licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1333
function mapslices(f, x::DNDSparse, dims; name=nothing) iterdims = setdiff([1:ndims(x);], map(d->keyindex(x, d), dims)) if iterdims != [1:length(iterdims);] throw(ArgumentError("$dims must be the trailing dimensions of the table. You can use `permutedims` first to permute the dimensions.")) end # Note: the key doesn't need to be put in a tuple, this is # also bad for sortperm, but is required since DArrays aren't # parameterized by the container type Columns vals = isempty(dims) ? values(x) : (keys(x, (dims...,)), values(x)) tmp = ndsparse((keys(x, (iterdims...,)),), vals, allowoverlap=false, closed=true) cs = delayedmap(tmp.chunks) do c ks = isempty(dims) ? columns(columns(keys(c))[1]) : IndexedTables.concat_cols(columns(keys(c))[1], columns(values(c))[1]) vs = isempty(dims) ? columns(values(c)) : columns(values(c))[2] y = ndsparse(ks, vs) mapslices(f, y, dims; name=name) end fromchunks(cs) # cache_thunks(mapchunks(y -> mapslices(f, y, dims, name=name), # t, keeplengths=false)) end mapslices(f, x::DNDSparse, dims::Symbol; name=nothing) = mapslices(f, x, (dims,); name=name) function flatten(x::DIndexedTable, col) fromchunks(delayedmap(t -> flatten(t, col), x.chunks)) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
2604
""" t[idx...] Returns a `DNDSparse` containing only the elements of `t` where the given indices (`idx`) match. If `idx` has the same type as the index tuple of the `t`, then this is considered a scalar indexing (indexing of a single value). In this case the value itself is looked up and returned. """ function Base.getindex(t::DNDSparse{K}, idxs...) where K if typeof(idxs) <: astuple(K) _getindex_scalar(t, idxs) else _getindex(t, idxs) end end function _getindex_scalar(t::DNDSparse{K,V}, idxs) where {K,V} # scalar getindex rng = map(x->[x], idxs) t = collect(fromchunks(delayedmap(x->x[rng...], t.chunks))) if isempty(t) throw(KeyError(idxs)) else first(t) end end function _getindex(t::DNDSparse{K,V}, idxs) where {K,V} if length(idxs) != ndims(t) error("wrong number of indices") end for idx in idxs isa(idx, AbstractVector) && (issorted(idx) || error("indices must be sorted for ranged/vector indexing")) end # Subset the chunks # this is currently a linear search mapchunks(t, keeplengths=false) do chunk getindex(chunk, idxs...) end |> cache_thunks end # update a given domain to include a new key function update_domain(d::IndexSpace{<:NamedTuple}, key::Tuple) knt = namedtuple(keys(first(d))...)(key) IndexSpace(Interval(min(first(d.interval), knt), max(last(d.interval), knt)), Interval(map(min, first(d.interval), knt), map(max, last(d.interval), knt)), Nullable{Int}()) end function update_domain(d::IndexSpace{<:Tuple}, key::Tuple) IndexSpace(Interval(min(first(d.interval), key), max(last(d.interval), key)), Interval(map(min, first(d.interval), key), map(max, last(d.interval), key)), Nullable{Int}()) end function insert_row!(x::DNDSparse{K,T}, idxs::Tuple, val) where {K,T} perm = sortperm(x.domains, by=last) cs = convert(Array{Any}, x.chunks[perm]) ds = x.domains[perm] i = searchsortedfirst(astuple.(last.(x.domains)), idxs) if i >= length(cs) i = length(cs) end ds[i] = update_domain(ds[i], idxs) tmp = cs[i] cs[i] = compute(get_context(), delayed(x->(x[idxs...] = val; x))(cs[i])) x.domains = ds x.chunks = cs end function insert_row!(x::DNDSparse{K,T}, idxs::NamedTuple, val) where {K,T} insert_row!(s, astuple(idxs), val) end function Base.setindex!(x::DNDSparse, val, idxs...) insert_row!(x, idxs, val) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1886
""" An interval type tailored specifically to store intervals of indices of an NDSparse object. Some of the operations on this like `in` or `<` may be controversial for a generic Interval type. """ struct Interval{T} first::T last::T end # desired properties: Base.eltype(int::Interval{T}) where {T} = T Base.first(int::Interval) = int.first Base.last(int::Interval) = int.last Base.isempty(int::Interval) = first(int) > last(int) Base.isless(x::Interval, y::Interval) = x.last < y.first Base.in(x, int::Interval) = first(int) <= x <= last(int) Base.in(x::AbstractRange, int::Interval) = hasoverlap(Interval(first(x),last(x)), int) Base.in(x::AbstractArray, int::Interval) = any(a in int for a in x) Base.in(x::Colon, int::Interval) = true Base.in(int::Interval, x::Union{AbstractArray, Colon}) = x in int function hasoverlap(i1::Interval, i2::Interval) (isempty(i1) || isempty(i2)) && return false (first(i2) <= last(i1) && first(i1) <= last(i2)) || (first(i1) <= last(i2) && first(i2) <= last(i1)) end boxintervals(i) = map(Interval, first(i), last(i)) function boxhasoverlap(a,b) all(map(hasoverlap, boxintervals(a), boxintervals(b))) end function boxmerge(a, b) c = map(merge, boxintervals(a), boxintervals(b)) Interval(map(first, c), map(last, c)) end function Base.intersect(i1::Interval, i2::Interval) Interval(max(first(i1), first(i2)), min(last(i1), last(i2))) end function Base.merge(i1::Interval, i2::Interval) Interval(min(first(i1), first(i2)), max(last(i1), last(i2))) end function _map(f, i::Interval) fst, lst = f(first(i)), f(last(i)) if lst < fst throw(ArgumentError( "map on $(typeof(i)) is only allowed on monotonically increasing functions" ) ) end Interval(fst, lst) end Base.show(io::IO, i::Interval) = (show(io, i.first); print(io, ".."); show(io, i.last))
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
10144
const JULIADB_DIR = ".juliadb" const JULIADB_FILECACHE = "csv_metadata" const JULIADB_INDEXFILE = "juliadb_index" function files_from_dir(dir) dir = abspath(dir) filter(isfile, [ joinpath(dir, f) for f in readdir(dir) if !startswith(f, ".") ]) end function format_bytes(nb) bytes, mb = Base.prettyprint_getunits(nb, length(Base._mem_units), Int64(1024)) if mb == 1 @sprintf("%d %s%s", bytes, Base._mem_units[mb], bytes==1 ? "" : "s") else @sprintf("%.3f %s", bytes, Base._mem_units[mb]) end end function offset_index!(x, o) l = length(x) copyto!(columns(x.index)[1], o:o+l-1) x end function offset_index!(x::DNDSparse, o=1) lengths = map(a->get(a.nrows), x.domains) offs = [0; cumsum(lengths[1:end-1])] .+ 1 fromchunks(delayedmap(offset_index!, x.chunks, offs)) end Base.@deprecate loadfiles(files, delim=','; opts...) loadndsparse(files; delim=delim, opts...) """ `loadtable(files::Union{AbstractVector,String}; <options>)` Load a [table](@ref Table) from CSV files. `files` is either a vector of file paths, or a directory name. # Options: - `output::AbstractString` -- directory name to write the table to. By default data is loaded directly to memory. Specifying this option will allow you to load data larger than the available memory. - `indexcols::Vector` -- columns to use as primary key columns. (defaults to []) - `datacols::Vector` -- non-indexed columns. (defaults to all columns but indexed columns). Specify this to only load a subset of columns. In place of the name of a column, you can specify a tuple of names -- this will treat any column with one of those names as the same column, but use the first name in the tuple. This is useful when the same column changes name between CSV files. (e.g. `vendor_id` and `VendorId`) - `distributed::Bool` -- should the output dataset be loaded as a distributed table? If true, this will use all available worker processes to load the data. (defaults to true if workers are available, false if not) - `chunks::Int` -- number of chunks to create when loading distributed. (defaults to number of workers) - `delim::Char` -- the delimiter character. (defaults to `,`). Use `spacedelim=true` to split by spaces. - `spacedelim::Bool`: parse space-delimited files. `delim` has no effect if true. - `quotechar::Char` -- quote character. (defaults to `"`) - `escapechar::Char` -- escape character. (defaults to `"`) - `filenamecol::Union{Symbol, Pair}` -- create a column containing the file names from where each row came from. This argument gives a name to the column. By default, `basename(name)` of the name is kept, and ".csv" suffix will be stripped. To provide a custom function to apply on the names, use a `name => Function` pair. By default, no file name column will be created. - `header_exists::Bool` -- does header exist in the files? (defaults to true) - `colnames::Vector{String}` -- specify column names for the files, use this with (`header_exists=false`, otherwise first row is discarded). By default column names are assumed to be present in the file. - `samecols` -- a vector of tuples of strings where each tuple contains alternative names for the same column. For example, if some files have the name "vendor_id" and others have the name "VendorID", pass `samecols=[("VendorID", "vendor_id")]`. - `colparsers` -- either a vector or dictionary of data types or an [`AbstractToken` object](https://juliacomputing.com/TextParse.jl/stable/#Available-AbstractToken-types-1) from [TextParse](https://juliacomputing.com/TextParse.jl/stable) package. By default, these are inferred automatically. See `type_detect_rows` option below. - `type_detect_rows`: number of rows to use to infer the initial `colparsers` defaults to 20. - `nastrings::Vector{String}` -- strings that are to be considered missing values. (defaults to `TextParse.NA_STRINGS`) - `skiplines_begin::Char` -- skip some lines in the beginning of each file. (doesn't skip by default) - `usecache::Bool`: (vestigial) """ function loadtable(files::Union{AbstractVector,String}; opts...) _loadtable(IndexedTable, files; opts...) end """ `loadndsparse(files::Union{AbstractVector,String}; <options>)` Load an [NDSparse](@ref) from CSV files. `files` is either a vector of file paths, or a directory name. # Options: - `indexcols::Vector` -- columns to use as indexed columns. (by default a `1:n` implicit index is used.) - `datacols::Vector` -- non-indexed columns. (defaults to all columns but indexed columns). Specify this to only load a subset of columns. In place of the name of a column, you can specify a tuple of names -- this will treat any column with one of those names as the same column, but use the first name in the tuple. This is useful when the same column changes name between CSV files. (e.g. `vendor_id` and `VendorId`) All other options are identical to those in [`loadtable`](@ref) """ function loadndsparse(files::Union{AbstractVector,String}; opts...) _loadtable(NDSparse, files; opts...) end # Can load both NDSparse and table function _loadtable(T, files::Union{AbstractVector,String}; chunks=nothing, output=nothing, append=false, indexcols=[], distributed=chunks != nothing || length(procs()) > 1, usecache=false, opts...) if isa(files, String) if isdir(files) files = files_from_dir(files) elseif isfile(files) files = [files] else throw(ArgumentError("Specified path is neither a file, " * "nor a directory.")) end else for file in files if !isfile(file) throw(ArgumentError("No file named $file.")) end end end if isempty(files) throw(ArgumentError("Specify at least one file to load.")) end if chunks === nothing && distributed chunks = nworkers() end if !distributed filegroups = [files] else if isa(chunks, Integer) chunks = Dagger.split_range(1:length(files), chunks) end filegroups = filter(!isempty, map(x->files[x], chunks)) end loadgroup = delayed() do group _loadtable_serial(T, group; indexcols=indexcols, opts...)[1] end if output !== nothing && append prevchunks = load(output).chunks else prevchunks = [] end y = fromchunks(map(loadgroup, filegroups), output=output, fnoffset=length(prevchunks)) x = fromchunks(vcat(prevchunks, y.chunks)) if output !== nothing open(joinpath(output, JULIADB_INDEXFILE), "w") do io serialize(io, x) end _makerelative!(x, output) end if x isa DNDSparse && isempty(indexcols) # implicit index x = offset_index!(x, 1) end if !distributed return collect(x) else return x end end Base.@deprecate ingest(files, output; kwargs...) loadndsparse(files; output=output, kwargs...) Base.@deprecate ingest!(files, output; kwargs...) loadndsparse(files; output=output, append=true, kwargs...) """ `load(dir::AbstractString)` Load a saved `DNDSparse` from `dir` directory. Data can be saved using the `save` function. """ function load(f::AbstractString; procs=workers()) if isdir(f) x = open(joinpath(f, JULIADB_INDEXFILE)) do io deserialize(io) end _makerelative!(x, f) _evenlydistribute!(x, procs) x elseif isfile(f) MemPool.unwrap_payload(open(deserialize, f)) else error("$f is not a file or directory") end end """ save(t::Union{DNDSparse, DIndexedTable}, destdir::AbstractString) Saves a distributed dataset to disk in directory `destdir`. Saved data can be loaded with [`load`](@ref). """ function save(x::DDataset, output::AbstractString) if !isempty(x.chunks) y = fromchunks(x.chunks, output=output) else y = x end open(joinpath(output, JULIADB_INDEXFILE), "w") do io serialize(io, y) end _makerelative!(y, output) y end """ save(t::Union{NDSparse, IndexedTable}, dest::AbstractString) Save a dataset to disk as `dest`. Saved data can be loaded with [`load`](@ref). """ function save(data::Dataset, f::AbstractString) sz = open(f, "w") do io serialize(io, MemPool.MMWrap(data)) end load(f) end function _makerelative!(t, dir::AbstractString) foreach(t.chunks) do c h = c.handle if isa(h, FileRef) c.handle = FileRef(joinpath(dir, h.file), h.size) end end end using MemPool # Fix to load n/p number of files per process function _evenlydistribute!(t, wrkrs) for (r, w) in zip(t.chunks, Iterators.cycle(wrkrs)) if r.handle isa FileRef r.handle.force_pid[] = w end end end deserialize(io::AbstractSerializer, DT::Type{DNDSparse{K,V}}) where {K,V} = _deser(io, DT) deserialize(io::AbstractSerializer, DT::Type{DIndexedTable{T,K}}) where {T,K} = _deser(io, DT) function _deser(io::AbstractSerializer, t) nf = fieldcount(t) x = ccall(:jl_new_struct_uninit, Any, (Any,), t) t.mutable && Serialization.deserialize_cycle(io, x) for i in 1:nf tag = Int32(read(io.io, UInt8)::UInt8) if tag != Serialization.UNDEFREF_TAG ccall(:jl_set_nth_field, Cvoid, (Any, Csize_t, Any), x, i-1, Serialization.handle_deserialize(io, tag)) end end return x end function MemPool.mmwrite(io::AbstractSerializer, arr::StringArray) Serialization.serialize_type(io, MemPool.MMSer{StringArray}) serialize(io, eltype(arr)) MemPool.mmwrite(io, arr.buffer) MemPool.mmwrite(io, arr.offsets) MemPool.mmwrite(io, arr.lengths) return end function MemPool.mmread(::Type{StringArray}, io, mmap) T = deserialize(io) buffer = deserialize(io) offsets = deserialize(io) lengths = deserialize(io) return StringArray{T, ndims(offsets)}(buffer, offsets, lengths) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
6761
# Extract a column as a Dagger array function Iterators.partition(t::DDataset, n::Integer) PartitionIterator(t, n) end struct PartIteratorState{T} chunkno::Int chunk::T used::Int end function iterate(p::PartitionIterator{<:DDataset}) state = if !isempty(p.c.chunks) PartIteratorState(1, collect(p.c.chunks[1]), 0) else PartIteratorState(1, collect(p.c), 0) end return iterate(p, state) end function iterate(t::PartitionIterator{<:DDataset}, p::PartIteratorState) if p.chunkno == length(t.c.chunks) && p.used >= length(p.chunk) return nothing end if p.used + t.n <= length(p.chunk) # easy nextpart = subtable(p.chunk, p.used+1:(p.used+t.n)) return nextpart, PartIteratorState(p.chunkno, p.chunk, p.used + t.n) else part = subtable(p.chunk, p.used+1:length(p.chunk)) required = t.n - length(part) r = required chunkno = p.chunkno used = length(p.chunk) nextchunk = p.chunk while r > 0 chunkno += 1 if chunkno > length(t.c.chunks) # we're done, last chunk return part, PartIteratorState(chunkno-1, nextchunk, used) else nextchunk = collect(t.c.chunks[chunkno]) if r > length(nextchunk) part = _merge(part, nextchunk) r -= length(nextchunk) used = length(nextchunk) else part = _merge(part, subtable(nextchunk, 1:r)) used = r r = 0 end end end return part, PartIteratorState(chunkno, nextchunk, used) end end Base.eltype(iter::PartitionIterator{<:DIndexedTable}) = IndexedTable Base.eltype(iter::PartitionIterator{<:DNDSparse}) = NDSparse function DColumns(arrays::Tup) if length(arrays) == 0 error("""DColumns must be constructed with at least one column.""") end i = findfirst(x->isa(x, ArrayOp), arrays) wrap = isa(arrays, Tuple) ? tuple : namedtuple(keys(arrays)...)∘tuple if i == 0 error("""At least 1 array passed to DColumns must be a DArray""") end darrays = asyncmap(arrays) do x isa(x, ArrayOp) ? compute(get_context(), x) : x end dist = domainchunks(darrays[i]) darrays = map(darrays) do x if isa(x, DArray) domainchunks(x) == dist ? x : error("Distribution incompatible") else Distribute(dist, x) end end darrays = asyncmap(darrays) do x compute(get_context(), x) end if length(darrays) == 1 cs = chunks(darrays[1]) chunkmatrix = reshape(cs, length(cs), 1) else chunkmatrix = reduce(hcat, map(chunks, darrays)) end cs = mapslices(x -> delayed((c...) -> Columns(wrap(c...)))(x...), chunkmatrix, 2)[:] T = isa(arrays, Tuple) ? Tuple{map(eltype, arrays)...} : wrap{map(eltype, arrays)...} DArray(T, domain(darrays[1]), domainchunks(darrays[1]), cs, dvcat) end function itable(keycols::DArray, valuecols::DArray) cs = map(delayed(itable), chunks(keycols), chunks(valuecols)) cs1 = compute(get_context(), delayed((xs...) -> [xs...]; meta=true)(cs...)) fromchunks(cs1) end function extractarray(t, f) fromchunks(map(delayed(f), t.chunks)) end # TODO: do this lazily after compute # technically it's not necessary to communicate here function Base.getindex(d::ColDict{<:DArray}) rows(table(d.columns...; names=d.names)) end function columns(t::Union{DDataset, DArray}) cs = delayedmap(t.chunks) do c x = columns(c) if isa(x, AbstractArray) tochunk(x) elseif isa(x, Tup) map(tochunk, IndexedTables.astuple(x)) else # this should never happen error("Columns $which could not be extracted") end end tuples = collect(get_context(), treereduce(delayed(vcat), cs)) if length(cs) == 1 tuples = [tuples] end if isa(tuples[1], Tup) arrays = map((xs...)->fromchunks([xs...]), tuples...) if t isa DDataset names = colnames(t) else names = fieldnames(eltype(t)) end if all(x -> x isa Symbol, names) IndexedTables.namedtuple(names...)(arrays) else arrays end else fromchunks(tuples) end end function columns(t::Union{DDataset, DArray}, which::Tuple) columns(rows(t, which)) end # TODO: make sure this is a DArray of Columns!! Base.@pure IndexedTables.colnames(t::DArray{T}) where T<:Tup = fieldnames(T) isarrayselect(x) = x isa AbstractArray || x isa Pair{<:Any, <:AbstractArray} function dist_selector(t, f, which::Tup) if any(isarrayselect, which) refholder = [] t1 = compute(t) w1 = map(which) do x isarrayselect(x) ? distfor(t1, x, refholder) : x end # this repeats the non-chunks to all other chunks, # then queries with the corresponding chunks broadcast(t1.chunks, w1...) do x... delayed((inp...)->f(inp[1], inp[2:end]))(x...) end |> fromchunks else extractarray(t, x->f(x, which)) end end function dist_selector(t, f, which::AbstractArray) which end function dist_selector(t, f, which) extractarray(t, x->f(x,which)) end function distfor(t, x::AbstractArray, refholder) y = rows(t) if length(y) != length(x) error("Input column is not the same length as the table") end d = distribute(x, domainchunks(y)) push!(refholder, d) d.chunks end function distfor(t, x::Pair{<:Any, <:AbstractArray}, refholder) cs = distfor(t, x[2], refholder) [delayed(c->x[1]=>c)(c) for c in cs] end function rows(t::Union{DDataset, DArray}) extractarray(t, rows) end function rows(t::Union{DDataset, DArray}, which) dist_selector(t, rows, which) end function pkeys(t::DIndexedTable) if isempty(t.pkey) Columns((Base.OneTo(length(compute(t))),)) else extractarray(t, pkeys) end end pkeys(t::DNDSparse) = keys(t) for f in [:keys, :values] @eval function $f(t::DNDSparse) extractarray(t, x -> $f(x)) end @eval function $f(t::DNDSparse, which) dist_selector(t, $f, which) end end function column(t::DDataset, name) extractarray(t, x -> column(x, name)) end function column(t::DDataset, xs::AbstractArray) # distribute(xs, rows(t).subdomains) xs end function pairs(t::DNDSparse) extractarray(t, x -> map(Pair, x.index, x.data)) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
11339
## Table function rechunk_together(left, right, lkey, rkey, lselect=excludecols(left, lkey), rselect=excludecols(right, rkey); chunks=nworkers()) # we will assume that right has to be aligned to left l = reindex(left, lkey, lselect) r = reindex(right, rkey, rselect) if has_overlaps(l.domains, closed=true) l = rechunk(l, chunks=chunks) elseif !issorted(l.domains, by=first) perm = sortperm(l.domains, by=first) l = fromchunks(l.chunks[perm], domains=l.domains[perm]) end splitters = map(last, l.domains) r = rechunk(r, rkey, rselect, splitters=splitters[1:end-1], chunks_presorted=true, #affinities=map(x->first(Dagger.affinity(x))[1].pid, l.chunks), ) l, r end function Base.join(f, left::DDataset, right::DDataset; how=:inner, lkey=pkeynames(left), rkey=pkeynames(right), lselect=left isa DNDSparse ? valuenames(left) : excludecols(left, lkey), rselect=right isa DNDSparse ? valuenames(right) : excludecols(right, rkey), broadcast=nothing, chunks=nworkers(), kwargs...) cl = compute(left) cr = compute(right) if broadcast === :left error("only broadcast = :right is supported at the moment") elseif broadcast === :right if !(how in [:inner, :left, :anti]) error("Can only do inner, left, or anti join with broadcast = :right") end if length(cr.chunks) == 1 right_ser = cr.chunks[1] else right_ser = collect(cr) end ps = map(cl.chunks) do c a = Dagger.affinity(c) first.(a[1:min(length(a), 1)]) end tasks = [delayed(identity)(right_ser) for p in ps] for (t, p) in zip(tasks, ps) t.affinity = Nullable(Pair.(p, 1)) end r = fromchunks(tasks) l = cl else l, r = rechunk_together(left, right, lkey, rkey, lselect, rselect, chunks=chunks) end i = 1 j = 1 cs = [] rempty = delayed(empty!∘copy)(r.chunks[end]) lempty = delayed(empty!∘copy)(l.chunks[end]) function joinchunks(x, y) res = if broadcast !== nothing join(f, x, y, lkey=lkey, rkey=rkey, lselect=lselect, rselect=rselect, how=how; kwargs...) else join(f, x, y, how=how; kwargs...) end end while i <= length(l.chunks) && j <= length(r.chunks) c1 = l.chunks[i] c2 = r.chunks[j] d1 = l.domains[i] d2 = r.domains[j] if hasoverlap(d1.interval, d2.interval) i += 1 j += 1 elseif last(d1.interval) < last(d2.interval) # this means there's no corresponding chunk on the right c2 = rempty i += 1 else # this means there's no corresponding chunk on the left c1 = lempty j += 1 end c = delayed(joinchunks)(c1,c2) push!(cs, c) end while i <= length(l.chunks) push!(cs, delayed(joinchunks)(l.chunks[i], rempty)) i+=1 end while j <= length(r.chunks) push!(cs, delayed(joinchunks)(lempty, r.chunks[j])) j += 1 end fromchunks(cs) end function Base.join(left::DDataset, right; how=:inner, kwargs...) f = how === :anti ? ((x,y)->x) : IndexedTables.concat_tup join(f, left, right; how=how, kwargs...) end function groupjoin(f, left::DDataset, right; how=:inner, kwargs...) join(f, left, right; how=how, group=true, kwargs...) end function groupjoin(left::DDataset, right; how=:inner, kwargs...) join(left, right; how=how, group=true, kwargs...) end function join(f, left::DDataset, right::IndexedTables.Dataset; how=:inner, kwargs...) if how in [:inner, :left, :anti] join(f, left, distribute(right, 1), broadcast=:right, how=how; kwargs...) else join(f, left, distribute(right, 1), how=how; kwargs...) end end ## NDSparse join """ naturaljoin(left::DNDSparse, right::DNDSparse, [op]) Returns a new `DNDSparse` containing only rows where the indices are present both in `left` AND `right` tables. The data columns are concatenated. """ function naturaljoin(left::DNDSparse{I,D1}, right::DNDSparse{J,D2}) where {I,J,D1,D2} naturaljoin(IndexedTables.concat_tup, left, right) end """ naturaljoin(op, left::DNDSparse, right::DNDSparse, ascolumns=false) Returns a new `DNDSparse` containing only rows where the indices are present both in `left` AND `right` tables. The data columns are concatenated. The data of the matching rows from `left` and `right` are combined using `op`. If `op` returns a tuple or NamedTuple, and `ascolumns` is set to true, the output table will contain the tuple elements as separate data columns instead as a single column of resultant tuples. """ function naturaljoin(op, left::DNDSparse, right::DNDSparse) out_domains = Any[] out_chunks = Any[] # if the output data type is a tuple and `columns` arg is true, # we want the output to be a Columns rather than an array of tuples for i in 1:length(left.chunks) lchunk = left.chunks[i] subdomain = left.domains[i] lbrect = subdomain.boundingrect # for each chunk in `left` # find all the overlapping chunks from `right` overlapping = map(boundingrect.(right.domains)) do rbrect boxhasoverlap(lbrect, rbrect) end overlapping_chunks = right.chunks[overlapping] # each overlapping chunk from `right` should be joined # with the chunk `lchunk` joined_chunks = map(overlapping_chunks) do r delayed(naturaljoin)(op, lchunk, r) end append!(out_chunks, joined_chunks) overlapping_domains = map(r->intersect(subdomain, r), right.domains[overlapping]) append!(out_domains, overlapping_domains) end return fromchunks(out_chunks, domains = out_domains) end Base.map(f, x::DNDSparse{I}, y::DNDSparse{I}) where {I} = naturaljoin(x, y, f) # left join """ leftjoin(left::DNDSparse, right::DNDSparse, [op::Function]) Keeps only rows with indices in `left`. If rows of the same index are present in `right`, then they are combined using `op`. `op` by default picks the value from `right`. """ function leftjoin(op, left::DNDSparse{K,V}, right::DNDSparse, joinwhen = boxhasoverlap, chunkjoin = leftjoin) where {K,V} out_chunks = Any[] for i in 1:length(left.chunks) lchunk = left.chunks[i] subdomain = left.domains[i] lbrect = subdomain.boundingrect # for each chunk in `left` # find all the overlapping chunks from `right` overlapping = map(rbrect -> joinwhen(lbrect, rbrect), boundingrect.(right.domains)) overlapping_chunks = right.chunks[overlapping] if !isempty(overlapping_chunks) push!(out_chunks, delayed(chunkjoin)(op, lchunk, treereduce(delayed(_merge), overlapping_chunks))) else emptyop = delayed() do op, t empty = NDSparse(similar(keys(t), 0), similar(values(t), 0)) chunkjoin(op, t, empty) end push!(out_chunks, emptyop(op, lchunk)) end end cache_thunks(DNDSparse{K,V}(left.domains, out_chunks)) end leftjoin(left::DNDSparse, right::DNDSparse) = leftjoin(IndexedTables.concat_tup, left, right) function asofpred(lbrect, rbrect) allbutlast(x::Interval) = Interval(first(x)[1:end-1], last(x)[1:end-1]) all(boxhasoverlap(lbrect, rbrect)) || (all(boxhasoverlap(allbutlast(lbrect), allbutlast(rbrect))) && !isless(last(lbrect), first(rbrect))) end function asofjoin(left::DNDSparse, right::DNDSparse) leftjoin(IndexedTables.right, left, right, asofpred, (op, x,y)->asofjoin(x,y)) end function merge(left::DNDSparse{I1,D1}, right::DNDSparse{I2,D2}; agg=IndexedTables.right) where {I1,I2,D1,D2} I = promote_type(I1, I2) # output index type D = promote_type(D1, D2) # output data type t = DNDSparse{I,D}(vcat(left.domains, right.domains), vcat(left.chunks, right.chunks)) overlap_merge(x, y) = merge(x, y, agg=agg) if has_overlaps(t.domains) t = rechunk(t, merge=(x...)->_merge(overlap_merge, x...), closed=agg!==nothing, sortchunks=false) end return cache_thunks(t) end function merge(left::DIndexedTable, right::DIndexedTable; chunks=nworkers()) l, r = rechunk_together(left, right, pkeynames(left), pkeynames(right); chunks=chunks) fromchunks(delayedmap(merge, l.chunks, r.chunks)) end function subbox(i::Interval, idx) Interval(i.first[idx], i.last[idx]) end function bcast_narrow_space(d, idxs, fst, lst) intv = Interval( tuplesetindex(d.interval.first, fst, idxs), tuplesetindex(d.interval.last, lst, idxs) ) box = Interval( tuplesetindex(d.boundingrect.first, fst, idxs), tuplesetindex(d.boundingrect.last, lst, idxs) ) IndexSpace(intv, box, Nullable{Int}()) end function broadcast(f, A::DNDSparse, B::DNDSparse; dimmap=nothing) if ndims(A) < ndims(B) broadcast((x,y)->f(y,x), B, A; dimmap=dimmap) end if dimmap === nothing dimmap = match_indices(A, B) end common_A = Iterators.filter(i->dimmap[i] > 0, 1:ndims(A)) |> collect common_B = Iterators.filter(i -> i>0, dimmap) |> collect #@assert length(common_B) == length(common_A) # for every bounding box in A, take compare common_A # bounding boxes vs. every common_B bounding box out_chunks = [] innerbcast(a, b) = broadcast(f, a, b; dimmap=dimmap) out_domains = [] for (dA, cA) in zip(A.domains, A.chunks) for (dB, cB) in zip(B.domains, B.chunks) boxA = subbox(dA.boundingrect, common_A) boxB = subbox(dB.boundingrect, common_B) fst = map(max, boxA.first, boxB.first) lst = map(min, boxA.last, boxB.last) dmn = bcast_narrow_space(dA, common_A, fst, lst) if boxhasoverlap(boxA, boxB) push!(out_chunks, delayed(innerbcast)(cA, cB)) push!(out_domains, dmn) end end end with_overlaps(out_domains, out_chunks) do chunks treereduce(delayed(_merge), chunks) end end broadcasted(f, A::DNDSparse, B::DNDSparse) = broadcast(f, A, B) function match_indices(A::DNDSparse{K1},B::DNDSparse{K2}) where {K1,K2} if K1 <: NamedTuple && K2 <: NamedTuple Ap = dimlabels(A) Bp = dimlabels(B) else Ap = K1.parameters Bp = K2.parameters end IndexedTables.find_corresponding(Ap, Bp) end ## Deprecation Base.@deprecate naturaljoin(left::DNDSparse, right::DNDSparse, op::Function) naturaljoin(op, left::DNDSparse, right::DNDSparse) Base.@deprecate leftjoin(left::DNDSparse, right::DNDSparse, op::Function) leftjoin(op, left, right)
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
5138
module ML using JuliaDB, Dagger, OnlineStats, PooledArrays, Statistics import Dagger: ArrayOp, DArray, treereduce import JuliaDB: Dataset, DDataset, nrows import Base: merge # Core schema types schema(xs::AbstractArray) = nothing # catch-all schema(xs::AbstractArray, ::Nothing) = nothing # catch-all merge(::Nothing, ::Nothing) = nothing width(::Nothing) = 0 featuremat!(A, ::Nothing, xs) = A schema(xs::ArrayOp) = schema(compute(xs)) schema(xs::ArrayOp, T) = schema(compute(xs), T) #-----------------------------------------------------------------------# Continuous struct Continuous stat::Variance end function schema(xs::AbstractArray, ::Type{Continuous}) Continuous(fit!(Variance(), xs)) end function schema(xs::AbstractArray{<:Real}) schema(xs, Continuous) end width(::Continuous) = 1 function merge(c1::Continuous, c2::Continuous) Continuous(merge(c1.stat, c2.stat)) end Statistics.mean(c::Continuous)::Float64 = mean(c.stat) Statistics.std(c::Continuous)::Float64 = std(c.stat) function Base.show(io::IO, c::Continuous) write(io, "Continous(μ=$(mean(c)), σ=$(std(c)))") end Base.@propagate_inbounds function featuremat!(A, c::Continuous, xs, dropmissing=Val(false)) m = mean(c) s = std(c) for i in 1:length(xs) x = xs[i] if dropmissing isa Val{true} if ismissing(x) continue else # A[i, 1] = (get(x) - m) / s A[i, 1] = (x - m) / s end else A[i, 1] = (x - m) / s end end A end #-----------------------------------------------------------------------# Categorical struct Categorical stat::CountMap end function Categorical(xs::AbstractArray{T}) where {T} Categorical(CountMap(Dict(zip(xs, 1:length(xs))))) end function schema(xs::AbstractArray{T}, ::Type{Categorical}) where {T} Categorical(fit!(CountMap(T), xs)) end function schema(xs::PooledArray) schema(xs, Categorical) end Base.keys(c::Categorical) = keys(c.stat) width(c::Categorical) = length(keys(c)) merge(c1::Categorical, c2::Categorical) = Categorical(merge(c1.stat, c2.stat)) function Base.show(io::IO, c::Categorical) write(io, "Categorical($(collect(keys(c))))") end Base.@propagate_inbounds function featuremat!(A, c::Categorical, xs, dropmissing=Val(false)) ks = keys(c) labeldict = Dict{eltype(ks), Int}(zip(ks, 1:length(ks))) for i = 1:length(xs) if dropmissing isa Val{true} && ismissing(xs[i]) continue end A[i, labeldict[xs[i]]] = one(eltype(A)) end A end # distributed schema calculation function schema(xs::DArray) collect(treereduce(delayed(merge), delayedmap(x -> schema(x), xs.chunks))) end function schema(xs::DArray, ::Type{Continuous}) collect(treereduce(delayed(merge), delayedmap(x -> schema(x, Continuous), xs.chunks))) end function schema(xs::DArray, ::Type{Categorical}) collect(treereduce(delayed(merge), delayedmap(x -> schema(x, Categorical), xs.chunks))) end struct Maybe{T} feature::T end function schema(xs::Vector{Union{Missing,S}}, T::Type) where {S} Maybe(schema(collect(skipmissing(xs)), T)) end schema(xs::Vector{Union{T,Missing}}) where {T} = Maybe(schema(collect(skipmissing(xs)))) width(c::Maybe) = width(c.feature) + 1 merge(m1::Maybe, m2::Maybe) = Maybe(merge(m1.feature, m2.feature)) nulls(xs) = map(ismissing, xs) Base.@propagate_inbounds function featuremat!(A, c::Maybe, xs, dropmissing=Val(true)) copyto!(A, CartesianIndices((1:length(xs), 1:1)), reshape(nulls(xs), (length(xs), 1)), CartesianIndices((1:length(xs), 1:1))) featuremat!(view(A, 1:length(xs), 2:size(A, 2)), c.feature, xs, Val(true)) A end # Schema inference const Schema = Dict{Symbol,Any} # vecTs: type of column vectors in each chunk function schema(cols, names; hints=Dict()) d = Schema() for (col, name) in zip(cols, names) if haskey(hints, name) d[name] = schema(col, hints[name]) else d[name] = schema(col) end end d end function schema(t::Union{Dataset, DDataset}; hints=Dict()) schema(collect(columns(t)), colnames(t), hints=hints) end width(sch::Schema) = sum(width(s) for s in values(sch)) function featuremat!(A, schemas::Schema, t::Dataset) j = 0 for col in keys(schemas) schema = schemas[col] featuremat!(view(A, 1:length(t), j+1:j+width(schema)), schema, column(t, col)) j += width(schema) end A end splitschema(xs::Schema, ks...) = filter((k,v) -> k ∉ ks, xs), filter((k,v) -> k ∈ ks, xs) function featuremat(sch, xs) featuremat!(zeros(Float32, length(xs), width(sch)), sch, xs)' end featuremat(t) = featuremat(schema(t), t) function featuremat(s, t::DDataset) t = compute(t) w = width(s) h = length(t) lengths = get.(nrows.(t.domains)) domains = Dagger.DomainBlocks((1,1), ([w], cumsum(lengths))) DArray( Float32, Dagger.ArrayDomain(w, sum(lengths)), domains, reshape(delayedmap(x->featuremat(s,x), t.chunks), (1, length(t.chunks))) ) end end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
17716
boundingrect(x::IndexSpace) = x.boundingrect interval(x::IndexSpace) = x.interval """ DNDSparse{K,V} <: AbstractNDSparse A distributed [NDSparse](@ref) datastructure. Can be constructed by: - [`ndsparse`](@ref) from Julia objects - [`loadndsparse`](@ref) from data on disk - [`distribute`](@ref) from an [`NDSparse`](@ref) object """ mutable struct DNDSparse{K,V} <: AbstractNDSparse domains::Vector{IndexSpace{K}} chunks::Vector end const DDataset = Union{DIndexedTable, DNDSparse} function ndsparse(::Val{:distributed}, ks::Tup, vs::Union{Tup, AbstractArray}; agg=nothing, allowoverlap=agg === nothing, closed=true, chunks=nothing, kwargs...) if chunks === nothing # this means the vectors are distributed. # pick the first distributed vector and distribute # all others similarly i = findfirst(x->isa(x, ArrayOp), ks) if i != 0 darr = ks[i] elseif vs isa Tup && any(x->isa(x, ArrayOp, vs)) darr = vs[findfirst(x->isa(x, ArrayOp), vs)] elseif isa(vs, ArrayOp) darr = vs else error("Don't know how to distribute. specify `chunks`") end chunks = domainchunks(compute(darr)) end kdarrays = map(x->distribute(x, chunks), ks) vdarrays = isa(vs, Tup) ? map(x->distribute(x, chunks), vs) : distribute(vs, chunks) if isempty(kdarrays) error("NDSparse must be constructed with at least one index column") end nchunks = length(kdarrays[1].chunks) inames = isa(ks, NamedTuple) ? keys(ks) : nothing ndims = length(ks) dnames = isa(vs, NamedTuple) ? keys(vs) : nothing iscols = isa(vs, Tup) function makechunk(args...) k = Columns(args[1:ndims], names=inames) v = iscols ? Columns(args[ndims+1:end], names=dnames) : args[end] ndsparse(k,v; agg=agg, kwargs...) end cs = Array{Any}(undef, nchunks) for i = 1:nchunks args = Any[map(x->x.chunks[i], kdarrays)...] append!(args, isa(vs, Tup) ? [map(x->x.chunks[i], vdarrays)...] : [vdarrays.chunks[i]]) cs[i] = delayed(makechunk)(args...) end fromchunks(cs, closed=closed, merge=(x,y)->merge(x,y, agg=agg), allowoverlap=allowoverlap) end function ndsparse(x::Dagger.DArray{<:Tup}, y; kwargs...) ndsparse(columns(x), y; kwargs...) end function ndsparse(x::DNDSparse; kwargs...) ndsparse(columns(x, pkeynames(x)), values(x); kwargs...) end Base.eltype(dt::DNDSparse{K,V}) where {K,V} = V Base.keytype(dt::DNDSparse{K,V}) where {K,V} = IndexedTables.astuple(K) IndexedTables.dimlabels(dt::DNDSparse{K}) where {K} = fieldnames(K) Base.ndims(dt::DNDSparse{K}) where {K} = fieldcount(K) keytype(dt::DNDSparse{K}) where {K} = astuple(K) # TableLike API Base.@pure function IndexedTables.colnames(t::DNDSparse{K,V}) where {K,V} dnames = V<:Tup ? fieldnames(V) : (1,) if dnames isa Tuple{Vararg{Integer}} dnames = map(x->x+fieldcount(K), dnames) end (fieldnames(K)..., dnames...) end Base.@pure pkeynames(t::DNDSparse{K,V}) where {K, V} = (fieldnames(K)...,) function IndexedTables.valuenames(t::DNDSparse{K,V}) where {K,V} if V <: Tup if V<:NamedTuple (fieldnames(V)...,) else ((ndims(t) .+ (1:fieldcount(V)))...,) end else ndims(t) + 1 end end const compute_context = Ref{Union{Nothing, Context}}(nothing) get_context() = compute_context[] == nothing ? Context() : compute_context[] """ compute(t::DNDSparse; allowoverlap, closed) Computes any delayed-evaluations in the `DNDSparse`. The computed data is left on the worker processes. Subsequent operations on the results will reuse the chunks. If `allowoverlap` is false then the computed data is re-sorted if required to have no chunks with overlapping index ranges if necessary. If `closed` is true then the computed data is re-sorted if required to have no chunks with overlapping OR continuous boundaries. See also [`collect`](@ref). !!! warning `compute(t)` requires at least as much memory as the size of the result of the computing `t`. You usually don't need to do this for the whole dataset. If the result is expected to be big, try `compute(save(t, "output_dir"))` instead. See [`save`](@ref) for more. """ compute(t::DNDSparse; kwargs...) = compute(get_context(), t; kwargs...) function compute(ctx, t::DNDSparse; allowoverlap=true, closed=false) if any(Dagger.istask, t.chunks) # we need to splat `thunks` so that Dagger knows the inputs # are thunks and they need to be staged for scheduling vec_thunk = delayed((refs...) -> [refs...]; meta=true)(t.chunks...) cs = compute(ctx, vec_thunk) # returns a vector of Chunk objects t1 = fromchunks(cs, allowoverlap=allowoverlap, closed=closed) compute(t1) else map(Dagger.unrelease, t.chunks) # don't let this be freed foreach(Dagger.persist!, t.chunks) t end end """ collect(t::DNDSparse) Gets distributed data in a DNDSparse `t` and merges it into [NDSparse](#IndexedTables.NDSparse) object !!! warning `collect(t)` requires at least as much memory as the size of the result of the computing `t`. If the result is expected to be big, try `compute(save(t, "output_dir"))` instead. See [`save`](@ref) for more. This data can be loaded later using [`load`](@ref). """ collect(t::DNDSparse) = collect(get_context(), t) function Base.copy(x::DNDSparse{K,V}) where {K, V} fromchunks(NDSparse, delayedmap(copy, x.chunks), domains=x.domains, KV=(K,V)) end function collect(ctx::Context, dt::DNDSparse{K,V}) where {K,V} cs = dt.chunks if length(cs) > 0 collect(ctx, treereduce(delayed(_merge), cs)) else ndsparse(similar(IndexedTables.arrayof(K), 0), similar(IndexedTables.arrayof(V), 0)) end end # Fast-path merge if the data don't overlap function _merge(f, a::NDSparse, b::NDSparse) if isempty(a) b elseif isempty(b) a elseif last(a.index) < first(b.index) # can vcat NDSparse(vcat(a.index, b.index), vcat(a.data, b.data), presorted=true, copy=false) elseif last(b.index) < first(a.index) _merge(b, a) else f(a, b) # Keep equal index elements end end _merge(f, x::NDSparse) = x function _merge(f, x::NDSparse, y::NDSparse, ys::NDSparse...) treereduce((a,b)->_merge(f, a, b), [x,y,ys...]) end _merge(x::NDSparse, y::NDSparse...) = _merge((a,b) -> merge(a, b, agg=nothing), x, y...) """ map(f, t::DNDSparse) Applies a function `f` on every element in the data of table `t`. """ Base.map(f, dt::DNDSparse) = mapchunks(c->map(f, c), dt) struct EmptySpace{T} end has_empty_values(domain::Pair{<:Any, <:EmptySpace}) = true has_empty_values(domain::EmptySpace) = true has_empty_values(domain) = false # Teach dagger how to automatically figure out the # metadata (in dagger parlance "domain") about an NDSparse chunk. function Dagger.domain(nd::NDSparse) T = eltype(keys(nd)) if isempty(nd) return EmptySpace{T}() end wrap = T<:NamedTuple ? T∘tuple : tuple interval = Interval(wrap(first(nd.index)...), wrap(last(nd.index)...)) # cs = astuple(nd.index.columns) # extr = map(extrema, cs[2:end]) # we use first and last value of first column # boundingrect = Interval(wrap(first(cs[1]), map(first, extr)...), # wrap(last(cs[1]), map(last, extr)...)) return IndexSpace(interval, interval, Nullable{Int}(length(nd))) end function subindexspace(t::Union{NDSparse, IndexedTable}, r) ks = pkeys(t) T = eltype(typeof(ks)) wrap = T<:NamedTuple ? T∘tuple : tuple if isempty(r) return EmptySpace{T}() end interval = Interval(wrap(ks[first(r)]...), wrap(ks[last(r)]...)) cs = astuple(columns(ks)) extr = map(c -> extrema_range(c, r), cs[2:end]) boundingrect = Interval(wrap(cs[1][first(r)], map(first, extr)...), wrap(cs[1][last(r)], map(last, extr)...)) return IndexSpace(interval, boundingrect, Nullable{Int}(length(r))) end Base.eltype(::IndexSpace{T}) where {T} = T Base.eltype(::EmptySpace{T}) where {T} = T Base.isempty(::EmptySpace) = true Base.isempty(::IndexSpace) = false nrows(td::IndexSpace) = td.nrows nrows(td::EmptySpace) = Nullable(0) Base.ndims(::IndexSpace{T}) where {T} = fieldcount(T) Base.ndims(::EmptySpace{T}) where {T} = fieldcount(T) Base.first(td::IndexSpace) = first(td.interval) Base.last(td::IndexSpace) = last(td.interval) mins(td::IndexSpace) = first(td.boundingrect) maxes(td::IndexSpace) = last(td.boundingrect) function Base.merge(d1::IndexSpace, d2::IndexSpace, collisions=true) n = collisions || isnull(d1.nrows) || isnull(d2.nrows) ? Nullable{Int}() : Nullable(get(d1.nrows) + get(d2.nrows)) interval = merge(d1.interval, d2.interval) boundingrect = boxmerge(d1.boundingrect, d2.boundingrect) IndexSpace(interval, boundingrect, n) end Base.merge(d1::IndexSpace, d2::EmptySpace) = d1 Base.merge(d1::EmptySpace, d2::Union{IndexSpace, EmptySpace}) = d2 function Base.intersect(d1::IndexSpace, d2::IndexSpace) interval = intersect(d1.interval, d2.interval) boundingrect = intersect(d1.boundingrect, d2.boundingrect) IndexSpace(interval, boundingrect, Nullable{Int}()) end function Base.intersect(d1::EmptySpace, d2::Union{IndexSpace,EmptySpace}) d1 end # given a chunks index constructed above, give an array of # index spaces spanned by the chunks in the index function index_spaces(t::NDSparse) intervals = map(x-> Interval(map(first, x), map(last, x)), t.index) boundingrects = map(x-> Interval(map(first, x), map(last, x)), columns(t.data).boundingrect) map(IndexSpace, intervals, boundingrects, columns(t.data).length) end """ The length of the `DNDSparse` if it can be computed. Will throw an error if not. You can get the length of such tables after calling [`compute`](@ref) on them. """ function Base.length(t::DNDSparse) l = trylength(t) if isnull(l) error("The length of the DNDSparse is not yet known since some of its parts are not yet computed. Call `compute` to compute them, and then call `length` on the result of `compute`.") else get(l) end end function _has_overlaps(firsts, lasts, closed) if !issorted(firsts) p = sortperm(firsts) firsts = firsts[p] lasts = lasts[p] end for i = 1:length(firsts) s_i = firsts[i] j = searchsortedfirst(lasts, s_i) # allow repeated indices between chunks if j != i && j <= length(lasts) && isless(s_i, lasts[j]) return true elseif closed && j != i && j <= length(lasts) && s_i == lasts[j] return true end end return false end function has_overlaps(domains; closed=true) _has_overlaps(first.(domains), last.(domains), closed) end function has_overlaps(domains, dims::AbstractVector) sub(x) = x[dims] fs = sub.(first.(domains)) ls = sub.(last.(domains)) _has_overlaps(fs, ls, true) end with_overlaps(f, t::DDataset, closed=false) = isempty(t.domains) ? t : with_overlaps(f, t.domains, t.chunks, closed) function with_overlaps(f, domains::AbstractVector, chunks::AbstractVector, closed=false) if !issorted(domains, by=first) perm = sortperm(domains, by = first) domains = domains[perm] chunks = chunks[perm] end stack = [domains[1]] groups = [[1]] for i in 2:length(domains) sub = domains[i] if hasoverlap(stack[end].interval, sub.interval) stack[end] = merge(stack[end], sub) push!(groups[end], i) else push!(stack, sub) push!(groups, [i]) end end cs = collect([f(chunks[group]) for group in groups]) fromchunks(cs) end function fromchunks(::Type{<:NDSparse}, chunks::AbstractArray; domains::AbstractArray = map(domain, chunks), KV = getkvtypes(chunks), merge=_merge, closed = false, allowoverlap = true) nzidxs = findall(!isempty, domains) # work around #228, fixed in Julia 1.1 if isempty(nzidxs) nzidxs = Int[] end domains = domains[nzidxs] dt = DNDSparse{KV...}(domains, chunks[nzidxs]) if !allowoverlap && has_overlaps(domains, closed=closed) return rechunk(dt, closed=closed, merge=merge) else return dt end end function cache_thunks(t) for c in t.chunks if isa(c, Dagger.Thunk) Dagger.cache_result!(c) end end t end function getkvtypes(::Type{N}) where N<:NDSparse eltype(N.parameters[3]), N.parameters[1] end _promote_type(T,S) = promote_type(T,S) _promote_type(T::Type{<:IndexTuple}, S::Type{<:IndexTuple}) = map_params(_promote_type, T, S) _promote_type(T::Type{<:IndexTuple}, ::Type{Union{}}) = T _promote_type(::Type{Union{}}, S::Type{<:IndexTuple}) = S function getkvtypes(xs::AbstractArray) kvtypes = getkvtypes.(chunktype.(xs)) K, V = kvtypes[1] for (Tk, Tv) in kvtypes[2:end] K = _promote_type(Tk, K) V = _promote_type(Tv, V) end (K, V) end ### Distribute a NDSparse into a DNDSparse """ distribute(itable::NDSparse, rowgroups::AbstractArray) Distributes an NDSparse object into a DNDSparse by splitting it up into chunks of `rowgroups` elements. `rowgroups` is a vector specifying the number of rows in the chunks. Returns a `DNDSparse`. """ function distribute(nds::NDSparse{V}, rowgroups::AbstractArray; allowoverlap = true, closed = false) where V splits = cumsum([0; rowgroups]) if splits[end] != length(nds) throw(ArgumentError("the row groups don't add up to total number of rows")) end ranges = map(UnitRange, splits[1:end-1].+1, splits[2:end]) # this works around locality optimizations in Dagger to make # sure that the parts get distributed instead of being left on # the master process - which would lead to all operations being serial. chunks = map(r->delayed(identity)(subtable(nds, r)), ranges) domains = map(r->subindexspace(nds, r), ranges) realK = eltypes(typeof(columns(nds.index))) cache_thunks(fromchunks(chunks, domains=domains, KV = (realK, V), allowoverlap=allowoverlap, closed=closed)) end distribute(t::DNDSparse, cs) = ndsparse(t, chunks=cs) """ distribute(itable::NDSparse, nchunks::Int=nworkers()) Distributes an NDSparse object into a DNDSparse of `nchunks` chunks of approximately equal size. Returns a `DNDSparse`. """ function distribute(nds::NDSparse, nchunks::Int=nworkers(); allowoverlap = true, closed = false) N = length(nds) q, r = divrem(N, nchunks) nrows = vcat(collect(_repeated(q, nchunks))) nrows[end] += r distribute(nds, nrows; allowoverlap=allowoverlap, closed=closed) end """ mapchunks(f, t::DNDSparse; keeplengths=true) Applies a function to each chunk in `t`. Returns a new DNDSparse. If `keeplength` is false, this means that the lengths of the output chunks is unknown before [`compute`](@ref). This function is used internally by many DNDSparse operations. """ function mapchunks(f, t::DNDSparse{K,V}; keeplengths=true) where {K,V} chunks = map(delayed(f), t.chunks) if keeplengths DNDSparse{K, V}(t.domains, chunks) else DNDSparse{K, V}(map(null_length, t.domains), chunks) end end function null_length(x::IndexSpace) IndexSpace(x.interval, x.boundingrect, Nullable{Int}()) end function subtable(t::DNDSparse{K,V}, idx) where {K, V} if isnull(trylength(t)) t = compute(t) end if isempty(idx) return DNDSparse{K, V}(similar(t.domains, 0), similar(t.chunks, 0)) end ls = map(x->get(nrows(x)), t.domains) cumls = cumsum(ls) i = searchsortedlast(cumls, first(idx)) j = searchsortedfirst(cumls, last(idx)) # clip first and last chunks strt = first(idx) - get(cumls, i-1, 0) fin = cumls[j] - last(idx) ds = t.domains[i:j] cs = convert(Vector{Any}, t.chunks[i:j]) if i==j cs[1] = delayed(x->subtable(x, strt:length(x)-fin))(cs[1]) i = ds[1] ds[1] = IndexSpace(i.interval, i.boundingrect, Nullable(length(idx))) else cs[1] = delayed(x->subtable(x, strt:length(x)))(cs[1]) cs[end] = delayed(x->subtable(x, 1:length(x)-fin))(cs[end]) ds[1] = null_length(ds[1]) ds[end] = null_length(ds[2]) end DNDSparse{K,V}(ds, cs) end function Base.show(io::IO, big::DNDSparse) h, w = displaysize(io) showrows = h - 5 # This will trigger an ellipsis when there's # more to see than the screen fits t = first(Iterators.partition(big, showrows)) if !(values(t) isa Columns) cnames = colnames(keys(t)) eltypeheader = "$(eltype(t))" else cnames = colnames(t) nf = fieldcount(eltype(t)) if eltype(t) <: NamedTuple eltypeheader = "$(nf) field named tuples" else eltypeheader = "$(nf)-tuples" end end len = trylength(big) vals = isnull(len) ? "of" : "with $(get(len)) values" header = "$(ndims(t))-d Distributed NDSparse $vals ($eltypeheader) in $(length(big.chunks)) chunks:" showtable(io, t; header=header, cnames=cnames, divider=ndims(t), ellipsis=:end) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1460
#-----------------------------------------------------------------# partitionplot @userplot struct PartitionPlot args end @recipe function f(o::PartitionPlot; nparts=100, stat=Extrema(), by=nothing, dropmissing=false) t = o.args[1] sel = map(x -> lowerselection(t, x), o.args[2:end]) # Create the (Indexed)Partition object o = if length(sel) == 1 Partition(stat, nparts) elseif length(sel) == 2 T = typeof(collect(rows(t)[1])[sel[1]]) # Type of first selection IndexedPartition(T, stat, nparts) else throw(ArgumentError("too many arguments for partitionplot")) end # Wrap the (Indexed)Partition in an FTSeries to possibly remove missing values s = FTSeries(o; filter = dropmissing ? !IndexedTables._ismissing : x -> true) if by === nothing reduce(s, t; select=sel) else grp = groupreduce(s, t, by; select=sel) grp = isa(t, DDataset) ? collect(grp) : grp for row in rows(grp) @series begin row[2] end end end end """ partitionplot(table, y; stat=Extrema(), nparts=100, by=nothing, dropmissing=false) partitionplot(table, x, y; stat=Extrema(), nparts=100, by=nothing, dropmissing=false) Plot a summary of variable `y` against `x` (`1:length(y)` if not specified). Using `nparts` approximately-equal sections along the x-axis, the data in `y` over each section is summarized by `stat`. """ partitionplot
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
4365
_merger(f) = f _merger(f::OnlineStat) = merge _merger(f::Tup) = map(_merger, f) function reduce(f, t::DDataset; dims = nothing, cache = false, kw...) if dims !== nothing if !isa(t, DNDSparse) error("`dims` only supported for NDSparse") end if !isempty(kw) error("unsupported keyword arguments $kw") end return _reducedim(f, t, dims, cache) end if haskey(kw, :init) return reduce_inited(f, t, kw.init, get(kw, :select, nothing)) end select = get(kw, :select, valuenames(t)) xs = delayedmap(t.chunks) do x f = isa(f, OnlineStat) ? copy(f) : f # required for > 1 chunks on the same proc reduce(f, x; select=select) end if f isa Tup g, _ = IndexedTables.init_funcs(f, false) else g = f end h = (a,b)->IndexedTables._apply(_merger(g), a,b) collect(get_context(), treereduce(delayed(h), xs)) end function reduce_inited(f, t::DDataset, v0, select) xs = delayedmap(t.chunks) do x f = isa(f, OnlineStat) ? copy(f) : f reduce(f, x; select=select === nothing ? rows(x) : select) end g = isa(f, OnlineStat) ? merge : f merge(collect(get_context(), treereduce(delayed(g), xs)), v0) end function groupreduce(f, t::DDataset, by=pkeynames(t); kwargs...) @noinline function groupchunk(x) groupreduce(f, x, by; kwargs...) end if f isa Tup || t isa DIndexedTable g, _ = IndexedTables.init_funcs(f, false) else g = f end h = _merger(g) if (f isa ApplyColwise) && f.functions isa Union{Function, Type} mergef = (x,y) -> map(f.functions, x,y) else mergef = (x,y) -> IndexedTables._apply(h, x,y) end @noinline function mergechunk(x, y) # use NDSparse's merge if x isa IndexedTable z = merge(_convert(NDSparse, x), _convert(NDSparse, y), agg=mergef) _convert(IndexedTable, z) else merge(x,y, agg=mergef) end end t1 = fromchunks(delayedmap(groupchunk, t.chunks)) with_overlaps(t1, true) do cs treereduce(delayed(mergechunk), cs) end end function groupby(f, t::DDataset, by=pkeynames(t); select=(t isa DNDSparse ? valuenames(t) : Not(by)), kwargs...) by = lowerselection(t, by) select = lowerselection(t, select) if (by isa Tup) && isempty(by) @noinline function _groupby(x) groupby(f, x, by; select=select, kwargs...) end collect(get_context(), delayed(_groupby)( treereduce(delayed(_merge), t.chunks) ) ) elseif by != lowerselection(t, Keys()) || has_overlaps(t.domains, closed=true) subsel = Tuple(setdiff(select, by)) # translate the new selection t = rechunk(t, by, subsel) newselect = map(select) do x if x in by findall(in(x), by)[1] else x1 = findall(in(x), subsel) x1[1] + length(by) end end return groupby(f, t; select=newselect, kwargs...) else @noinline function groupchunk(x) groupby(f, x, by; select=select, kwargs...) end return fromchunks(delayedmap(groupchunk, t.chunks)) end end function _reducedim(f, x::DNDSparse, dims, cache) keep = setdiff([1:ndims(x);], dims) # TODO: Allow symbols if isempty(keep) throw(ArgumentError("to remove all dimensions, use `reduce(f, A)`")) end groupreduce(f, x, (keep...,), select=valuenames(x), cache=cache) end _reducedim(f, x::DNDSparse, dims::Symbol, cache) = _reducedim(f, x, [dims], cache) """ reducedim_vec(f::Function, t::DNDSparse, dims) Like `reducedim`, except uses a function mapping a vector of values to a scalar instead of a 2-argument scalar function. See also [`reducedim`](@ref). """ function reducedim_vec(f, x::DNDSparse, dims) keep = setdiff([1:ndims(x);], dims) if isempty(keep) throw(ArgumentError("to remove all dimensions, use `reduce(f, A)`")) end t = selectkeys(x, (keep...,); agg=nothing) cache_thunks(groupby(f, t)) end reducedim_vec(f, x::DNDSparse, dims::Symbol) = reducedim_vec(f, x, [dims]) Base.@deprecate aggregate_stats(s, t; by=pkeynames(t), with=valuenames(t)) groupreduce(s, t, by; select=with)
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1059
function stack(t::DDataset, by = pkeynames(t); select = isa(t, DNDSparse) ? valuenames(t) : excludecols(t, by), variable = :variable, value = :value) function stackchunk(x) stack(x, by; select=select, variable=variable, value=value) end return fromchunks(delayedmap(stackchunk, t.chunks)) end function unstack(::Type{D}, ::Type{T}, key, val, cols::AbstractVector{S}) where {D <:DDataset, T, S} D1 = D isa DNDSparse ? NDSparse : IndexedTable function unstackchunk(x, y) unstack(D1, T, x, y, cols) end fromchunks(delayedmap(unstackchunk, key.chunks, val.chunks)) end function unstack(t::D, by = pkeynames(t); variable = :variable, value = :value) where {D<:DDataset} tgrp = groupby((value => identity,), t, by, select = (variable, value)) S = eltype(colnames(t)) col = column(t, variable) cols = S.(collect(Dagger.treereduce(delayed(union), delayedmap(unique, col.chunks)))) T = eltype(columns(t, value)) unstack(D, Base.nonmissingtype(T), pkeys(tgrp), columns(tgrp, value), cols) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
2861
function Base.map(f, t::DDataset; select=nothing) # TODO: fix when select has a user-supplied vector delayedmap(t.chunks) do x map(f, x; select=select) end |> fromchunks end function dropmissing(t::DDataset, select=(colnames(t)...,)) delayedmap(t.chunks) do x dropmissing(x, select) end |> fromchunks end function convertmissing(t::DDataset, missingtype) delayedmap(t.chunks) do x convertmissing(x, missingtype) end |> fromchunks end function Base.filter(f, t::DDataset; select=isa(f, Union{Tuple, Pair}) ? nothing : valuenames(t)) g = delayed(x -> filter(f, x; select=select)) cache_thunks(fromchunks(map(g, t.chunks))) end function selectkeys(x::DNDSparse, which; kwargs...) ndsparse(rows(keys(x), which), values(x); kwargs...) end function selectvalues(x::DNDSparse, which; kwargs...) ndsparse(keys(x), rows(values(x), which); kwargs...) end Base.@deprecate select(x::DNDSparse, conditions::Pair...) filter(conditions, x) Base.@deprecate select(x::DNDSparse, which::DimName...; kwargs...) selectkeys(x, which; kwargs...) """ convertdim(x::DNDSparse, d::DimName, xlate; agg::Function, name) Apply function or dictionary `xlate` to each index in the specified dimension. If the mapping is many-to-one, `agg` is used to aggregate the results. `name` optionally specifies a name for the new dimension. `xlate` must be a monotonically increasing function. See also [`reduce`](@ref) """ function convertdim(t::DNDSparse{K,V}, d::DimName, xlat; agg=nothing, vecagg=nothing, name=nothing) where {K,V} if isa(d, Symbol) dn = findfirst(dimlabels(t), d) if dn == 0 throw(ArgumentError("table has no dimension \"$d\"")) end d = dn end chunkf(c) = convertdim(c, d, xlat; agg=agg, vecagg=nothing, name=name) chunks = map(delayed(chunkf), t.chunks) xlatdim(intv, d) = Interval(tuplesetindex(first(intv), xlat(first(intv)[d]), d), tuplesetindex(last(intv), xlat(last(intv)[d]), d)) # TODO: handle name kwarg # apply xlat to bounding rectangles domains = map(t.domains) do space nrows = agg === nothing ? space.nrows : Nullable{Int}() IndexSpace(xlatdim(space.interval, d), xlatdim(space.boundingrect, d), nrows) end t1 = DNDSparse{eltype(domains[1]),V}(domains, chunks) if agg !== nothing && has_overlaps(domains) overlap_merge(x, y) = merge(x, y, agg=agg) chunk_merge(ts...) = _merge(overlap_merge, ts...) cache_thunks(rechunk(t1, merge=chunk_merge, closed=true)) elseif vecagg != nothing groupby(vecagg, t1) # already cached else cache_thunks(t1) end end keyindex(t::DNDSparse, i::Int) = i keyindex(t::DNDSparse{K}, i::Symbol) where {K} = findfirst(x->x===i, fieldnames(K))
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
2480
#-----------------------------------------------------------------------# DataValueArray function mmwrite(io::AbstractSerializer, xs::DataValueArray) Serialization.serialize_type(io, MMSer{DataValueArray}) mmwrite(io, BitArray(xs.isna)) mmwrite(io, xs.values) end function mmread(::Type{DataValueArray}, io, mmap) isnull = deserialize(io) vals = deserialize(io) DataValueArray(vals, isnull) end #-----------------------------------------------------------------------# PooledArray function mmwrite(io::AbstractSerializer, xs::PooledArray) Serialization.serialize_type(io, MMSer{PooledArray}) mmwrite(io, xs.refs) mmwrite(io, xs.invpool) end function mmread(::Type{PooledArray}, io, mmap) refs = deserialize(io) invpool = deserialize(io) PooledArray(PooledArrays.RefArray(refs), invpool) end #-----------------------------------------------------------------------# Columns function mmwrite(io::AbstractSerializer, xs::Columns) Serialization.serialize_type(io, MMSer{Columns}) if eltype(xs) <: NamedTuple fnames = fieldnames(eltype(xs)) else fnames = length(columns(xs)) end serialize(io, fnames) for c in columns(xs) mmwrite(io, c) end end function mmread(::Type{Columns}, io, mmap) fnames = deserialize(io) if isa(fnames, Int) cols = [deserialize(io) for i=1:fnames] Columns(Tuple(cols)) else cols = [deserialize(io) for i=1:length(fnames)] Columns(Tuple(cols); names=fnames) end end #-----------------------------------------------------------------------# NDSparse function mmwrite(io::AbstractSerializer, xs::NDSparse) Serialization.serialize_type(io, MMSer{NDSparse}) flush!(xs) mmwrite(io, xs.index) mmwrite(io, xs.data) end function mmread(::Type{NDSparse}, io, mmap) idx = deserialize(io) data = deserialize(io) NDSparse(idx, data, presorted=true, copy=false) end #-----------------------------------------------------------------------# IndexedTable function mmwrite(io::AbstractSerializer, xs::IndexedTable) Serialization.serialize_type(io, MMSer{IndexedTable}) #flush!(xs) mmwrite(io, rows(xs)) mmwrite(io, xs.pkey) mmwrite(io, xs.perms) end function mmread(::Type{IndexedTable}, io, mmap) data = deserialize(io) pkey = deserialize(io) perms = deserialize(io) table(data, pkey=pkey, perms=perms, presorted=true, copy=false) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
3870
function reindex(t::DDataset, by=pkeynames(t), select=excludecols(t, by); kwargs...) @noinline function _rechunk(c) reindex(c, by, select; kwargs...) end fromchunks(delayedmap(_rechunk, t.chunks)) end """ `rechunk(t::Union{DNDSparse, DNDSparse}[, by[, select]]; <options>)` Reindex and sort a distributed dataset by keys selected by `by`. Optionally `select` specifies which non-indexed fields are kept. By default this is all fields not mentioned in `by` for Table and the value columns for NDSparse. # Options: - `chunks` -- how to distribute the data. This can be: 1. An integer -- number of chunks to create 2. An vector of `k` integers -- number of elements in each of the `k` chunks. `sum(k)` must be same as `length(t)` 3. The distribution of another array. i.e. `vec.subdomains` where `vec` is a distributed array. - `merge::Function` -- a function which merges two sub-table or sub-ndsparse into one NDSparse. They may have overlaps in their indices. - `splitters::AbstractVector` -- specify keys to split by. To create `n` chunks you would need to pass `n-1` splitters and also the `chunks=n` option. - `chunks_sorted::Bool` -- are the chunks sorted locally? If true, this skips sorting or re-indexing them. - `affinities::Vector{<:Integer}` -- which processes (Int pid) should each output chunk be created on. If unspecified all workers are used. - `closed::Bool` -- if true, the same key will not be present in multiple chunks (although sorted). `true` by default. - `nsamples::Integer` -- number of keys to randomly sample from each chunk to estimate splitters in the sorting process. (See [samplesort](https://en.wikipedia.org/wiki/Samplesort)). Defaults to 2000. - `batchsize::Integer` -- how many chunks at a time from the input should be loaded into memory at any given time. This will essentially sort in batches of `batchsize` chunks. """ function rechunk(dt::DDataset, by=pkeynames(dt), select=dt isa DIndexedTable ? excludecols(dt, by) : valuenames(dt); merge=_merge, splitters=nothing, chunks_presorted=false, affinities=workers(), chunks=nworkers(), closed=true, sortchunks=true, nsamples=2000, batchsize=max(2, nworkers())) if sortchunks perm = sortperm(dt.domains, by=first) cs = dt.chunks[perm] else cs = dt.chunks end function sortandsample(data, nsamples, presorted) r = sample(1:length(data), min(length(data), nsamples), replace=false, ordered=true) sorted = !presorted ? reindex(data, by, select) : data chunk = !presorted ? tochunk(sorted) : nothing (chunk, pkeys(sorted)[r]) end dsort_chunks(cs, chunks, nsamples, batchsize=batchsize, sortandsample=sortandsample, affinities=affinities, splitters=splitters, chunks_presorted=chunks_presorted, merge=merge, by=pkeys, sub=subtable) |> fromchunks end ### Permutedims function Base.permutedims(t::DNDSparse{K,V}, p::AbstractVector) where {K,V} if !(length(p) == ndims(t) && isperm(p)) throw(ArgumentError("argument to permutedims must be a valid permutation")) end permuteintv(intv,d) = Interval(first(intv)[d], last(intv)[d]) idxs = map(t.domains) do dmn IndexSpace(permuteintv(dmn.interval, p), permuteintv(dmn.boundingrect, p), dmn.nrows, ) end chunks = map(delayed(c -> permutedims(c, p)), t.chunks) t1 = DNDSparse{eltype(idxs[1]), V}(idxs, chunks) cache_thunks(rechunk(t1)) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
7885
const IndexTuple = Union{Tuple, NamedTuple} """ IndexSpace(interval, boundingrect, nrows) Metadata about an chunk. - `interval`: An `Interval` object with the first and the last index tuples. - `boundingrect`: An `Interval` object with the lowest and the highest indices as tuples. - `nrows`: A `Nullable{Int}` of number of rows in the NDSparse, if knowable. """ struct IndexSpace{T<:IndexTuple} interval::Interval{T} boundingrect::Interval{T} nrows::Nullable{Int} end """ A distributed table """ mutable struct DIndexedTable{T,K} <: AbstractIndexedTable # primary key columns pkey::Vector{Int} # extent of values in the pkeys domains::Vector{IndexSpace} chunks::Vector end noweakref(w::WeakRefString) = string(w) noweakref(x) = x function Dagger.domain(t::IndexedTable) ks = pkeys(t) T = eltype(ks) if isempty(t) return t.pkey => EmptySpace{T}() end wrap = T<:NamedTuple ? IndexedTables.namedtuple(fieldnames(T)...)∘tuple : tuple interval = Interval(map(noweakref, first(ks)), map(noweakref, last(ks))) cs = astuple(columns(ks)) extr = map(extrema, cs[2:end]) # we use first and last value of first column boundingrect = Interval(wrap(noweakref(first(cs[1])), noweakref.(map(first, extr))...), wrap(noweakref(last(cs[1])), noweakref.(map(last, extr))...)) return t.pkey => IndexSpace(interval, boundingrect, Nullable{Int}(length(t))) end # if one of the input vectors is a Dagger operation / array # chose the distributed implementation. IndexedTables._impl(::Val, ::Dagger.ArrayOp, x...) = Val(:distributed) function table(::Val{:distributed}, tup::Tup; chunks=nothing, kwargs...) if chunks === nothing # this means the vectors are distributed. # pick the first distributed vector and distribute # all others similarly idx = findfirst(x->isa(x, ArrayOp), tup) if idx == 0 error("Don't know how to distribute. specify `chunks`") end darr = compute(tup[idx]) chunks = domainchunks(darr) end darrays = map(x->distribute(x, chunks), tup) if isempty(darrays) error("Table must be constructed with at least one column") end nchunks = length(darrays[1].chunks) cs = Array{Any}(undef, nchunks) names = isa(tup, NamedTuple) ? [keys(tup)...] : nothing f = delayed((cs...) -> table(cs...; names=names, kwargs...)) for i = 1:nchunks cs[i] = f(map(x->x.chunks[i], darrays)...) end fromchunks(cs) end # Copying constructor function table(t::Union{IndexedTable, DIndexedTable}; columns=columns(t), pkey=t.pkey, presorted=false, copy=true, kwargs...) table(columns; pkey=pkey, presorted=presorted, copy=copy, kwargs...) end Base.eltype(dt::DIndexedTable{T}) where {T} = T function colnames(t::DIndexedTable{T}) where T fieldnames(T) end function trylength(t)::Nullable{Int} len = 0 for l in map(x->x.nrows, t.domains) if !isnull(l) len = len + get(l) else return nothing end end return len end function Base.length(t::DIndexedTable) l = trylength(t) if isnull(l) error("The length of the DNDSparse is not yet known since some of its parts are not yet computed. Call `compute` to compute them, and then call `length` on the result of `compute`.") else get(l) end end """ fromchunks(cs) Construct a distributed object from chunks. Calls `fromchunks(T, cs)` where T is the type of the data in the first chunk. Computes any thunks. """ function fromchunks(cs::AbstractArray, args...; output=nothing, fnoffset=0, kwargs...) if output !== nothing if !isdir(output) mkdir(output) end cs = Any[( fn = lpad(idx+fnoffset, 5, "0"); delayed(Dagger.savechunk, get_result=true)( c, output, fn); ) for (idx, c) in enumerate(cs)] vec_thunk = treereduce(delayed(vcat, meta=true), cs) if length(cs) == 1 cs = [compute(get_context(), vec_thunk)] else cs = compute(get_context(), vec_thunk) end return fromchunks(cs) elseif any(x->isa(x, Thunk), cs) vec_thunk = delayed((refs...) -> [refs...]; meta=true)(cs...) cs = compute(get_context(), vec_thunk) end T = chunktype(first(cs)) fromchunks(T, cs, args...; kwargs...) end function fromchunks(::Type{<:AbstractVector}, cs::AbstractArray, args...; kwargs...) lengths = length.(domain.(cs)) dmnchunks = DomainBlocks((1,), (cumsum(lengths),)) T = promote_eltype_chunktypes(cs) DArray(T, ArrayDomain(1:sum(lengths)), dmnchunks, cs, dvcat) end function fromchunks(::Type{<:IndexedTable}, chunks::AbstractArray; domains::AbstractArray = last.(domain.(chunks)), pkey=first(domain(first(chunks))), K = promote_eltypes(domains), T = promote_eltype_chunktypes(chunks)) nzidxs = findall(!isempty, domains) domains = domains[nzidxs] DIndexedTable{T, K}(pkey, domains, chunks[nzidxs]) end function promote_eltypes(ts::AbstractArray) nonempty_domains = Iterators.filter(!has_empty_values, ts) mapreduce(eltype, _promote_type, nonempty_domains, init = Union{}) end function promote_eltype_chunktypes(ts::AbstractArray) nonempty_chunks = Iterators.filter(!has_empty_values∘domain, ts) mapreduce(eltype∘chunktype, _promote_type, nonempty_chunks, init = Union{}) end """ distribute(t::Table, chunks) Distribute a table in `chunks` pieces. Equivalent to `table(t, chunks=chunks)`. """ distribute(t::IndexedTable, chunks) = table(t, chunks=chunks, copy=false) compute(t::DIndexedTable; kwargs...) = compute(get_context(), t; kwargs...) function compute(ctx, t::DIndexedTable; output=nothing) if any(Dagger.istask, t.chunks) fromchunks(IndexedTable, cs, output=output) else map(Dagger.unrelease, t.chunks) # don't let this be freed foreach(Dagger.persist!, t.chunks) t end end distribute(t::DIndexedTable, cs) = table(t, chunks=cs) collect(t::DIndexedTable) = collect(get_context(), t) function collect(ctx::Context, dt::DIndexedTable{T}) where T cs = dt.chunks if length(cs) > 0 collect(ctx, treereduce(delayed(_merge), cs)) else table(similar(IndexedTables.arrayof(T), 0), pkey=dt.pkey) end end # merging two tables function _merge(f, a::IndexedTable, b::IndexedTable) if isempty(a.pkey) && isempty(b.pkey) return table(vcat(rows(a), rows(b))) end @assert a.pkey == b.pkey ia = pkeys(a) ib = pkeys(b) if isempty(a) b elseif isempty(b) a elseif last(ia) < first(ib) # can vcat table(map(vcat, columns(a), columns(b)), pkey=a.pkey, presorted=true, copy=false) elseif last(ib) < first(ia) _merge(f, b, a) else f(a,b) end end _merge(f, x::IndexedTable) = x function _merge(f, x::IndexedTable, y::IndexedTable, ys::IndexedTable...) treereduce((a,b)->_merge(f, a, b), [x,y,ys...]) end _merge(x::IndexedTable, y::IndexedTable...) = _merge((a,b) -> merge(a, b), x, y...) function Base.show(io::IO, big::DIndexedTable) h, w = displaysize(io) showrows = h - 5 # This will trigger an ellipsis when there's # more to see than the screen fits t = first(Iterators.partition(big, showrows)) len = trylength(big) vals = isnull(len) ? "" : " with $(get(len)) rows" header = "Distributed Table$vals in $(length(big.chunks)) chunks:" cstyle = Dict(i=>:bold for i in t.pkey) showtable(io, t; header=header, ellipsis=:end, cstyle=cstyle) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
8585
# treereduce method without v0 is in Dagger. Why does this live here? function treereduce(f, xs, v0) length(xs) == 0 && return v0 length(xs) == 1 && return xs[1] l = length(xs) m = div(l, 2) f(treereduce(f, xs[1:m]), treereduce(f, xs[m+1:end])) end dvcat(x...; dims) = vcat(x...) function subtable(nds::NDSparse, r) NDSparse(keys(nds)[r], values(nds)[r], presorted=true, copy=false) end function subtable(t::IndexedTable, r) t[r] end function extrema_range(x::AbstractArray{T}, r::UnitRange) where T return first(x), last(x) if !(1 <= first(r) && last(r) <= length(x)) throw(BoundsError(x, r)) end isempty(r) && return extrema(x[r]) mn = x[first(r)] mx = x[first(r)] @inbounds @simd for i in r mn = min(x[i], mn) mx = max(x[i], mx) end mn, mx end # Data loading utilities Base.@deprecate load_table(args...;kwargs...) loadndsparse(args...; distributed=false, kwargs...) function prettify_filename(f) f = basename(f) if endswith(lowercase(f), ".csv") f = f[1:end-4] end return f end function _loadtable_serial(T, file::Union{IO, AbstractString, AbstractArray}; delim=',', indexcols=[], datacols=nothing, filenamecol=nothing, agg=nothing, presorted=false, copy=false, csvread=TextParse.csvread, kwargs...) #println("LOADING ", file) count = Int[] samecols = nothing if indexcols !== nothing if indexcols isa Union{Int, Symbol} indexcols = (indexcols,) end samecols = collect(Iterators.filter(x->isa(x, Union{Tuple, AbstractArray}), indexcols)) end if datacols !== nothing if datacols isa Union{Int, Symbol} datacols = (datacols,) end append!(samecols, collect(Iterators.filter(x->isa(x, Union{Tuple, AbstractArray}), datacols))) end if samecols !== nothing samecols = map(x->map(string, x), samecols) end if isa(file, AbstractArray) cols, header, count = csvread(file, delim; samecols=samecols, kwargs...) else cols, header = csvread(file, delim; kwargs...) end header = map(string, header) if filenamecol !== nothing # mimick a file name column if filenamecol isa Pair filenamecol, f = filenamecol else f = prettify_filename end if isa(file, AbstractArray) namecol = reduce(vcat, fill.(f.(file), count)) else namecol = fill(f(file), length(cols[1])) end cols = (namecol, cols...) if !isempty(header) pushfirst!(header, string(filenamecol)) end end if isempty(cols) error("File contains no columns!") end n = length(first(cols)) implicitindex = false ## Construct Index _indexcols = collect(map(x->lookupbyheader(header, x), indexcols)) if isempty(_indexcols) implicitindex = true index = Columns(([1:n;],)) else indexcolnames = map(indexcols, _indexcols) do name, i if i === nothing error("Cannot index by unknown column $name") else isa(name, Int) ? canonical_name(header[name]) : canonical_name(name) end end indexvecs = cols[_indexcols] nullableidx = findall(x->eltype(x) <: Union{DataValue,Nullable} || Missing <: eltype(x), indexvecs) if !isempty(nullableidx) badcol_names = header[_indexcols[nullableidx]] @warn("Indexed columns may contain Nullables or NAs. Column(s) with nullables: $(join(badcol_names, ", ", " and ")). This will result in wrong sorting.") end index = Columns(Tuple(indexvecs); names=indexcolnames) end ## Construct Data if datacols === nothing _datacols = setdiff(1:length(cols), _indexcols) datacols = header[_datacols] else _datacols = map(x->lookupbyheader(header, x), datacols) end if isempty(_datacols) error("""You must specify at least one data column. Either all columns in the file were indexed, or datacols was explicitly set to an empty array.""") end datacolnames = map(datacols, _datacols) do name, i if i === nothing if isa(name, Int) error("Unknown column numbered $name specified in datacols") else return canonical_name(name) # use provided name for missing column end else isa(name, Int) ? canonical_name(header[name]) : canonical_name(name) end end datavecs = map(_datacols) do i if i === nothing # DataValueArray{Union{}}(n) # missing column fill(missing, n) else cols[i] end end data = Columns(Tuple(datavecs); names=datacolnames) if T<:IndexedTable && implicitindex table(data, copy = copy), true else convert(T, index, data, copy = copy), implicitindex end end function lookupbyheader(header, key) if isa(key, Symbol) return lookupbyheader(header, string(key)) elseif isa(key, String) return findfirst(x->x==key, header) elseif isa(key, Int) return 0 < key <= length(header) ? key : nothing elseif isa(key, Tuple) || isa(key, Vector) for k in key x = lookupbyheader(header, k) x != 0 && return x end return nothing end end canonical_name(n::Symbol) = n canonical_name(n::String) = Symbol(replace(n, r"\s" => "_")) canonical_name(n::Union{Tuple, Vector}) = canonical_name(first(n)) function _repeated(x, n) Iterators.repeated(x,n) end function approx_size(cs::Columns) sum(map(approx_size, astuple(columns(cs)))) end function approx_size(t::NDSparse) approx_size(t.data) + approx_size(t.index) end function approx_size(pa::PooledArray) approx_size(pa.refs) + approx_size(pa.pool) * 2 end function approx_size(t::IndexedTable) approx_size(rows(t)) end function approx_size(x::StringArray) approx_size(x.buffer) + approx_size(x.offsets) + approx_size(x.lengths) end # The following is not inferable, this is OK because the only place we use # this doesn't need it. function _map_params(f, T, S) (f(_tuple_type_head(T), _tuple_type_head(S)), _map_params(f, _tuple_type_tail(T), _tuple_type_tail(S))...) end _map_params(f, T::Type{Tuple{}},S::Type{Tuple{}}) = () map_params(f, ::Type{T}, ::Type{S}) where {T,S} = f(T,S) @inline _tuple_type_head(::Type{T}) where {T<:Tuple} = Base.tuple_type_head(T) @inline _tuple_type_tail(::Type{T}) where {T<:Tuple} = Base.tuple_type_tail(T) #function map_params{N}(f, T::Type{T} where T<:Tuple{Vararg{Any,N}}, S::Type{S} where S<: Tuple{Vararg{Any,N}}) Base.@pure function map_params(f, ::Type{T}, ::Type{S}) where {T<:Tuple,S<:Tuple} if fieldcount(T) != fieldcount(S) MethodError(map_params, (typeof(f), T,S)) end Tuple{_map_params(f, T,S)...} end _tuple_type_head(T::Type{NT}) where {NT<: NamedTuple} = fieldtype(NT, 1) Base.@pure function _tuple_type_tail(T::Type{NamedTuple{n,ts}}) where {n,ts} _tuple_type_tail(ts) end Base.@pure @generated function map_params(f, ::Type{T}, ::Type{S}) where {T<:NamedTuple,S<:NamedTuple} if fieldnames(T) != fieldnames(S) MethodError(map_params, (T,S)) end :(NamedTuple{$(fieldnames(T)), Tuple{_map_params(f, T, S)...}}) end function randomsample(n, r::AbstractRange) k = 0 taken = Set{eltype(r)}() output = eltype(r)[] while k < n && k < length(r) x = rand(r) if !(x in taken) push!(taken, x) push!(output, x) k += 1 end end return output end function tuplesetindex(x::Tuple{Vararg{Any,N}}, v, i) where N ntuple(Val(N)) do j i == j ? v : x[j] end end @inline tuplesetindex(x::NamedTuple, v, i::Symbol) = (; x..., i => v) @inline function tuplesetindex(x::NamedTuple{N}, v, i::Int) where N tuplesetindex(x, v, getfield(N, i)) end function tuplesetindex(x::Union{NamedTuple, Tuple}, v::Tuple, i::Tuple) reduce((t, j)->tuplesetindex(t, v[j], i[j]), 1:length(i), init=x) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
533
using Distributed include("testenv.jl") addprocs_with_testenv(2) using JuliaDB, Test, TextParse, IndexedTables, PooledArrays, Dagger, OnlineStats, Statistics, MemPool, Random, Serialization, Dagger, Dates, WeakRefStrings, DataValues include("test_iteration.jl") include("test_util.jl") include("test_table.jl") include("test_query.jl") include("test_join.jl") include("test_misc.jl") include("test_rechunk.jl") include("test_readwrite.jl") include("test_onlinestats.jl") include("test_ml.jl") include("test_weakrefstrings.jl")
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1436
@testset "iteration" begin x = distribute(NDSparse(Columns(a=[1,1], b=[1,2]), Columns(c=[3,4])), 2) y = distribute(NDSparse(Columns(a=[1,1], b=[1,2]), [3,4]), 2) @test column(x, :a) == [1,1] @test column(x, :b) == [1,2] @test column(x, :c) == [3,4] @test column(x, 3) == [3,4] @test column(y, 3) == [3,4] @test columns(x) == (a=[1,1], b=[1,2], c=[3,4]) @test columns(x, (:a,:c)) == (a=[1,1], c=[3,4]) @test columns(y, (1, 3)) == ([1,1], [3,4]) @test rows(x) == [(a=1,b=1,c=3), (a=1,b=2,c=4)] @test rows(x, :b) == [1, 2] @test rows(x, (:b, :c)) == [(b=1,c=3), (b=2,c=4)] #@test rows(x, (:c, as(-, :b, :x))) == [(c=3, x=-1),(c=4, x=-2)] @test keys(x) == [(a=1,b=1), (a=1,b=2)] @test keys(x, :a) == [1, 1] #@test keys(x, (:a, :b, 2)) == [(1,1,1), (1,2,2)] @test values(x) == [(c=3,), (c=4,)] @test values(x,1) == [3,4] #@test values(x,(1,1)) == [(3,3), (4,4)] @test values(y) == [3, 4] @test values(y,1) == [3,4] #@test values(y,as(x->compute(sort(x, rev=true)), 1, :x)) == [4, 3] #@test values(y,(as(-, 1, :x),)) == [(x=-3,), (x=-4,)] @test collect(pairs(x)) == [(a=1,b=1)=>(c=3,), (a=1,b=2)=>(c=4,)] @test collect(pairs(y)) == [(a=1,b=1)=>3, (a=1,b=2)=>4] x = ndsparse(([1,2], [3,4]), (x=[0,1],), chunks=2) @test ndsparse(keys(x), transform(values(x), :y => [1,2])) == ndsparse(([1,2], [3,4]), (x=[0,1], y=[1,2])) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
2600
@testset "join" begin t1 = NDSparse(Columns(([1,1,2,2], [1,2,1,2])), [1,2,3,4]) t2 = NDSparse(Columns(([0,2,2,3], [1,1,2,2])), [1,2,3,4]) j1 = innerjoin(t1,t2) j2 = innerjoin(+, t1,t2) lj1 = leftjoin(t1,t2) lj2 = leftjoin(+, t1,t2) mj1 = merge(t1,t2) mj2 = merge(t2,t1) for n=1:5 d1 = distribute(t1, n) for n2 = 1:5 d2 = distribute(t2, n2) @test isequal(collect(innerjoin(d1, d2)), j1) @test isequal(collect(innerjoin(+, d1, d2)), j2) @test isequal(collect(leftjoin(d1, d2)), lj1) @test isequal(collect(leftjoin(+, d1, d2)), lj2) @test isequal(collect(merge(d1, d2)), mj1) @test isequal(collect(merge(d2, d1)), mj2) end end t1 = NDSparse([:msft,:ibm,:ge], [1,3,4], [100,200,150]) t2 = NDSparse([:ibm,:msft,:aapl,:ibm], [0,0,0,2], [100,99,101,98]) aj = asofjoin(t1,t2) for n=1:5 d1 = distribute(t1, n) for n2 = 1:5 d2 = distribute(t2, n2) @test collect(asofjoin(d1, d2)) == aj end end end @testset "broadcast" begin t1 = NDSparse(Columns(([1,2,3,4],[1,1,2,2])), [5,6,7,8]) t2 = NDSparse(Columns(([0,1,2,4],)),[0,10,100,10000]) for n=1:4 for m=1:4 d1 = distribute(t1, n) d2 = distribute(t2, m) @test collect(d1 .+ d2) == t1 .+ t2 @test collect(broadcast(+, d1, d2, dimmap=(0,1))) == broadcast(+, t1, t2, dimmap=(0,1)) end end end @testset "join with missing" begin y = rand(10) z = rand(10) # DIndexedTable t = table((x=1:10, y=y), pkey=:x, chunks=2) t2 = table((x=1:2:20, z=z), pkey=:x, chunks=2) # DNDSparse nd = ndsparse((x=1:10,), (y=y,), chunks=2) nd2 = ndsparse((x=1:2:20,), (z=z,), chunks=2) @testset "how = :left" begin # Missing z_left = Union{Float64,Missing}[missing for i in 1:10] z_left[1:2:9] = z[1:5] t_left = table((x = 1:10, y = y, z = z_left)) nd_left = ndsparse((x=1:10,), (y=y, z=z_left)) @test isequal(join(t, t2; how=:left), t_left) @test isequal(join(nd, nd2; how=:left), nd_left) # DataValue z_left2 = [DataValue{Float64}() for i in 1:10] z_left2[1:2:9] = z[1:5] t_left2 = table((x=1:10, y = y, z = z_left2)) nd_left2 = ndsparse((x=1:10,), (y=y, z=z_left2)) @test isequal(join(t, t2, how=:left, missingtype=DataValue), t_left2) @test isequal(join(nd, nd2, how=:left, missingtype=DataValue), nd_left2) end end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
2780
@testset "setindex!" begin x = ndsparse(([1,2],[2,3]), [4,5], chunks=2) x[2,3] = 6 @test x == ndsparse(([1,2], [2,3]), [4,6]) x[2,4] = 7 @test x == ndsparse(([1,2,2], [2,3,4]), [4,6,7]) x = ndsparse((x=[1,2],y=[2,3]), [4,5], chunks=2) x[2,3] = 6 @test x == ndsparse((x=[1,2], y=[2,3]), [4,6]) x[2,4] = 7 @test x == ndsparse((x=[1,2,2], y=[2,3,4]), [4,6,7]) end @testset "extractarray" begin t = NDSparse(Columns(a=[1,1,1,2,2], b=[1,2,3,1,2]), Columns(c=[1,2,3,4,5], d=[5,4,3,2,1])) for i=[2, 3, 5] d = compute(distribute(t, i)) dist = map(get, map(JuliaDB.nrows, d.domains)) @test map(length, Dagger.domainchunks(keys(d, 1))) == dist @test collect(keys(d, 2)) == columns(t.index)[2] @test collect( values(d, 2)) == columns(t.data)[2] end end @testset "printing" begin x = distribute(NDSparse([1], [1]), 1) @test repr(x) == """ 1-d Distributed NDSparse with 1 values (Int64) in 1 chunks: 1 │ ──┼── 1 │ 1""" end import JuliaDB: chunks, index_spaces, has_overlaps @testset "has_overlaps" begin t = NDSparse(Columns(([1,1,2,2,2,3], [1,2,1,1,2,1])), [1,2,3,4,5,6]) d = distribute(t, [2,3,1]) i = d.domains @test !has_overlaps(i, closed=false) @test !has_overlaps(i) d = distribute(t, [2,2,2]) i = d.domains @test !has_overlaps(i, closed=false) @test !has_overlaps(i) d = distribute(t, [2,1,3]) i = d.domains @test !has_overlaps(i, closed=false) @test has_overlaps(i) end import JuliaDB: with_overlaps, delayed @testset "with_overlaps" begin t = NDSparse([1,1,2,2,2,3], [1,2,3,4,5,6]) d = distribute(t, [2,2,2]) group_count = 0 t1 = with_overlaps(d) do cs if length(cs) > 1 group_count += 1 @test length(cs) == 2 @test collect(cs[1]) == NDSparse([2,2], [3,4]) @test collect(cs[2]) == NDSparse([2,3], [5,6]) return delayed((x,y) -> merge(x,y,agg=nothing))(cs...) else cs[1] end end @test collect(groupreduce(+, t1)) == groupreduce(+, t) @test group_count == 1 end import JuliaDB: subtable @testset "subtable" begin t = NDSparse([1,2,3,4], [5,6,7,8]) d = distribute(t, 3) for i=1:4 @test collect(subtable(d, 1:i)) == subtable(t, 1:i) if i>=2 @test collect(subtable(d, 2:i)) == subtable(t, 2:i) end end end @testset "Iterators.partition" begin t = compute(distribute(NDSparse([1:7;],[8:14;]), [3,2,2])) parts = map(NDSparse, Iterators.partition([1:7;], 2) |> collect, Iterators.partition([8:14;], 2) |> collect) @test [p for p in Iterators.partition(t, 2)] == parts end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1920
import JuliaDB.ML @testset "feature extraction" begin @testset "schema" begin @test ML.schema(1:10).stat == fit!(Variance(), 1:10) x = repeat([1,2], inner=5) @test ML.schema(x, ML.Categorical).stat == fit!(CountMap(Int), x) == ML.schema(PooledArray(x)).stat m = ML.schema(Vector{Union{Int,Missing}}(x)) @test m isa ML.Maybe @test m.feature.stat == ML.schema(x).stat t = table(PooledArray([1,2,1,2]), [1,2,3,4], names=[:x, :y]) sch = ML.schema(t) @test sch[:x].stat == ML.schema(PooledArray([1,2,1,2])).stat @test sch[:y].stat == ML.schema([1,2,3,4]).stat end @testset "featuremat" begin @test ML.featuremat([1,3,5]) == [-1.0, 0, 1.0]' Δ = 0.5 / std([1,2]) @test ML.featuremat([1,2,missing]) ≈ [0 0 1; -Δ Δ 0] @test isempty(ML.featuremat(["x","y","x"])) @test ML.featuremat(PooledArray(["x","y","x"])) == [1 0 1; 0 1 0] t = table(PooledArray([1,1,2,2]), [1,2,3,4], [1,2,3,4], ["x", "y", "z", "a"], names=[:a,:b,:c,:d]) @test ML.featuremat(t) == collect(ML.featuremat(distribute(t, 2))) x = randn(100) @test ML.featuremat(x) ≈ ((x .- mean(x)) ./ std(x))' end @testset "Issue 149" begin x = rand(10), rand(1:4, 10), rand(1:4, 10) t = table(x..., names = [:x1, :x2, :x3]) td = table(x..., names = [:x1, :x2, :x3], chunks = 2) sch = ML.schema(t, hints=Dict( :x1 => ML.Continuous, :x2 => ML.Categorical, :x3 => ML.Categorical, ) ) schd = ML.schema(td, hints=Dict( :x1 => ML.Continuous, :x2 => ML.Categorical, :x3 => ML.Categorical, ) ) @test schd[:x1].stat.σ2 ≈ sch[:x1].stat.σ2 @test schd[:x2].stat == sch[:x2].stat @test schd[:x3].stat == sch[:x3].stat end end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
735
@testset "online stats" begin global dt t = NDSparse(Columns(([1,1,1,2,2,2,3,3,3], [1,2,3,1,2,3,1,2,3])), [0.5,1,1.5,1,2,3,2,3,4]) dt = distribute(t,[3,2,4]) @test value(reduce(Mean(), t))[1] ≈ 2 @test value(reduce(Mean(), dt))[1] ≈ 2 means = groupreduce(Series(Mean()), dt, 1) @test collect(values(map(x->x.stats[1].μ, means))) == [1.0, 2.0, 3.0] # @test length(means.chunks) == 2 # @test Series((keys(dt), values(dt)), LinReg(2)).stats[1].β |> string == string([0.615385, 0.448718]) # regs = aggregate_stats(Series(LinReg(2)), keys(dt, 1), keys(dt), values(dt)) # @test isapprox(values(map(x->coef(x.stats[1]), regs)) |> collect, [[0, 0.5], [0.0, 1.0], [0.3333333, 1.0]], rtol=10e-5) |> all end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
4049
@testset "map & reduce" begin t = NDSparse(Columns(([1,1,2,2], [1,2,1,2])), [1,2,3,4]) d = distribute(t, 2) @test collect(map(-, d)) == map(-, t) @test reduce(+, d) == 10 end @testset "getindex" begin t = NDSparse(Columns(x=[1,1,1,2,2], y=[1,2,3,1,2]), [1,2,3,4,5]) for n=1:5 d = distribute(t, n) @test d[1,1] == t[1,1] @test d[1,3] == t[1,3] @test d[2,2] == t[2,2] @test collect(d[1:1, 1:1]) == t[1:1, 1:1] @test collect(d[1:2, 2:3]) == t[1:2, 2:3] @test collect(d[:, 3]) == t[:, 3] end end @testset "select" begin t = NDSparse(Columns(a=[1,1,1,2,2], b=[1,2,3,1,2]), [1,2,3,4,5]) for i=[1, 3, 5] d = distribute(t, i) res = filter((1=>x->true, 2=>x->x%2 == 0), t) @test collect(filter((1=>x->true, 2=>x->x%2 == 0), d)) == res @test collect(filter((:a=>x->true, :b => x->x%2 == 0), d)) == res # check empty, #228 res = filter((1=>x->false, 2=>x->x%2 == 0), t) @test collect(filter((1=>x->false, 2=>x->x%2 == 0), d)) == res @test collect(filter((:a=>x->false, :b => x->x%2 == 0), d)) == res end end function Base.isapprox(x::NDSparse, y::NDSparse) flush!(x); flush!(y) all(map(isapprox, columns(x.data), columns(y.data))) end @testset "convertdim" begin t = NDSparse(Columns(a=[1,1,1,2,2], b=[1,2,3,1,2]), Columns(c=[1,2,3,4,5], d=[5,4,3,2,1])) _plus(x,y) = map(+,x, y) for i=[2, 3, 5] d = distribute(t, i) @test collect(convertdim(d, 2, x->x>=2)) == convertdim(t, 2, x->x>=2) @test collect(convertdim(d, 2, x->x>=2, agg=_plus)) == convertdim(t, 2, x->x>=2, agg=_plus) @test collect(convertdim(d, 2, x->x>=2, vecagg=length)) == convertdim(t, 2, x->x>=2, vecagg=length) end end @testset "reduce" begin t1 = NDSparse(Columns(([1,1,2,2], [1,2,1,2])), [1,2,3,4]) rd1 = reduce(+, t1, dims=1) rd2 = reduce(+, t1, dims=2) rdv1 = reducedim_vec(length, t1, 1) rdv2 = reducedim_vec(length, t1, 2) for n=1:5 d1 = distribute(t1, n, allowoverlap=true) @test collect(reduce(+, d1, dims=1)) == rd1 @test collect(reduce(+, d1, dims=2)) == rd2 @test collect(reducedim_vec(length, d1, 1)) == rdv1 @test collect(reducedim_vec(length, d1, 2)) == rdv2 end end @testset "select" begin t1 = NDSparse(Columns(([1,2,3,4], [2,1,1,2])), [1,2,3,4]) d1 = distribute(t1, 2) @test collect(selectkeys(d1, 2, agg=+)) == selectkeys(t1, 2, agg=+) end @testset "permutedims" begin t = NDSparse(Columns(([1,1,2,2], ["a","b","a","b"])), [1,2,3,4]) for n=1:5 d = distribute(t, n) @test collect(permutedims(d, [2,1])) == permutedims(t, [2,1]) end end @testset "mapslices" begin t = NDSparse(Columns(x=[1,1,2,2], y=[1,2,3,4]), [1,2,3,4]) for (dist,) in zip(Any[1, 2, [1,3], [3,1], [1,2,1]]) d = distribute(t, dist) res = mapslices(collect, d, :y) @test collect(res) == mapslices(collect, t, 2) f = x->IndexedTables.NDSparse(IndexedTables.Columns(z=[1,2]), [3,4]) res2 = mapslices(f, d, 2) @test collect(res2) == mapslices(f, t, 2) end t = ndsparse([1,2,3],[4,5,6], chunks=2) @test mapslices(t, ()) do x IndexedTables.ndsparse([1,2], first.([x,x])) end == ndsparse(([1,1,2,2,3,3],[1,2,1,2,1,2],), [4,4,5,5,6,6]) end @testset "flatten" begin x = table([1,2], [[3,4], [5,6]], names=[:x, :y], chunks=2) @test flatten(x, 2) == table([1,1,2,2], [3,4,5,6], names=[:x,:y]) x = table([1,2], [table([3,4],[5,6], names=[:a,:b]), table([7,8], [9,10], names=[:a,:b])], names=[:x, :y], chunks=2) @test flatten(x, :y) == table([1,1,2,2], [3,4,7,8], [5,6,9,10], names=[:x,:a, :b]) t = table([1,1,2,2], [3,4,5,6], names=[:x,:y], chunks=2) @test groupby((:normy => x->Iterators.repeated(mean(x), length(x)),), t, :x, select=:y, flatten=true) == table([1,1,2,2], [3.5,3.5,5.5,5.5], names=[:x, :normy]) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
5737
function roundtrip(x, eq=(==), io=IOBuffer()) mmwrite(Serializer(io), x) @test eq(deserialize(seekstart(io)), x) end @testset "PooledArray/Vector{Union{T,Missing}}" begin roundtrip(PooledArray([randstring(rand(1:10)) for i in 1:4])) roundtrip([rand(Bool) ? rand() : missing for i in 1:50], isequal) end @testset "Columns" begin roundtrip(Columns(([1,2], ["x","y"]))) roundtrip(Columns(x=[1,2], y=["x","y"])) end @testset "ndsparse" begin ndsparse(Columns(([1,2], ["x","y"])), Columns(x=[1,2], y=["x","y"])) |> roundtrip end @testset "table" begin table([1,2], ["x","y"]) |> roundtrip table(Columns(x=[1,2], y=["x","y"])) |> roundtrip end path = joinpath(dirname(@__FILE__), "..","test", "sample") files = glob("*.csv", path) const spdata_dist = loadndsparse(files, type_detect_rows=4, indexcols=1:2, usecache=false, chunks=2) const spdata_dist_path = loadndsparse(path, type_detect_rows=4, indexcols=1:2, usecache=false, chunks=2) loadndsparse(files[1:2], chunks=4) _readstr(f) = open(f) do fh readline(fh) readstring(fh) end const spdata = loadndsparse(files; distributed=false, header_exists=true, indexcols=1:2) files = glob("*.csv", "sample") shuffle_files = shuffle(files) const spdata_unordered = loadndsparse(shuffle_files; distributed=false, indexcols=[]) ingest_output = tempname() spdata_ingest = loadndsparse(files, output=ingest_output, indexcols=1:2, chunks=2) ingest_output_unordered = tempname() # note: this will result in a different table if files[3:end] is ingested first spdata_ingest_unordered = loadndsparse(shuffle_files, output=ingest_output_unordered, indexcols=[], chunks=2) # spdata_ingest_unordered = loadndsparse(shuffle_files[4:end], output=ingest_output_unordered, # append=true, indexcols=[]) # this should also test appending new files import Dagger: Chunk @testset "Load" begin @test loadtable("missingcols/t1.csv") == table([0,0,0], [1,2,3], names=[:a,:x]) cache = joinpath(JuliaDB.JULIADB_DIR, JuliaDB.JULIADB_FILECACHE) if isfile(cache) rm(cache) end missingcoltbl = loadndsparse(joinpath(@__DIR__, "missingcols"), datacols=[:a, :x, :y], usecache=false, chunks=2) @test eltype(missingcoltbl) == NamedTuple{(:a,:x,:y),Tuple{Int, Union{Missing,Int}, Union{Missing,Float64}}} @test collect(loadtable(shuffle_files,chunks=2)) == table(spdata_unordered.data) # file name as a column: @test unique(keys(loadndsparse(path, indexcols=[:year, :date, :ticker],filenamecol=:year, usecache=false, chunks=2), :year)|> collect) == string.(2010:2015) @test unique(keys(loadndsparse(path, indexcols=[:year, :date, :ticker],filenamecol=:year=>(x->x[3:4])∘basename, usecache=false, chunks=2), :year)|> collect) == string.(10:15) @test collect(spdata_dist) == spdata @test collect(spdata_dist_path) == spdata @test collect(spdata_ingest) == spdata @test collect(load(ingest_output)) == spdata @test collect(load(ingest_output_unordered)) == spdata_unordered @test issorted(collect(keys(load(ingest_output_unordered), 1))) c = first(load(ingest_output).chunks) #@test isa(c.handle, FileRef) #@test collect(dt[["blah"], :,:]) == spdata dt = loadndsparse(files, indexcols=[("date", "dummy"), ("dummy", "ticker")], usecache=false, chunks=2) nds=collect(dt) @test haskey(columns(nds.index), :date) @test haskey(columns(nds.index), :dummy) @test !haskey(columns(nds.index), :ticker) @test length(columns(nds.index)) == 2 @test keys(columns(nds.data)) == (:open, :high, :low, :close, :volume) @test length(columns(nds.data)) == 5 dt = loadndsparse(shuffle_files, usecache=false, chunks=2) @test collect(dt) == spdata_unordered @test issorted(collect(keys(dt, 1))) # reuses csv read cache: dt = loadndsparse(shuffle_files, indexcols=[], chunks=4, usecache=false) @test collect(dt) == spdata_unordered dt = loadndsparse(shuffle_files, indexcols=[], chunks=4) # cache test @test collect(dt) == spdata_unordered # test specifying column names dt = loadndsparse(files[1:2], indexcols=[:a,:b], colnames=[:a,:b,:c,:d,:e,:f,:g], usecache=false, header_exists=false, chunks=2) nds = collect(dt) @test haskey(columns(nds.index), :a) @test haskey(columns(nds.index), :b) @test keys(columns(nds.data)) == (:c,:d,:e,:f,:g) end @testset "save" begin t = NDSparse([1,2,3,4], [1,2,3,4]) n = tempname() x = JuliaDB.save(distribute(t, 4), n) t1 = load(n) @test collect(t1) == collect(x) @test !any(c->isempty(Dagger.affinity(c.handle)), t1.chunks) rm(n, recursive=true) t = table([1,2,3,4], [1,2,3,4], chunks=2) n = tempname() x = JuliaDB.save(t, n) t1 = load(n) @test collect(t1) == collect(t) @test !any(c->isempty(Dagger.affinity(c.handle)), t1.chunks) rm(n, recursive=true) end rm(ingest_output, recursive=true) rm(ingest_output_unordered, recursive=true) @testset "load and save with missings" begin nm1, nm2 = tempname(), tempname() # Create a csv with one missing value and a column with all missings open(nm1, "w") do io write(io, "A,B,C\n1,1,missing\n1,missing,missing\n") end t1 = loadtable(nm1, delim = ',') save(t1, nm2) t2 = load(nm2) @test all([all(collect(c1 .=== c2)) for (c1, c2) in zip(columns(t1), columns(t2))]) # Clean up rm(nm1, recursive=true) rm(nm2, recursive=true) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
683
@testset "rechunk" begin t = NDSparse([1:10;], ones(10), ones(10)) d = distribute(t, 2) d2 = compute(distribute(d, [2,3,4,1])) @test get.(map(JuliaDB.nrows, d2.domains)) == [2,3,4,1] end @testset "rechunk by" begin t = distribute(NDSparse(Columns(([1,1,1,2,2,2], [1,1,2,2,3,3])), [1:6;]), [2,2,2]) t1=rechunk(t, (1, 2=>x->x.>=2), closed=true, chunks=3) @test collect(t1) == selectkeys(collect(t), (1,2=>x->x>=2)) @test collect(t1.chunks[1]) == NDSparse(Columns(([1,1],[false,false])), [1,2]) # @test collect(t1.chunks[2]) == NDSparse(Columns(([1],[2])), [3]) # @test collect(t1.chunks[3]) == NDSparse(Columns(([2,2,2],[2,3,3])), [4,5,6]) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
17261
@everywhere using Statistics import JuliaDB: pkeynames, pkeys, excludecols, select, transform @testset "table" begin t = table([1, 1, 1, 2, 2, 2], [1, 1, 2, 2, 1, 1], [1, 2, 3, 4, 5, 6], names=[:x, :y, :z], pkey=(:x, :y), chunks=2) @test groupreduce(+, t, :x, select=:z) == table([1, 2], [6, 15], names=Symbol[:x, :+]) @test groupreduce(((x, y)->if x isa Int (y = x + y,) else (y = x.y + y,) end), t, :x, select=:z) == table([1, 2], [6, 15], names=Symbol[:x, :y]) @test groupreduce(:y => (+), t, :x, select=:z) == table([1, 2], [6, 15], names=Symbol[:x, :y]) x = ndsparse(["a", "b"], [3, 4], chunks=2) @test (keytype(x), eltype(x)) == (Tuple{String}, Int64) x = ndsparse((date = Date.(2014:2017),), [4:7;], chunks=2) @test x[Date("2015-01-01")] == 5 @test (keytype(x), eltype(x)) == (Tuple{Date}, Int64) x = ndsparse((["a", "b"], [3, 4]), [5, 6], chunks=2) @test (keytype(x), eltype(x)) == (Tuple{String,Int64}, Int64) @test x["a", 3] == 5 x = ndsparse((["a", "b"], [3, 4]), ([5, 6], [7.0, 8.0]), chunks=2) x = ndsparse((x = ["a", "a", "b"], y = [3, 4, 4]), (p = [5, 6, 7], q = [8.0, 9.0, 10.0]), chunks=2) @test (keytype(x), eltype(x)) == (Tuple{String,Int64}, NamedTuple{(:p,:q),Tuple{Int64,Float64}}) @test x["a", :] == ndsparse((y = [3, 4],), Columns((p = [5, 6], q = [8.0, 9.0]))) x = ndsparse([1, 2], [3, 4], chunks=2) @test pkeynames(x) == (1,) x = ndsparse((t = [0.01, 0.05],), (x = [1, 2], y = [3, 4]), chunks=2) manh = map((row->row.x + row.y), x) vx = map((row->row.x / row.t), x, select=(:t, :x)) polar = map((p->(r = hypot(p.x + p.y), θ = atan(p.y, p.x))), x) #@test map(sin, polar, select=:θ) == ndsparse((t = [0.01, 0.05],), [0.948683, 0.894427]) a = table([1, 2, 3], [4, 5, 6], chunks=2) b = table([1, 2, 3], [4, 5, 6], names=[:x, :y], chunks=2) @test table(([1, 2, 3], [4, 5, 6])) == a @test table((x = [1, 2, 3], y = [4, 5, 6])) == b @test table(Columns(([1, 2, 3], [4, 5, 6]))) == a @test table(Columns(x=[1, 2, 3], y=[4, 5, 6])) == b @test b == table(b) b = table([2, 3, 1], [4, 5, 6], names=[:x, :y], pkey=:x, chunks=2) b = table([2, 1, 2, 1], [2, 3, 1, 3], [4, 5, 6, 7], names=[:x, :y, :z], pkey=(:x, :y), chunks=2) t = table([1, 2], [3, 4], chunks=2) @test pkeynames(t) == () t = table([1, 2], [3, 4], pkey=1, chunks=2) @test pkeynames(t) == (1,) t = table([2, 1], [1, 3], [4, 5], names=[:x, :y, :z], pkey=(1, 2), chunks=2) @test pkeys(collect(t)) == Columns((x = [1, 2], y = [3, 1])) @test pkeys(a) == Columns((Base.OneTo(3),)) a = table(["a", "b"], [3, 4], pkey=1, chunks=2) @test pkeys(a) == Columns((String["a", "b"],)) t = table([2, 1], [1, 3], [4, 5], names=[:x, :y, :z], pkey=(1, 2), chunks=2) @test excludecols(t, (:x,)) == (2, 3) @test excludecols(t, (2,)) == (1, 3) @test excludecols(t, pkeynames(t)) == (3,) @test excludecols([1, 2, 3], (1,)) == () @test convert(IndexedTable, Columns(x=[1, 2], y=[3, 4]), Columns(z=[1, 2]), presorted=true) == table([1, 2], [3, 4], [1, 2], names=Symbol[:x, :y, :z]) @test colnames([1, 2, 3]) == (1,) @test colnames(Columns(([1, 2, 3], [3, 4, 5]))) == (1, 2) @test colnames(table([1, 2, 3], [3, 4, 5])) == (1, 2) @test colnames(Columns(x=[1, 2, 3], y=[3, 4, 5])) == (:x, :y) @test colnames(table([1, 2, 3], [3, 4, 5], names=[:x, :y])) == (:x, :y) @test colnames(ndsparse(Columns(x=[1, 2, 3]), Columns(y=[3, 4, 5]))) == (:x, :y) @test colnames(ndsparse(Columns(x=[1, 2, 3]), [3, 4, 5])) == (:x, 2) @test colnames(ndsparse(Columns(x=[1, 2, 3]), [3, 4, 5])) == (:x, 2) @test colnames(ndsparse(Columns(([1, 2, 3], [4, 5, 6])), Columns(x=[6, 7, 8]))) == (1, 2, :x) @test colnames(ndsparse(Columns(x=[1, 2, 3]), Columns(([3, 4, 5], [6, 7, 8])))) == (:x, 2, 3) t = table([1, 2], [3, 4], names=[:x, :y], chunks=2) @test columns(t) == (x = [1, 2], y = [3, 4]) @test columns(t, :x) == [1, 2] @test columns(t, (:x,)) == (x = [1, 2],) @test columns(t, (:y, :x => (-))) == (y = [3, 4], x = [-1, -2]) t = table([1, 2], [3, 4], names=[:x, :y], chunks=2) @test rows(t) == Columns((x = [1, 2], y = [3, 4])) @test rows(t, :x) == [1, 2] @test rows(t, (:x,)) == Columns((x = [1, 2],)) @test rows(t, (:y, :x => (-))) == Columns((y = [3, 4], x = [-1, -2])) t = table([1, 2], [3, 4], names=[:x, :y], chunks=2) @test transform(t, 2 => [5, 6]) == table([1, 2], [5, 6], names=Symbol[:x, :y]) @test transform(t, :x => :x => (x->1 / x)) == table([1.0, 0.5], [3, 4], names=Symbol[:x, :y]) t = table([0.01, 0.05], [1, 2], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) t2 = transform(t, :t => [0.1, 0.05]) @test t2 == table([0.05, 0.1], [2,1], [4,3], names=[:t,:x,:y]) t = table([0.01, 0.05], [2, 1], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) @test transform(t, :z => [1 // 2, 3 // 4]) == table([0.01, 0.05], [2, 1], [3, 4], Rational{Int64}[1//2, 3//4], names=Symbol[:t, :x, :y, :z]) t = table([0.01, 0.05], [2, 1], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) @test select(t, Not(:x)) == table([0.01, 0.05], [3, 4], names=Symbol[:t, :y]) t = table([0.01, 0.05], [2, 1], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) @test insertcols(t, 2, :w => [0, 1]) == table([0.01, 0.05], [0, 1], [2, 1], [3, 4], names=Symbol[:t, :w, :x, :y]) t = table([0.01, 0.05], [2, 1], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) @test insertcolsafter(t, :t, :w => [0, 1]) == table([0.01, 0.05], [0, 1], [2, 1], [3, 4], names=Symbol[:t, :w, :x, :y]) t = table([0.01, 0.05], [2, 1], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) @test insertcolsbefore(t, :x, :w => [0, 1]) == table([0.01, 0.05], [0, 1], [2, 1], [3, 4], names=Symbol[:t, :w, :x, :y]) t = table([0.01, 0.05], [2, 1], names=[:t, :x], chunks=2) @test rename(t, :t => :time) == table([0.01, 0.05], [2, 1], names=Symbol[:time, :x]) l = table([1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 3, 4], names=[:a, :b, :c], pkey=(:a, :b), chunks=2) r = table([0, 1, 1, 3], [1, 1, 2, 2], [1, 2, 3, 4], names=[:a, :b, :d], pkey=(:a, :b), chunks=2) @test join(l, r) == table([1, 1], [1, 2], [1, 2], [2, 3], names=[:a, :b, :c, :d]) @test isequal( join(l, r, how=:left), table([1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 3, 4], [2, 3, missing, missing], names=[:a, :b, :c, :d]) ) @test isequal( join(l, r, how=:outer), table([0, 1, 1, 2, 2, 3], [1, 1, 2, 1, 2, 2], [missing, 1, 2, 3, 4, missing], [1, 2, 3, missing, missing, 4], names=Symbol[:a, :b, :c, :d]) ) @test join(l, r, how=:anti) == table([2, 2], [1, 2], [3, 4], names=Symbol[:a, :b, :c]) l1 = table([1, 2, 2, 3], [1, 2, 3, 4], names=[:x, :y], chunks=2) r1 = table([2, 2, 3, 3], [5, 6, 7, 8], names=[:x, :z], chunks=2) @test join(l1, r1, lkey=:x, rkey=:x) == table([2, 2, 2, 2, 3, 3], [2, 2, 3, 3, 4, 4], [5, 6, 5, 6, 7, 8], names=Symbol[:x, :y, :z]) @test isequal( join(l, r, lkey=:a, rkey=:a, lselect=:b, rselect=:d, how=:outer), table((a=[0, 1, 1, 1, 1, 2, 2, 3], b=[missing, 1, 1, 2, 2, 1, 2, missing], d=[1, 2, 3, 2, 3, missing, missing, 4])) ) l = table([1, 1, 1, 2], [1, 2, 2, 1], [1, 2, 3, 4], names=[:a, :b, :c], pkey=(:a, :b), chunks=2) r = table([0, 1, 1, 2], [1, 2, 2, 1], [1, 2, 3, 4], names=[:a, :b, :d], pkey=(:a, :b), chunks=2) @test groupjoin(l, r) == table([1, 2], [2, 1], [Columns((c = [2, 2, 3, 3], d = [2, 3, 2, 3])), Columns((c = [4], d = [4]))], names=Symbol[:a, :b, :groups]) @test groupjoin(l, r, how=:left) == table([1, 1, 2], [1, 2, 1], [Columns((c = [], d = [])), Columns((c = [2, 2, 3, 3], d = [2, 3, 2, 3])), Columns((c = [4], d = [4]))], names=Symbol[:a, :b, :groups]) @test groupjoin(l, r, how=:outer) == table([0, 1, 1, 2], [1, 1, 2, 1], [Columns((c = [], d = [])), Columns((c = [], d = [])), Columns((c = [2, 2, 3, 3], d = [2, 3, 2, 3])), Columns((c = [4], d = [4]))], names=Symbol[:a, :b, :groups]) @test groupjoin(l, r, lkey=:a, rkey=:a, lselect=:c, rselect=:d, how=:outer) == table([0, 1, 2], [Columns((c = [], d = [])), Columns((c = [1, 1, 2, 2, 3, 3], d = [2, 3, 2, 3, 2, 3])), Columns((c = [4], d = [4]))], names=Symbol[:a, :groups]) x = ndsparse((["ko", "ko", "xrx", "xrx"], Date.(["2017-11-11", "2017-11-12", "2017-11-11", "2017-11-12"])), [1, 2, 3, 4], chunks=2) y = ndsparse((["ko", "ko", "xrx", "xrx"], Date.(["2017-11-12", "2017-11-13", "2017-11-10", "2017-11-13"])), [5, 6, 7, 8], chunks=2) @test asofjoin(x, y) == ndsparse((String["ko", "ko", "xrx", "xrx"], Date.(["2017-11-11", "2017-11-12", "2017-11-11", "2017-11-12"])), [1, 5, 7, 7]) a = table([1, 3, 5], [1, 2, 3], names=[:x, :y], pkey=:x, chunks=2) b = table([2, 3, 4], [1, 2, 3], names=[:x, :y], pkey=:x, chunks=2) @test merge(a, b) == table([1, 2, 3, 3, 4, 5], [1, 1, 2, 2, 3, 3], names=Symbol[:x, :y]) a = ndsparse([1, 3, 5], [1, 2, 3], chunks=2) b = ndsparse([2, 3, 4], [1, 2, 3], chunks=2) @test merge(a, b) == ndsparse(([1, 2, 3, 4, 5],), [1, 1, 2, 3, 3]) @test merge(a, b, agg=+) == ndsparse(([1, 2, 3, 4, 5],), [1, 1, 4, 3, 3]) a = ndsparse(([1, 1, 2, 2], [1, 2, 1, 2]), [1, 2, 3, 4], chunks=2) b = ndsparse([1, 2], [1 / 1, 1 / 2], chunks=2) @test broadcast(*, a, b) == ndsparse(([1, 1, 2, 2], [1, 2, 1, 2]), [1.0, 2.0, 1.5, 2.0]) @test a .* b == ndsparse(([1, 1, 2, 2], [1, 2, 1, 2]), [1.0, 2.0, 1.5, 2.0]) @test broadcast(*, a, b, dimmap=(0, 1)) == ndsparse(([1, 1, 2, 2], [1, 2, 1, 2]), [1.0, 1.0, 3.0, 2.0]) t = table([0.1, 0.5, 0.75], [0, 1, 2], names=[:t, :x], chunks=2) @test reduce(+, t, select=:t) == 1.35 @test reduce(((a, b)->(t = a.t + b.t, x = a.x + b.x)), t) == (t = 1.35, x = 3) @test value(reduce(Mean(), t, select=:t)) == 0.45 y = reduce((min, max), t, select=:x) @test y.max == 2 @test y.min == 0 y = reduce((sum = (+), prod = (*)), t, select=:x) y = reduce((Mean(), Variance()), t, select=:t) @test value(y.Mean) == 0.45 @test value(y.Variance) == 0.10749999999999998 @test reduce((xsum = (:x => (+)), negtsum = ((:t => (-)) => (+))), t) == (xsum = 3, negtsum = -1.35) t = table([1, 1, 1, 2, 2, 2], [1, 1, 2, 2, 1, 1], [1, 2, 3, 4, 5, 6], names=[:x, :y, :z], chunks=2) @test groupreduce(+, t, :x, select=:z) == table([1, 2], [6, 15], names=Symbol[:x, :+]) @test groupreduce(+, t, (:x, :y), select=:z) == table([1, 1, 2, 2], [1, 2, 1, 2], [3, 3, 11, 4], names=Symbol[:x, :y, :+]) @test groupreduce((+, min, max), t, (:x, :y), select=:z) == table([1, 1, 2, 2], [1, 2, 1, 2], [3, 3, 11, 4], [1, 3, 5, 4], [2, 3, 6, 4], names=Symbol[:x, :y, :+, :min, :max]) @test groupreduce((zsum = (+), zmin = min, zmax = max), t, (:x, :y), select=:z) == table([1, 1, 2, 2], [1, 2, 1, 2], [3, 3, 11, 4], [1, 3, 5, 4], [2, 3, 6, 4], names=Symbol[:x, :y, :zsum, :zmin, :zmax]) @test groupreduce((xsum = :z => +, negysum = (:y => -) => +), t, :x) == table([1, 2], [6, 15], [-4, -4], names=Symbol[:x, :xsum, :negysum]) t = table([1, 1, 1, 2, 2, 2], [1, 1, 2, 2, 1, 1], [1, 2, 3, 4, 5, 6], names=[:x, :y, :z], chunks=2) @test groupby(mean, t, :x, select=:z) == table([1, 2], [2.0, 5.0], names=Symbol[:x, :mean]) @test groupby(identity, t, (:x, :y), select=:z) == table([1, 1, 2, 2], [1, 2, 1, 2], [[1, 2], [3], [5, 6], [4]], names=Symbol[:x, :y, :identity]) @test groupby(mean, t, (:x, :y), select=:z) == table([1, 1, 2, 2], [1, 2, 1, 2], [1.5, 3.0, 5.5, 4.0], names=Symbol[:x, :y, :mean]) #@test groupby((mean, std, var), t, :y, select=:z) == table([1, 2], [3.5, 3.5], [2.38048, 0.707107], [5.66667, 0.5], names=Symbol[:y, :mean, :std, :var]) @test groupby((q25 = (z->quantile(z, 0.25)), q50 = median, q75 = (z->quantile(z, 0.75))), t, :y, select=:z) == table([1, 2], [1.75, 3.25], [3.5, 3.5], [5.25, 3.75], names=Symbol[:y, :q25, :q50, :q75]) #@test groupby((xmean = (:z => mean), ystd = ((:y => (-)) => std)), t, :x) == table([1, 2], [2.0, 5.0], [0.57735, 0.57735], names=Symbol[:x, :xmean, :ystd]) @test groupby(identity, t, :x, select = (:y, :z), flatten = true) == rechunk(t, :x) @test groupby((xmean = (:z => mean),), t, :x) == table([1, 2], [2.0, 5.0], names=Symbol[:x, :xmean]) t = table(1:4, [1, 4, 9, 16], [1, 8, 27, 64], names = [:x, :xsquare, :xcube], pkey = :x, chunks = 2) long = stack(t; variable = :var, value = :val) @test long == table([1, 1, 2, 2, 3, 3, 4, 4], [:xsquare, :xcube, :xsquare, :xcube, :xsquare, :xcube, :xsquare, :xcube], [1, 1, 4, 8, 9, 27, 16, 64]; names = [:x, :var, :val], pkey = :x) @test unstack(long; variable = :var, value = :val) == t x = ndsparse((x = [1, 1, 1, 2, 2, 2], y = [1, 2, 2, 1, 2, 2], z = [1, 1, 2, 1, 1, 2]), [1, 2, 3, 4, 5, 6], chunks=2) @test reduce(+, x, dims=1) == ndsparse((y = [1, 2, 2], z = [1, 1, 2]), [5, 7, 9]) @test reduce(+, x, dims=(1, 3)) == ndsparse((y = [1, 2],), [5, 16]) tbl = table([0.01, 0.05], [2, 1], [3, 4], names=[:t, :x, :y], pkey=:t, chunks=2) @test select(tbl, 2) == [2, 1] @test select(tbl, :t) == [0.01, 0.05] @test select(tbl, :t => (t->1 / t)) == [100.0, 20.0] @test select(tbl, [3, 4]) == [3, 4] @test select(tbl, (2, 1)) == table([2, 1], [0.01, 0.05], names=Symbol[:x, :t]) vx = select(tbl, (:x, :t) => (p->p.x / p.t)) @test select(tbl, (:x, :t => (-))) == table([1, 2], [-0.05, -0.01], names=Symbol[:x, :t]) @test select(tbl, (:x, :t, [3, 4])) == table([2, 1], [0.01, 0.05], [3, 4], names=[1, 2, 3]) @test select(tbl, (:x, :t, :z => [3, 4])) == table([2, 1], [0.01, 0.05], [3, 4], names=Symbol[:x, :t, :z]) @test select(tbl, (:x, :t, :minust => (:t => (-)))) == table([2, 1], [0.01, 0.05], [-0.01, -0.05], names=Symbol[:x, :t, :minust]) @test select(tbl, (:x, :t, :vx => ((:x, :t) => (p->p.x / p.t)))) == table([2, 1], [0.01, 0.05], [200.0, 20.0], names=Symbol[:x, :t, :vx]) t = table([2, 1], [1, 3], [4, 5], names=[:x, :y, :z], pkey=(1, 2), chunks=2) @test reindex(t, (:y, :z)) == table([1, 3], [4, 5], [2, 1], names=Symbol[:y, :z, :x]) @test pkeynames(t) == (:x, :y) #@test reindex(t, (:w => [4, 5], :z)) == table([4, 5], [5, 4], [1, 2], [3, 1], names=Symbol[:w, :z, :x, :y]) @test pkeynames(t) == (:x, :y) t = table([0.01, 0.05], [1, 2], [3, 4], names=[:t, :x, :y], chunks=2) manh = map((row->row.x + row.y), t) polar = map((p->(r = hypot(p.x + p.y), θ = atan(p.y, p.x))), t) vx = map((row->row.x / row.t), t, select=(:t, :x)) #@test collect(map(sin, polar, select=:θ)) ≈ [0.948683, 0.894427] t = table([0.1, 0.5, missing, 0.7], [2, missing, 4, 5], [missing, 6, missing, 7], names=[:t, :x, :y], chunks=2) @test dropmissing(t) == table([0.7], [5], [7], names=[:t, :x, :y]) @test isequal( dropmissing(t, :y), table([0.5, 0.7], [missing, 5], [6, 7], names=[:t, :x, :y], chunks=2) ) @test isequal( dropmissing(t, (:t, :x)), table([.1,.7], [2,5], [missing,7], names=[:t,:x,:y], chunks=2) ) t2 = table([.1, .5, NA, .7], [2, NA, 4, 5], [NA, 6, NA, 7], names=[:t, :x, :y], chunks=2) @test dropmissing(t2) == dropmissing(t) @test isequal( dropmissing(t2, :y), table([0.5, 0.7], [NA, 5], [6, 7], names=[:t, :x, :y], chunks=2) ) @test isequal( dropmissing(t2, (:t, :x)), table([.1,.7], [2,5], [NA,7], names=[:t,:x,:y], chunks=2) ) @test isequal(convertmissing(t, DataValue), t2) @test isequal(convertmissing(t2, Missing), t) @test typeof(column(dropmissing(t, :x), :x)) <: Dagger.DArray{Int64,1} t = table(["a", "b", "c"], [0.01, 0.05, 0.07], [2, 1, 0], names=[:n, :t, :x], chunks=2) @test filter((p->p.x / p.t < 100), t) == table(String["b", "c"], [0.05, 0.07], [1, 0], names=Symbol[:n, :t, :x]) x = ndsparse((n = ["a", "b", "c"], t = [0.01, 0.05, 0.07]), [2, 1, 0], chunks=2) @test filter((y->y < 2), x) == ndsparse((n = String["b", "c"], t = [0.05, 0.07]), [1, 0]) @test filter(iseven, t, select=:x) == table(String["a", "c"], [0.01, 0.07], [2, 0], names=Symbol[:n, :t, :x]) @test filter((p->p.x / p.t < 100), t, select=(:x, :t)) == table(String["b", "c"], [0.05, 0.07], [1, 0], names=Symbol[:n, :t, :x]) @test filter((p->p[2] / p[1] < 100), x, select=(:t, 3)) == ndsparse((n = String["b", "c"], t = [0.05, 0.07]), [1, 0]) @test filter((:x => iseven, :t => (a->a > 0.01)), t) == table(String["c"], [0.07], [0], names=Symbol[:n, :t, :x]) @test filter((3 => iseven, :t => (a->a > 0.01)), x) == ndsparse((n = String["c"], t = [0.07]), [0]) a = table([1,3,5], [2,2,2], names = [:x, :y], chunks = 2) @test summarize((mean, std), a) == (x_mean = 3.0, y_mean = 2.0, x_std = 2.0, y_std = 0.0) @test summarize((mean, std), a, select = :x) == (mean = 3.0, std = 2.0) @test summarize((m = mean, s = std), a) == (x_m = 3.0, y_m = 2.0, x_s = 2.0, y_s = 0.0) b = table(["a","a","b","b"], [1,3,5,7], [2,2,2,2], names = [:x, :y, :z], pkey = :x, chunks = 2) @test summarize(mean, b) == table(["a","b"], [2.0,6.0], [2.0,2.0], names = [:x, :y, :z], pkey = :x) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1143
import JuliaDB: tuplesetindex @testset "Utilities" begin @testset "tuplesetindex" begin @test tuplesetindex((1,2,3), 4, 2) == (1,4,3) @test tuplesetindex((x=1,y=2,z=3), 4, 2) == (x=1,y=4,z=3) @test tuplesetindex((x=1,y=2,z=3), 4, :y) == (x=1,y=4,z=3) end end import JuliaDB: Interval, hasoverlap @testset "Interval" begin @testset "hasoverlap" begin @test hasoverlap(Interval(0,2), Interval(1,2)) @test !(hasoverlap(Interval(2,1), Interval(1,2))) @test hasoverlap(Interval(0,2), Interval(0,2)) @test hasoverlap(Interval(0,2), Interval(-1,2)) @test hasoverlap(Interval(0,2), Interval(2,3)) @test !hasoverlap(Interval(0,2), Interval(4,5)) end @testset "in" begin @test 1 in Interval(0, 2) @test !(1 in Interval(2, 1)) @test !(3 in Interval(0, 2)) @test !(-1 in Interval(0, 2)) end end @testset "vcat PooledArray Vector{Union{T,Missing}}" begin a = PooledArray(["x"]) b = Vector{Union{String,Missing}}(["y"]) c = vcat(a, b) @test eltype(c) == Union{String,Missing} @test c == ["x", "y"] end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
414
@testset "WeakRefStrings" begin # fix #198, #199 db = table(WeakRefStrings.StringVector(["A", "B", "A", "B"]), Dagger.distribute(ones(4), 2), names = [:x, :y]) z = groupreduce(+, db, :x, select = :y) @test fieldtype(typeof(z).parameters[1], 1) == String @test fieldtype(typeof(z).parameters[2], 1) == String @test fieldtype(typeof(z.chunks[1].domain.second).parameters[1], 1) == String end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
code
1398
# This file is a part of Julia. License is MIT: https://julialang.org/license # This includes a few helper variables and functions that provide information about the # test environment (command line flags, current module, etc). # This file can be included multiple times in the same module if necessary, # which can happen with unisolated test runs. if !isdefined(@__MODULE__, :testenv_defined) const testenv_defined = true if haskey(ENV, "JULIA_TEST_EXEFLAGS") const test_exeflags = `$(Base.shell_split(ENV["JULIA_TEST_EXEFLAGS"]))` else inline_flag = Base.JLOptions().can_inline == 1 ? `` : `--inline=no` cov_flag = `` if Base.JLOptions().code_coverage == 1 cov_flag = `--code-coverage=user` elseif Base.JLOptions().code_coverage == 2 cov_flag = `--code-coverage=all` end const test_exeflags = `$cov_flag $inline_flag --check-bounds=yes --startup-file=no --depwarn=error` end if haskey(ENV, "JULIA_TEST_EXENAME") const test_exename = `$(Base.shell_split(ENV["JULIA_TEST_EXENAME"]))` elseif haskey(ENV, "JRUN_NAME") const test_exename = "/opt/julia-0.6/bin/julia" else const test_exename = `$(joinpath(Sys.BINDIR, Base.julia_exename()))` end addprocs_with_testenv(X; kwargs...) = addprocs(X; exename=test_exename, exeflags=test_exeflags, kwargs...) end
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
1375
## v0.7.0 - **(breaking)** `groupby` and `groupreduce` now select all but the grouped columns (as opposed to all columns) (#120) - **(feature)** `usekey=true` keyword argument to `groupby` will cause the grouping function to be called with two arguments: the grouping key, and the selected subset of records. (#120) - **(breaking)** leftjoin and outerjoin, operations don't speculatively create `DataValueArray` anymore. It will be created if there are some keys which do not have a corresponding match in the other table. (#121) - **(feature)** `Not`, `Join`, `Between` and `Function` selectors have been added. ## v0.8.0 - **(breaking)** Uses new redisigned version of OnlineStats - **(breaking)** Does not wrap OnlineStats in Series wrapper. (IndexedTables.jl#149) this means `m = reduce(Mean(), t, select=:x)` will return a `Mean` object rather than a `Series(Mean())` object. Also `value(m) == 0.45` for example, rather than `value(m) == (0.45,)` - **(feature)** - `view` works with logical indexes now (IndexedTables#134) ## v0.9.0 - **(breaking)** Missing values represented as `Union{T,Missing}` rather than `DataValue`. ## v0.10.0 - **(breaking)** Support for both `Missing` and `DataValue` representations of missing data. - Defaults to `Missing`. functions that can create missing values have been given a `missingtype = Missing` keyword argument.
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
1509
<p align="center"><a href="http://juliadb.org" target="_blank"><img width="128" src="https://user-images.githubusercontent.com/25916/36773410-843e61b0-1c7f-11e8-818b-3edb08da8f41.png" alt="JuliaDB logo"></a></p> <p align="center"> <a href="https://juliadata.github.io/JuliaDB.jl/latest/" target="_blank"><img src="https://img.shields.io/badge/docs-latest-blue.svg" alt="Latest documentation"></a> <a href="https://travis-ci.org/JuliaData/JuliaDB.jl" target="_blank"><img src="https://camo.githubusercontent.com/bd3887b7ff22081a1ab567075dc99f23a082cb94/68747470733a2f2f7472617669732d63692e6f72672f4a756c6961436f6d707574696e672f4a756c696144422e6a6c2e7376673f6272616e63683d6d6173746572" alt="Travis CI"></a> <a href="https://codecov.io/gh/JuliaData/JuliaDB.jl" target="_blank"><img src="https://codecov.io/gh/JuliaData/JuliaDB.jl/branch/master/graph/badge.svg" alt="Code Coverage"></a> </p> ### JuliaDB is a package for working with large persistent data sets We recognized the need for an all-Julia, end-to-end tool that can - Load multi-dimensional datasets quickly and incrementally. - Index the data and perform filter, aggregate, sort and join operations. - Save results and load them efficiently later. - Use Julia's built-in parallelism to fully utilize any machine or cluster. We built JuliaDB to fill this void. ### Get Started Introduce yourself to JuliaDB's features at [juliadb.org](https://juliadb.org) or jump into the documentation [here](https://juliadata.github.io/JuliaDB.jl/latest/)!
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
73
# API ```@index ``` ```@autodocs Modules = [JuliaDB, IndexedTables] ```
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
4658
```@setup basics using JuliaDB ``` # Basics JuliaDB offers two main data structures as well as distributed counterparts. This allows you to easily scale up an analysis, as operations that work on non-distributed tables either work out of the box or are easy to transition for distributed tables. Here is a high level overview of tables in JuliaDB: - Tables store data in **columns**. - Tables are typed. - Changing a table in some way therefore requires returning a **new** table (underlying data is not copied). - JuliaDB has few mutating operations because a new table is necessary in most cases. ### Data for examples: ```@example basics x = 1:10 y = vcat(fill('a', 4), fill('b', 6)) z = randn(10); ``` ## [`IndexedTable`](@ref) An [`IndexedTable`](@ref) is wrapper around a (named) tuple of Vectors, but it behaves like a Vector of (named) tuples. You can choose to sort the table by any number of primary keys (in this case columns `:x` and `:y`). An `IndexedTable` is created with data in Julia via the [`table`](@ref) function or with data on disk via the [`loadtable`](@ref) function. ```@repl basics t = table((x=x, y=y, z=z); pkey = [:x, :y]) t[1] t[end] ``` ## [`NDSparse`](@ref) An [`NDSparse`](@ref) has a similar underlying structure to [`IndexedTable`](@ref), but it behaves like a sparse array with arbitrary indices. The keys of an `NDSparse` are sorted, much like the primary keys of an `IndexedTable`. An `NDSparse` is created with data in Julia via the [`ndsparse`](@ref) function or with data on disk via the [`loadndsparse`](@ref) function. ```@repl basics nd = ndsparse((x=x, y=y), (z=z,)) nd[1, 'a'] nd[10, 'j'].z nd[1, :] ``` ## Selectors JuliaDB has a variety of ways to select columns. These selection methods get used across many JuliaDB's functions: [`select`](@ref), [`reduce`](@ref), [`groupreduce`](@ref), [`groupby`](@ref), [`join`](@ref), [`transform`](@ref), [`reindex`](@ref), and more. To demonstrate selection, we'll use the [`select`](@ref) function. A selection can be any of the following types: 1. `Integer` -- returns the column at this position. 2. `Symbol` -- returns the column with this name. 3. `Pair{Selection => Function}` -- selects and maps a function over the selection, returns the result. 4. `AbstractArray` -- returns the array itself. This must be the same length as the table. 5. `Tuple` of `Selection` -- returns a table containing a column for every selector in the tuple. 6. `Regex` -- returns the columns with names that match the regular expression. 7. `Type` -- returns columns with elements of the given type. 8. `Not(Selection)` -- returns columns that are not included in the selection. 9. `Between(first, last)` -- returns columns between `first` and `last`. 10. `Keys()` -- return the primary key columns. ```@example basics t = table(1:10, randn(10), rand(Bool, 10); names = [:x, :y, :z]) ``` #### select the :x vector ```@repl basics select(t, 1) select(t, :x) ``` #### map a function to the :y vector ```@repl basics select(t, 2 => abs) select(t, :y => x -> x > 0 ? x : -x) ``` #### select the table of :x and :z ```@repl basics select(t, (:x, :z)) select(t, r"(x|z)") ``` #### map a function to the table of :x and :y ```@repl basics select(t, (:x, :y) => row -> row[1] + row[2]) select(t, (1, :y) => row -> row.x + row.y) ``` #### select columns that are subtypes of Integer ```@repl basics select(t, Integer) ``` #### select columns that are not subtypes of Integer ```@repl basics select(t, Not(Integer)) ``` ## Loading and Saving ```@setup loadsave using Pkg Pkg.add("RDatasets") ``` ### Loading Data From CSV Loading a CSV file (or multiple files) into one of JuliaDB's tabular data structures is accomplished via the [`loadtable`](@ref) and [`loadndsparse`](@ref) functions. ```@example loadsave using JuliaDB, DelimitedFiles x = rand(10, 2) writedlm("temp.csv", x, ',') t = loadtable("temp.csv") ``` !!! note `loadtable` and `loadndsparse` use `Missing` to represent missing values. To load a CSV that instead uses `DataValue`, see [CSVFiles.jl](https://github.com/queryverse/CSVFiles.jl). For more information on missing value representations, see [Missing Values](@ref). ### Converting From Other Data Structures ```@example loadsave using JuliaDB, RDatasets df = dataset("datasets", "iris") # load data as DataFrame table(df) # Convert DataFrame to IndexedTable ``` ### Save Table into Binary Format A table can be saved to disk (for fast, efficient reloading) via the [`save`](@ref) function. ### Load Table from Binary Format Tables that have been `save`-ed can be loaded efficiently via [`load`](@ref).
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
1626
```@raw html <center> <img src="https://user-images.githubusercontent.com/25916/36773410-843e61b0-1c7f-11e8-818b-3edb08da8f41.png" width=200> </center> ``` # Overview **JuliaDB is a package for working with persistent data sets.** We recognized the need for an all-Julia, end-to-end tool that can 1. Load multi-dimensional datasets quickly and incrementally. 2. Index the data and perform filter, aggregate, sort and join operations. 3. Save results and load them efficiently later. 4. Readily use Julia's built-in [parallelism](https://docs.julialang.org/en/v1/manual/parallel-computing/) to fully utilize any machine or cluster. We built JuliaDB to fill this void. JuliaDB provides distributed table and array datastructures with convenient functions to load data from CSV. JuliaDB is Julia all the way down. This means queries can be composed with Julia code that may use a vast ecosystem of packages. ## Quickstart ```julia using Pkg Pkg.add("JuliaDB") using JuliaDB # Create a table where the first column is the "primary key" t = table(rand(Bool, 10), rand(10), pkey=1) ``` ## Parallelism The parallel/distributed features of JuliaDB are available by either: 1. Starting Julia with `N` workers: `julia -p N` 2. Calling `addprocs(N)` before `using JuliaDB` !!! note Multiple processes may not be beneficial for datasets with less than a few million rows. ## Additional Resources - [#juliadb Channel in the JuliaLang Slack](https://julialang.slack.com/messages/C86LDBEBD/) - [JuliaLang Discourse](https://discourse.julialang.org) - [Issue Tracker](https://github.com/JuliaComputing/JuliaDB.jl/issues)
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
373
```@setup join using JuliaDB ``` # Joins ## Table Joins Table joins are accomplished through the [`join`](@ref) function. ## Appending Tables with the Same Columns The [`merge`](@ref) function will combine tables while maintaining the sorting of the primary key(s). ```@repl join t1 = table(1:5, rand(5); pkey=1) t2 = table(6:10, rand(5); pkey=1) merge(t1, t2) ```
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
881
```@setup dv using JuliaDB, Pkg Pkg.add("DataValues") ``` # Missing Values Julia has several different ways of representing missing data. If a column of data may contain missing values, JuliaDB supports both missing value representations of `Union{T, Missing}` and `DataValue{T}`. While `Union{T, Missing}` is the default representation, functions that generate missing values ([`join`](@ref)) have a `missingtype = Missing` keyword argument that can be set to `DataValue`. - The [`convertmissing`](@ref) function is used to switch the representation of missing values. ```@repl dv using DataValues convertmissing(table([1, NA]), Missing) convertmissing(table([1, missing]), DataValue) ``` - The [`dropmissing`](@ref) function will remove rows that contain `Missing` or missing `DataValue`s. ```@repl dv dropmissing(table([1, NA])) dropmissing(table([1, missing])) ```
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
5604
# Feature Extraction Machine learning models are composed of mathematical operations on matrices of numbers. However, data in the real world is often in tabular form containing more than just numbers. Hence, the first step in applying machine learning is to turn such tabular non-numeric data into a matrix of numbers. Such matrices are called "feature matrices". JuliaDB contains an `ML` module which has helper functions to extract feature matrices. In this document, we will turn the [titanic dataset from Kaggle](https://www.kaggle.com/c/titanic) into numeric form and apply a machine learning model on it. ```@example titanic using JuliaDB download("https://raw.githubusercontent.com/agconti/"* "kaggle-titanic/master/data/train.csv", "train.csv") train_table = loadtable("train.csv", escapechar='"') select(train_table, Not((:Name, :Ticket, :Cabin))) # hide ``` ## ML.schema Schema is a programmatic description of the data in each column. It is a dictionary which maps each column (by name) to its schema type (mainly `Continuous`, and `Categorical`). - `ML.Continuous`: data is drawn from the real number line (e.g. Age) - `ML.Categorical`: data is drawn from a fixed set of values (e.g. Sex) `ML.schema(train_table)` will go through the data and infer the types and distribution of data. Let's try it without any arguments on the titanic dataset: ```@example titanic using JuliaDB: ML ML.schema(train_table) ``` Here is how the schema was inferred: - Numeric fields were inferred to be `Continuous`, their mean and standard deviations were computed. This will later be used in normalizing the column in the feature matrix using the formula `((value - mean) / standard_deviation)`. This will bring all columns to the same "scale" making the training more effective. - Some string columns are inferred to be `Categorical` (e.g. Sex, Embarked) - this means that the column is a [PooledArray](https://github.com/JuliaComputing/PooledArrays.jl), and is drawn from a small "pool" of values. For example Sex is either "male" or "female"; Embarked is one of "Q", "S", "C" or "" - Some string columns (e.g. Name) get the schema `nothing` -- such columns usually contain unique identifying data, so are not useful in machine learning. - The age column was inferred as `Maybe{Continuous}` -- this means that there are missing values in the column. The mean and standard deviation computed are for the non-missing values. You may note that `Survived` column contains only 1s and 0s to denote whether a passenger survived the disaster or not. However, our schema inferred the column to be `Continuous`. To not be overly presumptive `ML.schema` will assume all numeric columns are continuous by default. We can give the hint that the Survived column is categorical by passing the `hints` arguemnt as a dictionary of column name to schema type. Further, we will also treat `Pclass` (passenger class) as categorical and suppress `Parch` and `SibSp` fields. ```@example titanic sch = ML.schema(train_table, hints=Dict( :Pclass => ML.Categorical, :Survived => ML.Categorical, :Parch => nothing, :SibSp => nothing, :Fare => nothing, ) ) ``` ## Split schema into input and output In a machine learning model, a subset of fields act as the input to the model, and one or more fields act as the output (predicted variables). For example, in the titanic dataset, you may want to predict whether a person will survive or not. So "Survived" field will be the output column. Using the `ML.splitschema` function, you can split the schema into input and output schema. ```@example titanic input_sch, output_sch = ML.splitschema(sch, :Survived) ``` ## Extracting feature matrix Once the schema has been created, you can extract the feature matrix according to the given schema using `ML.featuremat`: ```@example titanic train_input = ML.featuremat(input_sch, train_table) ``` ```@example titanic train_output = ML.featuremat(output_sch, train_table) ``` ## Learning Let us create a simple neural network to learn whether a passenger will survive or not using the [Flux](https://fluxml.github.io/) framework. `ML.width(schema)` will give the number of features in the `schema` we will use this in specifying the model size: ```@example titanic using Flux model = Chain( Dense(ML.width(input_sch), 32, relu), Dense(32, ML.width(output_sch)), softmax) loss(x, y) = Flux.mse(model(x), y) opt = Flux.ADAM(Flux.params(model)) evalcb = Flux.throttle(() -> @show(loss(first(data)...)), 2); ``` Train the data in 10 iterations ```@example titanic data = [(train_input, train_output)] for i = 1:10 Flux.train!(loss, data, opt, cb = evalcb) end ``` `data` given to the model is a vector of batches of input-output matrices. In this case we are training with just 1 batch. ## Prediction Now let's load some testing data to use the model we learned to predict survival. ```@example titanic download("https://raw.githubusercontent.com/agconti/"* "kaggle-titanic/master/data/test.csv", "test.csv") test_table = loadtable("test.csv", escapechar='"') test_input = ML.featuremat(input_sch, test_table) ; ``` Run the model on one observation: ```@example titanic model(test_input[:, 1]) ``` The output has two numbers which add up to 1: the probability of not surviving vs that of surviving. It seems, according to our model, that this person is unlikely to survive on the titanic. You can also run the model on all observations by simply passing the whole feature matrix to `model`. ```@example titanic model(test_input) ```
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
1806
```@setup onlinestats using OnlineStats ``` # OnlineStats Integration [OnlineStats](https://github.com/joshday/OnlineStats.jl) is a package for calculating statistics and models with online (one observation at a time) parallelizable algorithms. This integrates tightly with JuliaDB's distributed data structures to calculate statistics on large datasets. The full documentation for OnlineStats [is available here](https://joshday.github.io/OnlineStats.jl/latest/). ## Basics OnlineStats' objects can be updated with more data and also merged together. The image below demonstrates what goes on under the hood in JuliaDB to compute a statistic `s` in parallel. ```@raw html <img src="https://user-images.githubusercontent.com/8075494/32748459-519986e8-c88a-11e7-89b3-80dedf7f261b.png" width=400> ``` OnlineStats integration is available via the [`reduce`](@ref) and [`groupreduce`](@ref) functions. An OnlineStat acts differently from a normal reducer: - Normal reducer `f`: `val = f(val, row)` - OnlineStat reducer `o`: `fit!(o, row)` ```@repl onlinestats using JuliaDB, OnlineStats t = table(1:100, rand(Bool, 100), randn(100)); reduce(Mean(), t; select = 3) grp = groupreduce(Mean(), t, 2; select=3) select(grp, (1, 2 => value)) ``` !!! note The `OnlineStats.value` function extracts the value of the statistic. E.g. `value(Mean())`. ### Calculating Statistics on Multiple Columns. The `OnlineStats.Group` type is used for calculating statistics on multiple data streams. A `Group` that computes the same `OnlineStat` can be created through integer multiplication: ```@example onlinestats reduce(3Mean(), t) ``` Alternatively, a `Group` can be created by providing a collection of `OnlineStat`s. ```@example onlinestats reduce(Group(Extrema(Int), CountMap(Bool), Mean()), t) ```
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
465
```@setup ops using JuliaDB, OnlineStats ``` # Table Operations ```@contents Pages = ["operations.md"] Depth = 2 ``` ## Column Operations - [`transform`](@ref) - [`insertcols`](@ref) - [`insertcolsafter`](@ref) - [`insertcolsbefore`](@ref) - [`rename`](@ref) ## [`filter`](@ref) ## [`flatten`](@ref) ## [`groupby`](@ref) ## [`reduce`](@ref) and [`groupreduce`](@ref) ## [`transform`](@ref) ## [`stack`](@ref) and [`unstack`](@ref) ## [`summarize`](@ref)
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
2843
# Out-of-core processing JuliaDB can load data that is too big to fit in memory (RAM) as well as run a subset of operations on big tables. In particular, [OnlineStats Integration](@ref) works with [`reduce`](@ref) and [`groupreduce`](@ref) for running statistical analyses that traditionally would not be possible! ## Processing Scheme - Data is loaded into a distributed dataset containing "chunks" that safely fit in memory. - Data is processed `Distributed.nworkers()` chunks at a time (each worker processes a chunk and then moves onto the next chunk). - Note: This means `Distributed.nworkers() * avg_size_of_chunk` will be in RAM simultaneously. - Output data is accumulated in-memory. The limitations of this processing scheme is that only certain operations work out-of-core: - [`loadtable`](@ref) - [`loadndsparse`](@ref) - [`load`](@ref) - [`reduce`](@ref) - [`groupreduce`](@ref) - [`join`](@ref) (see [Join to Big Table](@ref)) ## Loading Data The [`loadtable`](@ref) and [`loadndsparse`](@ref) functions accept the keyword arguments `output` and `chunks` that specify the directory to save the data into and the number of chunks to be generated from the input files, respectively. Here's an example: ``` loadtable(glob("*.csv"), output="bin", chunks=100; kwargs...) ``` Suppose there are 800 `.csv` files in the current directory. They will be read into 100 chunks (8 files per chunk). Each worker process will load 8 files into memory, save the chunk into a single binary file in the `bin` directory, and move onto the next 8 files. !!! note `Distributed.nworkers() * (number_of_csvs / chunks)` needs to fit in memory simultaneously. Once data has been loaded in this way, you can reload the dataset (extremely fast) via ``` tbl = load("bin") ``` ## [`reduce`](@ref) and [`groupreduce`](@ref) Operations `reduce` is the simplest out-of-core operation since it works pair-wise. You can also perform group-by operations with a reducer via `groupreduce`. ```@example outofcore using JuliaDB, OnlineStats x = rand(Bool, 100) y = x + randn(100) t = table((x=x, y=y)) groupreduce(+, t, :x; select = :y) ``` You can replace the reducer with any `OnlineStat` object (see [OnlineStats Integration](@ref) for more details): ```@example outofcore groupreduce(Sum(), t, :x; select = :y) ``` ## Join to Big Table [`join`](@ref) operations have limited out-of-core support. Specifically, ``` join(bigtable, smalltable; broadcast=:right, how=:inner|:left|:anti) ``` Here `bigtable` can be larger than memory, while `Distributed.nworkers()` copies of `smalltable` must fit in memory. Note that only `:inner`, `:left`, and `:anti` joins are supported (no `:outer` joins). In this operation, `smalltable` is first broadcast to all processors and `bigtable` is joined `Distributed.nworkers()` chunks at a time.
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
3006
# Plotting ```@setup plot using Pkg, Random Pkg.add("StatsPlots") Pkg.add("GR") using StatsPlots ENV["GKSwstype"] = "100" gr() Random.seed!(1234) # set random seed to get consistent plots ``` ## StatsPlots JuliaDB has all access to all the power and flexibility of [Plots](https://github.com/JuliaPlots/Plots.jl) via [StatsPlots](https://github.com/JuliaPlots/StatsPlots.jl) and the `@df` macro. ```@example plot using JuliaDB, StatsPlots t = table((x = randn(100), y = randn(100))) @df t scatter(:x, :y) savefig("statplot.png"); nothing # hide ``` ![](statplot.png) ## Plotting Big Data For large datasets, it isn't feasible to render every data point. The OnlineStats package provides a number of [data structures for big data visualization](http://joshday.github.io/OnlineStats.jl/latest/visualizations.html) that can be created via the [`reduce`](@ref) and [`groupreduce`](@ref) functions. - Example data: ```@example plot using JuliaDB, Plots, OnlineStats x = randn(10^6) y = x + randn(10^6) z = x .> 1 z2 = (x .+ y) .> 0 t = table((x=x, y=y, z=z, z2=z2)) ``` ### Mosaic Plots A [mosaic plot](https://en.wikipedia.org/wiki/Mosaic_plot) visualizes the bivariate distribution of two categorical variables. ```@example plot o = reduce(Mosaic(Bool, Bool), t; select = (3, 4)) plot(o) png("mosaic.png"); nothing # hide ``` ![](mosaic.png) ### Histograms ```@example plot grp = groupreduce(Hist(-5:.5:5), t, :z, select = :x) plot(plot.(select(grp, 2))...; link=:all) png("hist.png"); nothing # hide ``` ![](hist.png) ```@example plot grp = groupreduce(KHist(20), t, :z, select = :x) plot(plot.(select(grp, 2))...; link = :all) png("hist2.png"); nothing # hide ``` ![](hist2.png) ### Partition and IndexedPartition - `Partition(stat, n)` summarizes a univariate data stream. - The `stat` is fitted over `n` approximately equal-sized pieces. - `IndexedPartition(T, stat, n)` summarizes a bivariate data stream. - The `stat` is fitted over `n` pieces covering the domain of another variable of type `T`. ```@example plot o = reduce(Partition(KHist(10), 50), t; select=:y) plot(o) png("partition.png"); nothing # hide ``` ![](partition.png) ```@example plot o = reduce(IndexedPartition(Float64, KHist(10), 50), t; select=(:x, :y)) plot(o) png("partition2.png"); nothing # hide ``` ![](partition2.png) ### GroupBy ```@example plot o = reduce(GroupBy{Bool}(KHist(20)), t; select = (:z, :x)) plot(o) png("groupby.png"); nothing # hide ``` ![](groupby.png) ### Convenience function for Partition and IndexedPartition You can also use the [`partitionplot`](@ref) function, a slightly less verbose way of plotting `Partition` and `IndexedPartition` objects. ```@example plot # x by itself partitionplot(t, :x, stat = Extrema()) savefig("partitionplot1.png"); nothing # hide ``` ![](partitionplot1.png) ```@example plot # y by x, grouped by z partitionplot(t, :x, :y, stat = Extrema(), by = :z) savefig("partitionplot2.png"); nothing # hide ``` ![](partitionplot2.png)
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "MIT" ]
0.13.1
97f24d428f00f0e8c662d2aa52a389f3fcc08897
docs
21226
# Tutorial ## Introduction This is a port of a well known [tutorial](https://rpubs.com/justmarkham/dplyr-tutorial) for the [JuliaDB](http://juliadb.org/latest/) package. This tutorial is available as a Jupyter notebook [here](https://github.com/piever/JuliaDBTutorial/blob/master/hflights.ipynb). ## Getting the data The flights dataset for the tutorial is [here](https://raw.githubusercontent.com/piever/JuliaDBTutorial/master/hflights.csv). Alternatively, run the following in Julia: ```julia download("https://raw.githubusercontent.com/piever/JuliaDBTutorial/master/hflights.csv") ``` ## Loading the data Loading a csv file is straightforward with JuliaDB: ```julia using JuliaDB flights = loadtable("hflights.csv") ``` Of course, replace the path with the location of the dataset you have just downloaded. ## Filtering the data In order to select only rows matching certain criteria, use the `filter` function: ```julia filter(i -> (i.Month == 1) && (i.DayofMonth == 1), flights) ``` To test if one of two conditions is verified: ```julia filter(i -> (i.UniqueCarrier == "AA") || (i.UniqueCarrier == "UA"), flights) # in this case, you can simply test whether the `UniqueCarrier` is in a given list: filter(i -> i.UniqueCarrier in ["AA", "UA"], flights) ``` ## Select: pick columns by name You can use the `select` function to select a subset of columns: ```julia select(flights, (:DepTime, :ArrTime, :FlightNum)) ``` Table with 227496 rows, 3 columns: DepTime ArrTime FlightNum ─────────────────────────── 1400 1500 428 1401 1501 428 1352 1502 428 1403 1513 428 1405 1507 428 1359 1503 428 1359 1509 428 1355 1454 428 1443 1554 428 1443 1553 428 1429 1539 428 1419 1515 428 ⋮ 1939 2119 124 556 745 280 1026 1208 782 1611 1746 1050 758 1051 201 1307 1600 471 1818 2111 1191 2047 2334 1674 912 1031 127 656 812 621 1600 1713 1597 Let's select all columns between `:Year` and `:Month` as well as all columns containing "Taxi" or "Delay" in their name. `Between` selects columns between two specified extremes, passing a function filters column names by that function and `All` takes the union of all selectors (or all columns, if no selector is specified). ```julia select(flights, All(Between(:Year, :DayofMonth), i -> occursin("Taxi", string(i)), i -> occursin("Delay", string(i)))) ``` Table with 227496 rows, 7 columns: Year Month DayofMonth TaxiIn TaxiOut ArrDelay DepDelay ──────────────────────────────────────────────────────────── 2011 1 1 7 13 -10 0 2011 1 2 6 9 -9 1 2011 1 3 5 17 -8 -8 2011 1 4 9 22 3 3 2011 1 5 9 9 -3 5 2011 1 6 6 13 -7 -1 2011 1 7 12 15 -1 -1 2011 1 8 7 12 -16 -5 2011 1 9 8 22 44 43 2011 1 10 6 19 43 43 2011 1 11 8 20 29 29 2011 1 12 4 11 5 19 ⋮ 2011 12 6 4 15 14 39 2011 12 6 13 9 -10 -4 2011 12 6 4 12 -12 1 2011 12 6 3 9 -9 16 2011 12 6 3 10 -4 -2 2011 12 6 5 10 0 7 2011 12 6 5 11 -9 8 2011 12 6 4 9 4 7 2011 12 6 4 14 -4 -3 2011 12 6 3 9 -13 -4 2011 12 6 3 11 -12 0 The same could be achieved more concisely using regular expressions: ```julia select(flights, All(Between(:Year, :DayofMonth), r"Taxi|Delay")) ``` ## Applying several operations If one wants to apply several operations one after the other, there are two main approaches: - nesting - piping Let's assume we want to select `UniqueCarrier` and `DepDelay` columns and filter for delays over 60 minutes. Since the `DepDelay` column has missing data, we also need to filter out `missing` values via `!ismissing`. The nesting approach would be: ```julia filter(i -> !ismissing(i.DepDelay > 60), select(flights, (:UniqueCarrier, :DepDelay))) ``` Table with 224591 rows, 2 columns: UniqueCarrier DepDelay ─────────────────────── "AA" 0 "AA" 1 "AA" -8 "AA" 3 "AA" 5 "AA" -1 "AA" -1 "AA" -5 "AA" 43 "AA" 43 ⋮ "WN" 1 "WN" 16 "WN" -2 "WN" 7 "WN" 8 "WN" 7 "WN" -3 "WN" -4 "WN" 0 For piping, we'll use the excellent [Lazy](https://github.com/MikeInnes/Lazy.jl) package. ```julia import Lazy Lazy.@as x flights begin select(x, (:UniqueCarrier, :DepDelay)) filter(i -> !ismissing(i.DepDelay > 60), x) end ``` Table with 224591 rows, 2 columns: UniqueCarrier DepDelay ─────────────────────── "AA" 0 "AA" 1 "AA" -8 "AA" 3 "AA" 5 "AA" -1 "AA" -1 "AA" -5 "AA" 43 "AA" 43 ⋮ "WN" 1 "WN" 16 "WN" -2 "WN" 7 "WN" 8 "WN" 7 "WN" -3 "WN" -4 "WN" 0 where the variable `x` denotes our data at each stage. At the beginning it is `flights`, then it only has the two relevant columns and, at the last step, it is filtered. ## Reorder rows Select `UniqueCarrier` and `DepDelay` columns and sort by `DepDelay`: ```julia sort(flights, :DepDelay, select = (:UniqueCarrier, :DepDelay)) ``` Table with 227496 rows, 2 columns: UniqueCarrier DepDelay ─────────────────────── "OO" -33 "MQ" -23 "XE" -19 "XE" -19 "CO" -18 "EV" -18 "XE" -17 "CO" -17 "XE" -17 "MQ" -17 "XE" -17 "DL" -17 ⋮ "US" missing "US" missing "US" missing "WN" missing "WN" missing "WN" missing "WN" missing "WN" missing "WN" missing "WN" missing "WN" missing or, in reverse order: ```julia sort(flights, :DepDelay, select = (:UniqueCarrier, :DepDelay), rev = true) ``` ## Apply a function row by row To apply a function row by row, use `map`: the first argument is the anonymous function, the second is the dataset. ```julia speed = map(i -> i.Distance / i.AirTime * 60, flights) ``` 227496-element Array{Union{Missing, Float64},1}: 336.0 298.6666666666667 280.0 344.61538461538464 305.45454545454544 298.6666666666667 312.55813953488376 336.0 327.8048780487805 298.6666666666667 320.0 ⋮ 473.7931034482758 479.30232558139534 496.6265060240964 468.59999999999997 478.1632653061224 483.0927835051546 498.5106382978723 445.57377049180326 424.6875 460.6779661016949 ## Add new variables Use the `transform` function to add a column to an existing dataset: ```julia transform(flights, :Speed => speed) ``` If you need to add the new column to the existing dataset: ```julia flights = transform(flights, :Speed => speed) ``` ## Reduce variables to values To get the average delay, we first filter away datapoints where `ArrDelay` is missing, then group by `:Dest`, select `:ArrDelay` and compute the mean: ```julia using Statistics groupby(mean ∘ skipmissing, flights, :Dest, select = :ArrDelay) ``` Table with 116 rows, 2 columns: Dest avg_delay ──────────────── "ABQ" 7.22626 "AEX" 5.83944 "AGS" 4.0 "AMA" 6.8401 "ANC" 26.0806 "ASE" 6.79464 "ATL" 8.23325 "AUS" 7.44872 "AVL" 9.97399 "BFL" -13.1988 "BHM" 8.69583 "BKG" -16.2336 ⋮ "SJU" 11.5464 "SLC" 1.10485 "SMF" 4.66271 "SNA" 0.35801 "STL" 7.45488 "TPA" 4.88038 "TUL" 6.35171 "TUS" 7.80168 "TYS" 11.3659 "VPS" 12.4572 "XNA" 6.89628 ## Performance tip If you'll group often by the same variable, you can sort your data by that variable at once to optimize future computations. ```julia sortedflights = reindex(flights, :Dest) ``` Table with 227496 rows, 22 columns: Columns: # colname type ──────────────────────────────────────────────────── 1 Dest String 2 Year Int64 3 Month Int64 4 DayofMonth Int64 5 DayOfWeek Int64 6 DepTime DataValues.DataValue{Int64} 7 ArrTime DataValues.DataValue{Int64} 8 UniqueCarrier String 9 FlightNum Int64 10 TailNum String 11 ActualElapsedTime DataValues.DataValue{Int64} 12 AirTime DataValues.DataValue{Int64} 13 ArrDelay DataValues.DataValue{Int64} 14 DepDelay DataValues.DataValue{Int64} 15 Origin String 16 Distance Int64 17 TaxiIn DataValues.DataValue{Int64} 18 TaxiOut DataValues.DataValue{Int64} 19 Cancelled Int64 20 CancellationCode String 21 Diverted Int64 22 Speed DataValues.DataValue{Float64} ```julia using BenchmarkTools println("Presorted timing:") @benchmark groupby(mean ∘ skipmissing, sortedflights, select = :ArrDelay) ``` Presorted timing: BenchmarkTools.Trial: memory estimate: 31.23 MiB allocs estimate: 1588558 -------------- minimum time: 39.565 ms (8.03% GC) median time: 44.401 ms (9.83% GC) mean time: 44.990 ms (10.36% GC) maximum time: 57.016 ms (15.96% GC) -------------- samples: 112 evals/sample: 1 ```julia println("Non presorted timing:") @benchmark groupby(mean ∘ skipmissing, flights, select = :ArrDelay) ``` Non presorted timing: BenchmarkTools.Trial: memory estimate: 1.81 KiB allocs estimate: 30 -------------- minimum time: 195.095 μs (0.00% GC) median time: 212.309 μs (0.00% GC) mean time: 230.878 μs (0.20% GC) maximum time: 4.859 ms (95.04% GC) -------------- samples: 10000 evals/sample: 1 Using `summarize`, we can summarize several columns at the same time: ```julia summarize(mean ∘ skipmissing, flights, :Dest, select = (:Cancelled, :Diverted)) # For each carrier, calculate the minimum and maximum arrival and departure delays: cols = Tuple(findall(i -> occursin("Delay", string(i)), colnames(flights))) summarize((min = minimum∘skipmissing, max = maximum∘skipmissing), flights, :UniqueCarrier, select = cols) ``` Table with 15 rows, 5 columns: UniqueCarrier ArrDelay_min DepDelay_min ArrDelay_max DepDelay_max ───────────────────────────────────────────────────────────────────── "AA" -39 -15 978 970 "AS" -43 -15 183 172 "B6" -44 -14 335 310 "CO" -55 -18 957 981 "DL" -32 -17 701 730 "EV" -40 -18 469 479 "F9" -24 -15 277 275 "FL" -30 -14 500 507 "MQ" -38 -23 918 931 "OO" -57 -33 380 360 "UA" -47 -11 861 869 "US" -42 -17 433 425 "WN" -44 -10 499 548 "XE" -70 -19 634 628 "YV" -32 -11 72 54 For each day of the year, count the total number of flights and sort in descending order: ```julia Lazy.@as x flights begin groupby(length, x, :DayofMonth) sort(x, :length, rev = true) end ``` Table with 31 rows, 2 columns: DayofMonth length ────────────────── 28 7777 27 7717 21 7698 14 7694 7 7621 18 7613 6 7606 20 7599 11 7578 13 7546 10 7541 17 7537 ⋮ 25 7406 16 7389 8 7366 12 7301 4 7297 19 7295 24 7234 5 7223 30 6728 29 6697 31 4339 For each destination, count the total number of flights and the number of distinct planes that flew there ```julia groupby((flight_count = length, plane_count = length∘union), flights, :Dest, select = :TailNum) ``` Table with 116 rows, 3 columns: Dest flight_count plane_count ──────────────────────────────── "ABQ" 2812 716 "AEX" 724 215 "AGS" 1 1 "AMA" 1297 158 "ANC" 125 38 "ASE" 125 60 "ATL" 7886 983 "AUS" 5022 1015 "AVL" 350 142 "BFL" 504 70 "BHM" 2736 616 "BKG" 110 63 ⋮ "SJU" 391 115 "SLC" 2033 368 "SMF" 1014 184 "SNA" 1661 67 "STL" 2509 788 "TPA" 3085 697 "TUL" 2924 771 "TUS" 1565 226 "TYS" 1210 227 "VPS" 880 224 "XNA" 1172 177 ## Window functions In the previous section, we always applied functions that reduced a table or vector to a single value. Window functions instead take a vector and return a vector of the same length, and can also be used to manipulate data. For example we can rank, within each `UniqueCarrier`, how much delay a given flight had and figure out the day and month with the two greatest delays: ```julia using StatsBase fc = dropmissing(flights, :DepDelay) gfc = groupby(fc, :UniqueCarrier, select = (:Month, :DayofMonth, :DepDelay), flatten = true) do dd rks = ordinalrank(column(dd, :DepDelay), rev = true) sort(dd[rks .<= 2], by = i -> i.DepDelay, rev = true) end ``` Table with 30 rows, 4 columns: UniqueCarrier Month DayofMonth DepDelay ────────────────────────────────────────── "AA" 12 12 970 "AA" 11 19 677 "AS" 2 28 172 "AS" 7 6 138 "B6" 10 29 310 "B6" 8 19 283 "CO" 8 1 981 "CO" 1 20 780 "DL" 10 25 730 "DL" 4 5 497 "EV" 6 25 479 "EV" 1 5 465 ⋮ "OO" 4 4 343 "UA" 6 21 869 "UA" 9 18 588 "US" 4 19 425 "US" 8 26 277 "WN" 4 8 548 "WN" 9 29 503 "XE" 12 29 628 "XE" 12 29 511 "YV" 4 22 54 "YV" 4 30 46 Though in this case, it would have been simpler to use Julia partial sorting: ```julia groupby(fc, :UniqueCarrier, select = (:Month, :DayofMonth, :DepDelay), flatten = true) do dd partialsort(dd, 1:2, by = i -> i.DepDelay, rev = true) end ``` Table with 30 rows, 4 columns: UniqueCarrier Month DayofMonth DepDelay ────────────────────────────────────────── "AA" 12 12 970 "AA" 11 19 677 "AS" 2 28 172 "AS" 7 6 138 "B6" 10 29 310 "B6" 8 19 283 "CO" 8 1 981 "CO" 1 20 780 "DL" 10 25 730 "DL" 4 5 497 "EV" 6 25 479 "EV" 1 5 465 ⋮ "OO" 4 4 343 "UA" 6 21 869 "UA" 9 18 588 "US" 4 19 425 "US" 8 26 277 "WN" 4 8 548 "WN" 9 29 503 "XE" 12 29 628 "XE" 12 29 511 "YV" 4 22 54 "YV" 4 30 46 For each month, calculate the number of flights and the change from the previous month ```julia using ShiftedArrays y = groupby(length, flights, :Month) lengths = columns(y, :length) transform(y, :change => lengths .- lag(lengths)) ``` Table with 12 rows, 3 columns: Month length change ───────────────────── 1 18910 missing 2 17128 -1782 3 19470 2342 4 18593 -877 5 19172 579 6 19600 428 7 20548 948 8 20176 -372 9 18065 -2111 10 18696 631 11 18021 -675 12 19117 1096 ## Visualizing your data The [StatsPlots](https://github.com/JuliaPlots/StatsPlots.jl) and [GroupedErrors](https://github.com/piever/GroupedErrors.jl) package as well as native plotting recipes from JuliaDB using [OnlineStats](https://github.com/joshday/OnlineStats.jl) make a rich set of visualizations possible with an intuitive syntax. Use the `@df` macro to be able to refer to columns simply by their name. You can work with these symobls as if they are regular vectors. Here for example, we split data according to whether the distance is smaller or bigger than `1000`. ```julia using StatsPlots gr(fmt = :png) # choose the fast GR backend and set format to png: svg would probably crash with so many points @df flights scatter(:DepDelay, :ArrDelay, group = :Distance .> 1000, layout = 2, legend = :topleft) ``` ![scatterflights](https://user-images.githubusercontent.com/6333339/40072129-b96c2b7a-586a-11e8-8f5d-4151dbc94345.png) ## Online statistics For large datasets, summary statistics can be computed using efficient online algorithms implemnted in OnlineStats. Here we will use an online algorithm to compute the `mean` traveled distance split across month of the year. ```julia using OnlineStats grpred = groupreduce(Mean(), flights, :Month; select = :Distance) ``` Table with 12 rows, 2 columns: Month Mean ──────────────────────────────────── 1 Mean: n=18910 | value=760.804 2 Mean: n=17128 | value=763.909 3 Mean: n=19470 | value=782.788 4 Mean: n=18593 | value=783.845 5 Mean: n=19172 | value=789.66 6 Mean: n=19600 | value=797.869 7 Mean: n=20548 | value=798.52 8 Mean: n=20176 | value=793.727 9 Mean: n=18065 | value=790.444 10 Mean: n=18696 | value=788.256 11 Mean: n=18021 | value=790.691 12 Mean: n=19117 | value=809.024 Extract the values of the OnlineStat objects with the `value` function. ```julia select(grpred, (:Month, :Mean => value)) ``` Table with 12 rows, 2 columns: Month Mean ────────────── 1 760.804 2 763.909 3 782.788 4 783.845 5 789.66 6 797.869 7 798.52 8 793.727 9 790.444 10 788.256 11 790.691 12 809.024 ## Interfacing with online datasets JuliaDB can also smoothly interface online datasets using packages from the [JuliaDatabases](https://github.com/JuliaDatabases) organization. Here's how it would work with a MySQL dataset: ```julia using MySQL, JuliaDB ``` ```julia conn = MySQL.connect(host::String, user::String, passwd::String; db::String = "") # edit as needed for your dataset MySQL.query(conn, "SELECT Name, Salary FROM Employee;") |> table # execute the query and collect as a table MySQL.disconnect(conn) ```
JuliaDB
https://github.com/JuliaData/JuliaDB.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
201
using Documenter, SemanticAST makedocs(sitename="SemanticAST", pages = [ "index.md", "Public interface" => "interface.md", ]) deploydocs( repo = "github.com/BenChung/SemanticAST.jl.git" )
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
385
module SemanticAST using MLStyle using MLStyle.AbstractPatterns using MLStyle.AbstractPatterns.BasicPatterns import JuliaSyntax: @K_str, @KSet_str using JuliaSyntax const SN = JuliaSyntax.SyntaxNode const SH = JuliaSyntax.SyntaxHead include("util.jl") include("ast_defns.jl") include("mlstyle_helpers.jl") include("analyzer.jl") export expand_forms, expand_toplevel, ExpandCtx end
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
52661
"The error reporting mode to use" abstract type ErrorReporting end "Create an ASTException when an issue is encountered and continue with the fallback." struct ExceptionErrorReporting <: ErrorReporting end "Do nothing when an issue is encountered and continue with the fallback." struct SilentErrorReporting <: ErrorReporting end """ The abstract type for macro expansion contexts. There are two macro extension points in the analyzer: `resolve_toplevel_macro(ast::SyntaxNode, ::MacroContext, ::Val{Symbol}, args::Vector{SyntaxNode}, ctx::ExpandCtx)::ToplevelStmts` and `resolve_macro(ast, ::MacroContext, ::Val{Symbol}, args, ctx)::Expression`. Both share the same signature: * `ast`: The SyntaxNode root of the macro invocation. * `MacroContext`: The context with which to resolve macros in. Implement a new `MacroContext` by implementing `resolve_toplevel_macro` and `resolve_macro` that accept it; the provided one is `DefaultMacroContext`. * `Val{Symbol}`: The macro's name (in `Val` form). * `args`: The SyntaxNodes that represent the arguments to the macro. * `ctx`: The expansion context inside which the analysis is being done. They differ in that `resolve_toplevel_macro` returns a `TopLevelStmts` (a statement that can only exist at the top level), while `resolve_macro` returns an `Expression`. An example of how to write a macro analyzer can be seen in the default implementation for `@inline` and `@noinline`: ``` resolve_macro(ast, ::DefaultMacroContext, ::Union{Val{Symbol("@inline")}, Val{Symbol("@noinline")}, Val{Symbol("@inbounds")}}, args, ctx) = expand_forms(args[1], ctx) ``` From the perspective of the default analyzer `@inline` and `@noinline` are no-ops, so analysis continues by simply calling back into `expand_forms` on the first argument. """ abstract type MacroContext end """ The default macro analysis context. Currently implements top-level support for: * @doc * @inline, @noinline * @assume_effects, @constprop Expression-level support is provided for: * @doc * @inline, @noinline * @eval * @generated * @assume_effects """ struct DefaultMacroContext <: MacroContext end """ ExpandCtx(is_toplevel::Bool=false, is_loop::Bool= false; macro_context=DefaultMacroContext(), error_context=ExceptionErrorReporting()) The context in which to perform expansion from SyntaxNodes to ASTNodes. * `is_toplevel`: is the analyzed expression at the top level or not? * `is_loop`: is the expression in a loop or not (used for determining if `break` or `continue` are valid)? * `macro_context`: The context with which to expand macros. See the discussion in readme. * `error_context`: The error reporting context. By default, two are provided ([ExceptionErrorReporting](@ref) and [SilentErrorReporting](@ref)), with exceptions being the default. """ struct ExpandCtx{ER <: ErrorReporting, MC <: MacroContext} is_toplevel::Bool is_loop::Bool macro_context::MC error_context::ER ExpandCtx(is_toplevel::Bool=false, is_loop::Bool=false; macro_context::MC=DefaultMacroContext(), error_context::ER=ExceptionErrorReporting()) where {ER, MC} = new{ER, MC}(is_toplevel, is_loop, macro_context, error_context) ExpandCtx(base::ExpandCtx{ER, MC}; is_toplevel::Union{Bool, Nothing}=nothing, is_loop::Union{Bool, Nothing}=nothing) where {ER, MC}= new{ER, MC}( isnothing(is_toplevel) ? false : is_toplevel, isnothing(is_loop) ? base.is_loop : is_loop, base.macro_context, base.error_context) end handle_error(context::ExpandCtx, node::JuliaSyntax.SyntaxNode, reporting::ExceptionErrorReporting, message::String, continuation::Union{Function, Nothing}) = throw(ASTException(node, message)) handle_error(context::ExpandCtx, node::JuliaSyntax.SyntaxNode, reporting::SilentErrorReporting, message::String, continuation::Union{Function, Nothing}) = if !isnothing(continuation) continuation() else nothing end isdecl(ast) = @match ast begin SN(SH(K"::", _), _) => true _ => false end isassignment(ast) = @match ast begin SN(SH(K"=", _), _) => true _ => false end iskwarg(ast) = @match ast begin SN(SH(K"=", _), _) => true _ => false end identifier_name(ast) = @match ast begin SN(SH(K"Identifier", _), _) => ast _ => nothing end eventually_call = @λ begin SN(SH(K"call", _), _) => true SN(SH(K"where", _), [name, _...]) => eventually_call(name) SN(SH(K"::", _), [name, _]) => eventually_call(name) _ => false end isdotop_named(ast) = let idname = identifier_name(ast); !isnothing(idname) && JuliaSyntax.is_dotted(JuliaSyntax.head(idname)) end check_dotop(ctx, ast) = if isdotop_named(ast) handle_error(ctx, ast, ctx.error_context, "Invalid function name", nothing) else @match ast begin SN(SH(K".", _), [rec, name]) => check_dotop(ctx, name) SN(SH(K"quote" || K"break", _), [body]) => check_dotop(ctx, body) _ => nothing end; ast end kindof(ex) = JuliaSyntax.kind(JuliaSyntax.head(ex)) childof = JuliaSyntax.child just_argslist(args) = kindof(args[1]) ∈ KSet"tuple block ..." || (kindof(args[1]) == K"where" && just_argslist(args[1])) function flatten_where_expr(ex, ctx) vars = Any[] if kindof(ex) != K"where" throw(ASTException(ex, "Invalid expression (internal error: flattening non-where)")) # using direct throw due to fatal error end while kindof(ex) == K"where" @match ex begin SN(SH(K"where", _), [body, SN(SH(K"braces", _), [current_vars...])]) => begin push!.((vars, ), current_vars) ex = body end SN(SH(K"where", _), [body, var]) => begin push!(vars, var) ex = body end _ => return handle_error(ctx, ex, ctx.error_context, "Invalid use of where", () -> (ex, vars)) end end return (ex, vars) end function analyze_typevar(ex, ctx) check_sym(s) = (kindof(s) == K"Identifier" ? Expr(s) : handle_error(ctx, s, ctx.error_context, "Invalid type variable (non-symbol)", () -> TyVar(gensym(), nothing, nothing, ex))) @match ex begin ex && GuardBy(isatom) => TyVar(check_sym(ex), nothing, nothing, ex) SN(SH(K"Identifier", _), _) => TyVar(check_sym(ex), nothing, nothing, ex) SN(SH(K"comparison", _), [a, SN(SH(K"<:", _), _), b, SN(SH(K"<:", _), _), c]) => TyVar(check_sym(b), expand_forms(c, ctx), expand_forms(a, ctx), ex) SN(SH(K"<:", _), [a, b]) => TyVar(check_sym(a), expand_forms(b, ctx), nothing, ex) SN(SH(K">:", _), [a, b]) => TyVar(check_sym(a), nothing, expand_forms(b, ctx), ex) _ => handle_error(ctx, ex, ctx.error_context, "invalid variable expression in \"where\"", () -> TyVar(gensym(), nothing, nothing, ex)) end end analyze_tuple_assignment(expr, ctx) = @match expr begin SN(SH(K"Identifier", _), _) && name => IdentifierAssignment(Expr(name), expr) SN(SH(K"::", _), [name, type]) => TypedAssignment(IdentifierAssignment(Expr(name)), expand_forms(type, ctx), expr) _ => handle_error(ctx, expr, ctx.error_context, "invalid assignment location", () -> IdentifierAssignment(gensym(), expr)) end unquote = @λ begin SN(SH(K"quote", _), [body]) => Expr(body) end analyze_lvalue(expr, ctx; is_for=false) = @match expr begin SN(SH(K"Identifier", _), _) && id => if Expr(id) ∈ [:ccall, :global] handle_error(ctx, expr, ctx.error_context, "invalid assignment location", () -> IdentifierAssignment(gensym(), expr)) else IdentifierAssignment(Expr(id), expr) end SN(SH(K"where", _), ()) => IdentifierAssignment(:where, expr) # why is this an empty tuple? I don't know! SN(SH(K".", _), [a,b]) => FieldAssignment(expand_forms(a, ctx), unquote(b), expr) SN(SH(K"tuple", _), [_, args..., SN(SH(K"parameters", _), _)]) => handle_error(ctx, expr, ctx.error_context, "invalid assignment location", () -> IdentifierAssignment(gensym(), expr)) SN(SH(K"tuple", _), [SN(SH(K"parameters", _), params)]) => NamedTupleAssignment(map(x -> analyze_tuple_assignment(x, ctx), params), expr) SN(SH(K"tuple", _), [args...]) => begin has_varargs = false assignment_args = LValue[] for arg in args @match arg begin SN(SH(K"...", _), body) => begin if has_varargs push!(assignment_args, handle_error(ctx, arg, ctx.error_context, "multiple \"...\" on lhs of assignment", () -> IdentifierAssignment(gensym(), expr))) end has_varargs = true push!(assignment_args, VarargAssignment(length(body) > 0 ? analyze_lvalue(body[1], ctx) : nothing, arg)) end arg => push!(assignment_args, analyze_lvalue(arg, ctx)) end end TupleAssignment(assignment_args, expr) end SN(SH(K"typed_hcat", _), _) => handle_error(ctx, expr, ctx.error_context, "invalid spacing in left side of indexed assignment", () -> IdentifierAssignment(gensym(), expr)) SN(SH(K"typed_vcat" || K"typed_ncat", _), _) => handle_error(ctx, expr, ctx.error_context, "unexpected \";\" in left side of indexed assignment", () -> IdentifierAssignment(gensym(), expr)) SN(SH(K"ref", _), [a, idxs...]) => RefAssignment(expand_forms(a, ctx), split_arguments(idxs, ctx)..., expr) SN(SH(K"::", _), [typ]) => handle_error(ctx, expr, ctx.error_context, "invalid assignment location", () -> IdentifierAssignment(gensym(), expr)) SN(SH(K"::", _), [call && GuardBy(eventually_call), T]) && funspec => FunctionAssignment(expand_function_name(funspec, ctx)..., expr) SN(SH(K"::", _), [x, T]) => TypedAssignment(analyze_lvalue(x, ctx), expand_forms(T, ctx), expr) SN(SH(K"vcat" || K"ncat", _), _) => handle_error(ctx, expr, ctx.error_context, "use \"(a, b) = ...\" to assign multiple values", () -> IdentifierAssignment(gensym(), expr)) SN(SH(K"call" || K"where", _), _) && name => FunctionAssignment(expand_function_name(name, ctx)..., expr) SN(SH(K"curly", _), [name, tyargs...]) => length(tyargs) == 0 ? handle_error(ctx, expr, ctx.error_context, "empty type parameter list", () -> analyze_lvalue(name, ctx)) : UnionAllAssignment(analyze_lvalue(name, ctx), analyze_typevar.(tyargs, (ctx, )), expr) SN(SH(K"outer", _), [SN(SH(K"Identifier", _), _) && id]) => if is_for OuterIdentifierAssignment(Expr(id), expr) else handle_error(ctx, expr, ctx.error_context, "no outer local variable declaration exists", () -> IdentifierAssignment(Expr(id), expr)) end _ => handle_error(ctx, expr, ctx.error_context, "invalid assignment location", () -> IdentifierAssignment(gensym(), expr)) end expr_contains_p(pred, expr, filter = x -> true) = filter(expr) && (pred(expr) || @match expr begin SN(SH(K"quote", _), _) => false SN(_, args) => any(expr_contains_p.(pred, args, filter)) e => throw("unhandled $e") end) isparam = @λ begin SN(SH(K"parameters", _), _) => true; _ => false end contains_destructuring = @λ begin SN(SH(K"::" || K"=", _), _) => true _ => false end is_return = @λ begin SN(SH(K"return", _), _) => true _ => false end contains_return(e) = expr_contains_p(is_return, e) check_recursive_assignment(expr) = if expr_contains_p(contains_destructuring, expr) false else true end analyze_argument(expr, is_kw, ctx) = @match (expr, is_kw) begin (SN(SH(K"tuple", _), _), false) => (FnArg(analyze_lvalue(expr, ctx), nothing, nothing, expr), false) (SN(SH(K"::", _), [binding, typ]), false) => check_recursive_assignment(binding) ? (FnArg(analyze_lvalue(binding, ctx), nothing, expand_forms(typ, ctx), expr), false) : (handle_error(ctx, expr, ctx.error_context, "invalid recursive destructuring syntax", () -> FnArg(IdentifierAssignment(gensym(), expr), nothing, expand_forms(typ, ctx), expr)), false) (SN(SH(K"::", _), [typ]), false) => (FnArg(nothing, nothing, expand_forms(typ, ctx), expr), false) (SN(SH(K"=", _), [head, default]), is_kw) => (let (base, _) = analyze_argument(head, false, ctx); FnArg(base.binding, expand_forms(default, ctx), base.type, expr) end, true) (SN(SH(K"...", _), [bound]), false) => (FnArg(VarargAssignment(analyze_lvalue(bound, ctx), expr), nothing, nothing, expr), false) (SN(SH(K"...", _), []), false) => (FnArg(VarargAssignment(nothing, expr), nothing, nothing, expr), false) (_, false) => (FnArg(analyze_lvalue(expr, ctx), nothing, nothing, expr), false) (_, true) => (handle_error(ctx, expr, ctx.error_context, "optional positional arguments must occur at end", () -> first(analyze_argument(expr, false, ctx))), true) (_, _) => (handle_error(ctx, expr, ctx.error_context, "invalid argument syntax", () -> FnArg(IdentifierAssignment(gensym(), expr), nothing, nothing, expr)), is_kw) end analyze_kwargs(expr, ctx) = @match expr begin SN(SH(K"parameters", _), _) => handle_error(ctx, expr, ctx.error_context, "more than one semicolon in argument list", () -> KwArg(gensym(), nothing, nothing, expr)) SN(SH(K"=", _), [SN(SH(K"::", _), [SN(SH(K"Identifier", _), ) && name, type]), body]) => begin KwArg(Expr(name), expand_forms(type, ctx), expand_forms(body, ctx), expr) end SN(SH(K"=", _), [SN(SH(K"Identifier", _), _) && name, body]) => KwArg(Expr(name), nothing, expand_forms(body, ctx), expr) SN(SH(K"...", _), [SN(SH(K"Identifier", _), _) && name]) => KwArg(Expr(name), nothing, nothing, expr, true) SN(SH(K"=", _), [SN(SH(K"::", _), [name, type]), body]) => handle_error(ctx, expr, ctx.error_context, "is not a valid function argument name", () -> KwArg(gensym(), expand_forms(type, ctx), expand_forms(body, ctx), expr)) SN(SH(K"=", _), [name, body]) => handle_error(ctx, expr, ctx.error_context, "is not a valid function argument name", () -> KwArg(Expr(name), nothing, expand_forms(body, ctx), expr)) SN(SH(K"...", _), [name]) => handle_error(ctx, expr, ctx.error_context, "is not a valid function argument name", () -> KwArg(gensym(), nothing, nothing, expr)) SN(SH(K"Identifier", _), _) && ident => KwArg(Expr(ident), nothing, nothing, expr) SN(SH(K"::", _), [SN(SH(K"Identifier", _), _) && ident, type]) => KwArg(Expr(ident), expand_forms(type, ctx), nothing, expr) other => handle_error(ctx, expr, ctx.error_context, "invalid keyword argument syntax", () -> KwArg(gensym(), nothing, nothing, expr)) end hasduplicates(array) = length(unique(array)) != length(array) unpack_fn_name(e, ctx) = @match e begin SN(SH(K".", _), [rec, SN(SH(K"quote", _), [field && SN(SH(K"Identifier", _), _)])]) => push!(unpack_fn_name(rec, ctx), Expr(field)) SN(SH(K"Identifier", _), _) && name => [Expr(name)] expr => handle_error(ctx, expr, ctx.error_context, "invalid function name", () -> [gensym()]) end parse_func_name(ctx, receiver, args, e) = TypeFuncName(expand_forms(receiver, ctx), [let param = extract_implicit_whereparam(arg, ctx); isnothing(param) ? expand_forms(arg, ctx) : param end for arg in args], e) resolve_function_name(e, ctx) = @match e begin SN(SH(K"Identifier", _), _) && name => ResolvedName([Expr(name)], e) # symbols are valid SN(SH(K".", _), _) && e => ResolvedName(unpack_fn_name(e, ctx), e) SN(SH(K"::", _), [name, type]) => DeclName(analyze_lvalue(name, ctx), expand_forms(type, ctx), e) SN(SH(K"::", _), [type]) => DeclName(nothing, expand_forms(type, ctx), e) SN(SH(K"curly", _), [receiver, args..., SN(SH(K"parameters", _), _)]) => handle_error(ctx, e, ctx.error_context, "unexpected semicolon", () -> parse_func_name(ctx, receiver, args, e)) SN(SH(K"curly", _), [receiver, args...]) => if any(iskwarg, args) handle_error(ctx, e, ctx.error_context, "unexpected semicolon", () -> parse_func_name(ctx, receiver, filter(a -> !iskwarg(a), args), e)) else parse_func_name(ctx, receiver, args, e) end SN(GuardBy(JuliaSyntax.is_operator) && GuardBy((!) ∘ JuliaSyntax.is_dotted), ()) && name => ResolvedName([Expr(name)], e) # so are non-dotted operators nothing => AnonFuncName(e) _ => handle_error(ctx, e, ctx.error_context, "invalid function name", () -> ResolvedName([gensym()], e)) end function analyze_call(call, name, args, raw_typevars, rett, ctx; is_macro=false) sparams = analyze_typevar.(raw_typevars, (ctx, )) # todo: nospecialize is_kw = false args_stmts = [ begin (result, is_kw) = analyze_argument(expr, is_kw, ctx) result end for expr in filter((!) ∘ isparam, args)] params = filter(isparam, args) kwargs_stmts = [] if length(params) == 1 kwargs_stmts = @match params[1] begin SN(SH(K"parameters", _), [params...]) => if !is_macro map(x -> analyze_kwargs(x, ctx), params) else map(x -> handle_error(ctx, x, ctx.error_context, "macros cannot accept keyword arguments", () -> analyze_kwargs(x, ctx)), params) end end elseif length(params) > 1 handle_error(ctx, call, ctx.error_context, "more than one semicolon in argument list", nothing) end if !isnothing(name) if is_macro @match name begin SN(SH(K"Identifier", _), _) => nothing _ => handle_error(ctx, call, ctx.error_context, "invalid macro definition", nothing) end end name = check_dotop(ctx, name) end varargs_indices = findall(arg -> arg.binding isa VarargAssignment, args_stmts) if !isempty(varargs_indices) && last(varargs_indices) != length(args_stmts) handle_error(ctx, call, ctx.error_context, "invalid \"...\" on non-final argument", nothing) end get_fnarg_name = @λ begin FnArg(IdentifierAssignment(name, _) || TypedAssignment(IdentifierAssignment(name, _), _, _,), _, _, _) => [name] expr => begin [] end end argnames = vcat(collect(Iterators.flatten(map(get_fnarg_name, args_stmts))), map(x -> x.name, kwargs_stmts)) staticnames = map(x -> x.name, sparams) if !isempty(argnames) && hasduplicates(argnames) handle_error(ctx, call, ctx.error_context, "function argument name not unique", nothing) elseif !isempty(staticnames) && hasduplicates(staticnames) handle_error(ctx, call, ctx.error_context, "function static parameter names not unique", nothing) elseif !isempty(argnames) && !isempty(staticnames) && (argnames ⊆ staticnames || staticnames ⊆ argnames) handle_error(ctx, call, ctx.error_context, "function argument and static parameter names must be distinct", nothing) end return resolve_function_name(name, ctx), args_stmts, kwargs_stmts, sparams, (isnothing(rett) ? nothing : expand_forms(rett, ctx)) end function destructure_function_head(name, ctx) (name, raw_typevars) = @match name begin SN(SH(K"::", _), [nexpr, SN(SH(K"where", _), _) && clause]) => begin return (nexpr, flatten_where_expr(clause, ctx)...) end SN(SH(K"where", _), _) => flatten_where_expr(name, ctx) _ => (name, []) end # this control flow is very cursed sorry rett, name = @match name begin SN(SH(K"::", _), [true_name, typ]) => (typ, true_name) _ => (nothing, name) # todo return a valid thingie end return name, rett, raw_typevars end function expand_function_name(name, ctx; is_macro = false) orig_expr = name name, rett, raw_typevars = destructure_function_head(name, ctx) return @match name begin SN(SH(K"call", _), [name, args...]) => analyze_call(orig_expr, name, args, raw_typevars, rett, ctx; is_macro = is_macro) SN(SH(K"tuple", _), [args...]) => analyze_call(orig_expr, nothing, args, raw_typevars, rett, ctx; is_macro=is_macro) SN(SH(K"Identifier", _), _) => (ResolvedName([Expr(name)], name), [], KwArg[], TyVar[], nothing) _ => (handle_error(ctx, orig_expr, ctx.error_context, "invalid assignment location name $name", () -> ResolvedName([gensym()], orig_expr)), [], KwArg[], TyVar[], nothing) end end function expand_anon_function(spec, ctx) orig_expr = spec spec, rett, raw_typevars = destructure_function_head(spec, ctx) return @match spec begin SN(SH(K"tuple", _), [args...]) => analyze_call(orig_expr, nothing, args, raw_typevars, rett, ctx) SN(SH(K"Identifier", _), _) && arg => analyze_call(orig_expr, nothing, [arg], raw_typevars, rett, ctx) _ => (handle_error(ctx, orig_expr, ctx.error_context, "invalid assignment location name $name", () -> ResolvedName([gensym()], orig_expr)), [], KwArg[], TyVar[], nothing) end end function analyze_let_eq(expr) return @match expr begin FunctionAssignment(ResolvedName([_], _), _, _, _, _, _) && fun => fun FunctionAssignment(name, a, b, c, d, e) && fun => handle_error(ctx, name.location.basenode, ctx.error_context, "invalid let syntax", () -> FunctionAssignment(ResolvedName(gensym, name.location.basenode), a, b, c, d, e)) TupleAssignment(_, _) && tup => tup IdentifierAssignment(_, _) && id => id TypedAssignment(_, _, _) && ty => ty _ => handle_error(ctx, expr.location.basenode, ctx.error_context, "invalid let syntax", () -> IdentifierAssignment(gensym(), expr.location.basenode)) end end analyze_let_binding(expr, ctx) = @match expr begin SN(SH(K"Identifier", _), _) && ident => Expr(ident) SN(SH(K"=", _), [a, b]) => (analyze_let_eq(analyze_lvalue(a, ctx))) => expand_forms(b, ctx) _ => begin handle_error(ctx, expr, ctx.error_context, "invalid let syntax", nothing); nothing end end function expand_macro_name(name, ctx) name, args_stmts, kwargs_stmts, sparams, rett = expand_function_name(name, ctx; is_macro = true) return name, args_stmts, sparams, rett end eventually_decl(expr) = @match expr begin SN(SH(K"Identifier", _), _) => true SN(SH(K"::" || K"const" || K"=", _), [name, _...]) => eventually_decl(name) _ => false end analyze_type_sig = @λ begin SN(SH(K"Identifier", _), _) && name => (name, [], nothing) SN(SH(K"curly", _), [SN(SH(K"Identifier", _), _) && name, params...]) => (name, params, nothing) SN(SH(K"<:", _), [SN(SH(K"Identifier", _), _) && name, super]) => (name, [], super) SN(SH(K"<:", _), [SN(SH(K"curly", _), [SN(SH(K"Identifier", _), _) && name, params...]), super]) => (name, params, super) _ && invalid => nothing end node_to_bool = @λ begin SN(SH(K"true",_), _) => true SN(SH(K"false",_), _) => false expr => throw(ASTException(expr, "boolean used in non-boolean context")) # left due to being a fatal internal error end unpack_attrs(expr, attrs, mutable, ctx) = @match (expr, mutable) begin (SN(SH(K"=", _), [lhs && GuardBy(eventually_decl), value]), _) => handle_error(ctx, expr, ctx.error_context, "operator = inside type definition is reserved", () -> StructField(gensym(), nothing, attrs, expr)) (SN(SH(K"::", _), [SN(SH(K"Identifier", _), _) && name, typ]), _) => StructField(Expr(name), expand_forms(typ, ctx), attrs, expr) (SN(SH(K"Identifier", _), _) && name, _) => StructField(Expr(name), nothing, attrs, expr) (SN(SH(K"const", _), [ex]), true) => unpack_attrs(ex, attrs | FIELD_CONST, mutable, ctx) (SN(SH(K"const", _), [ex]), false) => handle_error(ctx, expr, ctx.error_context, "invalid field attribute const for immutable struct", nothing) _ => throw("invalid field attribute") end quoted = @λ begin SN(SH(K"quote", _), _) => true _ => false end effect_free = @λ begin SN(SH(K"true" || K"false", _), _) => true SN(SH(K".", _), [SH(SN(K"Identifier", _), _), _]) => true # sym-dot? GuardBy(quoted) => true _ => false end is_string = @λ begin SN(SH(K"string" || K"String", _), _) => true _ => false end unzip(a) = map(x->getfield.(a, x), fieldnames(eltype(a))) decompose_decl(e) = @match e begin SN(SH(K"::", _), [name, typ]) => (name, typ) ex => (ex, nothing) end flatten_blocks(e) = @match e begin SN(SH(K"block", _), [contents...]) => vcat((flatten_blocks.(contents))...) expr => [expr] end function expand_struct_def(expr, mut, sig, fields, ctx) analyzed = analyze_type_sig(sig) if isnothing(analyzed) handle_error(ctx, expr, ctx.error_context, "invalid type signature", nothing) return StructDefStmt(gensym(), [], nothing, [], [], expr) else name, params, super = analyzed end bounds = analyze_typevar.(params, (ctx, )) params = getfield.(bounds, :name) fields = flatten_blocks(fields) fieldspecs = map(fld -> unpack_attrs(fld, FIELD_NONE, mut, ctx), filter(eventually_decl, fields)) defs = filter((!) ∘ eventually_decl, fields) defs = filter(d -> !(effect_free(d) || is_string(d)), defs) cstrs = expand_forms.(defs, (ctx, )) # need to eventually do some transformations here? return StructDefStmt(Expr(name), params, isnothing(super) ? nothing : expand_forms(super, ctx), fieldspecs, cstrs, expr) end function expand_abstract_def(expr, sig, ctx) analyzed = analyze_type_sig(sig) if isnothing(analyzed) handle_error(ctx, expr, ctx.error_context, "invalid type signature", nothing) return AbstractDefStmt(gensym(), [], nothing, expr) else name, params, super = analyzed end bounds = analyze_typevar.(params, (ctx, )) params = getfield.(bounds, :name) return AbstractDefStmt(Expr(name), params, isnothing(super) ? nothing : expand_forms(super, ctx), expr) end function expand_primitive_def(expr, sig, size, ctx) analyzed = analyze_type_sig(sig) if isnothing(analyzed) handle_error(ctx, expr, ctx.error_context, "invalid type signature", nothing) return PrimitiveDefStmt(gensym(), [], nothing, Literal(0, expr), expr) else name, params, super = analyzed end bounds = analyze_typevar.(params, (ctx, )) params = getfield.(bounds, :name) return PrimitiveDefStmt(Expr(name), params, isnothing(super) ? nothing : expand_forms(super, ctx), expand_forms(size, ctx), expr) end extract_implicit_whereparam(expr, ctx) = @match expr begin SN(SH(K"<:", _), [bound]) => TyVar(nothing, expand_forms(bound, ctx), nothing, expr) SN(SH(K">:", _), [bound]) => TyVar(nothing, nothing, expand_forms(bound, ctx), expr) _ => nothing end isatom(ast) = @match ast begin SH(K"Float" || K"Integer" || K"String" || K"Char" || K"true" || K"false", _) => true _ => false end ifnotfalse(ast, then) = @match ast begin SN(SH(K"false",_ ), _) => nothing _ => then(ast) end analyze_kw_param(expr, ctx) = @match expr begin SN(SH(K"parameters", _), [params...]) => handle_error(ctx, expr, ctx.error_context, "more than one semicolon in argument list", () -> KeywordArg(gensym(), nothing, expr)) SN(SH(K"=", _), [name && SN(SH(K"Identifier", _), _), value]) => KeywordArg(Expr(name), expand_forms(value, ctx), expr) SN(SH(K"Identifier", _), _) && name => KeywordArg(Expr(name), expand_forms(name, ctx), expr) SN(SH(K".", _), [_, SN(SH(K"quote", _), [field && SN(SH(K"Identifier", _), _)])]) => KeywordArg(Expr(field), expand_forms(expr, ctx), expr) SN(SH(K"...", _), [splat]) => SplatArg(expand_forms(splat, ctx), expr) _ => throw("inexhaustive $expr") end analyze_kw_call(params, ctx) = map(x -> analyze_kw_param(x, ctx), params) function split_arguments(args, ctx; down=expand_forms) pos_args = []; kw_args = [] has_parameters = false for arg in args @match arg begin SN(SH(K"parameters", _), [params...]) => if !has_parameters append!(kw_args, analyze_kw_call(params, ctx)) has_parameters = true else handle_error(ctx, arg, ctx.error_context, "more than one semicolon in argument list", nothing) end SN(SH(K"=", _), [SN(SH(K"Identifier", _), _) && name, value]) => push!(kw_args, KeywordArg(Expr(name), down(value, ctx), arg)) SN(SH(K"...", _), [arg]) => push!(pos_args, SplatArg(down(arg, ctx), arg)) expr => push!(pos_args, PositionalArg(down(expr, ctx), arg)) end end return pos_args, kw_args end function split_op_arguments(args, ctx; down=expand_forms) pos_args = []; kw_args = [] for arg in args push!(pos_args, PositionalArg(down(arg, ctx), arg)) end return pos_args, kw_args end expand_broadcast(e) = dot_to_fuse(e) convert_decltype = @λ begin K"const" => DECL_CONST K"local" => DECL_LOCAL K"global" => DECL_GLOBAL end expand_declaration(decltype, expr, ctx) = @match expr begin SN(SH(K"Identifier", _), _) => if decltype != DECL_CONST VarDecl(IdentifierAssignment(Expr(expr), expr), nothing, decltype, expr) else handle_error(ctx, expr, ctx.error_context, "expected assignment after \"const\"", () -> VarDecl(IdentifierAssignment(Expr(expr), expr), nothing, DECL_NONE, expr)) end SN(SH(K"::", _), _) => VarDecl(analyze_lvalue(expr, ctx), nothing, decltype, expr) SN(SH(GuardBy(JuliaSyntax.is_prec_assignment), _), [lhs, rhs]) => VarDecl(analyze_lvalue(lhs, ctx), expand_forms(rhs, ctx), decltype, expr) end expand_named_tuple_arg(expr, ctx) = @match expr begin SN(SH(K"=", _), [SN(SH(K"Identifier", _), _) && name, rhs]) => NamedValue(Expr(name), expand_forms(rhs, ctx), expr) SN(SH(K"=", _), [lhs, rhs]) => handle_error(ctx, expr, ctx.error_context, "invalid name", () -> NamedValue(gensym(), expand_forms(rhs, ctx), expr)) SN(SH(K"Identifier", _), _) && name => NamedValue(Expr(name), expand_forms(name, ctx), expr) SN(SH(K".", _), [rec, SN(SH(K"quote", _), [field && SN(SH(K"Identifier", _), _)])]) && ast => NamedValue(Expr(field), expand_forms(ast, ctx), expr) SN(SH(K"call", GuardBy(JuliaSyntax.is_infix_op_call)), [lhs, SN(SH(K"=>", _), _), rhs]) => ComputedNamedValue(expand_forms(lhs, ctx), expand_forms(rhs, ctx), expr) SN(SH(K"...", _), [splat]) => SplattedNamedValue(expand_forms(splat, ctx), expr) expr => begin handle_error(ctx, expr, ctx.error_context, "invalid named tuple argument", nothing); nothing end end function expand_named_tuple(args, ctx) tupleargs = [] for arg in args expanded = expand_named_tuple_arg(arg, ctx) if !isnothing(expanded) push!(tupleargs, expanded) end end return tupleargs end string_interpoland(expr, ctx) = @match expr begin SN(SH(K"String", _), _) && str => Expr(str) other => expand_forms(other, ctx) end expand_if_clause(expr, clauses, ctx) = @match clauses begin [cond, then, SN(SH(K"elseif", _), elsif)] => pushfirst!(expand_if_clause(expr, elsif, ctx), IfClause(expand_forms(cond, ctx), expand_forms(then, ctx), expr)) [cond, then, els] => [IfClause(expand_forms(cond, ctx), expand_forms(then, ctx), expr), IfClause(nothing, expand_forms(els, ctx), expr)] [cond, then] => [IfClause(expand_forms(cond, ctx), expand_forms(then, ctx), expr)] end expand_if(expr, params, ctx) = IfStmt(expand_if_clause(expr, params, ctx), expr) analyze_iterspec(expr, ctx) = @match expr begin SN(SH(K"=", _), [var, iter]) => analyze_lvalue(var, ctx; is_for=true) => expand_forms(iter, ctx) end is_update(kw) = kw ∈ KSet"+= -= *= /= //= \= ^= ÷= |= &= ⊻= <<= >>= >>>= %= $= ⩴ ≕" expand_hcat_arg(expr, ctx) = @match expr begin GuardBy(isassignment) => begin handle_error(ctx, expr, ctx.error_context, "misplaced assignment statement", nothing); nothing end GuardBy(isparam) => begin handle_error(ctx, expr, ctx.error_context, "unexpected semicolon in array expression", nothing); nothing end SN(SH(K"...", _), [body]) => Splat(expand_forms(body, ctx), expr) e => expand_forms(e, ctx) end expand_row(el, toplevel, ctx) = @match el begin GuardBy(isassignment) => begin handle_error(ctx, el, ctx.error_context, "misplaced assignment statement", nothing); nothing end GuardBy(isparam) => begin handle_error(ctx, el, ctx.error_context, "unexpected semicolon in array expression", nothing); nothing end SN(SH(K"row", _), elems) => toplevel ? Row(filter((!) ∘ isnothing, expand_row.(elems, false, (ctx, ))), el) : begin handle_error(ctx, el, ctx.error_context, "nested rows not supported", nothing); nothing end SN(SH(K"...", _), [body]) => Splat(expand_forms(body, ctx), el) e => expand_forms(e, ctx) end expand_nrow(expr, ctx) = @match expr begin GuardBy(isassignment) => begin handle_error(ctx, expr, ctx.error_context, "misplaced assignment statement", nothing); nothing end GuardBy(isparam) => begin handle_error(ctx, expr, ctx.error_context, "unexpected semicolon in array expression", nothing); nothing end SN(SH(K"nrow", flgs), elems) => NRow(JuliaSyntax.numeric_flags(flgs), filter((!) ∘ isnothing, expand_nrow.(elems, (ctx, ))), expr) SN(SH(K"...", _), body) => begin handle_error(ctx, expr, ctx.error_context, "Splatting ... in an hvncat with multiple dimensions is not supported", nothing); nothing end e => expand_forms(e, ctx) end expand_iterator(expr, ctx)::Iterspec = @match expr begin SN(SH(K"cartesian_iterator", _), iters) => Cartesian(expand_iterator.(iters, (ctx, )), expr) SN(SH(K"=", _), [lhs, rhs]) => IterEq(analyze_lvalue(lhs, ctx), expand_forms(rhs, ctx), expr) SN(SH(K"filter", _), [iters..., cond]) => Filter(expand_iterator.(iters, (ctx,)), expand_forms(cond, ctx), expr) end expand_generator(expr, ctx)::Expression = @match expr begin SN(SH(K"generator", _), [expr, iters...]) => Generator(expand_forms(expr, ctx), Iterspec[expand_iterator(iter, ctx) for iter in iters], expr) end expand_import_source(ctx, expr) = @match expr begin SN(SH(K"importpath", _), path) => expand_import_path(ctx,path) end expand_import_clause(ctx, expr; allow_relative=true) = @match expr begin SN(SH(K"importpath", _), path) => Dep(expand_import_path(ctx, path; allow_relative=allow_relative), expr) SN(SH(K"as", _), [SN(SH(K"importpath", _), path), SN(SH(K"Identifier", _), _) && alias]) => AliasDep(expand_import_path(ctx, path; allow_relative=allow_relative), Expr(alias), expr) end function expand_import_path(ctx, src_path; allow_relative=true) path = nothing for path_el in src_path path = @match (path_el, path) begin (SN(SH(K"Identifier" || K"MacroName", _), _) && id, nothing) => ImportId(Expr(id), path_el) (SN(SH(K"Identifier" || K"MacroName", _), _) && id, path) => ImportField(path, Expr(id), path_el) (SN(SH(K".", _), _), nothing) => allow_relative ? ImportRelative(1, path_el) : handle_error(ctx, path_el, ctx.error_context, "invalid path: \".\" in identifier path", () -> ImportRelative(1, path_el)) (SN(SH(K".", _), _), ImportRelative(lvl, _)) => allow_relative ? ImportRelative(lvl+1, path_el) : handle_error(ctx, path_el, ctx.error_context, "invalid path: \".\" in identifier path", () -> ImportRelative(lvl+1, path_el)) (SN(SH(K".", _), _), _) => handle_error(ctx, path_el, ctx.error_context, "invalid path: \".\" in identifier path", () -> ImportRelative(1, path_el)) (_, _) => handle_error(ctx, path_el, ctx.error_context, "invalid path", () -> ImportRelative(1, path_el)) end end return path end expand_tuple_arg(expr, ctx) = @match expr begin SN(SH(K"...", _), [ex]) => Splat(expand_forms(ex, ctx), expr) _ => expand_forms(expr, ctx) end expand_docstring(expand, args, ast, ctx) = @match args begin [docs, SN(SH(K"::", _), [SN(SH(K"call" || K"where", _), _) && fn, typ])] => let (name, args, kwargs, sparams, rett) = expand_function_name(fn,ctx); CallDocstring(expand_forms(docs, ctx), name, args, kwargs, sparams, expand_forms(typ, ctx), ast) end [docs, SN(SH(K"call" || K"where", _), _) && fn] => CallDocstring(expand_forms(docs, ctx), expand_function_name(fn, ctx)..., ast) [docs, inner_ast] => Docstring(expand_forms(docs, ctx), expand(inner_ast, ctx), ast) end resolve_toplevel_macro(ast, ::DefaultMacroContext, ::Val{Symbol("@doc")}, args, ctx) = MacroExpansionStmt(expand_docstring(expand_toplevel, args, ast, ctx), ast) resolve_toplevel_macro(ast, ::DefaultMacroContext, ::Union{Val{Symbol("@inline")}, Val{Symbol("@noinline")}}, args, ctx) = expand_toplevel(args[1], ctx) resolve_toplevel_macro(ast, ::DefaultMacroContext, ::Union{Val{Symbol("@assume_effects")}, Val{Symbol("@constprop")}}, args, ctx) = expand_toplevel(args[2], ctx) resolve_toplevel_macro(ast, ::DefaultMacroContext, ::Val{mc}, args, ctx) where mc = handle_error(ctx, ast, ctx.error_context, "Unrecognized macro $mc $(typeof(mc))", () -> MacroExpansionStmt(Literal(:unknown, ast), ast)) resolve_macro(ast, ::DefaultMacroContext, ::Val{Symbol("@doc")}, args, ctx) = MacroExpansion(expand_docstring(expand_forms, args, ast, ctx), ast) resolve_macro(ast, ::DefaultMacroContext, ::Union{Val{Symbol("@inline")}, Val{Symbol("@noinline")}, Val{Symbol("@inbounds")}}, args, ctx) = expand_forms(args[1], ctx) resolve_macro(ast, ::DefaultMacroContext, ::Val{Symbol("@eval")}, args, ctx) = Literal(:(), ast) resolve_macro(ast, ::DefaultMacroContext, ::Val{Symbol("@horner")}, args, ctx) = FunCall(Variable(:evalpoly, ast), PositionalArg.([expand_forms(args[1], ctx), TupleExpr(expand_forms.(args[2:end], (ctx, )), ast)], (ast, )), Vector{Union{KeywordArg, SplatArg}}[], ast) resolve_macro(ast, ::DefaultMacroContext, ::Val{Symbol("@generated")}, args, ctx) = Literal(true, ast) resolve_macro(ast, ::DefaultMacroContext, ::Val{Symbol("@assume_effects")}, args, ctx) = expand_forms(args[2], ctx) resolve_macro(ast, ::DefaultMacroContext, ::Val{mc}, args, ctx) where mc = handle_error(ctx, ast, ctx.error_context, "Unrecognized macro $mc", () -> MacroExpansion(Literal(:unknown, ast), ast)) next_ctx(head, ctx) = ExpandCtx(ctx) """ expand_toplevel(ast::JuliaSyntax.SyntaxNode)::ToplevelStmts expand_toplevel(ast::JuliaSyntax.SyntaxNode, ctx::ExpandCtx)::ToplevelStmts Takes a SyntaxNode representing an entire file and lowers it to a [ToplevelStmts](@ref). Toplevel vs. expression can be thought of generally as "where would it make sense for a `module` or `using` statement to exist?". As an example, the contents of a file are usually at the top level as is the arugment to an `eval` call. In constrast, a method body will not be at the top level as neither module nor using statements are valid inside of it. For most use cases this is the reccomended entry point. Use `expand_forms` if you need to expand a specific expression. """ expand_toplevel(ast::JuliaSyntax.SyntaxNode) = expand_toplevel(ast, ExpandCtx(true, false)) expand_toplevel(ast::JuliaSyntax.SyntaxNode, ctx::ExpandCtx) = @match ast begin SN(SH(K"using", _), [SN(SH(K":", _), [mod, terms...])]) => SourceUsingStmt(expand_import_source(ctx, mod), expand_import_clause.((ctx,), terms; allow_relative=false), ast) SN(SH(K"using", _), [terms...]) => UsingStmt(expand_import_source.((ctx,), terms), ast) SN(SH(K"import", _), [SN(SH(K":", _), [mod, terms...])]) => SourceImportStmt(expand_import_source(ctx, mod), expand_import_clause.((ctx,), terms; allow_relative=false), ast) SN(SH(K"import", _), [terms...]) => ImportStmt(expand_import_clause.((ctx,), terms), ast) SN(SH(K"export", _), syms) => ExportStmt(Expr.(syms), ast) SN(SH(K"module", flags), [name, SN(SH(K"block", _), stmts)]) => ModuleStmt(!JuliaSyntax.has_flags(flags, JuliaSyntax.BARE_MODULE_FLAG), Expr(name), expand_toplevel.(stmts, (ctx, )), ast) SN(SH(K"abstract", _), [sig]) => expand_abstract_def(ast, sig, ctx) SN(SH(K"struct", flags), [sig, fields]) => expand_struct_def(ast, JuliaSyntax.has_flags(flags, JuliaSyntax.MUTABLE_FLAG), sig, fields, ctx) SN(SH(K"primitive", _), [sig, size]) => expand_primitive_def(ast, sig, size, ctx) SN(SH(K"toplevel", _), exprs) => ToplevelStmt(expand_toplevel.(exprs, (ctx, )), ast) SN(SH(K"doc", _), [args...]) => resolve_toplevel_macro(ast, ctx.macro_context, Val{Symbol("@doc")}(), args, ctx) SN(SH(K"macrocall", _), [name, args...]) => resolve_toplevel_macro(ast, ctx.macro_context, Val{Symbol(name)}(), args, ctx) expr => ExprStmt(expand_forms(expr, JuliaSyntax.head(expr), JuliaSyntax.children(expr), ExpandCtx(ctx; is_toplevel = true)), ast) end expand_curly_internal(receiver, ctx, args, ast) = CallCurly(expand_forms(receiver, ctx), [let param = extract_implicit_whereparam(arg, ctx); isnothing(param) ? expand_forms(arg, ctx) : param end for arg in args], ast) expand_curly(receiver, ctx, args, ast) = any(iskwarg, args) ? handle_error(ctx, ast, ctx.error_context, "misplaced assignment statement", () -> expand_curly_internal(receiver, ctx, filter((!) ∘ isnothing, args), ast)) : expand_curly_internal(receiver, ctx, args, ast) expand_vect(ctx, ast, elems) = any(isassignment, elems) ? handle_error(ctx, ast, ctx.error_context, "misplaced assignment statement", () -> Vect(filter((!) ∘ isnothing, expand_hcat_arg.(filter((!) ∘ isnothing, elems), (ctx, ))), ast)) : Vect(filter((!) ∘ isnothing, expand_hcat_arg.(elems, (ctx, ))), ast) function expand_try_catch(ctx, block, clauses, ast) expanded_block = expand_forms(block, ctx) catch_var = nothing catch_body = nothing else_body = nothing finally_body = nothing for clause in clauses @match clause begin SN(SH(K"catch", _), [SN(SH(K"false", _), _), body]) => begin catch_body = expand_forms(body, ctx) end SN(SH(K"catch", _), [var, body]) => begin catch_var = Expr(var); catch_body = expand_forms(body, ctx) end SN(SH(K"else", _), [body]) => begin else_body = expand_forms(body, ctx) end SN(SH(K"finally", _), [body]) => begin finally_body = expand_forms(body, ctx) end end end TryCatch(expanded_block, catch_var, catch_body, else_body, finally_body, ast) end """ expand_forms(ast::JuliaSyntax.SyntaxNode, ctx::ExpandCtx) Expands an expression (such as a method body) from a SyntaxNode to an Expression with respect to a [ExpandCtx](@ref). See [expand_toplevel](@ref) for more discussion. """ expand_forms(ast::JuliaSyntax.SyntaxNode, ctx::ExpandCtx) = expand_forms(ast, JuliaSyntax.head(ast), JuliaSyntax.children(ast), next_ctx(JuliaSyntax.head(ast), ctx)) expand_forms(ast, head, children, ctx) = @match (head, children) begin (SH(K"Float" || K"Float32" || K"Integer" || K"String" || K"Char" || K"char" || K"true" || K"false" || K"HexInt" || K"OctInt" || K"BinInt", _), _) => Literal(Expr(ast), ast) (SH(K"quote",_), _) => Quote(ast, ast) # need to port bits of macroexpansion into this (SH(K"function", _), [name, body]) => FunctionDef(expand_function_name(name, ctx)..., expand_forms(body, ctx), ast) (SH(K"function", _), [name]) => FunctionDef(expand_function_name(name, ctx)..., nothing, ast) (SH(K"->", _), [name, body]) => FunctionDef(expand_anon_function(name, ctx)..., expand_forms(body, ctx), ast) (SH(K"let", _), [SN(SH(K"block", _), bindings), body]) => LetBinding(filter((!) ∘ isnothing, analyze_let_binding.(bindings, (ctx, ))), expand_forms(body, ctx), ast) (SH(K"let", _), [binding, body]) => LetBinding(filter((!) ∘ isnothing,[analyze_let_binding(binding, ctx)]), expand_forms(body, ctx), ast) (SH(K"macro", _), [SN(SH(K"call", _), _) && name, body]) => @match expand_macro_name(name, ctx) begin (ResolvedName(nm, _) && name, args_stmts, sparams, rett) => MacroDef(name, args_stmts, sparams, rett, expand_forms(body, ctx), ast) (nm, args_stmts, sparams, rett) => handle_error(ctx, nm.location.basenode, ctx.error_context, "Invalid macro name", () -> MacroDef(ResolvedName([gensym()], ast), args_stmts, sparams, rett, expand_forms(body, ctx), ast)) end (SH(K"macro", _), [SN(SH(K"Identifier", _), _) && name]) => MacroDef(expand_macro_name(name, ctx)..., nothing, ast) (SH(K"macro", _), _) => handle_error(ctx, ast, ctx.error_context, "invalid macro definition", () -> MacroDef(ResolvedName([gensym()], ast), nothing, ast)) (SH(K"try", _), [block, clauses...]) => expand_try_catch(ctx, block, clauses, ast) (SH(K"block", _), stmts) => Block(expand_forms.(stmts, (ctx, )), ast) (SH(K".", _), [op]) => Broadcast(expand_forms(op, ctx), ast) (SH(K".", _), [f, SN(SH(K"quote", _), [x && SN(SH(K"Identifier", _), _)])]) => GetProperty(expand_forms(f, ctx), Expr(x), ast) (SH(K".", _), [f, SN(SH(K"quote", _), [x]) && lit]) => GetProperty(expand_forms(f, ctx), Literal(Expr(x), lit), ast) (SH(K".", _), [f, SN(SH(K"tuple", _), args)]) => FunCall(Broadcast(expand_forms(f, ctx), ast), split_arguments(args, ctx)..., ast) (SH(K"comparison", _), [initial, args...]) => Comparison(expand_forms(initial, ctx), map((op, value) -> expand_forms(op, ctx) => expand_forms(value, ctx), args[1:2:end], args[2:2:end]), ast) (SH(K"&&", _ && GuardBy(JuliaSyntax.is_dotted)), [l, r]) => FunCall(Broadcast(Variable(:(&&), ast), ast), split_op_arguments([l, r], ctx)..., ast) (SH(K"||", _ && GuardBy(JuliaSyntax.is_dotted)), [l, r]) => FunCall(Broadcast(Variable(:(||), ast), ast), split_op_arguments([l, r], ctx)..., ast) (SH(K"=", _ && GuardBy(JuliaSyntax.is_dotted)), [lhs, rhs]) => BroadcastAssignment(expand_forms(lhs, ctx), expand_forms(rhs, ctx), ast) (SH(K"<:", _), [a,b]) => FunCall(Variable(:(<:), ast), split_arguments([a, b], ctx)..., ast) (SH(K">:", _), [a,b]) => FunCall(Variable(:(>:), ast), split_arguments([a, b], ctx)..., ast) (SH(K"-->", _), _) => FunCall(Variable(:(-->)), split_arguments([a, b], ctx)..., ast) (SH(K"where", _), [typ, SN(SH(K"braces", _), vars)]) => WhereType(expand_forms(typ, ctx), analyze_typevar.(vars, (ctx, )), ast) (SH(K"where", _), [typ, var]) => WhereType(expand_forms(typ, ctx), [analyze_typevar(var, ctx)], ast) (SH((K"const" || K"local" || K"global") && decltype, _), decls) => Declaration(expand_declaration.(convert_decltype(decltype), decls, (ctx, )), ast) (SH(K"=", _), [lhs, rhs]) => Assignment(analyze_lvalue(lhs, ctx), expand_forms(rhs, ctx), ast) (SH(K"ref", _), [arr, idxes..., SN(SH(K"parameters", _), _)]) => handle_error(ctx, ast, ctx.error_context, "unexpected semicolon in array expression", () -> GetIndex(expand_forms(arr, ctx), map(el->PositionalArg(expand_forms(el, ctx), el), idxes), ast)) (SH(K"ref", _), [arr, idxes...]) => GetIndex(expand_forms(arr, ctx), map(el->PositionalArg(expand_forms(el, ctx), el), idxes), ast) (SH(K"curly", _), [receiver, args..., SN(SH(K"parameters", _), _)]) => handle_error(ctx, ast, ctx.error_context, "unexpected semicolon", () -> expand_curly(receiver, ctx, args, ast)) (SH(K"curly", _), [receiver, args...]) => expand_curly(receiver, ctx, args, ast) (SH(K"call", GuardBy(JuliaSyntax.is_infix_op_call)), [arg1, f, arg2...]) && call => FunCall(expand_forms(f, ctx), split_op_arguments([arg1; arg2], ctx)..., ast) # todo Global method definition needs to be placed at the toplevel (SH(K"call", GuardBy(JuliaSyntax.is_postfix_op_call)), [arg, f]) => FunCall(expand_forms(f, ctx), split_op_arguments([arg], ctx)..., ast) (SH(K"call", GuardBy(JuliaSyntax.is_prefix_op_call)), [f, arg]) => FunCall(expand_forms(f, ctx), [PositionalArg(expand_forms(arg, ctx), ast)], [], ast) (SH(K"call", _), [f, args...]) => FunCall(expand_forms(f, ctx), split_arguments(args, ctx)..., ast) (SH(K"juxtapose", _), [a, b]) => FunCall(Variable(:(*), ast), [PositionalArg(expand_forms(a, ctx), ast), PositionalArg(expand_forms(b, ctx), ast)], [], ast) (SH(K"dotcall", GuardBy(JuliaSyntax.is_infix_op_call)), [arg1, f, arg2...]) => FunCall(Broadcast(expand_forms(f, ctx), ast), split_op_arguments([arg1; arg2], ctx)..., ast) (SH(K"dotcall", GuardBy(JuliaSyntax.is_postfix_op_call)), [arg, f]) => FunCall(Broadcast(expand_forms(f, ctx), ast), split_op_arguments([arg], ctx)..., ast) (SH(K"dotcall", GuardBy(JuliaSyntax.is_prefix_op_call)), [f, arg]) => FunCall(Broadcast(expand_forms(f, ctx), ast), [PositionalArg(expand_forms(arg, ctx), ast)], [], ast) (SH(K"dotcall", _), [f, args...]) => FunCall(Broadcast(expand_forms(f, ctx), ast), split_arguments(args, ctx)..., ast) (SH(K"do", _), [call, args, body]) => let (_, args, _, _, _) = expand_anon_function(args, ctx); DoStatement(expand_forms(call, ctx), args, expand_forms(body, ctx), ast) end (SH(K"tuple", _), [arg1, args..., SN(SH(K"parameters", _), _)]) => handle_error(ctx, ast, ctx.error_context, "unexpected semicolon in tuple", () -> TupleExpr(expand_tuple_arg.([arg1; args], (ctx, )), ast)) (SH(K"tuple", _), [SN(SH(K"parameters", _), params)]) => NamedTupleExpr(expand_named_tuple(params, ctx), ast) (SH(K"tuple", _), args) => any(isassignment, args) ? NamedTupleExpr(expand_named_tuple(args, ctx), ast) : TupleExpr(expand_tuple_arg.(args, (ctx, )), ast) (SH(K"braces", _), _) => handle_error(ctx, ast, ctx.error_context, "{ } vector syntax is discontinued", () -> Literal(nothing, ast)) (SH(K"bracescat", _), _) => handle_error(ctx, ast, ctx.error_context, "{ } matrix syntax is discontinued", () -> Literal(nothing, ast)) (SH(K"string", _), args) => StringInterpolate(string_interpoland.(args, (ctx, )), ast) (SH(K"::", _), [exp]) => handle_error(ctx, ast, ctx.error_context, "invalid \"::\" syntax", () -> expand_forms(exp, ctx)) (SH(K"::", _), [val, typ]) => TypeAssert(expand_forms(val, ctx), expand_forms(typ, ctx), ast) (SH(K"if", _), params) => expand_if(ast, params, ctx) (SH(K"while", _), [cond, body]) => let ictx = ExpandCtx(ctx; is_loop=true); WhileStmt(expand_forms(cond, ictx), expand_forms(body, ictx), ast) end (SH(K"break", _), _) => if ctx.is_loop BreakStmt(ast) else handle_error(ctx, ast, ctx.error_context, "break or continue outside loop", () -> Literal(nothing, ast)) end (SH(K"continue", _), _) => if ctx.is_loop ContinueStmt(ast) else handle_error(ctx, ast, ctx.error_context, "break or continue outside loop", () -> Literal(nothing, ast)) end (SH(K"return", _), []) => ReturnStmt(nothing, ast) (SH(K"return", _), [val]) => ReturnStmt(expand_forms(val, ctx), ast) (SH(K"for", _), [SN(SH(K"=", _), _) && iterspec, body]) => let ictx = ExpandCtx(ctx; is_loop=true); ForStmt(Pair{LValue, Expression}[analyze_iterspec(iterspec, ictx)], expand_forms(body, ictx), ast) end (SH(K"for", _), [SN(SH(K"cartesian_iterator", _), iterspecs), body]) => let ictx = ExpandCtx(ctx; is_loop=true); ForStmt(Pair{LValue, Expression}[analyze_iterspec(iterspec, ictx) for iterspec in iterspecs], expand_forms(body, ictx), ast) end (SH(K"&&", _), [l, r]) => FunCall(Variable(:(&&), ast), split_op_arguments([l, r], ctx)..., ast) (SH(K"||", _), [l, r]) => FunCall(Variable(:(||), ast), split_op_arguments([l, r], ctx)..., ast) (SH(upd && GuardBy(is_update), _ && GuardBy(JuliaSyntax.is_dotted)), [lhs, rhs]) => BroadcastUpdate(Symbol(upd), expand_forms(lhs,ctx), expand_forms(rhs, ctx), ast) (SH(upd && GuardBy(is_update), _), [lhs, rhs]) => Update(Symbol(upd), analyze_lvalue(lhs, ctx), expand_forms(rhs, ctx), ast) (SH(K"$", _), _) => handle_error(ctx, ast, ctx.error_context, "\"\$\" expression outside quote", () -> Literal(nothing, ast)) (SH(K"...", _), _) => handle_error(ctx, ast, ctx.error_context, "\"...\" expression outside call", () -> Literal(nothing, ast)) (SH(K"vect", _), [elems..., SN(SH(K"parameters", _), _)]) => handle_error(ctx, ast, ctx.error_context, "unexpected semicolon in array expression", () -> expand_vect(ctx, ast, elems)) (SH(K"vect", _), elems) => expand_vect(ctx, ast, elems) (SH(K"hcat", _), elems && GuardBy(x -> any(isassignment, x))) => handle_error(ctx, ast, ctx.error_context, "misplaced assignment statement", () -> HCat(nothing, filter((!) ∘ isnothing, expand_hcat_arg.(filter((!) ∘ isassignment, elems), (ctx, ))), ast)) (SH(K"hcat", _), elems) => HCat(nothing, filter((!) ∘ isnothing, expand_hcat_arg.(elems, (ctx, ))), ast) (SH(K"typed_hcat", _), elems && GuardBy(x -> any(isassignment, x))) => handle_error(ctx, ast, ctx.error_context, "misplaced assignment statement", () -> HCat(expand_forms(type, ctx), filter((!) ∘ isnothing, expand_hcat_arg.(filter((!) ∘ isassignment, elems), (ctx, ))), ast)) (SH(K"typed_hcat", _), [type, elems...]) => HCat(expand_forms(type, ctx), filter((!) ∘ isnothing, expand_hcat_arg.(elems, (ctx, ))), ast) (SH(K"vcat", _), params) => VCat(nothing, filter((!) ∘ isnothing, expand_row.(params, true, (ctx, ))), ast) (SH(K"typed_vcat", _), [type, params...]) => VCat(expand_forms(type, ctx), filter((!) ∘ isnothing, expand_row.(params, true, (ctx, ))), ast) (SH(K"ncat", flags), elems) => NCat(nothing, JuliaSyntax.numeric_flags(flags), filter((!) ∘ isnothing, expand_nrow.(elems, (ctx, ))), ast) (SH(K"typed_ncat", flags), [type, elems...]) => NCat(expand_forms(type, ctx), JuliaSyntax.numeric_flags(flags), filter((!) ∘ isnothing, expand_nrow.(elems, (ctx, ))), ast) (SH(K"generator", _), elems && GuardBy(x -> any(contains_return, x))) => handle_error(ctx, ast, ctx.error_context, "\"return\" not allowed inside comprehension or generator", () -> expand_generator(ast, ctx)) (SH((K"generator" || K"cartesian_iterator") && head, _), [expr, iters...]) => expand_generator(ast, ctx) (SH(K"comprehension", _), [generator]) => Comprehension(nothing, expand_generator(generator, ctx), ast) (SH(K"typed_comprehension", _), [type, generator]) => Comprehension(expand_forms(type, ctx), expand_generator(generator, ctx), ast) (SH(K"Identifier", _), _) => Variable(Expr(ast), ast) (SH(K"doc", _), [args...]) => resolve_macro(ast, ctx.macro_context, Val{Symbol(Symbol("@doc"))}(), args, ctx) (SH(K"macrocall", _), [mcro, args...]) => resolve_macro(ast, ctx.macro_context, Val{Symbol(mcro)}(), args, ctx) (SH(K"?", _), [cond, then, els]) => Ternary(expand_forms(cond, ctx), expand_forms(then, ctx), expand_forms(els, ctx), ast) (SH(K"using" || K"import" || K"export" || K"module" || K"abstract" || K"struct" || K"primitive", _), _) => handle_error(ctx, ast, ctx.error_context, "must be at top level", () -> Literal(nothing, ast)) (SH(op && GuardBy(JuliaSyntax.is_operator), _ && GuardBy(JuliaSyntax.is_dotted)), _) => Broadcast(Variable(Symbol(string(op)), ast), ast) (SH(K"&", _), [var]) => handle_error(ctx, ast, ctx.error_context, "Invalid &", () -> expand_forms(var, ctx)) (SH(GuardBy(JuliaSyntax.is_operator), _), _) => try Variable(Expr(ast), ast) catch e println(ast); handle_error(ctx, ast, ctx.error_context, "invalid expression", () -> Literal(nothing, ast)) end (head, args) => throw("Unimplemented $head") end
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
11235
"An ASTNode is the parent type of all SemanticAST AST elements. It's used when the object could be literally anything. ASTNodes will have a `.location` field of type SourcePosition, however." abstract type ASTNode end "`Expression`s are non-toplevel ASTNodes (that is, `1+1` is an `Expression` while `using Test` is not)." abstract type Expression <: ASTNode end "Represents the original location and range an AST element came from, currently represented as the originating `JuliaSyntax.SyntaxNode` it was analyzed from." struct SourcePosition basenode::JuliaSyntax.SyntaxNode end Base.show(io::IO, pos::SourcePosition) = begin print(io, "SourcePosition") end #"A type variable with name name, upper bound ub, and lower bound lb" @ast_node struct TyVar <: ASTNode name::Union{Symbol, Nothing} ub::Any lb::Any end export TyVar "LValues are expressions that can appear on the left-hand-side of an assignment expression. For instance, in the expression `x[foo] = 3` the part `x[foo]` is an lvalue. The language of lvalues is limited beyond the general expression language and they are represented independently by SemanticAST." abstract type LValue <: ASTNode end #"A function argument declaration, consisting of a binding (an LValue or nothing, in case of a wildcard), a default value if provided, and a type ascription if provided." @ast_node struct FnArg <: ASTNode binding::Union{LValue, Nothing} default_value::Union{ASTNode, Nothing} type::Union{Expression, Nothing} end export FnArg, LValue "A keyword argument declaration. A keyword argument must have a name and may have a type, a default value, may be a vararg" struct KwArg <: ASTNode name::Symbol type::Union{ASTNode, Nothing} default_value::Union{ASTNode, Nothing} is_vararg::Bool location::Union{SourcePosition, Nothing} KwArg(name, type, default_value, basenode, is_vararg = false) = new(name, type, default_value, is_vararg, isnothing(basenode) ? nothing : SourcePosition(basenode)) end @as_record KwArg Base.:(==)(a::KwArg, b::KwArg) = a.name == b.name && a.type == b.type && a.default_value == b.default_value && a.is_vararg == b.is_vararg export KwArg @enum FieldAttributes FIELD_NONE=0 FIELD_CONST=1 Base.show(io::IO, d::FieldAttributes) = print(io, d) Base.:(|)(a::FieldAttributes, b::FieldAttributes) = FieldAttributes(Int(a) | Int(b)) @ast_node struct StructField <: ASTNode name::Symbol type::Union{Expression, Nothing} attributes::FieldAttributes end export StructField, FieldAttributes @ast_data CallArg <: ASTNode begin PositionalArg(body::Expression) KeywordArg(name::Symbol, value::Expression) SplatArg(body::Union{Expression, Nothing}) end export CallArg, PositionalArg, KeywordArg, SplatArg const PositionalArgs = Union{PositionalArg, SplatArg} export PositionalArgs @enum DeclAttributes DECL_NONE=0 DECL_CONST=1 DECL_LOCAL=2 DECL_GLOBAL=4 Base.show(io::IO, d::DeclAttributes) = print(io, d) @ast_node struct VarDecl <: ASTNode binding::LValue value::Union{Expression, Nothing} flags::DeclAttributes end export VarDecl @ast_data NamedTupleBody <: ASTNode begin NamedValue(name::Symbol, value::Expression) ComputedNamedValue(name::Expression, value::Expression) SplattedNamedValue(splat::Expression) end export NamedTupleBody, NamedValue, ComputedNamedValue, SplattedNamedValue @ast_node struct IfClause <: ASTNode cond::Union{Expression, Nothing} body::Expression end export IfClause @ast_data Rows <: ASTNode begin Splat(body::Expression) Row(elems::Vector{Union{Expression, Splat}}) NRow(dim::Int, elems::Vector{Union{NRow, Expression}}) end export Rows, Splat, Row, NRow @ast_data Iterspec <: ASTNode begin IterEq(lhs::LValue, rhs::Expression) Filter(inner::Vector{Iterspec}, cond::Expression) Cartesian(dims::Vector{Iterspec}) end export Iterspec, IterEq, Filter @ast_data ImportPath <: ASTNode begin ImportField(source::ImportPath, name::Symbol) ImportId(name::Symbol) ImportRelative(levels::Int) end export ImportPath, ImportField, ImportId, ImportRelative @ast_data DepClause <: ASTNode begin Dep(path::ImportPath) AliasDep(path::ImportPath, alias::Symbol) end export DepClause, Dep, AliasDep @ast_data FunctionName <: ASTNode begin ResolvedName(path::Vector{Symbol}) DeclName(binding::Union{LValue, Nothing}, typ::Expression) TypeFuncName(receiver::Expression, args::Vector{Union{Expression, TyVar}}) AnonFuncName() end export FunctionName, ResolvedName, DeclName, TypeFuncName, AnonFuncName @ast_data ToplevelStmts <: ASTNode begin StructDefStmt(name::Symbol, params::Vector{Symbol}, super::Union{Expression, Nothing}, fields::Vector{StructField}, cstrs::Vector{Expression}) AbstractDefStmt(name::Symbol, params::Vector{Symbol}, super::Union{Expression, Nothing}) PrimitiveDefStmt(name::Symbol, params::Vector{Symbol}, super::Union{Expression, Nothing}, size::Expression) UsingStmt(mods::Vector{ImportPath}) ImportStmt(mods::Vector{DepClause}) SourceUsingStmt(sourcemod::ImportPath, stmts::Vector{DepClause}) SourceImportStmt(sourcemod::ImportPath, stmts::Vector{DepClause}) ExportStmt(syms::Vector{Symbol}) ModuleStmt(std_imports::Bool, name::Symbol, body::Vector{ToplevelStmts}) ExprStmt(expr::Expression) ToplevelStmt(exprs::Vector{ToplevelStmts}) MacroExpansionStmt(value::Any) end export ToplevelStmts, StructDefStmt, AbstractDefStmt, PrimitiveDefStmt, UsingStmt, ImportStmt, SourceUsingStmt, SourceImportStmt, ExportStmt, ModuleStmt, ExprStmt, ToplevelStmt, MacroExpansionStmt @ast_data Expression <: ASTNode begin Literal(expr::Any) Variable(name::Symbol) FunctionDef(name::FunctionName, arguments::Vector{FnArg}, kw_args::Vector{KwArg}, sparams::Vector{TyVar}, rett::Union{Expression, Nothing}, body::Union{Expression, Nothing}) MacroDef(name::ResolvedName, arguments::Vector{FnArg}, sparams::Vector{TyVar}, rett::Union{Expression, Nothing}, body::Union{Expression, Nothing}) Block(exprs::Vector{Expression}) LetBinding(bindings::Vector{Union{Pair{<:LValue, <:Expression}, Symbol}}, body::Expression) TryCatch(body::Expression, catch_var::Union{Symbol, Nothing}, catch_body::Union{Expression, Nothing}, else_body::Union{Expression, Nothing}, finally_body::Union{Expression, Nothing}) CallCurly(receiver::Expression, args::Vector{Union{Expression, TyVar}}) Comparison(first::Expression, clauses::Vector{Pair{Expression, Expression}}) Broadcast(op::Expression) FunCall(receiver::Expression, pos_args::Vector{PositionalArgs}, kw_args::Vector{Union{KeywordArg, SplatArg}}) GetIndex(arr::Expression, arguments::Vector{PositionalArgs}) GetProperty(rec::Expression, prop::Union{Symbol, Literal}) Assignment(lhs::LValue, rhs::Expression) BroadcastAssignment(lhs::Expression, rhs::Expression) Update(op::Symbol, lhs::LValue, rhs::Expression) BroadcastUpdate(op::Symbol, lhs::Expression, rhs::Expression) WhereType(type::Expression, vars::Vector{TyVar}) Declaration(vars::Vector{VarDecl}) DoStatement(func::Expression, arguments::Vector{FnArg}, body::Expression) TupleExpr(exprs::Vector{Union{Expression, Splat}}) NamedTupleExpr(exprs::Vector{NamedTupleBody}) StringInterpolate(components::Vector{Union{String, Expression}}) TypeAssert(val::Expression, typ::Expression) IfStmt(clauses::Vector{IfClause}) WhileStmt(cond::Expression, body::Expression) BreakStmt() ContinueStmt() ReturnStmt(retval::Union{Expression, Nothing}) ForStmt(iters::Vector{Pair{LValue, Expression}}, body::Expression) Vect(elems::Vector{Union{Expression, Splat}}) HCat(type::Union{Expression, Nothing}, elems::Vector{Union{Expression, Splat}}) VCat(type::Union{Expression, Nothing}, rows::Vector{Union{Row, Expression, Splat}}) NCat(type::Union{Expression, Nothing}, dim::Int, rows::Vector{Union{NRow, Expression}}) Generator(expr::Expression, iterators::Vector{Iterspec}) Comprehension(type::Union{Expression, Nothing}, gen::Generator) Quote(ast::JuliaSyntax.SyntaxNode) MacroExpansion(value::Any) Ternary(cond::Expression, then::Expression, els::Expression) end export Expression, Literal, Variable, FunctionDef, MacroDef, Block, LetBinding, TryCatch, CallCurly, Comparison, Broadcast, FunCall, GetIndex, GetProperty, Assignment, Update, WhereType, Declaration, DoStatement, TupleExpr, NamedTupleExpr, StringInterpolate, TypeAssert, IfStmt, WhileStmt, BreakStmt, ContinueStmt, ReturnStmt, ForStmt, Vect, HCat, VCat, NCat, Generator, Comprehension, Quote, MacroExpansion, Ternary @ast_data LValueImpl <: LValue begin IdentifierAssignment(id::Symbol) OuterIdentifierAssignment(id::Symbol) FieldAssignment(obj::Expression, name::Symbol) TupleAssignment(params::Vector{LValue}) RefAssignment(arr::Expression, arguments::Vector{PositionalArgs}, kwargs::Vector{KeywordArg}) VarargAssignment(tgt::Union{Nothing, LValue}) TypedAssignment(lhs::LValue, type::Expression) NamedTupleAssignment(params::Vector{Union{IdentifierAssignment, TypedAssignment}}) FunctionAssignment(name::FunctionName, args_stmts::Vector{FnArg}, kwargs_stmts::Vector{KwArg}, sparams::Vector{TyVar}, rett::Union{Expression, Nothing}) UnionAllAssignment(name::LValue, tyargs::Vector{TyVar}) end export LValueImpl, IdentifierAssignment, OuterIdentifierAssignment, FieldAssignment, TupleAssignment, RefAssignment, VarargAssignment, TypedAssignment, NamedTupleAssignment, FunctionAssignment, BroadcastAssignment, UnionAllAssignment @ast_data Docstrings <: ASTNode begin Docstring(doc::Expression, defn::Union{Expression, ToplevelStmts}) CallDocstring(doc::Expression, name::FunctionName, arguments::Vector{FnArg}, kw_args::Vector{KwArg}, sparams::Vector{TyVar}, rett::Union{Expression, Nothing}) end export Docstring, CallDocstring @generated function Base.show(io::IO, a::T) where T<:Union{Docstrings, Expression, VarDecl, NamedTupleBody, IfClause, Rows, Iterspec, ImportPath, DepClause, FunctionName, ToplevelStmts, LValueImpl, CallArg, FnArg, TyVar, KwArg, StructField} outbody = [] fldnames = filter(x -> x != :location, fieldnames(T)) for fld in fldnames[1:end-1] push!(outbody, :(show(io, a.$fld))) push!(outbody, :(print(io, ", "))) end if length(fldnames) > 0 push!(outbody, :(show(io, a.$(fldnames[end])))) end return quote print(io, string(nameof(T))) print(io, "(") $(outbody...) print(io, ")") end end const ASTNodes = Union{Docstrings, Expression, VarDecl, NamedTupleBody, IfClause, Rows, Iterspec, ImportPath, DepClause, FunctionName, ToplevelStmts, LValueImpl, CallArg, FnArg, TyVar, LValue, KwArg, StructField} function Base.show(io::IO, v::Vector{T}) where T<:Union{ASTNodes, Tuple{Vararg{ASTNodes}}, Pair{X, Y} where {X<:ASTNodes,Y<:ASTNodes}, Union{String, Y} where Y <: ASTNodes} print(io, "[") for el in v[1:end-1] show(io, el) print(io, ", ") end if length(v) > 0 show(io, v[end]) end print(io, "]") end function Base.show(io::IO, (l, r)::Pair{N1, N2}) where {N1 <: ASTNodes, N2 <: ASTNodes} show(io, l) print(io, " => ") show(io, r) end @generated function Base.:(==)(a::T, b::T) where T<:Union{Docstrings, Expression, VarDecl, NamedTupleBody, IfClause, Rows, Iterspec, ImportPath, DepClause, FunctionName, ToplevelStmts, LValueImpl, CallArg, FnArg} if length(fieldnames(T)) == 0 return true end return :(Base.:(&)($(map(x->:(a.$x == b.$x), filter(x->x != :location, fieldnames(T)))...))) end
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
1535
function MLStyle.pattern_uncall(::Type{JuliaSyntax.SyntaxNode}, self, type_params, type_args, args) t = JuliaSyntax.SyntaxNode tcons(_...) = t comp = PComp("$t", tcons;) function extract(sub::Any, i::Int, ::Any, ::Any) if i == 1 return :(JuliaSyntax.head($sub)) elseif i == 2 return :(JuliaSyntax.children($sub)) end end return decons(comp, extract, map(self, args)) end function MLStyle.pattern_uncall(::Type{JuliaSyntax.SyntaxHead}, self, type_params, type_args, args) t = JuliaSyntax.SyntaxHead tcons(_...) = t comp = PComp("$t", tcons;) function extract(sub::Any, i::Int, ::Any, ::Any) if i == 1 return :($sub.kind) elseif i == 2 return :($sub.flags) end end return decons(comp, extract, map(self, args)) end struct SyntaxFlags flags::JuliaSyntax.RawFlags end flag_assignment = Dict{Symbol, UInt16}( :TRIVIA => JuliaSyntax.TRIVIA_FLAG, :INFIX => JuliaSyntax.INFIX_FLAG, :DOTOP => JuliaSyntax.DOTOP_FLAG, :TRIPLE_STRING => JuliaSyntax.TRIPLE_STRING_FLAG, :RAW_STRING => JuliaSyntax.RAW_STRING_FLAG, :SUFFIXED => JuliaSyntax.SUFFIXED_FLAG ) @active InfixHead(x) begin return JuliaSyntax.is_infix(x) end @active DottedHead(x) begin return JuliaSyntax.is_dotted(x) end function MLStyle.pattern_uncall(::Type{SyntaxFlags}, self, type_params, type_args, args) if any((!).(haskey.((flag_assignment,), args))) throw("invalid flag in $args") end flag_match = reduce(|, getindex.((flag_assignment,), args); init=0) end
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
5251
struct ASTException <: Exception source_node::JuliaSyntax.SyntaxNode reason::String end first_byte(e::ASTException) = e.source_node.position last_byte(e::ASTException) = e.source_node.position + JuliaSyntax.span(e.source_node) - 1 global ast_id::Int = 0 function make_id() old = ast_id ast_id += 1 return ast_id end # stolen from JuliaSyntax in most part function Base.show(io::IO, exception::ASTException) source = exception.source_node.source color,prefix = (:light_red, "Error") line, col = JuliaSyntax.source_location(source, first_byte(exception)) linecol = "$line:$col" filename = source.filename if !isnothing(filename) locstr = "$filename:$linecol" if get(io, :color, false) # Also add hyperlinks in color terminals url = "file://$(abspath(filename))#$linecol" locstr = "\e]8;;$url\e\\$locstr\e]8;;\e\\" end else locstr = "line $linecol" end print(io, prefix, ": ") printstyled(io, exception.reason, color=color) printstyled(io, "\n", "@ $locstr", color=:light_black) print(io, "\n") p = first_byte(exception) q = last_byte(exception) text = JuliaSyntax.sourcetext(source) if q < p || (p == q && source[p] == '\n') # An empty or invisible range! We expand it symmetrically to make it # visible. p = max(firstindex(text), prevind(text, p)) q = min(lastindex(text), nextind(text, q)) end # p and q mark the start and end of the diagnostic range. For context, # buffer these out to the surrouding lines. a,b = JuliaSyntax.source_line_range(source, p, context_lines_before=2, context_lines_after=1) c,d = JuliaSyntax.source_line_range(source, q, context_lines_before=1, context_lines_after=2) hicol = (100,40,40) # TODO: show line numbers on left print(io, source[a:prevind(text, p)]) # There's two situations, either if b >= c # The diagnostic range is compact and we show the whole thing # a............... # .....p...q...... # ...............b JuliaSyntax._printstyled(io, source[p:q]; bgcolor=hicol) else # Or large and we trucate the code to show only the region around the # start and end of the error. # a............... # .....p.......... # ...............b # (snip) # c............... # .....q.......... # ...............d JuliaSyntax._printstyled(io, source[p:b]; bgcolor=hicol) println(io, "…") JuliaSyntax._printstyled(io, source[c:q]; bgcolor=hicol) end print(io, source[nextind(text,q):d]) println(io) end macro ast_data(name, body) @assert body isa Expr && body.head == :block outbody = [] supertype = nothing @match name begin :($sname <: $_) => begin supertype = sname end _ => nothing end for elem in body.args @match elem begin :($casename($(params...))) => begin push!(outbody, :(@ast_node struct $casename <: $supertype; $(params...) end)) visit_body = [] for param in params @match param begin :($fldname::$fldtype) && fldspec => begin push!(visit_body, :(visit(enter, exit, arg.$fldname))) end end end end lnn :: LineNumberNode => push!(outbody, lnn) end end return quote abstract type $name end $(outbody...) end end macro ast_node(defn) @match defn begin :(struct $prop <: $super; $(fields...); end) => begin output_body = [] hash_body = [] eq_body = [] init_fields = [] for field in fields @match field begin :($fldname::$fldtype) && fldspec => begin if fldname != :location push!(init_fields, fldname => fldtype) else throw("Location specified explicitly; ast node locations are implicit!") end push!(output_body, fldspec) push!(hash_body, :(h = hash(node.$fldname, h))) push!(eq_body, :(self.$fldname == other.$fldname)) end _::LineNumberNode => nothing end end eq_check = foldl((exp, el) -> :($exp && $el), eq_body; init = :(self.location == other.location)) out = quote struct $prop <: $super; $(output_body...); location::Union{$SemanticAST.SourcePosition, Nothing}; $prop($((:($argname) for (argname, argtype) in init_fields)...), basenode::Union{$JuliaSyntax.SyntaxNode, Nothing}) = new($((argname for (argname, argtype) in init_fields)...), isnothing(basenode) ? nothing : $SemanticAST.SourcePosition(basenode)) end; function $(esc(:visit))(enter, exit, arg::$(esc(prop))) enter(arg); $((:(visit(enter, exit, arg.$argname)) for (argname, argtype) in init_fields)...); exit(arg) end function Base.hash(node::$(esc(prop)), h::UInt) $(hash_body...) h = hash(node.location, h) return h end Base.:(==)(self::$(esc(prop)), other::$(esc(prop))) = $eq_check $MLStyle.@as_record $(esc(prop)) end return out end end end visit(enter, exit, elems::Vector{T}) where T = for elem in elems visit(enter, exit,elem) end visit(enter, exit, elem::Pair{T, U}) where {T, U} = begin visit(enter, exit, elem[1]); visit(enter, exit, elem[2]) end visit(enter, exit, alt) = begin enter(alt); exit(alt) end
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
code
49720
using SemanticAST import SemanticAST: just_argslist, flatten_where_expr, analyze_typevar, ASTException using Test import JuliaSyntax import JuliaSyntax: @K_str, @KSet_str const SN = JuliaSyntax.SyntaxNode const SH = JuliaSyntax.SyntaxHead childof = JuliaSyntax.child kindof(ex) = JuliaSyntax.kind(JuliaSyntax.head(ex)) @testset "visit" begin y = 0 enter = (x) -> y = 1 exit = (x) -> begin @test y == 1; y = 2 end SemanticAST.visit(enter, exit, SemanticAST.StringInterpolate([], nothing)) @test y == 2 end af1 = JuliaSyntax.parseall(SN, "function () end") af2 = JuliaSyntax.parseall(SN, "function (x) end") af3 = JuliaSyntax.parseall(SN, "function (x,y) end") af4 = JuliaSyntax.parseall(SN, "function (x,y) where T end") nf1 = JuliaSyntax.parseall(SN, "function f() end") nf2 = JuliaSyntax.parseall(SN, "function f(x) end") nf3 = JuliaSyntax.parseall(SN, "function f(x, y) end") nf4 = JuliaSyntax.parseall(SN, "function f(x, y) where T end") @testset "just_argslist" begin @test just_argslist(childof(af1, 1)) @test just_argslist(childof(af2, 1)) @test just_argslist(childof(af3, 1)) @test just_argslist(childof(af4, 1)) @test !just_argslist(childof(nf1, 1)) @test !just_argslist(childof(nf2, 1)) @test !just_argslist(childof(nf3, 1)) @test !just_argslist(childof(nf4, 1)) end wex1 = JuliaSyntax.parseall(SN, "x where T") wex2 = JuliaSyntax.parseall(SN, "x where T where S") wex3 = JuliaSyntax.parseall(SN, "x where T <: I") wex4 = JuliaSyntax.parseall(SN, "x where T <: I where I") wex5 = JuliaSyntax.parseall(SN, "x where {T, V}") @testset "flatten_where_expr" begin ctx = ExpandCtx(true, false) @test sprint(show, flatten_where_expr(childof(wex1, 1), ctx)) == "(x, Any[T])" @test sprint(show, flatten_where_expr(childof(wex2, 1), ctx)) == "(x, Any[S, T])" @test sprint(show, flatten_where_expr(childof(wex3, 1), ctx)) == "(x, Any[(<: T I)])" @test sprint(show, flatten_where_expr(childof(wex4, 1), ctx)) == "(x, Any[I, (<: T I)])" @test sprint(show, flatten_where_expr(childof(wex5, 1), ctx)) == "(x, Any[T, V])" end atv1 = JuliaSyntax.parseall(SN, "A <: B") atv2 = JuliaSyntax.parseall(SN, "A >: B") atv3 = JuliaSyntax.parseall(SN, "A <: B <: C") atv4 = JuliaSyntax.parseall(SN, "A >: B >: C") atv5 = JuliaSyntax.parseall(SN, "A + 2 <: B") @testset "analyze_typevar" begin @test string(analyze_typevar(childof(atv1, 1), ExpandCtx())) == "TyVar(:A, Variable(:B), nothing)" @test string(analyze_typevar(childof(atv2, 1), ExpandCtx())) == "TyVar(:A, nothing, Variable(:B))" @test string(analyze_typevar(childof(atv3, 1), ExpandCtx())) == "TyVar(:B, Variable(:C), Variable(:A))" @test_throws ASTException analyze_typevar(childof(atv4, 1), ExpandCtx()) @test_throws ASTException analyze_typevar(childof(atv5, 1), ExpandCtx()) end struct ErrorResult end expr_tests() = [ :function => [ "function foo() end" => "FunctionDef(ResolvedName([:foo]), [], [], [], nothing, Block([]))", "function foo(a) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [], [], nothing, Block([]))", "function foo(::Int) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(nothing, nothing, Variable(:Int))], [], [], nothing, Block([]))", "function foo(a::Int) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int))], [], [], nothing, Block([]))", "function foo(a::Int, b::Int) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int))], [], [], nothing, Block([]))", "function foo(a::Int, b::Int, c=2) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:c), Literal(2), nothing)], [], [], nothing, Block([]))", "function foo(a::Int, b::Int, c=2, d::Int) end" => ErrorResult(), "function foo(; c) end" => "FunctionDef(ResolvedName([:foo]), [], [KwArg(:c, nothing, nothing, false)], [], nothing, Block([]))", "function foo(; c=2) end" => "FunctionDef(ResolvedName([:foo]), [], [KwArg(:c, nothing, Literal(2), false)], [], nothing, Block([]))", "function foo(; c::Int=2) end" => "FunctionDef(ResolvedName([:foo]), [], [KwArg(:c, Variable(:Int), Literal(2), false)], [], nothing, Block([]))", "function foo(a; c::Int=2) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [KwArg(:c, Variable(:Int), Literal(2), false)], [], nothing, Block([]))", "function foo(a; c::Int) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [KwArg(:c, Variable(:Int), nothing, false)], [], nothing, Block([]))", "function foo(a; c::Int, d) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [KwArg(:c, Variable(:Int), nothing, false), KwArg(:d, nothing, nothing, false)], [], nothing, Block([]))", "function foo((a,b), c) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(TupleAssignment([IdentifierAssignment(:a), IdentifierAssignment(:b)]), nothing, nothing), FnArg(IdentifierAssignment(:c), nothing, nothing)], [], [], nothing, Block([]))", "function foo((a,b)...) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(VarargAssignment(TupleAssignment([IdentifierAssignment(:a), IdentifierAssignment(:b)])), nothing, nothing)], [], [], nothing, Block([]))", "function foo(a, b..., c) end" => ErrorResult(), "function foo(; (a,b)::Tuple{Int, Int} = (1, 2)) end" => ErrorResult(), "function foo(; (a,b)) end" => ErrorResult(), "function foo((;a,b)) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(NamedTupleAssignment([IdentifierAssignment(:a), IdentifierAssignment(:b)]), nothing, nothing)], [], [], nothing, Block([]))", "function foo((;a=2,b)) end" => ErrorResult(), "function foo((;a,b)::Int) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(NamedTupleAssignment([IdentifierAssignment(:a), IdentifierAssignment(:b)]), nothing, Variable(:Int))], [], [], nothing, Block([]))", "function foo() :: Int end" => "FunctionDef(ResolvedName([:foo]), [], [], [], Variable(:Int), Block([]))", "function foo() :: Int where T end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:T, nothing, nothing)], Variable(:Int), Block([]))", "function foo() :: Int where {T, V} end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:T, nothing, nothing), TyVar(:V, nothing, nothing)], Variable(:Int), Block([]))", "function foo() :: Int where {T <: V, V} end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:T, Variable(:V), nothing), TyVar(:V, nothing, nothing)], Variable(:Int), Block([]))", "function foo() :: Int where {T} where V end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:V, nothing, nothing), TyVar(:T, nothing, nothing)], Variable(:Int), Block([]))", "function foo() :: Int where {T} where {U, V} end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:U, nothing, nothing), TyVar(:V, nothing, nothing), TyVar(:T, nothing, nothing)], Variable(:Int), Block([]))", "function foo()::T where T end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:T, nothing, nothing)], Variable(:T), Block([]))", "function foo() where {T} where {U, V} end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:U, nothing, nothing), TyVar(:V, nothing, nothing), TyVar(:T, nothing, nothing)], nothing, Block([]))", "function foo() where Int <: T <: Float32 end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:T, Variable(:Float32), Variable(:Int))], nothing, Block([]))", "function foo()::T where Int <: T <: Float32 end" => "FunctionDef(ResolvedName([:foo]), [], [], [TyVar(:T, Variable(:Float32), Variable(:Int))], Variable(:T), Block([]))", "evalpoly(x::T, p::T)::T where T<:Number = 2" => "Assignment(FunctionAssignment(ResolvedName([:evalpoly]), [FnArg(IdentifierAssignment(:x), nothing, Variable(:T)), FnArg(IdentifierAssignment(:p), nothing, Variable(:T))], [], [TyVar(:T, Variable(:Number), nothing)], Variable(:T)), Literal(2))", "function foo(a) where {T} where {U, V} end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [], [TyVar(:U, nothing, nothing), TyVar(:V, nothing, nothing), TyVar(:T, nothing, nothing)], nothing, Block([]))", "function foo(a; b::T) where {T} where {U, V} end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [KwArg(:b, Variable(:T), nothing, false)], [TyVar(:U, nothing, nothing), TyVar(:V, nothing, nothing), TyVar(:T, nothing, nothing)], nothing, Block([]))", "function foo(a, a) end" => ErrorResult(), "function foo(a::Int, a::Int) end" => ErrorResult(), "function foo((a,b), b::Int) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(TupleAssignment([IdentifierAssignment(:a), IdentifierAssignment(:b)]), nothing, nothing), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int))], [], [], nothing, Block([]))", "function foo(; a=1, a=2) end" => ErrorResult(), "function foo(a; a=1) end" => ErrorResult(), "function foo() where {T, T} end" => ErrorResult(), "function foo() where T where T end" => ErrorResult(), "function foo(T) where T end" => ErrorResult(), "function () end" => "FunctionDef(AnonFuncName(), [], [], [], nothing, Block([]))", "function (a) end" => "FunctionDef(AnonFuncName(), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [], [], nothing, Block([]))", "function (a::Int) end" => "FunctionDef(AnonFuncName(), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int))], [], [], nothing, Block([]))", "function (a::Int, b::Int) end" => "FunctionDef(AnonFuncName(), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int))], [], [], nothing, Block([]))", "function (a::Int, b::Int, c=2) end" => "FunctionDef(AnonFuncName(), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:c), Literal(2), nothing)], [], [], nothing, Block([]))", "function (a::Int, b::Int, c=2, d::Int) end" => ErrorResult(), "function foo end" => "FunctionDef(ResolvedName([:foo]), [], [], [], nothing, nothing)", "function (::Type{T})(x) end" => "FunctionDef(DeclName(nothing, CallCurly(Variable(:Type), [Variable(:T)])), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], [], nothing, Block([]))", "function A.f() end" => "FunctionDef(ResolvedName([:A, :f]), [], [], [], nothing, Block([]))", "function f{T}() end" => "FunctionDef(TypeFuncName(Variable(:f), [Variable(:T)]), [], [], [], nothing, Block([]))", "function f()::T end" => "FunctionDef(ResolvedName([:f]), [], [], [], Variable(:T), Block([]))", "function f()::g(T) end" => "FunctionDef(ResolvedName([:f]), [], [], [], FunCall(Variable(:g), [PositionalArg(Variable(:T))], []), Block([]))", "(2+2)(x,y) = x" => ErrorResult(), "function foo() where 2+T end" => ErrorResult(), "function foo((x::Int, y)::String) end" => ErrorResult(), "function foo(;x ; y) end" => ErrorResult(), "function foo(;(x,y)...) end" => ErrorResult(), "function foo{; a}() end" => ErrorResult(), "function foo{a=y}() end" => ErrorResult(), "function foo(a::b = 9) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), Literal(9), Variable(:b))], [], [], nothing, Block([]))", "function foo(a::b = 9, b::c = 17) end" => "FunctionDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), Literal(9), Variable(:b)), FnArg(IdentifierAssignment(:b), Literal(17), Variable(:c))], [], [], nothing, Block([]))", "function -(a, b) end" => "FunctionDef(ResolvedName([:-]), [FnArg(IdentifierAssignment(:a), nothing, nothing), FnArg(IdentifierAssignment(:b), nothing, nothing)], [], [], nothing, Block([]))", "function .-(a, b) end" => ErrorResult(), "function \$x(a, b) end" => ErrorResult(), "function f(;x...) end" => "FunctionDef(ResolvedName([:f]), [], [KwArg(:x, nothing, nothing, true)], [], nothing, Block([]))", "function f(a, b, c...) end" => "FunctionDef(ResolvedName([:f]), [FnArg(IdentifierAssignment(:a), nothing, nothing), FnArg(IdentifierAssignment(:b), nothing, nothing), FnArg(VarargAssignment(IdentifierAssignment(:c)), nothing, nothing)], [], [], nothing, Block([]))" ], :macro => [ "macro foo end" => "MacroDef(ResolvedName([:foo]), [], [], nothing, nothing)", "macro foo.bar() end" => ErrorResult(), "macro foo{2}() end" => ErrorResult(), "macro foo() end" => "MacroDef(ResolvedName([:foo]), [], [], nothing, Block([]))", "macro foo(a) end" => "MacroDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, nothing)], [], nothing, Block([]))", "macro foo(a::Int) end" => "MacroDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int))], [], nothing, Block([]))", "macro foo(a::Int, b::Int) end" => "MacroDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int))], [], nothing, Block([]))", "macro foo(a::Int, b::Int, c=2) end" => "MacroDef(ResolvedName([:foo]), [FnArg(IdentifierAssignment(:a), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:b), nothing, Variable(:Int)), FnArg(IdentifierAssignment(:c), Literal(2), nothing)], [], nothing, Block([]))", "macro foo(a::Int, b::Int, c=2, d::Int) end" => ErrorResult(), "macro foo(; x) end" => ErrorResult() ], :weirdwhere => [ "where = 3" => "Assignment(IdentifierAssignment(:where), Literal(3))", "func(where) = 12" => "Assignment(FunctionAssignment(ResolvedName([:func]), [FnArg(IdentifierAssignment(:where), nothing, nothing)], [], [], nothing), Literal(12))", "func(where::Int) = 12" => "Assignment(FunctionAssignment(ResolvedName([:func]), [FnArg(IdentifierAssignment(:where), nothing, Variable(:Int))], [], [], nothing), Literal(12))" ], :try => [ "try \n x \n catch e \n y \n finally \n z end" => "TryCatch(Block([Variable(:x)]), :e, Block([Variable(:y)]), nothing, Block([Variable(:z)]))", "try \n x \n catch e \n y \n else z finally \n w end" => "TryCatch(Block([Variable(:x)]), :e, Block([Variable(:y)]), Block([Variable(:z)]), Block([Variable(:w)]))", "try x catch end" => "TryCatch(Block([Variable(:x)]), nothing, Block([]), nothing, nothing)", "try x catch ; y end" => "TryCatch(Block([Variable(:x)]), nothing, Block([Variable(:y)]), nothing, nothing)", "try x catch \n y end" => "TryCatch(Block([Variable(:x)]), nothing, Block([Variable(:y)]), nothing, nothing)", "try x catch e y end" => "TryCatch(Block([Variable(:x)]), :e, Block([Variable(:y)]), nothing, nothing)", "try x finally y end" => "TryCatch(Block([Variable(:x)]), nothing, nothing, nothing, Block([Variable(:y)]))", "try catch ; else end" => "TryCatch(Block([]), nothing, Block([]), Block([]), nothing)" ], :curly => [ "a{;a}" => ErrorResult(), "a{a=2}" => ErrorResult(), "a{}" => "CallCurly(Variable(:a), [])", "a{b}" => "CallCurly(Variable(:a), [Variable(:b)])", "a{<:T}" => "CallCurly(Variable(:a), [TyVar(nothing, Variable(:T), nothing)])", "a{>:T}" => "CallCurly(Variable(:a), [TyVar(nothing, nothing, Variable(:T))])" ], :(.) => [ "a.f" => "GetProperty(Variable(:a), :f)", "a.\"f\"" => "GetProperty(Variable(:a), Literal(\"f\"))", "a.(f)" => "FunCall(Broadcast(Variable(:a)), [PositionalArg(Variable(:f))], [])", "a.(f, x=9, z)" => "FunCall(Broadcast(Variable(:a)), [PositionalArg(Variable(:f)), PositionalArg(Variable(:z))], [KeywordArg(:x, Literal(9))])", "a.(f.(x))" => "FunCall(Broadcast(Variable(:a)), [PositionalArg(FunCall(Broadcast(Variable(:f)), [PositionalArg(Variable(:x))], []))], [])", "a.(2 .+ 2)" => "FunCall(Broadcast(Variable(:a)), [PositionalArg(FunCall(Broadcast(Variable(:+)), [PositionalArg(Literal(2)), PositionalArg(Literal(2))], []))], [])", "a .&& b" => "FunCall(Broadcast(Variable(:&&)), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])", "a .|| b" => "FunCall(Broadcast(Variable(:||)), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])", "a .= b" => "BroadcastAssignment(Variable(:a), Variable(:b))", "a[5] .= b" => "BroadcastAssignment(GetIndex(Variable(:a), [PositionalArg(Literal(5))]), Variable(:b))", "a[5, 6] .= b" => "BroadcastAssignment(GetIndex(Variable(:a), [PositionalArg(Literal(5)), PositionalArg(Literal(6))]), Variable(:b))", "x+y .= y" => "BroadcastAssignment(FunCall(Variable(:+), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], []), Variable(:y))", "x+y .+= y" => "BroadcastUpdate(:+=, FunCall(Variable(:+), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], []), Variable(:y))", ".!f" => "FunCall(Broadcast(Variable(:!)), [PositionalArg(Variable(:f))], [])" ], :call => [ "a(x)" => "FunCall(Variable(:a), [PositionalArg(Variable(:x))], [])", "a(x,y)" => "FunCall(Variable(:a), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], [])", "a(x,y; y=2, z=3)" => "FunCall(Variable(:a), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], [KeywordArg(:y, Literal(2)), KeywordArg(:z, Literal(3))])", "a(x, y...; z=9)" => "FunCall(Variable(:a), [PositionalArg(Variable(:x)), SplatArg(Variable(:y))], [KeywordArg(:z, Literal(9))])", "a - b - c" => "FunCall(Variable(:-), [PositionalArg(FunCall(Variable(:-), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])), PositionalArg(Variable(:c))], [])", "a + b + c" => "FunCall(Variable(:+), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b)), PositionalArg(Variable(:c))], [])", "a + b .+ c" => "FunCall(Broadcast(Variable(:+)), [PositionalArg(FunCall(Variable(:+), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])), PositionalArg(Variable(:c))], [])", "[x +y]" => "HCat(nothing, [Variable(:x), FunCall(Variable(:+), [PositionalArg(Variable(:y))], [])])", "[x+y +z]" => "HCat(nothing, [FunCall(Variable(:+), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], []), FunCall(Variable(:+), [PositionalArg(Variable(:z))], [])])", "[x +₁y]" => "Vect([FunCall(Variable(:+₁), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], [])])", "[x+y+z]" => "Vect([FunCall(Variable(:+), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y)), PositionalArg(Variable(:z))], [])])", "[x+y + z]" => "Vect([FunCall(Variable(:+), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y)), PositionalArg(Variable(:z))], [])])", "a +₁ b +₁ c" => "FunCall(Variable(:+₁), [PositionalArg(FunCall(Variable(:+₁), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])), PositionalArg(Variable(:c))], [])", "a .+ b .+ c" => "FunCall(Broadcast(Variable(:+)), [PositionalArg(FunCall(Broadcast(Variable(:+)), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])), PositionalArg(Variable(:c))], [])", "f(a).g(b)" => "FunCall(GetProperty(FunCall(Variable(:f), [PositionalArg(Variable(:a))], []), :g), [PositionalArg(Variable(:b))], [])", "foo(;x ; y)" => ErrorResult(), "f(;x...)" => "FunCall(Variable(:f), [], [SplatArg(Variable(:x))])", "+(x=1)" => "FunCall(Variable(:+), [PositionalArg(Assignment(IdentifierAssignment(:x), Literal(1)))], [])" ], :unionall => [ "A where B" => "WhereType(Variable(:A), [TyVar(:B, nothing, nothing)])", "A where {}" => "WhereType(Variable(:A), [])", "A where B where C" => "WhereType(WhereType(Variable(:A), [TyVar(:B, nothing, nothing)]), [TyVar(:C, nothing, nothing)])", "A where B<:C" => "WhereType(Variable(:A), [TyVar(:B, Variable(:C), nothing)])", "A where Z<:W<:X" => "WhereType(Variable(:A), [TyVar(:W, Variable(:X), Variable(:Z))])", "A where {Z<:W<:X, K}" => "WhereType(Variable(:A), [TyVar(:W, Variable(:X), Variable(:Z)), TyVar(:K, nothing, nothing)])" ], :const => [ "const a = 1" => "Declaration([VarDecl(IdentifierAssignment(:a), Literal(1), DECL_CONST)])", "const a::Int = 1" => "Declaration([VarDecl(TypedAssignment(IdentifierAssignment(:a), Variable(:Int)), Literal(1), DECL_CONST)])" ], :local => [ "local a" => "Declaration([VarDecl(IdentifierAssignment(:a), nothing, DECL_LOCAL)])", "local a::Int" => "Declaration([VarDecl(TypedAssignment(IdentifierAssignment(:a), Variable(:Int)), nothing, DECL_LOCAL)])", "local a::Int, (b=4), c::String" => "Declaration([VarDecl(TypedAssignment(IdentifierAssignment(:a), Variable(:Int)), nothing, DECL_LOCAL), VarDecl(IdentifierAssignment(:b), Literal(4), DECL_LOCAL), VarDecl(TypedAssignment(IdentifierAssignment(:c), Variable(:String)), nothing, DECL_LOCAL)])" ], :global => [ "global a" => "Declaration([VarDecl(IdentifierAssignment(:a), nothing, DECL_GLOBAL)])", "global a::Int" => "Declaration([VarDecl(TypedAssignment(IdentifierAssignment(:a), Variable(:Int)), nothing, DECL_GLOBAL)])", "global a::Int, (b=4), c::String" => "Declaration([VarDecl(TypedAssignment(IdentifierAssignment(:a), Variable(:Int)), nothing, DECL_GLOBAL), VarDecl(IdentifierAssignment(:b), Literal(4), DECL_GLOBAL), VarDecl(TypedAssignment(IdentifierAssignment(:c), Variable(:String)), nothing, DECL_GLOBAL)])" ], :(=) => [ "a = 2" => "Assignment(IdentifierAssignment(:a), Literal(2))", "a = b = 2" => "Assignment(IdentifierAssignment(:a), Assignment(IdentifierAssignment(:b), Literal(2)))", "a.b = 2" => "Assignment(FieldAssignment(Variable(:a), :b), Literal(2))", "a.b.c = 5" => "Assignment(FieldAssignment(GetProperty(Variable(:a), :b), :c), Literal(5))", "a.b[3] = 9" => "Assignment(RefAssignment(GetProperty(Variable(:a), :b), [PositionalArg(Literal(3))], []), Literal(9))", "a.b[3, 4] = 9" => "Assignment(RefAssignment(GetProperty(Variable(:a), :b), [PositionalArg(Literal(3)), PositionalArg(Literal(4))], []), Literal(9))", "a.b[3; x = 0] = 9" => ErrorResult(), "a.b[3 9] = 9" => ErrorResult(), "(a.b, c) = 2" => "Assignment(TupleAssignment([FieldAssignment(Variable(:a), :b), IdentifierAssignment(:c)]), Literal(2))", "y :: Int = 3" => "Assignment(TypedAssignment(IdentifierAssignment(:y), Variable(:Int)), Literal(3))", "{ faulty } = 9" => ErrorResult(), "(x..., y..., z) = (1,2)" => ErrorResult(), "[a; b] = 2" => ErrorResult(), "[a b] = 2" => ErrorResult(), "[a ;; b] = 2" => ErrorResult(), "f() = 3" => "Assignment(FunctionAssignment(ResolvedName([:f]), [], [], [], nothing), Literal(3))", "f(x) = x" => "Assignment(FunctionAssignment(ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], [], nothing), Variable(:x))", "f(x)::Int = x" => "Assignment(FunctionAssignment(ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], [], Variable(:Int)), Variable(:x))", "f(x::T) where T = x" => "Assignment(FunctionAssignment(ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, Variable(:T))], [], [TyVar(:T, nothing, nothing)], nothing), Variable(:x))", "f(x::T) where T <: V = x" => "Assignment(FunctionAssignment(ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, Variable(:T))], [], [TyVar(:T, Variable(:V), nothing)], nothing), Variable(:x))", "f()::T where T = x" => "Assignment(FunctionAssignment(ResolvedName([:f]), [], [], [TyVar(:T, nothing, nothing)], Variable(:T)), Variable(:x))", "x{y} = 2" => "Assignment(UnionAllAssignment(IdentifierAssignment(:x), [TyVar(:y, nothing, nothing)]), Literal(2))", "x{} = 2" => ErrorResult() ], :comparison => [ "a < b < c" => "Comparison(Variable(:a), [Variable(:<) => Variable(:b), Variable(:<) => Variable(:c)])", "a <= b < c" => "Comparison(Variable(:a), [Variable(:<=) => Variable(:b), Variable(:<) => Variable(:c)])", "a <: b <: c" => "Comparison(Variable(:a), [Variable(:<:) => Variable(:b), Variable(:<:) => Variable(:c)])", "a .< b == c" => "Comparison(Variable(:a), [Broadcast(Variable(:<)) => Variable(:b), Variable(:(==)) => Variable(:c)])" ], :ref => [ "x[2]" => "GetIndex(Variable(:x), [PositionalArg(Literal(2))])", "x[2,3]" => "GetIndex(Variable(:x), [PositionalArg(Literal(2)), PositionalArg(Literal(3))])", "x[2,x=3; z=9]" => ErrorResult(), "x[2,z...; y=0]" => ErrorResult(), "x[y=3]" => "GetIndex(Variable(:x), [PositionalArg(Assignment(IdentifierAssignment(:y), Literal(3)))])" ], :do => [ "f() do ; end" => "DoStatement(FunCall(Variable(:f), [], []), [], Block([]))", "f() do ; body end" => "DoStatement(FunCall(Variable(:f), [], []), [], Block([Variable(:body)]))", "f() do x, y; body end" => "DoStatement(FunCall(Variable(:f), [], []), [FnArg(IdentifierAssignment(:x), nothing, nothing), FnArg(IdentifierAssignment(:y), nothing, nothing)], Block([Variable(:body)]))", "f(x) do y body end" => "DoStatement(FunCall(Variable(:f), [PositionalArg(Variable(:x))], []), [FnArg(IdentifierAssignment(:y), nothing, nothing)], Block([Variable(:body)]))" ], :tuple => [ "(1,2,3)" => "TupleExpr([Literal(1), Literal(2), Literal(3)])", "(a=1, b=2)" => "NamedTupleExpr([NamedValue(:a, Literal(1)), NamedValue(:b, Literal(2))])", "(a=1, b=2; c=3)" => ErrorResult(), "(a=1, )" => "NamedTupleExpr([NamedValue(:a, Literal(1))])", "(;a=2, b=2)" => "NamedTupleExpr([NamedValue(:a, Literal(2)), NamedValue(:b, Literal(2))])", "(2=3, a=9)" => ErrorResult(), "((x+y) => 3, b=3)" => "NamedTupleExpr([ComputedNamedValue(FunCall(Variable(:+), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], []), Literal(3)), NamedValue(:b, Literal(3))])", "(;x, y)" => "NamedTupleExpr([NamedValue(:x, Variable(:x)), NamedValue(:y, Variable(:y))])", "(;x.x, x.y)" => "NamedTupleExpr([NamedValue(:x, GetProperty(Variable(:x), :x)), NamedValue(:y, GetProperty(Variable(:x), :y))])", "(x..., )" => "TupleExpr([Splat(Variable(:x))])", "(x=y, z...)" => "NamedTupleExpr([NamedValue(:x, Variable(:y)), SplattedNamedValue(Variable(:z))])" ], :string => [ "\"hello \$world today\"" => "StringInterpolate([\"hello \", Variable(:world), \" today\"])", "\"hello \$(\"inner \$string here \$bar\") today\"" => "StringInterpolate([\"hello \", StringInterpolate([\"inner \", Variable(:string), \" here \", Variable(:bar)]), \" today\"])" ], :(::) => [ "::Int" => ErrorResult(), "a::Int" => "TypeAssert(Variable(:a), Variable(:Int))", "(a,b)::Tuple{Int, Int}" => "TypeAssert(TupleExpr([Variable(:a), Variable(:b)]), CallCurly(Variable(:Tuple), [Variable(:Int), Variable(:Int)]))" ], :if => [ "if a; b end" => "IfStmt([IfClause(Variable(:a), Block([Variable(:b)]))])", "if a; end" => "IfStmt([IfClause(Variable(:a), Block([]))])", "if a; b else c end" => "IfStmt([IfClause(Variable(:a), Block([Variable(:b)])), IfClause(nothing, Block([Variable(:c)]))])", "if a; b elseif c; d end" => "IfStmt([IfClause(Variable(:a), Block([Variable(:b)])), IfClause(Variable(:c), Block([Variable(:d)]))])", "if a; b elseif c; d else f end" => "IfStmt([IfClause(Variable(:a), Block([Variable(:b)])), IfClause(Variable(:c), Block([Variable(:d)])), IfClause(nothing, Block([Variable(:f)]))])" ], :while => [ "while true end" => "WhileStmt(Literal(true), Block([]))", "while true 2+3 end" => "WhileStmt(Literal(true), Block([FunCall(Variable(:+), [PositionalArg(Literal(2)), PositionalArg(Literal(3))], [])]))", ], :break => [ "break" => ErrorResult(), "while true; break end" => "WhileStmt(Literal(true), Block([BreakStmt()]))", "for i=1:10; break end" => "ForStmt([IdentifierAssignment(:i) => FunCall(Variable(:(:)), [PositionalArg(Literal(1)), PositionalArg(Literal(10))], [])], Block([BreakStmt()]))", "for i=1:10; if true break end end" => "ForStmt([IdentifierAssignment(:i) => FunCall(Variable(:(:)), [PositionalArg(Literal(1)), PositionalArg(Literal(10))], [])], Block([IfStmt([IfClause(Literal(true), Block([BreakStmt()]))])]))", "while break; 2 end" => "WhileStmt(BreakStmt(), Block([Literal(2)]))", "for i in [break;] 2 end" => "ForStmt([IdentifierAssignment(:i) => VCat(nothing, [BreakStmt()])], Block([Literal(2)]))" ], :iterators => [ "1:10" => "FunCall(Variable(:(:)), [PositionalArg(Literal(1)), PositionalArg(Literal(10))], [])", "1:10:5" => "FunCall(Variable(:(:)), [PositionalArg(Literal(1)), PositionalArg(Literal(10)), PositionalArg(Literal(5))], [])", ], :continue => [ "continue" => ErrorResult() "while true; continue end" => "WhileStmt(Literal(true), Block([ContinueStmt()]))" ], :for => [ "for x in y; end" => "ForStmt([IdentifierAssignment(:x) => Variable(:y)], Block([]))", "for x in y; w end" => "ForStmt([IdentifierAssignment(:x) => Variable(:y)], Block([Variable(:w)]))", "for x in y, z in l; w end" => "ForStmt([IdentifierAssignment(:x) => Variable(:y), IdentifierAssignment(:z) => Variable(:l)], Block([Variable(:w)]))", "for outer x in y; w end" => "ForStmt([OuterIdentifierAssignment(:x) => Variable(:y)], Block([Variable(:w)]))", "for outer x in y, z in l; w end" => "ForStmt([OuterIdentifierAssignment(:x) => Variable(:y), IdentifierAssignment(:z) => Variable(:l)], Block([Variable(:w)]))" ], :update => [ "x += y" => "Update(:+=, IdentifierAssignment(:x), Variable(:y))", "x %= y" => "Update(:%=, IdentifierAssignment(:x), Variable(:y))", "x \$= y" => "Update(:\$=, IdentifierAssignment(:x), Variable(:y))", "x ≕ y" => "Update(:≕, IdentifierAssignment(:x), Variable(:y))", "x ⩴ y" => "Update(:⩴, IdentifierAssignment(:x), Variable(:y))", "(x, y) += z" => "Update(:+=, TupleAssignment([IdentifierAssignment(:x), IdentifierAssignment(:y)]), Variable(:z))", "x .+= y" => "BroadcastUpdate(:+=, Variable(:x), Variable(:y))", "(x, y) .+= z" => "BroadcastUpdate(:+=, TupleExpr([Variable(:x), Variable(:y)]), Variable(:z))", "x.y += z" => "Update(:+=, FieldAssignment(Variable(:x), :y), Variable(:z))" ], :vect => [ "[1,2,3]" => "Vect([Literal(1), Literal(2), Literal(3)])", "[1,2,x...]" => "Vect([Literal(1), Literal(2), Splat(Variable(:x))])", "[1,2,x...,5]" => "Vect([Literal(1), Literal(2), Splat(Variable(:x)), Literal(5)])", "[a=1, 2]" => ErrorResult(), "[1, 2; 3]" => ErrorResult(), "[1, 2; x=y]" => ErrorResult() ], :vcat => [ "[1 2;4 5]" => "VCat(nothing, [Row([Literal(1), Literal(2)]), Row([Literal(4), Literal(5)])])", "[1 2;4 x=5]" => ErrorResult(), "[1 2;4 x...]" => "VCat(nothing, [Row([Literal(1), Literal(2)]), Row([Literal(4), Splat(Variable(:x))])])" ], :hcat => [ "[1 2 3]" => "HCat(nothing, [Literal(1), Literal(2), Literal(3)])", "[1 2 x...]" => "HCat(nothing, [Literal(1), Literal(2), Splat(Variable(:x))])", "[1 2 x... 5]" => "HCat(nothing, [Literal(1), Literal(2), Splat(Variable(:x)), Literal(5)])", "[a=1 2]" => ErrorResult(), "[1 2; x=y]" => ErrorResult() ], :ncat => [ "[1 ;; 2 ;; 3]" => "NCat(nothing, 2, [Literal(1), Literal(2), Literal(3)])", "[1 ;; 2 ;; 3 ; x = 5]" => ErrorResult(), "[1 ;; 2 ;; 3 ; x...]" => ErrorResult(), "[1 ; 2 ;; 3 ; 4 ;; 5 ; 6]" => "NCat(nothing, 2, [NRow(1, [Literal(1), Literal(2)]), NRow(1, [Literal(3), Literal(4)]), NRow(1, [Literal(5), Literal(6)])])", "[1 ; 2 ;; 3 ; 4 ;;; 5 ; 6 ;; 7 ; 8 ;;; 9 ; 10 ;; 11 ; 12]" => "NCat(nothing, 3, [NRow(2, [NRow(1, [Literal(1), Literal(2)]), NRow(1, [Literal(3), Literal(4)])]), NRow(2, [NRow(1, [Literal(5), Literal(6)]), NRow(1, [Literal(7), Literal(8)])]), NRow(2, [NRow(1, [Literal(9), Literal(10)]), NRow(1, [Literal(11), Literal(12)])])])" ], :typed_vcat => [ "x[1 2;4 5]" => "VCat(Variable(:x), [Row([Literal(1), Literal(2)]), Row([Literal(4), Literal(5)])])" ], :typed_hcat => [ "x[1 2 3]" => "HCat(Variable(:x), [Literal(1), Literal(2), Literal(3)])" ], :typed_ncat => [ "x[1 ;; 2 ;; 3]" => "NCat(Variable(:x), 2, [Literal(1), Literal(2), Literal(3)])" ], :comprehension => [ "[x for x in y]" => "Comprehension(nothing, Generator(Variable(:x), [IterEq(IdentifierAssignment(:x), Variable(:y))]))", "[x for x in y if z]" => "Comprehension(nothing, Generator(Variable(:x), [Filter([IterEq(IdentifierAssignment(:x), Variable(:y))], Variable(:z))]))", "Int[x for x in z, w in l]" => "Comprehension(Variable(:Int), Generator(Variable(:x), [Cartesian([IterEq(IdentifierAssignment(:x), Variable(:z)), IterEq(IdentifierAssignment(:w), Variable(:l))])]))" ], :generator => [ "(return x for x in y)" => ErrorResult(), "(x for a in as)" => "Generator(Variable(:x), [IterEq(IdentifierAssignment(:a), Variable(:as))])", "(x for a = as for b = bs if cond1 for c = cs if cond2)" => "Generator(Variable(:x), [IterEq(IdentifierAssignment(:a), Variable(:as)), Filter([IterEq(IdentifierAssignment(:b), Variable(:bs))], Variable(:cond1)), Filter([IterEq(IdentifierAssignment(:c), Variable(:cs))], Variable(:cond2))])", "(x for a = as if begin cond2 end)" => "Generator(Variable(:x), [Filter([IterEq(IdentifierAssignment(:a), Variable(:as))], Block([Variable(:cond2)]))])", "(a for x in xs if cond)" => "Generator(Variable(:a), [Filter([IterEq(IdentifierAssignment(:x), Variable(:xs))], Variable(:cond))])", "(xy for x in xs for y in ys)" => "Generator(Variable(:xy), [IterEq(IdentifierAssignment(:x), Variable(:xs)), IterEq(IdentifierAssignment(:y), Variable(:ys))])", "(xy for x in xs, y in ys)" => "Generator(Variable(:xy), [Cartesian([IterEq(IdentifierAssignment(:x), Variable(:xs)), IterEq(IdentifierAssignment(:y), Variable(:ys))])])", "(xy for x in xs for y in ys for z in zs)" => "Generator(Variable(:xy), [IterEq(IdentifierAssignment(:x), Variable(:xs)), IterEq(IdentifierAssignment(:y), Variable(:ys)), IterEq(IdentifierAssignment(:z), Variable(:zs))])", "(x for x in xs, y in ys if w)" => "Generator(Variable(:x), [Filter([Cartesian([IterEq(IdentifierAssignment(:x), Variable(:xs)), IterEq(IdentifierAssignment(:y), Variable(:ys))])], Variable(:w))])", ], :struct => [ "struct Foo end" => ErrorResult() ], :abstract => [ "abstract type Foo end" => ErrorResult() ], :primitive => [ "primitive type A 32 end" => ErrorResult() ], :import => [ "import Foo" => ErrorResult() ], :using => [ "using Foo" => ErrorResult() ], :export => [ "export foo" => ErrorResult() ], :module => [ "module Foo end" => ErrorResult() ], :let => [ "let x = y; z end" => "LetBinding(Union{Symbol, Pair{<:LValue, <:Expression}}[IdentifierAssignment(:x) => Variable(:y)], Block([Variable(:z)]))", "let ; z end" => "LetBinding(Union{Symbol, Pair{<:LValue, <:Expression}}[], Block([Variable(:z)]))", "let 2+2; 34 end" => ErrorResult(), "let x() = 3; x() end" => "LetBinding(Union{Symbol, Pair{<:LValue, <:Expression}}[FunctionAssignment(ResolvedName([:x]), [], [], [], nothing) => Literal(3)], Block([FunCall(Variable(:x), [], [])]))", "let x; 2 end" => "LetBinding(Union{Symbol, Pair{<:LValue, <:Expression}}[:x], Block([Literal(2)]))", "let (x, y) = 2; 2 end" => "LetBinding(Union{Symbol, Pair{<:LValue, <:Expression}}[TupleAssignment([IdentifierAssignment(:x), IdentifierAssignment(:y)]) => Literal(2)], Block([Literal(2)]))", "let x::Real = 2; x end" => "LetBinding(Union{Symbol, Pair{<:LValue, <:Expression}}[TypedAssignment(IdentifierAssignment(:x), Variable(:Real)) => Literal(2)], Block([Variable(:x)]))", ], :docstring => [ """ \"\"\" Foo Bar Baz \"\"\" function x() end """ => "MacroExpansion(Docstring(StringInterpolate([\"Foo Bar Baz\\n\"]), FunctionDef(ResolvedName([:x]), [], [], [], nothing, Block([]))))" ], :boolops => [ "a && b" => "FunCall(Variable(:&&), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])", "x && (y = w)" => "FunCall(Variable(:&&), [PositionalArg(Variable(:x)), PositionalArg(Assignment(IdentifierAssignment(:y), Variable(:w)))], [])", "a || b" => "FunCall(Variable(:||), [PositionalArg(Variable(:a)), PositionalArg(Variable(:b))], [])" ], :? => [ "x ? y : z" => "Ternary(Variable(:x), Variable(:y), Variable(:z))" ], :return => [ "return" => "ReturnStmt(nothing)", "return 2" => "ReturnStmt(Literal(2))" ], :literals => [ "true" => "Literal(true)", "false" => "Literal(false)", "'c'" => "Literal('c')", "3" => "Literal(3)", ], :typerel => [ "x <: y" => "FunCall(Variable(:<:), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], [])", "x >: y" => "FunCall(Variable(:>:), [PositionalArg(Variable(:x)), PositionalArg(Variable(:y))], [])" ], :transpose => [ "x'" => "FunCall(Variable(Symbol(\"'\")), [PositionalArg(Variable(:x))], [])" ], :juxtapose => [ "2x" => "FunCall(Variable(:*), [PositionalArg(Literal(2)), PositionalArg(Variable(:x))], [])", "2x + 2y" => "FunCall(Variable(:+), [PositionalArg(FunCall(Variable(:*), [PositionalArg(Literal(2)), PositionalArg(Variable(:x))], [])), PositionalArg(FunCall(Variable(:*), [PositionalArg(Literal(2)), PositionalArg(Variable(:y))], []))], [])" ], :literal => [ "2" => "Literal(2)", "2.0" => "Literal(2.0)", "0b1010" => "Literal(0x0a)", "0x10" => "Literal(0x10)", "0o10" => "Literal(0x08)", "2.f0" => "Literal(2.0f0)", "'h'" => "Literal('h')", #"`h`" => "FunCall(Variable(:*), [PositionalArg(Literal(2)), PositionalArg(Variable(:x))], [])" TODO ] ] toplevel_tests() = [ :struct => [ "struct Foo end" => "StructDefStmt(:Foo, Symbol[], nothing, [], [])", "struct Foo <: Bar end" => "StructDefStmt(:Foo, Symbol[], Variable(:Bar), [], [])", "struct Foo{X} <: Bar end" => "StructDefStmt(:Foo, [:X], Variable(:Bar), [], [])", "struct Foo{X} <: Bar{X} end" => "StructDefStmt(:Foo, [:X], CallCurly(Variable(:Bar), [Variable(:X)]), [], [])", "struct Foo{X<:Int} <: Bar{X} end" => "StructDefStmt(:Foo, [:X], CallCurly(Variable(:Bar), [Variable(:X)]), [], [])", "struct Foo{X, Y} <: Baz{Y} end" => "StructDefStmt(:Foo, [:X, :Y], CallCurly(Variable(:Baz), [Variable(:Y)]), [], [])", "struct Foo x end" => "StructDefStmt(:Foo, Symbol[], nothing, [StructField(:x, nothing, FIELD_NONE)], [])", "struct Foo x; y end" => "StructDefStmt(:Foo, Symbol[], nothing, [StructField(:x, nothing, FIELD_NONE), StructField(:y, nothing, FIELD_NONE)], [])", "struct Foo x::Int end" => "StructDefStmt(:Foo, Symbol[], nothing, [StructField(:x, Variable(:Int), FIELD_NONE)], [])", "struct Foo x::Int; y::String end" => "StructDefStmt(:Foo, Symbol[], nothing, [StructField(:x, Variable(:Int), FIELD_NONE), StructField(:y, Variable(:String), FIELD_NONE)], [])", "struct Foo const x::Int end" => ErrorResult(), "struct Foo x=3 end" => ErrorResult(), "mutable struct Foo x::Int; const y::String end" => "StructDefStmt(:Foo, Symbol[], nothing, [StructField(:x, Variable(:Int), FIELD_NONE), StructField(:y, Variable(:String), FIELD_CONST)], [])" ], :abstract => [ "abstract type Foo end" => "AbstractDefStmt(:Foo, Symbol[], nothing)", "abstract type Foo <: Bar end" => "AbstractDefStmt(:Foo, Symbol[], Variable(:Bar))", "abstract type Foo{X} <: Bar end" => "AbstractDefStmt(:Foo, [:X], Variable(:Bar))", "abstract type Foo{X} <: Bar{X} end" => "AbstractDefStmt(:Foo, [:X], CallCurly(Variable(:Bar), [Variable(:X)]))", "abstract type Foo{X<:Int} <: Bar{X} end" => "AbstractDefStmt(:Foo, [:X], CallCurly(Variable(:Bar), [Variable(:X)]))", "abstract type Foo{X, Y} <: Baz{Y} end" => "AbstractDefStmt(:Foo, [:X, :Y], CallCurly(Variable(:Baz), [Variable(:Y)]))", "abstract type A end" => "AbstractDefStmt(:A, Symbol[], nothing)", "abstract type A ; end" => "AbstractDefStmt(:A, Symbol[], nothing)", "abstract type A <: B end" => "AbstractDefStmt(:A, Symbol[], Variable(:B))", "abstract type A <: B{T,S} end" => "AbstractDefStmt(:A, Symbol[], CallCurly(Variable(:B), [Variable(:T), Variable(:S)]))", "abstract type A < B end" => ErrorResult() ], :primitive => [ "primitive type A 32 end" => "PrimitiveDefStmt(:A, Symbol[], nothing, Literal(32))", "primitive type A 32 ; end" => "PrimitiveDefStmt(:A, Symbol[], nothing, Literal(32))", "primitive type A <: B \n 8 \n end" => "PrimitiveDefStmt(:A, Symbol[], Variable(:B), Literal(8))" ], :import => [ "import Foo" => "ImportStmt([Dep(ImportId(:Foo))])", "import Foo: bar" => "SourceImportStmt(ImportId(:Foo), [Dep(ImportId(:bar))])", "import Foo.bar: baz" => "SourceImportStmt(ImportField(ImportId(:Foo), :bar), [Dep(ImportId(:baz))])", "import Foo.bar" => "ImportStmt([Dep(ImportField(ImportId(:Foo), :bar))])", "import Foo: baz, bing" => "SourceImportStmt(ImportId(:Foo), [Dep(ImportId(:baz)), Dep(ImportId(:bing))])", "import ..Foo" => "ImportStmt([Dep(ImportField(ImportRelative(2), :Foo))])", "import ..Foo, ..Baz" => "ImportStmt([Dep(ImportField(ImportRelative(2), :Foo)), Dep(ImportField(ImportRelative(2), :Baz))])", "import ..Foo: Baz" => "SourceImportStmt(ImportField(ImportRelative(2), :Foo), [Dep(ImportId(:Baz))])", "import Foo: baz as Bar, b.bar" => "SourceImportStmt(ImportId(:Foo), [AliasDep(ImportId(:baz), :Bar), Dep(ImportField(ImportId(:b), :bar))])", "import Foo as Bar" => "ImportStmt([AliasDep(ImportId(:Foo), :Bar)])", "import Foo as Bar, Bar as Baz" => "ImportStmt([AliasDep(ImportId(:Foo), :Bar), AliasDep(ImportId(:Bar), :Baz)])", "import Foo.Bar + 2" => ErrorResult(), "import Foo.@baz" => "ImportStmt([Dep(ImportField(ImportId(:Foo), Symbol(\"@baz\")))])", "import Foo: @baz" => "SourceImportStmt(ImportId(:Foo), [Dep(ImportId(Symbol(\"@baz\")))])", "import Foo.Bar: @baz" => "SourceImportStmt(ImportField(ImportId(:Foo), :Bar), [Dep(ImportId(Symbol(\"@baz\")))])", "import Foo: ..Bar" => ErrorResult(), "import Foo: ..Bar as Baz" => ErrorResult() ], :using => [ "using Foo" => "UsingStmt([ImportId(:Foo)])", "using Foo, Bar" => "UsingStmt([ImportId(:Foo), ImportId(:Bar)])", "using Foo, ..Bar" => "UsingStmt([ImportId(:Foo), ImportField(ImportRelative(2), :Bar)])", "using Foo: bar" => "SourceUsingStmt(ImportId(:Foo), [Dep(ImportId(:bar))])", "using Foo.bar: baz" => "SourceUsingStmt(ImportField(ImportId(:Foo), :bar), [Dep(ImportId(:baz))])", "using Foo.bar" => "UsingStmt([ImportField(ImportId(:Foo), :bar)])", "using Foo: baz, bing" => "SourceUsingStmt(ImportId(:Foo), [Dep(ImportId(:baz)), Dep(ImportId(:bing))])", "using ..Foo" => "UsingStmt([ImportField(ImportRelative(2), :Foo)])", "using Foo: baz as Bar, b.bar" => "SourceUsingStmt(ImportId(:Foo), [AliasDep(ImportId(:baz), :Bar), Dep(ImportField(ImportId(:b), :bar))])", "using Foo: ..Bar" => ErrorResult(), "using Foo: ..Bar as Baz" => ErrorResult(), "using ..Foo, ..Bar" => "UsingStmt([ImportField(ImportRelative(2), :Foo), ImportField(ImportRelative(2), :Bar)])" ], :export => [ "export foo" => "ExportStmt([:foo])", "export foo, bar, baz" => "ExportStmt([:foo, :bar, :baz])" ], :module => [ "module Foo end" => "ModuleStmt(true, :Foo, [])", "module Foo module Bar end end" => "ModuleStmt(true, :Foo, [ModuleStmt(true, :Bar, [])])", "function f() module Foo module Bar end end end" => ErrorResult(), "baremodule Foo end" => "ModuleStmt(false, :Foo, [])" ], :inline => [ "@inline function foobarbaz() end" => "ExprStmt(FunctionDef(ResolvedName([:foobarbaz]), [], [], [], nothing, Block([])))" "function foo() @inline function bar() end end" => "ExprStmt(FunctionDef(ResolvedName([:foo]), [], [], [], nothing, Block([FunctionDef(ResolvedName([:bar]), [], [], [], nothing, Block([]))])))" ], :noinline => [ "@noinline function foobarbaz() end" => "ExprStmt(FunctionDef(ResolvedName([:foobarbaz]), [], [], [], nothing, Block([])))" "function foo() @noinline function bar() end end" => "ExprStmt(FunctionDef(ResolvedName([:foo]), [], [], [], nothing, Block([FunctionDef(ResolvedName([:bar]), [], [], [], nothing, Block([]))])))" ], :other_macros => [ "@assume_effects :consistent function foobarbaz() end" => "ExprStmt(FunctionDef(ResolvedName([:foobarbaz]), [], [], [], nothing, Block([])))" "if @generated; 2 else 3 end" => "ExprStmt(IfStmt([IfClause(Literal(true), Block([Literal(2)])), IfClause(nothing, Block([Literal(3)]))]))" ], :docstring => [ """ \"\"\" Foo Bar Baz \"\"\" function x() end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"Foo Bar Baz\\n\"]), ExprStmt(FunctionDef(ResolvedName([:x]), [], [], [], nothing, Block([])))))", """ \"\"\" ... \"\"\" const a = 1 """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ExprStmt(Declaration([VarDecl(IdentifierAssignment(:a), Literal(1), DECL_CONST)]))))", """ \"\"\" ... \"\"\" global a = 1 """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ExprStmt(Declaration([VarDecl(IdentifierAssignment(:a), Literal(1), DECL_GLOBAL)]))))", """ \"\"\" ... \"\"\" baremodule M end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ModuleStmt(false, :M, [])))", """ \"\"\" ... \"\"\" module M end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ModuleStmt(true, :M, [])))", """ \"\"\" ... \"\"\" abstract type T1 end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), AbstractDefStmt(:T1, Symbol[], nothing)))", """ \"\"\" ... \"\"\" mutable struct T2 end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), StructDefStmt(:T2, Symbol[], nothing, [], [])))", """ \"\"\" ... \"\"\" struct T3 end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), StructDefStmt(:T3, Symbol[], nothing, [], [])))", """ \"\"\" ... \"\"\" macro m(x) end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ExprStmt(MacroDef(ResolvedName([:m]), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], nothing, Block([])))))", """ \"\"\" ... \"\"\" f(x) = x """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ExprStmt(Assignment(FunctionAssignment(ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], [], nothing), Variable(:x)))))", """ \"\"\" ... \"\"\" function f(x) x end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ExprStmt(FunctionDef(ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], [], nothing, Block([Variable(:x)])))))", """ \"\"\" ... \"\"\" f(x) """ => "MacroExpansionStmt(CallDocstring(StringInterpolate([\"...\\n\"]), ResolvedName([:f]), [FnArg(IdentifierAssignment(:x), nothing, nothing)], [], [], nothing))", """ \"\"\" ... \"\"\" function f end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"...\\n\"]), ExprStmt(FunctionDef(ResolvedName([:f]), [], [], [], nothing, nothing))))", """ \"\"\" ... \$testme end \"\"\" function f end """ => "MacroExpansionStmt(Docstring(StringInterpolate([\"... \", Variable(:testme), \" end\\n\"]), ExprStmt(FunctionDef(ResolvedName([:f]), [], [], [], nothing, nothing))))", """ \"\"\" ... \$testme end \"\"\" foo(bar::baz)::bing """ => "MacroExpansionStmt(CallDocstring(StringInterpolate([\"... \", Variable(:testme), \" end\\n\"]), ResolvedName([:foo]), [FnArg(IdentifierAssignment(:bar), nothing, Variable(:baz))], [], [], Variable(:bing)))", """ \"\"\" ... \$testme end \"\"\" foo(bar::baz)::bing where Bar """ => "MacroExpansionStmt(CallDocstring(StringInterpolate([\"... \", Variable(:testme), \" end\\n\"]), ResolvedName([:foo]), [FnArg(IdentifierAssignment(:bar), nothing, Variable(:baz))], [], [], WhereType(Variable(:bing), [TyVar(:Bar, nothing, nothing)])))", """ \"\"\" ... testme end \"\"\" foo(bar; baz::Int = 2) """ => "MacroExpansionStmt(CallDocstring(StringInterpolate([\"... testme end\\n\"]), ResolvedName([:foo]), [FnArg(IdentifierAssignment(:bar), nothing, nothing)], [KwArg(:baz, Variable(:Int), Literal(2), false)], [], nothing))", """ \"\"\" ... testme end \"\"\" foo(bar; baz::Int = 2)::Int """ => "MacroExpansionStmt(CallDocstring(StringInterpolate([\"... testme end\\n\"]), ResolvedName([:foo]), [FnArg(IdentifierAssignment(:bar), nothing, nothing)], [KwArg(:baz, Variable(:Int), Literal(2), false)], [], Variable(:Int)))" ] ] @testset "Statement tests" begin @testset "$head" for (head, test_specs) in toplevel_tests() @testset "$input" for (input, output) in test_specs if output isa ErrorResult @test_throws ASTException expand_toplevel(childof(JuliaSyntax.parseall(SN, input), 1), ExpandCtx(true, false)) else @test string(expand_toplevel(childof(JuliaSyntax.parseall(SN, input), 1), ExpandCtx(true, false))) == output end end end end @testset "Expression tests" begin @testset "$head" for (head, test_specs) in expr_tests() @testset "$input" for (input, output) in test_specs if output isa ErrorResult @test_throws ASTException expand_forms(childof(JuliaSyntax.parseall(SN, input), 1), ExpandCtx(true, false)) @test string(expand_forms(childof(JuliaSyntax.parseall(SN, input), 1), ExpandCtx(true, false; error_context=SemanticAST.SilentErrorReporting()))) != nothing else ast = expand_forms(childof(JuliaSyntax.parseall(SN, input), 1), ExpandCtx(true, false)) SemanticAST.visit((x) -> nothing, y->nothing, ast) @test string(ast) == output end end end end
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
docs
6719
# SemanticAST [![](https://img.shields.io/badge/docs-latest-blue.svg)](https://benchung.github.io/SemanticAST.jl/dev) SemanticAST.jl aims to provide a unified view of Julia's AST by reproducing much of the logic that the [lowering](https://docs.julialang.org/en/v1/devdocs/eval/#dev-parsing) phase does. Many of the more structural errors that Julia produces (for example how a toplevel `::Int` declaration begets `syntax: invalid "::" syntax`) are not actually produced by the parser but instead by a later lowering phase. In effect, lowering (in conjunction with macro expansion) defines all of the Julia AST forms that can be successfully compiled to executable runtime code. If it can be lowered, it will at least *attempt* to execute. `Expr` ASTs are notoriously annoying to deal with to the point that packages like [ExprTools](https://github.com/invenia/ExprTools.jl) are widely used to analyze what's actually there. `Expr`s will come in all sorts of wild and wonderful forms and having a library to deal with all of the possible cases is a great help. However, ExprTools only goes so far: it solely provides a consistent representation of function definitions. SemanticAST aims to go further. SemanticAST aims to extend this sort of "rationalization" to all of Julia's syntax; it provides a single set of AST definitions that explicitly declare every parameter and are descriptive about what their fields mean. Moreover, SemanticAST's types try to be complete --- that is, you can use the type of a field in a SemanticAST struct to determine precisely what any possible member might be. Additionally, by sitting on top of JuliaSyntax, SemanticAST provides detailed source location information both in the output AST and in the lowering-equivalent error messages that SemanticAST produces The objective, then, is to eliminate the surprise inherent to working with Julia's AST forms, allowing easier development of static analysis tooling for Julia. The implementation strategy for SemanticAST is to bring together lowering, parts of toplevel evaluation, and parts of the Julia runtime itself to identify as many errors as early as possible. Ideally, SemanticAST will accept any program that is "runnable" by Julia, even if it might encounter a dynamic error. Errors produced by SemanticAST aim to parallel errors produced by Julia itself as it goes to compile a given `Expr` to IR, as well as parts of evaluation of that IR. # Use SemanticAST's entry points are through the `expand_forms` and `expand_toplevel` functions; given a `JuliaSyntax.SyntaxNode` and a `ExpandCtx` they will attempt to unpack a `SyntaxNode` into a `SemanticAST.Expression` and `SemanticAST.ToplevelStmts`, respectively. Note that SemanticAST AST forms all contain a `location` field that's implicitly inserted by the `@ast_node` and `@ast_data` macros that is of type `SemanticAST.SourcePosition`. As an example, suppose we wanted to analyze the program `hello_world.jl` that looked like ``` function hello_world() println("hello world!") end ``` the complete analysis program would look like: ``` using JuliaSyntax, SemanticAST filename = "hello_world.jl" source_tree = parsestmt(SyntaxNode, read(filename, String), filename=filename) semantic_tree = expand_toplevel(source_tree) ``` that's it! ## Limitation: Macros At present SemanticAST tries to cover much of "basic" Julia - but there's a major fly in the ointment: macros. Macros are challenging for the SemanticAST approach because they can accept non-standard Julia `Expr`s and then both produce unusual `Expr` forms as well as use a wide range of forms not otherwise produced by parsing. As SemanticAST sits on top of JuliaSyntax and only understands JuliaSyntax `SyntaxNode`s it cannot practically run macros directly as while a `SyntaxNode` can be converted to an `Expr` vice versa is not possible without loss of information. Thus, at present, macro invocations are simply replaced with a placeholder. There's limited hardcoded support for a small list of built-in macros and an extension mechanism, but no more. There are two macro extension points in the analyzer: `resolve_toplevel_macro(ast::SyntaxNode, ::MacroContext, ::Val{Symbol}, args::Vector{SyntaxNode}, ctx::ExpandCtx)::ToplevelStmts` and `resolve_macro(ast, ::MacroContext, ::Val{Symbol}, args, ctx)::Expression`. Both share the same signature: * `ast`: The SyntaxNode root of the macro invocation. * `MacroContext`: The context with which to resolve macros in. Implement a new `MacroContext` by implementing `resolve_toplevel_macro` and `resolve_macro` that accept it; the provided one is `DefaultMacroContext`. * `Val{Symbol}`: The macro's name (in `Val` form). * `args`: The SyntaxNodes that represent the arguments to the macro. * `ctx`: The expansion context inside which the analysis is being done. They differ in that `resolve_toplevel_macro` returns a `TopLevelStmts` (a statement that can only exist at the top level), while `resolve_macro` returns an `Expression`. An example of how to write a macro analyzer can be seen in the default implementation for `@inline` and `@noinline`: ``` resolve_macro(ast, ::DefaultMacroContext, ::Union{Val{Symbol("@inline")}, Val{Symbol("@noinline")}, Val{Symbol("@inbounds")}}, args, ctx) = expand_forms(args[1], ctx) ``` From the perspective of the default analyzer `@inline` and `@noinline` are no-ops, so analysis continues by simply calling back into `expand_forms` on the first argument. ## Limitation: Quoting While SemanticAST will not *choke* on quotes, it won't interpret them intelligently. Quotes are seen as a big blob of `Expr`, *including unquotes*. # State SemanticAST is part of the implementation of [my thesis on typing Julia](https://benchung.github.io/papers/thesis.pdf) and its current implementation was designed specifically to fit the needs of a type system. As a result, it is missing a number of features that might be interesting. Two that I think would be interesting are: * The ability to analyze normal `Exprs` and not only JuliaSyntax nodes. This could be accomplished by extending the custom patterns to support `Expr`s, and would allow SemanticAST to be used after macro expansion (or as part of normal Julia macro implementations) when combined with * Support for semantic forms that don't result from parsing. My goal was to support parser output but macros are allowed to use a larger `Expr` language. As a result, analyzing post-expansion `Expr`s is not possible. Be warned, this project is currently academic software. It might break, have obvious bugs, and otherwise have weird and unexpected issues. Moreover, the `ASTNode` language is not stable: it may change unexpectedly in future releases.
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
docs
5005
# SemanticAST SemanticAST.jl aims to provide a unified view of Julia's AST by reproducing much of the logic that the [lowering](https://docs.julialang.org/en/v1/devdocs/eval/#dev-parsing) phase does. Many of the more structural errors that Julia produces (for example how a toplevel `::Int` declaration begets `syntax: invalid "::" syntax`) are not actually produced by the parser but instead by a later lowering phase. In effect, lowering (in conjunction with macro expansion) defines all of the Julia AST forms that can be successfully compiled to executable runtime code. If it can be lowered, it will at least *attempt* to execute. `Expr` ASTs are notoriously annoying to deal with to the point that packages like [ExprTools](https://github.com/invenia/ExprTools.jl) are widely used to analyze what's actually there. `Expr`s will come in all sorts of wild and wonderful forms and having a library to deal with all of the possible cases is a great help. However, ExprTools only goes so far: it solely provides a consistent representation of function definitions. SemanticAST aims to go further. SemanticAST aims to extend this sort of "rationalization" to all of Julia's syntax; it provides a single set of AST definitions that explicitly declare every parameter and are descriptive about what their fields mean. Moreover, SemanticAST's types try to be complete --- that is, you can use the type of a field in a SemanticAST struct to determine precisely what any possible member might be. Additionally, by sitting on top of JuliaSyntax, SemanticAST provides detailed source location information both in the output AST and in the lowering-equivalent error messages that SemanticAST produces The objective, then, is to eliminate the surprise inherent to working with Julia's AST forms, allowing easier development of static analysis tooling for Julia. The implementation strategy for SemanticAST is to bring together lowering, parts of toplevel evaluation, and parts of the Julia runtime itself to identify as many errors as early as possible. Ideally, SemanticAST will accept any program that is "runnable" by Julia, even if it might encounter a dynamic error. Errors produced by SemanticAST aim to parallel errors produced by Julia itself as it goes to compile a given `Expr` to IR, as well as parts of evaluation of that IR. ```@contents ``` # Use SemanticAST's entry points are through the `expand_forms` and `expand_toplevel` functions; given a `JuliaSyntax.SyntaxNode` and a `ExpandCtx` they will attempt to unpack a `SyntaxNode` into a `SemanticAST.Expression` and `SemanticAST.ToplevelStmts`, respectively. Note that SemanticAST AST forms all contain a `location` field that's implicitly inserted by the `@ast_node` and `@ast_data` macros that is of type `SemanticAST.SourcePosition`. As an example, suppose we wanted to analyze the program `hello_world.jl` that looked like ``` function hello_world() println("hello world!") end ``` the complete analysis program would look like: ``` using JuliaSyntax, SemanticAST filename = "hello_world.jl" source_tree = parsestmt(SyntaxNode, read(filename, String), filename=filename) semantic_tree = expand_toplevel(source_tree) ``` that's it! ## Limitation: Macros At present SemanticAST tries to cover much of "basic" Julia - but there's a major fly in the ointment: macros. Macros are challenging for the SemanticAST approach because they can accept non-standard Julia `Expr`s and then both produce unusual `Expr` forms as well as use a wide range of forms not otherwise produced by parsing. As SemanticAST sits on top of JuliaSyntax and only understands JuliaSyntax `SyntaxNode`s it cannot practically run macros directly as while a `SyntaxNode` can be converted to an `Expr` vice versa is not possible without loss of information. Thus, at present, macro invocations are simply replaced with a placeholder. There's limited hardcoded support for a small list of built-in macros and an extension mechanism, but no more. ## Limitation: Quoting While SemanticAST will not *choke* on quotes, it won't interpret them intelligently. Quotes are seen as a big blob of `Expr`, *including unquotes*. # State SemanticAST is part of the implementation of [my thesis on typing Julia](https://benchung.github.io/papers/thesis.pdf) and its current implementation was designed specifically to fit the needs of a type system. As a result, it is missing a number of features that might be interesting. Two that I think would be interesting are: * The ability to analyze normal `Exprs` and not only JuliaSyntax nodes. This could be accomplished by extending the custom patterns to support `Expr`s, and would allow SemanticAST to be used after macro expansion (or as part of normal Julia macro implementations) when combined with * Support for semantic forms that don't result from parsing. My goal was to support parser output but macros are allowed to use a larger `Expr` language. As a result, analyzing post-expansion `Expr`s is not possible.
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "Apache-2.0" ]
0.1.1
c408f08bc3bf6f86c5297a357e743276c7e69db7
docs
407
SemanticAST parses a `SyntaxNode` as provided by JuliaSyntax into its internal `ASTNode` structures for use by downstream analyses. This process is performed by one of two methods: `expand_forms` and `expand_toplevel`. ```@meta CurrentModule = SemanticAST ``` ```@docs expand_forms expand_toplevel ExpandCtx ErrorReporting ExceptionErrorReporting SilentErrorReporting MacroContext DefaultMacroContext ```
SemanticAST
https://github.com/BenChung/SemanticAST.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1174
using Documenter using Literate using AutomotiveSimulator # generate tutorials and how-to guides using Literate src = joinpath(@__DIR__, "src") lit = joinpath(@__DIR__, "lit") notebooks = joinpath(src, "notebooks") for (root, _, files) in walkdir(lit), file in files splitext(file)[2] == ".jl" || continue ipath = joinpath(root, file) opath = splitdir(replace(ipath, lit=>src))[1] Literate.markdown(ipath, opath, documenter = true) Literate.notebook(ipath, notebooks, execute = false) end makedocs( modules = [AutomotiveSimulator], format = Documenter.HTML(), sitename="AutomotiveSimulator.jl", pages=[ "Home" => "index.md", "Tutorials" => [ "tutorials/straight_roadway.md", "tutorials/stadium.md", "tutorials/intersection.md", "tutorials/crosswalk.md", "tutorials/sidewalk.md", "tutorials/feature_extraction.md" ], "Manual" => [ "Roadways.md", "actions.md", "states.md", "agent_definitions.md", "behaviors.md", "simulation.md", "collision_checkers.md", "feature_extraction.md" ], "Internals" =>[ "Vec.md" ] ] ) deploydocs( repo = "github.com/sisl/AutomotiveSimulator.jl.git", )
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5229
# # Crosswalk #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/notebooks/crosswalk.ipynb) # In this notebook we demonstrate how to define a crosswalk with pedestrians using `AutomotiveSimulator`. # To do this, we define a crosswalk area as well as a pedestrian agent type. # ## Generate a crosswalk environment # We define a new concrete type that will contain the roadway (where cars drive) # and the crosswalk definition which is just a regular lane. using AutomotiveSimulator using AutomotiveVisualization AutomotiveVisualization.colortheme["background"] = colorant"white"; # hide using Random struct CrosswalkEnv roadway::Roadway{Float64} crosswalk::Lane{Float64} end # The crosswalk lane consists of a straight road segment perpendicular to the road. # We will define the roadway just as a straight road. # geometry parameters roadway_length = 50. crosswalk_length = 20. crosswalk_width = 6.0 crosswalk_pos = roadway_length/2 # Generate a straight 2-lane roadway and a crosswalk lane roadway = gen_straight_roadway(2, roadway_length) crosswalk_start = VecE2(crosswalk_pos, -crosswalk_length/2) crosswalk_end = VecE2(crosswalk_pos, crosswalk_length/2) crosswalk_lane = gen_straight_curve(crosswalk_start, crosswalk_end, 2) crosswalk = Lane(LaneTag(2,1), crosswalk_lane, width = crosswalk_width) cw_segment = RoadSegment(2, [crosswalk]) push!(roadway.segments, cw_segment) # append it to the roadway # initialize crosswalk environment env = CrosswalkEnv(roadway, crosswalk) #md nothing # hide # **Render the crosswalk** # We will define a new method to render this new environment. # The roadway part is just rendered regularly, we add specific instuction # for the crosswalk part that will display the white stripes. using Cairo function AutomotiveVisualization.add_renderable!(rendermodel::RenderModel, env::CrosswalkEnv) ## render the road without the crosswalk roadway = gen_straight_roadway(2, roadway_length) add_renderable!(rendermodel, roadway) ## render crosswalk curve = env.crosswalk.curve n = length(curve) pts = Array{Float64}(undef, 2, n) for (i,pt) in enumerate(curve) pts[1,i] = pt.pos.x pts[2,i] = pt.pos.y end add_instruction!( rendermodel, render_dashed_line, (pts, colorant"white", env.crosswalk.width, 1.0, 1.0, 0.0, Cairo.CAIRO_LINE_CAP_BUTT) ) return rendermodel end snapshot = render([env]) #md write("crosswalk.svg", snapshot) # hide #md # ![crosswalk](crosswalk.svg) # ### Navigate the crosswalk example # Cars will be navigating in the roadway just as before. # For the pedestrian we can define a new vehicle definition where we specify # the size of the bounding box represented by the pedestrian. # field of the VehicleDef type fieldnames(VehicleDef) ## Agent.Class is from AutomotiveSimulator const PEDESTRIAN_DEF = VehicleDef(AgentClass.PEDESTRIAN, 1.0, 1.0) #md nothing # hide # Car definition car_initial_state = VehicleState(VecSE2(5.0, 0., 0.), roadway.segments[1].lanes[1],roadway, 8.0) car = Entity(car_initial_state, VehicleDef(), :car) # Pedestrian definition using our new Vehicle definition ped_initial_state = VehicleState(VecSE2(+24.5,-7.0,π/2), env.crosswalk, roadway, 0.5) ped = Entity(ped_initial_state, PEDESTRIAN_DEF, :pedestrian) scene = Scene([car, ped]) # visualize the initial state snapshot = render([env, scene]) #md write("crosswalk_initial.svg", snapshot) # hide #md # ![initial state of crosswalk](crosswalk_initial.svg) # ### Simulate the scenario # As before, associate a driver model to each vehicle in the scene. # We will use the model defined in the intersection example for both agents. mutable struct LinearDriver <: DriverModel{LaneFollowingAccel} a::LaneFollowingAccel p::Float64 # confidence on the pedestrian intention k::Float64 # gain end function AutomotiveSimulator.observe!(model::LinearDriver, scene::Scene, roadway::Roadway, egoid) model.a = LaneFollowingAccel(model.k*model.p) ## change the confidence based on some policy ## you can get the position of the pedestrian from the scene model.p = 100.0 end Base.rand(rng::AbstractRNG, model::LinearDriver) = model.a timestep = 0.1 nticks = 50 ## define a model for each entities present in the scene models = Dict{Symbol, DriverModel}() ## Constant speed model models[:car] = LinearDriver(LaneFollowingAccel(0.0), 20.0, -0.02) models[:pedestrian] = IntelligentDriverModel(v_des=1.0) ## execute the simulation scenes = simulate(scene, roadway, models, nticks, timestep) #md nothing # hide # ## Generate a video with Reel.jl using Reel function animate_record(scenes::Vector{Scene{E}},dt::Float64, env::CrosswalkEnv) where {E<:Entity} duration = length(scenes)*dt::Float64 fps = Int(1/dt) function render_rec(t, dt) frame_index = Int(floor(t/dt)) + 1 return render([env, scenes[frame_index]]) end return duration, fps, render_rec end duration, fps, render_hist = animate_record(scenes, timestep, env) film = roll(render_hist, fps=fps, duration=duration) #md write("crosswalk_animated.gif", film) # hide #md nothing # hide #md # ![animated crosswalk](crosswalk_animated.gif)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3146
# # Feature Extraction #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/notebooks/feature_extraction.ipynb) # In this example we demonstrate how to extract feature from trajectories using AutomotiveSimulator # **Load a Dataset** # First let's create a synthetic dataset. using AutomotiveSimulator using AutomotiveVisualization AutomotiveVisualization.colortheme["background"] = colorant"white"; # hide using Random roadway = roadway = gen_straight_roadway(3, 1000.0) veh_state = VehicleState(Frenet(roadway[LaneTag(1,2)], 0.0), roadway, 10.) veh1 = Entity(veh_state, VehicleDef(), "bob") veh_state = VehicleState(Frenet(roadway[LaneTag(1,2)], 20.0), roadway, 2.) veh2 = Entity(veh_state, VehicleDef(), "alice") dt = 0.5 n_steps = 10 models = Dict{String, DriverModel}() models["bob"] = Tim2DDriver(mlane=MOBIL()) set_desired_speed!(models["bob"], 10.0) models["alice"] = Tim2DDriver(mlane=MOBIL()) set_desired_speed!(models["alice"], 2.0) scene = Scene([veh1, veh2]) scenes = simulate(scene, roadway, models, n_steps, dt) camera = SceneFollowCamera() update_camera!(camera, scene) snapshot = render([roadway, scene], camera=camera) #md write("feature_initial.svg", snapshot) # hide #md # ![initial state of feature extraction scenario](feature_initial.svg) #md nothing # hide # One can also load the data from the Stadium tutorial #md load data from stadium tutorial #md scenes = open("2Dstadium_listrec.txt", "r") do io #md read(io, Vector{EntityScene{VehicleState, VehicleDef, String}}) #md end # **Extract features from a recorded trajectory** # Recorded trajectories are expected to be vectors of `Scene`s where each element correspond to one time step. # To extract features, one can use the `extract_features` function which takes as input # a list of feature we want to extract and the list of vehicle ids for which we want those features. # For this example, let's first query two features, the longitudinal and lateral position of Bob, and whether or not Bob is colliding: dfs = extract_features((posfs, posft, iscolliding), roadway, scenes, ["bob"]) dfs["bob"] # To query features for all traffic participants we can just add their ID to the list: dfs = extract_features((posfs, posft, iscolliding), roadway, scenes, ["bob", "alice"]) dfs["alice"] # The output is a dictionary mapping ID to dataframes. To learn more about DataFrames visit [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl). # For the list of all possible features available see the documentation. # Features are generally just function. AutomotiveSimulator provides some convenience # to automatically generate feature function like `distance_to_$x` # The `distance_to` function takes as input a vehicle ID and returns a function to extract # the distance between the queried vehicle and the vehicle given to `distance_to` distance_to("alice") # we can use this newly generated funciton in the feature extraction pipeline dfs = extract_features((distance_to_alice, posfs), roadway, scenes, ["bob"]) dfs["bob"].distance_to_alice[1] # distance between Bob and Alice in the first scene.
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
7817
# # Intersection #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/notebooks/intersection.ipynb) # In this example we demonstrate how to define a T-shape intersection with `AutomotiveSimulator`. # You will also learn how to define your own custom action type and driver model type. # ## Generate a T-Shape intersection # In order to generate the road network, we first initialize a Roadway object. using AutomotiveSimulator using AutomotiveVisualization AutomotiveVisualization.colortheme["background"] = colorant"white"; # hide using Random roadway = Roadway() #md nothing # hide # Define coordinates of the entry and exit points to the intersection r = 5.0 # turn radius w = DEFAULT_LANE_WIDTH A = VecSE2(0.0,w,-π) B = VecSE2(0.0,0.0,0.0) C = VecSE2(r,-r,-π/2) D = VecSE2(r+w,-r,π/2) E = VecSE2(2r+w,0,0) F = VecSE2(2r+w,w,-π) #md nothing # hide # The next step consists in appending all the lanes to the road network. # We can define a helper function to add a new lane to the roadway. function append_to_curve!(target::Curve, newstuff::Curve) s_end = target[end].s for c in newstuff push!(target, CurvePt(c.pos, c.s+s_end, c.k, c.kd)) end return target end #md nothing # hide # Example of a lane that consists of 3 road segments, a straight curve # (from the left to the center), a turning part (right turn) and a final # straight curve. # Append right turn coming from the left curve = gen_straight_curve(convert(VecE2, B+VecE2(-100,0)), convert(VecE2, B), 2) append_to_curve!(curve, gen_bezier_curve(B, C, 0.6r, 0.6r, 51)[2:end]) append_to_curve!(curve, gen_straight_curve(convert(VecE2, C), convert(VecE2, C+VecE2(0,-50.0)), 2)) lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) # visualize the current lane constellation snapshot = render([roadway]) #md write("partial_intersection.svg", snapshot) # hide #md # ![partial intersection](partial_intersection.svg) # Let's repeat the process and complete the T-shape intersection # Append straight left curve = gen_straight_curve(convert(VecE2, B+VecE2(-100,0)), convert(VecE2, B), 2) append_to_curve!(curve, gen_straight_curve(convert(VecE2, B), convert(VecE2, E), 2)[2:end]) append_to_curve!(curve, gen_straight_curve(convert(VecE2, E), convert(VecE2, E+VecE2(50,0)), 2)) lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) # Append straight right curve = gen_straight_curve(convert(VecE2, F+VecE2(50,0)), convert(VecE2, F), 2) append_to_curve!(curve, gen_straight_curve(convert(VecE2, F), convert(VecE2, A), 2)[2:end]) append_to_curve!(curve, gen_straight_curve(convert(VecE2, A), convert(VecE2, A+VecE2(-100,0)), 2)) lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) # Append left turn coming from the right curve = gen_straight_curve(convert(VecE2, F+VecE2(50,0)), convert(VecE2, F), 2) append_to_curve!(curve, gen_bezier_curve(F, C, 0.9r, 0.9r, 51)[2:end]) append_to_curve!(curve, gen_straight_curve(convert(VecE2, C), convert(VecE2, C+VecE2(0,-50)), 2)) lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) # Append right turn coming from below curve = gen_straight_curve(convert(VecE2, D+VecE2(0,-50)), convert(VecE2, D), 2) append_to_curve!(curve, gen_bezier_curve(D, E, 0.6r, 0.6r, 51)[2:end]) append_to_curve!(curve, gen_straight_curve(convert(VecE2, E), convert(VecE2, E+VecE2(50,0)), 2)) lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) # Append left turn coming from below curve = gen_straight_curve(convert(VecE2, D+VecE2(0,-50)), convert(VecE2, D), 2) append_to_curve!(curve, gen_bezier_curve(D, A, 0.9r, 0.9r, 51)[2:end]) append_to_curve!(curve, gen_straight_curve(convert(VecE2, A), convert(VecE2, A+VecE2(-100,0)), 2)) lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) snapshot = render([roadway]) #md write("intersection.svg", snapshot) # hide #md # ![intersection](intersection.svg) # We can identify each lane thanks to the following user-defined functions. # We define a `LaneOverlay` object that indicate the lane to highlight. # One could implement any custom type to display other information on the lane. # We then add a new method to the `add_renderable!` function that execute the specific # action (coloring in blue). Look at `AutomotiveVisualization.jl` for more detail on the function # `add_renderable!`. # The following animation iterates over the individual lanes of the intersection # layout and highlights them: struct LaneOverlay roadway::Roadway lane::Lane color::Colorant end function AutomotiveVisualization.add_renderable!(rendermodel::RenderModel, overlay::LaneOverlay) add_renderable!(rendermodel, overlay.lane, overlay.roadway, color_asphalt=overlay.color) end using Reel animation = roll(fps=1.0, duration=length(roadway.segments)) do t, dt i = Int(floor(t/dt)) + 1 renderables = [ roadway, LaneOverlay(roadway, roadway[LaneTag(i,1)], RGBA(0.0,0.0,1.0,0.5)) ] render(renderables) end; #md write("highlighted_lanes.gif", animation) # hide #md nothing # hide #md # ![highlighted lanes](highlighted_lanes.gif) # ## Navigation in the new road network # Let's populate the intersection vs0 = VehicleState(B + polar(50.0,-π), roadway, 8.0) # initial state of the vehicle scene = Scene([Entity(vs0, VehicleDef(), 1)]) snapshot = render([roadway, scene]) #md write("intersection_populated.svg", snapshot) # hide #md # ![populated intersection](intersection_populated.svg) # We will use lateral and longitudinal acceleration to control a car in the intersection. The first step is to define a corresponding action type that will contain the acceleration inputs. struct LaneSpecificAccelLatLon a_lat::Float64 a_lon::Float64 end # Next, add a method to the propagate function to update the state using our new action type. function AutomotiveSimulator.propagate(veh::Entity, action::LaneSpecificAccelLatLon, roadway::Roadway, Δt::Float64) lane_tag_orig = veh.state.posF.roadind.tag state = propagate(veh, LatLonAccel(action.a_lat, action.a_lon), roadway, Δt) roadproj = proj(state.posG, roadway[lane_tag_orig], roadway, move_along_curves=false) retval = VehicleState(Frenet(roadproj, roadway), roadway, state.v) return retval end # **Driver Model:** # We define a driver model, # which can be seen as a distribution over actions. # TODO # Here we will define the simplest model, which is to repeat the same action. struct InterDriver <: DriverModel{LaneSpecificAccelLatLon} a::LaneSpecificAccelLatLon end AutomotiveSimulator.observe!(model::InterDriver, scene::Scene, roadway::Roadway, egoid::Int64) = model Base.rand(::AbstractRNG, model::InterDriver) = model.a # **Simulate:** # First associate a model to each driver in the scene using a dictionary. # Here we only have one driver identified by its ID: 1. # Then everything is ready to run the `simulate!` function. using Reel timestep = 0.1 nticks = 100 vs0 = VehicleState(B + polar(50.0,-π), roadway, 8.0) scene = Scene([Entity(vs0, VehicleDef(), 1)]) models = Dict(1 => InterDriver(LaneSpecificAccelLatLon(0.0,0.0))) scenes = simulate(scene, roadway, models, nticks, timestep) animation = roll(fps=1.0/timestep, duration=nticks*timestep) do t, dt i = Int(floor(t/dt)) + 1 renderables = [roadway, scenes[i]] render(renderables) end #md write("animated_intersection.gif", animation) # hide #md # ![animated intersection](animated_intersection.gif)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
6241
# # Sidewalk #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/notebooks/sidewalk.ipynb) # In this notebook, we will be creating a sidewalk environment in which # pedestrians can walk along the sidewalk and cross the street as cars pass. using Parameters using AutomotiveSimulator using AutomotiveVisualization AutomotiveVisualization.colortheme["background"] = colorant"white"; # hide using Cairo # Define sidewalk IDs const TOP = 1 const BOTTOM = 2 #md nothing # hide # ### Creating the Environment # Here, we create a new type of environment called SidewalkEnv. It consists of a roadway, crosswalk, and sidewalk. A sidewalk is a Vector of Lanes that run alongside the road. @with_kw mutable struct SidewalkEnv roadway::Roadway crosswalk::Lane sidewalk::Vector{Lane} end; #md nothing # hide # #### Defining the Sidewalk # We define the sidewalk's parameters. ## Geometry parameters roadway_length = 100. crosswalk_length = 15. crosswalk_width = 6.0 crosswalk_pos = roadway_length/2 sidewalk_width = 3.0 sidewalk_pos = crosswalk_length/2 - sidewalk_width / 2 #md nothing # hide # Now we create the sidewalk environment. # Our environment will consist of: # * 1-way road with 2 lanes # * Unsignalized zebra crosswalk perpendicular to the road # * Sidewalks above and below the road # Generate straight roadway of length roadway_length with 2 lanes. # Returns a Roadway type (Array of segments). # There is already a method to generate a simple straight roadway, which we use here. roadway = gen_straight_roadway(2, roadway_length) # Generate the crosswalk. # Our crosswalk does not have a predefined method for generation, so we define it with a LaneTag and a curve. n_samples = 2 # for curve generation crosswalk = Lane(LaneTag(2,1), gen_straight_curve(VecE2(crosswalk_pos, -crosswalk_length/2), VecE2(crosswalk_pos, crosswalk_length/2), n_samples), width = crosswalk_width) cw_segment = RoadSegment(2, [crosswalk]) push!(roadway.segments, cw_segment) # Append the crosswalk to the roadway ## Generate the sidewalk top_sidewalk = Lane(LaneTag(3, TOP), gen_straight_curve(VecE2(0., sidewalk_pos), VecE2(roadway_length, sidewalk_pos), n_samples), width = sidewalk_width) bottom_sidewalk = Lane(LaneTag(3, BOTTOM), gen_straight_curve(VecE2(0., -(sidewalk_pos - sidewalk_width)), VecE2(roadway_length, -(sidewalk_pos - sidewalk_width)), n_samples), width = sidewalk_width) # Note: we subtract the sidewalk_width from the sidewalk position so that the edge is flush with the road. sw_segment = RoadSegment(3, [top_sidewalk, bottom_sidewalk]) push!(roadway.segments, sw_segment) # Initialize crosswalk environment env = SidewalkEnv(roadway, crosswalk, [top_sidewalk, bottom_sidewalk]); #md nothing # hide # Since there is no defined `add_renderable!` method for the crosswalk and the sidewalk, we must define it ourselves. function AutomotiveVisualization.add_renderable!(rendermodel::RenderModel, env::SidewalkEnv) ## Render sidewalk for sw in env.sidewalk curve = sw.curve n = length(curve) pts = Array{Float64}(undef, 2, n) for (i,pt) in enumerate(curve) pts[1,i] = pt.pos.x pts[2,i] = pt.pos.y end add_instruction!(rendermodel, render_line, (pts, colorant"grey", sw.width, Cairo.CAIRO_LINE_CAP_BUTT)) end ## Render roadway roadway = gen_straight_roadway(2, roadway_length) add_renderable!(rendermodel, roadway) ## Render crosswalk curve = env.crosswalk.curve n = length(curve) pts = Array{Float64}(undef, 2, n) for (i,pt) in enumerate(curve) pts[1,i] = pt.pos.x pts[2,i] = pt.pos.y end ## We can add render instructions from AutomotiveVisualization. ## Here we want the crosswalk to appear as a white-striped zebra crossing rather than a road. add_instruction!(rendermodel, render_dashed_line, (pts, colorant"white", env.crosswalk.width, 1.0, 1.0, 0.0, Cairo.CAIRO_LINE_CAP_BUTT)) return rendermodel end snapshot = render([env]) #md write("sidewalk.svg", snapshot) # hide #md # ![sidewalk](sidewalk.svg) # Now we can define our pedestrian. # We define its class and the dimensions of its bounding box. const PEDESTRIAN_DEF = VehicleDef(AgentClass.PEDESTRIAN, 1.0, 1.0) #md nothing # hide # We assign models to each agent in the scene. timestep = 0.1 # Crossing pedestrian definition ped_init_state = VehicleState(VecSE2(49.0,-3.0,0.), env.sidewalk[BOTTOM], roadway, 1.3) ped = Entity(ped_init_state, PEDESTRIAN_DEF, :pedestrian) # Car definition car_initial_state = VehicleState(VecSE2(0.0, 0., 0.), roadway.segments[1].lanes[1],roadway, 8.0) car = Entity(car_initial_state, VehicleDef(), :car) scene = Scene([ped, car]) # Define a model for each entity present in the scene models = Dict{Symbol, DriverModel}( :pedestrian => SidewalkPedestrianModel( timestep=timestep, crosswalk=env.crosswalk, sw_origin = env.sidewalk[BOTTOM], sw_dest = env.sidewalk[TOP] ), :car => LatLonSeparableDriver( # produces LatLonAccels ProportionalLaneTracker(), # lateral model IntelligentDriverModel(), # longitudinal model ) ) #md nothing # hide ### Simulate # Finally, we simulate and visualize the scene. using Reel nticks = 300 scenes = simulate(scene, roadway, models, nticks, timestep) animation = roll(fps=1.0/timestep, duration=nticks*timestep) do t, dt i = Int(floor(t/dt)) + 1 render([env, scenes[i]]) end; #md write("sidewalk_animation.gif", animation); # hide #md # ![sidewalk animation](sidewalk_animation.gif) # We can use a slider to scroll through each scene in the simulation. This usually takes less time than rendering a video. #md using Interact #md using Reel #md using Blink #md #md w = Window() #md viz = @manipulate for i in 1 : length(scenes) #md render([env, scenes[i]]) #md end #md body!(w, viz)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
4079
# # Driving in a Stadium #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/notebooks/stadium.ipynb) # This example demonstrates a 2D driving simulation where cars drive around a three-lane stadium. # The entities are defined by the types: # # - `S` - `VehicleState`, containing the vehicle position (both globally and relative to the lane) and speed # - `D` - `VehicleDef`, containing length, width, and class # - `I` - `Symbol`, a unique label for each vehicle # # The environment is represented by a `Roadway` object which # allows to define roads consisting of multiple lanes based on the RNDF format. # We load relevant modules and generate a 3-lane stadium roadway: using AutomotiveSimulator using AutomotiveVisualization AutomotiveVisualization.colortheme["background"] = colorant"white"; # hide using Distributions roadway = gen_stadium_roadway(3) snapshot = render([roadway]) #md write("stadium.svg", snapshot) # hide #md # ![three lane stadium](stadium.svg) # As a next step, let's populate a scene with vehicles w = DEFAULT_LANE_WIDTH scene = Scene([ Entity(VehicleState(VecSE2(10.0, -w, 0.0), roadway, 29.0), VehicleDef(), :alice), Entity(VehicleState(VecSE2(40.0, 0.0, 0.0), roadway, 22.0), VehicleDef(), :bob), Entity(VehicleState(VecSE2(30.0, -2w, 0.0), roadway, 27.0), VehicleDef(), :charlie), ]) car_colors = get_pastel_car_colors(scene) renderables = [ roadway, (FancyCar(car=veh, color=car_colors[veh.id]) for veh in scene)... ] snapshot = render(renderables) #md write("stadium_with_cars.svg", snapshot) # hide #md # ![stadium with cars](stadium_with_cars.svg) # We can assign driver models to each agent and simulate the scenario. timestep = 0.1 nticks = 300 models = Dict{Symbol, DriverModel}( :alice => LatLonSeparableDriver( # produces LatLonAccels ProportionalLaneTracker(), # lateral model IntelligentDriverModel(), # longitudinal model ), :bob => Tim2DDriver( mlane = MOBIL(), ), :charlie => StaticDriver{AccelTurnrate, MvNormal}( MvNormal([0.0,0.0], [1.0,0.1]) ) ) set_desired_speed!(models[:alice], 12.0) set_desired_speed!(models[:bob], 10.0) set_desired_speed!(models[:charlie], 8.0) scenes = simulate(scene, roadway, models, nticks, timestep) # md nothing # hide # An animation of the simulation can be rendered using the `Reel` package using Reel using Printf camera = TargetFollowCamera(:alice; zoom=10.) animation = roll(fps=1.0/timestep, duration=nticks*timestep) do t, dt i = Int(floor(t/dt)) + 1 update_camera!(camera, scenes[i]) renderables = [ roadway, (FancyCar(car=veh, color=car_colors[veh.id]) for veh in scenes[i])..., IDOverlay(x_off=-2, y_off=1, scene=scenes[i]), TextOverlay(text=[@sprintf("time: %.1fs", t)], pos=VecE2(40,40), font_size=24) ] render(renderables, camera=camera) end #md write("animated_stadium.gif", animation) # hide #md # ![animated stadium with cars](animated_stadium.gif) # Alternatively, one can also use the `Interact` framework to inspect the simulation record interactively. #md using Interact #md using Reel #md using Blink #md #md w = Window() #md viz = @manipulate for step in 1 : length(scenes) #md render([roadway, scenes[step]]) #md end #md body!(w, viz) # The simulation results can be saved to a text file. Only entities using `VehicleState` and `VehicleDef` are supported out of the box. # If you wish to do IO operation with different states and definition types you have to implement `Base.write` and `Base.read` for those new types. open("2Dstadium_listrec.txt", "w") do io write(io, scenes) end # The trajectory data file can be loaded in a similar way. You need to specify the output type. loaded_scenes = open("2Dstadium_listrec.txt", "r") do io read(io, Vector{EntityScene{VehicleState, VehicleDef, String}}) end render([roadway, loaded_scenes[1]]) #md write("stadium_with_cars_loaded.svg", snapshot) # hide #md # ![stadium with cars after load](stadium_with_cars_loaded.svg)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3724
# # Driving on a Straight Roadway #md # [![](https://img.shields.io/badge/show-nbviewer-579ACA.svg)](@__NBVIEWER_ROOT_URL__/notebooks/straight_roadway.ipynb) # This example demonstrates a simple, one-dimensional driving simulation in which # cars drive along a straight roadway. # The vehicles are represented using the `Entity` type with the followin attributes: # # - `state` - `VehicleState`, containing the vehicle position and speed # - `def` - `VehicleDef`, containing length, width, and class # - `id` - `Int`, a unique label for each vehicle` # # A driving situation with different vehicles at a given time is referred to as a scene. It is represented by the `Scene` object. # A `Scene` can be thought of as a vector of vehicles. However, in addition to simple vectors it allows to query vehicles by ID using the `get_by_id` function. # We use a straight roadway with 1 lane as the environment. using AutomotiveSimulator using AutomotiveVisualization # for rendering AutomotiveVisualization.colortheme["background"] = colorant"white"; # hide roadway = gen_straight_roadway(1, 2000.0) # 200m long straight roadway with 1 lane scene = Scene([ Entity(VehicleState(VecSE2(10.0,0.0,0.0), roadway, 8.0), VehicleDef(), 1), Entity(VehicleState(VecSE2(50.0,0.0,0.0), roadway, 12.5), VehicleDef(), 2), Entity(VehicleState(VecSE2(150.0,0.0,0.0), roadway, 6.0), VehicleDef(), 3), ]) veh_1 = get_by_id(scene, 1) # note that the order of the vehicles in the scene does not necessarily match the id camera = StaticCamera(position=VecE2(100.0,0.0), zoom=4.75, canvas_height=100) snapshot = render([roadway, scene], camera=camera) #md write("straight_roadway.svg", snapshot) # hide #md # ![three cars on road](straight_roadway.svg) # In this call to the `render` function, we use the default rendering behavior for # entities. More advanced examples will show how the rendering of entities can be customized. # We can add an overlay that displays the car id: idoverlay = IDOverlay(scene=scene, color=colorant"black", font_size=20, y_off=1.) snapshot = render([roadway, scene, idoverlay], camera=camera) #md write("straight_roadway_with_id.svg", snapshot) # hide #md # ![three cars with id](straight_roadway_with_id.svg) # To run a simulation we need driving models that produce actions. # For this we will use `LaneFollowingDriver`s that produce `LaneFollowingAccel`s. # For this demo, we will give each car a different model. models = Dict{Int, LaneFollowingDriver}( 1 => StaticLaneFollowingDriver(0.0), # always produce zero acceleration 2 => IntelligentDriverModel(v_des=12.0), # default IDM with a desired speed of 12 m/s 3 => PrincetonDriver(v_des = 10.0), # default Princeton driver with a desired speed of 10m/s ) nticks = 100 timestep = 0.1 scenes = simulate(scene, roadway, models, nticks, timestep) #md nothing # hide # We can visualize the simulation as a sequence of images, for example using the # `Reel` package using Reel animation = roll(fps=1.0/timestep, duration=nticks*timestep) do t, dt i = Int(floor(t/dt)) + 1 idoverlay.scene = scenes[i] renderables = [roadway, scenes[i], idoverlay] render(renderables, camera=camera) end #md write("straight_roadway_animated.gif", animation) # hide #md nothing # hide #md # ![three vehicles animated](straight_roadway_animated.gif) # In order to inspect the simulation interactively, we can use the `Interact` package #md using Interact #md using Blink #md using ElectronDisplay #md #md w = Window() #md viz = @manipulate for step in 1 : length(scenes) #md renderables = [roadway, scenes[step], IDOverlay(scene=scenes[step], roadway=roadway)] #md render(renderables, camera=camera) #md end #md body!(w, viz)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5973
module AutomotiveSimulator using Printf using LinearAlgebra using Parameters using StaticArrays using Distributions using Reexport using Random using DataFrames using Tricks: static_hasmethod include(joinpath(@__DIR__, "Vec", "Vec.jl")) @reexport using .Vec # Roadways export CurvePt, Curve, CurveIndex, CurveProjection, CURVEINDEX_START, get_lerp_time, index_closest_to_point, get_curve_index, curveindex_end include("roadways/curves.jl") export LaneTag, LaneBoundary, Lane, LaneConnection, SpeedLimit, RoadSegment, Roadway, RoadProjection, RoadIndex, NULL_BOUNDARY, NULL_LANETAG, NULL_ROADINDEX, DEFAULT_SPEED_LIMIT, DEFAULT_LANE_WIDTH, is_in_exits, is_in_entrances, is_at_curve_end, is_between_segments_lo, is_between_segments_hi, is_between_segments, has_segment, has_lanetag, has_next, has_prev, next_lane, prev_lane, next_lane_point, prev_lane_point, connect!, move_along, n_lanes_left, leftlane, n_lanes_right, rightlane, lanes, lanetags, read include("roadways/roadways.jl") export Frenet, NULL_FRENET include("roadways/frenet.jl") export gen_straight_curve, gen_straight_segment, gen_straight_roadway, gen_stadium_roadway, gen_bezier_curve include("roadways/roadway_generation.jl") ## agent definitions export AbstractAgentDefinition, AgentClass, VehicleDef, BicycleModel, length, width, class include("agent-definitions/agent_definitions.jl") export Entity, Scene, EntityScene, capacity, id2index, get_by_id, get_first_available_id, posf, posg, vel, velf, velg, VehicleState, get_center, get_footpoint, get_front, get_rear, get_lane include("states/entities.jl") include("states/scenes.jl") include("states/interface.jl") include("states/vehicle_state.jl") ## Collision Checkers export ConvexPolygon, CPAMemory, CollisionCheckResult, to_oriented_bounding_box!, get_oriented_bounding_box, is_colliding, is_potentially_colliding, get_collision_time, get_first_collision, is_collision_free, get_distance, get_edge, collision_checker, polygon include("collision-checkers/minkowski.jl") include("collision-checkers/parallel_axis.jl") ## Feature Extraction export AbstractFeature, EntityFeature, SceneFeature, TemporalFeature, extract_features, extract_feature, featuretype, # provided feature functions posgx, posgy, posgθ, posfs, posft, posfϕ, vel, velfs, velft, velgx, velgy, time_to_crossing_right, time_to_crossing_left, estimated_time_to_lane_crossing, iswaiting, iscolliding, distance_to, acc, accfs, accft, jerk, jerkft, turn_rate_g, turn_rate_f, isbraking, isaccelerating include("feature-extraction/features.jl") export lane_width, markerdist_left, markerdist_right, road_edge_dist_left, road_edge_dist_right, lane_offset_left, lane_offset_right, has_lane_left, has_lane_right, lane_curvature include("feature-extraction/lane_features.jl") export VehicleTargetPoint, VehicleTargetPointFront, VehicleTargetPointCenter, VehicleTargetPointRear, targetpoint_delta, find_neighbor, NeighborLongitudinalResult, FrenetRelativePosition, get_frenet_relative_position, dist_to_front_neighbor, front_neighbor_speed, time_to_collision include("feature-extraction/neighbors_features.jl") export LidarSensor, nbeams, observe!, RoadlineLidarSensor, nlanes, LanePortion, RoadwayLidarCulling, ensure_leaf_in_rlc!, get_lane_portions include("feature-extraction/lidar_sensor.jl") ## Actions export propagate, EntityAction, LaneFollowingAccel, AccelTurnrate, AccelDesang, LatLonAccel, AccelSteeringAngle, PedestrianLatLonAccel include("actions/interface.jl") include("actions/lane_following_accel.jl") include("actions/accel_turnrate.jl") include("actions/accel_desang.jl") include("actions/lat_lon_accel.jl") include("actions/accel_steering.jl") include("actions/pedestrian_lat_lon_accel.jl") export DriverModel, StaticDriver, action_type, set_desired_speed!, observe!, reset_hidden_state!, reset_hidden_states! include("behaviors/interface.jl") export LaneFollowingDriver, StaticLaneFollowingDriver, PrincetonDriver, IntelligentDriverModel, ProportionalSpeedTracker, track_longitudinal!, LateralDriverModel, ProportionalLaneTracker, LatLonSeparableDriver, Tim2DDriver, SidewalkPedestrianModel, LaneChangeChoice, LaneChangeModel, get_lane_offset, DIR_RIGHT, DIR_MIDDLE, DIR_LEFT, MOBIL, TimLaneChanger include("behaviors/lane_following_drivers.jl") include("behaviors/princeton_driver.jl") include("behaviors/speed_trackers.jl") include("behaviors/intelligent_driver_model.jl") include("behaviors/lateral_driver_models.jl") include("behaviors/lane_change_models.jl") include("behaviors/MOBIL.jl") include("behaviors/tim_lane_changer.jl") include("behaviors/lat_lon_separable_driver.jl") include("behaviors/tim_2d_driver.jl") include("behaviors/sidewalk_pedestrian_model.jl") export simulate, simulate!, run_callback, CollisionCallback, observe_from_history!, simulate_from_history!, simulate_from_history, maximum_entities include("simulation/simulation.jl") include("simulation/callbacks.jl") include("simulation/simulation_from_history.jl") end # AutomotiveSimulator
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2333
module Vec using StaticArrays using LinearAlgebra using Printf import LinearAlgebra: ⋅, × export AbstractVec, VecE, # an abstract euclidean-group vector VecSE, # an abstract special euclidean-group element VecE2, # two-element Float64 vector, {x, y} VecE3, # three-element Float64 vector, {x, y, z} VecSE2, # point in special euclidean group of order 2, {x, y, θ} polar, # construct a polar vector with (r,θ) proj, # vector projection # proj(a::vec, b::vec, ::Type{Float64}) will do scalar projection of a onto b # proj(a::vec, b::vec, ::Type{Vec}) will do vector projection of a onto b lerp, # linear interpolation between two vec's invlerp, lerp_angle, normsquared, # see docstrings below scale_euclidean, clamp_euclidean, normalize_euclidian, dist, # scalar distance between two vec's dist2, # squared scalar distance between two vec's rot, # rotate the vector, always using the Right Hand Rule rot_normalized, # like rot, but assumes axis is normalized deltaangle, # signed delta angle angledist, # distance between two angles inertial2body, body2inertial, orientation, are_collinear, get_intersection, Circ, AABB, OBB abstract type AbstractVec{N, R} <: FieldVector{N, R} end abstract type VecE{N, R} <: AbstractVec{N, R} end abstract type VecSE{N, R} <: AbstractVec{N, R} end lerp(a::Real, b::Real, t::Real) = a + (b-a)*t invlerp(a::Real, b::Real, c::Real) = (c - a)/(b-a) "The L2 norm squared." normsquared(a::AbstractVec) = sum(x^2 for x in a) "Scale the euclidean part of the vector by a factor b while leaving the orientation part unchanged." scale_euclidean(a::VecE, b::Real) = b.*a "Clamp each element of the euclidean part of the vector while leaving the orientation part unchanged." clamp_euclidean(a::VecE, lo::Real, hi::Real) = clamp.(a, lo, hi) "Normalize the euclidean part of the vector while leaving the orientation part unchanged." normalize_euclidian(a::VecE, p::Real=2) = normalize(a, p) include("common.jl") include("vecE2.jl") include("vecE3.jl") include("vecSE2.jl") include("geom/geom.jl") include("coordinate_transforms.jl") include("quat.jl") Base.vec(v::Union{AbstractVec, Quat, RPY}) = convert(Vector{Float64}, v) end # module
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
600
const DUMMY_PRECISION = 1e-12 Base.isfinite(a::AbstractVec) = all(isfinite, a) Base.isinf(a::AbstractVec) = any(isinf, a) Base.isnan(a::AbstractVec) = any(isnan, a) function StaticArrays.similar_type(::Type{V}, ::Type{F}, size::Size{N}) where {V<:AbstractVec, F<:AbstractFloat, N} if size == Size(V) && eltype(V) == F return V else # convert back to SArray return SArray{Tuple{N...},F,length(size),prod(size)} end end Base.abs(a::AbstractVec) = error("abs(v::AbstractVec) has been removed. Use norm(v) to get the norm; abs.(v) to get the element-wise absolute value.")
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
12614
export AbstractCoordinate, LatLonAlt, ECEF, UTM, ENU, NED, WGS_84, INTERNATIONAL, check_is_in_radians, ensure_lon_between_pies, deg_min_sec_to_degrees, degrees_to_deg_min_sec, get_earth_radius, GeodeticDatum, eccentricity ################### """ Defines a reference ellipsoid used to map a position on the Earth relative to said ellipsoid """ struct GeodeticDatum a::Float64 # equitorial radius b::Float64 # polar radius end const WGS_84 = GeodeticDatum(6378137.0, 6356752.314245) const INTERNATIONAL = GeodeticDatum(6378388.0, 6356911.94613) eccentricity_sq(datum::GeodeticDatum) = 1.0 - datum.b^2 / datum.a^2 eccentricity(datum::GeodeticDatum) = sqrt(eccentricity_sq(datum)) function radius_of_curvature_in_the_meridian(ϕ::Float64, datum::GeodeticDatum) # ϕ = meridian angle (latitude) a = datum.a e = eccentricity(datum) e² = e*e sin²ϕ = sin(ϕ)^2 ρ = a*(1-e²) / ((1-e²*sin²ϕ)^1.5) ρ end function radius_of_curvature_in_the_prime_vertical(ϕ::Float64, datum::GeodeticDatum=WGS_84) # ϕ = meridian angle (latitude) a = datum.a e = eccentricity(datum) e² = e*e sin²ϕ = sin(ϕ)^2 ν = a / sqrt(1 - e²*sin²ϕ) ν end ############################################################################ # # # # ############################################################################ abstract type AbstractCoordinate end """ The latitude, longitude, altitude coordinate system """ struct LatLonAlt <: AbstractCoordinate lat::Float64 # [rad] ϕ, angle between the equatorial plane and the straight line that passes through the point and through the center of the Earth lon::Float64 # [rad] λ, angle (typically east) from a reference meridian to another meridian that passes through that point alt::Float64 # [m] above reference ellipsoid end Base.print(io::IO, lla::LatLonAlt) = @printf(io, "%6.2f %7.2f %10.2f", rad2deg(lla.lat), rad2deg(lla.lon), lla.alt) function check_is_in_radians(lla::LatLonAlt) if abs(lla.lat) > π/2 || abs(lla.lon) > π warn("lat and lon may not be in radians!") end nothing end function ensure_lon_between_pies(lla::LatLonAlt) # lan ∈ [-π/2, π/2] # lon ∈ [-π, π] lon = lla.lon while lon ≤ -π lon += 2π end while lon ≥ π lon -= 2π end LatLonAlt(lla.lat, lon, lla.alt) end deg_min_sec_to_degrees(deg::Real, min::Real, sec::Real) = convert(Float64, deg + min/60.0 + sec/3600.0) function degrees_to_deg_min_sec(degrees::Real) degrees = convert(Float64, degrees) deg, remainder = divrem(degrees, 1.0) min, remainder = divrem(remainder*60.0, 1.0) sec = remainder * 60.0 (convert(Int, deg), convert(Int, min), sec) end function get_earth_radius(lat::Float64, datum::GeodeticDatum=WGS_84) a, b = datum.a, datum.b c, s = cos(lat), sin(lat) return sqrt(((a^2*c)^2 + (b^2*s)^2)/((a*c)^2 + (b*s)^2)) end Base.convert(::Type{VecE3}, lla::LatLonAlt) = VecE3(lla.lat, lla.lon, lla.alt) Base.convert(::Type{LatLonAlt}, p::VecE3) = LatLonAlt(p.x, p.y, p.z) """ The Earth-centered, Earth-fixed coordinate system """ struct ECEF <: AbstractCoordinate x::Float64 # [m] y::Float64 # [m] z::Float64 # [m] end Base.convert(::Type{VecE3}, p::ECEF) = VecE3(p.x, p.y, p.z) Base.convert(::Type{ECEF}, p::VecE3) = ECEF(p.x, p.y, p.z) const UTM_LATITUDE_LIMIT_NORTH = deg2rad(84) const UTM_LATITUDE_LIMIT_SOUTH = deg2rad(-80) """ Universal Transverse Mercator coordinate system """ struct UTM <: AbstractCoordinate e::Float64 # [m] n::Float64 # [m] u::Float64 # [m] above reference ellipsoid zone::Int # UTM zone (∈ 1:60) end Base.convert(::Type{VecE3}, p::UTM) = VecE3(p.e, p.n, p.u) function Base.:+(a::UTM, b::UTM) @assert(a.zone == b.zone) UTM(a.e+b.e, a.n+b.n, a.u+b.u, a.zone) end function Base.:-(a::UTM, b::UTM) @assert(a.zone == b.zone) UTM(a.e-b.e, a.n-b.n, a.u-b.u, a.zone) end """ East North Up coordinate system relative to some point on the surface of the earth """ struct ENU <: AbstractCoordinate e::Float64 # [m] n::Float64 # [m] u::Float64 # [m] above reference location end Base.convert(::Type{VecE3}, p::ENU) = VecE3(p.e, p.n, p.u) Base.convert(::Type{ENU}, p::VecE3) = ENU(p.x, p.y, p.z) Base.:+(a::ENU, b::ENU) = ENU(a.e+b.e, a.n+b.n, a.u+b.u) Base.:-(a::ENU, b::ENU) = ENU(a.e-b.e, a.n-b.n, a.u-b.u) """ North East Down coordinate system """ struct NED <: AbstractCoordinate n::Float64 # [m] e::Float64 # [m] d::Float64 # [m] below reference location end Base.convert(::Type{VecE3}, p::NED) = VecE3(p.n, p.e, p.d) Base.:+(a::NED, b::NED) = NED(a.n+b.n, a.e+b.e, a.d+b.d) Base.:-(a::NED, b::NED) = NED(a.n-b.n, a.e-b.e, a.d-b.d) ################### function Base.convert(::Type{ECEF}, lla::LatLonAlt, datum::GeodeticDatum=WGS_84) ϕ = lla.lat λ = lla.lon h = lla.alt e² = eccentricity_sq(datum) sϕ = sin(ϕ) cϕ = cos(ϕ) sλ = sin(λ) cλ = cos(λ) Rₙ = radius_of_curvature_in_the_prime_vertical(ϕ, datum) x = (Rₙ + h)*cϕ*cλ y = (Rₙ + h)*cϕ*sλ z = (Rₙ*(1.0-e²)+ h)*sϕ ECEF(x,y,z) end function Base.convert(::Type{LatLonAlt}, ecef::ECEF, datum::GeodeticDatum=WGS_84) # https://microem.ru/files/2012/08/GPS.G1-X-00006.pdf #= Convert Earth-Centered-Earth-Fixed (ECEF) to lat, Lon, Altitude Input is x, y, z in meters Returns lat and lon in radians, and altitude in meters correction for altitude near poles left out. =# a = datum.a b = datum.b e² = eccentricity_sq(datum) x = ecef.x y = ecef.y z = ecef.z λ = atan(y, x) p = sqrt(x*x + y*y) θ = atan(z*a, (p*b)) h = 0.0 ϕ = atan(z,p*(1.0-e²)) # the equation diverges at the poles if isapprox(abs(θ), π/2, atol=0.1) Rₙ = radius_of_curvature_in_the_prime_vertical(ϕ, datum) ϕₛ = sin(ϕ) L = z + e²*Rₙ*ϕₛ h = L / ϕₛ - Rₙ else Δh = Inf while Δh > 1e-4 N = a / sqrt(1-e²*sin(ϕ)^2) h₂ = p/cos(ϕ) - N ϕ = atan(z, p*(1-e²*N/(N + h₂))) Δh = abs(h - h₂) h = h₂ end end ensure_lon_between_pies(LatLonAlt(ϕ, λ, h)) end function Base.convert(::Type{UTM}, lla::LatLonAlt, datum::GeodeticDatum=WGS_84, zone::Integer=-1) # see DMATM 8358.2 by the Army # code verified using their examples check_is_in_radians(lla) lla = ensure_lon_between_pies(lla) lat = lla.lat lon = lla.lon if lat > UTM_LATITUDE_LIMIT_NORTH || lat < UTM_LATITUDE_LIMIT_SOUTH error("latitude $(rad2deg(lat)) is out of limits!") end FN = 0.0 # false northing, zero in the northern hemisphere FE = 500000.0 # false easting ko = 0.9996 # central scale factor zone_centers = collect(0:59).*(6.0*π/180) .- (177.0*π/180) # longitudes of the zone centers if zone == -1 zone = argmin(map(x->abs(lon - x), zone_centers)) # index of min zone center end long0 = zone_centers[zone] s = sin(lat) c = cos(lat) t = tan(lat) a = datum.a b = datum.b n = (a-b)/(a+b) e₁ = sqrt((a^2-b^2)/a^2) # first eccentricity ep = sqrt((a^2-b^2)/b^2) # second eccentricity nu = a/(1-e₁^2*s^2)^0.5 # radius of curvature in the prime vertical dh = lon - long0 # longitudinal distance from central meridian A = a*(1 - n + 5.0/4*(n^2-n^3) + 81.0/64*(n^4-n^5)) B = 3.0/2*a*(n-n^2 + 7.0/8*(n^3-n^4) + 55.0/64*n^5) C = 15.0/16*a*(n^2-n^3 + 3.0/4*(n^4-n^5)) D = 35.0/48*a*(n^3-n^4 + 11.0/16.0*n^5) E = 315.0/512*a*(n^4-n^5) S = A*lat - B*sin(2*lat) + C*sin(4*lat) - D*sin(6*lat) + E*sin(8*lat) T1 = S*ko T2 = nu*s*c*ko/2 T3 = nu*s*c^3*ko/24 * (5 - t^2 + 9*ep^2*c^2 + 4*ep^4*c^4) T4 = nu*s*c^5*ko/720 * (61 - 58*t^2 + t^4 + 270*ep^2*c^2 - 330*(t*ep*c)^2 + 445*ep^4*c^4 + 324*ep^6*c^6 - 680*t^2*ep^4*c^4 + 88*ep^8*c^8 - 600*t^2*ep^6*c^6 - 192*t^2*ep^8*c^8) T5 = nu*s*c^7*ko/40320 * (1385 - 3111*t^2 + 543*t^4 - t^6) T6 = nu*c*ko T7 = nu*c^3*ko/6 * (1 - t^2 + ep^2*c^2) T8 = nu*c^5*ko/120 * (5 - 18*t^2 + t^4 + 14*ep^2*c^2 - 58*t^2*ep^2*c^2 + 13*ep^4*c^4 + 4*ep^6*c^6 - 64*t^2*ep^4*c^4 - 24*t^2*ep^6*c^6) T9 = nu*c^7*ko/5040 * (61 - 479*t^2 + 179*t^4 - t^6) E = FE + (dh*T6 + dh^3*T7 + dh^5*T8 + dh^7*T9) # easting [m] N = FN + (T1 + dh^2*T2 + dh^4*T3 + dh^6*T4 + dh^8*T5) # northing [m] U = lla.alt UTM(E, N, U, zone) end function Base.convert(::Type{LatLonAlt}, utm::UTM, datum::GeodeticDatum=WGS_84) # see DMATM 8358.2 by the Army # code verified using their examples zone = utm.zone @assert(1 ≤ zone ≤ 60) λₒ = deg2rad(6.0*zone - 183) # longitude of the origin of the projection kₒ = 0.9996 # central scale factor a = datum.a b = datum.b e = eccentricity(datum) e² = e*e e⁴ = e²*e² e⁶ = e⁴*e² eₚ = sqrt((a^2-b^2)/b^2) # second eccentricity eₚ² = eₚ*eₚ eₚ⁴ = eₚ²*eₚ² eₚ⁶ = eₚ⁴*eₚ² eₚ⁸ = eₚ⁴*eₚ⁴ N = utm.n arc = N / kₒ μ = arc / (a * (1 - e²/4 - 3*e⁴/64 - 5*e⁶/256)) ei = (1 - sqrt(1 - e²)) / (1 + sqrt(1 - e²)) ca = 3*ei/2 - 27*ei^3 / 32.0 cb = 21 * ei^2 / 16 - 55*ei^4 / 32 cc = 151 * ei^3 / 96 cd = 1097 * ei^4 / 512 ϕₚ = μ + ca * sin(2μ) + cb*sin(4μ) + cc*sin(6μ) + cd*sin(8μ) # const FN = 0.0 # false northing, zero in the northern hemisphere E = utm.e FE = 500000.0 # false easting ΔE = E - FE ΔE² = ΔE*ΔE ΔE³ = ΔE²*ΔE ΔE⁴ = ΔE²*ΔE² ΔE⁵ = ΔE³*ΔE² ΔE⁶ = ΔE³*ΔE³ ΔE⁷ = ΔE⁴*ΔE³ ΔE⁸ = ΔE⁴*ΔE⁴ tanϕₚ = tan(ϕₚ) tan²ϕₚ = tanϕₚ*tanϕₚ tan⁴ϕₚ = tan²ϕₚ*tan²ϕₚ tan⁶ϕₚ = tan⁴ϕₚ*tan²ϕₚ cosϕₚ = cos(ϕₚ) cos²ϕₚ = cosϕₚ*cosϕₚ cos⁴ϕₚ = cos²ϕₚ*cos²ϕₚ cos⁶ϕₚ = cos⁴ϕₚ*cos²ϕₚ cos⁸ϕₚ = cos⁴ϕₚ*cos⁴ϕₚ kₒ² = kₒ*kₒ kₒ³ = kₒ²*kₒ kₒ⁴ = kₒ²*kₒ² kₒ⁵ = kₒ³*kₒ² kₒ⁶ = kₒ³*kₒ³ kₒ⁷ = kₒ⁴*kₒ³ kₒ⁸ = kₒ⁴*kₒ⁴ ν = radius_of_curvature_in_the_prime_vertical(ϕₚ, datum) ν² = ν*ν ν³ = ν²*ν ν⁴ = ν²*ν² ν⁵ = ν³*ν² ν⁶ = ν³*ν³ ν⁷ = ν⁴*ν³ ν⁸ = ν⁴*ν⁴ ρ = radius_of_curvature_in_the_meridian(ϕₚ, datum) T10 = tanϕₚ/(2ρ*ν*kₒ²) T11 = tanϕₚ/(24ρ*ν³*kₒ⁴) * (5.0 + 3*tan²ϕₚ + eₚ²*cos²ϕₚ - 4*eₚ⁴*cosϕₚ - 9*tan²ϕₚ*eₚ²*cos²ϕₚ) T12 = tanϕₚ/(720ρ*ν⁵*kₒ⁶) * (61.0 + 90*tan²ϕₚ + 46.0*eₚ²*cos²ϕₚ + 45*tan⁴ϕₚ - 252*tan²ϕₚ*eₚ²*cos²ϕₚ - 3*eₚ⁴*cos⁴ϕₚ + 100*eₚ⁶*cos⁶ϕₚ - 66*tan²ϕₚ*eₚ⁴*cos⁴ϕₚ - 90*tan⁴ϕₚ*eₚ²*cos²ϕₚ + 88*eₚ⁸*cos⁸ϕₚ + 225*tan⁴ϕₚ*eₚ⁴*cos⁴ϕₚ + 84*tan²ϕₚ*eₚ⁶*cos⁶ϕₚ - 192*tan²ϕₚ*eₚ⁸*cos⁸ϕₚ) T13 = tanϕₚ/(40320ρ*ν⁷*kₒ⁸) * (1385.0 + 3633*tan²ϕₚ + 4095*tan⁴ϕₚ + 1575*tan⁶ϕₚ) T14 = 1.0/(ν*cosϕₚ*kₒ) T15 = (1.0 + 2*tan²ϕₚ + eₚ²*cos²ϕₚ) / (6*(ν³*cosϕₚ*kₒ³)) T16 = (5.0 + 6*eₚ²*cos²ϕₚ + 28*tan²ϕₚ - 3*eₚ⁴*cos⁴ϕₚ + 8*tan²ϕₚ*eₚ²*cos²ϕₚ + 24*tan⁴ϕₚ - 4*eₚ⁶*cos⁶ϕₚ + 4*tan²ϕₚ*eₚ⁴*cos⁴ϕₚ + 24*tan²ϕₚ*eₚ⁶*cos⁶ϕₚ) / (120*(ν⁵*cosϕₚ*kₒ⁵)) T17 = (61.0 + 662*tan²ϕₚ + 1320*tan⁴ϕₚ + 720*tan⁶ϕₚ)/(5040*(ν⁷*cosϕₚ*kₒ⁷)) ϕ = ϕₚ - ΔE²*T10 + ΔE⁴*T11 - ΔE⁶*T12 + ΔE⁸*T13 λ = λₒ + ΔE*T14 - ΔE³*T15 + ΔE⁵*T16 - ΔE⁷*T17 alt = utm.u LatLonAlt(ϕ, λ, alt) end function Base.convert(::Type{ECEF}, enu::ENU, reference::LatLonAlt) # http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates ϕ = reference.lat λ = reference.lon sϕ, cϕ = sin(ϕ), cos(ϕ) sλ, cλ = sin(λ), cos(λ) R = [-sλ -cλ*sϕ cλ*cϕ; cλ -sλ*sϕ sλ*cϕ; 0.0 cϕ sϕ] p = [enu.e, enu.n, enu.u] ecef = R*p ref_ecef = convert(ECEF, reference) ECEF(ecef[1] + ref_ecef.x, ecef[2] + ref_ecef.y, ecef[3] + ref_ecef.z) end function Base.convert(::Type{ENU}, ecef::ECEF, refLLA::LatLonAlt, refECEF::ECEF=convert(ECEF, refLLA)) # http://www.navipedia.net/index.php/Transformations_between_ECEF_and_ENU_coordinates ϕ = refLLA.lat λ = refLLA.lon a = refLLA.alt sϕ, cϕ = sin(ϕ), cos(ϕ) sλ, cλ = sin(λ), cos(λ) R = [-sλ cλ 0.0; -cλ*sϕ -sλ*sϕ cϕ; cλ*cϕ sλ*cϕ sϕ] p = [ecef.x - refECEF.x, ecef.y - refECEF.y, ecef.z - refECEF.z] enu = R*p ENU(enu[1], enu[2], enu[3]) end Base.convert(::Type{NED}, enu::ENU) = NED(enu.n, enu.e, -enu.u) Base.convert(::Type{ENU}, ned::NED) = ENU(ned.e, ned.n, -ned.d)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5664
export Quat, quat_for_a2b, get_axis, get_rotation_angle, RPY struct Quat <: FieldVector{4, Float64} x::Float64 y::Float64 z::Float64 w::Float64 end Quat(v::VecE3, w::Float64) = Quat(v.x, v.y, v.z, w) Quat(w::Float64, v::VecE3) = Quat(v.x, v.y, v.z, w) Base.show(io::IO, q::Quat) = @printf(io, "Quat({%6.3f, %6.3f, %6.3f}, %6.3f)", q.x, q.y, q.z, q.w) """ Conjugate of a quaternion """ Base.conj(q::Quat) = Quat(-q.x,-q.y,-q.z, q.w) """ A VecE3 of the imaginary part (x,y,z) """ Base.imag(q::Quat) = VecE3(q.x, q.y, q.z) """ Return the multiplicative inverse of q. Note that in most cases, i.e., if you simply want the opposite rotation, and/or the quaternion is normalized, then it is enough to use the conjugate. Based on Eigen's inverse. Returns the zero Quat if q is zero. """ function Base.inv(q::Quat) n2 = q.x^2 + q.y^2 + q.z^2 + q.w^2 # squared norm if n2 > 0 return Quat(conj(q) / n2) else # return an invalid result to flag the error return Quat(0.0,0.0,0.0,0.0) end end """ Rotate a vector by a quaternion. If you are going to rotate a bunch of vectors, covert q to a rotation matrix first. Based on the Eigen implementation for _transformVector """ function rot(q::Quat, v::VecE3) uv = imag(q)×v uv += uv return v + q.w*uv + imag(q)×uv; end """ Quaternion multiplication """ function Base.:*(a::Quat, b::Quat) r1, v1 = a.w, imag(a) r2, v2 = b.w, imag(b) return Quat(r1*v2 + r2*v1 + v1×v2, r1*r2 - v1⋅v2) end Base.:*(v::VecE3, b::Quat) = Quat(0.0, v) * b Base.:*(a::Quat, v::VecE3) = a * Quat(0.0, v) """ The angle (in radians) between two rotations """ function angledist(a::Quat, b::Quat) d = a * conj(b) return 2*atan(LinearAlgebra.norm(imag(d)), abs(d.w)) end """ The quaternion that transforms a into b through a rotation Based on Eigen's implementation for setFromTwoVectors """ function quat_for_a2b(a::VecE3, b::VecE3) v0 = LinearAlgebra.normalize(a) v1 = LinearAlgebra.normalize(b) c = v1⋅v0 # if dot == -1, vectors are nearly opposites # => accurately compute the rotation axis by computing the # intersection of the two planes. This is done by solving: # x^T v0 = 0 # x^T v1 = 0 # under the constraint: # ||x|| = 1 # which yields a singular value problem if c < -1.0 + DUMMY_PRECISION c = max(c, -1.0) M = hcat(convert(Vector{Float64}, v0), convert(Vector{Float64}, v1))' s = LinearAlgebra.svdfact(M, thin=false) axis = convert(VecE3, s[:V][:,2]) w2 = (1.0 + c)*0.5 return Quat(axis * sqrt(1.0 - w2), sqrt(w2)) else axis = v0×v1 s = sqrt((1.0+c)*2.0) invs = 1.0/s return Quat(axis * invs, s * 0.5) end end """ Returns the spherical linear interpolation between the two quaternions a and b for t ∈ [0,1]. Based on the Eigen implementation for slerp. """ function lerp(a::Quat, b::Quat, t::Float64) d = a⋅b absD = abs(d) if(absD ≥ 1.0 - eps()) scale0, scale1 = 1.0 - t, t else # θ is the angle between the 2 quaternions θ = acos(absD) sinθ = sin(θ) scale0, scale1 = sin( ( 1.0 - t ) * θ) / sinθ, sin( ( t * θ) ) / sinθ end if d < 0 scale1 = -scale1 end return Quat(scale0*a + scale1*b) end """ The rotation axis for a quaternion. """ function get_axis(q::Quat) θ = 2*atan(sqrt(q.x*q.x + q.y*q.y + q.z*q.z), q.w) h = sin(θ/2) x = q.x / h y = q.y / h z = q.z / h VecE3(x, y, z) end """ The rotation angle for a quaternion. """ get_rotation_angle(q::Quat) = 2.0*acos(q.w) """ Draw a random unit quaternion following a uniform distribution law on SO(3). Based on the Eigen implementation for UnitRandom. """ function Base.rand(::Type{Quat}) u1 = rand() u2 = 2π*rand() u3 = 2π*rand() a = sqrt(1 - u1) b = sqrt(u1) return Quat(a*sin(u2), a*cos(u2), b*sin(u3), b*cos(u3)) end """ Roll Pitch Yaw """ struct RPY <: FieldVector{3, Float64} r::Float64 p::Float64 y::Float64 end function Base.convert(::Type{RPY}, q::Quat) q2 = LinearAlgebra.normalize(q) x = q2[1] y = q2[2] z = q2[3] w = q2[4] # roll (x-axis rotation) sinr = 2(w * x + y * z) cosr = 1.0 - 2(x * x + y * y) roll = atan(sinr, cosr) # pitch (y-axis rotation) sinp = 2(w * y - z * x) if (abs(sinp) >= 1) pitch = π/2 * sign(sinp) # use 90 degrees if out of range else pitch = asin(sinp) end # yaw (z-axis rotation) siny = 2(w * z + x * y) cosy = 1.0 - 2(y * y + z * z) yaw = atan(siny, cosy) RPY(roll, pitch, yaw) end function Base.convert(::Type{Matrix{Float64}}, quat::Quat) # convert it to a rotation matrix w = quat.w x = quat.x y = quat.y z = quat.z n = w * w + x * x + y * y + z * z s = (n == 0.0) ? 0.0 : 2.0 / n wx = s * w * x; wy = s * w * y; wz = s * w * z xx = s * x * x; xy = s * x * y; xz = s * x * z yy = s * y * y; yz = s * y * z; zz = s * z * z [ 1 - (yy + zz) xy - wz xz + wy; xy + wz 1 - (xx + zz) yz - wx; xz - wy yz + wx 1 - (xx + yy) ] end function Base.convert(::Type{Quat}, rpy::RPY) t0 = cos(rpy.y/2) t1 = sin(rpy.y/2) t2 = cos(rpy.r/2) t3 = sin(rpy.r/2) t4 = cos(rpy.p/2) t5 = sin(rpy.p/2) qw = t0 * t2 * t4 + t1 * t3 * t5 qx = t0 * t3 * t4 - t1 * t2 * t5 qy = t0 * t2 * t5 + t1 * t3 * t4 qz = t1 * t2 * t4 - t0 * t3 * t5 return Quat(qx, qy, qz, qw) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1158
#= VecE2: a 2d euclidean vector =# struct VecE2{R<:Real} <: VecE{2,R} x::R y::R end VecE2() = VecE2(0.0,0.0) VecE2(x::Integer, y::Integer) = VecE2(float(x), float(y)) VecE2(t::Tuple) = VecE2(promote(t...)...) polar(r::Real, θ::Real) = VecE2(r*cos(θ), r*sin(θ)) Base.show(io::IO, a::VecE2) = @printf(io, "VecE2(%.3f, %.3f)", a.x, a.y) Base.atan(a::VecE2) = atan(a.y, a.x) dist(a::VecE2, b::VecE2) = hypot(a.x-b.x, a.y-b.y) function dist2(a::VecE2, b::VecE2) Δx = a.x-b.x Δy = a.y-b.y Δx*Δx + Δy*Δy end proj(a::VecE2, b::VecE2, ::Type{Float64}) = (a.x*b.x + a.y*b.y) / hypot(b.x, b.y) # dot(a,b) / |b| function proj(a::VecE2, b::VecE2, ::Type{VecE2}) # dot(a,b) / dot(b,b) ⋅ b s = (a.x*b.x + a.y*b.y) / (b.x*b.x + b.y*b.y) VecE2(s*b.x, s*b.y) end lerp(a::VecE2, b::VecE2, t::Real) = VecE2(a.x + (b.x-a.x)*t, a.y + (b.y-a.y)*t) Base.rot180(a::VecE2) = VecE2(-a.x, -a.y) Base.rotl90(a::VecE2) = VecE2(-a.y, a.x) Base.rotr90(a::VecE2) = VecE2( a.y, -a.x) function rot(a::VecE2, θ::Float64) #= Rotates counter-clockwise about origin =# c = cos(θ) s = sin(θ) VecE2(a.x*c - a.y*s, a.x*s+a.y*c) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2235
#= VecE3: a 3d euclidean vector =# struct VecE3{R<:Real} <: VecE{3,R} x::R y::R z::R end VecE3() = VecE3(0.0,0.0,0.0) VecE3(x::Integer, y::Integer, z::Integer) = VecE3(float(x), float(y), float(z)) VecE3(t::Tuple) = VecE3(promote(t...)...) Base.show(io::IO, a::VecE3) = @printf(io, "VecE3(%.3f, %.3f, %.3f)", a.x, a.y, a.z) function dist(a::VecE3, b::VecE3) Δx = a.x-b.x Δy = a.y-b.y Δz = a.z-b.z sqrt(Δx*Δx + Δy*Δy + Δz*Δz) end function dist2(a::VecE3, b::VecE3) Δx = a.x-b.x Δy = a.y-b.y Δz = a.z-b.z Δx*Δx + Δy*Δy + Δz*Δz end proj(a::VecE3, b::VecE3, ::Type{Float64}) = (a.x*b.x + a.y*b.y + a.z*b.z) / sqrt(b.x*b.x + b.y*b.y + b.z*b.z) # dot(a,b) / |b| function proj(a::VecE3, b::VecE3, ::Type{VecE3}) # dot(a,b) / dot(b,b) ⋅ b s = (a.x*b.x + a.y*b.y + a.z*b.z) / (b.x*b.x + b.y*b.y + b.z*b.z) VecE3(s*b.x, s*b.y, s*b.z) end lerp(a::VecE3, b::VecE3, t::Real) = VecE3(a.x + (b.x-a.x)*t, a.y + (b.y-a.y)*t, a.z + (b.z-a.z)*t) function rot(a::VecE3, axis::VecE3, θ::Real) #= rotate the point a: (x,y,z) about the axis: (u,v,w) by the angle θ following the right hand rule =# x,y,z = a.x, a.y, a.z u,v,w = axis.x, axis.y, axis.z u² = u*u v² = v*v w² = w*w m = u² + v² + w² c = cos(θ) s = sin(θ) mc = 1.0 - c rtms = sqrt(m)*s magc = m*c ux_vy_wz_mc = (u*x + v*y + w*z)*mc new_x = (u*ux_vy_wz_mc + x*magc + rtms*(-w*y + v*z)) / m new_y = (v*ux_vy_wz_mc + y*magc + rtms*( w*x - u*z)) / m new_z = (w*ux_vy_wz_mc + z*magc + rtms*(-v*x + u*y)) / m VecE3(new_x, new_y, new_z) end function rot_normalized(a::VecE3, axis::VecE3, θ::Real) #= rotate the point a: (x,y,z) about the axis: (u,v,w) by the angle θ following the right hand rule Here we assume axis is normalized =# x,y,z = a.x, a.y, a.z u,v,w = axis.x, axis.y, axis.z u² = u*u v² = v*v w² = w*w m = u² + v² + w² c = cos(θ) s = sin(θ) mc = 1.0 - c ux_vy_wz_mc = (u*x + v*y + w*z)*mc new_x = u*ux_vy_wz_mc + x*c + (-w*y + v*z)*s new_y = v*ux_vy_wz_mc + y*c + ( w*x - u*z)*s new_z = w*ux_vy_wz_mc + z*c + (-v*x + u*y)*s VecE3(new_x, new_y, new_z) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2671
#= VecSE2: a 2d euclidean vector with an orientation =# struct VecSE2{R<:Real} <: VecSE{3,R} x::R y::R θ::R end VecSE2() = VecSE2(0.0,0.0,0.0) VecSE2(x::Real, y::Real) = VecSE2(x,y,0.0) VecSE2(a::VecE2, θ::Real=0.0) = VecSE2(a.x, a.y, θ) VecSE2(t::Tuple) = VecSE2(promote(t...)...) Base.convert(::Type{VecE2}, a::VecSE2) = VecE2(a.x, a.y) VecE2(a::VecSE2) = VecE2(a.x, a.y) polar(r::Real, ϕ::Real, θ::Real) = VecSE2(r*cos(ϕ), r*sin(ϕ), θ) Base.show(io::IO, a::VecSE2) = @printf(io, "VecSE2({%.3f, %.3f}, %.3f)", a.x, a.y, a.θ) Base.:+(a::VecSE2, b::VecE2) = VecSE2(a.x+b.x, a.y+b.y, a.θ) Base.:+(a::VecE2, b::VecSE2) = VecSE2(a.x+b.x, a.y+b.y, b.θ) Base.:-(a::VecSE2, b::VecE2) = VecSE2(a.x-b.x, a.y-b.y, a.θ) Base.:-(a::VecE2, b::VecSE2) = VecSE2(a.x-b.x, a.y-b.y, -b.θ) op_overload_error = """ Operator overloading for Real and VecSE2 has been removed. To add or subtract, use VecSE2(x,y,θ) + b*VecE2(1.0, 1.0). To multiply or divide, use scale_euclidean(VecSE2(x,y,θ), b) """ Base.:-(b::Real, a::VecSE2) = error(op_overload_error) Base.:-(a::VecSE2, b::Real) = error(op_overload_error) Base.:+(b::Real, a::VecSE2) = error(op_overload_error) Base.:+(a::VecSE2, b::Real) = error(op_overload_error) Base.:*(b::Real, a::VecSE2) = error(op_overload_error) Base.:*(a::VecSE2, b::Real) = error(op_overload_error) Base.:/(a::VecSE2, b::Real) = error(op_overload_error) Base.:^(a::VecSE2, b::Integer) = error(op_overload_error) Base.:^(a::VecSE2, b::AbstractFloat) = error(op_overload_error) Base.:%(a::VecSE2, b::Real) = error(op_overload_error) scale_euclidean(a::VecSE2, b::Real) = VecSE2(b*a.x, b*a.y, a.θ) clamp_euclidean(a::VecSE2, lo::Real, hi::Real) = VecSE2(clamp(a.x, lo, hi), clamp(a.y, lo, hi), a.θ) norm(a::VecSE2, p::Real=2) = error("norm is not defined for VecSE2 - use norm(VecE2(v)) to get the norm of the Euclidean part") normsquared(a::VecSE2) = norm(a)^2 # this will correctly throw an error normalize(a::VecSE2, p::Real=2) = error("normalize is not defined for VecSE2. Use normalize_euclidean(v) to normalize the euclidean part of the vector") function normalize_euclidian(a::VecSE2, p::Real=2) n = norm(VecE2(a)) return VecSE2(a.x/n, a.y/n, a.θ) end Base.atan(a::VecSE2) = atan(a.y, a.x) function lerp(a::VecSE2, b::VecSE2, t::Real) x = a.x + (b.x-a.x)*t y = a.y + (b.y-a.y)*t θ = lerp_angle(a.θ, b.θ, t) VecSE2(x, y, θ) end Base.rot180(a::VecSE2) = VecSE2(a.x, a.y, a.θ+π) Base.rotl90(a::VecSE2) = VecSE2(a.x, a.y, a.θ+0.5π) Base.rotr90(a::VecSE2) = VecSE2(a.x, a.y, a.θ-0.5π) rot(a::VecSE2, Δθ::Float64) = VecSE2(a.x, a.y, a.θ+Δθ) Base.mod2pi(a::VecSE2) = VecSE2(a.x, a.y, mod2pi(a.θ))
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
829
export LineSegment1D """ A line segment in one dimension with a ≤ b """ struct LineSegment1D a::Float64 b::Float64 LineSegment1D(a::Real, b::Real) = new(convert(Float64, min(a,b)), convert(Float64, max(a,b))) end Base.:+(seg::LineSegment1D, v::Real) = LineSegment1D(seg.a + v, seg.b + v) Base.:-(seg::LineSegment1D, v::Real) = LineSegment1D(seg.a - v, seg.b - v) """ The distance between the line segment and the point P """ function get_distance(seg::LineSegment1D, P::Real)::Float64 if P < seg.a return seg.a - P elseif P > seg.b return P - seg.b else return 0.0 end end Base.in(v::Float64, P::LineSegment1D) = P.a ≤ v ≤ P.b Base.in(Q::LineSegment1D, P::LineSegment1D) = Q.a ≥ P.a && Q.b ≤ P.b intersects(P::LineSegment1D, Q::LineSegment1D) = P.b ≥ Q.a && Q.b ≥ P.a
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2802
#= Geometry in 2d euclidean space =# """ deltaangle(a::Real, b::Real) Return the minimum δ such that a + δ = mod(b, 2π) """ deltaangle(a::Real, b::Real) = atan(sin(b-a), cos(b-a)) """ Distance between two angles """ angledist( a::Real, b::Real ) = abs(deltaangle(a,b)) """ Linear interpolation between angles """ lerp_angle(a::Real, b::Real, t::AbstractFloat) = a + deltaangle(a, b)*t """ True if the values are collinear within a tolerance """ function are_collinear(a::AbstractVec, b::AbstractVec, c::AbstractVec, tol::Float64=1e-8) # http://mathworld.wolfram.com/Collinear.html # if val = 0 then they are collinear val = a.x*(b.y-c.y) + b.x*(c.y-a.y)+c.x*(a.y-b.y) abs(val) < tol end """ To find orientation of ordered triplet (p, q, r). The function returns following values 0 --> p, q and r are colinear 1 --> Clockwise 2 --> Counterclockwise """ function orientation(P::VecE2, Q::VecE2, R::VecE2) val = (Q.y - P.y)*(R.x - Q.x) - (Q.x - P.x)*(R.y - Q.y) if val ≈ 0 return 0 # colinear end return (val > 0) ? 1 : 2 end function inertial2body(point::VecE2, reference::VecSE2) #= Convert a point in an inertial cartesian coordinate frame to be relative to a body's coordinate frame The body's position is given relative to the same inertial coordinate frame =# s, c = sin(reference.θ), cos(reference.θ) Δx = point.x - reference.x Δy = point.y - reference.y VecE2(c*Δx + s*Δy, c*Δy - s*Δx) end function inertial2body(point::VecSE2, reference::VecSE2) #= Convert a point in an inertial cartesian coordinate frame to be relative to a body's coordinate frame The body's position is given relative to the same inertial coordinate frame =# s, c = sin(reference.θ), cos(reference.θ) Δx = point.x - reference.x Δy = point.y - reference.y VecSE2(c*Δx + s*Δy, c*Δy - s*Δx, point.θ - reference.θ) end function body2inertial(point::VecE2, reference::VecSE2) #= Convert a point in a body-relative cartesian coordinate frame to be relative to a the inertial coordinate frame the body is described by =# c, s = cos(reference.θ), sin(reference.θ) VecE2(c*point.x -s*point.y + reference.x, s*point.x +c*point.y + reference.y) end function body2inertial(point::VecSE2, reference::VecSE2) #= Convert a point in a body-relative cartesian coordinate frame to be relative to a the inertial coordinate frame the body is described by =# c, s = cos(reference.θ), sin(reference.θ) VecSE2(c*point.x -s*point.y + reference.x, s*point.x +c*point.y + reference.y, reference.θ + point.θ) end include("1d.jl") include("lines.jl") include("line_segments.jl") include("rays.jl") include("projectiles.jl") include("solids.jl") include("hyperplanes.jl")
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2389
export Plane3, get_signed_distance """ Plane3 A hyperplane is an affine subspace of dimension n-1 in a space of dimension n. For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane. This class represents an hyperplane in 3D space. It is the zero set of n⋅x + d = 0 where n is a unit normal vector of the plane (linear part) and d is the distance (offset) to the origin. """ struct Plane3 normal::VecE3 # should always be normalized offset::Float64 Plane3() = new(VecE3(1.0,0.0,0.0), 0.0) """ Constructs a plane from its normal n and distance to the origin d such that the algebraic equation of the plane is n⋅x + d = 0. """ Plane3(normal::VecE3, offset::Real) = new(LinearAlgebra.normalize(normal), convert(Float64, offset)) """ Construct a plane from its normal and a point on the plane. """ function Plane3(normal::VecE3, P::VecE3) n = LinearAlgebra.normalize(normal) offset = -n⋅P return new(n, offset) end end """ Constructs a plane passing through the three points. """ function Plane3(p0::VecE3, p1::VecE3, p2::VecE3) v0 = p2 - p0 v1 = p1 - p0 normal = v0×v1 nnorm = LinearAlgebra.norm(normal) if nnorm <= LinearAlgebra.norm(v0)*LinearAlgebra.norm(v1)*eps() M = hcat(convert(Vector{Float64}, v0), convert(Vector{Float64}, v1))' s = LinearAlgebra.svdfact(M, thin=false) normal = convert(VecE3, s[:V][:,2]) else normal = LinearAlgebra.normalize(normal) end offset = -p0⋅normal return Plane3(normal, offset) end """ Returns the signed distance between the plane and a point """ get_signed_distance(plane::Plane3, A::VecE3) = plane.normal⋅A + plane.offset """ Returns the absolute distance between the plane and a point """ get_distance(plane::Plane3, A::VecE3) = abs(get_signed_distance(plane, A)) """ Returns the projection of a point onto the plane """ proj(A::VecE3, plane::Plane3) = A - get_signed_distance(plane, A) * plane.normal """ What side of the plane you are on Is -1 if on the negative side, 1 if on the positive side, and 0 if on the plane """ function get_side(plane::Plane3, A::VecE3, ε::Float64=DUMMY_PRECISION) signed_dist = get_signed_distance(plane, A) if abs(signed_dist) < ε return 0 else return sign(signed_dist) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2893
export LineSegment, parallel struct LineSegment A::VecE2 B::VecE2 end Base.:+(seg::LineSegment, V::VecE2) = LineSegment(seg.A + V, seg.B + V) Base.:-(seg::LineSegment, V::VecE2) = LineSegment(seg.A - V, seg.B - V) Base.convert(::Type{Line}, seg::LineSegment) = Line(seg.A, seg.B) Base.convert(::Type{LineSegment}, line::Line) = LineSegment(line.A, line.B) get_polar_angle(seg::LineSegment) = mod2pi(atan(seg.B.y - seg.A.y, seg.B.x - seg.A.x)) """ The distance between the line segment and the point P """ function get_distance(seg::LineSegment, P::VecE2) ab = seg.B - seg.A pb = P - seg.A denom = normsquared(ab) if denom == 0.0 return 0.0 end r = (ab⋅pb)/denom if r ≤ 0.0 LinearAlgebra.norm(P - seg.A) elseif r ≥ 1.0 LinearAlgebra.norm(P - seg.B) else LinearAlgebra.norm(P - (seg.A + r*ab)) end end """ What side of the line you are on, based on A → B """ get_side(seg::LineSegment, p::VecE2) = sign((seg.B.x-seg.A.x) * (p.y-seg.A.y) - (seg.B.y-seg.A.y) * (p.x-seg.A.x)) """ The angular distance between the two line segments """ function angledist(segA::LineSegment, segB::LineSegment) u = segA.B - segA.A v = segB.B - segB.A sqdenom = (u⋅u)*(v⋅v) if isapprox(sqdenom, 0.0, atol=1e-10) return NaN end return acos((u⋅v) / sqrt(sqdenom)) end """ True if the two segments are parallel """ function parallel(segA::LineSegment, segB::LineSegment, ε::Float64=1e-10) θ = angledist(segA, segB) return isapprox(θ, 0.0, atol=ε) end """ Given P colinear with seg, the function checks if point P lies on the line segment. """ function on_segment(P::VecE2, seg::LineSegment) return P.x ≤ max(seg.A.x, seg.B.x) && P.x ≥ min(seg.A.x, seg.B.x) && P.y ≤ max(seg.A.y, seg.B.y) && P.y ≥ min(seg.A.y, seg.B.y) end on_segment(A::VecE2, P::VecE2, B::VecE2) = on_segment(P, LineSegment(A,B)) """ returns true if line segments segP and segQ intersect """ function intersects(segP::LineSegment, segQ::LineSegment) p1 = segP.A q1 = segP.B p2 = segQ.A q2 = segQ.B # Find the four orientations needed for general and # special cases o1 = orientation(p1, q1, p2) o2 = orientation(p1, q1, q2) o3 = orientation(p2, q2, p1) o4 = orientation(p2, q2, q1) # Special Cases if (o1 != o2 && o3 != o4) || # General case (o1 == 0 && on_segment(p1, p2, q1)) || # p1, q1 and p2 are colinear and p2 lies on segment p1q1 (o2 == 0 && on_segment(p1, q2, q1)) || # p1, q1 and p2 are colinear and q2 lies on segment p1q1 (o3 == 0 && on_segment(p2, p1, q2)) || # p2, q2 and p1 are colinear and p1 lies on segment p2q2 (o4 == 0 && on_segment(p2, q1, q2)) # p2, q2 and q1 are colinear and q1 lies on segment p2q2 return true end return false # Doesn't fall in any of the above cases end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1165
export Line, get_polar_angle, get_distance, get_side struct Line C::VecE2 θ::Float64 end Line(A::VecE2, B::VecE2) = Line((A+B)/2, atan(B - A)) Base.:-(line::Line, V::VecE2) = Line(line.C - V, line.θ) Base.:+(line::Line, V::VecE2) = Line(line.C + V, line.θ) get_polar_angle(line::Line) = line.θ rot(line::Line, Δθ::Float64) = Line(line.C, line.θ+Δθ) Base.rot180(line::Line) = rot(line, 1π) Base.rotl90(line::Line) = rot(line, π/2) Base.rotr90(line::Line) = rot(line, -π/2) """ The distance between the line and the point P """ function get_distance(line::Line, P::VecE2) ab = polar(1.0, line.θ) pb = P - line.C denom = normsquared(ab) if denom ≈ 0.0 return 0.0 end r = (ab⋅pb)/denom return LinearAlgebra.norm(P - (line.C + r*ab)) end """ What side of the line you are on Is 1 if on the left, -1 if on the right, and 0 if on the line """ function get_side(line::Line, p::VecE2, ε::Float64=1e-10) ab = polar(1.0, line.θ) signed_dist = ab.x*(p.y-line.C.y) - ab.y*(p.x-line.C.x) if abs(signed_dist) < ε return 0 else return convert(Int, sign(signed_dist)) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
4636
export Projectile, propagate, closest_time_of_approach, closest_approach_distance, closest_time_of_approach_and_distance, get_intersection_time struct Projectile pos::VecSE2 # position (x,y,θ) v::Float64 # speed end propagate(P::Projectile, Δt::Float64) = Projectile(P.pos + polar(P.v*Δt, P.pos.θ), P.v) """ The time at which two projectiles are closest to one another A negative value indicates that this occurred in the past. see: http://geomalgorithms.com/a07-_distance.html """ function closest_time_of_approach(A::Projectile, B::Projectile) W = convert(VecE2, A.pos - B.pos) Δ = polar(A.v, A.pos.θ) - polar(B.v, B.pos.θ) aΔ = normsquared(Δ) if aΔ ≈ 0.0 return 0.0 else return -(W⋅Δ) / aΔ end end function closest_approach_distance(A::Projectile, B::Projectile, t_CPA::Float64=closest_time_of_approach(A, B)) Aₜ = convert(VecE2, propagate(A, t_CPA).pos) Bₜ = convert(VecE2, propagate(B, t_CPA).pos) return LinearAlgebra.norm(Aₜ - Bₜ) end function closest_time_of_approach_and_distance(A::Projectile, B::Projectile) t_CPA = closest_time_of_approach(A, B) d_CPA = closest_approach_distance(A, B, t_CPA) return (t_CPA, d_CPA) end function get_intersection_time(A::Projectile, seg::LineSegment) o = VecE2(A.pos) v₁ = o - seg.A v₂ = seg.B - seg.A v₃ = polar(1.0, A.pos.θ + π/2) denom = (v₂⋅v₃) if !isapprox(denom, 0.0, atol=1e-10) d₁ = (v₂×v₁) / denom # time for projectile (0 ≤ t₁) t₂ = (v₁⋅v₃) / denom # time for segment (0 ≤ t₂ ≤ 1) if 0.0 ≤ d₁ && 0.0 ≤ t₂ ≤ 1.0 return d₁/A.v end else # denom is zero if the segment and the projectile are parallel # only collide if they are perfectly aligned if are_collinear(A.pos, seg.A, seg.B) dist_a = normsquared(seg.A - o) dist_b = normsquared(seg.B - o) return sqrt(min(dist_a, dist_b)) / A.v end end return Inf end function closest_time_of_approach_and_distance(P::Projectile, seg::LineSegment, if_no_col_skip_eval::Bool=false) o = VecE2(P.pos) v₁ = o - seg.A v₂ = seg.B - seg.A v₃ = polar(1.0, P.pos.θ + π/2) denom = (v₂⋅v₃) if !isapprox(denom, 0.0, atol=1e-10) d₁ = (v₂×v₁) / denom # time for projectile (0 ≤ d₁) t₂ = (v₁⋅v₃) / denom # time for segment (0 ≤ t₂ ≤ 1) if 0.0 ≤ d₁ && 0.0 ≤ t₂ ≤ 1.0 t = d₁/P.v return (t, 0.0) else # no collision, get time of closest approach to each endpoint if !if_no_col_skip_eval r = polar(1.0, P.pos.θ) projA = proj(seg.A - o, r, VecE2) projB = proj(seg.B - o, r, VecE2) tA = max(LinearAlgebra.norm(projA)/P.v * sign(r⋅projA), 0.0) tB = max(LinearAlgebra.norm(projB)/P.v * sign(r⋅projB), 0.0) pA = VecE2(propagate(P, tA).pos) pB = VecE2(propagate(P, tB).pos) distA = normsquared(seg.A - pA) distB = normsquared(seg.B - pB) if distA < distB return (tA, sqrt(distA)) else return (tB, sqrt(distB)) end else return (Inf, Inf) end end else # denom is zero if the segment and the projectile are parallel # only collide if they are perfectly aligned if are_collinear(P.pos, seg.A, seg.B) # either closest now, will be to A, or will be to B dist_a = normsquared(seg.A - o) dist_b = normsquared(seg.B - o) t = sqrt(min(dist_a, dist_b)) / P.v return (t, 0.0) else # not colinear if !if_no_col_skip_eval # either closest now, will be to A, or will be to B r = polar(1.0, P.pos.θ) projA = proj(seg.A - o, r, VecE2) projB = proj(seg.B - o, r, VecE2) tA = max(LinearAlgebra.norm(projA)/P.v * sign(r⋅projA), 0.0) tB = max(LinearAlgebra.norm(projB)/P.v * sign(r⋅projB), 0.0) pA = VecE2(propagate(P, tA).pos) pB = VecE2(propagate(P, tB).pos) distA = normsquared(seg.A - pA) distB = normsquared(seg.B - pB) if distA < distB return (tA, distA) else return (tB, distB) end else return (Inf,Inf) end end end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3421
export Ray, intersects # true if A and B intersect const Ray = VecSE2 # has an origin and an orientation function intersects(A::Ray, B::Ray) as = convert(VecE2, A) bs = convert(VecE2, B) ad = polar(1.0, A.θ) bd = polar(1.0, B.θ) dx = bs.x - as.x dy = bs.y - as.y det = bd.x * ad.y - bd.y * ad.x if det == 0.0 return false end u = (dy * bd.x - dx * bd.y) / det v = (dy * ad.x - dx * ad.y) / det return u > 0.0 && v > 0.0 end function intersects(ray::Ray, line::Line; ε::Float64 = 1e-10, ) v₁ = VecE2(ray) - line.C v₂ = polar(1.0, line.θ) v₃ = polar(1.0, ray.θ + π/2) denom = v₂⋅v₃ if !(denom ≈ 0.0) t₁ = (v₂×v₁) / denom # time for ray (0 ≤ t₁) return -ε ≤ t₁ else # denom is zero if the line and the ray are parallel # only collide if they are perfectly aligned return isapprox(angledist(ray, line), 0.0, atol=ε) end end function intersects(ray::Ray, seg::LineSegment) R = VecE2(ray) v₁ = R - seg.A v₂ = seg.B - seg.A v₃ = polar(1.0, ray.θ + π/2) denom = v₂⋅v₃ if !isapprox(denom, 0.0, atol=1e-10) t₁ = (v₂×v₁) / denom # time for ray (0 ≤ t₁) t₂ = (v₁⋅v₃) / denom # time for segment (0 ≤ t₂ ≤ 1) return 0 ≤ t₁ && 0 ≤ t₂ ≤ 1 else # denom is zero if the segment and the ray are parallel # only collide if they are perfectly aligned # must ensure that at least one point is in the positive ray direction r = polar(1.0, ray.θ) return are_collinear(R, seg.A, seg.B) && (r⋅(seg.A - R) ≥ 0 || r⋅(seg.B - R) ≥ 0) end end """ returns VecE2 of where intersection occurs, and VecE2(NaN,NaN) otherwise """ function Base.intersect(A::VecSE2, B::VecSE2) as = convert(VecE2, A) bs = convert(VecE2, B) ad = polar(1.0, A.θ) bd = polar(1.0, B.θ) dx = bs.x - as.x dy = bs.y - as.y det = bd.x * ad.y - bd.y * ad.x if !(det ≈ 0.0) # no intersection u = (dy * bd.x - dx * bd.y) / det v = (dy * ad.x - dx * ad.y) / det if u > 0.0 && v > 0.0 return as + u*ad end end # TODO - if det == 0 could be the case that they are colinear, and the first point of intersection should be taken return VecE2(NaN,NaN) # no intersection end function Base.intersect(ray::Ray, seg::LineSegment) R = VecE2(ray) v₁ = VecE2(R) - seg.A v₂ = seg.B - seg.A v₃ = polar(1.0, ray.θ + π/2) denom = v₂⋅v₃ if !isapprox(denom, 0.0, atol=1e-10) t₁ = (v₂×v₁) / denom # time for ray (0 ≤ t₁) t₂ = (v₁⋅v₃) / denom # time for segment (0 ≤ t₂ ≤ 1) if 0 ≤ t₁ && 0 ≤ t₂ ≤ 1 return R + polar(t₁, ray.θ) end else # denom is zero if the segment and the ray are parallel # only collide if they are perfectly aligned # must ensure that at least one point is in the positive ray direction r = polar(1.0, ray.θ) if are_collinear(R, seg.A, seg.B) && (r⋅(seg.A - R) ≥ 0 || r⋅(seg.B - R) ≥ 0) return R end end return VecE2(NaN,NaN) # no intersection end """ What side of the ray you are on Is -1 if on the left, 1 if on the right, and 0 if on the ray """ function get_side(ray::Ray, p::VecE2) ab = polar(1.0, ray.θ) return sign(ab.x*(p.y-ray.y) - ab.y*(p.x-ray.x)) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1892
export Circ, AABB, AABB_center_length_width, OBB struct Circ{V<:AbstractVec} c::V # center r::Float64 # radius end Circ(x::Real, y::Real, r::Real) = Circ{VecE2}(VecE2(x, y), r) Circ(x::Real, y::Real, z::Real, r::Real) = Circ{VecE3}(VecE3(x, y, z), r) Base.:+(circ::Circ{VecE2}, v::VecE2) = Circ{VecE2}(circ.c + v, circ.r) Base.:-(circ::Circ{VecE2}, v::VecE2) = Circ{VecE2}(circ.c - v, circ.r) Base.in(p::V, circ::Circ{V}) where {V} = normsquared(circ.c - p) ≤ circ.r*circ.r inertial2body(circ::Circ{VecE2}, reference::VecSE2) = Circ{VecE2}(inertial2body(circ.c, reference), circ.r) # Axis-Aligned Bounding Box struct AABB center::VecE2 len::Float64 # length along x axis wid::Float64 # width along y axis end function AABB(bot_left::VecE2, top_right::VecE2) center = (bot_left + top_right)/2 Δ = top_right - bot_left return AABB(center, abs(Δ.x), abs(Δ.y)) end Base.:+(box::AABB, v::VecE2) = AABB(box.center + v, box.len, box.wid) Base.:-(box::AABB, v::VecE2) = AABB(box.center - v, box.len, box.wid) function Base.in(P::VecE2, box::AABB) -box.len/2 ≤ P.x - box.center.x ≤ box.len/2 && -box.wid/2 ≤ P.y - box.center.y ≤ box.wid/2 end # Oriented Bounding Box struct OBB aabb::AABB θ::Float64 end function OBB(center::VecE2, len::Float64, wid::Float64, θ::Float64) del = VecE2(len/2, wid/2) return OBB(AABB(center, len, wid), θ) end OBB(center::VecSE2, len::Float64, wid::Float64) = OBB(convert(VecE2, center), len, wid, center.θ) Base.:+(box::OBB, v::VecE2) = OBB(box.aabb+v, box.θ) Base.:-(box::OBB, v::VecE2) = OBB(box.aabb-v, box.θ) function Base.in(P::VecE2, box::OBB) C = box.aabb.center in(rot(P-C, -box.θ)+C, box.aabb) end function inertial2body(box::OBB, reference::VecSE2) c = VecSE2(box.aabb.center, box.θ) c′ = inertial2body(c, reference) OBB(c′, box.aabb.len, box.aabb.wid) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1700
""" AccelDesang An action type with a longitudinal acceleration and a desired heading angle # Fields - `a::Float64` longitudinal acceleration [m/s^2] - `ϕdes::Float64` desired heading angle """ struct AccelDesang a::Float64 # accel [m/s²] ϕdes::Float64 # Desired heading angle end Base.show(io::IO, a::AccelDesang) = @printf(io, "AccelDesang(%6.3f,%6.3f)", a.a, a.ϕdes) Base.length(::Type{AccelDesang}) = 2 """ Base.convert(::Type{AccelDesang}, v::Vector{Float64}) Convert a vector containing the acceleration and desired heading angle into AccelDesang type """ Base.convert(::Type{AccelDesang}, v::Vector{Float64}) = AccelDesang(v[1], v[2]) """ Base.copyto!(v::Vector{Float64}, a::AccelDesang) Extract the AccelDesang components into a vector and return the vector """ function Base.copyto!(v::Vector{Float64}, a::AccelDesang) v[1] = a.a v[2] = a.ϕdes v end """ propagate(veh::Entity{VehicleState,D,I}, action::AccelDesang, roadway::Roadway, Δt::Float64; n_integration_steps::Int=4) where {D,I} Propagate vehicle forward in time using a desired acceleration and heading angle """ function propagate(veh::Entity{VehicleState,D,I}, action::AccelDesang, roadway::Roadway, Δt::Float64; n_integration_steps::Int=4) where {D,I} a = action.a # accel ϕdes = action.ϕdes # desired heading angle x, y, θ = posg(veh.state) v = vel(veh.state) δt = Δt/n_integration_steps for i in 1 : n_integration_steps posF = Frenet(VecSE2(x, y, θ), roadway) ω = ϕdes - posF.ϕ x += v*cos(θ)*δt y += v*sin(θ)*δt θ += ω*δt v += a*δt end posG = VecSE2(x, y, θ) VehicleState(posG, roadway, v) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1892
""" AccelSteeringAngle Allows driving the car in a circle based on the steering angle If steering angle less than threshold 0.01 radian, just drives straight # Fields - `a::Float64` longitudinal acceleration [m/s^2] - `δ::Float64` Steering angle [rad] """ struct AccelSteeringAngle a::Float64 # accel [m/s²] δ::Float64 # steering angle [rad] end Base.show(io::IO, a::AccelSteeringAngle) = @printf(io, "AccelSteeringAngle(%6.3f,%6.3f)", a.a, a.δ) Base.length(::Type{AccelSteeringAngle}) = 2 """ Take a vector containing acceleration and desired steering angle and convert to AccelSteeringAngle """ Base.convert(::Type{AccelSteeringAngle}, v::Vector{Float64}) = AccelSteeringAngle(v[1], v[2]) """ Extract acceleration and steering angle components from AccelSteeringAngle and return them into a vector """ function Base.copyto!(v::Vector{Float64}, a::AccelSteeringAngle) v[1] = a.a v[2] = a.δ v end """ propagate vehicle forward in time given a desired acceleration and steering angle. If steering angle higher than 0.1 radian, the vehicle drives in a circle """ function propagate(veh::Entity{VehicleState, BicycleModel, Int}, action::AccelSteeringAngle, roadway::Roadway, Δt::Float64) L = veh.def.a + veh.def.b l = -veh.def.b a = action.a # accel [m/s²] δ = action.δ # steering wheel angle [rad] x, y, θ = posg(veh.state) v = vel(veh.state) s = v*Δt + a*Δt*Δt/2 # distance covered v′ = v + a*Δt if abs(δ) < 0.01 # just drive straight posG = posg(veh.state) + polar(s, θ) else # drive in circle R = L/tan(δ) # turn radius β = s/R xc = x - R*sin(θ) + l*cos(θ) yc = y + R*cos(θ) + l*sin(θ) θ′ = mod(θ+β, 2π) x′ = xc + R*sin(θ+β) - l*cos(θ′) y′ = yc - R*cos(θ+β) - l*sin(θ′) posG = VecSE2(x′, y′, θ′) end VehicleState(posG, roadway, v′) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1314
""" AccelTurnrate An action type with a longitudinal acceleration and a turn rate # Fields - `a::Float64` longitudinal acceleration [m/s^2] - `ω::Float64` desired turn rate [rad/sec] """ struct AccelTurnrate a::Float64 ω::Float64 end Base.show(io::IO, a::AccelTurnrate) = @printf(io, "AccelTurnrate(%6.3f,%6.3f)", a.a, a.ω) Base.length(::Type{AccelTurnrate}) = 2 """ Convert an input vector containing desired acceleration and turn rate into the AccelTurnrate type """ Base.convert(::Type{AccelTurnrate}, v::Vector{Float64}) = AccelTurnrate(v[1], v[2]) """ Return a vector containing the desired acceleration and turn rate """ function Base.copyto!(v::Vector{Float64}, a::AccelTurnrate) v[1] = a.a v[2] = a.ω v end """ Propagate vehicle forward in time using a desired acceleration and turn rate """ function propagate(veh::Entity{VehicleState,D,I}, action::AccelTurnrate, roadway::Roadway, Δt::Float64; n_integration_steps::Int=4) where {D,I} a = action.a # accel ω = action.ω # turnrate x, y, θ = posg(veh.state) v = vel(veh.state) δt = Δt / n_integration_steps for i in 1 : n_integration_steps x += v*cos(θ)*δt y += v*sin(θ)*δt θ += ω*δt v += a*δt end posG = VecSE2(x, y, θ) VehicleState(posG, roadway, v) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1379
""" propagate(veh::Entity{S,D,I}, action::A, roadway::R, Δt::Float64) where {S,D,I,A,R} Take an entity of type {S,D,I} and move it over Δt seconds to produce a new entity based on the action on the given roadway. """ propagate(veh::Entity{S,D,I}, action::A, roadway::R, Δt::Float64) where {S,D,I,A,R} = error("propagate not implemented for Entity{$S, $D, $I}, actions $A, and roadway $R") propagate(veh::Entity{S,D,I}, state::S, roadway::R, Δt::Float64) where {S,D,I,R} = state """ Mapping from actions to entity ids. The main use case is for keeping track of the action history in the same way as the scene history in the `simulate!` function. Initialize as EntityAction(a, id) where `a` is an action which can be used to propagate entities. `id` is the entity identifier. """ struct EntityAction{A,I} action::A id::I end function Base.findfirst(id, scene::Scene{A}) where {A<:EntityAction} for am_index in 1 : scene.n am = scene.entities[am_index] if am.id == id return am_index end end return nothing end function id2index(scene::Scene{A}, id) where {A<:EntityAction} entity_index = findfirst(id, scene) if (entity_index === nothing) throw(BoundsError(scene, [id])) end return entity_index end get_by_id(scene::Scene{A}, id) where {A<:EntityAction} = scene[id2index(scene, id)]
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
757
""" LaneFollowingAccel Longitudinal acceleration. The resulting vehicle velocity is capped below at 0 (i.e. standstill). Negative velocities are not allowed. # Fields - `a::Float64` longitudinal acceleration [m/s^2] """ struct LaneFollowingAccel a::Float64 end function propagate(veh::Entity{VehicleState,D,I}, action::LaneFollowingAccel, roadway::Roadway, ΔT::Float64) where {D,I} a_lon = action.a ds = vel(veh.state) ΔT² = ΔT*ΔT Δs = ds*ΔT + 0.5*a_lon*ΔT² v₂ = max(ds + a_lon*ΔT, 0.) # no negative velocities roadind = move_along(posf(veh.state).roadind, roadway, Δs) posG = roadway[roadind].pos posF = Frenet(roadind, roadway, t=posf(veh.state).t, ϕ=posf(veh.state).ϕ) VehicleState(posG, posF, v₂) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1502
""" LatLonAccel Acceleration in the frenet frame # Fields - `a_lat::Float64` Lateral acceleration [m/s^2] - `a_lon::Float64` Longitudinal acceleration [m/s^2] """ struct LatLonAccel a_lat::Float64 a_lon::Float64 end LatLonAccel(alat::Float64, alon::LaneFollowingAccel) = LatLonAccel(alat, alon.a) Base.show(io::IO, a::LatLonAccel) = @printf(io, "LatLonAccel(%6.3f, %6.3f)", a.a_lat, a.a_lon) Base.length(::Type{LatLonAccel}) = 2 Base.convert(::Type{LatLonAccel}, v::Vector{Float64}) = LatLonAccel(v[1], v[2]) function Base.copyto!(v::Vector{Float64}, a::LatLonAccel) v[1] = a.a_lat v[2] = a.a_lon v end function propagate(veh::Entity{VehicleState, D, I}, action::LatLonAccel, roadway::Roadway, ΔT::Float64) where {D, I} a_lat = action.a_lat a_lon = action.a_lon v = vel(veh.state) ϕ = posf(veh.state).ϕ ds = v*cos(ϕ) t = posf(veh.state).t dt = v*sin(ϕ) ΔT² = ΔT*ΔT Δs = ds*ΔT + 0.5*a_lon*ΔT² Δt = dt*ΔT + 0.5*a_lat*ΔT² ds₂ = ds + a_lon*ΔT dt₂ = dt + a_lat*ΔT speed₂ = sqrt(dt₂*dt₂ + ds₂*ds₂) v₂ = sqrt(dt₂*dt₂ + ds₂*ds₂) # v is the magnitude of the velocity vector ϕ₂ = atan(dt₂, ds₂) roadind = move_along(posf(veh.state).roadind, roadway, Δs) footpoint = roadway[roadind] posG = VecE2{Float64}(footpoint.pos.x,footpoint.pos.y) + polar(t + Δt, footpoint.pos.θ + π/2) posG = VecSE2{Float64}(posG.x, posG.y, footpoint.pos.θ + ϕ₂) veh = VehicleState(posG, roadway, v₂) return veh end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
988
""" PedestrianLatLonAccel Pedestrian walking action. Acceleration in the Frenet frame, along with desired lane after crossing the street. # Fields - `a_lat::Float64` lateral acceleration [m/s^2] - `a_lon::Float64` longitudinal accelaration [m/s^2] - `lane_des::Lane` desired lane to move to """ struct PedestrianLatLonAccel a_lat::Float64 a_lon::Float64 lane_des::Lane end function AutomotiveSimulator.propagate(ped::Entity{VehicleState, D, I}, action::PedestrianLatLonAccel, roadway::Roadway, ΔT::Float64=0.1 ) where {D,I} state = propagate(ped, LatLonAccel(action.a_lat, action.a_lon), roadway, ΔT) roadproj = proj(posg(state), roadway[action.lane_des.tag], roadway, move_along_curves=false) retval = VehicleState(Frenet(roadproj, roadway), roadway, vel(state)) return retval end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3032
""" AbstractAgentDefinition An Agent definition represents static parameters characterizing an agent, such as its physical dimensions. """ abstract type AbstractAgentDefinition end """ length(def::AbstractAgentDefinition) return the length of the vehicle """ Base.length(def::AbstractAgentDefinition) = error("length not implemented for agent definition of type $(typeof(def))") """ width(def::AbstractAgentDefinition) return the width of the vehicle """ width(def::AbstractAgentDefinition) = error("width not implemented for agent definition of type $(typeof(def))") """ class(def::AbstractAgentDefinition) return the class of the vehicle """ class(def::AbstractAgentDefinition) = error("class not implemented for agent definition of type $(typeof(def))") """ A module to represent the different class of agents: - Motorcycle - Car - Truck - Pedestrian """ module AgentClass const MOTORCYCLE = 1 const CAR = 2 const TRUCK = 3 const PEDESTRIAN = 4 end """ VehicleDef(;class::Float64, length::Float64, width::Float64) Vehicle definition which contains a class and a bounding box. """ struct VehicleDef <: AbstractAgentDefinition class::Int64 # ∈ AgentClass length::Float64 width::Float64 end function VehicleDef(;class::Int64 = AgentClass.CAR, length::Float64 = 4.0, width::Float64 = 1.8) return VehicleDef(class, length, width) end Base.length(d::VehicleDef) = d.length width(d::VehicleDef) = d.width class(d::VehicleDef) = d.class const NULL_VEHICLEDEF = VehicleDef(AgentClass.CAR, NaN, NaN) function Base.show(io::IO, d::VehicleDef) class = d.class == AgentClass.CAR ? "CAR" : d.class == AgentClass.MOTORCYCLE ? "MOTORCYCLE" : d.class == AgentClass.TRUCK ? "TRUCK" : d.class == AgentClass.PEDESTRIAN ? "PEDESTRIAN" : "UNKNOWN" @printf(io, "VehicleDef(%s, %.3f, %.3f)", class, d.length, d.width) end Base.write(io::IO, def::VehicleDef) = @printf(io, "%d %.16e %.16e", def.class, def.length, def.width) function Base.read(io::IO, ::Type{VehicleDef}) tokens = split(strip(readline(io)), ' ') class = parse(Int, tokens[1]) length = parse(Float64, tokens[2]) width = parse(Float64, tokens[3]) return VehicleDef(class, length, width) end """ BicycleModel BicycleModel(def::VehicleDef; a::Float64 = 1.5, b::Float64 = 1.5) Vehicle definition representing the bicycle model # Fields - `def::VehicleDef` - `a::Float64` distance between cg and front axle [m] - `b::Float64` distance between cg and rear axle [m] """ struct BicycleModel <: AbstractAgentDefinition def::VehicleDef a::Float64 # distance between cg and front axle [m] b::Float64 # distance between cg and rear axle [m] end function BicycleModel(def::VehicleDef; a::Float64 = 1.5, b::Float64 = 1.5, ) return BicycleModel(def, a, b) end Base.length(d::BicycleModel) = d.def.length width(d::BicycleModel) = d.def.width class(d::BicycleModel) = d.def.class
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
7551
""" MOBIL See Treiber & Kesting, 'Modeling Lane-Changing Decisions with MOBIL' # Constructor `MOBIL(;kwargs...)` The keyword arguments are the fields highlighted below. # Fields - `dir::Int = DIR_MIDDLE` - `mlon::LaneFollowingDriver=IntelligentDriverModel()` - `safe_decel::Float64=2.0` - `politeness::Float64=0.35` - `advantage_threshold::Float64=0.1` """ @with_kw mutable struct MOBIL <: LaneChangeModel{LaneChangeChoice} dir::Int64 = DIR_MIDDLE mlon::LaneFollowingDriver = IntelligentDriverModel() safe_decel::Float64 = 2.0 # safe deceleration (positive value) politeness::Float64 = 0.35 # politeness factor (suggested p ∈ [0.2,0.5]) advantage_threshold::Float64 = 0.1 # Δaₜₕ end """ Set the desired speed of the longitudinal model within MOBIL """ function set_desired_speed!(model::MOBIL, v_des::Float64) set_desired_speed!(model.mlon, v_des) model end function observe!(model::MOBIL, scene::Scene{Entity{S, D, I}}, roadway::Roadway, egoid::I) where {S, D, I} vehicle_index = findfirst(egoid, scene) veh_ego = scene[vehicle_index] v = vel(veh_ego.state) egostate_M = veh_ego.state ego_lane = get_lane(roadway, veh_ego) fore_M = find_neighbor(scene, roadway, veh_ego, targetpoint_ego=VehicleTargetPointFront(), targetpoint_neighbor=VehicleTargetPointRear()) rear_M = find_neighbor(scene, roadway, veh_ego, rear=true, targetpoint_ego=VehicleTargetPointRear(), targetpoint_neighbor=VehicleTargetPointFront()) # accel if we do not make a lane change accel_M_orig = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, egoid)).a model.dir = DIR_MIDDLE advantage_threshold = model.advantage_threshold if n_lanes_left(roadway, ego_lane) > 0 rear_L = find_neighbor(scene, roadway, veh_ego, lane=leftlane(roadway, veh_ego), rear=true, targetpoint_ego=VehicleTargetPointRear(), targetpoint_neighbor=VehicleTargetPointFront()) # candidate position after lane change is over footpoint = get_footpoint(veh_ego) lane = get_lane(roadway, veh_ego) lane_L = roadway[LaneTag(lane.tag.segment, lane.tag.lane + 1)] roadproj = proj(footpoint, lane_L, roadway) frenet_L = Frenet(RoadIndex(roadproj), roadway) egostate_L = VehicleState(frenet_L, roadway, vel(veh_ego.state)) Δaccel_n = 0.0 passes_safety_criterion = true if rear_L.ind != nothing id = scene[rear_L.ind].id accel_n_orig = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a # update ego state in scene scene[vehicle_index] = Entity(veh_ego, egostate_L) accel_n_test = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a body = inertial2body(get_rear(scene[vehicle_index]), get_front(scene[rear_L.ind])) # project ego to be relative to target s_gap = body.x # restore ego state scene[vehicle_index] = veh_ego passes_safety_criterion = accel_n_test ≥ -model.safe_decel && s_gap ≥ 0 Δaccel_n = accel_n_test - accel_n_orig end if passes_safety_criterion Δaccel_o = 0.0 if rear_M.ind != nothing id = scene[rear_M.ind].id accel_o_orig = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a # update ego state in scene scene[vehicle_index] = Entity(veh_ego, egostate_L) accel_o_test = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a # restore ego state scene[vehicle_index] = veh_ego Δaccel_o = accel_o_test - accel_o_orig end # update ego state in scene scene[vehicle_index] = Entity(veh_ego, egostate_L) accel_M_test = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, egoid)).a # restore ego state scene[vehicle_index] = veh_ego Δaccel_M = accel_M_test - accel_M_orig Δaₜₕ = Δaccel_M + model.politeness*(Δaccel_n + Δaccel_o) if Δaₜₕ > advantage_threshold model.dir = DIR_LEFT advantage_threshold = Δaₜₕ end end end if n_lanes_right(roadway, ego_lane) > 0 rear_R = find_neighbor(scene, roadway, veh_ego, lane=rightlane(roadway, veh_ego), targetpoint_ego=VehicleTargetPointRear(), targetpoint_neighbor=VehicleTargetPointFront()) # candidate position after lane change is over footpoint = get_footpoint(veh_ego) lane = roadway[veh_ego.state.posF.roadind.tag] lane_R = roadway[LaneTag(lane.tag.segment, lane.tag.lane - 1)] roadproj = proj(footpoint, lane_R, roadway) frenet_R = Frenet(RoadIndex(roadproj), roadway) egostate_R = VehicleState(frenet_R, roadway, vel(veh_ego.state)) Δaccel_n = 0.0 passes_safety_criterion = true if rear_R.ind != nothing id = scene[rear_R.ind].id accel_n_orig = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a # update ego vehicle in scene scene[vehicle_index] = Entity(veh_ego, egostate_R) accel_n_test = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a body = inertial2body(get_rear(scene[vehicle_index]), get_front(scene[rear_R.ind])) # project ego to be relative to target s_gap = body.x # restore ego vehicle state scene[vehicle_index] = veh_ego passes_safety_criterion = accel_n_test ≥ -model.safe_decel && s_gap ≥ 0 Δaccel_n = accel_n_test - accel_n_orig end if passes_safety_criterion Δaccel_o = 0.0 if rear_M.ind != nothing id = scene[rear_M.ind].id accel_o_orig = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a # update ego vehicle in scene scene[vehicle_index] = Entity(veh_ego, egostate_R) accel_o_test = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, id)).a # restore ego vehicle state scene[vehicle_index] = veh_ego Δaccel_o = accel_o_test - accel_o_orig end # update ego vehicle in scene scene[vehicle_index] = Entity(veh_ego, egostate_R) accel_M_test = rand(observe!(reset_hidden_state!(model.mlon), scene, roadway, egoid)).a # restor ego vehicle state scene[vehicle_index] = veh_ego Δaccel_M = accel_M_test - accel_M_orig Δaₜₕ = Δaccel_M + model.politeness*(Δaccel_n + Δaccel_o) if Δaₜₕ > advantage_threshold model.dir = DIR_RIGHT advantage_threshold = Δaₜₕ elseif Δaₜₕ == advantage_threshold # in case of tie, if we are accelerating we go left, else, right if Δaccel_M > model.politeness*(Δaccel_n + Δaccel_o) model.dir = DIR_LEFT else model.dir = DIR_RIGHT end end end end model end Base.rand(rng::AbstractRNG, model::MOBIL) = LaneChangeChoice(model.dir)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3654
""" IntelligentDriverModel <: LaneFollowingDriver The Intelligent Driver Model. A rule based driving model that is governed by parameter settings. The output is an longitudinal acceleration. Here, we have extended IDM to the errorable IDM. If a standard deviation parameter is specified, then the output is a longitudinal acceleration sampled from a normal distribution around the non-errorable IDM output. # Fields - `a::Float64 = NaN` the predicted acceleration i.e. the output of the model - `σ::Float64 = NaN` allows errorable IDM, optional stdev on top of the model, set to zero or NaN for deterministic behavior - `k_spd::Float64 = 1.0` proportional constant for speed tracking when in freeflow [s⁻¹] - `δ::Float64 = 4.0` acceleration exponent - `T::Float64 = 1.5` desired time headway [s] - `v_des::Float64 = 29.0` desired speed [m/s] - `s_min::Float64 = 5.0` minimum acceptable gap [m] - `a_max::Float64 = 3.0` maximum acceleration ability [m/s²] - `d_cmf::Float64 = 2.0` comfortable deceleration [m/s²] (positive) - `d_max::Float64 = 9.0` maximum deceleration [m/s²] (positive) """ @with_kw mutable struct IntelligentDriverModel <: LaneFollowingDriver a::Float64 = NaN # predicted acceleration σ::Float64 = NaN # optional stdev on top of the model, set to zero or NaN for deterministic behavior k_spd::Float64 = 1.0 # proportional constant for speed tracking when in freeflow [s⁻¹] δ::Float64 = 4.0 # acceleration exponent [-] T::Float64 = 1.5 # desired time headway [s] v_des::Float64 = 29.0 # desired speed [m/s] s_min::Float64 = 5.0 # minimum acceptable gap [m] a_max::Float64 = 3.0 # maximum acceleration ability [m/s²] d_cmf::Float64 = 2.0 # comfortable deceleration [m/s²] (positive) d_max::Float64 = 9.0 # maximum deceleration [m/s²] (positive) end function set_desired_speed!(model::IntelligentDriverModel, v_des::Float64) model.v_des = v_des model end function track_longitudinal!(model::IntelligentDriverModel, v_ego::Float64, v_oth::Float64, headway::Float64) if !isnan(v_oth) @assert !isnan(headway) if headway < 0.0 @debug("IntelligentDriverModel Warning: IDM received a negative headway $headway"* ", a collision may have occured.") model.a = -model.d_max else Δv = v_oth - v_ego s_des = model.s_min + v_ego*model.T - v_ego*Δv / (2*sqrt(model.a_max*model.d_cmf)) v_ratio = model.v_des > 0.0 ? (v_ego/model.v_des) : 1.0 model.a = model.a_max * (1.0 - v_ratio^model.δ - (s_des/headway)^2) end else # no lead vehicle, just drive to match desired speed Δv = model.v_des - v_ego model.a = Δv*model.k_spd # predicted accel to match target speed end @assert !isnan(model.a) model.a = clamp(model.a, -model.d_max, model.a_max) return model end reset_hidden_state!(model::IntelligentDriverModel) = model function Base.rand(rng::AbstractRNG, model::IntelligentDriverModel) if isnan(model.σ) || model.σ ≤ 0.0 return LaneFollowingAccel(model.a) else LaneFollowingAccel(rand(rng, Normal(model.a, model.σ))) end end function Distributions.pdf(model::IntelligentDriverModel, a::LaneFollowingAccel) if isnan(model.σ) || model.σ ≤ 0.0 return a == model.a ? Inf : 0. else return pdf(Normal(model.a, model.σ), a.a) end end function Distributions.logpdf(model::IntelligentDriverModel, a::LaneFollowingAccel) if isnan(model.σ) || model.σ ≤ 0.0 return a == model.a ? Inf : 0. else return logpdf(Normal(model.a, model.σ), a.a) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2564
""" DriverModel{DriveAction} A DriverModel represents a specific driving behavior. It specifies the action taken by the agent at a given scene. The ation will be of type `DriveAction`. It can be interpreted as a distribution, the likelihood of taking a certain action in a given scene. The DriverModel type is an abstract type! Custom driver models should inherit from it. """ abstract type DriverModel{DriveAction} end """ action_type(::DriverModel{A}) where {A} returns the type of the actions that are sampled from the model """ action_type(::DriverModel{A}) where {A} = A """ set_desired_speed!(model::DriverModel, v_des::Float64) Sets a desired speed. This method is relevant for models like IDM where the vehicle tracks a nominal speed. """ function set_desired_speed! end """ reset_hidden_state!(model::DriverModel) Resets the hidden states of the model. """ function reset_hidden_state! end """ reset_hidden_states!(models::Dict{I,M}) where {M<:DriverModel} reset hidden states of all driver models in `models` """ function reset_hidden_states!(models::Dict{I,M}) where {I, M<:DriverModel} for model in values(models) reset_hidden_state!(model) end return models end """ observe!(model::DriverModel, scene, roadway, egoid) Observes the scene and updates the model states accordingly. """ function observe! end """ rand(model::DriverModel) rand(rng::AbstractRNG, model::DriverModel) Samples an action from the model. """ Base.rand(model::DriverModel) = rand(Random.GLOBAL_RNG, model) Base.rand(rng::AbstractRNG, model::DriverModel) = error("AutomotiveSimulatorError: Base.rand(::AbstractRNG, ::$(typeof(model))) not implemented") #### """ StaticDriver{A,P<:ContinuousMultivariateDistribution} <: DriverModel{A} A driver model where actions are always sampled by the same distribution specified by the field `distribution`. # Fields - `distribution::P` """ struct StaticDriver{A,P<:ContinuousMultivariateDistribution} <: DriverModel{A} distribution::P end function Base.rand(rng::AbstractRNG, model::StaticDriver{A,P}) where {A,P} a = rand(rng, model.distribution) return convert(A, a) end Distributions.pdf(model::StaticDriver{A}, a::A) where {A} = pdf(model.distribution, convert(Vector{Float64}, a)) Distributions.logpdf(model::StaticDriver{A}, a::A) where {A} = logpdf(model.distribution, convert(Vector{Float64}, a)) set_desired_speed!(model::StaticDriver, v::Float64) = model observe!(model::StaticDriver, scene::S, roadway::Roadway, egoid::I) where {S, I} = model
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
763
""" LaneChangeChoice A choice of whether to change lanes, and what direction to do it in """ const DIR_RIGHT = -1 const DIR_MIDDLE = 0 const DIR_LEFT = 1 struct LaneChangeChoice dir::Int # -1, 0, 1 end Base.show(io::IO, a::LaneChangeChoice) = @printf(io, "LaneChangeChoice(%d)", a.dir) function get_lane_offset(a::LaneChangeChoice, scene::Scene, roadway::Roadway, vehicle_index::Int) if a.dir == DIR_MIDDLE return posf(scene[vehicle_index].state).t elseif a.dir == DIR_LEFT return lane_offset_left(roadway, scene[vehicle_index]) else @assert(a.dir == DIR_RIGHT) return lane_offset_right(roadway, scene[vehicle_index]) end end #################### abstract type LaneChangeModel{A} <: DriverModel{A} end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1304
abstract type LaneFollowingDriver <: DriverModel{LaneFollowingAccel} end track_longitudinal!(model::LaneFollowingDriver, v_ego::Float64, v_oth::Float64, headway::Float64) = model # do nothing by default function observe!(model::LaneFollowingDriver, scene::Scene{Entity{S, D, I}}, roadway::Roadway, egoid::I) where {S, D, I} ego = get_by_id(scene, egoid) fore = find_neighbor(scene, roadway, ego, targetpoint_ego=VehicleTargetPointFront(), targetpoint_neighbor=VehicleTargetPointRear()) v_ego = vel(ego) v_oth = NaN headway = NaN if fore.ind != nothing v_oth = vel(scene[fore.ind].state) headway = fore.Δs end track_longitudinal!(model, v_ego, v_oth, headway) return model end mutable struct StaticLaneFollowingDriver <: LaneFollowingDriver a::LaneFollowingAccel end StaticLaneFollowingDriver() = StaticLaneFollowingDriver(LaneFollowingAccel(0.0)) StaticLaneFollowingDriver(a::Float64) = StaticLaneFollowingDriver(LaneFollowingAccel(a)) Base.rand(rng::AbstractRNG, model::StaticLaneFollowingDriver) = model.a Distributions.pdf(model::StaticLaneFollowingDriver, a::LaneFollowingAccel) = isapprox(a.a, model.a.a) ? Inf : 0.0 Distributions.logpdf(model::StaticLaneFollowingDriver, a::LaneFollowingAccel) = isapprox(a.a, model.a.a) ? Inf : -Inf
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1039
struct LatLonSeparableDriver{A} <: DriverModel{A} mlat::LateralDriverModel mlon::LaneFollowingDriver end LatLonSeparableDriver(mlat::LateralDriverModel, mlon::LaneFollowingDriver) = LatLonSeparableDriver{LatLonAccel}(mlat, mlon) function set_desired_speed!(model::LatLonSeparableDriver, v_des::Float64) set_desired_speed!(model.mlon, v_des) model end function observe!(model::LatLonSeparableDriver, scene::Scene{Entity{S, D, I}}, roadway::Roadway, egoid::I) where {S, D, I} observe!(model.mlat, scene, roadway, egoid) observe!(model.mlon, scene, roadway, egoid) model end function Base.rand(rng::AbstractRNG, model::LatLonSeparableDriver{A}) where A action_lat = rand(rng, model.mlat) action_lon = rand(rng, model.mlon) A(action_lat, action_lon) end Distributions.pdf(model::LatLonSeparableDriver{A}, a::A) where A = pdf(model.mlat, a.a_lat) * pdf(model.mlon, a.a_lon) Distributions.logpdf(model::LatLonSeparableDriver{A}, a::A) where A = logpdf(model.mlat, a.a_lat) + logpdf(model.mlon, a.a_lon)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2102
abstract type LateralDriverModel{A} <: DriverModel{A} end # TODO: Why does this struct live in the `lateral_driver_models.jl` file """ ProportionalLaneTracker A controller that executes the lane change decision made by the `lane change models` # Constructors ProportionalLaneTracker(;σ::Float64 = NaN,kp::Float64 = 3.0,kd::Float64 = 2.0) # Fields - `a::Float64 = NaN` predicted acceleration - `σ::Float64 = NaN` optional stdev on top of the model, set to zero or NaN for deterministic behavior - `kp::Float64 = 3.0` proportional constant for lane tracking - `kd::Float64 = 2.0` derivative constant for lane tracking """ @with_kw mutable struct ProportionalLaneTracker <: LateralDriverModel{Float64} a::Float64 = NaN # predicted acceleration σ::Float64 = NaN # optional stdev on top of the model, set to zero or NaN for deterministic behavior kp::Float64 = 3.0 # proportional constant for lane tracking kd::Float64 = 2.0 # derivative constant for lane tracking end function track_lateral!(model::ProportionalLaneTracker, laneoffset::Float64, lateral_speed::Float64) model.a = -laneoffset*model.kp - lateral_speed*model.kd model end function observe!(model::ProportionalLaneTracker, scene::Scene{Entity{S, D, I}}, roadway::Roadway, egoid::I) where {S, D, I} ego_index = findfirst(egoid, scene) veh_ego = scene[ego_index] t = posf(veh_ego.state).t # lane offset dt = velf(veh_ego.state).t # rate of change of lane offset model.a = -t*model.kp - dt*model.kd model end function Base.rand(rng::AbstractRNG, model::ProportionalLaneTracker) if isnan(model.σ) || model.σ ≤ 0.0 model.a else rand(rng, Normal(model.a, model.σ)) end end function Distributions.pdf(model::ProportionalLaneTracker, a_lat::Float64) if isnan(model.σ) || model.σ ≤ 0.0 Inf else pdf(Normal(model.a, model.σ), a_lat) end end function Distributions.logpdf(model::ProportionalLaneTracker, a_lat::Float64) if isnan(model.σ) || model.σ ≤ 0.0 Inf else logpdf(Normal(model.a, model.σ), a_lat) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1768
""" PrincetonDriver <: LaneFollowingDriver A lane following driver model that controls longitudinal speed by following a front car. # Fields - `a::Float64` - `σ::Float64 = NaN` optional stdev on top of the model, set to zero or NaN for deterministic behavior - `k::Float64 = 1.0` proportional constant for speed tracking [s⁻¹] - `v_des::Float64 = 29.0` desired speed [m/s] """ @with_kw mutable struct PrincetonDriver <: LaneFollowingDriver a::Float64 = NaN # predicted acceleration σ::Float64 = NaN# optional stdev on top of the model, set to zero or NaN for deterministic behavior k::Float64 = 1.0 # proportional constant for speed tracking [s⁻¹] v_des::Float64 = 29.0 # desired speed [m/s] end function set_desired_speed!(model::PrincetonDriver, v_des::Float64) model.v_des = v_des model end function track_longitudinal!(model::PrincetonDriver, v_ego::Float64, v_oth::Float64, headway::Float64) v_des = model.v_des k = model.k if !isnan(v_oth) v_des = min(v_oth*(1-exp(-k*headway/v_oth - 1)), v_des) end Δv = v_des - v_ego model.a = Δv*k # predicted accel to match target speed model end function Base.rand(rng::AbstractRNG, model::PrincetonDriver) if isnan(model.σ) || model.σ ≤ 0.0 LaneFollowingAccel(model.a) else LaneFollowingAccel(rand(rng, Normal(model.a, model.σ))) end end function Distributions.pdf(model::PrincetonDriver, a::LaneFollowingAccel) if isnan(model.σ) || model.σ ≤ 0.0 Inf else pdf(Normal(model.a, model.σ), a.a) end end function Distributions.logpdf(model::PrincetonDriver, a::LaneFollowingAccel) if isnan(model.σ) || model.σ ≤ 0.0 Inf else logpdf(Normal(model.a, model.σ), a.a) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
7483
""" CrossingPhase Crossing phases for SidewalkPedestrianModel. For a crossing pedestrian, phases go: -2, -1, 0, 1 For a non-crossing pedestrian that pauses at the crosswalk, phases go: -2, -1, 1 For a non-crossing pedestrian that does not pause at the crosswalk, phases go: -2, 1 Model based on Feliciani et al (2017) - A simulation model for non-signalized pedestrian crosswalks based on evidence from on field observation. """ struct CrossingPhase phase::Int # -2, -1, 0, 1 end const APPROACHING = -2 # Keep walking at constant speed const APPRAISING = -1 # Decelerate until reach curbside const CROSSING = 0 # Accelerate until desired speed const LEAVING = 1 # Keep walking at constant speed """ SidewalkPedestrianModel Walks along the sidewalk until approaching the crosswalk. Waits for the cars to pass, then crosses. # Fields - `timestep::Float64` - `phase::Int = APPROACHING` - `ttc_threshold::Float64 = clamp(rand(Normal(4.0, 2.5)), 1.0, Inf)` - `crosswalk::Lane = Lane()` - `sw_origin::Lane = Lane()` - `sw_dest::Lane = Lane()` - `a::PedestrianLatLonAccel = PedestrianLatLonAccel(0.0, 0.0, sw_origin)` makes you turn, left/right - `σ::Float64 = NaN` optional stdev on top of the model, set to zero or NaN for deterministic - `v_des_approach::Float64 = clamp(rand(Normal(1.28, 0.18)), 0.0, Inf)` Based on Feliciani et al. results - `v_des_appraise::Float64 = clamp(rand(Normal(0.94, 0.21)), 0.0, Inf)` - `v_des_cross::Float64 = clamp(rand(Normal(1.35, 0.18)), 0.0, Inf)` - `ped_accel::Float64 = 0.30` - `ped_decel::Float64 = -0.50` """ @with_kw mutable struct SidewalkPedestrianModel <: DriverModel{PedestrianLatLonAccel} timestep::Float64 phase::Int = APPROACHING ttc_threshold::Float64 = clamp(rand(Normal(4.0, 2.5)), 1.0, Inf) crosswalk::Lane = Lane() sw_origin::Lane = Lane() sw_dest::Lane = Lane() # conflict_lanes::Vector{Lane} = Lane[] # Values from Feliciani a::PedestrianLatLonAccel = PedestrianLatLonAccel(0.0, 0.0, sw_origin) # makes you turn, left/right σ::Float64 = NaN # optional stdev on top of the model, set to zero or NaN for deterministic behavior v_des_approach::Float64 = clamp(rand(Normal(1.28, 0.18)), 0.0, Inf) # Based on Feliciani et al. results v_des_appraise::Float64 = clamp(rand(Normal(0.94, 0.21)), 0.0, Inf) v_des_cross::Float64 = clamp(rand(Normal(1.35, 0.18)), 0.0, Inf) ped_accel::Float64 = 0.30 ped_decel::Float64 = -0.50 # For graphing pos_x = Float64[] pos_y = Float64[] velocities = Float64[] phases = Int[] end Base.rand(rng::AbstractRNG, model::SidewalkPedestrianModel) = model.a function AutomotiveSimulator.observe!(model::SidewalkPedestrianModel, scene::Scene{Entity{VehicleState, D, I}}, roadway::Roadway, egoid::I) where {D, I} ped = scene[findfirst(egoid, scene)] push!(model.pos_x, posg(ped.state).x) push!(model.pos_y, posg(ped.state).y) push!(model.velocities, vel(ped.state)) push!(model.phases, model.phase) if model.phase == APPROACHING update_approaching(ped, model, roadway, model.crosswalk, model.sw_origin) elseif model.phase == APPRAISING update_appraising(ped, scene, model, roadway, model.crosswalk, model.sw_origin) elseif model.phase == CROSSING update_crossing(ped, scene, model, roadway, model.crosswalk) elseif model.phase == LEAVING update_leaving(ped, scene, model, roadway, model.sw_dest) else # Model phase is out of bounds end end function update_approaching(ped::Entity{S, D, I}, model::SidewalkPedestrianModel, roadway::Roadway, crosswalk::Lane, sw_origin::Lane ) where {S, D, I} # Keep walking at constant speed until close to crosswalk # If waiting to cross, go to appraising. Else, go to leaving phase Δs = get_distance_to_lane(ped, crosswalk, roadway) if Δs < 3.0 model.phase = APPRAISING end end function update_appraising(ped::Entity{S, D, I}, scene::Scene, model::SidewalkPedestrianModel, roadway::Roadway, crosswalk::Lane, sw_origin::Lane, ) where {S, D<:AbstractAgentDefinition, I} Δs = get_distance_to_lane(ped, crosswalk, roadway) if Δs < 0.1 set_inst_vel(ped, model, sw_origin, 0.0) for veh in scene if class(veh.def) == AgentClass.PEDESTRIAN continue end # Check vehicle distance to the crosswalk posG = posg(veh.state) cw_posF = Frenet(posG, model.crosswalk, roadway) lane = get_lane(roadway, veh) Δs = get_distance_to_lane(veh, model.crosswalk, roadway) ttc = Δs/vel(veh.state) if 0.0 < ttc < model.ttc_threshold return # Exit if any car is not within threshold end end model.phase = CROSSING else # Decelerate to appraise speed set_accel(ped, model, model.v_des_appraise, sw_origin) end end function update_crossing(ped::Entity{S, D, I}, scene::Scene, model::SidewalkPedestrianModel, roadway::Roadway, crosswalk::Lane ) where {S, D, I} # Accelerate until desired speed set_accel(ped, model, model.v_des_cross, crosswalk) # If ped is at end of crosswalk, transition to leaving phase. Δs = get_distance_to_lane(ped, model.sw_dest, roadway) if Δs < 0.2 set_inst_vel(ped, model, model.crosswalk, 0.0) model.phase = LEAVING end end function update_leaving(ped::Entity{S, D, I}, scene::Scene, model::SidewalkPedestrianModel, roadway::Roadway, sw_dest::Lane ) where {S, D, I} # Keep walking at constant speed set_accel(ped, model, model.v_des_approach, model.sw_dest) end function set_inst_vel(ped::Entity{VehicleState, D, I}, model::SidewalkPedestrianModel, lane_des::Lane, v_des::Float64) where {D, I} model.a = PedestrianLatLonAccel(0.0, calc_a(vel(ped.state), v_des, model.timestep), lane_des) end function calc_a(v_init::Float64, v::Float64, Δt::Float64) return (v - v_init)/Δt end function set_accel(ped::Entity{VehicleState, D, I}, model::SidewalkPedestrianModel, v_des::Float64, lane_des::Lane) where {D, I} if vel(ped.state) < v_des model.a = PedestrianLatLonAccel(0.0, model.ped_accel, lane_des) elseif vel(ped.state) > v_des model.a = PedestrianLatLonAccel(0.0, model.ped_decel, lane_des) else model.a = PedestrianLatLonAccel(0.0, 0.0, lane_des) end end # Edited from AutomotivePOMDPs.jl - projects collision point onto the lane. # Should work in any orientation. function get_distance_to_lane(veh::Entity{VehicleState, D, I}, lane_des::Lane, roadway::Roadway) where {D, I} vehlane = get_lane(roadway, veh) lane_segment = LineSegment(lane_des.curve[1].pos, lane_des.curve[end].pos) collision_point = intersect(Ray(posg(veh.state)), lane_segment) lane_des_proj = Frenet(VecSE2(collision_point), vehlane, roadway) Δs = lane_des_proj.s - posf(veh.state).s return Δs end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1755
""" ProportionalSpeedTracker <: LaneFollowingDriver Longitudinal proportional speed control. # Fields - `a::Float64 = NaN` predicted acceleration - `σ::Float64 = NaN` optional stdev on top of the model, set to zero or NaN for deterministic behavior - `k::Float64 = 1.0` proportional constant for speed tracking [s⁻¹] - `v_des::Float64 = 29.0` desired speed [m/s] """ @with_kw mutable struct ProportionalSpeedTracker <: LaneFollowingDriver a::Float64 = NaN # predicted acceleration σ::Float64 = NaN# optional stdev on top of the model, set to zero or NaN for deterministic behavior k::Float64 = 1.0# proportional constant for speed tracking [s⁻¹] v_des::Float64 = 29.0 # desired speed [m/s] end function set_desired_speed!(model::ProportionalSpeedTracker, v_des::Float64) model.v_des = v_des model end function track_longitudinal!(model::ProportionalSpeedTracker, v_ego::Float64, v_oth::Float64, headway::Float64) Δv = model.v_des - v_ego model.a = Δv*model.k # predicted accel to match target speed return model end reset_hidden_state!(model::ProportionalSpeedTracker) = model function Base.rand(rng::AbstractRNG, model::ProportionalSpeedTracker) if isnan(model.σ) || model.σ ≤ 0.0 LaneFollowingAccel(model.a) else LaneFollowingAccel(rand(rng, Normal(model.a, model.σ))) end end function Distributions.pdf(model::ProportionalSpeedTracker, a::LaneFollowingAccel) if isnan(model.σ) || model.σ ≤ 0.0 Inf else pdf(Normal(model.a, model.σ), a.a) end end function Distributions.logpdf(model::ProportionalSpeedTracker, a::LaneFollowingAccel) if isnan(model.σ) || model.σ ≤ 0.0 Inf else logpdf(Normal(model.a, model.σ), a.a) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2700
""" Tim2DDriver Driver that combines longitudinal driver and lateral driver into one model. # Constructors `Tim2DDriver(;kwargs...)` The keywords argument are the fields described below. # Fields - `mlon::LaneFollowingDriver = IntelligentDriverModel()` Longitudinal driving model - `mlat::LateralDriverModel = ProportionalLaneTracker()` Lateral driving model - `mlane::LaneChangeModel =TimLaneChanger` Lane change model """ @with_kw mutable struct Tim2DDriver <: DriverModel{LatLonAccel} mlon::LaneFollowingDriver = IntelligentDriverModel() mlat::LateralDriverModel = ProportionalLaneTracker() mlane::LaneChangeModel = TimLaneChanger() end function set_desired_speed!(model::Tim2DDriver, v_des::Float64) set_desired_speed!(model.mlon, v_des) set_desired_speed!(model.mlane, v_des) model end function track_longitudinal!(driver::LaneFollowingDriver, scene::Scene{Entity{VehicleState, D, I}}, roadway::Roadway, vehicle_index::Int64, fore::NeighborLongitudinalResult) where {D, I} v_ego = vel(scene[vehicle_index].state) if fore.ind != nothing headway, v_oth = fore.Δs, vel(scene[fore.ind].state) else headway, v_oth = NaN, NaN end return track_longitudinal!(driver, v_ego, v_oth, headway) end function observe!(driver::Tim2DDriver, scene::Scene{Entity{S, D, I}}, roadway::Roadway, egoid::I) where {S, D, I} observe!(driver.mlane, scene, roadway, egoid) vehicle_index = findfirst(egoid, scene) ego = scene[vehicle_index] lane_change_action = rand(driver.mlane) laneoffset = get_lane_offset(lane_change_action, scene, roadway, vehicle_index) lateral_speed = velf(scene[vehicle_index]).t if lane_change_action.dir == DIR_MIDDLE target_lane = get_lane(roadway, ego) elseif lane_change_action.dir == DIR_LEFT target_lane = leftlane(roadway, ego) else @assert(lane_change_action.dir == DIR_RIGHT) target_lane = rightlane(roadway, ego) end fore = find_neighbor(scene, roadway, ego, lane=target_lane, targetpoint_ego=VehicleTargetPointFront(), targetpoint_neighbor=VehicleTargetPointRear()) track_lateral!(driver.mlat, laneoffset, lateral_speed) track_longitudinal!(driver.mlon, scene, roadway, vehicle_index, fore) driver end Base.rand(rng::AbstractRNG, driver::Tim2DDriver) = LatLonAccel(rand(rng, driver.mlat), rand(rng, driver.mlon).a) Distributions.pdf(driver::Tim2DDriver, a::LatLonAccel) = pdf(driver.mlat, a.a_lat) * pdf(driver.mlon, a.a_lon) Distributions.logpdf(driver::Tim2DDriver, a::LatLonAccel) = logpdf(driver.mlat, a.a_lat) * logpdf(driver.mlon, a.a_lon)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
4736
""" TimLaneChanger A simple lane change behavior that changes lanes whenever the lead car is going slower than our desired speed. Lane changes are made when there is an available lane, fore/rear gaps exceed our thresholds, we are faster than a rear vehicle in the target lane, and any lead vehicle in the target lane is faster than we can currently go. Has not been published anywhere, so first use in a paper would have to describe this. See MOBIL if you want a lane changer you can cite. # Constructors TimLaneChanger(v_des::Float64=29.0, threshold_fore::Float64 = 50.0,threshold_lane_change_gap_fore::Float64 = 10.0, threshold_lane_change_gap_rear::Float64 = 10.0,dir::Int=DIR_MIDDLE) # Fields - `dir::Int = DIR_MIDDLE` the desired lane to go to eg: left,middle (i.e. stay in same lane) or right - `v_des::Float64 = 29.0` desired velocity - `threshold_fore::Float64 = 50.0` Distance from lead vehicle - `threshold_lane_change_gap_fore::Float64 = 10.0` Space in front - `threshold_lane_change_gap_rear::Float64 = 10.0` Space rear """ @with_kw mutable struct TimLaneChanger <: LaneChangeModel{LaneChangeChoice} dir::Int = DIR_MIDDLE v_des::Float64 = 29.0 threshold_fore::Float64 = 50.0 threshold_lane_change_gap_fore::Float64 = 10.0 threshold_lane_change_gap_rear::Float64 = 10.0 end function set_desired_speed!(model::TimLaneChanger, v_des::Float64) model.v_des = v_des model end function observe!(model::TimLaneChanger, scene::Scene{Entity{S, D, I}}, roadway::Roadway, egoid::I) where {S, D, I} vehicle_index = findfirst(egoid, scene) veh_ego = scene[vehicle_index] v = vel(veh_ego.state) left_lane_exists = has_lane_left(roadway, veh_ego) right_lane_exists = has_lane_right(roadway, veh_ego) fore_M = find_neighbor(scene, roadway, veh_ego, targetpoint_ego = VehicleTargetPointFront(), targetpoint_neighbor = VehicleTargetPointRear(), max_distance = model.threshold_fore) fore_L = find_neighbor(scene, roadway, veh_ego, targetpoint_ego = VehicleTargetPointFront(), targetpoint_neighbor = VehicleTargetPointRear(), lane = leftlane(roadway, veh_ego) ) fore_R = find_neighbor(scene, roadway, veh_ego, targetpoint_ego = VehicleTargetPointFront(), targetpoint_neighbor = VehicleTargetPointRear(), lane = rightlane(roadway, veh_ego)) rear_L = find_neighbor(scene, roadway, veh_ego, targetpoint_ego = VehicleTargetPointFront(), targetpoint_neighbor = VehicleTargetPointRear(), lane = leftlane(roadway, veh_ego), rear=true) rear_R = find_neighbor(scene, roadway, veh_ego, targetpoint_ego = VehicleTargetPointFront(), targetpoint_neighbor = VehicleTargetPointRear(), lane = rightlane(roadway, veh_ego), rear=true) model.dir = DIR_MIDDLE if fore_M.Δs < model.threshold_fore # there is a lead vehicle veh_M = scene[fore_M.ind] speed_M = vel(veh_M.state) if speed_M ≤ min(model.v_des, v) # they are driving slower than we want speed_ahead = speed_M # consider changing to a different lane if right_lane_exists && fore_R.Δs > model.threshold_lane_change_gap_rear && # there is space rear rear_R.Δs > model.threshold_lane_change_gap_fore && # there is space fore (rear_R.ind == nothing || vel(scene[rear_R.ind].state) ≤ v) && # we are faster than any follower (fore_R.ind == nothing || vel(scene[fore_R.ind].state) > speed_ahead) # lead is faster than current speed speed_ahead = fore_R.ind != nothing ? vel(scene[fore_R.ind].state) : Inf model.dir = DIR_RIGHT end if left_lane_exists && fore_L.Δs > model.threshold_lane_change_gap_rear && # there is space rear rear_L.Δs > model.threshold_lane_change_gap_fore && # there is space fore (rear_L.ind == nothing || vel(scene[rear_L.ind].state) ≤ v) && # we are faster than any follower (fore_L.ind == nothing || vel(scene[fore_L.ind].state) > speed_ahead) # lead is faster than current speed speed_ahead = fore_L.ind != nothing ? vel(scene[fore_L.ind].state) : Inf model.dir = DIR_LEFT end end end model end Base.rand(rng::AbstractRNG, model::TimLaneChanger) = LaneChangeChoice(model.dir)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
328
#= TODO find an interface to keep both collision checkers around: Minkowski and Parallel Axis abstract type CollisionChecker end struct MinkowskiChecker <: CollisionChecker end struct ParallelAxisChecker <: CollisionChecker end is_colliding(vehA, vehB, collision_checker::AbstractCollisionChecker = ParallelAxisChecker()) =#
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
17524
# Collision Detection routines based on Minkowski techniques. ###################################### function cyclic_shift_left!(arr::AbstractVector, d::Int, n::Int) #= Perform a cyclic rotation of the elements in the array, in place d = amount to shift n = length of array (if we only want to work with first n elements) =# for i in 1 : gcd(d, n) # move i-th values of blocks temp = arr[i] j = i while true k = j + d if k > n k = k - n end if k == i break end arr[j] = arr[k] j = k end arr[j] = temp end arr end ###################################### function get_signed_area(pts::Vector{VecE2{Float64}}, npts::Int = length(pts)) # https://en.wikipedia.org/wiki/Shoelace_formula # sign of -1 means clockwise, sign of 1 means counterclockwise retval = pts[npts].x*pts[1].y - pts[1].x*pts[npts].y for i in 1 : npts-1 retval += pts[i].x * pts[i+1].y retval -= pts[i+1].x * pts[i].y end retval / 2 end """ get_edge(pts::Vector{VecE2{Float64}}, i::Int, npts::Int=length(pts)) returns the ith edge in pts """ function get_edge(pts::Vector{VecE2{Float64}}, i::Int, npts::Int=length(pts)) a = pts[i] b = i+1 ≤ npts ? pts[i+1] : pts[1] LineSegment(a,b) end ###################################### """ ConvexPolygon ConvexPolygon(npts::Int) ConvexPolygon(pts::Vector{VecE2{Float64}}) Mutable structure to represent a convex polygon. It is used by the Minkowski sum collision checker # Fields - `pts::Vector{VecE2{Float64}}` - `npts::Int` """ mutable struct ConvexPolygon pts::Vector{VecE2{Float64}} # ordered counterclockwise along polygon boundary s.t. first edge has minimum polar angle in [0,2π] npts::Int # number of pts that are currently used (since we preallocate a longer array) end ConvexPolygon(npts::Int) = ConvexPolygon(Array{VecE2{Float64}}(undef, npts), 0) ConvexPolygon(pts::Vector{VecE2{Float64}}) = ConvexPolygon(pts, length(pts)) function Base.iterate(poly::ConvexPolygon, i::Int=1) if i > length(poly) return nothing end return (poly.pts[i], i+1) end Base.length(poly::ConvexPolygon) = poly.npts Base.isempty(poly::ConvexPolygon) = poly.npts == 0 get_edge(P::ConvexPolygon, i::Int) = get_edge(P.pts, i, P.npts) get_signed_area(poly::ConvexPolygon) = get_signed_area(poly.pts, poly.npts) function Base.empty!(poly::ConvexPolygon) poly.npts = 0 poly end function Base.copyto!(dest::ConvexPolygon, src::ConvexPolygon) dest.npts = src.npts copyto!(dest.pts, 1, src.pts, 1, src.npts) dest end function Base.push!(poly::ConvexPolygon, v::VecE2) poly.pts[poly.npts+1] = v poly.npts += 1 poly end function Base.in(v::VecE2, poly::ConvexPolygon) # does NOT include pts on the physical boundary previous_side = 0 for i in 1 : length(poly) seg = get_edge(poly, i) affine_segment = seg.B - seg.A affine_point = v - seg.A current_side = round(Int, sign(cross(affine_segment, affine_point))) # sign indicates side if current_side == 0 # outside or over an edge return false elseif previous_side == 0 # first segment previous_side = current_side elseif previous_side != current_side # all most be on the same side return false end end true end Base.in(v::VecSE2{Float64}, poly::ConvexPolygon) = in(convert(VecE2, v), poly) function Base.show(io::IO, poly::ConvexPolygon) @printf(io, "ConvexPolygon: len %d (max %d pts)\n", length(poly), length(poly.pts)) for i in 1 : length(poly) print(io, "\t"); show(io, poly.pts[i]) print(io, "\n") end end AutomotiveSimulator.get_center(poly::ConvexPolygon) = sum(poly.pts) / poly.npts function Vec.get_distance(poly::ConvexPolygon, v::VecE2; solid::Bool=true) if solid && in(v, poly) 0.0 else min_dist = Inf for i in 1 : length(poly) seg = get_edge(poly, i) min_dist = min(min_dist, get_distance(seg, v)) end min_dist end end function ensure_pts_sorted_by_min_polar_angle!(poly::ConvexPolygon, npts::Int=poly.npts) @assert(npts ≥ 3) @assert(sign(get_signed_area(poly)) == 1) # must be counter-clockwise # ensure that edges are sorted by minimum polar angle in [0,2π] angle_start = Inf index_start = -1 for i in 1 : npts seg = get_edge(poly.pts, i, npts) θ = atan(seg.B.y - seg.A.y, seg.B.x - seg.A.x) if θ < 0.0 θ += 2π end if θ < angle_start angle_start = θ index_start = i end end if index_start != 1 cyclic_shift_left!(poly.pts, index_start-1, npts) end poly end function shift!(poly::ConvexPolygon, v::VecE2) for i in 1 : length(poly) poly.pts[i] += v end ensure_pts_sorted_by_min_polar_angle!(poly) poly end function rotate!(poly::ConvexPolygon, θ::Float64) for i in 1 : length(poly) poly.pts[i] = Vec.rot(poly.pts[i], θ) end ensure_pts_sorted_by_min_polar_angle!(poly) poly end function mirror!(poly::ConvexPolygon) for i in 1 : length(poly) poly.pts[i] = -poly.pts[i] end ensure_pts_sorted_by_min_polar_angle!(poly) poly end function minkowksi_sum!(retval::ConvexPolygon, P::ConvexPolygon, Q::ConvexPolygon) #= For two convex polygons P and Q in the plane with m and n vertices, their Minkowski sum is a convex polygon with at most m + n vertices and may be computed in time O (m + n) by a very simple procedure, which may be informally described as follows. Assume that the edges of a polygon are given and the direction, say, counterclockwise, along the polygon boundary. Then it is easily seen that these edges of the convex polygon are ordered by polar angle. Let us merge the ordered sequences of the directed edges from P and Q into a single ordered sequence S. Imagine that these edges are solid arrows which can be moved freely while keeping them parallel to their original direction. Assemble these arrows in the order of the sequence S by attaching the tail of the next arrow to the head of the previous arrow. It turns out that the resulting polygonal chain will in fact be a convex polygon which is the Minkowski sum of P and Q. =# empty!(retval) index_P = 1 index_Q = 1 θp = get_polar_angle(get_edge(P, index_P)) θq = get_polar_angle(get_edge(Q, index_Q)) while index_P ≤ length(P) || index_Q ≤ length(Q) # select next edge with minimum polar angle if θp == θq seg_p = get_edge(P, index_P) seg_q = get_edge(Q, index_Q) O = isempty(retval) ? P.pts[1] + Q.pts[1] : retval.pts[retval.npts] push!(retval, O + seg_p.B - seg_p.A + seg_q.B - seg_q.A) index_P += 1 θp = index_P ≤ length(P) ? get_polar_angle(get_edge(P, index_P)) : Inf index_Q += 1 θq = index_Q ≤ length(Q) ? get_polar_angle(get_edge(Q, index_Q)) : Inf elseif θp ≤ θq seg = get_edge(P, index_P) O = isempty(retval) ? P.pts[1] + Q.pts[1] : retval.pts[retval.npts] push!(retval, O + seg.B - seg.A) index_P += 1 θp = index_P ≤ length(P) ? get_polar_angle(get_edge(P, index_P)) : Inf else seg = get_edge(Q, index_Q) O = isempty(retval) ? P.pts[1] + Q.pts[1] : retval.pts[retval.npts] push!(retval, O + seg.B - seg.A) index_Q += 1 θq = index_Q ≤ length(Q) ? get_polar_angle(get_edge(Q, index_Q)) : Inf end end ensure_pts_sorted_by_min_polar_angle!(retval) retval end function minkowski_difference!(retval::ConvexPolygon, P::ConvexPolygon, Q::ConvexPolygon) #= The minkowski difference is what you get by taking the minkowski sum of a shape and the mirror of another shape. So, your second shape gets flipped about the origin (all of its points are negated). The idea is that you do a binary operation on two shapes to get a new shape, and if the origin (the zero vector) is inside that shape, then they are colliding. =# minkowksi_sum!(retval, P, mirror!(Q)) end function is_colliding(P::ConvexPolygon, Q::ConvexPolygon, temp::ConvexPolygon=ConvexPolygon(length(P) + length(Q))) minkowski_difference!(temp, P, Q) in(VecE2(0,0), temp) end function Vec.get_distance(P::ConvexPolygon, Q::ConvexPolygon, temp::ConvexPolygon=ConvexPolygon(length(P) + length(Q))) minkowski_difference!(temp, P, Q) get_distance(temp, VecE2(0,0)) end """ to_oriented_bounding_box!(retval::ConvexPolygon, center::VecSE2{Float64}, len::Float64, wid::Float64) to_oriented_bounding_box!(retval::ConvexPolygon, veh::Entity{S,D,I}, center::VecSE2{Float64} = get_center(veh)) Fills in the vertices of `retval` according to the rectangle specification: center, length, width """ function to_oriented_bounding_box!(retval::ConvexPolygon, center::VecSE2{Float64}, len::Float64, wid::Float64) @assert(len > 0) @assert(wid > 0) @assert(!isnan(center.θ)) @assert(!isnan(center.x)) @assert(!isnan(center.y)) x = polar(len/2, center.θ) y = polar(wid/2, center.θ+π/2) C = convert(VecE2,center) retval.pts[1] = x - y + C retval.pts[2] = x + y + C retval.pts[3] = -x + y + C retval.pts[4] = -x - y + C retval.npts = 4 AutomotiveSimulator.ensure_pts_sorted_by_min_polar_angle!(retval) retval end function to_oriented_bounding_box!(retval::ConvexPolygon, veh::Entity{S,D,I}, center::VecSE2{Float64} = get_center(veh)) where {S,D<:AbstractAgentDefinition,I} # get an oriented bounding box at the vehicle's position to_oriented_bounding_box!(retval, center, length(veh.def), width(veh.def)) retval end """ get_oriented_bounding_box(center::VecSE2{Float64}, len::Float64, wid::Float64) = to_oriented_bounding_box!(ConvexPolygon(4), center, len, wid) get_oriented_bounding_box(veh::Entity{S,D,I}, center::VecSE2{Float64} = get_center(veh)) where {S,D<:AbstractAgentDefinition,I} Returns a ConvexPolygon representing a bounding rectangle of the size specified by center, length, width """ get_oriented_bounding_box(center::VecSE2{Float64}, len::Float64, wid::Float64) = to_oriented_bounding_box!(ConvexPolygon(4), center, len, wid) function get_oriented_bounding_box(veh::Entity{S,D,I}, center::VecSE2{Float64} = get_center(veh)) where {S,D<:AbstractAgentDefinition,I} return to_oriented_bounding_box!(ConvexPolygon(4), veh, center) end ###################################### """ is_colliding(ray::VecSE2{Float64}, poly::ConvexPolygon) returns true if the ray collides with the polygon """ function is_colliding(ray::VecSE2{Float64}, poly::ConvexPolygon) # collides if at least one of the segments collides with the ray for i in 1 : length(poly) seg = get_edge(poly, i) if intersects(ray, seg) return true end end false end """ get_collision_time(ray::VecSE2{Float64}, poly::ConvexPolygon, ray_speed::Float64) returns the collision time between a ray and a polygon given `ray_speed` """ function get_collision_time(ray::VecSE2{Float64}, poly::ConvexPolygon, ray_speed::Float64) min_col_time = Inf for i in 1 : length(poly) seg = get_edge(poly, i) col_time = get_intersection_time(Projectile(ray, ray_speed), seg) if !isnan(col_time) && col_time < min_col_time min_col_time = col_time end end min_col_time end ###################################### """ CPAMemory A structure to cache the bounding boxes around vehicle. It is part of the internals of the Minkowski collision checker. # Fields - `vehA::ConvexPolygon` bounding box for vehicle A - `vehB::ConvexPolygon` bounding box for vehicle B - `mink::ConvexPolygon` minkowski bounding box """ struct CPAMemory vehA::ConvexPolygon # bounding box for vehicle A vehB::ConvexPolygon # bounding box for vehicle B mink::ConvexPolygon # minkowski bounding box CPAMemory() = new(ConvexPolygon(4), ConvexPolygon(4), ConvexPolygon(8)) end function _bounding_radius(veh::Entity{S,D,I}) where {S,D<:AbstractAgentDefinition,I} return sqrt(length(veh.def)*length(veh.def)/4 + width(veh.def)*width(veh.def)/4) end """ is_potentially_colliding(A::Entity{S,D,I}, B::Entity{S,D,I}) where {S,D<:AbstractAgentDefinition,I} A fast collision check to remove things clearly not colliding """ function is_potentially_colliding(A::Entity{S,D,I}, B::Entity{S,D,I}) where {S, D<:AbstractAgentDefinition,I} Δ² = normsquared(VecE2(posg(A.state) - posg(B.state))) r_a = _bounding_radius(A) r_b = _bounding_radius(B) Δ² ≤ r_a*r_a + 2*r_a*r_b + r_b*r_b end """ is_colliding(A::Entity{S,D,I}, B::Entity{S,D,I}, mem::CPAMemory=CPAMemory()) where {D<:AbstractAgentDefinition,I} returns true if the vehicles A and B are colliding. It uses Minkowski sums. is_colliding(mem::CPAMemory) returns true if vehA and vehB in mem collides. """ function is_colliding(A::Entity{S,D,I}, B::Entity{S,D,I}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} if is_potentially_colliding(A, B) to_oriented_bounding_box!(mem.vehA, A) to_oriented_bounding_box!(mem.vehB, B) return is_colliding(mem) end false end is_colliding(mem::CPAMemory) = is_colliding(mem.vehA, mem.vehB, mem.mink) """ Vec.get_distance(A::Entity{S,D,I}, B::Entity{S,D,I}, mem::CPAMemory=CPAMemory()) where {D<:AbstractAgentDefinition,I} returns the euclidean distance between A and B. """ function Vec.get_distance(A::Entity{S,D,I}, B::Entity{S,D,I}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} to_oriented_bounding_box!(mem.vehA, A) to_oriented_bounding_box!(mem.vehB, B) get_distance(mem) end Vec.get_distance(mem::CPAMemory) = get_distance(mem.vehA, mem.vehB, mem.mink) """ CollisionCheckResult A type to store the result of a collision checker # Fields - `is_colliding::Bool` - `A::Int64` # index of 1st vehicle - `B::Int64` # index of 2nd vehicle """ struct CollisionCheckResult is_colliding::Bool A::Int64 # index of 1st vehicle B::Int64 # index of 2nd vehicle # TODO: penetration vector? end """ get_first_collision(scene::EntityScene{S,D,I}, target_index::Int, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} Loops through the scene and finds the first collision between a vehicle and scene[target_index] """ function get_first_collision(scene::EntityScene{S,D,I}, target_index::Int, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} A = target_index vehA = scene[A] to_oriented_bounding_box!(mem.vehA, vehA) for (B,vehB) in enumerate(scene) if B != A to_oriented_bounding_box!(mem.vehB, vehB) if is_potentially_colliding(vehA, vehB) && is_colliding(mem) return CollisionCheckResult(true, A, B) end end end CollisionCheckResult(false, A, 0) end """ get_first_collision(scene::EntityScene{S,D,I}, vehicle_indeces::AbstractVector{Int}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} Loops through the scene and finds the first collision between any two vehicles in `vehicle_indeces`. """ function get_first_collision(scene::EntityScene{S,D,I}, vehicle_indeces::AbstractVector{Int}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} N = length(vehicle_indeces) for (a,A) in enumerate(vehicle_indeces) vehA = scene[A] to_oriented_bounding_box!(mem.vehA, vehA) for b in a +1 : length(vehicle_indeces) B = vehicle_indeces[b] vehB = scene[B] if is_potentially_colliding(vehA, vehB) to_oriented_bounding_box!(mem.vehB, vehB) if is_colliding(mem) return CollisionCheckResult(true, A, B) end end end end CollisionCheckResult(false, 0, 0) end """ get_first_collision(scene::EntityScene{S,D,I}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} Loops through the scene and finds the first collision between any two vehicles """ get_first_collision(scene::EntityScene{S,D,I}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} = get_first_collision(scene, 1:length(scene), mem) """ is_collision_free(scene::EntityScene{S,D,I}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} is_collision_free(scene::EntityScene{S,D,I}, vehicle_indeces::AbstractVector{Int}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} Check that there is no collisions between any two vehicles in `scene` If `vehicle_indeces` is used, it only checks for vehicles within `scene[vehicle_indeces]` """ is_collision_free(scene::EntityScene{S,D,I}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} = !(get_first_collision(scene, mem).is_colliding) is_collision_free(scene::EntityScene{S,D,I}, vehicle_indeces::AbstractVector{Int}, mem::CPAMemory=CPAMemory()) where {S,D<:AbstractAgentDefinition,I} = get_first_collision(scene, vehicle_indeces, mem).is_colliding
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5583
""" collision_checker(veh_a::Entity, veh_b::Entity) collision_checker(veh_a, veh_b, veh_a_def::AbstractAgentDefinition, veh_b_def::AbstractAgentDefinition) return True if `veh_a` and `veh_b` collides. Relies on the parallel axis theorem. """ function collision_checker(veh_a::Entity, veh_b::Entity) return collision_checker(veh_a.state, veh_b.state, veh_a.def, veh_b.def) end function collision_checker(veh_a, veh_b, veh_a_def::AbstractAgentDefinition, veh_b_def::AbstractAgentDefinition) center_a = posg(veh_a) center_b = posg(veh_b) l_a = length(veh_a_def) w_a = width(veh_a_def) l_b = length(veh_b_def) w_b = width(veh_b_def) # first fast check: @fastmath begin Δ = sqrt((posg(veh_a).x - posg(veh_b).x)^2 + (posg(veh_a).y - posg(veh_b).y)^2) r_a = sqrt(l_a*l_a/4 + w_a*w_a/4) r_b = sqrt(l_b*l_b/4 + w_b*w_b/4) end if Δ ≤ r_a + r_b # fast check is true, run parallel axis theorem Pa = polygon(center_a, veh_a_def) Pb = polygon(center_b, veh_b_def) return overlap(Pa, Pb) end return false end """ collision_checker(scene::Scene{Entity{S,D,I}}, egoid::I) where {S, D<:AbstractAgentDefinition, I} return true if any entity in the scene collides with the entity of id `egoid`. """ function collision_checker(scene::Scene{Entity{S,D,I}}, egoid::I) where {S, D<:AbstractAgentDefinition, I} ego = get_by_id(scene, egoid) for veh in scene if veh.id != egoid if collision_checker(veh, ego) return true end end end return false end """ polygon(pos::VecSE2{Float64}, veh_def::AbstractAgentDefinition) polygon(x::Float64,y::Float64,theta::Float64, length::Float64, width::Float64) returns a 4x2 static matrix corresponding to a rectangle around a car centered at `pos` and of dimensions specified by `veh_def` """ function polygon(pos::VecSE2{Float64}, veh_def::AbstractAgentDefinition) x, y ,θ = pos return polygon(x, y, θ, length(veh_def), width(veh_def)) end function polygon(x::Float64,y::Float64,theta::Float64, length::Float64, width::Float64) l_ = length/2 w_ = width/2 # compute each vertex: @fastmath begin #top left Ax = x + l_*cos(theta) - w_*sin(theta) Ay = y + l_*sin(theta) + w_*cos(theta) #top right Bx = x + l_*cos(theta) + w_*sin(theta) By = y + l_*sin(theta) - w_*cos(theta) # bottom right Cx = x - l_*cos(theta) + w_*sin(theta) Cy = y - l_*sin(theta) - w_*cos(theta) # bttom left Dx = x - l_*cos(theta) - w_*sin(theta) Dy = y - l_*sin(theta) + w_*cos(theta) end P = @SMatrix [Ax Ay; Bx By; Cx Cy; Dx Dy] return P end ### POLYGON INTERSECTION USING PARALLEL AXIS THEOREM """ overlap(poly_a::SMatrix{4, 2, Float64}, poly_b::SMatrix{4, 2, Float64}) Check if two convex polygons overlap, using the parallel axis theorem a polygon is a nx2 matrix where n in the number of verteces http://gamemath.com/2011/09/detecting-whether-two-convex-polygons-overlap/ /!\\ edges needs to be ordered """ function overlap(poly_a::SMatrix{M, 2, Float64}, poly_b::SMatrix{N, 2, Float64}) where {M,N} if find_separating_axis(poly_a, poly_b) return false end if find_separating_axis(poly_b, poly_a) return false end return true end """ find_separating_axis(poly_a::SMatrix{4, 2, Float64}, poly_b::SMatrix{4, 2, Float64}) build a list of candidate separating axes from the edges of a /!\\ edges needs to be ordered """ function find_separating_axis(poly_a::SMatrix{M, 2, Float64}, poly_b::SMatrix{N, 2, Float64}) where {M, N} n_a = size(poly_a)[1] n_b = size(poly_b)[1] axis = zeros(2) @views previous_vertex = poly_a[end,:] for i=1:n_a # loop through all the edges n edges @views current_vertex = poly_a[i,:] # get edge vector edge = current_vertex - previous_vertex # rotate 90 degrees to get the separating axis axis[1] = edge[2] axis[2] = -edge[1] # project polygons onto the axis a_min,a_max = polygon_projection(poly_a, axis) b_min,b_max = polygon_projection(poly_b, axis) # check separation if a_max < b_min return true#,current_vertex,previous_vertex,edge,a_max,b_min end if b_max < a_min return true#,current_vertex,previous_vertex,edge,a_max,b_min end @views previous_vertex = poly_a[i,:] end # no separation was found return false end """ polygon_projection(poly::SMatrix{4, 2, Float64}, axis::Vector{Float64}) return the projection interval for the polygon poly over the axis axis """ function polygon_projection(poly::SMatrix{N, 2, Float64}, axis::Vector{Float64}) where {N} n_a = size(poly)[1] @inbounds @fastmath @views d1 = dot(poly[1,:],axis) @inbounds @fastmath @views d2 = dot(poly[2,:],axis) # initialize min and max if d1<d2 out_min = d1 out_max = d2 else out_min = d2 out_max = d1 end for i=1:n_a @inbounds @fastmath @views d = dot(poly[i,:],axis) if d < out_min out_min = d elseif d > out_max out_max = d end end return out_min,out_max end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
12337
## define features traits # most general feature(roadway, scenes, actions, vehid) abstract type AbstractFeature end # feature(roadway, veh) struct EntityFeature <: AbstractFeature end # feature(roadway, scene, veh) struct SceneFeature <: AbstractFeature end # feature(roadway, scenes, veh) struct TemporalFeature <: AbstractFeature end # feature(actions, veh) # struct TemporalActionFeature <: AbstractFeature end # feature(action, veh) # struct ActionFeature <: AbstractFeature end """ featuretype(f::Function) function used for dispatching feature types depending on the method of the feature function """ function featuretype(f::Function) if static_hasmethod(f, Tuple{Roadway, Entity}) return EntityFeature() elseif static_hasmethod(f, Tuple{Roadway, Scene, Entity}) return SceneFeature() elseif static_hasmethod(f, Tuple{Roadway, Vector{<:Scene}, Entity}) return TemporalFeature() else error("""" unsupported feature type try adding a new feature trait or implement one of the existing feature type supported """) end return end ## Feature extraction functions # Top level extract several features """ extract_features(features, roadway::Roadway, scenes::Vector{<:Scene}, ids::Vector{I}) where I Extract information from a list of scenes. It returns a dictionary of DataFrame objects. # Inputs - `features`: a tuple of feature functions. The feature types supported are `EntityFeature`, `SceneFeature` and `TemporalFeature`. Check the documentation for the list of available feature functions, and how to implement you own feature function. - `roadway::Roadway` : the roadway associated to the scenes. - `scenes::Vector{<:Scene}` : the simulation data from which we wish to extract information from. Each scene in the vector corresponds to one time step. - `ids::Vector{I}`: a list of entity IDs for which we want to extract the information. # Output A dictionary mapping IDs to `DataFrame` objects. For a given ID, the DataFrame's columns correspond to the name of the input feature functions. The row correspond to the feature value for each scene (time history). # Example: ```julia roadway = gen_straight_roadway(4, 100.0) scene_0 = Scene([ Entity(VehicleState(VecSE2( 0.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1), Entity(VehicleState(VecSE2(10.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 2), ]) scene_1 = Scene([ Entity(VehicleState(VecSE2( 10.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1), Entity(VehicleState(VecSE2(20.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 2), ]) dfs = extract_features((posgx, iscolliding), roadway, [scene_0, scene_1], [1,2]) dfs[1].posgx # history of global x position for vehicle of ID 1 ``` """ function extract_features(features, roadway::Roadway, scenes::Vector{<:Scene}, ids::Vector{I}) where I dfs_list = broadcast(f -> extract_feature(featuretype(f), f, roadway, scenes, ids), features) # join all the dataframes dfs = Dict{I, DataFrame}() for id in ids dfs[id] = DataFrame([Symbol(features[i]) => dfs_list[i][id] for i=1:length(features)]) end return dfs end # feature is a general (temporal) feature, broadcast on id only function extract_feature(ft::AbstractFeature, feature, roadway::Roadway, scenes::Vector{<:Scene}, ids) values = feature.(Ref(roadway), Ref(scenes), ids) # vector of vectors return Dict(zip(ids, values)) end # feature is a scene feature, broadcast on ids and scenes function extract_feature(ft::SceneFeature, feature, roadway::Roadway, scenes::Vector{<:Scene}, ids) values = broadcast(ids) do id veh_hist = get_by_id.(scenes, Ref(id)) feature.(Ref(roadway), scenes, veh_hist) end return Dict(zip(ids, values)) end # feature is an entity feature, broadcast on ids and scenes function extract_feature(ft::EntityFeature, feature, roadway::Roadway, scenes::Vector{<:Scene}, ids) values = broadcast(ids) do id veh_hist= get_by_id.(scenes, Ref(id)) feature.(Ref(roadway), veh_hist) end return Dict(zip(ids, values)) end ## feature functions # vehicle only features """ posgx(roadway::Roadway, veh::Entity) returns x position in the global frame """ posgx(roadway::Roadway, veh::Entity) = posg(veh).x """ posgy(roadway::Roadway, veh::Entity) returns y position in the global frame """ posgy(roadway::Roadway, veh::Entity) = posg(veh).y """ posgθ(roadway::Roadway, veh::Entity) returns heading in the global frame """ posgθ(roadway::Roadway, veh::Entity) = posg(veh).θ """ posfs(roadway::Roadway, veh::Entity) returns longitudinal position in Frenet frame """ posfs(roadway::Roadway, veh::Entity) = posf(veh).s """ posft(roadway::Roadway, veh::Entity) returns lateral position in Frenet frame """ posft(roadway::Roadway, veh::Entity) = posf(veh).t """ posfϕ(roadway::Roadway, veh::Entity) returns heading relative to centerline of the lane """ posfϕ(roadway::Roadway, veh::Entity) = posf(veh).ϕ """ vel(roadway::Roadway, veh::Entity) returns the velocity of `veh` """ vel(roadway::Roadway, veh::Entity) = vel(veh) """ velfs(roadway::Roadway, veh::Entity) returns the longitudinal velocity in the Frenet frame """ velfs(roadway::Roadway, veh::Entity) = velf(veh).s """ velft(roadway::Roadway, veh::Entity) returns the lateral velocity in the Frenet frame """ velft(roadway::Roadway, veh::Entity) = velf(veh).t """ velgx(roadway::Roadway, veh::Entity) returns the velocity in the x direction of the global frame """ velgx(roadway::Roadway, veh::Entity) = velg(veh).x """ velgy(roadway::Roadway, veh::Entity) returns the velocity in the y direction of the global frame """ velgy(roadway::Roadway, veh::Entity) = velg(veh).y """ time_to_crossing_right(roadway::Roadway, veh::Entity) time before crossing the right lane marker assuming constant lateral speed. """ function time_to_crossing_right(roadway::Roadway, veh::Entity) d_mr = markerdist_right(roadway, veh) velf_t = velf(veh).t if d_mr > 0.0 && velf_t < 0.0 return -d_mr / velf_t else return Inf end end """ time_to_crossing_left(roadway::Roadway, veh::Entity) time before crossing the left lane marker assuming constant lateral speed. """ function time_to_crossing_left(roadway::Roadway, veh::Entity) d_mr = markerdist_left(roadway, veh) velf_t = velf(veh).t if d_mr > 0.0 && velf_t > 0.0 return -d_mr / velf_t else return Inf end end """ estimated_time_to_lane_crossing(roadway::Roadway, veh::Entity) minimum of the time to crossing left and time to crossing right. """ function estimated_time_to_lane_crossing(roadway::Roadway, veh::Entity) ttcr_left = time_to_crossing_left(roadway, veh) ttcr_right = time_to_crossing_right(roadway, veh) return min(ttcr_left, ttcr_right) end """ iswaiting(roadway::Roadway, veh::Entity) returns true if the vehicle is waiting (if the velocity is 0.0) """ iswaiting(roadway::Roadway, veh::Entity) = vel(veh) ≈ 0.0 ## scene features """ iscolliding(roadway::Roadway, scene::Scene, veh::Entity) returns true if the vehicle is colliding with another vehicle in the scene. """ function iscolliding(roadway::Roadway, scene::Scene, veh::Entity) return collision_checker(scene, veh.id) end """ distance_to(egoid) generate a feature function distance_to_\$egoid. `distance_to_\$egoid(roadway, scene, veh)` returns the distance between veh and the vehicle of id egoid in the scene. """ function distance_to(egoid) @eval begin function ($(Symbol("distance_to_$(egoid)")))(roadway::Roadway, scene::Scene, veh::Entity) ego = get_by_id(scene, $egoid) return norm(VecE2(posg(ego) - posg(veh))) end export $(Symbol("distance_to_$(egoid)")) $(Symbol("distance_to_$(egoid)")) end end # temporal features """ acc(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the history of acceleration of the entity of id vehid using finite differences on the velocity. The first element is `missing`. """ function acc(roadway::Roadway, scenes::Vector{<:Scene}, vehid) result = zeros(Union{Missing,Float64},length(scenes)) angles = broadcast(x->vel(get_by_id(x, vehid)), scenes) result[1] = missing result[2:end] .= diff(angles) return result end """ accfs(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the history of longitudinal acceleration in the Frenet frame of the entity of id vehid using finite differences on the velocity. The first element is `missing`. """ function accfs(roadway::Roadway, scenes::Vector{<:Scene}, vehid) result = zeros(Union{Missing,Float64},length(scenes)) angles = broadcast(x->velf(get_by_id(x, vehid)).s, scenes) result[1] = missing result[2:end] .= diff(angles) return result end """ accft(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the history of lateral acceleration in the Frenet frame of the entity of id vehid using finite differences on the velocity. The first element is `missing`. """ function accft(roadway::Roadway, scenes::Vector{<:Scene}, vehid) result = zeros(Union{Missing,Float64},length(scenes)) angles = broadcast(x->velf(get_by_id(x, vehid)).t, scenes) result[1] = missing result[2:end] .= diff(angles) return result end """ jerk(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the jerk history of the entity of id vehid using finite differences on acceleration (which uses finite differences on velocity). The first two elements are missing. """ function jerk(roadway::Roadway, scenes::Vector{<:Scene}, vehid) return vcat(missing, diff(acc(roadway, scenes, vehid))) end """ jerkfs(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the longitudinal jerk history in the Frenet frame of the entity of id vehid using finite differences on acceleration (which uses finite differences on velocity). The first two elements are missing. """ function jerkfs(roadway::Roadway, scenes::Vector{<:Scene}, vehid) return vcat(missing, diff(accfs(roadway, scenes, vehid))) end """ jerkft(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the lateral jerk history in the Frenet frame of the entity of id vehid using finite differences on acceleration (which uses finite differences on velocity). The first two elements are missing. """ function jerkft(roadway::Roadway, scenes::Vector{<:Scene}, vehid) return vcat(missing, diff(accft(roadway, scenes, vehid))) end """ turn_rate_g(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the turn rate history in the Frenet frame of the entity of id vehid using finite differences on global heading. The first element is missing. """ function turn_rate_g(roadway::Roadway, scenes::Vector{<:Scene}, vehid) result = zeros(Union{Missing,Float64},length(scenes)) angles = broadcast(x->posg(get_by_id(x, vehid)).θ, scenes) result[1] = missing result[2:end] .= diff(angles) return result end """ turn_rate_g(roadway::Roadway, scenes::Vector{<:Scene}, vehid) returns the turn rate history in the Frenet frame of the entity of id vehid using finite differences on heading in the Frenet frame. The first element is missing. """ function turn_rate_f(roadway::Roadway, scenes::Vector{<:Scene}, vehid) result = zeros(Union{Missing,Float64},length(scenes)) angles = broadcast(x->posf(get_by_id(x, vehid)).ϕ, scenes) result[1] = missing result[2:end] .= diff(angles) return result end """ isbraking(roadway::Roadway, scenes::Vector{<:Scene}, vehid) history of braking events: true when the acceleration is negative. The first element is missing. """ function isbraking(roadway::Roadway, scenes::Vector{<:Scene}, vehid) return acc(roadway, scenes, vehid) .< 0.0 end """ isaccelerating(roadway::Roadway, scenes::Vector{<:Scene}, vehid) history of acceleration events: true when the acceleration is positive The first element is missing. """ function isaccelerating(roadway::Roadway, scenes::Vector{<:Scene}, vehid) return acc(roadway, scenes, vehid) .> 0.0 end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
4501
""" leftlane(roadway::Roadway, veh::Entity) returns the lane to the left of the lane veh is currently in, returns nothing if it does not exists """ function leftlane(roadway::Roadway, veh::Entity) return leftlane(roadway, get_lane(roadway, veh)) end """ rightlane(roadway::Roadway, veh::Entity) returns the lane to the right of the lane veh is currently in, returns nothing if it does not exists """ function rightlane(roadway::Roadway, veh::Entity) return rightlane(roadway, get_lane(roadway, veh)) end """ n_lanes_left(roadway::Roadway, veh::Entity) return the numbers of lanes to the left of `veh` """ n_lanes_left(roadway::Roadway, veh::Entity) = n_lanes_left(roadway, get_lane(roadway, veh)) """ n_lanes_right(roadway::Roadway, veh::Entity) return the numbers of lanes to the right of `veh` """ n_lanes_right(roadway::Roadway, veh::Entity) = n_lanes_right(roadway, get_lane(roadway, veh)) """ lane_width(roadway::Roadway, veh::Entity) Returns the width of the lane where `veh` is. """ function lane_width(roadway::Roadway, veh::Entity) lane = get_lane(roadway, veh.state) if n_lanes_left(roadway, veh) > 0 footpoint = get_footpoint(veh) lane_left = roadway[LaneTag(lane.tag.segment, lane.tag.lane + 1)] return -proj(footpoint, lane_left, roadway).curveproj.t else return lane.width end end """ markerdist_left(roadway::Roadway, veh::Entity) distance of `veh` to the left marker of the lane """ function markerdist_left(roadway::Roadway, veh::Entity) t = posf(veh.state).t lw = lane_width(roadway, veh) return lw/2 - t end """ markerdist_left(roadway::Roadway, veh::Entity) distance of `veh` to the right marker of the lane """ function markerdist_right(roadway::Roadway, veh::Entity) t = posf(veh.state).t lw = lane_width(roadway, veh) return lw/2 + t end """ road_edge_dist_left(roadway::Roadway, veh::Entity) feature function, extract the lateral distance to the left edge of the road """ function road_edge_dist_left(roadway::Roadway, veh::Entity) offset = posf(veh).t footpoint = get_footpoint(veh) lane = get_lane(roadway, veh) roadproj = proj(footpoint, lane, roadway) curvept = roadway[RoadIndex(roadproj)] lane = roadway[roadproj.tag] return lane.width/2 + norm(VecE2(curvept.pos - footpoint)) - offset end """ road_edge_dist_right(roadway::Roadway, veh::Entity) feature function, extract the lateral distance to the right edge of the road """ function road_edge_dist_right(roadway::Roadway, veh::Entity) offset = posf(veh).t footpoint = get_footpoint(veh) lane = get_lane(roadway, veh) roadproj = proj(footpoint, lane, roadway) curvept = roadway[RoadIndex(roadproj)] lane = roadway[roadproj.tag] return lane.width/2 + norm(VecE2(curvept.pos - footpoint)) + offset end """ lane_offset_left(roadway::Roadway, veh::Entity) returns the distance to the left lane border, if there are no left lane returns `missing` """ function lane_offset_left(roadway::Roadway, veh::Entity) t = posf(veh).t lane = get_lane(roadway, veh) if n_lanes_left(roadway, lane) > 0 lane_offset = t - lane.width/2 - leftlane(roadway, veh).width/2 return lane_offset else missing end end """ lane_offset_right(roadway::Roadway, veh::Entity) returns the distance to the right lane border, if there are no right lane returns `missing` """ function lane_offset_right(roadway::Roadway, veh::Entity) t = posf(veh).t lane = get_lane(roadway, veh) if n_lanes_right(roadway, lane) > 0 lane_offset = t + lane.width/2 + rightlane(roadway, veh).width/2 return lane_offset else missing end end """ has_lane_right(roadway::Roadway, veh::Entity) Return true if `veh` has a lane on its right. """ function has_lane_right(roadway::Roadway, veh::Entity) return n_lanes_right(roadway, veh) > 0 end """ has_lane_left(roadway::Roadway, veh::Entity) Return true if `veh` has a lane on its left. """ function has_lane_left(roadway::Roadway, veh::Entity) return n_lanes_left(roadway, veh) > 0 end """ lane_curvature(roadway::Roadway, veh::Entity) Return the curvature of the lane at `veh`'s position. Return missing if the curvature is `NaN` """ function lane_curvature(roadway::Roadway, veh::Entity) curvept = roadway[posf(veh.state).roadind] val = curvept.k if isnan(val) return missing end return val end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git