licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
6810
""" Lattice Struct containing the unitcell, sites and bonds of a lattice graph. Additionally a set of sites to verify symmetry transformations is provided. * `name :: String` : name of the lattice * `size :: Int64` : bond truncation of the lattice * `uc :: Unitcell` : unitcell of the lattice * `test_sites :: Vector{Site}` : minimal set of test sites to verify symmetry transformations * `sites :: Vector{Site}` : list of sites in the lattice * `bonds :: Matrix{Bond}` : matrix encoding the interactions between arbitrary lattice sites """ struct Lattice name :: String size :: Int64 uc :: Unitcell test_sites :: Vector{Site} sites :: Vector{Site} bonds :: Matrix{Bond} end """ get_lattice( name :: String, size :: Int64 ; verbose :: Bool = true, euclidean :: Bool = false ) :: Lattice Returns lattice graph with maximum bond distance size from origin (Euclidean distance in units of the nearest neighbor norm for euclidean == true). Use `lattice_avail` to print available lattices. """ function get_lattice( name :: String, size :: Int64 ; verbose :: Bool = true, euclidean :: Bool = false ) :: Lattice if verbose if euclidean println("Building lattice $(name) with maximum Euclidean distance $(size) ...") else println("Building lattice $(name) with maximum bond distance $(size) ...") end end # get unitcell uc = get_unitcell(name) # get test sites test_sites, metric = get_test_sites(uc, euclidean) # assure that the lattice is at least as large as the test set if euclidean @assert metric <= size * norm(get_vec(test_sites[1].int + uc.bonds[1][1], uc)) "Lattice is too small to perform symmetry reduction." else @assert metric <= size "Lattice is too small to perform symmetry reduction." end # get list of sites sites = get_sites(size, uc, euclidean) num = length(sites) # get empty bond matrix bonds = Matrix{Bond}(undef, num, num) for i in 1 : num for j in 1 : num bonds[i, j] = get_bond_empty(i, j) end end # build lattice l = Lattice(name, size, uc, test_sites, sites, bonds) if verbose println("Done. Lattice has $(length(l.sites)) sites.") end return l end # helper function to increase size of test set if required by model function grow_test_sites!( l :: Lattice, metric :: Int64 ; euclidean :: Bool = false ) :: Nothing if euclidean # determine the maximum real space distance of the current test set norm_current = maximum(Float64[norm(s.vec) for s in l.test_sites]) # determine nearest neighbor distance nn_distance = norm(get_vec(l.sites[1].int + l.uc.bonds[1][1], l.uc)) # ensure that the test set is not shrunk if norm_current < metric * nn_distance println(" Increasing size of test set ...") # get new test sites with required euclidean distance test_sites_new = get_sites(metric, l.uc, euclidean) # add to current test set for s in test_sites_new if is_in(s, l.test_sites) == false push!(l.test_sites, s) end end println(" Done. Lattice test sites have maximum euclidean distance $(metric).") end else # determine the maximum bond distance of the current test set metric_current = maximum(Int64[get_metric(l.test_sites[1], s, l.uc) for s in l.test_sites]) # ensure that the test set is not shrunk if metric_current < metric println(" Increasing size of test set ...") # get new test sites with required bond distance test_sites_new = get_sites(metric, l.uc, euclidean) # add to current test set for s in test_sites_new if is_in(s, l.test_sites) == false push!(l.test_sites, s) end end println(" Done. Lattice test sites have maximum bond distance $(metric).") end end return nothing end # load models include("model_lib/model_heisenberg.jl") include("model_lib/model_breathing.jl") include("model_lib/model_triangular_dm_c3.jl") # print available models function model_avail() :: Nothing println("##################") println("su2 models") println() println("heisenberg") println("breathing") println("pyrochlore-breathing-c3") println("##################") println() println("##################") println("u1-dm models") println() println("triangular-dm-c3") println("##################") println() println("Documentation provided by ?init_model_<model_name>!.") return nothing end """ init_model!( name :: String, J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing Initialize model on a given lattice by modifying the respective bonds. Use `model_avail` to print available models. Details about the layout of the coupling vector J can be found with `?init_model_<model_name>!`. """ function init_model!( name :: String, J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing if name == "heisenberg" init_model_heisenberg!(J, l) elseif name == "breathing" init_model_breathing!(J, l) elseif name == "pyrochlore-breathing-c3" init_model_pyrochlore_breathing_c3!(J, l) elseif name == "triangular-dm-c3" init_model_triangular_dm_c3!(J, l) else error("Model $(name) unknown.") end return nothing end """ get_site( vec :: SVector{3, Float64}, l :: Lattice ) :: Int64 Search for a site in lattice graph, returns respective index in l.sites or 0 in case of failure. """ function get_site( vec :: SVector{3, Float64}, l :: Lattice ) :: Int64 index = 0 for i in eachindex(l.sites) if norm(vec - l.sites[i].vec) <= 1e-8 index = i break end end return index end """ get_bond( s1 :: Site, s2 :: Site, l :: Lattice ) :: Bond Returns bond between (s1, s2) from bond list of lattice graph. """ function get_bond( s1 :: Site, s2 :: Site, l :: Lattice ) :: Bond # get indices of the sites i1 = get_site(s1.vec, l) i2 = get_site(s2.vec, l) # get bond from lattice bonds b = l.bonds[i1, i2] return b end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1213
# save reduced lattice to HDF5 file (implicitly saves original lattice too) function save!( file :: HDF5.File, r :: Reduced_lattice ) :: Nothing # save name, size, model and coupling vector file["reduced_lattice/name"] = r.name file["reduced_lattice/size"] = r.size file["reduced_lattice/model"] = r.model for i in eachindex(r.J) file["reduced_lattice/J/$(i)"] = r.J[i] end return nothing end """ read_lattice( file :: HDF5.File, ) :: Tuple{Lattice, Reduced_lattice} Construct lattice and reduced lattice from HDF5 file. """ function read_lattice( file :: HDF5.File, ) :: Tuple{Lattice, Reduced_lattice} # read name, size, model and coupling vector name = read(file, "reduced_lattice/name") size = read(file, "reduced_lattice/size") model = read(file, "reduced_lattice/model") J = Vector{Float64}[] for i in eachindex(keys(file["reduced_lattice/J"])) push!(J, read(file, "reduced_lattice/J/$(i)")) end # build lattice and reduced lattice l = get_lattice(name, size, verbose = false) r = get_reduced_lattice(model, J, l, verbose = false) return l, r end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
26361
""" Reduced_lattice Struct containing symmetry irreducible sites of a lattice graph. * `name :: String` : name of the original lattice * `size :: Int64` : bond truncation of the original lattice * `model :: String` : name of the initialized model * `J :: Vector{Vector{Float64}}` : coupling vector of the initialized model * `sites :: Vector{Site}` : list of symmetry irreducible sites * `overlap :: Vector{Matrix{Int64}}` : pairs of irreducible sites with their respective multiplicity in range of origin and another irreducible site * `mult :: Vector{Int64}` : multiplicities of irreducible sites * `exchange :: Vector{Int64}` : images of the pair (origin, irreducible site) under site exchange * `project :: Matrix{Int64}` : projections of pairs (site1, site2) of the original lattice to pair (origin, irreducible site) """ struct Reduced_lattice name :: String size :: Int64 model :: String J :: Vector{Vector{Float64}} sites :: Vector{Site} overlap :: Vector{Matrix{Int64}} mult :: Vector{Int64} exchange :: Vector{Int64} project :: Matrix{Int64} end # check if matrix in list of matrices within numerical tolerance function is_in( e :: SMatrix{3, 3, Float64}, list :: Vector{SMatrix{3, 3, Float64}} ) :: Bool in = false for item in list if maximum(abs.(item .- e)) <= 1e-8 in = true break end end return in end # rotate vector onto a reference vector using Rodrigues formula function get_rotation( vec :: SVector{3, Float64}, ref :: SVector{3, Float64} ) :: SMatrix{3, 3, Float64} # buffer geometric information a = vec ./ norm(vec) b = ref ./ norm(ref) n = cross(a, b) s = norm(n) c = dot(a, b) # check if vectors are collinear if s < 1e-8 # if vector are antiparallel do inversion if c < 0.0 return SMatrix{3, 3, Float64}(-1.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, -1.0) # if vectors are parallel return unity else return SMatrix{3, 3, Float64}(+1.0, 0.0, 0.0, 0.0, +1.0, 0.0, 0.0, 0.0, +1.0) end # if vectors are non-collinear use Rodrigues formula else n = n ./ s temp = SMatrix{3, 3, Float64}(0.0, n[3], -n[2], -n[3], 0.0, n[1], n[2], -n[1], 0.0) mat = SMatrix{3, 3, Float64}(+1.0, 0.0, 0.0, 0.0, +1.0, 0.0, 0.0, 0.0, +1.0) mat = mat .+ s .* temp .+ (1.0 - c) .* temp * temp return mat end end # try to rotate vector onto a reference vector around a given axis (return matrix of zeros in case of failure) function get_rotation_for_axis( vec :: SVector{3, Float64}, ref :: SVector{3, Float64}, axis :: SVector{3, Float64} ) :: SMatrix{3, 3, Float64} # normalize vectors and axis a = vec ./ norm(vec) b = ref ./ norm(ref) ax = axis ./ norm(axis) # determine othogonal projections onto axis ovec = vec .- dot(vec, ax) .* ax ovec = ovec ./ norm(ovec) oref = ref .- dot(ref, ax) .* ax oref = oref ./ norm(oref) # buffer geometric information s = norm(cross(ovec, oref)) c = dot(ovec, oref) # allocate rotation matrix mat = SMatrix{3, 3, Float64}(ax[1]^2 + (1.0 - ax[1]^2) * c, ax[1] * ax[2] * (1.0 - c) + ax[3] * s, ax[1] * ax[3] * (1.0 - c) - ax[2] * s, ax[1] * ax[2] * (1.0 - c) - ax[3] * s, ax[2]^2 + (1.0 - ax[2]^2) * c, ax[2] * ax[3] * (1.0 - c) + ax[1] * s, ax[1] * ax[3] * (1.0 - c) + ax[2] * s, ax[2] * ax[3] * (1.0 - c) - ax[1] * s, ax[3]^2 + (1.0 - ax[3]^2) * c) # check if rotation works as expected if norm(mat * a .- b) > 1e-8 # check if sense of rotation has to be inverted if norm(transpose(mat) * a .- b) < 1e-8 return transpose(mat) # if algorithm fails return matrix of zeros else return SMatrix{3, 3, Float64}(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) end # if sanity check is passed return rotation matrix else return mat end end # try to obtain a rotation of (vec1, vec2) onto (ref1, ref2) (return matrix of zeros in case of failure) function rotate( vec1 :: SVector{3, Float64}, vec2 :: SVector{3, Float64}, ref1 :: SVector{3, Float64}, ref2 :: SVector{3, Float64} ) :: SMatrix{3, 3, Float64} # rotate vec1 onto ref1 mat = get_rotation(vec1, ref1) # try to rotate vec2 around ref1 onto ref2 mat = get_rotation_for_axis(mat * vec2, ref2, ref1) * mat return mat end """ get_trafos_orig( l :: Lattice ) :: Vector{SMatrix{3, 3, Float64}} Compute transformations which leave the origin of the lattice invariant (point group symmetries). """ function get_trafos_orig( l :: Lattice ) :: Vector{SMatrix{3, 3, Float64}} # allocate list for transformations, set reference site and its bonds trafos = SMatrix{3, 3, Float64}[] ref = l.sites[1] con = l.uc.bonds[1] # get a pair of non-collinear neighbors of origin for i1 in eachindex(con) for i2 in eachindex(con) # check that sites are unequal if i1 == i2 continue end # get connected sites in Bravais representation int_i1 = ref.int .+ con[i1] int_i2 = ref.int .+ con[i2] # get connected sites in real space representation vec_i1 = get_vec(int_i1, l.uc) vec_i2 = get_vec(int_i2, l.uc) # check that sites are non-collinear if norm(cross(vec_i1, vec_i2)) <= 1e-8 continue end # get site structs site_i1 = Site(int_i1, vec_i1) site_i2 = Site(int_i2, vec_i2) # get bonds bond_i1 = get_bond(ref, site_i1, l) bond_i2 = get_bond(ref, site_i2, l) # get another pair of non-collinear neighbors of origin for j1 in eachindex(con) for j2 in eachindex(con) # check that sites are unequal if j1 == j2 continue end # get connected sites in Bravais representation int_j1 = ref.int .+ con[j1] int_j2 = ref.int .+ con[j2] # get connected sites in real space representation vec_j1 = get_vec(int_j1, l.uc) vec_j2 = get_vec(int_j2, l.uc) # check that sites are non-collinear if norm(cross(vec_j1, vec_j2)) <= 1e-8 continue end # get site structs site_j1 = Site(int_j1, vec_j1) site_j2 = Site(int_j2, vec_j2) # get bonds bond_j1 = get_bond(ref, site_j1, l) bond_j2 = get_bond(ref, site_j2, l) # try to obtain rotation mat = rotate(site_i1.vec, site_i2.vec, site_j1.vec, site_j2.vec) # if successful, verify rotation on test set before saving it if maximum(abs.(mat)) > 1e-8 # check if rotation is already known if is_in(mat, trafos) == false # verify rotation valid = true for n in eachindex(l.test_sites) # apply transformation to lattice site mapped_vec = mat * l.test_sites[n].vec orig_bond = get_bond(ref, l.test_sites[n], l) mapped_ind = get_site(mapped_vec, l) # check if resulting site is in lattice and if the bonds match if mapped_ind == 0 valid = false else valid = are_equal(orig_bond, get_bond(ref, l.sites[mapped_ind], l)) end # break if test fails for one test site if valid == false break end end # save transformation if valid push!(trafos, mat) end end # check if rotation combined with inversion is already known if is_in(-mat, trafos) == false # verify rotation valid = true for n in eachindex(l.test_sites) # apply transformation to lattice site mapped_vec = -mat * l.test_sites[n].vec orig_bond = get_bond(ref, l.test_sites[n], l) mapped_ind = get_site(mapped_vec, l) # check if resulting site is in lattice and if the bonds match if mapped_ind == 0 valid = false else valid = are_equal(orig_bond, get_bond(ref, l.sites[mapped_ind], l)) end # break if test fails for one test site if valid == false break end end # save transformation if valid push!(trafos, -mat) end end end end end end end return trafos end # compute reduced representation of the lattice function get_reduced( l :: Lattice ) :: Vector{Int64} # allocate a list of indices reduced = Int64[i for i in eachindex(l.sites)] # get transformations trafos = get_trafos_orig(l) # iterate over sites and try to find sites which are symmetry equivalent for i in 2 : length(reduced) # continue if index has already been replaced if reduced[i] < i continue end # apply all available transformations to current site and see where it is mapped for j in eachindex(trafos) mapped_vec = trafos[j] * l.sites[i].vec # check that site is not mapped to itself if norm(mapped_vec .- l.sites[i].vec) > 1e-8 # determine image of site index = get_site(mapped_vec, l) # assert that the image is valid, otherwise this is not a valid transformation and our algorithm failed @assert index > 0 "Validity on test set could not be generalized." # replace site in list if bonds match if are_equal(l.bonds[1, i], get_bond(l.sites[1], l.sites[index], l)) reduced[index] = i end end end end return reduced end """ get_trafos_uc( l :: Lattice ) :: Vector{Tuple{SMatrix{3, 3, Float64}, Bool}} Compute mappings of a lattice's basis sites to the origin. The mappings consist of a transformation matrix and a boolean indicating if an inversion was used or not. """ function get_trafos_uc( l :: Lattice ) :: Vector{Tuple{SMatrix{3, 3, Float64}, Bool}} # allocate list for transformations, set reference site and its bonds trafos = Vector{Tuple{SMatrix{3, 3, Float64}, Bool}}(undef, length(l.uc.basis) - 1) ref = l.sites[1] con = l.uc.bonds[1] # iterate over basis sites and find a symmetry for each of them for b in 2 : length(l.uc.basis) # set basis site and connections int = SVector{4, Int64}(0, 0, 0, b) basis = Site(int, get_vec(int, l.uc)) con_basis = l.uc.bonds[b] # get a pair of non-collinear neighbors of basis for b1 in eachindex(con_basis) for b2 in eachindex(con_basis) # check that sites are unequal if b1 == b2 continue end # get connected sites in Bravais representation int_b1 = basis.int .+ con_basis[b1] int_b2 = basis.int .+ con_basis[b2] # get connected sites in real space representation vec_b1 = get_vec(int_b1, l.uc) vec_b2 = get_vec(int_b2, l.uc) # check that sites are non-collinear if norm(cross(vec_b1 .- basis.vec, vec_b2 .- basis.vec)) <= 1e-8 continue end # get site structs site_b1 = Site(int_b1, vec_b1) site_b2 = Site(int_b2, vec_b2) # get bonds bond_b1 = get_bond(basis, site_b1, l) bond_b2 = get_bond(basis, site_b2, l) # get a pair of non-collinear neigbors of origin for ref1 in eachindex(con) for ref2 in eachindex(con) # check that sites are unequal if ref1 == ref2 continue end # get connected sites in Bravais representation int_ref1 = ref.int .+ con[ref1] int_ref2 = ref.int .+ con[ref2] # get connected sites in real space representation vec_ref1 = get_vec(int_ref1, l.uc) vec_ref2 = get_vec(int_ref2, l.uc) # check that sites are non-collinear if norm(cross(vec_ref1, vec_ref2)) <= 1e-8 continue end # get site structs site_ref1 = Site(int_ref1, vec_ref1) site_ref2 = Site(int_ref2, vec_ref2) # get bonds bond_ref1 = get_bond(ref, site_ref1, l) bond_ref2 = get_bond(ref, site_ref2, l) # check that the bonds match if are_equal(bond_b1, bond_ref1) == false || are_equal(bond_b2, bond_ref2) == false continue end # try shift -> rotation mat = rotate(site_b1.vec .- basis.vec, site_b2.vec .- basis.vec, site_ref1.vec, site_ref2.vec) # if successful, verify tranformation on test set before saving it if maximum(abs.(mat)) > 1e-8 valid = true for n in eachindex(l.test_sites) # test only those sites which are in range of basis if get_metric(l.test_sites[n], basis, l.uc) <= l.size # apply transformation to lattice site mapped_vec = mat * (l.test_sites[n].vec .- basis.vec) orig_bond = get_bond(basis, l.test_sites[n], l) mapped_ind = get_site(mapped_vec, l) # check if resulting site is in lattice and if bonds match if mapped_ind == 0 valid = false else valid = are_equal(orig_bond, get_bond(ref, l.sites[mapped_ind], l)) end # break if test fails for one test site if valid == false break end end end # save transformation if valid trafos[b - 1] = (mat, false) break break break break end end # try inversion -> shift -> rotation mat = rotate(-(site_b1.vec .- basis.vec), -(site_b2.vec .- basis.vec), site_ref1.vec, site_ref2.vec) # if successful, verify tranformation on test set before saving it if maximum(abs.(mat)) > 1e-8 valid = true for n in eachindex(l.test_sites) # test only those sites which are in range of basis if get_metric(l.test_sites[n], basis, l.uc) <= l.size # apply transformation to lattice site mapped_vec = mat * (-l.test_sites[n].vec .+ basis.vec) orig_bond = get_bond(basis, l.test_sites[n], l) mapped_ind = get_site(mapped_vec, l) # check if resulting site is in lattice and if bonds match if mapped_ind == 0 valid = false else valid = are_equal(orig_bond, get_bond(ref, l.sites[mapped_ind], l)) end # break if test fails for one test site if valid == false break end end end # save transformation if valid trafos[b - 1] = (mat, true) break break break break end end end end end end end return trafos end # apply transformation (i, j) -> (i0, j*), where i0 is the origin, to site j function apply_trafo( s :: Site, b :: Int64, shift :: SVector{3, Float64}, trafos :: Vector{Tuple{SMatrix{3, 3, Float64}, Bool}}, l :: Lattice ) :: SVector{3, Float64} # check if equivalent to origin if b != 1 # if inequivalent to origin use transformation inside unitcell if trafos[b - 1][2] return trafos[b - 1][1] * (shift .- s.vec .+ l.uc.basis[b]) else return trafos[b - 1][1] * (s.vec .- shift .- l.uc.basis[b]) end # if equivalent to origin, only shift along translation vectors needs to be performed else return s.vec .- shift end end # compute mappings onto reduced lattice function get_mappings( l :: Lattice, reduced :: Vector{Int64} ) :: Matrix{Int64} # allocate matrix num = length(l.sites) mat = Matrix{Int64}(I, num, num) # get transformations inside unitcell trafos = get_trafos_uc(l) # get distances to origin dists = Float64[norm(l.sites[i].vec) for i in eachindex(l.sites)] d_max = maximum(dists) # group sites in shells shell_dists = unique(trunc.(dists, digits = 8)) shells = Vector{Vector{Int64}}(undef, length(shell_dists)) for i in eachindex(shells) shell = Int64[] for j in eachindex(dists) if abs(dists[j] - shell_dists[i]) < 1e-8 push!(shell, j) end end shells[i] = shell end # compute entries of matrix Threads.@threads for i in eachindex(l.sites) # determine shift for second site si = l.sites[i] b = si.int[4] shift = get_vec(SVector{4, Int64}(si.int[1], si.int[2], si.int[3], 1), l.uc) for j in eachindex(l.sites) # compute only off-diagonal entries if i != j # apply symmetry transformation mapped_vec = apply_trafo(l.sites[j], b, shift, trafos, l) # locate transformed site in lattice index = 0 d_map = norm(mapped_vec) # check if transformed site can be in lattice if d_max - d_map > -1e-8 # find respective shell shell = shells[argmin(abs.(shell_dists .- d_map))] # find matching site in shell for k in shell if norm(mapped_vec .- l.sites[k].vec) < 1e-8 index = k break end end if index != 0 mat[i, j] = reduced[index] end end end end end return mat end # compute irreducible sites in overlap of two sites function get_overlap( l :: Lattice, reduced :: Vector{Int64}, irreducible :: Vector{Int64}, mappings :: Matrix{Int64} ) :: Vector{Matrix{Int64}} # allocate overlap overlap = Vector{Matrix{Int64}}(undef, length(irreducible)) for i in eachindex(irreducible) # collect all sites in range of irreducible and origin temp = NTuple{2, Int64}[] for j in eachindex(l.sites) if mappings[irreducible[i], j] != 0 push!(temp, (reduced[j], mappings[j, irreducible[i]])) end end # determine how often a certain pair occurs pairs = unique(temp) table = zeros(Int64, length(pairs), 3) for j in eachindex(pairs) # convert from original lattice index to new "irreducible" index table[j, 1] = findall(index -> index == pairs[j][1], irreducible)[1] table[j, 2] = findall(index -> index == pairs[j][2], irreducible)[1] # count multiplicity for k in eachindex(temp) if pairs[j] == temp[k] table[j, 3] += 1 end end end # save into overlap overlap[i] = table end return overlap end # compute multiplicity of irreducible sites function get_mult( reduced :: Vector{Int64}, irreducible :: Vector{Int64} ) :: Vector{Int64} # allocate vector to store multiplicities mult = zeros(Float64, length(irreducible)) for i in eachindex(mult) for j in eachindex(reduced) if reduced[j] == irreducible[i] mult[i] += 1 end end end return mult end # compute mappings under site exchange function get_exchange( irreducible :: Vector{Int64}, mappings :: Matrix{Int64} ) :: Vector{Int64} # allocate exchange list exchange = zeros(Int64, length(irreducible)) # determine mappings under site exchange for i in eachindex(exchange) exchange[i] = findall(index -> index == mappings[irreducible[i], 1], irreducible)[1] end return exchange end # convert mapping table entries to irreducible site indices function get_project( l :: Lattice, irreducible :: Vector{Int64}, mappings :: Matrix{Int64} ) :: Matrix{Int64} # allocate projections project = zeros(Int64, length(l.sites), length(l.sites)) for i in eachindex(l.sites) for j in eachindex(l.sites) if mappings[i, j] != 0 project[i, j] = findall(index -> index == mappings[i, j], irreducible)[1] end end end return project end """ get_reduced_lattice( model :: String, J :: Vector{Vector{Float64}}, l :: Lattice ; verbose :: Bool = true ) :: Reduced_lattice Compute symmetry reduced representation of a given lattice graph with spin interactions between sites. The interactions are defined by passing a model's name and coupling vector. """ function get_reduced_lattice( model :: String, J :: Vector{Vector{Float64}}, l :: Lattice ; verbose :: Bool = true ) :: Reduced_lattice if verbose println("Performing symmetry reduction ...") end # initialize model by modifying bond matrix of lattice init_model!(model, J, l) # get reduced representation of lattice reduced = get_reduced(l) irreducible = unique(reduced) sites = Site[Site(l.sites[i].int, get_vec(l.sites[i].int, l.uc)) for i in irreducible] # get mapping table mappings = get_mappings(l, reduced) # get overlap overlap = get_overlap(l, reduced, irreducible, mappings) # get multiplicities mult = get_mult(reduced, irreducible) # get exchanges exchange = get_exchange(irreducible, mappings) # get projections project = get_project(l, irreducible, mappings) # build reduced lattice r = Reduced_lattice(l.name, l.size, model, J, sites, overlap, mult, exchange, project) if verbose println("Done. Reduced lattice has $(length(r.sites)) sites.") end return r end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
9745
""" Site Struct containing the coordinates, parametrized via primitive translations plus basis index and in real space form, of a lattice site. * `int :: SVector{4, Int64}` : site given in term of primitive translation and basis index * `vec :: SVector{3, Float64}` : site given in cartesian coordinates """ struct Site int :: SVector{4, Int64} vec :: SVector{3, Float64} end # transform int to vec representation function get_vec( int :: SVector{4, Int64}, uc :: Unitcell ) :: SVector{3, Float64} vec_x = int[1] * uc.vectors[1][1] + int[2] * uc.vectors[2][1] + int[3] * uc.vectors[3][1] + uc.basis[int[4]][1] vec_y = int[1] * uc.vectors[1][2] + int[2] * uc.vectors[2][2] + int[3] * uc.vectors[3][2] + uc.basis[int[4]][2] vec_z = int[1] * uc.vectors[1][3] + int[2] * uc.vectors[2][3] + int[3] * uc.vectors[3][3] + uc.basis[int[4]][3] vec = SVector{3, Float64}(vec_x, vec_y, vec_z) return vec end # generate lattice sites from unitcell function get_sites( size :: Int64, uc :: Unitcell, euclidean :: Bool ) :: Vector{Site} # init buffers ints = SVector{4, Int64}[SVector{4, Int64}(0, 0, 0, 1)] current = copy(ints) touched = copy(ints) # iteratively add sites with bond distance 1 until required Euclidean norm is reached if euclidean # compute nearest neighbor distance nn_distance = norm(get_vec(ints[1] + uc.bonds[1][1], uc)) while true # init list for new sites generated in this step # new_ints contains sites inside sphere with radius corresponding to required Euclidean norm # out_ints contains sites outside sphere with radius corresponding to required Euclidean norm new_ints = SVector{4, Int64}[] out_ints = SVector{4, Int64}[] # add sites with bond distance 1 to new sites from last step for int in current for i in eachindex(uc.bonds[int[4]]) new_int = int .+ uc.bonds[int[4]][i] # check if site was generated already if in(new_int, touched) == false if in(new_int, ints) == false # check if site is inside sphere with required Euclidean norm if norm(get_vec(new_int, uc)) <= size * nn_distance push!(new_ints, new_int) push!(ints, new_int) else push!(out_ints, new_int) end end end end end # if no site exceed Euclidean norm, update lists and proceed if length(out_ints) == 0 touched = current current = new_ints # otherwise check if sites have reentrant neighbors else # init lists for possibles sites with reentrant neighbors re_ints = SVector{4, Int64}[] # add sites with bond distance 1 to sites outside sphere from last step for int in out_ints for i in eachindex(uc.bonds[int[4]]) new_int = int .+ uc.bonds[int[4]][i] # check if site was generated already if in(new_int, current) == false if in(new_int, ints) == false # check if site is inside sphere with required Euclidean norm if norm(get_vec(new_int, uc)) <= size * nn_distance push!(re_ints, int) break end end end end end # if sites with reentrant neighbors exist, update lists and proceed if length(re_ints) > 0 touched = current current = vcat(new_ints, re_ints) # otherwise terminate, if there are no more sites to add else if length(new_ints) > 0 touched = current current = new_ints else break end end end end # iteratively add sites with bond distance 1 until required bond distance is reached else # init metric metric = 0 while metric < size # init list for new sites generated in this step new_ints = SVector{4, Int64}[] # add sites with bond distance 1 to new sites from last step for int in current for i in eachindex(uc.bonds[int[4]]) new_int = int .+ uc.bonds[int[4]][i] # check if site was generated already if in(new_int, touched) == false if in(new_int, ints) == false push!(new_ints, new_int) push!(ints, new_int) end end end end # update lists and increment metric touched = current current = new_ints metric += 1 end end # build sites sites = Site[Site(int, get_vec(int, uc)) for int in ints] return sites end """ get_metric( s1 :: Site, s2 :: Site, uc :: Unitcell ) :: Int64 Compute the bond metric (i.e. minimal number of bonds required to connect two sites within the lattice graph) for a given unitcell. """ function get_metric( s1 :: Site, s2 :: Site, uc :: Unitcell ) :: Int64 # init buffers current = SVector{4, Int64}[s2.int] touched = SVector{4, Int64}[s2.int] metric = 0 not_found = true # check if sites are identical if s1.int == s2.int not_found = false end # add sites with bond distance 1 around s2 until s1 is reached while not_found # increment metric metric += 1 # init list for new sites generated in this step new_ints = SVector{4, Int64}[] # add sites with bond distance 1 to new sites from last step for int in current for i in eachindex(uc.bonds[int[4]]) new_int = int .+ uc.bonds[int[4]][i] # check if site was touched already if in(new_int, touched) == false push!(new_ints, new_int) end end end # if s1 is reached stop searching, otherwise update lists and continue if in(s1.int, new_ints) not_found = false else touched = current current = new_ints end end return metric end # check if Float64 item in list within numerical tolerance function is_in( e :: Float64, list :: Vector{Float64} ) :: Bool in = false for item in list if abs(item - e) <= 1e-8 in = true break end end return in end """ get_nbs( n :: Int64, s :: Site, list :: Vector{Site} ) :: Vector{Int64} Returns list of n-th nearest neigbors (Euclidean norm) for a given site s, assuming s in list. """ function get_nbs( n :: Int64, s :: Site, list :: Vector{Site} ) :: Vector{Int64} # init buffers dist = Float64[] dist_unique = Float64[] # collect possible distances for item in list d = norm(item.vec - s.vec) if is_in(d, dist_unique) == false push!(dist_unique, d) end push!(dist, d) end # determine the n-th nearest neighbor distance @assert length(dist_unique) >= n + 1 "Could not find neighbors in list." dn = sort(dist_unique)[n + 1] # collect all sites with distance dn nbs = Int64[] for i in eachindex(dist) if abs(dn - dist[i]) <= 1e-8 push!(nbs, i) end end return nbs end # check if site in list within numerical tolerance function is_in( e :: Site, list :: Vector{Site} ) :: Bool in = false for item in list if norm(item.vec - e.vec) <= 1e-8 in = true break end end return in end # obtain minimal test set to verify symmetry transformations function get_test_sites( uc :: Unitcell, euclidean :: Bool ) :: Tuple{Vector{Site}, Union{Int64, Float64}} # init buffers test_sites = Site[] # add basis sites and connected neighbors to list for i in eachindex(uc.basis) b = Site(SVector{4, Int64}(0, 0, 0, i), uc.basis[i]) if is_in(b, test_sites) == false push!(test_sites, b) end for j in eachindex(uc.bonds[i]) int = b.int .+ uc.bonds[i][j] bp = Site(int, get_vec(int, uc)) if is_in(bp, test_sites) == false push!(test_sites, bp) end end end if euclidean # determine the maximum Euclidean distance metric = maximum(Float64[norm(s.vec) for s in test_sites]) return test_sites, metric else # determine the maximum bond distance metric = maximum(Int64[get_metric(test_sites[1], s, uc) for s in test_sites]) return test_sites, metric end end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2277
""" test_lattice() :: Nothing Test lattice building for available lattice implementations. """ function test_lattice() :: Nothing lattice_names = ["square", "honeycomb", "kagome", "triangular", "cubic", "fcc", "bcc", "hyperhoneycomb", "hyperkagome", "pyrochlore", "diamond"] # for each lattice give bond distance to test, expected number of sites, minimal Euclidean distance for comparison and maximal Euclidean distance for comparison testsizes = [[8, 145, 2, 4], [8, 109, 2, 4], [8, 163, 2, 4], [8, 217, 2, 4], [8, 833, 2, 4], [8, 2057, 2, 4], [8, 1241, 2, 4], [8, 319, 3, 4], [8, 415, 6, 7], [8, 1029, 2, 4], [8, 525, 2, 4]] # run tests for lattice implementations with bond distance metric @testset "lattices " begin for i in eachindex(lattice_names) # generate testdata current_name = lattice_names[i] l = get_lattice(current_name, testsizes[i][1], verbose = false) # check that implementations give right number of sites @testset "$current_name no. of sites" begin @test length(l.sites) == testsizes[i][2] end # check that Euclidean metric gives same number of sites as sites cut out from larger lattice @testset "$current_name Euclidean" begin for j in testsizes[i][3] : testsizes[i][4] l_bond = get_lattice(current_name, ceil(Int64, 2.5 * j), verbose = false) l_euclidean = get_lattice(current_name, j, verbose = false, euclidean = true) nn_distance = norm(l.sites[2].vec) filtered_sites = filter!(x -> norm(x.vec) <= nn_distance * j, l_bond.sites) @test length(l_euclidean.sites) == length(filtered_sites) end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
997
""" get_lattice_timers() :: Nothing Function to test current performance of lattice implementation for L = 6. """ function get_lattice_timers() :: Nothing # init timer to = TimerOutput() # init list of lattices lattices = String["square", "honeycomb", "kagome", "triangular", "cubic", "fcc", "bcc", "hyperhoneycomb", "hyperkagome", "pyrochlore", "diamond"] # time lattice building for name in lattices @timeit to "=> " * name begin for reps in 1 : 10 @timeit to "-> build" l = get_lattice(name, 6, verbose = false) @timeit to "-> reduce" r = get_reduced_lattice("heisenberg", [[0.0]], l, verbose = false) end end end show(to) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2968
""" Unitcell Struct containing the positions of basis sites, primitive translations and bonds for a lattice graph. * `basis :: Vector{SVector{3, Float64}}` : position of basis sites in unitcell. basis[1] has to be the origin. * `vectors :: Vector{SVector{3, Float64}}` : primitive translations of the lattice * `bonds :: Vector{Vector{SVector{4, Int64}}}` : bonds connecting basis sites Use `get_unitcell` to load the unitcell for a specific lattice and `lattice_avail` to print available lattices. """ struct Unitcell basis :: Vector{SVector{3, Float64}} vectors :: Vector{SVector{3, Float64}} bonds :: Vector{Vector{SVector{4, Int64}}} end # generate unitcell dummy function get_unitcell_empty() basis = Vector{SVector{3, Float64}}(undef, 1) vectors = Vector{SVector{3, Float64}}(undef, 1) bonds = Vector{Vector{SVector{4, Int64}}}(undef, 1) uc = Unitcell(basis, vectors, bonds) return uc end # load custom 2D unitcells include("unitcell_lib/square.jl") include("unitcell_lib/honeycomb.jl") include("unitcell_lib/kagome.jl") include("unitcell_lib/triangular.jl") # load custom 3D unitcells include("unitcell_lib/cubic.jl") include("unitcell_lib/fcc.jl") include("unitcell_lib/bcc.jl") include("unitcell_lib/hyperhoneycomb.jl") include("unitcell_lib/hyperkagome.jl") include("unitcell_lib/pyrochlore.jl") include("unitcell_lib/diamond.jl") # print available lattices function lattice_avail() :: Nothing println("###################### 2D Lattices ######################") println("square") println("honeycomb") println("kagome") println("triangular") println() println("###################### 3D Lattices ######################") println("cubic") println("fcc") println("bcc") println("hyperhoneycomb") println("hyperkagome") println("pyrochlore") println("diamond") return nothing end """ get_unitcell( name :: String ) :: Unitcell Returns unitcell for lattice name. Use `lattice_avail` to print available lattices. """ function get_unitcell( name :: String ) :: Unitcell uc = get_unitcell_empty() if name == "square" uc = get_unitcell_square() elseif name == "honeycomb" uc = get_unitcell_honeycomb() elseif name == "kagome" uc = get_unitcell_kagome() elseif name == "triangular" uc = get_unitcell_triangular() elseif name == "cubic" uc = get_unitcell_cubic() elseif name == "fcc" uc = get_unitcell_fcc() elseif name == "bcc" uc = get_unitcell_bcc() elseif name == "hyperhoneycomb" uc = get_unitcell_hyperhoneycomb() elseif name == "hyperkagome" uc = get_unitcell_hyperkagome() elseif name == "pyrochlore" uc = get_unitcell_pyrochlore() elseif name == "diamond" uc = get_unitcell_diamond() else error("Unitcell $(name) unknown.") end end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
6740
""" init_model_breathing!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing Init Heisenberg model on a breathing pyrochlore or kagome lattice by overwriting the respective bonds. Here, J[n] is the coupling to the n-th nearest neighbor (Euclidean norm). J[1] has to be an array of length 2, specifying the breathing, anisotropic nearest neighbor couplings. If there are m symmetry inequivalent n-th nearest neighbors (n > 1), these are * uniformly initialized if J[n] is a single value * initialized in ascending bond distance from the origin, if J[n] is an array of length m """ function init_model_breathing!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing @assert l.name in ["kagome", "pyrochlore"] "Breathing model requires Pyrochlore or Kagome lattice." @assert length(J[1]) == 2 "Breathing model needs two nearest neighbor couplings." # iterate over sites and add Heisenberg couplings to lattice bonds for i in eachindex(l.sites) for n in eachindex(J) # find n-th nearest neighbors nbs = get_nbs(n, l.sites[i], l.sites) # treat nearest neighbors according to breathing if n == 1 for j in nbs # if bond is within unit cell, it belongs to first kind of breathing coupling if (l.sites[j].int - l.sites[i].int)[1 : 3] == [0, 0, 0] add_bond!(J[1][1], l.bonds[i, j], 1, 1) add_bond!(J[1][1], l.bonds[i, j], 2, 2) add_bond!(J[1][1], l.bonds[i, j], 3, 3) # if it crosses unit cell boundary, initalizes with second kind else add_bond!(J[1][2], l.bonds[i, j], 1, 1) add_bond!(J[1][2], l.bonds[i, j], 2, 2) add_bond!(J[1][2], l.bonds[i, j], 3, 3) end end # uniform initialization for n-th nearest neighbor, if no further couplings provided elseif length(J[n]) == 1 for j in nbs add_bond!(J[n][1], l.bonds[i, j], 1, 1) add_bond!(J[n][1], l.bonds[i, j], 2, 2) add_bond!(J[n][1], l.bonds[i, j], 3, 3) end # initialize symmetry non-equivalent bonds interactions in ascending bond-length order else # get bond distances of neighbors dist = Int64[get_metric(l.sites[j], l.sites[i], l.uc) for j in nbs] # filter out classes of bond distances nbkinds = sort(unique(dist)) # sanity check @assert length(J[n]) == length(nbkinds) "$(l.name) has $(length(nbkinds)) inequivalent $(n)-th nearest neighbors, but $(length(J[n])) couplings were supplied." for nk in eachindex(nbkinds) # filter out neighbors with dist == nbkinds[nk] nknbs = nbs[findall(x -> x == nbkinds[nk], dist)] for j in nknbs add_bond!(J[n][nk], l.bonds[i, j], 1, 1) add_bond!(J[n][nk], l.bonds[i, j], 2, 2) add_bond!(J[n][nk], l.bonds[i, j], 3, 3) end end end end end return nothing end """ init_model_pyrochlore_breathing_c3!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing Init Heisenberg model on a breathing pyrochlore lattice with broken C3 symmetry by overwriting the respective bonds. Here, J[1] = [J1, J2, δ] specifies the breathing nearest-neighbor couplings J1 (for up tetrahedra), J2 (for down tetrahedra) and δ, which quantifies the C3 breaking perturbation. """ function init_model_pyrochlore_breathing_c3!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing @assert l.name in ["pyrochlore"] "Model requires Pyrochlore lattice." @assert length(J[1]) == 3 "Model requires two nearest neighbor couplings and C3 breaking perturbation." @assert length(J) == 1 "Model supports only nearest neighbor couplings." # iterate over sites and add Heisenberg couplings to lattice bonds for i in eachindex(l.sites) # find nearest neighbors nbs = get_nbs(1, l.sites[i], l.sites) # treat nearest neighbors according to breathing anisotropy for j in nbs # get basis indices idxs = (l.sites[j].int[4], l.sites[i].int[4]) # set coupling to J1 (± δ) for up tetrahedra if (l.sites[j].int - l.sites[i].int)[1 : 3] == [0, 0, 0] # add δ on bonds connecting basis sites 1 and 2 if idxs == (1, 2) || idxs == (2, 1) add_bond!(J[1][1] + J[1][3], l.bonds[i, j], 1, 1) add_bond!(J[1][1] + J[1][3], l.bonds[i, j], 2, 2) add_bond!(J[1][1] + J[1][3], l.bonds[i, j], 3, 3) # add δ on bonds connecting basis sites 3 and 4 elseif idxs == (3, 4) || idxs == (4, 3) add_bond!(J[1][1] + J[1][3], l.bonds[i, j], 1, 1) add_bond!(J[1][1] + J[1][3], l.bonds[i, j], 2, 2) add_bond!(J[1][1] + J[1][3], l.bonds[i, j], 3, 3) # subtract δ for all other bonds else add_bond!(J[1][1] - J[1][3], l.bonds[i, j], 1, 1) add_bond!(J[1][1] - J[1][3], l.bonds[i, j], 2, 2) add_bond!(J[1][1] - J[1][3], l.bonds[i, j], 3, 3) end # set coupling to J2 (± δ) for down tetrahedra else # add δ on bonds connecting basis sites 1 and 2 if idxs == (1, 2) || idxs == (2, 1) add_bond!(J[1][2] + J[1][3], l.bonds[i, j], 1, 1) add_bond!(J[1][2] + J[1][3], l.bonds[i, j], 2, 2) add_bond!(J[1][2] + J[1][3], l.bonds[i, j], 3, 3) # add δ on bonds connecting basis sites 3 and 4 elseif idxs == (3, 4) || idxs == (4, 3) add_bond!(J[1][2] + J[1][3], l.bonds[i, j], 1, 1) add_bond!(J[1][2] + J[1][3], l.bonds[i, j], 2, 2) add_bond!(J[1][2] + J[1][3], l.bonds[i, j], 3, 3) # ignore δ for all other bonds else add_bond!(J[1][2] - J[1][3], l.bonds[i, j], 1, 1) add_bond!(J[1][2] - J[1][3], l.bonds[i, j], 2, 2) add_bond!(J[1][2] - J[1][3], l.bonds[i, j], 3, 3) end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2243
""" init_model_heisenberg!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing Init Heisenberg model on a given lattice by overwriting the respective bonds. Here, J[n] is the coupling to the n-th nearest neighbor (Euclidean norm). If there are m symmetry inequivalent n-th nearest neighbors, these are * uniformly initialized if J[n] is a single value * initialized in ascending bond distance from the origin, if J[n] is an array of length m """ function init_model_heisenberg!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing # iterate over sites and add Heisenberg couplings to lattice bonds for i in eachindex(l.sites) for n in eachindex(J) # find n-th nearest neighbors nbs = get_nbs(n, l.sites[i], l.sites) # uniform initialization for n-th nearest neighbor, if no further couplings provided if length(J[n]) == 1 for j in nbs add_bond!(J[n][1], l.bonds[i, j], 1, 1) add_bond!(J[n][1], l.bonds[i, j], 2, 2) add_bond!(J[n][1], l.bonds[i, j], 3, 3) end # initialize symmetry non-equivalent bonds interactions in ascending bond-length order else # get bond distances of neighbors dist = Int64[get_metric(l.sites[j], l.sites[i], l.uc) for j in nbs] # filter out classes of bond distances nbkinds = sort(unique(dist)) # sanity check @assert length(J[n]) == length(nbkinds) "$(l.name) has $(length(nbkinds)) inequivalent $(n)-th nearest neighbors, but $(length(J[n])) couplings were supplied." for nk in eachindex(nbkinds) # filter out neighbors with dist == nbkinds[nk] nknbs = nbs[findall(x -> x == nbkinds[nk], dist)] for j in nknbs add_bond!(J[n][nk], l.bonds[i, j], 1, 1) add_bond!(J[n][nk], l.bonds[i, j], 2, 2) add_bond!(J[n][nk], l.bonds[i, j], 3, 3) end end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2875
""" init_model_triangular_dm_c3!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing Init spin model with out-of-plane Dzyaloshinskii-Moriya (DM) interactions on the triangular lattice. The DM interaction is chosen such that it switches sign between associated neighboring bonds, thus breaking the sixfold rotation symmetry of the triangular lattice down to threefold. Here, J[n] = [Jxx, Jzz, Jxy] (n <= 3), with * `Jxx` : n-th nearest neighbor coupling between the xx and yy spin components * `Jzz` : n-th nearest neighbor coupling between the zz spin components * `Jxy` : n-th nearest neighbor coupling between the xy spin components (aka DM interaction) """ function init_model_triangular_dm_c3!( J :: Vector{Vector{Float64}}, l :: Lattice ) :: Nothing # sanity checks @assert l.name == "triangular" "Model requires triangular lattice." @assert length(J) <= 3 "Model initialization only works up to third-nearest neighbors." for n in eachindex(J) @assert length(J[n]) == 3 "Jxx, Jzz and Jxy all need to be specified for J[$(n)]." end # increase test set according to J max_nbs = get_nbs(length(J), l.sites[1], l.sites) metric = maximum(Int64[get_metric(l.sites[1], l.sites[i], l.uc) for i in max_nbs]) grow_test_sites!(l, metric) # save reference vectors to ensure uniform initialization ref_vecs = Vector{Float64}[] # iterate over sites and add couplings to lattice bonds for i in eachindex(l.sites) for n in eachindex(J) # find n-th nearest neighbors nbs = get_nbs(n, l.sites[i], l.sites) # determine couplings Jxx, Jzz, Jxy = J[n][1], J[n][2], J[n][3] # determine (and save) reference vector if length(ref_vecs) < n push!(ref_vecs, l.sites[nbs[1]].vec .- l.sites[i].vec) end ref_vec = ref_vecs[n] # iterate over neighbors and overwrite bond matrices for j in nbs vec = l.sites[j].vec .- l.sites[i].vec p = round(dot(ref_vec, vec) / (norm(ref_vec) * norm(vec)), digits = 8) # disentanle bond dependence of DM coupling, preserving C3 but not C6 symmetry if acos(p) % (2.0 * pi / 3.0) < 1e-8 add_bond!(+Jxy, l.bonds[i, j], 1, 2) add_bond!(-Jxy, l.bonds[i, j], 2, 1) else add_bond!(-Jxy, l.bonds[i, j], 1, 2) add_bond!(+Jxy, l.bonds[i, j], 2, 1) end # add other couplings to bond add_bond!(Jxx, l.bonds[i, j], 1, 1) add_bond!(Jxx, l.bonds[i, j], 2, 2) add_bond!(Jzz, l.bonds[i, j], 3, 3) end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1111
function get_unitcell_bcc() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 1) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}( 0.5, 0.5, -0.5) vectors[2] = SVector{3, Float64}(-0.5, 0.5, 0.5) vectors[3] = SVector{3, Float64}( 0.5, -0.5, 0.5) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 8) bonds1[1] = SVector{4, Int64}(-1, 0, 0, 0) bonds1[2] = SVector{4, Int64}( 1, 0, 0, 0) bonds1[3] = SVector{4, Int64}( 0, -1, 0, 0) bonds1[4] = SVector{4, Int64}( 0, 1, 0, 0) bonds1[5] = SVector{4, Int64}( 0, 0, -1, 0) bonds1[6] = SVector{4, Int64}( 0, 0, 1, 0) bonds1[7] = SVector{4, Int64}( 1, 1, 1, 0) bonds1[8] = SVector{4, Int64}(-1, -1, -1, 0) bonds[1] = bonds1 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1008
function get_unitcell_cubic() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 1) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(1.0, 0.0, 0.0) vectors[2] = SVector{3, Float64}(0.0, 1.0, 0.0) vectors[3] = SVector{3, Float64}(0.0, 0.0, 1.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 6) bonds1[1] = SVector{4, Int64}( 1, 0, 0, 0) bonds1[2] = SVector{4, Int64}(-1, 0, 0, 0) bonds1[3] = SVector{4, Int64}( 0, 1, 0, 0) bonds1[4] = SVector{4, Int64}( 0, -1, 0, 0) bonds1[5] = SVector{4, Int64}( 0, 0, 1, 0) bonds1[6] = SVector{4, Int64}( 0, 0, -1, 0) bonds[1] = bonds1 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1411
function get_unitcell_diamond() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 2) basis[1] = SVector{3, Float64}( 0.0, 0.0, 0.0) basis[2] = SVector{3, Float64}(1.0 / sqrt(3.0), 1.0 / sqrt(3.0), 1.0 / sqrt(3.0)) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}( 0.0, 2.0 / sqrt(3.0), 2.0 / sqrt(3.0)) vectors[2] = SVector{3, Float64}(2.0 / sqrt(3.0), 0.0, 2.0 / sqrt(3.0)) vectors[3] = SVector{3, Float64}(2.0 / sqrt(3.0), 2.0 / sqrt(3.0), 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 4) bonds1[1] = SVector{4, Int64}( 0, 0, 0, 1) bonds1[2] = SVector{4, Int64}(-1, 0, 0, 1) bonds1[3] = SVector{4, Int64}( 0, -1, 0, 1) bonds1[4] = SVector{4, Int64}( 0, 0, -1, 1) bonds[1] = bonds1 bonds2 = Vector{SVector{4, Int64}}(undef, 4) bonds2[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds2[2] = SVector{4, Int64}( 1, 0, 0, -1) bonds2[3] = SVector{4, Int64}( 0, 1, 0, -1) bonds2[4] = SVector{4, Int64}( 0, 0, 1, -1) bonds[2] = bonds2 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1426
function get_unitcell_fcc() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 1) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}( 0.0, 1.0 / sqrt(2.0), 1.0 / sqrt(2.0)) vectors[2] = SVector{3, Float64}(1.0 / sqrt(2.0), 0.0, 1.0 / sqrt(2.0)) vectors[3] = SVector{3, Float64}(1.0 / sqrt(2.0), 1.0 / sqrt(2.0), 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 12) bonds1[1] = SVector{4, Int64}( 1, 0, 0, 0) bonds1[2] = SVector{4, Int64}(-1, 0, 0, 0) bonds1[3] = SVector{4, Int64}( 0, 1, -1, 0) bonds1[4] = SVector{4, Int64}( 0, -1, 1, 0) bonds1[5] = SVector{4, Int64}( 0, 1, 0, 0) bonds1[6] = SVector{4, Int64}( 0, -1, 0, 0) bonds1[7] = SVector{4, Int64}( 1, 0, -1, 0) bonds1[8] = SVector{4, Int64}(-1, 0, 1, 0) bonds1[9] = SVector{4, Int64}( 0, 0, 1, 0) bonds1[10] = SVector{4, Int64}( 0, 0, -1, 0) bonds1[11] = SVector{4, Int64}( 1, -1, 0, 0) bonds1[12] = SVector{4, Int64}(-1, 1, 0, 0) bonds[1] = bonds1 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1162
function get_unitcell_honeycomb() :: Unitcell # define basis sites basis = Vector{SVector{3, Float64}}(undef, 2) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) basis[2] = SVector{3, Float64}(1.0, 0.0, 0.0) # define Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(3.0 / 2.0, sqrt(3.0) / 2.0, 0.0) vectors[2] = SVector{3, Float64}(3.0 / 2.0, -sqrt(3.0) / 2.0, 0.0) vectors[3] = SVector{3, Float64}( 0.0, 0.0, 0.0) # define bonds for basis sites bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 3) bonds1[1] = SVector{4, Int64}( 0, -1, 0, 1) bonds1[2] = SVector{4, Int64}(-1, 0, 0, 1) bonds1[3] = SVector{4, Int64}( 0, 0, 0, 1) bonds[1] = bonds1 bonds2 = Vector{SVector{4, Int64}}(undef, 3) bonds2[1] = SVector{4, Int64}( 0, 1, 0, -1) bonds2[2] = SVector{4, Int64}( 1, 0, 0, -1) bonds2[3] = SVector{4, Int64}( 0, 0, 0, -1) bonds[2] = bonds2 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1698
function get_unitcell_hyperhoneycomb() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 4) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) basis[2] = SVector{3, Float64}(1.0, 1.0, 0.0) basis[3] = SVector{3, Float64}(1.0, 2.0, 1.0) basis[4] = SVector{3, Float64}(0.0, -1.0, 1.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(-1.0, 1.0, -2.0) vectors[2] = SVector{3, Float64}(-1.0, 1.0, 2.0) vectors[3] = SVector{3, Float64}( 2.0, 4.0, 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 3) bonds1[1] = SVector{4, Int64}( 0, 0, 0, 1) bonds1[2] = SVector{4, Int64}( 0, 0, 0, 3) bonds1[3] = SVector{4, Int64}( 1, 0, 0, 3) bonds[1] = bonds1 bonds2 = Vector{SVector{4, Int64}}(undef, 3) bonds2[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds2[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds2[3] = SVector{4, Int64}( 0, -1, 0, 1) bonds[2] = bonds2 bonds3 = Vector{SVector{4, Int64}}(undef, 3) bonds3[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds3[2] = SVector{4, Int64}( 0, 1, 0, -1) bonds3[3] = SVector{4, Int64}( 0, 0, 1, 1) bonds[3] = bonds3 bonds4 = Vector{SVector{4, Int64}}(undef, 3) bonds4[1] = SVector{4, Int64}( 0, 0, 0, -3) bonds4[2] = SVector{4, Int64}(-1, 0, 0, -3) bonds4[3] = SVector{4, Int64}( 0, 0, -1, -1) bonds[4] = bonds4 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
5104
function get_unitcell_hyperkagome() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 12) basis[1] = SVector{3, Float64}( 0.0, 0.0, 0.0) basis[2] = SVector{3, Float64}(-1.0 / sqrt(2.0), 1.0 / sqrt(2.0), 0.0) basis[3] = SVector{3, Float64}( 0.0, 1.0 / sqrt(2.0), 1.0 / sqrt(2.0)) basis[4] = SVector{3, Float64}( 0.0, 2.0 / sqrt(2.0), 2.0 / sqrt(2.0)) basis[5] = SVector{3, Float64}(-1.0 / sqrt(2.0), 2.0 / sqrt(2.0), 3.0 / sqrt(2.0)) basis[6] = SVector{3, Float64}(-2.0 / sqrt(2.0), 1.0 / sqrt(2.0), 3.0 / sqrt(2.0)) basis[7] = SVector{3, Float64}(-2.0 / sqrt(2.0), 0.0, 2.0 / sqrt(2.0)) basis[8] = SVector{3, Float64}(-3.0 / sqrt(2.0), 0.0, 3.0 / sqrt(2.0)) basis[9] = SVector{3, Float64}(-1.0 / sqrt(2.0), 3.0 / sqrt(2.0), 2.0 / sqrt(2.0)) basis[10] = SVector{3, Float64}(-2.0 / sqrt(2.0), 3.0 / sqrt(2.0), 1.0 / sqrt(2.0)) basis[11] = SVector{3, Float64}(-3.0 / sqrt(2.0), 3.0 / sqrt(2.0), 0.0) basis[12] = SVector{3, Float64}(-3.0 / sqrt(2.0), 2.0 / sqrt(2.0), 1.0 / sqrt(2.0)) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(2.0 * sqrt(2.0), 0.0, 0.0) vectors[2] = SVector{3, Float64}(0.0, 2.0 * sqrt(2.0), 0.0) vectors[3] = SVector{3, Float64}(0.0, 0.0, 2.0 * sqrt(2.0)) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 4) bonds1[1] = SVector{4, Int64}( 0, 0, 0, 1) bonds1[2] = SVector{4, Int64}( 0, 0, 0, 2) bonds1[3] = SVector{4, Int64}( 1, 0, -1, 7) bonds1[4] = SVector{4, Int64}( 1, -1, 0, 10) bonds[1] = bonds1 bonds2 = Vector{SVector{4, Int64}}(undef, 4) bonds2[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds2[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds2[3] = SVector{4, Int64}( 0, 0, -1, 3) bonds2[4] = SVector{4, Int64}( 0, 0, -1, 4) bonds[2] = bonds2 bonds3 = Vector{SVector{4, Int64}}(undef, 4) bonds3[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds3[2] = SVector{4, Int64}( 0, 0, 0, -2) bonds3[3] = SVector{4, Int64}( 0, 0, 0, 1) bonds3[4] = SVector{4, Int64}( 1, 0, 0, 9) bonds[3] = bonds3 bonds4 = Vector{SVector{4, Int64}}(undef, 4) bonds4[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds4[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds4[3] = SVector{4, Int64}( 0, 0, 0, 5) bonds4[4] = SVector{4, Int64}( 1, 0, 0, 8) bonds[4] = bonds4 bonds5 = Vector{SVector{4, Int64}}(undef, 4) bonds5[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds5[2] = SVector{4, Int64}( 0, 0, 0, 4) bonds5[3] = SVector{4, Int64}( 0, 0, 0, 1) bonds5[4] = SVector{4, Int64}( 0, 0, 1, -3) bonds[5] = bonds5 bonds6 = Vector{SVector{4, Int64}}(undef, 4) bonds6[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds6[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds6[3] = SVector{4, Int64}( 0, 0, 0, 2) bonds6[4] = SVector{4, Int64}( 0, 0, 1, -4) bonds[6] = bonds6 bonds7 = Vector{SVector{4, Int64}}(undef, 4) bonds7[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds7[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds7[3] = SVector{4, Int64}( 0, -1, 0, 2) bonds7[4] = SVector{4, Int64}( 0, -1, 0, 3) bonds[7] = bonds7 bonds8 = Vector{SVector{4, Int64}}(undef, 4) bonds8[1] = SVector{4, Int64}( 0, 0, 0, -2) bonds8[2] = SVector{4, Int64}( 0, 0, 0, -1) bonds8[3] = SVector{4, Int64}(-1, 0, 1, -7) bonds8[4] = SVector{4, Int64}( 0, -1, 1, 3) bonds[8] = bonds8 bonds9 = Vector{SVector{4, Int64}}(undef, 4) bonds9[1] = SVector{4, Int64}( 0, 0, 0, -5) bonds9[2] = SVector{4, Int64}( 0, 0, 0, -4) bonds9[3] = SVector{4, Int64}( 0, 1, 0, -2) bonds9[4] = SVector{4, Int64}( 0, 0, 0, 1) bonds[9] = bonds9 bonds10 = Vector{SVector{4, Int64}}(undef, 4) bonds10[1] = SVector{4, Int64}( 0, 1, 0, -3) bonds10[2] = SVector{4, Int64}( 0, 0, 0, -1) bonds10[3] = SVector{4, Int64}( 0, 0, 0, 1) bonds10[4] = SVector{4, Int64}( 0, 0, 0, 2) bonds[10] = bonds10 bonds11 = Vector{SVector{4, Int64}}(undef, 4) bonds11[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds11[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds11[3] = SVector{4, Int64}(-1, 1, 0, -10) bonds11[4] = SVector{4, Int64}( 0, 1, -1, -3) bonds[11] = bonds11 bonds12 = Vector{SVector{4, Int64}}(undef, 4) bonds12[1] = SVector{4, Int64}( 0, 0, 0, -2) bonds12[2] = SVector{4, Int64}( 0, 0, 0, -1) bonds12[3] = SVector{4, Int64}(-1, 0, 0, -9) bonds12[4] = SVector{4, Int64}(-1, 0, 0, -8) bonds[12] = bonds12 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1609
function get_unitcell_kagome() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 3) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) basis[2] = SVector{3, Float64}(1.0, 0.0, 0.0) basis[3] = SVector{3, Float64}(0.5, 0.5 * sqrt(3.0), 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(2.0, 0.0, 0.0) vectors[2] = SVector{3, Float64}(1.0, sqrt(3.0), 0.0) vectors[3] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 4) bonds1[1] = SVector{4, Int64}( 0, 0, 0, 1) bonds1[2] = SVector{4, Int64}( 0, 0, 0, 2) bonds1[3] = SVector{4, Int64}(-1, 0, 0, 1) bonds1[4] = SVector{4, Int64}( 0, -1, 0, 2) bonds[1] = bonds1 bonds2 = Vector{SVector{4, Int64}}(undef, 4) bonds2[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds2[2] = SVector{4, Int64}( 1, 0, 0, -1) bonds2[3] = SVector{4, Int64}( 0, 0, 0, 1) bonds2[4] = SVector{4, Int64}( 1, -1, 0, 1) bonds[2] = bonds2 bonds3 = Vector{SVector{4, Int64}}(undef, 4) bonds3[1] = SVector{4, Int64}( 0, 0, 0, -2) bonds3[2] = SVector{4, Int64}( 0, 0, 0, -1) bonds3[3] = SVector{4, Int64}( 0, 1, 0, -2) bonds3[4] = SVector{4, Int64}(-1, 1, 0, -1) bonds[3] = bonds3 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2296
function get_unitcell_pyrochlore() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 4) basis[1] = SVector{3, Float64}( 0.0, 0.0, 0.0) basis[2] = SVector{3, Float64}( 0.0, 0.25, 0.25) basis[3] = SVector{3, Float64}(0.25, 0.0, 0.25) basis[4] = SVector{3, Float64}(0.25, 0.25, 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(0.0, 0.5, 0.5) vectors[2] = SVector{3, Float64}(0.5, 0.0, 0.5) vectors[3] = SVector{3, Float64}(0.5, 0.5, 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 6) bonds1[1] = SVector{4, Int64}( 0, 0, 0, 1) bonds1[2] = SVector{4, Int64}( 0, 0, 0, 2) bonds1[3] = SVector{4, Int64}( 0, 0, 0, 3) bonds1[4] = SVector{4, Int64}(-1, 0, 0, 1) bonds1[5] = SVector{4, Int64}( 0, -1, 0, 2) bonds1[6] = SVector{4, Int64}( 0, 0, -1, 3) bonds[1] = bonds1 bonds2 = Vector{SVector{4, Int64}}(undef, 6) bonds2[1] = SVector{4, Int64}( 0, 0, 0, -1) bonds2[2] = SVector{4, Int64}( 0, 0, 0, 1) bonds2[3] = SVector{4, Int64}( 0, 0, 0, 2) bonds2[4] = SVector{4, Int64}( 1, 0, 0, -1) bonds2[5] = SVector{4, Int64}( 1, -1, 0, 1) bonds2[6] = SVector{4, Int64}( 1, 0, -1, 2) bonds[2] = bonds2 bonds3 = Vector{SVector{4, Int64}}(undef, 6) bonds3[1] = SVector{4, Int64}( 0, 0, 0, -2) bonds3[2] = SVector{4, Int64}( 0, 0, 0, -1) bonds3[3] = SVector{4, Int64}( 0, 0, 0, 1) bonds3[4] = SVector{4, Int64}( 0, 1, 0, -2) bonds3[5] = SVector{4, Int64}(-1, 1, 0, -1) bonds3[6] = SVector{4, Int64}( 0, 1, -1, 1) bonds[3] = bonds3 bonds4 = Vector{SVector{4, Int64}}(undef, 6) bonds4[1] = SVector{4, Int64}( 0, 0, 0, -3) bonds4[2] = SVector{4, Int64}( 0, 0, 0, -2) bonds4[3] = SVector{4, Int64}( 0, 0, 0, -1) bonds4[4] = SVector{4, Int64}( 0, 0, 1, -3) bonds4[5] = SVector{4, Int64}(-1, 0, 1, -2) bonds4[6] = SVector{4, Int64}( 0, -1, 1, -1) bonds[4] = bonds4 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
905
function get_unitcell_square() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 1) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(1.0, 0.0, 0.0) vectors[2] = SVector{3, Float64}(0.0, 1.0, 0.0) vectors[3] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 4) bonds1[1] = SVector{4, Int64}( 1, 0, 0, 0) bonds1[2] = SVector{4, Int64}(-1, 0, 0, 0) bonds1[3] = SVector{4, Int64}( 0, 1, 0, 0) bonds1[4] = SVector{4, Int64}( 0, -1, 0, 0) bonds[1] = bonds1 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1048
function get_unitcell_triangular() :: Unitcell # define list of basis sites basis = Vector{SVector{3, Float64}}(undef, 1) basis[1] = SVector{3, Float64}(0.0, 0.0, 0.0) # define list of Bravais vectors vectors = Vector{SVector{3, Float64}}(undef, 3) vectors[1] = SVector{3, Float64}(sqrt(3.0) / 2.0, -0.5, 0.0) vectors[2] = SVector{3, Float64}(sqrt(3.0) / 2.0, 0.5, 0.0) vectors[3] = SVector{3, Float64}( 0.0, 0.0, 0.0) # define list of bonds for each basis site bonds = Vector{Vector{SVector{4, Int64}}}(undef, length(basis)) bonds1 = Vector{SVector{4, Int64}}(undef, 6) bonds1[1] = SVector{4, Int64}( 1, 0, 0, 0) bonds1[2] = SVector{4, Int64}(-1, 0, 0, 0) bonds1[3] = SVector{4, Int64}( 0, 1, 0, 0) bonds1[4] = SVector{4, Int64}( 0, -1, 0, 0) bonds1[5] = SVector{4, Int64}( 1, -1, 0, 0) bonds1[6] = SVector{4, Int64}(-1, 1, 0, 0) bonds[1] = bonds1 # build unitcell uc = Unitcell(basis, vectors, bonds) return uc end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
33719
# function for measurements and checkpointing function measure( symmetry :: String, obs_file :: String, cp_file :: String, Λ :: Float64, dΛ :: Float64, χ :: Vector{Matrix{Float64}}, χ_tol :: NTuple{2, Float64}, t :: DateTime, t0 :: DateTime, r :: Reduced_lattice, m :: Mesh, a :: Action, wt :: Float64, ct :: Float64 ) :: Tuple{DateTime, Bool} # open files obs = h5open(obs_file, "cw") cp = h5open(cp_file, "cw") # compute correlations χp = deepcopy(χ) compute_χ!(Λ, r, m, a, χ, χ_tol) # save correlations and self energy if respective dataset does not yet exist if haskey(obs, "χ/$(Λ)") == false save_self!(obs, Λ, m, a) save_χ!(obs, Λ, symmetry, m, χ) end # check for monotonicity of static part of dominant on-site correlation idx = argmax(Float64[maximum(abs.(χ[i])) for i in eachindex(χ)]) monotone = χ[idx][1, 1] / χp[idx][1, 1] >= 0.995 # compute current run time (in hours) h0 = 1e-3 * (Dates.now() - t0).value / 3600.0 # if more than half an hour is left to the wall time limit, use ct as timer heuristic for checkpointing if wt - h0 > 0.5 # test if time limit for checkpoint (in hours) has been reached h = 1e-3 * (Dates.now() - t).value / 3600.0 if h >= ct # generate checkpoint if it does not exist yet if haskey(cp, "a/$(Λ)") == false println(); println("Generating checkpoint at cutoff Λ / |J| = $(Λ) ...") checkpoint!(cp, Λ, dΛ, m, a) println("Successfully generated checkpoint.") println(); end # reset timer t = Dates.now() end # if less than half an hour is left to the wall time, generate checkpoints as if ct = 0. Lower bound to prevent cancellation during checkpoint writing elseif 0.1 < wt - h0 <= 0.5 # generate checkpoint if it does not exist yet if haskey(cp, "a/$(Λ)") == false println(); println() println("Generating checkpoint at cutoff Λ / |J| = $(Λ) ...") checkpoint!(cp, Λ, dΛ, m, a) println("Successfully generated checkpoint.") println(); println() end end # close files close(obs) close(cp) return t, monotone end """ save_launcher!( path :: String, f :: String, name :: String, size :: Int64, model :: String, symmetry :: String, J :: Vector{<:Any} ; A :: Float64 = 0.0, S :: Float64 = 0.5, β :: Float64 = 1.0, euclidean :: Bool = false, num_σ :: Int64 = 25, num_Ω :: Int64 = 15, num_ν :: Int64 = 10, num_χ :: Int64 = 10, p_σ :: NTuple{2, Float64} = (0.3, 1.0), p_Ωs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_νs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_Ωt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.3, 50.0), p_νt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.5, 50.0), p_χ :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), lins :: NTuple{5, Float64} = (5.0, 4.0, 8.0, 6.0, 4.0), bounds :: NTuple{5, Float64} = (0.5, 50.0, 250.0, 150.0, 50.0), max_iter :: Int64 = 10, min_eval :: Int64 = 10, max_eval :: Int64 = 100, Σ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), Γ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), χ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), parquet_tol :: NTuple{2, Float64} = (1e-8, 1e-5), ODE_tol :: NTuple{2, Float64} = (1e-8, 1e-2), loops :: Int64 = 1, parquet :: Bool = false, Σ_corr :: Bool = true, initial :: Float64 = 50.0, final :: Float64 = 0.05, bmin :: Float64 = 1e-4, bmax :: Float64 = 0.2, overwrite :: Bool = true, cps :: Vector{Float64} = Float64[], wt :: Float64 = 23.5, ct :: Float64 = 4.0 ) :: Nothing Generate executable Julia file `path` which sets up and runs the FRG solver. For more information on the different solver parameters see documentation of `launch!`. """ function save_launcher!( path :: String, f :: String, name :: String, size :: Int64, model :: String, symmetry :: String, J :: Vector{<:Any} ; A :: Float64 = 0.0, S :: Float64 = 0.5, β :: Float64 = 1.0, euclidean :: Bool = false, num_σ :: Int64 = 25, num_Ω :: Int64 = 15, num_ν :: Int64 = 10, num_χ :: Int64 = 10, p_σ :: NTuple{2, Float64} = (0.3, 1.0), p_Ωs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_νs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_Ωt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.3, 50.0), p_νt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.5, 50.0), p_χ :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), lins :: NTuple{5, Float64} = (5.0, 4.0, 8.0, 6.0, 4.0), bounds :: NTuple{5, Float64} = (0.5, 50.0, 250.0, 150.0, 50.0), max_iter :: Int64 = 10, min_eval :: Int64 = 10, max_eval :: Int64 = 100, Σ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), Γ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), χ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), parquet_tol :: NTuple{2, Float64} = (1e-8, 1e-5), ODE_tol :: NTuple{2, Float64} = (1e-8, 1e-2), loops :: Int64 = 1, parquet :: Bool = false, Σ_corr :: Bool = true, initial :: Float64 = 50.0, final :: Float64 = 0.05, bmin :: Float64 = 1e-4, bmax :: Float64 = 0.2, overwrite :: Bool = true, cps :: Vector{Float64} = Float64[], wt :: Float64 = 23.5, ct :: Float64 = 4.0 ) :: Nothing # convert J for type safety J = Array{Array{Float64,1},1}([[x...] for x in J]) open(path, "w") do file # load source code write(file, "using PFFRGSolver \n \n") # setup for launcher function write(file, """launch!("$(f)", "$(name)", $(size), "$(model)", "$(symmetry)", $(J), A = $(A), S = $(S), β = $(β), euclidean = $(euclidean), num_σ = $(num_σ), num_Ω = $(num_Ω), num_ν = $(num_ν), num_χ = $(num_χ), p_σ = $(p_σ), p_Ωs = $(p_Ωs), p_νs = $(p_νs), p_Ωt = $(p_Ωt), p_νt = $(p_νt), p_χ = $(p_χ), lins = $(lins), bounds = $(bounds), max_iter = $(max_iter), min_eval = $(min_eval), max_eval = $(max_eval), Σ_tol = $(Σ_tol), Γ_tol = $(Γ_tol), χ_tol = $(χ_tol), parquet_tol = $(parquet_tol), ODE_tol = $(ODE_tol), loops = $(loops), parquet = $(parquet), Σ_corr = $(Σ_corr), initial = $(initial), final = $(final), bmin = $(bmin), bmax = $(bmax), overwrite = $(overwrite), cps = $(cps), wt = $(wt), ct = $(ct))""") end return nothing end """ make_job!( path :: String, dir :: String, input :: String, exe :: String, sbatch_args :: Dict{String, String} ) :: Nothing Generate a SLURM job file `path` to run the FRG solver on a cluster node. `dir` is the job working directory. `input` is the launcher file generated by `save_launcher!`. `exe` is the path to the Julia executable. `sbatch_args` is used to set SLURM parameters, e.g. `sbatch_args = Dict(["account" => "my_account", "mem" => "8gb"])`. """ function make_job!( path :: String, dir :: String, input :: String, exe :: String, sbatch_args :: Dict{String, String} ) :: Nothing # assert that input is a valid Julia script @assert endswith(input, ".jl") "Input must be *.jl file." # make local copy to prevent global modification of sbatch_args args = copy(sbatch_args) # set thread affinity, if not done already if haskey(args, "export") if occursin("JULIA_EXCLUSIVE", args["export"]) == false args["export"] *= ",JULIA_EXCLUSIVE=1" end else push!(args, "export" => "ALL,JULIA_EXCLUSIVE=1") end # set working directory, if not done already if haskey(args, "chdir") @warn "Overwriting working directory passed via SBATCH dict ..." args["chdir"] = dir else push!(args, "chdir" => dir) end # set output file, if not done already if haskey(args, "output") == false output = split(input, ".jl")[1] * ".out" push!(args, "output" => output) end open(path, "w") do file # set SLURM parameters write(file, "#!/bin/bash \n") for arg in keys(args) write(file, "#SBATCH --$(arg)=$(args[arg]) \n") end write(file, "\n") # start calculation write(file, "$(exe) -O3 -t \$SLURM_CPUS_PER_TASK $(input)") end return nothing end """ make_repository!( dir :: String, exe :: String, sbatch_args :: Dict{String, String} ) :: Nothing Generate file structure for several runs of the FRG solver with presumably different parameters. Assumes that the target folder `dir` contains only launcher files generated by `save_launcher!`. `exe` is the path to the Julia executable. For each launcher file in `dir` a separate folder and job file are created. `sbatch_args` is used to set SLURM parameters, e.g. `sbatch_args = Dict(["account" => "my_account", "mem" => "8gb"])`. """ function make_repository!( dir :: String, exe :: String, sbatch_args :: Dict{String, String} ) :: Nothing # init folder for saving finished calculations fin_dir = joinpath(dir, "finished") if isdir(fin_dir) == false mkdir(fin_dir) end # for each *.jl file, init a new folder, move the *.jl file into it and create a job file for file in readdir(dir) if endswith(file, ".jl") # buffer paths subdir = joinpath(dir, split(file, ".jl")[1]) input = joinpath(subdir, file) path = joinpath(subdir, split(file, ".jl")[1] * ".job") # create subdir and job file mkdir(subdir) mv(joinpath(dir, file), input) make_job!(path, subdir, file, exe, sbatch_args) end end return nothing end """ collect_repository!( dir :: String ) :: Nothing Collect final results in file structure generated by `make_repository!`. Finished calculations are moved to the finished folder. """ function collect_repository!( dir :: String ) :: Nothing println("Collecting results from repository ...") # check that finished folder exists @assert isdir(joinpath(dir, "finished")) "Folder $(joinpath(dir, "finished")) does not exist." # for each folder move *_obs, *_cp and *.out, then remove their parent dir. If calculation has not finished set overwrite = false in *.jl file for file in readdir(dir) if isdir(joinpath(dir, file)) && file != "finished" # get file list of subdir subdir = joinpath(dir, file) subfiles = readdir(subdir) # check if output files exist obs_filter = filter(x -> endswith(x, "_obs"), subfiles) if length(obs_filter) != 1 @warn "Could not find unique *_obs file in $(subdir), skipping ..." continue end cp_filter = filter(x -> endswith(x, "_cp"), subfiles) if length(cp_filter) != 1 @warn "Could not find unique *_cp file in $(subdir), skipping ..." continue end out_filter = filter(x -> endswith(x, ".out"), subfiles) if length(out_filter) != 1 @warn "Could not find unique *.out file in $(subdir), skipping ..." continue end # buffer names of output files obs_name = obs_filter[1] cp_name = cp_filter[1] out_name = out_filter[1] # buffer paths of output files obs_file = joinpath(subdir, obs_name) cp_file = joinpath(subdir, cp_name) out_file = joinpath(subdir, out_name) # check if calculation is finished obs_data = h5open(obs_file, "r") cp_data = h5open(cp_file, "r") if haskey(obs_data, "finished") && haskey(cp_data, "finished") # close files close(obs_data) close(cp_data) # move files to finished folder mv(obs_file, joinpath(joinpath(dir, "finished"), obs_name)) mv(cp_file, joinpath(joinpath(dir, "finished"), cp_name)) mv(out_file, joinpath(joinpath(dir, "finished"), out_name)) # remove parent dir rm(subdir, recursive = true) else # close files close(obs_data) close(cp_data) # load the launcher launcher_file = joinpath(subdir, file * ".jl") stream = open(launcher_file, "r") launcher = read(stream, String) if occursin("overwrite = true", launcher) # replace overwrite flag and overwrite stream launcher = replace(launcher, "overwrite = true" => "overwrite = false") stream = open(launcher_file, "w") write(stream, launcher) # close the stream close(stream) elseif occursin("overwrite = false", launcher) # close the stream close(stream) else # close the stream close(stream) # print error message println("Parameter file $(launcher_file) seems to be broken.") end end end end println("Done. Results collected in $(joinpath(dir, "finished")).") return nothing end # load launchers for parquet equations and FRG include("parquet.jl") include("launcher_1l.jl") include("launcher_2l.jl") include("launcher_ml.jl") """ launch!( f :: String, name :: String, size :: Int64, model :: String, symmetry :: String, J :: Vector{<:Any} ; A :: Float64 = 0.0, S :: Float64 = 0.5, β :: Float64 = 1.0, euclidean :: Bool = false, num_σ :: Int64 = 25, num_Ω :: Int64 = 15, num_ν :: Int64 = 10, num_χ :: Int64 = 10, p_σ :: NTuple{2, Float64} = (0.3, 1.0), p_Ωs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_νs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_Ωt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.3, 50.0), p_νt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.5, 50.0), p_χ :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), lins :: NTuple{5, Float64} = (5.0, 4.0, 8.0, 6.0, 4.0), bounds :: NTuple{5, Float64} = (0.5, 50.0, 250.0, 150.0, 50.0), max_iter :: Int64 = 10, min_eval :: Int64 = 10, max_eval :: Int64 = 100, Σ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), Γ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), χ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), parquet_tol :: NTuple{2, Float64} = (1e-8, 1e-5), ODE_tol :: NTuple{2, Float64} = (1e-8, 1e-2), loops :: Int64 = 1, parquet :: Bool = false, Σ_corr :: Bool = true, initial :: Float64 = 50.0, final :: Float64 = 0.05, bmin :: Float64 = 1e-4, bmax :: Float64 = 0.2, overwrite :: Bool = true, cps :: Vector{Float64} = Float64[], wt :: Float64 = 23.5, ct :: Float64 = 4.0 ) :: Nothing Runs the FRG solver. A detailed explanation of the solver parameters is given below: * `f` : name of the output files. The solver will generate two files (`f * "_obs"` and `f * "_cp"`) containing observables and checkpoints respectively. * `name` : name of the lattice * `size` : size of the lattice. Correlations are truncated beyond this range. * `model` : name of the spin model. Defines coupling structure. * `symmetry` : symmetry of the spin model. Used to reduce computational complexity. * `J` : coupling vector of the spin model. J is normalized together with A during initialization of the solver. * `A` : on-site repulsion term. A is normalized together with J during initialization of the solver. * `S` : total spin quantum number (only relevant for pure Heisenberg models) * `β` : damping factor for fixed point iterations of parquet equations * `euclidean` : flag to build lattice by Euclidean (aka real space) instead of bond distance * `num_σ` : number of non-zero, positive frequencies for the self energy * `num_Ω` : number of non-zero, positive frequencies for the bosonic axis of the two-particle irreducible channels * `num_ν` : number of non-zero, positive frequencies for the fermionic axis of the two-particle irreducible channels * `num_χ` : number of non-zero, positive frequencies for the correlations * `p_σ` : parameters for updating self energy mesh between ODE steps \n p_σ[1] gives the percentage of linearly spaced frequencies p_σ[2] sets the linear extent relative to the position of the quasi-particle peak * `p_Ω / p_ν` : parameters for updating bosonic / fermionic s (u) and t channel frequency meshes between ODE steps \n p_Γ[1] gives the percentage of linearly spaced frequencies p_Γ[2] (p_Γ[3]) sets the lower (upper) bound for the accepted relative deviation between the values at the origin and the first finite frequency p_Γ[4] sets the lower bound for the linear spacing in units of the cutoff Λ p_Γ[5] sets the upper bound for the linear extent in units of the cutoff Λ * `p_χ` : parameters for updating correlation mesh between ODE steps \n p_χ[1] gives the percentage of linearly spaced frequencies p_χ[2] (p_χ[3]) sets the lower (upper) bound for the accepted relative deviation between the values at the origin and the first finite frequency p_χ[4] sets the lower bound for the linear spacing in units of the cutoff Λ p_χ[5] sets the upper bound for the linear extent in units of the cutoff Λ * `lins` : parameters for controlling the scaling of frequency meshes before adaptive scanning is utilized \n lins[1] gives the scale, in units of |J|, beyond which adaptive meshes are used lins[2] gives the linear extent, in units of the cutoff Λ, for the self energy lins[3] gives the linear extent, in units of the cutoff Λ, for the bosonic axis of the two-particle irreducible channels lins[4] gives the linear extent, in units of the cutoff Λ, for the fermionic axis of the two-particle irreducible channels lins[5] gives the linear extent, in units of the cutoff Λ, for the correlations * `bounds` : parameters for controlling the upper mesh bounds \n bounds[1] gives, in units of |J|, the stopping scale beyond which no further contraction of the meshes is performed bounds[2] gives, in units of the cutoff Λ, the upper bound for the self energy bounds[3] gives, in units of the cutoff Λ, the upper bound for the bosonic axis of the two-particle irreducible channels bounds[4] gives, in units of the cutoff Λ, the upper bound for the fermionic axis of the two-particle irreducible channels bounds[5] gives, in units of the cutoff Λ, the upper bound for the correlations * `max_iter` : maximum number of parquet iterations * `min_eval` : minimum initial number of subdivisions for vertex quadrature. eval is min_eval for parquet iterations. * `max_eval` : maximum initial number of subdivisions for vertex quadrature. eval is ramped up from min_eval to max_eval as a function of the cutoff Λ (for Λ < |J|). * `Σ_tol` : absolute and relative error tolerance for self energy quadrature * `Γ_tol` : absolute and relative error tolerance for vertex quadrature * `χ_tol` : absolute and relative error tolerance for correlation quadrature * `parquet_tol` : absolute and relative error tolerance for convergence of parquet iterations * `ODE_tol` : absolute and relative error tolerance for Bogacki-Shampine solver * `loops` : number of loops to be calculated * `parquet` : flag to enable parquet iterations. If `false`, initial condition is chosen as bare vertex. * `Σ_corr` : flag to enable self energy corrections. Has no effect for 'loops <= 2'. * `initial` : start value of the cutoff in units of |J| * `final` : final value of the cutoff in units of |J|. If `final = initial` and `parquet = true` only a solution of the parquet equations is computed. * `bmin` : minimum step size of the ODE solver in units of |J| * `bmax` : maximum step size of the ODE solver in units of Λ * `overwrite` : flag to indicate whether a new calculation should be started. If false, checks if `f * "_obs"` and `f * "_cp"` exist and continues calculation from available checkpoint with lowest cutoff. * `cps` : list of intermediate cutoffs in units of |J|, where a checkpoint with full vertex data shall be generated * `wt` : wall time (in hours) for the calculation. Should be set according to cluster configurations. If run remote, set `wt = Inf` to avoid data loss. \n WARNING: For run times longer than wt, no checkpoints are created. * `ct` : minimum time (in hours) between subsequent checkpoints """ function launch!( f :: String, name :: String, size :: Int64, model :: String, symmetry :: String, J :: Vector{<:Any} ; A :: Float64 = 0.0, S :: Float64 = 0.5, β :: Float64 = 1.0, euclidean :: Bool = false, num_σ :: Int64 = 25, num_Ω :: Int64 = 15, num_ν :: Int64 = 10, num_χ :: Int64 = 10, p_σ :: NTuple{2, Float64} = (0.3, 1.0), p_Ωs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_νs :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), p_Ωt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.3, 50.0), p_νt :: NTuple{5, Float64} = (0.3, 0.15, 0.20, 0.5, 50.0), p_χ :: NTuple{5, Float64} = (0.3, 0.05, 0.10, 0.1, 50.0), lins :: NTuple{5, Float64} = (5.0, 4.0, 8.0, 6.0, 4.0), bounds :: NTuple{5, Float64} = (0.5, 50.0, 250.0, 150.0, 50.0), max_iter :: Int64 = 10, min_eval :: Int64 = 10, max_eval :: Int64 = 100, Σ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), Γ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), χ_tol :: NTuple{2, Float64} = (1e-8, 1e-5), parquet_tol :: NTuple{2, Float64} = (1e-8, 1e-5), ODE_tol :: NTuple{2, Float64} = (1e-8, 1e-2), loops :: Int64 = 1, parquet :: Bool = false, Σ_corr :: Bool = true, initial :: Float64 = 50.0, final :: Float64 = 0.05, bmin :: Float64 = 1e-4, bmax :: Float64 = 0.2, overwrite :: Bool = true, cps :: Vector{Float64} = Float64[], wt :: Float64 = 23.5, ct :: Float64 = 4.0 ) :: Nothing # init timers for checkpointing t = Dates.now() t0 = Dates.now() println() println("################################################################################") println("Initializing solver ...") println(); println() # check if symmetry parameter is valid symmetries = String["su2", "u1-dm"] @assert in(symmetry, symmetries) "Symmetry $(symmetry) unknown. Valid arguments are su2 and u1-dm." # init names for observables and checkpoints file obs_file = f * "_obs" cp_file = f * "_cp" # test if a new calculation should be started if overwrite println("overwrite = true, starting from scratch ...") # delete existing observables if isfile(obs_file) rm(obs_file) end # delete existing checkpoints if isfile(cp_file) rm(cp_file) end # open new files obs = h5open(obs_file, "cw") cp = h5open(cp_file, "cw") # convert J for type safety J = Vector{Vector{Float64}}([[x...] for x in J]) # normalize couplings and level repulsion JAtemp = normalize([J, [[A]]]) J = JAtemp[1] A = JAtemp[2][1][1] # build lattice and save to files println(); l = get_lattice(name, size, euclidean = euclidean) println(); r = get_reduced_lattice(model, J, l) save!(obs, r) save!(cp, r) # close files close(obs) close(cp) # build meshes σ = get_mesh(lins[2] * initial, bounds[2] * max(initial, bounds[1]), num_σ, p_σ[1]) Ωs = get_mesh(lins[3] * initial, bounds[3] * max(initial, bounds[1]), num_Ω, p_Ωs[1]) νs = get_mesh(lins[4] * initial, bounds[4] * max(initial, bounds[1]), num_ν, p_νs[1]) Ωt = get_mesh(lins[3] * initial, bounds[3] * max(initial, bounds[1]), num_Ω, p_Ωt[1]) νt = get_mesh(lins[4] * initial, bounds[4] * max(initial, bounds[1]), num_ν, p_νt[1]) χ = get_mesh(lins[5] * initial, bounds[5] * max(initial, bounds[1]), num_χ, p_χ[1]) m = Mesh(num_σ + 1, num_Ω + 1, num_ν + 1, num_χ + 1, σ, Ωs, νs, Ωt, νt, χ) # build action a = get_action_empty(symmetry, r, m, S = S) init_action!(l, r, a) set_repulsion!(A, a) # initialize by parquet iterations if parquet println(); println() println("Warming up with some parquet iterations ...") flush(stdout) launch_parquet!(obs_file, cp_file, symmetry, l, r, m, a, initial, bmax * initial, β, max_iter, min_eval, Σ_tol, Γ_tol, χ_tol, parquet_tol, S = S) println("Done. Action is initialized with parquet solution.") end println(); println() println("Solver is ready.") println("################################################################################") println() # start calculation println("Renormalization group flow with ℓ = $(loops) ...") flush(stdout) if loops == 1 launch_1l!(obs_file, cp_file, symmetry, l, r, m, a, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, initial, final, bmax * initial, bmin, bmax, min_eval, max_eval, Σ_tol, Γ_tol, χ_tol, ODE_tol, t, t0, cps, wt, ct, A = A, S = S) elseif loops == 2 launch_2l!(obs_file, cp_file, symmetry, l, r, m, a, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, initial, final, bmax * initial, bmin, bmax, min_eval, max_eval, Σ_tol, Γ_tol, χ_tol, ODE_tol, t, t0, cps, wt, ct, A = A, S = S) elseif loops >= 3 launch_ml!(obs_file, cp_file, symmetry, l, r, m, a, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, loops, Σ_corr, initial, final, bmax * initial, bmin, bmax, min_eval, max_eval, Σ_tol, Γ_tol, χ_tol, ODE_tol, t, t0, cps, wt, ct, A = A, S = S) end else println("overwrite = false, trying to load data ...") if isfile(obs_file) && isfile(cp_file) println() println("Found existing output files, checking status ...") # open files obs = h5open(obs_file, "cw") cp = h5open(cp_file, "cw") if haskey(obs, "finished") && haskey(cp, "finished") # close files close(obs) close(cp) println(); println() println("Calculation has finished already.") println("################################################################################") flush(stdout) else println() println("Final Λ has not been reached, resuming calculation ...") # load data l, r = read_lattice(cp) Λ, dΛ, m, a_inter = read_checkpoint(cp, 0.0) χ = read_χ_all(obs, Λ; verbose = false)[2] # update frequency mesh a = deepcopy(a_inter) m = resample_from_to(Λ, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, m, a_inter, a, χ) # close files close(obs) close(cp) println(); println() println("Solver is ready.") println("################################################################################") println() # resume calculation println("Renormalization group flow with ℓ = $(loops) ...") flush(stdout) if loops == 1 launch_1l!(obs_file, cp_file, symmetry, l, r, m, a, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, Λ, final, dΛ, bmin, bmax, min_eval, max_eval, Σ_tol, Γ_tol, χ_tol, ODE_tol, t, t0, cps, wt, ct, A = A, S = S) elseif loops == 2 launch_2l!(obs_file, cp_file, symmetry, l, r, m, a, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, Λ, final, dΛ, bmin, bmax, min_eval, max_eval, Σ_tol, Γ_tol, χ_tol, ODE_tol, t, t0, cps, wt, ct, A = A, S = S) elseif loops >= 3 launch_ml!(obs_file, cp_file, symmetry, l, r, m, a, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, loops, Σ_corr, Λ, final, dΛ, bmin, bmax, min_eval, max_eval, Σ_tol, Γ_tol, χ_tol, ODE_tol, t, t0, cps, wt, ct, A = A, S = S) end end else println(); println() println("Found no existing output files, terminating solver ...") println("################################################################################") flush(stdout) end end println() println("################################################################################") println("Solver terminated.") println("################################################################################") flush(stdout) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
7158
function launch_1l!( obs_file :: String, cp_file :: String, symmetry :: String, l :: Lattice, r :: Reduced_lattice, m :: Mesh, a :: Action, p_σ :: NTuple{2, Float64}, p_Ωs :: NTuple{5, Float64}, p_νs :: NTuple{5, Float64}, p_Ωt :: NTuple{5, Float64}, p_νt :: NTuple{5, Float64}, p_χ :: NTuple{5, Float64}, lins :: NTuple{5, Float64}, bounds :: NTuple{5, Float64}, Λi :: Float64, Λf :: Float64, dΛi :: Float64, bmin :: Float64, bmax :: Float64, min_eval :: Int64, max_eval :: Int64, Σ_tol :: NTuple{2, Float64}, Γ_tol :: NTuple{2, Float64}, χ_tol :: NTuple{2, Float64}, ODE_tol :: NTuple{2, Float64}, t :: DateTime, t0 :: DateTime, cps :: Vector{Float64}, wt :: Float64, ct :: Float64 ; A :: Float64 = 0.0, S :: Float64 = 0.5 ) :: Nothing # init ODE solver buffers da = get_action_empty(symmetry, r, m, S = S) a_stage = get_action_empty(symmetry, r, m, S = S) a_inter = get_action_empty(symmetry, r, m, S = S) a_err = get_action_empty(symmetry, r, m, S = S) init_action!(l, r, a_inter) set_repulsion!(A, a_inter) # init buffers for evaluation of rhs num_comps = length(a.Γ) num_sites = length(r.sites) tbuffs = NTuple{3, Matrix{Float64}}[(zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites)) for i in 1 : Threads.nthreads()] temps = Array{Float64, 3}[zeros(Float64, num_sites, num_comps, 2) for i in 1 : Threads.nthreads()] corrs = zeros(Float64, 2, 3, m.num_Ω) # init cutoff, step size, monotonicity and correlations Λ = Λi dΛ = dΛi monotone = true χ = get_χ_empty(symmetry, r, m) # set up required checkpoints push!(cps, Λi) push!(cps, Λf) cps = sort(unique(cps), rev = true) for i in eachindex(cps) if cps[i] < Λ dΛ = min(dΛ, 0.85 * (Λ - cps[i])) break end end # compute renormalization group flow while Λ > Λf println() println("ODE step at cutoff Λ / |J| = $(Λ) ...") flush(stdout) # set eval for integration eval = min(max(ceil(Int64, min_eval / Λ), min_eval), max_eval) # prepare da and a_err replace_with!(da, a) replace_with!(a_err, a) # compute k1 and parse to da and a_err compute_dΣ!(Λ, r, m, a, a_stage, Σ_tol) compute_dΓ_1l!(Λ, r, m, a, a_stage, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -2.0 * dΛ / 9.0, da) mult_with_add_to!(a_stage, -7.0 * dΛ / 24.0, a_err) # compute k2 and parse to da and a_err replace_with!(a_inter, a) mult_with_add_to!(a_stage, -0.5 * dΛ, a_inter) compute_dΣ!(Λ - 0.5 * dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_1l!(Λ - 0.5 * dΛ, r, m, a_inter, a_stage, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -1.0 * dΛ / 3.0, da) mult_with_add_to!(a_stage, -1.0 * dΛ / 4.0, a_err) # compute k3 and parse to da and a_err replace_with!(a_inter, a) mult_with_add_to!(a_stage, -0.75 * dΛ, a_inter) compute_dΣ!(Λ - 0.75 * dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_1l!(Λ - 0.75 * dΛ, r, m, a_inter, a_stage, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -4.0 * dΛ / 9.0, da) mult_with_add_to!(a_stage, -1.0 * dΛ / 3.0, a_err) # compute k4 and parse to a_err replace_with!(a_inter, da) compute_dΣ!(Λ - dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_1l!(Λ - dΛ, r, m, a_inter, a_stage, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -1.0 * dΛ / 8.0, a_err) # estimate integration error subtract_from!(a_inter, a_err) Δ = get_abs_max(a_err) scale = ODE_tol[1] + max(get_abs_max(a_inter), get_abs_max(a)) * ODE_tol[2] err = Δ / scale println(" Relative integration error err = $(err).") println(" Current vertex maximum Γmax = $(get_abs_max(a_inter)).") println(" Performing sanity checks and measurements ...") if err <= 1.0 || dΛ <= bmin # update cutoff Λ -= dΛ # update step size dΛ = max(bmin, min(bmax * Λ, 0.85 * (1.0 / err)^(1.0 / 3.0) * dΛ)) # check if we pass by required checkpoint and adjust step size accordingly cps_lower = filter(x -> x < 0.0, cps .- Λ) Λ_cp = 0.0 if length(cps_lower) >= 1 Λ_cp = Λ + first(cps_lower) end dΛ = min(dΛ, Λ - Λ_cp) # terminate if vertex diverges if get_abs_max(a_inter) > max(min(50.0 / Λ, 1000), 10.0) println(" Vertex has diverged, terminating solver ...") t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) break end # do measurements and checkpointing mk_cp = false for i in eachindex(cps) if Λ ≈ cps[i] mk_cp = true break end end if mk_cp t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) else t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, ct) end # terminate if correlations show non-monotonicity if monotone == false println(" Flowing correlations show non-monotonicity, terminating solver ...") t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) break end # update frequency mesh m = resample_from_to(Λ, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, m, a_inter, a, χ) if Λ > Λf println("Done. Proceeding to next ODE step.") end else # update step size dΛ = max(bmin, min(bmax * Λ, 0.85 * (1.0 / err)^(1.0 / 3.0) * dΛ)) # check if we pass by required checkpoint and adjust step size accordingly cps_lower = filter(x -> x < 0.0, cps .- Λ) Λ_cp = 0.0 if length(cps_lower) >= 1 Λ_cp = Λ + first(cps_lower) end dΛ = min(dΛ, Λ - Λ_cp) println("Done. Repeating ODE step with smaller dΛ.") end end # open files obs = h5open(obs_file, "cw") cp = h5open(cp_file, "cw") # set finished flags obs["finished"] = true cp["finished"] = true # close files close(obs) close(cp) println("Renormalization group flow finished.") flush(stdout) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
7285
function launch_2l!( obs_file :: String, cp_file :: String, symmetry :: String, l :: Lattice, r :: Reduced_lattice, m :: Mesh, a :: Action, p_σ :: NTuple{2, Float64}, p_Ωs :: NTuple{5, Float64}, p_νs :: NTuple{5, Float64}, p_Ωt :: NTuple{5, Float64}, p_νt :: NTuple{5, Float64}, p_χ :: NTuple{5, Float64}, lins :: NTuple{5, Float64}, bounds :: NTuple{5, Float64}, Λi :: Float64, Λf :: Float64, dΛi :: Float64, bmin :: Float64, bmax :: Float64, min_eval :: Int64, max_eval :: Int64, Σ_tol :: NTuple{2, Float64}, Γ_tol :: NTuple{2, Float64}, χ_tol :: NTuple{2, Float64}, ODE_tol :: NTuple{2, Float64}, t :: DateTime, t0 :: DateTime, cps :: Vector{Float64}, wt :: Float64, ct :: Float64 ; A :: Float64 = 0.0, S :: Float64 = 0.5 ) :: Nothing # init ODE solver buffers da = get_action_empty(symmetry, r, m, S = S) a_stage = get_action_empty(symmetry, r, m, S = S) a_inter = get_action_empty(symmetry, r, m, S = S) a_err = get_action_empty(symmetry, r, m, S = S) init_action!(l, r, a_inter) set_repulsion!(A, a_inter) # init left part (right part by symmetry) da_l = get_action_empty(symmetry, r, m, S = S) # init buffers for evaluation of rhs num_comps = length(a.Γ) num_sites = length(r.sites) tbuffs = NTuple{3, Matrix{Float64}}[(zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites)) for i in 1 : Threads.nthreads()] temps = Array{Float64, 3}[zeros(Float64, num_sites, num_comps, 4) for i in 1 : Threads.nthreads()] corrs = zeros(Float64, 2, 3, m.num_Ω) # init cutoff, step size, monotonicity and correlations Λ = Λi dΛ = dΛi monotone = true χ = get_χ_empty(symmetry, r, m) # set up required checkpoints push!(cps, Λi) push!(cps, Λf) cps = sort(unique(cps), rev = true) for i in eachindex(cps) if cps[i] < Λ dΛ = min(dΛ, 0.85 * (Λ - cps[i])) break end end # compute renormalization group flow while Λ > Λf println() println("ODE step at cutoff Λ / |J| = $(Λ) ...") flush(stdout) # set eval for integration eval = min(max(ceil(Int64, min_eval / Λ), min_eval), max_eval) # prepare da and a_err replace_with!(da, a) replace_with!(a_err, a) # compute k1 and parse to da and a_err compute_dΣ!(Λ, r, m, a, a_stage, Σ_tol) compute_dΓ_2l!(Λ, r, m, a, a_stage, da_l, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -2.0 * dΛ / 9.0, da) mult_with_add_to!(a_stage, -7.0 * dΛ / 24.0, a_err) # compute k2 and parse to da and a_err replace_with!(a_inter, a) mult_with_add_to!(a_stage, -0.5 * dΛ, a_inter) compute_dΣ!(Λ - 0.5 * dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_2l!(Λ - 0.5 * dΛ, r, m, a_inter, a_stage, da_l, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -1.0 * dΛ / 3.0, da) mult_with_add_to!(a_stage, -1.0 * dΛ / 4.0, a_err) # compute k3 and parse to da and a_err replace_with!(a_inter, a) mult_with_add_to!(a_stage, -0.75 * dΛ, a_inter) compute_dΣ!(Λ - 0.75 * dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_2l!(Λ - 0.75 * dΛ, r, m, a_inter, a_stage, da_l, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -4.0 * dΛ / 9.0, da) mult_with_add_to!(a_stage, -1.0 * dΛ / 3.0, a_err) # compute k4 and parse to a_err replace_with!(a_inter, da) compute_dΣ!(Λ - dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_2l!(Λ - dΛ, r, m, a_inter, a_stage, da_l, tbuffs, temps, corrs, eval, Γ_tol) mult_with_add_to!(a_stage, -1.0 * dΛ / 8.0, a_err) # estimate integration error subtract_from!(a_inter, a_err) Δ = get_abs_max(a_err) scale = ODE_tol[1] + max(get_abs_max(a_inter), get_abs_max(a)) * ODE_tol[2] err = Δ / scale println(" Relative integration error err = $(err).") println(" Current vertex maximum Γmax = $(get_abs_max(a_inter)).") println(" Performing sanity checks and measurements ...") if err <= 1.0 || dΛ <= bmin # update cutoff Λ -= dΛ # update step size dΛ = max(bmin, min(bmax * Λ, 0.85 * (1.0 / err)^(1.0 / 3.0) * dΛ)) # check if we pass by required checkpoint and adjust step size accordingly cps_lower = filter(x -> x < 0.0, cps .- Λ) Λ_cp = 0.0 if length(cps_lower) >= 1 Λ_cp = Λ + first(cps_lower) end dΛ = min(dΛ, Λ - Λ_cp) # terminate if vertex diverges if get_abs_max(a_inter) > max(min(50.0 / Λ, 1000), 10.0) println(" Vertex has diverged, terminating solver ...") t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) break end # do measurements and checkpointing mk_cp = false for i in eachindex(cps) if Λ ≈ cps[i] mk_cp = true break end end if mk_cp t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) else t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, ct) end # terminate if correlations show non-monotonicity if monotone == false println(" Flowing correlations show non-monotonicity, terminating solver ...") t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) break end # update frequency mesh m = resample_from_to(Λ, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, m, a_inter, a, χ) if Λ > Λf println("Done. Proceeding to next ODE step.") end else # update step size dΛ = max(bmin, min(bmax * Λ, 0.85 * (1.0 / err)^(1.0 / 3.0) * dΛ)) # check if we pass by required checkpoint and adjust step size accordingly cps_lower = filter(x -> x < 0.0, cps .- Λ) Λ_cp = 0.0 if length(cps_lower) >= 1 Λ_cp = Λ + first(cps_lower) end dΛ = min(dΛ, Λ - Λ_cp) println("Done. Repeating ODE step with smaller dΛ.") end end # open files obs = h5open(obs_file, "cw") cp = h5open(cp_file, "cw") # set finished flags obs["finished"] = true cp["finished"] = true # close files close(obs) close(cp) println("Renormalization group flow finished.") flush(stdout) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
8001
function launch_ml!( obs_file :: String, cp_file :: String, symmetry :: String, l :: Lattice, r :: Reduced_lattice, m :: Mesh, a :: Action, p_σ :: NTuple{2, Float64}, p_Ωs :: NTuple{5, Float64}, p_νs :: NTuple{5, Float64}, p_Ωt :: NTuple{5, Float64}, p_νt :: NTuple{5, Float64}, p_χ :: NTuple{5, Float64}, lins :: NTuple{5, Float64}, bounds :: NTuple{5, Float64}, loops :: Int64, Σ_corr :: Bool, Λi :: Float64, Λf :: Float64, dΛi :: Float64, bmin :: Float64, bmax :: Float64, min_eval :: Int64, max_eval :: Int64, Σ_tol :: NTuple{2, Float64}, Γ_tol :: NTuple{2, Float64}, χ_tol :: NTuple{2, Float64}, ODE_tol :: NTuple{2, Float64}, t :: DateTime, t0 :: DateTime, cps :: Vector{Float64}, wt :: Float64, ct :: Float64 ; A :: Float64 = 0.0, S :: Float64 = 0.5 ) :: Nothing # init ODE solver buffers da = get_action_empty(symmetry, r, m, S = S) a_stage = get_action_empty(symmetry, r, m, S = S) a_inter = get_action_empty(symmetry, r, m, S = S) a_err = get_action_empty(symmetry, r, m, S = S) init_action!(l, r, a_inter) set_repulsion!(A, a_inter) # init left (right part by symmetry) and central part, full loop contribution and self energy corrections da_l = get_action_empty(symmetry, r, m, S = S) da_c = get_action_empty(symmetry, r, m, S = S) da_temp = get_action_empty(symmetry, r, m, S = S) da_Σ = get_action_empty(symmetry, r, m, S = S) # init buffers for evaluation of rhs num_comps = length(a.Γ) num_sites = length(r.sites) tbuffs = NTuple{3, Matrix{Float64}}[(zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites)) for i in 1 : Threads.nthreads()] temps = Array{Float64, 3}[zeros(Float64, num_sites, num_comps, 4) for i in 1 : Threads.nthreads()] corrs = zeros(Float64, 2, 3, m.num_Ω) # init cutoff, step size, monotonicity and correlations Λ = Λi dΛ = dΛi monotone = true χ = get_χ_empty(symmetry, r, m) # set up required checkpoints push!(cps, Λi) push!(cps, Λf) cps = sort(unique(cps), rev = true) for i in eachindex(cps) if cps[i] < Λ dΛ = min(dΛ, 0.85 * (Λ - cps[i])) break end end # compute renormalization group flow while Λ > Λf println() println("ODE step at cutoff Λ / |J| = $(Λ) ...") flush(stdout) # set eval for integration eval = min(max(ceil(Int64, min_eval / Λ), min_eval), max_eval) # prepare da and a_err replace_with!(da, a) replace_with!(a_err, a) # compute k1 and parse to da and a_err compute_dΣ!(Λ, r, m, a, a_stage, Σ_tol) compute_dΓ_ml!(Λ, r, m, loops, a, a_stage, da_l, da_c, da_temp, da_Σ, tbuffs, temps, corrs, eval, Γ_tol) if Σ_corr compute_dΣ_corr!(Λ, r, m, a, a_stage, da_Σ, Σ_tol) end mult_with_add_to!(a_stage, -2.0 * dΛ / 9.0, da) mult_with_add_to!(a_stage, -7.0 * dΛ / 24.0, a_err) # compute k2 and parse to da and a_err replace_with!(a_inter, a) mult_with_add_to!(a_stage, -0.5 * dΛ, a_inter) compute_dΣ!(Λ - 0.5 * dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_ml!(Λ - 0.5 * dΛ, r, m, loops, a_inter, a_stage, da_l, da_c, da_temp, da_Σ, tbuffs, temps, corrs, eval, Γ_tol) if Σ_corr compute_dΣ_corr!(Λ - 0.5 * dΛ, r, m, a_inter, a_stage, da_Σ, Σ_tol) end mult_with_add_to!(a_stage, -1.0 * dΛ / 3.0, da) mult_with_add_to!(a_stage, -1.0 * dΛ / 4.0, a_err) # compute k3 and parse to da and a_err replace_with!(a_inter, a) mult_with_add_to!(a_stage, -0.75 * dΛ, a_inter) compute_dΣ!(Λ - 0.75 * dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_ml!(Λ - 0.75 * dΛ, r, m, loops, a_inter, a_stage, da_l, da_c, da_temp, da_Σ, tbuffs, temps, corrs, eval, Γ_tol) if Σ_corr compute_dΣ_corr!(Λ - 0.75 * dΛ, r, m, a_inter, a_stage, da_Σ, Σ_tol) end mult_with_add_to!(a_stage, -4.0 * dΛ / 9.0, da) mult_with_add_to!(a_stage, -1.0 * dΛ / 3.0, a_err) # compute k4 and parse to a_err replace_with!(a_inter, da) compute_dΣ!(Λ - dΛ, r, m, a_inter, a_stage, Σ_tol) compute_dΓ_ml!(Λ - dΛ, r, m, loops, a_inter, a_stage, da_l, da_c, da_temp, da_Σ, tbuffs, temps, corrs, eval, Γ_tol) if Σ_corr compute_dΣ_corr!(Λ - dΛ, r, m, a_inter, a_stage, da_Σ, Σ_tol) end mult_with_add_to!(a_stage, -1.0 * dΛ / 8.0, a_err) # estimate integration error subtract_from!(a_inter, a_err) Δ = get_abs_max(a_err) scale = ODE_tol[1] + max(get_abs_max(a_inter), get_abs_max(a)) * ODE_tol[2] err = Δ / scale println(" Relative integration error err = $(err).") println(" Current vertex maximum Γmax = $(get_abs_max(a_inter)).") println(" Performing sanity checks and measurements ...") if err <= 1.0 || dΛ <= bmin # update cutoff Λ -= dΛ # update step size dΛ = max(bmin, min(bmax * Λ, 0.85 * (1.0 / err)^(1.0 / 3.0) * dΛ)) # check if we pass by required checkpoint and adjust step size accordingly cps_lower = filter(x -> x < 0.0, cps .- Λ) Λ_cp = 0.0 if length(cps_lower) >= 1 Λ_cp = Λ + first(cps_lower) end dΛ = min(dΛ, Λ - Λ_cp) # terminate if vertex diverges if get_abs_max(a_inter) > max(min(50.0 / Λ, 1000), 10.0) println(" Vertex has diverged, terminating solver ...") t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) break end # do measurements and checkpointing mk_cp = false for i in eachindex(cps) if Λ ≈ cps[i] mk_cp = true break end end if mk_cp t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) else t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, ct) end # terminate if correlations show non-monotonicity if monotone == false println(" Flowing correlations show non-monotonicity, terminating solver ...") t, monotone = measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, t, t0, r, m, a_inter, wt, 0.0) break end # update frequency mesh m = resample_from_to(Λ, p_σ, p_Ωs, p_νs, p_Ωt, p_νt, p_χ, lins, bounds, m, a_inter, a, χ) if Λ > Λf println("Done. Proceeding to next ODE step.") end else # update step size dΛ = max(bmin, min(bmax * Λ, 0.85 * (1.0 / err)^(1.0 / 3.0) * dΛ)) # check if we pass by required checkpoint and adjust step size accordingly cps_lower = filter(x -> x < 0.0, cps .- Λ) Λ_cp = 0.0 if length(cps_lower) >= 1 Λ_cp = Λ + first(cps_lower) end dΛ = min(dΛ, Λ - Λ_cp) println("Done. Repeating ODE step with smaller dΛ.") end end # open files obs = h5open(obs_file, "cw") cp = h5open(cp_file, "cw") # set finished flags obs["finished"] = true cp["finished"] = true # close files close(obs) close(cp) println("Renormalization group flow finished.") flush(stdout) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2650
function launch_parquet!( obs_file :: String, cp_file :: String, symmetry :: String, l :: Lattice, r :: Reduced_lattice, m :: Mesh, a :: Action, Λ :: Float64, dΛ :: Float64, β :: Float64, max_iter :: Int64, eval :: Int64, Σ_tol :: NTuple{2, Float64}, Γ_tol :: NTuple{2, Float64}, χ_tol :: NTuple{2, Float64}, parquet_tol :: NTuple{2, Float64} ; S :: Float64 = 0.5 ) :: Nothing # init output and error buffer ap = get_action_empty(symmetry, r, m, S = S) a_err = get_action_empty(symmetry, r, m, S = S) # init buffers for evaluation of rhs num_comps = length(a.Γ) num_sites = length(r.sites) tbuffs = NTuple{3, Matrix{Float64}}[(zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites), zeros(Float64, num_comps, num_sites)) for i in 1 : Threads.nthreads()] temps = Array{Float64, 3}[zeros(Float64, num_sites, num_comps, 2) for i in 1 : Threads.nthreads()] corrs = zeros(Float64, 2, 3, m.num_Ω) # init errors and iteration count abs_err = Inf rel_err = Inf count = 1 # compute fixed point while abs_err >= parquet_tol[1] && rel_err >= parquet_tol[2] && count <= max_iter println(); println("Parquet iteration $count ...") # compute SDE println(" Computing SDE ...") compute_Σ!(Λ, r, m, a, ap, tbuffs, temps, corrs, eval, Γ_tol, Σ_tol) # compute BSEs println(" Computing BSEs ...") compute_Γ!(Λ, r, m, a, ap, tbuffs, temps, corrs, eval, Γ_tol) # compute the errors replace_with!(a_err, ap) mult_with_add_to!(a, -1.0, a_err) abs_err = get_abs_max(a_err) rel_err = abs_err / max(get_abs_max(a), get_abs_max(ap)) println("Done. Relative error err = $(rel_err).") flush(stdout) # update current solution using damping factor β mult_with!(a, 1 - β) mult_with_add_to!(ap, β, a) # increment iteration count count += 1 end if count <= max_iter println(); println("Converged to fixed point, terminating parquet iterations ...") else println(); println("Maximum number of iterations reached, terminating parquet iterations ...") end flush(stdout) # save final result χ = get_χ_empty(symmetry, r, m) measure(symmetry, obs_file, cp_file, Λ, dΛ, χ, χ_tol, Dates.now(), Dates.now(), r, m, a, Inf, 0.0) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
291
# load code include("momentum.jl") include("disk.jl") # load calculation of occupation number fluctuations include("fluctuations.jl") # load correlations for different symmetries include("correlation_lib/correlation_lib.jl") # load tests and timers include("test.jl") include("timers.jl")
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
11215
# save real space correlations to HDF5 file function save_χ!( file :: HDF5.File, Λ :: Float64, symmetry :: String, m :: Mesh, χ :: Vector{Matrix{Float64}} ) :: Nothing # save symmetry group if haskey(file, "symmetry") == false file["symmetry"] = symmetry end # save frequency mesh file["χ/$(Λ)/mesh"] = m.χ if symmetry == "su2" file["χ/$(Λ)/diag"] = χ[1] elseif symmetry == "u1-dm" file["χ/$(Λ)/xx"] = χ[1] file["χ/$(Λ)/zz"] = χ[2] file["χ/$(Λ)/xy"] = χ[3] end return nothing end """ read_χ_labels( file :: HDF5.File ) :: Vector{String} Read labels of available real space correlations from HDF5 file (*_obs). """ function read_χ_labels( file :: HDF5.File ) :: Vector{String} ref = keys(file["χ"])[1] labels = String[] for key in keys(file["χ/$(ref)"]) if key != "mesh" push!(labels, key) end end return labels end """ read_χ( file :: HDF5.File, Λ :: Float64, label :: String ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Matrix{Float64}} Read real space correlations with name `label` and the associated frequency mesh from HDF5 file (*_obs) at cutoff Λ. """ function read_χ( file :: HDF5.File, Λ :: Float64, label :: String ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Matrix{Float64}} # filter out nearest available cutoff list = keys(file["χ"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) if verbose println("Λ was adjusted to $(cutoffs[index]).") end # read frequency mesh m = read(file, "χ/$(cutoffs[index])/mesh") # read correlations with requested label χ = read(file, "χ/$(cutoffs[index])/" * label) return m, χ end """ read_χ_all( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Vector{Matrix{Float64}}} Read all available real space correlations and the associated frequency mesh from HDF5 file (*_obs) at cutoff Λ. """ function read_χ_all( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Vector{Matrix{Float64}}} # filter out nearest available cutoff list = keys(file["χ"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) if verbose println("Λ was adjusted to $(cutoffs[index]).") end # read symmetry group symmetry = read(file, "symmetry") # read frequency mesh m = read(file, "χ/$(cutoffs[index])/mesh") # read correlations χ = Matrix{Float64}[] for label in read_χ_labels(file) push!(χ, read(file, "χ/$(cutoffs[index])/" * label)) end return m, χ end """ read_χ_flow_at_site( file :: HDF5.File, site :: Int64, label :: String ) :: NTuple{2, Vector{Float64}} Read flow of static real space correlations with name `label` from HDF5 file (*_obs) at irreducible site. """ function read_χ_flow_at_site( file :: HDF5.File, site :: Int64, label :: String ) :: NTuple{2, Vector{Float64}} # filter out a sorted list of cutoffs list = keys(file["χ"]) cutoffs = sort(parse.(Float64, list), rev = true) # allocate array to store values χ = zeros(Float64, length(cutoffs)) # fill array with values at given site for i in eachindex(cutoffs) χ[i] = read(file, "χ/$(cutoffs[i])/" * label)[site, 1] end return cutoffs, χ end """ compute_structure_factor_flow!( file_in :: HDF5.File, file_out :: HDF5.File, k :: Matrix{Float64}, label :: String ) :: Nothing Compute the flow of the structure factor from real space correlations with name `label` in file_in (*_obs) and save the result to file_out. The momentum space discretization k should be formatted such that k[:, n] is the n-th momentum. """ function compute_structure_factor_flow!( file_in :: HDF5.File, file_out :: HDF5.File, k :: Matrix{Float64}, label :: String ) :: Nothing # filter out a sorted list of cutoffs list = keys(file_in["χ"]) cutoffs = sort(parse.(Float64, list), rev = true) # read lattice and reduced lattice l, r = read_lattice(file_in) # save momenta if haskey(file_out, "k") == false file_out["k"] = k end println("Computing structure factor flow ...") # compute and save structure factors for Λ in cutoffs # read correlations m, χ = read_χ(file_in, Λ, label, verbose = false) # save frequency mesh file_out["s/$(Λ)/mesh"] = m # allocate output matrix smat = zeros(Float64, size(k, 2), length(m)) # compute structure factors for all Matsubara frequencies for w in eachindex(m) smat[:, w] .= compute_structure_factor(χ[:, w], k, l, r) end # save structure factors file_out["s/$(Λ)/" * label] = smat end println("Done.") return nothing end """ compute_structure_factor_flow_all!( file_in :: HDF5.File, file_out :: HDF5.File, k :: Matrix{Float64} ) :: Nothing Compute the flows of the structure factors for all available real space correlations in file_in (*_obs) and save the result to file_out. The momentum space discretization k should be formatted such that k[:, n] is the n-th momentum. """ function compute_structure_factor_flow_all!( file_in :: HDF5.File, file_out :: HDF5.File, k :: Matrix{Float64} ) :: Nothing # filter out a sorted list of cutoffs list = keys(file_in["χ"]) cutoffs = sort(parse.(Float64, list), rev = true) # read lattice and reduced lattice l, r = read_lattice(file_in) # save momenta if haskey(file_out, "k") == false file_out["k"] = k end println("Computing structure factor flows ...") # read available labels for label in read_χ_labels(file_in) # compute and save structure factors for Λ in cutoffs # read correlations m, χ = read_χ(file_in, Λ, label, verbose = false) # save frequency mesh if haskey(file_out, "s/$(Λ)/mesh") == false file_out["s/$(Λ)/mesh"] = m end # allocate output matrix smat = zeros(Float64, size(k, 2), length(m)) # compute structure factors for all Matsubara frequencies for w in eachindex(m) smat[:, w] .= compute_structure_factor(χ[:, w], k, l, r) end # save structure factors file_out["s/$(Λ)/" * label] = smat end end println("Done.") return nothing end """ read_structure_factor_labels( file :: HDF5.File ) :: Vector{String} Read labels of available structure factors from HDF5 file (*_obs). """ function read_structure_factor_labels( file :: HDF5.File ) :: Vector{String} ref = keys(file["s"])[1] labels = String[] for key in keys(file["s/$(ref)"]) if key != "mesh" push!(labels, key) end end return labels end """ read_structure_factor( file :: HDF5.File, Λ :: Float64, label :: String ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Matrix{Float64}} Read structure factor with name `label` and the associated frequency mesh from HDF5 file at cutoff Λ. """ function read_structure_factor( file :: HDF5.File, Λ :: Float64, label :: String ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Matrix{Float64}} # filter out nearest available cutoff list = keys(file["s"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) if verbose println("Λ was adjusted to $(cutoffs[index]).") end # read frequency mesh m = read(file, "s/$(cutoffs[index])/mesh") # read structure factor with requested label s = read(file, "s/$(cutoffs[index])/" * label) return m, s end """ read_structure_factor_all( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Vector{Matrix{Float64}}} Read all available structure factors and the associated frequency mesh from HDF5 file at cutoff Λ. """ function read_structure_factor_all( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Tuple{Vector{Float64}, Vector{Matrix{Float64}}} # filter out nearest available cutoff list = keys(file["s"]) cutoffs = parse.(Float64, list) index = argmin(abs.(cutoffs .- Λ)) if verbose println("Λ was adjusted to $(cutoffs[index]).") end # read frequency mesh m = read(file, "s/$(cutoffs[index])/mesh") # read structure factors s = Matrix{Float64}[] for label in read_structure_factor_labels(file) push!(s, read(file, "s/$(cutoffs[index])/" * label)) end return m, s end """ read_structure_factor_flow_at_momentum( file :: HDF5.File, p :: Vector{Float64}, label :: String ; verbose :: Bool = true ) :: NTuple{2, Vector{Float64}} Read flow of static structure factor with name `label` from HDF5 file at momentum p. """ function read_structure_factor_flow_at_momentum( file :: HDF5.File, p :: Vector{Float64}, label :: String ; verbose :: Bool = true ) :: NTuple{2, Vector{Float64}} # filter out a sorted list of cutoffs list = keys(file["s"]) cutoffs = sort(parse.(Float64, list), rev = true) # locate closest momentum k = read(file, "k") dists = Float64[norm(k[:, i] .- p) for i in 1 : size(k, 2)] index = argmin(dists) if verbose println("Momentum was adjusted to k = $(k[:, index]).") end # allocate array to store values s = zeros(Float64, length(cutoffs)) # fill array with values at given momentum for i in eachindex(cutoffs) s[i] = read(file, "s/$(cutoffs[i])/" * label)[index, 1] end return cutoffs, s end """ read_reference_momentum( file :: HDF5.File, Λ :: Float64, label :: String ) :: Vector{Float64} Read the momentum with maximum static structure factor value with name `label` at cutoff Λ from HDF5 file. """ function read_reference_momentum( file :: HDF5.File, Λ :: Float64, label :: String ) :: Vector{Float64} # read struture factor m, s = read_structure_factor(file, Λ, label) # determine momentum with maximum amplitude k = read(file, "k") p = k[:, argmax(s[:, 1])] return p end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1301
# load fluctuation implementations include("fluctuation_lib/fluctuation_su2.jl") include("fluctuation_lib/fluctuation_u1_dm.jl") # auxiliary function to compute occupation number fluctuations function compute_fluctuations( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Float64 # read symmetry symmetry = read(file["symmetry"]) # init number fluctuations eq_corr = 0.0 if symmetry == "su2" eq_corr = compute_eq_corr_su2(file, Λ, verbose = verbose) elseif symmetry == "u1-dm" eq_corr = compute_eq_corr_u1_dm(file, Λ, verbose = verbose) end # compute variance of occupation number operator var = 1.0 - 4.0 * eq_corr / 3.0 return var end # auxiliary function to compute flow of occupation number fluctuations function compute_fluctuations_flow( file :: HDF5.File, ) :: NTuple{2, Vector{Float64}} # filter out a sorted list of cutoffs list = keys(file["χ"]) cutoffs = sort(parse.(Float64, list), rev = true) # allocate array to store values vars = zeros(Float64, length(cutoffs)) # fill array with values for i in eachindex(cutoffs) vars[i] = compute_fluctuations(file, cutoffs[i], verbose = false) end return cutoffs, vars end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
4485
""" get_momenta( rx :: NTuple{2, Float64}, ry :: NTuple{2, Float64}, rz :: NTuple{2, Float64}, num :: NTuple{3, Int64} ) :: Matrix{Float64} Generate a uniform momentum space discretization within a cuboid. rx, ry and rz are the respective cartesian boundaries. num = (num_x, num_y, num_z) contains the desired number of steps (spacing h = (r[2] - r[1]) / num) along the respective axis. Returns a matrix k, with k[:, n] being the n-th momentum vector. """ function get_momenta( rx :: NTuple{2, Float64}, ry :: NTuple{2, Float64}, rz :: NTuple{2, Float64}, num :: NTuple{3, Int64} ) :: Matrix{Float64} # allocate mesh momenta = zeros(Float64, 3, (num[1] + 1) * (num[2] + 1) * (num[3] + 1)) # fill mesh for nx in 0 : num[1] for ny in 0 : num[2] for nz in 0 : num[3] # compute linear index idx = nz + 1 + (num[3] + 1) * ny + (num[3] + 1) * (num[2] + 1) * nx # compute kx if num[1] > 0 momenta[1, idx] = rx[1] + nx * (rx[2] - rx[1]) / num[1] end # compute ky if num[2] > 0 momenta[2, idx] = ry[1] + ny * (ry[2] - ry[1]) / num[2] end # compute kz if num[3] > 0 momenta[3, idx] = rz[1] + nz * (rz[2] - rz[1]) / num[3] end end end end return momenta end """ get_path( nodes :: Vector{Vector{Float64}}, nums :: Vector{Int64} ) :: Tuple{Vector{Float64}, Matrix{Float64}} Generate a discrete path in momentum space linearly connecting the given nodes (passed via their cartesian coordinates [kx, ky, kz]). nums[i] is the desired number of points between node[i] and node[i + 1], including node[i] and excluding node[i + 1]. Returns a tuple (l, k) where k[:, n] is the n-th momentum vector and l[n] is the distance to node[1] along the generated path. """ function get_path( nodes :: Vector{Vector{Float64}}, nums :: Vector{Int64} ) :: Tuple{Vector{Float64}, Matrix{Float64}} # sanity check: need some number of points for each path increment between two nodes @assert length(nums) == length(nodes) - 1 "For N nodes 'nums' must be of length N - 1." # allocate output arrays num = sum(nums) + 1 dist = zeros(num) path = zeros(3, num) # iterate over path increments between nodes idx = 0 for i in 1 : length(nums) dif = nodes[i + 1] .- nodes[i] step = dif ./ nums[i] width = norm(step) # fill path from node i to node i + 1 (excluding node i + 1) for j in 1 : nums[i] dist[idx + j + 1] = dist[idx + 1] + width * j path[:, idx + j] .= nodes[i] .+ step .* (j - 1) end idx += nums[i] end # set last point in the path to be the last node path[:, end] = nodes[end] return dist, path end """ compute_structure_factor( χ :: Vector{Float64}, k :: Matrix{Float64}, l :: Lattice, r :: Reduced_lattice ) :: Vector{Float64} Compute the structure factor for given real space correlations χ on irreducible lattice sites. k[:, n] is the n-th discrete momentum vector. Return structure factor s, where s[n] is the value for the n-th momentum. """ function compute_structure_factor( χ :: Vector{Float64}, k :: Matrix{Float64}, l :: Lattice, r :: Reduced_lattice ) :: Vector{Float64} # allocate structure factor s = zeros(Float64, size(k, 2)) # compute all contributions from reference sites in the unitcell for b in eachindex(l.uc.basis) vec = l.uc.basis[b] int = get_site(vec, l) # compute structure factor for all momenta Threads.@threads for n in eachindex(s) @inbounds @fastmath for i in eachindex(l.sites) # consider only those sites in range of reference site index = r.project[int, i] if index > 0 val = k[1, n] * (vec[1] - l.sites[i].vec[1]) val += k[2, n] * (vec[2] - l.sites[i].vec[2]) val += k[3, n] * (vec[3] - l.sites[i].vec[3]) s[n] += cos(val) * χ[index] end end end end s ./= length(l.uc.basis) return s end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1070
""" test_FM() :: Nothing Computes structure factors for ferromagnetic correlations on different lattices and checks if the maximum resides at the Γ point. """ function test_FM() :: Nothing # init test dummy k = get_momenta((0.0, 1.0 * pi), (0.0, 1.0 * pi), (0.0, 1.0 * pi), (10, 10, 10)) # initialize ferromagnetic test correlations @testset "FM corr" begin for name in ["square", "cubic", "kagome", "hyperkagome"] l = get_lattice(name, 6, verbose = false) r = get_reduced_lattice("heisenberg", [[0.0]], l, verbose = false) s = compute_structure_factor(Float64[exp(-norm(r.sites[i].vec)) for i in eachindex(r.sites)], k, l, r) @test norm(k[:, argmax(abs.(s))]) ≈ 0.0 end end return nothing end """ test_observable() :: Nothing Consistency checks for current implementation of observables. """ function test_observable() :: Nothing # test if ferromagnetic correlations are Fourier transformed correctly test_FM() return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
1787
""" get_observable_timers() :: Nothing Test performance of current observable implementation by Fourier transforming test correlations on a few 2D and 3D lattices with 50 x 50 x 0 (2D) or 50 x 50 x 50 (3D) momenta. """ function get_observable_timers() :: Nothing # init test dummys l1 = get_lattice("square", 6, verbose = false); r1 = get_reduced_lattice("heisenberg", [[0.0]], l1, verbose = false) l2 = get_lattice("cubic", 6, verbose = false); r2 = get_reduced_lattice("heisenberg", [[0.0]], l2, verbose = false) l3 = get_lattice("kagome", 6, verbose = false); r3 = get_reduced_lattice("heisenberg", [[0.0]], l3, verbose = false) l4 = get_lattice("hyperkagome", 6, verbose = false); r4 = get_reduced_lattice("heisenberg", [[0.0]], l4, verbose = false) χ1 = Float64[exp(-norm(r1.sites[i].vec)) for i in eachindex(r1.sites)] χ2 = Float64[exp(-norm(r2.sites[i].vec)) for i in eachindex(r2.sites)] χ3 = Float64[exp(-norm(r3.sites[i].vec)) for i in eachindex(r3.sites)] χ4 = Float64[exp(-norm(r4.sites[i].vec)) for i in eachindex(r4.sites)] k_2D = get_momenta((0.0, 1.0 * pi), (0.0, 1.0 * pi), (0.0, 0.0), (50, 50, 0)) k_3D = get_momenta((0.0, 1.0 * pi), (0.0, 1.0 * pi), (0.0, 1.0 * pi), (50, 50, 50)) # init timer to = TimerOutput() @timeit to "=> Fourier transform" begin for rep in 1 : 10 @timeit to "-> square" compute_structure_factor(χ1, k_2D, l1, r1) @timeit to "-> cubic" compute_structure_factor(χ2, k_3D, l2, r2) @timeit to "-> kagome" compute_structure_factor(χ3, k_2D, l3, r3) @timeit to "-> hyperkagome" compute_structure_factor(χ4, k_3D, l4, r4) end end show(to) return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
2551
# auxiliary function to compute correlation integrals function integrate_χ_boxes( integrand :: Function, width :: Float64, χ_tol :: NTuple{2, Float64} ) :: Float64 # map width to interval [0.0, 1.0] widthp = (width - 2.0 + sqrt(width * width + 4.0)) / (2.0 * width) # determine box size size = abs(widthp - 0.5) # perform integation for top line I = hcubature_v((vv, buff) -> integrand(vv, buff), Float64[ 0.0, 0.5 + size], Float64[0.5 - size, 1.0], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[0.5 - size, 0.5 + size], Float64[0.5 + size, 1.0], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[0.5 + size, 0.5 + size], Float64[ 1.0 1.0], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] # perform integation for middle line I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[ 0.0, 0.5 - size], Float64[0.5 - size, 0.5 + size], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[0.5 - size, 0.5 - size], Float64[0.5 + size, 0.5 + size], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[0.5 + size, 0.5 - size], Float64[ 1.0, 0.5 + size], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] # perform integation for bottom line I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[ 0.0, 0.0], Float64[0.5 - size, 0.5 - size], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[0.5 - size, 0.0], Float64[0.5 + size, 0.5 - size], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] I += hcubature_v((vv, buff) -> integrand(vv, buff), Float64[0.5 + size, 0.0], Float64[ 1.0, 0.5 - size], abstol = χ_tol[1], reltol = χ_tol[2], maxevals = 10^7)[1] return I end # load correlations for different symmetries include("correlation_su2.jl") include("correlation_u1_dm.jl") # generate correlation dummy function get_χ_empty( symmetry :: String, r :: Reduced_lattice, m :: Mesh ) :: Vector{Matrix{Float64}} if symmetry == "su2" return get_χ_su2_empty(r, m) elseif symmetry == "u1-dm" return get_χ_u1_dm_empty(r, m) end end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
3060
# generate correlation dummy for su2 symmetry function get_χ_su2_empty( r :: Reduced_lattice, m :: Mesh ) :: Vector{Matrix{Float64}} χs = zeros(Float64, length(r.sites), m.num_χ) χ = Matrix{Float64}[χs] return χ end # kernel for double integral function compute_χ_kernel!( Λ :: Float64, site :: Int64, w :: Float64, vv :: Matrix{Float64}, buff :: Vector{Float64}, r :: Reduced_lattice, m :: Mesh, a :: Action_su2 ) :: Nothing for i in eachindex(buff) # map integration arguments and modify increments v = (2.0 * vv[1, i] - 1.0) / ((1.0 - vv[1, i]) * vv[1, i]) vp = (2.0 * vv[2, i] - 1.0) / ((1.0 - vv[2, i]) * vv[2, i]) dv = (2.0 * vv[1, i] * vv[1, i] - 2.0 * vv[1, i] + 1) / ((1.0 - vv[1, i]) * (1.0 - vv[1, i]) * vv[1, i] * vv[1, i]) dvp = (2.0 * vv[2, i] * vv[2, i] - 2.0 * vv[2, i] + 1) / ((1.0 - vv[2, i]) * (1.0 - vv[2, i]) * vv[2, i] * vv[2, i]) # get buffers for non-local term bs1 = get_buffer_s(v + vp, 0.5 * (v - w - vp), 0.5 * (-v - w + vp), m) bt1 = get_buffer_t(w, v, vp, m) bu1 = get_buffer_u(v - vp, 0.5 * (v - w + vp), 0.5 * ( v + w + vp), m) # get buffers for local term bs2 = get_buffer_s( v + vp, 0.5 * (v - w - vp), 0.5 * (v + w - vp), m) bt2 = get_buffer_t(-v + vp, 0.5 * (v - w + vp), 0.5 * (v + w + vp), m) bu2 = get_buffer_u(-w, v, vp, m) # compute value buff[i] = -(2.0 * a.S)^2 * get_Γ_comp(1, site, bs1, bt1, bu1, r, a, apply_flags_su2) / (2.0 * pi)^2 if site == 1 vs, vd = get_Γ(site, bs2, bt2, bu2, r, a) buff[i] -= (2.0 * a.S) * (vs - vd) / (2.0 * (2.0 * pi)^2) end buff[i] *= get_G(Λ, v - 0.5 * w, m, a) * get_G(Λ, v + 0.5 * w, m, a) * dv buff[i] *= get_G(Λ, vp - 0.5 * w, m, a) * get_G(Λ, vp + 0.5 * w, m, a) * dvp end return nothing end # compute isotropic correlation in real and Matsubara space function compute_χ!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_su2, χ :: Vector{Matrix{Float64}}, χ_tol :: NTuple{2, Float64} ) :: Nothing @sync for w in 1 : m.num_χ for i in eachindex(r.sites) Threads.@spawn begin # determine reference scale ref = Λ + 0.5 * m.χ[w] # compute vertex contribution integrand = (vv, buff) -> compute_χ_kernel!(Λ, i, m.χ[w], vv, buff, r, m, a) χ[1][i, w] = integrate_χ_boxes(integrand, 4.0 * ref, χ_tol) # compute propagator contribution if i == 1 integrand = v -> (2.0 * a.S) * get_G(Λ, v - 0.5 * m.χ[w], m, a) * get_G(Λ, v + 0.5 * m.χ[w], m, a) / (4.0 * pi) χ[1][i, w] += quadgk(integrand, -Inf, -2.0 * ref, 0.0, 2.0 * ref, Inf, atol = χ_tol[1], rtol = χ_tol[2])[1] end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
7511
# generate correlation dummy for u1-dm symmetry function get_χ_u1_dm_empty( r :: Reduced_lattice, m :: Mesh ) :: Vector{Matrix{Float64}} χxx = zeros(Float64, length(r.sites), m.num_χ) χzz = zeros(Float64, length(r.sites), m.num_χ) χxy = zeros(Float64, length(r.sites), m.num_χ) χ = Matrix{Float64}[χxx, χzz, χxy] return χ end # xx kernel for double integral function compute_χ_kernel_xx!( Λ :: Float64, site :: Int64, w :: Float64, vv :: Matrix{Float64}, buff :: Vector{Float64}, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm ) :: Nothing for i in eachindex(buff) # map integration arguments and modify increments v = (2.0 * vv[1, i] - 1.0) / ((1.0 - vv[1, i]) * vv[1, i]) vp = (2.0 * vv[2, i] - 1.0) / ((1.0 - vv[2, i]) * vv[2, i]) dv = (2.0 * vv[1, i] * vv[1, i] - 2.0 * vv[1, i] + 1) / ((1.0 - vv[1, i]) * (1.0 - vv[1, i]) * vv[1, i] * vv[1, i]) dvp = (2.0 * vv[2, i] * vv[2, i] - 2.0 * vv[2, i] + 1) / ((1.0 - vv[2, i]) * (1.0 - vv[2, i]) * vv[2, i] * vv[2, i]) # get buffers for non-local term bs1 = get_buffer_s(v + vp, 0.5 * (v - w - vp), 0.5 * (-v - w + vp), m) bt1 = get_buffer_t(w, v, vp, m) bu1 = get_buffer_u(v - vp, 0.5 * (v - w + vp), 0.5 * ( v + w + vp), m) # get buffers for local term bs2 = get_buffer_s( v + vp, 0.5 * (v - w - vp), 0.5 * (v + w - vp), m) bt2 = get_buffer_t(-v + vp, 0.5 * (v - w + vp), 0.5 * (v + w + vp), m) bu2 = get_buffer_u(-w, v, vp, m) # compute value buff[i] = -get_Γ_comp(1, site, bs1, bt1, bu1, r, a, apply_flags_u1_dm) / (2.0 * pi)^2 if site == 1 vzz = get_Γ_comp(2, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) vdd = get_Γ_comp(4, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) buff[i] -= (vzz - vdd) / (2.0 * (2.0 * pi)^2) end buff[i] *= get_G(Λ, v - 0.5 * w, m, a) * get_G(Λ, v + 0.5 * w, m, a) * dv buff[i] *= get_G(Λ, vp - 0.5 * w, m, a) * get_G(Λ, vp + 0.5 * w, m, a) * dvp end return nothing end # zz kernel for double integral function compute_χ_kernel_zz!( Λ :: Float64, site :: Int64, w :: Float64, vv :: Matrix{Float64}, buff :: Vector{Float64}, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm ) :: Nothing for i in eachindex(buff) # map integration arguments and modify increments v = (2.0 * vv[1, i] - 1.0) / ((1.0 - vv[1, i]) * vv[1, i]) vp = (2.0 * vv[2, i] - 1.0) / ((1.0 - vv[2, i]) * vv[2, i]) dv = (2.0 * vv[1, i] * vv[1, i] - 2.0 * vv[1, i] + 1) / ((1.0 - vv[1, i]) * (1.0 - vv[1, i]) * vv[1, i] * vv[1, i]) dvp = (2.0 * vv[2, i] * vv[2, i] - 2.0 * vv[2, i] + 1) / ((1.0 - vv[2, i]) * (1.0 - vv[2, i]) * vv[2, i] * vv[2, i]) # get buffers for non-local term bs1 = get_buffer_s(v + vp, 0.5 * (v - w - vp), 0.5 * (-v - w + vp), m) bt1 = get_buffer_t(w, v, vp, m) bu1 = get_buffer_u(v - vp, 0.5 * (v - w + vp), 0.5 * ( v + w + vp), m) # get buffers for local term bs2 = get_buffer_s( v + vp, 0.5 * (v - w - vp), 0.5 * (v + w - vp), m) bt2 = get_buffer_t(-v + vp, 0.5 * (v - w + vp), 0.5 * (v + w + vp), m) bu2 = get_buffer_u(-w, v, vp, m) # compute value buff[i] = -get_Γ_comp(2, site, bs1, bt1, bu1, r, a, apply_flags_u1_dm) / (2.0 * pi)^2 if site == 1 vxx = get_Γ_comp(1, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) vzz = get_Γ_comp(2, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) vdd = get_Γ_comp(4, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) buff[i] -= (2.0 * vxx - vzz - vdd) / (2.0 * (2.0 * pi)^2) end buff[i] *= get_G(Λ, v - 0.5 * w, m, a) * get_G(Λ, v + 0.5 * w, m, a) * dv buff[i] *= get_G(Λ, vp - 0.5 * w, m, a) * get_G(Λ, vp + 0.5 * w, m, a) * dvp end return nothing end # xy kernel for double integral function compute_χ_kernel_xy!( Λ :: Float64, site :: Int64, w :: Float64, vv :: Matrix{Float64}, buff :: Vector{Float64}, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm ) :: Nothing for i in eachindex(buff) # map integration arguments and modify increments v = (2.0 * vv[1, i] - 1.0) / ((1.0 - vv[1, i]) * vv[1, i]) vp = (2.0 * vv[2, i] - 1.0) / ((1.0 - vv[2, i]) * vv[2, i]) dv = (2.0 * vv[1, i] * vv[1, i] - 2.0 * vv[1, i] + 1) / ((1.0 - vv[1, i]) * (1.0 - vv[1, i]) * vv[1, i] * vv[1, i]) dvp = (2.0 * vv[2, i] * vv[2, i] - 2.0 * vv[2, i] + 1) / ((1.0 - vv[2, i]) * (1.0 - vv[2, i]) * vv[2, i] * vv[2, i]) # get buffers for non-local term bs1 = get_buffer_s(v + vp, 0.5 * (v - w - vp), 0.5 * (-v - w + vp), m) bt1 = get_buffer_t(w, v, vp, m) bu1 = get_buffer_u(v - vp, 0.5 * (v - w + vp), 0.5 * ( v + w + vp), m) # get buffers for local term bs2 = get_buffer_s( v + vp, 0.5 * (v - w - vp), 0.5 * (v + w - vp), m) bt2 = get_buffer_t(-v + vp, 0.5 * (v - w + vp), 0.5 * (v + w + vp), m) bu2 = get_buffer_u(-w, v, vp, m) # compute value buff[i] = -get_Γ_comp(3, site, bs1, bt1, bu1, r, a, apply_flags_u1_dm) / (2.0 * pi)^2 if site == 1 vzd = get_Γ_comp(5, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) vdz = get_Γ_comp(6, site, bs2, bt2, bu2, r, a, apply_flags_u1_dm) buff[i] -= (vzd - vdz) / (2.0 * (2.0 * pi)^2) end buff[i] *= get_G(Λ, v - 0.5 * w, m, a) * get_G(Λ, v + 0.5 * w, m, a) * dv buff[i] *= get_G(Λ, vp - 0.5 * w, m, a) * get_G(Λ, vp + 0.5 * w, m, a) * dvp end return nothing end # compute correlations in real and Matsubara space function compute_χ!( Λ :: Float64, r :: Reduced_lattice, m :: Mesh, a :: Action_u1_dm, χ :: Vector{Matrix{Float64}}, χ_tol :: NTuple{2, Float64} ) :: Nothing @sync for w in 1 : m.num_χ for i in eachindex(r.sites) Threads.@spawn begin # determine reference scale ref = Λ + 0.5 * m.χ[w] # compute xx vertex contribution integrand = (vv, buff) -> compute_χ_kernel_xx!(Λ, i, m.χ[w], vv, buff, r, m, a) χ[1][i, w] = integrate_χ_boxes(integrand, 4.0 * ref, χ_tol) # compute zz vertex contribution integrand = (vv, buff) -> compute_χ_kernel_zz!(Λ, i, m.χ[w], vv, buff, r, m, a) χ[2][i, w] = integrate_χ_boxes(integrand, 4.0 * ref, χ_tol) # compute xy vertex contribution integrand = (vv, buff) -> compute_χ_kernel_xy!(Λ, i, m.χ[w], vv, buff, r, m, a) χ[3][i, w] = integrate_χ_boxes(integrand, 4.0 * ref, χ_tol) # compute propagator contribution if i == 1 integrand = v -> get_G(Λ, v - 0.5 * m.χ[w], m, a) * get_G(Λ, v + 0.5 * m.χ[w], m, a) / (4.0 * pi) res = quadgk(integrand, -Inf, -2.0 * ref, 0.0, 2.0 * ref, Inf, atol = χ_tol[1], rtol = χ_tol[2])[1] χ[1][i, w] += res χ[2][i, w] += res end end end end return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
613
# auxiliary function to compute equal time correlator for su2 symmetry function compute_eq_corr_su2( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Float64 # load diagonal correlations m, χ = read_χ(file, Λ, "diag", verbose = verbose) # compute equal-time on-site correlation eq_corr = 0.0 for i in 1 : length(m) - 1 eq_corr += (m[i + 1] - m[i]) * (χ[1, i + 1] + χ[1, i]) end # calculate full correlator eq_corr *= 3.0 # normalization from Fourier transformation eq_corr /= 2.0 * pi return eq_corr end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
703
# auxiliary function to compute equal time correlator for u1-dm symmetry function compute_eq_corr_u1_dm( file :: HDF5.File, Λ :: Float64 ; verbose :: Bool = true ) :: Float64 # load diagonal correlations m, χxx = read_χ(file, Λ, "xx", verbose = verbose) m, χzz = read_χ(file, Λ, "zz", verbose = verbose) # compute equal-time on-site correlation eq_corr = 0.0 for i in 1 : length(m) - 1 eq_corr += 2.0 * (m[i + 1] - m[i]) * (χxx[1, i + 1] + χxx[1, i]) eq_corr += 1.0 * (m[i + 1] - m[i]) * (χzz[1, i + 1] + χzz[1, i]) end # normalization from Fourier transformation eq_corr /= 2.0 * pi return eq_corr end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
930
""" get_PFFRG_timers() :: Nothing Test current performance of FRG solver. """ function get_PFFRG_timers() :: Nothing println() println("Testing performance of FRG solver ...") println() # time lattice println("Testing lattice performance ...") println() get_lattice_timers() println() println() # time frequencies println("Testing frequency performance ...") println() get_frequency_timers() println() println() # time action println("Testing action performance ...") println() get_action_timers() println() println() # time flow equations println("Testing flow performance ...") get_flow_timers() println() println() # time observables println("Testing observable performance ...") println() get_observable_timers() println() println() println("Done.") return nothing end
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
code
502
using PFFRGSolver println() # test frequency implementation println("Running frequency tests ...") test_frequencies() println() # test action implementation println("Running lattice tests ...") test_lattice() println() # test action implementation println("Running action tests ...") test_action() println() # test flow implementation println("Running flow tests ...") test_flow() println() # test observable implementation println("Running observable tests ...") test_observable() println()
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.5.0
5e2cd6b758e228080cdb43b0e0c469683fcd68b2
docs
8766
# PFFRGSolver.jl <img src=https://github.com/dominikkiese/PFFRGSolver.jl/blob/main/README/logo.png align="right" height="175" width="250"> **P**seudo-**F**ermion **F**unctional **R**enormalization **G**roup **Solver** <br> (Julia v1.5 and higher) # Introduction The package PFFRGSolver.jl aims at providing an efficient, state-of-the-art multiloop solver for functional renormalization group equations of quantum lattice spin models in the pseudo-fermion representation. It is currently applicable to spin models described by Hamiltonians of the form <p align="center"> <img src=https://github.com/dominikkiese/PFFRGSolver.jl/blob/main/README/hamiltonian.png height="70" width="700"> </p> which can be defined on a variety of pre-implemented two and three dimensional lattices. Internally, PFFRGSolver.jl first computes a reduced representation of the lattice by employing space group symmetries before initializing the renormalization group flow with the bare couplings or, optionally, a solution of the regularized parquet equations, to which the multiloop truncated FRG converges by construction. The RG equations are integrated using the Bogacki-Shampine method with adaptive step size control. In each stage of the flow, real-space spin-spin correlations are computed from the flowing vertices. For a more detailed discussion of the method and its implementation see https://arxiv.org/abs/2011.01269. # Installation The package can be installed with the Julia package manager by switching to package mode in the REPL (with `]`) and using ```julia pkg> add PFFRGSolver ``` # Citation If you use PFFRGSolver.jl in your work, please acknowledge the package accordingly and cite our preprint D. Kiese, T.Müller, Y. Iqbal, R. Thomale and S. Trebst, "Multiloop functional renormalization group approach to quantum spin systems", arXiv:2011.01269 (2020) A suitable bibtex entry is ``` @misc{kiese2020multiloop, title={Multiloop functional renormalization group approach to quantum spin systems}, author={Dominik Kiese and Tobias M\"uller and Yasir Iqbal and Ronny Thomale and Simon Trebst}, year={2020}, eprint={2011.01269}, archivePrefix={arXiv}, primaryClass={cond-mat.str-el} } ``` # Running calculations In order to simulate e.g. the nearest-neighbor Heisenberg antiferromagnet on the square lattice for a lattice truncation L = 3 simply do ```julia using PFFRGSolver launch!("/path/to/output", "square", 3, "heisenberg", "su2", [1.0]) ``` The FRG solver allows for more fine grained control over the calculation by various keyword arguments. The full reference can be obtained via `?launch!`. Currently available lattices and models can be obtained in verbose form with `lattice_avail()` and `model_avail()`. # Post-processing data Each calculation generates two output files `"/path/to/output_obs"` and `"/path/to/output_cp"` in the HDF5 format, containing observables measured during the RG flow and checkpoints with full vertex data respectively. <br> The so-obtained real space spin-spin correlations are usually converted to structure factors (or susceptibilities) via a Fourier transform to momentum space, to investigate the ground state predicted by pf-FRG. In the following, example code is provided for computing the momentum (and Matsubara frequency) resolved structure factor for the full FRG flow, as well as a single cutoff, for Heisenberg models on the square lattice. ```julia using PFFRGSolver using HDF5 # generate 50 x 50 momentum space discretization within first Brillouin zone of the square lattice rx = (-1.0 * pi, 1.0 * pi) ry = (-1.0 * pi, 1.0 * pi) rz = (0.0, 0.0) k = get_momenta(rx, ry, rz, (50, 50, 0)) # open observable file and output file to save structure factor file_in = h5open("/path/to/output_obs", "r") file_out = h5open("/path/to/output_sf", "cw") # compute structure factor for the full flow compute_structure_factor_flow!(file_in, file_out, k, "diag") # read so-computed structure factor with its frequency mesh at cutoff Λ = 1.0 from file_out m, s = read_structure_factor(file_out, 1.0, "diag") # read so-computed static structure factor flow at momentum with largest amplitude with respect to reference scale Λ = 1.0 ref = read_reference_momentum(file_out, 1.0, "diag") Λ, s = read_structure_factor_flow_at_momentum(file_out, ref, "diag") # read lattice data and real space correlations with their frequency mesh at cutoff Λ = 1.0 from file_in l, r = read_lattice(file_in) m, χ = read_χ(file_in, 1.0, "diag") # compute static structure factor at cutoff Λ = 1.0 s = compute_structure_factor(χ[:, 1], k, l, r) # close HDF5 files close(file_in) close(file_out) ``` Vertex data can be accessed by reading checkpoints from `"/path/to/output_cp"` like ```julia using PFFRGSolver using HDF5 # open checkpoint file of FRG solver file = h5open("/path/to/output_cp", "r") # load checkpoint at cutoff Λ = 1.0 Λ, dΛ, m, a = read_checkpoint(file, 1.0) # close HDF5 file close(file) ``` The solver generates (if `parquet = true` in the `launch!` command) at least two checkpoints, one with the converged parquet solution used as the initial condition for the FRG and one with the final result at the end of the flow. Additional checkpoints are created according to a timer heuristic, which can be controlled with the `ct` and `wt` keywords in `launch!`. # Performance notes The PFFRGSolver.jl package accelerates calculations by making use of Julia's built-in dynamical thread scheduling (`Threads.@spawn`). Even for small systems, the number of flow equations to be integrated is quite tremendous and parallelization is vital to achieve acceptable run times. **We recommend to launch Julia with multiple threads whenever PFFRGSolver.jl is used**, either by setting up the respective enviroment variable `export JULIA_NUM_THREADS=$nthreads` or by adding the `-t` flag when opening the Julia REPL from the terminal i.e. `julia -t $nthreads`. <br> Note that iterating the parquet equations is quite costly (compared to one loop FRG calculations) and contributes a substantial overhead for computing an initial condition of the flow. It is advisable to turn them on (via the `parquet` keyword in `launch!`) only when accordingly large computing resources are available. <br> If you are using the package in an HPC environment, make sure that the precompile cache is generated for that CPU architecture on which production runs are performed, as the LoopVectorizations.jl dependency of the solver will unlock compiler optimizations based on the respective hardware. # SLURM Interface Calculations with PFFRGSolver.jl on small to medium sized systems can usually be done locally with a low number of threads. However, when the number of loops is increased and high resolution is required, calculations can become quite time consuming and it is advisable to make use of a computing cluster if available. PFFRGSolver.jl exports a few commands, to help people setting up simulations on clusters utilizing the SLURM workload manager (integration for other systems is plannned for future versions). Example code for a rough scan of the phase diagram of the J1-J2 Heisenberg model on the square lattice (with L = 6) is given below. ```julia using PFFRGSolver # make new folder and add launcher files for a rough scan of the phase diagram mkdir("j1j2_square") for j2 in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] save_launcher!("j1j2_square/j2$(j2).jl", "j2$(j2)", "square", 6, "heisenberg", "su2", [1.0, j2], num_σ = 50, num_Ω = 30, num_ν = 20, num_χ = 10) end # set up SLURM parameters as dictionary sbatch_args = Dict(["account" => "my_account", "nodes" => "1", "ntasks" => "1", "cpus-per-task" => "8", "time" => "04:00:00", "partition" => "my_partition"]) # generate job files make_repository!("j1j2_square", "/path/to/julia/exe", sbatch_args) ``` The jobs subsequently can be submitted using ```bash for FILE in j1j2_square/*/*.job; do sbatch $FILE; done ``` After having submitted and run the jobs, results can be gathered in `"j1j2_square/finished"` with the `collect_repository!` command. Note that simulations, which could not be finished in time, have their `overwrite` flag in the respective launcher file set to `false` by `collect_repository!`. As such they can just be resubmitted and will continue calculations from the last available checkpoint. # Literature For further reading on technical aspects of (multiloop) pf-FRG see * [1] https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.144410 * [2] https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.045144 * [3] https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.064416 * [4] https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.035162 * [5] https://arxiv.org/abs/2011.01268
PFFRGSolver
https://github.com/dominikkiese/PFFRGSolver.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
293
using Documenter, DocumenterMarkdown using ReactiveDynamics makedocs(; format = Documenter.HTML(; prettyurls = false, edit_link = "main"), sitename = "ReactiveDynamics.jl API Documentation", pages = ["index.md"], ) deploydocs(; repo = "github.com/Merck/ReactiveDynamics.jl.git")
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
6665
module ReactiveDynamics using Catlab, Catlab.CategoricalAlgebra, Catlab.Present using Reexport using MacroTools using NLopt using ComponentArrays @reexport using GeneratedExpressions const SampleableValues = Union{Expr,Symbol,AbstractString,Float64,Int,Function} const ActionableValues = Union{Function,Symbol,Float64,Int} const SampleableRange = Union{ Float64, Int64, AbstractString, Expr, Symbol, Tuple{Float64,Union{Float64,Int64,AbstractString,Expr,Symbol}}, } Base.convert(::Type{SampleableRange}, x::Tuple) = (Float64(x[1]), x[2]) Base.@kwdef mutable struct FoldedObservable range::Vector{SampleableRange} = SampleableRange[] every::Float64 = Inf on::Vector{SampleableValues} = SampleableValues[] end @present TheoryReactionNetwork(FreeSchema) begin (S, T)::Ob # species, transitions ( SymbolicAttributeT, DescriptiveAttributeT, SampleableAttributeT, ModalityAttributeT, PcsOptT, PrmAttributeT, )::AttrType specName::Attr(S, SymbolicAttributeT) specModality::Attr(S, ModalityAttributeT) specInitVal::Attr(S, SampleableAttributeT) specInitUncertainty::Attr(S, SampleableAttributeT) (specCost, specReward, specValuation)::Attr(S, SampleableAttributeT) trans::Attr(T, SampleableAttributeT) transPriority::Attr(T, SampleableAttributeT) transRate::Attr(T, SampleableAttributeT) transCycleTime::Attr(T, SampleableAttributeT) transProbOfSuccess::Attr(T, SampleableAttributeT) transCapacity::Attr(T, SampleableAttributeT) transMaxLifeTime::Attr(T, SampleableAttributeT) transPostAction::Attr(T, SampleableAttributeT) transMultiplier::Attr(T, SampleableAttributeT) transName::Attr(T, DescriptiveAttributeT) E::Ob # events (eventTrigger, eventAction)::Attr(E, SampleableAttributeT) obs::Ob # processes (observables) obsName::Attr(obs, SymbolicAttributeT) obsOpts::Attr(obs, PcsOptT) (P, M)::Ob # model params, solver args prmName::Attr(P, SymbolicAttributeT) prmVal::Attr(P, PrmAttributeT) metaKeyword::Attr(M, SymbolicAttributeT) metaVal::Attr(M, SampleableAttributeT) end @acset_type FoldedReactionNetworkType(TheoryReactionNetwork) const ReactionNetwork = FoldedReactionNetworkType{ Symbol, Union{String,Symbol,Missing}, SampleableValues, Set{Symbol}, FoldedObservable, Any, } Base.convert(::Type{Symbol}, ex::String) = Symbol(ex) Base.convert(::Type{Union{String,Symbol,Missing}}, ex::String) = try Symbol(ex) catch string(ex) end Base.convert(::Type{SampleableValues}, ex::String) = MacroTools.striplines(Meta.parse(ex)) Base.convert(::Type{Set{Symbol}}, ex::String) = eval(Meta.parse(ex)) Base.convert(::Type{FoldedObservable}, ex::String) = eval(Meta.parse(ex)) prettynames = Dict( :transRate => [:rate], :specInitUncertainty => [:uncertainty, :stoch, :stochasticity], :transPostAction => [:postAction, :post], :transName => [:name, :interpretation], :transPriority => [:priority], :transProbOfSuccess => [:probability, :prob, :pos], :transCapacity => [:cap, :capacity], :transCycleTime => [:ct, :cycletime], :transMaxLifeTime => [:lifetime, :maxlifetime, :maxtime, :timetolive], ) defargs = Dict( :T => Dict{Symbol,Any}( :transPriority => 1, :transProbOfSuccess => 1, :transCapacity => Inf, :transCycleTime => 0.0, :transMaxLifeTime => Inf, :transMultiplier => 1, :transPostAction => :(), :transName => missing, ), :S => Dict{Symbol,Any}( :specInitUncertainty => 0.0, :specInitVal => 0.0, :specCost => 0.0, :specReward => 0.0, :specValuation => 0.0, ), :P => Dict{Symbol,Any}(:prmVal => missing), :M => Dict{Symbol,Any}(:metaVal => missing), ) compilable_attrs = filter(attr -> eltype(attr) == SampleableValues, propertynames(ReactionNetwork())) species_modalities = [:nonblock, :conserved, :rate] function assign_defaults!(acs::ReactionNetwork) for (_, v_) in defargs, (k, v) in v_ for i = 1:length(subpart(acs, k)) isnothing(acs[i, k]) && (subpart(acs, k)[i] = v) end end foreach( i -> !isnothing(acs[i, :specModality]) || (subpart(acs, :specModality)[i] = Set{Symbol}()), 1:nparts(acs, :S), ) k = [:specCost, :specReward, :specValuation] foreach( k -> foreach( i -> !isnothing(acs[i, k]) || (subpart(acs, k)[i] = 0.0), 1:nparts(acs, :S), ), k, ) return acs end function ReactionNetwork(transitions, reactants, obs, events) return merge_acs!(ReactionNetwork(), transitions, reactants, obs, events) end function ReactionNetwork(transitions, reactants, obs) return merge_acs!(ReactionNetwork(), transitions, reactants, obs, []) end function add_obs!(acs, obs) for p in obs sym = p.args[3].value i = incident(acs, sym, :obsName) i = if isempty(incident(acs, sym, :obsName)) add_part!(acs, :obs; obsName = sym, obsOpts = FoldedObservable()) else i[1] end for opt in p.args[4:end] if isexpr(opt, :(=)) && (opt.args[1] ∈ fieldnames(FoldedObservable)) opt.args[1] == :every && (acs[i, :obsOpts].every = min(acs[i, :obsOpts].every, opt.args[2])) opt.args[1] == :on && union!(acs[i, :obsOpts].on, [opt.args[2]]) elseif isexpr(opt, :tuple) || opt isa SampleableValues push!( acs[i, :obsOpts].range, isexpr(opt, :tuple) ? tuple(opt.args...) : opt, ) end end end return acs end function merge_acs!(acs::ReactionNetwork, transitions, reactants, obs, events) foreach( t -> add_part!(acs, :T; trans = t[1][2], transRate = t[1][1], t[2]...), transitions, ) add_obs!(acs, obs) unique!(reactants) foreach( ev -> add_part!(acs, :E; eventTrigger = ev.trigger, eventAction = ev.action), events, ) foreach( r -> isempty(incident(acs, r, :specName)) && add_part!(acs, :S; specName = r), reactants, ) return assign_defaults!(acs) end include("state.jl") include("compilers.jl") include.(readdir(joinpath(@__DIR__, "interface"); join = true)) include.(readdir(joinpath(@__DIR__, "utils"); join = true)) include.(readdir(joinpath(@__DIR__, "operators"); join = true)) include("solvers.jl") include("optim.jl") include("loadsave.jl") end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
5831
using MacroTools: prewalk """ Recursively find model variables in expressions. """ function recursively_find_vars!(r, exs...) for ex in exs if ex isa Symbol push!(r, ex) else ( ex isa Expr && recursively_find_vars!(r, ex.args[(!isexpr(ex, :call) ? 1 : 2):end]...) ) end end return r end function get_contained_params(ex, prms) r = [] return recursively_find_vars!(r, ex) ∩ prms end """ Recursively substitute model variables. Subsitution pairs are specified in `varmap`. """ function recursively_substitute_vars!(varmap, ex) ex isa Symbol && return (haskey(varmap, ex) ? varmap[ex] : ex) ex isa Expr && for i = 1:length(ex.args) if ex.args[i] isa Expr recursively_substitute_vars!(varmap, ex.args[i]) else ( ex.args[i] isa Symbol && haskey(varmap, ex.args[i]) && (ex.args[i] = varmap[ex.args[i]]) ) end end return ex end """ Recursively normalize dotted notation in `ex` to species names whenever a name is contained in `vars`, else left unchanged. """ function recursively_expand_dots_in_ex!(ex, vars) if isexpr(ex, :.) expanded = recursively_expand_dots(ex) return if expanded isa Symbol && expanded in vars expanded else recursively_expand_dots_in_ex!.(ex.args, Ref(vars)) ex end end ex isa Expr && for i = 1:length(ex.args) ex.args[i] isa Union{Expr,Symbol} && (ex.args[i] = recursively_expand_dots_in_ex!(ex.args[i], vars)) end return ex end reserved_names = [:t, :state, :obs, :resample, :solverarg, :take, :log, :periodic, :set_params] push!(reserved_names, :state) function escape_ref(ex, species) return if ex isa Symbol ex else prewalk( ex -> isexpr(ex, :ref) && Symbol(string(ex)) ∈ species ? Symbol(string(ex)) : ex, ex, ) end end function wrap_expr(fex, species_names, prm_names, varmap) !isa(fex, Union{Expr,Symbol}) && return fex # escape refs in species names: A[1] -> Symbol("A[1]") fex = escape_ref(fex, species_names) # escape dots in species' names: A.B -> Symbol("A.B") fex = deepcopy(fex) fex = recursively_expand_dots_in_ex!(fex, species_names) # prepare the function's body letex = :( let end ) # expression walking (MacroTools): visit each expression, subsitute with the body's return value fex = prewalk(fex) do x # here we convert the query metalanguage: @t() -> time(state) etc. if isexpr(x, :macrocall) && (macroname(x) ∈ reserved_names) Expr(:call, macroname(x), :state, x.args[3:end]...) else x end end # substitute the species names with "pointers" into the state space: S -> state.u[1] fex = recursively_substitute_vars!(varmap, fex) # substitute the params names with "pointers" into the parameter space: β -> state.p[:β] # params can't be mutated! foreach( v -> push!(letex.args[1].args, :($v = state.p[$(QuoteNode(v))])), get_contained_params(fex, prm_names), ) push!(letex.args[2].args, fex) # the function shall be a function of the dynamic ReactiveDynamicsState structure: letex -> :(state -> $letex) # eval the expression to a Julia function, save that function into the "compiled" acset return eval(:(state -> $letex)) end function get_wrap_fun(acs::ReactionNetwork) species_names = collect(acs[:, :specName]) prm_names = collect(acs[:, :prmName]) varmap = Dict([name => :(state.u[$i]) for (i, name) in enumerate(species_names)]) for name in prm_names push!(varmap, name => :(state.p[$(QuoteNode(name))])) end return ex -> wrap_expr(ex, species_names, prm_names, varmap) end function skip_compile(attr) return any(contains.(Ref(string(attr)), ("Name", "obs", "meta"))) || (string(attr) == "trans") end function compile_attrs(acs::ReactionNetwork) species_names = collect(acs[:, :specName]) prm_names = collect(acs[:, :prmName]) varmap = Dict([name => :(state.u[$i]) for (i, name) in enumerate(species_names)]) for name in prm_names push!(varmap, name => :(state.p[$(QuoteNode(name))])) end wrap_fun = ex -> wrap_expr(ex, species_names, prm_names, varmap) attrs = Dict{Symbol,Vector}() transitions = Dict{Symbol,Vector}() for attr in propertynames(acs.subparts) attrs_ = subpart(acs, attr) if !contains(string(attr), "trans") ( attrs[attr] = map( i -> skip_compile(attr) ? attrs_[i] : wrap_fun(attrs_[i]), 1:length(attrs_), ) ) else ( transitions[attr] = map( i -> skip_compile(attr) ? attrs_[i] : wrap_fun(attrs_[i]), 1:length(attrs_), ) ) end end transitions[:transActivated] = fill(true, nparts(acs, :T)) transitions[:transToSpawn] = zeros(nparts(acs, :T)) transitions[:transHash] = [coalesce(acs[i, :transName], gensym()) for i = 1:nparts(acs, :T)] return attrs, transitions, wrap_fun end function remove_choose(acs::ReactionNetwork) acs = deepcopy(acs) pcs = [] for attr in propertynames(acs.subparts) attrs_ = subpart(acs, attr) foreach( i -> !isnothing(attrs_[i]) && attrs_[i] isa Expr && (attrs_[i] = normalize_pcs!(pcs, attrs_[i])), 1:length(attrs_), ) end add_obs!(acs, pcs) return acs end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
6465
export @import_network, @export_network export @load_models export @import_solution, @export_solution export @export_solution_as_table, @export_solution_as_csv export @export, @import using TOML, JLD2, CSV using DataFrames const objects_aliases = Dict( :S => "spec", :T => "trans", :P => "prm", :M => "meta", :E => "event", :obs => "obs", ) const RN_attrs = string.(propertynames(ReactionNetwork().subparts)) function get_attrs(object) object = object isa Symbol ? objects_aliases[object] : object return filter(x -> occursin(object, x), RN_attrs) end function export_network(acs::ReactionNetwork) dict = Dict() for (key, val) in objects_aliases push!(dict, val => []) for i = 1:nparts(acs, key) dict_ = Dict() for attr in get_attrs(val) attr_val = acs[i, Symbol(attr)] ismissing(attr_val) && continue attr_val = attr_val isa Number ? attr_val : string(attr_val) push!(dict_, string(attr) => attr_val) end push!(dict[val], dict_) end end return dict end function load_network(dict::Dict) acs = ReactionNetwork() for (key, val) in objects_aliases val == "prm" && continue for row in get(dict, val, []) i = add_part!(acs, key) for (attr, attrval) in row set_subpart!(acs, i, Symbol(attr), attrval) end end end for row in get(dict, "prm", []) i = add_part!(acs, :P) for (attr, attrval) in row if attr == "prmVal" attrval = attrval isa String ? eval(Meta.parseall(attrval)) : attrval end set_subpart!(acs, i, Symbol(attr), attrval) end end for row in get(dict, "registered", []) eval(Meta.parseall(row["body"])) end return assign_defaults!(acs) end function import_network_csv(pathmap) dict = Dict() for (key, paths) in pathmap push!(dict, key => []) for path in paths data = DataFrame( CSV.File( path; delim = ";;", types = String, stripwhitespace = true, comment = "#", ), ) for row in eachrow(data) object = Dict() for (attr, val) in Iterators.zip(keys(row), values(row)) !ismissing(val) && push!(object, string(attr) => val) end push!(dict[key], object) end end end return load_network(dict) end function import_network(path::AbstractString) if splitext(path)[2] == ".csv" pathmap = Dict(val => [] for val in [collect(values(objects_aliases)); "registered"]) for row in CSV.File(path; delim = ";;", stripwhitespace = true, comment = "#") push!(pathmap[row.type], joinpath(dirname(path), row.path)) end import_network_csv(pathmap) else load_network(TOML.parsefile(path)) end end function export_network(acs::ReactionNetwork, path::AbstractString) if splitext(path)[2] == ".csv" exported_network = export_network(acs) paths = DataFrame(; type = [], path = []) for (key, objs) in exported_network push!(paths, (key, "export-$key.csv")) objs_exported = DataFrame(Dict(attr => [] for attr in get_attrs(key))) for obj in objs push!( objs_exported, [get(obj, key, missing) for key in names(objs_exported)], ) end CSV.write( joinpath(dirname(path), "export-$key.csv"), objs_exported; delim = ";;", ) end CSV.write(path, paths; delim = ";;") else open(io -> TOML.print(io, export_network(acs)), path, "w+") end end """ Export model to a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects). See `tutorials/loadsave` for an example. # Examples ```julia @export_network acs "acs_data.toml" # as a TOML @export_network acs "csv/model.csv" # as a CSV ``` """ macro export_network(acsex, pathex) return :(export_network($(esc(acsex)), $(string(pathex)))) end """ Import a model from a file: this can be either a single TOML file encoding the entire model, or a batch of CSV files (a root file and a number of files, each per a class of objects). See `tutorials/loadsave` for an example. # Examples ```julia @import_network "model.toml" @import_network "csv/model.toml" ``` """ macro import_network(pathex, name = gensym()) return :($(esc(name)) = import_network($(string(pathex)))) end macro load_models(pathex) callex = :( begin end ) for line in readlines(string(pathex)) name, pathex = split(line, ';') name = isempty(name) ? gensym() : Symbol(name) push!(callex.args, :($(esc(name)) = import_network($(string(pathex))))) end return callex end """ @import_solution "sol.jld2" @import_solution "sol.jld2" sol Import a solution from a file. # Examples ```julia @import_solution "sir_acs_sol/serialized/sol.jld2" ``` """ macro import_solution(pathex, varname = "sol") return :(JLD2.load($(string(pathex)), $(string(varname)))) end """ @export_solution sol @export_solution sol "sol.jld2" Export a solution to a file. # Examples ```julia @export_solution sol "sol.jdl2" ``` """ macro export_solution(solex, pathex = "sol.jld2") return :(JLD2.save($(string(pathex)), $(string(solex)), $(esc(solex)))) end """ @export_solution_as_table sol Export a solution as a `DataFrame`. # Examples ```julia @export_solution_as_table sol ``` """ macro export_solution_as_table(solex, pathex = "sol.jld2") return :(DataFrame($(esc(solex)))) end get_DataFrame(sol) = sol isa EnsembleSolution ? DataFrame(sol)[!, [:u, :t]] : DataFrame(sol) """ @export_solution_as_csv sol @export_solution_as_csv sol "sol.csv" Export a solution to a file. # Examples ```julia @export_solution_as_csv sol "sol.csv" ``` """ macro export_solution_as_csv(solex, pathex = "sol.csv") return :(CSV.write($(string(pathex)), get_DataFrame($(esc(solex))))) end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
6211
function build_parametrized_solver(acs, init_vec, u0, params; trajectories = 1) prob = DiscreteProblem(acs) vars = prob.p[:__state__][:, :specInitUncertainty] init_vec = deepcopy(init_vec) function (vec) vec = vec isa ComponentVector ? vec : (init_vec .= vec) data = [] for _ = 1:trajectories prob.p[:__state__] = deepcopy(prob.p[:__state0__]) for i in eachindex(prob.u0) rv = randn() * vars[i] prob.u0[i] = if (sign(rv + prob.u0[i]) == sign(prob.u0[i])) rv + prob.u0[i] else prob.u0[i] end end for (i, k) in enumerate(wkeys(u0)) prob.u0[k] = vec.species[i] end for k in wkeys(params) prob.p[k] = vec[k] end sync!(prob.p[:__state__], prob.u0, prob.p) push!(data, solve(prob)) end return data end end function build_parametrized_solver_(acs, init_vec, u0, params; trajectories = 1) prob = DiscreteProblem(acs) vars = prob.p[:__state__][:, :specInitUncertainty] init_vec = deepcopy(init_vec) function (vec) vec = vec isa ComponentVector ? vec : (init_vec .= vec; init_vec) data = map(1:trajectories) do _ prob.p[:__state__] = deepcopy(prob.p[:__state0__]) for i in eachindex(prob.u0) rv = randn() * vars[i] prob.u0[i] = if (sign(rv + prob.u0[i]) == sign(prob.u0[i])) rv + prob.u0[i] else prob.u0[i] end end for (i, k) in enumerate(wkeys(u0)) prob.u0[k] = vec.species[i] end for k in wkeys(params) prob.p[k] = vec[k] end sync!(prob.p[:__state__], prob.u0, prob.p) return solve(prob) end return trajectories == 1 ? data[1] : EnsembleSolution(data, 0.0, true) end end ## optimization part BOUND_DEFAULT = 5000 function optim!(obj, init; nlopt_kwargs...) nlopt_kwargs = Dict(nlopt_kwargs) alg = pop!(nlopt_kwargs, :algorithm, :GN_DIRECT) opt = Opt(alg, length(init)) # match to a ComponentVector foreach( o -> setproperty!(opt, o...), filter(x -> x[1] in propertynames(opt), nlopt_kwargs), ) if get(nlopt_kwargs, :objective, min) == min (opt.min_objective = obj) else (opt.max_objective = obj) end return optimize(opt, deepcopy(init)) end const n_steps = 100 # loss objective given an objective expression function build_loss_objective( acs, init_vec, u0, params, obex; loss = identity, trajectories = 1, min_t = -Inf, max_t = Inf, final_only = false, ) ob = eval(get_wrap_fun(acs)(obex)) obj_ = build_parametrized_solver(acs, init_vec, u0, params; trajectories) function (vec, _) ls = [] for sol in obj_(vec) t_points = if final_only [last(sol.t)] else min_t = max(min_t, sol.prob.tspan[1]) max_t = min(max_t, sol.prob.tspan[2]) range(min_t, max_t; length = n_steps) end push!( ls, mean(t -> loss(ob(as_state(sol(t), t, sol.prob.p[:__state__]))), t_points), ) end return mean(ls) end end # loss objective given empirical data function build_loss_objective_datapoints( acs, init_vec, u0, params, t, data, vars; loss = abs2, trajectories = 1, ) obj_ = build_parametrized_solver(acs, init_vec, u0, params; trajectories) function (vec, _) ls = [] for sol in obj_(vec) push!( ls, mean( t -> sum(i -> loss(sol(t[2])[i[2]] - data[i[1], t[1]]), enumerate(vars)), enumerate(t), ), ) end return mean(ls) end end # set initial model parameter values in an optimization problem function prep_params!(params, prob) for (k, v) in params (v === NaN) && wset!(params, k, get(prob.p, k, NaN)) end any(p -> (p[2] === NaN) && @warn("Uninitialized prm: $p"), params) return params end # set initial model variable values in an optimization problem function prep_u0!(u0, prob) for (k, v) in u0 (v === NaN) && wset!(u0, k, get(prob.u0, k, NaN)) end any(u -> (u[2] === NaN) && @warn("Uninitialized prm: $(u[1])"), u0) return u0 end """ Extract symbolic variables referenced in `acs`, `args`. """ function get_free_vars(acs, args) u0_syms = collect(acs[:, :specName]) p_syms = collect(acs[:, :prmName]) u0 = [] p = [] for arg in args if arg isa Symbol (k, v) = (arg, NaN) elseif isexpr(arg, :(=)) (k, v) = (arg.args[1], arg.args[2]) else continue end if ((k in u0_syms || k isa Number) && !in(k, wkeys(u0))) push!(u0, k => v) elseif (k in p_syms && !in(k, wkeys(p))) push!(p, k => v) end end u0_ = [] for (k, v) in u0 if k isa Number push!(u0_, Int(k) => v) else for i = 1:length(subpart(acs, :specName)) (acs[i, :specName] == k) && (push!(u0_, i => v); break) end end end return u0_, p end """ Resolve symbolic / positional model variable names to positional. """ function get_vars(acs, args) (args == :()) && return args args_ = [] for arg in (MacroTools.isexpr(args, :vect, :tuple) ? args.args : [args]) arg = recursively_expand_dots(arg) if arg isa Number push!(args_, Int(arg)) else for i = 1:length(subpart(acs, :specName)) !isnothing(acs[i, :specName]) && (acs[i, :specName] == arg) && (push!(args_, i); break) end end end return args_ end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
13286
# assortment of SciML-compatible problem solvers export DiscreteProblem using DiffEqBase, DifferentialEquations using Distributions function get_sampled_transition(state, i) transition = Dict{Symbol,Any}() foreach(k -> push!(transition, k => state[i, k]), keys(state.transitions)) return transition end """ Compute resource requirements given transition quantities. """ function get_reqs_init!(reqs, qs, state) reqs .= 0.0 for i = 1:size(reqs, 2) for tok in state[i, :transLHS] !any(m -> m in tok.modality, [:rate, :nonblock]) && (reqs[tok.index, i] += qs[i] * tok.stoich) end end return reqs end """ Compute resource requirements given transition quantities. """ function get_reqs_ongoing!(reqs, qs, state) reqs .= 0.0 for i = 1:length(state.ongoing_transitions) for tok in state.ongoing_transitions[i][:transLHS] in(:rate, tok.modality) && (state.ongoing_transitions[i][:transCycleTime] > 0) && (reqs[tok.index, i] += qs[i] * tok.stoich * state.solverargs[:tstep]) in(:nonblock, tok.modality) && (reqs[tok.index, i] += qs[i] * tok.stoich) end end return reqs end """ Given requirements, return available allocation. """ function get_allocs!(reqs, u, state, priorities, strategy = :weighted) return if strategy == :weighted alloc_weighted!(reqs, u, priorities, state) else alloc_greedy!(reqs, u, priorities, state) end end function alloc_weighted!(reqs, u, priorities, state) allocs = zero(reqs) for i = 1:size(reqs, 1) s = sum(reqs[i, :]) u[i] >= s && (allocs[i, :] .= reqs[i, :]; continue) foreach(j -> allocs[i, j] = reqs[i, j] * priorities[j], 1:size(reqs, 2)) s = sum(allocs[i, :]) allocs[i, :] .*= (s == 0) ? 0.0 : (max(0, u[i]) / s) end return allocs end function alloc_greedy!(reqs, u, priorities, state) allocs = zero(reqs) sorted_trans = sort(1:size(reqs, 2); by = i -> -priorities[i]) for i = 1:size(reqs, 1) s = sum(reqs[i, :]) u[i] >= s && (allocs[i, :] .= reqs[i, :]; continue) a = u[i] j = 1 while a > 0 && j <= size(reqs, 2) allocs[i, sorted_trans[j]] = min(reqs[i, sorted_trans[j]], a) a -= allocs[i, sorted_trans[j]] j += 1 end end return allocs end """ Given resource requirements and available allocations, output resulting shift size for each transition. """ function get_frac_satisfied(allocs, reqs, state) for i in eachindex(allocs) allocs[i] = min(1, (reqs[i] == 0.0 ? 1 : (allocs[i] / reqs[i]))) end qs = vec(minimum(allocs; dims = 1)) foreach(i -> allocs[:, i] .= reqs[:, i] * qs[i], 1:size(reqs, 2)) return qs end """ Given available allocations and qties of transitions requested to spawn, return number of spawned transitions. Update `alloc` to match actual allocation. """ function get_init_satisfied(allocs, qs, state) reqs = zero(allocs) for i = 1:size(allocs, 2) all(allocs[:, i] .>= 0) || (allocs[:, i] .= 0.0; qs[i] = 0) for tok in state[i, :transLHS] !any(m -> m in tok.modality, [:rate, :nonblock]) && (reqs[tok.index, i] += tok.stoich) end end for i in eachindex(allocs) allocs[i] = reqs[i] == 0.0 ? Inf : floor(allocs[i] / reqs[i]) end foreach(i -> qs[i] = min(qs[i], minimum(allocs[:, i])), 1:size(reqs, 2)) foreach(i -> allocs[:, i] .= reqs[:, i] * qs[i], 1:size(reqs, 2)) return qs end """ Evolve transitions, spawn new transitions. """ function evolve!(u, state) update_u!(state, u) actual_allocs = zero(u) ## schedule new transitions reqs = zeros(nparts(state, :S), nparts(state, :T)) qs = zeros(nparts(state, :T)) foreach( i -> qs[i] = state[i, :transRate] * state[i, :transMultiplier], 1:nparts(state, :T), ) qs .= ceil.(Ref(Int), qs) for i = 1:nparts(state, :T) new_instances = state.solverargs[:tstep] * qs[i] + state[i, :transToSpawn] capacity = state[i, :transCapacity] - count(t -> t[:transHash] == state[i, :transHash], state.ongoing_transitions) (capacity < new_instances) && add_to_spawn!(state, state[i, :transHash], new_instances - capacity) qs[i] = min(capacity, new_instances) end reqs = get_reqs_init!(reqs, qs, state) allocs = get_allocs!(reqs, u, state, state[:, :transPriority], state.solverargs[:strategy]) qs .= get_init_satisfied(allocs, qs, state) push!( state.log, ( :new_transitions, state.t, [(hash, q) for (hash, q) in zip(state[:, :transHash], qs)]..., ), ) u .-= sum(allocs; dims = 2) actual_allocs .+= sum(allocs; dims = 2) # add spawned transitions to the heap for i = 1:nparts(state, :T) qs[i] != 0 && push!( state.ongoing_transitions, Transition(get_sampled_transition(state, i), state.t, qs[i], 0.0), ) end update_u!(state, u) ## evolve ongoing transitions reqs = zeros(nparts(state, :S), length(state.ongoing_transitions)) qs = map(t -> t.q, state.ongoing_transitions) get_reqs_ongoing!(reqs, qs, state) allocs = get_allocs!( reqs, u, state, map(t -> t[:transPriority], state.ongoing_transitions), state.solverargs[:strategy], ) qs .= get_frac_satisfied(allocs, reqs, state) push!( state.log, ( :saturation, state.t, [ (state.ongoing_transitions[i][:transHash], qs[i]) for i in eachindex(state.ongoing_transitions) ]..., ), ) u .-= sum(allocs; dims = 2) actual_allocs .+= sum(allocs; dims = 2) foreach( i -> state.ongoing_transitions[i].state += qs[i] * state.solverargs[:tstep], eachindex(state.ongoing_transitions), ) push!(state.log, (:allocation, state.t, actual_allocs)) return push!( state.log, ( :valuation_cost, state.t, actual_allocs' * [state[i, :specCost] for i = 1:nparts(state, :S)], ), ) end # execute callbacks function event_action!(state) for i = 1:nparts(state, :E) !isnothing(state[i, :eventTrigger]) && !isnothing(state[i, :eventAction]) || continue v = state[i, :eventTrigger] q = v isa Bool ? (v ? 1 : 0) : (v isa Number ? rand(Poisson(v)) : 0) for _ = 1:q state[i, :eventAction] end end end # collect terminated transitions function finish!(u, state) update_u!(state, u) val_reward = 0 terminated_all = Dict{Symbol,Float64}() terminated_success = Dict{Symbol,Float64}() ix = 1 while ix <= length(state.ongoing_transitions) trans_ = state.ongoing_transitions[ix] ((state.t - trans_.t) < trans_.trans[:transMaxLifeTime]) && trans_.state < trans_[:transCycleTime] && (ix += 1; continue) toks_rhs = [] for r in extract_reactants(trans_[:transRHS], state) i = find_index(r.species, state) push!( toks_rhs, UnfoldedReactant( i, r.species, context_eval(state, state.wrap_fun(r.stoich)), r.modality ∪ state[i, :specModality], ), ) end for tok in trans_[:transLHS] in(:conserved, tok.modality) && ( u[tok.index] += trans_.q * tok.stoich * (in(:rate, tok.modality) ? trans_[:transCycleTime] : 1) ) end q = if trans_.state >= trans_[:transCycleTime] rand(Distributions.Binomial(Int(trans_.q), trans_[:transProbOfSuccess])) else 0 end foreach( tok -> (u[tok.index] += q * tok.stoich; val_reward += state[tok.index, :specReward] * q * tok.stoich), toks_rhs, ) update_u!(state, u) context_eval(state, trans_.trans[:transPostAction]) terminated_all[trans_[:transHash]] = get(terminated_all, trans_[:transHash], 0) + trans_.q terminated_success[trans_[:transHash]] = get(terminated_success, trans_[:transHash], 0) + q ix += 1 end filter!(s -> s.state < s[:transCycleTime], state.ongoing_transitions) push!(state.log, (:terminated_all, state.t, terminated_all...)) push!(state.log, (:terminated_success, state.t, terminated_success...)) push!(state.log, (:valuation_reward, state.t, val_reward)) return u end function free_blocked_species!(state) for trans in state.ongoing_transitions, tok in trans[:transLHS] in(:nonblock, tok.modality) && (state.u[tok.index] += q * tok.stoich) end end """ Transform an `acs` to a `DiscreteProblem` instance, compatible with standard solvers. # Examples ```julia transform(DiscreteProblem, acs; schedule = schedule_weighted!) ``` """ function transform( ::Type{DiffEqBase.DiscreteProblem}, state::ReactiveDynamicsState; kwargs..., ) f = function (du, u, p, t) state = p[:__state__] free_blocked_species!(state) du .= state.u update_observables(state) sample_transitions!(state) evolve!(du, state) finish!(du, state) update_u!(state, du) event_action!(state) du .= state.u push!( state.log, (:valuation, t, du' * [state[i, :specValuation] for i = 1:nparts(state, :S)]), ) t = (state.t += state.solverargs[:tstep]) update_u!(state, du) save!(state) sync_p!(p, state) return du end return DiffEqBase.DiscreteProblem( f, state.u, (0.0, 2.0), Dict(state.p..., :__state__ => state, :__state0__ => deepcopy(state)); kwargs..., ) end ## resolve tspan, tstep function get_tcontrol(tspan, args) tspan isa Tuple && (tspan = tspan[2] - tspan[1]) tunit = get(args, :tunit, oneunit(tspan)) tspan = tspan / tunit tstep = get(args, :tstep, haskey(args, :tstops) ? tspan / args[:tstops] : tunit) / tunit return ((0.0, tspan), tstep) end """ Transform an `acs` to a `DiscreteProblem` instance, compatible with standard solvers. Optionally accepts initial values and parameters, which take precedence over specifications in `acs`. # Examples ```julia DiscreteProblem(acs, u0, p; tspan = (0.0, 100.0), schedule = schedule_weighted!) ``` """ function DiffEqBase.DiscreteProblem( acs::ReactionNetwork, u0 = Dict(), p = DiffEqBase.NullParameters(); kwargs..., ) assign_defaults!(acs) keywords = Dict{Symbol,Any}([ acs[i, :metaKeyword] => acs[i, :metaVal] for i = 1:nparts(acs, :M) if !isnothing(acs[i, :metaKeyword]) && !isnothing(acs[i, :metaVal]) ]) merge!(keywords, Dict(collect(kwargs))) merge!(keywords, Dict(:strategy => get(keywords, :alloc_strategy, :weighted))) keywords[:tspan], keywords[:tstep] = get_tcontrol(keywords[:tspan], keywords) acs = remove_choose(acs) attrs, transitions, wrap_fun = compile_attrs(acs) state = ReactiveDynamicsState( acs, attrs, transitions, wrap_fun, keywords[:tspan][1]; keywords..., ) init_u!(state) save!(state) prob = transform(DiffEqBase.DiscreteProblem, state; kwargs...) u0 isa Dict && foreach( i -> prob.u0[i] = if !isnothing(acs[i, :specName]) && haskey(u0, acs[i, :specName]) u0[acs[i, :specName]] else prob.u0[i] end, 1:nparts(state, :S), ) p_ = p == DiffEqBase.NullParameters() ? Dict() : Dict(k => v for (k, v) in p) prob = remake( prob; u0 = prob.u0, tspan = keywords[:tspan], dt = get(keywords, :tstep, 1), p = merge( prob.p, p_, Dict( :tstep => get(keywords, :tstep, 1), :strategy => get(keywords, :alloc_strategy, :weighted), ), ), ) return prob end function fetch_params(acs::ReactionNetwork) return Dict{Symbol,Any}(( acs[i, :prmName] => acs[i, :prmVal] for i in Iterators.filter(i -> !isnothing(acs[i, :prmVal]), 1:nparts(acs, :P)) )) end # EnsembleProblem's prob_func: sample initial values function get_prob_func(prob) vars = prob.p[:__state__][:, :specInitUncertainty] prob_func = function (prob, _, _) prob.p[:__state__] = deepcopy(prob.p[:__state0__]) for i in eachindex(prob.u0) rv = randn() * vars[i] prob.u0[i] = if (sign(rv + prob.u0[i]) == sign(prob.u0[i])) rv + prob.u0[i] else prob.u0[i] end end sync!(prob.p[:__state__], prob.u0, prob.p) return prob end return prob_func end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
8125
using DiffEqBase: NullParameters struct UnfoldedReactant index::Int species::Symbol stoich::ActionableValues modality::Set{Symbol} end """ Ongoing transition auxiliary structure. """ mutable struct Transition trans::Dict{Symbol,Any} t::Float64 q::Float64 state::Float64 end Base.getindex(state::Transition, key) = state.trans[key] mutable struct Observable last::Float64 # last sampling time range::Vector{Union{Tuple{Float64,SampleableValues},SampleableValues}} every::Float64 on::Vector{ActionableValues} sampled::Any end mutable struct ReactiveDynamicsState acs::ReactionNetwork attrs::Dict{Symbol,Vector} transition_recipes::Dict{Symbol,Vector} u::Vector{Float64} p::Any t::Float64 transitions::Dict{Symbol,Vector} ongoing_transitions::Vector{Transition} log::Vector{Tuple} observables::Dict{Symbol,Observable} solverargs::Any wrap_fun::Any history_u::Vector{Vector{Float64}} history_t::Vector{Float64} function ReactiveDynamicsState( acs::ReactionNetwork, attrs, transition_recipes, wrap_fun, t0 = 0; kwargs..., ) ongoing_transitions = Transition[] log = NamedTuple[] observables = compile_observables(acs) transitions_attrs = setdiff( filter(a -> contains(string(a), "trans"), propertynames(acs.subparts)), (:trans,), ) ∪ [:transLHS, :transRHS, :transToSpawn, :transHash] transitions = Dict{Symbol,Vector}(a => [] for a in transitions_attrs) return new( acs, attrs, transition_recipes, zeros(nparts(acs, :S)), fetch_params(acs), t0, transitions, ongoing_transitions, log, observables, kwargs, wrap_fun, Vector{Float64}[], Float64[], ) end end # get value of a numeric expression # evaluate compiled numeric expression in context of (u, p, t) function context_eval(state::ReactiveDynamicsState, o) o = o isa Function ? Base.invokelatest(o, state) : o return o isa Sampleable ? rand(o) : o end function Base.getindex(state::ReactiveDynamicsState, keys...) return context_eval( state, (contains(string(keys[2]), "trans") ? state.transitions : state.attrs)[keys[2]][keys[1]], ) end function init_u!(state::ReactiveDynamicsState) return (u = fill(0.0, nparts(state, :S)); foreach(i -> u[i] = state[i, :specInitVal], 1:nparts(state, :S)); state.u = u) end function save!(state::ReactiveDynamicsState) return (push!(state.history_u, state.u); push!(state.history_t, state.t)) end function compile_observables(acs::ReactionNetwork) observables = Dict{Symbol,Observable}() species_names = collect(acs[:, :specName]) prm_names = collect(acs[:, :prmName]) varmap = Dict([name => :(state.u[$i]) for (i, name) in enumerate(species_names)]) for (name, opts) in Iterators.zip(acs[:, :obsName], acs[:, :obsOpts]) on = map(on -> wrap_expr(on, species_names, prm_names, varmap), opts.on) range = map( r -> begin r = r isa Tuple ? r : (1.0, r) (r[1], wrap_expr(r[2], species_names, prm_names, varmap)) end, opts.range, ) push!(observables, name => Observable(-Inf, range, opts.every, on, missing)) end return observables end compileval(ex, state) = !isa(ex, Expr) ? ex : eval(state.wrap_fun(ex)) function sample_range(rng, state) isempty(rng) && return missing r = rand() * sum(r -> r isa Tuple ? eval(r[1]) : 1, rng) ix = 0 s = 0 while s <= r && (ix < length(rng)) ix += 1 s += rng[ix] isa Tuple ? compileval(rng[ix][1], state) : 1 end r = rng[ix] isa Tuple ? rng[ix][2] : rng[ix] return r isa Sampleable ? rand(r) : r end function resample!(state::ReactiveDynamicsState, o::Observable) o.last = state.t isempty(o.range) && (return o.val = missing) return o.sampled = context_eval(state, sample_range(o.range, state)) end resample(state::ReactiveDynamicsState, o::Symbol) = resample!(state, state.observables[o]) function update_observables(state::ReactiveDynamicsState) return foreach( o -> (state.t - o.last) >= o.every && resample!(state, o), values(state.observables), ) end function prune_r_line(r_line) return if r_line isa Expr && r_line.args[1] ∈ fwd_arrows r_line.args[2:3] elseif r_line isa Expr && r_line.args[1] ∈ bwd_arrows r_line.args[[3, 2]] elseif isexpr(r_line, :macrocall) && (macroname(r_line) == :choose) sample_range( [( if isexpr(r, :tuple) (r.args[1], prune_r_line(r.args[2])) else prune_r_line(r) end ) for r in r_line.args[3:end]], state, ) end end function find_index(species::Symbol, state::ReactiveDynamicsState) return findfirst(i -> state[i, :specName] == species, 1:nparts(state, :S)) end function sample_transitions!(state::ReactiveDynamicsState) for (_, v) in state.transitions empty!(v) end for i = 1:length(state.transition_recipes[:trans]) !(state.transition_recipes[:transActivated][i]) && continue l_line, r_line = prune_r_line(state.transition_recipes[:trans][i]) for attr in keys(state.transition_recipes) attr ∈ [:trans, :transPostAction, :transActivated, :transHash] && continue push!( state.transitions[attr], context_eval(state, state.transition_recipes[attr][i]), ) end reactants = [] for r in extract_reactants(l_line, state) j = find_index(r.species, state) push!( reactants, UnfoldedReactant( j, r.species, context_eval(state, state.wrap_fun(r.stoich)), r.modality ∪ state[j, :specModality], ), ) end push!(state.transitions[:transLHS], reactants) push!(state.transitions[:transRHS], r_line) foreach( k -> push!(state.transitions[k], state.transition_recipes[k][i]), [:transPostAction, :transToSpawn, :transHash], ) state.transition_recipes[:transToSpawn] .= 0 end end ## sync update_u!(state::ReactiveDynamicsState, u) = (state.u .= u) update_t!(state::ReactiveDynamicsState, t) = (state.t = t) sync_p!(p, state::ReactiveDynamicsState) = merge!(p, state.p) function sync!(state::ReactiveDynamicsState, u, p) state.u .= u for k in keys(state.p) haskey(p, k) && (state.p[k] = p[k]) end end function as_state(u, t, state::ReactiveDynamicsState) return (state = deepcopy(state); state.u .= u; state.t = t; state) end function Catlab.CategoricalAlgebra.nparts(state::ReactiveDynamicsState, obj::Symbol) return obj == :T ? length(state.transitions[:transLHS]) : nparts(state.acs, obj) end ## query the state t(state::ReactiveDynamicsState) = state.t solverarg(state::ReactiveDynamicsState, arg) = state.solverargs[arg] take(state::ReactiveDynamicsState, pcs::Symbol) = state.observables[pcs].sampled log(state::ReactiveDynamicsState, msg) = (println(msg); push!(state.log, (:log, msg))) state(state::ReactiveDynamicsState) = state function periodic(state::ReactiveDynamicsState, period) return period == 0.0 || ( length(state.history_t) > 1 && (fld(state.t, period) - fld(state.history_t[end-1], period) > 0) ) end set_params(state::ReactiveDynamicsState, vals...) = for (p, v) in vals state.p[p] = v end function add_to_spawn!(state::ReactiveDynamicsState, hash, n) ix = findfirst(ix -> state.transition_recipes[:transHash][ix] == hash) return !isnothing(ix) && (state.transition_recipes[:transHash][ix] += n) end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
9044
# reaction network DSL: CREATE part; reaction line and event parsing export @ReactionNetwork using MacroTools: prewalk, postwalk, striplines, isexpr using Symbolics: build_function, get_variables empty_set = Set{Symbol}([:∅]) fwd_arrows = Set{Symbol}([:>, :→, :↣, :↦, :⇾, :⟶, :⟼, :⥟, :⥟, :⇀, :⇁, :⇒, :⟾]) bwd_arrows = Set{Symbol}([:<, :←, :↢, :↤, :⇽, :⟵, :⟻, :⥚, :⥞, :↼, :↽, :⇐, :⟽, Symbol("<--")]) double_arrows = Set{Symbol}([:↔, :⟷, :⇄, :⇆, :⇌, :⇋, :⇔, :⟺, Symbol("<-->")]) arrows = fwd_arrows ∪ bwd_arrows ∪ double_arrows ∪ [:-->] ifs = [:&&, :if] reserved_sampling_macros = [:register, :sample, :take] struct Reactant species::Symbol stoich::SampleableValues modality::Set{Symbol} end struct FoldedReactionStruct rate::SampleableValues reaction::SampleableValues end struct Event trigger::SampleableValues action::SampleableValues end # Declares symbols which may neither be used as parameters not varriables. forbidden_symbols = [:t, :π, :pi, :ℯ, :im, :nothing, :∅] """ Macro that takes an expression corresponding to a reaction network and outputs an instance of `TheoryReactionNetwork` that can be converted to a `DiscreteProblem` or solved directly. Most arrows accepted (both right, left, and bi-drectional arrows). Use 0 or ∅ for annihilation/creation to/from nothing. Custom functions and sampleable objects can be used as numeric parameters. Note that these have to be accessible from ReactiveDynamics's source code. # Examples ```julia acs = @ReactionNetwork begin 1.0, X ⟶ Y 1.0, X ⟶ Y, priority => 6.0, prob => 0.7, capacity => 3.0 1.0, ∅ --> (Poisson(0.3γ)X, Poisson(0.5)Y) (XY > 100) && (XY -= 1) end @push acs 1.0 X ⟶ Y @prob_init acs X = 1 Y = 2 XY = α @prob_params acs γ = 1 α = 4 @solve_and_plot acs ``` """ macro ReactionNetwork end macro ReactionNetwork() return make_ReactionNetwork(:()) end macro ReactionNetwork(ex) return make_ReactionNetwork(ex; eval_module = __module__) end macro ReactionNetwork(ex, args...) return make_ReactionNetwork( generate(Expr(:braces, ex, args...); eval_module = __module__); eval_module = __module__, ) end function make_ReactionNetwork(ex::Expr; eval_module = @__MODULE__) blockex = generate(ex; eval_module) blockex = unblock_shallow!(blockex) return :(ReactionNetwork(get_data($(QuoteNode(blockex)))...)) end ### Functions that process the input and rephrase it as a reaction system ### function esc_dollars!(ex) if ex isa Expr if ex.head == :$ return esc(:($(ex.args[1]))) else for i = 1:length(ex.args) ex.args[i] = esc_dollars!(ex.args[i]) end end end return ex end symbolize(pairex) = pairex isa Number ? pairex : (pairex.args[2] => pairex.args[3]) function get_data(ex) trans = [] evs = [] reactants = [] pcs = [] if isexpr(ex, :block) ex = striplines(ex) esc_dollars!(ex) foreach( l -> get_data!(trans, reactants, pcs, evs, isexpr(l, :tuple) ? l.args : [l]), ex.args, ) elseif ex != :() get_data!(trans, reactants, pcs, evs, ex) end return trans, reactants, pcs, evs end function get_data!(trans, reactants, pcs, evs, exs) length(exs) == 0 && return if exs[1] isa Expr && (exs[1].head ∈ ifs) get_events!(evs, normalize_pcs!(pcs, exs[1])) else get_transitions!(trans, reactants, pcs, exs) end end get_events!(evs, ex) = if ex.head == :&& push!(evs, Event(ex.args...)) else recursively_expand_actions!(evs, Expr(:call, :&), ex) end function recursively_expand_actions!(evs, condex, event) if isexpr(event, :if) condex_ = deepcopy(condex) push!(condex_.args, event.args[1]) push!(evs, Event(condex_, event.args[2])) push!(condex.args, Expr(:call, :!, event.args[1])) length(event.args) >= 3 && recursively_expand_actions!(evs, condex, event.args[3]) else push!(evs, Event(condex, event)) end end function expand_rate(rate) rate = if !(isexpr(rate, :macrocall) && (macroname(rate) == :per_step)) :(rand(Poisson(max($rate, 0)))) else rate.args[3] end postwalk(rate) do ex if (isexpr(ex, :macrocall) && (macroname(ex) ∈ prettynames[:transCycleTime])) :(1 / $(ex.args[3])) else ex end end end function get_transitions!(trans, reactants, pcs, exs) args = empty(defargs[:T]) (rate, r_line) = exs[1:2] rxs = prune_reaction_line!(pcs, reactants, r_line) rate = expand_rate(rate) rxs = rxs isa Tuple ? tuple.(fill(rate, length(rxs)), rxs) : ((rate, rxs),) exs = exs[3:end] empty!(args) ix = 1 while ix <= length(exs) (!isa(exs[ix], Expr) || (exs[ix].head != :call)) && (ix += 1; continue) karg = (xi = findfirst(k -> exs[ix].args[2] ∈ k, prettynames); isnothing(xi) && (ix += 1; continue); xi) push!(args, karg => normalize_pcs!(pcs, exs[ix].args[3])) deleteat!(exs, ix) end args = merge(defargs[:T], args) append!(trans, tuple.(rxs, Ref(args))) return trans end function replace_in_expr(expr, pairs...) dict = Dict(pairs...) return prewalk(ex -> haskey(dict, ex) ? dict[ex] : ex, expr) end function normalize_pcs!(pcs, expr) postwalk(expr) do ex isexpr(ex, :macrocall) && macroname(ex) == :register && (push!(pcs, deepcopy(ex)); ex.args[1] = Symbol("@", :take); ex.args = ex.args[1:3]) if isexpr(ex, :macrocall) && macroname(ex) == :register r_sym = gensym() (push!(pcs, (ex_ = deepcopy(ex); insert!(ex_.args, 3, r_sym); ex_)); ex.args[1] = Symbol("@", :take); ex.args = [ r_sym ex.args[1:2] ]) end return ex end end function get_reaction_line(expr) biarrow = nothing prewalk(ex --> (ex ∈ double_arrows && (biarrow = ex); ex), expr) return if !isnothing(biarrow) [expr] else [replace_in_expr(expr, biarrow => :⟶), replace_in_expr(expr, biarrow => :⟵)] end end function prune_reaction_line!(pcs, reactants, line) line isa Expr && (line.head == :-->) && (line = Expr(:call, :→, line.args[1], line.args[2])) if isexpr(line, :macrocall) lines = copy(line.args[3:end]) line.args = line.args[1:2] for l in lines biarrow = nothing prewalk(ex -> (ex ∈ double_arrows && (biarrow = ex); ex), l) append!( line.args, if isnothing(biarrow) [l] else [replace_in_expr(l, biarrow => :⟶), replace_in_expr(l, biarrow => :⟵)] end, ) end for i = 3:length(line.args) line.args[i] = if isexpr(line.args[i], :tuple) Expr( :tuple, line.args[i].args[1], prune_reaction_line!(pcs, reactants, line.args[i].args[2]), ) else prune_reaction_line!(pcs, reactants, line.args[i]) end end elseif line isa Expr && line.args[1] ∈ union(fwd_arrows, bwd_arrows) line.args[2:3] = recursively_find_reactants!.(Ref(reactants), Ref(pcs), line.args[2:3]) elseif line isa Expr && line.args[1] ∈ double_arrows biarrow = nothing prewalk(ex -> (ex ∈ double_arrows && (biarrow = ex); ex), line) line = prune_reaction_line!.( Ref(pcs), Ref(reactants), ( replace_in_expr(line, biarrow => :⟶), replace_in_expr(line, biarrow => :⟵), ), ) end return line end function recursively_find_reactants!(reactants, pcs, ex::SampleableValues) if typeof(ex) != Expr || isexpr(ex, :.) || (ex.head == :escape) if (ex == 0 || in(ex, empty_set)) return :∅ else push!(reactants, recursively_expand_dots(ex)) end elseif ex.args[1] == :* recursively_find_reactants!(reactants, pcs, ex.args[end]) foreach(i -> ex.args[i] = normalize_pcs!(pcs, ex.args[i]), 2:(length(ex.args)-1)) elseif ex.args[1] == :+ for i = 2:length(ex.args) recursively_find_reactants!(reactants, pcs, ex.args[i]) end elseif isexpr(ex, :macrocall) && macroname(ex) == :choose for i = 3:length(ex.args) recursively_find_reactants!( reactants, pcs, isexpr(ex.args[i], :tuple) ? ex.args[i].args[2] : ex.args[i], ) end elseif isexpr(ex, :macrocall) recursively_find_reactants!(reactants, pcs, ex.args[3]) else push!(reactants, underscorize(ex)) end return ex end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
1490
# parts of the code were taken from Catalyst.jl and adapted recursively_expand_dots(ex) = underscorize(ex) # Returns the length of a expression tuple, or 1 if it is not an expression tuple (probably a Symbol/Numerical). function tup_leng(ex::SampleableValues) (typeof(ex) == Expr && ex.head == :tuple) && (return length(ex.args)) return 1 end #Gets the ith element in a expression tuple, or returns the input itself if it is not an expression tuple (probably a Symbol/Numerical). function get_tup_arg(ex::SampleableValues, i::Int) (tup_leng(ex) == 1) && (return ex) return ex.args[i] end function multiplex(mult, mults...) all(m -> isa(m, Number), [mult] ∪ mults) && return mult * prod(mults; init = 1.0) multarray = SampleableValues[] recursively_find_mults!(multarray, mults...) mults_numeric = prod(filter(m -> isa(m, Number), multarray); init = 1.0) * (mult isa Number ? mult : 1.0) mults_expr = filter(m -> !isa(m, Number), multarray) mult = mult isa Expr ? deepcopy(mult) : :(*()) mults_numeric == 1 && length(mults_expr) == 1 && return mults_expr[1] mults_numeric != 1.0 && push!(mult.args, mults_numeric) append!(mult.args, mults_expr) return mult end function recursively_find_mults!(multarray, mults...) for m in mults if isa(m, Expr) && m.args[1] == :* recursively_find_mults!(multarray, m.args[2:end]...) else push!(multarray, m) end end end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
2240
# parts of the code were taken from Catalyst.jl and adapted using MacroTools: postwalk struct FoldedReactant species::Symbol stoich::SampleableValues modality::Set{Symbol} end function recursively_choose(r_line, state) postwalk(r_line) do ex if isexpr(ex, :macrocall) && (macroname(ex) == :choose) sample_range( [ ( if isexpr(r, :tuple) (r.args[1], recursively_choose(r.args[2], state)) else recursively_choose(r, state) end ) for r in ex.args[3:end] ], state, ) else ex end end end function extract_reactants(r_line, state::ReactiveDynamicsState) r_line = recursively_choose(r_line, state) return recursive_find_reactants!( escape_ref(r_line, state[:, :specName]), 1.0, Set{Symbol}(), Vector{FoldedReactant}(undef, 0), ) end function recursive_find_reactants!( ex::SampleableValues, mult::SampleableValues, mods::Set{Symbol}, reactants::Vector{FoldedReactant}, ) if typeof(ex) != Expr || isexpr(ex, :.) || (ex.head == :escape) if (ex == 0 || in(ex, empty_set)) return reactants else push!(reactants, FoldedReactant(recursively_expand_dots(ex), mult, mods)) end elseif ex.args[1] == :* recursive_find_reactants!( ex.args[end], multiplex(mult, ex.args[2:(end-1)]...), mods, reactants, ) elseif ex.args[1] == :+ for i = 2:length(ex.args) recursive_find_reactants!(ex.args[i], mult, mods, reactants) end elseif ex.head == :macrocall mods = copy(mods) macroname(ex) in species_modalities && push!(mods, macroname(ex)) foreach( i -> push!(mods, ex.args[i] isa Symbol ? ex.args[i] : ex.args[i].value), 4:length(ex.args), ) recursive_find_reactants!(ex.args[3], mult, mods, reactants) else @error("malformed reaction") end return reactants end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
14890
export @problematize, @solve, @plot export @optimize, @fit, @fit_and_plot, @build_solver using DifferentialEquations: DiscreteProblem, EnsembleProblem, FunctionMap, EnsembleSolution import MacroTools import Plots """ Convert a model to a `DiscreteProblem`. If passed a problem instance, return the instance. # Examples ```julia @problematize acs tspan = 1:100 ``` """ macro problematize(acsex, args...) args, kwargs = args_kwargs(args) quote if $(esc(acsex)) isa DiscreteProblem $(esc(acsex)) else DiscreteProblem($(esc(acsex)), $(args...); $(kwargs...)) end end end """ Solve the problem. Solverargs passed at the calltime take precedence. # Examples ```julia @solve prob @solve prob tspan = 1:100 @solve prob tspan = 100 trajectories = 20 ``` """ macro solve(probex, args...) args, kwargs = args_kwargs(args) mode = find_kwargex_delete!(kwargs, :mode, nothing) !isnothing(findfirst(el -> el.args[1] == :trajectories, kwargs)) && (mode = :ensemble) quote prob = if $(esc(probex)) isa DiscreteProblem $(esc(probex)) else DiscreteProblem($(esc(probex)), $(args...); $(kwargs...)) end if $(preserve_sym(mode)) == :ensemble solve( EnsembleProblem(prob; prob_func = get_prob_func(prob)), FunctionMap(), $(kwargs...), ) else solve(prob) end end end # auxiliary plotting functions function plot_summary(s, labels, ixs; kwargs...) isempty(ixs) && return @warn "Set of species to plot must be non-empty!" s = EnsembleSummary(s) f_ix = first(ixs) p = Plots.plot( s.t, s.u[f_ix, :]; ribbon = (-s.qlow[f_ix, :] + s.u[f_ix, :], s.qhigh[f_ix, :] - s.u[f_ix, :]), label = labels[f_ix], fillalpha = 0.2, w = 2.0, kwargs..., ) foreach( i -> Plots.plot!( p, s.t, s.u[i, :]; ribbon = (-s.qlow[i, :] + s.u[i, :], s.qhigh[i, :] - s.u[i, :]), label = labels[i], fillalpha = 0.2, w = 2.0, kwargs..., ), ixs[2:end], ) return p end function plot_ensemble_sol(sol, label, ixs; kwargs...) return if !(sol isa EnsembleSolution) Plots.plot(sol; idxs = ixs, label = reshape(label[ixs], 1, :), kwargs...) else Plots.plot(sol; idxs = ixs, alpha = 0.7, kwargs...) end end first_sol(sol) = sol isa EnsembleSolution ? first(sol) : sol function match_names(selector, names) if isnothing(selector) 1:length(names) else selector = selector isa Union{AbstractString,Regex,Symbol} ? [selector] : selector ixs = Int[] for s in selector s isa Symbol && (s = string(s)) append!( ixs, findall( name -> s isa Regex ? occursin(s, name) : (string(s) == string(name)), names, ), ) end unique!(ixs) end end """ Plot the solution (summary). # Examples ```julia @plot sol plot_type = summary @plot sol plot_type = allocation # not supported for ensemble solutions! @plot sol plot_type = valuations # not supported for ensemble solutions! @plot sol plot_type = new_transitions # not supported for ensemble solutions! ``` """ macro plot(solex, args...) _, kwargs = args_kwargs(args) plot = find_kwargex_delete!(kwargs, :plot_type, nothing) selector = find_kwargex_delete!(kwargs, :show, nothing) quote plot_type = $(preserve_sym(plot)) sol = $(esc(solex)) if plot_type ∈ [nothing, :ensemble] names = string.(first_sol(sol).prob.p[:__state__][:, :specName]) plot_ensemble_sol(sol, names, match_names($selector, names); $(kwargs...)) elseif plot_type == :summary names = string.(first_sol(sol).prob.p[:__state__][:, :specName])[:] plot_summary(sol, names, match_names($selector, names); $(kwargs...)) else names = string.(sol.prob.p[:__state__][:, :specName]) plot_from_log( sol.prob.p[:__state__], plot_type, match_names($selector, names); $(kwargs...), ) end end end function get_transitions(log) transitions = Symbol[] for r in log r[1] ∈ [:new_transitions, :saturation] && union!(transitions, map(r -> r[1], r[3:end])) end return transitions end function complete_log_transitions(log, hashes, record_type) pos = Dict(hashes[ix] => ix for ix in eachindex(hashes)) steps = unique(map(r -> r[2], log)) vals = zeros(length(steps), length(hashes)) ix = 1 for r in log if r[1] == record_type for (hash, val) in r[3:end] vals[ix, pos[hash]] = val end ix += 1 end end return vals, steps end function complete_log_species(log, n_species, record_type) steps = unique(map(r -> r[2], log)) vals = zeros(length(steps), n_species) ix = 1 for r in log if r[1] == record_type vals[ix, :] .= r[3] ix += 1 end end return vals, steps end function complete_log_valuations(log) steps = unique(map(r -> r[2], log)) vals = zeros(length(steps), 4) ix = 0 time_last = -Inf for r in log r[2] > time_last && (time_last = r[2]; ix += 1) if r[1] == :valuation vals[ix, 1] = r[3] elseif r[1] == :valuation_cost vals[ix, 2] = r[3] elseif r[1] == :valuation_reward vals[ix, 3] = r[3] end end return vals, steps end function get_names(state, hashes) names = String[] for hash in hashes ix = findfirst(==(hash), state[:, :transHash]) push!(names, if assigned(state.transition_recipes[:transName], ix) string(state[ix, :transName]) else "transition $ix" end) end return names end function plot_from_log(state, record_type, ixs; kwargs...) if record_type ∈ [:new_transitions, :terminated_transitions, :saturation] hashes = get_transitions(state.log) label = get_names(state, hashes) vals, steps = complete_log_transitions(state.log, hashes, record_type) elseif record_type ∈ [:allocation] label = string.(state[:, :specName]) vals, steps = complete_log_species(state.log, length(label), record_type) vals = vals[:, ixs] label = label[ixs] elseif record_type ∈ [:valuations] label = ["portfolio valuation", "costs", "rewards", "total balance"] vals, steps = complete_log_valuations(state.log) end return Plots.plot( steps, vals; title = string(record_type), label = reshape(label, 1, :), kwargs..., ) end """ @optimize acset objective <free_var=[init_val]>... <free_prm=[init_val]>... opts... Take an acset and optimize given functional. Objective is an expression which may reference the model's variables and parameters, i.e., `A+β`. The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the `NLopt` solver has the form `[free_vars; free_params]`; order of vars and params, respectively, is preserved. By default, the functional is minimized. Specify `objective=max` to perform maximization. Propagates `NLopt` solver arguments; see [NLopt documentation](https://github.com/JuliaOpt/NLopt.jl). # Examples ```julia @optimize acs abs(A - B) A B = 20.0 α = 2.0 lower_bounds = 0 upper_bounds = 100 @optimize acss abs(A - B) A B = 20.0 α = 2.0 upper_bounds = [200, 300, 400] maxeval = 200 objective = min ``` """ macro optimize(acsex, obex, args...) args_all = args args, kwargs = args_kwargs(args) min_t = find_kwargex_delete!(kwargs, :min_t, -Inf) max_t = find_kwargex_delete!(kwargs, :max_t, Inf) final_only = find_kwargex_delete!(kwargs, :final_only, false) okwargs = filter(ex -> ex.args[1] in [:loss, :trajectories], kwargs) quote u0, p = get_free_vars($(esc(acsex)), $(QuoteNode(args_all))) prob_ = DiscreteProblem($(esc(acsex))) prep_u0!(u0, prob_) prep_params!(p, prob_) init_p = [k => v for (k, v) in p] init_vec = if length(u0) > 0 ComponentVector{Float64}(; species = collect(wvalues(u0)), init_p...) else ComponentVector{Float64}(; init_p...) end o = build_loss_objective( $(esc(acsex)), init_vec, u0, p, $(QuoteNode(obex)); min_t = $min_t, max_t = $max_t, final_only = $final_only, $(okwargs...), ) optim!(o, init_vec; $(kwargs...)) end end """ @fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts... Take an acset and fit initial values and parameters to empirical data. The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the `NLopt` solver has the form `[free_vars; free_params]`; order of vars and params, respectively, is preserved. Propagates `NLopt` solver arguments; see [NLopt documentation](https://github.com/JuliaOpt/NLopt.jl). # Examples ```julia t = [1, 50, 100] data = [80 30 20] @fit acs data t vars = A B = 20 A α # fit B, A, α; empirical data is for variable A ``` """ macro fit(acsex, data, t, args...) args_all = args args, kwargs = args_kwargs(args) okwargs = filter(ex -> ex.args[1] in [:loss, :trajectories], kwargs) vars = (ix = findfirst(ex -> ex.args[1] == :vars, kwargs); !isnothing(ix) ? (v = kwargs[ix].args[2]; deleteat!(kwargs, ix); v) : :()) quote u0, p = get_free_vars($(esc(acsex)), $(QuoteNode(args_all))) vars = get_vars($(esc(acsex)), $(QuoteNode(vars))) prob_ = DiscreteProblem($(esc(acsex))) prep_u0!(u0, prob_) prep_params!(p, prob_) init_p = [k => v for (k, v) in p] init_vec = if length(u0) > 0 ComponentVector{Float64}(; species = collect(wvalues(u0)), init_p...) else ComponentVector{Float64}(; init_p...) end o = build_loss_objective_datapoints( $(esc(acsex)), init_vec, u0, p, $(esc(t)), $(esc(data)), vars; $(okwargs...), ) optim!(o, init_vec; $(kwargs...)) end end """ @fit acset data_points time_steps empiric_variables <free_var=[init_val]>... <free_prm=[init_val]>... opts... Take an acset, fit initial values and parameters to empirical data, and plot the result. The values to optimized are listed using their symbolic names; unless specified, the initial value is inferred from the model. The vector of free variables passed to the `NLopt` solver has the form `[free_vars; free_params]`; order of vars and params, respectively, is preserved. Propagates `NLopt` solver arguments; see [NLopt documentation](https://github.com/JuliaOpt/NLopt.jl). # Examples ```julia t = [1, 50, 100] data = [80 30 20] @fit acs data t vars = A B = 20 A α # fit B, A, α; empirical data is for variable A ``` """ macro fit_and_plot(acsex, data, t, args...) args_all = args trajectories = get_kwarg(args, :trajectories, 1) args, kwargs = args_kwargs(args) okwargs = filter(ex -> ex.args[1] in [:loss, :trajectories], kwargs) vars = (ix = findfirst(ex -> ex.args[1] == :vars, kwargs); !isnothing(ix) ? (v = kwargs[ix].args[2]; deleteat!(kwargs, ix); v) : :()) quote u0, p = get_free_vars($(esc(acsex)), $(QuoteNode(args_all))) vars = get_vars($(esc(acsex)), $(QuoteNode(vars))) prob_ = DiscreteProblem($(esc(acsex)); suppress_warning = true) prep_u0!(u0, prob_) prep_params!(p, prob_) init_p = [k => v for (k, v) in p] init_vec = if length(u0) > 0 ComponentVector{Float64}(; species = collect(wvalues(u0)), init_p...) else ComponentVector{Float64}(; init_p...) end o = build_loss_objective_datapoints( $(esc(acsex)), init_vec, u0, p, $(esc(t)), $(esc(data)), vars; $(okwargs...), ) r = optim!(o, init_vec; $(kwargs...)) if r[3] != :FORCED_STOP s_ = build_parametrized_solver( $(esc(acsex)), init_vec, u0, p; trajectories = $trajectories, ) sol = first(s_(init_vec)) sol_ = first(s_(r[2])) p = Plots.plot( sol; idxs = vars, label = "(initial) " .* reshape(String.($(esc(acsex))[:, :specName])[vars], 1, :), ) Plots.plot!( p, $(esc(t)), transpose($(esc(data))); label = "(empirical) " .* reshape(String.($(esc(acsex))[:, :specName])[vars], 1, :), ) Plots.plot!( p, sol_; idxs = vars, label = "(fitted) " .* reshape(String.($(esc(acsex))[:, :specName])[vars], 1, :), ) p else :FORCED_STOP end end end """ @build_solver acset <free_var=[init_val]>... <free_prm=[init_val]>... opts... Take an acset and export a solution as a function of free vars and free parameters. # Examples ```julia solver = @build_solver acs S α β # function of variable S and parameters α, β solver([S, α, β]) ``` """ macro build_solver(acsex, args...) args_all = args#; args, kwargs = args_kwargs(args) trajectories = get_kwarg(args, :trajectories, 1) quote u0, p = get_free_vars($(esc(acsex)), $(QuoteNode(args_all))) prob_ = DiscreteProblem($(esc(acsex))) prep_u0!(u0, prob_) prep_params!(p, prob_) init_p = [k => v for (k, v) in p] init_vec = if length(u0) > 0 ComponentVector{Float64}(; species = collect(wvalues(u0)), init_p...) else ComponentVector{Float64}(; init_p...) end build_parametrized_solver_( $(esc(acsex)), init_vec, u0, p; trajectories = $trajectories, ) end end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
12353
# reaction network DSL: UPDATE part; add species, name, add modalities, set model variables, set solver arguments export @push, @name_transition, @mode, @add_species export @periodic, @jump export @prob_init, @prob_uncertainty, @prob_params, @prob_meta export @prob_role, @list_by_role, @list_roles export @prob_check_verbose export @aka export @register using DataFrames using MacroTools: striplines function push_to_acs!(acsex, exs...) if isexpr(exs[1], :block) ex = striplines(exs[1]) else args = Any[] map(el -> if isexpr(el, :(=)) push!(args, :($(el.args[1]) => $(el.args[2]))) else push!(args, el) end, exs) ex = Expr(:tuple, args...) end quote ex = blockize($(QuoteNode(ex))) merge_acs!($(esc(acsex)), get_data(ex)...) end end """ Add reactions to an acset. # Examples ```julia @push sir_acs β * S * I * tdecay(@time()) S + I --> 2I name => SI2I @push sir_acs begin ν * I, I --> R, name => I2R γ, R --> S, name => R2S end ``` """ macro push(acsex, exs...) return push_to_acs!(acsex, exs...) end """ Set name of a transition in the model. # Examples ```julia @name_transition acs 1 = "name" @name_transition acs name = "transition_name" @name_transition acs "name" = "transition_name" ``` """ macro name_transition(acsex, exs...) call = :( begin end ) for ex in exs call_ = if ex.args[1] isa Number :($(esc(acsex))[$(ex.args[1]), :transName] = $(QuoteNode(ex.args[2]))) else quote acs = $(esc(acsex)) ixs = findall( i -> string(acs[i, :transName]) == $(string(ex.args[1])), 1:nparts(acs, :T), ) foreach(i -> acs[i, :transName] = $(string(ex.args[2])), ixs) end end push!(call.args, call_) end return call end function incident_pattern(pattern, attr) ix = [] for i = 1:length(attr) !isnothing(attr[i]) && (m = match(pattern, string(attr[i])); !isnothing(m) && (string(attr[i]) == m.match)) && push!(ix, i) end return ix end function mode!(acs, dict) for (spex, mods) in dict i = if spex isa Regex incident_pattern(spex, acs[:, :specName]) else incident(acs, Symbol(spex), :specName) end for ix in i isnothing(acs[ix, specModality]) && (acs[ix, specModality] = Set{Symbol}()) union!(acs[ix, :specModality], mods) end end end """ Set species modality. # Supported modalities - nonblock - conserved - rate # Examples ```julia @mode acs (r"proj\\w+", r"experimental\\w+") conserved @mode acs (S, I) conserved @mode acs S conserved ``` """ macro mode(acsex, spexs, mexs) mods = !isa(mexs, Expr) ? [mexs] : collect(mexs.args) spexs = isexpr(spexs, :tuple) ? spexs.args : [spexs] exs = map(ex -> striplines(ex), spexs) quote dictcall = Dict() exs_ = [] foreach(s -> push!(exs_, striplines(blockize(s))), $(QuoteNode(exs))) exs__ = [] foreach(s -> foreach(s -> push!(exs__, s), s.args), exs_) foreach( ex -> push!(dictcall, get_pattern(recursively_expand_dots(ex)) => $mods), exs__, ) mode!($(esc(acsex)), dictcall) end end function set_valuation!(acs, dict, valuation_type) for (spex, val) in dict i = if spex isa Regex incident_pattern(spex, subpart(acs, :specName)) else incident(acs, Symbol(spex), :specName) end foreach( ix -> acs[ix, Symbol(:spec, Symbol(uppercasefirst(string(valuation_type))))] = eval(val), i, ) end end export @cost, @reward, @valuation for valuation_type in (:cost, :reward, :valuation) eval( quote export $(Symbol(Symbol("@"), valuation_type)) @doc """ Set $($(string(valuation_type))). # Examples ```julia @$($(string(valuation_type))) model experimental1=2 experimental2=3 ``` """ macro $valuation_type(acsex, exs...) dictcall = Dict() exs_ = [] foreach(s -> push!(exs_, striplines(blockize(s))), exs) exs__ = [] foreach(s -> foreach(s -> push!(exs__, s), s.args), exs_) foreach( ex -> push!( dictcall, get_pattern(recursively_expand_dots(ex.args[1])) => ex.args[2], ), exs__, ) return :(set_valuation!( $(esc(acsex)), $dictcall, $(QuoteNode($(QuoteNode(valuation_type)))), )) end end, ) end """ Add new species to a model. # Examples ```julia @add_species acs S I R ``` """ macro add_species(acsex, exs...) call = :( begin end ) spexs_ = [] foreach(s -> push!(spexs_, s), exs) for ex in recursively_expand_dots.(spexs_) push!(call.args, :(add_part!($(esc(acsex)), :S; specName = $(QuoteNode(ex))))) end push!(call.args, :(assign_defaults!($(esc(acsex))))) return call end get_pattern(ex) = ex isa Expr && (macroname(ex) == :r_str) ? eval(ex) : ex """ Set initial values of species in an acset. # Examples ```julia @prob_init acs X = 1 Y = 2 Z = h(α) @prob_init acs [1.0, 2.0, 3.0] ``` """ macro prob_init(acsex, exs...) exs = map(ex -> striplines(ex), exs) return if length(exs) == 1 && (isexpr(exs[1], :vect) || (exs[1] isa Symbol)) :(init!($(esc(acsex)), $(esc(exs[1])))) else quote dictcall = Dict() exs_ = [] foreach(s -> push!(exs_, striplines(blockize(s))), $(QuoteNode(exs))) exs__ = [] foreach(s -> foreach(s -> push!(exs__, s), s.args), exs_) foreach( ex -> push!( dictcall, get_pattern(recursively_expand_dots(ex.args[1])) => ex.args[2], ), exs__, ) init!($(esc(acsex)), dictcall) end end end # deprecate macro prob_init_from_vec(acsex, vecex) return :(init!($(esc(acsex)), $(esc(vecex)))) end function init!(acs, inits) inits isa AbstractVector && length(inits) == nparts(acs, :S) && (subpart(acs, :specInitVal) .= inits; return) inits isa AbstractDict && for (k, init_val) in inits if k isa Number acs[k, :specInitVal] = init_val else begin i = if k isa Regex incident_pattern(k, subpart(acs, :specName)) else incident(acs, k, :specName) end foreach(ix -> (acs[ix, :specInitVal] = init_val), i) end end end return acs end """ Set uncertainty in initial values of species in an acset (stderr). # Examples ```julia @prob_uncertainty acs X = 0.1 Y = 0.2 @prob_uncertainty acs [0.1, 0.2] ``` """ macro prob_uncertainty(acsex, exs...) exs = map(ex -> striplines(ex), exs) return if length(exs) == 1 && (isexpr(exs[1], :vect) || (exs[1] isa Symbol)) :(uncinit!($(esc(acsex)), $(esc(exs[1])))) else quote dictcall = Dict() exs_ = [] foreach(s -> push!(exs_, striplines(blockize(s))), $(QuoteNode(exs))) exs__ = [] foreach(s -> foreach(s -> push!(exs__, s), s.args), exs_) foreach( ex -> push!( dictcall, get_pattern(recursively_expand_dots(ex.args[1])) => ex.args[2], ), exs__, ) uncinit!($(esc(acsex)), dictcall) end end end function uncinit!(acs, inits) inits isa AbstractVector && length(inits) == nparts(acs, :S) && (subpart(acs, :specInitUncertainty) .= inits; return) inits isa AbstractDict && for (k, init_val) in inits if k isa Number acs[k, :specInitUncertainty] = init_val else begin i = if k isa Regex incident_pattern(k, subpart(acs, :specName)) else incident(acs, k, :specName) end foreach(ix -> (acs[ix, :specInitUncertainty] = init_val), i) end end end return acs end function set_params!(acs, params) return params isa AbstractDict && for (k, init_val) in params k = get_pattern(k) if k isa Regex i = incident_pattern(k, subpart(acs, :prmName)) else i = incident(acs, k, :prmName) isempty(i) && (i = add_part!(acs, :P; prmName = k)) end foreach(ix -> acs[ix, :prmVal] = eval(init_val), i) end end """ Set parameter values in an acset. # Examples ```julia @prob_params acs α = 1.0 β = 2.0 ``` """ macro prob_params(acsex, exs...) exs = map(ex -> striplines(ex), exs) quote dictcall = Dict() exs_ = [] foreach(s -> push!(exs_, striplines(blockize(s))), $(QuoteNode(exs))) exs__ = [] foreach(s -> foreach(s -> push!(exs__, s), s.args), exs_) foreach( ex -> push!( dictcall, get_pattern(recursively_expand_dots(ex.args[1])) => ex.args[2], ), exs__, ) set_params!($(esc(acsex)), dictcall) end end meta!(acs, metas) = for (k, metaval) in metas i = incident(acs, k, :metaKeyword) isempty(i) && (i = add_part!(acs, :M; metaKeyword = k)) set_subpart!(acs, first(i), :metaVal, metaval) end """ Set model metadata (e.g. solver arguments) # Examples ```julia @prob_meta acs tspan = (0, 100.0) schedule = schedule_weighted! @prob_meta sir_acs tspan = 250 tstep = 1 ``` """ macro prob_meta(acsex, exs...) dictcall = :(Dict([])) foreach(ex -> push!(dictcall.args[2].args, (ex.args[1] => eval(ex.args[2]))), exs) return :(meta!($(esc(acsex)), $dictcall)) end """ Alias object name in an acs. # Default names | name | short name | |:---------- |:---------- | | species | S | | transition | T | | action | A | | event | E | | param | P | | meta | M | # Examples ```julia @aka acs species = resource transition = reaction ``` """ macro aka(acsex, exs...) dictcall = :(Dict([])) foreach( ex -> push!( dictcall.args[2].args, Symbol("alias_", findfirst(==(ex.args[1]), alias_default)) => ex.args[2], ), exs, ) return :(meta!($(esc(acsex)), $dictcall)) end alias_default = Dict( :S => :species, :T => :transition, :A => :action, :E => :event, :P => :param, :M => :meta, ) get_alias(acs, ob) = (i = incident(acs, Symbol(:alias_, ob), :metaKeyword); !isempty(i) ? acs[first(i), :metaVal] : alias_default[ob]) """ Check model parameters have been set. # msg as return value """ macro prob_check_verbose(acsex) # msg as return value return :(missing_params = check_params($(esc(acsex))); isempty(missing_params) ? "Params OK." : "Missing params: $missing_params") end """ Add a periodic callback to a model. # Examples ```julia @periodic acs 1.0 X += 1 ``` """ macro periodic(acsex, pex, acex) return push_to_acs!(acsex, Expr(:&&, :(@periodic($pex)), acex)) end """ Add a jump process (with specified Poisson intensity per unit time step) to a model. # Examples ```julia @jump acs λ Z += rand(Poisson(1.0)) ``` """ macro jump(acsex, inex, acex) return push_to_acs!( acsex, Expr(:&&, Expr(:call, :rand, :(Poisson(max(@solverarg(:tstep) * $inex, 0)))), acex), ) end """ Evaluate expression in ReactiveDynamics scope. # Examples ```julia @register bool_cond(t) = (100 < t < 200) || (400 < t < 500) @register tdecay(t) = exp(-t / 10^3) ``` """ macro register(ex) return :(@eval ReactiveDynamics $ex) end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
2325
export @equalize expand_name_ff(ex) = if ex isa Expr && isexpr(ex, :macrocall) (macroname(ex), underscorize(ex.args[end])) else (nothing, underscorize(ex)) end """ Parse species equation blocks. """ function get_eqs_ff(eq) if eq isa Expr && isexpr(eq, :(=)) [ expand_name_ff(eq.args[1]) isexpr(eq.args[2], :(=)) ? get_eqs_ff(eq.args[2]) : expand_name_ff(eq.args[2]) ] else [expand_name_ff(eq)] end end function equalize!(acs::ReactionNetwork, eqs = []) specmap = Dict() for block in eqs block_alias = findfirst(e -> e[1] == :alias, block) block_alias = !isnothing(block_alias) ? block[block_alias][2] : first(block)[2] species_ixs = Int64[] for e in block, i = 1:nparts(acs, :S) ( (i == e[2]) || ( e[1] == :catchall && occursin(Regex("(__$(e[2])|$(e[2]))\$"), string(acs[i, :specName])) ) || (e[2] == acs[i, :specName]) ) && (push!(species_ixs, i); push!(specmap, acs[i, :specName] => (acs[i, :specName] = block_alias))) end isempty(species_ixs) && continue species_ixs = sort(unique!(species_ixs)) lix = first(species_ixs) for attr in propertynames(acs.subparts) !occursin("spec", string(attr)) && continue for i in species_ixs ismissing(acs[lix, attr]) && (acs[lix, attr] = acs[i, attr]) end end rem_parts!(acs, :S, species_ixs[2:end]) end for attr in propertynames(acs.subparts) attr == :specName && continue attr_ = acs[:, attr] for i = 1:length(attr_) attr_[i] = escape_ref(attr_[i], collect(keys(specmap))) attr_[i] = recursively_substitute_vars!(specmap, attr_[i]) end end return acs end """ Identify (collapse) a set of species in a model. # Examples ```julia @join acs acs1.A = acs2.A B = C ``` """ macro equalize(acsex, exs...) exs = collect(exs) foreach(i -> (exs[i] = MacroTools.striplines(exs[i])), 1:length(exs)) eqs = [] foreach(ex -> ex isa Expr && merge_eqs!(eqs, get_eqs_ff(ex)), exs) return :(equalize!($(esc(acsex)), $eqs)) end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
6865
# model joins export @join using MacroTools using MacroTools: prewalk """ Merge `acs2` onto `acs1`, the attributes in `acs2` taking precedence. Identify respective species given `eqs`, renaming species in `acs2`. """ function union_acs!(acs1, acs2, name = gensym("acs_"), eqs = []) acs2 = deepcopy(acs2) prepend!(acs2, name, eqs) for i = 1:nparts(acs2, :S) inc = incident(acs1, acs2[i, :specName], :specName) isempty(inc) && (inc = add_part!(acs1, :S; specName = acs2[i, :specName]); assign_defaults!(acs1)) return (acs1, acs2) println(first(inc)) println(acs1[first(inc), :specModality]) println() println(acs2[:, :specModality]) union!(acs1[first(inc), :specModality], acs2[i, :specModality]) for attr in propertynames(acs1.subparts) !occursin("spec", string(attr)) && continue !ismissing(acs2[i, attr]) && (acs1[first(inc), attr] = acs2[i, attr]) end end new_trans_ix = add_parts!(acs1, :T, nparts(acs2, :T)) for attr in propertynames(acs2.subparts) !occursin("trans", string(attr)) && continue acs1[new_trans_ix, attr] .= acs2[:, attr] end foreach( i -> ( acs1[i, :transName] = normalize_name(Symbol(coalesce(acs1[i, :transName], i)), name) ), new_trans_ix, ) for i = 1:nparts(acs2, :P) inc = incident(acs1, acs2[i, :prmName], :prmName) isempty(inc) && (inc = add_part!(acs1, :P; prmName = acs2[i, :prmName])) !ismissing(acs2[i, :prmVal]) && (acs1[first(inc), :prmVal] = acs2[i, :prmVal]) end for i = 1:nparts(acs2, :M) inc = incident(acs1, acs2[i, :metaKeyword], :metaKeyword) isempty(inc) && (inc = add_part!(acs1, :M; metaKeyword = acs2[i, :metaKeyword])) !ismissing(acs2[i, :metaVal]) && (acs1[first(inc), :metaVal] = acs2[i, :metaVal]) end return acs1 end """ Prepend species names with a model identifier (unless a global species name). """ function prepend!(acs::ReactionNetwork, name = gensym("acs"), eqs = []) specmap = Dict() for i = 1:nparts(acs, :S) new_name = normalize_name(name, i, acs[i, :specName], eqs) push!(specmap, acs[i, :specName] => (acs[i, :specName] = new_name)) end for attr in propertynames(acs.subparts) attr == :specName && continue attr_ = acs[:, attr] for i = 1:length(attr_) attr_[i] = escape_ref(attr_[i], collect(keys(specmap))) attr_[i] = recursively_substitute_vars!(specmap, attr_[i]) attr_[i] isa Expr && (attr_[i] = prepend_obs(attr_[i], name)) end end return acs end """ Prepend identifier of an observable with a model identifier. """ function prepend_obs end function prepend_obs(ex::Expr, name) return prewalk(ex -> if (isexpr(ex, :macrocall) && (macroname(ex) == :obs)) (ex.args[end] = Symbol(name, "__", ex.args[end]); ex) else ex end, ex) end prepend_obs(ex, _) = ex ## species name normalization normalize_name(name::Symbol, parent_name) = Symbol("$(parent_name)__$name") normalize_name(name::String, parent_name) = "$(parent_name)__$name" normalize_name(name, parent_name) = Symbol(parent_name, "__", name) function normalize_name(acs_name, i::Int, name::Symbol, eqs = []) for (block_ix, block) in enumerate(eqs) block_alias = findfirst(e -> e[1] == :alias, block) block_alias = if !isnothing(block_alias) block[block_alias][2] else Symbol(:shared_species_, block_ix) end for e in block ( (i == e[2]) || ( e[1] == :catchall && (normalize_name(e[2], acs_name) == normalize_name(name, acs_name)) ) || ( e[1] == acs_name && (normalize_name(e[2], acs_name) == normalize_name(name, acs_name)) ) ) && return block_alias end end return normalize_name(name, acs_name) end matching_name(name::Symbol, parent_name) = [name, Symbol("$(parent_name)__$name")] expand_name(ex) = if isexpr(ex, :.) reconstruct(ex) elseif isexpr(ex, :macrocall) ( if macroname(ex) == :alias [(:alias, ex.args[3])] else [(:catchall, ex.args[3]), (:alias, ex.args[3])] end ) else (:catchall, ex) end function recursively_get_syms(ex) return isexpr(ex, :.) ? [recursively_get_syms(ex.args[1]); ex.args[2].value] : ex end function reconstruct(ex) return if ex isa Symbol (ex,) else (syms = recursively_get_syms(ex); (syms[1], Symbol(join(syms[2:end], "__")))) end end """ Parse species equation blocks. """ function get_eqs(eq) if isexpr(eq, :macrocall) expand_name(eq) elseif eq isa Expr [ expand_name(eq.args[1]) isexpr(eq.args[2], :(=)) ? get_eqs(eq.args[2]) : expand_name(eq.args[2]) ] else [eq] end end function merge_eqs!(eqs, eqblock) eqs_ = [] for s in eqblock ix = findfirst(e -> s in e, eqs) !isnothing(ix) && push!(eqs_, ix) end foreach(i -> append!(eqblock, eqs[i]), eqs_) foreach(i -> deleteat!(eqs, i), Iterators.reverse(sort!(eqs_))) push!(eqs, eqblock) return eqs_ end """ @join models... [equalize...] Performs join of models and identifies model variables, as specified. Model variables / parameter values and metadata are propagated; the last model takes precedence. # Examples ```julia @join acs1 acs2 @catchall(A) = acs2.Z @catchall(XY) @catchall(B) ``` """ macro join(exs...) callex = :( begin acs_new = ReactionNetwork() end ) exs = collect(exs) foreach(i -> (exs[i] = MacroTools.striplines(exs[i])), 1:length(exs)) eqs = [] ix = 1 while ix <= length(exs) if exs[ix] isa Expr && MacroTools.isexpr(exs[ix], :macrocall, :(=)) merge_eqs!(eqs, get_eqs(exs[ix])) deleteat!(exs, ix) continue end ix += 1 end for acsex in exs (acsex, symex) = if isexpr(acsex, :macrocall) str_inc = string( isexpr(acsex.args[3], :(=)) ? acsex.args[3].args[2] : acsex.args[3], ) if isexpr(acsex.args[3], :(=)) (:(include_model($str_inc)), acsex.args[3].args[1]) else (:(include_model($str_inc)), gensym(:acs)) end else (acsex, acsex) end push!(callex.args, :(union_acs!(acs_new, $(esc(acsex)), $(QuoteNode(symex)), $eqs))) end push!(callex.args, :(acs_new)) return callex end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
383
using Test export @safeinclude macro safeinclude(args...) length(args) != 2 && error("invalid arguments to `@safeinclude`") name, ex = args quote path = pwd() td = mktempdir() cp(dirname($ex), td; force = true) cd(td) @testset $name begin include(joinpath(td, basename($ex))) end cd(path) end end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
2529
# Assortment of expression handling utilities using MacroTools: striplines """ Return array of keyword expressions in `args`. """ function kwargize(args) kwargs = Any[] map(el -> isexpr(el, :(=)) && push!(kwargs, Expr(:kw, el.args[1], el.args[2])), args) return kwargs end """ Split an array of expressions into arrays of "argument" expressions and keyword expressions. """ function args_kwargs(args) args_ = Any[] kwargs = Any[] map(el -> if isexpr(el, :(=)) push!(kwargs, Expr(:kw, el.args[1], el.args[2])) else push!(args_, esc(el)) end, args) return args_, kwargs end """ Return the (expression) value stored for the given key in a collection of keyword expression, or the given default value if no mapping for the key is present. """ function find_kwargex_delete!(collection, key, default = :()) ix = findfirst(ex -> ex.args[1] == key, collection) return if !isnothing(ix) (v = collection[ix].args[2]; deleteat!(collection, ix); v) else default end end macroname(ex) = if isexpr(ex, :macrocall) (str = string(ex.args[1]); Symbol(strip(str, '@'))) else error("expr $ex is not a macrocall") end strip_sym(sym) = (str = string(sym); Symbol(strip(str, '@'))) blockize(ex) = striplines(isexpr(ex, :block) ? ex : Expr(:block, ex)) preserve_sym(el) = el isa Symbol ? QuoteNode(el) : el assigned(collection, ix) = isassigned(collection, ix) && !ismissing(collection[ix]) function unblock_shallow!(ex) isexpr(ex, :block) || return ex args = [] for ex in ex.args isexpr(ex, :block) ? append!(args, ex.args) : push!(args, ex) end ex.args = args return ex end function underscorize(ex) return if ex isa Number ex else (str = string(ex); replace(str, '.' => "__", '(' => "", ')' => "") |> Symbol) end end wkeys(itr) = map(x -> x isa Pair ? x[1] : x, itr) wvalues(itr) = map(x -> x isa Pair ? x[2] : x, itr) function wset!(col, key, val) ix = findfirst(==(key), wkeys(col)) !isnothing(ix) && (col[ix] = (key => val)) return col end """ Return the (expression) value stored for the given key in a collection of keyword expression, or the given default value if no mapping for the key is present. """ function get_kwarg(collection, key, default = :()) ix = findfirst( ex -> ex isa Expr && hasproperty(ex, :args) && (ex.args[1] == key), collection, ) return !isnothing(ix) ? collection[ix].args[2] : default end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
143
using SafeTestsets, BenchmarkTools @time begin @time @safetestset "Tutorial tests" begin include("tutorial_tests.jl") end end
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
377
using ReactiveDynamics @safeinclude "example" "../tutorial/example.jl" @safeinclude "joins" "../tutorial/joins/joins.jl" @safeinclude "loadsave" "../tutorial/loadsave/loadsave.jl" @safeinclude "optimize" "../tutorial/optimize/optimize.jl" @safeinclude "solution wrap" "../tutorial/optimize/optimize_custom.jl" @safeinclude "toy pharma model" "../tutorial/toy_pharma_model.jl"
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
378
using ReactiveDynamics # acs = @ReactionNetwork begin # 1.0, X ⟺ Y # end acs = @ReactionNetwork begin 1.0, X ⟺ Y, name => "transition1" end @prob_init acs X = 10 Y = 20 @prob_params acs @prob_meta acs tspan = 250 dt = 0.1 prob = @problematize acs # sol = ReactiveDynamics.solve(prob) sol = @solve prob trajectories = 20 using Plots @plot sol plot_type = summary
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
2946
using ReactiveDynamics # acs as a model : incomplete dynamics sir_acs = @ReactionNetwork # set up ontology: try ?@aka @aka sir_acs transition = reaction species = population_group # add single reaction @push sir_acs β * S * I * tdecay(@t()) S + I --> @choose( (1.5, 2 * @choose(1, 2) * I), (1.6, @register(:RATE, 1, every = 2) * I) ) name => SI2I # additional dynamics @push sir_acs begin ν * I, I --> R, name => I2R γ, R --> S, name => R2S end # register custom function @register bool_cond(t) = (100 < t < 200) || (400 < t < 500) @register tdecay(t) = exp(-t / 10^3) @valuation sir_acs I = 0.1 # for testing purpose only # atomic data: initial values, parameter values @prob_init sir_acs S = 999 I = 100 R = 100 u0 = [999, 10, 0] # alternative specification @prob_init sir_acs u0 @prob_params sir_acs β = 0.0001 ν = 0.01 γ = 5 @prob_meta sir_acs tspan = 100 #prob = @problematize sir_acs prob = @problematize sir_acs tspan = 200 sol = @solve prob trajectories = 20 @plot sol plot_type = summary sol = @solve prob @plot sol plot_type = allocation @plot sol plot_type = valuations @plot sol plot_type = new_transitions # acs as a model : incomplete dynamics sir_acs = @ReactionNetwork # set up ontology: try ?@aka @aka sir_acs transition = reaction species = population_group # add single reaction # additional dynamics @push sir_acs begin ν * I * tdecay(@t()), I --> @choose(E, R, S), name => I2R γ, R --> S, name => R2S end @jump sir_acs 3 (S > 0 && bool_cond(@t()) && (I += 1; S -= 1)) # drift term, support for event conditioning @periodic sir_acs 5.0 (β += 1; println(β)) # register custom function @register bool_cond(t) = (100 < t < 200) || (400 < t < 500) @register tdecay(t) = exp(-t / 10^3) # atomic data: initial values, parameter values @prob_init sir_acs S = 999 I = 10 R = 0 u0 = [999, 10, 0] # alternative specification @prob_init sir_acs u0 @prob_params sir_acs β = 0.0001 ν = 0.01 γ = 5 # model dynamics sir_acs = @ReactionNetwork begin α * S * I, S + I --> 2I, cycle_time => 0, name => I2R β * I, I --> R, cycle_time => 0, name => R2S end # simulation parameters @prob_init sir_acs S = 999 I = 10 R = 0 @prob_uncertainty sir_acs S = 10.0 I = 5.0 @prob_params sir_acs α = 0.0001 β = 0.01 @prob_meta sir_acs tspan = 250 dt = 0.1 # batch simulation prob = @problematize sir_acs sol = @solve prob trajectories = 20 @plot sol plot_type = summary @plot sol plot_type = summary show = :S @plot sol plot_type = summary c = :green xlimits = (0.0, 100.0) acs_1 = @ReactionNetwork begin 1.0, A --> B + C end acs_2 = @ReactionNetwork begin 1.0, A --> B + C end acs_union = @join acs_1 acs_2 acs_1.A = acs_2.A = @alias(A) @catchall(B) # @catchall: equalize species "B" from the joined submodels @equalize acs_union acs_1.C = acs_2.C = @alias(C) # the species can be set equal either within the call to @join the acsets, but you may always equalize a set of species of any given acset
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
1696
using ReactiveDynamics rd_model = @ReactionNetwork # need to bring data into ReactiveDynamics's (solver) scope @register begin # number of phases n_phase = 2 n_workforce = 5 n_equipment = 4 # transition matrix: ones at the upper diagonal + rand noise prob_success = [i / (i + 1) for i = 1:n_phase] transitions = zeros(n_phase, n_phase) foreach(i -> transitions[i, i+1] = 1, 1:(n_phase-1)) transitions .+= 0.1 * rand(n_phase, n_phase) end rd_model = @ReactionNetwork begin $i, phase[$i] --> phase[$j], cycle_time => $i * $j end i = 1:3 j = 1:($i) using ReactiveDynamics: nparts u0 = rand(1:1000, nparts(rd_model, :S)) @prob_init rd_model u0 @prob_meta rd_model tspan = 100 prob = @problematize rd_model sol = @solve prob trajectories = 20 @plot sol plot_type # need to bring data into ReactiveDynamics's (solver) scope @register begin k = 5 r = 3 M = zeros(k, k) for i = 1:k for conn_in in rand(1:k, rand(1:4)) M[conn_in, i] += 0.1 * rand(1:10) end for conn_out in rand(1:k, rand(1:4)) M[i, conn_out] += 0.1 * rand(1:10) end end cycle_times = rand(1:5, k, k) resource = rand(1:10, k, k, r) end rd_model = @ReactionNetwork begin M[$i, $j], mod[$i] + {resource[$i, $j, $k] * resource[$k], k = rand(1:(ReactiveDynamics.r)), dlm = +} --> mod[$j], cycle_time => cycle_times[$i, $j] end i = 1:(ReactiveDynamics.k) j = 1:(ReactiveDynamics.k) using ReactiveDynamics: nparts u0 = rand(1:1000, nparts(rd_model, :S)) @prob_init rd_model u0 @prob_meta rd_model tspan = 100 prob = @problematize rd_model sol = @solve prob @plot sol plot_type = allocation
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
2856
using ReactiveDynamics # model dynamics toy_pharma_model = @ReactionNetwork begin α(candidate_compound, marketed_drug, κ), 3 * @conserved(scientist) + @rate(budget) --> candidate_compound, name => discovery, probability => 0.3, cycletime => 10.0, priority => 0.5 β(candidate_compound, marketed_drug), candidate_compound + 5 * @conserved(scientist) + 2 * @rate(budget) --> marketed_drug + 5 * budget, name => dx2market, probability => 0.5 + 0.001 * @t(), cycletime => 4 γ * marketed_drug, marketed_drug --> ∅, name => drug_killed end @periodic toy_pharma_model 1.0 budget += 11 * marketed_drug @register function α(number_candidate_compounds, number_marketed_drugs, κ) return κ + exp(-number_candidate_compounds) + exp(-number_marketed_drugs) end @register function β(number_candidate_compounds, number_marketed_drugs) return number_candidate_compounds + exp(-number_marketed_drugs) end # simulation parameters ## initial values @prob_init toy_pharma_model candidate_compound = 5 marketed_drug = 6 scientist = 20 budget = 100 ## parameters @prob_params toy_pharma_model κ = 4 γ = 0.1 ## other arguments passed to the solver @prob_meta toy_pharma_model tspan = 250 dt = 0.1 prob = @problematize toy_pharma_model sol = @solve prob trajectories = 20 using Plots @plot sol plot_type = summary @plot sol plot_type = summary show = :marketed_drug ## for deterministic rates # model dynamics toy_pharma_model = @ReactionNetwork begin @per_step(α(candidate_compound, marketed_drug, κ)), 3 * @conserved(scientist) + @rate(budget) --> candidate_compound, name => discovery, probability => 0.3, cycletime => 10.0, priority => 0.5 @per_step(β(candidate_compound, marketed_drug)), candidate_compound + 5 * @conserved(scientist) + 2 * @rate(budget) --> marketed_drug + 5 * budget, name => dx2market, probability => 0.5 + 0.001 * @t(), cycletime => 4 @per_step(γ * marketed_drug), marketed_drug --> ∅, name => drug_killed end @periodic toy_pharma_model 0.0 budget += 11 * marketed_drug @register function α(number_candidate_compounds, number_marketed_drugs, κ) return κ + exp(-number_candidate_compounds) + exp(-number_marketed_drugs) end @register function β(number_candidate_compounds, number_marketed_drugs) return number_candidate_compounds + exp(-number_marketed_drugs) end # simulation parameters ## initial values @prob_init toy_pharma_model candidate_compound = 5 marketed_drug = 6 scientist = 20 budget = 100 ## parameters @prob_params toy_pharma_model κ = 4 γ = 0.1 ## other arguments passed to the solver @prob_meta toy_pharma_model tspan = 250 prob = @problematize toy_pharma_model sol = @solve prob trajectories = 20 using Plots @plot sol plot_type = summary @plot sol plot_type = summary show = :marketed_drug
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
1820
using ReactiveDynamics ## setup the environment n_models = 5; r = 2; # number of submodels, resources rd_models = ReactiveDynamics.ReactionNetwork[] # submodels @register begin ns = Int[] # size of submodels M = Array[] # transition intensities of submodels cycle_times = Array[] # cycle times of transitions in submodels demand = Array[] production = Array[] # resource production / generation for transitions in submodels end # submodels: dense interactions @generate {@fileval(submodel.jl, i = $i, r = r), i = 1:n_models} # batch join over the submodels rd_model = @generate "@join {rd_models[\$i], i=1:n_models, dlm=' '}" # identify resources @generate { @equalize( rd_model, @alias(resource[$j]) = {rd_models[$i].resource[$j], i = 1:n_models, dlm = :(=)} ), j = 1:r, } # sparse off-diagonal interactions, sparse declaration sparse_off_diagonal = zeros(sum(ReactiveDynamics.ns), sum(ReactiveDynamics.ns)) for i = 1:n_models j = rand(setdiff(1:n_models, (i,))) i_ix = rand(1:ReactiveDynamics.ns[i]) j_ix = rand(1:ReactiveDynamics.ns[j]) sparse_off_diagonal[ i_ix+sum(ReactiveDynamics.ns[1:(i-1)]), j_ix+sum(ReactiveDynamics.ns[1:(j-1)]), ] += 1 interaction_ex = """@push rd_model begin 1., var"rd_models[$i].state[$i_ix]" --> var"rd_models[$j]__state[$j_ix]" end""" eval(Meta.parseall(interaction_ex)) end sparse_off_diagonal += cat(ReactiveDynamics.M...; dims = (1, 2)) using Plots; heatmap(1 .- sparse_off_diagonal; color = :greys, legend = false); using ReactiveDynamics: nparts u0 = rand(1:1000, nparts(rd_model, :S)) @prob_init rd_model u0 @prob_meta rd_model tspan = 10 prob = @problematize rd_model sol = @solve prob trajectories = 2 # plot "state" species only @plot sol plot_type = summary show = r"state"
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
878
# substitute $r as the global number of resources, $i as the submodel identifier @register begin push!(ns, rand(1:5)) ϵ = 10e-2 push!(M, rand(ns[$i], ns[$i])) foreach(i -> M[$i][i, i] += ϵ, 1:ns[$i]) foreach(i -> M[$i][i, :] /= sum(M[$i][i, :]), 1:ns[$i]) push!(cycle_times, rand(1:5, ns[$i], ns[$i])) push!(demand, rand(1:10, ns[$i], ns[$i], $r)) push!(production, rand(1:10, ns[$i], ns[$i], $r)) end # generate submodel dynamics push!( rd_models, @ReactionNetwork begin M[$i][$m, $n], state[$m] + {demand[$i][$m, $n, $l] * resource[$l], l = 1:($r), dlm = +} --> state[$n] + {production[$i][$m, $n, $l] * resource[$l], l = 1:($r), dlm = +}, cycle_time => cycle_times[$i][$m, $n], probability_of_success => $m * $n / (n[$i])^2 end m = 1:ReactiveDynamics.ns[$i] n = 1:ReactiveDynamics.ns[$i] )
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
847
using ReactiveDynamics # import a model, solve the problem @import_network model.toml sir_acs @assert @isdefined sir_acs @assert isdefined(ReactiveDynamics, :tdecay) prob = @problematize sir_acs sol = @solve prob trajectories = 20 @import_network "csv/model.csv" sir_acs_ @assert @isdefined sir_acs_ @assert isdefined(ReactiveDynamics, :foo) prob_ = @problematize sir_acs_ sol_ = @solve prob_ trajectories = 20 # export, import the solution @export_solution sol @import_solution sol.jld2 # export the same model (w/o registered functions) @export_network sir_acs modell.toml mkpath("csv_"); @export_network sir_acs "csv_/model.csv"; # load multiple models @load_models models.txt # export solution as a DataFrame, .csv @export_solution_as_table sol @export_solution_as_csv sol sol.csv # another test @import_network model2.toml sir_acs_2
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
919
using ReactiveDynamics # solve for steady state acss = @ReactionNetwork begin 3.0, A --> A, priority => 0.6, name => aa 1.0, B + 0.2 * A --> 2 * α * B, prob => 0.7, priority => 0.6, name => bb 3.0, A + 2 * B --> 2 * C, prob => 0.7, priority => 0.7, name => cc end # initial values, check params @prob_init acss A = 100.0 B = 200 C = 150.0 @prob_params acss α = 10 @prob_meta acss tspan = 100.0 prob = @problematize acss sol = @solve prob trajectories = 10 # check https://github.com/JuliaOpt/NLopt.jl for solver opts @optimize acss abs(A - B) A B = 20.0 α = 2.0 lower_bounds = 0 upper_bounds = 200 min_t = 50 max_t = 100 maxeval = 20 final_only = true t_ = [1, 50, 100] data = [70 50 50] @fit acss data t_ vars = [A] B = 20 A α lower_bounds = 0 upper_bounds = 200 maxeval = 20 @fit_and_plot acss data t_ vars = [A] B = 20 A α lower_bounds = 0 upper_bounds = 200 maxeval = 2 trajectories = 10
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
code
2226
using ReactiveDynamics # fit unknown dynamics to empirical data ## some embedded neural network, etc. @register begin function function_to_learn(A, B, C, params) return [A, B, C]' * params # params: 3-element vector end end acs = @ReactionNetwork begin function_to_learn(A, B, C, params), A --> B + C 1.0, B --> C 2.0, C --> B end # initial values, check params @prob_init acs A = 60.0 B = 10.0 C = 150.0 @prob_params acs params = [0.01, 0.01, 0.01] @prob_meta acs tspan = 100.0 prob = @problematize acs sol = @solve prob time_points = [1, 50, 100] data = [60 30 5] @fit_and_plot acs data time_points vars = [A] params α maxeval = 200 lower_bounds = 0 upper_bounds = 0.01 # a slightly more extended example: export solver as a function of given params ## some embedded neural network, etc. @register begin function learnt_function(A, B, C, params, α) return [A, B, C]' * params + α # params: 3-element vector end end acs = @ReactionNetwork begin learnt_function(A, B, C, params, α), A --> B + C, priority => 0.6 1.0, B --> C 2.0, C --> B end # initial values, check params @prob_init acs A = 60.0 B = 10.0 C = 150.0 @prob_params acs params = [1, 2, 3] α = 1 @prob_meta acs tspan = 100.0 prob = @problematize acs sol = @solve prob @optimize acs abs(C) params α maxeval = 200 lower_bounds = 0 upper_bounds = 200 final_only = true ## export solution as a function of params parametrized_solver = @build_solver acs A params α trajectories = 10 parametrized_solver = @build_solver acs A params α parametrized_solver([1.0, 0.0, 0.0, 0.0, 1.0]) using Statistics # for mean my_little_objective(params) = mean(1:10) do _ # take avg over 10 samples sol = parametrized_solver(params) # compute solution return sol[3, end] # some objective end ## now some optimizer... using NLopt # https://github.com/JuliaOpt/NLopt.jl obj_for_nlopt = (vec, _) -> my_little_objective(vec) # the second term corresponds to a gradient - won't be used, but is a part of the NLopt interface opt = Opt(:GN_DIRECT, 5) opt.lower_bounds = 0 opt.upper_bounds = 100 opt.max_objective = obj_for_nlopt opt.maxeval = 100 (minf, minx, ret) = optimize(opt, rand(5))
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
docs
15897
# ReactiveDynamics.jl <br> <p align="center"> <img src="docs/src/assets/diagram1.png" alt="wiring diagram"> <br> <a href="#about">About</a> | <a href="#context-dynamics-of-value-evolution-dyve">Context</a> | <a href="#four-sketches">Four Sketches</a> | <a href="https://merck.github.io/ReactiveDynamics.jl/stable">Documentation</a> </p> ## About The package provides a category of reaction (transportation) network-type problems formalized on top of the **[generalized algebraic theory](https://ncatlab.org/nlab/show/generalized+algebraic+theory)**, and is compatible with the **[SciML](https://sciml.ai/)** ecosystem. Our motivation stems from the area of **[system dynamics](https://www.youtube.com/watch?v=o-Yp8A7BPE8)**, which is a mathematical modeling approach to frame, analyze, and optimize complex (nonlinear) dynamical systems, to augment the strategy and policy design. <img src="docs/src/assets/diagram2.png" align="right" alt="wiring diagram"></a> <p>The central concept is of a <b>transition</b> (transport, flow, rule, reaction - a subcategory of general algebraic action). Generally, a transition prescribes a stochastic rule which repeatedly transforms the modeled system's <b>resources</b>. An elementary instance of such an ontology is provided by chemical reaction networks. A <b>reaction network</b> (system modeled) is then a tuple $(T, R)$, where $T$ is a set of the transitions and $R$ is a set of the network's resource classes (aka species). The simultaneous action of transitions on the resources evolves the dynamical system. The transitions are generally **stateful** (i.e., act over a period of time). Moreover, at each time step a quantum of the a transition's instances is brought into the scope, where the size of the batch is drived by a Poisson counting process. A transition takes the from `rate, a*A + b*B + ... --> c*C + ...`, where `rate` gives the expected batch size per time unit. `A`, `B`, etc., are the resources, and `a`, `b`, etc., are the generalized stoichiometry coefficients. Note that both `rate` and the "coefficients" can in fact be given by a function which depends on the system's instantaneous state (stochastic, in general). In particular, even the structural form of a transition can be stochastic, as will be demonstrated shortly. </p> An instance of a stateful transition evolves gradually from its genesis up to the terminal point, where the products on the instance's right hand-side are put into the system. An instance advances proportionally to the quantity of resources allocated. To understand this behavior, we note that the system's resource classes (or occurences of a resource class in a transition) may be assigned a **modality**; a modality governs the interaction between the resource and the transition, as well as the interpretation of the generalized stoichiometry coefficient. In particular, a resource can be allocated to an instance either for the instance's lifetime or a single time step of the model's evolution (after each time step, the resource may be reallocated based on the global demand). Moreover, the coefficient of a resource on the left hand-side can either be interpreted as a total amount of the resource required or as an amount required per time unit. Similarly, it is possible to declare a resource **conserved**, in which case it is returned into the scope once the instance terminates. <img src="docs/src/assets/diagram3.png" align="left" alt="attributes diagram"></a> The transitions are <b>parametric</b>. That is, it is possible to set the period over which an instance of a transition acts in the system (as well as the maximal period of this action), the total number of transition's instances allowed to exist in the system, etc. An annotated transition takes the form `rate, a*A + b*B + ... --> c*C + ..., prm => val, ...`, where the numerical values can be given by a function which depends on the system's state. Internally, the reaction network is represented as an <a href=https://algebraicjulia.github.io/Catlab.jl/dev/generated/wiring_diagrams/wd_cset/><b>attributed C-set</b></a>. For an overview of accepted attributes for both transitions and species classes, read the [docs](https://merck.github.io/ReactiveDynamics.jl/#Update-model-objects) A network's dynamics is specified using a compact **modeling metalanguage**. Moreover, we have integrated another expression comprehension metalanguage which makes it easy to generate arbitrarily complex dynamics from a single template transition! Taking **unions** of reaction networks is fully supported, and it is possible to identify the resource classes as appropriate. Moreover, it is possible to **export and import** reaction network dynamics using the [TOML](https://toml.io/) format. Once a network's dynamics is specified, it can be converted to a problem and simulated. The exported problem is a **`DiscreteProblem`** compatible with **[DifferentialEquations.jl](https://diffeq.sciml.ai/stable/)** ecosystem, and hence the latter package's all powerful capabilities are available. For better user experience, we have tailored and exported many of the functionalities within the modeling metalanguage, including ensemble analysis, parameter optimization, parameter inference, etc. Would you guess that **[universal differential equations](https://arxiv.org/abs/2001.04385)** are supported? If even the dynamics is unknown, you may just infer it! ## Context: Dynamics of Value Evolution (DyVE) The package is an integral part of the **Dynamics of Value Evolution (DyVE)** computational framework for learning, designing, integrating, simulating, and optimizing R&D process models, to better inform strategic decisions in science and business. As the framework evolves, multiple functionalities have matured enough to become standalone packages. This includes **[GeneratedExpressions.jl](https://github.com/Merck/GeneratedExpressions.jl)**, a metalanguage to support code-less expression comprehensions. In the present context, expression comprehensions are used to generate complex dynamics from user-specified template transitions. Another package is **[AlgebraicAgents.jl](https://github.com/Merck/AlgebraicAgents.jl)**, a lightweight package to enable hierarchical, heterogeneous dynamical systems co-integration. It implements a highly scalable, fully customizable interface featuring sums and compositions of dynamical systems. In present context, we note it can be used to co-integrate a reaction network problem with, e.g., a stochastic ordinary differential problem! ## Four Sketches For other examples, see the **[tutorials](tutorial)**. ### SIR Model The acronym SIR stands for susceptible, infected, and recovered, and as such the SIR model attempts to capture the dynamics of disease spread. We express the SIR dynamics as a reaction network using the compact modeling metalanguage. Follow the SIR model's reactions: <p align="center"> <img src="docs/src/assets/sir_reactions.png" alt="SIR reactions"> <br> </p> ```julia using ReactiveDynamics # model dynamics sir_acs = @ReactionNetwork begin α*S*I, S+I --> 2I, name=>I2R β*I, I --> R, name=>R2S end # simulation parameters ## initial values @prob_init sir_acs S=999 I=10 R=0 ## uncertainty in initial values (Gaussian) @prob_uncertainty sir_acs S=10. I=5. ## parameters @prob_params sir_acs α=0.0001 β=0.01 ## other arguments passed to the solver @prob_meta sir_acs tspan=250 dt=.1 ``` The resulting reaction network is represented as an attributed C-set: ![sir acs](docs/src/assets/sir_acs.png) Next we solve the problem. ``` # turn model into a problem prob = @problematize sir_acs # solve the problem over multiple trajectories sol = @solve prob trajectories=20 # plot the solution @plot sol plot_type=summary ## show only species S @plot sol plot_type=summary show=:S ## plot evolution over (0., 100.) in green (propagates to Plots.jl) @plot sol plot_type=summary c=:green xlimits=(.0, 100.) ``` ![sir plots](docs/src/assets/sir_plot.png) ### A Primer on Attributed Transitions Before we move on to more intricate examples demonstrating generative capabilities of the package, let's sketch a toy pharma model with as little as three transitions. ```julia toy_pharma_model = @ReactionNetwork ``` First, a **"discovery" transition** will take a team of scientist and a portion of a company's budget at the input (say, for experimental resources), and it will **output candidate compounds**. ```julia @push toy_pharma_model α(candidate_compound, marketed_drug, κ) 3*@conserved(scientist) + @rate(budget) --> candidate_compound name=>discovery probability=>.3 cycletime=>6 priority=>.5 ``` Note that per a time unit, `α(candidate_compound, marketed_drug, κ)` "discovery" projects will be started. We provide a name of the class of transitions (`name=>discovery`), set up a probability of the transition terminating successfully (`probability=>.3`), a cycle time (`cycletime=>6`), and we provide a weight of the transitions' class for use in resource allocation (`priority=>.5`). Moreover, we annotate "scientists" as a conserved resource (no matter how the project terminates, the workforce isn't consumed), i.e., `@conserved(scientist)`, and we state that a unit "budget" is consumed per a time unit, i.e., `@rate(budget)`. Next, **candidate compounds will undergo clinical trials**. If successful, a compound transforms into a marketed drug, and the company receives a premium. ```julia @push toy_pharma_model β(candidate_compound, marketed_drug) candidate_compound + 5*@conserved(scientist) + 2*@rate(budget) --> marketed_drug + 5*budget name=>dx2market probability=>.5+.001*@t() cycletime=>4 ``` Note that as time evolves, the probability of technical success increases, i.e., `probability=>.5+.001*@t()`. In addition, **marketed drugs bring profit to the company** - which will fuel invention of new drugs. We model the situation as a periodic callback. ```julia @periodic toy_pharma_model 1. budget += 11*marketed_drug ``` A **marketed drug may eventually be withdrawn** from the market. To account for such scenario, we add the following transition: ```julia @push toy_pharma_model γ*marketed_drug marketed_drug --> ∅ name=>drug_withdrawn ``` Next we provide the functions `α` and `β`. ```julia @register α(number_candidate_compounds, number_marketed_drugs, κ) = κ + exp(-number_candidate_compounds) + exp(-number_marketed_drugs) @register β(number_candidate_compounds, number_marketed_drugs) = numbercandidate_compounds + exp(-number_marketed_drugs) ``` Likewise, we set the remaining parameters, initial values, and model metadata: ```julia # simulation parameters ## initial values @prob_init toy_pharma_model candidate_compound=5 marketed_drug=6 scientist=20 budget=100 ## parameters @prob_params toy_pharma_model κ=4 γ=.1 ## other arguments passed to the solver @prob_meta toy_pharma_model tspan=250 dt=.1 ``` And we problematize the model, solve the problem, and plot the solution: ```julia prob = @problematize toy_pharma_model sol = @solve prob trajectories=20 @plot sol plot_type=summary show=[:candidate_compound, :marketed_drug] ``` ![plot](docs/src/assets/toy_pharma.png) ### Sparse Interactions We introduce a complex reaction network as a union of $n_{\text{models}}$ reaction networks, where the off-diagonal interactions are sparse. To harness the capabilities of **GeneratedExpressions.jl**, let us first declare a template atomic model. ```julia # submodel.jl # substitute $r as the global number of resources, $i as the submodel identifier @register begin push!(ns, rand(1:5)); ϵ = 10e-2 push!(M, rand(ns[$i], ns[$i])); foreach(i -> M[$i][i, i] += ϵ, 1:ns[$i]) foreach(i -> M[$i][i, :] /= sum(M[$i][i, :]), 1:ns[$i]) push!(cycle_times, rand(1:5, ns[$i], ns[$i])) push!(demand, rand(1:10, ns[$i], ns[$i], $r)); push!(production, rand(1:10, ns[$i], ns[$i], $r)) end # generate submodel dynamics push!(rd_models, @ReactionNetwork begin M[$i][$m, $n], state[$m] + {demand[$i][$m, $n, $l]*resource[$l], l=1:$r, dlm=+} --> state[$n] + {production[$i][$m, $n, $l]*resource[$l], l=1:$r, dlm=+}, cycle_time=>cycle_times[$i][$m, $n], probability_of_success=>$m*$n/(n[$i])^2 end m=1:ReactiveDynamics.ns[$i] n=1:ReactiveDynamics.ns[$i] ) ``` The next step is to instantiate the atomic models (submodels). ```julia using ReactiveDynamics ## setup the environment rd_models = ReactiveDynamics.ReactionNetwork[] # submodels # needs to live within ReactiveDynamics's scope # the arrays will contain the submodel @register begin ns = Int[] # size of submodels M = Array[] # transition intensities of submodels cycle_times = Array[] # cycle times of transitions in submodels demand = Array[]; production = Array[] # resource production / generation for transitions in submodels end ``` Load $n_{\text{models}}$ the atomic models (substituting into `submodel.jl`): ```julia n_models = 5; r = 2 # number of submodels, resources # submodels: dense interactions @generate {@fileval(submodel.jl, i=$i, r=r), i=1:n_models} ``` We take union of the atomic models, and we identify common resources. ```julia # batch join over the submodels rd_model = @generate "@join {rd_models[\$i], i=1:n_models, dlm=' '}" # identify resources @generate {@equalize(rd_model, @alias(resource[$j])={rd_models[$i].resource[$j], i=1:n_models, dlm=:(=)}), j=1:r} ``` Next step is to add some off-diagonal interactions. ```julia # sparse off-diagonal interactions, sparse declaration # again, we use GeneratedExpressions.jl sparse_off_diagonal = zeros(sum(ReactiveDynamics.ns), sum(ReactiveDynamics.ns)) for i in 1:n_models j = rand(setdiff(1:n_models, (i, ))) i_ix = rand(1:ReactiveDynamics.ns[i]); j_ix = rand(1:ReactiveDynamics.ns[j]) sparse_off_diagonal[i_ix+sum(ReactiveDynamics.ns[1:i-1]), j_ix+sum(ReactiveDynamics.ns[1:j-1])] += 1 interaction_ex = """@push rd_model begin 1., var"rd_models[$i].state[$i_ix]" --> var"rd_models[$j]__state[$j_ix]" end""" eval(Meta.parseall(interaction_ex)) end ``` Let's plot the interactions: ![interactions](docs/src/assets/interactions.png) The resulting model can then be conveniently simulated using the modeling metalanguage. ```julia using ReactiveDynamics: nparts u0 = rand(1:1000, nparts(rd_model, :S)) @prob_init rd_model u0 @prob_meta rd_model tspan=10 prob = @problematize rd_model sol = @solve prob trajectories=2 # plot "state" species only @plot sol plot_type=summary show=r"state" ``` ### Universal Differential Equations: Fitting Unknown Dynamics We demonstrate how to fit unknown part of dynamics to empirical data. We use `@register` to define a simple linear function within the scope of module `ReactiveDynamics`; parameters of the function will be then optimized for. Note that `function_to_learn` can be generally replaced with a neural network (Flux chain), etc. ```julia ## some embedded function (neural network, etc.) @register begin function function_to_learn(A, B, C, params) [A, B, C]' * params # params: 3-element vector end end ``` Next we set up a simple dynamics and supply initial parameters. ```julia acs = @ReactionNetwork begin function_to_learn(A, B, C, params), A --> B+C 1., B --> C 2., C --> B end # initial values, check params @prob_init acs A=60. B=10. C=150. @prob_params acs params=[.01, .01, .01] @prob_meta acs tspan=100. ``` Let's next see the numerical results for the initial guess. ```julia sol = @solve acs @plot sol ``` ![plot](docs/src/assets/optim1.png) Next we supply empirical data and fit `params`. ```julia time_points = [1, 50, 100] data = [60 30 5] @fit_and_plot acs data time_points vars=[A] params α maxeval=200 lower_bounds=0 upper_bounds=.01 ``` ![plot](docs/src/assets/optim2.png)
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
docs
2708
# API Documentation ## Create a model ```@docs @ReactionNetwork ``` ## Modify a model We list common transition attributes. When being specified using the `@ReactionNetwork` macro they can be conveniently referred to using their shorthand description. | attribute | shorthand | interpretation | | :----- | :----- | :----- | | `transPriority` | `priority` | priority of a transition (influences resource allocation) | | `transProbOfSuccess` | `probability` `prob` `pos` | probability that a transition terminates successfully | | `transCapacity` | `cap` `capacity` | maximum number of concurrent instances of the transition | | `transCycleTime` | `ct` `cycletime` | duration of a transition's instance (adjusted by resource allocation) | | `transMaxLifeTime` | `lifetime` `maxlifetime` `maxtime` `timetolive` | maximal duration of a transition's instance | | `transPostAction` | `postAction` `post` | action to be executed once a transition's instance terminates | | `transName` | `name` `interpretation` | name of a transition, either a string or unquoted text | We list common species attributes: | attribute | shorthand | interpretation | | :----- | :----- | :----- | | `specInitUncertainty` | `uncertainty` `stoch` `stochasticity` | uncertainty about variable's initial state (modelled as Gaussian standard deviation) | | `specInitVal` | | initial value of a variable | Moreover, it is possible to specify the semantics of the "rate" term. By default, at each time step `n ~ Poisson(rate * dt)` instances of a given transition will be spawned. If you want to specify the rate in terms of a cycle time, you may want to use `@ct(cycle_time)`, e.g., `@ct(ex), A --> B, ...`. This is a shorthand for `1/ex, A --> B, ...`. For deterministic "rates", use `@per_step(ex)`. Here, `ex` evaluates to a deterministic number (ceiled to the nearest integer) of a transition's instances to spawn per a single integrator's step. However, note that in this case, the number doesn't scale with the step length! Moreover ```@docs @add_species @aka @mode @name_transition ``` ## Resource costs ```@docs @cost @valuation @reward ``` ## Add reactions ```@docs @push @jump @periodic ``` ## Set initial values, uncertainty, and solver arguments ```@docs @prob_init @prob_uncertainty @prob_params @prob_meta ``` ## Model unions ```@docs @join @equalize ``` ## Model import and export ```@docs @import_network @export_network ``` ## Solution import and export ```@docs @import_solution @export_solution_as_table @export_solution_as_csv @export_solution ``` ## Problematize,sSolve, and plot ```@docs @problematize @solve @plot ``` ## Optimization and fitting ```@docs @optimize @fit @fit_and_plot @build_solver ```
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
0.2.7
ddc8a249e7e2a5634deeea47b4cf894209270402
docs
1814
flowchart TD o["∅"] -->|"@ReactionNetwork"| acs["ReactiveDynamics.ReactionNetwork (aka ACS)"] acs --> |"@add_species, @aka, @cost, @equalize, @jump, @mode, @name_transition, @optimize, @periodic, @prob_check_verbose, @prob_init, @prob_meta, @prob_params, @prob_uncertainty, @push, @reward, @valuation"| acs sol --> |"@export_solution_as_table"| table["table"] sol --> |"@export_solution_as_csv"| csvsol["sol.csv"] acs --> |"@import_network"| mod["model.toml"] sol--> |"@export_solution"| solex["sol.jld2"] joinsol --> |"@fit_and_plot"| plot mod --> |"@export_network"| acs solex --> |"@import_solution"| sol["solution"] acs1["ACS1\n~ReactiveDynamics.ReactionNetwork"] --- join[ ] acs2["ACS2\n~ReactiveDynamics.ReactionNetwork"] --- join[ ] join --> |"@join"| acs sol --> |"@plot, @plot_new_transitions, @plot_terminated_transitions, @plot_valuations"| plot["plot"] acs --> |"@problematize"| DP["DiscreteProblem"] acs --> |"@solve"| sol DP --> |"@solve"| sol sol2["model"] --- joinsol data["empirical data"] --- joinsol[ ] joinsol --> |"@fit"| sol subgraph Legend acsClass["ReactiveDynamics objects"] csvClass["csv files"] DPcl["DiscreteProblem"] plotClass["Plots objects"] other["others"] end classDef ReactiveDynamics fill:#B0F5F4,stroke:#3585CC; class acs,acs1,acs2,mod,join,solex,joinsol,acsClass,sol,sol2,table ReactiveDynamics; classDef DPcl fill:#F0BC93,stroke:#F0453D; class DP,DPcl DPcl; classDef csvfile fill:#c0f8be,stroke:#127f0e; class csvsol,csvClass csvfile; classDef plots fill:#fbffa7,stroke:#a6ae00; class plot,plotClass plots;
ReactiveDynamics
https://github.com/Merck/ReactiveDynamics.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
325
using Documenter using EarthAlbedo makedocs( sitename = "EarthAlbedo.jl", format = Documenter.HTML(prettyurls = false), pages = [ "Introduction" => "index.md", "API" => "api.md" ] ) deploydocs( repo = "github.com/RoboticExplorationLab/EarthAlbedo.jl.git", devbranch = "main" )
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
5947
# [src/EarthAlbedo.jl] module EarthAlbedo using LinearAlgebra # using SatelliteDynamics # For GEOD/ECEF Conversions (may not work on Windows?) using CoordinateTransformations # For spherical <-> Cartesian transformations using StaticArrays using JLD2 include("rad2idx.jl") include("idx2rad.jl") include("gridangle.jl") include("earthfov.jl") include("cellarea.jl") export REFL, earth_albedo, load_refl """ REFL Structure for holding reflectivity data""" struct REFL data type start_time stop_time end """ Determines the Earth's albedo at a satellite for a given set of reflectivity data. First divides the Earth's surface into a set of cells (determined by the size of the refl data), and then determines which cells are visible by both the satellite and the Sun. This is then used to determine how much sunlight is reflected by the Earth towards the satellite. Arguments: - sat: Vector from center of Earth to satellite | SVector{3, Float64} - sun: Vector from center of Earth to Sun | SVector{3, Flaot64} - refl_data: Matrix containing the averaged reflectivity data for each cell | Array{Float64, 2} - Rₑ: (Optional) Average radius of the Earth (default is 6371010 m) | Scalar - AM₀: (Optional) Solar irradiance (default is 1366.9) | Scalar Returns: - cell_albedos: Matrix with each element corresponding to the albedo coming from the corresponding cell on the surface of the earth | [num_lat x num_lon] """ function earth_albedo(sat::SVector{3, Float64}, sun::SVector{3, Float64}, refl_data::Array{Float64, 2}; Rₑ = 6371.01e3, AM₀ = 1366.9) num_lat, num_lon = size(refl_data); # Verify no satellite collision has occured if norm(sat) < Rₑ error("albedo.m: The satellite has crashed into Earth!"); end # # Convert from Cartesian -> Spherical (r θ ϕ) sat_sph_t = SphericalFromCartesian()(sat); sun_sph_t = SphericalFromCartesian()(sun); # Adjust order to match template code to (θ ϵ r), with ϵ = (π/2) - ϕ sat_sph = SVector{3, Float64}(sat_sph_t.θ, (pi/2) - sat_sph_t.ϕ, sat_sph_t.r); sun_sph = SVector{3, Float64}(sun_sph_t.θ, (pi/2) - sun_sph_t.ϕ, sun_sph_t.r); # # REFL Indices sat_i, sat_j = rad2idx(sat_sph[1], sat_sph[2], num_lat, num_lon); sun_i, sun_j = rad2idx(sun_sph[1], sun_sph[2], num_lat, num_lon); # # SKIP GENERATING PLOTS FOR NOW cells = fill!(BitArray(undef, num_lat, num_lon), 1) earthfov!(cells, sat_sph, num_lat, num_lon) earthfov!(cells, sun_sph, num_lat, num_lon) cell_albedos = zeros(Float64, num_lat, num_lon) for i = 1:num_lat for j = 1:num_lon if cells[i, j] cell_albedos[i, j] = albedo_per_cell(sat, refl_data[i, j], i, j, sun_i, sun_j, num_lat, num_lon; Rₑ = Rₑ, AM₀ = AM₀) end end end return cell_albedos end """ Internal function that evaluates the albedo reflected by every cell. Arguments: - sat: Vector from center of Earth to satellite | SVector{3, Float64} - refl_data: Matrix containing the averaged reflectivity data for current cell | Array{Float64, 2} - cell_i: Latitude index of cell - cell_j: Longitude index of cell - sun_i: Latitude index of sun - sun_j: Longitude index of sun - num_lat: Number of latitude cells Earth's surface is divided into | Int - num_lon: Number of longitude cells Earth's surface is divided into | Int - Rₑ: (Optional) Average radius of the Earth (default is 6371010 m) | Scalar - AM₀: (Optional) Solar irradiance (default is 1366.9) | Scalar Returns: - P_out: Cell albedo generated by current cell towards the satellite | Float64 """ function albedo_per_cell(sat::SVector{3, Float64}, refl_cell_data::Float64, cell_i::Int, cell_j::Int, sun_i::Int, sun_j::Int, num_lat::Int, num_lon::Int; Rₑ = 6371.01e3, AM₀ = 1366.9)::Float64 ϕ_in = gridangle(cell_i, cell_j, sun_i, sun_j, num_lat, num_lon); ϕ_in = (ϕ_in > pi/2) ? pi/2 : ϕ_in E_inc = AM₀ * cellarea(cell_i, cell_j, num_lat, num_lon) * cos(ϕ_in) grid_theta, grid_phi = idx2rad(cell_i, cell_j, num_lat, num_lon) grid_spherical = Spherical(Rₑ, grid_theta, (pi/2) - grid_phi) grid = CartesianFromSpherical()(grid_spherical); sat_dist = norm(sat - grid); # Unit vector pointing from grid center to satellite ϕ_out = acos( ((sat - grid)/sat_dist)' * grid / norm(grid) ); # Angle to sat from grid P_out = E_inc * refl_cell_data * cos(ϕ_out) / (pi * sat_dist^2); return P_out end """ Loads in reflectivity data and stores it in a REFL struct """ function load_refl(path = "data/refl.jld2") temp = load(path) refl = REFL( temp["data"], temp["type"], temp["start_time"], temp["stop_time"]) return refl end end # module
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
1069
# [src/cellarea.jl] """ Calculate the area of a TOMS REFL Matrix cell for use in calculating Earth albedo. Arguments: - i: TOMS REFL Matrix latitude index of desired cell (0 < i ≤ sy) | Int - j: TOMS REFL Matrix longitude index of desired cell (0 < j ≤ sx) | Int - sy: Number of latitude cells in grid | Int - sx: Number of longitude cells in grid | Int - Rₑ: (Optional) Average radius of the Earth, defaults to meters | Scalar Returns: - A: Area of desired cell | Scalar """ function cellarea(i::Int, j::Int, sy::Int, sx::Int, Rₑ = 6371.01e3) # Average radius of the Earth, m _d2r = pi / 180.0; # Standard degrees to radians conversion θ, ϕ = idx2rad(i, j, sy, sx) # Convert to angles (radians) dϕ = (180.0 / sy) * _d2r; dθ = (360.0 / sx) * _d2r; # Get diagonal points ϕ_max = ϕ + dϕ/2; ϕ_min = ϕ - dϕ/2; A = (Rₑ^2) * dθ * (cos(ϕ_min) - cos(ϕ_max)); return A end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
3322
# [src/earthfov.jl] """ Determines which cells on the Earth's surface are in the field of view of an object in space (e.g., satellite, sun) using spherical coordinates. Arguments: - pos_sph: Vector from Earth to the object in question (e.g., satellite, sun) in ECEF frame using spherical coordinates [θ, ϵ, r] | [3,] - sy: Number of latitude cells Earth's surface is divided into | Int - sx: Number of longitude cells Earth's surface is divided into | Int - Rₑ: (Optional) Average radius of the Earth (m) | Float Returns: - fov: Cells on Earth's surface that are in the field of view of the given object | BitMatrix [sy, sx] """ function earthfov(pos_sph::Vector{Float64}, sy::Int, sx::Int, Rₑ = 6371.01e3)::BitMatrix # Matrix{Int8} if pos_sph[3] < Rₑ # LEO shortcut (?) - pos_sph[3] = pos_sph[3] + Rₑ @warn "Warning: radial distance is less than radius of the Earth. Adding in Earth's radius..." end # Small circle center θ₀, ϕ₀ = pos_sph[1], pos_sph[2] sϕ₀, cϕ₀ = sincos(ϕ₀) # Precompute to use in the for loop ρ = acos(Rₑ / pos_sph[3]) # FOV on Earth fov = BitArray(undef, sy, sx) # zeros(Int8, sy, sx) for i = 1:sy for j = 1:sx θ, ϕ = idx2rad(i, j, sy, sx) rd = acos( sϕ₀ * sin(ϕ) * cos(θ₀ - θ) + cϕ₀ * cos(ϕ) ); # Radial Distance fov[i, j] = (rd ≤ ρ) ? 1 : 0 # 1 if in FOV, 0 otherwise end end return fov end """ Determines which cells on the Earth's surface are in the field of view of an object in space (e.g., satellite, sun) using spherical coordinates. This version takes in and updates a field-of-view (FOV) matrix in place. Arguments: - fov: Cells on Earth's surface (updated in place with cells that are in field | Bitmatrix [sy, sx] of view of provided object) - pos_sph: Vector from Earth to the object in question (e.g., satellite, sun) | [3,] in ECEF frame using spherical coordinates [θ, ϵ, r] - sy: Number of latitude cells Earth's surface is divided into | Int - sx: Number of longitude cells Earth's surface is divided into | Int - Rₑ: (Optional) Average radius of the Earth (m) | Float """ function earthfov!(fov::BitMatrix, pos_sph::SVector{3, Float64}, sy::Int, sx::Int, Rₑ = 6371.01e3)::BitMatrix # Matrix{Int8} if pos_sph[3] < Rₑ # LEO shortcut pos_sph[3] = pos_sph[3] + Rₑ @info "Warning: radial distance is less than radius of the Earth. Adding in Earth's radius..." end # Small circle center θ₀, ϕ₀ = pos_sph[1], pos_sph[2] sϕ₀, cϕ₀ = sincos(ϕ₀) # Precompute to use in the for loop ρ = acos(Rₑ / pos_sph[3]) # FOV on Earth # fov = BitArray(undef, sy, sx) # zeros(Int8, sy, sx) for i = 1:sy for j = 1:sx if fov[i, j] θ, ϕ = idx2rad(i, j, sy, sx) rd = acos( sϕ₀ * sin(ϕ) * cos(θ₀ - θ) + cϕ₀ * cos(ϕ) ); # Radial Distance fov[i, j] = (rd ≤ ρ) ? 1 : 0 # 1 if in FOV, 0 otherwise end end end return fov end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
998
# [src/gridangle.jl] """ Determines the angle between two cells given their indices Arguments: - i₁: Latitude index of first cell in grid | Int - j₁: Longitude index of first cell in grid | Int - i₂: Latitude index of second cell in grid | Int - j₂: Longitude index of second cell in grid | Int - sy: Number of latitude cells in grid | Int - sx: Number of longitude cells in grid | Int Outputs: - ρ: Angle between the two grid index pairs (rad) | Float """ function gridangle(i₁, j₁, i₂, j₂, sy, sx) # Convert from index to angles θ₁, ϕ₁ = idx2rad(i₁, j₁, sy, sx); θ₂, ϕ₂ = idx2rad(i₂, j₂, sy, sx); # Determine the angular distance angle = sin(ϕ₁) * sin(ϕ₂) * cos(θ₁ - θ₂) + cos(ϕ₁) * cos(ϕ₂) # Correct numerical precision errors if (angle > 1.0) && (angle ≈ 1.0) angle = 1.0 elseif (angle < -1.0) && (angle ≈ -1.0) angle = -1.0 end return acos( angle ) end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
751
# [scr/idx2rad.jl] """ Transforms from TOMS REFL Matrix indices to spherical coordinates (radians) Arguments: - i: TOMS REFL Matrix latitude index of desired cell | Int - j: TOMS REFL Matrix longitude index of desired cell | Int - sy: Number of latitude cells in grid | Int - sx: Number of longitude cells in grid | Int Returns: (Tuple) - (θ, ϵ): Tuple of (Polar, Elevation) angle corresponding to center of desired cell (rad) | Tuple{Float, Float} """ function idx2rad(i::Int, j::Int, sy::Int, sx::Int)::Tuple{Float64, Float64} dx = 2 * pi / sx; dy = pi / sy; ϵ = pi - dy/2 - (i-1)*dy; θ = (j-1) * dx - pi + dx/2; return θ, ϵ end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
1057
# [scr/rad2idx.jl] """ Transforms location of a cell center in spherical coordinates (radians) to TOMS REFL Matrix indices. (NOTE that we are forcing a specific rounding style to match MATLAB's) Arguments: - θ: Polar angle corresponding to center of desired cell (rad) | Scalar - ϵ: Elevation angle corresponding to center of desired cell (rad) | Scalar - sy: Number of latitude cells in grid | Int - sx: Number of longitude cells in grid | Int Returns: - (i, j): TOMS REFL Matrix (latitude, longitude) index of desired cell | Tuple{Int, Int} """ function rad2idx(θ, ϵ, sy::Int, sx::Int)::Tuple{Int, Int} dx = 2.0 * pi / sx; # 360* / number of longitude cells dy = pi / sy; # 180* / number of latitude cells # Always round up to match MATLAB (vs default Bankers rounding) i = Int(round( (pi - dy/2.0 - ϵ)/dy , RoundNearestTiesAway) + 1); j = Int(round( (θ + pi - dx/2.0 )/dx , RoundNearestTiesAway) + 1); return i, j end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
1009
# [test/cellarea_tests.jl] using Test @testset "Cell Area" begin import EarthAlbedo.cellarea using JLD2 @testset "Default Dimensions" begin sy, sx = 288, 180 N = 50 is = Int.(round.(range(1, sy, length = N))) js = Int.(round.(range(1, sx, length = N))) @load "test_files/cellarea_default_dim.jld2" cellarea_default_dim for k = 1:length(is) i, j = is[k], js[k] a_jl = cellarea(i, j, sy, sx) @test cellarea_default_dim[k] ≈ a_jl end end; @testset "Changing a few things" begin sy, sx = 50, 300 N = 50 is = Int.(round.(range(1, sy, length = N))) js = Int.(round.(range(1, sx, length = N))) @load "test_files/cellarea_changes.jld2" cellarea_changes for k = 1:length(is) i, j = is[k], js[k] a_jl = cellarea(i, j, sy, sx) @test cellarea_changes[k] ≈ a_jl end end; end;
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
1643
# [test/earth_albedo_tests.jl] using Test using StaticArrays @testset "Earth Albedo Tests" begin import EarthAlbedo.earth_albedo import EarthAlbedo.load_refl import EarthAlbedo.REFL using JLD2, StaticArrays refl = load_refl("../data/refl.jld2"); refl_data = refl.data; @testset "Standard" begin sat = SVector{3, Float64}(0, 0, 8e6) sun = SVector{3, Float64}(0, 1e9, 0) sat_mat = [0, 0, 8e6] sun_mat = [0, 1e9, 0] @load "test_files/earth_alb_std.jld2" cell_albs_mat cell_albs_jl = earth_albedo(sat, sun, refl_data); @test cell_albs_jl ≈ cell_albs_mat atol=1e-12 end @testset "Additional Positions" begin # different sat, sun positions sats = [ 0 0 1e7; 0 1e8 0; 5e7 0 0; -1e6 1e7 1e8; -1e7 -1e7 -1e7; 0 1e9 0; 0 1e9 0 ] suns = [ 0 0 1e9; 0 0 1e9; 0 0 1e9; 1e10 1e5 0; -2e8 3300 9e9; 0 1e9 0; 0 -1e9 0 ] N = size(sats, 1) @load "test_files/earth_alb_extra.jld2" cell_albs_mats for i = 1:N sat_mat, sun_mat = sats[i, :], suns[i, :] sat = SVector{3, Float64}(sat_mat) sun = SVector{3, Float64}(sun_mat) cell_albs_jl = earth_albedo(sat, sun, refl_data); @test cell_albs_jl ≈ cell_albs_mats[i] atol=1e-12 end end end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
2964
# [test/earthfov.jl] using Test @testset "Earth FOV" begin import EarthAlbedo.earthfov using CoordinateTransformations using Random using JLD2 @testset "Defaults" begin sy, sx = 288, 180 # Run through some preset positions = [6.5e6 6.5e6 6.5e6; # Near the surface 1.0e9 1.0e9 1.0e9; # Far away 1.0e3 2.0e3 -1.0e3; # Too close (inside Earth) -> Should warn and then add in Re 0 0 8e7; # +Z 0 0 -8e7; # -Z 0 9e7 0; # +Y 0 -7e8 0; # -Y 7.5e6 0 0; # +X -8.2e6 0 0 # -X ] N = size(positions, 1) @load "test_files/earthfov_test.jld2" earthfov_test for i = 1:N sat_sph_t = SphericalFromCartesian()(positions[i, :]) sat_sph = [sat_sph_t.θ; (pi/2) - sat_sph_t.ϕ; sat_sph_t.r]; # Adjust order to match template code to (θ ϵ r), with ϵ = (π/2) - ϕ fov_jl = earthfov(sat_sph, sy, sx) @test earthfov_test[i] == fov_jl end end @testset "More tests" begin sy, sx = 288, 180 # # Throw in some more tests N = 50 Random.seed!(5) positions = ones(N, 3) * 6.5e6 + 3e6 * rand(N, 3) # Make at least Earth's radius away signs = randn(N, 3) signs[signs .> 0] .= 1 signs[signs .<= 0] .= -1 positions = positions .* signs @load "test_files/earthfov_more_tests.jld2" earthfov_more_tests for i = 1:N sat_sph_t = SphericalFromCartesian()(positions[i, :]) sat_sph = [sat_sph_t.θ; (pi/2) - sat_sph_t.ϕ; sat_sph_t.r]; # Adjust order to match template code to (θ ϵ r), with ϵ = (π/2) - ϕ fov_jl = earthfov(sat_sph, sy, sx) @test earthfov_more_tests[i] == fov_jl end end @testset "Modified Units" begin sy, sx = 20, 32 N = 50 Random.seed!(5) positions = ones(N, 3) * 6.5e6 + 3e6 * rand(N, 3) # Make at least Earth's radius away signs = randn(N, 3) signs[signs .> 0] .= 1 signs[signs .<= 0] .= -1 positions = positions .* signs ./ 1000 # Convert to kilometers Rₑ = 6371.01 # make km @load "test_files/earthfov_mod_units.jld2" earthfov_mod_units for i = 1:N sat_sph_t = SphericalFromCartesian()(positions[i, :]) sat_sph = [sat_sph_t.θ; (pi/2) - sat_sph_t.ϕ; sat_sph_t.r]; # Adjust order to match template code to (θ ϵ r), with ϵ = (π/2) - ϕ sat_sph_unconverted = [sat_sph[1], sat_sph[2], 1000 * sat_sph[3]] fov_jl = earthfov(sat_sph, sy, sx, Rₑ) @test earthfov_mod_units[i] == fov_jl end end end;
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
509
# [test/gridangle.jl] using Test @testset "Gridangle" begin import EarthAlbedo.gridangle using Random sy, sx = 288, 180 N = 150 Random.seed!(10) i1s, j1s = rand(1:sy, N), rand(1:sx, N) i2s, j2s = rand(1:sy, N), rand(1:sx, N) @load "test_files/gridangle_test.jld2" gridangle_test for k = 1:N i1, j1 = i1s[k], j1s[k] i2, j2 = i2s[k], j2s[k] ρ_jl = gridangle(i1, j1, i2, j2, sy, sx) @test ρ_jl ≈ gridangle_test[k] end end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
571
# [test/idx2rad.jl] using Test @testset "Idx2Rad" begin import EarthAlbedo.idx2rad using JLD2 sy, sx = 288, 180 N = 20 is = range(0, sy, length = N) js = range(0, sx, length = N) @load "test_files/idx2rad_test.jld2" idx2rad_test for iIdx = 1:N for jIdx = 1:N i, j = Int(round(is[iIdx])), Int(round(js[jIdx])) theta_jl, eps_jl = idx2rad(i, j, sy, sx) @test idx2rad_test[iIdx, jIdx, 1] == theta_jl @test idx2rad_test[iIdx, jIdx, 2] == eps_jl end end end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
1202
# [test/rad2idx.jl] using Test @testset "Rad2Idx" begin import EarthAlbedo.rad2idx using JLD2 @testset "Test 1" begin sy, sx = 288, 180 N = 15 θs = range(0, pi, length = N) # Cell center in spherical coordinates (radians) ϵs = range(0, 2 * pi, length = N) @load "test_files/rad2idx_test1.jld2" rad2idx_test1 for i = 1:N for j = 1:N θ, ϵ = θs[i], ϵs[j] i_jl, j_jl = rad2idx(θ, ϵ, sy, sx) @test rad2idx_test1[i, j, 1] == i_jl @test rad2idx_test1[i, j, 2] == j_jl end end end; @testset "Test 2" begin sy, sx = 150, 3 N = 15 θs = range(0, pi, length = N) # Cell center in spherical coordinates (radians) ϵs = range(0, 2 * pi, length = N) @load "test_files/rad2idx_Test2.jld2" rad2idx_test2 for i = 1:N for j = 1:N θ, ϵ = θs[i], ϵs[j] i_jl, j_jl = rad2idx(θ, ϵ, sy, sx) @test rad2idx_test2[i, j, 1] == i_jl @test rad2idx_test2[i, j, 2] == j_jl end end end end
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
code
400
# [test/runtests.jl] # Note that the comparison files for these tests were generated by # running the MATLAB code on the same variables and storing the results using EarthAlbedo using Test using JLD2 # Test scripts include("rad2idx_tests.jl") include("idx2rad_tests.jl") include("gridangle_tests.jl") include("earthfov_tests.jl") include("cellarea_tests.jl") include("earth_albedo_tests.jl")
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
docs
1937
[![CI](https://github.com/RoboticExplorationLab/EarthAlbedo.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/RoboticExplorationLab/EarthAlbedo.jl/actions/workflows/CI.yml) [![codecov](https://codecov.io/gh/RoboticExplorationLab/EarthAlbedo.jl/branch/main/graph/badge.svg?token=KVSPWD43MP)](https://codecov.io/gh/RoboticExplorationLab/EarthAlbedo.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](http://roboticexplorationlab.org/EarthAlbedo.jl/dev/) # EarthAlbedo.jl This package holds code used for the calculation of Earth's albedo for a given satellite, sun location, and set of reflectivity data. Note that this has been ported over from MATLAB's 'Earth Albedo Toolbox', and uses reflectivity data downloaded from https://bhanderi.dk/downloads/ . ## Downloading reflectivity data The reflectivity data is based off of a set measured reflectivity data known as the TOMS dataset. The surface of the Earth is divided into cells and the TOMS data corresponding to each cell are averaged and used to estimate the reflectivity of a given area of the Earth's surface. A version of this data has been processed and saved in the 'data/' folder. The source data can be downloaded by selecting the MATLAB converted TOMS data corresponding to the desired year from https://bhanderi.dk/downloads/ (e.g., refl = matread("tomsdata2005/2005/ga050101-051231.mat"), and then creating a struct. Note that the 'Earth Albedo Toolbox' does not need to be downloaded for this to work. ## Use The primary function is 'albedo(sat, sun, refl_data)' which takes in a vector containing the satellite and sun positions in the inertial frame (centered on Earth), as well as a set of reflectivity data. The provided data from the above link is from the TOMS dataset and is the average measured reflectivity for each section of Earth over a specified time period. ## Other Note that SatelliteDynamics.jl is used to convert between
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
docs
233
```@meta CurrentModule = EarthAlbedo ``` ```@contents Pages = ["api.md"] ``` # API This page is a dump of all the docstrings found in the code. ```@autodocs Modules = [EarthAlbedo] Order = [:module, :type, :function, :macro] ```
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
1.0.0
70342f0016548d36de354c1529064b194beeae95
docs
31
# EarthAlbedo.jl ## Overview
EarthAlbedo
https://github.com/RoboticExplorationLab/EarthAlbedo.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
1270
pushfirst!(LOAD_PATH, joinpath(@__DIR__, "..")) # add CubedSphere.jl to environment stack using Documenter, DocumenterCitations, Literate, GLMakie, CubedSphere ##### ##### Build and deploy docs ##### format = Documenter.HTML( collapselevel = 2, prettyurls = get(ENV, "CI", nothing) == "true", canonical = "https://clima.github.io/CubedSphere.jl/stable/", ) pages = [ "Home" => "index.md", "Conformal Cubed Sphere" => "conformal_cubed_sphere.md", "References" => "references.md", "Library" => [ "Contents" => "library/outline.md", "Public" => "library/public.md", "Private" => "library/internals.md", "Function index" => "library/function_index.md", ], ] bib = CitationBibliography(joinpath(@__DIR__, "src", "references.bib")) makedocs( sitename = "CubedSphere.jl", modules = [CubedSphere], plugins = [bib], format = format, pages = pages, doctest = true, clean = true, checkdocs = :exports ) deploydocs( repo = "github.com/CliMA/CubedSphere.jl.git", versions = ["stable" => "v^", "v#.#.#", "dev" => "dev"], forcepush = true, devbranch = "main", push_preview = true )
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
1911
import Elliptic.Jacobi: sn, cn, dn """ sn(z::Complex, m::Real) Compute the Jacobi elliptic function `sn(z | m)` following [AbramowitzStegun1964](@citet), Eq. 16.21.2. # References * [AbramowitzStegun1964](@cite) Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government Printing Office """ @inline function sn(z::Complex, m::Real) s = sn(real(z), m) s₁ = sn(imag(z), 1-m) c = cn(real(z), m) c₁ = cn(imag(z), 1-m) d = dn(real(z), m) d₁ = dn(imag(z), 1-m) return (s * d₁ + im * c * d * s₁ * c₁) / (c₁^2 + m * s^2 * s₁^2) end """ cn(z::Complex, m::Real) Compute the Jacobi elliptic function `cn(z | m)` following [AbramowitzStegun1964](@citet), Eq. 16.21.3. # References * [AbramowitzStegun1964](@cite) Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government Printing Office """ @inline function cn(z::Complex, m::Real) s = sn(real(z), m) s₁ = sn(imag(z), 1-m) c = cn(real(z), m) c₁ = cn(imag(z), 1-m) d = dn(real(z), m) d₁ = dn(imag(z), 1-m) return (c * c₁ - im * s * d * s₁ * d₁) / (c₁^2 + m * s^2 * s₁^2) end """ dn(z::Complex, m::Real) Compute the Jacobi elliptic function `dn(z | m)` following [AbramowitzStegun1964](@citet), Eq. 16.21.4. # References * [AbramowitzStegun1964](@cite) Abramowitz, M., & Stegun, I. A. (Eds.). (1964). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government Printing Office """ @inline function dn(z::Complex, m::Real) s = sn(real(z), m) s₁ = sn(imag(z), 1-m) c = cn(real(z), m) c₁ = cn(imag(z), 1-m) d = dn(real(z), m) d₁ = dn(imag(z), 1-m) return (d * c₁ * d₁ - im * m * s * c * s₁) / (c₁^2 + m * s^2 * s₁^2) end
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
6527
using FFTW, SpecialFunctions, TaylorSeries, ProgressBars function find_angles(φ) φ⁻ = -φ φ⁺ = +φ w⁻ = cis(φ⁻) w⁺ = cis(φ⁺) w′⁻ = (1 - w⁻) / (1 + w⁻/2) w′⁺ = (1 - w⁺) / (1 + w⁺/2) φ′⁻ = angle(w′⁻) φ′⁺ = angle(w′⁺) return φ′⁻, φ′⁺ end # cbrt goes from W to w # cbrt′ goes from W′ to w′ function Base.cbrt(z::Complex) r = abs(z) φ = angle(z) # ∈ [-π, +π] θ = φ / 3 return cbrt(r) * cis(θ) end function cbrt′(z::Complex) φ′⁻, φ′⁺ = find_angles(π/3) r = abs(z) φ = angle(z) # ∈ [-π, +π] θ = φ / 3 if 0 < θ ≤ φ′⁻ θ -= 2π/3 elseif φ′⁺ ≤ θ < 0 θ += 2π/3 end return r^(1/3) * cis(θ) end """ find_N(r; decimals=15) Return the required number of points we need to consider around the circle of radius `r` to compute the conformal map series coefficients up to `decimals` points. The number of points is computed based on the estimate of eq. (B9) in the paper by [Rancic-etal-1996](@citet). That is, is the smallest integer ``N`` (which is chosen to be a power of 2 so that the FFTs are efficient) for which ```math N - \\frac{7}{12} \\frac{\\mathrm{log}_{10}(N)}{\\mathrm{log}_{10}(r)} - \\frac{r + \\mathrm{log}_{10}(A₁ / C)}{-4 \\mathrm{log}_{10}(r)} > 0 ``` where ``r`` is the number of `decimals` we are aiming for and ```math C = \\frac{\\sqrt{3} \\Gamma(1/3) A₁^{1/3}}{256^{1/3} π} ``` with ``A₁`` an estimate of the ``Z^1`` Taylor series coefficient of ``W(Z)``. For ``A₁ ≈ 1.4771`` we get ``C ≈ 0.265``. # References * [Rancic-etal-1996](@cite) Rančić et al., *Q. J. R. Meteorol.*, (1996). """ function find_N(r; decimals=15) A₁ = 1.4771 # an approximation of the first coefficient C = sqrt(3) * gamma(1/3) * A₁^(1/3) / ((256)^(1/3) * π) N = 2 while N + 7/12 * log10(N) / (-log10(r)) - (decimals + log10(A₁ / C)) / (-4 * log10(r)) < 0 N *= 2 end return N end function _update_coefficients!(A, r, Nφ) Ncoefficients = length(A) Lφ = π/2 dφ = Lφ / Nφ φ = range(-Lφ/2 + dφ/2, stop=Lφ/2 - dφ/2, length=Nφ) z = @. r * cis(φ) W̃′ = 0z for k = Ncoefficients:-1:1 @. W̃′ += A[k] * (1 - z)^(4k) end w̃′ = @. cbrt′(W̃′) w̃ = @. (1 - w̃′) / (1 + w̃′/2) W̃ = @. w̃^3 k = collect(fftfreq(Nφ, Nφ)) g̃ = fft(W̃) ./ (Nφ * cis.(k * 4φ[1])) # divide with Nϕ * exp(-ikπ) to account for FFT's normalization g̃ = g̃[2:Ncoefficients+1] # drop coefficient for 0-th power A .= [real(g̃[k] / r^(4k)) for k in 1:Ncoefficients] return nothing end """ find_taylor_coefficients(r = 1 - 1e-7; Niterations = 30, maximum_coefficients = 256, Nevaluations = find_N(r; decimals=15)) Return the Taylor coefficients for the conformal map ``Z \\to W`` and also of the inverse map, ``W \\to Z``, where ``Z = z^4`` and ``W = w^3``. In particular, it returns the coefficients ``A_k`` of the Taylor series ```math W(Z) = \\sum_{k=1}^\\infty A_k Z^k ``` and also coefficients ``B_k`` the inverse Taylor series ```math Z(W) = \\sum_{k=1}^\\infty B_k Z^k ``` The algorithm to obtain the coefficients follows the procedure described in the Appendix of the paper by [Rancic-etal-1996](@citet) Arguments ========= * `r` (positional): the radius about the center and the edge of the cube used in the algorithm described by [Rancic-etal-1996](@citet). `r` must be less than 1; default: 1 - 10``^{-7}``. * `maximum_coefficients` (keyword): the truncation for the Taylor series; default: 256. * `Niterations` (keyword): the number of update iterations we perform on the Taylor coefficients ``A_k``; default: 30. * `Nevaluations` (keyword): the number of function evaluations in over the circle of radius `r`; default `find_N(r; decimals=15)`; see [`find_N`](@ref). Example ```@example julia> using CubedSphere julia> using CubedSphere: find_taylor_coefficients julia> A, B = find_taylor_coefficients(1 - 1e-4); [ Info: Computing the first 256 coefficients of the Taylor serieses [ Info: using 32768 function evaluations on a circle with radius 0.9999. 100.0%┣████████████████████████████████████████████┫ 30/30 [00:02<00:00, 12it/s] julia> A[1:10] 10-element Vector{Float64}: 1.4771306289227293 -0.3818351018795475 -0.05573057838030261 -0.008958833150428962 -0.007913155711663374 -0.004866251689037038 -0.003292515242976284 -0.0023548122712604494 -0.0017587029515141275 -0.0013568087584722149 ``` !!! info "Reproducing coefficient table by Rančić et al. (1996)" To reproduce the coefficients tabulated by [Rancic-etal-1996](@citet) use the default values, i.e., ``r = 1 - 10^{-7}``. # References * [Rancic-etal-1996](@cite) Rančić et al., *Q. J. R. Meteorol.*, (1996). """ function find_taylor_coefficients(r = 1 - 1e-7; Niterations = 30, maximum_coefficients = 256, Nevaluations = find_N(r; decimals=15)) (r < 0 || r ≥ 1) && error("r needs to be within 0 < r < 1") Ncoefficients = Int(Nevaluations/2) - 2 > maximum_coefficients ? maximum_coefficients : Int(Nevaluations/2) - 2 @info "Computing the first $Ncoefficients coefficients of the Taylor serieses" @info "using $Nevaluations function evaluations on a circle with radius $r." # initialize coefficients A_coefficients = rand(Ncoefficients) A_coefficients[1:min(maximum_coefficients, 30)] = CubedSphere.A_Rancic[2:min(maximum_coefficients, 30)+1] A_coefficients_old = deepcopy(A_coefficients) for iteration in ProgressBar(1:Niterations) _update_coefficients!(A_coefficients, r, Nevaluations) rel_error = (abs.(A_coefficients - A_coefficients_old) ./ abs.(A_coefficients))[1:maximum_coefficients] A_coefficients_old .= A_coefficients if all(rel_error .< 1e-15) iteration_str = iteration == 1 ? "iteration" : "iterations" @info "Algorithm converged after $iteration $iteration_str" break end end # convert to Taylor series; add coefficient for 0-th power A_series = Taylor1([0; A_coefficients]) B_series = inverse(A_series) # This is the inverse Taylor series B_series.coeffs[1] !== 0.0 && error("coefficient that corresponds to W^0 is non-zero; something went wrong") B_coefficients = B_series.coeffs[2:end] # don't return coefficient for 0-th power return A_coefficients, B_coefficients end
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
1604
using GLMakie using Elliptic using CubedSphere """ visualize_conformal_mapping(w; x_min, y_min, x_max, y_max, n_lines, n_samples, filepath="mapping.png") Visualize a complex mapping ``w(z)`` from the rectangle `x ∈ [x_min, x_max]`, `y ∈ [y_min, y_max]` using `n_lines` equally spaced lines in ``x`` and ``y`` each evaluated at `n_samples` sample points. """ function visualize_conformal_mapping(w; x_min, y_min, x_max, y_max, n_lines, n_samples, filepath="mapping.png") z₁ = [[x + im * y for x in range(x_min, x_max, length=n_samples)] for y in range(y_min, y_max, length=n_lines)] z₂ = [[x + im * y for y in range(y_min, y_max, length=n_samples)] for x in range(x_min, x_max, length=n_lines)] zs = cat(z₁, z₂, dims=1) ws = [w.(z) for z in zs] fig = Figure(size=(1200, 1200), fontsize=30) ax = Axis(fig[1, 1]; xlabel = "Re(w)", ylabel = "Im(w)", aspect = DataAspect()) [lines!(ax, real(z), imag(z), color = :grey) for z in zs] [lines!(ax, real(w), imag(w), color = :blue) for w in ws] save(filepath, fig) display(fig) end # maps square (±Ke, ±Ke) to circle of unit radius w(z) = (1 - cn(z, 1/2)) / sn(z, 1/2) Ke = Elliptic.F(π/2, 1/2) # ≈ 1.854 visualize_conformal_mapping(w; x_min = -Ke, y_min = -Ke, x_max = Ke, y_max = Ke, n_lines = 21, n_samples = 1000, filepath = "square_to_disk_conformal_mapping.png")
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
2714
# Compute Rančić coefficients with the method described in # [Rancic-etal-1996](@citet) using GLMakie using Printf include("compute_taylor_coefficients.jl") function plot_transformation(A, r, Nφ; Lφ=π/2) dφ = Lφ / Nφ φ = range(-Lφ/2 + dφ/2, stop=Lφ/2 - dφ/2, length=Nφ) z = @. r * cis(φ) Z = @. z^4 W = zeros(eltype(z), size(z)) W̃′ = zeros(eltype(z), size(z)) for k = length(A):-1:1 @. W += A[k] * z^(4k) @. W̃′ += A[k] * (1 - z)^(4k) end w = @. cbrt(W) w′ = @. (1 - w) / (1 + w/2) W′ = @. w′^3 w̃′ = @. cbrt′(W̃′) w̃ = @. (1 - w̃′) / (1 + w̃′/2) W̃ = @. w̃^3 fig = Figure(size=(1200, 1800), fontsize=30) axz = Axis(fig[1, 1], title="z") axZ = Axis(fig[1, 2], title="Z") axw = Axis(fig[2, 1], title="w") axW = Axis(fig[2, 2], title="W") axwp = Axis(fig[3, 1], title="w′") axWp = Axis(fig[3, 2], title="W′") lim = 2 for ax in (axw, axW) xlims!(ax, -lim, lim) ylims!(ax, -lim, lim) end lim = 1 for ax in (axwp, axWp) xlims!(ax, -lim, lim) ylims!(ax, -lim, lim) end lim = 1.5 for ax in (axz, axZ) xlims!(ax, -lim, lim) ylims!(ax, -lim, lim) end scatter!(axz, real.(z), imag.(z), linewidth=4) scatter!(axZ, real.(Z), imag.(Z)) scatter!(axw, real.(w), imag.(w), color=(:black, 0.5), linewidth=8, label=L"w") scatter!(axw, real.(w̃), imag.(w̃), color=(:orange, 0.8), linewidth=4, label=L"w̃") scatter!(axW, real.(W), imag.(W), color=(:black, 0.5), linewidth=8, label=L"W") scatter!(axW, real.(W̃), imag.(W̃), color=(:orange, 0.8), linewidth=4, label=L"W̃") scatter!(axwp, real.(w′), imag.(w′), color=(:black, 0.5), linewidth=8, label=L"w′") scatter!(axwp, real.(w̃′), imag.(w̃′), color=(:orange, 0.8), linewidth=4, label=L"w̃′") scatter!(axWp, real.(W′), imag.(W′), color=(:black, 0.5), linewidth=8, label=L"W′") scatter!(axWp, real.(W̃′), imag.(W̃′), color=(:orange, 0.8), linewidth=4, label=L"W̃′") for ax in [axw, axW, axwp, axWp] axislegend(ax) end save("consistency.png", fig) return fig end r = 1 - 1e-6 Nφ = find_N(r; decimals=10) maximum_coefficients = 128 Ncoefficients = Int(Nφ/2) - 2 > maximum_coefficients ? maximum_coefficients : Int(Nφ/2) - 2 Niterations = 30 A, B = find_taylor_coefficients(r; maximum_coefficients, Niterations) @info "After $Niterations iterations we have:" for (k, Aₖ) in enumerate(A[1:30]) @printf("k = %2i, A ≈ %+.14f, A_Rancic = %+.14f, |A - A_Rancic| = %.2e \n", k, real(Aₖ), CubedSphere.A_Rancic[k+1], abs(CubedSphere.A_Rancic[k+1] - real(Aₖ))) end fig = plot_transformation(A, r, Nφ) fig
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
268
module CubedSphere export conformal_cubed_sphere_mapping, conformal_cubed_sphere_inverse_mapping, cartesian_to_lat_lon using TaylorSeries include("rancic_taylor_coefficients.jl") include("conformal_cubed_sphere.jl") include("cartesian_to_lat_lon.jl") end # module
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
1073
""" cartesian_to_lat_lon(x, y, z) Convert 3D cartesian coordinates `(x, y, z)` on the sphere to latitude-longitude. Returns a tuple `(latitude, longitude)` in degrees. The equatorial plane falls at ``z = 0``, latitude is the angle measured from the equatorial plane, and longitude is measured anti-clockwise (eastward) from ``x``-axis (``y = 0``) about the ``z``-axis. Examples ======== Find latitude-longitude of the North Pole ```jldoctest 1 julia> using CubedSphere julia> x, y, z = (0, 0, 6.4e6); # cartesian coordinates of North Pole [in meters] julia> cartesian_to_lat_lon(x, y, z) (90.0, 0.0) ``` Let's confirm that for few points on the unit sphere we get the answers we expect. ```jldoctest 1 julia> cartesian_to_lat_lon(√2/4, -√2/4, √3/2) (59.99999999999999, -45.0) julia> cartesian_to_lat_lon(-√6/4, √2/4, -√2/2) (-45.00000000000001, 150.0) ``` """ cartesian_to_lat_lon(x, y, z) = cartesian_to_latitude(x, y, z), cartesian_to_longitude(x, y, z) cartesian_to_latitude(x, y, z) = atand(z, hypot(x, y)) cartesian_to_longitude(x, y, z) = atand(y, x)
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
4112
W_Rancic(Z) = sum(A_Rancic[k] * Z^(k-1) for k in length(A_Rancic):-1:1) Z_Rancic(W) = sum(B_Rancic[k] * W^(k-1) for k in length(B_Rancic):-1:1) """ conformal_cubed_sphere_mapping(x, y; W_map=W_Rancic) Conformal mapping from a face of a cube onto the equivalent sector of a sphere with unit radius. Map the north-pole face of a cube with coordinates ``(x, y)`` onto the equivalent sector of the sphere with coordinates ``(X, Y, Z)``. The cube's face oriented normal to ``z``-axis and its coordinates must lie within the range ``-1 ≤ x ≤ 1``, ``-1 ≤ y ≤ 1`` with its center at ``(x, y) = (0, 0)``. The coordinates ``X, Y`` increase in the same direction as ``x, y``. The numerical conformal mapping used here is described by [Rancic-etal-1996](@citet). This is a Julia translation of [MATLAB code from MITgcm](http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/high_res_cube/matlab-grid-generator/map_xy2xyz.m?view=markup) that is based on Fortran 77 code from Jim Purser & Misha Rančić. Examples ======== The center of the cube's face ``(x, y) = (0, 0)`` is mapped onto ``(X, Y, Z) = (0, 0, 1)`` ```jldoctest julia> using CubedSphere julia> conformal_cubed_sphere_mapping(0, 0) (0, 0, 1.0) ``` and the edge of the cube's face at ``(x, y) = (1, 1)`` is mapped onto ``(X, Y, Z) = (√3/3, √3/3, √3/3)`` ```jldoctest julia> using CubedSphere julia> conformal_cubed_sphere_mapping(1, 1) (0.5773502691896256, 0.5773502691896256, 0.5773502691896257) ``` # References * [Rancic-etal-1996](@cite) Rančić et al., *Q. J. R. Meteorol.*, (1996). """ function conformal_cubed_sphere_mapping(x, y; W_map=W_Rancic) (abs(x) > 1 || abs(y) > 1) && throw(ArgumentError("(x, y) must lie within [-1, 1] x [-1, 1]")) X = xᶜ = abs(x) Y = yᶜ = abs(y) kxy = yᶜ > xᶜ xᶜ = 1 - xᶜ yᶜ = 1 - yᶜ kxy && (xᶜ = 1 - Y) kxy && (yᶜ = 1 - X) Z = ((xᶜ + im * yᶜ) / 2)^4 W = W_map(Z) im³ = im^(1/3) ra = √3 - 1 cb = -1 + im cc = ra * cb / 2 W = im³ * (W * im)^(1/3) W = (W - ra) / (cb + cc * W) X, Y = reim(W) H = 2 / (1 + X^2 + Y^2) X = X * H Y = Y * H Z = H - 1 if kxy X, Y = Y, X end y < 0 && (Y = -Y) x < 0 && (X = -X) # Fix truncation for x = 0 or y = 0. x == 0 && (X = 0) y == 0 && (Y = 0) return X, Y, Z end """ conformal_cubed_sphere_inverse_mapping(X, Y, Z; Z_map=Z_Rancic) Inverse mapping for conformal cube sphere for quadrant of North-pole face in which `X` and `Y` are both positive. All other mappings to other cube face coordinates can be recovered from rotations of this map. There a 3 other quadrants for the north-pole face and five other faces for a total of twenty-four quadrants. Because of symmetry only the reverse for a single quadrant is needed. Because of branch cuts and the complex transform the inverse mappings are multi-valued in general, using a single quadrant case allows a simple set of rules to be applied. The mapping is valid for the cube face quadrant defined by ``0 < x < 1`` and ``0 < y < 1``, where a full cube face has extent ``-1 < x < 1`` and ``-1 < y < 1``. The quadrant for the mapping is from a cube face that has "north-pole" at its center ``(x=0, y=0)``. i.e., has `X, Y, Z = (0, 0, 1)` at its center. The valid ranges of `X` and `Y` for this mapping and convention are a quadrant defined be geodesics that connect the points A, B, C and D, on the shell of a sphere of radius ``R`` with `X`, `Y` coordinates as follows ``` A = (0, 0) B = (√2, 0) C = (√3/3, √3/3) D = (0, √2) ``` """ function conformal_cubed_sphere_inverse_mapping(X, Y, Z; Z_map=Z_Rancic) H = Z + 1 Xˢ = X / H Yˢ = Y / H ω = Xˢ + im * Yˢ ra = √3 - 1 cb = -1 + im cc = ra * cb / 2 ω⁰ = (ω * cb + ra) / (1 - ω * cc) W⁰ = im * ω⁰^3 * im Z = Z_map(W⁰) z = 2 * Z^(1/4) x, y = reim(z) kxy = abs(y) > abs(x) xx = x yy = y !kxy && ( x = 1 - abs(yy) ) !kxy && ( y = 1 - abs(xx) ) xf = x yf = y ( X < Y ) && ( xf = y ) ( X < Y ) && ( yf = x ) x = xf y = yf return x, y end
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
6527
using FFTW, SpecialFunctions, TaylorSeries, ProgressBars function find_angles(φ) φ⁻ = -φ φ⁺ = +φ w⁻ = cis(φ⁻) w⁺ = cis(φ⁺) w′⁻ = (1 - w⁻) / (1 + w⁻/2) w′⁺ = (1 - w⁺) / (1 + w⁺/2) φ′⁻ = angle(w′⁻) φ′⁺ = angle(w′⁺) return φ′⁻, φ′⁺ end # cbrt goes from W to w # cbrt′ goes from W′ to w′ function Base.cbrt(z::Complex) r = abs(z) φ = angle(z) # ∈ [-π, +π] θ = φ / 3 return cbrt(r) * cis(θ) end function cbrt′(z::Complex) φ′⁻, φ′⁺ = find_angles(π/3) r = abs(z) φ = angle(z) # ∈ [-π, +π] θ = φ / 3 if 0 < θ ≤ φ′⁻ θ -= 2π/3 elseif φ′⁺ ≤ θ < 0 θ += 2π/3 end return r^(1/3) * cis(θ) end """ find_N(r; decimals=15) Return the required number of points we need to consider around the circle of radius `r` to compute the conformal map series coefficients up to `decimals` points. The number of points is computed based on the estimate of eq. (B9) in the paper by [Rancic-etal-1996](@citet). That is, is the smallest integer ``N`` (which is chosen to be a power of 2 so that the FFTs are efficient) for which ```math N - \\frac{7}{12} \\frac{\\mathrm{log}_{10}(N)}{\\mathrm{log}_{10}(r)} - \\frac{r + \\mathrm{log}_{10}(A₁ / C)}{-4 \\mathrm{log}_{10}(r)} > 0 ``` where ``r`` is the number of `decimals` we are aiming for and ```math C = \\frac{\\sqrt{3} \\Gamma(1/3) A₁^{1/3}}{256^{1/3} π} ``` with ``A₁`` an estimate of the ``Z^1`` Taylor series coefficient of ``W(Z)``. For ``A₁ ≈ 1.4771`` we get ``C ≈ 0.265``. # References * [Rancic-etal-1996](@cite) Rančić et al., *Q. J. R. Meteorol.*, (1996). """ function find_N(r; decimals=15) A₁ = 1.4771 # an approximation of the first coefficient C = sqrt(3) * gamma(1/3) * A₁^(1/3) / ((256)^(1/3) * π) N = 2 while N + 7/12 * log10(N) / (-log10(r)) - (decimals + log10(A₁ / C)) / (-4 * log10(r)) < 0 N *= 2 end return N end function _update_coefficients!(A, r, Nφ) Ncoefficients = length(A) Lφ = π/2 dφ = Lφ / Nφ φ = range(-Lφ/2 + dφ/2, stop=Lφ/2 - dφ/2, length=Nφ) z = @. r * cis(φ) W̃′ = 0z for k = Ncoefficients:-1:1 @. W̃′ += A[k] * (1 - z)^(4k) end w̃′ = @. cbrt′(W̃′) w̃ = @. (1 - w̃′) / (1 + w̃′/2) W̃ = @. w̃^3 k = collect(fftfreq(Nφ, Nφ)) g̃ = fft(W̃) ./ (Nφ * cis.(k * 4φ[1])) # divide with Nϕ * exp(-ikπ) to account for FFT's normalization g̃ = g̃[2:Ncoefficients+1] # drop coefficient for 0-th power A .= [real(g̃[k] / r^(4k)) for k in 1:Ncoefficients] return nothing end """ find_taylor_coefficients(r = 1 - 1e-7; Niterations = 30, maximum_coefficients = 256, Nevaluations = find_N(r; decimals=15)) Return the Taylor coefficients for the conformal map ``Z \\to W`` and also of the inverse map, ``W \\to Z``, where ``Z = z^4`` and ``W = w^3``. In particular, it returns the coefficients ``A_k`` of the Taylor series ```math W(Z) = \\sum_{k=1}^\\infty A_k Z^k ``` and also coefficients ``B_k`` the inverse Taylor series ```math Z(W) = \\sum_{k=1}^\\infty B_k Z^k ``` The algorithm to obtain the coefficients follows the procedure described in the Appendix of the paper by [Rancic-etal-1996](@citet) Arguments ========= * `r` (positional): the radius about the center and the edge of the cube used in the algorithm described by [Rancic-etal-1996](@citet). `r` must be less than 1; default: 1 - 10``^{-7}``. * `maximum_coefficients` (keyword): the truncation for the Taylor series; default: 256. * `Niterations` (keyword): the number of update iterations we perform on the Taylor coefficients ``A_k``; default: 30. * `Nevaluations` (keyword): the number of function evaluations in over the circle of radius `r`; default `find_N(r; decimals=15)`; see [`find_N`](@ref). Example ```@example julia> using CubedSphere julia> using CubedSphere: find_taylor_coefficients julia> A, B = find_taylor_coefficients(1 - 1e-4); [ Info: Computing the first 256 coefficients of the Taylor serieses [ Info: using 32768 function evaluations on a circle with radius 0.9999. 100.0%┣████████████████████████████████████████████┫ 30/30 [00:02<00:00, 12it/s] julia> A[1:10] 10-element Vector{Float64}: 1.4771306289227293 -0.3818351018795475 -0.05573057838030261 -0.008958833150428962 -0.007913155711663374 -0.004866251689037038 -0.003292515242976284 -0.0023548122712604494 -0.0017587029515141275 -0.0013568087584722149 ``` !!! info "Reproducing coefficient table by Rančić et al. (1996)" To reproduce the coefficients tabulated by [Rancic-etal-1996](@citet) use the default values, i.e., ``r = 1 - 10^{-7}``. # References * [Rancic-etal-1996](@cite) Rančić et al., *Q. J. R. Meteorol.*, (1996). """ function find_taylor_coefficients(r = 1 - 1e-7; Niterations = 30, maximum_coefficients = 256, Nevaluations = find_N(r; decimals=15)) (r < 0 || r ≥ 1) && error("r needs to be within 0 < r < 1") Ncoefficients = Int(Nevaluations/2) - 2 > maximum_coefficients ? maximum_coefficients : Int(Nevaluations/2) - 2 @info "Computing the first $Ncoefficients coefficients of the Taylor serieses" @info "using $Nevaluations function evaluations on a circle with radius $r." # initialize coefficients A_coefficients = rand(Ncoefficients) A_coefficients[1:min(maximum_coefficients, 30)] = CubedSphere.A_Rancic[2:min(maximum_coefficients, 30)+1] A_coefficients_old = deepcopy(A_coefficients) for iteration in ProgressBar(1:Niterations) _update_coefficients!(A_coefficients, r, Nevaluations) rel_error = (abs.(A_coefficients - A_coefficients_old) ./ abs.(A_coefficients))[1:maximum_coefficients] A_coefficients_old .= A_coefficients if all(rel_error .< 1e-15) iteration_str = iteration == 1 ? "iteration" : "iterations" @info "Algorithm converged after $iteration $iteration_str" break end end # convert to Taylor series; add coefficient for 0-th power A_series = Taylor1([0; A_coefficients]) B_series = inverse(A_series) # This is the inverse Taylor series B_series.coeffs[1] !== 0.0 && error("coefficient that corresponds to W^0 is non-zero; something went wrong") B_coefficients = B_series.coeffs[2:end] # don't return coefficient for 0-th power return A_coefficients, B_coefficients end
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
1073
# Coefficients taken from Table B1 of Rančić et al., (1996): Quarterly Journal of the Royal Meteorological Society, # A global shallow-water model using an expanded spherical cube - Gnomonic versus conformal coordinates A_Rancic = [ +0.00000000000000, +1.47713062600964, -0.38183510510174, -0.05573058001191, -0.00895883606818, -0.00791315785221, -0.00486625437708, -0.00329251751279, -0.00235481488325, -0.00175870527475, -0.00135681133278, -0.00107459847699, -0.00086944475948, -0.00071607115121, -0.00059867100093, -0.00050699063239, -0.00043415191279, -0.00037541003286, -0.00032741060100, -0.00028773091482, -0.00025458777519, -0.00022664642371, -0.00020289261022, -0.00018254510830, -0.00016499474461, -0.00014976117168, -0.00013646173946, -0.00012478875823, -0.00011449267279, -0.00010536946150, -0.00009725109376 ] A_series = Taylor1(A_Rancic) B_series = inverse(A_series) # This is the inverse Taylor series. B_Rancic = B_series.coeffs
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
code
1593
using Test using CubedSphere using Documenter B_Rancic_correct = [ 0.00000000000000, 0.67698819751739, 0.11847293456554, 0.05317178134668, 0.02965810434052, 0.01912447304028, 0.01342565621117, 0.00998873323180, 0.00774868996406, 0.00620346979888, 0.00509010874883, 0.00425981184328, 0.00362308956077, 0.00312341468940, 0.00272360948942, 0.00239838086555, 0.00213001905118, 0.00190581316131, 0.00171644156404, 0.00155493768255, 0.00141600715207, 0.00129556597754, 0.00119042140226, 0.00109804711790, 0.00101642216628, 0.00094391366522, 0.00087919021224, 0.00082115710311, 0.00076890728775, 0.00072168382969, 0.00067885087750 ] @testset "CubedSphere" begin @testset "Rančić et al. (1996) Taylor coefficients" begin for k in eachindex(B_Rancic_correct) @test CubedSphere.B_Rancic[k] ≈ B_Rancic_correct[k] end end @testset "Rančić et al. (1996) inverse mapping" begin ξ = collect(0:0.1:1) η = collect(0:0.1:1) ξ′ = 0ξ η′ = 0η # transform from cube -> sphere -> cube for j in eachindex(η), i in eachindex(ξ) ξ′[i], η′[j] = conformal_cubed_sphere_inverse_mapping(conformal_cubed_sphere_mapping(ξ[i], η[j])...) end @test ξ ≈ ξ′ && η ≈ η′ end @test_throws ArgumentError conformal_cubed_sphere_mapping(2, 0.5) @test_throws ArgumentError conformal_cubed_sphere_mapping(0.5, -2) end @time @testset "Doctests" begin doctest(CubedSphere) end
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
361
CubedSphere.jl Release Notes =============================== v0.3.0 ------ We moved `conformal_map_tylor_coefficients.jl` and `complex_jacobi_ellptic.jl` from main package to `sandbox`. This allowed us to remove most dependencies of `CubedSphere.jl`. `sandbox` now contains a Julia environment with the packages needed to execute the scripts in that folder.
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git
[ "MIT" ]
0.3.0
51bb25de518b4c62b7cdf26e5fbb84601bb27a60
docs
732
# CubedSphere.jl <p align="center"> <a href="https://clima.github.io/CubedSphere.jl/stable"> <img alt="Stable documentation" src="https://img.shields.io/badge/documentation-stable%20release-blue?style=flat-square"> </a> <a href="https://clima.github.io/CubedSphere.jl/dev"> <img alt="Development documentation" src="https://img.shields.io/badge/documentation-in%20development-orange?style=flat-square"> </a> </p> Tools for generating cubed sphere grids and solving partial differential equations on the sphere. ![cubed-sphere](https://github.com/CliMA/CubedSphere.jl/assets/7112768/942466fd-ec6e-430e-9faf-f327c8792890) (A visualization of the conformal transform that maps the faces of a cube onto the sphere.)
CubedSphere
https://github.com/CliMA/CubedSphere.jl.git