licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.4
781292162fd5bfe8d001210f9dddbb6baa509bf4
docs
2400
```@meta CurrentModule = Fetch ``` # Fetch Documentation for [Fetch](https://github.com/foldfelis/Fetch.jl). ## Quick start The package can be installed with the Julia package manager. From the Julia REPL, type ] to enter the Pkg REPL mode and run: ```julia pkg> add Fetch ``` ## Download file from Google drive Download file or Google Sheet from Google drive via the share link: ```julia using Fetch link = "https://drive.google.com/file/d/1OiX6gEWRm57kb1H8L0K_HWN_pzc-sk8y/view?usp=sharing" gdownload(link, pwd()) ``` ## Download dataset from Kaggle Download dataset from Kaggle via the name: ```julia using Fetch dataset = "ningjingyu/fetchtest" kdownload(dataset, pwd()) ``` Or via the url of the home page of the dataset: ```julia using Fetch url = "https://www.kaggle.com/ningjingyu/fetchtest" kdownload(url, pwd()) ``` ## Intergrate with DataDeps.jl According to [DataDeps.jl](https://github.com/oxinabox/DataDeps.jl), `DataDep` can be construct as following: ```julia DataDep( name::String, message::String, remote_path::Union{String,Vector{String}...}, [checksum::Union{String,Vector{String}...},]; fetch_method=fetch_default post_fetch_method=identity ) ``` By using `Fetch.jl`, one can upload their dataset to Google drive, and construct `DataDep` by setting `fetch_method=gdownload`. ```julia using DataDeps using Fetch register(DataDep( "FetchTest", """Test dataset""", "https://drive.google.com/file/d/1OiX6gEWRm57kb1H8L0K_HWN_pzc-sk8y/view?usp=sharing", "b083597a25bec4c82c2060651be40c0bb71075b472d3b0fabd85af92cc4a7076", fetch_method=gdownload, post_fetch_method=unpack )) datadep"FetchTest" ``` Or to Kaggle ```julia using DataDeps using Fetch register(DataDep( "FetchTest", """Test dataset""", "ningjingyu/fetchtest", "65492e1f4c6affb7955125e5e4cece2bb547e482627f3af9812c06448dae40a9", fetch_method=kdownload, post_fetch_method=unpack )) datadep"FetchTest" ``` According to the document of [Kaggle-api](https://github.com/Kaggle/kaggle-api#api-credentials) one needs to set their environment variables `KAGGLE_USERNAME` and `KAGGLE_KEY`, or simply download the api token from Kaggle, and place this file in the location `~/.kaggle/kaggle.json` (on Windows in the location `C:\Users\<Windows-username>\.kaggle\kaggle.json`). ## Index ```@index ``` ```@autodocs Modules = [Fetch] ```
Fetch
https://github.com/foldfelis/Fetch.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
761
using Documenter, Literate using Tk Literate.markdown("../examples/manipulate.jl", "src/examples"; documenter=true) Literate.markdown("../examples/process.jl", "src/examples"; documenter=true) Literate.markdown("../examples/sketch.jl", "src/examples"; documenter=true) Literate.markdown("../examples/test.jl", "src/examples"; documenter=true) makedocs(modules = [Tk], sitename = "Tk.jl", pages = Any[ "Home" => "index.md", "More" => Any[ "Manipulate" => "examples/manipulate.md", "Process" => "examples/process.md", "Sketch" => "examples/sketch.md", "Test" => "examples/test.md" ], "API Reference" => "api.md" ])
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
5508
# This is an example mimicking RStudio's `manipulate` package (inspired by Mathematica's no doubt) # The manipulate function makes it easy to create "interactive" GUIs. In this case, we can # dynamically control parameters of a `Winston` graph. # To add a control is easy. There are just a few: slider, picker, checkbox, button, and entry using Winston using Tk using Compat; import Compat.String function render(c, p) ctx = getgc(c) Base.Graphics.set_source_rgb(ctx, 1, 1, 1) Base.Graphics.paint(ctx) Winston.page_compose(p, Tk.cairo_surface(c)) reveal(c) Tk.update() end # do a manipulate type thing # context to store dynamic values module ManipulateContext using Winston end abstract type ManipulateWidget end get_label(widget::ManipulateWidget) = widget.label mutable struct SliderWidget <: ManipulateWidget nm label initial rng end function make_widget(parent, widget::SliderWidget) sl = Slider(parent, widget.rng) set_value(sl, widget.initial) sl end slider(nm::AbstractString, label::AbstractString, rng::UnitRange, initial::Integer) = SliderWidget(nm, label, initial, rng) slider(nm::AbstractString, label::AbstractString, rng::UnitRange) = slider(nm, label, rng, minimum(rng)) slider(nm::AbstractString, rng::UnitRange) = slider(nm, nm, rng, minimum(rng)) mutable struct PickerWidget <: ManipulateWidget nm label initial vals end function make_widget(parent, widget::PickerWidget) cb = Combobox(parent) set_items(cb, widget.vals) set_value(cb, widget.initial) set_editable(cb, false) cb end picker(nm::AbstractString, label::AbstractString, vals::Vector{T}, initial) where {T <: AbstractString} = PickerWidget(nm, label, initial, vals) picker(nm::AbstractString, label::AbstractString, vals::Vector{T}) where {T <: AbstractString} = picker(nm, label, vals, vals[1]) picker(nm::AbstractString, vals::Vector{T}) where {T <: AbstractString} = picker(nm, nm, vals) picker(nm::AbstractString, label::AbstractString, vals::Dict, initial) = PickerWidget(nm, label, vals, initial) picker(nm::AbstractString, label::AbstractString, vals::Dict) = PickerWidget(nm, label, vals, [string(k) for (k,v) in vals][1]) picker(nm::AbstractString, vals::Dict) = picker(nm, nm, vals) mutable struct CheckboxWidget <: ManipulateWidget nm label initial end function make_widget(parent, widget::CheckboxWidget) w = Checkbutton(parent, widget.label) set_value(w, widget.initial) w end get_label(widget::CheckboxWidget) = nothing checkbox(nm::AbstractString, label::AbstractString, initial::Bool) = CheckboxWidget(nm, label, initial) checkbox(nm::AbstractString, label::AbstractString) = checkbox(nm, label, false) mutable struct ButtonWidget <: ManipulateWidget label nm end make_widget(parent, widget::ButtonWidget) = Button(parent, widget.label) get_label(widget::ButtonWidget) = nothing button(label::AbstractString) = ButtonWidget(label, nothing) # Add text widget to gather one-line of text mutable struct EntryWidget <: ManipulateWidget nm label initial end make_widget(parent, widget::EntryWidget) = Entry(parent, widget.initial) entry(nm::AbstractString, label::AbstractString, initial::AbstractString) = EntryWidget(nm, label, initial) entry(nm::AbstractString, initial::AbstractString) = EntryWidget(nm, nm, initial) entry(nm::AbstractString) = EntryWidget(nm, nm, "{}") # Expression returns a plot object. Use names as values function manipulate(ex::(Union{Symbol,Expr}), controls...) widgets = Array(Tk.Widget, 0) w = Toplevel("Manipulate", 800, 500) pack_stop_propagate(w) graph = Canvas(w, 500, 500); pack(graph, side="left") control_pane= Frame(w); pack(control_pane, side="left", expand=true, fill="both") ## create, layout widgets for i in controls widget = make_widget(control_pane, i) push!(widgets, widget) formlayout(widget, get_label(i)) end get_values() = [get_value(i) for i in widgets] get_nms() = map(u -> u.nm, controls) function get_vals() d = Dict() # return Dict of values vals = get_values(); keys = get_nms() for i in 1:length(vals) if !isa(keys[i], Nothing) d[keys[i]] = vals[i] end end d end function dict_to_module(d::Dict) ## stuff values into Manipulate Context for (k,v) in d eval(ManipulateContext, :($(Symbol(k)) = $v)) end end function make_graphic(x...) d = get_vals() dict_to_module(d) p = eval(ManipulateContext, ex) render(graph, p) end map(u -> callback_add(u, make_graphic), widgets) widgets end # we need to make an expression. # here we need to # * use semicolon (perhaps) # * return p, the FramedPlot object to draw ex = quote x = linspace( 0, n * pi, 100 ) c = cos(x) s = sin(x) p = FramedPlot() setattr(p, "title", title) if fillbetween add(p, FillBetween(x, c, x, s) ) end add(p, Curve(x, c, "color", color) ) add(p, Curve(x, s, "color", "blue") ) file(p, "example1.png") p end obj = manipulate(ex, slider("n", "[0, n*pi]", 1:10) ,entry("title", "Title", "title") ,checkbox("fillbetween", "Fill between?", true) ,picker("color", "Cos color", ["red", "green", "yellow"]) ,button("update") )
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
181
f = "logo.gif" using Base64 function process_file(f) a = readchomp(`cat $f`) "<!-- $f -->\n<img src='data:image/gif;base64,$(base64encode(a))'></img>" end process_file(f)
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
531
using Tk using Graphics function sketch_window() w = Window("drawing", 400, 300) c = Canvas(w) pack(c) lastx = 0 lasty = 0 cr = getgc(c) set_source_rgb(cr, 1, 1, 1) paint(cr) reveal(c) set_source_rgb(cr, 0, 0, 0.85) c.mouse.button1press = function (c, x, y) lastx = x; lasty = y end c.mouse.button1motion = function (c, x, y) move_to(cr, lastx, lasty) line_to(cr, x, y) stroke(cr) reveal(c) lastx = x; lasty = y end c end
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
1073
# Example of widgets put into container with change handler assigned using Tk w = Toplevel("Test window", false) # pack in tk frame for themed widgets f = Frame(w) configure(f, Dict(:padding => [3,3,2,2], :relief=>"groove")) pack(f, expand=true, fill="both") # widgets b = Button(f, "one") cb = Checkbutton(f, "checkbutton") rg = Radio(f, ["one", "two", "trhee"]) sc = Slider(f, 1:10) sl = Spinbox(f, 1:10) e = Entry(f, "starting text") widgets = (b, cb, rg, sc, sl, e) # oops, typo! set_items(rg.buttons[3], "three") # packing pack_style = ["pack", "grid", "formlayout"][3] if pack_style == "pack" map(pack, widgets) map(u -> pack_configure(u, Dict(:anchor => "w")), widgets) elseif pack_style == "grid" for i in 1:length(widgets) grid(widgets[i], i, 1) grid_configure(widgets[i], Dict(:sticky => "we")) end else map(u -> formlayout(u, "label"), widgets) end # bind a callback to each widget change_handler(path,xs...) = println(map(get_value, widgets)) map(u -> callback_add(u, change_handler), widgets) set_visible(w, true)
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
2726
## simple workspace browser for julia using Tk ## Some functions to work with a module function get_names(m::Module) sort!(map(string, names(m))) end unique_id(v::Symbol, m::Module) = isdefined(m,v) ? unique_id(Base.eval(m,v)) : "" unique_id(x) = string(objectid(x)) ## short_summary ## can customize description here short_summary(x) = summary(x) short_summary(x::AbstractString) = "A string" ## update ids, returning false if the same, true if not __ids__ = Vector{AbstractString}() function update_ids(m::Module) global __ids__ nms = get_names(m) nms = filter(u -> u != "__ids__", nms) a_ids = map(u -> unique_id(Symbol(u), m), nms) if __ids__ == a_ids false else __ids__ = a_ids true end end negate(x::Bool, val::Bool) = val ? !x : x const MaybeRegex = Union{Nothing, Regex} const MaybeType = Union{Nothing, DataType} ## get array of names and summaries ## m module ## pat regular expression to filter by ## dtype: DataType or Union to filter out by. ## dtypefilter: If true not these types, if false only these types function get_names_summaries(m::Module, pat::MaybeRegex, dtype::MaybeType, dtypefilter::Bool) nms = get_names(m) if pat != nothing nms = filter(s -> ismatch(pat, s), nms) end ## filter out this type if dtype != nothing nms = filter(u -> isdefined(m, Symbol(u)) && negate(isa(Base.eval(m,Symbol(u)), dtype), dtypefilter), nms) end summaries = map(u -> isdefined(m, Symbol(u)) ? short_summary(Base.eval(m,Symbol(u))) : "undefined", nms) if length(nms) == length(summaries) return [nms summaries] else return nothing # didn't match end end get_names_summaries(m::Module, pat::Regex) = get_names_summaries(m, pat, nothing, true) get_names_summaries(m::Module, dtype::MaybeType) = get_names_summaries(m, nothing, dtype, true) get_names_summaries(m::Module) = get_names_summaries(m::Module, nothing, nothing, true) ## Simple layout for our tree view. w = Toplevel("Workspace", 600, 600) f = Frame(w) pack_stop_propagate(w) pack(f, expand=true, fill="both") tv = Treeview(f, get_names_summaries(Main, nothing, (Module), true)) tree_key_header(tv, "Object") tree_headers(tv, ["Summary"]) scrollbars_add(f, tv) ## add a callback. Here we get the obj clicked on. callback_add(tv, (path) -> begin val = get_value(tv)[1] obj = Base.eval(Main, Symbol(val)) println(short_summary(obj)) end) ## Update values after 1000ms. Call aft.stop() to stop function cb() exists(tv) ? nothing : aft.stop() if update_ids(Main) set_items(tv, get_names_summaries(Main, nothing, (Module), true)) end end aft = tcl_after(1000, cb) aft.start()
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
3005
# julia tk interface # TODO: # * callbacks (possibly via C wrapper) # - portable event handling, probably using Tcl_CreateEventSource # * types: may not make sense to have one for each widget, maybe one TkWidget # * Cairo drawing surfaces # - port cairo_surface_for to other platforms # - expose constants from tcl.h like TCL_OK, TCL_ERROR, etc. # - more widgets # - state-interrogating functions # - cleaning up unused callbacks module Tk using Tcl_jll using Tk_jll using Cairo using Random import Base: ==, bind, getindex, isequal, parent, setindex!, show, string, Text import Graphics: width, height, getgc import Cairo: destroy include("tkwidget.jl") # old Tk include("types.jl") include("core.jl") include("methods.jl") include("widgets.jl") include("containers.jl") include("dialogs.jl") include("menu.jl") function __init__() global tcl_interp[] = init() global tk_version[] = VersionNumber(tcl_eval("return \$tk_version")) tcl_eval("wm withdraw .") tcl_eval("set auto_path") ## remove tearoff menus tcl_eval("option add *tearOff 0") global jl_tcl_callback_ptr = @cfunction(jl_tcl_callback, Int32, (Ptr{Cvoid}, Ptr{Cvoid}, Int32, Ptr{Ptr{UInt8}})) end export Window, TkCanvas, Canvas, pack, place, tcl_eval, TclError, cairo_surface_for, width, height, reveal, cairo_surface, getgc, tcl_doevent, MouseHandler, draw export tcl, tclvar, configure, cget, identify, state, instate, winfo, wm, exists, tcl_after, bind, bindwheel, callback_add export Tk_Widget, TTk_Widget, Tk_Container export Toplevel, Frame, Labelframe, Notebook, Panedwindow export Label, Button export Checkbutton, Radio, Combobox export Slider, Spinbox export Entry, set_validation, Text export Treeview, selected_nodes, node_insert, node_move, node_delete, node_open export tree_headers, tree_column_widths, tree_key_header, tree_key_width export Sizegrip, Separator, Progressbar, Image, Scrollbar export Menu, menu_add, tk_popup export GetOpenFile, GetSaveFile, ChooseDirectory, Messagebox export pack, pack_configure, forget, pack_stop_propagate export grid, grid_configure, grid_rowconfigure, grid_columnconfigure, grid_forget, grid_stop_propagate export page_add, page_insert export formlayout, scrollbars_add export get_value, set_value, get_items, set_items, set_width, set_height, get_size, set_size, pointerxy, get_enabled, set_enabled, get_editable, set_editable, get_visible, set_visible, set_position, parent, toplevel, children, raise, focus, update, destroy @deprecate tk_bindwheel bindwheel @deprecate tk_cget cget @deprecate tk_configure configure @deprecate tk_winfo winfo @deprecate tk_wm wm @deprecate tk_exists exists @deprecate tk_bind bind @deprecate tk_state state @deprecate tk_instate instate @deprecate get_width width @deprecate get_height height end # module
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
8608
## Types mutable struct Tk_Toplevel <: TTk_Container w::TkWidget; children::Vector{Tk_Widget} end mutable struct Tk_Frame <: TTk_Container w::TkWidget; children::Vector{Tk_Widget} end mutable struct Tk_Labelframe <: TTk_Container w::TkWidget; children::Vector{Tk_Widget} end mutable struct Tk_Notebook <: TTk_Container w::TkWidget; children::Vector{Tk_Widget} end mutable struct Tk_Panedwindow <: TTk_Container w::TkWidget; children::Vector{Tk_Widget} end ==(a::TTk_Container, b::TTk_Container) = isequal(a.w, b.w) && typeof(a) == typeof(b) ## Toplevel window function Toplevel(;title::AbstractString="Toplevel Window", width::Integer=200, height::Integer=200, visible::Bool=true) w = Window(title, width, height, visible) Tk_Toplevel(w, Tk_Widget[]) end Toplevel(title::AbstractString, width::Integer, height::Integer, visible::Bool) = Toplevel(title=title, width=width, height=height, visible=visible) Toplevel(title::AbstractString, width::Integer, height::Integer) = Toplevel(title=title, width=width, height=height) Toplevel(title::AbstractString, visible::Bool) = Toplevel(title=title, visible=visible) Toplevel(title::AbstractString) = Toplevel(title=title) ## Sizing of toplevel windows should refer to the geometry width(widget::Tk_Toplevel) = parse(Int, winfo(widget, "width")) height(widget::Tk_Toplevel) = parse(Int, winfo(widget, "height")) get_size(widget::Tk_Toplevel) = [width(widget), height(widget)] set_size(widget::Tk_Toplevel, width::Integer, height::Integer) = wm(widget, "geometry", "$(string(width))x$(string(height))") set_size(widget::Tk_Toplevel, widthheight::Vector{T}) where {T <: Integer} = set_size(widget, widthheight[1], widthheight[2]) get_value(widget::Tk_Toplevel) = wm(widget, "title") set_value(widget::Tk_Toplevel, value::AbstractString) = wm(widget, "title", value) function set_visible(widget::Tk_Toplevel, value::Bool) value = value ? "normal" : "withdrawn" wm(widget, "state", value) end get_visible(widget::Tk_Toplevel) = wm(widget, "state") == "normal" function get_visible(w::TkWidget) if w.kind == "toplevel" return wm(w, "state") == "normal" else return get_visible(w.parent) end end ## Set upper left corner of Toplevel to... function set_position(widget::Tk_Toplevel, x::Integer, y::Integer) p_or_m(x) = x < 0 ? "$x" : "+$x" wm(widget, "geometry", I(p_or_m(x) * p_or_m(y))) end set_position(widget::Tk_Toplevel, pos::Vector{T}) where {T <: Integer} = set_position(w, pos[1], pos[2]) set_position(widget::Tk_Toplevel, pos::Tk_Widget) = set_position(widget, Integer[parse(Int, winfo(pos, i)) for i in ["x", "y"]] + [10,10]) update(widget::Tk_Toplevel) = wm(widget, "geometry") destroy(widget::Tk_Toplevel) = tcl("destroy", widget) ## Frame ## nothing to add... ## Labelframe Labelframe(parent::Widget, text::AbstractString) = Labelframe(parent, text=text) get_value(widget::Tk_Labelframe) = cget(widget, "text") set_value(widget::Tk_Labelframe, text::AbstractString) = configure(widget, Dict(:text=> text)) ## Notebook function page_add(child::Widget, label::AbstractString) parent = winfo(child, "parent") tcl(parent, "add", child, text = label) end function page_insert(child::Widget, index::Integer, label::AbstractString) parent = winfo(child, "parent") tcl(parent, "insert", index, child, text = label) end get_value(widget::Tk_Notebook) = 1 + parse(Int, tcl(widget, I"index current")) set_value(widget::Tk_Notebook, index::Integer) = tcl(widget, "select", index - 1) no_tabs(widget::Tk_Notebook) = length(split(tcl(widget, "tabs"))) ## Panedwindow ## orient in "horizontal" or "vertical" Panedwindow(widget::Widget, orient::AbstractString) = Panedwindow(widget, orient = orient) function page_add(child::Widget, weight::Integer) parent = winfo(child, "parent") tcl(parent, "add", child, weight = weight) end ## value is sash position as percentage of first pane function get_value(widget::Tk_Panedwindow) sz = (cget(widget, "orient") == "horizontal") ? width(widget) : height(widget) pos = parse(Int, tcl(widget, "sashpos", 0)) floor(pos/sz*100) end ## can set with Integer -- pixels, or real (proportion in [0,1]) set_value(widget::Tk_Panedwindow, value::Integer) = tcl(widget, "sashpos", 0, value) function set_value(widget::Tk_Panedwindow, value::Real) if value <= 1 && value >= 0 sz = (cget(widget, "orient") == "horizontal") ? width(widget) : height(widget) set_value(widget, round(Int, value * sz/100)) end end page_add(child::Widget) = page_add(child, 1) ## Container methods ## pack(widget, {:expand => true, :anchor => "w"}) pack(widget::Widget; kwargs...) = tcl("pack", widget; kwargs...) pack_configure(widget::Widget, kwargs...) = tcl(I"pack configure", widget; kwargs...) pack_stop_propagate(widget::Widget) = tcl(I"pack propagate", widget, false) ## remove a page from display function forget(widget::Widget) manager = winfo(widget, "manager") tcl(manager, "forget", widget) end function forget(parent::TTk_Container, child::Widget) forget(child) ## remove from children parent.children[:] = filter(x -> get_path(x) != get_path(child), parent.children) end ## grid ... IntOrRange = Union{Integer, UnitRange} function grid(child::Widget, row::IntOrRange, column::IntOrRange; kwargs...) path = get_path(child) if isa(row, UnitRange) rowspan = 1 + maximum(row) - minimum(row) else rowspan = 1 end if isa(column, UnitRange) columnspan = 1 + maximum(column) - minimum(column) else columnspan = 1 end row = minimum(row) - 1 column = minimum(column) - 1 grid_configure(child, row=row, column=column, rowspan=rowspan, columnspan=columnspan; kwargs...) end grid_configure(child::Widget, args...; kwargs...) = tcl("grid", "configure", child, args...,; kwargs...) grid_rowconfigure(parent::Widget, row::Integer; kwargs...) = tcl(I"grid rowconfigure", parent, row-1; kwargs... ) grid_columnconfigure(parent::Widget, column::Integer; kwargs...) = tcl(I"grid columnconfigure", parent, column-1; kwargs...) grid_stop_propagate(parent::Widget) = tcl(I"grid propagate", parent, false) grid_forget(child::Widget) = tcl(I"grid forget", child) ## Helper to layout two column with label using grid ## ## w = Toplevel() ## f = Frame(w); pack(f) ## sc = Slider(f, 1:10) ## e = Entry(f, "") ## b = Button(f, "click me", W -> println(map(get_value, (sc, e)))) ## formlayout(sc, "Slider") ## formlayout(e, "Entry") ## formlayout(Separator(f), nothing) ## formlayout(b, nothing) ## function formlayout(child::Tk_Widget, label::MaybeString) master = winfo(child, "parent") sz = map(x->parse(Int, x), split(tcl_eval("grid size $master"))) ## columns, rows nrows = sz[2] if isa(label, AbstractString) l = Label(child.w.parent, label) grid(l, nrows + 1, 1) grid_configure(l, sticky = "ne") end grid(child, nrows + 1, 2) grid_configure(child, sticky = "we", padx=5, pady=2) grid_columnconfigure(master, 1, weight = 1) end ## Wrap child in frame, return frame to pack (or grid) into parent of child ## ## w = Toplevel() ## f = Frame(w); pack(f) ## f shouldn't have any layout management of its children ## t = Text(f) ## scrollbars_add(f,t) ## function scrollbars_add(parent::Tk_Frame, child::Tk_Widget) grid_stop_propagate(parent) xscr = Scrollbar(parent, child, "horizontal") yscr = Scrollbar(parent, child, "vertical") grid(child, 1, 1) grid(yscr, 1, 2) grid(xscr, 2, 1) grid_configure(child, sticky = "news") grid_configure(yscr, sticky = "ns") grid_configure(xscr, sticky = "ew") grid_rowconfigure(parent, 1, weight = 1) grid_columnconfigure(parent, 1, weight = 1) end # Navigating hierarchies # parent returns a TkWidget, because we don't know how to wrap it otherwise (?) parent(w::TkWidget) = w.parent parent(w::Tk_Widget) = parent(w.w) parent(c::Canvas) = parent(c.c) # For toplevel it's obvious how to wrap it... function toplevel(w::Union{TkWidget, Tk_Widget, Canvas}) p = parent(w) pold = p while p !== nothing pold = p p = parent(p) end Tk_Toplevel(pold, Tk_Widget[]) end toplevel(w::Tk_Toplevel) = w ## children ## @param ismapped::Bool. If true, will only return currently mapped children. (Forgotten children are dropped) function children(w::TTk_Container; ismapped::Bool=false) kids = w.children if ismapped ids = filter(u->winfo(u, "ismapped") == "1", split(winfo(w, "children"))) kids = filter(child -> contains(ids, get_path(child)), w.children) end kids end
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
8147
show(io::IO, widget::TkWidget) = print(io, typeof(widget)) show(io::IO, widget::Tk_Widget) = print(io, "Tk widget of type $(typeof(widget))") tcl_add_path(path::AbstractString) = tcl_eval("lappend auto_path $path") tcl_require(pkg::AbstractString) = tcl_eval("package require $pkg") ## helper to get path ## assumes Tk_Widgets have w property storing TkWidget get_path(path::AbstractString) = path get_path(widget::Tk_Widget) = get_path(widget.w) get_path(widget::TkWidget) = get_path(widget.path) get_path(widget::Canvas) = get_path(widget.c) # Tk.Canvas object ## Coversion of julia objects into tcl strings for inclusion via tcl() call to_tcl(x) = string(x) to_tcl(x::Nothing) = "" has_space = r" " to_tcl(x::AbstractString) = occursin(has_space, x) ? "{$x}" : x mutable struct I x::MaybeString end # avoid wrapping in {} and ismatch call. macro I_str(s) I(s) end to_tcl(x::I) = x.x == nothing ? "" : x.x to_tcl(x::Vector{T}) where {T <: Number} = "\"" * string(join(x, " ")) * "\"" function to_tcl(x::Vector{T}) where T <: AbstractString tmp = join(["{$i}" for i in x], " ") "[list $tmp ]" end to_tcl(x::Widget) = get_path(x) function to_tcl(x::Dict) out = filter( kv -> kv[2] != nothing, x) join([" -$(string(k)) $(to_tcl(v))" for (k, v) in out], "") end function to_tcl(x::Function) ccb = tcl_callback(x) args = get_args(x) perc_args = join(map(u -> "%$(string(u))", args[2:end]), " ") cmd = "{$ccb $perc_args}" end function to_tcl(x::Tuple) out = filter(item -> item != nothing, x) "{"*join(["$(to_tcl(item))" for item in out], " ")*"}" end ## Function to simplify call to tcl_eval, ala R's tcl() function ## converts argumets through to_tcl function tcl(xs...; kwargs...) cmd = join([" $(to_tcl(x)) " for x in xs], "") cmd = cmd * join([" -$(string(k)) $(to_tcl(v)) " for (k, v) in kwargs], " ") ## println(cmd) tcl_eval(cmd) end ## escape a string ## http://stackoverflow.com/questions/5302120/general-string-quoting-for-tcl ## still need to escape \ (but not {}) function tk_string_escape(x::AbstractString) tcl_eval("set stringescapevariable [subst -nocommands -novariables {$x}]") "\$stringescapevariable" end ## tclvar for textvariables ## Work with a text variable. Stores values as strings. Must coerce! ## getter -- THIS FAILS IN A CALLBACK!!! #function tclvar(nm::AbstractString) # cmd = "return \$::" * nm # tcl(cmd) #end ## setter function tclvar(nm::AbstractString, value) tcl("set", nm, value) end ## create new variable with random name function tclvar() var = "tcl_" * randstring(10) tclvar(var, "null") var end ## main configuration interface function configure(widget::Widget, args...; kwargs...) tcl(widget, "configure", args...; kwargs...) end setindex!(widget::Widget, value, prop::Symbol) = configure(widget, Dict(prop=>value)) ## Get values ## cget function cget(widget::Widget, prop::AbstractString, coerce::MaybeFunction) out = tcl(widget, "cget", "-$prop") isa(coerce, Function) ? coerce(out) : out end cget(widget::Widget, prop::AbstractString) = cget(widget, prop, nothing) ## convenience getindex(widget::Widget, prop::Symbol) = cget(widget, string(prop)) ## Identify widget at x,y identify(widget::Widget, x::Integer, y::Integer) = tcl(widget, "identify", "%x", "%y") ## state(w, "!disabled") state(widget::Widget, state::AbstractString) = tcl(widget, "state", state) instate(widget::Widget, state::AbstractString) = tcl(widget, "instate", state) == "1" # return Bool ## tkwinfo function winfo(widget::Widget, prop::AbstractString, coerce::MaybeFunction) out = tcl("winfo", prop, widget) isa(coerce, Function) ? coerce(out) : out end winfo(widget::Widget, prop::AbstractString) = winfo(widget, prop, nothing) ## wm. wm(window::Widget, prop::AbstractString, args...; kwargs...) = tcl("wm", prop, window, args...; kwargs...) _slots(m::Method) = (Base.uncompressed_ast(m).slotnames, m.nargs) ## Take a function, get its args as array of symbols. There must be better way... ## Helper functions for bind callback function get_args(f::Function) slots, n = _slots(first(methods(f))) argnames = slots[1:n] return _arg_offset == 0 ? argnames : argnames[_arg_offset:end] end _arg_offset = 0 _arg_offset = length(get_args(x->x)) ## bind ## Function callbacks have first argument path that is ignored ## others match percent substitution ## e.g. (path, W, x, y) -> x will have W, x and y available through %W %x %y bindings function bind(widget::Widget, event::AbstractString, callback::Function) if event == "command" configure(widget, command = callback) else path = get_path(widget) ## Need to grab percent subs from signature of function ccb = Tk.tcl_callback(callback) args = get_args(callback) if length(args) == 0 error("Callback should have first argument of \"path\".") end ## ala: "bind $path <ButtonPress-1> {$bp1cb %x %y}" cmd = "bind $path $event {$ccb " * join(map(u -> "%$(string(u))", args[2:end]), " ") * "}" tcl_eval(cmd) end end bind(widget::Canvas, event::AbstractString, callback::Function) = bind(widget.c, event, callback) ## for use with do style bind(callback::Function, widget::Union{Widget, Canvas}, event::AbstractString) = bind(widget, event, callback) ## Binding to mouse wheel function bindwheel(widget::Widget, modifier::AbstractString, callback::Function, tkargs::AbstractString = "") path = get_path(widget) if !isempty(modifier) && !endswith(modifier,"-") modifier = string(modifier, "-") end if !isempty(tkargs) && !startswith(tkargs," ") tkargs = string(" ", tkargs) end ccb = tcl_callback(callback) if Compat.Sys.islinux() tcl_eval("bind $(path) <$(modifier)Button-4> {$ccb -120$tkargs}") tcl_eval("bind $(path) <$(modifier)Button-5> {$ccb 120$tkargs}") else tcl_eval("bind $(path) <$(modifier)MouseWheel> {$ccb %D$tkargs}") end end ## add most typical callback function callback_add(widget::Tk_Widget, callback::Function) events = Dict( :Tk_Window => "<Destroy>", :Tk_Frame => nothing, :Tk_Labelframe => nothing, :Tk_Notebook => "<<NotebookTabChanged>>", :Tk_Panedwindow => nothing, ## :Tk_Label => nothing, :Tk_Button => "command", :Tk_Checkbutton => "command", :Tk_Radio => "command", :Tk_Combobox => "<<ComboboxSelected>>", :Tk_Scale => "command", :Tk_Spinbox => "command", :Tk_Entry => "<FocusOut>", :Tk_Text => "<FocusOut>", :Tk_Treeview => "<<TreeviewSelect>>" ) key = Base.Symbol(split(string(typeof(widget)), '.')[end]) if haskey(events, key) event = events[key] if event == nothing return() else bind(widget, event, callback) end end end ## Need this pattern to make a widget ## Parent is not a string, but TkWidget or Tk_Widget instance function make_widget(parent::Widget, str::AbstractString; kwargs...) path = isa(parent, Tk_Widget) ? parent.w : parent w = TkWidget(path, str) tcl(str, w; kwargs...) w end ## tcl after ... ## Better likely to use julia's ## timer = Base.Timer(next_frame) ## Base.start_timer(timer,int64(50),int64(50)) ## create an object that will repeatedly call a ## function after a delay of ms milliseconds. This is started with ## obj.start() and stopped, if desired, with obj.stop(). To restart is ## possible, but first set obj.run=true. mutable struct TclAfter cb::Function run::Bool start::Union{Nothing, Function} stop::Union{Nothing, Function} ms::Int function TclAfter(ms, cb::Function) obj = new(cb, true, nothing, nothing, ms) function fun(path) cb() if obj.run Tk.tcl("after", obj.ms, fun) end end obj.start = () -> Tk.tcl("after", obj.ms, fun) obj.stop = () -> obj.run = false obj end end tcl_after(ms::Integer, cb::Function) = TclAfter(ms, cb)
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
935
## dialogs ## can add arguments if desired. Don't like names or lack of arguments GetOpenFile(;kwargs...) = tcl("tk_getOpenFile";kwargs...) GetSaveFile(;kwargs...) = tcl("tk_getSaveFile";kwargs...) ChooseDirectory(;kwargs...) = tcl("tk_chooseDirectory";kwargs...) ## Message box function Messagebox(parent::MaybeWidget; title::AbstractString="", message::AbstractString="", detail::AbstractString="") args = Dict() if !isa(parent, Nothing) args["parent"] = get_path(parent) end if length(title) > 0 args["title"] = title end if length(message) > 0 args["message"] = message end if length(detail) > 0 args["detail"] = detail end args["type"] = "okcancel" tcl("tk_messageBox", args) end Messagebox(;kwargs...) = Messagebox(nothing; kwargs...) Messagebox(parent::Widget, message::AbstractString) = Messagebox(parent, message=message) Messagebox(message::AbstractString) = Message(nothing, message=message)
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
2417
## make a menubar ## w = Toplevel() ## mb = Menu(w) ## adds to toplevel too when w is Toplevel ## file_menu = menu_add(mb, "File...") ## make top level entry ## menu_add(file_menu, "title", w -> println("hi")) ## pass function to make action item ## menu_add(file_menu, Separator(w)) ## a separator ## menu_add(file_menu, Checkbutton(w, "label")) ## A checkbutton ## menu_add(file_menu, Radio(w, ["one", "two"])) ## A checkbutton ## create menu, add to window function Menu(widget::Tk_Toplevel) m = Menu(widget.w) # dispatch down configure(widget, menu = m) m end ## add a submenu, return it function menu_add(widget::Tk_Menu, label::AbstractString) m = Menu(widget) tcl(widget, "add", "cascade", menu = m, label = label) m end ## add menu item to menu function menu_add(widget::Tk_Menu, label::AbstractString, command::Function, img::Tk_Image) tcl(widget, "add", "command", label = label, command = command, image = img, compound = "left") end function menu_add(widget::Tk_Menu, label::AbstractString, command::Function) ccb = Tk.tcl_callback(command) tcl(widget, "add", "command", label = label, command = command) end function menu_add(widget::Tk_Menu, sep::Tk_Separator) tcl(widget, "add", "separator") end function menu_add(widget::Tk_Menu, cb::Tk_Checkbutton) ## no ! here, as state has changed by the time we get this tcl(widget, "add", "checkbutton", label = get_items(cb), variable = cb[:variable]) end function menu_add(widget::Tk_Menu, rb::Tk_Radio) var = cget(rb.buttons[1], "variable") items = get_items(rb) for i in 1:length(items) tcl(widget, "add", "radiobutton", label = items[i], value = items[i], variable = var) end end function tk_popup(widget::Tk_Widget, menu::Tk_Menu) if Compat.Sys.isapple() tcl_eval("bind $(widget.w.path) <2> {tk_popup $(menu.w.path) %X %Y}") tcl_eval("bind $(widget.w.path) <Control-1> {tk_popup $(menu.w.path) %X %Y}") else tcl_eval("bind $(widget.w.path) <3> {tk_popup $(menu.w.path) %X %Y}") end end function tk_popup(c::Canvas, menu::Tk_Menu) if Compat.Sys.isapple() tcl_eval("bind $(c.c.path) <2> {tk_popup $(menu.w.path) %X %Y}") tcl_eval("bind $(c.c.path) <Control-1> {tk_popup $(menu.w.path) %X %Y}") else tcl_eval("bind $(c.c.path) <3> {tk_popup $(menu.w.path) %X %Y}") end end
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
2710
## Additional methods to give simplified interface to the Tk widgets created in this package XXX() = error("No default method.") ## Main value get_value(widget::Widget) = XXX() set_value(widget::Widget, value) = XXX() ## items to select from get_items(widget::Widget) = XXX() set_items(widget::Widget, items) = XXX() ## size of widgets have three possible values: ## geometry -- actual size when drawn (winfo info) ## reqwidth -- may not be satisfied by window sizing algorithm. ## that reported by -width property ## width, height, get_size refer to that drawn: width(widget::Widget) = round(Int, float(winfo(widget, "width"))) height(widget::Widget) = round(Int, float(winfo(widget, "height"))) get_size(widget::Widget) = [width(widget), height(widget)] ## setting is different. ## Toplevel windows are set by geometry and wm ## Other widgets *may* have a -width, -height property for setting a requested width and height that gets set ## may or may not be in pixels ## as getting and setting would be different, we skip the setting part ## a user can set the requested size with w[:width] = width, or w[:height] = height. ## (Or for sliders, w[:length] = width_or_height ## Changing the requested width will usually cause the geometry to recompute ## to force this, one has wm(toplevel, "geometry", "{}") set_size(widget::Widget, args...) = XXX() ## sensitive to user input get_enabled(widget::Widget) = XXX() get_enabled(widget::TTk_Widget) = instate(widget, "!disabled") set_enabled(widget::Widget, value::Bool) = XXX() set_enabled(widget::TTk_Widget, value::Bool) = widget[:state] = value ? "!disabled" : "disabled" ## can be edited get_editable(widget::Widget) = XXX() get_editable(widget::TTk_Widget) = instate(widget, "!readonly") set_editable(widget::Widget, value::Bool) = XXX() set_editable(widget::TTk_Widget, value::Bool) = widget[:state] = value ? "!readonly" : "readonly" ## hide/show widget get_visible(widget::Widget) = XXX() set_visible(widget::Widget, value::Bool) = XXX() ## set focus focus(widget::Widget) = tcl("focus", widget) raise(widget::Widget) = tcl("raise", widget) ## does widget exist? exists(widget::Widget) = winfo(widget, "exists") == "1" ## Determine the position of the mouse pointer within the window. # Returns -1,-1 when the window is not on the screen (e.g., the active desktop). function pointerxy(window) # Get position within the screen xy = split(winfo(window, "pointerxy")) x,y = parse(Int, xy[1]), parse(Int, xy[2]) if x == -1 && y == -1 return x,y # not on same desktop end # Compensate for window position winx = parse(Int, winfo(window, "x")) winy = parse(Int, winfo(window, "y")) x-winx, y-winy end
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
15480
const TCL_OK = convert(Int32, 0) const TCL_ERROR = convert(Int32, 1) const TCL_RETURN = convert(Int32, 2) const TCL_BREAK = convert(Int32, 3) const TCL_CONTINUE = convert(Int32, 4) const TCL_VOLATILE = convert(Ptr{Cvoid}, 1) const TCL_STATIC = convert(Ptr{Cvoid}, 0) const TCL_DYNAMIC = convert(Ptr{Cvoid}, 3) tcl_doevent() = tcl_doevent(nothing,0) function tcl_doevent(timer,status=0) # https://www.tcl.tk/man/tcl8.6/TclLib/DoOneEvent.htm # DONT_WAIT* = 1 shl 1 # WINDOW_EVENTS* = 1 shl 2 # FILE_EVENTS* = 1 shl 3 # TIMER_EVENTS* = 1 shl 4 # IDLE_EVENTS* = 1 shl 5 # ALL_EVENTS* = not DONT_WAIT while (ccall((:Tcl_DoOneEvent,libtcl), Int32, (Int32,), (1<<1))!=0) end end global timeout = nothing # fetch first word from struct tk_display(w) = pointer_to_array(convert(Ptr{Ptr{Cvoid}},w), (1,), false)[1] function init() ccall((:Tcl_FindExecutable,libtcl), Cvoid, (Ptr{UInt8},), joinpath(Sys.BINDIR, "julia")) ccall((:g_type_init,Cairo.libgobject),Cvoid,()) tclinterp = ccall((:Tcl_CreateInterp,libtcl), Ptr{Cvoid}, ()) libpath = IOBuffer() print(libpath,"set env(TCL_LIBRARY) [subst -nocommands -novariables {") escape_string(libpath, joinpath(dirname(dirname(Tcl_jll.libtcl_path)), "lib", "tcl8.6"), "{}") print(libpath,"}]") tcl_eval(String(take!(libpath)),tclinterp) print(libpath,"set env(TK_LIBRARY) [subst -nocommands -novariables {") escape_string(libpath, joinpath(dirname(dirname(Tk_jll.libtk_path)), "lib", "tk8.6"), "{}") print(libpath,"}]") tcl_eval(String(take!(libpath)),tclinterp) if ccall((:Tcl_Init,libtcl), Int32, (Ptr{Cvoid},), tclinterp) == TCL_ERROR throw(TclError(string("error initializing Tcl: ", tcl_result(tclinterp)))) end if ccall((:Tk_Init,libtk), Int32, (Ptr{Cvoid},), tclinterp) == TCL_ERROR throw(TclError(string("error initializing Tk: ", tcl_result(tclinterp)))) end global timeout @static if VERSION >= v"0.7.0-DEV.3526" timeout = Timer(tcl_doevent, 0.1, interval=0.01) else timeout = Timer(tcl_doevent, 0.1, 0.01) end tclinterp end mainwindow(interp) = ccall((:Tk_MainWindow,libtk), Ptr{Cvoid}, (Ptr{Cvoid},), interp) mainwindow() = mainwindow(tcl_interp[]) mutable struct TclError <: Exception msg::AbstractString end tcl_result() = tcl_result(tcl_interp[]) function tcl_result(tclinterp) unsafe_string(ccall((:Tcl_GetStringResult,libtcl), Ptr{UInt8}, (Ptr{Cvoid},), tclinterp)) end function tcl_evalfile(name) if ccall((:Tcl_EvalFile,libtcl), Int32, (Ptr{Cvoid}, Ptr{UInt8}), tcl_interp[], name) != 0 throw(TclError(tcl_result())) end nothing end tcl_eval(cmd) = tcl_eval(cmd,tcl_interp[]) function tcl_eval(cmd,tclinterp) #@show cmd code = ccall((:Tcl_Eval,libtcl), Int32, (Ptr{Cvoid}, Ptr{UInt8}), tclinterp, cmd) result = tcl_result(tclinterp) if code != 0 throw(TclError(result)) else result end end mutable struct TkWidget path::String kind::String parent::Union{TkWidget,Nothing} let ID::Int = 0 function TkWidget(parent::TkWidget, kind) underscoredKind = replace(kind, "::" => "_") path = "$(parent.path).jl_$(underscoredKind)$(ID)"; ID += 1 new(path, kind, parent) end global Window function Window(title, w, h, visible = true) wpath = ".jl_win$ID"; ID += 1 tcl_eval("toplevel $wpath -width $w -height $h -background \"\"") if !visible tcl_eval("wm withdraw $wpath") end tcl_eval("wm title $wpath \"$title\"") tcl_doevent() new(wpath, "toplevel", nothing) end end end Window(title) = Window(title, 200, 200) place(widget::TkWidget, x::Int, y::Int) = tcl_eval("place $(widget.path) -x $x -y $y") function nametowindow(name) ccall((:Tk_NameToWindow,libtk), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{UInt8}, Ptr{Cvoid}), tcl_interp[], name, mainwindow(tcl_interp[])) end const _callbacks = Dict{String, Any}() const empty_str = "" function jl_tcl_callback(fptr, interp, argc::Int32, argv::Ptr{Ptr{UInt8}})::Int32 cname = unsafe_pointer_to_objref(fptr) f=_callbacks[cname] args = [unsafe_string(unsafe_load(argv,i)) for i=1:argc] local result try result = f(args...) catch e println("error during Tk callback: ") Base.display_error(e,catch_backtrace()) return TCL_ERROR end if isa(result,String) ccall((:Tcl_SetResult,libtcl), Cvoid, (Ptr{Cvoid}, Ptr{UInt8}, Int32), interp, result, TCL_VOLATILE) else ccall((:Tcl_SetResult,libtcl), Cvoid, (Ptr{Cvoid}, Ptr{UInt8}, Int32), interp, empty_str, TCL_STATIC) end return TCL_OK end function tcl_callback(f) cname = string("jl_cb", repr(objectid(f))) # TODO: use Tcl_CreateObjCommand instead ccall((:Tcl_CreateCommand,libtcl), Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{UInt8}, Ptr{Cvoid}, Ptr{Cvoid}, Ptr{Cvoid}), tcl_interp[], cname, jl_tcl_callback_ptr, pointer_from_objref(cname), C_NULL) # TODO: use a delete proc (last arg) to remove this _callbacks[cname] = f cname end width(w::TkWidget) = parse(Int, tcl_eval("winfo width $(w.path)")) height(w::TkWidget) = parse(Int, tcl_eval("winfo height $(w.path)")) const default_mouse_cb = (w, x, y)->nothing mutable struct MouseHandler button1press button1release button2press button2release button3press button3release motion button1motion MouseHandler() = new(default_mouse_cb, default_mouse_cb, default_mouse_cb, default_mouse_cb, default_mouse_cb, default_mouse_cb, default_mouse_cb, default_mouse_cb) end # TkCanvas is the plain Tk canvas widget. This one is double-buffered # and built on Cairo. mutable struct Canvas c::TkWidget back::CairoSurface # backing store backcc::CairoContext mouse::MouseHandler draw resize initialized::Bool Canvas(parent) = Canvas(parent, -1, -1) function Canvas(parent, w, h) c = TkWidget(parent, "ttk::frame") # frame supports empty background, allowing us to control drawing if w < 0 w = width(parent) end if h < 0 h = height(parent) end this = new(c) tcl_eval("frame $(c.path) -width $w -height $h -background \"\"") this.draw = x->nothing this.resize = x->nothing this.mouse = MouseHandler() this.initialized = false add_canvas_callbacks(this) this end end width(c::Canvas) = width(c.c) height(c::Canvas) = height(c.c) function configure(c::Canvas) # this is called e.g. on window resize if isdefined(c,:back) Cairo.destroy(c.backcc) Cairo.destroy(c.back) end render_to_cairo(c.c, false) do surf w = width(c.c) h = height(c.c) c.back = surface_create_similar(surf, w, h) end c.backcc = CairoContext(c.back) # Check c.initialized to prevent infinite recursion if initialized from # c.resize. This also avoids a double-redraw on the first call. if c.initialized c.resize(c) draw(c) end end function draw(c::Canvas) c.draw(c) reveal(c) end function reveal(c::Canvas) render_to_cairo(c.c) do front frontcc = CairoContext(front) back = cairo_surface(c) set_source_surface(frontcc, back, 0, 0) paint(frontcc) destroy(frontcc) end tcl_doevent() end @static if Sys.isapple() if Sys.WORD_SIZE == 32 const CGFloat = Float32 else const CGFloat = Float64 end function objc_msgSend(id, uid, ::Type{T}=Ptr{Void}) where T convert(T, ccall(:objc_msgSend, Ptr{Cvoid}, (Ptr{Cvoid}, Ptr{Cvoid}), id, ccall(:sel_getUid, Ptr{Cvoid}, (Ptr{UInt8},), uid))) end end # NOTE: This has to be ported to each window environment. # But, this should be the only such function needed. function render_to_cairo(f::Function, w::TkWidget, clipped::Bool=true) win = nametowindow(w.path) win == C_NULL && error("invalid window") @static if Sys.islinux() disp = jl_tkwin_display(win) d = jl_tkwin_id(win) vis = jl_tkwin_visual(win) if disp==C_NULL || d==0 || vis==C_NULL error("invalid window") end surf = CairoXlibSurface(disp, d, vis, width(w), height(w)) f(surf) destroy(surf) return end @static if Sys.isapple() ## TkMacOSXSetupDrawingContext() drawable = jl_tkwin_id(win) view = ccall((:TkMacOSXGetRootControl,libtk), Ptr{Cvoid}, (Int,), drawable) # NSView* if view == C_NULL error("Invalid OS X window at getView") end focusView = objc_msgSend(ccall(:objc_getClass, Ptr{Cvoid}, (Ptr{UInt8},), "NSView"), "focusView"); focusLocked = false if view != focusView focusLocked = objc_msgSend(view, "lockFocusIfCanDraw", Int32) != 0 dontDraw = !focusLocked else dontDraw = 0 == objc_msgSend(view, "canDraw", Int32) end if dontDraw error("Cannot draw to OS X Window") end window = objc_msgSend(view, "window") objc_msgSend(window, "disableFlushWindow") context = objc_msgSend(objc_msgSend(window, "graphicsContext"), "graphicsPort") if !focusLocked ccall(:CGContextSaveGState, Cvoid, (Ptr{Cvoid},), context) end try ## TkMacOSXGetClipRgn wi, hi = width(w), height(w) if clipped macDraw = unsafe_load(convert(Ptr{TkWindowPrivate}, drawable)) if macDraw.winPtr != C_NULL TK_CLIP_INVALID = 0x02 # 8.4, 8.5, 8.6 if macDraw.flags & TK_CLIP_INVALID != 0 ccall((:TkMacOSXUpdateClipRgn,libtk), Cvoid, (Ptr{Cvoid},), macDraw.winPtr) macDraw = unsafe_load(convert(Ptr{TkWindowPrivate}, drawable)) end clipRgn = if macDraw.drawRgn != C_NULL macDraw.drawRgn elseif macDraw.visRgn != C_NULL macDraw.visRgn else C_NULL end end ## ccall(:CGContextTranslateCTM, Cvoid, (Ptr{Cvoid}, CGFloat, CGFloat), context, 0, height(toplevel(w))) ccall(:CGContextScaleCTM, Cvoid, (Ptr{Cvoid}, CGFloat, CGFloat), context, 1, -1) if clipRgn != C_NULL if ccall(:HIShapeIsEmpty, UInt8, (Ptr{Cvoid},), clipRgn) != 0 return end @assert 0 == ccall(:HIShapeReplacePathInCGContext, Cint, (Ptr{Cvoid}, Ptr{Cvoid}), clipRgn, context) ccall(:CGContextEOClip, Cvoid, (Ptr{Cvoid},), context) end ccall(:CGContextTranslateCTM, Cvoid, (Ptr{Cvoid}, CGFloat, CGFloat), context, macDraw.xOff, macDraw.yOff) ## end surf = CairoQuartzSurface(context, wi, hi) try f(surf) finally destroy(surf) end finally ## TkMacOSXRestoreDrawingContext ccall(:CGContextSynchronize, Cvoid, (Ptr{Cvoid},), context) objc_msgSend(window, "enableFlushWindow") if focusLocked objc_msgSend(view, "unlockFocus") else ccall(:CGContextRestoreGState, Cvoid, (Ptr{Cvoid},), context) end end ## return end @static if Sys.iswindows() state = Vector{UInt8}(sizeof(Int)*2) # 8.4, 8.5, 8.6 drawable = jl_tkwin_id(win) hdc = ccall((:TkWinGetDrawableDC,libtk), Ptr{Cvoid}, (Ptr{Cvoid}, Int, Ptr{UInt8}), jl_tkwin_display(win), drawable, state) surf = CairoWin32Surface(hdc, width(w), height(w)) f(surf) destroy(surf) ccall((:TkWinReleaseDrawableDC,libtk), Cvoid, (Int, Int, Ptr{UInt8}), drawable, hdc, state) return end error("Unsupported Operating System") end function add_canvas_callbacks(c::Canvas) # See Table 15-3 of http://oreilly.com/catalog/mastperltk/chapter/ch15.html # A widget has been mapped onto the display and is visible bind(c, "<Map>", path -> init_canvas(c)) # All or part of a widget has been uncovered and may need to be redrawn bind(c, "<Expose>", path -> reveal(c)) # A widget has changed size or position and may need to adjust its layout bind(c, "<Configure>", path -> configure(c)) # A mouse button was pressed bind(c, "<ButtonPress-1>", (path,x,y)->(c.mouse.button1press(c, parse(Int, x), parse(Int, y)))) bind(c, "<ButtonRelease-1>", (path,x,y)->(c.mouse.button1release(c, parse(Int, x), parse(Int, y)))) bind(c, "<ButtonPress-2>", (path,x,y)->(c.mouse.button2press(c, parse(Int, x), parse(Int, y)))) bind(c, "<ButtonRelease-2>", (path,x,y)->(c.mouse.button2release(c, parse(Int, x), parse(Int, y)))) bind(c, "<ButtonPress-3>", (path,x,y)->(c.mouse.button3press(c, parse(Int, x), parse(Int, y)))) bind(c, "<ButtonRelease-3>", (path,x,y)->(c.mouse.button3release(c, parse(Int, x), parse(Int, y)))) # The cursor is in motion over a widget bind(c, "<Motion>", (path,x,y)->(c.mouse.motion(c, parse(Int, x), parse(Int, y)))) bind(c, "<Button1-Motion>", (path,x,y)->(c.mouse.button1motion(c, parse(Int, x), parse(Int, y)))) end # some canvas init steps require the widget to fully exist # this is called once per Canvas, before doing anything else with it function init_canvas(c::Canvas) c.initialized = true configure(c) c end get_visible(c::Canvas) = get_visible(c.c.parent) initialized(c::Canvas) = c.initialized function pack(c::Canvas, args...) pack(c.c, args...) end function grid(c::Canvas, args...) grid(c.c, args...) end function place(c::Canvas, x::Int, y::Int) place(c.c, x, y) end function update() tcl_eval("update") end function wait_initialized(c::Canvas) n = 0 while !initialized(c) tcl_doevent() n += 1 if n > 10000 error("getgc: Canvas is not drawable") end end end function getgc(c::Canvas) wait_initialized(c) c.backcc end function cairo_surface(c::Canvas) wait_initialized(c) c.back end @static if Sys.isapple() struct TkWindowPrivate winPtr::Ptr{Cvoid} view::Ptr{Cvoid} context::Ptr{Cvoid} xOff::Cint yOff::Cint sizeX::CGFloat sizeY::CGFloat visRgn::Ptr{Cvoid} aboveVisRgn::Ptr{Cvoid} drawRgn::Ptr{Cvoid} referenceCount::Ptr{Cvoid} toplevel::Ptr{Cvoid} flags::Cint end end global tcl_interp = Ref{Ptr{Cvoid}}() global tk_version = Ref{VersionNumber}() jl_tkwin_display(tkwin::Ptr{Cvoid}) = unsafe_load(convert(Ptr{Ptr{Cvoid}},tkwin), 1) # 8.4, 8.5, 8.6 jl_tkwin_visual(tkwin::Ptr{Cvoid}) = unsafe_load(convert(Ptr{Ptr{Cvoid}},tkwin), 4) # 8.4, 8.5, 8.6 jl_tkwin_id(tkwin::Ptr{Cvoid}) = unsafe_load(convert(Ptr{Int},tkwin), 6) # 8.4, 8.5, 8.6
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
735
## Abstract types abstract type Tk_Widget end abstract type TTk_Widget <: Tk_Widget end ## for ttk::widgets abstract type TTk_Container <: Tk_Widget end ## for containers (frame, labelframe, ???) const Widget = Union{TkWidget, Tk_Widget, Canvas, AbstractString} ## Maybe -- can this be parameterized? ## https://groups.google.com/forum/?fromgroups=#!topic/julia-dev/IbbWwplrqlc (takeaway -- this style is frowned upon) const MaybeFunction = Union{Function, Nothing} const MaybeString = Union{AbstractString, Nothing} const MaybeStringInteger = Union{AbstractString, Integer, Nothing} # for at in tree insert const MaybeVector = Union{Vector, Nothing} const MaybeWidget = Union{Widget, Nothing} const MaybeBool = Union{Bool, Nothing}
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
23884
## Create basic widgets here ## Most structs are simple, some have other properties mutable struct Tk_Label <: TTk_Widget w::TkWidget end mutable struct Tk_Button <: TTk_Widget w::TkWidget end mutable struct Tk_Checkbutton <: TTk_Widget w::TkWidget end ##struct Tk_Radio <: TTk_Widget w::TkWidget end ##struct Tk_Combobox <: TTk_Widget w::TkWidget end mutable struct Tk_Scale <: TTk_Widget w::TkWidget end #struct Tk_Spinbox <: TTk_Widget w::TkWidget end mutable struct Tk_Entry <: TTk_Widget w::TkWidget end mutable struct Tk_Sizegrip <: TTk_Widget w::TkWidget end mutable struct Tk_Separator <: TTk_Widget w::TkWidget end mutable struct Tk_Progressbar <: TTk_Widget w::TkWidget end mutable struct Tk_Menu <: TTk_Widget w::TkWidget end mutable struct Tk_Menubutton <: TTk_Widget w::TkWidget end mutable struct Tk_Image <: TTk_Widget w::AbstractString end mutable struct Tk_Scrollbar <: TTk_Widget w::TkWidget end mutable struct Tk_Text <: Tk_Widget w::TkWidget end ##struct Tk_Treeview <: Tk_Widget w::TkWidget end mutable struct Tk_Canvas <: Tk_Widget w::TkWidget end for (k, k1, v) in ((:Label, :Tk_Label, "ttk::label"), (:Button, :Tk_Button, "ttk::button"), (:Checkbutton, :Tk_Checkbutton, "ttk::checkbutton"), (:Radiobutton, :Tk_Radiobutton, "ttk::radiobutton"), (:Combobox, :Tk_Combobox, "ttk::combobox"), (:Slider, :Tk_Scale, "ttk::scale"), # Scale conflicts with Gadfly.Scale (:Spinbox, :Tk_Spinbox, "ttk::spinbox"), (:Entry, :Tk_Entry, "ttk::entry"), (:Sizegrip, :Tk_Sizegrip, "ttk::sizegrip"), (:Separator, :Tk_Separator, "ttk::separator"), (:Progressbar, :Tk_Progressbar, "ttk::progressbar"), (:Menu, :Tk_Menu, "menu"), (:Menubutton, :Tk_Menubutton, "ttk::menubutton"), (:Scrollbar, :Tk_Scrollbar, "ttk::scrollbar"), (:Text, :Tk_Text, "text"), (:Treeview, :Tk_Treeview, "ttk::treeview"), (:TkCanvas, :Tk_Canvas, "canvas"), ## (:Frame, :Tk_Frame, "ttk::frame"), (:Labelframe, :Tk_Labelframe, "ttk::labelframe"), (:Notebook, :Tk_Notebook, "ttk::notebook"), (:Panedwindow, :Tk_Panedwindow, "ttk::panedwindow") ) @eval begin function $k(parent::Widget; kwargs...) w = make_widget(parent, $v; kwargs...) widget = $k1 <: TTk_Container ? $k1(w, Tk_Widget[]) : $k1(w) if isa(parent, TTk_Container) push!(parent.children, widget) end widget end end end ## Now customize ## Label constructors Label(parent::Widget, text::AbstractString, image::Tk_Image) = Label(parent, text=tk_string_escape(text), image=image, compound="left") Label(parent::Widget, text::AbstractString) = Label(parent, text=tk_string_escape(text)) Label(parent::Widget, image::Tk_Image) = Label(parent, image=image, compound="image") get_value(widget::Union{Tk_Button, Tk_Label}) = widget[:text] function set_value(widget::Union{Tk_Label, Tk_Button}, value::AbstractString) variable = cget(widget, "textvariable") (variable == "") ? widget[:text] = tk_string_escape(value) : tclvar(variable, value) end ## Button constructors Button(parent::Widget, text::AbstractString, command::Function, image::Tk_Image) = Button(parent, text = tk_string_escape(text), command=command, image=image, compound="left") Button(parent::Widget, text::AbstractString, image::Tk_Image) = Button(parent, text = tk_string_escape(text), image=image, compound="left") Button(parent::Widget, text::AbstractString, command::Function) = Button(parent, text=tk_string_escape(text), command=command) Button(parent::Widget, text::AbstractString) = Button(parent, text=tk_string_escape(text)) Button(parent::Widget, command::Function, image::Tk_Image) = Button(parent, command=command, image=image, compound="image") Button(parent::Widget, image::Tk_Image) = Button(parent, image=image, compound="image") ## checkbox function Checkbutton(parent::Widget, label::AbstractString) cb = Checkbutton(parent) set_items(cb, label) cb[:variable] = tclvar() set_value(cb, false) cb end function get_value(widget::Tk_Checkbutton) instate(widget, "selected") end function set_value(widget::Tk_Checkbutton, value::Bool) var = widget[:variable] tclvar(var, value ? 1 : 0) end get_items(widget::Tk_Checkbutton) = widget[:text] set_items(widget::Tk_Checkbutton, value::AbstractString) = widget[:text] = tk_string_escape(value) ## RadioButton mutable struct Tk_Radiobutton <: TTk_Widget w::TkWidget end MaybeTkRadioButton = Union{Nothing, Tk_Radiobutton} function Radiobutton(parent::Widget, group::MaybeTkRadioButton, label::AbstractString) rb = Radiobutton(parent) var = isa(group, Tk_Radiobutton) ? group[:variable] : tclvar() configure(rb, variable = var, text=label, value=label) rb end Radiobutton(parent::Widget, label::AbstractString) = Radiobutton(parent, nothing, label) get_value(widget::Tk_Radiobutton) = instate(widget, "selected") set_value(widget::Tk_Radiobutton, value::Bool) = state(value ? "selected" : "!selected") get_items(widget::Tk_Radiobutton) = widget[:text] set_items(widget::Tk_Radiobutton, value::AbstractString) = configure(widget, text = value, value=value) ## Radio Button Group mutable struct Tk_Radio <: TTk_Widget w::TkWidget buttons::Vector orient::Union{Nothing, AbstractString} end function Radio(parent::Widget, labels::Vector{T}, orient::AbstractString) where {T<:AbstractString} n = size(labels)[1] rbs = Vector{Tk_Radiobutton}(undef, n) frame = Frame(parent) rbs[1] = Radiobutton(frame, tk_string_escape(labels[1])) if n > 1 for j in 2:n rbs[j] = Radiobutton(frame, rbs[1], tk_string_escape(labels[j])) end end rb = Tk_Radio(frame.w, rbs, orient) set_value(rb, labels[1]) map(u -> pack(u, side = orient == "horizontal" ? "left" : "top", anchor = orient == "horizontal" ? "n" : "w"), rbs) rb end Radio(parent::Widget, labels::Vector{T}) where {T <: AbstractString} = Radio(parent, labels, "vertical") ## vertical default function get_value(widget::Tk_Radio) items = get_items(widget) sel = map(get_value, widget.buttons) items[sel][1] end function set_value(widget::Tk_Radio, value::AbstractString) var = cget(widget.buttons[1], "variable") tclvar(var, value) end function set_value(widget::Tk_Radio, value::Integer) items = get_items(widget) set_value(widget, items[value]) end get_items(widget::Tk_Radio) = map(get_items, widget.buttons) function bind(widget::Tk_Radio, event::AbstractString, callback::Function) ## put onto each, but W now refers to button -- not group of buttons map(u -> bind(u, event, callback), widget.buttons) end ## return ith button ## remove this until we split off a version for newer julia's. ##getindex(widget::Tk_Radio, i::Integer) = widget.buttons[i] ## Combobox mutable struct Tk_Combobox <: TTk_Widget w::TkWidget values::Vector # of tuples (key, label) Tk_Combobox(w::TkWidget) = new(w, []) end ## Combobox. ## One can specify the values different ways ## * as a vector of strings ## * as a vector of (key,value) tuples. The value is displayed, keys are used by get_value, set_value ## This has the advantage of keeping order. ## * as a dict of (key,value) pairs. This must be specified through set_items though function Combobox(parent::Widget, values::Vector) cb = Combobox(parent) set_items(cb, values) set_editable(cb, false) cb end cb_pluck_labels(t) = AbstractString[v for (k,v) in t] cb_pluck_keys(t) = AbstractString[k for (k,v) in t] function get_value(widget::Tk_Combobox) label = tcl(widget, "get") if get_editable(widget) return(label) end ## okay look up in vector or tuples labels = cb_pluck_labels(widget.values) keys = cb_pluck_keys(widget.values) out = keys[label .== labels] length(out) == 0 ? nothing : out[1] end set_value(widget::Tk_Combobox, index::Integer) = set_value(widget, cb_pluck_labels(widget.values)[index]) ## value is a key function set_value(widget::Tk_Combobox, value::MaybeString) if value == nothing tcl(widget, "set", "{}"); return end if get_editable(widget) tcl(widget, "set", value) else keys = cb_pluck_keys(widget.values) labels = cb_pluck_labels(widget.values) if any(value .== keys) tcl(widget, "set", labels[value .== keys][1]) end end end get_items(widget::Tk_Combobox) = widget.values function set_items(widget::Tk_Combobox, items::Vector{Tuple{T,T}}) where T vals = cb_pluck_labels(items) configure(widget, values = vals) widget.values = items end function set_items(widget::Tk_Combobox, items::Dict) widget.values = [(string(k),v) for (k,v) in items] configure(widget, values = cb_pluck_labels(widget.values)) end function set_items(widget::Tk_Combobox, items::Vector{T}) where {T <: AbstractString} d = [(v,v) for v in items] set_items(widget, d) end get_editable(widget::Tk_Combobox) = widget[:state] == "normal" set_editable(widget::Tk_Combobox, value::Bool) = widget[:state] = value ? "normal" : "readonly" ## Slider ## deprecate this interface as integer values are not guaranteed in return. function Slider(parent::Widget, range::UnitRange{T}; orient="horizontal") where {T <: Integer} w = Slider(parent, orient=orient) var = tclvar() tclvar(var, minimum(range)) configure(w, from=minimum(range), to = maximum(range), variable=var) w end function Slider(parent::Widget, lo::T, hi::T; orient = "horizontal") where {T <: Real} w = Slider(parent, orient = orient) var = tclvar() tclvar(var, lo) configure(w, from = lo, to = hi, variable = var) w end get_value(widget::Tk_Scale) = parse(Float64, widget[:value]) function set_value(widget::Tk_Scale, value::Real) variable = widget[:variable] (variable == "") ? widget[:value] = value : tclvar(variable, value) end ## bind needs extra args for command function bind(widget::Tk_Scale, event::AbstractString, callback::Function) if event == "command" wrapper = (path, xs...) -> callback(path) bind(widget.w, event, wrapper) else bind(widget, event, callback) end end ## Spinbox mutable struct Tk_Spinbox <: TTk_Widget w::TkWidget range::UnitRange{Int} Tk_Spinbox(w::TkWidget) = new(w, 1:1) end function Spinbox(parent, range::UnitRange{T}) where {T <: Integer} w = Spinbox(parent) set_items(w, range) set_value(w, minimum(range)) w end get_value(widget::Tk_Spinbox) = parse(Int, tcl(widget, "get")) set_value(widget::Tk_Spinbox, value::Integer) = tcl(widget, "set", value) get_items(widget::Tk_Spinbox) = widget.range function set_items(widget::Tk_Spinbox, range::UnitRange{T}) where T configure(widget, from=minimum(range), to = maximum(range), increment = step(range)) widget.range = range end ## Separator function Separator(widget::Widget, horizontal::Bool) w = Separator(widget) configure(w, orient = (horizontal ? "horizontal" : "vertical")) w end ## Progressbar function Progressbar(widget::Widget, mode::AbstractString) w = Progressbar(widget) configure(w, mode = mode) # one of "determinate", "indeterminate" w end get_value(widget::Tk_Progressbar) = round(Int, parse(Float64, widget[:value])) set_value(widget::Tk_Progressbar, value::Integer) = widget[:value] = min(100, max(0, value)) ## Image MaybeImage = Union{Nothing, Tk_Image} to_tcl(x::Tk_Image) = x.w function Image(fname::AbstractString) if isfile(fname) fname = escape_string(fname) w = tcl(I"image create photo", file = fname) Tk_Image(w) else error("Image needs filename of .gif file: $fname") end end # Create an image as a bitmap function Image(source::BitArray{2}, mask::BitArray{2}, background::AbstractString, foreground::AbstractString) if size(source) != size(mask) error("Source and mask must have the same size") end ssource = x11encode(source) smask = x11encode(mask) w = tcl(I"image create bitmap", data = ssource, maskdata = smask, background = background, foreground = foreground) Tk_Image(w) end function x11header(s::IO, data::AbstractMatrix) println(s, "#define im_width ", size(data, 2)) println(s, "#define im_height ", size(data, 1)) println(s, "static char im_bits[] = {") end function x11encode(data::BitArray{2}) # Not efficient, but easy s = IOBuffer() x11header(s, data) u8 = zeros(UInt8, ceil(Int, size(data, 1)/8), size(data, 2)) for i = 1:size(data,1) ii = ceil(Int, i/8) n = i - 8*(ii-1) - 1 for j = 1:size(data,2) u8[ii, j] |= convert(UInt8, data[i,j]) << n end end for i = 1:length(u8)-1 print(s, u8[i], ",") end println(s, u8[end], "\n};") takebuf_string(s) end ## Entry function Entry(parent::Widget, text::AbstractString) w = Entry(parent) set_value(w, text) w end ### methods get_value(widget::Tk_Entry) = tcl(widget, "get") function set_value(widget::Tk_Entry, val::AbstractString) tcl(widget, I"delete @0 end") tcl(widget, I"insert @0", tk_string_escape(val)) end get_editable(widget::Tk_Entry) = widget[:state] == "normal" set_editable(widget::Tk_Entry, value::Bool) = widget[:state] = value ? "normal" : "readonly" ## visibility is for passwords get_visible(widget::Tk_Entry) = widget[:show] != "*" set_visible(widget::Tk_Entry, value::Bool) = widget[:show] = value ? "{}" : "*" ## validate is one of none, key, focus, focusin, focusout or all ## validatecommand must return either tcl("expr", "FALSE") or tcl("expr", "TRUE") Use FALSE to call invalidate command ## percent substitution is matched in callbacks function set_validation(widget::Tk_Entry, validate::AbstractString, validatecommand::Function, invalidcommand::MaybeFunction) tk_configure(widget, validate=validate, validatecommand=validatecommand, invalidcommand=invalidcommand) end set_validation(widget::Tk_Entry, validate::AbstractString, validatecommand::Function) = set_validation(widget, validate, validatecommand, nothing) ## Scrollbar. Pass in parent and child. We configure both ## used in scrollbars_add function Scrollbar(parent::Widget, child::Widget, orient::AbstractString) which_view = (orient == "horizontal") ? "xview" : "yview" scr = Scrollbar(parent, orient=orient, command=I("[list $(get_path(child)) $which_view]")) d = Dict() d[(orient == "horizontal") ? :xscrollcommand : :yscrollcommand] = I("[list $(get_path(scr)) set]") configure(child, d) scr end ## Text ## non-exported helpers get_text(widget::Tk_Text, start_index, end_index) = tcl(widget, "get", start_index, end_index) function set_text(widget::Tk_Text, value::AbstractString, index) tcl(widget, "insert", index, tk_string_escape(value)) end get_value(widget::Tk_Text) = chomp(get_text(widget, "0.0", "end")) function set_value(widget::Tk_Text, value::AbstractString) path = get_path(widget) tcl(widget, I"delete 0.0 end") set_text(widget, value, "end") tcl(widget, I"see 0.0") end get_editable(widget::Tk_Text) = widget[:state] != "disabled" set_editable(widget::Tk_Text, value::Bool) = widget[:state] = value ? "normal" : "disabled" ## Tree mutable struct Tk_Treeview <: TTk_Widget w::Widget names::MaybeVector Tk_Treeview(w::Widget) = new(w, nothing) end mutable struct TreeNode node::AbstractString end to_tcl(x::TreeNode) = x.node MaybeTreeNode = Union{TreeNode, Nothing} ## Special Tree cases ## listbox like interface function Treeview(widget::Widget, items::Vector{T}, title::AbstractString; selected_color::AbstractString="gray") where {T <: AbstractString} w = Treeview(widget) configure(w, show="tree headings", selectmode="browse") tcl(w, I"heading #0", text = title) tcl(w, I"column #0", anchor = I"w") set_items(w, items) tcl_eval("ttk::style map Treeview.Row -background [list selected $selected_color]") w end Treeview(widget::Widget, items::Vector) = Treeview(widget, items, "") function treeview_delete_children(widget::Tk_Treeview) children = tcl(widget, I"children {}") if children != "" tcl(widget, "delete", children) end end function set_items(widget::Tk_Treeview, items::Vector{T}) where {T <: AbstractString} treeview_delete_children(widget) for i in items tcl(widget, I"insert {} end", text = i) end end ## t = Treeview(w, ["one" "two" "half"; "three" "four" "half"], [100, 50, 23]) function Treeview(widget::Widget, items::Array{T,2}, widths::MaybeVector) where {T <: AbstractString} sz = size(items) w = Treeview(widget) configure(w, show = "tree headings", selectmode = "browse", columns=collect(1:(sz[2]-1))) ## widths ... if isa(widths, Vector) tcl(w, I"column #0", width = widths[1]) for k in 2:length(widths) tcl(w, I"column", k - 1, width=widths[k]) end end set_items(w, items) color = "gray" tcl_eval("ttk::style map Treeview.Row -background [list selected $color]") w end Treeview(widget::Widget, items::Array{T,2}) where {T <: AbstractString} = Treeview(widget, items, nothing) function set_items(widget::Tk_Treeview, items::Array{T,2}) where {T <: AbstractString} treeview_delete_children(widget) sz = size(items) for i in 1:sz[1] vals = AbstractString[j for j in items[i,2:end]] tcl(widget, I"insert {} end", text = items[i,1], values = vals) end end ## Return array of selected values by key or nothing ## A selected key is a string or array if path is needed function get_value(widget::Tk_Treeview) sels = selected_nodes(widget) sels == nothing ? nothing : [tree_get_keys(widget, sel) for sel in sels] end ## select row given by index. extend = true to add selection function set_value(widget::Tk_Treeview, index::Integer, extend::Bool) children = split(tcl(widget, "children", "{}")) child = children[index] tcl(widget, "selection", extend ? "add" : "set", child) end set_value(widget::Tk_Treeview, index::Integer) = set_value(widget, index, false) ## Some conveniences for working with trees ## w = Toplevel() ## f = Frame(w) ## tr = Treeview(f) ## scrollbars_add(f, tr) ## pack(f, expand=true, fill="both") ## set_size(w, 300, 300) ## ### Okay, lets make a tree ## d = ["data1", "data2"] ## id_1 = Tk.node_insert(tr, nothing, "node 1", d) ## id_1_1 = Tk.node_insert(tr, id_1, "node 1_1", d) ## id_1_2 = Tk.node_insert(tr, id_1, "node 1_2", d) ## id_2 = Tk.node_insert(tr, nothing, "node 2", d) ## Tk.tree_headers(tr, ["col 1", "col2"], [50, 75]) ## used by get_value to return path of keys for a node function tree_get_keys(widget::Tk_Treeview, node::TreeNode) if tcl(widget, "exists", node) == "0" error("Node is not in tree") end x = AbstractString[] while node.node != "" push!(x, tcl(widget, "item", node, "-text")) node = TreeNode(tcl(widget, "parent", node)) end length(x) > 1 ? reverse(x) : x[1] # return Vector or single value end ## return vector of TreeNodes that are currently selected or nothing (Maybe{Vector{TreeNodes}} function selected_nodes(widget::Tk_Treeview) sel = tcl(widget, "selection") length(sel) == 0 ? nothing : map(TreeNode, split(sel)) end ## insert into node, return new node function node_insert(widget::Tk_Treeview, node::MaybeTreeNode, at::MaybeStringInteger, text::MaybeString, image::MaybeImage, values::MaybeVector, opened::MaybeBool) parent = isa(node, Nothing) ? "{}" : node.node at = isa(at, Nothing) ? "end" : at args = Dict() args["text"] = isa(text, Nothing) ? "" : text args["image"] = image.i args["values"] = values args["open"] = opened id = tcl(widget, "insert", parent, at, args) TreeNode(id) end ## widget, node, text, image, values node_insert(widget::Tk_Treeview, node::MaybeTreeNode, text::MaybeString, image::MaybeImage, values::MaybeVector) = node_insert(widget, node, nothing, text, image, values, true) ## widget, node, text, values node_insert(widget::Tk_Treeview, node::MaybeTreeNode, text::MaybeString, values::MaybeVector) = node_insert(widget, node, nothing, text, nothing, values, true) ## widget, node, text node_insert(widget::Tk_Treeview, node::MaybeTreeNode, text::MaybeString) = insert_tree(widget, node, nothing, text, nothing, nothing, true) ## move node to parent and at, a string index, eg. "0" or "end". function node_move(widget::Tk_Treeview, node::TreeNode, parent::MaybeTreeNode, at::MaybeStringInteger) to = isa(parent, Nothing) ? "{}" : parent.node ind = isa(at, Nothing) ? "end" : at tcl(widget, "move", node.node, to, ind) end ## move to end node_move(widget::Tk_Treeview, node::TreeNode, parent::MaybeTreeNode) = node_move(widget, node, parent, nothing) ## remove a node node_delete(widget::Tk_Treeview, node::TreeNode) = tcl(widget, "delete", node.node) ## Set or retrieve node open status node_open(widget::Tk_Treeview, node::TreeNode, opened::Bool) = tcl(widget, "item", node, open=opened) function node_open(widget::Tk_Treeview, node::TreeNode) tcl(widget, "item", node, "-open") == "true" && tcl(widget, "children", node) != "" end ## XXX This could be cleaned up a bit. It is annoying to treat the value and text differently when ## working on a grid XXX ## set column names, and widths. This works on values, not text part function tree_headers(widget::Tk_Treeview, names::Vector{T}, widths::Vector{S}) where {T <: AbstractString, S<: Integer} tree_headers(widget, names) tree_column_widths(widget, widths) end function tree_headers(widget::Tk_Treeview, names::Vector{T}) where {T <: AbstractString} tcl(widget, "configure", column=names) widget.names = names map(u -> tcl(widget, "heading", u, text=u), names) end ## Set Column widths. Must have set headers first function tree_column_widths(widget::Tk_Treeview, widths::Vector{T}) where {T <: Integer} if widget.names == nothing error("Must set header names, then widths") end heads = widget.names if length(widths) == length(heads) + 1 tcl(widget, I"heading column #0", text=widths[1]) map(i -> tcl(widget, " column", heads[i], width=widths[i + 1]), 1:length(heads)) elseif length(widths) == length(heads) map(i -> tcl(widget, "column", heads[i], width=widths[i]), 1:length(widths)) else error("Widths must match number of column names or one more") end end ## set name and width of key column ## a ttk::treeview has a special column for the one which can expand tree_key_header(widget::Tk_Treeview, name::AbstractString) = tcl(widget, I"heading #0", text = name) tree_key_width(widget::Tk_Treeview, width::Integer) = tcl(widget, I"column #0", width = width) ## Canvas ## TkCanvas is plain canvas object, reserve name Canvas for Cairo enhanced one function TkCanvas(widget::Tk_Widget, width::Integer, height::Integer) TkCanvas(widget, width = width, height = height) end ## Bring Canvas object into Tk_Widget level. mutable struct Tk_CairoCanvas <: TTk_Widget w::Canvas end function TkCairoCanvas(Widget::Tk_Widget; width::Int=-1, height::Int=-1) c = Canvas(Widget.w, width, height) Tk_CairoCanvas(c) end function Canvas(parent::TTk_Container, args...) c = Canvas(parent.w, args...) push!(parent.children, Tk_CairoCanvas(c)) c end
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
code
10158
## Tests using Tk using Test @testset "Toplevel" begin w = Toplevel("Toplevel", 400, 400) set_position(w, 10, 10) @test get_value(w) == "Toplevel" set_value(w, "Toplevel 2") @test get_value(w) == "Toplevel 2" @test get_size(w) == [400, 400] p = toplevel(w) @test p == w destroy(w) @test !exists(w) end @testset "Frame" begin w = Toplevel("Frame", 400, 400) pack_stop_propagate(w) f = Frame(w) pack(f, expand=true, fill="both") @test get_size(w) == [400, 400] p = toplevel(f) @test p == w destroy(w) end @testset "Labelframe" begin w = Toplevel("Labelframe", 400, 400) pack_stop_propagate(w) f = Labelframe(w, "Label") pack(f, expand=true, fill="both") set_value(f, "new label") @test get_value(f) == "new label" p = toplevel(f) @test p == w destroy(w) end @testset "Notebook" begin w = Toplevel("Notebook") nb = Notebook(w); pack(nb, expand=true, fill="both") page_add(Button(nb, "one"), "tab one") page_add(Button(nb, "two"), "tab two") page_add(Button(nb, "three"), "tab three") @test Tk.no_tabs(nb) == 3 set_value(nb, 2) @test get_value(nb) == 2 destroy(w) end @testset "Panedwindow" begin w = Toplevel("Panedwindow", 400, 400) pack_stop_propagate(w) pw = Panedwindow(w, "horizontal"); pack(pw, expand=true, fill="both") page_add(Button(pw, "one"), 1) page_add(Button(pw, "two"), 1) page_add(Button(pw, "three"), 1) set_value(pw, 100) destroy(w) end @testset "pack Anchor" begin w = Toplevel("Anchor argument", 500, 500) pack_stop_propagate(w) f = Frame(w, padding = [3,3,12,12]); pack(f, expand = true, fill = "both") tr = Frame(f); mr = Frame(f); br = Frame(f) map(u -> pack(u, expand =true, fill="both"), (tr, mr, br)) pack(Label(tr, "nw"), anchor = "nw", expand = true, side = "left") pack(Label(tr, "n"), anchor = "n", expand = true, side = "left") pack(Label(tr, "ne"), anchor = "ne", expand = true, side = "left") ## pack(Label(mr, "w"), anchor = "w", expand =true, side ="left") pack(Label(mr, "center"), anchor = "center", expand =true, side ="left") pack(Label(mr, "e"), anchor = "e", expand =true, side ="left") ## pack(Label(br, "sw"), anchor = "sw", expand = true, side = "left") pack(Label(br, "s"), anchor = "s", expand = true, side = "left") pack(Label(br, "se"), anchor = "se", expand = true, side = "left") destroy(w) end ## example of last in first covered ## Create this GUI, then shrink window with the mouse @testset "Last in, first covered" begin w = Toplevel("Last in, first covered", 400, 400) f = Frame(w) g1 = Frame(f) g2 = Frame(f) map(u -> pack(u, expand=true, fill="both"), (f, g1, g2)) b11 = Button(g1, "first") b12 = Button(g1, "second") b21 = Button(g2, "first") b22 = Button(g2, "second") map(u -> pack(u, side="left"), (b11, b12)) map(u -> pack(u, side="right"), (b21, b22)) ## Now shrink window destroy(w) end @testset "Grid" begin w = Toplevel("Grid", 400, 400) pack_stop_propagate(w) f = Frame(w); pack(f, expand=true, fill="both") grid(Slider(f, 1:10, orient="vertical"), 1:3, 1) grid(Slider(f, 1:10), 1 , 2:3, sticky="news") grid(Button(f, "2,2"), 2 , 2) grid(Button(f, "2,3"), 2 , 3) destroy(w) end @testset "Formlayout" begin w = Toplevel("Formlayout") f = Frame(w); pack(f, expand=true, fill="both") map(u -> formlayout(Entry(f, u), u), ["one", "two", "three"]) destroy(w) end @testset "Widgets" begin global ctr = 1 function cb(path) global ctr ctr += 1 end global choices = ["choice one", "choice two", "choice three"] @testset "button, label" begin w = Toplevel("Widgets") f = Frame(w); pack(f, expand=true, fill="both") l = Label(f, "label") b = Button(f, "button") map(pack, (l, b)) set_value(l, "new label") @test get_value(l) == "new label" set_value(b, "new label") @test get_value(b) == "new label" bind(b, "command", cb) tcl(b, "invoke") @test ctr == 2 img = Image(joinpath(dirname(@__FILE__), "..", "examples", "weather-overcast.gif")) map(u-> configure(u, image=img, compound="left"), (l,b)) destroy(w) end @testset "checkbox" begin w = Toplevel("Checkbutton") f = Frame(w) pack(f, expand=true, fill="both") check = Checkbutton(f, "check me"); pack(check) set_value(check, true) @test get_value(check) == true set_items(check, "new label") @test get_items(check) == "new label" ctr = 1 bind(check, "command", cb) tcl(check, "invoke") @test ctr == 2 destroy(w) end @testset "radio" begin w = Toplevel("Radio") f = Frame(w) pack(f, expand=true, fill="both") r = Radio(f, choices); pack(r) set_value(r, choices[1]) @test get_value(r) == choices[1] set_value(r, 2) # by index @test get_value(r) == choices[2] @test get_items(r) == choices destroy(w) end @testset "combobox" begin w = Toplevel("Combobox") f = Frame(w) pack(f, expand=true, fill="both") combo = Combobox(f, choices); pack(combo) set_editable(combo, false) # default set_value(combo, choices[1]) @test get_value(combo) == choices[1] set_value(combo, 2) # by index @test get_value(combo) == choices[2] set_value(combo, nothing) @test get_value(combo) == nothing set_items(combo, map(uppercase, choices)) set_value(combo, 2) @test get_value(combo) == uppercase(choices[2]) set_items(combo, Dict(:one=>"ONE", :two=>"TWO")) set_value(combo, "one") @test get_value(combo) == "one" destroy(w) end @testset "slider" begin w = Toplevel("Slider") f = Frame(w) pack(f, expand=true, fill="both") sl = Slider(f, 1:10, orient="vertical"); pack(sl) set_value(sl, 3) @test get_value(sl) == 3 bind(sl, "command", cb) ## can't test destroy(w) end @testset "spinbox" begin w = Toplevel("Spinbox") f = Frame(w) pack(f, expand=true, fill="both") sp = Spinbox(f, 1:10); pack(sp) set_value(sp, 3) @test get_value(sp) == 3 destroy(w) end @testset "progressbar" begin w = Toplevel("Progress bar") f = Frame(w) pack(f, expand=true, fill="both") pb = Progressbar(f, orient="horizontal"); pack(pb) set_value(pb, 50) @test get_value(pb) == 50 configure(pb, mode = "indeterminate") destroy(w) end end @testset "Entry" begin w = Toplevel("Entry") f = Frame(w) pack(f, expand=true, fill="both") e = Entry(f, "initial"); pack(e) set_value(e, "new text") @test get_value(e) == "new text" set_value(e, "[1,2,3]") @test get_value(e) == "[1,2,3]" set_visible(e, false) set_visible(e, true) ## Validation function validatecommand(path, s, S) println("old $s, new $S") s == "invalid" ? tcl("expr", "FALSE") : tcl("expr", "TRUE") # *must* return logical in this way end function invalidcommand(path, W) println("called when invalid") tcl(W, "delete", "@0", "end") tcl(W, "insert", "@0", "new text") end configure(e, validate="key", validatecommand=validatecommand, invalidcommand=invalidcommand) destroy(w) end @testset "Text" begin w = Toplevel("Text") pack_stop_propagate(w) f = Frame(w); pack(f, expand=true, fill="both") txt = Text(f) scrollbars_add(f, txt) set_value(txt, "new text\n") @test get_value(txt) == "new text\n" set_value(txt, "[1,2,3]") @test get_value(txt) == "[1,2,3]" destroy(w) end @testset "tree. Listbox" begin w = Toplevel("Listbox") pack_stop_propagate(w) f = Frame(w); pack(f, expand=true, fill="both") tr = Treeview(f, choices) ## XXX scrollbars_add(f, tr) set_value(tr, 2) @test get_value(tr)[1] == choices[2] set_items(tr, choices[1:2]) destroy(w) end @testset "tree grid" begin w = Toplevel("Array") pack_stop_propagate(w) f = Frame(w); pack(f, expand=true, fill="both") tr = Treeview(f, hcat(choices, choices)) tree_key_header(tr, "right"); tree_key_width(tr, 50) tree_headers(tr, ["left"], [50]) scrollbars_add(f, tr) set_value(tr, 2) @test get_value(tr)[1] == choices[2] destroy(w) end @testset "Canvas" begin w = Toplevel("Canvas") pack_stop_propagate(w) f = Frame(w); pack(f, expand=true, fill="both") c = Canvas(f) @test parent(c) == f.w @test toplevel(c) == w destroy(w) end ## Examples # Wrap each test in its own module to avoid namespace leaks between files const exampledir = joinpath(splitdir(splitdir(@__FILE__)[1])[1], "examples") dcur = pwd() cd(exampledir) # TODO: Uncomment when Winston supports 0.6 #module example_manipulate # if Pkg.installed("Winston")!=nothing # include("../examples/manipulate.jl") # end #end module example_process using Test @static if Sys.isunix() @testset "Examples_Process" begin @test_nowarn include(joinpath("..","examples","process.jl")) end end end module example_sketch using Test @testset "Examples_Sketch" begin @test_nowarn include(joinpath("..","examples","sketch.jl")) end end module example_test using Test @testset "Examples_Test" begin @test_nowarn include(joinpath("..","examples","test.jl")) @test_nowarn destroy(w) end end module example_workspace using Test @testset "Examples_Workspace" begin @test_nowarn include(joinpath("..","examples","workspace.jl")) @test_nowarn aft.stop() sleep(1.5) @test_nowarn destroy(w) end end cd(dcur)
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
docs
1463
# Julia interface to the Tk windowing toolkit. | **Documentation** | **Build Status** | |:-------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------:| | [![][docs-stable-img]][docs-stable-url] | [![][travis-img]][travis-url] [![][appveyor-img]][appveyor-url] [![][drone-img]][drone-url] | [contrib-url]: https://juliadocs.github.io/Documenter.jl/dev/contributing/ [discourse-tag-url]: https://discourse.julialang.org/tags/documenter [gitter-url]: https://gitter.im/juliadocs/users [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://https://pkg.julialang.org/docs/Tk [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]:https://pkg.julialang.org/docs/Tk [travis-img]: https://travis-ci.org/JuliaGraphics/Tk.jl.svg?branch=master [travis-url]: https://travis-ci.org/JuliaGraphics/Tk.jl [appveyor-img]: https://ci.appveyor.com/api/projects/status/g14wsptfv2lq4oiv?svg=true [appveyor-url]: https://ci.appveyor.com/project/aviks/tk-jl [drone-img]: https://cloud.drone.io/api/badges/JuliaGraphics/Tk.jl/status.svg [drone-url]: https://cloud.drone.io/JuliaGraphics/Tk.jl [issues-url]: https://github.com/JuliaGraphics/Tk.jl/issues
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
docs
98
# Tk.jl API ```@index ``` ```@autodocs Modules = [Tk] Order = [:type, :function] ```
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT" ]
0.7.0
3ef117c610a41e41a429a4ebc5b744e84f205f74
docs
21079
## The Tk Package This package provides an interface to the Tcl/Tk libraries, useful for creating graphical user interfaces. The basic functionality is provided by the `tcl_eval` function, which is used to pass on Tcl commands. The `Canvas` widget is used to create a device for plotting of `julia`'s graphics. In particular, among others, the `Winston` and `Images` package can render to such a device. The example `sketch.jl` illustrates this widget for a different purpose. In addition, there are convenience methods for working with most of the widgets provided by `Tk` similar to the ones found in `R`'s `tcltk` package. For example, we add the `tcl` function as a wrapper for `tcl_eval` which provides translations from `julia` objects into Tcl constructs. ### Constructors Constructors are provided for the following widgets * `Toplevel`: for top level windows * `Frame`, `Labelframe`, `Notebook`, `Panedwindow`: for the basic containers * `Label`, `Button`, `Menu`: basic elements * `Checkbutton`, `Radio`, `Combobox`, `Slider`, `Spinbox`: selection widgets * `Entry`, `Text`: text widgets * `Treeview`: for trees, but also listboxes and grids * `Sizegrip`, `Separator`, `Progressbar`, `Image` various widgets The basic usage simply calls the `ttk::` counterpart, though one can use named arguments to pass in configuration options. As well, some have a convenience interfaces. ### Methods In addition to providing constructors, there are few additional convenience methods defined. * The `configure`, `cget`, `tclvar`, `identify`, `state`, `instate`, `winfo`, `wm`, `bind` methods to simplify the corresponding Tcl commands. For a single option of a widget accessed via `cget` and modified via `configure`, one can use the index notation with a symbol, as in `widget[:option]` or `widget[:option] = value`. * For widget layout, we have `pack`, `pack_configure`, `forget`, `grid`, `grid_configure`, `grid_forget`, ... providing interfaces to the appropriate Tk commands, but also `formlayout` and `page_add` for working with simple forms and notebooks and pane windows.. * We add the methods `get_value` and `set_value` to get and set the primary value for a control * We add the methods `get_items` and `set_items` to get and set the item(s) to select from for selection widgets. * We add the methods `width`, `height`, `get_size` to get the on-screen size of a widget. For top level windows there are `set_width`, `set_height`, and `set_size` for adjusting the geometry. The `:width` and `:height` properties are common to most widgets, and return the _requested_ width and height, which need not be the actual width and height on screen. * The conveniences `get_enabled` and `set_enabled` to specify if a widget accepts user input ## Examples ### Hello world A simple "Hello world" example, which shows off many of the styles is given by: ```jl w = Toplevel("Example") ## A titled top level window f = Frame(w, padding = [3,3,2,2], relief="groove") ## A Frame with some options set pack(f, expand = true, fill = "both") ## using pack to manage the layout of f # b = Button(f, "Click for a message") ## Button constructor has convenience interface grid(b, 1, 1) ## use grid to pack in b. 1,1 specifies location # callback(path) = Messagebox(w, title="A message", message="Hello World") ## A callback to open a message bind(b, "command", callback) ## bind callback to 'command' option bind(b, "<Return>", callback) ## press return key when button has focus ``` We see the use of an internal frame to hold the button. The frame's layout is managed using `pack`, the buttons with `grid`. Both these have some conveniences. For grid, the location of the cell can be specified by 1-based index as shown. The button callback is just a `julia` function. Its first argument, `path`, is used internally. In this case, we open a modal dialog with the `Messagebox` constructor when the callback is called. The button object has this callback bound to the button's `command` option. This responds to a mouse click, but not a press of the `enter` key when the button has the focus. For that, we also bind to the `<Return>` event. For the R package `tctlk` there are numerous examples at http://bioinf.wehi.edu.au/~wettenhall/RTclTkExamples/ . We borrow a few of these to illustrate the `Tk` package for `julia`. `Tk` commands are combined strings followed by options. Something like: `.button configure -text {button text}` is called as `configure(button, text = "button text)`. Key-value options are specified with through named arguments, which are converted to the underlying Tcl object. Similarly, path names are also translated and functions are converted to callbacks. ### Pack widgets into a themed widget for better appearance `Toplevel` is the command to create a new top-level window. (`Tk.Window` is similar, but we give `Toplevel` a unique type allowing us to add methods, such as `set_value` to modify the title.) Toplevel windows play a special role, as they start the widget hierarchy needed when constructing child components. A top level window is not a themed widget. Immediately packing in a `Frame` instance is good practice, as otherwise the background of the window may show through: ```jl w = Toplevel() f = Frame(w) pack(f, expand=true, fill="both") ``` #### Notes: * Sometimes the frame is configured with padding so that the sizegrip shows, e.g. `frame(w, padding = [3,3,2,2])`. * The above will get the size from the frame -- which has no request. This means the window will disappear. You may want to force the size to come from the top level window. You can use `tcl("pack", "propagate", w, false)` (wrapped in `pack_stop_propagate`) to get this: ```jl w = Toplevel("title", 400, 300) ## title, width, height pack_stop_propagate(w) f = Frame(w) pack(f, expand=true, fill="both") ``` * resizing top level windows with the mouse can leave visual artifacts, at least on a Mac. This is not optimal! (The picture below can be avoided by packing an expanding frame into the top level widget.) ![Munged Windows](munged-window.png) ### Message Box The `Messagebox` constructor makes a modal message box. ```jl Messagebox(title="title", message="message") ``` An optional `parent` argument can be specified to locate the box near the parent, as seen in the examples. ### File Dialogs File Open, File Save and Choose Directory dialogs can be invoked as follows. ```jl GetOpenFile() GetSaveFile() ChooseDirectory() ``` ### Checkbuttons ![Check button](checkbutton.png) Check boxes are constructed with `Checkbutton`: ```jl w = Toplevel() f = Frame(w) pack(f, expand=true, fill="both") cb = Checkbutton(f, "I like Julia") pack(cb) function callback(path) ## callbacks have at least one argument value = get_value(cb) msg = value ? "Glad to hear that" : "Sorry to hear that" Messagebox(w, title="Thanks for the feedback", message=msg) end bind(cb, "command", callback) ## bind to command option ``` The `set_items` method can be used to change the label. ### Radio buttons ![Radio button](radio.png) ```jl w = Toplevel() f = Frame(w) pack(f, expand=true, fill="both") l = Label(f, "Which do you prefer?") rb = Radio(f, ["apples", "oranges"]) b = Button(f, "ok") map(u -> pack(u, anchor="w"), (l, rb, b)) ## pack in left to right function callback(path) msg = (get_value(rb) == "apples") ? "Good choice! An apple a day keeps the doctor away!" : "Good choice! Oranges are full of Vitamin C!" Messagebox(w, msg) end bind(b, "command", callback) ``` The individual buttons can be accessed via the `buttons` property. This allows one to edit the labels, as in ```jl set_items(rb.buttons[1], "Honeycrisp Apples") ``` (The `set_items` method is used to set the items for a selection widget, in this case the lone item is the name, or label of the button.) ### Menus Menu bars for top level windows are easily created with the `menu_add` method. One can add actions items (pass a callback function), check buttons, radio buttons, or separators. ```jl w = Toplevel() tcl("pack", "propagate", w, false) ## or pack_stop_propagate(w) mb = Menu(w) ## makes menu, adds to top-level window fmenu = menu_add(mb, "File") omenu = menu_add(mb, "Options") menu_add(fmenu, "Open file...", (path) -> println("Open file dialog, ...")) menu_add(fmenu, Separator(w)) ## second argument is Tk_Separator instance menu_add(fmenu, "Close window", (path) -> destroy(w)) cb = Checkbutton(w, "Something visible") set_value(cb, true) ## initialize menu_add(omenu, cb) ## second argument is Tk_Checkbutton instance menu_add(omenu, Separator(w)) ## put in a separator rb = Radio(w, ["option 1", "option 2"]) set_value(rb, "option 1") ## initialize menu_add(omenu, rb) ## second argument is Tk_Radio instance b = Button(w, "print selected options") pack(b, expand=true, fill="both") function callback(path) vals = map(get_value, (cb, rb)) println(vals) end callback_add(b, callback) ## generic way to add callback for most common event ) ``` ### Entry widget ![Entry](entry.png) The entry widget can be used to collect data from the user. ```jl w = Toplevel() f = Frame(w); pack(f, expand=true, fill="both") e = Entry(f) b = Button(f, "Ok") formlayout(e, "First name:") formlayout(b, nothing) focus(e) ## put keyboard focus on widget function callback(path) val = get_value(e) msg = "You have a nice name $val" Messagebox(w, msg) end bind(b, "command", callback) bind(b, "<Return>", callback) bind(e, "<Return>", callback) ## bind to a certain key press event ``` ### Listboxes ![List box](listbox.png) There is no `Listbox` constructor; rather, we replicate this with `Treeview` simply by passing a vector of strings. Here we use a scrollbar too: ```jl fruits = ["Apple", "Navel orange", "Banana", "Pear"] w = Toplevel("Favorite fruit?") tcl("pack", "propagate", w, false) f = Frame(w) pack(f, expand=true, fill="both") f1 = Frame(f) ## need internal frame for use with scrollbars lb = Treeview(f1, fruits) scrollbars_add(f1, lb) pack(f1, expand=true, fill="both") b = Button(f, "Ok") pack(b) bind(b, "command") do path ## do style fruit_choice = get_value(lb) msg = (fruit_choice == nothing) ? "What, no choice?" : "Good choice! $(fruit_choice[1])" * "s are delicious!" Messagebox(w, msg) end ``` The value returned by `get_value` is an array or `nothing`. Returning `nothing` may not be the best choice, perhaps a 0-length array is better? One can configure the `selectmode`, e.g. `configure(lb, selectmode = "extended")` with either `extended` (multiple selection possible, `browse` (single selection), or `none` (no selection).) The shortcut `lb[:selectmode] = "extended"` will also work. The `Treeview` widget can also display a matrix of strings in a grid in addition to tree-like data. An editable grid could be done, but requires some additional Tk libraries. ### Combo boxes Selection from a list of choices can be done with a combo box: ![Combo box](combo.png) ```jl fruits = ["Apple", "Navel orange", "Banana", "Pear"] w = Toplevel("Combo boxes", 300, 200) tcl("pack", "propagate", w, false) f = Frame(w); pack(f, expand=true, fill="both") grid(Label(f, "Again, What is your favorite fruit?"), 1, 1) cb = Combobox(f, fruits) grid(cb, 2,1, sticky="ew") b = Button(f, "Ok") grid(b, 3, 1) function callback(path) fruit_choice = get_value(cb) msg = (fruit_choice == nothing) ? "What, no choice?" : "Good choice! $(fruit_choice)" * "s are delicious!" Messagebox(w, msg) end bind(b, "command", callback) ``` Here no choice also returns `nothing`. Use this value with `set_value` to clear the selection, if desired. Editable combo boxes need to be configured by hand. (So combo isn't really what we have here :) ### Text windows The basic multi-line text widget can be done through: ```jl w = Toplevel() tcl("pack", "propagate", w, false) f = Frame(w) txt = Text(f) scrollbars_add(f, txt) pack(f, expand=true, fill = "both") ``` Only a `get_value` and `set_value` is provided. One can configure other things (adding/inserting text, using tags, ...) directly with `tcl` or `tcl_eval`. ### Events One can bind a callback to an event in Tcl/Tk. There are few things to know: * Callbacks have at least one argument (we use `path`). With `bind`, other arguments are matched by name to correspond to Tcl/Tk's percent substitution. E.g. `f(path, x, y)` would get values for x and y through `%x %y`. * We show how to bind to a widget event, but this can be more general. E.g., top level events are for all children of the window a style can match all object of that style. * many widgets have a standard `command` argument in addition to window manager events they respond to. The value `command` can be passed to `bind` as the event. * The `bind` method does most of the work. The `callback_add` method binds to the most common event, mostly the `command` one. This can be used to bind the same callback to multiple widgets at once. ### Sliders The `Slider` widget presents a slider for selection from a range of values. The convenience constructor allows one to specify the range of values through a `Range` object, or the low and high `float` values of the range. Note that `get_value` returns a `float`, even if used with an integer range. ```jl w = Toplevel() f = Frame(w) pack(f, expand=true, fill="both") pack(Label(f, "Int Range slider"), side="top") s_range = Slider(f, 1:100) pack(s_range, side="top", expand=true, fill="both", anchor="w") bind(s_range, "command", path -> println("The range value is $(int(get_value(s_range)))")) pack(Label(f, "Float slider"), side="top") s_float = Slider(f, 0.0, 1.0) pack(s_float, side="top", expand=true, fill="both", anchor="w") bind(s_float, "command", path -> println("The float value is $(get_value(s_float))")) ``` One can also call `bind` using the `do` idiom: ```jl bind(sc, "command") do path println("The value is $(get_value(sc))") end ``` ### Sharing a variable between widgets ![Scale label](scale-label.png) Some widgets have a `textvariable` option. These can be shared to have automatic synchronization. For example, the scale widget does not have any indication as to the value, we remedy this with a label. ```jl w = Toplevel("Slider and label", 300, 200) f = Frame(w); pack(f, expand = true, fill = "both") sc = Slider(f, 1:20) l = Label(f) l[:textvariable] = sc[:variable] grid(sc, 1, 1, sticky="ew") grid(l, 2, 1, sticky="nw") grid_columnconfigure(f, 1, weight=1) ``` This combination above is not ideal, as the length of the label is not fixed. It would be better to format the value and use `set_value` in a callback. ### Spinbox ![Scale spinbox](scale-spinbox.png) The scale widget easily lets one pick a value, but it can be hard to select a precise one. The spinbox makes this easier. Here we link the two using a callback: ```jl w = Toplevel("Slider/Spinbox") f = Frame(w); pack(f, expand = true, fill = "both") sc = Slider(f, 1:100) sp = Spinbox(f, 1:100) map(pack, (sc, sp)) bind(sc, "command", path -> set_value(sp, get_value(sc))) bind(sp, "command", path -> set_value(sc, get_value(sp))) ``` ### Images ![Image](image.png) The `Image` widget can be used to show `gif` files. ```jl fname = Pkg.dir("Tk", "examples", "logo.gif") img = Image(fname) w = Toplevel("Image") f = Frame(w); pack(f, expand = true, fill = "both") l = Label(f, img) pack(l) ``` This example adds an image to a button. ```jl fname = Pkg.dir("Tk", "examples", "weather-overcast.gif") ## https://code.google.com/p/ultimate-gnome/ img = Image(fname) w = Toplevel("Icon in button") f = Frame(w); pack(f, expand = true, fill = "both") b = Button(f, "weather", img) ## or: b = Button(f, text="weather", image=img, compound="left") pack(b) ``` ### Graphics The `Canvas` widget can be placed in a GUI to embed a graphics device. In the examples directory you can find an implementation of RStudio's `manipulate` function. This functions makes it very straightforward to define basic interactive GUIs for plotting with `Winston`. To try it, run ```jl require(Pkg.dir("Tk", "examples", "manipulate.jl")) ``` The above graphic was produced with: ```jl ex = quote x = linspace( 0, n * pi, 100 ) c = cos(x) s = sin(x) p = FramedPlot() setattr(p, "title", title) if fillbetween add(p, FillBetween(x, c, x, s) ) end add(p, Curve(x, c, "color", color) ) add(p, Curve(x, s, "color", "blue") ) file(p, "example1.png") p ## return a winston object end obj = manipulate(ex, slider("n", "[0, n*pi]", 1:10) ,entry("title", "Title", "title") ,checkbox("fillbetween", "Fill between?", true) ,picker("color", "Cos color", ["red", "green", "yellow"]) ,button("update") ) ``` ### Frames The basic widget to hold child widgets is the Frame. As seen in the previous examples, it is simply constructed with `Frame`. The `padding` option can be used to give some breathing room. Laying out child components is done with a layout manager, one of `pack`, `grid`, or `place` in Tk. #### pack For `pack` there are several configuration options that are used to indicate how packing of child components is to be done. The examples make use of * `side`: to indicate the side of the cavity that the child should be packed against. Typically "top" to top to bottom packing or "left" for left to right packing. * `anchor`: One of the compass points indicating what part of the cavity the child should be attached to. * `expand`: should the child expand when packed * `fill`: how should an expanding child fill its space. We use `{:expand=>true, :fill=>"both"}` to indicate the child should take all the available space it can. Use `"x"` to stretch horizontally, and `"y"` to stretch vertically. Unlike other toolkits (Gtk, Qt), one can pack both horizontally and vertically within a frame. So to pack horizontally, one must add the `side` option each time. It can be convenient to do this using a map by first creating the widgets, then managing them: ```jl w = Toplevel("packing example") f = Frame(w); pack(f, expand=true, fill="both") ok_b = Button(f, "Ok") cancel_b = Button(f, "Cancel") help_b = Button(f, "Help") map(u -> pack(u, side = "left"), (ok_b, cancel_b, help_b)) ``` #### grid For `grid`, the arguments are the row and column. We use integers or ranges. When given a range, the widget can span multiple rows or columns. Within a cell, the `sticky` argument replaces the `expand`, `fill`, and `anchor` arguments. This is a string with one or more directions to attach. A value of `news` is like `Dict(:expand=>true, :fill=>"both")`, as all four sides are attached to. ![Grid](grid.png) ```jl w = Toplevel("Grid") f = Frame(w, padding = 10); pack(f, expand=true, fill="both") s1 = Slider(f, 1:10) s2 = Slider(f, 1:10, orient="vertical") b3 = Button(f, "ew sticky") b4 = Button(f, "ns sticky") grid(s1, 1, 1:2, sticky="news") grid(s2, 2:3, 2, sticky="news") grid(b3, 2, 1) grid(b4, 3, 1, sticky="ns") ## breaks theme ``` We provide the `formlayout` method for conveniently laying out widgets in a form-like manner, with a label on the left. (Pass `nothing` to suppress this.) One thing to keep in mind: *a container in Tk can only employ one layout style for its immediate children* That is, you can't manage children both with `pack` and `grid`, though you can nest frames and mix and match layout managers. ### Notebooks A notebook container holds various pages and draws tabs to allow the user to switch between them. The `page_add` method makes this easy: ```jl w = Toplevel() tcl("pack", "propagate", w, false) nb = Notebook(w) pack(nb, expand=true, fill="both") page1 = Frame(nb) page_add(page1, "Tab 1") pack(Button(page1, "page 1")) page2 = Frame(nb) page_add(page2, "Tab 2") pack(Label(page2, "Some label")) set_value(nb, 2) ## position on page 2 ``` ### Panedwindows A paned window allows a user to allocate space between child components using their mouse. This is done by dragging a "sash". As with `Notebook` containers, children are added through `page_add`. ```jl w = Toplevel("Panedwindow", 800, 300) tcl("pack", "propagate", w, false) f = Frame(w); pack(f, expand=true, fill="both") pg = Panedwindow(f, "horizontal") ## orientation. Use "vertical" for up down. grid(pg, 1, 1, sticky = "news") page_add(Button(pg, "button")) page_add(Label(pg, "label")) f = Frame(pg) formlayout(Entry(f), "Name:") formlayout(Entry(f), "Rank:") formlayout(Entry(f), "Serial Number:") page_add(f) set_value(pg, 100) ## set divider between first two pixels tcl(pg, "sashpos", 1, 200) ## others set the tcl way ```
Tk
https://github.com/JuliaGraphics/Tk.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
294
module SLICOTMath using SLICOT_jll using LinearAlgebra using LinearAlgebra: BlasInt using DocStringExtensions function chkargsok(ret::BlasInt) if ret < 0 throw(ArgumentError("invalid argument #$(-ret) to SLICOT call")) end end include("slicot_m.jl") include("m_docs.jl") end
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
162864
# Portions extracted from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. """ Compute the complex square root YR + i*YI of a complex number XR + i*XI in real arithmetic. The returned result is so that YR >= 0.0 and SIGN(YI) = SIGN(XI). See the SLICOT documentation for details. """ function ma01ad! end """ Compute the general product of K real scalars without over- or underflow. See the SLICOT documentation for details. """ function ma01bd! end """ Compute the general product of K complex scalars trying to avoid over- and underflow. See the SLICOT documentation for details. """ function ma01bz! end """ Compute, without over- or underflow, the sign of the sum of two real numbers represented using integer powers of a base (usually, the machine base). Any base can be used, but it should the same for both numbers. The result is an integer with value 1, 0, or -1, depending on the sum being found as positive, zero, or negative, respectively. See the SLICOT documentation for details. """ function ma01cd! end """ Transpose all or part of a two-dimensional matrix A into another matrix B. See the SLICOT documentation for details. """ function ma02ad! end """ Reverse the order of rows and/or columns of a given matrix A by pre-multiplying and/or post-multiplying it, respectively, with a permutation matrix P, where P is a square matrix of appropriate order, with ones down the secondary diagonal. See the SLICOT documentation for details. """ function ma02bd! end """ Reverse the order of rows and/or columns of a given matrix A by pre-multiplying and/or post-multiplying it, respectively, with a permutation matrix P, where P is a square matrix of appropriate order, with ones down the secondary diagonal. See the SLICOT documentation for details. """ function ma02bz! end """ Compute the pertranspose of a central band of a square matrix. See the SLICOT documentation for details. """ function ma02cd! end """ Compute the pertranspose of a central band of a square matrix. See the SLICOT documentation for details. """ function ma02cz! end """ Pack/unpack the upper or lower triangle of a symmetric matrix. The packed matrix is stored column-wise in the one-dimensional array AP. See the SLICOT documentation for details. """ function ma02dd! end """ Store by symmetry the upper or lower triangle of a symmetric matrix, given the other triangle. See the SLICOT documentation for details. """ function ma02ed! end """ Store by skew-symmetry the upper or lower triangle of a skew-symmetric matrix, given the other triangle. The diagonal entries are set to zero. See the SLICOT documentation for details. """ function ma02es! end """ Store by (skew-)symmetry the upper or lower triangle of a (skew-)symmetric/Hermitian complex matrix, given the other triangle. See the SLICOT documentation for details. """ function ma02ez! end """ Compute the coefficients c and s (c^2 + s^2 = 1) for a modified hyperbolic plane rotation, such that, `y1 := 1/c * x1 - s/c * x2 = sqrt(x1^2 - x2^2),` `y2 := -s * y1 + c * x2 = 0,` given two real numbers x1 and x2, satisfying either x1 = x2 = 0, or abs(x2) < abs(x1). See the SLICOT documentation for details. """ function ma02fd! end """ Perform a series of column interchanges on the matrix A. One column interchange is initiated for each of columns K1 through K2 of A. This is useful for solving linear systems X*A = B, when the matrix A has already been factored by LAPACK Library routine DGETRF. See the SLICOT documentation for details. """ function ma02gd! end """ Perform a series of column interchanges on the matrix A. One column interchange is initiated for each of columns K1 through K2 of A. This is useful for solving linear systems X*A = B, when the matrix A has already been factored by LAPACK Library routine DGETRF. See the SLICOT documentation for details. """ function ma02gz! end """ Check if A = DIAG*I, where I is an M-by-N matrix with ones on the diagonal and zeros elsewhere. See the SLICOT documentation for details. """ function ma02hd! end """ Check if A = DIAG*I, where I is an M-by-N matrix with ones on the diagonal and zeros elsewhere, A is a complex matrix and DIAG is a complex scalar. See the SLICOT documentation for details. """ function ma02hz! end """ Compute the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real skew-Hamiltonian matrix `[ A G ] T T` `X = [ T ], G = -G, Q = -Q,` `[ Q A ]` or of a real Hamiltonian matrix `[ A G ] T T` `X = [ T ], G = G, Q = Q,` `[ Q -A ]` where A, G and Q are real n-by-n matrices. Note that for this kind of matrices the infinity norm is equal to the one norm. See the SLICOT documentation for details. """ function ma02id! end """ Compute the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex skew-Hamiltonian matrix `[ A G ] H H` `X = [ H ], G = -G, Q = -Q,` `[ Q A ]` or of a complex Hamiltonian matrix `[ A G ] H H` `X = [ H ], G = G, Q = Q,` `[ Q -A ]` where A, G and Q are complex n-by-n matrices. Note that for this kind of matrices the infinity norm is equal to the one norm. See the SLICOT documentation for details. """ function ma02iz! end """ Compute || Q^T Q - I ||_F for a matrix of the form `[ op( Q1 ) op( Q2 ) ]` `Q = [ ],` `[ -op( Q2 ) op( Q1 ) ]` where Q1 and Q2 are N-by-N matrices. This residual can be used to test wether Q is numerically an orthogonal symplectic matrix. See the SLICOT documentation for details. """ function ma02jd! end """ Compute || Q^H Q - I ||_F for a complex matrix of the form `[ op( Q1 ) op( Q2 ) ]` `Q = [ ],` `[ -op( Q2 ) op( Q1 ) ]` where Q1 and Q2 are N-by-N matrices. This residual can be used to test wether Q is numerically a unitary symplectic matrix. See the SLICOT documentation for details. """ function ma02jz! end """ Compute the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a real skew-symmetric matrix. Note that for this kind of matrices the infinity norm is equal to the one norm. See the SLICOT documentation for details. """ function ma02md! end """ Compute the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex skew-Hermitian matrix. Note that for this kind of matrices the infinity norm is equal to the one norm. See the SLICOT documentation for details. """ function ma02mz! end """ Permute two specified rows and corresponding columns of a (skew-)symmetric/Hermitian complex matrix. See the SLICOT documentation for details. """ function ma02nz! end """ Compute the number of zero rows (and zero columns) of a real (skew-)Hamiltonian matrix, `( A D )` `H = ( ).` `( E +/-A' )` See the SLICOT documentation for details. """ function ma02od! end """ Compute the number of zero rows (and zero columns) of a complex (skew-)Hamiltonian matrix, `( A D )` `H = ( ).` `( E +/-A' )` See the SLICOT documentation for details. """ function ma02oz! end """ Compute the number of zero rows and zero columns of a real matrix. See the SLICOT documentation for details. """ function ma02pd! end """ Compute the number of zero rows and zero columns of a complex matrix. See the SLICOT documentation for details. """ function ma02pz! end """ Perform one of the skew-symmetric rank 2k operations `C := alpha*A*B' - alpha*B*A' + beta*C,` or `C := alpha*A'*B - alpha*B'*A + beta*C,` where alpha and beta are scalars, C is a real N-by-N skew- symmetric matrix and A, B are N-by-K matrices in the first case and K-by-N matrices in the second case. This is a modified version of the vanilla implemented BLAS routine DSYR2K written by Jack Dongarra, Iain Duff, Jeremy Du Croz and Sven Hammarling. See the SLICOT documentation for details. """ function mb01kd! end """ Compute the matrix formula `_` `R = alpha*R + beta*op( A )*X*op( A )',` `_` where alpha and beta are scalars, R, X, and R are skew-symmetric matrices, A is a general matrix, and op( A ) is one of `op( A ) = A or op( A ) = A'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01ld! end """ Perform the matrix-vector operation `y := alpha*A*x + beta*y,` where alpha and beta are scalars, x and y are vectors of length n and A is an n-by-n skew-symmetric matrix. This is a modified version of the vanilla implemented BLAS routine DSYMV written by Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard Hanson. See the SLICOT documentation for details. """ function mb01md! end """ Perform the skew-symmetric rank 2 operation `A := alpha*x*y' - alpha*y*x' + A,` where alpha is a scalar, x and y are vectors of length n and A is an n-by-n skew-symmetric matrix. This is a modified version of the vanilla implemented BLAS routine DSYR2 written by Jack Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard Hanson. See the SLICOT documentation for details. """ function mb01nd! end """ Perform one of the special symmetric rank 2k operations `R := alpha*R + beta*H*X + beta*X*H',` or `R := alpha*R + beta*H'*X + beta*X*H,` where alpha and beta are scalars, R and X are N-by-N symmetric matrices, and H is an N-by-N upper Hessenberg matrix. See the SLICOT documentation for details. """ function mb01oc! end """ Compute the matrix formula `R := alpha*R + beta*( op( H )*X*op( E )' + op( E )*X*op( H )' ),` where alpha and beta are scalars, R and X are symmetric matrices, H is an upper Hessenberg matrix, E is an upper triangular matrix, and op( M ) is one of `op( M ) = M or op( M ) = M'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01od! end """ Compute one of the symmetric rank 2k operations `R := alpha*R + beta*H*E' + beta*E*H',` or `R := alpha*R + beta*H'*E + beta*E'*H,` where alpha and beta are scalars, R, E, and H are N-by-N matrices, with H upper Hessenberg and E upper triangular. See the SLICOT documentation for details. """ function mb01oe! end """ Compute one of the symmetric rank 2k operations `R := alpha*R + beta*H*A' + beta*A*H',` or `R := alpha*R + beta*H'*A + beta*A'*H,` where alpha and beta are scalars, R, A, and H are N-by-N matrices, with A and H upper Hessenberg. See the SLICOT documentation for details. """ function mb01oh! end """ Compute either P or P', with P defined by the matrix formula `P = op( H )*X*op( E )',` where H is an upper Hessenberg matrix, X is a symmetric matrix, E is an upper triangular matrix, and op( M ) is one of `op( M ) = M or op( M ) = M'.` See the SLICOT documentation for details. """ function mb01oo! end """ Compute P = H*X or P = X*H, where H is an upper Hessenberg matrix and X is a symmetric matrix. See the SLICOT documentation for details. """ function mb01os! end """ Compute one of the symmetric rank 2k operations `R := alpha*R + beta*E*T' + beta*T*E',` or `R := alpha*R + beta*E'*T + beta*T'*E,` where alpha and beta are scalars, R, T, and E are N-by-N matrices, with T and E upper triangular. See the SLICOT documentation for details. """ function mb01ot! end """ Scale a matrix or undo scaling. Scaling is performed, if necessary, so that the matrix norm will be in a safe range of representable numbers. See the SLICOT documentation for details. """ function mb01pd! end """ Multiply the M by N real matrix A by the real scalar CTO/CFROM. This is done without over/underflow as long as the final result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that A may be full, (block) upper triangular, (block) lower triangular, (block) upper Hessenberg, or banded. See the SLICOT documentation for details. """ function mb01qd! end """ Compute either the upper or lower triangular part of one of the matrix formulas `_` `R = alpha*R + beta*op( A )*B, (1)` `_` `R = alpha*R + beta*B*op( A ), (2)` `_` where alpha and beta are scalars, R and R are m-by-m matrices, op( A ) and B are m-by-n and n-by-m matrices for (1), or n-by-m and m-by-n matrices for (2), respectively, and op( A ) is one of `op( A ) = A or op( A ) = A', the transpose of A.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01rb! end """ Compute the matrix formula `_` `R = alpha*R + beta*op( A )*X*op( A )',` `_` where alpha and beta are scalars, R, X, and R are symmetric matrices, A is a general matrix, and op( A ) is one of `op( A ) = A or op( A ) = A'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01rd! end """ Compute the matrix formula `R := alpha*R + beta*op( H )*X*op( H )',` where alpha and beta are scalars, R and X are symmetric matrices, H is an upper Hessenberg matrix, and op( H ) is one of `op( H ) = H or op( H ) = H'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01rh! end """ Compute the matrix formula `R := alpha*R + beta*op( E )*X*op( E )',` where alpha and beta are scalars, R and X are symmetric matrices, E is an upper triangular matrix, and op( E ) is one of `op( E ) = E or op( E ) = E'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01rt! end """ Compute the matrix formula `_` `R = alpha*R + beta*op( A )*X*op( A )',` `_` where alpha and beta are scalars, R, X, and R are symmetric matrices, A is a general matrix, and op( A ) is one of `op( A ) = A or op( A ) = A'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01ru! end """ Compute the transformation of the symmetric matrix A by the matrix Z in the form `A := op(Z)*A*op(Z)',` where op(Z) is either Z or its transpose, Z'. See the SLICOT documentation for details. """ function mb01rw! end """ Compute either the upper or lower triangular part of one of the matrix formulas `_` `R = alpha*R + beta*op( A )*B, (1)` `_` `R = alpha*R + beta*B*op( A ), (2)` `_` where alpha and beta are scalars, R and R are m-by-m matrices, op( A ) and B are m-by-n and n-by-m matrices for (1), or n-by-m and m-by-n matrices for (2), respectively, and op( A ) is one of `op( A ) = A or op( A ) = A', the transpose of A.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01rx! end """ Compute either the upper or lower triangular part of one of the matrix formulas `_` `R = alpha*R + beta*op( H )*B, (1)` `_` `R = alpha*R + beta*B*op( H ), (2)` `_` where alpha and beta are scalars, H, B, R, and R are m-by-m matrices, H is an upper Hessenberg matrix, and op( H ) is one of `op( H ) = H or op( H ) = H', the transpose of H.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01ry! end """ Scale a general M-by-N matrix A using the row and column scaling factors in the vectors R and C. See the SLICOT documentation for details. """ function mb01sd! end """ Scale a symmetric N-by-N matrix A using the row and column scaling factors stored in the vector D. See the SLICOT documentation for details. """ function mb01ss! end """ Compute the matrix product A * B, where A and B are upper quasi-triangular matrices (that is, block upper triangular with 1-by-1 or 2-by-2 diagonal blocks) with the same structure. The result is returned in the array B. See the SLICOT documentation for details. """ function mb01td! end """ Compute one of the matrix products `B = alpha*op( H ) * A, or B = alpha*A * op( H ),` where alpha is a scalar, A and B are m-by-n matrices, H is an upper Hessenberg matrix, and op( H ) is one of `op( H ) = H or op( H ) = H', the transpose of H.` See the SLICOT documentation for details. """ function mb01ud! end """ Compute one of the matrix products `A : = alpha*op( H ) * A, or A : = alpha*A * op( H ),` where alpha is a scalar, A is an m-by-n matrix, H is an upper Hessenberg matrix, and op( H ) is one of `op( H ) = H or op( H ) = H', the transpose of H.` See the SLICOT documentation for details. """ function mb01uw! end """ Compute one of the matrix products `A : = alpha*op( T ) * A, or A : = alpha*A * op( T ),` where alpha is a scalar, A is an m-by-n matrix, T is a quasi- triangular matrix, and op( T ) is one of `op( T ) = T or op( T ) = T', the transpose of T.` See the SLICOT documentation for details. """ function mb01ux! end """ Perform the following matrix operation `C = alpha*kron( op(A), op(B) ) + beta*C,` where alpha and beta are real scalars, op(M) is either matrix M or its transpose, M', and kron( X, Y ) denotes the Kronecker product of the matrices X and Y. See the SLICOT documentation for details. """ function mb01vd! end """ Compute the matrix formula _ R = alpha*( op( A )'*op( T )'*op( T ) + op( T )'*op( T )*op( A ) ) `+ beta*R, (1)` if DICO = 'C', or _ R = alpha*( op( A )'*op( T )'*op( T )*op( A ) - op( T )'*op( T )) `+ beta*R, (2)` `_` if DICO = 'D', where alpha and beta are scalars, R, and R are symmetric matrices, T is a triangular matrix, A is a general or Hessenberg matrix, and op( M ) is one of `op( M ) = M or op( M ) = M'.` The result is overwritten on R. See the SLICOT documentation for details. """ function mb01wd! end """ Compute the matrix product U' * U or L * L', where U and L are upper and lower triangular matrices, respectively, stored in the corresponding upper or lower triangular part of the array A. If UPLO = 'U' then the upper triangle of the result is stored, overwriting the matrix U in A. If UPLO = 'L' then the lower triangle of the result is stored, overwriting the matrix L in A. See the SLICOT documentation for details. """ function mb01xd! end """ Compute the matrix product U' * U or L * L', where U and L are upper and lower triangular matrices, respectively, stored in the corresponding upper or lower triangular part of the array A. If UPLO = 'U' then the upper triangle of the result is stored, overwriting the matrix U in A. If UPLO = 'L' then the lower triangle of the result is stored, overwriting the matrix L in A. See the SLICOT documentation for details. """ function mb01xy! end """ Perform the symmetric rank k operations `C := alpha*op( A )*op( A )' + beta*C,` where alpha and beta are scalars, C is an n-by-n symmetric matrix, op( A ) is an n-by-k matrix, and op( A ) is one of `op( A ) = A or op( A ) = A'.` The matrix A has l nonzero codiagonals, either upper or lower. See the SLICOT documentation for details. """ function mb01yd! end """ Compute the matrix product `H := alpha*op( T )*H, or H := alpha*H*op( T ),` where alpha is a scalar, H is an m-by-n upper or lower Hessenberg-like matrix (with l nonzero subdiagonals or superdiagonals, respectively), T is a unit, or non-unit, upper or lower triangular matrix, and op( T ) is one of `op( T ) = T or op( T ) = T'.` See the SLICOT documentation for details. """ function mb01zd! end """ Compute the Cholesky factor and the generator and/or the Cholesky factor of the inverse of a symmetric positive definite (s.p.d.) block Toeplitz matrix T, defined by either its first block row, or its first block column, depending on the routine parameter TYPET. Transformation information is stored. See the SLICOT documentation for details. """ function mb02cd! end """ Bring the first blocks of a generator to proper form. The positive part of the generator is contained in the arrays A1 and A2. The negative part of the generator is contained in B. Transformation information will be stored and can be applied via SLICOT Library routine MB02CV. See the SLICOT documentation for details. """ function mb02cu! end """ Apply the transformations created by the SLICOT Library routine MB02CU on other columns / rows of the generator, contained in the arrays F1, F2 and G. See the SLICOT documentation for details. """ function mb02cv! end """ Bring the first blocks of a generator in proper form. The columns / rows of the positive and negative generators are contained in the arrays A and B, respectively. Transformation information will be stored and can be applied via SLICOT Library routine MB02CY. See the SLICOT documentation for details. """ function mb02cx! end """ Apply the transformations created by the SLICOT Library routine MB02CX on other columns / rows of the generator, contained in the arrays A and B of positive and negative generators, respectively. See the SLICOT documentation for details. """ function mb02cy! end """ Update the Cholesky factor and the generator and/or the Cholesky factor of the inverse of a symmetric positive definite (s.p.d.) block Toeplitz matrix T, given the information from a previous factorization and additional blocks in TA of its first block row, or its first block column, depending on the routine parameter TYPET. Transformation information is stored. See the SLICOT documentation for details. """ function mb02dd! end """ Solve a system of linear equations T*X = B or X*T = B with a symmetric positive definite (s.p.d.) block Toeplitz matrix T. T is defined either by its first block row or its first block column, depending on the parameter TYPET. See the SLICOT documentation for details. """ function mb02ed! end """ Compute the incomplete Cholesky (ICC) factor of a symmetric positive definite (s.p.d.) block Toeplitz matrix T, defined by either its first block row, or its first block column, depending on the routine parameter TYPET. By subsequent calls of this routine, further rows / columns of the Cholesky factor can be added. Furthermore, the generator of the Schur complement of the leading (P+S)*K-by-(P+S)*K block in T is available, which can be used, e.g., for measuring the quality of the ICC factorization. See the SLICOT documentation for details. """ function mb02fd! end """ Compute the Cholesky factor of a banded symmetric positive definite (s.p.d.) block Toeplitz matrix, defined by either its first block row, or its first block column, depending on the routine parameter TYPET. By subsequent calls of this routine the Cholesky factor can be computed block column by block column. See the SLICOT documentation for details. """ function mb02gd! end """ Compute, for a banded K*M-by-L*N block Toeplitz matrix T with block size (K,L), specified by the nonzero blocks of its first block column TC and row TR, a LOWER triangular matrix R (in band storage scheme) such that `T T` `T T = R R . (1)` It is assumed that the first MIN(M*K, N*L) columns of T are linearly independent. By subsequent calls of this routine, the matrix R can be computed block column by block column. See the SLICOT documentation for details. """ function mb02hd! end """ Solve the overdetermined or underdetermined real linear systems involving an M*K-by-N*L block Toeplitz matrix T that is specified by its first block column and row. It is assumed that T has full rank. The following options are provided: 1. If JOB = 'O' or JOB = 'A' : find the least squares solution of `an overdetermined system, i.e., solve the least squares problem` `minimize || B - T*X ||. (1)` 2. If JOB = 'U' or JOB = 'A' : find the minimum norm solution of `the undetermined system` `T` `T * X = C. (2)` See the SLICOT documentation for details. """ function mb02id! end """ Compute a lower triangular matrix R and a matrix Q with Q^T Q = I such that `T` `T = Q R ,` where T is a K*M-by-L*N block Toeplitz matrix with blocks of size (K,L). The first column of T will be denoted by TC and the first row by TR. It is assumed that the first MIN(M*K, N*L) columns of T have full rank. By subsequent calls of this routine the factors Q and R can be computed block column by block column. See the SLICOT documentation for details. """ function mb02jd! end """ Compute a low rank QR factorization with column pivoting of a K*M-by-L*N block Toeplitz matrix T with blocks of size (K,L); specifically, `T` `T P = Q R ,` where R is lower trapezoidal, P is a block permutation matrix and Q^T Q = I. The number of columns in R is equivalent to the numerical rank of T with respect to the given tolerance TOL1. Note that the pivoting scheme is local, i.e., only columns belonging to the same block in T are permuted. See the SLICOT documentation for details. """ function mb02jx! end """ Compute the matrix product `C = alpha*op( T )*B + beta*C,` where alpha and beta are scalars and T is a block Toeplitz matrix specified by its first block column TC and first block row TR; B and C are general matrices of appropriate dimensions. See the SLICOT documentation for details. """ function mb02kd! end """ Solve the Total Least Squares (TLS) problem using a Singular Value Decomposition (SVD) approach. The TLS problem assumes an overdetermined set of linear equations AX = B, where both the data matrix A as well as the observation matrix B are inaccurate. The routine also solves determined and underdetermined sets of equations by computing the minimum norm solution. It is assumed that all preprocessing measures (scaling, coordinate transformations, whitening, ... ) of the data have been performed in advance. See the SLICOT documentation for details. """ function mb02md! end """ Solve the Total Least Squares (TLS) problem using a Partial Singular Value Decomposition (PSVD) approach. The TLS problem assumes an overdetermined set of linear equations AX = B, where both the data matrix A as well as the observation matrix B are inaccurate. The routine also solves determined and underdetermined sets of equations by computing the minimum norm solution. It is assumed that all preprocessing measures (scaling, coordinate transformations, whitening, ... ) of the data have been performed in advance. See the SLICOT documentation for details. """ function mb02nd! end """ Separate a zero singular value of a bidiagonal submatrix of order k, k <= p, of the bidiagonal matrix `|Q(1) E(1) 0 ... 0 |` `| 0 Q(2) E(2) . |` `J = | . . |` `| . E(p-1)|` `| 0 ... ... ... Q(p) |` with p = MIN(M,N), by annihilating one or two superdiagonal elements E(i-1) (if i > 1) and/or E(i) (if i < k). See the SLICOT documentation for details. """ function mb02ny! end """ Solve (if well-conditioned) one of the matrix equations `op( A )*X = alpha*B, or X*op( A ) = alpha*B,` where alpha is a scalar, X and B are m-by-n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of `op( A ) = A or op( A ) = A'.` An estimate of the reciprocal of the condition number of the triangular matrix A, in either the 1-norm or the infinity-norm, is also computed as `RCOND = 1 / ( norm(A) * norm(inv(A)) ).` and the specified matrix equation is solved only if RCOND is larger than a given tolerance TOL. In that case, the matrix X is overwritten on B. See the SLICOT documentation for details. """ function mb02od! end """ Solve (if well-conditioned) the matrix equations `op( A )*X = B,` where X and B are N-by-NRHS matrices, A is an N-by-N matrix and op( A ) is one of `op( A ) = A or op( A ) = A'.` Error bounds on the solution and a condition estimate are also provided. See the SLICOT documentation for details. """ function mb02pd! end """ Compute a solution, optionally corresponding to specified free elements, to a real linear least squares problem: `minimize || A * X - B ||` using a complete orthogonal factorization of the M-by-N matrix A, which may be rank-deficient. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X. See the SLICOT documentation for details. """ function mb02qd! end """ Determine the minimum-norm solution to a real linear least squares problem: `minimize || A * X - B ||,` using the rank-revealing QR factorization of a real general M-by-N matrix A, computed by SLICOT Library routine MB03OD. See the SLICOT documentation for details. """ function mb02qy! end """ Solve a system of linear equations `H * X = B or H' * X = B` with an upper Hessenberg N-by-N matrix H using the LU factorization computed by MB02SD. See the SLICOT documentation for details. """ function mb02rd! end """ Solve a system of linear equations `H * X = B, H' * X = B or H**H * X = B` with a complex upper Hessenberg N-by-N matrix H using the LU factorization computed by MB02SZ. See the SLICOT documentation for details. """ function mb02rz! end """ Compute an LU factorization of an n-by-n upper Hessenberg matrix H using partial pivoting with row interchanges. See the SLICOT documentation for details. """ function mb02sd! end """ Compute an LU factorization of a complex n-by-n upper Hessenberg matrix H using partial pivoting with row interchanges. See the SLICOT documentation for details. """ function mb02sz! end """ Estimate the reciprocal of the condition number of an upper Hessenberg matrix H, in either the 1-norm or the infinity-norm, using the LU factorization computed by MB02SD. See the SLICOT documentation for details. """ function mb02td! end """ Estimate the reciprocal of the condition number of a complex upper Hessenberg matrix H, in either the 1-norm or the infinity-norm, using the LU factorization computed by MB02SZ. See the SLICOT documentation for details. """ function mb02tz! end """ Compute the minimum norm least squares solution of one of the following linear systems `op(R)*X = alpha*B, (1)` `X*op(R) = alpha*B, (2)` where alpha is a real scalar, op(R) is either R or its transpose, R', R is an L-by-L real upper triangular matrix, B is an M-by-N real matrix, and L = M for (1), or L = N for (2). Singular value decomposition, R = Q*S*P', is used, assuming that R is rank deficient. See the SLICOT documentation for details. """ function mb02ud! end """ Solve for x in A * x = scale * RHS, using the LU factorization of the N-by-N matrix A computed by SLICOT Library routine MB02UV. The factorization has the form A = P * L * U * Q, where P and Q are permutation matrices, L is unit lower triangular and U is upper triangular. See the SLICOT documentation for details. """ function mb02uu! end """ Compute an LU factorization, using complete pivoting, of the N-by-N matrix A. The factorization has the form A = P * L * U * Q, where P and Q are permutation matrices, L is lower triangular with unit diagonal elements and U is upper triangular. See the SLICOT documentation for details. """ function mb02uv! end """ Solve a system of the form A X = s B or A' X = s B with possible scaling ("s") and perturbation of A. (A' means A-transpose.) A is an N-by-N real matrix, and X and B are N-by-M matrices. N may be 1 or 2. The scalar "s" is a scaling factor (.LE. 1), computed by this subroutine, which is so chosen that X can be computed without overflow. X is further scaled if necessary to assure that norm(A)*norm(X) is less than overflow. See the SLICOT documentation for details. """ function mb02uw! end """ Compute the solution to a real system of linear equations `X * op(A) = B,` where op(A) is either A or its transpose, A is an N-by-N matrix, and X and B are M-by-N matrices. The LU decomposition with partial pivoting and row interchanges, A = P * L * U, is used, where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. See the SLICOT documentation for details. """ function mb02vd! end """ Determine a vector x which solves the system of linear equations `A*x = b , D*x = 0 ,` in the least squares sense, where A is an m-by-n matrix, D is an n-by-n diagonal matrix, and b is an m-vector. It is assumed that a QR factorization, with column pivoting, of A is available, that is, A*P = Q*R, where P is a permutation matrix, Q has orthogonal columns, and R is an upper triangular matrix with diagonal elements of nonincreasing magnitude. The routine needs the full upper triangle of R, the permutation matrix P, and the first n components of Q'*b (' denotes the transpose). The system A*x = b, D*x = 0, is then equivalent to `R*z = Q'*b , P'*D*P*z = 0 , (1)` where x = P*z. If this system does not have full rank, then a least squares solution is obtained. On output, MB02YD also provides an upper triangular matrix S such that `P'*(A'*A + D*D)*P = S'*S .` The system (1) is equivalent to S*z = c , where c contains the first n components of the vector obtained by applying to [ (Q'*b)' 0 ]' the transformations which triangularized [ R' P'*D*P ]', getting S. See the SLICOT documentation for details. """ function mb02yd! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is needed for the real Wilkinson single shift polynomial (see the SLICOT Library routines MB03BE or MB03BF). The shifts are defined based on the eigenvalues (computed externally by the SLICOT Library routine MB03BB) of the trailing 2-by-2 submatrix of the matrix product. See the definitions of the arguments W1 and W2. See the SLICOT documentation for details. """ function mb03ab! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is used for the real Wilkinson single shift polynomial (see SLICOT Library routine MB03BE). See the SLICOT documentation for details. """ function mb03ad! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is used for the real Wilkinson single shift polynomial (see SLICOT Library routines MB03BE or MB03BF). All factors whose exponents differ from that of the Hessenberg factor are assumed nonsingular. The trailing 2-by-2 submatrix and the five nonzero elements in the first two columns of the matrix product are evaluated when a double shift is used. See the SLICOT documentation for details. """ function mb03ae! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is used for the real Wilkinson single shift polynomial (see SLICOT Library routines MB03BE or MB03BF). See the SLICOT documentation for details. """ function mb03af! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is used for the real Wilkinson single shift polynomial (see SLICOT Library routines MB03BE or MB03BF). All factors whose exponents differ from that of the Hessenberg factor are assumed nonsingular. The matrix product is evaluated. See the SLICOT documentation for details. """ function mb03ag! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is used for the real Wilkinson single shift polynomial (see SLICOT Library routines MB03BE or MB03BF). All factors whose exponents differ from that of the Hessenberg factor are assumed nonsingular. The trailing 2-by-2 submatrix and the five nonzero elements in the first two columns of the matrix product are evaluated when a double shift is used. See the SLICOT documentation for details. """ function mb03ah! end """ Compute two Givens rotations (C1,S1) and (C2,S2) such that the orthogonal matrix `[ Q 0 ] [ C1 S1 0 ] [ 1 0 0 ]` `Z = [ ], Q := [ -S1 C1 0 ] * [ 0 C2 S2 ],` `[ 0 I ] [ 0 0 1 ] [ 0 -S2 C2 ]` makes the first column of the real Wilkinson double shift polynomial of the product of matrices in periodic upper Hessenberg form, stored in the array A, parallel to the first unit vector. Only the rotation defined by C1 and S1 is used for the real Wilkinson single shift polynomial (see SLICOT Library routines MB03BE or MB03BF). All factors whose exponents differ from that of the Hessenberg factor are assumed nonsingular. The matrix product is evaluated. See the SLICOT documentation for details. """ function mb03ai! end """ Compute the suitable maps for Hessenberg index H and signature array S. Auxiliary routine for the periodic QZ algorithms. See the SLICOT documentation for details. """ function mb03ba! end """ Compute the eigenvalues of a general 2-by-2 matrix product via a complex single shifted periodic QZ algorithm. See the SLICOT documentation for details. """ function mb03bb! end """ Compute the product singular value decomposition of the K-1 triangular factors corresponding to a 2-by-2 product of K factors in upper Hessenberg-triangular form. For a general product of 2-by-2 triangular matrices `S(2) S(3) S(K)` `A = A(:,:,2) A(:,:,3) ... A(:,:,K),` Givens rotations are computed so that `S(i)` `[ CV(i-1) SV(i-1) ] [ A(1,1,i)(in) A(1,2,i)(in) ]` `[ -SV(i-1) CV(i-1) ] [ 0 A(2,2,i)(in) ]` `S(i)` `[ A(1,1,i)(out) A(1,2,i)(out) ] [ CV(i) SV(i) ]` = [ 0 A(2,2,i)(out) ] [ -SV(i) CV(i) ] stays upper triangular and `[ CV(1) SV(1) ] [ CV(K) -SV(K) ]` `[ -SV(1) CV(1) ] * A * [ SV(K) CV(K) ]` is diagonal. See the SLICOT documentation for details. """ function mb03bc! end """ Find the eigenvalues of the generalized matrix product `S(1) S(2) S(K)` `A(:,:,1) * A(:,:,2) * ... * A(:,:,K)` where A(:,:,H) is upper Hessenberg and A(:,:,i), i <> H, is upper triangular, using a double-shift version of the periodic QZ method. In addition, A may be reduced to periodic Schur form: A(:,:,H) is upper quasi-triangular and all the other factors A(:,:,I) are upper triangular. Optionally, the 2-by-2 triangular matrices corresponding to 2-by-2 diagonal blocks in A(:,:,H) are so reduced that their product is a 2-by-2 diagonal matrix. If COMPQ = 'U' or COMPQ = 'I', then the orthogonal factors are computed and stored in the array Q so that for S(I) = 1, `T` `Q(:,:,I)(in) A(:,:,I)(in) Q(:,:,MOD(I,K)+1)(in)` `T (1)` `= Q(:,:,I)(out) A(:,:,I)(out) Q(:,:,MOD(I,K)+1)(out),` and for S(I) = -1, `T` `Q(:,:,MOD(I,K)+1)(in) A(:,:,I)(in) Q(:,:,I)(in)` `T (2)` `= Q(:,:,MOD(I,K)+1)(out) A(:,:,I)(out) Q(:,:,I)(out).` A partial generation of the orthogonal factors can be realized via the array QIND. See the SLICOT documentation for details. """ function mb03bd! end """ Apply at most 20 iterations of a real single shifted periodic QZ algorithm to the 2-by-2 product of matrices stored in the array A. See the SLICOT documentation for details. """ function mb03be! end """ Apply at most 20 iterations of a real single shifted periodic QZ algorithm to the 2-by-2 product of matrices stored in the array A. The Hessenberg matrix is the last one of the formal matrix product. See the SLICOT documentation for details. """ function mb03bf! end """ Compute the eigenvalues of the 2-by-2 trailing submatrix of the matrix product `S(1) S(2) S(K)` `A(:,:,1) * A(:,:,2) * ... * A(:,:,K)` where A(:,:,AMAP(K)) is upper Hessenberg and A(:,:,AMAP(i)), 1 <= i < K, is upper triangular. All factors to be inverted (depending on S and SINV) are assumed nonsingular. Moreover, AMAP(K) is either 1 or K. See the SLICOT documentation for details. """ function mb03bg! end """ Find the eigenvalues of the complex generalized matrix product `S(1) S(2) S(K)` `A(:,:,1) * A(:,:,2) * ... * A(:,:,K) , S(1) = 1,` where A(:,:,1) is upper Hessenberg and A(:,:,i) is upper triangular, i = 2, ..., K, using a single-shift version of the periodic QZ method. In addition, A may be reduced to periodic Schur form by unitary transformations: all factors A(:,:,i) become upper triangular. If COMPQ = 'V' or COMPQ = 'I', then the unitary factors are computed and stored in the array Q so that for S(I) = 1, `H` `Q(:,:,I)(in) A(:,:,I)(in) Q(:,:,MOD(I,K)+1)(in)` `H (1)` `= Q(:,:,I)(out) A(:,:,I)(out) Q(:,:,MOD(I,K)+1)(out),` and for S(I) = -1, `H` `Q(:,:,MOD(I,K)+1)(in) A(:,:,I)(in) Q(:,:,I)(in)` `H (2)` `= Q(:,:,MOD(I,K)+1)(out) A(:,:,I)(out) Q(:,:,I)(out).` See the SLICOT documentation for details. """ function mb03bz! end """ Compute orthogonal matrices Q1, Q2, Q3 for a real 2-by-2, 3-by-3, or 4-by-4 regular block upper triangular pencil `( A11 A12 ) ( B11 B12 ) ( D11 D12 )` `aAB - bD = a ( ) ( ) - b ( ), (1)` `( 0 A22 ) ( 0 B22 ) ( 0 D22 )` such that the pencil a(Q3' A Q2 )(Q2' B Q1 ) - b(Q3' D Q1) is still in block upper triangular form, but the eigenvalues in Spec(A11 B11, D11), Spec(A22 B22, D22) are exchanged, where Spec(X,Y) denotes the spectrum of the matrix pencil (X,Y), and M' denotes the transpose of the matrix M. Optionally, to upper triangularize the real regular pencil in block lower triangular form `( A11 0 ) ( B11 0 ) ( D11 0 )` aAB - bD = a ( ) ( ) - b ( ), (2) `( A21 A22 ) ( B21 B22 ) ( D21 D22 )` while keeping the eigenvalues in the same diagonal position. See the SLICOT documentation for details. """ function mb03cd! end """ Compute unitary matrices Q1, Q2, and Q3 for a complex 2-by-2 regular pencil aAB - bD, with A, B, D upper triangular, such that Q3' A Q2, Q2' B Q1, Q3' D Q1 are still upper triangular, but the eigenvalues are in reversed order. The matrices Q1, Q2, and Q3 are represented by `( CO1 SI1 ) ( CO2 SI2 ) ( CO3 SI3 )` Q1 = ( ), Q2 = ( ), Q3 = ( ). `( -SI1' CO1 ) ( -SI2' CO2 ) ( -SI3' CO3 )` The notation M' denotes the conjugate transpose of the matrix M. See the SLICOT documentation for details. """ function mb03cz! end """ Compute orthogonal matrices Q1 and Q2 for a real 2-by-2, 3-by-3, or 4-by-4 regular block upper triangular pencil `( A11 A12 ) ( B11 B12 )` `aA - bB = a ( ) - b ( ), (1)` `( 0 A22 ) ( 0 B22 )` such that the pencil a(Q2' A Q1) - b(Q2' B Q1) is still in block upper triangular form, but the eigenvalues in Spec(A11, B11), Spec(A22, B22) are exchanged, where Spec(X,Y) denotes the spectrum of the matrix pencil (X,Y) and the notation M' denotes the transpose of the matrix M. Optionally, to upper triangularize the real regular pencil in block lower triangular form `( A11 0 ) ( B11 0 )` `aA - bB = a ( ) - b ( ), (2)` `( A21 A22 ) ( B21 B22 )` while keeping the eigenvalues in the same diagonal position. See the SLICOT documentation for details. """ function mb03dd! end """ Compute unitary matrices Q1 and Q2 for a complex 2-by-2 regular pencil aA - bB with A, B upper triangular, such that Q2' (aA - bB) Q1 is still upper triangular but the eigenvalues are in reversed order. The matrices Q1 and Q2 are represented by `( CO1 SI1 ) ( CO2 SI2 )` Q1 = ( ), Q2 = ( ). `( -SI1' CO1 ) ( -SI2' CO2 )` The notation M' denotes the conjugate transpose of the matrix M. See the SLICOT documentation for details. """ function mb03dz! end """ Compute orthogonal matrices Q1, Q2, Q3 for a real 2-by-2 or 4-by-4 regular pencil `( A11 0 ) ( B11 0 ) ( 0 D12 )` `aAB - bD = a ( ) ( ) - b ( ), (1)` `( 0 A22 ) ( 0 B22 ) ( D21 0 )` such that Q3' A Q2 and Q2' B Q1 are upper triangular, Q3' D Q1 is upper quasi-triangular, and the eigenvalues with negative real parts (if there are any) are allocated on the top. The notation M' denotes the transpose of the matrix M. The submatrices A11, A22, B11, B22 and D12 are upper triangular. If D21 is 2-by-2, then all other blocks are nonsingular and the product `-1 -1 -1 -1` A22 D21 B11 A11 D12 B22 has a pair of complex conjugate eigenvalues. See the SLICOT documentation for details. """ function mb03ed! end """ Compute orthogonal matrices Q1 and Q2 for a real 2-by-2 or 4-by-4 regular pencil `( A11 0 ) ( 0 B12 )` `aA - bB = a ( ) - b ( ), (1)` `( 0 A22 ) ( B21 0 )` such that Q2' A Q1 is upper triangular, Q2' B Q1 is upper quasi- triangular, and the eigenvalues with negative real parts (if there are any) are allocated on the top. The notation M' denotes the transpose of the matrix M. The submatrices A11, A22, and B12 are upper triangular. If B21 is 2-by-2, then all the other blocks are `-1 -1` nonsingular and the product A11 B12 A22 B21 has a pair of complex conjugate eigenvalues. See the SLICOT documentation for details. """ function mb03fd! end """ Compute the eigenvalues of a complex N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH, with `( B F ) ( Z11 Z12 )` `S = J Z' J' Z and H = ( ), Z = ( ),` `( G -B' ) ( Z21 Z22 )` `(1)` `( 0 I )` `J = ( ).` `( -I 0 )` The structured Schur form of the embedded real skew-Hamiltonian/ skew-Hamiltonian pencil, a`B_S` - b`B_T`, with `B_S` = J `B_Z`' J' `B_Z`, `( Re(Z11) -Im(Z11) | Re(Z12) -Im(Z12) )` `( | )` `( Im(Z11) Re(Z11) | Im(Z12) Re(Z12) )` `( | )` `B_Z = (---------------------+---------------------) ,` `( | )` `( Re(Z21) -Im(Z21) | Re(Z22) -Im(Z22) )` `( | )` `( Im(Z21) Re(Z21) | Im(Z22) Re(Z22) )` `(2)` `( -Im(B) -Re(B) | -Im(F) -Re(F) )` `( | )` `( Re(B) -Im(B) | Re(F) -Im(F) )` `( | )` `B_T = (-----------------+-----------------) , T = i*H,` `( | )` `( -Im(G) -Re(G) | -Im(B') Re(B') )` `( | )` `( Re(G) -Im(G) | -Re(B') -Im(B') )` is determined and used to compute the eigenvalues. Optionally, if COMPQ = 'C', an orthonormal basis of the right deflating subspace, Def_-(S, H), of the pencil aS - bH in (1), corresponding to the eigenvalues with strictly negative real part, is computed. Namely, after transforming a`B_S` - b`B_H`, in the factored form, by unitary matrices, we have `B_S`out = J `B_Z`out' J' `B_Z`out, `( BA BD ) ( BB BF )` `B_Zout = ( ) and B_Hout = ( ), (3)` `( 0 BC ) ( 0 -BB' )` and the eigenvalues with strictly negative real part of the complex pencil a`B_S`out - b`B_H`out are moved to the top. The notation M' denotes the conjugate transpose of the matrix M. Optionally, if COMPU = 'C', an orthonormal basis of the companion subspace, range(P_U) [1], which corresponds to the eigenvalues with negative real part, is computed. The embedding doubles the multiplicities of the eigenvalues of the pencil aS - bH. See the SLICOT documentation for details. """ function mb03fz! end """ Compute an orthogonal matrix Q and an orthogonal symplectic matrix U for a real regular 2-by-2 or 4-by-4 skew-Hamiltonian/ Hamiltonian pencil a J B' J' B - b D with `( B11 B12 ) ( D11 D12 ) ( 0 I )` `B = ( ), D = ( ), J = ( ),` `( 0 B22 ) ( 0 -D11' ) ( -I 0 )` such that J Q' J' D Q and U' B Q keep block triangular form, but the eigenvalues are reordered. The notation M' denotes the transpose of the matrix M. See the SLICOT documentation for details. """ function mb03gd! end """ Compute a unitary matrix Q and a unitary symplectic matrix U for a complex regular 2-by-2 skew-Hamiltonian/Hamiltonian pencil aS - bH with S = J Z' J' Z, where `( Z11 Z12 ) ( H11 H12 )` `Z = ( ) and H = ( ),` `( 0 Z22 ) ( 0 -H11' )` such that U' Z Q, (J Q J' )' H Q are both upper triangular, but the eigenvalues of (J Q J')' ( aS - bH ) Q are in reversed order. The matrices Q and U are represented by `( CO1 SI1 ) ( CO2 SI2 )` `Q = ( ) and U = ( ), respectively.` `( -SI1' CO1 ) ( -SI2' CO2 )` The notation M' denotes the conjugate transpose of the matrix M. See the SLICOT documentation for details. """ function mb03gz! end """ Determine an orthogonal matrix Q, for a real regular 2-by-2 or 4-by-4 skew-Hamiltonian/Hamiltonian pencil `( A11 A12 ) ( B11 B12 )` `aA - bB = a ( ) - b ( )` `( 0 A11' ) ( 0 -B11' )` in structured Schur form, such that J Q' J' (aA - bB) Q is still in structured Schur form but the eigenvalues are exchanged. The notation M' denotes the transpose of the matrix M. See the SLICOT documentation for details. """ function mb03hd! end """ Compute a unitary matrix Q for a complex regular 2-by-2 skew-Hamiltonian/Hamiltonian pencil aS - bH with `( S11 S12 ) ( H11 H12 )` S = ( ), H = ( ), `( 0 S11' ) ( 0 -H11' )` such that J Q' J' (aS - bH) Q is upper triangular but the eigenvalues are in reversed order. The matrix Q is represented by `( CO SI )` Q = ( ). `( -SI' CO )` The notation M' denotes the conjugate transpose of the matrix M. See the SLICOT documentation for details. """ function mb03hz! end """ Move the eigenvalues with strictly negative real parts of an N-by-N real skew-Hamiltonian/Hamiltonian pencil aS - bH in structured Schur form, with `( 0 I ) ( A D ) ( B F )` `S = J Z' J' Z, J = ( ), Z = ( ), H = ( ),` `( -I 0 ) ( 0 C ) ( 0 -B' )` to the leading principal subpencil, while keeping the triangular form. Above, A is upper triangular, B is upper quasi-triangular, and C is lower triangular. The matrices Z and H are transformed by an orthogonal symplectic matrix U and an orthogonal matrix Q such that `( Aout Dout )` `Zout = U' Z Q = ( ), and` `( 0 Cout )` `(1)` `( Bout Fout )` `Hout = J Q' J' H Q = ( ),` `( 0 -Bout' )` where Aout, Bout and Cout remain in triangular form. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal matrix Q that fulfills (1) is computed. Optionally, if COMPU = 'I' or COMPU = 'U', the orthogonal symplectic matrix `( U1 U2 )` `U = ( )` `( -U2 U1 )` that fulfills (1) is computed. See the SLICOT documentation for details. """ function mb03id! end """ Move the eigenvalues with strictly negative real parts of an N-by-N complex skew-Hamiltonian/Hamiltonian pencil aS - bH in structured Schur form, with `( 0 I )` `S = J Z' J' Z, where J = ( ),` `( -I 0 )` to the leading principal subpencil, while keeping the triangular form. On entry, we have `( A D ) ( B F )` `Z = ( ), H = ( ),` `( 0 C ) ( 0 -B' )` where A and B are upper triangular and C is lower triangular. Z and H are transformed by a unitary symplectic matrix U and a unitary matrix Q such that `( Aout Dout )` `Zout = U' Z Q = ( ), and` `( 0 Cout )` `(1)` `( Bout Fout )` `Hout = J Q' J' H Q = ( ), ` `( 0 -Bout' )` where Aout, Bout and Cout remain in triangular form. The notation M' denotes the conjugate transpose of the matrix M. Optionally, if COMPQ = 'I' or COMPQ = 'U', the unitary matrix Q that fulfills (1) is computed. Optionally, if COMPU = 'I' or COMPU = 'U', the unitary symplectic matrix `( U1 U2 )` `U = ( )` `( -U2 U1 ) ` that fulfills (1) is computed. See the SLICOT documentation for details. """ function mb03iz! end """ Move the eigenvalues with strictly negative real parts of an N-by-N real skew-Hamiltonian/Hamiltonian pencil aS - bH in structured Schur form, `( A D ) ( B F )` `S = ( ), H = ( ),` `( 0 A' ) ( 0 -B' )` with A upper triangular and B upper quasi-triangular, to the leading principal subpencil, while keeping the triangular form. The notation M' denotes the transpose of the matrix M. The matrices S and H are transformed by an orthogonal matrix Q such that `( Aout Dout ) ` `Sout = J Q' J' S Q = ( ),` `( 0 Aout' ) ` `(1)` `( Bout Fout ) ( 0 I )` `Hout = J Q' J' H Q = ( ), with J = ( ),` `( 0 -Bout' ) ( -I 0 )` where Aout is upper triangular and Bout is upper quasi-triangular. Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal matrix Q that fulfills (1), is computed. See the SLICOT documentation for details. """ function mb03jd! end """ Move the eigenvalues with strictly negative real parts of an N-by-N real skew-Hamiltonian/Hamiltonian pencil aS - bH in structured Schur form, `( A D ) ( B F )` `S = ( ), H = ( ),` `( 0 A' ) ( 0 -B' )` with A upper triangular and B upper quasi-triangular, to the leading principal subpencil, while keeping the triangular form. The notation M' denotes the transpose of the matrix M. The matrices S and H are transformed by an orthogonal matrix Q such that `( Aout Dout ) ` `Sout = J Q' J' S Q = ( ),` `( 0 Aout' ) ` `(1)` `( Bout Fout ) ( 0 I )` `Hout = J Q' J' H Q = ( ), with J = ( ),` `( 0 -Bout' ) ( -I 0 )` where Aout is upper triangular and Bout is upper quasi-triangular. Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal matrix Q that fulfills (1), is computed. See the SLICOT documentation for details. """ function mb03jp! end """ Move the eigenvalues with strictly negative real parts of an N-by-N complex skew-Hamiltonian/Hamiltonian pencil aS - bH in structured Schur form to the leading principal subpencil, while keeping the triangular form. On entry, we have `( A D ) ( B F )` `S = ( ), H = ( ),` `( 0 A' ) ( 0 -B' )` where A and B are upper triangular. S and H are transformed by a unitary matrix Q such that `( Aout Dout )` `Sout = J Q' J' S Q = ( ), and` `( 0 Aout' )` `(1)` `( Bout Fout ) ( 0 I )` `Hout = J Q' J' H Q = ( ), with J = ( ),` `( 0 -Bout' ) ( -I 0 )` where Aout and Bout remain in upper triangular form. The notation M' denotes the conjugate transpose of the matrix M. Optionally, if COMPQ = 'I' or COMPQ = 'U', the unitary matrix Q that fulfills (1) is computed. See the SLICOT documentation for details. """ function mb03jz! end """ Reorder the diagonal blocks of the formal matrix product `T22_K^S(K) * T22_K-1^S(K-1) * ... * T22_1^S(1), (1)` of length K, in the generalized periodic Schur form `[ T11_k T12_k T13_k ]` `T_k = [ 0 T22_k T23_k ], k = 1, ..., K, (2)` `[ 0 0 T33_k ]` where - the submatrices T11_k are NI(k+1)-by-NI(k), if S(k) = 1, or `NI(k)-by-NI(k+1), if S(k) = -1, and contain dimension-induced` `infinite eigenvalues,` - the submatrices T22_k are NC-by-NC and contain core eigenvalues, `which are generically neither zero nor infinite,` - the submatrices T33_k contain dimension-induced zero `eigenvalues,` such that the block with starting row index IFST in (1) is moved to row index ILST. The indices refer to the T22_k submatrices. Optionally, the transformation matrices `Q_1`,...,`Q_K` from the reduction into generalized periodic Schur form are updated with respect to the performed reordering. See the SLICOT documentation for details. """ function mb03ka! end """ Reorder the diagonal blocks of the formal matrix product `T22_K^S(K) * T22_K-1^S(K-1) * ... * T22_1^S(1) (1)` of length K in the generalized periodic Schur form `[ T11_k T12_k T13_k ]` `T_k = [ 0 T22_k T23_k ], k = 1, ..., K, (2)` `[ 0 0 T33_k ]` where - the submatrices T11_k are NI(k+1)-by-NI(k), if S(k) = 1, or `NI(k)-by-NI(k+1), if S(k) = -1, and contain dimension-induced` `infinite eigenvalues,` - the submatrices T22_k are NC-by-NC and contain core eigenvalues, `which are generically neither zero nor infinite,` - the submatrices T33_k contain dimension-induced zero `eigenvalues,` such that pairs of adjacent diagonal blocks of sizes 1 and/or 2 in the product (1) are swapped. Optionally, the transformation matrices `Q_1`,...,`Q_K` from the reduction into generalized periodic Schur form are updated with respect to the performed reordering. See the SLICOT documentation for details. """ function mb03kb! end """ Reduce a 2-by-2 general, formal matrix product A of length K, `A_K^s(K) * A_K-1^s(K-1) * ... * A_1^s(1),` to the periodic Hessenberg-triangular form using a K-periodic sequence of elementary reflectors (Householder matrices). The matrices A_k, k = 1, ..., K, are stored in the N-by-N-by-K array A starting in the R-th row and column, and N can be 3 or 4. Each elementary reflector H_k is represented as `H_k = I - tau_k * v_k * v_k', (1)` where I is the 2-by-2 identity, tau_k is a real scalar, and v_k is a vector of length 2, k = 1,...,K, and it is constructed such that the following holds for k = 1,...,K: `H_{k+1} * A_k * H_k = T_k, if s(k) = 1,` `(2)` `H_k * A_k * H_{k+1} = T_k, if s(k) = -1,` with H_{K+1} = `H_1` and all `T_k` upper triangular except for T_{khess} which is full. Clearly, `T_K^s(K) *...* T_1^s(1) = H_1 * A_K^s(K) *...* A_1^s(1) * H_1.` The reflectors are suitably applied to the whole, extended N-by-N matrices `Ae_k`, not only to the submatrices `A_k`, k = 1, ..., K. See the SLICOT documentation for details. """ function mb03kc! end """ Reorder the diagonal blocks of the formal matrix product `T22_K^S(K) * T22_K-1^S(K-1) * ... * T22_1^S(1), (1)` of length K, in the generalized periodic Schur form, `[ T11_k T12_k T13_k ]` `T_k = [ 0 T22_k T23_k ], k = 1, ..., K, (2)` `[ 0 0 T33_k ]` where - the submatrices T11_k are NI(k+1)-by-NI(k), if S(k) = 1, or `NI(k)-by-NI(k+1), if S(k) = -1, and contain dimension-induced` `infinite eigenvalues,` - the submatrices T22_k are NC-by-NC and contain core eigenvalues, `which are generically neither zero nor infinite,` - the submatrices T33_k contain dimension-induced zero `eigenvalues,` such that the M selected eigenvalues pointed to by the logical vector SELECT end up in the leading part of the matrix sequence T22_k. Given that N(k) = N(k+1) for all k where S(k) = -1, the T11_k are void and the first M columns of the updated orthogonal transformation matrix sequence `Q_1`, ..., `Q_K` span a periodic deflating subspace corresponding to the same eigenvalues. See the SLICOT documentation for details. """ function mb03kd! end """ Solve small periodic Sylvester-like equations (PSLE) `op(A(i))*X( i ) + isgn*X(i+1)*op(B(i)) = -scale*C(i), S(i) = 1,` `op(A(i))*X(i+1) + isgn*X( i )*op(B(i)) = -scale*C(i), S(i) = -1.` i = 1, ..., K, where op(A) means A or A**T, for the K-periodic matrix sequence X(i) = X(i+K), where A, B and C are K-periodic matrix sequences and A and B are in periodic real Schur form. The matrices A(i) are M-by-M and B(i) are N-by-N, with 1 <= M, N <= 2. See the SLICOT documentation for details. """ function mb03ke! end """ Compute the relevant eigenvalues of a real N-by-N skew- Hamiltonian/Hamiltonian pencil aS - bH, with `( A D ) ( B F )` `S = ( ) and H = ( ), (1)` `( E A' ) ( G -B' )` where the notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'C', an orthogonal basis of the right deflating subspace of aS - bH corresponding to the eigenvalues with strictly negative real part is computed. See the SLICOT documentation for details. """ function mb03ld! end """ Compute the relevant eigenvalues of a real N-by-N skew- Hamiltonian/Hamiltonian pencil aS - bH, with `( B F ) ( 0 I )` `S = T Z = J Z' J' Z and H = ( ), J = ( ), (1)` `( G -B' ) ( -I 0 )` where the notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'C', an orthogonal basis of the right deflating subspace of aS - bH corresponding to the eigenvalues with strictly negative real part is computed. Optionally, if COMPU = 'C', an orthonormal basis of the companion subspace, range(P_U) [1], which corresponds to the eigenvalues with strictly negative real part, is computed. See the SLICOT documentation for details. """ function mb03lf! end """ Compute the relevant eigenvalues of a real N-by-N skew- Hamiltonian/Hamiltonian pencil aS - bH, with `( A D ) ( B F )` `S = ( ) and H = ( ), (1)` `( E A' ) ( G -B' )` where the notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'C', an orthogonal basis of the right deflating subspace of aS - bH corresponding to the eigenvalues with strictly negative real part is computed. See the SLICOT documentation for details. """ function mb03lp! end """ Compute the eigenvalues of a complex N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH, with `( A D ) ( B F )` `S = ( ) and H = ( ). (1)` `( E A' ) ( G -B' )` The structured Schur form of the embedded real skew-Hamiltonian/ skew-Hamiltonian pencil a`B_S` - b`B_T`, defined as `( Re(A) -Im(A) | Re(D) -Im(D) )` `( | )` `( Im(A) Re(A) | Im(D) Re(D) )` `( | )` `B_S = (-----------------+-----------------) , and` `( | )` `( Re(E) -Im(E) | Re(A') Im(A') )` `( | )` `( Im(E) Re(E) | -Im(A') Re(A') )` `(2)` `( -Im(B) -Re(B) | -Im(F) -Re(F) )` `( | )` `( Re(B) -Im(B) | Re(F) -Im(F) )` `( | )` `B_T = (-----------------+-----------------) , T = i*H,` `( | )` `( -Im(G) -Re(G) | -Im(B') Re(B') )` `( | )` `( Re(G) -Im(G) | -Re(B') -Im(B') )` is determined and used to compute the eigenvalues. The notation M' denotes the conjugate transpose of the matrix M. Optionally, if COMPQ = 'C', an orthonormal basis of the right deflating subspace of the pencil aS - bH, corresponding to the eigenvalues with strictly negative real part, is computed. Namely, after transforming a`B_S` - b`B_H` by unitary matrices, we have `( BA BD ) ( BB BF )` `B_Sout = ( ) and B_Hout = ( ), (3)` `( 0 BA' ) ( 0 -BB' )` and the eigenvalues with strictly negative real part of the complex pencil a`B_S`out - b`B_H`out are moved to the top. The embedding doubles the multiplicities of the eigenvalues of the pencil aS - bH. See the SLICOT documentation for details. """ function mb03lz! end """ Compute an upper bound THETA using a bisection method such that the bidiagonal matrix `|q(1) e(1) 0 ... 0 |` `| 0 q(2) e(2) . |` `J = | . . |` `| . e(N-1)|` `| 0 ... ... q(N) |` has precisely L singular values less than or equal to THETA plus a given tolerance TOL. This routine is mainly intended to be called only by other SLICOT routines. See the SLICOT documentation for details. """ function mb03md! end """ Compute the absolute minimal value of NX elements in an array. The function returns the value zero if NX < 1. See the SLICOT documentation for details. """ function mb03my! end """ Find the number of singular values of the bidiagonal matrix `|q(1) e(1) . ... 0 |` `| 0 q(2) e(2) . |` `J = | . . |` `| . e(N-1)|` `| 0 ... ... 0 q(N) |` which are less than or equal to a given bound THETA. This routine is intended to be called only by other SLICOT routines. See the SLICOT documentation for details. """ function mb03nd! end """ Compute the smallest singular value of A - jwI. See the SLICOT documentation for details. """ function mb03ny! end """ Compute (optionally) a rank-revealing QR factorization of a real general M-by-N matrix A, which may be rank-deficient, and estimate its effective rank using incremental condition estimation. The routine uses a QR factorization with column pivoting: `A * P = Q * R, where R = [ R11 R12 ],` `[ 0 R22 ]` with R11 defined as the largest leading submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. MB03OD does not perform any scaling of the matrix A. See the SLICOT documentation for details. """ function mb03od! end """ Compute a rank-revealing QR factorization of a real general M-by-N matrix A, which may be rank-deficient, and estimate its effective rank using incremental condition estimation. The routine uses a truncated QR factorization with column pivoting `[ R11 R12 ]` `A * P = Q * R, where R = [ ],` `[ 0 R22 ]` with R11 defined as the largest leading upper triangular submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Condition estimation is performed during the QR factorization process. Matrix R22 is full (but of small norm), or empty. MB03OY does not perform any scaling of the matrix A. See the SLICOT documentation for details. """ function mb03oy! end """ Compute (optionally) a rank-revealing RQ factorization of a real general M-by-N matrix A, which may be rank-deficient, and estimate its effective rank using incremental condition estimation. The routine uses an RQ factorization with row pivoting: `P * A = R * Q, where R = [ R11 R12 ],` `[ 0 R22 ]` with R22 defined as the largest trailing submatrix whose estimated condition number is less than 1/RCOND. The order of R22, RANK, is the effective rank of A. MB03PD does not perform any scaling of the matrix A. See the SLICOT documentation for details. """ function mb03pd! end """ Compute a rank-revealing RQ factorization of a real general M-by-N matrix A, which may be rank-deficient, and estimate its effective rank using incremental condition estimation. The routine uses a truncated RQ factorization with row pivoting: `[ R11 R12 ]` `P * A = R * Q, where R = [ ],` `[ 0 R22 ]` with R22 defined as the largest trailing upper triangular submatrix whose estimated condition number is less than 1/RCOND. The order of R22, RANK, is the effective rank of A. Condition estimation is performed during the RQ factorization process. Matrix R11 is full (but of small norm), or empty. MB03PY does not perform any scaling of the matrix A. See the SLICOT documentation for details. """ function mb03py! end """ Reorder the diagonal blocks of a principal submatrix of an upper quasi-triangular matrix A together with their eigenvalues by constructing an orthogonal similarity transformation UT. After reordering, the leading block of the selected submatrix of A has eigenvalues in a suitably defined domain of interest, usually related to stability/instability in a continuous- or discrete-time sense. See the SLICOT documentation for details. """ function mb03qd! end """ Reorder the diagonal blocks of a principal subpencil of an upper quasi-triangular matrix pencil A-lambda*E together with their generalized eigenvalues, by constructing orthogonal similarity transformations UT and VT. After reordering, the leading block of the selected subpencil of A-lambda*E has generalized eigenvalues in a suitably defined domain of interest, usually related to stability/instability in a continuous- or discrete-time sense. See the SLICOT documentation for details. """ function mb03qg! end """ Compute the eigenvalues of an upper quasi-triangular matrix pencil. See the SLICOT documentation for details. """ function mb03qv! end """ Compute the eigenvalues of a selected 2-by-2 diagonal block pair of an upper quasi-triangular pencil, to reduce the selected block pair to the standard form and to split it in the case of real eigenvalues, by constructing orthogonal matrices UT and VT. The transformations UT and VT are applied to the pair (A,E) by computing (UT'*A*VT, UT'*E*VT ), to the matrices U and V, by computing U*UT and V*VT. See the SLICOT documentation for details. """ function mb03qw! end """ Compute the eigenvalues of an upper quasi-triangular matrix. See the SLICOT documentation for details. """ function mb03qx! end """ Compute the eigenvalues of a selected 2-by-2 diagonal block of an upper quasi-triangular matrix, to reduce the selected block to the standard form and to split the block in the case of real eigenvalues by constructing an orthogonal transformation UT. This transformation is applied to A (by similarity) and to another matrix U from the right. See the SLICOT documentation for details. """ function mb03qy! end """ Reduce a matrix A in real Schur form to a block-diagonal form using well-conditioned non-orthogonal similarity transformations. The condition numbers of the transformations used for reduction are roughly bounded by PMAX*PMAX, where PMAX is a given value. The transformations are optionally postmultiplied in a given matrix X. The real Schur form is optionally ordered, so that clustered eigenvalues are grouped in the same block. See the SLICOT documentation for details. """ function mb03rd! end """ Reorder the diagonal blocks of the principal submatrix between the indices KL and KU (KU >= KL) of a real Schur form matrix A together with their eigenvalues, using orthogonal similarity transformations, such that the block specified by KU is moved in the position KL. The transformations are optionally postmultiplied in a given matrix X. See the SLICOT documentation for details. """ function mb03rx! end """ Solve the Sylvester equation -AX + XB = C, where A and B are M-by-M and N-by-N matrices, respectively, in real Schur form. This routine is intended to be called only by SLICOT Library routine MB03RD. For efficiency purposes, the computations are aborted when the infinity norm of an elementary submatrix of X is greater than a given value PMAX. See the SLICOT documentation for details. """ function mb03ry! end """ Compute the eigenvalues of an N-by-N square-reduced Hamiltonian matrix `( A' G' )` `H' = ( T ). (1)` `( Q' -A' )` Here, A' is an N-by-N matrix, and G' and Q' are symmetric N-by-N matrices. It is assumed without a check that H' is square- reduced, i.e., that `2 ( A'' G'' )` `H' = ( T ) with A'' upper Hessenberg. (2)` `( 0 A'' )` `T 2` (Equivalently, Q'A'- A' Q' = 0, A'' = A' + G'Q', and for i > j+1, `A''(i,j) = 0.) Ordinarily, H' is the output from SLICOT Library` routine MB04ZD. The eigenvalues of H' are computed as the square roots of the eigenvalues of A''. See the SLICOT documentation for details. """ function mb03sd! end """ Reorder a matrix X in skew-Hamiltonian Schur form: `[ A G ] T` `X = [ T ], G = -G,` `[ 0 A ]` or in Hamiltonian Schur form: `[ A G ] T` `X = [ T ], G = G,` `[ 0 -A ]` where A is in upper quasi-triangular form, so that a selected cluster of eigenvalues appears in the leading diagonal blocks of the matrix A (in X) and the leading columns of [ U1; -U2 ] form an orthonormal basis for the corresponding right invariant subspace. If X is skew-Hamiltonian, then each eigenvalue appears twice; one copy corresponds to the j-th diagonal element and the other to the (n+j)-th diagonal element of X. The logical array LOWER controls which copy is to be reordered to the leading part of A. If X is Hamiltonian then the eigenvalues appear in pairs (lambda,-lambda); lambda corresponds to the j-th diagonal element and -lambda to the (n+j)-th diagonal element of X. The logical array LOWER controls whether lambda or -lambda is to be reordered to the leading part of A. The matrix A must be in Schur canonical form (as returned by the LAPACK routine DHSEQR), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign. See the SLICOT documentation for details. """ function mb03td! end """ Swap diagonal blocks A11 and A22 of order 1 or 2 in the upper quasi-triangular matrix A contained in a skew-Hamiltonian matrix `[ A G ] T` `X = [ T ], G = -G,` `[ 0 A ]` or in a Hamiltonian matrix `[ A G ] T` `X = [ T ], G = G.` `[ 0 -A ]` This routine is a modified version of the LAPACK subroutine DLAEX2. The matrix A must be in Schur canonical form (as returned by the LAPACK routine DHSEQR), that is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign. See the SLICOT documentation for details. """ function mb03ts! end """ Compute all, or part, of the singular value decomposition of a real upper triangular matrix. The N-by-N upper triangular matrix A is factored as A = Q*S*P', where Q and P are N-by-N orthogonal matrices and S is an N-by-N diagonal matrix with non-negative diagonal elements, SV(1), SV(2), ..., SV(N), ordered such that `SV(1) >= SV(2) >= ... >= SV(N) >= 0.` The columns of Q are the left singular vectors of A, the diagonal elements of S are the singular values of A and the columns of P are the right singular vectors of A. Either or both of Q and P' may be requested. When P' is computed, it is returned in A. See the SLICOT documentation for details. """ function mb03ud! end """ Reduce a product of p real general matrices A = `A_1`*`A_2`*...*`A_p` to upper Hessenberg form, H = `H_1`*`H_2`*...*`H_p`, where `H_1` is upper Hessenberg, and `H_2`, ..., `H_p` are upper triangular, by using orthogonal similarity transformations on A, `Q_1' * A_1 * Q_2 = H_1,` `Q_2' * A_2 * Q_3 = H_2,` `...` `Q_p' * A_p * Q_1 = H_p.` See the SLICOT documentation for details. """ function mb03vd! end """ Generate the real orthogonal matrices `Q_1`, `Q_2`, ..., `Q_p`, which are defined as the product of ihi-ilo elementary reflectors of order n, as returned by SLICOT Library routine MB03VD: `Q_j = H_j(ilo) H_j(ilo+1) . . . H_j(ihi-1).` See the SLICOT documentation for details. """ function mb03vy! end """ Swap adjacent diagonal blocks A11*B11 and A22*B22 of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix product A*B by an orthogonal equivalence transformation. (A, B) must be in periodic real Schur canonical form (as returned by SLICOT Library routine MB03XP), i.e., A is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks, and B is upper triangular. Optionally, the matrices Q and Z of generalized Schur vectors are updated. `Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)',` `Z(in) * B(in) * Q(in)' = Z(out) * B(out) * Q(out)'.` This routine is largely based on the LAPACK routine DTGEX2 developed by Bo Kagstrom and Peter Poromaa. See the SLICOT documentation for details. """ function mb03wa! end """ Compute the Schur decomposition and the eigenvalues of a product of matrices, H = `H_1`*`H_2`*...*`H_p`, with `H_1` an upper Hessenberg matrix and `H_2`, ..., `H_p` upper triangular matrices, without evaluating the product. Specifically, the matrices Z_i are computed, such that `Z_1' * H_1 * Z_2 = T_1,` `Z_2' * H_2 * Z_3 = T_2,` `...` `Z_p' * H_p * Z_1 = T_p,` where `T_1` is in real Schur form, and `T_2`, ..., `T_p` are upper triangular. The routine works primarily with the Hessenberg and triangular submatrices in rows and columns ILO to IHI, but optionally applies the transformations to all the rows and columns of the matrices H_i, i = 1,...,p. The transformations can be optionally accumulated. See the SLICOT documentation for details. """ function mb03wd! end """ Compute the eigenvalues of a product of matrices, T = `T_1`*`T_2`*...*`T_p`, where `T_1` is an upper quasi-triangular matrix and `T_2`, ..., `T_p` are upper triangular matrices. See the SLICOT documentation for details. """ function mb03wx! end """ Compute the eigenvalues of a Hamiltonian matrix, `[ A G ] T T` `H = [ T ], G = G, Q = Q, (1)` `[ Q -A ]` where A, G and Q are real n-by-n matrices. Due to the structure of H all eigenvalues appear in pairs (lambda,-lambda). This routine computes the eigenvalues of H using an algorithm based on the symplectic URV and the periodic Schur decompositions as described in [1], `T [ T G ]` `U H V = [ T ], (2)` `[ 0 S ]` where U and V are 2n-by-2n orthogonal symplectic matrices, S is in real Schur form and T is upper triangular. The algorithm is backward stable and preserves the eigenvalue pairings in finite precision arithmetic. Optionally, a symplectic balancing transformation to improve the conditioning of eigenvalues is computed (see MB04DD). In this case, the matrix H in decomposition (2) must be replaced by the balanced matrix. The SLICOT Library routine MB03ZD can be used to compute invariant subspaces of H from the output of this routine. See the SLICOT documentation for details. """ function mb03xd! end """ Compute the periodic Schur decomposition and the eigenvalues of a product of matrices, H = A*B, with A upper Hessenberg and B upper triangular without evaluating any part of the product. Specifically, the matrices Q and Z are computed, so that `Q' * A * Z = S, Z' * B * Q = T` where S is in real Schur form, and T is upper triangular. See the SLICOT documentation for details. """ function mb03xp! end """ Compute the eigenvalues and real skew-Hamiltonian Schur form of a skew-Hamiltonian matrix, `[ A G ]` `W = [ T ],` `[ Q A ]` where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric matrices. Specifically, an orthogonal symplectic matrix U is computed so that `T [ Aout Gout ]` `U W U = [ T ] ,` `[ 0 Aout ]` where Aout is in Schur canonical form (as returned by the LAPACK routine DHSEQR). That is, Aout is block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block has its diagonal elements equal and its off-diagonal elements of opposite sign. Optionally, the matrix U is returned in terms of its first N/2 rows `[ U1 U2 ]` `U = [ ].` `[ -U2 U1 ]` See the SLICOT documentation for details. """ function mb03xs! end """ Reduce 2*nb columns and rows of a real (k+2n)-by-(k+2n) matrix H: `[ op(A) G ]` `H = [ ],` `[ Q op(B) ]` so that elements in the first nb columns below the k-th subdiagonal of the (k+n)-by-n matrix op(A), in the first nb columns and rows of the n-by-n matrix Q and in the first nb rows above the diagonal of the n-by-(k+n) matrix op(B) are zero. The reduction is performed by orthogonal symplectic transformations UU'*H*VV and matrices U, V, YA, YB, YG, YQ, XA, XB, XG, and XQ are returned so that `[ op(Aout)+U*YA'+XA*V' G+U*YG'+XG*V' ]` `UU' H VV = [ ].` `[ Qout+U*YQ'+XQ*V' op(Bout)+U*YB'+XB*V' ]` This is an auxiliary routine called by MB04TB. See the SLICOT documentation for details. """ function mb03xu! end """ Compute the eigenvalues of a Hamiltonian matrix, `[ A G ] H H` `H = [ H ], G = G , Q = Q , (1)` `[ Q -A ]` where A, G and Q are complex n-by-n matrices. Due to the structure of H, if lambda is an eigenvalue, then -conjugate(lambda) is also an eigenvalue. This does not mean that purely imaginary eigenvalues are necessarily multiple. The routine computes the eigenvalues of H using an embedding to a real skew- Hamiltonian matrix He, `[ Ae Ge ] T T` `He = [ T ], Ge = -Ge , Qe = -Qe , (2)` `[ Qe Ae ]` where Ae, Ge, and Qe are real 2*n-by-2*n matrices, defined by `[ Im(A) Re(A) ]` `Ae = [ ],` `[ -Re(A) Im(A) ]` `[ triu(Im(G)) Re(G) ]` `triu(Ge) = [ ],` `[ 0 triu(Im(G)) ]` `[ tril(Im(Q)) 0 ]` `tril(Qe) = [ ], ` `[ -Re(Q) tril(Im(Q)) ]` and triu and tril denote the upper and lower triangle, respectively. Then, an orthogonal symplectic matrix Ue is used to reduce He to the structured real Schur form `T [ Se De ] T` `Ue He Ue = [ T ], De = -De , (3)` `[ 0 Se ]` where Ue is a 4n-by-4n real symplectic matrix, and Se is upper quasi-triangular (real Schur form). Optionally, if JOB = 'S', or JOB = 'G', the matrix i*He is further transformed to the structured complex Schur form `H [ Sc Gc ] H` `U (i*He) U = [ H ], Gc = Gc , (4)` `[ 0 -Sc ]` where U is a 4n-by-4n unitary symplectic matrix, and Sc is upper triangular (Schur form). The algorithm is backward stable and preserves the spectrum structure in finite precision arithmetic. Optionally, a symplectic balancing transformation to improve the conditioning of eigenvalues is computed (see the SLICOT Library routine MB04DZ). In this case, the matrix He in decompositions (3) and (4) must be replaced by the balanced matrix. See the SLICOT documentation for details. """ function mb03xz! end """ Annihilate one or two entries on the subdiagonal of the Hessenberg matrix A for dealing with zero elements on the diagonal of the triangular matrix B. MB03YA is an auxiliary routine called by SLICOT Library routines MB03XP and MB03YD. See the SLICOT documentation for details. """ function mb03ya! end """ Deal with small subtasks of the product eigenvalue problem. MB03YD is an auxiliary routine called by SLICOT Library routine MB03XP. See the SLICOT documentation for details. """ function mb03yd! end """ Compute the periodic Schur factorization of a real 2-by-2 matrix pair (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pair (A,B) has two real eigenvalues, then `[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]` `[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]` `[ b11 b12 ] := [ CSR SNR ] [ b11 b12 ] [ CSL -SNL ]` `[ 0 b22 ] [ -SNR CSR ] [ 0 b22 ] [ SNL CSL ],` 2) if the pair (A,B) has a pair of complex conjugate eigenvalues, `then` `[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]` `[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]` `[ b11 0 ] := [ CSR SNR ] [ b11 b12 ] [ CSL -SNL ]` `[ 0 b22 ] [ -SNR CSR ] [ 0 b22 ] [ SNL CSL ].` This is a modified version of the LAPACK routine DLAGV2 for computing the real, generalized Schur decomposition of a two-by-two matrix pencil. See the SLICOT documentation for details. """ function mb03yt! end """ 1. To compute, for a given matrix pair (A,B) in periodic Schur `form, orthogonal matrices Ur and Vr so that` `T [ A11 A12 ] T [ B11 B12 ]` `Vr * A * Ur = [ ], Ur * B * Vr = [ ], (1)` `[ 0 A22 ] [ 0 B22 ]` `is in periodic Schur form, and the eigenvalues of A11*B11` `form a selected cluster of eigenvalues.` 2. To compute an orthogonal matrix W so that `T [ 0 -A11 ] [ R11 R12 ]` `W * [ ] * W = [ ], (2)` `[ B11 0 ] [ 0 R22 ]` `where the eigenvalues of R11 and -R22 coincide and have` `positive real part.` Optionally, the matrix C is overwritten by Ur'*C*Vr. All eigenvalues of A11*B11 must either be complex or real and negative. See the SLICOT documentation for details. """ function mb03za! end """ Compute the stable and unstable invariant subspaces for a Hamiltonian matrix with no eigenvalues on the imaginary axis, using the output of the SLICOT Library routine MB03XD. See the SLICOT documentation for details. """ function mb03zd! end """ Compute the eigenvalues of a real N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH with `( 0 I )` `S = T Z = J Z' J' Z, where J = ( ), (1)` `( -I 0 )` via generalized symplectic URV decomposition. That is, orthogonal matrices Q1 and Q2 and orthogonal symplectic matrices U1 and U2 are computed such that `( T11 T12 )` `Q1' T U1 = Q1' J Z' J' U1 = ( ) = Tout,` `( 0 T22 )` `( Z11 Z12 )` `U2' Z Q2 = ( ) = Zout, (2)` `( 0 Z22 )` `( H11 H12 )` `Q1' H Q2 = ( ) = Hout,` `( 0 H22 )` where T11, T22', Z11, Z22', H11 are upper triangular and H22' is upper quasi-triangular. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ1 = 'I' or COMPQ1 = 'U', the orthogonal transformation matrix Q1 will be computed. Optionally, if COMPQ2 = 'I' or COMPQ2 = 'U', the orthogonal transformation matrix Q2 will be computed. Optionally, if COMPU1 = 'I' or COMPU1 = 'U', the orthogonal symplectic transformation matrix `( U11 U12 )` `U1 = ( )` `( -U12 U11 )` will be computed. Optionally, if COMPU2 = 'I' or COMPU2 = 'U', the orthogonal symplectic transformation matrix `( U21 U22 )` `U2 = ( )` `( -U22 U21 )` will be computed. See the SLICOT documentation for details. """ function mb04ad! end """ Compute the eigenvalues of a complex N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH, with `H T ( B F ) ( Z11 Z12 )` `S = J Z J Z and H = ( H ), Z =: ( ). (1)` `( G -B ) ( Z21 Z22 )` The structured Schur form of the embedded real skew-Hamiltonian/ `H T` skew-Hamiltonian pencil, a`B_S` - b`B_T`, with `B_S` = J `B_Z` J `B_Z`, `( Re(Z11) -Im(Z11) | Re(Z12) -Im(Z12) )` `( | )` `( Im(Z11) Re(Z11) | Im(Z12) Re(Z12) )` `( | )` `B_Z = (---------------------+---------------------) ,` `( | )` `( Re(Z21) -Im(Z21) | Re(Z22) -Im(Z22) )` `( | )` `( Im(Z21) Re(Z21) | Im(Z22) Re(Z22) )` `(2)` `( -Im(B) -Re(B) | -Im(F) -Re(F) )` `( | )` `( Re(B) -Im(B) | Re(F) -Im(F) )` `( | )` `B_T = (-----------------+-----------------) , T = i*H,` `( | T T )` `( -Im(G) -Re(G) | -Im(B ) Re(B ) )` `( | T T )` `( Re(G) -Im(G) | -Re(B ) -Im(B ) )` is determined and used to compute the eigenvalues. Optionally, if JOB = 'T', the pencil a`B_S` - b`B_H` is transformed by a unitary matrix Q and a unitary symplectic matrix U to the structured Schur `H T` form a`B_S`out - b`B_H`out, with `B_S`out = J `B_Z`out J `B_Z`out, `( BA BD ) ( BB BF )` `B_Zout = ( ) and B_Hout = ( H ), (3)` `( 0 BC ) ( 0 -BB )` where BA and BB are upper triangular, BC is lower triangular, and BF is Hermitian. `B_H` above is defined as `B_H` = -i*`B_T`. The embedding doubles the multiplicities of the eigenvalues of the pencil aS - bH. Optionally, if COMPQ = 'C', the unitary matrix Q is computed. Optionally, if COMPU = 'C', the unitary symplectic matrix U is computed. See the SLICOT documentation for details. """ function mb04az! end """ Compute the eigenvalues of a real N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH with `( A D ) ( C V )` `S = ( ) and H = ( ). (1)` `( E A' ) ( W -C' )` Optionally, if JOB = 'T', decompositions of S and H will be computed via orthogonal transformations Q1 and Q2 as follows: `( Aout Dout )` `Q1' S J Q1 J' = ( ),` `( 0 Aout' )` `( Bout Fout )` `J' Q2' J S Q2 = ( ) =: T, (2)` `( 0 Bout' )` `( C1out Vout ) ( 0 I )` `Q1' H Q2 = ( ), where J = ( )` `( 0 C2out' ) ( -I 0 )` and Aout, Bout, C1out are upper triangular, C2out is upper quasi- triangular and Dout and Fout are skew-symmetric. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ1 = 'I' or COMPQ1 = 'U', then the orthogonal transformation matrix Q1 will be computed. Optionally, if COMPQ2 = 'I' or COMPQ2 = 'U', then the orthogonal transformation matrix Q2 will be computed. See the SLICOT documentation for details. """ function mb04bd! end """ Compute the eigenvalues of a real N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH with `( A D ) ( C V )` `S = ( ) and H = ( ). (1)` `( E A' ) ( W -C' )` Optionally, if JOB = 'T', decompositions of S and H will be computed via orthogonal transformations Q1 and Q2 as follows: `( Aout Dout )` `Q1' S J Q1 J' = ( ),` `( 0 Aout' )` `( Bout Fout )` `J' Q2' J S Q2 = ( ) =: T, (2)` `( 0 Bout' )` `( C1out Vout ) ( 0 I )` `Q1' H Q2 = ( ), where J = ( )` `( 0 C2out' ) ( -I 0 )` and Aout, Bout, C1out are upper triangular, C2out is upper quasi- triangular and Dout and Fout are skew-symmetric. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ1 = 'I' or COMPQ1 = 'U', then the orthogonal transformation matrix Q1 will be computed. Optionally, if COMPQ2 = 'I' or COMPQ2 = 'U', then the orthogonal transformation matrix Q2 will be computed. See the SLICOT documentation for details. """ function mb04bp! end """ Compute the eigenvalues of a complex N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH, with `( A D ) ( B F )` `S = ( H ) and H = ( H ). (1)` `( E A ) ( G -B )` This routine computes the eigenvalues using an embedding to a real skew-Hamiltonian/skew-Hamiltonian pencil a`B_S` - b`B_T`, defined as `( Re(A) -Im(A) | Re(D) -Im(D) )` `( | )` `( Im(A) Re(A) | Im(D) Re(D) )` `( | )` `B_S = (-----------------+-----------------) , and` `( | T T )` `( Re(E) -Im(E) | Re(A ) Im(A ) )` `( | T T )` `( Im(E) Re(E) | -Im(A ) Re(A ) )` `(2)` `( -Im(B) -Re(B) | -Im(F) -Re(F) )` `( | )` `( Re(B) -Im(B) | Re(F) -Im(F) )` `( | )` `B_T = (-----------------+-----------------) , T = i*H.` `( | T T )` `( -Im(G) -Re(G) | -Im(B ) Re(B ) )` `( | T T )` `( Re(G) -Im(G) | -Re(B ) -Im(B ) )` Optionally, if JOB = 'T', the pencil a`B_S` - b`B_H` (`B_H` = -i*`B_T`) is transformed by a unitary matrix Q to the structured Schur form `( BA BD ) ( BB BF )` `B_Sout = ( H ) and B_Hout = ( H ), (3)` `( 0 BA ) ( 0 -BB )` where BA and BB are upper triangular, BD is skew-Hermitian, and BF is Hermitian. The embedding doubles the multiplicities of the eigenvalues of the pencil aS - bH. Optionally, if COMPQ = 'C', the unitary matrix Q is computed. See the SLICOT documentation for details. """ function mb04bz! end """ Compute the transformed matrices A, B and D, using orthogonal matrices Q1, Q2 and Q3 for a real N-by-N regular pencil `( A11 0 ) ( B11 0 ) ( 0 D12 )` `aA*B - bD = a ( ) ( ) - b ( ), (1)` `( 0 A22 ) ( 0 B22 ) ( D21 0 )` where A11, A22, B11, B22 and D12 are upper triangular, D21 is upper quasi-triangular and the generalized matrix product `-1 -1 -1 -1` A11 D12 B22 A22 D21 B11 is upper quasi-triangular, such that Q3' A Q2, Q2' B Q1 are upper triangular, Q3' D Q1 is upper quasi-triangular and the transformed pencil a(Q3' A B Q1) - b(Q3' D Q1) is in generalized Schur form. The notation M' denotes the transpose of the matrix M. See the SLICOT documentation for details. """ function mb04cd! end """ Apply from the left the inverse of a balancing transformation, computed by the SLICOT Library routine MB04DP, to the matrix `[ V1 ]` `[ ],` `[ sgn*V2 ]` where sgn is either +1 or -1. See the SLICOT documentation for details. """ function mb04db! end """ Balance a real Hamiltonian matrix, `[ A G ]` `H = [ T ] ,` `[ Q -A ]` where A is an N-by-N matrix and G, Q are N-by-N symmetric matrices. This involves, first, permuting H by a symplectic similarity transformation to isolate eigenvalues in the first 1:ILO-1 elements on the diagonal of A; and second, applying a diagonal similarity transformation to rows and columns ILO:N, N+ILO:2*N to make the rows and columns as close in 1-norm as possible. Both steps are optional. See the SLICOT documentation for details. """ function mb04dd! end """ Apply the inverse of a balancing transformation, computed by the SLICOT Library routines MB04DD or MB04DS, to a 2*N-by-M matrix `[ V1 ]` `[ ],` `[ sgn*V2 ]` where sgn is either +1 or -1. See the SLICOT documentation for details. """ function mb04di! end """ Balance a pair of N-by-N real matrices (A,B). This involves, first, permuting A and B by equivalence transformations to isolate eigenvalues in the first 1 to ILO-1 and last IHI+1 to N elements on the diagonal of A and B; and second, applying a diagonal equivalence transformation to rows and columns ILO to IHI to make the rows and columns as close in 1-norm as possible. Both steps are optional. Balancing may reduce the 1-norms of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem A*x = lambda*B*x. This routine may optionally improve the conditioning of the scaling transformation compared to the LAPACK routine DGGBAL. See the SLICOT documentation for details. """ function mb04dl! end """ Balance the 2*N-by-2*N skew-Hamiltonian/Hamiltonian pencil aS - bH, with `( A D ) ( C V )` `S = ( ) and H = ( ), A, C N-by-N, (1)` `( E A' ) ( W -C' )` where D and E are skew-symmetric, and V and W are symmetric matrices. This involves, first, permuting aS - bH by a symplectic equivalence transformation to isolate eigenvalues in the first 1:ILO-1 elements on the diagonal of A and C; and second, applying a diagonal equivalence transformation to make the pairs of rows and columns ILO:N and N+ILO:2*N as close in 1-norm as possible. Both steps are optional. Balancing may reduce the 1-norms of the matrices S and H. See the SLICOT documentation for details. """ function mb04dp! end """ Balance a real skew-Hamiltonian matrix `[ A G ]` `S = [ T ] ,` `[ Q A ]` where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric matrices. This involves, first, permuting S by a symplectic similarity transformation to isolate eigenvalues in the first 1:ILO-1 elements on the diagonal of A; and second, applying a diagonal similarity transformation to rows and columns ILO:N, N+ILO:2*N to make the rows and columns as close in 1-norm as possible. Both steps are optional. See the SLICOT documentation for details. """ function mb04ds! end """ Perform a symplectic scaling on the Hamiltonian matrix `( A G )` `H = ( T ), (1)` `( Q -A )` i.e., perform either the symplectic scaling transformation `-1` `( A' G' ) ( D 0 ) ( A G ) ( D 0 )` `H' <-- ( T ) = ( ) ( T ) ( -1 ), (2)` `( Q' -A' ) ( 0 D ) ( Q -A ) ( 0 D )` where D is a diagonal scaling matrix, or the symplectic norm scaling transformation `( A'' G'' ) 1 ( A G/tau )` `H'' <-- ( T ) = --- ( T ), (3)` `( Q'' -A'' ) tau ( tau Q -A )` where tau is a real scalar. Note that if tau is not equal to 1, then (3) is NOT a similarity transformation. The eigenvalues of H are then tau times the eigenvalues of H''. For symplectic scaling (2), D is chosen to give the rows and columns of A' approximately equal 1-norms and to give Q' and G' approximately equal norms. (See METHOD below for details.) For norm scaling, tau = MAX(1, ||A||, ||G||, ||Q||) where ||.|| denotes the 1-norm (column sum norm). See the SLICOT documentation for details. """ function mb04dy! end """ Balance a complex Hamiltonian matrix, `[ A G ]` `H = [ H ] ,` `[ Q -A ]` where A is an N-by-N matrix and G, Q are N-by-N Hermitian matrices. This involves, first, permuting H by a symplectic similarity transformation to isolate eigenvalues in the first 1:ILO-1 elements on the diagonal of A; and second, applying a diagonal similarity transformation to rows and columns ILO:N, N+ILO:2*N to make the rows and columns as close in 1-norm as possible. Both steps are optional. Assuming ILO = 1, let D be a diagonal matrix of order N with the scaling factors on the diagonal. The scaled Hamiltonian is defined by `[ D**-1*A*D D**-1*G*D**-1 ]` `Hs = [ H ] .` `[ D*Q*D -D*A *D**-1 ]` See the SLICOT documentation for details. """ function mb04dz! end """ Compute the eigenvalues of a real N-by-N skew-Hamiltonian/ skew-Hamiltonian pencil aS - bT with `( B F ) ( 0 I )` `S = J Z' J' Z and T = ( ), where J = ( ). (1)` `( G B' ) ( -I 0 )` Optionally, if JOB = 'T', the pencil aS - bT will be transformed to the structured Schur form: an orthogonal transformation matrix Q and an orthogonal symplectic transformation matrix U are computed, such that `( Z11 Z12 )` `U' Z Q = ( ) = Zout, and` `( 0 Z22 )` `(2)` `( Bout Fout )` `J Q' J' T Q = ( ),` `( 0 Bout' )` where Z11 and Z22' are upper triangular and Bout is upper quasi- triangular. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'I', the orthogonal transformation matrix Q will be computed. Optionally, if COMPU = 'I' or COMPU = 'U', the orthogonal symplectic transformation matrix `( U1 U2 )` `U = ( )` `( -U2 U1 )` will be computed. See the SLICOT documentation for details. """ function mb04ed! end """ Compute the eigenvalues of a real N-by-N skew-Hamiltonian/ skew-Hamiltonian pencil aS - bT with `( A D ) ( B F )` `S = ( ) and T = ( ). (1)` `( E A' ) ( G B' )` Optionally, if JOB = 'T', the pencil aS - bT will be transformed to the structured Schur form: an orthogonal transformation matrix Q is computed such that `( Aout Dout )` `J Q' J' S Q = ( ), and` `( 0 Aout' )` `(2)` `( Bout Fout ) ( 0 I )` `J Q' J' T Q = ( ), where J = ( ),` `( 0 Bout' ) ( -I 0 )` Aout is upper triangular, and Bout is upper quasi-triangular. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal transformation matrix Q will be computed. See the SLICOT documentation for details. """ function mb04fd! end """ Compute the eigenvalues of a real N-by-N skew-Hamiltonian/ skew-Hamiltonian pencil aS - bT with `( A D ) ( B F )` `S = ( ) and T = ( ). (1)` `( E A' ) ( G B' )` Optionally, if JOB = 'T', the pencil aS - bT will be transformed to the structured Schur form: an orthogonal transformation matrix Q is computed such that `( Aout Dout )` `J Q' J' S Q = ( ), and` `( 0 Aout' )` `(2)` `( Bout Fout ) ( 0 I )` `J Q' J' T Q = ( ), where J = ( ),` `( 0 Bout' ) ( -I 0 )` Aout is upper triangular, and Bout is upper quasi-triangular. The notation M' denotes the transpose of the matrix M. Optionally, if COMPQ = 'I' or COMPQ = 'U', the orthogonal transformation matrix Q will be computed. See the SLICOT documentation for details. """ function mb04fp! end """ Compute an RQ factorization with row pivoting of a real m-by-n matrix A: P*A = R*Q. See the SLICOT documentation for details. """ function mb04gd! end """ Compute the transformed matrices A and B, using orthogonal matrices Q1 and Q2 for a real N-by-N regular pencil `( A11 0 ) ( 0 B12 )` `aA - bB = a ( ) - b ( ), (1)` `( 0 A22 ) ( B21 0 )` where A11, A22 and B12 are upper triangular, B21 is upper quasi-triangular and the generalized matrix product `-1 -1` A11 B12 A22 B21 is in periodic Schur form, such that the matrix Q2' A Q1 is upper triangular, Q2' B Q1 is upper quasi-triangular and the transformed pencil a(Q2' A Q1) - b(Q2' B Q1) is in generalized Schur form. The notation M' denotes the transpose of the matrix M. See the SLICOT documentation for details. """ function mb04hd! end """ Compute a QR factorization of an n-by-m matrix A (A = Q * R), having a p-by-min(p,m) zero triangle in the lower left-hand side corner, as shown below, for n = 8, m = 7, and p = 2: `[ x x x x x x x ]` `[ x x x x x x x ]` `[ x x x x x x x ]` `[ x x x x x x x ]` `A = [ x x x x x x x ],` `[ x x x x x x x ]` `[ 0 x x x x x x ]` `[ 0 0 x x x x x ]` and optionally apply the transformations to an n-by-l matrix B (from the left). The problem structure is exploited. This computation is useful, for instance, in combined measurement and time update of one iteration of the time-invariant Kalman filter (square root information filter). See the SLICOT documentation for details. """ function mb04id! end """ Overwrite the real n-by-m matrix C with Q' * C, Q * C, C * Q', or C * Q, according to the following table `SIDE = 'L' SIDE = 'R'` TRANS = 'N': Q * C C * Q TRANS = 'T': Q'* C C * Q' where Q is a real orthogonal matrix defined as the product of k elementary reflectors `Q = H(1) H(2) . . . H(k)` as returned by SLICOT Library routine MB04ID. Q is of order n if SIDE = 'L' and of order m if SIDE = 'R'. See the SLICOT documentation for details. """ function mb04iy! end """ Compute a QR factorization of an n-by-m matrix A (A = Q * R), having a p-by-min(p,m) zero triangle in the lower left-hand side corner, as shown below, for n = 8, m = 7, and p = 2: `[ x x x x x x x ]` `[ x x x x x x x ]` `[ x x x x x x x ]` `[ x x x x x x x ]` `A = [ x x x x x x x ],` `[ x x x x x x x ]` `[ 0 x x x x x x ]` `[ 0 0 x x x x x ]` and optionally apply the transformations to an n-by-l matrix B (from the left). The problem structure is exploited. This computation is useful, for instance, in combined measurement and time update of one iteration of the time-invariant Kalman filter (square root information filter). See the SLICOT documentation for details. """ function mb04iz! end """ Compute an LQ factorization of an n-by-m matrix A (A = L * Q), having a min(n,p)-by-p zero triangle in the upper right-hand side corner, as shown below, for n = 8, m = 7, and p = 2: `[ x x x x x 0 0 ]` `[ x x x x x x 0 ]` `[ x x x x x x x ]` `[ x x x x x x x ]` `A = [ x x x x x x x ],` `[ x x x x x x x ]` `[ x x x x x x x ]` `[ x x x x x x x ]` and optionally apply the transformations to an l-by-m matrix B (from the right). The problem structure is exploited. This computation is useful, for instance, in combined measurement and time update of one iteration of the time-invariant Kalman filter (square root covariance filter). See the SLICOT documentation for details. """ function mb04jd! end """ Calculate a QR factorization of the first block column and apply the orthogonal transformations (from the left) also to the second block column of a structured matrix, as follows `_` `[ R 0 ] [ R C ]` `Q' * [ ] = [ ]` `[ A B ] [ 0 D ]` `_` where R and R are upper triangular. The matrix A can be full or upper trapezoidal/triangular. The problem structure is exploited. This computation is useful, for instance, in combined measurement and time update of one iteration of the Kalman filter (square root information filter). See the SLICOT documentation for details. """ function mb04kd! end """ Calculate an LQ factorization of the first block row and apply the orthogonal transformations (from the right) also to the second block row of a structured matrix, as follows `_` `[ L A ] [ L 0 ]` `[ ]*Q = [ ]` `[ 0 B ] [ C D ]` `_` where L and L are lower triangular. The matrix A can be full or lower trapezoidal/triangular. The problem structure is exploited. This computation is useful, for instance, in combined measurement and time update of one iteration of the Kalman filter (square root covariance filter). See the SLICOT documentation for details. """ function mb04ld! end """ Reduce the 1-norm of a general real matrix A by balancing. This involves diagonal similarity transformations applied iteratively to A to make the rows and columns as close in norm as possible. This routine can be used instead LAPACK Library routine DGEBAL, when no reduction of the 1-norm of the matrix is possible with DGEBAL, as for upper triangular matrices. LAPACK Library routine DGEBAK, with parameters ILO = 1, IHI = N, and JOB = 'S', should be used to apply the backward transformation. See the SLICOT documentation for details. """ function mb04md! end """ Calculate an RQ factorization of the first block row and apply the orthogonal transformations (from the right) also to the second block row of a structured matrix, as follows `_` `[ A R ] [ 0 R ]` `[ ] * Q' = [ _ _ ]` `[ C B ] [ C B ]` `_` where R and R are upper triangular. The matrix A can be full or upper trapezoidal/triangular. The problem structure is exploited. See the SLICOT documentation for details. """ function mb04nd! end """ Apply a real elementary reflector H to a real m-by-(n+1) matrix C = [ A B ], from the right, where A has one column. H is represented in the form `( 1 )` `H = I - tau * u *u', u = ( ),` `( v )` where tau is a real scalar and v is a real n-vector. If tau = 0, then H is taken to be the unit matrix. In-line code is used if H has order < 11. See the SLICOT documentation for details. """ function mb04ny! end """ Calculate a QR factorization of the first block column and apply the orthogonal transformations (from the left) also to the second block column of a structured matrix, as follows `_ _` `[ R B ] [ R B ]` `Q' * [ ] = [ _ ]` `[ A C ] [ 0 C ]` `_` where R and R are upper triangular. The matrix A can be full or upper trapezoidal/triangular. The problem structure is exploited. See the SLICOT documentation for details. """ function mb04od! end """ Perform the QR factorization `( U ) = Q*( R ), where U = ( U1 U2 ), R = ( R1 R2 ),` `( x' ) ( 0 ) ( 0 T ) ( 0 R3 )` where U and R are (m+n)-by-(m+n) upper triangular matrices, x is an m+n element vector, U1 is m-by-m, T is n-by-n, stored separately, and Q is an (m+n+1)-by-(m+n+1) orthogonal matrix. The matrix ( U1 U2 ) must be supplied in the m-by-(m+n) upper trapezoidal part of the array A and this is overwritten by the corresponding part ( R1 R2 ) of R. The remaining upper triangular part of R, R3, is overwritten on the array T. The transformations performed are also applied to the (m+n+1)-by-p matrix ( B' C' d )' (' denotes transposition), where B, C, and d' are m-by-p, n-by-p, and 1-by-p matrices, respectively. See the SLICOT documentation for details. """ function mb04ow! end """ Perform the QR factorization `(U ) = Q*(R),` `(x') (0)` where U and R are n-by-n upper triangular matrices, x is an n element vector and Q is an (n+1)-by-(n+1) orthogonal matrix. U must be supplied in the n-by-n upper triangular part of the array A and this is overwritten by R. See the SLICOT documentation for details. """ function mb04ox! end """ Apply a real elementary reflector H to a real (m+1)-by-n matrix C = [ A ], from the left, where A has one row. H is `[ B ]` represented in the form `( 1 )` `H = I - tau * u *u', u = ( ),` `( v )` where tau is a real scalar and v is a real m-vector. If tau = 0, then H is taken to be the unit matrix. In-line code is used if H has order < 11. See the SLICOT documentation for details. """ function mb04oy! end """ Reduce a Hamiltonian like matrix `[ A G ] T T` `H = [ T ] , G = G , Q = Q,` `[ Q -A ]` or a skew-Hamiltonian like matrix `[ A G ] T T` `W = [ T ] , G = -G , Q = -Q,` `[ Q A ]` so that elements below the (k+1)-th subdiagonal in the first nb columns of the (k+n)-by-n matrix A, and offdiagonal elements in the first nb columns and rows of the n-by-n matrix Q are zero. The reduction is performed by an orthogonal symplectic transformation UU'*H*UU and matrices U, XA, XG, XQ, and YA are returned so that `[ Aout + U*XA'+ YA*U' Gout + U*XG'+ XG*U' ]` `UU'*H*UU = [ ].` `[ Qout + U*XQ'+ XQ*U' -Aout'- XA*U'- U*YA' ]` Similarly, `[ Aout + U*XA'+ YA*U' Gout + U*XG'- XG*U' ]` `UU'*W*UU = [ ].` `[ Qout + U*XQ'- XQ*U' Aout'+ XA*U'+ U*YA' ]` This is an auxiliary routine called by MB04PB. See the SLICOT documentation for details. """ function mb04pa! end """ Reduce a Hamiltonian matrix, `[ A G ]` `H = [ T ] ,` `[ Q -A ]` where A is an N-by-N matrix and G,Q are N-by-N symmetric matrices, to Paige/Van Loan (PVL) form. That is, an orthogonal symplectic U is computed so that `T [ Aout Gout ]` `U H U = [ T ] ,` `[ Qout -Aout ]` where Aout is upper Hessenberg and Qout is diagonal. Blocked version. See the SLICOT documentation for details. """ function mb04pb! end """ Reduce a Hamiltonian matrix, `[ A G ]` `H = [ T ] ,` `[ Q -A ]` where A is an N-by-N matrix and G,Q are N-by-N symmetric matrices, to Paige/Van Loan (PVL) form. That is, an orthogonal symplectic U is computed so that `T [ Aout Gout ]` `U H U = [ T ] ,` `[ Qout -Aout ]` where Aout is upper Hessenberg and Qout is diagonal. Unblocked version. See the SLICOT documentation for details. """ function mb04pu! end """ Apply a real elementary reflector H to a real m-by-n matrix C, from either the left or the right. H is represented in the form `( 1 )` `H = I - tau * u *u', u = ( ),` `( v )` where tau is a real scalar and v is a real vector. If tau = 0, then H is taken to be the unit matrix. In-line code is used if H has order < 11. See the SLICOT documentation for details. """ function mb04py! end """ Overwrite general real m-by-n matrices C and D, or their transposes, with `[ op(C) ]` `Q * [ ] if TRANQ = 'N', or` `[ op(D) ]` `T [ op(C) ]` `Q * [ ] if TRANQ = 'T',` `[ op(D) ]` where Q is defined as the product of symplectic reflectors and Givens rotations, `Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )` `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).` Blocked version. See the SLICOT documentation for details. """ function mb04qb! end """ Apply the orthogonal symplectic block reflector `[ I+V*T*V' V*R*S*V' ]` `Q = [ ]` `[ -V*R*S*V' I+V*T*V' ]` or its transpose to a real 2m-by-n matrix [ op(A); op(B) ] from the left. The k-by-k upper triangular blocks of the matrices `[ S1 ] [ T11 T12 T13 ]` `R = [ R1 R2 R3 ], S = [ S2 ], T = [ T21 T22 T23 ],` `[ S3 ] [ T31 T32 T33 ]` with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular, are stored rowwise in the arrays RS and T, respectively. See the SLICOT documentation for details. """ function mb04qc! end """ Form the triangular block factors R, S and T of a symplectic block reflector SH, which is defined as a product of 2k concatenated Householder reflectors and k Givens rotations, `SH = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )` `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).` The upper triangular blocks of the matrices `[ S1 ] [ T11 T12 T13 ]` `R = [ R1 R2 R3 ], S = [ S2 ], T = [ T21 T22 T23 ],` `[ S3 ] [ T31 T32 T33 ]` with R2 unit and S1, R3, T21, T31, T32 strictly upper triangular, are stored rowwise in the arrays RS and T, respectively. See the SLICOT documentation for details. """ function mb04qf! end """ Overwrites general real m-by-n/n-by-m matrices C and D with `[ op(C) ]` `U * [ ] if TRANU = 'N', or` `[ op(D) ]` `T [ op(C) ]` `U * [ ] if TRANU = 'T',` `[ op(D) ]` where U is defined as the product of symplectic reflectors and Givens rotations, `U = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )` `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(k),H(k) ) G(k) diag( F(k),F(k) ),` with k = m-1, as returned by the SLICOT Library routines MB04PU or MB04RU. See the SLICOT documentation for details. """ function mb04qs! end """ Overwrite general real m-by-n matrices C and D, or their transposes, with `[ op(C) ]` `Q * [ ] if TRANQ = 'N', or` `[ op(D) ]` `T [ op(C) ]` `Q * [ ] if TRANQ = 'T',` `[ op(D) ]` where Q is defined as the product of symplectic reflectors and Givens rotations, `Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )` `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).` Unblocked version. See the SLICOT documentation for details. """ function mb04qu! end """ Reduce a skew-Hamiltonian matrix, `[ A G ]` `W = [ T ] ,` `[ Q A ]` where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric matrices, to Paige/Van Loan (PVL) form. That is, an orthogonal symplectic matrix U is computed so that `T [ Aout Gout ]` `U W U = [ T ] ,` `[ 0 Aout ]` where Aout is in upper Hessenberg form. Blocked version. See the SLICOT documentation for details. """ function mb04rb! end """ Reduce a skew-Hamiltonian matrix, `[ A G ]` `W = [ T ] ,` `[ Q A ]` where A is an N-by-N matrix and G, Q are N-by-N skew-symmetric matrices, to Paige/Van Loan (PVL) form. That is, an orthogonal symplectic matrix U is computed so that `T [ Aout Gout ]` `U W U = [ T ] ,` `[ 0 Aout ]` where Aout is in upper Hessenberg form. Unblocked version. See the SLICOT documentation for details. """ function mb04ru! end """ Compute a symplectic QR decomposition of a real 2M-by-N matrix [A; B], `[ A ] [ R11 R12 ]` `[ ] = Q * R = Q [ ],` `[ B ] [ R21 R22 ]` where Q is a symplectic orthogonal matrix, R11 is upper triangular and R21 is strictly upper triangular. If [A; B] is symplectic then, theoretically, R21 = 0 and R22 = inv(R11)^T. Unblocked version. See the SLICOT documentation for details. """ function mb04su! end """ Compute a symplectic URV (SURV) decomposition of a real 2N-by-2N matrix H, `[ op(A) G ] [ op(R11) R12 ]` `H = [ ] = U R V' = U * [ ] * V' ,` `[ Q op(B) ] [ 0 op(R22) ]` where A, B, G, Q, R12 are real N-by-N matrices, op(R11) is a real N-by-N upper triangular matrix, op(R22) is a real N-by-N lower Hessenberg matrix and U, V are 2N-by-2N orthogonal symplectic matrices. Blocked version. See the SLICOT documentation for details. """ function mb04tb! end """ Compute a symplectic URV (SURV) decomposition of a real 2N-by-2N matrix H: `[ op(A) G ] T [ op(R11) R12 ] T` `H = [ ] = U R V = U * [ ] * V ,` `[ Q op(B) ] [ 0 op(R22) ]` where A, B, G, Q, R12 are real N-by-N matrices, op(R11) is a real N-by-N upper triangular matrix, op(R22) is a real N-by-N lower Hessenberg matrix and U, V are 2N-by-2N orthogonal symplectic matrices. Unblocked version. See the SLICOT documentation for details. """ function mb04ts! end """ Let A and E be M-by-N matrices with E in column echelon form. Let AA and EE be the following submatrices of A and E: `AA := A(IFIRA : M ; IFICA : N)` `EE := E(IFIRA : M ; IFICA : N).` Let Aj and Ej be the following submatrices of AA and EE: `Aj := A(IFIRA : M ; IFICA : IFICA + NCA - 1) and` `Ej := E(IFIRA : M ; IFICA + NCA : N).` Transform (AA,EE) such that Aj is row compressed while keeping matrix Ej in column echelon form (which may be different from the form on entry). In fact the routine performs the j-th step of Algorithm 3.2.1 in [1]. Furthermore, it determines the rank RANK of the submatrix Ej, which is equal to the number of corner points in submatrix Ej. See the SLICOT documentation for details. """ function mb04tt! end """ Perform the Givens transformation, defined by C (cos) and S (sin), and interchange the vectors involved, i.e. `|X(i)| | 0 1 | | C S | |X(i)|` `| | := | | x | | x | |, i = 1,...N.` `|Y(i)| | 1 0 | |-S C | |Y(i)|` REMARK. This routine is a modification of DROT from BLAS. `This routine is called only by the SLICOT routines MB04TX` `and MB04VX.` NUMERICAL ASPECTS The algorithm is backward stable. See the SLICOT documentation for details. """ function mb04tu! end """ Reduce a submatrix A(k) of A to upper triangular form by column Givens rotations only. Here A(k) = A(IFIRA:ma,IFICA:na) where ma = IFIRA - 1 + NRA, na = IFICA - 1 + NCA. Matrix A(k) is assumed to have full row rank on entry. Hence, no pivoting is done during the reduction process. See Algorithm 2.3.1 and Remark 2.3.4 in [1]. The constructed column transformations are also applied to matrix E(k) = E(1:IFIRA-1,IFICA:na). Note that in E columns are transformed with the same column indices as in A, but with row indices different from those in A. See the SLICOT documentation for details. """ function mb04tv! end """ Reduce a submatrix E(k) of E to upper triangular form by row Givens rotations only. Here E(k) = E(IFIRE:me,IFICE:ne), where me = IFIRE - 1 + NRE, `ne = IFICE - 1 + NCE.` Matrix E(k) is assumed to have full column rank on entry. Hence, no pivoting is done during the reduction process. See Algorithm 2.3.1 and Remark 2.3.4 in [1]. The constructed row transformations are also applied to matrix A(k) = A(IFIRE:me,IFICA:N). Note that in A(k) rows are transformed with the same row indices as in E but with column indices different from those in E. See the SLICOT documentation for details. """ function mb04tw! end """ Separate the pencils s*E(eps)-A(eps) and s*E(inf)-A(inf) in s*E(eps,inf)-A(eps,inf) using Algorithm 3.3.3 in [1]. On entry, it is assumed that the M-by-N matrices A and E have been obtained after applying the Algorithms 3.2.1 and 3.3.1 to the pencil s*E - A as described in [1], i.e. `| s*E(eps,inf)-A(eps,inf) | X |` `Q'(s*E - A)Z = |-------------------------|-------------|` `| 0 | s*E(r)-A(r) |` Here the pencil s*E(eps,inf)-A(eps,inf) is in staircase form. This pencil contains all Kronecker column indices and infinite elementary divisors of the pencil s*E - A. The pencil s*E(r)-A(r) contains all Kronecker row indices and finite elementary divisors of s*E - A. Furthermore, the submatrices having full row and column rank in the pencil s*E(eps,inf)-A(eps,inf) are assumed to be triangularized. On exit, the result then is `Q'(s*E - A)Z =` `| s*E(eps)-A(eps) | X | X |` `|-----------------|-----------------|-------------|` `| 0 | s*E(inf)-A(inf) | X |` `|===================================|=============|` `| | |` `| 0 | s*E(r)-A(r) |` Note that the pencil s*E(r)-A(r) is not reduced further. See the SLICOT documentation for details. """ function mb04tx! end """ Perform the triangularization of the submatrices having full row and column rank in the pencil s*E(eps,inf)-A(eps,inf) below `| s*E(eps,inf)-A(eps,inf) | X |` `s*E - A = |-------------------------|-------------| ,` `| 0 | s*E(r)-A(r) |` using Algorithm 3.3.1 in [1]. On entry, it is assumed that the M-by-N matrices A and E have been transformed to generalized Schur form by unitary transformations (see Algorithm 3.2.1 in [1]), and that the pencil s*E(eps,inf)-A(eps,inf) is in staircase form. This pencil contains all Kronecker column indices and infinite elementary divisors of the pencil s*E - A. The pencil s*E(r)-A(r) contains all Kronecker row indices and finite elementary divisors of s*E - A. See the SLICOT documentation for details. """ function mb04ty! end """ Compute orthogonal transformations Q and Z such that the transformed pencil Q'(sE-A)Z has the E matrix in column echelon form, where E and A are M-by-N matrices. See the SLICOT documentation for details. """ function mb04ud! end """ Compute orthogonal transformations Q and Z such that the transformed pencil Q'(sE-A)Z is in upper block triangular form, where E is an M-by-N matrix in column echelon form (see SLICOT Library routine MB04UD) and A is an M-by-N matrix. If MODE = 'B', then the matrices A and E are transformed into the following generalized Schur form by unitary transformations Q1 and Z1 : `| sE(eps,inf)-A(eps,inf) | X |` `Q1'(sE-A)Z1 = |------------------------|------------|. (1)` `| O | sE(r)-A(r) |` The pencil sE(eps,inf)-A(eps,inf) is in staircase form, and it contains all Kronecker column indices and infinite elementary divisors of the pencil sE-A. The pencil sE(r)-A(r) contains all Kronecker row indices and elementary divisors of sE-A. Note: X is a pencil. If MODE = 'T', then the submatrices having full row and column rank in the pencil sE(eps,inf)-A(eps,inf) in (1) are triangularized by applying unitary transformations Q2 and Z2 to Q1'*(sE-A)*Z1. If MODE = 'S', then the pencil sE(eps,inf)-A(eps,inf) in (1) is separated into sE(eps)-A(eps) and sE(inf)-A(inf) by applying unitary transformations Q3 and Z3 to Q2'*Q1'*(sE-A)*Z1*Z2. This gives `| sE(eps)-A(eps) | X | X |` `|----------------|----------------|------------|` `| O | sE(inf)-A(inf) | X |` Q'(sE-A)Z =|=================================|============| (2) `| | |` `| O | sE(r)-A(r) |` where Q = Q1*Q2*Q3 and Z = Z1*Z2*Z3. Note: the pencil sE(r)-A(r) is not reduced further. See the SLICOT documentation for details. """ function mb04vd! end """ Separate the pencils s*E(eps)-A(eps) and s*E(inf)-A(inf) in s*E(eps,inf)-A(eps,inf) using Algorithm 3.3.3 in [1]. On entry, it is assumed that the M-by-N matrices A and E have been obtained after applying the Algorithms 3.2.1 and 3.3.1 to the pencil s*E - A as described in [1], i.e. `| s*E(eps,inf)-A(eps,inf) | X |` `Q'(s*E - A)Z = |-------------------------|-------------|` `| 0 | s*E(r)-A(r) |` Here the pencil s*E(eps,inf)-A(eps,inf) is in staircase form. This pencil contains all Kronecker column indices and infinite elementary divisors of the pencil s*E - A. The pencil s*E(r)-A(r) contains all Kronecker row indices and finite elementary divisors of s*E - A. Furthermore, the submatrices having full row and column rank in the pencil s*E(eps,inf)-A(eps,inf) are assumed to be triangularized. On exit, the result then is `Q'(s*E - A)Z =` `| s*E(eps)-A(eps) | X | X |` `|-----------------|-----------------|-------------|` `| 0 | s*E(inf)-A(inf) | X |` `|===================================|=============|` `| | |` `| 0 | s*E(r)-A(r) |` Note that the pencil s*E(r)-A(r) is not reduced further. See the SLICOT documentation for details. """ function mb04vx! end """ Generate a matrix Q with orthogonal columns (spanning an isotropic subspace), which is defined as the first n columns of a product of symplectic reflectors and Givens rotations, `Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )` `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).` The matrix Q is returned in terms of its first 2*M rows `[ op( Q1 ) op( Q2 ) ]` `Q = [ ].` `[ -op( Q2 ) op( Q1 ) ]` Blocked version of the SLICOT Library routine MB04WU. See the SLICOT documentation for details. """ function mb04wd! end """ Generate an orthogonal symplectic matrix U, which is defined as a product of symplectic reflectors and Givens rotations U = diag( H(1),H(1) ) G(1) diag( F(1),F(1) ) `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(n-1),H(n-1) ) G(n-1) diag( F(n-1),F(n-1) ).` as returned by MB04PU. The matrix U is returned in terms of its first N rows `[ U1 U2 ]` `U = [ ].` `[ -U2 U1 ]` See the SLICOT documentation for details. """ function mb04wp! end """ Generate orthogonal symplectic matrices U or V, defined as products of symplectic reflectors and Givens rotations U = diag( HU(1),HU(1) ) GU(1) diag( FU(1),FU(1) ) `diag( HU(2),HU(2) ) GU(2) diag( FU(2),FU(2) )` `....` `diag( HU(n),HU(n) ) GU(n) diag( FU(n),FU(n) ),` V = diag( HV(1),HV(1) ) GV(1) diag( FV(1),FV(1) ) `diag( HV(2),HV(2) ) GV(2) diag( FV(2),FV(2) )` `....` `diag( HV(n-1),HV(n-1) ) GV(n-1) diag( FV(n-1),FV(n-1) ),` as returned by the SLICOT Library routines MB04TS or MB04TB. The matrices U and V are returned in terms of their first N/2 rows: `[ U1 U2 ] [ V1 V2 ]` `U = [ ], V = [ ].` `[ -U2 U1 ] [ -V2 V1 ]` See the SLICOT documentation for details. """ function mb04wr! end """ Generate a matrix Q with orthogonal columns (spanning an isotropic subspace), which is defined as the first n columns of a product of symplectic reflectors and Givens rotations, `Q = diag( H(1),H(1) ) G(1) diag( F(1),F(1) )` `diag( H(2),H(2) ) G(2) diag( F(2),F(2) )` `....` `diag( H(k),H(k) ) G(k) diag( F(k),F(k) ).` The matrix Q is returned in terms of its first 2*M rows `[ op( Q1 ) op( Q2 ) ]` `Q = [ ].` `[ -op( Q2 ) op( Q1 ) ]` See the SLICOT documentation for details. """ function mb04wu! end """ Compute a basis for the left and/or right singular subspace of an M-by-N matrix A corresponding to its smallest singular values. See the SLICOT documentation for details. """ function mb04xd! end """ Apply the Householder transformations Pj stored in factored form into the columns of the array X, to the desired columns of the matrix U by premultiplication, and/or the Householder transformations Qj stored in factored form into the rows of the array X, to the desired columns of the matrix V by premultiplication. The Householder transformations Pj and Qj are stored as produced by LAPACK Library routine DGEBRD. See the SLICOT documentation for details. """ function mb04xy! end """ Partially diagonalize the bidiagonal matrix `|q(1) e(1) 0 ... 0 |` `| 0 q(2) e(2) . |` `J = | . . | (1)` `| . e(MIN(M,N)-1)|` `| 0 ... ... q(MIN(M,N)) |` using QR or QL iterations in such a way that J is split into unreduced bidiagonal submatrices whose singular values are either all larger than a given bound or are all smaller than (or equal to) this bound. The left- and right-hand Givens rotations performed on J (corresponding to each QR or QL iteration step) may be optionally accumulated in the arrays U and V. See the SLICOT documentation for details. """ function mb04yd! end """ Perform either one QR or QL iteration step onto the unreduced bidiagonal submatrix Jk: `|D(l) E(l) 0 ... 0 |` `| 0 D(l+1) E(l+1) . |` `Jk = | . . |` `| . . |` `| . E(k-1)|` `| 0 ... ... D(k) |` with k <= p and l >= 1, p = MIN(M,N), of the bidiagonal matrix J: `|D(1) E(1) 0 ... 0 |` `| 0 D(2) E(2) . |` `J = | . . |.` `| . . |` `| . E(p-1)|` `| 0 ... ... D(p) |` Hereby, Jk is transformed to S' Jk T with S and T products of Givens rotations. These Givens rotations S (respectively, T) are postmultiplied into U (respectively, V), if UPDATU (respectively, UPDATV) is .TRUE.. See the SLICOT documentation for details. """ function mb04yw! end """ Transform a Hamiltonian matrix `( A G )` `H = ( T ) (1)` `( Q -A )` into a square-reduced Hamiltonian matrix `( A' G' )` `H' = ( T ) (2)` `( Q' -A' )` `T` by an orthogonal symplectic similarity transformation H' = U H U, where `( U1 U2 )` `U = ( ). (3)` `( -U2 U1 )` `T` The square-reduced Hamiltonian matrix satisfies Q'A' - A' Q' = 0, and `2 T 2 ( A'' G'' )` `H' := (U H U) = ( T ).` `( 0 A'' )` In addition, A'' is upper Hessenberg and G'' is skew symmetric. The square roots of the eigenvalues of A'' = A'*A' + G'*Q' are the eigenvalues of H. See the SLICOT documentation for details. """ function mb04zd! end """ Compute exp(A*delta) where A is a real N-by-N non-defective matrix with real or complex eigenvalues and delta is a scalar value. The routine also returns the eigenvalues and eigenvectors of A as well as (if all eigenvalues are real) the matrix product exp(Lambda*delta) times the inverse of the eigenvector matrix of A, where Lambda is the diagonal matrix of eigenvalues. Optionally, the routine computes a balancing transformation to improve the conditioning of the eigenvalues and eigenvectors. See the SLICOT documentation for details. """ function mb05md! end """ Compute, for an N-by-N real nonsymmetric matrix A, the orthogonal matrix Q reducing it to real Schur form T, the eigenvalues, and the right eigenvectors of T. The right eigenvector r(j) of T satisfies `T * r(j) = lambda(j) * r(j)` where lambda(j) is its eigenvalue. The matrix of right eigenvectors R is upper triangular, by construction. See the SLICOT documentation for details. """ function mb05my! end """ Compute (a) F(delta) = exp(A*delta) and (b) H(delta) = Int[F(s) ds] from s = 0 to s = delta, where A is a real N-by-N matrix and delta is a scalar value. See the SLICOT documentation for details. """ function mb05nd! end """ Compute exp(A*delta) where A is a real N-by-N matrix and delta is a scalar value. The routine also returns the minimal number of accurate digits in the 1-norm of exp(A*delta) and the number of accurate digits in the 1-norm of exp(A*delta) at 95% confidence level. See the SLICOT documentation for details. """ function mb05od! end """ Restore a matrix after it has been transformed by applying balancing transformations (permutations and scalings), as determined by LAPACK Library routine DGEBAL. See the SLICOT documentation for details. """ function mb05oy! end """ Move the eigenvalues with strictly negative real parts of an N-by-N complex skew-Hamiltonian/Hamiltonian pencil aS - bH in structured Schur form to the leading principal subpencil, while keeping the triangular form. On entry, we have `( A D ) ( B F )` `S = ( ), H = ( ),` `( 0 A' ) ( 0 -B' )` where A and B are upper triangular. S and H are transformed by a unitary matrix Q such that `( Aout Dout )` `Sout = J Q' J' S Q = ( ), and` `( 0 Aout' )` `(1)` `( Bout Fout ) ( 0 I )` `Hout = J Q' J' H Q = ( ), with J = ( ),` `( 0 -Bout' ) ( -I 0 )` where Aout and Bout remain in upper triangular form. The notation M' denotes the conjugate transpose of the matrix M. Optionally, if COMPQ = 'I' or COMPQ = 'U', the unitary matrix Q that fulfills (1) is computed. See the SLICOT documentation for details. """ function mb3jzp! end """ Compute the eigenvalues of a complex N-by-N skew-Hamiltonian/ Hamiltonian pencil aS - bH, with `( A D ) ( B F )` `S = ( ) and H = ( ). (1)` `( E A' ) ( G -B' )` The structured Schur form of the embedded real skew-Hamiltonian/ skew-Hamiltonian pencil a`B_S` - b`B_T`, defined as `( Re(A) -Im(A) | Re(D) -Im(D) )` `( | )` `( Im(A) Re(A) | Im(D) Re(D) )` `( | )` `B_S = (-----------------+-----------------) , and` `( | )` `( Re(E) -Im(E) | Re(A') Im(A') )` `( | )` `( Im(E) Re(E) | -Im(A') Re(A') )` `(2)` `( -Im(B) -Re(B) | -Im(F) -Re(F) )` `( | )` `( Re(B) -Im(B) | Re(F) -Im(F) )` `( | )` `B_T = (-----------------+-----------------) , T = i*H,` `( | )` `( -Im(G) -Re(G) | -Im(B') Re(B') )` `( | )` `( Re(G) -Im(G) | -Re(B') -Im(B') )` is determined and used to compute the eigenvalues. The notation M' denotes the conjugate transpose of the matrix M. Optionally, if COMPQ = 'C', an orthonormal basis of the right deflating subspace of the pencil aS - bH, corresponding to the eigenvalues with strictly negative real part, is computed. Namely, after transforming a`B_S` - b`B_H` by unitary matrices, we have `( BA BD ) ( BB BF )` `B_Sout = ( ) and B_Hout = ( ), (3)` `( 0 BA' ) ( 0 -BB' )` and the eigenvalues with strictly negative real part of the complex pencil a`B_S`out - b`B_H`out are moved to the top. The embedding doubles the multiplicities of the eigenvalues of the pencil aS - bH. See the SLICOT documentation for details. """ function mb3lzp! end """ Compute a rank-revealing QR factorization of a complex general M-by-N matrix A, which may be rank-deficient, and estimate its effective rank using incremental condition estimation. The routine uses a truncated QR factorization with column pivoting `[ R11 R12 ]` `A * P = Q * R, where R = [ ],` `[ 0 R22 ]` with R11 defined as the largest leading upper triangular submatrix whose estimated condition number is less than 1/RCOND. The order of R11, RANK, is the effective rank of A. Condition estimation is performed during the QR factorization process. Matrix R22 is full (but of small norm), or empty. MB3OYZ does not perform any scaling of the matrix A. See the SLICOT documentation for details. """ function mb3oyz! end """ Compute a rank-revealing RQ factorization of a complex general M-by-N matrix A, which may be rank-deficient, and estimate its effective rank using incremental condition estimation. The routine uses a truncated RQ factorization with row pivoting: `[ R11 R12 ]` `P * A = R * Q, where R = [ ],` `[ 0 R22 ]` with R22 defined as the largest trailing upper triangular submatrix whose estimated condition number is less than 1/RCOND. The order of R22, RANK, is the effective rank of A. Condition estimation is performed during the RQ factorization process. Matrix R11 is full (but of small norm), or empty. MB3PYZ does not perform any scaling of the matrix A. See the SLICOT documentation for details. """ function mb3pyz! end """ Apply from the left the inverse of a balancing transformation, computed by the SLICOT Library routine MB4DPZ, to the complex matrix `[ V1 ]` `[ ],` `[ sgn*V2 ]` where sgn is either +1 or -1. See the SLICOT documentation for details. """ function mb4dbz! end """ Balance a pair of N-by-N complex matrices (A,B). This involves, first, permuting A and B by equivalence transformations to isolate eigenvalues in the first 1 to ILO-1 and last IHI+1 to N elements on the diagonal of A and B; and second, applying a diagonal equivalence transformation to rows and columns ILO to IHI to make the rows and columns as close in 1-norm as possible. Both steps are optional. Balancing may reduce the 1-norms of the matrices, and improve the accuracy of the computed eigenvalues and/or eigenvectors in the generalized eigenvalue problem A*x = lambda*B*x. This routine may optionally improve the conditioning of the scaling transformation compared to the LAPACK routine ZGGBAL. See the SLICOT documentation for details. """ function mb4dlz! end """ Balance the 2*N-by-2*N complex skew-Hamiltonian/Hamiltonian pencil aS - bH, with `( A D ) ( C V )` `S = ( ) and H = ( ), A, C N-by-N, (1)` `( E A' ) ( W -C' )` where D and E are skew-Hermitian, V and W are Hermitian matrices, and ' denotes conjugate transpose. This involves, first, permuting aS - bH by a symplectic equivalence transformation to isolate eigenvalues in the first 1:ILO-1 elements on the diagonal of A and C; and second, applying a diagonal equivalence transformation to make the pairs of rows and columns ILO:N and N+ILO:2*N as close in 1-norm as possible. Both steps are optional. Balancing may reduce the 1-norms of the matrices S and H. See the SLICOT documentation for details. """ function mb4dpz! end """ Calculate, for a given real polynomial P(x) and a real scalar alpha, the leading K coefficients of the shifted polynomial `K-1` `P(x) = q(1) + q(2) * (x-alpha) + ... + q(K) * (x-alpha) + ...` using Horner's algorithm. See the SLICOT documentation for details. """ function mc01md! end """ Compute the value of the real polynomial P(x) at a given complex point x = x0 using Horner's algorithm. See the SLICOT documentation for details. """ function mc01nd! end """ Compute the coefficients of a complex polynomial P(x) from its zeros. See the SLICOT documentation for details. """ function mc01od! end """ Compute the coefficients of a real polynomial P(x) from its zeros. See the SLICOT documentation for details. """ function mc01pd! end """ Compute the coefficients of a real polynomial P(x) from its zeros. The coefficients are stored in decreasing order of the powers of x. See the SLICOT documentation for details. """ function mc01py! end """ Compute, for two given real polynomials A(x) and B(x), the quotient polynomial Q(x) and the remainder polynomial R(x) of A(x) divided by B(x). The polynomials Q(x) and R(x) satisfy the relationship `A(x) = B(x) * Q(x) + R(x),` where the degree of R(x) is less than the degree of B(x). See the SLICOT documentation for details. """ function mc01qd! end """ Compute the coefficients of the polynomial `P(x) = P1(x) * P2(x) + alpha * P3(x),` where P1(x), P2(x) and P3(x) are given real polynomials and alpha is a real scalar. Each of the polynomials P1(x), P2(x) and P3(x) may be the zero polynomial. See the SLICOT documentation for details. """ function mc01rd! end """ Scale the coefficients of the real polynomial P(x) such that the coefficients of the scaled polynomial Q(x) = sP(tx) have minimal variation, where s and t are real scalars. See the SLICOT documentation for details. """ function mc01sd! end """ Find the mantissa M and the exponent E of a real number A such that `A = M * B**E` `1 <= ABS( M ) < B` if A is non-zero. If A is zero, then M and E are set to 0. See the SLICOT documentation for details. """ function mc01sw! end """ Compute the variation V of the exponents of a series of non-zero floating-point numbers: a(j) = MANT(j) * beta**(E(j)), where beta is the base of the machine representation of floating-point numbers, i.e., V = max(E(j)) - min(E(j)), j = LB,...,UB and MANT(j) non-zero. See the SLICOT documentation for details. """ function mc01sx! end """ Find a real number A from its mantissa M and its exponent E, i.e., `A = M * B**E.` M and E need not be the standard floating-point values. If ABS(A) < B**(EMIN-1), i.e. the smallest positive model number, then the routine returns A = 0. If M = 0, then the routine returns A = 0 regardless of the value of E. See the SLICOT documentation for details. """ function mc01sy! end """ Determine whether or not a given polynomial P(x) with real coefficients is stable, either in the continuous-time or discrete- time case. A polynomial is said to be stable in the continuous-time case if all its zeros lie in the left half-plane, and stable in the discrete-time case if all its zeros lie inside the unit circle. See the SLICOT documentation for details. """ function mc01td! end """ Compute the roots of a quadratic equation with real coefficients. See the SLICOT documentation for details. """ function mc01vd! end """ Compute, for a given real polynomial P(x) and a quadratic polynomial B(x), the quotient polynomial Q(x) and the linear remainder polynomial R(x) such that `P(x) = B(x) * Q(x) + R(x),` `2` where B(x) = u1 + u2 * x + x , R(x) = q(1) + q(2) * (u2 + x) and u1, u2, q(1) and q(2) are real scalars. See the SLICOT documentation for details. """ function mc01wd! end """ Compute the roots of the polynomial `P(t) = ALPHA + BETA*t + GAMMA*t^2 + DELTA*t^3 .` See the SLICOT documentation for details. """ function mc01xd! end """ Compute the coefficients of the real polynomial matrix `P(x) = P1(x) * P2(x) + alpha * P3(x),` where P1(x), P2(x) and P3(x) are given real polynomial matrices and alpha is a real scalar. Each of the polynomial matrices P1(x), P2(x) and P3(x) may be the zero matrix. See the SLICOT documentation for details. """ function mc03md! end """ Compute the coefficients of a minimal polynomial basis `DK` `K(s) = K(0) + K(1) * s + ... + K(DK) * s` for the right nullspace of the MP-by-NP polynomial matrix of degree DP, given by `DP` `P(s) = P(0) + P(1) * s + ... + P(DP) * s ,` which corresponds to solving the polynomial matrix equation P(s) * K(s) = 0. See the SLICOT documentation for details. """ function mc03nd! end """ Given an MP-by-NP polynomial matrix of degree dp `dp-1 dp` P(s) = P(0) + ... + P(dp-1) * s + P(dp) * s (1) the routine composes the related pencil s*E-A where `| I | | O -P(dp) |` `| . | | I . . |` A = | . | and E = | . . . |. (2) `| . | | . O . |` `| I | | I O -P(2) |` `| P(0) | | I -P(1) |` ================================================================== REMARK: This routine is intended to be called only from the SLICOT `routine MC03ND.` ================================================================== See the SLICOT documentation for details. """ function mc03nx! end """ Determine a minimal basis of the right nullspace of the subpencil s*E(eps)-A(eps) using the method given in [1] (see Eqs.(4.6.8), (4.6.9)). This pencil only contains Kronecker column indices, and it must be in staircase form as supplied by SLICOT Library Routine MB04VD. The basis vectors are represented by matrix V(s) having the form `| V11(s) V12(s) V13(s) . . V1n(s) |` `| V22(s) V23(s) V2n(s) |` `| V33(s) . |` `V(s) = | . . |` `| . . |` `| . . |` `| Vnn(s) |` where n is the number of full row rank blocks in matrix A(eps) and `k j-i` `Vij(s) = Vij,0 + Vij,1*s +...+ Vij,k*s +...+ Vij,j-i*s . (1)` In other words, Vij,k is the coefficient corresponding to degree k in the matrix polynomial Vij(s). Vij,k has dimensions mu(i)-by-(mu(j)-nu(j)). The coefficients Vij,k are stored in the matrix VEPS as follows (for the case n = 3): `sizes m1-n1 m2-n2 m2-n2 m3-n3 m3-n3 m3-n3` `m1 { | V11,0 || V12,0 | V12,1 || V13,0 | V13,1 | V13,2 ||` `| || | || | | ||` `VEPS = m2 { | || V22,0 | || V23,0 | V23,1 | ||` `| || | || | | ||` `m3 { | || | || V33,0 | | ||` where mi = mu(i), ni = nu(i). Matrix VEPS has dimensions nrv-by-ncv where `nrv = Sum(i=1,...,n) mu(i)` `ncv = Sum(i=1,...,n) i*(mu(i)-nu(i))` ================================================================== REMARK: This routine is intended to be called only from the SLICOT `routine MC03ND.` ================================================================== See the SLICOT documentation for details. """ function mc03ny! end """ Compute the QR factorization with column pivoting of an m-by-n Jacobian matrix J (m >= n), that is, J*P = Q*R, where Q is a matrix with orthogonal columns, P a permutation matrix, and R an upper trapezoidal matrix with diagonal elements of nonincreasing magnitude, and to apply the transformation Q' on the error vector e (in-situ). The 1-norm of the scaled gradient is also returned. This routine is an interface to SLICOT Library routine MD03BX, for solving standard nonlinear least squares problems using SLICOT routine MD03BD. See the SLICOT documentation for details. """ function md03ba! end """ Determine a value for the parameter PAR such that if x solves the system `A*x = b , sqrt(PAR)*D*x = 0 ,` in the least squares sense, where A is an m-by-n matrix, D is an n-by-n nonsingular diagonal matrix, and b is an m-vector, and if DELTA is a positive number, DXNORM is the Euclidean norm of D*x, then either PAR is zero and `( DXNORM - DELTA ) .LE. 0.1*DELTA ,` or PAR is positive and `ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .` It is assumed that a QR factorization, with column pivoting, of A is available, that is, A*P = Q*R, where P is a permutation matrix, Q has orthogonal columns, and R is an upper triangular matrix with diagonal elements of nonincreasing magnitude. The routine needs the full upper triangle of R, the permutation matrix P, and the first n components of Q'*b (' denotes the transpose). On output, MD03BB also provides an upper triangular matrix S such that `P'*(A'*A + PAR*D*D)*P = S'*S .` Matrix S is used in the solution process. This routine is an interface to SLICOT Library routine MD03BY, for solving standard nonlinear least squares problems using SLICOT routine MD03BD. See the SLICOT documentation for details. """ function md03bb! end """ This is the FCN routine for solving a standard nonlinear least squares problem using SLICOT Library routine MD03BD. See the parameter FCN in the routine MD03BD for the description of parameters. The example programmed in this routine is adapted from that accompanying the MINPACK routine LMDER. ****************************************************************** See the SLICOT documentation for details. """ function md03bf! end """ Compute the QR factorization with column pivoting of an m-by-n matrix J (m >= n), that is, J*P = Q*R, where Q is a matrix with orthogonal columns, P a permutation matrix, and R an upper trapezoidal matrix with diagonal elements of nonincreasing magnitude, and to apply the transformation Q' on the error vector e (in-situ). The 1-norm of the scaled gradient is also returned. The matrix J could be the Jacobian of a nonlinear least squares problem. See the SLICOT documentation for details. """ function md03bx! end """ Determine a value for the parameter PAR such that if x solves the system `A*x = b , sqrt(PAR)*D*x = 0 ,` in the least squares sense, where A is an m-by-n matrix, D is an n-by-n nonsingular diagonal matrix, and b is an m-vector, and if DELTA is a positive number, DXNORM is the Euclidean norm of D*x, then either PAR is zero and `( DXNORM - DELTA ) .LE. 0.1*DELTA ,` or PAR is positive and `ABS( DXNORM - DELTA ) .LE. 0.1*DELTA .` It is assumed that a QR factorization, with column pivoting, of A is available, that is, A*P = Q*R, where P is a permutation matrix, Q has orthogonal columns, and R is an upper triangular matrix with diagonal elements of nonincreasing magnitude. The routine needs the full upper triangle of R, the permutation matrix P, and the first n components of Q'*b (' denotes the transpose). On output, MD03BY also provides an upper triangular matrix S such that `P'*(A'*A + PAR*D*D)*P = S'*S .` Matrix S is used in the solution process. See the SLICOT documentation for details. """ function md03by! end
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
229854
const BlasBool = BlasInt # automatically built wrappers for SLICOT """ $(TYPEDSIGNATURES) returns (yr, yi) """ function ma01ad!(xr::Number, xi::Number) yr = Ref{Float64}() yi = Ref{Float64}() ccall((:ma01ad_, libslicot), Cvoid, (Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}), xr, xi, yr, yi) return yr[], yi[] end """ $(TYPEDSIGNATURES) returns (alpha, beta, scal) """ function ma01bd!(base::Number, lgbas::Number, k::Integer, s::AbstractVector{BlasInt}, a::AbstractVector{Float64}, inca::Integer) alpha = Ref{Float64}() beta = Ref{Float64}() scal = Ref{BlasInt}() ccall((:ma01bd_, libslicot), Cvoid, (Ref{Float64}, Ref{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), base, lgbas, k, s, a, inca, alpha, beta, scal) return alpha[], beta[], scal[] end """ $(TYPEDSIGNATURES) returns (alpha, beta, scal) """ function ma01bz!(base::Number, k::Integer, s::AbstractVector{BlasInt}, a::AbstractVector{ComplexF64}, inca::Integer) alpha = Ref{ComplexF64}() beta = Ref{ComplexF64}() scal = Ref{BlasInt}() ccall((:ma01bz_, libslicot), Cvoid, (Ref{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ptr{ComplexF64}, Ptr{BlasInt}), base, k, s, a, inca, alpha, beta, scal) return alpha[], beta[], scal[] end """ $(TYPEDSIGNATURES) """ function ma01cd!(a::Number, ia::Integer, b::Number, ib::Integer) jlres = ccall((:ma01cd_, libslicot), BlasInt, (Ref{Float64}, Ref{BlasInt}, Ref{Float64}, Ref{BlasInt}), a, ia, b, ib) return jlres end """ $(TYPEDSIGNATURES) """ function ma02ad!(job::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ccall((:ma02ad_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong), job, m, n, a, lda, b, ldb, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02bd!(side::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ccall((:ma02bd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong), side, m, n, a, lda, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02bz!(side::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ccall((:ma02bz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Clong), side, m, n, a, lda, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02cd!(n::Integer, kl::Integer, ku::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ccall((:ma02cd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), n, kl, ku, a, lda) return nothing end """ $(TYPEDSIGNATURES) """ function ma02cz!(n::Integer, kl::Integer, ku::Integer, a::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ccall((:ma02cz_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}), n, kl, ku, a, lda) return nothing end """ $(TYPEDSIGNATURES) """ function ma02dd!(job::AbstractChar, uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, ap::AbstractVector{Float64}) lda = max(1,stride(a,2)) ccall((:ma02dd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong), job, uplo, n, a, lda, ap, 1, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02ed!(uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ccall((:ma02ed_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong), uplo, n, a, lda, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02es!(uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ccall((:ma02es_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong), uplo, n, a, lda, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02ez!(uplo::AbstractChar, trans::AbstractChar, skew::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ccall((:ma02ez_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Clong, Clong, Clong), uplo, trans, skew, n, a, lda, 1, 1, 1) return nothing end """ $(TYPEDSIGNATURES) returns (x1, c, s, info) """ function ma02fd!(ini_x1::Number, x2::Number) x1 = Ref{Float64}(ini_x1) c = Ref{Float64}() s = Ref{Float64}() info = Ref{BlasInt}() ccall((:ma02fd_, libslicot), Cvoid, (Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), x1, x2, c, s, info) chkargsok(info[]) return x1[], c[], s[], info[] end """ $(TYPEDSIGNATURES) """ function ma02gd!(n::Integer, a::AbstractMatrix{Float64}, k1::Integer, k2::Integer, ipiv::AbstractVector{BlasInt}, incx::Integer) lda = max(1,stride(a,2)) ccall((:ma02gd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}), n, a, lda, k1, k2, ipiv, incx) return nothing end """ $(TYPEDSIGNATURES) """ function ma02gz!(n::Integer, a::AbstractMatrix{ComplexF64}, k1::Integer, k2::Integer, ipiv::AbstractVector{BlasInt}, incx::Integer) lda = max(1,stride(a,2)) ccall((:ma02gz_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}), n, a, lda, k1, k2, ipiv, incx) return nothing end """ $(TYPEDSIGNATURES) """ function ma02hd!(job::AbstractChar, m::Integer, n::Integer, diag::Number, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) jlres = ccall((:ma02hd_, libslicot), BlasBool, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Clong), job, m, n, diag, a, lda, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02hz!(job::AbstractChar, m::Integer, n::Integer, diag::Complex, a::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) jlres = ccall((:ma02hz_, libslicot), BlasBool, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{ComplexF64}, Ptr{ComplexF64}, Ref{BlasInt}, Clong), job, m, n, diag, a, lda, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02id!(typ::AbstractChar, norm::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) jlres = ccall((:ma02id_, libslicot), Float64, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong), typ, norm, n, a, lda, qg, ldqg, dwork, 1, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02iz!(typ::AbstractChar, norm::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, qg::AbstractMatrix{ComplexF64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) jlres = ccall((:ma02iz_, libslicot), Float64, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong), typ, norm, n, a, lda, qg, ldqg, dwork, 1, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02jd!(ltran1::Bool, ltran2::Bool, n::Integer, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldres = max(1,n) res = Matrix{Float64}(undef, ldres,n) jlres = ccall((:ma02jd_, libslicot), Float64, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), ltran1, ltran2, n, q1, ldq1, q2, ldq2, res, ldres) return jlres end """ $(TYPEDSIGNATURES) """ function ma02jz!(ltran1::Bool, ltran2::Bool, n::Integer, q1::AbstractMatrix{ComplexF64}, q2::AbstractMatrix{ComplexF64}) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldres = max(1,n) res = Matrix{ComplexF64}(undef, ldres,n) jlres = ccall((:ma02jz_, libslicot), Float64, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}), ltran1, ltran2, n, q1, ldq1, q2, ldq2, res, ldres) return jlres end """ $(TYPEDSIGNATURES) """ function ma02md!(norm::AbstractChar, uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) jlres = ccall((:ma02md_, libslicot), Float64, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong), norm, uplo, n, a, lda, dwork, 1, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02mz!(norm::AbstractChar, uplo::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) jlres = ccall((:ma02mz_, libslicot), Float64, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong), norm, uplo, n, a, lda, dwork, 1, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02nz!(uplo::AbstractChar, trans::AbstractChar, skew::AbstractChar, n::Integer, k::Integer, l::Integer, a::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ccall((:ma02nz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Clong, Clong, Clong), uplo, trans, skew, n, k, l, a, lda, 1, 1, 1) return nothing end """ $(TYPEDSIGNATURES) """ function ma02od!(skew::AbstractChar, m::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) jlres = ccall((:ma02od_, libslicot), BlasInt, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong), skew, m, a, lda, de, ldde, 1) return jlres end """ $(TYPEDSIGNATURES) """ function ma02oz!(skew::AbstractChar, m::Integer, a::AbstractMatrix{ComplexF64}, de::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) jlres = ccall((:ma02oz_, libslicot), BlasInt, (Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Clong), skew, m, a, lda, de, ldde, 1) return jlres end """ $(TYPEDSIGNATURES) returns (nzr, nzc) """ function ma02pd!(m::Integer, n::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) nzr = Ref{BlasInt}() nzc = Ref{BlasInt}() ccall((:ma02pd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), m, n, a, lda, nzr, nzc) return nzr[], nzc[] end """ $(TYPEDSIGNATURES) returns (nzr, nzc) """ function ma02pz!(m::Integer, n::Integer, a::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) nzr = Ref{BlasInt}() nzc = Ref{BlasInt}() ccall((:ma02pz_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), m, n, a, lda, nzr, nzc) return nzr[], nzc[] end """ $(TYPEDSIGNATURES) returns info """ function mb01kd!(uplo::AbstractChar, trans::AbstractChar, n::Integer, k::Integer, alpha::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, beta::Number, c::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) info = Ref{BlasInt}() ccall((:mb01kd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01ld!(uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, ldwork::Integer) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldx = max(1,stride(x,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01ld_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, m, n, alpha, beta, r, ldr, a, lda, x, ldx, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01md!(uplo::AbstractChar, n::Integer, alpha::Number, a::AbstractMatrix{Float64}, x::AbstractVector{Float64}, incx::Integer, beta::Number, y::AbstractVector{Float64}, incy::Integer) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01md_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Clong), uplo, n, alpha, a, lda, x, incx, beta, y, incy, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01nd!(uplo::AbstractChar, n::Integer, alpha::Number, x::AbstractVector{Float64}, incx::Integer, y::AbstractVector{Float64}, incy::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01nd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong), uplo, n, alpha, x, incx, y, incy, a, lda, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01oc!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) ldh = max(1,stride(h,2)) ldx = max(1,stride(x,2)) info = Ref{BlasInt}() ccall((:mb01oc_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, h, ldh, x, ldx, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01od!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, ldwork::Integer) ldr = max(1,stride(r,2)) ldh = max(1,stride(h,2)) ldx = max(1,stride(x,2)) lde = max(1,stride(e,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01od_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, h, ldh, x, ldx, e, lde, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01oe!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) ldh = max(1,stride(h,2)) lde = max(1,stride(e,2)) info = Ref{BlasInt}() ccall((:mb01oe_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, h, ldh, e, lde, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01oh!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) ldh = max(1,stride(h,2)) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01oh_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, h, ldh, a, lda, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01oo!(uplo::AbstractChar, trans::AbstractChar, n::Integer, h::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, p::AbstractMatrix{Float64}) ldh = max(1,stride(h,2)) ldx = max(1,stride(x,2)) lde = max(1,stride(e,2)) ldp = max(1,stride(p,2)) info = Ref{BlasInt}() ccall((:mb01oo_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, h, ldh, x, ldx, e, lde, p, ldp, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01os!(uplo::AbstractChar, trans::AbstractChar, n::Integer, h::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, p::AbstractMatrix{Float64}) ldh = max(1,stride(h,2)) ldx = max(1,stride(x,2)) ldp = max(1,stride(p,2)) info = Ref{BlasInt}() ccall((:mb01os_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, h, ldh, x, ldx, p, ldp, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01ot!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) lde = max(1,stride(e,2)) ldt = max(1,stride(t,2)) info = Ref{BlasInt}() ccall((:mb01ot_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, e, lde, t, ldt, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01pd!(scun::AbstractChar, type::AbstractChar, m::Integer, n::Integer, kl::Integer, ku::Integer, anrm::Number, nbl::Integer, nrows::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01pd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), scun, type, m, n, kl, ku, anrm, nbl, nrows, a, lda, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01qd!(type::AbstractChar, m::Integer, n::Integer, kl::Integer, ku::Integer, cfrom::Number, cto::Number, nbl::Integer, nrows::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01qd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), type, m, n, kl, ku, cfrom, cto, nbl, nrows, a, lda, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01rb!(side::AbstractChar, uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb01rb_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), side, uplo, trans, m, n, alpha, beta, r, ldr, a, lda, b, ldb, info, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01rd!(uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, ldwork::Integer) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldx = max(1,stride(x,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01rd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, m, n, alpha, beta, r, ldr, a, lda, x, ldx, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01rh!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, ldwork::Integer) ldr = max(1,stride(r,2)) ldh = max(1,stride(h,2)) ldx = max(1,stride(x,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01rh_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, h, ldh, x, ldx, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01rt!(uplo::AbstractChar, trans::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, ldwork::Integer) ldr = max(1,stride(r,2)) lde = max(1,stride(e,2)) ldx = max(1,stride(x,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01rt_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, alpha, beta, r, ldr, e, lde, x, ldx, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01ru!(uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, ldwork::Integer) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldx = max(1,stride(x,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01ru_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, m, n, alpha, beta, r, ldr, a, lda, x, ldx, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01rw!(uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldz = max(1,stride(z,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) ccall((:mb01rw_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong), uplo, trans, m, n, a, lda, z, ldz, dwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01rx!(side::AbstractChar, uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb01rx_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), side, uplo, trans, m, n, alpha, beta, r, ldr, a, lda, b, ldb, info, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01ry!(side::AbstractChar, uplo::AbstractChar, trans::AbstractChar, m::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, dwork::AbstractVector{Float64}) ldr = max(1,stride(r,2)) ldh = max(1,stride(h,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb01ry_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong, Clong), side, uplo, trans, m, alpha, beta, r, ldr, h, ldh, b, ldb, dwork, info, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) """ function mb01sd!(jobs::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, r::AbstractVector{Float64}, c::AbstractVector{Float64}) lda = max(1,stride(a,2)) ccall((:mb01sd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Clong), jobs, m, n, a, lda, r, c, 1) return nothing end """ $(TYPEDSIGNATURES) """ function mb01ss!(jobs::AbstractChar, uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, d::AbstractVector{Float64}) lda = max(1,stride(a,2)) ccall((:mb01ss_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong), jobs, uplo, n, a, lda, d, 1, 1) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb01td!(n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n-1) ccall((:mb01td_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), n, a, lda, b, ldb, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01ud!(side::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, h::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) ldh = max(1,stride(h,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb01ud_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), side, trans, m, n, alpha, h, ldh, a, lda, b, ldb, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01uw!(side::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, h::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, ldwork::Integer) ldh = max(1,stride(h,2)) lda = max(1,stride(a,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb01uw_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), side, trans, m, n, alpha, h, ldh, a, lda, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01ux!(side::AbstractChar, uplo::AbstractChar, trans::AbstractChar, m::Integer, n::Integer, alpha::Number, t::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}) ldt = max(1,stride(t,2)) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb01ux_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), side, uplo, trans, m, n, alpha, t, ldt, a, lda, dwork, ldwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns (mc, nc, info) """ function mb01vd!(trana::AbstractChar, tranb::AbstractChar, ma::Integer, na::Integer, mb::Integer, nb::Integer, alpha::Number, beta::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) mc = Ref{BlasInt}() nc = Ref{BlasInt}() info = Ref{BlasInt}() ccall((:mb01vd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Clong, Clong), trana, tranb, ma, na, mb, nb, alpha, beta, a, lda, b, ldb, c, ldc, mc, nc, info, 1, 1) chkargsok(info[]) return mc[], nc[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01wd!(dico::AbstractChar, uplo::AbstractChar, trans::AbstractChar, hess::AbstractChar, n::Integer, alpha::Number, beta::Number, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldt = max(1,stride(t,2)) info = Ref{BlasInt}() ccall((:mb01wd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong), dico, uplo, trans, hess, n, alpha, beta, r, ldr, a, lda, t, ldt, info, 1, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01xd!(uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01xd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), uplo, n, a, lda, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01xy!(uplo::AbstractChar, n::Integer, a::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb01xy_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), uplo, n, a, lda, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01yd!(uplo::AbstractChar, trans::AbstractChar, n::Integer, k::Integer, l::Integer, alpha::Number, beta::Number, a::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldc = max(1,stride(c,2)) info = Ref{BlasInt}() ccall((:mb01yd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), uplo, trans, n, k, l, alpha, beta, a, lda, c, ldc, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb01zd!(side::AbstractChar, uplo::AbstractChar, transt::AbstractChar, diag::AbstractChar, m::Integer, n::Integer, l::Integer, alpha::Number, t::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}) ldt = max(1,stride(t,2)) ldh = max(1,stride(h,2)) info = Ref{BlasInt}() ccall((:mb01zd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong), side, uplo, transt, diag, m, n, l, alpha, t, ldt, h, ldh, info, 1, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02cd!(job::AbstractChar, typet::AbstractChar, k::Integer, n::Integer, t::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, r::AbstractMatrix{Float64}, l::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, lcs::Integer, ldwork::Integer) ldt = max(1,stride(t,2)) ldg = max(1,stride(g,2)) ldr = max(1,stride(r,2)) ldl = max(1,stride(l,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02cd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, typet, k, n, t, ldt, g, ldg, r, ldr, l, ldl, cs, lcs, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (rnk, info) """ function mb02cu!(typeg::AbstractChar, k::Integer, p::Integer, q::Integer, nb::Integer, a1::AbstractMatrix{Float64}, a2::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, ipvt::AbstractVector{BlasInt}, cs::AbstractVector{Float64}, tol::Number, ldwork::Integer) lda1 = max(1,stride(a1,2)) lda2 = max(1,stride(a2,2)) ldb = max(1,stride(b,2)) rnk = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02cu_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), typeg, k, p, q, nb, a1, lda1, a2, lda2, b, ldb, rnk, ipvt, cs, tol, dwork, ldwork, info, 1) chkargsok(info[]) return rnk[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02cv!(typeg::AbstractChar, strucg::AbstractChar, k::Integer, n::Integer, p::Integer, q::Integer, nb::Integer, rnk::Integer, a1::AbstractMatrix{Float64}, a2::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, f1::AbstractMatrix{Float64}, f2::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, ldwork::Integer) lda1 = max(1,stride(a1,2)) lda2 = max(1,stride(a2,2)) ldb = max(1,stride(b,2)) ldf1 = max(1,stride(f1,2)) ldf2 = max(1,stride(f2,2)) ldg = max(1,stride(g,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02cv_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), typeg, strucg, k, n, p, q, nb, rnk, a1, lda1, a2, lda2, b, ldb, f1, ldf1, f2, ldf2, g, ldg, cs, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02cx!(typet::AbstractChar, p::Integer, q::Integer, k::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, lcs::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02cx_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), typet, p, q, k, a, lda, b, ldb, cs, lcs, dwork, ldwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02cy!(typet::AbstractChar, strucg::AbstractChar, p::Integer, q::Integer, n::Integer, k::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, lcs::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldh = max(1,stride(h,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02cy_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), typet, strucg, p, q, n, k, a, lda, b, ldb, h, ldh, cs, lcs, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02dd!(job::AbstractChar, typet::AbstractChar, k::Integer, m::Integer, n::Integer, ta::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, r::AbstractMatrix{Float64}, l::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, ldwork::Integer) ldta = max(1,stride(ta,2)) ldt = max(1,stride(t,2)) ldg = max(1,stride(g,2)) ldr = max(1,stride(r,2)) ldl = max(1,stride(l,2)) lcs = length(cs) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02dd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, typet, k, m, n, ta, ldta, t, ldt, g, ldg, r, ldr, l, ldl, cs, lcs, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02ed!(typet::AbstractChar, k::Integer, n::Integer, nrhs::Integer, t::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, ldwork::Integer) ldt = max(1,stride(t,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02ed_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), typet, k, n, nrhs, t, ldt, b, ldb, dwork, ldwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02fd!(typet::AbstractChar, k::Integer, n::Integer, p::Integer, s::Integer, t::AbstractMatrix{Float64}, r::AbstractMatrix{Float64}, ldwork::Integer) ldt = max(1,stride(t,2)) ldr = max(1,stride(r,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02fd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), typet, k, n, p, s, t, ldt, r, ldr, dwork, ldwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02gd!(typet::AbstractChar, triu::AbstractChar, k::Integer, n::Integer, nl::Integer, p::Integer, s::Integer, t::AbstractMatrix{Float64}, rb::AbstractMatrix{Float64}) ldt = max(1,stride(t,2)) ldrb = max(1,stride(rb,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02gd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), typet, triu, k, n, nl, p, s, t, ldt, rb, ldrb, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02hd!(triu::AbstractChar, k::Integer, l::Integer, m::Integer, ml::Integer, n::Integer, nu::Integer, p::Integer, s::Integer, tc::AbstractMatrix{Float64}, tr::AbstractMatrix{Float64}, rb::AbstractMatrix{Float64}) ldtc = max(1,stride(tc,2)) ldtr = max(1,stride(tr,2)) ldrb = max(1,stride(rb,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02hd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), triu, k, l, m, ml, n, nu, p, s, tc, ldtc, tr, ldtr, rb, ldrb, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02id!(job::AbstractChar, k::Integer, l::Integer, m::Integer, n::Integer, rb::Integer, rc::Integer, tc::AbstractMatrix{Float64}, tr::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}) ldtc = max(1,stride(tc,2)) ldtr = max(1,stride(tr,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02id_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), job, k, l, m, n, rb, rc, tc, ldtc, tr, ldtr, b, ldb, c, ldc, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02jd!(job::AbstractChar, k::Integer, l::Integer, m::Integer, n::Integer, p::Integer, s::Integer, tc::AbstractMatrix{Float64}, tr::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, r::AbstractMatrix{Float64}) ldtc = max(1,stride(tc,2)) ldtr = max(1,stride(tr,2)) ldq = max(1,stride(q,2)) ldr = max(1,stride(r,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02jd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), job, k, l, m, n, p, s, tc, ldtc, tr, ldtr, q, ldq, r, ldr, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns (rnk, info) """ function mb02jx!(job::AbstractChar, k::Integer, l::Integer, m::Integer, n::Integer, tc::AbstractMatrix{Float64}, tr::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, r::AbstractMatrix{Float64}, jpvt::AbstractVector{BlasInt}, tol1::Number, tol2::Number, ldwork::Integer) ldtc = max(1,stride(tc,2)) ldtr = max(1,stride(tr,2)) ldq = max(1,stride(q,2)) ldr = max(1,stride(r,2)) rnk = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02jx_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), job, k, l, m, n, tc, ldtc, tr, ldtr, rnk, q, ldq, r, ldr, jpvt, tol1, tol2, dwork, ldwork, info, 1) chkargsok(info[]) return rnk[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02kd!(ldblk::AbstractChar, trans::AbstractChar, k::Integer, l::Integer, m::Integer, n::Integer, r::Integer, alpha::Number, beta::Number, tc::AbstractMatrix{Float64}, tr::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}) ldtc = max(1,stride(tc,2)) ldtr = max(1,stride(tr,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02kd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), ldblk, trans, k, l, m, n, r, alpha, beta, tc, ldtc, tr, ldtr, b, ldb, c, ldc, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns (rank, info, iwarn) """ function mb02md!(job::AbstractChar, m::Integer, n::Integer, l::Integer, ini_rank::Integer, c::AbstractMatrix{Float64}, s::AbstractVector{Float64}, x::AbstractMatrix{Float64}, tol::Number) ldc = max(1,stride(c,2)) ldx = max(1,stride(x,2)) rank = Ref{BlasInt}(ini_rank) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, l) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02md_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), job, m, n, l, rank, c, ldc, s, x, ldx, tol, iwork, dwork, ldwork, iwarn, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return rank[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (rank, theta, info, iwarn) """ function mb02nd!(m::Integer, n::Integer, l::Integer, ini_rank::Integer, ini_theta::Number, c::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, q::AbstractVector{Float64}, inul::AbstractVector{BlasBool}, tol::Number, reltol::Number) ldc = max(1,stride(c,2)) ldx = max(1,stride(x,2)) rank = Ref{BlasInt}(ini_rank) theta = Ref{Float64}(ini_theta) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n+2*l) bwork = Vector{BlasBool}(undef, n+l) ldwork = BlasInt(-1) # some of this is used even in the workspace query dwork = Vector{Float64}(undef, 64) local jlres for iwq in 1:2 ccall((:mb02nd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasBool}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Ptr{BlasInt}), m, n, l, rank, theta, c, ldc, x, ldx, q, inul, tol, reltol, iwork, dwork, ldwork, bwork, iwarn, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return rank[], theta[], info[], iwarn[] end """ $(TYPEDSIGNATURES) """ function mb02ny!(updatu::Bool, updatv::Bool, m::Integer, n::Integer, i::Integer, k::Integer, q::AbstractVector{Float64}, e::AbstractVector{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) dwork = Vector{Float64}(undef, max(1,ldwork)) ccall((:mb02ny_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}), updatu, updatv, m, n, i, k, q, e, u, ldu, v, ldv, dwork) return nothing end """ $(TYPEDSIGNATURES) returns (rcond, info) """ function mb02od!(side::AbstractChar, uplo::AbstractChar, trans::AbstractChar, diag::AbstractChar, norm::AbstractChar, m::Integer, n::Integer, alpha::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, tol::Number) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) rcond = Ref{Float64}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, k) dwork = Vector{Float64}(undef, 3*k) ccall((:mb02od_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong, Clong, Clong, Clong), side, uplo, trans, diag, norm, m, n, alpha, a, lda, b, ldb, rcond, tol, iwork, dwork, info, 1, 1, 1, 1, 1) chkargsok(info[]) return rcond[], info[] end """ $(TYPEDSIGNATURES) returns (rcond, info) """ function mb02pd!(fact::AbstractChar, trans::AbstractChar, n::Integer, nrhs::Integer, a::AbstractMatrix{Float64}, af::AbstractMatrix{Float64}, ipiv::AbstractVector{BlasInt}, equed::AbstractChar, r::AbstractVector{Float64}, c::AbstractVector{Float64}, b::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, ferr::AbstractVector{Float64}, berr::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldaf = max(1,stride(af,2)) ldb = max(1,stride(b,2)) ldx = max(1,stride(x,2)) rcond = Ref{Float64}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) dwork = Vector{Float64}(undef, 4*n) ccall((:mb02pd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{UInt8}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong, Clong), fact, trans, n, nrhs, a, lda, af, ldaf, ipiv, equed, r, c, b, ldb, x, ldx, rcond, ferr, berr, iwork, dwork, info, 1, 1, 1) chkargsok(info[]) return rcond[], info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb02qd!(job::AbstractChar, iniper::AbstractChar, m::Integer, n::Integer, nrhs::Integer, rcond::Number, svlmax::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, y::AbstractVector{Float64}, jpvt::AbstractVector{BlasInt}, sval::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02qd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, iniper, m, n, nrhs, rcond, svlmax, a, lda, b, ldb, y, jpvt, rank, sval, dwork, ldwork, info, 1, 1) chkargsok(info[]) return rank[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02qy!(m::Integer, n::Integer, nrhs::Integer, rank::Integer, a::AbstractMatrix{Float64}, jpvt::AbstractVector{BlasInt}, b::AbstractMatrix{Float64}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(a,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork ) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02qy_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), m, n, nrhs, rank, a, lda, jpvt, b, ldb, tau, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02rd!(trans::AbstractChar, n::Integer, nrhs::Integer, h::AbstractMatrix{Float64}, ipiv::AbstractVector{BlasInt}, b::AbstractMatrix{Float64}) ldh = max(1,stride(h,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb02rd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), trans, n, nrhs, h, ldh, ipiv, b, ldb, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02rz!(trans::AbstractChar, n::Integer, nrhs::Integer, h::AbstractMatrix{ComplexF64}, ipiv::AbstractVector{BlasInt}, b::AbstractMatrix{ComplexF64}) ldh = max(1,stride(h,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb02rz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), trans, n, nrhs, h, ldh, ipiv, b, ldb, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02sd!(n::Integer, h::AbstractMatrix{Float64}, ipiv::AbstractVector{BlasInt}) ldh = max(1,stride(h,2)) info = Ref{BlasInt}() ccall((:mb02sd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), n, h, ldh, ipiv, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02sz!(n::Integer, h::AbstractMatrix{ComplexF64}, ipiv::AbstractVector{BlasInt}) ldh = max(1,stride(h,2)) info = Ref{BlasInt}() ccall((:mb02sz_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), n, h, ldh, ipiv, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (rcond, info) """ function mb02td!(norm::AbstractChar, n::Integer, hnorm::Number, h::AbstractMatrix{Float64}, ipiv::AbstractVector{BlasInt}) ldh = max(1,stride(h,2)) rcond = Ref{Float64}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) dwork = Vector{Float64}(undef, 3*n) ccall((:mb02td_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong), norm, n, hnorm, h, ldh, ipiv, rcond, iwork, dwork, info, 1) chkargsok(info[]) return rcond[], info[] end """ $(TYPEDSIGNATURES) returns (rcond, info) """ function mb02tz!(norm::AbstractChar, n::Integer, hnorm::Number, h::AbstractMatrix{ComplexF64}, ipiv::AbstractVector{BlasInt}) ldh = max(1,stride(h,2)) rcond = Ref{Float64}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) zwork = Vector{ComplexF64}(undef, 2*n) ccall((:mb02tz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{BlasInt}, Clong), norm, n, hnorm, h, ldh, ipiv, rcond, dwork, zwork, info, 1) chkargsok(info[]) return rcond[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02ud!(fact::AbstractChar, side::AbstractChar, trans::AbstractChar, jobp::AbstractChar, m::Integer, n::Integer, alpha::Number, rcond::Number, rank::Integer, r::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, sv::AbstractVector{Float64}, b::AbstractMatrix{Float64}, rp::AbstractMatrix{Float64}) ldr = max(1,stride(r,2)) ldq = max(1,stride(q,2)) ldb = max(1,stride(b,2)) ldrp = max(1,stride(rp,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb02ud_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong), fact, side, trans, jobp, m, n, alpha, rcond, rank, r, ldr, q, ldq, sv, b, ldb, rp, ldrp, dwork, ldwork, info, 1, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns scale """ function mb02uu!(n::Integer, a::AbstractMatrix{Float64}, rhs::AbstractVector{Float64}, ipiv::AbstractVector{BlasInt}, jpiv::AbstractVector{BlasInt}) lda = max(1,stride(a,2)) scale = Ref{Float64}() ccall((:mb02uu_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}), n, a, lda, rhs, ipiv, jpiv, scale) return scale[] end """ $(TYPEDSIGNATURES) returns info """ function mb02uv!(n::Integer, a::AbstractMatrix{Float64}, ipiv::AbstractVector{BlasInt}, jpiv::AbstractVector{BlasInt}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb02uv_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), n, a, lda, ipiv, jpiv, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (scale, iwarn) """ function mb02uw!(ltrans::Bool, n::Integer, m::Integer, par::AbstractVector{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) scale = Ref{Float64}() iwarn = Ref{BlasInt}() ccall((:mb02uw_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), ltrans, n, m, par, a, lda, b, ldb, scale, iwarn) return scale[], iwarn[] end """ $(TYPEDSIGNATURES) returns info """ function mb02vd!(trans::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, ipiv::AbstractVector{BlasInt}, b::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ccall((:mb02vd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), trans, m, n, a, lda, ipiv, b, ldb, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb02yd!(cond::AbstractChar, n::Integer, r::AbstractMatrix{Float64}, ipvt::AbstractVector{BlasInt}, diag::AbstractVector{Float64}, qtb::AbstractVector{Float64}, rank::Integer, x::AbstractVector{Float64}, tol::Number, ldwork::Integer) ldr = max(1,stride(r,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb02yd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), cond, n, r, ldr, ipvt, diag, qtb, rank, x, tol, dwork, ldwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03ab!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}, w1::Number, w2::Number) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() ccall((:mb03ab_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, w1, w2, c1, s1, c2, s2, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03ad!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() ccall((:mb03ad_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, c1, s1, c2, s2, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03ae!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() ccall((:mb03ae_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, c1, s1, c2, s2, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03af!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() ccall((:mb03af_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, c1, s1, c2, s2, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03ag!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() iwork = Vector{BlasInt}(undef, 2*n) dwork = Vector{Float64}(undef, 2*n*n) ccall((:mb03ag_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, c1, s1, c2, s2, iwork, dwork, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03ah!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() ccall((:mb03ah_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, c1, s1, c2, s2, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns (c1, s1, c2, s2) """ function mb03ai!(shft::AbstractChar, k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) c1 = Ref{Float64}() s1 = Ref{Float64}() c2 = Ref{Float64}() s2 = Ref{Float64}() dwork = Vector{Float64}(undef, n*(n+2)) ccall((:mb03ai_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), shft, k, n, amap, s, sinv, a, lda1, lda2, c1, s1, c2, s2, dwork, 1) return c1[], s1[], c2[], s2[] end """ $(TYPEDSIGNATURES) returns smult """ function mb03ba!(k::Integer, h::Integer, s::AbstractVector{BlasInt}, amap::AbstractVector{BlasInt}, qmap::AbstractVector{BlasInt}) smult = Ref{BlasInt}() ccall((:mb03ba_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), k, h, s, smult, amap, qmap) return smult[] end """ $(TYPEDSIGNATURES) returns info """ function mb03bb!(base::Number, lgbas::Number, ulp::Number, k::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, scal::AbstractVector{BlasInt}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 8*k) ccall((:mb03bb_, libslicot), Cvoid, (Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), base, lgbas, ulp, k, amap, s, sinv, a, lda1, lda2, alphar, alphai, beta, scal, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) """ function mb03bc!(k::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}, macpar::AbstractVector{Float64}, cv::AbstractVector{Float64}, sv::AbstractVector{Float64}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) dwork = Vector{Float64}(undef, 3*(k-1)) ccall((:mb03bc_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}), k, amap, s, sinv, a, lda1, lda2, macpar, cv, sv, dwork) return nothing end """ $(TYPEDSIGNATURES) returns (info, iwarn) """ function mb03bd!(job::AbstractChar, defl::AbstractChar, compq::AbstractChar, qind::AbstractVector{BlasInt}, k::Integer, n::Integer, h::Integer, ilo::Integer, ihi::Integer, s::AbstractVector{BlasInt}, a::Array{Float64,3}, q::Array{Float64,3}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, scal::AbstractVector{BlasInt}, liwork::Integer, ldwork::Integer) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) ldq1 = max(1,stride(q,2)) ldq2 = max(1,stride(q,3)÷ldq1) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) dwork = Vector{Float64}(undef, ldwork) ccall((:mb03bd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ptr{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), job, defl, compq, qind, k, n, h, ilo, ihi, s, a, lda1, lda2, q, ldq1, ldq2, alphar, alphai, beta, scal, iwork, liwork, dwork, ldwork, iwarn, info, 1, 1, 1) chkargsok(info[]) return info[], iwarn[] end """ $(TYPEDSIGNATURES) """ function mb03be!(k::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) ccall((:mb03be_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}), k, amap, s, sinv, a, lda1, lda2) return nothing end """ $(TYPEDSIGNATURES) """ function mb03bf!(k::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}, ulp::Number) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) ccall((:mb03bf_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}), k, amap, s, sinv, a, lda1, lda2, ulp) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb03bg!(k::Integer, n::Integer, amap::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, sinv::Integer, a::Array{Float64,3}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) info = Ref{BlasInt}() ccall((:mb03bg_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}), k, n, amap, s, sinv, a, lda1, lda2, wr, wi) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03bz!(job::AbstractChar, compq::AbstractChar, k::Integer, n::Integer, ilo::Integer, ihi::Integer, s::AbstractVector{BlasInt}, a::Array{ComplexF64,3}, q::Array{ComplexF64,3}, alpha::AbstractVector{ComplexF64}, beta::AbstractVector{ComplexF64}, scal::AbstractVector{BlasInt}, ldwork::Integer, lzwork::Integer) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) ldq1 = max(1,stride(q,2)) ldq2 = max(1,stride(q,3)÷ldq1) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) zwork = Vector{ComplexF64}(undef, lzwork) ccall((:mb03bz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ptr{ComplexF64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, compq, k, n, ilo, ihi, s, a, lda1, lda2, q, ldq1, ldq2, alpha, beta, scal, dwork, ldwork, zwork, lzwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (n1, n2, info) """ function mb03cd!(uplo::AbstractChar, ini_n1::Integer, ini_n2::Integer, prec::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, q3::AbstractMatrix{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldd = max(1,stride(d,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldq3 = max(1,stride(q3,2)) n1 = Ref{BlasInt}(ini_n1) n2 = Ref{BlasInt}(ini_n2) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03cd_, libslicot), Cvoid, (Ref{UInt8}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), uplo, n1, n2, prec, a, lda, b, ldb, d, ldd, q1, ldq1, q2, ldq2, q3, ldq3, dwork, ldwork, info, 1) chkargsok(info[]) return n1[], n2[], info[] end """ $(TYPEDSIGNATURES) returns (co1, si1, co2, si2, co3, si3) """ function mb03cz!(a::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, d::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldd = max(1,stride(d,2)) co1 = Ref{Float64}() si1 = Ref{ComplexF64}() co2 = Ref{Float64}() si2 = Ref{ComplexF64}() co3 = Ref{Float64}() si3 = Ref{ComplexF64}() ccall((:mb03cz_, libslicot), Cvoid, (Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}), a, lda, b, ldb, d, ldd, co1, si1, co2, si2, co3, si3) return co1[], si1[], co2[], si2[], co3[], si3[] end """ $(TYPEDSIGNATURES) returns (n1, n2, info) """ function mb03dd!(uplo::AbstractChar, ini_n1::Integer, ini_n2::Integer, prec::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) n1 = Ref{BlasInt}(ini_n1) n2 = Ref{BlasInt}(ini_n2) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03dd_, libslicot), Cvoid, (Ref{UInt8}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), uplo, n1, n2, prec, a, lda, b, ldb, q1, ldq1, q2, ldq2, dwork, ldwork, info, 1) chkargsok(info[]) return n1[], n2[], info[] end """ $(TYPEDSIGNATURES) returns (co1, si1, co2, si2) """ function mb03dz!(a::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) co1 = Ref{Float64}() si1 = Ref{ComplexF64}() co2 = Ref{Float64}() si2 = Ref{ComplexF64}() ccall((:mb03dz_, libslicot), Cvoid, (Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}), a, lda, b, ldb, co1, si1, co2, si2) return co1[], si1[], co2[], si2[] end """ $(TYPEDSIGNATURES) returns info """ function mb03ed!(n::Integer, prec::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, q3::AbstractMatrix{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldd = max(1,stride(d,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldq3 = max(1,stride(q3,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03ed_, libslicot), Cvoid, (Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, prec, a, lda, b, ldb, d, ldd, q1, ldq1, q2, ldq2, q3, ldq3, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03fd!(n::Integer, prec::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03fd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, prec, a, lda, b, ldb, q1, ldq1, q2, ldq2, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03fz!(compq::AbstractChar, compu::AbstractChar, orth::AbstractChar, n::Integer, z::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, fg::AbstractMatrix{ComplexF64}, d::AbstractMatrix{ComplexF64}, c::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, u::AbstractMatrix{ComplexF64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer, bwork::AbstractVector{BlasBool}) ldz = max(1,stride(z,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldd = max(1,stride(d,2)) ldc = max(1,stride(c,2)) ldq = max(1,stride(q,2)) ldu = max(1,stride(u,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03fz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong, Clong), compq, compu, orth, n, z, ldz, b, ldb, fg, ldfg, neig, d, ldd, c, ldc, q, ldq, u, ldu, alphar, alphai, beta, iwork, liwork, dwork, ldwork, zwork, lzwork, bwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return neig[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03gd!(n::Integer, b::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, macpar::AbstractVector{Float64}, q::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}, ldwork::Integer) ldb = max(1,stride(b,2)) ldd = max(1,stride(d,2)) ldq = max(1,stride(q,2)) ldu = max(1,stride(u,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03gd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, b, ldb, d, ldd, macpar, q, ldq, u, ldu, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (co1, si1, co2, si2) """ function mb03gz!(z11::Complex, z12::Complex, z22::Complex, h11::Complex, h12::Complex) co1 = Ref{Float64}() si1 = Ref{ComplexF64}() co2 = Ref{Float64}() si2 = Ref{ComplexF64}() ccall((:mb03gz_, libslicot), Cvoid, (Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}), z11, z12, z22, h11, h12, co1, si1, co2, si2) return co1[], si1[], co2[], si2[] end """ $(TYPEDSIGNATURES) returns info """ function mb03hd!(n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, macpar::AbstractVector{Float64}, q::AbstractMatrix{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() ccall((:mb03hd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), n, a, lda, b, ldb, macpar, q, ldq, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (co, si) """ function mb03hz!(s11::Complex, s12::Complex, h11::Complex, h12::Complex) co = Ref{Float64}() si = Ref{ComplexF64}() ccall((:mb03hz_, libslicot), Cvoid, (Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ref{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}), s11, s12, h11, h12, co, si) return co[], si[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03id!(compq::AbstractChar, compu::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, f::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, liwork::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldc = max(1,stride(c,2)) ldd = max(1,stride(d,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldq = max(1,stride(q,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) dwork = Vector{Float64}(undef, ldwork) ccall((:mb03id_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), compq, compu, n, a, lda, c, ldc, d, ldd, b, ldb, f, ldf, q, ldq, u1, ldu1, u2, ldu2, neig, iwork, liwork, dwork, ldwork, info, 1, 1) chkargsok(info[]) return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03iz!(compq::AbstractChar, compu::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, c::AbstractMatrix{ComplexF64}, d::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, f::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, u1::AbstractMatrix{ComplexF64}, u2::AbstractMatrix{ComplexF64}, tol::Number) lda = max(1,stride(a,2)) ldc = max(1,stride(c,2)) ldd = max(1,stride(d,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldq = max(1,stride(q,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() ccall((:mb03iz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Clong, Clong), compq, compu, n, a, lda, c, ldc, d, ldd, b, ldb, f, ldf, q, ldq, u1, ldu1, u2, ldu2, neig, tol, info, 1, 1) chkargsok(info[]) return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03jd!(compq::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, f::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, liwork::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldd = max(1,stride(d,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) dwork = Vector{Float64}(undef, ldwork) ccall((:mb03jd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), compq, n, a, lda, d, ldd, b, ldb, f, ldf, q, ldq, neig, iwork, liwork, dwork, ldwork, info, 1) chkargsok(info[]) return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03jp!(compq::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, f::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, liwork::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldd = max(1,stride(d,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) dwork = Vector{Float64}(undef, ldwork) ccall((:mb03jp_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), compq, n, a, lda, d, ldd, b, ldb, f, ldf, q, ldq, neig, iwork, liwork, dwork, ldwork, info, 1) chkargsok(info[]) return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03jz!(compq::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, d::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, f::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, tol::Number) lda = max(1,stride(a,2)) ldd = max(1,stride(d,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() ccall((:mb03jz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Clong), compq, n, a, lda, d, ldd, b, ldb, f, ldf, q, ldq, neig, tol, info, 1) chkargsok(info[]) return neig[], info[] end """ $(TYPEDSIGNATURES) returns (ifst, ilst, info) """ function mb03ka!(compq::AbstractChar, whichq::AbstractVector{BlasInt}, ws::Bool, k::Integer, nc::Integer, kschur::Integer, ini_ifst::Integer, ini_ilst::Integer, n::AbstractVector{BlasInt}, ni::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, t::AbstractVector{Float64}, ldt::AbstractVector{BlasInt}, ixt::AbstractVector{BlasInt}, q::AbstractVector{Float64}, ldq::AbstractVector{BlasInt}, ixq::AbstractVector{BlasInt}, tol::AbstractVector{Float64}) # NOTE: intentionally strange signature: `t,q` are vector holding 3d array ifst = Ref{BlasInt}(ini_ifst) ilst = Ref{BlasInt}(ini_ilst) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, 4*k) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03ka_, libslicot), Cvoid, (Ref{UInt8}, Ptr{BlasInt}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), compq, whichq, ws, k, nc, kschur, ifst, ilst, n, ni, s, t, ldt, ixt, q, ldq, ixq, tol, iwork, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return ifst[], ilst[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03kb!(compq::AbstractChar, whichq::AbstractVector{BlasInt}, ws::Bool, k::Integer, nc::Integer, kschur::Integer, j1::Integer, n1::Integer, n2::Integer, n::AbstractVector{BlasInt}, ni::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, t::AbstractVector{Float64}, ldt::AbstractVector{BlasInt}, ixt::AbstractVector{BlasInt}, q::AbstractVector{Float64}, ldq::AbstractVector{BlasInt}, ixq::AbstractVector{BlasInt}, tol::AbstractVector{Float64}) # NOTE: intentionally strange signature: `t,q` are vector holding 3d array info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, 4*k) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03kb_, libslicot), Cvoid, (Ref{UInt8}, Ptr{BlasInt}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), compq, whichq, ws, k, nc, kschur, j1, n1, n2, n, ni, s, t, ldt, ixt, q, ldq, ixq, tol, iwork, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) """ function mb03kc!(k::Integer, khess::Integer, n::Integer, r::Integer, s::AbstractVector{BlasInt}, a::AbstractVector{Float64}, lda::Integer, v::AbstractVector{Float64}, tau::AbstractVector{Float64}) # NOTE: intentionally strange signature: `a` is vector holding 3d array ccall((:mb03kc_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}), k, khess, n, r, s, a, lda, v, tau) return nothing end """ $(TYPEDSIGNATURES) returns (m, info) """ function mb03kd!(compq::AbstractChar, whichq::AbstractVector{BlasInt}, strong::AbstractChar, k::Integer, nc::Integer, kschur::Integer, n::AbstractVector{BlasInt}, ni::AbstractVector{BlasInt}, s::AbstractVector{BlasInt}, select::AbstractVector{BlasBool}, t::AbstractVector{Float64}, ldt::AbstractVector{BlasInt}, ixt::AbstractVector{BlasInt}, q::AbstractVector{Float64}, ldq::AbstractVector{BlasInt}, ixq::AbstractVector{BlasInt}, tol::Number) # NOTE: intentionally strange signature: `t,q` are vector holding 3d array m = Ref{BlasInt}() info = Ref{BlasInt}(0) iwork = Vector{BlasInt}(undef, 4*k) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03kd_, libslicot), Cvoid, (Ref{UInt8}, Ptr{BlasInt}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasBool}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), compq, whichq, strong, k, nc, kschur, n, ni, s, select, t, ldt, ixt, q, ldq, ixq, m, tol, iwork, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return m[], info[] end """ $(TYPEDSIGNATURES) returns (scale, info) """ function mb03ke!(trana::Bool, tranb::Bool, isgn::Integer, k::Integer, m::Integer, n::Integer, prec::Number, smin::Number, s::AbstractVector{BlasInt}, a::AbstractVector{Float64}, b::AbstractVector{Float64}, c::AbstractVector{Float64}) scale = Ref{Float64}() info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03ke_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), trana, tranb, isgn, k, m, n, prec, smin, s, a, b, c, scale, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return scale[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03ld!(compq::AbstractChar, orth::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, fg::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) bwork = Vector{BlasBool}(undef, n÷2) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03ld_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), compq, orth, n, a, lda, de, ldde, b, ldb, fg, ldfg, neig, q, ldq, alphar, alphai, beta, iwork, liwork, dwork, ldwork, bwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info, iwarn) """ function mb03lf!(compq::AbstractChar, compu::AbstractChar, orth::AbstractChar, n::Integer, z::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, fg::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer) ldz = max(1,stride(z,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) ldu = max(1,stride(u,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) bwork = Vector{BlasBool}(undef, n÷2) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03lf_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), compq, compu, orth, n, z, ldz, b, ldb, fg, ldfg, neig, q, ldq, u, ldu, alphar, alphai, beta, iwork, liwork, dwork, ldwork, bwork, iwarn, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return neig[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03lp!(compq::AbstractChar, orth::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, fg::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) bwork = Vector{BlasBool}(undef, n÷2) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03lp_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), compq, orth, n, a, lda, de, ldde, b, ldb, fg, ldfg, neig, q, ldq, alphar, alphai, beta, iwork, liwork, dwork, ldwork, bwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb03lz!(compq::AbstractChar, orth::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, de::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, fg::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, bwork::AbstractVector{BlasBool}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n+1) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03lz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), compq, orth, n, a, lda, de, ldde, b, ldb, fg, ldfg, neig, q, ldq, alphar, alphai, beta, iwork, dwork, ldwork, zwork, lzwork, bwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return neig[], info[] end """ $(TYPEDSIGNATURES) returns (l, theta, info, iwarn) """ function mb03md!(n::Integer, ini_l::Integer, ini_theta::Number, q::AbstractVector{Float64}, e::AbstractVector{Float64}, q2::AbstractVector{Float64}, e2::AbstractVector{Float64}, pivmin::Number, tol::Number, reltol::Number) l = Ref{BlasInt}(ini_l) theta = Ref{Float64}(ini_theta) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ccall((:mb03md_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{BlasInt}), n, l, theta, q, e, q2, e2, pivmin, tol, reltol, iwarn, info) chkargsok(info[]) return l[], theta[], info[], iwarn[] end """ $(TYPEDSIGNATURES) """ function mb03my!(nx::Integer, x::AbstractVector{Float64}, incx::Integer) jlres = ccall((:mb03my_, libslicot), Float64, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), nx, x, incx) return jlres end """ $(TYPEDSIGNATURES) returns (result, info) """ function mb03nd!(n::Integer, theta::Number, q2::AbstractVector{Float64}, e2::AbstractVector{Float64}, pivmin::Number) info = Ref{BlasInt}() jlres = ccall((:mb03nd_, libslicot), BlasInt, (Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ptr{BlasInt}), n, theta, q2, e2, pivmin, info) chkargsok(info[]) return jlres, info[] end """ $(TYPEDSIGNATURES) returns (result, info) """ function mb03ny!(n::Integer, omega::Number, a::AbstractMatrix{Float64}, s::AbstractVector{Float64}, ldwork::Integer, lcwork::Integer) lda = max(1,stride(a,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) cwork = Vector{ComplexF64}(undef, lcwork) jlres = ccall((:mb03ny_, libslicot), Float64, (Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}), n, omega, a, lda, s, dwork, ldwork, cwork, lcwork, info) chkargsok(info[]) return jlres, info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb03od!(jobqr::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, jpvt::AbstractVector{BlasInt}, rcond::Number, svlmax::Number, tau::AbstractVector{Float64}, sval::AbstractVector{Float64}) lda = max(1,stride(a,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03od_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), jobqr, m, n, a, lda, jpvt, rcond, svlmax, tau, rank, sval, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return rank[], info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb03oy!(m::Integer, n::Integer, a::AbstractMatrix{Float64}, rcond::Number, svlmax::Number, sval::AbstractVector{Float64}, jpvt::AbstractVector{BlasInt}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 3*n-1 ) ccall((:mb03oy_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), m, n, a, lda, rcond, svlmax, rank, sval, jpvt, tau, dwork, info) chkargsok(info[]) return rank[], info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb03pd!(jobrq::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, jpvt::AbstractVector{BlasInt}, rcond::Number, svlmax::Number, tau::AbstractVector{Float64}, sval::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork ) ccall((:mb03pd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Clong), jobrq, m, n, a, lda, jpvt, rcond, svlmax, tau, rank, sval, dwork, info, 1) chkargsok(info[]) return rank[], info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb03py!(m::Integer, n::Integer, a::AbstractMatrix{Float64}, rcond::Number, svlmax::Number, sval::AbstractVector{Float64}, jpvt::AbstractVector{BlasInt}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 3*m-1 ) ccall((:mb03py_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), m, n, a, lda, rcond, svlmax, rank, sval, jpvt, tau, dwork, info) chkargsok(info[]) return rank[], info[] end """ $(TYPEDSIGNATURES) returns (ndim, info) """ function mb03qd!(dico::AbstractChar, stdom::AbstractChar, jobu::AbstractChar, n::Integer, nlow::Integer, nsup::Integer, alpha::Number, a::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldu = max(1,stride(u,2)) ndim = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) ccall((:mb03qd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong, Clong), dico, stdom, jobu, n, nlow, nsup, alpha, a, lda, u, ldu, ndim, dwork, info, 1, 1, 1) chkargsok(info[]) return ndim[], info[] end """ $(TYPEDSIGNATURES) returns (ndim, info) """ function mb03qg!(dico::AbstractChar, stdom::AbstractChar, jobu::AbstractChar, jobv::AbstractChar, n::Integer, nlow::Integer, nsup::Integer, alpha::Number, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) ndim = Ref{BlasInt}() info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03qg_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong), dico, stdom, jobu, jobv, n, nlow, nsup, alpha, a, lda, e, lde, u, ldu, v, ldv, ndim, dwork, ldwork, info, 1, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return ndim[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03qv!(n::Integer, s::AbstractMatrix{Float64}, lds::Integer, t::AbstractMatrix{Float64}, ldt::Integer, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}) lds = max(1,stride(s,2)) ldt = max(1,stride(t,2)) info = Ref{BlasInt}() ccall((:mb03qv_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), n, s, lds, t, ldt, alphar, alphai, beta, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03qw!(n::Integer, l::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) info = Ref{BlasInt}() ccall((:mb03qw_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), n, l, a, lda, e, lde, u, ldu, v, ldv, alphar, alphai, beta, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03qx!(n::Integer, t::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}) ldt = max(1,stride(t,2)) info = Ref{BlasInt}() ccall((:mb03qx_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), n, t, ldt, wr, wi, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03qy!(n::Integer, l::Integer, a::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}, e1::Number, e2::Number) lda = max(1,stride(a,2)) ldu = max(1,stride(u,2)) info = Ref{BlasInt}() ccall((:mb03qy_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}), n, l, a, lda, u, ldu, e1, e2, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (nblcks, info) """ function mb03rd!(jobx::AbstractChar, sort::AbstractChar, n::Integer, pmax::Number, a::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, blsize::AbstractVector{BlasInt}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, tol::Number) lda = max(1,stride(a,2)) ldx = max(1,stride(x,2)) nblcks = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) ccall((:mb03rd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong), jobx, sort, n, pmax, a, lda, x, ldx, nblcks, blsize, wr, wi, tol, dwork, info, 1, 1) chkargsok(info[]) return nblcks[], info[] end """ $(TYPEDSIGNATURES) returns ku """ function mb03rx!(jobv::AbstractChar, n::Integer, kl::Integer, ini_ku::Integer, a::AbstractMatrix{Float64}, x::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldx = max(1,stride(x,2)) ku = Ref{BlasInt}(ini_ku) dwork = Vector{Float64}(undef, n) ccall((:mb03rx_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Clong), jobv, n, kl, ku, a, lda, x, ldx, wr, wi, dwork, 1) return ku[] end """ $(TYPEDSIGNATURES) returns info """ function mb03ry!(m::Integer, n::Integer, pmax::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) info = Ref{BlasInt}() ccall((:mb03ry_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), m, n, pmax, a, lda, b, ldb, c, ldc, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03sd!(jobscl::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03sd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), jobscl, n, a, lda, qg, ldqg, wr, wi, dwork, ldwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (m, info) """ function mb03td!(typ::AbstractChar, compu::AbstractChar, select::AbstractVector{BlasBool}, lower::AbstractVector{BlasBool}, n::Integer, a::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldg = max(1,stride(g,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) m = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03td_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ptr{BlasBool}, Ptr{BlasBool}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), typ, compu, select, lower, n, a, lda, g, ldg, u1, ldu1, u2, ldu2, wr, wi, m, dwork, ldwork, info, 1, 1) chkargsok(info[]) return m[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03ts!(isham::Bool, wantu::Bool, n::Integer, a::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, j1::Integer, n1::Integer, n2::Integer) lda = max(1,stride(a,2)) ldg = max(1,stride(g,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) ccall((:mb03ts_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), isham, wantu, n, a, lda, g, ldg, u1, ldu1, u2, ldu2, j1, n1, n2, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03ud!(jobq::AbstractChar, jobp::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, sv::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03ud_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), jobq, jobp, n, a, lda, q, ldq, sv, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03vd!(n::Integer, p::Integer, ilo::Integer, ihi::Integer, a::Array{Float64,3}, tau::AbstractMatrix{Float64}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) ldtau = max(1,stride(tau,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) ccall((:mb03vd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), n, p, ilo, ihi, a, lda1, lda2, tau, ldtau, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03vy!(n::Integer, p::Integer, ilo::Integer, ihi::Integer, a::Array{Float64,3}, tau::AbstractMatrix{Float64}) lda1 = max(1,stride(a,2)) lda2 = max(1,stride(a,3)÷lda1) ldtau = max(1,stride(tau,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03vy_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, p, ilo, ihi, a, lda1, lda2, tau, ldtau, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03wa!(wantq::Bool, wantz::Bool, n1::Integer, n2::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) info = Ref{BlasInt}() ccall((:mb03wa_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), wantq, wantz, n1, n2, a, lda, b, ldb, q, ldq, z, ldz, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03wd!(job::AbstractChar, compz::AbstractChar, n::Integer, p::Integer, ilo::Integer, ihi::Integer, iloz::Integer, ihiz::Integer, h::Array{Float64,3}, z::Array{Float64,3}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, ldwork::Integer) ldh1 = max(1,stride(h,2)) ldh2 = max(1,stride(h,3)÷ldh1) ldz1 = max(1,stride(z,2)) ldz2 = max(1,stride(z,3)÷ldz1) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03wd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, compz, n, p, ilo, ihi, iloz, ihiz, h, ldh1, ldh2, z, ldz1, ldz2, wr, wi, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03wx!(n::Integer, p::Integer, t::Array{Float64,3}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}) ldt1 = max(1,stride(t,2)) ldt2 = max(1,stride(t,3)÷ldt1) info = Ref{BlasInt}() ccall((:mb03wx_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), n, p, t, ldt1, ldt2, wr, wi, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (ilo, info) """ function mb03xd!(balanc::AbstractChar, job::AbstractChar, jobu::AbstractChar, jobv::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, v1::AbstractMatrix{Float64}, v2::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, scale::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ldt = max(1,stride(t,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) ldv1 = max(1,stride(v1,2)) ldv2 = max(1,stride(v2,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03xd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong), balanc, job, jobu, jobv, n, a, lda, qg, ldqg, t, ldt, u1, ldu1, u2, ldu2, v1, ldv1, v2, ldv2, wr, wi, ilo, scale, dwork, ldwork, info, 1, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return ilo[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03xp!(job::AbstractChar, compq::AbstractChar, compz::AbstractChar, n::Integer, ilo::Integer, ihi::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03xp_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), job, compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, alphar, alphai, beta, dwork, ldwork, info, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03xs!(jobu::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03xs_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), jobu, n, a, lda, qg, ldqg, u1, ldu1, u2, ldu2, wr, wi, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) """ function mb03xu!(ltra::Bool, ltrb::Bool, n::Integer, k::Integer, nb::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, xa::AbstractMatrix{Float64}, xb::AbstractMatrix{Float64}, xg::AbstractMatrix{Float64}, xq::AbstractMatrix{Float64}, ya::AbstractMatrix{Float64}, yb::AbstractMatrix{Float64}, yg::AbstractMatrix{Float64}, yq::AbstractMatrix{Float64}, csl::AbstractVector{Float64}, csr::AbstractVector{Float64}, taul::AbstractVector{Float64}, taur::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldg = max(1,stride(g,2)) ldq = max(1,stride(q,2)) ldxa = max(1,stride(xa,2)) ldxb = max(1,stride(xb,2)) ldxg = max(1,stride(xg,2)) ldxq = max(1,stride(xq,2)) ldya = max(1,stride(ya,2)) ldyb = max(1,stride(yb,2)) ldyg = max(1,stride(yg,2)) ldyq = max(1,stride(yq,2)) dwork = Vector{Float64}(undef, 5*nb) ccall((:mb03xu_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}), ltra, ltrb, n, k, nb, a, lda, b, ldb, g, ldg, q, ldq, xa, ldxa, xb, ldxb, xg, ldxg, xq, ldxq, ya, ldya, yb, ldyb, yg, ldyg, yq, ldyq, csl, csr, taul, taur, dwork) return nothing end """ $(TYPEDSIGNATURES) returns (ilo, info) """ function mb03xz!(balanc::AbstractChar, job::AbstractChar, jobu::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, qg::AbstractMatrix{ComplexF64}, u1::AbstractMatrix{ComplexF64}, u2::AbstractMatrix{ComplexF64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, scale::AbstractVector{Float64}, bwork::AbstractVector{BlasBool}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03xz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong, Clong), balanc, job, jobu, n, a, lda, qg, ldqg, u1, ldu1, u2, ldu2, wr, wi, ilo, scale, dwork, ldwork, zwork, lzwork, bwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return ilo[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03ya!(wantt::Bool, wantq::Bool, wantz::Bool, n::Integer, ilo::Integer, ihi::Integer, iloq::Integer, ihiq::Integer, pos::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) info = Ref{BlasInt}() ccall((:mb03ya_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), wantt, wantq, wantz, n, ilo, ihi, iloq, ihiq, pos, a, lda, b, ldb, q, ldq, z, ldz, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb03yd!(wantt::Bool, wantq::Bool, wantz::Bool, n::Integer, ilo::Integer, ihi::Integer, iloq::Integer, ihiq::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03yd_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), wantt, wantq, wantz, n, ilo, ihi, iloq, ihiq, a, lda, b, ldb, q, ldq, z, ldz, alphar, alphai, beta, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (csl, snl, csr, snr) """ function mb03yt!(a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) csl = Ref{Float64}() snl = Ref{Float64}() csr = Ref{Float64}() snr = Ref{Float64}() ccall((:mb03yt_, libslicot), Cvoid, (Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}), a, lda, b, ldb, alphar, alphai, beta, csl, snl, csr, snr) return csl[], snl[], csr[], snr[] end """ $(TYPEDSIGNATURES) returns (m, info) """ function mb03za!(compc::AbstractChar, compu::AbstractChar, compv::AbstractChar, compw::AbstractChar, which::AbstractChar, select::AbstractVector{BlasBool}, n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, v1::AbstractMatrix{Float64}, v2::AbstractMatrix{Float64}, w::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) ldv1 = max(1,stride(v1,2)) ldv2 = max(1,stride(v2,2)) ldw = max(1,stride(w,2)) m = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb03za_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ptr{BlasBool}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong, Clong), compc, compu, compv, compw, which, select, n, a, lda, b, ldb, c, ldc, u1, ldu1, u2, ldu2, v1, ldv1, v2, ldv2, w, ldw, wr, wi, m, dwork, ldwork, info, 1, 1, 1, 1, 1) chkargsok(info[]) return m[], info[] end """ $(TYPEDSIGNATURES) returns (m, info) """ function mb03zd!(which::AbstractChar, meth::AbstractChar, stab::AbstractChar, balanc::AbstractChar, ortbal::AbstractChar, select::AbstractVector{BlasBool}, n::Integer, mm::Integer, ilo::Integer, scale::AbstractVector{Float64}, s::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, v1::AbstractMatrix{Float64}, v2::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, us::AbstractMatrix{Float64}, uu::AbstractMatrix{Float64}, iwork::AbstractVector{BlasInt}) lds = max(1,stride(s,2)) ldt = max(1,stride(t,2)) ldg = max(1,stride(g,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) ldv1 = max(1,stride(v1,2)) ldv2 = max(1,stride(v2,2)) ldus = max(1,stride(us,2)) lduu = max(1,stride(uu,2)) m = Ref{BlasInt}() info = Ref{BlasInt}() lwork = Vector{BlasBool}(undef, 2*n) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb03zd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ptr{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong, Clong), which, meth, stab, balanc, ortbal, select, n, mm, ilo, scale, s, lds, t, ldt, g, ldg, u1, ldu1, u2, ldu2, v1, ldv1, v2, ldv2, m, wr, wi, us, ldus, uu, lduu, lwork, iwork, dwork, ldwork, info, 1, 1, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return m[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04ad!(job::AbstractChar, compq1::AbstractChar, compq2::AbstractChar, compu1::AbstractChar, compu2::AbstractChar, n::Integer, z::AbstractMatrix{Float64}, h::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, u11::AbstractMatrix{Float64}, u12::AbstractMatrix{Float64}, u21::AbstractMatrix{Float64}, u22::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer) ldz = max(1,stride(z,2)) ldh = max(1,stride(h,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldu11 = max(1,stride(u11,2)) ldu12 = max(1,stride(u12,2)) ldu21 = max(1,stride(u21,2)) ldu22 = max(1,stride(u22,2)) ldt = max(1,stride(t,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04ad_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong, Clong), job, compq1, compq2, compu1, compu2, n, z, ldz, h, ldh, q1, ldq1, q2, ldq2, u11, ldu11, u12, ldu12, u21, ldu21, u22, ldu22, t, ldt, alphar, alphai, beta, iwork, liwork, dwork, ldwork, info, 1, 1, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04az!(job::AbstractChar, compq::AbstractChar, compu::AbstractChar, n::Integer, z::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, fg::AbstractMatrix{ComplexF64}, d::AbstractMatrix{ComplexF64}, c::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, u::AbstractMatrix{ComplexF64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer, bwork::AbstractVector{BlasBool}) ldz = max(1,stride(z,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldd = max(1,stride(d,2)) ldc = max(1,stride(c,2)) ldq = max(1,stride(q,2)) ldu = max(1,stride(u,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04az_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong, Clong), job, compq, compu, n, z, ldz, b, ldb, fg, ldfg, d, ldd, c, ldc, q, ldq, u, ldu, alphar, alphai, beta, iwork, liwork, dwork, ldwork, zwork, lzwork, bwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04bd!(job::AbstractChar, compq1::AbstractChar, compq2::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, c1::AbstractMatrix{Float64}, vw::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, f::AbstractMatrix{Float64}, c2::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldc1 = max(1,stride(c1,2)) ldvw = max(1,stride(vw,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldc2 = max(1,stride(c2,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) dwork = Vector{Float64}(undef, ldwork) ccall((:mb04bd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), job, compq1, compq2, n, a, lda, de, ldde, c1, ldc1, vw, ldvw, q1, ldq1, q2, ldq2, b, ldb, f, ldf, c2, ldc2, alphar, alphai, beta, iwork, liwork, dwork, ldwork, info, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (info, iwarn) """ function mb04bp!(job::AbstractChar, compq1::AbstractChar, compq2::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, c1::AbstractMatrix{Float64}, vw::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, f::AbstractMatrix{Float64}, c2::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer, ldwork::Integer) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldc1 = max(1,stride(c1,2)) ldvw = max(1,stride(vw,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldc2 = max(1,stride(c2,2)) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) dwork = Vector{Float64}(undef, ldwork) ccall((:mb04bp_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), job, compq1, compq2, n, a, lda, de, ldde, c1, ldc1, vw, ldvw, q1, ldq1, q2, ldq2, b, ldb, f, ldf, c2, ldc2, alphar, alphai, beta, iwork, liwork, dwork, ldwork, info, 1, 1, 1) chkargsok(info[]) return info[], iwarn[] end """ $(TYPEDSIGNATURES) returns info """ function mb04bz!(job::AbstractChar, compq::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, de::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, fg::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, bwork::AbstractVector{BlasBool}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, 2*n+4) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04bz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), job, compq, n, a, lda, de, ldde, b, ldb, fg, ldfg, q, ldq, alphar, alphai, beta, iwork, dwork, ldwork, zwork, lzwork, bwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04cd!(compq1::AbstractChar, compq2::AbstractChar, compq3::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, q3::AbstractMatrix{Float64}, liwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldd = max(1,stride(d,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) ldq3 = max(1,stride(q3,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) bwork = Vector{BlasBool}(undef, n÷2) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04cd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong, Clong), compq1, compq2, compq3, n, a, lda, b, ldb, d, ldd, q1, ldq1, q2, ldq2, q3, ldq3, iwork, liwork, dwork, ldwork, bwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04db!(job::AbstractChar, sgn::AbstractChar, n::Integer, ilo::Integer, lscale::AbstractVector{Float64}, rscale::AbstractVector{Float64}, m::Integer, v1::AbstractMatrix{Float64}, v2::AbstractMatrix{Float64}) ldv1 = max(1,stride(v1,2)) ldv2 = max(1,stride(v2,2)) info = Ref{BlasInt}() ccall((:mb04db_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, sgn, n, ilo, lscale, rscale, m, v1, ldv1, v2, ldv2, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (ilo, info) """ function mb04dd!(job::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, scale::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() ccall((:mb04dd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong), job, n, a, lda, qg, ldqg, ilo, scale, info, 1) chkargsok(info[]) return ilo[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04di!(job::AbstractChar, sgn::AbstractChar, n::Integer, ilo::Integer, scale::AbstractVector{Float64}, m::Integer, v1::AbstractMatrix{Float64}, v2::AbstractMatrix{Float64}) ldv1 = max(1,stride(v1,2)) ldv2 = max(1,stride(v2,2)) info = Ref{BlasInt}() ccall((:mb04di_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, sgn, n, ilo, scale, m, v1, ldv1, v2, ldv2, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (ilo, ihi, info, iwarn) """ function mb04dl!(job::AbstractChar, n::Integer, thresh::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, lscale::AbstractVector{Float64}, rscale::AbstractVector{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ilo = Ref{BlasInt}() ihi = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ccall((:mb04dl_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), job, n, thresh, a, lda, b, ldb, ilo, ihi, lscale, rscale, dwork, iwarn, info, 1) chkargsok(info[]) return ilo[], ihi[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (ilo, info, iwarn) """ function mb04dp!(job::AbstractChar, n::Integer, thresh::Number, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, vw::AbstractMatrix{Float64}, lscale::AbstractVector{Float64}, rscale::AbstractVector{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldc = max(1,stride(c,2)) ldvw = max(1,stride(vw,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ccall((:mb04dp_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), job, n, thresh, a, lda, de, ldde, c, ldc, vw, ldvw, ilo, lscale, rscale, dwork, iwarn, info, 1) chkargsok(info[]) return ilo[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (ilo, info) """ function mb04ds!(job::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, scale::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() ccall((:mb04ds_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong), job, n, a, lda, qg, ldqg, ilo, scale, info, 1) chkargsok(info[]) return ilo[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04dy!(jobscl::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, d::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n) ccall((:mb04dy_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Clong), jobscl, n, a, lda, qg, ldqg, d, dwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (ilo, info) """ function mb04dz!(job::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, qg::AbstractMatrix{ComplexF64}, scale::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() ccall((:mb04dz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong), job, n, a, lda, qg, ldqg, ilo, scale, info, 1) chkargsok(info[]) return ilo[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04ed!(job::AbstractChar, compq::AbstractChar, compu::AbstractChar, n::Integer, z::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, fg::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, liwork::Integer) ldz = max(1,stride(z,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04ed_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), job, compq, compu, n, z, ldz, b, ldb, fg, ldfg, q, ldq, u1, ldu1, u2, ldu2, alphar, alphai, beta, iwork, liwork, dwork, ldwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04fd!(job::AbstractChar, compq::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, fg::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n÷2+1) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04fd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, compq, n, a, lda, de, ldde, b, ldb, fg, ldfg, q, ldq, alphar, alphai, beta, iwork, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04fp!(job::AbstractChar, compq::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, de::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, fg::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n÷2+1) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04fp_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, compq, n, a, lda, de, ldde, b, ldb, fg, ldfg, q, ldq, alphar, alphai, beta, iwork, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04gd!(m::Integer, n::Integer, a::AbstractMatrix{Float64}, jpvt::AbstractVector{BlasInt}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 3*m) ccall((:mb04gd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), m, n, a, lda, jpvt, tau, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04hd!(compq1::AbstractChar, compq2::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, liwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, liwork) bwork = Vector{BlasBool}(undef, n÷2) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04hd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), compq1, compq2, n, a, lda, b, ldb, q1, ldq1, q2, ldq2, iwork, liwork, dwork, ldwork, bwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04id!(n::Integer, m::Integer, p::Integer, l::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04id_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, m, p, l, a, lda, b, ldb, tau, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04iy!(side::AbstractChar, trans::AbstractChar, n::Integer, m::Integer, k::Integer, p::Integer, a::AbstractMatrix{Float64}, tau::AbstractVector{Float64}, c::AbstractMatrix{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldc = max(1,stride(c,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04iy_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), side, trans, n, m, k, p, a, lda, tau, c, ldc, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04iz!(n::Integer, m::Integer, p::Integer, l::Integer, a::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, tau::AbstractVector{ComplexF64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04iz_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}), n, m, p, l, a, lda, b, ldb, tau, zwork, lzwork, info) chkargsok(info[]) if iwq == 1 lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04jd!(n::Integer, m::Integer, p::Integer, l::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, tau::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04jd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, m, p, l, a, lda, b, ldb, tau, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) """ function mb04kd!(uplo::AbstractChar, n::Integer, m::Integer, p::Integer, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, tau::AbstractVector{Float64}) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) dwork = Vector{Float64}(undef, n) ccall((:mb04kd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Clong), uplo, n, m, p, r, ldr, a, lda, b, ldb, c, ldc, tau, dwork, 1) return nothing end """ $(TYPEDSIGNATURES) """ function mb04ld!(uplo::AbstractChar, n::Integer, m::Integer, p::Integer, l::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, tau::AbstractVector{Float64}) ldl = max(1,stride(l,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) dwork = Vector{Float64}(undef, n) ccall((:mb04ld_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Clong), uplo, n, m, p, l, ldl, a, lda, b, ldb, c, ldc, tau, dwork, 1) return nothing end """ $(TYPEDSIGNATURES) returns (maxred, info) """ function mb04md!(n::Integer, ini_maxred::Number, a::AbstractMatrix{Float64}, scale::AbstractVector{Float64}) lda = max(1,stride(a,2)) maxred = Ref{Float64}(ini_maxred) info = Ref{BlasInt}() ccall((:mb04md_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), n, maxred, a, lda, scale, info) chkargsok(info[]) return maxred[], info[] end """ $(TYPEDSIGNATURES) """ function mb04nd!(uplo::AbstractChar, n::Integer, m::Integer, p::Integer, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, tau::AbstractVector{Float64}) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) dwork = Vector{Float64}(undef, max(n-1,m)) ccall((:mb04nd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Clong), uplo, n, m, p, r, ldr, a, lda, b, ldb, c, ldc, tau, dwork, 1) return nothing end """ $(TYPEDSIGNATURES) """ function mb04ny!(m::Integer, n::Integer, v::AbstractVector{Float64}, incv::Integer, tau::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) dwork = Vector{Float64}(undef, m) ccall((:mb04ny_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}), m, n, v, incv, tau, a, lda, b, ldb, dwork) return nothing end """ $(TYPEDSIGNATURES) """ function mb04od!(uplo::AbstractChar, n::Integer, m::Integer, p::Integer, r::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, tau::AbstractVector{Float64}) ldr = max(1,stride(r,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) dwork = Vector{Float64}(undef, max(n-1,m)) ccall((:mb04od_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Clong), uplo, n, m, p, r, ldr, a, lda, b, ldb, c, ldc, tau, dwork, 1) return nothing end """ $(TYPEDSIGNATURES) """ function mb04ow!(m::Integer, n::Integer, p::Integer, a::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}, x::AbstractVector{Float64}, incx::Integer, b::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, d::AbstractVector{Float64}, incd::Integer) lda = max(1,stride(a,2)) ldt = max(1,stride(t,2)) ldb = max(1,stride(b,2)) ldc = max(1,stride(c,2)) ccall((:mb04ow_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), m, n, p, a, lda, t, ldt, x, incx, b, ldb, c, ldc, d, incd) return nothing end """ $(TYPEDSIGNATURES) """ function mb04ox!(n::Integer, a::AbstractMatrix{Float64}, x::AbstractVector{Float64}, incx::Integer) lda = max(1,stride(a,2)) ccall((:mb04ox_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), n, a, lda, x, incx) return nothing end """ $(TYPEDSIGNATURES) """ function mb04oy!(m::Integer, n::Integer, v::AbstractVector{Float64}, tau::Number, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) dwork = Vector{Float64}(undef, n) ccall((:mb04oy_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}), m, n, v, tau, a, lda, b, ldb, dwork) return nothing end """ $(TYPEDSIGNATURES) """ function mb04pa!(lham::Bool, n::Integer, k::Integer, nb::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, xa::AbstractMatrix{Float64}, xg::AbstractMatrix{Float64}, xq::AbstractMatrix{Float64}, ya::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ldxa = max(1,stride(xa,2)) ldxg = max(1,stride(xg,2)) ldxq = max(1,stride(xq,2)) ldya = max(1,stride(ya,2)) dwork = Vector{Float64}(undef, 3*nb) ccall((:mb04pa_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}), lham, n, k, nb, a, lda, qg, ldqg, xa, ldxa, xg, ldxg, xq, ldxq, ya, ldya, cs, tau, dwork) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb04pb!(n::Integer, ilo::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04pb_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, ilo, a, lda, qg, ldqg, cs, tau, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04pu!(n::Integer, ilo::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04pu_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, ilo, a, lda, qg, ldqg, cs, tau, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) """ function mb04py!(side::AbstractChar, m::Integer, n::Integer, v::AbstractVector{Float64}, tau::Number, c::AbstractMatrix{Float64}, dwork::AbstractVector{Float64}) ldc = max(1,stride(c,2)) ccall((:mb04py_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong), side, m, n, v, tau, c, ldc, dwork, 1) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb04qb!(tranc::AbstractChar, trand::AbstractChar, tranq::AbstractChar, storev::AbstractChar, storew::AbstractChar, m::Integer, n::Integer, k::Integer, v::AbstractMatrix{Float64}, w::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) ldv = max(1,stride(v,2)) ldw = max(1,stride(w,2)) ldc = max(1,stride(c,2)) ldd = max(1,stride(d,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04qb_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong, Clong), tranc, trand, tranq, storev, storew, m, n, k, v, ldv, w, ldw, c, ldc, d, ldd, cs, tau, dwork, ldwork, info, 1, 1, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) """ function mb04qc!(strab::AbstractChar, trana::AbstractChar, tranb::AbstractChar, tranq::AbstractChar, direct::AbstractChar, storev::AbstractChar, storew::AbstractChar, m::Integer, n::Integer, k::Integer, v::AbstractMatrix{Float64}, w::AbstractMatrix{Float64}, rs::AbstractMatrix{Float64}, ldrs::Integer, t::AbstractMatrix{Float64}, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, dwork::AbstractVector{Float64}) ldv = max(1,stride(v,2)) ldw = max(1,stride(w,2)) ldt = max(1,stride(t,2)) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ccall((:mb04qc_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong, Clong, Clong, Clong, Clong, Clong), strab, trana, tranb, tranq, direct, storev, storew, m, n, k, v, ldv, w, ldw, rs, ldrs, t, ldt, a, lda, b, ldb, dwork, 1, 1, 1, 1, 1, 1, 1) return nothing end """ $(TYPEDSIGNATURES) """ function mb04qf!(direct::AbstractChar, storev::AbstractChar, storew::AbstractChar, n::Integer, k::Integer, v::AbstractMatrix{Float64}, w::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}, rs::AbstractMatrix{Float64}, t::AbstractMatrix{Float64}) ldv = max(1,stride(v,2)) ldw = max(1,stride(w,2)) ldrs = max(1,stride(rs,2)) ldt = max(1,stride(t,2)) dwork = Vector{Float64}(undef, 3*k) ccall((:mb04qf_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Clong, Clong, Clong), direct, storev, storew, n, k, v, ldv, w, ldw, cs, tau, rs, ldrs, t, ldt, dwork, 1, 1, 1) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb04qs!(tranc::AbstractChar, trand::AbstractChar, tranu::AbstractChar, m::Integer, n::Integer, ilo::Integer, v::AbstractMatrix{Float64}, w::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) ldv = max(1,stride(v,2)) ldw = max(1,stride(w,2)) ldc = max(1,stride(c,2)) ldd = max(1,stride(d,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04qs_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), tranc, trand, tranu, m, n, ilo, v, ldv, w, ldw, c, ldc, d, ldd, cs, tau, dwork, ldwork, info, 1, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04qu!(tranc::AbstractChar, trand::AbstractChar, tranq::AbstractChar, storev::AbstractChar, storew::AbstractChar, m::Integer, n::Integer, k::Integer, v::AbstractMatrix{Float64}, w::AbstractMatrix{Float64}, c::AbstractMatrix{Float64}, d::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}, ldwork::Integer) ldv = max(1,stride(v,2)) ldw = max(1,stride(w,2)) ldc = max(1,stride(c,2)) ldd = max(1,stride(d,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04qu_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong, Clong, Clong), tranc, trand, tranq, storev, storew, m, n, k, v, ldv, w, ldw, c, ldc, d, ldd, cs, tau, dwork, ldwork, info, 1, 1, 1, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04rb!(n::Integer, ilo::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04rb_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, ilo, a, lda, qg, ldqg, cs, tau, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04ru!(n::Integer, ilo::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04ru_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, ilo, a, lda, qg, ldqg, cs, tau, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04su!(m::Integer, n::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04su_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), m, n, a, lda, b, ldb, cs, tau, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04tb!(trana::AbstractChar, tranb::AbstractChar, n::Integer, ilo::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, csl::AbstractVector{Float64}, csr::AbstractVector{Float64}, taul::AbstractVector{Float64}, taur::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldg = max(1,stride(g,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04tb_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), trana, tranb, n, ilo, a, lda, b, ldb, g, ldg, q, ldq, csl, csr, taul, taur, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04ts!(trana::AbstractChar, tranb::AbstractChar, n::Integer, ilo::Integer, a::AbstractMatrix{Float64}, b::AbstractMatrix{Float64}, g::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, csl::AbstractVector{Float64}, csr::AbstractVector{Float64}, taul::AbstractVector{Float64}, taur::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ldg = max(1,stride(g,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04ts_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), trana, tranb, n, ilo, a, lda, b, ldb, g, ldg, q, ldq, csl, csr, taul, taur, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns rank """ function mb04tt!(updatq::Bool, updatz::Bool, m::Integer, n::Integer, ifira::Integer, ifica::Integer, nca::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, istair::AbstractVector{BlasInt}, tol::Number) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) rank = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) ccall((:mb04tt_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{BlasInt}), updatq, updatz, m, n, ifira, ifica, nca, a, lda, e, lde, q, ldq, z, ldz, istair, rank, tol, iwork) return rank[] end """ $(TYPEDSIGNATURES) """ function mb04tu!(n::Integer, x::AbstractVector{Float64}, incx::Integer, y::AbstractVector{Float64}, incy::Integer, c::Number, s::Number) ccall((:mb04tu_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}), n, x, incx, y, incy, c, s) return nothing end """ $(TYPEDSIGNATURES) """ function mb04tv!(updatz::Bool, n::Integer, nra::Integer, nca::Integer, ifira::Integer, ifica::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldz = max(1,stride(z,2)) ccall((:mb04tv_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), updatz, n, nra, nca, ifira, ifica, a, lda, e, lde, z, ldz) return nothing end """ $(TYPEDSIGNATURES) """ function mb04tw!(updatq::Bool, m::Integer, n::Integer, nre::Integer, nce::Integer, ifire::Integer, ifice::Integer, ifica::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ccall((:mb04tw_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), updatq, m, n, nre, nce, ifire, ifice, ifica, a, lda, e, lde, q, ldq) return nothing end """ $(TYPEDSIGNATURES) returns nblcks """ function mb04tx!(updatq::Bool, updatz::Bool, m::Integer, n::Integer, ini_nblcks::Integer, inuk::AbstractVector{BlasInt}, imuk::AbstractVector{BlasInt}, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, mnei::AbstractVector{BlasInt}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) nblcks = Ref{BlasInt}(ini_nblcks) ccall((:mb04tx_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), updatq, updatz, m, n, nblcks, inuk, imuk, a, lda, e, lde, q, ldq, z, ldz, mnei) return nblcks[] end """ $(TYPEDSIGNATURES) returns info """ function mb04ty!(updatq::Bool, updatz::Bool, m::Integer, n::Integer, nblcks::Integer, inuk::AbstractVector{BlasInt}, imuk::AbstractVector{BlasInt}, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) info = Ref{BlasInt}() ccall((:mb04ty_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), updatq, updatz, m, n, nblcks, inuk, imuk, a, lda, e, lde, q, ldq, z, ldz, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (ranke, info) """ function mb04ud!(jobq::AbstractChar, jobz::AbstractChar, m::Integer, n::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, istair::AbstractVector{BlasInt}, tol::Number) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) ranke = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, max(m,n)) ccall((:mb04ud_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{Float64}, Ptr{BlasInt}, Clong, Clong), jobq, jobz, m, n, a, lda, e, lde, q, ldq, z, ldz, ranke, istair, tol, dwork, info, 1, 1) chkargsok(info[]) return ranke[], info[] end """ $(TYPEDSIGNATURES) returns (nblcks, nblcki, info) """ function mb04vd!(mode::AbstractChar, jobq::AbstractChar, jobz::AbstractChar, m::Integer, n::Integer, ranke::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, istair::AbstractVector{BlasInt}, imuk::AbstractVector{BlasInt}, inuk::AbstractVector{BlasInt}, imuk0::AbstractVector{BlasInt}, mnei::AbstractVector{BlasInt}, tol::Number) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) nblcks = Ref{BlasInt}() nblcki = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) ccall((:mb04vd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Clong, Clong, Clong), mode, jobq, jobz, m, n, ranke, a, lda, e, lde, q, ldq, z, ldz, istair, nblcks, nblcki, imuk, inuk, imuk0, mnei, tol, iwork, info, 1, 1, 1) chkargsok(info[]) return nblcks[], nblcki[], info[] end """ $(TYPEDSIGNATURES) """ function mb04vx!(updatq::Bool, updatz::Bool, m::Integer, n::Integer, nblcks::Integer, inuk::AbstractVector{BlasInt}, imuk::AbstractVector{BlasInt}, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}, z::AbstractMatrix{Float64}, mnei::AbstractVector{BlasInt}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldq = max(1,stride(q,2)) ldz = max(1,stride(z,2)) ccall((:mb04vx_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), updatq, updatz, m, n, nblcks, inuk, imuk, a, lda, e, lde, q, ldq, z, ldz, mnei) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb04wd!(tranq1::AbstractChar, tranq2::AbstractChar, m::Integer, n::Integer, k::Integer, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04wd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), tranq1, tranq2, m, n, k, q1, ldq1, q2, ldq2, cs, tau, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04wp!(n::Integer, ilo::Integer, u1::AbstractMatrix{Float64}, u2::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) ldu1 = max(1,stride(u1,2)) ldu2 = max(1,stride(u2,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04wp_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, ilo, u1, ldu1, u2, ldu2, cs, tau, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04wr!(job::AbstractChar, trans::AbstractChar, n::Integer, ilo::Integer, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04wr_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, trans, n, ilo, q1, ldq1, q2, ldq2, cs, tau, dwork, ldwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb04wu!(tranq1::AbstractChar, tranq2::AbstractChar, m::Integer, n::Integer, k::Integer, q1::AbstractMatrix{Float64}, q2::AbstractMatrix{Float64}, cs::AbstractVector{Float64}, tau::AbstractVector{Float64}, ldwork::Integer) ldq1 = max(1,stride(q1,2)) ldq2 = max(1,stride(q2,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04wu_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), tranq1, tranq2, m, n, k, q1, ldq1, q2, ldq2, cs, tau, dwork, ldwork, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (rank, theta, info, iwarn) """ function mb04xd!(jobu::AbstractChar, jobv::AbstractChar, m::Integer, n::Integer, ini_rank::Integer, ini_theta::Number, a::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}, q::AbstractVector{Float64}, inul::AbstractVector{BlasBool}, tol::Number, reltol::Number) lda = max(1,stride(a,2)) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) rank = Ref{BlasInt}(ini_rank) theta = Ref{Float64}(ini_theta) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb04xd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasBool}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Clong, Clong), jobu, jobv, m, n, rank, theta, a, lda, u, ldu, v, ldv, q, inul, tol, reltol, dwork, ldwork, iwarn, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return rank[], theta[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns info """ function mb04xy!(jobu::AbstractChar, jobv::AbstractChar, m::Integer, n::Integer, x::AbstractMatrix{Float64}, taup::AbstractVector{Float64}, tauq::AbstractVector{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}, inul::AbstractVector{BlasBool}) ldx = max(1,stride(x,2)) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) info = Ref{BlasInt}() ccall((:mb04xy_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), jobu, jobv, m, n, x, ldx, taup, tauq, u, ldu, v, ldv, inul, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (rank, theta, info, iwarn) """ function mb04yd!(jobu::AbstractChar, jobv::AbstractChar, m::Integer, n::Integer, ini_rank::Integer, ini_theta::Number, q::AbstractVector{Float64}, e::AbstractVector{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}, inul::AbstractVector{BlasBool}, tol::Number, reltol::Number, ldwork::Integer) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) rank = Ref{BlasInt}(ini_rank) theta = Ref{Float64}(ini_theta) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mb04yd_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasBool}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Clong, Clong), jobu, jobv, m, n, rank, theta, q, e, u, ldu, v, ldv, inul, tol, reltol, dwork, ldwork, iwarn, info, 1, 1) chkargsok(info[]) return rank[], theta[], info[], iwarn[] end """ $(TYPEDSIGNATURES) """ function mb04yw!(qrit::Bool, updatu::Bool, updatv::Bool, m::Integer, n::Integer, l::Integer, k::Integer, shift::Number, d::AbstractVector{Float64}, e::AbstractVector{Float64}, u::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}) ldu = max(1,stride(u,2)) ldv = max(1,stride(v,2)) dwork = Vector{Float64}(undef, max(1,ldwork)) ccall((:mb04yw_, libslicot), Cvoid, (Ref{BlasBool}, Ref{BlasBool}, Ref{BlasBool}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}), qrit, updatu, updatv, m, n, l, k, shift, d, e, u, ldu, v, ldv, dwork) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mb04zd!(compu::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, qg::AbstractMatrix{Float64}, u::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldqg = max(1,stride(qg,2)) ldu = max(1,stride(u,2)) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 2*n) ccall((:mb04zd_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong), compu, n, a, lda, qg, ldqg, u, ldu, dwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb05md!(balanc::AbstractChar, n::Integer, delta::Number, a::AbstractMatrix{Float64}, v::AbstractMatrix{Float64}, y::AbstractMatrix{Float64}, valr::AbstractVector{Float64}, vali::AbstractVector{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) ldv = max(1,stride(v,2)) ldy = max(1,stride(y,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) dwork = Vector{Float64}(undef, ldwork) ccall((:mb05md_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), balanc, n, delta, a, lda, v, ldv, y, ldy, valr, vali, iwork, dwork, ldwork, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb05my!(balanc::AbstractChar, n::Integer, a::AbstractMatrix{Float64}, wr::AbstractVector{Float64}, wi::AbstractVector{Float64}, r::AbstractMatrix{Float64}, q::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) ldr = max(1,stride(r,2)) ldq = max(1,stride(q,2)) info = Ref{BlasInt}() ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb05my_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), balanc, n, a, lda, wr, wi, r, ldr, q, ldq, dwork, ldwork, info, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns info """ function mb05nd!(n::Integer, delta::Number, a::AbstractMatrix{Float64}, ex::AbstractMatrix{Float64}, exint::AbstractMatrix{Float64}, tol::Number, ldwork::Integer) lda = max(1,stride(a,2)) ldex = max(1,stride(ex,2)) ldexin = max(1,stride(exint,2)) info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) dwork = Vector{Float64}(undef, ldwork) ccall((:mb05nd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, delta, a, lda, ex, ldex, exint, ldexin, tol, iwork, dwork, ldwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (mdig, idig, info, iwarn) """ function mb05od!(balanc::AbstractChar, n::Integer, ndiag::Integer, delta::Number, a::AbstractMatrix{Float64}, ldwork::Integer) lda = max(1,stride(a,2)) mdig = Ref{BlasInt}() idig = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n) dwork = Vector{Float64}(undef, ldwork) ccall((:mb05od_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), balanc, n, ndiag, delta, a, lda, mdig, idig, iwork, dwork, ldwork, iwarn, info, 1) chkargsok(info[]) return mdig[], idig[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns info """ function mb05oy!(job::AbstractChar, n::Integer, low::Integer, igh::Integer, a::AbstractMatrix{Float64}, scale::AbstractVector{Float64}) lda = max(1,stride(a,2)) info = Ref{BlasInt}() ccall((:mb05oy_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Clong), job, n, low, igh, a, lda, scale, info, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb3jzp!(compq::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, d::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, f::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, tol::Number) lda = max(1,stride(a,2)) ldd = max(1,stride(d,2)) ldb = max(1,stride(b,2)) ldf = max(1,stride(f,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, n÷2) zwork = Vector{ComplexF64}(undef, n÷2) ccall((:mb3jzp_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{BlasInt}, Clong), compq, n, a, lda, d, ldd, b, ldb, f, ldf, q, ldq, neig, tol, dwork, zwork, info, 1) chkargsok(info[]) return neig[], info[] end """ $(TYPEDSIGNATURES) returns (neig, info) """ function mb3lzp!(compq::AbstractChar, orth::AbstractChar, n::Integer, a::AbstractMatrix{ComplexF64}, de::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, fg::AbstractMatrix{ComplexF64}, q::AbstractMatrix{ComplexF64}, alphar::AbstractVector{Float64}, alphai::AbstractVector{Float64}, beta::AbstractVector{Float64}, bwork::AbstractVector{BlasBool}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldb = max(1,stride(b,2)) ldfg = max(1,stride(fg,2)) ldq = max(1,stride(q,2)) neig = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, n+1) ldwork = BlasInt(-1) dwork = Vector{Float64}(undef, 1) lzwork = BlasInt(-1) zwork = Vector{ComplexF64}(undef, 1) local jlres for iwq in 1:2 ccall((:mb3lzp_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasBool}, Ptr{BlasInt}, Clong, Clong), compq, orth, n, a, lda, de, ldde, b, ldb, fg, ldfg, neig, q, ldq, alphar, alphai, beta, iwork, dwork, ldwork, zwork, lzwork, bwork, info, 1, 1) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) lzwork = BlasInt(real(zwork[1])) resize!(zwork, lzwork) end end return neig[], info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb3oyz!(m::Integer, n::Integer, a::AbstractMatrix{ComplexF64}, rcond::Number, svlmax::Number, sval::AbstractVector{Float64}, jpvt::AbstractVector{BlasInt}, tau::AbstractVector{ComplexF64}) lda = max(1,stride(a,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 2*n ) zwork = Vector{ComplexF64}(undef, 3*n-1 ) ccall((:mb3oyz_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{BlasInt}), m, n, a, lda, rcond, svlmax, rank, sval, jpvt, tau, dwork, zwork, info) chkargsok(info[]) return rank[], info[] end """ $(TYPEDSIGNATURES) returns (rank, info) """ function mb3pyz!(m::Integer, n::Integer, a::AbstractMatrix{ComplexF64}, rcond::Number, svlmax::Number, sval::AbstractVector{Float64}, jpvt::AbstractVector{BlasInt}, tau::AbstractVector{ComplexF64}) lda = max(1,stride(a,2)) rank = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 2*m ) zwork = Vector{ComplexF64}(undef, 3*m-1 ) ccall((:mb3pyz_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{ComplexF64}, Ptr{Float64}, Ptr{ComplexF64}, Ptr{BlasInt}), m, n, a, lda, rcond, svlmax, rank, sval, jpvt, tau, dwork, zwork, info) chkargsok(info[]) return rank[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mb4dbz!(job::AbstractChar, sgn::AbstractChar, n::Integer, ilo::Integer, lscale::AbstractVector{Float64}, rscale::AbstractVector{Float64}, m::Integer, v1::AbstractMatrix{ComplexF64}, v2::AbstractMatrix{ComplexF64}) ldv1 = max(1,stride(v1,2)) ldv2 = max(1,stride(v2,2)) info = Ref{BlasInt}() ccall((:mb4dbz_, libslicot), Cvoid, (Ref{UInt8}, Ref{UInt8}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Clong, Clong), job, sgn, n, ilo, lscale, rscale, m, v1, ldv1, v2, ldv2, info, 1, 1) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (ilo, ihi, info, iwarn) """ function mb4dlz!(job::AbstractChar, n::Integer, thresh::Number, a::AbstractMatrix{ComplexF64}, b::AbstractMatrix{ComplexF64}, lscale::AbstractVector{Float64}, rscale::AbstractVector{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldb = max(1,stride(b,2)) ilo = Ref{BlasInt}() ihi = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ccall((:mb4dlz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), job, n, thresh, a, lda, b, ldb, ilo, ihi, lscale, rscale, dwork, iwarn, info, 1) chkargsok(info[]) return ilo[], ihi[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (ilo, info, iwarn) """ function mb4dpz!(job::AbstractChar, n::Integer, thresh::Number, a::AbstractMatrix{ComplexF64}, de::AbstractMatrix{ComplexF64}, c::AbstractMatrix{ComplexF64}, vw::AbstractMatrix{ComplexF64}, lscale::AbstractVector{Float64}, rscale::AbstractVector{Float64}, dwork::AbstractVector{Float64}) lda = max(1,stride(a,2)) ldde = max(1,stride(de,2)) ldc = max(1,stride(c,2)) ldvw = max(1,stride(vw,2)) ilo = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ccall((:mb4dpz_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ref{Float64}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{ComplexF64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), job, n, thresh, a, lda, de, ldde, c, ldc, vw, ldvw, ilo, lscale, rscale, dwork, iwarn, info, 1) chkargsok(info[]) return ilo[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns info """ function mc01md!(dp::Integer, alpha::Number, k::Integer, p::AbstractVector{Float64}, q::AbstractVector{Float64}) info = Ref{BlasInt}() ccall((:mc01md_, libslicot), Cvoid, (Ref{BlasInt}, Ref{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), dp, alpha, k, p, q, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (vr, vi, info) """ function mc01nd!(dp::Integer, xr::Number, xi::Number, p::AbstractVector{Float64}) vr = Ref{Float64}() vi = Ref{Float64}() info = Ref{BlasInt}() ccall((:mc01nd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), dp, xr, xi, p, vr, vi, info) chkargsok(info[]) return vr[], vi[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mc01od!(k::Integer, rez::AbstractVector{Float64}, imz::AbstractVector{Float64}, rep::AbstractVector{Float64}, imp::AbstractVector{Float64}) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, 2*k+2) ccall((:mc01od_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), k, rez, imz, rep, imp, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mc01pd!(k::Integer, rez::AbstractVector{Float64}, imz::AbstractVector{Float64}, p::AbstractVector{Float64}) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, k+1) ccall((:mc01pd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), k, rez, imz, p, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mc01py!(k::Integer, rez::AbstractVector{Float64}, imz::AbstractVector{Float64}, p::AbstractVector{Float64}) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, k) ccall((:mc01py_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), k, rez, imz, p, dwork, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (db, info, iwarn) """ function mc01qd!(da::Integer, ini_db::Integer, a::AbstractVector{Float64}, b::AbstractVector{Float64}, rq::AbstractVector{Float64}) db = Ref{BlasInt}(ini_db) info = Ref{BlasInt}() iwarn = Ref{BlasInt}() ccall((:mc01qd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}), da, db, a, b, rq, iwarn, info) chkargsok(info[]) return db[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (dp3, info) """ function mc01rd!(dp1::Integer, dp2::Integer, ini_dp3::Integer, alpha::Number, p1::AbstractVector{Float64}, p2::AbstractVector{Float64}, p3::AbstractVector{Float64}) dp3 = Ref{BlasInt}(ini_dp3) info = Ref{BlasInt}() ccall((:mc01rd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), dp1, dp2, dp3, alpha, p1, p2, p3, info) chkargsok(info[]) return dp3[], info[] end """ $(TYPEDSIGNATURES) returns (s, t, info) """ function mc01sd!(dp::Integer, p::AbstractVector{Float64}, mant::AbstractVector{Float64}, e::AbstractVector{BlasInt}) s = Ref{BlasInt}() t = Ref{BlasInt}() info = Ref{BlasInt}() iwork = Vector{BlasInt}(undef, dp+1) ccall((:mc01sd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}), dp, p, s, t, mant, e, iwork, info) chkargsok(info[]) return s[], t[], info[] end """ $(TYPEDSIGNATURES) returns (m, e) """ function mc01sw!(a::Number, b::Integer) m = Ref{Float64}() e = Ref{BlasInt}() ccall((:mc01sw_, libslicot), Cvoid, (Ref{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), a, b, m, e) return m[], e[] end """ $(TYPEDSIGNATURES) """ function mc01sx!(lb::Integer, ub::Integer, e::AbstractVector{BlasInt}, mant::AbstractVector{Float64}) jlres = ccall((:mc01sx_, libslicot), BlasInt, (Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}), lb, ub, e, mant) return jlres end """ $(TYPEDSIGNATURES) returns (a, ovflow) """ function mc01sy!(m::Number, e::Integer, b::Integer) a = Ref{Float64}() ovflow = Ref{BlasBool}() ccall((:mc01sy_, libslicot), Cvoid, (Ref{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasBool}), m, e, b, a, ovflow) return a[], ovflow[] end """ $(TYPEDSIGNATURES) returns (dp, stable, nz, info, iwarn) """ function mc01td!(dico::AbstractChar, ini_dp::Integer, p::AbstractVector{Float64}) dp = Ref{BlasInt}(ini_dp) stable = Ref{BlasBool}() nz = Ref{BlasInt}() info = Ref{BlasInt}() iwarn = Ref{BlasInt}() dwork = Vector{Float64}(undef, 2*ini_dp+2) ccall((:mc01td_, libslicot), Cvoid, (Ref{UInt8}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasBool}, Ptr{BlasInt}, Ptr{Float64}, Ptr{BlasInt}, Ptr{BlasInt}, Clong), dico, dp, p, stable, nz, dwork, iwarn, info, 1) chkargsok(info[]) return dp[], stable[], nz[], info[], iwarn[] end """ $(TYPEDSIGNATURES) returns (z1re, z1im, z2re, z2im, info) """ function mc01vd!(a::Number, b::Number, c::Number) z1re = Ref{Float64}() z1im = Ref{Float64}() z2re = Ref{Float64}() z2im = Ref{Float64}() info = Ref{BlasInt}() ccall((:mc01vd_, libslicot), Cvoid, (Ref{Float64}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}), a, b, c, z1re, z1im, z2re, z2im, info) chkargsok(info[]) return z1re[], z1im[], z2re[], z2im[], info[] end """ $(TYPEDSIGNATURES) returns info """ function mc01wd!(dp::Integer, p::AbstractVector{Float64}, u1::Number, u2::Number, q::AbstractVector{Float64}) info = Ref{BlasInt}() ccall((:mc01wd_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{Float64}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{BlasInt}), dp, p, u1, u2, q, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns info """ function mc01xd!(alpha::Number, beta::Number, gamma::Number, delta::Number, evr::AbstractVector{Float64}, evi::AbstractVector{Float64}, evq::AbstractVector{Float64}) info = Ref{BlasInt}() ldwork = BlasInt(-1) # some of this is used even in the workspace query dwork = Vector{Float64}(undef, 64) local jlres for iwq in 1:2 ccall((:mc01xd_, libslicot), Cvoid, (Ref{Float64}, Ref{Float64}, Ref{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), alpha, beta, gamma, delta, evr, evi, evq, dwork, ldwork, info) chkargsok(info[]) if iwq == 1 ldwork = BlasInt(real(dwork[1])) resize!(dwork, ldwork) end end return info[] end """ $(TYPEDSIGNATURES) returns (dp3, info) """ function mc03md!(rp1::Integer, cp1::Integer, cp2::Integer, dp1::Integer, dp2::Integer, ini_dp3::Integer, alpha::Number, p1::Array{Float64,3}, p2::Array{Float64,3}, p3::Array{Float64,3}) ldp11 = max(1,stride(p1,2)) ldp12 = max(1,stride(p1,3)÷ldp11) ldp21 = max(1,stride(p2,2)) ldp22 = max(1,stride(p2,3)÷ldp21) ldp31 = max(1,stride(p3,2)) ldp32 = max(1,stride(p3,3)÷ldp31) dp3 = Ref{BlasInt}(ini_dp3) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, cp1) ccall((:mc03md_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ptr{BlasInt}), rp1, cp1, cp2, dp1, dp2, dp3, alpha, p1, ldp11, ldp12, p2, ldp21, ldp22, p3, ldp31, ldp32, dwork, info) chkargsok(info[]) return dp3[], info[] end """ $(TYPEDSIGNATURES) returns (dk, info) """ function mc03nd!(mp::Integer, np::Integer, dp::Integer, p::Array{Float64,3}, gam::AbstractVector{BlasInt}, nullsp::AbstractMatrix{Float64}, ker::Array{Float64,3}, tol::Number, iwork::AbstractVector{BlasInt}, ldwork::Integer) ldp1 = max(1,stride(p,2)) ldp2 = max(1,stride(p,3)÷ldp1) ldnull = max(1,stride(nullsp,2)) ldker1 = max(1,stride(ker,2)) ldker2 = max(1,stride(ker,3)÷ldker1) dk = Ref{BlasInt}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:mc03nd_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), mp, np, dp, p, ldp1, ldp2, dk, gam, nullsp, ldnull, ker, ldker1, ldker2, tol, iwork, dwork, ldwork, info) chkargsok(info[]) return dk[], info[] end """ $(TYPEDSIGNATURES) """ function mc03nx!(mp::Integer, np::Integer, dp::Integer, p::Array{Float64,3}, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}) ldp1 = max(1,stride(p,2)) ldp2 = max(1,stride(p,3)÷ldp1) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ccall((:mc03nx_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}), mp, np, dp, p, ldp1, ldp2, a, lda, e, lde) return nothing end """ $(TYPEDSIGNATURES) returns info """ function mc03ny!(nblcks::Integer, nra::Integer, nca::Integer, a::AbstractMatrix{Float64}, e::AbstractMatrix{Float64}, imuk::AbstractVector{BlasInt}, inuk::AbstractVector{BlasInt}, veps::AbstractMatrix{Float64}) lda = max(1,stride(a,2)) lde = max(1,stride(e,2)) ldveps = max(1,stride(veps,2)) info = Ref{BlasInt}() ccall((:mc03ny_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), nblcks, nra, nca, a, lda, e, lde, imuk, inuk, veps, ldveps, info) chkargsok(info[]) return info[] end """ $(TYPEDSIGNATURES) returns (gnorm, info) """ function md03ba!(n::Integer, ipar::AbstractVector{BlasInt}, lipar::Integer, fnorm::Number, j::AbstractVector{Float64}, e::AbstractVector{Float64}, jnorms::AbstractVector{Float64}, ipvt::AbstractVector{BlasInt}, ldwork::Integer) ldj = max(1,stride(j,2)) gnorm = Ref{Float64}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:md03ba_, libslicot), Cvoid, (Ref{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), n, ipar, lipar, fnorm, j, ldj, e, jnorms, gnorm, ipvt, dwork, ldwork, info) chkargsok(info[]) return gnorm[], info[] end """ $(TYPEDSIGNATURES) returns (par, info) """ function md03bb!(cond::AbstractChar, n::Integer, ipar::AbstractVector{BlasInt}, lipar::Integer, r::AbstractMatrix{Float64}, ipvt::AbstractVector{BlasInt}, diag::AbstractVector{Float64}, qtb::AbstractVector{Float64}, delta::Number, ini_par::Number, ranks::AbstractVector{BlasInt}, x::AbstractVector{Float64}, rx::AbstractVector{Float64}, tol::Number, ldwork::Integer) ldr = max(1,stride(r,2)) par = Ref{Float64}(ini_par) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:md03bb_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{BlasInt}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), cond, n, ipar, lipar, r, ldr, ipvt, diag, qtb, delta, par, ranks, x, rx, tol, dwork, ldwork, info, 1) chkargsok(info[]) return par[], info[] end """ $(TYPEDSIGNATURES) returns (gnorm, info) """ function md03bx!(m::Integer, n::Integer, fnorm::Number, j::AbstractVector{Float64}, e::AbstractVector{Float64}, jnorms::AbstractVector{Float64}, ipvt::AbstractVector{BlasInt}, ldwork::Integer) ldj = max(1,stride(j,2)) gnorm = Ref{Float64}() info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:md03bx_, libslicot), Cvoid, (Ref{BlasInt}, Ref{BlasInt}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}), m, n, fnorm, j, ldj, e, jnorms, gnorm, ipvt, dwork, ldwork, info) chkargsok(info[]) return gnorm[], info[] end """ $(TYPEDSIGNATURES) returns (par, info) """ function md03by!(cond::AbstractChar, n::Integer, r::AbstractMatrix{Float64}, ipvt::AbstractVector{BlasInt}, diag::AbstractVector{Float64}, qtb::AbstractVector{Float64}, delta::Number, ini_par::Number, rank::Integer, x::AbstractVector{Float64}, rx::AbstractVector{Float64}, tol::Number, ldwork::Integer) ldr = max(1,stride(r,2)) par = Ref{Float64}(ini_par) info = Ref{BlasInt}() dwork = Vector{Float64}(undef, ldwork) ccall((:md03by_, libslicot), Cvoid, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}, Ptr{Float64}, Ref{Float64}, Ptr{Float64}, Ref{BlasInt}, Ptr{BlasInt}, Clong), cond, n, r, ldr, ipvt, diag, qtb, delta, par, rank, x, rx, tol, dwork, ldwork, info, 1) chkargsok(info[]) return par[], info[] end
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1331
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb01td(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX LDB = NMAX LDWORK = NMAX-1 A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDB,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) if ( N<0 || N>NMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 INFO = SLICOT.mb01td!(N, A, B) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"B:") _nc = N _nr = N show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2003
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02cd(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 KMAX = 20 NMAX = 20 LDG = 2*KMAX LDL = NMAX*KMAX LDR = NMAX*KMAX LDT = KMAX LDWORK = ( NMAX - 1 )*KMAX LCS = 3*LDWORK T = Array{Float64,2}(undef, LDT,NMAX*KMAX) G = Array{Float64,2}(undef, LDG,NMAX*KMAX) R = Array{Float64,2}(undef, LDR,NMAX*KMAX) L = Array{Float64,2}(undef, LDL,NMAX*KMAX) CS = Array{Float64,1}(undef, LCS) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) K = parse(BlasInt, vs[2]) JOB = vs[3][1] TYPET = 'R' M = N*K if ( N<=0 || N>NMAX ) else if ( K<=0 || K>KMAX ) else vs = String[] _isz,_jsz = (K,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 INFO = SLICOT.mb02cd!(JOB, TYPET, K, N, T, G, R, L, CS, LCS, LDWORK) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'G' ) || LSAME( JOB, 'A' ) || LSAME( JOB, 'L' ) || LSAME( JOB, 'R' ) ) # interp call 2 #FOREIGN.dlaset!( 'Full', K, K, ZERO, ZERO, G(K+1,1), LDG ) G[K+1:2*K,1:K] .= ZERO # interp output 1 println(io, "G:") _nc = M _nr = 2*K show(io, "text/plain", G[1:_nr,1:_nc]) println(io) end # if if ( LSAME( JOB, 'L' ) || LSAME( JOB, 'A' ) ) # interp output 2 println(io, "L:") _nc = M _nr = M show(io, "text/plain", L[1:_nr,1:_nc]) println(io) end # if if ( LSAME( JOB, 'R' ) || LSAME( JOB, 'A' ) || LSAME( JOB, 'O' ) ) # interp output 3 println(io, "R:") _nc = M _nr = M show(io, "text/plain", R[1:_nr,1:_nc]) println(io) end # if end # if end # if end # if close(f) end # run_mb02cd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3954
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02dd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 20 MMAX = 20 NMAX = 20 LDG = KMAX*( MMAX + NMAX ) LDL = KMAX*( MMAX + NMAX ) LDR = KMAX*( MMAX + NMAX ) LDT = KMAX*( MMAX + NMAX ) LDWORK = ( MMAX + NMAX - 1 )*KMAX LCS = 3*LDWORK tdim = KMAX*(MMAX+NMAX) T = Array{Float64,2}(undef, LDT,KMAX*(MMAX+NMAX)) G = Array{Float64,2}(undef, LDG,KMAX*(MMAX+NMAX)) R = Array{Float64,2}(undef, LDR,KMAX*(MMAX+NMAX)) L = Array{Float64,2}(undef, LDL,KMAX*(MMAX+NMAX)) CS = Array{Float64,1}(undef, LCS) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) K = parse(BlasInt, vs[2]) M = parse(BlasInt, vs[3]) JOB = vs[4][1] TYPET = vs[5][1] S = ( N + M )*K if ( N<=0 || N>NMAX ) else if ( K<=0 || K>KMAX ) else if ( M<=0 || M>MMAX ) else if ( LSAME( TYPET, 'R' ) ) vs = String[] _isz,_jsz = (K,S) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end else vs = String[] _isz,_jsz = (S,K) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if # interp call 1 INFO = SLICOT.mb02cd!(JOB, TYPET, K, N, T, G, R, L, CS, LCS, LDWORK) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io, "R:") _nc = N*K _nr = N*K show(io, "text/plain", R[1:_nr,1:_nc]) println(io) if ( LSAME( JOB, 'R' ) || LSAME( JOB, 'A' ) ) if ( LSAME( TYPET, 'R' ) ) # interp output 2 println(io, "G:") _nc = N*K _nr = 2*K show(io, "text/plain", G[1:_nr,1:_nc]) println(io) else # interp output 3 println(io, "G:") _nc = 2*K _nr = N*K show(io, "text/plain", G[1:_nr,1:_nc]) println(io) end # if end # if if ( LSAME( JOB, 'A' ) ) # interp output 4 println(io, "L:") _nc = N*K _nr = N*K show(io, "text/plain", L[1:_nr,1:_nc]) println(io) end # if if ( LSAME( TYPET, 'R' ) ) # interp call 2 # FOREIGN.dlacpy!( 'All', N*K, K, R(1,(N-1)*K+1), LDR, R(K+1,N*K+1), LDR ) for ir in 1:N*K for ic in 1:K R[K+ir,N*K+ic] = R[ir,(N-1)*K+ic] end end # interp call 3 INFO = SLICOT.mb02dd!(JOB, TYPET, K, M, N, view(T,1:K,N*K+1:tdim), T, G, view(R,:,N*K+1:(N*M)*K), view(L,N*K+1:LDL,:), CS, LDWORK) @test INFO == 0 INFO == 0 || return else # interp call 4 #FOREIGN.dlacpy!( 'All', K, N*K, R((N-1)*K+1,1), LDR, R(N*K+1,K+1), LDR ) for ir in 1:K for ic in 1:N*K R[N*K+ir,K+ic] = R[(N-1)*K+ir,ic] end end # interp call 5 INFO = SLICOT.mb02dd!(JOB, TYPET, K, M, N, view(T,N*K+1:(N+M)*K,:), T, G, view(R,N*K+1:(N+M)*K,:), view(L,:, N*K+1:(N+M)*K), CS, LDWORK) @test INFO == 0 INFO == 0 || return end # if if ( INFO!=0 ) else # interp output 5 println(io, "R:") _nc = S _nr = S show(io, "text/plain", R[1:_nr,1:_nc]) println(io) if ( LSAME( JOB, 'R' ) || LSAME( JOB, 'A' ) ) if ( LSAME( TYPET, 'R' ) ) # interp output 6 println(io, "G:") _nc = S _nr = 2*K show(io, "text/plain", G[1:_nr,1:_nc]) println(io) else # interp output 7 println(io, "G:") _nc = 2*K _nr = S show(io, "text/plain", G[1:_nr,1:_nc]) println(io) end # if end # if if ( LSAME( JOB, 'A' ) ) # interp output 8 println(io, "L:") _nc = S _nr = S show(io, "text/plain", L[1:_nr,1:_nc]) println(io) end # if end # if end # if end # if end # if end # if close(f) end # run_mb02dd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2357
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02ed(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 20 NMAX = 20 LDB = KMAX*NMAX LDT = KMAX*NMAX LDWORK = NMAX*KMAX*KMAX + ( NMAX+2 )*KMAX T = Array{Float64,2}(undef, LDT,KMAX*NMAX) B = Array{Float64,2}(undef, LDB,KMAX*NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) K = parse(BlasInt, vs[2]) NRHS = parse(BlasInt, vs[3]) TYPET = vs[4][1] M = N*K if ( N<=0 || N>NMAX ) else if ( K<=0 || K>KMAX ) else if ( NRHS<=0 || NRHS>KMAX*NMAX ) else if ( LSAME( TYPET, 'R' ) ) vs = String[] _isz,_jsz = (K,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end else vs = String[] _isz,_jsz = (M,K) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if if ( LSAME( TYPET, 'R' ) ) vs = String[] _isz,_jsz = (NRHS,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end else vs = String[] _isz,_jsz = (M,NRHS) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if # interp call 1 INFO = SLICOT.mb02ed!(TYPET, K, N, NRHS, T, B, LDWORK) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( TYPET, 'R' ) ) # interp output 1 println(io,"B:") _nc = M _nr = NRHS show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) else # interp output 2 println(io,"B:") _nc = NRHS _nr = M show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) end # if end # if end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
7289
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02fd(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 ITMAX = 10 KMAX = 20 NMAX = 20 LDR = NMAX*KMAX LDT = KMAX LDWORK = ( NMAX + 1 )*KMAX S = Array{BlasInt,1}(undef, ITMAX) tdim = NMAX*KMAX #T = Array{Float64,2}(undef, LDT,NMAX*KMAX) T = fill(zero(Float64), LDT,NMAX*KMAX) DWORK = Array{Float64,1}(undef, LDWORK) #R = Array{Float64,2}(undef, LDR,NMAX*KMAX) R = fill(zero(Float64),LDR,NMAX*KMAX) V = Array{Float64,1}(undef, NMAX*KMAX) W = Array{Float64,1}(undef, NMAX*KMAX) Z = Array{Float64,1}(undef, NMAX*KMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) K = parse(BlasInt, vs[2]) IT = parse(BlasInt, vs[3]) TYPET = 'R' M = N*K local NNRM if ( N<=0 || N>NMAX ) @error "Illegal N=$N" elseif ( K<=0 || K>KMAX ) @error "Illegal K=$K" elseif ( IT<=0 || IT>ITMAX ) @error "Illegal IT=$IT" end vs = String[] _isz = IT while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end S[1:_isz] .= parsex.(BlasInt, vs) vs = String[] _isz,_jsz = (K,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) P = 0 POS = 1 for SCIT in 1:IT # do 90 # interp call 1 #Rtmp = R[POS:LDR,POS:tdim] INFO = SLICOT.mb02fd!(TYPET, K, N, P, S[SCIT], view(T,1:LDT,POS:tdim), view(R,POS:LDR,POS:tdim), LDWORK) #R[POS:LDR,POS:tdim] .= Rtmp @test INFO == 0 if ( INFO!=0 ) return end # if S1 = S[SCIT] + P if ( S1==0 ) LEN = N*K # interp call 2 #FOREIGN.dlaset!( 'All', LEN, 1, ONE, ONE, V, 1 ) V[1:LEN] .= ONE # interp call 3 for PIT in 1:5 # do 30 for i in 1:N #FOREIGN.dgemv!( 'NoTranspose', K, LEN-(I-1)*K, ONE, T, LDT, V((I-1)*K+1), 1, ZERO, W((I-1)*K+1), 1 ) #W[(i-1)*K+1:i*K] .= T[1:K,1:LEN-(i-1)*K] * V[(i-1)*K+1:LEN] _nc = LEN-(i-1)*K BLAS.gemv!('N',ONE,T[1:K,1:_nc],V[(i-1)*K+1:LEN],ZERO,view(W,(i-1)*K+1:i*K)) end # interp call 4 for i in 1:N-1 #FOREIGN.dgemv!( 'Transpose', K, (N-I)*K, ONE, T(1,K+1), LDT, V((I-1)*K+1), 1, ONE, W(I*K+1), 1 ) #W[i*K+1:N*K] .= T[1:K,K+1:(N-i+1)*K]' * V[(i-1)*K+1:i*K] BLAS.gemv!('T',ONE,T[1:K,K+1:(N-i+1)*K],V[(i-1)*K+1:i*K],ONE,view(W,i*K+1:N*K)) end # interp call 5 #FOREIGN.dcopy!( LEN, W, 1, V, 1 ) V[1:LEN] .= W[1:LEN] end # for PIT #NNRM = DNRM2( LEN, V, 1 ) NNRM = norm(V[1:LEN]) # interp call 6 #FOREIGN.dscal!( LEN, ONE/NNRM, V, 1 ) V[1:LEN] .*= ONE / NNRM else LEN = ( N - S1 )*K # interp call 7 #FOREIGN.dlaset!( 'All', LEN, 1, ONE, ONE, V, 1 ) V[1:LEN] .= ONE for PIT in 1:5 # do 80 POSR = ( S1 - 1 )*K + 1 for i in 1:N-S1 # do 40 # interp call 8 #FOREIGN.dgemv!( 'NoTranspose', K, LEN-(I-1)*K, ONE, T(1,POSR+K), LDT, V((I-1)*K+1), 1, ZERO, W((I-1)*K+1), 1 ) _nc = LEN-(i-1)*K #W[(i-1)*K+1:i*K] .= T[1:K,POSR+K:POSR+K+_nc-1] * V[(i-1)*K+1:LEN] BLAS.gemv!('N',ONE,T[1:K,POSR+K:POSR+K+_nc-1],V[(i-1)*K+1:LEN],ZERO, view(W,(i-1)*K+1:i*K)) end for i in 1:N-S1 # do 50 # interp call 9 #FOREIGN.dtrmv!( 'U', 'N', 'N', K, R[POSR,POSR], LDR, V[(I-1)*K+1], 1 ) #V[(i-1)*K+1:i*K] .= UpperTriangular(R[POSR:POSR+K-1,POSR:POSR+K-1]) * V[(i-1)*K+1:i*K] BLAS.trmv!('U','N','N',R[POSR:POSR+K-1,POSR:POSR+K-1],view(V,(i-1)*K+1:i*K)) # interp call 10 #FOREIGN.dgemv!( 'N', K, LEN-I*K, ONE, R[POSR,POSR+K], LDR, V[I*K+1], 1, ONE, V[(I-1)*K+1], 1 ) #V[(i-1)*K+1:i*K] .= R[POSR:POSR+K-1,POSR+K:POSR+K+LEN-i*K-1] * V[i*K+1:LEN] BLAS.gemv!('N',ONE,R[POSR:POSR+K-1,POSR+K:POSR+K+LEN-i*K-1], V[i*K+1:LEN],ONE,view(V,(i-1)*K+1:i*K)) end # interp call 11 #FOREIGN.dlaset!( 'All', LEN, 1, ZERO, ZERO, Z, 1 ) Z[1:LEN] .= ZERO for i in 1:N-S1 # do 60 # interp call 12 #FOREIGN.dgemv!( 'T', K, LEN-I*K, ONE, R[POSR,POSR+K], LDR, V[(I-1)*K+1], 1, ONE, Z[I*K+1], 1 ) #Z[i*K+1:LEN] .+= R[POSR:POSR+K-1,POSR:POSR+LEN-i*K-1]' * V[(i-1)*K+1:i*K] BLAS.gemv!('T',ONE,R[POSR:POSR+K-1,POSR:POSR+LEN-i*K-1],V[(i-1)*K+1:i*K], ONE,view(Z,i*K+1:LEN)) # interp call 13 #FOREIGN.dtrmv!( 'U', 'T', 'N', K, R[POSR,POSR], LDR, V[(I-1)*K+1], 1 ) #V[(i-1)*K+1:i*K] .= UpperTriangular(R[POSR:POSR+K-1,POSR:POSR+K-1])' * V[(i-1)*K+1:i*K] BLAS.trmv!('U','T','N',R[POSR:POSR+K-1,POSR:POSR+K-1], view(V,(i-1)*K+1:i*K)) # interp call 14 #FOREIGN.daxpy!( K, ONE, V((I-1)*K+1), 1, Z((I-1)*K+1), 1 ) Z[(i-1)*K+1:i*K] .+= V[(i-1)*K+1:i*K] end # interp call 15 # FOREIGN.dlaset!( 'All', LEN, 1, ZERO, ZERO, V, 1 ) V[1:LEN] .= ZERO for i in 1:N-S1 # do 70 # interp call 16 #FOREIGN.dgemv!( 'T', K, LEN-(I-1)*K, ONE, T(1,POSR+K), LDT, W((I-1)*K+1), 1, ONE, V((I-1)*K+1), 1 ) #V[(i-1)*K+1:LEN] .+= T[1:K,POSR+K:POSR+K+LEN-(i-1)*K-1]' * W[(i-1)*K+1:i*K] BLAS.gemv!('T',ONE,T[1:K,POSR+K:POSR+K+LEN-(i-1)*K-1],W[(i-1)*K+1:i*K], ONE,view(V,(i-1)*K+1:LEN)) end # interp call 17 #FOREIGN.daxpy!( LEN, -ONE, Z, 1, V, 1 ) #V[1:LEN] .-= Z[1:LEN] BLAS.axpy!(-ONE,Z[1:LEN],view(V,1:LEN)) # NNRM = DNRM2( LEN, V, 1 ) NNRM = norm(V[1:LEN]) # interp call 18 # FOREIGN.dscal!( LEN, -ONE/NNRM, V, 1 ) V[1:LEN] .*= (-ONE / NNRM) end # for / do 80 POS = ( S1 - 1 )*K + 1 P = S1 end # if println(io, "rows: $(P*K); norm of Schur complement: $NNRM") end # for / do 90 # interp output 1 println(io, "R:") _nc = M _nr = P*K show(io, "text/plain", R[1:_nr,1:_nc]) println(io) end # run_mb02fd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1471
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02gd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 20 NMAX = 20 NLMAX = 20 LDRB = ( NLMAX + 1 )*KMAX LDT = KMAX*NMAX LDWORK = ( NLMAX + 1 )*KMAX*KMAX + ( 3 + NLMAX )*KMAX T = Array{Float64,2}(undef, LDT,NMAX*KMAX) RB = Array{Float64,2}(undef, LDRB,NMAX*KMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) NL = parse(BlasInt, vs[3]) TRIU = vs[4][1] TYPET = 'R' M = ( NL + 1 )*K if ( N<=0 || N>NMAX ) elseif ( NL<=0 || NL>NLMAX ) elseif ( K<=0 || K>KMAX ) else vs = String[] _isz,_jsz = (K,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 INFO = SLICOT.mb02gd!(TYPET, TRIU, K, N, NL, 0, N, T, RB) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( TRIU, 'T' ) ) SIZR = NL*K + 1 else SIZR = ( NL + 1 )*K end # if # interp output 1 println(io,"RB:") _nc = N*K _nr = SIZR show(io,"text/plain",RB[1:_nr,1:_nc]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2046
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02hd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 20 LMAX = 20 MMAX = 20 MLMAX = 10 NMAX = 20 NUMAX = 10 LDRB = ( MLMAX + NUMAX + 1 )*LMAX LDTC = ( MLMAX + 1 )*KMAX LDTR = KMAX LDWORK = LDRB*LMAX + ( 2*NUMAX + 1 )*LMAX*KMAX + 2*LDRB*( KMAX + LMAX ) + LDRB + 6*LMAX TC = Array{Float64,2}(undef, LDTC,LMAX) TR = Array{Float64,2}(undef, LDTR,NMAX*LMAX) RB = Array{Float64,2}(undef, LDRB,NMAX*LMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) L = parse(BlasInt, vs[2]) M = parse(BlasInt, vs[3]) ML = parse(BlasInt, vs[4]) N = parse(BlasInt, vs[5]) NU = parse(BlasInt, vs[6]) TRIU = vs[7][1] if ( K<0 || K>KMAX ) elseif ( L<0 || L>LMAX ) elseif ( M<=0 || M>MMAX ) elseif ( ML<0 || ML>MLMAX ) elseif ( N<=0 || N>NMAX ) elseif ( NU<0 || NU>NUMAX ) else vs = String[] _isz,_jsz = (ML*K+K,L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TC[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (K,NU*L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TR[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end S = (min(M*K,N*L)+L-1) ÷ L # interp call 1 INFO = SLICOT.mb02hd!(TRIU, K, L, M, ML, N, NU, 0, S, TC, TR, RB) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else LENR = ( ML + NU + 1 )*L LENR = min( LENR, N*L ) # interp output 1 println(io,"RB:") _nc = min( N*L, M*K ) _nr = LENR show(io,"text/plain",RB[1:_nr,1:_nc]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2952
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02id(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 20 LMAX = 20 MMAX = 20 NMAX = 20 RBMAX = 20 RCMAX = 20 LDB = KMAX*MMAX LDC = KMAX*MMAX LDTC = MMAX*KMAX LDTR = KMAX LDWORK = 2*NMAX*LMAX*( LMAX + KMAX ) + ( 6 + NMAX )*LMAX + MMAX*KMAX*( LMAX + 1 ) + RBMAX + RCMAX TC = Array{Float64,2}(undef, LDTC,LMAX) TR = Array{Float64,2}(undef, LDTR,NMAX*LMAX) B = Array{Float64,2}(undef, LDB,RBMAX) C = Array{Float64,2}(undef, LDC,RCMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) L = parse(BlasInt, vs[2]) M = parse(BlasInt, vs[3]) N = parse(BlasInt, vs[4]) RB = parse(BlasInt, vs[5]) RC = parse(BlasInt, vs[6]) JOB = vs[7][1] if ( K<=0 || K>KMAX ) elseif ( L<=0 || L>LMAX ) elseif ( M<=0 || M>MMAX ) elseif ( N<=0 || N>NMAX ) elseif ( ( LSAME( JOB, 'O' ) || LSAME( JOB, 'A' ) ) && ( ( RB<=0 ) || ( RB>RBMAX ) ) ) elseif ( ( LSAME( JOB, 'U' ) || LSAME( JOB, 'A' ) ) && ( ( RC<=0 ) || ( RC>RCMAX ) ) ) else vs = String[] _isz,_jsz = (M*K,L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TC[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (K,N*L-L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TR[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if ( LSAME( JOB, 'O' ) || LSAME( JOB, 'A' ) ) vs = String[] _isz,_jsz = (M*K,RB) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if if ( LSAME( JOB, 'U' ) || LSAME( JOB, 'A' ) ) vs = String[] _isz,_jsz = (N*L,RC) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if # interp call 1 INFO = SLICOT.mb02id!(JOB, K, L, M, N, RB, RC, TC, TR, B, C) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'O' ) || LSAME( JOB, 'A' ) ) # interp output 1 println(io,"B:") _nc = RB _nr = N*L show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) end # if if ( LSAME( JOB, 'U' ) || LSAME( JOB, 'A' ) ) # interp output 2 println(io,"C:") _nc = RC _nr = M*K show(io,"text/plain",C[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2040
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02jd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 10 LMAX = 10 MMAX = 20 NMAX = 20 LDR = NMAX*LMAX LDQ = MMAX*KMAX LDTC = MMAX*KMAX LDTR = KMAX LDWORK = ( MMAX*KMAX + NMAX*LMAX ) *( LMAX + 2*KMAX ) + 6*LMAX + MMAX*KMAX + NMAX*LMAX TC = Array{Float64,2}(undef, LDTC,LMAX) TR = Array{Float64,2}(undef, LDTR,NMAX*LMAX) Q = Array{Float64,2}(undef, LDQ,NMAX*LMAX) R = Array{Float64,2}(undef, LDR,NMAX*LMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) L = parse(BlasInt, vs[2]) M = parse(BlasInt, vs[3]) N = parse(BlasInt, vs[4]) JOB = vs[5][1] if ( K<=0 || K>KMAX ) elseif ( L<=0 || L>LMAX ) elseif ( M<=0 || M>MMAX ) elseif ( N<=0 || N>NMAX ) else vs = String[] _isz,_jsz = (M*K,L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TC[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (K,N*L-L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TR[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end S = (min(M*K,N*L)+L-1) ÷ L # interp call 1 INFO = SLICOT.mb02jd!(JOB, K, L, M, N, 0, S, TC, TR, Q, R) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'Q' ) ) # interp output 1 println(io,"Q:") _nc = min( N*L, M*K ) _nr = M*K show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if # interp output 2 println(io,"R:") _nc = min( N*L, M*K ) _nr = N*L show(io,"text/plain",R[1:_nr,1:_nc]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2312
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02jx(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 20 LMAX = 20 MMAX = 20 NMAX = 20 LDR = NMAX*LMAX LDQ = MMAX*KMAX LDTC = MMAX*KMAX LDTR = KMAX LDWORK = ( MMAX*KMAX + NMAX*LMAX ) *( LMAX + 2*KMAX ) + 5*LMAX + MMAX*KMAX + NMAX*LMAX TC = Array{Float64,2}(undef, LDTC,LMAX) TR = Array{Float64,2}(undef, LDTR,NMAX*LMAX) Q = Array{Float64,2}(undef, LDQ,NMAX*LMAX) R = Array{Float64,2}(undef, LDR,NMAX*LMAX) JPVT = Array{BlasInt,1}(undef, NMAX*LMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) L = parse(BlasInt, vs[2]) M = parse(BlasInt, vs[3]) N = parse(BlasInt, vs[4]) TOL1 = parse(Float64, replace(vs[5],'D'=>'E')) TOL2 = parse(Float64, replace(vs[6],'D'=>'E')) JOB = vs[7][1] if ( K<=0 || K>KMAX ) elseif ( L<=0 || L>LMAX ) elseif ( M<=0 || M>MMAX ) elseif ( N<=0 || N>NMAX ) else vs = String[] _isz,_jsz = (M*K,L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TC[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (K,N*L-L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TR[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 RNK, INFO = SLICOT.mb02jx!(JOB, K, L, M, N, TC, TR, Q, R, JPVT, TOL1, TOL2, LDWORK) println(io, "RNK = $RNK") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'Q' ) ) # interp output 1 println(io,"Q:") _nc = RNK _nr = M*K show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if # interp output 2 println(io,"R:") _nc = RNK _nr = N*L show(io,"text/plain",R[1:_nr,1:_nc]) println(io,) # interp output 3 println(io,"JPVT:") _nr = min( M*K, N*L ) show(io,"text/plain",JPVT[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3517
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02kd(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 KMAX = 20 LMAX = 20 MMAX = 20 NMAX = 20 RMAX = 20 LDB = LMAX*NMAX LDC = KMAX*MMAX LDTC = MMAX*KMAX LDTR = KMAX LDWORK = 2*( KMAX*LMAX + KMAX*RMAX + LMAX*RMAX + 1 )*( MMAX + NMAX ) TC = Array{Float64,2}(undef, LDTC,LMAX) TR = Array{Float64,2}(undef, LDTR,NMAX*LMAX) B = Array{Float64,2}(undef, LDB,RMAX) C = Array{Float64,2}(undef, LDC,RMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) L = parse(BlasInt, vs[2]) M = parse(BlasInt, vs[3]) N = parse(BlasInt, vs[4]) R = parse(BlasInt, vs[5]) LDBLK = vs[6][1] TRANS = vs[7][1] if ( K<=0 || K>KMAX ) @error "Illegal K=$K" elseif ( L<=0 || L>LMAX ) @error "Illegal L=$L" elseif ( M<=0 || M>MMAX ) @error "Illegal M=$M" elseif ( N<=0 || N>NMAX ) @error "Illegal N=$N" elseif ( R<=0 || R>RMAX ) @error "Illegal R=*R" end if ( LSAME( LDBLK, 'R' ) ) vs = String[] _isz,_jsz = ((M-1)*K,L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TC[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (K,N*L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TR[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end else vs = String[] _isz,_jsz = (M*K,L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TC[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (K,(N-1)*L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz TR[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if if ( LSAME( TRANS, 'N' ) ) vs = String[] _isz,_jsz = (N*L,R) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end else vs = String[] _isz,_jsz = (M*K,R) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if close(f) ALPHA = ONE BETA = ZERO # interp call 1 INFO = SLICOT.mb02kd!(LDBLK, TRANS, K, L, M, N, R, ALPHA, BETA, TC, TR, B, C) @test INFO == 0 INFO == 0 || return if ( LSAME( TRANS, 'N' ) ) # interp output 1 println(io, "C:") _nc = R _nr = M*K show(io, "text/plain", C[1:_nr,1:_nc]) println(io) else # interp output 2 println(io, "C:") _nc = R _nr = N*L show(io, "text/plain", C[1:_nr,1:_nc]) println(io) end # if end # run_mb02kd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2296
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02md(datfile, io=stdout) NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 LMAX = 20 LDC = max( MMAX,NMAX+LMAX ) LDX = NMAX LDWORK = MMAX*(NMAX+LMAX) + max( 3*min(MMAX,NMAX+LMAX) + max(MMAX,NMAX+LMAX), 5*min(MMAX,NMAX+LMAX), 3*LMAX ) LIWORK = LMAX LENGS = min( MMAX, NMAX+LMAX ) C = Array{Float64,2}(undef, LDC,NMAX+LMAX) S = Array{Float64,1}(undef, LENGS) X = Array{Float64,2}(undef, LDX,LMAX) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, LIWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) L = parse(BlasInt, vs[3]) JOB = vs[4][1] if ( LSAME( JOB, 'R' ) ) vs = split(readline(f)) TOL = parse(Float64, replace(vs[1],'D'=>'E')) elseif ( LSAME( JOB, 'T' ) ) vs = split(readline(f)) RANK = parse(BlasInt, vs[1]) SDEV = parse(Float64, replace(vs[2],'D'=>'E')) TOL = SDEV elseif ( LSAME( JOB, 'N' ) ) vs = split(readline(f)) RANK = parse(BlasInt, vs[1]) TOL = parse(Float64, replace(vs[2],'D'=>'E')) else RANK = 0 vs = split(readline(f)) SDEV = parse(Float64, replace(vs[1],'D'=>'E')) TOL = SDEV end # if if ( M<0 || M>MMAX ) elseif ( N<0 || N>NMAX ) elseif ( L<0 || L>LMAX ) else vs = String[] _isz,_jsz = (M,N+L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 RANK, INFO, IWARN = SLICOT.mb02md!(JOB, M, N, L, RANK, C, S, X, TOL) println(io, "RANK = $RANK") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( INFO!=0 ) else if ( IWARN!=0 ) else end # if # unable to translate write statement: # in do block [('40', 'J', 'L'), ('20', 'I', 'N')] # write X(I,J) println(io, "X:") _nr = N _nc = L show(io, "text/plain", X[1:_nr,1:_nc]) println(io) # interp output 1 println(io, "S:") _nr = min( M, N+L ) show(io, "text/plain", S[1:_nr]) println(io) end # if end # if close(f) end # run_mb02md()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2539
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02nd(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 LMAX = 20 LDC = max( MMAX, NMAX+LMAX ) LDX = NMAX LENGQ = 2*min(MMAX,NMAX+LMAX)-1 LIWORK = NMAX+2*LMAX LDWORK = max(2, max( MMAX, NMAX+LMAX ) + 2*min( MMAX, NMAX+LMAX ), min( MMAX, NMAX+LMAX ) + max( ( NMAX+LMAX )*( NMAX+LMAX-1 )÷2, MMAX*( NMAX+LMAX-( MMAX-1 )÷2 ) ) + max( 6*(NMAX+LMAX)-5, LMAX*LMAX + max( NMAX+LMAX, 3*LMAX ) ) ) LBWORK = NMAX+LMAX C = Array{Float64,2}(undef, LDC,NMAX+LMAX) X = Array{Float64,2}(undef, LDX,LMAX) Q = Array{Float64,1}(undef, LENGQ) INUL = Array{BlasBool,1}(undef, NMAX+LMAX) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, LIWORK) BWORK = Array{BlasBool,1}(undef, LBWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) L = parse(BlasInt, vs[3]) RANK = parse(BlasInt, vs[4]) THETA = parse(Float64, replace(vs[5],'D'=>'E')) TOL = parse(Float64, replace(vs[6],'D'=>'E')) RELTOL = parse(Float64, replace(vs[7],'D'=>'E')) if ( M<0 || M>MMAX ) elseif ( N<0 || N>NMAX ) elseif ( L<0 || L>LMAX ) elseif ( RANK>min( MMAX, NMAX ) ) elseif ( RANK<0 && THETA<ZERO ) else vs = String[] _isz,_jsz = (M,N+L) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end RANK1 = RANK THETA1 = THETA # interp call 1 RANK, THETA, INFO, IWARN = SLICOT.mb02nd!(M, N, L, RANK, THETA, C, X, Q, INUL, TOL, RELTOL) println(io, "RANK = $RANK") println(io, "THETA = $THETA") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( INFO!=0 ) else if ( IWARN!=0 ) else end # if MINMNL = min( M, N+L ) LOOP = MINMNL - 1 println(io, "Q:") show(io, "text/plain", Bidiagonal(Q[1:MINMNL],Q[MINMNL+1:MINMNL+LOOP],'U')) println(io) println(io, "X:") show(io, "text/plain", X[1:N,1:L]) println(io) # interp output 1 println(io, "C:") _nc = N+L _nr = max( M, N + L ) show(io, "text/plain", C[1:_nr,1:_nc]) println(io) inul = convert(Vector{Bool}, INUL[1:N+L]) println(io, "INUL:") show(io, "text/plain", inul[1:N+L]) println(io) end # if end # if close(f) end # run_mb02nd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1954
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02qd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 MMAX = 20 NRHSMX = 20 LDA = MMAX LDB = max( MMAX, NMAX ) LDWORK = max( min( MMAX, NMAX) + 3*NMAX + 1, 2*min( MMAX, NMAX) + NRHSMX ) A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDB,NRHSMX) Y = Array{Float64,1}(undef, NMAX*NRHSMX) JPVT = Array{BlasInt,1}(undef, NMAX) SVAL = Array{Float64,1}(undef, 3) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) NRHS = parse(BlasInt, vs[3]) RCOND = parse(Float64, replace(vs[4],'D'=>'E')) SVLMAX = parse(Float64, replace(vs[5],'D'=>'E')) JOB = vs[6][1] INIPER = vs[7][1] if ( M<0 || M>MMAX ) else if ( N<0 || N>NMAX ) else if ( NRHS<0 || NRHS>NRHSMX ) else vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,NRHS) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 RANK, INFO = SLICOT.mb02qd!(JOB, INIPER, M, N, NRHS, RCOND, SVLMAX, A, B, Y, JPVT, SVAL, LDWORK) println(io, "RANK = $RANK") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"B:") _nc = NRHS _nr = N show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) end # if end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2233
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb02sd(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 NMAX = 20 NRHMAX = 20 LDB = NMAX LDH = NMAX LDWORK = 3*NMAX LIWORK = NMAX H = Array{Float64,2}(undef, LDH,NMAX) IPIV = Array{BlasInt,1}(undef, NMAX) B = Array{Float64,2}(undef, LDB,NRHMAX) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, LIWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) NRHS = parse(BlasInt, vs[2]) NORM = vs[3][1] TRANS = vs[4][1] if ( N<0 || N>NMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz H[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if ( NRHS<0 || NRHS>NRHMAX ) else vs = String[] _isz,_jsz = (N,NRHS) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if N>2 # interp call 1 #FOREIGN.dlaset!( 'Lower', N-2, N-2, ZERO, ZERO, H(3,1), LDH ) triu!(H, -1) end # interp call 2 INFO = SLICOT.mb02sd!(N, H, IPIV) @test INFO == 0 INFO == 0 || return #HNORM = DLANHS( NORM, N, H, LDH, DWORK ) HNORM = ccall((LinearAlgebra.BLAS.@blasfunc(dlanhs_), LinearAlgebra.LAPACK.liblapack), Float64, (Ref{UInt8}, Ref{BlasInt}, Ptr{Float64}, Ref{BlasInt}, Ptr{Float64}), NORM, N, H, LDH, DWORK) # interp call 3 RCOND, INFO = SLICOT.mb02td!(NORM, N, HNORM, H, IPIV) println(io, "RCOND = $RCOND") @test INFO == 0 INFO == 0 || return if ( INFO==0 && RCOND>eps(0.9) ) # interp call 4 INFO = SLICOT.mb02rd!(TRANS, N, NRHS, H, IPIV, B) @test INFO == 0 INFO == 0 || return else end # if # interp output 1 println(io, "B:") _nc = NRHS _nr = N show(io, "text/plain", B[1:_nr,1:_nc]) println(io) end # if end # if close(f) end # run_mb02sd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1425
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb02vd(datfile, io=stdout) NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 LDA = NMAX LDB = MMAX A = Array{Float64,2}(undef, LDA,NMAX) IPIV = Array{BlasInt,1}(undef, NMAX) B = Array{Float64,2}(undef, LDB,NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) TRANS = vs[3][1] if ( N<0 || N>NMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if ( M<0 || M>MMAX ) else vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 INFO = SLICOT.mb02vd!(TRANS, M, N, A, IPIV, B) @test INFO == 0 INFO == 0 || return if ( INFO==0 ) # interp output 1 println(io,"B:") _nc = N _nr = M show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) else end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3273
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03bd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 6 NMAX = 50 LDA1 = NMAX LDA2 = NMAX LDQ1 = NMAX LDQ2 = NMAX LDWORK = KMAX + max( 2*NMAX, 8*KMAX ) LIWORK = 2*KMAX + NMAX QIND = Array{BlasInt,1}(undef, KMAX) S = Array{BlasInt,1}(undef, KMAX) A = Array{Float64,3}(undef, LDA1,LDA2,KMAX) Q = Array{Float64,3}(undef, LDQ1,LDQ2,KMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) SCAL = Array{BlasInt,1}(undef, NMAX) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] DEFL = vs[2][1] COMPQ = vs[3][1] K = parse(BlasInt, vs[4]) N = parse(BlasInt, vs[5]) H = parse(BlasInt, vs[6]) ILO = parse(BlasInt, vs[7]) IHI = parse(BlasInt, vs[8]) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz = K while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end S[1:_isz] .= parsex.(BlasInt, vs) vs = String[] _isz,_jsz,_ksz = (N,N,K) while length(vs) < _isz*_jsz*_ksz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for k in 1:_ksz for i in 1:_isz _i0 = (i-1)*_jsz + (k-1)*_jsz*_isz A[i,1:_jsz,k] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end if ( LSAME( COMPQ, 'P' ) ) vs = String[] _isz = K while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end QIND[1:_isz] .= parsex.(BlasInt, vs) end # if close(f) # interp call 1 INFO, IWARN = SLICOT.mb03bd!(JOB, DEFL, COMPQ, QIND, K, N, H, ILO, IHI, S, A, Q, ALPHAR, ALPHAI, BETA, SCAL, LIWORK, LDWORK) @test INFO == 0 println(io, "IWARN = $IWARN") if ( LSAME( JOB, 'S' ) || LSAME( JOB, 'T' ) ) # interp output 1 println(io, "A:") _nc = N _nr = N _nk = K show(io, "text/plain", A[1:_nr,1:_nc,1:_nk]) println(io) end # if if ( LSAME( COMPQ, 'U' ) || LSAME( COMPQ, 'I' ) ) # interp output 2 println(io, "Q:") _nc = N _nr = N _nk = K show(io, "text/plain", Q[1:_nr,1:_nc,1:_nk]) println(io) elseif ( LSAME( COMPQ, 'P' ) ) for L in 1:K if ( QIND[L]>0 ) println(io, "factor ",QIND[L]) # write QIND( L ) # unable to translate write loop: # write ( I, J, QIND( L ) ), J = 1, N # interp output 3 show(io, "text/plain", Q[1:N,1:N,QIND[L]]) println(io) end # if end # for end # if # interp output 4 println(io, "ALPHAR:") _nr = N show(io, "text/plain", ALPHAR[1:_nr]) println(io) # interp output 5 println(io, "ALPHAI:") _nr = N show(io, "text/plain", ALPHAI[1:_nr]) println(io) # interp output 6 println(io, "BETA:") _nr = N show(io, "text/plain", BETA[1:_nr]) println(io) # interp output 7 println(io, "SCAL:") _nr = N show(io, "text/plain", SCAL[1:_nr]) println(io) end # run_mb03bd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2375
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb03bz(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 6 NMAX = 50 LDA1 = NMAX LDA2 = NMAX LDQ1 = NMAX LDQ2 = NMAX LDWORK = NMAX LZWORK = NMAX S = Array{BlasInt,1}(undef, KMAX) A = Array{ComplexF64,3}(undef, LDA1,LDA2,KMAX) Q = Array{ComplexF64,3}(undef, LDQ1,LDQ2,KMAX) ALPHA = Array{ComplexF64,1}(undef, NMAX) BETA = Array{ComplexF64,1}(undef, NMAX) SCAL = Array{BlasInt,1}(undef, NMAX) ZWORK = Array{ComplexF64,1}(undef, LZWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ = vs[2][1] K = parse(BlasInt, vs[3]) N = parse(BlasInt, vs[4]) ILO = parse(BlasInt, vs[5]) IHI = parse(BlasInt, vs[6]) if ( N<0 || N>NMAX ) else vs = String[] _isz = K while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end S[1:_isz] .= parsex.(BlasInt, vs) vs = String[] _isz,_jsz,_ksz = (N,N,K) while length(vs) < _isz*_jsz*_ksz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for k in 1:_ksz for i in 1:_isz _i0 = (i-1)*_jsz + (k-1)*_jsz*_isz A[i,1:_jsz,k] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end end # interp call 1 INFO = SLICOT.mb03bz!(JOB, COMPQ, K, N, ILO, IHI, S, A, Q, ALPHA, BETA, SCAL, LDWORK, LZWORK) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'S' ) ) # interp output 1 println(io,"A:") _nc = N _nr = N _nk = K show(io,"text/plain",A[1:_nr,1:_nc,1:_nk]) println(io,) end # if if ( !LSAME( COMPQ, 'N' ) ) # interp output 2 println(io,"Q:") _nc = N _nr = N _nk = K show(io,"text/plain",Q[1:_nr,1:_nc,1:_nk]) println(io,) end # if # interp output 3 println(io,"ALPHA:") _nr = N show(io,"text/plain",ALPHA[1:_nr]) println(io,) # interp output 4 println(io,"BETA:") _nr = N show(io,"text/plain",BETA[1:_nr]) println(io,) # interp output 5 println(io,"SCAL:") _nr = N show(io,"text/plain",SCAL[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3697
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb03fz(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDB = NMAX LDC = NMAX LDD = NMAX LDFG = NMAX LDQ = 2*NMAX LDU = NMAX LDWORK = 18*NMAX*NMAX + NMAX + 3 + max( 2*NMAX, 24 ) LDZ = NMAX LIWORK = 2*NMAX + 9 LZWORK = 8*NMAX + 28 Z = Array{ComplexF64,2}(undef, LDZ,NMAX) B = Array{ComplexF64,2}(undef, LDB,NMAX) FG = Array{ComplexF64,2}(undef, LDFG,NMAX) D = Array{ComplexF64,2}(undef, LDD,NMAX) C = Array{ComplexF64,2}(undef, LDC,NMAX) Q = Array{ComplexF64,2}(undef, LDQ,2*NMAX) U = Array{ComplexF64,2}(undef, LDU,2*NMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) BWORK = Array{BlasBool,1}(undef, NMAX) ZWORK = Array{ComplexF64,1}(undef, LZWORK) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, LIWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) COMPQ = vs[1][1] COMPU = vs[2][1] ORTH = vs[3][1] N = parse(BlasInt, vs[4]) if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) else M = N÷2 vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Z[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end # interp call 1 NEIG, INFO = SLICOT.mb03fz!(COMPQ, COMPU, ORTH, N, Z, B, FG, D, C, Q, U, ALPHAR, ALPHAI, BETA, LIWORK, BWORK) println(io, "NEIG = $NEIG") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"Z:") _nc = N _nr = N show(io,"text/plain",Z[1:_nr,1:_nc]) println(io,) if ( LSAME( COMPQ, 'C' ) || LSAME( COMPU, 'C' ) ) # interp output 2 println(io,"D:") _nc = N _nr = N show(io,"text/plain",D[1:_nr,1:_nc]) println(io,) # interp output 3 println(io,"C:") _nc = N _nr = N show(io,"text/plain",C[1:_nr,1:_nc]) println(io,) # interp output 4 println(io,"B:") _nc = N _nr = N show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) # interp output 5 println(io,"FG:") _nc = N _nr = N show(io,"text/plain",FG[1:_nr,1:_nc]) println(io,) end # if # interp output 6 println(io,"ALPHAR:") _nr = N show(io,"text/plain",ALPHAR[1:_nr]) println(io,) # interp output 7 println(io,"ALPHAI:") _nr = N show(io,"text/plain",ALPHAI[1:_nr]) println(io,) # interp output 8 println(io,"BETA:") _nr = N show(io,"text/plain",BETA[1:_nr]) println(io,) if ( LSAME( COMPQ, 'C' ) && NEIG>0 ) # interp output 9 println(io,"Q:") _nc = NEIG _nr = N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if if ( LSAME( COMPU, 'C' ) && NEIG>0 ) # interp output 10 println(io,"U:") _nc = NEIG _nr = N show(io,"text/plain",U[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
9007
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03kd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 6 NMAX = 50 LDA1 = NMAX LDA2 = NMAX LDQ1 = NMAX LDQ2 = NMAX LDWORK = max( 42*KMAX + NMAX, 80*KMAX - 48, KMAX + max( 2*NMAX, 8*KMAX ) ) LIWORK = max( 4*KMAX, 2*KMAX + NMAX ) HUND = 1.0e2 ZERO = 0.0e0 QIND = Array{BlasInt,1}(undef, KMAX) S = Array{BlasInt,1}(undef, KMAX) A = Array{Float64,3}(undef, LDA1,LDA2,KMAX) Q = Array{Float64,3}(undef, LDQ1,LDQ2,KMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) SCAL = Array{BlasInt,1}(undef, NMAX) ND = Array{BlasInt,1}(undef, KMAX) NI = Array{BlasInt,1}(undef, KMAX) SELECT = Array{Bool,1}(undef, NMAX) T = Array{Float64,1}(undef, NMAX*NMAX*KMAX) IXT = Array{BlasInt,1}(undef, KMAX) QK = Array{Float64,1}(undef, NMAX*NMAX*KMAX) IXQ = Array{BlasInt,1}(undef, KMAX) # WARNING: desperate attempt to initialize M M = 0 IWORK = Array{BlasInt,1}(undef, LIWORK) LDQ = Array{BlasInt,1}(undef, KMAX) LDT = Array{BlasInt,1}(undef, KMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] DEFL = vs[2][1] COMPQ = vs[3][1] STRONG = vs[4][1] K = parse(BlasInt, vs[5]) N = parse(BlasInt, vs[6]) H = parse(BlasInt, vs[7]) ILO = parse(BlasInt, vs[8]) IHI = parse(BlasInt, vs[9]) if ( N<0 || N>NMAX ) @error "illegal N" end TOL = HUND vs = String[] _isz = K while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end S[1:_isz] .= parsex.(BlasInt, vs) vs = String[] _isz,_jsz,_ksz = (N,N,K) while length(vs) < _isz*_jsz*_ksz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for k in 1:_ksz for i in 1:_isz _i0 = (i-1)*_jsz + (k-1)*_jsz*_isz A[i,1:_jsz,k] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end if ( LSAME( COMPQ, 'U' ) ) vs = String[] _isz,_jsz,_ksz = (N,N,K) while length(vs) < _isz*_jsz*_ksz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for k in 1:_ksz for i in 1:_isz _i0 = (i-1)*_jsz + (k-1)*_jsz*_isz Q[i,1:_jsz,k] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end end if ( LSAME( COMPQ, 'P' ) ) vs = String[] _isz = K while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end QIND[1:_isz] .= parsex.(BlasInt, vs) vs = String[] _isz,_jsz,_ksz = (N,N,K) while length(vs) < _isz*_jsz*_ksz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for k in 1:_ksz if QIND[k] > 0 for i in 1:_isz _i0 = (i-1)*_jsz + (k-1)*_jsz*_isz Q[i,1:_jsz,QIND[k]] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end end end # if close(f) if LSAME(JOB,'E') JOB = 'S' end println(io, "JOB = $JOB") println(io, "COMPQ = $COMPQ") # interp call 1 INFO, IWARN = SLICOT.mb03bd!(JOB, DEFL, COMPQ, QIND, K, N, H, ILO, IHI, S, A, Q, ALPHAR, ALPHAI, BETA, SCAL, LIWORK, LDWORK) @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( IWARN!=0 ) @warn "mb03bd returned IWARN=$IWARN" end verbose = false if verbose ## added for diagnostic if ( LSAME( JOB, 'S' ) || LSAME( JOB, 'T' ) ) # interp output 1 println(io, "after Schur (HessIdx=$H) A:") _nc = N _nr = N _nk = K show(io, "text/plain", A[1:_nr,1:_nc,1:_nk]) println(io) end # if if ( LSAME( COMPQ, 'U' ) || LSAME( COMPQ, 'I' ) ) println(io, "Q:") _nc = N _nr = N _nk = K show(io, "text/plain", Q[1:_nr,1:_nc,1:_nk]) println(io) elseif ( LSAME( COMPQ, 'P' ) ) println(io, "TODO: show Q for COMPQ='P'") for L in 1:K #if ( QIND[L]>0 ) #println(io, "Q:") #show(io, "text/plain", Q) #println(io) #nd # if end # for end # if end ## diagnostic # prepare data for calling MB03KD with screwy data structures and factor ordering for L in 1:K ND[L] = max(1,N) NI[L] = 0 LDT[L] = max(1,N) IXT[L] = (L-1)*LDT[L]*N + 1 LDQ[L] = max(1,N) IXQ[L] = IXT[L] if ( L<= K÷2 ) i = S[ K - L + 1 ] S[K-L+1] = S[L] S[L] = i end # if end for L in 1:K # interp call 2 # FOREIGN.dlacpy!( 'Full', N, N, A( 1, 1, K-L+1 ), LDA1, T( IXT( L ) ), LDT( L ) ) ir1 = IXT[L] for ic in 1:N T[ir1:ir1+N-1] .= A[1:N,ic,K-L+1] ir1 += LDT[L] end end if verbose println(io, "stored T:") for k in 1:K println(io, "K=$k") Ttmp = reshape(T[IXT[k]:IXT[k]+LDT[k]*N-1],N,N) show(io, "text/plain", Ttmp) println(io) end end # diagnostic if ( LSAME( COMPQ, 'U' ) || LSAME( COMPQ, 'I' ) ) COMPQ = 'U' for L in 1:K # interp call 3 # FOREIGN.dlacpy!( 'Full', N, N, Q( 1, 1, K-L+1 ), LDQ1, QK( IXQ( L ) ), LDQ( L ) ) ir1 = IXQ[L] for ic in 1:N QK[ir1:ir1+N-1] .= Q[1:N,ic,K-L+1] ir1 += LDQ[L] end end elseif ( LSAME( COMPQ, 'P' ) ) COMPQ = 'W' for L in 1:K if QIND[L] < 0 QIND[L] = 2 end P = QIND[L] if P != 0 ir1 = IXQ[P] Qk[ir1:ir1+N-1] .= Q[1:N,ic,K-P+1] ir1 += LDQ[P] end end end # if if verbose # diag println(io, "stored Q:") for k in 1:K println(io, "K=$k") Ttmp = reshape(QK[IXQ[k]:IXQ[k]+LDQ[k]*N-1],N,N) show(io, "text/plain", Ttmp) println(io) end end SELECT .= false for i in 1:N SELECT[i] = ALPHAR[i] < 0 end # interp output 1 println(io, "ALPHAR:") _nr = N show(io, "text/plain", ALPHAR[1:_nr]) println(io) # interp output 2 println(io, "ALPHAI:") _nr = N show(io, "text/plain", ALPHAI[1:_nr]) println(io) # interp output 3 println(io, "BETA:") _nr = N show(io, "text/plain", BETA[1:_nr]) println(io) # interp output 4 println(io, "SCAL:") _nr = N show(io, "text/plain", SCAL[1:_nr]) println(io) # interp call 4 select = convert(Vector{BlasBool}, SELECT) println(io, "select:"); show(io, "text/plain", select[1:K]); println() M, INFO = SLICOT.mb03kd!(COMPQ, QIND, STRONG, K, N, H, ND, NI, S, select, T, LDT, IXT, QK, LDQ, IXQ, TOL) @test INFO == 0 if INFO != 0 println(io, "mb03kd returned INFO = $INFO") return end if ( INFO!=0 ) #@error "mb03kd returned INFO=$INFO" end Tf = zeros(N,N,K) for L in 1:K P = K - L + 1 ir1 = IXT[P] for ic in 1:N Tf[1:N,ic,L] .= T[ir1:ir1+N-1] ir1 += LDT[P] end end # unable to translate write loop: # write ( IXT( P ) + I - 1 + ( J - 1 )*LDT( P ) ), J = 1, N # interp output 5 println(io, "T:") show(io, "text/plain", Tf) println(io) if ( LSAME( COMPQ, 'U' ) || LSAME( COMPQ, 'I' ) ) Qf = zeros(N,N,K) for L in 1:K P = K - L + 1 ir1 = IXQ[P] for ic in 1:N Qf[1:N,ic,L] .= QK[ir1:ir1+N-1] ir1 += LDQ[P] end end # unable to translate write loop: # write ( IXQ( P ) + I - 1 + ( J - 1 )*LDQ( P ) ), J = 1, N # interp output 6 println(io, "QK:") show(io, "text/plain", Qf) println(io) elseif ( LSAME( COMPQ, 'W' ) ) for L in 1:K if ( QIND[L]>0 ) println(io, "factor $(QIND[L]):") Qf = zeros(N,N) P = K - QIND[L] + 1 ir1 = IXQ[P] for ic in 1:N Qf[1:N,ic] .= QK[ir1:ir1+N-1] ir1 += LDQ[P] end show(io, "text/plain", Qf) println(io) end end # unable to translate write loop: # write ( IXQ( P ) + I - 1 + ( J - 1 )*LDQ( P ) ), J = 1, N # interp output 7 end # if end # module
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3311
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03ld(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDA = NMAX÷2 LDB = NMAX÷2 LDDE = NMAX÷2 LDFG = NMAX÷2 LDQ = 2*NMAX LDWORK = 8*NMAX*NMAX + max( 8*NMAX + 32, NMAX÷2 + 168, 272 ) LIWORK = max( 32, NMAX + 12, NMAX*2 + 3 ) A = Array{Float64,2}(undef, LDA,NMAX÷2) DE = Array{Float64,2}(undef, LDDE,NMAX÷2+1) B = Array{Float64,2}(undef, LDB,NMAX÷2) FG = Array{Float64,2}(undef, LDFG,NMAX÷2+1) Q = Array{Float64,2}(undef, LDQ,2*NMAX) ALPHAR = Array{Float64,1}(undef, NMAX÷2) ALPHAI = Array{Float64,1}(undef, NMAX÷2) BETA = Array{Float64,1}(undef, NMAX÷2) BWORK = Array{BlasBool,1}(undef, NMAX÷2) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) COMPQ = vs[1][1] ORTH = vs[2][1] N = parse(BlasInt, vs[3]) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end M = N÷2 vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 NEIG, INFO = SLICOT.mb03ld!(COMPQ, ORTH, N, A, DE, B, FG, Q, ALPHAR, ALPHAI, BETA, LIWORK) @test INFO == 0 INFO == 0 || return println(io, "NEIG = $NEIG") # interp output 1 println(io, "A:") _nc = M _nr = M show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "DE:") _nc = M+1 _nr = M show(io, "text/plain", DE[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "B:") _nc = M _nr = M show(io, "text/plain", B[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "FG:") show(io, "text/plain", FG[1:M,2:M+1]) println(io) # interp output 5 println(io, "ALPHAR:") _nr = M show(io, "text/plain", ALPHAR[1:_nr]) println(io) # interp output 6 println(io, "ALPHAI:") _nr = M show(io, "text/plain", ALPHAI[1:_nr]) println(io) # interp output 7 println(io, "BETA:") _nr = M show(io, "text/plain", BETA[1:_nr]) println(io) if ( LSAME( COMPQ, 'C' ) && NEIG>0 ) # interp output 8 println(io, "Q:") _nc = NEIG _nr = N show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) end # if end # run_mb03ld()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3048
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb03lf(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDB = NMAX÷2 LDFG = NMAX÷2 LDQ = 2*NMAX LDU = NMAX LDZ = NMAX LDWORK = 10*NMAX*NMAX + max( NMAX*NMAX + max( NMAX÷2 + 252, 432 ), max( 8*NMAX + 48, 171 ) ) LIWORK = max( NMAX + 18, NMAX÷2 + 48, 5*NMAX÷2 + 1 ) Z = Array{Float64,2}(undef, LDZ,NMAX) B = Array{Float64,2}(undef, LDB,NMAX÷2) FG = Array{Float64,2}(undef, LDFG,NMAX÷2+1) Q = Array{Float64,2}(undef, LDQ,2*NMAX) U = Array{Float64,2}(undef, LDU,2*NMAX) ALPHAR = Array{Float64,1}(undef, NMAX÷2) ALPHAI = Array{Float64,1}(undef, NMAX÷2) BETA = Array{Float64,1}(undef, NMAX÷2) BWORK = Array{BlasBool,1}(undef, NMAX÷2) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) COMPQ = vs[1][1] COMPU = vs[2][1] ORTH = vs[3][1] N = parse(BlasInt, vs[4]) if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) else M = N÷2 vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Z[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 NEIG, INFO, IWARN = SLICOT.mb03lf!(COMPQ, COMPU, ORTH, N, Z, B, FG, Q, U, ALPHAR, ALPHAI, BETA, LIWORK) println(io, "NEIG = $NEIG") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( INFO!=0 ) else # interp output 1 println(io,"Z:") _nc = N _nr = N show(io,"text/plain",Z[1:_nr,1:_nc]) println(io,) # interp output 2 println(io,"ALPHAR:") _nr = M show(io,"text/plain",ALPHAR[1:_nr]) println(io,) # interp output 3 println(io,"ALPHAI:") _nr = M show(io,"text/plain",ALPHAI[1:_nr]) println(io,) # interp output 4 println(io,"BETA:") _nr = M show(io,"text/plain",BETA[1:_nr]) println(io,) if ( LSAME( COMPQ, 'C' ) && NEIG>0 ) # interp output 5 println(io,"Q:") _nc = NEIG _nr = N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if if ( LSAME( COMPU, 'C' ) && NEIG>0 ) # interp output 6 println(io,"U:") _nc = NEIG _nr = N show(io,"text/plain",U[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3433
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb03lz(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDA = NMAX LDB = NMAX LDDE = NMAX LDFG = NMAX LDQ = 2*NMAX LDWORK = 11*NMAX*NMAX + 2*NMAX LZWORK = 8*NMAX + 4 A = Array{ComplexF64,2}(undef, LDA,NMAX) DE = Array{ComplexF64,2}(undef, LDDE,NMAX) B = Array{ComplexF64,2}(undef, LDB,NMAX) FG = Array{ComplexF64,2}(undef, LDFG,NMAX) Q = Array{ComplexF64,2}(undef, LDQ,2*NMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) BWORK = Array{BlasBool,1}(undef, NMAX) ZWORK = Array{ComplexF64,1}(undef, LZWORK) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, NMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) COMPQ = vs[1][1] ORTH = vs[2][1] N = parse(BlasInt, vs[3]) vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) else # interp call 1 NEIG, INFO = SLICOT.mb03lz!(COMPQ, ORTH, N, A, DE, B, FG, Q, ALPHAR, ALPHAI, BETA, BWORK) println(io, "NEIG = $NEIG") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( COMPQ, 'C' ) ) # interp output 1 println(io,"A:") _nc = N _nr = N show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) # interp output 2 println(io,"DE:") _nc = N _nr = N show(io,"text/plain",DE[1:_nr,1:_nc]) println(io,) # interp output 3 println(io,"B:") _nc = N _nr = N show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) # interp output 4 println(io,"FG:") _nc = N _nr = N show(io,"text/plain",FG[1:_nr,1:_nc]) println(io,) end # if # interp output 5 println(io,"ALPHAR:") _nr = N show(io,"text/plain",ALPHAR[1:_nr]) println(io,) # interp output 6 println(io,"ALPHAI:") _nr = N show(io,"text/plain",ALPHAI[1:_nr]) println(io,) # interp output 7 println(io,"BETA:") _nr = N show(io,"text/plain",BETA[1:_nr]) println(io,) if ( LSAME( COMPQ, 'C' ) && NEIG>0 ) # interp output 8 println(io,"Q:") _nc = NEIG _nr = N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1754
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03md(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 NMAX = 20 Q = Array{Float64,1}(undef, NMAX) E = Array{Float64,1}(undef, NMAX-1) Q2 = Array{Float64,1}(undef, NMAX) E2 = Array{Float64,1}(undef, NMAX-1) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) THETA = parse(Float64, replace(vs[2],'D'=>'E')) L = parse(BlasInt, vs[3]) TOL = parse(Float64, replace(vs[4],'D'=>'E')) RELTOL = parse(Float64, replace(vs[5],'D'=>'E')) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end if ( L<0 || L>N ) @error "Illegal L=$L" end vs = String[] _isz = N while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end Q[1:_isz] .= parsex.(Float64, vs) vs = String[] _isz = N-1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end E[1:_isz] .= parsex.(Float64, vs) close(f) println(io, "J:") show(io, "text/plain", Bidiagonal(Q[1:N],E[1:N-1],:U)) println(io) Q2[N] = Q[N]^2 PIVMIN = Q2[N] for i in 1:N-1 Q2[i] = Q[i]^2 E2[i] = E[i]^2 PIVMIN = max( PIVMIN, Q2[i], E2[i] ) end SAFMIN = floatmin(1.0) PIVMIN = max( PIVMIN*SAFMIN, SAFMIN ) TOL = max( TOL, ZERO ) if RELTOL <= 0 RELTOL = 2.0 * eps(1.0) end # interp call 1 L, THETA, INFO, IWARN = SLICOT.mb03md!(N, L, THETA, Q, E, Q2, E2, PIVMIN, TOL, RELTOL) @test INFO == 0 println(io, "L = $L") println(io, "THETA = $THETA") println(io, "IWARN = $IWARN") end # run_mb03md()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1385
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03nd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 Q2 = Array{Float64,1}(undef, NMAX) E2 = Array{Float64,1}(undef, NMAX-1) E = Array{Float64,1}(undef, NMAX-1) Q = Array{Float64,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) THETA = parse(Float64, replace(vs[2],'D'=>'E')) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz = N while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end Q[1:_isz] .= parsex.(Float64, vs) vs = String[] _isz = N-1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end E[1:_isz] .= parsex.(Float64, vs) close(f) println(io, "J:") show(io, "text/plain", Bidiagonal(Q[1:N],E[1:N-1],:U)) println(io) Q2[N] = Q[N]^2 PIVMIN = Q2[N] for i in 1:N-1 Q2[i] = Q[i]^2 E2[i] = E[i]^2 PIVMIN = max( PIVMIN, Q2[i], E2[i] ) end SAFMIN = floatmin(1.0) PIVMIN = max( PIVMIN*SAFMIN, SAFMIN ) NUMSV, INFO = SLICOT.mb03nd!(N, THETA, Q2, E2, PIVMIN) @test INFO == 0 println(io, "NUMSV = $NUMSV") println(io, "THETA = $THETA") end # run_mb03nd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1558
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03od(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NMAX = 10 MMAX = 10 LDA = NMAX LDTAU = min(MMAX,NMAX) LDWORK = 3*NMAX + 1 A = Array{Float64,2}(undef, LDA,NMAX) JPVT = Array{BlasInt,1}(undef, NMAX) TAU = Array{Float64,1}(undef, LDTAU) SVAL = Array{Float64,1}(undef, 3) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) JOBQR = vs[3][1] RCOND = parse(Float64, replace(vs[4],'D'=>'E')) SVLMAX = parse(Float64, replace(vs[5],'D'=>'E')) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end if ( M<0 || M>MMAX ) @error "Illegal M=$M" end vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 JPVT[1:N] .= 0 RANK, INFO = SLICOT.mb03od!(JOBQR, M, N, A, JPVT, RCOND, SVLMAX, TAU, SVAL) @test INFO == 0 println(io, "RANK = $RANK") # interp output 1 println(io, "JPVT:") _nr = N show(io, "text/plain", JPVT[1:_nr]) println(io) # interp output 2 println(io, "SVAL:") _nr = 3 show(io, "text/plain", SVAL[1:_nr]) println(io) end # run_mb03od()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1559
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03pd(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NMAX = 10 MMAX = 10 LDA = NMAX LDTAU = min(MMAX,NMAX) LDWORK = 3*MMAX A = Array{Float64,2}(undef, LDA,NMAX) JPVT = Array{BlasInt,1}(undef, MMAX) TAU = Array{Float64,1}(undef, LDTAU) SVAL = Array{Float64,1}(undef, 3) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) JOBRQ = vs[3][1] RCOND = parse(Float64, replace(vs[4],'D'=>'E')) SVLMAX = parse(Float64, replace(vs[5],'D'=>'E')) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end if ( M<0 || M>MMAX ) @error "Illegal M=$M" end vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) JPVT[1:M] .= 0 # interp call 1 RANK, INFO = SLICOT.mb03pd!(JOBRQ, M, N, A, JPVT, RCOND, SVLMAX, TAU, SVAL, LDWORK) @test INFO == 0 println(io, "RANK = $RANK") # interp output 1 println(io, "JPVT:") _nr = M show(io, "text/plain", JPVT[1:_nr]) println(io) # interp output 2 println(io, "SVAL:") _nr = 3 show(io, "text/plain", SVAL[1:_nr]) println(io) end # run_mb03pd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1972
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03qd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDU = NMAX LDWORK = 3*NMAX A = Array{Float64,2}(undef, LDA,NMAX) U = Array{Float64,2}(undef, LDU,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) WI = Array{Float64,1}(undef, NMAX) WR = Array{Float64,1}(undef, NMAX) BWORK = Array{Bool,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) NLOW = parse(BlasInt, vs[2]) NSUP = parse(BlasInt, vs[3]) ALPHA = parse(Float64, replace(vs[4],'D'=>'E')) DICO = vs[5][1] STDOM = vs[6][1] JOBU = vs[7][1] if ( N<0 || N>NMAX ) @error "invalid N=$N" else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dgees!( 'Vectors', 'Not sorted', SELECT, N, A, LDA, NDIM, WR, WI, U, LDU, DWORK, LDWORK, BWORK, INFO ) Aschur = schur(A[1:N,1:N]) WR[1:N] .= real.(Aschur.values) WI[1:N] .= imag.(Aschur.values) U[1:N,1:N] .= Aschur.Z A[1:N,1:N] .= Aschur.T println(io, "orig T:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp call 2 NDIM, INFO = SLICOT.mb03qd!(DICO, STDOM, JOBU, N, NLOW, NSUP, ALPHA, A, U) println(io, "NDIM = $NDIM") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "U:") _nc = N _nr = N show(io, "text/plain", U[1:_nr,1:_nc]) println(io) end # if end # if close(f) end # run_mb03qd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2924
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03qg(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDE = NMAX LDU = NMAX LDV = NMAX LDWORK = 8*NMAX + 16 A = Array{Float64,2}(undef, LDA,NMAX) E = Array{Float64,2}(undef, LDE,NMAX) U = Array{Float64,2}(undef, LDU,NMAX) V = Array{Float64,2}(undef, LDV,NMAX) BETA = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) WI = Array{Float64,1}(undef, NMAX) WR = Array{Float64,1}(undef, NMAX) BWORK = Array{Bool,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) NLOW = parse(BlasInt, vs[2]) NSUP = parse(BlasInt, vs[3]) ALPHA = parse(Float64, replace(vs[4],'D'=>'E')) DICO = vs[5][1] STDOM = vs[6][1] JOBU = vs[7][1] JOBV = vs[8][1] if ( N<0 || N>NMAX ) @error "invalid N=$N" else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz E[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 # FOREIGN.dgges!( 'Vectors', 'Vectors', 'Not sorted', DELCTG, N, A, LDA, E, LDE, NDIM, WR, WI, BETA, U, LDU, V, LDV, DWORK, LDWORK, BWORK, INFO ) Aschur = schur(A[1:N,1:N], E[1:N,1:N]) WR[1:N] .= real.(Aschur.alpha) WI[1:N] .= imag.(Aschur.alpha) U[1:N,1:N] .= Aschur.Q V[1:N,1:N] .= Aschur.Z A[1:N,1:N] .= Aschur.S E[1:N,1:N] .= Aschur.T println(io, "orig T:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) println(io, "eigvals:") show(io, "text/plain", (WR[1:N] .+ im*WI[1:N]) ./ BETA[1:N]) println(io) # interp call 2 NDIM, INFO = SLICOT.mb03qg!(DICO, STDOM, JOBU, JOBV, N, NLOW, NSUP, ALPHA, A, E, U, V) println(io, "NDIM = $NDIM") @test INFO == 0 if ( INFO!=0 ) println(io, "INFO = $INFO") return end # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "E:") _nc = N _nr = N show(io, "text/plain", E[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "U:") _nc = N _nr = N show(io, "text/plain", U[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "V:") _nc = N _nr = N show(io, "text/plain", V[1:_nr,1:_nc]) println(io) end # if close(f) end # run_mb03qg()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1940
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03rd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDX = NMAX LDWORK = 3*NMAX A = Array{Float64,2}(undef, LDA,NMAX) X = Array{Float64,2}(undef, LDX,NMAX) BLSIZE = Array{BlasInt,1}(undef, NMAX) WR = Array{Float64,1}(undef, NMAX) WI = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) BWORK = Array{Bool,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) PMAX = parse(Float64, replace(vs[2],'D'=>'E')) TOL = parse(Float64, replace(vs[3],'D'=>'E')) JOBX = vs[4][1] SORT = vs[5][1] if ( N<0 || N>NMAX ) @error "Invalid N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dgees!( 'Vectors', 'Not sorted', SELECT, N, A, LDA, SDIM, WR, WI, X, LDX, DWORK, LDWORK, BWORK, INFO ) Aschur = schur(A[1:N,1:N]) A[1:N,1:N] .= Aschur.T X[1:N,1:N] .= Aschur.Z # interp call 2 NBLCKS, INFO = SLICOT.mb03rd!(JOBX, SORT, N, PMAX, A, X, BLSIZE, WR, WI, TOL) println(io, "NBLCKS = $NBLCKS") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) @warn "mb03rd returns INFO=$INFO" end # interp output 1 println(io, "BLSIZE:") _nr = NBLCKS show(io, "text/plain", BLSIZE[1:_nr]) println(io) # interp output 2 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "X:") _nc = N _nr = N show(io, "text/plain", X[1:_nr,1:_nc]) println(io) close(f) end # run_mb03rd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1737
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03sd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX LDQG = NMAX LDWORK = NMAX*( NMAX+1 ) A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) WR = Array{Float64,1}(undef, NMAX) WI = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOBSCL = vs[2][1] if ( N<0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*(_jsz+1)÷2 append!(vs, replace.(split(readline(f)),'D'=>'E')) end _i0 = 0 for j in 1:_jsz QG[j,j+1:_jsz+1] .= parsex.(Float64, vs[_i0+1:_i0+_jsz-j+1]) _i0 += _jsz-j+1 end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*(_jsz+1)÷2 append!(vs, replace.(split(readline(f)),'D'=>'E')) end _i0 = 0 for j in 1:_jsz QG[j:_jsz,j] .= parsex.(Float64, vs[_i0+1:_i0+_jsz-j+1]) _i0 += _jsz-j+1 end close(f) # interp call 1 INFO = SLICOT.mb03sd!(JOBSCL, N, A, QG, WR, WI, LDWORK) @test INFO == 0 INFO != 0 && return println(io, "eigvals:") show(io, "text/plain", vcat(WR[1:N] + im*WI[1:N], -WR[N:-1:1] - im*WI[N:-1:1])) println(io) end # run_mb03sd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3631
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03td(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 NMAX = 100 LDA = NMAX LDG = NMAX LDRES = NMAX LDU1 = NMAX LDU2 = NMAX LDWORK = 8*NMAX SELECT = Array{Bool,1}(undef, NMAX) LOWER = Array{Bool,1}(undef, NMAX) A = Array{Float64,2}(undef, LDA,NMAX) G = Array{Float64,2}(undef, LDG,NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) WR = Array{Float64,1}(undef, NMAX) WI = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) TYP = vs[2][1] COMPU = vs[3][1] if ( N<=0 || N>NMAX ) else vs = String[] _isz = N while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end SELECT[1:_isz] .= parsex.(Bool, vs) vs = String[] _isz = N while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end LOWER[1:_isz] .= parsex.(Bool, vs) vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz G[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if ( LSAME( COMPU, 'U' ) ) vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U1[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U2[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if # interp call 1 select = convert(Vector{BlasBool},SELECT) lower = convert(Vector{BlasBool},LOWER) M, INFO = SLICOT.mb03td!(TYP, COMPU, select, lower, N, A, G, U1, U2, WR, WI, LDWORK) println(io, "M = $M") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( COMPU, 'U' ) ) # interp output 1 println(io, "U1:") _nc = N _nr = N show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "U2:") _nc = N _nr = N show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, U1, LDU1, U2, LDU2, RES, LDRES ) end # if # interp output 3 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) Gfull = zeros(N,N) if ( LSAME( TYP, 'S' ) ) # interp output 4 for i in 1:N for j in 1:i-1 Gfull[i,j] = -G[j,i] end for j in i+1:N Gfull[i,j] = G[i,j] end end else for i in 1:N for j in 1:i-1 Gfull[i,j] = G[j,i] end for j in i:N Gfull[i,j] = G[i,j] end end end # if println(io, "G:") _nc = N _nr = N show(io, "text/plain", Gfull[1:_nr,1:_nc]) println(io) end # if end # if close(f) end # run_mb03td()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1484
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb03ud(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDQ = NMAX LDWORK = max( 1, 5*NMAX ) A = Array{Float64,2}(undef, LDA,NMAX) Q = Array{Float64,2}(undef, LDQ,NMAX) SV = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOBQ = vs[2][1] JOBP = vs[3][1] if ( N<0 || N>NMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 INFO = SLICOT.mb03ud!(JOBQ, JOBP, N, A, Q, SV) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"SV:") _nr = N show(io,"text/plain",SV[1:_nr]) println(io,) if ( LSAME( JOBP, 'V' ) ) # interp output 2 println(io,"A:") _nc = N _nr = N show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) end # if if ( LSAME( JOBQ, 'V' ) ) # interp output 3 println(io,"Q:") _nc = N _nr = N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3112
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03vd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 PMAX = 20 LDA1 = NMAX LDA2 = NMAX LDQ1 = NMAX LDQ2 = NMAX LDTAU = NMAX-1 LDWORK = NMAX ZERO = 0.0e0 ONE = 1.0e0 A = Array{Float64,3}(undef, LDA1,LDA2,PMAX) TAU = Array{Float64,2}(undef, LDTAU,PMAX) Q = Array{Float64,3}(undef, LDQ1,LDQ2,PMAX) AS = Array{Float64,3}(undef, LDA1,LDA2,PMAX) DWORK = Array{Float64,1}(undef, LDWORK) QTA = Array{Float64,2}(undef, LDQ1,NMAX) SSQ = 0.0 f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) P = parse(BlasInt, vs[2]) ILO = parse(BlasInt, vs[3]) IHI = parse(BlasInt, vs[4]) if ( N<0 || N>min( LDA1, LDA2 ) ) @error "illegal N=$N" end if ( P<=0 || P>PMAX ) @error "illegal P=$P" end _isz,_jsz,_ksz = (N,N,P) for k in 1:_ksz vs = String[] while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz,k] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # interp call 1 #FOREIGN.dlacpy!( 'F', N, N, A(1,1,K), LDA1, AS(1,1,K), LDA1 ) AS = copy(A) # interp call 2 INFO = SLICOT.mb03vd!(N, P, ILO, IHI, A, TAU) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) @warn "mb03vd returns info=$INFO" end # interp call 3 for K in 1:P # FOREIGN.dlacpy!( 'L', N, N, A(1,1,K), LDA1, Q(1,1,K), LDQ1 ) Q[1:N,1:N,K] .= tril(A[1:N,1:N,K]) if ( N>1 ) if ( N>2 && K==1 ) # interp call 4 # FOREIGN.dlaset!( 'L', N-2, N-2, ZERO, ZERO, A(3,1,K), LDA1 ) triu!(view(A,1:N,1:N,K),-1) elseif ( K>1 ) # interp call 5 # FOREIGN.dlaset!( 'L', N-1, N-1, ZERO, ZERO, A(2,1,K), LDA1 ) triu!(view(A,1:N,1:N,K)) end # if end # if end # for K println(io, "A:") _nc = N _nr = N _nk = P show(io, "text/plain", A[1:_nr,1:_nc,1:_nk]) println(io) # interp call 6 INFO = SLICOT.mb03vy!(N, P, ILO, IHI, Q, TAU) @test INFO == 0 INFO == 0 || return println(io, "Q:") _nc = N _nr = N _nk = P show(io, "text/plain", Q[1:_nr,1:_nc,1:_nk]) println(io) if ( INFO!=0 ) @warn "mb03vy returns info=$INFO" else SSQ = ZERO for K in 1:P KP1 = mod(K,P)+1 # interp call 7 #FOREIGN.dgemm!( 'T', 'N', N, N, N, ONE, Q(1,1,K), LDQ1, AS(1,1,K), LDA1, ZERO, QTA, LDQ1 ) qta = Q[1:N,1:N,K]' * AS[1:N,1:N,K] # interp call 8 #FOREIGN.dgemm!( 'N', 'N', N, N, N, ONE, QTA, LDQ1, Q(1,1,KP1), LDQ1, -ONE, A(1,1,K), LDA1 ) mul!(view(A,1:N,1:N,K),qta,view(Q,1:N,1:N,KP1),1,-1) #SSQ = DLAPY2( SSQ, DLANGE( 'Frobenius', N, N, A(1,1,K), LDA1, DWORK ) ) SSQ = hypot(SSQ, norm(view(A,1:N,1:N,K))) end println(io, "norm(Q'*A*Q - Aout) = ", SSQ) end close(f) end # run_mb03vd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3698
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03wd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 PMAX = 20 LDA1 = NMAX LDA2 = NMAX LDTAU = NMAX-1 LDZ1 = NMAX LDZ2 = NMAX LDZTA = NMAX LDWORK = max( NMAX, NMAX + PMAX - 2 ) ZERO = 0.0e0 ONE = 1.0e0 A = Array{Float64,3}(undef, LDA1,LDA2,PMAX) TAU = Array{Float64,2}(undef, LDTAU,PMAX) Z = Array{Float64,3}(undef, LDZ1,LDZ2,PMAX) WR = Array{Float64,1}(undef, NMAX) WI = Array{Float64,1}(undef, NMAX) AS = Array{Float64,3}(undef, LDA1,LDA2,PMAX) DWORK = Array{Float64,1}(undef, LDWORK) ZTA = Array{Float64,2}(undef, LDZTA,NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) P = parse(BlasInt, vs[2]) ILO = parse(BlasInt, vs[3]) IHI = parse(BlasInt, vs[4]) ILOZ = parse(BlasInt, vs[5]) IHIZ = parse(BlasInt, vs[6]) JOB = vs[7][1] COMPZ = vs[8][1] if ( N<0 || N>min( LDA1, LDA2 ) ) @error "Illegal N=$N" end if ( P<=0 || P>PMAX ) @error "Illegal P=$P" end _isz,_jsz,_ksz = (N,N,P) for k in 1:_ksz vs = String[] while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz,k] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end close(f) # interp call 1 #FOREIGN.dlacpy!( 'F', N, N, A(1,1,K), LDA1, AS(1,1,K), LDA1 ) AS[1:N,1:N,1:P] .= A[1:N,1:N,1:P] # interp call 2 INFO = SLICOT.mb03vd!(N, P, ILO, IHI, A, TAU) if ( INFO!=0 ) @warn "mb03vd returns info=$INFO" return end if ( LSAME( COMPZ, 'V' ) ) # interp call 3 #FOREIGN.dlacpy!( 'L', N, N, A(1,1,K), LDA1, Z(1,1,K), LDZ1 ) for k in 1:P Z[1:N,1:N,k] .= tril(A[1:N,1:N,k]) end # interp call 4 INFO = SLICOT.mb03vy!(N, P, ILO, IHI, Z, TAU) @test INFO == 0 INFO == 0 || return if ( INFO > 0 ) @error "mb03vy returns info=$INFO" end # deviate from source here; continue even if COMPZ != 'V' end # interp call 5 INFO = SLICOT.mb03wd!(JOB, COMPZ, N, P, ILO, IHI, ILOZ, IHIZ, A, Z, WR, WI, LDWORK) if ( INFO > 0 ) @warn "mb03wd returns info=$INFO" println(io, "valid eigvals:") imin = max(ILO, INFO+1) show(io, "text/plain", WR[imin:N] + im * WI[imin:N]) println(io) end # if # interp call 6 INFO = SLICOT.mb03wx!(ILO-1, P, A, WR, WI) if IHI<N # interp call 7 INFO = SLICOT.mb03wx!(N-IHI, P, view(A,IHI+1:N, IHI+1:N, 1:P)) end # unable to translate write statement: # in do block [('40', 'I', 'N')] # write WR(I), WI(I) # interp output 1 println(io, "A:") _nc = N _nr = N _nk = P show(io, "text/plain", A[1:_nr,1:_nc,1:_nk]) println(io) # interp output 2 println(io, "Z:") _nc = N _nr = N _nk = P show(io, "text/plain", Z[1:_nr,1:_nc,1:_nk]) println(io) SSQ = ZERO for K in 1:P KP1 = mod(K,P) + 1 # interp call 8 # FOREIGN.dgemm!( 'T', 'N', N, N, N, ONE, Z(1,1,K), LDZ1, AS(1,1,K), LDA1, ZERO, ZTA, LDZTA ) zta = Z[1:N,1:N,K]' * AS[1:N,1:N,K] # interp call 9 # FOREIGN.dgemm!( 'N', 'N', N, N, N, ONE, ZTA, LDZTA, Z(1,1,KP1), LDZ1, -ONE, A(1,1,K), LDA1 ) A[1:N,1:N,K] .-= zta * Z[1:N,1:N,KP1] # SSQ = DLAPY2( SSQ, DLANGE( 'Frobenius', N, N, A(1,1,K), LDA1, DWORK ) ) SSQ = hypot(SSQ, norm(A[1:N,1:N,K])) end println(io, "decomposition residual: ",SSQ) end # run_mb03wd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
7561
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03xd(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NMAX = 100 LDA = NMAX LDQG = NMAX LDRES = NMAX LDT = NMAX LDU1 = NMAX LDU2 = NMAX LDV1 = NMAX LDV2 = NMAX LDWORK = 3*NMAX*NMAX + 7*NMAX A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) T = Array{Float64,2}(undef, LDT,NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) V1 = Array{Float64,2}(undef, LDV1,NMAX) V2 = Array{Float64,2}(undef, LDV2,NMAX) WR = Array{Float64,1}(undef, NMAX) WI = Array{Float64,1}(undef, NMAX) SCALE = Array{Float64,1}(undef, NMAX) RES = Array{Float64,2}(undef, LDRES,3*NMAX+1) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) BALANC = vs[2][1] JOB = vs[3][1] JOBU = vs[4][1] JOBV = vs[5][1] if ( N<=0 || N>NMAX ) @error "illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 # FOREIGN.dlacpy!( 'All', N, N, A, LDA, RES(1,N+1), LDRES ) RES[1:N,N+1:2*N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 2 #FOREIGN.dlacpy!( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES ) RES[1:N,2*N+1:3*N+1] .= QG[1:N,1:N+1] # interp call 3 ILO, INFO = SLICOT.mb03xd!(BALANC, JOB, JOBU, JOBV, N, A, QG, T, U1, U2, V1, V2, WR, WI, SCALE) println(io, "ILO = $ILO") @test INFO == 0 INFO == 0 || return if ( LSAME( JOB, 'S' )||LSAME( JOB, 'G' ) ) # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "T:") _nc = N _nr = N show(io, "text/plain", T[1:_nr,1:_nc]) println(io) end # if if ( LSAME( JOB, 'G' ) ) println(io, "QG:") show(io, "text/plain", QG[1:N,2:N+1]) println(io) end # if if ( LSAME( JOB, 'G' )&&LSAME( JOBU, 'U' )&& LSAME( JOBV, 'V' ) ) # interp call 4 ILO, INFO = SLICOT.mb04dd!(BALANC, N, view(RES,1:N,N+1:2*N), view(RES,1:N,2*N+1:3*N), DWORK) # interp call 5 # FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, RES(1,N+1), LDRES, V1, LDV1, ZERO, RES, LDRES ) RES[1:N,1:N] .= RES[1:N,N+1:2*N] * V1[1:N,1:N] # interp call 6 #FOREIGN.dsymm!( 'Left', 'Upper', N, N, -ONE, RES(1,2*N+2), LDRES, V2, LDV2, ONE, RES, LDRES ) BLAS.symm!('L','U',-ONE,view(RES,1:N,2*N+2:3*N+1),view(V2,1:N,1:N),ONE,view(RES,1:N,1:N)) # interp call 7 # FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, -ONE, U1, LDU1, T, LDT, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,U1[1:N,1:N],T[1:N,1:N],ONE,view(RES,1:N,1:N)) # TEMP = DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK ) TEMP = norm(RES[1:N,1:N]) # interp call 8 # FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, RES(1,N+1), LDRES, V2, LDV2, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,RES[1:N,N+1:2*N],V2[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 9 #FOREIGN.dsymm!( 'Left', 'Upper', N, N, ONE, RES(1,2*N+2), LDRES, V1, LDV1, ONE, RES, LDRES ) BLAS.symm!('L','U',ONE,RES[1:N,2*N+2:3*N+1],V1[1:N,1:N],ONE,view(RES,1:N,1:N)) # interp call 10 # FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, -ONE, U1, LDU1, QG(1,2), LDQG, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,U1[1:N,1:N],QG[1:N,2:N+1],ONE,view(RES,1:N,1:N)) # interp call 11 # FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, U2, LDU2, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','T',-ONE,U2[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,1:N)) # TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK ) ) TEMP = hypot(TEMP, norm(RES[1:N,1:N])) # interp call 12 # FOREIGN.dsymm!( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1), LDRES, V1, LDV1, ZERO, RES, LDRES ) BLAS.symm!('L','L',ONE,RES[1:N,2*N+1:3*N],V1[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 13 # FOREIGN.dgemm!( 'Transpose', 'No Transpose', N, N, N, ONE, RES(1,N+1), LDRES, V2, LDV2, ONE, RES, LDRES ) BLAS.gemm!('T','N',ONE,RES[1:N,N+1:2*N],V2[1:N,1:N],ONE,view(RES,1:N,1:N)) # interp call 14 # FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U2, LDU2, T, LDT, ONE, RES, LDRES ) BLAS.gemm!('N','N',ONE,U2[1:N,1:N],T[1:N,1:N],ONE,view(RES,1:N,1:N)) # TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK ) ) TEMP = hypot(TEMP, norm(RES[1:N,1:N])) # interp call 15 # FOREIGN.dsymm!( 'Left', 'Lower', N, N, ONE, RES(1,2*N+1), LDRES, V2, LDV2, ZERO, RES, LDRES ) BLAS.symm!('L','L',ONE,RES[1:N,2*N+1:3*N],V2[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 16 # FOREIGN.dgemm!( 'Transpose', 'No Transpose', N, N, N, -ONE, RES(1,N+1), LDRES, V1, LDV1, ONE, RES, LDRES ) BLAS.gemm!('T','N',-ONE,RES[1:N,N+1:2*N],V1[1:N,1:N],ONE,view(RES,1:N,1:N)) # interp call 17 # FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U2, LDU2, QG(1,2), LDQG, ONE, RES, LDRES ) BLAS.gemm!('N','N',ONE,U2[1:N,1:N],QG[1:N,2:N+1],ONE,view(RES,1:N,1:N)) # interp call 18 # FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, U1, LDU1, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','T',-ONE,U1[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,1:N)) # TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES, LDRES, DWORK ) ) TEMP = hypot(TEMP, norm(RES[1:N,1:N])) println(io, "decomposition residual norm = $TEMP") end # if if ( LSAME( JOBU, 'U' ) ) # interp output 4 println(io, "U1:") _nc = N _nr = N show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") _nc = N _nr = N show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, U1, LDU1, U2, LDU2, RES, LDRES ) resid = SLICOT.ma02jd!(false,false,N,U1,U2) println(io, "U residual norm = $resid") end # if if ( LSAME( JOBV, 'V' ) ) # interp output 5 println(io, "V1:") _nc = N _nr = N show(io, "text/plain", V1[1:_nr,1:_nc]) println(io) println(io, "V2:") _nc = N _nr = N show(io, "text/plain", V2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, V1, LDV1, V2, LDV2, RES, LDRES ) resid = SLICOT.ma02jd!(false,false,N,V1,V2) println(io, "V residual norm = $resid") end # if if ( LSAME( BALANC, 'S' )||LSAME( BALANC, 'B' ) ) println(io, "SCALE:") show(io, "text/plain", SCALE[1:N]) println(io) end # if end # run_mb03xd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
4226
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03xp(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NMAX = 200 LDA = NMAX LDB = NMAX LDQ = NMAX LDRES = NMAX LDWORK = NMAX LDZ = NMAX A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDA,NMAX) Q = Array{Float64,2}(undef, LDQ,NMAX) Z = Array{Float64,2}(undef, LDZ,NMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,3*NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) ILO = parse(BlasInt, vs[2]) IHI = parse(BlasInt, vs[3]) if ( N<=0 || N>NMAX ) @error "illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dlacpy!( 'All', N, N, A, LDA, RES(1,N+1), LDRES ) RES[1:N,N+1:2N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 2 #FOREIGN.dlacpy!( 'All', N, N, B, LDB, RES(1,2*N+1), LDRES ) RES[1:N,2*N+1:3N] .= B[1:N,1:N] # interp call 3 INFO = SLICOT.mb03xp!('S', 'I', 'I', N, ILO, IHI, A, B, Q, Z, ALPHAR, ALPHAI, BETA, LDWORK) @test INFO == 0 INFO == 0 || return # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp call 4 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, RES(1,N+1), LDRES, Z, LDZ, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,RES[1:N,N+1:2N],Z[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 5 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, -ONE, Q, LDQ, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,Q[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,1:N)) resid = norm(RES[1:N,1:N]) println(io, "Frobenius norm of A Z - Q S: $resid") @test resid < 1e-12 println(io, "B:") _nc = N _nr = N show(io, "text/plain", B[1:_nr,1:_nc]) println(io) # interp call 6 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, RES(1,2*N+1), LDRES, Q, LDQ, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,RES[1:N,2*N+1:3N],Q[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 7 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, -ONE, Z, LDZ, B, LDB, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,Z[1:N,1:N],B[1:N,1:N],ONE,view(RES,1:N,1:N)) resid = norm(RES[1:N,1:N]) println(io, "Frobenius norm of B Q - Z T: $resid") @test resid < 1e-12 println(io, "Q:") _nc = N _nr = N show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) # interp call 8 #FOREIGN.dgemm!( 'Transpose', 'No Transpose', N, N, N, ONE, Q, LDQ, Q, LDQ, ONE, RES, LDRES ) BLAS.gemm!('T','N',ONE,Q[1:N,1:N],Q[1:N,1:N],ZERO,view(RES,1:N,1:N)) resid = norm(RES[1:N,1:N] - I) println(io, "orth. residual norm of Q: $resid")# interp output 4 @test resid < 1e-12 println(io, "Z:") _nc = N _nr = N show(io, "text/plain", Z[1:_nr,1:_nc]) println(io) # interp call 9 #FOREIGN.dgemm!( 'Transpose', 'No Transpose', N, N, N, ONE, Z, LDZ, Z, LDZ, ONE, RES, LDRES ) BLAS.gemm!('T','N',ONE,Z[1:N,1:N],Z[1:N,1:N],ZERO,view(RES,1:N,1:N)) resid = norm(RES[1:N,1:N] - I) println(io, "orth. residual norm of Z: $resid")# unable to translate write statement: @test resid < 1e-12 # in do block [('70', 'I', 'N')] # write ALPHAR(I), ALPHAI(I), BETA(I) println(io, "ALPHA:") show(io, "text/plain", ALPHAR[1:N]+im*ALPHAI[1:N]) println(io) println(io, "BETA:") show(io, "text/plain", BETA[1:N]) println(io) end # run_mb03xp()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
8401
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03xz(datfile, io=stdout) ZER = 0.0e0 ZERO = 0.0+0.0im ONE = 1.0+0.0im NIN = 5 NOUT = 6 NMAX = 100 LDA = 2*NMAX LDAE = 2*NMAX LDAS = NMAX LDGE = 2*NMAX LDQG = 2*NMAX LDQGE = 2*NMAX LDQGS = NMAX LDRES = 2*NMAX LDU1 = 2*NMAX LDU2 = 2*NMAX LDWORK = 20*NMAX*NMAX + 12*NMAX + 2 LZWORK = 12*NMAX - 2 A = Array{ComplexF64,2}(undef, LDA,2*NMAX) QG = Array{ComplexF64,2}(undef, LDQG,2*NMAX+1) U1 = Array{ComplexF64,2}(undef, LDU1,2*NMAX) U2 = Array{ComplexF64,2}(undef, LDU2,2*NMAX) WR = Array{Float64,1}(undef, 2*NMAX) WI = Array{Float64,1}(undef, 2*NMAX) SCALE = Array{Float64,1}(undef, NMAX) BWORK = Array{BlasBool,1}(undef, 2*NMAX) AS = Array{ComplexF64,2}(undef, LDAS,NMAX) QGS = Array{ComplexF64,2}(undef, LDQGS,NMAX+1) DWORK = Array{Float64,1}(undef, LDWORK) QGE = Array{ComplexF64,2}(undef, LDQGE,2*NMAX+1) GE = Array{ComplexF64,2}(undef, LDGE,2*NMAX) AE = Array{ComplexF64,2}(undef, LDAE,2*NMAX) RES = Array{ComplexF64,2}(undef, LDRES,2*NMAX) ZWORK = Array{ComplexF64,1}(undef, LZWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) BALANC = vs[2][1] JOB = vs[3][1] JOBU = vs[4][1] if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end M = 2*N A[1:M,1:M] .= ZERO QG[1:M,1:2M] .= ZERO vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end AS[1:N,1:N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 #FOREIGN.zlacpy!( 'All', N, N+1, QG, LDQG, QGS, LDQGS ) QGS[1:N,1:N+1] .= QG[1:N,1:N+1] # interp call 2 ILO, INFO = SLICOT.mb03xz!(BALANC, JOB, JOBU, N, A, QG, U1, U2, WR, WI, SCALE, BWORK) println(io, "ILO = $ILO") @test INFO == 0 INFO == 0 || return println(io, "eigvals:") show(io, "text/plain", WR[1:M] + im*WI[1:M]) println(io) if ( LSAME( JOB, 'S' )||LSAME( JOB, 'G' ) ) # interp output 1 println(io, "A:") _nc = M _nr = M show(io, "text/plain", A[1:_nr,1:_nc]) println(io) end # if if ( LSAME( JOB, 'G' ) ) # interp output 2 println(io, "QG:") _nc = M _nr = M show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) end # if if ( LSAME( JOB, 'G' )&&LSAME( JOBU, 'U' ) ) # interp call 3 ILO, INFO = SLICOT.mb04dz!(BALANC, N, AS, QGS, DWORK) println(io, "ILO = $ILO") @test INFO == 0 INFO == 0 || return # interp call 4 #FOREIGN.zlaset!( 'Lower', M-1, M-1, ZERO, ZERO, A(2,1), LDA ) triu!(view(A,1:M,1:M-1)) # interp call 5 SLICOT.ma02ez!('U', 'C', 'N', M, QG) # compute Ae,Ge,Qe AE[1:N,1:N] .= im * imag.(AS[1:N,1:N]) AE[N+1:2N,1:N] .= -im * real.(AS[1:N,1:N]) for j in 1:N AE[1:N,j+N] .= -AE[N+1:2N,j] AE[N+1:2N,j+N] .= AE[1:N,j] end QGE[1:N,1:N+1] .= im * imag.(QGS[1:N,1:N+1]) for j in 1:N+1 QGE[N+j:2N,j] .= -im * real.(QGS[j:N,j]) end for j in 1:N QGE[1:j,j+N+1] .= -QGE[1:j,j+1] QGE[N+1:2N,j+N+1] .= QGE[1:N,j+1] end QGE[N+1:2N,N+1] .= QGE[1:N,1] # interp call 7 SLICOT.ma02ez!('L', 'T', 'N', N, view(QGE,N+1:2N,1:N+1)) # interp call 8 SLICOT.ma02ez!('U', 'T', 'N', N, view(QGE,1:N,N+2:2N+2)) # interp call 9 # FOREIGN.zlacpy!( 'Upper', M, M, QGE(1,2), LDQGE, GE, LDGE ) GE[1:M,1:M] .= triu(QGE[1:M,2:M+1]) # interp call 10 SLICOT.ma02ez!('U', 'T', 'S', M, GE) # interp call 11 SLICOT.ma02ez!('L', 'T', 'S', M, QGE) # interp call 12 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, ONE, AE, LDAE, U1, LDU1, ZERO, RES, LDRES ) BLAS.gemm!('N','N',true,AE[1:M,1:M],U1[1:M,1:M],false,view(RES,1:M,1:M)) # interp call 13 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, -ONE, GE, LDGE, U2, LDU2, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,GE[1:M,1:M],U2[1:M,1:M],true,view(RES,1:M,1:M)) # interp call 14 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, -ONE, U1, LDU1, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,U1[1:M,1:M],A[1:M,1:M],true,view(RES,1:M,1:M)) # TEMP = ZLANGE( 'Frobenius', M, M, RES, LDRES, DWORK ) TEMP = norm(RES[1:M,1:M]) # interp call 15 #FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, ONE, AE, LDAE, U2, LDU2, ZERO, RES, LDRES ) BLAS.gemm!('N','N',true,AE[1:M,1:M],U2[1:M,1:M],false,view(RES,1:M,1:M)) # interp call 16 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, ONE, GE, LDGE, U1, LDU1, ONE, RES, LDRES ) BLAS.gemm!('N','N',true,GE[1:M,1:M],U1[1:M,1:M],true,view(RES,1:M,1:M)) # interp call 17 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, -ONE, U1, LDU1, QG, LDQG, ONE, RES, LDRES ) BLAS.gemm!('N','N',-ONE,U1[1:M,1:M],QG[1:M,1:M],true,view(RES,1:M,1:M)) # interp call 18 # FOREIGN.zgemm!( 'No Transpose', 'Conj Transpose', M, M, M, ONE, U2, LDU2, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','C',true,U2[1:M,1:M],A[1:M,1:M],true,view(RES,1:M,1:M)) # TEMP = DLAPY2( TEMP, ZLANGE( 'Frobenius', M, M, RES, LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:M,1:M])) # interp call 19 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, true, QGE, LDQGE, U1, LDU1, ZERO, RES, LDRES ) BLAS.gemm!('N','N',true,QGE[1:M,1:M],U1[1:M,1:M],false,view(RES,1:M,1:M)) # interp call 20 # FOREIGN.zgemm!( 'Transpose', 'No Transpose', M, M, M, -ONE, AE, LDAE, U2, LDU2, ONE, RES, LDRES ) BLAS.gemm!('T','N',-ONE,AE[1:M,1:M],U2[1:M,1:M],true,view(RES,1:M,1:M)) # interp call 21 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, ONE, U2, LDU2, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','N',true,U2[1:M,1:M],A[1:M,1:M],true,view(RES,1:M,1:M)) # TEMP = DLAPY2( TEMP, ZLANGE( 'Frobenius', M, M, RES, LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:M,1:M])) # interp call 22 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, ONE, QGE, LDQGE, U2, LDU2, ZERO, RES, LDRES ) BLAS.gemm!('N','N',true,QGE[1:M,1:M],U2[1:M,1:M],false,view(RES,1:M,1:M)) # interp call 23 # FOREIGN.zgemm!( 'Transpose', 'No Transpose', M, M, M, ONE, AE, LDAE, U1, LDU1, ONE, RES, LDRES ) BLAS.gemm!('T','N',true,AE[1:M,1:M],U1[1:M,1:M],true,view(RES,1:M,1:M)) # interp call 24 # FOREIGN.zgemm!( 'No Transpose', 'No Transpose', M, M, M, ONE, U2, LDU2, QG, LDQG, ONE, RES, LDRES ) BLAS.gemm!('N','N',true,U2[1:M,1:M],QG[1:M,1:M],true,view(RES,1:M,1:M)) # interp call 25 # FOREIGN.zgemm!( 'No Transpose', 'Conj Transpose', M, M, M, ONE, U1, LDU1, A, LDA, ONE, RES, LDRES ) BLAS.gemm!('N','C',true,U1[1:M,1:M],A[1:M,1:M],true,view(RES,1:M,1:M)) #TEMP = DLAPY2( TEMP, ZLANGE( 'Frobenius', M, M, RES, LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:M,1:M])) println(io, "residual norm = $TEMP") end # if if ( !LSAME( JOB, 'E' )&&LSAME( JOBU, 'U' ) ) # interp output 3 println(io, "U1:") _nc = M _nr = M show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") _nc = M _nr = M show(io, "text/plain", U1[2:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JZ( .FALSE., .FALSE., M, U1, LDU1, U2, LDU2, RES, LDRES ) resid = SLICOT.ma02jz!(false,false,M,U1,U2) println(io, "U residual = $resid") end # if if ( LSAME( BALANC, 'S' )||LSAME( BALANC, 'B' ) ) println(io, "SCALE:") show(io, "text/plain", SCALE[1:N]) println(io) end # if end # run_mb03xz()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
6580
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb03zd(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NMAX = 200 LDG = NMAX LDRES = 2*NMAX LDS = NMAX LDT = NMAX LDU1 = NMAX LDU2 = NMAX LDUS = 2*NMAX LDUU = 2*NMAX LDV1 = NMAX LDV2 = NMAX LDWORK = 3*NMAX*NMAX + 7*NMAX SELECT = Array{BlasBool,1}(undef, NMAX) SCALE = Array{Float64,1}(undef, NMAX) S = Array{Float64,2}(undef, LDS,NMAX) T = Array{Float64,2}(undef, LDT,NMAX) G = Array{Float64,2}(undef, LDG,NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) V1 = Array{Float64,2}(undef, LDV1,NMAX) V2 = Array{Float64,2}(undef, LDV2,NMAX) WR = Array{Float64,1}(undef, NMAX) WI = Array{Float64,1}(undef, NMAX) US = Array{Float64,2}(undef, LDUS,2*NMAX) UU = Array{Float64,2}(undef, LDUU,2*NMAX) IWORK = Array{BlasInt,1}(undef, 2*NMAX) LWORK = Array{BlasBool,1}(undef, 2*NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) ILO = parse(BlasInt, vs[2]) WHICH = vs[3][1] METH = vs[4][1] STAB = vs[5][1] BALANC = vs[6][1] ORTBAL = vs[7][1] if ( N<=0 || N>NMAX ) @error "illegal N=$N" end if LSAME(WHICH,'S') vs = String[] _isz = N while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end SELECT[1:_isz] .= parsex.(Bool, vs[1:_isz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz S[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz T[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if LSAME(WHICH,'A') && LSAME(METH,'L') vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz G[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end if LSAME(BALANC,'P') || LSAME(BALANC,'S') || LSAME(BALANC,'B') vs = String[] _isz = N while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end SCALE[1:_isz] .= parsex.(Float64, vs[1:_isz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U1[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U2[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz V1[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz V2[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 M, INFO = SLICOT.mb03zd!(WHICH, METH, STAB, BALANC, ORTBAL, SELECT, N, 2*N, ILO, SCALE, S, T, G, U1, U2, V1, V2, WR, WI, US, UU, IWORK) println(io, "M = $M") @test INFO == 0 INFO == 0 || return println(io, "eigvals:") show(io, "text/plain", WR[1:N] + im *WI[1:N]) println(io) if ( LSAME( STAB, 'S' )||LSAME( STAB, 'B' ) ) # interp output 1 println(io, "US:") _nc = M _nr = 2*N show(io, "text/plain", US[1:_nr,1:_nc]) println(io) if ( LSAME( ORTBAL, 'B' )||LSAME( BALANC, 'N' )|| LSAME( BALANC, 'P' ) ) # interp call 2 # FOREIGN.dgemm!( 'Transpose', 'No Transpose', M, M, 2*N, ONE, US, LDUS, US, LDUS, ZERO, RES, LDRES ) BLAS.gemm!('T','N',ONE,US[1:2N,1:M],US[1:2N,1:M],ZERO,view(RES,1:M,1:M)) resid = norm(RES[1:M,1:M] - I) @test resid < 1e-12 println(io, "orth. resid norm of US: $resid") end # if # interp call 3 # FOREIGN.dgemm!( 'Transpose', 'No Transpose', M, M, N, ONE, US, LDUS, US(N+1,1), LDUS, ZERO, RES, LDRES ) BLAS.gemm!('T','N',ONE,US[1:N,1:M],US[N+1:2N,1:M],ZERO,view(RES,1:M,1:M)) # interp call 4 # FOREIGN.dgemm!( 'Transpose', 'No Transpose', M, M, N, -ONE, US(N+1,1), LDUS, US, LDUS, ONE, RES, LDRES ) BLAS.gemm!('T','N',-ONE,US[N+1:2N,1:M],US[1:N,1:M],ONE,view(RES,1:M,1:M)) resid = norm(RES[1:M,1:M]) @test resid < 1e-12 println(io, "sympl. resid norm of US: $resid") end if ( LSAME( STAB, 'U' )||LSAME( STAB, 'B' ) ) # interp output 2 println(io, "UU:") _nc = M _nr = 2*N show(io, "text/plain", UU[1:_nr,1:_nc]) println(io) if ( LSAME( ORTBAL, 'B' )||LSAME( BALANC, 'N' )|| LSAME( BALANC, 'P' ) ) # interp call 5 #FOREIGN.dgemm!( 'Transpose', 'No Transpose', M, M, 2*N, ONE, UU, LDUU, UU, LDUU, ZERO, RES, LDRES ) BLAS.gemm!('T','N',ONE,UU[1:2N,1:M],UU[1:2N,1:M],ZERO,view(RES,1:M,1:M)) resid = norm(RES[1:M,1:M] - I) @test resid < 1e-12 println(io, "orth. resid norm of UU: $resid") end # if # interp call 6 # FOREIGN.dgemm!( 'Transpose', 'No Transpose', M, M, N, ONE, UU, LDUU, UU(N+1,1), LDUU, ZERO, RES, LDRES ) BLAS.gemm!('T','N',ONE,UU[1:N,1:M],UU[N+1:2N,1:M],ZERO,view(RES,1:M,1:M)) # interp call 7 #FOREIGN.dgemm!( 'Transpose', 'No Transpose', M, M, N, -ONE, UU(N+1,1), LDUU, UU, LDUU, ONE, RES, LDRES ) BLAS.gemm!('T','N',-ONE,UU[N+1:2N,1:M],UU[1:N,1:M],ONE,view(RES,1:M,1:M)) resid = norm(RES[1:M,1:M]) @test resid < 1e-12 println(io, "sympl. resid norm of UU: $resid") end # if end # run_mb03zd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3862
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04ad(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDH = NMAX LDQ1 = NMAX LDQ2 = NMAX LDT = NMAX LDU11 = NMAX÷2 LDU12 = NMAX÷2 LDU21 = NMAX÷2 LDU22 = NMAX÷2 LDWORK = 3*NMAX*NMAX + max( NMAX, 48 ) + 6 LDZ = NMAX LIWORK = NMAX + 18 ZERO = 0.0e0 Z = Array{Float64,2}(undef, LDZ,NMAX) H = Array{Float64,2}(undef, LDH,NMAX) Q1 = Array{Float64,2}(undef, LDQ1,NMAX) Q2 = Array{Float64,2}(undef, LDQ2,NMAX) U11 = Array{Float64,2}(undef, LDU11,NMAX÷2) U12 = Array{Float64,2}(undef, LDU12,NMAX÷2) U21 = Array{Float64,2}(undef, LDU21,NMAX÷2) U22 = Array{Float64,2}(undef, LDU22,NMAX÷2) T = Array{Float64,2}(undef, LDT,NMAX) ALPHAR = Array{Float64,1}(undef, NMAX÷2) ALPHAI = Array{Float64,1}(undef, NMAX÷2) BETA = Array{Float64,1}(undef, NMAX÷2) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ1 = vs[2][1] COMPQ2 = vs[3][1] COMPU1 = vs[4][1] COMPU2 = vs[5][1] N = parse(BlasInt, vs[6]) if ( N<0 || N>NMAX ) @error "illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Z[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz H[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 INFO = SLICOT.mb04ad!(JOB, COMPQ1, COMPQ2, COMPU1, COMPU2, N, Z, H, Q1, Q2, U11, U12, U21, U22, T, ALPHAR, ALPHAI, BETA, LIWORK) @test INFO == 0 if ( INFO!=0 ) @warn "mb04ad returns info=$INFO" return end M = N÷2 # interp call 2 #FOREIGN.dlaset!( 'Full', M, M, ZERO, ZERO, Z( M+1, 1 ), LDZ ) Z[M+1:M,1:M] .= ZERO # interp output 1 println(io, "T:") _nc = N _nr = N show(io, "text/plain", T[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "Z:") _nc = N _nr = N show(io, "text/plain", Z[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "H:") _nc = N _nr = N show(io, "text/plain", H[1:_nr,1:_nc]) println(io) if ( LSAME( COMPQ1, 'I' ) ) # interp output 4 println(io, "Q1:") _nc = N _nr = N show(io, "text/plain", Q1[1:_nr,1:_nc]) println(io) end # if if ( LSAME( COMPQ2, 'I' ) ) # interp output 5 println(io, "Q2:") _nc = N _nr = N show(io, "text/plain", Q2[1:_nr,1:_nc]) println(io) end # if if ( LSAME( COMPU1, 'I' ) ) # interp output 6 println(io, "U11:") _nc = M _nr = M show(io, "text/plain", U11[1:_nr,1:_nc]) println(io) # interp output 7 println(io, "U12:") _nc = M _nr = M show(io, "text/plain", U12[1:_nr,1:_nc]) println(io) end # if if ( LSAME( COMPU2, 'I' ) ) # interp output 8 println(io, "U21:") _nc = M _nr = M show(io, "text/plain", U21[1:_nr,1:_nc]) println(io) # interp output 9 println(io, "U22:") _nc = M _nr = M show(io, "text/plain", U22[1:_nr,1:_nc]) println(io) end # if # interp output 10 println(io, "ALPHAR:") _nr = M show(io, "text/plain", ALPHAR[1:_nr]) println(io) # interp output 11 println(io, "ALPHAI:") _nr = M show(io, "text/plain", ALPHAI[1:_nr]) println(io) # interp output 12 println(io, "BETA:") _nr = M show(io, "text/plain", BETA[1:_nr]) println(io) end # run_mb04ad()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3611
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04az(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDB = NMAX LDC = NMAX LDD = NMAX LDFG = NMAX LDQ = 2*NMAX LDU = NMAX LDWORK = 18*NMAX*NMAX + NMAX + max( 2*NMAX, 24 ) + 3 LDZ = NMAX LIWORK = 2*NMAX + 9 LZWORK = 8*NMAX + 28 Z = Array{ComplexF64,2}(undef, LDZ,NMAX) B = Array{ComplexF64,2}(undef, LDB,NMAX) FG = Array{ComplexF64,2}(undef, LDFG,NMAX) D = Array{ComplexF64,2}(undef, LDD,NMAX) C = Array{ComplexF64,2}(undef, LDC,NMAX) Q = Array{ComplexF64,2}(undef, LDQ,2*NMAX) U = Array{ComplexF64,2}(undef, LDU,2*NMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) BWORK = Array{BlasBool,1}(undef, NMAX) ZWORK = Array{ComplexF64,1}(undef, LZWORK) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, LIWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ = vs[2][1] COMPU = vs[3][1] N = parse(BlasInt, vs[4]) if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Z[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end # interp call 1 close(f) INFO = SLICOT.mb04az!(JOB, COMPQ, COMPU, N, Z, B, FG, D, C, Q, U, ALPHAR, ALPHAI, BETA, LIWORK, BWORK) @test INFO == 0 INFO == 0 || return M = N÷2 if ( LSAME( JOB, 'T' ) ) # interp output 1 println(io, "Z:") _nc = N _nr = N show(io, "text/plain", Z[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "B:") _nc = N _nr = N show(io, "text/plain", UpperTriangular(B[1:_nr,1:_nc])) println(io) # interp output 3 println(io, "FG:") _nc = N _nr = N show(io, "text/plain", UpperTriangular(FG[1:_nr,1:_nc])) println(io) # interp output 4 println(io, "D:") _nc = N _nr = N show(io, "text/plain", D[1:_nr,1:_nc]) println(io) # interp output 5 println(io, "C:") _nc = N _nr = N show(io, "text/plain", C[1:_nr,1:_nc]) println(io) end # if if ( LSAME( COMPQ, 'C' ) ) # interp output 6 println(io, "Q:") _nc = 2*N _nr = 2*N show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) end # if if ( LSAME( COMPU, 'C' ) ) # interp output 7 println(io, "U:") _nc = 2*N _nr = N show(io, "text/plain", U[1:_nr,1:_nc]) println(io) end # if # interp output 8 println(io, "ALPHAR:") _nr = N show(io, "text/plain", ALPHAR[1:_nr]) println(io) # interp output 9 println(io, "ALPHAI:") _nr = N show(io, "text/plain", ALPHAI[1:_nr]) println(io) # interp output 10 println(io, "BETA:") _nr = N show(io, "text/plain", BETA[1:_nr]) println(io) end # run_mb04az()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
4028
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04bd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDA = NMAX÷2 LDB = NMAX÷2 LDC1 = NMAX÷2 LDC2 = NMAX÷2 LDDE = NMAX÷2 LDF = NMAX÷2 LDQ1 = NMAX LDQ2 = NMAX LDVW = NMAX÷2 LDWORK = 2*NMAX*NMAX + max( 4*NMAX, 36 ) LIWORK = max( NMAX + 12, 2*NMAX + 3 ) A = Array{Float64,2}(undef, LDA,NMAX÷2) DE = Array{Float64,2}(undef, LDDE,NMAX÷2+1) C1 = Array{Float64,2}(undef, LDC1,NMAX÷2) VW = Array{Float64,2}(undef, LDVW,NMAX÷2+1) Q1 = Array{Float64,2}(undef, LDQ1,NMAX) Q2 = Array{Float64,2}(undef, LDQ2,NMAX) B = Array{Float64,2}(undef, LDB,NMAX÷2) F = Array{Float64,2}(undef, LDF,NMAX÷2) C2 = Array{Float64,2}(undef, LDC2,NMAX÷2) ALPHAR = Array{Float64,1}(undef, NMAX÷2) ALPHAI = Array{Float64,1}(undef, NMAX÷2) BETA = Array{Float64,1}(undef, NMAX÷2) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ1 = vs[2][1] COMPQ2 = vs[3][1] N = parse(BlasInt, vs[4]) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end M = N÷2 vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C1[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz VW[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 INFO = SLICOT.mb04bd!(JOB, COMPQ1, COMPQ2, N, A, DE, C1, VW, Q1, Q2, B, F, C2, ALPHAR, ALPHAI, BETA, LIWORK, LDWORK) @test INFO == 0 INFO == 0 || return # interp output 1 println(io, "A:") _nc = M _nr = M show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "DE:") show(io, "text/plain", DE[1:M,2:M+1]) println(io) # interp output 3 println(io, "B:") _nc = M _nr = M show(io, "text/plain", B[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "F:") _nc = M _nr = M show(io, "text/plain", UpperTriangular(F[1:_nr,1:_nc])) println(io) # interp output 5 println(io, "C1:") _nc = M _nr = M show(io, "text/plain", C1[1:_nr,1:_nc]) println(io) # interp output 6 println(io, "C2:") _nc = M _nr = M show(io, "text/plain", C2[1:_nr,1:_nc]) println(io) # interp output 7 println(io, "VW:") show(io, "text/plain", VW[1:M,2:M+1]) println(io) # interp output 8 println(io, "ALPHAR:") _nr = M show(io, "text/plain", ALPHAR[1:_nr]) println(io) # interp output 9 println(io, "ALPHAI:") _nr = M show(io, "text/plain", ALPHAI[1:_nr]) println(io) # interp output 10 println(io, "BETA:") _nr = M show(io, "text/plain", BETA[1:_nr]) println(io) if ( !LSAME( COMPQ1, 'N' ) ) # interp output 11 println(io, "Q1:") _nc = N _nr = N show(io, "text/plain", Q1[1:_nr,1:_nc]) println(io) end # if if ( !LSAME( COMPQ2, 'N' ) ) # interp output 12 println(io, "Q2:") _nc = N _nr = N show(io, "text/plain", Q2[1:_nr,1:_nc]) println(io) end end # run_mb04bd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3380
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04bz(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDA = NMAX LDB = NMAX LDDE = NMAX LDFG = NMAX LDQ = 2*NMAX LDWORK = 11*NMAX*NMAX + 2*NMAX LZWORK = 8*NMAX + 4 A = Array{ComplexF64,2}(undef, LDA,NMAX) DE = Array{ComplexF64,2}(undef, LDDE,NMAX) B = Array{ComplexF64,2}(undef, LDB,NMAX) FG = Array{ComplexF64,2}(undef, LDFG,NMAX) Q = Array{ComplexF64,2}(undef, LDQ,2*NMAX) ALPHAR = Array{Float64,1}(undef, NMAX) ALPHAI = Array{Float64,1}(undef, NMAX) BETA = Array{Float64,1}(undef, NMAX) BWORK = Array{BlasBool,1}(undef, NMAX) ZWORK = Array{ComplexF64,1}(undef, LZWORK) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, 2*NMAX+3) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ = vs[2][1] N = parse(BlasInt, vs[3]) if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) else M = N÷2 vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,M+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end # interp call 1 INFO = SLICOT.mb04bz!(JOB, COMPQ, N, A, DE, B, FG, Q, ALPHAR, ALPHAI, BETA, BWORK) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'T' ) ) # interp output 1 println(io,"A:") _nc = N _nr = N show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) # interp output 2 println(io,"DE:") _nc = N _nr = N show(io,"text/plain",DE[1:_nr,1:_nc]) println(io,) # interp output 3 println(io,"B:") _nc = N _nr = N show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) # interp output 4 println(io,"FG:") _nc = N _nr = N show(io,"text/plain",FG[1:_nr,1:_nc]) println(io,) end # if if ( LSAME( COMPQ, 'C' ) ) # interp output 5 println(io,"Q:") _nc = 2*N _nr = 2*N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if # interp output 6 println(io,"ALPHAR:") _nr = N show(io,"text/plain",ALPHAR[1:_nr]) println(io,) # interp output 7 println(io,"ALPHAI:") _nr = N show(io,"text/plain",ALPHAI[1:_nr]) println(io,) # interp output 8 println(io,"BETA:") _nr = N show(io,"text/plain",BETA[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1693
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04dd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 100 LDA = NMAX LDQG = NMAX A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) SCALE = Array{Float64,1}(undef, NMAX) DUMMY = Array{Float64,1}(undef, 1) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, INFO = SLICOT.mb04dd!(JOB, N, A, QG, SCALE) @test INFO == 0 INFO == 0 || return println(io, "ILO = $ILO") # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "QG:") _nc = N+1 _nr = N show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) if ( ILO>1 ) subd = hypot(norm(tril(view(A,2:N,1:ILO-1))), norm(tril(view(QG,1:N,1:ILO-1)))) println(io, "subdiagonal norm: $subd") end # if end # run_mb04dd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2166
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04dl(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDB = NMAX A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDB,NMAX) LSCALE = Array{Float64,1}(undef, NMAX) RSCALE = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, 8*NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] THRESH = parse(Float64, replace(vs[3],'D'=>'E')) if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, IHI, INFO, IWARN = SLICOT.mb04dl!(JOB, N, THRESH, A, B, LSCALE, RSCALE, DWORK) @test INFO == 0 INFO == 0 || return println(io, "ILO = $ILO") println(io, "IHI = $IHI") # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "B:") _nc = N _nr = N show(io, "text/plain", B[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "LSCALE:") _nr = N show(io, "text/plain", LSCALE[1:_nr]) println(io) # interp output 4 println(io, "RSCALE:") _nr = N show(io, "text/plain", RSCALE[1:_nr]) println(io) if ( LSAME( JOB, 'S' ) || LSAME( JOB, 'B' ) ) if ( !( THRESH==-2 || THRESH==-4 ) ) println(io, "initial norms: ", DWORK[1:2]) println(io, "final norms: ", DWORK[3:4]) println(io, "final threshold: ", DWORK[5]) else println(io, "IWARN = $IWARN") end # if end # if end # run_mb04dl()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3028
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04dp(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDC = NMAX LDDE = NMAX LDVW = NMAX A = Array{Float64,2}(undef, LDA,NMAX) DE = Array{Float64,2}(undef, LDDE,NMAX+1) C = Array{Float64,2}(undef, LDC,NMAX) VW = Array{Float64,2}(undef, LDVW,NMAX+1) LSCALE = Array{Float64,1}(undef, NMAX) RSCALE = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, 8*NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] THRESH = parse(Float64, replace(vs[3],'D'=>'E')) if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz VW[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, INFO, IWARN = SLICOT.mb04dp!(JOB, N, THRESH, A, DE, C, VW, LSCALE, RSCALE, DWORK) @test INFO == 0 INFO == 0 || return println(io, "ILO = $ILO") # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "DE:") _nc = N+1 _nr = N show(io, "text/plain", DE[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "C:") _nc = N _nr = N show(io, "text/plain", C[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "VW:") _nc = N+1 _nr = N show(io, "text/plain", VW[1:_nr,1:_nc]) println(io) # interp output 5 println(io, "LSCALE:") _nr = N show(io, "text/plain", LSCALE[1:_nr]) println(io) # interp output 6 println(io, "RSCALE:") _nr = N show(io, "text/plain", RSCALE[1:_nr]) println(io) if ( LSAME( JOB, 'S' ) || LSAME( JOB, 'B' ) ) if ( !( THRESH==-2 || THRESH==-4 ) ) println(io, "initial norms: ", DWORK[1:2]) println(io, "initial norms: ", DWORK[3:4]) println(io, "final threshold: ", DWORK[5]) else println(io, "IWARN = $IWARN") end # if end # if end # run_mb04dp()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1673
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04ds(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 100 LDA = NMAX LDQG = NMAX A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) SCALE = Array{Float64,1}(undef, NMAX) DUMMY = Array{Float64,1}(undef, 1) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, INFO = SLICOT.mb04ds!(JOB, N, A, QG, SCALE) @test INFO == 0 INFO == 0 || return println(io, "ILO = $ILO") # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "QG:") _nc = N+1 _nr = N show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) if ( ILO>1 ) subd = hypot(norm(tril(view(A,2:N,1:ILO-1))), norm(tril(view(QG,2:N,1:ILO-1)))) println(io, "subdiagonal norm: $subd") end # if end # run_mb04ds()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2051
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04dy(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX LDQG = NMAX LDWORK = NMAX A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) D = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOBSCL = vs[2][1] if ( N<0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*(_jsz+1)÷2 append!(vs, replace.(split(readline(f)),'D'=>'E')) end _i0 = 0 for j in 1:_jsz QG[j,j+1:_jsz+1] .= parsex.(Float64, vs[_i0+1:_i0+_jsz-j+1]) _i0 += _jsz-j+1 end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*(_jsz+1)÷2 append!(vs, replace.(split(readline(f)),'D'=>'E')) end _i0 = 0 for j in 1:_jsz QG[j:_jsz,j] .= parsex.(Float64, vs[_i0+1:_i0+_jsz-j+1]) _i0 += _jsz-j+1 end close(f) # interp call 1 INFO = SLICOT.mb04dy!(JOBSCL, N, A, QG, D) @test INFO == 0 INFO != 0 && return # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "QG:") _nc = N+1 _nr = N show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) if ( LSAME( JOBSCL, 'S' ) ) # interp output 3 println(io, "D:") _nr = N show(io, "text/plain", D[1:_nr]) println(io) elseif ( LSAME( JOBSCL, '1' ) || LSAME( JOBSCL, 'O' ) ) println(io, "tau = ",D[1]) end # if end # run_mb04dy()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1690
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04dz(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 100 LDA = NMAX LDQG = NMAX A = Array{ComplexF64,2}(undef, LDA,NMAX) QG = Array{ComplexF64,2}(undef, LDQG,NMAX+1) SCALE = Array{Float64,1}(undef, NMAX) DUMMY = Array{Float64,1}(undef, 1) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, INFO = SLICOT.mb04dz!(JOB, N, A, QG, SCALE) @test INFO == 0 INFO == 0 || return println(io, "ILO = $ILO") # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "QG:") _nc = N+1 _nr = N show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) if ( ILO>1 ) subd = hypot(norm(tril(view(A,2:N,1:ILO-1))), norm(tril(view(QG,1:N,1:ILO-1)))) println(io, "subdiagonal norm: $subd") end # if end # run_mb04dz()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3722
# Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04ed(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 60 LDB = NMAX÷2 LDFG = NMAX÷2 LDQ = NMAX LDU1 = NMAX÷2 LDU2 = NMAX÷2 LDWORK = 3*NMAX^2÷2 + max( NMAX, 24 ) + 3 LDZ = NMAX LIWORK = NMAX + 9 Z = Array{Float64,2}(undef, LDZ,NMAX) B = Array{Float64,2}(undef, LDB,NMAX÷2) FG = Array{Float64,2}(undef, LDFG,NMAX÷2+1) Q = Array{Float64,2}(undef, LDQ,NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX÷2) U2 = Array{Float64,2}(undef, LDU2,NMAX÷2) ALPHAR = Array{Float64,1}(undef, NMAX÷2) ALPHAI = Array{Float64,1}(undef, NMAX÷2) BETA = Array{Float64,1}(undef, NMAX÷2) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ = vs[2][1] COMPU = vs[3][1] N = parse(BlasInt, vs[4]) vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Z[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if ( LSAME( COMPU, 'U' ) ) vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U1[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U2[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # if if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) else # interp call 1 INFO = SLICOT.mb04ed!(JOB, COMPQ, COMPU, N, Z, B, FG, Q, U1, U2, ALPHAR, ALPHAI, BETA, LIWORK) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"Z:") _nc = N _nr = N show(io,"text/plain",Z[1:_nr,1:_nc]) println(io,) # interp output 2 println(io,"B:") _nc = N÷2 _nr = N÷2 show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) # interp output 3 println(io,"FG:") _nc = N÷2+1 _nr = N÷2 show(io,"text/plain",FG[1:_nr,1:_nc]) println(io,) # interp output 4 println(io,"ALPHAR:") _nr = N÷2 show(io,"text/plain",ALPHAR[1:_nr]) println(io,) # interp output 5 println(io,"ALPHAI:") _nr = N÷2 show(io,"text/plain",ALPHAI[1:_nr]) println(io,) # interp output 6 println(io,"BETA:") _nr = N÷2 show(io,"text/plain",BETA[1:_nr]) println(io,) # interp output 7 println(io,"Q:") _nc = N _nr = N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) if ( !LSAME( COMPU, 'N' ) ) # interp output 8 println(io,"U1:") _nc = N÷2 _nr = N÷2 show(io,"text/plain",U1[1:_nr,1:_nc]) println(io,) # interp output 9 println(io,"U2:") _nc = N÷2 _nr = N÷2 show(io,"text/plain",U2[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3307
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04fd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 50 LDA = NMAX÷2 LDB = NMAX÷2 LDDE = NMAX÷2 LDFG = NMAX÷2 LDQ = NMAX LDWORK = 3*NMAX*NMAX÷4 A = Array{Float64,2}(undef, LDA,NMAX÷2) DE = Array{Float64,2}(undef, LDDE,NMAX÷2+1) B = Array{Float64,2}(undef, LDB,NMAX÷2) FG = Array{Float64,2}(undef, LDFG,NMAX÷2+1) Q = Array{Float64,2}(undef, LDQ,NMAX) ALPHAR = Array{Float64,1}(undef, NMAX÷2) ALPHAI = Array{Float64,1}(undef, NMAX÷2) BETA = Array{Float64,1}(undef, NMAX÷2) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, NMAX÷2+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) JOB = vs[1][1] COMPQ = vs[2][1] N = parse(BlasInt, vs[3]) vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N÷2,N÷2+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz FG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end if ( N<0 || N>NMAX || mod( N, 2 )!=0 ) else # interp call 1 INFO = SLICOT.mb04fd!(JOB, COMPQ, N, A, DE, B, FG, Q, ALPHAR, ALPHAI, BETA) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( LSAME( JOB, 'T' ) ) # interp output 1 println(io,"A:") _nc = N÷2 _nr = N÷2 show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) end # if # interp output 2 println(io,"DE:") _nc = N÷2+1 _nr = N÷2 show(io,"text/plain",DE[1:_nr,1:_nc]) println(io,) if ( LSAME( JOB, 'T' ) ) # interp output 3 println(io,"B:") _nc = N÷2 _nr = N÷2 show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) end # if # interp output 4 println(io,"FG:") _nc = N÷2+1 _nr = N÷2 show(io,"text/plain",FG[1:_nr,1:_nc]) println(io,) if ( !LSAME( COMPQ, 'N' ) ) # interp output 5 println(io,"Q:") _nc = N _nr = N show(io,"text/plain",Q[1:_nr,1:_nc]) println(io,) end # if # interp output 6 println(io,"ALPHAR:") _nr = N÷2 show(io,"text/plain",ALPHAR[1:_nr]) println(io,) # interp output 7 println(io,"ALPHAI:") _nr = N÷2 show(io,"text/plain",ALPHAI[1:_nr]) println(io,) # interp output 8 println(io,"BETA:") _nr = N÷2 show(io,"text/plain",BETA[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1973
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04gd(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 NMAX = 10 MMAX = 10 LDA = MMAX LDTAU = min(MMAX,NMAX) LDWORK = 3*MMAX A = Array{Float64,2}(undef, LDA,NMAX) JPVT = Array{BlasInt,1}(undef, MMAX) TAU = Array{Float64,1}(undef, LDTAU) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) if ( N<0 || N>NMAX ) @error "Illegal N=$N" end if ( M<0 || M>MMAX ) @error "Illegal M=$M" end vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz = M while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end JPVT[1:_isz] .= parsex.(BlasInt, vs) close(f) # interp call 1 INFO = SLICOT.mb04gd!(M, N, A, JPVT, TAU) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) @warn "mb04gd returns info=$INFO" return end # interp output 1 println(io, "JPVT:") _nr = M show(io, "text/plain", JPVT[1:_nr]) println(io) if ( M>=N ) if N>1 # interp call 2 #FOREIGN.dlaset!( 'Lower', N-1, N-1, ZERO, ZERO, A(M-N+2,1), LDA ) triu!(view(A,M-N+1:M,1:N-1)) end else # interp call 3 #FOREIGN.dlaset!( 'Full', M, N-M-1, ZERO, ZERO, A, LDA ) A[1:M,1:N-M-1] .= ZERO # interp call 4 #FOREIGN.dlaset!( 'Lower', M, M, ZERO, ZERO, A(1,N-M), LDA ) triu!(view(A,1:M,N-M:N-1),1) end # if # interp output 2 println(io, "A:") _nc = N _nr = M show(io, "text/plain", A[1:_nr,1:_nc]) println(io) end # run_mb04gd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1222
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04md(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX A = Array{Float64,2}(undef, LDA,NMAX) SCALE = Array{Float64,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) MAXRED = parse(Float64, replace(vs[2],'D'=>'E')) if ( N<=0 || N>NMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 MAXRED, INFO = SLICOT.mb04md!(N, MAXRED, A, SCALE) println(io, "MAXRED = $MAXRED") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"A:") _nc = N _nr = N show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) # interp output 2 println(io,"SCALE:") _nr = N show(io,"text/plain",SCALE[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2439
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04od(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 PMAX = 20 LDA = PMAX LDB = NMAX LDC = PMAX LDR = NMAX LDWORK = max( NMAX-1,MMAX ) R = Array{Float64,2}(undef, LDR,NMAX) A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDB,MMAX) C = Array{Float64,2}(undef, LDC,MMAX) TAU = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) M = parse(BlasInt, vs[2]) P = parse(BlasInt, vs[3]) UPLO = vs[4][1] if ( N<0 || N>NMAX ) else if ( M<0 || M>MMAX ) else if ( P<0 || P>PMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz R[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (P,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (P,M) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 SLICOT.mb04od!(UPLO, N, M, P, R, A, B, C, TAU) triu!(R) # interp output 1 println(io,"R:") _nc = N _nr = N show(io,"text/plain",R[1:_nr,1:_nc]) println(io,) if ( M>0 ) # interp output 2 println(io,"B:") _nc = M _nr = N show(io,"text/plain",B[1:_nr,1:_nc]) println(io,) if ( P>0 ) # interp output 3 println(io,"C:") _nc = M _nr = P show(io,"text/plain",C[1:_nr,1:_nc]) println(io,) end # if end # if end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
7403
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04pb(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 TWO = 2.0e0 NIN = 5 NOUT = 6 NMAX = 7 NBMAX = 3 LDA = NMAX LDQG = NMAX LDRES = NMAX LDU1 = NMAX LDU2 = NMAX LDWORK = 8*NBMAX*NMAX + 3*NBMAX A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) CS = Array{Float64,1}(undef, 2*NMAX) TAU = Array{Float64,1}(undef, NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,3*NMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) if ( N<=0 || N>NMAX ) @error "illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dlacpy!( 'All', N, N, A, LDA, RES(1,N+1), LDRES ) RES[1:N,N+1:2*N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 2 #FOREIGN.dlacpy!( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES ) RES[1:N,2*N+1:3*N+1] .= QG[1:N,1:N+1] # interp call 3 INFO = SLICOT.mb04pb!(N, 1, A, QG, CS, TAU) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) @warn "mb04pb returns info=$INFO" return end # interp call 4 #FOREIGN.dlacpy!( 'Lower', N, N, A, LDA, U1, LDU1 ) U1[1:N,1:N] .= tril(view(A,1:N,1:N)) # interp call 5 #FOREIGN.dlacpy!( 'Lower', N, N, QG, LDQG, U2, LDU2 ) U2[1:N,1:N] .= tril(view(QG,1:N,1:N)) # interp call 6 INFO = SLICOT.mb04wp!(N, 1, U1, U2, CS, TAU) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) @warn "mb04wp returns info=$INFO" return end if N>2 # interp call 7 #FOREIGN.dlaset!( 'Lower', N-2, N-2, ZERO, ZERO, A(3,1), LDA ) triu!(view(A,2:N,1:N-2)) end if N>1 # interp call 8 #FOREIGN.dlaset!( 'Lower', N-1, N-1, ZERO, ZERO, QG(2,1), LDQG ) triu!(view(QG,1:N,1:N-1)) end # interp output 1 println(io, "U1:") _nc = N _nr = N show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") _nc = N _nr = N show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, U1, LDU1, U2, LDU2, RES, LDRES ) resnorm = SLICOT.ma02jd!(false,false,N,U1,U2) println(io, "orth. residual norm = $resnorm") @test resnorm < 1e-12 # interp output 2 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "QG:") _nc = N+1 _nr = N show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) # interp call 9 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U1, LDU1, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,U1[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 10 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES, LDRES, U1, LDU1, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,1:N],U1[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # interp call 11 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, ONE, U2, LDU2, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','T',ONE,U2[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 12 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, ONE, RES, LDRES, U2, LDU2, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',ONE,RES[1:N,1:N],U2[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # interp call 13 #FOREIGN.dsymm!( 'Right', 'Upper', N, N, ONE, QG(1,2), LDQG, U1, LDU1, ZERO, RES, LDRES ) BLAS.symm!('R','U',ONE,QG[1:N,2:N+1],U1[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 14 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES, LDRES, U2, LDU2, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,1:N],U2[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # was DLACPY RES[1:N,1:N] .= U2[1:N,1:N] # interp call 15 #FOREIGN.dscal!( N, QG(I,I), RES(1,I), 1 ) for i in 1:N RES[1:N,i] .*= QG[i,i] end # interp call 16 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES, LDRES, U1, LDU1, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,1:N],U1[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # interp call 17 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U2, LDU2, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,U2[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 18 #FOREIGN.dsyr2k!( 'Lower', 'No Transpose', N, N, ONE, RES, LDRES, U1, LDU1, ONE, RES(1,2*N+1), LDRES ) BLAS.syr2k!('L','N',1.0,RES[1:N,1:N],U1[1:N,1:N],1.0,view(RES,1:N,2*N+1:3*N)) # interp call 19 #FOREIGN.dscal!( N, ONE/TWO, QG(1,2), LDQG+1 ) for i in 1:N QG[i,i+1] *= 1/2 end RES[1:N,1:N] .= U2[1:N,1:N] # interp call 20 #FOREIGN.dtrmm!( 'Right', 'Upper' , 'No Transpose', 'Not unit', N, N, ONE, QG(1,2), LDQG, RES, LDRES ) BLAS.trmm!('R','U','N','N',1.0,view(QG,1:N,2:N+1),view(RES,1:N,1:N)) # interp call 21 #FOREIGN.dsyr2k!( 'Lower', 'No Transpose', N, N, ONE, RES, LDRES, U2, LDU2, ONE, RES(1,2*N+1), LDRES ) BLAS.syr2k!('L','N',1.0,view(RES,1:N,1:N),view(U2,1:N,1:N),1.0,view(RES,1:N,2*N+1:3*N)) # interp call 22 for i in 1:N #FOREIGN.dsyr!( 'Lower', N, -QG(I,I), U1(1,I), 1, RES(1,2*N+1), LDRES ) BLAS.syr!('L',-QG[i,i],U1[1:N,i],view(RES,1:N,2*N+1:3*N)) end # interp call 23 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U1, LDU1, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','N',1.0,view(U1,1:N,1:N),view(A,1:N,1:N),0.0,view(RES,1:N,1:N)) # interp call 24 #FOREIGN.dsyr2k!( 'Upper', 'No Transpose', N, N, ONE, RES, LDRES, U2, LDU2, ONE, RES(1,2*N+2), LDRES ) BLAS.syr2k!('U','N',1.0,view(RES,1:N,1:N),view(U2,1:N,1:N),1.0,view(RES,1:N,2*N+2:3*N+1)) RES[1:N,1:N] .= U1[1:N,1:N] # interp call 25 #FOREIGN.dtrmm!( 'Right', 'Upper' , 'No Transpose', 'Not unit', N, N, ONE, QG(1,2), LDQG, RES, LDRES ) BLAS.trmm!('R','U','N','N',1.0,view(QG,1:N,2:N+1),view(RES,1:N,1:N)) # interp call 26 #FOREIGN.dsyr2k!( 'Upper', 'No Transpose', N, N, -ONE, RES, LDRES, U1, LDU1, ONE, RES(1,2*N+2), LDRES ) BLAS.syr2k!('U','N',-1.0,view(RES,1:N,1:N),view(U1,1:N,1:N),1.0,view(RES,1:N,2*N+2:3*N+1)) # interp call 27 for i in 1:N #FOREIGN.dsyr!( 'Upper', N, QG(I,I), U2(1,I), 1, RES(1,2*N+2), LDRES ) BLAS.syr!('U',QG[i,i],U2[1:N,i],view(RES,1:N,2*N+2:3*N+1)) end # unable to translate write statement: # write MA02ID( 'Hamiltonian', 'Frobenius', N, RES(1,N+1), LDRES, RES(1,2*N+1), LDRES, DWORK ) resnorm = SLICOT.ma02id!('H','F',N,view(RES,1:N,N+1:2*N),view(RES,1:N,2*N+1:3*N),DWORK) println(io, "residual norm = $resnorm") @test resnorm < 1e-12 end # run_mb04pb()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
7222
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04pu(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 TWO = 2.0e0 NIN = 5 NOUT = 6 NMAX = 100 LDA = NMAX LDQG = NMAX LDRES = NMAX LDU1 = NMAX LDU2 = NMAX LDWORK = 2*NMAX A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) CS = Array{Float64,1}(undef, 2*NMAX) TAU = Array{Float64,1}(undef, NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,3*NMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) if ( N<=0 || N>NMAX ) @error "invalid N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dlacpy!( 'All', N, N, A, LDA, RES(1,N+1), LDRES ) RES[1:N,N+1:2N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz QG[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 2 #FOREIGN.dlacpy!( 'All', N, N+1, QG, LDQG, RES(1,2*N+1), LDRES ) RES[1:N,2*N+1:3N+1] .= QG[1:N,1:N+1] close(f) # interp call 3 INFO = SLICOT.mb04pu!(N, 1, A, QG, CS, TAU, LDWORK) @test INFO == 0 INFO == 0 || return # yes, this is from the original # INFO = 0 # if ( INFO!=0 ) # else # interp call 4 #FOREIGN.dlacpy!( 'Lower', N, N, A, LDA, U1, LDU1 ) U1[1:N,1:N] .= tril(A[1:N,1:N]) # interp call 5 #FOREIGN.dlacpy!( 'Lower', N, N, QG, LDQG, U2, LDU2 ) U2[1:N,1:N] .= tril(QG[1:N,1:N]) # interp call 6 INFO = SLICOT.mb04wp!(N, 1, U1, U2, CS, TAU) @test INFO == 0 INFO == 0 || return if N>2 # interp call 7 # FOREIGN.dlaset!( 'Lower', N-2, N-2, ZERO, ZERO, A(3,1), LDA ) triu!(view(A,2:N,1:N-2)) end if N>1 # interp call 8 # FOREIGN.dlaset!( 'Lower', N-1, N-1, ZERO, ZERO, QG(2,1), LDQG ) triu!(view(QG,1:N,1:N-1)) end # interp output 1 println(io, "U1:") _nc = N _nr = N show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") _nc = N _nr = N show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, U1, LDU1, U2, LDU2, RES, LDRES ) resnorm = SLICOT.ma02jd!(false,false,N,U1,U2) println(io, "U orth. residual norm = $resnorm") @test resnorm < 1e-12 # interp output 2 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "QG:") _nc = N+1 _nr = N show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) # interp call 9 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U1, LDU1, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,U1[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 10 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES, LDRES, U1, LDU1, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,1:N],U1[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # interp call 11 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, ONE, U2, LDU2, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','T',ONE,U2[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 12 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, ONE, RES, LDRES, U2, LDU2, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',ONE,RES[1:N,1:N],U2[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # interp call 13 #FOREIGN.dsymm!( 'Right', 'Upper', N, N, ONE, QG(1,2), LDQG, U1, LDU1, ZERO, RES, LDRES ) BLAS.symm!('R','U',ONE,QG[1:N,2:N+1],U1[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 14 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES, LDRES, U2, LDU2, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,1:N],U2[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) RES[1:N,1:N] .= U2[1:N,1:N] # interp call 15 for i in 1:N # FOREIGN.dscal!( N, QG(I,I), RES(1,I), 1 ) RES[1:N,i] .*= QG[i,i] end # interp call 16 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES, LDRES, U1, LDU1, ONE, RES(1,N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,1:N],U1[1:N,1:N],ONE,view(RES,1:N,N+1:2N)) # interp call 17 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U2, LDU2, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,U2[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 18 #FOREIGN.dsyr2k!( 'Lower', 'No Transpose', N, N, ONE, RES, LDRES, U1, LDU1, ONE, RES(1,2*N+1), LDRES ) BLAS.syr2k!('L','N',ONE,RES[1:N,1:N],U1[1:N,1:N],ONE,view(RES,1:N,2*N+1:3N)) # interp call 19 #FOREIGN.dscal!( N, ONE/TWO, QG(1,2), LDQG+1 ) for i in 1:N QG[i,i+1] *= 1/2 end RES[1:N,1:N] .= U2[1:N,1:N] # interp call 20 #FOREIGN.dtrmm!( 'Right', 'Upper' , 'No Transpose', 'Not unit', N, N, ONE, QG(1,2), LDQG, RES, LDRES ) BLAS.trmm!('R','U','N','N',ONE,QG[1:N,2:N+1],view(RES,1:N,1:N)) # interp call 21 #FOREIGN.dsyr2k!( 'Lower', 'No Transpose', N, N, ONE, RES, LDRES, U2, LDU2, ONE, RES(1,2*N+1), LDRES ) BLAS.syr2k!('L','N',ONE,RES[1:N,1:N],U2[1:N,1:N],ONE,view(RES,1:N,2N+1:3N)) # interp call 22 for i in 1:N #FOREIGN.dsyr!( 'Lower', N, -QG(I,I), U1(1,I), 1, RES(1,2*N+1), LDRES ) BLAS.syr!('L',-QG[i,i],U1[1:N,i],view(RES,1:N,2*N+1:3N)) end # interp call 23 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U1, LDU1, A, LDA, ZERO, RES, LDRES ) BLAS.gemm!('N','N',ONE,U1[1:N,1:N],A[1:N,1:N],ZERO,view(RES,1:N,1:N)) # interp call 24 #FOREIGN.dsyr2k!( 'Upper', 'No Transpose', N, N, ONE, RES, LDRES, U2, LDU2, ONE, RES(1,2*N+2), LDRES ) BLAS.syr2k!('U','N',ONE,RES[1:N,1:N],U2[1:N,1:N],ONE,view(RES,1:N,2*N+2:3*N+1)) RES[1:N,1:N] .= U1[1:N,1:N] # interp call 25 #FOREIGN.dtrmm!( 'Right', 'Upper' , 'No Transpose', 'Not unit', N, N, ONE, QG(1,2), LDQG, RES, LDRES ) BLAS.trmm!('R','U','N','N',ONE,QG[1:N,2:N+1],view(RES,1:N,1:N)) # interp call 26 #FOREIGN.dsyr2k!( 'Upper', 'No Transpose', N, N, -ONE, RES, LDRES, U1, LDU1, ONE, RES(1,2*N+2), LDRES ) BLAS.syr2k!('U','N',-ONE,RES[1:N,1:N],U1[1:N,1:N],ONE,view(RES,1:N,2*N+2:3*N+1)) # interp call 27 for i in 1:N #FOREIGN.dsyr!( 'Upper', N, QG(I,I), U2(1,I), 1, RES(1,2*N+2), LDRES ) BLAS.syr!('U',QG[i,i],U2[1:N,i],view(RES,1:N,2*N+2:3*N+1)) end # unable to translate write statement: # write MA02ID( 'Hamiltonian', 'Frobenius', N, RES(1,N+1), LDRES, RES(1,2*N+1), LDRES, DWORK ) resnorm = SLICOT.ma02id!('H','F',N,view(RES,1:N,N+1:2*N),view(RES,1:N,2*N+1:3*N),DWORK) println(io, "residual norm = $resnorm") @test resnorm < 1e-12 end # run_mb04pu()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
10674
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04tb(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NBMAX = 64 NMAX = 421 LDA = NMAX LDB = NMAX LDG = NMAX LDQ = NMAX LDRES = NMAX LDU1 = NMAX LDU2 = NMAX LDV1 = NMAX LDV2 = NMAX LDWORK = NBMAX*( 16*NMAX + 1 ) A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDB,NMAX) G = Array{Float64,2}(undef, LDG,NMAX) Q = Array{Float64,2}(undef, LDQ,NMAX) CSL = Array{Float64,1}(undef, 2*NMAX) CSR = Array{Float64,1}(undef, 2*NMAX) TAUL = Array{Float64,1}(undef, NMAX) TAUR = Array{Float64,1}(undef, NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) V1 = Array{Float64,2}(undef, LDV1,NMAX) V2 = Array{Float64,2}(undef, LDV2,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,5*NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) TRANA = vs[2][1] TRANB = vs[3][1] if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end RES[1:N,1:N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dlacpy!( 'All', N, N, B, LDB, RES(1,N+1), LDRES ) RES[1:N,N+1:2N] .= B[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz G[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 2 #FOREIGN.dlacpy!( 'All', N, N, G, LDG, RES(1,2*N+1), LDRES ) RES[1:N,2*N+1:3N] .= G[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Q[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 3 #FOREIGN.dlacpy!( 'All', N, N, Q, LDQ, RES(1,3*N+1), LDRES ) RES[1:N,3*N+1:4N] .= Q[1:N,1:N] close(f) # interp call 4 INFO = SLICOT.mb04tb!(TRANA, TRANB, N, 1, A, B, G, Q, CSL, CSR, TAUL, TAUR) @test INFO == 0 INFO == 0 || return U1[1:N,1:N] .= A[1:N,1:N] U2[1:N,1:N] .= Q[1:N,1:N] # interp call 5 INFO = SLICOT.mb04wr!('U', TRANA, N, 1, U1, U2, CSL, TAUL) @test INFO == 0 INFO == 0 || return V2[1:N,1:N] .= Q[1:N,1:N] V1[1:N,1:N] .= B[1:N,1:N] # interp call 6 INFO = SLICOT.mb04wr!('V', TRANB, N, 1, V1, V2, CSR, TAUR) @test INFO == 0 INFO == 0 || return if ( LSAME( TRANA, 'N' ) ) # interp output 1 println(io, "U1:") _nc = N _nr = N show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") _nc = N _nr = N show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, U1, LDU1, U2, LDU2, RES(1,4*N+1), LDRES ) resnorm = SLICOT.ma02jd!(false,false,N,U1,U2) println(io, "U orth. residual norm = $resnorm") @test resnorm < 1e-12 else # interp output 2 println(io, "U1:") _nc = N _nr = N show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") _nc = N _nr = N show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) resnorm = SLICOT.ma02jd!(true,false,N,U1,U2) println(io, "U orth. residual norm = $resnorm") @test resnorm < 1e-12 # unable to translate write statement: # write MA02JD( .TRUE., .FALSE., N, U1, LDU1, U2, LDU2, RES(1,4*N+1), LDRES ) end # if # interp call 7 #FOREIGN.dlaset!( 'All', N, N, ZERO, ZERO, Q, LDQ ) Q[1:N,1:N] .= ZERO if ( LSAME( TRANA, 'N' ) ) # interp call 8 #FOREIGN.dlaset!( 'Lower', N-1, N-1, ZERO, ZERO, A(2,1), LDA ) triu!(view(A,1:N,1:N-1)) # interp output 3 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) println(io, "G:") show(io, "text/plain", G[1:_nr,1:_nc]) println(io) else # interp call 9 #FOREIGN.dlaset!( 'Upper', N-1, N-1, ZERO, ZERO, A(1,2), LDA ) tril!(view(A,1:N-1,1:N)) # interp output 4 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) println(io, "G:") show(io, "text/plain", G[1:_nr,1:_nc]) println(io) end # if if ( LSAME( TRANB, 'N' ) ) if ( N>1 ) # interp call 10 #FOREIGN.dlaset!( 'Upper', N-2, N-2, ZERO, ZERO, B(1,3), LDB ) tril!(view(B,1:N-1,2:N)) end # if # interp output 5 _nc = N _nr = N println(io, "Q:") show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) println(io, "B:") show(io, "text/plain", B[1:_nr,1:_nc]) println(io) else if ( N>1 ) triu!(view(B,2:N-1,1:N-2)) end # if _nc = N _nr = N println(io, "Q:") show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) println(io, "B:") show(io, "text/plain", B[1:_nr,1:_nc]) println(io) # interp output 6 end # if if ( LSAME( TRANB, 'N' ) ) TRANV1 = 'T' else TRANV1 = 'N' end # if # interp call 11 #FOREIGN.dgemm!( TRANA, TRANV1, N, N, N, ONE, RES, LDRES, V1, LDV1, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,TRANV1,ONE,RES[1:N,1:N],V1[1:N,1:N],ZERO,view(RES,1:N,4*N+1:5N)) # interp call 12 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES(1,2*N+1), LDRES, V2, LDV2, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,2*N+1:3N],V2[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) # interp call 13 #FOREIGN.dgemm!( TRANA, TRANA, N, N, N, -ONE, U1, LDU1, A, LDA, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,TRANA,-ONE,U1[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) #TEMP = DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) TEMP = norm(RES[1:N,4*N+1:5N]) # interp call 14 #FOREIGN.dgemm!( TRANA, 'Transpose', N, N, N, ONE, RES, LDRES, V2, LDV2, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,'T',ONE,RES[1:N,1:N],V2[1:N,1:N],ZERO,view(RES,1:N,4*N+1:5N)) # interp call 15 #FOREIGN.dgemm!( 'No Transpose', TRANV1, N, N, N, ONE, RES(1,2*N+1), LDRES, V1, LDV1, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANV1,ONE,RES[1:N,2*N+1:3N],V1[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) # interp call 16 #FOREIGN.dgemm!( TRANA, 'No Transpose', N, N, N, -ONE, U1, LDU1, G, LDG, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,'N',-ONE,U1[1:N,1:N],G[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) # interp call 17 #FOREIGN.dgemm!( 'No Transpose', TRANB, N, N, N, -ONE, U2, LDU2, B, LDB, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANB,-ONE,U2[1:N,1:N],B[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) #TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:N,4*N+1:5N])) # interp call 18 #FOREIGN.dgemm!( 'No Transpose', TRANV1, N, N, N, ONE, RES(1,3*N+1), LDRES, V1, LDV1, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANV1,ONE,RES[1:N,3*N+1:4N],V1[1:N,1:N],ZERO,view(RES,1:N,4*N+1:5N)) # interp call 19 #FOREIGN.dgemm!( TRANB, 'Transpose', N, N, N, -ONE, RES(1,N+1), LDRES, V2, LDV2, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANB,'T',-ONE,RES[1:N,N+1:2N], V2[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) # interp call 20 #FOREIGN.dgemm!( 'No Transpose', TRANA, N, N, N, ONE, U2, LDU2, A, LDA, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANA,ONE,U2[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) #TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:N,4*N+1:5N])) # interp call 21 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, ONE, RES(1,3*N+1), LDRES, V2, LDV2, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!('N','T',ONE,RES[1:N,3*N+1:4N],V2[1:N,1:N],ZERO,view(RES,1:N,4*N+1:5N)) # interp call 22 #FOREIGN.dgemm!( TRANB, TRANV1, N, N, N, ONE, RES(1,N+1), LDRES, V1, LDV1, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANB,TRANV1,ONE,RES[1:N,N+1:2N],V1[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) # interp call 23 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U2, LDU2, G, LDG, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N','N',ONE,U2[1:N,1:N],G[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) # interp call 24 #FOREIGN.dgemm!( TRANA, TRANB, N, N, N, -ONE, U1, LDU1, B, LDB, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,TRANB,-ONE,U1[1:N,1:N],B[1:N,1:N],ONE,view(RES,1:N,4*N+1:5N)) #TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:N,4*N+1:5N])) println(io, "residual H V - U R norm: $TEMP") @test TEMP < 1e-12 if ( LSAME( TRANB, 'N' ) ) # interp output 7 _nc = N _nr = N println(io, "V1:") show(io, "text/plain", V1[1:_nr,1:_nc]) println(io) println(io, "V2:") show(io, "text/plain", V2[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .TRUE., .TRUE., N, V1, LDV1, V2, LDV2, RES(1,4*N+1), LDRES ) resnorm = SLICOT.ma02jd!(true,true,N,V1,V2) println(io, "V orth. residual norm = $resnorm") @test resnorm < 1e-12 else # interp output 8 _nc = N _nr = N println(io, "V1:") show(io, "text/plain", V1[1:_nr,1:_nc]) println(io) println(io, "V2:") show(io, "text/plain", V1[1:_nr,1:_nc]) println(io) # unable to translate write statement: # write MA02JD( .FALSE., .TRUE., N, V1, LDV1, V2, LDV2, RES(1,4*N+1), LDRES ) resnorm = SLICOT.ma02jd!(false,true,N,V1,V2) println(io, "V orth. residual norm = $resnorm") @test resnorm < 1e-12 end # if end # run_mb04tb()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
10323
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04ts(datfile, io=stdout) ZERO = 0.0e0 ONE = 1.0e0 NIN = 5 NOUT = 6 NMAX = 200 LDA = NMAX LDB = NMAX LDG = NMAX LDQ = NMAX LDRES = NMAX LDU1 = NMAX LDU2 = NMAX LDV1 = NMAX LDV2 = NMAX LDWORK = NMAX A = Array{Float64,2}(undef, LDA,NMAX) B = Array{Float64,2}(undef, LDB,NMAX) G = Array{Float64,2}(undef, LDG,NMAX) Q = Array{Float64,2}(undef, LDQ,NMAX) CSL = Array{Float64,1}(undef, 2*NMAX) CSR = Array{Float64,1}(undef, 2*NMAX) TAUL = Array{Float64,1}(undef, NMAX) TAUR = Array{Float64,1}(undef, NMAX) U1 = Array{Float64,2}(undef, LDU1,NMAX) U2 = Array{Float64,2}(undef, LDU2,NMAX) V1 = Array{Float64,2}(undef, LDV1,NMAX) V2 = Array{Float64,2}(undef, LDV2,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) RES = Array{Float64,2}(undef, LDRES,5*NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) TRANA = vs[2][1] TRANB = vs[3][1] if ( N<=0 || N>NMAX ) @error "illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end RES[1:N,1:N] .= A[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 #FOREIGN.dlacpy!( 'All', N, N, B, LDB, RES(1,N+1), LDRES ) RES[1:N,N+1:2N] .= B[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz G[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 2 #FOREIGN.dlacpy!( 'All', N, N, G, LDG, RES(1,2*N+1), LDRES ) RES[1:N,2N+1:3N] .= G[1:N,1:N] vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz Q[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 3 #FOREIGN.dlacpy!( 'All', N, N, Q, LDQ, RES(1,3*N+1), LDRES ) RES[1:N,3N+1:4N] .= Q[1:N,1:N] close(f) # interp call 4 INFO = SLICOT.mb04ts!(TRANA, TRANB, N, 1, A, B, G, Q, CSL, CSR, TAUL, TAUR, LDWORK) @test INFO == 0 if ( INFO!=0 ) @warn "mb04ts returned info=$INFO" return end U1[1:N,1:N] .= A[1:N,1:N] U2[1:N,1:N] .= Q[1:N,1:N] # interp call 5 INFO = SLICOT.mb04wr!('U', TRANA, N, 1, U1, U2, CSL, TAUL) @test INFO == 0 if ( INFO!=0 ) @warn "mb04wr returned info=$INFO" return end V2[1:N,1:N] .= Q[1:N,1:N] V1[1:N,1:N] .= B[1:N,1:N] # interp call 6 INFO = SLICOT.mb04wr!('V', TRANB, N, 1, V1, V2, CSR, TAUR) @test INFO == 0 if ( INFO!=0 ) @warn "mb04wr returned info=$INFO" return end # interp output 1 _nc = N _nr = N println(io, "U1:") show(io, "text/plain", U1[1:_nr,1:_nc]) println(io) println(io, "U2:") show(io, "text/plain", U2[1:_nr,1:_nc]) println(io) if ( LSAME( TRANA, 'N' ) ) resnorm = SLICOT.ma02jd!(false,false,N,U1,U2) println(io, "U orth. residual norm = $resnorm") @test resnorm < 1e-12 # unable to translate write statement: # write MA02JD( .FALSE., .FALSE., N, U1, LDU1, U2, LDU2, RES(1,4*N+1), LDRES ) else resnorm = SLICOT.ma02jd!(true,false,N,U1,U2) println(io, "U orth. residual norm = $resnorm") @test resnorm < 1e-12 # unable to translate write statement: # write MA02JD( .TRUE., .FALSE., N, U1, LDU1, U2, LDU2, RES(1,4*N+1), LDRES ) end # if # interp call 7 #FOREIGN.dlaset!( 'All', N, N, ZERO, ZERO, Q, LDQ ) Q[1:N,1:N] .= ZERO if ( LSAME( TRANA, 'N' ) ) # interp call 8 #FOREIGN.dlaset!( 'Lower', N-1, N-1, ZERO, ZERO, A(2,1), LDA ) triu!(view(A,1:N,1:N-1)) # interp output 3 _nc = N _nr = N println(io, "A:") show(io, "text/plain", A[1:_nr,1:_nc]) println(io) println(io, "G:") show(io, "text/plain", G[1:_nr,1:_nc]) println(io) else # interp call 9 #FOREIGN.dlaset!( 'Upper', N-1, N-1, ZERO, ZERO, A(1,2), LDA ) tril!(view(A,1:N,1:N-1)) # interp output 4 _nc = N _nr = N println(io, "A:") show(io, "text/plain", A[1:_nr,1:_nc]) println(io) println(io, "G:") show(io, "text/plain", G[1:_nr,1:_nc]) println(io) end # if if ( LSAME( TRANB, 'N' ) ) if ( N>1 ) # interp call 10 #FOREIGN.dlaset!( 'Upper', N-2, N-2, ZERO, ZERO, B(1,3), LDB ) tril!(view(B,1:N-1,2:N)) end # if # interp output 5 _nc = N _nr = N println(io, "Q:") show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) println(io, "B:") show(io, "text/plain", B[1:_nr,1:_nc]) println(io) else if ( N>1 ) # interp call 11 #FOREIGN.dlaset!( 'Lower', N-2, N-2, ZERO, ZERO, B(3,1), LDB ) triu!(view(B,2:N-1,1:N-2)) end # if # interp output 6 _nc = N _nr = N println(io, "Q:") show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) println(io, "B:") show(io, "text/plain", B[1:_nr,1:_nc]) println(io) end # if if ( LSAME( TRANB, 'N' ) ) TRANV1 = 'T' else TRANV1 = 'N' end # if # interp call 12 #FOREIGN.dgemm!( TRANA, TRANV1, N, N, N, ONE, RES, LDRES, V1, LDV1, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,TRANV1,ONE,RES[1:N,1:N],V1[1:N,1:N],ZERO,view(RES,1:N,4N+1:5N)) # interp call 13 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, -ONE, RES(1,2*N+1), LDRES, V2, LDV2, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N','T',-ONE,RES[1:N,2N+1:3N],V2[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) # interp call 14 #FOREIGN.dgemm!( TRANA, TRANA, N, N, N, -ONE, U1, LDU1, A, LDA, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,TRANA,-ONE,U1[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) #TEMP = DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) TEMP = norm(RES[1:N,4N+1:5N]) # interp call 15 #FOREIGN.dgemm!( TRANA, 'Transpose', N, N, N, ONE, RES, LDRES, V2, LDV2, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,'T',ONE,RES[1:N,1:N],V2[1:N,1:N],ZERO,view(RES,1:N,4N+1:5N)) # interp call 16 #FOREIGN.dgemm!( 'No Transpose', TRANV1, N, N, N, ONE, RES(1,2*N+1), LDRES, V1, LDV1, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANV1,ONE,RES[1:N,2N+1:3N],V1[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) # interp call 17 #FOREIGN.dgemm!( TRANA, 'No Transpose', N, N, N, -ONE, U1, LDU1, G, LDG, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,'N',-ONE,U1[1:N,1:N],G[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) # interp call 18 #FOREIGN.dgemm!( 'No Transpose', TRANB, N, N, N, -ONE, U2, LDU2, B, LDB, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANB,-ONE,U2[1:N,1:N],B[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) #TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) ) TEMP = hypot(TEMP,norm(RES[1:N,4N+1:5N])) # interp call 19 #FOREIGN.dgemm!( 'No Transpose', TRANV1, N, N, N, ONE, RES(1,3*N+1), LDRES, V1, LDV1, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANV1,ONE,RES[1:N,3N+1:4N],V1[1:N,1:N],ZERO,view(RES,1:N,4N+1:5N)) # interp call 20 #FOREIGN.dgemm!( TRANB, 'Transpose', N, N, N, -ONE, RES(1,N+1), LDRES, V2, LDV2, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANB,'T',-ONE,RES[1:N,N+1:2N],V2[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) # interp call 21 #FOREIGN.dgemm!( 'No Transpose', TRANA, N, N, N, ONE, U2, LDU2, A, LDA, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N',TRANA,ONE,U2[1:N,1:N],A[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) #TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) ) TEMP = hypot(TEMP, norm(RES[1:N,4N+1:5N])) # interp call 22 #FOREIGN.dgemm!( 'No Transpose', 'Transpose', N, N, N, ONE, RES(1,3*N+1), LDRES, V2, LDV2, ZERO, RES(1,4*N+1), LDRES ) BLAS.gemm!('N','T',ONE,RES[1:N,3N+1:4N],V2[1:N,1:N],ZERO,view(RES,1:N,4N+1:5N)) # interp call 23 #FOREIGN.dgemm!( TRANB, TRANV1, N, N, N, ONE, RES(1,N+1), LDRES, V1, LDV1, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANB,TRANV1,ONE,RES[1:N,N+1:2N],V1[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) # interp call 24 #FOREIGN.dgemm!( 'No Transpose', 'No Transpose', N, N, N, ONE, U2, LDU2, G, LDG, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!('N','N',ONE,U2[1:N,1:N],G[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) # interp call 25 #FOREIGN.dgemm!( TRANA, TRANB, N, N, N, -ONE, U1, LDU1, B, LDB, ONE, RES(1,4*N+1), LDRES ) BLAS.gemm!(TRANA,TRANB,-ONE,U1[1:N,1:N],B[1:N,1:N],ONE,view(RES,1:N,4N+1:5N)) #TEMP = DLAPY2( TEMP, DLANGE( 'Frobenius', N, N, RES(1,4*N+1), LDRES, DWORK ) ) TEMP = hypot(TEMP, norm(RES[1:N,4N+1:5N])) println(io, "residual H V - U R norm = $TEMP") @test TEMP < 1e-12 # interp output 7 _nc = N _nr = N println(io, "V1:") show(io, "text/plain", V1[1:_nr,1:_nc]) println(io) println(io, "V2:") show(io, "text/plain", V2[1:_nr,1:_nc]) println(io) if ( LSAME( TRANB, 'N' ) ) # unable to translate write statement: # write MA02JD( .TRUE., .TRUE., N, V1, LDV1, V2, LDV2, RES(1,4*N+1), LDRES ) resnorm = SLICOT.ma02jd!(true,true,N,V1,V2) println(io, "V orth. residual norm = $resnorm") @test resnorm < 1e-12 else # unable to translate write statement: # write MA02JD( .FALSE., .TRUE., N, V1, LDV1, V2, LDV2, RES(1,4*N+1), LDRES ) resnorm = SLICOT.ma02jd!(false,true,N,V1,V2) println(io, "V orth. residual norm = $resnorm") @test resnorm < 1e-12 end # if end # run_mb04ts()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1958
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04ud(datfile, io=stdout) NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 LDA = MMAX LDE = MMAX LDQ = MMAX LDZ = NMAX LDWORK = max( NMAX,MMAX ) A = Array{Float64,2}(undef, LDA,NMAX) E = Array{Float64,2}(undef, LDE,NMAX) Q = Array{Float64,2}(undef, LDQ,MMAX) Z = Array{Float64,2}(undef, LDZ,NMAX) ISTAIR = Array{BlasInt,1}(undef, MMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) TOL = parse(Float64, replace(vs[3],'D'=>'E')) if ( M<0 || M>MMAX ) elseif ( N<0 || N>NMAX ) else vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz E[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end JOBQ = 'N' JOBZ = 'N' # interp call 1 RANKE, INFO = SLICOT.mb04ud!(JOBQ, JOBZ, M, N, A, E, Q, Z, ISTAIR, TOL) println(io, "RANKE = $RANKE") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"A:") _nc = N _nr = M show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) # interp output 2 println(io,"E:") _nc = N _nr = M show(io,"text/plain",E[1:_nr,1:_nc]) println(io,) # interp output 3 println(io,"ISTAIR:") _nr = M show(io,"text/plain",ISTAIR[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3515
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04vd(datfile, io=stdout) NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 LDA = MMAX LDE = MMAX LDQ = MMAX LDZ = NMAX LINUK = max( NMAX,MMAX+1 ) LIWORK = NMAX LDWORK = max( NMAX,MMAX ) ZERO = 0.0e0 ONE = 1.0e0 A = Array{Float64,2}(undef, LDA,NMAX) E = Array{Float64,2}(undef, LDE,NMAX) Q = Array{Float64,2}(undef, LDQ,MMAX) Z = Array{Float64,2}(undef, LDZ,NMAX) ISTAIR = Array{BlasInt,1}(undef, MMAX) # WARNING: desperate attempt to initialize NBLCKS NBLCKS = 0 # WARNING: desperate attempt to initialize NBLCKI NBLCKI = 0 IMUK = Array{BlasInt,1}(undef, LINUK) INUK = Array{BlasInt,1}(undef, LINUK) IMUK0 = Array{BlasInt,1}(undef, NMAX) MNEI = Array{BlasInt,1}(undef, 3) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, LIWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) TOL = parse(Float64, replace(vs[3],'D'=>'E')) MODE = vs[4][1] if ( M<0 || M>MMAX ) @error "Illegal M=$M" end if ( N<0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz E[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) JOBQ = 'I' JOBZ = 'I' # interp call 1 RANKE, INFO = SLICOT.mb04ud!(JOBQ, JOBZ, M, N, A, E, Q, Z, ISTAIR, TOL) println(io, "RANKE = $RANKE") @test INFO == 0 INFO == 0 || return JOBQ = 'U' JOBZ = 'U' # interp call 2 NBLCKS, NBLCKI, INFO = SLICOT.mb04vd!(MODE, JOBQ, JOBZ, M, N, RANKE, A, E, Q, Z, ISTAIR, IMUK, INUK, IMUK0, MNEI, TOL) @test INFO == 0 INFO == 0 || return # interp output 1 println(io, "Q:") _nc = M _nr = M show(io, "text/plain", Q[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "E:") _nc = N _nr = M show(io, "text/plain", E[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "A:") _nc = N _nr = M show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "Z:") _nc = N _nr = N show(io, "text/plain", Z[1:_nr,1:_nc]) println(io) if ( ! LSAME( MODE, 'S' ) ) # interp output 5 println(io, "IMUK:") _nr = NBLCKS show(io, "text/plain", IMUK[1:_nr]) println(io) # interp output 6 println(io, "INUK:") _nr = NBLCKS show(io, "text/plain", INUK[1:_nr]) println(io) else # interp output 7 println(io, "IMUK:") _nr = NBLCKS show(io, "text/plain", IMUK[1:_nr]) println(io) # interp output 8 println(io, "INUK:") _nr = NBLCKS show(io, "text/plain", INUK[1:_nr]) println(io) # interp output 9 println(io, "IMUK0:") _nr = NBLCKI show(io, "text/plain", IMUK0[1:_nr]) println(io) # interp output 10 println(io, "MNEI:") _nr = 3 show(io, "text/plain", MNEI[1:_nr]) println(io) end # if end # run_mb04vd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2709
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04xd(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 LDA = MMAX LDU = MMAX LDV = NMAX MAXMN = max( MMAX, NMAX ) MNMIN = min( MMAX, NMAX ) LENGQ = 2*MNMIN-1 LDWORK = max( 2*NMAX, NMAX*( NMAX+1 )÷2 ) + max( 2*MNMIN + MAXMN, 8*MNMIN - 5 ) A = Array{Float64,2}(undef, LDA,NMAX) U = Array{Float64,2}(undef, LDU,MMAX) V = Array{Float64,2}(undef, LDV,NMAX) Q = Array{Float64,1}(undef, LENGQ) INUL = Array{BlasBool,1}(undef, MAXMN) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) RANK = parse(BlasInt, vs[3]) THETA = parse(Float64, replace(vs[4],'D'=>'E')) TOL = parse(Float64, replace(vs[5],'D'=>'E')) RELTOL = parse(Float64, replace(vs[6],'D'=>'E')) JOBU = vs[7][1] JOBV = vs[8][1] if ( M<0 || M>MMAX ) elseif ( N<0 || N>NMAX ) elseif ( RANK>MNMIN ) elseif ( RANK<0 && THETA<ZERO ) else vs = String[] _isz,_jsz = (M,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end RANK1 = RANK THETA1 = THETA # interp call 1 INUL .= 0 RANK, THETA, INFO, IWARN = SLICOT.mb04xd!(JOBU, JOBV, M, N, RANK, THETA, A, U, V, Q, INUL, TOL, RELTOL) println(io, "RANK = $RANK") println(io, "THETA = $THETA") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") inul = convert(Vector{Bool},INUL) if ( INFO!=0 ) else if ( IWARN!=0 ) else end # if LJOBUA = LSAME( JOBU, 'A' ) LJOBUS = LSAME( JOBU, 'S' ) LJOBVA = LSAME( JOBV, 'A' ) LJOBVS = LSAME( JOBV, 'S' ) WANTU = LJOBUA||LJOBUS WANTV = LJOBVA||LJOBVS MINMN = min( M, N ) LOOP = MINMN - 1 println(io, "Q:") show(io, "text/plain", Bidiagonal(Q[1:MINMN],Q[MINMN+1:MINMN+LOOP],'U')) println(io) if ( WANTU ) NCOLU = LJOBUS ? MINMN : M # interp output 1 println(io, "U:") _nc = NCOLU _nr = M show(io, "text/plain", U[1:_nr,1:_nc]) println(io) println(io, "INUL:") show(io, "text/plain", inul[1:NCOLU]) println(io) end # if if ( WANTV ) NCOLV = LJOBVS ? MINMN : N # interp output 2 println(io, "V:") _nc = NCOLV _nr = N show(io, "text/plain", V[1:_nr,1:_nc]) println(io) println(io, "INUL:") show(io, "text/plain", inul[1:NCOLV]) println(io) end # if end # if end # if close(f) end # run_mb04xd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3137
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb04yd(datfile, io=stdout) ZERO = 0.0e0 NIN = 5 NOUT = 6 MMAX = 20 NMAX = 20 MNMIN = min( MMAX, NMAX ) LDU = MMAX LDV = NMAX LDWORK = 6*MNMIN - 5 Q = Array{Float64,1}(undef, MNMIN) E = Array{Float64,1}(undef, MNMIN-1) U = Array{Float64,2}(undef, LDU,MNMIN) V = Array{Float64,2}(undef, LDV,MNMIN) INUL = Array{BlasBool,1}(undef, MNMIN) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) M = parse(BlasInt, vs[1]) N = parse(BlasInt, vs[2]) THETA = parse(Float64, replace(vs[3],'D'=>'E')) RANK = parse(BlasInt, vs[4]) TOL = parse(Float64, replace(vs[5],'D'=>'E')) RELTOL = parse(Float64, replace(vs[6],'D'=>'E')) JOBU = vs[7][1] JOBV = vs[8][1] MINMN = min( M, N ) if ( M<0 || M>MMAX ) elseif ( N<0 || N>NMAX ) elseif ( RANK>MINMN ) elseif ( RANK<0 && THETA<ZERO ) else vs = String[] _isz = MINMN while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end Q[1:_isz] .= parsex.(Float64, vs) vs = String[] _isz = MINMN-1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end E[1:_isz] .= parsex.(Float64, vs) RANK1 = RANK LJOBUU = LSAME( JOBU, 'U' ) LJOBVU = LSAME( JOBV, 'U' ) # CHECKME: partly translated condition if LJOBUU vs = String[] _isz,_jsz = (M,MINMN) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz U[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end # CHECKME: partly translated condition if LJOBVU vs = String[] _isz,_jsz = (N,MINMN) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz V[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end end INUL .= false # CHECKME: partly translated condition if LJOBUU||LJOBVU vs = String[] _isz = MINMN while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end INUL[1:_isz] .= parsex.(Bool, vs) end # interp call 1 RANK, THETA, INFO, IWARN = SLICOT.mb04yd!(JOBU, JOBV, M, N, RANK, THETA, Q, E, U, V, INUL, TOL, RELTOL, LDWORK) println(io, "RANK = $RANK") println(io, "THETA = $THETA") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( INFO!=0 ) else if ( IWARN!=0 ) end # if if ( !LSAME( JOBV, 'N' ) ) # interp output 1 println(io,"V:") _nc = MINMN _nr = N show(io,"text/plain",V[1:_nr,1:_nc]) println(io,) end # if if ( !LSAME( JOBU, 'N' ) ) # interp output 2 println(io,"U:") _nc = MINMN _nr = M show(io,"text/plain",U[1:_nr,1:_nc]) println(io,) end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2467
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb04zd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX LDQG = NMAX LDU = NMAX LDWORK = ( NMAX+NMAX )*( NMAX+NMAX+1 ) ZERO = 0.0e0 ONE = 1.0e0 A = Array{Float64,2}(undef, LDA,NMAX) QG = Array{Float64,2}(undef, LDQG,NMAX+1) U = Array{Float64,2}(undef, LDU,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) COMPU = vs[2][1] if ( N<0 || N>NMAX ) @error "Illegal N=$N" return end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*(_jsz+1)÷2 append!(vs, replace.(split(readline(f)),'D'=>'E')) end _i0 = 0 for j in 1:_jsz QG[j,j+1:_jsz+1] .= parsex.(Float64, vs[_i0+1:_i0+_jsz-j+1]) _i0 += _jsz-j+1 end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*(_jsz+1)÷2 append!(vs, replace.(split(readline(f)),'D'=>'E')) end _i0 = 0 for j in 1:_jsz QG[j:_jsz,j] .= parsex.(Float64, vs[_i0+1:_i0+_jsz-j+1]) _i0 += _jsz-j+1 end close(f) # interp call 1 INFO = SLICOT.mb04zd!(COMPU, N, A, QG, U) @test INFO == 0 INFO != 0 && return # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "QG:") _nc = N _nr = N+1 show(io, "text/plain", QG[1:_nr,1:_nc]) println(io) Ht = zeros(2N,2N) for i in 1:N Ht[:,i] .= vcat(A[i,1:N],QG[1:i-1,i+1],QG[i,i+1:N+1]) Ht[:,N+i] .= vcat(QG[i,1:i-1],QG[i:N,i],-A[1:N,i]) end H = Matrix(Ht') println(io, "sq. reduced Hamiltonian:") show(io, "text/plain", H) println(io) # the original does this w/ BLAS in bits, but why bother? Hsq = H*H println(io, "squared sq. reduced Hamiltonian:") show(io, "text/plain", Hsq) println(io) llquadres = norm(Hsq[N+1:N,1:N]) @test llquadres < 1e-12 A2_hess_err = norm(tril(Hsq[1:N,1:N],-2)) @test A2_hess_err < 1e-12 end # run_mb04zd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1742
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb05md(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX LDV = NMAX LDY = NMAX LDWORK = 4*NMAX A = Array{Float64,2}(undef, LDA,NMAX) V = Array{Float64,2}(undef, LDV,NMAX) Y = Array{Float64,2}(undef, LDY,NMAX) VALR = Array{Float64,1}(undef, NMAX) VALI = Array{Float64,1}(undef, NMAX) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, NMAX) f = open(datfile,"r") readline(f) BALANC = 'N' vs = split(readline(f)) N = parse(BlasInt, vs[1]) DELTA = parse(Float64, replace(vs[2],'D'=>'E')) if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 INFO = SLICOT.mb05md!(BALANC, N, DELTA, A, V, Y, VALR, VALI, LDWORK) @test INFO == 0 INFO == 0 || return # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # unable to translate write loop: # write (I), VALI(I), I = 1,N # interp output 2 println(io, "eigvals:") show(io, "text/plain", VALR[1:N]+im*VALI[1:N]) println(io) # interp output 3 println(io, "V:") _nc = N _nr = N show(io, "text/plain", V[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "Y:") _nc = N _nr = N show(io, "text/plain", Y[1:_nr,1:_nc]) println(io) end # run_mb05md()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1411
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb05nd(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX LDEX = NMAX LDEXIN = NMAX LDWORK = NMAX*( NMAX+1 ) A = Array{Float64,2}(undef, LDA,NMAX) EX = Array{Float64,2}(undef, LDEX,NMAX) EXINT = Array{Float64,2}(undef, LDEXIN,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) DELTA = parse(Float64, replace(vs[2],'D'=>'E')) TOL = parse(Float64, replace(vs[3],'D'=>'E')) if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 INFO = SLICOT.mb05nd!(N, DELTA, A, EX, EXINT, TOL, LDWORK) @test INFO == 0 INFO == 0 || return # interp output 1 println(io, "EX:") _nc = N _nr = N show(io, "text/plain", EX[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "EXINT:") _nc = N _nr = N show(io, "text/plain", EXINT[1:_nr,1:_nc]) println(io) end # run_mb05nd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1321
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mb05od(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 20 LDA = NMAX NDIAG = 9 LDWORK = NMAX*( 2*NMAX+NDIAG+1 )+NDIAG A = Array{Float64,2}(undef, LDA,NMAX) DWORK = Array{Float64,1}(undef, LDWORK) IWORK = Array{BlasInt,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) DELTA = parse(Float64, replace(vs[2],'D'=>'E')) BALANC = vs[3][1] if ( N<=0 || N>NMAX ) else vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(Float64, vs[_i0+1:_i0+_jsz]) end # interp call 1 MDIG, IDIG, INFO, IWARN = SLICOT.mb05od!(BALANC, N, NDIAG, DELTA, A, LDWORK) println(io, "MDIG = $MDIG") println(io, "IDIG = $IDIG") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( INFO!=0 ) else # interp output 1 println(io,"A:") _nc = N _nr = N show(io,"text/plain",A[1:_nr,1:_nc]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2522
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb4dlz(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDB = NMAX A = Array{ComplexF64,2}(undef, LDA,NMAX) B = Array{ComplexF64,2}(undef, LDB,NMAX) DWORK = Array{Float64,1}(undef, 8*NMAX) LSCALE = Array{Float64,1}(undef, NMAX) RSCALE = Array{Float64,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] THRESH = parse(Float64, replace(vs[3],'D'=>'E')) if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz B[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, IHI, INFO, IWARN = SLICOT.mb4dlz!( JOB, N, THRESH, A, B, LSCALE, RSCALE, DWORK) @test INFO == 0 INFO == 0 || return println(io, "ILO = $ILO") println(io, "IHI = $IHI") # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "B:") _nc = N _nr = N show(io, "text/plain", B[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "LSCALE:") _nr = N show(io, "text/plain", LSCALE[1:_nr]) println(io) # interp output 4 println(io, "RSCALE:") _nr = N show(io, "text/plain", RSCALE[1:_nr]) println(io) if ( LSAME( JOB, 'S' ) || LSAME( JOB, 'B' ) ) if ( !( THRESH==-2 || THRESH==-4 ) ) # interp output 5 println(io, "initial 1-norms:") _nr = 2 show(io, "text/plain", DWORK[1:_nr]) println(io) println(io, "final 1-norms:") show(io, "text/plain", DWORK[3:4]) println(io) # interp output 7 println(io, "final threshold:") show(io, "text/plain", DWORK[5]) println(io) else @warn "mb4dlz returned iwarn=$IWARN" end end end # run_mb4dlz()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
3365
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mb4dpz(datfile, io=stdout) NIN = 5 NOUT = 6 NMAX = 10 LDA = NMAX LDC = NMAX LDDE = NMAX LDVW = NMAX A = Array{ComplexF64,2}(undef, LDA,NMAX) C = Array{ComplexF64,2}(undef, LDC,NMAX) DE = Array{ComplexF64,2}(undef, LDDE,NMAX) VW = Array{ComplexF64,2}(undef, LDVW,NMAX) DWORK = Array{Float64,1}(undef, 8*NMAX) LSCALE = Array{Float64,1}(undef, NMAX) RSCALE = Array{Float64,1}(undef, NMAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) N = parse(BlasInt, vs[1]) JOB = vs[2][1] THRESH = parse(Float64, replace(vs[3],'D'=>'E')) if ( N<=0 || N>NMAX ) @error "Illegal N=$N" end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz A[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz DE[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz C[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end vs = String[] _isz,_jsz = (N,N+1) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz _i0 = (i-1)*_jsz VW[i,1:_jsz] .= parsex.(ComplexF64, vs[_i0+1:_i0+_jsz]) end close(f) # interp call 1 ILO, INFO, IWARN = SLICOT.mb4dpz!( JOB, N, THRESH, A, DE, C, VW, LSCALE, RSCALE, DWORK) @test INFO == 0 INFO == 0 || return # interp output 1 println(io, "A:") _nc = N _nr = N show(io, "text/plain", A[1:_nr,1:_nc]) println(io) # interp output 2 println(io, "DE:") _nc = N+1 _nr = N show(io, "text/plain", DE[1:_nr,1:_nc]) println(io) # interp output 3 println(io, "C:") _nc = N _nr = N show(io, "text/plain", C[1:_nr,1:_nc]) println(io) # interp output 4 println(io, "VW:") _nc = N+1 _nr = N show(io, "text/plain", VW[1:_nr,1:_nc]) println(io) println(io, "ILO = $ILO") # interp output 5 println(io, "LSCALE:") _nr = N show(io, "text/plain", LSCALE[1:_nr]) println(io) # interp output 6 println(io, "RSCALE:") _nr = N show(io, "text/plain", RSCALE[1:_nr]) println(io) if ( LSAME( JOB, 'S' ) || LSAME( JOB, 'B' ) ) if ( !( THRESH==-2 || THRESH==-4 ) ) # interp output 5 println(io, "initial 1-norms:") _nr = 2 show(io, "text/plain", DWORK[1:_nr]) println(io) println(io, "final 1-norms:") show(io, "text/plain", DWORK[3:4]) println(io) # interp output 7 println(io, "final threshold:") show(io, "text/plain", DWORK[5]) println(io) else @warn "mb4dlz returned iwarn=$IWARN" end end end # run_mb4dpz()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
883
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mc01md(datfile, io=stdout) NIN = 5 NOUT = 6 DPMAX = 20 P = Array{Float64,1}(undef, DPMAX+1) Q = Array{Float64,1}(undef, DPMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) DP = parse(BlasInt, vs[1]) ALPHA = parse(Float64, replace(vs[2],'D'=>'E')) K = parse(BlasInt, vs[3]) if ( DP<=-1 || DP>DPMAX ) else vs = String[] _isz = DP+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P[1:_isz] .= parsex.(Float64, vs) # interp call 1 INFO = SLICOT.mc01md!(DP, ALPHA, K, P, Q) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
917
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mc01nd(datfile, io=stdout) NIN = 5 NOUT = 6 DPMAX = 20 P = Array{Float64,1}(undef, DPMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) DP = parse(BlasInt, vs[1]) XR = parse(Float64, replace(vs[2],'D'=>'E')) XI = parse(Float64, replace(vs[3],'D'=>'E')) if ( DP<=-1 || DP>DPMAX ) else vs = String[] _isz = DP+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P[1:_isz] .= parsex.(Float64, vs) # interp call 1 VR, VI, INFO = SLICOT.mc01nd!(DP, XR, XI, P) println(io, "VR = $VR") println(io, "VI = $VI") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1098
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc01od(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 10 REZ = Array{Float64,1}(undef, KMAX) IMZ = Array{Float64,1}(undef, KMAX) REP = Array{Float64,1}(undef, KMAX+1) IMP = Array{Float64,1}(undef, KMAX+1) DWORK = Array{Float64,1}(undef, 2*KMAX+2) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) if ( K<0 || K>KMAX ) @error "Illegal K=$K" end vs = String[] _isz,_jsz = (K,2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz REZ[i],IMZ[i] = parsex.(Float64, vs[2i-1:2i]) end close(f) # interp call 1 INFO = SLICOT.mc01od!(K, REZ, IMZ, REP, IMP) @test INFO == 0 INFO == 0 || return # unable to translate write loop: # write , REP(I+1), IMP(I+1), I = 0,K # interp output 1 println(io, "P:") show(io, "text/plain", REP[1:K+1]+im*IMP[1:K+1]) println(io) end # run_mc01od()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
934
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc01pd(datfile, io=stdout) NIN = 5 NOUT = 6 KMAX = 10 REZ = Array{Float64,1}(undef, KMAX) IMZ = Array{Float64,1}(undef, KMAX) P = Array{Float64,1}(undef, KMAX+1) DWORK = Array{Float64,1}(undef, KMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) K = parse(BlasInt, vs[1]) if ( K<0 || K>KMAX ) @error "Illegal K=$K" end vs = String[] _isz,_jsz = (K,2) while length(vs) < _isz*_jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end for i in 1:_isz REZ[i],IMZ[i] = parsex.(Float64, vs[2i-1:2i]) end close(f) # interp call 1 INFO = SLICOT.mc01pd!(K, REZ, IMZ, P) @test INFO == 0 INFO == 0 || return println(io, "P:") show(io, "text/plain", P[1:K+1]) println(io) end # run_mc01pd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1668
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc01qd(datfile, io=stdout) NIN = 5 NOUT = 6 DAMAX = 10 DBMAX = 10 A = Array{Float64,1}(undef, DAMAX+1) B = Array{Float64,1}(undef, DBMAX+1) RQ = Array{Float64,1}(undef, DAMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) DA = parse(BlasInt, vs[1]) if ( DA<=-2 || DA>DAMAX ) @error "Illegal DA=$DA" end vs = String[] _isz = DA+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end A[1:_isz] .= parsex.(Float64, vs) vs = split(readline(f)) DB = parse(BlasInt, vs[1]) DBB = DB if ( DB<=-1 || DB>DBMAX ) @error "Illegal DB=$DB" end vs = String[] _isz = DB+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end B[1:_isz] .= parsex.(Float64, vs) close(f) # interp call 1 DB, INFO, IWARN = SLICOT.mc01qd!(DA, DB, A, B, RQ) println(io, "DB = $DB") @test INFO == 0 INFO == 0 || return println(io, "IWARN = $IWARN") if ( IWARN!=0 ) println(io, "degree reduced from $DBB to $DB") end # if DQ = DA - DB DR = DB - 1 IMAX = DQ if DR > IMAX IMAX = DR end println(io, "polynomials (power Q-coefft R-coefft):") for i in 0:IMAX if ( i<=DQ && i <=DR ) println(io, "$i $(RQ[DB+i+1]) $(RQ[i+1])") elseif ( i<=DQ ) println(io, "$i $(RQ[DB+i+1])") else println(io, "$i $(RQ[i+1])") end # if end end # run_mc01qd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1651
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mc01rd(datfile, io=stdout) NIN = 5 NOUT = 6 DP1MAX = 10 DP2MAX = 10 DP3MAX = 10 LENP3 = max(DP1MAX+DP2MAX,DP3MAX)+1 P1 = Array{Float64,1}(undef, DP1MAX+1) P2 = Array{Float64,1}(undef, DP2MAX+1) P3 = Array{Float64,1}(undef, DP1MAX+DP2MAX+DP3MAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) DP1 = parse(BlasInt, vs[1]) if ( DP1<=-2 || DP1>DP1MAX ) else vs = String[] _isz = DP1+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P1[1:_isz] .= parsex.(Float64, vs) vs = split(readline(f)) DP2 = parse(BlasInt, vs[1]) if ( DP2<=-2 || DP2>DP2MAX ) else vs = String[] _isz = DP2+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P2[1:_isz] .= parsex.(Float64, vs) vs = split(readline(f)) DP3 = parse(BlasInt, vs[1]) if ( DP3<=-2 || DP3>DP3MAX ) else vs = String[] _isz = DP3+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P3[1:_isz] .= parsex.(Float64, vs) end # if vs = split(readline(f)) ALPHA = parse(Float64, replace(vs[1],'D'=>'E')) # interp call 1 DP3, INFO = SLICOT.mc01rd!(DP1, DP2, DP3, ALPHA, P1, P2, P3) println(io, "DP3 = $DP3") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else if ( DP3>=0 ) end # if end # if end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
959
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mc01sd(datfile, io=stdout) NIN = 5 NOUT = 6 DPMAX = 10 P = Array{Float64,1}(undef, DPMAX+1) MANT = Array{Float64,1}(undef, DPMAX+1) E = Array{BlasInt,1}(undef, DPMAX+1) IWORK = Array{BlasInt,1}(undef, DPMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) DP = parse(BlasInt, vs[1]) if ( DP<=-1 || DP>DPMAX ) else vs = String[] _isz = DP+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P[1:_isz] .= parsex.(Float64, vs) # interp call 1 S, T, INFO = SLICOT.mc01sd!(DP, P, MANT, E) println(io, "S = $S") println(io, "T = $T") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else BETA = 2.0 end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1152
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc01td(datfile, io=stdout) NIN = 5 NOUT = 6 DPMAX = 10 P = Array{Float64,1}(undef, DPMAX+1) DWORK = Array{Float64,1}(undef, 2*DPMAX+2) f = open(datfile,"r") readline(f) vs = split(readline(f)) DP = parse(BlasInt, vs[1]) DICO = vs[2][1] if ( DP<=-1 || DP>DPMAX ) @error "Illegal DP=$DP" end DPP = DP vs = String[] _isz = DP+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P[1:_isz] .= parsex.(Float64, vs) close(f) # interp call 1 DP, STABLE, NZ, INFO, IWARN = SLICOT.mc01td!(DICO, DP, P) @test INFO == 0 INFO == 0 || return println(io, "DP = $DP") println(io, "STABLE = $STABLE") println(io, "NZ = $NZ") if ( IWARN!=0 ) @warn "mc01td returned IWARN=$IWARN" return end # if stable = Bool(STABLE) if ( stable ) println(io, "P is stable") else println(io, "P is unstable") println(io, "unstable zeros: $NZ") end end # run_mc01td()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
719
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mc01vd(datfile, io=stdout) f = open(datfile,"r") readline(f) vs = split(readline(f)) A = parse(Float64, replace(vs[1],'D'=>'E')) B = parse(Float64, replace(vs[2],'D'=>'E')) C = parse(Float64, replace(vs[3],'D'=>'E')) # interp call 1 Z1RE, Z1IM, Z2RE, Z2IM, INFO = SLICOT.mc01vd!(A, B, C) println(io, "Z1RE = $Z1RE") println(io, "Z1IM = $Z1IM") println(io, "Z2RE = $Z2RE") println(io, "Z2IM = $Z2IM") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git