licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 5676 | """
metareader(md::MatrixDescriptor, key::AbstractString)
Return specific data files (matrix, rhs, solution, or other metadata).
The `key` must be contained in data.metadata or an `DataError` is thrown.
Hint: `md.A, md.b, md.x` also deliver the matrix, rhs, and solution.
So this is needed specifically for other metadata.
"""
function metareader(mdesc::MatrixDescriptor{<:RemoteMatrixData}, name::AbstractString)
name = metastring_reverse(mdesc.data, name)
get!(mdesc.cache, name) do
_metareader(mdesc.data, name)
end
end
function metareader(mdesc::MatrixDescriptor{<:GeneratedMatrixData}, name::AbstractString)
fillcache!(mdesc)
dao = mdesc.cache[]
if name == "A" && dao isa AbstractArray
dao
else
try
getproperty(dao, Symbol(name))
catch
daterr("this instance of '$(typeof(dao))' has no property '$name'")
end
end
end
function _metareader(data::RemoteMatrixData, name::AbstractString)
if name in data.metadata
path = joinpath(dirname(matrixfile(data)), name)
endswith(name, ".mtx") ? mmread(path) : read(path, String)
else
daterr("$(data.name) has no metadata $name")
end
end
function fillcache!(mdesc::MatrixDescriptor{<:GeneratedMatrixData})
dao = mdesc.cache[]
if dao === nothing
dao = mdesc.cache[] = mdesc.data.func(mdesc.args...)
dao !== nothing || daterr("function $(mdesc.data.func) returned `nothing`")
end
dao
end
# This a the preferred API to access metadata.
import Base: getproperty, propertynames, getindex
function getproperty(mdesc::MatrixDescriptor{T}, s::Symbol) where T
s in (:data, :args, :cache) && return getfield(mdesc, s)
s in metasymbols(mdesc) && return metareader(mdesc, string(s))
if T <: RemoteMatrixData
s in (:m, :n, :nnz, :dnz) && return getfield(mdesc.data.header, s)
else
s == :m && return size(mdesc.A, 1)
s == :n && return size(mdesc.A, 2)
s == :nnz && return count(mdesc.A .!= 0)
s == :dnz && return 0
end
metareader(mdesc, string(s))
end
function propertynames(mdesc::MatrixDescriptor{T}; private=false) where T
props = Symbol[]
append!(props, metasymbols(mdesc))
append!(props, [:m, :n, :nnz, :dnz])
private && append!(props, fieldnames(MatrixDescriptor))
props
end
function getproperty(data::RemoteMatrixData, s::Symbol)
s in (:name, :id, :header, :properties, :metadata) && return getfield(data, s)
s in fieldnames(MetaInfo) && return getfield(data.header, s)
getfield(data, s)
end
function propertynames(data::RemoteMatrixData; private=false)
props = [PROPS...]
private && append!(props, fieldnames(RemoteMatrixData))
props
end
function propertynames(data::GeneratedMatrixData; private=false)
private ? fieldnames(GeneratedMatrixData) : [:name, :id]
end
"""
metasymbols(md::MatrixDescriptor)
Return a vector of symbols, which point to metadata of the problem.
These symbols `s` may be used to access the objects by `getproperty(md, s)`
or by `getindex(md, s)`. The syntax `md.S` is preferred, if `S` is a constant
`Julia` word. In any case `md[s]` is possible.
Example:
`md = mdopen("*/bfly"); A = md.A; co = md.coord; txt10 = md["Gname_10.txt"]`
"""
metasymbols(md::MatrixDescriptor{<:RemoteMatrixData}) = metasymbols(md.data)
function metasymbols(data::RemoteMatrixData)
Symbol.(metastring.(data.name, getmeta(data)))
end
function metasymbols(md::MatrixDescriptor{<:GeneratedMatrixData})
mdc = md.cache[]
mdc isa Array || mdc === nothing ? [:A] : propertynames(mdc)
end
metasymbols(data::MatrixData) = [:A]
function Base.getindex(mdesc::MatrixDescriptor, name::Union{Symbol,AbstractString})
metareader(mdesc, string(name))
end
function (mdesc::MatrixDescriptor)(name::Union{Symbol,AbstractString})
metareader(mdesc, string(name))
end
#internal helper to select special metadata (matrix, rhs, or solution)
function metaname(data::RemoteMatrixData, exli::AbstractString...)
base = rsplit(data.name, '/', limit=2)[end]
meda = getmeta(data)
for ext in exli
f = metastring_reverse(data, ext)
if f in meda
return f
end
end
daterr("unknown metadata extensions: $exli - available $(String.(data.metadata))")
end
"""
metastring(name, metaname)
In the standard cases convert full meta name to abbreviated form.
+ given `name = "abc"`, then
+ `"abc.mtx" => "A"`
+ `"abc_def.mtx" => "def"`
+ `"abc_def.txt" => "def.txt"`
+ `"abc-def.mtx" => "abc-def.mtx"`
"""
function metastring(name::AbstractString, metaname::AbstractString)
MTX = ".mtx"
base = split(name, '/')[end]
meta = metaname
if meta == string(base, MTX)
meta = "A"
elseif startswith(meta, string(base, '_'))
meta = meta[sizeof(base)+2:end]
end
es = rsplit(meta, '.', limit=2)
if endswith(meta, MTX) && meta != metaname
meta = meta[1:end-sizeof(MTX)]
end
meta
end
"""
metastring_reverse(data::MatrixData, abbreviation::String)
Given a `MatrixData` object and an abbreviation, return a matching full metadata name
for the abbreviation. If no full name is found, return the abbreviation unchanged.
"""
function metastring_reverse(data::RemoteMatrixData, metaabbr::AbstractString)
MTX = ".mtx"
base = split(data.name, '/')[end]
metaabbr == "A" && return string(base, MTX)
mdata = getmeta(data)
meta = string(base, '_', metaabbr)
meta in mdata && return meta
meta = string(meta, MTX)
meta in mdata && return meta
metaabbr
end
metastring_reverse(::MatrixData, metaabbr::AbstractString) = metaabbr
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 9853 | #####################################################
# Download data from UF Sparse Matrix Collection
#####################################################
using Base.Filesystem
using ChannelBuffers
# collect the keys from local database (MATRIXDICT or USERMATRIXDICT)
# provide a numerical id counting from 1 for either database.
function insertlocal(db::MatrixDatabase, T::Type{<:GeneratedMatrixData},
ldb::Dict{<:AbstractString,Function})
cnt = 0
ks = sort!(collect(keys(ldb)))
for k in ks
cnt += 1
push!(db, T(k, cnt, ldb[k]))
end
cnt
end
dbpath(db::MatrixDatabase) = abspath(data_dir(), "db.data")
function readdb(db::MatrixDatabase)
@info("reading database")
cachedb = dbpath(db)
open(cachedb, "r") do io
dbx = deserialize(io)
merge!(db.data, dbx.data)
merge!(db.aliases, dbx.aliases)
end
end
function writedb(db::MatrixDatabase)
cachedb = dbpath(db)
#Avoid serializing user matrices, since we don't know which ones will be loaded on deserialization.
dbx_data = filter(((key, val),) -> !(val isa GeneratedMatrixData{:U}), db.data)
dbx_aliases = filter(((_, key),) -> !(db.data[key] isa GeneratedMatrixData{:U}), db.aliases)
dbx = MatrixDatabase(dbx_data, dbx_aliases)
open(cachedb, "w") do io
serialize(io, dbx)
end
end
"""
MatrixDepot.downloadindices(db)
download index files and store matrix data in `db`.
additionally generate aliases for local and loaded matrices.
Serialize db object in file `db.data`.
If a file `db.data` is present in the data directory, deserialize
the data instead of downloading and collecting data.
"""
function downloadindices(db::MatrixDatabase; ignoredb=false)
added = 0
if !ignoredb && isfile(dbpath(db))
try
readdb(db)
catch ex
println(ex)
@warn("recreating database file")
_downloadindices(db)
added = 1
end
else
@info("creating database file")
_downloadindices(db)
added = 1
end
@info("adding metadata...")
added += addmetadata!(db)
@info("adding svd data...")
added += addsvd!(db)
added += insertlocal(db, GeneratedMatrixData{:B}, MATRIXDICT)
added += insertlocal(db, GeneratedMatrixData{:U}, USERMATRIXDICT)
if added > 0
@info("writing database")
writedb(db)
end
nothing
end
function _downloadindices(db::MatrixDatabase)
@info("reading index files")
empty!(db)
try
readindex(preferred(SSRemoteType), db)
readindex(preferred(MMRemoteType), db)
finally
for data in values(db.data)
db.aliases[aliasname(data)] = data.name
end
end
nothing
end
"""
MatrixDepot.update()
update database index from the websites
"""
function update(db::MatrixDatabase=MATRIX_DB)
cachedb = abspath(data_dir(), "db.data")
isfile(cachedb) && rm(cachedb)
uf_matrices = localindex(preferred(SSRemoteType))
isfile(uf_matrices) && rm(uf_matrices)
mm_matrices = localindex(preferred(MMRemoteType))
isfile(mm_matrices) && rm(mm_matrices)
downloadindices(db, ignoredb=true)
end
"""
loadmatrix(data::RemoteMatrixData)
Download the files backing the data from a remote repository. That is currently
the TAMU site for the UFl collection and the NIST site for the MatrixMarket
collection. The files are uncompressed and un-tar-ed if necessary.
The data files containing the matrix data have to be in MatrixMarket format in
both cases. Note, that some of the files of the MM collection are not available
in MatrixMarket format. An error message results, if tried to load them.
"""
function loadmatrix(data::RemoteMatrixData)
file = matrixfile(data)
if isfile(file)
addmetadata!(data)
return 0
end
dir = dirname(localdir(data))
dirt = string(dir, ".tmp")
rm(dirt, force=true, recursive=true)
mkpath(dirt)
url = redirect(dataurl(data))
isdir(dir) || mkpath(dir)
wdir = pwd()
try
@info("downloading: $url")
pipe = downloadpipeline(url, dirt)
run(pipe)
cd(dirt)
for file in readdir(dirt)
mv(file, joinpath(dir, file), force=true)
end
catch ex
@warn("download of $url failed: $ex")
finally
cd(wdir)
rm(dirt, force=true, recursive=true)
end
addmetadata!(data)
1
end
loadmatrix(data::GeneratedMatrixData) = 0
"""
loadinfo(data::RemoteDate)
Download the first part of the data file. Stop reading, as soon as the initial
comment and the size values of the main matrix have been finished. Store this in
a file with extension `.info` in the same directory, where the `.mtx` file is.
If the complete file is already available, the download is not performed, because
the head of the `.mtx` file contains the same lines.
"""
function loadinfo(data::RemoteMatrixData)
filemtx = matrixfile(data)
file = matrixinfofile(data)
if isfile(filemtx) || isfile(file)
return 0
end
url = redirect(dataurl(data))
io = open(downloadpipeline(url))
out = IOBuffer()
s = try
@info("downloading head of $url")
skip = 0
while ( s = readline(io) ) != ""
skip = s[1] == '%' || isempty(strip(s)) ? 0 : skip + 1
skip <= 1 && println(out, s)
if skip == 1 && length(split(s)) == 3
break
end
end
String(take!(out))
catch ex
ex isa InterruptException && rethrow()
String(take!(out))
finally
close(io)
end
if !isempty(s)
mkpath(dirname(file))
write(file, s)
addmetadata!(data)
1
else
0
end
end
loadinfo(data::MatrixData) = 0
"""
downloadpipeline(url, path=nothing)
Set up a command pipeline (external processes to download and expand data)
If a path name is given, extract tar file into the empty directory or, if
not a tar file, write contents to file of that name.
"""
function downloadpipeline(url::AbstractString, dir::Union{Nothing,AbstractString}=nothing)
urls = rsplit(url, '.', limit=3)
cmd = Any[ChannelBuffers.curl(url)]
if urls[end] == "gz"
push!(cmd, gunzip())
resize!(urls, length(urls)-1)
url = url[1:end-3]
end
if dir isa AbstractString
if urls[end] == "tar"
push!(cmd, tarx(dir))
else
file = rsplit(url, '/', limit=2)
push!(cmd, joinpath(dir, file[end]))
end
elseif dir === nothing && urls[end] == "tar"
push!(cmd, tarxO())
end
pipeline(cmd...)
end
function downloadcommand(url::AbstractString, filename::AbstractString="-")
curl(url) → (filename == "-" ? stdout : filename)
end
function data_warn(data::RemoteMatrixData, dn, i1, i2)
@warn "$(data.name): header $dn = '$i1' file $dn = '$i2' $(data.properties[])"
i1
end
function extremnnz(data::RemoteMatrixData, m, n, k)
if issymmetric(data) || ishermitian(data) || isskew(data)
if m != n
@warn "$(data.name) needs to be quadratic but is ($mx$n)"
end
isskew(data) ? (2k, 2k) : (2k - max(m, n), 2k)
else
(k, k)
end
end
function extremnnz(data::RemoteMatrixData)
extremnnz(data, data.m, data.n, data.dnz)
end
function addmetadata!(db::MatrixDatabase)
added = 0
for data in values(db.data)
if isunloaded(data)
addmetadata!(data)
added += isloaded(data)
end
end
added
end
addmetadata!(::MatrixData) = 0
function addmetadata!(data::RemoteMatrixData)
file = matrixfile(data)
dir = dirname(file)
empty!(data.metadata)
isdir(dir) || return 0
base = basename(file)
name, ext = rsplit(base, '.', limit=2)
filtop(x) = x == base || (startswith(x, string(name, '_')) && !endswith(x, "SVD.mat"))
append!(data.metadata, filter(filtop, readdir(dir)))
if !isfile(file)
file = matrixinfofile(data)
end
if (finfo = mmreadheader(file)) !== nothing
data.properties[] = MMProperties(MATRIX, finfo[:format], finfo[:field], finfo[:symmetry])
m, n, k = finfo[:m], finfo[:n], get(finfo, :nz, 0)
n1, n2 = extremnnz(data, m, n, k)
hdr = data.header
hdr.m = hdr.m in (0, m) ? m : data_warn(data, "m", hdr.m, m)
hdr.n = hdr.n in (0, n) ? n : data_warn(data, "n", hdr.n, n)
hdr.nnz = hdr.nnz == 0 ? n2 : hdr.nnz <= n2 ? hdr.nnz :
data_warn(data, "nnz", hdr.nnz, k)
hdr.dnz = k
date = get(finfo, :date, 0)
hdr.date = hdr.date in (0, date) ? date : data_warn(data, "date", hdr.date, date)
kind = get(finfo, :kind, "")
if kind != ""
if hdr.kind == "" || hdr.kind == "other problem"
hdr.kind = kind
else
if standardkind(kind) != standardkind(hdr.kind)
data_warn(data, "kind", hdr.kind, kind)
end
end
end
for s in (:title, :author, :ed, :fields, :notes)
val = get(finfo, s, "")
val != "" && setfield!(hdr, s, val)
end
end
return 1
end
standardkind(s::AbstractString) = lowercase(replace(s, '-' => ' '))
function addsvd!(db::MatrixDatabase)
added = 0
for data in values(db.data)
if data isa RemoteMatrixData && !issvdok(data)
added += addsvd!(data)
end
end
added
end
issvdok(data::RemoteMatrixData) = data.svdok
issvdok(::MatrixData) = false
"""
downloadfile(url, out)
Copy file from remote or local url. Works around julia Downloads #69 and #36
"""
function downloadfile(url::AbstractString, out::AbstractString)
run(downloadcommand(url, out))
nothing
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 4549 |
#####################################################
# Download data from MatrixMarket Collection
#####################################################
function readindex(remote::RemoteType, db::MatrixDatabase)
file = downloadindex(remote)
extract_names(db, file)
end
function parse_headerinfo(akku::Dict{AbstractString,AbstractString}, count::Integer)
toint(id::String) = parse(Int, replace(get(akku, id, "0"), ','=>""))
id = toint("id")
id == 0 && (id = count)
m = toint("num_rows")
n = toint("num_cols")
nnz = toint("nonzeros")
kind = get(akku, "kind", "")
datestr = get(akku, "date", "0")
date = match(r"^\d+$", datestr) !== nothing ? parse(Int, datestr) : 0
id, MetaInfo(m, n, nnz, 0, kind, date, "", "", "", "", "")
end
# extract loading url base and matrix names from index file
function extract_names(db::MatrixDatabase, matrices::AbstractString)
count = 0
remote = preferred(MMRemoteType)
open(matrices) do f
akku = Dict{AbstractString,AbstractString}()
for line in readlines(f)
_, grepex, spquote, ending, parts, regexinf = remote.params.scan
m = regexinf === nothing ? nothing : match(regexinf, line)
if m !== nothing
pname = length(m.captures) == 2 ? m.captures[1] : "id"
akku[pname] = m.captures[end]
end
if occursin(grepex, line)
murl = split(line, '"')[spquote]
if endswith(murl, ending)
list = rsplit(murl[1:end-length(ending)], '/', limit=parts+1)[2:end]
count += 1
name = join(list, '/')
id, info = parse_headerinfo(akku, count)
data = RemoteMatrixData{typeof(remote)}(name, id, info)
addmetadata!(data)
push!(db, data)
count = id
end
end
end
end
nothing
end
# read indexfile
function downloadindex(remote::RemoteType)
file = localindex(remote)
url = redirect(indexurl(remote))
if !isfile(file)
@info("downloading index file $url")
downloadfile(url, file)
end
file
end
const NAME_NOT_TRANS = ""
# name translations (most of the MM problems are found with similar name in SuiteSparse)
function name2ss(mmname::AbstractString)
s = split(mmname, '/')
length(s) == 2 && return mmname
length(s) == 3 || return NAME_NOT_TRANS
s1, s2, s3 = s
if s2 == "qcd"
replace(s3, r"^([^.]*)\.(.)-00l(......)00$" => s"QCD/\1_\2-\3")
elseif s2 == "tokamak"
string("TOKAMAK/", s3)
elseif s2 == "fidap"
replace(s3, r"fidap0*([^0]*)" => s"FIDAP/ex\1")
elseif s1 == "Harwell-Boeing"
string("*/", replace(s3, r"_+" => "_"))
elseif s1 == "NEP"
if s2 == "crystal"
string("*/", replace(s3, r"^(cry)(.*)$" => s"\1g\2"))
elseif s3 == "rdb2048l"
string("*/", "rdb2048")
elseif s3 == "rdb2048"
string("*/", "rdb2048_noL")
else
string("*/", replace(s3, r"^(bfw|mhd|rbs|odep)([\d]{2,3})([a-z])$" => s"\1\3\2"))
end
else
string("*/", s3)
end
end
function name2mm(ssname::AbstractString)
s = split(ssname, '/')
length(s) == 3 && return ssname
length(s) == 2 || return NAME_NOT_TRANS
s1, s2 = s
if s1 == "QCD"
replace(s2, r"^([^_]*)_(.)-(...)-(..)$" => s"misc/qcd/\1.\2-00l\3-\4") * "00"
elseif s1 == "TOKAMAK"
string("SPARSKIT/tokamak/", s2)
elseif s1 == "FIDAP"
x = replace(s2, r"^ex([0-9]*)$" => s"\1")
x == s2 ? NAME_NOT_TRANS : "SPARSKIT/fidap/fidap$(printfint(parse(Int,x), 3))"
elseif s1 == "HB"
n = length(s2)
N = startswith(s2, "watt_") || startswith(s2, "pores_") ? 7 : 8
y = if n >= N
s2
else
x = replace(s2, r"^(.*)(_+)(.*[0-9])$" => s"\1/\3")
x == s2 ? s2 : replace(x, r"/" => "_" ^ (N + 1 - n))
end
"Harwell-Boeing/*/" * y
elseif s1 == "Bai" && startswith(s2, "cryg")
replace(s2, r"^(cry)g(.*)$" => s"NEP/crystal/\1\2")
elseif s1 == "Bai"
x = (s2 == "rdb2048" ? "rdb2048l" : s2 == "rdb2048_noL" ? "rdb2048" : s2)
x = replace(x, r"^(bfw|mhd|rbs|odep)([a-z])([\d]{2,3})" => s"\1\3\2")
string("NEP/*/", x)
else
string("*/*/", s2)
end
end
printfint(n::Integer, pad::Int) = String(reverse(digits(n, base=UInt8(10), pad=pad)) .+ '0')
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 16246 | #
# Download index and extra data specific from suite sparse at TAMU
#
using MAT
using DataFrames: DataFrames, DataFrame, select!
using Base.Filesystem
#const SS_SITE = "https://sparse.tamu.edu"
#const SS_FILES = "/files/ssstats.csv"
#const SS_INDEX = "/files/ss_index.mat"
#const SS_GRAPHICS = "/files/" # to be followed by /$Group/$(Name)$ending
# where endings indicate graphics about the main matrix of different kinds
# ".png"|"_thumb.png" - sparsity structure
# "_graph.gif"|"_graph_thumb.gif" - iconnectivity graph
# "_svd.png" - singular values plot
const SS_SVDDIR = "/svd/" # to be followed by "$Group/$(Name)_SVD{.mat|_piroband.mat}
# the files "$SS_SITE/$Group/$Name" contain html-formatted further information
# the directories "/mat" "/MM" "/RB"
# contain data files in $Group/$Name.mat or $Group/Name.tar.gz" in different formats
#
# the SVD-based statistics data are only available on the "further information html file"
# They may be derived from the complete list of SVD values from "/SVD" if available
#
# file "/statistics" contains html with legend of data contained in "ss_index"
# see also a copy at the end of this file
#
const MFIELDNAMES = [:Group, :Name, :nrows, :ncols, :nnz, :nzero, :nnzdiag,
:pattern_symmetry, :numerical_symmetry,
:isBinary, :isReal, :isND, :isGraph, :posdef, :cholcand,
:amd_lnz, :amd_vnz, :amd_rnz,:amd_flops,
:nblocks, :ncc, :sprank, :RBtype,
:lowerbandwidth, :upperbandwidth,
:rcm_lowerbandwidth, :rcm_upperbandwidth,
:xmin, :xmax]
const MFIELDTYPES = [String, String, Int, Int, Int, Int, Int,
Float64, Float64,
Bool, Bool, Bool, Bool, Bool, Bool,
Int, Int, Int, Int,
Int, Int, Int, String,
Int, Int, Int, Int,
ComplexF64, ComplexF64]
const MFIELDNAMES2 =[:nnzdiag,
:pattern_symmetry, :numerical_symmetry,
:isND, :isGraph, :posdef, :cholcand,
:amd_lnz, :amd_vnz, :amd_rnz,:amd_flops,
:nblocks, :ncc, :sprank,
:lowerbandwidth, :upperbandwidth,
:rcm_lowerbandwidth, :rcm_upperbandwidth,
:xmin, :xmax]
const MFIELDTYPES2 = [Int,
Float64, Float64,
Bool, Bool, Bool, Bool,
Int, Int, Int, Int,
Int, Int, Int,
Int, Int, Int, Int,
ComplexF64, ComplexF64]
function readindex(remote::SSRemoteType, db::MatrixDatabase)
df = read_ss_index()
for id in axes(df, 1)
mt = copy(df[id,:])
name = mt.name
data = get!(db.data, name) do
info = MetaInfo(mt.nrows, mt.ncols, mt.nnz, 0, "", 0, "", "", "", "", "")
RemoteMatrixData{typeof(remote)}(name, id, info)
end
for (name, T) in zip(MFIELDNAMES2, MFIELDTYPES2)
setproperty!(data.header, name, (getfield(mt, name)))
end
end
end
function MetaInfo(a::Int64, b::Int64, c::Int64, d::Int64, e::String,
f::Int64, g::String, h::String, i::String, j::String, k::String)
MetaInfo(a, b, c, d, e, f, g, h ,i, j, k,
0, 0.0, 0.0, false, false, false, false, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, Complex(0.0), Complex(0.0),
false, 0.0, 0.0, 0.0, 0, 0, 0.0, "", "", Float64[])
end
function load_ss_index()
file = localindex(preferred(SSRemoteType))
if !isfile(file) || Base.Filesystem.stat(file).size == 0
url = redirect(indexurl(SS_REMOTE))
@info("downloading: $url")
downloadfile(url, file)
end
file
end
"""
read_ss_index(d::DataFrame)
Read file "ss_index.mat" from local data directory and add all fields to `d`.
Read file "ssstats.csv" and add field "kinds" to `d`.
As a result, all available metadata for all problems in `"SuiteSparseMatrixCollection"`
as in the data frame `d`.
"""
function read_ss_index(d::DataFrame=DataFrame())
file = load_ss_index()
m = matopen(file) do io
read(io, "ss_index")
end
for (fn, T) in zip(MFIELDNAMES, MFIELDTYPES)
a = m[string(fn)]
b = vec([from_matdat(T, s) for s in a])
d[!,fn] = b
end
d[!,:nnz] += d[!,:nzero]
jname(a::String, b::String) = a * '/' * b
d[!,:name] = jname.(d[!,:Group],d[!,:Name])
select!(d, DataFrames.Not(:Group))
d
end
from_matdat(T::Type, s::Any) = T(s)
from_matdat(::Type{String}, s::AbstractString) = s
"""
loadsvd(data::RemoteMatrixData)
Download the extra information related to SVD from the backing repository.
That is currently the TAMU site for the UFl collection.
The files are in MAT format, and are uncompressed and un-tar-ed if necessary.
"""
function loadsvd(data::RemoteMatrixData{SSRemoteType})
file = svdfile(data)
if isfile(file)
return 0
end
dir = dirname(localdir(data))
url = redirect(datasvdurl(data))
isdir(dir) || mkpath(dir)
try
@info("downloading: $url")
downloadfile(url, file)
addsvd!(data)
1
catch
rm(file, force=true)
write(file, "")
0
end
end
loadsvd(data::MatrixData) = 0
function addsvd!(data::RemoteMatrixData{SSRemoteType})
file = svdfile(data)
if !isempty(file) && Filesystem.stat(file).size > 0
matopen(file) do io
d = read(io, "S")
pushsvd!(data, d["status"], d["how"], d["s"])
end
else
0
end
end
addsvd!(::MatrixData) = 0
function datasvdurl(data::RemoteMatrixData)
string(siteurl(data), '/', "svd", '/', data.name, "_SVD.mat")
end
function svdfile(data::RemoteMatrixData)
abspath(localdir(data), string(basename(data.name), "_SVD.mat"))
end
function notesfile(data::RemoteMatrixData)
abspath(localdir(data), string(basename(data.name), "_notes.txt"))
end
function pushsvd!(data::RemoteMatrixData, status::AbstractString, how::AbstractString, sv)
info = data.header
status = lowercase(status)
sv = _vector(sv)
res = info.svdstatus != status || info.svdhow != how || !isequal(info.sv, sv)
info.svdok = status == "ok"
info.svdstatus = status
info.svdhow = how
info.sv = sv
st = svdstatistics(info.sv)
info.norm = st.maxsv
info.minsv = st.minsv
info.cond = st.cond
info.rank = st.rank
info.nullspace = st.nsd
info.svgap = st.gap
res
end
_vector(sv::AbstractArray) = vec(sv)
_vector(sv::Number) = [sv]
datadetailsurl(data::RemoteMatrixData) = string(siteurl(data), '/', data.name)
"""
svdstatistics(svd::Vector{<:Real})
Return a names tuple containing several values derivable from the svd vector.
The vector should be sorted in decreasing order.
Return type: `NamedTuple{(:norm, :svdmin, :cond, :rank, :nsd, :gap)}
* maxsv: maximal singular value
* minsv: minimal singular value
* cond: condition number = `maxsv / minsv`
* rank: number of singular values > `tol = (length(sv)) * eps(norm)`
* nsd: nullspace dimension ? `length(sv) - rank`
* gap: relation between smallest `sv > tol` and greatest `sv <= tol`
"""
function svdstatistics(sv::Vector{T}) where T<:Real
mn = length(sv)
minsv, maxsv = mn > 0 ? extrema(sv) : (zero(T), zero(T))
norm = maxsv
cond = (iszero(minsv) && mn > 0 ? one(T) : maxsv) / minsv
tol = mn * eps(norm)
rank = count(x -> x > tol, sv)
nsd = mn - rank
mint = maxsv
maxt = zero(T)
for s in sv
if s > tol && s < mint
mint = s
elseif s < tol && s > maxt
maxt = s
end
end
gap = (iszero(maxt) && mn > 0 ? one(T) : mint) / maxt
(maxsv = norm, minsv = minsv, cond = cond, rank = rank, nsd = nsd, gap = gap)
end
#=
Statistics computed for the SuiteSparse Matrix Collection
LastRevisionDate
This is a single string kept in the UF_index MATLAB struct that states when the collection or the index was last modified.
DownloadTimeStamp
The date and time the index that you last downloaded the index.
Group
A cell array. Group{id} is the group name for the matrix whose serial number is 'id'. Each matrix has a unique id number in the range of 1 to the number of matrices in the collection. Once an id is assigned to a matrix, it never changes.
Name
Name{id} is the name of the matrix (excluding the Group). Name{id} is not unique. The full name of a matrix should always be given as Group/Name.
nrows
The number of rows in the matrix.
ncols
The number of columns in the matrix.
nnz
The number of numerically nonzero entries in the matrix, or nnz(Problem.A) in MATLAB, where Problem=UFget(id) is a struct containing the MATLAB format of the problem. This statistic can differ from the number of 'entries' explicitly stored in the matrix, however, since some of these entries may be numerically zero. In the MATLAB format, these explicit zero entries are stored in the binary Problem.Zeros matrix, since MATLAB drops all explicit zeros from its sparse matrix storage. The Problem.A matrix in MATLAB has nnz entries in it, with no explicit zeros. In the Matrix Market and Rutherford-Boeing format, a single file holds all entries, both nonzero and the explicit zero entries.
nzero
The number of explicit entries present in the matrix that are provided by the matrix author but which are numerically zero. nzero(id) is nnz(Problem.Zeros).
pattern_symmetry
Let S=spones(Problem.A) be the binary pattern of the explicit nonzeros in the matrix. Let pmatched be the number of matched offdiagonal entries, where both S(i,j) and S(j,i) are one, with i not equal to j. Let nzoffdiag be the number of offdiagonal entries in S. Then pattern_symmetry is the ratio of pmatched/nzoffdiag. Note that if S(i,j) and S(j,i) are both one, then this pair of entries is counted twice in both pmatched and nzoffdiag. If the matrix is rectangular, this statistic is zero. If there are no offdiagonal entries, the statistic is 1.
numerical_symmetry
Let xmatched be the number of matched offdiagonal entries, where A(i,j) is equal to the complex conjugate of A(j,i) and where i and j are not equal. Then numerical_symmetry is the ration xmatched / nzoffdiag (or 1 if nzoffdiag is zero). This statistic is zero for rectangular matrices. Note that this statistic measures how close a matrix is to being Hermitian (A=A' in MATLAB). For complex symmetric matrices (A=A.' in MATLAB), this ratio will be less than one (unless all offdiagonal entries are real).
isBinary
1 if the matrix is binary (all entries are 0 or 1), 0 otherwise.
isReal
1 if the matrix is real, 0 if complex.
nnzdiag
The number of numerically nonzero entries on the diagonal (nnz (diag (Problem.A)) in MATLAB notation). This statistic ignores explicit zero entries (Problem.Zeros in the MATLAB struct).
posdef
1 if the matrix is known to be symmetric positive definite (or Hermitian positive definite for the complex case), 0 if it is known not to be, -1 if it is symmetric (or Hermitian) but with unknown positive-definiteness. If the statistic is unknown (-1) this may be revised in subsequent versions of the index.
amd_lnz
Let C=S+S' where S=spones(A) is the binary pattern of A. Then amd_lnz is number of nonzeros in the Cholesky factorization of the matrix C(p,p) (assuming C is positive definite) where p=amd(C) is the AMD fill-reducing ordering. This statistic is -2 for rectangular matrices or for graph problems. It is -1 if it is not computed. This figure gives an estimate of the memory requirements for x=A\b in MATLAB for square matrices.
amd_flops
The floating-point operation count for computing the Cholesky factorization of C(p,p) (see above).
amd_vnz
The number of entries in a Householder-vector representation of the Q factor of R (but not the QR in MATLAB), after a COLAMD fill-reducing ordering. This is an upper bound on L for the LU factorization of A.
amd_rnz
The number of entries in R for the QR factorization of A, after a COLAMD fill-reducing ordering. This is an upper bound on U for the LU factorization of A.
nblocks
The number of blocks from dmperm (see dmperm in MATLAB).
sprank
The structural rank of the matrix, which is the number of maximual number of nonzero entries that can be permuted to the diagonal (see dmperm, or sprank in MATLAB). This statistic is not computed for problems that represent graphs, since in those cases the diagonal of the matrix is often not relevant (self-edges are often ignored).
RBtype
The Rutherford Boeing type of the matrix (ignoring explicit zeros in Problem.Zeros). RBtype is a a 3-letter lower-case string. The first letter is:
r
if A is real but not binary
p
if A is binary
c
if A is complex
i
if A is integer
The second letter:
r
if A is rectangular
u
if A is square and unsymmetric
s
if A is symmetric (nnz(A-A.') is zero in MATLAB)
h
if A is Hermitian (nnz(A-A') is zero in MATLAB)
z
if A is skew-symmetric (nnz(A+A.') is zero in MATLAB)
The third letter is always 'a' (for 'assembled'). The RB format allows for unassembled finite-element matrices, but they are converted to assembled format for this collection.
cholcand
1 if the matrix is symmetric (Hermitian if complex) and if all the diagonal entries are positive and real. Zero otherwise. If 1, the matrix is a candidate for a Cholesky factorization, which MATLAB will first try when computing x=A\b.
ncc
The number of of strongly-connected components in the graph of A (if A is square) or in the bipartite graph if A is rectangular. The diagonal is ignored.
isND
1 if the problem comes from a 2D/3D discretization, zero otherwise. This determination is not a property of the matrix, but a qualitative assessment of the kind of problem the matrix represents.
isGraph
1 if the problem is best considered as a graph rather than a system of equations, zero otherwise. This determination is not a property of the matrix, but a qualitative assessment of the kind of problem the matrix represents.
UFstats.csv
A CSV file is also available with some of this index information (UFstats.csv). The first line of the CSV file gives the number of matrices in the collection, and the second line gives the LastRevisionDate. Line k+2 in the file lists the following statistics for the matrix whose id number is k: Group, Name, nrows, ncols, nnz, isReal, isBinary, isND, posdef, pattern_symmetry, numerical_symmetry, and kind.
SVD-based statistics
The following statistics are not (yet) in the UFindex. They are currently available only on the web page for each matrix. You can also download the singular values at www.cise.ufl.edu/research/sparse/svd. These were typically calculated with s=svd(full(A)) in MATLAB, are are thus only available for modest-sized matrices.
norm(A)
The 2-norm of A (the largest singular value)
min(svd(A))
The smallest singular value
cond(A)
The 2-norm condition number, which is the ratio of the largest over the smallest singular value.
rank(A)
The rank of the matrix, which is the number of singular values larger than the tolerance of max(m,n)*eps(norm(A)). This tolerance is plotted in green in the figure.
sprank(A)-rank(A)
sprank(A) (see above) is an upper bound on the rank of A.
null space dimension
The dimension of the null space (zero if it has full numerical rank). This is simply min(m,n)-rank(A).
full numerical rank?
'yes' or 'no'.
singular value gap
If k=rank(A), and the matrix is rank deficient, then this is the ratio s(k)/s(k+1). A red line between the kth and (k+1)st singular value is drawn to illustrate this gap.
singular values
These can be downloaded as a MATLAB MAT-file. Each file contains a struct with the fields: s (a vector containing the singular values), how (a string stating how the SVD was computed), and status (a string that is either 'ok' or a warning). If the status shows that the SVD did not converge, the singular values are probably not computed accurately.
=#
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 4967 | # adjacency matrices
#
# The code is adapted from CONTEST(Controllable TEST matrices)
# by Alan Taylor and Professor Des Higham
# http://www.mathstat.strath.ac.uk/outreach/contest/
"""
Erdos-Renyi Random Graph
======================
Generate an adjacency matrix of an Edros-Renyi random graph:
an undirected graph is chosen uniformly at random from the set
of all symmetric graphs with `n` nodes and `m` edges.
*Input options:*
+ [type,] n, m: the dimension of the matrix is `n`. The number of
1's in the matrix is `2*m`.
+ [type,] n: m = ceil(Int, n*log(n)/2).
*Groups:* ["sparse", "graph"]
*References:*
**P. Erdos and A. Renyi**, On Random Graphs, Publ. Math. Debrecen, 6, 1959,
pp. 290-297
"""
function erdrey(::Type{T}, n::Integer, m::Integer) where T
nzeros = ceil.(Int, 0.5*n*(n-1)*rand(m))
v = zeros(Int, n)
for count in 1:n
v[count] = count*(count -one(Int))/2
end
is = zeros(Int, m)
js = zeros(Int, m)
for count in 1:m
i = minimum(findall(x -> x >=nzeros[count], v))
j = nzeros[count] - (i-1)*(i-2)/2
is[count] = i
js[count] = j
end
A = sign.(sparse([is;js], [js;is], ones(T, m*2), n, n))
while nnz(A) != 2*m
diff = round(Int, m - nnz(A)/2)
is_new = zeros(Int, diff)
js_new = zeros(Int, diff)
for count = 1:diff
idx = ceil(Int, 0.5*n*(n-1)*rand())
is_new[count] = minimum(findall(x -> x >= idx, v))
js_new[count] = idx - (is_new[count] - 1)*(is_new[count] - 2)/2
end
append!(is, is_new)
append!(js, js_new)
s = ones(T, length(is))
A = sign.(sparse([is;js], [js;is], [s;s], n,n))
end
A
end
erdrey(::Type{T}, n::Integer) where T = erdrey(T, n, ceil(Int, n*log(n)/2))
erdrey(n::Integer, arg...) = erdrey(Float64, n, arg...)
"""
Gilbert Random Graph
==================
Generate an adjecency matrix of a Gilbert random graph: an undirected graph
with pairs of nodes are connected with independent probability `p`.
*Input options:*
+ [type,] n, p: the dimension of the matrix is `n` and the probability that any two nodes
are connected is `p`.
+ [type,] n: p = log(n)/n.
*Groups:* ["sparse", "graph"]
*References:*
**E.N. Gilbert**, Random Graphs, Ann. Math. Statist., 30, (1959) pp. 1141-1144.
"""
function gilbert(::Type{T}, n::Integer, p::AbstractFloat) where T
v = zeros(Int, n)
for k = 1:n
v[k] = round(Int, k*(k-1)/2)
end
is = zeros(Int, 0)
js = zeros(Int, 0)
w = zero(Int)
w += one(Int) + floor(Int, log(1 - rand()) / log(1 - p))
while w < n*(n-1)/2
i = minimum(findall(x -> x >= w, v))
j = w - round(Int, (i -1)*(i - 2)/2)
push!(is, i)
push!(js, j)
w += one(Int) + floor(Int, log(1 - rand()) / log(1-p))
end
s = ones(T, length(is))
return sparse([is;js], [js;is], [s;s], n, n)
end
function gilbert(::Type{T}, n::Integer) where T
if n == 1
return gilbert(T, n, 0.2)
else
return gilbert(T, n, log(n)/n)
end
end
gilbert(n::Integer, arg...) = gilbert(Float64, n, arg...)
# utility function
# shortcuts: randomly add entries (shortcuts) to a matrix.
function shortcuts(A::SparseMatrixCSC{T}, p::Real) where T
n, = size(A)
Ihat = findall(x -> x <= p, rand(n))
Jhat = ceil.(Int, n*rand(Float64, size(Ihat)))
Ehat = ones(T, size(Ihat))
# an edge
for (i, ele) in enumerate(Ihat)
if ele == Jhat[i]
Ehat[i] = zero(T)
end
end
is, js, es = findnz(A)
return sparse([is; Ihat; Jhat], [js; Jhat; Ihat], [es; Ehat; Ehat], n, n)
end
"""
Small World Network
=================
Generate an adjacency matrix for a small world network. We model
it by adding shortcuts to a kth nearest neighbour ring network
(nodes i and j are connected iff |i -j| <= k or |n - |i -j|| <= k.) with n nodes.
*Input options:*
+ [type,] n, k, p: the dimension of the matrix is `n`. The number of
nearest-neighbours to connect is `k`. The probability of adding a shortcut
in a given row is `p`.
+ [type,] n: `k = 2` and `p = 0.1`.
*References:*
**D. J. Watts and S. H. Strogatz**, Collective Dynamics of Small World Networks,
Nature 393 (1998), pp. 440-442.
"""
function smallworld(::Type{T}, n::Integer, k::Integer, p::Real) where T
twok = 2*k
is = zeros(Int, 2*k*n)
js = zeros(Int, 2*k*n)
es = zeros(T, 2*k*n)
for count = 1:n
is[(count-1)*twok+1 : count*twok] = count*ones(Int, twok)
js[(count-1)*twok+1 : count*twok] = mod.([count : count+k-1;
n-k+count-1 : n+count-2], n) .+ 1
es[(count-1)*twok+1 : count*twok] = ones(T, twok)
end
A = sparse(is, js, es, n, n)
return sign.(shortcuts(A, p))
end
smallworld(::Type{T}, n::Integer) where T = smallworld(T, n, 2, 0.1)
smallworld(n::Integer, arg...) = smallworld(Float64, n, arg...)
function geo(n::Integer)
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 45766 | # Higham Test Matrices
"""
Hilbert Matrix
==============
The Hilbert matrix has `(i,j)` element `1/(i+j-1)`. It is
notorious for being ill conditioned. It is symmetric
positive definite and totally positive.
*Input options:*
+ [type,] dim: the dimension of the matrix.
+ [type,] row_dim, col_dim: the row and column dimensions.
*Groups:* ["inverse", "illcond", "symmetric", "posdef"]
*References:*
**M. D. Choi**, Tricks or treats with the Hilbert matrix,
Amer. Math. Monthly, 90 (1983), pp. 301-312.
**N. J. Higham**, Accuracy and Stability of Numerical Algorithms,
second edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002; sec. 28.1.
"""
function hilb(::Type{T}, m::Integer, n::Integer) where T
# compute the Hilbert matrix
H = zeros(T, m, n)
for j = 1:n, i= 1:m
@inbounds H[i,j] = one(T)/ (i + j - one(T))
end
return H
end
hilb(::Type{T}, n::Integer) where T = hilb(T, n, n)
hilb(args...) = hilb(Float64, args...)
hilb(::Type, args...) = throw(MethodError(hilb, Tuple(args)))
"""
Inverse of the Hilbert Matrix
=============================
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse", "illcond", "symmetric","posdef"]
*References:*
**M. D. Choi**, Tricks or treats with the Hilbert matrix,
Amer. Math. Monthly, 90 (1983), pp. 301-312.
**N. J. Higham**, Accuracy and Stability of Numerical Algorithms, second
edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2002; sec. 28.1.
"""
function invhilb(::Type{T}, n::Integer) where T
# compute the inverse of Hilbert matrix
# Type: data type
# n: the dimension of the matrix
Inv = zeros(T, n, n)
for i = 1:n, j = 1:n
Inv[i,j] = (-1)^(i+j)*(i+j-1)*binomial(n+i-1, n-j)*
binomial(n+j-1,n-i)*binomial(i+j-2,i-1)^2
end
return Inv
end
invhilb(n::Integer) = invhilb(Float64, n)
"""
Hadamard Matrix
===============
The Hadamard matrix is a square matrix whose entries are
1 or -1. It was named after Jacques Hadamard. The rows of
a Hadamard matrix are orthogonal.
*Input options:*
+ [type,] dim: the dimension of the matrix, `dim` is a power of 2.
*Groups:* ["inverse", "orthogonal", "eigen"]
*References:*
**S. W. Golomb and L. D. Baumert**, The search for
Hadamard matrices, Amer. Math. Monthly, 70 (1963) pp. 12-17
"""
function hadamard(::Type{T}, n::Integer) where T
#Compute the hadamard matrix
if n < 1
lgn = 0
else
lgn = round(Integer, log2(n))
end
2^lgn != n && throw(ArgumentError("n must be positive integer and a power of 2."))
H = reshape(T[1], 1, 1)
for i = 1:lgn
H = [[H H]; [H -H]]
end
return H
end
hadamard(n::Integer) = hadamard(Float64, n)
"""
Cauchy Matrix
=============
Given two vectors `x` and `y`, the `(i,j)` entry of the Cauchy matrix is
`1/(x[i]+y[j])`.
*Input options*:
+ [type,] x, y: two vectors.
+ [type,] x: a vector. `y` defaults to `x`.
+ [type,] dim: the dimension of the matrix. `x` and `y` default to
`[1:dim;]`.
*Groups:* ["inverse", "illcond", "symmetric", "posdef"]
*References:*
**N. J. Higham**, Accuracy and Stability of Numerical Algorithms,
second edition, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2002; sec. 28.1
"""
function cauchy(::Type{T}, x::Vector, y::Vector) where T
# Compute the cauchy matrix
m = size(x,1)
n = size(y,1)
C = zeros(T, m, n)
[C[i,j]= one(T)/(x[i] + y[j]) for i = 1:m, j = 1:n]
return C
end
cauchy(::Type{T}, x::Vector) where T = cauchy(T, x, x)
cauchy(::Type{T}, k::Integer) where T = cauchy(T, [1:k;])
cauchy(arg...) = cauchy(Float64, arg...)
cauchy(::Type, args...) = throw(MethodError(cauchy, Tuple(args)))
"""
Circulant Matrix
================
A circulant matrix has the property that each row is obtained
by cyclically permuting the entries of the previous row one
step forward.
*Input options:*
+ [type,] vec, col_dim: a vector and the column dimension.
+ [type,] vec: a vector.
+ [type,] dim: the dimension of the matrix.
*Groups:* ["symmetric", "posdef", "eigen"]
*References:*
**P. J. Davis**, Circulant Matrices, John Wiley, 1977.
"""
function circul(::Type{T}, v::Vector, w::Vector) where T
# Compute the circul matrix
# v: the first row of the matrix
# w: the length of the vector is the dimension of the column
m = length(v)
n = length(w)
C = zeros(T, m, n)
[C[i,j] = v[1 + mod(j - i, n)] for i = 1:m, j = 1:n]
return C
end
circul(::Type{T}, v::Vector, n::Integer) where T = circul(T, v, T[1:n;])
circul(::Type{T}, v::Vector) where T = circul(T, v, v)
circul(::Type{T}, k::Integer) where T = circul(T, [1:k;])
circul(arg...) = circul(Float64, arg...)
"""
Dingdong Matrix
===============
The Dingdong matrix is a symmetric Hankel matrix invented
by DR. F. N. Ris of IBM, Thomas J Watson Research Centre.
The eigenvalues cluster around `π/2` and `-π/2`.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["symmetric", "eigen"]
*References:*
**J. C. Nash**, Compact Numerical Methods for
Computers: Linear Algebra and Function Minimisation,
second edition, Adam Hilger, Bristol, 1990 (Appendix 1).
"""
function dingdong(::Type{T}, n::Integer) where T
# Compute the dingdong matrix
# type: data type
# n: the dimension of the matrix
D = zeros(T, n, n)
[D[i,j] = one(T)/(2*(n-i-j+1.5)) for i = 1:n, j= 1:n]
return D
end
dingdong(args...) = dingdong(Float64, args...)
dingdong(::Type, args...) = throw(MethodError(dingdong, Tuple(args)))
"""
Frank Matrix
============
The Frank matrix is an upper Hessenberg matrix with
determinant 1. The eigenvalues are real, positive and
very ill conditioned.
*Input options:*
+ [type,] dim, k: `dim` is the dimension of the matrix, `k = 0 or 1`.
If `k = 1` the matrix reflect about the anti-diagonal.
+ [type,] dim: the dimension of the matrix.
*Groups:* ["illcond", "eigen"]
*References:*
**W. L. Frank**, Computing eigenvalues of complex matrices
by determinant evaluation and by methods of Danilewski and Wielandt,
J. Soc. Indust. Appl. Math., 6 (1958), pp. 378-392 (see pp. 385, 388).
"""
function frank(::Type{T}, n::Integer, k::Integer) where T
# Compute the frank matrix
# type: data type
# n: the dimension of the matrix
# k = 0 or 1: k = 1 reflect about the anti-diagonal
p = T[n:-1:1;];
F = triu(ones(T, n, 1)*p') + diagm(-1 => p[2:n]);
k == 0 ? F :
k == 1 ? F[n:-1:1,n:-1:1]' : error("k = 0 or 1, but get ", k)
end
frank(::Type{T}, n::Integer) where T = frank(T, n, 0)
frank(args...) = frank(Float64, args...)
frank(::Type, args...) = throw(MethodError(frank, Tuple(args)))
#
# Jordan block
#
function jordbloc( n::Integer, lambda::T) where T
# Generate a n-by-n jordan block with eigenvalue
# lambda
J = lambda*Matrix{T}(I, n, n) + diagm(1 => ones(T, n-1, 1)[:,1])
return J
end
"""
Forsythe Matrix
===============
The Forsythe matrix is a n-by-n perturbed Jordan block.
This generator is adapted from N. J. Higham's Test Matrix Toolbox.
*Input options:*
+ [type,] dim, alpha, lambda: `dim` is the dimension of the matrix.
`alpha` and `lambda` are scalars.
+ [type,] dim: `alpha = sqrt(eps(type))` and `lambda = 0`.
*Groups:* ["inverse", "illcond", "eigen"]
"""
function forsythe(::Type{T}, n::Integer , alpha, lambda) where T
# Generate the forsythe matrix
alpha = convert(T, alpha)
lambda = convert(T, lambda)
F = jordbloc(n, lambda);
F[n,1] = alpha;
return F
end
forsythe(::Type{T}, n::Integer) where T = forsythe(T, n, sqrt(eps(T)), zero(T))
forsythe(args...) = forsythe(Float64, args...)
forsythe(::Type, args...) = throw(MethodError(forsythe, Tuple(args)))
function oddmagic(::Type{T}, n::Integer) where T
# compute the magic square of odd orders
A = zeros(T, n, n)
i = 1
j = div(n+1, 2)
for k = 1:n^2
is = i
js = j
A[i,j] = k
i = n - rem(n+1-i,n)
j = rem(j,n) + 1
if A[i,j] != 0
i = rem(is,n) + 1
j = js
end
end
return A
end
"""
Magic Square Matrix
===================
The magic matrix is a matrix with integer entries such that
the row elements, column elements, diagonal elements and
anti-diagonal elements all add up to the same number.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse"]
"""
function magic(::Type{T}, n::Integer) where T
# Compute a magic square of order n
# Learnt from Cleve Moler, Experiments with MATLAB, 2011
if mod(n, 2) == 1
# n is odd
M = oddmagic(T, n)
elseif mod(n, 4) == 0
# n is doubly even
a = floor.(Integer, mod.([1:n;], 4)/2)
B = broadcast(==, a', a)
M = broadcast(+, T[1:n:n^2;]',T[0:n-1;])
for i = 1:n, j = 1:n
B[i,j] == 1 ? M[i,j] = n^2 + one(T) - M[i,j] : M[i,j]
end
else
# n is singly even
p = div(n,2)
M = oddmagic(T, p)
M = [M M.+2*p^2; M.+3*p^2 M.+p^2]
if n == 2
return M
end
i = [1:p;]
k = div(n-2, 4)
j = [[1:k;]; [(n-k+2) : n;]]
M[[i;i.+p],j] = M[[i.+p;i],j]
i = k+1
j = [1, i]
M[[i;i+p],j] = M[[i+p;i],j]
end
return M
end
magic(n::Integer) = magic(Float64, n)
"""
Grcar Matrix
============
The Grcar matrix is a Toeplitz matrix with sensitive
eigenvalues.
*Input options:*
+ [type,] dim, k: `dim` is the dimension of the matrix and
`k` is the number of superdiagonals.
+ [type,] dim: the dimension of the matrix.
*Groups:* ["eigen"]
*References:*
**J. F. Grcar**, Operator coefficient methods
for linear equations, Report SAND89-8691, Sandia National
Laboratories, Albuquerque, New Mexico, 1989 (Appendix 2).
"""
function grcar(::Type{T}, n::Integer, k::Integer = 3) where T
# Compute grcar matrix
G = tril(triu(ones(T, n,n)), min(k, n-1)) - diagm(-1 => ones(T, n-1))
return G
end
grcar(args...) = grcar(Float64, args...)
grcar(::Type, args...) = throw(MethodError(grcar, Tuple(args)))
"""
Triw Matrix
===========
Upper triangular matrices discussed by Wilkinson and others.
*Input options:*
+ [type,] row_dim, col_dim, α, k: `row_dim` and `col_dim`
are row and column dimension of the matrix. `α` is a
scalar representing the entries on the superdiagonals.
`k` is the number of superdiagonals.
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse", "illcond"]
*References:*
**G. H. Golub and J. H. Wilkinson**, Ill-conditioned
eigensystems and the computation of the Jordan canonical form,
SIAM Review, 18(4), 1976, pp. 578-6
"""
function triw(::Type{T}, m::Integer, n::Integer, alpha, k::Integer) where T
alpha = convert(T, alpha)
A = tril(Matrix{T}(I, m, n) + alpha * triu(ones(T, m,n), 1), min(k, n-1))
return A
end
triw(::Type{T}, n::Integer) where T = triw(T, n, n, -1, n-1)
triw(args...) = triw(Float64, args...)
triw(::Type, args...) = throw(MethodError(triw, Tuple(args)))
"""
Moler Matrix
============
The Moler matrix is a symmetric positive definite matrix.
It has one small eigenvalue.
*Input options:*
+ [type,] dim, alpha: `dim` is the dimension of the matrix,
`alpha` is a scalar.
+ [type,] dim: `alpha = -1`.
*Groups:* ["inverse", "illcond", "symmetric", "posdef"]
*References:*
**J.C. Nash**, Compact Numerical Methods for Computers:
Linear Algebra and Function Minimisation, second edition,
Adam Hilger, Bristol, 1990 (Appendix 1).
"""
function moler(::Type{T}, n::Integer, alpha = -1.) where T
alpha = convert(T, alpha)
M = triw(T, n, n, alpha, n - 1)' * triw(T, n, n, alpha, n -1 )
return M
end
moler(args...) = moler(Float64, args...)
moler(::Type, args...) = throw(MethodError(moler, Tuple(args)))
"""
Pascal Matrix
=============
The Pascal matrix’s anti-diagonals form the Pascal’s triangle.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse", "illcond", "symmetric", "posdef", "eigen"]
*References:*
**R. Brawer and M. Pirovino**, The linear algebra of
the Pascal matrix, Linear Algebra and Appl., 174 (1992),
pp. 13-23 (this paper gives a factorization of L = PASCAL(N,1)
and a formula for the elements of L^k).
**N. J. Higham**, Accuracy and Stability of Numerical Algorithms,
second edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2002; sec. 28.4.
"""
function pascal(::Type{T}, n::Integer) where T
P = zeros(T, n,n)
for j = 1:n
for i = 1:n
try P[i,j] = binomial(i+j-2, j-1)
catch
P[i,j] = binomial(BigInt(i+j-2), j-1)
end
end
end
return P
end
pascal(n::Integer) = pascal(Float64, n)
"""
Kahan Matrix
============
The Kahan matrix is an upper trapezoidal matrix, i.e., the
`(i,j)` element is equal to `0` if `i > j`. The useful range of
`θ` is `0 < θ < π`. The diagonal is perturbed by
`pert*eps()*diagm([n:-1:1;])`.
*Input options:*
+ [type,] rowdim, coldim, θ, pert: `rowdim` and `coldim` are the row and column
dimensions of the matrix. `θ` and `pert` are scalars.
+ [type,] dim, θ, pert: `dim` is the dimension of the matrix.
+ [type,] dim: `θ = 1.2`, `pert = 25`.
*Groups:* ["inverse", "illcond"]
*References:*
**W. Kahan**, Numerical linear algebra, Canadian Math.
Bulletin, 9 (1966), pp. 757-801.
"""
function kahan(::Type{T}, m::Integer, n::Integer, theta, pert) where T
theta = convert(T, theta)
pert = convert(T, pert)
s = sin(theta)
c = cos(theta)
dim = min(m,n)
A = zeros(T, m, n)
for i = 1:m, j = 1:n
i > dim ? A[i,j] = zero(T) :
i > j ? A[i,j] = zero(T) :
i==j ? A[i,j] = s^(i-1)+pert*eps(T)*(m-i+1) : A[i,j] = -c*s^(i-1)
end
return A
end
kahan(::Type{T}, n::Integer, theta, pert) where T = kahan(T, n, n, theta, pert)
kahan(::Type{T}, n::Integer) where T = kahan(T, n, n, 1.2, 25.)
kahan(args...) = kahan(Float64, args...)
kahan(::Type, args...) = throw(MethodError(kahan, Tuple(args)))
"""
Pei Matrix
==========
The Pei matrix is a symmetric matrix with known inversion.
*Input options:*
+ [type,] dim, α: `dim` is the dimension of the matrix.
`α` is a scalar.
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse", "illcond", "symmetric", "posdef"]
*References:*
**M. L. Pei**, A test matrix for inversion procedures,
Comm. ACM, 5 (1962), p. 508.
"""
function pei(::Type{T}, n::Integer, alpha = 1) where T
alpha = convert(T, alpha)
return alpha*Matrix{T}(I, n, n) + ones(T, n, n)
end
pei(args...) = pei(Float64, args...)
pei(::Type, args...) = throw(MethodError(pei, Tuple(args)))
"""
Vandermonde Matrix
==================
The inverse and determinat are known explicitly.
*Input options:*
+ [type,] vec, col_dim: `vec` is a vector, `col_dim` is the number of columns.
+ [type,] vec: `col_dim = length(vec)`
+ [type,] dim: `vec = [1:dim;]`
*Groups:* ["inverse", "illcond"]
*References:*
**N. J. Higham**, Stability analysis of algorithms
for solving confluent Vandermonde-like systems, SIAM J.
Matrix Anal. Appl., 11 (1990), pp. 23-41.
"""
function vand(::Type{T}, p::Vector, n::Integer) where T
# n: number of rows
# p: a vector
m = length(p)
V = Array{T,2}(undef, m, n)
for j = 1:m
@inbounds V[j, 1] = 1
end
for i = 2:n
for j = 1:m
@inbounds V[j,i] = p[j] * V[j,i-1]
end
end
return V
end
vand(::Type{T}, n::Integer) where T = vand(T, [1:n;], n)
vand(::Type{T}, p::Vector) where T = vand(T, p, length(p))
vand(args...) = vand(Float64, args...)
vand(::Type, args...) = throw(MethodError(vand, Tuple(args)))
"""
Involutory Matrix
=================
An involutory matrix is a matrix that is its own inverse.
*Input options:*
+ [type,] dim: `dim` is the dimension of the matrix.
*Groups:* ["inverse", "illcond", "eigen"]
*References:*
**A. S. Householder and J. A. Carpenter**, The
singular values of involutory and of idempotent matrices,
Numer. Math. 5 (1963), pp. 234-237.
"""
function invol(::Type{T}, n::Integer) where T
A = hilb(T, n)
d = -n
A[:,1] = d*A[:, 1]
for i = 1:n-1
d = -(n+i)*(n-i)*d/(i*i)
A[i+1,:] = d*A[i+1,:]
end
return A
end
invol(n::Integer) = invol(Float64, n)
"""
Chebyshev Spectral Differentiation Matrix
=========================================
If `k = 0`,the generated matrix is nilpotent and a vector with
all one entries is a null vector. If `k = 1`, the generated
matrix is nonsingular and well-conditioned. Its eigenvalues
have negative real parts.
*Input options:*
+ [type,] dim, k: `dim` is the dimension of the matrix and
`k = 0 or 1`.
+ [type,] dim: `k=0`.
*Groups:* ["eigen"]
*References:*
**L. N. Trefethen and M. R. Trummer**, An instability
phenomenon in spectral methods, SIAM J. Numer. Anal., 24 (1987), pp. 1008-1023.
"""
function chebspec(::Type{T}, n::Integer, k::Integer = 0) where T
# k = 0 or 1
if k == 1
n = n + 1
end
c = ones(T, n)
c[1] = 2
c[2:n-1] .= 1
c[n] = 2
x = ones(T, n)
A = zeros(T, n, n)
# Compute the chebyshev points
for i = 1:n
x[i] = cos(pi * (i - 1) / (n - 1))
end
for j = 1:n, i = 1:n
i != j ? A[i,j] = (-1)^(i+j) * c[i] / (c[j] * (x[i] - x[j])) :
i == 1 ? A[i,i] = (2 * (n -1)^2 + 1) / 6 :
i == n ? A[i,i] = - (2 * (n-1)^2 + 1) / 6 :
A[i,i] = - 0.5 * x[i] / (1 - x[i]^2)
end
if k == 1
A = A[2:n, 2:n]
end
return A
end
chebspec(args...) = chebspec(Float64, args...)
chebspec(::Type, args...) = throw(MethodError(chebspec, Tuple(args)))
"""
Lotkin Matrix
=============
The Lotkin matrix is the Hilbert matrix with its first row
altered to all ones. It is unsymmetric, illcond and
has many negative eigenvalues of small magnitude.
*Input options:*
+ [type,] dim: `dim` is the dimension of the matrix.
*Groups:* ["inverse", "illcond", "eigen"]
*References:*
**M. Lotkin**, A set of test matrices, MTAC, 9 (1955), pp. 153-161.
"""
function lotkin(::Type{T}, n::Integer) where T
A = hilb(T, n)
A[1,:] = ones(T,n)'
return A
end
lotkin(n::Integer) = lotkin(Float64, n)
"""
Clement Matrix
==============
The Clement matrix is a tridiagonal matrix with zero
diagonal entries. If k = 1, the matrix is symmetric.
*Input options:*
+ [type,] dim, k: `dim` is the dimension of the matrix.
If `k = 0`, the matrix is of type `Tridiagonal`.
If `k = 1`, the matrix is of type `SymTridiagonal`.
+ [type,] dim: `k = 0`.
*Groups:* ["inverse", "symmetric", "eigen"]
*References:*
**P. A. Clement**, A class of triple-diagonal
matrices for test purposes, SIAM Review, 1 (1959), pp. 50-52.
"""
function clement(::Type{T}, n::Integer, k::Integer = 0) where T
# construct Tridiagonal matrix
# n is the dimension of the matrix
# k = 0 or 1
if n == 1 # handle the 1-d case.
return zeros(T, 1, 1)
end
n = n -1
x = T[n:-1:1;]
z = T[1:n;]
if k == 0
A = Tridiagonal(x,zeros(T,n+1),z)
else
y = sqrt.(x.*z)
A = SymTridiagonal(zeros(T,n+1), y)
end
return A
end
clement(args...) = clement(Float64, args...)
clement(::Type, args...) = throw(MethodError(clement, Tuple(args)))
"""
Fiedler Matrix
==============
The Fiedler matrix is symmetric matrix with a dominant
positive eigenvalue and all the other eigenvalues are negative.
*Input options:*
+ [type,] vec: a vector.
+ [type,] dim: `dim` is the dimension of the matrix. `vec=[1:dim;]`.
*Groups: *["inverse", "symmetric", "eigen"]
*References:*
**G. Szego**, Solution to problem 3705, Amer. Math.
Monthly, 43 (1936), pp. 246-259.
**J. Todd**, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,
Birkhauser, Basel, and Academic Press, New York, 1977, p. 159.
"""
function fiedler(::Type{T}, v::Vector) where T
n = length(v)
v = transpose(v[:])
A = ones(T, n) * v
A = abs.(A - transpose(A)) # nonconjugate transpose
end
fiedler(::Type{T}, n::Integer) where T = fiedler(T, [1:n;])
fiedler(args...) = fiedler(Float64, args...)
fiedler(::Type, args...) = throw(MethodError(fiedler, Tuple(args)))
"""
MIN[I,J] Matrix
===============
A matrix with `(i,j)` entry `min(i,j)`. It is a symmetric positive
definite matrix. The eigenvalues and eigenvectors are known
explicitly. Its inverse is tridiagonal.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse", "symmetric", "posdef", "eigen"]
*References:*
**J. Fortiana and C. M. Cuadras**, A family of matrices,
the discretized Brownian bridge, and distance-based regression,
Linear Algebra Appl., 264 (1997), 173-188. (For the eigensystem of A.)
"""
function minij(::Type{T}, n::Integer) where T
A = zeros(T, n, n)
[A[i,j] = min(i,j) for i = 1:n, j = 1:n]
return A
end
minij(n::Integer) = minij(Float64, n)
"""
Binomial Matrix
===============
The matrix is a multiple of an involutory matrix.
*Input options:*
+ [type,] dim: the dimension of the matrix.
"""
function binomialm(::Type{T}, n::Integer) where T
# Mulitiple of involutory matrix
L = Array{T,2}(undef, n, n)
D = Diagonal((-2).^[0:n-1;])
[L[i,j] = binomial(i-1, j-1) for i = 1:n, j = 1:n]
U = L[n:-1:1, n:-1:1]
return L*D*U
end
binomialm(n::Integer) = binomialm(Float64, n)
"""
Tridiagonal Matrix
==================
Construct a tridigonal matrix of type `Tridiagonal`.
*Input options:*
+ [type,] v1, v2, v3: `v1` and `v3` are vectors of subdiagonal
and superdiagonal elements, respectively, and `v2` is a vector
of diagonal elements.
+ [type,] dim, x, y, z: `dim` is the dimension of the matrix,
`x`, `y`, `z` are scalars. `x` and `z` are the subdiagonal and
superdiagonal elements, respectively, and `y` is the diagonal
elements.
+ [type,] dim: `x = -1, y = 2, z = -1`. This matrix is also
known as the second difference matrix.
*Groups:* ["inverse", "illcond", "posdef", "eigen"]
*References:*
**J. Todd**, Basic Numerical Mathematics, Vol. 2:
Numerical Algebra, Birkhauser, Basel, and Academic Press,
New York, 1977, p. 155.
"""
function tridiag(::Type{T}, x::AbstractVector, y::AbstractVector,
z::AbstractVector) where T
x = map((i)-> convert(T, i), x)
y = map((i)-> convert(T, i), y)
z = map((i)-> convert(T, i), z)
return Tridiagonal(x,y,z)
end
# Toeplitz tridiagonal matrix
tridiag(::Type{T}, n::Integer, x::Integer, y::Integer, z::Integer) where T =
n == 1 ? y*ones(T,1,1) :
tridiag(T, x*ones(T, n-1), y*ones(T, n), z*ones(T, n-1))
tridiag(::Type{T}, n::Integer) where T = tridiag(T, n, -1, 2, -1)
tridiag(args...) = tridiag(Float64, args...)
tridiag(::Type, args...) = throw(MethodError(tridiag, Tuple(args)))
"""
Lehmer Matrix
=============
The Lehmer matrix is a symmetric positive definite matrix.
It is totally nonnegative. The inverse is tridiagonal and
explicitly known
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["inverse", "symmetric", "posdef"]
*References:*
**M. Newman and J. Todd**, The evaluation of
matrix inversion programs, J. Soc. Indust. Appl. Math.,
6 (1958), pp. 466-476.
Solutions to problem E710 (proposed by D.H. Lehmer): The inverse
of a matrix, Amer. Math. Monthly, 53 (1946), pp. 534-535.
"""
function lehmer(::Type{T}, n::Integer) where T
A = Array{T,2}(undef, n, n)
[A[i,j] = min(i,j) / max(i,j) for i = 1:n, j = 1:n]
return A
end
lehmer(n::Integer) = lehmer(Float64, n)
#=
function lehmer(::Type{T}, n::Integer) where T
A = Array{T,2}(n, n)
[A[i,j] = min(i,j) / max(i,j) for i = 1:n, j = 1:n]
return A
end
lehmer(n::Integer) = lehmer(Float64, n)
=#
"""
Parter Matrix
=============
The Parter matrix is a Toeplitz and Cauchy matrix
with singular values near `π`.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["eigen"]
*References:*
The MathWorks Newsletter, Volume 1, Issue 1,
March 1986, page 2. S. V. Parter, On the distribution of the
singular values of Toeplitz matrices, Linear Algebra and
Appl., 80 (1986), pp. 115-130.
"""
function parter(::Type{T}, n::Integer) where T
A = Array{T,2}(undef, n, n)
[A[i,j] = one(T) / (i - j + 0.5) for i = 1:n, j = 1:n]
return A
end
parter(n::Integer) = parter(Float64, n)
"""
Chow Matrix
===========
The Chow matrix is a singular Toeplitz lower Hessenberg matrix.
*Input options:*
+ [type,] dim, alpha, delta: `dim` is dimension of the matrix.
`alpha`, `delta` are scalars such that `A[i,i] = alpha + delta` and
`A[i,j] = alpha^(i + 1 -j)` for `j + 1 <= i`.
+ [type,] dim: `alpha = 1`, `delta = 0`.
*Groups:* ["eigen"]
*References:*
**T. S. Chow**, A class of Hessenberg matrices with known
eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.
"""
function chow(::Type{T}, n::Integer, alpha, delta) where T
A = zeros(T, n, n)
alpha = convert(T, alpha)
delta = convert(T, delta)
for i = 1:n, j = 1:n
if i == j - 1
A[i,j] = one(T)
elseif i == j
A[i,j] = alpha + delta
elseif j + 1 <= i
A[i,j] = alpha^(i + 1 - j)
end
end
return A
end
chow(::Type{T}, n::Integer) where T = chow(T, n, 1, 0)
chow(args...) = chow(Float64, args...)
chow(::Type, args...) = throw(MethodError(chow, Tuple(args)))
#
# newsign: newsign(0) = 1
#
function newsign(x)
x == 0 ? y = 1 : y = sign(x)
return y
end
"""
Random Correlation Matrix
=========================
A random correlation matrix is a symmetric positive
semidefinite matrix with 1s on the diagonal.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["symmetric", 'pos-semidef', "random"]
"""
function randcorr(::Type{T}, n::Integer) where T
x = rand(T,n) # x is the vector of random eigenvalues from a uniform distribution.
x = n * x / sum(x) # x has nonnegtive elements.
A = diagm(0 => x)
F = qr(randn(n,n));
Q = F.Q*diagm(0 => sign.(diag(F.R))) # form a random orthogonal matrix.
copyto!(A, Q*A*Q')
a = diag(A)
l = findall(a .< 1)
g = findall(a .> 1)
# Apply Given rotation to set A[i,i] = 1
while length(l) > 0 && length(g) > 0
k = ceil(Integer, rand()*length(l))
h = ceil(Integer, rand()*length(g))
i = l[k]
j = g[h]
if i > j
i,j = j,i
end
alpha = sqrt(A[i,j]^2 - (a[i] - 1)*(a[j] - 1))
# take sign to avoid cancellation.
t = (A[i,j] + newsign(A[i,j]) * alpha) / (a[j] - 1)
c = 1/ sqrt(1 + t^2)
s = t*c
A[:, [i,j]] = A[:, [i,j]] * [c s; -s c]
A[[i,j], :] = [c -s; s c] * A[[i,j], :]
A[i,i] = 1
a = diag(A)
l = findall(a.<1)
g = findall(a.>1)
end
[A[i,i] = 1 for i = 1:n]
return (A + A')/2
end
randcorr(args...) = randcorr(Float64, args...)
randcorr(::Type, args...) = throw(MethodError(randcorr, Tuple(args)))
"""
Poisson Matrix
==============
A block tridiagonal matrix from Poisson’s equation.
This matrix is sparse, symmetric positive definite and
has known eigenvalues. The result is of type `SparseMatrixCSC`.
*Input options:*
+ [type,] dim: the dimension of the matrix is `dim^2`.
*Groups:* ["inverse", "symmetric", "posdef", "eigen", "sparse"]
*References:*
**G. H. Golub and C. F. Van Loan**, Matrix Computations,
second edition, Johns Hopkins University Press, Baltimore,
Maryland, 1989 (Section 4.5.4).
"""
function poisson(::Type{T}, n::Integer) where T
S = Array(tridiag(T, n))
A = sparse(T(1)I, n, n)
return kron(A,S) + kron(S,A)
end
poisson(n::Integer) = poisson(Float64, n)
"""
Toeplitz Matrix
===============
A Toeplitz matrix is a matrix in which each descending
diagonal from left to right is constant.
*Input options:*
+ [type,] vc, vr: `vc` and `vr` are the first column and row of the matrix.
+ [type,] v: symmatric case, i.e., `vc = vr = v`.
+ [type,] dim: `dim` is the dimension of the matrix. `v = [1:dim;]` is the first
row and column vector.
"""
function toeplitz(::Type{T}, vc::Vector, vr::Vector) where T
n = length(vc)
length(vr) == n || throw(DimensionMismatch(""))
vc[1] == vr[1] || error("The first element of the vectors must be the same.")
A = Array{T,2}(undef, n, n)
[i>=j ? A[i,j] = vc[i-j+1] : A[i,j] = vr[j-i+1] for i=1:n, j=1:n]
A
end
toeplitz(::Type{T}, v::Vector) where T = toeplitz(T, v, v)
toeplitz(::Type{T}, n::Integer) where T = toeplitz(T, [1:n;])
toeplitz(args...) = toeplitz(Float64, args...)
toeplitz(::Type, args...) = throw(MethodError(toeplitz, Tuple(args)))
"""
Hankel Matrix
=============
A Hankel matrix is a matrix that is symmetric and constant
across the anti-diagonals.
*Input options:*
+ [type,] vc, vr: `vc` and `vc` are the first column and last row of the
matrix. If the last element of `vc` differs from the first element
of `vr`, the last element of `rc` prevails.
+ [type,] v: `vc = vr = v`.
+ [type,] dim: `dim` is the dimension of the matrix. `v = [1:dim;]`.
"""
function hankel(::Type{T}, vc::Vector, vr::Vector) where T
p = [vc; vr[2:end]]
m = length(vc)
n = length(vr)
H = Array{T,2}(undef, m, n)
[H[i,j] = p[i+j-1] for i=1:m, j=1:n]
H
end
hankel(::Type{T}, v::Vector) where T = hankel(T, v, v)
hankel(::Type{T}, n::Integer) where T = hankel(T, [1:n;])
hankel(args...) = hankel(Float64, args...)
hankel(::Type, args...) = throw(MethodError(hankel, Tuple(args)))
"""
Prolate Matrix
==============
A prolate matrix is a symmetirc, ill-conditioned Toeplitz matrix.
*Input options:*
+ [type,] dim, w: `dim` is the dimension of the matrix. `w` is a real scalar.
+ [type,] dim: the case when `w = 0.25`.
*References:*
**J. M. Varah**. The Prolate Matrix. Linear Algebra and Appl.
187:267--278, 1993.
"""
function prolate(::Type{T}, n::Integer, w::Real) where T
v = Array{T,1}(undef, n)
v[1] = 2*w
[v[i] = sin(2*pi*w*i)/pi*i for i = 2:n]
return toeplitz(T, v)
end
prolate(::Type{T}, n::Integer) where T = prolate(T, n, 0.25)
prolate(args...) = prolate(Float64, args...)
prolate(::Type, args...) = throw(MethodError(prolate, Tuple(args)))
"""
Neumann Matrix
==============
A singular matrix from the discrete Neumann problem.
The matrix is sparse and the null space is formed by a vector of ones
*Input options:*
+ [type,] dim: the dimension of the matrix is `dim^2`.
*Groups:* ["eigen", "sparse"]
*References:*
**R. J. Plemmons**, Regular splittings and the
discrete Neumann problem, Numer. Math., 25 (1976), pp. 153-161.
"""
function neumann(::Type{T}, n::Integer) where T
if n == 1
return 4 * ones(T, 1,1) #handle 1-d case.
end
S = Matrix(tridiag(T, n))
S[1,2] = -2
S[n, n-1] = -2
A = sparse(T(1)I, n, n)
return kron(S,A) + kron(A,S)
end
neumann(n::Integer) = neumann(Float64, n)
#
# Sylvester's orthogonal matrix
# See Rosser matrix References 2.
#
# for a = d = 2, b = c = 1, P_block' * P_block = 10 * Identity
#
P_block(::Type{T}, a, b, c, d) where T =
reshape(T[a, b, c, d, b, -a, -d, c, c, d, -a, -b, d, -c, b, -a], 4,4)
"""
Rosser Matrix
=============
The Rosser matrix’s eigenvalues are very close together
so it is a challenging matrix for many eigenvalue algorithms.
*Input options:*
+ [type,] dim, a, b: `dim` is the dimension of the matrix.
`dim` must be a power of 2.
`a` and `b` are scalars. For `dim = 8, a = 2` and `b = 1`, the generated
matrix is the test matrix used by Rosser.
+ [type,] dim: `a = rand(1:5), b = rand(1:5)`.
*Groups:* ["eigen", "illcond", "random"]
*References:*
**J. B. Rosser, C. Lanczos, M. R. Hestenes, W. Karush**,
Separation of close eigenvalues of a real symmetric matrix,
Journal of Research of the National Bureau of Standards, v(47)
(1951)
"""
function rosser(::Type{T}, n::Integer, a, b) where T
if n < 1
lgn = 0
else
lgn = round(Integer, log2(n))
end
2^lgn != n && throw(ArgumentError("n must be positive integer and a power of 2."))
if n == 1 # handle 1-d case
return 611 * ones(T, 1, 1)
end
if n == 2
#eigenvalues are 500, 510
B = T[101 1; 1 101]
P = T[2 1;1 -2]
A = P'*B*P
elseif n == 4
# eigenvalues are 0.1, 1019.9, 1020, 1020 for a = 2 and b = 1
B = zeros(T, n, n)
B[1,1], B[1,4], B[4,1], B[4,4] = 101, 1, 1, 101;
B[2,2], B[2,3], B[3,2], B[3,3] = 1, 10, 10, 101;
P = P_block(T, a, b, b, a)
A = P' * B * P
elseif n == 8
# eigenvalues are 1020, 1020, 1000, 1000, 0.098, 0, -1020
B = zeros(T, n, n)
B[1,1], B[6,1], B[2,2], B[8,2] = 102, 1, 101, 1;
B[3,3], B[7,3] = 98, 14;
B[4,4], B[5,4], B[4,5], B[5,5] = 1, 10, 10, 101;
B[1,6], B[6,6], B[3,7],B[7,7], B[2,8], B[8,8] = 1, -102, 14, 2, 1, 101;
P = [P_block(T, a, b, b, a)' zeros(T, 4,4); zeros(T, 4,4) P_block(T, b, -b, -a, a)]
A = P' * B * P
else
lgn = lgn - 2
halfn = round(Integer, n/2)
# using Sylvester's method
P = P_block(T, a, b, b, a)
m = 4
for i in 1:lgn
P = [P zeros(T, m, m); zeros(T, m, m) P]
m = m * 2
end
# mix 4 2-by-2 matrices (with close eigenvalues) into a large nxn matrix.
B_list = T[102, 1, 1, - 102, 101, 1, 1, 101, 1, 10, 10, 101, 98, 14, 14, 2]
B = zeros(T, n, n)
j, k = 1, 5
for i in 1:(halfn + 1)
indexend = halfn -1 + i
list_start = k
list_end = k + 3
if list_start > 16 || list_end > 16
k = 1
list_start = 1
list_end = 4
end
B[j,j], B[j,indexend], B[indexend, j], B[indexend, indexend] = B_list[list_start:list_end]
j = j + 1
k = k + 4
end
A = P' * B * P
end
return A
end
rosser(::Type{T}, n::Integer) where T = rosser(T, n, rand(1:5), rand(1:5))
rosser(args...) = rosser(Float64, args...)
rosser(::Type, args...) = throw(MethodError(rosser, Tuple(args)))
"""
Matrix with Application in Sampling Theory
==========================================
A nonsymmetric matrix with eigenvalues 0, 1, 2, ... n-1.
*Input options:*
+ [type,] vec: `vec` is a vector with no repeated elements.
+ [type,] dim: `dim` is the dimension of the matrix.
`vec = [1:dim;]/dim`.
*Groups:* ["eigen"]
*References:*
**L. Bondesson and I. Traat**, A nonsymmetric matrix
with integer eigenvalues, linear and multilinear algebra, 55(3)
(2007), pp. 239-247
"""
function sampling(::Type{T}, x::Vector) where T
n = length(x)
A = zeros(T, n, n)
for j = 1:n, i = 1:n
if i != j
A[i,j] = x[i] / (x[i] - x[j])
end
end
d = sum(A, dims=2)
A = A + diagm(0 => d[:])
return A
end
#
# special probability case
# see:
# L. Bondesson and I. Traat, A Nonsymmetric Matrix with Integer
# Eigenvalues, Linear and Multilinear Algebra, 55(3)(2007), pp. 239-247.
#
function sampling(::Type{T}, n::Integer) where T
p = T[1:n;] / n
return sampling(T, p)
end
sampling(args...) = sampling(Float64, args...)
sampling(::Type, args...) = throw(MethodError(sampling, Tuple(args)))
"""
Wilkinson Matrix
================
The Wilkinson matrix is a symmetric tridiagonal matrix with pairs
of nearly equal eigenvalues. The most frequently used case
is `matrixdepot("wilkinson", 21)`. The result is of type `Tridiagonal`.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["symmetric", "eigen"]
*References:*
**J. H. Wilkinson**, Error analysis of direct methods
of matrix inversion, J. Assoc. Comput. Mach., 8 (1961), pp. 281-330.
"""
function wilkinson(::Type{T}, n::Integer) where T
if n == 1 # handle 1-d case
return ones(T, 1, 1)
end
m = (n-1)/2
A = Tridiagonal(ones(T,n-1), abs.(T[-m:m;]), ones(T, n-1))
return A
end
wilkinson(n::Integer) = wilkinson(Float64, n)
"""
Random Matrix with Element -1, 0, 1
===================================
*Input options:*
+ [type,] row_dim, col_dim, k: `row_dim` and `col_dim` are row and column dimensions,
`k = 1`: entries are 0 or 1.
`k = 2`: entries are -1 or 1.
`k = 3`: entries are -1, 0 or 1.
+ [type,] dim, k: `row_dim = col_dim = dim`.
+ [type,] dim: `k = 1`.
*Groups:* ["random"]
"""
function rando(::Type{T}, m::Integer, n::Integer, k::Integer) where T
A = Array{T,2}(undef, m, n)
if k == 1
copyto!(A, floor.(rand(m,n) .+ .5))
elseif k == 2
copyto!(A, 2 * floor.(rand(m,n) .+ .5) .- one(T))
elseif k == 3
copyto!(A, round.(3 * rand(m,n) .- 1.5))
else
throw(ArgumentError("invalid k value."))
end
return A
end
rando(::Type{T}, n::Integer, k::Integer) where T = rando(T, n, n, k)
rando(::Type{T}, n::Integer) where T = rando(T, n, n, 1)
rando(args...) = rando(Float64, args...)
rando(::Type, args...) = throw(MethodError(rando, Tuple(args)))
#
# Pre-multiply by random orthogonal matrix
#
function qmult!(A::Matrix{T}) where T
n, m = size(A)
d = zeros(T, n)
for k = n-1:-1:1
# generate random Householder transformation
x = randn(n-k+1)
s = norm(x)
sgn = sign(x[1]) + (x[1]==0)
s = sgn * s
d[k] = -sgn
x[1] = x[1] + s
beta = s * x[1]
# apply the transformation to A
y = x'*A[k:n, :];
A[k:n, :] = A[k:n, :] - x * (y /beta)
end
# tidy up signs
for i=1:n-1
A[i, :] = d[i] * A[i, :]
end
A[n, :] = A[n, :] * sign(randn())
return A
end
"""
Random Matrix with Pre-assigned Singular Values
===============================================
*Input options:*
+ [type,] row_dim, col_dim, kappa, mode: `row_dim` and `col_dim`
are the row and column dimensions.
`kappa` is the condition number of the matrix.
`mode = 1`: one large singular value.
`mode = 2`: one small singular value.
`mode = 3`: geometrically distributed singular values.
`mode = 4`: arithmetrically distributed singular values.
`mode = 5`: random singular values with unif. dist. logarithm.
+ [type,] dim, kappa, mode: `row_dim = col_dim = dim`.
+ [type,] dim, kappa: `mode = 3`.
+ [type,] dim: `kappa = sqrt(1/eps())`, `mode = 3`.
*Groups:* ["illcond", "random"]
*References:*
**N. J. Higham**, Accuracy and Stability of Numerical
Algorithms, second edition, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2002; sec. 28.3.
"""
function randsvd(::Type{T}, m::Integer, n::Integer, kappa, mode::Integer) where T
kappa >= 1 || throw(ArgumentError("Condition number must be at least 1."))
kappa = convert(T, kappa)
p = min(m,n)
if p == 1 # handle 1-d case
return ones(T, 1, 1)*kappa
end
if mode == 3
factor = kappa^(-1/(p-1))
sigma = factor.^[0:p-1;]
elseif mode == 4
sigma = ones(T, p) - T[0:p-1;]/(p-1)*(1 - 1/kappa)
elseif mode == 5
sigma = exp.(-rand(p) * log(kappa))
elseif mode == 2
sigma = ones(T, p)
sigma[p] = one(T)/kappa
elseif mode == 1
sigma = ones(p)./kappa
sigma[1] = one(T)
else
throw(ArgumentError("invalid mode value."))
end
A = zeros(T, m, n)
A[1:p, 1:p] = diagm(0 => sigma)
A = qmult!(copy(A'))
A = qmult!(copy(A'))
return A
end
randsvd(::Type{T}, n::Integer, kappa, mode) where T = randsvd(T, n, n, kappa, mode)
randsvd(::Type{T}, n::Integer, kappa) where T= randsvd(T, n, kappa, 3)
randsvd(::Type{T}, n::Integer) where T = randsvd(T, n, sqrt(1/eps(T)))
randsvd(args...) = randsvd(Float64, args...)
randsvd(::Type, args...) = throw(MethodError(randsvd, Tuple(args)))
"""
Random Orthogonal Upper Hessenberg Matrix
=========================================
The matrix is constructed via a product of Givens rotations.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*Groups:* ["random"]
*References:*
**W. B. Gragg**, The QR algorithm for unitary
Hessenberg matrices, J. Comp. Appl. Math., 16 (1986), pp. 1-8.
"""
function rohess(::Type{T}, n::Integer) where T
x = rand(n-1)*2*pi
H = Matrix{T}(I, n, n)
H[n,n] = sign(randn())
for i = n:-1:2
theta = x[i-1]
c = convert(T, cos(theta))
s = convert(T, sin(theta))
H[[i-1; i], :] = [c*H[i-1, :][:]' + s*H[i, :][:]'; -s*H[i-1, :][:]' + c*H[i, :][:]']
end
return H
end
rohess(n::Integer) = rohess(Float64, n)
"""
Kac-Murdock-Szego Toeplitz matrix
=================================
*Input options:*
+ [type,] dim, rho: `dim` is the dimension of the matrix, `rho` is a
scalar such that `A[i,j] = rho^(abs(i-j))`.
+ [type,] dim: `rho = 0.5`.
*Groups:* ["inverse", "illcond", "symmetric", "posdef"]
*References:*
**W. F. Trench**, Numerical solution of the eigenvalue
problem for Hermitian Toeplitz matrices, SIAM J. Matrix Analysis
and Appl., 10 (1989), pp. 135-146 (and see the references therein).
"""
function kms(::Type{T}, n::Integer, rho::Number) where T
A = typeof(rho) <: Complex ? Array{typeof(rho)}(undef, n, n) : Array{T,2}(undef, n, n)
[A[i,j] = rho^(abs(i-j)) for i = 1:n, j = 1:n]
if typeof(rho) <: Complex
A = conj(tril(A, -1)) + triu(A)
end
return A
end
kms(::Type{T}, n::Integer) where T = kms(T, n, convert(T, 0.5))
kms(args...) = kms(Float64, args...)
kms(::Type, args...) = throw(MethodError(kms, Tuple(args)))
"""
Wathen Matrix
=============
Wathen Matrix is a sparse, symmetric positive, random matrix
arose from the finite element method. The generated matrix is
the consistent mass matrix for a regular nx-by-ny grid of
8-nodes.
*Input options:*
+ [type,] nx, ny: the dimension of the matrix is equal to
`3 * nx * ny + 2 * nx * ny + 1`.
+ [type,] n: `nx = ny = n`.
*Groups:* ["symmetric", "posdef", "eigen", "random", "sparse"]
*References:*
**A. J. Wathen**, Realistic eigenvalue bounds for
the Galerkin mass matrix, IMA J. Numer. Anal., 7 (1987),
pp. 449-457.
"""
function wathen(::Type{T}, nx::Integer, ny::Integer) where T
e1 = T[6 -6 2 -8;-6 32 -6 20;2 -6 6 -6;-8 20 -6 32]
e2 = T[3 -8 2 -6;-8 16 -8 20;2 -8 3 -8;-6 20 -8 16]
e3 = [e1 e2; e2' e1]/45
n = 3 * nx * ny + 2 * nx + 2 * ny + 1
ntriplets = nx * ny * 64
Irow = zeros(Int, ntriplets)
Jrow = zeros(Int, ntriplets)
Xrow = zeros(T, ntriplets)
ntriplets = 0
rho = 100 * rand(nx, ny)
node = zeros(T, 8)
for j = 1:ny
for i = 1:nx
node[1] = 3 * j * nx + 2 * i + 2 * j + 1
node[2] = node[1] - 1
node[3] = node[2] - 1
node[4] = (3 * j - 1) * nx + 2 * j + i - 1
node[5] = (3 * j - 3) * nx + 2 * j + 2 * i - 3
node[6] = node[5] + 1
node[7] = node[5] + 2
node[8] = node[4] + 1
em = convert(T, rho[i,j]) * e3
for krow = 1:8
for kcol = 1:8
ntriplets += 1
Irow[ntriplets] = node[krow]
Jrow[ntriplets] = node[kcol]
Xrow[ntriplets] = em[krow, kcol]
end
end
end
end
return sparse(Irow, Jrow, Xrow, n, n)
end
wathen(::Type{T}, n::Integer) where T = wathen(T, n, n)
wathen(args...) = wathen(Float64, args...)
wathen(::Type, args...) = throw(MethodError(wathen, Tuple(args)))
"""
Golub Matrix
============
Golub matrix is the product of two random unit lower and upper
triangular matrices respectively. LU factorization without pivoting
fails to reveal that such matrices are badly conditioned.
*Input options:*
+ [type,] dim: the dimension of the matrix.
*References:*
**D. Viswanath and N. Trefethen**. Condition Numbers of
Random Triangular Matrices, SIAM J. Matrix Anal. Appl. 19, 564-581,
1998.
"""
function golub(::Type{T}, n::Integer) where T
s = 10
L = Array{T,2}(undef, n, n)
U = Array{T,2}(undef, n, n)
if T <: Integer
[L[i,j] = round_matlab(T, s*randn()) for j = 1:n, i = 1:n]
[U[i,j] = round_matlab(T, s*randn()) for j = 1:n, i = 1:n]
else
[L[i,j] = s*randn() for j = 1:n, i = 1:n]
[U[i,j] = s*randn() for j = 1:n, i = 1:n]
end
L = tril(L, -1) + Matrix{T}(I, n, n)
U = triu(U, 1) + Matrix{T}(I, n, n)
return L*U
end
golub(n::Integer) = golub(Float64, n)
"""
Companion Matrix
================
The companion matrix to a monic polynomial
`a(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1} + x^n`
is the n-by-n matrix with ones on the subdiagonal and
the last column given by the coefficients of `a(x)`.
*Input options:*
+ [type,] vec: `vec` is a vector of coefficients.
+ [type,] dim: `vec = [1:dim;]`. `dim` is the dimension of the matrix.
"""
function companion(::Type{T}, v::AbstractVector) where T
n = length(v)
A = zeros(T, n, n)
A[:, end] = v
for i = 1:n-1
A[i+1, i] = one(T)
end
A
end
companion(::Type{T}, n::Integer) where T = companion(T, [1:n;])
companion(args...) = companion(Float64, args...)
companion(::Type, args...) = throw(MethodError(companion, Tuple(args)))
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 10675 |
# functions related to the logical operations on patterns
# and predicate functions.
#
"""
Pattern syntactic sugar
the logical operators `|`, `&`, and `~`
may be applied to all kind of `Pattern`s with the usual meaning.
+ `~` : unary negation operator - pattern does not match (highest priority)
+ `&` : binary logical and - both patterns match
+ `|` : binary logical or - any of the pattern match (lowest priority)
+ parentheses can be used to overrule operator precedence.
+ `[p...]` is the same as `p[1] | p[2] ...`
+ `(p...)` is the same as `p[1] & p[2] ...`
+ `~(p...) === ~((p...))` - that is `~(p[1] & p[2] ...)`
+ Precedence of '*' is higher that `~` for character and string objects:
so `~ "a" * "b" === ~("a" * "b") === ~"ab"` also `~'a'^2*"b" === ~"aab"`
"""
function logical end
import Base: ~
import LinearAlgebra: isposdef
(&)(p::Tuple, q::Tuple) = tuple(p..., q...)
(&)(p::Tuple, q::Pattern...) = tuple(p..., q...)
(&)(p::Pattern, q::Tuple) = tuple(p, q...)
(&)(p::Pattern, q::Pattern...) = tuple(p, q...)
(|)(p::Pattern, q::Pattern...) = vcat(p, q...)
(~)(c::AbstractChar) = Not(string(c))
(*)(a::Not{<:AbstractString}, b::Union{AbstractString,AbstractChar}) = Not(a.pattern * b)
(~)(p::Not) = p.pattern
Not(p::Not) = p.pattern
(~)(p::Pattern...) = Not(tuple(p...))
(~)(p::Pattern) = p == EMPTY_PATTERN ? ALL_PATTERN : p == ALL_PATTERN ? EMPTY_PATTERN : Not(p)
(~)() = EMPTY_PATTERN
(~)(p::Vector{<:Pattern}) = length(p) == 0 ? ALL_PATTERN : length(p) == 1 ? Not(p[1]) : Not(p)
const EMPTY_PATTERN = Pattern[]
const ALL_PATTERN = ()
###
# simplification of patterns
###
is_pure_string(p::AbstractString) = !occursin(r"[]*?]", p)
is_pure_string(p::Pattern) = false
is_pure_vector(p::Vector) = all(is_pure_string.(p))
is_pure_vector(p::Pattern) = false
###
# Alias resolution
###
function aliasresolve(db::MatrixDatabase, k::AbstractString)
haskey(db.aliases, k) ? [db.aliases[k]] : String[]
end
function aliasresolve(db::MatrixDatabase, a::Alias{T,<:Integer}) where T
aliasresolve(db, aliasname(a))
end
function aliasresolve(db::MatrixDatabase, a::Alias{T,<:AbstractVector}) where T
collect(Iterators.flatten(aliasresolve.(Ref(db), aliasname(a))))
end
aliasresolve(db::MatrixDatabase, a::Alias{RemoteMatrixData{SSRemoteType},Colon}, ) = "*/*"
aliasresolve(db::MatrixDatabase, a::Alias{RemoteMatrixData{MMRemoteType},Colon}) = "*/*/*"
aliasresolve(::MatrixDatabase, ::Alias{GeneratedMatrixData{:B},Colon}) = :builtin
aliasresolve(::MatrixDatabase, ::Alias{GeneratedMatrixData{:U},Colon}) = :user
###
# Predefined predicates for MatrixData
###
builtin(p...) = Alias{GeneratedMatrixData{:B}}(p...)
user(p...) = Alias{GeneratedMatrixData{:U}}(p...)
sp1(p...) = Alias{RemoteMatrixData{SSRemoteType}}(p...)
mm1(p...) = Alias{RemoteMatrixData{MMRemoteType}}(p...)
sp(p...) = sp1(p...)
mm(p...) = mm1(p...)
"""
sp(i, j:k, ...)
sp(pattern)
The first form with integer and integer range arguments is a pattern selecting
by the id number in the Suite Sparse collection.
The second form is a pattern, which selects a matrix in the Suite Sparse collection, which
corresponds to the pattern by name, even if the name is from the Matrix Market collection.
example:
mdlist(sp("*/*/1138_bus")) == ["HB/1138_bus"]
"""
sp(p::P) where P<:Pattern = is_ivec(p) ? sp1(p) : Alternate{SSRemoteType,P}(p)
"""
mm(i, j:k, ...)
mm(pattern)
The first form with integer and integer range arguments is a pattern selecting
by the id number in the Matrix Market collection.
The second form is a pattern, which selects a matrix in the Matrix Market collection, which
corresponds to the pattern by name, even if the name is from the Suite Sparse collection.
example:
mdlist(mm("*/1138_bus")) == ["Harwell-Boeing/psadmit/1138_bus"]
"""
mm(p::P) where P<:Pattern = is_ivec(p) ? mm1(p) : Alternate{MMRemoteType,P}(p)
is_ivec(::Integer) = true
is_ivec(::AbstractVector{<:Integer}) = true
is_ivec(p::AbstractVector) = all(is_ivec.(p))
is_ivec(::typeof(:)) = true
is_ivec(::Any) = false
function _issymmetry(data::RemoteMatrixData, T::Type{<:MMSymmetry})
data.properties[] !== nothing && data.properties[].symmetry isa T
end
function _isfield(data::RemoteMatrixData, T::Type{<:MMField})
data.properties[] !== nothing && data.properties[].field isa T
end
isgeneral(data::RemoteMatrixData) = _issymmetry(data, MMSymmetryGeneral)
issymmetric(data::RemoteMatrixData) = _issymmetry(data, MMSymmetrySymmetric)
isskew(data::RemoteMatrixData) = _issymmetry(data, MMSymmetrySkewSymmetric)
ishermitian(data::RemoteMatrixData) = _issymmetry(data, MMSymmetryHermitian)
isgeneral(data::MatrixData) = !issymmetric(data) && !isskew(data) && !ishermitian(data)
issymmetric(data::MatrixData) = data.name in mdlist(:symmetric)
isskew(data::MatrixData) = false
ishermitian(data::MatrixData) = false
issparse(data::RemoteMatrixData) = true
issparse(data::MatrixData) = data.name in mdlist(:sparse)
isposdef(data::RemoteMatrixData) = hasinfo(data) && data.posdef
isposdef(data::MatrixData) = data.name in mdlist(:posdef)
iscomplex(data::RemoteMatrixData) = _isfield(data, MMFieldComplex)
isreal(data::RemoteMatrixData) = _isfield(data, MMFieldReal)
isinteger(data::RemoteMatrixData) = _isfield(data, MMFieldInteger)
isboolean(data::RemoteMatrixData) = _isfield(data, MMFieldPattern)
iscomplex(data::MatrixData) = false
isreal(data::MatrixData) = false
isinteger(data::MatrixData) = false
isboolean(data::MatrixData) = false
hasinfo(data::RemoteMatrixData) = data.header.m > 0 && data.header.n > 0 # isassigned(data.properties) && data.properties[] !== nothing
hasinfo(data::MatrixData) = false
isremote(data::RemoteMatrixData) = true
isremote(data::MatrixData) = false
isloaded(data::RemoteMatrixData) = hasinfo(data) && !isempty(data.metadata)
isloaded(data::MatrixData) = false
isunloaded(data::RemoteMatrixData) = !isloaded(data)
isunloaded(data::MatrixData) = false
isuser(data::GeneratedMatrixData{:U}) = true
isuser(data::MatrixData) = false
isbuiltin(data::GeneratedMatrixData{:B}) = true
isbuiltin(data::MatrixData) = false
islocal(data::GeneratedMatrixData) = true
islocal(data::MatrixData) = false
"""
pred_macro(f::Function, s::Symbol...)
Return a predicate function, which assigns to a each `data::MatrixData`
iff
* `hasdata(data)` and
* all symbols `s` are property names of `data` and
* `f` applied to the tuple of values of those properties returns `true`
"""
function pred_macro(f::Function, s::Symbol...)
data::MatrixData -> hasinfo(data) &&
s ⊆ propertynames(data) &&
f(getproperty.(Ref(data), s)...)
end
"""
prednzdev(deviation)
Test predicate - does number of stored (structural) values deviate from nnz
by more than `deviation`. That would indicate a data error or high number of stored zeros.
The number of stored values is in `dnz`. It has to be approximately doubled for
symmetric matrices to be comparable to `nnz``.
"""
function prednzdev(dev::AbstractFloat=0.1)
function f(data::RemoteMatrixData)
n1, n2 = extremnnz(data)
n1 -= Int(floor(n1 * dev))
n2 += Int(floor(n2 * dev))
isloaded(data) && ! ( n1 <= data.nnz <= n2 )
end
f(::MatrixData) = false
f
end
"""
keyword(word::Union{AbstractString,Tuple,Vector})
Predicate function checks, if `word` is contained in on to the textual
metadata fields `[:notes, :title, :kind, :author]`.
Tuples and Vectors are interpreted as `AND` resp. `OR`.
"""
function keyword(s::AbstractString)
function f(data::RemoteMatrixData)
text = join([data.notes, data.title, data.author, data.kind], ' ')
match(Regex("\\b$s\\b", "i"), text) !== nothing
end
f(::MatrixData) = false
f
end
# this is to translate `keyword("a" & "b")` to `keyword("a") & keyword("b")`
keyword(t::Tuple) = Tuple(keyword.(t))
keyword(t::AbstractVector{<:AbstractString}) = [keyword(x) for x in t]
"""
hasdata(meta::Union{Symbol,Tuple,Vector})
Predicate function checks, if matrix data have metadata symbol `meta`.
Tuples and Vectors are interpreted as `AND` resp. `OR`.
"""
function hasdata(s::Symbol, s2::Symbol...)
function f(data::MatrixData)
ms = metasymbols(data)
s in ms && issubset(s2, metasymbols(data))
end
f
end
hasdata(t::NTuple{N,Symbol} where N) = hasdata(t...)
hasdata(t::Tuple) = Tuple(hasdata.(t))
hasdata(t::AbstractVector) = [hasdata(x) for x in t]
"""
check_symbols(p::Pattern)
throw `ArgumentError` if pattern uses unknown symbol as a group name.
"""
function check_symbols(p::Pattern)
s = setdiff(filter(x->x isa Symbol, flatten_pattern(p)), listgroups())
isempty(s) || argerr("The following symbols are no group names: $s")
end
############################
# Predicate generating macro
############################
# extract all symbols from an expression
function extract_symbols(ex)
s = Set{Symbol}()
append_symbols!(::Any) = s
append_symbols!(ex::Symbol) = push!(s, ex)
function append_symbols!(ex::Expr)
append_symbols!(ex.head)
append_symbols!.(ex.args)
s
end
collect(append_symbols!(ex))
end
# construct a function definition from a list of symbols and expression
# `make_func([:a, :b], expr)` returns `:( (a, b) -> expr )`
function make_func(sli::AbstractVector{Symbol}, ex)
res = :( () -> $ex )
append!(res.args[1].args, sli)
res
end
"""
PROPS
The symbols, which are naming properties of `MatrixData`
"""
const PROPS = (:name, :id, :metadata, fieldnames(MetaInfo)...)
function make_pred(ex)
syms = extract_symbols(ex) ∩ PROPS
:(MatrixDepot.pred_macro($(make_func(syms, ex)), $(QuoteNode.(syms)...)))
end
"""
@pred(expression)
Generate a predicate function using the expression as function body. Variable names
within the expression, which are properties of `RemoteMatrixData` (e.g. `title`, `m`, `nnz`)
are used to access `data.title` etc. Other variable names, are used from the outer scope.
example: `maxnnz = 1_000; listnames(@pred(n <= maxnnz))` would produce a list of all
data with less than `maxnnz` structural non-zeros.
"""
macro pred(ex)
esc(make_pred(ex))
end
"""
charfun(p::Pattern)
Return the characteristic function corresponding to the set-defining pattern `p`.
This function can be applied to objects `data::MatrixData` and strings, the canonical
names of those objects.
"""
function charfun(p::Pattern)
f(d::MatrixData) = !isempty(list!(MATRIX_DB, [d.name], p)) # equivalent to: `d.name ∈ mdlist(p)`
f(s::AbstractString) = haskey(MATRIX_DB.data, s) && f(MATRIX_DB.data[s])
f
end
# make `:` an ordinary pattern (so it can be applied to MatrixData)
import Base: (:)
(:)(d::MatrixData) = true
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 4113 |
using Markdown
"return information about all matrices selected by pattern"
mdinfo(p::Pattern) = mdinfo(MATRIX_DB, p)
function mdinfo(db::MatrixDatabase, p::Pattern)
check_symbols(p)
mdbuffer = Markdown.MD([])
md = mdbuffer
for name in mdlist(p)
try
md = mdinfo(db.data[name])
catch ex
ex isa InterruptException && rethrow()
md = Markdown.parse("# $name\nno info available")
finally
append!(mdbuffer.content, md.content)
end
end
mdbuffer
end
mdinfo(md::MatrixDescriptor) = mdinfo(md.data)
_mdheader(md::Markdown.MD, p, o) = isempty(md.content) ? (nothing, o) : _mdheader(md.content[1], md, o)
_mdheader(md::Markdown.Header, p, o) = (md, p)
_mdheader(md, p, o) = (nothing, o)
function mdinfo(data::GeneratedMatrixData)
md = Docs.doc(data.func)
# As md is cached internally, need to make copies
mdh, md = _mdheader(md, nothing, md)
if mdh !== nothing
mdh, md = Markdown.Header(copy(mdh.text)), copy(md)
push!(mdh.text, " ($(data.name))")
md.content[1] = mdh
end
md
end
_repl(a::AbstractString) = a
_repl(a::AbstractString, p::Pair, q::Pair...) = _repl(replace(a, p), q...)
function mdinfo(data::RemoteMatrixData)
file = verify_loadinfo(data)
txt = mmreadcomment(file)
txt = _repl(txt, r"^%-+$"m => "---", r"^%%" => "###### ", r"%+" => "* ")
md = Markdown.parse(txt)
insert!(md.content, 1, Markdown.Header{1}([data.name]))
md
end
"""
format output list to multi- column table form adapted to display width.
"""
function buildnametable(hdr, name::AbstractVector, maxrow::Integer=0)
maxrow = maxrow <= 0 ? displaysize(stdout)[2] + maxrow : maxrow
maxrow = clamp(maxrow, 20, 1000)
hdr isa Vector || ( hdr = [hdr] )
n = length(name)
name = string.(name)
cols = 1
while sumwidth(name, cols+1) <= maxrow - 1 * cols && cols < n
cols += 1
end
rows = (length(name) + cols - 1) ÷ cols
n = length(name)
while n < rows * cols
push!(name, "")
n += 1
end
name = reshape(name, rows, cols)
name = vecvec(name)
insert!(name, 1, [string.(hdr)..., tab("", cols-length(hdr))...])
Markdown.Table(name, tab(:l, cols))
end
function sumwidth(name::AbstractVector, cols::Integer)
n = length(name)
rows = (n + cols - 1) ÷ cols
wi = 0
for k = 1:cols
r = (k-1)*rows+1:1:min(k*rows,n)
if !isempty(r)
wi += maximum(length.(name[r]))
end
end
wi
end
vecvec(tab::Matrix) = [ tab[i,:] for i in 1:size(tab,1)]
tab(a, cols::Integer) = [a for i in 1:cols]
function buildnametable1(db::MatrixDatabase, hdr, p::Pattern, maxrow::Integer=0)
dali = mdata.(Ref(db), mdlist(db, p))
lt(a, b) = a.id < b.id
sort!(dali, lt=lt)
item(data::MatrixData) = string(data.id, " ", data.name)
MD(buildnametable(hdr, item.(dali), maxrow))
end
MD(a...) = Markdown.MD([a...])
listnames(p::Pattern) = listnames(MATRIX_DB, p)
function listnames(db::MatrixDatabase, p::Pattern)
li = mdlist(db, p)
MD(buildnametable("list($(length(li)))", li))
end
##############################
# display database information
##############################
"""
overview([db])
return formatted overview about matrices and groups in the collection.
"""
function overview(db::MatrixDatabase)
# Print information strings
LMARG = -10
hdr_mat = Markdown.Header{3}("Currently loaded Matrices")
dli(p) = mdata.(Ref(db), mdlist(db, p))
ldall(p) = [length(mdlist(p & isloaded)), length(mdlist(p))]
bmat = buildnametable1(db, "builtin(#)", :builtin, LMARG)
umat = buildnametable1(db, "user(#)", :user, LMARG)
spdir = buildnametable(["Suite Sparse", "of"], ldall(sp(:)))
mmdir = buildnametable(["MatrixMarket", "of"], ldall(mm(:)))
hdr_groups = Markdown.Header{3}("Groups:")
groups = buildnametable("Groups", listgroups(), LMARG)
MD(([hdr_mat, bmat, umat, groups, spdir, mmdir]))
end
"""
mdinfo()
Overview about matrices.
"""
mdinfo(db::MatrixDatabase=MATRIX_DB) = overview(db)
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 13179 |
"""
mmread(filename|io)
Read `Matrixmarket` format file (extension `.mtx`) and return sparse or dense matrix.
Symmetric and Hermitian matrices use the corresponding wrapper types.
Patterns result in sparse matrics with element type `Bool`.
They may be converted to numerical types by multiplying with a number.
"""
function mmread(filename::AbstractString)
open(filename, "r") do file
if stat(file).size == 0
throw(DataError("matrix file $filename is empty"))
end
mmread(file)
end
end
using Mmap
const COORD = "coordinate"
const ARRAY = "array"
const MATRIX = "matrix"
const MATRIXM = "%%matrixmarket"
const COMPLEX = "complex"
const REAL = "real"
const INTEGER = "integer"
const PATTERN = "pattern"
const GENERAL = "general"
const SYMMETRIC = "symmetric"
const HERMITIAN = "hermitian"
const SKEW_SYMMETRIC = "skew-symmetric"
function mmread(file::IO)
line = lowercase(readline(file))
tokens = split(line)
if length(tokens) < 2 || tokens[1] != MATRIXM
parserr(string("Matrixmarket: invalid header:", line))
end
line = readline(file)
while length(strip(line)) == 0 || line[1] == '%'
line = readline(file)
end
if tokens[2] == MATRIX
mmread_matrix(file, line, tokens[3:end]...)
else
parserr(string("Matrixmarket: unsupported type: ", line))
end
end
# mmap for regular files - else read
function getbytes(io::IOStream)
isfile(io) ? Mmap.mmap(io, grow=false, shared=false) : read(io)
end
getbytes(io::IO) = read(io)
function mmread_matrix(file::IO, line, form, field, symm)
FMAP = Dict(REAL => (3, Float64),
COMPLEX => (4, ComplexF64),
INTEGER => (3, Int64),
PATTERN => (2, Bool))
ty, T = get(FMAP, field) do
parserr("Matrixmarket: unsupported field $field (only real/complex/pattern)")
end
SMAP = Dict(GENERAL => (1, 0, Any),
SYMMETRIC => (0, 1, Symmetric),
SKEW_SYMMETRIC => (1, 1, Array),
HERMITIAN => (0, 1, Hermitian))
p1, pc, wrapper = get(SMAP, symm) do
parserr("Matrixmarket: unsupported symmetry $symm (general/symmetric/hermitian,skew-symmetric)")
end
if form == COORD
m, n, nz = parseint(line)
b = getbytes(file)
rv = Vector{Int}(undef, nz)
cv = Vector{Int}(undef, nz)
vv = Vector{T}(undef, nz)
parseloop!(Val(ty), b, rv, cv, vv)
result = mksparse!(m, n, rv, cv, vv)
elseif form == ARRAY
m, n = parseint(line)
b = getbytes(file)
p = 1
result = zeros(T, m, n)
for c = 1:n
for r = (pc*c+p1):m
p, v = parsenext(T, b, p)
result[r,c] = v
end
end
else
parserr("Matrixmarket: unsupported format '$form'")
end
wrap(result, wrapper)
end
wrap(result, ::Type{T}) where T<:Union{Symmetric,Hermitian} = T(result, :L)
wrap(result, ::Type{Array}) = result - mtranspose(result)
wrap(result, ::Type{Any}) = result
function parseloop!(::Val{4}, c::Vector{UInt8}, rv, cv, vv::Vector{T}) where T<:Complex
nz = length(rv)
R = real(T)
p = 1
for i = 1:nz
p, rv[i] = parsenext(Int, c, p)
p, cv[i] = parsenext(Int, c, p)
p, r = parsenext(R, c, p)
p, s = parsenext(R, c, p)
vv[i] = r + s*im
end
end
function parseloop!(::Val{3}, c::Vector{UInt8}, rv, cv, vv::Vector{T}) where T <:Real
nz = length(rv)
p = 1
for i = 1:nz
p, rv[i] = parsenext(Int, c, p)
p, cv[i] = parsenext(Int, c, p)
p, vv[i] = parsenext(T, c, p)
end
end
function parseloop!(::Val{2}, c::Vector{UInt8}, rv, cv, vv::Vector{T}) where T<:Number
nz = length(rv)
p = 1
for i = 1:nz
p, rv[i] = parsenext(Int, c, p)
p, cv[i] = parsenext(Int, c, p)
end
fill!(vv, T(1))
end
function parseint(line::AbstractString)
tokens = split(line)
parse.(Int, tokens)
end
"""
mksparse(m, n, rowval, colval, nzval)
mksparse!(m, n, rowval, colval, nzval)
Construct a `SparseMatrixCSC` of dimensions `(m,n)` from the data given in the
three input vectors of equal lengths.
`mksparse!` destroys the content of `colval`.
`A[rowval[i],colval[i]] == nzval[i] for i ∈ 1:length(nzval)`. All other entries are zero.
"""
mksparse(m, n, rv, cv, vv) = mksparse!(m, n, rv, copy(cv), vv)
function mksparse!(m::Integer, n::Integer, rv::AbstractVector{Ti}, cv::AbstractVector{Ti},
vv::AbstractVector{Tv}) where {Ti<:Integer,Tv<:Number}
nz = length(rv)
length(cv) == nz == length(vv) || argerr("all vectors need same length")
micv, mcv = extrema(cv)
mirv, mrv = extrema(rv)
micv > 0 && mcv <= n || daterr("all column indices must be >= 1 and <= $n")
mirv > 0 && mrv <= m || daterr("all row indices must be >= 1 and <= $m")
sizeof(Ti) <= 8 || argerr("Index type greater 64 bits not supported")
sr = count_ones(Ti(nextpow(2, mrv + 1) - 1))
sh = count_zeros(Ti(nextpow(2, mcv + 1) - 1))
sr < sh || argerr("combined size of column and row indices exceeds $Ti size")
# Ti must be able to keep (nz + 1)
(nz + 1) % Ti != nz + 1 && argerr("Ti($Ti) cannot store nz($nz)")
# compress row, col into Ti
# t = UInt64[]
# push!(t, time_ns())
colptr = zeros(Ti, n+1)
colptr[1] = 1
# push!(t, time_ns())
@inbounds for i = 1:nz
cvi = cv[i]
cv[i] = cvi << sr | rv[i]
colptr[cvi+1] += 1
end
# push!(t, time_ns())
cumsum!(colptr, colptr)
# push!(t, time_ns())
p = specialsort(cv, sr)
# push!(t, time_ns())
# println("times: $(diff(t) ./ 1e6) ms")
SparseMatrixCSC{Tv,Ti}(m, n, colptr, rv[p], vv[p])
end
function specialsort(cv::Vector{Int}, sr::Int)
nz = length(cv)
if nz > 10000
x = isqrt(nz) << sr
p = sortperm(cv .÷ x)
sortperm!(p, cv, initialized=true)
else
sortperm(cv)
end
end
"""
colval(A)
reconstruct column-indices from colptr of `SparseMatrixCSC`.
"""
function colval(A::SparseMatrixCSC{Tv,Ti}) where {Tv,Ti}
nz = nnz(A)
cv = Vector{Ti}(undef, nz)
colptr = A.colptr
for j = 1:A.n
for i = colptr[j]:colptr[j+1]-1
cv[i] = j
end
end
cv
end
"""
mtranspose(A)
Materialized transpose of a matrix
"""
mtranspose(A::SparseMatrixCSC) = mksparse!(A.n, A.m, colval(A), copy(A.rowval), copy(A.nzval))
mtranspose(A::Matrix) = Matrix(transpose(A))
mtranspose(A) = transpose(A)
"""
madjoint(A)
Materialized adjoint of sparse Matrix
"""
madjoint(A) = conj!(mtranspose(A))
"""
mmreadcomment(filename)
return info comment strings for MatrixMarket format files
"""
function mmreadcomment(filename::AbstractString)
io = IOBuffer()
mark(io)
open(filename,"r") do mmfile
skip = 0
while !eof(mmfile)
s = readline(mmfile)
skip = isempty(strip(s)) || s[1] == '%' ? 0 : skip + 1
skip <= 1 && println(io, s)
if skip == 1
length(split(s)) == 3 && break
reset(io)
mark(io)
end
end
end
String(take!(io))
end
"""
mmreadheader(filename)
Read header information from mtx file.
"""
function mmreadheader(file::AbstractString)
if isfile(file)
open(file) do io
if stat(io).size == 0
return nothing
end
line = lowercase(readline(io))
while true
token = split(line)
if length(token) >= 4 &&
token[1] == MATRIXM &&
token[2] == MATRIX &&
token[3] in [COORD, ARRAY]
hdr = Dict{Symbol,Any}()
field = :none
while startswith(line, '%') || isempty(strip(line))
field = push_hdr!(hdr, line, field)
line = readline(io)
end
res = try parseint(line) catch; [] end
if length(res) != (token[3] == COORD ? 3 : 2)
daterr("MatrixMarket file '$file' invalid sizes: '$line'")
end
hdr[:m] = res[1]
hdr[:n] = res[2]
length(res) >= 3 && (hdr[:nz] = res[3])
hdr[:format] = token[3]
hdr[:field] = token[4]
hdr[:symmetry] = token[5]
if haskey(hdr, :notes)
hdr[:notes] = join(wordlist(String(take!(hdr[:notes]))), ' ')
end
if haskey(hdr, :date)
val = hdr[:date]
hdr[:date] = isempty(val) ? 0 : parse(Int, hdr[:date])
end
if length(hdr) >= 6 && get(hdr, :nz, 0) > 0
return hdr
else
while !eof(io) && !startswith(line, '%')
line = readline(io)
end
if eof(io)
return hdr
end
line = lowercase(line)
end
else
daterr("file '$file' is not a MatrixMarket file")
end
end
end
else
nothing
end
end
"""
wordlist(string)
Separate words is string by spaces and delimiters.
Return list of unique words, which can be used as keywords.
"""
function wordlist(s::AbstractString)
list = unique!(split(s, r"[][\s(){}`\"'*]", keepempty = false))
list = replace.(list, Ref(r"[.:,;']$" => ""))
# remove all lowercase words with less than ... chars
list = filter!(x->!(length(x)<4 && all(islowercase.(collect(x))) || length(x) < 2), list)
unique!(list)
end
function push_hdr!(hdr, line::AbstractString, field::Symbol)
isempty(strip(line)) && return field
if field == :notes
if !startswith(line, "%---")
println(get!(hdr, field) do; IOBuffer() end, strip(line[2:end]))
end
return field
end
reg = r"^% *([^:[]+): *(.*)$"
regtitle = r"^% *\[([^]]*)]"
if (m = match(reg, line)) !== nothing
s = Symbol(m[1])
if s in (:name, :kind, :ed, :fields, :author, :date)
field = s
value = strip(m[2])
hdr[field] = value
elseif s == :notes
field = s
end
elseif (m = match(regtitle, line)) !== nothing
field = :title
value = m[1]
hdr[field] = value
end
field
end
### parsing decimal integers and floats
function _parsenext(v::Vector{UInt8}, p1::Int)
iaccu = Unsigned(0)
daccu = Unsigned(0)
eaccu = 0
df = 0
sig = 0
esig = 0
i = p1
n = length(v)
c = v[i]
while c == 0x20 || c == 0x0a || c == 0x0d || c == 0x09
c = v[i += 1]
end
n0 = i
if c == UInt8('+')
sig = 1
c = v[i += 1]
elseif c == UInt8('-')
sig = -1
c = v[i += 1]
end
ne = i
di = 0
while 0x30 <= c <= 0x39
c -= 0x30
di += di > 0 || c > 0
iaccu = iaccu * 10 + c
c = v[i += 1]
end
if c == UInt8('.')
c = v[i += 1]
d0 = i
while 0x30 <= c <= 0x39
c -= 0x30
di += di > 0 || c > 0
daccu = daccu * 10 + c
c = v[i += 1]
end
df = i - d0
ne += 1
end
i > ne || parserr("Invalid decimal number: '$(String(v[n0:min(end,n0+5)]))'")
if i > ne && ( c == UInt8('e') || c == UInt8('E') )
c = v[i += 1]
if c == UInt8('+')
esig = 1
c = v[i += 1]
elseif c == UInt8('-')
esig = -1
c = v[i += 1]
end
while 0x30 <= c <= 0x39
eaccu = eaccu * 10 + c - 0x30
c = v[i += 1]
end
if esig < 0
eaccu = -eaccu
end
end
i == n0 && parserr("No decimal number found: '$(String(v[n0:min(end,n0+5)]))'")
i, iaccu, daccu, eaccu, sig, df, di
end
function parsenext(T::Type{<:Signed}, v::Vector{UInt8}, p1::Int)
i, iaccu, daccu, eaccu, sig, df = _parsenext(v, p1)
daccu == 0 && eaccu == 0 && df == 0 || error("1")
i, T(iaccu) * ifelse(sig < 0, T(-1), T(1))
end
function parsenext(T::Type{<:Unsigned}, v::Vector{UInt8}, p1::Int)
i, iaccu, daccu, eaccu, sig, df = _parsenext(v, p1)
daccu == 0 && eaccu == 0 && sig >= 0 && df == 0 || error("2")
i, T(iaccu)
end
function parsenext(T::Type{<:AbstractFloat}, v::Vector{UInt8}, p1::Int)
i, iaccu, daccu, eaccu, sig, df, di = _parsenext(v, p1)
eaccu -= df
if di <= 16 && iaccu != 0
daccu += 10^df * iaccu
end
f = if di <= 16 && daccu < UInt(1)<<53
if 0 <= eaccu < 23
T(daccu) * exp10(eaccu)
elseif 0 < -eaccu < 23
T(daccu) / exp10(-eaccu)
else
parse(T, String(view(v, p1:i-1)))
end
else
parse(T, String(view(v, p1:i-1)))
end
i, (sig < 0 ? -f : f)
end
function parsenext(T::Type{<:Complex}, c, p)
R = real(T)
p, r = parsenext(R, c, p)
p, s = parsenext(R, c, p)
p, r + s*im
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 28820 | # Test matrices for regularization methods from Hansen's
# Regularization toolbox
"""
Oscillating Matrix
==================
A matrix `A` is called oscillating if `A` is totally
nonnegative and if there exists an integer `q > 0` such that
`A^q` is totally positive.
*Input options:*
+ [type,] Σ: the singular value spectrum of the matrix.
+ [type,] dim, mode: `dim` is the dimension of the matrix.
`mode = 1`: geometrically distributed singular values.
`mode = 2`: arithmetrically distributed singular values.
+ [type,] dim: `mode = 1`.
*Groups:* ['symmetric','posdef', 'random', 'eigen']
*References:*
**Per Christian Hansen**, Test matrices for
regularization methods. SIAM J. SCI. COMPUT Vol 16,
No2, pp 506-512 (1995).
"""
function oscillate(Σ::Vector{T}) where T
n = length(Σ)
dv = rand(T, 1, n)[:] .+ eps(T)
ev = rand(T, 1, n-1)[:] .+ eps(T)
B = Bidiagonal(dv, ev, :U)
U, S, V = svd(B)
return U*Diagonal(Σ)*U'
end
function oscillate(::Type{T}, n::Integer, mode::Integer) where T
κ = sqrt(1/eps(T))
if mode == 1
factor = κ^(-1/(n-1))
Σ = factor.^[0:n-1;]
elseif mode == 2
Σ = ones(T, n) - T[0:n-1;]/(n-1)*(1 - 1/κ)
else
throw(ArgumentError("invalid mode value."))
end
return oscillate(Σ)
end
oscillate(::Type{T}, n::Integer) where T = oscillate(T, n, 2)
oscillate(args...) = oscillate(Float64, args...)
oscillate(::Type, args...) = throw(MethodError(oscillate, Tuple(args)))
struct RegProb{T}
A::AbstractMatrix{T} # matrix of interest
b::AbstractVector{T} # right-hand side
x::AbstractVector{T} # the solution to Ax = b
end
struct RegProbNoSolution{T}
A::AbstractMatrix{T} # matrix of interest
b::AbstractVector{T} # right-hand side
end
function show(io::IO, p::RegProb)
println(io, "Test problems for Regularization Methods")
println(io, "A:")
display(p.A)
println(io, "b:")
display(p.b)
println(io, "x:")
display(p.x)
end
function show(io::IO, p::RegProbNoSolution)
println(io, "Test problems for Regularization Methods with No Solution")
println(io, "A:")
display(p.A)
println(io, "b:")
display(p.b)
end
# The following test problems are derived from Per Christian Hansen's
# Regularization tools for MATLAB.
# http://www.imm.dtu.dk/~pcha/Regutools/
#
# BSD License
# Copyright (c) 2015, Per Christian Hansen
# All rights reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the distribution
# * Neither the name of the DTU Compute nor the names
# of its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
"""
Computation of the Second Derivative
====================================
A classical test problem for regularization algorithms:
This is a mildly ill-posed problem. It is a discretization
of a first kind Fredholm integral equation whose kernel K
is the Green's function for the second derivative.
*Input options:*
+ [type,] dim, example, [matrixonly]: the dimension of the
matrix is `dim`. One choose between between the following right-hand
g and solution f:
example = 1 gives g(s) = (s^3 - s)/6, f(t) = t.
example = 2 gives g(s) = exp(s) + (1 -e)s - 1, f(t) = exp(t)
example = 3 gives g(s) = | (4s^3 - 3s)/24, s < 0.5
| (-4s^3 + 12s^2 - 9s + 1)/24, s>= 0.5
f(t) = | t, t < 0.5
f(t) = | 1- t, t >= 0.5.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be
generated (`matrixonly = true` by default).
+ [type,] dim, [matrixonly]: `example = 1`.
*Groups:* ["regprob"]
*References:*
**P. C. Hansen**, Regularization tools: A MATLAB package for
analysis and solution of discrete ill-posed problems.
Numerical Algorithms, 6(1994), pp.1-35
"""
function deriv2(::Type{T}, n::Integer, example::Integer, matrixonly::Bool = true) where T
h = convert(T, one(T)/n); sqh = sqrt(h)
h32 = h*sqh; h2 = h^2; sqhi = one(T)/sqh
t = 2/3; A = zeros(T, n, n)
# compute A
for i = 1:n
A[i,i] = h2*((i^2 - i + 0.25)*h - (i - t))
for j = 1:i-1
A[i,j] = h2*(j - 0.5)*((i - 0.5)*h - 1)
end
end
A = A + tril(A, -1)'
if matrixonly
return A
else
b = zeros(T, n)
x = zeros(T, n)
if example == 1
# compute b
[b[i] = h32*(i - 0.5)*((i^2 + (i-1)^2)*h2/2 - 1)/6 for i = 1:n]
# compute x
[x[i] = h32*(i - 0.5) for i = 1:n]
elseif example == 2
ee = one(T) - exp(one(T))
[b[i] = sqhi*(exp(i*h) - exp((i-1)*h) + ee*(i-0.5)*h2 - h) for i = 1:n]
[x[i] = sqhi*(exp(i*h) - exp((i-1)*h)) for i = 1:n]
elseif example == 3
mod(n, 2) == 0 || error("The order n must be even.")
for i = 1:div(n,2)
s12 = (i*h)^2; s22 = ((i-1)*h)^2
b[i] = sqhi*(s12 + s22 - 1.5)*(s12 - s22)/24
end
for i = div(n, 2)+1:n
s1 = i*h; s12 = s1^2; s2 = (i-1)*h; s22 = s2^2
b[i] = sqhi*(-(s12 + s22)*(s12 - s22) + 4*(s1^3 - s2^3)
- 4.5*(s12 - s22) + h)/24
end
[x[i] = sqhi*((i*h)^2 - ((i-1)*h)^2)/2 for i = 1:div(n, 2)]
[x[i] = sqhi*(h - ((i*h)^2 - ((i-1)*h)^2)/2) for i = div(n, 2)+1:n]
else
throw(ArgumentError("Illegal value of example."))
end
return RegProb(A, b, x)
end
end
deriv2(::Type{T}, n::Integer, matrixonly::Bool = true) where T = deriv2(T, n, 1, matrixonly)
deriv2(args...) = deriv2(Float64, args...)
deriv2(::Type, args...) = throw(MethodError(deriv2, Tuple(args)))
"""
One-Dimensional Image Restoration Model
=======================================
This test problem uses a first-kind Fredholm integral equation
to model a one-dimensional image restoration situation.
*Input options:*
+ [type,] dim, [matrixonly]: the dimesion of the matrix `dim` must be even.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
*Groups:* ["regprob"]
*References:*
**C. B. Shaw, Jr.**, Improvements of the resolution of
an instrument by numerical solution of an integral equation.
J. Math. Ana. Appl. 37 (1972), 83-112.
"""
function shaw(::Type{T}, n::Integer, matrixonly::Bool = true) where T
mod(n, 2) == 0 || error("The dimension of the matrix must be even.")
h = π/n; A = zeros(T, n, n)
# compute A
co = cos.(-π/2 .+ T[.5:n-.5;] .* h)
psi = π .* sin.(-π/2 .+ T[.5:n-.5;] .* h)
for i in 1:div(n,2)
for j in i:n-i
ss = psi[i] +psi[j]
A[i,j] = ((co[i] + co[j])*sin(ss)/ss)^2
A[n-j+1, n-i+1] = A[i,j]
end
A[i, n-i+1] = (2*co[i])^2
end
A = A + triu(A, 1)'; A = A*h
if matrixonly
return A
else
# compute x and b
a1 = 2
c1 = 6
t1 = .8
a2 = 1
c2 = 2
t2 = -.5
x = a1 .* exp.(-c1 .* (-π/2 .+ T[.5:n-.5;] .* h .- t1).^2) .+
a2 .* exp.(-c2 .* (-π/2 .+ T[.5:n-.5;] .* h .- t2).^2)
b = A*x
return RegProb(A, b, x)
end
end
shaw(args...) = shaw(Float64, args...)
shaw(::Type, args...) = throw(MethodError(shaw, Tuple(args)))
"""
A Problem with a Discontinuous Solution
=======================================
*Input options:*
+ [type,] dim, t1, t2, [matrixonly]: the dimension of matrix is `dim`.
`t1` and `t2` are two real scalars such that `0 < t1 < t2 < 1`.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
+ [type,] n, [matrixonly]: `t1 = 1/3` and `t2 = 2/3`.
*Groups:* ["regprob"]
*References:*
**G. M. Wing**, A Primer on Integral Equations of the
First Kind, Society for Industrial and Applied Mathematics, 1991, p. 109.
"""
function wing(::Type{T}, n::Integer, t1::Real, t2::Real, matrixonly = true) where T
t1 < t2 || error("t1 must be smaller than t2")
A = zeros(T, n, n)
h = T(1/n)
# compute A
sti = (T[1:n;] .- 0.5) * h
for i in 1:n
A[i,:] .= h .* sti .* exp.(-sti[i] .* sti.^2)
end
if matrixonly
return A
else
# compute b
b = sqrt(h) .* 0.5 .* (exp.(-sti .* t1^2) .- exp.(-sti .* t2^2))./sti
# compute x
indices = [findfirst(t1 .< sti):findlast(t2 .> sti);]
x = zeros(T,n); x[indices] = sqrt(h)*ones(length(indices))
return RegProb(A, b, x)
end
end
wing(::Type{T}, n::Integer, matrixonly = true) where T = wing(T, n, 1/3, 2/3, matrixonly)
wing(args...) = wing(Float64, args...)
wing(::Type, args...) = throw(MethodError(wing, Tuple(args)))
"""
Severely Ill-posed Problem Suggested by Fox & Goodwin
=====================================================
This is a model problem discretized by simple quadrature, which does
not satifiy the discrete Picard condition for the small singular values.
*Input options:*
+ [type,] dim, [matrixonly]: `dim` is the dimension of the matrix.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
*Groups:* ["regprob"]
*References:*
**C. T. H. Baker**, The Numerical Treatment of Integral
Equations, Clarendon Press, Oxford, 1977, p. 665.
"""
function foxgood(::Type{T}, n::Integer, matrixonly = true) where T
h = T(1/n)
t = h*(T[1:n;] .- one(T)/2)
A = h*sqrt.((t.^2)*ones(T,n)' + ones(T, n) * (t.^2)')
if matrixonly
return A
else
x = t
b = zeros(T, n)
for i in 1:n
b[i] = ((one(T) + t[i]^2)^T(1.5) - t[i]^3)/3
end
return RegProb(A, b, x)
end
end
foxgood(args...) = foxgood(Float64, args...)
foxgood(::Type, args...) = throw(MethodError(foxgood, Tuple(args)))
"""
Inverse Heat Equation
=====================
*Input options:*
+ [type,] dim, κ, [matrixonly]: `dim` is the dimension of the matrix and
`dim` must be even. `κ` controls the ill-conditioning of the matrix.
(`κ = 5` gives a well-conditioned problem and `κ = 1`
gives an ill conditoned problem).
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
+ [type,] n, [matrixonly]: `κ = 1`.
*Groups:* ["regprob"]
*References:*
**A. S. Carasso**, Determining surface temperatures
from interior observations, SIAM J. Appl. Math. 42 (1982), 558-574.
"""
function heat(::Type{T}, n::Integer, κ::Real, matrixonly::Bool = true) where T
mod(n, 2) == 0 || error("The dimension of the matrix must be even.")
h = one(T)/n; t = T[h/2:h:1;]
c = h/(2*κ*sqrt(π))
d = one(T)/(4*κ^2)
# compute the matrix A
m = length(t); k = zeros(T, m)
[k[i] = c*t[i]^(-1.5)*exp(-d/t[i]) for i in 1:m]
r = zeros(T, m); r[1] = k[1]
A = toeplitz(T, k, r)
if matrixonly
return A
else
# compute the vectors x and b
x = zeros(T, n)
for i = 1:div(n,2)
ti = i*20/n
if ti < 2
x[i] = 0.75*ti^2/4
elseif ti < 3
x[i] = 0.75 + (ti - 2)*(3 - ti)
else
x[i] = 0.75*exp(-(ti - 3)*2)
end
end
x[div(n,2)+1:n] = zeros(T, div(n, 2))
b = A*x
return RegProb(A, b, x)
end
end
heat(::Type{T}, n::Integer, matrixonly::Bool = true) where T = heat(T, n, 1, matrixonly)
heat(args...) = heat(Float64, args...)
heat(::Type, args...) = throw(MethodError(heat, Tuple(args)))
"""
Fredholm Integral Equation of the First Kind
============================================
*Input options:*
+ [type,] dim, [matrixonly]: the dimension of the matrix is `dim`.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
*Groups:* ["regprob"]
*References:*
**M. L. Baart**, The use of auto-correlation for
pesudo-rank determination in noisy ill-conditioned linear-squares
problems, IMA, J. Numer. Anal. 2 (1982), 241-247.
"""
function baart(::Type{T}, n::Integer, matrixonly::Bool = true) where T
mod(n, 2) == 0 || error("The dimension of the matrix must be even.")
hs = T(π/(2*n))
ht = T(π/n)
c = one(T)/(3*sqrt(2))
A = zeros(T, n, n)
ihs = T[0:n;]*hs
n1 = n + 1
nh = div(n,2)
f3 = exp.(ihs[2:n1]) .- exp.(ihs[1:n])
# compute A
for j = 1:n
f1 = f3
co2 = cos((j - one(T)/2)*ht)
co3 = cos(j*ht)
f2 = (exp.(ihs[2:n1].*co2) .- exp.(ihs[1:n].*co2))./co2
if j == nh
f3 = hs*ones(T, n)
else
f3 = (exp.(ihs[2:n1].*co3) .- exp.(ihs[1:n].*co3))./co3
end
A[:,j] .= c.*(f1 .+ 4 .* f2 .+ f3)
end
if matrixonly
return A
else
# compute vector b
si = T[.5:.5:n;] .* hs
si = sinh.(si) ./ si
b = zeros(T, n)
b[1] = 1 + 4 * si[1] + si[2]
b[2:n] .= si[2:2:2*n-2] .+ 4 .* si[3:2:2*n-1] .+ si[4:2:2*n]
b .= b .* sqrt(hs) ./ 3
# compute vector x
x = -diff(cos.(T[0:n;] .* ht)) ./ sqrt(ht)
return RegProb(A, b, x)
end
end
baart(args...) = baart(Float64, args...)
baart(::Type, args...) = throw(MethodError(baart, Tuple(args)))
"""
Phillips's \"Famous\" Problem
=============================
*Input options:*
+ [type,] dim, [matrixonly]: the dimension of the matrix is `dim`.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
*Groups:* ["regprob"]
*References:*
**D. L. Phillips**, A technique for the numerical
solution of certain integral equations of the first kind, J. ACM
9 (1962), 84-97.
"""
function phillips(::Type{T}, n::Integer, matrixonly::Bool = true) where T
mod(n, 4) == 0 || error("The dimension of the matrix must be a multiple of 4.")
# compute A
h = 12/n
n4 = div(n, 4)
r1 = zeros(T,n)
c = cos.(T[-1:n4; ] * 4 * π/n)
for i in 1:n4
r1[i] = h + 9 / (h * π^2) * (2 * c[i + 1] - c[i] - c[i + 2])
end
r1[n4 + 1] = h / 2 + 9 / (h * π^2) * (cos(4 * π / n) - 1)
A = toeplitz(T, r1)
if matrixonly
return A
else
# compute the vector b
b = zeros(T, n)
c = π/3
for i = (div(n,2) + 1):n
t1 = -6 + i*h
t2 = t1 - h
b[i] = t1*(6-abs(t1)/2) +
((3 - abs(t1)/2)*sin(c*t1) - 2/c*(cos(c*t1) - one(T)))/c -
t2*(6 - abs(t2)/2) -
((3 - abs(t2)/2)*sin(c*t2) - 2/c*(cos(c*t2) - one(T)))/c
b[n - i + 1] = b[i]
end
b ./= sqrt(h)
# compute x
x = zeros(T, n)
x[2n4+1:3n4] = (h .+ diff(sin.(T[0:h:(3 + 10 * eps(T));] * c)) / c) / sqrt(h)
x[n4+1:2*n4] = x[3*n4:-1:2*n4+1]
return RegProb(A, b, x)
end
end
phillips(args...) = phillips(Float64, args...)
phillips(::Type, args...) = throw(MethodError(phillips, Tuple(args)))
# replicates the grid vectors xgv and ygv to produce a full grid.
function meshgrid(xgv, ygv)
X = [i for j in ygv, i in xgv]
Y = [j for j in ygv, i in xgv]
return X, Y
end
# MATLAB rounding behavior
# This is equivalent to RoundNearestTiesAway
# and it can be used for both Julia v0.3, v0.4
function round_matlab(x::AbstractFloat)
y = trunc(x)
ifelse(x==y,y,trunc(2*x-y))
end
round_matlab(::Type{T}, x::AbstractFloat) where T<:Integer = trunc(T,round_matlab(x))
"""
One-dimensional Gravity Surverying Problem
==========================================
Discretization of a 1-D model problem in gravity surveying, in
which a mass distribution f(t) is located at depth d, while the
vertical component of the gravity field g(s) is measured at the
surface.
*Input options:*
+ [type,] dim, example, a, b, d, [matrixonly]: `dim` is the dimension
of the matrix. Three examples are implemented.
(a) example = 1 gives f(t) = sin(π*t) + 0.5*sin(2*π*t).
(b) example = 2 gives f(t) = piecewise linear function.
(c) example = 3 gives f(t) = piecewise constant function.
The t integration interval is fixed to [0, 1], while the s
integration interval [a, b] can be specified by the user.
The parameter d is the depth at which the magnetic deposit is
located. The larger the d, the faster the decay of the singular values.
If matrixonly = false, the matrix A and vectors b and x in the linear system Ax = b will be generated
(matrixonly = true by default).
+ [type,] dim, example, [matrixonly]: `a = 0, b = 1, d = 0.25`;
+ [type,] dim, [matrixonly]: `example = 1, a = 0, b = 1, d = 0.25`.
*Groups:* ["regprob"]
*References:*
**G. M. Wing and J. D. Zahrt**, A Primer on Integral Equations of
the First Kind, Society for Industrial and Applied Mathematics, Philadelphia, 1991, p. 17.
"""
function gravity(::Type{T}, n::Integer, example::Integer,
a::Number, b::Number, d::Number, matrixonly::Bool = true) where T
dt = one(T)/n
a = T(a)
b = T(b)
d = T(d)
ds = (b - a)/n
tv = dt .* (T[1:n;] .- one(T) ./ 2)
sv = a .+ ds .* (T[1:n;] .- one(T) ./ 2)
Tm, Sm = meshgrid(tv, sv)
A = dt .* d .* ones(T, n, n) ./ (d^2 .+ (Sm .- Tm).^2).^T(3/2)
if matrixonly
return A
else
x = ones(T, n)
nt = round_matlab(Int, n/3)
nn = round_matlab(Int, n*7/8)
if example == 1
x .= sin.(π .* tv) .+ sin.(2 .* π .* tv) ./ 2
elseif example == 2
x[1:nt] .= 2 ./ nt .* [1:nt;]
x[(nt + 1):nn] .= ((2 .* nn .- nt) .- [(nt .+ 1):nn;]) ./ (nn .- nt)
x[(nn + 1):n] .= (n .- [(nn .+ 1):n;]) ./ (n .- nn)
elseif example == 3
x[1:nt] .= 2
else
error("Illegal value of example")
end
b = A*x
return RegProb(A, b, x)
end
end
gravity(::Type{T}, n::Integer, example::Integer, matrixonly::Bool = true) where T =
gravity(T, n, example, 0, 1, 0.25, matrixonly)
gravity(::Type{T}, n::Integer, matrixonly::Bool = true) where T =
gravity(T, n, 1, 0, 1, 0.25, matrixonly)
gravity(args...) = gravity(Float64, args...)
gravity(::Type, args...) = throw(MethodError(gravity, Tuple(args)))
"""
Image Deblurring Test Problem
=============================
The generated matrix A is an `n*n-by-n*n` sparse, symmetric,
doubly block Toeplitz matrix that models blurring of an n-by-n
image by a Gaussian point spread function.
*Input options:*
+ [type,] dim, band, σ, [matrixonly]: the dimension of the matrix
is `dim^2`. `band` is the half-bandwidth, only matrix elements within
a distance `band-1` from the diagonal are nonzero. `σ` controls the
width of the Gaussin point spread function. The larger the `σ`, the
wider the function and the more ill posed the problem.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
+ [type,] dim, [matrixonly]: `band = 3, σ = 0.7`.
*Groups:* ["regprob", "sparse"]
"""
function blur(::Type{T}, n::Integer, band::Integer, σ::Number,
matrixonly::Bool = true) where T
σ = T(σ)
z = [exp.(-(T[0:band-1;].^2) / (2 * σ^2)); zeros(T, n - band)]
A = toeplitz(T, z)
A = sparse(A)
A = (1 / T(2 * π * σ^2)) * kron(A, A)
if matrixonly
return A
else
# start with an image of all zeros
n2 = round_matlab(Int, n/2)
n3 = round_matlab(Int, n/3)
n6 = round_matlab(Int, n/6)
n12 = round_matlab(Int, n/12)
m = max(n, 2 * n6 + 1 + n2 + n12)
x = zeros(T, m, m)
# add a large ellipse
Te = zeros(T, n6, n3)
for i = 1:n6
for j = 1:n3
if (i / n6)^2 + (j / n3)^2 < 1
Te[i,j] = 1
end
end
end
Te = [reverse(Te, dims=2) Te;]
Te = [reverse(Te, dims=1); Te]
x[2 .+ [1:2n6;], n3 - 1 .+ [1:2n3;]] = Te
# add a smaller ellipse
Te = zeros(T, n6, n3)
for i = 1:n6
for j = 1:n3
if (i / n6)^2 + (j / n3)^2 < 0.6
Te[i,j] = 1
end
end
end
Te = [reverse(Te, dims=2) Te;]
Te = [reverse(Te, dims=1); Te]
x[n6 .+ [1:2n6;], n3 - 1 .+ [1:2n3;]] = x[n6 .+ [1:2n6;], n3 - 1 .+ [1:2n3;]] .+ 2Te
x[findall((i) -> i==3, x)] .= 2
# Add a triangle
Te = triu(ones(T, n3, n3))
mT, nT = size(Te)
x[n3 + n12 .+ [1:nT;], 1 .+ [1:mT;]] = 3Te
# add a cross
Te = zeros(T, 2 * n6 + 1, 2 * n6 + 1)
mT, nT = size(Te)
Te[n6+1, 1:nT] = ones(T, nT)
Te[1:mT, n6+1] = ones(T, mT)
x[n2 + n12 .+ [1:mT;], n2 .+ [1:nT;]] = 4Te
x = reshape(x[1:n, 1:n], n^2)
b = A * x
return RegProb(A, b, x)
end
end
blur(::Type{T}, n::Integer, matrixonly::Bool = true) where T = blur(T, n, 3, 0.7, matrixonly)
blur(args...) = blur(Float64, args...)
blur(::Type, args...) = throw(MethodError(blur, Tuple(args)))
"""
Inverse Laplace Transformation
"""
function ilaplace(::Type{T}, n::Integer) where T
end
"""
Stellar Parallax Problem with 26 Fixed, Real Observations
=========================================================
The underlying problem is a Fredholm integral equation of the first
kind with kernel
`K(s,t) = (1/(σ√(2π)))*exp(-0.5*((s-t)/σ)^2)`,
with `σ = 0.014234`, and it is dscretized by means of a Galerkin method
with `n` orthonormal basis functions. The right-hand side `b` consists of
a measured distribution function of stellar parallaxes, and its length
is fixed at `26`, i.e, the matrix `A` is `26×n`. The exact solution,
which represents the true distribution of stellar parallaxes, is unknown.
*Input options:*
+ [type,] dim, [matrixonly]: the generated matrix is `26×dim`. If
`matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be generated
(`matrixonly = true` by default).
*Groups:* ["regprob"]
*References:*
**W. M. Smart**, Stellar Dynamics, Cambridge University Press, Cambridge,
(1938), p. 30.
"""
function parallax(::Type{T}, n::Integer, matrixonly::Bool=true) where T
# Initialization
a = zero(T)
b = T(0.1)
m = 26
σ = T(0.014234)
hs = T(0.130/m)
hx = (b-a)/n
hsh = hs/2
hxh = hx/2
ss = (-T(0.03) .+ T[0:m-1;] * hs) * ones(T, n)'
xx = ones(T, m) * (a .+ T[0:n-1;]' * hx)
# compute matrix A
A = 16exp.(-T(0.5).*((ss .+ hsh .- xx .- hxh)./σ).^2)
A .+= 4(exp.(-T(0.5).*((ss .+ hsh .- xx)./σ).^2) .+
exp.(-T(0.5).*((ss .+ hsh .- xx .- hx)./σ).^2) .+
exp.(-T(0.5).*((ss .- xx .- hxh)./σ).^2) .+
exp.(-T(0.5).*((ss .+ hs .- xx .- hxh)./σ).^2))
A .+= (exp.(-T(0.5).*((ss .- xx)./σ).^2) .+
exp.(-T(0.5).*((ss .+ hs .- xx)./σ).^2) .+
exp.(-T(0.5).*((ss .- xx .- hx)./σ).^2) .+
exp.(-T(0.5).*((ss .+ hs .- xx .- hx)./σ).^2))
A = T(sqrt(hs*hx)/(36*σ*sqrt(2*π)))*A
if matrixonly
return A
else
# compute b
b = T[3;7;7;17;27;39;46;51;56;50;43;45;43;32;33;29;
21;12;17;13;15;12;6;6;5;5]/T(sqrt(hs)*640)
return RegProbNoSolution(A,b)
end
end
parallax(args...) = parallax(Float64, args...)
parallax(::Type, args...) = throw(MethodError(parallax, Tuple(args)))
"""
Test Problem with \"Spike\" Solution
====================================
Artificially generated discrete ill-posed problem.
*Input options:*
+ [type,] dim, t_max, [matrixonly]: `dim` is the dimension of the
matrix. `t_max` controls the length of the pulse train.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will be
generated (`matrixonly = true` by default). The solution x
consists a unit step at t = .5 and a pulse train of spike
of decreasing magnitude at t = .5, 1.5, 2.5, ....
+ [type,] dim, [matrixonly]: `t_max = 5`.
*Groups:* ["regprob"]
"""
function spikes(::Type{T}, n::Integer, t_max::Integer, matrixonly::Bool = true) where T
del = convert(T, t_max/n)
# compute A
t, sigma = meshgrid(T[del:del:t_max;], T[del:del:t_max;])
A = sigma ./ (2 .* sqrt.(π .* t.^3)) .* exp.(-(sigma.^2) ./ (4 .* t))
if matrixonly
return A
else
# compute b and x
heights = 2*ones(T, t_max); heights[1] = 25
heights[2] = 9; heights[3] = 5; heights[4] = 4; heights[5] = 3
x = zeros(T, n); n_h = one(Integer)
peak = convert(T, 0.5/t_max); peak_dist = one(T)/ t_max
if peak < 1
n_peak = round_matlab(Integer, peak*n)
x[n_peak] = heights[n_h]
x[n_peak+1:n] = ones(T, n-n_peak)
peak = peak + peak_dist; n_h = n_h + one(Integer)
end
while peak < 1
n_peak = round_matlab(Integer, peak*n)
x[n_peak] = heights[n_h]
peak = peak + peak_dist; n_h = n_h + 1
end
b = A*x
return RegProb(A, b, x)
end
end
spikes(::Type{T}, n::Integer, matrixonly::Bool = true) where T =
spikes(T, n, 5, matrixonly)
spikes(args...) = spikes(Float64, args...)
spikes(::Type, args...) = throw(MethodError(spikes, Tuple(args)))
#
# Two-dimensional tomography problem with sparse matrix
#
function tomo(::Type{T}, n::Integer) where T
end
"""
Integral Equation with No square Integrable Solution
====================================================
Discretization of a first kind Fredholm integral equation with
kernel `K` and right-hand side `g` given by
`K(s,t) = 1/(s+t+1), g(s) = 1`,
where both integration intervals are `[0, 1]`. The matrix `A`
is a Hankel matrix.
*Input options:*
+ [type,] dim, [matrixonly]: `dim` is the dimension of the matrix.
If `matrixonly = false`, the matrix A and vectors b and x in the linear system Ax = b will also
be generated (`matrixonly = true` by default).
*Groups:* ["regprob"]
*References:*
**F. Ursell**, Introduction to the theory of linear
integral equations., Chapter 1 in L. M. Delves & J. Walsh,
Numerical Solution of Integral Equations, Clarendon Press,
1974.
"""
function ursell(::Type{T}, n::Integer, matrixonly::Bool = true) where T
r = zeros(T, n); c = copy(r)
for k = 1:n
d1 = one(T) + (one(T) + k)/n
d2 = one(T) + k/n
d3 = one(T) + (k - one(T))/n
c[k] = n*(d1*log(d1) + d3*log(d3) - 2*d2*log(d2))
e1 = one(T) + (n+k)/n
e2 = one(T) + (n+k-one(T))/n
e3 = one(T) + (n+k-2)/n
r[k] = n*(e1*log(e1) + e3*log(e3) - 2*e2*log(e2))
end
A = hankel(T, c, r)
if matrixonly
return A
else
# compute the right-hand side b
b = ones(T,n)/convert(T, sqrt(n))
return RegProbNoSolution(A, b)
end
end
ursell(args...) = ursell(Float64, args...)
ursell(::Type, args...) = throw(MethodError(ursell, Tuple(args)))
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 12435 |
# Exception
struct DataError <:Exception
msg::String
end
## MatrixMarket header
abstract type MMProperty end
abstract type MMObject <: MMProperty end
struct MMObjectMatrix <: MMObject end
abstract type MMFormat <: MMProperty end
struct MMFormatCoordinate <: MMFormat end
struct MMFormatArray <: MMFormat end
abstract type MMField <:MMProperty end
struct MMFieldReal <: MMField end
struct MMFieldComplex <: MMField end
struct MMFieldInteger <: MMField end
struct MMFieldPattern <: MMField end
abstract type MMSymmetry <: MMProperty end
struct MMSymmetryGeneral <: MMSymmetry end
struct MMSymmetrySymmetric <: MMSymmetry end
struct MMSymmetrySkewSymmetric <: MMSymmetry end
struct MMSymmetryHermitian <: MMSymmetry end
struct MMProperties
object::MMObject
format::MMFormat
field::MMField
symmetry::MMSymmetry
end
mutable struct MetaInfo
m::Int # number of rows
n::Int # number of columns
nnz::Int # number of nonzeros in sparse matrix
dnz::Int # number of nonzero data items in file (half of nnz for symmetric)
kind::String # category of problem
date::Int # the Julian year number e.g. 2018
title::AbstractString #
author::AbstractString #
ed::AbstractString # editor
fields::AbstractString # names of metadata and files like :A, :b, :x
notes::AbstractString # list of relevant words in notes
# the following data are obtained from suite sparse index file ss_index.mat
nnzdiag::Int # number of zeros in diagonal
pattern_symmetry::Float64 # [0..1] symmetry of non-zero element patterns
numerical_symmetry::Float64 # [0..1] symmetry regarding A[i,j] == A[j,i]
posdef::Bool # Matrix is positive definite 1 (and symmetric/hermitian)
isND::Bool # problem comes form 2D/3D discretization
isGraph::Bool # problem is best considered as a graph than a system of equations
cholcand::Bool # matrix is symmetric (Hermitian if complex) and diagonal is positive
amd_lnz::Int # -2 if not square, -1 if not computed, else estimation for factorization
amd_vnz::Int # upper bound on the number of entries in L of LU factorization
amd_rnz::Int # upper bound on the number of entries in U in LU factorization
amd_flops::Int # floating operation count for Cholesky factorization of symm. pattern
ncc::Int # number of strongly connected components of graph/bipartite graph of A
nblocks::Int # number of blocks in dmperm (MATLAB)
sprank::Int # structural rank of A, max number of nonzero entries which can be
# permuted to diagonal (dmperm)
# the following block of data is not well documented but delivered by suite sparse
lowerbandwidth::Int
upperbandwidth::Int
rcm_lowerbandwidth::Int
rcm_upperbandwidth::Int
xmin::ComplexF64
xmax::ComplexF64
# the following data are derived from the singular value decomposition of A
svdok::Bool # singular value decomposition was successful - data available
norm::Float64 # maximal SV
minsv::Float64 # minimal positive SV
cond::Float64 # condition number in 2-norm (norm/minsv)
rank::Int # numerical rank (num. of SV > tol = max(m,n) * eps(norm)
nullspace::Int # dimension of null space of A = min(m,n) - rank
svgap::Float64 # SV[rank]/SV[rank+1] if length(sv), else Inf
svdstatus::String # "" if no SV data available, "OK" if converged, or a warning text
svdhow::String # "text describing how svd values was calculated"
sv::Vector{Float64} # singular values > 0
end
## Matrix objects
struct RemoteParameters
site::String
dataurl::String
indexurl::String
indexgrep::String
scan::Tuple
extension::String
end
struct RemoteParametersNew
site::String
dataurl::String
indexurl::String
statsdb::String
extension::String
end
abstract type RemoteType end
struct SSRemoteType <: RemoteType
params::RemoteParametersNew
end
struct MMRemoteType <: RemoteType
params::RemoteParameters
end
abstract type MatrixData end
struct RemoteMatrixData{T<:RemoteType} <:MatrixData
name::AbstractString
id::Int
header::MetaInfo
properties::Ref{Union{<:MMProperties,Nothing}}
metadata::Vector{AbstractString}
function RemoteMatrixData{T}(name, id::Integer, hdr::MetaInfo) where T
properties = Ref{Union{<:MMProperties,Nothing}}(nothing)
new(name, id, hdr, properties, AbstractString[])
end
end
struct GeneratedMatrixData{N} <:MatrixData
name::AbstractString
id::Int
func::Function
end
struct MatrixDatabase
data::Dict{AbstractString,MatrixData}
aliases::Dict{AbstractString,AbstractString}
MatrixDatabase() = new(Dict{AbstractString,MatrixData}(),
Dict{AbstractString,AbstractString}())
MatrixDatabase(data, aliases) = new(data, aliases)
end
Base.show(io::IO, db::MatrixDatabase) = print(io, "MatrixDatabase(", length(db.data), ")")
# Patterns
const IntOrVec = Union{Integer,AbstractVector{<:Integer}}
const AliasArgs = Union{Integer,Colon,AbstractVector{<:Union{Integer,AbstractRange{<:Integer}}}}
struct Alias{T,D}
data::D
Alias{T}(d::D) where {T<:MatrixData,D} = new{T,D}(d)
function Alias{T}(d...) where {T<:MatrixData}
v = getindex.(convertalias(collect(d))) # strip Ref wrap if necessary
Alias{T}(besttype(v))
end
end
convertalias(a::Integer) = a
convertalias(a::Colon) = Ref(a)
convertalias(a::AbstractRange{<:Integer}) = Ref(a)
convertalias(a::AbstractVector) = begin x = (vcat(convertalias.(a)...)); length(x) == 1 ? x[1] : x end
besttype(a::AbstractVector{T}) where T<:Integer = a
besttype(a::AbstractVector{T}) where T<:AbstractRange = a
besttype(a::AbstractVector{Any}) = (:) in a ? (:) : Vector{Union{Integer,AbstractRange}}(a)
struct Alternate{T<:RemoteType,P}
pattern::P
end
abstract type AbstractNot end
const Pattern = Union{Function,AbstractString,Regex,Symbol,Alias,
Alternate,AbstractVector,Tuple,AbstractNot}
struct Not{T<:Pattern} <:AbstractNot
pattern::T
end
"""
MatrixDescriptor{T<:MatrixData}
Access object which is created by a call to `mdopen(::Pattern)`.
Several user functions allow to access data according to the unique pattern.
Keeps data cache for exactly the same calling arguments (in the case of
generated objects). For remote objects the data cache keeps all available
metadata.
"""
struct MatrixDescriptor{T<:MatrixData}
data::T
args::Tuple
cache::Union{Ref,Dict}
end
function MatrixDescriptor(data::T) where T<:RemoteMatrixData
MatrixDescriptor{T}(data, (), Dict())
end
function MatrixDescriptor(data::T, args...) where T<:GeneratedMatrixData
MatrixDescriptor{T}(data, deepcopy(args), Ref{Any}(nothing))
end
struct Auxiliary{T<:MatrixDescriptor}
md::T
end
# essential functions of the types
function Base.show(io::IO, data::RemoteMatrixData)
hd = data.header
prop = data.properties[]
print(io, "(")
print(io, prop === nothing ? "" : string(prop, " ") )
print(io, "$(data.name)($(aliasname(data))) ")
nnz = hd.nnz == hd.dnz ? "$(hd.nnz)" : "$(hd.nnz)/$(hd.dnz)"
print(io, " $(hd.m)x$(hd.n)($nnz) ")
print(io, data.date != 0 ? data.date : "")
meta = join(metastring.(data.name, getmeta(data)), ", ")
n = length(meta)
if n > 40
meta = string(meta[1:17], " ... ", meta[end-17:end])
end
print(io, " [", meta, "]")
print(io, " '", data.kind, "'")
print(io, " [", data.title, "]")
print(io, ")")
end
function Base.show(io::IO, mdesc::MatrixDescriptor)
show(io, mdesc.data)
show(io, mdesc.args)
end
function Base.push!(db::MatrixDatabase, data::MatrixData)
key = data.name
db.data[data.name] = data
db.aliases[aliasname(data)] = key
end
"""
aliasname(data::MatrixData)
aliasname(Type{<:MatrixData, id::Integer)
return alias name derived from integer id
"""
aliasname(::Type{RemoteMatrixData{SSRemoteType}}, i::Integer) = string('#', i)
aliasname(::Type{RemoteMatrixData{MMRemoteType}}, i::Integer) = string('#', 'M', i)
aliasname(::Type{GeneratedMatrixData{N}}, i::Integer) where N = string('#', N, i)
function aliasname(T::Type{<:MatrixData}, r::AbstractVector)
aliasname.(T, [ x for x in Iterators.flatten(r) if x > 0])
end
aliasname(T::Type{<:MatrixData}, ::Colon) = aliasname(T, 0)
aliasname(data::MatrixData) = aliasname(typeof(data), data.id)
aliasname(ali::Alias{T,D}) where {T,D} = aliasname(T, ali.data)
Base.show(io::IO, a::Alias) = print(io, aliasname(a))
import Base: ==
==(a::S, b::T) where {R,S<:Alias{R},T<:Alias{R}} = aliasname(a) == aliasname(b)
Base.empty!(db::MatrixDatabase) = (empty!(db.aliases); empty!(db.data))
localindex(::SSRemoteType) = abspath(data_dir(), "ss_index.mat")
localindex(::MMRemoteType) = abspath(data_dir(), "mm_matrices.html")
function sitename(s::AbstractString, t::AbstractString)
p = split(s, '/')
string((length(p) >= 3 ? p[3] : s), " with ", t, " index")
end
remote_name(s::SSRemoteType) = sitename(s.params.site, "MAT")
remote_name(s::MMRemoteType) = sitename(s.params.site, "HTML")
localbase(::Type{SSRemoteType}) = abspath(data_dir(), "uf")
localbase(::Type{MMRemoteType}) = abspath(data_dir(), "mm")
localdir(data::RemoteMatrixData{T}) where T = abspath(localbase(T), filename(data))
localdir(data::MatrixData) = nothing
indexurl(remote::RemoteType) = remote.params.indexurl
dataurl(remote::RemoteType) = remote.params.dataurl
dataurl(::Type{T}) where T<:RemoteType = dataurl(preferred(T))
extension(::Type{T}) where T<:RemoteType = extension(preferred(T))
extension(remote::RemoteType) = remote.params.extension
dataurl(data::RemoteMatrixData{T}) where T = join((dataurl(T), data.name), '/') * extension(T)
siteurl(data::RemoteMatrixData{T}) where T = preferred(T).params.site
filename(data::RemoteMatrixData) = joinpath(split(data.name, '/')...)
localfile(data::RemoteMatrixData{<:SSRemoteType}) = localdir(data) * ".tar.gz"
localfile(data::RemoteMatrixData{MMRemoteType}) = localdir(data) * ".mtx.gz"
function matrixfile(data::RemoteMatrixData{<:SSRemoteType})
joinpath(localdir(data), rsplit(data.name, '/', limit=2)[end] * ".mtx")
end
matrixfile(data::RemoteMatrixData{MMRemoteType}) = localdir(data) * ".mtx"
function matrixinfofile(data::RemoteMatrixData)
string(rsplit(matrixfile(data), '.', limit=2)[1], ".info")
end
## MatrixMarket header
mm_property_name(::MMObjectMatrix) = "matrix"
mm_property_name(::MMFormatCoordinate) = "coordinate"
mm_property_name(::MMFormatArray) = "array"
mm_property_name(::MMFieldReal) = "real"
mm_property_name(::MMFieldComplex) = "complex"
mm_property_name(::MMFieldInteger) = "integer"
mm_property_name(::MMFieldPattern) = "pattern"
mm_property_name(::MMSymmetryGeneral) = "general"
mm_property_name(::MMSymmetrySymmetric) = "symmetric"
mm_property_name(::MMSymmetrySkewSymmetric) = "skew-symmetric"
mm_property_name(::MMSymmetryHermitian) = "hermitian"
mm_property_type(::MMFieldReal) = Float64
mm_property_type(::MMFieldComplex) = ComplexF64
mm_property_type(::MMFieldInteger) = Integer
mm_property_type(::MMFieldPattern) = Bool
MM_NAME_TO_PROP = Dict{String,MMProperty}(mm_property_name(x) => x for x in (
MMObjectMatrix(),
MMFormatCoordinate(), MMFormatArray(),
MMFieldReal(), MMFieldComplex(), MMFieldInteger(), MMFieldPattern(),
MMSymmetryGeneral(), MMSymmetrySymmetric(), MMSymmetrySkewSymmetric(),
MMSymmetryHermitian())
)
MMProperties() = MMProperties("matrix", "coordinate", "real", "general")
function MMProperties(args::AbstractString...)
prop(x) = MM_NAME_TO_PROP[lowercase(x)]
MMProperties(prop.(args)...)
end
Base.show(io::IO, pr::MMProperty) = print(io, mm_property_name(pr))
function Base.show(io::IO, mp::MMProperties)
mms(pr::MMProperty) = mm_short_name(pr)
print(io, #= mms(mp.object), mms(mp.format),=# mms(mp.field), mms(mp.symmetry))
end
mm_short_name(pr::MMSymmetrySkewSymmetric) = "K"
mm_short_name(pr::MMProperty) = uppercase(first(mm_property_name(pr)))
"""
flattenPattern(p::Pattern)
return the vector of all elementary patterns, contained in the pattern.
"""
flatten_pattern(p::Pattern) = collect(Set(_flatten_pattern(p)))
_flatten_pattern(::Tuple{}) = []
_flatten_pattern(p::Union{AbstractVector,Tuple}) = Iterators.flatten(_flatten_pattern.(p))
_flatten_pattern(p::Not) = [p.pattern]
_flatten_pattern(p::Pattern) = [p]
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 1129 | # setup clean and empty directories
function save_target(path::AbstractString)
base = basename(path)
dir = dirname(path)
target = abspath(dir, string(base, ".saved"))
while isdir(target)
target = abspath(target, string(base, ".saved"))
end
if isdir(path)
mv(path, target)
end
if basename(path) == "data"
mkpath(path)
cp_if("uf_matrices.html", target, path)
cp_if("mm_matrices.html", target, path)
cp_if("ss_index.mat", target, path)
end
target
end
function cp_if(name::AbstractString, from::AbstractString, to::AbstractString)
fromname = abspath(from, name)
toname = abspath(to, name)
if isfile(fromname) && !MatrixDepot.URL_REDIRECT[]
cp(fromname, toname)
end
end
function revert_target(saved::AbstractString, orig::AbstractString)
savetest = abspath(dirname(orig), string(basename(orig), ".test"))
if isdir(orig)
if isdir(savetest)
mv(savetest, joinpath(orig, basename(savetest)))
end
mv(orig, savetest)
end
if isdir(saved)
mv(saved, orig)
end
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 7896 | @test mdinfo() !== nothing
groups = ["symmetric", "inverse", "illcond", "posdef", "eigen","sparse", "random", "regprob", "all"]
for group in groups
@test !isempty(listnames(Symbol(group)))
end
@test_throws DataError matrixdepot("something")
n = rand(1:55)
name = mdlist(builtin(n))
@test mdinfo(name) !== nothing
nlist = mdlist(builtin([1, 3]) | builtin(4:20))
m = length(mdlist("**"))
@test isempty(mdinfo(builtin(m+1)))
setgroup!(:newlist, builtin(3:6) | builtin(20))
@test mdlist(:newlist) == mdlist(builtin(3:6,20))
deletegroup!(:newlist)
# testing the new API
#
# it is assumed that all matrices are generated during "test/download.jl"
# and the builtin- and user-defined "randsym" but no others are available
#
@testset "mdlist" begin
REM = length(mdlist("*/*"))
@test REM >= 2500
#@test REM in [2757, 2856] # depends on whether UFL or TAMU url has been used
@test length(mdlist(:builtin)) == 59
@test mdlist(:user) == String["randsym"]
@test mdlist("") == []
@test mdlist("**") == mdlist(:) == mdlist(()) == sort!(collect(keys(MatrixDepot.MATRIX_DB.data)))
@test mdlist("HB/1138_bus") == ["HB/1138_bus"]
@test mdlist(sp(1)) == ["HB/1138_bus"]
@test mdlist(mm(1)) == ["Harwell-Boeing/psadmit/1138_bus"]
@test sort(mdlist(sp(:))) == mdlist("*/*")
@test sort(mdlist(mm(1:1000))) == mdlist("*/*/*")
@test mdlist(builtin(:)) == mdlist(isbuiltin)
@test mdlist(user(:)) == mdlist(isuser)
@test mdlist("*") == mdlist(islocal)
@test length(mdlist("HB/*")) == 292
@test mdlist("HB**") == mdlist("HB/**")
@test_throws ArgumentError listdir("*/*")
@test listdir("Harwell-Boeing//") == ["Harwell-Boeing/*/* - (292)"]
@test mdlist("*/hamm/*") == ["misc/hamm/add20", "misc/hamm/add32", "misc/hamm/memplus"]
@test mdlist("*/hamm/*a*3?") == ["misc/hamm/add32"]
@test mdlist("*/hamm/*a*3[123]") == ["misc/hamm/add32"]
@test mdlist("*/hamm/*a*3[123]?") == []
@test length(mdlist("*/*/*")) == 498
@test listdir("*//*/*") == ["Harwell-Boeing/*/* - (292)", "NEP/*/* - (73)",
"SPARSKIT/*/* - (107)", "misc/*/* - (26)"]
@test listdir("//*") == ["/* - ($(length(mdlist(:local))))"]
@test listdir("//*/*") == ["/*/* - ($REM)"]
@test listdir("//*/*/*") == ["/*/*/* - (498)"]
@test listdir("HB/") == ["HB/* - (292)"]
@test length(mdlist("Harwell-Boeing/*/*")) == 292
@test mdlist(r".*ng/ma.*") == ["Harwell-Boeing/manteuffel/man_5976"]
@test mdlist(sp(2001:2002)) == ["JGD_Groebner/c8_mat11_I", "JGD_Groebner/f855_mat9"]
@test length(mdlist(sp(2757:3000))) == REM - 2756
@test_throws ArgumentError mdlist(:xxx)
@test length(mdlist(isremote)) == REM + 498
@test length(mdlist(isloaded)) + length(mdlist(isunloaded)) == length(mdlist(isremote))
@test length(mdlist(isbuiltin)) + length(mdlist(isuser)) == length(mdlist(islocal))
@test length(mdlist(islocal)) + length(mdlist(isremote)) == length(mdlist(:all))
@test length(mdlist("**")) == length(mdlist("*")) + length(mdlist("*/*")) + length(mdlist("*/*/*"))
@test mdlist(:all) == mdlist("**")
@test length(mdlist(:symmetric)) == 21
@test length(mdlist(:illcond)) == 20
# intersections and unions
@test mdlist((:posdef, :sparse)) == ["poisson", "wathen"]
@test length(mdlist([:posdef,:sparse])) + length(mdlist((:posdef,:sparse))) == length(mdlist(:posdef)) + length(mdlist(:sparse))
# predicates of remote and local matrices
@test length(mdlist(issymmetric)) == 29
@test length(mdlist(:symmetric & "kahan")) == 0
@test length(mdlist(:symmetric & "hankel")) == 1
@test mdlist(:local) == mdlist(islocal)
@test mdlist(:builtin) == mdlist(isbuiltin)
@test mdlist(:user) == mdlist(isuser)
@test mdlist(:symmetric) == mdlist(issymmetric & islocal)
# general metadata
@test length(mdlist(@pred(m < 10000) & "HB/*")) == 284 # items with m < *
@test length(mdlist(@pred(m < 10000) & isloaded)) == 10 # items with m < *
@test length(mdlist(@pred(n < 10000) & "HB/*")) == 283 # items with n < *
@test length(mdlist(@pred(n < 10000) & isloaded)) == 9 # items with n < *
@test length(mdlist(@pred(nnz < 5000) & "HB/*")) == 163 # items with nnz < *
@test length(mdlist(@pred(nnz < 5000) & isloaded)) == 2 # items with nnz < *
@test length(mdlist(@pred(m > n) & "HB/*")) == 9 # items with m > n
@test length(mdlist(@pred(m > n) & isloaded)) == 0 # items with m > n
# metadata from header files
@test length(mdlist(@pred(occursin("problem", kind)) & isloaded)) == 6
@test length(mdlist(keyword("graph") & isloaded)) == 2
@test length(mdlist(@pred(0 < date <= 1990) & isloaded)) == 1
@test length(mdlist(@pred(date >= 2006) & @pred(0 < date <= 2006) & isloaded)) == 2
@test length(mdlist(@pred(date == 0) & mm(:) & isloaded)) == 3
# metadata from ss_index.mat
@test length(mdlist(@pred(posdef) & "HB/*")) == 60
@test length(mdlist(isposdef)) >= 60
@test mdlist(@pred(posdef)) == mdlist(isposdef & isremote)
@test mdlist(:posdef) == mdlist(isposdef & islocal)
@test length(mdlist(isloaded & MatrixDepot.prednzdev(0.0))) == 0
# metadata from svd files
@test mdlist(@pred(svdok)) == ["HB/1138_bus"]
data = mdopen("HB/1138_bus").data
@test length(data.sv) > 0
@test data.cond > 8.0e6
@test data.norm > 30000
@test data.rank == 1138
@test data.svgap == Inf
@test data.cholcand
end
@testset "aliases" begin
@test mm(:) == mm(:, 1)
@test mm([1,2,3]) == mm(1,2,3) == mm(1, 2:3) == mm([1:2],3) == mm([1:2,3])
@test mdlist(mm(:)) == mdlist(mm(1:1000))
@test mm(1:2, 4:5) == mm(1,2,4,5)
end
@testset "logical" begin
# for the boolean syntax
@test mdlist(~islocal) == mdlist(isremote)
@test length(mdlist(isloaded & issymmetric)) == 7
@test length(mdlist(isloaded & ~issymmetric)) == 4
@test length(mdlist(isloaded & ~issymmetric | isuser & issymmetric)) == 5
@test length(mdlist(!islocal & issymmetric | isuser & issymmetric)) == 9
@test mdlist(islocal & ~isbuiltin) == mdlist(isuser)
@test mdlist(islocal & ~isbuiltin) == mdlist(isuser)
@test "a" & "b" === ("a", "b")
@test ~"a" & "b" === (~"a", "b")
@test ~"a" * "b" === ~"ab"
@test ~"ab" === ~'a' * 'b'
@test ~~islocal === islocal
@test mdlist(~"*a*" & ~ "*e*") == mdlist(~["*a*", "*e*"])
@test mdlist(()) == mdlist(:all)
@test "a" & r"b" == ("a", r"b")
@test "a" & r"b" & "c" == ("a", r"b", "c")
@test "a" | r"b" == ["a", r"b"]
@test "a" | r"b" | "c" == ["a", r"b", "c"]
@test mdlist(islocal & ~("*a*" | "*e*")) == mdlist(:local & ~"*a*" & ~ "*e*")
@test "a" & ( "b" & "c" ) == ("a", "b", "c")
@test "a" | ( "b" | "c" ) == ["a", "b", "c"]
@test_throws ArgumentError mdlist([] & :invalid_group_name)
@test MatrixDepot.mdlist(builtin(10, 1:7, 3)) == ["baart", "binomial", "blur", "cauchy",
"chebspec", "chow", "circul", "deriv2"]
@test MatrixDepot.fname(sin) == "unknown-function"
@test_throws MethodError mdopen("baart", 10, 11)
end
@testset "charfun" begin
data = mdopen("vand", 10).data
@test charfun(())(data)
@test charfun(isbuiltin)(data)
@test charfun(isbuiltin)(data.name)
@test charfun(:)("unknown") == false
end
@testset "properties" begin
md = mdopen("gravity", 10)
io = IOBuffer()
@test show(io, md) === nothing
@test propertynames(md) == [:A, :m, :n, :nnz, :dnz]
@test md.A isa AbstractMatrix
@test md.nnz == count(md.A .!= 0)
@test md.dnz == 0
@test_throws DataError md.x
md = mdopen("gravity", 10, false)
io = IOBuffer()
@test show(io, md) === nothing
@test propertynames(md) == [:A, :b, :x, :m, :n, :nnz, :dnz]
@test md.A isa AbstractMatrix
@test md.b isa AbstractVector
@test md.x isa AbstractVector
md = mdopen("HB/well1033")
io = IOBuffer()
@test show(io, md) === nothing
@test propertynames(md) == [:A, :b, :m, :n, :nnz, :dnz]
@test md.A isa AbstractMatrix
@test md.b isa AbstractMatrix
@test_throws DataError md.x
@test_throws DataError md.invalidname
@test_throws ErrorException md.data.invalidname
@test md.dnz == md.data.header.nnz
@test length(mdlist(keyword("graph" & ("butterfly" | "network")) & isloaded)) == 2
@test length(mdlist(hasdata(:A & (:b | :x)))) == 2
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 7131 | #download
import MatrixDepot: load, loadinfo, loadsvd
# for test coverage
MatrixDepot.update()
# verify that no data are downloaded (empty directory)
@test mdlist(isloaded) == []
# Suite Sparse
@test loadinfo("*/1138_bus") == 1 # load only header
@test load("**/1138_bus") == 2 # loaded both versions (sp and mm)
@test load("HB/1138_bus") == 0 # count actually loaded
@test load("Pajek/Journals") == 1
@test load("wing") == 0 # do not try to load local matrix
# Matrix Market
@test load("Harwell-Boeing/smtape/bp___200") == 1
@test mdlist(isloaded) == ["HB/1138_bus", "Harwell-Boeing/psadmit/1138_bus",
"Harwell-Boeing/smtape/bp___200", "Pajek/Journals"]
# read data
@test matrixdepot("HB/1138_bus") !== nothing
@test mdlist("**/1138_bus") == ["HB/1138_bus", "Harwell-Boeing/psadmit/1138_bus"]
@test string(mdinfo("Harwell-Boeing/psadmit/662_bus")) ==
"# Harwell-Boeing/psadmit/662_bus\n\n" *
"###### MatrixMarket matrix coordinate real symmetric\n\n662 662 1568\n"
@test loadinfo(MatrixDepot.mdata("HB/1138_bus")) == 0
@test loadinfo(MatrixDepot.mdata("Bates/Chem97Zt")) == 1
@test length(string(mdinfo("Bates/Chem97Zt"))) == 447
# metadata access with old interface
@test MatrixDepot.metareader(mdopen("Pajek/Journals"), "Journals.mtx") !== nothing
@test_throws DataError MatrixDepot.metareader(mdopen("*/1138_bus"), "1138_bus_b")
@test_throws DataError MatrixDepot.metareader(mdopen("that is nothing"))
@test load("Bates/C*") == 2
@test mdinfo("Bates/Chem97Zt") !== nothing
@test matrixdepot("Bates/Chem97Zt") !== nothing
@test "Bates/Chem97Zt" in mdlist(isloaded)
@test length(mdlist(isloaded)) == 6
@test load("**/epb0") == 1
@test loadsvd("*/1138_bus") == 1
# matrix market
@test load("Harwell-Boeing/lanpro/nos5") == 1
@test length(mdlist(isloaded)) == 8
@test mdopen("Bai/dwg961b") !== nothing
mdesc = mdopen("Bai/dwg961b")
@test iscomplex(mdesc.data)
@test issymmetric(mdesc.data)
@test !ishermitian(mdesc.data)
@test !isboolean(mdesc.data)
@test metasymbols(mdesc) == [:A]
@test mdesc.A == matrixdepot("Bai/dwg961b")
mdesc = mdopen("Harwell-Boeing/cegb/cegb2802")
@test isloaded(mdesc.data) == false
@test_throws DataError mdesc.A
# an example with rhs and solution
mdesc = mdopen("DRIVCAV/cavity14")
A1 = mdesc.A
@test size(A1) == (2597, 2597)
A2 = mdesc.A
@test A1 === A2 # cache should be used
@test size(mdesc.b, 1) == 2597
@test size(mdesc.x, 1) == 2597
@test_throws DataError mdesc["invlid"]
@test_throws DataError mdesc.y
# read a format array file
@test MatrixDepot.mmreadheader(abspath(MatrixDepot.matrixfile(mdesc.data),
"..", string("cavity14_b.mtx"))) !== nothing
mdesc = mdopen("blur", 10, false)
@test mdesc.A isa AbstractMatrix
@test mdesc.b isa AbstractVector
@test mdesc.x isa AbstractVector
@test_throws DataError mdesc["invlid"]
@test_throws DataError mdesc.y
@test_throws DataError mdopen(sp(1)).b # no rhs data for this example
mdesc = mdopen("*/bfly")
@test mdesc["Gname_01.txt"] == "BFLY3\n"
@test mdesc("Gname_01.txt") == "BFLY3\n"
@test size(mdesc.G_06) == (2048, 2048)
@test mdesc.G_06 === mdesc["G_06"]
@test mdesc.G_06 === mdesc[Symbol("G_06.mtx")]
fn = joinpath(dirname(MatrixDepot.matrixfile(mdesc.data)), "bfly_Gname_01.txt")
@test_throws DataError MatrixDepot.mmreadheader(fn)
# read from a pipeline
io = IOBuffer("%%matrixmarket matrix array real general\n1 1\n2.5\n")
@test MatrixDepot.mmread(io) == reshape([2.5], 1, 1)
# read from temporary file
mktemp() do path, io
println(io, "%%MatrixMarket Matrix arRAy real GeneraL")
println(io, "% author: willi")
println(io)
println(io, "% notes:")
println(io, "%second Line")
println(io); println(io, " ")
println(io, "24 2")
close(io)
@test MatrixDepot.mmreadcomment(path) ==
"%%MatrixMarket Matrix arRAy real GeneraL\n% author: willi\n\n" *
"% notes:\n%second Line\n\n \n24 2\n"
@test MatrixDepot.mmreadheader(path) ==
Dict{Symbol,Any}(:symmetry=>"general",:m=>24,:n=>2,:field=>"real",:format=>"array",
:author=>"willi",:notes=>"second Line")
end
mktemp() do path, io
println(io, "%%MatrixMarket Matrix arRAi real GeneraL")
println(io, "1 2")
close(io)
@test_throws DataError MatrixDepot.mmreadheader(path)
end
mktemp() do path, io
println(io, "%%MatrixMarket Matrix array real GeneraL")
println(io, "1 2 A")
close(io)
@test_throws DataError MatrixDepot.mmreadheader(path)
end
mktemp() do path, io
println(io, "%%MatrixMarket Matrix coordinate real GeneraL")
println(io, "1 2")
close(io)
@test_throws DataError MatrixDepot.mmreadheader(path)
end
@test MatrixDepot.mmreadheader("") === nothing
# an example loading a txt file
data = mdopen("Pajek/Journals")
@test length(MatrixDepot.metareader(data, "Journals_nodename.txt")) > 100
@test length(MatrixDepot.metareader(data, "Journals_nodename.txt")) > 100 # repeat to use cache
# reading mtx files
io = IOBuffer("""
%%Matrixmarket matrix array real general
2 1
2.1
3.14e0
""")
@test MatrixDepot.mmread(io) == reshape([2.1; 3.14], 2, 1)
io = IOBuffer("""
%%Matrixmarket matrix array real symmetric
2 2
2.1
3.14e0
4
""")
@test MatrixDepot.mmread(io) == [2.1 3.14; 3.14 4.0]
io = IOBuffer("""
%%Matrixmarket matrix array real skew-symmetric
2 2
2.1
3.14e0
""")
@test MatrixDepot.mmread(io) == [0 -2.1; 2.1 0]
# the line containing blanks seemed once to suck when using IOBuffer
io = IOBuffer("%%matrixmarket matrix array complex hermitian\n \n2 2\n2.1 0\n.314e+1 1\n+3.0 -0.0\n")
@test MatrixDepot.mmread(io) == [2.1 3.14-im; 3.14+im 3]
io = IOBuffer("""
%%Matrixmarket matrix coordinate pattern general
2 2 3
1 2
2 1
2 2
""")
@test MatrixDepot.mmread(io) == [false true; true true]
io = IOBuffer("""
%%Matrixmarket matrix coordinate pattern general
2 2 3
1 2
3 1
2 2
""")
@test_throws DataError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matricxmarket matrix array real general
2 1
""")
@test_throws Meta.ParseError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matricx array real general
2 1
""")
@test_throws Meta.ParseError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix arroy real general
2 1
""")
@test_throws Meta.ParseError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array rehal general
2 1
""")
@test_throws Meta.ParseError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array real fluffy
2 1
""")
@test_throws Meta.ParseError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array real general
2 2
1 2
""")
@test_throws BoundsError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array real symmetric
2 1
1 2
""")
@test_throws DimensionMismatch MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array real symmetric
2 2
1 2
""")
@test_throws BoundsError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array complex hermitian
2 2
1 2
2 3
""")
@test_throws BoundsError MatrixDepot.mmread(io)
io = IOBuffer("""
%%Matrixmarket matrix array real skew-symmetric
2 2
""")
@test_throws BoundsError MatrixDepot.mmread(io)
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 660 |
@testset "mdalternative interface" begin
mpat = "Harwell-Boeing/psadmit/1138_bus"
spat = "HB/1138_bus"
@test mdlist(mm(spat)) == [mpat]
@test mdlist(sp(mpat)) == [spat]
@test mdlist(mm(mpat)) == [mpat]
@test mdlist(sp(spat)) == [spat]
@test mdlist(sp("vand")) == String[]
@test mdlist(mm("Sandia/adder_dcop_17")) == String[]
s1 = mdlist(sp(mm(:)))
@test length(s1) == 455
m1 = mdlist(mm(s1))
@test length(m1) == 455
@test m1 ⊆ mdlist(mm(:))
m2 = mdlist(mm(sp(:)))
@test length(m2) == 455
s2 = mdlist(sp(m2))
@test length(s2) == 455
@test s2 ⊆ mdlist(sp(:))
@test m1 == m2
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 1452 |
macro inc(a)
:(@testset $a begin let n, p, i; include($a) end end)
end
@testset "MatrixDepot generator tests" begin
@inc("test_magic.jl")
@inc("test_cauchy.jl")
@inc("test_circul.jl")
@inc("test_hadamard.jl")
@inc("test_hilb.jl")
@inc("test_dingdong.jl")
@inc("test_frank.jl")
@inc("test_invhilb.jl")
@inc("test_forsythe.jl")
@inc("test_grcar.jl")
@inc("test_triw.jl")
@inc("test_moler.jl")
@inc("test_pascal.jl")
@inc("test_kahan.jl")
@inc("test_pei.jl")
@inc("test_vand.jl")
@inc("test_invol.jl")
@inc("test_chebspec.jl")
@inc("test_lotkin.jl")
@inc("test_clement.jl")
@inc("test_fiedler.jl")
@inc("test_minij.jl")
@inc("test_binomial.jl")
@inc("test_tridiag.jl")
@inc("test_lehmer.jl")
@inc("test_parter.jl")
@inc("test_chow.jl")
@inc("test_randcorr.jl")
@inc("test_poisson.jl")
@inc("test_neumann.jl")
@inc("test_rosser.jl")
@inc("test_sampling.jl")
@inc("test_wilkinson.jl")
@inc("test_rando.jl")
@inc("test_randsvd.jl")
@inc("test_rohess.jl")
@inc("test_kms.jl")
@inc("test_wathen.jl")
@inc("test_oscillate.jl")
@inc("test_toeplitz.jl")
@inc("test_hankel.jl")
@inc("test_golub.jl")
@inc("test_companion.jl")
@inc("test_erdrey.jl")
@inc("test_gilbert.jl")
@inc("test_smallworld.jl")
end
@testset "regularization methods" begin
include("regu.jl")
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 1313 | import MatrixDepot: publish_user_generators, include_generator, Group, FunctionName
using Logging
"random symmetric matrix"
function randsym(::Type{T}, n) where T
A = zeros(T, n, n)
for j = 1:n
for i = j:n
A[i,j] = randn()
end
end
A = A + tril(A, -1)'
return A
end
randsym(n) = randsym(Float64, n)
include_generator(FunctionName, "randsym", randsym)
include_generator(Group, :random, randsym)
include_generator(Group, :symmetric, randsym)
# update the database
MatrixDepot.publish_user_generators()
n = rand(1:8)
@test matrixdepot("randsym", n) !== nothing
@test mdinfo("randsym") !== nothing
@test "randsym" in MatrixDepot.mdlist(:random)
@test "randsym" in MatrixDepot.mdlist(:symmetric)
@test_logs min_level=Logging.Warn MatrixDepot.init()
n = rand(1:8)
@test matrixdepot("randsym", n) !== nothing
@test mdinfo("randsym") !== nothing
@test mdinfo("randsym") == Base.Docs.doc(randsym)
@test "randsym" in MatrixDepot.mdlist(:random)
@test "randsym" in MatrixDepot.mdlist(:symmetric)
setgroup!(:testgroup, "randsy*")
@test mdlist(:testgroup) == ["randsym"]
setgroup!(:testgroup, ["*/1138_bus"])
@test mdlist(:testgroup) == ["HB/1138_bus"]
deletegroup!(:testgroup)
@test_throws ArgumentError mdlist(:testgroup)
@test_throws ArgumentError include_generator(Group, :lkjasj, sin)
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 91 | n = rand(1:38)
@test mdinfo(builtin(n)) !== nothing
@test mdinfo(builtin(1:n)) !== nothing
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 84 | @test mdinfo(:symmetric | :posdef) !== nothing
@test mdinfo(isloaded) !== nothing
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 2731 | n = 7 # rand(1:10)
r = mdopen("deriv2", n, false)
@test r !== nothing && r.A !== nothing
rf32 = mdopen("deriv2", Float32, n, false)
@test rf32 !== nothing && rf32.A !== nothing
r2 = mdopen("deriv2", Float32, n, 2, false)
@test r2 !== nothing && r2.b !== nothing
@test mdopen("deriv2", Float32, (n ÷ 2) * 2, 3, false).A !== nothing
@test_throws ArgumentError matrixdepot("deriv2", Float64, n, 4, false)
A = matrixdepot("deriv2", n)
@test A == r.A
@test r.A*r.x ≈ r.b
@test issymmetric(r.A)
r = mdopen("shaw", 2*n, false)
@test r !== nothing && r.A !== nothing
A = matrixdepot("shaw", 2*n)
@test A !== nothing
# print(r)
@test issymmetric(r.A)
rf32 = matrixdepot("shaw", Float32, 2*n, false)
@test rf32 !== nothing
r = mdopen("wing", n, false)
@test r !== nothing && r.A !== nothing
A = matrixdepot("wing", n)
@test A !== nothing && A == r.A
@test r.A == matrixdepot("wing", n, 1/3, 2/3, false)
r = mdopen("foxgood", n, false)
@test r !== nothing && r.A !== nothing
rf32 = mdopen("foxgood", Float32, n, false)
@test rf32 !== nothing && rf32.A !== nothing
A = matrixdepot("foxgood", n)
@test A == r.A
r = mdopen("heat", Float32, 2*n, false)
@test r !== nothing && r.A !== nothing
rf32 = matrixdepot("heat", Float32, 2*n)
@test rf32 == r.A
r = mdopen("baart", 2*n, false)
@test r !== nothing && r.b !== nothing
rf32 = mdopen("baart", Float32, 2*n, false)
@test rf32 !== nothing && rf32.A !== nothing
A = matrixdepot("baart", 2*n)
@test A == r.A
n = 8 # rand(3:10)
r = mdopen("phillips", 4*n, false)
@test r !== nothing && r.A !== nothing
rf32 = matrixdepot("phillips", Float32, 4*n)
@test rf32 !== nothing
A = matrixdepot("gravity", n)
@test A !== nothing
@test matrixdepot("gravity", n, 1, 0, 1, 0.25) == A
@test mdopen("gravity", Float32, n, 1, false).A !== nothing
@test mdopen("gravity", Float32, n, 2, false).A !== nothing
@test mdopen("gravity", Float32, n, 3, false).A !== nothing
@test_throws ErrorException matrixdepot("gravity", Float32, n, 4, false)
A = matrixdepot("blur", n)
@test A !== nothing
@test matrixdepot("blur", n, 3, 0.7) == A
r1 = mdopen("blur", Float32, n, false)
@test r1 !== nothing && r1.A !== nothing
A = matrixdepot("spikes", n)
@test A !== nothing
@test matrixdepot("spikes", n, 5) == A
n = 7 # rand(5:10)
r1 = mdopen("spikes", Float32, n, false)
@test r1 !== nothing && r1.A !== nothing
A = matrixdepot("ursell", n)
@test A !== nothing
@test matrixdepot("ursell", Float64, n) == A
r1 = mdopen("ursell", Float32, n, false)
@test r1 !== nothing && r1.A !== nothing
A = matrixdepot("parallax", n)
@test A !== nothing
m, n = size(A)
@test m == 26
@test matrixdepot("parallax", Float64, n) == A
r1 = mdopen("parallax", Float32, n, false)
@test r1 !== nothing && r1.A !== nothing
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 699 |
#download from remote site
import MatrixDepot: URL_REDIRECT, load, loadinfo, loadsvd
# test only for julia nightly
if length(VERSION.prerelease) == 0
println("remote tests not executed")
else
URL_REDIRECT[] = 0
# sp
pattern = "*/494_bus" # which has not been touched in other tests
@test loadinfo(pattern) == 1 # load only header
println("downloading svd for $pattern")
@test loadsvd(pattern) == 1 # load svd extension data
@test load(pattern) == 1 # loaded full data
# Matrix Market
pattern = "*/*/494_bus" # which has not been touched in other tests
@test loadinfo(pattern) == 1 # load only header
@test load(pattern) == 1 # loaded full data
end
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 1061 |
ENV["MATRIXDEPOT_URL_REDIRECT"] = length(VERSION.prerelease) == 0 ? "1" : "1"
const basedir = tempname() # tests start with a clean data directory
ENV["MATRIXDEPOT_DATA"] = abspath(basedir, "data")
using MatrixDepot
using Test
using LinearAlgebra
using SparseArrays
import MatrixDepot: DataError
# that will download the index files if necessary and initialize internal data
MatrixDepot.init()
@testset "MatrixDepot.jl" begin
include("generators.jl")
include("include_generator.jl")
@testset "MatrixDepot simulate remote matrix tests" begin
tests = [
"download",
"common",
"number",
"property",
"downloadmm",
]
@testset "$t" for t in tests
tp = joinpath(@__DIR__(), "$(t).jl")
println("running $(tp) ...")
include(tp)
println("finished $(tp)")
end
end
@testset "MatrixDepot real remote matrix tests" begin
println("running remote.jl ...")
include("remote.jl")
println("finished remote.jl")
end
end # testset MatrixDepot.jl
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 201 | n = 10 # rand(1:10)
@test matrixdepot("binomial", n) == matrixdepot("binomial", Float64, n)
A = matrixdepot("binomial", n)
@test A*A ≈ 2^(n-1)*Matrix(1.0I, n, n)
println("'binomial' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 236 | n = 9 # rand(1:10)
@test matrixdepot("cauchy", n) == matrixdepot("cauchy", Float64[1:n;])
x = ones(Float64, n)
y = x .+ 2
A = zeros(Float64, n, n)
fill!(A, 0.25)
@test matrixdepot("cauchy", x, y) ≈ A
println("'cauchy' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 351 | n = 10 # rand(1:10)
# no null vector for 1-by-1 chebspec.
if n == 1
n = 2
end
A = matrixdepot("chebspec", n)
# A has null vector ones(n)
@test A*ones(n) ≈ zeros(n) atol = 1e-6
B = matrixdepot("chebspec", n, 1)
# B's eigenvalues have negative real parts.
v = real(eigvals(B))
for i = 1:n
@test v[i] < 0
end
println("'chebspec' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 235 | n = 10 # rand(1:10)
@test matrixdepot("chow", n) == matrixdepot("chow", Float64, n)
@test matrixdepot("chow",Int, 5, 5, 0)[5,1] == 3125
@test diag(matrixdepot("chow", n, 2, 4)) == ones(Float64, n) * 6
println("'chow' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 292 | n = 10 # rand(1:10)
A = ones(Float64, n, n)
@test matrixdepot("circul", ones(Float64,n)) ≈ A
x = [1:n;];
A = matrixdepot("circul", x)
# test symmetry
@test A + A' == (A + A')'
B = matrixdepot("circul", n)
C = matrixdepot("circul", [1:n;], n)
@test B ≈ C
println("'circul' passed test..." )
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 283 | n = 9 # rand(1:10)
@test matrixdepot("clement", Float64, n) == matrixdepot("clement", n)
A = matrixdepot("clement", n)
B = matrixdepot("clement", n, 1)
@test diag(A+A', 1) == n*ones(n-1)
@test issymmetric(Array(B))
θ = matrixdepot("clement", 1)
println("'clement' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 212 | n = 9 # rand(1:10)
A = matrixdepot("companion", Float32, n)
@test diag(A, -1) == ones(Float32, n-1)
v = [3., 4, 2, 10]
B = matrixdepot("companion", v)
@test B[:,end] == v
println("'companion' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 159 | n = 10 # rand(1:10)
p = -2*Float64[1:n;] .+ (n + 1.5);
C = matrixdepot("cauchy", p)
@test matrixdepot("dingdong", n) ≈ C
println("'dingdong' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 232 | n = 10 # rand(1:10)
A = matrixdepot("erdrey", n)
B = matrixdepot("erdrey", n, ceil(Int, n*log(n)/2))
@test nnz(A) == nnz(B)
@test issymmetric(A)
C = matrixdepot("erdrey", 10, 3)
@test nnz(C) == 6
println("'erdrey' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 227 | n = 10 # rand(1:10)
@test matrixdepot("fiedler", n) == matrixdepot("fiedler", [1:n;])
A = matrixdepot("fiedler", n)
@test issymmetric(A)
for i = 1:n, j =1:n
@test A[i,j] ≈ abs(i-j)
end
println("'fiedler' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 657 | n = 10 # rand(1:10)
@test matrixdepot("forsythe", n) ==
matrixdepot("forsythe", n, sqrt(eps(Float64)), zero(Float64))
@test matrixdepot("forsythe", n , 1, 2) == matrixdepot("forsythe", Float64, n, 1, 2)
T = Float32
a = convert(T, 3)
b = convert(T, 4)
@test matrixdepot("forsythe", T, n, 3, 4) == matrixdepot("forsythe", n, a, b)
if n != 1 # this test does not apply for n = 1
A = zeros(T, n, n)
for i = 1:n, j = 1:n
A[i,j] = j == i ? b :
j == i + 1 ? 1.0 :
(i == n && j == 1) ? a : 0.0
end
@test matrixdepot("forsythe", n, a, b) ≈ A
end
println("'forsythe' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 436 | n = 8 # rand(1:10)
@test matrixdepot("frank", n) == matrixdepot("frank", Float64, n, 0)
A = zeros(Float64, n, n)
for i = 1:n, j = 1:n
A[i,j] = i<=j ? n + 1 -j : j == i - 1 ? n - j : zero(Float64)
end
@test matrixdepot("frank", n) ≈ A
A = zeros(Float64, n, n)
for i = 1:n, j = 1:n
A[n+1-j,n+1-i] = i<=j ? n + 1 -j : j == i - 1 ? n - j : zero(Float64)
end
@test matrixdepot("frank", n, 1) ≈ A
println("'frank' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 259 | n = 79 # rand(40:100)
A = matrixdepot("gilbert", n)
@test issymmetric(A)
B = matrixdepot("gilbert", n, 0.2)
C = matrixdepot("gilbert", Int, n, 0.5)
@test nnz(B) <= nnz(C)
@test matrixdepot("gilbert", Int, 1) !== nothing
println("'gilbert' passed test ...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 160 | n = 10 # rand(6:10)
A = matrixdepot("golub", n)
@test cond(A) > 1.e8
B = matrixdepot("golub", Int, n)
@test cond(A) > 1.e8
println("'golub' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 216 | n = 7 # rand(3:10)
@test matrixdepot("grcar", n, 3) == matrixdepot("grcar", n)
A = matrixdepot("grcar", n, n-1)
@test istril(A - ones(n,n))
@test istriu(A + diagm(-1 => ones(n-1)))
println("'grcar' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 211 | let n
for n in [2, 4, 16]
H = matrixdepot("hadamard", Int, n)
@test H*H' == n * Matrix(1.0I, n, n)
end
@test_throws ArgumentError matrixdepot("hadamard", 0)
end
println("'hadamard' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 283 | A = matrixdepot("hankel", [1:5;])
@test A == matrixdepot("hankel", 5)
r1 = rand(5)
r2 = rand(5)
B = matrixdepot("hankel", r1, r2)
@test issymmetric(B)
C = matrixdepot("hankel", Int, [1,2,3], [3, 4, 5, 6])
@test C[3,4] == 6
@test C[2,4] == C[3,3]
println("'hankel' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 273 | n = 10 # rand(1:10)
@test matrixdepot("hilb", n) == matrixdepot("hilb", n, n)
@test matrixdepot("hilb" , Float16, n) ≈ matrixdepot("hilb", Float32, n)
x = Float64[1:n;]
y = x .- 1
@test matrixdepot("hilb", n) ≈ matrixdepot("cauchy", x, y)
println("'hilb' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 125 | n = 10 # rand(1:10)
A = matrixdepot("invhilb", n)
@test issymmetric(A)
@test isposdef(A)
println("'invhilb' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 139 | n = 7 # rand(1:7)
A = matrixdepot("invol", n)
# A*A ≈ eye(n)
@test A*A ≈ Matrix(1.0I, n, n) atol = 1e-5
println("'invol' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 288 | n = 10 # rand(1:10)
m = 9 # rand(1:10)
@test matrixdepot("kahan", n) == matrixdepot("kahan", n, 1.2, 25.)
@test matrixdepot("kahan", m ,n, 4, 5) == matrixdepot("kahan", Float64, m, n, 4, 5)
@test matrixdepot("kahan", n, 0.5*pi, 1) ≈ Matrix(1.0I, n,n)
println("'kahan' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 269 | n = 10 # rand(1:10)
A = matrixdepot("kms", n)
B = [1:n;]*ones(n)'
B = abs.(B - B')
B = 0.5.^B
@test A ≈ B
# test complex number
C = [1 2im -4 -8im; -2im 1 2im -4; -4 -2im 1 2im; 8im -4 -2im 1]
@test matrixdepot("kms", 4, 2im) ≈ C
println("'kms' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 240 | n = 10 # rand(1:10)
@test matrixdepot("lehmer", Float64, n) == matrixdepot("lehmer", n)
A = ones(n, 1) * [1:n;]'
A = A./A'
A = tril(A) + tril(A)' - Matrix(1.0I, n, n)
@test matrixdepot("lehmer", n) ≈ A
println("'lehmer' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 169 | n = 10 # rand(1:10)
A = matrixdepot("hilb", n)
B = matrixdepot("lotkin", n)
@test A[2:n, :] == B[2:n, :]
@test B[1,:][:] == ones(n)
println("'lotkin' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 348 |
for n in [1, 3, 4, 5, 6]
M = matrixdepot("magic", n)
@test sum(M, dims=1) == sum(M, dims=2)'
k = rand(1:n)
@test sum(M, dims=1)[k] == sum(M, dims=2)'[k]
# diagonal == antidiagnoal
p = [n:-1:1;]
@test sum(diag(M)) == sum(diag(M[:,p]))
end
@test size(matrixdepot("magic", 2)) == (2, 2)
println("'magic' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 121 | n = 10 # rand(1:10)
A = matrixdepot("minij", n)
@test issymmetric(A)
@test isposdef(A)
println("'minij' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 263 | n = 10 # rand(1: 10)
@test matrixdepot("moler", n) == matrixdepot("moler", n, -1)
M = matrixdepot("moler", n)
for i = 1:n, j = 1:n
if i != j
@test M[i,j] ≈ min(i,j) - 2
else
@test M[i,i] ≈ i
end
end
println("'moler' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 817 | n = 10 # rand(2:10)
@test matrixdepot("neumann", 1) == reshape([4.0], 1, 1)
@test matrixdepot("neumann", n) == matrixdepot("neumann", Float64, n)
n_mesh, n = n, n^2
B = zeros(Float64, n, n)
i = 0
for i_mesh in 1:n_mesh, j_mesh in 1:n_mesh
global i = i + 1
if i_mesh > 1
j = i - n_mesh
else
j = i + n_mesh
end
B[i,j] = B[i,j] - 1
if j_mesh > 1
j = i - 1
else
j = i + 1
end
B[i,j] = B[i,j] - 1
j = i
B[i,j] = 4
if j_mesh < n_mesh
j = i + 1
else
j = i - 1
end
B[i,j] = B[i,j] - 1
if i_mesh < n_mesh
j = i + n_mesh
else
j = i - n_mesh
end
B[i,j] = B[i,j] - 1
end
A = matrixdepot("neumann", n_mesh)
@test Matrix(A) ≈ B
println("'neumann' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 931 | let mode, n, A, p, k, A
# test two properties of oscillating matrix
# For an n x n oscillating matrix A, the following holds:
# 1. A has n distinct and positive eigenvalues λ_1 > λ_2 > ... > λ_n > 0
# 2. The ith eigenvector, corresponding to λ_i in the above ordering has
# exactly i-1 sign changes.
n = 8 # rand(2:10)
@test_throws ArgumentError matrixdepot("oscillate", n, 4)
for mode = 1:2
A = matrixdepot("oscillate", n, mode)
eva, evc = eigen(A)
@test all([ei > 0 for ei in eva])
p = sortperm(eva, rev = true)
evc = evc[:,p]
# compute the number of sign change
function num_sign_change(v)
signv = sign.(v)
change = signv[1]
num = 0
for i in signv
if i != change
num += 1
change = i
end
end
return num
end
k = rand(1:n)
@test num_sign_change(evc[:,k]) == k - 1
end
@test matrixdepot("oscillate", n) !== nothing
end
println("'oscillate' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 212 | n = 10 # rand(1:10)
@test matrixdepot("parter", n) == matrixdepot("parter", Float64, n)
A = matrixdepot("cauchy", [1.:n;] .+ 0.5, -[1.:n;])
@test matrixdepot("parter", n) ≈ A
println("'parter' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 280 | n = 10 # rand(1:10)
A = matrixdepot("pascal", n)
@test isposdef(A)
@test issymmetric(A)
P = diagm(0 => (-1).^[0:n-1;])
P[:,1] = ones(n, 1)
for j = 2: n-1
for i = j+ 1:n
P[i,j] = P[i-1, j] - P[i-1, j-1]
end
end
@test A ≈ P*P'
println("'pascal' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 198 | n = 7 # rand(1:10)
m = 17 # rand(1:20)
A = matrixdepot("pei", n, m)
B = ones(n,n)
@test issymmetric(A)
@test matrixdepot("pei", n) - triu(B) - tril(B) ≈ zeros(n,n)
println("'pei' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 721 | n = 10 # rand(1:10)
@test matrixdepot("poisson", Float64, n) == matrixdepot("poisson", n)
A = Matrix(matrixdepot("poisson", n))
n_mesh, n = n, n^2
B = zeros(Float64, n, n)
i = 0
for i_mesh in 1 : n_mesh
for j_mesh in 1 : n_mesh
global i = i + 1
if i_mesh > 1
j = i - n_mesh
B[i,j] = -1
end
if j_mesh > 1
j = i - 1
B[i,j] = -1
end
j = i
B[i,j] = 4
if j_mesh < n_mesh
j = i + 1
B[i,j] = -1
end
if i_mesh < n_mesh
j = i + n_mesh
B[i,j] = -1
end
end
end
@test A ≈ B
println("'poisson' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 247 | n = 10 # rand(1:10)
A = matrixdepot("randcorr", n)
@test issymmetric(A) # symmetric
# positive semidefinite
for eig in eigvals(A)
@test eig >= 0
end
# 1s on the diagonal
@test diag(A) ≈ ones(Float64, n)
println("'randcorr' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 435 | let i, n, A, B, C, θ
n = 5 # rand(1:5)
A = matrixdepot("rando", Int, n, 1)
B = matrixdepot("rando", Int, n, 2)
C = matrixdepot("rando", Int, n, 3)
for i in eachindex(A)
@test A[i] == 0 || A[i] == 1
end
@test all([bi == -1 || bi == 1 for bi in B])
@test all([bi == -1 || bi == 0 || bi == 1 for bi in C])
@test_throws ArgumentError matrixdepot("rando", 3, 3, 5)
θ = matrixdepot("rando", n)
end
println("'rando' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 560 | n = 6 # rand(2:10)
kappa = 5 # rand(2:6)
mode = 2 # rand(1:5)
A = matrixdepot("randsvd", n, kappa, mode)
B = matrixdepot("randsvd", n, kappa)
if mode == 5
@test cond(A) <= kappa
else
@test cond(A) ≈ kappa
end
A5 = matrixdepot("randsvd", n, kappa, 5)
A4 = matrixdepot("randsvd", n, kappa, 4)
A3 = matrixdepot("randsvd", n, kappa, 3)
A2 = matrixdepot("randsvd", n, kappa, 2)
A1 = matrixdepot("randsvd", n, kappa, 1)
θ = matrixdepot("randsvd", 1)
@test_throws ArgumentError matrixdepot("randsvd", 5, kappa, 6)
println("'randsvd' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 269 | n = 8 # rand(2: 10)
# test Hessenberg
A = matrixdepot("rohess", n)
B = tril(A) - diagm(0 => diag(A)) - diagm(-1 => diag(A, -1))
@test B ≈ zeros(n,n) atol=1.0e-7
# test orithogonality
@test A'*A ≈ Matrix(1.0I, n, n) atol=1.0e-7
println("'rohess' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 981 | A = matrixdepot("rosser", Int, 8, 2, 1)
# B is the test matrix used in the paper
#. Rosser, Lanczos, Hestenes and Karush, J. Res. Natl. Bur. Stand. Vol. 47 (1951), pp291-297.
B = [611 196 -192 407 -8 -52 -49 29;
196 899 113 -192 -71 -43 -8 -44;
-192 113 899 196 61 49 8 52;
407 -192 196 611 8 44 59 -23;
-8 -71 61 8 411 -599 208 208;
-52 -43 49 44 -599 411 208 208;
-49 -8 8 59 208 208 99 -911;
29 -44 52 -23 208 208 -911 99];
@test A == B
# test eigenvalues
e1 = eigvals(matrixdepot("rosser", 2, 2, 1))
e2 = [500, 510]
@test e1 ≈ e2
e1 = eigvals(matrixdepot("rosser", 4, 2, 1))
e2 = [0.1, 1000, 1019.9, 1020]
@test e1 ≈ e2 atol=1e-2
e1 = eigvals(matrixdepot("rosser", 16, 2, 1))
e2 = [-1020, -1020, 0, 0, 0.098, 0.098, 1000, 1000, 1000, 1000, 1000,
1020, 1020, 1020, 1020, 1020]
@test e1 ≈ e2 atol=11
@test_throws ArgumentError matrixdepot("rosser", 0)
@test matrixdepot("rosser", 1) isa Matrix
println("'rosser' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 213 | n = 7 # rand(1:7)
@test matrixdepot("sampling", n) == matrixdepot("sampling", Float64, n)
A = matrixdepot("sampling", n)
v = sort(eigvals(A))
@test v ≈ [0: n - 1;] atol=1e-10
println("'sampling' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 215 | n = 10 # rand(1:10)
A = matrixdepot("smallworld", n)
B = matrixdepot("smallworld", Int, n)
C = matrixdepot("erdrey", n)
C2 = MatrixDepot.shortcuts(C, 0.6)
@test nnz(C) <= nnz(C2)
println("'erdrey' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 326 | A = matrixdepot("toeplitz", [1,2,3,4,5])
@test A == matrixdepot("toeplitz", 5)
B = matrixdepot("toeplitz", [1,2,3], [1,4,5])
@test B[1,3] == 5
@test B[3,1] == 3
@test B[1,2] == 4
println("'toeplitz' passed test...")
n = 10 # rand(2:10)
A = matrixdepot("prolate", n)
@test issymmetric(A)
println("'prolate' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 304 | n = 10 # rand(1:10)
@test matrixdepot("tridiag", [1,1,1], [1,1,1,1], [1,1,1]) == matrixdepot("tridiag", 4, 1,1,1)
@test matrixdepot("tridiag", Float64, n) == matrixdepot("tridiag", n)
A = matrixdepot("tridiag", n)
@test isposdef(Array(A))
@test issymmetric(Array(A))
println("'tridiag' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 387 | n = 9 # rand(1:10)
m = 8 # rand(1:10)
k = n-2 #rand(1:n)
alpha = 3.0
@test matrixdepot("triw", Float64, m, n, alpha, k) == matrixdepot("triw", m, n, alpha, k)
@test matrixdepot("triw", n) == matrixdepot("triw", Float64, n, n, -1, n-1)
A = matrixdepot("triw", Float32, n)
@test istriu(A)
# B = A'*A has diagonal B(i,i) = i
@test diag(A'*A) ≈ [1. : n;]
println("'triw' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 203 | n = 10 #rand(1:10)
m = n ÷ 2 # rand(1:n)
@test matrixdepot("vand", Int, n) == matrixdepot("vand", [1:n;])
A = matrixdepot("vand", Int, n)
@test A[:, m] == [1:n;].^(m-1)
println("'vand' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 174 | n = 5 # rand(1:5)
A = matrixdepot("wathen", n)
@test typeof(A) <: SparseMatrixCSC
@test issymmetric(Matrix(A))
@test isposdef(Matrix(A))
println("'wathen' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | code | 324 | n = 5 # rand(2:10)
A = matrixdepot("wilkinson", n)
@test A == matrixdepot("wilkinson", Float64, n)
@test issymmetric(Matrix(A))
@test diag(Matrix(A),1) ≈ ones(Float64, n - 1)
# symmetric along antidiagonal
@test issymmetric(Matrix(A)[n:-1:1,:])
θ = matrixdepot("wilkinson", 1)
println("'wilkinson' passed test...")
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | docs | 5864 | ## Matrix Depot Release Notes
v1.1
* remove deprecated method of defining user functions
* remove obsolete methods of accessing remote SuiteSparse data
* deprecate `@addgroup` and `@rmgroup`, use `setgroup!` and `deletegroup!`
* add feature of alternative matrices relating MM matrices to SS matrices
v1.0.7
* bug fix release
v1.0.6
* allow to define user functions in separate package
* deprecate way of storing user definitions in myMatrixDepot data subdirectory
v1.0.0
* additional meta-data for suite-sparse collection specially SVD data
* improved testing
* ready for windows
* adapt documentation
v0.8.1
* fix problem with serialization of database
* adapt data recognition for SuiteSparse index file
* fix typo in sample problem "baart"
v0.8.0
* Improved API (see: README.md and `?MatrixDepot`)
* Keyword search
* Logical expressions of predicates
* Access current remote repositories (2018.8)
* some bugs fixed - see git log
* Documentation adapted
v0.7.0
* Drop support for Julia v0.6
v0.6.0
* Adapt to Juliav0.7 - deprecations and minor bugs
v0.5.6
* Fix various typos in documentation, thanks to @jiahao.
v0.5.5
* Improve the documentation of regularization problems.
v0.5.4
* Fix `SparseMatrix` deprecation for Julia v0.5.
* Enhance the UF sparse matrix collection's meta data storage.
v0.5.3
* Add new test problems for regularization methods:
- `parallax`: http://matrixdepotjl.readthedocs.org/en/latest/regu.html#term-parallax
* Allow the UF sparse matrix collection interface to store meta data.
v0.5.2
* Update documentation.
v0.5.1
* Fix a bug in user defined generators.
* Fix reference formatting.
* Allow accessing matrices by different subtypes of Integer or UnitRange.
v0.5.0
* Drop support for Julia 0.3
* Various enhancements, including:
- better formatted documentation for matrix generators.
- automatically includes all Julia files in the directory
`myMatrixDepot`, so that adding new matrix generators is more
convenient and flexible. See
http://matrixdepotjl.readthedocs.org/en/latest/user.html more
details.
v0.4.3
* Ignore any changes to the directory `myMatrixDepot`. This means
any local changes to `myMatrixDepot\generator.jl` won't be affected when
we upgrade to a new version of Matrix Depot.
* Add more tests
v0.4.2
* Fix: build failing on Julia v0.5
* Prevent `@rmgroup` from introducing extra empty lines
* Add more tests
v0.4.1
* Add new feature:
- allow users to download a group of matrices from UF sparse matrix collection.
v0.4.0
* Add new feature:
- allow users to add new matrix generators.
see http://matrixdepotjl.readthedocs.org/en/latest/user.html
* Add new test problems for regularization methods:
- `spikes`
- `ursell`
* Add new test matrices:
- `golub` see http://blogs.mathworks.com/cleve/2015/08/24/golub-matrices-deceptively-ill-conditioned/
- `companion`: Companion matrix.
* Document function `matrixdepot`.
v0.3.5
* Add new test problems for regularization methods:
- `gravity`
- `blur`
* Add new feature:
- access matrices by a mixture of number and range. For example,
we could do `matrixdepot(1:4, 6, 10:15)`.
* Implement all three examples for `deriv2`.
v0.3.4
* fix Julia v0.5 String deprecation.
* implement a more general matrix generator.
* add new matrix: Hankel matrix `hankel`
* enumerate matrix input options
* add option `matrixonly` for regularization problems.
v0.3.3
* display the matrices in group lists alphabetically.
* add group `"all"` for all the matrices in the collection.
* fix pascal matrix overflow error.
v0.3.2
* make `matrixdepot()` display better information.
* rename `@addproperty` to `@addgroup` and rename `@rmproperty` to `@rmgroup`.
* rename property `regu` to `regprob`.
* set Float64 as the default data type for all the parameterized matrices in
the collection.
* update matrix references.
v0.3.1
* Add new test problems for regularization methods:
- `heat`
- `phillips`
- `baart`
v0.3.0
* Add test problems for regularization methods:
- `deriv2`
- `foxgood`
- `shaw`
- `wing`
* Reintroduce Matrix Market interface
* Define new functions for test collection interfaces
- `matrixdepot(name, :get)`: download matrix data `name`.
- `matrixdepot(name, :read)`: read matrix data `name`.
v0.2.8
* Add new test matrices
- `oscillate`: a random test matrix for numerical regularization methods.
- `prolate`: a symmetric ill-conditioned Toeplitz matrix.
- `toeplitz`: Toeplitz matrix.
v0.2.7
* Fix some typos and v0.4 deprecation warnings
v0.2.6
* add reference information for test matrices
* update demo
v0.2.5
* support accessing matrices by number and UnitRange
* matrices in the collection are ordered alphabetically
* temporarily suspend the NIST Matrix Market interface
* use base Matrix Market reader for Julia 0.4
v0.2.2
* Include an interface to NIST Matrix Market
* reimplement ransvd to include rectangular case
v0.2.1
* Include an interface to the UF Sparse Matrix Collection
v0.1.3
* New matrices
wathen: a sparse symmetric positive random matrix arose from the
finite element method
* Style the output information
v0.1.2
* New matrices
rohess: random orthogonal upper Hessenberg matrix
kms: Kac-Murdock-Szego Toeplitz matrix
* Others
fix test error for randsvd.
v0.1.1
* New matrices
wilkinson: Wilkinson's eigenvalue test matrix.
rando: random matrix with entries -1, 0 or 1.
randsvd: random matrix with pre-assigned singular values.
* New property
random: the matrix is random.
* Optimized Vandermonde matrix generation for better performance
Thanks to @synapticarbors and @stevengj
v0.1.0
* New matrices
rosser: a matrix with close eigenvalues.
sampling: a matrix with application in sampling theory.
* Sphinx documentation
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.13 | b7e11245178a57be72e47a69468dca6b73f192d8 | docs | 17094 |
#  Matrix Depot
[![Build Status][gha-img]][gha-url] [![Coverage Status][codecov-img]][codecov-url] [![Documentation Status][rtd-img]][rtd-url]
An extensible test matrix collection for Julia.
* [Release Notes](https://github.com/JuliaMatrices/MatrixDepot.jl/blob/master/NEWS.md)
Give access to a wealth of sample and test matrices and accompanying data.
A set of matrices is generated locally (with arguments controlling the special case).
Another set is loaded from one of the publicly accessible matrix collections
[`SuiteSparse Matrix Collection`](https://sparse.tamu.edu) (formerly `University of Florida Matrix Collection`)
and the [`Matrix Market Collection`](https://math.nist.gov/MatrixMarket), the latter being obsolescent.
Access is like
```julia
using MatrixDepot
?MatrixDepot # display package help info
A = matrixdepot("hilb", 10) # locally generated hilbert matrix dimensions (10,10)
A = matrixdepot("HB/1138_bus") # named matrix of the SuiteSparse Collection
```
or
```julia
md = mdopen("*/bfly") # named matrix with some extra data
A = md.A
co = md.coord
tx = md("Gname_10.txt")
md.<tab><tab> # overview of the "fields" of md returning like
# A m n dnz nnz coord Gname_10.txt G_10 Gcoord_10
```
or also
```julia
mdinfo("gravity") # text info about the selected matrix
md = mdopen("gravity", 10, false) # locally generated example with rhs and solution
A = md.A
b = md.b
x = md.x
```
## Install
**NOTE:** If you use Windows, you need to install MinGW/MSYS or Cygwin
in order to use the SuiteSparse sparse and MatrixMarket matrix collection interface.
To install the release version, type
```julia
julia> Pkg.add("MatrixDepot")
```
## Usage
### Naming
#### Matrix Names
Every Matrix type has a unique name, which is a string of one of the forms:
1. `"name"` - used for matrices, which are generated locally.
2. `"dir/name"` - for all matrices of the `SuiteSparse` collection.
3. `"dir/subdir/name"` - for all matrices of the `MatrixMarket` collection.
The names are similar to relative path names, separated by a slash character.
The components of the name must not contain any of the characters `"/*[]"`.
#### Groups
a set of matrices may be assigned to predefined or user-defined groups.
The group names are represented as `Julia` symbols in the form `:symmetric`.
The group names are therefore restricted to valid `Julia` identifiers, that means
start with a letter and contain only letters, digits, and `'_'`.
#### Numeric Identifiers
Every matrix has a numeric identifier, which is unique for its area:
* `builtin(id)` - one of the built-in matrix generators - currently `id ∈ 1:59`.
* `user(id)` - a user-defined matrix generator - starting with `1`.
* `sp(id)` - one of the `SuiteSparse` collection. The integer ids are the
'official' ident numbers assigned by the collection. Currently `id ∈ 1:3000`.
* `mm(id)` - one of the `MatrixMarket` collection. Here id follows the ordering
of the index file of the collection.
### Sets of Matrix Names - Pattern
For some functions it makes sense to have lists of matrix names to operate on, for
example to select a set matrices with certain properties. These sets are described
by 'Patterns', which are applied to matrix names and also to other matrix properties.
The following pattern types are supported:
1. `"name"` - a string matching exactly a matrix name
2. `"shell-pattern"` - a string with shell wildcards `'?', '*', "[...]"` included.
3. `r"egular expression"` - a regular expression to match the matrix name.
4. `:group` - one of the defined group names; match all matrices in the group
5. `qualified numeric identifiers` - examples `builtin(10)`, `sp(1:5, 7)`, `mm(1), sp(:)`
6. `predicate_function` - the name of a predefined or user-defined boolean function of the internal data type `MatrixData`. Example: `issymmetric`.
7. `abstract vector of sub-patterns` - `OR` - any of the sub-pattern matches
8. `tuple of sub-patterns` - `AND` - all of the sub-patterns match
9. `~pattern` - negation of a pattern the \neg - operator ~ may be applied to all patterns
To express `OR` and `AND`, the binary operators `|` and `&` and `(` / `)` are preferred.
Examples:
```julia
"gravity" | "HB/*" & ~(ishermitian & iscomplex) & ~sp(20:30)
```
The set of all known matrices can be expressed as empty tuple `()`. In a shell-
pattern the double `**` matches also slash characters, in contrast to the single `*`.
A convenient form of a predicate-generator is
```julia
@pred(expression)
```
where expression is a valid `Julia` boolean expression, which may access all
properties of `MatrixData` as literal variable names.
Examples:
`@pred(author == "J. Brown")` is translated to:
`d -> :author in propertynames(d) && d.author == "J. Brown"`
`@pred(500_000 <= n * m < 1_000_000)` restricts the size of matched matrices.
`@pred(10^4 <= n <= 2*10^4 && n == m && nnz / n > 10 )` in average more than 10 entries per row
There is s set of predefined predicate functions including:
`(issymmetric, ishermitian, isgeneral, isskew, isreal, iscomplex, isboolean,
islocal, isremote, isloaded, isunloaded, isbuiltin, isuser, issparse)`
Special predicate generators `keyword(word...)` and `hasdata(symbol...)` allow to
support keyword-search and check for the existence of meta-data.
For example: `hasdata(:x) & ~keyword("fluid"` provides solution (x) and does not mention "fluid".
### Number of nonzeros
Beware that some sparse matrices contain non-structural zeros, that is, coefficients stored explicitly but whose value is `0`.
In this case a discrepancy between nnz(A) and sum(!iszero, A) will be observed.
## Accessing Data
### Listing matrices with certain properties
```julia
mdinfo() # overview
listgroups() # list all defined group names
mdlist(pattern) # array of matrix names according to pattern
listdata(pattern) # array of `MatrixData`objects according to pattern
listnames(pattern) # MD-formatted listing of all names according to pattern
listdir("*//*") # MD-formatted - group over part before `//` - count matching
```
### Information about matrices
```julia
mdinfo() # overview over database
mdinfo(pattern) # individual documentation about matrix(es) matching pattern
```
### Generating a matrix
`A = matrixdepot("kahan", 10)` generates a matrix using one of the built-in generators
`md = mdopen("kahan", 10)` returns a handle `md`; matrix can be obtained by
`A = md.A`
### Accessing Meta-Data
In general the first form is preferable, if only the pure matrix is required.
For remote collections no arguments are used.
The second form allows to access all types of 'meta-data', which may be available for some local or remote matrices.
Examples:
`md = mdopen("spikes", 5, false); A = md.A; b = md.b; x = md.x`
`md = mdopen("Rommes/bips07_1998"); A = md.A; v = md.iv; title = md.data.title;
nodenames = md("nodename.txt")`
The last example shows, how to access textual meta-data, when the name contains
`Julia` non-word characters. Also if the metadata-name is stored in a variable,
the last form has to be used.
`meta = metasymbols(md)[2]; sec_matrix = md(meta)`
The function `metasymbols` returns a list of all symbols denoting metadata
provided by `md`. Whether expressed as symbols or strings does not matter.
The system function `propertynames(md)` returns all data of `md`. That includes
size information and metadata.
`propertynames(md.data)` gives an overview about all attributes of the
`md.data::MatrixData`, which can for example be used in the `@pred` definitions.
### Backoffice Jobs
The remote data are originally stored at the remote web-site of one of the
matrix collections. Before they are presented to the user, they are downloaded
to local disk storage, which serves as a permanent cache.
By default, the data directory is a scratchspace managed by [`Scratch.jl`](https://github.com/JuliaPackaging/Scratch.jl), but can be changed by setting the `MATRIXDEPOT_DATA` environment variable.
The data directory can be queried by
julia> MatrixDepot.data_dir()
"/home/.../.julia/scratchspaces/b51810bb-c9f3-55da-ae3c-350fc1fbce05/data
The occasional user needs not bother about downloads, because that is done in
the background if matrix files are missing on the local disk.
The same is true for the data required by `mdinfo(pattern)`. Actually these are
stored in separate files if the full matrix files (which may be huge) are not yet loaded.
#### Bulk Downloads
##### Load Header Data
A download job to transmit a subset of remote matrix files may be started to
load header data for all files. Header data always include the matrix type
according to the matrix-market-format and the size values `m` row-number,
`n` = columns-number, and `dnz` number of stored data of the main sparse matrix.
`MatrixDepot.loadinfo(pattern)` where `pattern` defines the subset.
That is possible for the [SuiteSparse collection](https://sparse.tamu.edu) and the
[NIST MatrixMarket collection](https://math.nist.gov/MatrixMarket).
The patterns can always refer to matrix names and id numbers.
In the case of `SuiteSparse` collection, also the metadata
`"date"`, `"kind"`, `"m"`, `"n"`, `"nnz"`
are available and can be used, before individual matrix data
have been loaded. They are contained in a data file obtained from the remote site.
For `MatrixMarket` collection, patterns are restricted to names and id numbers.
In general it would be possible by `loadinfo("**")` to load all header data. That
would last maybe an hour and generate some traffic for the remote sites.
Nevertheless it is not necessary to do so, if you don't need the header data
for the following task.
##### Load Complete Data Files
**`MatrixDepot.load(pattern)`** loads all data files for the patterns.
Patterns can only refer to attributes, which are already available.
In the case of `SuiteSparse` that includes the size info `"date"`, `"kind"`,
`"m"`, `"n"`, and `"nnz"` and all additional attributes loaded in the previous step,
which include `"author"`, `"title"`, `"notes"`, and keywords.
In the case of `MatrixMarket` you can only refer to `"m"`, `"n"`, and `"dnz"`,
if previously loaded with the header data.
Please do not:
`MatrixDepot.load("**")`. That would require some day(s) to finish and include
some really big data files (~100GB), which could be more than your disks can hold.
Make a reasonable selection, before you start a bulk download.
Local and already loaded matrices are skipped automatically.
Example:
`MatrixDepot.load(sp(:) & @pred(nnz < 100_000))` to download only problems with given
number of stored entries in the main matrix.
## Sample Session
To see an overview of the matrices in the collection, type
```julia
julia> using MatrixDepot
julia> mdinfo()
Currently loaded Matrices
–––––––––––––––––––––––––––
builtin(#)
–––––––––– ––––––––––– ––––––––––– ––––––––––– –––––––––– –––––––––––– ––––––––––– ––––––––––– ––––––––––––– ––––––––––––
1 baart 7 circul 13 fiedler 19 gravity 25 invhilb 31 magic 37 parter 43 randcorr 49 shaw 55 ursell
2 binomial 8 clement 14 forsythe 20 grcar 26 invol 32 minij 38 pascal 44 rando 50 smallworld 56 vand
3 blur 9 companion 15 foxgood 21 hadamard 27 kahan 33 moler 39 pei 45 randsvd 51 spikes 57 wathen
4 cauchy 10 deriv2 16 frank 22 hankel 28 kms 34 neumann 40 phillips 46 rohess 52 toeplitz 58 wilkinson
5 chebspec 11 dingdong 17 gilbert 23 heat 29 lehmer 35 oscillate 41 poisson 47 rosser 53 tridiag 59 wing
6 chow 12 erdrey 18 golub 24 hilb 30 lotkin 36 parallax 42 prolate 48 sampling 54 triw
user(#)
–––––––––
1 randsym
Groups
–––––– ––––––– ––––– –––– ––––– ––––– ––––––– ––––––– –––––– –––––– ––––––– –––––– –––––––––
all builtin local user eigen graph illcond inverse posdef random regprob sparse symmetric
Suite Sparse of
–––––––––––– ––––
2770 2833
MatrixMarket of
–––––––––––– –––
488 498
```
We can generate a 4-by-4 Hilbert matrix by typing
```julia
julia> matrixdepot("hilb", 4)
4x4 Array{Float64,2}:
1.0 0.5 0.333333 0.25
0.5 0.333333 0.25 0.2
0.333333 0.25 0.2 0.166667
0.25 0.2 0.166667 0.142857
```
We can type the matrix name to get documentation about the matrix.
```julia
julia> mdinfo("hilb")
Hilbert matrix
≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
The Hilbert matrix has (i,j) element 1/(i+j-1). It is notorious for being
ill conditioned. It is symmetric positive definite and totally positive.
Input options:
• [type,] dim: the dimension of the matrix;
• [type,] row_dim, col_dim: the row and column dimensions.
Groups: ["inverse", "ill-cond", "symmetric", "pos-def"]
References:
M. D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math. Monthly,
90 (1983), pp. 301-312.
N. J. Higham, Accuracy and Stability of Numerical Algorithms, second
edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2002; sec. 28.1.
```
We can also specify the data type for locally generated matrices.
```julia
julia> matrixdepot("hilb", Float16, 5, 3)
5x3 Array{Float16,2}:
1.0 0.5 0.33325
0.5 0.33325 0.25
0.33325 0.25 0.19995
0.25 0.19995 0.16663
0.19995 0.16663 0.14282
julia> matrixdepot("hilb", Rational{Int}, 4)
4x4 Array{Rational{T<:Integer},2}:
1//1 1//2 1//3 1//4
1//2 1//3 1//4 1//5
1//3 1//4 1//5 1//6
1//4 1//5 1//6 1//7
```
Matrices can be accessed by a variety of patterns and composed patterns.
Integer numbers `i` refer to the ident numbers in `sp(i)`, `mm(i)`, `builtin(i)`, `user(i)`.
Here `sp` ... denote the supported matrix collections SuiteSparse (formerly UFL),
Matrix Market, built-in, user-defined.
```julia
julia> mdlist(sp(1)) # here sp(1) is the ident number of the SuiteSparse collection
list(1)
–––––––––––
HB/1138_bus
julia> listnames(builtin(1, 5:10)) # the internal numbering of the builtin-functions
list(7)
––––––– –––––––– –––– –––––– ––––––– ––––––––– ––––––
baart chebspec chow circul clement companion deriv2
julia> mdlist(builtin(1:4, 6, 10:15) | user(1:10) )
12-element Array{String,1}:
"baart"
"binomial"
"blur"
"cauchy"
"chow"
"deriv2"
"dingdong"
"erdrey"
"fiedler"
"forsythe"
"foxgood"
"randsym"
```
While the `listnames` command renders the output as markdown table, the internal
`mdlist` produces an array of valid matrix names.
We can type a group name to see all the matrices in that group. Group names are
always written as symbols to distinguish them form matrix names and pattern, which
are always strings.
```julia
julia> listnames(:symmetric)
list(22)
–––––––– –––––––– ––––––– –––––– ––––––––– –––––––– ––––––– –––––––––
cauchy dingdong hilb lehmer oscillate poisson randsym wilkinson
circul fiedler invhilb minij pascal prolate tridiag
clement hankel kms moler pei randcorr wathen
```
## Extend Matrix Depot
It is possible to extend the builtin local problems with user defined generators and groups.
We can add [new matrix generators](http://matrix-depot.readthedocs.org/en/latest/user.html)
and define [new groups of matrices](http://matrix-depot.readthedocs.org/en/latest/properties.html).
## References
* Weijian Zhang and Nicholas J. Higham,
"Matrix Depot: An Extensible Test Matrix Collection for Julia",
*PeerJ Comput. Sci.*, 2:e58 (2016),
[[pdf]](https://peerj.com/articles/cs-58/)
* Nicholas J. Higham,
"Algorithm 694, A Collection of Test Matrices in MATLAB",
*ACM Trans. Math. Software*,
vol. 17. (1991), pp 289-305
[[pdf]](http://www.maths.manchester.ac.uk/~higham/narep/narep172.pdf)
[[doi]](https://dx.doi.org/10.1145/114697.116805)
* T.A. Davis and Y. Hu,
"The University of Florida Sparse Matrix Collection",
*ACM Transaction on Mathematical Software*,
vol. 38, Issue 1, (2011), pp 1:1-1:25
[[pdf]](http://www.cise.ufl.edu/research/sparse/techreports/matrices.pdf)
* R.F. Boisvert, R. Pozo, K. A. Remington, R. F. Barrett, & J. Dongarra,
" Matrix Market: a web resource for test matrix collections",
*Quality of Numerical Software* (1996) (pp. 125-137).
[[pdf]](http://www.netlib.org/utk/people/JackDongarra/pdf/matrixmarket.pdf)
* Per Christian Hansen,
"Test Matrices for Regularization Methods",
*SIAM Journal on Scientific Computing*,
vol. 16, 2, (1995) pp.506-512.
[[pdf]](http://epubs.siam.org/doi/abs/10.1137/0916032)
[[doi]](https://dx.doi.org/10.1137/0916032)
[gha-img]: https://github.com/JuliaMatrices/MatrixDepot.jl/workflows/CI/badge.svg
[gha-url]: https://github.com/JuliaMatrices/MatrixDepot.jl/actions?query=workflow%3ACI
[codecov-img]: https://codecov.io/gh/JuliaMatrices/MatrixDepot.jl/branch/master/graph/badge.svg
[codecov-url]: https://codecov.io/gh/JuliaMatrices/MatrixDepot.jl
[rtd-img]: https://readthedocs.org/projects/matrix-depot/badge/?version=latest
[rtd-url]: https://matrix-depot.readthedocs.io/en/latest/?badge=latest
| MatrixDepot | https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 1137 | module getDeps
using IntegrationTests
using Pkg
include(joinpath(dirname(@__FILE__), "prepareIntegrationTest.jl"))
"""
print_job_yaml(job_name::AbstractString)
Generate a GitLab CI job yaml file for a given package name and print it to stdout.
# Arguments
- `package_name`: Name of the package
"""
function print_job_yaml(package_name::AbstractString)
# Do not use a YAML library, as the generated YAML code is too simple to justify
# the additional runtime of installing the YAML package.
job_yaml = """integrationTest$package_name:
image: "alpine:latest"
script:
- echo "run Integration Test for package $package_name"
"""
return print(job_yaml)
end
# see README.md
if !isinteractive()
tmp_path = mktempdir()
prepareIntegrationTest.create_package_eco_system(tmp_path)
# extra Project.toml to generate dependency graph for the whole project
Pkg.activate(joinpath(tmp_path, "MyPkgMeta"))
depending_packages = IntegrationTests.depending_projects("MyPkgC", r"^MyPkg*")
for dep in depending_packages
print_job_yaml(dep)
end
end
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 494 | module getDeps
using IntegrationTests
using Pkg
include(joinpath(dirname(@__FILE__), "prepareIntegrationTest.jl"))
# see README.md
if !isinteractive()
tmp_path = mktempdir()
prepareIntegrationTest.create_package_eco_system(tmp_path)
# extra Project.toml to generate dependency graph for the whole project
Pkg.activate(joinpath(tmp_path, "MyPkgMeta"))
depending_packages = IntegrationTests.depending_projects("MyPkgC", r"^MyPkg*")
print(depending_packages)
end
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 636 | module getDeps
using IntegrationTests
using Pkg
include(joinpath(dirname(@__FILE__), "prepareIntegrationTest.jl"))
# see README.md
if !isinteractive()
tmp_path = mktempdir()
prepareIntegrationTest.create_package_eco_system(tmp_path)
# extra Project.toml to generate dependency graph for the whole project
Pkg.activate(joinpath(tmp_path, "MyPkgMeta"))
depending_packages = IntegrationTests.depending_projects("MyPkgC", r"^MyPkg*")
# compare with expected result
# needs to be negated, because true would result in error code 1
exit(!(sort(depending_packages) == sort(["MyPkgA", "MyPkgB"])))
end
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 1402 | module prepareIntegrationTest
using Pkg
"""
create_package_eco_system(base_path)
Creates a Julia package ecosystem in the `base_path` folder for testing purposes.
# Arguments
- `base_path`: Path to folder where ecosystem is created.
"""
function create_package_eco_system(base_path)
# A graphical representation of the dependencies between the packages can be found in the
# README.md.
cd(base_path)
Pkg.generate("MyPkgA")
Pkg.generate("MyPkgB")
Pkg.generate("MyPkgC")
Pkg.generate("MyPkgD")
Pkg.generate("MyPkgE")
Pkg.generate("MyPkgMeta")
Pkg.activate("MyPkgE")
Pkg.add("JSON")
Pkg.add("Pkg")
Pkg.add("Test")
Pkg.activate("MyPkgD")
Pkg.develop(; path=joinpath(base_path, "MyPkgE"))
Pkg.activate("MyPkgC")
Pkg.add("JSON")
Pkg.develop(; path=joinpath(base_path, "MyPkgE"))
Pkg.activate("MyPkgB")
Pkg.develop(; path=joinpath(base_path, "MyPkgE"))
Pkg.develop(; path=joinpath(base_path, "MyPkgC"))
Pkg.add("PkgTemplates")
Pkg.activate("MyPkgA")
Pkg.develop(; path=joinpath(base_path, "MyPkgE"))
Pkg.develop(; path=joinpath(base_path, "MyPkgD"))
Pkg.develop(; path=joinpath(base_path, "MyPkgC"))
Pkg.develop(; path=joinpath(base_path, "MyPkgB"))
Pkg.add("YAML")
Pkg.activate("MyPkgMeta")
Pkg.develop(; path=joinpath(base_path, "MyPkgA"))
return Nothing
end
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 408 | using JuliaFormatter
# we asume the format_all.jl script is located in QEDbase.jl/.formatting
project_path = Base.Filesystem.joinpath(Base.Filesystem.dirname(Base.source_path()), "..")
not_formatted = format(project_path; verbose=true)
if not_formatted
@info "Formatting verified."
else
@warn "Formatting verification failed: Some files are not properly formatted!"
end
exit(not_formatted ? 0 : 1)
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 1971 |
using Pkg
# targeting the correct source code
# this asumes the make.jl script is located in QEDbase.jl/docs
project_path = Base.Filesystem.joinpath(Base.Filesystem.dirname(Base.source_path()), "..")
Pkg.develop(; path=project_path)
using Documenter
using DocumenterMermaid
using IntegrationTests
readme_path = Base.Filesystem.joinpath(project_path, "README.md")
# Documenter.jl expect index.md as landing page
index_path = Base.Filesystem.joinpath(project_path, "docs/src/index.md")
# Copy README.md from the project base folder and use it as the start page
open(readme_path, "r") do readme_in
readme_string = read(readme_in, String)
# replace static links in the README.md with dynamic links, which are resolved by documenter.jl
readme_string = replace(
readme_string,
"[Pipeline Tutorials](https://qedjl-project.github.io/IntegrationTests.jl/main/pipeline_tutorials.html)" => "[Pipeline Tutorials](@ref)",
"[Integration Test Tool](https://qedjl-project.github.io/IntegrationTests.jl/main/integration_test_tool.html)" => "[Integration Test Tool](@ref)",
)
open(index_path, "w") do readme_out
write(readme_out, readme_string)
end
end
pages = [
"Home" => "index.md",
"Integration Test Tool" => "integration_test_tool.md",
"Pipeline Tutorials" => "pipeline_tutorials.md",
"References" => "api.md",
]
makedocs(;
sitename="IntegrationTests.jl",
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", "false") == "true",
canonical="https://qedjl-project.gitlab.io/IntegrationTests.jl",
assets=String[],
),
modules=[IntegrationTests],
authors="Simeon Ehrig",
repo=Documenter.Remotes.GitHub("QEDjl-project", "IntegrationTests.jl "),
pages=pages,
)
# delete README.md in the doc/src folder so that no one can accidentally edit the wrong file
rm(index_path)
deploydocs(; repo="github.com/QEDjl-project/IntegrationTests.jl.git", push_preview=false)
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 7383 | module IntegrationTests
using Pkg
export depending_projects
export build_dependency_graph
"""
build_dependency_graph(
info::Union{Pkg.API.ProjectInfo,Pkg.API.PackageInfo}=Pkg.project(),
visited_packages::AbstractVector{String}=Vector{String}(),
)::Dict{String,Union{Dict,Nothing}}
Construct the dependency graph of the currently active project.
# Arguments
- `project_info::Union{Pkg.API.ProjectInfo,Pkg.API.PackageInfo}`: properties about the current
project and Julia packages, such as name and version
- `visited_packages::AbstractVector{String}`: list of packages that have already been processed
# Returns
Dependency diagram of the active project, stored in a `Dict`. The key is always the package name.
The value is either a `Dict` if the package has dependencies or `nothing` if there are no dependencies.
If a package is a dependency more than once, only the first appearance has dependencies.
All other appearances have no dependencies. Standard library packages are ignored.
"""
function build_dependency_graph(
project_info::Union{Pkg.API.ProjectInfo,Pkg.API.PackageInfo}=Pkg.project(),
visited_packages::AbstractVector{String}=Vector{String}(),
)::Dict{String,Union{Dict,Nothing}}
graph = Dict()
for (name, uuid) in project_info.dependencies
# if the version number is nothing, it is the stdlib and we can ignore it
if isnothing(Pkg.dependencies()[uuid].version)
continue
end
# if a dependency is used by many packages, only adds one time with all dependencies
# the next time, add it without dependencies to avoid redundancy
if !(name in visited_packages)
graph[name] = build_dependency_graph(Pkg.dependencies()[uuid], visited_packages)
push!(visited_packages, name)
else
graph[name] = nothing
end
end
return graph
end
"""
depending_projects(
package_name::AbstractString,
package_filter::Union{<:AbstractString,Regex}
project_tree::AbstractDict=build_dependency_graph()
)::Vector{String}
Returns a list of packages that have the package `package_name` as a dependency.
# Arguments
- `package_name`: Name of the dependency
- `package_filter`: Ignore all packages that do not match `package_filter`. This includes the
top node package of the graph. Child nodes are always checked for `package_name`, but
they are not traversed if they do not match `package_filter`.
- `project_tree`: Project tree in which to search for dependent packages. Each (sub-)package
needs to be `AbstractDict{String, AbstractDict}`
# Returns
A `Vector{String}` containing the names of all packages that have the given dependency.
"""
function depending_projects(
package_name::AbstractString,
package_filter::Union{<:AbstractString,Regex},
project_tree::AbstractDict=build_dependency_graph(),
)::Vector{String}
packages::Vector{String} = []
visited_packages::Vector{String} = []
_traverse_tree!(package_name, package_filter, project_tree, packages, visited_packages)
return packages
end
"""
depending_projects(
package_name::AbstractString,
package_filter::AbstractVector{<:AbstractString},
project_tree::AbstractDict=build_dependency_graph()
)::Vector{String}
"""
function depending_projects(
package_name::AbstractString,
package_filter::AbstractVector{<:AbstractString},
project_tree::AbstractDict=build_dependency_graph(),
)::Vector{String}
packages::Vector{String} = []
visited_packages::Vector{String} = []
if length(package_filter) == 0
throw(ArgumentError("package_filter must not be empty"))
end
_traverse_tree!(package_name, package_filter, project_tree, packages, visited_packages)
return packages
end
"""
_match_package_filter(
package_filter::Union{<:AbstractString,Regex},
package::AbstractString
)::Bool
Check if `package_filter` contains `package`. Wrapper function for `contains()` and `in()`.
# Returns
- `true` if it matches.
"""
function _match_package_filter(
package_filter::Union{<:AbstractString,Regex}, package::AbstractString
)::Bool
return contains(package, package_filter)
end
"""
_match_package_filter(
package_filter::AbstractVector{<:AbstractString},
package::AbstractString
)::Bool
"""
function _match_package_filter(
package_filter::AbstractVector{<:AbstractString}, package::AbstractString
)::Bool
return package in package_filter
end
"""
_traverse_tree!(
package_name::AbstractString,
package_filter::Union{<:AbstractString,Regex,AbstractVector{<:AbstractString}},
project_tree::AbstractDict,
packages::AbstractVector{<:AbstractString},
visited_packages::AbstractVector{<:AbstractString}
)
Traverse the project tree and add any package to `packages` that has the package `package_name` as a dependency.
# Arguments
- `package_name`: Name of the dependency
- `package_filter`: Ignore all packages that do not match `package_filter`. This includes the
top node package of the graph. Child nodes always are checked for `package_name`, but
they are not traveres if they do not match `package_filter`.
- `project_tree`: Project tree, where to search the dependent packages. Each (sub-) package
needs to be AbstractDict{String, AbstractDict}
- `packages`: Packages which has `package_name` as dependency.
- `visited_packages`: List of packages that are not traveresed again.
Avoids circular, infinite traversing.
"""
function _traverse_tree!(
package_name::AbstractString,
package_filter::Union{<:AbstractString,Regex,AbstractVector{<:AbstractString}},
project_tree::AbstractDict,
packages::AbstractVector{<:AbstractString},
visited_packages::AbstractVector{<:AbstractString},
)
for project_name_version in keys(project_tree)
# remove project version from string -> usual shape: `packageName.jl version`
project_name = split(project_name_version)[1]
# do not traverse packages further that we have already seen
if project_name in visited_packages
continue
end
# do not traverse packages that don't match the given filter
if !_match_package_filter(package_filter, project_name)
continue
end
push!(visited_packages, String(project_name))
# independent of a match, traverse all dependencies because they can also have the package as dependency
_traverse_tree!(
package_name,
package_filter,
project_tree[project_name_version],
packages,
visited_packages,
)
# if the dependency is nothing, continue (I think this represents that the package was already set as dependency of a another package and therefore does not repeat the dependency)
if isnothing(project_tree[project_name_version]) ||
isempty(project_tree[project_name_version])
continue
end
# search dependencies for the requested one
if any(
startswith(x, package_name) for x in keys(project_tree[project_name_version])
)
push!(packages, project_name)
end
end
end
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 2410 | using IntegrationTests
using PkgDependency
using Pkg
import Term.Trees: Tree
# compare each node of both generated dependency graphs
# the test requires, that both algorithm processes the dependencies in Pkg.project().dependencies()
# and Pkg.dependencies()[uuid].dependencies() in the same order
function compare_nodes(integTest, pkgDep, origin_string="graph: root")
if isnothing(integTest) || isnothing(pkgDep)
@test isnothing(integTest) == isnothing(pkgDep)
return nothing
end
integ_test_keys = collect(keys(integTest))
sort!(integ_test_keys)
# PkgDependency stores the package name together with the version number
# e.g. Term v1.0.1
# therefore remove version number, that packages can be compared
pkg_dep_keys = map(x -> split(x)[1], collect(keys(pkgDep)))
sort!(pkg_dep_keys)
@test length(integ_test_keys) == length(pkg_dep_keys)
@test integ_test_keys == pkg_dep_keys
# printing the whole graphs does provide useful debug information
# print more clever debug information
if length(integ_test_keys) != length(pkg_dep_keys) || integ_test_keys != pkg_dep_keys
println(origin_string)
println("IntegrationTests.build_dependency_graph()\n$(integ_test_keys)")
println("PkgDependency.builddict()\n$(pkg_dep_keys)")
return nothing
end
# check the dependencies of this node
for child in integ_test_keys
pkgDep_name = ""
for name in keys(pkgDep)
# for PkgDependency, we need the package name + version nummer as key
if startswith(name, child)
pkgDep_name = name
break
end
end
compare_nodes(integTest[child], pkgDep[pkgDep_name], origin_string * "->" * child)
end
end
@testset "compare build_dependency_graph() with reference implementation for PkgDependency" begin
# The test takes the dependency graph of the test environment from IntegrationTest,
# builds the dependency graph with IntegrationTests.build_dependency_graph() and the
# reference implementation PkgDependency.builddict() and compares the graphs node by node.
inteGrationTestsGraph = IntegrationTests.build_dependency_graph()
pkgDependencyGraph::AbstractDict = PkgDependency.builddict(
Pkg.project().uuid, Pkg.project()
)
compare_nodes(inteGrationTestsGraph, pkgDependencyGraph)
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 9279 | import Term.Trees: Tree
# set environment variable PRINTTREE=1 to visualize the project trees of the testsets
function printTree()::Bool
return parse(Bool, get(ENV, "PRINTTREE", "0"))
end
@testset "direct dependency to main" begin
project_tree = Dict("MyMainProject.jl 1.0.0" => Dict("MyDep1.jl 1.0.0" => Dict()))
if printTree()
print(Tree(project_tree; name="direct dependency to main"))
end
# dependency exist and prefix is correct
@test IntegrationTests.depending_projects(
"MyDep1.jl", ["MyMainProject.jl"], project_tree
) == ["MyMainProject.jl"]
# dependency does not exist and prefix is correct
@test isempty(
IntegrationTests.depending_projects("MyDep2.jl", "MyMainProject.jl", project_tree)
)
# dependency exist and prefix is incorrect
@test isempty(
IntegrationTests.depending_projects("MyDep1.jl", "ExternProject.jl", project_tree)
)
# dependency does not exist and prefix is incorrect
@test isempty(
IntegrationTests.depending_projects("MyDep2.jl", "ExternProject.jl", project_tree)
)
end
@testset "test package filter api" begin
project_tree = Dict(
"MyMainProject.jl 1.0.0" => Dict(
"MyDep1.jl 1.0.0" => Dict(
"YourDep1.jl 1.0.0" => Dict("MyDep3.jl 1.0.0" => Dict()),
"MyDep2.jl 1.0.0" => Dict(
"ForeignDep1.jl 1.0.0" => Dict(Dict("MyDep3.jl 1.0.0" => Dict())),
),
),
"yourDep2.jl 1.0.0" => Dict("MyDep1.jl 1.0.0" => Dict()),
),
)
if printTree()
print(Tree(project_tree; name="test package filter api"))
end
@testset "single package name" begin
@test sort(depending_projects("MyDep1.jl", "", project_tree)) ==
sort(["MyMainProject.jl", "yourDep2.jl"])
@test sort(depending_projects("MyDep1.jl", "MyMainProject.jl", project_tree)) ==
sort(["MyMainProject.jl"])
@test sort(depending_projects("yourDep2.jl", "MyMainProject.jl", project_tree)) ==
sort(["MyMainProject.jl"])
end
@testset "regex" begin
@test sort(depending_projects("MyDep2.jl", r"My*", project_tree)) ==
sort(["MyDep1.jl"])
@test sort(depending_projects("MyDep2.jl", r"MyDep*", project_tree)) == sort([])
@test sort(
depending_projects("MyDep2.jl", r"MyDep*|^MyMainProject.jl$", project_tree)
) == sort(["MyDep1.jl"])
@test sort(depending_projects("MyDep1.jl", r"^MyMainProject.jl$", project_tree)) ==
sort(["MyMainProject.jl"])
@test sort(
depending_projects(
"MyDep1.jl", r"^MyMainProject.jl$|^yourDep2.jl$", project_tree
),
) == sort(["MyMainProject.jl", "yourDep2.jl"])
@test sort(
depending_projects("MyDep3.jl", r"^MyMainProject.jl$|^MyDep*", project_tree)
) == sort([])
@test sort(
depending_projects(
"MyDep3.jl", r"^MyMainProject.jl$|^MyDep*|^Foreign*", project_tree
),
) == sort(["ForeignDep1.jl"])
@test sort(
depending_projects(
"MyDep3.jl", r"^MyMainProject.jl$|^MyDep*|^Your*", project_tree
),
) == sort(["YourDep1.jl"])
@test sort(
depending_projects(
"MyDep3.jl", r"^MyMainProject.jl$|^MyDep*|^Foreign*|^Your*", project_tree
),
) == sort(["ForeignDep1.jl", "YourDep1.jl"])
@test sort(depending_projects("MyDep1.jl", r"", project_tree)) ==
sort(["MyMainProject.jl", "yourDep2.jl"])
end
@testset "list of package names" begin
@test sort(depending_projects("MyDep1.jl", ["MyMainProject.jl"], project_tree)) ==
sort(["MyMainProject.jl"])
@test sort(
depending_projects("MyDep2.jl", ["MyMainProject.jl", "MyDep1.jl"], project_tree)
) == sort(["MyDep1.jl"])
@test sort(
depending_projects(
"MyDep3.jl",
["MyMainProject.jl", "MyDep1.jl", "ForeignDep1.jl", "MyDep3.jl"],
project_tree,
),
) == sort([])
@test sort(
depending_projects(
"MyDep3.jl",
[
"MyMainProject.jl",
"MyDep1.jl",
"MyDep2.jl",
"ForeignDep1.jl",
"MyDep3.jl",
],
project_tree,
),
) == sort(["ForeignDep1.jl"])
@test sort(
depending_projects(
"MyDep3.jl",
[
"YourDep1.jl",
"MyMainProject.jl",
"MyDep1.jl",
"MyDep2.jl",
"ForeignDep1.jl",
"MyDep3.jl",
],
project_tree,
),
) == sort(["YourDep1.jl", "ForeignDep1.jl"])
# using strings and regex in a vector is not allowed
# use instead a single regex
@test_throws MethodError depending_projects(
"MyDep2.jl", ["MyMainProject.jl", r"MyDep1.jl"], project_tree
)
@test_throws ArgumentError depending_projects(
"MyDep2.jl", Vector{String}(), project_tree
)
end
end
@testset "complex dependencies" begin
#! format: off
project_tree = Dict("MyMainProject.jl 1.0.0" =>
Dict("MyDep1.jl 1.0.0" => Dict(),
"MyDep2.jl 1.0.0" => Dict("MyDep3.jl 1.0.0" => Dict(),
"ForeignDep1.jl 1.0.0" => Dict()),
"ForeignDep2.jl 1.0.0" => Dict("ForeignDep3.jl 1.0.0" => Dict(),
"ForeignDep4.jl 1.0.0" => Dict()),
"MyDep4.jl 1.0.0" => Dict("MyDep5.jl 1.0.0" => Dict("MyDep3.jl 1.0.0" => Dict())),
"ForeignDep2.jl 1.0.0" => Dict("MyDep5.jl 1.0.0" => Dict("MyDep3.jl 1.0.0" => Dict()),
"MyDep3.jl 1.0.0" => Dict(),
"MyDep6.jl 1.0.0" => Dict("MyDep3.jl 1.0.0" => Dict())),
"MyDep7.jl 1.0.0" => Dict("MyDep5.jl 1.0.0" => Dict("MyDep3.jl 1.0.0" => Dict()),
"MyDep3.jl 1.0.0" => Dict()),
)
)
#! format: on
if printTree()
print(Tree(project_tree; name="complex dependencies"))
end
package_filter = [
"MyMainProject.jl",
"MyDep1.jl",
"MyDep2.jl",
"MyDep3.jl",
"MyDep4.jl",
"MyDep5.jl",
"MyDep6.jl",
"MyDep7.jl",
]
# sort all vectors to guaranty the same order -> guaranty is not important for the actual result, onyl for comparison
@test sort(
IntegrationTests.depending_projects("MyDep1.jl", package_filter, project_tree)
) == sort(["MyMainProject.jl"])
@test sort(
IntegrationTests.depending_projects("MyDep2.jl", package_filter, project_tree)
) == sort(["MyMainProject.jl"])
# MyDep5.jl should only appears one time -> MyDep4.jl and MyDep7.jl has the same MyDep5.jl dependency
@test sort(
IntegrationTests.depending_projects("MyDep3.jl", package_filter, project_tree)
) == sort(["MyDep2.jl", "MyDep5.jl", "MyDep7.jl"])
@test sort(
IntegrationTests.depending_projects("MyDep5.jl", package_filter, project_tree)
) == sort(["MyDep4.jl", "MyDep7.jl"])
# cannot find MyDep6.jl, because it is only a dependency of a foreign package
@test isempty(
IntegrationTests.depending_projects("MyDep6.jl", package_filter, project_tree)
)
@test isempty(IntegrationTests.depending_projects("MyDep3.jl", ["Foo"], project_tree))
end
@testset "circular dependency" begin
# I cannot create a real circular dependency with this data structur, but if Circulation appears in an output, we passed MyDep1.jl and MyDep2.jl two times, which means it is a circle
project_tree = Dict(
"MyMainProject.jl 1.0.0" => Dict(
"MyDep1.jl 1.0.0" => Dict(
"MyDep2.jl 1.0.0" => Dict(
"MyDep1.jl 1.0.0" => Dict(
"MyDep2.jl 1.0.0" => Dict("Circulation" => Dict())
),
),
),
),
)
if printTree()
print(Tree(project_tree; name="circular dependencies"))
end
package_filter = ["MyMainProject.jl", "MyDep1.jl", "MyDep2.jl"]
@test sort(
IntegrationTests.depending_projects("MyDep1.jl", package_filter, project_tree)
) == sort(["MyMainProject.jl", "MyDep2.jl"])
@test sort(
IntegrationTests.depending_projects("MyDep2.jl", package_filter, project_tree)
) == sort(["MyDep1.jl"])
@test isempty(IntegrationTests.depending_projects("MyDep2.jl", ["Foo"], project_tree))
@test isempty(
IntegrationTests.depending_projects("Circulation", package_filter, project_tree)
)
end
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | code | 108 | using IntegrationTests
using Test
include("./depending_project.jl")
include("./build_dependency_graph.jl")
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | docs | 1063 | # Changelog
## Version 1.0.0
**Initial Release**
### New features
- [#6](https://github.com/QEDjl-project/IntegrationTests.jl/pull/6): Adding the traversal algorithm to find packages for the integration tests in a Julia dependency graph
- [#11](https://github.com/QEDjl-project/IntegrationTests.jl/pull/11): Add GitHub Actions example
- [#16](https://github.com/QEDjl-project/IntegrationTests.jl/pull/16): Add GitLab CI example
- [#19](https://github.com/QEDjl-project/IntegrationTests.jl/pull/19): Support Julia 1.10
- [#18](https://github.com/QEDjl-project/IntegrationTests.jl/pull/18): Add algorithm to build dependency graph of the active Julia project (replace implementation from PkgDependency)
### Maintenance
- [#1](https://github.com/QEDjl-project/IntegrationTests.jl/pull/1): Add code formatter
- [#5](https://github.com/QEDjl-project/IntegrationTests.jl/pull/4): Add initial documentation
- [#7](https://github.com/QEDjl-project/IntegrationTests.jl/pull/7): Add integration test to test algorithm with on the fly created Julia package eco-system
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | docs | 3703 | # IntegrationTests
[](https://qedjl-project.github.io/IntegrationTests.jl/stable/)
[](https://qedjl-project.github.io/IntegrationTests.jl/dev)
[](https://github.com/invenia/BlueStyle)
# About
`IntegrationTests.jl` provides tools and instructions for automatically creating integration tests for Julia projects in continuous integration pipelines such as [GitLab CI](https://docs.gitlab.com/ee/ci/) and [GitHub Actions](https://docs.github.com/en/actions).
# What are integration tests
Integration tests are required if you want to test whether different packages work together after a code change. For example, if package A is used by package B and the API of package A has been changed, the integration test checks whether package B still works.
## Example Project
Our example package eco system contains the two packages `PkgA` and `PkgB`. `PkgB` uses a function from `PkgA`.
```mermaid
graph TD
pkgb(PkgB) -->|using| pkga(PkgA)
```
`PkgA` provides the following function:
```julia
module PkgA
foo(i) = i + 3
end
```
`PkgB` uses the function of `PkgA` in the following way:
```julia
module PkgB
using PkgA
bar() = PkgA.foo(3)
end
```
`PkgB` implements a test that checks whether `bar()` works:
```julia
using PkgB
using Test
@testset "PkgB.jl" begin
@test PkgB.bar() == 6
end
```
Suppose we change `foo(i) = i + 3` to `foo(i, j) = i + j + 3`. The `bar()` function in `PkgB` will no longer work because `bar()` calls `foo()` with only one parameter. The integration test will detect the problem and allow the developer to fix the problem before the pull request is merged. For example, a fix can be developed for `PkgB` that calls `foo()` with two arguments.
# Functionality
`IntegrationTests.jl` provides CI configuration files and a tool for the dynamic generation of integration tests for a specific project. The tool determines the dependent packages based on a given `Project.toml` of the entire package ecosystem. This is possible because a `Project.toml` of a package describes the dependencies as a graph. The graph can also contain the dependencies of the dependencies. Therefore, you can create a dependency graph of a package ecosystem. A package ecosystem can look like this:
```mermaid
graph TD
qed(QED.jl) --> base(QEDbase.jl)
qed --> processes(QEDprocesses.jl) --> base
qed --> fields(QEDfields.jl) --> base
processes --> fields
qed --> events(QEDevents.jl) --> base
```
[Project.toml](https://github.com/QEDjl-project/QuantumElectrodynamics.jl/blob/08613adadea8a85bb4cbf47065d118eaec6f03d6/Project.toml) of the `QED.jl` package.
For example, if `QEDfields.jl` is changed, `IntegrationTests.jl` returns that `QED.jl` and `QEDprocesses.jl` are dependent on `QEDfields.jl`, and we can generate the integration test jobs. Full CI pipeline examples for GitLab CI and GitHub Actions can be found in the [Pipeline Tutorials](https://qedjl-project.github.io/IntegrationTests.jl/dev/pipeline_tutorials/) section. For more details on the `IntegrationTests.jl` tool, see the [Integration Test Tool](https://qedjl-project.github.io/IntegrationTests.jl/dev/integration_test_tool/) section.
# Credits
This work was partly funded by the [Center for Advanced Systems Understanding (CASUS)](https://www.casus.science) that is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament.
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | docs | 2198 | # About
The scripts in this folder perform integration tests with an generated Julia package ecosystem.
Therefore, the `create_package_eco_system()` function in `prepareIntegrationTest.jl` creates various Julia packages and sets the dependencies. The following diagram shows the created package ecosystem.
```mermaid
graph TD
MyPkgMeta(MyPkgMeta) --> MyPkgA(MyPkgA)
MyPkgA --> MyPkgE(MyPkgE)
MyPkgA --> MyPkgB(MyPkgB) --> MyPkgE
MyPkgA --> MyPkgC(MyPkgC) --> MyPkgE
MyPkgB --> MyPkgC
MyPkgA --> MyPkgD(MyPkgD) --> MyPkgE
MyPkgE --> JSON(JSON)
MyPkgE --> Pkg(Pkg)
MyPkgE --> Test(Test)
MyPkgC --> JSON
MyPkgB --> PkgTemplate(PkgTemplate)
MyPkgA --> JSON
```
All packages starting with `MyPkg` are locally created packages. The other packages are third-party dependencies on existing packages from the Julia Registry.
The `MyPkgMeta` is a specially created package. It is not part of the normal package ecosystem and is only needed to generate the correct list of dependencies. For more details, read the the [Integration Test Tool documentation](https://qedjl-project.github.io/IntegrationTests.jl/dev/integration_test_tool/). `MyPkgMeta` has only one dependency, namely the package `MyPkgA`. The `MyPkgA` itself has all other packages as direct dependencies. We use the environment of the `MyPkgMeta` package to construct the dependency tree for the `depending_projects()` function. We cannot use `MyPkgA` directly because a package is not a member of its own dependency graph. This means that `depending_projects()` would not check if `MyPkgA` is a dependency of the package we are looking for, as it is not part of the dependency graph.
# Test scripts
All test scripts use the same example ecosystem but the scripts perform different types of tests:
- `getDeps.jl`: Calls the function `depending_projects()` and compares the generated list of package names with a list of expected package names.
- `generateGithubActions.jl`: Calls the `depending_projects()` function, takes the generated list of package names and print it. Then GitHub Action create and execute a CI job for each entry.
Then creates a GitHub action request for each package name.
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | docs | 170 | # References
## Public API
```@autodocs
Modules = [IntegrationTests]
Private = false
```
## Internal API
```@autodocs
Modules = [IntegrationTests]
Public = false
```
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | docs | 6679 | # Integration Test Tool
The public API `IntegrationTests.jl` provides a function called `depending_projects()`, which returns a vector of package names that depend on the package `package_name`. In addition to the package name, the function also requires a package name filter `package_filter` and a project dependency tree `project_tree`. The project dependency can be constructed from the currently active Julia project environment, which is highly recommended.
```@docs
depending_projects(package_name::AbstractString,
package_filter::Union{<:AbstractString,Regex},
project_tree::AbstractDict)
```
An example for using the `depending_projects()` function may look as follows:
```julia-repl
julia> using IntegrationTests
[ Info: Precompiling IntegrationTests [6be7cfa2-1838-408e-bc49-3a824ac3a1fb]
julia> using Pkg
julia> Pkg.activate(".ci/example_project/MetaTestPkg/")
Activating project at `~/projects/IntegrationTests.jl/.ci/example_project/MetaTestPkg`
julia> depending_projects("MyPkgFields", r"MyPkg*")
2-element Vector{String}:
"MyPkgProcesses"
"MyPkgMain"
julia>
```
# Package Filter
The `package_filter` is a string or a regular expression, which constrains the search space of the dependency graph. All packages and dependencies of packages must match the filter, otherwise they are ignored during searching. For instance, if we set the package filter to `r"^MyPkg*"`, the packages `MyPkgMain`, `MyPkgA`, `MyPkgB`, and `MyPkgC` are traversed in the following diagram. `ExternalDep1` and `ExternalDep2` are ignored.
```mermaid
graph TD
MyPkgMain -->|using| MyPkgA
MyPkgMain -->|using| MyPkgB
MyPkgMain -->|using| ExternDep1
MyPkgA -->|using| MyPkgC
MyPkgA -->|using| ExternDep2
```
The idea behind the package filter is that there are nodes in the dependency graph that can't be changed directly. Let's assume we are the maintainer of all packages starting with `MyPkg` and the following dependency graph is given:
```mermaid
graph TD
MyPkgMain -->|using| MyPkgA
MyPkgMain -->|using| MyPkgB
MyPkgMain -->|using| ExternDep1 -->|using| MyPkgA
MyPkgA -->|using| MyPkgC
MyPkgA -->|using| ExternDep2
```
With the package filter `r"*"`, which means traversing all dependencies, the result would be `["MyPkgMain", "ExternDep1"]` if we are searching for `MyPkgA`. We are not the maintainer of `ExternDep1`, therefore we can not directly make changes in `ExternDep1` and it makes less sense to test `ExternDep1` with our code changes.
## Package Filter: Special Cases
### Dependencies of non matching packages
In the following diagram, `MyPkgA` is not found with the package filter `r"^MyPkg*"`, because the traversing algorithm does not traverse `ExternDep1`. Therefore the dependencies of `ExternDep1` are not checked.
```mermaid
graph TD
MyPkgMain -->|using| ExternDep1 -->|using| MyPkgA
```
### The top graph package
Sometimes the top graph package does not have the same naming scheme as all other packages. The section [Project Dependency Tree](#Project-Dependency-Tree) contains examples of this. If the top package is not included in the package filter, the entire graph is not traversed and the result is empty.
```mermaid
graph TD
MetaTestPkg -->|using| MyPkgMain -->|using| MyPkgA
MyPkgMain -->|using| MyPkgB
```
`depending_projects()` returns `[]` for the package filter `r"^MyPkg*"` and the package `MyPkgB`. The package filter `r"^MyPkg*|^MetaTestPkg$` returns `["MyPkgA"]`.
# Project Dependency Tree
We strongly recommend using a `Project.toml` of a package from the package ecosystem as input for `depending_projects()` instead of manually defining the project dependency graph. This is because a manually defined dependency tree can become obsolete. In contrast, the `Project.toml` must be up to date, otherwise, the Julia application will not work.
The crucial question is which `Project.toml` should be used. The dependency graph of a `Project.toml` can only be constructed in one direction. You can only use the dependencies of the packages. From which package a package is used can only be determined if you came from the package before. Let's assume we have the following package ecosystem:
```mermaid
graph TD
MyPkgMain -->|using| MyPkgA
MyPkgMain -->|using| MyPkgB -->|using| MyPkgD
MyPkgB -->|using| MyPkgE -->|using| MyPkgF
MyPkgMain -->|using| MyPkgC
```
If we take the `Project.toml`[\*] of `MyPkgMain`, we get the complete graph. If we take the `Project.toml` of `MyPkgB`, we get the following graph:
```mermaid
graph TD
MyPkgB -->|using| MyPkgD
MyPkgB -->|using| MyPkgE -->|using| MyPkgF
```
!!! note
The dependency tree created with the `Project.toml` of `MyPkgMain` does not contain `MyPkgMain` itself. This is a technical detail from Julia. It will contain the dependencies `MyPkgA` to `MyPkgF`. To solve the problem, an additional package is needed, which has only the dependency `MyPkgMain`:
`Project.toml`
```yaml
name = "MetaTestPkg"
uuid = "b849e8ad-e76f-4e2e-b89d-52f4e57509ba"
authors = ["Simeon Ehrig <[email protected]>"]
version = "0.1.0"
[deps]
MyPkgMain = "679daff0-1f79-468a-9a2e-69c3994cafb1"
```
If we use the `Project.toml` of `MetaTestPkg`, we get the complete dependency graph with `MyPkgMain`.
!!! note
To select a package and create the dependency graph, you need to activate the Julia environment of the package with `Pkg.activate()`. For example, `Pkg.activate("path/to/MetaTestPkg")`.
## Project Dependency Tree: Special cases
Let's assume we have the following package ecosystem structure:
```mermaid
graph TD
MyPkgA -->|using| MyPkgD
MyPkgB -->|using| MyPkgD
MyPkgB -->|using| MyPkgE
MyPkgC -->|using| MyPkgE
MyPkgC -->|using| MyPkgF
MyPkgD -->|using| MyPkgG
MyPkgD -->|using| MyPkgH
MyPkgE -->|using| MyPkgI
```
There is no package we can use to build the entire dependency graph. Therefore, an auxiliary package is required to generate the integration tests for the whole ecosystem:
```mermaid
graph TD
MetaTestPkg -->|using| MyPkgA
MetaTestPkg -->|using| MyPkgB
MetaTestPkg -->|using| MyPkgC
MyPkgA -->|using| MyPkgD
MyPkgB -->|using| MyPkgD
MyPkgB -->|using| MyPkgE
MyPkgC -->|using| MyPkgE
MyPkgC -->|using| MyPkgF
MyPkgD -->|using| MyPkgG
MyPkgD -->|using| MyPkgH
MyPkgE -->|using| MyPkgI
```
If we use the `Project.toml` of `MetaTestPkg`, we can construct the entire graph.
!!! note
The "MetaTestPkg" does not need to be registered. It can be saved locally in the project repository or created dynamically during the generation of the integration tests.
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 1.0.0 | 836de2fec5b1ad79457e7614a36dc83e3b47e3dd | docs | 5145 | # Pipeline Tutorials
This section shows how to set up CI tests for different platforms with `IntegrationTests.jl`. In general, any CI platform can use `IntegrationTests.jl` if it fulfills a requirement. It must be possible to generate new jobs during the runtime of a CI pipeline depending on the output of a Julia script.
## GitLab CI
GitLab CI offers the [parent-child-pipeline](https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html#parent-child-pipelines) function. This allows you to generate GitLab CI job yaml code in a GitLab CI job and start the generated jobs in the same pipeline.
For our example, let's assume that we use a Julia script called `generateIntegrationTests.jl` that uses `IntegrationTests::depending_projects()` to generate the integration tests. This script generates valid GitLab CI yaml code and outputs it to stdout. The GitLab CI code in `.gitlab-ci.yml` could look like this:
```yaml
stages:
- generator
- runTests
generateIntegrationTests:
stage: generator
image: "julia:1.10"
script:
- julia --project=. -e 'import Pkg; Pkg.instantiate()'
- julia --project=. generateIntegrationTests.jl 2> /dev/null 1> jobs.yaml
- cat jobs.yaml
interruptible: true
artifacts:
paths:
- jobs.yaml
expire_in: 1 week
runIntegrationTests:
stage: runTests
trigger:
include:
- artifact: jobs.yaml
job: generateIntegrationTests
strategy: depend
```
The content of the dynamically generated `jobs.yaml` could look as follows for the example packages `MyPkgA` and `MyPkgB`:
```yaml
integrationTestMyPkgB:
image: alpine:latest
script:
- echo "run Integration Test for package MyPkgB"
integrationTestMyPkgA:
image: alpine:latest
script:
- echo "run Integration Test for package MyPkgA"
```
## GitHub Actions
GitHub provides the [matrix](https://docs.github.com/en/actions/using-jobs/using-a-matrix-for-your-jobs) mechanism to automatically generate jobs from a given input. Normally, the input is hardcoded as one or more `JSON` arrays in the Github Actions `yaml` file. A small workaround allows the input of a `JSON` array to be generated during the runtime of a Github Actions job. This makes it possible to dynamically create new jobs during the runtime of the CI pipeline.
For our example, let's assume that we use a Julia script named `generateIntegrationTests.jl` that uses `IntegrationTests::depending_projects()` to generate the integration tests. The GitHub Actions workflow looks like this:
```yaml
name: IntegrationTest
on:
push:
branches:
- main
- dev
tags: ['*']
pull_request:
workflow_dispatch:
concurrency:
# Skip intermediate builds: always.
# Cancel intermediate builds: only if it is a pull request build.
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ startsWith(github.ref, 'refs/pull/') }}
jobs:
generate:
name: Github Action - Generator Integration Jobs
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: julia-actions/setup-julia@v1
with:
version: "1.10"
arch: x64
- uses: julia-actions/cache@v1
- uses: julia-actions/julia-buildpkg@v1
- id: set-matrix
run: echo "matrix=$(julia --project=${GITHUB_WORKSPACE} generateIntegrationTests.jl 2> /dev/null)" >> $GITHUB_OUTPUT
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
run-matrix:
needs: generate
runs-on: ubuntu-latest
strategy:
matrix:
package: ${{ fromJson(needs.generate.outputs.matrix) }}
steps:
# define the job body of your integration test here depending on the `matrix.package` parameter
- run: echo "run Integration Test for package ${{ matrix.package }}"
```
The workflow contains two jobs. The first job is the `generate` job, which generates a list of package names to be tested as an integration test. The `run-matrix` job is a template that takes a package name and runs an integration test job for the specific package name. Therefore, the `run-matrix` is executed `N` times.
!!! note
`matrix: ${{ steps.set-matrix.outputs.matrix }}` expects a `JSON` array. Fortunately, when we print a Julia vector, the output is in the form of a `JSON` array. Therefore, you can simply use `print(depending_projects())` to generate the output of `generateIntegrationTests.jl`. But be careful not to print any other output, for example, the activation message of `Pkg.activate`. This output can be redirected to `2> /dev/null` for example.
Source: https://tomasvotruba.com/blog/2020/11/16/how-to-make-dynamic-matrix-in-github-actions/
# Real World Example
The `IntegrationTest.jl` package uses the GitLab CI `parent-child-pipeline` and the GitHub Action `matrix` function for its own CI tests to check the functionality. The generator scripts can be found in the `.ci` folder. The GitLab CI Job yaml code is written in the `.gitlab-ci.yml` and the GitHub Action Code is written in the `.github/workflows/integrationTests.yml`.
| IntegrationTests | https://github.com/QEDjl-project/IntegrationTests.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 524 | using Pkg
Pkg.add([
PackageSpec(
name = "BenchmarkConfigSweeps",
url = "https://github.com/tkf/BenchmarkConfigSweeps.jl.git",
),
PackageSpec(
name = "BenchPerf",
# path = dirname(@__DIR__),
url = "https://github.com/tkf/BenchPerf.jl.git",
),
PackageSpec(
name = "BenchPerfConfigSweeps",
# path = dirname(@__DIR__),
url = "https://github.com/tkf/BenchPerf.jl.git",
subdir = "lib/BenchPerfConfigSweeps",
),
])
Pkg.instantiate()
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 431 | function preprocess_natural_comment(str)
output = IOBuffer()
input = IOBuffer(str)
while !eof(input)
ln = readline(input; keep = true)
# Always treat indented comments as in-code comments
m = match(r"^( +)# (.*)"s, ln)
if m !== nothing
print(output, m[1], "## ", m[2])
continue
end
print(output, ln)
end
return String(take!(output))
end
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 723 | import BenchmarkTools
function set_quick_params!(bench)
bench.params.seconds = 0.001
bench.params.evals = 1
bench.params.samples = 1
bench.params.gctrial = false
bench.params.gcsample = false
return bench
end
foreach_benchmark(f!, bench::BenchmarkTools.Benchmark) = f!(bench)
function foreach_benchmark(f!, group::BenchmarkTools.BenchmarkGroup)
for x in values(group)
foreach_benchmark(f!, x)
end
end
function quick!(suite)
foreach_benchmark(set_quick_params!, suite)
return suite
end
function maybe_quick!(suite)
if lowercase(get(ENV, "QUICK", "false")) == "true"
@info "Use quick-run benchmark parameters"
quick!(suite)
end
return suite
end
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 1418 | import BenchPerf
import Random
using BenchmarkTools
include("utils.jl")
function increment_at!(xs, indices)
for i in indices
@inbounds xs[i] += 1
end
end
function threaded_increment_at!(xss, iss, nrepeats)
Threads.@threads for j in eachindex(xss, iss)
for _ in 1:nrepeats
increment_at!(xss[j], iss[j])
end
end
end
group = BenchmarkGroup()
for e in 5:22
n = 2^e
nrepeats = nrepeats_from_n(n)
group["n=$n"] = bench = @benchmarkable(
threaded_increment_at!(xss, iss, $nrepeats),
setup = begin
Random.seed!(43)
# Iteration over nthreads can be done in a single process. But it's
# done via BenchmarkConfigSweeps just for the demo.
nt = Threads.nthreads()
n = $n
xss = [zeros(Int, n) for _ in 1:nt]
iss = [rand(1:n, n) for _ in 1:nt]
end,
# Larger `samples` (than the default: 10_000) to bound the benchmark by
# the time limit.
samples = 1_000_000,
)
# Not tuning it like ../random_increments/benchmarks.jl since `nrepeats`
# already takes care of it. To verify this, uncomment the following line,
# run the benchmarks, and then check `unique(df.evals)`.
#=
if e < 15
tune!(bench)
end
=#
end
include("../quick.jl")
maybe_quick!(group)
SUITE = BenchPerf.wrap(group; detailed = 1)
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 2629 | using BenchPerfConfigSweeps
using DataFrames
using VegaLite
include("utils.jl")
sweepresult = BenchPerfConfigSweeps.load(joinpath(@__DIR__, "build"))
df_raw = DataFrame(sweepresult)
let
global df = select(df_raw, Not(:trial))
df[:, :time_ns] = map(t -> minimum(t.benchmark).time, df_raw.trial)
# df[:, :evals] = map(t -> t.benchmark.params.evals, df_raw.trial)
df[:, :L1_miss_percent] = map(df_raw.trial) do t
t.perf["L1-dcache-load-misses"] / t.perf["L1-dcache-loads"] * 100
end
df[:, :LL_miss_percent] = map(df_raw.trial) do t
get(t.perf, "LLC-load-misses", missing) / get(t.perf, "LLC-loads", missing) * 100
end
nrepeats = nrepeats_from_n.(df.n)
bytes = df.n .* 2 * sizeof(Int)
global throughput_unit = "GiB/thread/sec"
df[:, :throughput] = bytes .* nrepeats ./ 2^30 ./ (df.time_ns / 1e9)
df[:, :MiB] = bytes ./ 2^20
df[:, :total_MiB] = df.nthreads .* bytes ./ 2^20
df
end
df |> [
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
]
df |> [
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:L1_miss_percent, title = "L1 cache miss [%]"},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:LL_miss_percent, title = "LL cache miss [%]"},
color = {:nthreads, type = :nominal},
)
]
df |> [
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:L1_miss_percent, title = "L1 cache miss [%]"},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:LL_miss_percent, title = "LL cache miss [%]"},
color = {:nthreads, type = :nominal},
)
]
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 270 | using BenchmarkConfigSweeps
if Sys.CPU_THREADS < 8
threads = [1, Sys.CPU_THREADS]
else
threads = [1, 4, 8]
end
BenchmarkConfigSweeps.run(
joinpath(@__DIR__, "build"),
joinpath(@__DIR__, "benchmarks.jl"),
BenchmarkConfigSweeps.nthreads.(threads),
)
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 81 | nrepeats_from_n(n) =
if n < 2^22
2^22 ÷ n
else
1
end
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 1561 | import BenchPerf
import Random
using BenchmarkTools
include("utils.jl")
function sum_gather(xs, indices)
s = zero(eltype(xs))
for i in indices
s += @inbounds xs[i]
end
return s
end
function threaded_sum_gather(xss, iss, nrepeats)
sums = zeros(eltype(eltype(xss)), length(xss))
Threads.@threads for j in eachindex(xss, iss)
s = sums[j]
for _ in 1:nrepeats
s += sum_gather(xss[j], iss[j])
end
sums[j] = s
end
return sum(sums)
end
group = BenchmarkGroup()
for e in 5:22
n = 2^e
nrepeats = nrepeats_from_n(n)
group["n=$n"] = bench = @benchmarkable(
threaded_sum_gather(xss, iss, $nrepeats),
setup = begin
Random.seed!(43)
# Iteration over nthreads can be done in a single process. But it's
# done via BenchmarkConfigSweeps just for the demo.
nt = Threads.nthreads()
n = $n
xss = [zeros(Int, n) for _ in 1:nt]
iss = [rand(1:n, n) for _ in 1:nt]
end,
# Larger `samples` (than the default: 10_000) to bound the benchmark by
# the time limit.
samples = 1_000_000,
)
# Not tuning it like ../random_increments/benchmarks.jl since `nrepeats`
# already takes care of it. To verify this, uncomment the following line,
# run the benchmarks, and then check `unique(df.evals)`.
#=
if e < 15
tune!(bench)
end
=#
end
include("../quick.jl")
maybe_quick!(group)
SUITE = BenchPerf.wrap(group; detailed = 1)
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 3861 | import BenchPerfConfigSweeps
import DisplayAs
using DataFrames
using VegaLite
include("utils.jl")
sweepresult = BenchPerfConfigSweeps.load(joinpath(@__DIR__, "build"))
df_raw = DataFrame(sweepresult)
let
global df = select(df_raw, Not(:trial))
df[:, :time_ns] = map(t -> minimum(t.benchmark).time, df_raw.trial)
# df[:, :evals] = map(t -> t.benchmark.params.evals, df_raw.trial)
df[:, :L1_miss_percent] = map(df_raw.trial) do t
t.perf["L1-dcache-load-misses"] / t.perf["L1-dcache-loads"] * 100
end
df[:, :LL_miss_percent] = map(df_raw.trial) do t
get(t.perf, "LLC-load-misses", missing) / get(t.perf, "LLC-loads", missing) * 100
end
nrepeats = nrepeats_from_n.(df.n)
bytes = df.n .* 2 * sizeof(Int)
global throughput_unit = "GiB/thread/sec"
df[:, :throughput] = bytes .* nrepeats ./ 2^30 ./ (df.time_ns / 1e9)
df[:, :MiB] = bytes ./ 2^20
df[:, :total_MiB] = df.nthreads .* bytes ./ 2^20
df
end
resultdir = joinpath(@__DIR__, "result")
mkpath(resultdir)
saveresult(; plots...) = saveresult(:png, :svg; plots...)
function saveresult(exts::Symbol...; plots...)
for (k, v) in plots
for e in exts
save(joinpath(resultdir, "$k.$e"), v)
end
end
end
nothing # hide
plt_throughput_cache_miss_vs_different_input_sizes =
df |> [
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
]
saveresult(; plt_throughput_cache_miss_vs_different_input_sizes)
plt_throughput_cache_miss_vs_different_input_sizes
plt_throughput_cache_miss_vs_different_input_sizes |> DisplayAs.PNG
plt_throughput_cache_miss_vs_per_thread_size =
df |> [
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:L1_miss_percent, title = "L1 cache miss [%]"},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:MiB, scale = {type = :log}},
y = {:LL_miss_percent, title = "LL cache miss [%]"},
color = {:nthreads, type = :nominal},
)
]
saveresult(; plt_throughput_cache_miss_vs_per_thread_size)
plt_throughput_cache_miss_vs_per_thread_size
plt_throughput_cache_miss_vs_per_thread_size |> DisplayAs.PNG
#-
plt_throughput_cache_miss_vs_total_size =
df |> [
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:throughput, title = throughput_unit},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:L1_miss_percent, title = "L1 cache miss [%]"},
color = {:nthreads, type = :nominal},
)
@vlplot(
mark = {:line, point = true},
x = {:total_MiB, scale = {type = :log}},
y = {:LL_miss_percent, title = "LL cache miss [%]"},
color = {:nthreads, type = :nominal},
)
]
saveresult(; plt_throughput_cache_miss_vs_total_size)
plt_throughput_cache_miss_vs_total_size
plt_throughput_cache_miss_vs_total_size |> DisplayAs.PNG
#-
plt_throughput_cache_miss_vs_total_size #src
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 817 | # # Multi-thread `sum_gather`
include("plots.jl");
# ## Throughput, L1, and last-level (LL) cache misses
#
# (Note: the LL cache miss data may not be available in some machines.)
#
# The same set of data is plotted with two different metrics for the input size
# (x-axis).
# ### x-axis: input size per thread
# The curves for L1 cache miss are virtually identical across benchmarks that
# are run with different number of threads (color, `nthreads`).
plt_throughput_cache_miss_vs_per_thread_size
#-
# ### x-axis: total input size
# The rising part of the curves for LL cache miss for when the total input size
# is large coincide across benchmarks with different number of threads (color,
# `nthreads`). This is where the total input size crosses the LL cache size.
plt_throughput_cache_miss_vs_total_size
#-
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 270 | using BenchmarkConfigSweeps
if Sys.CPU_THREADS < 8
threads = [1, Sys.CPU_THREADS]
else
threads = [1, 4, 8]
end
BenchmarkConfigSweeps.run(
joinpath(@__DIR__, "build"),
joinpath(@__DIR__, "benchmarks.jl"),
BenchmarkConfigSweeps.nthreads.(threads),
)
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 165 | using Literate
include("../literate_utlis.jl")
Literate.notebook(
joinpath(@__DIR__, "report.jl"),
@__DIR__;
preprocess = preprocess_natural_comment,
)
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 81 | nrepeats_from_n(n) =
if n < 2^22
2^22 ÷ n
else
1
end
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
|
[
"MIT"
] | 0.1.0 | b42a1090f1929847055997b0803b0d5cf3e2177e | code | 901 | import BenchPerf
import Random
using BenchmarkTools
function increment_at!(xs, indices)
for i in indices
@inbounds xs[i] += 1
end
end
CACHE = Dict()
group = BenchmarkGroup()
for e in 5:22
n = 2^e
CACHE[e] = (xs = zeros(Int, n), indices = rand(1:n, n))
group["n=$n"] = bench = @benchmarkable(
increment_at!(xs, indices),
setup = begin
inputs = CACHE[$e]::$(typeof(CACHE[e]))
xs = inputs.xs
indices = inputs.indices
fill!(xs, 0)
end,
# Larger `samples` (than the default: 10_000) to bound the benchmark by
# the time limit.
samples = 1_000_000,
)
# Manually tune the benchmark since `BenchmarkConfigSweeps` does not do it
# ATM.
if e < 15
tune!(bench)
end
end
include("../quick.jl")
maybe_quick!(group)
SUITE = BenchPerf.wrap(group; detailed = 1)
| BenchPerf | https://github.com/tkf/BenchPerf.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.