^{j-1} \abs{\zeta - \zeta_k}, \end{equation} ``` with ``w(\zeta)`` being an optional weight function (unity hereinafter). Interpolating a function on the Leja points largely avoids the overfitting problems and performs similarly to Chebyshev interpolation [^Reichel], while still allowing for iteratively improved approximation by the addition of more interpolation points. MatrixPolynomials.jl provides two methods for generating the Leja points, [`MatrixPolynomials.Leja`](@ref) and [`MatrixPolynomials.FastLeja`](@ref)[^Baglama]. The figure below illustrates the distribution of Leja points using both methods, on the line ``[-2,2]``, for the [`MatrixPolynomials.Leja`](@ref), an underlying discretization of 1000 points was employed, and 10 Leja points were generated. The lower part of the plot shows the estimation of the [capacity](https://en.wikipedia.org/wiki/Capacity_of_a_set), calculated as ```math C(\{\zeta_{1:m}\}) \approx \left|\left(\prod_{i=1}^{m-1} |\zeta_m-\zeta_i|\right)\right|^{1/m}. ``` For the set ``[-2,2]``, the capacity is unity, which is approached for increasing values of ``m``. ```julia-repl julia> import MatrixPolynomials: Leja, FastLeja julia> m = 10 10 julia> a,b = -2,2 (-2, 2) julia> l = Leja(range(a, stop=b, length=1000), m) Leja{Float64}([-1.995995995995996, -1.991991991991992, -1.987987987987988, -1.983983983983984, -1.97997997997998, -1.975975975975976, -1.971971971971972, -1.967967967967968, -1.9639639639639639, -1.95995995995996 … 1.95995995995996, 1.9639639639639639, 1.967967967967968, 1.971971971971972, 1.975975975975976, 1.97997997997998, 1.983983983983984, 1.987987987987988, 1.991991991991992, 1.995995995995996], [2.0, -2.0, -0.002002002002002002, 1.155155155155155, -1.3193193193193193, 1.6796796796796796, -1.7397397397397398, -0.6106106106106106, 0.6426426426426426, 1.887887887887888], [0.0, 4.0, 3.9999959919879844, 3.084537289340691, 7.36488275292736, 3.118030920568761, 7.038861956228758, 7.143962613999413, 7.199339458696, 4.549146401863414]) julia> fl = FastLeja(a, b, m) FastLeja{Float64}([2.0, -2.0, 0.0, -1.0, 1.0, -1.5, 1.5, 0.5, -1.75, 1.75], [-3.111827946268022, -1.5140533447265625, 7.91015625, -1.3255691528320312, -3.0929946899414062, 0.6718902150169015, 1.1896133422851562, 1.2691259616985917, -1.8015846004709601, 2.6076411906e-314], [-1.875, 0.25, -0.5, 1.25, -1.25, 1.625, 0.75, -1.625, 1.875, 1.5e-323], [2, 3, 4, 5, 6, 7, 8, 9, 10, 2], [9, 8, 3, 7, 4, 10, 5, 6, 1, 4570435120]) ``` ![Leja points](figures/leja_points.svg) ## Reference ```@docs MatrixPolynomials.Leja MatrixPolynomials.Leja(S::AbstractVector{T}, n::Integer) where T MatrixPolynomials.leja! MatrixPolynomials.FastLeja MatrixPolynomials.fast_leja! MatrixPolynomials.points ``` ## Bibliography [^Leja]: Leja, F. (1957). Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme. Annales Polonici Mathematici, 4(1), 8–13. [DOI: 10.4064/ap-4-1-8-13](http://dx.doi.org/10.4064/ap-4-1-8-13) [^Reichel]: Reichel, L. (1990). Newton Interpolation At Leja Points. BIT, 30(2), 332–346. [DOI: 10.1007/bf02017352](http://dx.doi.org/10.1007/bf02017352) [^Baglama]: Baglama, J., Calvetti, D., & Reichel, L. (1998). Fast Leja points. Electron. Trans. Numer. Anal, 7(124-140), 119–120. [URL: https://elibm.org/article/10006464](https://elibm.org/article/10006464)
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
692
# Newton polynomials [^Kandolf] ```@docs MatrixPolynomials.NewtonPolynomial MatrixPolynomials.NewtonPolynomial(f::Function, ζ::AbstractVector) MatrixPolynomials.NewtonMatrixPolynomial LinearAlgebra.mul!(w, nmp::MatrixPolynomials.NewtonMatrixPolynomial, A, v) ``` ## Error estimators ```@docs MatrixPolynomials.NewtonMatrixPolynomialDerivative MatrixPolynomials.φₖResidualEstimator ``` ## Bibliography [^Kandolf]: Kandolf, P., Ostermann, A., & Rainer, S. (2014). A residual based error estimate for Leja interpolation of matrix functions. Linear Algebra and its Applications, 456(nil), 157–173. [DOI: 10.1016/j.laa.2014.04.023](http://dx.doi.org/10.1016/j.laa.2014.04.023)
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.1.3
bab42666bb420d4481f99e6bae9615229ead71ec
docs
4081
# φₖ functions ## Definition These are defined recursively through ```math \begin{equation} \label{eqn:phi-k-recursive} \varphi_0(z) \defd \ce^z, \quad \varphi_1(z) \defd \frac{\ce^z-1}{z}, \quad \varphi_{k+1}(z) \defd \frac{\varphi_k(z)-\varphi_k(0)}{z}, \quad \varphi_k(0)=\frac{1}{k!}. \end{equation} ``` An alternate definition is ```math \begin{equation} h^k \varphi_k(hz) = \int_0^h \diff{s} \ce^{(h-s)z} \frac{s^{k-1}}{(k-1)!}. \end{equation} ``` ## Accuracy ### Accuracy for ``k=1`` ```math \begin{equation} \label{eqn:phi-1-naive} \varphi_1(z) \equiv \frac{\ce^z-1}{z} \end{equation} ``` This is a common example of catastrophic cancellation; for small ``\abs{z}``, ``\ce^z - 1\approx 0``, and we thus divide a small number by a small number. By employing a trick shown by e.g. Higham, N. (2002). Accuracy and stability of numerical algorithms. Philadelphia: Society for Industrial and Applied Mathematics. we can substantially improve accuracy: ```math \begin{equation} \label{eqn:phi-1-accurate} \varphi_1(z) = \begin{cases} 1, & \abs{z} < \varepsilon,\\ \frac{\ce^z-1}{\log\ce^z}, & \varepsilon < \abs{z} < 1, \\ \frac{\ce^z-1}{z}, & \textrm{else}. \end{cases} \end{equation} ``` ![Illustration of φ₁ accuracy](figures/phi_1_accuracy.svg) The solid line corresponds to the naïve implementation ``\eqref{eqn:phi-1-naive}``, whereas the dashed line corresponds to the accurate implementation ``\eqref{eqn:phi-1-accurate}``. ### Accuracy for ``k > 1 `` For a Taylor expansion of a function ``f(x)``, we have ```math \begin{equation} f(x-a) = \underbrace{\sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (x-a)^i}_{\defd T_n(x)} + \underbrace{\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}}_{\defd R_n(x)}, \quad \xi \in [a,x] \end{equation} ``` We now Taylor expand ``\ce^{(h-s)z}`` about ``z=0``: ```math \begin{equation} \ce^{(h-s)z} = \sum_{i=0}^n \frac{z^i(h-s)^i}{i!} + \frac{\ce^{(h-s)\zeta}\zeta^{n+1}(h-s)^{n+1}}{(n+1)!}, \quad \abs{\zeta} \leq z. \end{equation} ``` With this, we now calculate the definite integral appearing in the definition of ``\varphi_k``: ```math \begin{equation} \begin{aligned} \int_0^h\diff{s} \ce^{(h-s)z} s^{k-1} &= \int_0^h\diff{s} \sum_{i=0}^n \frac{z^i(h-s)^is^{k-1}}{i!} + \int_0^h\diff{s} \frac{\ce^{(h-s)\zeta}\zeta^{n+1}(h-s)^{n+1}s^{k-1}}{(n+1)!} \\ &= \sum_{i=0}^n \frac{z^i}{i!} \int_0^h\diff{s} (h-s)^is^{k-1} + \int_0^h\diff{s} \frac{\ce^{(h-s)\zeta}\zeta^{n+1}(h-s)^{n+1}s^{k-1}}{(n+1)!}. \end{aligned} \end{equation} ``` For the case we are interested in, ``h=1`` and the first integral is equivalent to [Euler's beta function](https://en.wikipedia.org/wiki/Beta_function): ```math \begin{equation} \int_0^1\diff{s} s^{k-1}(1-s)^i \equiv \Beta(k,i+1) \equiv \frac{\Gamma(k)\Gamma(i+1)}{\Gamma(k+i+1)}, \end{equation} ``` which, for integer ``k,i`` has the following value ```math \begin{equation} \Beta(k,i+1) = \frac{(k-1)!i!}{(k+i)!}. \end{equation} ``` Inserting this into the integral (having set ``h=1``), we find ```math \begin{equation} \label{eqn:phi-k-expansion} \varphi_k(z) = \sum_{i=0}^n \frac{z^{i}}{(k+i)!} +\int_0^1\diff{s} R_n(s,\zeta), \end{equation} ``` where we have made explicit the dependence of the [Lagrange remainder](https://en.wikipedia.org/wiki/Taylor%27s_theorem#Explicit_formulas_for_the_remainder) ``R_n(s,\zeta)`` on ``s``. Some numerical testing seems to indicate it is enough to set ``n=k`` in the Taylor expansion ``\eqref{eqn:phi-k-expansion}`` to get accurate evaluation of ``\phi_k(x)`` for small ``\abs{x}``, ``x\in\mathbb{R}``. For general ``z``, the amount of required terms seems higher, so ``n`` is currently set to ``10k``. ![Illustration of φ₁ accuracy](figures/phi_k_accuracy.svg) The plot includes ``\phi_k(z)`` for ``k\in\{0..100\}``. To illustrate the rounding errors that would occur if one were to use the recursive definition ``\eqref{eqn:phi-k-recursive}`` directly , we plot ``\varphi_k(x)``, but for ``k\in\{0..4\}`` only: ![Illustration of φ₁ accuracy](figures/phi_k_naive_accuracy.svg) ## Reference ```@docs MatrixPolynomials.φ₁ MatrixPolynomials.φ ```
MatrixPolynomials
https://github.com/jagot/MatrixPolynomials.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
1074
module Formatting import Base.show using Printf, Logging export FormatSpec, FormatExpr, printfmt, printfmtln, fmt, format, sprintf1, generate_formatter if ccall(:jl_generating_output, Cint, ()) == 1 @warn """ DEPRECATION NOTICE Formatting.jl has been unmaintained for a while, with some serious correctness bugs compromising the original purpose of the package. As a result, it has been deprecated - consider using an alternative, such as `Format.jl` (https://github.com/JuliaString/Format.jl) or the `Printf` stdlib directly. If you are not using Formatting.jl as a direct dependency, please consider opening an issue on any packages you are using that do use it as a dependency. From Julia 1.9 onwards, you can query `]why Formatting` to figure out which package originally brings it in as a dependency. """ end include("cformat.jl" ) include("fmtspec.jl") include("fmtcore.jl") include("formatexpr.jl") end # module
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
10612
formatters = Dict{ String, Function }() sprintf1( fmt::String, x ) = eval(Expr(:call, generate_formatter( fmt ), x)) function checkfmt(fmt) @static if VERSION > v"1.6.0-DEV.854" test = Printf.Format(fmt) length(test.formats) == 1 || error( "Only one AND undecorated format string is allowed") else test = @static VERSION >= v"1.4.0-DEV.180" ? Printf.parse(fmt) : Base.Printf.parse( fmt ) (length( test ) == 1 && typeof( test[1] ) <: Tuple) || error( "Only one AND undecorated format string is allowed") end end function generate_formatter( fmt::String ) global formatters haskey( formatters, fmt ) && return formatters[fmt] if !occursin("'", fmt) checkfmt(fmt) formatter = @eval(x->@sprintf( $fmt, x )) return (formatters[ fmt ] = x->Base.invokelatest(formatter, x)) end conversion = fmt[end] conversion in "sduifF" || error( string("thousand separator not defined for ", conversion, " conversion") ) fmtactual = replace( fmt, "'" => "", count=1 ) checkfmt( fmtactual ) if !occursin(conversion, "sfF") formatter = @eval(x->checkcommas(@sprintf( $fmtactual, x ))) return (formatters[ fmt ] = x->Base.invokelatest(formatter, x)) end formatter = if endswith( fmtactual, 's') @eval((x::Real)->((eltype(x) <: Rational) ? addcommasrat(@sprintf( $fmtactual, x )) : addcommasreal(@sprintf( $fmtactual, x )))) else @eval((x::Real)->addcommasreal(@sprintf( $fmtactual, x ))) end return (formatters[ fmt ] = x->Base.invokelatest(formatter, x)) end function addcommasreal(s) dpos = findfirst( isequal('.'), s ) dpos !== nothing && return string(addcommas( s[1:dpos-1] ), s[ dpos:end ]) # find the rightmost digit for i in length( s ):-1:1 isdigit( s[i] ) && return string(addcommas( s[1:i] ), s[i+1:end]) end s end function addcommasrat(s) # commas are added to only the numerator spos = findfirst( isequal('/'), s ) string(addcommas( s[1:spos-1] ), s[spos:end]) end function checkcommas(s) for i in length( s ):-1:1 if isdigit( s[i] ) s = string(addcommas( s[1:i] ), s[i+1:end]) break end end s end function addcommas( s::String ) len = length(s) t = "" for i in 1:3:len subs = s[max(1,len-i-1):len-i+1] if i == 1 t = subs else if match( r"[0-9]", subs ) != nothing t = subs * "," * t else t = subs * t end end end return t end function generate_format_string(; width::Int=-1, precision::Int= -1, leftjustified::Bool=false, zeropadding::Bool=false, commas::Bool=false, signed::Bool=false, positivespace::Bool=false, alternative::Bool=false, conversion::String="f" #aAdecEfFiosxX ) s = "%" if commas s *= "'" end if alternative && in( conversion[1], "aAeEfFoxX" ) s *= "#" end if zeropadding && !leftjustified && width != -1 s *= "0" end if signed s *= "+" elseif positivespace s *= " " end if width != -1 if leftjustified s *= "-" * string( width ) else s *= string( width ) end end if precision != -1 s *= "." * string( precision ) end s * conversion end function format( x::T; width::Int=-1, precision::Int= -1, leftjustified::Bool=false, zeropadding::Bool=false, # when right-justified, use 0 instead of space to fill commas::Bool=false, signed::Bool=false, # +/- prefix positivespace::Bool=false, stripzeros::Bool=(precision== -1), parens::Bool=false, # use (1.00) instead of -1.00. Used in finance alternative::Bool=false, # usually for hex mixedfraction::Bool=false, mixedfractionsep::AbstractString="_", fractionsep::AbstractString="/", # num / den fractionwidth::Int = 0, tryden::Int = 0, # if 2 or higher, try to use this denominator, without losing precision suffix::AbstractString="", # useful for units/% autoscale::Symbol=:none, # :metric, :binary or :finance conversion::String="" ) where {T<:Real} checkwidth = commas if conversion == "" if T <: AbstractFloat || T <: Rational && precision != -1 actualconv = "f" elseif T <: Unsigned actualconv = "x" elseif T <: Integer actualconv = "d" else conversion = "s" actualconv = "s" end else actualconv = conversion end if signed && commas error( "You cannot use signed (+/-) AND commas at the same time") end if T <: Rational && conversion == "s" stripzeros = false end if ( T <: AbstractFloat && actualconv == "f" || T <: Integer ) && autoscale != :none actualconv = "f" if autoscale == :metric scales = [ (1e24, "Y" ), (1e21, "Z" ), (1e18, "E" ), (1e15, "P" ), (1e12, "T" ), (1e9, "G"), (1e6, "M"), (1e3, "k") ] if abs(x) > 1 for (mag, sym) in scales if abs(x) >= mag x /= mag suffix = sym * suffix break end end elseif T <: AbstractFloat smallscales = [ ( 1e-12, "p" ), ( 1e-9, "n" ), ( 1e-6, "μ" ), ( 1e-3, "m" ) ] for (mag,sym) in smallscales if abs(x) < mag*10 x /= mag suffix = sym * suffix break end end end else if autoscale == :binary scales = [ (1024.0 ^8, "Yi" ), (1024.0 ^7, "Zi" ), (1024.0 ^6, "Ei" ), (1024.0 ^5, "Pi" ), (1024.0 ^4, "Ti" ), (1024.0 ^3, "Gi"), (1024.0 ^2, "Mi"), (1024.0, "Ki") ] else # :finance scales = [ (1e12, "t" ), (1e9, "b"), (1e6, "m"), (1e3, "k") ] end for (mag, sym) in scales if abs(x) >= mag x /= mag suffix = sym * suffix break end end end end nonneg = x >= 0 fractional = 0 if T <: Rational && mixedfraction actualconv = "d" actualx = trunc( Int, x ) fractional = abs(x) - abs(actualx) else if parens && !in( actualconv[1], "xX" ) actualx = abs(x) else actualx = x end end s = sprintf1( generate_format_string( width=width, precision=precision, leftjustified=leftjustified, zeropadding=zeropadding, commas=commas, signed=signed, positivespace=positivespace, alternative=alternative, conversion=actualconv ),actualx) if T <:Rational && conversion == "s" if mixedfraction && fractional != 0 num = fractional.num den = fractional.den if tryden >= 2 && mod( tryden, den ) == 0 num *= div(tryden,den) den = tryden end fs = string( num ) * fractionsep * string(den) if length(fs) < fractionwidth fs = repeat( "0", fractionwidth - length(fs) ) * fs end s = rstrip(s) if actualx != 0 s = rstrip(s) * mixedfractionsep * fs else if !nonneg s = "-" * fs else s = fs end end checkwidth = true elseif !mixedfraction s = replace( s, "//" => fractionsep ) checkwidth = true end elseif stripzeros && in( actualconv[1], "fFeEs" ) dpos = findfirst( isequal('.'), s ) if in( actualconv[1], "eEs" ) if in( actualconv[1], "es" ) epos = findfirst( isequal('e'), s ) else epos = findfirst( isequal('E'), s ) end if epos === nothing rpos = length( s ) else rpos = epos-1 end else rpos = length(s) end # rpos at this point is the rightmost possible char to start # stripping stripfrom = rpos+1 for i = rpos:-1:dpos+1 if s[i] == '0' stripfrom = i elseif s[i] ==' ' continue else break end end if stripfrom <= rpos if stripfrom == dpos+1 # everything after decimal is 0, so strip the decimal too stripfrom = dpos end s = s[1:stripfrom-1] * s[rpos+1:end] checkwidth = true end end s *= suffix if parens && !in( actualconv[1], "xX" ) # if zero or positive, we still need 1 white space on the right if nonneg s = " " * strip(s) * " " else s = "(" * strip(s) * ")" end checkwidth = true end if checkwidth && width != -1 if length(s) > width s = replace( s, " " => "", count=length(s)-width ) if length(s) > width && endswith( s, " " ) s = reverse( replace( reverse(s), " " => "", count=length(s)-width ) ) end if length(s) > width s = replace( s, "," => "", count=length(s)-width ) end elseif length(s) < width if leftjustified s = s * repeat( " ", width - length(s) ) else s = repeat( " ", width - length(s) ) * s end end end s end
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
6827
# core formatting functions ### auxiliary functions ### print char n times function _repprint(out::IO, c::Char, n::Int) while n > 0 print(out, c) n -= 1 end end ### print string or char function _pfmt_s(out::IO, fs::FormatSpec, s::Union{AbstractString,Char}) wid = fs.width slen = length(s) if wid <= slen print(out, s) else a = fs.align if a == '<' print(out, s) _repprint(out, fs.fill, wid-slen) else _repprint(out, fs.fill, wid-slen) print(out, s) end end end ### print integers _mul(x::Integer, ::_Dec) = x * 10 _mul(x::Integer, ::_Bin) = x << 1 _mul(x::Integer, ::_Oct) = x << 3 _mul(x::Integer, ::Union{_Hex, _HEX}) = x << 4 _div(x::Integer, ::_Dec) = div(x, 10) _div(x::Integer, ::_Bin) = x >> 1 _div(x::Integer, ::_Oct) = x >> 3 _div(x::Integer, ::Union{_Hex, _HEX}) = x >> 4 function _ndigits(x::Integer, op) # suppose x is non-negative m = 1 q = _div(x, op) while q > 0 m += 1 q = _div(q, op) end return m end _ipre(op) = "" _ipre(::Union{_Hex, _HEX}) = "0x" _ipre(::_Oct) = "0o" _ipre(::_Bin) = "0b" _digitchar(x::Integer, ::_Bin) = Char(x == 0 ? '0' : '1') _digitchar(x::Integer, ::_Dec) = Char('0' + x) _digitchar(x::Integer, ::_Oct) = Char('0' + x) _digitchar(x::Integer, ::_Hex) = Char(x < 10 ? '0' + x : 'a' + (x - 10)) _digitchar(x::Integer, ::_HEX) = Char(x < 10 ? '0' + x : 'A' + (x - 10)) _signchar(x::Real, s::Char) = signbit(x) ? '-' : s == '+' ? '+' : s == ' ' ? ' ' : '\0' function _pfmt_int(out::IO, sch::Char, ip::String, zs::Integer, ax::Integer, op::Op) where {Op} # print sign if sch != '\0' print(out, sch) end # print prefix if !isempty(ip) print(out, ip) end # print padding zeros if zs > 0 _repprint(out, '0', zs) end # print actual digits if ax == 0 print(out, '0') else _pfmt_intdigits(out, ax, op) end end function _pfmt_intdigits(out::IO, ax::T, op::Op) where {Op, T<:Integer} b_lb = _div(ax, op) b = one(T) while b <= b_lb b = _mul(b, op) end r = ax while b > 0 (q, r) = divrem(r, b) print(out, _digitchar(q, op)) b = _div(b, op) end end function _pfmt_i(out::IO, fs::FormatSpec, x::Integer, op::Op) where {Op} # calculate actual length ax = abs(x) xlen = _ndigits(abs(x), op) # sign char sch = _signchar(x, fs.sign) if sch != '\0' xlen += 1 end # prefix (e.g. 0x, 0b, 0o) ip = "" if fs.ipre ip = _ipre(op) xlen += length(ip) end # printing wid = fs.width if wid <= xlen _pfmt_int(out, sch, ip, 0, ax, op) elseif fs.zpad _pfmt_int(out, sch, ip, wid-xlen, ax, op) else a = fs.align if a == '<' _pfmt_int(out, sch, ip, 0, ax, op) _repprint(out, fs.fill, wid-xlen) else _repprint(out, fs.fill, wid-xlen) _pfmt_int(out, sch, ip, 0, ax, op) end end end ### print floating point numbers function _pfmt_float(out::IO, sch::Char, zs::Integer, intv::Real, decv::Real, prec::Int) # print sign if sch != '\0' print(out, sch) end # print padding zeros if zs > 0 _repprint(out, '0', zs) end idecv = round(Integer, decv * exp10(prec)) # print integer part if intv == 0 print(out, '0') else _pfmt_intdigits(out, intv, _Dec()) end # print decimal point print(out, '.') # print decimal part if prec > 0 nd = _ndigits(idecv, _Dec()) if nd < prec _repprint(out, '0', prec - nd) end _pfmt_intdigits(out, idecv, _Dec()) end end function _pfmt_f(out::IO, fs::FormatSpec, x::AbstractFloat) # separate sign, integer, and decimal part rax = round(abs(x), digits = fs.prec) sch = _signchar(x, fs.sign) intv = trunc(Integer, rax) decv = rax - intv # calculate length xlen = _ndigits(intv, _Dec()) + 1 + fs.prec if sch != '\0' xlen += 1 end # print wid = fs.width if wid <= xlen _pfmt_float(out, sch, 0, intv, decv, fs.prec) elseif fs.zpad _pfmt_float(out, sch, wid-xlen, intv, decv, fs.prec) else a = fs.align if a == '<' _pfmt_float(out, sch, 0, intv, decv, fs.prec) _repprint(out, fs.fill, wid-xlen) else _repprint(out, fs.fill, wid-xlen) _pfmt_float(out, sch, 0, intv, decv, fs.prec) end end end function _pfmt_floate(out::IO, sch::Char, zs::Integer, u::Real, prec::Int, e::Integer, ec::Char) intv = trunc(Integer,u) decv = u - intv if intv == 0 && decv != 0 intv = 1 decv -= 1 end _pfmt_float(out, sch, zs, intv, decv, prec) print(out, ec) if e >= 0 print(out, '+') else print(out, '-') e = -e end if e < 10 print(out, '0') end _pfmt_intdigits(out, e, _Dec()) end function _pfmt_e(out::IO, fs::FormatSpec, x::AbstractFloat) # extract sign, significand, and exponent ax = abs(x) sch = _signchar(x, fs.sign) if ax == 0.0 e = 0 u = zero(x) else rax = round(ax, sigdigits = fs.prec + 1) e = floor(Integer, log10(rax)) # exponent u = rax * exp10(-e) # significand i = 1 while u == Inf u = 10^i * rax * exp10(-e - i) i += 1 end end # calculate length xlen = 6 + fs.prec if abs(e) > 99 xlen += _ndigits(abs(e), _Dec()) - 2 end if sch != '\0' xlen += 1 end # print ec = isuppercase(fs.typ) ? 'E' : 'e' wid = fs.width if wid <= xlen _pfmt_floate(out, sch, 0, u, fs.prec, e, ec) elseif fs.zpad _pfmt_floate(out, sch, wid-xlen, u, fs.prec, e, ec) else a = fs.align if a == '<' _pfmt_floate(out, sch, 0, u, fs.prec, e, ec) _repprint(out, fs.fill, wid-xlen) else _repprint(out, fs.fill, wid-xlen) _pfmt_floate(out, sch, 0, u, fs.prec, e, ec) end end end function _pfmt_g(out::IO, fs::FormatSpec, x::AbstractFloat) # number decomposition ax = abs(x) if 1.0e-4 <= ax < 1.0e6 _pfmt_f(out, fs, x) else _pfmt_e(out, fs, x) end end function _pfmt_specialf(out::IO, fs::FormatSpec, x::AbstractFloat) if isinf(x) if x > 0 _pfmt_s(out, fs, "Inf") else _pfmt_s(out, fs, "-Inf") end else @assert isnan(x) _pfmt_s(out, fs, "NaN") end end
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
5340
# formatting specification # formatting specification language # # spec ::= [[fill]align][sign][#][0][width][,][.prec][type] # fill ::= <any character> # align ::= '<' | '>' # sign ::= '+' | '-' | ' ' # width ::= <integer> # prec ::= <integer> # type ::= 'b' | 'c' | 'd' | 'e' | 'E' | 'f' | 'F' | 'g' | 'G' | # 'n' | 'o' | 'x' | 'X' | 's' # # Please refer to http://docs.python.org/2/library/string.html#formatspec # for more details # ## FormatSpec type const _numtypchars = Set(['b', 'd', 'e', 'E', 'f', 'F', 'g', 'G', 'n', 'o', 'x', 'X']) _tycls(c::Char) = (c == 'd' || c == 'n' || c == 'b' || c == 'o' || c == 'x') ? 'i' : (c == 'e' || c == 'f' || c == 'g') ? 'f' : (c == 'c') ? 'c' : (c == 's') ? 's' : error("Invalid type char $(c)") struct FormatSpec cls::Char # category: 'i' | 'f' | 'c' | 's' typ::Char fill::Char align::Char sign::Char width::Int prec::Int ipre::Bool # whether to prefix 0b, 0o, or 0x zpad::Bool # whether to do zero-padding tsep::Bool # whether to use thousand-separator function FormatSpec(typ::Char; fill::Char=' ', align::Char='\0', sign::Char='-', width::Int=-1, prec::Int=-1, ipre::Bool=false, zpad::Bool=false, tsep::Bool=false) if align=='\0' align = (typ in _numtypchars) ? '>' : '<' end cls = _tycls(lowercase(typ)) if cls == 'f' && prec < 0 prec = 6 end new(cls, typ, fill, align, sign, width, prec, ipre, zpad, tsep) end end function show(io::IO, fs::FormatSpec) println(io, "$(typeof(fs))") println(io, " cls = $(fs.cls)") println(io, " typ = $(fs.typ)") println(io, " fill = $(fs.fill)") println(io, " align = $(fs.align)") println(io, " sign = $(fs.sign)") println(io, " width = $(fs.width)") println(io, " prec = $(fs.prec)") println(io, " ipre = $(fs.ipre)") println(io, " zpad = $(fs.zpad)") println(io, " tsep = $(fs.tsep)") end ## parse FormatSpec from a string const _spec_regex = r"^(.?[<>])?([ +-])?(#)?(\d+)?(,)?(.\d+)?([bcdeEfFgGnosxX])?$" function FormatSpec(s::AbstractString) # default spec _fill = ' ' _align = '\0' _sign = '-' _width = -1 _prec = -1 _ipre = false _zpad = false _tsep = false _typ = 's' if !isempty(s) m = match(_spec_regex, s) if m == nothing error("Invalid formatting spec: $(s)") end (a1, a2, a3, a4, a5, a6, a7) = m.captures # a1: [[fill]align] if a1 != nothing if length(a1) == 1 _align = a1[1] else _fill = a1[1] _align = a1[nextind(a1, 1)] end end # a2: [sign] if a2 != nothing _sign = a2[1] end # a3: [#] if a3 != nothing _ipre = true end # a4: [0][width] if a4 != nothing if a4[1] == '0' _zpad = true if length(a4) > 1 _width = parse(Int,a4[2:end]) end else _width = parse(Int,a4) end end # a5: [,] if a5 != nothing _tsep = true end # a6 [.prec] if a6 != nothing _prec = parse(Int,a6[2:end]) end # a7: [type] if a7 != nothing _typ = a7[1] end end return FormatSpec(_typ; fill=_fill, align=_align, sign=_sign, width=_width, prec=_prec, ipre=_ipre, zpad=_zpad, tsep=_tsep) end ## formatted printing using a format spec mutable struct _Dec end mutable struct _Oct end mutable struct _Hex end mutable struct _HEX end mutable struct _Bin end _srepr(x) = repr(x) _srepr(x::AbstractString) = x _srepr(x::Char) = string(x) _srepr(x::Enum) = string(x) _toint(x) = Integer(x) _toint(x::AbstractString) = parse(Int, x) _tofloat(x) = float(x) _tofloat(x::AbstractString) = parse(Float64, x) function printfmt(io::IO, fs::FormatSpec, x) cls = fs.cls ty = fs.typ if cls == 'i' ix = _toint(x) ty == 'd' || ty == 'n' ? _pfmt_i(io, fs, ix, _Dec()) : ty == 'x' ? _pfmt_i(io, fs, ix, _Hex()) : ty == 'X' ? _pfmt_i(io, fs, ix, _HEX()) : ty == 'o' ? _pfmt_i(io, fs, ix, _Oct()) : _pfmt_i(io, fs, ix, _Bin()) elseif cls == 'f' fx = _tofloat(x) if isfinite(fx) ty == 'f' || ty == 'F' ? _pfmt_f(io, fs, fx) : ty == 'e' || ty == 'E' ? _pfmt_e(io, fs, fx) : error("format for type g or G is not supported yet (use f or e instead).") else _pfmt_specialf(io, fs, fx) end elseif cls == 's' _pfmt_s(io, fs, _srepr(x)) else # cls == 'c' _pfmt_s(io, fs, Char(x)) end end printfmt(fs::FormatSpec, x) = printfmt(stdout, fs, x) fmt(fs::FormatSpec, x) = sprint(printfmt, fs, x) fmt(spec::AbstractString, x) = fmt(FormatSpec(spec), x)
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
4721
# formatting expression ### Argument specification struct ArgSpec argidx::Int hasfilter::Bool filter::Function function ArgSpec(idx::Int, hasfil::Bool, filter::Function) idx != 0 || error("Argument index cannot be zero.") new(idx, hasfil, filter) end end getarg(args, sp::ArgSpec) = (a = args[sp.argidx]; sp.hasfilter ? sp.filter(a) : a) # pos > 0: must not have iarg in expression (use pos+1), return (entry, pos + 1) # pos < 0: must have iarg in expression, return (entry, -1) # pos = 0: no positional argument before, can be either, return (entry, 1) or (entry, -1) function make_argspec(s::AbstractString, pos::Int) # for argument position iarg::Int = -1 hasfil::Bool = false ff::Function = Base.identity if !isempty(s) filrange = findfirst("|>", s) if filrange === nothing iarg = parse(Int,s) else ifil = first(filrange) iarg = ifil > 1 ? parse(Int,s[1:prevind(s, ifil)]) : -1 hasfil = true ff = eval(Symbol(s[ifil+2:end])) end end if pos > 0 iarg < 0 || error("entry with and without argument index must not coexist.") iarg = (pos += 1) elseif pos < 0 iarg > 0 || error("entry with and without argument index must not coexist.") else # pos == 0 if iarg < 0 iarg = pos = 1 else pos = -1 end end return (ArgSpec(iarg, hasfil, ff), pos) end ### Format entry struct FormatEntry argspec::ArgSpec spec::FormatSpec end function make_formatentry(s::AbstractString, pos::Int) @assert s[1] == '{' && s[end] == '}' sc = s[2:prevind(s, lastindex(s))] icolon = findfirst(isequal(':'), sc) if icolon === nothing # no colon (argspec, pos) = make_argspec(sc, pos) spec = FormatSpec('s') else (argspec, pos) = make_argspec(sc[1:prevind(sc, icolon)], pos) spec = FormatSpec(sc[nextind(sc, icolon):end]) end return (FormatEntry(argspec, spec), pos) end ### Format expression mutable struct FormatExpr prefix::String suffix::String entries::Vector{FormatEntry} inter::Vector{String} end _raise_unmatched_lbrace() = error("Unmatched { in format expression.") function find_next_entry_open(s::AbstractString, si::Int) slen = lastindex(s) p = findnext(isequal('{'), s, si) (p === nothing || p < slen) || _raise_unmatched_lbrace() while p !== nothing && s[p+1] == '{' # escape `{{` p = findnext(isequal('{'), s, p+2) (p === nothing || p < slen) || _raise_unmatched_lbrace() end # println("open at $p") pre = p !== nothing ? s[si:prevind(s, p)] : s[si:end] if !isempty(pre) pre = replace(pre, "{{" => '{') pre = replace(pre, "}}" => '}') end return (p, convert(String, pre)) end function find_next_entry_close(s::AbstractString, si::Int) p = findnext(isequal('}'), s, si) p !== nothing || _raise_unmatched_lbrace() # println("close at $p") return p end function FormatExpr(s::AbstractString) # init prefix = "" suffix = "" entries = FormatEntry[] inter = String[] # scan (p, prefix) = find_next_entry_open(s, 1) if p !== nothing q = find_next_entry_close(s, p+1) (e, pos) = make_formatentry(s[p:q], 0) push!(entries, e) (p, pre) = find_next_entry_open(s, q+1) while p !== nothing push!(inter, pre) q = find_next_entry_close(s, p+1) (e, pos) = make_formatentry(s[p:q], pos) push!(entries, e) (p, pre) = find_next_entry_open(s, q+1) end suffix = pre end FormatExpr(prefix, suffix, entries, inter) end function printfmt(io::IO, fe::FormatExpr, args...) if !isempty(fe.prefix) print(io, fe.prefix) end ents = fe.entries ne = length(ents) if ne > 0 e = ents[1] printfmt(io, e.spec, getarg(args, e.argspec)) for i = 2:ne print(io, fe.inter[i-1]) e = ents[i] printfmt(io, e.spec, getarg(args, e.argspec)) end end if !isempty(fe.suffix) print(io, fe.suffix) end end printfmt(io::IO, fe::AbstractString, args...) = printfmt(io, FormatExpr(fe), args...) printfmt(fe::Union{AbstractString,FormatExpr}, args...) = printfmt(stdout, fe, args...) printfmtln(io::IO, fe::Union{AbstractString,FormatExpr}, args...) = (printfmt(io, fe, args...); println(io)) printfmtln(fe::Union{AbstractString,FormatExpr}, args...) = printfmtln(stdout, fe, args...) format(fe::Union{AbstractString,FormatExpr}, args...) = sprint(printfmt, fe, args...)
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
7253
using Formatting using Test using Printf using Random _erfinv(z) = sqrt(π) * Base.Math.@horner(z, 0, 1, 0, π/12, 0, 7π^2/480, 0, 127π^3/40320, 0, 4369π^4/5806080, 0, 34807π^5/182476800) / 2 function test_equality() println( "test cformat equality...") Random.seed!( 10 ) fmts = [ (x->@sprintf("%10.4f",x), "%10.4f"), (x->@sprintf("%f", x), "%f"), (x->@sprintf("%e", x), "%e"), (x->@sprintf("%10f", x), "%10f"), (x->@sprintf("%.3f", x), "%.3f"), (x->@sprintf("%.3e", x), "%.3e")] for (mfmtr,fmt) in fmts for i in 1:10000 n = _erfinv( rand() * 1.99 - 1.99/2.0 ) expect = mfmtr( n ) actual = sprintf1( fmt, n ) @test expect == actual end end fmts = [ (x->@sprintf("%d",x), "%d"), (x->@sprintf("%10d",x), "%10d"), (x->@sprintf("%010d",x), "%010d"), (x->@sprintf("%-10d",x), "%-10d")] for (mfmtr,fmt) in fmts for i in 1:10000 j = round(Int, _erfinv( rand() * 1.99 - 1.99/2.0 ) * 100000 ) expect = mfmtr( j ) actual = sprintf1( fmt, j ) @test expect == actual end end println( "...Done" ) end @time test_equality() println( "\nTest speed" ) function native_int() for i in 1:200000 @sprintf( "%10d", i ) end end function runtime_int() for i in 1:200000 sprintf1( "%10d", i ) end end function runtime_int_bypass() f = generate_formatter( "%10d" ) for i in 1:200000 f( i ) end end println( "integer @sprintf speed") @time native_int() println( "integer sprintf speed") @time runtime_int() println( "integer sprintf speed, bypass repeated lookup") @time runtime_int_bypass() function native_float() Random.seed!( 10 ) for i in 1:200000 @sprintf( "%10.4f", _erfinv( rand() ) ) end end function runtime_float() Random.seed!( 10 ) for i in 1:200000 sprintf1( "%10.4f", _erfinv( rand() ) ) end end function runtime_float_bypass() f = generate_formatter( "%10.4f" ) Random.seed!( 10 ) for i in 1:200000 f( _erfinv( rand() ) ) end end println() println( "float64 @sprintf speed") @time native_float() println( "float64 sprintf speed") @time runtime_float() println( "float64 sprintf speed, bypass repeated lookup") @time runtime_float_bypass() function test_commas() println( "\ntest commas..." ) @test sprintf1( "%'d", 1000 ) == "1,000" @test sprintf1( "%'d", -1000 ) == "-1,000" @test sprintf1( "%'d", 100 ) == "100" @test sprintf1( "%'d", -100 ) == "-100" @test sprintf1( "%'f", Inf ) == "Inf" @test sprintf1( "%'f", -Inf ) == "-Inf" @test sprintf1( "%'s", 1000.0 ) == "1,000.0" @test sprintf1( "%'s", 1234567.0 ) == "1.234567e6" end function test_format() println( "test format...") @test format( 10 ) == "10" @test format( 10.0 ) == "10" @test format( 10.0, precision=2 ) == "10.00" @test format( 111//100, precision=2 ) == "1.11" @test format( 111//100 ) == "111/100" @test format( 1234, commas=true ) == "1,234" @test format( 1234, conversion="f", precision=2 ) == "1234.00" @test format( 1.23, precision=3 ) == "1.230" @test format( 1.23, precision=3, stripzeros=true ) == "1.23" @test format( 1.00, precision=3, stripzeros=true ) == "1" @test format( 1.0, conversion="e", stripzeros=true ) == "1e+00" @test format( 1.0, conversion="e", precision=4 ) == "1.0000e+00" # hex output @test format( 1118, conversion="x" ) == "45e" @test format( 1118, width=4, conversion="x" ) == " 45e" @test format( 1118, width=4, zeropadding=true, conversion="x" ) == "045e" @test format( 1118, alternative=true, conversion="x" ) == "0x45e" @test format( 1118, width=4, alternative=true, conversion="x" ) == "0x45e" @test format( 1118, width=6, alternative=true, conversion="x", zeropadding=true ) == "0x045e" # mixed fractions @test format( 3//2, mixedfraction=true ) == "1_1/2" @test format( -3//2, mixedfraction=true ) == "-1_1/2" @test format( 3//100, mixedfraction=true ) == "3/100" @test format( -3//100, mixedfraction=true ) == "-3/100" @test format( 307//100, mixedfraction=true ) == "3_7/100" @test format( -307//100, mixedfraction=true ) == "-3_7/100" @test format( 307//100, mixedfraction=true, fractionwidth=6 ) == "3_07/100" @test format( -307//100, mixedfraction=true, fractionwidth=6 ) == "-3_07/100" @test format( -302//100, mixedfraction=true ) == "-3_1/50" # try to make the denominator 100 @test format( -302//100, mixedfraction=true,tryden = 100 ) == "-3_2/100" @test format( -302//30, mixedfraction=true,tryden = 100 ) == "-10_1/15" # lose precision otherwise @test format( -302//100, mixedfraction=true,tryden = 100,fractionwidth=6 ) == "-3_02/100" # lose precision otherwise #commas @test format( 12345678, width=10, commas=true ) == "12,345,678" # it would try to squeeze out the commas @test format( 12345678, width=9, commas=true ) == "12345,678" # until it can't anymore @test format( 12345678, width=8, commas=true ) == "12345678" @test format( 12345678, width=7, commas=true ) == "12345678" # only the numerator would have commas @test format( 1111//1000, commas=true ) == "1,111/1000" # this shows how, with enough space, parens line up with empty spaces @test format( 12345678, width=12, commas=true, parens=true )== " 12,345,678 " @test format( -12345678, width=12, commas=true, parens=true )== "(12,345,678)" # same with unspecified width @test format( 12345678, commas=true, parens=true )== " 12,345,678 " @test format( -12345678, commas=true, parens=true )== "(12,345,678)" @test format( 1.2e9, autoscale = :metric ) == "1.2G" @test format( 1.2e6, autoscale = :metric ) == "1.2M" @test format( 1.2e3, autoscale = :metric ) == "1.2k" @test format( 1.2e-6, autoscale = :metric ) == "1.2μ" @test format( 1.2e-9, autoscale = :metric ) == "1.2n" @test format( 1.2e-12, autoscale = :metric ) == "1.2p" @test format( 1.2e9, autoscale = :finance ) == "1.2b" @test format( 1.2e6, autoscale = :finance ) == "1.2m" @test format( 1.2e3, autoscale = :finance ) == "1.2k" @test format( 0x40000000, autoscale = :binary ) == "1Gi" @test format( 0x100000, autoscale = :binary ) == "1Mi" @test format( 0x800, autoscale = :binary ) == "2Ki" @test format( 0x400, autoscale = :binary ) == "1Ki" @test format( 100.00, precision=2, suffix="%" ) == "100.00%" @test format( 100, precision=2, suffix="%" ) == "100%" @test format( 100, precision=2, suffix="%", conversion="f" ) == "100.00%" end test_commas() test_format() function test_generate_formatter() fmt = generate_formatter( "%7.2f" ) @test fmt( 1.234 ) == " 1.23" @test fmt( π ) == " 3.14" fmt = generate_formatter( "%'10.2f" ) @test fmt( 1234.5678 ) == " 1,234.57" # BUG 1 extra space fmt = generate_formatter( "%'10d" ) @test fmt( 1234567 ) == " 1,234,567" # BUG 2 extra spaces end test_generate_formatter()
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
6859
# test format spec parsing using Formatting using Test # default spec fs = FormatSpec("") @test fs.typ == 's' @test fs.fill == ' ' @test fs.align == '<' @test fs.sign == '-' @test fs.width == -1 @test fs.prec == -1 @test fs.ipre == false @test fs.zpad == false @test fs.tsep == false # more cases fs = FormatSpec("d") @test fs == FormatSpec('d') @test fs.align == '>' @test FormatSpec("8x") == FormatSpec('x'; width=8) @test FormatSpec("08b") == FormatSpec('b'; width=8, zpad=true) @test FormatSpec("12f") == FormatSpec('f'; width=12, prec=6) @test FormatSpec("12.7f") == FormatSpec('f'; width=12, prec=7) @test FormatSpec("+08o") == FormatSpec('o'; width=8, zpad=true, sign='+') @test FormatSpec("8") == FormatSpec('s'; width=8) @test FormatSpec(".6f") == FormatSpec('f'; prec=6) @test FormatSpec("<8d") == FormatSpec('d'; width=8, align='<') @test FormatSpec("#<8d") == FormatSpec('d'; width=8, fill='#', align='<') @test FormatSpec("⋆<8d") == FormatSpec('d'; width=8, fill='⋆', align='<') @test FormatSpec("#8,d") == FormatSpec('d'; width=8, ipre=true, tsep=true) # format string @test fmt("", "abc") == "abc" @test fmt("", "αβγ") == "αβγ" @test fmt("s", "abc") == "abc" @test fmt("s", "αβγ") == "αβγ" @test fmt("2s", "abc") == "abc" @test fmt("2s", "αβγ") == "αβγ" @test fmt("5s", "abc") == "abc " @test fmt("5s", "αβγ") == "αβγ " @test fmt(">5s", "abc") == " abc" @test fmt(">5s", "αβγ") == " αβγ" @test fmt("*>5s", "abc") == "**abc" @test fmt("⋆>5s", "αβγ") == "⋆⋆αβγ" @test fmt("*<5s", "abc") == "abc**" @test fmt("⋆<5s", "αβγ") == "αβγ⋆⋆" # format char @test fmt("", 'c') == "c" @test fmt("", 'γ') == "γ" @test fmt("c", 'c') == "c" @test fmt("c", 'γ') == "γ" @test fmt("3c", 'c') == "c " @test fmt("3c", 'γ') == "γ " @test fmt(">3c", 'c') == " c" @test fmt(">3c", 'γ') == " γ" @test fmt("*>3c", 'c') == "**c" @test fmt("⋆>3c", 'γ') == "⋆⋆γ" @test fmt("*<3c", 'c') == "c**" @test fmt("⋆<3c", 'γ') == "γ⋆⋆" # format integer @test fmt("", 1234) == "1234" @test fmt("d", 1234) == "1234" @test fmt("n", 1234) == "1234" @test fmt("x", 0x2ab) == "2ab" @test fmt("X", 0x2ab) == "2AB" @test fmt("o", 0o123) == "123" @test fmt("b", 0b1101) == "1101" @test fmt("d", 0) == "0" @test fmt("d", 9) == "9" @test fmt("d", 10) == "10" @test fmt("d", 99) == "99" @test fmt("d", 100) == "100" @test fmt("d", 1000) == "1000" @test fmt("06d", 123) == "000123" @test fmt("+6d", 123) == " +123" @test fmt("+06d", 123) == "+00123" @test fmt(" d", 123) == " 123" @test fmt(" 6d", 123) == " 123" @test fmt("<6d", 123) == "123 " @test fmt(">6d", 123) == " 123" @test fmt("*<6d", 123) == "123***" @test fmt("⋆<6d", 123) == "123⋆⋆⋆" @test fmt("*>6d", 123) == "***123" @test fmt("⋆>6d", 123) == "⋆⋆⋆123" @test fmt("< 6d", 123) == " 123 " @test fmt("<+6d", 123) == "+123 " @test fmt("> 6d", 123) == " 123" @test fmt(">+6d", 123) == " +123" @test fmt("+d", -123) == "-123" @test fmt("-d", -123) == "-123" @test fmt(" d", -123) == "-123" @test fmt("06d", -123) == "-00123" @test fmt("<6d", -123) == "-123 " @test fmt(">6d", -123) == " -123" # format floating point (f) @test fmt("", 0.125) == "0.125" @test fmt("f", 0.0) == "0.000000" @test fmt("f", -0.0) == "-0.000000" @test fmt("f", 0.001) == "0.001000" @test fmt("f", 0.125) == "0.125000" @test fmt("f", 1.0/3) == "0.333333" @test fmt("f", 1.0/6) == "0.166667" @test fmt("f", -0.125) == "-0.125000" @test fmt("f", -1.0/3) == "-0.333333" @test fmt("f", -1.0/6) == "-0.166667" @test fmt("f", 1234.5678) == "1234.567800" @test fmt("8f", 1234.5678) == "1234.567800" @test fmt("8.2f", 8.376) == " 8.38" @test fmt("<8.2f", 8.376) == "8.38 " @test fmt(">8.2f", 8.376) == " 8.38" @test fmt("8.2f", -8.376) == " -8.38" @test fmt("<8.2f", -8.376) == "-8.38 " @test fmt(">8.2f", -8.376) == " -8.38" @test fmt("<08.2f", 8.376) == "00008.38" @test fmt(">08.2f", 8.376) == "00008.38" @test fmt("<08.2f", -8.376) == "-0008.38" @test fmt(">08.2f", -8.376) == "-0008.38" @test fmt("*<8.2f", 8.376) == "8.38****" @test fmt("⋆<8.2f", 8.376) == "8.38⋆⋆⋆⋆" @test fmt("*>8.2f", 8.376) == "****8.38" @test fmt("⋆>8.2f", 8.376) == "⋆⋆⋆⋆8.38" @test fmt("*<8.2f", -8.376) == "-8.38***" @test fmt("⋆<8.2f", -8.376) == "-8.38⋆⋆⋆" @test fmt("*>8.2f", -8.376) == "***-8.38" @test fmt("⋆>8.2f", -8.376) == "⋆⋆⋆-8.38" @test fmt(".2f", 0.999) == "1.00" @test fmt(".2f", 0.996) == "1.00" @test fmt("6.2f", 9.999) == " 10.00" # Floating point error can upset this one (i.e. 0.99500000 or 0.994999999) @test (fmt(".2f", 0.995) == "1.00" || fmt(".2f", 0.995) == "0.99") @test fmt(".2f", 0.994) == "0.99" # format floating point (e) @test fmt("E", 0.0) == "0.000000E+00" @test fmt("e", 0.0) == "0.000000e+00" @test fmt("e", 0.001) == "1.000000e-03" @test fmt("e", 0.125) == "1.250000e-01" @test fmt("e", 100/3) == "3.333333e+01" @test fmt("e", -0.125) == "-1.250000e-01" @test fmt("e", -100/6) == "-1.666667e+01" @test fmt("e", 1234.5678) == "1.234568e+03" @test fmt("8e", 1234.5678) == "1.234568e+03" @test fmt("<12.2e", 13.89) == "1.39e+01 " @test fmt(">12.2e", 13.89) == " 1.39e+01" @test fmt("*<12.2e", 13.89) == "1.39e+01****" @test fmt("⋆<12.2e", 13.89) == "1.39e+01⋆⋆⋆⋆" @test fmt("*>12.2e", 13.89) == "****1.39e+01" @test fmt("⋆>12.2e", 13.89) == "⋆⋆⋆⋆1.39e+01" @test fmt("012.2e", 13.89) == "00001.39e+01" @test fmt("012.2e", -13.89) == "-0001.39e+01" @test fmt("+012.2e", 13.89) == "+0001.39e+01" @test fmt(".1e", 0.999) == "1.0e+00" @test fmt(".1e", 0.996) == "1.0e+00" # Floating point error can upset this one (i.e. 0.99500000 or 0.994999999) @test (fmt(".1e", 0.995) == "1.0e+00" || fmt(".1e", 0.995) == "9.9e-01") @test fmt(".1e", 0.994) == "9.9e-01" @test fmt(".1e", 0.6) == "6.0e-01" @test fmt(".1e", 0.9) == "9.0e-01" # issue #61 @test fmt("1.0e", 1e-21) == "1.e-21" @test fmt("1.1e", 1e-21) == "1.0e-21" @test fmt("10.2e", 1.2e100) == " 1.20e+100" @test fmt("11.2e", BigFloat("1.2e1000")) == " 1.20e+1000" @test fmt("11.2e", BigFloat("1.2e-1000")) == " 1.20e-1000" @test fmt("9.2e", 9.999e9) == " 1.00e+10" @test fmt("10.2e", 9.999e99) == " 1.00e+100" @test fmt("11.2e", BigFloat("9.999e999")) == " 1.00e+1000" @test fmt("10.2e", -9.999e-100) == " -1.00e-99" # issue #84 @test fmt("+11.3e", 1.0e-309) == "+1.000e-309" @test fmt("+11.3e", 1.0e-313) == "+1.000e-313" # format special floating point value @test fmt("f", NaN) == "NaN" @test fmt("e", NaN) == "NaN" @test fmt("f", NaN32) == "NaN" @test fmt("e", NaN32) == "NaN" @test fmt("f", Inf) == "Inf" @test fmt("e", Inf) == "Inf" @test fmt("f", Inf32) == "Inf" @test fmt("e", Inf32) == "Inf" @test fmt("f", -Inf) == "-Inf" @test fmt("e", -Inf) == "-Inf" @test fmt("f", -Inf32) == "-Inf" @test fmt("e", -Inf32) == "-Inf" @test fmt("<5f", Inf) == "Inf " @test fmt(">5f", Inf) == " Inf" @test fmt("*<5f", Inf) == "Inf**" @test fmt("⋆<5f", Inf) == "Inf⋆⋆" @test fmt("*>5f", Inf) == "**Inf" @test fmt("⋆>5f", Inf) == "⋆⋆Inf"
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
1847
using Formatting using Test # with positional arguments @test format("{1}", 10) == "10" @test format("abc {1}", 10) == "abc 10" @test format("αβγ {1}", 10) == "αβγ 10" @test format("{1} efg", 10) == "10 efg" @test format("{1} ϵζη", 10) == "10 ϵζη" @test format("abc {1} efg", 10) == "abc 10 efg" @test format("αβγ{1}ϵζη", 10) == "αβγ10ϵζη" @test format("{1} + {2}", 10, "xyz") == "10 + xyz" @test format("{1} + {2}", 10, "χψω") == "10 + χψω" @test format("abc {1} + {2}", 10, "xyz") == "abc 10 + xyz" @test format("αβγ {1} + {2}", 10, "χψω") == "αβγ 10 + χψω" @test format("{1} + {2} efg", 10, "xyz") == "10 + xyz efg" @test format("{1} + {2} ϵζη", 10, "χψω") == "10 + χψω ϵζη" @test format("abc {1} + {2} efg", 10, "xyz") == "abc 10 + xyz efg" @test format("αβγ {1} + {2} ϵζη", 10, "χψω") == "αβγ 10 + χψω ϵζη" @test format("αβγ {1}{2} ϵζη", 10, "χψω") == "αβγ 10χψω ϵζη" @test format("{1:d} + {2:s}", 10, "xyz") == "10 + xyz" @test format("{1:d} + {2:s}", 10, "χψω") == "10 + χψω" @test format("{1:04d} + {2:*>5}", 10, "xyz") == "0010 + **xyz" @test format("{1:04d} + {2:⋆>5}", 10, "χψω") == "0010 + ⋆⋆χψω" @test format("let {2:<5} := {1:.4f};", 12.3, "χψω") == "let χψω := 12.3000;" @test format("{}", 10) == "10" @test format("{} + {}", 10, 20) == "10 + 20" @test format("{} + {:04d}", 10, 20) == "10 + 0020" @test format("{:03d} + {}", 10, 20) == "010 + 20" @test format("{:03d} + {:04d}", 10, 20) == "010 + 0020" @test_throws(ErrorException, format("{1} + {}", 10, 20) ) @test_throws(ErrorException, format("{} + {1}", 10, 20) ) # escape {{ and }} @test format("{{}}") == "{}" @test format("{{{1}}}", 10) == "{10}" @test format("v: {{{2}}} = {1:.4f}", 1.2, "ab") == "v: {ab} = 1.2000" @test format("χ: {{{2}}} = {1:.4f}", 1.2, "αβ") == "χ: {αβ} = 1.2000" # with filter @test format("{1|>abs2} + {2|>abs2:.2f}", 2, 3) == "4 + 9.00"
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
495
# performance testing using Formatting # performance of format parsing fp1() = FormatExpr("{1} + {2} + {3}") fp1() @time for i=1:10000; fp1(); end fp2() = FormatExpr("abc {1:*<5d} efg {2:*>8.4e} hij") fp2() @time for i=1:10000; fp2(); end # performance of string formatting const fe1 = fp1() const fe2 = fp2() sf1(x, y, z) = format(fe1, x, y, z) sf1(10, 20, 30) @time for i=1:10000; sf1(10, 20, 30); end sf2(x, y) = format(fe2, x, y) sf2(10, 20) @time for i=1:10000; sf2(10, 20); end
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
code
104
using Formatting using Test include( "cformat.jl" ) include( "fmtspec.jl" ) include( "formatexpr.jl" )
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.4.3
fb409abab2caf118986fc597ba84b50cbaf00b87
docs
10096
> [!WARNING] > This package is unmaintained: Active work is not occuring on this package. For an active fork of the package, see [Format.jl](https://github.com/JuliaString/Format.jl). # Formatting This package offers Python-style general formatting and c-style numerical formatting (for speed). | **PackageEvaluator** | **Build Status** | **Repo Status** |:---------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:|:---------------------------------------------------------------:| |[![][pkg-0.6-img]][pkg-0.6-url] | [![][travis-img]][travis-url] [![][appveyor-img]][appveyor-url] [![][codecov-img]][codecov-url] | [![Project Status: Unsupported – The project has reached a stable, usable state but the author(s) have ceased all work on it. A new maintainer may be desired.](https://www.repostatus.org/badges/latest/unsupported.svg)](https://www.repostatus.org/#unsupported) | [travis-img]: https://travis-ci.org/JuliaIO/Formatting.jl.svg?branch=master [travis-url]: https://travis-ci.org/JuliaIO/Formatting.jl [appveyor-img]: https://ci.appveyor.com/api/projects/status/all0t7gefcl5dgv1/branch/master?svg=true [appveyor-url]: https://ci.appveyor.com/project/jmkuhn/formatting-jl/branch/master [codecov-img]: https://codecov.io/gh/JuliaIO/Formatting.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/JuliaIO/Formatting.jl [pkg-0.6-img]: http://pkg.julialang.org/badges/Formatting_0.6.svg [pkg-0.6-url]: http://pkg.julialang.org/?pkg=Formatting --------------- ## Getting Started This package is pure Julia. Setting up this package is like setting up other Julia packages: ```julia Pkg.add("Formatting") ``` To start using the package, you can simply write ```julia using Formatting ``` This package depends on Julia of version 0.7 or above. It has no other dependencies. The package is MIT-licensed. ## Python-style Types and Functions #### Types to Represent Formats This package has two types ``FormatSpec`` and ``FormatExpr`` to represent a format specification. In particular, ``FormatSpec`` is used to capture the specification of a single entry. One can compile a format specification string into a ``FormatSpec`` instance as ```julia fspec = FormatSpec("d") fspec = FormatSpec("<8.4f") ``` Please refer to [Python's format specification language](http://docs.python.org/2/library/string.html#formatspec) for details. ``FormatExpr`` captures a formatting expression that may involve multiple items. One can compile a formatting string into a ``FormatExpr`` instance as ```julia fe = FormatExpr("{1} + {2}") fe = FormatExpr("{1:d} + {2:08.4e} + {3|>abs2}") ``` Please refer to [Python's format string syntax](http://docs.python.org/2/library/string.html#format-string-syntax) for details. **Note:** If the same format is going to be applied for multiple times. It is more efficient to first compile it. #### Formatted Printing One can use ``printfmt`` and ``printfmtln`` for formatted printing: - **printfmt**(io, fe, args...) - **printfmt**(fe, args...) Print given arguments using given format ``fe``. Here ``fe`` can be a formatting string, an instance of ``FormatSpec`` or ``FormatExpr``. **Examples** ```julia printfmt("{1:>4s} + {2:.2f}", "abc", 12) # --> print(" abc + 12.00") printfmt("{} = {:#04x}", "abc", 12) # --> print("abc = 0x0c") fs = FormatSpec("#04x") printfmt(fs, 12) # --> print("0x0c") fe = FormatExpr("{} = {:#04x}") printfmt(fe, "abc", 12) # --> print("abc = 0x0c") ``` **Notes** If the first argument is a string, it will be first compiled into a ``FormatExpr``, which implies that you can not use specification-only string in the first argument. ```julia printfmt("{1:d}", 10) # OK, "{1:d}" can be compiled into a FormatExpr instance printfmt("d", 10) # Error, "d" can not be compiled into a FormatExpr instance # such a string to specify a format specification for single argument printfmt(FormatSpec("d"), 10) # OK printfmt(FormatExpr("{1:d}", 10)) # OK ``` - **printfmtln**(io, fe, args...) - **printfmtln**(fe, args...) Similar to ``printfmt`` except that this function print a newline at the end. #### Formatted String One can use ``fmt`` to format a single value into a string, or ``format`` to format one to multiple arguments into a string using an format expression. - **fmt**(fspec, a) Format a single value using a format specification given by ``fspec``, where ``fspec`` can be either a string or an instance of ``FormatSpec``. - **format**(fe, args...) Format arguments using a format expression given by ``fe``, where ``fe`` can be either a string or an instance of ``FormatSpec``. #### Difference from Python's Format At this point, this package implements a subset of Python's formatting language (with slight modification). Here is a summary of the differences: - ``g`` and ``G`` for floating point formatting have not been supported yet. Please use ``f``, ``e``, or ``E`` instead. - The package currently provides default alignment, left alignment ``<`` and right alignment ``>``. Other form of alignment such as centered alignment ``^`` has not been supported yet. - In terms of argument specification, it supports natural ordering (e.g. ``{} + {}``), explicit position (e.g. ``{1} + {2}``). It hasn't supported named arguments or fields extraction yet. Note that mixing these two modes is not allowed (e.g. ``{1} + {}``). - The package provides support for filtering (for explicitly positioned arguments), such as ``{1|>lowercase}`` by allowing one to embed the ``|>`` operator, which the Python counter part does not support. ## C-style functions The c-style part of this package aims to get around the limitation that `@sprintf` has to take a literal string argument. The core part is basically a c-style print formatter using the standard `@sprintf` macro. It also adds functionalities such as commas separator (thousands), parenthesis for negatives, stripping trailing zeros, and mixed fractions. ### Usage and Implementation The idea here is that the package compiles a function only once for each unique format string within the `Formatting.*` name space, so repeated use is faster. Unrelated parts of a session using the same format string would reuse the same function, avoiding redundant compilation. To avoid the proliferation of functions, we limit the usage to only 1 argument. Practical consideration would suggest that only dozens of functions would be created in a session, which seems manageable. Usage ```julia using Formatting fmt = "%10.3f" s = sprintf1( fmt, 3.14159 ) # usage 1. Quite performant. Easiest to switch to. fmtrfunc = generate_formatter( fmt ) # usage 2. This bypass repeated lookup of cached function. Most performant. s = fmtrfunc( 3.14159 ) s = format( 3.14159, precision=3 ) # usage 3. Most flexible, with some non-printf options. Least performant. ``` ### Speed `sprintf1`: Speed penalty is about 20% for floating point and 30% for integers. If the formatter is stored and used instead (see the example using `generate_formatter` above), the speed penalty reduces to 10% for floating point and 15% for integers. ### Commas This package also supplements the lack of thousand separator e.g. `"%'d"`, `"%'f"`, `"%'s"`. Note: `"%'s"` behavior is that for small enough floating point (but not too small), thousand separator would be used. If the number needs to be represented by `"%e"`, no separator is used. ### Flexible `format` function This package contains a run-time number formatter `format` function, which goes beyond the standard `sprintf` functionality. An example: ```julia s = format( 1234, commas=true ) # 1,234 s = format( -1234, commas=true, parens=true ) # (1,234) ``` The keyword arguments are (Bold keywards are not printf standard) * width. Integer. Try to fit the output into this many characters. May not be successful. Sacrifice space first, then commas. * precision. Integer. How many decimal places. * leftjustified. Boolean * zeropadding. Boolean * commas. Boolean. Thousands-group separator. * signed. Boolean. Always show +/- sign? * positivespace. Boolean. Prepend an extra space for positive numbers? (so they align nicely with negative numbers) * **parens**. Boolean. Use parenthesis instead of "-". e.g. `(1.01)` instead of `-1.01`. Useful in finance. Note that you cannot use `signed` and `parens` option at the same time. * **stripzeros**. Boolean. Strip trailing '0' to the right of the decimal (and to the left of 'e', if any ). * It may strip the decimal point itself if all trailing places are zeros. * This is true by default if precision is not given, and vice versa. * alternative. Boolean. See `#` alternative form explanation in standard printf documentation * conversion. length=1 string. Default is type dependent. It can be one of `aAeEfFoxX`. See standard printf documentation. * **mixedfraction**. Boolean. If the number is rational, format it in mixed fraction e.g. `1_1/2` instead of `3/2` * **mixedfractionsep**. Default `_` * **fractionsep**. Default `/` * **fractionwidth**. Integer. Try to pad zeros to the numerator until the fractional part has this width * **tryden**. Integer. Try to use this denominator instead of a smaller one. No-op if it'd lose precision. * **suffix**. String. This strings will be appended to the output. Useful for units/% * **autoscale**. Symbol, default `:none`. It could be `:metric`, `:binary`, or `:finance`. * `:metric` implements common SI symbols for large and small numbers e.g. `M`, `k`, `μ`, `n` * `:binary` implements common ISQ symbols for large numbers e.g. `Ti`, `Gi`, `Mi`, `Ki` * `:finance` implements common finance/news symbols for large numbers e.g. `b` (billion), `m` (millions) See the test script for more examples.
Formatting
https://github.com/JuliaIO/Formatting.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
564
using Documenter, NoncommutativeGraphs DocMeta.setdocmeta!(NoncommutativeGraphs, :DocTestSetup, :( using NoncommutativeGraphs; using LinearAlgebra ); recursive=true) makedocs( sitename="NoncommutativeGraphs.jl", modules=[NoncommutativeGraphs], format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true" ), pages = [ "Home" => "index.md", "Reference" => "reference.md", ], ) deploydocs( repo = "github.com/dstahlke/NoncommutativeGraphs.jl.git", devbranch = "main", branch = "gh-pages", )
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
14931
module NoncommutativeGraphs import Base.== using DocStringExtensions using Subspaces using Convex, SCS, LinearAlgebra using Random, RandomMatrices using Graphs using Compat using MathOptInterface import Base.show export AlgebraShape export S0Graph export create_S0_S1 export random_S0Graph, empty_S0Graph, complement, vertex_graph, forget_S0 export from_block_spaces, get_block_spaces export block_expander export random_S0_unitary, random_S0_density export random_S1_unitary, random_S1_density export Ψ export dsw_schur, dsw_schur2 export dsw, dsw_via_complement MOI = MathOptInterface eye(n) = Matrix(1.0*I, (n,n)) function make_optimizer(verbose, eps) optimizer = SCS.Optimizer() if isdefined(MOI, :RawOptimizerAttribute) # as of MathOptInterface v0.10.0 MOI.set(optimizer, MOI.RawOptimizerAttribute("verbose"), 0) if isdefined(SCS, :ScsSettings) && hasfield(SCS.ScsSettings, :eps_rel) # as of SCS v0.9 MOI.set(optimizer, MOI.RawOptimizerAttribute("eps_rel"), eps) MOI.set(optimizer, MOI.RawOptimizerAttribute("eps_abs"), eps) else MOI.set(optimizer, MOI.RawOptimizerAttribute("eps"), eps) end else MOI.set(optimizer, MOI.RawParameter("verbose"), 0) if isdefined(SCS, :ScsSettings) && hasfield(SCS.ScsSettings, :eps_rel) # as of SCS v0.9 MOI.set(optimizer, MOI.RawParameter("eps_rel"), eps) MOI.set(optimizer, MOI.RawParameter("eps_abs"), eps) else MOI.set(optimizer, MOI.RawParameter("eps"), eps) end end return optimizer end """ The structure of a finite dimensional C*-algebra. - For example, `[1 2; 3 4]` corresponds to S₀ = M₁⊗I₂ ⊕ M₃⊗I₄. - For an n-dimensional non-commutative graph use `[1 n]` for S₀ = Iₙ. - For an n-vertex classical graph use `ones(Integer, n, 2)` for S₀ = diagonals. """ AlgebraShape = Array{<:Integer, 2} """ create_S0_S1(sig::AlgebraShape) -> Tuple{Subspace, Subspace} Create a C*-algebra and its commutant with the given structure. """ function create_S0_S1(sig::AlgebraShape) blocks0 = [] blocks1 = [] @compat for row in eachrow(sig) if length(row) != 2 throw(ArgumentError("row length must be 2")) end dA = row[1] dY = row[2] #println("dA=$dA dY=$dY") blk0 = kron(full_subspace(ComplexF64, (dA, dA)), Matrix((1.0+0.0im)*I, dY, dY)) blk1 = kron(Matrix((1.0+0.0im)*I, dA, dA), full_subspace(ComplexF64, (dY, dY))) #println(blk0) push!(blocks0, blk0) push!(blocks1, blk1) end S0 = cat(blocks0..., dims=(1,2)) S1 = cat(blocks1..., dims=(1,2)) @assert I in S0 @assert I in S1 s0 = random_element(S0) s1 = random_element(S1) @assert (norm(s0 * s1 - s1 * s0) < 1e-9) "S0 and S1 don't commute" return S0, S1 end """ S0Graph(sig::AlgebraShape, S::Subspace{ComplexF64, 2}) S0Graph(g::AbstractGraph) Represents an S₀-graph as defined in arxiv:1002.2514. $(TYPEDFIELDS) """ struct S0Graph """Dimension of Hilbert space A such that S ⊆ L(A)""" n::Integer """Structure of C*-algebra S₀""" sig::AlgebraShape """Subspace that defines the graph""" S::Subspace{ComplexF64, 2} """C*-algebra S₀""" S0::Subspace{ComplexF64, 2} """Commutant of C*-algebra S₀""" S1::Subspace{ComplexF64, 2} """Block scaling array D from definition 23 of arxiv:2101.00162""" D::Array{Float64, 2} function S0Graph(sig::AlgebraShape, S::Subspace{ComplexF64, 2}) S0, S1 = create_S0_S1(sig) S == S' || throw(DomainError("S is not an S0-graph")) S0 in S || throw(DomainError("S is not an S0-graph")) (S == S0 * S * S0) || throw(DomainError("S is not an S0-graph")) n = size(S0)[1] da_sizes = sig[:,1] dy_sizes = sig[:,2] n_sizes = da_sizes .* dy_sizes D = cat([ v*eye(n) for (n, v) in zip(n_sizes, dy_sizes ./ da_sizes) ]..., dims=(1,2)) return new(n, sig, S, S0, S1, D) end function S0Graph(g::AbstractGraph) n = nv(g) S0 = Subspace([ (x=zeros(ComplexF64, n,n); x[i,i]=1; x) for i in 1:n ]) S = Subspace([ (x=zeros(ComplexF64, n,n); x[src(e),dst(e)]=1; x) for e in edges(g) ]) S = S + S' + S0 return S0Graph(ones(Int64, n, 2), S) end end function show(io::IO, g::S0Graph) print(io, "S0Graph{S0=$(g.sig) S=$(g.S)}") end """ $(TYPEDSIGNATURES) Returns the S₀-graph with S=S₀. """ vertex_graph(g::S0Graph) = S0Graph(g.sig, g.S0) """ $(TYPEDSIGNATURES) Returns an S₀-graph with S₀=ℂI. """ forget_S0(g::S0Graph) = S0Graph([1 g.n], g.S) """ random_S0Graph(sig::AlgebraShape) -> S0Graph Creates a random S₀-graph with S₀ having the given structure. """ function random_S0Graph(sig::AlgebraShape) S0, S1 = create_S0_S1(sig) num_blocks = size(sig, 1) function block(col, row) da_col, dy_col = sig[col,:] da_row, dy_row = sig[row,:] ds = Integer(round(dy_row * dy_col / 2.0)) F = full_subspace(ComplexF64, (da_row, da_col)) if row == col R = random_hermitian_subspace(ComplexF64, ds, dy_row) elseif row > col R = random_subspace(ComplexF64, ds, (dy_row, dy_col)) else R = empty_subspace(ComplexF64, (dy_row, dy_col)) end return kron(F, R) end blocks = Array{Subspace{ComplexF64, 2}, 2}([ block(col, row) for col in 1:num_blocks, row in 1:num_blocks ]) S = hvcat(num_blocks, blocks...) S |= S' S |= S0 return S0Graph(sig, S) end """ empty_S0Graph(sig::AlgebraShape) -> S0Graph Creates an empty S₀-graph (i.e. S=S₀) with S₀ having the given structure. """ function empty_S0Graph(sig::AlgebraShape) S0, S1 = create_S0_S1(sig) return S0Graph(sig, S0) end """ $(TYPEDSIGNATURES) Returns the complement graph perp(S) + S₀. """ complement(g::S0Graph) = S0Graph(g.sig, perp(g.S) | g.S0) function ==(a::S0Graph, b::S0Graph) return a.sig == b.sig && a.S == b.S end function get_block_spaces(g::S0Graph) num_blocks = size(g.sig, 1) da_sizes = g.sig[:,1] dy_sizes = g.sig[:,2] n_sizes = da_sizes .* dy_sizes blkspaces = Array{Subspace{ComplexF64}, 2}(undef, num_blocks, num_blocks) offseti = 0 for blki in 1:num_blocks offsetj = 0 for blkj in 1:num_blocks #@show [blki, blkj, offseti, offsetj] blkbasis = Array{Array{ComplexF64, 2}, 1}() for m in each_basis_element(g.S) blk = m[1+offseti:dy_sizes[blki]+offseti, 1+offsetj:dy_sizes[blkj]+offsetj] push!(blkbasis, blk) end blkspaces[blki, blkj] = Subspace(blkbasis) #println(blkspaces[blki, blkj]) offsetj += n_sizes[blkj] end @assert offsetj == size(g.S)[2] offseti += n_sizes[blki] end @assert offseti == size(g.S)[1] return blkspaces end function from_block_spaces(sig::AlgebraShape, blkspaces::Array{Subspace{ComplexF64}, 2}) S0, S1 = NoncommutativeGraphs.create_S0_S1(sig) num_blocks = size(sig, 1) function block(col, row) da_col, dy_col = sig[col,:] da_row, dy_row = sig[row,:] ds = Integer(round(sqrt(dy_row * dy_col) / 2.0)) F = full_subspace(ComplexF64, (da_row, da_col)) kron(F, blkspaces[row, col]) end blocks = [ block(col, row) for col in 1:num_blocks, row in 1:num_blocks ] S = hvcat(num_blocks, blocks...) S |= S' S |= S0 return S0Graph(sig, S) end function block_expander(sig::AlgebraShape) function basis_mat(n, i) M = zeros(n*n) M[i] = 1 return reshape(M, (n, n)) end n = sum(prod(sig, dims=2)) @compat J = cat([ cat([ kron(eye(dA), basis_mat(dY, i)) for i in 1:dY^2 ]..., dims=3) for (dA, dY) in eachrow(sig) ]..., dims=(1,2,3)) return reshape(J, (n^2, size(J)[3])) end function random_positive(n) U = rand(Haar(2), n) return Hermitian(U' * Diagonal(rand(n)) * U) end """ Returns a random unitary in S₀. """ function random_S0_unitary(sig::AlgebraShape) @compat return cat([ kron(rand(Haar(2), dA), eye(dY)) for (dA, dY) in eachrow(sig) ]..., dims=(1,2)) end """ Returns a random density operator in S₀. """ function random_S0_density(sig::AlgebraShape) @compat ρ = cat([ kron(random_positive(dA), eye(dY)) for (dA, dY) in eachrow(sig) ]..., dims=(1,2)) return ρ / tr(ρ) end """ Returns a random unitary in the commutant of S₀. """ function random_S1_unitary(sig::AlgebraShape) @compat return cat([ kron(eye(dA), rand(Haar(2), dY)) for (dA, dY) in eachrow(sig) ]..., dims=(1,2)) end """ Returns a random density operator in the commutant of S₀. """ function random_S1_density(sig::AlgebraShape) @compat ρ = cat([ kron(eye(dA), random_positive(dY)) for (dA, dY) in eachrow(sig) ]..., dims=(1,2)) return ρ / tr(ρ) end ############### ### DSW solvers ############### # FIXME Convex.jl doesn't support cat(args..., dims=(1,2)). It should be added. function diagcat(args::Convex.AbstractExprOrValue...) num_blocks = size(args, 1) return vcat([ hcat([ row == col ? args[row] : zeros(size(args[row], 1), size(args[col], 2)) for col in 1:num_blocks ]...) for row in 1:num_blocks ]...) end """ $(TYPEDSIGNATURES) Block scaling superoperator Ψ from definition 23 of arxiv:2101.00162 """ function Ψ(g::S0Graph, w::Union{AbstractArray{<:Number, 2}, Variable}) n = g.n da_sizes = g.sig[:,1] dy_sizes = g.sig[:,2] n_sizes = da_sizes .* dy_sizes num_blocks = size(g.sig)[1] k = 0 blocks = [] for (dai, dyi) in zip(da_sizes, dy_sizes) ni = dai * dyi TrAi = partialtrace(w[k+1:k+ni, k+1:k+ni], 1, [dai; dyi]) blk = dyi^-1 * kron(Array(1.0*I, dai, dai), TrAi) k += ni push!(blocks, blk) end @assert k == n out = diagcat(blocks...) @assert size(out) == (n, n) return out end """ $(TYPEDSIGNATURES) Schur complement form of weighted θ from theorem 14 of arxiv:2101.00162. Returns λ, w, and Z variables (for Convex.jl) in a named tuple. See also: [`dsw_schur2`](@ref). """ function dsw_schur(g::S0Graph)::NamedTuple{(:λ, :w, :Z), Tuple{Convex.AbstractExpr, Convex.AbstractExpr, Convex.AbstractExpr}} n = size(g.S)[1] Z = sum(kron(m, ComplexVariable(n, n)) for m in hermitian_basis(g.S)) # slow: #Z = ComplexVariable(n^2, n^2) #add_constraint!(Z, Z in kron(g.S, full_subspace(ComplexF64, (n, n)))) # slow: #SB = kron(g.S, full_subspace(ComplexF64, (n, n))) #Z = variable_in_space(SB) λ = Variable() wt = partialtrace(Z, 1, [n; n]) wv = reshape(wt, n*n, 1) add_constraint!(λ, [ λ wv' ; wv Z ] ⪰ 0) return (λ=λ, w=transpose(wt), Z=Z) end """ $(TYPEDSIGNATURES) Schur complement form of weighted θ from theorem 14 of arxiv:2101.00162, optimized for the case S₀ ≠ ℂI, at the cost of w being constrained to S₁ (the commutant of S₀). Returns λ, w, and Z variables (for Convex.jl) in a named tuple. See also: [`dsw_schur2`](@ref). """ function dsw_schur2(g::S0Graph)::NamedTuple{(:λ, :w, :Z), Tuple{Convex.AbstractExpr, Convex.AbstractExpr, Convex.AbstractExpr}} da_sizes = g.sig[:,1] dy_sizes = g.sig[:,2] num_blocks = size(g.sig)[1] blkspaces = get_block_spaces(g) w_blocks = Array{Convex.AbstractExpr, 1}(undef, num_blocks) Z_blocks = Array{Convex.AbstractExpr, 2}(undef, num_blocks, num_blocks) for blki in 1:num_blocks for blkj in 1:num_blocks if blkj <= blki if dim(blkspaces[blki, blkj]) == 0 Z_blocks[blki, blkj] = zeros(dy_sizes[blki]^2, dy_sizes[blkj]^2) else blkV = sum(kron(m, ComplexVariable(dy_sizes[blki], dy_sizes[blkj])) for m in each_basis_element(blkspaces[blki, blkj])) Z_blocks[blki, blkj] = blkV # slow: #SB = kron(blkspaces[blki, blkj], full_subspace(ComplexF64, (dy_sizes[blki], dy_sizes[blkj]))) #Z_blocks[blki, blkj] = variable_in_space(SB) end end if blkj == blki w_blocks[blki] = partialtrace(Z_blocks[blki, blkj], 1, [dy_sizes[blki], dy_sizes[blkj]]) end end end for blki in 1:num_blocks for blkj in 1:num_blocks if blkj > blki Z_blocks[blki, blkj] = Z_blocks[blkj, blki]' end #@show blki, blkj #@show size(Z_blocks[blki, blkj]) end end #@show [ size(wi) for wi in w_blocks ] λ = Variable() Z = vcat([ hcat([Z_blocks[i,j] for j in 1:num_blocks]...) for i in 1:num_blocks ]...) wv = vcat([ reshape(wi, dy_sizes[i]^2, 1) for (i,wi) in enumerate(w_blocks) ]...) #@show size(wv) #@show size(Z) add_constraint!(λ, [ λ wv' ; wv Z ] ⪰ 0) wt = diagcat([ kron(eye(da_sizes[i]), wi) for (i,wi) in enumerate(w_blocks) ]...) #@show size(wt) return (λ=λ, w=transpose(wt), Z=Z) end """ $(TYPEDSIGNATURES) Compute weighted θ using theorem 14 of arxiv:2101.00162. Returns optimal λ, x, and Z values in a named tuple. If `use_diag_optimization=true` (the default) then `x ⪰ w` and `x` is in the commutant of S₀. By theorem 29 of arxiv:2101.00162, θ(g, w) = θ(g, x). """ function dsw(g::S0Graph, w::AbstractArray{<:Number, 2}; use_diag_optimization=true, eps=1e-6, verbose=0) if use_diag_optimization λ, x, Z = dsw_schur2(g) else λ, x, Z = dsw_schur(g) end problem = minimize(λ, [x ⪰ w]) solve!(problem, () -> make_optimizer(verbose, eps)) return (λ=problem.optval, x=Hermitian(evaluate(x)), Z=Hermitian(evaluate(Z))) end """ $(TYPEDSIGNATURES) Compute weighted θ via the complement graph, using theorem 29 of arxiv:2101.00162. θ(S, w) = max{ tr(w x) : x ⪰ 0, y = Ψ(x), θ(Sᶜ, y) ≤ 1 } Returns optimal λ, x, y, and Z in a named tuple. If w is in the commutant of S₀ then the weights w and y saturate the inequality in theorem 32 of arxiv:2101.00162. """ function dsw_via_complement(g::S0Graph, w::AbstractArray{<:Number, 2}; use_diag_optimization=true, eps=1e-6, verbose=0) # max{ <w,x> : Ψ(S, x) ⪯ y, ϑ(S, y) ≤ 1, y ∈ S1 } # equal to: # max{ dsw(S0, √y * w * √y) : dsw(complement(S), y) <= 1 } if use_diag_optimization λ, y, Z = dsw_schur2(g) else λ, y, Z = dsw_schur(g) end x = HermitianSemidefinite(g.n, g.n) problem = maximize(real(tr(w * x')), [ λ <= 1, Ψ(g, x) == y ]) solve!(problem, () -> make_optimizer(verbose, eps)) return (λ=problem.optval, x=Hermitian(evaluate(x)), y=Hermitian(evaluate(y)), Z=Hermitian(evaluate(Z))) end end
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
1627
function f(g, w, v) n = size(w, 1) q = HermitianSemidefinite(n) problem = maximize(real(tr(w * q')), [ Ψ(g, q) ⪯ v ]) solve!(problem, () -> make_optimizer(0, solver_eps)) return problem.optval end function g(g, w) D = g.D #z = HermitianSemidefinite(g.n) #problem = minimize(real(tr(D * z)), [ z ⪰ w, z in g.S1 ]) #problem = minimize(real(tr(z)), [ z ⪰ √D * w * √D, z in g.S1 ]) z = variable_in_space(g.S1) problem = minimize(real(tr(D * z)), [ z ⪰ w ]) #problem = minimize(real(tr(z)), [ z ⪰ √D * w * √D ]) solve!(problem, () -> make_optimizer(0, solver_eps)) return problem.optval end #function h(g, w, y) # D = g.D # # z = variable_in_space(g.S1) # problem = minimize(real(tr(y * √D * z * √D)), [ z ⪰ w ]) # #problem = minimize(real(tr(D * √y * z * √y)), [ z ⪰ w ]) # #problem = minimize(real(tr(z)), [ z ⪰ √D * √y * w * √y * √D ]) # # solve!(problem, () -> make_optimizer(0, solver_eps)) # return problem.optval #end Random.seed!(0) #sig = [1 2; 2 2] #sig = [1 1; 2 3] #sig = [2 3] #sig = [2 2] sig = [3 2; 2 3] S = random_S0Graph(sig) T = complement(S) w = random_bounded(S.n) @time opt0 = dsw(S, w, eps=solver_eps)[1] @time opt1, x, y = dsw_via_complement(T, w, eps=solver_eps) @test opt1 ≈ opt0 atol=tol @time opt2 = dsw(T, y, eps=solver_eps)[1] @test opt2 ≈ 1 atol=tol @time opt3 = dsw(vertex_graph(S), √y * w * √y, eps=solver_eps)[1] @test opt3 ≈ opt0 atol=tol # ϑ(S, w) = max{ ϑ(S0, √y * w * √y) / ϑ(T, y) : y ∈ S1 } @test opt0 ≈ opt3 / opt2 atol=tol @test f(S, w, y) ≈ opt3 atol=tol @test g(S, √y * w * √y) ≈ opt3 atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
492
# solver returns ALMOST_OPTIMAL when seed=0 Random.seed!(1) #sig = [1 2; 2 2] #sig = [1 1; 2 3] #sig = [2 3] #sig = [2 2] sig = [3 2; 2 3] S = random_S0Graph(sig) T = complement(S) w = random_element(S.S1) w = w*w' @test w in S.S1 @time opt0 = dsw(S, w, eps=solver_eps)[1] @time opt1, x, y = dsw_via_complement(T, w, eps=solver_eps) @test opt1 ≈ opt0 atol=tol @time opt2 = dsw(T, y, eps=solver_eps)[1] @test opt2 ≈ 1 atol=tol @test real(tr(w * √S.D * y * √S.D)) ≈ opt0 * opt2 atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
161
using Graphs: cycle_graph n = 7 G = cycle_graph(n) S = S0Graph(G) @time λ = dsw(S, eye(n), eps=solver_eps)[1] @test λ ≈ n*cos(pi/n) / (1 + cos(pi/n)) atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
1348
Random.seed!(0) #sig = [1 2; 2 2] #sig = [1 1; 2 3] #sig = [2 3] #sig = [2 2] sig = [3 2; 2 3] S = random_S0Graph(sig) T = complement(S) n = S.n D = S.D J = block_expander(S.sig) w = random_bounded(S.n) @time opt0, x1, Z1 = dsw(S, w, eps=solver_eps) if true @time opt1, _, x2, Z2 = dsw_via_complement(T, w, eps=solver_eps) @test opt1 ≈ opt0 atol=tol else @time opt1, _, y = dsw_via_complement(T, w, eps=solver_eps) @test opt1 ≈ opt0 atol=tol @time opt2, x2, Z2 = dsw(T, y, eps=solver_eps) @test opt2 ≈ 1 atol=tol end x1 /= opt0 Z1 /= opt0 Z1 = J * Z1 * J' Z2 = J * Z2 * J' @test Z1 ≈ Z1' @test Z2 ≈ Z2' Z1 = Hermitian(Z1) Z2 = Hermitian(Z2) @test tr(√D * x1 * √D * x2) ≈ 1 atol=tol @test partialtrace(Z1, 1, [n,n]) ≈ transpose(x1) atol=tol @test partialtrace(Z2, 1, [n,n]) ≈ transpose(x2) atol=tol v1 = reshape(conj(x1), n^2) v2 = reshape(conj(x2), n^2) Q1 = [1 v1'; v1 Z1] Q2 = [1 v2'; v2 Z2] @test Q1 ≈ Q1' @test Q2 ≈ Q2' Q1 = Hermitian(Q1) Q2 = Hermitian(Q2) D2 = cat([ 1, -kron(√D, √D) ]..., dims=(1,2)) @test minimum(eigvals(Q1)) > -tol @test minimum(eigvals(Q2)) > -tol @test tr(Q1 * D2 * Q2 * D2) ≈ 0 atol=tol @test Z1 * kron(√D, √D) * v2 ≈ v1 atol=tol @test Z2 * kron(√D, √D) * v1 ≈ v2 atol=tol @test Z1 * kron(√D, √D) * Z2 ≈ v1 * v2' atol=tol @test Z1 * kron(eye(n), D) * Z2 ≈ v1 * v2' atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
290
Random.seed!(0) #sig = [1 2; 2 2] #sig = [1 1; 2 3] sig = [2 3] #sig = [2 2] #sig = [3 2; 2 3] S = random_S0Graph(sig) w = random_bounded(S.n) @time opt1, x1 = dsw(S, w, eps=solver_eps) @time opt2, x2 = dsw(S, w, use_diag_optimization=false, eps=solver_eps) @test opt1 ≈ opt2 atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
353
Random.seed!(0) n = 4 diags = Subspace([ Array{ComplexF64, 2}(basis_vec((n,n), (i,i))) for i in 1:n ]) S = S0Graph([1 n], diags) w = random_bounded(n) λ = dsw(S, w).λ X = HermitianSemidefinite(n) problem = maximize(real(tr(X * w)), [ X[i,i] == 1 for i in 1:n ]) solve!(problem, () -> make_optimizer(0, solver_eps)) @test λ ≈ problem.optval atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
612
sig = [2 3; 3 2; 1 1] S = random_S0Graph(sig) w = random_S0_density(S.sig) w /= tr(w) #@show S #display(w) λ, x1, Z = dsw_schur2(S) problem = maximize(trace_logm(x1, w), [ λ <= 1 ]) @time solve!(problem, () -> make_optimizer(0, solver_eps)) h1=problem.optval x1=Hermitian(evaluate(x1)) λ, x2, Z = dsw_schur2(complement(S)) problem = maximize(trace_logm(x2, w), [ λ <= 1 ]) @time solve!(problem, () -> make_optimizer(0, solver_eps)) h2=problem.optval x2=Hermitian(evaluate(x2)) @test x1*x2 ≈ x2*x1 atol=tol @test x1*x2 ≈ Ψ(S, w) atol=tol # follows from the above @test h1+h2 ≈ tr(w*log(Ψ(S, w))) atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
880
module NoncommutativeGraphsTesting include("test_header.jl") @testset "Classical graph" begin include("classical_graph.jl") end @testset "Simple duality" begin include("simple_duality.jl") end @testset "Block duality" begin include("block_duality.jl") end @testset "Block duality 2" begin include("block_duality2.jl") end # slow and doesn't meet accuracy tolerance if false @testset "Thin diag" begin include("thin_diag.jl") end end @testset "Diag optimization" begin include("diag_optimization.jl") end @testset "Unitary transform" begin include("unitary_transform.jl") end @testset "Compatible matrices" begin include("compatible_matrices.jl") end @testset "Empty classical graph" begin include("empty_classical.jl") end @testset "Entropy splitting" begin include("entropy_splitting.jl") end end # NoncommutativeGraphsTesting
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
304
Random.seed!(0) #sig = [1 2; 2 2] #sig = [1 1; 2 3] #sig = [2 3] #sig = [2 2] sig = [3 2; 2 3] S = random_S0Graph(sig) T = complement(S) w = random_bounded(S.n) @time opt1 = dsw(S, w, eps=solver_eps)[1] @time opt2 = dsw_via_complement(complement(S), w, eps=solver_eps)[1] @test opt1 ≈ opt2 atol=tol
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git
[ "MIT" ]
0.1.1
72e4eeb7ecb32cb134bfde2b4f7686eb816cc0c7
code
431
using NoncommutativeGraphs, Subspaces using Convex, SCS, LinearAlgebra using Random, RandomMatrices using Test function random_bounded(n) U = rand(Haar(2), n) return Hermitian(U' * Diagonal(rand(n)) * U) end function basis_vec(dims::Tuple, idx::Tuple) m = zeros(dims) m[idx...] = 1 return m end eye(n) = Matrix(1.0*I, (n,n)) solver_eps = 1e-8 tol = 1e-6 make_optimizer = NoncommutativeGraphs.make_optimizer
NoncommutativeGraphs
https://github.com/dstahlke/NoncommutativeGraphs.jl.git