licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
14931
############################################################# # Lidar Sensor #TODO move to a separate repo (AutomotiveSensors.jl) mutable struct LidarSensor angles::Vector{Float64} ranges::Vector{Float64} range_rates::Vector{Float64} max_range::Float64 poly::ConvexPolygon end function LidarSensor(nbeams::Int; max_range::Float64=100.0, angle_offset::Float64=0.0, angle_spread::Float64=2*pi, ) if nbeams > 1 angles = collect(range(angle_offset-angle_spread/2, stop=angle_offset + angle_spread/2, length=nbeams+1))[2:end] else angles = Float64[] nbeams = 0 end ranges = Array{Float64}(undef, nbeams) range_rates = Array{Float64}(undef, nbeams) LidarSensor(angles, ranges, range_rates, max_range, ConvexPolygon(4)) end nbeams(lidar::LidarSensor) = length(lidar.angles) function observe!(lidar::LidarSensor, scene::Scene{E}, roadway::Roadway, vehicle_index::Int) where {E<:Entity} state_ego = scene[vehicle_index].state egoid = scene[vehicle_index].id ego_vel = polar(vel(state_ego), posg(state_ego).θ) # precompute the set of vehicles within max_range of the vehicle in_range_ids = Set() for veh in scene if veh.id != egoid distance = norm(VecE2(posg(state_ego) - posg(veh.state))) # account for the length and width of the vehicle by considering # the worst case where their maximum radius is aligned distance = distance - hypot(length(veh.def)/2.,width(veh.def)/2.) if distance < lidar.max_range push!(in_range_ids, veh.id) end end end # compute range and range_rate for each angle for (i,angle) in enumerate(lidar.angles) ray_angle = posg(state_ego).θ + angle ray_vec = polar(1.0, ray_angle) ray = VecSE2(posg(state_ego).x, posg(state_ego).y, ray_angle) range = lidar.max_range range_rate = 0.0 for veh in scene # only consider the set of potentially in range vehicles if in(veh.id, in_range_ids) to_oriented_bounding_box!(lidar.poly, veh) range2 = AutomotiveSimulator.get_collision_time(ray, lidar.poly, 1.0) if !isnan(range2) && range2 < range range = range2 relative_speed = polar(vel(veh.state), posg(veh.state).θ) - ego_vel range_rate = proj(relative_speed, ray_vec, Float64) end end end lidar.ranges[i] = range lidar.range_rates[i] = range_rate end lidar end # function render_lidar!(rendermodel::RenderModel, lidar::LidarSensor, posG::VecSE2{Float64}; # color::Colorant=colorant"white", # line_width::Float64 = 0.05, # ) # for (angle, range, range_rate) in zip(lidar.angles, lidar.ranges, lidar.range_rates) # ray = VecSE2(posG.x, posG.y, posG.θ + angle) # t = 2 / (1 + exp(-range_rate)) # ray_color = t > 1.0 ? lerp(RGBA(1.0,1.0,1.0,0.5), RGBA(0.2,0.2,1.0,0.5), t/2) : # lerp(RGBA(1.0,0.2,0.2,0.5), RGBA(1.0,1.0,1.0,0.5), t) # render_ray!(rendermodel::RenderModel, ray, color=ray_color, length=range, line_width=line_width) # end # rendermodel # end ############################################################# # Road Line Lidar Sensor mutable struct RoadlineLidarSensor angles::Vector{Float64} ranges::Matrix{Float64} # [n_lanes by nbeams] max_range::Float64 poly::ConvexPolygon end nbeams(lidar::RoadlineLidarSensor) = length(lidar.angles) nlanes(lidar::RoadlineLidarSensor) = size(lidar.ranges, 1) function RoadlineLidarSensor(nbeams::Int; max_range::Float64=100.0, max_depth::Int=2, angle_offset::Float64=0.0, ) if nbeams > 1 angles = collect(range(angle_offset, stop=2*pi+angle_offset, length=nbeams+1))[2:end] else angles = Float64[] nbeams = 0 end ranges = Array{Float64}(undef, max_depth, nbeams) RoadlineLidarSensor(angles, ranges, max_range, ConvexPolygon(4)) end function _update_lidar!(lidar::RoadlineLidarSensor, ray::VecSE2{Float64}, beam_index::Int, p_lo::VecE2, p_hi::VecE2) test_range = get_intersection_time(Projectile(ray, 1.0), AutomotiveSimulator.LineSegment(p_lo, p_hi)) if !isnan(test_range) n_ranges = size(lidar.ranges, 1) for k in 1 : n_ranges if test_range < lidar.ranges[k,beam_index] for l in k+1 : n_ranges lidar.ranges[l,beam_index] = lidar.ranges[l-1,beam_index] end lidar.ranges[k,beam_index] = test_range break end end end lidar end function _update_lidar!(lidar::RoadlineLidarSensor, ray::VecSE2{Float64}, beam_index::Int, lane::Lane, roadway::Roadway; check_right_lane::Bool=false) halfwidth = lane.width/2 Δ = check_right_lane ? -π/2 : π/2 p_lo = convert(VecE2, lane.curve[1].pos + polar(halfwidth, lane.curve[1].pos.θ + Δ)) for j in 2:length(lane.curve) p_hi = convert(VecE2, lane.curve[j].pos + polar(halfwidth, lane.curve[j].pos.θ + Δ)) _update_lidar!(lidar, ray, beam_index, p_lo, p_hi) p_lo = p_hi end if has_next(lane) lane2 = next_lane(lane, roadway) pt = lane2.curve[1] p_hi = convert(VecE2, pt.pos + polar(lane2.width/2, pt.pos.θ + Δ)) _update_lidar!(lidar, ray, beam_index, p_lo, p_hi) end lidar end function _update_lidar!(lidar::RoadlineLidarSensor, ray::VecSE2{Float64}, beam_index::Int, roadway::Roadway) for seg in roadway.segments for lane in seg.lanes # always check the left lane marking _update_lidar!(lidar, ray, beam_index, lane, roadway) # only check the right lane marking if this is the first lane if lane.tag.lane == 1 _update_lidar!(lidar, ray, beam_index, lane, roadway, check_right_lane=true) end end end lidar end function observe!(lidar::RoadlineLidarSensor, scene::Scene{E}, roadway::Roadway, vehicle_index::Int) where E<:Entity state_ego = scene[vehicle_index].state egoid = scene[vehicle_index].id ego_vel = polar(vel(state_ego), posg(state_ego).θ) fill!(lidar.ranges, lidar.max_range) for (beam_index,angle) in enumerate(lidar.angles) ray_angle = posg(state_ego).θ + angle ray = VecSE2(posg(state_ego).x, posg(state_ego).y, ray_angle) _update_lidar!(lidar, ray, beam_index, roadway) end lidar end # function render_lidar!(rendermodel::RenderModel, lidar::RoadlineLidarSensor, posG::VecSE2{Float64}; # color::Colorant=RGBA(1.0,1.0,1.0,0.5), # line_width::Float64 = 0.05, # depth_level::Int = 1, # if 1, render first lanes struck by beams, if 2 render 2nd ... # ) # for (angle, range) in zip(lidar.angles, lidar.ranges[depth_level,:]) # ray = VecSE2(posG.x, posG.y, posG.θ + angle) # render_ray!(rendermodel::RenderModel, ray, color=color, length=range, line_width=line_width) # end # rendermodel # end ############################################################# # Road Line Lidar Culling struct LanePortion tag::LaneTag curveindex_lo::Int curveindex_hi::Int end mutable struct RoadwayLidarCulling is_leaf::Bool x_lo::Float64 x_hi::Float64 y_lo::Float64 y_hi::Float64 top_left::RoadwayLidarCulling top_right::RoadwayLidarCulling bot_left::RoadwayLidarCulling bot_right::RoadwayLidarCulling lane_portions::Vector{LanePortion} function RoadwayLidarCulling(x_lo::Float64, x_hi::Float64, y_lo::Float64, y_hi::Float64, lane_portions::Vector{LanePortion}) retval = new() retval.is_leaf = true retval.x_lo = x_lo retval.x_hi = x_hi retval.y_lo = y_lo retval.y_hi = y_hi retval.lane_portions = lane_portions retval end function RoadwayLidarCulling(x_lo::Float64, x_hi::Float64, y_lo::Float64, y_hi::Float64, top_left::RoadwayLidarCulling, top_right::RoadwayLidarCulling, bot_left::RoadwayLidarCulling, bot_right::RoadwayLidarCulling,) retval = new() retval.is_leaf = false retval.x_lo = x_lo retval.x_hi = x_hi retval.y_lo = y_lo retval.y_hi = y_hi retval.top_left = top_left retval.top_right = top_right retval.bot_left = bot_left retval.bot_right = bot_right retval end end RoadwayLidarCulling() = RoadwayLidarCulling(typemax(Float64), typemin(Float64), typemax(Float64), typemin(Float64), LanePortion[]) function Base.get(rlc::RoadwayLidarCulling, x::Real, y::Real) if rlc.is_leaf return rlc else if y < (rlc.y_lo + rlc.y_hi)/2 if x < (rlc.x_lo + rlc.x_hi)/2 return get(rlc.bot_left, x, y) else return get(rlc.bot_right, x, y) end else if x < (rlc.x_lo + rlc.x_hi)/2 return get(rlc.top_left, x, y) else return get(rlc.top_right, x, y) end end end end function ensure_leaf_in_rlc!(rlc::RoadwayLidarCulling, x::Real, y::Real, fidelity_x::Real, fidelity_y::Real) leaf = get(rlc, x, y) @assert(leaf.is_leaf) x_lo, x_hi = leaf.x_lo, leaf.x_hi y_lo, y_hi = leaf.y_lo, leaf.y_hi while (x_hi - x_lo) > fidelity_x || (y_hi - y_lo) > fidelity_y # drill down x_mid = (x_hi + x_lo)/2 y_mid = (y_hi + y_lo)/2 leaf.top_left = RoadwayLidarCulling(x_lo, x_mid, y_mid, y_hi, LanePortion[]) leaf.top_right = RoadwayLidarCulling(x_mid, x_hi, y_mid, y_hi, LanePortion[]) leaf.bot_left = RoadwayLidarCulling(x_lo, x_mid, y_lo, y_mid, LanePortion[]) leaf.bot_right = RoadwayLidarCulling(x_mid, x_hi, y_lo, y_mid, LanePortion[]) leaf.is_leaf = false leaf = get(leaf, x, y) x_lo, x_hi = leaf.x_lo, leaf.x_hi y_lo, y_hi = leaf.y_lo, leaf.y_hi end rlc end function get_lane_portions(roadway::Roadway, x::Real, y::Real, lane_portion_max_range::Float64) P = VecE2(x, y) Δ² = lane_portion_max_range*lane_portion_max_range lane_portions = LanePortion[] for seg in roadway.segments for lane in seg.lanes f = curvept -> normsquared(VecE2(curvept.pos - P)) ≤ Δ² i = findfirst(f, lane.curve) if i != nothing j = findlast(f, lane.curve) @assert(j != nothing) push!(lane_portions, LanePortion(lane.tag, i, j)) end end end lane_portions end function RoadwayLidarCulling( roadway::Roadway, lane_portion_max_range::Float64, # lane portions will be extracted such that points within lane_portion_max_range are in the leaves culling_fidelity::Float64, # the culling will drill down until Δx, Δy < culling_fidelity ) #= 1 - get area bounds 2 - ensure all points in rlc 3 - for each leaf, construct all lane portions =# # get area bounds x_lo = typemax(Float64) x_hi = typemin(Float64) y_lo = typemax(Float64) y_hi = typemin(Float64) for seg in roadway.segments for lane in seg.lanes for curvept in lane.curve pos = curvept.pos x_lo = min(pos.x, x_lo) x_hi = max(pos.x, x_hi) y_lo = min(pos.y, y_lo) y_hi = max(pos.y, y_hi) end end end x_lo -= lane_portion_max_range x_hi += lane_portion_max_range y_lo -= lane_portion_max_range y_hi += lane_portion_max_range root = RoadwayLidarCulling(x_lo, x_hi, y_lo, y_hi, LanePortion[]) # ensure all points are in rlc x = x_lo - culling_fidelity while x < x_hi x += culling_fidelity y = y_lo - culling_fidelity while y < y_hi y += culling_fidelity ensure_leaf_in_rlc!(root, x, y, culling_fidelity, culling_fidelity) end end nodes = RoadwayLidarCulling[root] while !isempty(nodes) node = pop!(nodes) if node.is_leaf x = (node.x_lo + node.x_hi)/2 y = (node.y_lo + node.y_hi)/2 append!(node.lane_portions, get_lane_portions(roadway, x, y, lane_portion_max_range)) else push!(nodes, node.top_left) push!(nodes, node.top_right) push!(nodes, node.bot_left) push!(nodes, node.bot_right) end end root end function _update_lidar!( lidar::RoadlineLidarSensor, ray::VecSE2{Float64}, beam_index::Int, roadway::Roadway, lane_portion::LanePortion; check_right_lane::Bool=false ) lane = roadway[lane_portion.tag] halfwidth = lane.width/2 Δ = check_right_lane ? -π/2 : π/2 p_lo = convert(VecE2, lane.curve[lane_portion.curveindex_lo].pos + polar(halfwidth, lane.curve[lane_portion.curveindex_lo].pos.θ + Δ)) for j in lane_portion.curveindex_lo+1:lane_portion.curveindex_hi p_hi = convert(VecE2, lane.curve[j].pos + polar(halfwidth, lane.curve[j].pos.θ + Δ)) _update_lidar!(lidar, ray, beam_index, p_lo, p_hi) p_lo = p_hi end if lane_portion.curveindex_hi == length(lane.curve) && has_next(lane) lane2 = next_lane(lane, roadway) pt = lane2.curve[1] p_hi = convert(VecE2, pt.pos + polar(lane2.width/2, pt.pos.θ + Δ)) _update_lidar!(lidar, ray, beam_index, p_lo, p_hi) end lidar end function _update_lidar!(lidar::RoadlineLidarSensor, ray::VecSE2{Float64}, beam_index::Int, roadway::Roadway, rlc::RoadwayLidarCulling) leaf = get(rlc, ray.x, ray.y) for lane_portion in leaf.lane_portions # always update the left lane marking _update_lidar!(lidar, ray, beam_index, roadway, lane_portion) # only check the right lane marking if this is the first lane if lane_portion.tag.lane == 1 _update_lidar!(lidar, ray, beam_index, roadway, lane_portion, check_right_lane=true) end end lidar end function observe!(lidar::RoadlineLidarSensor, scene::Scene{E}, roadway::Roadway, vehicle_index::Int, rlc::RoadwayLidarCulling) where E<:Entity state_ego = scene[vehicle_index].state egoid = scene[vehicle_index].id ego_vel = polar(vel(state_ego), posg(state_ego).θ) fill!(lidar.ranges, lidar.max_range) for (beam_index,angle) in enumerate(lidar.angles) ray_angle = posg(state_ego).θ + angle ray = VecSE2(posg(state_ego).x, posg(state_ego).y, ray_angle) _update_lidar!(lidar, ray, beam_index, roadway, rlc) end lidar end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
14699
""" NeighborLongitudinalResult A structure to retrieve information about a neihbor in the longitudinal direction i.e. rear and front neighbors on the same lane. If the neighbor index is equal to `nothing` it means there is no neighbor. # Fields - `ind::Union{Nothing, Int64}` index of the neighbor in the scene - `Δs::Float64` positive distance along the lane between vehicles positions """ struct NeighborLongitudinalResult ind::Union{Nothing, Int64} # index in scene of the neighbor Δs::Float64 # positive distance along lane between vehicles' positions end """ VehicleTargetPoint Defines a point on an entity that is used to measure distances. The following target points are supported and are subtypes of VehicleTargetPoint: - `VehicleTargetPointFront` - `VehicleTargetPointCenter` - `VehicleTargetPointRear` The method `targetpoint_delta(::VehicleTargetPoint, ::Entity)` can be used to compute the delta in the longitudinal direction to add when considering a specific target point. """ abstract type VehicleTargetPoint end """ VehicleTargetPointFront <: VehicleTargetPoint Set the target point at the front (and center) of the entity. """ struct VehicleTargetPointFront <: VehicleTargetPoint end targetpoint_delta(::VehicleTargetPointFront, veh::Entity{S, D, I}) where {S,D<:AbstractAgentDefinition, I} = length(veh.def)/2*cos(posf(veh.state).ϕ) """ VehicleTargetPointCenter <: VehicleTargetPoint Set the target point at the center of the entity. """ struct VehicleTargetPointCenter <: VehicleTargetPoint end targetpoint_delta(::VehicleTargetPointCenter, veh::Entity{S, D, I}) where {S,D<:AbstractAgentDefinition, I} = 0.0 """ VehicleTargetPointFront <: VehicleTargetPoint Set the target point at the front (and center) of the entity. """ struct VehicleTargetPointRear <: VehicleTargetPoint end targetpoint_delta(::VehicleTargetPointRear, veh::Entity{S, D, I}) where {S,D<:AbstractAgentDefinition, I} = -length(veh.def)/2*cos(posf(veh.state).ϕ) const VEHICLE_TARGET_POINT_CENTER = VehicleTargetPointCenter() """ find_neighbor(scene::Scene, roadway::Roawday, ego::Entity; kwargs...) Search through lanes and road segments to find a neighbor of `ego` in the `scene`. Returns a `NeighborLongitudinalResult` object with the index of the neighbor in the scene and its relative distance. # Arguments - `scene::Scene` the scene containing all the entities - `roadway::Roadway` the road topology on which entities are driving - `ego::Entity` the entity that we want to compute the neighbor of. # Keyword arguments - `lane::Union{Nothing, Lane}` the lane on which to search the neighbor, if different from the ego vehicle current lane, it uses the projection of the ego vehicle on the given lane as a reference point. If nothing, returns nothing. - `rear::Bool = false` set to true to search for rear neighbor, search forward neighbor by default - `max_distance::Float64 = 250.0` stop searching after this distance is reached, if the neighbor is further than max_distance, returns nothing - `targetpoint_ego::VehicleTargetPoint` the point on the ego vehicle used for distance calculation, see `VehicleTargetPoint` for more info - `targetpoint_neighbor::VehicleTargetPoint` the point on the neighbor vehicle used for distance calculation, see `VehicleTargetPoint` for more info - `ids_to_ignore::Union{Nothing, Set{I}} = nothing` a list of entity ids to ignore for the search, ego is always ignored. """ function find_neighbor(scene::Scene, roadway::Roadway, ego::Entity{S,D,I}; lane::Union{Nothing, Lane} = get_lane(roadway, ego), rear::Bool=false, max_distance::Float64=250.0, targetpoint_ego::VehicleTargetPoint = VehicleTargetPointCenter(), targetpoint_neighbor::VehicleTargetPoint = VehicleTargetPointCenter(), ids_to_ignore::Union{Nothing, Set{I}} = nothing) where {S,D,I} if lane === nothing return NeighborLongitudinalResult(nothing, max_distance) elseif get_lane(roadway, ego).tag == lane.tag tag_start = lane.tag s_start = posf(ego.state).s else # project ego on desired lane roadproj = proj(posg(ego.state), lane, roadway) roadind = RoadIndex(roadproj) tag_start = roadproj.tag s_start = roadway[roadind].s end s_base = s_start + targetpoint_delta(targetpoint_ego, ego) tag_target = tag_start best_ind = nothing best_dist = max_distance dist_searched = 0.0 while dist_searched < max_distance curr_lane = roadway[tag_target] for (i, veh) in enumerate(scene) if veh.id == ego.id continue end if ids_to_ignore !== nothing && veh.id ∈ ids_to_ignore continue end # check if veh is on thislane s_adjust = NaN if get_lane(roadway, veh).tag == curr_lane.tag s_adjust = 0.0 elseif is_between_segments_hi(posf(veh.state).roadind.ind, curr_lane.curve) && is_in_entrances(roadway[tag_target], posf(veh.state).roadind.tag) distance_between_lanes = norm(VecE2(roadway[tag_target].curve[1].pos - roadway[posf(veh.state).roadind.tag].curve[end].pos)) s_adjust = -(roadway[posf(veh.state).roadind.tag].curve[end].s + distance_between_lanes) elseif is_between_segments_lo(posf(veh.state).roadind.ind) && is_in_exits(roadway[tag_target], posf(veh.state).roadind.tag) distance_between_lanes = norm(VecE2(roadway[tag_target].curve[end].pos - roadway[posf(veh.state).roadind.tag].curve[1].pos)) s_adjust = roadway[tag_target].curve[end].s + distance_between_lanes end if !isnan(s_adjust) s_valid = posf(veh.state).s + targetpoint_delta(targetpoint_neighbor, veh) + s_adjust if rear dist_valid = s_base - s_valid + dist_searched else dist_valid = s_valid - s_base + dist_searched end if dist_valid ≥ 0.0 s_primary = posf(veh.state).s + targetpoint_delta(targetpoint_neighbor, veh) + s_adjust if rear dist= s_base - s_primary + dist_searched else dist = s_primary - s_base + dist_searched end if dist < best_dist best_dist = dist best_ind = i end end end end # neighbor has been found exit if best_ind != nothing break end # no next lane and no neighbor found exit if !has_next(curr_lane) || (tag_target == tag_start && dist_searched != 0.0) # exit after visiting this lane a 2nd time break end # go to the connected lane. if rear dist_searched += s_base s_base = curr_lane.curve[end].s + norm(VecE2(lane.curve[end].pos - prev_lane_point(curr_lane, roadway).pos)) tag_target = prev_lane(lane, roadway).tag else dist_searched += (curr_lane.curve[end].s - s_base) s_base = -norm(VecE2(curr_lane.curve[end].pos - next_lane_point(curr_lane, roadway).pos)) # negative distance between lanes tag_target = next_lane(curr_lane, roadway).tag end end return NeighborLongitudinalResult(best_ind, best_dist) end """ FrenetRelativePosition Contains information about the projection of a point on a lane. See `get_frenet_relative_position`. # Fields - `origin::RoadIndex` original roadindex used for the projection, contains the target lane ID. - `target::RoadIndex` roadindex reached after projection - `Δs::Float64` longitudinal distance to the original roadindex - `t::Float64` lateral distance to the original roadindex in the frame of the target lane - `ϕ::Float64` angle with the original roadindex in the frame of the target lane """ struct FrenetRelativePosition origin::RoadIndex target::RoadIndex Δs::Float64 t::Float64 ϕ::Float64 end """ get_frenet_relative_position(veh_fore::Entity, veh_rear::Entity, roadway::Roadway) return the Frenet relative position between the two vehicles. It projects the position of the first vehicle onto the lane of the second vehicle. The result is stored as a `FrenetRelativePosition`. Lower level: get_frenet_relative_position(posG::VecSE2{Float64}, roadind::RoadIndex, roadway::Roadway; max_distance_fore::Float64 = 250.0, # max distance to search forward [m] max_distance_rear::Float64 = 250.0, # max distance to search backward [m] improvement_threshold::Float64 = 1e-4, ) Project the given point to the same lane as the given RoadIndex. This will return the projection of the point, along with the Δs along the lane from the RoadIndex. The returned type is a `FrenetRelativePosition` object. """ function get_frenet_relative_position(posG::VecSE2{Float64}, roadind::RoadIndex, roadway::Roadway; max_distance_fore::Float64 = 250.0, # max distance to search forward [m] max_distance_rear::Float64 = 250.0, # max distance to search backward [m] improvement_threshold::Float64 = 1e-4, ) # project to current lane first tag_start = roadind.tag lane_start = roadway[tag_start] curveproj_start = proj(posG, lane_start, roadway, move_along_curves=false).curveproj curvept_start = lane_start[curveproj_start.ind, roadway] s_base = lane_start[roadind.ind, roadway].s s_proj = curvept_start.s Δs = s_proj - s_base sq_dist_to_curve = normsquared(VecE2(posG - curvept_start.pos)) retval = FrenetRelativePosition(roadind, RoadIndex(curveproj_start.ind, tag_start), Δs, curveproj_start.t, curveproj_start.ϕ) # search downstream if has_next(lane_start) dist_searched = lane_start.curve[end].s - s_base s_base = -norm(VecE2(lane_start.curve[end].pos - next_lane_point(lane_start, roadway).pos)) # negative distance between lanes tag_target = next_lane(lane_start, roadway).tag while dist_searched < max_distance_fore lane = roadway[tag_target] curveproj = proj(posG, lane, roadway, move_along_curves=false).curveproj sq_dist_to_curve2 = normsquared(VecE2(posG - lane[curveproj.ind, roadway].pos)) if sq_dist_to_curve2 < sq_dist_to_curve - improvement_threshold sq_dist_to_curve = sq_dist_to_curve2 s_proj = lane[curveproj.ind, roadway].s Δs = s_proj - s_base + dist_searched retval = FrenetRelativePosition( roadind, RoadIndex(curveproj.ind, tag_target), Δs, curveproj.t, curveproj.ϕ) end if !has_next(lane) break end dist_searched += (lane.curve[end].s - s_base) s_base = -norm(VecE2(lane.curve[end].pos - next_lane_point(lane, roadway).pos)) # negative distance between lanes tag_target = next_lane(lane, roadway).tag if tag_target == tag_start break end end end # search upstream if has_prev(lane_start) dist_searched = s_base tag_target = prev_lane(lane_start, roadway).tag s_base = roadway[tag_target].curve[end].s + norm(VecE2(lane_start.curve[1].pos - prev_lane_point(lane_start, roadway).pos)) # end of the lane while dist_searched < max_distance_fore lane = roadway[tag_target] curveproj = proj(posG, lane, roadway, move_along_curves=false).curveproj sq_dist_to_curve2 = normsquared(VecE2(posG - lane[curveproj.ind, roadway].pos)) if sq_dist_to_curve2 < sq_dist_to_curve - improvement_threshold sq_dist_to_curve = sq_dist_to_curve2 s_proj = lane[curveproj.ind, roadway].s dist = s_base - s_proj + dist_searched Δs = -dist retval = FrenetRelativePosition( roadind, RoadIndex(curveproj.ind, tag_target), Δs, curveproj.t, curveproj.ϕ) end if !has_prev(lane) break end dist_searched += s_base s_base = lane.curve[end].s + norm(VecE2(lane.curve[1].pos - prev_lane_point(lane, roadway).pos)) # length of this lane plus crossover tag_target = prev_lane(lane, roadway).tag if tag_target == tag_start break end end end retval end get_frenet_relative_position(veh_fore::Entity{S, D, I}, veh_rear::Entity{S, D, I}, roadway::Roadway) where {S,D, I} = get_frenet_relative_position(posg(veh_fore.state), posf(veh_rear.state).roadind, roadway) """ dist_to_front_neighbor(roadway::Roadway, scene::Scene, veh::Entity) Feature function to extract the longitudinal distance to the front neighbor (in the Frenet frame). Returns `missing` if there are no front neighbor. """ function dist_to_front_neighbor(roadway::Roadway, scene::Scene, veh::Entity) neighbor = find_neighbor(scene, roadway, veh) if neighbor.ind === nothing return missing else return neighbor.Δs end end """ front_neighbor_speed(roadway::Roadway, scene::Scene, veh::Entity) Feature function to extract the velocity of the front neighbor. Returns `missing` if there are no front neighbor. """ function front_neighbor_speed(roadway::Roadway, scene::Scene, veh::Entity) neighbor = find_neighbor(scene, roadway, veh) if neighbor.ind === nothing return missing else return vel(scene[neighbor.ind]) end end """ time_to_collision(roadway::Roadway, scene::Scene, veh::Entity) Feature function to extract the time to collision with the front neighbor. Returns `missing` if there are no front neighbor. """ function time_to_collision(roadway::Roadway, scene::Scene, veh::Entity) neighbor = find_neighbor(scene, roadway, veh) if neighbor.ind === nothing return missing else len_ego = length(veh.def) len_oth = length(scene[neighbor.ind].def) Δs = neighbor.Δs - len_ego/2 - len_oth/2 Δv = vel(scene[neighbor.ind]) - vel(veh) return -Δs / Δv end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
8399
""" CurvePt{T} describes a point on a curve, associated with a curvature and the derivative of the curvature - `pos::VecSE2{T}` # global position and orientation - `s::T` # distance along the curve - `k::T` # curvature - `kd::T` # derivative of curvature """ struct CurvePt{T} pos::VecSE2{T} # global position and orientation s::T # distance along the curve k::T # curvature kd::T# derivative of curvature end function CurvePt(pos::VecSE2{T}, s::T, k::T = convert(T, NaN)) where T return CurvePt{T}(pos, s, k, convert(T, NaN)) end Base.show(io::IO, pt::CurvePt) = @printf(io, "CurvePt({%.3f, %.3f, %.3f}, %.3f, %.3f, %.3f)", pt.pos.x, pt.pos.y, pt.pos.θ, pt.s, pt.k, pt.kd) Vec.lerp(a::CurvePt, b::CurvePt, t::T) where T <: Real = CurvePt(lerp(a.pos, b.pos, t), a.s + (b.s - a.s)*t, a.k + (b.k - a.k)*t, a.kd + (b.kd - a.kd)*t) ############ """ Curve{T} is a vector of curve points """ const Curve{T} = Vector{CurvePt{T}} where T """ get_lerp_time_unclamped(A::VecE2, B::VecE2, Q::VecE2) Get the interpolation scalar t for the point on the line AB closest to Q This point is P = A + (B-A)*t """ function get_lerp_time_unclamped(A::VecE2, B::VecE2, Q::VecE2) a = Q - A b = B - A c = proj(a, b, VecE2) if b.x != 0.0 t = c.x / b.x elseif b.y != 0.0 t = c.y / b.y else t = 0.0 # no lerping to be done end t end get_lerp_time_unclamped(A::VecSE2, B::VecSE2, Q::VecSE2) = get_lerp_time_unclamped(convert(VecE2, A), convert(VecE2, B), convert(VecE2, Q)) get_lerp_time_unclamped(A::CurvePt, B::CurvePt, Q::VecSE2) = get_lerp_time_unclamped(convert(VecE2, A.pos), convert(VecE2, B.pos), convert(VecE2, Q)) """ get_lerp_time(A::VecE2, B::VecE2, Q::VecE2) Get lerp time t∈[0,1] such that lerp(A, B) is as close as possible to Q """ get_lerp_time(A::VecE2, B::VecE2, Q::VecE2) = clamp(get_lerp_time_unclamped(A, B, Q), 0.0, 1.0) get_lerp_time(A::CurvePt, B::CurvePt, Q::VecSE2) = get_lerp_time(convert(VecE2, A.pos), convert(VecE2, B.pos), convert(VecE2, Q)) """ CurveIndex{I <: Integer, T <: Real} Given a `Curve` object `curve` one can call `curve[ind]` where `ind` is a `CurveIndex`. The field `t` can be used to interpolate between two points in the curve. # Fields - `i`::I` index in the curve , ∈ [1:length(curve)-1] - `t::T` ∈ [0,1] for linear interpolation """ struct CurveIndex{I <: Integer, T <: Real} i::I # index in curve, ∈ [1:length(curve)-1] t::T # ∈ [0,1] for linear interpolation end const CURVEINDEX_START = CurveIndex(1,0.0) Base.show(io::IO, ind::CurveIndex) = @printf(io, "CurveIndex(%d, %.3f)", ind.i, ind.t) curveindex_end(curve::Curve) = CurveIndex(length(curve)-1,1.0) Base.getindex(curve::Curve, ind::CurveIndex) = lerp(curve[ind.i], curve[ind.i+1], ind.t) """ is_at_curve_end(ind::CurveIndex, curve::Curve) returns true if the curve index is at the end of the curve """ function is_at_curve_end(ind::CurveIndex, curve::Curve) (ind.i == 1 && ind.t == 0.0) || (ind.i == length(curve)-1 && ind.t == 1.0) end """ index_closest_to_point(curve::Curve, target::AbstractVec) returns the curve index closest to the point described by `target`. `target` must be [x, y]. """ function index_closest_to_point(curve::Curve, target::AbstractVec) a = 1 b = length(curve) c = div(a+b, 2) @assert(length(curve) ≥ b) sqdist_a = normsquared(VecE2(curve[a].pos - target)) sqdist_b = normsquared(VecE2(curve[b].pos - target)) sqdist_c = normsquared(VecE2(curve[c].pos - target)) while true if b == a return a elseif b == a + 1 return sqdist_b < sqdist_a ? b : a elseif c == a + 1 && c == b - 1 if sqdist_a < sqdist_b && sqdist_a < sqdist_c return a elseif sqdist_b < sqdist_a && sqdist_b < sqdist_c return b else return c end end left = div(a+c, 2) sqdist_l = normsquared(VecE2(curve[left].pos - target)) right = div(c+b, 2) sqdist_r = normsquared(VecE2(curve[right].pos - target)) if sqdist_l < sqdist_r b = c sqdist_b = sqdist_c c = left sqdist_c = sqdist_l else a = c sqdist_a = sqdist_c c = right sqdist_c = sqdist_r end end error("index_closest_to_point reached unreachable statement") end """ get_curve_index(curve::Curve{T}, s::T) where T <: Real Return the CurveIndex for the closest s-location on the curve """ function get_curve_index(curve::Curve{T}, s::T) where T <: Real if s ≤ 0.0 return CURVEINDEX_START elseif s ≥ curve[end].s return curveindex_end(curve) end a = 1 b = length(curve) fa = curve[a].s - s fb = curve[b].s - s n = 1 while true if b == a+1 extind = a + -fa/(fb-fa) ind = floor(Int, extind) t = rem(extind, 1.0) return CurveIndex(ind, t) end c = div(a+b, 2) fc = curve[c].s - s n += 1 if sign(fc) == sign(fa) a, fa = c, fc else b, fb = c, fc end end error("get_curve_index failed for s=$s") end """ get_curve_index(ind::CurveIndex, curve::Curve, Δs::T) where T <: Real Return the CurveIndex at ind's s position + Δs """ function get_curve_index(ind::CurveIndex, curve::Curve, Δs::T) where T <: Real L = length(curve) ind_lo, ind_hi = ind.i, ind.i+1 s_lo = curve[ind_lo].s s_hi = curve[ind_hi].s s = lerp(s_lo, s_hi, ind.t) if Δs ≥ 0.0 if s + Δs ≥ s_hi && ind_hi < L while s + Δs ≥ s_hi && ind_hi < L Δs -= (s_hi - s) s = s_hi ind_lo += 1 ind_hi += 1 s_lo = curve[ind_lo].s s_hi = curve[ind_hi].s end else Δs = s + Δs - s_lo end t = Δs/(s_hi - s_lo) CurveIndex(ind_lo, t) else while s + Δs < s_lo && ind_lo > 1 Δs += (s - s_lo) s = s_lo ind_lo -= 1 ind_hi -= 1 s_lo = curve[ind_lo].s s_hi = curve[ind_hi].s end Δs = s + Δs - s_lo t = Δs/(s_hi - s_lo) CurveIndex(ind_lo, t) end end """ CurveProjection{I <: Integer, T <: Real} The result of a point projected to a Curve # Fields - `ind::CurveIndex{I, T}` - `t::T` lane offset - `ϕ::T` lane-relative heading [rad] """ struct CurveProjection{I <: Integer, T <: Real} ind::CurveIndex{I, T} t::T # lane offset ϕ::T # lane-relative heading [rad] end Base.show(io::IO, curveproj::CurveProjection) = @printf(io, "CurveProjection({%d, %.3f}, %.3f, %.3f)", curveproj.ind.i, curveproj.ind.t, curveproj.t, curveproj.ϕ) function get_curve_projection(posG::VecSE2, footpoint::VecSE2, ind::CurveIndex) F = inertial2body(posG, footpoint) CurveProjection(ind, F.y, F.θ) end """ Vec.proj(posG::VecSE2, curve::Curve) Return a CurveProjection obtained by projecting posG onto the curve """ function Vec.proj(posG::VecSE2{T}, curve::Curve{T}) where T ind = index_closest_to_point(curve, posG) curveind = CurveIndex{Int64, T}(0,NaN) footpoint = VecSE2{T}(NaN, NaN, NaN) if ind > 1 && ind < length(curve) t_lo = get_lerp_time(curve[ind-1], curve[ind], posG) t_hi = get_lerp_time(curve[ind], curve[ind+1], posG) p_lo = lerp(curve[ind-1].pos, curve[ind].pos, t_lo) p_hi = lerp(curve[ind].pos, curve[ind+1].pos, t_hi) d_lo = norm(VecE2(p_lo - posG)) d_hi = norm(VecE2(p_hi - posG)) if d_lo < d_hi footpoint = p_lo curveind = CurveIndex(ind-1, t_lo) else footpoint = p_hi curveind = CurveIndex(ind, t_hi) end elseif ind == 1 t = get_lerp_time( curve[1], curve[2], posG ) footpoint = lerp( curve[1].pos, curve[2].pos, t) curveind = CurveIndex(ind, t) else # ind == length(curve) t = get_lerp_time( curve[end-1], curve[end], posG ) footpoint = lerp( curve[end-1].pos, curve[end].pos, t) curveind = CurveIndex(ind-1, t) end get_curve_projection(posG, footpoint, curveind) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2573
""" Frenet Represents a vehicle position and heading in a lane relative frame. # Constructors - `Frenet(roadind::RoadIndex, roadway::Roadway; t::Float64=0.0, ϕ::Float64=0.0)` - `Frenet(roadproj::RoadProjection, roadway::Roadway)` - `Frenet(lane::Lane, s::Float64, t::Float64=0.0, ϕ::Float64=0.0)` - `Frenet(posG::VecSE2, roadway::Roadway)` - `Frenet(posG::VecSE2, lane::Lane, roadway::Roadway)` # Fields - `roadind`: road index - `s`: distance along lane - `t`: lane offset, positive is to left. zero point is the centerline of the lane. - `ϕ`: lane relative heading """ struct Frenet roadind::RoadIndex{Int64, Float64} s::Float64 # distance along lane t::Float64 # lane offset, positive is to left. zero point is the centerline of the lane. ϕ::Float64 # lane relative heading end function Frenet(roadind::RoadIndex, roadway::Roadway; t::Float64=0.0, ϕ::Float64=0.0) s = roadway[roadind].s ϕ = _mod2pi2(ϕ) Frenet(roadind, s, t, ϕ) end function Frenet(roadproj::RoadProjection, roadway::Roadway) roadind = RoadIndex(roadproj.curveproj.ind, roadproj.tag) s = roadway[roadind].s t = roadproj.curveproj.t ϕ = _mod2pi2(roadproj.curveproj.ϕ) Frenet(roadind, s, t, ϕ) end function Frenet(lane::Lane, s::Float64, t::Float64=0.0, ϕ::Float64=0.0) roadind = RoadIndex(get_curve_index(lane.curve, s), lane.tag) return Frenet(roadind, s, t, ϕ) end Frenet(posG::VecSE2, roadway::Roadway) = Frenet(proj(posG, roadway), roadway) Frenet(posG::VecSE2, lane::Lane, roadway::Roadway) = Frenet(proj(posG, lane, roadway), roadway) # helper function _mod2pi2(x::Float64) val = mod2pi(x) if val > pi val -= 2pi end return val end """ posg(frenet::Frenet, roadway::Roadway) projects the Frenet position into the global frame """ function posg(frenet::Frenet, roadway::Roadway) curvept = roadway[frenet.roadind] pos = curvept.pos + polar(frenet.t, curvept.pos.θ + π/2) VecSE2(pos.x, pos.y, frenet.ϕ + curvept.pos.θ) end const NULL_FRENET = Frenet(NULL_ROADINDEX, NaN, NaN, NaN) Base.show(io::IO, frenet::Frenet) = print(io, "Frenet(", frenet.roadind, @sprintf(", %.3f, %.3f, %.3f)", frenet.s, frenet.t, frenet.ϕ)) function Base.isapprox(a::Frenet, b::Frenet; rtol::Real=cbrt(eps(Float64)), atol::Real=sqrt(eps(Float64)) ) a.roadind.tag == b.roadind.tag && isapprox(a.roadind.ind.t, b.roadind.ind.t, atol=atol, rtol=rtol) && isapprox(a.s, b.s, atol=atol, rtol=rtol) && isapprox(a.t, b.t, atol=atol, rtol=rtol) && isapprox(a.ϕ, b.ϕ, atol=atol, rtol=rtol) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
10268
""" gen_straight_curve(A::VecE2{T}, B::VecE2{T}, nsamples::Integer) where T<:Real Returns a `Curve` corresponding to a straight line between A and B. `nsamples` indicates the number of points to place between A and B, if set to two, the curve will only contains A and B. """ function gen_straight_curve(A::VecE2{T}, B::VecE2{T}, nsamples::Integer) where T<:Real θ = atan(B-A) δ = norm(B-A)/(nsamples-1) s = 0.0 curve = Array{CurvePt{T}}(undef, nsamples) for i in 1 : nsamples t = (i-1)/(nsamples-1) P = lerp(A,B,t) curve[i] = CurvePt(VecSE2(P.x,P.y,θ), s, 0.0) s += δ end return curve end """ gen_straight_segment(seg_id::Integer, nlanes::Integer, length::Float64=1000.0; Generate a straight `RoadSegment` with `nlanes` number of lanes of length `length`. """ function gen_straight_segment(seg_id::Integer, nlanes::Integer, length::Float64=1000.0; origin::VecSE2{Float64} = VecSE2(0.0,0.0,0.0), lane_width::Float64=DEFAULT_LANE_WIDTH, # [m] lane_widths::Vector{Float64} = fill(lane_width, nlanes), boundary_leftmost::LaneBoundary=LaneBoundary(:solid, :white), boundary_rightmost::LaneBoundary=LaneBoundary(:solid, :white), boundary_middle::LaneBoundary=LaneBoundary(:broken, :white), ) seg = RoadSegment(seg_id, Array{Lane{Float64}}(undef, nlanes)) y = -lane_widths[1]/2 for i in 1 : nlanes y += lane_widths[i]/2 seg.lanes[i] = Lane(LaneTag(seg_id,i), [CurvePt(body2inertial(VecSE2( 0.0,y,0.0), origin), 0.0), CurvePt(body2inertial(VecSE2(length,y,0.0), origin), length)], width=lane_widths[i], boundary_left=(i == nlanes ? boundary_leftmost : boundary_middle), boundary_right=(i == 1 ? boundary_rightmost : boundary_middle) ) y += lane_widths[i]/2 end return seg end """ quadratic bezier lerp """ Vec.lerp(A::VecE2{T}, B::VecE2{T}, C::VecE2{T}, t::T) where T<:Real = (1-t)^2*A + 2*(1-t)*t*B + t^2*B """ cubic bezier lerp """ Vec.lerp(A::VecE2{T}, B::VecE2{T}, C::VecE2{T}, D::VecE2{T}, t::T) where T<:Real = (1-t)^3*A + 3*(1-t)^2*t*B + 3*(1-t)*t^2*C + t^3*D """ gen_bezier_curve(A::VecSE2{T}, B::VecSE2{T}, rA::T, rB::T, nsamples::Int) where T <: Real Generate a Bezier curve going from A to B with radii specified by rA and rB. It uses cubic interpolation. `nsamples` specifies the number of point along the curve between A and B. The more points, the more accurate the approximation is. This is useful to generate arcs. """ function gen_bezier_curve(A::VecSE2{T}, B::VecSE2{T}, rA::T, rB::T, nsamples::Int) where T <: Real a = convert(VecE2, A) d = convert(VecE2, B) b = a + polar( rA, A.θ) c = d + polar(-rB, B.θ) s = 0.0 curve = Array{CurvePt{T}}(undef, nsamples) for i in 1 : nsamples t = (i-1)/(nsamples-1) P = lerp(a,b,c,d,t) P′ = 3*(1-t)^2*(b-a) + 6*(1-t)*t*(c-b) + 3*t^2*(d-c) P′′ = 6*(1-t)*(c-2b+a) + 6t*(d-2*c+b) θ = atan(P′) κ = (P′.x*P′′.y - P′.y*P′′.x)/(P′.x^2 + P′.y^2)^1.5 # signed curvature if i > 1 s += norm(P - convert(VecE2, curve[i-1].pos)) # approximation, but should be good for many samples end curve[i] = CurvePt(VecSE2(P.x,P.y,θ), s, κ) end return curve end """ gen_straight_roadway(nlanes::Int, length::Float64) Generate a roadway with a single straight segment whose rightmost lane center starts at starts at (0,0), and proceeds in the positive x direction. """ function gen_straight_roadway(nlanes::Int, length::Float64=1000.0; origin::VecSE2{Float64} = VecSE2(0.0,0.0,0.0), lane_width::Float64=DEFAULT_LANE_WIDTH, # [m] lane_widths::Vector{Float64} = fill(lane_width, nlanes), boundary_leftmost::LaneBoundary=LaneBoundary(:solid, :white), boundary_rightmost::LaneBoundary=LaneBoundary(:solid, :white), boundary_middle::LaneBoundary=LaneBoundary(:broken, :white), ) retval = Roadway() push!(retval.segments, gen_straight_segment(1, nlanes, length, origin=origin, lane_widths=lane_widths, boundary_leftmost=boundary_leftmost, boundary_rightmost=boundary_rightmost, boundary_middle=boundary_middle)) retval end """ gen_stadium_roadway(nlanes::Int; length::Float64=100.0; width::Float64=10.0; radius::Float64=25.0) Generate a roadway that is a rectangular racetrack with rounded corners. length = length of the x-dim straight section for the innermost (leftmost) lane [m] width = length of the y-dim straight section for the innermost (leftmost) lane [m] radius = turn radius [m] ______________________ / \\ | | | | \\______________________/ """ function gen_stadium_roadway(nlanes::Int; length::Float64=100.0, width::Float64=10.0, radius::Float64=25.0, ncurvepts_per_turn::Int=25, # includes start and end lane_width::Float64=DEFAULT_LANE_WIDTH, # [m] boundary_leftmost::LaneBoundary=LaneBoundary(:solid, :white), boundary_rightmost::LaneBoundary=LaneBoundary(:solid, :white), boundary_middle::LaneBoundary=LaneBoundary(:broken, :white), ) ncurvepts_per_turn ≥ 2 || error("must have at least 2 pts per turn") A = VecE2(length, radius) B = VecE2(length, width + radius) C = VecE2(0.0, width + radius) D = VecE2(0.0, radius) seg1 = RoadSegment(1, Array{Lane{Float64}}(undef, nlanes)) seg2 = RoadSegment(2, Array{Lane{Float64}}(undef, nlanes)) seg3 = RoadSegment(3, Array{Lane{Float64}}(undef, nlanes)) seg4 = RoadSegment(4, Array{Lane{Float64}}(undef, nlanes)) seg5 = RoadSegment(5, Array{Lane{Float64}}(undef, nlanes)) seg6 = RoadSegment(6, Array{Lane{Float64}}(undef, nlanes)) for i in 1 : nlanes curvepts1 = Array{CurvePt{Float64}}(undef, ncurvepts_per_turn) curvepts2 = Array{CurvePt{Float64}}(undef, ncurvepts_per_turn) curvepts3 = Array{CurvePt{Float64}}(undef, 2) curvepts4 = Array{CurvePt{Float64}}(undef, ncurvepts_per_turn) curvepts5 = Array{CurvePt{Float64}}(undef, ncurvepts_per_turn) curvepts6 = Array{CurvePt{Float64}}(undef, 2) r = radius + lane_width*(i-1) for j in 1:ncurvepts_per_turn t = (j-1)/(ncurvepts_per_turn-1) # ∈ [0,1] s = r*π/2*t curvepts1[j] = CurvePt(VecSE2(A + polar(r, lerp(-π/2, 0.0, t)), lerp(0.0,π/2,t)), s) curvepts2[j] = CurvePt(VecSE2(B + polar(r, lerp( 0.0, π/2, t)), lerp(π/2,π, t)), s) curvepts4[j] = CurvePt(VecSE2(C + polar(r, lerp( π/2, π, t)), lerp(π, 3π/2,t)), s) curvepts5[j] = CurvePt(VecSE2(D + polar(r, lerp( π, 3π/2, t)), lerp(3π/2,2π,t)), s) end # fill in straight segments curvepts3[1] = CurvePt(curvepts2[end].pos, 0.0) curvepts3[2] = CurvePt(curvepts4[1].pos, length) curvepts6[1] = CurvePt(curvepts5[end].pos, 0.0) curvepts6[2] = CurvePt(curvepts1[1].pos, length) laneindex = nlanes-i+1 tag1 = LaneTag(1,laneindex) tag2 = LaneTag(2,laneindex) tag3 = LaneTag(3,laneindex) tag4 = LaneTag(4,laneindex) tag5 = LaneTag(5,laneindex) tag6 = LaneTag(6,laneindex) boundary_left = (laneindex == nlanes ? boundary_leftmost : boundary_middle) boundary_right = (laneindex == 1 ? boundary_rightmost : boundary_middle) curveind_lo = CurveIndex(1,0.0) curveind_hi = CurveIndex(ncurvepts_per_turn,1.0) seg1.lanes[laneindex] = Lane(tag1, curvepts1, width=lane_width, boundary_left=boundary_left, boundary_right=boundary_right, next = RoadIndex(curveind_lo, tag2), prev = RoadIndex(curveind_hi, tag6), ) seg2.lanes[laneindex] = Lane(tag2, curvepts2, width=lane_width, boundary_left=boundary_left, boundary_right=boundary_right, next = RoadIndex(curveind_lo, tag3), prev = RoadIndex(CurveIndex(ncurvepts_per_turn - 1,1.0), tag1), ) seg3.lanes[laneindex] = Lane(tag3, curvepts3, width=lane_width, boundary_left=boundary_left, boundary_right=boundary_right, next = RoadIndex(curveind_lo, tag4), prev = RoadIndex(curveind_hi, tag2), ) seg4.lanes[laneindex] = Lane(tag4, curvepts4, width=lane_width, boundary_left=boundary_left, boundary_right=boundary_right, next = RoadIndex(curveind_lo, tag5), prev = RoadIndex(curveind_hi, tag3), ) seg5.lanes[laneindex] = Lane(tag5, curvepts5, width=lane_width, boundary_left=boundary_left, boundary_right=boundary_right, next = RoadIndex(curveind_lo, tag6), prev = RoadIndex(CurveIndex(ncurvepts_per_turn - 1,1.0), tag4), ) seg6.lanes[laneindex] = Lane(tag6, curvepts6, width=lane_width, boundary_left=boundary_left, boundary_right=boundary_right, next = RoadIndex(curveind_lo, tag1), prev = RoadIndex(curveind_hi, tag5), ) end retval = Roadway() push!(retval.segments, seg1) push!(retval.segments, seg2) push!(retval.segments, seg3) push!(retval.segments, seg4) push!(retval.segments, seg5) push!(retval.segments, seg6) retval end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
26225
""" LaneBoundary Data structure to represent lanes boundaries such as double yellow lines. # Fields - `style::Symbol` ∈ :solid, :broken, :double - `color::Symbol` ∈ :yellow, white """ struct LaneBoundary style::Symbol # ∈ :solid, :broken, :double color::Symbol # ∈ :yellow, white end const NULL_BOUNDARY = LaneBoundary(:unknown, :unknown) ####################### """ SpeedLimit Datastructure to represent a speed limit # Fields - `lo::Float64` [m/s] lower speed limit - `hi::Float64` [m/s] higher speed limit """ struct SpeedLimit lo::Float64 # [m/s] hi::Float64 # [m/s] end const DEFAULT_SPEED_LIMIT = SpeedLimit(-Inf, Inf) ####################### """ LaneTag An identifier for a lane. The lane object can be retrieved by indexing the roadway by the lane tag: ```julia tag = LaneTag(1, 2) # second lane segment 1 lane = roadway[tag] # returns a Lane object ``` # Fields - `segment::Int64` segment id - `lane::Int64` index in segment.lanes of this lane """ struct LaneTag segment::Int64 # segment id lane::Int64 # index in segment.lanes of this lane end Base.show(io::IO, tag::LaneTag) = @printf(io, "LaneTag(%d, %d)", tag.segment, tag.lane) const NULL_LANETAG = LaneTag(0,0) ####################################### """ RoadIndex{I <: Integer, T <: Real} A data structure to index points in a roadway. Calling `roadway[roadind]` will return the point associated to the road index. # Fields - `ind::CurveIndex{I,T}` the index of the point in the curve - `tag::LaneTag` the lane tag of the point """ struct RoadIndex{I <: Integer, T <: Real} ind::CurveIndex{I, T} tag::LaneTag end const NULL_ROADINDEX = RoadIndex(CurveIndex(-1,NaN), LaneTag(-1,-1)) Base.show(io::IO, r::RoadIndex) = @printf(io, "RoadIndex({%d, %3.f}, {%d, %d})", r.ind.i, r.ind.t, r.tag.segment, r.tag.lane) Base.write(io::IO, r::RoadIndex) = @printf(io, "%d %.6f %d %d", r.ind.i, r.ind.t, r.tag.segment, r.tag.lane) ####################################### """ LaneConnection{I <: Integer, T <: Real} Data structure to specify the connection of a lane. It connects `mylane` to the point `target`. `target` would typically be the starting point of a new lane. - `downstream::Bool` - `mylane::CurveIndex{I,T}` - `target::RoadIndex{I,T}` """ struct LaneConnection{I <: Integer, T <: Real} downstream::Bool # if true, mylane → target, else target → mylane mylane::CurveIndex{I, T} target::RoadIndex{I, T} end Base.show(io::IO, c::LaneConnection) = print(io, "LaneConnection(", c.downstream ? "D" : "U", ", ", c.mylane, ", ", c.target) function Base.write(io::IO, c::LaneConnection) @printf(io, "%s (%d %.6f) ", c.downstream ? "D" : "U", c.mylane.i, c.mylane.t) write(io, c.target) end function Base.parse(::Type{LaneConnection}, line::AbstractString) cleanedline = replace(line, r"(\(|\))" => "") tokens = split(cleanedline, ' ') @assert(tokens[1] == "D" || tokens[1] == "U") downstream = tokens[1] == "D" mylane = CurveIndex(parse(Int, tokens[2]), parse(Float64, tokens[3])) target = RoadIndex( CurveIndex(parse(Int, tokens[4]), parse(Float64, tokens[5])), LaneTag(parse(Int, tokens[6]), parse(Int, tokens[7])) ) LaneConnection{Int64, Float64}(downstream, mylane, target) end ####################################### const DEFAULT_LANE_WIDTH = 3.0 # [m] """ Lane A driving lane on a roadway. It identified by a `LaneTag`. A lane is defined by a curve which represents a center line and a width. In addition it has attributed like speed limit. A lane can be connected to other lane in the roadway, the connection are specified in the exits and entrances fields. # Fields - `tag::LaneTag` - `curve::Curve` - `width::Float64` [m] - `speed_limit::SpeedLimit` - `boundary_left::LaneBoundary` - `boundary_right::LaneBoundary` - `exits::Vector{LaneConnection} # list of exits; put the primary exit (at end of lane) first` - `entrances::Vector{LaneConnection} # list of entrances; put the primary entrance (at start of lane) first` """ mutable struct Lane{T <: Real} tag :: LaneTag curve :: Curve{T} width :: Float64 # [m] speed_limit :: SpeedLimit boundary_left :: LaneBoundary boundary_right :: LaneBoundary exits :: Vector{LaneConnection{Int64, T}} # list of exits; put the primary exit (at end of lane) first entrances :: Vector{LaneConnection{Int64, T}} # list of entrances; put the primary entrance (at start of lane) first end function Lane( tag::LaneTag, curve::Curve{T}; width::Float64 = DEFAULT_LANE_WIDTH, speed_limit::SpeedLimit = DEFAULT_SPEED_LIMIT, boundary_left::LaneBoundary = NULL_BOUNDARY, boundary_right::LaneBoundary = NULL_BOUNDARY, exits::Vector{LaneConnection{Int64, T}} = LaneConnection{Int64,T}[], entrances::Vector{LaneConnection{Int64, T}} = LaneConnection{Int64,T}[], next::RoadIndex=NULL_ROADINDEX, prev::RoadIndex=NULL_ROADINDEX, ) where T lane = Lane{T}(tag, curve, width, speed_limit, boundary_left, boundary_right, exits, entrances) if next != NULL_ROADINDEX pushfirst!(lane.exits, LaneConnection(true, curveindex_end(lane.curve), next)) end if prev != NULL_ROADINDEX pushfirst!(lane.entrances, LaneConnection(false, CURVEINDEX_START, prev)) end return lane end """ has_next(lane::Lane) returns true if the end of the lane is connected to another lane (i.e. if it has an exit lane) """ has_next(lane::Lane) = !isempty(lane.exits) && lane.exits[1].mylane == curveindex_end(lane.curve) """ has_prev(lane::Lane) returns true if another lane is connected to the beginning of that lane. (i.e. if it has an entrance lane) """ has_prev(lane::Lane) = !isempty(lane.entrances) && lane.entrances[1].mylane == CURVEINDEX_START """ is_in_exits(lane::Lane, target::LaneTag) returns true if `target` is in the exit lanes of `lane`. """ is_in_exits(lane::Lane, target::LaneTag) = findfirst(lc->lc.target.tag == target, lane.exits) != nothing """ is_in_entrances(lane::Lane, target::LaneTag) returns true if `target` is in the entrances lanes of `lane`. """ is_in_entrances(lane::Lane, target::LaneTag) = findfirst(lc->lc.target.tag == target, lane.entrances) != nothing """ connect!(source::Lane, dest::Lane) connect two lanes to each other. Useful for roadway construction. """ function connect!(source::Lane, dest::Lane) # place these at the front cindS = curveindex_end(source.curve) cindD = CURVEINDEX_START pushfirst!(source.exits, LaneConnection(true, cindS, RoadIndex(cindD, dest.tag))) pushfirst!(dest.entrances, LaneConnection(false, cindD, RoadIndex(cindS, source.tag))) (source, dest) end function connect!(source::Lane, cindS::CurveIndex, dest::Lane, cindD::CurveIndex) push!(source.exits, LaneConnection(true, cindS, RoadIndex(cindD, dest.tag))) push!(dest.entrances, LaneConnection(false, cindD, RoadIndex(cindS, source.tag))) (source, dest) end ####################################### """ RoadSegment{T} a list of lanes forming a single road with a common direction # Fields - `id::Int64` - `lanes::Vector{Lane{T}}` lanes are stored right to left """ mutable struct RoadSegment{T<:Real} id::Int64 lanes::Vector{Lane{T}} end RoadSegment{T}(id::Int64) where T = RoadSegment{T}(id, Lane{T}[]) ####################################### """ Roadway The main datastructure to represent road network, it consists of a list of `RoadSegment` # Fields - `segments::Vector{RoadSegment}` """ mutable struct Roadway{T<:Real} segments::Vector{RoadSegment{T}} end Roadway{T}() where T = Roadway{T}(RoadSegment{T}[]) Roadway() = Roadway{Float64}() Base.show(io::IO, roadway::Roadway) = @printf(io, "Roadway") """ Base.write(io::IO, roadway::Roadway) write all the roadway information to a text file """ function Base.write(io::IO, roadway::Roadway) # writes to a text file println(io, "ROADWAY") println(io, length(roadway.segments)) # number of segments for seg in roadway.segments println(io, seg.id) println(io, "\t", length(seg.lanes)) # number of lanes for (i,lane) in enumerate(seg.lanes) @assert(lane.tag.lane == i) @printf(io, "\t%d\n", i) @printf(io, "\t\t%.3f\n", lane.width) @printf(io, "\t\t%.3f %.3f\n", lane.speed_limit.lo, lane.speed_limit.hi) println(io, "\t\t", lane.boundary_left.style, " ", lane.boundary_left.color) println(io, "\t\t", lane.boundary_right.style, " ", lane.boundary_right.color) println(io, "\t\t", length(lane.exits) + length(lane.entrances)) for conn in lane.exits print(io, "\t\t\t"); write(io, conn); print(io, "\n") end for conn in lane.entrances print(io, "\t\t\t"); write(io, conn); print(io, "\n") end println(io, "\t\t", length(lane.curve)) for pt in lane.curve @printf(io, "\t\t\t(%.4f %.4f %.6f) %.4f %.8f %.8f\n", pt.pos.x, pt.pos.y, pt.pos.θ, pt.s, pt.k, pt.kd) end end end end """ Base.read(io::IO, ::Type{Roadway}) extract roadway information from a text file and returns a roadway object. """ function Base.read(io::IO, ::Type{Roadway}) lines = readlines(io) line_index = 1 if occursin("ROADWAY", lines[line_index]) line_index += 1 end function advance!() line = strip(lines[line_index]) line_index += 1 line end nsegs = parse(Int, advance!()) roadway = Roadway{Float64}(Array{RoadSegment{Float64}}(undef, nsegs)) for i_seg in 1:nsegs segid = parse(Int, advance!()) nlanes = parse(Int, advance!()) seg = RoadSegment(segid, Array{Lane{Float64}}(undef, nlanes)) for i_lane in 1:nlanes @assert(i_lane == parse(Int, advance!())) tag = LaneTag(segid, i_lane) width = parse(Float64, advance!()) tokens = split(advance!(), ' ') speed_limit = SpeedLimit(parse(Float64, tokens[1]), parse(Float64, tokens[2])) tokens = split(advance!(), ' ') boundary_left = LaneBoundary(Symbol(tokens[1]), Symbol(tokens[2])) tokens = split(advance!(), ' ') boundary_right = LaneBoundary(Symbol(tokens[1]), Symbol(tokens[2])) exits = LaneConnection{Int64, Float64}[] entrances = LaneConnection{Int64, Float64}[] n_conns = parse(Int, advance!()) for i_conn in 1:n_conns conn = parse(LaneConnection, advance!()) conn.downstream ? push!(exits, conn) : push!(entrances, conn) end npts = parse(Int, advance!()) curve = Array{CurvePt{Float64}}(undef, npts) for i_pt in 1:npts line = advance!() cleanedline = replace(line, r"(\(|\))" => "") tokens = split(cleanedline, ' ') x = parse(Float64, tokens[1]) y = parse(Float64, tokens[2]) θ = parse(Float64, tokens[3]) s = parse(Float64, tokens[4]) k = parse(Float64, tokens[5]) kd = parse(Float64, tokens[6]) curve[i_pt] = CurvePt(VecSE2(x,y,θ), s, k, kd) end seg.lanes[i_lane] = Lane(tag, curve, width=width, speed_limit=speed_limit, boundary_left=boundary_left, boundary_right=boundary_right, entrances=entrances, exits=exits) end roadway.segments[i_seg] = seg end roadway end """ lane[ind::CurveIndex, roadway::Roadway] Accessor for lanes based on a CurveIndex. Note that we extend the definition of a CurveIndex, previously ind.i ∈ [1, length(curve)-1], to: ind.i ∈ [0, length(curve)] where 1 ≤ ind.i ≤ length(curve)-1 is as before, but if the index is on the section between two lanes, we use: ind.i = length(curve), ind.t ∈ [0,1] for the region between curve[end] → next ind.i = 0, ind.t ∈ [0,1] for the region between prev → curve[1] """ function Base.getindex(lane::Lane{T}, ind::CurveIndex{I, T}, roadway::Roadway{T}) where {I<:Integer,T<:Real} if ind.i == 0 pt_lo = prev_lane_point(lane, roadway) pt_hi = lane.curve[1] s_gap = norm(VecE2(pt_hi.pos - pt_lo.pos)) pt_lo = CurvePt{T}(pt_lo.pos, -s_gap, pt_lo.k, pt_lo.kd) return lerp(pt_lo, pt_hi, ind.t) elseif ind.i < length(lane.curve) return lane.curve[ind] else pt_hi = next_lane_point(lane, roadway) pt_lo = lane.curve[end] s_gap = norm(VecE2(pt_hi.pos - pt_lo.pos)) pt_hi = CurvePt{T}(pt_hi.pos, pt_lo.s + s_gap, pt_hi.k, pt_hi.kd) return lerp( pt_lo, pt_hi, ind.t) end end """ Base.getindex(roadway::Roadway, segid::Int) returns the segment associated with id `segid` """ function Base.getindex(roadway::Roadway, segid::Int) for seg in roadway.segments if seg.id == segid return seg end end error("Could not find segid $segid in roadway") end """ Base.getindex(roadway::Roadway, tag::LaneTag) returns the lane identified by the tag `LaneTag` """ function Base.getindex(roadway::Roadway, tag::LaneTag) seg = roadway[tag.segment] seg.lanes[tag.lane] end """ is_between_segments_lo(ind::CurveIndex) """ is_between_segments_lo(ind::CurveIndex) = ind.i == 0 """ is_between_segments_hi(ind::CurveIndex, curve::Curve) """ is_between_segments_hi(ind::CurveIndex, curve::Curve) = ind.i == length(curve) """ is_between_segments(ind::CurveIndex, curve::Curve) """ is_between_segments(ind::CurveIndex, curve::Curve) = is_between_segments_lo(ind) || is_between_segments_hi(ind, curve) """ next_lane(lane::Lane, roadway::Roadway) returns the lane connected to the end `lane`. If `lane` has several exits, it returns the first one """ next_lane(lane::Lane, roadway::Roadway) = roadway[lane.exits[1].target.tag] """ prev_lane(lane::Lane, roadway::Roadway) returns the lane connected to the beginning `lane`. If `lane` has several entrances, it returns the first one """ prev_lane(lane::Lane, roadway::Roadway) = roadway[lane.entrances[1].target.tag] """ next_lane_point(lane::Lane, roadway::Roadway) returns the point of connection between `lane` and its first exit """ next_lane_point(lane::Lane, roadway::Roadway) = roadway[lane.exits[1].target] """ prev_lane_point(lane::Lane, roadway::Roadway) returns the point of connection between `lane` and its first entrance """ prev_lane_point(lane::Lane, roadway::Roadway) = roadway[lane.entrances[1].target] """ has_segment(roadway::Roadway, segid::Int) returns true if `segid` is in `roadway`. """ function has_segment(roadway::Roadway, segid::Int) for seg in roadway.segments if seg.id == segid return true end end false end """ has_lanetag(roadway::Roadway, tag::LaneTag) returns true if `roadway` contains a lane identified by `tag` """ function has_lanetag(roadway::Roadway, tag::LaneTag) if !has_segment(roadway, tag.segment) return false end seg = roadway[tag.segment] 1 ≤ tag.lane ≤ length(seg.lanes) end """ RoadProjection{I <: Integer, T <: Real} represents the projection of a point on the roadway # Fields - `curveproj::CurveProjection{I, T}` - `tag::LaneTag` """ struct RoadProjection{I <: Integer, T <: Real} curveproj::CurveProjection{I, T} tag::LaneTag end function get_closest_perpendicular_point_between_points(A::VecSE2{T}, B::VecSE2{T}, Q::VecSE2{T}; tolerance::T = 0.01, # acceptable error in perpendicular component max_iter::Int = 50, # maximum number of iterations ) where T # CONDITIONS: a < b, either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0 # OUTPUT: value which differs from a root of f(x)=0 by less than TOL a = convert(T, 0.0) b = convert(T, 1.0) f_a = inertial2body(Q, A).x f_b = inertial2body(Q, B).x if sign(f_a) == sign(f_b) # both are wrong - use the old way t = get_lerp_time_unclamped(A, B, Q) t = clamp(t, 0.0, 1.0) return (t, lerp(A,B,t)) end iter = 1 while iter ≤ max_iter c = (a+b)/2 # new midpoint footpoint = lerp(A, B, c) f_c = inertial2body(Q, footpoint).x if abs(f_c) < tolerance # solution found return (c, footpoint) end if sign(f_c) == sign(f_a) a, f_a = c, f_c else b = c end iter += 1 end # Maximum number of iterations passed # This will occur when we project with a point that is not actually in the range, # and we converge towards one edge if a == 0.0 return (a, A) elseif b == 1.0 return (b, B) else @warn("get_closest_perpendicular_point_between_points - should not happen") c = (a+b)/2 # should not happen return (c, lerp(A,B,c)) end end """ proj(posG::VecSE2{T}, lane::Lane, roadway::Roadway; move_along_curves::Bool=true) where T <: Real Return the RoadProjection for projecting posG onto the lane. This will automatically project to the next or prev curve as appropriate. if `move_along_curves` is false, will only project to lane.curve """ function Vec.proj(posG::VecSE2{T}, lane::Lane{T}, roadway::Roadway{T}; move_along_curves::Bool = true, # if false, will only project to lane.curve ) where T <: Real curveproj = proj(posG, lane.curve) rettag = lane.tag if curveproj.ind == CurveIndex(1,zero(T)) && has_prev(lane) pt_lo = prev_lane_point(lane, roadway) pt_hi = lane.curve[1] t = get_lerp_time_unclamped(pt_lo, pt_hi, posG) if t ≤ 0.0 && move_along_curves return proj(posG, prev_lane(lane, roadway), roadway) elseif t < 1.0 # for t == 1.0 we use the actual end of the lane @assert(!move_along_curves || 0.0 ≤ t < 1.0) # t was computed assuming a constant angle # this is not valid for the large distances and angle disparities between lanes # thus we now use a bisection search to find the appropriate location t, footpoint = get_closest_perpendicular_point_between_points(pt_lo.pos, pt_hi.pos, posG) ind = CurveIndex(0, t) curveproj = get_curve_projection(posG, footpoint, ind) end elseif curveproj.ind == curveindex_end(lane.curve) && has_next(lane) pt_lo = lane.curve[end] pt_hi = next_lane_point(lane, roadway) t = get_lerp_time_unclamped(pt_lo, pt_hi, posG) if t ≥ 1.0 && move_along_curves # for t == 1.0 we use the actual start of the lane return proj(posG, next_lane(lane, roadway), roadway) elseif t ≥ 0.0 @assert(!move_along_curves || 0.0 ≤ t ≤ 1.0) # t was computed assuming a constant angle # this is not valid for the large distances and angle disparities between lanes # thus we now use a bisection search to find the appropriate location t, footpoint = get_closest_perpendicular_point_between_points(pt_lo.pos, pt_hi.pos, posG) ind = CurveIndex(length(lane.curve), t) curveproj = get_curve_projection(posG, footpoint, ind) end end RoadProjection(curveproj, rettag) end """ proj(posG::VecSE2{T}, seg::RoadSegment, roadway::Roadway) where T <: Real Return the RoadProjection for projecting posG onto the segment. Tries all of the lanes and gets the closest one """ function Vec.proj(posG::VecSE2{T}, seg::RoadSegment, roadway::Roadway) where T <: Real best_dist2 = Inf best_proj = RoadProjection{Int64, T}(CurveProjection(CurveIndex(-1,convert(T, -1)), convert(T, NaN), convert(T, NaN)), NULL_LANETAG) for lane in seg.lanes roadproj = proj(posG, lane, roadway) footpoint = roadway[roadproj.tag][roadproj.curveproj.ind, roadway] dist2 = norm(VecE2(posG - footpoint.pos)) if dist2 < best_dist2 best_dist2 = dist2 best_proj = roadproj end end best_proj end """ proj(posG::VecSE2{T}, seg::RoadSegment, roadway::Roadway) where T <: Real Return the RoadProjection for projecting posG onto the roadway. Tries all of the lanes and gets the closest one """ function Vec.proj(posG::VecSE2{T}, roadway::Roadway) where T <: Real best_dist2 = Inf best_proj = RoadProjection(CurveProjection(CurveIndex(-1,convert(T,-1.0)), convert(T, NaN), convert(T, NaN)), NULL_LANETAG) for seg in roadway.segments for lane in seg.lanes roadproj = proj(posG, lane, roadway, move_along_curves=false) targetlane = roadway[roadproj.tag] footpoint = targetlane[roadproj.curveproj.ind, roadway] dist2 = normsquared(VecE2(posG - footpoint.pos)) if dist2 < best_dist2 best_dist2 = dist2 best_proj = roadproj end end end best_proj end ############################################ RoadIndex(roadproj::RoadProjection) = RoadIndex(roadproj.curveproj.ind, roadproj.tag) """ Base.getindex(roadway::Roadway, roadind::RoadIndex) returns the CurvePt on the roadway associated to `roadind` """ function Base.getindex(roadway::Roadway, roadind::RoadIndex) lane = roadway[roadind.tag] lane[roadind.ind, roadway] end """ move_along(roadind::RoadIndex, road::Roadway, Δs::Float64) Return the RoadIndex at ind's s position + Δs """ function move_along(roadind::RoadIndex{I, T}, roadway::Roadway, Δs::Float64, depth::Int=0) where {I <: Integer, T <: Real} lane = roadway[roadind.tag] curvept = lane[roadind.ind, roadway] if curvept.s + Δs < 0.0 if has_prev(lane) pt_lo = prev_lane_point(lane, roadway) pt_hi = lane.curve[1] s_gap = norm(VecE2(pt_hi.pos - pt_lo.pos)) if curvept.s + Δs < -s_gap lane_prev = prev_lane(lane, roadway) curveind = curveindex_end(lane_prev.curve) roadind = RoadIndex{I,T}(curveind, lane_prev.tag) return move_along(roadind, roadway, Δs + curvept.s + s_gap, depth+1) else # in the gap between lanes t = (s_gap + curvept.s + Δs) / s_gap curveind = CurveIndex(0, t) RoadIndex{I,T}(curveind, lane.tag) end else # no prev lane, return the beginning of this one curveind = CurveIndex(1, 0.0) return RoadIndex{I,T}(curveind, roadind.tag) end elseif curvept.s + Δs > lane.curve[end].s if has_next(lane) pt_lo = lane.curve[end] pt_hi = next_lane_point(lane, roadway) s_gap = norm(VecE2(pt_hi.pos - pt_lo.pos)) if curvept.s + Δs ≥ pt_lo.s + s_gap # extends beyond the gap curveind = lane.exits[1].target.ind roadind = RoadIndex{I,T}(curveind, lane.exits[1].target.tag) return move_along(roadind, roadway, Δs - (lane.curve[end].s + s_gap - curvept.s)) else # in the gap between lanes t = (Δs - (lane.curve[end].s - curvept.s)) / s_gap curveind = CurveIndex(0, t) RoadIndex{I,T}(curveind, lane.exits[1].target.tag) end else # no next lane, return the end of this lane curveind = curveindex_end(lane.curve) return RoadIndex{I,T}(curveind, roadind.tag) end else if roadind.ind.i == 0 ind = get_curve_index(CurveIndex(1,0.0), lane.curve, curvept.s+Δs) elseif roadind.ind.i == length(lane.curve) ind = get_curve_index(curveindex_end(lane.curve), lane.curve, curvept.s+Δs) else ind = get_curve_index(roadind.ind, lane.curve, Δs) end RoadIndex{I,T}(ind, roadind.tag) end end """ n_lanes_right(roadway::Roadway, lane::Lane) returns the number of lanes to the right of `lane` """ n_lanes_right(roadway::Roadway, lane::Lane) = lane.tag.lane - 1 """ rightlane(roadway::Roadway, lane::Lane) returns the lane to the right of lane if it exists, returns nothing otherwise """ function rightlane(roadway::Roadway, lane::Lane) if n_lanes_right(roadway, lane) > 0.0 return roadway[LaneTag(lane.tag.segment, lane.tag.lane - 1)] else return nothing end end """ n_lanes_left(roadway::Roadway, lane::Lane) returns the number of lanes to the left of `lane` """ function n_lanes_left(roadway::Roadway, lane::Lane) seg = roadway[lane.tag.segment] length(seg.lanes) - lane.tag.lane end """ leftlane(roadway::Roadway, lane::Lane) returns the lane to the left of lane if it exists, returns nothing otherwise """ function leftlane(roadway::Roadway, lane::Lane) if n_lanes_left(roadway, lane) > 0.0 return roadway[LaneTag(lane.tag.segment, lane.tag.lane + 1)] else return nothing end end """ lanes(roadway::Roadway{T}) where T return a list of all the lanes present in roadway. """ function lanes(roadway::Roadway{T}) where T lanes = Lane{T}[] for i=1:length(roadway.segments) for lane in roadway.segments[i].lanes push!(lanes, lane) end end return lanes end """ lanetags(roadway::Roadway) return a list of all the lane tags present in roadway. """ function lanetags(roadway::Roadway) lanetags = LaneTag[] for i=1:length(roadway.segments) for lane in roadway.segments[i].lanes push!(lanetags, lane.tag) end end return lanetags end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1862
""" Internals, run all callbacks """ function _run_callbacks(callbacks::C, scenes::Vector{Scene{Entity{S,D,I}}}, actions::Union{Nothing, Vector{Scene{A}}}, roadway::R, models::Dict{I,M}, tick::Int) where {S,D,I,A<:EntityAction,R,M<:DriverModel,C<:Tuple{Vararg{Any}}} isdone = false for callback in callbacks isdone |= run_callback(callback, scenes, actions, roadway, models, tick) end return isdone end """ run_callback(callback, scenes::Vector{EntityScene}, actions::Union{Nothing, Vector{A}}, roadway::Roadway, models::Dict{I, DriverModel}, tick::Int64) Given a callback type, `run_callback` will be run at every step of a simulation run using `simulate`. By overloading the `run_callback` method for a custom callback type one can log information or interrupt a simulation. The `run_callback` function is expected to return a boolean. If `true` the simulation is stopped. # Inputs: - `callback` the custom callback type used for dispatch - `scenes` where the simulation data is stored, note that it is only filled up to the current time step (`scenes[1:tick+1]`) - `actions` where the actions are stored, it is only filled up to `actions[tick]` - `roadway` the roadway where entities are moving - `models` a dictionary mapping entity IDs to driver models - `tick` the index of the current time step """ function run_callback end ## Implementations of useful callbacks """ CollisionCallback Terminates the simulation once a collision occurs """ @with_kw struct CollisionCallback mem::CPAMemory=CPAMemory() end function run_callback( callback::CollisionCallback, scenes::Vector{Scene{E}}, actions::Union{Nothing, Vector{Scene{A}}}, roadway::R, models::Dict{I,M}, tick::Int ) where {E<:Entity,A<:EntityAction,R,I,M<:DriverModel} return !is_collision_free(scenes[tick], callback.mem) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3313
""" simulate( scene::Scene{E}, roadway::R, models::Dict{I,M}, nticks::Int64, timestep::Float64; rng::AbstractRNG = Random.GLOBAL_RNG, callbacks = nothing ) where {E<:Entity,A,R,I,M<:DriverModel} Simulate a `scene`. For detailed information, consult the documentation of `simulate!`. By default, returns a vector containing one scene per time step. """ function simulate( scene::Scene{E}, roadway::R, models::Dict{I,M}, nticks::Int64, timestep::Float64; rng::AbstractRNG = Random.GLOBAL_RNG, callbacks = nothing, ) where {E<:Entity,A,R,I,M<:DriverModel} scenes = [Scene(E, length(scene)) for i=1:nticks+1] n = simulate!( scene, roadway, models, nticks, timestep, scenes, nothing, rng=rng, callbacks=callbacks ) return scenes[1:(n+1)] end """ simulate!( scene::Scene{E}, roadway::R, models::Dict{I,M}, nticks::Int64, timestep::Float64, scenes::Vector{Scene{E}}, actions::Union{Nothing, Vector{Scene{A}}} = nothing; rng::AbstractRNG = Random.GLOBAL_RNG, callbacks = nothing ) where {E<:Entity,A<:EntityAction,R,I,M<:DriverModel} Simulate the entities in `scene` along a `roadway` for a maximum of `nticks` time steps of size `timestep`. Returns the number of successfully performed timesteps. At each time step, `models` is used to determine the action for each agent. `scenes` and `actions` are pre-allocated vectors of `Scene`s containing either `Entity`s (for scenes) or `EntityAction`s (for actions). If `actions` is equal to `nothing` (default), the action history is not tracked. `scenes` must always be provided. `callbacks` is an array of callback functions which are invoked before the simulation starts and after every simulation step. Any callback function can cause an early termination by returning `true` (the default return value for callback functions should be `false`). The random number generator for the simulation can be provided using the `rng` keyword argument, it defaults to `Random.GLOBAL_RNG`. """ function simulate!( scene::Scene{E}, roadway::R, models::Dict{I,M}, nticks::Int64, timestep::Float64, scenes::Vector{Scene{E}}, actions::Union{Nothing, Vector{Scene{A}}} = nothing; rng::AbstractRNG = Random.GLOBAL_RNG, callbacks = nothing ) where {E<:Entity,A<:EntityAction,R,I,M<:DriverModel} copyto!(scenes[1], scene) # potential early out right off the bat if (callbacks !== nothing) && _run_callbacks(callbacks, scenes, actions, roadway, models, 1) return 0 end for tick in 1:nticks empty!(scenes[tick + 1]) if (actions !== nothing) empty!(actions[tick]) end for (i, veh) in enumerate(scenes[tick]) observe!(models[veh.id], scenes[tick], roadway, veh.id) a = rand(rng, models[veh.id]) veh_state_p = propagate(veh, a, roadway, timestep) push!(scenes[tick + 1], Entity(veh_state_p, veh.def, veh.id)) if (actions !== nothing) push!(actions[tick], EntityAction(a, veh.id)) end end if !(callbacks === nothing) && _run_callbacks(callbacks, scenes, actions, roadway, models, tick+1) return tick end end return nticks end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3696
""" observe_from_history!(model::DriverModel, roadway::Roadway, trajdata::Vector{<:EntityScene}, egoid, start::Int, stop::Int) Given a prerecorded trajectory `trajdata`, run the observe function of a driver model for the scenes between `start` and `stop` for the vehicle of id `egoid`. The ego vehicle does not take any actions, it just observe the scenes, """ function observe_from_history!( model::DriverModel, roadway::Roadway, trajdata::Vector{<:EntityScene}, egoid, start::Int = 1, stop::Int = length(trajdata)) reset_hidden_state!(model) for i=start:stop observe!(model, trajdata[i], roadway, egoid) end return model end """ maximum_entities(trajdata::Vector{<:EntityScene}) return the maximum number of entities present in a given scene of the trajectory. """ function maximum_entities(trajdata::Vector{<:EntityScene}) return maximum(capacity, trajdata) end """ simulate_from_history(model::DriverModel, roadway::Roadway, trajdata::Vector{Scene{E}}, egoid, timestep::Float64, start::Int = 1, stop::Int = length(trajdata); rng::AbstractRNG = Random.GLOBAL_RNG) where {E<:Entity} Replay the given trajectory except for the entity `egoid` which follows the given driver model. See `simulate_from_history!` if you want to provide a container for the results or log actions. """ function simulate_from_history( model::DriverModel, roadway::Roadway, trajdata::Vector{Scene{E}}, egoid, timestep::Float64, start::Int = 1, stop::Int = length(trajdata); rng::AbstractRNG = Random.GLOBAL_RNG ) where {E<:Entity} scenes = [Scene(E, maximum_entities(trajdata)) for i=1:(stop - start + 1)] n = simulate_from_history!(model, roadway, trajdata, egoid, timestep, start, stop, scenes, rng=rng) return scenes[1:(n+1)] end """ simulate_from_history!(model::DriverModel, roadway::Roadway, trajdata::Vector{Scene{E}}, egoid, timestep::Float64, start::Int, stop::Int, scenes::Vector{Scene{E}}; actions::Union{Nothing, Vector{Scene{A}}} = nothing, rng::AbstractRNG = Random.GLOBAL_RNG) where {E<:Entity} Replay the given trajectory except for the entity `egoid` which follows the given driver model. The resulting trajectory is stored in `scenes`, the actions of the ego vehicle are stored in `actions`. """ function simulate_from_history!( model::DriverModel, roadway::Roadway, trajdata::Vector{Scene{E}}, egoid, timestep::Float64, start::Int, stop::Int, scenes::Vector{Scene{E}}; actions::Union{Nothing, Vector{Scene{A}}} = nothing, rng::AbstractRNG = Random.GLOBAL_RNG ) where {E<:Entity, A<:EntityAction} # run model (unsure why it is needed, it was in the old code ) observe_from_history!(model, roadway, trajdata, egoid, start, stop) copyto!(scenes[1], trajdata[start]) for tick=1:(stop - start) empty!(scenes[tick + 1]) if (actions !== nothing) empty!(actions[tick]) end ego = get_by_id(scenes[tick], egoid) observe!(model, scenes[tick], roadway, egoid) a = rand(rng, model) ego_state_p = propagate(ego, a, roadway, timestep) copyto!(scenes[tick+1], trajdata[start+tick]) egoind = findfirst(egoid, scenes[tick+1]) scenes[tick+1][egoind] = Entity(ego_state_p, ego.def, egoid) if (actions !== nothing) push!(actions[tick], EntityAction(a, egoid)) end end return (stop - start) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
687
""" Entity{S,D,I} Immutable data structure to represent entities (vehicle, pedestrian, ...). Entities are defined by a state, a definition, and an id. The state of an entity usually models changing values while the definition and the id should not change. # Constructor `Entity(state, definition, id)` Copy constructor that keeps the definition and id but changes the state (a new object is still created): `Entity(entity::Entity{S,D,I}, s::S)` # Fields - `state::S` - `def::D` - `id::I` """ struct Entity{S,D,I} # state, definition, identification state::S def::D id::I end Entity(entity::Entity{S,D,I}, s::S) where {S,D,I} = Entity(s, entity.def, entity.id)
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
634
# Interface to define custom state types """ posf(state) returns the coordinates of the state in the Frenet frame. The return type is expected to be `Frenet`. """ function posf end """ posg(state) returns the coordinates of the state in the global (world) frame. The return type is expected to be a VecSE2. """ function posg end """ vel(state) returns the norm of the longitudinal velocity. """ function vel end """ velf(state) returns the velocity of the state in the Frenet frame. """ function velf end """ velg(state) returns the velocity of the state in the global (world) frame. """ function velg end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5821
""" Scene{E} Container to store a list of entities. The main difference from a regular array is that its size is defined at construction and is fixed. (`push!` is O(1)) # Constructors - `Scene(arr::AbstractVector; capacity::Int=length(arr))` - `Scene(::Type{E}, capacity::Int=100) where {E}` # Fields To interact with `Scene` object it is preferable to use functions rather than accessing the fields directly. - `entities::Vector{E}` - `n::Int` current number of entities in the scene """ mutable struct Scene{E} entities::Vector{E} # NOTE: I tried StaticArrays; was not faster n::Int end function Scene(arr::AbstractVector{E}; capacity::Int=length(arr)) where {E} capacity ≥ length(arr) || error("capacity cannot be less than entitiy count! (N ≥ length(arr))") entities = Array{E}(undef, capacity) copyto!(entities, arr) return Scene{E}(entities, length(arr)) end function Scene(::Type{E}, capacity::Int=100) where {E} entities = Array{E}(undef, capacity) return Scene{E}(entities, 0) end Base.show(io::IO, scene::Scene{E}) where {E}= @printf(io, "Scene{%s}(%d entities)", string(E), length(scene)) """ capacity(scene::Scene) returns the maximum number of entities that can be put in the scene. To get the current number of entities use `length` instead. """ capacity(scene::Scene) = length(scene.entities) Base.length(scene::Scene) = scene.n Base.getindex(scene::Scene, i::Int) = scene.entities[i] Base.eltype(scene::Scene{E}) where {E} = E Base.lastindex(scene::Scene) = scene.n function Base.setindex!(scene::Scene{E}, entity::E, i::Int) where {E} scene.entities[i] = entity return scene end function Base.empty!(scene::Scene) scene.n = 0 return scene end function Base.deleteat!(scene::Scene, entity_index::Int) for i in entity_index : scene.n - 1 scene.entities[i] = scene.entities[i+1] end scene.n -= 1 scene end function Base.iterate(scene::Scene{E}, i::Int=1) where {E} if i > length(scene) return nothing end return (scene.entities[i], i+1) end function Base.copyto!(dest::Scene{E}, src::Scene{E}) where {E} for i in 1 : src.n dest.entities[i] = src.entities[i] end dest.n = src.n return dest end Base.copy(scene::Scene{E}) where {E} = copyto!(Scene(E, capacity(scene)), scene) function Base.push!(scene::Scene{E}, entity::E) where {E} scene.n += 1 scene.entities[scene.n] = entity return scene end #### """ EntityScene{S,D,I} = Scene{Entity{S,D,I}} Alias for `Scene` when the entities in the scene are of type `Entity` # Constructors - `EntityScene(::Type{S},::Type{D},::Type{I}) where {S,D,I}` - `EntityScene(::Type{S},::Type{D},::Type{I},capacity::Int)` """ const EntityScene{S,D,I} = Scene{Entity{S,D,I}} EntityScene(::Type{S},::Type{D},::Type{I}) where {S,D,I} = Scene(Entity{S,D,I}) EntityScene(::Type{S},::Type{D},::Type{I},capacity::Int) where {S,D,I} = Scene(Entity{S,D,I}, capacity) Base.in(id::I, scene::EntityScene{S,D,I}) where {S,D,I} = findfirst(id, scene) !== nothing function Base.findfirst(id::I, scene::EntityScene{S,D,I}) where {S,D,I} for entity_index in 1 : scene.n entity = scene.entities[entity_index] if entity.id == id return entity_index end end return nothing end function id2index(scene::EntityScene{S,D,I}, id::I) where {S,D,I} entity_index = findfirst(id, scene) if entity_index === nothing throw(BoundsError(scene, [id])) end return entity_index end """ get_by_id(scene::EntityScene{S,D,I}, id::I) where {S,D,I} Retrieve the entity by its `id`. This function uses `findfirst` which is O(n). """ get_by_id(scene::EntityScene{S,D,I}, id::I) where {S,D,I} = scene[id2index(scene, id)] function get_first_available_id(scene::EntityScene{S,D,I}) where {S,D,I} ids = Set{I}(entity.id for entity in scene) id_one = one(I) id = id_one while id ∈ ids id += id_one end return id end function Base.push!(scene::EntityScene{S,D,I}, s::S) where {S,D,I} id = get_first_available_id(scene) entity = Entity{S,D,I}(s, D(), id) push!(scene, entity) end Base.delete!(scene::EntityScene{S,D,I}, entity::Entity{S,D,I}) where {S,D,I} = deleteat!(scene, findfirst(entity.id, scene)) function Base.delete!(scene::EntityScene{S,D,I}, id::I) where {S,D,I} entity_index = findfirst(id, scene) if entity_index != nothing deleteat!(scene, entity_index) end return scene end ### function Base.write(io::IO, frames::Vector{EntityScene{S,D,I}}) where {S,D,I} println(io, length(frames)) for scene in frames println(io, length(scene)) for entity in scene write(io, entity.state) print(io, "\n") write(io, entity.def) print(io, "\n") write(io, string(entity.id)) print(io, "\n") end end end function Base.read(io::IO, ::Type{Vector{EntityScene{S,D,I}}}) where {S,D,I} n = parse(Int, readline(io)) frames = Array{EntityScene{S,D,I}}(undef, n) for i in 1 : n m = parse(Int, readline(io)) scene = Scene(Entity{S,D,I}, m) for j in 1 : m state = read(io, S) def = read(io, D) strid = readline(io) id = try parse(I, strid) catch e if e isa MethodError id = try convert(I, strid) catch e error("Cannot parse $strid as $I") end else error("Cannot parse $strid as $I") end end push!(scene, Entity(state,def,id)) end frames[i] = scene end return frames end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5582
""" VehicleState A default type to represent an agent physical state (position, velocity). It contains the position in the global frame, Frenet frame and the longitudinal velocity # constructors VehicleState(posG::VecSE2{Float64}, v::Float64) VehicleState(posG::VecSE2{Float64}, roadway::Roadway, v::Float64) VehicleState(posG::VecSE2{Float64}, lane::Lane, roadway::Roadway, v::Float64) VehicleState(posF::Frenet, roadway::Roadway, v::Float64) # fields - `posG::VecSE2{Float64}` global position - `posF::Frenet` lane relative position - `v::Float64` longitudinal velocity """ struct VehicleState posG::VecSE2{Float64} # global posF::Frenet # lane-relative frame v::Float64 end VehicleState() = VehicleState(VecSE2(), NULL_FRENET, NaN) VehicleState(posG::VecSE2{Float64}, v::Float64) = VehicleState(posG, NULL_FRENET, v) VehicleState(posG::VecSE2{Float64}, roadway::Roadway, v::Float64) = VehicleState(posG, Frenet(posG, roadway), v) VehicleState(posG::VecSE2{Float64}, lane::Lane, roadway::Roadway, v::Float64) = VehicleState(posG, Frenet(posG, lane, roadway), v) VehicleState(posF::Frenet, roadway::Roadway, v::Float64) = VehicleState(posg(posF, roadway), posF, v) posf(veh::VehicleState) = veh.posF posg(veh::VehicleState) = veh.posG vel(veh::VehicleState) = veh.v velf(veh::VehicleState) = (s=veh.v*cos(veh.posF.ϕ), t=veh.v*sin(veh.posF.ϕ)) velg(veh::VehicleState) = (x=veh.v*cos(veh.posG.θ), y=veh.v*sin(veh.posG.θ)) posf(veh::Entity) = posf(veh.state) posg(veh::Entity) = posg(veh.state) vel(veh::Entity) = vel(veh.state) velf(veh::Entity) = velf(veh.state) velg(veh::Entity) = velg(veh.state) Base.show(io::IO, s::VehicleState) = print(io, "VehicleState(", s.posG, ", ", s.posF, ", ", @sprintf("%.3f", s.v), ")") function Base.write(io::IO, s::VehicleState) @printf(io, "%.16e %.16e %.16e", s.posG.x, s.posG.y, s.posG.θ) @printf(io, " %d %.16e %d %d", s.posF.roadind.ind.i, s.posF.roadind.ind.t, s.posF.roadind.tag.segment, s.posF.roadind.tag.lane) @printf(io, " %.16e %.16e %.16e", s.posF.s, s.posF.t, s.posF.ϕ) @printf(io, " %.16e", s.v) end function Base.read(io::IO, ::Type{VehicleState}) tokens = split(strip(readline(io)), ' ') i = 0 posG = VecSE2(parse(Float64, tokens[i+=1]), parse(Float64, tokens[i+=1]), parse(Float64, tokens[i+=1])) roadind = RoadIndex(CurveIndex(parse(Int, tokens[i+=1]), parse(Float64, tokens[i+=1])), LaneTag(parse(Int, tokens[i+=1]), parse(Int, tokens[i+=1]))) posF = Frenet(roadind, parse(Float64, tokens[i+=1]), parse(Float64, tokens[i+=1]), parse(Float64, tokens[i+=1])) v = parse(Float64, tokens[i+=1]) return VehicleState(posG, posF, v) end """ Vec.lerp(a::VehicleState, b::VehicleState, t::Float64, roadway::Roadway) Perform linear interpolation of the two vehicle states. Returns a VehicleState. """ function Vec.lerp(a::VehicleState, b::VehicleState, t::Float64, roadway::Roadway) posG = lerp(a.posG, b.posG, t) v = lerp(a.v, b.v, t) VehicleState(posG, roadway, v) end """ move_along(vehstate::VehicleState, roadway::Roadway, Δs::Float64; ϕ₂::Float64=vehstate.posF.ϕ, t₂::Float64=vehstate.posF.t, v₂::Float64=vehstate.v) returns a vehicle state after moving vehstate of a length Δs along its lane. """ function move_along(vehstate::VehicleState, roadway::Roadway, Δs::Float64; ϕ₂::Float64=posf(vehstate).ϕ, t₂::Float64=posf(vehstate).t, v₂::Float64=vel(vehstate) ) roadind = move_along(posf(vehstate).roadind, roadway, Δs) try footpoint = roadway[roadind] catch println(roadind) end footpoint = roadway[roadind] posG = convert(VecE2, footpoint.pos) + polar(t₂, footpoint.pos.θ + π/2) posG = VecSE2(posG.x, posG.y, footpoint.pos.θ + ϕ₂) VehicleState(posG, roadway, v₂) end # XXX Should this go in features """ get_center(veh::Entity{VehicleState, D, I}) returns the position of the center of the vehicle """ get_center(veh::Entity{VehicleState, D, I}) where {D, I} = veh.state.posG """ get_footpoint(veh::Entity{VehicleState, D, I}) returns the position of the footpoint of the vehicle """ get_footpoint(veh::Entity{VehicleState, D, I}) where {D, I} = veh.state.posG + polar(veh.state.posF.t, veh.state.posG.θ-veh.state.posF.ϕ-π/2) """ get_front(veh::Entity{VehicleState, VehicleDef, I}) returns the position of the front of the vehicle """ get_front(veh::Entity{VehicleState, D, I}) where {D<:AbstractAgentDefinition, I} = veh.state.posG + polar(length(veh.def)/2, veh.state.posG.θ) """ get_rear(veh::Entity{VehicleState, VehicleDef, I}) returns the position of the rear of the vehicle """ get_rear(veh::Entity{VehicleState, D, I}) where {D<:AbstractAgentDefinition, I} = veh.state.posG - polar(length(veh.def)/2, veh.state.posG.θ) """ get_lane(roadway::Roadway, vehicle::Entity) get_lane(roadway::Roadway, vehicle::VehicleState) return the lane where `vehicle` is in. """ function get_lane(roadway::Roadway, vehicle::Entity) get_lane(roadway, vehicle.state) end function get_lane(roadway::Roadway, vehicle::VehicleState) lane_tag = vehicle.posF.roadind.tag return roadway[lane_tag] end """ Base.convert(::Type{Entity{S, VehicleDef, I}}, veh::Entity{S, D, I}) where {S,D<:AbstractAgentDefinition,I} Converts the definition of an entity """ function Base.convert(::Type{Entity{S, VehicleDef, I}}, veh::Entity{S, D, I}) where {S,D<:AbstractAgentDefinition,I} vehdef = VehicleDef(class(veh.def), length(veh.def), width(veh.def)) return Entity{S, VehicleDef, I}(veh.state, vehdef, veh.id) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3769
#= Benchmark two collision checkers: collision_checker(veh1::Vehicle, veh2::Vehicle) from AutomotivePOMDPs using parallel axis theorem is_colliding(veh1::Vehicle, veh2::Vehicle) from AutomotiveSimulator using Minkowski sums =# using AutomotiveSimulator using BenchmarkTools ## Helpers const ROADWAY = gen_straight_roadway(1, 20.0) function create_vehicle(x::Float64, y::Float64, θ::Float64 = 0.0; id::Int64=1) s = VehicleState(VecSE2(x, y, θ), ROADWAY, 0.0) return Entity(s, VehicleDef(), id) end const VEH_REF = create_vehicle(0.0, 0.0, 0.0, id=1) function no_collisions_PA(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert !collision_checker(VEH_REF, veh2) "Error for veh ", veh2 end end function collisions_PA(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert collision_checker(VEH_REF, veh2) "Error for veh ", veh2 end end function no_collisions_MI(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert !is_colliding(VEH_REF, veh2) "Error for veh ", veh2 end end function collisions_MI(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert is_colliding(VEH_REF, veh2) "Error for veh ", veh2 end end function consistency(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert is_colliding(VEH_REF, veh2) == collision_checker(VEH_REF, veh2) "Error for veh ", veh2 end end ## Series of test 1: Far field thetaspace = LinRange(0.0, 2*float(pi), 10) xspace = LinRange(15.0, 300.0, 10) yspace = LinRange(10.0, 300.0, 10) no_collisions_PA(xspace, yspace, thetaspace) no_collisions_MI(xspace, yspace, thetaspace) consistency(xspace, yspace, thetaspace) println(" -- TEST 1 : Far Range Collision Detection -- ") println(" ") println("Parallel Axis performance on far range negative collisions: ") @btime no_collisions_PA($xspace, $yspace, $thetaspace) println(" ") println("Minkowski Sum performance on far range negative collisions: ") @btime no_collisions_MI($xspace, $yspace, $thetaspace) println(" ") println(" ------------------------------------------") println(" ") ## Series of test 2: Superposition thetaspace = LinRange(0.0, 2*float(pi), 10) xspace = LinRange(-2.0, 2.0, 10) yspace = LinRange(1.5, 1.5, 10) collisions_PA(xspace, yspace, thetaspace) collisions_MI(xspace, yspace, thetaspace) consistency(xspace, yspace, thetaspace) println(" -- TEST 2 : Superposition Collision Detection -- ") println(" ") println("Parallel Axis performance on positive collisions: ") @btime collisions_PA($xspace, $yspace, $thetaspace) println(" ") println("Minkowski Sum performance on positive collisions: ") @btime collisions_MI($xspace, $yspace, $thetaspace) println(" ") println(" ------------------------------------------") println(" ") ## Series of test 3: Close field thetaspace = [0.0] yspace = [2.5] xspace = LinRange(-2.0, 2.0, 10) no_collisions_PA(xspace, yspace, thetaspace) no_collisions_MI(xspace, yspace, thetaspace) consistency(xspace, yspace, thetaspace) println(" -- TEST 3 : Close Range Collision Detection -- ") println(" ") println("Parallel Axis performance on close range negative collisions: ") @btime no_collisions_PA($xspace, $yspace, $thetaspace) println(" ") println("Minkowski Sum performance on close range negative collisions: ") @btime no_collisions_MI($xspace, $yspace, $thetaspace) println(" ") println(" ------------------------------------------") println(" ")
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1041
using Test using AutomotiveSimulator using DataFrames using Distributions @testset "Vec" begin include("vec-tests/vec_runtests.jl") end @testset "AutomotiveSimulator" begin include("test_roadways.jl") include("test_agent_definitions.jl") include("test_scenes.jl") include("test_states.jl") include("test_collision_checkers.jl") include("test_actions.jl") include("test_features.jl") include("test_behaviors.jl") include("test_simulation.jl") end # Restore after AutomotiveVisualization v0.9 is tagged @testset "doc tutorials" begin @testset "basics" begin include("../docs/lit/tutorials/straight_roadway.jl") end @testset "cameras" begin include("../docs/lit/tutorials/stadium.jl") end @testset "overlays" begin include("../docs/lit/tutorials/intersection.jl") end @testset "basics" begin include("../docs/lit/tutorials/crosswalk.jl") end @testset "basics" begin include("../docs/lit/tutorials/sidewalk.jl") end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3980
@testset "action interface" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = trajdata[1][1] s = VehicleState() @test VehicleState() == propagate(veh, s, roadway, NaN) end @testset "AccelTurnrate" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = trajdata[1][1] a = AccelTurnrate(0.1,0.2) io = IOBuffer() show(io, a) close(io) @test a == convert(AccelTurnrate, [0.1,0.2]) @test copyto!([NaN, NaN], AccelTurnrate(0.1,0.2)) == [0.1,0.2] @test length(AccelTurnrate) == 2 s = propagate(veh, AccelTurnrate(0.0,0.0), roadway, 1.0) @test isapprox(s.posG.x, veh.state.v) @test isapprox(s.posG.y, 0.0) @test isapprox(s.posG.θ, 0.0) # TODO Test the get method end @testset "AccelDesang" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = trajdata[1][1] a = AccelDesang(0.1,0.2) @test a == convert(AccelDesang, [0.1,0.2]) @test copyto!([NaN, NaN], AccelDesang(0.1,0.2)) == [0.1,0.2] @test length(AccelDesang) == 2 io = IOBuffer() show(io, a) s = propagate(veh, AccelDesang(0.0,0.0), roadway, 1.0) @test isapprox(s.posG.x, veh.state.v*1.0) @test isapprox(s.posG.y, 0.0) @test isapprox(s.posG.θ, 0.0) @test isapprox(s.v, veh.state.v) end @testset "AccelSteeringAngle" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = trajdata[1][1] a = AccelSteeringAngle(0.1,0.2) io = IOBuffer() show(io, a) close(io) @test a == convert(AccelSteeringAngle, [0.1,0.2]) @test copyto!([NaN, NaN], AccelSteeringAngle(0.1,0.2)) == [0.1,0.2] @test length(AccelSteeringAngle) == 2 # Check that propagate # won't work with the veh type loaded from test_tra @test_throws ErrorException propagate(veh, AccelSteeringAngle(0.0,0.0), roadway, 1.0) veh = Entity(veh.state, BicycleModel(veh.def), veh.id) s = propagate(veh, AccelSteeringAngle(0.0,0.0), roadway, 1.0) @test isapprox(s.posG.x, veh.state.v*1.0) @test isapprox(s.posG.y, 0.0) @test isapprox(s.posG.θ, 0.0) @test isapprox(s.v, veh.state.v) # Test the branch condition within propagate s = propagate(veh, AccelSteeringAngle(0.0,1.0), roadway, 1.0) @test isapprox(s.v, veh.state.v) end @testset "LaneFollowingAccel" begin a = LaneFollowingAccel(1.0) roadway = gen_straight_roadway(3, 100.0) s = VehicleState(VecSE2(0.0, 0.0, 0.0), roadway, 0.0) veh = Entity(s, VehicleDef(), 1) vehp = propagate(veh, a, roadway, 1.0) @test posf(vehp).s == 0.5 end @testset "LatLonAccel" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = trajdata[1][1] a = LatLonAccel(0.1,0.2) io = IOBuffer() show(io, a) close(io) @test a == convert(LatLonAccel, [0.1,0.2]) @test copyto!([NaN, NaN], LatLonAccel(0.1,0.2)) == [0.1,0.2] @test length(LatLonAccel) == 2 Δt = 0.1 s = propagate(veh, LatLonAccel(0.0,0.0), roadway, Δt) @test isapprox(s.posG.x, veh.state.v*Δt) @test isapprox(s.posG.y, 0.0) @test isapprox(s.posG.θ, 0.0) @test isapprox(s.v, veh.state.v) end @testset "Pedestrian LatLon" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = trajdata[1][1] a = PedestrianLatLonAccel(0.5,1.0, roadway[LaneTag(2,1)]) Δt = 1.0 s = propagate(veh, a, roadway, Δt) @test s.posF.roadind.tag == LaneTag(2,1) @test isapprox(s.posG.x, 4.0) @test isapprox(s.posG.y, 0.25) end @testset "Action Mapping" begin a1 = LaneFollowingAccel(1.2) a2 = LaneFollowingAccel(.4) a3 = LaneFollowingAccel(0.) actions = [a1, a2, a3] ids = [:vehA, :vehB, :vehC] action_mappings = Scene([EntityAction(a, id) for (a,id) in zip(actions, ids)]) for (action,id) in zip(actions, ids) @test get_by_id(action_mappings, id).action.a == action.a end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
489
struct DummyDefinition <: AbstractAgentDefinition end @testset "agent definition" begin d = DummyDefinition() @test_throws ErrorException length(d) @test_throws ErrorException width(d) @test_throws ErrorException class(d) d = VehicleDef() @test class(d) == AgentClass.CAR @test length(d) == 4.0 @test width(d) == 1.8 d2 = BicycleModel(VehicleDef()) @test class(d2) == class(d) @test length(d2) == length(d) @test width(d2) == width(d) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
10618
struct FakeDriveAction end struct FakeDriverModel <: DriverModel{FakeDriveAction} end @testset "driver model interface" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = get(trajdata, 1, 1) model = FakeDriverModel() @test_throws MethodError reset_hidden_state!(model) @test_throws MethodError observe!(model, Scene(Entity{VehicleState, VehicleDef, Int64}), roadway, 1) @test_throws MethodError observe_from_history!(model, roadway, trajdata, 1, 2, 1) @test action_type(model) <: FakeDriveAction @test_throws MethodError set_desired_speed!(model, 0.0) @test_throws ErrorException rand(model) @test_throws MethodError pdf(model, FakeDriveAction()) @test_throws MethodError logpdf(model, FakeDriveAction()) end @testset "IDM test" begin roadway = gen_straight_roadway(1, 500.0) models = Dict{Int, DriverModel}() models[1] = IntelligentDriverModel(k_spd = 1.0, v_des = 10.0) models[2] = IntelligentDriverModel(k_spd = 1.0) set_desired_speed!(models[2], 5.0) @test models[2].v_des == 5.0 veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 0.0), roadway, 5.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 70.0), roadway, 5.) veh2 = Entity(veh_state, VehicleDef(), 2) scene = Scene([veh1, veh2]) n_steps = 40 dt = 0.1 simulate(scene, roadway, models, n_steps, dt) @test isapprox(get_by_id(scene, 2).state.v, models[2].v_des) # same with noise models = Dict{Int, DriverModel}() models[1] = IntelligentDriverModel(a = 0.0, k_spd = 1.0, v_des = 10.0, σ=1.0) models[2] = IntelligentDriverModel(a = 0.0, k_spd = 1.0, v_des = 5.0, σ=1.0) @test pdf(models[1], LaneFollowingAccel(0.0)) > 0.0 @test logpdf(models[1], LaneFollowingAccel(0.0)) < 0.0 n_steps = 40 dt = 0.1 scenes = simulate(scene, roadway, models, n_steps, dt) observe_from_history!(IntelligentDriverModel(), roadway, scenes, 2) # initializing vehicles too close veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 0.0), roadway, 5.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 3.0), roadway, 5.) veh2 = Entity(veh_state, VehicleDef(), 2) scene = Scene([veh1, veh2]) simulate(scene, roadway, models, 1, dt) end struct FakeLaneChanger <: LaneChangeModel{LaneChangeChoice} end @testset "lane change interface" begin l = LaneChangeChoice(DIR_RIGHT) io = IOBuffer() show(io, l) close(io) roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh = get(trajdata, 1, 1) model = FakeLaneChanger() @test_throws MethodError reset_hidden_state!(model) @test_throws MethodError observe!(model, Scene(), roadway, 1) @test_throws MethodError set_desired_speed!(model, 0.0) @test_throws ErrorException rand(model) end @testset "MOBIL" begin timestep = 0.1 lanemodel = MOBIL() set_desired_speed!(lanemodel,20.0) @test lanemodel.mlon.v_des == 20.0 roadway = gen_straight_roadway(3, 1000.0) veh_state = VehicleState(Frenet(roadway[LaneTag(1,2)], 0.0), roadway, 10.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,2)], 20.0), roadway, 2.) veh2 = Entity(veh_state, VehicleDef(), 2) dt = 0.5 n_steps = 10 models = Dict{Int, DriverModel}() models[1] = Tim2DDriver(mlane=MOBIL()) set_desired_speed!(models[1], 10.0) models[2] = Tim2DDriver(mlane=MOBIL()) set_desired_speed!(models[2], 2.0) scene = Scene([veh1, veh2]) scenes = simulate(scene, roadway, models, n_steps, dt) @test posf(last(scenes)[1]).roadind.tag == LaneTag(1, 3) @test posf(last(scenes)[2]).roadind.tag == LaneTag(1, 1) end @testset "Tim2DDriver" begin timestep = 0.1 drivermodel = Tim2DDriver() set_desired_speed!(drivermodel,20.0) @test drivermodel.mlon.v_des == 20.0 @test drivermodel.mlane.v_des == 20.0 roadway = gen_straight_roadway(3, 1000.0) veh_state = VehicleState(Frenet(roadway[LaneTag(1,2)], 0.0), roadway, 10.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,2)], 10.0), roadway, 2.) veh2 = Entity(veh_state, VehicleDef(), 2) dt = 0.5 n_steps = 10 models = Dict{Int, DriverModel}() models[1] = Tim2DDriver() set_desired_speed!(models[1], 10.0) models[2] = Tim2DDriver() set_desired_speed!(models[2], 2.0) scene = Scene([veh1, veh2]) scenes = simulate(scene, roadway, models, n_steps, dt) @test scenes[end][1].state.posF.roadind.tag == LaneTag(1, 3) @test scenes[end][2].state.posF.roadind.tag == LaneTag(1, 2) end @testset "lane following" begin roadway = gen_straight_roadway(1, 500.0) models = Dict{Int, DriverModel}() models[1] = StaticLaneFollowingDriver() @test pdf(models[1], LaneFollowingAccel(-1.0)) ≈ 0.0 @test logpdf(models[1], LaneFollowingAccel(-1.0)) ≈ -Inf models[2] = PrincetonDriver(k = 1.0) @test pdf(models[2], LaneFollowingAccel(-1.0)) == Inf @test logpdf(models[2], LaneFollowingAccel(-1.0)) == Inf set_desired_speed!(models[2], 5.0) @test models[2].v_des == 5.0 models[3] = ProportionalSpeedTracker(k = 1.0) @test pdf(models[3], LaneFollowingAccel(-1.0)) == Inf @test logpdf(models[3], LaneFollowingAccel(-1.0)) == Inf set_desired_speed!(models[3], 5.0) @test models[3].v_des == 5.0 veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 0.0), roadway, 5.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 70.0), roadway, 5.) veh2 = Entity(veh_state, VehicleDef(), 2) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 130.0), roadway, 5.) veh3 = Entity(veh_state, VehicleDef(), 3) scene = Scene([veh1, veh2, veh3]) n_steps = 40 dt = 0.1 scenes = simulate(scene, roadway, models, n_steps, dt) @test isapprox(get_by_id(scenes[end], 2).state.v, models[2].v_des, atol=1e-3) @test isapprox(get_by_id(scenes[end], 3).state.v, models[3].v_des) # same wth noise models = Dict{Int, DriverModel}() models[1] = StaticLaneFollowingDriver() models[2] = PrincetonDriver(k = 1.0, v_des=5.0, σ=1.0, a=0.0) models[3] = ProportionalSpeedTracker(k = 1.0, v_des=5.0, σ=1.0, a=0.0) @test pdf(models[3], LaneFollowingAccel(0.0)) > 0.0 @test logpdf(models[3], LaneFollowingAccel(0.0)) < 0.0 @test pdf(models[2], LaneFollowingAccel(0.0)) > 0.0 @test logpdf(models[2], LaneFollowingAccel(0.0)) < 0.0 n_steps = 40 dt = 0.1 scenes = simulate(scene, roadway, models, n_steps, dt) @test isapprox(get_by_id(scenes[end], 2).state.v, models[2].v_des, atol=1.0) @test isapprox(get_by_id(scenes[end], 3).state.v, models[3].v_des, atol=1.0) end function generate_sidewalk_env() roadway_length = 100. crosswalk_length = 15. crosswalk_width = 6.0 crosswalk_pos = roadway_length/2 sidewalk_width = 3.0 sidewalk_pos = crosswalk_length/2 - sidewalk_width / 2 # Generate straight roadway of length roadway_length with 2 lanes. # Returns a Roadway type (Array of segments). # There is already a method to generate a simple straight roadway, which we use here. roadway = gen_straight_roadway(2, roadway_length) # Generate the crosswalk. # Our crosswalk does not have a predefined method for generation, so we define it with a LaneTag and a curve. n_samples = 2 # for curve generation crosswalk = Lane(LaneTag(2,1), gen_straight_curve(VecE2(crosswalk_pos, -crosswalk_length/2), VecE2(crosswalk_pos, crosswalk_length/2), n_samples), width = crosswalk_width) cw_segment = RoadSegment(2, [crosswalk]) push!(roadway.segments, cw_segment) # Append the crosswalk to the roadway # Generate the sidewalk. top_sidewalk = Lane(LaneTag(3, 1), gen_straight_curve(VecE2(0., sidewalk_pos), VecE2(roadway_length, sidewalk_pos), n_samples), width = sidewalk_width) bottom_sidewalk = Lane(LaneTag(3, 2), gen_straight_curve(VecE2(0., -(sidewalk_pos - sidewalk_width)), VecE2(roadway_length, -(sidewalk_pos - sidewalk_width)), n_samples), width = sidewalk_width) # Note: we subtract the sidewalk_width from the sidewalk position so that the edge is flush with the road. sw_segment = RoadSegment(3, [top_sidewalk, bottom_sidewalk]) push!(roadway.segments, sw_segment) sidewalk = [top_sidewalk, bottom_sidewalk] return roadway, crosswalk, sidewalk end @testset "sidewalk pedestrian" begin roadway, crosswalk, sidewalk = generate_sidewalk_env() # dummy test for the constructor ped=SidewalkPedestrianModel(timestep=0.1, crosswalk= roadway[LaneTag(1,1)], sw_origin = roadway[LaneTag(1,1)], sw_dest = roadway[LaneTag(1,1)] ) @test ped.ttc_threshold >= 1.0 timestep = 0.1 # Crossing pedestrian definition ped_init_state = VehicleState(VecSE2(49.0,-3.0,0.), sidewalk[2], roadway, 1.3) ped = Entity(ped_init_state, VehicleDef(AgentClass.PEDESTRIAN, 1.0, 1.0), 1) # Car definition car_initial_state = VehicleState(VecSE2(0.0, 0., 0.), roadway.segments[1].lanes[1],roadway, 8.0) car = Entity(car_initial_state, VehicleDef(), 2) scene = Scene([ped, car]) # Define a model for each entity present in the scene models = Dict{Int, DriverModel}() ped_id = 1 car_id = 2 models[ped_id] = SidewalkPedestrianModel(timestep=timestep, crosswalk= crosswalk, sw_origin = sidewalk[2], sw_dest = sidewalk[1] ) models[car_id] = LatLonSeparableDriver( # produces LatLonAccels ProportionalLaneTracker(), # lateral model IntelligentDriverModel(), # longitudinal model ) nticks = 300 scenes = simulate(scene, roadway, models, nticks, timestep) ped = get_by_id(scenes[end], ped_id) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2899
const ROADWAY = gen_straight_roadway(1, 20.0) function create_vehicle(x::Float64, y::Float64, θ::Float64 = 0.0; id::Int64=1) s = VehicleState(VecSE2(x, y, θ), ROADWAY, 0.0) return Entity(s, VehicleDef(), id) end const VEH_REF = create_vehicle(0.0, 0.0, 0.0, id=1) function no_collisions(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert !collision_checker(VEH_REF, veh2) "Error for veh ", veh2 end return true end function collisions(xspace, yspace, thetaspace) for (x,y,th) in zip(xspace, yspace, thetaspace) veh2 = create_vehicle(x,y,th,id=2) @assert collision_checker(VEH_REF, veh2) "Error for veh ", veh2 end return true end @testset "Minkowski" begin @test AutomotiveSimulator.cyclic_shift_left!([1,2,3,4], 1, 4) == [2,3,4,1] @test AutomotiveSimulator.cyclic_shift_left!([1,2,3,4], 2, 4) == [3,4,1,2] @test AutomotiveSimulator.cyclic_shift_left!([1,2,3,4,5,6,7], 1, 4) == [2,3,4,1,5,6,7] @test AutomotiveSimulator.cyclic_shift_left!([1,2,3,4,5,6,7], 2, 4) == [3,4,1,2,5,6,7] roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) scene = Scene(Entity{VehicleState, VehicleDef, Int64}) col = get_first_collision(trajdata[1]) @test col.is_colliding @test col.A == 1 @test col.B == 2 @test get_first_collision(trajdata[1], CPAMemory()).is_colliding == true scene = trajdata[1] @test is_collision_free(scene) == false @test is_collision_free(scene, [1]) == false @test is_colliding(scene[1], scene[2]) @test get_distance(scene[1], scene[2]) == 0 @test is_collision_free(trajdata[2]) get_distance(scene[1], scene[2]) roadway = gen_straight_roadway(2, 100.0) veh1 = Entity(VehicleState(VecSE2(0.0, 0.0, 0.0), roadway, 10.0), VehicleDef(), 1) veh2 = Entity(VehicleState(VecSE2(10.0, 0.0, 0.0), roadway, 5.0), VehicleDef(), 2) scene = Scene([veh1, veh2]) @test is_collision_free(scene) @test get_distance(veh1, veh2) ≈ 6.0 end @testset "parallel axis" begin ## Series of test 1: Far field thetaspace = LinRange(0.0, 2*float(pi), 10) xspace = LinRange(15.0, 300.0, 10) yspace = LinRange(10.0, 300.0, 10) @test no_collisions(xspace, yspace, thetaspace) ## Series of test 2: Superposition thetaspace = LinRange(0.0, 2*float(pi), 10) xspace = LinRange(-2.0, 2.0, 10) yspace = LinRange(1.5, 1.5, 10) @test collisions(xspace,yspace,thetaspace) ## Close but no collisions veh2 = create_vehicle(0.0, 2.2, 0.0, id=2) @test !collision_checker(VEH_REF, veh2) veh2 = create_vehicle(3.1, 2.2, 1.0pi, id=2) @test !collision_checker(VEH_REF, veh2) roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) scene = trajdata[1] @test collision_checker(scene, 1) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
12661
@testset "neighbor features" begin scene=Scene(Entity{VehicleState, BicycleModel, Int}, 100) roadway=gen_straight_roadway(3, 200.0, lane_width=3.0) push!(scene,Entity(VehicleState(VecSE2(30.0,3.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),1)) push!(scene,Entity(VehicleState(VecSE2(20.0,3.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),2)) push!(scene,Entity(VehicleState(VecSE2(40.0,3.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),3)) push!(scene,Entity(VehicleState(VecSE2(20.0,0.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),4)) push!(scene,Entity(VehicleState(VecSE2(40.0,0.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),5)) push!(scene,Entity(VehicleState(VecSE2(20.0,6.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),6)) push!(scene,Entity(VehicleState(VecSE2(40.0,6.0,0.0), roadway, 0.0), BicycleModel(VehicleDef(AgentClass.CAR, 4.826, 1.81)),7)) @test find_neighbor(scene, roadway, scene[1]) == NeighborLongitudinalResult(3,10.0) @test find_neighbor(scene, roadway, scene[1], rear=true) == NeighborLongitudinalResult(2,10.0) @test find_neighbor(scene, roadway, scene[1], lane=leftlane(roadway, scene[1])) == NeighborLongitudinalResult(7,10.0) @test find_neighbor(scene, roadway, scene[1], lane=leftlane(roadway, scene[1]), rear=true) == NeighborLongitudinalResult(6,10.0) @test find_neighbor(scene, roadway, scene[1], lane=rightlane(roadway, scene[1])) == NeighborLongitudinalResult(5,10.0) @test find_neighbor(scene, roadway, scene[1], lane=rightlane(roadway, scene[1]), rear=true) == NeighborLongitudinalResult(4,10.0) trajdata = get_test_trajdata(roadway) scene = trajdata[1] @test find_neighbor(scene, roadway, scene[1]) == NeighborLongitudinalResult(2, 3.0) @test find_neighbor(scene, roadway, scene[2]) == NeighborLongitudinalResult(nothing, 250.0) scene = trajdata[2] @test find_neighbor(scene, roadway, scene[1]) == NeighborLongitudinalResult(2, 4.0) @test find_neighbor(scene, roadway, scene[2]) == NeighborLongitudinalResult(nothing, 250.0) roadway = gen_stadium_roadway(1) scene = Scene(Entity{VehicleState, VehicleDef, Int64}, 2) scene.n = 2 def = VehicleDef(AgentClass.CAR, 2.0, 1.0) function place_at!(i, s) roadproj = proj(VecSE2(0.0,0.0,0.0), roadway) roadind = RoadIndex(roadproj.curveproj.ind, roadproj.tag) roadind = move_along(roadind, roadway, s) frenet = Frenet(roadind, roadway[roadind].s, 0.0, 0.0) state = VehicleState(frenet, roadway, 0.0) scene[i] = Entity(state, def, i) end place_at!(1, 0.0) place_at!(2, 0.0) foreinfo = find_neighbor(scene, roadway, scene[1], max_distance=Inf) @test isapprox(foreinfo.Δs, 0.0) place_at!(2, 100.0) foreinfo = find_neighbor(scene, roadway, scene[1], max_distance=Inf) @test foreinfo.ind == 2 @test isapprox(foreinfo.Δs, 100.0) foreinfo = find_neighbor(scene, roadway, scene[2], max_distance=Inf) @test foreinfo.ind == 1 @test isapprox(foreinfo.Δs, 277.07, atol=1e-2) place_at!(2, 145.0) foreinfo = find_neighbor(scene, roadway, scene[1], max_distance=Inf) @test foreinfo.ind == 2 @test isapprox(foreinfo.Δs, 145.0, atol=1e-5) place_at!(2, 240.0) foreinfo = find_neighbor(scene, roadway, scene[1], max_distance=Inf) @test foreinfo.ind == 2 @test isapprox(foreinfo.Δs, 240.0, atol=1e-5) place_at!(1, 240.0) foreinfo = find_neighbor(scene, roadway, scene[1], max_distance=Inf) @test foreinfo.ind == 2 @test isapprox(foreinfo.Δs, 0.0, atol=1e-5) ################################################ # get_frenet_relative_position place_at!(1, 0.0) place_at!(2, 10.0) frp = get_frenet_relative_position(scene[2].state.posG, scene[1].state.posF.roadind, roadway, max_distance_fore=Inf) @test frp.origin == scene[1].state.posF.roadind @test frp.target.ind.i == 1 @test isapprox(frp.target.ind.t, 0.1, atol=0.01) @test frp.target.tag == scene[1].state.posF.roadind.tag @test isapprox(frp.Δs, 10.0, atol=1e-2) @test isapprox(frp.t, 0.0, atol=1e-5) @test isapprox(frp.ϕ, 0.0, atol=1e-7) place_at!(1, 10.0) place_at!(2, 20.0) frp = get_frenet_relative_position(scene[2].state.posG, scene[1].state.posF.roadind, roadway, max_distance_fore=Inf) @test frp.origin == scene[1].state.posF.roadind @test frp.target.ind.i == 1 @test isapprox(frp.target.ind.t, 0.2, atol=0.01) @test frp.target.tag == scene[1].state.posF.roadind.tag @test isapprox(frp.Δs, 10.0, atol=1e-2) @test isapprox(frp.t, 0.0, atol=1e-5) @test isapprox(frp.ϕ, 0.0, atol=1e-7) place_at!(1, 0.0) place_at!(2, 120.0) frp = get_frenet_relative_position(scene[2].state.posG, scene[1].state.posF.roadind, roadway, max_distance_fore=Inf) @test frp.target.tag == LaneTag(1, 1) @test scene[1].state.posF.roadind.tag == LaneTag(6, 1) @test isapprox(frp.Δs, 120.0, atol=1e-2) @test isapprox(frp.t, 0.0, atol=1e-5) @test isapprox(frp.ϕ, 0.0, atol=1e-7) place_at!(1, 0.0) place_at!(2, 250.0) frp = get_frenet_relative_position(scene[2].state.posG, scene[1].state.posF.roadind, roadway, max_distance_fore=Inf) @test frp.target.tag != scene[1].state.posF.roadind.tag @test isapprox(frp.Δs, 250.0, atol=1e-2) @test isapprox(frp.t, 0.0, atol=1e-5) @test isapprox(frp.ϕ, 0.0, atol=1e-7) end @testset "feature extraction" begin roadway = gen_straight_roadway(4, 100.0) scene = Scene([Entity(VehicleState(VecSE2( 0.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1), Entity(VehicleState(VecSE2(10.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 2), ]) # test each feature individually pos1 = extract_feature(featuretype(posgx), posgx, roadway, [scene], 1) pos2 = extract_feature(featuretype(posgx), posgx, roadway, [scene], 2) poss = extract_feature(featuretype(posgx), posgx, roadway, [scene], [1,2]) @test poss[1][1] == pos1[1] @test poss[2][1] == pos2[2] @test pos1[1] == 0.0 @test pos2[2] == 10.0 scene = Scene([Entity(VehicleState(VecSE2(1.1,1.2,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1)]) posy = extract_feature(featuretype(posgy), posgy, roadway, [scene], 1) @test posy[1] == 1.2 posθ = extract_feature(featuretype(posgθ), posgθ, roadway, [scene], 1) @test posθ[1] == 0.0 poss = extract_feature(featuretype(posfs), posfs, roadway, [scene], 1) @test poss[1] == 1.1 post = extract_feature(featuretype(posft), posft, roadway, [scene], 1) @test post[1] == 1.2 posϕ = extract_feature(featuretype(posfϕ), posfϕ, roadway, [scene], 1) @test posϕ[1] == 0.0 scene = Scene([Entity(VehicleState(VecSE2(1.1,1.2,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1), Entity(VehicleState(VecSE2(1.5,1.2,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 2)]) coll = extract_feature(featuretype(iscolliding), iscolliding, roadway, [scene], 1) @test coll[1] d = extract_feature(featuretype(distance_to(1)), distance_to(1), roadway, [scene], 1) @test d[1] == 0.0 d = extract_feature(featuretype(distance_to(2)), distance_to(2), roadway, [scene], 1) @test d[1] ≈ 0.4 df = extract_feature(featuretype(turn_rate_g), turn_rate_g, roadway, [scene, scene], [1]) @test df[1][1] === missing @test df[1][2] == 0.0 # extract multiple features roadway = gen_straight_roadway(3, 1000.0, lane_width=1.0) scene = Scene([ Entity(VehicleState(VecSE2( 0.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1), Entity(VehicleState(VecSE2(10.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 2), ]) dfs = extract_features((iscolliding, markerdist_left, markerdist_right), roadway, [scene], [1,2]) @test isapprox(dfs[1][1,3], 0.5) @test isapprox(dfs[2][1,3], 0.5) @test isapprox(dfs[1][1,2], 0.5) @test isapprox(dfs[2][1,2], 0.5) # integration testing, all the features feature_list = (posgx, posgy, posgθ, posfs, posft, posfϕ, vel, velfs, velft, velgx, velgy, time_to_crossing_right, time_to_crossing_left, estimated_time_to_lane_crossing, iswaiting, acc, accfs, accft, jerk, jerkft, turn_rate_g, turn_rate_f, isbraking, isaccelerating, lane_width, lane_offset_left, lane_offset_right, has_lane_left, has_lane_right, lane_curvature) dfs = extract_features(feature_list, roadway, [scene, scene], [1,2]) for id=[1,2] @test ncol(dfs[id]) == length(feature_list) @test nrow(dfs[id]) == 2 end scene = Scene([ Entity(VehicleState(VecSE2( 1.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 1), Entity(VehicleState(VecSE2(10.0,0.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 2), Entity(VehicleState(VecSE2(12.0,1.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 3), Entity(VehicleState(VecSE2( 0.0,1.0,0.0), roadway, 10.0), VehicleDef(AgentClass.CAR, 5.0, 2.0), 4), ]) dfs= extract_features((dist_to_front_neighbor, front_neighbor_speed, time_to_collision), roadway, [scene], [1,2,3,4]) @test isapprox(dfs[1][1,1], 9.0) # type inferrence for fun in feature_list @inferred featuretype(fun) end end # features @testset "lidar sensor" begin #= Create a scene with 7 vehicles, an ego in the middle and 6 surrounding vehicles. Use this setup to check that lidar sensors work for various range and angle settings. =# num_veh = 7 ego_index = 1 roadway = gen_straight_roadway(4, 400.) scene = Scene(Entity{VehicleState,VehicleDef,Int64}, num_veh) # order: ego, fore, rear, left, right, fore_fore, fore_fore_fore speeds = [10., 15., 15., 0., -5, 20., 20.] positions = [200., 220., 150., 200., 200., 240., 350.] lanes = [2,2,2,4,1,2,2] for i in 1:num_veh lane = roadway.segments[1].lanes[lanes[i]] road_idx = RoadIndex(proj(VecSE2(0.0, 0.0, 0.0), lane, roadway)) veh_state = VehicleState(Frenet(road_idx, roadway), roadway, speeds[i]) veh_state = move_along(veh_state, roadway, positions[i]) veh_def = VehicleDef(AgentClass.CAR, 2., 2.) push!(scene, Entity(veh_state, veh_def, i)) end # basic lidar with sufficient range for all vehicles nbeams = 4 lidar = LidarSensor(nbeams, max_range=200., angle_offset=0.) observe!(lidar, scene, roadway, ego_index) # order: right, fore, left, back @test isapprox(lidar.ranges[1], 2.0, atol=4) @test isapprox(lidar.ranges[2], 19.0, atol=4) @test isapprox(lidar.ranges[3], 5.0, atol=4) @test isapprox(lidar.ranges[4], 49.0, atol=4) @test isapprox(lidar.range_rates[1], 0.0, atol=4) @test isapprox(lidar.range_rates[2], 5.0, atol=4) @test isapprox(lidar.range_rates[3], 0.0, atol=4) @test isapprox(lidar.range_rates[4], -5.0, atol=4) # angles are such that all the vehicles are missed nbeams = 4 lidar = LidarSensor(nbeams, max_range=200., angle_offset=π/4) observe!(lidar, scene, roadway, ego_index) # order: right, fore, left, back @test isapprox(lidar.ranges[1], 200.0, atol=4) @test isapprox(lidar.ranges[2], 200.0, atol=4) @test isapprox(lidar.ranges[3], 200.0, atol=4) @test isapprox(lidar.ranges[4], 200.0, atol=4) @test isapprox(lidar.range_rates[1], 0.0, atol=4) @test isapprox(lidar.range_rates[2], 0.0, atol=4) @test isapprox(lidar.range_rates[3], 0.0, atol=4) @test isapprox(lidar.range_rates[4], 0.0, atol=4) # range short enough that it misses the rear vehicle nbeams = 4 lidar = LidarSensor(nbeams, max_range=20., angle_offset=0.) observe!(lidar, scene, roadway, ego_index) # order: right, fore, left, back @test isapprox(lidar.ranges[1], 2.0, atol=4) @test isapprox(lidar.ranges[2], 19.0, atol=4) @test isapprox(lidar.ranges[3], 5.0, atol=4) @test isapprox(lidar.ranges[4], 20.0, atol=4) @test isapprox(lidar.range_rates[1], 0.0, atol=4) @test isapprox(lidar.range_rates[2], 5.0, atol=4) @test isapprox(lidar.range_rates[3], 0.0, atol=4) @test isapprox(lidar.range_rates[4], 0.0, atol=4) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
26561
get_test_curve1() = [CurvePt(VecSE2(0.0,0.0,0.0), 0.0), CurvePt(VecSE2(1.0,0.0,0.0), 1.0), CurvePt(VecSE2(3.0,0.0,0.0), 3.0)] function get_test_roadway() roadway = Roadway() seg1 = RoadSegment(1, [Lane(LaneTag(1,1), [CurvePt(VecSE2(-2.0,0.0,0.0), 0.0), CurvePt(VecSE2(-1.0,0.0,0.0), 1.0)]), Lane(LaneTag(1,2), [CurvePt(VecSE2(-2.0,1.0,0.0), 0.0), CurvePt(VecSE2(-1.0,1.0,0.0), 1.0)]), Lane(LaneTag(1,3), [CurvePt(VecSE2(-2.0,2.0,0.0), 0.0), CurvePt(VecSE2(-1.0,2.0,0.0), 1.0)]) ]) seg2 = RoadSegment(2, [Lane(LaneTag(2,1), [CurvePt(VecSE2(0.0,0.0,0.0), 0.0), CurvePt(VecSE2(1.0,0.0,0.0), 1.0), CurvePt(VecSE2(2.0,0.0,0.0), 2.0), CurvePt(VecSE2(3.0,0.0,0.0), 3.0)]), Lane(LaneTag(2,2), [CurvePt(VecSE2(0.0,1.0,0.0), 0.0), CurvePt(VecSE2(1.0,1.0,0.0), 1.0), CurvePt(VecSE2(2.0,1.0,0.0), 2.0), CurvePt(VecSE2(3.0,1.0,0.0), 3.0)]), Lane(LaneTag(2,3), [CurvePt(VecSE2(0.0,2.0,0.0), 0.0), CurvePt(VecSE2(1.0,2.0,0.0), 1.0), CurvePt(VecSE2(2.0,2.0,0.0), 2.0), CurvePt(VecSE2(3.0,2.0,0.0), 3.0)]) ]) seg3 = RoadSegment(3, [Lane(LaneTag(3,1), [CurvePt(VecSE2(4.0,0.0,0.0), 0.0), CurvePt(VecSE2(5.0,0.0,0.0), 1.0)]), Lane(LaneTag(3,2), [CurvePt(VecSE2(4.0,1.0,0.0), 0.0), CurvePt(VecSE2(5.0,1.0,0.0), 1.0)]), Lane(LaneTag(3,3), [CurvePt(VecSE2(4.0,2.0,0.0), 0.0), CurvePt(VecSE2(5.0,2.0,0.0), 1.0)]) ]) for i in 1:3 connect!(seg1.lanes[i], seg2.lanes[i]) connect!(seg2.lanes[i], seg3.lanes[i]) end push!(roadway.segments, seg1) push!(roadway.segments, seg2) push!(roadway.segments, seg3) roadway end @testset "Curves" begin p = lerp(CurvePt(VecSE2(0.0,0.0,0.0), 0.0), CurvePt(VecSE2(1.0,2.0,3.0), 4.0), 0.25) show(IOBuffer(), p) @test isapprox(convert(VecE2, p.pos), VecE2(0.25, 0.5)) @test isapprox(p.pos.θ, 0.75) @test isapprox(p.s, 1.0) show(IOBuffer(), CurveIndex(1,0.0)) @test isapprox(get_lerp_time(VecE2(0.0,0.0), VecE2(1.0,0.0), VecE2(1.0,0.0)), 1.0) @test isapprox(get_lerp_time(VecE2(0.0,0.0), VecE2(1.0,0.0), VecE2(0.5,0.0)), 0.5) @test isapprox(get_lerp_time(VecE2(0.0,0.0), VecE2(1.0,0.0), VecE2(0.5,0.5)), 0.5) @test isapprox(get_lerp_time(VecE2(0.0,0.0), VecE2(1.0,1.0), VecE2(0.5,0.5)), 0.5) @test isapprox(get_lerp_time(VecE2(1.0,0.0), VecE2(2.0,0.0), VecE2(1.5,0.5)), 0.5) @test isapprox(get_lerp_time(VecE2(0.0,0.0), VecE2(-1.0,0.0), VecE2(1.0,0.0)), 0.0) @test isapprox(get_lerp_time(VecE2(0.0,0.0), VecE2(-1.0,0.0), VecE2(-0.75,0.0)), 0.75) curve = get_test_curve1() @inferred index_closest_to_point(curve, VecE2(0.0,0.0)) @test index_closest_to_point(curve, VecE2(0.0,0.0)) == 1 @test index_closest_to_point(curve, VecE2(1.0,0.0)) == 2 @test index_closest_to_point(curve, VecE2(2.1,0.0)) == 3 @test index_closest_to_point(curve, VecE2(0.49,0.0)) == 1 @test index_closest_to_point(curve, VecE2(1.9,-100.0)) == 2 @test index_closest_to_point(curve, VecSE2(1.9,-100.0,0.0)) == 2 @test index_closest_to_point(curve, VecSE2(-1.0,0.0,0.0)) == 1 @test index_closest_to_point([CurvePt(VecSE2(0.0,0.0,0.0),0.0)], VecE2(0.0,0.0)) == 1 @test get_curve_index(curve, 0.0) == CurveIndex(1, 0.0) @test get_curve_index(curve, 1.0) == CurveIndex(2, 0.0) @test get_curve_index(curve, 1.5) == CurveIndex(2, 0.25) @test get_curve_index(curve, 3.5) == CurveIndex(2, 1.0) @test get_curve_index(curve,-0.5) == CurveIndex(1, 0.0) p = curve[CurveIndex(1, 0.75)] @test isapprox(convert(VecE2, p.pos), VecE2(0.75, 0.0)) @test isapprox(p.pos.θ, 0.0) @test isapprox(p.s, 0.75) @test get_curve_index(CurveIndex(1, 0.0), curve, 0.25) == CurveIndex(1,0.25) @test get_curve_index(CurveIndex(1, 0.0), curve, 1.25) == CurveIndex(2,0.125) @test get_curve_index(CurveIndex(1, 0.5), curve, 1.50) == CurveIndex(2,0.5) @test get_curve_index(CurveIndex(1, 0.5), curve, -0.25) == CurveIndex(1,0.25) @test get_curve_index(CurveIndex(2, 0.0), curve, -0.50) == CurveIndex(1,0.50) res = proj(VecSE2(0.0,0.0,0.0), curve) @inferred proj(VecSE2(0.0,0.0,0.0), curve) show(IOBuffer(), res) @test res.ind == CurveIndex(1, 0.0) @test isapprox(res.t, 0.0) @test isapprox(res.ϕ, 0.0) res = proj(VecSE2(0.25,0.5,0.1), curve) @inferred proj(VecSE2(0.25,0.5,0.1), curve) @test res.ind == CurveIndex(1, 0.25) @test isapprox(res.t, 0.5) @test isapprox(res.ϕ, 0.1) res = proj(VecSE2(0.25,-0.5,-0.1), curve) @test res.ind == CurveIndex(1, 0.25) @test isapprox(res.t, -0.5) @test isapprox(res.ϕ, -0.1) res = proj(VecSE2(1.5,0.5,-0.1), curve) @test res.ind == CurveIndex(2, 0.25) @test isapprox(res.t, 0.5) @test isapprox(res.ϕ, -0.1) res = proj(VecSE2(10.0,0.0,0.0), curve) @test res.ind == CurveIndex(length(curve)-1, 1.0) @test isapprox(res.t, 0.0) @test isapprox(res.ϕ, 0.0) curve2 = [CurvePt(VecSE2(-1.0,-1.0,π/4), 0.0), CurvePt(VecSE2( 1.0, 1.0,π/4), hypot(2.0,2.0)), CurvePt(VecSE2( 3.0, 3.0,π/4), hypot(4.0,4.0))] res = proj(VecSE2(0.0,0.0,0.0), curve2) @test res.ind == CurveIndex(1, 0.5) @test isapprox(res.t, 0.0) @test isapprox(res.ϕ, -π/4) end # curve tests @testset "roadways" begin curve = get_test_curve1() lanetag = LaneTag(1,1) lane = Lane(lanetag, curve) show(IOBuffer(), lanetag) @test !has_next(lane) @test !has_prev(lane) show(IOBuffer(), RoadIndex(CurveIndex(1,0.0), lanetag)) roadway = get_test_roadway() io = IOBuffer() show(io, roadway) close(io) lane = roadway[LaneTag(1,1)] @test has_next(lane) @test !has_prev(lane) @test lane.exits[1].target == RoadIndex(CurveIndex(1,0.0), LaneTag(2,1)) lane = roadway[LaneTag(2,1)] @test has_next(lane) @test has_prev(lane) @test lane.exits[1].target == RoadIndex(CurveIndex(1,0.0), LaneTag(3,1)) @test lane.entrances[1].target == RoadIndex(CurveIndex(1,1.0), LaneTag(1,1)) res = proj(VecSE2(1.0,0.0,0.0), lane, roadway) @inferred proj(VecSE2(1.0,0.0,0.0), lane, roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(1.0,0.0,0.0), lane, roadway, move_along_curves=false) @inferred proj(VecSE2(1.0,0.0,0.0), lane, roadway, move_along_curves=false) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(1.5,0.25,0.1), lane, roadway) @test res.curveproj.ind == CurveIndex(2, 0.5) @test isapprox(res.curveproj.t, 0.25) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(0.0,0.0,0.0), lane, roadway) @test res.curveproj.ind == CurveIndex(1, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(-0.75,0.0,0.0), lane, roadway) @test res.curveproj.ind == CurveIndex(0, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(-1.75,0.0,0.0), lane, roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == prev_lane(lane, roadway).tag res = proj(VecSE2(-1.75,0.0,0.0), lane, roadway, move_along_curves=false) @test res.curveproj.ind == CurveIndex(0, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(4.25,0.2,0.1), lane, roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == next_lane(lane, roadway).tag res = proj(VecSE2(4.25,0.2,0.1), lane, roadway, move_along_curves=false) @test res.curveproj.ind == CurveIndex(4, 1.0) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(3.25,0.2,0.1), lane, roadway) @test res.curveproj.ind == CurveIndex(4, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(4.25,0.2,0.1), prev_lane(lane, roadway), roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == next_lane(lane, roadway).tag res = proj(VecSE2(-0.75,0.0,0.0), next_lane(lane, roadway), roadway) @test res.curveproj.ind == CurveIndex(0, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag #### seg = roadway[2] res = proj(VecSE2(1.0,0.0,0.0), seg, roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(1.5,0.25,0.1), seg, roadway) @test res.curveproj.ind == CurveIndex(2, 0.5) @test isapprox(res.curveproj.t, 0.25) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(0.0,0.0,0.0), seg, roadway) @test res.curveproj.ind == CurveIndex(1, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(-0.75,0.0,0.0), seg, roadway) @test res.curveproj.ind == CurveIndex(0, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(-1.75,0.0,0.0), seg, roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == prev_lane(lane, roadway).tag res = proj(VecSE2(4.25,0.2,0.1), seg, roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == next_lane(lane, roadway).tag res = proj(VecSE2(3.25,0.2,0.1), seg, roadway) @test res.curveproj.ind == CurveIndex(4, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(4.25,0.2,0.1), roadway[1], roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == next_lane(lane, roadway).tag res = proj(VecSE2(-0.75,0.0,0.0), roadway[3], roadway) @test res.curveproj.ind == CurveIndex(0, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(1.0,1.0,0.0), seg, roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == LaneTag(2,2) res = proj(VecSE2(1.0,2.0,0.0), seg, roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == LaneTag(2,3) ### res = proj(VecSE2(1.0,0.0,0.0), roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(1.5,0.25,0.1), roadway) @test res.curveproj.ind == CurveIndex(2, 0.5) @test isapprox(res.curveproj.t, 0.25) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(0.0,0.0,0.0), roadway) @test res.curveproj.ind == CurveIndex(1, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(-0.75,0.0,0.0), roadway) @test res.curveproj.ind == CurveIndex(2, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == prev_lane(lane, roadway).tag res = proj(VecSE2(-1.75,0.0,0.0), roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == prev_lane(lane, roadway).tag res = proj(VecSE2(4.25,0.2,0.1), roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == next_lane(lane, roadway).tag res = proj(VecSE2(3.25,0.2,0.1), roadway) @test res.curveproj.ind == CurveIndex(4, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == lane.tag res = proj(VecSE2(4.25,0.2,0.1), roadway[1], roadway) @test res.curveproj.ind == CurveIndex(1, 0.25) @test isapprox(res.curveproj.t, 0.2) @test isapprox(res.curveproj.ϕ, 0.1) @test res.tag == next_lane(lane, roadway).tag res = proj(VecSE2(-0.75,0.0,0.0), roadway[3], roadway) @test res.curveproj.ind == CurveIndex(0, 0.25) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == lane.tag res = proj(VecSE2(1.0,1.0,0.0), roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == LaneTag(2,2) res = proj(VecSE2(1.0,2.0,0.0), roadway) @test res.curveproj.ind == CurveIndex(2, 0.0) @test isapprox(res.curveproj.t, 0.0) @test isapprox(res.curveproj.ϕ, 0.0) @test res.tag == LaneTag(2,3) ### roadind_0 = RoadIndex(CurveIndex(1, 0.0), LaneTag(2,1)) roadind = move_along(roadind_0, roadway, 0.0) @inferred move_along(roadind_0, roadway, 0.0) @test roadind == roadind_0 roadind = move_along(roadind_0, roadway, 1.0) @test roadind == RoadIndex(CurveIndex(2,0.0), LaneTag(2,1)) roadind = move_along(roadind_0, roadway, 1.25) @test roadind == RoadIndex(CurveIndex(2,0.25), LaneTag(2,1)) roadind = move_along(roadind_0, roadway, 3.0) @test roadind == RoadIndex(CurveIndex(3,1.0), LaneTag(2,1)) roadind = move_along(roadind_0, roadway, 4.0) @test roadind == RoadIndex(CurveIndex(1,0.0), LaneTag(3,1)) roadind = move_along(roadind_0, roadway, 4.5) @test roadind == RoadIndex(CurveIndex(1,0.5), LaneTag(3,1)) roadind = move_along(roadind_0, roadway, 3.75) @test roadind == RoadIndex(CurveIndex(0,0.75), LaneTag(3,1)) roadind = move_along(roadind_0, roadway, -1.0) @test roadind == RoadIndex(CurveIndex(0,0.0), LaneTag(2,1)) roadind = move_along(roadind_0, roadway, -1.75) @test roadind == RoadIndex(CurveIndex(1,0.25), LaneTag(1,1)) roadind = move_along(roadind_0, roadway, -0.75) @test roadind == RoadIndex(CurveIndex(0,0.25), LaneTag(2,1)) roadind = move_along(roadind_0, roadway, -Inf) @test roadind == RoadIndex(CurveIndex(1,0.0), LaneTag(1,1)) roadind = move_along(roadind_0, roadway, Inf) @test roadind == RoadIndex(CurveIndex(1,1.0), LaneTag(3,1)) #### @test n_lanes_right(roadway, roadway[LaneTag(2,1)]) == 0 @test n_lanes_right(roadway, roadway[LaneTag(2,2)]) == 1 @test n_lanes_right(roadway, roadway[LaneTag(2,3)]) == 2 @test n_lanes_left(roadway, roadway[LaneTag(2,1)]) == 2 @test n_lanes_left(roadway, roadway[LaneTag(2,2)]) == 1 @test n_lanes_left(roadway, roadway[LaneTag(2,3)]) == 0 #### roadway = get_test_roadway() all_lanes = lanes(roadway) all_lane_tags = lanetags(roadway) @test all_lane_tags == [l.tag for l in all_lanes] @test all_lanes == Lane{Float64}[roadway[tag] for tag in all_lane_tags] for i=1:2 for j=1:3 @test roadway[LaneTag(i,j)] in all_lanes @test LaneTag(i,j) in all_lane_tags end end end # roadway test @testset "roadway read/write" begin roadway = Roadway() seg1 = RoadSegment(1, [Lane(LaneTag(1,1), [CurvePt(VecSE2(0.0,0.0,0.0), 0.0), CurvePt(VecSE2(1.0,0.0,0.0), 1.0)], width=1.0, boundary_left = LaneBoundary(:solid, :white), boundary_right = LaneBoundary(:broken, :yellow)), Lane(LaneTag(1,2), [CurvePt(VecSE2(0.0,1.0,0.0), 0.0), CurvePt(VecSE2(1.0,1.0,0.0), 1.0)], width=2.0, boundary_left = LaneBoundary(:double, :white))], ) seg2 = RoadSegment(2, [Lane(LaneTag(2,1), [CurvePt(VecSE2(4.0,0.0,0.0), 0.0), CurvePt(VecSE2(5.0,0.0,0.0), 1.0)]), Lane(LaneTag(2,2), [CurvePt(VecSE2(4.0,1.0,0.0), 0.0), CurvePt(VecSE2(5.0,1.0,0.0), 1.0)])], ) connect!(seg1.lanes[1], seg2.lanes[2]) push!(roadway.segments, seg1) push!(roadway.segments, seg2) ############ path, io = mktemp() write(io, roadway) close(io) lines = open(readlines, path) for (line_orig, line_test) in zip(lines, [ "ROADWAY", "2", "1", " 2", " 1", " 1.000", " -Inf Inf", " solid white", " broken yellow", " 1", " D (1 1.000000) 1 0.000000 2 2", " 2", " (0.0000 0.0000 0.000000) 0.0000 NaN NaN", " (1.0000 0.0000 0.000000) 1.0000 NaN NaN", " 2", " 2.000", " -Inf Inf", " double white", " unknown unknown", " 0", " 2", " (0.0000 1.0000 0.000000) 0.0000 NaN NaN", " (1.0000 1.0000 0.000000) 1.0000 NaN NaN", "2", " 2", " 1", " 3.000", " -Inf Inf", " unknown unknown", " unknown unknown", " 0", " 2", " (4.0000 0.0000 0.000000) 0.0000 NaN NaN", " (5.0000 0.0000 0.000000) 1.0000 NaN NaN", " 2", " 3.000", " -Inf Inf", " unknown unknown", " unknown unknown", " 1", " U (1 0.000000) 1 1.000000 1 1", " 2", " (4.0000 1.0000 0.000000) 0.0000 NaN NaN", " (5.0000 1.0000 0.000000) 1.0000 NaN NaN", ] ) @test strip(line_orig) == strip(line_test) end io = open(path) roadway2 = read(io, Roadway) close(io) rm(path) @test length(roadway.segments) == length(roadway2.segments) for (seg1, seg2) in zip(roadway.segments, roadway2.segments) @test seg1.id == seg2.id @test length(seg1.lanes) == length(seg2.lanes) for (lane1, lane2) in zip(seg1.lanes, seg2.lanes) @test lane1.tag == lane2.tag @test isapprox(lane1.width, lane2.width, atol=1e-3) @test isapprox(lane1.speed_limit.lo, lane2.speed_limit.lo, atol=1e-3) @test isapprox(lane1.speed_limit.hi, lane2.speed_limit.hi, atol=1e-3) @test lane1.boundary_left == lane2.boundary_left @test lane1.boundary_right == lane2.boundary_right for (conn1, conn2) in zip(lane1.exits, lane2.exits) @test conn1.downstream == conn2.downstream @test conn1.mylane.i == conn2.mylane.i @test isapprox(conn1.mylane.t, conn2.mylane.t, atol=1e-3) @test conn1.target.tag == conn2.target.tag @test conn1.target.ind.i == conn2.target.ind.i @test isapprox(conn1.target.ind.t, conn2.target.ind.t, atol=1e-3) end for (conn1, conn2) in zip(lane1.entrances, lane2.entrances) @test conn1.downstream == conn2.downstream @test conn1.mylane.i == conn2.mylane.i @test isapprox(conn1.mylane.t, conn2.mylane.t, atol=1e-3) @test conn1.target.tag == conn2.target.tag @test conn1.target.ind.i == conn2.target.ind.i @test isapprox(conn1.target.ind.t, conn2.target.ind.t, atol=1e-3) end for (pt1, pt2) in zip(lane1.curve, lane2.curve) @test normsquared(convert(VecE2, pt1.pos) - convert(VecE2, pt2.pos)) < 0.01 @test angledist(pt1.pos.θ, pt2.pos.θ) < 1e-5 @test isnan(pt1.s) || isapprox(pt1.s, pt2.s, atol=1e-3) @test isnan(pt1.k) || isapprox(pt1.k, pt2.k, atol=1e-6) @test isnan(pt1.kd) || isapprox(pt1.kd, pt2.kd, atol=1e-6) end end end end # roadway read/write tests @testset "Lane connection" begin lc = LaneConnection(true, CurveIndex(1,0.0), RoadIndex(CurveIndex(2,0.0), LaneTag(2,2))) show(IOBuffer(), lc) end @testset "Frenet" begin @test isapprox(AutomotiveSimulator._mod2pi2(0.0), 0.0) @test isapprox(AutomotiveSimulator._mod2pi2(0.5), 0.5) @test isapprox(AutomotiveSimulator._mod2pi2(2pi + 1), 1.0) @test isapprox(AutomotiveSimulator._mod2pi2(1 - 2pi), 1.0) roadway = get_test_roadway() roadproj = proj(VecSE2(0.0, 0.0, 0.0), roadway) roadind = RoadIndex(roadproj) @test roadind.ind.i == 1 @test isapprox(roadind.ind.t, 0.0) @test roadind.tag == LaneTag(2,1) f = Frenet(roadind, roadway, t=0.1, ϕ=0.2) @test f.roadind === roadind @test isapprox(f.s, 0.0) @test f.t == 0.1 @test f.ϕ == 0.2 f = Frenet(roadproj, roadway) @test f.roadind === roadind @test isapprox(f.s, 0.0) @test f.t == 0.0 @test f.ϕ == 0.0 f = Frenet(VecSE2(0.0, 0.0, 0.0), roadway) @test f.roadind === roadind @test isapprox(f.s, 0.0) @test f.t == 0.0 @test f.ϕ == 0.0 @test posg(f, roadway) == VecSE2(0.0, 0.0, 0.0) lane = roadway[LaneTag(1,1)] f = Frenet(lane, 1.0, 0.0, 0.0) @test f.roadind.tag == lane.tag @test isapprox(f.s, 1.0) @test f.t == 0.0 @test f.ϕ == 0.0 end @testset "straight roadway" begin curve = gen_straight_curve(VecE2(25.0, -10.0), VecE2(25.0, 10.0), 2) @inferred gen_straight_curve(VecE2(25.0, -10.0), VecE2(25.0, 10.0), 2) @test length(curve) == 2 @test curve[1].pos.x == 25.0 roadway = gen_straight_roadway(1, 1000.0) @test length(roadway.segments) == 1 seg = roadway[1] @test length(seg.lanes) == 1 lane = seg.lanes[1] @test isapprox(lane.width, DEFAULT_LANE_WIDTH) @test lane.curve[1] == CurvePt(VecSE2(0.0,0.0,0.0), 0.0) @test lane.curve[2] == CurvePt(VecSE2(1000.0,0.0,0.0), 1000.0) roadway = gen_straight_roadway(3, 500.0, lane_width=1.0) @test length(roadway.segments) == 1 seg = roadway[1] @test length(seg.lanes) == 3 lane = seg.lanes[1] @test isapprox(lane.width, 1.0) @test lane.curve[1] == CurvePt(VecSE2(0.0,0.0,0.0), 0.0) @test lane.curve[2] == CurvePt(VecSE2(500.0,0.0,0.0), 500.0) lane = seg.lanes[2] @test isapprox(lane.width, 1.0) @test lane.curve[1] == CurvePt(VecSE2(0.0,1.0,0.0), 0.0) @test lane.curve[2] == CurvePt(VecSE2(500.0,1.0,0.0), 500.0) lane = seg.lanes[3] @test isapprox(lane.width, 1.0) @test lane.curve[1] == CurvePt(VecSE2(0.0,2.0,0.0), 0.0) @test lane.curve[2] == CurvePt(VecSE2(500.0,2.0,0.0), 500.0) origin = VecSE2(1.0,2.0,deg2rad(90)) roadway = gen_straight_roadway(1, 100.0, lane_width=1.0, origin=origin) @test length(roadway.segments) == 1 lane = roadway[1].lanes[1] @test lane.curve[1].pos == origin @test isapprox(lane.curve[2].pos.x, 1.0, atol=1e-6) @test isapprox(lane.curve[2].pos.y, 102.0, atol=1e-6) @test isapprox(lane.curve[2].pos.θ, deg2rad(90), atol=1e-6) roadway = gen_straight_roadway(2, 100.0, lane_widths=[1.0, 2.0]) @test length(roadway.segments) == 1 @test isapprox(roadway[1].lanes[1].curve[1].pos.y, 0.0, atol=1e-6) @test isapprox(roadway[1].lanes[2].curve[1].pos.y, 0.5 + 1.0, atol=1e-6) end @testset "bezier curve" begin # see intersection tutorial for visualization roadway = Roadway() # Define coordinates of the entry and exit points to the intersection r = 5.0 # turn radius A = VecSE2(0.0,DEFAULT_LANE_WIDTH,-π) B = VecSE2(0.0,0.0,0.0) C = VecSE2(r,-r,-π/2) D = VecSE2(r+DEFAULT_LANE_WIDTH,-r,π/2) E = VecSE2(2r+DEFAULT_LANE_WIDTH,0,0) F = VecSE2(2r+DEFAULT_LANE_WIDTH,DEFAULT_LANE_WIDTH,-π) # helper function function append_to_curve!(target::Curve, newstuff::Curve) s_end = target[end].s for c in newstuff push!(target, CurvePt(c.pos, c.s+s_end, c.k, c.kd)) end return target end # Append right turn coming from the left curve = gen_straight_curve(convert(VecE2, B+VecE2(-100,0)), convert(VecE2, B), 2) append_to_curve!(curve, gen_bezier_curve(B, C, 0.6r, 0.6r, 51)[2:end]) @test length(curve) == 52 append_to_curve!(curve, gen_straight_curve(convert(VecE2, C), convert(VecE2, C+VecE2(0,-50.0)), 2)) @test length(curve) == 54 lane = Lane(LaneTag(length(roadway.segments)+1,1), curve) push!(roadway.segments, RoadSegment(lane.tag.segment, [lane])) end @testset "stadium roadway" begin roadway = gen_stadium_roadway(1, length=100.0, width=10.0, radius=25.0, ncurvepts_per_turn=2) @test length(roadway.segments) == 6 seg = roadway[1] @test length(seg.lanes) == 1 lane = seg.lanes[1] @test lane.curve[1] == CurvePt(VecSE2(100.0,0.0,0.0), 0.0) @test lane.curve[2] == CurvePt(VecSE2(125.0,25.0,π/2), 25*π/2) @test roadway[LaneTag(2,1)].curve[1] == CurvePt(VecSE2(125.0,35.0,π/2), 0.0) roadway = gen_stadium_roadway(4) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2976
@testset "Scene" begin @testset begin scene = Scene([1,2,3]) @test length(scene) == 3 @test capacity(scene) == 3 for i in 1 : 3 @test scene[i] == i end scene = Scene([1,2,3], capacity=5) @test length(scene) == 3 @test capacity(scene) == 5 for i in 1 : 3 @test scene[i] == i end @test_throws ErrorException Scene([1,2,3], capacity=2) scene = Scene(Int) @test length(scene) == 0 @test capacity(scene) > 0 @test lastindex(scene) == scene.n scene = Scene(Int, 2) @test length(scene) == 0 @test capacity(scene) == 2 scene[1] = 999 scene[2] = 888 @test scene[1] == 999 @test scene[2] == 888 @test length(scene) == 0 # NOTE: length does not change @test capacity(scene) == 2 empty!(scene) @test length(scene) == 0 @test capacity(scene) == 2 push!(scene, 999) push!(scene, 888) @test length(scene) == 2 @test capacity(scene) == 2 @test_throws BoundsError push!(scene, 777) scene = Scene([999,888]) deleteat!(scene, 1) @test length(scene) == 1 @test capacity(scene) == 2 @test scene[1] == 888 deleteat!(scene, 1) @test length(scene) == 0 @test capacity(scene) == 2 scene = Scene([1,2,3]) scene2 = copy(scene) for i in 1 : 3 @test scene[i] == scene2[i] end scene[1] = 999 @test scene2[1] == 1 end @testset begin scene = EntityScene(Int, Float64, String) scene = EntityScene(Int, Float64, String, 10) @test eltype(scene) == Entity{Int,Float64,String} @test capacity(scene) == 10 scene = Scene([Entity(1,1,"A"),Entity(2,2,"B"),Entity(3,3,"C")]) @test in("A", scene) @test in("B", scene) @test in("C", scene) @test !in("D", scene) @test findfirst("A", scene) == 1 @test findfirst("B", scene) == 2 @test findfirst("C", scene) == 3 @test findfirst("D", scene) == nothing @test id2index(scene, "A") == 1 @test id2index(scene, "B") == 2 @test id2index(scene, "C") == 3 @test_throws BoundsError id2index(scene, "D") scene = Scene([Entity(1,1,"A"),Entity(2,2,"B"),Entity(3,3,"C")]) @test get_by_id(scene, "A") == scene[1] @test get_by_id(scene, "B") == scene[2] @test get_by_id(scene, "C") == scene[3] delete!(scene, Entity(2,2,"B")) @test scene[1] == Entity(1,1,"A") @test scene[2] == Entity(3,3,"C") @test length(scene) == 2 delete!(scene, "A") @test scene[1] == Entity(3,3,"C") @test length(scene) == 1 scene = Scene([Entity(1,1,1),Entity(2,2,2)], capacity=3) @test get_first_available_id(scene) == 3 end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3180
struct NoCallback end struct NoActionCallback end AutomotiveSimulator.run_callback(callback::NoActionCallback, scenes::Vector{Scene{E}}, roadway::R, models::Dict{I,M}, tick::Int) where {E,R,I,M<:DriverModel} = false struct WithActionCallback end AutomotiveSimulator.run_callback(callback::WithActionCallback, scenes::Vector{Scene{E}}, actions::Union{Nothing, Vector{Scene{A}}}, roadway::R, models::Dict{I,M}, tick::Int) where {E<:Entity,A<:EntityAction,R,I,M<:DriverModel} = false @testset "simulation" begin roadway = gen_straight_roadway(1, 500.0) models = Dict{Int, DriverModel}() models[1] = IntelligentDriverModel(k_spd = 1.0, v_des = 10.0) models[2] = IntelligentDriverModel(k_spd = 1.0, v_des = 5.0) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 0.0), roadway, 5.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 70.0), roadway, 5.) veh2 = Entity(veh_state, VehicleDef(), 2) scene = Scene([veh1, veh2]) n_steps = 40 dt = 0.1 @inferred simulate(scene, roadway, models, n_steps, dt) reset_hidden_states!(models) # initializing vehicles too close veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 0.0), roadway, 10.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 5.0), roadway, 5.) veh2 = Entity(veh_state, VehicleDef(), 2) scene = Scene([veh1, veh2]) scenes = @inferred simulate(scene, roadway, models, n_steps, dt, callbacks=(CollisionCallback(),)) @test length(scenes) < 10 open("test.txt", "w+") do io write(io, scenes) end @test_throws ErrorException open("test.txt", "r") do io read(io, Vector{EntityScene{VehicleState, VehicleDef,Symbol}}) end open("test.txt", "r") do io read(io, Vector{EntityScene{VehicleState, VehicleDef,String}}) end r = open("test.txt", "r") do io read(io, typeof(scenes)) end @test length(r) == length(scenes) for (i, s) in enumerate(r) for (j, veh) in enumerate(r[i]) @test posg(veh) ≈ posg(scenes[i][j]) end end # make sure warnings, errors and deprecations in run_callback work as expected @test_nowarn simulate(scene, roadway, models, 10, .1, callbacks=(WithActionCallback(),)) # collision right from start veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 0.0), roadway, 10.) veh1 = Entity(veh_state, VehicleDef(), 1) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 1.0), roadway, 5.) veh2 = Entity(veh_state, VehicleDef(), 2) scene = Scene([veh1, veh2]) scenes = @inferred simulate(scene, roadway, models, n_steps, dt, callbacks=(CollisionCallback(),)) @test length(scenes) == 1 end @testset "trajdata simulation" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) veh_state = VehicleState(Frenet(roadway[LaneTag(1,1)], 6.0), roadway, 10.) ego = Entity(veh_state, VehicleDef(), 2) model = ProportionalSpeedTracker() scenes = simulate_from_history(model, roadway, trajdata, ego.id, 0.1) @test findfirst(ego.id, scenes[end]) != nothing end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
4418
function get_test_trajdata(roadway::Roadway) scene1 = Scene([ Entity(VehicleState(VecSE2(0.0,0.0,0.0), roadway, 10.0), VehicleDef(), 1), Entity(VehicleState(VecSE2(3.0,0.0,0.0), roadway, 20.0), VehicleDef(), 2) ] ) scene2 = Scene([ Entity(VehicleState(VecSE2(1.0,0.0,0.0), roadway, 10.0), VehicleDef(), 1), Entity(VehicleState(VecSE2(5.0,0.0,0.0), roadway, 20.0), VehicleDef(), 2) ] ) trajdata = [scene1, scene2] return trajdata end @testset "VehicleState" begin s = VehicleState(VecSE2(0.0,0.0,0.0), Frenet(NULL_ROADINDEX, 0.0, 0.0, 0.0), 10.0) @test isapprox(velf(s).s, 10.0) @test isapprox(velf(s).t, 0.0) show(IOBuffer(), s.posF) show(IOBuffer(), s) s = VehicleState(VecSE2(0.0,0.0,0.0), Frenet(NULL_ROADINDEX, 0.0, 0.0, 0.1), 10.0) @test isapprox(velf(s).s, 10.0*cos(0.1)) @test isapprox(velf(s).t, 10.0*sin(0.1)) @test isapprox(velg(s).x, 10.0) @test isapprox(velg(s).y, 0.0) @test isapprox(vel(s), 10.0) vehdef = VehicleDef(AgentClass.CAR, 5.0, 3.0) veh = Entity(s, vehdef, 1) @test isapprox(get_footpoint(veh), VecSE2(0.0,0.0,0.0)) show(IOBuffer(), vehdef) show(IOBuffer(), veh) ri = RoadIndex(CurveIndex(1,0.1), LaneTag(1,2)) @test isapprox(Frenet(ri, 0.0, 0.0, 0.1), Frenet(ri, 0.0, 0.0, 0.1)) @test VehicleState(VecSE2(0.1,0.2,0.3), 1.0) == VehicleState(VecSE2(0.1,0.2,0.3), NULL_FRENET, 1.0) @test get_front(veh).x == vehdef.length/2 @test get_rear(veh).x == -vehdef.length/2 roadway = gen_straight_roadway(3, 100.0) veh = VehicleState(VecSE2(0.0, 0.0, 0.0), roadway, 0.0) veh = Entity(veh, VehicleDef(), 1) @test get_lane(roadway, veh).tag == LaneTag(1,1) @test get_lane(roadway, veh).tag == get_lane(roadway, veh.state).tag veh = VehicleState(VecSE2(0.0, 3.0, 0.0), roadway, 0.0) @test get_lane(roadway, veh).tag == LaneTag(1,2) veh = VehicleState(VecSE2(0.0, 6.0, 0.0), roadway, 0.0) @test get_lane(roadway, veh).tag == LaneTag(1,3) end @testset "scene" begin roadway = get_test_roadway() trajdata = get_test_trajdata(roadway) s1 = VehicleState(VecSE2(0.0, 0.0, 0.0), roadway, 0.0) s2 = VehicleState(VecSE2(5.0, 0.0, 0.0), roadway, 0.0) s3 = lerp(s1, s2, 0.5, roadway) @test s3.posG.x == 2.5 @test s3.posF.s == 2.5 vehstate = VehicleState(VecSE2(0.0, 0.0, 0.0), roadway, 0.0) vehstate1 = VehicleState(VecSE2(0.0, 0.0, 0.0), roadway[LaneTag(1,1)], roadway, 0.0) @test vehstate1 == vehstate veh = Entity(vehstate, VehicleDef(), 1) scene1 = Scene([veh]) scene2 = Scene([veh]) @test first(scene1.entities) == first(scene2.entities) @test scene1.n == scene2.n io = IOBuffer() show(io, scene1) close(io) veh2 = Entity(vehstate, BicycleModel(VehicleDef()), 1) veh3 = convert(Entity{VehicleState, VehicleDef, Int64}, veh2) @test veh3 == veh scene = Scene([veh, veh2, veh3]) io = IOBuffer() show(io, scene) close(io) scene = Scene(typeof(veh)) copyto!(scene, trajdata[1]) @test length(scene) == 2 for (i,veh) in enumerate(scene) @test scene[i].state == trajdata[1][i].state @test scene[i].def == trajdata[1][i].def end scene2 = Scene(deepcopy(scene.entities), 2) @test length(scene2) == 2 for (i,veh) in enumerate(scene2) @test scene2[i].state == trajdata[1][i].state @test scene2[i].def == trajdata[1][i].def end @test get_by_id(scene, 1) == scene[1] empty!(scene2) @test length(scene2) == 0 copyto!(scene2, scene) @test length(scene2) == 2 for (i,veh) in enumerate(scene2) @test scene2[i].state == trajdata[1][i].state @test scene2[i].def == trajdata[1][i].def end delete!(scene2, scene2[1]) @test length(scene2) == 1 @test scene2[1].state == trajdata[1][2].state @test scene2[1].def == trajdata[1][2].def scene2[1] = deepcopy(scene[1]) @test scene2[1].state == trajdata[1][1].state @test scene2[1].def == trajdata[1][1].def @test findfirst(1, scene) == 1 @test findfirst(2, scene) == 2 @test get_first_available_id(scene) == 3 @test in(1, scene) @test in(2, scene) @test !in(3, scene) veh = scene[2] @test veh.state == trajdata[1][2].state @test veh.def == trajdata[1][2].def push!(scene, trajdata[1][1].state) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
5378
let @test degrees_to_deg_min_sec(30.0) == (30,0,0) lla = LatLonAlt(deg2rad(deg_min_sec_to_degrees(73, 0, 0)), deg2rad(deg_min_sec_to_degrees(45, 0, 0)), 0.0) utm = convert(UTM, lla, INTERNATIONAL) # @printf("%3d %1d %2.3f %3d %1d %2.3f → ", degrees_to_deg_min_sec(rad2deg(lla.lat))..., degrees_to_deg_min_sec(rad2deg(lla.lon))...) # @printf("%2d %7.2f %6.2f\n", utm.zone, utm.n, utm.e) lla = LatLonAlt(deg2rad(deg_min_sec_to_degrees( 30, 0, 0)), deg2rad(deg_min_sec_to_degrees(102, 0, 0)), 0.0) utm = convert(UTM, lla, INTERNATIONAL) # @printf("%3d %1d %2.3f %3d %1d %2.3f → ", degrees_to_deg_min_sec(rad2deg(lla.lat))..., degrees_to_deg_min_sec(rad2deg(lla.lon))...) # @printf("%2d %7.2f %6.2f\n", utm.zone, utm.n, utm.e) utm = UTM(210577.93, 3322824.35, 0.0, 48) lla_target = LatLonAlt(deg2rad(deg_min_sec_to_degrees(30, 0, 6.489)), deg2rad(deg_min_sec_to_degrees(101, 59, 59.805)), # E 0.0) lla = convert(LatLonAlt, utm, INTERNATIONAL) # @printf("%3d %1d %2.3f %3d %1d %2.3f ← ", degrees_to_deg_min_sec(rad2deg(lla.lat))..., degrees_to_deg_min_sec(rad2deg(lla.lon))...) # @printf("%2d %7.2f %6.2f\n", utm.zone, utm.n, utm.e) # @printf("%3d %1d %2.3f %3d %1d %2.3f (should be this)\n", degrees_to_deg_min_sec(rad2deg(lla_target.lat))..., degrees_to_deg_min_sec(rad2deg(lla_target.lon))...) @test isapprox(lla.lat, lla_target.lat, atol=1e-8) @test isapprox(lla.lon, lla_target.lon, atol=1e-8) utm = UTM(789411.59, 3322824.08, 0.0, 47) lla_target = LatLonAlt(deg2rad(deg_min_sec_to_degrees(30, 0, 6.489)), deg2rad(deg_min_sec_to_degrees(101, 59, 59.805)), # E 0.0) lla = convert(LatLonAlt, utm, INTERNATIONAL) # @printf("%3d %1d %2.3f %3d %1d %2.3f ← ", degrees_to_deg_min_sec(rad2deg(lla.lat))..., degrees_to_deg_min_sec(rad2deg(lla.lon))...) # @printf("%2d %7.2f %6.2f\n", utm.zone, utm.n, utm.e) # @printf("%3d %1d %2.3f %3d %1d %2.3f (should be this)\n", degrees_to_deg_min_sec(rad2deg(lla_target.lat))..., degrees_to_deg_min_sec(rad2deg(lla_target.lon))...) @test isapprox(lla.lat, lla_target.lat, atol=1e-8) @test isapprox(lla.lon, lla_target.lon, atol=1e-8) utm = UTM(200000.00, 1000000.00, 0.0, 31) lla_target = LatLonAlt(deg2rad(deg_min_sec_to_degrees(9, 2, 10.706)), deg2rad(deg_min_sec_to_degrees(0, 16, 17.099)), # E 0.0) lla = convert(LatLonAlt, utm, INTERNATIONAL) # @printf("%3d %1d %2.3f %3d %1d %2.3f ← ", degrees_to_deg_min_sec(rad2deg(lla.lat))..., degrees_to_deg_min_sec(rad2deg(lla.lon))...) # @printf("%2d %7.2f %6.2f\n", utm.zone, utm.n, utm.e) # @printf("%3d %1d %2.3f %3d %1d %2.3f (should be this)\n", degrees_to_deg_min_sec(rad2deg(lla_target.lat))..., degrees_to_deg_min_sec(rad2deg(lla_target.lon))...) @test isapprox(lla.lat, lla_target.lat, atol=1e-8) @test isapprox(lla.lon, lla_target.lon, atol=1e-8) buf = IOBuffer() print(buf, lla) close(buf) # should NOT create a warning check_is_in_radians(LatLonAlt(0.1,0.1,0.1)) lla = LatLonAlt(0.1,0.2-2π,0.3) @test isapprox(ensure_lon_between_pies(lla).lon, 0.2, atol=1e-10) lla = LatLonAlt(0.1,0.2+2π,0.3) @test isapprox(ensure_lon_between_pies(lla).lon, 0.2, atol=1e-10) @test isapprox(get_earth_radius(0.0), 6378137.0, atol=0.1) @test isapprox(get_earth_radius(π/2), 6356752.3, atol=0.1) v3 = convert(VecE3, ECEF(0.1,0.2,0.3)) @test v3.x == 0.1 @test v3.y == 0.2 @test v3.z == 0.3 ecef = convert(ECEF, VecE3(0.1,0.2,0.3)) @test ecef.x == 0.1 @test ecef.y == 0.2 @test ecef.z == 0.3 v3 = convert(VecE3, UTM(0.1,0.2,0.3,1)) @test v3.x == 0.1 @test v3.y == 0.2 @test v3.z == 0.3 utm = UTM(0.1,0.2,0.3,1) + UTM(0.2,0.3,0.4,1) @test utm.e ≈ 0.3 @test utm.n ≈ 0.5 @test utm.u ≈ 0.7 @test utm.zone == 1 utm = UTM(0.1,0.2,0.3,1) - UTM(0.2,0.3,0.4,1) @test utm.e ≈ -0.1 @test utm.n ≈ -0.1 @test utm.u ≈ -0.1 @test utm.zone == 1 v3 = convert(VecE3, ENU(0.1,0.2,0.3)) @test v3.x == 0.1 @test v3.y == 0.2 @test v3.z == 0.3 enu = convert(ENU, VecE3(0.1,0.2,0.3)) @test enu.e == 0.1 @test enu.n == 0.2 @test enu.u == 0.3 enu = ENU(0.1,0.2,0.3) + ENU(0.2,0.3,0.4) @test enu.e ≈ 0.3 @test enu.n ≈ 0.5 @test enu.u ≈ 0.7 enu = ENU(0.1,0.2,0.3) - ENU(0.2,0.3,0.4) @test enu.e ≈ -0.1 @test enu.n ≈ -0.1 @test enu.u ≈ -0.1 for (lla, ecef) in [(LatLonAlt(deg2rad( 0),deg2rad( 0), 0.0), ECEF(6378137.0,0.0,0.0)), (LatLonAlt(deg2rad(90),deg2rad( 0), 0.0), ECEF(0.0,0.0,6356752.31)), (LatLonAlt(deg2rad(20),deg2rad(40),110.0), ECEF(4593156.33, 3854115.78, 2167734.41))] lla2 = convert(LatLonAlt, ecef) @test isapprox(lla2.lat, lla.lat, atol=1e-2) @test isapprox(lla2.lon, lla.lon, atol=1e-2) @test isapprox(lla2.alt, lla.alt, atol=1e-2) ecef2 = convert(ECEF, lla) @test isapprox(ecef2.x, ecef.x, atol=1.0) @test isapprox(ecef2.y, ecef.y, atol=1.0) @test isapprox(ecef2.z, ecef.z, atol=1.0) end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1207
using ForwardDiff using LinearAlgebra let f(x) = x+x g(x) = 5*x h(x) = dot(x, x) # Once we get ForwardDiff working, this should work # h(x::VecE) = dot(x, x) @test ForwardDiff.jacobian(f, VecE2(1.0, 2.0)) == [2.0 0.0; 0.0 2.0] @test ForwardDiff.jacobian(g, VecE2(1.0, 2.0)) == [5.0 0.0; 0.0 5.0] @test ForwardDiff.gradient(h, VecE2(1.0, 2.0)) == [2.0, 4.0] @test ForwardDiff.hessian(h, VecE2(1.0, 2.0)) == [2.0 0.0; 0.0 2.0] @test ForwardDiff.jacobian(f, VecE3(1.0, 2.0, 3.0)) == 2.0*Matrix{Float64}(I, 3, 3) @test ForwardDiff.jacobian(g, VecE3(1.0, 2.0, 3.0)) == 5.0*Matrix{Float64}(I, 3, 3) @test ForwardDiff.gradient(h, VecE3(1.0, 2.0, 3.0)) == [2.0, 4.0, 6.0] @test ForwardDiff.hessian(h, VecE3(1.0, 2.0, 3.0)) == 2.0*Matrix{Float64}(I, 3, 3) @test ForwardDiff.jacobian(f, VecSE2(1.0, 2.0, 3.0)) == 2.0*Matrix{Float64}(I, 3, 3) # Once we get ForwardDiff working, this should work... # h(x::VecSE2) = normsquared(VecE2(x)) # @test ForwardDiff.jacobian(g, VecSE2(1.0, 2.0, 3.0)) == diagm([5.0, 5.0, 1.0]) # @test ForwardDiff.gradient(h, VecSE2(1.0, 2.0, 3.0)) == [2.0, 4.0, 0.0] # @test ForwardDiff.hessian(h, VecSE2(1.0, 2.0, 3.0)) == [2.0 0.0 0.0; 0.0 2.0 0.0; 0.0 0.0 0.0] end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
11347
let @test isapprox(deltaangle(0.0, 0.0), 0.0) @test isapprox(deltaangle(0.0, 1.0), 1.0) @test isapprox(deltaangle(0.0, 2π), 0.0, atol=1e-10) @test isapprox(deltaangle(0.0, π + 1.0), -(π- 1.0)) @test isapprox(angledist(0.0, 0.0), 0.0) @test isapprox(angledist(0.0, 1.0), 1.0) @test isapprox(angledist(0.0, 2π), 0.0, atol=1e-10) @test isapprox(angledist(0.0, π + 1.0), π- 1.0) @test isapprox(lerp_angle(0.0, 0.0, 1.0), 0.0) @test isapprox(lerp_angle(0.0, 2π, 0.5), 0.0, atol=1e-10) @test isapprox(lerp_angle(0.0, 2.0, 0.75), 1.5) @test isapprox(lerp_angle(0.0, 2π-2, 0.75), -1.5) @test are_collinear(VecE2(0.0,0.0), VecE2(1.0,1.0), VecE2(2.0,2.0)) @test are_collinear(VecE2(0.0,0.0), VecE2(1.0,1.0), VecE2(-2.0,-2.0)) @test are_collinear(VecE2(0.0,0.0), VecE2(0.5,1.0), VecE2(1.0,2.0)) @test are_collinear(VecE2(1.0,2.0), VecE2(0.0,0.0), VecE2(0.5,1.0)) @test !are_collinear(VecE2(0.0,0.0), VecE2(1.0,0.0), VecE2(0.0,1.0)) end let seg = LineSegment1D(0,1) seg2 = seg + 0.5 @test isapprox(seg2.a, 0.5) @test isapprox(seg2.b, 1.5) seg2 = seg - 0.3 @test isapprox(seg2.a, -0.3) @test isapprox(seg2.b, 0.7) seg = LineSegment1D(2,5) @test isapprox(get_distance(seg, 1.5), 0.5) @test isapprox(get_distance(seg, -1.5), 3.5) @test isapprox(get_distance(seg, 2.5), 0.0) @test isapprox(get_distance(seg, 2.0), 0.0) @test isapprox(get_distance(seg, 5.0), 0.0) @test isapprox(get_distance(seg, 5.5), 0.5) @test isapprox(get_distance(seg, 15.5), 10.5) @test !in(-1.0, seg) @test !in(1.0, seg) @test in(2.0, seg) @test in(3.0, seg) @test in(5.0, seg) @test !in(5.5, seg) @test in(LineSegment1D(3.0, 3.5), seg) @test in(LineSegment1D(3.0, 3.0), seg) @test !in(LineSegment1D(3.0, 13.0), seg) @test !in(LineSegment1D(-3.0, 3.0), seg) @test !in(LineSegment1D(-3.0, -2.0), seg) @test !in(LineSegment1D(13.0, 15.0), seg) @test intersects(seg, LineSegment1D(3.0, 3.5)) @test intersects(seg, LineSegment1D(3.0, 3.0)) @test intersects(seg, LineSegment1D(3.0, 13.0)) @test intersects(seg, LineSegment1D(-3.0, 3.0)) @test !intersects(seg, LineSegment1D(-3.0, -2.0)) @test !intersects(seg, LineSegment1D(13.0, 15.0)) end let L = Line(VecE2(0,0), π/4) L2 = L + VecE2(-1,1) @test isapprox(L2.C, VecE2(-1,1)) @test isapprox(L2.θ, π/4) L2 = L - VecE2(-1,1) @test isapprox(L2.C, VecE2(1,-1)) @test isapprox(L2.θ, π/4) L2 = rot180(L) @test isapprox(L2.θ, π/4 + π) @test isapprox(get_polar_angle(L), atan(1,1)) @test isapprox(get_distance(L, VecE2(0,0)), 0) @test isapprox(get_distance(L, VecE2(1,1)), 0, atol=1e-10) @test isapprox(get_distance(L, VecE2(1,0)), √2/2) @test isapprox(get_distance(L, VecE2(0,1)), √2/2) @test get_side(L, VecE2(0,0)) == 0 @test get_side(L, VecE2(1,1)) == 0 @test get_side(L, VecE2(0,1)) == 1 @test get_side(L, VecE2(1,0)) == -1 end let L = LineSegment(VecE2(0,0), VecE2(1,1)) L2 = L + VecE2(-1,1) @test isapprox(L2.A, VecE2(-1,1)) @test isapprox(L2.B, VecE2( 0,2)) L2 = L - VecE2(-1,1) @test isapprox(L2.A, VecE2(1,-1)) @test isapprox(L2.B, VecE2(2, 0)) @test isapprox(get_polar_angle(L), atan(1,1)) @test isapprox(get_distance(L, VecE2(0,0)), 0) @test isapprox(get_distance(L, VecE2(1,1)), 0) @test isapprox(get_distance(L, VecE2(1,0)), √2/2) @test isapprox(get_distance(L, VecE2(0,1)), √2/2) @test get_side(L, VecE2(1,1)) == 0 @test get_side(L, VecE2(0,1)) == 1 @test get_side(L, VecE2(1,0)) == -1 @test angledist(L, L2) ≈ 0.0 @test parallel(L, L2) L2 = LineSegment(VecE2(0,0), VecE2(-1,1)) @test angledist(L, L2) ≈ π/2 @test !parallel(L, L2) @test intersects(L, L2) L2 = LineSegment(VecE2(0,0), VecE2(1,-1)) @test angledist(L, L2) ≈ π/2 @test !parallel(L, L2) @test intersects(L, L2) L2 = LineSegment(VecE2(0,0), VecE2(1,-1)) + VecE2(5,-7) @test angledist(L, L2) ≈ π/2 @test !parallel(L, L2) @test !intersects(L, L2) @test intersects(L, LineSegment(VecE2(1,1), VecE2(2,-1))) @test !intersects(L, LineSegment(VecE2(2,2), VecE2(5,6))) @test !intersects(L, LineSegment(VecE2(-5,-5), VecE2(5,-5))) end let @test isapprox(intersect(Ray(-1,0,0), Ray(0,-1,π/2)), VecE2(0.0,0.0)) @test intersects(Ray(0,0,0), Ray(1,-1,π/2)) @test !intersects(Ray(0,0,0), Ray(1,-1,-π/2)) # @test intersects(Ray(0,0,0), Ray(1,0,0)) # TODO: get this to work @test intersects(Ray(0,0,0), Line(VecE2(0,0), VecE2(1,1))) @test !intersects(Ray(0,0,0), Line(VecE2(0,1), VecE2(1,1))) @test intersects(Ray(0,0,0), Line(VecE2(1,0), VecE2(2,0))) @test intersects(Ray(0,0,0), Line(VecE2(1,-1), VecE2(1,1))) @test intersects(Ray(0,0,π/2), Line(VecE2(-1,1), VecE2(1,1))) @test !intersects(Ray(0,0,π/2), Line(VecE2(-1,1), VecE2(-1,2))) @test intersects(Ray(0,0,π/2), Line(VecE2(-1,1), VecE2(-1.5,1.5))) @test intersects(Ray(0,0,0), LineSegment(VecE2(0,0), VecE2(1,1))) @test !intersects(Ray(0,0,0), LineSegment(VecE2(0,1), VecE2(1,1))) @test intersects(Ray(0,0,0), LineSegment(VecE2(1,0), VecE2(2,0))) @test !intersects(Ray(0,0,0), LineSegment(VecE2(-1,0), VecE2(-2,0))) @test isapprox(intersect(VecSE2(4,0,3pi/4), LineSegment(VecE2(5.6,0), VecE2(0,3.6))), VecE2(1.12, 2.88), atol=1e-3) end let proj1 = Projectile(VecSE2(0.0,0.0,0.0), 1.0) proj2 = Projectile(VecSE2(1.0,1.0,1.0), 1.0) @test isapprox(VecE2(Vec.propagate(proj1, 2.0).pos), VecE2(2.0,0.0)) @test isapprox(VecE2(Vec.propagate(proj2, 0.0).pos), VecE2(1.0,1.0)) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, Projectile(VecSE2(0.0,1.0,0.0), 1.0)) @test isapprox(t_PCA, 0.0) @test isapprox(d_PCA, 1.0) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, Projectile(VecSE2(0.0,2.0,0.0), 1.0)) @test isapprox(t_PCA, 0.0) @test isapprox(d_PCA, 2.0) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, Projectile(VecSE2(0.0,1.0,0.0), 2.0)) @test isapprox(t_PCA, 0.0) @test isapprox(d_PCA, 1.0) t_PCA, d_PCA = closest_time_of_approach_and_distance(Projectile(VecSE2(0.0,-0.0,0.2), 1.0), Projectile(VecSE2(0.0,1.0,-0.2), 1.0)) @test t_PCA > 0.0 @test isapprox(d_PCA, 0.0) @test isapprox(get_intersection_time(proj1, LineSegment(VecE2(0, 0), VecE2(0,1))), 0.0) @test isapprox(get_intersection_time(proj1, LineSegment(VecE2(1,-1), VecE2(1,1))), 1.0) @test isinf(get_intersection_time(proj1, LineSegment(VecE2(-1,0), VecE2(-1,1)))) @test isapprox(get_intersection_time(proj1, LineSegment(VecE2(3,0), VecE2(2,0))), 2.0) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(0, 0), VecE2(0,1))) @test isapprox(t_PCA, 0.0) @test isapprox(d_PCA, 0.0) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(1,-1), VecE2(1,1))) @test isapprox(t_PCA, 1.0) @test isapprox(d_PCA, 0.0) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(1,0.5), VecE2(1,1))) @test isapprox(t_PCA, 1.0) @test isapprox(d_PCA, 0.5) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(1,-0.5), VecE2(1,-1))) @test isapprox(t_PCA, 1.0) @test isapprox(d_PCA, 0.5) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(1,-0.5), VecE2(2,-1))) @test isapprox(t_PCA, 1.0) @test isapprox(d_PCA, 0.5) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(2,-1), VecE2(1,-0.5))) @test isapprox(t_PCA, 1.0) @test isapprox(d_PCA, 0.5) t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(2,-1), VecE2(1,-0.5)), true) @test isinf(t_PCA) @test isinf(d_PCA) # t_PCA, d_PCA = closest_time_of_approach_and_distance(proj1, LineSegment(VecE2(-1,1), VecE2(1,1))) # println((t_PCA, d_PCA )) # @test isapprox(t_PCA, 0.0) # @test isapprox(d_PCA, 1.0) end let @test in(VecE2(0,0), Circ(0,0,1.0)) @test !in(VecE2(0,0), Circ(2,0,1.0)) @test in(VecE2(1.5, 0), Circ(2,0,1.0)) @test in(VecE3(1.5,0,3), Circ(2,0,3,1.0)) box = AABB(VecE2(0.0, 0.5), 2.0, 5.0) @test in(VecE2( 0.0,0.0), box) @test in(VecE2(-1.0,0.0), box) @test !in(VecE2(-2.0,0.0), box) @test !in(VecE2( 1.0,3.1), box) box = AABB(VecE2(-1.0, -2.0), VecE2(1.0, 3.0)) @test in(VecE2( 0.0,0.0), box) @test in(VecE2(-1.0,0.0), box) @test !in(VecE2(-2.0,0.0), box) @test !in(VecE2( 1.0,3.1), box) end let box = OBB(VecSE2(0.0, 0.5, 0.0), 2.0, 5.0) @test in(VecE2( 0.0,0.0), box) @test in(VecE2(-1.0,0.0), box) @test !in(VecE2(-2.0,0.0), box) @test !in(VecE2( 1.0,3.1), box) box = OBB(VecSE2(0.0, 0.0, π/4), 2.0, 2.0) @test in(VecE2( 0.0,0.0), box) @test in(VecE2( 1.0,0.0), box) @test in(VecE2( √2/2-0.1,√2/2-0.1), box) @test !in(VecE2( 1.0,1.0), box) @test !in(VecE2( √2/2+0.1,√2/2+0.1), box) box = OBB(VecSE2(0.0, 0.0, 0.0), 1.0, 1.0) box2 = inertial2body(box, VecSE2(1.0,0.0,0.0)) @test isapprox(box2.aabb.center.x, -1.0) @test isapprox(box2.aabb.center.y, 0.0) @test isapprox(box2.θ, 0.0) box2 = inertial2body(box, VecSE2(1.0,0.0,π)) @test isapprox(box2.aabb.center.x, 1.0) @test isapprox(box2.aabb.center.y, 0.0, atol=1e-10) @test isapprox(angledist(box2.θ, π), 0.0, atol=1e-10) end let plane = Plane3() @test plane.normal == VecE3(1.0,0.0,0.0) @test plane.offset == 0.0 plane = Plane3(VecE3(2.0,0.0,0.0), 0.5) @test plane.normal == VecE3(1.0,0.0,0.0) @test plane.offset == 0.5 plane = Plane3(VecE3(2.0,0.0,0.0), VecE3(0.0,0.0,0.0)) @test plane.normal == VecE3(1.0,0.0,0.0) @test plane.offset == 0.0 plane = Plane3(VecE3(2.0,0.0,0.0), VecE3(1.0,1.0,1.0)) @test plane.normal == VecE3(1.0,0.0,0.0) @test isapprox(plane.offset, -1.0, atol=1e-10) plane = Plane3(VecE3(1.0,1.0,0.0), VecE3(1.0,0.0,0.0), VecE3(0.0,0.0,0.0)) @test norm(plane.normal - VecE3(0.0,0.0,1.0)) < 1e-8 @test isapprox(plane.offset, 0.0, atol=1e-10) plane = Plane3(VecE3(0.0,0.0,0.0), VecE3(1.0,0.0,0.0), VecE3(1.0,1.0,0.0)) @test norm(plane.normal - VecE3(0.0,0.0,-1.0)) < 1e-8 @test isapprox(plane.offset, 0.0, atol=1e-10) plane = Plane3() @test isapprox(get_signed_distance(plane, VecE3( 0.0,0.0,0.0)), 0.0, atol=1e-10) @test isapprox(get_signed_distance(plane, VecE3( 1.0,0.0,0.0)), 1.0, atol=1e-10) @test isapprox(get_signed_distance(plane, VecE3(-1.0,0.0,0.0)), -1.0, atol=1e-10) @test isapprox(get_signed_distance(plane, VecE3( 1.0,0.5,0.7)), 1.0, atol=1e-10) @test isapprox(get_signed_distance(plane, VecE3(-1.0,0.7,0.5)), -1.0, atol=1e-10) @test isapprox(get_distance(plane, VecE3(-1.0,0.7,0.5)), 1.0, atol=1e-10) @test norm(proj(VecE3(-1.0,0.7,0.5), plane) - VecE3(0.0,0.7,0.5)) < 1e-10 @test get_side(plane, VecE3( 0.0,0.0,0.0)) == 0 @test get_side(plane, VecE3( 1.0,0.0,0.0)) == 1 @test get_side(plane, VecE3(-1.0,0.0,0.0)) == -1 @test get_side(plane, VecE3( 1.0,0.5,0.7)) == 1 @test get_side(plane, VecE3(-1.0,0.7,0.5)) == -1 end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
1235
let q = Quat(1.0,2.0,3.0,4.5) @test length(q) == 4 @test imag(q) == VecE3(1.0,2.0,3.0) @test conj(q) == Quat(-1.0,-2.0,-3.0,4.5) @test vec(q) == [1.0,2.0,3.0,4.5] @test vec(copy(q)) == vec(q) @test convert(Quat, [1.0,2.0,3.0,4.5]) == q @test norm(q) == norm(vec(q)) @test vec(normalize(q)) == vec(q) ./ norm(vec(q)) q = Quat(-0.002, -0.756, 0.252, -0.604) sol = push!(vec(get_axis(q)), get_rotation_angle(q)) @test isapprox(sol, [-0.00250956, -0.948614, 0.316205, mod2pi(-1.84447)], atol=1e-3) || isapprox(sol, [ 0.00250956, 0.948614, -0.316205, mod2pi( 1.84447)], atol=1e-3) seed!(0) for i in 1 : 5 a = normalize(VecE3(rand(),rand(),rand())) b = normalize(VecE3(rand(),rand(),rand())) q = quat_for_a2b(a,b) @test norm(rot(q, a) - b) < 1e-8 end @test isapprox(angledist(Quat(1,0,0,0), Quat(0,1,0,0)), π, atol=1e-6) @test norm(lerp(Quat(1,0,0,0), Quat(0,1,0,0), 0.5) - Quat(√2/2, √2/2, 0, 0)) < 1e-6 seed!(0) for i in 1 : 5 q = rand(Quat) @test isapprox(norm(q), 1.0, atol=1e-8) @test norm(inv(q)*q - Quat(0,0,0,1)) < 1e-8 @test norm(q*inv(q) - Quat(0,0,0,1)) < 1e-8 end end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
3405
let a = VecE2() @test typeof(a) <: VecE @test typeof(a) <: AbstractVec @test a.x == 0.0 @test a.y == 0.0 b = VecE2(0.0,0.0) @test b.x == 0.0 @test b.y == 0.0 @test length(a) == 2 @test a == b @test isequal(a, b) @test copy(a) == a @test convert(Vector{Float64}, a) == [0.0,0.0] @test convert(VecE2, [0.0,0.0]) == a @test isapprox(polar(1.0,0.0), VecE2(1.0,0.0)) @test isapprox(polar(2.0,π/2), VecE2(0.0,2.0)) @test isapprox(polar(3.0,-π/2), VecE2(0.0,-3.0)) @test isapprox(polar(-0.5,1.0*π), VecE2(0.5,0.0)) a = VecE2(0.0,1.0) b = VecE2(0.5,2.0) @test a != b @test a + b == VecE2(0.5, 3.0) @test a .+ 1 == VecE2(1.0, 2.0) @test a .+ 0.5 == VecE2(0.5, 1.5) @test a - b == VecE2(-0.5, -1.0) @test a .- 1 == VecE2(-1.0, 0.0) @test a .- 0.5 == VecE2(-0.5, 0.5) @test a * 2 == VecE2(0.0, 2.0) @test a * 0.5 == VecE2(0.0, 0.5) @test a / 2 == VecE2(0.0, 0.5) @test a / 0.5 == VecE2(0.0, 2.0) @test b.^2 == VecE2(0.25, 4.0) @test b.^0.5 == VecE2(0.5^0.5, 2.0^0.5) @test a.%2.0 == VecE2(0.0, 1.0) @test isfinite(a) @test !isfinite(VecE2(Inf,0)) @test !isfinite(VecE2(0,Inf)) @test !isfinite(VecE2(0,-Inf)) @test !isfinite(VecE2(Inf,Inf)) @test !isinf(a) @test isinf(VecE2(Inf,0)) @test isinf(VecE2(0,Inf)) @test isinf(VecE2(0,-Inf)) @test isinf(VecE2(Inf,Inf)) @test !isnan(a) @test isnan(VecE2(NaN,0)) @test isnan(VecE2(0,NaN)) @test isnan(VecE2(NaN,NaN)) @test round.(VecE2(0.25,1.75)) == VecE2(0.0,2.0) @test round.(VecE2(-0.25,-1.75)) == VecE2(-0.0,-2.0) @test floor.(VecE2(0.25,1.75)) == VecE2(0.0,1.0) @test floor.(VecE2(-0.25,-1.75)) == VecE2(-1.0,-2.0) @test ceil.(VecE2(0.25,1.75)) == VecE2(1.0,2.0) @test ceil.(VecE2(-0.25,-1.75)) == VecE2(-0.0,-1.0) @test trunc.(VecE2(0.25,1.75)) == VecE2(0.0,1.0) @test trunc.(VecE2(-0.25,-1.75)) == VecE2(-0.0,-1.0) @test clamp.(VecE2(1.0, 10.0), 0.0, 5.0) == VecE2(1.0, 5.0) @test clamp.(VecE2(-1.0, 4.0), 0.0, 5.0) == VecE2(0.0, 4.0) c = VecE2(3.0,4.0) @test isapprox(abs.(a), VecE2(0.0, 1.0)) @test isapprox(abs.(c), VecE2(3.0, 4.0)) @test isapprox(norm(a), 1.0) @test isapprox(norm(c), 5.0) @test isapprox(normalize(a), VecE2(0.0,1.0)) @test isapprox(normalize(b), VecE2(0.5/sqrt(4.25),2.0/sqrt(4.25))) @test isapprox(normalize(c), VecE2(3.0/5,4.0/5)) @test isapprox(dist(a,a), 0.0) @test isapprox(dist(b,b), 0.0) @test isapprox(dist(c,c), 0.0) @test isapprox(dist(a,b), hypot(0.5, 1.0)) @test isapprox(dist(a,c), hypot(3.0, 3.0)) @test isapprox(dist2(a,a), 0.0) @test isapprox(dist2(b,b), 0.0) @test isapprox(dist2(c,c), 0.0) @test isapprox(dist2(a,b), 0.5^2 + 1^2) @test isapprox(dist2(a,c), 3^2 + 3^2) @test isapprox(dot(a, b), 2.0) @test isapprox(dot(b, c), 1.5 + 8.0) @test isapprox(dot(c, c), norm(c)^2) @test isapprox(proj(b, a, Float64), 2.0) @test isapprox(proj(c, a, Float64), 4.0) @test isapprox(proj(b, a, VecE2), VecE2(0.0, 2.0)) @test isapprox(proj(c, a, VecE2), VecE2(0.0, 4.0)) @test isapprox(lerp(VecE2(0,0), VecE2(2,-2), 0.25), VecE2(0.5,-0.5)) @test isapprox(lerp(VecE2(2,-2), VecE2(3,-3), 0.5), VecE2(2.5,-2.5)) @test isapprox(rot180(b), VecE2(-0.5,-2.0)) @test isapprox(rotr90(b), VecE2( 2.0,-0.5)) @test isapprox(rotl90(b), VecE2(-2.0, 0.5)) @test isapprox(rot(b, 1.0*pi), VecE2(-0.5,-2.0)) @test isapprox(rot(b, -π/2), VecE2( 2.0,-0.5)) @test isapprox(rot(b, π/2), VecE2(-2.0, 0.5)) @test isapprox(rot(b, 2π), b) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
4251
let a = VecE3() @test typeof(a) <: VecE3 @test typeof(a) <: AbstractVec @test a.x == 0.0 @test a.y == 0.0 @test a.z == 0.0 b = VecE3(0.0,0.0,0.0) @test b.x == 0.0 @test b.y == 0.0 @test b.z == 0.0 @test length(a) == 3 @test a == b @test isequal(a, b) @test copy(a) == a @test convert(Vector{Float64}, a) == [0.0,0.0,0.0] @test convert(VecE3, [0.0,0.0,0.0]) == a @test isapprox(polar(1.0,0.0,0.0), VecE3(1.0,0.0,0.0)) @test isapprox(polar(2.0,π/2,1.0), VecE3(0.0,2.0,1.0)) @test isapprox(polar(3.0,-π/2,-0.5), VecE3(0.0,-3.0,-0.5)) @test isapprox(polar(-0.5,1.0*π,1.0*π), VecE3(0.5,0.0,1.0*π)) a = VecE3(0.0,1.0, 2.0) b = VecE3(0.5,2.0,-3.0) @test a != b @test a + b == VecE3(0.5, 3.0, -1.0) @test a .+ 1 == VecE3(1.0, 2.0, 3.0) @test a .+ 0.5 == VecE3(0.5, 1.5, 2.5) @test a - b == VecE3(-0.5, -1.0, 5.0) @test a .- 1 == VecE3(-1.0, 0.0, 1.0) @test a .- 0.5 == VecE3(-0.5, 0.5, 1.5) @test a * 2 == VecE3(0.0, 2.0, 4.0) @test a * 0.5 == VecE3(0.0, 0.5, 1.0) @test a / 2 == VecE3(0.0, 0.5, 1.0) @test a / 0.5 == VecE3(0.0, 2.0, 4.0) @test b.^2 == VecE3(0.25, 4.0, 9.0) @test VecE3(0.5, 2.0, 3.0).^0.5 == VecE3(0.5^0.5, 2.0^0.5, 3.0^0.5) @test isfinite(a) @test !isfinite(VecE3(Inf,0,0)) @test !isfinite(VecE3(0,Inf,0)) @test !isfinite(VecE3(0,-Inf,0)) @test !isfinite(VecE3(Inf,Inf,Inf)) @test !isinf(a) @test isinf(VecE3(Inf,0,0)) @test isinf(VecE3(0,Inf,0)) @test isinf(VecE3(0,-Inf,0)) @test isinf(VecE3(Inf,Inf,Inf)) @test !isnan(a) @test isnan(VecE3(NaN,0,NaN)) @test isnan(VecE3(0,NaN,NaN)) @test isnan(VecE3(NaN,NaN,NaN)) @test round.(VecE3(0.25,1.75,0)) == VecE3(0.0,2.0,0.0) @test round.(VecE3(-0.25,-1.75,0)) == VecE3(-0.0,-2.0,0.0) @test floor.(VecE3(0.25,1.75,0.0)) == VecE3(0.0,1.0,0.0) @test floor.(VecE3(-0.25,-1.75,0.0)) == VecE3(-1.0,-2.0,0.0) @test ceil.(VecE3(0.25,1.75,0.0)) == VecE3(1.0,2.0,0.0) @test ceil.(VecE3(-0.25,-1.75,0.0)) == VecE3(-0.0,-1.0,0.0) @test trunc.(VecE3(0.25,1.75,0.0)) == VecE3(0.0,1.0,0.0) @test trunc.(VecE3(-0.25,-1.75,0.0)) == VecE3(-0.0,-1.0,0.0) @test clamp.(VecE3(1.0, 10.0, 0.5), 0.0, 5.0) == VecE3(1.0, 5.0, 0.5) @test clamp.(VecE3(-1.0, 4.0, 5.5), 0.0, 5.0) == VecE3(0.0, 4.0, 5.0) c = VecE3(3.0,4.0,5.0) @test isapprox(abs.(a), a) @test isapprox(abs.(c), c) @test isapprox(norm(c), sqrt(3^2 + 4^2 + 5^2)) @test isapprox(normalize(a), VecE3(0.0,1.0/hypot(1.0,2.0), 2.0/hypot(1.0,2.0))) @test isapprox(dist(a,a), 0.0) @test isapprox(dist(b,b), 0.0) @test isapprox(dist(c,c), 0.0) @test isapprox(dist(a,b), norm([0.5, 1.0, 5.0])) @test isapprox(dist(a,c), norm([3.0, 3.0, 3.0])) @test isapprox(dist2(a,a), 0.0) @test isapprox(dist2(b,b), 0.0) @test isapprox(dist2(c,c), 0.0) @test isapprox(dist2(a,b), 0.5^2 + 1^2 + 5^2) @test isapprox(dist2(a,c), 3^2 + 3^2 + 3^2) @test isapprox(dot(a, b), 2.0 - 6.0) @test isapprox(dot(b, c), 1.5 + 8.0 - 15.0) @test isapprox(dot(c, c), norm(c)^2) @test isapprox(proj(b, a, Float64), -norm(VecE3(0.0, -0.8, -1.6))) @test isapprox(proj(c, a, Float64), norm(VecE3(0.0, 2.8, 5.6))) @test isapprox(proj(b, a, VecE3), VecE3(0.0, -0.8, -1.6)) @test isapprox(proj(c, a, VecE3), VecE3(0.0, 2.8, 5.6)) @test isapprox(lerp(VecE3(0,0,0), VecE3(2,-2,2), 0.25), VecE3(0.5,-0.5,0.5)) @test isapprox(lerp(VecE3(2,-2,2), VecE3(3,-3,3), 0.5), VecE3(2.5,-2.5,2.5)) @test isapprox(rot(VecE3(1,2,3), VecE3(2,0,0), 0.0), VecE3(1,2,3)) @test isapprox(rot(VecE3(1,2,3), VecE3(2,0,0), π/2), VecE3(1,-3,2)) @test isapprox(rot(VecE3(1,2,3), VecE3(2,0,0), -π/2), VecE3(1,3,-2)) @test isapprox(rot(VecE3(1,2,3), VecE3(2,0,0), 1.0π), VecE3(1,-2,-3)) @test isapprox(rot(VecE3(1,2,3), VecE3(0,2,0), π/2), VecE3(3,2,-1)) @test isapprox(rot(VecE3(1,2,3), VecE3(0,0,2), π/2), VecE3(-2,1,3)) @test isapprox(rot_normalized(VecE3(1,2,3), VecE3(1,0,0), 0.0), VecE3(1,2,3)) @test isapprox(rot_normalized(VecE3(1,2,3), VecE3(1,0,0), π/2), VecE3(1,-3,2)) @test isapprox(rot_normalized(VecE3(1,2,3), VecE3(1,0,0), -π/2), VecE3(1,3,-2)) @test isapprox(rot_normalized(VecE3(1,2,3), VecE3(1,0,0), 1.0π), VecE3(1,-2,-3)) @test isapprox(rot_normalized(VecE3(1,2,3), VecE3(0,1,0), π/2), VecE3(3,2,-1)) @test isapprox(rot_normalized(VecE3(1,2,3), VecE3(0,0,1), π/2), VecE3(-2,1,3)) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
2505
let a = VecSE2() @test typeof(a) <: VecSE @test typeof(a) <: AbstractVec @test a.x == 0.0 @test a.y == 0.0 @test a.θ == 0.0 b = VecSE2(0.0,0.0,0.0) @test b.x == 0.0 @test b.y == 0.0 @test b.θ == 0.0 c = VecSE2(VecE2(0.0,0.0),0.0) @test c.x == 0.0 @test c.y == 0.0 @test c.θ == 0.0 @test length(a) == 3 @test a == b @test b == c @test a == c @test isequal(b, a) @test copy(a) == a @test convert(Vector{Float64}, a) == [0.0,0.0,0.0] @test convert(VecSE2, [1.0,2.0,3.0]) == VecSE2(1.0,2.0,3.0) @test convert(VecE2, VecSE2(1.0,2.0,3.0)) == VecE2(1.0,2.0) @test isapprox(polar( 1.0, 0.0, 0.5), VecSE2(1.0,0.0,0.5)) @test isapprox(polar( 2.0, π/2,-0.5), VecSE2(0.0,2.0,-0.5)) @test isapprox(polar( 3.0,-π/2, 1), VecSE2(0.0,-3.0,1.0)) @test isapprox(polar(-0.5, 1π, -1), VecSE2(0.5,0.0,-1)) a = VecSE2(0.0,1.0,π/2) b = VecSE2(0.5,2.0,-π) unit_e2 = VecE2(1.0, 1.0) @test a != b @test a + b == VecSE2(0.5, 3.0, -π/2) @test a + 1*unit_e2 == VecSE2(1.0, 2.0, π/2) @test a + 0.5*unit_e2 == VecSE2(0.5, 1.5, π/2) @test 1*unit_e2 + a == VecSE2(1.0, 2.0, π/2) @test 0.5*unit_e2 + a == VecSE2(0.5, 1.5, π/2) @test a - b == VecSE2(-0.5, -1.0, 3π/2) @test a - 1*unit_e2 == VecSE2(-1.0, 0.0, π/2) @test a - 0.5*unit_e2 == VecSE2(-0.5, 0.5, π/2) @test 1*unit_e2 - a == VecSE2(1.0, 0.0, -π/2) @test 0.5*unit_e2 - a == VecSE2(0.5, -0.5, -π/2) @test scale_euclidean(a, 2) == VecSE2(0.0, 2.0, π/2) @test scale_euclidean(a, 0.5) == VecSE2(0.0, 0.5, π/2) @test scale_euclidean(a, 1/2) == VecSE2(0.0, 0.5, π/2) @test scale_euclidean(a, 1/0.5) == VecSE2(0.0, 2.0, π/2) @test clamp_euclidean(VecSE2(1.0, 10.0, 0.5), 0.0, 5.0) == VecSE2(1.0, 5.0, 0.5) @test clamp_euclidean(VecSE2(-1.0, 4.0, 5.5), 0.0, 5.0) == VecSE2(0.0, 4.0, 5.5) @test isfinite(a) @test !isfinite(VecSE2(Inf,0)) @test !isfinite(VecSE2(0,Inf)) @test !isfinite(VecSE2(0,-Inf)) @test !isfinite(VecSE2(Inf,Inf)) @test !isinf(a) @test isinf(VecSE2(Inf,0)) @test isinf(VecSE2(0,Inf)) @test isinf(VecSE2(0,-Inf)) @test isinf(VecSE2(Inf,Inf)) @test !isnan(a) @test isnan(VecSE2(NaN,0)) @test isnan(VecSE2(0,NaN)) @test isnan(VecSE2(NaN,NaN)) c = VecSE2(3.0,4.0) @test isapprox(norm(VecE2(a)), 1.0) @test isapprox(norm(VecE2(b)), hypot(0.5, 2.0)) @test isapprox(norm(VecE2(c)), hypot(3.0, 4.0)) @test isapprox(normalize(VecE2(a)), VecE2(0.0,1.0)) @test isapprox(normalize(VecE2(b)), VecE2(0.5/sqrt(4.25),2.0/sqrt(4.25))) @test isapprox(normalize(VecE2(c)), VecE2(3.0/5,4.0/5)) end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
code
639
import LinearAlgebra: norm, normalize, dot import Random: seed! @test invlerp(0.0,1.0,0.5) ≈ 0.5 @test invlerp(0.0,1.0,0.4) ≈ 0.4 @test invlerp(0.0,1.0,0.7) ≈ 0.7 @test invlerp(10.0,20.0,12.0) ≈ 0.2 @testset "VecE2" begin include("test_vecE2.jl") end @testset "VecE3" begin include("test_vecE3.jl") end @testset "VecSE2" begin include("test_vecSE2.jl") end @testset "quaternions" begin include("test_quat.jl") end @testset "coordinate transforms" begin include("test_coordinate_transforms.jl") end @testset "geom" begin include("test_geomE2.jl") end @testset "diff" begin include("test_diff.jl") end
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
675
# Automotive Simulator A Julia package containing tools for automotive simulations in 2D. [![Build status](https://github.com/sisl/AutomotiveSimulator.jl/workflows/CI/badge.svg)](https://github.com/sisl/AutomotiveSimulator.jl/actions) [![CodeCov](https://codecov.io/gh/sisl/AutomotiveSimulator.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/sisl/AutomotiveSimulator.jl) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://sisl.github.io/AutomotiveSimulator.jl/dev) For visualization code please see [AutomotiveVisualization](https://github.com/sisl/AutomotiveVisualization.jl). ## Installation ```julia using Pkg Pkg.add("AutomotiveSimulator") ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
3562
# Roadways ## Data Types and Accessing Elements The data structure to represent roadways can be decomposed as follows: - **Roadway** The high level type containing all the information. It contains a list of `RoadSegment`. - **RoadSegment**: a vector of lanes - **Lane**: A driving lane on a roadway. It identified by a `LaneTag`. A lane is defined by a curve which represents a center line and a width. In addition it has attributed like speed limit. A lane can be connected to other lane in the roadway, the connection are specified in the exits and entrances fields. **Lower level types:** - **Curves**: A curve is a list of `CurvePt` - **CurvePt**: the lowest level type. It represents a point on a curve by its global position, position along the curve, curvature at this point and derivative of the curvature at this point. Other types like `CurveIndex` or `CurveProjection` are used to identify a curve point along a curve. ```@docs Roadway RoadSegment move_along ``` ## Roadway generation `AutomotiveSimulator.jl` provide high level functions to generate road networks by drawing straight road segment and circular curves. Two predefined road network can be generated easily: multi-lane straight roadway sections and a multi-lane stadium shaped roadway. ```@docs gen_straight_curve gen_straight_segment gen_bezier_curve gen_straight_roadway gen_stadium_roadway ``` ## Lane The `Lane` data structure represent a driving lane in the roadway. The default lane width is 3m. It contains all the low level geometry information. ```@docs Lane LaneTag lanes lanetags SpeedLimit LaneBoundary LaneConnection is_in_exits is_in_entrances connect! is_between_segments_hi is_between_segments has_segment has_lanetag next_lane prev_lane has_next has_prev next_lane_point prev_lane_point n_lanes_left(roadway::Roadway, lane::Lane) n_lanes_right(roadway::Roadway, lane::Lane) leftlane(::Roadway, ::Lane) rightlane(::Roadway, ::Lane) ``` ## Frenet frame The Frenet frame is a lane relative frame to represent a position on the road network. ```@docs Frenet ``` ## Accessing objects and projections The main `roadway` object can be indexed by different object to access different elements such as lane or curve points: - `LaneTag`: indexing roadway by a lane tag will return the lane associated to the lane tag - `RoadIndex`: indexing roadway by a road index will return the curve point associated to this index ```@docs RoadIndex CurveIndex RoadProjection proj(posG::VecSE2{T}, lane::Lane{T}, roadway::Roadway{T};move_along_curves::Bool = true ) where T<: Real proj(posG::VecSE2{T}, seg::RoadSegment, roadway::Roadway) where T<: Real proj(posG::VecSE2{T}, roadway::Roadway) where T<: Real Base.getindex(lane::Lane{T}, ind::CurveIndex{I,T}, roadway::Roadway{T}) where{I<:Integer, T<:Real} Base.getindex(roadway::Roadway, segid::Int) Base.getindex(roadway::Roadway, tag::LaneTag) ``` ## Low level ```@docs Curve CurvePt CurveProjection is_at_curve_end get_lerp_time index_closest_to_point get_curve_index lerp(A::VecE2{T}, B::VecE2{T}, C::VecE2{T}, D::VecE2{T}, t::T) where T<:Real lerp(A::VecE2{T}, B::VecE2{T}, C::VecE2{T}, t::T) where T<:Real ``` ## Read and Write roadways ```@docs Base.read(io::IO, ::Type{Roadway}) Base.write(io::IO, roadway::Roadway) ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
664
# Vec `Vec` is a submodule of AutomotiveSimulator that provides several vector types, named after their groups. All types are immutable and are subtypes of ['StaticArrays'](https://github.com/JuliaArrays/StaticArrays.jl)' `FieldVector`, so they can be indexed and used as vectors in many contexts. * `VecE2` provides an (x,y) type of the Euclidean-2 group. * `VecE3` provides an (x,y,z) type of the Euclidean-3 group. * `VecSE2` provides an (x,y,theta) type of the special-Euclidean 2 group. ```julia v = VecE2(0, 1) v = VecSE2(0,1,0.5) v = VecE3(0, 1, 2) ``` Additional geometry types include `Quat` for quaternions, `Line`, `LineSegment`, and `Projectile`.
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
495
# Driving Actions In the driving stack, the `actions` lie one level below the `behaviors`. While the `behaviors` provide the high level decision making, the actions enable the execution of these decisions in the simulation. ## Interface ```@docs propagate ``` ## Action types available ```@docs AccelDesang ``` ```@docs AccelSteeringAngle ``` ```@docs AccelTurnrate ``` ```@docs LaneFollowingAccel ``` ```@docs LatLonAccel ``` ```@docs PedestrianLatLonAccel ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
717
# Agent Definition Agent Definitions describe the static properties of a traffic participants such as the length and width of the vehicle. It also contains information on the type of agent (car, pedestrian, motorcycle...). ## Interface You can implement your own agent definition by creating a new type inheriting from the `AbstractAgentDefinition` type. The following three functions must be implemented for your custom type: ```@docs AbstractAgentDefinition length width class ``` Agent classes such as car, truck, and pedestrian are defined by integer constant in a submodule AgentClass. ```@docs AgentClass ``` ## Available Agent Definitions ```@docs VehicleDef BicycleModel ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
1624
# Behaviors These stands one level above the `actions`. They provide a higher level decision that the `actions` then implement in order to propagate the simulation forward. A behavior model can be interpreted as a control law. Given the current scene, representing all the vehicles present in the environment, a behavior model returns an action to execute. ## Interface We provide an interface to interact with behavior model or implement your own. To implement your own driver model you can create a type that inherits from the abstract type `DriverModel`. Then you can implement the following methods: ```@docs DriverModel{DriveAction} action_type(::DriverModel{A}) where A set_desired_speed! reset_hidden_state! reset_hidden_states! observe! Base.rand(model::DriverModel) ``` `observe!` and `rand` are usually the most important methods to implement. `observe!` sets the model state in a given situation and `rand` allows to sample an action from the model. ## Available Behaviors ```@docs IntelligentDriverModel ``` ```@docs Tim2DDriver ``` ```@docs PrincetonDriver ``` ```@docs SidewalkPedestrianModel ``` ```@docs StaticDriver ``` ## Lane change helper functions These are not standalone driver models but are used by the driver models to do lane changing and lateral control. ```@docs MOBIL ``` ```@docs TimLaneChanger ``` ```@docs ProportionalLaneTracker ``` ## Longitudinal helper functions These are not standalone driver models but are used to do longitudinal control by the driver models. ```@docs ProportionalSpeedTracker ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
1058
# Collision Checker There are two collisions checkers currently available in AutomotiveSimulator.jl. The first collision checker is accessible through the function `is_colliding` and relies on Minkowski sum. The second one is accessible through `collision_checker` and uses the parallel axis theorem. The latter is a bit faster. A benchmark script is available in `test/collision_checkers_benchmark.jl` and relies on static arrays. ## Parallel Axis Theorem This collision checker relies on the parallel axis theorem. It checks that two convex polygon overlap ```@docs collision_checker ``` Vehicles can be converted to polygon (static matrices containing four vertices). ```@docs polygon ``` ## Minkowski Sum Here are the methods available using Minkowski sum. ```@docs is_colliding ConvexPolygon CPAMemory CollisionCheckResult to_oriented_bounding_box! get_oriented_bounding_box is_potentially_colliding get_collision_time get_first_collision is_collision_free get_distance get_edge ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
4313
# Feature Extraction AutomotiveSimulator.jl provides useful functions to extract information from a scene. ## Feature Extraction Pipeline The function `extract_features` can be used to extract information from a list of scenes. It takes as input a vector of scenes (which could be the output of `simulate`), as well as a list of feature functions to use. The output is a dictionary of DataFrame from [DataFrames.jl](https://github.com/JuliaData/DataFrames.jl). ```@docs extract_features ``` ## Finding neighbors Finding neighbors of an entity is a common query and can be done using the `find_neighbor` function. This function allows to find the neighbor of an entity within a scene using a forward search method. The search algorithm moves longitudinally along a given lane and its successors (according to the given road topology). Once it finds a car it stops searching and return the results as a `NeighborLongitudinalResult` ```@docs NeighborLongitudinalResult ``` The `find_neighbor` function accepts different keyword argument to search front or rear neighbors, or neighbors on different lanes. ```@docs find_neighbor ``` When computing the distance to a neighbor, one might want to choose different reference points on the vehicle (center to center, bumper to bumper, etc...). AutomotiveSimulator provides the `VehicleTargetPoint` types to do so. One can choose among three possible instances to use the front, center, or rear point of a vehicle to compute the distance to the neighbor. ```@docs VehicleTargetPoint VehicleTargetPointCenter VehicleTargetPointFront VehicleTargetPointRear ``` To get the relative position of two vehicles in the Frenet frame, the `get_frenet_relative_position` can be used. It stores the result in a `FrenetRelativePosition` object. ```@docs get_frenet_relative_position FrenetRelativePosition ``` ## Implementing Your Own Feature Function In AutomotiveSimulator, features are functions. The current interface supports three methods: - `myfeature(::Roadway, ::Entity)` - `myfeature(::Roadway, ::Scene, ::Entity)` - `myfeature(::Roadway, ::Vector{<:Scene}, ::Entity)` For each of those methods, the last argument correspond to the entity with one of the ID given to the top level `extract_features` function. Creating a new feature consists of implementing **one** of those methods for your feature function. As an example, let's define a feature function that returns the distance to the rear neighbor. Such feature will use the second method since it needs information about the whole scene to find the neighbor. If there are not rear neighbor then the function will return `missing`. `DataFrame` are designed to handled missing values so it should not be an issue. ```julia function distance_to_rear_neighbor(roadway::Roadway, scene::Scene, ego::Entity) neighbor = find_neighbor(scene, roadway, ego, rear=true) if neighbor.ind === nothing return missing else return neighbor.Δs end end ``` Now you can use your feature function in extract features, the name of the function is used to name the column of the dataframe: ```julia dfs = extract_features((distance_to_rear_neighbor,), roadway, scenes, [1]) dfs[1].distance_to_rear_neighbor # contains history of distances to rear neighor ``` !!!note If the supported methods are limiting for your use case please open an issue or submit a PR. It should be straightforward to extend the `extract_features` function to support other methods, as well as adding new feature trait. ## List of Available Features ```@docs posgx posgy posgθ posfs posft posfϕ vel(roadway::Roadway, veh::Entity) velfs velft velgx velgy time_to_crossing_right time_to_crossing_left estimated_time_to_lane_crossing iswaiting iscolliding distance_to acc accfs accft jerk jerkft turn_rate_g turn_rate_f isbraking isaccelerating lane_width markerdist_left markerdist_right road_edge_dist_left road_edge_dist_right lane_offset_left lane_offset_right n_lanes_left(roadway::Roadway, veh::Entity) n_lanes_right(roadway::Roadway, veh::Entity) has_lane_left has_lane_right lane_curvature dist_to_front_neighbor front_neighbor_speed time_to_collision ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
2458
# AutomotiveSimulator This is the documentation for AutomotiveSimulator.jl. ## Concepts This section defines a few terms that are used across the package. ### Entity An entity (or sometimes called agent) is a traffic participant that navigates in the environment, it is defined by a physical state (position, velocity, ...), an agent definition (whether it is a car or pedestrian, how large it is, ...), and an ID. `AutomotiveSimulator` is templated to efficiently run simulations with different types of entities. An entity represents an agent in the simulation, and it is parameterized by - `S`: state of the entity, may change over time - `D`: definition of the entity, does not change over time - `I`: unique identifier for the entity, typically an `Int64` or `Symbol` The interface for implementing your own state type is described in [States](@ref). Similarly, an interface for implementing your own entity definition is described in [Agent Definition](@ref) In addition to the state, definition and identifier for each simulation agent, one can also customize the actions, environment and the driver models used by the agents. ### Actions An action consists of a command applied to move the entity (e.g. longitudinal acceleration, steering). The state of the entity is updated using the `propagate` method which encodes the dynamics model. ### Scene A scene represents a snapshot in time of a driving situation, it essentially consists of a list of entities at a given time. It is implemented using the `Scene` object. `Scene` supports most of the operation that one can do on a collection (`iterate`, `in`, `push!`, ...). In addition it supports `get_by_id` to retrieve an entity by its ID. ### Driver Model A driver model is a distribution over actions. Given a scene, each entity can update its model, we call this process observation (the corresponding method is `observe!`). After observing the scene, an action can be sampled from the driver model (using `rand`). ## Tutorials The following examples will showcase some of the simulation functionality of `AutomotiveSimulator` - [Driving on a Straight Roadway](@ref) - [Driving in a Stadium](@ref) - [Intersection](@ref) - [Crosswalk](@ref) - [Sidewalk](@ref) - [Feature Extraction](@ref) !!! note All AutomotiveSimulator tutorials are available as [Jupyter notebooks](https://nbviewer.jupyter.org/) by clicking on the badge at the beginning of the tutorial!
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
2698
# Simulation Simulations can be run using the `simulate` function. A simulation updates the initial scene forward in time. Each simulation step consists of the following operations: - call the `observe!` function for each vehicle to update their driver model given the current scene - sample an action from the driver model by calling `rand` on the driver model. - update the state of each vehicle using the sampled action and the `propagate` method. - repeat for the desired number of steps ```@docs simulate simulate! ``` See the tutorials for more examples. ## Callbacks One can define callback functions that will be run at each simulation step. The callback function can terminate the simulation by returning `true`. The default return value of a callback function should be `false`. Callback functions are also useful to log simulation information. To run a custom callback function in the simulation loop, you must implement a custom callback type and an associated `run_callback` method for that type with the following signature ```julia function AutomotiveSimulator.run_callback( cb::ReachGoalCallback, scenes::Vector{Scene{E}}, actions::Vector{Scene{A}}, roadway::R, models::Dict{I,M}, tick::Int, ) where {E<:Entity,A<:EntityAction,R,I,M<:DriverModel} end ``` The `scenes` object holds a snapshot of a scene at each timestep in the range `1:tick`, and the `actions` object holds a `scene` of `EntityAction`s which record the action of each vehicle for the time steps `1:(tick-1)`. Here is an example of a callback that checks if a vehicle's longitudinal position has reached some goal position and stops the simulation if it is the case. ```julia struct ReachGoalCallback # a callback that checks if vehicle veh_id has reach a certain position goal_pos::Float64 veh_id::Int64 end function AutomotiveSimulator.run_callback( cb::ReachGoalCallback, scenes::Vector{Scene{E}}, actions::Vector{Scene{A}}, roadway::R, models::Dict{I,M}, tick::Int, ) where {E<:Entity,A<:EntityAction,R,I,M<:DriverModel} veh = get_by_id(last(scenes), cb.veh_id) return veh.state.posF.s > cb.goal_pos end ``` A callback for collision is already implemented: `CollisionCallback`. ```@docs CollisionCallback ``` ```@docs run_callback ``` ## Woking with datasets When working with datasets or pre-recorded datasets, one can replay the simulation using `simulate_from_history`. It allows to update the state of an ego vehicle while other vehicles follow the trajectory given in the dataset. ```@docs simulate_from_history simulate_from_history! observe_from_history! maximum_entities ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.2
8abb2a4050d43b49f41adcfb23ed82f136c76aea
docs
2529
# States In this section of the documentation we explain the default vehicle state type provided by `AutomotiveSimulator` as well as the data types used to represent a driving scene. Most of the underlying structures are defined in `Records.jl`. The data structures provided in ADM.jl are concrete instances of parametric types defined in Records. It is possible in principle to define your custom state definition and use the interface defined in ADM.jl. ## Entity state Entities are represented by the `Entity` data type. The `Entity` data type has three fields: a state, a definition and an id. ```@docs Entity ``` The state of an entity usually describes physical quantity such as position and velocity. Two state data structures are provided. ## Scenes Scenes are represented using the `Scene` object. It is a datastructure to represent a collection of entities. ```@docs Scene ``` ## Defining your own state type You can define your own state type if the provided `VehicleState` does not contain the right information. There are a of couple functions that need to be defined such that other functions in AutomotiveSimulator can work smoothly with your custom state type. ```@docs posg posf vel velf velg ``` **Example of a custom state type containing acceleration:** ```julia # you can use composition to define your custom state type based on existing ones struct MyVehicleState veh::VehicleState acc::Float64 end # define the functions from the interface posg(s::MyVehicleState) = posg(s.veh) # those functions are implemented for the `VehicleState` type posf(s::MyVehicleState) = posf(s.veh) velg(s::MyVehicleState) = velg(s.veh) velf(s::MyVehicleState) = velf(s.veh) vel(s::MyVehicleState) = vel(s.veh) ``` ## Provided State Type and Convenient Functions Here we list useful functions to interact with vehicle states and retrieve interesting information like the position of the front of the vehicle or the lane to which the vehicle belongs. ```@docs VehicleState Vec.lerp(a::VehicleState, b::VehicleState, t::Float64, roadway::Roadway) move_along(vehstate::VehicleState, roadway::Roadway, Δs::Float64; ϕ₂::Float64=vehstate.posF.ϕ, ::Float64=vehstate.posF.t, v₂::Float64=vehstate.v) get_front get_rear get_center get_footpoint get_lane leftlane(::Roadway, ::Entity) rightlane(::Roadway, ::Entity) Base.convert(::Type{Entity{S, VehicleDef, I}}, veh::Entity{S, D, I}) where {S,D<:AbstractAgentDefinition,I} ```
AutomotiveSimulator
https://github.com/sisl/AutomotiveSimulator.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
2703
module AxisKeysExt using AxisKeys using FlexiGroups.Accessors using FlexiGroups.DataPipes using FlexiGroups.Dictionaries: Dictionary using FlexiGroups: flatten, total import FlexiGroups: _group, _groupview, _groupfind, _groupmap, addmargins for f in (:_group, :_groupview, :_groupfind) @eval function $f(f, xs, ::Type{TA}; default=undef) where {TA <: KeyedArray} gd = $f(f, xs, Dictionary) _group_dict_to_ka(gd, default, TA) end end function _groupmap(f, mapf, xs, ::Type{TA}; default=undef) where {TA <: KeyedArray} gd = _groupmap(f, mapf, xs, Dictionary) _group_dict_to_ka(gd, default, TA) end _proplenses(::Type{<:NTuple{N, Any}}) where {N} = map(IndexLens, 1:N) _proplenses(::Type{<:NamedTuple{KS}}) where {KS} = map(PropertyLens, KS) _KeyedArray(A, axkeys::Tuple) = KeyedArray(A, axkeys) _KeyedArray(A, axkeys::NamedTuple) = KeyedArray(A; axkeys...) @generated function _group_dict_to_ka(gd::Dictionary{K, V}, default::D, ::Type{KeyedArray}) where {K, V, D} axkeys_exprs = map(_proplenses(K)) do l col = :( map($l, keys(gd).values) |> unique |> sort ) end quote axkeys = $(constructorof(K))($(axkeys_exprs...),) vals = gd.values sz = map(length, values(axkeys)) $(if D === UndefInitializer :( data = similar(vals, sz) ) else :( data = fill!(similar(vals, $(Union{V, D}), sz), default) ) end) for (k, v) in pairs(gd) # searchsorted relies on sort above ixs = map(only ∘ searchsorted, axkeys, k) data[ixs...] = v end A = _KeyedArray(data, axkeys) return A end end function addmargins(A::KeyedArray{V}; combine=flatten, marginkey=total) where {V} VT = Core.Compiler.return_type(combine, Tuple{Vector{V}}) Ares = convert(AbstractArray{VT}, A) if ndims(A) == 1 nak = named_axiskeys(A) nak_ = @modify(only(nak)) do ax Union{eltype(ax), typeof(marginkey)}[marginkey] end m = KeyedArray([combine(A)]; nak_...) return cat(Ares, m; dims=1) else res = Ares alldims = Tuple(1:ndims(A)) allones = ntuple(Returns(1), ndims(A)) allcolons = map(ax -> Union{eltype(ax), typeof(marginkey)}[marginkey], named_axiskeys(A)) for i in 1:ndims(A) nak = @set allcolons[i] = named_axiskeys(res)[i] m = @p let eachslice(res; dims=i) map(combine) reshape(__, @set allones[i] = :) KeyedArray(__; nak...) end res = cat(res, m; dims=@delete alldims[i]) end return res end end end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
242
module CategoricalArraysExt using CategoricalArrays import FlexiGroups: _possible_values _possible_values(X::CategoricalArray) = levels(X) _possible_values(X::AbstractArray{<:CategoricalValue}) = isempty(X) ? nothing : levels(first(X)) end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
996
module OffsetArraysExt using OffsetArrays import FlexiGroups: _group_core_identity, _similar_1based function _group_core_identity(X, vals, ::Type{OffsetVector}, len) @assert eltype(X) == Int dct = Base.IdentityUnitRange(minimum(X):maximum(X)) ngroups = length(dct) starts = zeros(Int, first(dct):(last(dct)+1)) starts[begin] = 1 @inbounds for gid in X starts[gid+1] += 1 end cumsum!(starts, starts) # now starts[gid] is the (#elements in groups begin:gid-1) + 1 # or the index of the first element of group gid in (future) rperm rperm = _similar_1based(vals, length(X)) for (v, gid) in zip(vals, X) rperm[starts[gid]] = v starts[gid] += 1 end # now starts[gid] is the index just after the last element of group gid in rperm for gid in X starts[gid] -= 1 end # dct: key -> group_id # rperm[starts[group_id]:starts[group_id+1]-1] = group_values return (; dct, starts, rperm) end end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
484
module StructArraysExt using StructArrays import FlexiGroups: _possible_values function _possible_values(X::StructArray{<:Tuple}) vals = map(_possible_values, StructArrays.components(X)) any(isnothing, vals) ? nothing : Iterators.product(vals...) end function _possible_values(X::StructArray{<:NamedTuple{KS}}) where {KS} vals = map(_possible_values, StructArrays.components(X)) any(isnothing, vals) ? nothing : NamedTuple{KS}.(Iterators.product(vals...)) end end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
472
module FlexiGroups using Dictionaries using Combinatorics: combinations using FlexiMaps: FlexiMaps, flatten, mapview, _eltype, Accessors using DataPipes using AccessorsExtra # for values() export group, groupview, groupfind, groupmap, group_vg, groupview_vg, groupfind_vg, groupmap_vg, Group, key, value, addmargins, MultiGroup, total include("base.jl") include("dictbacked.jl") include("arraybacked.jl") include("margins.jl") include("grouptype.jl") end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
934
function _group_core_identity(X, vals, ::Type{Vector}, len) @assert eltype(X) == Int @assert minimum(X) ≥ 1 ngroups = maximum(X) dct = Base.OneTo(ngroups) starts = zeros(Int, ngroups) @inbounds for gid in X starts[gid] += 1 end # now starts[gid] is the number of elements in group gid pushfirst!(starts, 1) cumsum!(starts, starts) # now starts[gid] is the (#elements in groups 1:gid-1) + 1 # or the index of the first element of group gid in (future) rperm rperm = _similar_1based(vals, length(X)) @inbounds for (v, gid) in zip(vals, X) rperm[starts[gid]] = v starts[gid] += 1 end # now starts[gid] is the index just after the last element of group gid in rperm for gid in X starts[gid] -= 1 end # dct: key -> group_id # rperm[starts[group_id]:starts[group_id+1]-1] = group_values return (; dct, starts, rperm) end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
5459
""" group([keyf=identity], X; [restype=Dictionary]) Group elements of `X` by `keyf(x)`, returning a mapping `keyf(x)` values to lists of `x` values in each group. The result is an (ordered) `Dictionary` by default, but can be specified to be a base `Dict` as well. Alternatively to dictionaries, specifying `restype=KeyedArray` (from `AxisKeys.jl`) results in a `KeyedArray`. Its `axiskeys` are the group keys. # Examples ```julia xs = 3 .* [1, 2, 3, 4, 5] g = group(isodd, xs) g == dictionary([true => [3, 9, 15], false => [6, 12]]) g = group(x -> (a=isodd(x),), xs; restype=KeyedArray) g == KeyedArray([[6, 12], [3, 9, 15]]; a=[false, true]) ``` """ function group end """ groupview([keyf=identity], X; [restype=Dictionary]) Like the `group` function, but each group is a `view` of `X`: doesn't copy the input elements. """ function groupview end """ groupmap([keyf=identity], mapf, X; [restype=Dictionary]) Like `map(mapf, group(keyf, X))`, but more efficient. Supports a limited set of `mapf` functions: `length`, `first`/`last`, `only`, `rand`. """ function groupmap end group(X; kwargs...) = group(identity, X; kwargs...) groupfind(X; kwargs...) = groupfind(identity, X; kwargs...) groupview(X; kwargs...) = groupview(identity, X; kwargs...) groupmap(mapf, X; kwargs...) = groupmap(identity, mapf, X; kwargs...) group(f, X; restype=AbstractDictionary, kwargs...) = _group(f, X, restype; kwargs...) groupfind(f, X; restype=AbstractDictionary, kwargs...) = _groupfind(f, X, restype; kwargs...) groupview(f, X; restype=AbstractDictionary, kwargs...) = _groupview(f, X, restype; kwargs...) groupmap(f, mapf, X; restype=AbstractDictionary, kwargs...) = _groupmap(f, mapf, X, restype; kwargs...) const DICTS = Union{AbstractDict, AbstractDictionary} const BASERESTYPES = Union{DICTS, AbstractVector} struct GroupValues end struct GroupValue end Accessors.modify(f, obj, ::GroupValues) = @modify(f, values(obj)[∗] |> GroupValue()) Accessors.modify(f, obj, ::GroupValue) = f(obj) function _groupfind(f::F, X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, keys(X), RT) @modify(dct |> GroupValues()) do gid @view rperm[starts[gid]:starts[gid + 1]-1] end end function _groupview(f::F, X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, keys(X), RT) @modify(dct |> GroupValues()) do gid ix = @view rperm[starts[gid]:starts[gid + 1]-1] @view X[ix] end end function _group(f::F, X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, X, RT) res = @modify(dct |> GroupValues()) do gid @inline @view rperm[starts[gid]:starts[gid + 1]-1] end end function _groupmap(f::F, ::typeof(length), X, ::Type{RT}) where {F, RT <: BASERESTYPES} vals = if X isa AbstractArray fill!(similar(X, Nothing), nothing) else map(Returns(nothing), X) end (; dct, starts, rperm) = _group_core(f, X, vals, RT) @modify(dct |> GroupValues()) do gid starts[gid + 1] - starts[gid] end end function _groupmap(f::F, ::typeof(first), X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, keys(X), RT) @modify(dct |> GroupValues()) do gid ix = rperm[starts[gid]] X[ix] end end function _groupmap(f::F, ::typeof(last), X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, keys(X), RT) @modify(dct |> GroupValues()) do gid ix = rperm[starts[gid + 1] - 1] X[ix] end end function _groupmap(f::F, ::typeof(only), X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, keys(X), RT) @modify(dct |> GroupValues()) do gid starts[gid + 1] == starts[gid] + 1 || throw(ArgumentError("groupmap(only, X) requires that each group has exactly one element")) ix = rperm[starts[gid]] X[ix] end end function _groupmap(f::F, ::typeof(rand), X, ::Type{RT}) where {F, RT <: BASERESTYPES} (; dct, starts, rperm) = _group_core(f, X, keys(X), RT) @modify(dct |> GroupValues()) do gid ix = rperm[rand(starts[gid]:starts[gid + 1]-1)] X[ix] end end _group_core(f::F, X::AbstractArray, vals, dicttype) where {F} = _group_core(f, X, vals, dicttype, length(X)) _group_core(f::F, X, vals, dicttype) where {F} = _group_core(f, X, vals, dicttype, Base.IteratorSize(X) isa Base.SizeUnknown ? missing : length(X)) _group_core(f::F, X, vals, dicttype, length) where {F} = _group_core_identity(mapview(f, X), vals, dicttype, length) # XXX: are these specializations useful? seemed to be, before adding ::F specialization to higher-level group...() funcs # __precompile__(false) # @eval AccessorsExtra modify(f::F, obj::KVPWrapper{typeof(values)}, ::Elements) where {F} = map(f, obj.obj) # @eval Dictionaries function Base.map(f::F, d::AbstractDictionary) where {F} # out = similar(d, Core.Compiler.return_type(f, Tuple{eltype(d)})) # @inbounds map!(f, out, d) # return out # end if VERSION < v"1.10-" _similar_1based(vals::AbstractArray, len::Integer) = similar(vals, len) _similar_1based(vals, len::Integer) = Vector{_eltype(vals)}(undef, len) else # applicable() is compiletime in 1.10+ _similar_1based(vals, len::Integer) = applicable(similar, vals, len) ? similar(vals, len) : Vector{_eltype(vals)}(undef, len) end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
3969
# Bool group keys: fastpath for performance function _group_core_identity(X::AbstractArray{Bool}, vals, ::Type{AbstractDictionary}, length::Integer) ngroups = 0 true_first = isempty(X) ? false : first(X) dct = isempty(X) ? ArrayDictionary(ArrayIndices(Bool[]), Int[]) : ArrayDictionary(ArrayIndices([true_first, !true_first]), [1, 2]) rperm = _similar_1based(vals, length) i0 = 1 i1 = length @inbounds for (v, gid) in zip(vals, X) atstart = gid == true_first rperm[atstart ? i0 : i1] = v atstart ? (i0 += 1) : (i1 -= 1) end reverse!(@view(rperm[i0:end])) if i0 == length + 1 && length > 0 delete!(dct, !true_first) end starts = [1, i0, length+1] return (; dct, starts, rperm) end # exhaustive list of possible values in X, eg categories or enum values # nothing if can't be determined without iterating X _possible_values(X) = nothing function _group_core_identity(X, vals, ::Type{DT}, len) where {DT<:DICTS} levs = @something _possible_values(X) eltype(X)[] dct = _dict_kv_constructor(DT)(levs, isempty(levs) ? Int[] : Base.OneTo(length(levs))) ngroups = length(dct) groups = _groupid_container(len) @inbounds for (i, x) in enumerate(X) gid = get!(dct, x, ngroups + 1) _push_or_set!(groups, i, gid, len) if gid == ngroups + 1 ngroups += 1 end end starts = zeros(Int, ngroups) @inbounds for gid in groups starts[gid] += 1 end # now starts[gid] is the number of elements in group gid pushfirst!(starts, 1) cumsum!(starts, starts) # now starts[gid] is the (#elements in groups 1:gid-1) + 1 # or the index of the first element of group gid in (future) rperm rperm = _similar_1based(vals, length(groups)) @inbounds for (v, gid) in zip(vals, groups) rperm[starts[gid]] = v starts[gid] += 1 end # now starts[gid] is the index just after the last element of group gid in rperm for gid in groups starts[gid] -= 1 end # dct: key -> group_id # rperm[starts[group_id]:starts[group_id+1]-1] = group_values return (; dct, starts, rperm) end struct MultiGroup{G} groups::G end Base.hash(mg::MultiGroup, h::UInt) = error("Deliberately unsupported, should be unreachable") function _group_core_identity(X::AbstractArray{MultiGroup{GT}}, vals, ::Type{DT}, len) where {DT<:DICTS,GT} dct = _dict_kv_constructor(DT)(eltype(GT)[], Int[]) ngroups = Ref(length(dct)) groups = Vector{_similar_container_type(GT, Int)}(undef, len) @inbounds for (i, x) in enumerate(X) groups[i] = map(x.groups) do gkey gid = get!(dct, gkey, ngroups[] + 1) if gid == ngroups[] + 1 ngroups[] += 1 end return gid end end starts = zeros(Int, ngroups[]) @inbounds for gids in groups for gid in gids starts[gid] += 1 end end cumsum!(starts, starts) push!(starts, sum(length, groups)) rperm = _similar_1based(vals, sum(length, groups)) @inbounds for (v, gids) in zip(vals, groups) for gid in gids rperm[starts[gid]] = v starts[gid] -= 1 end end return (; dct, starts, rperm) end _groupid_container(len::Missing) = Int[] _push_or_set!(groups, i, gid, len::Missing) = push!(groups, gid) _groupid_container(len::Integer) = Vector{Int}(undef, len) _push_or_set!(groups, i, gid, len::Integer) = groups[i] = gid _similar_container_type(::Type{<:AbstractArray}, ::Type{T}) where {T} = Vector{T} _similar_container_type(::Type{<:NTuple{N,Any}}, ::Type{T}) where {N,T} = NTuple{N,T} _dict_kv_constructor(::Type{AbstractDict}) = _dict_kv_constructor(Dict) _dict_kv_constructor(::Type{AbstractDictionary}) = Dictionary _dict_kv_constructor(::Type{T}) where {T<:AbstractDict} = (ks, vs) -> T(zip(ks, vs)) _dict_kv_constructor(::Type{T}) where {T} = T
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
2214
struct GroupAny{K,VS} key::K value::VS end struct GroupArray{K,T,N,VS<:AbstractArray{T,N}} <: AbstractArray{T,N} key::K value::VS end const Group{K,VS} = Union{GroupAny{K,VS}, GroupArray{K,<:Any,<:Any,VS}} Group(key, value) = GroupAny(key, value) Group(key, value::AbstractArray) = GroupArray(key, value) AccessorsExtra.constructorof(::Type{<:Group}) = Group key(g::Group) = getfield(g, :key) value(g::Group) = getfield(g, :value) Base.values(g::Group) = value(g) Accessors.set(g::Group, ::typeof(key), k) = Group(k, value(g)) Accessors.set(g::Group, ::typeof(value), v) = Group(key(g), v) Accessors.set(g::Group, ::typeof(values), v::AbstractArray) = Group(key(g), v) Accessors.modify(f, obj::Group, ::GroupValue) = modify(f, obj, value) Base.similar(A::GroupArray) = similar(values(A)) Base.similar(A::GroupArray, ::Type{T}) where {T} = similar(values(A), T) Base.similar(A::GroupArray, dims) = similar(values(A), dims) Base.similar(A::GroupArray, ::Type{T}, dims::Tuple{Union{Integer, Base.OneTo}, Vararg{Union{Integer, Base.OneTo}}}) where {T} = similar(values(A), T, dims) Base.size(g::GroupArray) = size(value(g)) Base.getindex(g::GroupArray, i...) = getindex(value(g), i...) Base.getproperty(g::Group, p) = getproperty(value(g), p) Base.getproperty(g::Group, p::Symbol) = getproperty(value(g), p) # disambiguate Base.:(==)(a::Group, b::Group) = key(a) == key(b) && value(a) == value(b) Base.:(==)(a::Group, b::AbstractArray) = error("Cannot compare Group with $(typeof(b))") Base.:(==)(a::AbstractArray, b::Group) = error("Cannot compare Group with $(typeof(a))") group_vg(args...; kwargs...) = group(args...; kwargs..., restype=Vector{Group}) groupview_vg(args...; kwargs...) = groupview(args...; kwargs..., restype=Vector{Group}) groupfind_vg(args...; kwargs...) = groupfind(args...; kwargs..., restype=Vector{Group}) groupmap_vg(args...; kwargs...) = groupmap(args...; kwargs..., restype=Vector{Group}) function _group_core_identity(X, vals, ::Type{Vector{Group}}, len) (; dct, starts, rperm) = _group_core_identity(X, vals, AbstractDictionary, len) grs = @p dct |> pairs |> map() do (k, gid) Group(k, gid) end |> collect (; dct=grs, starts, rperm) end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
3098
""" addmargins(grouping; [combine=flatten]) Add margins to a `group` or `groupmap` result for all combinations of group key components. For example, if a dataset is grouped by `a` and `b` (`keyf=x -> (;x.a, x.b)` in `group`), this adds groups for each `a` value and for each `b` value separately. `combine` specifies how multiple groups are combined into margins. The default `combine=flatten` concatenates all relevant groups into a single collection. # Examples ```julia xs = [(a=1, b=:x), (a=2, b=:x), (a=2, b=:y), (a=3, b=:x), (a=3, b=:x), (a=3, b=:x)] # basic grouping by unique combinations of a and b g = group(xs) map(length, g) == dictionary([(a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3]) # add margins gm = addmargins(g) map(length, gm) == dictionary([ (a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3, # original grouping result (a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3, # margins for all values of a (a=total, b=:x) => 5, (a=total, b=:y) => 1, # margins for all values of b (a=total, b=total) => 6, # total ]) ``` """ function addmargins end struct MarginKey end const total = MarginKey() Base.show(io::IO, ::MIME"text/plain", ::MarginKey) = print(io, "total") Base.show(io::IO, ::MarginKey) = print(io, "total") @generated function addmargins(dict::AbstractDictionary{K, V}; combine=flatten, marginkey=total) where {KS, K<:NamedTuple{KS}, V} dictexprs = map(combinations(reverse(KS))) do ks kf = :(_marginalize_key_func($(Val(Tuple(ks))), marginkey)) :(merge!(res, _combine_groups_by($kf, dict, combine))) end KTs = map(combinations(KS)) do ks NamedTuple{KS, Tuple{[k ∈ ks ? marginkey : fieldtype(K, k) for k in KS]...}} end quote KT = Union{$K, $(KTs...)} VT = Core.Compiler.return_type(combine, Tuple{Vector{$V}}) res = Dictionary{KT, VT}() merge!(res, map(combine ∘ Base.vect, dict)) $(dictexprs...) end end addmargins(dict::AbstractDictionary{K, V}; combine=flatten, marginkey=total) where {N, K<:NTuple{N,Any}, V} = throw(ArgumentError("`addmargins()` is not implemented for Tuples as group keys. Use NamedTuples instead.")) function addmargins(dict::AbstractDictionary{K, V}; combine=flatten, marginkey=total) where {K, V} KT = Union{K, typeof(marginkey)} VT = Core.Compiler.return_type(combine, Tuple{Vector{V}}) res = Dictionary{KT, VT}() merge!(res, map(combine ∘ Base.vect, dict)) merge!(res, _combine_groups_by(Returns(marginkey), dict, combine)) end _marginalize_key_func(::Val{ks_colon}, marginkey) where {ks_colon} = key -> merge(key, NamedTuple{ks_colon}(ntuple(Returns(marginkey), length(ks_colon)))) _combine_groups_by(kf, dict::AbstractDictionary, combine) = @p begin keys(dict) groupfind(kf) map() do grixs combine(mapview(ix -> dict[ix], grixs)) end end # could be defaults? # for arrays/collections/iterables: # _merge(vals) = flatten(vals) # for onlinestats: # _merge(vals) = reduce(merge!, vals; init=copy(first(vals)))
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
code
18996
using TestItems using TestItemRunner @run_package_tests @testitem "basic" begin using Dictionaries xs = 3 .* [1, 2, 3, 4, 5] g = @inferred group(isodd, xs) @test g == dictionary([true => [3, 9, 15], false => [6, 12]]) @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} g = @inferred group(x -> isodd(x) ? nothing : false, xs) @test g == dictionary([nothing => [3, 9, 15], false => [6, 12]]) @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} @test group(isodd, [1, 3, 5]) == dictionary([true => [1, 3, 5]]) @test group(Int ∘ isodd, [1, 3, 5]) == dictionary([1 => [1, 3, 5]]) @test group(isodd, Int[]) == dictionary([]) @test group(Int ∘ isodd, Int[]) == dictionary([]) # ensure we get a copy gc = deepcopy(g) xs[1] = 123 @test g == gc xs = 3 .* [1, 2, 3, 4, 5] g = @inferred groupview(isodd, xs) @test g == dictionary([true => [3, 9, 15], false => [6, 12]]) @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} # ensure we get a view xs[1] = 123 @test g == dictionary([true => [123, 9, 15], false => [6, 12]]) xs = 3 .* [1, 2, 3, 4, 5] g = @inferred groupfind(isodd, xs) @test g == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} g = @inferred(group(isnothing, [1, 2, 3, nothing, 4, 5, nothing])) @test g == dictionary([false => [1, 2, 3, 4, 5], true => [nothing, nothing]]) @test valtype(g) <: SubArray{Union{Nothing, Int}} end @testitem "groupmap" begin using Dictionaries xs = 3 .* [1, 2, 3, 4, 5] for f in [length, first, last] @test @inferred(groupmap(isodd, f, xs)) == map(f, group(isodd, xs)) end @test all(@inferred(groupmap(isodd, rand, xs)) .∈ group(isodd, xs)) @test_throws "exactly one element" groupmap(isodd, only, xs) @test @inferred(groupmap(isodd, only, [10, 11])) == dictionary([false => 10, true => 11]) end @testitem "multigroup" begin using Dictionaries xs = 1:5 G = @inferred(groupmap( x -> MultiGroup([isodd(x) ? "odd" : "even", x >= 3 ? "large" : "small"]), length, xs )) @test G == dictionary([ "odd" => 3, "small" => 2, "even" => 2, "large" => 3, ]) @test @inferred(groupmap( x -> MultiGroup(x >= 3 ? ["L", "XL"] : x >= 2 ? ["L"] : ["S"]), length, xs)) == dictionary([ "S" => 1, "L" => 4, "XL" => 3, ]) @test @inferred(groupmap( x -> MultiGroup((isodd(x) ? "odd" : "even", x >= 3 ? "large" : "small")), length, xs)) == dictionary([ "odd" => 3, "small" => 2, "even" => 2, "large" => 3, ]) @test @inferred(groupmap( x -> MultiGroup((isodd(x) ? "odd" : "even", x >= 3)), length, xs)) == dictionary([ "odd" => 3, false => 2, "even" => 2, true => 3, ]) end @testitem "to vector, offsetvector" begin using OffsetArrays xs = [1, 2, 1, 1, 3] g = group(identity, xs, restype=Vector) @test g == [[1, 1, 1], [2], [3]] g = group(x -> isodd(x) ? 2 : 1, xs, restype=Vector) @test g == [[2], [1, 1, 1, 3]] @test groupmap(x -> isodd(x) ? 2 : 1, length, xs, restype=Vector) == [1, 4] @test groupmap(identity, length, xs, restype=Vector) == [3, 1, 1] @test groupmap(identity, length, 3 .* xs, restype=Vector) == [0, 0, 3, 0, 0, 1, 0, 0, 1] @test group(identity, 3 .* xs, restype=Vector) == [[], [], [3, 3, 3], [], [], [6], [], [], [9]] @test_throws AssertionError group(Int ∘ isodd, xs, restype=Vector) g = group(Int ∘ isodd, xs, restype=OffsetVector) @test axes(g, 1) == 0:1 @test g[0] == [2] @test g == OffsetArray([[2], [1, 1, 1, 3]], 0:1) end @testitem "Groups" begin using Accessors using StructArrays xs = StructArray(x=3 .* [1, 2, 3, 4, 5]) g = @inferred group_vg(x->isodd(x.x), xs) @test length(g) == 2 @test key(first(g)) === true @test values(first(g)).x::SubArray{Int} == [3, 9, 15] @test isconcretetype(eltype(g)) @test g isa Vector{<:Group{Bool, <:StructArray}} gr = first(g) @test gr == gr @test gr == Group(true, [(x = 3,), (x = 9,), (x = 15,)]) @test gr != Group(true, [(x = 3,), (x = 9,), (x = 10,)]) @test gr != Group(false, [(x = 3,), (x = 9,), (x = 15,)]) @test length(gr) == 3 @test gr[2] == (x=9,) @test gr.x == [3, 9, 15] @test map(identity, gr).x == [3, 9, 15] @test modify(reverse, gr, values) == Group(true, [(x=15,), (x=9,), (x=3,)]) @test @modify(reverse, g |> Elements() |> values)[1] == Group(true, [(x=15,), (x=9,), (x=3,)]) xs = 3 .* [1, 2, 3, 4, 5] g = @inferred group_vg(x->isodd(x) ? 1 : 0, xs) @test length(g) == 2 @test key(first(g)) === 1 @test values(first(g))::SubArray{Int} == [3, 9, 15] @test isconcretetype(eltype(g)) @test g isa Vector{<:Group{Int, <:SubArray{Int}}} g = @inferred groupmap_vg(x->isodd(x) ? 1 : 0, length, xs) @test g == [Group(1, 3), Group(0, 2)] @test isconcretetype(eltype(g)) g = map(group_vg(x -> (o=isodd(x),), xs)) do gr (; key(gr)..., cnt=length(values(gr)), tot=sum(values(gr))) end @test g == [(o=true, cnt=3, tot=27), (o=false, cnt=2, tot=18)] # gm = @inferred addmargins(g; combine=sum) # @test g == [Group(1, 3), Group(0, 2), Group(total, 5)] end @testitem "margins" begin using Dictionaries using StructArrays xs = [(a=1, b=:x), (a=2, b=:x), (a=2, b=:y), (a=3, b=:x), (a=3, b=:x), (a=3, b=:x)] g = @inferred group(x -> x, xs) @test map(length, g) == dictionary([(a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3]) gm = @inferred addmargins(g) @test map(length, gm) == dictionary([ (a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3, (a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3, (a=total, b=:x) => 5, (a=total, b=:y) => 1, (a=total, b=total) => 6, ]) @test keytype(gm) isa Union # of NamedTuples @test valtype(gm) |> isconcretetype @test valtype(gm) == Vector{NamedTuple{(:a, :b), Tuple{Int64, Symbol}}} g = @inferred group(x -> x.a, xs) @test map(length, g) == dictionary([1 => 1, 2 => 2, 3 => 3]) gm = @inferred addmargins(g) @test map(length, gm) == dictionary([ 1 => 1, 2 => 2, 3 => 3, total => 6, ]) @test keytype(gm) == Union{Int, typeof(total)} @test valtype(gm) |> isconcretetype @test valtype(gm) == Vector{NamedTuple{(:a, :b), Tuple{Int64, Symbol}}} g = @inferred group(x -> x.a > 2, xs) @test map(length, g) == dictionary([false => 3, true => 3]) gm = @inferred addmargins(g) @test map(length, gm) == dictionary([ false => 3, true => 3, total => 6, ]) @test keytype(gm) == Union{Bool, typeof(total)} @test valtype(gm) |> isconcretetype @test valtype(gm) == Vector{NamedTuple{(:a, :b), Tuple{Int64, Symbol}}} g = @inferred group(x -> x, StructArray(xs)) gm = @inferred addmargins(g) @test map(length, gm) == dictionary([ (a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3, (a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3, (a=total, b=:x) => 5, (a=total, b=:y) => 1, (a=total, b=total) => 6, ]) @test keytype(gm) isa Union # of NamedTuples @test valtype(gm) |> isconcretetype @test valtype(gm) <: StructVector{NamedTuple{(:a, :b), Tuple{Int64, Symbol}}} g = groupmap(x -> x, length, xs) gm = @inferred addmargins(g; combine=sum) @test gm == dictionary([ (a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3, (a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3, (a=total, b=:x) => 5, (a=total, b=:y) => 1, (a=total, b=total) => 6, ]) @test keytype(gm) isa Union # of NamedTuples @test valtype(gm) == Int end @testitem "reassemble" begin using FlexiMaps xs = 3 .* [1, 2, 3, 4, 5] g = groupview(isodd, xs) gm = flatmap_parent(g -> g ./ sum(g), g) @test gm == [1/9, 1/3, 1/3, 2/3, 5/9] @test_throws "must be covered" flatmap_parent(g -> g ./ sum(g), filter(g -> length(g) > 2, g)) end @testitem "to keyedarray" begin using AxisKeys xs = 3 .* [1, 2, 3, 4, 5] g = group(x -> (isodd(x),), xs; restype=KeyedArray) @test @inferred(FlexiGroups._group(x -> (isodd(x),), xs, KeyedArray)) == g @test g == KeyedArray([[6, 12], [3, 9, 15]], ([false, true],)) g = group(x -> (a=isodd(x),), xs; restype=KeyedArray) @test @inferred(FlexiGroups._group(x -> (a=isodd(x),), xs, KeyedArray)) == g @test g == KeyedArray([[6, 12], [3, 9, 15]]; a=[false, true]) gl = groupmap(x -> (a=isodd(x),), length, xs; restype=KeyedArray) @test @inferred(FlexiGroups._groupmap(x -> (a=isodd(x),), length, xs, KeyedArray)) == gl @test gl == map(length, g) == KeyedArray([2, 3]; a=[false, true]) gl = groupmap(x -> (a=isodd(x), b=x == 6), length, xs; restype=KeyedArray, default=0) @test gl == KeyedArray([1 1; 3 0]; a=[false, true], b=[false, true]) @test addmargins(g) == KeyedArray([[6, 12], [3, 9, 15], [6, 12, 3, 9, 15]]; a=[false, true, total]) @test eltype(addmargins(g)) == Vector{Int} @test addmargins(gl; combine=sum) == KeyedArray([1 1 2; 3 0 3; 4 1 5]; a=[false, true, total], b=[false, true, total]) end @testitem "iterators" begin using Dictionaries xs = (3x for x in [1, 2, 3, 4, 5]) g = @inferred group(isodd, xs) @test g == dictionary([true => [3, 9, 15], false => [6, 12]]) @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} g = @inferred group(Int∘isodd, xs) @test g[false] == [6, 12] @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} @test (@inferred groupmap(length, xs))[15] == 1 @test_broken (@inferred groupmap(only, xs)) g = @inferred group(Int∘isodd, (3x for x in [1, 2, 3, 4, 5] if false)) @test isempty(g) @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Int} g = @inferred group(isodd ∘ last, enumerate(3 .* [1, 2, 3, 4, 5])) @test g[false] == [(2, 6), (4, 12)] @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Tuple{Int, Int}} g = @inferred group(isodd ∘ last, pairs(3 .* [1, 2, 3, 4, 5])) @test g[false] == [2 => 6, 4 => 12] @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Pair{Int, Int}} g = @inferred group(pairs(3 .* [1, 2, 3, 4, 5])) @test g[1 => 3] == [1 => 3] @test isconcretetype(eltype(g)) @test valtype(g) <: SubArray{Pair{Int, Int}} end @testitem "dicttypes" begin using Dictionaries @testset for D in [Dict, Dictionary, UnorderedDictionary, ArrayDictionary, AbstractDict, AbstractDictionary] @test group(isodd, 3 .* [1, 2, 3, 4, 5]; restype=D)::D |> pairs |> Dict == Dict(false => [6, 12], true => [3, 9, 15]) @test group(isodd, (3x for x in [1, 2, 3, 4, 5]); restype=D)::D |> pairs |> Dict == Dict(false => [6, 12], true => [3, 9, 15]) @test @inferred(FlexiGroups._group(isodd, 3 .* [1, 2, 3, 4, 5], D))::D == group(isodd, 3 .* [1, 2, 3, 4, 5]; restype=D) @test @inferred(FlexiGroups._group(isodd, (3x for x in [1, 2, 3, 4, 5]), D))::D == group(isodd, (3x for x in [1, 2, 3, 4, 5]); restype=D) end end @testitem "structarray" begin using Dictionaries using StructArrays using FlexiMaps using Accessors xs = StructArray(a=3 .* [1, 2, 3, 4, 5]) g = @inferred group(x -> isodd(x.a), xs) @test g == dictionary([true => [(a=3,), (a=9,), (a=15,)], false => [(a=6,), (a=12,)]]) @test isconcretetype(eltype(g)) @test g[false].a == [6, 12] g = @inferred groupview(x -> isodd(x.a), xs) @test g == dictionary([true => [(a=3,), (a=9,), (a=15,)], false => [(a=6,), (a=12,)]]) @test isconcretetype(eltype(g)) @test g[false].a == [6, 12] xs = StructArray( a=3 .* [1, 2, 3, 4, 5], b=Vector{Any}(undef, 5) ) @test_throws "access to undefined reference" groupmap(x -> isodd(x.a), length, xs) @test groupmap((@optic isodd(_.a)), length, xs)[true] == 3 @test_throws "access to undefined reference" length(group((@optic isodd(_.a)), xs)[true]) @test groupview((@optic isodd(_.a)), xs)[true].a == [3, 9, 15] end @testitem "categoricalarray" begin using Dictionaries using StructArrays using CategoricalArrays using FlexiGroups.AccessorsExtra a = CategoricalArray(["a", "a", "b", "c"]) @test group(a[1:3]) == dictionary(["a" => ["a", "a"], "b" => ["b"], "c" => []]) @test group(a[1:0]) == dictionary(["a" => [], "b" => [], "c" => []]) @test groupmap(length, a[1:3]) == dictionary(["a" => 2, "b" => 1, "c" => 0]) @test groupmap(length, a[1:0]) == dictionary(["a" => 0, "b" => 0, "c" => 0]) @test groupmap(length, StructArray((a[1:2],))) == dictionary([("a",) => 2, ("b",) => 0, ("c",) => 0]) @test groupmap(length, StructArray(;a=a[1:2])) == dictionary([(a="a",) => 2, (a="b",) => 0, (a="c",) => 0]) @test groupmap((@o _.a), length, StructArray(;a=a[1:2])) == dictionary(["a" => 2, "b" => 0, "c" => 0]) @test groupmap((@o _.a), length, StructArray(;a=a[1:0])) == dictionary(["a" => 0, "b" => 0, "c" => 0]) @test groupmap(length, StructArray(a=a[1:2], b=a[2:3])) == dictionary([(a="a", b="a") => 1, (a="b", b="a") => 0, (a="c", b="a") => 0, (a="a", b="b") => 1, (a="b", b="b") => 0, (a="c", b="b") => 0, (a="a", b="c") => 0, (a="b", b="c") => 0, (a="c", b="c") => 0]) @test groupmap((@optic₊ (_.a, _.b)), length, StructArray(a=a[1:2], b=a[2:3])) == dictionary([("a", "a") => 1, ("b", "a") => 0, ("c", "a") => 0, ("a", "b") => 1, ("b", "b") => 0, ("c", "b") => 0, ("a", "c") => 0, ("b", "c") => 0, ("c", "c") => 0]) @test groupmap(x -> x.a, length, StructArray(; a)) == dictionary(["a" => 2, "b" => 1, "c" => 1]) @test groupmap(x -> x.a, length, [(; a) for a in a]) == dictionary(["a" => 2, "b" => 1, "c" => 1]) # cannot extract levels for now, but should be possible: @test groupmap(length, StructArray(;a=a[1:2], b=[1,1])) == dictionary([(a="a", b=1) => 2]) # probably no way to extract levels: @test groupmap(x -> x.a, length, StructArray(;a=a[1:0])) |> isempty # why this works? G = groupmap((@o (_.a, _.b)), length, StructArray(a=a[1:2], b=a[2:3])) @test length(G) == 9 @test G[("a", "a")] == 1 @test G[("b", "a")] == 0 @test sum(G) == 2 end @testitem "keyedarray" begin using Dictionaries using AxisKeys xs = KeyedArray(1:5, a=3 .* [1, 2, 3, 4, 5]) g = @inferred group(isodd, xs) @test g == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) @test_broken axiskeys(g[false]) == ([6, 12],) @test_broken g[false](a=6) == 2 g = @inferred groupview(isodd, xs) @test g == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) @test axiskeys(g[false]) == ([6, 12],) @test g[false](a=6) == 2 end @testitem "offsetarrays" begin using Dictionaries using OffsetArrays xs = OffsetArray(1:5, 10) g = @inferred group(isodd, xs) @test g::AbstractDictionary{Bool, <:AbstractVector{Int}} == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) g = @inferred groupview(isodd, xs) @test g::AbstractDictionary{Bool, <:AbstractVector{Int}} == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) g = @inferred groupmap(isodd, length, xs) @test g::AbstractDictionary{Bool, Int} == dictionary([true => 3, false => 2]) end @testitem "pooledarray" begin using PooledArrays using StructArrays using Dictionaries xs = PooledArray([i for i in 1:255], UInt8) @test groupmap(isodd, length, xs) == dictionary([true => 128, false => 127]) sa = StructArray(a=PooledArray(repeat(1:255, outer=100), UInt8), b=1:255*100) @test all(==(100), groupmap(x -> x.a, length, sa)) @test all(==(1), groupmap(x -> x.b, length, sa)) @test all(==(1), map(length, group(x -> (x.a, x.b), sa))) end @testitem "typedtable" begin using Dictionaries using TypedTables xs = Table(a=3 .* [1, 2, 3, 4, 5]) g = @inferred group(x -> isodd(x.a), xs) @test g == dictionary([true => [(a=3,), (a=9,), (a=15,)], false => [(a=6,), (a=12,)]]) @test isconcretetype(eltype(g)) @test g[false].a == [6, 12] g = @inferred groupview(x -> isodd(x.a), xs) @test g == dictionary([true => [(a=3,), (a=9,), (a=15,)], false => [(a=6,), (a=12,)]]) @test isconcretetype(eltype(g)) @test g[false].a == [6, 12] end @testitem "dictionary" begin using Dictionaries # view(dct, range) doesn't work for dictionaries by default Base.view(d::AbstractDictionary, inds::AbstractArray) = Dictionaries.ViewArray{valtype(d), ndims(inds)}(d, inds) xs = dictionary(3 .* [1, 2, 3, 4, 5] .=> 1:5) g = @inferred group(isodd, xs) @test g == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) @test g[false] == [2, 4] g = @inferred groupview(isodd, xs) @test g == dictionary([true => [1, 3, 5], false => [2, 4]]) @test isconcretetype(eltype(g)) @test g[false] == [2, 4] xs[6] = 123 @test g == dictionary([true => [1, 3, 5], false => [123, 4]]) end @testitem "staticarray" begin using Dictionaries using StaticArrays xs = SVector{5}(3 .* [1, 2, 3, 4, 5]) g = @inferred group(isodd, xs) @test g == dictionary([true => [3, 9, 15], false => [6, 12]]) @test isconcretetype(eltype(g)) @test eltype(g) <: SubArray{Int} @test g[false] == [6, 12] end # @testitem "distributedarray" begin # using DistributedArrays # DistributedArrays.allowscalar(true) # xs = distribute(3 .* [1, 2, 3, 4, 5]) # g = @inferred group(isodd, xs) # @test g == dictionary([true => [1, 3, 5], false => [2, 4]]) # @test isconcretetype(eltype(g)) # @test g[false] == [2, 4] # end @testitem "skipper" begin using Skipper using Dictionaries g = group(isodd, skip(isnothing, [1., 2, nothing, 3])) @test g == dictionary([true => [1, 3], false => [2]]) @test g isa AbstractDictionary{Bool, <:SubArray{Float64}} g = group(isodd, skip(isnan, [1, 2, NaN, 3])) @test g == dictionary([true => [1, 3], false => [2]]) @test g isa AbstractDictionary{Bool, <:SubArray{Float64}} g = groupfind(isodd, skip(isnan, [1, 2, NaN, 3])) @test g == dictionary([true => [1, 4], false => [2]]) @test g isa AbstractDictionary{Bool, <:SubArray{Int}} end @testitem "_" begin import Aqua Aqua.test_all(FlexiGroups; ambiguities=false) # Aqua.test_ambiguities(FlexiGroups) import CompatHelperLocal as CHL CHL.@check() end
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
0.1.26
90ae81797a6f8c631f2a7c129648ef5c76631038
docs
6028
# FlexiGroups.jl Arrange tabular or non-tabular datasets into groups according to a specified key function. The main principle of `FlexiGroups` is that the result of a grouping operation is always a collection of groups, and each group is a collection of elements. Groups are typically indexed by the grouping key. ## `group`/`groupview`/`groupmap` `group([keyf=identity], X; [restype=Dictionary])`: group elements of `X` by `keyf(x)`, returning a mapping `keyf(x)` values to lists of `x` values in each group. The result is an (ordered) `Dictionary` by default, but can be changed to the base `Dict` or another dictionary type. Alternatively to dictionaries, specifying `restype=KeyedArray` (from `AxisKeys.jl`) results in a `KeyedArray`. Its `axiskeys` are the group keys. ```julia xs = 3 .* [1, 2, 3, 4, 5] g = group(isodd, xs) # g == dictionary([true => [3, 9, 15], false => [6, 12]]) from Dictionaries.jl g = group(x -> (a=isodd(x),), xs; restype=KeyedArray) # g == KeyedArray([[6, 12], [3, 9, 15]]; a=[false, true]) ``` `groupview([keyf=identity], X; [restype=Dictionary])`: like the `group` function, but each group is a `view` of `X` and doesn't copy the input elements. `groupmap([keyf=identity], mapf, X; [restype=Dictionary])`: like `map(mapf, group(keyf, X))`, but more efficient. Supports a limited set of `mapf` functions: `length`, `first`/`last`, `only`, `rand`. # Margins `addmargins(dict; [combine=flatten])`: add margins to a grouping for all combinations of group key components. For example, if a dataset is grouped by `a` and `b` (`keyf=x -> (;x.a, x.b)` in `group`), this adds groups for each `a` value and for each `b` value separately. `combine` specifies how multiple groups are combined into margins. The default `combine=flatten` concatenates all relevant groups into a single collection. ```julia xs = [(a=1, b=:x), (a=2, b=:x), (a=2, b=:y), (a=3, b=:x), (a=3, b=:x), (a=3, b=:x)] # basic grouping by unique combinations of a and b g = group(xs) map(length, g) == dictionary([(a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3]) # add margins gm = addmargins(g) map(length, gm) == dictionary([ (a=1, b=:x) => 1, (a=2, b=:x) => 1, (a=2, b=:y) => 1, (a=3, b=:x) => 3, # original grouping result (a=1, b=total) => 1, (a=2, b=total) => 2, (a=3, b=total) => 3, # margins for all values of a (a=total, b=:x) => 5, (a=total, b=:y) => 1, # margins for all values of b (a=total, b=total) => 6, # total ]) ``` # More examples Compute the fraction of elements in each group: ```julia julia> using FlexiGroups, DataPipes julia> x = rand(1:100, 100); julia> @p x |> groupmap(_ % 3, length) |> # group by x % 3 and compute length of each group FlexiGroups.addmargins(combine=sum) |> # append the margin - here, the total of all group lengths __ ./ __[total] # divide lengths by that total 4-element Dictionaries.Dictionary{Union{Colon, Int64}, Float64} 2 │ 0.34 0 │ 0.33 1 │ 0.33 total │ 1.0 ``` Perform per-group computations and combine into a single flat collection: ```julia julia> using FlexiGroups, FlexiMaps, DataPipes, StructArrays julia> x = rand(1:100, 10) 10-element Vector{Int64}: 70 57 57 69 61 74 31 39 48 96 # regular flatmap: puts all elements of the first group first, then the second, and so on # the resulting order is different from the original `x` above julia> @p x |> groupview(_ % 3) |> flatmap(StructArray(x=_, ind_in_group=eachindex(_))) 10-element StructArray(::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:x, :ind_in_group), Tuple{Int64, Int64}}: (x = 70, ind_in_group = 1) (x = 61, ind_in_group = 2) (x = 31, ind_in_group = 3) (x = 57, ind_in_group = 1) (x = 57, ind_in_group = 2) (x = 69, ind_in_group = 3) (x = 39, ind_in_group = 4) (x = 48, ind_in_group = 5) (x = 96, ind_in_group = 6) (x = 74, ind_in_group = 1) # flatmap_parent: puts elements in the same order as they were in the parent `x` array above julia> @p x |> groupview(_ % 3) |> flatmap_parent(StructArray(x=_, ind_in_group=eachindex(_))) 10-element StructArray(::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:x, :ind_in_group), Tuple{Int64, Int64}}: (x = 70, ind_in_group = 1) (x = 57, ind_in_group = 1) (x = 57, ind_in_group = 2) (x = 69, ind_in_group = 3) (x = 61, ind_in_group = 2) (x = 74, ind_in_group = 1) (x = 31, ind_in_group = 3) (x = 39, ind_in_group = 4) (x = 48, ind_in_group = 5) (x = 96, ind_in_group = 6) ``` Pivot tables: ```julia julia> using FlexiGroups, DataPipes, StructArrays, AxisKeys # generate a simple table julia> x = @p rand(1:100, 100) |> map((value=_, mod3=_ % 3, mod5=_ % 5)) |> StructArray 100-element StructArray(::Vector{Int64}, ::Vector{Int64}, ::Vector{Int64}) with eltype NamedTuple{(:value, :mod3, :mod5), Tuple{Int64, Int64, Int64}}: (value = 29, mod3 = 2, mod5 = 4) (value = 93, mod3 = 0, mod5 = 3) (value = 1, mod3 = 1, mod5 = 1) (value = 57, mod3 = 0, mod5 = 2) (value = 2, mod3 = 2, mod5 = 2) ⋮ # compute sum of `value`s grouped by `mod3` and `mod5` julia> @p x |> group((; _.mod3, _.mod5); restype=KeyedArray) |> map(sum(_.value)) 2-dimensional KeyedArray(NamedDimsArray(...)) with keys: ↓ mod3 ∈ 3-element Vector{Int64} → mod5 ∈ 5-element Vector{Int64} And data, 3×5 Matrix{Int64}: (0) (1) (2) (3) (4) (0) 390 372 378 258 225 (1) 480 247 372 187 362 (2) 475 82 352 318 203 ``` # Alternatives - `SplitApplyCombine.jl` also provides `group` and `groupview` functions with similar basic semantics. Notable differences of `FlexiGroups` include: - margins support; - more flexibility in the return container type - various dictionaries, keyed arrays; - group collection type is the same as the input collection type, when possible; for example, grouping a `StructArray`s results in each group also being a `StructArray`; - better return eltype and type inference; - often performs faster and with fewer allocations.
FlexiGroups
https://github.com/JuliaAPlavin/FlexiGroups.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
456
using Documenter push!(LOAD_PATH, "../../src") using GenieAuthentication makedocs( sitename = "GenieAuthentication - Authentication plugin for Genie", format = Documenter.HTML(prettyurls = false), pages = [ "Home" => "index.md", "GenieAuthentication API" => [ "GenieAuthentication" => "API/genieauthentication.md", ] ], ) deploydocs( repo = "github.com/GenieFramework/GenieAuthentication.jl.git", )
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
329
module GenieAuthenticationViewHelper using GenieAuthentication.GenieSession using GenieAuthentication.GenieSessionFileSession using GenieAuthentication.GenieSession.Flash export output_flash function output_flash() :: String flash_has_message() ? """<div class="form-group alert alert-info">$(flash())</div>""" : "" end end
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
1518
module AuthenticationController using Genie, Genie.Renderer, Genie.Renderer.Html using SearchLight using Logging using ..Main.UserApp.Users using ..Main.UserApp.GenieAuthenticationViewHelper using GenieAuthentication using GenieAuthentication.GenieSession using GenieAuthentication.GenieSession.Flash using GenieAuthentication.GenieSessionFileSession function show_login() html(:authentication, :login, context = @__MODULE__) end function login() try user = findone(User, username = params(:username), password = Users.hash_password(params(:password))) authenticate(user.id, GenieSession.session(params())) redirect(:success) catch ex flash("Authentication failed! ") redirect(:show_login) end end function success() html(:authentication, :success, context = @__MODULE__) end function logout() deauthenticate(GenieSession.session(params())) flash("Good bye! ") redirect(:show_login) end function show_register() html(:authentication, :register, context = @__MODULE__) end function register() try user = User(username = params(:username), password = params(:password) |> Users.hash_password, name = params(:name), email = params(:email)) |> save! authenticate(user.id, GenieSession.session(params())) "Registration successful" catch ex @error ex if hasfield(typeof(ex), :msg) flash(ex.msg) else flash(string(ex)) end redirect(:show_register) end end end
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
783
module Users using SearchLight, SearchLight.Validation using ..Main.UserApp.UsersValidator using GenieAuthentication.SHA export User Base.@kwdef mutable struct User <: AbstractModel ### FIELDS id::DbId = DbId() username::String = "" password::String = "" name::String = "" email::String = "" end Validation.validator(u::Type{User}) = ModelValidator([ ValidationRule(:username, UsersValidator.not_empty), ValidationRule(:username, UsersValidator.unique), ValidationRule(:password, UsersValidator.not_empty), ValidationRule(:email, UsersValidator.not_empty), ValidationRule(:email, UsersValidator.unique), ValidationRule(:name, UsersValidator.not_empty) ]) function hash_password(password::AbstractString) sha256(password) |> bytes2hex end end
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
650
module UsersValidator using SearchLight, SearchLight.Validation, SearchLight.QueryBuilder function not_empty(field::Symbol, m::T)::ValidationResult where {T<:AbstractModel} isempty(getfield(m, field)) && return ValidationResult(invalid, :not_empty, "should not be empty") ValidationResult(valid) end function unique(field::Symbol, m::T)::ValidationResult where {T<:AbstractModel} ispersisted(m) && return ValidationResult(valid) # don't validate updates if SearchLight.count(typeof(m), where("$field = ?", getfield(m, field))) > 0 return ValidationResult(invalid, :unique, "is already used") end ValidationResult(valid) end end
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
451
module CreateTableUsers import SearchLight.Migrations: create_table, column, primary_key, add_index, drop_table function up() create_table(:users) do [ primary_key() column(:username, :string, limit = 100) column(:password, :string, limit = 100) column(:name, :string, limit = 100) column(:email, :string, limit = 100) ] end add_index(:users, :username) end function down() drop_table(:users) end end
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
858
using Genie using GenieAuthentication import ..Main.UserApp.AuthenticationController import ..Main.UserApp.Users import SearchLight: findone export current_user export current_user_id current_user() = findone(Users.User, id = get_authentication()) current_user_id() = current_user() === nothing ? nothing : current_user().id route("/login", AuthenticationController.show_login, named = :show_login) route("/login", AuthenticationController.login, method = POST, named = :login) route("/success", AuthenticationController.success, method = GET, named = :success) route("/logout", AuthenticationController.logout, named = :logout) #===# # UNCOMMENT TO ENABLE REGISTRATION ROUTES # route("/register", AuthenticationController.show_register, named = :show_register) # route("/register", AuthenticationController.register, method = POST, named = :register)
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
code
6744
""" Functionality for authenticating Genie users. """ module GenieAuthentication import Genie, SearchLight import GenieSession, GenieSessionFileSession import GeniePlugins import SHA using Base64 export authenticate, deauthenticate, is_authenticated, isauthenticated, get_authentication, authenticated export login, logout, with_authentication, without_authentication, @authenticated!, @with_authentication!, authenticated! const USER_ID_KEY = :__auth_user_id const PARAMS_USERNAME_KEY = :username const PARAMS_PASSWORD_KEY = :password """ Stores the user id on the session. """ function authenticate(user_id::Any, session::GenieSession.Session) :: GenieSession.Session GenieSession.set!(session, USER_ID_KEY, user_id) end function authenticate(user_id::SearchLight.DbId, session::GenieSession.Session) authenticate(Int(user_id.value), session) end function authenticate(user_id::Union{String,Symbol,Int,SearchLight.DbId}, params::Dict{Symbol,Any} = Genie.Requests.payload()) :: GenieSession.Session authenticate(user_id, params[:SESSION]) end """ deauthenticate(session) deauthenticate(params::Dict{Symbol,Any}) Removes the user id from the session. """ function deauthenticate(session::GenieSession.Session) :: GenieSession.Session Genie.Router.params!(:SESSION, GenieSession.unset!(session, USER_ID_KEY)) end function deauthenticate(params::Dict = Genie.Requests.payload()) :: GenieSession.Session deauthenticate(get(params, :SESSION, nothing)) end """ is_authenticated(session) :: Bool is_authenticated(params::Dict{Symbol,Any}) :: Bool Returns `true` if a user id is stored on the session. """ function is_authenticated(session::Union{GenieSession.Session,Nothing}) :: Bool GenieSession.isset(session, USER_ID_KEY) end function is_authenticated(params::Dict = Genie.Requests.payload()) :: Bool is_authenticated(get(params, :SESSION, nothing)) end const authenticated = is_authenticated const isauthenticated = is_authenticated """ @authenticate!(exception::E = ExceptionalResponse(Genie.Renderer.redirect(:show_login))) If the current request is not authenticated it throws an ExceptionalResponse exception. """ macro authenticated!(exception = Genie.Exceptions.ExceptionalResponse(Genie.Renderer.redirect(:show_login))) :(authenticated!($exception)) end macro with_authentication!(ex, exception = Genie.Exceptions.ExceptionalResponse(Genie.Renderer.redirect(:show_login))) quote if ! GenieAuthentication.authenticated() throw($exception) else esc(ex) end end |> esc end function authenticated!(exception = Genie.Exceptions.ExceptionalResponse(Genie.Renderer.redirect(:show_login))) authenticated() || throw(exception) end """ get_authentication(session) :: Union{Nothing,Any} get_authentication(params::Dict{Symbol,Any}) :: Union{Nothing,Any} Returns the user id stored on the session, if available. """ function get_authentication(session::GenieSession.Session) :: Union{Nothing,Any} GenieSession.get(session, USER_ID_KEY) end function get_authentication(params::Dict = Genie.Requests.payload()) :: Union{Nothing,Any} haskey(params, :SESSION) ? get_authentication(params[:SESSION]) : nothing end const authentication = get_authentication """ login(user, session) login(user, params::Dict{Symbol,Any}) Persists on session the id of the user object and returns the session. """ function login(user::M, session::GenieSession.Session)::Union{Nothing,GenieSession.Session} where {M<:SearchLight.AbstractModel} authenticate(getfield(user, Symbol(pk(user))), session) end function login(user::M, params::Dict = Genie.Requests.payload())::Union{Nothing,GenieSession.Session} where {M<:SearchLight.AbstractModel} login(user, params[:SESSION]) end """ logout(session) :: Sessions.Session logout(params::Dict{Symbol,Any}) :: Sessions.Session Deletes the id of the user object from the session, effectively logging the user off. """ function logout(session::GenieSession.Session) :: GenieSession.Session deauthenticate(session) end function logout(params::Dict = Genie.Requests.payload()) :: GenieSession.Session logout(params[:SESSION]) end """ with_authentication(f::Function, fallback::Function, session) with_authentication(f::Function, fallback::Function, params::Dict{Symbol,Any}) Invokes `f` only if a user is currently authenticated on the session, `fallback` is invoked otherwise. """ function with_authentication(f::Function, fallback::Function, session::Union{GenieSession.Session,Nothing}) if ! is_authenticated(session) fallback() else f() end end function with_authentication(f::Function, fallback::Function, params::Dict = Genie.Requests.payload()) with_authentication(f, fallback, params[:SESSION]) end """ without_authentication(f::Function, session) without_authentication(f::Function, params::Dict{Symbol,Any}) Invokes `f` if there is no user authenticated on the current session. """ function without_authentication(f::Function, session::GenieSession.Session) ! is_authenticated(session) && f() end function without_authentication(f::Function, params::Dict = Genie.Requests.payload()) without_authentication(f, params[:SESSION]) end """ install(dest::String; force = false, debug = false) :: Nothing Copies the plugin's files into the host Genie application. """ function install(dest::String; force = false, debug = false) :: Nothing src = abspath(normpath(joinpath(pathof(@__MODULE__) |> dirname, "..", GeniePlugins.FILES_FOLDER))) debug && @info "Preparing to install from $src into $dest" debug && @info "Found these to install $(readdir(src))" for f in readdir(src) debug && @info "Processing $(joinpath(src, f))" debug && @info "$(isdir(joinpath(src, f)))" isdir(joinpath(src, f)) || continue debug && "Installing from $(joinpath(src, f))" GeniePlugins.install(joinpath(src, f), dest, force = force) end nothing end function basicauthparams(req, res, params) headers = Dict(req.headers) if haskey(headers, "Authorization") auth = headers["Authorization"] if startswith(auth, "Basic ") try auth = String(base64decode(auth[7:end])) auth = split(auth, ":") params[PARAMS_USERNAME_KEY] = auth[1] params[PARAMS_PASSWORD_KEY] = auth[2] catch _ end end end req, res, params end function isbasicauthrequest(params::Dict = Genie.Requests.payload()) :: Bool haskey(params, PARAMS_USERNAME_KEY) && haskey(params, PARAMS_PASSWORD_KEY) end function __init__() :: Nothing GenieAuthentication.basicauthparams in Genie.Router.pre_match_hooks || pushfirst!(Genie.Router.pre_match_hooks, GenieAuthentication.basicauthparams) nothing end end
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
docs
157
# CHANGELOG ## v0.2.1 - 2019-08-30 * fixed an issue with the `UserValidator` to not invalidate if the `User` is persisted (indicating an update operation)
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
docs
5600
# GenieAuthentication Authentication plugin for `Genie.jl` ## Installation The `GenieAuthentication.jl` package is an authentication plugin for `Genie.jl`, the highly productive Julia web framework. As such, it requires installation within the environment of a `Genie.jl` MVC application, allowing the plugin to install its files (which include models, controllers, database migrations, plugins, and other files). ### Load your `Genie.jl` app First load the `Genie.jl` application, for example using ```bash $> cd /path/to/your/genie_app $> ./bin/repl ``` Alternatively, you can create a new `Genie.jl` MVC application (`SearchLight.jl` ORM support is required in order to store the user accounts into the database). If you are not sure how to do that, please follow the documentation for `Genie.jl`, for example at <https://genieframework.com/docs/Genie/v5/tutorials/4-1--Developing_MVC_Web_Apps.html>. ### Add the plugin Next, add the plugin: ```julia julia> ] (MyGenieApp) pkg> add GenieAuthentication ``` Once added, we can use its `install` function to add its files to the `Genie.jl` app (required only upon installation): ```julia julia> using GenieAuthentication julia> GenieAuthentication.install(@__DIR__) ``` The above command will set up the plugin's files within your `Genie.jl` app (will create various files including new views, controllers, models, migrations, initializers, etc). ## Usage The main plugin file should now be found in the `plugins/` folder within your `Genie.jl` app. It sets up configuration and registers routes. --- **HEADS UP** Make sure to uncomment out the `/register` routes in `plugins/genie_authentication.jl` if you want to provide user registration features. They are disabled by default in order to eliminate the risk of accidentally allowing random users to create accounts and expose your application. --- ### Set up the database The plugin needs DB support to store user data. You will find a `*_create_table_users.jl` migration file within the `db/migrations/` folder. We need to run it: ```julia julia> using SearchLight julia> SearchLight.Migration.up("CreateTableUsers") ``` This will create the necessary table. --- **HEADS UP** If your app wasn't already set up to work with `SearchLight.jl`, you need to add `SearchLight.jl` support first. Please check the `Genie.jl` documentation on how to do that, for example at <https://genieframework.com/docs/Genie/v5/tutorials/4-1--Developing_MVC_Web_Apps.html#Connecting-to-the-database>. This includes setting up a `db/connection.yml` and an empty migration table with `create_migrations_table` if it has not already been done. --- ### Set up the successful login route Upon a successful login, the plugin will redirect the user to the `:success` route, which invokes `AuthenticationController.success`. --- ### Enforcing authentication Now that we have a functional authentication system, there are two ways of enforcing authentication. #### `authenticated!()` The `authenticated!()` function will enforce authentication - meaning that it will check if a user is authenticated, and if not, it will automatically throw an `ExceptionalResponse` and force a redirect to the `:show_login` route which displays the login form. We can use this anywhere in our route handling code, for example within routes: ```julia # routes.jl using GenieAuthentication route("/protected") do; authenticated!() # this code is only accessible for authenticated users end ``` Or within handler functions inside controllers: ```julia # routes.jl route("/protected", ProtectedController.secret) ``` ```julia # ProtectedController.jl using GenieAuthentication function secret() authenticated!() # this code is only accessible for authenticated users end ``` --- **HEADS UP** If you're throwing an `ExceptionalResponse` as the result of the failed authentication, make sure to also be `using Genie.Exceptions`. --- #### `authenticated()` In addition to the imperative style of the `authenticated!()` function, we can also use the `authenticated()` function (no `!` at the end) which returns a `bool` indicated if a user is currently authenticated. It is especially used for adding dynamic UI elements based on the state of the authentication: ```html <div class="row align-items-center"> <div class="col col-12 text-center"> <% if ! authenticated() %> <a href="/login" class="btn btn-light btn-lg" style="color: #fff;">Login</a> <% end %> </div> </div> ``` We can also use it to mimic the behaviour of `authenticated!()`: ```julia using Genie.Exceptions using GenieAuthentication # This function _can not_ be accessed without authentication function index() authenticated() || throw(ExceptionalResponse(redirect(:show_login))) h1("Welcome Admin") |> html end ``` Or to perform custom actions: ```julia using GenieAuthentication route("/you/shant/pass") do authenticated() || return "Can't touch this!" "You're welcome!" end ``` --- ### Adding a user You can create a user at the REPL like this (using stronger usernames and passwords though 🙈): ```julia julia> using Users julia> u = User(email = "admin@admin", name = "Admin", password = Users.hash_password("admin"), username = "admin") julia> save!(u) ``` --- ### Get current user information If the user was authenticated, check first with `authenticated()`, you can obtain the current user information with `current_user()`. ```julia using GenieAuthentication route("/your/email") do authenticated() || return "Can't get it!" user = current_user() user.email end ```
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
docs
57
# GenieAuthentication Authentication plugin for Genie.jl
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
2.2.0
760079658e6284a1462c4232d965f0f77e7e3cf8
docs
98
```@meta CurrentModule = GenieAuthentication ``` ```@autodocs Modules = [GenieAuthentication] ```
GenieAuthentication
https://github.com/GenieFramework/GenieAuthentication.jl.git
[ "MIT" ]
1.1.0
77d62b670398cb9e9600d1250dd9386e52520082
code
6853
module ExpiringCaches using Dates export Cache, @cacheable struct TimestampedValue{T} value::T timestamp::DateTime end TimestampedValue(x::T) where {T} = TimestampedValue{T}(x, Dates.now(Dates.UTC)) TimestampedValue{T}(x) where {T} = TimestampedValue{T}(x, Dates.now(Dates.UTC)) timestamp(x::TimestampedValue) = x.timestamp """ ExpiringCaches.Cache{K, V}(timeout::Dates.Period; purge_on_timeout::Bool=false) Create a thread-safe, expiring cache where values older than `timeout` are "invalid" and will be deleted. An `ExpiringCaches.Cache` is an `AbstractDict` and tries to emulate a regular `Dict` in all respects. It is most useful when the cost of retrieving or calculating a value is expensive and is able to be "cached" for a certain amount of time. To avoid using the cache (i.e. to invalidate the cache), a `Cache` supports the `delete!` and `empty!` methods to remove values manually. By default, expired keys will remain in the cache until requested (via `haskey` or `get`); if `purge_on_timeout=true` keyword argument is passed, then an async task will be spawned for each key upon entry. When the timeout task has waited `timeout` length of time, the key will be removed from the cache. """ struct Cache{K, V, P <: Dates.Period} <: AbstractDict{K, V} lock::ReentrantLock cache::Dict{K, TimestampedValue{V}} timeout::P purge_on_timeout::Bool end Cache{K, V}(timeout::Dates.Period=Dates.Minute(1); purge_on_timeout::Bool=false) where {K, V} = Cache(ReentrantLock(), Dict{K, TimestampedValue{V}}(), timeout, purge_on_timeout) expired(x::TimestampedValue, timeout) = (Dates.now(Dates.UTC) - x.timestamp) > timeout function Base.iterate(x::Cache) lock(x.lock) state = iterate(x.cache) if state === nothing unlock(x.lock) return nothing end while expired(state[1][2], x.timeout) state = iterate(x.cache, state[2]) if state === nothing unlock(x.lock) return nothing end end return (state[1][1], state[1][2].value), state[2] end function Base.iterate(x::Cache, st) state = iterate(x.cache, st) if state === nothing unlock(x.lock) return nothing end while expired(state[1][2], x.timeout) state = iterate(x.cache, state[2]) if state === nothing unlock(x.lock) return nothing end end return (state[1][1], state[1][2].value), state[2] end function Base.haskey(cache::Cache{K, V}, k::K) where {K, V} lock(cache.lock) do if haskey(cache.cache, k) x = cache.cache[k] if !expired(x, cache.timeout) return true else delete!(cache.cache, k) return false end end return false end end function Base.setindex!(cache::Cache{K, V}, val::V, key::K) where {K, V} lock(cache.lock) do val1 = TimestampedValue{V}(val) cache.cache[key] = val1 ts = timestamp(val1) if cache.purge_on_timeout Timer(div(Dates.toms(cache.timeout), 1000)) do _ lock(cache.lock) do val2 = get(cache.cache, key, nothing) # only delete if timestamp of original key matches if val2 !== nothing && timestamp(val2) == ts delete!(cache.cache, key) end end end end return val end end function Base.get(cache::Cache{K, V}, key::K, default::V) where {K, V} lock(cache.lock) do if haskey(cache.cache, key) x = cache.cache[key] if expired(x, cache.timeout) delete!(cache.cache, key) return default else return x.value end else return default end end end function Base.get!(cache::Cache{K, V}, key::K, default::V) where {K, V} lock(cache.lock) do if haskey(cache.cache, key) x = cache.cache[key] if expired(x, cache.timeout) return setindex!(cache, default, key) else return x.value end else return setindex!(cache, default, key) end end end function Base.get!(f::Function, cache::Cache{K, V}, key::K) where {K, V} lock(cache.lock) do if haskey(cache.cache, key) x = cache.cache[key] if expired(x, cache.timeout) return setindex!(cache, f()::V, key) else return x.value end else return setindex!(cache, f()::V, key) end end end Base.delete!(cache::Cache{K}, key::K) where {K} = lock(() -> delete!(cache.cache, key), cache.lock) Base.empty!(cache::Cache) = lock(() -> empty!(cache.cache), cache.lock) Base.length(cache::Cache) = length(cache.cache) """ @cacheable timeout function_definition::ReturnType For a function definition (`function_definition`, either short-form or full), create an `ExpiringCaches.Cache` and store results for `timeout` (hashed by the exact input arguments obviously). Note that the function definition _MUST_ include the `ReturnType` declartion as this is used as the value (`V`) type in the `Cache`. """ macro cacheable(timeout, func) @assert func.head == :function func.args[1].head == :(::) || throw(ArgumentError("@cacheable function must specify return type: $func")) returnType = func.args[1].args[2] sig = func.args[1].args[1] functionBody = func.args[2] funcName = sig.args[1] internalFuncName = Symbol("__$funcName") sig.args[1] = internalFuncName funcArgs = sig.args[2:end] argTypes = map(x->x.args[2], funcArgs) internalFunction = Expr(:function, sig, functionBody) cacheName = gensym() return esc(quote const $cacheName = ExpiringCaches.Cache{Tuple{$(argTypes...)}, $returnType}($timeout) $internalFunction Base.@__doc__ function $funcName($(funcArgs...))::$returnType return get!($cacheName, tuple($(funcArgs...))) do $internalFuncName($(funcArgs...)) end end ExpiringCaches.getcache(f::typeof($funcName)) = $cacheName $funcName end) end function getcache end # @cacheable Dates.Minute(2) function foo(arg1::Int, arg2::String)::ReturnType # x = x + 1 # y = y * 2 # return foobar # end # @cacheable Dates.Minute(2) foo(arg1::Int, arg2::Int)::String = # ... # const CACHE_foo_Int_String = Cache{Tuple{Int, String}, ReturnType}(timeout) # function foo(args...)::ReturnType # return get!(CACHE_foo_Int_String, args) do # _foo(args...) # end # end # function _foo(arg1::Int, arg2::String)::ReturnType # # ... # end end # module
ExpiringCaches
https://github.com/JuliaServices/ExpiringCaches.jl.git
[ "MIT" ]
1.1.0
77d62b670398cb9e9600d1250dd9386e52520082
code
1275
using Test, Dates, ExpiringCaches """ foo(arg1::Int, arg2::String) Some docs to check that it doesn't break. """ ExpiringCaches.@cacheable Dates.Second(3) function foo(arg1::Int, arg2::String)::Float64 sleep(2) return arg1 / length(arg2) end @testset "ExpiringCaches" begin cache = ExpiringCaches.Cache{Int, Int}(Dates.Second(5)) @test length(cache) == 0 @test isempty(cache) @test get(cache, 1, 2) == 2 @test isempty(cache) @test get!(cache, 1, 2) == 2 @test !isempty(cache) for (k, v) in cache @test v == 2 end sleep(5) # test that key isn't used after it expires @test get(cache, 1, 3) == 3 @test get!(()->4, cache, 1) == 4 @test isempty(delete!(cache, 1)) cache[1] = 5 @test !isempty(cache) @test isempty(empty!(cache)) @test foo(1, "ffff") == 0.25 tm = @elapsed foo(1, "ffff") @test tm < 2 # test that normal function body wasn't executed sleep(3) tm = @elapsed foo(1, "ffff") @test tm > 2 # test that normal function body was executed cache = ExpiringCaches.Cache{Int, Int}(Dates.Second(5); purge_on_timeout=true) cache[1] = 2 @test !isempty(cache) sleep(3) cache[1] = 3 sleep(2.5) # key isn't purged because we replaced it, so timer is "reset" @test !isempty(cache) sleep(3) # key is now purged w/o being accessed @test isempty(cache) end
ExpiringCaches
https://github.com/JuliaServices/ExpiringCaches.jl.git
[ "MIT" ]
1.1.0
77d62b670398cb9e9600d1250dd9386e52520082
docs
1305
# ExpiringCaches.jl *A Dict type with expiring values and a `@cacheable` macro to cache function results in an expiring cache* ## Installation The package is registered in the [`General`](https://github.com/JuliaRegistries/General) registry and so can be installed at the REPL with `] add ExpiringCaches`. ## Usage ### `Cache` ExpiringCaches.Cache{K, V}(timeout::Dates.Period; purge_on_timeout::Bool=false) Create a thread-safe, expiring cache where values older than `timeout` are "invalid" and will be deleted. An `ExpiringCaches.Cache` is an `AbstractDict` and tries to emulate a regular `Dict` in all respects. It is most useful when the cost of retrieving or calculating a value is expensive and is able to be "cached" for a certain amount of time. To avoid using the cache (i.e. to invalidate the cache), a `Cache` supports the `delete!` and `empty!` methods to remove values manually. ### `@cacheable` @cacheable timeout function_definition::ReturnType For a function definition (`function_definition`, either short-form or full), create an `ExpiringCaches.Cache` and store results for `timeout` (hashed by the exact input arguments obviously). Note that the function definition _MUST_ include the `ReturnType` declartion as this is used as the value (`V`) type in the `Cache`.
ExpiringCaches
https://github.com/JuliaServices/ExpiringCaches.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
397
using JuliaFormatter # we asume the format_all.jl script is located in .formatting project_path = Base.Filesystem.joinpath(Base.Filesystem.dirname(Base.source_path()), "..") not_formatted = format(project_path; verbose=true) if not_formatted @info "Formatting verified." else @warn "Formatting verification failed: Some files are not properly formatted!" end exit(not_formatted ? 0 : 1)
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1266
using Pkg project_path = Base.Filesystem.joinpath(Base.Filesystem.dirname(Base.source_path()), "..") Pkg.develop(; path=project_path) using Documenter using ComputableDAGs pages = [ "index.md", "Manual" => "manual.md", "Library" => [ "Public" => "lib/public.md", "Graph" => "lib/internals/graph.md", "Node" => "lib/internals/node.md", "Task" => "lib/internals/task.md", "Operation" => "lib/internals/operation.md", "Models" => "lib/internals/models.md", "Diff" => "lib/internals/diff.md", "Utility" => "lib/internals/utility.md", "Code Generation" => "lib/internals/code_gen.md", "Devices" => "lib/internals/devices.md", ], "Contribution" => "contribution.md", ] makedocs(; modules=[ComputableDAGs], checkdocs=:exports, authors="Anton Reinhard", repo=Documenter.Remotes.GitHub("ComputableDAGs", "ComputableDAGs.jl"), sitename="ComputableDAGs.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://ComputableDAGs.github.io/ComputableDAGs.jl", assets=String[], ), pages=pages, ) deploydocs(; repo="github.com/ComputableDAGs/ComputableDAGs.jl.git", push_preview=false)
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
373
module AMDGPUExt using ComputableDAGs using UUIDs using AMDGPU function __init__() @debug "Loading AMDGPUExt" push!(ComputableDAGs.DEVICE_TYPES, ROCmGPU) ComputableDAGs.CACHE_STRATEGIES[ROCmGPU] = [LocalVariables()] return nothing end # include specialized AMDGPU functions here include("devices/rocm/impl.jl") include("devices/rocm/function.jl") end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
365
module CUDAExt using ComputableDAGs using UUIDs using CUDA function __init__() @debug "Loading CUDAExt" push!(ComputableDAGs.DEVICE_TYPES, CUDAGPU) ComputableDAGs.CACHE_STRATEGIES[CUDAGPU] = [LocalVariables()] return nothing end # include specialized CUDA functions here include("devices/cuda/impl.jl") include("devices/cuda/function.jl") end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
343
module oneAPIExt using ComputableDAGs using UUIDs using oneAPI function __init__() @debug "Loading oneAPIExt" push!(ComputableDAGs.DEVICE_TYPES, oneAPIGPU) ComputableDAGs.CACHE_STRATEGIES[oneAPIGPU] = [LocalVariables()] return nothing end # include specialized oneAPI functions here include("devices/oneapi/impl.jl") end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1126
function ComputableDAGs.kernel( ::Type{CUDAGPU}, graph::DAG, instance, context_module::Module ) machine = cpu_st() tape = ComputableDAGs.gen_tape(graph, instance, machine, context_module) init_caches = Expr(:block, tape.initCachesCode...) assign_inputs = Expr(:block, ComputableDAGs.expr_from_fc.(tape.inputAssignCode)...) code = Expr(:block, ComputableDAGs.expr_from_fc.(tape.computeCode)...) function_id = ComputableDAGs.to_var_name(UUIDs.uuid1(ComputableDAGs.rng[1])) res_sym = eval( ComputableDAGs.gen_access_expr( ComputableDAGs.entry_device(tape.machine), tape.outputSymbol ), ) expr = Meta.parse( "function compute_$(function_id)(input_vector, output_vector, n::Int64) id = (blockIdx().x - 1) * blockDim().x + threadIdx().x if (id > n) return end @inline data_input = input_vector[id] $(init_caches) $(assign_inputs) $code @inline output_vector[id] = $res_sym return nothing end" ) return expr end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
925
ComputableDAGs.default_strategy(::Type{CUDAGPU}) = LocalVariables() function ComputableDAGs.measure_device!(device::CUDAGPU; verbose::Bool) verbose && @info "Measuring CUDA GPU $(device.device)" # TODO implement return nothing end """ get_devices(::Type{CUDAGPU}; verbose::Bool) Return a Vector of [`CUDAGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information. """ function ComputableDAGs.get_devices(::Type{CUDAGPU}; verbose::Bool=false) devices = Vector{ComputableDAGs.AbstractDevice}() if !CUDA.functional() @warn "The CUDA extension is loaded but CUDA.jl is non-functional" return devices end CUDADevices = CUDA.devices() verbose && @info "Found $(length(CUDADevices)) CUDA devices" for device in CUDADevices push!(devices, CUDAGPU(device, default_strategy(CUDAGPU), -1)) end return devices end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
965
ComputableDAGs.default_strategy(::Type{oneAPIGPU}) = LocalVariables() function ComputableDAGs.measure_device!(device::oneAPIGPU; verbose::Bool) verbose && @info "Measuring oneAPI GPU $(device.device)" # TODO implement return nothing end """ get_devices(::Type{oneAPIGPU}; verbose::Bool = false) Return a Vector of [`oneAPIGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information. """ function ComputableDAGs.get_devices(::Type{oneAPIGPU}; verbose::Bool=false) devices = Vector{ComputableDAGs.AbstractDevice}() if !oneAPI.functional() @warn "the oneAPI extension is loaded but oneAPI.jl is non-functional" return devices end oneAPIDevices = oneAPI.devices() verbose && @info "Found $(length(oneAPIDevices)) oneAPI devices" for device in oneAPIDevices push!(devices, oneAPIGPU(device, default_strategy(oneAPIGPU), -1)) end return devices end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1137
function ComputableDAGs.kernel( ::Type{ROCmGPU}, graph::DAG, instance, context_module::Module ) machine = cpu_st() tape = ComputableDAGs.gen_tape(graph, instance, machine, context_module) init_caches = Expr(:block, tape.initCachesCode...) assign_inputs = Expr(:block, ComputableDAGs.expr_from_fc.(tape.inputAssignCode)...) code = Expr(:block, ComputableDAGs.expr_from_fc.(tape.computeCode)...) function_id = ComputableDAGs.to_var_name(UUIDs.uuid1(ComputableDAGs.rng[1])) res_sym = eval( ComputableDAGs.gen_access_expr( ComputableDAGs.entry_device(tape.machine), tape.outputSymbol ), ) expr = Meta.parse( "function compute_$(function_id)(input_vector, output_vector, n::Int64) id = (workgroupIdx().x - 1) * workgroupDim().x + workgroupIdx().x if (id > n) return end @inline data_input = input_vector[id] $(init_caches) $(assign_inputs) $code @inline output_vector[id] = $res_sym return nothing end" ) return expr end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
937
ComputableDAGs.default_strategy(::Type{ROCmGPU}) = LocalVariables() function ComputableDAGs.measure_device!(device::ROCmGPU; verbose::Bool) verbose && @info "Measuring ROCm GPU $(device.device)" # TODO implement return nothing end """ get_devices(::Type{ROCmGPU}; verbose::Bool = false) Return a Vector of [`ROCmGPU`](@ref)s available on the current machine. If `verbose` is true, print some additional information. """ function ComputableDAGs.get_devices(::Type{ROCmGPU}; verbose::Bool=false) devices = Vector{ComputableDAGs.AbstractDevice}() if !AMDGPU.functional() @warn "The AMDGPU extension is loaded but AMDGPU.jl is non-functional" return devices end AMDDevices = AMDGPU.devices() verbose && @info "Found $(length(AMDDevices)) AMD devices" for device in AMDDevices push!(devices, ROCmGPU(device, default_strategy(ROCmGPU), -1)) end return devices end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
3281
""" ComputableDAGs A module containing tools to represent computations as DAGs. """ module ComputableDAGs using RuntimeGeneratedFunctions RuntimeGeneratedFunctions.init(@__MODULE__) # graph types export DAG, Node, Edge export ComputeTaskNode, DataTaskNode export AbstractTask, AbstractComputeTask, AbstractDataTask export DataTask export PossibleOperations export GraphProperties # graph functions export make_node, make_edge export insert_node!, insert_edge! export is_entry_node, is_exit_node export parents, children, partners, siblings export compute, data, compute_effort, task export get_properties, get_exit_node export operation_stack_length export is_valid, is_scheduled # graph operation related export Operation, AppliedOperation export NodeReduction, NodeSplit export push_operation!, pop_operation!, can_pop export reset_graph! export get_operations # code generation related export execute export get_compute_function export gen_tape, execute_tape export unpack_identity # estimator export cost_type, graph_cost, operation_effect export GlobalMetricEstimator, CDCost # optimization export AbstractOptimizer, GreedyOptimizer, RandomWalkOptimizer export ReductionOptimizer, SplitOptimizer export optimize_step!, optimize! export fixpoint_reached, optimize_to_fixpoint! # models export AbstractModel, AbstractProblemInstance export problem_instance, input_type, graph, input_expr # machine info export Machine export NumaNode export get_machine_info, cpu_st export CacheStrategy, default_strategy export LocalVariables, Dictionary # GPU Extensions export kernel, CUDAGPU, ROCmGPU, oneAPIGPU include("devices/interface.jl") include("task/type.jl") include("node/type.jl") include("diff/type.jl") include("properties/type.jl") include("operation/type.jl") include("graph/type.jl") include("scheduler/type.jl") include("trie.jl") include("utils.jl") include("diff/print.jl") include("diff/properties.jl") include("graph/compare.jl") include("graph/interface.jl") include("graph/mute.jl") include("graph/print.jl") include("graph/properties.jl") include("graph/validate.jl") include("node/compare.jl") include("node/create.jl") include("node/print.jl") include("node/properties.jl") include("node/validate.jl") include("operation/utility.jl") include("operation/iterate.jl") include("operation/apply.jl") include("operation/clean.jl") include("operation/find.jl") include("operation/get.jl") include("operation/print.jl") include("operation/validate.jl") include("properties/create.jl") include("properties/utility.jl") include("task/create.jl") include("task/compare.jl") include("task/compute.jl") include("task/properties.jl") include("estimator/interface.jl") include("estimator/global_metric.jl") include("optimization/interface.jl") include("optimization/greedy.jl") include("optimization/random_walk.jl") include("optimization/reduce.jl") include("optimization/split.jl") include("models/interface.jl") include("devices/measure.jl") include("devices/detect.jl") include("devices/impl.jl") include("devices/numa/impl.jl") include("devices/ext.jl") include("scheduler/interface.jl") include("scheduler/greedy.jl") include("code_gen/type.jl") include("code_gen/tape_machine.jl") include("code_gen/function.jl") end # module ComputableDAGs
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
4040
""" NodeIdTrie Helper struct for [`NodeTrie`](@ref). After the Trie's first level, every Trie level contains the vector of nodes that had children up to that level, and the TrieNode's children by UUID of the node's children. """ mutable struct NodeIdTrie{NodeType<:Node} value::Vector{NodeType} children::Dict{UUID,NodeIdTrie{NodeType}} end """ NodeTrie Trie data structure for node reduction, inserts nodes by children. Assumes that given nodes have ordered vectors of children (see [`sort_node!`](@ref)). First insertion level is the node's own task type and thus does not have a value (every node has a task type). See also: [`insert!`](@ref) and [`collect`](@ref) """ mutable struct NodeTrie children::Dict{DataType,NodeIdTrie} end """ NodeTrie() Constructor for an empty [`NodeTrie`](@ref). """ function NodeTrie() return NodeTrie(Dict{DataType,NodeIdTrie}()) end """ NodeIdTrie() Constructor for an empty [`NodeIdTrie`](@ref). """ function NodeIdTrie{NodeType}() where {NodeType<:Node} return NodeIdTrie(Vector{NodeType}(), Dict{UUID,NodeIdTrie{NodeType}}()) end """ insert_helper!(trie::NodeIdTrie, node::Node, depth::Int) Insert the given node into the trie. The depth is used to iterate through the trie layers, while the function calls itself recursively until it ran through all children of the node. """ function insert_helper!( trie::NodeIdTrie{NodeType}, node::NodeType, depth::Int ) where {TaskType<:AbstractDataTask,NodeType<:DataTaskNode{TaskType}} if (length(children(node)) == depth) push!(trie.value, node) return nothing end depth = depth + 1 id = node.children[depth][1].id if (!haskey(trie.children, id)) trie.children[id] = NodeIdTrie{NodeType}() end return insert_helper!(trie.children[id], node, depth) end # TODO: Remove this workaround once https://github.com/JuliaLang/julia/issues/54404 is fixed in julia 1.10+ function insert_helper!( trie::NodeIdTrie{NodeType}, node::NodeType, depth::Int ) where {TaskType<:AbstractComputeTask,NodeType<:ComputeTaskNode{TaskType}} if (length(children(node)) == depth) push!(trie.value, node) return nothing end depth = depth + 1 id = node.children[depth][1].id if (!haskey(trie.children, id)) trie.children[id] = NodeIdTrie{NodeType}() end return insert_helper!(trie.children[id], node, depth) end """ insert!(trie::NodeTrie, node::Node) Insert the given node into the trie. It's sorted by its type in the first layer, then by its children in the following layers. """ function Base.insert!( trie::NodeTrie, node::NodeType ) where {TaskType<:AbstractDataTask,NodeType<:DataTaskNode{TaskType}} if (!haskey(trie.children, NodeType)) trie.children[NodeType] = NodeIdTrie{NodeType}() end return insert_helper!(trie.children[NodeType], node, 0) end # TODO: Remove this workaround once https://github.com/JuliaLang/julia/issues/54404 is fixed in julia 1.10+ function Base.insert!( trie::NodeTrie, node::NodeType ) where {TaskType<:AbstractComputeTask,NodeType<:ComputeTaskNode{TaskType}} if (!haskey(trie.children, NodeType)) trie.children[NodeType] = NodeIdTrie{NodeType}() end return insert_helper!(trie.children[NodeType], node, 0) end """ collect_helper(trie::NodeIdTrie, acc::Set{Vector{Node}}) Collects the Vectors of this [`NodeIdTrie`](@ref) node and all its children and puts them in the `acc` argument. """ function collect_helper(trie::NodeIdTrie, acc::Set{Vector{Node}}) if (length(trie.value) >= 2) push!(acc, trie.value) end for (id, child) in trie.children collect_helper(child, acc) end return nothing end """ collect(trie::NodeTrie) Return all sets of at least 2 [`Node`](@ref)s that have accumulated in leaves of the trie. """ function Base.collect(trie::NodeTrie) acc = Set{Vector{Node}}() for (t, child) in trie.children collect_helper(child, acc) end return acc end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
3519
""" noop() Function with no arguments, returns nothing, does nothing. Useful for noop [`FunctionCall`](@ref)s. """ @inline noop() = nothing """ unpack_identity(x::SVector) Function taking an `SVector`, returning it unpacked. """ @inline unpack_identity(x::SVector{1,<:Any}) = x[1] @inline unpack_identity(x) = x """ bytes_to_human_readable(bytes) Return a human readable string representation of the given number. ```jldoctest julia> using ComputableDAGs julia> ComputableDAGs.bytes_to_human_readable(4096) "4.0 KiB" ``` """ function bytes_to_human_readable(bytes) units = ["B", "KiB", "MiB", "GiB", "TiB"] unit_index = 1 while bytes >= 1024 && unit_index < length(units) bytes /= 1024 unit_index += 1 end return string(round(bytes; sigdigits=4), " ", units[unit_index]) end """ _lt_nodes(n1::Node, n2::Node) Less-Than comparison between nodes. Uses the nodes' ids to sort. """ function _lt_nodes(n1::Node, n2::Node) return n1.id < n2.id end """ _lt_node_tuples(n1::Tuple{Node, Int}, n2::Tuple{Node, Int}) Less-Than comparison between nodes with indices. """ function _lt_node_tuples(n1::Tuple{Node,Int}, n2::Tuple{Node,Int}) if n1[2] == n2[2] return n1[1].id < n2[1].id else return n1[2] < n2[2] end end """ sort_node!(node::Node) Sort the nodes' parents and children vectors. The vectors are mostly very short so sorting does not take a lot of time. Sorted nodes are required to make the finding of [`NodeReduction`](@ref)s a lot faster using the [`NodeTrie`](@ref) data structure. """ function sort_node!(node::Node) sort!(children(node); lt=_lt_node_tuples) return sort!(parents(node); lt=_lt_nodes) end """ mem(graph::DAG) Return the memory footprint of the graph in Byte. Should be the same result as `Base.summarysize(graph)` but a lot faster. """ function mem(graph::DAG) size = 0 size += Base.summarysize(graph.nodes; exclude=Union{Node}) for n in graph.nodes size += mem(n) end size += sizeof(graph.appliedOperations) size += sizeof(graph.operationsToApply) size += sizeof(graph.possibleOperations) for op in graph.possibleOperations.nodeReductions size += mem(op) end for op in graph.possibleOperations.nodeSplits size += mem(op) end size += Base.summarysize(graph.dirtyNodes; exclude=Union{Node}) return size += sizeof(diff) end """ mem(op::Operation) Return the memory footprint of the operation in Byte. Used in [`mem(graph::DAG)`](@ref). Unlike `Base.summarysize()` this doesn't follow all references which would yield (almost) the size of the entire graph. """ function mem(op::Operation) return Base.summarysize(op; exclude=Union{Node}) end """ mem(op::Operation) Return the memory footprint of the node in Byte. Used in [`mem(graph::DAG)`](@ref). Unlike `Base.summarysize()` this doesn't follow all references which would yield (almost) the size of the entire graph. """ function mem(node::Node) return Base.summarysize(node; exclude=Union{Node,Operation}) end """ unroll_symbol_vector(vec::Vector{Symbol}) Return the given vector as single String without quotation marks or brackets. """ function unroll_symbol_vector(vec::Vector) result = "" for s in vec if (result != "") result *= ", " end result *= "$s" end return result end function unroll_symbol_vector(vec::SVector) return unroll_symbol_vector(Vector(vec)) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1985
""" get_compute_function( graph::DAG, instance, machine::Machine, context_module::Module ) Return a function of signature `compute_<id>(input::input_type(instance))`, which will return the result of the DAG computation on the given input. The final argument `context_module` should always be `@__MODULE__` to be able to use functions defined in the caller's environment. For this to work, you need ```Julia using RuntimeGeneratedFunctions RuntimeGeneratedFunctions.init(@__MODULE__) ``` in your top level. """ function get_compute_function( graph::DAG, instance, machine::Machine, context_module::Module ) tape = gen_tape(graph, instance, machine, context_module) initCaches = Expr(:block, tape.initCachesCode...) assignInputs = Expr(:block, expr_from_fc.(tape.inputAssignCode)...) code = Expr(:block, expr_from_fc.(tape.computeCode)...) functionId = to_var_name(UUIDs.uuid1(rng[1])) resSym = eval(gen_access_expr(entry_device(tape.machine), tape.outputSymbol)) expr = # Expr( :function, # function definition Expr( :call, Symbol("compute_$functionId"), Expr(:(::), :data_input, input_type(instance)), ), # function name and parameters Expr(:block, initCaches, assignInputs, code, Expr(:return, resSym)), # function body ) return RuntimeGeneratedFunction(@__MODULE__, context_module, expr) end """ execute( graph::DAG, instance, machine::Machine, input, context_module::Module ) Execute the code of the given `graph` on the given input values. This is essentially shorthand for ```julia tape = gen_tape(graph, instance, machine, context_module) return execute_tape(tape, input) ``` """ function execute(graph::DAG, instance, machine::Machine, input, context_module::Module) tape = gen_tape(graph, instance, machine, context_module) return execute_tape(tape, input) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
5906
# TODO: do this with macros function call_fc( fc::FunctionCall{VectorT,0}, cache::Dict{Symbol,Any} ) where {VectorT<:SVector{1}} cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]]) return nothing end function call_fc( fc::FunctionCall{VectorT,1}, cache::Dict{Symbol,Any} ) where {VectorT<:SVector{1}} cache[fc.return_symbol] = fc.func(fc.value_arguments[1], cache[fc.arguments[1]]) return nothing end function call_fc( fc::FunctionCall{VectorT,0}, cache::Dict{Symbol,Any} ) where {VectorT<:SVector{2}} cache[fc.return_symbol] = fc.func(cache[fc.arguments[1]], cache[fc.arguments[2]]) return nothing end function call_fc( fc::FunctionCall{VectorT,1}, cache::Dict{Symbol,Any} ) where {VectorT<:SVector{2}} cache[fc.return_symbol] = fc.func( fc.value_arguments[1], cache[fc.arguments[1]], cache[fc.arguments[2]] ) return nothing end function call_fc(fc::FunctionCall{VectorT,1}, cache::Dict{Symbol,Any}) where {VectorT} cache[fc.return_symbol] = fc.func( fc.value_arguments[1], getindex.(Ref(cache), fc.arguments)... ) return nothing end """ call_fc(fc::FunctionCall, cache::Dict{Symbol, Any}) Execute the given [`FunctionCall`](@ref) on the dictionary. Several more specialized versions of this function exist to reduce vector unrolling work for common cases. """ function call_fc(fc::FunctionCall{VectorT,M}, cache::Dict{Symbol,Any}) where {VectorT,M} cache[fc.return_symbol] = fc.func( fc.value_arguments..., getindex.(Ref(cache), fc.arguments)... ) return nothing end function expr_from_fc(fc::FunctionCall{VectorT,0}) where {VectorT} func_call = Expr( :call, fc.func, eval.(gen_access_expr.(Ref(fc.device), fc.arguments))... ) access_expr = eval(gen_access_expr(fc.device, fc.return_symbol)) return Expr(:(=), access_expr, func_call) end """ expr_from_fc(fc::FunctionCall) For a given function call, return an expression evaluating it. """ function expr_from_fc(fc::FunctionCall{VectorT,M}) where {VectorT,M} func_call = Expr( :call, fc.func, fc.value_arguments..., eval.(gen_access_expr.(Ref(fc.device), fc.arguments))..., ) access_expr = eval(gen_access_expr(fc.device, fc.return_symbol)) return Expr(:(=), access_expr, func_call) end """ gen_cache_init_code(machine::Machine) For each [`AbstractDevice`](@ref) in the given [`Machine`](@ref), returning a `Vector{Expr}` doing the initialization. """ function gen_cache_init_code(machine::Machine) initialize_caches = Vector{Expr}() for device in machine.devices push!(initialize_caches, gen_cache_init_code(device)) end return initialize_caches end """ gen_input_assignment_code( input_symbols::Dict{String, Vector{Symbol}}, instance::AbstractProblemInstance, machine::Machine, context_module::Module ) Return a `Vector{Expr}` doing the input assignments from the given `problem_input` onto the `input_symbols`. """ function gen_input_assignment_code( input_symbols::Dict{String,Vector{Symbol}}, instance, machine::Machine, context_module::Module, ) assign_inputs = Vector{FunctionCall}() for (name, symbols) in input_symbols # make a function for this, since we can't use anonymous functions in the FunctionCall for symbol in symbols device = entry_device(machine) fc = FunctionCall( RuntimeGeneratedFunction( @__MODULE__, context_module, Expr(:->, :x, input_expr(instance, name, :x)), ), SVector{0,Any}(), SVector{1,Symbol}(:input), symbol, device, ) push!(assign_inputs, fc) end end return assign_inputs end """ gen_tape( graph::DAG, instance::AbstractProblemInstance, machine::Machine, context_module::Module, scheduler::AbstractScheduler = GreedyScheduler() ) Generate the code for a given graph. The return value is a [`Tape`](@ref). See also: [`execute`](@ref), [`execute_tape`](@ref) """ function gen_tape( graph::DAG, instance, machine::Machine, context_module::Module, scheduler::AbstractScheduler=GreedyScheduler(), ) schedule = schedule_dag(scheduler, graph, machine) # get inSymbols inputSyms = Dict{String,Vector{Symbol}}() for node in get_entry_nodes(graph) if !haskey(inputSyms, node.name) inputSyms[node.name] = Vector{Symbol}() end push!(inputSyms[node.name], Symbol("$(to_var_name(node.id))_in")) end # get outSymbol outSym = Symbol(to_var_name(get_exit_node(graph).id)) initCaches = gen_cache_init_code(machine) assign_inputs = gen_input_assignment_code(inputSyms, instance, machine, context_module) return Tape{input_type(instance)}( initCaches, assign_inputs, schedule, inputSyms, outSym, Dict(), instance, machine ) end """ execute_tape(tape::Tape, input::Input) where {Input} Execute the given tape with the given input. For implementation reasons, this disregards the set [`CacheStrategy`](@ref) of the devices and always uses a dictionary. """ function execute_tape(tape::Tape, input) cache = Dict{Symbol,Any}() cache[:input] = input # simply execute all the code snippets here @assert typeof(input) <: input_type(tape.instance) "expected tape input type to fit $(input_type(tape.instance)) but got $(typeof(input))" for expr in tape.initCachesCode @eval $expr end for function_call in tape.inputAssignCode call_fc(function_call, cache) end for function_call in tape.computeCode call_fc(function_call, cache) end return cache[tape.outputSymbol] end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
694
""" Tape{INPUT} TODO: update docs - `INPUT` the input type of the problem instance - `code::Vector{Expr}`: The julia expression containing the code for the whole graph. - `inputSymbols::Dict{String, Vector{Symbol}}`: A dictionary of symbols mapping the names of the input nodes of the graph to the symbols their inputs should be provided on. - `outputSymbol::Symbol`: The symbol of the final calculated value """ struct Tape{INPUT} initCachesCode::Vector{Expr} inputAssignCode::Vector{FunctionCall} computeCode::Vector{FunctionCall} inputSymbols::Dict{String,Vector{Symbol}} outputSymbol::Symbol cache::Dict{Symbol,Any} instance::Any machine::Machine end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
701
""" get_machine_info(verbose::Bool) Return the [`Machine`](@ref) currently running on. The parameter `verbose` defaults to true when interactive. """ function get_machine_info(; verbose::Bool=Base.is_interactive) devices = Vector{AbstractDevice}() for device in device_types() devs = get_devices(device; verbose=verbose) for dev in devs push!(devices, dev) end end noDevices = length(devices) @assert noDevices > 0 "No devices were found, but at least one NUMA node should always be available!" transferRates = Matrix{Float64}(undef, noDevices, noDevices) fill!(transferRates, -1) return Machine(devices, transferRates) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1111
# file for struct definitions used by the extensions # since extensions can't export names themselves """ CUDAGPU <: AbstractGPU Representation of a specific CUDA GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface. !!! note This requires CUDA to be loaded to be useful. """ mutable struct CUDAGPU <: AbstractGPU device::Any # CuDevice cacheStrategy::CacheStrategy FLOPS::Float64 end """ oneAPIGPU <: AbstractGPU Representation of a specific Intel GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface. !!! note This requires oneAPI to be loaded to be useful. """ mutable struct oneAPIGPU <: AbstractGPU device::Any # oneAPI.oneL0.ZeDevice cacheStrategy::CacheStrategy FLOPS::Float64 end """ ROCmGPU <: AbstractGPU Representation of a specific AMD GPU that code can run on. Implements the [`AbstractDevice`](@ref) interface. !!! note This requires AMDGPU to be loaded to be useful. """ mutable struct ROCmGPU <: AbstractGPU device::Any # HIPDevice cacheStrategy::CacheStrategy FLOPS::Float64 end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1771
""" device_types() Return a vector of available and implemented device types. See also: [`DEVICE_TYPES`](@ref) """ function device_types() return DEVICE_TYPES end """ entry_device(machine::Machine) Return the "entry" device, i.e., the device that starts CPU threads and GPU kernels, and takes input values and returns the output value. """ function entry_device(machine::Machine) return machine.devices[1] end """ strategies(t::Type{T}) where {T <: AbstractDevice} Return a vector of available [`CacheStrategy`](@ref)s for the given [`AbstractDevice`](@ref). The caching strategies are used in code generation. """ function strategies(t::Type{T}) where {T<:AbstractDevice} if !haskey(CACHE_STRATEGIES, t) error("Trying to get strategies for $T, but it has no strategies defined!") end return CACHE_STRATEGIES[t] end """ cache_strategy(device::AbstractDevice) Returns the cache strategy set for this device. """ function cache_strategy(device::AbstractDevice) return device.cacheStrategy end """ set_cache_strategy(device::AbstractDevice, cacheStrategy::CacheStrategy) Sets the device's cache strategy. After this call, [`cache_strategy`](@ref) should return `cacheStrategy` on the given device. """ function set_cache_strategy(device::AbstractDevice, cacheStrategy::CacheStrategy) device.cacheStrategy = cacheStrategy return nothing end """ cpu_st() A function returning a [`Machine`](@ref) that only has a single thread of one CPU. It is the simplest machine definition possible and produces a simple function when used with [`get_compute_function`](@ref). """ function cpu_st() return Machine( [NumaNode(0, 1, default_strategy(NumaNode), -1.0, UUIDs.uuid1())], [-1.0;;] ) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
6267
""" AbstractDevice Abstract base type for every device, like GPUs, CPUs or any other compute devices. Every implementation needs to implement various functions and needs a member `cacheStrategy`. """ abstract type AbstractDevice end abstract type AbstractCPU <: AbstractDevice end abstract type AbstractGPU <: AbstractDevice end """ Machine A representation of a machine to execute on. Contains information about its architecture (CPUs, GPUs, maybe more). This representation can be used to make a more accurate cost prediction of a [`DAG`](@ref) state. See also: [`Scheduler`](@ref) """ struct Machine devices::Vector{AbstractDevice} transferRates::Matrix{Float64} end """ CacheStrategy Abstract base type for caching strategies. See also: [`strategies`](@ref) """ abstract type CacheStrategy end """ LocalVariables <: CacheStrategy A caching strategy relying solely on local variables for every input and output. Implements the [`CacheStrategy`](@ref) interface. """ struct LocalVariables <: CacheStrategy end """ Dictionary <: CacheStrategy A caching strategy relying on a dictionary of Symbols to store every input and output. Implements the [`CacheStrategy`](@ref) interface. """ struct Dictionary <: CacheStrategy end """ DEVICE_TYPES::Vector{Type} Global vector of available and implemented device types. Each implementation of a [`AbstractDevice`](@ref) should add its concrete type to this vector. See also: [`device_types`](@ref), [`get_devices`](@ref) """ DEVICE_TYPES = Vector{Type}() """ CACHE_STRATEGIES::Dict{Type{AbstractDevice}, Symbol} Global dictionary of available caching strategies per device. Each implementation of [`AbstractDevice`](@ref) should add its available strategies to the dictionary. See also: [`strategies`](@ref) """ CACHE_STRATEGIES = Dict{Type,Vector{CacheStrategy}}() """ default_strategy(deviceType::Type{T}) where {T <: AbstractDevice} Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Returns the default [`CacheStrategy`](@ref) to use on the given device type. See also: [`cache_strategy`](@ref), [`set_cache_strategy`](@ref) """ function default_strategy end """ get_devices(t::Type{T}; verbose::Bool) where {T <: AbstractDevice} Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Returns a `Vector{Type}` of the devices for the given [`AbstractDevice`](@ref) Type available on the current machine. """ function get_devices end """ measure_device!(device::AbstractDevice; verbose::Bool) Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref). Measures the compute speed of the given device and writes into it. """ function measure_device! end """ gen_cache_init_code(device::AbstractDevice) Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref) and at least one [`CacheStrategy`](@ref). Returns an `Expr` initializing this device's variable cache. The strategy is a symbol """ function gen_cache_init_code end """ gen_access_expr(device::AbstractDevice, symbol::Symbol) Interface function that must be implemented for every subtype of [`AbstractDevice`](@ref) and at least one [`CacheStrategy`](@ref). Return an `Expr` or `QuoteNode` accessing the variable identified by [`symbol`]. """ function gen_access_expr end """ kernel(gpu_type::Type{<:AbstractGPU}, graph::DAG, instance) For a GPU type, a [`DAG`](@ref), and a problem instance, return an `Expr` containing a function of signature `compute_<id>(input::<GPU>Vector, output::<GPU>Vector, n::Int64)`, which will return the result of the DAG computation of the input on the given output vector, intended for computation on GPUs. Currently, `CUDAGPU` and `ROCmGPU` are available if their respective package extensions are loaded. The generated kernel function accepts its thread ID in only the x-dimension, and only as thread ID, not as block ID. The input and output should therefore be 1-dimensional vectors. For detailed information on GPU programming and the Julia packages, please refer to their respective documentations. A simple example call for a CUDA kernel might look like the following: ```Julia @cuda threads = (32,) always_inline = true cuda_kernel!(cu_inputs, outputs, length(cu_inputs)) ``` !!! note Unlike the standard [`get_compute_function`](@ref) to generate a callable function which returns a `RuntimeGeneratedFunction`, this returns an `Expr` that needs to be `eval`'d. This is a current limitation of `RuntimeGeneratedFunctions.jl` which currently cannot wrap GPU kernels. This might change in the future. ### Size limitation The generated kernel does not use any internal parallelization, i.e., the DAG is compiled into a serialized function, processing each input in a single thread of the GPU. This means it can be heavily parallelized and use the GPU at 100% for sufficiently large input vectors (and assuming the function does not become IO limited etc.). However, it also means that there is a limit to how large the compiled function can be. If it gets too large, the compilation might fail, take too long to complete, the kernel might fail during execution if too much stack memory is required, or other similar problems. If this happens, your problem is likely too large to be compiled to a GPU kernel like this. ### Compute Requirements A GPU function has more restrictions on what can be computed than general functions running on the CPU. In Julia, there are mainly two important restrictions to consider: 1. Used data types must be stack allocatable, i.e., `isbits(x)` must be `true` for arguments and local variables used in `ComputeTasks`. 2. Function calls must not be dynamic. This means that type stability is required and the compiler must know in advance which method of a generic function to call. What this specifically entails may change with time and also differs between the different target GPU libraries. From experience, using the `always_inline = true` argument for `@cuda` calls can help with this. !!! warning This feature is currently experimental. There are still some unresolved issues with the generated kernels. """ function kernel end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
632
""" measure_devices(machine::Machine; verbose::Bool) Measure FLOPS, RAM, cache sizes and what other properties can be extracted for the devices in the given machine. """ function measure_devices!(machine::Machine; verbose::Bool=Base.is_interactive()) for device in machine.devices measure_device!(device; verbose=verbose) end return nothing end """ measure_transfer_rates(machine::Machine; verbose::Bool) Measure the transfer rates between devices in the machine. """ function measure_transfer_rates!(machine::Machine; verbose::Bool=Base.is_interactive()) # TODO implement return nothing end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2818
using NumaAllocators """ NumaNode <: AbstractCPU Representation of a specific CPU that code can run on. Implements the [`AbstractDevice`](@ref) interface. """ mutable struct NumaNode <: AbstractCPU numaId::UInt16 threads::UInt16 cacheStrategy::CacheStrategy FLOPS::Float64 id::UUID end push!(DEVICE_TYPES, NumaNode) CACHE_STRATEGIES[NumaNode] = [LocalVariables()] default_strategy(::Type{T}) where {T<:NumaNode} = LocalVariables() function measure_device!(device::NumaNode; verbose::Bool) verbose && @info "Measuring Numa Node $(device.numaId)" # TODO implement return nothing end """ get_devices(deviceType::Type{T}; verbose::Bool) where {T <: NumaNode} Return a Vector of [`NumaNode`](@ref)s available on the current machine. If `verbose` is true, print some additional information. """ function get_devices(deviceType::Type{T}; verbose::Bool=false) where {T<:NumaNode} devices = Vector{AbstractDevice}() noNumaNodes = highest_numa_node() verbose && @info "Found $(noNumaNodes + 1) NUMA nodes" for i in 0:noNumaNodes push!(devices, NumaNode(i, 1, default_strategy(NumaNode), -1, UUIDs.uuid1(rng[1]))) end return devices end """ gen_cache_init_code(device::NumaNode) Generate code for initializing the [`LocalVariables`](@ref) strategy on a [`NumaNode`](@ref). """ function gen_cache_init_code(device::NumaNode) if typeof(device.cacheStrategy) <: LocalVariables # don't need to initialize anything return Expr(:block) elseif typeof(device.cacheStrategy) <: Dictionary return Meta.parse("cache_$(to_var_name(device.id)) = Dict{Symbol, Any}()") # TODO: sizehint? end return error( "Unimplemented cache strategy \"$(device.cacheStrategy)\" for device \"$(device)\"" ) end """ gen_access_expr(device::NumaNode, symbol::Symbol) Generate code to access the variable designated by `symbol` on a [`NumaNode`](@ref), using the [`CacheStrategy`](@ref) set in the device. """ function gen_access_expr(device::NumaNode, symbol::Symbol) return _gen_access_expr(device, device.cacheStrategy, symbol) end """ _gen_access_expr(device::NumaNode, ::LocalVariables, symbol::Symbol) Internal function for dispatch, used in [`gen_access_expr`](@ref). """ function _gen_access_expr(device::NumaNode, ::LocalVariables, symbol::Symbol) s = Symbol("data_$symbol") quoteNode = Meta.parse(":($s)") return quoteNode end """ _gen_access_expr(device::NumaNode, ::Dictionary, symbol::Symbol) Internal function for dispatch, used in [`gen_access_expr`](@ref). """ function _gen_access_expr(device::NumaNode, ::Dictionary, symbol::Symbol) accessStr = ":(cache_$(to_var_name(device.id))[:$symbol])" quoteNode = Meta.parse(accessStr) return quoteNode end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
339
""" show(io::IO, diff::Diff) Pretty-print a [`Diff`](@ref). Called via print, println and co. """ function Base.show(io::IO, diff::Diff) print(io, "Nodes: ") print(io, length(diff.addedNodes) + length(diff.removedNodes)) print(io, ", Edges: ") return print(io, length(diff.addedEdges) + length(diff.removedEdges)) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
428
""" length(diff::Diff) Return a named tuple of the lengths of the added/removed nodes/edges. The fields are `.addedNodes`, `.addedEdges`, `.removedNodes` and `.removedEdges`. """ function Base.length(diff::Diff) return ( addedNodes=length(diff.addedNodes), removedNodes=length(diff.removedNodes), addedEdges=length(diff.addedEdges), removedEdges=length(diff.removedEdges), ) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
681
""" Diff A named tuple representing a difference of added and removed nodes and edges on a [`DAG`](@ref). """ const Diff = NamedTuple{ (:addedNodes, :removedNodes, :addedEdges, :removedEdges, :updatedChildren), Tuple{ Vector{Node},Vector{Node},Vector{Edge},Vector{Edge},Vector{Tuple{Node,AbstractTask}} }, } function Diff() return ( addedNodes=Vector{Node}(), removedNodes=Vector{Node}(), addedEdges=Vector{Edge}(), removedEdges=Vector{Edge}(), # children were updated in the task, updatedChildren[x][2] is the task before the update updatedChildren=Vector{Tuple{Node,AbstractTask}}(), )::Diff end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2790
""" CDCost Representation of a [`DAG`](@ref)'s cost as estimated by the [`GlobalMetricEstimator`](@ref). # Fields: `.data`: The total data transfer.\\ `.computeEffort`: The total compute effort.\\ `.computeIntensity`: The compute intensity, will always equal `.computeEffort / .data`. !!! note Note that the `computeIntensity` doesn't necessarily make sense in the context of only operation costs. It will still work as intended when adding/subtracting to/from a `graph_cost` estimate. """ const CDCost = NamedTuple{ (:data, :computeEffort, :computeIntensity),Tuple{Float64,Float64,Float64} } function Base.:+(cost1::CDCost, cost2::CDCost)::CDCost d = cost1.data + cost2.data ce = computeEffort = cost1.computeEffort + cost2.computeEffort return (data=d, computeEffort=ce, computeIntensity=ce / d)::CDCost end function Base.:-(cost1::CDCost, cost2::CDCost)::CDCost d = cost1.data - cost2.data ce = computeEffort = cost1.computeEffort - cost2.computeEffort return (data=d, computeEffort=ce, computeIntensity=ce / d)::CDCost end function Base.isless(cost1::CDCost, cost2::CDCost)::Bool return cost1.data + cost1.computeEffort < cost2.data + cost2.computeEffort end function Base.zero(type::Type{CDCost}) return (data=0.0, computeEffort=0.0, computeIntensity=0.0)::CDCost end function Base.typemax(type::Type{CDCost}) return (data=Inf, computeEffort=Inf, computeIntensity=0.0)::CDCost end """ GlobalMetricEstimator <: AbstractEstimator A simple estimator that adds up each node's set [`compute_effort`](@ref) and [`data`](@ref). """ struct GlobalMetricEstimator <: AbstractEstimator end function cost_type(estimator::GlobalMetricEstimator)::Type{CDCost} return CDCost end function graph_cost(estimator::GlobalMetricEstimator, graph::DAG) properties = get_properties(graph) return ( data=properties.data, computeEffort=properties.computeEffort, computeIntensity=properties.computeIntensity, )::CDCost end function operation_effect( estimator::GlobalMetricEstimator, graph::DAG, operation::NodeReduction ) s = length(operation.input) - 1 return ( data=s * -data(task(operation.input[1])), computeEffort=s * -compute_effort(task(operation.input[1])), computeIntensity=typeof(operation.input) <: DataTaskNode ? 0.0 : Inf, )::CDCost end function operation_effect( estimator::GlobalMetricEstimator, graph::DAG, operation::NodeSplit ) s::Float64 = length(parents(operation.input)) - 1 d::Float64 = s * data(task(operation.input)) ce::Float64 = s * compute_effort(task(operation.input)) return (data=d, computeEffort=ce, computeIntensity=ce / d)::CDCost end function String(::GlobalMetricEstimator) return "global_metric" end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1905
""" AbstractEstimator Abstract base type for an estimator. An estimator estimates the cost of a graph or the difference an operation applied to a graph will make to its cost. Interface functions are - [`graph_cost`](@ref) - [`operation_effect`](@ref) """ abstract type AbstractEstimator end """ cost_type(estimator::AbstractEstimator) Interface function returning a specific estimator's cost type, i.e., the type returned by its implementation of [`graph_cost`](@ref) and [`operation_effect`](@ref). """ function cost_type end """ graph_cost(estimator::AbstractEstimator, graph::DAG) Get the total estimated cost of the graph. The cost's data type can be chosen by the implementation, but must have a usable lessthan comparison operator (<), basic math operators (+, -) and an implementation of `zero()` and `typemax()`. """ function graph_cost end """ operation_effect(estimator::AbstractEstimator, graph::DAG, operation::Operation) Get the estimated effect on the cost of the graph, such that `graph_cost(estimator, graph) + operation_effect(estimator, graph, operation) ~= graph_cost(estimator, graph_with_operation_applied)`. There is no hard requirement for this, but the better the estimate, the better an optimization algorithm will be. !!! note There is a default implementation of this function, applying the operation, calling [`graph_cost`](@ref), then popping the operation again. It can be much faster to overload this function for a specific estimator and directly compute the effects from the operation if possible. """ function operation_effect(estimator::AbstractEstimator, graph::DAG, operation::Operation) # This is currently not stably working, see issue #16 cost = graph_cost(estimator, graph) push_operation!(graph, operation) cost_after = graph_cost(estimator, graph) pop_operation!(graph) return cost_after - cost end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
428
""" in(node::Node, graph::DAG) Check whether the node is part of the graph. """ Base.in(node::Node, graph::DAG) = node in graph.nodes """ in(edge::Edge, graph::DAG) Check whether the edge is part of the graph. """ function Base.in(edge::Edge, graph::DAG) n1 = edge.edge[1] n2 = edge.edge[2] if !(n1 in graph) || !(n2 in graph) return false end return n1 in getindex.(children(n2), 1) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1292
""" push_operation!(graph::DAG, operation::Operation) Apply a new operation to the graph. See also: [`DAG`](@ref), [`pop_operation!`](@ref) """ function push_operation!(graph::DAG, operation::Operation) # 1.: Add the operation to the DAG push!(graph.operationsToApply, operation) return nothing end """ pop_operation!(graph::DAG) Revert the latest applied operation on the graph. See also: [`DAG`](@ref), [`push_operation!`](@ref) """ function pop_operation!(graph::DAG) # 1.: Remove the operation from the appliedChain of the DAG if !isempty(graph.operationsToApply) pop!(graph.operationsToApply) elseif !isempty(graph.appliedOperations) appliedOp = pop!(graph.appliedOperations) revert_operation!(graph, appliedOp) else error("No more operations to pop!") end return nothing end """ can_pop(graph::DAG) Return `true` if [`pop_operation!`](@ref) is possible, `false` otherwise. """ can_pop(graph::DAG) = !isempty(graph.operationsToApply) || !isempty(graph.appliedOperations) """ reset_graph!(graph::DAG) Reset the graph to its initial state with no operations applied. """ function reset_graph!(graph::DAG) while (can_pop(graph)) pop_operation!(graph) end return nothing end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
9158
# for graph mutating functions we need to do a few things # 1: mute the graph (duh) # 2: keep track of what was changed for the diff (if track == true) # 3: invalidate operation caches """ insert_node!(graph::DAG, node::Node) insert_node!(graph::DAG, task::AbstractTask, name::String="") Insert the node into the graph or alternatively construct a node from the given task and insert it. """ function insert_node!(graph::DAG, node::Node) return _insert_node!(graph, node; track=false, invalidate_cache=false) end function insert_node!(graph::DAG, task::AbstractDataTask, name::String="") return _insert_node!(graph, make_node(task, name); track=false, invalidate_cache=false) end function insert_node!(graph::DAG, task::AbstractComputeTask) return _insert_node!(graph, make_node(task); track=false, invalidate_cache=false) end """ insert_edge!(graph::DAG, node1::Node, node2::Node) Insert the edge between node1 (child) and node2 (parent) into the graph. """ function insert_edge!(graph::DAG, node1::Node, node2::Node, index::Int=0) return _insert_edge!(graph, node1, node2, index; track=false, invalidate_cache=false) end """ _insert_node!(graph::DAG, node::Node; track = true, invalidate_cache = true) Insert the node into the graph. !!! warning For creating new graphs, use the public version [`insert_node!`](@ref) instead which uses the defaults false for the keywords. ## Keyword Arguments `track::Bool`: Whether to add the changes to the [`DAG`](@ref)'s [`Diff`](@ref). Should be set `false` in parsing or graph creation functions for performance. `invalidate_cache::Bool`: Whether to invalidate caches associated with the changes. Should also be turned off for graph creation or parsing. See also: [`_remove_node!`](@ref), [`_insert_edge!`](@ref), [`_remove_edge!`](@ref) """ function _insert_node!(graph::DAG, node::Node; track=true, invalidate_cache=true) # 1: mute push!(graph.nodes, node) # 2: keep track if (track) push!(graph.diff.addedNodes, node) end # 3: invalidate caches if (!invalidate_cache) return node end push!(graph.dirtyNodes, node) return node end """ _insert_edge!(graph::DAG, node1::Node, node2::Node, index::Int=0; track = true, invalidate_cache = true) Insert the edge between `node1` (child) and `node2` (parent) into the graph. An optional integer index can be given. The arguments of the function call that this node compiles to will then be ordered by these indices. !!! warning For creating new graphs, use the public version [`insert_edge!`](@ref) instead which uses the defaults false for the keywords. ## Keyword Arguments - `track::Bool`: Whether to add the changes to the [`DAG`](@ref)'s [`Diff`](@ref). Should be set `false` in parsing or graph creation functions for performance. - `invalidate_cache::Bool`: Whether to invalidate caches associated with the changes. Should also be turned off for graph creation or parsing. See also: [`_insert_node!`](@ref), [`_remove_node!`](@ref), [`_remove_edge!`](@ref) """ function _insert_edge!( graph::DAG, node1::Node, node2::Node, index::Int=0; track=true, invalidate_cache=true ) #@assert (node2 ∉ parents(node1)) && (node1 ∉ children(node2)) "Edge to insert already exists" # 1: mute # edge points from child to parent push!(node1.parents, node2) push!(node2.children, (node1, index)) # 2: keep track if (track) push!(graph.diff.addedEdges, make_edge(node1, node2, index)) end # 3: invalidate caches if (!invalidate_cache) return nothing end invalidate_operation_caches!(graph, node1) invalidate_operation_caches!(graph, node2) push!(graph.dirtyNodes, node1) push!(graph.dirtyNodes, node2) return nothing end """ _remove_node!(graph::DAG, node::Node; track = true, invalidate_cache = true) Remove the node from the graph. ## Keyword Arguments `track::Bool`: Whether to add the changes to the [`DAG`](@ref)'s [`Diff`](@ref). Should be set `false` in parsing or graph creation functions for performance. `invalidate_cache::Bool`: Whether to invalidate caches associated with the changes. Should also be turned off for graph creation or parsing. See also: [`_insert_node!`](@ref), [`_insert_edge!`](@ref), [`_remove_edge!`](@ref) """ function _remove_node!(graph::DAG, node::Node; track=true, invalidate_cache=true) #@assert node in graph.nodes "Trying to remove a node that's not in the graph" # 1: mute delete!(graph.nodes, node) # 2: keep track if (track) push!(graph.diff.removedNodes, node) end # 3: invalidate caches if (!invalidate_cache) return nothing end invalidate_operation_caches!(graph, node) delete!(graph.dirtyNodes, node) return nothing end """ _remove_edge!(graph::DAG, node1::Node, node2::Node; track = true, invalidate_cache = true) Remove the edge between node1 (child) and node2 (parent) into the graph. Returns the integer index of the removed edge. ## Keyword Arguments - `track::Bool`: Whether to add the changes to the [`DAG`](@ref)'s [`Diff`](@ref). Should be set `false` in parsing or graph creation functions for performance. - `invalidate_cache::Bool`: Whether to invalidate caches associated with the changes. Should also be turned off for graph creation or parsing. See also: [`_insert_node!`](@ref), [`_remove_node!`](@ref), [`_insert_edge!`](@ref) """ function _remove_edge!( graph::DAG, node1::Node, node2::Node; track=true, invalidate_cache=true ) # 1: mute pre_length1 = length(node1.parents) pre_length2 = length(node2.children) for i in eachindex(node1.parents) if (node1.parents[i] == node2) splice!(node1.parents, i) break end end removed_node_index = 0 for i in eachindex(node2.children) if (node2.children[i][1] == node1) removed_node_index = node2.children[i][2] splice!(node2.children, i) break end end #=@assert begin removed = pre_length1 - length(node1.parents) removed <= 1 end "removed more than one node from node1's parents"=# #=@assert begin removed = pre_length2 - length(children(node2)) removed <= 1 end "removed more than one node from node2's children"=# # 2: keep track if (track) push!(graph.diff.removedEdges, make_edge(node1, node2, removed_node_index)) end # 3: invalidate caches if (!invalidate_cache) return removed_node_index end invalidate_operation_caches!(graph, node1) invalidate_operation_caches!(graph, node2) if (node1 in graph) push!(graph.dirtyNodes, node1) end if (node2 in graph) push!(graph.dirtyNodes, node2) end return removed_node_index end """ get_snapshot_diff(graph::DAG) Return the graph's [`Diff`](@ref) since last time this function was called. See also: [`revert_diff!`](@ref), [`AppliedOperation`](@ref) and [`revert_operation!`](@ref) """ function get_snapshot_diff(graph::DAG) return swapfield!(graph, :diff, Diff()) end """ invalidate_caches!(graph::DAG, operation::NodeReduction) Invalidate the operation caches for a given [`NodeReduction`](@ref). This deletes the operation from the graph's possible operations and from the involved nodes' own operation caches. """ function invalidate_caches!(graph::DAG, operation::NodeReduction) delete!(graph.possibleOperations, operation) for node in operation.input node.nodeReduction = missing end return nothing end """ invalidate_caches!(graph::DAG, operation::NodeSplit) Invalidate the operation caches for a given [`NodeSplit`](@ref). This deletes the operation from the graph's possible operations and from the involved nodes' own operation caches. """ function invalidate_caches!(graph::DAG, operation::NodeSplit) delete!(graph.possibleOperations, operation) # delete the operation from all caches of nodes involved in the operation # for node split there is only one node operation.input.nodeSplit = missing return nothing end """ invalidate_operation_caches!(graph::DAG, node::ComputeTaskNode) Invalidate the operation caches of the given node through calls to the respective [`invalidate_caches!`](@ref) functions. """ function invalidate_operation_caches!(graph::DAG, node::ComputeTaskNode) if !ismissing(node.nodeReduction) invalidate_caches!(graph, node.nodeReduction) end if !ismissing(node.nodeSplit) invalidate_caches!(graph, node.nodeSplit) end return nothing end """ invalidate_operation_caches!(graph::DAG, node::DataTaskNode) Invalidate the operation caches of the given node through calls to the respective [`invalidate_caches!`](@ref) functions. """ function invalidate_operation_caches!(graph::DAG, node::DataTaskNode) if !ismissing(node.nodeReduction) invalidate_caches!(graph, node.nodeReduction) end if !ismissing(node.nodeSplit) invalidate_caches!(graph, node.nodeSplit) end return nothing end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git