licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1082
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc01wd(datfile, io=stdout) NIN = 5 NOUT = 6 DPMAX = 10 P = Array{Float64,1}(undef, DPMAX+1) Q = Array{Float64,1}(undef, DPMAX+1) f = open(datfile,"r") readline(f) vs = split(readline(f)) DP = parse(BlasInt, vs[1]) if ( DP<=-1 || DP>DPMAX ) @error "Illegal DP=$DP" end vs = String[] _isz = DP+1 while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P[1:_isz] .= parsex.(Float64, vs) vs = split(readline(f)) U1 = parse(Float64, replace(vs[1],'D'=>'E')) U2 = parse(Float64, replace(vs[2],'D'=>'E')) close(f) # interp call 1 INFO = SLICOT.mc01wd!(DP, P, U1, U2, Q) @test INFO == 0 INFO == 0 || return println(io, "Q (power,coefft):") show(io, "text/plain", hcat(0:DP-2,Q[3:DP+1])) println(io) println(io, "R (power, coefft):") show(io, "text/plain", hcat(0:1,[Q[1]+Q[2]*U2,Q[2]])) println(io) end # run_mc01wd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1457
# Julia code # Copyright (c) 2022 the SLICOTMath.jl developers # Portions extracted from SLICOT-Reference distribution: # Copyright (c) 2002-2020 NICONET e.V. function run_mc01xd(datfile, io=stdout) NIN = 5 NOUT = 6 NEV = 3 LDWORK = 42 ZERO = 0.0e0 EVR = Array{Float64,1}(undef, NEV) EVI = Array{Float64,1}(undef, NEV) EVQ = Array{Float64,1}(undef, NEV) DWORK = Array{Float64,1}(undef, LDWORK) RT = Array{Float64,1}(undef, 2) RTS = Array{ComplexF64,1}(undef, 3) f = open(datfile,"r") readline(f) vs = split(readline(f)) ALPHA = parse(Float64, replace(vs[1],'D'=>'E')) BETA = parse(Float64, replace(vs[2],'D'=>'E')) GAMMA = parse(Float64, replace(vs[3],'D'=>'E')) DELTA = parse(Float64, replace(vs[4],'D'=>'E')) # interp call 1 INFO = SLICOT.mc01xd!(ALPHA, BETA, GAMMA, DELTA, EVR, EVI, EVQ) @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else # interp output 1 println(io,"EVR:") _nr = 3 show(io,"text/plain",EVR[1:_nr]) println(io,) # interp output 2 println(io,"EVI:") _nr = 3 show(io,"text/plain",EVI[1:_nr]) println(io,) # interp output 3 println(io,"EVQ:") _nr = 3 show(io,"text/plain",EVQ[1:_nr]) println(io,) if ( true ) RTS = (EVR + im * EVI) ./ EVQ # interp output 4 println(io,"RTS:") _nr = 3 show(io,"text/plain",RTS[1:_nr]) println(io,) end # if end # if close(f) end # run_X()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
2413
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc03md(datfile, io=stdout) NIN = 5 NOUT = 6 CP1MAX = 10 CP2MAX = 10 DP1MAX = 10 DP2MAX = 10 DP3MAX = 20 RP1MAX = 10 LDP11 = RP1MAX LDP12 = CP1MAX LDP21 = CP1MAX LDP22 = CP2MAX LDP31 = RP1MAX LDP32 = CP2MAX P1 = Array{Float64,3}(undef, LDP11,LDP12,DP1MAX+1) P2 = Array{Float64,3}(undef, LDP21,LDP22,DP2MAX+1) P3 = Array{Float64,3}(undef, LDP31,LDP32,DP3MAX+1) DWORK = Array{Float64,1}(undef, CP1MAX) f = open(datfile,"r") readline(f) vs = split(readline(f)) RP1 = parse(BlasInt, vs[1]) CP1 = parse(BlasInt, vs[2]) CP2 = parse(BlasInt, vs[3]) if ( RP1<0 || RP1>RP1MAX ) elseif ( CP1<0 || CP1>CP1MAX ) elseif ( CP2<0 || CP2>CP2MAX ) else vs = split(readline(f)) DP1 = parse(BlasInt, vs[1]) if ( DP1<=-2 || DP1>DP1MAX ) else _isz,_jsz,_ksz = (RP1,CP1,DP1 + 1) for k in 1:_ksz for j in 1:_jsz vs = String[] while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P1[1:_isz,j,k] .= parsex.(Float64, vs) end end vs = split(readline(f)) DP2 = parse(BlasInt, vs[1]) if ( DP2<=-2 || DP2>DP2MAX ) else _isz,_jsz,_ksz = (CP1,CP2,DP2 + 1) for k in 1:_ksz for j in 1:_jsz vs = String[] while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P2[1:_isz,j,k] .= parsex.(Float64, vs) end end vs = split(readline(f)) DP3 = parse(BlasInt, vs[1]) if ( DP3<=-2 || DP3>DP3MAX ) else _isz,_jsz,_ksz = (RP1,CP2,DP3 + 1) for k in 1:_ksz for j in 1:_jsz vs = String[] while length(vs) < _isz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P3[1:_isz,j,k] .= parsex.(Float64, vs) end end vs = split(readline(f)) ALPHA = parse(Float64, replace(vs[1],'D'=>'E')) # interp call 1 DP3, INFO = SLICOT.mc03md!(RP1, CP1, CP2, DP1, DP2, DP3, ALPHA, P1, P2, P3) println(io, "DP3 = $DP3") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) else for i in 1:RP1 for j in 1:CP2 println(io, "elt($i,$j): ",P3[i,j,1:DP3+1]) end end end # if end # if end # if end # if end # if close(f) end # run_mc03md()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1898
# Portions translated from SLICOT-Reference distribution # Copyright (c) 2002-2020 NICONET e.V. function run_mc03nd(datfile, io=stdout) NIN = 5 NOUT = 6 DPMAX = 2 MPMAX = 5 NPMAX = 4 LDP1 = MPMAX LDP2 = NPMAX LDNULL = NPMAX LDKER1 = NPMAX LDKER2 = NPMAX M = DPMAX*MPMAX N = ( DPMAX-1 )*MPMAX+NPMAX LIWORK = M+2*max( N,M+1 )+N LDWORK = M*N^2+2*M*N+2*N^2 P = Array{Float64,3}(undef, LDP1,LDP2,DPMAX+1) GAM = Array{BlasInt,1}(undef, M+1) NULLSP = Array{Float64,2}(undef, LDNULL,(M+1)) KER = Array{Float64,3}(undef, LDKER1,LDKER2,M+1) IWORK = Array{BlasInt,1}(undef, LIWORK) DWORK = Array{Float64,1}(undef, LDWORK) f = open(datfile,"r") readline(f) vs = split(readline(f)) MP = parse(BlasInt, vs[1]) NP = parse(BlasInt, vs[2]) DP = parse(BlasInt, vs[3]) TOL = parse(Float64, replace(vs[4],'D'=>'E')) if ( MP<0 || MP>MPMAX ) elseif ( NP<0 || NP>NPMAX ) elseif ( DP<=0 || DP>DPMAX ) else _isz,_jsz,_ksz = (MP,NP,DP + 1) for k in 1:_ksz for i in 1:_isz vs = String[] while length(vs) < _jsz append!(vs, replace.(split(readline(f)),'D'=>'E')) end P[i,1:_jsz,k] .= parsex.(Float64, vs) end end # interp call 1 DK, INFO = SLICOT.mc03nd!(MP, NP, DP, P, GAM, NULLSP, KER, TOL, IWORK, LDWORK) println(io, "DK = $DK") @test INFO == 0 INFO == 0 || return if ( INFO!=0 ) elseif ( DK<0 ) else NK = 0 M1 = 0 for i in 1:DK+1 NK = NK + GAM[i] M1 = M1 + GAM[i]*i end # interp output 1 println(io, "NULLSP:") _nc = M1 _nr = NP show(io, "text/plain", NULLSP[1:_nr,1:_nc]) println(io) println(io, "KER:") for i in 1:NP for j in 1:NK println(io, "elt($i,$j: ",KER[i,j,1:DK+1]) end end end # if end # if close(f) end # run_mc03nd()
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
code
1652
using SLICOTMath const SLICOT=SLICOTMath using Test using LinearAlgebra using LinearAlgebra: BlasInt const BlasBool = BlasInt LSAME(x,y) = uppercase(x) == uppercase(y) # helpers for getting data from the examples parsex(T,s) = parse(T,s) # CAUTION: this relies on absence of spaces in complex constants function parsex(::Type{ComplexF64}, s) if s == "0" return zero(ComplexF64) end s1 = split(s,",") if length(s1) == 1 return parse(Float64,s1[1])+0.0im end if s1[2][1] in ['+','-'] impart = s1[2][1:end-1] * "im" else impart = '+' * s1[2][1:end-1] * "im" end s2 = s1[1][2:end] * impart parse(ComplexF64, s2) end function parsex(::Type{Bool}, s) return s[2] in ('T','t') end const quiet = Ref(true) const tdir = joinpath(@__DIR__,"SLICOT-Reference") if !isdir(joinpath(tdir,"examples")) @error """Package tests require that 'test/SLICOT-Reference' hold the input data. This can be prepared by installing a copy of the SLICOT distribution there, or making a link to one. """ # force an early exit @testset "installation" begin @test false end end files = readdir(@__DIR__) funclist = [replace(s, "_test.jl" => "") for s in files if (length(s)>7) && (s[end-7:end] == "_test.jl")] for func2test in funclist testcode = lowercase(func2test) * "_test.jl" include(testcode) rname=Symbol("run_"*func2test) eval(:(runme=$rname)) @testset "$func2test" begin datfile = joinpath(tdir, "examples", uppercase(func2test) * ".dat") if quiet[] runme(datfile, devnull) else runme(datfile) end end # testset end # for
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT", "BSD-3-Clause" ]
0.1.0
6521428e41ae0924b30460ef1ffada3b07ab2bc1
docs
2570
# SLICOTMath [![GitHub CI Build Status](https://github.com/RalphAS/SLICOTMath.jl/workflows/CI/badge.svg)](https://github.com/RalphAS/SLICOTMath.jl/actions) [![Coverage Status](http://codecov.io/github/RalphAS/SLICOTMath.jl/coverage.svg?branch=main)](http://codecov.io/github/RalphAS/SLICOTMath.jl?branch=main) # Introduction This package provides Julia wrappers for some routines in the SLICOT library, which contains Fortran implementations of control theory algorithms. SLICOT is hosted at https://github.com//SLICOT/SLICOT-Reference.git The group of mathematical routines (those starting with "M") are covered here, except for a few which are awkward to call from Julia (there are preferable implementations of those algorithms elsewhere in the Julia ecosystem). For the most part the Julia API resembles that of LAPACK routines in the LinearAlgebra standard library. Thus array dimension arguments are (almost always) suppressed and workspace is usually allocated as needed within the wrappers. One difference is that result arrays are only passed as arguments to be mutated, and are not among the explicitly returned objects. # Status: Caveat Emptor This is work in progress. So far all of the wrappers and tests were mechanically generated and edited to repair oversights. For substantive documentation the user is referred to the HTML documents in [the SLICOT repository](https://github.com//SLICOT/SLICOT-Reference.git) Users will also need to refer to the method signatures. Argument names are lower case versions of those in the wrapped routines. ## Tests The test routines generally verify that the API is consistent. They were mechanically translated from the SLICOT-Reference examples, so they include extra computations (beyond merely invoking the wrappers). The output of most has been visually compared to the analogous Fortran results, almost always agreeing (or differing in ways consistent with floating-point and BLAS/LAPACK version variations). That comparison is *not* currently part of the package test framework. The CI tests as such rarely check the accuracy of algorithms, although residuals are occasionally reported. Interfaces to routines which are not called by the reference example codes have been quickly reviewed, but very few have been tested by the author. # Related work Many of the higher-level control-theoretic methods in SLICOT have been translated to Julia in [packages written by Andreas Varga](https://github.com//AndreasVarga). No endorsement or promotion of SLICOTMath.jl by the authors of SLICOT is implied.
SLICOTMath
https://github.com/RalphAS/SLICOTMath.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
1896
using BinDeps isfile("deps.jl") && rm("deps.jl") @BinDeps.setup libtriangle = library_dependency("libtriangle", aliases = ["libtriangle.dylib"], runtime = true) rootdir = BinDeps.depsdir(libtriangle) srcdir = joinpath(rootdir, "src") prefix = joinpath(rootdir, "usr") libdir = joinpath(prefix, "lib") headerdir = joinpath(prefix, "include") if Sys.iswindows() libfile = joinpath(libdir, "libtriangle.dll") arch = "x86" if Sys.WORD_SIZE == 64 arch = "x64" end @build_steps begin FileRule(libfile, @build_steps begin BinDeps.run(@build_steps begin ChangeDirectory(srcdir) `cmd /c compile.bat all $arch` `cmd /c copy libtriangle.dll $libfile` `cmd /c copy triangle.h $headerdir` `cmd /c copy tricall.h $headerdir` `cmd /c copy commondefine.h $headerdir` `cmd /c compile.bat clean $arch` end) end) end provides(Binaries, URI(libfile), libtriangle) else libname = "libtriangle.so" if Sys.isapple() libname = "libtriangle.dylib" end libfile = joinpath(libdir, libname) provides(BinDeps.BuildProcess, (@build_steps begin FileRule(libfile, @build_steps begin BinDeps.ChangeDirectory(srcdir) `make clean` `make` `cp libtriangle.so $libfile` `cp triangle.h $headerdir/` `cp tricall.h $headerdir/` `cp commondefine.h $headerdir/` `make clean` end) end), libtriangle) end @BinDeps.install Dict(:libtriangle => :libtriangle)
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
160
push!(LOAD_PATH,"../src/") using Documenter, Triangle makedocs( format = Documenter.HTML(), sitename = "Triangle.jl", pages = [ "Home" => "index.md" ] )
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
16407
module Triangle using Libdl export basic_triangulation export basic_triangulation_vertices export constrained_triangulation export constrained_triangulation_vertices if !isfile(joinpath(dirname(@__FILE__), "..", "deps", "deps.jl")) error("Triangle is not properly installed. Please run\nPkg.build(\"Triangle\")") end include("common.jl") """ basic_triangulation_vertices(vertices::Array{Float64,2}) Compute a Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex coordinates in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = Array{Float64,2}([0. 0.; 1. 0.; 0. 1.]) 3×2 Array{Float64,2}: 0.0 0.0 1.0 0.0 0.0 1.0 julia> Triangle.basic_triangulation_vertices(points) 1-element Array{Array{Float64,2},1}: [0.0 0.0; 1.0 0.0; 0.0 1.0] ``` """ function basic_triangulation_vertices(vertices::Array{Float64,2}) basic_triangulation_vertices(vertices, Array{Int64,1}(collect(1:1:size(vertices)[1]))) end """ basic_triangulation(vertices::Array{Float64,2},vertices_map::Array{Int64,1}) Compute a Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex identifiers in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = Array{Float64,2}([0. 0.; 1. 0.; 0. 1.]) 3×2 Array{Float64,2}: 0.0 0.0 1.0 0.0 0.0 1.0 julia> points_map = [1, 2, 3] 3-element Array{Int64,1}: 1 2 3 julia> Triangle.basic_triangulation(points,points_map) 1-element Array{Array{Int64,1},1}: [1, 2, 3] ``` """ function basic_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}) Triangulate.basic_triangulation(vertices, vertices_map) end """ basic_triangulation_vertices(vertices::Array{Float64,2},vertices_map::Array{Int64,1}) Compute a Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex coordinates in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = Array{Float64,2}([0. 0.; 1. 0.; 0. 1.]) 3×2 Array{Float64,2}: 0.0 0.0 1.0 0.0 0.0 1.0 julia> points_map = [1, 2, 3] 3-element Array{Int64,1}: 1 2 3 julia> Triangle.basic_triangulation_vertices(points,points_map) 1-element Array{Array{Float64,2},1}: [0.0 0.0; 1.0 0.0; 0.0 1.0] ``` """ function basic_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}) map_to_vertices( vertices, vertices_map, basic_triangulation(vertices, vertices_map) ) end """ constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) Compute a Constrained Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` and a list of edges that will be kept. A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. A list of edges (to be included in the final triangulation) is passed in `edges_list` in the form of `[ vertex-identifier-1 vertex-identifier-2; vertex-identifier-1 vertex-identifier-3; ... ; vertex-identifier-N vertex-identifier-M ]` The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex identifiers in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] 6×2 Array{Float64,2}: 0.0 0.0 0.0 3.0 1.0 3.0 1.0 1.0 2.0 1.0 2.0 0.0 julia> points_map = Array{Int64,1}(collect(1:1:size(points)[1])) 6-element Array{Int64,1}: 1 2 3 4 5 6 julia> edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) 6×2 Array{Int64,2}: 1 2 2 3 3 4 4 5 5 6 6 1 julia> Triangle.constrained_triangulation(points,points_map,edges_list) 4-element Array{Array{Int64,1},1}: [1, 4, 2] [4, 1, 6] [2, 4, 3] [5, 4, 6] ``` """ function constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) Triangulate.constrained_triangulation(vertices, vertices_map, edges_list, fill(true, size(edges_list)[1]) ) end """ constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) Compute a Constrained Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` and a list of edges that will be kept. A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. A list of edges (to be included in the final triangulation) is passed in `edges_list` in the form of `[ vertex-identifier-1 vertex-identifier-2; vertex-identifier-1 vertex-identifier-3; ... ; vertex-identifier-N vertex-identifier-M ]` The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex coordinates in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] 6×2 Array{Float64,2}: 0.0 0.0 0.0 3.0 1.0 3.0 1.0 1.0 2.0 1.0 2.0 0.0 julia> points_map = Array{Int64,1}(collect(1:1:size(points)[1])) 6-element Array{Int64,1}: 1 2 3 4 5 6 julia> edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) 6×2 Array{Int64,2}: 1 2 2 3 3 4 4 5 5 6 6 1 julia> Triangle.constrained_triangulation_vertices(points,points_map,edges_list) 4-element Array{Array{Float64,2},1}: [0.0 0.0; 1.0 1.0; 0.0 3.0] [1.0 1.0; 0.0 0.0; 2.0 0.0] [0.0 3.0; 1.0 1.0; 1.0 3.0] [2.0 1.0; 1.0 1.0; 2.0 0.0] ``` """ function constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) map_to_vertices( vertices, vertices_map, constrained_triangulation(vertices, vertices_map, edges_list, fill(true, size(edges_list)[1])) ) end """ constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) Compute a Constrained Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` and a list of edges that will be kept. Some of those edges can be marked as the boundary of the mesh. A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. A list of edge (to be included in the final triangulation) is passed in `edges_list` in the form of `[ vertex-identifier-1 vertex-identifier-2; vertex-identifier-1 vertex-identifier-3; ... ; vertex-identifier-N vertex-identifier-M ]` A list of boundary markers passed in `edges_boundary` in the form of booleans that tell the triangulator if the edge is on the boundary or not (the indexing is the same of `edges_list`). The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex identifiers in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] 6×2 Array{Float64,2}: 0.0 0.0 0.0 3.0 1.0 3.0 1.0 1.0 2.0 1.0 2.0 0.0 julia> points_map = Array{Int64,1}(collect(1:1:size(points)[1])) 6-element Array{Int64,1}: 1 2 3 4 5 6 julia> edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) 6×2 Array{Int64,2}: 1 2 2 3 3 4 4 5 5 6 6 1 julia> edge_boundary = [false, false, true, true, false, false] 6-element Array{Bool,1}: false false true true false false julia> Triangle.constrained_triangulation(points,points_map,edges_list,edge_boundary) 4-element Array{Array{Int64,1},1}: [1, 4, 2] [4, 1, 6] [2, 4, 3] [5, 4, 6] ``` """ function constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) Triangulate.constrained_triangulation(vertices, vertices_map, edges_list, edges_boundary) end """ constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) Compute a Constrained Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` and a list of edges that will be kept. Some of those edges can be marked as the boundary of the mesh. A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. A list of edge (to be included in the final triangulation) is passed in `edges_list` in the form of `[ vertex-identifier-1 vertex-identifier-2; vertex-identifier-1 vertex-identifier-3; ... ; vertex-identifier-N vertex-identifier-M ]` A list of boundary markers passed in `edges_boundary` in the form of booleans that tell the triangulator if the edge is on the boundary or not (the indexing is the same of `edges_list`). The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex coordinates in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] 6×2 Array{Float64,2}: 0.0 0.0 0.0 3.0 1.0 3.0 1.0 1.0 2.0 1.0 2.0 0.0 julia> points_map = Array{Int64,1}(collect(1:1:size(points)[1])) 6-element Array{Int64,1}: 1 2 3 4 5 6 julia> edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) 6×2 Array{Int64,2}: 1 2 2 3 3 4 4 5 5 6 6 1 julia> edge_boundary = [false, false, true, true, false, false] 6-element Array{Bool,1}: false false true true false false julia> Triangle.constrained_triangulation_vertices(points,points_map,edges_list,edge_boundary) 4-element Array{Array{Float64,2},1}: [0.0 0.0; 1.0 1.0; 0.0 3.0] [1.0 1.0; 0.0 0.0; 2.0 0.0] [0.0 3.0; 1.0 1.0; 1.0 3.0] [2.0 1.0; 1.0 1.0; 2.0 0.0] ``` """ function constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) map_to_vertices( vertices, vertices_map, constrained_triangulation(vertices, vertices_map, edges_list, edges_boundary) ) end """ constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}, holes::Array{Float64,2}) Compute a Constrained Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` and a list of edges that will be kept. Some of those edges can be marked as the boundary of the mesh. A list of `holes` in the form of _[x1 y1; x2 y2; ... ; xn yn]_ can be passed to avoid triangulation in that part of the mesh. A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. A list of edge (to be included in the final triangulation) is passed in `edges_list` in the form of `[ vertex-identifier-1 vertex-identifier-2; vertex-identifier-1 vertex-identifier-3; ... ; vertex-identifier-N vertex-identifier-M ]` A list of boundary markers passed in `edges_boundary` in the form of booleans that tell the triangulator if the edge is on the boundary or not (the indexing is the same of `edges_list`). The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex identifiers in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = Array{Float64,2}([0. 0.; 4. 0.; 2. 3.; 8. 0.; 6. 3.; 4. 6.]) 6×2 Array{Float64,2}: 0.0 0.0 4.0 0.0 2.0 3.0 8.0 0.0 6.0 3.0 4.0 6.0 julia> points_map = [1, 2, 4, 3, 5, 6] 6-element Array{Int64,1}: 1 2 4 3 5 6 julia> edges_list = Array{Int64,2}([1 2; 2 3; 3 1; 2 4; 4 5; 5 2; 3 5; 5 6; 6 3]) 9×2 Array{Int64,2}: 1 2 2 3 3 1 2 4 4 5 5 2 3 5 5 6 6 3 julia> edge_boundary = [false,true,false,false,false,true,true,false,false] 9-element Array{Bool,1}: false true false false false true true false false julia> holes = [4. 2.] 1×2 Array{Float64,2}: 4.0 2.0 julia> Triangle.constrained_triangulation(points, points_map, edges_list, edge_boundary, holes) 3-element Array{Array{Int64,1},1}: [1,2,3] [5,6,3] [4,5,2] ``` """ function constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}, holes::Array{Float64,2}) Triangulate.constrained_triangulation(vertices, vertices_map, edges_list, edges_boundary, holes) end """ constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}, holes::Array{Float64,2}) Compute a Constrained Delaunay triangulation for a list of `vertices` in the form of `[x1 y1; x2 y2; ... ; xn yn]` and a list of edges that will be kept. Some of those edges can be marked as the boundary of the mesh. A list of `holes` in the form of _[x1 y1; x2 y2; ... ; xn yn]_ can be passed to avoid triangulation in that part of the mesh. A list of indexes is provided in `vertices_map` so that each vertex can have a custom integer identifier. A list of edge (to be included in the final triangulation) is passed in `edges_list` in the form of `[ vertex-identifier-1 vertex-identifier-2; vertex-identifier-1 vertex-identifier-3; ... ; vertex-identifier-N vertex-identifier-M ]` A list of boundary markers passed in `edges_boundary` in the form of booleans that tell the triangulator if the edge is on the boundary or not (the indexing is the same of `edges_list`). The function will return an array of array of 3-vertices lists (triangles with the correct vertices order) using the vertex coordinates in each triangle definition. # Example ```jldoctest julia> using Triangle julia> points = Array{Float64,2}([0. 0.; 4. 0.; 2. 3.; 8. 0.; 6. 3.; 4. 6.]) 6×2 Array{Float64,2}: 0.0 0.0 4.0 0.0 2.0 3.0 8.0 0.0 6.0 3.0 4.0 6.0 julia> points_map = [1, 2, 4, 3, 5, 6] 6-element Array{Int64,1}: 1 2 4 3 5 6 julia> edges_list = Array{Int64,2}([1 2; 2 3; 3 1; 2 4; 4 5; 5 2; 3 5; 5 6; 6 3]) 9×2 Array{Int64,2}: 1 2 2 3 3 1 2 4 4 5 5 2 3 5 5 6 6 3 julia> edge_boundary = [false,true,false,false,false,true,true,false,false] 9-element Array{Bool,1}: false true false false false true true false false julia> holes = [4. 2.] 1×2 Array{Float64,2}: 4.0 2.0 julia> Triangle.constrained_triangulation_vertices(points, points_map, edges_list, edge_boundary, holes) 3-element Array{Array{Float64,2},1}: [0.0 0.0; 4.0 0.0; 2.0 3.0] [6.0 3.0; 4.0 6.0; 2.0 3.0] [8.0 0.0; 6.0 3.0; 4.0 0.0] ``` """ function constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}, holes::Array{Float64,2}) map_to_vertices( vertices, vertices_map, constrained_triangulation(vertices, vertices_map, edges_list, edges_boundary, holes) ) end function map_to_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, triangle_list::Array{Array{Int64, 1},1}) vert_size = size(vertices) map_positions = Array{Int64,1}(undef, length(vertices_map)) for i in 1:1:length(vertices_map) map_positions[vertices_map[i]] = i end triangle_list_vertices = Array{Array{Float64,2},1}() for i in 1:1:length(triangle_list) triangle = Array{Float64}(undef, 3,2) triangle[1] = vertices[map_positions[triangle_list[i][1]]] triangle[4] = vertices[map_positions[triangle_list[i][1]]+vert_size[1]] triangle[2] = vertices[map_positions[triangle_list[i][2]]] triangle[5] = vertices[map_positions[triangle_list[i][2]]+vert_size[1]] triangle[3] = vertices[map_positions[triangle_list[i][3]]] triangle[6] = vertices[map_positions[triangle_list[i][3]]+vert_size[1]] push!(triangle_list_vertices, triangle) end return triangle_list_vertices end end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
37
include("Triangulate/triangulate.jl")
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
3186
module NativeInterface include("triangle_structure.jl") include("options_structure.jl") include("native_remapper.jl") include("native_calls.jl") export TriangulateOptions export basic_triangulation export constrained_triangulation export constrained_triangulation_bounded function basic_triangulation(vertices::Vector{Cdouble}, verticesMap::Vector{Cint}, options::TriangulateOptions = TriangulateOptions()) # Call C return calculate_output(generate_basic_input(vertices, verticesMap), options) end function constrained_triangulation(vertices::Vector{Cdouble}, verticesMap::Vector{Cint}, edges::Vector{Cint}, options::TriangulateOptions = TriangulateOptions()) # Call C return calculate_output(generate_basic_input(vertices, verticesMap, edges), options) end function constrained_triangulation_bounded(vertices::Vector{Cdouble}, verticesMap::Vector{Cint}, edges::Vector{Cint}, boundary_edges::Vector{Cint}, options::TriangulateOptions = TriangulateOptions()) # Call C return calculate_output(generate_basic_input(vertices, verticesMap, edges, boundary_edges), options) end function constrained_triangulation_bounded(vertices::Vector{Cdouble}, verticesMap::Vector{Cint}, edges::Vector{Cint}, boundary_edges::Vector{Cint}, holes::Vector{Cdouble}, options::TriangulateOptions = TriangulateOptions()) # Call C return calculate_output(generate_basic_input(vertices, verticesMap, edges, boundary_edges, holes), options) end function generate_basic_input(vertices::Vector{Cdouble}, verticesMap::Vector{Cint}, edges::Vector{Cint} = Vector{Cint}(), boundary_edges::Vector{Cint} = Vector{Cint}(), holes::Vector{Cdouble} = Vector{Cdouble}()) # Basic Tri # println(vertices) # println(verticesMap) mapTri = trimap_to_native(verticesMap, edges) inTri = TriangulateIO() inTri.pointlist = pointer(vertices) inTri.numberofpoints = length(mapTri.remappedVerticesMarkers) inTri.pointmarkerlist = pointer(mapTri.remappedVerticesMarkers) if length(edges) > 0 inTri.segmentlist = pointer(mapTri.remappedEdgesList) inTri.numberofsegments = Int(length(mapTri.remappedEdgesList)/2) end if length(edges) > 0 && length(boundary_edges) > 0 inTri.segmentmarkerlist = pointer(boundary_edges) end if length(holes) > 0 inTri.holelist = pointer(holes) inTri.numberofholes = Int(length(holes)/2) end return (inTri, mapTri) end function calculate_output(inputTriData::Tuple{TriangulateIO,TriangulateInputMapper}, options::TriangulateOptions) inTri = inputTriData[1] mapTri = inputTriData[2] # Call C tupleRes = ctriangulate(inTri, getTriangulateStringOptions(options)) # println( unsafe_wrap(Array, tupleRes[1].pointlist, tupleRes[1].numberofpoints * 2, false) ) # println( unsafe_wrap(Array, tupleRes[1].pointmarkerlist, tupleRes[1].numberofpoints, false) ) # println(tupleRes[1]) triangleList = unsafe_wrap(Array, tupleRes[1].trianglelist, tupleRes[1].numberoftriangles * tupleRes[1].numberofcorners, own=true) # Clean C inTri.pointlist = C_NULL inTri.pointmarkerlist = C_NULL tupleRes[1].trianglelist = C_NULL # println(triangleList) return trimap_from_native(mapTri, triangleList) end end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
432
depsjl = joinpath(dirname(@__FILE__), "../..", "deps", "deps.jl") include(depsjl) function ctriangulate(inTri::TriangulateIO, options::String) outTri = TriangulateIO() voronoiTri = TriangulateIO() ccall( (:call_triangulate, libtriangle), Nothing, (Ptr{UInt8}, Ref{TriangulateIO}, Ref{TriangulateIO}, Ref{TriangulateIO}), options, Ref(inTri), Ref(outTri), Ref(voronoiTri) ) (outTri, voronoiTri) end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
1232
mutable struct TriangulateInputMapper originalVerticesMarkers::Vector{Cint} remappedVerticesMarkers::Vector{Cint} originalEdgesList::Vector{Cint} remappedEdgesList::Vector{Cint} TriangulateInputMapper() = new(Vector{Cint}(), Vector{Cint}(), Vector{Cint}(), Vector{Cint}()) end function trimap_to_native(verticesMap::Vector{Cint}, edges::Vector{Cint} = Vector{Cint}()) nativeMap = TriangulateInputMapper() nativeMap.originalVerticesMarkers = verticesMap nativeMap.remappedVerticesMarkers = collect(1:length(verticesMap)) dictVertices = Dict{Int64,Int64}() for (idx,el) in enumerate(verticesMap) dictVertices[el] = idx end if length(edges) > 0 nativeMap.originalEdgesList = edges nativeMap.remappedEdgesList = Vector{Cint}() for el in edges push!(nativeMap.remappedEdgesList, dictVertices[el]) end end return nativeMap end function trimap_from_native(nativeMap::TriangulateInputMapper, trianglelist::Vector{Cint}) newtrianglelist = Vector{Cint}(undef, length(trianglelist)) for (idx,el) in enumerate(trianglelist) newtrianglelist[idx] = nativeMap.originalVerticesMarkers[el] end return newtrianglelist end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
6821
#= /* Switches for the triangulator. */ -p Triangulates a Planar Straight Line Graph (.poly file). -r Refines a previously generated mesh. -q Quality mesh generation with no angles smaller than 20 degrees. An alternate minimum angle may be specified after the `q'. -a Imposes a maximum triangle area constraint. A fixed area constraint (that applies to every triangle) may be specified after the `a', or varying area constraints may be read from a .poly file or .area file. -u Imposes a user-defined constraint on triangle size. -A Assigns a regional attribute to each triangle that identifies what segment-bounded region it belongs to. -c Encloses the convex hull with segments. -D Conforming Delaunay: use this switch if you want all triangles in the mesh to be Delaunay, and not just constrained Delaunay; or if you want to ensure that all Voronoi vertices lie within the triangulation. -j Jettisons vertices that are not part of the final triangulation from the output .node file (including duplicate input vertices and vertices ``eaten'' by holes). -e Outputs (to an .edge file) a list of edges of the triangulation. -v Outputs the Voronoi diagram associated with the triangulation. Does not attempt to detect degeneracies, so some Voronoi vertices may be duplicated. -n Outputs (to a .neigh file) a list of triangles neighboring each triangle. -g Outputs the mesh to an Object File Format (.off) file, suitable for viewing with the Geometry Center's Geomview package. -B Suppresses boundary markers in the output .node, .poly, and .edge output files. -P Suppresses the output .poly file. Saves disk space, but you lose the ability to maintain constraining segments on later refinements of the mesh. -N Suppresses the output .node file. -E Suppresses the output .ele file. -I Suppresses mesh iteration numbers. -O Suppresses holes: ignores the holes in the .poly file. -X Suppresses exact arithmetic. -z Numbers all items starting from zero (rather than one). Note that this switch is normally overrided by the value used to number the first vertex of the input .node or .poly file. However, this switch is useful when calling Triangle from another program. -o2 Generates second-order subparametric elements with six nodes each. -Y Prohibits the insertion of Steiner points on the mesh boundary. If specified twice (-YY), it prohibits the insertion of Steiner points on any segment, including internal segments. -S Specifies the maximum number of added Steiner points. -i Uses the incremental algorithm for Delaunay triangulation, rather than the divide-and-conquer algorithm. -F Uses Steven Fortune's sweepline algorithm for Delaunay triangulation, rather than the divide-and-conquer algorithm. -l Uses only vertical cuts in the divide-and-conquer algorithm. By default, Triangle uses alternating vertical and horizontal cuts, which usually improve the speed except with vertex sets that are small or short and wide. This switch is primarily of theoretical interest. -s Specifies that segments should be forced into the triangulation by recursively splitting them at their midpoints, rather than by generating a constrained Delaunay triangulation. Segment splitting is true to Ruppert's original algorithm, but can create needlessly small triangles. This switch is primarily of theoretical interest. -C Check the consistency of the final mesh. Uses exact arithmetic for checking, even if the -X switch is used. Useful if you suspect Triangle is buggy. -Q Quiet: Suppresses all explanation of what Triangle is doing, unless an error occurs. -V Verbose: Gives detailed information about what Triangle is doing. Add more `V's for increasing amount of detail. `-V' gives information on algorithmic progress and detailed statistics. -h Help: Displays complete instructions. /* If the size of the object file is important to you, you may wish to */ /* generate a reduced version of triangle.o. The REDUCED symbol gets rid */ /* of all features that are primarily of research interest. Specifically, */ /* the -DREDUCED switch eliminates Triangle's -i, -F, -s, and -C switches. */ /* The CDT_ONLY symbol gets rid of all meshing algorithms above and beyond */ /* constrained Delaunay triangulation. Specifically, the -DCDT_ONLY switch */ /* eliminates Triangle's -r, -q, -a, -u, -D, -Y, -S, and -s switches. */ =# mutable struct TriangulateOptions pslg::Bool #p regionattrib::Bool # A convex::Bool # c jettison::Bool # j firstnumberiszero::Bool # z edgesout::Bool # e voronoi::Bool # v neighbors::Bool # n nobound::Bool # B nopolywritten::Bool # P nonodewritten::Bool # N noelewritten::Bool # E noiterationnum::Bool # I noholes::Bool # O noexactaritmetic::Bool # X order::Bool # o orderHow::Int64 # 1...2...3 dwyer::Bool # l quiet::Bool # Q verbose::Bool # V TriangulateOptions() = new(false, false, false, false, false, false, false, false, # No_xyz_ selector(s) true, true, false, false, true, false, false, # order false, 0, false, # Quiet Verbose true, false) end function getTriangulateStringOptions(self::TriangulateOptions) output_stri = "" if self.pslg output_stri = output_stri * "p" end if self.regionattrib output_stri = output_stri * "A" end if self.convex output_stri = output_stri * "c" end if self.jettison output_stri = output_stri * "j" end if self.firstnumberiszero output_stri = output_stri * "z" end if self.edgesout output_stri = output_stri * "e" end if self.voronoi output_stri = output_stri * "v" end if self.neighbors output_stri = output_stri * "n" end if self.nobound output_stri = output_stri * "B" end if self.nopolywritten output_stri = output_stri * "P" end if self.nonodewritten output_stri = output_stri * "N" end if self.noelewritten output_stri = output_stri * "E" end if self.noiterationnum output_stri = output_stri * "I" end if self.noholes output_stri = output_stri * "O" end if self.noexactaritmetic output_stri = output_stri * "X" end if self.order && self.orderHow > 0 output_stri = output_stri * "o" * string(self.orderHow) end if self.dwyer output_stri = output_stri * "l" end if self.quiet output_stri = output_stri * "Q" end if self.verbose output_stri = output_stri * "V" end return output_stri end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
851
# REAL = double = Cdouble mutable struct TriangulateIO pointlist::Ptr{Cdouble} pointattributelist::Ptr{Cdouble} pointmarkerlist::Ptr{Cint} numberofpoints::Cint numberofpointattributes::Cint trianglelist::Ptr{Cint} triangleattributelist::Ptr{Cdouble} trianglearealist::Ptr{Cdouble} neighborlist::Ptr{Cint} numberoftriangles::Cint numberofcorners::Cint numberoftriangleattributes::Cint segmentlist::Ptr{Cint} segmentmarkerlist::Ptr{Cint} numberofsegments::Cint holelist::Ptr{Cdouble} numberofholes::Cint regionlist::Ptr{Cdouble} numberofregions::Cint edgelist::Ptr{Cint} edgemarkerlist::Ptr{Cint} normlist::Ptr{Cdouble} numberofedges::Cint TriangulateIO() = new(C_NULL, C_NULL, C_NULL, 0, 0, C_NULL, C_NULL, C_NULL, C_NULL, 0, 0, 0, C_NULL, C_NULL, 0, C_NULL, 0, C_NULL, 0, C_NULL, C_NULL, C_NULL, 0) end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
1332
include("../NativeInterface/native.jl") function call_basic_triangulation(flat_vertices::Vector{Cdouble}, flat_vertices_map::Vector{Cint}) return NativeInterface.basic_triangulation(flat_vertices, flat_vertices_map) end function call_constrained_triangulation(flat_vertices::Vector{Cdouble}, flat_vertices_map::Vector{Cint}, flat_vertices_edge::Vector{Cint}) return NativeInterface.constrained_triangulation(flat_vertices, flat_vertices_map, flat_vertices_edge) end function call_constrained_triangulation_bounded(flat_vertices::Vector{Cdouble}, flat_vertices_map::Vector{Cint}, flat_vertices_edge::Vector{Cint}, flat_boundary_edges::Vector{Cint}) options = NativeInterface.TriangulateOptions() options.pslg = true return NativeInterface.constrained_triangulation_bounded(flat_vertices, flat_vertices_map, flat_vertices_edge, flat_boundary_edges, options) end function call_constrained_triangulation_bounded(flat_vertices::Vector{Cdouble}, flat_vertices_map::Vector{Cint}, flat_vertices_edge::Vector{Cint}, flat_boundary_edges::Vector{Cint}, flat_holes::Vector{Cdouble}) options = NativeInterface.TriangulateOptions() options.pslg = true return NativeInterface.constrained_triangulation_bounded(flat_vertices, flat_vertices_map, flat_vertices_edge, flat_boundary_edges, flat_holes, options) end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
2269
module Triangulate include("call_native_iface.jl") include("utils_methods.jl") export basic_triangulation export constrained_triangulation function basic_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}) flat_triangle_list = call_basic_triangulation(flat_vertices(vertices, vertices_map), Vector{Cint}(vertices_map)) return triangle_list_from_marker(flat_triangle_list) end function constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) return constrained_triangulation(vertices, vertices_map, edges_list, Array{Bool,1}()) end function constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) return constrained_triangulation(vertices, vertices_map, edges_list, edges_boundary, Array{Float64,2}(undef, 0,0)) end function constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}, holes::Array{Float64,2}) local flatted_vertices = flat_vertices(vertices, vertices_map) local vector_map = Vector{Cint}(vertices_map) local flatted_edges = flat_edges(edges_list) local flat_triangle_list::Vector{Cdouble} if length(edges_boundary) != size(edges_list)[1] flat_triangle_list = call_constrained_triangulation( flatted_vertices, vector_map, flatted_edges ) else boolEdges = Vector{Cint}(map(x -> x ? 1 : 0, edges_boundary)) if size(holes)[1] == 0 flat_triangle_list = call_constrained_triangulation_bounded( flatted_vertices, vector_map, flatted_edges, boolEdges ) else flat_triangle_list = call_constrained_triangulation_bounded( flatted_vertices, vector_map, flatted_edges, boolEdges, flat_vertices(holes, collect(1:size(holes)[1])) ) end end return triangle_list_from_marker(flat_triangle_list) end end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
1036
## Utils function triangle_list_from_marker(flat_triangle_list) triangle_list = Array{Array{Int64,1},1}() for i in 1:3:length(flat_triangle_list) push!(triangle_list, flat_triangle_list[i:i+2]) end return triangle_list end function flat_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}) vert_size = size(vertices) flat_vertices_vector = Vector{Cdouble}(undef, vert_size[1]*vert_size[2]) # for vert_id in vertices_map for vert_id=1:vert_size[1] flat_vertices_vector[(vert_id*2)-1]=vertices[vert_id] flat_vertices_vector[(vert_id*2)]=vertices[vert_id+vert_size[1]] end return flat_vertices_vector end function flat_edges(edges::Array{Int64,2}) edge_size = size(edges) flat_edges_vector = Vector{Cint}(undef, edge_size[1]*edge_size[2]) for edge_id=1:edge_size[1] flat_edges_vector[(edge_id*2)-1]=edges[edge_id] flat_edges_vector[(edge_id*2)]=edges[edge_id+edge_size[1]] end return flat_edges_vector end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
135
module TestTriangle using Test using Triangle include("test_Triangle_NativeInterface_trioptions.jl") include("test_Triangle.jl") end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
5084
@testset "Triangle.jl Interface" begin @testset "Basic Triangulation" begin @testset "basic_triangulation_vertices" begin points = Array{Float64,2}([0. 0.; 1. 0.; 0. 1.]) @test Triangle.basic_triangulation_vertices(points)[1] == points end @testset "basic_triangulation with point map" begin points = Array{Float64,2}([0. 0.; 1. 0.; 0. 1.]) points_map = [1, 2, 3] @test Triangle.basic_triangulation(points,points_map)[1] == points_map end @testset "basic_triangulation_vertices with point map" begin points = Array{Float64,2}([0. 0.; 1. 0.; 0. 1.]) points_map = [1, 2, 3] @test Triangle.basic_triangulation_vertices(points,points_map)[1] == points end # Triforce @testset "basic_triangulation with unordered point map" begin points = Array{Float64,2}([0. 0.; 4. 0.; 2. 3.; 8. 0.; 6. 3.; 4. 6.]) points_map = [1, 2, 4, 3, 5, 6] result_tri = [[1, 2, 4],[4, 2, 5],[5, 6, 4],[3, 5, 2]] @test Triangle.basic_triangulation(points,points_map) == result_tri end # Tetris L (no boundary) @testset "basic_triangulation on L tetris piece" begin points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) triangles = Triangle.basic_triangulation(points,points_map) @test length(triangles) == 5 end @testset "basic_triangulation_vertices with point map on L tetris piece" begin points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) triangles = Triangle.basic_triangulation_vertices(points,points_map) @test length(triangles) == 5 end # Tetris L (all boundary) @testset "constrained_triangulation" begin points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) triangles = Triangle.constrained_triangulation(points,points_map,edges_list) @test length(triangles) == 4 end @testset "constrained_triangulation_vertices" begin points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) triangles = Triangle.constrained_triangulation_vertices(points,points_map,edges_list) @test length(triangles) == 4 end # Tetris L (custom boundary) @testset "constrained_triangulation with boundary" begin points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) edge_boundary = [false, false, true, true, false, false] triangles = Triangle.constrained_triangulation(points,points_map,edges_list,edge_boundary) @test length(triangles) == 4 end @testset "constrained_triangulation_vertices with boundary" begin points = [0. 0.; 0. 3.; 1. 3.; 1. 1.; 2. 1.; 2. 0.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) edges_list = Array{Int64,2}([1 2; 2 3; 3 4; 4 5; 5 6; 6 1]) edge_boundary = [false, false, true, true, false, false] triangles = Triangle.constrained_triangulation_vertices(points,points_map,edges_list,edge_boundary) @test length(triangles) == 4 end # Triforce (without center triangle) @testset "constrained_triangulation with boundary and holes" begin points = [0. 0.; 4. 0.; 2. 3.; 8. 0.; 6. 3.; 4. 6.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) edges_list = Array{Int64,2}([1 2; 2 3; 3 1; 2 4; 4 5; 5 2; 3 5; 5 6; 6 3]) edge_boundary = [false,true,false,false,false,true,true,false,false] holes_list = [4. 2.] triangles = Triangle.constrained_triangulation(points,points_map,edges_list,edge_boundary,holes_list) @test length(triangles) == 3 end @testset "constrained_triangulation_vertices with boundary and holes" begin points = [0. 0.; 4. 0.; 2. 3.; 8. 0.; 6. 3.; 4. 6.] points_map = Array{Int64,1}(collect(1:1:size(points)[1])) edges_list = Array{Int64,2}([1 2; 2 3; 3 1; 2 4; 4 5; 5 2; 3 5; 5 6; 6 3]) edge_boundary = [false,true,false,false,false,true,true,false,false] holes_list = [4. 2.] triangles = Triangle.constrained_triangulation_vertices(points,points_map,edges_list,edge_boundary,holes_list) @test length(triangles) == 3 end end end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
code
1451
include("../src/NativeInterface/options_structure.jl") @testset "Triangle.NativeInterface.TriangulateOptions" begin @testset "getTriangulateStringOptions()" begin @testset "Default" begin opt = TriangulateOptions() @test getTriangulateStringOptions(opt) == "BPIQ" end @testset "All disable" begin opt = TriangulateOptions() opt.nobound = false opt.nopolywritten = false opt.noiterationnum = false opt.quiet = false @test getTriangulateStringOptions(opt) == "" end @testset "All enable" begin opt = TriangulateOptions() opt.pslg = true opt.regionattrib = true opt.convex = true opt.jettison = true opt.firstnumberiszero = true opt.edgesout = true opt.voronoi = true opt.neighbors = true opt.nobound = true opt.nopolywritten = true opt.nonodewritten = true opt.noelewritten = true opt.noiterationnum = true opt.noholes = true opt.noexactaritmetic = true opt.order = true opt.orderHow = 1 opt.dwyer = true opt.quiet = true opt.verbose = true @test getTriangulateStringOptions(opt) == "pAcjzevnBPNEIOXo1lQV" end end end
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
docs
1994
# TRIANGLE.jl [![Build Status](https://img.shields.io/travis/cvdlab/Triangle.jl/master.svg?label=Linux+/+macOS)](https://travis-ci.org/cvdlab/Triangle.jl) [![Windows build status](https://ci.appveyor.com/api/projects/status/s3ngfuitqpsnbgml/branch/master?svg=true)](https://ci.appveyor.com/project/furio/triangle-jl/branch/master) [![Coverage Status](https://coveralls.io/repos/github/cvdlab/Triangle.jl/badge.svg)](https://coveralls.io/github/cvdlab/Triangle.jl) [![Read the Docs](https://img.shields.io/readthedocs/pip.svg)](https://cvdlab.github.io/Triangle.jl/) [![DOI](https://zenodo.org/badge/doi/10.1007/BFb0014497.svg)](http://dx.doi.org/10.1007/BFb0014497) [![FOSSA Status](https://app.fossa.io/api/projects/git%2Bgithub.com%2Fcvdlab%2FTriangle.jl.svg?type=shield)](https://app.fossa.io/projects/git%2Bgithub.com%2Fcvdlab%2FTriangle.jl?ref=badge_shield) A Julia interface to Jonathan Richard Shewchuk [Triangle](https://www.cs.cmu.edu/~quake/triangle.html). ### Library notes At the moment the library will use only CDT, planning to expand later. ### Licensing note Note that while this binding-library is under a permissive license ([MIT](LICENSE)), the original [Triangle](https://www.cs.cmu.edu/~quake/triangle.html) library isn't: > Please note that although Triangle is freely available, it is copyrighted by the author and may not be sold or included in commercial products without a license. So be wary of any possible conflict between your project license and [Triangle](https://www.cs.cmu.edu/~quake/triangle.html)'s ## Installation ```julia using Pkg add("Triangle") # Pkg.add("Triangle") on julia prior to v0.7 ``` ### Windows The build proces uses VC++ binary (2013 version) to build so be sure you have it before running the build part. ## API Include the module (`using Triangle`). You can use Julia `?Triangle.methodname` for inline documentation. Documentation can be read on https://cvdlab.github.io/Triangle.jl/ .
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.3.2
ea6029621372cad54dcb43095f68e98f889b0546
docs
1094
# Triangle.jl Documentation A Julia interface to Jonathan Richard Shewchuk [Triangle](https://www.cs.cmu.edu/~quake/triangle.html). The library builds the C version and then expose methods to calculate CDTs. ## Functions ```@docs basic_triangulation_vertices(vertices::Array{Float64,2}) ``` ```@docs basic_triangulation(vertices::Array{Float64,2},vertices_map::Array{Int64,1}) ``` ```@docs basic_triangulation_vertices(vertices::Array{Float64,2},vertices_map::Array{Int64,1}) ``` ```@docs constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) ``` ```@docs constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}) ``` ```@docs constrained_triangulation(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) ``` ```@docs constrained_triangulation_vertices(vertices::Array{Float64,2}, vertices_map::Array{Int64,1}, edges_list::Array{Int64,2}, edges_boundary::Array{Bool,1}) ``` ## Index ```@index ```
Triangle
https://github.com/cvdlab/Triangle.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
320
using Documenter, IRTools makedocs( modules=[IRTools], sitename="IRTools", pages = [ "Home" => "index.md", "Dynamo" => "dynamo.md", "Reference" => "reference.md"], format = Documenter.HTML(prettyurls = haskey(ENV, "CI"))) deploydocs( repo = "github.com/MikeInnes/IRTools.jl.git", )
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
791
# Implementation of the amb operator using shift/reset # http://community.schemewiki.org/?amb include("continuations.jl"); struct Backtrack end function require(x) x || throw(Backtrack()) return end unwrap(e) = e unwrap(e::CapturedException) = e.ex function amb(iter) shift() do k for x in iter try return k(x) catch e unwrap(e) isa Backtrack || rethrow() end end throw(Backtrack()) end end function ambrun(f) try @reset f() catch e e isa Backtrack || rethrow() error("No possible combination found.") end end ambrun() do x = amb([1, 2, 3]) y = amb([1, 2, 3]) require(x^2 + y == 7) (x, y) end ambrun() do N = 20 i = amb(1:N) j = amb(i:N) k = amb(j:N) require(i*i + j*j == k*k) (i, j, k) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
3015
# An implementation of delimited continuations (the shift/reset operators) in # Julia. Works by transforming all Julia code to continuation passing style. # The `shift` operator then just has to return the continuation. # https://en.wikipedia.org/wiki/Delimited_continuation # https://en.wikipedia.org/wiki/Continuation-passing_style using IRTools.All struct Func f # Avoid over-specialising on the continuation object. end (f::Func)(args...) = f.f(args...) function captures(ir, vs) us = Set() for v in vs isexpr(ir[v].expr) || continue foreach(x -> x isa Variable && push!(us, x), ir[v].expr.args) end return setdiff(us, vs) end rename(env, x) = x rename(env, x::Variable) = env[x] rename(env, x::Expr) = Expr(x.head, rename.((env,), x.args)...) rename(env, x::Statement) = stmt(x, expr = rename(env, x.expr)) excluded = [GlobalRef(Base, :getindex)] function continuation!(bl, ir, env, vs, ret) rename(x) = Main.rename(env, x) local v, st while true isempty(vs) && return return!(bl, rename(Expr(:call, ret, returnvalue(block(ir, 1))))) v = popfirst!(vs) st = ir[v] isexpr(st.expr, :call) && !(st.expr.args[1] ∈ excluded) && break isexpr(st.expr, :lambda) && (st = stmt(st, expr = Expr(:lambda, cpslambda(st.expr.args[1]), st.expr.args[2:end]...))) env[v] = push!(bl, rename(st)) end cs = [ret, setdiff(captures(ir, vs), [v])...] if isempty(vs) next = rename(ret) else next = push!(bl, Expr(:lambda, continuation(ir, vs, cs, v, ret), rename.(cs)...)) next = xcall(Main, :Func, next) end ret = push!(bl, stmt(st, expr = xcall(Main, :cps, next, rename(st.expr).args...))) return!(bl, ret) end function continuation(ir, vs, cs, in, ret) bl = empty(ir) env = Dict() self = argument!(bl) env[in] = argument!(bl) for (i, c) in enumerate(cs) env[c] = pushfirst!(bl, xcall(:getindex, self, i)) end continuation!(bl, ir, env, vs, ret) end cpslambda(ir) = cpstransform(ir, true) function cpstransform(ir, lambda = false) lambda || (ir = functional(ir)) k = argument!(ir, at = lambda ? 2 : 1) bl = empty(ir) env = Dict() for arg in arguments(ir) env[arg] = argument!(bl) end continuation!(bl, ir, env, keys(ir), k) end cps(k, f::Core.IntrinsicFunction, args...) = k(f(args...)) cps(k, f::IRTools.Lambda{<:Tuple{typeof(cps),Vararg{Any}}}, args...) = f(k, args...) cps(k, ::typeof(cond), c, t, f) = c ? cps(k, t) : cps(k, f) cps(k, ::typeof(cps), args...) = k(cps(args...)) # Speed up compilation for f in [Broadcast.broadcasted, Broadcast.materialize] @eval cps(k, ::typeof($f), args...) = k($f(args...)) end @dynamo function cps(k, args...) ir = IR(args...) ir == nothing && return :(args[1](args[2](args[3:end]...))) cpstransform(IR(args...)) end # shift/reset reset(f) = cps(identity, f) shift(f) = error("`shift` must be called inside `reset`") cps(k, ::typeof(shift), f) = f(k) macro reset(ex) :(reset(() -> $(esc(ex)))) end k = @reset begin shift(k -> k)^2 end k(4) == 16
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
3124
# A simple forward-mode AD. Simplified so that many things don't work (e.g. # control flow), but shows the basic ideas. using IRTools.All using IRTools: Pipe using Base: tail ntail(x, n) = n <= 0 ? x : xcall(:tail, ntail(x, n-1)) zerolike(x::Number) = zero(x) zerolike(x::Tuple) = zerolike.(x) zerolike(x::T) where T = NamedTuple{fieldnames(T)}(map(f -> zerolike(getfield(x, f)), fieldnames(T))) zerolike(x::Union{Module,Type}) = nothing function instrument!(pr, v, st) ex = st.expr if isexpr(ex, :new) st = stmt(st, expr = xcall(Main, :__new__, ex.args...)) pr[v] = st end return st end function dual(ir) pr = Pipe(ir) Δs = Dict() partial(x::Variable) = Δs[x] partial(v, x::Variable) = Δs[x] partial(v, x) = insert!(pr, v, xcall(Main, :zerolike, x)) dx = argument!(pr, at = 1) for (i, x) in enumerate(arguments(ir)) if i == length(arguments(ir)) && ir.meta.method.isva Δs[x] = push!(pr, ntail(dx, i-1)) else Δs[x] = push!(pr, xcall(:getindex, dx, i)) end end for (v, st) in pr st = instrument!(pr, v, st) if isexpr(st.expr, :call) dargs = insert!(pr, v, xcall(:tuple, partial.((v,), st.expr.args)...)) result = insert!(pr, v, stmt(st, expr = xcall(Main, :diff, dargs, st.expr.args...))) pr[v] = xcall(:getindex, result, 1) Δs[v] = push!(pr, xcall(:getindex, result, 2)) elseif !isexpr(st.expr) Δs[v] = push!(pr, xcall(Main, :zerolike, v)) else error("Unsupported $(st.expr.head) expression") end end ret = returnvalue(block(ir, 1)) return!(pr, xcall(:tuple, ret, partial(ret))) return finish(pr) end @dynamo function diff(_, x...) ir = IR(x...) ir == nothing && return :(error("non-differentiable function $(args[2])")) @assert length(blocks(ir)) == 1 "Control flow not yet supported" return dual(ir) end @generated function __new__(T, args...) quote Base.@_inline_meta $(Expr(:new, :T, [:(args[$i]) for i = 1:length(args)]...)) end end # Julia internal definitions diff(_, ::typeof(zerolike), x) = zerolike(x), zerolike(x) diff(_, ::typeof(one), x) = one(x), zerolike(x) diff(_, ::typeof(println), x...) = println(x...), nothing diff(_, ::typeof(typeof), x) = typeof(x), nothing diff(_, ::typeof(Core.apply_type), args...) = Core.apply_type(args...), nothing diff(ṫ, ::typeof(tuple), t...) = t, tail(ṫ) diff((_, ṫ, _), ::typeof(getfield), t, i) = getfield(t, i), getfield(ṫ, i) diff((_, ṫ, _), ::typeof(getindex), t, i) = getindex(t, i), getindex(ṫ, i) diff(ṡ, ::typeof(__new__), T, s...) = __new__(T, s...), NamedTuple{fieldnames(T)}(tail(tail(ṡ))) # Mathematical definitions diff((_, ȧ, ḃ), ::typeof(+), a, b) = a + b, ȧ + ḃ diff((_, ȧ, ḃ), ::typeof(-), a, b) = a - b, ȧ - ḃ diff((_, ȧ, ḃ), ::typeof(*), a, b) = a*b, ȧ*b+ḃ*a diff((_, ȧ), ::typeof(-), a) = -a, -ȧ diff((_, ẋ), ::typeof(sin), x) = sin(x), ẋ*cos(x) diff((_, ẋ), ::typeof(cos), x) = cos(x), -ẋ*sin(x) # Test cases D(f, x) = diff((zerolike(f), one(x)), f, x)[2] D(x -> sin(cos(x)), 0.5) # -cos(cos(x))sin(x) D(x -> D(cos, x), 0.5) # -cos(x) D(x -> x*D(y -> x*y, 1), 4) # 8
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
446
# A simple dynamo that logs all function calls being made by Julia. using IRTools: @dynamo, IR, xcall, arguments, insertafter!, recurse! function hook(f, args...) print("Called ", f, "(") join(stdout, args, ", ") println(")") end @dynamo function logcalls(m...) ir = IR(m...) ir == nothing && return recurse!(ir) pushfirst!(ir, xcall(Main, :hook, arguments(ir)...)) return ir end # @code_ir logcalls 2+3.0 logcalls(+, 2, 3.0)
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
2296
# A simple reverse-mode AD. # Lots of simplifications have been made (in particular, there is no support for # control flow). But this illustrates most of the principles behind Zygote. # https://fluxml.ai/Zygote.jl/dev/internals/ using IRTools using IRTools: @dynamo, IR, Pipe, finish, substitute, return!, block, blocks, returnvalue, arguments, isexpr, xcall, self, stmt struct Pullback{S,T} data::T end Pullback{S}(data) where S = Pullback{S,typeof(data)}(data) function primal(ir, T = Any) pr = Pipe(ir) calls = [] ret = [] for (v, st) in pr ex = st.expr if isexpr(ex, :call) t = insert!(pr, v, stmt(xcall(Main, :forward, ex.args...), line = st.line)) pr[v] = xcall(:getindex, t, 1) J = push!(pr, xcall(:getindex, t, 2)) push!(calls, v) push!(ret, J) end end pb = Expr(:call, Pullback{T}, xcall(:tuple, ret...)) return!(pr, xcall(:tuple, returnvalue(block(ir, 1)), pb)) return finish(pr), calls end _sum() = 0 _sum(x) = x _sum(x...) = xcall(:+, x...) function adjoint(pr) ir = empty(pr) grads = Dict() grad(x) = _sum(get(grads, x, [])...) grad(x, x̄) = push!(get!(grads, x, []), x̄) grad(returnvalue(block(pr, 1)), IRTools.argument!(ir)) data = push!(ir, xcall(:getfield, self, QuoteNode(:data))) _, pbs = primal(pr) pbs = Dict(pbs[i] => push!(ir, xcall(:getindex, data, i)) for i = 1:length(pbs)) for v in reverse(keys(pr)) ex = pr[v].expr isexpr(ex, :call) || continue Δs = push!(ir, Expr(:call, pbs[v], grad(v))) for (i, x) in enumerate(ex.args) grad(x, push!(ir, xcall(:getindex, Δs, i))) end end return!(ir, xcall(:tuple, [grad(x) for x in arguments(pr)]...)) end @dynamo function forward(m...) ir = IR(m...) ir == nothing && return :(error("Non-differentiable function ", repr(args[1]))) length(blocks(ir)) == 1 || error("control flow is not supported") return primal(ir, Tuple{m...})[1] end @dynamo function (pb::Pullback{S})(Δ) where S return adjoint(IR(S.parameters...)) end forward(::typeof(sin), x) = sin(x), ȳ -> (nothing, ȳ*cos(x)) forward(::typeof(cos), x) = cos(x), ȳ -> (nothing, -ȳ*sin(x)) gradient(f, x...) = Base.tail(forward(f, x...)[2](1)) foo(x) = sin(cos(x)) # ir = @code_ir foo(1.0) # primal(ir)[1] # adjoint(ir) gradient(foo, 1.0)
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
499
using IRTools: @dynamo, argument!, IR # Implementation of `invoke(f, argtypes::Type, args...`, where `args` don't have # to conform to `argtypes`. i.e., it allows you to call `f` on `args`, but using the # method for `argtypes`. # See https://julialang.slack.com/archives/CJ357CY2Y/p1579598240011500. @dynamo function sneakyinvoke(f, ::Type{T}, args...) where T<:Tuple ir = IR(f, T.parameters...) argument!(ir, at = 2) return ir end f(x::Float64) = x^2 sneakyinvoke(f, Tuple{Float64}, 2)
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
1869
module IRTools export @code_ir module Inner using MacroTools using MacroTools: @q, prewalk, postwalk import ..IRTools export @code_ir @nospecialize include("reflection/reflection.jl") include("utils.jl") include("ir/ir.jl") include("ir/utils.jl") include("ir/wrap.jl") include("ir/print.jl") include("ir/parse.jl") include("reflection/utils.jl") include("reflection/dynamo.jl") include("passes/passes.jl") include("passes/inline.jl") include("passes/cps.jl") include("passes/relooper.jl") include("passes/stackifier.jl") include("passes/registers.jl") include("interpret.jl") include("eval.jl") end let exports = :[ # IR IRTools, IR, Block, BasicBlock, Variable, Statement, Branch, Pipe, CFG, Slot, branch, var, stmt, arguments, argtypes, branches, undef, unreachable, isreturn, isconditional, block!, deleteblock!, branch!, argument!, return!, canbranch, returnvalue, returntype, emptyargs!, deletearg!, block, blocks, successors, predecessors, xcall, exprtype, exprline, isexpr, insertafter!, explicitbranch!, prewalk, postwalk, prewalk!, postwalk!, finish, substitute!, substitute, # Passes/Analysis definitions, usages, dominators, domtree, domorder, domorder!, renumber, merge_returns!, expand!, prune!, ssa!, inlineable!, log!, pis!, func, evalir, Simple, Loop, Multiple, reloop, stackify, functional, cond, WorkQueue, Graph, liveness, interference, colouring, inline, # Reflection, Dynamo Meta, Lambda, meta, dynamo, transform, refresh, recurse!, self, varargs!, slots!, ].args append!(exports, Symbol.(["@code_ir", "@dynamo", "@meta"])) for x in exports @eval const $x = Inner.$x end @eval module All $([:(import ..IRTools: $x) for x in exports]...) export $(exports...) end end end # module
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
1534
using Base: invokelatest dummy() = return const dummy_m = which(dummy, Tuple{}) function build_codeinfo(ir::IR) ir = copy(ir) ci = Base.uncompressed_ir(dummy_m) ci.inlineable = true for arg in arguments(ir) @static if VERSION >= v"1.10.0-DEV.870" isnothing(ci.slottypes) && (ci.slottypes = Any[]) push!(ci.slottypes, Type) end push!(ci.slotnames, Symbol("")) push!(ci.slotflags, 0) end if isdefined(Base, :__has_internal_change) && Base.__has_internal_change(v"1.12-alpha", :codeinfonargs) ci.nargs = length(arguments(ir)) + 1 ci.isva = false end argument!(ir, at = 1) update!(ci, ir) end # JuliaLang/julia#48611: world age is exposed to generated functions. if VERSION >= v"1.10.0-DEV.873" function func(m::Module, ir::IR) generator = @eval m begin function $(gensym())(world::UInt, source, self, $([Symbol(:arg, i) for i = 1:length(arguments(ir))]...)) return $build_codeinfo($ir) end end @eval m begin function $(gensym())($([Symbol(:arg, i) for i = 1:length(arguments(ir))]...)) $(Expr(:meta, :generated, generator)) $(Expr(:meta, :generated_only)) end end end else function func(m::Module, ir::IR) @eval m (@generated function $(gensym())($([Symbol(:arg, i) for i = 1:length(arguments(ir))]...)) return $build_codeinfo($ir) end) end end func(ir::IR) = func(Main, ir) evalir(m::Module, ir::IR, args...) = invokelatest(func(m, ir), args...) evalir(ir::IR, args...) = evalir(Main, ir, args...)
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
852
# Unique Work Queue struct WorkQueue{T} items::Vector{T} end WorkQueue{T}() where T = WorkQueue(T[]) WorkQueue() = WorkQueue{Any}() WorkQueue(xs) = WorkQueue(collect(xs)) function Base.push!(q::WorkQueue, x) i = findfirst(==(x), q.items) i === nothing || (deleteat!(q.items, i)) push!(q.items, x) return q end Base.pop!(q::WorkQueue) = pop!(q.items) Base.isempty(q::WorkQueue) = isempty(q.items) # Simple Graph struct Graph{T} nodes::Dict{T,Int} links::Vector{Set{T}} end Graph{T}() where T = Graph{T}(Dict(), []) Base.length(g::Graph) = length(g.links) Base.keys(g::Graph) = keys(g.nodes) function Base.getindex(g::Graph, x) if !haskey(g.nodes, x) push!(g.links, Set()) g.nodes[x] = length(g) end return g.links[g.nodes[x]] end function connect!(g::Graph, a, b) push!(g[a], b) push!(g[b], a) return g end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
24859
import Base: push!, insert!, getindex, setindex!, iterate, length # We have our own versions of these in order to # (1) be more robust to Base IR changes, and # (2) make sure that mistakes/bugs do not cause bad LLVM IR. """ LineInfoNode(file::Symbol, line::Int32, [inlined_at::Int32]) Represents line information about a statement; Inlined statements has a non-zero `inlined_at` which represents the "parent" location in the linetable array. """ struct LineInfoNode file::Symbol line::Int32 inlined_at::Int32 end LineInfoNode(file, line) = LineInfoNode(file, line, Int32(0)) struct Undefined end const undef = Undefined() """ Variable(id::Integer) var(id::Integer) Represents an SSA variable. Primarily used as an index into `IR` objects. """ struct Variable id::Int end var(id::Integer) = Variable(id) """ Branch(condition::Any, block::Int, args::Vector{Any}) Represents a generalized branching instruction, consisting of a `condition` (usually a `Variable` of boolean type), a target `block`, and a vector of `args` passed to the jump target. There are three types of branches that exist by the following convention: - A return branch is represented by `Branch(nothing, 0, [<return value>])`. - An unconditional branch is represented by `Branch(nothing, <target>, [<optional arguments ...>])` - A conditional branch is represented by `Branch(<condition>, <target>, [<optional arguments ...>])` See also: [`branch!`](@branch!), [`return!`](@return), [`isreturn`](@isreturn), [`isconditional`](@isconditional) """ struct Branch condition::Any block::Int args::Vector{Any} end Branch(br::Branch; condition = br.condition, block = br.block, args = br.args) = Branch(condition, block, args) """ isreturn(br::Branch) Check whether `br` has the form of a return branch (see [`Branch`](@Branch)). """ isreturn(b::Branch) = b.block == 0 && length(b.args) == 1 """ returnvalue(b::Branch) Get the return value of `b` (the first argument of the branch). """ returnvalue(b::Branch) = b.args[1] """ isconditional(br::Branch) Check whether `br` has the form of a conditional branch (see [`Branch`](@Branch)). """ isconditional(b::Branch) = b.condition != nothing Base.:(==)(a::Branch, b::Branch) = (a.condition, a.block, a.args) == (b.condition, b.block, b.args) Base.copy(br::Branch) = Branch(br.condition, br.block, copy(br.args)) """ arguments(br::Branch) Return the argument vector of the branch `br`. (These are the arguments passed to a jumped-to block.) """ arguments(b::Branch) = b.args const unreachable = Branch(nothing, 0, []) """ Statement(expr; type, line) stmt(expr; type, line) Represents a single statement in the IR. The `expr` is a non-nested Julia expression (`Expr`). `type` represents the return type of the statement; in most cases this can be ignored and defaults to `Any`. `line` represents the source location of the statement; it is an integer index into the IR's line table. As a convenience, if `expr` is already a statement, the new statement will inherit its type and line number. """ struct Statement expr::Any type::Any line::Int end Statement(x; expr = x, type = Any, line = 0) = Statement(expr, type, line) """ Statement(stmt::Statement; expr, type, line) Copy of `stmt` with optionally updated fields. """ Statement(x::Statement; expr = x.expr, type = x.type, line = x.line) = Statement(expr, type, line) const stmt = Statement """ BasicBlock(stmts::Vector{Statement}, args::Vector{Any}, argtypes::Vector{Any}, branches::Vector{Branch}) BasicBlock([stmts]) Represents a [basic block](https://en.wikipedia.org/wiki/Static_single_assignment_form#Converting_to_SSA) of code in SSA form. A block consists of a list of statements, followed by optional branching instructions and arguments, with optional types. """ struct BasicBlock stmts::Vector{Statement} args::Vector{Any} argtypes::Vector{Any} branches::Vector{Branch} end BasicBlock(stmts = []) = BasicBlock(stmts, [], [], Branch[]) Base.copy(bb::BasicBlock) = BasicBlock(copy(bb.stmts), copy(bb.args), copy(bb.argtypes), copy.(bb.branches)) """ branches(bb::BasicBlock) Return the vector of branching instructions in block `bb`. """ branches(bb::BasicBlock) = bb.branches """ arguments(bb::BasicBlock) Return the argument vector of the basic block `bb`. (These are the arguments given by the branch to this block.) """ arguments(bb::BasicBlock) = bb.args """ argtypes(bb::BasicBlock) Return the argument types of the basic block `bb`. (These are the arguments given by the branch to this block.) """ argtypes(bb::BasicBlock) = bb.argtypes """ IR() IR(metadata; slots = false) Represents a fragment of SSA-form code. IR can be constructed from scratch, but more usually an existing Julia method is used as a starting point (see [`meta`](@ref) for how to get metadata for a method). The `slots` argument determines whether the IR preserves mutable variable slots; by default, these are converted to SSA-style variables. As a shortcut, IR can be constructed directly from a type signature, e.g. julia> IR(typeof(gcd), Int, Int) 1: (%1, %2, %3) %4 = %2 == 0 br 4 unless %4 2: ... See also: [`code_ir`](@code_ir) """ struct IR defs::Vector{Tuple{Int,Int}} blocks::Vector{BasicBlock} lines::Vector{LineInfoNode} meta::Any end IR(; meta = nothing) = IR([],[BasicBlock()],[],meta) IR(lines::Vector{LineInfoNode}; meta = nothing) = IR([],[BasicBlock()],lines,meta) Base.copy(ir::IR) = IR(copy(ir.defs), copy.(ir.blocks), copy(ir.lines), ir.meta) length(ir::IR) = sum(x -> x[2] > 0, ir.defs, init = 0) """ block!(ir::IR) block!(ir::IR, i) Insert a new block in `ir`. If `i` is given, the block is inserted at this position, otherwise it is appended at the end. Branches in all other blocks are updated to preserve the original behaviour. """ function block!(ir::IR, i = length(blocks(ir))+1) insert!(ir.blocks, i, BasicBlock()) if i != length(blocks(ir)) for b in blocks(ir), bi = 1:length(branches(b)) br = branches(b)[bi] br.block >= i && (branches(b)[bi] = Branch(br, block = br.block+1)) end for (ii, (b, j)) = enumerate(ir.defs) b >= i && (ir.defs[ii] = (b+1, j)) end end return block(ir, i) end """ deleteblock!(ir::IR, i) Delete the block at position `i`. Branches in all other blocks are updated to preserve the original behaviour. """ function deleteblock!(ir::IR, i::Integer) deleteat!(ir.blocks, i) if i != length(blocks(ir))+1 for b in blocks(ir), bi = 1:length(branches(b)) br = branches(b)[bi] br.block >= i && (branches(b)[bi] = Branch(br, block = br.block-1)) end end for (ii, (b, j)) = enumerate(ir.defs) b == i && (ir.defs[ii] = (-1, -1)) b > i && (ir.defs[ii] = (b-1, j)) end return end struct Block ir::IR id::Int end BasicBlock(b::Block) = b.ir.blocks[b.id] branches(b::Block) = branches(BasicBlock(b)) branches(ir::IR) = length(blocks(ir)) == 1 ? branches(block(ir, 1)) : error("IR has multiple blocks, so `branches(ir)` is ambiguous.") arguments(b::Block) = arguments(BasicBlock(b)) arguments(ir::IR) = arguments(block(ir, 1)) argtypes(b::Block) = argtypes(BasicBlock(b)) argtypes(ir::IR) = argtypes(block(ir, 1)) """ canbranch(b::Block) Check whether adding a branch to block `b` will be valid (i.e, the last existing branch is not conditional). """ canbranch(b::Block) = length(branches(b)) == 0 || isconditional(branches(b)[end]) """ isreturn(b::Block) Check whether the block `b` has a return branch. """ isreturn(b::Block) = any(isreturn, branches(b)) """ explicitbranch!(b::Block) explicitbranch!(ir::IR) Convert implicit fallthroughs to explicit branches to the next block (these occur when the last branch in a block is conditional): 1: (%1, %2) %3 = %2 < 0 br 3 unless %3 2: return 0 3: return %2 will become 1: (%1, %2) %3 = %2 < 0 br 3 unless %3 br 2 2: return 0 3: return %2 """ function explicitbranch!(b::Block) b.id == 1 && return a = block(b.ir, b.id-1) if all(isconditional, branches(a)) branch!(a, b.id) end return b end explicitbranch!(ir::IR) = (foreach(explicitbranch!, blocks(ir)); return ir) """ branches(b::Block, c::Block) Return the vector of all branches from block `b` to block `c`. """ function branches(b::Block, c::Block) c.id == b.id+1 && explicitbranch!(c) filter(br -> br.block == c.id, branches(b)) end branches(b::Block, c::Integer) = branches(b, block(b.ir, c)) """ returnvalue(b::Block) Retreive the return value of a block. julia> f(x) = 3x + 2; julia> IRTools.block(@code_ir(f(1)), 1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 return %4 julia> IRTools.returnvalue(ans) %4 """ function returnvalue(b::Block) isreturn(branches(b)[end]) || error("Block does not return") return returnvalue(branches(b)[end]) end """ returnvalue(b::Block) Retreive the return type of a block. """ returntype(b::Block) = exprtype(b.ir, returnvalue(b)) """ argument!(block, [value, type]; at, insert) argument!(ir, [value, type]; at, insert) Create a new argument for the given block / IR fragment, and return the variable representing the argument. julia> ir = IR(); julia> argument!(ir) %1 julia> ir 1: (%1) The `at` keyword argument can be used to specify where the new argument should go; by default it is appended to the end of the argument list. Unless `insert = false`, if there are branches to this block, they will be updated to pass `value` (`nothing` by default) as an argument (by default, `insert = true`). """ function argument!(b::Block, value = nothing, t = Any; insert = true, at = length(arguments(b))+1, type = t) if at < length(arguments(b)) for i = 1:length(b.ir.defs) (c, j) = b.ir.defs[i] c == b.id && -j >= at && (b.ir.defs[i] = (c, j-1)) end end push!(b.ir.defs, (b.id, -at)) arg = var(length(b.ir.defs)) insert!(arguments(b), at, arg) insert!(BasicBlock(b).argtypes, at, type) if insert explicitbranch!(b) for c in blocks(b.ir), br in branches(c) br.block == b.id && insert!(arguments(br), at, value) end end return arg end argument!(ir::IR, a...; kw...) = argument!(block(ir, 1), nothing, a...; kw..., insert = false) """ emptyargs!(b::Block) Delete all arguments from block `b`, and automatically remove them from all branches to this block. """ function emptyargs!(b::Block) empty!(arguments(b)) for c in blocks(b.ir), br in branches(c) br.block == b.id && empty!(arguments(br)) end return end """ deletearg!(b::Block, i::Integer) Delete the `i`-th argument from block `b`, and automatically remove it from all branches to this block. """ function deletearg!(b::Block, i::Integer) arg = arguments(b)[i] deleteat!(arguments(b), i) deleteat!(argtypes(b), i) for c in blocks(b.ir), br in branches(c) br.block == b.id && deleteat!(arguments(br), i) end b.ir.defs[arg.id] = (-1, -1) for arg in arguments(b)[i:end] (bl, pos) = b.ir.defs[arg.id] b.ir.defs[arg.id] = (bl, pos+1) end return end function deletearg!(b::Block, i::AbstractVector) for i in sort(i, lt = >) deletearg!(b, i) end end """ deletearg!(ir::IR, i) Delete the `i`-th argument from the first block of `ir`, and automatically remove it from all branches to this block. """ deletearg!(ir::IR, i) = deletearg!(block(ir, 1), i) """ block(ir, i) Return the `i`-th `Block` of `ir`. """ block(ir::IR, i) = Block(ir, i) block(ir::IR, v::Variable) = blockidx(ir, v)[1] """ blocks(ir) Return the list of blocks `Block` of `ir`. """ blocks(ir::IR) = [block(ir, i) for i = 1:length(ir.blocks)] function blockidx(ir::IR, x::Variable) b, i = get(ir.defs, x.id, (-1, -1)) i > 0 || error("No such variable $x") block(ir, b), i end """ haskey(ir, var) Check whether the variable `var` was defined in `ir`. julia> f(x) = 3x + 2; julia> ir = @code_ir f(1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 return %4 julia> haskey(ir, var(3)) true julia> haskey(ir, var(7)) false """ function Base.haskey(ir::IR, x::Variable) b, i = get(ir.defs, x.id, (-1, -1)) return i > 0 end getindex(b::Block, i::Integer) = BasicBlock(b).stmts[i] getindex(b::Block, i::Variable) = b.ir[i] setindex!(b::Block, x::Statement, i::Integer) = (BasicBlock(b).stmts[i] = x) setindex!(b::Block, x, i::Integer) = (b[i] = Statement(b[i], expr = x)) branch(block::Integer, args...; unless = nothing) = Branch(unless, block, Any[args...]) branch(block::Block, args...; kw...) = branch(block.id, args...; kw...) """ branch!(b::Block, block, args...; unless = nothing) Add to block `b` a new branch to `block`, with arguments `args` and condition `unless`, and return it. """ function branch!(b::Block, block, args...; unless = nothing) brs = branches(b) unless === nothing && deleteat!(brs, findall(br -> br.condition === nothing, brs)) args = map(a -> a isa Expr ? push!(b, a) : a, args) push!(brs, branch(block, args...; unless = unless)) return b end """ branch!(ir::IR, block, args...; unless = nothing) Add to the last block of `ir` a new branch to `block`, with arguments `args` and condition `unless`, and return it. """ function branch!(ir::IR, args...; kw...) branch!(blocks(ir)[end], args...; kw...) return ir end """ return!(block, x) return!(ir, x) Add to `block` or the last block of `ir` a return branch with argument `x`, and return it. """ return!(ir, x) = branch!(ir, 0, x) function getindex(ir::IR, i::Variable) b, i = blockidx(ir, i) return b[i] end Base.get(ir::IR, i::Variable, default) = haskey(ir, i) ? ir[i] : default function setindex!(ir::IR, x, i::Variable) b, i = blockidx(ir, i) b[i] = x end setindex!(b::Block, x, i::Variable) = setindex!(b.ir, x, i) function Base.delete!(ir::IR, i::Variable) ir[i] = nothing ir.defs[i.id] = (-1, -1) return ir end Base.delete!(b::Block, i::Variable) = delete!(b.ir, i) length(b::Block) = count(x -> x[1] == b.id, b.ir.defs) """ successors(b::Block) Returns all `Block`s from which you can reach `b` in one jump; basically, all x such that `branches(x, b)` is non-empty. Implicit jumps by fall-through are noticed as well. See: [`predecessors`](@predecessors) """ function successors(b::Block) brs = BasicBlock(b).branches succs = Int[br.block for br in brs if br.block > 0] all(br -> br.condition != nothing, brs) && b.id < length(blocks(b.ir)) && push!(succs, b.id+1) return [block(b.ir, succ) for succ in succs] end """ predecessors(b::Block) Returns all `Block`s of which `b` is a successor; basically, all x such that `branches(x, b)` is non-empty. Implicit jumps by fall-through are noticed as well. See: [`successors`](@successors) """ predecessors(b::Block) = [c for c in blocks(b.ir) if b in successors(c)] """ keys(ir) Return the variable keys for all statements defined in `ir`. julia> f(x) = 3x + 2; julia> ir = @code_ir f(1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 return %4 julia> keys(ir) 2-element Array{IRTools.Variable,1}: %3 %4 """ Base.keys(b::Block) = first.(sort([Variable(i) => v for (i, v) in enumerate(b.ir.defs) if v[1] == b.id && v[2] > 0], by = x->x[2])) function iterate(b::Block, (ks, i) = (keys(b), 1)) i > length(ks) && return return (ks[i]=>b.ir[ks[i]], (ks, i+1)) end Base.keys(ir::IR) = first.(sort([Variable(i) => v for (i, v) in enumerate(ir.defs) if v[2] > 0], by = x->x[2])) function iterate(ir::IR, (ks, i) = (keys(ir), 1)) i > length(ks) && return return (ks[i]=>ir[ks[i]], (ks, i+1)) end applyex(f, x) = x applyex(f, x::Expr) = Expr(x.head, [x isa Expr ? f(x) : x for x in x.args]...) applyex(f, x::Statement) = Statement(x, expr = applyex(f, x.expr)) """ push!(ir, x) Append the statement or expression `x` to the IR or block `ir`, returning the new variable. See also [`pushfirst!`](@ref), [`insert!`](@ref). julia> ir = IR(); julia> x = argument!(ir) %1 julia> push!(ir, xcall(:*, x, x)) %2 julia> ir 1: (%1) %2 = %1 * %1 """ function push!(b::Block, x::Statement) if !isexpr(x.expr, :foreigncall) # needed to avoid https://github.com/MikeInnes/IRTools.jl/issues/30 x = applyex(a -> push!(b, Statement(x, expr = a)), x) end x = Statement(x) push!(BasicBlock(b).stmts, x) push!(b.ir.defs, (b.id, length(BasicBlock(b).stmts))) return Variable(length(b.ir.defs)) end push!(b::Block, x) = push!(b, Statement(x)) push!(b::Block, x::Variable) = x # TODO make this work on nested Exprs. function insert!(b::Block, idx::Integer, x) insert!(BasicBlock(b).stmts, idx, Statement(x)) for i = 1:length(b.ir.defs) c, j = b.ir.defs[i] if c == b.id && j >= idx b.ir.defs[i] = (c, j+1) end end push!(b.ir.defs, (b.id, idx)) return Variable(length(b.ir.defs)) end Base.pushfirst!(b::Block, x) = insert!(b, 1, x) push!(ir::IR, x) = push!(block(ir, length(ir.blocks)), x) """ pushfirst!(ir, x) Insert the expression or statement `x` into the given IR or block at the beginning, returning the new variable. See also [`push!`](@ref), [`insert!`](@ref). julia> f(x) = 3x + 2 f (generic function with 1 method) julia> ir = @code_ir f(1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 return %4 julia> pushfirst!(ir, :(println("hello, world"))) %5 julia> ir 1: (%1, %2) %5 = println("hello, world") %3 = 3 * %2 %4 = %3 + 2 return %4 """ Base.pushfirst!(ir::IR, x) = pushfirst!(block(ir, 1), x) """ insert!(ir, v, x) Insert the expression or statement `x` into the given IR, just before the variable `v` is defined, returning the new variable for `x`. See also [`insertafter!`](@ref). julia> f(x) = 3x + 2 f (generic function with 1 method) julia> ir = @code_ir f(1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 return %4 julia> insert!(ir, IRTools.var(4), :(println("hello, world"))) %5 julia> ir 1: (%1, %2) %3 = 3 * %2 %5 = println("hello, world") %4 = %3 + 2 return %4 """ function insert!(ir::IR, i::Variable, x; after = false) if after && ir.defs[i.id][2] < 0 pushfirst!(block(ir, ir.defs[i.id][1]), x) else b, i = blockidx(ir, i) insert!(b, i+after, x) end end insert!(b::Block, i::Variable, x; after = false) = insert!(b.ir, i, x; after = after) """ insertafter!(ir, v, x) Insert the expression or statement `x` into the given IR, just before the variable `v` is defined, returning the new variable for `x`. See also [`insert!`](@ref). julia> f(x) = 3x + 2 f (generic function with 1 method) julia> ir = @code_ir f(1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 return %4 julia> IRTools.insertafter!(ir, IRTools.var(4), :(println("hello, world"))) %5 julia> ir 1: (%1, %2) %3 = 3 * %2 %4 = %3 + 2 %5 = println("hello, world") return %4 """ insertafter!(ir, i, x) = insert!(ir, i, x, after=true) """ empty(ir) Create an empty IR fragment based on the given IR. The line number table and any metadata are preserved from the original IR. julia> ir = empty(@code_ir gcd(10, 5)) 1: julia> ir.meta Metadata for gcd(a::T, b::T) where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8} in Base at intfuncs.jl:31 """ Base.empty(ir::IR) = IR(copy(ir.lines), meta = ir.meta) """ permute!(ir::IR, perm::AbstractVector) Permutes block order in-place, keeping track of internal references (like branch targets). """ function Base.permute!(ir::IR, perm::AbstractVector) explicitbranch!(ir) permute!(ir.blocks, perm) iperm = invperm(perm) for v = 1:length(ir.defs) b, i = ir.defs[v] b == -1 && continue ir.defs[v] = (iperm[b], i) end for b in blocks(ir), i = 1:length(branches(b)) branches(b)[i].block > 0 || continue br = branches(b)[i] branches(b)[i] = Branch(br, block = iperm[br.block]) end return ir end function IR(b::Block) ir = IR(copy(b.ir.defs), [copy(BasicBlock(b))], b.ir.lines, b.ir.meta) for i in 1:length(ir.defs) if ir.defs[i][1] == b.id ir.defs[i] = (1, ir.defs[i][2]) else ir.defs[i] = (-1, -1) end end return ir end # Pipe struct NewVariable id::Int end """ Pipe(ir) In general, it is not efficient to insert statements into IR; only appending is fast, for the same reason as with `Vector`s. For this reason, the `Pipe` construct makes it convenient to incrementally build an new IR fragment from an old one, making efficient modifications as you go. The general pattern looks like: pr = IRTools.Pipe(ir) for (v, st) in pr # do stuff end ir = IRTools.finish(pr) Iterating over `pr` is just like iterating over `ir`, except that within the loop, inserting and deleting statements in `pr` around `v` is efficient. Later, `finish(pr)` converts it back to a normal IR fragment (in this case just a plain copy of the original). """ mutable struct Pipe from::IR to::IR map::Dict{Any,Any} var::Int branch block end var!(p::Pipe) = NewVariable(p.var += 1) substitute!(p::Pipe, x, y) = (p.map[x] = y; x) substitute(p::Pipe, x::Union{Variable,NewVariable}) = p.map[x] substitute(p::Pipe, x) = get(p.map, x, x) substitute(p::Pipe, x::Statement) = stmt(x, expr = substitute(p, x.expr)) substitute(p::Pipe, x::Expr) = Expr(x.head, substitute.((p,), x.args)...) substitute(p::Pipe) = x -> substitute(p, x) function Pipe(ir) p = Pipe(ir, IR(copy(ir.lines), meta = ir.meta), Dict(), 0, identity, identity) for (x, T) in zip(p.from.blocks[1].args, p.from.blocks[1].argtypes) y = argument!(blocks(p.to)[end], nothing, T, insert = false) substitute!(p, x, y) end return p end function pipestate(ir::IR) ks = sort([Variable(i) => v for (i, v) in enumerate(ir.defs) if v[2] > 0], by = x->x[2]) [first.(filter(x -> x[2][1] == b, ks)) for b = 1:length(ir.blocks)] end branches(f, p::Pipe) = (p.branch = f) blocks(f, p::Pipe) = (p.block = f) function iterate(p::Pipe, (ks, b, i) = (pipestate(p.from), 1, 1)) i == 1 && b == 1 && p.block(b) if i == 1 && b != 1 for (x, T) in zip(p.from.blocks[b].args, p.from.blocks[b].argtypes) y = argument!(blocks(p.to)[end], nothing, T, insert = false) substitute!(p, x, y) end end if i > length(ks[b]) for br in branches(block(p.from, b)) br′ = p.branch(br) br′ == nothing || push!(p.to.blocks[end].branches, map(substitute(p), br′)) end b == length(ks) && return p.block(b) block!(p.to) return iterate(p, (ks, b+1, 1)) end v = ks[b][i] st = p.from[v] substitute!(p, v, push!(p.to, substitute(p, st))) ((v, st), (ks, b, i+1)) end finish(p::Pipe) = p.to islastdef(ir::IR, v::Variable) = v.id == length(ir.defs) && ir.defs[v.id] == (length(ir.blocks), length(ir.blocks[end].stmts)) setindex!(p::Pipe, x, v) = p.to[substitute(p, v)] = substitute(p, x) function setindex!(p::Pipe, x::Variable, v) v′ = substitute(p, v) if islastdef(p.to, v′) delete!(p, v) substitute!(p, v, substitute(p, x)) else p.to[v′] = substitute(p, x) end end function Base.push!(p::Pipe, x) tmp = var!(p) substitute!(p, tmp, push!(p.to, substitute(p, x))) return tmp end function Base.pushfirst!(p::Pipe, x) tmp = var!(p) substitute!(p, tmp, pushfirst!(p.to, substitute(p, x))) return tmp end function Base.delete!(p::Pipe, v) v′ = substitute(p, v) delete!(p.map, v) if islastdef(p.to, v′) pop!(p.to.defs) pop!(p.to.blocks[end].stmts) else delete!(p.to, v′) end end function insert!(p::Pipe, v, x; after = false) v′ = substitute(p, v) x = substitute(p, x) tmp = var!(p) if islastdef(p.to, v′) # we can make this case efficient by renumbering if after substitute!(p, tmp, push!(p.to, x)) else substitute!(p, v, push!(p.to, p.to[v′])) p.to[v′] = Statement(x) substitute!(p, tmp, v′) end else substitute!(p, tmp, insert!(p.to, v′, x, after = after)) end return tmp end argument!(p::Pipe, a...; kw...) = substitute!(p, var!(p), argument!(p.to, a...; kw...)) function branch!(ir::Pipe, b, args...; unless = nothing) args = map(a -> substitute(ir, a), args) cond = substitute(ir, unless) branch!(blocks(ir.to)[end], b, args...; unless = cond) return ir end function block!(p::Pipe) block!(p.to) return end function blockargument!(p::Pipe, type) x = argument!(blocks(p.to)[end], nothing, type, insert = false) substitute!(p, var!(p), x) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
3016
import Base: show # TODO: real expression printing function Base.show(io::IO, x::Variable) bs = get(io, :bindings, Dict()) haskey(bs, x) ? print(io, bs[x]) : print(io, "%", x.id) end print_stmt(io::IO, ex::Expr) = print_stmt(io::IO, Val(ex.head), ex) print_stmt(io::IO, ::Val, ex) = print(io, ex) print_stmt(io::IO, ex) = print(io, ex) function show(io::IO, b::Branch) if b == unreachable print(io, "unreachable") elseif isreturn(b) print(io, "return ", b.args[1]) else print(io, "br $(b.block)") if !isempty(b.args) print(io, " (") join(io, b.args, ", ") print(io, ")") end b.condition != nothing && print(io, " unless $(b.condition)") end end const tab = " " function printargs(io::IO, args, types = [Any for arg in args]) print(io, "(") for i = 1:length(args) print(io, args[i]) types[i] != Any && print(io, " :: ", types[i]) i != length(args) && print(io, ", ") end print(io, ")") end function show(io::IO, b::Block) indent = get(io, :indent, 0) bs = get(io, :bindings, Dict()) bb = BasicBlock(b) print(io, tab^indent) print(io, b.id, ":") if !isempty(bb.args) print(io, " ") printargs(io, bb.args, bb.argtypes) end for (x, st) in b haskey(bs, x) && continue println(io) print(io, tab^indent, " ") x == nothing || print(io, string("%", x.id), " = ") st.expr == nothing ? print(io, "nothing") : print_stmt(io, st.expr) st.type == Any || print(io, " :: ", st.type) end for br in bb.branches println(io) print(io, tab^indent, " ", br) end end function show(io::IO, ir::IR) show(io, block(ir, 1)) for b in blocks(ir)[2:end] println(io) show(io, b) end end function print_stmt(io::IO, ex::IR) io = IOContext(io, :indent=>get(io, :indent, 0)+2) println(io) show(io, ex) end function print_stmt(io::IO, ::Val{:enter}, ex) print(io, "try #$(ex.args[1])") if length(ex.args) >= 2 print(io, " with scope ", ex.args[2]) end end function print_stmt(io::IO, ::Val{:leave}, ex) print(io, "end try") end function print_stmt(io::IO, ::Val{:catch}, ex) print(io, "catch $(ex.args[1])") args = ex.args[2:end] if !isempty(args) print(io, " (") join(io, args, ", ") print(io, ")") end end function print_stmt(io::IO, ::Val{:pop_exception}, ex) print(io, "pop exception $(ex.args[1])") end function lambdacx(io, ex) bs = get(io, :bindings, Dict()) ir = ex.args[1] args = ex.args[2:end] bs′ = Dict() for (v, st) in ir ex = st.expr if iscall(ex, GlobalRef(Base, :getindex)) && ex.args[2] == arguments(ir)[1] && ex.args[3] isa Integer x = args[ex.args[3]] bs′[v] = string(get(bs, x, x), "'") end end return bs′ end function print_stmt(io::IO, ::Val{:lambda}, ex) print(io, "λ :") # printargs(io, ex.args[2:end]) io = IOContext(io, :indent => get(io, :indent, 0)+2, :bindings => lambdacx(io, ex)) println(io) print(io, ex.args[1]) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
2673
import Base: map, map! import Core.Compiler: PhiNode, PiNode, ssamap, userefs import MacroTools: walk, prewalk, postwalk walk(x::PhiNode, inner, outer) = outer(PhiNode(x.edges, [inner(isassigned(x.values, i) ? x.values[i] : undef) for i in 1:length(x.values)])) walk(x::PiNode, inner, outer) = outer(PiNode(inner(x.val), x.typ)) xcall(mod::Module, f::Symbol, args...) = Expr(:call, GlobalRef(mod, f), args...) xcall(f::Symbol, args...) = xcall(Base, f, args...) xcall(f, args...) = Expr(:call, f, args...) map(f, br::Branch) = Branch(br, condition = f(br.condition), args = f.(br.args)) function map(f, b::BasicBlock) stmts = map(x -> Statement(x, expr = f(x.expr)), b.stmts) branches = map(br -> map(f, br), b.branches) BasicBlock(stmts, b.args, b.argtypes, branches) end function map!(f, b::BasicBlock) map!(x -> Statement(x, expr = f(x.expr)), b.stmts, b.stmts) map!(br -> Branch(br, condition = f(br.condition), args = f.(br.args)), b.branches, b.branches) return b end function map!(f, b::Block) map!(f, BasicBlock(b)) end function map(f, ir::IR) IR(ir.defs, map.(f, ir.blocks), ir.lines, ir.meta) end function map!(f, ir::IR) for b in blocks(ir) map!(f, b) end return ir end walk(st::Statement, inner, outer) = Statement(st, expr = inner(st.expr)) walk(bb::BasicBlock, inner, outer) = map(inner, bb) walk(bb::Branch, inner, outer) = map(inner, bb) walk(b::Block, inner, outer) = walk(BasicBlock(b), inner, outer) walk(ir::IR, inner, outer) = outer(map(inner, ir)) # Avoid recursing into lambdas prewalk(f, ir::Union{IR,Block}) = walk(f(ir), x -> x isa IR ? x : prewalk(f, x), identity) postwalk(f, ir::Union{IR,Block}) = walk(ir, x -> x isa IR ? x : postwalk(f, x), f) prewalk!(f, ir::Union{IR,Block}) = map!(x -> x isa IR ? x : prewalk(f, x), ir) postwalk!(f, ir::Union{IR,Block}) = map!(x -> x isa IR ? x : postwalk(f, x), ir) varmap(f, x) = prewalk(x -> x isa Variable ? f(x) : x, x) exprtype(x::GlobalRef; typeof = Typeof) = isconst(x.mod, x.name) ? typeof(getfield(x.mod, x.name)) : Any exprtype(ir::IR, x::GlobalRef; typeof = Typeof) = exprtype(x, typeof = typeof) exprtype(ir::IR, x::QuoteNode; typeof = Typeof) = typeof(x.value) exprtype(ir::IR, x::Expr; typeof = Typeof) = error(x) exprtype(ir::IR, x; typeof = Typeof) = typeof(x) function exprtype(ir::IR, x::Variable; typeof = Typeof) b, i = get(ir.defs, x.id, (-1, -1)) b == -1 && error("No such variable $x") if i > 0 ir[x].type else ir.blocks[b].argtypes[-i] end end function exprline(ir::IR, x::Variable) b, i = get(ir.defs, x.id, (-1, -1)) i > 0 || return get(ir.lines, ir[x].line, nothing) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
7708
module Wrap using MacroTools: isexpr, prewalk using ..Inner, ..IRTools import ..Inner: IR, Variable, Statement, Branch, BasicBlock, Meta, block!, unreachable, varmap, argument!, branch!, return!, LineInfoNode import Core: CodeInfo, GotoNode, SSAValue import Core.Compiler: IRCode, CFG, GotoIfNot, ReturnNode, StmtRange @static if VERSION > v"1.6-" import Core.Compiler: InstructionStream end @static if VERSION ≥ v"1.9.0-DEV.502" const LineType = Int32 else const LineType = Int end @static if VERSION ≥ v"1.12.0-DEV.173" addline!(lines, li) = push!(lines, li, Int32(0), Int32(0)) else addline!(lines, li) = push!(lines, li) end unvars(ex) = prewalk(x -> x isa Variable ? SSAValue(x.id) : x, ex) function IRCode(ir::IR) defs = Dict() stmts, types, lines = [], [], Int32[] index = Int[] for b in IRTools.blocks(ir) if b.id == 1 for (i, arg) in enumerate(IRTools.arguments(b)) defs[arg] = Core.SlotNumber(i) end else @assert isempty(BasicBlock(b).args) end for (v, st) in b defs[v] = Variable(length(stmts)+1) ex = varmap(x -> get(defs, x, x), st.expr) |> unvars @static if isdefined(Core.IR, :EnterNode) ex = isexpr(ex, :enter) ? Core.EnterNode(ex.args...) : ex end push!(stmts, ex) push!(types, st.type) addline!(lines, st.line) end for br in BasicBlock(b).branches if IRTools.isreturn(br) x = get(defs, br.args[1], br.args[1]) |> unvars push!(stmts, ReturnNode(x)) elseif br == unreachable @static if VERSION >= v"1.10" push!(stmts, ReturnNode()) else push!(stmts, Expr(:call, GlobalRef(Core, :throw), "unreachable")) end elseif br.condition === nothing push!(stmts, GotoNode(br.block)) else cond = get(defs, br.condition, br.condition) |> unvars push!(stmts, GotoIfNot(cond, br.block)) end push!(types, Any); addline!(lines, Int32(0)) end push!(index, length(stmts)+1) end ranges = StmtRange.([1, index[1:end-1]...], index.-1) succs = map.(x -> x.id, IRTools.successors.(IRTools.blocks(ir))) preds = map.(x -> x.id, IRTools.predecessors.(IRTools.blocks(ir))) bs = Core.Compiler.BasicBlock.(ranges, preds, succs) cfg = CFG(bs, index) flags = UInt32[0x00 for _ in stmts] sps = VERSION > v"1.2-" ? (VERSION >= v"1.10.0-DEV.552" ? Core.Compiler.VarState[] : []) : Core.svec() @static if VERSION > v"1.6-" @static if isdefined(Core.Compiler, :CallInfo) stmtinfo = Core.Compiler.CallInfo[Core.Compiler.NoCallInfo() for _ in 1:length(stmts)] else stmtinfo = Any[nothing for _ in 1:length(stmts)] end stmts = InstructionStream(stmts, types, stmtinfo, lines, flags) meta = @static VERSION < v"1.9.0-DEV.472" ? [] : Expr[] @static if VERSION ≥ v"1.12.0-DEV.173" nlocs = length(types) codelocs = fill(Int32(0), 3nlocs) if !isempty(ir.lines) LI = first(ir.lines) topfile, topline = LI.file, LI.line for i in 1:nlocs lineidx = lines[3i - 2] if lineidx == 0 continue end # TODO: support inlining, see passes/inline.jl @assert LI.file === topfile && LI.inlined_at == 0 LI = ir.lines[lineidx] codelocs[3i - 2] = LI.line end else topline = Int32(1) end codelocs = @ccall jl_compress_codelocs(topline::Int32, codelocs::Any, nlocs::Csize_t)::Any debuginfo = Core.Compiler.DebugInfoStream(lines) debuginfo.def = ir.meta isa Meta ? ir.meta.instance : :var"n/a" debuginfo.linetable = Core.DebugInfo(debuginfo.def, nothing, Core.svec(), codelocs) IRCode(stmts, cfg, debuginfo, ir.blocks[1].argtypes, meta, sps) else mod, meth = ir.meta isa Meta ? (ir.meta.method.module, ir.meta.method) : (Main, nothing) linetable = map(li -> Core.LineInfoNode(mod, meth, li.file, LineType(li.line), LineType(li.inlined_at)), ir.lines) IRCode(stmts, cfg, linetable, ir.blocks[1].argtypes, meta, sps) end else IRCode(stmts, types, lines, flags, cfg, ir.lines, ir.blocks[1].argtypes, [], sps) end end if VERSION >= v"1.6.0-DEV.272" isgotoifnot(@nospecialize(ex)) = (@assert !isexpr(ex, :gotoifnot); ex isa Core.GotoIfNot) destruct_gotoifnot(@nospecialize(ex)) = Any[ex.cond, ex.dest] isreturn(@nospecialize(ex)) = (@assert !isexpr(ex, :return); ex isa ReturnNode) retval(@nospecialize(ex)) = ex.val else isgotoifnot(@nospecialize(ex)) = isexpr(ex, :gotoifnot) destruct_gotoifnot(@nospecialize(ex)) = ex.args isreturn(@nospecialize(ex)) = isexpr(ex, :return) retval(@nospecialize(ex)) = ex.args[1] end function blockstarts(ci::CodeInfo) bs = Int[] terminator = false for i = 1:length(ci.code) ex = ci.code[i] if isgotoifnot(ex) _, dest = destruct_gotoifnot(ex) push!(bs, dest) terminator = true elseif ex isa GotoNode || isreturn(ex) ex isa GotoNode && push!(bs, ex.label) i < length(ci.code) && push!(bs, i+1) terminator = false elseif terminator push!(bs, i) terminator = false end end return sort(unique(bs)) end # TODO more informative names, while avoiding clashes. slotname(ci, s) = Symbol(:_, s.id) function IR(ci::CodeInfo, nargs::Integer; meta = nothing) bs = blockstarts(ci) codelocs, linetable = @static if VERSION ≥ v"1.12.0-DEV.173" def = isnothing(meta) ? :var"n/a" : meta.instance N = length(ci.code) codelocs = fill(0, N) linetable = LineInfoNode[] # NOTE: we could be faster about decoding here and support inlining? for pc in 1:N LI = Base.IRShow.buildLineInfoNode(ci.debuginfo, def, pc) if !isempty(LI) linode = first(LI) # ::Base.IRShow.LineInfoNode push!(linetable, LineInfoNode(linode.file, linode.line)) codelocs[pc] = length(linetable) end end codelocs, linetable else ci.codelocs, map(li -> LineInfoNode(li.file, li.line), ci.linetable) end ir = IR(linetable, meta = meta) _rename = Dict() rename(ex) = prewalk(ex) do x haskey(_rename, x) && return _rename[x] x isa Core.SlotNumber && return Inner.Slot(slotname(ci, x)) return x end for i = 1:nargs _rename[Core.SlotNumber(i)] = argument!(ir) end for i = 1:length(ci.code) i in bs && block!(ir) ex = ci.code[i] if ex isa Core.NewvarNode continue elseif @static if isdefined(Core.IR, :EnterNode); ex isa Core.IR.EnterNode else isexpr(ex, :enter) end catch_dest = @static if isdefined(Core.IR, :EnterNode) ex.catch_dest else ex.args[1] end enter_expr = Expr(:enter, findfirst(==(catch_dest), bs)+1) isdefined(ex, :scope) && push!(enter_expr.args, ex.scope) _rename[Core.SSAValue(i)] = push!(ir, enter_expr) elseif ex isa GotoNode branch!(ir, findfirst(==(ex.label), bs)+1) elseif isgotoifnot(ex) cond, dest = destruct_gotoifnot(ex) branch!(ir, findfirst(==(dest), bs)+1, unless = rename(cond)) elseif isreturn(ex) return!(ir, rename(retval(ex))) else _rename[Core.SSAValue(i)] = push!(ir, IRTools.stmt(rename(ex), line = codelocs[i])) end end return ir end function IR(meta::Meta; slots = false, prune = true) ir = IR(meta.code, meta.nargs, meta = meta) slots && return ir ir = IRTools.ssa!(ir) if prune ir = ir |> IRTools.prune! |> IRTools.renumber end return ir end function IR(Ts::Type...; slots = false, prune = true) m = IRTools.meta(Tuple{Ts...}) m == nothing && return IR(m, slots = slots, prune = prune) end end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
2037
cond(c, t, f) = c ? t() : f() allsuccs(ir, (id,chs)) = union(map(b -> b.id, successors(block(ir, id))), allsuccs.((ir,), chs)...) function captures(ir, (id, chs), cs = Dict()) bl = block(ir, id) captures.((ir,), chs, (cs,)) cs[id] = setdiff(union([cs[i] for (i, _) in chs]..., usages(bl)), definitions(bl)) return cs end function return_thunk(x) ir = IR() return!(ir, xcall(:getindex, argument!(ir), 1)) Expr(:lambda, ir, x) end function br_thunk(args...) ir = IR() self = argument!(ir) return!(ir, xcall([xcall(:getindex, self, i) for i = 1:length(args)]...)) Expr(:lambda, ir, args...) end function functionalbranches!(bl, pr, labels) if length(branches(bl)) == 1 br = branches(bl)[1] if !isreturn(br) r = push!(pr, Expr(:call, labels[br.block], br.args...)) empty!(branches(pr.to)) return!(pr, r) end else @assert length(branches(bl)) == 2 f, t = branches(bl) function brfunc(br) isreturn(br) && return return_thunk(returnvalue(br)) isempty(arguments(br)) && return labels[br.block] br_thunk(labels[br.block], arguments(br)...) end r = push!(pr, xcall(IRTools, :cond, f.condition, brfunc(t), brfunc(f))) empty!(branches(pr.to)) return!(pr, r) end end function _functional(ir, tree, vars = [], cs = captures(ir, tree)) id = tree[1] bl = IR(block(ir, id)) labels = Dict() labels[id] = self = id == 1 ? arguments(bl)[1] : argument!(bl, at = 1) pr = Pipe(bl) for (i, v) in enumerate(vars) v′ = push!(pr, xcall(:getindex, self, i)) v isa Integer ? (labels[v] = v′) : substitute!(pr, v, substitute(pr, v′)) end for _ in pr end for t in reverse(tree[2]) bs = filter(id -> haskey(labels, id), allsuccs(ir, t)) λ = Expr(:lambda, _functional(ir, t, [bs..., cs[t[1]]...]), map(b -> labels[b], bs)..., cs[t[1]]...) labels[t[1]] = push!(pr, λ) end functionalbranches!(bl, pr, labels) return finish(pr) end functional(ir) = _functional(explicitbranch!(ir), domtree(ir))
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
2336
function fixup_blocks!(ir, n) last = length(blocks(ir)) for bl in blocks(ir), i = 1:length(branches(bl)) br = branches(bl)[i] if br.block > last branches(bl)[i] = Branch(br, block = br.block + n - 1) end end end function inlinehere!(ir, line, source, args...) source = merge_returns!(copy(source)) # TODO preserve type info offset = length(blocks(ir.to))-1 env = Dict() retvalue = nothing rename(x::Variable) = env[x] rename(x::Expr) = Expr(x.head, rename.(x.args)...) rename(x::Statement) = stmt(x; expr=rename(x.expr), line=line) rename(x) = x for (name, arg) in zip(arguments(source), args) env[name] = arg end for bl in blocks(source) if bl.id != 1 block!(ir) for (arg, T) in zip(arguments(bl), argtypes(bl)) env[arg] = blockargument!(ir, T) end end for (v, st) in bl env[v] = push!(ir, rename(st)) end for br in branches(bl) if isreturn(br) retvalue = rename(returnvalue(br)) else branch!(ir, br.block+offset, rename.(br.args)..., unless = rename(br.condition)) end end end return retvalue end """ inline(ir, location, source) Replace the function call at `ir[location]` with the IR `source`. The inlined IR will use the function arguments at `ir[location]` as its input. ``` julia> foo(x, y) = max(x, y)+1 julia> ir = @code_ir foo(1, 1) 1: (%1, %2, %3) %4 = Main.max(%2, %3) %5 = %4 + 1 return %5 julia> inline(ir, var(4), @code_ir(max(1,1))) 1: (%1, %2, %3) %4 = %3 < %2 %5 = Base.ifelse(%4, %2, %3) %6 = %5 + 1 return %6 ``` """ function inline(ir::IR, loc::Variable, source::IR) pr = Pipe(ir) startblock = 0 branches(pr) do br if startblock != 0 && br.block > startblock Branch(br, block = br.block + length(blocks(source)) - 1) else return br end end for (v, st) in pr if v === loc startblock = length(blocks(pr.to)) fixup_blocks!(pr.to, length(blocks(source))) # TODO: when inlining, we set all statements from source # .... at the line from loc. Ideally, we use the `inlined_at` field. line = ir[loc].line ex = ir[loc].expr delete!(pr, v) v′ = inlinehere!(pr, line, source, ex.args...) substitute!(pr, v, substitute(pr, v′)) end end return finish(pr) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
9323
struct CFG graph::Vector{Vector{Int}} end function CFG(ir::IR) graph = Vector{Int}[] for b in blocks(ir) push!(graph, Int[]) for c in successors(b) push!(graph[end], c.id) end end return CFG(graph) end Base.:(==)(a::CFG, b::CFG) = a.graph == b.graph Base.length(c::CFG) = length(c.graph) Base.getindex(c::CFG, b::Integer) = c.graph[b] function Base.transpose(cfg::CFG) cfg′ = CFG([Int[] for _ = 1:length(cfg)]) for i = 1:length(cfg), j in cfg[i] push!(cfg′[j], i) end return cfg′ end Base.adjoint(cfg::CFG) = transpose(cfg) function definitions(b::Block) defs = [Variable(i) for i = 1:length(b.ir.defs) if b.ir.defs[i][1] == b.id] end function usages(b::Block) uses = Set{Variable}() prewalk(b) do x x isa Variable && push!(uses, x) return x end return uses end function usecounts(ir::IR) counts = Dict{Variable,Int}() prewalk(ir) do x x isa Variable && (counts[x] = get(counts, x, 0)+1) return x end return counts end function dominators(cfg; entry = 1) preds = cfg' blocks = [1:length(cfg.graph);] doms = Dict(b => Set(blocks) for b in blocks) while !isempty(blocks) b = popfirst!(blocks) # We currently special case the first block here, # since Julia sometimes creates blocks with no predecessors, # which otherwise throw off the analysis. ds = isempty(preds[b]) ? Set([b, entry]) : push!(intersect([doms[c] for c in preds[b]]...), b) if ds != doms[b] doms[b] = ds for c in cfg[b] c in blocks || push!(blocks, c) end end end return doms end function domtree(cfg::CFG; entry = 1) doms = dominators(cfg, entry = entry) doms = Dict(b => filter(c -> b != c && b in doms[c], 1:length(cfg)) for b in 1:length(cfg)) children(b) = filter(c -> !(c in union(map(c -> doms[c], doms[b])...)), doms[b]) tree(b) = Pair{Int,Any}(b,tree.(children(b))) tree(entry) end domtree(ir::IR; entry = 1) = domtree(CFG(ir), entry = entry) function idoms(cfg; entry = 1) ds = zeros(Int, length(cfg)) _idoms((a, bs)) = foreach(((b, cs),) -> (ds[b] = a; _idoms(b=>cs)), bs) _idoms(domtree(cfg, entry = entry)) return ds end function domorder(ir, start = 1; full = false) tree = domtree(CFG(ir), entry = start) flatten((b,cs)) = vcat(b, flatten.(cs)...) tree = flatten(tree) if full for b = 1:length(ir.blocks) b in tree || push!(tree, b) end end return tree end domorder!(ir::IR, start = 1) = permute!(ir, domorder(ir, start, full = true)) function verify(ir::IR) @assert issorted(domorder(ir)) "Blocks are not in domtree order." doms = dominators(ir) # TODO check definitions within a block for (b, ds) in doms defs = union(definitions.(ds)...) for x in setdiff(usages(b), defs) error("Variable $x in block $(b.id) is not defined.") end end return end function renumber(ir) p = Pipe(ir) for (v, st) in p ex = st.expr if isbits(ex) # Trivial expressions can be inlined delete!(p, v) substitute!(p, v, substitute(p, ex)) end end return finish(p) end function merge_returns!(ir) bs = [b for b in blocks(ir) if isreturn(b)] length(bs) == 1 && bs[1] == blocks(ir)[end] && return ir block!(ir) ret = argument!(blocks(ir)[end]) return!(ir, ret) for b in bs branches(b)[end] = branch(length(ir.blocks), arguments(branches(b)[end])[1]) end return ir end function expand!(ir::IR) worklist = blocks(ir) spats = Dict(b => Dict() for b in blocks(ir)) while !isempty(worklist) b = pop!(worklist) b.id == 1 && continue defs = definitions(b) uses = usages(b) for v in setdiff(uses, defs) haskey(spats[b], v) && continue spats[b][v] = argument!(b, v) for c in predecessors(b) c in worklist || push!(worklist, c) end end ir.blocks[b.id] = prewalk(x -> get(spats[b], x, x), ir.blocks[b.id]) end return ir end function prune!(ir::IR) usages = usecounts(ir) worklist = blocks(ir) queue!(b) = (b in worklist || push!(worklist, b)) function rename!(env, ir) for b in blocks(ir) prewalk!(b) do x haskey(env, x) || return x foreach(queue!, successors(b)) env[x] end end end while !isempty(worklist) b = popfirst!(worklist) isempty(arguments(b)) && continue brs = filter(br -> br.block == b.id, [br for a in blocks(ir) for br in branches(a)]) isempty(brs) && continue # Redundant due to all inputs being the same inputs = [setdiff(in, (a,)) for (a, in) in zip(arguments(b), zip(arguments.(brs)...))] del = findall(x -> length(x) == 1, inputs) rename = Dict(zip(arguments(b)[del], first.(inputs[del]))) if !isempty(rename) deletearg!(b, del) rename!(rename, ir) end # Redundant due to not being used unused = findall(x -> get(usages, x, 0) == 0, arguments(b)) if !isempty(unused) for a in predecessors(b) for br in branches(a, b), i in unused arguments(br)[i] isa Variable && (usages[arguments(br)[i]] -= 1) end a in worklist || push!(worklist, a) end deletearg!(b, unused) end end return ir end struct CatchBranch defs::Dict{Slot,Any} v::Variable end function ssa!(ir::IR) current = 1 defs = Dict(b => Dict{Slot,Any}() for b in 1:length(ir.blocks)) todo = Dict(b => Dict{Int,Vector{Slot}}() for b in 1:length(ir.blocks)) catch_branches = Dict{Int,Vector{CatchBranch}}() handlers = Int[] function reaching(b, slot) haskey(defs[b.id], slot) && return defs[b.id][slot] b.id == 1 && return undef x = add_slot_argument!(b, slot) return x end function add_slot_argument!(b, slot) x = argument!(b, type = slot.type, insert = false) if !haskey(defs[b.id], slot) defs[b.id][slot] = x end for pred in predecessors(b) if pred.id < current for br in branches(pred, b) push!(br.args, reaching(pred, slot)) end else push!(get!(Vector{Slot}, todo[pred.id], b.id), slot) end end if haskey(catch_branches, b.id) # for each 'catch' branch to this catch block (catch block has `length(predecessors(b)) == 0`), # we try to find the dominating definition for slot v. # defs[block(ir, cbr.v).id] contains the defs at the end of # the block, so we use the cached defs in catch_branches instead. for cbr in catch_branches[b.id] # Get the definition for a slot from a given catch branch. cbr_v = cbr.v stmt = ir[cbr_v] if haskey(cbr.defs, slot) # Slot v was defined at catch branch push!(stmt.expr.args, cbr.defs[slot]) else # Find slot v definition from instruction cbr_v cbr_b = block(ir, cbr_v) if cbr_b.id == 1 push!(stmt.expr.args, undef) continue end # there is already a def for this slot as an argument to the block # but which was added after the catch branch. if haskey(defs[cbr_b.id], slot) && defs[cbr_b.id][slot] isa Variable bdef = defs[cbr_b.id][slot] (def_b, loc) = ir.defs[bdef.id] if def_b == cbr_b.id && loc < 0 push!(stmt.expr.args, bdef) continue end end # add an argument to cbr_b for slot new_arg = add_slot_argument!(cbr_b, slot) push!(stmt.expr.args, new_arg) end end end return x end function catchbranch!(v) for handler in handlers cbr = CatchBranch(copy(defs[current]), insertafter!(ir, v, Expr(:catch, handler))) push!(get!(Vector{CatchBranch}, catch_branches, handler), cbr) end end for b in blocks(ir) current = b.id rename(ex) = prewalk(x -> x isa Slot ? reaching(b, x) : x, ex) for (v, st) in b ex = st.expr if isexpr(ex, :(=)) && ex.args[1] isa Slot defs[b.id][ex.args[1]] = rename(ex.args[2]) catchbranch!(v) delete!(ir, v) elseif isexpr(ex, :enter) push!(handlers, ex.args[1]) catchbranch!(v) elseif isexpr(ex, :leave) && !haskey(catch_branches, current) pop!(handlers) else ir[v] = rename(ex) end end for i = 1:length(BasicBlock(b).branches) BasicBlock(b).branches[i] = rename(BasicBlock(b).branches[i]) end for (succ, ss) in todo[b.id], br in branches(b, succ) append!(br.args, [reaching(b, v) for v in ss]) end end return ir end function reachable_blocks(cfg::CFG) bs = Int[] reaches(b) = b in bs || (push!(bs, b); reaches.(cfg[b])) reaches(1) return bs end function trimblocks!(ir::IR) for b in sort(setdiff(1:length(blocks(ir)), reachable_blocks(CFG(ir))), rev = true) deleteblock!(ir, b) end return ir end function inlineable!(ir) pushfirst!(ir, Expr(:meta, :inline)) return ir end function log!(ir, msg) pushfirst!(ir, xcall(Core, :println, msg)) return ir end totype(T::Type) = T if isdefined(Core.Compiler, :PartialStruct) totype(T::Core.Compiler.PartialStruct) = T.typ end function pis!(ir::IR) for (v, st) in ir ex = st.expr ex isa PiNode || continue ir[v] = xcall(Core, :typeassert, ex.val, totype(ex.typ)) end return ir end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
1448
# TODO: https://hal.inria.fr/inria-00558509v1/document function liveness(ir) result = Dict(v => Set{Variable}() for v in keys(ir)) result = merge(result, Dict(b.id => Set{Variable}() for b in blocks(ir))) queue = WorkQueue(1:length(blocks(ir))) while !isempty(queue) b = block(ir, pop!(queue)) for br in branches(b) foreach(x -> x isa Variable && push!(result[b.id], x), arguments(br)) br.condition isa Variable && push!(result[b.id], br.condition) end live = Set(result[b.id]) for v in reverse(keys(b)) delete!(live, v) varmap(x -> push!(live, x), b[v]) union!(result[v], live) end setdiff!(live, arguments(b)) for a in predecessors(b) isempty(setdiff(live, result[a.id])) && continue union!(result[a.id], live) push!(queue, a.id) end end return result end function interference(liveness) g = Graph{Variable}() for set in liveness set = collect(set) for i = 1:length(set), j = i+1:length(set) connect!(g, set[i], set[j]) end end return g end interference(ir::IR) = interference(values(liveness(ir))) function colouring(g::Graph, pre = Dict()) nodes = sort(collect(keys(g)), by = x -> length(g[x]), rev = true) colours = Dict(n => get(pre, n, -1) for n in nodes) for n in nodes colour = 1 while any(m -> colours[m] == colour, g[n]) colour += 1 end colours[n] = colour end return colours end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
6316
function reaching(c::CFG, i::Integer, rs = Int[]; ignore = Int[]) for j in c.graph[i] j in rs && return rs j in ignore && continue push!(rs, j) reaching(c, j, rs, ignore = ignore) end return rs end struct Simple block::Int next end Simple(n) = Simple(n, nothing) struct Loop inner next end struct Multiple inner::Vector{Any} next end for T in [Simple, Loop, Multiple] @eval Base.:(==)(a::$T, b::$T) = $(reduce((a, b) -> :($a&&$b), [:(a.$f == b.$f) for f in fieldnames(T)])) end function reaches_unique(rs) rs = Dict(b => union(b, cs) for (b, cs) in rs) others(b) = union([cs for (c, cs) in rs if b != c]...) Dict(b => filter(c -> !any(rs -> c in rs, others(b)), cs) for (b, cs) in rs) end function reloop_loop(cfg::CFG, blocks, entry, done) rs = Dict(b => reaching(cfg, b, ignore = done) for b in blocks) body = filter(b -> any(e -> e in rs[b], entry), blocks) next = setdiff(blocks, body) Loop(reloop(cfg, blocks = body, entry = entry, done = union(done, entry)), reloop(cfg, blocks = next, entry = union([intersect(cfg[b], next) for b in body]...), done = done)) end function reloop(cfg::CFG; blocks = 1:length(cfg.graph), entry = [1], done = Int[]) (isempty(blocks) || isempty(entry)) && return rs = Dict(b => reaching(cfg, b, ignore = done) for b in entry) if length(entry) == 1 && entry[] ∉ rs[entry[]] next = setdiff(blocks, entry[]) Simple(entry[], reloop(cfg, blocks = next, entry = intersect(cfg.graph[entry[]], blocks), done = done)) elseif all(b -> isempty(setdiff(entry, rs[b])), entry) reloop_loop(cfg, blocks, entry, done) elseif (rsu = reaches_unique(rs); !all(isempty, values(rsu))) unique = filter(b -> !isempty(rsu[b]), entry) inner = [reloop(cfg, blocks = union(b, rsu[b]), entry = [b], done = done) for b in unique] next = setdiff(blocks, union([union(b, rsu[b]) for b in unique]...)) es = intersect(next, union(entry, reaching.((cfg,), unique)...)) Multiple(inner, reloop(cfg, blocks = next, entry = es, done = done)) else reloop_loop(cfg, blocks, entry, done) end end const indent = " " printstructure(io::IO, ::Nothing, level) = nothing function printstructure(io::IO, s::Simple, level) println(io, indent^level, s.block) printstructure(io, s.next, level) end _printstructure(io::IO, s, level) = printstructure(io, s, level) function _printstructure(io::IO, s::Simple, level) println(io, indent^level, "Simple:") printstructure(io, s, level+1) end function printstructure(io::IO, s::Multiple, level) println(io, indent^level, "Multiple:") if length(s.inner) == 1 printstructure(io, s.inner[1], level+1) else for b in s.inner _printstructure(io, b, level+1) end end printstructure(io, s.next, level) end function printstructure(io::IO, s::Loop, level) println(io, indent^level, "Loop:") printstructure(io, s.inner, level+1) printstructure(io, s.next, level) end function Base.show(io::IO, b::Union{Simple,Multiple,Loop}) println(io, "Structured CFG:") printstructure(io, b, 0) end # AST Conversion rename(env, ex) = prewalk(x -> x isa Variable ? env[x] : x isa Slot ? Symbol(x.id) : x, ex) entry(s::Simple) = [s.block] entry(s::Loop) = entry(s.inner) entry(s::Multiple) = union(entry.(s.inner)...) entry(s::Nothing) = Int[] struct ASTCtx ir::IR args::Dict{Variable,Symbol} branches::Dict{Any,Any} inline::Bool end function ast(cx::ASTCtx, b::Block) usages = Dict() prewalk(b) do x x isa Variable && (usages[x] = get(usages, x, 0)+1) x end exs = [] env = Dict{Any,Any}(cx.args) for v in keys(b) ex = b[v].expr if cx.inline && get(usages, v, 0) == 1 && !(ex isa Slot) # TODO not correct env[v] = rename(env, ex) elseif get(usages, v, 0) == 0 isexpr(ex) && push!(exs, rename(env, ex)) else tmp = gensym("tmp") push!(exs, :($tmp = $(rename(env, ex)))) env[v] = tmp end end return exs, env end ast(cx::ASTCtx, ::Nothing) = @q begin end function ast(cx::ASTCtx, cfg::Simple) b = block(cx.ir, cfg.block) exs, env = ast(cx, b) function nextblock(br) if isreturn(br) @q (return $(rename(env, returnvalue(br)));) elseif haskey(cx.branches, br.block) cx.branches[br.block] == :continue && cfg.next == nothing ? @q(begin end) : @q ($(Expr(cx.branches[br.block]));) elseif cfg.next isa Multiple && br.block in entry(cfg.next) n = findfirst(i -> br.block in entry(i), cfg.next.inner) ast(cx, cfg.next.inner[n]) elseif cfg.next isa Multiple && br.block in entry(cfg.next.next) ast(cx, cfg.next.next) elseif br.block in entry(cfg.next) ast(cx, cfg.next) else @q begin end end end @assert length(branches(b)) <= 2 "No more than 2 branches supported, currently." ex = if length(branches(b)) == 1 @q begin $(exs...) $(nextblock(branches(b)[1]).args...) end else @q begin $(exs...) if $(rename(env, branches(b)[1].condition)) $(nextblock(branches(b)[2]).args...) else $(nextblock(branches(b)[1]).args...) end end end cfg.next isa Multiple && (ex = @q ($(ex.args...); $(ast(cx, cfg.next.next).args...))) return ex end function ast(cx::ASTCtx, cfg::Multiple) error("Only structured control flow is currently supported.") end function ast(cx::ASTCtx, cfg::Loop) for e in entry(cfg) cx.branches[e] = :continue end for e in entry(cfg.next) cx.branches[e] = :break end brs = branches(block(cx.ir, cfg.inner.block)) if length(brs) == 2 && brs[1].block in entry(cfg.next) && brs[2].block in entry(cfg.inner.next) exs, env = ast(cx, block(cx.ir, cfg.inner.block)) cond = unblock(@q ($(exs...); $(rename(env, brs[1].condition)))) @q begin while $cond $(ast(cx, cfg.inner.next).args...) end $(ast(cx, cfg.next).args...) end else @q begin while true $(ast(cx, cfg.inner).args...) end $(ast(cx, cfg.next).args...) end end end function reloop(ir::IR; inline = true) ir = explicitbranch!(copy(ir)) cfg = reloop(CFG(ir)) args = Dict(v => Symbol(:arg, i) for (i, v) in enumerate(arguments(ir))) ast(ASTCtx(ir, args, Dict(), inline), cfg) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
2226
# Find strongly connected components function strongconnected(cfg; blocks = 1:length(cfg)) preorder = zeros(Int, length(cfg)) S, P = Int[], Int[] C = Ref(0) components = Vector{Int}[] let # avoid boxing `search` function search(v) preorder[v] = (C[] += 1) push!(S, v) push!(P, v) for w in cfg[v] w in blocks || continue if preorder[w] == 0 search(w) elseif !any(c -> w in c, components) while preorder[P[end]] > preorder[w] pop!(P) end end end if P[end] == v pop!(P) pushfirst!(components, Int[]) while true push!(components[1], pop!(S)) components[1][end] == v && break end end end for b in blocks preorder[b] == 0 && search(b) end end return components end struct Component children::Vector{Union{Component,Int}} end blocks(c::Integer) = [c] blocks(c::Component) = reduce(vcat, blocks.(c.children)) entries(c::Integer) = [c] entries(c::Component) = entries(first(c.children)) function components(cfg::CFG; blocks = 1:length(cfg)) # Assume the first block is the entry. cs = strongconnected(cfg, blocks = blocks[2:end]) Component([blocks[1], [length(c) == 1 ? c[1] : components(cfg, blocks = sort(c)) for c in cs]...]) end # Aaaargh _union(xs...) = union(xs...) _union() = [] function branchesto(cfg::CFG, cs, i) c = cs.children[i] valid = _union([entries(cs.children[j]) for j = 1:length(cs.children) if i != j]...) preds = _union([cfg'[c] for c in blocks(c)]...) forw = filter(next -> next < entries(c)[1] && next in valid, preds) back = filter(next -> next > entries(c)[1] && next in valid, preds) forw = isempty(forw) ? nothing : minimum(forw) back = isempty(back) ? nothing : maximum(back) forw, back end function stackify(cfg::CFG, cs::Component = components(cfg), forw = [], back = []) entry = cs.children[1] for (i, c) = enumerate(cs.children) target = minimum(entries(c)) f, b = branchesto(cfg, cs, i) f == nothing || push!(forw, entry=>target) b == nothing || push!(back, b =>target) c isa Component && stackify(cfg, c, forw, back) end return forw, back end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
6318
struct CompileError transform args err end struct Self end const self = Self() # S -> function signature # I -> lambda index # T -> environment type struct Lambda{S,I,T} data::T end Lambda{D,S}(data...) where {D,S} = Lambda{D,S,typeof(data)}(data) @inline Base.getindex(l::Lambda, i::Integer) = l.data[i] Base.show(io::IO, l::Lambda) = print(io, "λ") function Base.showerror(io::IO, err::CompileError) println(io, "Error compiling @dynamo $(err.transform) on $(err.args):") showerror(io, err.err) end function transform end function refresh end function fallthrough(args...) Expr(:block, Expr(:meta, :inline), Expr(:call, [:(args[$i]) for i = 1:length(args)]...)) end function lambdalift!(ir, S, I = ()) i = 0 for (v, st) in ir isexpr(st.expr, :lambda) || continue ir[v] = Expr(:call, Lambda{S,(I...,i+=1)}, st.expr.args[2:end]...) end return ir end function lambdaself!(ir, _self = self) for (v, st) in ir if isexpr(st.expr, :lambda) push!(st.expr.args, _self) λ = st.expr.args[1] s = pushfirst!(λ, xcall(:getindex, arguments(λ)[1], length(st.expr.args)-1)) lambdaself!(λ, s) else ir[v] = prewalk(x -> x === self ? _self : x, st.expr) end end return ir end function getlambda(ir, I) isempty(I) && return ir i = 0 for (v, st) in ir isexpr(st.expr, :lambda) || continue (i += 1) == I[1] && return getlambda(st.expr.args[1], Base.tail(I)) end error("Something has gone wrong in IRTools; couldn't find lambda in IR") end # Used only for its CodeInfo dummy(args...) = nothing function dynamo(cache, world, f, args...) try # XXX: @dynamo should pass the world to the transform function, so that any # IR look-ups are done in the correct world. spoofed_world[] = world ir = transform(f, args...)::Union{IR,Expr,Nothing} catch e rethrow(CompileError(f, args, e)) finally spoofed_world[] = nothing end # TODO: how to set proper edges on the returned code info? we have to # propagate the bounds from `methods_by_ftype`, but that lookup is # done by `IRTools.meta` and is not available here. ir isa Expr && return ir ir == nothing && return fallthrough(args...) ir = lambdaself!(ir) cache[args] = ir ir = lambdalift!(copy(ir), Tuple{f,args...}) if ir.meta isa Meta m = ir.meta ir = varargs!(m, ir) argnames!(m, :args) pushfirst!(m.code.slotnames, Symbol("#self#")) else m = @meta world dummy(1) m === nothing && error("Error looking up metadata for $f") m.code.method_for_inference_limit_heuristics = nothing end if isdefined(Base, :__has_internal_change) && Base.__has_internal_change(v"1.12-alpha", :codeinfonargs) m.code.nargs = 2 m.code.isva = true end _self = splicearg!(ir) prewalk!(x -> x === self ? _self : x, ir) return update!(m.code, ir) end function dynamo_lambda(cache, world, f::Type{<:Lambda{S,I}}) where {S,I} ir = cache[(S.parameters[2:end]...,)] ir = getlambda(ir, I) ir = lambdalift!(copy(ir), S, I) closureargs!(ir) m = @meta world dummy(1) m.code.method_for_inference_limit_heuristics = nothing if isdefined(Base, :__has_internal_change) && Base.__has_internal_change(v"1.12-alpha", :codeinfonargs) m.code.nargs = 2 m.code.isva = true end return update!(m.code, ir) end unesc(x) = prewalk(x -> isexpr(x, :escape) ? x.args[1] : x, x) function lifttype(x) isexpr(x, :(::)) || return x named = length(x.args) == 2 T = named ? x.args[2] : x.args[1] T = :(Type{$T}) named ? Expr(:(::), x.args[1], T) : Expr(:(::), T) end const caches = Dict() if VERSION >= v"1.10.0-DEV.873" function dynamo_generator(world::UInt, source, self, args) cache = if haskey(caches, self) caches[self] else caches[self] = Dict() end ex = dynamo(cache, world, self, args...) ex isa Core.CodeInfo && return ex stub = Core.GeneratedFunctionStub(identity, Core.svec(:methodinstance, :args), Core.svec()) stub(world, source, ex) end function dynamo_lambda_generator(world::UInt, source, self, args) f = self.parameters[1].parameters[1] cache = caches[f] ex = dynamo_lambda(cache, world, self) ex isa Core.CodeInfo && return ex stub = Core.GeneratedFunctionStub(identity, Core.svec(:methodinstance, :args), Core.svec()) stub(world, source, ex) end end macro dynamo(ex) @capture(shortdef(ex), (name_(args__) = body_) | (name_(args__) where {Ts__} = body_)) || error("@dynamo needs a function definition.") Ts = Ts == nothing ? [] : esc.(Ts) f, T = isexpr(name, :(::)) ? (length(name.args) == 1 ? (esc(gensym()), esc(name.args[1])) : esc.(name.args)) : (esc(gensym()), :(Core.Typeof($(esc(name))))) gendef = if VERSION >= v"1.10.0-DEV.873" quote function ($f::$T)($(esc(:args))...) where $(Ts...) $(Expr(:meta, :generated, dynamo_generator)) $(Expr(:meta, :generated_only)) end function (f::IRTools.Inner.Lambda{<:Tuple{<:$T,Vararg{Any}}})(args...) where $(Ts...) $(Expr(:meta, :generated, dynamo_lambda_generator)) $(Expr(:meta, :generated_only)) end end else quote @generated function ($f::$T)($(esc(:args))...) where $(Ts...) cache = if haskey($caches, $T) $caches[$T] else $caches[$T] = Dict() end return IRTools.dynamo(cache, nothing, $f, args...) end @generated function (f::IRTools.Inner.Lambda{<:Tuple{<:$T,Vararg{Any}}})(args...) where $(Ts...) cache = $caches[$T] return IRTools.Inner.dynamo_lambda(cache, nothing, f) end end end quote $(isexpr(name, :(::)) || esc(:(function $name end))) function IRTools.transform(::Type{<:$T}, $(esc.(lifttype.(args))...)) where $(Ts...) $(esc(body)) end $gendef IRTools.refresh(::$T) where $(Ts...) = (Core.eval($__module__, $(QuoteNode(unesc(gendef)))); return) end end macro code_ir(dy, ex) @capture(ex, f_(args__)) || error("@code_dynamo f(x...)") :(transform(typeof($(esc(dy))), meta($typesof($(esc(f)), $(esc.(args)...))))) end # TODO could support lambdas function recurse!(ir, to = self) for (x, st) in ir isexpr(st.expr, :call) || continue ir[x] = Expr(:call, to, st.expr.args...) end return ir end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
5046
using Core: CodeInfo, Typeof using Core.Compiler: InferenceState, MethodInstance, svec using InteractiveUtils: typesof if isdefined(Base, :hasgenerator) # VERSION >= v"1.7.0" hasgenerator(x) = Base.hasgenerator(x) else hasgenerator(x) = Base.isgenerated(x) end worldcounter() = ccall(:jl_get_world_counter, UInt, ()) isprecompiling() = ccall(:jl_generating_output, Cint, ()) == 1 struct Meta method::Method instance::MethodInstance code::CodeInfo nargs::Int sparams end function Base.show(io::IO, meta::Meta) print(io, "Metadata for ") print(io, meta.method) end # Workaround for what appears to be a Base bug untvar(t::TypeVar) = t.ub untvar(x) = x const spoofed_world = Ref{Union{Nothing,UInt}}(nothing) """ meta(Tuple{...}) Construct metadata for a given method signature. Metadata can then be used to construct [`IR`](@ref) or used to perform other reflection on the method. See also [`@meta`](@ref). julia> IRTools.meta(Tuple{typeof(gcd),Int,Int}) Metadata for gcd(a::T, b::T) where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8} in Base at intfuncs.jl:31 """ function meta(T; types = T, world=nothing) if world === nothing # if the user didn't specify a world, use the current world, # or a spoofed world if we're executing a dynamo world = something(spoofed_world[], worldcounter()) end F = T.parameters[1] F == typeof(invoke) && return invoke_meta(T; world = world) F isa DataType && (F.name.module === Core.Compiler || F <: Core.Builtin || F <: Core.Builtin) && return nothing min_world = Ref{UInt}(typemin(UInt)) max_world = Ref{UInt}(typemax(UInt)) has_ambig = Ptr{Int32}(C_NULL) # don't care about ambiguous results _methods = if VERSION >= v"1.7.0-DEV.1297" Base._methods_by_ftype(T, #=mt=# nothing, #=lim=# -1, world, #=ambig=# false, min_world, max_world, has_ambig) else Base._methods_by_ftype(T, #=lim=# -1, world, #=ambig=# false, min_world, max_world, has_ambig) end _methods === nothing && return nothing _methods isa Bool && return nothing length(_methods) == 0 && return nothing type_signature, sps, method = last(_methods) sps = svec(map(untvar, sps)...) @static if VERSION >= v"1.2-" mi = Core.Compiler.specialize_method(method, types, sps) ci = hasgenerator(mi) ? get_staged(mi, world) : Base.uncompressed_ast(method) else mi = Core.Compiler.code_for_method(method, types, sps, world, false) ci = hasgenerator(mi) ? get_staged(mi, world) : Base.uncompressed_ast(mi) end Base.Meta.partially_inline!(ci.code, [], method.sig, Any[sps...], 0, 0, :propagate) Meta(method, mi, ci, method.nargs, sps) end function invoke_tweaks!(ci::CodeInfo) if VERSION >= v"1.10.0-DEV.870" && ci.slottypes !== nothing ci.slottypes = [typeof(invoke), ci.slottypes[1], Type, ci.slottypes[2:end]...] end ci.slotnames = [:invoke, ci.slotnames[1], :T, ci.slotnames[2:end]...] ci.slotflags = [0x00, ci.slotflags[1], 0x00, ci.slotflags[2:end]...] ci.code = map(ci.code) do x prewalk(x) do x x isa SlotNumber ? SlotNumber(x.id == 1 ? 2 : x.id+2) : x end end end function invoke_meta(T; world) F = T.parameters[2] A = T.parameters[3]::Type{<:Type{<:Tuple}} S = T.parameters[4:end] T = Tuple{F,A.parameters[1].parameters...} S = Tuple{F,S...} m = meta(T, types = S, world = world) invoke_tweaks!(m.code) return Meta(m.method, m.instance, m.code, m.nargs+2, m.sparams) end """ @meta [world] f(args...) Convenience macro for retrieving metadata without writing a full type signature. julia> IRTools.@meta gcd(10, 5) Metadata for gcd(a::T, b::T) where T<:Union{Int128, Int16, Int32, Int64, Int8, UInt128, UInt16, UInt32, UInt64, UInt8} in Base at intfuncs.jl:31 """ macro meta(ex...) if length(ex) == 1 world = nothing call = ex[1] elseif length(ex) == 2 world, call = ex else error("@meta [world] f(args...)") end isexpr(call, :call) || error("@meta [world] f(args...)") f, args = call.args[1], call.args[2:end] :(meta(typesof($(esc.((f, args...))...)); world=$(esc(world)))) end function code_ir(f, T) m = meta(Tuple{Typeof(f),T.parameters...}) return IR(m) end function code_irm(ex) if isexpr(ex, :call) f, args = ex.args[1], ex.args[2:end] elseif isexpr(ex, :do) f, args = ex.args[1].args[1], vcat(ex.args[2], ex.args[1].args[2:end]) else error("@code_ir f(args...)") end :($code_ir($(esc(f)), typesof($(esc.(args)...)))) end """ @code_ir f(args...) Convenience macro similar to `@code_lowered` or `@code_typed`. Retrieves the IR for the given function call. julia> @code_ir gcd(10, 5) 1: (%1, %2, %3) %4 = %2 == 0 br 4 unless %4 2: ... """ macro code_ir(ex) code_irm(ex) end codeinfo(m::Meta) = m.code function argnames!(meta, names...) meta.code.slotnames = [names...] end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
4730
struct Slot id::Symbol type end Slot(id) = Slot(id, Any) function Base.show(io::IO, s::Slot) print(io, "@", s.id) s.type != Any && print(io, "::", s.type) end phislot(b, i) = Slot(Symbol(:phi_, b, :_, i)) # TODO: handle undef arguments properly. function slots!(ir::IR) slots = Dict() for b in blocks(ir) # Block arguments if b.id != 1 for (i, var) in enumerate(BasicBlock(b).args) slots[var] = phislot(b.id, i) end empty!(BasicBlock(b).args) empty!(BasicBlock(b).argtypes) end # Catch branches for (v, st) in b isexpr(st.expr, :catch) || continue target = st.expr.args[1] args = st.expr.args[2:end] for (i, val) in enumerate(args) insert!(b, v, :($(phislot(target, i)) = $val)) end delete!(b, v) end # Branches for br in BasicBlock(b).branches isreturn(br) && continue for (i, val) in enumerate(br.args) ϕ = phislot(br.block, i) push!(b, :($ϕ = $val)) end empty!(br.args) end end return varmap(x -> get(slots, x, x), ir) end using Core.Compiler: CodeInfo, SlotNumber function slots!(ci::CodeInfo) ss = Dict{Slot,SlotNumber}() for i = 1:length(ci.code) function f(x) x isa Slot || return x haskey(ss, x) && return ss[x] @static if VERSION >= v"1.10.0-DEV.870" push!(ci.slottypes, x.type) end push!(ci.slotnames, x.id) push!(ci.slotflags, 0x00) ss[x] = SlotNumber(length(ci.slotnames)) end if VERSION >= v"1.6.0-DEV.272" ci.code[i] = MacroTools.prewalk(ci.code[i]) do x x isa Core.ReturnNode ? (isdefined(x,:val) ? Core.ReturnNode(f(x.val)) : x) : x isa Core.GotoIfNot ? Core.GotoIfNot(f(x.cond), x.dest) : f(x) end else ci.code[i] = MacroTools.prewalk(f, ci.code[i]) end end return ci end function varargs!(meta, ir::IR, n = 0) isva = meta.method.isva argTs = ir.blocks[1].argtypes Ts = Core.Compiler.widenconst.(argTs[n+1:end]) typed = !all(T -> T==Any, Ts) allTs = !isva ? Any[argTs[1:n]..., Tuple{Ts...}] : Any[argTs[1:n]..., typed ? Tuple{Ts[1:end-1]...,Ts[end].parameters...} : Any] args = copy(ir.blocks[1].args) deletearg!(ir, length(allTs)+1:length(args)) empty!(argTs); append!(argTs, allTs) argmap = Dict{Variable,Any}() argis = 1:(length(Ts)) newargs = map(reverse(argis)) do i argmap[args[i+n]] = pushfirst!(ir, Statement(nothing, type = Ts[i])) end |> reverse ir = varmap(x -> get(argmap, x, x), ir) for i in argis if isva && i == length(argis) i = length(Ts) xs, T = arguments(ir)[end], argTs[end] for _ = 1:i-1 T = typed ? Tuple{T.parameters[2:end]...} : Any st = Statement(xcall(Base, :tail, xs), type = T) xs = insertafter!(ir, xs, st) end ir[newargs[i]] = xcall(:identity, xs) else ir[newargs[i]] = xcall(Base, :getfield, arguments(ir)[end], i) end end return ir end function closureargs!(ir::IR) args = arguments(ir)[2:end] deletearg!(ir, 2:length(arguments(ir))) argtuple = argument!(ir) env = Dict() for (i, a) in reverse(collect(enumerate(args))) env[a] = pushfirst!(ir, xcall(:getindex, argtuple, i)) end prewalk!(x -> get(env, x, x), ir) return ir end # TODO this is hacky and leaves `ir.defs` incorrect function splicearg!(ir::IR) args = arguments(ir) push!(ir.defs, (1, -1)) arg = var(length(ir.defs)) pushfirst!(args, arg) pushfirst!(ir.blocks[1].argtypes, Any) return arg end @static if VERSION >= v"1.10.0-DEV.870" function replace_code_newstyle!(ci, ir, _) isnothing(ci.slottypes) && (ci.slottypes = Any[]) return Core.Compiler.replace_code_newstyle!(ci, ir) end elseif VERSION < v"1.8.0-DEV.267" function replace_code_newstyle!(ci, ir, n_argtypes) return Core.Compiler.replace_code_newstyle!(ci, ir, n_argtypes-1) end else using Core.Compiler: replace_code_newstyle! end @static if VERSION >= v"1.10.0-DEV.870" function get_staged(mi, world) return Core.Compiler.get_staged(mi, world) end else function get_staged(mi, _) return Core.Compiler.get_staged(mi) end end function update!(ci::CodeInfo, ir::Core.Compiler.IRCode) replace_code_newstyle!(ci, ir, length(ir.argtypes)) @static if VERSION < v"1.12.0-DEV.15" ci.inferred = false end ci.ssavaluetypes = length(ci.code) slots!(ci) fill!(ci.slotflags, 0) return ci end function update!(ci::CodeInfo, ir::IR) if ir.meta isa Meta ci.method_for_inference_limit_heuristics = ir.meta.method if isdefined(ci, :edges) ci.edges = Core.MethodInstance[ir.meta.instance] end end update!(ci, Core.Compiler.IRCode(slots!(ir))) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
355
using IRTools, Test using IRTools: CFG, dominators, domtree relu(x) = (y = x > 0 ? x : 0) ir = @code_ir relu(1) @test dominators(CFG(ir)) == Dict(1 => Set([1]), 2 => Set([1, 2]), 3 => Set([1, 3]), 4 => Set([1, 4])) @test domtree(CFG(ir)) == (1 => [2 => [], 3 => [], 4 => []]) @test domtree(CFG(ir)', entry = 4) == (4 => [1 => [], 2 => [], 3 => []])
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
6817
using IRTools, MacroTools, InteractiveUtils, Test using IRTools: @dynamo, IR, meta, isexpr, xcall, self, insertafter!, recurse!, argument!, return!, block!, branch!, func, var, functional using InteractiveUtils: code_typed @dynamo roundtrip(a...) = IR(a...) @dynamo function passthrough(a...) ir = IR(a...) ir == nothing && return recurse!(ir) return ir end add(a, b) = a+b @test roundtrip(add, 2, 3) == 5 @test passthrough(add, 2, 3) == 5 @test passthrough(sin, 1.0) == sin(1.0) f_returnnode(::T) where {T} = T @test passthrough(f_returnnode, 1) == Int f_gotoifnot(::Val{x}) where {x} = x ? 1 : 0 @test passthrough(f_gotoifnot, Val(true)) == 1 @test @code_ir(passthrough, add(2, 3)) isa IR IRTools.refresh(roundtrip) add(a, b) = a*b @test roundtrip(add, 2, 3) == 6 relu(x) = x > 0 ? x : 0 @test roundtrip(relu, 1) == 1 @test passthrough(relu, 1) == 1 foo(x) = y = x > 0 ? x + 1 : x - 1 @test roundtrip(foo, 1) == 2 @test roundtrip(foo, -1) == -2 @test passthrough(foo, 1) == 2 @test passthrough(() -> [1, 2, 3]) == [1, 2, 3] function err(f) try f() catch e e end end @test passthrough(err, () -> 2+2) == 4 @test passthrough(err, () -> 0//0) isa ArgumentError function err2(f) x = 1 y = 1 try y = f() catch e x, y end x, y end @test passthrough(err2, () -> 2+2) == (1, 4) @test passthrough(err2, () -> 0//0) == (1, 1) function err3(f) y = 1 try y = f() catch end return y end @test passthrough(err3, () -> 2+2) == 4 @test passthrough(err3, () -> 0//0) == 1 @dynamo function mullify(a...) ir = IR(a...) ir == nothing && return ir = MacroTools.prewalk(ir) do x x isa GlobalRef && x.name == :(*) && return GlobalRef(Base, :+) return x end for (x, st) in ir isexpr(st.expr, :call) || continue ir[x] = xcall(Main, :mullify, st.expr.args...) end return ir end @test mullify(prod, [5, 10]) == 15 @dynamo err(a...) = 0//0 @test_throws IRTools.Inner.CompileError err(+, 2, 3) mutable struct Context calls::Int end @dynamo function (cx::Context)(a...) ir = IR(a...) ir == nothing && return recurse!(ir) calls = pushfirst!(ir, xcall(:getfield, self, QuoteNode(:calls))) calls = insertafter!(ir, calls, xcall(:+, calls, 1)) insertafter!(ir, calls, xcall(:setfield!, self, QuoteNode(:calls), calls)) return ir end @code_lowered Context(0)(add, 2, 3) cx = Context(0) @test cx(add, 2, 3.0) == 6 @test cx.calls > 5 ir = IR() x = argument!(ir) y = push!(ir, xcall(:*, x, x)) return!(ir, y) @test IRTools.evalir(ir, 5) == 25 ir = IR() x = argument!(ir) y = argument!(ir) z = push!(ir, xcall(:*, x, y)) return!(ir, z) @test IRTools.evalir(ir, 5, 3) == 15 function pow(x, n) r = 1 while n > 0 n -= 1 r *= x end return r end ir = @code_ir pow(2, 3) ir[var(8)] = xcall(:+, var(5), var(2)) mul = func(ir) @test mul(nothing, 10, 3) == 31 @dynamo function ir_add(_, _) ir = IR() args = argument!(ir) x = push!(ir, xcall(:getindex, args, 1)) y = push!(ir, xcall(:getindex, args, 2)) return!(ir, xcall(:+, x, y)) end @test ir_add(5, 2) == 7 @dynamo function test_lambda(x) λ = IR() self = argument!(λ) y = argument!(λ) x = push!(λ, xcall(:getindex, self, 1)) return!(λ, xcall(:+, x, y)) ir = IR() args = argument!(ir) x = push!(ir, xcall(:getindex, args, 1)) return!(ir, Expr(:lambda, λ, x)) end let f = test_lambda(3) @test f(6) == 9 end anf(f::Core.IntrinsicFunction, args...) = f(args...) @dynamo function anf(args...) ir = IR(args...) ir == nothing && return functional(recurse!(ir)) end @test anf(pow, 2, 3) == 8 function f94(x) i = x while i > 0 i -= 1 end return x end @test f94(1) == 1 @test passthrough(f94, 1) == 1 @testset "unreachable" begin # 1: (%1) # return nothing # 2: # unreachable ir = IR() argument!(ir) return!(ir, nothing) block!(ir) branch!(ir, 0) func_ir = IRTools.func(ir) @test (code_typed(func_ir, Tuple{typeof(func_ir)}) |> only isa Pair{Core.CodeInfo,DataType}) end function f_try_catch(x) y = 0. try y = sqrt(x) catch end y end function f_try_catch2(x, cond) local y if cond y = 2x end try x = 3 * error() catch end y end function f_try_catch3() local x try error() catch x = 42 end x end function f_try_catch4(x, cond) local y try throw(x) catch err if cond y = err + x end end y end function f_try_catch5(x, cond) local y cond && (x = 2x) try y = x cond && error() catch y = x + 1 end y end function f_try_catch6(cond, y) x = 1 if cond y = 10y else y = 10y end try cond && error() catch y = 2x end y+x end function f_try_catch7() local x = 1. for _ in 1:10 try x = sqrt(x) x -= 1. catch x = -x end x = x ^ 2 end x end function f_try_catch8(x) local z = x try z = z + sqrt(x) z = 1 - log(z) z = log(z) catch z = abs(z) finally return z end end @testset "try/catch" begin ir = @code_ir f_try_catch(1.) fir = func(ir) @test fir(nothing,1.) === 1. @test fir(nothing,-1.) === 0. ir = @code_ir f_try_catch2(1., false) fir = func(ir) # This should be @test_throws UndefVarError fir(nothing,42,false) # See TODO in `IRTools.slots!` @test_broken try fir(nothing,42,false) false catch e e isa UndefVarError end @test fir(nothing, 42, false) === IRTools.undef @test fir(nothing, 42, true) === 84 ir = @code_ir f_try_catch3() @test all(ir) do (_, stmt) !IRTools.isexpr(stmt.expr, :catch) || length(stmt.expr.args) == 1 end fir = func(ir) @test fir(nothing) == 42 ir = @code_ir f_try_catch4(42, false) fir = func(ir) # This should be @test_throws UndefVarError fir(nothing,42,false) @test_broken try fir(nothing, 42, false) false catch e e isa UndefVarError end @test fir(nothing, 42, false) === IRTools.undef @test fir(nothing, 42, true) === 84 ir = @code_ir f_try_catch5(1, false) fir = func(ir) @test fir(nothing, 3, false) === 3 @test fir(nothing, 3, true) === 7 ir = @code_ir f_try_catch6(true, 1) fir = func(ir) @test fir(nothing, true, 1) === 3 @test fir(nothing, false, 1) === 11 ir = @code_ir f_try_catch7() @test func(ir)(nothing) === 1. ir = @code_ir f_try_catch8(1.) fir = func(ir) @test fir(nothing, 1.) == log(1. - log(2.)) @test fir(nothing, -1.) == 1. end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
1999
using IRTools, Test using IRTools: IR, @dynamo function f(x) N = 4 for i1 in 1:3 # single loop works without issue for i2 in 1:N # needs to be a variable `1:4` works fine end end 0.0 # same error with `x` end @test @code_ir(f(1)) isa IR function f(a, b) u = 1 while true if true end end f(u) end @test @code_ir(f(1, 2)) isa IR # issue 30 @dynamo function foo(a...) ir = IR(a...) return ir end mylog2(x) = ccall((:log2, Base.Math.libm), Float64, (Float64,), x) @test foo(mylog2, 3.3) === mylog2(3.3) bar(a, b) = a > b ? a : b function foo(a, b) bar(a, b) end let ir1 = @code_ir foo(1, 2) ir2 = @code_ir bar(1, 2) inline_at = findfirst(ir1) do (_, stmt) IRTools.isexpr(stmt.expr, :call) && stmt.expr.args[1] == GlobalRef(@__MODULE__, :bar) end @test inline_at !== nothing ir = IRTools.inline(ir1, inline_at, ir2) f = IRTools.func(ir) @test f(nothing, 2, 3) == 3 @test f(nothing, 3, 2) == 3 end function foo1(x) while x < 10 x += 1 end return x end function foo2(x) if x < 100 x + foo1(x) else x end end let ir = @code_ir foo2(1) ir2 = @code_ir foo1(1) inline_at = findfirst(ir) do (_, stmt) IRTools.isexpr(stmt.expr, :call) && stmt.expr.args[1] == GlobalRef(@__MODULE__, :foo1) end @test inline_at !== nothing ir3 = IRTools.inline(ir, inline_at, ir2) @test IRTools.func(ir3)(nothing, 2) == 12 @test IRTools.func(ir3)(nothing, 101) == 101 end function foo1(x) while x < 10 x += 1 end return x end function foo2(x) foo1(x) x > 0 ? x : 0 end let ir = @code_ir foo2(1) ir2 = @code_ir foo1(1) inline_at = findfirst(ir) do (_, stmt) IRTools.isexpr(stmt.expr, :call) && stmt.expr.args[1] == GlobalRef(@__MODULE__, :foo1) end @test inline_at !== nothing ir3 = IRTools.inline(ir, inline_at, ir2) @test IRTools.func(ir3)(nothing, 2) == foo2(2) @test IRTools.func(ir3)(nothing, -2) == foo2(-2) end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
400
using IRTools, Test using IRTools: Meta, meta @generated f(x) = :(x+x) @test meta(Tuple{typeof(gcd),Int,Int}) isa Meta @test meta(Tuple{typeof(f),Int}) isa Meta # https://github.com/FluxML/IRTools.jl/issues/106 function g end @test meta(Tuple{typeof(g),Int,Int}) === nothing g(a) = 2a @test meta(Tuple{typeof(g),Int,Int}) === nothing @test @code_ir(map([1,2], [3,4]) do x, y x + y end) isa IR
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
1317
using IRTools, Test using IRTools: @meta, IR, CFG, Simple, Loop, Multiple, reloop, explicitbranch!, stackify relu(x) = (y = x > 0 ? x : 0) relu_cfg = CFG(@code_ir relu(1)) @test relu_cfg == CFG([[3,2],[4],[4],[]]) @test reloop(relu_cfg) == Simple(1, Multiple([Simple(3), Simple(2)], Simple(4))) @test sort.(stackify(relu_cfg)) == ([1=>2,1=>3,1=>4],[]) function pow(x, n) r = 1 while n > 0 n -= 1 r *= x end return r end pow_cfg = CFG(@code_ir pow(2, 3)) @test pow_cfg == CFG([[2],[4,3],[2],[]]) @test reloop(pow_cfg) == Simple(1, Loop(Simple(2, Simple(3)), Simple(4))) @test sort.(stackify(pow_cfg)) == ([1=>2,1=>4,2=>3],[3=>2]) # AST recovery relu(x) = (y = x > 0 ? x : 0) ir = explicitbranch!(IR(@meta(relu(1)), slots = true)) ex = reloop(ir) @test eval(:(let arg2 = 5; $ex; end)) == 5 @test eval(:(let arg2 = -5; $ex; end)) == 0 relu(x) = x > 0 ? x : 0 ir = explicitbranch!(IR(@meta(relu(1)), slots = true)) ex = reloop(ir) @test eval(:(let arg2 = 5; $ex; end)) == 5 @test eval(:(let arg2 = -5; $ex; end)) == 0 ir = explicitbranch!(IR(@meta(pow(1,1)), slots = true)) ex = reloop(ir) @test eval(:(let arg2 = 5, arg3 = 3; $ex; end)) == 125 ir = explicitbranch!(IR(@meta(gcd(1,1)), slots = true)) ex = reloop(ir) @test eval(:(let arg2 = 85, arg3 = 391; $ex; end)) == gcd(85, 391)
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
code
427
using IRTools, Documenter, Test @testset "IRTools" begin @testset "IR" begin include("ir.jl") end @testset "Analysis" begin include("analysis.jl") end @testset "Reflection" begin include("reflection.jl") end @testset "Compiler" begin include("compiler.jl") end @testset "Relooper" begin include("relooper.jl") end if Base.GIT_VERSION_INFO.tagged_commit # skip doctests on nightly doctest(IRTools) end end
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
docs
1608
# IRTools [![Build Status](https://travis-ci.org/FluxML/IRTools.jl.svg?branch=master)](https://travis-ci.org/FluxML/IRTools.jl) [![Dev Docs](https://img.shields.io/badge/docs-dev-blue.svg)](https://fluxml.github.io/IRTools.jl/latest/) [![Coverage](https://codecov.io/gh/FluxML/IRTools.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/FluxML/IRTools.jl) IRTools aims to provide a simple and flexible IR format, expressive enough to work with both lowered and typed Julia code, as well as external IRs. It can be used with Julia metaprogramming tools such as [Cassette](https://github.com/jrevels/Cassette.jl). ```julia julia> using IRTools julia> function pow(x, n) # A simple Julia function r = 1 while n > 0 n -= 1 r *= x end return r end julia> ir = @code_ir pow(1, 1) # Get its IR 1: (%1, %2, %3) br 2 (%3, 1) 2: (%4, %5) %6 = %4 > 0 br 4 unless %6 br 3 3: %7 = %4 - 1 %8 = %5 * %2 br 2 (%7, %8) 4: return %5 julia> using IRTools: var, xcall julia> ir[var(8)] = xcall(:+, var(5), var(2)) # Tweak it :(%5 + %2) julia> ir 1: (%1, %2, %3) br 2 (%3, 1) 2: (%4, %5) %6 = %4 > 0 br 4 unless %6 br 3 3: %7 = %4 - 1 %8 = %5 + %2 br 2 (%7, %8) 4: return %5 julia> f = IRTools.func(ir); # Turn the new IR into a lambda julia> f(nothing, 10, 5) 51 julia> @code_llvm f(nothing, 10, 5) define i64 @"julia_##399_17438"(i64, i64) { top: %2 = icmp slt i64 %1, 1 %3 = mul i64 %1, %0 %4 = add i64 %3, 1 %value_phi1.lcssa = select i1 %2, i64 1, i64 %4 ret i64 %value_phi1.lcssa } ```
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
docs
8201
# Dynamo IRTools can be used with metaprogramming tools like [Cassette](https://github.com/jrevels/Cassette.jl), but it also provides a few of its own utilities. The main one is named the "dynamo" after the idea of a "dynamically-scoped macro". Let me explain. If you write down ```julia @foo begin bar(baz()) end ``` then the `@foo` macro has access to the expression `bar(baz())` and can modify this however it pleases. However, the code of the functions `bar` and `baz` are completely invisible; in more technical terms the macro has lexical extent. In contrast, a dynamo looks like this: ```julia foo() do bar(baz()) end ``` This can *also* freely modify the `bar(baz())` expression (though it sees it as an `IR` object rather than `Expr`). But more importantly, it can *recurse*, viewing and manipulating the source code of `bar` and `baz` and even any functions *they* call. In other words, it has dynamic extent. For example, imagine a macro for replacing `*` with `+`: ```julia julia> using MacroTools julia> macro foo(ex) MacroTools.prewalk(ex) do x x == :* ? :+ : x end |> esc end @foo (macro with 1 method) julia> @foo 10*5 15 julia> @foo prod([5, 10]) 50 ``` The explicit `*` that appears to the macro gets changed, but the implicit one inside `prod` does not. This guide shows you how to do one better. ## A Simple Dynamo The simplest possible dynamo is a no-op, analagous to the macro ```julia macro roundtrip(ex) esc(ex) end ``` Here it is: ```jldoctest main julia> using IRTools: IR, @dynamo julia> @dynamo roundtrip(a...) = IR(a...) julia> mul(a, b) = a*b mul (generic function with 1 method) julia> roundtrip(mul, 2, 3) 6 ``` Here's how it works: our dynamo gets passed a set of *argument types* `a...`. We can use this to get IR for the method being called, with `IR(a...)`. Then we can transform that IR, return it, and it'll be compiled and run as usual. In this case, we can easily check that the transformed code produced by `roundtrip` is identical to the original IR for `mul`. ```jldoctest main julia> using IRTools: @code_ir julia> @code_ir mul(2, 3) 1: (%1, %2, %3) %4 = %2 * %3 return %4 julia> @code_ir roundtrip mul(1, 2) 1: (%1, %2, %3) %4 = %2 * %3 return %4 ``` Now we can recreate our `foo` macro. It's a little more verbose since simple symbols like `*` are resolved to `GlobalRef`s in lowered code, but it's broadly the same as our macro. ```@meta DocTestSetup = quote using IRTools using IRTools: @dynamo, IR mul(a, b) = a * b end ``` ```jldoctest main2 julia> using MacroTools, IRTools julia> using IRTools: @dynamo, IR julia> @dynamo function foo(a...) ir = IR(a...) ir = MacroTools.prewalk(ir) do x x isa GlobalRef && x.name == :(*) && return GlobalRef(Base, :+) return x end return ir end ``` ```@meta DocTestSetup = nothing ``` It behaves identically, too. ```jldoctest main2 julia> foo() do 10*5 end 15 julia> foo() do prod([10, 5]) end 50 ``` To get different behaviour we need to *go deeper* – and talk about recursion. ## Recursing A key difference between macros and dynamos is that dynamos get passed *functions* with they look inside, rather than expressions, so we don't need to write out `mul` when calling `foo(mul, 5, 10)`. So what if `foo` actually inserted calls to itself when modifying a function? In other words, `prod([1, 2, 3])` would become `foo(prod, [1, 2, 3])`, and so on for each call inside a function. This lets us get the "dynamic extent" property that we talked about earlier. ```jldoctest main2 julia> using IRTools: xcall julia> @dynamo function foo2(a...) ir = IR(a...) ir == nothing && return ir = MacroTools.prewalk(ir) do x x isa GlobalRef && x.name == :(*) && return GlobalRef(Base, :+) return x end for (x, st) in ir isexpr(st.expr, :call) || continue ir[x] = xcall(foo2, st.expr.args...) end return ir end ``` There are two changes here: firstly, walking over all IR statements to look for, and modify, `call` expressions. Secondly we handle the case where `ir == nothing`, which can happen when we hit things like intrinsic functions for which there is no source code. If we return `nothing`, the dynamo will just run that function as usual. Check it does the transform we wanted: ```julia julia> mul_wrapped(a, b) = mul(a, b) mul_wrapped (generic function with 1 method) julia> @code_ir mul_wrapped(5, 10) 1: (%1, %2, %3) %4 = mul(%2, %3) return %4 julia> @code_ir foo2 mul_wrapped(5, 10) 1: (%1, %2, %3) %4 = (foo2)(mul, %2, %3) return %4 ``` And that it works as expected: ```jldoctest main2 julia> foo() do # Does not work (since there is no literal `*` here) mul(5, 10) end 50 julia> foo2() do # Works correctly mul(5, 10) end 15 julia> foo2() do prod([5, 10]) end 15 ``` This, we have rewritten the `prod` function to actually calculate `sum`, by *internally* rewriting all calls to `*` to instead use `+`. ## Using Dispatch We can make our `foo2` dynamo simpler in a couple of ways. Firstly, IRTools provides a built-in utility `recurse!` which makes it easy to recurse into code. ```jldoctest main julia> using MacroTools julia> using IRTools: recurse! julia> @dynamo function foo2(a...) ir = IR(a...) ir == nothing && return ir = MacroTools.prewalk(ir) do x x isa GlobalRef && x.name == :(*) && return GlobalRef(Base, :+) return x end recurse!(ir) return ir end julia> foo2() do prod([5, 10]) end 15 ``` Secondly, unlike in a macro, we don't actually need to look through source code for literal references to the `*` function. Because our dynamo is a normal function, we can actually use dispatch to decide what specific functions should do. ```jldoctest main julia> foo3(::typeof(*), a, b) = a+b foo3 (generic function with 1 method) julia> foo3(*, 5, 10) 15 ``` Now we can define a simpler version of `foo3` which *only* recurses, and let dispatch figure out when to turn `*`s into `+`s. ```jldoctest main julia> @dynamo function foo3(a...) ir = IR(a...) ir == nothing && return recurse!(ir) return ir end julia> foo3() do prod([5, 10]) end 15 ``` ## Contexts We can achieve some interesting things by making our dynamo a *closure*, i.e. a callable object capable of holding some state. For example, consider an object which simply records a count. ```jldoctest counter julia> mutable struct Counter count::Int end julia> Counter() = Counter(0) Counter julia> count!(c::Counter) = (c.count += 1) count! (generic function with 1 method) ``` We can turn this into a dynamo which inserts a single statement into the IR of each function, to increase the count by one. ```jldoctest counter julia> using IRTools: @dynamo, IR, xcall, self, recurse! julia> @dynamo function (c::Counter)(m...) ir = IR(m...) ir == nothing && return recurse!(ir) pushfirst!(ir, xcall(count!, self)) return ir end ``` Now we can count how many function calls that happen in a given block of code. ```jldoctest counter julia> c = Counter() Counter(0) julia> c() do 1 + 2.0 end 3.0 julia> c.count 18 ``` !!! warning On Julia versions older than 1.3, dynamos are _not_ automatically updated when you redefine functions. For example: ```julia julia> @dynamo roundtrip(a...) = IR(a...) julia> foo(x) = x^2 foo (generic function with 1 method) julia> roundtrip(foo, 5) 25 julia> foo(x) = x+1 foo (generic function with 1 method) julia> roundtrip(foo, 5) 25 ``` In order to get the dynamo to see the new definition of `foo`, you can explicitly call `IRTools.refresh()`: ```julia julia> IRTools.refresh(roundtrip) julia> roundtrip(foo, 5) 6 ``` With Julia 1.3 and later, `IRTools.refresh` is not required.
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
docs
7810
# IRTools IRTools provides an IR format with several aims. The idea is to be: * Expressive enough to represent all parts of Julia's IR pipeline, from lowered code to typed SSA IR; * Easy to manipulate, like an AST, so that people can do powerful macro-like transformations of code; * *safe* -- so no segfaults if you misplace an variable somewhere. Note that before even attempting to understand IRTools, you should have a good handle on Julia's [metaprogramming and macros](https://docs.julialang.org/en/v1/manual/metaprogramming/). ## Reading the IR ### IR Basics It's easiest to understand the IRTools IR by seeing some examples. We provide the macro `@code_ir` which behaves much like `@code_lowered`. ```jldoctest julia> using IRTools julia> f(x) = x+x f (generic function with 1 method) julia> @code_ir f(1) 1: (%1, %2) %3 = %2 + %2 return %3 ``` First things first. All variables are numbered (`%1`, `%2`, `%3` ...). IR will usually have a _lot_ of these, which is why numbers make more sense than names. At the start of the IR is a list of arguments that are provided as input to the function, `(%1, %2)`. You'll notice there's an extra argument, `%1`, that's ignored here; this represents the function `f` itself, which is used by callable objects and closures. The main reason that there are a lot of intermediates is that, in IR, we only allow one function call per line. You can see how a nested Julia expression becomes a sequence of single instructions, kind of like an assembly language. ```jldoctest julia> using IRTools julia> f(x) = 3x*x + 2x + 1 f (generic function with 1 method) julia> @code_ir f(1) 1: (%1, %2) %3 = 3 * %2 %4 = %3 * %2 %5 = 2 * %2 %6 = %4 + %5 + 1 return %6 ``` While this looks noisy and is at first a little hard to read, it's usually a helpful thing to do. IR is largely designed to be read by programs, rather than by humans, where it's usually easier to look at one instruction at a time. Beyond that, this is essentially just very verbosely-written Julia code. ### Control Flow The most significant difference between `IR` and `Expr` is how control flow is handled. There are no such thing as nested if statements, while loops and so on in IR, only *branches*. ```jldoctest julia> using IRTools julia> f(x) = x > 0 ? x : 0 f (generic function with 1 method) julia> @code_ir f(1) 1: (%1, %2) %3 = %2 > 0 br 2 unless %3 return %2 2: return 0 ``` The block labels `1:`, `2:` etc and the branch `br 2 unless %3` can be thought of as a version of `@label` and `@goto`. In this case the branch is conditional on the test `%3 = x > 0`; if that's true we'll skip the branch labeled `2` and return `x`. IR is composed of a series of *basic blocks* that jump between each other like this. A basic block always starts with a label and ends with (optional) branches. No branches can appear in the middle of a basic block; that would just divide the block in two. Any structured control flow, however complex, can be turned into a series of blocks like this. Here's a more interesting example. ```jldoctest julia> using IRTools julia> function f(x) if x < 0 x = -x end return x end f (generic function with 1 method) julia> @code_ir f(1) 1: (%1, %2) %3 = %2 < 0 br 3 (%2) unless %3 br 2 2: %4 = -%2 br 3 (%4) 3: (%5) return %5 ``` Basic blocks are actually like mini-functions, and they accept a series of arguments. In this case block `3` takes an argument called `%5` that tells it what to return. If you follow the branches as if they were function calls, you'll see that this IR behaves the same as the code we wrote down. Why not just write this as `%2 = -%2`? It's important to understand that variables in SSA-form IR are *immutable*, in the same sense that variables in functional languages are. For this reason you'll never see a statement like `%2 = %2 + 1`. This again makes analysing IR programmatically a lot easier, because when code uses `%2` you know exactly which definition that refers to. Loops work this way too: they are visible in the IR by branches that jump backwards, i.e. the `br 2` here. Variables that were modified inside the loop in the original code are explicitly passed between blocks. ```jldoctest envpow julia> using IRTools julia> function pow(x, n) r = 1 while n > 0 n -= 1 r *= x end return r end pow (generic function with 1 method) julia> @code_ir pow(1, 1) 1: (%1, %2, %3) br 2 (%3, 1) 2: (%4, %5) %6 = %4 > 0 br 4 unless %6 br 3 3: %7 = %4 - 1 %8 = %5 * %2 br 2 (%7, %8) 4: return %5 ``` ## Manipulating IR ### Statements It's easy to get started by creating an empty fragment of IR. ```jldoctest ir_example julia> using IRTools: IR, var, argument!, xcall julia> ir = IR() 1: ``` We can push new statements into the IR. `push!` returns a variable name that we can reuse later on. ```jldoctest ir_example julia> x = argument!(ir) %1 julia> x2 = push!(ir, xcall(:*, x, x)) %2 julia> ir 1: (%1) %2 = %1 * %1 ``` The IR can be viewed as a mapping from variables to statements, and indexing and iteration are consistent with that. ```julia ir_example julia> ir[var(2)] IRTools.Statement(:(%1 * %1), Any, 0) julia> collect(ir) 1-element Array{Any,1}: %2 => IRTools.Statement(:(%1 * %1), Any, 0) ``` A `Statement` consists of an expression, a type (usually `Any` unless you're explicitly working with typed IR) and a line number. If you work directly with expressions IRTools will automatically wrap them with `Statement(x)`. There are a few other functions that do obvious things: `pushfirst!`, `insert!`, `insertafter!`, and `delete!`. In most cases you won't build IR from scratch, but will start from an existing function and modify its IR. ```jldoctest envpow julia> ir = @code_ir pow(1, 1) 1: (%1, %2, %3) br 2 (%3, 1) 2: (%4, %5) %6 = %4 > 0 br 4 unless %6 br 3 3: %7 = %4 - 1 %8 = %5 * %2 br 2 (%7, %8) 4: return %5 ``` ### Blocks You can work with a block at a time with `block(ir, n)` (all of them with `blocks(ir)`). Blocks similarly support functions like `push!`. ```jldoctest envpow julia> using IRTools: block julia> block(ir, 2) 2: (%4, %5) %6 = %4 > 0 br 4 unless %6 br 3 ``` ## Evaluating IR For testing purposes, you can run IR using `IRTools.evalir`. ```jldoctest eval julia> using IRTools julia> using IRTools: IR, argument!, return!, xcall, func julia> ir = IR(); julia> x = argument!(ir); julia> y = push!(ir, xcall(:*, x, x)); julia> return!(ir, y) 1: (%1) %2 = %1 * %1 return %2 julia> IRTools.evalir(ir, 5) 25 ``` More generally, you can turn an IR fragment into an anonymous function, useful not just for evaluation but also to see the compiler's `@code_typed`, `@code_llvm` output etc. ```julia julia> f = func(ir) ##422 (generic function with 1 method) julia> @code_typed f(5) CodeInfo( 1 ─ %1 = Base.mul_int(@_2, @_2)::Int64 └── return %1 ) => Int64 julia> @code_llvm f(5) ; @ /Users/mike/projects/flux/IRTools/src/eval.jl:18 within `##422' define i64 @"julia_##422_17676"(i64) { top: ; ┌ @ int.jl:54 within `*' %1 = mul i64 %0, %0 ret i64 %1 ; └ } ``` The same works for IR taken from existing functions. ```jldoctest julia> using IRTools: IR, @code_ir, xcall, func, var julia> function pow(x, n) r = 1 while n > 0 n -= 1 r *= x end return r end pow (generic function with 1 method) julia> ir = @code_ir pow(2, 3) 1: (%1, %2, %3) br 2 (%3, 1) 2: (%4, %5) %6 = %4 > 0 br 4 unless %6 br 3 3: %7 = %4 - 1 %8 = %5 * %2 br 2 (%7, %8) 4: return %5 julia> ir[var(8)] = xcall(:+, var(5), var(2)) :(%5 + %2) julia> mul = func(ir); julia> mul(nothing, 10, 3) 31 ```
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.4.14
950c3717af761bc3ff906c2e8e52bd83390b6ec2
docs
734
# API Reference This page provides a comprehensive reference for IRTools functionality. ## Reflection ```@docs @code_ir IRTools.meta IRTools.@meta ``` ## IR Manipulation ```@docs IRTools.IR IRTools.Statement IRTools.Variable IRTools.Branch IRTools.BasicBlock IRTools.arguments IRTools.argtypes IRTools.branches IRTools.isconditional IRTools.isreturn IRTools.returnvalue IRTools.returntype IRTools.canbranch IRTools.explicitbranch! IRTools.argument! IRTools.emptyargs! IRTools.deletearg! IRTools.block! IRTools.deleteblock! IRTools.block IRTools.blocks IRTools.branch! IRTools.return! IRTools.successors IRTools.predecessors IRTools.inline keys haskey push! pushfirst! insert! IRTools.insertafter! permute! empty IRTools.Pipe ```
IRTools
https://github.com/FluxML/IRTools.jl.git
[ "MIT" ]
0.1.2
f0de74163ea91daf9565c5b209506ce18a2d6d67
code
74880
module UnitRangesSortedSets export AbstractUnitRangesSortedSet, AbstractUnitRangesSortedContainer, AbstractUnitRangesSortedSubSet export UnitRangesSortedSet, VecUnitRangesSortedSet export UnitRangesSortedSubSet, UnitRangesSortedSubSet1, UnitRangesSortedSubSet0 export searchsortedrange, searchsortedrangefirst, searchsortedrangelast export getrange, getindex, beforefirstindex, pastlastindex export subset using Base: ForwardOrdering, Forward const FOrd = ForwardOrdering using DataStructures using DataStructures: DataStructures.Tokens.IntSemiToken, DataStructures.SDMToken safe_add(x::T, y) where {T} = x + T(y) safe_add(x::T, y) where {T<:Integer} = ((z, flag) = Base.add_with_overflow(x, T(y)); !flag ? z : typemax(T)) safe_add(x::T, y) where {T<:AbstractChar} = (z = UInt64(x) + UInt64(y); z < UInt128(2)^(8 * sizeof(T)) ? T(z) : typemax(T)) safe_sub(x::T, y) where {T} = x - T(y) safe_sub(x::T, y) where {T<:Integer} = ((z, flag) = Base.sub_with_overflow(x, T(y)); !flag ? z : typemin(T)) safe_sub(x::T, y) where {T<:AbstractChar} = (z = Int64(x) - Int64(y); z >= 0 ? T(z) : typemin(T)) @inline to_urange(::Type{TU}, l::L, r::L) where {TU<:UnitRange,L} = TU(l, r) @inline to_urange(::Type{TU}, l::L, r::R) where {TU<:UnitRange,L,R} = TU(promote_type(L, R)(l), promote_type(L, R)(r)) @inline to_urange(::Type{TU}, kk::AbstractRange) where {TU<:UnitRange} = TU(first(kk), last(kk)) @inline to_urange(::Type{TU}, l, r) where {TU<:StepRange{T,S}} where {T,S} = TU(l, oneunit(S), r) @inline to_urange(::Type{TU}, kk::AbstractRange) where {TU<:StepRange{T,S}} where {T,S} = TU(first(kk), oneunit(S), last(kk)) @inline inferrangetype(::Type{K}) where {K<:Real} = UnitRange{K} @inline function inferrangetype(::Type{K}) where K T = typeof(K(0):K(0)) return T <: StepRange ? StepRange{K,UInt8} : T end abstract type AbstractUnitRangesSortedSet{K,TU} <: AbstractSet{TU} end abstract type AbstractUnitRangesSortedContainer{K,TU} <: AbstractUnitRangesSortedSet{K,TU} end abstract type AbstractUnitRangesSortedSubSet{K,TU,P} <: AbstractUnitRangesSortedSet{K,TU} end """ Sorted set of `UnitRange`s. Sorted in ascending order and no one range overlaps with another. ```julia mutable struct UnitRangesSortedSet{K,TU} <: AbstractSet{TU} "Index of last used range." lastusedrangeindex::IntSemiToken "Storage for ranges: the key of Dict is the `first(range)`, and the value of Dict is the `last(range)`." ranges::SortedDict{K,K,FOrd} end ``` Ranges stored in `SortedDict` as `first`s in keys and `last`s in values. `UnitRangesSortedSet` can be created like the standard `Set`: ```julia UnitRangesSortedSet(somecontainer) ``` for example ```julia julia> using UnitRangesSortedSets julia> UnitRangesSortedSet((1, 2, 4)) UnitRangesSortedSet{Int64} with 2 elements: 1:2 4:4 julia> UnitRangesSortedSet(('a':'z', 'α':'ω')) UnitRangesSortedSet{Char} with 2 elements: 'a':'z' 'α':'ω' julia> Random.seed!(1234); julia> UnitRangesSortedSet(rand(1:20, 10)) UnitRangesSortedSet{Int64} with 6 elements: 5:5 7:8 10:11 15:16 18:18 20:20 ``` or with `push!`: ```julia julia> urs = UnitRangesSortedSet{Int}() UnitRangesSortedSet{Int64}() julia> push!(urs, 1) UnitRangesSortedSet{Int64} with 1 element: 1:1 julia> push!(urs, 2) UnitRangesSortedSet{Int64} with 1 element: 1:2 julia> push!(urs, 10:12) UnitRangesSortedSet{Int64} with 2 elements: 1:2 10:12 ``` Iterating over set of ranges: ```julia julia> for r in urs @show(r) end r = 1:2 r = 10:12 julia> for r in urs, i in r @show(i) end i = 1 i = 2 i = 10 i = 11 i = 12 julia> for i in Iterators.flatten(urs) @show(i) end i = 1 i = 2 i = 10 i = 11 i = 12 julia> collect(urs) 2-element Vector{UnitRange{Int64}}: 1:2 10:12 ``` Deleting elements and ranges: ```julia julia> delete!(urs, 10:11) UnitRangesSortedSet{Int64} with 2 elements: 1:2 12:12 julia> delete!(urs, 1) UnitRangesSortedSet{Int64} with 2 elements: 2:2 12:12 ``` Note: for `Char` the `StepRange{Char,UInt8}` with `oneunit(UInt8)` step will be created. """ mutable struct UnitRangesSortedSet{K,TU} <: AbstractUnitRangesSortedContainer{K,TU} "Index of last used range." lastusedrangeindex::IntSemiToken "Storage for ranges: the key of Dict is the `first(range)`, and the value of Dict is the `last(range)`." ranges::SortedDict{K,K,FOrd} end function UnitRangesSortedSet{K,TU}() where {K,TU} ranges = SortedDict{K,K,FOrd}(Forward) UnitRangesSortedSet{K,TU}(beforestartsemitoken(ranges), ranges) end UnitRangesSortedSet{K}() where {K} = UnitRangesSortedSet{K,inferrangetype(K)}() function UnitRangesSortedSet(rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} ranges = SortedDict{K,K,FOrd}(Forward) for r in rs ranges[first(r)] = last(r) end UnitRangesSortedSet{K,TU}(beforestartsemitoken(ranges), ranges) end """ Sorted set of `UnitRange`s. Sorted in ascending order and no one range overlaps with another. ```julia mutable struct VecUnitRangesSortedSet{K,TU} <: AbstractSet{TU} "Index of last used range." lastusedrangeindex::Int "Storage for ranges starts," rstarts::Vector{K} "and stops." rstops::Vector{K} end ``` Ranges stored in `Vector`s: in `rstarts` stored `first`s of ranges, and in `rstops` stored `last`s. For further details see `UnitRangesSortedSet`. """ mutable struct VecUnitRangesSortedSet{K,TU} <: AbstractUnitRangesSortedContainer{K,TU} "Index of last used range." lastusedrangeindex::Int "Storage for ranges starts," rstarts::Vector{K} "and stops." rstops::Vector{K} end VecUnitRangesSortedSet{K,TU}() where {K,TU} = VecUnitRangesSortedSet{K,TU}(0, Vector{K}(undef, 0), Vector{K}(undef, 0)) VecUnitRangesSortedSet{K}() where {K} = VecUnitRangesSortedSet{K,inferrangetype(K)}() function VecUnitRangesSortedSet(rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} rstarts = Vector{K}(undef, length(rs)) rstops = Vector{K}(undef, length(rs)) for (i, r) in enumerate(rs) rstarts[i] = first(r) rstops[i] = last(r) end VecUnitRangesSortedSet{K,TU}(firstindex(rstarts) - 1, rstarts, rstops) end # # SubSets # """ It is possible to create the subset of any `AbstractUnitRangesSortedSet`, like a `view` for `Array`s: ```julia julia> urs = UnitRangesSortedSet((1:2, 10:12)) UnitRangesSortedSet{Int64} with 2 elements: 1:2 10:12 julia> ss = subset(urs, 0:10) 2-element subset(UnitRangesSortedSet{Int64}, DataStructures.Tokens.IntSemiToken(3):DataStructures.Tokens.IntSemiToken(4)): 1:2 10:10 ``` The `subset` object is an static, iterable view of the container struct UnitRangesSortedSubSet{K, TU, P, Tix} <: AbstractUnitRangesSortedSubSet{K, TU, P} """ struct UnitRangesSortedSubSet{K,TU,P,Tix} <: AbstractUnitRangesSortedSubSet{K,TU,P} "The `<:AbstractUnitRangesSortedSet` which subset point to." parent::P "`kstart:kstop` is the bounds of subset." kstart::K kstop::K "Saved first range `parent[firstindex]` truncated to `kstart` from left." firstrange::TU "Saved last range `parent[lastindex]` truncated to `kstop` from right." lastrange::TU "Range `firstindex:lastindex` locates the indices diapason in `parent` where `kstart:kstop` should be inserted." firstindex::Tix lastindex::Tix "Pre `firstindex` position, used for acceleration of `iterate`." beforefirstindex::Tix "Post `lastindex` position, used for acceleration of `iterate`." pastlastindex::Tix "Length of subset." numranges::Int end """ struct UnitRangesSortedSubSet1{K, TU, P, Tix} <: AbstractUnitRangesSortedSubSet{K, TU, P} is like the `UnitRangesSortedSubSet` but with only one range or part of range in subset. """ struct UnitRangesSortedSubSet1{K,TU,P,Tix} <: AbstractUnitRangesSortedSubSet{K,TU,P} "The `<:AbstractUnitRangesSortedSet` which subset point to." parent::P "`kstart:kstop` is the bounds of subset." kstart::K kstop::K "Single continuous range `kstart:kstop` from `parent` stored for simplicity." singlerange::TU "Range `firstindex:lastindex` locates the point in `parent` where `kstart:kstop` should be inserted." firstindex::Tix lastindex::Tix "Pre `firstindex` position, used for acceleration of `iteration`." beforefirstindex::Tix "Post `lastindex` position, used for acceleration of `iteration`." pastlastindex::Tix "Length of subset." numranges::Int end """ struct UnitRangesSortedSubSet0{K, TU, P, Tix} <: AbstractUnitRangesSortedSubSet{K, TU, P} is like the `UnitRangesSortedSubSet` but with the zero-length subset range in subset. """ struct UnitRangesSortedSubSet0{K,TU,P,Tix} <: AbstractUnitRangesSortedSubSet{K,TU,P} #"Empty range `kstart:kstop` for simplicity." #singlerange::TU "The `<:AbstractUnitRangesSortedSet` which subset point to." parent::P "`kstart:kstop` is the bounds of subset." kstart::K kstop::K "Empty range `firstindex:lastindex` locates the point in `parent` where `kstart:kstop` should be inserted." firstindex::Tix lastindex::Tix "Pre `firstindex` position, used for acceleration of `iteration`." beforefirstindex::Tix "Post `lastindex` position, used for acceleration of `iteration`." pastlastindex::Tix "Length of subset." numranges::Int end subset(rs::P, ::Colon) where {P<:AbstractUnitRangesSortedSet{K,TU}} where {K,TU} = subset(rs, to_urange(TU, first(first(rs)), last(last(rs)))) subset(rs::P, kk::AbstractRange) where {P<:AbstractUnitRangesSortedSubSet{K,TU}} where {K,TU} = subset(rs.parent, to_urange(TU, max(first(first(rs)), K(first(kk))), min(last(last(rs)), K(last(kk))))) function subset(rs::P, kk::AbstractRange) where {P<:AbstractUnitRangesSortedContainer{K,TU}} where {K,TU} kk = to_urange(TU, kk) iir_kk = searchsortedrange(rs, kk) if length(kk) == 0 || length(iir_kk) == 0 if length(kk) == 0 && length(iir_kk) == 1 iir_kk = create_indexrange(rs, first(iir_kk), regress(rs, first(iir_kk))) end if length(kk) != 0 kk = to_urange(TU, last(kk), first(kk)) end return UnitRangesSortedSubSet0{K,TU,P,typeof(first(iir_kk))}(rs, first(kk), last(kk), first(iir_kk), last(iir_kk), regress(rs, first(iir_kk)), advance(rs, last(iir_kk)), length(iir_kk)) elseif length(iir_kk) == 1 singlerange = getindex(rs, first(iir_kk)) if first(singlerange) < first(kk) singlerange = to_urange(TU, first(kk), last(singlerange)) end if last(kk) < last(singlerange) singlerange = to_urange(TU, first(singlerange), last(kk)) end return UnitRangesSortedSubSet1{K,TU,P,typeof(first(iir_kk))}(rs, first(kk), last(kk), singlerange, first(iir_kk), last(iir_kk), regress(rs, first(iir_kk)), advance(rs, last(iir_kk)), length(iir_kk)) else firstrange = getindex(rs, first(iir_kk)) if first(firstrange) < first(kk) firstrange = to_urange(TU, first(kk), last(firstrange)) end lastrange = getindex(rs, last(iir_kk)) if last(kk) < last(lastrange) lastrange = to_urange(TU, first(lastrange), last(kk)) end return UnitRangesSortedSubSet{K,TU,P,typeof(first(iir_kk))}(rs, first(kk), last(kk), firstrange, lastrange, first(iir_kk), last(iir_kk), regress(rs, first(iir_kk)), advance(rs, last(iir_kk)), length(iir_kk)) end end @inline Base.copy(rs::T) where {T<:AbstractUnitRangesSortedSubSet{K,TU}} where {K,TU} = intersect(rs.parent, to_urange(TU, rs.kstart, rs.kstop)) @inline Base.parent(rs::T) where {T<:AbstractUnitRangesSortedSubSet{K,TU}} where {K,TU} = rs.parent # # Convert # (::Type{T})(values::Union{AbstractVector, AbstractSet, Tuple}) where {T<:AbstractUnitRangesSortedContainer} = eltype(values) <: AbstractRange ? T{eltype(eltype(values))}(values) : T{eltype(values)}(values) (::Type{T})(values::Union{AbstractVector, AbstractSet, Tuple}) where {T<:AbstractUnitRangesSortedContainer{K}} where {K} = T{inferrangetype(K)}(values) function (::Type{T})(values::Union{AbstractVector, AbstractSet, Tuple}) where {T<:AbstractUnitRangesSortedContainer{K,TU}} where {K,TU} rs = T() for r in values push!(rs, r) end rs end Base.convert(::Type{<:VecUnitRangesSortedSet{K}}, rs::VecUnitRangesSortedSet{K}) where K = rs Base.convert(::Type{<:UnitRangesSortedSet{K}}, rs::UnitRangesSortedSet{K}) where K = rs function Base.convert(::Type{T}, rs::AbstractUnitRangesSortedContainer) where {T<:AbstractVector{Tv}} where {Tv<:AbstractRange} V = T(undef, length(rs)) for (i, r) in enumerate(rs) V[i] = to_urange(Tv, r) end V end function Base.convert(::Type{T}, rs::AbstractUnitRangesSortedContainer) where {T<:AbstractVector{Tv}} where {Tv} V = T(undef, sum(length(r) for r in rs)) i = 0 for r in rs, v in r V[i+=1] = Tv(v) end V end function Base.convert(::Type{T}, rs::AbstractUnitRangesSortedContainer{K,TU}) where {T<:AbstractVector,K,TU} V = T{K}(undef, sum(length(r) for r in rs)) i = 0 for r in rs, v in r V[i+=1] = K(v) end V end function Base.convert(::Type{T}, rs::AbstractUnitRangesSortedContainer) where {T<:AbstractSet{Tv}} where {Tv<:AbstractRange} S = T() for r in rs push!(S, to_urange(Tv, r)) end S end function Base.convert(::Type{T}, rs::AbstractUnitRangesSortedContainer) where {T<:AbstractSet{Tv}} where {Tv} S = T() for r in rs, v in r push!(S, Tv(v)) end S end function Base.convert(::Type{T}, rs::AbstractUnitRangesSortedContainer{K}) where {T<:AbstractSet,K} S = T{K}() for r in rs, v in r push!(S, K(v)) end S end "Type `UnitRange` for `DataStructures.Tokens.IntSemiToken`." struct URSSIndexURange{P,Tix} <: AbstractUnitRange{Tix} start::Tix stop::Tix parent::P len::Int end """ Returns `UnitRange` and `UnitRange`-alike ranges which are used for searching and indexing ranges in `AbstractUnitRangesSortedSet`. Returned by `searchsorted()` function to point sought or missing ranges in given set. The usual `searchsorted()` function returns just `UnitRange`, but `UnitRangesSortedSet` uses `DataStructures.Tokens.IntSemiToken` to indexing keys/values and it is not possible to create `UnitRange{IntSemiToken}`, thus was created custom one named `URSSIndexURange`. """ @inline create_indexrange(parent::P, l, r) where {P<:VecUnitRangesSortedSet} = UnitRange{Int}(l, r) @inline create_indexrange(parent::P, l, r) where {P<:UnitRangesSortedSet} = URSSIndexURange(parent, l, r) @inline function URSSIndexURange(rs::P, l::Tix, r::Tix) where {P<:VecUnitRangesSortedSet, Tix} @boundscheck l < beforefirstindex(rs) || l > pastlastindex(rs) && return throw(BoundsError(rs, l)) @boundscheck r < beforefirstindex(rs) || r > pastlastindex(rs) && return throw(BoundsError(rs, r)) if l == pastlastindex(rs) || r == beforefirstindex(rs) || l > r len = 0 else len = r - l + 1 end URSSIndexURange{P,Tix}(l, r, rs, len) end @inline function URSSIndexURange(rs::P, l::Tix, r::Tix) where {P<:UnitRangesSortedSet, Tix<:IntSemiToken} @boundscheck status((rs.ranges, l)) == 0 && return throw(KeyError(l)) @boundscheck status((rs.ranges, r)) == 0 && return throw(KeyError(r)) if l == pastlastindex(rs) || r == beforefirstindex(rs) || compare(rs.ranges, l, r) == 1 len = 0 else len = 0 i = l while compare(rs.ranges, i, r) < 1 len += 1 i = advance(rs, i) end end URSSIndexURange{P,Tix}(l, r, rs, len) end @inline Base.length(ur::URSSIndexURange) = ur.len @inline Base.step(rs::URSSIndexURange) = 1 @inline Base.:(==)(l::URSSIndexURange{Pl,Tixl}, r::URSSIndexURange{Pr,Tixr}) where {Pl<:UnitRangesSortedSet,Tixl,Pr<:VecUnitRangesSortedSet,Tixr} = false @inline Base.:(==)(l::URSSIndexURange{Pl,Tixl}, r::URSSIndexURange{Pr,Tixr}) where {Pl<:VecUnitRangesSortedSet,Tixl,Pr<:UnitRangesSortedSet,Tixr} = false @inline Base.:(==)(l::URSSIndexURange{Pl,Tixl}, r::URSSIndexURange{Pr,Tixr}) where {Pl<:VecUnitRangesSortedSet,Tixl,Pr<:VecUnitRangesSortedSet,Tixr} = l.parent === r.parent && l.start == r.start && l.stop == r.stop @inline Base.:(==)(l::URSSIndexURange{Pl,Tixl}, r::URSSIndexURange{Pr,Tixr}) where {Pl<:UnitRangesSortedSet,Tixl,Pr<:UnitRangesSortedSet,Tixr} = l.parent === r.parent && compare(l.parent.ranges, l.start, r.start) == 0 && compare(l.parent.ranges, l.stop, r.stop) == 0 @inline Base.first(ur::URSSIndexURange) = ur.start @inline Base.last(ur::URSSIndexURange) = ur.stop @inline Base.firstindex(ur::URSSIndexURange) = ur.start @inline Base.lastindex(ur::URSSIndexURange) = ur.stop #@inline Base.collect(ur::URSSIndexURange{P,Tix}) where {P<:VecUnitRangesSortedSet,Tix} = # map(s->getindex(ur.parent, s), ur.start:ur.stop) #@inline Base.collect(ur::URSSIndexURange{P,Tix}) where {P<:UnitRangesSortedSet,Tix} = # map(s->getindex(ur.parent, s), onlysemitokens(inclusive(ur.parent.ranges, ur.start, ur.stop))) @inline DataStructures.advance(ur::URSSIndexURange, st::IntSemiToken) = advance((ur.parent, st)) @inline DataStructures.regress(ur::URSSIndexURange, st::IntSemiToken) = regress((ur.parent, st)) @inline beforefirstindex(ur::URSSIndexURange) = beforestartsemitoken(ur.parent) @inline pastlastindex(ur::URSSIndexURange) = pastendsemitoken(ur.parent) Base.length(rs::VecUnitRangesSortedSet) = length(rs.rstarts) Base.length(rs::UnitRangesSortedSet) = length(rs.ranges) Base.length(rs::AbstractUnitRangesSortedSubSet) = rs.numranges Base.haslength(rs::AbstractUnitRangesSortedSet) = true Base.hasfastin(rs::AbstractUnitRangesSortedSet) = true Base.isempty(rs::AbstractUnitRangesSortedSet) = length(rs) == 0 Base.size(rs::AbstractUnitRangesSortedSet) = (length(rs),) #Base.axes(rs::AbstractUnitRangesSortedSet) = (Base.OneTo(rs.n),) Base.eltype(::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} = TU #Base.IndexStyle(::AbstractUnitRangesSortedSet) = IndexLinear() function Base.collect(::Type{ElType}, rs::AbstractUnitRangesSortedSet{K,TU}) where {ElType,K,TU} T = inferrangetype(ElType) res = Vector{T}(undef, length(rs)) i = 0 for r in rs res[i+=1] = to_urange(T, ElType(first(r)), ElType(last(r))) end return res end function Base.collect(rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} res = Vector{TU}(undef, length(rs)) i = 0 for r in rs res[i+=1] = to_urange(TU, r) end return res end @inline function indexcompare(rs::VecUnitRangesSortedSet, i, j) if i < j return -1 elseif i > j return 1 else return 0 end end @inline function indexcompare(rs::AbstractUnitRangesSortedSubSet{K,TU,P}, i, j) where {K,TU,P<:VecUnitRangesSortedSet} if i < j return -1 elseif i > j return 1 else return 0 end end @inline indexcompare(rs::UnitRangesSortedSet, i, j) = compare(rs.ranges, i, j) @inline indexcompare(rs::AbstractUnitRangesSortedSubSet{K,TU,P}, i, j) where {K,TU,P<:UnitRangesSortedSet} = compare(rs.parent.ranges, i, j) @inline function getrange(rs::AbstractUnitRangesSortedSet{K,TU}, i) where {K,TU} if in(i, rs) return to_urange(TU, first(i), last(i)) else return nothing end end @inline getindex_tuple(rs::VecUnitRangesSortedSet, i) = (rs.rstarts[i], rs.rstops[i]) @inline getindex_tuple(rs::UnitRangesSortedSet, i::IntSemiToken) = tuple(deref((rs.ranges, i))...) @inline getindex_tuple(rs::UnitRangesSortedSubSet0, i) = (r = getindex(rs, i); tuple(first(r), last(r))) @inline getindex_tuple(rs::UnitRangesSortedSubSet1, i) = (r = getindex(rs, i); tuple(first(r), last(r))) @inline getindex_tuple(rs::UnitRangesSortedSubSet, i) = (r = getindex(rs, i); tuple(first(r), last(r))) @inline Base.getindex(rs::VecUnitRangesSortedSet{K,TU}, i) where {K,TU} = to_urange(TU, rs.rstarts[i], rs.rstops[i]) @inline Base.getindex(rs::UnitRangesSortedSet{K,TU}, i::IntSemiToken) where {K,TU} = to_urange(TU, deref((rs.ranges, i))...) @inline Base.getindex(rs::UnitRangesSortedSet{K,TU}, t::SDMToken) where {K,TU} = to_urange(TU, deref(t)...) @inline Base.getindex(ur::URSSIndexURange, i::Integer) = _getindex(ur, i) # ambiguity @inline Base.getindex(ur::URSSIndexURange, i::Colon) = _getindex(ur, i) @inline Base.getindex(ur::URSSIndexURange, i::StepRange{T}) where {T<:Integer} = _getindex(ur, i) @inline Base.getindex(ur::URSSIndexURange, i::AbstractUnitRange{T}) where {T<:Integer} = _getindex(ur, i) @inline function _getindex(ur::URSSIndexURange, i) @boundscheck indexcompare(ur.parent, first(ur), i) != 1 && indexcompare(ur.parent, i, last(ur)) != 1 || throw(BoundsError(ur, i)) getindex(ur.parent, i) end @inline Base.getindex(rs::UnitRangesSortedSubSet0{K,TU}, i) where {K,TU} = (throw(BoundsError(rs)); to_urange(TU, rs.kstart, rs.kstop)) @inline function Base.getindex(rs::UnitRangesSortedSubSet1, i) @boundscheck i == rs.firstindex || throw(BoundsError(rs, i)) rs.singlerange end @inline function Base.getindex(rs::UnitRangesSortedSubSet{K,TU,P}, i) where {K,TU,P<:VecUnitRangesSortedSet} @boundscheck beforefirstindex(rs) < i < pastlastindex(rs) || throw(BoundsError(rs, i)) if i == rs.firstindex return rs.firstrange elseif i < rs.lastindex return getindex(rs.parent, i) else return rs.lastrange end end @inline function Base.getindex(rs::UnitRangesSortedSubSet, i) @boundscheck indexcompare(rs.parent, rs.firstindex, i) != 1 && indexcompare(rs.parent, i, rs.lastindex) != 1 || throw(BoundsError(rs, i)) if indexcompare(rs, i, rs.firstindex) == 0 return rs.firstrange elseif indexcompare(rs, i, rs.lastindex) == -1 return getindex(rs.parent, i) else return rs.lastrange end end @inline getindex_rangestart(rs::VecUnitRangesSortedSet, i) = rs.rstarts[i] @inline getindex_rangestop(rs::VecUnitRangesSortedSet, i) = rs.rstops[i] @inline getindex_rangestart(rs::UnitRangesSortedSet, i) = deref_key((rs.ranges, i)) @inline getindex_rangestop(rs::UnitRangesSortedSet, i) = deref_value((rs.ranges, i)) @inline getindex_rangestart(rs::AbstractUnitRangesSortedSubSet, i) = first(getindex(rs, i)) @inline getindex_rangestop(rs::AbstractUnitRangesSortedSubSet, i) = last(getindex(rs, i)) @inline Base.firstindex(rs::VecUnitRangesSortedSet) = firstindex(rs.rstarts) @inline Base.firstindex(rs::UnitRangesSortedSet) = startof(rs.ranges) @inline Base.firstindex(rs::AbstractUnitRangesSortedSubSet) = rs.firstindex @inline Base.lastindex(rs::VecUnitRangesSortedSet) = lastindex(rs.rstarts) @inline Base.lastindex(rs::UnitRangesSortedSet) = lastindex(rs.ranges) @inline Base.lastindex(rs::AbstractUnitRangesSortedSubSet) = rs.lastindex """ first(rs::AbstractUnitRangesSortedSet) Returns first range from the set of ranges `rs`. """ @inline Base.first(rs::VecUnitRangesSortedSet{K,TU}) where {K,TU} = to_urange(TU, rs.rstarts[1], rs.rstops[1]) @inline Base.first(rs::UnitRangesSortedSet{K,TU}) where {K,TU} = to_urange(TU, deref((rs.ranges, startof(rs.ranges)))...) @inline Base.first(rs::UnitRangesSortedSubSet0) = getindex(rs, firstindex(rs)) @inline Base.first(rs::UnitRangesSortedSubSet1) = rs.singlerange @inline Base.first(rs::UnitRangesSortedSubSet) = getindex(rs, firstindex(rs)) """ last(rs::AbstractUnitRangesSortedSet) Returns last range from the set of ranges `rs`. """ @inline Base.last(rs::VecUnitRangesSortedSet{K,TU}) where {K,TU} = to_urange(TU, rs.rstarts[end], rs.rstops[end]) @inline Base.last(rs::UnitRangesSortedSet{K,TU}) where {K,TU} = to_urange(TU, deref((rs.ranges, lastindex(rs.ranges)))...) @inline Base.last(rs::UnitRangesSortedSubSet0) = getindex(rs, lastindex(rs)) @inline Base.last(rs::UnitRangesSortedSubSet1) = rs.singlerange @inline Base.last(rs::UnitRangesSortedSubSet) = getindex(rs, lastindex(rs)) @inline beforefirstindex(rs::VecUnitRangesSortedSet) = firstindex(rs.rstarts) - 1 @inline beforefirstindex(rs::UnitRangesSortedSet) = beforestartsemitoken(rs.ranges) @inline beforefirstindex(rs::AbstractUnitRangesSortedSubSet) = rs.beforefirstindex @inline pastlastindex(rs::VecUnitRangesSortedSet) = lastindex(rs.rstarts) + 1 @inline pastlastindex(rs::UnitRangesSortedSet) = pastendsemitoken(rs.ranges) @inline pastlastindex(rs::AbstractUnitRangesSortedSubSet) = rs.pastlastindex @inline DataStructures.advance(rs::VecUnitRangesSortedSet, state) = state + 1 @inline DataStructures.advance(rs::UnitRangesSortedSet, state) = advance((rs.ranges, state)) @inline DataStructures.advance(rs::AbstractUnitRangesSortedSubSet, state) = advance(rs.parent, state) @inline DataStructures.regress(rs::VecUnitRangesSortedSet, state) = state - 1 @inline DataStructures.regress(rs::UnitRangesSortedSet, state) = regress((rs.ranges, state)) @inline DataStructures.regress(rs::AbstractUnitRangesSortedSubSet, state) = regress(rs.parent, state) # # Searching functions # "Returns index of range in which, or after, `k` is placed." @inline searchsortedrangelast(rs::VecUnitRangesSortedSet{K}, k) where {K} = searchsortedlast(rs.rstarts, K(k); lt=<) @inline searchsortedrangelast(rs::UnitRangesSortedSet{K}, k) where {K} = searchsortedlast(rs.ranges, K(k)) @inline searchsortedrangelast(rs::UnitRangesSortedSubSet0, k) = beforefirstindex(rs) @inline searchsortedrangelast(rs::UnitRangesSortedSubSet1{K}, k) where {K} = K(k) >= rs.kstart ? rs.firstindex : beforefirstindex(rs) @inline searchsortedrangelast(rs::UnitRangesSortedSubSet{K,TU,P,Tix}, k) where {K,TU,P<:VecUnitRangesSortedSet,Tix} = searchsortedlast(rs.parent.rstarts, K(k), rs.firstindex, rs.lastindex, Base.ord(isless, identity, false)) @inline function searchsortedrangelast(rs::UnitRangesSortedSubSet{K,TU,P,Tix}, k) where {K,TU,P<:UnitRangesSortedSet,Tix} ir_k = searchsortedlast(rs.parent.ranges, K(k)) if compare(rs.parent.ranges, ir_k, beforefirstindex(rs)) == 1 && compare(rs.parent.ranges, ir_k, pastlastindex(rs)) == -1 return ir_k else return beforefirstindex(rs) end end "Returns index of range in which, or before, `k` is placed." @inline searchsortedrangefirst(rs::VecUnitRangesSortedSet{K}, k) where {K} = searchsortedfirst(rs.rstops, K(k); lt=isless) @inline function searchsortedrangefirst(rs::UnitRangesSortedSet{K}, k) where {K} ir_k = searchsortedrangelast(rs, K(k)) if ir_k != beforefirstindex(rs) && in(K(k), getindex(rs, ir_k)) return ir_k else return advance(rs, ir_k) end end @inline searchsortedrangefirst(rs::UnitRangesSortedSubSet0, k) = pastlastindex(rs) @inline searchsortedrangefirst(rs::UnitRangesSortedSubSet1{K}, k) where {K} = K(k) <= rs.kstop ? rs.lastindex : pastlastindex(rs) @inline searchsortedrangefirst(rs::UnitRangesSortedSubSet{K,TU,P,Tix}, k) where {K,TU,P<:VecUnitRangesSortedSet,Tix} = searchsortedfirst(rs.parent.rstops, K(k), rs.firstindex, rs.lastindex, Base.ord(isless, identity, false)) @inline function searchsortedrangefirst(rs::UnitRangesSortedSubSet{K,TU,P,Tix}, k) where {K,TU,P<:UnitRangesSortedSet,Tix} ir_k = searchsortedrangelast(rs, K(k)) if ir_k != beforefirstindex(rs) && in(K(k), getindex(rs, ir_k)) return ir_k else return advance(rs, ir_k) end end "Returns range of `rs` indexes which coincide or concluded in `kk` range." @inline searchsortedrange(rs::AbstractUnitRangesSortedContainer, kk::AbstractRange) = create_indexrange(rs, searchsortedrangefirst(rs, first(kk)), searchsortedrangelast(rs, last(kk))) @inline searchsortedrange(rs::AbstractUnitRangesSortedSubSet, kk::AbstractRange) = create_indexrange(rs.parent, searchsortedrangefirst(rs, first(kk)), searchsortedrangelast(rs, last(kk))) "Returns indexes of range in `rs` in which `k` may be inserted. Or negative range in the case of `k` is between `rs` ranges, and indices of resulted range is the indexes of that neighbors." @inline function searchsortedrange(rs::AbstractUnitRangesSortedContainer{K}, k) where {K} ir_k = searchsortedrangelast(rs, K(k)) if ir_k != beforefirstindex(rs) && in(K(k), getindex(rs, ir_k)) return create_indexrange(rs, ir_k, ir_k) else return create_indexrange(rs, advance(rs, ir_k), ir_k) end end @inline index_status(rs::VecUnitRangesSortedSet, ir) = 0 <= ir <= length(rs)+1 ? 1 : 0 @inline index_status(rs::UnitRangesSortedSet, ir) = status((rs.ranges, ir)) @inline function Base.findfirst(pred::Function, rs::AbstractUnitRangesSortedSet) for i in eachindex(rs) pred(getindex(rs, i)) && return i end return nothing end Base.findall(pred::Function, rs::AbstractUnitRangesSortedSet) = collect(r for r in rs if pred(r)) # # Iterators # @inline Base.iterate(rs::UnitRangesSortedSubSet0) = nothing @inline Base.iterate(rs::UnitRangesSortedSubSet0, state) = nothing @inline Base.iterate(rrs::Base.Iterators.Reverse{T}) where {T<:UnitRangesSortedSubSet0} = nothing @inline Base.iterate(rrs::Base.Iterators.Reverse{T}, state) where {T<:UnitRangesSortedSubSet0} = nothing @inline Base.iterate(rs::UnitRangesSortedSubSet1) = (rs.singlerange, 1) @inline Base.iterate(rs::UnitRangesSortedSubSet1, state) = nothing @inline Base.iterate(rrs::Base.Iterators.Reverse{T}) where {T<:UnitRangesSortedSubSet1} = (rrs.itr.singlerange, 1) @inline Base.iterate(rrs::Base.Iterators.Reverse{T}, state) where {T<:UnitRangesSortedSubSet1} = nothing @inline Base.iterate(rs::AbstractUnitRangesSortedSubSet{K,TU,P}) where {K,TU,P<:VecUnitRangesSortedSet} = (rs.firstrange, rs.firstindex + 1) @inline function Base.iterate(rs::AbstractUnitRangesSortedSubSet{K,TU,P}, state) where {K,TU,P<:VecUnitRangesSortedSet} if state < rs.lastindex return (getindex(rs.parent, state), state + 1) elseif state == rs.lastindex return (rs.lastrange, state + 1) else return nothing end end @inline function Base.iterate(rrs::Base.Iterators.Reverse{T}) where {T<:AbstractUnitRangesSortedSubSet{K,TU,P}} where {K,TU,P<:VecUnitRangesSortedSet} return (rrs.itr.lastrange, rrs.itr.lastindex - 1) end @inline function Base.iterate(rrs::Base.Iterators.Reverse{T}, state) where {T<:AbstractUnitRangesSortedSubSet{K,TU,P}} where {K,TU,P<:VecUnitRangesSortedSet} if rrs.itr.firstindex < state return (getindex(rrs.itr.parent, state), state - 1) elseif rrs.itr.firstindex == state return (rrs.itr.firstrange, state - 1) else return nothing end end @inline Base.iterate(rs::AbstractUnitRangesSortedSubSet{K,TU,P}) where {K,TU,P<:UnitRangesSortedSet} = (rs.firstrange, advance((rs.parent.ranges, rs.firstindex))) @inline function Base.iterate(rs::AbstractUnitRangesSortedSubSet{K,TU,P}, state) where {K,TU,P<:UnitRangesSortedSet} if compare(rs.parent.ranges, state, rs.lastindex) == -1 return (getindex(rs.parent, state), advance((rs.parent.ranges, state))) elseif compare(rs.parent.ranges, state, rs.lastindex) == 0 return (rs.lastrange, advance((rs.parent.ranges, state))) else return nothing end end @inline function Base.iterate(rrs::Base.Iterators.Reverse{T}) where {T<:AbstractUnitRangesSortedSubSet{K,TU,P}} where {K,TU,P<:UnitRangesSortedSet} return (rrs.itr.lastrange, regress((rrs.itr.parent.ranges, rrs.itr.lastindex))) end @inline function Base.iterate(rrs::Base.Iterators.Reverse{T}, state) where {T<:AbstractUnitRangesSortedSubSet{K,TU,P}} where {K,TU,P<:UnitRangesSortedSet} if compare(rrs.itr.parent.ranges, rrs.itr.firstindex, state) == -1 return (getindex(rrs.itr.parent, state), regress((rrs.itr.parent.ranges, state))) elseif compare(rrs.itr.parent.ranges, rrs.itr.firstindex, state) == 0 return (rrs.itr.firstrange, regress((rrs.itr.parent.ranges, state))) else return nothing end end @inline function Base.iterate(rs::AbstractUnitRangesSortedSet, state = firstindex(rs)) if state != pastlastindex(rs) return (getindex(rs, state), advance(rs, state)) else return nothing end end @inline function Base.iterate(rrs::Base.Iterators.Reverse{T}, state = lastindex(rrs.itr)) where {T<:AbstractUnitRangesSortedSet} if state != beforefirstindex(rrs.itr) return (getindex(rrs.itr, state), regress(rrs.itr, state)) else return nothing end end @inline function Base.iterate(ur::URSSIndexURange, state = (first(ur), 0)) st, i = state if i < length(ur) return (st, (advance(ur.parent, st), i + 1)) else return nothing end end @inline function eachindexiterate(rs::AbstractUnitRangesSortedSet, state = firstindex(rs)) if state != pastlastindex(rs) return (state, advance(rs, state)) else return nothing end end @inline function eachindexiterate(rrs::Base.Iterators.Reverse{T}, state = lastindex(rrs.itr)) where {T<:AbstractUnitRangesSortedSet} if state != beforefirstindex(rrs.itr) return (state, regress(rrs.itr, state)) else return nothing end end struct EachIndexIterator{It} itr::It end "`eachindex` iterator" @inline eachindexiterator(itr) = EachIndexIterator(itr) @inline function Base.iterate(it::EachIndexIterator, state...) y = eachindexiterate(it.itr, state...) if y !== nothing return (y[1], y[2]) else return nothing end end Base.eltype(::Type{EachIndexIterator{It}}) where {It} = eltype(It) Base.IteratorEltype(::Type{EachIndexIterator{It}}) where {It} = Base.HasEltype() Base.IteratorSize(::Type{<:EachIndexIterator}) = Base.HasShape{1}() Base.length(it::EachIndexIterator) = length(it.itr) Base.size(it::EachIndexIterator) = (length(it.itr),) Iterators.reverse(it::EachIndexIterator) = EachIndexIterator(Iterators.reverse(it.itr)) Base.eachindex(rs::VecUnitRangesSortedSet) = eachindex(rs.rstarts) Base.eachindex(rs::UnitRangesSortedSet) = eachindexiterator(rs) Base.eachindex(rs::T) where {T<:AbstractUnitRangesSortedSubSet} = eachindexiterator(rs) Base.eachindex(rrs::Base.Iterators.Reverse{T}) where {T<:AbstractUnitRangesSortedSet} = Iterators.reverse(eachindex(rrs.itr)) # TODO: check for https://github.com/JuliaLang/julia/pull/43110/files # # Assignments # @inline Base.in(kk::AbstractRange, rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} = _in(to_urange(TU, kk), rs) @inline Base.in(kk::TU, rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU<:AbstractRange} = _in(kk, rs) @inline function _in(kk::TU, rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} # fast check for cached range index if (ir = rs.lastusedrangeindex) != beforefirstindex(rs) if issubset(kk, getindex(rs, ir)) return true end end # cached range' index miss (or index is not stored), thus try to search iir_kk = searchsortedrange(rs, kk) rs.lastusedrangeindex = last(iir_kk) if length(iir_kk) != 1 return false elseif issubset(kk, getindex(rs, first(iir_kk))) return true else return false end end @inline function Base.in(key, rs::AbstractUnitRangesSortedSet{K}) where K k = K(key) # fast check for cached range index if (ir = rs.lastusedrangeindex) != beforefirstindex(rs) r_start, r_stop = getindex_tuple(rs, ir) if r_start <= k <= r_stop return true end end # cached range index miss (or index not stored), thus try search ir_k = searchsortedrangelast(rs, k) if ir_k != beforefirstindex(rs) # `k` is not before the start of first range r_start, r_stop = getindex_tuple(rs, ir_k) if k <= r_stop # is `k` inside of range rs.lastusedrangeindex = ir_k return true end end rs.lastusedrangeindex = beforefirstindex(rs) return false end @inline Base.in(kk::AbstractRange, su::UnitRangesSortedSubSet0) = false @inline Base.in(key, su::UnitRangesSortedSubSet0) = false @inline Base.in(kk::AbstractRange, su::UnitRangesSortedSubSet1{K,TU}) where {K,TU} = issubset(to_urange(TU, kk), su.singlerange) @inline Base.in(kk::TU, su::UnitRangesSortedSubSet1{K,TU}) where {K,TU<:AbstractRange} = issubset(kk, su.singlerange) @inline Base.in(key, su::UnitRangesSortedSubSet1{K}) where {K} = in(K(key), su.singlerange) @inline Base.in(kk::AbstractRange, su::UnitRangesSortedSubSet{K,TU}) where {K,TU} = _in(to_urange(TU, kk), su) @inline Base.in(kk::TU, su::UnitRangesSortedSubSet{K,TU}) where {K,TU<:AbstractRange} = _in(kk, su) @inline function _in(kk::TU, su::UnitRangesSortedSubSet{K,TU,P}) where {K,TU,P<:VecUnitRangesSortedSet} # bounds check (su.kstart <= first(kk) <= last(kk) <= su.kstop) || return false # fast check for cached range index if (ir = su.parent.lastusedrangeindex) != beforefirstindex(su.parent) && su.firstindex <= first(ir) <= last(ir) <= su.lastindex if issubset(kk, getindex(su, ir)) return true end end # cached range' index miss (or index is not stored), thus try search iir_kk = searchsortedrange(su, kk) su.parent.lastusedrangeindex = last(iir_kk) if length(iir_kk) != 1 return false elseif issubset(kk, getindex(su, first(iir_kk))) return true else return false end end @inline function _in(kk::TU, su::UnitRangesSortedSubSet{K,TU}) where {K,TU} # bounds check issubset(kk, to_urange(TU, su.kstart, su.kstop)) || return false iir_kk = searchsortedrange(su, kk) su.parent.lastusedrangeindex = last(iir_kk) if length(iir_kk) != 1 return false elseif issubset(kk, getindex(su, first(iir_kk))) return true else return false end end @inline function Base.in(key, su::UnitRangesSortedSubSet{K}) where {K} k = K(key) # check outbound (k < su.kstart || su.kstop < k) && return false # fast check for cached range index if (ir = su.parent.lastusedrangeindex) != beforefirstindex(su.parent) && indexcompare(su, su.firstindex, ir) < 1 && indexcompare(su, ir, su.lastindex) < 1 r_start, r_stop = getindex_tuple(su, ir) if r_start <= k <= r_stop return true end end # cached range index miss (or index not stored), thus try search ir_k = searchsortedrangelast(su, k) if ir_k != beforefirstindex(su) # `k` is not before the start of first range r_start, r_stop = getindex_tuple(su, ir_k) if r_start <= k <= r_stop # is `k` inside of range su.parent.lastusedrangeindex = ir_k return true end end su.parent.lastusedrangeindex = beforefirstindex(su.parent) return false end function Base.push!(rs::VecUnitRangesSortedSet{K,TU}, II::Union{AbstractVector,AbstractSet,NTuple}) where {K,TU} for r in II push!(rs, r) end rs end @inline Base.push!(rs::VecUnitRangesSortedSet{K,TU}, kk::AbstractRange) where {K,TU} = _push!(rs, to_urange(TU, kk)) @inline Base.push!(rs::VecUnitRangesSortedSet{K,TU}, kk::TU) where {K,TU<:AbstractRange} = _push!(rs, kk) function _push!(rs::VecUnitRangesSortedSet{K,TU}, kk::TU) where {K,TU} if length(kk) == 0 return rs elseif length(kk) == 1 push!(rs, first(kk)) return rs end rs.lastusedrangeindex = beforefirstindex(rs) iir_kk = searchsortedrange(rs, kk) # `kk` already exist in `rs` and the same as the corresponding range in `rs`, nothing to do if length(iir_kk) == 1 && kk == getindex(rs, first(iir_kk)) return rs # delete all inside `kk` ranged in `rs` else delete!(rs, kk) end # get neighbors pointers # Note: the range will be zero-length, thus # `first(iir_kk)` will be point to range in `rs` on right side to `kk` and # `last(iir_kk)` will be point to range in `rs` on left side to `kk`. iir_kk = searchsortedrange(rs, first(kk)) @boundscheck @assert iir_kk == searchsortedrange(rs, last(kk)) "FIXME: Something went wrong." iir_kk_left = last(iir_kk) iir_kk_right = first(iir_kk) # `kk` is adjoined in both sides with `rs` ranges, thus join them all if iir_kk_left != beforefirstindex(rs) && getindex_rangestop(rs, iir_kk_left) + 1 == first(kk) && iir_kk_right != pastlastindex(rs) && getindex_rangestart(rs, iir_kk_right) - 1 == last(kk) rs.rstops[iir_kk_left] = getindex_rangestop(rs, iir_kk_right) deleteat!(rs.rstarts, iir_kk_right) deleteat!(rs.rstops, iir_kk_right) # `kk` is adjoin with `rs` range on left side, thus append to left range elseif iir_kk_left != beforefirstindex(rs) && getindex_rangestop(rs, iir_kk_left) + 1 == first(kk) && iir_kk_right != pastlastindex(rs) && getindex_rangestart(rs, iir_kk_right) - 1 != last(kk) rs.rstops[iir_kk_left] = last(kk) # `kk` is adjoin with `rs` range on right side, thus prepend to right range elseif iir_kk_left != beforefirstindex(rs) && getindex_rangestop(rs, iir_kk_left) + 1 != first(kk) && iir_kk_right != pastlastindex(rs) && getindex_rangestart(rs, iir_kk_right) - 1 == last(kk) rs.rstarts[iir_kk_right] = first(kk) # `kk` is separate from both sides, insert it elseif iir_kk_left != beforefirstindex(rs) && getindex_rangestop(rs, iir_kk_left) + 1 != first(kk) && iir_kk_right != pastlastindex(rs) && getindex_rangestart(rs, iir_kk_right) - 1 != last(kk) insert!(rs.rstarts, iir_kk_right, first(kk)) insert!(rs.rstops, iir_kk_right, last(kk)) # `kk` is first range in `rs` and adjoin with range on right side, thus prepend `kk` to right range elseif iir_kk_left == beforefirstindex(rs) && iir_kk_right != pastlastindex(rs) && getindex_rangestart(rs, iir_kk_right) - 1 == last(kk) rs.rstarts[iir_kk_right] = first(kk) # `kk` is separate first range in `rs`, insert it elseif iir_kk_left == beforefirstindex(rs) && iir_kk_right != pastlastindex(rs) && getindex_rangestart(rs, iir_kk_right) - 1 != last(kk) insert!(rs.rstarts, iir_kk_right, first(kk)) insert!(rs.rstops, iir_kk_right, last(kk)) # `kk` is last range in `rs` and adjoin with range on left side, thus append `kk` to left range elseif iir_kk_left != beforefirstindex(rs) && getindex_rangestop(rs, iir_kk_left) + 1 == first(kk) && iir_kk_right == pastlastindex(rs) rs.rstops[iir_kk_left] = last(kk) # `kk` is separate last range in `rs`, insert it elseif iir_kk_left != beforefirstindex(rs) && getindex_rangestop(rs, iir_kk_left) + 1 != first(kk) && iir_kk_right == pastlastindex(rs) insert!(rs.rstarts, iir_kk_right, first(kk)) insert!(rs.rstops, iir_kk_right, last(kk)) # `rs` is empty elseif iir_kk_left == beforefirstindex(rs) && iir_kk_right == pastlastindex(rs) insert!(rs.rstarts, 1, first(kk)) insert!(rs.rstops, 1, last(kk)) else throw(AssertionError("FIXME: Should be unreachable.")) end return rs end function Base.push!(rs::UnitRangesSortedSet{K,TU}, II::Union{AbstractVector,AbstractSet,NTuple}) where {K,TU} for r in II push!(rs, r) end rs end @inline Base.push!(rs::UnitRangesSortedSet{K,TU}, kk::AbstractRange) where {K,TU} = _push!(rs, to_urange(TU, kk)) @inline Base.push!(rs::UnitRangesSortedSet{K,TU}, kk::TU) where {K,TU<:AbstractRange} = _push!(rs, kk) function _push!(rs::UnitRangesSortedSet{K,TU}, kk::TU) where {K,TU} if length(kk) == 0 return rs elseif length(kk) == 1 push!(rs, first(kk)) return rs end rs.lastusedrangeindex = beforefirstindex(rs) iir_kk = searchsortedrange(rs, kk) # `kk` already exist in `rs` and the same as the corresponding range in `rs`, nothing to do if length(iir_kk) == 1 && kk == getindex(rs, first(iir_kk)) return rs # delete all inside `kk` ranged in `rs` else delete!(rs, kk) end # get neighbors pointers # Note: the range will be zero-length, thus # `first(iir_kk)` will be point to range in `rs` on right side to `kk` and # `last(iir_kk)` will be point to range in `rs` on left side to `kk`. iir_kk = searchsortedrange(rs, first(kk)) @boundscheck @assert iir_kk == searchsortedrange(rs, last(kk)) "FIXME: Something went wrong." iir_kk_left = last(iir_kk) iir_kk_right = first(iir_kk) iir_kk_left_rangestop = iir_kk_left != beforefirstindex(rs) ? getindex_rangestop(rs, iir_kk_left) : K(0) iir_kk_right_rangestart = iir_kk_right != pastlastindex(rs) ? getindex_rangestart(rs, iir_kk_right) : K(0) #iir_kk_left_rangestop = iir_kk_left != beforefirstindex(rs) ? # getindex_rangestop(rs, iir_kk_left) : typemin(K) #iir_kk_right_rangestart = iir_kk_right != pastlastindex(rs) ? # getindex_rangestart(rs, iir_kk_right) : typemax(K) # `kk` is adjoined in both sides with `rs` ranges, thus join them all if iir_kk_left != beforefirstindex(rs) && iir_kk_left_rangestop + 1 == first(kk) && iir_kk_right != pastlastindex(rs) && iir_kk_right_rangestart - 1 == last(kk) rs.ranges[iir_kk_left] = getindex_rangestop(rs, iir_kk_right) delete!((rs.ranges, iir_kk_right)) # `kk` is adjoin with `rs` range on left side, thus append to left range elseif iir_kk_left != beforefirstindex(rs) && iir_kk_left_rangestop + 1 == first(kk) && iir_kk_right != pastlastindex(rs) && iir_kk_right_rangestart - 1 != last(kk) rs.ranges[iir_kk_left] = last(kk) # `kk` is adjoin with `rs` range on right side, thus prepend to right range elseif iir_kk_left != beforefirstindex(rs) && iir_kk_left_rangestop + 1 != first(kk) && iir_kk_right != pastlastindex(rs) && iir_kk_right_rangestart - 1 == last(kk) rs.ranges[first(kk)] = getindex_rangestop(rs, iir_kk_right) delete!((rs.ranges, iir_kk_right)) # `kk` is separate from both sides, insert it elseif iir_kk_left != beforefirstindex(rs) && iir_kk_left_rangestop + 1 != first(kk) && iir_kk_right != pastlastindex(rs) && iir_kk_right_rangestart - 1 != last(kk) rs.ranges[first(kk)] = last(kk) # `kk` is first range in `rs` and adjoin with range on right side, thus prepend `kk` to right range elseif iir_kk_left == beforefirstindex(rs) && iir_kk_right != pastlastindex(rs) && iir_kk_right_rangestart - 1 == last(kk) rs.ranges[first(kk)] = getindex_rangestop(rs, iir_kk_right) delete!((rs.ranges, iir_kk_right)) # `kk` is separate first range in `rs`, insert it elseif iir_kk_left == beforefirstindex(rs) && iir_kk_right != pastlastindex(rs) && iir_kk_right_rangestart - 1 != last(kk) rs.ranges[first(kk)] = last(kk) # `kk` is last range in `rs` and adjoin with range on left side, thus append `kk` to left range elseif iir_kk_left != beforefirstindex(rs) && iir_kk_left_rangestop + 1 == first(kk) && iir_kk_right == pastlastindex(rs) rs.ranges[iir_kk_left] = last(kk) # `kk` is separate last range in `rs`, insert it elseif iir_kk_left != beforefirstindex(rs) && iir_kk_left_rangestop + 1 != first(kk) && iir_kk_right == pastlastindex(rs) rs.ranges[first(kk)] = last(kk) # `rs` is empty elseif iir_kk_left == beforefirstindex(rs) && iir_kk_right == pastlastindex(rs) rs.ranges[first(kk)] = last(kk) else throw(AssertionError("FIXME: Should be unreachable.")) end return rs end @inline function check_exist_and_update(rs, k) # fast check for cached range index if (ir = rs.lastusedrangeindex) != beforefirstindex(rs) r_start, r_stop = getindex_tuple(rs, ir) if r_start <= k <= r_stop return nothing end end ir_k = searchsortedrangelast(rs, k) # #sstatus = status((rs.ranges, ir_k)) @boundscheck if index_status(rs, ir_k) == 0 # invalid range index throw(BoundsError(rs, k)) end # check the index exist and update its data if ir_k != beforefirstindex(rs) # `k` is not before the first index if k <= getindex_rangestop(rs, ir_k) rs.lastusedrangeindex = ir_k return nothing end end return ir_k end function Base.push!(rs::VecUnitRangesSortedSet{K,TU}, key) where {K,TU} k = K(key) ir_k = check_exist_and_update(rs, k) ir_k == nothing && return rs if length(rs) == 0 push!(rs.rstarts, k) push!(rs.rstops, k) rs.lastusedrangeindex = 1 return rs end if ir_k == beforefirstindex(rs) # `k` is before the first range if rs.rstarts[1] - k > 1 # there is will be gap in indices after inserting pushfirst!(rs.rstarts, k) pushfirst!(rs.rstops, k) else # prepend to first range rs.rstarts[1] = k end rs.lastusedrangeindex = 1 return rs end r = getindex(rs, ir_k) if k >= rs.rstarts[end] # `k` is after the last range start if k > last(r) + 1 # there is will be the gap in indices after inserting push!(rs.rstarts, k) push!(rs.rstops, k) else # just append to last range rs.rstops[ir_k] += 1 end rs.lastusedrangeindex = lastindex(rs) return rs end # `k` is somewhere between indices stnext = advance(rs, ir_k) rnext = getindex(rs, stnext) if first(rnext) - last(r) == 2 # join ranges rs.rstarts[ir_k] = first(r) rs.rstops[ir_k] = last(rnext) deleteat!(rs.rstarts, stnext) deleteat!(rs.rstops, stnext) rs.lastusedrangeindex = ir_k elseif k - last(r) == 1 # append to left range rs.rstops[ir_k] += 1 rs.lastusedrangeindex = ir_k elseif first(rnext) - k == 1 # prepend to right range rs.rstarts[stnext] -= 1 rs.lastusedrangeindex = stnext else # insert single element range insert!(rs.rstarts, stnext, k) insert!(rs.rstops, stnext, k) rs.lastusedrangeindex = stnext end return rs end function Base.push!(rs::UnitRangesSortedSet{K,TU}, key) where {K,TU} k = K(key) ir_k = check_exist_and_update(rs, k) ir_k == nothing && return rs if length(rs) == 0 rs.ranges[k] = k rs.lastusedrangeindex = firstindex(rs) return rs end if ir_k == beforefirstindex(rs) # `k` is before the first index stnext = advance(rs, ir_k) rnext = getindex(rs, stnext) if first(rnext) - k > 1 # there is will be gap in indices after inserting rs.ranges[k] = k else # prepend to first range rs.ranges[k] = last(rnext) delete!((rs.ranges, stnext)) end rs.lastusedrangeindex = firstindex(rs) return rs end r = getindex(rs, ir_k) if k > last(last(rs)) # `k` is after the last range end index if last(r) + 1 < k # there is will be the gap in indices after inserting rs.ranges[k] = k else # just append to last range rs.ranges[ir_k] = last(r)+1 end rs.lastusedrangeindex = lastindex(rs) return rs end rs.lastusedrangeindex = beforefirstindex(rs) # `k` is somewhere between indices stnext = advance(rs, ir_k) rnext = getindex(rs, stnext) if first(rnext) - last(r) == 2 # join ranges rs.ranges[ir_k] = last(rnext) delete!((rs.ranges, stnext)) elseif k - last(r) == 1 # append to left range rs.ranges[ir_k] = k rs.lastusedrangeindex = ir_k elseif first(rnext) - k == 1 # prepend to right range rs.ranges[k] = last(rnext) delete!((rs.ranges, stnext)) else # insert single element range rs.ranges[k] = k end return rs end function Base.delete!(rs::VecUnitRangesSortedSet{K,TU}, II::T) where {K,TU, T<:Union{AbstractVector,AbstractSet,NTuple}} if hasmethod(Iterators.reverse, Tuple{T}) && hasmethod(keys, Tuple{T}) for r in Iterators.reverse(II) delete!(rs, r) end else for r in II delete!(rs, r) end end rs end @inline Base.delete!(rs::VecUnitRangesSortedSet{K,TU}, kk::AbstractRange) where {K,TU} = _delete!(rs, to_urange(TU, kk)) @inline Base.delete!(rs::VecUnitRangesSortedSet{K,TU}, kk::TU) where {K,TU<:AbstractRange} = _delete!(rs, kk) function _delete!(rs::VecUnitRangesSortedSet{K,TU}, kk::TU) where {K,TU} length(kk) == 0 && return rs iir_kk = searchsortedrange(rs, kk) length(iir_kk) == 0 && return rs rs.lastusedrangeindex = beforefirstindex(rs) # delete all concluded ranges todelete1 = getindex_rangestart(rs, first(iir_kk)) < first(kk) ? first(iir_kk) + 1 : first(iir_kk) todelete2 = getindex_rangestop(rs, last(iir_kk)) > last(kk) ? last(iir_kk) - 1 : last(iir_kk) splice!(rs.rstarts, todelete1:todelete2) splice!(rs.rstops, todelete1:todelete2) # remains the side ranges to delete # Note: there is not possible `beforefirstindex` or `pastlastindex` in `iir_kk` iir_kk = searchsortedrange(rs, kk) length(iir_kk) == 0 && return rs iir_kk_rangestart = getindex_rangestart(rs, first(iir_kk)) iir_kk_rangestop = getindex_rangestop(rs, last(iir_kk)) # `kk` intersects only one range in `rs` if length(iir_kk) == 1 # inside one range, thus split it if iir_kk_rangestart < first(kk) && last(kk) < iir_kk_rangestop insert!(rs.rstarts, advance(rs, first(iir_kk)), last(kk) + 1) insert!(rs.rstops, first(iir_kk), first(kk) - 1) # `kk` intersects with, or inside in, one range from left side, thus shrink from left side elseif iir_kk_rangestart >= first(kk) && last(kk) < iir_kk_rangestop rs.rstarts[first(iir_kk)] = last(kk) + 1 # `kk` intersects with, or inside in, one range from right side, thus shrink from right side # inside one range, ended to left side, thus shrink from right side elseif iir_kk_rangestart < first(kk) && last(kk) >= iir_kk_rangestop rs.rstops[first(iir_kk)] = first(kk) - 1 else throw(AssertionError("FIXME: Should be unreachable.")) end # All remaining cases are with two ranges from `rs`, # and both side ranges only partly intersects with `kk`. elseif length(iir_kk) == 2 # shrink second (right) range from the left side rs.rstarts[last(iir_kk)] = last(kk) + 1 # shrink first (left) range from the right side rs.rstops[first(iir_kk)] = first(kk) - 1 else throw(AssertionError("FIXME: Should be unreachable.")) end return rs end function Base.delete!(rs::UnitRangesSortedSet{K,TU}, II::Union{AbstractVector,AbstractSet,NTuple}) where {K,TU} for r in II delete!(rs, r) end rs end @inline Base.delete!(rs::UnitRangesSortedSet{K,TU}, kk::AbstractRange) where {K,TU} = _delete!(rs, to_urange(TU, kk)) @inline Base.delete!(rs::UnitRangesSortedSet{K,TU}, kk::TU) where {K,TU<:AbstractRange} = _delete!(rs, kk) function _delete!(rs::UnitRangesSortedSet{K,TU}, kk::TU) where {K,TU} length(kk) == 0 && return rs iir_kk = searchsortedrange(rs, kk) length(iir_kk) == 0 && return rs rs.lastusedrangeindex = beforefirstindex(rs) # delete all concluded ranges todelete1 = getindex_rangestart(rs, first(iir_kk)) < first(kk) ? advance(rs, first(iir_kk)) : first(iir_kk) todelete2 = getindex_rangestop(rs, last(iir_kk)) > last(kk) ? regress(rs, last(iir_kk)) : last(iir_kk) for st in onlysemitokens(inclusive(rs.ranges, todelete1, todelete2)) delete!((rs.ranges, st)) end # remains the side ranges to delete # Note: there is not possible `beforefirstindex` or `pastlastindex` in `iir_kk` iir_kk = searchsortedrange(rs, kk) length(iir_kk) == 0 && return rs iir_kk_rangestart = getindex_rangestart(rs, first(iir_kk)) iir_kk_rangestop = getindex_rangestop(rs, last(iir_kk)) # `kk` intersects only one range in `rs` if length(iir_kk) == 1 # inside one range, thus split it if iir_kk_rangestart < first(kk) && last(kk) < iir_kk_rangestop rs.ranges[last(kk) + 1] = iir_kk_rangestop rs.ranges[first(iir_kk)] = first(kk) - 1 # `kk` intersects with, or inside in, one range from left side, thus shrink from left side elseif iir_kk_rangestart >= first(kk) && last(kk) < iir_kk_rangestop rs.ranges[last(kk) + 1] = iir_kk_rangestop delete!((rs.ranges, first(iir_kk))) # `kk` intersects with, or inside in, one range from right side, thus shrink from right side # inside one range, ended to left side, thus shrink from right side elseif iir_kk_rangestart < first(kk) && last(kk) >= iir_kk_rangestop rs.ranges[first(iir_kk)] = first(kk) - 1 else throw(AssertionError("FIXME: Should be unreachable.")) end # All remaining cases are with two ranges from `rs`, # and both side ranges only partly intersects with `kk`. elseif length(iir_kk) == 2 # shrink second (right) range from the left side rs.ranges[last(kk) + 1] = iir_kk_rangestop delete!((rs.ranges, last(iir_kk))) # shrink first (left) range from the right side rs.ranges[first(iir_kk)] = first(kk) - 1 else throw(AssertionError("FIXME: Should be unreachable.")) end return rs end function Base.delete!(rs::VecUnitRangesSortedSet{K,TU}, key) where {K,TU} k = K(key) length(rs) == 0 && return rs ir_k = searchsortedrangelast(rs, k) if ir_k == beforefirstindex(rs) # `k` is before first range return rs end r = getindex(rs, ir_k) if k > last(r) # `k` is outside of range return rs end if last(r) - first(r) + 1 == 1 deleteat!(rs.rstarts, ir_k) deleteat!(rs.rstops, ir_k) elseif k == last(r) # last index in range rs.rstops[ir_k] -= 1 elseif k == first(r) # first index in range rs.rstarts[ir_k] += 1 else insert!(rs.rstarts, advance(rs, ir_k), k+1) insert!(rs.rstops, advance(rs, ir_k), last(r)) rs.rstops[ir_k] = k-1 end rs.lastusedrangeindex = beforefirstindex(rs) return rs end function Base.delete!(rs::UnitRangesSortedSet{K,TU}, key) where {K,TU} k = K(key) length(rs) == 0 && return rs ir_k = searchsortedrangelast(rs, k) if ir_k == beforefirstindex(rs) # `k` is before first index return rs end r = getindex(rs, ir_k) if k > last(r) # `k` is outside of range return rs end if last(r) - first(r) + 1 == 1 delete!((rs.ranges, ir_k)) elseif k == last(r) # last index in range rs.ranges[ir_k] = last(r) - 1 elseif k == first(r) # first index in range delete!((rs.ranges, ir_k)) rs.ranges[k+1] = last(r) else rs.ranges[ir_k] = k - 1 rs.ranges[k+1] = last(r) end rs.lastusedrangeindex = beforefirstindex(rs) return rs end function Base.pop!(rs::AbstractUnitRangesSortedContainer, k) if (r = getrange(rs, k)) !== nothing delete!(rs, k) return r else throw(KeyError(k)) end end function Base.pop!(rs::AbstractUnitRangesSortedContainer, k, default) if (r = getrange(rs, k)) !== nothing delete!(rs, k) return r else return default end end Base.empty(rs::T) where {T<:AbstractUnitRangesSortedContainer} = T() function Base.empty!(rs::VecUnitRangesSortedSet) empty!(rs.rstarts) empty!(rs.rstops) rs.lastusedrangeindex = beforefirstindex(rs) rs end function Base.empty!(rs::AbstractUnitRangesSortedContainer) empty!(rs.ranges) rs.lastusedrangeindex = beforefirstindex(rs) rs end @inline Base.copy(rs::T) where {T<:VecUnitRangesSortedSet} = T(rs.lastusedrangeindex, copy(rs.rstarts), copy(rs.rstops)) @inline Base.copy(rs::T) where {T<:UnitRangesSortedSet} = T(beforefirstindex(rs), packcopy(rs.ranges)) @inline Base.union(rs::AbstractUnitRangesSortedSet, rss...) = union!(copy(rs), rss...) @inline Base.union(rs::AbstractUnitRangesSortedSet, rs2) = union!(copy(rs), rs2) @inline Base.union!(rs::AbstractUnitRangesSortedContainer, rss...) = union!(union!(rs, rss[1]), Base.tail(rss)...) function Base.union!(rs::AbstractUnitRangesSortedContainer, rs2) issubset(rs2, rs) && return rs for r in rs2 push!(rs, r) end return rs end @inline Base.union!(rs::AbstractUnitRangesSortedContainer, r::AbstractRange) = push!(rs, r) @inline Base.setdiff(rs::AbstractUnitRangesSortedSet, rss...) = setdiff!(copy(rs), rss...) @inline Base.setdiff(rs::AbstractUnitRangesSortedSet, rs2) = setdiff!(copy(rs), rs2) @inline Base.setdiff!(rs::AbstractUnitRangesSortedContainer, rss...) = setdiff!(setdiff!(rs, rss[1]), Base.tail(rss)...) @inline Base.setdiff!(rs::AbstractUnitRangesSortedContainer, rs2::AbstractRange) = delete!(rs, rs2) function Base.setdiff!(rs::AbstractUnitRangesSortedContainer, rs2) if hasmethod(Iterators.reverse, Tuple{typeof(rs2)}) && hasmethod(keys, Tuple{typeof(rs2)}) for r in Iterators.reverse(rs2) delete!(rs, r) end else for r in rs2 delete!(rs, r) end end return rs end @inline Base.symdiff(rs::AbstractUnitRangesSortedSet, sets...) = symdiff!(copy(rs), sets...) @inline Base.symdiff(rs::AbstractUnitRangesSortedSet, s) = symdiff!(copy(rs), s) @inline Base.symdiff!(rs::AbstractUnitRangesSortedContainer, rss...) = symdiff!(_symdiff!(rs, rss[1]), Base.tail(rss)...) @inline Base.symdiff!(rs1::AbstractUnitRangesSortedContainer, rs2) = _symdiff!(rs1, rs2) @inline Base.symdiff!(rs1::AbstractUnitRangesSortedContainer, rs2::AbstractSet) = _symdiff!(rs1, rs2) # AbstractSet ambiguity function _symdiff!(rs1::AbstractUnitRangesSortedContainer{K,TU}, rs2) where {K,TU} for r in rs2 ss = subset(rs1, r) vv = collect(ss) if length(vv) == 0 push!(rs1, r) elseif length(vv) == 1 delete!(rs1, vv[1]) push!(rs1, to_urange(TU, first(r), safe_sub(first(vv[1]), 1))) push!(rs1, to_urange(TU, safe_add(last(vv[1]), 1), last(r))) else push!(rs1, to_urange(TU, first(r), safe_sub(first(vv[1]), 1))) push!(rs1, to_urange(TU, safe_add(last(vv[end]), 1), last(r))) rnext, rhead = Iterators.peel(Iterators.reverse(vv)) delete!(rs1, rnext) for rr in rhead delete!(rs1, rr) push!(rs1, to_urange(TU, last(rr)+1, first(rnext)-1)) rnext = rr end end end return rs1 end @inline Base.:(==)(rs1::T1, rs2::T2) where {T1<:AbstractUnitRangesSortedSet, T2<:AbstractUnitRangesSortedSet} = T1 == T2 && isequal(rs1, rs2) function Base.isequal(rs1::AbstractUnitRangesSortedSet, rs2::AbstractUnitRangesSortedSet) length(rs1) == length(rs2) || return false for (r1,r2) in zip(rs1, rs2) r1 == r2 || return false end return true end function Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::AbstractUnitRangesSortedSet) for r1 in rs1 in(r1, rs2) || return false end return true end function Base.issubset(rs1::Union{AbstractSet,AbstractVector,AbstractRange,Tuple}, rs2::AbstractUnitRangesSortedSet) for r1 in rs1 in(r1, rs2) || return false end return true end @inline Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::Union{AbstractSet,AbstractVector,AbstractRange,Tuple}) = _issubset1(rs1, rs2) @inline Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::SortedSet) = _issubset1(rs1, rs2) # ambiguity function _issubset1(rs1::AbstractUnitRangesSortedSet, rs2) for r1 in rs1 issubset(r1, rs2) || return false end return true end @inline Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::AbstractSet{T}) where {T<:AbstractRange} = _issubset2(rs1, rs2) @inline Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::SortedSet{T}) where {T<:AbstractRange} = _issubset2(rs1, rs2) # ambiguity @inline Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::AbstractVector{T}) where {T<:AbstractRange} = _issubset2(rs1, rs2) @inline Base.issubset(rs1::AbstractUnitRangesSortedSet, rs2::Tuple{Vararg{AbstractRange}}) = _issubset2(rs1, rs2) function _issubset2(rs1::AbstractUnitRangesSortedSet, rs2) for r1 in rs1 findfirst(s->issubset(r1, s), rs2) !== nothing || return false end return true end function Base.filter(pred::Function, rs::AbstractUnitRangesSortedContainer) res = empty(rs) for r in rs pred(r) && push!(res, r) end res end function Base.filter!(pred::Function, rs::AbstractUnitRangesSortedContainer) for r in Iterators.reverse(rs) pred(r) || delete!(rs, r) end rs end @inline Base.intersect!(rs::AbstractUnitRangesSortedContainer{K,TU}, kk::AbstractRange) where {K,TU} = __intersect!(rs, to_urange(TU,kk)) @inline Base.intersect!(rs::AbstractUnitRangesSortedContainer{K,TU}, kk::TU) where {K,TU<:AbstractRange} = __intersect!(rs, kk) function __intersect!(rs::AbstractUnitRangesSortedContainer{K,TU}, kk::TU) where {K,TU} length(kk) == 0 && return empty!(rs) delete!(rs, safe_add(last(kk), 1):getindex_rangestop(rs, lastindex(rs))) delete!(rs, getindex_rangestart(rs, firstindex(rs)):safe_sub(first(kk), 1)) rs end function Base.intersect!(rs1::AbstractUnitRangesSortedContainer, rs2::AbstractUnitRangesSortedSet) length(rs2) == 0 && return empty!(rs1) # cut both sides up to `rs2` indices intersect!(rs1, getindex_rangestart(rs2, firstindex(rs2)):getindex_rangestop(rs2, lastindex(rs2))) length(rs2) == 1 && return rs1 if hasmethod(Iterators.reverse, Tuple{typeof(rs2)}) && hasmethod(keys, Tuple{typeof(rs2)}) rnext, rs2head = Iterators.peel(Iterators.reverse(rs2)) for r in rs2head delete!(rs1, last(r)+1:first(rnext)-1) rnext = r end else rprev, rs2tail = Iterators.peel(rs2) for r in rs2tail delete!(rs1, last(rprev)+1:first(r)-1) rprev = r end end rs1 end # AbstractSet ambiguity resolving Base.intersect!(rs1::AbstractUnitRangesSortedContainer, rs2::AbstractSet) = _intersect1!(rs1, rs2) Base.intersect!(rs1::AbstractUnitRangesSortedContainer, rs2::AbstractVector) = _intersect1!(rs1, rs2) function _intersect1!(rs1::AbstractUnitRangesSortedContainer, rs2) length(rs2) == 0 && return empty!(rs1) rv2 = collect(rs2) sort!(rv2) intersect!(rs1, first(rv2):last(rv2)) length(rv2) == 1 && return rs1 if hasmethod(Iterators.reverse, Tuple{typeof(rv2)}) && hasmethod(keys, Tuple{typeof(rv2)}) rnext, rv2head = Iterators.peel(Iterators.reverse(rv2)) for r in rv2head delete!(rs1, r+1:rnext-1) rnext = r end else rprev, rv2tail = Iterators.peel(rv2) for r in rv2tail delete!(rs1, rprev+1:r-1) rprev = r end end rs1 end Base.intersect!(rs1::AbstractUnitRangesSortedContainer, rs2::AbstractSet{T}) where {T<:AbstractRange} = __intersect1!(rs1, rs2) Base.intersect!(rs1::AbstractUnitRangesSortedContainer, rs2::AbstractVector{T}) where {T<:AbstractRange} = __intersect1!(rs1, rs2) Base.intersect!(rs1::AbstractUnitRangesSortedContainer, rs2::Tuple{Vararg{AbstractRange}}) = __intersect1!(rs1, rs2) function __intersect1!(rs1::AbstractUnitRangesSortedContainer, rs2) length(rs2) == 0 && return empty!(rs1) rv2 = collect(rs2) sort!(rv2) intersect!(rs1, first(rv2[firstindex(rv2)]):last(rv2[lastindex(rv2)])) length(rv2) == 1 && return rs1 hasmethod(Iterators.reverse, Tuple{typeof(rv2)}) || throw(AssertionError("FIXME: TODO.")) rnext, rv2head = Iterators.peel(Iterators.reverse(rv2)) for r in rv2head delete!(rs1, last(r)+1:first(rnext)-1) rnext = r end rs1 end function Base.intersect!(rs1::AbstractVector, rs2::AbstractUnitRangesSortedSet) rs = UnitRangesSortedSet(rs1) intersect!(rs, rs2) if eltype(rs1) <: AbstractRange resize!(rs1, length(rs)) for (i, r) in enumerate(rs) rs1[i] = r end else resize!(rs1, sum(length(r) for r in rs)) i = 0 for r in rs, v in r rs1[i+=1] = v end end rs1 end function Base.intersect!(rs1::AbstractSet, rs2::AbstractUnitRangesSortedSet) rs = UnitRangesSortedSet(rs1) intersect!(rs, rs2) empty!(rs1) if eltype(rs1) <: AbstractRange for r in rs push!(rs1, r) end else for r in rs, v in r push!(rs1, v) end end rs1 end Base.intersect(rs1::AbstractUnitRangesSortedSet, rs2) = intersect!(copy(rs1), rs2) Base.intersect(rs1::AbstractUnitRangesSortedSet, rs2::AbstractUnitRangesSortedSet) = intersect!(copy(rs1), rs2) Base.intersect(rs1::AbstractSet, rs2::AbstractUnitRangesSortedSet) = _intersect2(rs1, rs2) # AbstractSet ambiguity resolving Base.intersect(rs1::AbstractVector, rs2::AbstractUnitRangesSortedSet) = _intersect2(rs1, rs2) function _intersect2(rs1, rs2::AbstractUnitRangesSortedSet) rs = UnitRangesSortedSet(rs1) intersect!(rs, rs2) return convert(typeof(rs1), rs) end # # Aux functions # # https://github.com/JuliaLang/julia/issues/39952 basetype(::Type{T}) where T = Base.typename(T).wrapper ## https://discourse.julialang.org/t/how-do-a-i-get-a-type-stripped-of-parameters/73465/8 #basetype(::Type{T}) where T = eval(nameof(T)) ## https://discourse.julialang.org/t/deparametrising-types/41939/4 #basetype(T::DataType) = T.name.wrapper #basetype(T::UnionAll) = basetype(T.body) datatypeshortname(x) = (T = typeof(x); string(basetype(T)) * "{" * string(eltype(eltype(T))) * "}") Base.show(io::IO, ur::URSSIndexURange) = print(io, repr(first(ur)), ':', length(ur) == 0 ? "0" : "1" , ':', repr(last(ur))) function Base.show(io::IO, ::MIME"text/plain", x::URSSIndexURange) len = length(x) print(io, len, "-element range ", first(x), ":", last(x), " in ", datatypeshortname(x.parent)) if len != 0 println(io, " containing:") show(IOContext(io, :typeinfo => eltype(x)), x) end end function Base.show(io::IOContext, x::URSSIndexURange) ranges = [getindex(x, s) for s in x] n = length(ranges) if isempty(ranges) return show(io, MIME("text/plain"), x) end limit = get(io, :limit, false)::Bool half_screen_rows = limit ? div(displaysize(io)[1] - 8, 2) : typemax(Int) pad = get_max_pad(x.parent) if !haskey(io, :compact) io = IOContext(io, :compact => true) end for k = eachindex(ranges) if k < half_screen_rows || k > length(ranges) - half_screen_rows print(io, " ") if isassigned(ranges, Int(k)) print(io, lpad(repr(first(ranges[k])), pad), ":", repr(last(ranges[k]))) else print(io, Base.undef_ref_str) end k != length(ranges) && println(io) elseif k == half_screen_rows println(io, " "^(pad-1), " \u22ee") end end end function Base.show(io::IO, x::T) where {T<:AbstractUnitRangesSortedSubSet} print(io, "subset(", datatypeshortname(x.parent), ", ", x.firstindex, ":", x.lastindex, "): (") if length(x) > 0 el1, restx = Iterators.peel(x) print(io, repr(first(el1)), ":", repr(last(el1))) for r in restx print(io, ", ", repr(first(r)), ":", repr(last(r))) end end print(io, ")") end function Base.show(io::IO, ::MIME"text/plain", x::T) where {T<:AbstractUnitRangesSortedSubSet} len = length(x) print(io, len, "-element subset(", datatypeshortname(x.parent), ", ", x.firstindex, ":", x.lastindex, ")") if len != 0 println(io, ":") show(IOContext(io, :typeinfo => eltype(x)), x) end end function Base.show(io::IO, x::T) where {T<:AbstractUnitRangesSortedSet} print(io, datatypeshortname(x), "(") if length(x) > 0 el1, restx = Iterators.peel(x) print(io, repr(first(el1)), ":", repr(last(el1))) for r in restx print(io, ", ", repr(first(r)), ":", repr(last(r))) end end print(io, ")") end # derived from stdlib/SparseArrays/src/sparsevector.jl function Base.show(io::IO, ::MIME"text/plain", x::T) where {T<:AbstractUnitRangesSortedSet} len = length(x) if len == 0 println(io, datatypeshortname(x), "()") else println(io, datatypeshortname(x), " with ", len, len==1 ? " element:" : " elements:") show(IOContext(io, :typeinfo => eltype(x)), x) end end Base.show(io::IOContext, x::T) where {T<:AbstractUnitRangesSortedSubSet} = _display_AURSS(io, x) Base.show(io::IOContext, x::T) where {T<:AbstractUnitRangesSortedSet} = _display_AURSS(io, x) function _display_AURSS(io, x) ranges = [v for v in x] n = length(ranges) if isempty(ranges) return show(io, MIME("text/plain"), x) end limit = get(io, :limit, false)::Bool half_screen_rows = limit ? div(displaysize(io)[1] - 8, 2) : typemax(Int) pad = get_max_pad(x) if !haskey(io, :compact) io = IOContext(io, :compact => true) end for k = eachindex(ranges) if k < half_screen_rows || k > length(ranges) - half_screen_rows print(io, " ") if isassigned(ranges, Int(k)) print(io, lpad(repr(first(ranges[k])), pad), ":", repr(last(ranges[k]))) else print(io, Base.undef_ref_str) end k != length(ranges) && println(io) elseif k == half_screen_rows println(io, " "^(pad-1), " \u22ee") end end end function get_max_pad(rs::AbstractUnitRangesSortedSet) len = length(rs) pad = 0 for (i,r) in enumerate(rs) if i < 100 || i > len - 100 pad = max(pad, length(repr(first(r))), length(repr(last(r)))) end end pad end end # of module UnitRangesSortedSets
UnitRangesSortedSets
https://github.com/denius/UnitRangesSortedSets.jl.git
[ "MIT" ]
0.1.2
f0de74163ea91daf9565c5b209506ce18a2d6d67
code
37609
using BenchmarkTools using DataStructures using UnitRangesSortedSets using UnitRangesSortedSets: advance, beforefirstindex, inferrangetype, pastlastindex, regress, to_urange using Test using Aqua Aqua.test_all(UnitRangesSortedSets) # TODO: # Custom Number Type, see Unitful: "runtests.jl" # # Try Test.GenericSet # # [rs[i] for i in searchsortedrange(rs, 10:40)] # # function VecUnitRangesSortedSet(rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} # function UnitRangesSortedSet(rs::AbstractUnitRangesSortedSet{K,TU}) where {K,TU} # @inline function URSSIndexURange(rs::P, l::Tix, r::Tix) where {P<:VecUnitRangesSortedSet, Tix} # URSSIndexURange for VecUnitRangesSortedSet? # @inline Base.firstindex(ur::URSSIndexURange) = ur.start # @inline Base.lastindex(ur::URSSIndexURange) = ur.stop # @inline DataStructures.advance(ur::URSSIndexURange), beforefirstindex # @inline function Base.iterate(ur::URSSIndexURange, state = (first(ur), 0)) # @inline function Base.getindex(ur::URSSIndexURange, i) ??? # @inline function indexcompare(rs::VecUnitRangesSortedSet, i, j) # @inline function indexcompare(rs::AbstractSubUnitRangesSortedSet{K,TU,P}, i, j) where {K,TU,P<:VecUnitRangesSortedSet} # @inline getindex_tuple(rs::Sub01XUnitRangesSortedSet, i) # @inline searchsortedrangelast(rs::Sub01XUnitRangesSortedSet, k) # @inline searchsortedrangefirst(rs::Sub01XUnitRangesSortedSet, k) # @inline searchsortedrange(rs::AbstractSubUnitRangesSortedSet, kk::AbstractRange) # # function Base.show(io::IO, x::T) where {T<:AbstractUnitRangesSortedSubSet} # function Base.show(io::IO, ::MIME"text/plain", x::T) where {T<:AbstractUnitRangesSortedSubSet} # # https://github.com/JuliaLang/julia/issues/39952 basetype(::Type{T}) where T = Base.typename(T).wrapper const list_of_Ti_to_test = (Int, UInt16, Float64, Char) #const list_of_Ti_to_test = (Int, UInt64, UInt16, Float64, Char) const list_of_containers_types_to_test = (VecUnitRangesSortedSet, UnitRangesSortedSet) function check_ranges_isequal(r, rs...) for rr in rs step(r) == step(rr) || return false first(r) == first(rr) || return false last(r) == last(rr) || return false end return true end function check_isequal(rs1, rs2) length(rs1) == length(rs2) || return false for (r1, r2) in zip(rs1, rs2) check_ranges_isequal(r1, r2) || return false end return true end function test_isequal(rs1, rs2) @test length(rs1) == length(rs2) for (r1, r2) in zip(rs1, rs2) @test step(r1) == step(r2) @test first(r1) == first(r2) @test last(r1) == last(r2) end end function test_range_create(rs::T, vu, Tv::Type) where {T<:AbstractUnitRangesSortedContainer} TRange = inferrangetype(Tv) @test eltype(rs) === TRange @test typeof(rs) === basetype(T){Tv,TRange} test_isequal(rs, vu) end convertinfer(K::Type, rs::NTuple{N,T}) where{N,T<:AbstractRange} = convert(NTuple{length(rs),inferrangetype(K)}, rs) convertinfer(K::Type, rs::NTuple{N,T}) where{N,T} = convert(NTuple{length(rs),K}, rs) convertinfer(K::Type, rs::AbstractVector{T}) where{T<:AbstractRange} = convert(Vector{inferrangetype(K)}, rs) convertinfer(K::Type, rs::AbstractVector{T}) where{T} = convert(Vector{K}, rs) convertinfer(K::Type, r::AbstractRange) = to_urange(inferrangetype(K), r) function test_iterators(rs, vu) @test length(rs) == length(vu) @test regress(rs, firstindex(rs)) == beforefirstindex(rs) @test advance(rs, lastindex(rs)) == pastlastindex(rs) @test check_ranges_isequal(rs[firstindex(rs)], rs[begin], first(rs), first(vu)) @test check_ranges_isequal(rs[lastindex(rs)], rs[end], last(rs), last(vu)) @test check_isequal(rs, vu) @test check_isequal(Iterators.reverse(rs), Iterators.reverse(vu)) @test check_isequal([r for r in rs], [r for r in vu]) @test check_isequal([r for r in Iterators.reverse(rs)], [r for r in Iterators.reverse(vu)]) @test sum(r->length(r), rs) == sum(r->length(r), Iterators.reverse(rs)) == sum(i->length(rs[i]), eachindex(rs)) == sum(i->length(rs[i]), eachindex(Iterators.reverse(rs))) == sum(i->length(rs[i]), Iterators.reverse(eachindex(rs))) == sum(r->length(r), vu) end function test_empty_iterators(rs, vu) @test length(rs) == length(vu) @test firstindex(rs) == pastlastindex(rs) @test lastindex(rs) == beforefirstindex(rs) @test_throws BoundsError rs[begin] @test_throws BoundsError rs[end] @test_throws BoundsError first(rs) @test_throws BoundsError last(rs) @test check_isequal(rs, vu) @test check_isequal(Iterators.reverse(rs), Iterators.reverse(vu)) @test check_isequal([r for r in rs], [r for r in vu]) @test check_isequal([r for r in Iterators.reverse(rs)], [r for r in Iterators.reverse(vu)]) @test sum(r->length(r), rs, init=0) == sum(r->length(r), Iterators.reverse(rs), init=0) == sum(i->length(rs[i]), eachindex(rs), init=0) == sum(i->length(rs[i]), eachindex(Iterators.reverse(rs)), init=0) == sum(i->length(rs[i]), Iterators.reverse(eachindex(rs)), init=0) == sum(r->length(r), vu, init=0) end @testset "Creating" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin vu = Vector{inferrangetype($K)}(undef, 0) test_range_create($TypeURSS{$K}(), convertinfer($K, vu), $K) v = [1, 2] vu = [1:2] test_range_create($TypeURSS{$K}(v), convertinfer($K, vu), $K) v = [1, 3, 4] vu = [1:1, 3:4] test_range_create($TypeURSS{$K}(v), convertinfer($K, vu), $K) v = [3:4, 1:1] vu = [1:1, 3:4] test_range_create($TypeURSS{$K}(v), convertinfer($K, vu), $K) v = [3:4, 2:5, 1:1] vu = [1:5] test_range_create($TypeURSS{$K}(v), convertinfer($K, vu), $K) v = [$K(1), $K(3), $K(4)] vu = [1:1, 3:4] test_range_create($TypeURSS(v), convertinfer($K, vu), $K) v = [$K(3):$K(4), $K(1):$K(1)] vu = [1:1, 3:4] test_range_create($TypeURSS(v), convertinfer($K, vu), $K) v = [UInt64(3):UInt64(4), UInt64(1):UInt64(1)] vu = [1:1, 3:4] test_range_create($TypeURSS{$K}(v), convertinfer($K, vu), $K) v = [UInt64(3), UInt64(4), UInt64(1)] vu = [1:1, 3:4] test_range_create($TypeURSS(v), convertinfer(UInt64, vu), UInt64) v = [UInt64(3):UInt64(4), UInt64(1):UInt64(1)] vu = [1:1, 3:4] test_range_create($TypeURSS(v), convertinfer(UInt64, vu), UInt64) end end end end @testset "Searching" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin rs = $TypeURSS{$K}((1:2, 4:4, 6:6)) ir = searchsortedrangelast(rs, 0) @test ir == beforefirstindex(rs) ir = searchsortedrangelast(rs, 1) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 1:2) && ir == firstindex(rs) ir = searchsortedrangelast(rs, 2) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 1:2) && ir == firstindex(rs) ir = searchsortedrangelast(rs, 3) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 1:2) && ir == firstindex(rs) ir = searchsortedrangelast(rs, 4) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 4:4) && ir != firstindex(rs) && ir != lastindex(rs) ir = searchsortedrangelast(rs, 5) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 4:4) && ir != firstindex(rs) && ir != lastindex(rs) ir = searchsortedrangelast(rs, 6) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 6:6) && ir == lastindex(rs) ir = searchsortedrangelast(rs, 7) @test ir != beforefirstindex(rs) && getindex(rs, ir) == convertinfer($K, 6:6) && ir == lastindex(rs) ir = searchsortedrangefirst(rs, 0) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 1:2) && ir == firstindex(rs) ir = searchsortedrangefirst(rs, 1) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 1:2) && ir == firstindex(rs) ir = searchsortedrangefirst(rs, 2) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 1:2) && ir == firstindex(rs) ir = searchsortedrangefirst(rs, 3) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 4:4) && ir != firstindex(rs) && ir != lastindex(rs) ir = searchsortedrangefirst(rs, 4) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 4:4) && ir != firstindex(rs) && ir != lastindex(rs) ir = searchsortedrangefirst(rs, 5) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 6:6) && ir == lastindex(rs) ir = searchsortedrangefirst(rs, 6) @test ir != pastlastindex(rs) && getindex(rs, ir) == convertinfer($K, 6:6) && ir == lastindex(rs) ir = searchsortedrangefirst(rs, 7) @test ir == pastlastindex(rs) rs = $TypeURSS{$K}((1:2, 4:4)) iir = searchsortedrange(rs, 0) @test length(iir) == 0 && getindex(rs, first(iir)) == convertinfer($K, 1:2) && first(iir) == firstindex(rs) && last(iir) == beforefirstindex(rs) iir = searchsortedrange(rs, 1) @test length(iir) == 1 && getindex(rs, first(iir)) == convertinfer($K, 1:2) && first(iir) == firstindex(rs) iir = searchsortedrange(rs, 2) @test length(iir) == 1 && getindex(rs, first(iir)) == convertinfer($K, 1:2) iir = searchsortedrange(rs, 3) @test length(iir) == 0 && getindex(rs, first(iir)) == convertinfer($K, 4:4) && getindex(rs, last(iir)) == convertinfer($K, 1:2) iir = searchsortedrange(rs, 4) @test length(iir) == 1 && getindex(rs, first(iir)) == convertinfer($K, 4:4) iir = searchsortedrange(rs, 5) @test length(iir) == 0 && getindex(rs, last(iir)) == convertinfer($K, 4:4) && first(iir) == pastlastindex(rs) && last(iir) == lastindex(rs) rs = $TypeURSS{$K}((1:2, 4:4)) @test getrange(rs, 0) === nothing @test getrange(rs, 1) == convertinfer($K, 1:1) @test getrange(rs, 1:1) == convertinfer($K, 1:1) @test getrange(rs, 1:2) == convertinfer($K, 1:2) @test getrange(rs, 1:3) === nothing end end end end @testset "`in`" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin v = [1, 2, 3, 5, 6, 8] rs = $TypeURSS{$K}(v) for i = 0:9 @test !xor(in(i, rs), in(i, v)) end v = [2:3, 5:6] rs = $TypeURSS{$K}(v) @test !in(1:2, rs) @test in(2:2, rs) @test in(2:3, rs) @test in(5:5, rs) @test !in(2:4, rs) @test !in(4:4, rs) @test !in(2:6, rs) @test !in(1:7, rs) end end end end @testset "`push!`" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin rs = $TypeURSS{$K}() @test check_isequal(push!(rs, 3), convertinfer($K, (3:3,))) @test check_isequal(push!(rs, 4), convertinfer($K, (3:4,))) @test check_isequal(push!(rs, 18), convertinfer($K, (3:4, 18:18))) @test check_isequal(push!(rs, 2), convertinfer($K, (2:4, 18:18))) @test check_isequal(push!(rs, 0), convertinfer($K, (0:0, 2:4, 18:18))) @test check_isequal(push!(rs, 20), convertinfer($K, (0:0, 2:4, 18:18, 20:20))) @test check_isequal(push!(rs, 19), convertinfer($K, (0:0, 2:4, 18:20))) @test check_isequal(push!(rs, 1), convertinfer($K, (0:4, 18:20))) @test check_isequal(push!(rs, 9), convertinfer($K, (0:4, 9:9, 18:20))) @test check_isequal(push!(rs, 9), convertinfer($K, (0:4, 9:9, 18:20))) @test check_isequal(push!(rs, 10), convertinfer($K, (0:4, 9:10, 18:20))) @test check_isequal(push!(rs, 8), convertinfer($K, (0:4, 8:10, 18:20))) rs = $TypeURSS{$K}() @test check_isequal(push!(rs, 13:14), convertinfer($K, (13:14,))) @test check_isequal(push!(rs, 23:24), convertinfer($K, (13:14, 23:24))) @test check_isequal(push!(rs, 12:12), convertinfer($K, (12:14, 23:24))) @test check_isequal(push!(rs, 11:13), convertinfer($K, (11:14, 23:24))) @test check_isequal(push!(rs, 8:9), convertinfer($K, (8:9, 11:14, 23:24))) @test check_isequal(push!(copy(rs), [9:12]), convertinfer($K, (8:14, 23:24))) @test check_isequal(push!(copy(rs), (9:12,)), convertinfer($K, (8:14, 23:24))) @test check_isequal(push!(copy(rs), [9,10,11,12]), convertinfer($K, (8:14, 23:24))) @test check_isequal(push!(rs, 9:12), convertinfer($K, (8:14, 23:24))) @test check_isequal(push!(rs, 16:17), convertinfer($K, (8:14, 16:17, 23:24))) @test check_isequal(push!(rs, 25:26), convertinfer($K, (8:14, 16:17, 23:26))) @test check_isequal(push!(rs, 24:26), convertinfer($K, (8:14, 16:17, 23:26))) @test check_isequal(push!(rs, 28:29), convertinfer($K, (8:14, 16:17, 23:26, 28:29))) @test check_isequal(push!(rs, 28:29), convertinfer($K, (8:14, 16:17, 23:26, 28:29))) @test check_isequal(push!(rs, 16:15), convertinfer($K, (8:14, 16:17, 23:26, 28:29))) @test check_isequal(push!(rs, 18:19), convertinfer($K, (8:14, 16:19, 23:26, 28:29))) end end end end @testset "`delete!`" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin rs = $TypeURSS{$K}((0:0, 2:4, 8:8, 10:12)) @test check_isequal(delete!(rs, 5), convertinfer($K, (0:0, 2:4, 8:8, 10:12))) @test check_isequal(delete!(rs, 0), convertinfer($K, (2:4, 8:8, 10:12))) @test check_isequal(delete!(rs, 0), convertinfer($K, (2:4, 8:8, 10:12))) @test check_isequal(delete!(rs, 8), convertinfer($K, (2:4, 10:12))) @test check_isequal(delete!(rs, 12), convertinfer($K, (2:4, 10:11))) @test check_isequal(delete!(rs, 10), convertinfer($K, (2:4, 11:11))) @test check_isequal(delete!(rs, 11), convertinfer($K, (2:4,))) @test check_isequal(delete!(rs, 3), convertinfer($K, (2:2, 4:4))) @test delete!(rs, 3) === rs rs = $TypeURSS{$K}((0:0, 2:6, 8:8, 10:13, 15:20)) @test check_isequal(delete!(rs, 17:17), convertinfer($K, (0:0, 2:6, 8:8, 10:13, 15:16, 18:20))) @test check_isequal(delete!(rs, 16:18), convertinfer($K, (0:0, 2:6, 8:8, 10:13, 15:15, 19:20))) @test check_isequal(delete!(rs, 15:20), convertinfer($K, (0:0, 2:6, 8:8, 10:13))) @test check_isequal(delete!(rs, 7:7), convertinfer($K, (0:0, 2:6, 8:8, 10:13))) @test check_isequal(delete!(rs, 6:7), convertinfer($K, (0:0, 2:5, 8:8, 10:13))) @test check_isequal(delete!(rs, 0:1), convertinfer($K, (2:5, 8:8, 10:13))) @test check_isequal(delete!(rs, 9:10), convertinfer($K, (2:5, 8:8, 11:13))) @test check_isequal(delete!(rs, 13:14), convertinfer($K, (2:5, 8:8, 11:12))) @test check_isequal(delete!(copy(rs), [1:3]), convertinfer($K, (4:5, 8:8, 11:12))) @test check_isequal(delete!(copy(rs), (1:3,)), convertinfer($K, (4:5, 8:8, 11:12))) @test check_isequal(delete!(copy(rs), [1,2,3]), convertinfer($K, (4:5, 8:8, 11:12))) @test check_isequal(delete!(copy(rs), (1,2,3)), convertinfer($K, (4:5, 8:8, 11:12))) @test check_isequal(delete!(rs, 1:3), convertinfer($K, (4:5, 8:8, 11:12))) end end end end @testset "`subset`" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin rs = $TypeURSS{$K}((0:0, 2:6, 8:16, 20:33, 35:47, 49:50)) it = searchsortedrangelast(rs, 1) ss = subset(rs, :) @test typeof(ss) == UnitRangesSortedSubSet{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (0:0, 2:6, 8:16, 20:33, 35:47, 49:50) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 0:50) vu = (0:0, 2:6, 8:16, 20:33, 35:47, 49:50) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 0:0) @test typeof(ss) == UnitRangesSortedSubSet1{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (0:0,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 0:1) @test typeof(ss) == UnitRangesSortedSubSet1{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (0:0,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 10:40) @test typeof(ss) == UnitRangesSortedSubSet{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (10:16, 20:33, 35:40) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 7:40) vu = (8:16, 20:33, 35:40) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 11:48) vu = (11:16, 20:33, 35:47) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 7:48) vu = (8:16, 20:33, 35:47) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 21:32) vu = (21:32,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 20:33) vu = (20:33,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 19:34) vu = (20:33,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 22:34) vu = (22:33,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 19:30) vu = (20:30,) test_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 18:19) @test typeof(ss) == UnitRangesSortedSubSet0{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = Vector{eltype(ss)}([]) test_empty_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 21:20) @test typeof(ss) == UnitRangesSortedSubSet0{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = Vector{eltype(ss)}([]) test_empty_iterators(ss, convertinfer($K, vu)) ss = subset(rs, 51:51) @test typeof(ss) == UnitRangesSortedSubSet0{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = Vector{eltype(ss)}([]) test_empty_iterators(ss, convertinfer($K, vu)) delete!(rs, 0:0) ss = subset(rs, 0:1) @test typeof(ss) == UnitRangesSortedSubSet0{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = Vector{eltype(ss)}([]) test_empty_iterators(ss, convertinfer($K, vu)) # subset of subset rs = $TypeURSS{$K}((0:0, 2:6, 8:16, 20:33, 35:47, 49:50)) it = searchsortedrangelast(rs, 1) ss = subset(rs, :) sss = subset(ss, :) @test typeof(sss) == UnitRangesSortedSubSet{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (0:0, 2:6, 8:16, 20:33, 35:47, 49:50) test_iterators(sss, convertinfer($K, vu)) sss = subset(ss, 0:0) @test typeof(sss) == UnitRangesSortedSubSet1{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (0:0,) test_iterators(sss, convertinfer($K, vu)) ss = subset(rs, 10:40) # (10:16, 20:33, 35:40) sss = subset(ss, 15:35) @test typeof(sss) == UnitRangesSortedSubSet{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = (15:16, 20:33, 35:35) test_iterators(sss, convertinfer($K, vu)) sss = subset(ss, 18:19) @test typeof(sss) == UnitRangesSortedSubSet0{$K,inferrangetype($K),typeof(rs),typeof(it)} vu = Vector{eltype(ss)}([]) test_empty_iterators(sss, convertinfer($K, vu)) end end end end @testset "`in` subsets" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin v = [0, 1, 2, 3, 5, 6, 8, 9, 11, 12] rs = $TypeURSS{$K}(v) vu = [1, 2, 3, 5, 6, 8] ss = subset(rs, 1:8) for i = 0:13 @test !xor(in(i, ss), in(i, vu)) end v = [0:0, 2:3, 5:6, 8:8] rs = $TypeURSS{$K}(v) ss = subset(rs, 2:6) @test !in(1:2, ss) @test in(2:2, ss) @test in(2:3, ss) @test in(5:5, ss) @test !in(2:4, ss) @test !in(4:4, ss) @test !in(2:6, ss) @test !in(1:7, ss) v = [0:0, 2:3, 5:6, 8:8] rs = $TypeURSS{$K}(v) ss = subset(rs, 2:3) @test !in(1:2, ss) @test !in(1, ss) @test in(2, ss) @test in(2:2, ss) @test in(2:3, ss) @test in(3:3, ss) @test !in(2:4, ss) @test !in(3:4, ss) @test !in(4:4, ss) @test !in(5:5, ss) v = [0:0, 2:3, 5:6, 8:8] rs = $TypeURSS{$K}(v) ss = subset(rs, 3:2) @test !in(1, ss) @test !in(2, ss) @test !in(1:2, ss) @test !in(2:2, ss) @test !in(2:3, ss) @test !in(3:3, ss) @test !in(2:4, ss) @test !in(3:4, ss) @test !in(4:4, ss) @test !in(5:5, ss) end end end end @testset "Common functions" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin rs = $TypeURSS{$K}() vu = Vector{eltype(rs)}([]) test_empty_iterators(rs, convertinfer($K, vu)) rs = $TypeURSS{$K}((1:6,)) vu = (1:6,) test_iterators(rs, convertinfer($K, vu)) rs = $TypeURSS{$K}((1:6, 8:16, 20:33)) vu = (1:6, 8:16, 20:33) test_iterators(rs, convertinfer($K, vu)) rs = $TypeURSS{$K}((0:0, 2:4)) rs2 = copy(rs) @test rs2 == rs && rs2 !== rs rs2 = empty(rs) @test rs2 == $TypeURSS{$K}() empty!(rs2) @test rs2 != rs && rs2 !== rs @test length(rs2) == 0 rs = $TypeURSS{$K}((0:0, 2:4)) @test filter(s->length(s)==3, rs) == $TypeURSS{$K}((2:4)) @test (filter!(s->length(s)==1, rs); rs == $TypeURSS{$K}((0:0))) rs = $TypeURSS{$K}((0:0, 2:4)) @test findfirst(s->issubset(s, $K(0):$K(4)), rs) == searchsortedrangelast(rs, $K(0)) @test findfirst(s->issubset(s, $K(1):$K(4)), rs) == searchsortedrangelast(rs, $K(2)) @test findall(s->length(s)==1, rs) == convertinfer($K, [0:0]) v = [0:0, 2:4] rs = $TypeURSS{$K}(v) @test collect(rs) == convertinfer($K, v) @test collect(UInt64, rs) == convertinfer(UInt64, v) @test convert(typeof(rs), rs) === rs @test convert(SortedSet{inferrangetype($K)}, rs) == SortedSet(to_urange.(inferrangetype($K), v)) @test convert(SortedSet{UInt64}, rs) == SortedSet{UInt64}(collect(Iterators.flatten(v))) @test convert(SortedSet{$K}, rs) == SortedSet{$K}(collect(Iterators.flatten(v))) @test convert(SortedSet, rs) == SortedSet{$K}(collect(Iterators.flatten(v))) @test convert(Vector{inferrangetype($K)}, rs) == Vector(to_urange.(inferrangetype($K), v)) @test convert(Vector{UInt64}, rs) == Vector{UInt64}(collect(Iterators.flatten(v))) @test convert(Vector{$K}, rs) == Vector{$K}(collect(Iterators.flatten(v))) @test convert(Vector, rs) == Vector{$K}(collect(Iterators.flatten(v))) end end end end @testset "`Set` API" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin @test union($TypeURSS{$K}((0:0, 2:4)), $TypeURSS{$K}((2:3, 5:6))) == $TypeURSS{$K}((0:0, 2:6)) @test union($TypeURSS{$K}((0:0, 2:4)), (2:3, 5:6)) == $TypeURSS{$K}((0:0, 2:6)) @test union($TypeURSS{$K}((0:0, 2:4)), (2, 3, 5, 6)) == $TypeURSS{$K}((0:0, 2:6)) @test union($TypeURSS{$K}((0:0, 2:4)), [2:3], [5:6]) == $TypeURSS{$K}((0:0, 2:6)) @test union($TypeURSS{$K}((0:0, 2:4)), [2:3, 5:6]) == $TypeURSS{$K}((0:0, 2:6)) @test union($TypeURSS{$K}((0:0, 2:4)), [2, 3, 5, 6]) == $TypeURSS{$K}((0:0, 2:6)) @test union($TypeURSS{$K}((0:0, 2:4)), 1:1) == $TypeURSS{$K}((0:4)) @test union($TypeURSS{$K}((0:0, 2:4)), 1) == $TypeURSS{$K}((0:4)) @test intersect($TypeURSS{$K}((0:0, 2:4)), $TypeURSS{$K}((2:3, 5:6))) == $TypeURSS{$K}((2:3)) @test intersect($TypeURSS{$K}((0:0, 2:4)), (2:3, 5:6)) == $TypeURSS{$K}((2:3)) @test intersect($TypeURSS{$K}((0:0, 2:4)), 2:3) == $TypeURSS{$K}((2:3)) @test intersect($TypeURSS{$K}((0:0, 2:4)), 2) == $TypeURSS{$K}((2:2)) rs = $TypeURSS{$K}((0:0, 2:4)) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == $TypeURSS{$K}((2:3))) rs = [0:0, 2:4, 8:10, 12:12] @test (intersect(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))) == [2:3, 8:8]) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == [2:3, 8:8]) rs = Set((0:0, 2:4, 8:10, 12:12)) @test (intersect(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))) == Set((2:3, 8:8))) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == Set((2:3, 8:8))) rs = SortedSet((0:0, 2:4, 8:10, 12:12)) @test (intersect(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))) == SortedSet((2:3, 8:8))) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == SortedSet((2:3, 8:8))) rs = [0, 2,3,4, 8,9,10, 12] @test (intersect(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))) == [2,3, 8]) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == [2,3, 8]) rs = Set((0, 2,3,4, 8,9,10, 12)) @test (intersect(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))) == Set((2,3, 8))) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == Set((2,3, 8))) rs = SortedSet((0, 2,3,4, 8,9,10, 12)) @test (intersect(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))) == SortedSet((2,3, 8))) @test (intersect!(rs, $TypeURSS{$K}((2:3, 5:6, 8:8))); rs == SortedSet((2,3, 8))) rs = $TypeURSS{$K}((2:3, 5:6, 8:8)) @test (intersect!(rs, convertinfer($K, [0:0, 2:4, 8:10, 12:12])); rs == $TypeURSS{$K}((2:3, 8:8))) rs = $TypeURSS{$K}((2:3, 5:6, 8:8)) @test (intersect!(rs, convertinfer($K, [0, 2,3,4, 8,9,10, 12])); rs == $TypeURSS{$K}((2:3, 8:8))) rs = $TypeURSS{$K}((2:3, 5:6, 8:8)) @test (intersect!(rs, Set(convertinfer($K, [0:0, 2:4, 8:10, 12:12]))); rs == $TypeURSS{$K}((2:3, 8:8))) rs = $TypeURSS{$K}((2:3, 5:6, 8:8)) @test (intersect!(rs, Set(convertinfer($K, [0, 2,3,4, 8,9,10, 12]))); rs == $TypeURSS{$K}((2:3, 8:8))) rs = $TypeURSS{$K}((2:3, 5:6)) @test (setdiff(rs, Set(2:2)) == $TypeURSS{$K}((3:3, 5:6))) @test (setdiff(rs, OrderedSet(2:2)) == $TypeURSS{$K}((3:3, 5:6))) @test (setdiff(rs, 2:2) == $TypeURSS{$K}((3:3, 5:6))) @test (setdiff(rs, 2:2, 3:5) == $TypeURSS{$K}((6:6,))) rs1 = $TypeURSS{$K}((2:3, 5:6)) rs2 = $TypeURSS{$K}((3:3, 5:6, 8:8)) @inferred symdiff(rs1, rs2) @test collect(Iterators.flatten(symdiff(rs1, rs2))) == symdiff(collect(Iterators.flatten(rs1)), collect(Iterators.flatten(rs2))) @test collect(Iterators.flatten(symdiff(rs1, rs2, (9:9,)))) == symdiff(collect(Iterators.flatten(rs1)), collect(Iterators.flatten(rs2)), collect($K, Iterators.flatten((9:9,)))) @test collect(Iterators.flatten(symdiff(rs1, (1:9,)))) == symdiff(collect(Iterators.flatten(rs1)), collect($K, Iterators.flatten((1:9,)))) rs = $TypeURSS{$K}((0:0, 2:4)) @test (union!(rs, $TypeURSS{$K}((0:0, 6:6))); rs == $TypeURSS{$K}((0:0, 2:4, 6:6))) @test pop!(rs, 0) == convertinfer($K, 0:0) @test_throws KeyError pop!(rs, 0) @test pop!(rs, 0, UInt64(1)) === UInt64(1) @test pop!(rs, 2, UInt64(1)) === convertinfer($K, 2:2) @test pop!(rs, 2, UInt64(1)) === UInt64(1) @test pop!(rs, 3:3) == convertinfer($K, 3:3) @test_throws KeyError pop!(rs, 3:3) @test pop!(rs, 3:3, UInt64(1)) === UInt64(1) @test rs == $TypeURSS{$K}((4:4, 6:6)) @test pop!(rs, 4:4, UInt64(1)) == convertinfer($K, 4:4) @test pop!(rs, 4:4, UInt64(1)) === UInt64(1) @test size(rs) == (1,) @test isempty(rs) == false @test empty(rs) == $TypeURSS{$K}() empty!(rs) @test rs == $TypeURSS{$K}() @test size(rs) == (0,) @test isempty(rs) == true rs = $TypeURSS{$K}((0:0, 2:4)) @test issubset(0, rs) @test issubset(0:0, rs) @test !issubset(0:1, rs) @test !issubset([0:1, 2:4], rs) @test issubset(rs, convertinfer($K, [0:1, 2:4])) @test issubset([0:0, 2:4], rs) @test issubset(rs, convertinfer($K, [0:0, 2:4])) @test !issubset(rs, convertinfer($K, [0:0, 3:4])) @test issubset(rs, convertinfer($K, 0:4)) @test !issubset(rs, convertinfer($K, 0:3)) rs2 = copy(rs) @test rs2 == rs && rs2 !== rs @test issubset(rs2, rs) @test issubset(rs, rs2) delete!(rs2, 0) @test issubset(rs2, rs) @test !issubset(rs, rs2) end end end end @testset "Iter allocations" begin for TypeURSS in list_of_containers_types_to_test @eval rs = $TypeURSS{UInt16}((1:6, 8:16)) @test (@ballocated (for r in $rs j += 1 end) setup = (j = 0)) == 0 @test (@ballocated (for r in $rs, i in r j += Int(i) end) setup = (j = 0)) == 0 @test (@ballocated (for i in Iterators.flatten($rs) j += Int(i) end) setup = (j = 0)) == 0 ss = subset(rs, 4:10) @test (@ballocated (for r in $ss j += 1 end) setup = (j = 0)) == 0 @test (@ballocated (for r in $ss, i in r j += Int(i) end) setup = (j = 0)) == 0 @test (@ballocated (for i in Iterators.flatten($ss) j += Int(i) end) setup = (j = 0)) == 0 ss1 = subset(rs, 2:6) @test (@ballocated (for r in $ss1 j += 1 end) setup = (j = 0)) == 0 @test (@ballocated (for r in $ss1, i in r j += Int(i) end) setup = (j = 0)) == 0 @test (@ballocated (for i in Iterators.flatten($ss1) j += Int(i) end) setup = (j = 0)) == 0 ss0 = subset(rs, 7:7) @test (@ballocated (for r in $ss0 j += 1 end) setup = (j = 0)) == 0 @test (@ballocated (for r in $ss0, i in r j += Int(i) end) setup = (j = 0)) == 0 @test (@ballocated (for i in Iterators.flatten($ss0) j += Int(i) end) setup = (j = 0)) == 0 ss0 = subset(rs, 5:4) @test (@ballocated (for r in $ss0 j += 1 end) setup = (j = 0)) == 0 @test (@ballocated (for r in $ss0, i in r j += Int(i) end) setup = (j = 0)) == 0 @test (@ballocated (for i in Iterators.flatten($ss0) j += Int(i) end) setup = (j = 0)) == 0 end end @testset "`show`" begin for K in list_of_Ti_to_test for TypeURSS in list_of_containers_types_to_test @eval begin io = IOBuffer() rs = $TypeURSS{$K}((0:0, 2:4)) show(io, rs) TT = $TypeURSS KK = $K @test String(take!(io)) == "$TT{$KK}(" * repr($K(0)) * ":" * repr($K(0)) * ", " * repr($K(2)) * ":" * repr($K(4)) * ")" io = IOBuffer() rs = $TypeURSS{$K}((0:0, 2:4)) show(io, MIME("text/plain"), rs) TT = $TypeURSS KK = $K pad = UnitRangesSortedSets.get_max_pad(rs) if length(rs) == 0 @test String(take!(io)) == "$TT{$KK}()\n" elseif length(rs) == 1 @test String(take!(io)) == "$TT{$KK} with 1 element:\n" * " " * " "^(pad-length(repr($K(0)))) * repr($K(0)) * ":" * repr($K(0)) * "\n" * " " * " "^(pad-length(repr($K(2)))) * repr($K(2)) * ":" * repr($K(4)) else @test String(take!(io)) == "$TT{$KK} with $(length(rs)) elements:\n" * " " * " "^(pad-length(repr($K(0)))) * repr($K(0)) * ":" * repr($K(0)) * "\n" * " " * " "^(pad-length(repr($K(2)))) * repr($K(2)) * ":" * repr($K(4)) end end end end end @testset "Bugs" begin @testset "#5" begin for TypeURSS in list_of_containers_types_to_test @eval begin # provided by https://github.com/mnemnion tamil = Any['ꣳ', '௦':'௯', '௰':'௲', '௳', '𑌁', '𑌃', '𑌻':'𑌼', '𑿐':'𑿑', '𑿓', '᳚', '॒', '॑', '।', '॥'] URvec = $TypeURSS[] for elem in tamil push!(URvec, $TypeURSS([elem])) end @test_nowarn reduce(union, URvec) @test reduce(union, URvec) == $TypeURSS{Char}(('॑':'॒', '।':'॥', '௦':'௳', '᳚':'᳚', 'ꣳ':'ꣳ', '𑌁':'𑌁', '𑌃':'𑌃', '𑌻':'𑌼', '𑿐':'𑿑', '𑿓':'𑿓',)) end end end end
UnitRangesSortedSets
https://github.com/denius/UnitRangesSortedSets.jl.git
[ "MIT" ]
0.1.2
f0de74163ea91daf9565c5b209506ce18a2d6d67
code
9801
using BenchmarkTools using DataFrames using DataStructures using PrettyTables using Random using UnitRangesSortedSets using Unitful # # Testing functions # function testfun_create(T::Type, N = 1_000_000, density = 0.9) rs = T() Random.seed!(1234) randseq = randsubseq(1:N, density) rrandseq = shuffle(randseq) for (j,i) in enumerate(rrandseq) push!(rs, i) end for i in randseq in(i, rs) || println("Not coincide on index $i") end sum(length(r) for r in rs) == length(randseq) || println("Lost some indices") rs end function testfun_create_cons(T::Type, N = 1_000_000, density = 0.9) rs = T() Random.seed!(1234) randseq = randsubseq(1:N, density) for i in randseq push!(rs, i) end for i in randseq in(i, rs) || println("Not coincide on index $i") end sum(length(r) for r in rs) == length(randseq) || println("Lost some indices") rs end function testfun_create_ext(T::Type, idx) rs = T() for i in idx push!(rs, i) end rs end function testfun_create_dense(T::Type, N = 1_000_000, nchunks = 800, density = 0.95) rs = T() chunklen = max(1, floor(Int, N / nchunks)) Random.seed!(1234) for i = 0:nchunks-1 len = floor(Int, chunklen*density + randn() * chunklen * min(0.1, (1.0-density), density)) len = max(1, min(chunklen-2, len)) for j = 1:len push!(rs, i*chunklen + j) end end rs end function testfun_delete!(rs) Random.seed!(1234) indices = shuffle([x for r in rs for x in r]) for i in indices delete!(rs, i) end length(rs) == 0 || println("Not all elements deleted") rs end function testfun_in(rs) start = first(first(rs)) stop = last(last(rs)) Random.seed!(1234) indices = shuffle(collect(start:stop)) num = 0 for i in indices in(i, rs) && (num += 1) end num end function testfun_in_ext(rs, idx) num = 0 for i in idx in(i, rs) && (num += 1) end num end function testfun_in_rand(rs) len = sum(length(r) for r in rs) Random.seed!(1234) num = 0 for j = 1:len i = rand(1:len) in(i, rs) && (num += 1) end num end function testfun_in_cons(rs) start = first(first(rs)) stop = last(last(rs)) num = 0 for i in start:stop in(i, rs) && (num += 1) end num end function testfun_iter_cons(rs::AbstractUnitRangesSortedSet, N = length(rs)) num = 0 for r in rs, i in r num += 1 end num end function testfun_iter_cons(rs::Union{BitSet,SortedSet}, N = 0) num = 0 for i in rs num += 1 end num end function testfun_iter_cons(rs::Set, N) num = 0 inrange = false for i = 1:N in(i, rs) && (num += 1) end num end function testfun_iter_ranges(rs::AbstractUnitRangesSortedSet, N = length(rs)) num = 0 for r in rs num += 1 end num end function testfun_iter_ranges(rs::Union{BitSet,SortedSet}, N = 0) num = 0 prev = first(rs) for i in rs if i != prev + 1 num += 1 end prev = i end num end function testfun_iter_ranges(rs::Set, N) num = 0 inrange = false for i = 1:N if in(i, rs) && inrange continue elseif in(i, rs) && !inrange inrange = true num += 1 elseif !in(i, rs) && inrange inrange = false else # !in(i, rs) && !inrange continue end end num end function output_results(results) println("\nSizes:") PrettyTables.pretty_table(results[:sz ], tf=PrettyTables.tf_markdown) println("\nIterate ranges consecutively, ms:") PrettyTables.pretty_table(results[:iter_ranges], tf=PrettyTables.tf_markdown) println("\nIterate elements consecutively, ms:") PrettyTables.pretty_table(results[:iter_con ], tf=PrettyTables.tf_markdown) println("\nFill element-wise consecutively, ms:") PrettyTables.pretty_table(results[:fill_con ], tf=PrettyTables.tf_markdown) println("\nAccess element-wise consecutively (time per element, ns):") PrettyTables.pretty_table(results[:accss_con ], tf=PrettyTables.tf_markdown) println("\nFill element-wise in random order of elements, ms:") PrettyTables.pretty_table(results[:fill_rnd ], tf=PrettyTables.tf_markdown) println("\nAccess element-wise randomly (time per element, ns):") PrettyTables.pretty_table(results[:accss_rnd ], tf=PrettyTables.tf_markdown) nothing end function run_bench(name, N, indices, results, verbose = false) indices = sort(indices) Random.seed!(1234) rnd_indices = shuffle(indices) sizes = [] push!(sizes, name) push!(sizes, length(indices)) push!(sizes, length(testfun_create_ext(UnitRangesSortedSet{Int}, indices))) println("\nSizes:") for T in (BitSet, Set{Int}, SortedSet{Int}, UnitRangesSortedSet{Int}, VecUnitRangesSortedSet{Int}) push!(sizes, Base.summarysize( testfun_create_ext(T, indices) ) ) end push!(results[:sz], sizes) verbose && PrettyTables.pretty_table(results[:sz], tf=PrettyTables.tf_markdown) times_ir, times_ic, times_fc, times_ac, times_fr, times_ar = ntuple(_->Any[name, length(indices), length(testfun_create_ext(UnitRangesSortedSet{Int}, indices))], 6) for T in (BitSet, Set{Int}, SortedSet{Int}, UnitRangesSortedSet{Int}, VecUnitRangesSortedSet{Int}) @sync begin # Iterate ranges consecutively, ms Threads.@spawn push!(times_ir, round(sigdigits=3, mean( @benchmark testfun_iter_ranges(r, $N) setup = (r = testfun_create_ext($T, $indices) ) ; ).time / 1e6)) # Iterate elements consecutively, ms Threads.@spawn push!(times_ic, round(sigdigits=3, mean( @benchmark testfun_iter_cons(r, $N) setup = (r = testfun_create_ext($T, $indices) ) ; ).time / 1e6)) # Fill element-wise consecutively, ms Threads.@spawn push!(times_fc, round(sigdigits=3, mean( @benchmark testfun_create_ext($T, $indices) ; ).time / 1e6)) # Access element-wise consecutively (time per element, ns Threads.@spawn push!(times_ac, round(sigdigits=3, mean( @benchmark testfun_in_ext(r, $indices) setup = (r = testfun_create_ext($T, $indices) ) ; ).time / N)) # Fill element-wise in random order of elements, ms Threads.@spawn push!(times_fr, round(sigdigits=3, mean( @benchmark testfun_create_ext($T, $rnd_indices) ; ).time / 1e6)) # Access element-wise randomly (time per element, ns) Threads.@spawn push!(times_ar, round(sigdigits=3, mean( @benchmark testfun_in_ext(r, $rnd_indices) setup = (r = testfun_create_ext($T, $indices) ) ; ).time / N)) end end push!(results[:iter_ranges], times_ir) push!(results[:iter_con], times_ic) push!(results[:fill_con], times_fc) push!(results[:accss_con], times_ac) push!(results[:fill_rnd], times_fr) push!(results[:accss_rnd], times_ar) verbose && output_results(results) end function run_benches(N = 1_000_000; verbose = false) # Size, bytes => Int, sz = DataFrame("ρ, %" => Float64[], "nelems" => Int[], "nranges" => Int[], "BitSet" => Int[], "Set" => Int[], "SortedSet" => Int[], "URSSet" => Int[], "VURSSet" => Int[] ) iter_ranges, iter_con, fill_con, accss_con, fill_rnd, accss_rnd = ntuple(_->DataFrame("ρ, %" => Float64[], "nelems" => Int[], "nranges" => Int[], "BitSet" => Float64[], "Set" => Float64[], "SortedSet" => Float64[], "URSSet" => Float64[], "VURSSet" => Float64[] ) , 6) results = Dict(( :sz => sz, :iter_ranges => iter_ranges, :iter_con => iter_con, :fill_con => fill_con, :accss_con => accss_con, :fill_rnd => fill_rnd, :accss_rnd => accss_rnd )) for density in (0.001, 0.01, 0.1, 1.0, 10.0, 50.0, 90., 99.0, 99.9, 99.99, 99.999) fraction = density / 100.0 println("\n\ndensity = ", density, "%") nchunks = 1000 chunklen = max(1, floor(Int, N / nchunks)) Random.seed!(1234) indices = Int[] for i = 0:nchunks-1 len = floor(Int, chunklen*fraction + randn() * chunklen * min(0.1, (1.0-fraction), fraction)) len = max(1, min(chunklen-2, len)) for j = 1:len push!(indices, i*chunklen + j) end end indices = unique(sort(indices)) indices[1] != 1 && prepend!(indices, 1) indices[end] != N && append!(indices, N) run_bench(density, N, indices, results, verbose) end output_results(results) for density in (0.001, 0.01, 0.1, 1.0, 10.0, 50.0, 90., 99.0, 99.9, 99.99, 99.999) println("\n\ndensity = ", density, "%") Random.seed!(1234) indices = randsubseq(1:N, density / 100.0) indices[1] != 1 && prepend!(indices, 1) indices[end] != N && append!(indices, N) run_bench(density, N, indices, results, verbose) end output_results(results) end
UnitRangesSortedSets
https://github.com/denius/UnitRangesSortedSets.jl.git
[ "MIT" ]
0.1.2
f0de74163ea91daf9565c5b209506ce18a2d6d67
docs
4458
# UnitRangesSortedSets [![Build Status](https://github.com/denius/UnitRangesSortedSets.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/denius/UnitRangesSortedSets.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/denius/UnitRangesSortedSets.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/denius/UnitRangesSortedSets.jl) Sorted set of `UnitRange`s. Sorted in ascending order and no one range overlaps with another. mutable struct UnitRangesSortedSet{K, TU} <: AbstractSet{TU} `UnitRangesSortedSet` can be created like the standard `Set`: ```julia UnitRangesSortedSet(somecontainer) ``` for example: ```julia julia> using UnitRangesSortedSets julia> UnitRangesSortedSet((1, 2, 4)) UnitRangesSortedSet{Int64} with 2 elements: 1:2 4:4 julia> UnitRangesSortedSet(('a':'z', 'α':'ω')) UnitRangesSortedSet{Char} with 2 elements: 'a':'z' 'α':'ω' julia> Random.seed!(1234); julia> UnitRangesSortedSet(rand(1:20, 10)) UnitRangesSortedSet{Int64} with 6 elements: 5:5 7:8 10:11 15:16 18:18 20:20 ``` or with `push!`: ```julia julia> urs = UnitRangesSortedSet{Int}() UnitRangesSortedSet{Int64}() julia> push!(urs, 1) UnitRangesSortedSet{Int64} with 1 element: 1:1 julia> push!(urs, 2) UnitRangesSortedSet{Int64} with 1 element: 1:2 julia> push!(urs, 10:12) UnitRangesSortedSet{Int64} with 2 elements: 1:2 10:12 ``` Iterating over set of ranges: ```julia julia> for r in urs @show(r) end r = 1:2 r = 10:12 julia> for r in urs, i in r @show(i) end i = 1 i = 2 i = 10 i = 11 i = 12 julia> for i in Iterators.flatten(urs) @show(i) end i = 1 i = 2 i = 10 i = 11 i = 12 julia> collect(urs) 2-element Vector{UnitRange{Int64}}: 1:2 10:12 ``` Deleting elements and ranges: ```julia julia> delete!(urs, 10:11) UnitRangesSortedSet{Int64} with 2 elements: 1:2 12:12 julia> delete!(urs, 1) UnitRangesSortedSet{Int64} with 2 elements: 2:2 12:12 ``` # SubSet It is possible to create the subset of `UnitRangesSortedSet`, like a `view` for `Array`s: ```julia julia> urs = UnitRangesSortedSet((1:2, 10:12)) UnitRangesSortedSet{Int64} with 2 elements: 1:2 10:12 julia> ss = subset(urs, 0:10) 2-element subset(UnitRangesSortedSet{Int64}, DataStructures.Tokens.IntSemiToken(3):DataStructures.Tokens.IntSemiToken(4)): 1:2 10:10 ``` The `subset` object is an static, iterable view of the container. # Two types of `UnitRangesSortedSet` The first type `UnitRangesSortedSet{K}` contains `SortedDict{K,K}`, ```julia mutable struct UnitRangesSortedSet{K,TU} <: AbstractUnitRangesSortedContainer{K,TU} ranges::SortedDict{K,K,FOrd} end ``` where each element of the dict contains the `first(range)` as key, and the `last(range)` as value. The second implementation `VecUnitRangesSortedSet{K}` is based on `Vector{K}`s: ```julia mutable struct VecUnitRangesSortedSet{K,TU} <: AbstractUnitRangesSortedContainer{K,TU} rstarts::Vector{K} rstops::Vector{K} end ``` where `rstarts::Vector{K}` and `rstops::Vector{K}` are the starts and stops of the ranges respectively. These two implementations have a similar API but different speeds. In either case, both of them can be converted to each other using the appropriate constructor. # Benchmarking All results of benchmarks in the file [test-bench-results.md](test/test-bench-results.md). Main conclusions of benchmarking: * in any case of iterating over `range`s or consecutively element-wise in any `AbstractUnitRangesSortedSet` is much much faster then in any another variant. * element-wise iterating, and over ranges iterating, in `VecUnitRangesSortedSet` is faster by the orders over `UnitRangesSortedSet`. * when created from elements in random order, `UnitRangesSortedSet` is vastly superior to the `Vec` variant. * creating in consecutively element-wise order, `VecUnitRangesSortedSet` is an order of magnitude faster than creating a set of the second type. * in searching operations (`in()`, `subset()`) `VecUnitRangesSortedSet` variant is faster: in Julia-v1.6 it is twice as fast, in Julia-1.8 the speedup is about 20-30%. * if your range diapason is about some millions of elements then the `BitSet` is the best choice for creating. And then `convert(UnitRangesSortedSet, someBitSetContainer)` is the solution to have the fast iteration over container. ### Note For `Char`, `StepRange{Char,UInt8}` will be used, with a step of `oneunit(UInt8)` if needed.
UnitRangesSortedSets
https://github.com/denius/UnitRangesSortedSets.jl.git
[ "MIT" ]
0.1.2
f0de74163ea91daf9565c5b209506ce18a2d6d67
docs
14405
Sizes, bytes: | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|--------|----------|-----------|----------|---------| | 0.001 | 1001 | 1001 | 125064 | 37056 | 64360 | 72400 | 16120 | | 0.01 | 1001 | 1001 | 125064 | 37056 | 64360 | 72400 | 16120 | | 0.1 | 1193 | 1001 | 125064 | 37056 | 76768 | 72400 | 16120 | | 1.0 | 10497 | 1001 | 125064 | 147648 | 673440 | 72400 | 16120 | | 10.0 | 106832 | 1001 | 125064 | 2359488 | 6850824 | 72400 | 16120 | | 50.0 | 498341 | 1001 | 125064 | 9437376 | 31956096 | 72400 | 16120 | | 90.0 | 889750 | 1001 | 125064 | 18874560 | 57055296 | 72400 | 16120 | | 99.0 | 988290 | 1001 | 125064 | 18874560 | 63374272 | 72400 | 16120 | | 99.9 | 997815 | 1001 | 125064 | 18874560 | 63984816 | 72400 | 16120 | | 99.99 | 998001 | 1001 | 125064 | 18874560 | 63996744 | 72400 | 16120 | | 99.999 | 998001 | 1001 | 125064 | 18874560 | 63996744 | 72400 | 16120 | | 0.001 | 13 | 13 | 125064 | 768 | 1200 | 1336 | 312 | | 0.01 | 90 | 90 | 125064 | 2496 | 6136 | 6888 | 1544 | | 0.1 | 985 | 985 | 125064 | 37056 | 63336 | 71248 | 15864 | | 1.0 | 10126 | 10014 | 125064 | 147648 | 649600 | 722608 | 160328 | | 10.0 | 99784 | 89966 | 125064 | 2359488 | 6398824 | 6488904 | 1439560 | | 50.0 | 499795 | 249673 | 125064 | 9437376 | 32049480 | 18007680 | 3994872 | | 90.0 | 900008 | 89882 | 125064 | 18874560 | 57712944 | 6482848 | 1438216 | | 99.0 | 989970 | 9934 | 125064 | 18874560 | 63481904 | 716792 | 159048 | | 99.9 | 998975 | 1025 | 125064 | 18874560 | 64059304 | 74376 | 16504 | | 99.99 | 999898 | 103 | 125064 | 18874560 | 64118488 | 7824 | 1752 | | 99.999 | 999985 | 16 | 125064 | 18874560 | 64124112 | 1648 | 360 | Iterate ranges consecutively, ms: | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|---------|---------|-----------|----------|----------| | 0.001 | 1001 | 1001 | 0.0147 | 36.2 | 0.0182 | 0.0179 | 3.63e-5 | | 0.01 | 1001 | 1001 | 0.0147 | 33.8 | 0.0183 | 0.0189 | 3.94e-5 | | 0.1 | 1193 | 1001 | 0.0157 | 30.6 | 0.0217 | 0.019 | 3.83e-5 | | 1.0 | 10497 | 1001 | 0.0294 | 53.6 | 0.202 | 0.0188 | 3.93e-5 | | 10.0 | 106832 | 1001 | 0.154 | 41.1 | 3.0 | 0.0179 | 3.74e-5 | | 50.0 | 498341 | 1001 | 0.649 | 52.5 | 15.8 | 0.0234 | 4.13e-5 | | 90.0 | 889750 | 1001 | 1.13 | 54.9 | 25.6 | 0.0243 | 3.95e-5 | | 99.0 | 988290 | 1001 | 1.25 | 40.3 | 29.1 | 0.0262 | 3.94e-5 | | 99.9 | 997815 | 1001 | 1.27 | 37.9 | 29.2 | 0.025 | 3.92e-5 | | 99.99 | 998001 | 1001 | 1.26 | 51.7 | 28.9 | 0.0289 | 3.97e-5 | | 99.999 | 998001 | 1001 | 1.26 | 53.2 | 29.3 | 0.0256 | 3.8e-5 | | 0.001 | 13 | 13 | 0.00848 | 34.7 | 0.000251 | 0.000242 | 2.46e-5 | | 0.01 | 90 | 90 | 0.00958 | 35.4 | 0.00154 | 0.00154 | 3.76e-5 | | 0.1 | 985 | 985 | 0.0153 | 28.4 | 0.0188 | 0.0191 | 5.15e-5 | | 1.0 | 10126 | 10014 | 0.077 | 45.9 | 0.189 | 0.193 | 0.00022 | | 10.0 | 99784 | 89966 | 0.206 | 45.1 | 2.82 | 2.54 | 0.0015 | | 50.0 | 499795 | 249673 | 0.687 | 63.3 | 14.6 | 7.3 | 0.00412 | | 90.0 | 900008 | 89882 | 1.17 | 54.5 | 26.6 | 2.67 | 0.00152 | | 99.0 | 989970 | 9934 | 1.27 | 53.2 | 29.3 | 0.204 | 0.000191 | | 99.9 | 998975 | 1025 | 1.26 | 40.6 | 29.5 | 0.0295 | 5.17e-5 | | 99.99 | 999898 | 103 | 1.26 | 53.1 | 29.1 | 0.00188 | 1.22e-5 | | 99.999 | 999985 | 16 | 1.26 | 49.5 | 28.3 | 0.000327 | 2.65e-5 | Iterate elements consecutively, ms: | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|---------|---------|-----------|----------|----------| | 0.001 | 1001 | 1001 | 0.0142 | 14.5 | 0.0168 | 0.02 | 0.00177 | | 0.01 | 1001 | 1001 | 0.014 | 14.0 | 0.0166 | 0.02 | 0.00171 | | 0.1 | 1193 | 1001 | 0.0156 | 15.5 | 0.019 | 0.0202 | 0.00171 | | 1.0 | 10497 | 1001 | 0.0257 | 23.1 | 0.178 | 0.0202 | 0.0017 | | 10.0 | 106832 | 1001 | 0.081 | 21.0 | 2.71 | 0.0204 | 0.00171 | | 50.0 | 498341 | 1001 | 0.285 | 40.9 | 13.0 | 0.0208 | 0.00173 | | 90.0 | 889750 | 1001 | 0.479 | 49.2 | 22.4 | 0.0265 | 0.00176 | | 99.0 | 988290 | 1001 | 0.517 | 49.8 | 27.0 | 0.0283 | 0.00177 | | 99.9 | 997815 | 1001 | 0.527 | 50.8 | 27.6 | 0.0295 | 0.00184 | | 99.99 | 998001 | 1001 | 0.525 | 40.5 | 26.3 | 0.028 | 0.00173 | | 99.999 | 998001 | 1001 | 0.562 | 50.6 | 26.5 | 0.0289 | 0.00174 | | 0.001 | 13 | 13 | 0.0137 | 13.5 | 0.000219 | 0.000256 | 4.67e-5 | | 0.01 | 90 | 90 | 0.0152 | 16.4 | 0.00137 | 0.00176 | 0.000174 | | 0.1 | 985 | 985 | 0.0194 | 14.6 | 0.0162 | 0.02 | 0.00166 | | 1.0 | 10126 | 10014 | 0.0826 | 22.6 | 0.176 | 0.166 | 0.017 | | 10.0 | 99784 | 89966 | 0.154 | 22.7 | 2.63 | 2.8 | 0.166 | | 50.0 | 499795 | 249673 | 0.342 | 39.5 | 12.6 | 7.3 | 0.461 | | 90.0 | 900008 | 89882 | 0.54 | 40.7 | 24.4 | 2.7 | 0.164 | | 99.0 | 989970 | 9934 | 0.552 | 50.9 | 27.6 | 0.256 | 0.0184 | | 99.9 | 998975 | 1025 | 0.524 | 51.7 | 27.3 | 0.0283 | 0.00179 | | 99.99 | 999898 | 103 | 0.522 | 51.7 | 27.4 | 0.00197 | 0.000204 | | 99.999 | 999985 | 16 | 0.522 | 50.9 | 27.1 | 0.000315 | 5.22e-5 | Fill element-wise consecutively, ms: | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|---------|---------|-----------|---------|---------| | 0.001 | 1001 | 1001 | 0.0753 | 0.0647 | 0.125 | 0.215 | 0.0549 | | 0.01 | 1001 | 1001 | 0.0471 | 0.475 | 0.163 | 0.214 | 0.0527 | | 0.1 | 1193 | 1001 | 0.0498 | 0.0607 | 0.154 | 0.231 | 0.0604 | | 1.0 | 10497 | 1001 | 0.154 | 0.471 | 1.44 | 1.79 | 0.302 | | 10.0 | 106832 | 1001 | 0.524 | 4.56 | 20.6 | 8.44 | 3.44 | | 50.0 | 498341 | 1001 | 1.8 | 42.4 | 143.0 | 33.9 | 10.8 | | 90.0 | 889750 | 1001 | 3.04 | 61.1 | 269.0 | 133.0 | 71.6 | | 99.0 | 988290 | 1001 | 5.27 | 328.0 | 428.0 | 123.0 | 30.0 | | 99.9 | 997815 | 1001 | 4.4 | 76.3 | 159.0 | 1160.0 | 16.9 | | 99.99 | 998001 | 1001 | 4.34 | 155.0 | 623.0 | 174.0 | 20.5 | | 99.999 | 998001 | 1001 | 3.44 | 58.0 | 230.0 | 68.2 | 27.8 | | 0.001 | 13 | 13 | 0.277 | 0.0124 | 0.00372 | 0.00459 | 0.00152 | | 0.01 | 90 | 90 | 0.237 | 0.00368 | 0.0098 | 0.0157 | 0.00661 | | 0.1 | 985 | 985 | 0.0918 | 0.037 | 0.27 | 0.206 | 0.0652 | | 1.0 | 10126 | 10014 | 0.297 | 0.463 | 14.7 | 8.49 | 0.569 | | 10.0 | 99784 | 89966 | 1.51 | 167.0 | 24.4 | 25.7 | 14.5 | | 50.0 | 499795 | 249673 | 2.0 | 28.7 | 1110.0 | 827.0 | 24.2 | | 90.0 | 900008 | 89882 | 3.51 | 74.8 | 605.0 | 247.0 | 15300.0 | | 99.0 | 989970 | 9934 | 3.83 | 82.2 | 454.0 | 96.0 | 26.1 | | 99.9 | 998975 | 1025 | 4.36 | 118.0 | 1410.0 | 152.0 | 22.3 | | 99.99 | 999898 | 103 | 3.6 | 65.4 | 1210.0 | 59.7 | 19.2 | | 99.999 | 999985 | 16 | 2.48 | 87.0 | 425.0 | 1500.0 | 19.3 | Access element-wise consecutively (time per element, ns): | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|----------|----------|-----------|----------|----------| | 0.001 | 1001 | 1001 | 0.000863 | 0.011 | 0.0203 | 0.0293 | 0.0316 | | 0.01 | 1001 | 1001 | 0.000862 | 0.011 | 0.0206 | 0.0299 | 0.0316 | | 0.1 | 1193 | 1001 | 0.000972 | 0.0133 | 0.0255 | 0.0325 | 0.0367 | | 1.0 | 10497 | 1001 | 0.0068 | 0.179 | 0.293 | 0.076 | 0.0595 | | 10.0 | 106832 | 1001 | 0.0656 | 2.06 | 4.79 | 0.452 | 0.248 | | 50.0 | 498341 | 1001 | 0.302 | 22.0 | 26.1 | 1.98 | 1.09 | | 90.0 | 889750 | 1001 | 0.551 | 43.1 | 51.0 | 3.58 | 1.89 | | 99.0 | 988290 | 1001 | 0.584 | 48.1 | 56.1 | 3.9 | 2.08 | | 99.9 | 997815 | 1001 | 0.603 | 45.7 | 56.2 | 4.24 | 2.1 | | 99.99 | 998001 | 1001 | 0.74 | 48.1 | 56.9 | 3.97 | 2.14 | | 99.999 | 998001 | 1001 | 0.616 | 51.3 | 56.9 | 3.98 | 2.1 | | 0.001 | 13 | 13 | 4.29e-5 | 0.000153 | 0.000103 | 0.000218 | 0.000115 | | 0.01 | 90 | 90 | 8.65e-5 | 0.000959 | 0.00101 | 0.0017 | 0.000729 | | 0.1 | 985 | 985 | 0.000777 | 0.0111 | 0.02 | 0.0287 | 0.031 | | 1.0 | 10126 | 10014 | 0.00692 | 0.167 | 0.281 | 0.4 | 0.381 | | 10.0 | 99784 | 89966 | 0.0678 | 1.81 | 4.71 | 5.53 | 3.85 | | 50.0 | 499795 | 249673 | 0.339 | 17.0 | 27.5 | 19.5 | 13.2 | | 90.0 | 900008 | 89882 | 0.544 | 44.5 | 51.6 | 9.18 | 5.8 | | 99.0 | 989970 | 9934 | 0.689 | 50.1 | 62.7 | 4.45 | 2.36 | | 99.9 | 998975 | 1025 | 0.616 | 47.2 | 58.7 | 3.97 | 2.12 | | 99.99 | 999898 | 103 | 0.601 | 50.8 | 61.2 | 3.94 | 2.04 | | 99.999 | 999985 | 16 | 0.578 | 48.0 | 64.1 | 3.98 | 1.8 | Fill element-wise in random order of elements, ms: | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|---------|---------|-----------|---------|---------| | 0.001 | 1001 | 1001 | 0.0159 | 0.0352 | 0.121 | 0.307 | 0.198 | | 0.01 | 1001 | 1001 | 0.0136 | 0.12 | 0.288 | 0.505 | 0.156 | | 0.1 | 1193 | 1001 | 0.031 | 0.195 | 0.227 | 0.281 | 0.175 | | 1.0 | 10497 | 1001 | 0.0455 | 0.432 | 1.74 | 2.56 | 2.0 | | 10.0 | 106832 | 1001 | 0.357 | 26.1 | 36.0 | 33.9 | 97.3 | | 50.0 | 498341 | 1001 | 1.21 | 29.2 | 207.0 | 206.0 | 3080.0 | | 90.0 | 889750 | 1001 | 1.95 | 81.4 | 424.0 | 400.0 | 10600.0 | | 99.0 | 988290 | 1001 | 3.08 | 312.0 | 669.0 | 454.0 | 12600.0 | | 99.9 | 997815 | 1001 | 3.87 | 708.0 | 747.0 | 629.0 | 16000.0 | | 99.99 | 998001 | 1001 | 2.22 | 85.0 | 464.0 | 448.0 | 12900.0 | | 99.999 | 998001 | 1001 | 2.48 | 69.9 | 1250.0 | 472.0 | 12800.0 | | 0.001 | 13 | 13 | 0.264 | 0.0168 | 0.0205 | 0.00946 | 0.00166 | | 0.01 | 90 | 90 | 0.105 | 0.0227 | 0.0341 | 0.0924 | 0.00925 | | 0.1 | 985 | 985 | 0.13 | 0.289 | 0.13 | 0.558 | 0.602 | | 1.0 | 10126 | 10014 | 0.222 | 0.649 | 1.82 | 4.06 | 4.77 | | 10.0 | 99784 | 89966 | 0.248 | 7.39 | 32.4 | 60.6 | 297.0 | | 50.0 | 499795 | 249673 | 1.95 | 243.0 | 296.0 | 422.0 | 7940.0 | | 90.0 | 900008 | 89882 | 8.76 | 1030.0 | 421.0 | 447.0 | 12400.0 | | 99.0 | 989970 | 9934 | 3.94 | 56.7 | 510.0 | 470.0 | 13000.0 | | 99.9 | 998975 | 1025 | 2.2 | 90.0 | 442.0 | 468.0 | 13600.0 | | 99.99 | 999898 | 103 | 9.65 | 59.5 | 438.0 | 726.0 | 13200.0 | | 99.999 | 999985 | 16 | 2.8 | 287.0 | 715.0 | 480.0 | 12800.0 | Access element-wise randomly (time per element, ns): | ρ, % | elements | ranges | BitSet | Set | SortedSet | URSSet | VURSSet | |---------|--------|--------|----------|----------|-----------|----------|----------| | 0.001 | 1001 | 1001 | 0.000826 | 0.011 | 0.0278 | 0.0455 | 0.0483 | | 0.01 | 1001 | 1001 | 0.000821 | 0.011 | 0.027 | 0.0442 | 0.0475 | | 0.1 | 1193 | 1001 | 0.000952 | 0.0136 | 0.0341 | 0.0518 | 0.0571 | | 1.0 | 10497 | 1001 | 0.00732 | 0.18 | 0.597 | 0.413 | 0.54 | | 10.0 | 106832 | 1001 | 0.0759 | 2.08 | 26.4 | 4.18 | 5.46 | | 50.0 | 498341 | 1001 | 0.364 | 21.8 | 240.0 | 19.7 | 25.7 | | 90.0 | 889750 | 1001 | 0.669 | 43.4 | 519.0 | 35.0 | 46.2 | | 99.0 | 988290 | 1001 | 0.743 | 43.3 | 518.0 | 38.8 | 51.5 | | 99.9 | 997815 | 1001 | 0.961 | 51.8 | 599.0 | 39.4 | 51.7 | | 99.99 | 998001 | 1001 | 0.861 | 50.1 | 558.0 | 39.0 | 52.2 | | 99.999 | 998001 | 1001 | 0.797 | 48.9 | 505.0 | 39.4 | 51.7 | | 0.001 | 13 | 13 | 4.24e-5 | 0.000153 | 0.000102 | 0.000189 | 0.000104 | | 0.01 | 90 | 90 | 8.7e-5 | 0.000909 | 0.000974 | 0.00159 | 0.000716 | | 0.1 | 985 | 985 | 0.000748 | 0.011 | 0.0274 | 0.0435 | 0.0465 | | 1.0 | 10126 | 10014 | 0.00838 | 0.166 | 0.57 | 0.862 | 0.708 | | 10.0 | 99784 | 89966 | 0.0944 | 1.81 | 24.8 | 25.8 | 9.51 | | 50.0 | 499795 | 249673 | 0.453 | 20.5 | 209.0 | 162.0 | 57.7 | | 90.0 | 900008 | 89882 | 0.809 | 40.9 | 489.0 | 157.0 | 80.5 | | 99.0 | 989970 | 9934 | 0.928 | 51.2 | 576.0 | 65.2 | 69.1 | | 99.9 | 998975 | 1025 | 0.981 | 51.2 | 587.0 | 36.7 | 51.2 | | 99.99 | 999898 | 103 | 0.746 | 50.6 | 538.0 | 23.9 | 31.5 | | 99.999 | 999985 | 16 | 0.881 | 50.8 | 549.0 | 20.0 | 18.4 |
UnitRangesSortedSets
https://github.com/denius/UnitRangesSortedSets.jl.git
[ "MIT" ]
1.0.0
02b36706c287622dfa105ea2eb4dfa50a50819b4
code
5878
module RawFile export saveraw,readraw,rawsize,appendraw export RawFile,RawFileIter,start,done,next token = "RAWF" version = 2 endtoken = "FIN" mutable struct RawHeader version::UInt8 eltype::Type sizes::Vector{Int64} end import Base.write function write(f::IO,x::RawHeader) write(f,token) write(f,x.version) typename = string(x.eltype) write(f,UInt8(length(typename))) write(f,typename) write(f,UInt8(length(x.sizes))) write(f,x.sizes) return nothing end function readheader(f::IO) tok = String(read(f,length(token))) tok != token && error("Invalid token in RawFile") ver = read(f,UInt8) ver != version && warn("Incorrect RawFile version ($ver, current version $version)") lentypename = read(f,UInt8) typename = String(read(f,lentypename)) eltype = eval(Meta.parse(typename)) nd = read(f,UInt8) sizes = read!(f,Array{Int64}(undef,nd)) RawHeader(ver,eltype,sizes) end """ saveraw{T<:Number,V}(a::AbstractArray{T,V},fname::String) Save `a` to the file `fname`. """ function saveraw(a::AbstractArray{T,V},fname::String) where {T<:Number,V} header = RawHeader(version,eltype(a),collect(size(a))) open(fname,"w") do f write(f,header) write(f,a) write(f,endtoken) end return nothing end """ appendraw{T<:Number,V}(a::AbstractArray{T,V},fname::String) Append the `AbstractArray` `a` to the file `fname`, along last dimension. Requires `a` to be the same `Type` and shape (excluding last dimension) """ function appendraw(a::AbstractArray{T,V},fname::String) where {T<:Number,V} open(fname,"r+") do f h = readheader(f) h.eltype != eltype(a) && error("Trying to append RawFile with different data Type") Tuple(h.sizes[1:end-1]) != size(a)[1:end-1] && error("Trying to append RawFile with Array of different shape") h.sizes[end] += size(a)[end] seekstart(f) write(f,h) seekend(f) seek(f,position(f)-length(endtoken)) write(f,a) write(f,endtoken) end return nothing end appendraw(a::T,fname::String) where {T<:Number} = appendraw([a],fname) """ readraw(fname::String) Read the file `fname` and return a reconstructed `Array` with the proper `Type` and size. """ function readraw(fname::String) open(fname) do f h = readheader(f) d = read!(f,Array{h.eltype}(undef,Tuple(h.sizes))) endtok = String(read(f,length(endtoken))) endtok != endtoken && error("Invalid end of RawFile") return d end end """ rawsize(fname::String) Read size from file `fname`, returns `Tuple` """ function rawsize(fname::String) open(fname) do f h = readheader(f) return Tuple(h.sizes) end end mutable struct PartialRaw f::IO eltype::Type sizes::Array{Int64,1} total::Int end """ saveraw(func::Function,fname::String) Save `Array`s progressively produced in `func`. Each partial `Array` needs to have the same dimensions (excluding the last dimension), and are concatenated along the last dimension. # Examples ```julia-repl julia> saveraw("test.raw") do f for i=1:10 write(f,rand(100,10,5)) end end julia> rawsize("test.raw") (100, 10, 50) ``` """ function saveraw(func::Function,fname::String) open(fname,"w") do f p = PartialRaw(f,Int,[],0) func(p) write(f,endtoken) seekstart(f) p.sizes[end] = p.total write(f,RawHeader(version,p.eltype,p.sizes)) end return nothing end function write(p::PartialRaw,d::AbstractArray{T,V}) where {T<:Number,V} if length(p.sizes)==0 # This is the first Array we've seen p.sizes = collect(size(d)) p.eltype = eltype(d) write(p.f,RawHeader(version,p.eltype,p.sizes)) else Tuple(p.sizes[1:end-1]) != size(d)[1:end-1] && error("Cannot write partial RawFile, all dimensions other than the last must be the same") p.eltype != eltype(d) && error("Cannot write partial RawFile, all data must be the same type") end write(p.f,d) p.total += size(d)[end] return nothing end """ RawFileIter(fname::String,num_batch::Int) Creates an interator that will iterate through the file `fname`, returning `Array`s with the last dimension `num_batch` (or less if EOF is reached). # Examples ```julia-repl julia> for d in RawFileIter("test.raw",20) info(size(d)) end INFO: (100, 10, 20) INFO: (100, 10, 20) INFO: (100, 10, 10) ``` """ mutable struct RawFileIter fname::String num_batch::Int end mutable struct RawFileState i::Int total_length::Int num_batch::Int batch_step::Int batch_size::Array{Int,1} f::IO eltype::Type end import Base.iterate,Base.length function finalize(s::RawFileState) close(s.f) end function iterate(r::RawFileIter) f = open(r.fname) h = readheader(f) batch_step = reduce(*,h.sizes[1:end-1]) total_length = batch_step*h.sizes[end] batch_size = copy(h.sizes) i = 0 s = RawFileState(i,total_length,r.num_batch,batch_step,batch_size,f,h.eltype) finalizer(finalize,s) return iterate(r,s) end function iterate(r::RawFileIter,state::RawFileState) if state.i < state.total_length this_len = Int(min(state.num_batch,(state.total_length-state.i)/state.batch_step)) state.batch_size[end] = this_len d = read!(state.f,Array{state.eltype}(undef,Tuple(state.batch_size))) state.i += state.batch_step*this_len return (d,state) else endtok = String(read(state.f,length(endtoken))) endtok != endtoken && error("Invalid end of RawFile") return nothing end end function readraw(func::Function,fname::String,batch::Int) for d in RawFileIter(fname,batch) func(d) end end end
RawFile
https://github.com/azraq27/RawFile.jl.git
[ "MIT" ]
1.0.0
02b36706c287622dfa105ea2eb4dfa50a50819b4
code
1300
using RawFile sizes = [(100,),(75,100),(10,20,50)] fname = "testfile.raw" for t in [UInt8,Int32,Int64,Float32,Float64,ComplexF16,ComplexF32] for s in sizes d = rand(t,s) saveraw(d,fname) dd = readraw(fname) dd_batch = t[] readraw(fname,10) do d append!(dd_batch,d[:]) end dd_batch = reshape(dd_batch,s) @assert d == dd @assert d == dd_batch @assert s == rawsize(fname) saveraw(fname) do f for i=0:Int(s[end]/10)-1 write(f,view(d,[Colon() for j=1:ndims(d)-1]...,i*10+1:i*10+10)) end end dd = readraw(fname) @info size(d) @info size(dd) @info d[70:80] @info dd[70:80] @assert d == dd saveraw(view(d,[Colon() for j=1:ndims(d)-1]...,1:10),fname) for i=1:Int(s[end]/10)-1 appendraw(view(d,[Colon() for j=1:ndims(d)-1]...,i*10+1:i*10+10),fname) end dd = readraw(fname) @assert d == dd if length(s)==1 saveraw(view(d,1:10),fname) for i=11:s[1] appendraw(d[i],fname) end dd = readraw(fname) @assert d == dd end isfile(fname) && rm(fname) end end
RawFile
https://github.com/azraq27/RawFile.jl.git
[ "MIT" ]
1.0.0
02b36706c287622dfa105ea2eb4dfa50a50819b4
docs
600
# RawFile A simple, fast file format for storing numeric arrays. I built this package because I was frustrated with the speed and complexity of other formats. [![Build Status](https://travis-ci.org/azraq27/RawFile.jl.svg?branch=master)](https://travis-ci.org/azraq27/RawFile.jl) [![Coverage Status](https://coveralls.io/repos/azraq27/RawFile.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/azraq27/RawFile.jl?branch=master) [![codecov.io](http://codecov.io/github/azraq27/RawFile.jl/coverage.svg?branch=master)](http://codecov.io/github/azraq27/RawFile.jl?branch=master)
RawFile
https://github.com/azraq27/RawFile.jl.git
[ "MIT" ]
1.5.0
5a74ac22a9daef23705f010f72c81d6925b19df8
code
6483
module Sobol using Random export SobolSeq, ScaledSobolSeq, next! include("soboldata.jl") #loads `sobol_a` and `sobol_minit` abstract type AbstractSobolSeq{N} end # N iis the dimension of sequence being generated mutable struct SobolSeq{N} <: AbstractSobolSeq{N} m::Array{UInt32,2} #array of size (sdim, 32) x::Array{UInt32,1} #previous x = x_n, array of length sdim b::Array{UInt32,1} #position of fixed point in x[i] is after bit b[i] n::UInt32 #number of x's generated so far end ndims(s::AbstractSobolSeq{N}) where {N} = N::Int function SobolSeq(N::Int) (N < 0 || N > (length(sobol_a) + 1)) && error("invalid Sobol dimension") m = ones(UInt32, (N, 32)) #special cases N == 0 && return(SobolSeq{0})(m,UInt32[],UInt32[],zero(UInt32)) #special cases 1 N == 1 && return(SobolSeq{N}(m,UInt32[0],UInt32[0],zero(UInt32))) for i = 2:N a = sobol_a[i-1] d = floor(Int, log2(a)) #degree of poly #set initial values of m from table m[i, 1:d] = sobol_minit[1:d, i - 1] #fill in remaining values using recurrence for j = (d+1):32 ac = a m[i,j] = m[i,j-d] for k = 0:d-1 @inbounds m[i,j] = m[i,j] ⊻ (((ac & one(UInt32)) * m[i, j-d+k]) << (d-k)) ac >>= 1 end end end SobolSeq{N}(m,zeros(UInt32,N),zeros(UInt32,N),zero(UInt32)) end SobolSeq(N::Integer) = SobolSeq(Int(N)) function next!(s::SobolSeq, x::AbstractVector{<:AbstractFloat}) length(x) != ndims(s) && throw(BoundsError()) if s.n == typemax(s.n) return rand!(x) end s.n += one(s.n) c = UInt32(trailing_zeros(s.n)) sb = s.b sx = s.x sm = s.m for i=1:ndims(s) @inbounds b = sb[i] # note: ldexp on Float64(sx[i]) is exact, independent of precision of x[i] if b >= c @inbounds sx[i] = sx[i] ⊻ (sm[i,c+1] << (b-c)) @inbounds x[i] = ldexp(Float64(sx[i]), ((~b) % Int32)) else @inbounds sx[i] = (sx[i] << (c-b)) ⊻ sm[i,c+1] @inbounds sb[i] = c @inbounds x[i] = ldexp(Float64(sx[i]), ((~c) % Int32)) end end return x end next!(s::SobolSeq) = next!(s, Array{Float64,1}(undef, ndims(s))) # if we know in advance how many points (n) we want to compute, then # adopt a suggestion similar to the Joe and Kuo paper, which in turn # is taken from Acworth et al (1998), of skipping a number of # points one less than the largest power of 2 smaller than n+1. # if exactly n points are to be skipped, use the keyword exact=true. # (Ackworth and Joe and Kuo seem to suggest skipping exactly # a power of 2, but skipping 1 less seems to produce much better # results: issue #21.) # # skip!(s, n) skips 2^m - 1 such that 2^m < n ≤ 2^(m+1) # skip!(s, n, exact=true) skips m = n function skip!(s::SobolSeq, n::Integer, x; exact=false) if n ≤ 0 n == 0 && return s throw(ArgumentError("$n is not non-negative")) end nskip = exact ? n : (1 << floor(Int,log2(n+1)) - 1) for unused=1:nskip; next!(s,x); end return s end Base.skip(s::SobolSeq, n::Integer; exact=false) = skip!(s, n, Array{Float64,1}(undef, ndims(s)); exact=exact) function Base.show(io::IO, s::SobolSeq) print(io, "$(ndims(s))-dimensional Sobol sequence on [0,1]^$(ndims(s))") end function Base.show(io::IO, ::MIME"text/html", s::SobolSeq) print(io, "$(ndims(s))-dimensional Sobol sequence on [0,1]<sup>$(ndims(s))</sup>") end # Make an iterator so that we can do "for x in SobolSeq(...)". # Technically, the Sobol sequence ends after 2^32-1 points, but it # falls back on pseudorandom numbers after this. In practice, one is # unlikely to reach that point. Base.iterate(s::AbstractSobolSeq, state=nothing) = (next!(s), state) Base.eltype(::Type{<:AbstractSobolSeq}) = Vector{Float64} Base.IteratorSize(::Type{<:AbstractSobolSeq}) = Base.IsInfinite() Base.IteratorEltype(::Type{<:AbstractSobolSeq}) = Base.HasEltype() # Convenience wrapper for scaled Sobol sequences struct ScaledSobolSeq{N,T} <: AbstractSobolSeq{N} s::SobolSeq{N} lb::Vector{T} ub::Vector{T} function ScaledSobolSeq{N,T}(lb::Vector{T}, ub::Vector{T}) where {N,T} length(lb)==length(ub)==N || throw(DimensionMismatch("lb and ub do not have length $N")) new(SobolSeq(N), lb, ub) end end function SobolSeq(N::Integer, lb, ub) T = typeof(sum(ub) - sum(lb)) ScaledSobolSeq{Int(N),T}(copyto!(Vector{T}(undef,N), lb), copyto!(Vector{T}(undef,N), ub)) end SobolSeq(lb, ub) = SobolSeq(length(lb), lb, ub) function next!(s::SobolSeq, x::AbstractVector{<:AbstractFloat}, lb::AbstractVector, ub::AbstractVector) length(x) < ndims(s) && throw(BoundsError()) next!(s,x) for i=1:ndims(s) x[i] = lb[i] + (ub[i]-lb[i]) * x[i] end return x end function next!(s::SobolSeq{N}, lb::AbstractVector, ub::AbstractVector) where {N} T = typeof(float((zero(eltype(ub)) - zero(eltype(lb))))) next!(s, Vector{T}(undef, N), lb, ub) end next!(s::ScaledSobolSeq, x::AbstractVector{<:AbstractFloat}) = next!(s.s, x, s.lb, s.ub) next!(s::ScaledSobolSeq{N,T}) where {N,T} = next!(s.s, Vector{float(T)}(undef, N), s.lb, s.ub) Base.eltype(::Type{ScaledSobolSeq{N,T}}) where {N,T} = Vector{float(T)} Base.skip(s::ScaledSobolSeq, n; exact = false) = (skip(s.s, n; exact = exact); s) function Base.show(io::IO, s::ScaledSobolSeq{N,T}) where {N,T} lb = s.lb; ub = s.ub print(io, "$N-dimensional scaled $(float(T)) Sobol sequence on [$(lb[1]),$(ub[1])]") cnt = 1 for i = 2:N if lb[i] == lb[i-1] && ub[i] == ub[i-1] cnt += 1 else if cnt > 1 print(io, "^", cnt) end print(io, " x [", lb[i], ",", ub[i], "]") cnt = 1 end end if cnt > 1 print(io, "^", cnt) end end function Base.show(io::IO, ::MIME"text/html", s::ScaledSobolSeq{N,T}) where {N,T} lb = s.lb; ub = s.ub print(io, "$N-dimensional scaled $(float(T)) Sobol sequence on [$(lb[1]),$(ub[1])]") cnt = 1 for i = 2:N if lb[i] == lb[i-1] && ub[i] == ub[i-1] cnt += 1 else if cnt > 1 print(io, "<sup>", cnt, "</sup>") end print(io, " × [", lb[i], ",", ub[i], "]") cnt = 1 end end if cnt > 1 print(io, "<sup>", cnt, "</sup>") end end end # module
Sobol
https://github.com/stevengj/Sobol.jl.git
[ "MIT" ]
1.5.0
5a74ac22a9daef23705f010f72c81d6925b19df8
code
2834
#= Data on the primitive binary polynomials (a) and the corresponding starting values m, for Sobol sequences in up to 21201 dimensions, taken from: S. Joe and F. Y. Kuo, Constructing Sobol sequences with better two-dimensional projections, SIAM J. Sci. Comput. 30, 2635-2654 (2008). Figures used were derived from files provided on Joe Kuo's website http://web.maths.unsw.edu.au/~fkuo/sobol/ on 16/10/2010 and are provided under the license below. Copyright (c) 2008, Frances Y. Kuo and Stephen Joe All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the names of the copyright holders nor the names of the University of New South Wales and the University of Waikato and its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. =# using DelimitedFiles const sobol_a_file = joinpath(@__DIR__, "sobol_a.csv") const sobol_minit_file = joinpath(@__DIR__, "sobol_minit.csv") # we need to re-compile if these files change: include_dependency(sobol_a_file) include_dependency(sobol_minit_file) #successive primitive binary-coefficient polynomials p(z) # = a_0 + a_1 z + a_2 z^2 + ... a_31 z^31, where a_i is the # i-th bit of sobol_a[j] for the j-th polynomial. const sobol_a = vec(readdlm(sobol_a_file, ',', UInt32)) # starting direction #'s m[i] = sobol_minit[i][j] for i=0..d of the # degree-d primitive polynomial sobol_a[j]. const sobol_minit = readdlm(sobol_minit_file, ',', UInt32)
Sobol
https://github.com/stevengj/Sobol.jl.git
[ "MIT" ]
1.5.0
5a74ac22a9daef23705f010f72c81d6925b19df8
code
2347
using Sobol, Test # compare results with results from C++ code sobol.cc published on # http://web.maths.unsw.edu.au/~fkuo/sobol/ # with new-joe-kuo-6.21201 file used as input. # # Command line used to generate output is # ./sobol $N 1024 new-joe-kuo-6.21201 > exp_results_$N # # For each of the dimensions below # (except 21201 where only 64 samples are generated) @testset "published results" begin dimensions = [5, 10, 20, 50, 100, 500, 21201] for dim in dimensions println("Testing dimension $(dim)") open(joinpath(dirname(@__FILE__), "results", "exp_results_$(dim)")) do exp_results_file s = SobolSeq(dim) x = zeros(dim) for line in eachline(exp_results_file) values = [parse(Float64, item) for item in split(line)] if length(values) > 0 @test x == values next!(s, x) end end end end end using Base.Iterators: take @testset "iterators" begin # issue #8 @test [x[1] for x in collect(take(Sobol.SobolSeq(1),5))] == [0.5,0.75,0.25,0.375,0.875] end @testset "scaled" begin # ScaledSobolSeq constructors lb = [-1,0,0] ub = [1,3,2] N = length(lb) s = SobolSeq(lb,ub) @test s isa ScaledSobolSeq{3,Int} @test eltype(s) == Vector{Float64} @test eltype(SobolSeq(Float32.(lb),Float32.(ub))) == Vector{Float32} @test first(s) == [0,1.5,1] @test first(SobolSeq((x for x in lb), (x for x in ub))) == [0,1.5,1] @test SobolSeq(N,lb,ub) isa ScaledSobolSeq{3,Int} @test_throws BoundsError SobolSeq(2,lb,ub) end @testset "skip exactly n" begin # issue #22 # want to get the nth element for n in (1,10) s1 = SobolSeq(1) x1 = last([next!(s1)[1] for _ in 1:n]) s2 = skip(SobolSeq(1), n-1, exact=true) x2 = next!(s2)[1] @test x1 == x2 end @test_throws ArgumentError skip(SobolSeq(1), -1) end @testset "default skip" begin # issue #21 s = skip(SobolSeq(4), 16) p = map(_->next!(s), 1:16) sort!(map(x -> sum((x .≥ 0.5) .* (2 .^ (0:3))), p)) == 0:15 for n in (7,8) s = skip(SobolSeq(2), n) p = [next!(s) for _ = 1:n] s2 = skip(SobolSeq(2), 7, exact=true) p2 = [next!(s2) for _ = 1:n] @test p == p2 end end
Sobol
https://github.com/stevengj/Sobol.jl.git
[ "MIT" ]
1.5.0
5a74ac22a9daef23705f010f72c81d6925b19df8
docs
5523
# The Sobol module for Julia [![Build Status](https://travis-ci.org/stevengj/Sobol.jl.png)](https://travis-ci.org/stevengj/Sobol.jl) This module provides a free [Julia-language](http://julialang.org/) [Sobol low-discrepancy-sequence (LDS)](https://en.wikipedia.org/wiki/Sobol_sequence) implementation. This generates "quasi-random" sequences of points in N dimensions which are equally distributed over an N-dimensional hypercube. The advantage of an LDS over truly random (or pseudo-random) numbers is that an LDS (which is *not* random) tends to be more evenly distributed for finite numbers of points. This is used in [quasi-Monte Carlo methods](https://en.wikipedia.org/wiki/Quasi-Monte_Carlo_method) in order to accelerate convergence compared to traditional [Monte Carlo methods](https://en.wikipedia.org/wiki/Monte_Carlo_method) employing random sequences. It can be installed using the Julia package manager via `Pkg.add("Sobol")`. ## Algorithm This is an independent implementation, originally by Steven G. Johnson, of the algorithm for generation of Sobol sequences in up to 21201 dimensions described in: * P. Bratley and B. L. Fox, [Algorithm 659: Implementing Sobol's quasirandom sequence generator][bratley88], *ACM Trans. Math. Soft.* **14** (1), pp. 88-100 (1988), [doi:10.1145/42288.214372][bratley88]. * S. Joe and F. Y. Kuo, [Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator][joe03], *ACM Trans. Math. Soft* **29** (1), 49-57 (2003), [doi:10.1145/641876.641879][joe03]. [bratley88]: https://dl.acm.org/citation.cfm?id=214372 [joe03]: https://dl.acm.org/citation.cfm?id=641879 Originally implemented in C in 2007 as [part of](https://github.com/stevengj/nlopt/blob/master/util/sobolseq.c) the [NLopt library](http://ab-initio.mit.edu/nlopt) for nonlinear optimization, the code was subsequently converted by [Ken-B](https://github.com/Ken-B) into pure Julia with roughly the same performance. It is important to emphasize that SGJ's implementation was based on the mathematical description of the algorithms only, and was done without reference to the Fortran code from the *Trans. Math. Soft.* (*TOMS*) papers. The reason is that *TOMS* code is not free/open-source software (it falls under [restrictive ACM copyright terms](http://www.acm.org/publications/policies/softwarecrnotice)). (SGJ did re-use a table of primitive polynomials and coefficients from the *TOMS* code, but since this is merely a tabulation of mathematical facts it is not copyrightable.) SGJ's implementation in NLopt, along with this Julia translation, is free/open-source software under the [MIT ("expat") license](http://opensource.org/licenses/MIT). Direction numbers used were derived from the file http://web.maths.unsw.edu.au/~fkuo/sobol/new-joe-kuo-6.21201 Technically, we implement a 32-bit Sobol sequence. After 2<sup>32</sup>-1 points, the sequence terminates, and subsequently our implementation returns pseudo-random numbers generated by the [Mersenne Twister](https://en.wikipedia.org/wiki/Mersenne_twister) algorithm. In practical applications, however, this point is rarely reached. ## Usage To initialize a Sobol sequence `s` in `N` dimensions (`0 < N < 21201`), use the `SobolSeq` constructor: ```julia using Sobol s = SobolSeq(N) ``` Then ```julia x = next!(s) ``` returns the next point (a `Vector{Float64}`) in the sequence; each point lies in the hypercube [0,1]<sup>N</sup>. You can also compute the next point in-place with ```julia next!(s, x) ``` where `x` should be a `Vector` of length `N` of some floating-point type (e.g. `Float64`, `Float32`, or `BigFloat`). You can also use a `SobolSeq` as an iterator in Julia: ```julia for x in SobolSeq(N) ... end ``` Note, however, that the loop will *never terminate* unless you explicitly call `break` (or similar) in the loop body at some point of your choosing. We also provide a different `SobolSeq` constructor to provide an `N`-dimensional Sobol sequence rescaled to an arbitrary hypercube: ```julia s = SobolSeq(lb, ub) ``` where `lb` and `ub` are arrays (or other iterables) of length `N`, giving the lower and upper bounds of the hypercube, respectively. For example, `SobolSeq([-1,0,0],[1,3,2])` generates points in the box [-1,1]×[0,3]×[0,2]. (Although the generated points are `Float64` by default, in general the precision is determined by that of `lb` and `ub`.) If you know in advance the number `n` of points that you plan to generate, some authors suggest that better uniformity can be attained by first skipping the initial portion of the LDS. In particular, we skip 2ᵐ−1 for the largest `m` where `2ᵐ-1 ≤ n` (see [Joe and Kuo, 2003][joe03] for a similar suggestion). This facility is provided by: ```julia skip(s, n) ``` Skipping exactly `n` elements is also possible: ```julia skip(s, n, exact=true) ``` `skip` returns `s`, so you can simply do `s = skip(SobolSeq(N))` or similar. ## Example Here is a simple example, generating 1024 points in two dimensions and plotting them with the [PyPlot](https://github.com/stevengj/PyPlot.jl) package. Note the highly uniform, nonrandom distribution of points in the [0,1]×[0,1] unit square! ```julia using Sobol using PyPlot s = SobolSeq(2) p = reduce(hcat, next!(s) for i = 1:1024)' subplot(111, aspect="equal") plot(p[:,1], p[:,2], "r.") ``` ![plot of 1024 points of a 2d Sobol sequence](sobol1024.png "1024 points of a 2d Sobol sequence") ## Author This module was written by [Steven G. Johnson](http://math.mit.edu/~stevenj/).
Sobol
https://github.com/stevengj/Sobol.jl.git
[ "MIT" ]
0.1.18
9ef6267a378c9a7467f7557f1dbd1c021a9e967f
code
3795
@doc let path = joinpath(dirname(@__DIR__), "README.md") include_dependency(path) replace(read(path, String), "```julia" => "```jldoctest mylabel") end module Difmap using DataPipes: @p using FlexiMaps: filtermap using difmap_jll using ImageMagick_jll: imagemagick_convert, identify Base.@kwdef struct ExecutionResult exitcode::Int success::Bool stdout::String stderr::String log::Union{String, Nothing} outfiles::Vector end Base.success(r::ExecutionResult) = r.success execute(script::Vector{String}; kwargs...) = execute(join(script, "\n"); kwargs...) function execute(script::String; in_files=[], out_files=[], out_files_overwrite=false) original_dir = pwd() mktempdir() do tmp_dir @debug "Running difmap in $tmp_dir" if !isempty(in_files) @debug "Copying files $in_files from $original_dir to $tmp_dir" for (from, to) in in_files @assert !occursin("/", to) to cp(joinpath(original_dir, from), joinpath(tmp_dir, to)) end end @assert !isfile(joinpath(tmp_dir, "difmap.log")) @assert !isfile(joinpath(tmp_dir, "commands")) open(joinpath(tmp_dir, "commands"), "w") do f write(f, script) end out = joinpath(tmp_dir, "__stdout") err = joinpath(tmp_dir, "__stderr") cmd = Cmd(`$(difmap())`, ignorestatus=true, dir=tmp_dir) process = run(pipeline(cmd, stdin=joinpath(tmp_dir, "commands"), stdout=out, stderr=err), wait=true) success = process.exitcode == 0 files = @p begin readdir(tmp_dir) filter(_ ∉ ["commands", "difmap.log"] && _ ∉ last.(in_files) && !startswith(_, "__")) map() do f if f ∈ first.(out_files) tgt = @p out_files |> filter(_[1] == f) |> only() |> __[2] isnothing(tgt) && return (name=f, path=nothing) tgt = joinpath(original_dir, tgt) cp(joinpath(tmp_dir, f), tgt, force=out_files_overwrite) (name=f, path=tgt) else (name=f, path=nothing) end end end return ExecutionResult( exitcode=process.exitcode, success=success, stdout=read(out, String), stderr=read(err, String), log=isfile(joinpath(tmp_dir, "difmap.log")) ? read(joinpath(tmp_dir, "difmap.log"), String) : nothing, outfiles=files, ) end end inputlines(res::ExecutionResult) = inputlines(res.log) inputlines(log::String) = @p split(log, "\n") |> filter(!isempty(_) && !startswith(_, "! ")) outputlines(res::ExecutionResult) = outputlines(res.log) outputlines(log::String) = @p split(log, "\n") |> filter(startswith(_, "! ")) |> map(strip(_[2:end])) inout_pairs(res::ExecutionResult) = inout_pairs(res.log) function inout_pairs(log::String) lines = @p split(log, "\n") |> map((line=_, kind=startswith(_, "! ") ? :out : :in)) result = ["" => String[]] for s in lines if s.kind == :in && !isempty(s.line) push!(result, s.line => []) elseif s.kind == :out push!(result[end].second, strip(s.line[2:end])) end end return result end struct Plot file::String end function Base.show(io::IO, ::MIME"image/png", p::Plot) open(p.file) do f write(io, f) end end function plots(res::ExecutionResult, args=`-density 100`) @p res.outfiles |> filtermap(_.path) |> filtermap() do p outfile = tempname() success(run(`$(identify()) $p`; wait=false)) || return nothing run(`$(imagemagick_convert()) $args $(p) PNG:$(outfile)`) Plot(outfile) end end end
Difmap
https://github.com/JuliaAPlavin/Difmap.jl.git
[ "MIT" ]
0.1.18
9ef6267a378c9a7467f7557f1dbd1c021a9e967f
code
14229
### A Pluto.jl notebook ### # v0.17.5 using Markdown using InteractiveUtils # ╔═╡ 5da52ffc-7944-11ec-3360-417816776f72 begin # using Revise # import Pkg # Pkg.develop(path="..") # Pkg.resolve() using Difmap end # ╔═╡ b69e0747-ef95-45c2-b503-ab631d9bbcaa using PlutoUI # ╔═╡ 12f2e179-f4c6-4e21-86b2-763d6a973ed3 script = [ "observe vis.fits", "select I", "rflags=\"m3\"", "device radplot.ps/VCPS", "wobs abc.fits", "radplot", "exit", ] # ╔═╡ 96cef750-dc47-49d2-81d4-1fe1440c99e6 dres = Difmap.execute(script, in_files=["./data/vis.fits" => "vis.fits"], out_files=["radplot.ps", "abc.fits"] .=> tempname.()) # ╔═╡ 5fd2e565-8314-48a3-90dc-20e8747a027c Difmap.inout_pairs(dres) # ╔═╡ 5f5e7e55-af31-405f-9930-8b87821eb6b3 Difmap.plots(dres) # ╔═╡ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] Difmap = "697f6f98-b792-4bca-85fe-71b3d053de65" PlutoUI = "7f904dfe-b85e-4ff6-b463-dae2292396a8" [compat] Difmap = "~0.1.15" PlutoUI = "~0.7.30" """ # ╔═╡ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.7.1" manifest_format = "2.0" [[deps.AbstractPlutoDingetjes]] deps = ["Pkg"] git-tree-sha1 = "8eaf9f1b4921132a4cff3f36a1d9ba923b14a481" uuid = "6e696c72-6542-2067-7265-42206c756150" version = "1.1.4" [[deps.Accessors]] deps = ["Compat", "CompositionsBase", "ConstructionBase", "Future", "LinearAlgebra", "MacroTools", "Requires", "Test"] git-tree-sha1 = "2e427a6196c7aad4ee35054a9a90e9cb5df5c607" uuid = "7d9f7c33-5ae7-4f3b-8dc6-eff91059b697" version = "0.1.7" [[deps.ArgTools]] uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f" [[deps.Artifacts]] uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33" [[deps.Base64]] uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" [[deps.ColorTypes]] deps = ["FixedPointNumbers", "Random"] git-tree-sha1 = "024fe24d83e4a5bf5fc80501a314ce0d1aa35597" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" version = "0.11.0" [[deps.Compat]] deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"] git-tree-sha1 = "44c37b4636bc54afac5c574d2d02b625349d6582" uuid = "34da2185-b29b-5c13-b0c7-acf172513d20" version = "3.41.0" [[deps.CompilerSupportLibraries_jll]] deps = ["Artifacts", "Libdl"] uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae" [[deps.CompositionsBase]] git-tree-sha1 = "455419f7e328a1a2493cabc6428d79e951349769" uuid = "a33af91c-f02d-484b-be07-31d278c5ca2b" version = "0.1.1" [[deps.ConstructionBase]] deps = ["LinearAlgebra"] git-tree-sha1 = "f74e9d5388b8620b4cee35d4c5a618dd4dc547f4" uuid = "187b0558-2788-49d3-abe0-74a17ed4e7c9" version = "1.3.0" [[deps.DataPipes]] deps = ["Accessors", "SplitApplyCombine"] git-tree-sha1 = "6da546248579d3084c06d1babd1431c64f981441" uuid = "02685ad9-2d12-40c3-9f73-c6aeda6a7ff5" version = "0.2.5" [[deps.Dates]] deps = ["Printf"] uuid = "ade2ca70-3891-5945-98fb-dc099432e06a" [[deps.DelimitedFiles]] deps = ["Mmap"] uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab" [[deps.Dictionaries]] deps = ["Indexing", "Random"] git-tree-sha1 = "66bde31636301f4d217a161cabe42536fa754ec8" uuid = "85a47980-9c8c-11e8-2b9f-f7ca1fa99fb4" version = "0.3.17" [[deps.Difmap]] deps = ["DataPipes", "ImageMagick_jll", "difmap_jll"] path = "../../home/aplavin/.julia/dev/Difmap.jl" uuid = "697f6f98-b792-4bca-85fe-71b3d053de65" version = "0.1.15" [[deps.Distributed]] deps = ["Random", "Serialization", "Sockets"] uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" [[deps.Downloads]] deps = ["ArgTools", "LibCURL", "NetworkOptions"] uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6" [[deps.FixedPointNumbers]] deps = ["Statistics"] git-tree-sha1 = "335bfdceacc84c5cdf16aadc768aa5ddfc5383cc" uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93" version = "0.8.4" [[deps.Future]] deps = ["Random"] uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820" [[deps.Hyperscript]] deps = ["Test"] git-tree-sha1 = "8d511d5b81240fc8e6802386302675bdf47737b9" uuid = "47d2ed2b-36de-50cf-bf87-49c2cf4b8b91" version = "0.0.4" [[deps.HypertextLiteral]] git-tree-sha1 = "2b078b5a615c6c0396c77810d92ee8c6f470d238" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.3" [[deps.IOCapture]] deps = ["Logging", "Random"] git-tree-sha1 = "f7be53659ab06ddc986428d3a9dcc95f6fa6705a" uuid = "b5f81e59-6552-4d32-b1f0-c071b021bf89" version = "0.2.2" [[deps.ImageMagick_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Libtiff_jll", "Pkg", "Zlib_jll", "libpng_jll"] git-tree-sha1 = "d43c324d044dc8256e1470a561ee7a0cf5e122c9" uuid = "c73af94c-d91f-53ed-93a7-00f77d67a9d7" version = "6.9.12+1" [[deps.Indexing]] git-tree-sha1 = "ce1566720fd6b19ff3411404d4b977acd4814f9f" uuid = "313cdc1a-70c2-5d6a-ae34-0150d3930a38" version = "1.1.1" [[deps.InteractiveUtils]] deps = ["Markdown"] uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240" [[deps.JLLWrappers]] deps = ["Preferences"] git-tree-sha1 = "22df5b96feef82434b07327e2d3c770a9b21e023" uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210" version = "1.4.0" [[deps.JSON]] deps = ["Dates", "Mmap", "Parsers", "Unicode"] git-tree-sha1 = "8076680b162ada2a031f707ac7b4953e30667a37" uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" version = "0.21.2" [[deps.JpegTurbo_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "d735490ac75c5cb9f1b00d8b5509c11984dc6943" uuid = "aacddb02-875f-59d6-b918-886e6ef4fbf8" version = "2.1.0+0" [[deps.LibCURL]] deps = ["LibCURL_jll", "MozillaCACerts_jll"] uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21" [[deps.LibCURL_jll]] deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"] uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0" [[deps.LibGit2]] deps = ["Base64", "NetworkOptions", "Printf", "SHA"] uuid = "76f85450-5226-5b5a-8eaa-529ad045b433" [[deps.LibSSH2_jll]] deps = ["Artifacts", "Libdl", "MbedTLS_jll"] uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8" [[deps.Libdl]] uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb" [[deps.Libgcrypt_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgpg_error_jll", "Pkg"] git-tree-sha1 = "64613c82a59c120435c067c2b809fc61cf5166ae" uuid = "d4300ac3-e22c-5743-9152-c294e39db1e4" version = "1.8.7+0" [[deps.Libgpg_error_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "c333716e46366857753e273ce6a69ee0945a6db9" uuid = "7add5ba3-2f88-524e-9cd5-f83b8a55f7b8" version = "1.42.0+0" [[deps.Libiconv_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "42b62845d70a619f063a7da093d995ec8e15e778" uuid = "94ce4f54-9a6c-5748-9c1c-f9c7231a4531" version = "1.16.1+1" [[deps.Libtiff_jll]] deps = ["Artifacts", "JLLWrappers", "JpegTurbo_jll", "Libdl", "Pkg", "Zlib_jll", "Zstd_jll"] git-tree-sha1 = "340e257aada13f95f98ee352d316c3bed37c8ab9" uuid = "89763e89-9b03-5906-acba-b20f662cd828" version = "4.3.0+0" [[deps.LinearAlgebra]] deps = ["Libdl", "libblastrampoline_jll"] uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" [[deps.Logging]] uuid = "56ddb016-857b-54e1-b83d-db4d58db5568" [[deps.MacroTools]] deps = ["Markdown", "Random"] git-tree-sha1 = "3d3e902b31198a27340d0bf00d6ac452866021cf" uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" version = "0.5.9" [[deps.Markdown]] deps = ["Base64"] uuid = "d6f4376e-aef5-505a-96c1-9c027394607a" [[deps.MbedTLS_jll]] deps = ["Artifacts", "Libdl"] uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1" [[deps.Mmap]] uuid = "a63ad114-7e13-5084-954f-fe012c677804" [[deps.MozillaCACerts_jll]] uuid = "14a3606d-f60d-562e-9121-12d972cd8159" [[deps.Ncurses_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "e3fb71f3c971fdc8523f9ef3906691124f3048a2" uuid = "68e3532b-a499-55ff-9963-d1c0c0748b3a" version = "6.2.0+0" [[deps.NetworkOptions]] uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908" [[deps.OpenBLAS_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"] uuid = "4536629a-c528-5b80-bd46-f80d51c5b363" [[deps.PGPLOT_jll]] deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"] git-tree-sha1 = "91bf88f8e171151bdc71e9615159f0a14339f54b" uuid = "b11e30b1-63be-5002-9df0-88ee0fe906ff" version = "5.2.0+0" [[deps.Parsers]] deps = ["Dates"] git-tree-sha1 = "92f91ba9e5941fc781fecf5494ac1da87bdac775" uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0" version = "2.2.0" [[deps.Pkg]] deps = ["Artifacts", "Dates", "Downloads", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"] uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" [[deps.PlutoUI]] deps = ["AbstractPlutoDingetjes", "Base64", "ColorTypes", "Dates", "Hyperscript", "HypertextLiteral", "IOCapture", "InteractiveUtils", "JSON", "Logging", "Markdown", "Random", "Reexport", "UUIDs"] git-tree-sha1 = "5c0eb9099596090bb3215260ceca687b888a1575" uuid = "7f904dfe-b85e-4ff6-b463-dae2292396a8" version = "0.7.30" [[deps.Preferences]] deps = ["TOML"] git-tree-sha1 = "2cf929d64681236a2e074ffafb8d568733d2e6af" uuid = "21216c6a-2e73-6563-6e65-726566657250" version = "1.2.3" [[deps.Printf]] deps = ["Unicode"] uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7" [[deps.REPL]] deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"] uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb" [[deps.Random]] deps = ["SHA", "Serialization"] uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" [[deps.Reexport]] git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b" uuid = "189a3867-3050-52da-a836-e630ba90ab69" version = "1.2.2" [[deps.Requires]] deps = ["UUIDs"] git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7" uuid = "ae029012-a4dd-5104-9daa-d747884805df" version = "1.3.0" [[deps.SHA]] uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce" [[deps.Serialization]] uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b" [[deps.SharedArrays]] deps = ["Distributed", "Mmap", "Random", "Serialization"] uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383" [[deps.Sockets]] uuid = "6462fe0b-24de-5631-8697-dd941f90decc" [[deps.SparseArrays]] deps = ["LinearAlgebra", "Random"] uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" [[deps.SplitApplyCombine]] deps = ["Dictionaries", "Indexing"] git-tree-sha1 = "35efd62f6f8d9142052d9c7a84e35cd1f9d2db29" uuid = "03a91e81-4c3e-53e1-a0a4-9c0c8f19dd66" version = "1.2.1" [[deps.Statistics]] deps = ["LinearAlgebra", "SparseArrays"] uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2" [[deps.TOML]] deps = ["Dates"] uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76" [[deps.Tar]] deps = ["ArgTools", "SHA"] uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e" [[deps.Test]] deps = ["InteractiveUtils", "Logging", "Random", "Serialization"] uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [[deps.UUIDs]] deps = ["Random", "SHA"] uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4" [[deps.Unicode]] uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5" [[deps.XML2_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libiconv_jll", "Pkg", "Zlib_jll"] git-tree-sha1 = "1acf5bdf07aa0907e0a37d3718bb88d4b687b74a" uuid = "02c8fc9c-b97f-50b9-bbe4-9be30ff0a78a" version = "2.9.12+0" [[deps.XSLT_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Libgcrypt_jll", "Libgpg_error_jll", "Libiconv_jll", "Pkg", "XML2_jll", "Zlib_jll"] git-tree-sha1 = "91844873c4085240b95e795f692c4cec4d805f8a" uuid = "aed1982a-8fda-507f-9586-7b0439959a61" version = "1.1.34+0" [[deps.Xorg_libX11_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Xorg_libxcb_jll", "Xorg_xtrans_jll"] git-tree-sha1 = "5be649d550f3f4b95308bf0183b82e2582876527" uuid = "4f6342f7-b3d2-589e-9d20-edeb45f2b2bc" version = "1.6.9+4" [[deps.Xorg_libXau_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4e490d5c960c314f33885790ed410ff3a94ce67e" uuid = "0c0b7dd1-d40b-584c-a123-a41640f87eec" version = "1.0.9+4" [[deps.Xorg_libXdmcp_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "4fe47bd2247248125c428978740e18a681372dd4" uuid = "a3789734-cfe1-5b06-b2d0-1dd0d9d62d05" version = "1.1.3+4" [[deps.Xorg_libpthread_stubs_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "6783737e45d3c59a4a4c4091f5f88cdcf0908cbb" uuid = "14d82f49-176c-5ed1-bb49-ad3f5cbd8c74" version = "0.1.0+3" [[deps.Xorg_libxcb_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "XSLT_jll", "Xorg_libXau_jll", "Xorg_libXdmcp_jll", "Xorg_libpthread_stubs_jll"] git-tree-sha1 = "daf17f441228e7a3833846cd048892861cff16d6" uuid = "c7cfdc94-dc32-55de-ac96-5a1b8d977c5b" version = "1.13.0+3" [[deps.Xorg_xtrans_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "79c31e7844f6ecf779705fbc12146eb190b7d845" uuid = "c5fb5394-a638-5e4d-96e5-b29de1b5cf10" version = "1.4.0+3" [[deps.Zlib_jll]] deps = ["Libdl"] uuid = "83775a58-1f1d-513f-b197-d71354ab007a" [[deps.Zstd_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"] git-tree-sha1 = "cc4bf3fdde8b7e3e9fa0351bdeedba1cf3b7f6e6" uuid = "3161d3a3-bdf6-5164-811a-617609db77b4" version = "1.5.0+0" [[deps.difmap_jll]] deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Ncurses_jll", "PGPLOT_jll", "Pkg", "Xorg_libX11_jll"] git-tree-sha1 = "2c9d61ab9189941639096a9f3dd3396da0d32652" uuid = "43cd2700-e54a-5645-adf8-b9b288a87fe6" version = "2.5.11+0" [[deps.libblastrampoline_jll]] deps = ["Artifacts", "Libdl", "OpenBLAS_jll"] uuid = "8e850b90-86db-534c-a0d3-1478176c7d93" [[deps.libpng_jll]] deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg", "Zlib_jll"] git-tree-sha1 = "94d180a6d2b5e55e447e2d27a29ed04fe79eb30c" uuid = "b53b4c65-9356-5827-b1ea-8c7a1a84506f" version = "1.6.38+0" [[deps.nghttp2_jll]] deps = ["Artifacts", "Libdl"] uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d" [[deps.p7zip_jll]] deps = ["Artifacts", "Libdl"] uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0" """ # ╔═╡ Cell order: # ╠═5da52ffc-7944-11ec-3360-417816776f72 # ╠═12f2e179-f4c6-4e21-86b2-763d6a973ed3 # ╠═96cef750-dc47-49d2-81d4-1fe1440c99e6 # ╠═5fd2e565-8314-48a3-90dc-20e8747a027c # ╠═b69e0747-ef95-45c2-b503-ab631d9bbcaa # ╠═5f5e7e55-af31-405f-9930-8b87821eb6b3 # ╟─00000000-0000-0000-0000-000000000001 # ╟─00000000-0000-0000-0000-000000000002
Difmap
https://github.com/JuliaAPlavin/Difmap.jl.git
[ "MIT" ]
0.1.18
9ef6267a378c9a7467f7557f1dbd1c021a9e967f
code
2823
using Test using Difmap @testset "execute" begin script = [ "print(1 + 2)", "exit", ] res = Difmap.execute(script) @test success(res) @test isempty(res.outfiles) @test res.stderr == "Exiting program\n" @test Difmap.inputlines(res) == script @test Difmap.outputlines(res) |> length == 4 @test occursin("Started logfile", Difmap.outputlines(res)[1]) @test Difmap.outputlines(res)[2] == "3" @test occursin("Exiting program", Difmap.outputlines(res)[3]) @test occursin("difmap.log closed", Difmap.outputlines(res)[4]) @test Difmap.inout_pairs(res) |> length == length(script) + 1 @test Difmap.inout_pairs(res)[2] == ("print(1 + 2)" => ["3"]) end @testset "copy file" begin res = mktemp() do tempf, _ write(tempf, "\nprint \"2 * 2\"\n") script = [ "print(1 + 2)", "@my_script_file", "exit", ] Difmap.execute(script, in_files=[tempf => "my_script_file"]) end @test success(res) @test isempty(res.outfiles) @test res.stderr == "Exiting program\n" @test Difmap.outputlines(res) |> length == 5 @test occursin("Started logfile", Difmap.outputlines(res)[1]) @test Difmap.outputlines(res)[2] == "3" @test "2 * 2" == Difmap.outputlines(res)[3] @test Difmap.inout_pairs(res) |> length == 6 @test Difmap.inout_pairs(res)[2] == ("print(1 + 2)" => ["3"]) @test Difmap.inout_pairs(res)[3] == ("![@my_script_file]" => []) @test Difmap.inout_pairs(res)[4] == ("print \"2 * 2\"" => ["2 * 2"]) end @testset "process vis data" begin script = [ "observe $(joinpath(@__DIR__, "./data/vis.fits"))", "select I", "mapsize 512, 0.2", "clean 500", "restore", "device tmp.ps/PS", "mapplot cln", "save result", "exit", ] res = Difmap.execute(script) @test success(res) res = Difmap.execute(script, out_files=[["result.fits", "result.mod", "result.par", "result.uvf"] .=> nothing; "tmp.ps" => tempname()]) @test success(res) @test map(f -> f[(:name,)], res.outfiles[[1, 2, 4]]) == [ (name = "result.fits",), (name = "result.mod",), (name = "result.uvf",), ] @test res.outfiles[end].name == "tmp.ps" @test res.stderr == "Polarization I is unavailable.\nExiting program\n" iops = Difmap.inout_pairs(res) @test length(iops) == length(script) + 1 @test occursin(r"^AN table", iops[2].second[2]) @test occursin(r" J0000\+0248$", iops[2].second[4]) @test occursin(" 1152 visibilities", iops[2].second[end]) @test occursin(" = 512x512 pixels ", iops[4].second[end]) @test length(Difmap.plots(res)) == 1 end using Documenter doctest(Difmap; manual=false) import CompatHelperLocal as CHL CHL.@check()
Difmap
https://github.com/JuliaAPlavin/Difmap.jl.git
[ "MIT" ]
0.1.18
9ef6267a378c9a7467f7557f1dbd1c021a9e967f
docs
4556
# Overview Julia wrapper for the [difmap](ftp://ftp.astro.caltech.edu/pub/difmap/) program. Conveniently execute difmap scripts, handle input/output files and logs. Relies on the `difmap_jll.jl` package to provide the `difmap` binary. # Usage See also the [Pluto notebook](https://aplavin.github.io/Difmap.jl/test/examples.html) that includes plots. ```julia julia> using Difmap julia> script = [ "print(1 + 2)", "exit", ]; julia> res = Difmap.execute(script); julia> res.success true julia> Difmap.inout_pairs(res)[begin+1:end-1] # first and last lines contain current time 1-element Vector{Pair{String, Vector{String}}}: "print(1 + 2)" => ["3"] ``` ```julia julia> script = [ "observe vis.fits", "select I", "mapsize 512, 0.2", "clean 500", "restore", "device tmp.ps/PS", "mapplot cln", "save result", "exit", ]; julia> vis_file = joinpath(dirname(dirname(pathof(Difmap))), "test/data/vis.fits"); julia> res = Difmap.execute(script, in_files=[vis_file => "vis.fits"], out_files=["result.fits", "result.mod", "result.par", "result.uvf", "tmp.ps"] .=> nothing, # target is nothing - ignore these files ); julia> res.success true julia> Difmap.inout_pairs(res)[begin+1:end-1] # first and last lines contain current time 8-element Vector{Pair{String, Vector{String}}}: "observe vis.fits" => ["Reading UV FITS file: vis.fits", "AN table 1: 4 integrations on 36 of 36 possible baselines.", "Apparent sampling: 1 visibilities/baseline/integration-bin.", "Found source: J0000+0248", "", "There are 8 IFs, and a total of 8 channels:", "", "IF Channel Frequency Freq offset Number of Overall IF", "origin at origin per channel channels bandwidth", "------------------------------------------------------------- (Hz)" … "05 5 4.416e+09 3.2e+07 1 3.2e+07", "06 6 4.512e+09 3.2e+07 1 3.2e+07", "07 7 4.544e+09 3.2e+07 1 3.2e+07", "08 8 4.576e+09 3.2e+07 1 3.2e+07", "", "Polarization(s): RR", "", "Read 0 lines of history.", "", "Reading 1152 visibilities."] "select I" => ["Polarization I is unavailable.", "Selecting polarization: RR, channels: 1..8", "Reading IF 1 channels: 1..1", "Reading IF 2 channels: 2..2", "Reading IF 3 channels: 3..3", "Reading IF 4 channels: 4..4", "Reading IF 5 channels: 5..5", "Reading IF 6 channels: 6..6", "Reading IF 7 channels: 7..7", "Reading IF 8 channels: 8..8"] "mapsize 512, 0.2" => ["Map grid = 512x512 pixels with 0.200x0.200 milli-arcsec cellsize."] "clean 500" => ["Inverting map and beam", "Estimated beam: bmin=1.195 mas, bmaj=3.79 mas, bpa=-3.012 degrees", "Estimated noise=0.541101 mJy/beam.", "clean: niter=500 gain=0.05 cutoff=0", "Component: 050 - total flux cleaned = 0.0188812 Jy", "Component: 100 - total flux cleaned = 0.0252178 Jy", "Component: 150 - total flux cleaned = 0.0277823 Jy", "Component: 200 - total flux cleaned = 0.0290343 Jy", "Component: 250 - total flux cleaned = 0.0300524 Jy", "Component: 300 - total flux cleaned = 0.0302839 Jy", "Component: 350 - total flux cleaned = 0.0304884 Jy", "Component: 400 - total flux cleaned = 0.0304353 Jy", "Component: 450 - total flux cleaned = 0.0305383 Jy", "Component: 500 - total flux cleaned = 0.030393 Jy", "Total flux subtracted in 500 components = 0.030393 Jy", "Clean residual min=-0.000455 max=0.000452 Jy/beam", "Clean residual mean=0.000001 rms=0.000189 Jy/beam", "Combined flux in latest and established models = 0.030393 Jy"] "restore" => ["restore: Substituting estimate of restoring beam from last 'invert'.", "Restoring with beam: 1.195 x 3.79 at -3.012 degrees (North through East)", "Clean map min=-0.0010866 max=0.019272 Jy/beam"] "device tmp.ps/PS" => ["Attempting to open device: 'tmp.ps/PS'"] "mapplot cln" => [] "save result" => ["Writing UV FITS file: result.uvf", "Writing 174 model components to file: result.mod", "Adding 174 model components to the UV plane model.", "The established model now contains 174 components and 0.030393 Jy", "Inverting map", "restore: Substituting estimate of restoring beam from last 'invert'.", "Restoring with beam: 1.195 x 3.79 at -3.012 degrees (North through East)", "Clean map min=-0.0010295 max=0.019271 Jy/beam", "Writing clean map to FITS file: result.fits", "Writing difmap environment to: result.par"] ```
Difmap
https://github.com/JuliaAPlavin/Difmap.jl.git
[ "MIT" ]
0.1.0
0a2efe02a81515634587fc69288c59fdb6a27e45
code
232
module TernaryPlots export ternary_axes, ternary_axes! export tern2cart, cart2tern using RecipesBase using LinearAlgebra: normalize include("user_helpers.jl") include("recipe_helpers.jl") include("ternary_axes.jl") end # module
TernaryPlots
https://github.com/jacobusmmsmit/TernaryPlots.jl.git
[ "MIT" ]
0.1.0
0a2efe02a81515634587fc69288c59fdb6a27e45
code
2387
tupvec(vec) = Tuple([entry] for entry in vec) coords_to_axes(src, dst) = [src[1], dst[1]], [src[2], dst[2]] function calculate_guide_pos(axis, arrow_pos, dist_from_graph) if axis == "x" base_src_tern = (arrow_pos[1], arrow_pos[2], 0) base_dst_tern = (arrow_pos[2], arrow_pos[1], 0) oriented_dfg = [0, -1] .* dist_from_graph elseif axis == "y" base_src_tern = (0, arrow_pos[1], arrow_pos[2]) base_dst_tern = (0, arrow_pos[2], arrow_pos[1]) oriented_dfg = [1, 1] .* dist_from_graph elseif axis == "z" base_src_tern = (arrow_pos[2], 0, arrow_pos[1]) base_dst_tern = (arrow_pos[1], 0, arrow_pos[2]) oriented_dfg = [-1, 1] .* dist_from_graph else throw(ArgumentError("Invalid axis (\"x, y, z\"")) end arrow_src = collect(tern2cart(base_src_tern)) .+ 2 .* oriented_dfg arrow_dst = collect(tern2cart(base_dst_tern)) .+ 2 .* oriented_dfg textpos = ((arrow_src .+ arrow_dst) ./ 2) .+ oriented_dfg return (arrow_src, arrow_dst, textpos) end function calculate_ticks(axis, ticks, tick_length, tickmult) tick_endpoints = Vector{Vector{Float64}}(undef, length(ticks)) tick_startpoints = Vector{Tuple{Float64, Float64}}(undef, length(ticks)) function start_structure(axis, tick_pos) if axis == "x" return 1 - tick_pos, tick_pos, 0 elseif axis == "y" return 1 - tick_pos, 0, tick_pos elseif axis == "z" return 0, tick_pos, 1 - tick_pos else throw(ArgumentError("Invalid axis (\"x, y, z\"")) end end function end_structure(axis, tick_pos) if axis == "x" return 1 - tick_pos, 0, tick_pos elseif axis == "y" return 0, 1 - tick_pos, tick_pos elseif axis == "z" return 1 - tick_pos, tick_pos, 0 else throw(ArgumentError("Invalid axis (\"x, y, z\"")) end end for (i, tick_pos) in enumerate(ticks) start_point = tern2cart(start_structure(axis, tick_pos)...) end_point = tern2cart(end_structure(axis, tick_pos)...) tick_offset = normalize(collect(start_point .- end_point)) ./ (1 / tick_length) tick_startpoints[i] = start_point tick_endpoints[i] = start_point .+ tickmult .* tick_offset end return tick_startpoints, tick_endpoints end
TernaryPlots
https://github.com/jacobusmmsmit/TernaryPlots.jl.git
[ "MIT" ]
0.1.0
0a2efe02a81515634587fc69288c59fdb6a27e45
code
7110
@userplot Ternary_Axes @recipe function f(ta::Ternary_Axes) # empty plot without axes framestyle := :none aspect_ratio := true dist_from_graph = get(plotattributes, :arrow_length, 0.04) arrow_length = get(plotattributes, :arrow_length, 0.4) arrow_pos = (1 - arrow_length) / 2, 1 - (1 - arrow_length) / 2 tick_length = get(plotattributes, :tick_length, 0.015) # calculate where arrows and labels should be x_arrow_src, x_arrow_dst, x_guide_pos = calculate_guide_pos("x", arrow_pos, dist_from_graph) y_arrow_src, y_arrow_dst, y_guide_pos = calculate_guide_pos("y", arrow_pos, dist_from_graph) z_arrow_src, z_arrow_dst, z_guide_pos = calculate_guide_pos("z", arrow_pos, dist_from_graph) x_arrow_xs, x_arrow_ys = coords_to_axes(x_arrow_src, x_arrow_dst) y_arrow_xs, y_arrow_ys = coords_to_axes(y_arrow_src, y_arrow_dst) z_arrow_xs, z_arrow_ys = coords_to_axes(z_arrow_src, z_arrow_dst) arrow_axes_xs_yes = [(x_arrow_xs, x_arrow_ys), (y_arrow_xs, y_arrow_ys), (z_arrow_xs, z_arrow_ys)] if !get(plotattributes, :axis_arrows, true) x_guide_pos = (x_arrow_src .+ x_arrow_dst) ./ 2 y_guide_pos = (y_arrow_src .+ y_arrow_dst) ./ 2 z_guide_pos = (z_arrow_src .+ z_arrow_dst) ./ 2 else # draw axis arrows for xs_ys in arrow_axes_xs_yes @series begin seriestype := :path primary := false seriescolor := :black arrow := true xs_ys end end end # labels xguide = get(plotattributes, :xguide, "") @series begin seriestype := :path primary := false series_annotations := [(xguide)] #[text(xguide),] tupvec(x_guide_pos) end yguide = get(plotattributes, :yguide, "") @series begin seriestype := :path primary := false series_annotations := [(yguide, -60.0)] tupvec(y_guide_pos) end zguide = get(plotattributes, :zguide, "") @series begin seriestype := :path primary := false series_annotations := [(zguide, 60.0)] #[text(zguide, 60.0),] tupvec(z_guide_pos) end # grids if get(plotattributes, :gridmajor, true) if get(plotattributes, :xgrid, true) ticks = get(plotattributes, :xticks, 0.2:0.2:0.8) src = tern2cart.(1 .- ticks, ticks, 0) dst = tern2cart.(1 .- ticks, 0, ticks) sa = get(plotattributes, :xgridalpha, 0.5) lw = get(plotattributes, :xgridlinewidth, 0.5) ls = get(plotattributes, :xgridstyle, :solid) for i in eachindex(ticks) @series begin primary := false seriestype := :path seriescolor := :black seriesalpha := sa linewidth := lw linestyle := ls arrow := false [src[i], dst[i]] end end end if get(plotattributes, :ygrid, true) ticks = get(plotattributes, :yticks, 0.2:0.2:0.8) src = tern2cart.(1 .- ticks, ticks, 0) dst = tern2cart.(0, ticks, 1 .- ticks) sa = get(plotattributes, :ygridalpha, 0.5) lw = get(plotattributes, :ygridlinewidth, 0.5) ls = get(plotattributes, :ygridstyle, :solid) for i in eachindex(ticks) @series begin primary := false seriestype := :path seriescolor := :black seriesalpha := sa linewidth := lw linestyle := ls [src[i], dst[i]] end end end if get(plotattributes, :zgrid, true) ticks = get(plotattributes, :zticks, 0.2:0.2:0.8) src = tern2cart.(1 .- ticks, 0, ticks) dst = tern2cart.(0, 1 .- ticks, ticks) sa = get(plotattributes, :zgridalpha, 0.5) lw = get(plotattributes, :zgridlinewidth, 0.5) ls = get(plotattributes, :zgridstyle, :solid) for i in eachindex(ticks) @series begin primary := false seriestype := :path seriescolor := :black seriesalpha := sa linewidth := lw linestyle := ls [src[i], dst[i]] end end end end tick_direction = get(plotattributes, :tick_direction, :in) # axis ticks if tick_direction != :none if tick_direction == :in tickmult = -1 else tickmult = 1 end xticks = get(plotattributes, :xticks, 0.2:0.2:0.8) yticks = get(plotattributes, :yticks, 0.2:0.2:0.8) zticks = get(plotattributes, :zticks, 0.2:0.2:0.8) function text_structure(axis) if axis == "x" return 0.4, -0.8 elseif axis == "y" return -1, 0.2 elseif axis == "z" return 0.5, 1 else throw(ArgumentError("Invalid axis (\"x, y, z\"")) end end function axis_angle(axis) if axis == "x" return 0.0 elseif axis == "y" return -60.0 elseif axis == "z" return 60.0 else throw(ArgumentError("Invalid axis (\"x, y, z\"")) end end for (axis, axis_ticks) in zip(("x", "y", "z"), (xticks, yticks, zticks)) angle = axis_angle(axis) ts = text_structure(axis) # Better to calculate the offset once by calculating the tick_structure once # then just adding the offset to each start_pos calculated_ticks = calculate_ticks(axis, axis_ticks, tick_length, tickmult) vec_tick_textpos = [start_pos .+ (dist_from_graph .* ts) for start_pos in calculated_ticks[1]] vec_tick_coords = coords_to_axes.(calculated_ticks...) if axis == "x" axis_ticks = reverse(axis_ticks) end for tick_coords in vec_tick_coords @series begin primary := false seriestype := :path seriescolor := :black tick_coords end end for (tick, tick_textpos) in zip(collect(axis_ticks), vec_tick_textpos) @series begin seriestype := :path primary := false series_annotations := [(tick, angle, 10)] #[text(tick, angle, 10),] [tick_textpos] end end end end size --> (580, 550) seriestype := :path primary := false seriescolor := :black [1 0 1 / 2; 0 1 / 2 1], [0 0 √3 / 2; 0 √3 / 2 0] end
TernaryPlots
https://github.com/jacobusmmsmit/TernaryPlots.jl.git
[ "MIT" ]
0.1.0
0a2efe02a81515634587fc69288c59fdb6a27e45
code
681
""" tern2cart(a, b, c) Takes a point in the ternary coordinate system and returns the cartesian co-ordinate of this point. The ternary axes are all between 0 and 1 and the cartesian co-ordinates form an equilateral triangle at (0, 0), (1, 0), (1/2, √3/2) """ tern2cart(a, b, c) = (1 / 2 * (2b + c) / (a + b + c), √3 / 2 * (c / (a + b + c))) tern2cart(vec) = tern2cart(vec[1], vec[2], vec[3]) """ cart2tern(x, y) Takes a point in the cartesian coordinate system and returns the ternary co-ordinate of this point. """ function cart2tern(x, y) c = (2 * y) / √3 b = x - c / 2 a = 1 - b - c return (a, b, c) end cart2tern(array) = cart2tern(array[1], array[2])
TernaryPlots
https://github.com/jacobusmmsmit/TernaryPlots.jl.git
[ "MIT" ]
0.1.0
0a2efe02a81515634587fc69288c59fdb6a27e45
code
945
push!(LOAD_PATH, "src") using Plots using TernaryPlots using CSV using DataFrames using Downloads #Downloading Global whole-rock geochemical database compilation from https://zenodo.org/record/3359791/files/major.csv?download=1 path = "https://zenodo.org/record/3359791/files/major.csv?download=1" df = CSV.read(Downloads.download(path), DataFrame) df = coalesce.(df, 0) filter!(row -> row[:sio2] >= 0, df) filter!(row -> row[:al2o3] >= 0, df) filter!(row -> row[:mgo] >= 0, df) filter!(row -> (row[:sio2] .+ row[:al2o3] .+ row[:mgo]) >= 0.9, df) filter!(row -> (row[:sio2] .+ row[:al2o3] .+ row[:mgo]) <= 1.1, df) compos = [df.sio2 df.al2o3 df.mgo] a = [zeros(eltype(compos), size(compos, 1)) zeros(eltype(compos), size(compos, 1))] for i in 1:size(compos, 1) a[i, :] = collect(tern2cart(compos[i, :]))' end ternary_axes(title = "Rocks", xguide = "SiO2", yguide = "Al2O3", zguide = "MgO") p = scatter!(a[:, 1], a[:, 2], legend = false)
TernaryPlots
https://github.com/jacobusmmsmit/TernaryPlots.jl.git
[ "MIT" ]
0.1.0
0a2efe02a81515634587fc69288c59fdb6a27e45
docs
3267
# TernaryPlots.jl Ternary/simplex plotting recipe/addon for Plots.jl Please note: this package is currently in _very early development stage_, this README is currently up to date as of 07/08/2021, but may not be in the coming days as problems are fixed and features are added. Please feel free to contact me via email with any questions jacobusmmsmit a gmail d com or open an issue on this repository. ## Installation: In the REPL you can paste this code to install the package: ``` using Pkg; pkg"add https://github.com/jacobusmmsmit/TernaryPlots.jl" ``` and then load it with ``` using TernaryPlots ``` ## Current functionality: * Conversions between cartesian and ternary co-ordinates using the exported function `cart2tern` and `tern2cart` * Construction of ternary axes using `ternary_axes`. (Currently not possible to reverse arrow/axis directions) ## How to use this package: This package provides a function (more precisely: a recipe) to construct ternary plots via converting ternary co-ordinates to cartesian and plotting them: ``` push!(LOAD_PATH, "src") using Plots using TernaryPlots using CSV using DataFrames #Downloading Global whole-rock geochemical database compilation from zenodo.org path = "https://zenodo.org/record/3359791/files/major.csv?download=1" df = CSV.read(download(path), DataFrame) df = coalesce.(df,0) filter!(row -> row[:sio2] >= 0, df) filter!(row -> row[:al2o3] >= 0, df) filter!(row -> row[:mgo] >= 0, df) filter!(row -> (row[:sio2] .+ row[:al2o3] .+ row[:mgo]) >= 0.9, df) filter!(row -> (row[:sio2] .+ row[:al2o3] .+ row[:mgo]) <= 1.1, df) compos = [df.sio2 df.al2o3 df.mgo] a = [zeros(eltype(compos), size(compos, 1)) zeros(eltype(compos), size(compos, 1))] for i in 1:size(compos,1) a[i,:] = collect(tern2cart(compos[i,:]))' end ternary_axes( title="Rocks", xguide="SiO2", yguide="Al2O3", zguide="MgO", ) p = scatter!(a[:,1],a[:,2], legend=false) ``` ![](https://github.com/jacobusmmsmit/TernaryPlots.jl/blob/master/outputs/example_plot.png?raw=true) ## Work in progress: * Different axis scales (as opposed to just 0 to 1) and ability to update ticks after definition. * Performance improvements and code cleanup. * Documentation. * Plotting of ternary heatmaps by overloading `heatmap` on `Ternary_Axes`. Users will be able to define a function of cartesian co-ordinates or ternary co-ordinates: ``` f = ((a, b, c) -> 3a^2 + b - c) # Function of ternary co-ordinates g = (x,y) -> f(cart2tern(x, y)...) # Same function, but taking ternary co-ordinates as input ``` * Plotting of ternary histograms possibly simply by converting it into a heatmap and using the previous heatmap functionality. * Plotting of contour maps. ## Known issues: * Rotation of labels is not consistent as you resize the graph, as such one needs to fiddle with the size parameter in order to get the angles correct, or specify them yourself. * The figures are off-centered. ## Contributions: * [@jacobusmmsmit](https://github.com/jacobusmmsmit) - Author and maintainer * [@Hasnep](https://github.com/Hasnep) - Maintainer * [@daschw](https://github.com/daschw) - Major contributions to recipe implementation <!-- * [@brenhinkeller](https://github.com/brenhinkeller) - Major contributions for ternary histograms -->
TernaryPlots
https://github.com/jacobusmmsmit/TernaryPlots.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
408
using Documenter, UnionArrays makedocs(; modules=[UnionArrays], format=Documenter.HTML(), pages=[ "Home" => "index.md", ], repo="https://github.com/JuliaFolds/UnionArrays.jl/blob/{commit}{path}#L{line}", sitename="UnionArrays.jl", authors="Takafumi Arakaki <[email protected]>", ) deploydocs(; repo="github.com/JuliaFolds/UnionArrays.jl", push_preview = true, )
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
668
module UnionArrays # Use README as the docstring of the module: @doc let path = joinpath(dirname(@__DIR__), "README.md") include_dependency(path) replace(read(path, String), "```julia" => "```jldoctest README") end UnionArrays function unionof end function buffereltypefor end function buffereltypeof end function eltypebyid end include("abstract/abstract.jl") include("impl/impl.jl") Abstract.UnionVector(args...; kwargs...) = Impl.UnionVector(args...; kwargs...) Abstract.UnionArray(args...; kwargs...) = Impl.UnionArray(args...; kwargs...) using .Abstract: UnionArray, UnionVector, UnionMatrix export UnionArray, UnionVector, UnionMatrix end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
681
module Abstract """ UnionArray{T, N} UnionVector{T} UnionMatrix{T} `UnionArray` stores heterogeneous elements without indirections (which would happen in `Array{Any}`). # Examples ```jldoctest julia> using UnionArrays julia> xs = UnionVector(Any[UInt8(1), 2.0, (a=1, b=2)]); julia> xs[1] 0x01 julia> xs[2] 2.0 julia> xs[3] (a = 1, b = 2) julia> xs[1] = (a=3, b=4); julia> xs[1] (a = 3, b = 4) julia> M = reshape(xs, (1, :)) :: UnionMatrix; julia> M[1, 1] (a = 3, b = 4) ``` """ abstract type UnionArray{T, N} <: AbstractArray{T, N} end const UnionVector{T} = UnionArray{T, 1} const UnionMatrix{T} = UnionArray{T, 2} include("interfaces.jl") end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
187
using Adapt: adapt default_collect(A::AbstractArray{T,N}) where {T,N} = invoke(collect, Tuple{AbstractArray{T,N}}, A) Base.collect(A::UnionArray) = default_collect(adapt(Array, A))
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
3137
struct UnionArray{T, N, P} <: Abstract.UnionArray{T, N} parent::P function UnionArray(parent::P) where {T, N, P <: AbstractArray{T, N}} # Make sure that `A.parent` is not a UnionArray/Vector P <: UnionArrayImpls && throw(MethodError(UnionArray, (parent,))) return new{T, N, P}(parent) end end const UnionArrayImpls = Union{UnionVector, UnionArray} function Adapt.adapt_structure(to, A::UnionArray) B = Adapt.adapt(to, parent(A)) if B isa UnionArray # `Adapt.adapt` might just call `reshape`, which then wraps the array # to `UnionArray`. In this case, there is no need to re-wrap it: return B else # Maybe just throw? return UnionArray(B) end end # TODO: handle `reshape` in Transducers.jl so that we only need one # `parent(...)` call here: executor_type(A::UnionArray) = executor_type(parent(parent(A))) # A very minimal dummy array implementation just for implementing `default_reshape`: struct DummyArray{N} <: AbstractArray{Any,N} dims::NTuple{N,Int} end Base.size(A::DummyArray) = A.dims function default_reshape(A::UnionVector, dims::T) where {T} dummy = reshape(DummyArray(size(A)), dims) return @set dummy.parent = A end ua_reshape(A::UnionVector, dims) = UnionArray(default_reshape(A, dims)) ua_reshape(A::UnionArray, dims) = UnionArray(reshape(A.parent, dims)) ua_reshape(A::UnionVector, ::Tuple{Colon}) = A function ua_reshape(A::UnionArray, ::Tuple{Colon}) v = reshape(A.parent, :) if v isa UnionVector return v else return UnionArray(v) end end Base.reshape(A::UnionArrayImpls, dims::Dims) = ua_reshape(A, dims) :: UnionArrayImpls Base.reshape(A::UnionArrayImpls, dims::Tuple{Vararg{Union{Int,Colon}}}) = ua_reshape(A, dims) :: UnionArrayImpls # disambiguation: Base.reshape(A::UnionArrayImpls, dims::Tuple{Colon}) = ua_reshape(A, dims) :: UnionArrayImpls Base.parent(A::UnionArray) = A.parent Base.size(A::UnionArray) = size(A.parent) Base.getindex(A::UnionArray, I...) = A.parent[I...] Base.setindex!(A::UnionArray, v, I...) = setindex!(A.parent, v, I...) # Base.showarg(io::IO, A::UnionArray, toplevel) = # Base.showarg(io, A.parent, toplevel) Abstract.UnionArray( undef::UndefInitializer, VectorType::Type{<:AbstractVector}, ETS::ElTypeSpec, dims::Union{Integer,Tuple{Vararg{Integer}}}, ) = Abstract.UnionArray(undef, VectorType, VectorType{UInt8}, ETS, dims) Abstract.UnionArray( undef::UndefInitializer, DataVectorType::Type{<:AbstractVector}, TypeTagVectorType::Type{<:AbstractVector{UInt8}}, ETS::ElTypeSpec, n::Union{Integer,Tuple{Integer}}, ) = UnionVector(undef, DataVectorType, TypeTagVectorType, ETS, first(n)) Abstract.UnionArray( undef::UndefInitializer, DataVectorType::Type{<:AbstractVector}, TypeTagVectorType::Type{<:AbstractVector{UInt8}}, ETS::ElTypeSpec, dims::Tuple{Integer,Integer,Vararg{Integer}}, ) = reshape(UnionVector(undef, DataVectorType, TypeTagVectorType, ETS, prod(dims)), dims) function Base.fill!(A::UnionArray, x) fill!(parent(parent(A)), x) return A end
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
1346
""" unionof(T₁, T₂, ...) Similar to `Union{T₁, T₂, ...}` but the order is preserved. This object can be passed to `UnionArray` to specify the element type. """ function UnionArrays.unionof(types::Type...) vals = foldlargs((), types...) do vals, T (vals..., Val{T}()) end return verify(UnionOf(vals)) end const NTypes{N} = NTuple{N, Val} struct UnionOf{T<:NTypes} types::T end const ElTypeSpec = Union{Type, NTypes, UnionOf} astupletype(u::UnionOf) = foldrargs(u.types..., Tuple{}) do v, T Base.tuple_type_cons(valueof(v), T) end asunion(u::UnionOf) = asunion(u.types) asunion(types::NTypes) = foldlargs(Union{}, types...) do T, v Union{T,valueof(v)} end asntypes(types::NTypes) = types asntypes(u::UnionOf) = u.types @generated asntypes(::Type{T}) where {T} = QuoteNode(foldrunion((S, types) -> (Val(S), types...), T, ())) function verify(u::UnionOf) if length(u.types) != union_ntypes(asunion(u)) error("non-unique types are provided") end return u end function Base.show(io::IO, u::UnionOf) @nospecialize u print(io, UnionArrays.unionof) print(io, '(') isfirst = true for v in u.types if !isfirst print(io, ", ") end isfirst = false print(io, valueof(v)) end print(io, ')') end
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
391
module Impl import Adapt using Base: Dims using Transducers using Transducers: @return_if_reduced, next, complete using Setfield: @set # using Setfield instead of Accessors for older Julia import Transducers: executor_type using ..UnionArrays: Abstract, UnionArrays, buffereltypefor include("utils.jl") include("eltypespec.jl") include("vectors.jl") include("arrays.jl") end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
3077
valueof(::Val{x}) where {x} = x # Not exactly `Base.aligned_sizeof` Base.@pure function sizeof_aligned(T::Type) if isbitstype(T) al = Base.datatype_alignment(T) return (Core.sizeof(T) + al - 1) & -al else return nothing end end TypeTuple{N} = NTuple{N, Type} astupleoftypes(x::TypeTuple) = x astupleoftypes(::Type{T}) where {T <: Tuple} = Tuple(T.parameters) @inline foldlargs(op, x) = x @inline foldlargs(op, x1, x2, xs...) = foldlargs(op, @return_if_reduced(op(x1, x2)), xs...) @inline foldrargs(op, x) = x @inline foldrargs(op, x1, x2, xs...) = op(x1, foldrargs(op, x2, xs...)) @inline foldltupletype(op, T, ::Type{<:Tuple{}}) = T @inline foldltupletype(op, T, ::Type{S}) where {S <: Tuple} = foldltupletype(op, @return_if_reduced(op(T, Base.tuple_type_head(S))), Base.tuple_type_tail(S)) @inline foldltupletype(op, ::Type{T}, ::Type{<:Tuple{}}) where T = T @inline foldltupletype(op, ::Type{T}, ::Type{S}) where {T, S <: Tuple} = foldltupletype(op, @return_if_reduced(op(T, Base.tuple_type_head(S))), Base.tuple_type_tail(S)) @inline foldrunion(op, ::Type{T}, init) where {T} = if T isa Union acc = @return_if_reduced foldrunion(op, T.b, init) foldrunion(op, T.a, acc) else op(T, init) end uniontotuple(::Type{T}) where {T} = foldrunion(Base.tuple_type_cons, T, Tuple{}) asunion(T::Type{<:Tuple}) = foldltupletype((T, s) -> Union{T, s}, Union{}, T) union_ntypes(::Type{T}) where {T} = foldrunion((_, n) -> n + 1, T, 0) tuple_ntypes(::Type{T}) where {T} = foldltupletype((n, _) -> n + 1, 0, T) terminating_foldlargs(op, fallback) = fallback() @inline function terminating_foldlargs(op, fallback::F, x1, x2, xs...) where {F} acc = op(x1, x2) acc isa Reduced && return unreduced(acc) return terminating_foldlargs(op, fallback, acc, xs...) end # Helping inference for CUDA.jl: @inline function terminating_foldlargs(op, fallback, x1, x2) acc = op(x1, x2) acc isa Reduced && return unreduced(acc) return fallback() end struct Padded{T, N} value::T pad::NTuple{N, UInt8} end Padded{T, N}(value::T) where {T, N} = Padded(value, zeropad(Val{N}())) zeropad(N) = ntuple(_ -> UInt8(0), N) addpadding(N::Integer, ::Type{T}) where T = Padded{T, N} addpadding(N::Integer, value::T) where T = Padded{T, N}(value) Base.convert(::Type{P}, x::T) where {T, P <: Padded{T}} = P(x) unpad(x) = x unpad(x::Padded) = x.value unpad(::Type{<:Padded{T}}) where T = T paddedtype(::T) where T = paddedtype(T) paddedtype(::Type{<:Padded{T}}) where T = T paddedtype(::Type{T}) where T = T # not sure relying on `sizeof` is safe; so: sizeoftype(::Type{T}) where T = sizeof(T) sizeoftype(::T) where T = sizeof(T) ofsamesize(bigger::Type, smaller) = if sizeof(bigger) < sizeoftype(smaller) error("Target type is not big enough") elseif sizeof(bigger) == sizeoftype(smaller) smaller else addpadding(sizeof(bigger) - sizeoftype(smaller), smaller) end
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
5903
struct UnionVector{ T, ETS <: NTypes, TD <: AbstractVector, TM <: AbstractVector{UInt8}, TV <: Tuple } <: Abstract.UnionVector{T} types::ETS data::TD typeid::TM views::TV function UnionVector( types::ETS, data::TD, typeid::TM, views::TV, ) where { ETS <: NTypes, TD <: AbstractVector, TM <: AbstractVector{UInt8}, TV <: Tuple, } A = new{asunion(types),ETS,TD,TM,TV}(types, data, typeid, views) @static if VERSION >= v"1.6-" return verify(A) else return A end end end if VERSION >= v"1.6-" Adapt.adapt_structure(to, A::UnionVector) = UnionVector(A.types, Adapt.adapt(to, A.data), Adapt.adapt(to, A.typeid)) else Adapt.adapt_structure(to, A::UnionVector) = UnionVector( A.types, Adapt.adapt(to, A.data), Adapt.adapt(to, A.typeid), Adapt.adapt(to, A.views), ) end executor_type(A::UnionVector) = executor_type(A.data) function UnionVector(ETS::ElTypeSpec, data::AbstractVector, typeid::AbstractVector{UInt8}) types = asntypes(ETS) views = foldlargs((), types...) do views, v return (views..., reinterpret(ofsamesize(eltype(data), valueof(v)), data)) end return UnionVector(types, data, typeid, views) end UnionArrays.buffereltypefor(ETS::ElTypeSpec) = foldlargs(Nothing, asntypes(ETS)...) do S, x Base.@_inline_meta T = valueof(x) if sizeof_aligned(S) < sizeof_aligned(T) T else S end end UnionArrays.buffereltypeof(A::UnionVector) = eltype(A.data) function UnionArrays.eltypebyid(A::UnionVector, ::Val{id}) where {id} id > length(A.types) && return Union{} id < 1 && return Union{} return valueof(A.types[id]) end Base.size(A::UnionVector) = size(A.data) UnionVector(undef::UndefInitializer, ETS::ElTypeSpec, n::Integer) = UnionVector(undef, Vector, ETS, n) UnionVector( undef::UndefInitializer, VectorType::Type{<:AbstractVector}, ETS::ElTypeSpec, n::Integer, ) = UnionVector(undef, VectorType, VectorType{UInt8}, ETS, n) function UnionVector( ::UndefInitializer, DataVectorType::Type{<:AbstractVector}, TypeTagVectorType::Type{<:AbstractVector{UInt8}}, ETS::ElTypeSpec, n::Integer, ) typeid = TypeTagVectorType(undef, n) fill!(typeid, 0) BT = buffereltypefor(ETS) data = DataVectorType{BT}(undef, n) return UnionVector(ETS, data, typeid) end function UnionVector(ETS::ElTypeSpec, items::AbstractVector) A = UnionVector(undef, ETS, length(items)) for i in axes(A, 1) # TODO: find the best way to support arrays with offset @inbounds A[i] = items[i - firstindex(A) + firstindex(items)] end return A end function UnionVector(data::AbstractVector) ETS = foldl(data, init=Union{}) do ETS, x Union{ETS,typeof(x)} end return UnionVector(ETS, data) end struct InvalidUnionVector{T<:UnionVector} <: Exception A::T end function Base.showerror(io::IO, err::InvalidUnionVector) A = err.A unmatches = filter!(collect(Pair{Int,Any}, pairs(A.views))) do (_, xs) UInt(pointer(A.data)) != UInt(pointer(xs)) end print(io, "invalid UnionVector: ") println(io, length(unmatches), " incompatible views") println(io, "data pointer: ", pointer(A.data)) for (i, xs) in unmatches println(io, i, "-th view pointer: ", pointer(xs)) end end function verify(A::UnionVector) foldlargs(true, A.views...) do ok, xs Base.@_inline_meta ok && UInt(pointer(A.data)) == UInt(pointer(xs)) end || throw(InvalidUnionVector(A)) return A end Base.@propagate_inbounds typeat(A::UnionVector{<:Any, ETS}, i) where ETS = fieldtype(ETS, Int(A.typeid[i])) struct TypeIDLookupFailed <: Exception id::Int end Base.showerror(io::IO, err::TypeIDLookupFailed) = print(io, "lookup of type id $(err.id) failed") # Using CPS for begging the compiler to union split things: @inline function view_by_id(f::F, A::UnionVector, id::Integer) where {F} @noinline unreachable() = throw(TypeIDLookupFailed(id)) return terminating_foldlargs(unreachable, 1, A.views...) do j, xs Base.@_inline_meta if j == id Reduced(f(xs)) else j + 1 end end end @inline function Base.getindex(A::UnionVector, i::Int) @boundscheck checkbounds(A, i) return view_by_id(A, A.typeid[i]) do xs Base.@_inline_meta unpad(@inbounds xs[i]) end end struct ElTypeLookupFailed{T} <: Exception end Base.showerror(io::IO, ::ElTypeLookupFailed{T}) where {T} = print(io, "unsupported element type (type conversion not implemented yet); $T") # Using CPS for begging the compiler to union split things: # TODO: handle conversion @inline function view_and_id(f::F, A::UnionVector, ::Type{T}) where {F,T} @noinline unreachable() = throw(ElTypeLookupFailed{T}()) V = Val(T) return terminating_foldlargs(unreachable, 1, A.views...) do id, xs Base.@_inline_meta if paddedtype(eltype(xs)) === valueof(V) Reduced(f(xs, id)) else id + 1 end end end # Base.checkbounds(::Type{Bool}, A::UnionVector, i) = # checkbounds(Bool, A.data, i) && checkbounds(Bool, A.typeid, i) @inline function Base.setindex!(A::UnionVector, v, i::Int) @boundscheck checkbounds(A, i) typeid = A.typeid view_and_id(A, typeof(v)) do xs, id Base.@_inline_meta @inbounds typeid[i] = id @inbounds xs[i] = v nothing end end function Base.fill!(A::UnionVector, x) v = convert(eltype(A), x) p = v # TODO: handle padding view_and_id(A, typeof(v)) do xs, id fill!(xs, p) fill!(A.typeid, id) nothing end return A end
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
541
using TestFunctionRunner let env_test_cuda = lowercase(get(ENV, "UNIONARRAYS_JL_TEST_CUDA", "auto")), test_cuda = if env_test_cuda == "auto" try import CUDA true catch false end else env_test_cuda == "true" end if test_cuda TestFunctionRunner.@run(packages = ["UnionArraysCUDATests"]) using FoldsCUDATests FoldsCUDATests.runtests_unionarrays() else TestFunctionRunner.@run(packages = ["UnionArraysTests"]) end end
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
475
module UnionArraysCUDATests import CUDA function include_tests(m = @__MODULE__, dir = @__DIR__) for file in readdir(dir) if match(r"^test_.*\.jl$", file) !== nothing Base.include(m, joinpath(dir, file)) end end end include_tests() function before_test_module() CUDA.allowscalar(false) if lowercase(get(ENV, "CI", "false")) == "true" CUDA.versioninfo() println() end end end # module UnionArraysCUDATests
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
867
module TestBase using CUDA using Test using UnionArrays using UnionArrays: unionof const ==′ = isequal function test_unionvector() xs = UnionVector(undef, CuVector, unionof(Float32, Missing), 3) fill!(xs, 1) CUDA.@allowscalar xs[2] = missing @test (CUDA.@allowscalar xs[1]) === 1.0f0 @test (CUDA.@allowscalar xs[2]) === missing @test (CUDA.@allowscalar xs[3]) === 1.0f0 @test collect(xs) ==′ [1.0f0, missing, 1.0f0] end function test_unionmatrix() A = UnionArray(undef, CuVector, unionof(Float32, Missing), (3, 2)) fill!(A, 1) CUDA.@allowscalar A[2, 2] = missing @test (CUDA.@allowscalar A[1, 1]) === 1.0f0 @test (CUDA.@allowscalar A[2, 2]) === missing @test (CUDA.@allowscalar A[3, 2]) === 1.0f0 @test collect(A) ==′ [ 1.0f0 1.0f0 1.0f0 missing 1.0f0 1.0f0 ] end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
179
module TestDoctest using UnionArrays using Documenter: doctest using Test function test() doctest(UnionArrays) end should_test_module() = VERSION >= v"1.6-" end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
1277
module TestFolds using CUDA using Folds using FoldsCUDA using Test using UnionArrays const ==′ = isequal function test_unionvector() xs = UnionVector(undef, CuVector, Union{Float32, Missing}, 3) fill!(xs, 1) CUDA.@allowscalar xs[2] = missing @test collect(xs) ==′ [1.0f0, missing, 1.0f0] @test Folds.sum(x -> x isa Missing ? 0.0f0 : x, xs, CUDAEx()) == 2 @testset "setindex!" begin ys = range(1.0f0, 3.0f0, length = 3) Folds.map!(identity, xs, ys) @test collect(xs) == 1:3 Folds.map!(==(missing), xs, ys) @test collect(xs) ==′ [missing, missing, missing] end end function test_unionmatrix() A = UnionArray(undef, CuVector, Union{Float32, Missing}, (3, 2)) fill!(A, 1) CUDA.@allowscalar A[2, 2] = missing @test (CUDA.@allowscalar A[1, 1]) === 1.0f0 @test (CUDA.@allowscalar A[2, 2]) === missing @test (CUDA.@allowscalar A[3, 2]) === 1.0f0 @test Folds.sum(x -> x isa Missing ? 0.0f0 : x, A, CUDAEx()) == 5 @testset "setindex!" begin B = reshape(range(1.0f0, 6.0f0, length = 6), 3, 2) Folds.map!(identity, A, B) @test collect(A) == B Folds.map!(==(missing), A, B) @test collect(A) ==′ fill(missing, 3, 2) end end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
1350
module TestKernels using CUDA using Test using UnionArrays function kernel_test_shmem!(ys) iglobal = threadIdx().x + (blockIdx().x - 1) * blockDim().x T = Union{Nothing,Float32} S = UnionArrays.buffereltypefor(T) data = @cuDynamicSharedMem(S, (blockDim().x,)) typeids = @cuDynamicSharedMem(UInt8, (blockDim().x,), sizeof(data)) xs = UnionVector(T, data, typeids) if isodd(threadIdx().x) xs[threadIdx().x] = Float32(iglobal) else xs[threadIdx().x] = nothing end sync_threads() i = mod1(threadIdx().x + 1, blockDim().x) x = xs[i] sync_threads() xs[threadIdx().x] = x sync_threads() ys[iglobal] = xs[i] return end function host_test_shmem() threads = 8 blocks = 3 ys = UnionVector(undef, CuVector, Union{Float32, Nothing}, threads * blocks) fill!(ys, 0) shmem = (sizeof(UnionArrays.buffereltypeof(ys)) + sizeof(UInt8)) * threads CUDA.@sync @cuda threads=threads blocks=blocks shmem=shmem kernel_test_shmem!(ys) return ys end function test_shmem() xs = collect(Union{Nothing,Float32}, 1:8 * 3) xs[2:2:end] .= nothing for block in Iterators.partition(eachindex(xs), 8) xs[block] = circshift(xs[block], -2) end @test collect(host_test_shmem()) == xs end should_test_module() = VERSION >= v"1.6-" end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
306
module UnionArraysTests include("utils.jl") function include_tests(m = @__MODULE__, dir = @__DIR__) for file in readdir(dir) if match(r"^test_.*\.jl$", file) !== nothing Base.include(m, joinpath(dir, file)) end end end include_tests() end # module UnionArraysTests
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
325
module TestAqua import Aqua import UnionArrays using Test # Default `Aqua.test_all(UnionArrays)` does not work due to ambiguities # in upstream packages. function test_aqua() Aqua.test_all(UnionArrays; ambiguities = false) end function test_method_ambiguity() Aqua.test_ambiguities(UnionArrays) end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
367
module TestArrays using UnionArrays using Test function test() A = reshape(UnionVector(Any[1, 2.0]), 1, :) @test A isa UnionArray @test A[1] === 1 @test A[2] === 2.0 @test A[1, 1] === 1 @test A[1, 2] === 2.0 @test (A[1, 1] = 3.0) isa Any @test A[1, 1] === 3.0 @test (A[1] = 3.0) isa Any @test A[1] === 3.0 end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
779
module TestPadded using UnionArrays using UnionArrays.Impl: ofsamesize, unpad, Padded using Test function test_ofsamesize() @testset "bigger = $bigger" for (bigger, value) in [ (Float64, UInt8(0)), (NTuple{7, UInt8}, UInt8(0)), ] @testset for smaller in [value, typeof(value)] padded = ofsamesize(bigger, smaller) @test sizeof(padded) == sizeof(bigger) @test unpad(padded) === smaller end end end function test_convert() xs = ofsamesize.(Float64, UInt8.(1:10)) :: Vector @test eltype(xs) <: Padded @test unpad(xs[1]) === UInt8(1) xs[1] = UInt8(2) @test unpad(xs[1]) === UInt8(2) xs[1] = ofsamesize(Float64, UInt8(3)) @test unpad(xs[1]) === UInt8(3) end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
339
module TestTransducers using Test using Transducers using UnionArrays using ..Utils: compile_enabled function test() xs = UnionVector(Any[1, 2.0]) @test foldl(+, Map(x -> 2x), xs) == 6 ys = eduction(Map(x -> 2x), xs) if compile_enabled() @test (@inferred foldl(+, ys, init=0.0)) == 6 end end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
471
module TestVectors using UnionArrays using Test function test_homogeneous_size() xs = UnionVector(Any[1, 2.0]) @test xs[1] === 1 @test xs[2] === 2.0 @test (xs[1] = 3.0) isa Any @test xs[1] === 3.0 end function test_heterogeneous_size() xs = UnionVector(Any[UInt8(1), 2.0, (a=1, b=2)]) @test xs[1] === UInt8(1) @test xs[2] === 2.0 @test xs[3] === (a=1, b=2) @test (xs[1] = 3.0) isa Any @test xs[1] === 3.0 end end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git
[ "MIT" ]
0.1.3
9986eabab3dcfd90cf3a041b7ec5a64fca4aa508
code
129
module Utils compile_enabled() = Base.JLOptions().compile_enabled == 1 # allow `== 2` (`--compile=all`) as well? end # module
UnionArrays
https://github.com/JuliaFolds/UnionArrays.jl.git