licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
2497
using BayesFlux using Flux, Distributions, Random using Test function test_GGMC_regression(steps, k=5, n=10_000) x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 1.0f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) sigma_prior = Gamma(2.0f0, 0.5f0) like = FeedforwardNormal(nc, sigma_prior) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 0.1f0), like, prior) bnn = BNN(x, y, like, prior, init) # firts run optimisation opt = FluxModeFinder(bnn, Flux.RMSProp(); windowlength=50) θmode = find_mode(bnn, 1000, 100, opt; showprogress=false) l = 1f-2 # l = 1.0f-15 sadapter = DualAveragingStepSize(l; adapt_steps=1000, target_accept=0.25f0) madapter = DiagCovMassAdapter(1000, 100, kappa=0.1f0, epsilon=1.0f-8) sampler = GGMC(; l=l, β=0.1f0, steps=steps, sadapter=sadapter, madapter=madapter ) ch = mcmc(bnn, 1_000, 20_000, sampler; showprogress=true, θstart=copy(θmode)) ch_short = ch[:, end-9999:end] θmean = mean(ch_short; dims=2) βhat = θmean[1:length(β)] # coefficients test1 = maximum(abs, β - βhat) < 0.05 # intercept test2 = abs(θmean[end-1]) < 0.05 # variance test3 = 0.9f0 <= mean(exp.(ch_short[end, :])) <= 1.1f0 ch_longer = mcmc(bnn, 1000, 25_000, sampler; continue_sampling=true, showprogress=false) test4 = all(ch_longer[:, 1:20_000] .== ch) return [test1, test2, test3, test4] end Random.seed!(6150533) @testset "GGMC" begin # Only testing up until 3 steps. Everything higher becomes numerically # instable for any reasonably stepsizes @testset "Linear Regression" for steps in [1, 2, 3] @testset "Steps = $steps" begin # Because GitHub Actions seem very slow and occasionally run out of # memory, we will decrease the number of tests if the tests are run on # GitHub actions. Hostnames on GH actions seem to always start with fv ntests = gethostname()[1:2] == "fv" ? 1 : 10 results = fill(false, ntests, 4) for i = 1:ntests results[i, :] = test_GGMC_regression(steps) end pct_pass = mean(results; dims=1) @test pct_pass[1] > 0.9 @test pct_pass[2] > 0.9 @test pct_pass[3] > 0.8 # variances are difficult to estimate @test pct_pass[4] == 1 end end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
3058
# Testing HMC using BayesFlux using Flux, Distributions, Random using LinearAlgebra function test_HMC_regression(madapter; k=5, n=10_000) x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 1.0f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) sigma_prior = Gamma(2.0f0, 0.5f0) like = FeedforwardNormal(nc, sigma_prior) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 1.0f0), like, prior) bnn = BNN(x, y, like, prior, init) l = 1.0f-4 sadapter = DualAveragingStepSize(l; adapt_steps=1000, target_accept=0.5f0) # Below was tested together with DiagCovMassAdapter and worked but results # are very sensitive to the stepsize set and thus proper testing must be # deferred for now. # TODO: properly test ConstantStepsize # l = 1f-3 # sadapter = ConstantStepsize(l) leapfrog_steps = 5 sampler = HMC(l, leapfrog_steps; sadapter=sadapter, madapter=madapter) opt = FluxModeFinder(bnn, Flux.ADAM()) θmap = find_mode(bnn, 1000, 100, opt; showprogress=false) # Commented below was also tested and always worked. But good practice # for BNNs is to have a warm start. # ch = mcmc(bnn, 1000, 20_000, sampler; showprogress = true) ch = mcmc(bnn, 1000, 20_000, sampler; showprogress=true, θstart=θmap) ch_short = ch[:, end-9999:end] θmean = mean(ch_short; dims=2) βhat = θmean[1:length(β)] # coefficient estimate test1 = maximum(abs, β - βhat) < 0.05 # Intercept test2 = abs(θmean[end-1]) < 0.05 # Variance test3 = 0.9f0 <= mean(exp.(ch_short[end, :])) <= 1.1f0 # Continue sampling test4 = BayesFlux.calculate_epochs(sampler, 100, 25_000; continue_sampling=true) == 50 * leapfrog_steps ch_longer = mcmc(bnn, 1000, 25_000, sampler; continue_sampling=true) test5 = all(ch_longer[:, 1:20_000] .== ch) return [test1, test2, test3, test4, test5] end Random.seed!(6150533) @testset "HMC" begin madapter1 = DiagCovMassAdapter(1000, 100; kappa=0.1f0) madapter2 = FullCovMassAdapter(1000, 100; kappa=0.1f0) madapter3 = RMSPropMassAdapter(1000) mas = [madapter1, madapter2, madapter3] @testset "Linear Regression" for madapter in mas @testset "Linear Regression madapter = $madapter" begin # Because GitHub Actions seem very slow and occasionally run out of # memory, we will decrease the number of tests if the tests are run on # GitHub actions. Hostnames on GH actions seem to always start with fv ntests = gethostname()[1:2] == "fv" ? 1 : 10 results = fill(false, ntests, 5) for i = 1:ntests results[i, :] = test_HMC_regression(madapter) end pct_pass = mean(results; dims=1) @test pct_pass[1] > 0.9 @test pct_pass[2] > 0.9 @test pct_pass[3] > 0.8 # variances are difficult to estimate @test pct_pass[4] == 1 @test pct_pass[5] == 1 end end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
1250
using Flux using Distributions, Random using BayesFlux Random.seed!(6150533) @testset "Initialise" begin @testset "Basic Initialiser" for dist in [Normal(), Normal(0.0f0, 10.0f0), Uniform(-0.5f0, 0.5f0)] net = Chain(LSTM(1, 10), Dense(10, 1)) nc = destruct(net) like = FeedforwardNormal(nc, Gamma(2.0, 2.0)) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(dist, like, prior) θnet, θhyper, θlike = init() @test length(θnet) == nc.num_params_network @test length(θhyper) == prior.num_params_hyper @test length(θlike) == like.num_params_like draws = [vcat(init()...) for _ in 1:100_000] draws = reduce(hcat, draws) mindraw = minimum(draws; dims=2) maxdraw = maximum(draws; dims=2) meandraw = mean(draws; dims=2) vardraw = var(draws; dims=2) supdist = support(dist) mindist = supdist.lb maxdist = supdist.ub meandist = mean(dist) vardist = var(dist) @test all(mindist .<= mindraw .<= maxdist) @test all(mindist .<= maxdraw .<= maxdist) @test maximum(abs, meandraw .- meandist) < 0.15 @test maximum(abs, vardraw ./ vardist) < 1.1 end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
488
using Flux @testset "Dense Layer" begin @testset "Destructuring" begin net = Dense(10, 10) x = randn(10, 10) θ, re = BayesFlux.destruct(net) net_re = re(θ) yoriginal = net(x) yre = net_re(x) @test all(yoriginal .== yre) θnew = randn(length(θ)) netnew = re(θnew) ynew = netnew(x) # The chance that they are equal if everything is correct is 0 @test all(yoriginal .!= ynew) end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
4563
# Each likelihood must be a subtype of BNNLikelihood and must have implemented # at least the fields `num_params_likelihood::Int` and `nc<:NetConstructor`. using Distributions using Flux using BayesFlux using Bijectors Random.seed!(6150533) @testset "Likelihood Feedforward" begin @testset "Gaussian" begin net = Chain(Dense(10, 10, sigmoid), Dense(10, 1)) nc = destruct(net) gl = FeedforwardNormal(nc, Gamma(2.0, 2.0)) # A Gaussian likelihood has one additional parameter: σ @test gl.num_params_like == 1 T = eltype(nc.θ) # If we set all network parameters to zero then the prediction will # always be zero. If additionally we set σ = 1, then we can compare the # network likelihood to a standard normal # We only need to subtract the contribution of the prior for σ y = T.(quantile.(Normal(), 0.1:0.1:0.9)) x = randn(T, 10, length(y)) θ = zeros(eltype(nc.θ), nc.num_params_network) tdist = transformed(gl.prior_σ) tσ = link(gl.prior_σ, 1.0f0) @test gl(x, y, θ, [tσ]) ≈ sum(logpdf.(Normal(), y)) + logpdf(tdist, tσ) # Similarly, using any x should result in predictions that are # distributed according to a standard normal x = randn(T, 10, 100_000) ypp = posterior_predict(gl, x, θ, [tσ]) q = T.(quantile.([ypp], 0.1:0.1:0.9)) @test maximum(abs, q - y) < 0.05 end @testset "TDist" begin net = Chain(Dense(10, 10, sigmoid), Dense(10, 1)) nc = destruct(net) tl = FeedforwardTDist(nc, Gamma(2.0, 2.0), 10.0f0) @test tl.num_params_like == 1 T = eltype(nc.θ) # We can do the same as for the Gaussian case. y = T.(quantile.(TDist(tl.ν), 0.1:0.1:0.9)) x = randn(T, 10, length(y)) θ = zeros(T, nc.num_params_network) tdist = transformed(tl.prior_σ) tσ = link(tl.prior_σ, 1.0f0) @test tl(x, y, θ, [tσ]) ≈ sum(logpdf.(TDist(tl.ν), y)) + logpdf(tdist, tσ) # And doing the same for prediction x = randn(T, 10, 100_000) ypp = posterior_predict(tl, x, θ, [tσ]) q = T.(quantile.([ypp], 0.1:0.1:0.9)) @test maximum(abs, q - y) < 0.05 end end Random.seed!(6150533) @testset "Likelihood Seq-to-One" begin @testset "Gaussian" for rnn in [RNN, LSTM] net = Chain(rnn(10, 10), Dense(10, 1)) nc = destruct(net) gl = SeqToOneNormal(nc, Gamma(2.0, 2.0)) # A Gaussian likelihood has one additional parameter: σ @test gl.num_params_like == 1 T = eltype(nc.θ) # If we set all network parameters to zero then the prediction will # always be zero. If additionally we set σ = 1, then we can compare the # network likelihood to a standard normal # We only need to subtract the contribution of the prior for σ y = T.(quantile.(Normal(), 0.1:0.1:0.9)) # x = [randn(T, 10, length(y)) for _ in 1:10] x = randn(T, 10, 10, length(y)) θ = zeros(eltype(nc.θ), nc.num_params_network) tdist = transformed(gl.prior_σ) tσ = link(gl.prior_σ, 1.0f0) @test gl(x, y, θ, [tσ]) ≈ sum(logpdf.(Normal(), y)) + logpdf(tdist, tσ) # Similarly, using any x should result in predictions that are # distributed according to a standard normal # x = [randn(T, 10, 100_000) for _ in 1:10] x = randn(T, 10, 10, 100_000) ypp = posterior_predict(gl, x, θ, [tσ]) q = T.(quantile.([ypp], 0.1:0.1:0.9)) @test maximum(abs, q - y) < 0.05 end @testset "TDist" for rnn in [RNN, LSTM] net = Chain(rnn(10, 10), Dense(10, 1)) nc = destruct(net) tl = SeqToOneTDist(nc, Gamma(2.0, 2.0), 10.0f0) @test tl.num_params_like == 1 T = eltype(nc.θ) # We can do the same as for the Gaussian case. y = T.(quantile.(TDist(tl.ν), 0.1:0.1:0.9)) # x = [randn(T, 10, length(y)) for _ in 1:10] x = randn(T, 10, 10, length(y)) θ = zeros(T, nc.num_params_network) tdist = transformed(tl.prior_σ) tσ = link(tl.prior_σ, 1.0f0) @test tl(x, y, θ, [tσ]) ≈ sum(logpdf.(TDist(tl.ν), y)) + logpdf(tdist, tσ) # And doing the same for prediction # x = [randn(T, 10, 100_000) for _ in 1:10] x = randn(T, 10, 10, 100_000) ypp = posterior_predict(tl, x, θ, [tσ]) q = T.(quantile.([ypp], 0.1:0.1:0.9)) @test maximum(abs, q - y) < 0.05 end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
1286
using Flux using Distributions, Random, LinearAlgebra using Bijectors @testset "Mode Finding" begin @testset "Mode Linear Regression" begin k = 5 n = 100_000 x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 0.1f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) like = FeedforwardNormal(nc, Gamma(2.0, 2.0)) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 1.0f0), like, prior) bnn = BNN(x, y, like, prior, init) opt = FluxModeFinder(bnn, Flux.ADAM(); windowlength=50) θmode = find_mode(bnn, 10000, 1000, opt; showprogress=false) # We do not have a constant in the original model so discard bias βhat = θmode[1:bnn.like.nc.num_params_network-1] @test maximum(abs, β .- βhat) < 0.01 end end # @testset "Mode Finding" begin # @testset "Full Gradient $i" for i=2:100 # μ = randn(i) # lpdf(θ) = logpdf(MvNormal(μ, I), θ) # mode = find_mode(lpdf, randn(i), 10_000, 1e-10; # showprogress = false, verbose = false) # @test isapprox(mode[1], μ, atol = 0.01) # end # # TODO: implement SGD test; How to design a good test? # end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
2208
# Every prior of network parameters must be a subtype of NetworkPrior. It must # be callable and return the logprior density and it must implement a sample # method, sampling a vector of network parameters from the prior Random.seed!(6150533) @testset "Network Prior" begin @testset "Gaussian" for σ0 in [0.5, 1.0, 3.0, 10.0] @testset "Gaussian σ0 = $σ0" begin net = Chain(Dense(10, 10, sigmoid), Dense(10, 1)) nc = destruct(net) T = eltype(nc.θ) gp = GaussianPrior(nc, T(σ0)) @test gp.num_params_hyper == 0 n = nc.num_params_network θ = T.(collect(0.1:0.1:0.9)) # out prior is standard normal @test gp(θ, Float32[]) ≈ T(sum(logpdf.(Normal(T(0), T(σ0)), 0.1:0.1:0.9))) θdraws = reduce(hcat, [sample_prior(gp) for _ in 1:1_000_000]) 𝔼θdraws = vec(mean(θdraws; dims=2)) @test maximum(abs, 𝔼θdraws) < 0.1 𝕍θdraws = vec(var(θdraws; dims=2)) @test maximum(𝕍θdraws ./ (σ0^2)) < 1.01 end end @testset "Mixture Gaussian" for (μ1, σ1, σ2) in zip([0.01f0, 0.1f0, 0.5f0, 0.9f0], [0.001f0, 0.1f0, 1.0f0], [1.0f0, 5.0f0, 10.0f0]) @testset "Mixture Gaussian μ1=$μ1, σ1=$σ1, σ2=$σ2" begin net = Chain(Dense(10, 10, sigmoid), Dense(10, 1)) nc = destruct(net) T = eltype(nc.θ) prior = MixtureScalePrior(nc, σ1, σ2, μ1) @test prior.num_params_hyper == 0 # Both have zero mean so mixture has zero mean θdraws = reduce(hcat, [sample_prior(prior) for _ in 1:1_000_000]) 𝔼θdraws = vec(mean(θdraws; dims=2)) @test maximum(abs, 𝔼θdraws) < 0.1 # Gaussian are independent so Var(Mixture) = π1^2Var(G1) + π2^2Var(G2) # θ = z₁θ₁ + (1-z₁)θ₂ where z₁ ~ Bernoulli(π1) and thus 1-z₁ ~ Bernoulli(π2) # This gives a theoretical variance of # V(θ) = π1*σ1^2 + π2*σ2^2 𝕍θdraws = vec(var(θdraws; dims=2)) var_theoretic = prior.π1 * prior.σ1^2 + prior.π2 * prior.σ2^2 @test maximum(𝕍θdraws ./ var_theoretic) < 1.01 end end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
767
using BayesFlux using Flux, Distributions, Random using Test @testset "Posterior Predictive Draws" begin n = 1_000 k = 5 x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 1.0f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) sigma_prior = Gamma(2.0f0, 0.5f0) like = FeedforwardNormal(nc, sigma_prior) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 1.0f0), like, prior) bnn = BNN(x, y, like, prior, init) sampler = SGLD(; stepsize_a=1.0f0) ch = mcmc(bnn, 1000, 20_000, sampler; showprogress=true) ch_short = ch[:, end-9999:end] pp = sample_posterior_predict(bnn, ch_short) @test(size(pp, 1) == n) @test(size(pp, 2) == size(ch_short, 2)) end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
1140
using BayesFlux using Flux using Distributions, Random, Bijectors using Test using LinearAlgebra println("Hostname: $(gethostname())") @testset "BayesFlux" begin Random.seed!(6150533) # destructing Networks and layers include("./deconstruct.jl") # # likelihoods include("./likelihoods.jl") # network priors include("./networkpriors.jl") # initialisers include("./initialisers.jl") # BNN basic operations include("./bnn.jl") # Mode Finding include("./modes.jl") # Posterior Predictive Draws include("./posterior_predict.jl") # Checking whether all derivatives work. See issue #6 include("./derivatives.jl") # Tests after this line are reduced in the number of samples when run # on GitHub actions. if gethostname()[1:2] == "fv" @info "Tests run on GitHub actions are reduced. For the full tests suit, please run tests on another machine." end # MCMC include("./sgld.jl") include("./sgnht.jl") include("./sgnht-s.jl") include("./ggmc.jl") include("./amh.jl") include("./hmc.jl") # vi include("./bbb.jl") end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
1940
# Testing SGLD using BayesFlux using Flux, Distributions, Random using Test function test_SGLD_regression(; k=5, n=10_000) x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 1.0f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) sigma_prior = Gamma(2.0f0, 0.5f0) like = FeedforwardNormal(nc, sigma_prior) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 1.0f0), like, prior) bnn = BNN(x, y, like, prior, init) sampler = SGLD(; stepsize_a=1.0f0) ch = mcmc(bnn, 1000, 20_000, sampler; showprogress=true) ch_short = ch[:, end-9999:end] θmean = mean(ch_short; dims=2) βhat = θmean[1:length(β)] # coefficient estimate test1 = maximum(abs, β - βhat) < 0.05 # Intercept test2 = abs(θmean[end-1]) < 0.05 # Variance test3 = 0.9f0 <= mean(exp.(ch_short[end, :])) <= 1.1f0 # Continue sampling test4 = BayesFlux.calculate_epochs(sampler, 100, 25_000; continue_sampling=true) == 50 ch_longer = mcmc(bnn, 1000, 25_000, sampler; continue_sampling=true) test5 = all(ch_longer[:, 1:20_000] .== ch) return [test1, test2, test3, test4, test5] end Random.seed!(6150533) @testset "SGLD" begin @testset "Linear Regression" begin # Because GitHub Actions seem very slow and occasionally run out of # memory, we will decrease the number of tests if the tests are run on # GitHub actions. Hostnames on GH actions seem to always start with fv ntests = gethostname()[1:2] == "fv" ? 1 : 10 results = fill(false, ntests, 5) for i = 1:ntests results[i, :] = test_SGLD_regression() end pct_pass = mean(results; dims=1) @test pct_pass[1] > 0.9 @test pct_pass[2] > 0.9 @test pct_pass[3] > 0.8 # variances are difficult to estimate @test pct_pass[4] == 1 @test pct_pass[5] == 1 end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
2115
# Testing SGNHT-S using BayesFlux using Flux, Distributions, Random function test_SGNHTS_regression(; k=5, n=10_000) x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 1.0f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) sigma_prior = Gamma(2.0f0, 0.5f0) like = FeedforwardNormal(nc, sigma_prior) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 1.0f0), like, prior) bnn = BNN(x, y, like, prior, init) opt = FluxModeFinder(bnn, Flux.ADAM()) θmap = find_mode(bnn, 100, 300, opt; showprogress=false) l = 1.0f-3 madapter = RMSPropMassAdapter(1000) sampl = SGNHTS(l, 6.0f0; madapter=madapter) ch = mcmc(bnn, 1000, 20_000, sampl; showprogress=true, θstart=θmap) ch_short = ch[:, end-9999:end] θmean = mean(ch_short; dims=2) βhat = θmean[1:length(β)] # coefficient estimate test1 = maximum(abs, β - βhat) < 0.05 # Intercept test2 = abs(θmean[end-1]) < 0.05 # Variance test3 = 0.9f0 <= mean(exp.(ch_short[end, :])) <= 1.1f0 # Continue sampling test4 = BayesFlux.calculate_epochs(sampl, 100, 25_000; continue_sampling=true) == 50 ch_longer = mcmc(bnn, 1000, 25_000, sampl; continue_sampling=true) test5 = all(ch_longer[:, 1:20_000] .== ch) return [test1, test2, test3, test4, test5] end Random.seed!(6150533) @testset "SGNHT-S" begin @testset "Linear Regression" begin # Because GitHub Actions seem very slow and occasionally run out of # memory, we will decrease the number of tests if the tests are run on # GitHub actions. Hostnames on GH actions seem to always start with fv ntests = gethostname()[1:2] == "fv" ? 1 : 10 results = fill(false, ntests, 5) for i = 1:ntests results[i, :] = test_SGNHTS_regression() end pct_pass = mean(results; dims=1) @test pct_pass[1] > 0.9 @test pct_pass[2] > 0.9 @test pct_pass[3] > 0.8 # variances are difficult to estimate @test pct_pass[4] == 1 @test pct_pass[5] == 1 end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
code
2166
# Testing SGNHT # SGNHT seems be in the ballpark but not very precise. It also seems to have # much too high posterior variance. using BayesFlux using Flux, Distributions, Random function test_SGNHT_regression(; k=5, n=10_000) x = randn(Float32, k, n) β = randn(Float32, k) y = x' * β + 1.0f0 * randn(Float32, n) net = Chain(Dense(k, 1)) nc = destruct(net) sigma_prior = Gamma(2.0f0, 0.5f0) like = FeedforwardNormal(nc, sigma_prior) prior = GaussianPrior(nc, 10.0f0) init = InitialiseAllSame(Normal(0.0f0, 0.1f0), like, prior) bnn = BNN(x, y, like, prior, init) # l = 1f-3 l = 2.0f-4 sampl = SGNHT(l, 0.1f0 * 36.0f0; xi=0.1f0 * 36.0f0) ch = mcmc(bnn, 1000, 20_000, sampl; showprogress=true) # ch = mcmc(bnn, 1000, 20_000, sampl; showprogress = true, θstart = θmap) ch_short = ch[:, end-9999:end] θmean = mean(ch_short; dims=2) βhat = θmean[1:length(β)] # coefficient estimate test1 = maximum(abs, β - βhat) < 0.05 # Intercept test2 = abs(θmean[end-1]) < 0.05 # Variance test3 = 0.9f0 <= mean(exp.(ch_short[end, :])) <= 1.1f0 # Continue sampling test4 = BayesFlux.calculate_epochs(sampl, 100, 25_000; continue_sampling=true) == 50 ch_longer = mcmc(bnn, 1000, 25_000, sampl; continue_sampling=true) test5 = all(ch_longer[:, 1:20_000] .== ch) return [test1, test2, test3, test4, test5] end Random.seed!(6150533) @testset "SGNHT" begin @testset "Linear Regression" begin # Because GitHub Actions seem very slow and occasionally run out of # memory, we will decrease the number of tests if the tests are run on # GitHub actions. Hostnames on GH actions seem to always start with fv ntests = gethostname()[1:2] == "fv" ? 1 : 10 results = fill(false, ntests, 5) for i = 1:ntests results[i, :] = test_SGNHT_regression() end pct_pass = mean(results; dims=1) @test pct_pass[1] > 0.9 @test pct_pass[2] > 0.9 @test pct_pass[3] > 0.8 # variances are difficult to estimate @test pct_pass[4] == 1 @test pct_pass[5] == 1 end end
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
26988
<!-- Create the .md file by running Literate.markdown("./README.jl", flavor = Literate.CommonMarkFlavor()) --> [![CI](https://github.com/enweg/BayesFlux.jl/actions/workflows/tests.yml/badge.svg)](https://github.com/enweg/BayesFlux.jl/actions/workflows/tests.yml) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://enweg.github.io/BayesFlux.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://enweg.github.io/BayesFlux.jl/dev) ````julia using BayesFlux, Flux using Random, Distributions using StatsPlots Random.seed!(6150533) ```` ## BayesFlux (Bayesian extension for Flux) BayesFlux is meant to be an extension to Flux.jl, a machine learning library written entirely in Julia. BayesFlux will and is not meant to be the fastest production ready library, but rather is meant to make research and experimentation easy. BayesFlux is part of my Master Thesis in Economic and Financial Research - specialisation Econometrics and will therefore likelily still go through some revisions in the coming months. ## Structure Every Bayesian model can in general be broken down into the probablistic model, which gives the likelihood function and the prior on all parameters of the probabilistic model. BayesFlux somewhat follows this and splits every Bayesian Network into the following parts: 1. **Network**: Every BNN must have some general network structure. This is defined using Flux and currently supports Dense, RNN, and LSTM layers. More on this later 2. **Network Constructor**: Since BayesFlux works with vectors of parameters, we need to be able to go from a vector to the network and back. This works by using the NetworkConstructor. 3. **Likelihood**: The likelihood function. In traditional estimation of NNs, this would correspond to the negative loss function. BayesFlux has a twist on this though and nomenclature might change because of this twist: The likelihood also contains all additional parameters and priors. For example, for a Gaussian likelihood, the likelihood object also defines the standard deviation and the prior for the standard deviation. This desing choice was made to keep the likelihood and everything belonging to it separate from the network; Again, due to the potential confusion, the nomenclature might change in later revisions. 4. **Prior on network parameters**: A prior on all network parameters. Currently the RNN layers do not define priors on the initial state and thus the initial state is also not sampled. Priors can have hyper-priors. 5. **Initialiser**: Unless some special initialisation values are given, BayesFlux will draw initial values as defined by the initialiser. An initialiser initialises all network and likelihood parameters to reasonable values. All of the above are then used to create a BNN which can then be estimated using the MAP, can be sampled from using any of the MCMC methods implemented, or can be estimated using Variational Inference. The examples and the sections below hopefully clarify everything. If any questions remain, please open an issue. ## Linear Regression using BayesFlux Although not meant for Simple Linear Regression, BayesFlux can be used for it, and we will do so in this section. This will hopefully demonstrate the basics. Later sections will show better examples. Let's say we have the idea that the data can be modelled via a linear model of the form $$y_i = x_i'\beta + e_i$$ with $e_i \sim N(0, 1)$ ````julia k = 5 n = 500 x = randn(Float32, k, n); β = randn(Float32, k); y = x'*β + randn(Float32, n); ```` This is a standard linear model and we would likely be better off using STAN or Turing for this, but due to the availability of a Dense layer with linear activation function, we can also implent it in BayesFlux. The first step is to define the network. As mentioned above, the network consists of a single Dense layer with a linear activation function (the default activation in Flux and hence not explicitly shown). ````julia net = Chain(Dense(k, 1)) # k inputs and one output ```` Since BayesFlux works with vectors, we need to be able to transform a vector to the above network and back. We thus need a NetworkConstructor, which we obtain as a the return value of a `destruct` ````julia nc = destruct(net) ```` We can check whether everything work by just creating a random vector of the right dimension and calling the NetworkConstructor using this vector. ````julia θ = randn(Float32, nc.num_params_network) nc(θ) ```` We indeed obtain a network of the right size and structure. Next, we will define a prior for all parameters of the network. Since weight decay is a popular regularisation method in standard ML estimation, we will be using a Gaussian prior, which is the Bayesian weight decay: ````julia prior = GaussianPrior(nc, 0.5f0) # the last value is the standard deviation ```` We also need a likelihood and a prior on all parameters the likelihood introduces to the model. We will go for a Gaussian likelihood, which introduces the standard deviation of the model. BayesFlux currently implements Gaussian and Student-t likelihoods for Feedforward and Seq-to-one cases but more can easily be implemented. See **TODO HAR link** for an example. ````julia like = FeedforwardNormal(nc, Gamma(2.0, 0.5)) # Second argument is prior for standard deviation. ```` Lastly, when no explicit initial value is given, BayesFlux will draw it from an initialiser. Currently only one type of initialiser is implemented in BayesFlux, but this can easily be extended by the user itself. ````julia init = InitialiseAllSame(Normal(0.0f0, 0.5f0), like, prior) # First argument is dist we draw parameters from. ```` Given all the above, we can now define the BNN: ````julia bnn = BNN(x, y, like, prior, init) ```` ### MAP estimate. It is always a good idea to first find the MAP estimate. This can serve two purposes: 1. It is faster than fully estimating the model using MCMC or VI and can thus serve as a quick check; If the MAP estimate results in bad point predictions, so will likely the full estimation results. 2. It can serve as a starting value for the MCMC samplers. To find a MAP estimate, we must first specify how we want to find it: We need to define an optimiser. BayesFlux currently only implements optimisers derived from Flux itself, but this can be extended by the user. ````julia opt = FluxModeFinder(bnn, Flux.ADAM()) # We will use ADAM θmap = find_mode(bnn, 10, 500, opt) # batchsize 10 with 500 epochs ```` We can already use the MAP estimate to make some predictions and calculate the RMSE. ````julia nethat = nc(θmap) yhat = vec(nethat(x)) sqrt(mean(abs2, y .- yhat)) ```` ### MCMC - SGLD If the MAP estimate does not show any problems, it can be used as the starting point for SGLD or any of the other MCMC methods (see later section). Simulations have shown that using a relatively large initial stepsize with a slow decaying stepsize schedule often results in the best mixing. *Note: We would usually use samplers such as NUTS for linear regressions, which are much more efficient than SGLD* ````julia sampler = SGLD(Float32; stepsize_a = 10f-0, stepsize_b = 0.0f0, stepsize_γ = 0.55f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] ```` We can obtain summary statistics and trace and density plots of network parameters and likelihood parameters by transforming the BayesFlux chain into a MCMCChain. ````julia using MCMCChains chain = Chains(ch') plot(chain) ```` In more complicated networks, it is usually a hopeless goal to obtain good mixing in parameter space and thus we rather focus on the output space of the network. *Mixing in parameter space is hopeless due to the very complicated topology of the posterior; see ...* We will use a little helper function to get the output values of the network: ````julia function naive_prediction(bnn, draws::Array{T, 2}; x = bnn.x, y = bnn.y) where {T} yhats = Array{T, 2}(undef, length(y), size(draws, 2)) Threads.@threads for i=1:size(draws, 2) net = bnn.like.nc(draws[:, i]) yh = vec(net(x)) yhats[:,i] = yh end return yhats end yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` Similarly, we can obtain posterior predictive values and evaluate quantiles obtained using these to how many percent of the actual data fall below the quantiles. What we would like is that 5% of the data fall below the 5% quantile of the posterior predictive draws. ````julia function get_observed_quantiles(y, posterior_yhat, target_q = 0.05:0.05:0.95) qs = [quantile(yr, target_q) for yr in eachrow(posterior_yhat)] qs = reduce(hcat, qs) observed_q = mean(reshape(y, 1, :) .< qs; dims = 2) return observed_q end posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - SGNHTS Just like SGLD, SGNHTS also does not apply a Metropolis-Hastings correction step. Contrary to SGLD though, SGNHTS implementes a Thermostat, whose task it is to keep the temperature in the dynamic system close to one, and thus the sampling more accurate. Although the thermostats goal is often not achieved, samples obtained using SGNHTS often outperform those obtained using SGLD. ````julia sampler = SGNHTS(1f-2, 2f0; xi = 2f0^2, μ = 50f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - GGMC As pointed out above, neither SGLD nor SGNHTS apply a Metropolis-Hastings acceptance step and are thus difficult to monitor. Indeed, draws from SGLD or SGNHTS should perhaps rather be considered as giving and ensemble of models rather than draws from the posterior, since without any MH step, it is unclear whether the chain actually will converge to the posterior. BayesFlux also implements three methods that do apply a MH step and are thus easier to monitor. These are GGMC, AdaptiveMH, and HMC. Both GGMC and HMC do allow for taking stochastic gradients. GGMC also allows to use delayed acceptance in which the MH step is only applied after a couple of steps, rather than after each step (see ... for details). Because both GGMC and HMC use a MH step, they provide a measure of the mean acceptance rate, which can be used to tune the stepsize using Dual Averaging (see .../STAN for details). Similarly, both also make use of mass matrices, which can also be tuned. BayesFlux implements both stepsize adapters and mass adapters but to this point does not implement a smart way of combining them (this will come in the future). In my experience, naively combining them often only helps in more complex models and thus we will only use a stepsize adapter here. ````julia sadapter = DualAveragingStepSize(1f-9; target_accept = 0.55f0, adapt_steps = 10000) sampler = GGMC(Float32; β = 0.1f0, l = 1f-9, sadapter = sadapter) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` The above uses a MH correction after each step. This can be costly in big-data environments or when the evaluation of the likelihood is costly. If either of the above applies, delayed acceptance can speed up the process. ````julia sadapter = DualAveragingStepSize(1f-9; target_accept = 0.25f0, adapt_steps = 10000) sampler = GGMC(Float32; β = 0.1f0, l = 1f-9, sadapter = sadapter, steps = 3) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - HMC Since HMC showed some mixing problems for some variables during the testing of this README, we decided to use a mass matrix adaptation. This turned out to work better even in this simple case. ````julia sadapter = DualAveragingStepSize(1f-9; target_accept = 0.55f0, adapt_steps = 10000) madapter = DiagCovMassAdapter(5000, 1000) sampler = HMC(1f-9, 5; sadapter = sadapter) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - Adaptive Metropolis-Hastings As a derivative free alternative, BayesFlux also implements Adaptive MH as introduced in (...). This is currently quite a costly method for complex models since it needs to evaluate the MH ratio at each step. Plans exist to parallelise the calculation of the likelihood which should speed up Adaptive MH. ````julia sampler = AdaptiveMH(diagm(ones(Float32, bnn.num_total_params)), 1000, 0.5f0, 1f-4) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### Variation Inference In some cases MCMC method either do not work well or even the methods above take too long. For these cases BayesFlux currently implements Bayes-By-Backprop (...); One shortcoming of the current implementation is that the variational family is constrained to a diagonal multivariate gaussian and thus any correlations between network parameters are set to zero. This can cause problems in some situations and plans exist to allow for more felxible covariance specifications. ````julia q, params, losses = bbb(bnn, 10, 2_000; mc_samples = 1, opt = Flux.ADAM(), n_samples_convergence = 10) ch = rand(q, 20_000) posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ## More complicated FNN What changes if I want to implement BNNs using more complicated Feedforward structures than above? Nothing! Well, almost nothing. The only thing that truly changes is the network you specify. All the rest could in theory stay the same. As the network becomes more complicated, it might be worth it to specify better priors or likelihoods though. Say, for example, we use the same data as above (in reality we would not know that it is coming from a linear model although it is always good practice to try simple models first), but instead of using the above network structure corresponding to a linear model, use the following: ````julia net = Chain(Dense(k, k, relu), Dense(k, k, relu), Dense(k, 1)) ```` We can then still use the same prior, likelihood, and initialiser. But we do need to change the NetworkConstructor. ````julia nc = destruct(net) like = FeedforwardNormal(nc, Gamma(2.0, 0.5)) prior = GaussianPrior(nc, 0.5f0) init = InitialiseAllSame(Normal(0.0f0, 0.5f0), like, prior) bnn = BNN(x, y, like, prior, init) ```` The rest is the same as above. We can, for example, first find the MAP: ````julia opt = FluxModeFinder(bnn, Flux.ADAM()) # We will use ADAM θmap = find_mode(bnn, 10, 500, opt) # batchsize 10 with 500 epochs ```` ---- ````julia nethat = nc(θmap) yhat = vec(nethat(x)) sqrt(mean(abs2, y .- yhat)) ```` Or we can use any of the MCMC or VI method - SGNHTS is just one option: ````julia sampler = SGNHTS(1f-2, 1f0; xi = 1f0^2, μ = 10f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ## Recurrent Structures Next to Dense layers, BayesFlux also implements RNN and LSTM layers. These two do require some additional care though, since the layout of the data must be adjusted. In general, the last dimension of `x` and `y` is always the dimension along which BayesFlux batches. Thus, if we are in a seq-to-one setting - seq-to-seq is not implemented itself but users can implement custom likelihoods to for a seq-to-seq setting - then the sequences must be along the last dimension (here the third). To demonstrate this, let us simulate sime AR1 data ````julia Random.seed!(6150533) gamma = 0.8 N = 500 burnin = 1000 y = zeros(N + burnin + 1) for t=2:(N+burnin+1) y[t] = gamma*y[t-1] + randn() end y = Float32.(y[end-N+1:end]) ```` Just like in the FNN case, we need a network structure and its constructor, a prior on the network parameters, a likelihood with a prior on the additional parameters introduced by the likelihood, and an initialiser ````julia net = Chain(RNN(1, 1), Dense(1, 1)) # last layer is linear output layer nc = destruct(net) like = SeqToOneNormal(nc, Gamma(2.0, 0.5)) prior = GaussianPrior(nc, 0.5f0) init = InitialiseAllSame(Normal(0.0f0, 0.5f0), like, prior) ```` We are given a single sequence (time series). To exploit batching and to not always have to feed through the whole sequence, we will split the single sequence into overlapping subsequences of length 5 and store these in a tensor. Note that we add 1 to the subsequence length, because the last observation of each subsequence will be our training observation to predict using the fist five items in the subsequence. ````julia x = make_rnn_tensor(reshape(y, :, 1), 5 + 1) y = vec(x[end, :, :]) x = x[1:end-1, :, :] ```` We are now ready to create the BNN and find the MAP estimate. The MAP will be used to check whether the overall network structure makes sense (does provide at least good point estimates). ````julia bnn = BNN(x, y, like, prior, init) opt = FluxModeFinder(bnn, Flux.RMSProp()) θmap = find_mode(bnn, 10, 1000, opt) ```` When checking the performance we need to make sure to feed the sequences through the network observation by observation: ````julia nethat = nc(θmap) yhat = vec([nethat(xx) for xx in eachslice(x; dims =1 )][end]) sqrt(mean(abs2, y .- yhat)) ```` The rest works just like before with some minor adjustments to the helper functions. ````julia sampler = SGNHTS(1f-2, 1f0; xi = 1f0^2, μ = 10f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') function naive_prediction_recurrent(bnn, draws::Array{T, 2}; x = bnn.x, y = bnn.y) where {T} yhats = Array{T, 2}(undef, length(y), size(draws, 2)) Threads.@threads for i=1:size(draws, 2) net = bnn.like.nc(draws[:, i]) yh = vec([net(xx) for xx in eachslice(x; dims = 1)][end]) yhats[:,i] = yh end return yhats end ```` ---- ````julia yhats = naive_prediction_recurrent(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` # Customising BayesFlux BayesFlux is coded in such a way that the user can easily extend many of the funcitonalities. The following are the easiest to extend and we will cover them below: - Initialisers - Layers - Priors - Likelihoods ## Customising Initialisers Every Initialiser must be implemented as a callable type extending the abstract type `BNNInitialiser`. As aready mentioned, it must be callable, with the only (optional) argument being a random number generator. It must return a tupe of vectors: `(θnet, θhyper, θlike)` where any of the latter two vectors is allowed to be of length zero. *For more information read the documentation of `BNNInitialiser` **Example**: See the code for `InitialiseAllSame` ## Customising Layers BayesFlux relies on the layers currently implemented in `Flux`. Thus, the first step in implementing a new layer for BayesFlux is to implement a new layer for `Flux`. Once that is done, one must also implement a destruct method. For example, for the Dense layer this has the following form ````julia function destruct(cell::Flux.Dense) @unpack weight, bias, σ = cell θ = vcat(vec(weight), vec(bias)) function re(θ::AbstractVector) s = 1 pweight = length(weight) new_weight = reshape(θ[s:s+pweight-1], size(weight)) s += pweight pbias = length(bias) new_bias = reshape(θ[s:s+pbias-1], size(bias)) return Flux.Dense(new_weight, new_bias, σ) end return θ, re end ```` The destruct method takes as input a cell with the type of the cell being the newly implemented layer. It must return a vector containing all network parameter that should be trained/inferred and a function that given a vector of the right length can restruct the layer. **Note: Flux also implements a general destructure and restructure method. In my experience, this often caused problems in AD and thus until this is more stable, BayesFlux will stick with this manual setup**. Care must be taken when cells are recurrent. The actual layer is then not an `RNNCell`, but rather the full recurrent version: `Flux.Recur{RNNCell}`. Thus, the destruct methos for `RNN` cells takes the following form: ````julia function destruct(cell::Flux.Recur{R}) where {R<:Flux.RNNCell} @unpack σ, Wi, Wh, b, state0 = cell.cell # θ = vcat(vec(Wi), vec(Wh), vec(b), vec(state0)) θ = vcat(vec(Wi), vec(Wh), vec(b)) function re(θ::Vector{T}) where {T} s = 1 pWi = length(Wi) new_Wi = reshape(θ[s:s+pWi-1], size(Wi)) s += pWi pWh = length(Wh) new_Wh = reshape(θ[s:s+pWh-1], size(Wh)) s += pWh pb = length(b) new_b = reshape(θ[s:s+pb-1], size(b)) s += pb # pstate0 = length(state0) # new_state0 = reshape(θ[s:s+pstate0-1], size(state0)) new_state0 = zeros(T, size(state0)) return Flux.Recur(Flux.RNNCell(σ, new_Wi, new_Wh, new_b, new_state0)) end return θ, re end ```` As can be seen from the commented out lines, we are currently not inferring the initial state. While this would be great and could theoretically be done in a Bayesian setting, it also often seems to cause bad mixing and other difficulties in the inferential process. ## Customising Priors BayesFlux implements priors as subtypes of the abstract type `NetworkPrior`. Generally what happens when one calles `loglikeprior` is that BayesFlux splits the vector into `θnet, θhyper, θlike` and calls the prior with `θnet` and `θhyper`. The number of hyper-parameters is given in the prior type. As such, BayesFlux in theory allows for simple to highly complex multi-level priors. The hope is that this provides enough flexibility to encourage researchers to try out different priors. *For more documentation, please see the docs for `NetworkPrior` and for an example of a mixture scale prior check out the code for `MixtureScalePrior`*. > :bangbang: Note that the prior defined here is only for the network. All > additional priors for parameters needed by the likelihood are handled in the > likelihood. This might at first sound odd, but nicely splits network > specific things from likelihood specific things and thus should make BayesFlux > more flexible. ## Customising Likelihoods Likelihoods are implemented as types extending the abstract type `BNNLikelihood` and thus can be extended by implementing a new subtype. Traditionally likelihood truly only refer to the likelihood. We decided to go a somewhat unconventional way and decided to design BayesFlux in a way that likelihood types also include the prior for all parameters they introduce. This was done so that the network specification with priors and all is separate from the likelihood specification. As such, these two parts can be freely changed without changing any of the other? **Example**: Say we would like to implement a simple Gaussian likelihood for a Feedforward structure (this is already implemented). Unless we predifine the standard deviation of the Gaussian, we will also estimate it, and thus we need a prior for it. While in the traditional setting this would be covered in the prior type, here it is covered in the likelihood type. Thus, the version as implemented in BayesFlux takes upon construction also a prior distribution that shall be used for the standard deviation. This prior does not have to have as its domain the real line. It can also be constrained, such as a Gamma distribution, as long as the code of the likelihood type makes sure to appropriately transform the distribution to the real line. In the already implemented version this is done using `Bijectors.jl`. The documentation for `BNNLikelihood` gives details about what exactly need to be implemented. --- *This page was generated using [Literate.jl](https://github.com/fredrikekre/Literate.jl).*
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
2799
# BayesFlux.jl a Bayesian extension to [Flux.jl](https://fluxml.ai) ````julia using BayesFlux, Flux using Random, Distributions using StatsPlots using LinearAlgebra Random.seed!(6150533) ```` ```@meta CurrentModule = BayesFlux DocTestSetup = quote using BayesFlux end ``` BayesFlux is meant to be an extension to Flux.jl, a machine learning library written entirely in Julia. BayesFlux will and is not meant to be the fastest production ready library, but rather is meant to make research and experimentation easy. BayesFlux is part of my Master Thesis in Economic and Financial Research - specialisation Econometrics at Maastricht University and will therefore likely still go through some revisions in the coming months. ## Structure Every Bayesian model can in general be broken down into the probabilistic model, which gives the likelihood function and the prior on all parameters of the probabilistic model. BayesFlux somewhat follows this and splits every Bayesian Network into the following parts: 1. **Network**: Every BNN must have some general network structure. This is defined using Flux and currently supports Dense, RNN, and LSTM layers. More on this later 2. **Network Constructor**: Since BayesFlux works with vectors of parameters, we need to be able to go from a vector to the network and back. This works by using the NetworkConstructor. 3. **Likelihood**: The likelihood function. In traditional estimation of NNs, this would correspond to the negative loss function. BayesFlux has a twist on this though and nomenclature might change because of this twist: The likelihood also contains all additional parameters and priors. For example, for a Gaussian likelihood, the likelihood object also defines the standard deviation and the prior for the standard deviation. This design choice was made to keep the likelihood and everything belonging to it separate from the network; Again, due to the potential confusion, the nomenclature might change in later revisions. 4. **Prior on network parameters**: A prior on all network parameters. Currently the RNN layers do not define priors on the initial state and thus the initial state is also not sampled. Priors can have hyper-priors. 5. **Initialiser**: Unless some special initialisation values are given, BayesFlux will draw initial values as defined by the initialiser. An initialiser initialises all network and likelihood parameters to reasonable values. All the above are then used to create a BNN which can then be estimated using the MAP, can be sampled from using any of the MCMC methods implemented, or can be estimated using Variational Inference. The examples and the sections below hopefully clarify everything. If any questions remain, please open an issue.
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
70
# MAP Estimation ```@docs BNNModeFinder find_mode FluxModeFinder ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
311
# MCMC Estimation ## Sampler ```@docs MCMCState mcmc SGLD SGNHTS SGNHT GGMC HMC AdaptiveMH ``` ## Mass Adaptation ```@docs MassAdapter DiagCovMassAdapter FullCovMassAdapter FixedMassAdapter RMSPropMassAdapter ``` ## Stepsize Adaptation ```@docs StepsizeAdapter ConstantStepsize DualAveragingStepSize ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
41
# Variational Inference ```@docs bbb ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
63
# Initialisation ```@docs BNNInitialiser InitialiseAllSame ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
2004
# Example: Feedforward NN Regression Let's say we have the same setting as in [Example: Linear Regression](@ref) but are not aware that it is a linear model and thus decide to use a Feedforward Neural Network. ````julia k = 5 n = 500 x = randn(Float32, k, n); β = randn(Float32, k); y = x'*β + randn(Float32, n); ```` While some might think this will change a lot, given that the model we are estimating is a lot more complicated than a linear regression model, BayesFlux abstracts away all of this and all that changes is the network definition. ````julia net = Chain(Dense(k, k, relu), Dense(k, k, relu), Dense(k, 1)) ```` We can then still use the same prior, likelihood, and initialiser. But we do need to change the NetworkConstructor, which we still obtain in the same way by calling `destruct` ````julia nc = destruct(net) like = FeedforwardNormal(nc, Gamma(2.0, 0.5)) prior = GaussianPrior(nc, 0.5f0) init = InitialiseAllSame(Normal(0.0f0, 0.5f0), like, prior) bnn = BNN(x, y, like, prior, init) ```` The rest is the same as for the linear regression case. We can, for example, first find the MAP: ````julia opt = FluxModeFinder(bnn, Flux.ADAM()) # We will use ADAM θmap = find_mode(bnn, 10, 500, opt) # batchsize 10 with 500 epochs ```` ---- ````julia nethat = nc(θmap) yhat = vec(nethat(x)) sqrt(mean(abs2, y .- yhat)) ```` Or we can use any of the MCMC or VI method - SGNHTS is just one option: ````julia sampler = SGNHTS(1f-2, 1f0; xi = 1f0^2, μ = 10f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ````
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
12960
# Example: Linear Regression Although not meant for Simple Linear Regression, BayesFlux can be used for it, and we will do so in this section. This will hopefully demonstrate the basics. Later sections will show better examples. Let's say we have the idea that the data can be modelled via a linear model of the form $$y_i = x_i'\beta + e_i$$ with $e_i \sim N(0, 1)$ ````julia k = 5 n = 500 x = randn(Float32, k, n); β = randn(Float32, k); y = x'*β + randn(Float32, n); ```` This is a standard linear model and we would likely be better off using STAN or Turing for this, but due to the availability of a Dense layer with linear activation function, we can also implement it in BayesFlux. The first step is to define the network. As mentioned above, the network consists of a single Dense layer with a linear activation function (the default activation in Flux and hence not explicitly shown). ````julia net = Chain(Dense(k, 1)) # k inputs and one output ```` Since BayesFlux works with vectors, we need to be able to transform a vector to the above network and back. We thus need a NetworkConstructor, which we obtain as a the return value of a `destruct` ````julia nc = destruct(net) ```` We can check whether everything works by just creating a random vector of the right dimension and calling the NetworkConstructor using this vector. ````julia θ = randn(Float32, nc.num_params_network) nc(θ) ```` We indeed obtain a network of the right size and structure. Next, we will define a prior for all parameters of the network. Since weight decay is a popular regularisation method in standard ML estimation, we will be using a Gaussian prior, which is the Bayesian weight decay: ````julia prior = GaussianPrior(nc, 0.5f0) # the last value is the standard deviation ```` We also need a likelihood and a prior on all parameters the likelihood introduces to the model. We will go for a Gaussian likelihood, which introduces the standard deviation of the model. BayesFlux currently implements Gaussian and Student-t likelihoods for Feedforward and Seq-to-one cases but more can easily be implemented. ````julia like = FeedforwardNormal(nc, Gamma(2.0, 0.5)) # Second argument is prior for standard deviation. ```` Lastly, when no explicit initial value is given, BayesFlux will draw it from an initialiser. Currently only one type of initialiser is implemented, but this can easily be extended by the user itself. ````julia init = InitialiseAllSame(Normal(0.0f0, 0.5f0), like, prior) # First argument is dist we draw parameters from. ```` Given all the above, we can now define the BNN: ````julia bnn = BNN(x, y, like, prior, init) ```` ### MAP estimate. It is always a good idea to first find the MAP estimate. This can serve two purposes: 1. It is faster than fully estimating the model using MCMC or VI and can thus serve as a quick check; If the MAP estimate results in bad point predictions, so will likely the full estimation results. 2. It can serve as a starting value for the MCMC samplers. To find a MAP estimate, we must first specify how we want to find it: We need to define an optimiser. BayesFlux currently only implements optimisers derived from Flux itself, but this can be extended by the user. ````julia opt = FluxModeFinder(bnn, Flux.ADAM()) # We will use ADAM θmap = find_mode(bnn, 10, 500, opt) # batchsize 10 with 500 epochs ```` We can already use the MAP estimate to make some predictions and calculate the RMSE. ````julia nethat = nc(θmap) yhat = vec(nethat(x)) sqrt(mean(abs2, y .- yhat)) ```` ### MCMC - SGLD If the MAP estimate does not show any problems, it can be used as the starting point for SGLD or any of the other MCMC methods (see later section). Simulations have shown that using a relatively large initial stepsize with a slow decaying stepsize schedule often results in the best mixing. *Note: We would usually use samplers such as NUTS for linear regressions, which are much more efficient than SGLD* ````julia sampler = SGLD(Float32; stepsize_a = 10f-0, stepsize_b = 0.0f0, stepsize_γ = 0.55f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] ```` We can obtain summary statistics and trace and density plots of network parameters and likelihood parameters by transforming the BayesFlux chain into a MCMCChain. ````julia using MCMCChains chain = Chains(ch') plot(chain) ```` In more complicated networks, it is usually a hopeless goal to obtain good mixing in parameter space and thus we rather focus on the output space of the network. *Mixing in parameter space is hopeless due to the very complicated topology of the posterior; Simulations have also found that perfect mixing in the output space is not always needed to obtain good point and interval predictions.* We will use a little helper function to get the output values of the network: ````julia function naive_prediction(bnn, draws::Array{T, 2}; x = bnn.x, y = bnn.y) where {T} yhats = Array{T, 2}(undef, length(y), size(draws, 2)) Threads.@threads for i=1:size(draws, 2) net = bnn.like.nc(draws[:, i]) yh = vec(net(x)) yhats[:,i] = yh end return yhats end yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` Similarly, we can obtain posterior predictive values and evaluate quantiles obtained using these to how many percent of the actual data fall below the quantiles. What we would like is that 5% of the data fall below the 5% quantile of the posterior predictive draws. ````julia function get_observed_quantiles(y, posterior_yhat, target_q = 0.05:0.05:0.95) qs = [quantile(yr, target_q) for yr in eachrow(posterior_yhat)] qs = reduce(hcat, qs) observed_q = mean(reshape(y, 1, :) .< qs; dims = 2) return observed_q end posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - SGNHTS Just like SGLD, SGNHTS also does not apply a Metropolis-Hastings correction step. Contrary to SGLD though, SGNHTS implementes a Thermostat, whose task it is to keep the temperature in the dynamic system close to one, and thus the sampling more accurate. Although the thermostats goal is often not achieved, samples obtained using SGNHTS often outperform those obtained using SGLD. ````julia sampler = SGNHTS(1f-2, 2f0; xi = 2f0^2, μ = 50f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - GGMC As pointed out above, neither SGLD nor SGNHTS apply a Metropolis-Hastings acceptance step and are thus difficult to monitor. Indeed, draws from SGLD or SGNHTS should perhaps rather be considered as giving an ensemble of models rather than draws from the posterior, since without any MH step, it is unclear whether the chain actually will converge to the posterior. BayesFlux also implements three methods that do apply a MH step and are thus easier to monitor. These are GGMC, AdaptiveMH, and HMC. Both GGMC and HMC do allow for taking stochastic gradients. GGMC also allows to use delayed acceptance in which the MH step is only applied after a couple of steps, rather than after each step (see [`GGMC`](@ref) for details). Because both GGMC and HMC use a MH step, they provide a measure of the mean acceptance rate, which can be used to tune the stepsize using Dual Averaging (see [`DualAveragingStepSize`](@ref) details). Similarly, both also make use of mass matrices, which can also be tuned (see [`MassAdapter`](@ref)). BayesFlux implements both stepsize adapters and mass adapters but to this point does not implement a smart way of combining them (this will come in the future). In my experience, naively combining them often only helps in more complex models and thus we will only use a stepsize adapter here. ````julia sadapter = DualAveragingStepSize(1f-9; target_accept = 0.55f0, adapt_steps = 10000) sampler = GGMC(Float32; β = 0.1f0, l = 1f-9, sadapter = sadapter) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` The above uses a MH correction after each step. This can be costly in big-data environments or when the evaluation of the likelihood is costly. If either of the above applies, delayed acceptance can speed up the process. ````julia sadapter = DualAveragingStepSize(1f-9; target_accept = 0.25f0, adapt_steps = 10000) sampler = GGMC(Float32; β = 0.1f0, l = 1f-9, sadapter = sadapter, steps = 3) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - HMC Since HMC showed some mixing problems for some variables during the testing of this README, we decided to use a mass matrix adaptation. This turned out to work better even in this simple case. Note that the use of stochastic gradients introduces problems into HMC and thus is not fully theoretically justified. ````julia sadapter = DualAveragingStepSize(1f-9; target_accept = 0.55f0, adapt_steps = 10000) madapter = DiagCovMassAdapter(5000, 1000) sampler = HMC(1f-9, 5; sadapter = sadapter) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### MCMC - Adaptive Metropolis-Hastings As a derivative free alternative, BayesFlux also implements Adaptive MH as introduced (see [`AdaptiveMH`](@ref)). This is currently quite a costly method for complex models since it needs to evaluate the MH ratio at each step. Plans exist to parallelise the calculation of the likelihood which should speed up Adaptive MH. ````julia sampler = AdaptiveMH(diagm(ones(Float32, bnn.num_total_params)), 1000, 0.5f0, 1f-4) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') ```` ---- ````julia yhats = naive_prediction(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ```` ### Variation Inference In some cases MCMC method either do not work well or even the methods above take too long. For these cases BayesFlux currently implements Bayes-By-Backprop (see [`bbb`](@ref)); One shortcoming of the current implementation is that the variational family is constrained to a diagonal multivariate gaussian and thus any correlations between network parameters are set to zero. This can cause problems in some situations and plans exist to allow for more felxible covariance specifications. ````julia q, params, losses = bbb(bnn, 10, 2_000; mc_samples = 1, opt = Flux.ADAM(), n_samples_convergence = 10) ch = rand(q, 20_000) posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ````
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
3656
# Example: Recurrent Neural Networks Next to Dense layers, BayesFlux also implements RNN and LSTM layers. These two do require some additional care though, since the layout of the data must be adjusted. In general, the last dimension of `x` and `y` is always the dimension along which BayesFlux batches, which is also what Flux does. Thus, if we are in a seq-to-one setting then the sequences must be along the last dimension (here the third). To demonstrate this, let us simulate some AR1 data !!! note "Note" BayesFlux currently only implements univariate regression problems (a single dependent variable) and for recurrent structures only seq-to-one type of settings. This can be extended by the user. For this see [`BNNLikelihood`](@ref) ````julia Random.seed!(6150533) gamma = 0.8 N = 500 burnin = 1000 y = zeros(N + burnin + 1) for t=2:(N+burnin+1) y[t] = gamma*y[t-1] + randn() end y = Float32.(y[end-N+1:end]) ```` Just like in the FNN case, we need a network structure and its constructor, a prior on the network parameters, a likelihood with a prior on the additional parameters introduced by the likelihood, and an initialiser. Note how most things are the same as for the FNN case, with the differences being the actual network defined and the likelihood. ````julia net = Chain(RNN(1, 1), Dense(1, 1)) # last layer is linear output layer nc = destruct(net) like = SeqToOneNormal(nc, Gamma(2.0, 0.5)) prior = GaussianPrior(nc, 0.5f0) init = InitialiseAllSame(Normal(0.0f0, 0.5f0), like, prior) ```` We are given a single sequence (time series). To exploit batching and to not always have to feed through the whole sequence, we will split the single sequence into overlapping subsequences of length 5 and store these in a tensor. Note that we add 1 to the subsequence length, because the last observation of each subsequence will be our training observation to predict using the fist five items in the subsequence. ````julia x = make_rnn_tensor(reshape(y, :, 1), 5 + 1) y = vec(x[end, :, :]) x = x[1:end-1, :, :] ```` We are now ready to create the BNN and find the MAP estimate. The MAP will be used to check whether the overall network structure makes sense (does provide at least good point estimates). ````julia bnn = BNN(x, y, like, prior, init) opt = FluxModeFinder(bnn, Flux.RMSProp()) θmap = find_mode(bnn, 10, 1000, opt) ```` When checking the performance we need to make sure to feed the sequences through the network observation by observation: ````julia nethat = nc(θmap) yhat = vec([nethat(xx) for xx in eachslice(x; dims =1 )][end]) sqrt(mean(abs2, y .- yhat)) ```` The rest works just like before with some minor adjustments to the helper functions. ````julia sampler = SGNHTS(1f-2, 1f0; xi = 1f0^2, μ = 10f0) ch = mcmc(bnn, 10, 50_000, sampler) ch = ch[:, end-20_000+1:end] chain = Chains(ch') function naive_prediction_recurrent(bnn, draws::Array{T, 2}; x = bnn.x, y = bnn.y) where {T} yhats = Array{T, 2}(undef, length(y), size(draws, 2)) Threads.@threads for i=1:size(draws, 2) net = bnn.like.nc(draws[:, i]) yh = vec([net(xx) for xx in eachslice(x; dims = 1)][end]) yhats[:,i] = yh end return yhats end ```` ---- ````julia yhats = naive_prediction_recurrent(bnn, ch) chain_yhat = Chains(yhats') maximum(summarystats(chain_yhat)[:, :rhat]) ```` ---- ````julia posterior_yhat = sample_posterior_predict(bnn, ch) t_q = 0.05:0.05:0.95 o_q = get_observed_quantiles(y, posterior_yhat, t_q) plot(t_q, o_q, label = "Posterior Predictive", legend=:topleft, xlab = "Target Quantile", ylab = "Observed Quantile") plot!(x->x, t_q, label = "Target") ````
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
74
# Feedforward Likelihoods ```@docs FeedforwardNormal FeedforwardTDist ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
39
# Interface ```@docs BNNLikelihood ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
67
# Seq-to-One Likelihoods ```@docs SeqToOneNormal SeqToOneTDist ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
84
# Model Basics ```@docs BNN loglikeprior ∇loglikeprior NetConstructor destruct ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
118
# Prior and Posterior Predictive ```@docs sample_prior_predictive get_posterior_networks sample_posterior_predict ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
44
# Gaussian Prior ```@docs GaussianPrior ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
38
# Interface ```@docs NetworkPrior ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
53
# Mixture Scale Prior ```@docs MixtureScalePrior ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
0.2.3
b248c6aefe448c9ad4efa106f31cd767d50c931d
docs
55
# Recurrent Architectures ```@docs make_rnn_tensor ```
BayesFlux
https://github.com/enweg/BayesFlux.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
22096
module OpenLocationCode export is_valid, is_short, is_full, encode, decode, recover_nearest, shorten export CodeArea, latitude_low, longitude_low, latitude_high, longitude_high export latitude_center, longitude_center, latitude_precision, longitude_precision export latlong "A separator used to break the code into two parts to aid memorability." const SEPARATOR = '+' "The number of characters to place before the separator." const SEPARATOR_POSITION = 8 # The character used to pad codes. const PADDING_CHARACTER = '0' # The character set used to encode the values. const CODE_DIGITS = [UInt8(c) for c in "23456789CFGHJMPQRVWX"] # The base to use to convert numbers to/from. const ENCODING_BASE = length(CODE_DIGITS) # 20 # The maximum value for latitude in degrees. const LATITUDE_MAX = 90 # The maximum value for longitude in degrees. const LONGITUDE_MAX = 180 # The max number of digits to process in a plus code. const MAX_DIGIT_COUNT = 15 """ Maximum code length using lat/lng pair encoding. The area of such a code is approximately 13x13 meters (at the equator), and should be suitable for identifying buildings. This excludes prefix and separator characters. """ const PAIR_CODE_LENGTH = 10 # First place value of the pairs (if the last pair value is 1). const PAIR_FIRST_PLACE_VALUE = ENCODING_BASE^(PAIR_CODE_LENGTH ÷ 2 - 1) # Inverse of the precision of the pair section of the code. const PAIR_PRECISION = ENCODING_BASE^3 # The resolution values in degrees for each position in the lat/lng pair # encoding. These give the place value of each position, and therefore the # dimensions of the resulting area. const PAIR_RESOLUTIONS = [20.0, 1.0, 0.05, 0.0025, 0.000125] # Number of digits in the grid precision part of the code. const GRID_CODE_LENGTH = MAX_DIGIT_COUNT - PAIR_CODE_LENGTH # Number of columns in the grid refinement method. const GRID_COLUMNS = 4 # Number of rows in the grid refinement method. const GRID_ROWS = 5 # First place value of the latitude grid (if the last place is 1). const GRID_LAT_FIRST_PLACE_VALUE = GRID_ROWS^(GRID_CODE_LENGTH - 1) # First place value of the longitude grid (if the last place is 1). const GRID_LNG_FIRST_PLACE_VALUE = GRID_COLUMNS^(GRID_CODE_LENGTH - 1) # inverse of best precision of grid part const GRID_LATPRECISION = GRID_LAT_FIRST_PLACE_VALUE * GRID_ROWS const GRID_LNGPRECISION = GRID_LNG_FIRST_PLACE_VALUE * GRID_COLUMNS # Multiply latitude by this much to make it a multiple of the finest # precision. const FINAL_LAT_PRECISION = PAIR_PRECISION * GRID_LATPRECISION # Multiply longitude by this much to make it a multiple of the finest # precision. const FINAL_LNG_PRECISION = PAIR_PRECISION * GRID_LNGPRECISION # Minimum length of a code that can be shortened. const MIN_TRIMMABLE_CODE_LEN = 6 const GRID_SIZE_DEGREES = 0.000125 """ CodeArea(latLo, longLo, codelength) Coordinates of a decoded Open Location Code. The coordinates include the latitude and longitude of the lower left and the code length, which defines the extension of the area. Attributes: latitude_low: The latitude of the SW corner in degrees. longitude_low: The longitude of the SW corner in degrees. latitude_high: The latitude of the NE corner in degrees. longitude_high: The longitude of the NE corner in degrees. latitude_center: The latitude of the center in degrees. longitude_center: The longitude of the center in degrees. code_length: The number of significant characters that were in the code. """ struct CodeArea{T<:Real} code::String latlo::T longlo::T codelength::Int end function CodeArea(latlo, longlo, codelength=PAIR_CODE_LENGTH) latlo, longlo = promote(latlo, longlo) CodeArea{typeof(latlo)}(encode(latlo, longlo, codelength), latlo, longlo, codelength) end function CodeArea(code::AbstractString) lat, lon, len = _decode(code) CodeArea{typeof(lat)}(normcode(code), lat, lon, len) end latitude_low(ca::CodeArea) = ca.latlo longitude_low(ca::CodeArea) = ca.longlo latitude_high(ca::CodeArea) = min_lat(ca, latitude_precision(ca)) longitude_high(ca::CodeArea) = min_lon(ca, longitude_precision(ca)) latitude_center(ca::CodeArea) = min_lat(ca, latitude_precision(ca) / 2) longitude_center(ca::CodeArea) = min_lon(ca, longitude_precision(ca) / 2) latitude_precision(ca::CodeArea) = latitude_precision(ca.codelength) longitude_precision(ca::CodeArea) = longitude_precision(ca.codelength) plus_code(ca::CodeArea) = ca.code latlong(ca::CodeArea) = latitude_center(ca), longitude_center(ca) normcode(code) = length(code) > MAX_DIGIT_COUNT + 1 ? code[1:MAX_DIGIT_COUNT+1] : code min_lat(ca, delta) = min(latitude_low(ca) + delta, LATITUDE_MAX ) min_lon(ca, delta) = min(longitude_low(ca) + delta, LONGITUDE_MAX) import Base: == function ==(ca::CodeArea, cb::CodeArea) ca.code == cb.code && ca.codelength == cb.codelength && ca.latlo == cb.latlo && ca.longlo == cb.longlo end function Base.isapprox(ca::CodeArea, cb::CodeArea) ca.code == cb.code && ca.codelength == cb.codelength && ca.latlo ≈ cb.latlo && ca.longlo ≈ cb.longlo end function Base.show(io::IO, ca::CodeArea) print(io, "CodeArea(\"", plus_code(ca),"\", ") print(io, latitude_low(ca), "+", latitude_precision(ca), ", ") print(io, longitude_low(ca), "+", longitude_precision(ca), ", ") print(io, ca.codelength, ")") end """ is_valid(code::AbstractString) Determine if a code is valid. To be valid, all characters must be from the Open Location Code character set with at most one separator. The separator can be in any even-numbered position up to the eighth digit. """ function is_valid(code::AbstractString) # The separator is required exactly once. sep = findfirst(SEPARATOR, code) sep !== nothing && findlast(SEPARATOR, code) == sep || return false # Not more than 8 characters before separator. sep > SEPARATOR_POSITION + 1 && return false # Is it the only character? length(code) <= 1 && return false # Is it in an illegal position? sep % 2 == 0 && return false # We can have an even number of padding characters before the separator, # but then it must be the final character. pad = findfirst(PADDING_CHARACTER, code) if pad !== nothing # Short codes cannot have padding sep < SEPARATOR_POSITION && return false # Not allowed to start with them or start at even poaition pad == 1 || iseven(pad) && return false # There can only be one group and it must have even length. pad2 = findlast(PADDING_CHARACTER, code) (pad2 - pad) % 2 == 0 && return false all(isequal(PADDING_CHARACTER), view(code, pad:pad2)) || return false # If the code is long enough to end with a separator, make sure it does. return code[end] == SEPARATOR end # If there are characters after the separator, make sure there isn't just # one of them (not legal). length(code) - sep == 1 && return false # Check the code contains only valid characters. return all(ch -> UInt8(uppercase(ch)) in CODE_DIGITS || ch == SEPARATOR || ch == PADDING_CHARACTER, code) end """ is_short(code) Determine if a code is a valid short code. A short Open Location Code is a sequence created by removing four or more digits from an Open Location Code. It must include a separator character. """ function is_short(code::AbstractString) # Check it's valid. is_valid(code) || return false # If there are less characters than expected before the SEPARATOR. sep = findfirst(SEPARATOR, code) return sep <= SEPARATOR_POSITION end """ is_full(code) Determine if a code is a valid full Open Location Code. Not all possible combinations of Open Location Code characters decode to valid latitude and longitude values. This checks that a code is valid and also that the latitude and longitude values are legal. If the prefix character is present, it must be the first character. If the separator character is present, it must be after four characters. """ function is_full(code::AbstractString) is_valid(code) || return false # If it's short, it's not full is_short(code) && return false # Work out what the first latitude character indicates for latitude. clat = UInt8(uppercase(code[1])) firstLatValue = (findfirst(==(clat), CODE_DIGITS) - 1) * ENCODING_BASE if firstLatValue >= LATITUDE_MAX * 2 # The code would decode to a latitude of >= 90 degrees. return false end # Work out what the first longitude character indicates for longitude. clng = UInt8(uppercase(code[2])) firstLngValue = (findfirst(==(clng), CODE_DIGITS) - 1) * ENCODING_BASE if firstLngValue >= LONGITUDE_MAX * 2 # The code would decode to a longitude of >= 180 degrees. return false end return true end """ encode(latitude, longitude[, codelength]) Encode a location into an Open Location Code. Produces a code of the specified length, or the default length if no length is provided. The length determines the accuracy of the code. The default length is 10 characters, returning a code of approximately 13.9x13.9 meters. Longer codes represent smaller areas, but lengths > 15 are sub-centimetre and so 11 or 12 are probably the limit of useful codes. # Arguments - `latitude`: A latitude in signed degrees. Will be clipped to the range -90 to 90. - `longitude`: A longitude in signed degrees. Will be normalised to the range -180 to 180. - `codelength`: The number of significant digits in the output code, not including any separator characters. # Examples: ```julia julia> encode(50.173168, 8.338086, 11) "9F2C58FQ+768" ``` """ function encode(latitude::Real, longitude::Real, codelength=PAIR_CODE_LENGTH) encode(float.(promote(latitude, longitude))..., codelength) end function encode(latitude::T, longitude::T, codelength::Int=PAIR_CODE_LENGTH) where {T<:AbstractFloat} if codelength < 2 || (codelength < PAIR_CODE_LENGTH && codelength % 2 == 1) throw(ArgumentError("Invalid Open Location Code length - $codelength")) end codelength = min(codelength, MAX_DIGIT_COUNT) # Ensure that latitude and longitude are valid. latitude = clipLatitude(latitude) longitude = normalizeLongitude(longitude) # Latitude 90 needs to be adjusted to be just less, so the returned code # can also be decoded. if latitude == LATITUDE_MAX latitude = latitude - latitude_precision(codelength) end bcode = UInt8[] # Compute the code. # This approach converts each value to an integer after multiplying it by # the final precision. This allows us to use only integer operations, so # avoiding any accumulation of floating point representation errors. # Multiply values by their precision and convert to positive. # Force to integers so the division operations will have integer results. latVal = valpairgrid(latitude, FINAL_LAT_PRECISION, LATITUDE_MAX) lngVal = valpairgrid(longitude, FINAL_LNG_PRECISION, LONGITUDE_MAX) # Compute the grid part of the code if necessary. if codelength > PAIR_CODE_LENGTH for _ in 1:GRID_CODE_LENGTH latDigit = latVal % GRID_ROWS lngDigit = lngVal % GRID_COLUMNS ndx = latDigit * GRID_COLUMNS + lngDigit push!(bcode, CODE_DIGITS[ndx+1]) latVal ÷= GRID_ROWS lngVal ÷= GRID_COLUMNS end else latVal ÷= ^(GRID_ROWS, GRID_CODE_LENGTH) lngVal ÷= ^(GRID_COLUMNS, GRID_CODE_LENGTH) end # Compute the pair section of the code. for _ in 1:PAIR_CODE_LENGTH÷2 push!(bcode, CODE_DIGITS[lngVal%ENCODING_BASE+1]) push!(bcode, CODE_DIGITS[latVal%ENCODING_BASE+1]) latVal ÷= ENCODING_BASE lngVal ÷= ENCODING_BASE end reverse!(bcode) # If we don't need to pad the code, return the requested section. if codelength >= SEPARATOR_POSITION resize!(bcode, codelength) insert!(bcode, SEPARATOR_POSITION + 1, SEPARATOR) return String(bcode) end # Pad and return the code. resize!(bcode, codelength) for i = codelength+1:SEPARATOR_POSITION push!(bcode, PADDING_CHARACTER) end push!(bcode, SEPARATOR) return String(bcode) end """ valpairgrid(lat, precision, max) Return integer value in multiples of `1/precision` """ function valpairgrid(latlo::AbstractFloat, prec::Integer, max::Integer) unsafe_trunc(Int64, floor(nextfloat(latlo) * prec)) + Int64(prec) * max end """ decode(code) Decode an Open Location Code into the location coordinates. # Arguments: - `code`: The Open Location Code to decode. # Returns: A `CodeArea` object that provides the latitude and longitude of two of the corners of the area, the center, and the length of the original code. """ decode(code::AbstractString) = CodeArea(normcode(code), _decode(code)...) function _decode(code::AbstractString) if !is_full(code) throw(ArgumentError("Passed Open Location Code is not a valid full code - $code")) end # Strip out separator character (we've already established the code is # valid so the maximum is one), and padding characters. Convert to upper # case and constrain to the maximum number of digits. bcode = UInt8[] for c in code c == PADDING_CHARACTER && break c == SEPARATOR && continue push!(bcode, uppercase(c)) end if length(bcode) > MAX_DIGIT_COUNT resize!(bcode, MAX_DIGIT_COUNT) end codelength = length(bcode) # Initialise the values for each section. We work them out as integers and # convert them to floats at the end. normalLat = -LATITUDE_MAX * PAIR_PRECISION normalLng = -LONGITUDE_MAX * PAIR_PRECISION gridLat = 0 gridLng = 0 # How many digits do we have to process? digits = min(codelength, PAIR_CODE_LENGTH) # Define the place value for the most significant pair. pv = PAIR_FIRST_PLACE_VALUE # Decode the paired digits. for i in 1:2:digits normalLat += (findfirst(==(bcode[i]), CODE_DIGITS) - 1) * pv normalLng += (findfirst(==(bcode[i+1]), CODE_DIGITS) - 1) * pv if i < digits - 2 pv ÷= ENCODING_BASE end end # Convert the place value to a float in degrees. latPrecision = pv / PAIR_PRECISION lngPrecision = pv / PAIR_PRECISION # Process any extra precision digits. if codelength > PAIR_CODE_LENGTH # Initialise the place values for the grid. rowpv = GRID_LAT_FIRST_PLACE_VALUE colpv = GRID_LNG_FIRST_PLACE_VALUE # How many digits do we have to process? digits = min(codelength, MAX_DIGIT_COUNT) for i in PAIR_CODE_LENGTH:digits-1 digitVal = findfirst(==(bcode[i+1]), CODE_DIGITS) - 1 row = digitVal ÷ GRID_COLUMNS col = digitVal % GRID_COLUMNS gridLat += row * rowpv gridLng += col * colpv if i < digits - 1 rowpv ÷= GRID_ROWS colpv ÷= GRID_COLUMNS end end # Adjust the precisions from the integer values to degrees. latPrecision = rowpv / FINAL_LAT_PRECISION lngPrecision = colpv / FINAL_LNG_PRECISION end # Merge the values from the normal and extra precision parts of the code. lat = normalLat / PAIR_PRECISION + gridLat / FINAL_LAT_PRECISION lng = normalLng / PAIR_PRECISION + gridLng / FINAL_LNG_PRECISION lat, lng, codelength end """ recover_nearest(code, latitude, longitude) Recover the nearest matching code to a specified location. Given a short code of between four and seven characters, this recovers the nearest matching full code to the specified location. # Arguments: - `code`: A valid OLC character sequence. - `latitude`: The latitude (in signed degrees) to use to find the nearest matching full code. - `longitude``: The longitude (in signed degrees) to use to find the nearest matching full code. # Returns: The nearest full Open Location Code to the reference location that matches the short code. If the passed code was not a valid short code, but was a valid full code, it is returned with proper capitalization but otherwise unchanged. """ function recover_nearest(code::AbstractString, latitude::Real, longitude::Real) # Clean up the passed code. code = uppercase(code) # if code is a valid full code, return it properly capitalized is_full(code) && return code if !is_short(code) throw(ArgumentError("Passed short code is not valid - $code")) end # Ensure that latitude and longitude are valid. referenceLatitude = clipLatitude(latitude) referenceLongitude = normalizeLongitude(longitude) # Compute the number of digits we need to recover. paddingLength = SEPARATOR_POSITION - findfirst(SEPARATOR, code) + 1 # The resolution (height and width) of the padded area in degrees. resolution = compute_precision(paddingLength, 1) # Distance from the center to an edge (in degrees). halfResolution = resolution / 2 # Use the reference location to pad the supplied short code and decode it. refcode = encode(referenceLatitude, referenceLongitude, paddingLength) codeArea = decode(view(refcode, 1:paddingLength) * code) # How many degrees latitude is the code from the reference? If it is more # than half the resolution, we need to move it north or south but keep it # within -90 to 90 degrees. latcenter = latitude_center(codeArea) if referenceLatitude + halfResolution < latcenter && latcenter - resolution >= -LATITUDE_MAX # If the proposed code is more than half a cell north of the reference location, # it's too far, and the best match will be one cell south. latcenter -= resolution elseif referenceLatitude - halfResolution > latcenter && latcenter + resolution <= LATITUDE_MAX # If the proposed code is more than half a cell south of the reference location, # it's too far, and the best match will be one cell north. latcenter += resolution end # Adjust longitude if necessary. longcenter = longitude_center(codeArea) if referenceLongitude + halfResolution < longcenter longcenter -= resolution elseif referenceLongitude - halfResolution > longcenter longcenter += resolution end return encode(latcenter, longcenter, codeArea.codelength) end """ shorten(code, latitude, longitude) Remove characters from the start of an OLC code. This uses a reference location to determine how many initial characters can be removed from the OLC code. The number of characters that can be removed depends on the distance between the code center and the reference location. The minimum number of characters that will be removed is four. If more than four characters can be removed, the additional characters will be replaced with the padding character. At most eight characters will be removed. The reference location must be within 50% of the maximum range. This ensures that the shortened code will be able to be recovered using slightly different locations. # Arguments - `code`: A full, valid code to shorten. - `latitude`: A latitude, in signed degrees, to use as the reference point. - `longitude`: A longitude, in signed degrees, to use as the reference point. # Returns: Either the original code, if the reference location was not close enough, or the shortest code which can be used to recover from the reference location. """ function shorten(code, latitude, longitude) if !is_full(code) throw(ArgumentError("Passed code is not valid and full: $code")) end if findfirst(PADDING_CHARACTER, code) !== nothing throw(ArgumentError("Cannot shorten padded codes: $code")) end code = uppercase(code) codeArea = decode(code) # Ensure that latitude and longitude are valid. latitude = clipLatitude(latitude) longitude = normalizeLongitude(longitude) # How close are the latitude and longitude to the code center. coderange = max(abs(latitude_center(codeArea) - latitude), abs(longitude_center(codeArea) - longitude)) for i in length(PAIR_RESOLUTIONS)-2:-1:0 # Check if we're close enough to shorten. The range must be less than 1/2 # the resolution to shorten at all, and we want to allow some safety, so # use 0.3 instead of 0.5 as a multiplier. if coderange < (PAIR_RESOLUTIONS[i+1] * 0.3) # Trim it. return code[(i+1)*2+1:end] end end return code end shorten(ca::CodeArea, lat, lon) = shorten(plus_code(ca), lat, lon) """ computeLatitudePrecision(codelength) Compute the latitude precision value for a given code length. Lengths <= 10 have the same precision for latitude and longitude, but lengths > 10 have different precisions due to the grid method having fewer columns than rows. """ latitude_precision(codelength) = compute_precision(codelength, GRID_ROWS) longitude_precision(codelength) = compute_precision(codelength, GRID_COLUMNS) function compute_precision(codelength, grid) if codelength <= PAIR_CODE_LENGTH ENCODING_BASE / (ENCODING_BASE^(codelength ÷ 2 - 1)) else 1 / (ENCODING_BASE^3 * grid^(codelength - PAIR_CODE_LENGTH)) end end """ clipLatitude(latitude) Clip a latitude into the range -90 to 90. Args: latitude: A latitude in signed degrees. """ function clipLatitude(latitude::Real) return min(LATITUDE_MAX, max(-LATITUDE_MAX, latitude)) end """ normalizeLongitude(longitude) Normalize a longitude into the range -180 to 180, not including 180. Args: longitude: A longitude in signed degrees. """ function normalizeLongitude(longitude::Real) while longitude < -LONGITUDE_MAX longitude = longitude + LONGITUDE_MAX * 2 end while longitude >= LONGITUDE_MAX longitude = longitude - LONGITUDE_MAX * 2 end return longitude end include("geometric.jl") end # module
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
1203
export distance, area const GEO_RADIUS = 6378.388e3 # meters """ distance(lat1, lon1, lat2, lon2) Distance between two points on a sphere with radius `r` in meters. The point are given in degrees. Uses haversine algorithm. """ function distance(lat1::Real, lon1::Real, lat2::Real, lon2::Real, r::Real=GEO_RADIUS) distance(promote(lat1, lon1, lat2, lon2, r)...) end function distance(lat1::T, lon1::T, lat2::T, lon2::T, r::T=6378.388e3) where T<:Real dlat = lat1 - lat2 dlon = lon1 - lon2 a = sind(dlat / 2) ^ 2 + sind(dlon / 2) ^ 2 * cosd(lat1) * cosd(lat2) dist = asin(sqrt(a)) * r * 2 dist end function distance(ca::CodeArea, cb::CodeArea) lata, lona = latitude_center(ca), longitude_center(ca) latb, lonb = latitude_center(cb), longitude_center(cb) distance(lata, lona, latb, lonb) end function distance(a::AbstractString, b::AbstractString) distance(decode(a), decode(b)) end function area(ca::CodeArea) lat1 = latitude_high(ca) lat0 = latitude_low(ca) lod = longitude_high(ca) - longitude_low(ca) r = GEO_RADIUS area = (sind(lat1) - sind(lat0)) * lod / 180 * π * r^2 area end area(ca::AbstractString) = area(decode(ca))
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
2164
# Test decoding Open Location Codes. # # Provides test cases for decoding valid codes. # # Format: # code,length,latLo,lngLo,latHi,lngHi DATA = [ ("7FG49Q00+",6,20.35,2.75,20.4,2.8) ("7FG49QCJ+2V",10,20.37,2.782125,20.370125,2.78225) ("7FG49QCJ+2VX",11,20.3701,2.78221875,20.370125,2.78225) ("7FG49QCJ+2VXGJ",13,20.370113,2.782234375,20.370114,2.78223632813) ("8FVC2222+22",10,47.0,8.0,47.000125,8.000125) ("4VCPPQGP+Q9",10,-41.273125,174.785875,-41.273,174.786) ("62G20000+",4,0.0,-180.0,1,-179) ("22220000+",4,-90,-180,-89,-179) ("7FG40000+",4,20.0,2.0,21.0,3.0) ("22222222+22",10,-90.0,-180.0,-89.999875,-179.999875) ("6VGX0000+",4,0,179,1,180) ("6FH32222+222",11,1,1,1.000025,1.00003125) ("CFX30000+",4,89,1,90,2) ("62H20000+",4,1,-180,2,-179) ("62H30000+",4,1,-179,2,-178) ("CFX3X2X2+X2",10,89.9998750,1,90,1.0001250) # Test non-precise latitude/longitude value ("6FH56C22+22",10,1.2000000000000028,3.4000000000000057,1.2001249999999999,3.4001250000000027) # Validate that digits after the first 15 are ignored when decoding ("849VGJQF+VX7QR3J",15,37.5396691200,-122.3750698242,37.5396691600,-122.3750697021) ("849VGJQF+VX7QR3J7QR3J",15,37.5396691200,-122.3750698242,37.5396691600,-122.3750697021) ] @testset "decoding $(d[1])" for d in DATA code, codelength, latlo, longlo, lathi, longhi = d ca = decode(code) @test ca ≈ CodeArea(latlo, longlo, codelength) @test latitude_high(ca) ≈ lathi @test longitude_high(ca) ≈ longhi end @testset "validity" begin @test is_full("C2XXXXXX+") @test !is_full("F2XXXXXX+") @test is_full("2VXXXX00+") @test !is_full("2WXXXXXX+") @test !is_valid("+0022") @test !is_valid("00+") @test_throws ArgumentError decode("XX+22") @test_throws ArgumentError recover_nearest("X+", 0, 0) @test_throws ArgumentError shorten("XX+22", 0, 0) @test_throws ArgumentError shorten("22XX0000+", 0, 0) end @testset "show and convert CodeArea" begin code = "9G000000+" ca = decode(code) @test latlong(ca) == (60.0, 30.0) @test sprint(show, ca) == "CodeArea(\"$code\", 50.0+20.0, 20.0+20.0, 2)" @test CodeArea(code) == ca @test CodeArea(50, 20, 2) == ca end
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
5736
# Test encoding Open Location Codes. # # Provides test cases for encoding latitude and longitude to codes. # # Format: # latitude,longitude,length,"expected code (empty if the input should cause an error)" DATA = [ (20.375,2.775,6,"7FG49Q00+") (20.3700625,2.7821875,10,"7FG49QCJ+2V") (20.3701125,2.782234375,11,"7FG49QCJ+2VX") (20.3701135,2.78223535156,13,"7FG49QCJ+2VXGJ") (47.0000625,8.0000625,10,"8FVC2222+22") (-41.2730625,174.7859375,10,"4VCPPQGP+Q9") (0.5,-179.5,4,"62G20000+") (-89.5,-179.5,4,"22220000+") (20.5,2.5,4,"7FG40000+") (-89.9999375,-179.9999375,10,"22222222+22") (0.5,179.5,4,"6VGX0000+") (1,1,11,"6FH32222+222") ################################################################################ # # Special cases over 90 latitude # ################################################################################ (90,1,2,"CF000000+") (90,1,4,"CFX30000+") (92,1,4,"CFX30000+") (90,1,10,"CFX3X2X2+X2") ################################################################################ # # Special cases with longitude needing normalization (<< -180 or >> +180) # ################################################################################ (1,180,4,"62H20000+") (1,181,4,"62H30000+") (20.3701135,362.78223535156,13,"7FG49QCJ+2VXGJ") (47.0000625,728.0000625,10,"8FVC2222+22") (-41.2730625,1254.7859375,10,"4VCPPQGP+Q9") (20.3701135,-357.217764648,13,"7FG49QCJ+2VXGJ") (47.0000625,-711.9999375,10,"8FVC2222+22") (-41.2730625,-905.2140625,10,"4VCPPQGP+Q9") ################################################################################ # # Test non-precise latitude/longitude value # ################################################################################ (1.2,3.4,10,"6FH56C22+22") ################################################################################ # # Validate that codes generated with a length exceeding 15 significant digits # return a 15-digit code # ################################################################################ (37.539669125,-122.375069724,15,"849VGJQF+VX7QR3J") (37.539669125,-122.375069724,16,"849VGJQF+VX7QR3J") (37.539669125,-122.375069724,100,"849VGJQF+VX7QR3J") ################################################################################ # # Test floating point representation/rounding errors. # ################################################################################ (35.6,3.033,10,"8F75J22M+26") (-48.71,142.78,8,"4R347QRJ+") (-70,163.7,8,"3V252P22+") (-2.804,7.003,13,"6F9952W3+C6222") (13.9,164.88,12,"7V56WV2J+2222") (-13.23,172.77,8,"5VRJQQCC+") (40.6,129.7,8,"8QGFJP22+") (-52.166,13.694,14,"3FVMRMMV+JJ2222") (-14,106.9,6,"5PR82W00+") (70.3,-87.64,13,"C62J8926+22222") (66.89,-106,10,"95RPV2R2+22") (2.5,-64.23,11,"67JQGQ2C+222") (-56.7,-47.2,14,"38MJ8R22+222222") (-34.45,-93.719,6,"46Q8H700+") (-35.849,-93.75,12,"46P85722+C222") (65.748,24.316,12,"9GQ6P8X8+6C22") (-57.32,130.43,12,"3QJGMCJJ+2222") (17.6,-44.4,6,"789QJJ00+") (-27.6,-104.8,6,"554QC600+") (41.87,-145.59,13,"83HPVCC6+22222") (-4.542,148.638,13,"6R7CFJ5Q+66222") (-37.014,-159.936,10,"43J2X3P7+CJ") (-57.25,125.49,15,"3QJ7QF2R+2222222") (48.89,-80.52,13,"86WXVFRJ+22222") (53.66,170.97,14,"9V5GMX6C+222222") (0.49,-76.97,15,"67G5F2RJ+2222222") (40.44,-36.7,12,"89G5C8R2+2222") (58.73,69.95,8,"9JCFPXJ2+") (16.179,150.075,12,"7R8G53HG+J222") (-55.574,-70.061,12,"37PFCWGQ+CJ22") (76.1,-82.5,15,"C68V4G22+2222222") (58.66,149.17,10,"9RCFM56C+22") (-67.2,48.6,6,"3H4CRJ00+") (-5.6,-54.5,14,"6867CG22+222222") (-34,145.5,14,"4RR72G22+222222") (-34.2,66.4,12,"4JQ8RC22+2222") (17.8,-108.5,6,"759HRG00+") (10.734,-168.294,10,"722HPPM4+JC") (-28.732,54.32,8,"5H3P789C+") (64.1,107.9,12,"9PP94W22+2222") (79.7525,6.9623,8,"CFF8QX36+") (-63.6449,-25.1475,8,"398P9V43+") (35.019,148.827,11,"8R7C2R9G+JR2") (71.132,-98.584,15,"C6334CJ8+RC22222") (53.38,-51.34,12,"985C9MJ6+2222") (-1.2,170.2,12,"6VCGR622+2222") (50.2,-162.8,11,"922V6622+222") (-25.798,-59.812,10,"5862652Q+R6") (81.654,-162.422,14,"C2HVMH3H+J62222") (-75.7,-35.4,8,"29P68J22+") (67.2,115.1,11,"9PVQ6422+222") (-78.137,-42.995,12,"28HVV274+6222") (-56.3,114.5,11,"3PMPPG22+222") (10.767,-62.787,13,"772VQ687+R6222") (-19.212,107.423,10,"5PG9QCQF+66") (21.192,-45.145,15,"78HP5VR4+R222222") (16.701,148.648,14,"7R8CPJ2X+C62222") (52.25,-77.45,15,"97447H22+2222222") (-68.54504,-62.81725,11,"373VF53M+X4J") (76.7,-86.172,12,"C68MPR2H+2622") (-6.2,96.6,13,"6M5RRJ22+22222") (59.32,-157.21,12,"93F48QCR+2222") (29.7,39.6,12,"7GXXPJ22+2222") (-18.32,96.397,10,"5MHRM9JW+2R") (-30.3,76.5,11,"4JXRPG22+222") (50.342,-112.534,15,"95298FR8+RC22222") # # There is no exact IEEE754 representation of 80.01 (or the negative), so test # on either side. # (80.0100000001,58.57,15,"CHGW2H6C+2222222") (80.0099999999,58.57,15,"CHGW2H5C+X2RRRRR") (-80.0099999999,58.57,15,"2HFWXHRC+2222222") (-80.0100000001,58.57,15,"2HFWXHQC+X2RRRRR") # # Add a few other examples. # (47.000000080000000,8.00022229,15,"8FVC2222+235235C") (68.3500147997595,113.625636875353,15,"9PWM9J2G+272FWJV") (38.1176000887231,165.441989844555,15,"8VC74C9R+2QX445C") (-28.1217794010122,-154.066811473758,15,"5337VWHM+77PR2GR") (59.99999999999998,-40.00000000000003,15, "98FXXXXX+XXXXXXX") # from the specification document (47.365562,8.524813,10,"8FVC9G8F+6W") # close to upper boundaries (prevfloat(50.0, 1),prevfloat(20.0, 1),4,"9G220000+") (prevfloat(50.0, 2),prevfloat(20.0, 2),4,"8FXX0000+") ] @testset "encoding $(d[3])-$(d[4])" for d in DATA lat, long, codelength, code = d @test encode(lat, long, codelength) == code end @testset "encode args" begin @test_throws ArgumentError encode(0, 0, 1) @test_throws ArgumentError encode(0, 0, 9) @test encode(50, 8) == encode(50, 8, 10) @test CodeArea(50, 8) == CodeArea(50, 8, 10) end
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
573
const R = OpenLocationCode.GEO_RADIUS @testset "distances" begin lat1, lon1 = 50.1732, 8.3381 lat2, lon2 = 50.0279, 8.0334 c1 = encode(lat1, lon1, 15) c2 = encode(lat2, lon2, 15) @test distance(c1, c2) ≈ 27111.7984 @test distance(-90.0, 350, 0, 0) ≈ π / 2 * R end @testset "areas" begin a00 = area(encode(-10, 0, 2)) a10 = area(encode(10, 0, 2)) a30 = area(encode(30, 0, 2)) a50 = area(encode(50, 0, 2)) a70 = area(encode(70, 0, 2)) s20 = a00 + 2*(a10 + a30 + a50 + a70) s00 = s20 * 18 @test s00 ≈ 4π * R ^ 2 end
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
366
using OpenLocationCode using Test @testset "OpenLocationCode" begin @testset "validity" begin include("validityTests.jl") end @testset "decode" begin include("decoding.jl") end @testset "encode" begin include("encoding.jl") end @testset "shorten" begin include("shortCodeTests.jl") end @testset "geometric" begin include("geometric.jl") end end
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
2398
# Test shortening and extending codes. # # Format: # full code,lat,lng,shortcode,test_type # test_type is R for recovery only, :S for shorten only, or :B for Both. DATA = [ ("9C3W9QCJ+2VX",51.3701125,-1.217765625,"+2VX",:B) # Adjust so we can't trim by 8 (+/- .000755) ("9C3W9QCJ+2VX",51.3708675,-1.217765625,"CJ+2VX",:B) ("9C3W9QCJ+2VX",51.3693575,-1.217765625,"CJ+2VX",:B) ("9C3W9QCJ+2VX",51.3701125,-1.218520625,"CJ+2VX",:B) ("9C3W9QCJ+2VX",51.3701125,-1.217010625,"CJ+2VX",:B) # Adjust so we can't trim by 6 (+/- .0151) ("9C3W9QCJ+2VX",51.3852125,-1.217765625,"9QCJ+2VX",:B) ("9C3W9QCJ+2VX",51.3550125,-1.217765625,"9QCJ+2VX",:B) ("9C3W9QCJ+2VX",51.3701125,-1.232865625,"9QCJ+2VX",:B) ("9C3W9QCJ+2VX",51.3701125,-1.202665625,"9QCJ+2VX",:B) # Added to detect error in recoverNearest functionality ("8FJFW222+",42.899,9.012,"22+",:B) ("796RXG22+",14.95125,-23.5001,"22+",:B) # Reference location is in the 4 digit cell to the south. ("8FVC2GGG+GG",46.976,8.526,"2GGG+GG",:B) # Reference location is in the 4 digit cell to the north. ("8FRCXGGG+GG",47.026,8.526,"XGGG+GG",:B) # Reference location is in the 4 digit cell to the east. ("8FR9GXGG+GG",46.526,8.026,"GXGG+GG",:B) # Reference location is in the 4 digit cell to the west. ("8FRCG2GG+GG",46.526,7.976,"G2GG+GG",:B) # From the specification document ("8FVC9G8F+6W",47.373313,8.537562,"8F+6W",:B) ("8FVC9G8F+6W",47.339563,8.556687,"9G8F+6W",:B) ("8FVC9G8F+6W",47.985187,8.440688,"VC9G8F+6W",:B) ("8FVC9G8F+6W",38.800562,-9.064937,"8FVC9G8F+6W",:B) # Added to detect errors recovering codes near the poles. # This tests recovery function, but these codes won't shorten. ("CFX22222+22",89.6,0.0,"2222+22",:R) ("2CXXXXXX+XX",-81.0,0.0,"XXXXXX+XX",:R) # Recovered full codes should be the full code ("8FRCG2GG+GG",46.526,7.976,"8FRCG2GG+GG",:R) # Recovered full codes should be the uppercased full code ("8FRCG2GG+GG",46.526,7.976,"8frCG2GG+gG",:R) ] @testset "shorten $(d[1])" for d in DATA code, lat, long, short, opt = d if opt in (:B, :S) @test shorten(code, lat, long) == short end end @testset "recover $(d[4])" for d in DATA code, lat, long, short, opt = d if opt in (:B, :R) @test recover_nearest(short, lat, long) == code end end @testset "shorten from CodeArea" begin code = "23XXXXXX+" lat, lon = -70, -140 @test shorten(code, lat, lon) == shorten(CodeArea(code), lat, lon) end
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
code
1295
# Test data for validity tests. # Format of each line is: # code,isValid,isShort,isFull # Valid full codes: DATA = [ ("8FWC2345+G6",true,false,true) ("8FWC2345+G6G",true,false,true) ("8fwc2345+",true,false,true) ("8FWCX400+",true,false,true) # Valid short codes: ("WC2345+G6g",true,true,false) ("2345+G6",true,true,false) ("45+G6",true,true,false) ("+G6",true,true,false) # Invalid codes ("G+",false,false,false) ("+",false,false,false) ("8FWC2345+G",false,false,false) ("8FWC2_45+G6",false,false,false) ("8FWC2η45+G6",false,false,false) ("8FWC2345+G6+",false,false,false) ("8FWC2345G6+",false,false,false) ("8FWC2300+G6",false,false,false) ("WC2300+G6g",false,false,false) ("WC2345+G",false,false,false) ("WC2300+",false,false,false) # Validate that codes at and exceeding 15 digits are still valid when all their # digits are valid, and invalid when not. ("849VGJQF+VX7QR3J",true,false,true) ("849VGJQF+VX7QR3U",false,false,false) ("849VGJQF+VX7QR3JW",true,false,true) ("849VGJQF+VX7QR3JU",false,false,false) ("62H00002+",false,false,false) ("620AA000+",false,false,false) ("+",false,false,false) ] @testset "validity $(d[1])" for d in DATA code, isValid, isShort, isFull = d @test is_valid(code) == isValid @test is_short(code) == isShort @test is_full(code) == isFull end
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
1.0.1
01fa2a3303a93ad9fd037582d99c8f8429e9ec62
docs
6964
# OpenLocationCode A package for Open Location Codes aka Plus Codes to represent geographical coordinates [![Build Status][gha-img]][gha-url] [![Coverage Status][codecov-img]][codecov-url] Encode and decode, shorten and recover relative to a position. This `Julia` implementation originates from the `Python` sources and test data in [google/open-location-code](https://github.com/google/open-location-code) v1.0.4 with this [specification](https://github.com/google/open-location-code/blob/main/docs/specification.md). A concise description is found here [OLC](https://en.wikipedia.org/wiki/Open_Location_Code). ## Description Open Location Codes or "Plus Codes" are short, 10-15 character codes that can be used instead of street addresses. The codes can be generated and decoded offline, and use a reduced character set that minimises the chance of codes including words. Codes are able to be shortened relative to a nearby location. This means that in many cases, only four to seven characters of the code are needed. To recover the original code, the same location is not required, as long as a nearby location is provided. Codes represent rectangular areas rather than points, and the longer the code, the smaller the area. A 10 character code represents a 13.9x13.9 meter area (at the equator). An 11 character code represents approximately a 2.8x3.5 meter area, while a 15 character code is 4.5x13.6 mm. Two encoding algorithms are used. The first 10 characters are pairs of characters, one for latitude and one for longitude, using base 20. Each pair reduces the area of the code by a factor of 400. Only even code lengths are sensible, since an odd-numbered length would have sides in a ratio of 20:1. At positions 11-15, the algorithm changes so that each character selects one position from a 4x5 grid. This allows refinements by one to five characters. All degrees are integer or floating point numbers. The created output degrees are `Float64`. The latitude and longitude should be [WGS84](https://en.wikipedia.org/wiki/World_Geodetic_System#WGS84) values. ## API ```doc encode(latitude, longitude[, codelength]) Encode a location into an Open Location Code. Produces a code of the specified length, or the default length if no length is provided. The length determines the accuracy of the code. The default length is 10 characters, returning a code of approximately 13.9x13.9 meters. Longer codes represent smaller areas, but lengths > 15 are sub-centimetre and so 11 or 12 are probably the limit of useful codes. Arguments: • latitude: A latitude in signed degrees. Will be clipped to the range -90 to 90. • longitude: A longitude in signed degrees. Will be normalised to the range -180 to 180. • codelength: The number of significant digits in the output code, not including any separator characters. Examples: julia> encode(50.173168, 8.338086, 11) "9F2C58FQ+768" ``` ```doc decode(code) Decode an Open Location Code into the location coordinates. Arguments: • code: The Open Location Code to decode. Returns: A CodeArea object that provides the latitude and longitude of two of the corners of the area, the center, and the length of the original code. ``` ```doc shorten(code, latitude, longitude) Remove characters from the start of an OLC code. This uses a reference location to determine how many initial characters can be removed from the OLC code. The number of characters that can be removed depends on the distance between the code center and the reference location. The minimum number of characters that will be removed is four. If more than four characters can be removed, the additional characters will be replaced with the padding character. At most eight characters will be removed. The reference location must be within 50% of the maximum range. This ensures that the shortened code will be able to be recovered using slightly different locations. Arguments • code: A full, valid code to shorten. • latitude: A latitude, in signed degrees, to use as the reference point. • longitude: A longitude, in signed degrees, to use as the reference point. Returns: Either the original code, if the reference location was not close enough, or the shortest code which can be used to recover from the reference location. ``` ```doc recover_nearest(code, latitude, longitude) Recover the nearest matching code to a specified location. Given a short code of between four and seven characters, this recovers the nearest matching full code to the specified location. Arguments: • code: A valid OLC character sequence. • latitude: The latitude (in signed degrees) to use to find the nearest matching full code. • longitude`: The longitude (in signed degrees) to use to find the nearest matching full code. Returns: The nearest full Open Location Code to the reference location that matches the short code. If the passed code was not a valid short code, but was a valid full code, it is returned with proper capitalization but otherwise unchanged. ``` ## Examples ```jldoctest julia> using OpenLocationCode julia> # Encode a location, default accuracy: encode(47.365590, 8.524997) "8FVC9G8F+6X" julia> ca = CodeArea(47.365590, 8.524997, 6) CodeArea("8FVC9G00+", 47.36559+0.05, 8.524997+0.05, 6) julia> # Encode a location using five digits of additional refinement: encode(47.365590, 8.524997, 15) "8FVC9G8F+6XQQ435" julia> # Decode a full code: code "8FVCCJ8F+6X" julia> ca = CodeArea(code) CodeArea("8FVCCJ8F+6X", 47.4155+0.000125, 8.624875+0.000125, 10) julia> ca = decode(code) CodeArea("8FVCCJ8F+6X", 47.4155+0.000125, 8.624875+0.000125, 10) julia> println("# Center is lat=$(latitude_center(ca)), lon=$(longitude_center(ca))") # Center is lat=47.4155625, lon=8.6249375 julia> println("# extension of area is $(latitude_precision(ca) * 111321)x$(longitude_precision(ca) * 111321 * cosd(latitude_low(ca))) m") # extension of area is 13.915125x9.416042416499675 m julia> # Attempt to trim the first characters from a code: shorten("8FVC9G8F+6X", 47.5, 8.5) "9G8F+6X" julia> # Recover the full code from a short code: recover_nearest("9G8F+6X", 47.4, 8.6) "8FVC9G8F+6X" julia> recover_nearest("8F+6X", 47.4, 8.6) "8FVCCJ8F+6X" julia> area(ca) # area in m^2 131.03201149353194 julia> distance(ca, CodeArea("8FVC0000+")) # distance in meters 13296.381156694346 julia> latlong(CodeArea("9F000000+")) # center coordinates (60.0, 10.0) ``` © 2023 Klaus Crusius [gha-img]: https://github.com/KlausC/OpenLocationCode.jl/actions/workflows/CI.yml/badge.svg?branch=main [gha-url]: https://github.com/KlausC/OpenLocationCode.jl/actions/workflows/CI.yml?query=branch%3Amain [codecov-img]: https://codecov.io/gh/KlausC/OpenLocationCode.jl/branch/main/graph/badge.svg [codecov-url]: https://codecov.io/gh/KlausC/OpenLocationCode.jl
OpenLocationCode
https://github.com/KlausC/OpenLocationCode.jl.git
[ "MIT" ]
0.1.9
5f86727335b9896bc6f9fa81964a03174be91dbe
code
5298
module ChemicalIdentifiers const DATA_DB = Dict{Symbol,Any}() const DATA_INFO = Dict{Symbol,Any}() import UUIDs, Unicode, Downloads import Arrow import Scratch, Preferences export search_chemical download_cache = "" const PKG_UUID = parse(UUIDs.UUID,"fa4ea961-1416-484e-bda2-883ee1634ba5") """ function search_chemical(query,cache=cache=ChemicalIdentifiers.SEARCH_CACHE) Given a query, performs a search on a database of over 70000 common compounds from CalebBell/Chemicals, returning a Named Tuple with the identifiers of the substance in question. ## Examples ``` julia>using ChemicalIdentifiers julia>res = search_chemical("water") (pubchemid = 962, CAS = (7732, 18, 5), formula = "H2O", MW = 18.01528, smiles = "O", InChI = "H2O/h1H2", InChI_key = "XLYOFNOQVPJJNP-UHFFFAOYSA-N", iupac_nam e = "oxidane", common_name = "water") #worst case scenario, not found on the present databases julia> @btime search_chemical("dimethylpyruvic acid22",nothing) 273.700 μs (264 allocations: 15.05 KiB) missing #common compound found in the short database julia> @btime search_chemical("methane",nothing) 7.075 μs (57 allocations: 2.97 KiB) (pubchemid = 297, CAS = (74, 82, 8), formula = "CH4", MW = 16.04246, smiles = "C", InChI = "CH4/h1H4", InChI_key = "VNWKTOKETHGBQD-UHFFFAOYSA-N", iupac_name = "methane", common_name = "methane") ``` A query is usually a string and its type is detected automatically when possible. the supported query types are: ### PubChemID: By using any ``<:Integer` (or a string containing an Integer) ```julia julia> search_chemical(8003) (pubchemid = 8003, CAS = (109, 66, 0), formula = "C5H12", MW = 72.14878, smiles = "CCCCC", InChI = "C5H12/c1-3-5-4-2/h3-5H2,1-2H3", InChI_key = "OFBQJSOFQDEBGM-UHFFFAOYSA-N", iupac_name = "pentane", common_name = "pentane") ``` ### CAS registry number: By using a Tuple of integers or a string with the digits separated by `-` : ``` julia> search_chemical((67,56,1)) (pubchemid = 887, CAS = (67, 56, 1), formula = "CH4O", MW = 32.04186, smiles = "CO", InChI = "CH4O/c1-2/h2H,1H3", InChI_key = "OKKJLVBELUTLKV-UHFFFAOYSA-N", iupac_name = "methanol", common_name = "methanol") search_chemical((67,56,1),nothing) == search_chemical("67-56-1",nothing) #true ``` ### SMILES: By using a string starting with `SMILES=` : ``` julia> search_chemical("SMILES=N") (pubchemid = 222, CAS = (7664, 41, 7), formula = "H3N", MW = 17.03052, smiles = "N", InChI = "H3N/h1H3", InChI_key = "QGZKDVFQNNGYKY-UHFFFAOYSA-N", iupac_name = "azane", common_name = "ammonia") ``` ### InChI: By using a string starting with `InChI=1/` or `InChI=1S/` : ``` julia> search_chemical("InChI=1/C2H4/c1-2/h1-2H2") (pubchemid = 6325, CAS = (74, 85, 1), formula = "C2H4", MW = 28.05316, smiles = "C=C", InChI = "C2H4/c1-2/h1-2H2", InChI_key = "VGGSQFUCUMXWEO-UHFFFAOYSA-N", iupac_name = "ethene", common_name = "ethene") ``` ### InChI key: By using a string with the pattern `XXXXXXXXXXXXXX-YYYYYYYYFV-P`: ``` julia> search_chemical("IMROMDMJAWUWLK-UHFFFAOYSA-N") (pubchemid = 11199, CAS = (9002, 89, 5), formula = "C2H4O", MW = 44.05256, smiles = "C=CO", InChI = "C2H4O/c1-2-3/h2-3H,1H2", InChI_key = "IMROMDMJAWUWLK-UHFFFAOYSA-N", iupac_name = "ethenol", common_name = "ethenol") ``` Searches by CAS and PubChemID are a little bit faster thanks to being encoded as native numeric types, other properties are stores as strings. The package stores each query in `ChemicalIdentifiers.SEARCH_CACHE` as a `Dict{String,Any}`, so subsequent queries on the same (or similar) strings, dont pay the cost of searching in the database. If you don't want to store the query, you could use `search_chemical(query,nothing)`, or, if you want your own cache to be used, pass your own cache via `search_chemical(query,mycache)`. """ function search_chemical end include("data_script.jl") include("search_types.jl") include("search.jl") function _precompile_() ccall(:jl_generating_output, Cint, ()) == 1 || return nothing Base.precompile(search_id_impl,(Int,Symbol)) Base.precompile(search_id_impl,(String,Symbol)) Base.precompile(search_id_impl,(Tuple{Int32,Int16,Int16},Symbol)) Base.precompile(search_chemical_id,(AnyQuery,)) end function clear_download_cache!() Preferences.@set_preferences!("CLEAR_CACHE" => "true") @info("ChemicalIdentifiers.jl download cache has been marked for deletion; restart your Julia session for this change to take effect.") end function __init__() clear_cache = Preferences.@load_preference("CLEAR_CACHE","false") if clear_cache == "true" @info "deleting download cache..." Scratch.delete_scratch!(PKG_UUID,"databases") Preferences.@set_preferences!("CLEAR_CACHE" => "false") end global download_cache = Scratch.@get_scratch!("databases") url_short = "https://github.com/CalebBell/chemicals/raw/master/chemicals/Identifiers/chemical%20identifiers%20pubchem%20small.tsv" url_long = "https://github.com/CalebBell/chemicals/raw/master/chemicals/Identifiers/chemical%20identifiers%20pubchem%20large.tsv" load_data!(:short,url= url_short) load_data!(:long,url = url_long) load_db!(:short) load_db!(:long) return nothing end end
ChemicalIdentifiers
https://github.com/longemen3000/ChemicalIdentifiers.jl.git
[ "MIT" ]
0.1.9
5f86727335b9896bc6f9fa81964a03174be91dbe
code
5768
""" cas_parse(str) given a CAS number string, returns a tuple of 3 Int32 containing the CAS numbers, it performs no validation on the data """ function cas_parse(str) a1,a2,a3 = split(str,'-') n1 = parse(Int32,a1) n2 = parse(Int16,a2) n3 = parse(Int16,a3) return (n1,n2,n3) end function unique_idxs_sorted(vec) n = length(vec) res = zeros(Int,n) k = 1 res[1] = k @inbounds for i = 2:n if !isequal(vec[i],vec[i-1]) k+=1 res[k] = i end end resize!(res,k) return res end """ load_db!(dbtype::Symbol) downloads, processes and stores a database corresponding to the one with the same key stored in DATA_INFO """ function load_db!(dbtype::Symbol) data = DATA_INFO[dbtype] if !isfile(data.textdb) @info ":" * string(dbtype) * " database file not found, downloading from " * data.url url = data.url fname = data.textdb path = Downloads.download(url,fname) @info ":" * string(dbtype) * " database file downloaded." end path = data.textdb if !isfile(data.db) @info ":" * string(dbtype) * " arrow file not generated, processing..." arrow_db,arrow_synonym_db,arrow_sort_db =parse_and_write_db!(dbtype) else arrow_db = Arrow.Table(data.db) arrow_synonym_db = Arrow.Table(data.symsdb) arrow_sort_db = Arrow.Table(data.sorteddb) end DATA_DB[dbtype] = (arrow_db,arrow_synonym_db,arrow_sort_db) return arrow_db,arrow_synonym_db,arrow_sort_db end function parse_and_write_db!(dbtype::Symbol) data = DATA_INFO[dbtype] path = data.textdb i = 0 for _ in eachline(path) i +=1 end pubchemid = zeros(Int64,i) CAS = Vector{Tuple{Int32,Int16,Int16}}(undef,i) formula = Vector{String}(undef,i) MW = Vector{Float64}(undef,i) smiles = Vector{String}(undef,i) InChI = Vector{String}(undef,i) InChI_key = Vector{String}(undef,i) iupac_name = Vector{String}(undef,i) common_name = Vector{String}(undef,i) _synonyms = Vector{Vector{String}}(undef,i) i = 0 for line in eachline(path) i += 1 strs = line |> z->rstrip(z) |> z->split(z,'\t',limit=10) pubchemid[i] = parse(Int64,strs[1]) CAS[i] = cas_parse(strs[2]) formula[i] = strs[3] MW[i] = parse(Float64,strs[4]) smiles[i] = strs[5] InChI[i] = strs[6] InChI_key[i] = strs[7] iupac_name[i] = strs[8] common_name[i] = strs[9] if length(strs) >= 10 #not any synonyms sym_i = split(strs[10],('\t',';')) push!(sym_i,strs[8]) _synonyms[i] = sym_i else _synonyms[i] = String[strs[8]] end end syms_i = mapreduce(length,+,_synonyms) synonyms_list = Vector{String}(undef,syms_i) synonyms_index = Vector{Int}(undef,syms_i) #for some reason,some empty strings are generated as synonyms. #those are eliminated here. k = 0 for (ii,sym_vec) in pairs(_synonyms) for (jj,sym) in pairs(sym_vec) if !isempty(sym) k+=1 synonyms_list[k] = sym synonyms_index[k] = ii end end end resize!(synonyms_list,k) resize!(synonyms_index,k) pubchemid_sort =sortperm(pubchemid) CAS_sort = sortperm(CAS) formula_sort =sortperm(formula) MW_sort =sortperm(MW) smiles_sort =sortperm(smiles) InChI_sort =sortperm(InChI) InChI_key_sort =sortperm(InChI_key) iupac_name_sort =sortperm(iupac_name) common_name_sort =sortperm(common_name) synonyms_sort = sortperm(synonyms_list) list = synonyms_list[synonyms_sort] index = synonyms_index[synonyms_sort] #there is the posibility of repeated elements. #this is not present in CalebBell/chemicals because it uses a dict, so equal keys #store the same value list_unique_idx = unique_idxs_sorted(list) list = list[list_unique_idx] index = index[list_unique_idx] db = (;pubchemid, CAS, formula, MW, smiles, InChI, InChI_key, iupac_name, common_name) synonym_db = (;list,index) sort_db = (;pubchemid_sort, CAS_sort, formula_sort, MW_sort, smiles_sort, InChI_sort, InChI_key_sort, iupac_name_sort, common_name_sort) Arrow.write(data.db,db) Arrow.write(data.symsdb,synonym_db) Arrow.write(data.sorteddb,sort_db) arrow_db = Arrow.Table(data.db) arrow_synonym_db = Arrow.Table(data.symsdb) arrow_sort_db = Arrow.Table(data.sorteddb) return arrow_db,arrow_synonym_db,arrow_sort_db end """ load_data!(key::Symbol;url=nothing,file=nothing) generates and adds to the global DATA_INFO dict a new database. download and process this database with ´load_db(key)´ """ function load_data!(key::Symbol;url=nothing,file=nothing) if url == file == nothing throw(ArgumentError("a file or a url must be provided.")) elseif (url !== nothing) & (file !== nothing) throw(ArgumentError("a file or a url must be provided.")) elseif (url !== nothing) fname = joinpath(download_cache, "pubchem_" * string(key)) farrow = fname * ".arrow" fsyms = fname * "_synonyms.arrow" sorted = fname * "_sorted.arrow" data = (url=url,textdb=fname,db=farrow,symsdb=fsyms,sorteddb=sorted) else #file fname = file url = fname farrow = fname * ".arrow" fsyms = fname * "_synonyms.arrow" sorted = fname * "_sorted.arrow" data = (url=url,textdb=fname,db=farrow,symsdb=fsyms,sorteddb=sorted) end DATA_INFO[key] = data end #3 * x^0.7 - 2 * x + 1 #a,b,c,a #3,2,1,0.7 #= ax = bx-c c = (b-a)x =#
ChemicalIdentifiers
https://github.com/longemen3000/ChemicalIdentifiers.jl.git
[ "MIT" ]
0.1.9
5f86727335b9896bc6f9fa81964a03174be91dbe
code
9091
const SEARCH_CACHE = Dict{String,Any}() """ synonyms(query) Given a chemical search query, return the synonyms associated to that query. This function doesn't have any cache. # Examples: ```repl synonyms("water") ``` """ function synonyms(query) compound_id,key = search_chemical_id(detect_query(query)) return __synonyms(compound_id,key) end function __synonyms(idx,key) db,sdb = DATA_DB[key] return sdb.list[findall(isequal(idx),sdb.index)] end function build_result(idx,key) if idx == -1 return missing end db,sdb = DATA_DB[key] pubchemid= db.pubchemid[idx] CAS= db.CAS[idx] formula= db.formula[idx] MW= db.MW[idx] smiles= db.smiles[idx] InChI= db.InChI[idx] InChI_key= db.InChI_key[idx] iupac_name= db.iupac_name[idx] common_name= db.common_name[idx] return (;pubchemid, CAS, formula, MW, smiles, InChI, InChI_key, iupac_name, common_name) end function detect_query(id::String) if is_element(id) return ElementQuery(id) elseif is_cas(id) return CASQuery(id) elseif is_pubchemid(id) return PubChemIDQuery(id) elseif is_inchi(id) return InChIQuery(id) elseif is_inchikey(id) return InChIKeyQuery(id) elseif is_smiles(id) return SMILESQuery(id) else return AnyQuery(id) end end function detect_query(id::Int) return PubChemIDQuery(id) end detect_query(::Missing) = MissingQuery() function detect_query(id::Tuple{Integer,Integer,Integer}) return CASQuery(id) end function db_iteration_order(DB) #generating keys iteration order: user, short database, long database dbnames = [:short,:long] for k in keys(DATA_DB) if !(k in (:short,:long)) push!(dbnames,k) end end return dbnames end #string modifications to look for function modified_ids!(id_vector,id) #normalizes and removes any extra spaces normalized = replace(Unicode.normalize(id,casefold = true,stripmark=true),r"\s+" => " ") #if the normalized id is different than the input value if normalized != id push!(id_vector,normalized) normmalized_no_spaces = replace(normalized," "=>"") push!(id_vector,normmalized_no_spaces) normmalized_no_dashes = replace(normalized,"-"=>"") push!(id_vector,normmalized_no_dashes) normalized_no_spaces_no_dash = replace(normmalized_no_spaces,"-"=>"") push!(id_vector,normalized_no_spaces_no_dash) end no_spaces = replace(id," "=>"") push!(id_vector,no_spaces) no_dashes = replace(id,"-"=>"") push!(id_vector,no_dashes) no_spaces_no_dash = replace(no_spaces,"-"=>"") push!(id_vector,no_spaces_no_dash) return unique!(id_vector) end function search_chemical(query,cache=SEARCH_CACHE) if cache !== nothing #the base is that two chemicals with different casing should be the same. if query isa NTuple{3,Integer} ID = tuple_to_casstr(query) else ID = string(query) end if haskey(cache,ID) return cache[ID] end normalized_id = Unicode.normalize(ID,casefold = true,stripmark=true) if haskey(cache,normalized_id) return cache[normalized_id] end compound_id,key = search_chemical_id(detect_query(query)) res = build_result(compound_id,key) #return db.common_name[compound_id] cache[ID] = res cache[normalized_id] = res else compound_id,key = search_chemical_id(detect_query(query)) return build_result(compound_id,key) #return db.common_name[compound_id] end end function search_chemical_id(ID::AnyQuery;skip_common_name = false,try_strategies = true, original_query = "")::Tuple{Int,Symbol} #skip_common_name skips search on the common_name col compound_id = -1 id = value(ID) fail = (-1,:not_found) if original_query == id #this query has already been looked for. return fail end #set original_query. if original_query == "" original_query = id end search_done = false _keys = db_iteration_order(DATA_DB) for key in _keys db,sdb,sortdb = DATA_DB[key] if !skip_common_name searchvec = view(db.common_name,sortdb.common_name_sort) idx_sort = searchsorted(searchvec,id) if length(idx_sort) == 1 #found an element idx = only(sortdb.common_name_sort[idx_sort]) compound_id =idx search_done = true end end if !search_done idx = searchsorted(sdb.list,id) if length(idx) == 1 #found an element compound_id = only(sdb.index[idx]) search_done = true end end #found in db,returning search_done && return compound_id,key end #bail out here if requested !try_strategies && return fail #== result not found, trying same strategies as present in CalebBell/Chemicals #strategy 1: trying without spaces and dashs. ==# _ids = Vector{String}(undef,0) #adds unique modified variants, writes those variants in _ids modified_ids!(_ids,id) #those matches find chemicals of the form n-name #or 1-name if occursin(r"1-[A-Za-z]+",_ids[1]) | occursin(r"n-[A-Za-z]+",_ids[1]) modified_ids!(_ids,chop(id,head=2,tail=0)) end #propyl buthyl ether modified_ids!(_ids,replace(replace(id,"yl" => "yl "),r"\s+" => " ")) #remove initial lookup value filter!(!isequal(id),_ids) #remove original query value filter!(!isequal(original_query),_ids) for _id in _ids #we don't try strategies here, because adding characters leads stackoverflow in search compound_id,key = search_chemical_id(AnyQuery(_id),original_query = original_query,try_strategies = false) if compound_id !== -1 search_done = true break end end search_done && return compound_id,key #strategy 2: trying to match in the form 'water (H2O)' re = r"\w+\s+\([\s\w]+\)" if occursin(re,id) _id = id |> z->replace(z,")"=>"") |> z->split(z,"(") .|> strip id1,id2 = first(_id),last(_id) compound_id1,key1 = search_chemical_id(AnyQuery(id1),original_query = original_query) compound_id2,key2 = search_chemical_id(AnyQuery(id2),original_query = original_query) if (compound_id1 == compound_id2) & (key1==key2) search_done = true compound_id = compound_id2 key = key2 end end search_done && return compound_id,key #nothing has been found return fail end function search_chemical_id(ID::CASQuery)::Tuple{Int,Symbol} id = cas(ID) compound_id,key = search_id_impl(id,:CAS) if compound_id != -1 return compound_id,key end return search_chemical_id(AnyQuery(value(ID)),skip_common_name=true,try_strategies=false) end function search_chemical_id(ID::InChIKeyQuery)::Tuple{Int,Symbol} id = value(ID) return search_id_impl(id,:InChI_key) end function search_chemical_id(ID::PubChemIDQuery)::Tuple{Int,Symbol} id = id_num(ID) return search_id_impl(id,:pubchemid) end function search_chemical_id(ID::InChIQuery)::Tuple{Int,Symbol} id = value(ID) search_id_impl(id,:InChI) end function search_chemical_id(ID::SMILESQuery)::Tuple{Int,Symbol} id = value(ID) search_id_impl(id,:smiles) end function search_chemical_id(::MissingQuery) return -1,missing end arrowtype(::Type{Int}) = Arrow.Primitive{Int,Vector{Int}} arrowtype(::Type{String}) = Arrow.List{String, Int32, Vector{UInt8}} arrowtype(::Type{Tuple{Int32,Int16,Int16}}) = Arrow.Struct{Tuple{Int32, Int16, Int16}, Tuple{Arrow.Primitive{Int32, Vector{Int32}}, Arrow.Primitive{Int16, Vector{Int16}}, Arrow.Primitive{Int16, Vector{Int16}}}} function search_id_impl(id::T,k::Symbol)::Tuple{Int,Symbol} where {T} arrowT = arrowtype(T) return search_id_impl(id,k,arrowT) end function search_id_impl(id::T,sym::Symbol,::Type{A})::Tuple{Int,Symbol} where {T,A} compound_id::Int = -1 search_done = false dbnames = db_iteration_order(DATA_DB)::Vector{Symbol} for dbname in dbnames db,_,sortdb = DATA_DB[dbname] dbcol = getproperty(db,sym)::A sort_sym = Symbol(sym,:_sort) dbidx = getproperty(sortdb,sort_sym)::Arrow.Primitive{Int,Vector{Int}} searchvec = view(dbcol,dbidx) idxs = searchsorted(searchvec,id) if length(idxs) == 1 #found an element compound_id = only(dbidx[idxs])::Int search_done = true elseif length(idxs) > 1 throw("Search is not unique, multiple matches found for $id in database $dbname, on the $sym column") end if search_done return compound_id,dbname end end return compound_id,sym #to identify where it fails end
ChemicalIdentifiers
https://github.com/longemen3000/ChemicalIdentifiers.jl.git
[ "MIT" ]
0.1.9
5f86727335b9896bc6f9fa81964a03174be91dbe
code
3713
abstract type AbstractSearchQuery end struct CASQuery <: AbstractSearchQuery ID::String cas::Tuple{Int32,Int16,Int16} end function CASQuery(str::String) cas = cas_parse(str) return CASQuery(str,cas) end function CASQuery(val::NTuple{3,Integer}) n1 = val[1] n2 = val[2] n3 = val[3] @assert n1 >=0 @assert n2 >=0 @assert n3 >=0 v1 = convert(Int32,n1) v2 = convert(Int16,n2) v3 = convert(Int16,n3) cas = (v1,v2,v3) return CASQuery("",cas) end function tuple_to_casstr(n1,n2,n3) return string(n1) * "-" * string(n2) * "-" * string(n3) end tuple_to_casstr(val::NTuple{3,Integer}) = tuple_to_casstr(val...) cas(id::CASQuery) = id.cas struct InChIQuery <: AbstractSearchQuery ID::String end struct InChIKeyQuery <: AbstractSearchQuery ID::String end struct PubChemIDQuery <: AbstractSearchQuery ID::String val::Int end function PubChemIDQuery(str::String) val = parse(Int,str) @assert val >0 return PubChemIDQuery(str,val) end function PubChemIDQuery(val::Integer) @assert val >0 return PubChemIDQuery("",val) end id_num(ID::PubChemIDQuery) = ID.val struct SMILESQuery <: AbstractSearchQuery ID::String end struct FormulaQuery <: AbstractSearchQuery ID::String end struct ElementQuery <: AbstractSearchQuery ID::String end struct AnyQuery <: AbstractSearchQuery ID::String end struct MissingQuery <: AbstractSearchQuery end value(id::AbstractSearchQuery)::String = strip(id.ID) function value(id::SMILESQuery)::String id = strip(id.ID) return replace(id,"SMILES=" =>"") end function value(id::InChIQuery)::String id_raw = strip(id.ID) id_lower = lowercase(id_raw) re1 = r"^inchi=1s/" re2 = r"^inchi=1/" t1 = occursin(re1,id_lower) t2 = occursin(re2,id_lower) if t1 return chop(id_raw,head=9,tail=0) elseif t2 return chop(id_raw,head=8,tail=0) else throw("incorrect InChI passed") end end """ is_cas(str)::Bool check if a given string is a cas number and returns true or false accordingly. """ function is_cas(str) str = strip(str) #regex from https://gist.github.com/KhepryQuixote/00946f2f7dd5f89324d8#file-pypubchemxtractor-py-L22 cas_regex = r"^[1-9][0-9]{1,6}\\-[0-9]{2}\\-[0-9]$" return occursin(cas_regex,str) end """ is_inchi(str)::Bool check if a given string is an InChI name and returns true or false accordingly. """ function is_inchi(str) str = strip(str) #regex from https://chemistry.stackexchange.com/a/86892 inchi_regex = r"^InChI\=1S?\/[^\s]+(\s|$)" return occursin(inchi_regex,str) end """ is_inchikey(str)::Bool check if a given string is an InChI key and returns true or false accordingly. """ function is_inchikey(str) str = strip(str) #14(A-Z)-10(A-Z)-1(A-Z) inchikey_regex =r"[A-Z]{14}-[A-Z]{10}-[A-Z]{1}" return occursin(inchikey_regex,str) end """ is_element(str)::Bool check if a given string is an element symbol and returns true or false accordingly. """ function is_element(str) return false end """ is_pubchemid(str)::Bool check if a given string is a PubChem ID and returns true or false accordingly. A PubChem ID is a positive integer. """ function is_pubchemid(str) str = strip(str) res = tryparse(Int,str) if res === nothing return false elseif res <= 0 return false else return true end end """ is_smiles(str)::Bool check if a given string is an element symbol and returns true or false accordingly. """ function is_smiles(str) str = strip(str) str = uppercase(str) smiles_regex =r"^SMILES=" return occursin(smiles_regex,str) end
ChemicalIdentifiers
https://github.com/longemen3000/ChemicalIdentifiers.jl.git
[ "MIT" ]
0.1.9
5f86727335b9896bc6f9fa81964a03174be91dbe
code
563
using ChemicalIdentifiers using Test @testset "ChemicalIdentifiers.jl" begin res1 = search_chemical("water",nothing) res2 = search_chemical("SMILES=O",nothing) res3 = search_chemical("water (H2O)", nothing) @test res1.formula == res2.formula @test res1.formula == res3.formula @test ismissing(search_chemical("[3-(2,3-EPOXYPROXY)PROPYL]TRIMETHOXYSILANE",nothing)) @test ismissing(search_chemical(missing)) end @testset "issue #10" begin @test !ismissing(search_chemical("propyl ethylether ",nothing)) #spurious spaces end
ChemicalIdentifiers
https://github.com/longemen3000/ChemicalIdentifiers.jl.git
[ "MIT" ]
0.1.9
5f86727335b9896bc6f9fa81964a03174be91dbe
docs
5414
# ChemicalIdentifiers.jl [![Build Status](https://github.com/longemen3000/ChemicalIdentifiers.jl/workflows/CI/badge.svg)](https://github.com/longemen3000/ChemicalIdentifiers.jl/actions) A chemical identifiers search package, using the databases present at CalebBell/chemicals. ## Instalation: ``` using Pkg Pkg.add("ChemicalIdentifiers.jl") ``` The databases are downloaded, parsed, processed and stored as Apache Arrow files at the first package usage, so the first usage may take some time. ## Usage This package exports `search_chemical`, that, given a search string, performs a search on a database of over 70000 compounds, returning a Named Tuple with the identifiers of the substance in question. ``` julia>using ChemicalIdentifiers julia> res = search_chemical("water") (pubchemid = 962, CAS = (7732, 18, 5), formula = "H2O", MW = 18.01528, smiles = "O", InChI = "H2O/h1H2", InChI_key = "XLYOFNOQVPJJNP-UHFFFAOYSA-N", iupac_name = "oxidane", common_name = "water") #worst case scenario, not found on the present databases julia> @btime search_chemical("dimethylpyruvic acid22",nothing) 273.700 μs (264 allocations: 15.05 KiB) missing #common compound found in the short database julia> @btime search_chemical("methane",nothing) 7.075 μs (57 allocations: 2.97 KiB) (pubchemid = 297, CAS = (74, 82, 8), formula = "CH4", MW = 16.04246, smiles = "C", InChI = "CH4/h1H4", InChI_key = "VNWKTOKETHGBQD-UHFFFAOYSA-N", iupac_name = "methane", common_name = "methane") ``` A query is usually a string and its type is detected automatically when possible. the supported query types are: - **PubChemID**: by using any ``<:Integer`(or a string containing an Integer) ``` julia> search_chemical(8003) (pubchemid = 8003, CAS = (109, 66, 0), formula = "C5H12", MW = 72.14878, smiles = "CCCCC", InChI = "C5H12/c1-3-5-4-2/h3-5H2,1-2H3", InChI_key = "OFBQJSOFQDEBGM-UHFFFAOYSA-N", iupac_name = "pentane", common_name = "pentane") ``` - **CAS registry number**:by using a Tuple of integers or a string with the digits separated by `-` : ``` julia> search_chemical((67,56,1)) (pubchemid = 887, CAS = (67, 56, 1), formula = "CH4O", MW = 32.04186, smiles = "CO", InChI = "CH4O/c1-2/h2H,1H3", InChI_key = "OKKJLVBELUTLKV-UHFFFAOYSA-N", iupac_name = "methanol", common_name = "methanol") search_chemical((67,56,1),nothing) == search_chemical("67-56-1",nothing) #true ``` - **SMILES**: by using a string starting with `SMILES=` : ``` julia> search_chemical("SMILES=N") (pubchemid = 222, CAS = (7664, 41, 7), formula = "H3N", MW = 17.03052, smiles = "N", InChI = "H3N/h1H3", InChI_key = "QGZKDVFQNNGYKY-UHFFFAOYSA-N", iupac_name = "azane", common_name = "ammonia") ``` - **InChI** : by using a string starting with `InChI=1/` or `InChI=1S/` : ``` julia> search_chemical("InChI=1/C2H4/c1-2/h1-2H2") (pubchemid = 6325, CAS = (74, 85, 1), formula = "C2H4", MW = 28.05316, smiles = "C=C", InChI = "C2H4/c1-2/h1-2H2", InChI_key = "VGGSQFUCUMXWEO-UHFFFAOYSA-N", iupac_name = "ethene", common_name = "ethene") ``` - **InChI key** : by using a string with the pattern `XXXXXXXXXXXXXX-YYYYYYYYFV-P`: ``` julia> search_chemical("IMROMDMJAWUWLK-UHFFFAOYSA-N") (pubchemid = 11199, CAS = (9002, 89, 5), formula = "C2H4O", MW = 44.05256, smiles = "C=CO", InChI = "C2H4O/c1-2-3/h2-3H,1H2", InChI_key = "IMROMDMJAWUWLK-UHFFFAOYSA-N", iupac_name = "ethenol", common_name = "ethenol") ``` Searches by CAS and PubChemID are a little bit faster thanks to being encoded as native numeric types, other properties are stored as strings. The package stores each query in `ChemicalIdentifiers.SEARCH_CACHE` as a `Dict{String,Any}`, so subsequent queries on the same (or similar) strings, dont pay the cost of searching in the database. If you don't want to store the query, you could use `search_chemical(query,nothing)`, or, if you want your own cache to be used, pass your own cache via `search_chemical(query,mycache)`. ## Custom Databases If you want to add your own databases, you could use the (unexported) data utilities to do so. lets say we also want to add the inorganic database located at https://github.com/CalebBell/chemicals/blob/master/chemicals/Identifiers/Inorganic%20db.tsv. we could do: ``` using ChemicalIdentifiers inorganic_url = "https://github.com/CalebBell/chemicals/blob/master/chemicals/Identifiers/Inorganic%20db.tsv" ChemicalIdentifiers.load_data!(:inorganic,url = inorganic_url) ChemicalIdentifiers.load_db!(:inorganic) ``` or if you already have a local database: ``` using ChemicalIdentifiers filepath = "path/to/my/db.tsv" ChemicalIdentifiers.load_data!(:custom,file = filepath) ChemicalIdentifiers.load_db!(:custom) ``` `ChemicalIdentifiers.load_data!` will generate a named tuple of file paths (stored in `ChemicalIdentifiers.DATA_INFO`), and `ChemicalIdentifiers.load_db!` will use that data to generate the corresponding Apache Arrow files and store those in a [scratch](https://github.com/JuliaPackaging/Scratch.jl) space (`ChemicalIdentifiers.download_cache`). This download cache can be cleaned (in case a download goes wrong) with `ChemicalIdentifiers.clear_download_cache!()` The raw databases are then stored in `ChemicalIdentifiers.DATA_DB`. if the data was already processed, then the arrow files are read directly, saving significant loading time. In case of adding user databases, those are searched first, so there is a possibility of collision.
ChemicalIdentifiers
https://github.com/longemen3000/ChemicalIdentifiers.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
757
using Documenter, PowerModelsAnalytics makedocs( modules = [PowerModelsAnalytics], format = Documenter.HTML(analytics = "", mathengine = Documenter.MathJax()), sitename = "PowerModelsAnalytics", authors = "David M Fobes, Carleton Coffrin, and contributors.", pages = [ "Home" => "index.md", "Manual" => [ "Getting Started" => "quickguide.md" ], "Library" => [ "Functions" => "library.md", # "Graphs" => "graphs.md", # "Plots" => "plots.md", # "Layouts" => "layouts.md" ], "Developer" => [ "Developer" => "developer.md" ], ] ) deploydocs( repo = "github.com/lanl-ansi/PowerModelsAnalytics.jl.git", )
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
1061
module PowerModelsAnalytics import LightGraphs import Vega import Setfield: @set! import Colors import Colors: @colorant_str import ColorVectorSpace import LinearAlgebra: norm import Random: rand import Statistics: mean, std import Compat: isnothing import PyCall const nx = PyCall.PyNULL() const scipy = PyCall.PyNULL() function __init__() copy!(nx, PyCall.pyimport_conda("networkx", "networkx")) copy!(scipy, PyCall.pyimport_conda("scipy", "scipy")) end include("core/types.jl") # must be first to properly define new types include("core/options.jl") include("core/data.jl") include("core/parameters.jl") include("vega/default_specs.jl") include("graph/common.jl") include("graph/metrics.jl") include("layouts/common.jl") include("layouts/networkx.jl") include("plots/graph.jl") include("plots/analytics.jl") include("plots/networks.jl") include("core/export.jl") # must be last to properly export all functions end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
7440
"converts nan values to 0.0" _convert_nan(x) = isnan(x) ? 0.0 : x _replace_nan(v) = map(x -> isnan(x) ? zero(x) : x, v) "Returns true if InfrastructureGraph `graph` has a `property` on an edge or a node `obj`" function hasprop(graph::InfrastructureGraph{T}, obj::Union{Int,LightGraphs.AbstractEdge}, property::Symbol) where T <: LightGraphs.AbstractGraph if haskey(graph.metadata, obj) return haskey(graph.metadata[obj], property) else return false end end "Sets a `property` in the metadata at `key` of `graph` on `obj`" function set_property!(graph::InfrastructureGraph{T}, obj::Union{Int,LightGraphs.AbstractEdge}, key::Symbol, property::Any) where T <: LightGraphs.AbstractGraph if !haskey(graph.metadata, obj) graph.metadata[obj] = Dict{Symbol,Any}() end graph.metadata[obj][key] = property end "Sets multiple `properties` in the metadata of `graph` on `obj` at `key`" function set_properties!(graph::InfrastructureGraph{T}, obj::Union{Int,LightGraphs.AbstractEdge}, properties::Dict{Symbol,<:Any}) where T <: LightGraphs.AbstractGraph if !haskey(graph.metadata, obj) graph.metadata[obj] = Dict{Symbol,Any}() end merge!(graph.metadata[obj], properties) end "Gets the property in the metadata of `graph` on `obj` at `key`. If property doesn't exist, returns `default`" function get_property(graph::InfrastructureGraph{T}, obj::Union{Int,LightGraphs.AbstractEdge}, key::Symbol, default::Any) where T <: LightGraphs.AbstractGraph return get(get(graph.metadata, obj, Dict{Symbol,Any}()), key, default) end "Adds an edge defined by `i` & `j` to `graph`" function add_edge!(graph::InfrastructureGraph{T}, i::Int, j::Int) where T <: LightGraphs.AbstractGraph LightGraphs.add_edge!(graph.graph, i, j) end "Returns an iterator of all of the nodes/vertices in `graph`" function vertices(graph::InfrastructureGraph{T}) where T <: LightGraphs.AbstractGraph return LightGraphs.vertices(graph.graph) end "Returns an iterator of all the edges in `graph`" function edges(graph::InfrastructureGraph{T}) where T <: LightGraphs.AbstractGraph return LightGraphs.edges(graph.graph) end "Returns all of the metadata for `obj` in `graph`" function properties(graph::InfrastructureGraph{T}, obj::Union{Int,LightGraphs.AbstractEdge}) where T <: LightGraphs.AbstractGraph return get(graph.metadata, obj) end "" function identify_blocks(case::Dict{String,<:Any}; node_settings::Dict{String,<:Any}=default_node_settings_math, edge_settings::Dict{String,<:Any}=default_edge_settings_math)::Dict{Int,Set{Any}} cc = calc_connected_components(case; node_settings=node_settings, edge_settings=edge_settings) return Dict{Int,Set{Any}}(i => s for (i,s) in enumerate(cc)) end "" function calc_connected_components(data::Dict{String,<:Any}; node_settings::Dict{String,<:Any}=default_node_settings_math, edge_settings::Dict{String,<:Any}=default_edge_settings_math)::Set{Set{Any}} if Int(get(data, "data_model", 1)) == 0 if node_settings == default_node_settings_math node_settings = default_node_settings_eng end if edge_settings == default_edge_settings_math edge_settings = default_edge_settings_eng end end active_node = Dict{Any,Dict{String,Any}}(x for x in data[get(node_settings, "node", "bus")] if Int(x.second[get(node_settings, "disabled", "bus_type" => 4)[1]]) != get(node_settings, "disabled", "bus_type" => 4)) active_node_ids = Set{Any}([i for (i,node) in active_node]) neighbors = Dict{Any,Vector{Any}}(i => [] for i in active_node_ids) for (type, settings) in edge_settings for (id, obj) in get(data, type, Dict{Any,Dict{String,Any}}()) (disabled_key, disabled_value) = get(settings, "disabled", "status" => 0) (open_key, open_value) = get(settings, "open", "state" => 0) f_key = get(settings, "fr_node", "f_bus") t_key = get(settings, "to_node", "t_bus") nodes_key = get(settings, "nodes", "") status = Int(get(obj, disabled_key, 1)) != disabled_value && Int(get(obj, open_key, 1)) != open_value if status if !isempty(nodes_key) && haskey(obj, nodes_key) edges_set = Set{Any}() for f_node in obj[nodes_key] for t_node in obj[nodes_key] if f_node != t_node push!(edges_set, Set([f_node, t_node])) end end end for (f_node, t_node) in edges_set push!(neighbors["$f_node"], "$t_node") push!(neighbors["$t_node"], "$f_node") end else push!(neighbors["$(obj[f_key])"], "$(obj[t_key])") push!(neighbors["$(obj[t_key])"], "$(obj[f_key])") end end end end component_lookup = Dict(i => Set{Any}([i]) for i in active_node_ids) touched = Set{Any}() for i in active_node_ids if !(i in touched) _cc_dfs(i, neighbors, component_lookup, touched) end end ccs = (Set(values(component_lookup))) return ccs end "DFS on a graph" function _cc_dfs(i, neighbors, component_lookup, touched) push!(touched, i) for j in neighbors[i] if !(j in touched) for k in component_lookup[j] push!(component_lookup[i], k) end for k in component_lookup[j] component_lookup[k] = component_lookup[i] end _cc_dfs(j, neighbors, component_lookup, touched) end end end """ `ans = is_active` Determines if block is "active", e.g. energized, based on criteria in `sources` Arguements: `case::Dict{String,<:Any}`: Network case `block::Set{<:Any}`: block of node ids `sources::Dict{String,<:Dict{String,<:Any}}`: sources with settings that define criteria for active Returns: `ans::Bool` """ function is_active(case::Dict{String,<:Any}, block::Set{<:Any}; sources::Dict{String,<:Any}=default_sources_math)::Bool if Int(get(case, "data_model", 1)) == 0 && sources == default_sources_math sources = default_sources_eng end for node in block for (type,settings) in sources node_key = get(settings, "node", "bus") (disabled_key, disabled_value) = get(settings, "disabled", "status" => 0) (inactive_real_key, inactive_real_value) = get(settings, "inactive_real", "" => 0) (inactive_imaginary_key, inactive_imaginary_value) = get(settings, "inactive_imaginary", "" => 0) for (_,obj) in get(case, type, Dict{Any,Dict{String,Any}}()) if node == obj[node_key] && isa(obj[disabled_key], Enum) ? Int(obj[disabled_key]) != disabled_value : obj[disabled_key] != disabled_value if (!isempty(inactive_real_key) && haskey(obj, inactive_real_key) && any(obj[inactive_real_key] .!= inactive_real_value)) || (!isempty(inactive_imaginary_key) && haskey(obj, inactive_imaginary_key) && any(obj[inactive_imaginary_key] .!= inactive_imaginary_value)) return true end end end end end return false end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
780
# PowerModelsAnalytics exports everything except internal symbols, which are defined as # those whose name starts with an underscore. If you don't want all of these # symbols in your environment, then use `import PowerModelsAnalytics` instead of # `using PowerModelsAnalytics`. # Do not add PowerModelsAnalytics-defined symbols to this exclude list. Instead, rename # them with an underscore. const _EXCLUDE_SYMBOLS = [Symbol(@__MODULE__), :eval, :include] for sym in names(@__MODULE__, all=true) sym_string = string(sym) if sym in _EXCLUDE_SYMBOLS || startswith(sym_string, "_") continue end if !(Base.isidentifier(sym) || (startswith(sym_string, "@") && Base.isidentifier(sym_string[2:end]))) continue end @eval export $sym end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
7499
"Default plot colors, including all supported component variations" const default_colors = Dict{String,Colors.Colorant}( "enabled open free edge" => colorant"gold", "enabled open fixed edge" => colorant"red", "enabled closed free edge" => colorant"green", "enabled closed fixed edge" => colorant"black", "disabled open fixed edge" => colorant"orange", "disabled open free edge" => colorant"orange", "disabled closed fixed edge" => colorant"orange", "disabled closed free edge" => colorant"orange", "connector" => colorant"lightgrey", "enabled active extra node" => colorant"cyan", "enabled inactive extra node" => colorant"orange", "disabled inactive extra node" => colorant"red", "disabled active extra node" => colorant"red", "enabled node wo demand" => colorant"darkgrey", "disabled node wo demand" => colorant"grey95", "enabled node w demand" => colorant"green3", "disabled node w demand" => colorant"gold", ) "default color range for partially loaded buses" const default_demand_color_range = Colors.range(default_colors["disabled node w demand"], default_colors["enabled node w demand"], length=11) "default edge types for eng data structure" const default_edge_settings_eng = Dict{String,Any}( "line" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "status" => 0, ), "transformer" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "nodes" => "bus", "disabled" => "status" => 0, ), "switch" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "status" => 0, "open" => "state" => 0, "dispatchable" => "dispatchable" => 1, ) ) "default edge types for math data structure (PowerModels, PowerModelsDistribution" const default_edge_settings_math = Dict{String,Any}( "branch" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "br_status" => 0, ), "transformer" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "br_status" => 0, ), "dcline" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "br_status" => 0, ), "switch" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "status" => 0, ) ) "default edge type between blocks (PowerModels, PowerModelsDistribution" const default_block_connectors = Dict{String,Any}( "switch" => Dict{String,Any}( "fr_node" => "f_bus", "to_node" => "t_bus", "disabled" => "status" => 0, ), ) "default node object to plot for eng data structure (PowerModelsDistribution)" const default_extra_nodes_eng = Dict{String,Any}( "generator" => Dict{String,Any}( "node" => "bus", "label" => "~", "size" => "pg", "inactive_real" => "pg" => 0, "inactive_imaginary" => "qg" => 0, ), "solar" => Dict{String,Any}( "node" => "bus", "label" => "!", "size" => "pg", "inactive_real" => "pg" => 0, "inactive_imaginary" => "qg" => 0, ), "storage" => Dict{String,Any}( "node" => "bus", "label" => "S", "size" => "ps", "inactive_real" => "ps" => 0, "inactive_imaginary" => "qs" => 0, ), "voltage_source" => Dict{String,Any}( "node" => "bus", "label" => "V", "size" => "pg", "inactive_real" => "pg" => 0, "inactive_imaginary" => "qg" => 0, ) ) "default node object to plot for math data structure (PowerModels, PowerModelsDistribution)" const default_extra_nodes_math = Dict{String,Any}( "gen" => Dict{String,Any}( "node" => "gen_bus", "label" => "~", "size" => "pg", "inactive_real" => "pg" => 0, "inactive_imaginary" => "qg" => 0 ), "storage" => Dict{String,Any}( "node" => "storage_bus", "label" => "S", "size" => "ps", "inactive_real" => "ps", "inactive_imaginary" => "qs" ) ) "default node information for math model (PowerModels, PowerModelsDistribution)" const default_node_settings_math = Dict{String,Any}( "node" => "bus", "disabled" => "bus_type" => 4, "x" => "lon", "y" => "lat", ) "default node information for eng model (PowerModelsDistribution)" const default_node_settings_eng = Dict{String,Any}( "node" => "bus", "disabled" => "status" => 0, "x" => "lon", "y" => "lat" ) "default sources (generators) for the math model (PowerModels,PowerModelsDistribution)" const default_sources_math = Dict{String,Any}( "gen" => Dict{String,Any}( "node" => "gen_bus", "disabled" => "gen_status" => 0, "inactive_real" => "pg" => 0, "inactive_imaginary" => "qg" => 0, ), "storage" => Dict{String,Any}( "node" => "storage_bus", "disabled" => "storage_status" => 0, "inactive_real" => "ps" => 0, "inactive_imaginary" => "qs" => 0, ) ) "default sources (generators) for the eng model (PowerModelsDistribution)" const default_sources_eng = Dict{String,Any}( "generator" => Dict{String,Any}( "node" => "bus", "disabled" => "status" => 0, "inactive_real" => "pg" => 0, "inactive_imaginary" => "qg" => 0, ), "storage" => Dict{String,Any}( "node" => "bus", "disabled" => "status" => 0, "inactive_real" => "ps" => 0, "inactive_imaginary" => "qs" => 0, ), "solar" => Dict{String,Any}( "node" => "bus", "disabled" => "status" => 0, "inactive_real" => "pg" => 0, "inactive_imaginary" => "pg" => 0, ), "voltage_source" => Dict{String,Any}( "node" => "bus", "disabled" => "status" => 0, "inactive_real" => "pg" => 0, "inactive_imaginary" => "pg" => 0, ), ) "default demands (loads) for eng model (PowerModelsDistribution)" const default_demands_eng = Dict{String,Any}( "load" => Dict{String,Any}( "node" => "bus", "disabled" => "status" => 0, "inactive_real" => "pd" => 0, "inactive_imaginary" => "qd" => 0, "original_demand_real" => "pd_nom", "original_demand_imaginary" => "qd_nom", "status" => "status" ) ) "default demands (loads) for math model (PowerModels, PowerModelsDistribution)" const default_demands_math = Dict{String,Any}( "load" => Dict{String,Any}( "node" => "load_bus", "disabled" => "load_status" => 0, "inactive_real" => "pd" => 0, "inactive_imaginary" => "qd" => 0, "status" => "status" ) ) "default dpi of plots" const default_plot_dpi = 100 "default size of plots in pixels" const default_plot_size = Tuple{Int,Int}((600,600)) "default fontsize in pt" const default_fontsize = 10 "default fontcolor" const default_fontcolor = :black "default fontfamily" const default_fontfamily = "Times" "default text alignemtn" const default_textalign = :center "default upper and lower bound of the size of nodes" const default_node_size_limits = Vector{Real}([2, 2.5]) "default upper and lower bound of the width of edges" const default_edge_width_limits = Vector{Real}([0.5, 0.75]) "default spring constant for spring_layout" const default_spring_constant = 1e-2
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
11546
### Checks parameters in PowerModels components ### "" function parameter_check_summary(data::Dict{String,Any}) if get(data, "multinetwork", false) error("parameter_check_summary does not yet support multinetwork data") end if haskey(data, "conductors") error("parameter_check_summary does not yet support multiconductor data") end if !(haskey(data, "per_unit") && data["per_unit"]) error("parameter_check_summary requires data in per_unit") end messages = Dict{String,Any}() messages["bus"] = _parameter_check_bus(data) messages["load"] = _parameter_check_load(data) messages["shunt"] = _parameter_check_shunt(data) messages["gen"] = _parameter_check_gen(data) messages["branch"] = _parameter_check_branch(data) messages["network"] = _parameter_check_network(data) return messages end "" function _parameter_check_bus(data::Dict{String,Any}) messages = Dict{Symbol,Set{Int}}() messages[:vm_bounds] = Set{Int}() messages[:vm_start] = Set{Int}() messages[:ref_bus] = Set{Int}() for (i,bus) in data["bus"] index = bus["index"] if bus["vmin"] <= 0.8 || bus["vmax"] >= 1.2 Memento.warn(LOGGER, "bus $(i) voltage magnitude bounds $(bus["vmin"]) - $(bus["vmax"]) are out side of typical bounds 0.8 - 1.2") push!(messages[:vm_bounds], index) end if bus["vm"] < bus["vmin"] || bus["vm"] > bus["vmax"] Memento.warn(LOGGER, "bus $(i) voltage magnitude start is not within given bounds $(bus["vmin"]) - $(bus["vmax"])") push!(messages[:vm_start], index) end if bus["bus_type"] == 3 && !isapprox(bus["va"], 0.0) Memento.warn(LOGGER, "reference bus $(i) voltage angle start is not zero $(bus["va"])") push!(messages[:ref_bus], index) end end return messages end "" function _parameter_check_load(data::Dict{String,Any}) messages = Dict{Symbol,Set{Int}}() messages[:p_source] = Set{Int}() messages[:q_source] = Set{Int}() for (i,load) in data["load"] index = load["index"] if load["pd"] < 0.0 Memento.warn(LOGGER, "load $(i) is acting as an active power source") push!(messages[:p_source], index) end if load["qd"] < 0.0 Memento.warn(LOGGER, "load $(i) is acting as a reactive power source") push!(messages[:q_source], index) end end return messages end "" function _parameter_check_shunt(data::Dict{String,Any}) messages = Dict{Symbol,Set{Int}}() messages[:sign_mismatch] = Set{Int}() for (i,shunt) in data["shunt"] index = shunt["index"] if shunt["gs"] < 0.0 && shunt["bs"] < 0.0 || shunt["gs"] > 0.0 && shunt["bs"] > 0.0 Memento.warn(LOGGER, "shunt $(i) admittance has matching signs $(shunt["gs"] + shunt["bs"]im)") push!(messages[:sign_mismatch], index) end end return messages end "" function _parameter_check_gen(data::Dict{String,Any}) messages = Dict{Symbol,Set{Int}}() messages[:p_demand] = Set{Int}() messages[:qg_bounds_nonzero] = Set{Int}() messages[:qg_bounds_large] = Set{Int}() messages[:qg_bounds_shape] = Set{Int}() messages[:cost_negative] = Set{Int}() for (i,gen) in data["gen"] index = gen["index"] max_pg_mag = max(abs(gen["pmin"]), abs(gen["pmax"])) if gen["pmin"] < 0.0 Memento.warn(LOGGER, "generator $(i) can behave as an active power demand") push!(messages[:p_demand], index) end if gen["qmin"] > 0.0 || gen["qmax"] < 0.0 Memento.warn(LOGGER, "generator $(i) reactive power bounds $(gen["qmin"]) - $(gen["qmax"]) do not include 0.0") push!(messages[:qg_bounds_nonzero], index) end # filter out reactive support devices if !isapprox(max_pg_mag, 0.0) if abs(gen["qmin"]) > max_pg_mag || abs(gen["qmax"]) > max_pg_mag Memento.warn(LOGGER, "generator $(i) reactive power capabilities $(gen["qmin"]) - $(gen["qmax"]) exceed active power capabilities $(gen["pmin"]) - $(gen["pmax"])") push!(messages[:qg_bounds_large], index) end if gen["qmin"] < -max_pg_mag/12.0 && gen["qmax"] > max_pg_mag/4.0 Memento.warn(LOGGER, "generator $(i) reactive power capabilities $(gen["qmin"]) - $(gen["qmax"]) to do not match the 1/12 - 1/4 rule of active power capabilities $(max_pg_mag)") push!(messages[:qg_bounds_shape], index) end end if haskey(gen, "model") && haskey(gen, "cost") if gen["model"] == 1 else @assert gen["model"] == 2 if any(x < 0 for x in gen["cost"]) Memento.warn(LOGGER, "generator $(i) has negative cost coefficients $(gen["cost"])") push!(messages[:cost_negative], index) end end end end return messages end "" function _parameter_check_branch(data::Dict{String,Any}) messages = Dict{Symbol,Set{Int}}() messages[:mva_decreasing] = Set{Int}() messages[:mva_redundant_15d] = Set{Int}() messages[:mva_redundant_30d] = Set{Int}() messages[:impedance] = Set{Int}() messages[:reactance] = Set{Int}() messages[:admittance_fr] = Set{Int}() messages[:admittance_to] = Set{Int}() messages[:basekv_line] = Set{Int}() messages[:rx_ratio_line] = Set{Int}() messages[:bx_fr_ratio] = Set{Int}() messages[:bx_to_ratio] = Set{Int}() messages[:basekv_xfer] = Set{Int}() messages[:rx_ratio_xfer] = Set{Int}() messages[:tm_range] = Set{Int}() messages[:ta_range] = Set{Int}() bus_lookup = Dict(bus["index"] => bus for (i,bus) in data["bus"]) for (i,branch) in data["branch"] index = branch["index"] rate_a = branch["rate_a"] rate_b = haskey(branch, "rate_b") ? branch["rate_b"] : rate_a rate_c = haskey(branch, "rate_c") ? branch["rate_c"] : rate_a basekv_fr = bus_lookup[branch["f_bus"]]["base_kv"] basekv_to = bus_lookup[branch["t_bus"]]["base_kv"] if rate_a > rate_b || rate_b > rate_c Memento.warn(LOGGER, "branch $(i) thermal limits are decreasing") push!(messages[:mva_decreasing], index) end # epsilon of 0.05 accounts for rounding in data rate_ub_15 = _compute_mva_ub(branch, bus_lookup, 0.261798) if rate_ub_15 < rate_a - 0.05 Memento.warn(LOGGER, "branch $(i) thermal limit A $(rate_a) is redundant with a 15 deg. angle difference $(rate_ub_15)") push!(messages[:mva_redundant_15d], index) end # epsilon of 0.05 accounts for rounding in data rate_ub_30 = _compute_mva_ub(branch, bus_lookup, 0.523598) if rate_ub_30 < rate_a - 0.05 Memento.warn(LOGGER, "branch $(i) thermal limit A $(rate_a) is redundant with a 30 deg. angle difference $(rate_ub_30)") push!(messages[:mva_redundant_30d], index) end if branch["br_r"] < 0.0 || branch["br_x"] < 0.0 Memento.warn(LOGGER, "branch $(i) impedance $(branch["br_r"] + branch["br_x"]im) is non-positive") push!(messages[:impedance], index) end if branch["g_fr"] > 0.0 || branch["b_fr"] < 0.0 Memento.warn(LOGGER, "branch $(i) from-side admittance $(branch["g_fr"] + branch["b_fr"]im) signs may be incorrect") push!(messages[:admittance_fr], index) end if branch["g_to"] > 0.0 || branch["b_to"] < 0.0 Memento.warn(LOGGER, "branch $(i) to-side admittance $(branch["g_to"] + branch["b_to"]im) signs may be incorrect") push!(messages[:admittance_to], index) end if isapprox(branch["br_x"], 0.0) Memento.warn(LOGGER, "branch $(i) reactance $(branch["br_x"]) is zero") push!(messages[:reactance], index) continue end rx_ratio = abs(branch["br_r"]/branch["br_x"]) if !branch["transformer"] # branch specific checks if !isapprox(basekv_fr, basekv_to) Memento.warn(LOGGER, "branch $(i) base kv values are different $(basekv_fr) - $(basekv_to)") push!(messages[:basekv_line], index) end if rx_ratio >= 0.5 Memento.warn(LOGGER, "branch $(i) r/x ratio $(rx_ratio) is above 0.5") push!(messages[:rx_ratio_line], index) end if !isapprox(branch["b_fr"], 0.0) bx_ratio = abs(branch["b_fr"]/branch["br_x"]) if bx_ratio > 0.5 || bx_ratio < 0.04 Memento.warn(LOGGER, "branch $(i) from-side b/x ratio $(bx_ratio) is outside the range 0.04 - 0.5") push!(messages[:bx_fr_ratio], index) end end if !isapprox(branch["b_to"], 0.0) bx_ratio = abs(branch["b_to"]/branch["br_x"]) if bx_ratio > 0.5 || bx_ratio < 0.04 Memento.warn(LOGGER, "branch $(i) to-side b/x ratio $(bx_ratio) is outside the range 0.04 - 0.5") push!(messages[:bx_to_ratio], index) end end else # transformer specific checks if isapprox(basekv_fr, basekv_to) Memento.warn(LOGGER, "transformer branch $(i) base kv values are the same $(basekv_fr) - $(basekv_to)") push!(messages[:basekv_xfer], index) end if rx_ratio >= 0.05 Memento.warn(LOGGER, "transformer branch $(i) r/x ratio $(rx_ratio) is above 0.05") push!(messages[:rx_ratio_xfer], index) end if branch["tap"] < 0.9 || branch["tap"] > 1.1 Memento.warn(LOGGER, "transformer branch $(i) tap ratio $(branch["tap"]) is out side of the nominal range 0.9 - 1.1") push!(messages[:tm_range], index) end if branch["shift"] < -0.174533 || branch["shift"] > 0.174533 Memento.warn(LOGGER, "transformer branch $(i) phase shift $(branch["shift"]) is out side of the range -0.174533 - 0.174533") push!(messages[:ta_range], index) end end end return messages end "" function _compute_mva_ub(branch::Dict{String,Any}, bus_lookup, vad_bound::Real) vad_max = max(abs(branch["angmin"]), abs(branch["angmax"])) if vad_bound > vad_max Memento.info(LOGGER, "given vad bound $(vad_bound) is larger than branch vad max $(vad_max)") end vad_max = vad_bound if vad_max > pi error(LOGGER, "compute_mva_ub does not support vad bounds larger than pi, given $(vad_max)") end r = branch["br_r"] x = branch["br_x"] z = r + im * x y = 1/z y_mag = abs(y) fr_vm_max = bus_lookup[branch["f_bus"]]["vmax"] to_vm_max = bus_lookup[branch["t_bus"]]["vmax"] vm_max = max(fr_vm_max, to_vm_max) c_max = sqrt(fr_vm_max^2 + to_vm_max^2 - 2*fr_vm_max*to_vm_max*cos(vad_max)) rate_ub = y_mag*vm_max*c_max end "" function _parameter_check_network(data::Dict{String,Any}) messages = Dict{Symbol,Number}() vm_center_list = [ (bus["vmax"]+bus["vmin"])/2.0 for (i,bus) in data["bus"] ] messages[:vm_center_mean] = mean(vm_center_list) messages[:vm_center_std] = std(vm_center_list) return messages end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
821
""" InfrastructureGraph{T<:LightGraphs.AbstractGraph} A structure containing a graph of a PowerModels or PowerModelsDistribution network in the format of a LightGraphs.AbstractGraph and corresponding metadata necessary for analysis / plotting. """ mutable struct InfrastructureGraph{T<:LightGraphs.AbstractGraph} graph::LightGraphs.AbstractGraph metadata::Dict{Union{Int,LightGraphs.AbstractEdge},Dict{Symbol,<:Any}} end """ InfrastructureGraph(nvertices) Constructor for the InfrastructureGraph struct, given a number of vertices `nvertices` """ function InfrastructureGraph(nvertices::Int) graph = LightGraphs.SimpleDiGraph(nvertices) metadata = Dict{Union{Int,LightGraphs.AbstractEdge},Dict{Symbol,<:Any}}() return InfrastructureGraph{LightGraphs.SimpleDiGraph}(graph, metadata) end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
15611
""" `apply_plot_network_metadata!(graph; kwargs...)` Builds metadata properties, i.e. color/size of nodes/edges, for plotting based on graph metadata Arguments: `graph::InfrastructureGraph`: Graph of power network `colors::Dict{String,<:Colors.Colorant}`: Dictionary of colors to be changed from `default_colors` `load_color_range::Vector{<:Colors.Colorant}`: Range of colors for load statuses `node_size_limitss::Vector{<:Real}`: Min/Max values for the size of nodes `edge_width_limits::Vector{<:Real}`: Min/Max values for the width of edges """ function apply_plot_network_metadata!(graph::InfrastructureGraph{T}; colors::Dict{String,<:Colors.Colorant}=default_colors, demand_color_range::Vector{<:Colors.Colorant}=default_demand_color_range, node_size_limits::Vector{<:Real}=default_node_size_limits, edge_width_limits::Vector{<:Real}=default_edge_width_limits ) where T <: LightGraphs.AbstractGraph colors = merge(default_colors, colors) for edge in edges(graph) set_property!(graph, edge, :edge_color, colors[get_property(graph, edge, :edge_membership, "enabled closed fixed edge")]) set_property!(graph, edge, :edge_size, get_property(graph, edge, :switch, false) ? 2 : 1) end for node in vertices(graph) node_membership = get_property(graph, node, :node_membership, "enabled node wo demand") set_property!(graph, node, :node_color, colors[node_membership]) set_property!(graph, node, :node_size, node_size_limits[1]) if hasprop(graph, node, :size) set_property!(graph, node, :node_size, get_property(graph, node, :size, 0.0)) end if hasprop(graph, node, :demand) demand = get_property(graph, node, :demand, 1.0) idx = trunc(Int, demand * (length(demand_color_range) - 1) + 1) set_property!(graph, node, :node_color, occursin("disabled", node_membership) || occursin("wo demand", node_membership) ? colors[node_membership] : demand_color_range[idx]) end end node_sizes = [get_property(graph, node, :node_size, 0.0) for node in vertices(graph)] for node in vertices(graph) set_property!(graph, node, :node_size, (get_property(graph, node, :node_size, 0.0)-minimum(node_sizes)) / (maximum(node_sizes) - minimum(node_sizes)) * (node_size_limits[2] - node_size_limits[1]) + node_size_limits[1]) end end """ `graph = build_power_network_graph(case::Dict{String,<:Any}; kwargs...)` Builds a `InfrastructureGraph` from a power network `case`. Arguments: `case::Dict{String,<:Any}`: Network case `edge_types::Vector{<:String}`: Component types that are edges `block_connector_types::Vector{<:String}`: Types of edges that connect blocks (only used when `block_graph==true`) `node_objects::Dict{String,<:Dict{String,<:String}}`: Other non-bus components to include in the graph `block_graph::Bool`: If `true`, return block graph `aggregate_node_objects::Bool`: If `true`, if multiple node objects present at a bus, aggregate into a single vertex `exclusions::Vector{Any}`: Pattern for exclusion from graph Returns: `graph`: InfrastructureGraph """ function build_network_graph(case::Dict{String,<:Any}; node_settings::Dict{String,<:Any}=default_node_settings_math, edge_settings::Dict{String,<:Any}=default_edge_settings_math, extra_nodes::Dict{String,<:Any}=default_extra_nodes_math, aggregate_extra_nodes::Bool=false, sources::Dict{String,<:Any}=default_sources_math, demands::Dict{String,<:Any}=default_demands_math, block_graph::Bool=false, block_connectors::Dict{String,<:Any}=default_block_connectors, exclusions::Dict{String,<:Vector{<:Any}}=Dict{String,Vector{Any}}(), kwargs...)::InfrastructureGraph if Int(get(case, "data_model", 1)) == 0 if node_settings == default_node_settings_math node_settings = default_node_settings_eng end if edge_settings == default_edge_settings_math edge_settings = default_edge_settings_eng end if extra_nodes == default_extra_nodes_math extra_nodes = default_extra_nodes_eng end if sources == default_sources_math sources = default_sources_eng end if demands == default_demands_math demands = default_demands_eng end end node_key = get(node_settings, "node", "bus") node_x_key = get(node_settings, "x", "") node_y_key = get(node_settings, "y", "") (disabled_node_key, disabled_node_value) = get(node_settings, "disabled", "bus_type" => 4) if block_graph _case = deepcopy(case) for (type, settings) in block_connectors if haskey(_case, type) for (_,obj) in _case[type] (k, v) = get(settings, "disabled", "status" => 0) obj[k] = v end end end blocks = identify_blocks(_case) node2graph_map = Dict{Any,Int}(node_id => block_id for (block_id, block) in blocks for node_id in block) else blocks = identify_blocks(case) node2graph_map = Dict{Any,Int}(id => i for (i, (id,_)) in enumerate(case[node_key])) end n_nodes = block_graph ? length(blocks) : length(node2graph_map) if aggregate_extra_nodes used_nodes = Set{Any}() n_extra_nodes = 0 for (type,settings) in extra_nodes for (id,obj) in get(case, type, Dict()) if !(node2graph_map["$(obj[get(settings, "node", "bus")])"] in used_nodes) n_extra_nodes += 1 push!(used_nodes, node2graph_map["$(obj[get(settings, "node", "bus")])"]) end end end else n_extra_nodes = sum(Int[length(get(case, type, Dict())) for type in keys(extra_nodes)]) end # Generate blank graph graph = InfrastructureGraph(n_nodes + n_extra_nodes) extra_node2graph_map = Dict{String,Dict{Any,Int}}(type => Dict{Any,Int}() for type in keys(extra_nodes)) n = n_nodes used_nodes = Dict{Any,Int}() for (type,settings) in extra_nodes for (id,obj) in get(case, type, Dict()) if aggregate_extra_nodes if !(node2graph_map["$(obj[get(settings, "node", "bus")])"] in keys(used_nodes)) n += 1 extra_node2graph_map[type][id] = n used_nodes[node2graph_map["$(obj[get(settings, "node", "bus")])"]] = n else extra_node2graph_map[type][id] = used_nodes[node2graph_map["$(obj[get(settings, "node", "bus")])"]] end else n += 1 extra_node2graph_map[type][id] = n end end end # Add edges if block_graph edge_settings = block_connectors end for (type,settings) in edge_settings f_key = get(settings, "fr_node", "f_bus") t_key = get(settings, "to_node", "t_bus") nodes_key = get(settings, "nodes", "") (disabled_key, disabled_value) = get(settings, "disabled", "status" => 0) (open_key, open_value) = get(settings, "open", "state" => 0) (fixed_key, fixed_value) = get(settings, "fixed", "dispatchable" => 0) for (id,edge) in get(case, type, Dict()) disabled = Int(get(edge, disabled_key, 1)) == disabled_value ? "disabled" : "enabled" open = Int(get(edge, open_key, 1)) == open_value ? "open" : "closed" fixed = Int(get(edge, fixed_key, 0)) == fixed_value ? "fixed" : "free" edge_props = Dict{Symbol,Any}( :label => id, :type => type, :edge_membership => "$disabled $open $fixed edge", ) edges_set = Set{Any}() if !isempty(nodes_key) && haskey(edge, nodes_key) for f_node in edge[nodes_key] for t_node in edge[nodes_key] if f_node != t_node push!(edges_set, Set{Any}([f_node, t_node])) end end end else if edge[f_key] != edge[t_key] edges_set = Set{Any}([Set([edge[f_key], edge[t_key]])]) end end for (f_node, t_node) in edges_set add_edge!(graph, node2graph_map["$f_node"], node2graph_map["$t_node"]) set_properties!(graph, LightGraphs.Edge(node2graph_map["$f_node"], node2graph_map["$t_node"]), edge_props) end end end used_extra_f_verts = Dict{Int,Int}() for (type, settings) in extra_nodes extra_node_key = get(settings, "node", "bus") (disabled_key, disabled_value) = get(settings, "disabled", "status" => 0) (inactive_real_key, inactive_real_value) = get(settings, "inactive_real", "" => 0) (inactive_imaginary_key, inactive_imaginary_value) = get(settings, "inactive_imaginary", "" => 0) for (id, obj) in get(case, type, Dict()) f_vert = node2graph_map["$(obj[extra_node_key])"] t_vert = aggregate_extra_nodes && f_vert in keys(used_extra_f_verts) ? used_extra_f_verts[f_vert] : extra_node2graph_map[type][id] if !(aggregate_extra_nodes && f_vert in keys(used_extra_f_verts)) add_edge!(graph, f_vert, t_vert) edge_props = Dict{Symbol,Any}( :label => "", :edge_membership => "connector", ) set_properties!(graph, LightGraphs.Edge(f_vert, t_vert), edge_props) end if isa(get(obj, disabled_key, 1), Enum) disabled = Int(get(obj, disabled_key, 1)) == disabled_value ? "disabled" : "enabled" else disabled = get(obj, disabled_key, 1) == disabled_value ? "disabled" : "enabled" end real_inactive = !isempty(inactive_real_key) && haskey(obj, inactive_real_key) && all(obj[inactive_real_key] .== inactive_real_value) imaginary_inactive = !isempty(inactive_imaginary_key) && haskey(obj, inactive_imaginary_key) && all(obj[inactive_imaginary_key] .== inactive_imaginary_value) inactive = real_inactive && imaginary_inactive ? "inactive" : "active" node_membership = "$disabled $inactive extra node" node_props = Dict{Symbol,Any}( :label => get(settings, "label", id), :node_membership => node_membership, :force_label => !isempty(get(settings, "label", "")) ) if haskey(settings, "size") node_props[:size] = sum(get(obj, settings["size"], 0.0)) end if aggregate_extra_nodes && f_vert in keys(used_extra_f_verts) _node_membership = get_property(graph, t_vert, :node_membership, "") _label = get_property(graph, t_vert, :label, "") _force_label = get_property(graph, t_vert, :force_label, false) _inactive = inactive == "active" || occursin(" active", _node_membership) ? "active" : "inactive" _disabled = disabled == "enabled" || startswith(_node_membership, "enabled") ? "enabled" : "disabled" node_props[:node_membership] = "$_disabled $_inactive extra node" node_props[:label] = node_props[:label] != _label ? join([node_props[:label], _label], ",") : node_props[:label] node_props[:force_label] = any([node_props[:force_label], _force_label]) if haskey(node_props, :size) _size = get_property(graph, t_vert, :size, 0.0) node_props[:size] += _size end end set_properties!(graph, t_vert, node_props) used_extra_f_verts[f_vert] = t_vert end end if !block_graph && !isempty(node_x_key) && !isempty(node_y_key) for (node, vert) in node2graph_map obj = case[node_key][node] if haskey(obj, node_x_key) && haskey(obj, node_y_key) set_property!(graph, vert, :coordinate, [obj[node_x_key], obj[node_y_key]]) end end end active_blocks = Dict{Int,Bool}(id => is_active(case, block) for (id,block) in blocks) node_has_demand = Dict{Any,Bool}("$(obj[get(settings, "node", "bus")])" => true for (type, settings) in demands for (_,obj) in get(case, type, Dict())) block2node_map = block_graph ? Dict{Int,Any}(id => [id] for (id,block) in blocks) : blocks for (block_id, block) in blocks if block_graph disabled = "disabled" has_demand = "wo demand" for node_id in block disabled = Int(case[node_key][node_id][disabled_node_key]) != disabled_node_value ? "enabled" : disabled has_demand = get(node_has_demand, node_id, false) ? "w demand" : has_demand end node_membership = "$disabled node $has_demand" node_props = Dict{Symbol,Any}( :label => block_id, :node_membership => node_membership, :active => active_blocks[block_id], ) set_properties!(graph, block_id, node_props) else for node_id in block disabled = Int(case[node_key][node_id][disabled_node_key]) == disabled_node_value ? "disabled" : "enabled" has_demand = get(node_has_demand, node_id, false) ? "w demand" : "wo demand" node_membership = "$disabled node $has_demand" node_props = Dict{Symbol,Any}( :label => node_id, :node_membership => node_membership, :active => active_blocks[block_id] ) set_properties!(graph, node2graph_map[node_id], node_props) end end end _node_demand_status = Dict{Any,Vector{Real}}(obj[get(settings, "node", "bus")] => Vector{Real}() for (type,settings) in demands for (_,obj) in get(case, type, Dict())) for (type, settings) in demands demand_node_key = get(settings, "node", "bus") demand_status_key = get(settings, "status", "status") for (_,obj) in get(case, type, Dict()) demand_status = get(obj, demand_status_key, 1) push!(_node_demand_status[obj[demand_node_key]], isa(demand_status, Enum) ? Int(demand_status) : demand_status) end if block_graph node_demand_status = Dict{Int,Real}() for (block_id, block) in blocks block_demand = [] for node in block if node in keys(_node_demand_status) append!(block_demand, _node_demand_status[node]) end end if !isempty(block_demand) node_demand_status[block_id] = sum(block_demand) / length(block_demand) end end else node_demand_status = Dict{Any,Real}(id => sum(v) / length(v) for (id, v) in _node_demand_status if !isempty(v)) end for (id, status) in node_demand_status if block_graph set_property!(graph, id, :demand, status) else set_property!(graph, node2graph_map["$id"], :demand, status) end end end return graph end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
2157
""" `layout_graph!(graph::InfrastructureGraph, layout_engine::Function; kwargs...)` A routine to assign positions to all nodes of a `graph` for plotting using `layout_engine`. Positions are assigned to the metadata of each node at `:x` and `:y`. Arguments: `graph::InfrastructureGraph`: Network graph `layout_engine`: Layout Function to use. Applies only when not using `use_coordinates` `use_coordinates::Bool`: If `true`, `spring_layout` will be used instead of `layout_engine` `apply_spring_layout::Bool`: If `true`, `spring_layout` will be applied after `layout_engine` to ensure separation of overlapping nodes `spring_constant::Real`: Spring constant to be used by `spring_layout` `kwargs`: Keyword arguments to be used in `layout_engine` """ function layout_graph!(graph::InfrastructureGraph{T}, layout_engine::Function=kamada_kawai_layout; use_coordinates::Bool=false, apply_spring_layout::Bool=false, spring_constant::Real=default_spring_constant, kwargs...) where T <: LightGraphs.AbstractGraph if use_coordinates pos = Dict{Int,Union{Missing,Vector{Real}}}(node => get_property(graph, node, :coordinate, missing) for node in vertices(graph)) fixed = [node for (node, p) in pos if !ismissing(p)] avg_x, avg_y = mean(hcat(skipmissing([v for v in values(pos)])...), dims=2) std_x, std_y = std(hcat(skipmissing([v for v in values(pos)])...), dims=2) for (v, p) in pos if ismissing(p) pos[v] = [avg_x+std_x*rand(), avg_y+std_y*rand()] end end positions = spring_layout(graph; pos=pos, fixed=fixed, k=spring_constant*sqrt(length(pos)), iterations=100) else positions = layout_engine(graph; kwargs...) if apply_spring_layout positions = spring_layout(graph; pos=positions, k=spring_constant*sqrt(length(positions)), iterations=100) end end for (node, (x, y)) in positions set_property!(graph, node, :x, x) set_property!(graph, node, :y, y) end end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
1136
"NetworkX Kamada-Kawai layout function" function kamada_kawai_layout(graph::InfrastructureGraph{T}; dist=nothing, pos=nothing, weight="weight", scale=1.0, center=nothing, dim=2) where T <: LightGraphs.AbstractGraph G = nx.Graph() for edge in edges(graph) G.add_edge(edge.src, edge.dst) end for node in vertices(graph) G.add_node(node) end positions = nx.kamada_kawai_layout(G, dist=dist, pos=pos, weight=weight, scale=scale, center=center, dim=dim) return positions end "NetworkX spring layout function" function spring_layout(graph::InfrastructureGraph{T}; k=nothing, pos=nothing, fixed=nothing, iterations=50, threshold=0.0001, weight="weight", scale=1, center=nothing, dim=2, seed=nothing) where T <: LightGraphs.AbstractGraph G = nx.Graph() for edge in edges(graph) G.add_edge(edge.src, edge.dst) end for node in vertices(graph) G.add_node(node) end positions = nx.spring_layout(G, k=k, pos=pos, fixed=fixed, iterations=iterations, threshold=threshold, weight=weight, scale=scale, center=center, dim=dim, seed=seed) return positions end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
11634
"Plots branch impedances" function plot_branch_impedance(data::Dict{String,Any}; branch_key::Any="branch", resistance_key::String="br_r", reactance_key::String="br_x")::Vega.VGSpec spec = deepcopy(default_branch_impedance_spec) scatter_data = [Dict("resistance" => sum(sum(branch["br_r"])), "reactance" => sum(sum(branch["br_x"])), "id" => id) for (id, branch) in data["branch"]] sort!(scatter_data; by=x -> parse(Int, x["id"])) @set! spec.data = [] pushfirst!(spec.data, Dict("name" => "branch-impedances", "values" => scatter_data)) resistance = Float64[x["resistance"] for x in scatter_data] reactance = Float64[x["reactance"] for x in scatter_data] for (field, _data) in zip(["resistance", "reactance"], [resistance, reactance]) push!(spec.data, Dict( "name" => "binned-$field", "source" => "branch-impedances", "transform" => [ Dict( "type" => "bin", "field" => field, "extent" => [minimum(_data), maximum(_data)], "anchor" => mean(_data), "step" => std(_data) / 2, "nice" => true ), Dict( "type" => "aggregate", "key" => "bin0", "groupby" => ["bin0", "bin1"], "fields" => ["bin0"], "ops" => ["count"], "as" => ["count"] ) ] ) ) end return spec end """ `plot_load_summary(file, result, case; kwargs...)` Plots total generation, total load served, and total forecasted load for a given `case` and `result`, saving to `file` Arguments: `file::String`: file path to saved figure `result::Dict{String,Any}`: multinetwork solution data (contains load statuses) `case::Dict{String,Any}`: Original case file (without calcuated loads) for forecasted loads `log::Bool`: If `true`, plots y-axis on log scale `intermediate::Bool`: If `true`, plots intermediate steps of plot (for animations). `legend_position::Symbol`: Position of legend, accepts the following symbols: `:right`, `:left`, `:top`, `:bottom`, `:inside`, `:best`, `:legend`, `:topright`, `:topleft`, `:bottomleft`, `:bottomright` """ function plot_load_summary(file::String, result::Dict{String,Any}, case::Dict{String,Any}; log::Bool=false, intermediate::Bool=false, legend_position::Symbol=:best)::Vega.VGSpec @assert Int(get(case, "data_model", 1)) == 1 && get(case, "per_unit", true) "This function only supports plotting MATHEMATICAL data models in per-unit representation" spec = Vega.loadvgspec("src/vega/load_summary.json") x = 0:length(result["nw"]) - 1 generation = [x for (n, x) in sort([(parse(Int, n), sum(sum(_replace_nan(gen["pg"])) * nw["baseMVA"] for (i, gen) in nw["gen"])) for (n, nw) in result["nw"]]; by=x -> x[1])] storage = [x for (n, x) in sort([(parse(Int, n), sum(sum(_replace_nan(strg["ps"])) * nw["baseMVA"] for (i, strg) in nw["storage"])) for (n, nw) in result["nw"]]; by=x -> x[1])] total_generated = generation .+ storage total_load_served = [x for (n, x) in sort([(parse(Int, n), sum(sum(_replace_nan(load["status"] * case["nw"]["$n"]["load"]["$i"]["pd"])) * nw["baseMVA"] for (i, load) in nw["load"])) for (n, nw) in result["nw"]]; by=x -> x[1])] total_load_forecast = [x for (n, x) in sort([(parse(Int, n), sum(sum(_replace_nan(load["pd"])) * case["nw"]["$n"]["baseMVA"] for (i, load) in nw["load"])) for (n, nw) in case["nw"]]; by=x -> x[1])] max_digits = max_digits = maximum([length("$n") for n in x]) @debug "" total_generated total_load_served total_load_forecast spec = deepcopy(default_source_demand_summary_spec) power_summary_data = [ Dict( "x" => x[i], "y" => y[i], "c" => c - 1, ) for (c, y) in enumerate([total_generated, total_load_served, total_load_forecast]) for i in 1:length(x) ] @set! spec.data = [ Dict( "name" => "table", "values" => power_summary_data, "transform" => [ Dict( "type" => "stack", "groupby" => ["x"], "sort" => Dict( "field" => "c" ), "field" => "y" ) ] ) ] @set! spec.axes[2]["title"] = "Power (MW)" if log @set! spec.scales[2]["type"] = "log" end if intermediate _tmp_data = [] for (i, _data) in enumerate(eachrow(reshape(power_summary_data, :, 3))) append!(_tmp_data, _data) @set! spec.data = [ Dict( "name" => "table", "values" => _tmp_data, "transform" => [ Dict( "type" => "stack", "groupby" => ["x"], "sort" => Dict( "field" => "c" ), "field" => "y" ) ] ) ] filename_parts = split(file, ".") filename = join(filename_parts[1:end-1], ".") ext = filename_parts[end] _fileout = "$(filename)_$(lpad(i, max_digits, "0")).$(ext)" Vega.save(_fileout, spec) end else Vega.save(file, spec) end return spec end """ `plot_source_demand_summary(file::String, mn_case::Dict{String,<:Any}; kwargs...)` Plots the total delivery from sources (generation) and total receipts by demands (load) Arguments: `fileout::String`: path to file where plot will be saved `mn_case::Dict{String,<:Any}`: a multinetwork case `yscale::Symbol`: To set log scale, `:log10`, else `:identity` `save_intermediate_frames::Bool`: if `true`, each frame of the multinetwork will be saved separately `legend_position::Symbol`: Position of legend, accepts the following symbols: `:right`, `:left`, `:top`, `:bottom`, `:inside`, `:best`, `:legend`, `:topright`, `:topleft`, `:bottomleft`, `:bottomright` `sources::Dict{String,<:Any}`: information about sources (e.g. generators) `demands::Dict{String,<:Any}`: information about demands (e.g. loads) `totals::Symbol`: Choose `:real`, `:imaginary`, `:complex` """ function plot_source_demand_summary(fileout::String, mn_case::Dict{String,<:Any}; yscale::Symbol=:identity, save_intermediate_frames::Bool=false, legend_position::Symbol=:best, sources::Dict{String,<:Any}=default_sources_eng, demands::Dict{String,<:Any}=default_demands_eng, totals::Symbol=:real, )::Vega.VGSpec x = 1:length(mn_case["nw"]) total_generated = Vector{Real}(undef, length(x)) for (n, nw) in get(mn_case, "nw", Dict()) value = Complex(0.0, 0.0) for (type, settings) in sources real_key = get(settings, "inactive_real", "" => 0)[1] imag_key = get(settings, "inactive_imaginary", "" => 0)[1] for (_,obj) in get(nw, type, Dict()) if totals == :real v_real = get(obj, real_key, 0.0) v_imag = 0.0 elseif totals == :imaginary v_real = 0.0 v_imag = get(obj, imag_key, 0.0) else v_real = get(obj, real_key, 0.0) v_imag = get(obj, imag_key, 0.0) end value += sum(Complex.(v_real, v_imag)) end end total_generated[parse(Int, n)] = norm(value) end total_demand_served = Vector{Real}(undef, length(x)) total_demand_forecast = Vector{Real}(undef, length(x)) for (n, nw) in get(mn_case, "nw", Dict()) served_value = Complex(0.0, 0.0) forecast_value = Complex(0.0, 0.0) for (type, settings) in demands served_real_key = get(settings, "inactive_real", "" => 0)[1] served_imag_key = get(settings, "inactive_imaginary", "" => 0)[1] forecast_real_key = get(settings, "original_demand_real", "") forecast_imag_key = get(settings, "original_demand_imaginary", "") for (_,obj) in get(nw, type, Dict()) if totals == :real v_served_real = get(obj, served_real_key, 0.0) v_served_imag = 0.0 v_forecast_real = get(obj, forecast_real_key, 0.0) v_forecast_imag = 0.0 elseif totals == :imaginary v_served_real = 0.0 v_served_imag = get(obj, served_imag_key, 0.0) v_forecast_real = 0.0 v_forecast_imag = get(obj, forecast_imag_key, 0.0) else v_served_real = get(obj, served_real_key, 0.0) v_served_imag = get(obj, served_imag_key, 0.0) v_forecast_real = get(obj, forecast_real_key, 0.0) v_forecast_imag = get(obj, forecast_imag_key, 0.0) end served_value += sum(Complex.(v_served_real, v_served_imag)) forecast_value += sum(Complex.(v_forecast_real, v_forecast_imag)) end end total_demand_served[parse(Int, n)] = norm(served_value) total_demand_forecast[parse(Int, n)] = norm(forecast_value) end max_digits = maximum([length(n) for (n,_) in mn_case["nw"]]) power_scale_factor = mn_case["settings"]["power_scale_factor"] units_str = power_scale_factor == 1.0 ? "W" : power_scale_factor == 1e3 ? "kW" : power_scale_factor == 1e6 ? "MW" : "$power_scale_factor W" spec = deepcopy(default_source_demand_summary_spec) power_summary_data = [ Dict( "x" => x[i], "y" => y[i], "c" => c - 1, ) for (c, y) in enumerate([total_generated, total_demand_served, total_demand_forecast]) for i in 1:length(x) ] @set! spec.data = [ Dict( "name" => "table", "values" => power_summary_data, "transform" => [ Dict( "type" => "stack", "groupby" => ["x"], "sort" => Dict("field" => "c"), "field" => "y" ) ] ) ] @set! spec.axes[2]["title"] = "Power ($units_str)" if save_intermediate_frames _tmp_data = [] for (i, _data) in enumerate(eachrow(reshape(power_summary_data, :, 3))) append!(_tmp_data, _data) @set! spec.data = [ Dict( "name" => "table", "values" => _tmp_data, "transform" => [ Dict( "type" => "stack", "groupby" => ["x"], "sort" => Dict("field" => "c"), "field" => "y" ) ] ) ] filename_parts = split(fileout, ".") filename = join(filename_parts[1:end-1], ".") ext = filename_parts[end] _fileout = "$(filename)_$(lpad(i, max_digits, "0")).$(ext)" Vega.save(_fileout, spec) end else Vega.save(fileout, spec) end return spec end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
3681
""" `spec = plot_graph(graph::InfrastructureGraph; kwargs...)` Builds a figure sepcification. Returns `Vega.VGSpec`. Arguments: `graph::InfrastructureGraph{<:LightGraphs.AbstractGraph}`: Network graph `label_nodes::Bool`: Plot labels on nodes `label_edges::Bool`: Plot labels on edges `fontsize::Real`: Fontsize of labels `fontfamily::String`: Font Family of labels `fontcolor::Union{Symbol,<:Colors.Colorant}`: Color of the labels `textalign::Symbol`: Alignment of text: "left", "center", "right" `plot_size::Tuple{Int,Int}`: Size of the plot in pixels `plot_dpi::Int`: Dots-per-inch of the plot Returns: `spec<:Vega.VGSpec`: Vega.jl figure specification """ function plot_graph(graph::InfrastructureGraph{T}; label_nodes::Bool=false, label_edges::Bool=false, fontsize::Real=default_fontsize, fontfamily::String=default_fontfamily, fontcolor::Union{Symbol,Colors.Colorant}=default_fontcolor, textalign::Symbol=default_textalign, plot_size::Tuple{Int,Int}=default_plot_size, plot_dpi::Int=default_plot_dpi, kwargs...) where T <: LightGraphs.AbstractGraph nodes = [ Dict( "id"=>node, "x"=>get_property(graph, node, :x, 0), "y"=>get_property(graph, node, :y, 0), "color"=>"#$(Colors.hex(get_property(graph, node, :node_color, colorant"black")))", "size"=>get_property(graph, node, :size, 1), "label"=>get_property(graph, node, :label, "") ) for node in vertices(graph) ] vert2node = Dict(node["id"] => i for (i, node) in enumerate(nodes)) links = [ Dict( "source"=>vert2node[LightGraphs.src(edge)]-1, "target"=>vert2node[LightGraphs.dst(edge)]-1, "color"=>"#$(Colors.hex(get_property(graph, edge, :edge_color, colorant"black")))", "size"=>get_property(graph, edge, :edge_size, 1), "label"=>get_property(graph, edge, :label, "") ) for (n, edge) in enumerate(edges(graph)) ] has_layout = all(hasprop(graph, node, :x) && hasprop(graph, node, :y) for node in vertices(graph)) if !has_layout @error "no layout, cannot plot" end spec = deepcopy(default_network_graph_spec) push!(spec.data, Dict("name"=>"node-data", "values"=>nodes)) push!(spec.data, Dict("name"=>"link-data", "values"=>links)) width, height = plot_size @set! spec.width = width @set! spec.height = height if label_nodes # TODO add "label" transformation (requires Vega > v5.16+) node_labels = deepcopy(default_node_label_spec) @set! node_labels.encode.enter.fontSize = Dict("value" => fontsize) @set! node_labels.encode.enter.font = Dict("value" => fontfamily) @set! node_labels.encode.enter.fill = Dict("value" => "#$(isa(fontcolor, Symbol) ? Colors.hex(Colors.color(String(fontcolor))) : Colors.hex(fontcolor))") @set! node_labels.encode.enter.align = textalign push!(spec.marks, node_labels) end if label_edges # TODO this is currently broken, I think it needs "label" transformation (requires Vega > v5.16+) edge_labels = deepcopy(default_edge_label_spec) @set! edge_labels.encode.update.fontSize = Dict("value" => fontsize) @set! edge_labels.encode.update.font = Dict("value" => fontfamily) @set! edge_labels.encode.update.fill = Dict("value" => "#$(isa(fontcolor, Symbol) ? Colors.hex(Colors.color(String(fontcolor))) : Colors.hex(fontcolor))") @set! edge_labels.encode.update.align = textalign push!(spec.marks, edge_labels) end return spec end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
9724
""" `plot_network(graph; kwargs...)` Plots a network `graph`. Returns `InfrastructureGraph` and `Plots.AbstractPlot`. Arguments: `graph::InfrastructureGraph{<:LightGraphs.AbstractGraph}`: Network graph `filename::String`: File to output the plot to, will use user-set Plots.jl backend `label_nodes::Bool`: Plot labels on nodes `label_edges::Bool`: Plot labels on edges `colors::Dict{String,<:Colors.Colorant}`: Changes to default colors, see `default_colors` for available components `load_color_range::Vector{<:Colors.Colorant}}`: Range of colors for load statuses `node_size_limits::Vector{<:Real}`: Min/Max values for the size of nodes `edge_width_limits::Vector{<:Real}`: Min/Max values for the width of edges `positions::Union{Dict{Int,<:Real}, InfrastructureGraph}`: Used to specify node locations of graph (avoids running layout algorithm every time) `use_coordinates::Bool`: Use buscoord field on buses for node positions `spring_constant::Real`: Only used if buscoords=true. Spring constant to be used to force-direct-layout buses with no buscoord field `apply_spring_layout::Bool`: Apply spring layout after initial layout `fontsize::Real`: Fontsize of labels `fontfamily::String`: Font Family of labels `fontcolor::Union{Symbol,<:Colors.Colorant}`: Color of the labels `textalign::Symbol`: Alignment of text `plot_size::Tuple{Int,Int}`: Size of the plot in pixels `plot_dpi::Int`: Dots-per-inch of the plot Returns: `graph::InfrastructureGraph`: InfrastructureGraph of the network """ function plot_network(graph::InfrastructureGraph{T}; filename::String="", label_nodes::Bool=false, label_edges::Bool=false, colors::Dict{String,<:Colors.Colorant}=default_colors, demand_color_range::Vector{<:Colors.Colorant}=default_demand_color_range, node_size_limits::Vector{<:Real}=default_node_size_limits, edge_width_limits::Vector{<:Real}=default_edge_width_limits, positions::Union{Dict{Int,<:Real},InfrastructureGraph}=Dict{Int,Real}(), use_coordinates::Bool=false, spring_constant::Real=default_spring_constant, apply_spring_layout::Bool=false, fontsize::Real=default_fontsize, fontfamily::String=default_fontfamily, fontcolor::Union{Symbol,<:Colors.Colorant}=default_fontcolor, textalign::Symbol=default_textalign, plot_size::Tuple{<:Int,<:Int}=default_plot_size, plot_dpi::Int=default_plot_dpi, kwargs... ) where T <: LightGraphs.AbstractGraph apply_plot_network_metadata!(graph; colors=colors, demand_color_range=demand_color_range, node_size_limits=node_size_limits, edge_width_limits=edge_width_limits ) # Graph Layout if isa(positions, InfrastructureGraph) positions = Dict{Int,Vector{Real}}( node => Vector{Real}([get_property(positions, node, :x, 0.0), get_property(positions, node, :y, 0.0)]) for node in vertices(positions) ) end for (node, (x, y)) in positions set_properties!(graph, node, Dict{Symbol,Any}( :x=>x, :y=>y ) ) end if !all(hasprop(graph, node, :x) && hasprop(graph, node, :y) for node in vertices(graph)) layout_graph!(graph, kamada_kawai_layout; use_coordinates=use_coordinates, apply_spring_layout=apply_spring_layout, spring_constant=spring_constant ) end # Plot fig = plot_graph(graph; label_nodes=label_nodes, label_edges=label_edges, fontsize=fontsize, fontfamily=fontfamily, fontcolor=fontcolor, textalign=textalign, plot_size=plot_size, plot_dpi=plot_dpi ) if isempty(filename) display(fig) else Vega.save(filename, fig) end return graph end """ `graph = plot_network(case::Dict{String,<:Any}; kwargs...)` Plots a whole network `case` at the bus-level. Returns `InfrastructureGraph` and `Plots.AbstractPlot`. This function will build the graph from the `case`. Additional `kwargs` are passed to `plot_network(graph; kwargs...)`. Arguments: `case::Dict{String,Any}`: Network case data structure `positions::Union{Dict{Int,<:Any},InfrastructureGraph}`: Pre-set positions of graph vertices Returns: `graph::InfrastructureGraph`: InfrastructureGraph of the network """ function plot_network(case::Dict{String,<:Any}; positions::Union{Dict{Int,<:Any},InfrastructureGraph}=Dict{Int,Any}(), kwargs...) graph = build_network_graph(case; kwargs...) if isa(positions, InfrastructureGraph) positions = Dict(node => [get_property(positions, node, :x, 0.0), get_property(positions, node, :y, 0.0)] for node in vertices(positions)) end for (node, (x, y)) in positions set_properties!(graph, node, Dict(:x=>x, :y=>y)) end graph = plot_network(graph; kwargs...) return graph end """ `plot_network(graph; kwargs...)` Plots a network `graph`. Returns `InfrastructureGraph` and `Plots.AbstractPlot`. Arguments: `graph::InfrastructureGraph{<:LightGraphs.AbstractGraph}`: Network graph `filename::String`: File to output the plot to, will use user-set Plots.jl backend `label_nodes::Bool`: Plot labels on nodes `label_edges::Bool`: Plot labels on edges `colors::Dict{String,<:Colors.Colorant}`: Changes to default colors, see `default_colors` for available components `load_color_range::Vector{<:Colors.Colorant}}`: Range of colors for load statuses `node_size_limits::Vector{<:Real}`: Min/Max values for the size of nodes `edge_width_limits::Vector{<:Real}`: Min/Max values for the width of edges `positions::Union{Dict{Int,<:Real}, InfrastructureGraph}`: Used to specify node locations of graph (avoids running layout algorithm every time) `use_coordinates::Bool`: Use buscoord field on buses for node positions `spring_constant::Real`: Only used if buscoords=true. Spring constant to be used to force-direct-layout buses with no buscoord field `apply_spring_layout::Bool`: Apply spring layout after initial layout `fontsize::Real`: Fontsize of labels `fontfamily::String`: Font Family of labels `fontcolor::Union{Symbol,<:Colors.Colorant}`: Color of the labels `textalign::Symbol`: Alignment of text `plot_size::Tuple{Int,Int}`: Size of the plot in pixels `plot_dpi::Int`: Dots-per-inch of the plot Returns: `fig` """ function plot_network!(graph::InfrastructureGraph{T}; filename::String="", label_nodes::Bool=false, label_edges::Bool=false, colors::Dict{String,<:Colors.Colorant}=default_colors, demand_color_range::Vector{<:Colors.Colorant}=default_demand_color_range, node_size_limits::Vector{<:Real}=default_node_size_limits, edge_width_limits::Vector{<:Real}=default_edge_width_limits, positions::Union{Dict{Int,<:Real},InfrastructureGraph}=Dict{Int,Real}(), use_coordinates::Bool=false, spring_constant::Real=default_spring_constant, apply_spring_layout::Bool=false, fontsize::Real=default_fontsize, fontfamily::String=default_fontfamily, fontcolor::Union{Symbol,<:Colors.Colorant}=default_fontcolor, textalign::Symbol=default_textalign, plot_size::Tuple{<:Int,<:Int}=default_plot_size, plot_dpi::Int=default_plot_dpi, kwargs... ) where T <: LightGraphs.AbstractGraph apply_plot_network_metadata!(graph; colors=colors, demand_color_range=demand_color_range, node_size_limits=node_size_limits, edge_width_limits=edge_width_limits ) # Graph Layout if isa(positions, InfrastructureGraph) positions = Dict{Int,Vector{Real}}( node => Vector{Real}([get_property(positions, node, :x, 0.0), get_property(positions, node, :y, 0.0)]) for node in vertices(positions) ) end for (node, (x, y)) in positions set_properties!(graph, node, Dict{Symbol,Any}( :x=>x, :y=>y ) ) end if !all(hasprop(graph, node, :x) && hasprop(graph, node, :y) for node in vertices(graph)) layout_graph!(graph, kamada_kawai_layout; use_coordinates=use_coordinates, apply_spring_layout=apply_spring_layout, spring_constant=spring_constant ) end return plot_graph(graph; label_nodes=label_nodes, label_edges=label_edges, fontsize=fontsize, fontfamily=fontfamily, fontcolor=fontcolor, textalign=textalign, plot_size=plot_size, plot_dpi=plot_dpi ) end """ `graph = plot_network(case::Dict{String,<:Any}; kwargs...)` Plots a whole network `case` at the bus-level. Returns `InfrastructureGraph` and `Plots.AbstractPlot`. This function will build the graph from the `case`. Additional `kwargs` are passed to `plot_network(graph; kwargs...)`. Arguments: `case::Dict{String,Any}`: Network case data structure `positions::Union{Dict{Int,<:Any},InfrastructureGraph}`: Pre-set positions of graph vertices Returns: `fig` """ function plot_network!(case::Dict{String,<:Any}; positions::Union{Dict{Int,<:Any},InfrastructureGraph}=Dict{Int,Any}(), kwargs...) graph = build_network_graph(case; kwargs...) if isa(positions, InfrastructureGraph) positions = Dict(node => [get_property(positions, node, :x, 0.0), get_property(positions, node, :y, 0.0)] for node in vertices(positions)) end for (node, (x, y)) in positions set_properties!(graph, node, Dict(:x=>x, :y=>y)) end return plot_network!(graph; kwargs...) end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
923
"Vega spec for network graph plot (base)" const default_network_graph_spec = Vega.loadvgspec(joinpath(dirname(pathof(PowerModelsAnalytics)), "vega", "network_graph.json")) "Vega spec for extension to network graph spec for labeling nodes" const default_node_label_spec = Vega.loadvgspec(joinpath(dirname(pathof(PowerModelsAnalytics)), "vega", "node_labels.json")) "Vega spec for extension to network graph spec for labeling edges" const default_edge_label_spec = Vega.loadvgspec(joinpath(dirname(pathof(PowerModelsAnalytics)), "vega", "edge_labels.json")) "Vega spec for branch impedance plot" const default_branch_impedance_spec = Vega.loadvgspec(joinpath(dirname(pathof(PowerModelsAnalytics)), "vega", "branch_impedance.json")) "Vega spec for Source Demand Summary Plot" const default_source_demand_summary_spec = Vega.loadvgspec(joinpath(dirname(pathof(PowerModelsAnalytics)), "vega", "source_demand_summary.json"))
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
code
1934
using PowerModelsAnalytics import LightGraphs import Colors import PowerModels import PowerModelsDistribution PowerModels.silence() using Test @testset "PowerModelsAnalytics" begin data = PowerModels.parse_file("$(joinpath(dirname(pathof(PowerModels)), ".."))/test/data/matpower/case5.m") mp_data = PowerModels.parse_file("$(joinpath(dirname(pathof(PowerModels)), ".."))/test/data/matpower/case5.m") PowerModelsDistribution.make_multiconductor!(mp_data, 3) n_graph = build_network_graph(data) n_graph_load_colors = build_network_graph(data) n_mp_graph = build_network_graph(mp_data) lb_graph = build_network_graph(data; block_graph=true) lb_mp_graph = build_network_graph(data; block_graph=true) @testset "graphs" begin for graph in [n_graph, n_mp_graph, lb_graph, lb_mp_graph] @test isa(graph, InfrastructureGraph{T} where T<:LightGraphs.AbstractGraph) end apply_plot_network_metadata!(n_graph) @test all(hasprop(n_graph, node, :node_color) && hasprop(n_graph, node, :node_size) for node in vertices(n_graph)) @test all(hasprop(n_graph, edge, :edge_color) && hasprop(n_graph, edge, :edge_size) for edge in edges(n_graph)) @testset "load_color_range" begin load_color_range = Colors.range(default_colors["disabled node w demand"], default_colors["enabled node w demand"], length=11) @test_nowarn apply_plot_network_metadata!(n_graph_load_colors; demand_color_range=load_color_range) end end @testset "layout" begin layout_graph!(n_graph, kamada_kawai_layout) layout_graph!(n_mp_graph, spring_layout) @test all(hasprop(n_graph, node, :x) && hasprop(n_graph, node, :y) for node in vertices(n_graph)) @test all(hasprop(n_mp_graph, node, :x) && hasprop(n_mp_graph, node, :y) for node in vertices(n_mp_graph)) end @testset "plot" begin end end
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
1280
# PowerModelsAnalytics.jl Change Log ## staged - none ## v0.4.1 - Adds plot_network! functions that will return figure instead of graph; useful for generating plots in Pluto notebooks - Fixes a bug in build_graph where one part of the graph builder conditional would not check to see if the nodes on either side of the edge were the same ## v0.4.0 - Updated backend to Vega.jl, removing Plots.jl - Minimum Julia v1.3 required for Vega.jl - Removed Travis-CI, switching to Github Actions ## v0.3.0 - Makes `build_network_graph` more agnostic to type of Infrastructure network being graphed - Rename `build_graph_network` to `build_network_graph` - Changes kwargs in functions - Moves kwarg defaults to `src/core/options.jl`, and changes color defaults - Changes type from `PowerModelsGraph` to `InfrastructureGraph` - Removes `plot_load_blocks` and `build_graph_load_blocks` in favor of using kwarg `block_graph=true` ## v0.2.2 - Add additional compatible versions to dependencies - Fix type enforcement for `load_color_range` (#8) ## v0.2.1 - Fix dependency issue for Julia < v1.3 of SpecialFunctions in Manifest.toml ## v0.2.0 - Support PowerModels v0.13 and PowerModelsDistribution v0.6.0 ## v0.1.0 - Initial release with basic plotting tools and graph creation
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
1149
# PowerModelsAnalytics.jl ![CI](https://github.com/lanl-ansi/PowerModelsAnalytics.jl/workflows/CI/badge.svg) ![Documentation](https://github.com/lanl-ansi/PowerModelsAnalytics.jl/workflows/Documentation/badge.svg) Tools for the analysis and visualization of PowerModels data and results. **BETA / IN ACTIVE DEVELOPMENT**: Features will change quickly and without warning ## Using PowerModelsAnalytics To use the `plot_network` function for example, one must load a network case, e.g. using `parse_file` in PowerModels or PowerModelsDistribution, and then ```julia using PowerModelsAnalytics plot_network(network_case) ``` should plot the network using the currently enabled backend, or e.g. ```julia plot_network(network_case; filename="network.pdf") ``` will save a network plot to a file using Vega.jl. ## Plotting This package relies on Vega.jl for plotting. See the Vega [Documentation](https://vega.github.io/) for additional information about how to build new Specifications. ## License This code is provided under a BSD license as part of the Multi-Infrastructure Control and Optimization Toolkit (MICOT) project, LA-CC-13-108.
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
822
# Building the Documentation for PowerModelsAnalytics.jl ## Installation We rely on [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl). To install it, run the following command in a julia session: ```julia Pkg.add("Documenter") ``` ## Building the Docs To preview the html output of the documents, run the following command: ```julia julia --color=yes make.jl ``` You can then view the documents in `build/index.html`. **Warning**: Do not `git commit` the contents of build (or any other content generated by Documenter) to your repository's master branch. This helps to avoid including unnessesary changes for anyone reviewing commits that happen to include documentation changes. For further details, please read the [documentation for Documenter.jl](https://juliadocs.github.io/Documenter.jl/stable/).
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
26
# Developer Documentation
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
616
# PowerModelsAnalytics.jl Documentation ```@meta CurrentModule = PowerModelsAnalytics ``` ## Overview PowerModelsAnalytics.jl is a Julia/JuMP extension package to PowerModels.jl for modeling of Multi-Phase (with a focus on three-phase) power grids. ## Installation The latest stable release of PowerModels can be installed using the Julia package manager with ```julia Pkg.add("PowerModelsAnalytics") ``` For the current development version, "checkout" this package with ```julia Pkg.checkout("PowerModelsAnalytics") ``` Test that the package works by running ```julia Pkg.test("PowerModelsAnalytics") ```
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
85
# PowerModelsAnalytics.jl Library ```@autodocs Modules = [PowerModelsAnalytics] ```
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "BSD-3-Clause" ]
0.4.1
e222c67fc3d63250e9af159857df8beab55c00bb
docs
1892
# Quick Start Guide Once PowerModelsAnalytics.jl is installed, Plots.jl is installed, and a Plots.jl backend is installed (we will use Plotly, which is included in Plots.jl, for this guide), and a network data file (e.g. `case5.m"` in the PowerModels.jl package folder under `./test/data/matpower`) has been acquired, the network can be plotted with, ```julia using PowerModels, PowerModelsAnalytics using Plots plotly() data = PowerModels.parse_file("$(joinpath(dirname(pathof(PowerModels)), ".."))/test/data/matpower/case5.m") plot_network(data) ``` ## IJulia Example Output ```julia using PowerModelsAnalytics import PowerModels import PowerModelsDistribution import Ipopt PowerModels.silence() ``` ```julia ENV["GRDIR"]="" import Plots Plots.gr() ``` Plots.GRBackend() ```julia case5 = PowerModels.parse_file("$(joinpath(dirname(pathof(PowerModels)), ".."))/test/data/matpower/case5.m"); case24 = PowerModels.parse_file("$(joinpath(dirname(pathof(PowerModels)), ".."))/test/data/matpower/case24.m"); case_distribution = PowerModelsDistribution.parse_file("$(joinpath(dirname(pathof(PowerModelsDistribution)), ".."))/test/data/opendss/test2_master.dss"); ``` ```julia graph = plot_network(case5; node_size_limits=[10, 15], edge_width_limits=[2, 3], label_nodes=true, fontsize=10, plot_size=(600,600), plot_dpi=100); ``` ![svg](output_3_0.svg) ```julia graph = plot_network(case24; aggregate_extra_nodes=true, node_size_limits=[10, 15], edge_width_limits=[2, 3], label_nodes=true, fontsize=10, plot_size=(600,600), plot_dpi=100); ``` ![svg](output_4_0.svg) ```julia graph = plot_network(case_distribution; aggregate_extra_nodes=true, node_size_limits=[10, 15], edge_width_limits=[2, 3], label_nodes=true, fontsize=10, plot_size=(600,600), plot_dpi=100); ``` ![svg](output_5_0.svg)
PowerModelsAnalytics
https://github.com/lanl-ansi/PowerModelsAnalytics.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
2300
# remove deps.jl if it exists, in case build.jl fails isfile("deps.jl") && rm("deps.jl") using Libdl println("Pardiso library") println("===============") const LIBPARDISONAMES = if Sys.iswindows() [ "libpardiso.dll", "libpardiso600-WIN-X86-64.dll", ] elseif Sys.isapple() [ "libpardiso.dylib", "libpardiso600-MACOS-X86-64.dylib", ] elseif Sys.islinux() [ "libpardiso.so", "libpardiso600-GNU800-X86-64.so", ] else error("unhandled OS") end println("Looking for libraries with name: ", join(LIBPARDISONAMES, ", "), ".") PATH_PREFIXES = [@__DIR__; get(ENV, "JULIA_PARDISO", [])] if !haskey(ENV, "JULIA_PARDISO") println("INFO: use the `JULIA_PARDISO` environment variable to set a path to " * "the folder where the Pardiso library is located") end function find_paradisolib() found_lib = false for prefix in PATH_PREFIXES println("Looking in \"$(abspath(prefix))\" for libraries") for libname in LIBPARDISONAMES local path try path = joinpath(prefix, libname) if isfile(path) println(" found \"$(abspath(path))\", attempting to load it...") Libdl.dlopen(path, Libdl.RTLD_GLOBAL) println(" loaded successfully!") global PARDISO_LIB_FOUND = true return path, true end catch e println(" failed to load due to:") Base.showerror(stderr, e) end end end println("did not find libpardiso, assuming PARDISO 5/6 is not installed") return "", false end pardisopath, found_pardisolib = find_paradisolib() ################################################# println("\nMKL Pardiso") println("=============") function find_mklparadiso() if haskey(ENV, "MKLROOT") println("found MKLROOT environment variable, enabling local MKL") return true end println("did not find MKLROOT environment variable, using MKL_jll") return false end found_mklpardiso = find_mklparadiso() open("deps.jl", "w") do f print(f, """ const LOCAL_MKL_FOUND = $found_mklpardiso const PARDISO_LIB_FOUND = $found_pardisolib const PARDISO_PATH = raw"$pardisopath" """ ) end
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
2414
# This is an example script demonstrating how PARDISO works on a # medium-sized Hermitian positive definite matrix. using Pardiso using LinearAlgebra # for norm using Printf using SparseArrays using Random using Test function example_hermitian_psd(solver=MKLPardisoSolver) # Script parameters. # ----------------- verbose = false n = 100 lambda = 3 # Create the Hermitian positive definite matrix A and the vector b in the # linear system Ax = b. e = ones(n) e2 = ones(n-1) A = spdiagm(-1 => im*e2, 0 => lambda*e, 1 => -im*e2) b = rand(n) + im * zeros(n) # Initialize the PARDISO internal data structures. ps = solver() if verbose set_msglvl!(ps, Pardiso.MESSAGE_LEVEL_ON) end # If we want, we could just solve the system right now. # Pardiso.jl will automatically detect the correct matrix type, # solve the system and free the data X1 = solve(ps, A, b) # We also show how to do this in incremental steps. ps = solver() # First set the matrix type to handle general complex # hermitian positive definite matrices set_matrixtype!(ps, Pardiso.COMPLEX_HERM_POSDEF) # Initialize the default settings with the current matrix type pardisoinit(ps) # Remember that we pass in a CSC matrix to Pardiso, so need # to set the transpose iparm option. fix_iparm!(ps, :N) # Get the correct matrix to be sent into the pardiso function. # :N for normal matrix, :T for transpose, :C for conjugate A_pardiso = get_matrix(ps, A, :N) # Analyze the matrix and compute a symbolic factorization. set_phase!(ps, Pardiso.ANALYSIS) pardiso(ps, A_pardiso, b) @printf("The factors have %d nonzero entries.\n", get_iparm(ps, 18)) # Compute the numeric factorization. set_phase!(ps, Pardiso.NUM_FACT) pardiso(ps, A_pardiso, b) # Compute the solutions X using the symbolic factorization. set_phase!(ps, Pardiso.SOLVE_ITERATIVE_REFINE) x = similar(b) # Solution is stored in X pardiso(ps, x, A_pardiso, b) @printf("PARDISO performed %d iterative refinement steps.\n", get_iparm(ps, 7)) # Compute the residuals. r = abs.(A*x - b) @printf("The maximum residual for the solution is %0.3g.\n",maximum(r)) @test norm(r) < 1e-10 # Free the PARDISO data structures. set_phase!(ps, Pardiso.RELEASE_ALL) pardiso(ps) end
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
2714
# This is an example script demonstrating how PARDISO works on a small, # sparse, real symmetric matrix. It computes the m solutions X to the # collection of linear systems # # A * X = B # # using the PARDISO solver, where A is a symmetric n x n matrix, B is an # n x m matrix, and X is another n x m matrix. using Pardiso using SparseArrays using Random using Printf using Test function example_symmetric(solver=MKLPardisoSolver) # Script parameters. # ----------------- verbose = false n = 4 # The number of equations. m = 3 # The number of right-hand sides. A = sparse([ 1. 0 -2 3 0 5 1 2 -2 1 4 -7 3 2 -7 5 ]) # Generate a random collection of right-hand sides. B = rand(n,m) # Initialize the PARDISO internal data structures. ps = solver() if verbose set_msglvl!(ps, Pardiso.MESSAGE_LEVEL_ON) end # If we want, we could just solve the system right now. # Pardiso.jl will automatically detect the correct matrix type, # solve the system and free the data X1 = solve(ps, A, B) # We also show how to do this in incremental steps. ps = solver() # First set the matrix type to handle general real symmetric matrices set_matrixtype!(ps, Pardiso.REAL_SYM_INDEF) # Initialize the default settings with the current matrix type pardisoinit(ps) # Remember that we pass in a CSC matrix to Pardiso, so need # to set the transpose iparm option. fix_iparm!(ps, :N) # Get the correct matrix to be sent into the pardiso function. # :N for normal matrix, :T for transpose, :C for conjugate A_pardiso = get_matrix(ps, A, :N) # Analyze the matrix and compute a symbolic factorization. set_phase!(ps, Pardiso.ANALYSIS) set_perm!(ps, randperm(n)) pardiso(ps, A_pardiso, B) @printf("The factors have %d nonzero entries.\n", get_iparm(ps, 18)) # Compute the numeric factorization. set_phase!(ps, Pardiso.NUM_FACT) pardiso(ps, A_pardiso, B) @printf("The matrix has %d positive and %d negative eigenvalues.\n", get_iparm(ps, 22), get_iparm(ps, 23)) # Compute the solutions X using the symbolic factorization. set_phase!(ps, Pardiso.SOLVE_ITERATIVE_REFINE) X = similar(B) # Solution is stored in X pardiso(ps, X, A_pardiso, B) @printf("PARDISO performed %d iterative refinement steps.\n", get_iparm(ps, 7)) # Compute the residuals. R = maximum(abs.(A*X - B)) @printf("The maximum residual for the solution X is %0.3g.\n", R) @test R < 1e-10 # Free the PARDISO data structures. set_phase!(ps, Pardiso.RELEASE_ALL) pardiso(ps) end
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
2753
# This is an example script demonstrating how PARDISO works on a small, # sparse, real non-symmetric matrix. It computes the m solutions X to the # collection of linear systems # # A * X = B # # using the PARDISO solver, where A is a non symmetric n x n matrix, B is an # n x m matrix, and X is another n x m matrix. using Pardiso using SparseArrays using Random using Printf using Test function example_unsymmetric(solver=MKLPardisoSolver) # Script parameters. # ----------------- verbose = false n = 4 # The number of equations. m = 3 # The number of right-hand sides. A = sparse([ 0. -2 3 0 -2 4 -4 1 -3 5 1 1 1 -3 0 2]) # Generate a random collection of right-hand sides. B = rand(n,m) # Initialize the PARDISO internal data structures. # ps = PardisoSolver() ps = solver() if verbose set_msglvl!(ps, Pardiso.MESSAGE_LEVEL_ON) end # If we want, we could just solve the system right now. # Pardiso.jl will automatically detect the correct matrix type, # solve the system and free the data X1 = solve(ps, A, B) # We also show how to do this in incremental steps. ps = solver() # First set the matrix type to handle general real unsymmetric matrices set_matrixtype!(ps, Pardiso.REAL_NONSYM) # Initialize the default settings with the current matrix type pardisoinit(ps) # Remember that we pass in a CSC matrix to Pardiso, so need # to set the transpose iparm option. fix_iparm!(ps, :N) # Get the correct matrix to be sent into the pardiso function. # :N for normal matrix, :T for transpose, :C for conjugate A_pardiso = get_matrix(ps, A, :N) # Analyze the matrix and compute a symbolic factorization. set_phase!(ps, Pardiso.ANALYSIS) set_perm!(ps, randperm(n)) pardiso(ps, A_pardiso, B) @printf("The factors have %d nonzero entries.\n", get_iparm(ps, 18)) # Compute the numeric factorization. set_phase!(ps, Pardiso.NUM_FACT) pardiso(ps, A_pardiso, B) @printf("The matrix has %d positive and %d negative eigenvalues.\n", get_iparm(ps, 22), get_iparm(ps, 23)) # Compute the solutions X using the symbolic factorization. set_phase!(ps, Pardiso.SOLVE_ITERATIVE_REFINE) X = similar(B) # Solution is stored in X pardiso(ps, X, A_pardiso, B) @printf("PARDISO performed %d iterative refinement steps.\n", get_iparm(ps, 7)) # Compute the residuals. R = maximum(abs.(A*X - B)) @printf("The maximum residual for the solution X is %0.3g.\n", R) @test R < 1e-12 # Free the PARDISO data structures. set_phase!(ps, Pardiso.RELEASE_ALL) pardiso(ps) end
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
15849
__precompile__() module Pardiso if !isfile(joinpath(@__DIR__, "..", "deps", "deps.jl")) error("""please run Pkg.build("Pardiso") before loading the package""") end include("../deps/deps.jl") function show_build_log() logfile = joinpath(@__DIR__, "..", "deps", "build.log") if !isfile(logfile) error("no log file found") else println(read(logfile, String)) end end using Libdl using SparseArrays using LinearAlgebra import Base.show if !LOCAL_MKL_FOUND import MKL_jll end MKL_LOAD_FAILED = false mkl_is_available() = (LOCAL_MKL_FOUND || MKL_jll.is_available()) && !MKL_LOAD_FAILED if LinearAlgebra.BLAS.vendor() === :mkl && LinearAlgebra.BlasInt == Int64 const MklInt = Int64 const PARDISO_FUNC = :pardiso_64 else const MklInt = Int32 const PARDISO_FUNC = :pardiso end const libmkl_rt = Ref{String}("") export PardisoSolver, MKLPardisoSolver export set_iparm!, set_dparm!, set_matrixtype!, set_solver!, set_phase!, set_msglvl!, set_nprocs! export get_iparm, get_iparms, get_dparm, get_dparms export get_matrixtype, get_solver, get_phase, get_msglvl, get_nprocs export set_maxfct!, set_perm!, set_mnum! export get_maxfct, get_perm, get_mnum export checkmatrix, checkvec, printstats, pardisoinit, pardiso export solve, solve! export get_matrix export schur_complement, pardisogetschur export fix_iparm! export mkl_is_available, panua_is_available struct PardisoException <: Exception info::String end struct PardisoPosDefException <: Exception info::String end Base.showerror(io::IO, e::Union{PardisoException,PardisoPosDefException}) = print(io, e.info); const PardisoNumTypes = Union{Float64,ComplexF64} abstract type AbstractPardisoSolver end function collect_gfortran_lib_candidates(main_ver) candidates = String[] if Sys.isapple() homebrew_gcc = "/usr/local/Cellar/gcc/" isdir(homebrew_gcc) || return String[] vers = readdir(homebrew_gcc) filter!(x -> startswith(x, "$main_ver."), vers) for v in vers push!(candidates, joinpath(homebrew_gcc, v, "lib/gcc/$main_ver/")) end elseif Sys.islinux() gcc_path = "/usr/lib/gcc/x86_64-linux-gnu/" isdir(gcc_path) || return String[] vers = readdir(gcc_path) filter!(x -> startswith(x, "$main_ver.") || isequal(x, "$main_ver"), vers) for v in vers push!(candidates, joinpath(gcc_path, v)) end end return candidates end load_lib_fortran(lib::String, v::Int) = load_lib_fortran(lib, [v]) function load_lib_fortran(lib::String, vs::Vector{Int}) candidates = String[] for v in vs append!(candidates, collect_gfortran_lib_candidates(v)) end path = Libdl.find_library(lib, candidates) isempty(path) && (path = lib) Libdl.dlopen(path * "." * Libdl.dlext, Libdl.RTLD_GLOBAL) end # Pardiso const init = Ref{Ptr}() const pardiso_f = Ref{Ptr}() const pardiso_chkmatrix = Ref{Ptr}() const pardiso_chkmatrix_z = Ref{Ptr}() const pardiso_printstats = Ref{Ptr}() const pardiso_printstats_z = Ref{Ptr}() const pardiso_chkvec = Ref{Ptr}() const pardiso_chkvec_z = Ref{Ptr}() const pardiso_get_schur_f = Ref{Ptr}() const PARDISO_LOADED = Ref(false) panua_is_available() = PARDISO_LOADED[] function __init__() global MKL_LOAD_FAILED if LOCAL_MKL_FOUND if Sys.iswindows() libmkl_rt[] = "mkl_rt" elseif Sys.isapple() libmkl_rt[] = "@rpath/libmkl_rt.dylib" else libmkl_rt[] = "libmkl_rt" end elseif MKL_jll.is_available() libmkl_rt[] = MKL_jll.libmkl_rt_path end if !haskey(ENV, "PARDISOLICMESSAGE") ENV["PARDISOLICMESSAGE"] = 1 end if LOCAL_MKL_FOUND && !haskey(ENV, "MKLROOT") @warn "MKLROOT not set, MKL Pardiso solver will not be functional" end if mkl_is_available() try libmklpardiso = Libdl.dlopen(libmkl_rt[]) mklpardiso_f = Libdl.dlsym(libmklpardiso, "pardiso") catch e @error("MKL Pardiso did not manage to load, error thrown was: $(sprint(showerror, e))") MKL_LOAD_FAILED = true end end # This is apparently needed for MKL to not get stuck on 1 thread when # libpardiso is loaded in the block below... if libmkl_rt[] !== "" get_nprocs_mkl() end if PARDISO_LIB_FOUND try libpardiso = Libdl.dlopen(PARDISO_PATH) init[] = Libdl.dlsym(libpardiso, "pardisoinit") pardiso_f[] = Libdl.dlsym(libpardiso, "pardiso") pardiso_chkmatrix[] = Libdl.dlsym(libpardiso, "pardiso_chkmatrix") pardiso_chkmatrix_z[] = Libdl.dlsym(libpardiso, "pardiso_chkmatrix_z") pardiso_printstats[] = Libdl.dlsym(libpardiso, "pardiso_printstats") pardiso_printstats_z[] = Libdl.dlsym(libpardiso, "pardiso_printstats_z") pardiso_chkvec[] = Libdl.dlsym(libpardiso, "pardiso_chkvec") pardiso_chkvec_z[] = Libdl.dlsym(libpardiso, "pardiso_chkvec_z") pardiso_get_schur_f[] = Libdl.dlsym(libpardiso, "pardiso_get_schur") if Sys.isunix() gfortran_v = [8, 9] for lib in ("libgfortran", "libgomp") load_lib_fortran(lib, gfortran_v) end end # Windows Pardiso lib comes with BLAS + LAPACK prebaked but not on UNIX so we open them here # if not MKL is loaded if Sys.isunix() ptr = C_NULL for l in ("libblas", "libblas.so.3") ptr = Libdl.dlopen_e(l, Libdl.RTLD_GLOBAL) if ptr !== C_NULL break end end if ptr == C_NULL error("could not load blas library") end end PARDISO_LOADED[] = true catch e @error("Pardiso did not manage to load, error thrown was: $(sprint(showerror, e))") end end end include("enums.jl") include("project_pardiso.jl") include("mkl_pardiso.jl") # Getters and setters set_matrixtype!(ps::AbstractPardisoSolver, v::Int) = set_matrixtype!(ps, MatrixType(v)) function set_matrixtype!(ps::AbstractPardisoSolver, v::MatrixType) ps.mtype = v end get_matrixtype(ps::AbstractPardisoSolver) = ps.mtype get_iparm(ps::AbstractPardisoSolver, i::Integer) = ps.iparm[i] get_iparms(ps::AbstractPardisoSolver) = ps.iparm set_iparm!(ps::AbstractPardisoSolver, i::Integer, v::Integer) = ps.iparm[i] = v get_mnum(ps::AbstractPardisoSolver) = ps.mnum set_mnum!(ps::AbstractPardisoSolver, mnum::Integer) = ps.mnum = mnum get_maxfct(ps::AbstractPardisoSolver) = ps.maxfct set_maxfct!(ps::AbstractPardisoSolver, maxfct::Integer) = ps.maxfct = maxfct get_perm(ps::AbstractPardisoSolver) = ps.perm set_perm!(ps::AbstractPardisoSolver, perm::Vector{T}) where {T <: Integer} = ps.perm = convert(Vector{Int32}, perm) get_phase(ps::AbstractPardisoSolver) = ps.phase set_phase!(ps::AbstractPardisoSolver, v::Int) = set_phase!(ps, Phase(v)) function set_phase!(ps::AbstractPardisoSolver, v::Phase) ps.phase = v end get_msglvl(ps::AbstractPardisoSolver) = ps.msglvl set_msglvl!(ps::AbstractPardisoSolver, v::Integer) = set_msglvl!(ps, MessageLevel(v)) function set_msglvl!(ps::AbstractPardisoSolver, v::MessageLevel) ps.msglvl = v end function pardisoinit(ps::AbstractPardisoSolver) ccall_pardisoinit(ps) return end function solve(ps::AbstractPardisoSolver, A::SparseMatrixCSC{Tv,Ti}, B::StridedVecOrMat{Tv}, T::Symbol=:N) where {Ti, Tv <: PardisoNumTypes} X = copy(B) solve!(ps, X, A, B, T) return X end function fix_iparm!(ps::AbstractPardisoSolver, T::Symbol) # We need to set the transpose flag in PARDISO when we DON'T want # a transpose in Julia because we are passing a CSC formatted # matrix to PARDISO which expects a CSR matrix. if T === :N if isa(ps, PardisoSolver) set_iparm!(ps, 12, 1) else # iparm[12] = 1 is complex conjugate in MKL set_iparm!(ps, 12, 2) end elseif T === :C || T === :T set_iparm!(ps, 12, 0) else throw(ArgumentError("only :T, :N and :C, are valid transpose symbols")) end end function solve!(ps::AbstractPardisoSolver, X::StridedVecOrMat{Tv}, A::SparseMatrixCSC{Tv,Ti}, B::StridedVecOrMat{Tv}, T::Symbol=:N) where {Ti, Tv <: PardisoNumTypes} set_phase!(ps, ANALYSIS_NUM_FACT_SOLVE_REFINE) # This is the heuristics for choosing what matrix type to use ################################################################## # - If hermitian try to solve with symmetric positive definite. # - On pos def exception, solve instead with symmetric indefinite. # - If complex and symmetric, solve with symmetric complex solver # - Else solve as unsymmetric. if ishermitian(A) eltype(A) == Float64 ? set_matrixtype!(ps, REAL_SYM_POSDEF) : set_matrixtype!(ps, COMPLEX_HERM_POSDEF) pardisoinit(ps) fix_iparm!(ps, T) try pardiso(ps, X, get_matrix(ps, A, T), B) catch e set_phase!(ps, RELEASE_ALL) pardiso(ps, X, A, B) set_phase!(ps, ANALYSIS_NUM_FACT_SOLVE_REFINE) if !isa(e, PardisoPosDefException) rethrow() end eltype(A) == Float64 ? set_matrixtype!(ps, REAL_SYM_INDEF) : set_matrixtype!(ps, COMPLEX_HERM_INDEF) pardisoinit(ps) fix_iparm!(ps, T) pardiso(ps, X, get_matrix(ps, A, T), B) end elseif issymmetric(A) set_matrixtype!(ps, COMPLEX_SYM) pardisoinit(ps) fix_iparm!(ps, T) pardiso(ps, X, get_matrix(ps, A, T), B) else eltype(A) == Float64 ? set_matrixtype!(ps, REAL_NONSYM) : set_matrixtype!(ps, COMPLEX_NONSYM) pardisoinit(ps) fix_iparm!(ps, T) pardiso(ps, X, get_matrix(ps, A, T), B) end # Release memory, TODO: We are running the convert on IA and JA here # again which is unnecessary. set_phase!(ps, RELEASE_ALL) pardiso(ps, X, A, B) set_phase!(ps, ANALYSIS_NUM_FACT_SOLVE_REFINE) return X end function get_matrix(ps::AbstractPardisoSolver, A, T) mtype = get_matrixtype(ps) if isposornegdef(mtype) if ps isa MKLPardisoSolver T == :C && return conj(tril(A)) return tril(A) elseif ps isa PardisoSolver T == :T && return tril(A) return conj(tril(A)) end end if !issymmetric(mtype) T == :C && return conj(A) return A end if mtype == COMPLEX_SYM T == :C && return conj(tril(A)) return tril(A) end error("Unhandled matrix type") end function pardiso(ps::AbstractPardisoSolver, X::StridedVecOrMat{Tv}, A::SparseMatrixCSC{Tv,Ti}, B::StridedVecOrMat{Tv}) where {Ti, Tv <: PardisoNumTypes} if length(X) != 0 dim_check(X, A, B) end if Tv <: Complex && isreal(get_matrixtype(ps)) throw(ErrorException(string("input matrix is complex while PardisoSolver ", "has a real matrix type set: $(get_matrixtype(ps))"))) end if Tv <: Real && !isreal(get_matrixtype(ps)) throw(ErrorException(string("input matrix is real while PardisoSolver ", "has a complex matrix type set: $(get_matrixtype(ps))"))) end N = size(A, 2) resize!(ps.perm, size(B, 1)) NRHS = size(B, 2) ccall_pardiso(ps, N, A.nzval, A.colptr, A.rowval, NRHS, B, X) end pardiso(ps::AbstractPardisoSolver) = ccall_pardiso(ps, Int32(0), Float64[], Int32[], Int32[], Int32(0), Float64[], Float64[]) function pardiso(ps::AbstractPardisoSolver, A::SparseMatrixCSC{Tv,Ti}, B::StridedVecOrMat{Tv}) where {Ti, Tv <: PardisoNumTypes} pardiso(ps, Tv[], A, B) end # populated rows of S determine schur complment block """ schur_complement(ps,A,x) -> S Schur complement `S` of the submatrix defined by the nonzero entries of `x` in matrix `A`. If `n=nnz(x)`, then `S` is `n`-by-`n`. WARNING: for complex `M`, seems to be unstable, made worse as number of nonzero elements in `M` decreases """ schur_complement(ps::AbstractPardisoSolver,A,x::SparseVector,T::Symbol=:N) = _schur_complement_permuted(ps,A,x.nzind,T) schur_complement(ps::AbstractPardisoSolver,A,x::SparseMatrixCSC,T::Symbol=:N) = _schur_complement_permuted(ps,A,unique!(sort!(x.rowval)),T) # permute A and then compute complement of lower right-hand `n`-by-`n` block function _schur_complement_permuted(ps,A,rows,T::Symbol) P = sparse(vcat(setdiff(1:A.n,rows),rows),1:A.n,1,size(A)...) schur_complement(ps,P'*A*P,length(rows),T) end # or integer gives last n rows and columns as schur complement block """ schur_complement(ps,M,n) -> S Schur complement `S` of upper-left block in `M`, where `n` is the size of lower-right block (and therefore also of Schur complement) WARNING: for complex `M`, seems to be unstable, made worse as number of nonzero elements in `M` decreases """ function schur_complement(ps::AbstractPardisoSolver,A::SparseMatrixCSC{Tv},n::Integer,T::Symbol=:N) where Tv <: PardisoNumTypes n ≥ size(A,1) ? throw(ErrorException("complement block size n=$n≥A.m=$(A.m)")) : nothing # Tv<:Complex ? (@warn "unstable for complex types, unknown why") : nothing pardisoinit(ps) original_phase = get_phase(ps) original_iparms = get_iparms(ps) set_iparm!(ps,1,1) # use custom IPARM set_iparm!(ps,38,n) # set Schur complement block size to n set_phase!(ps,12) # analyze and factorize B = Matrix{Tv}(undef,size(A,1),0) # dummy array to feed to pardiso # transpose via IPARM(12) doesn't work at factorize step (only on entry to solve step) if T==:N M = permutedims(A) set_iparm!(ps, 12, 1) elseif T == :C M = conj(permutedims(A)) set_iparm!(ps, 12, 0) elseif T == :T M = A set_iparm!(ps, 12, 0) else throw(ArgumentError("only :T, :N and :C, are valid transpose symbols")) end pardiso(ps,B,M,B) S = pardisogetschur(ps) # get schur complement matrix set_phase!(ps, RELEASE_ALL) pardiso(ps, B, M, B) set_phase!(ps, original_phase) # reset phase to user setting for i ∈ eachindex(original_iparms) set_iparm!(ps,i,original_iparms[i]) end return S end """ pardisogetschur(ps) -> S retrieve schur complement from PardisoSolver `ps`. """ function pardisogetschur(ps::AbstractPardisoSolver) nnzschur = get_iparm(ps, 39) nschur = get_iparm(ps,38) T = isreal(get_matrixtype(ps)) ? Float64 : ComplexF64 if nnzschur==0 return spzeros(T,nschur,nschur) else S = Vector{T}(undef,nnzschur) IS = Vector{Int32}(undef,nschur) JS = Vector{Int32}(undef,nnzschur) ccall_pardiso_get_schur(ps,S,IS,JS) IS = pushfirst!(IS,Int32(1)) # some issue with IS (nschur+1 doesn't seem to work) S = permutedims(SparseMatrixCSC(nschur,nschur,IS,JS,S)) # really constructing CSR and then transposing return S end end function dim_check(X, A, B) size(X) == size(B) || throw(DimensionMismatch(string("solution has $(size(X)), ", "RHS has size as $(size(B))."))) size(A, 1) == size(B, 1) || throw(DimensionMismatch(string("matrix has $(size(A,1)) ", "rows, RHS has $(size(B,1)) rows."))) size(B, 1) == stride(B, 2) || throw(DimensionMismatch( string("Only memory-contiguous RHS supported"))) end end # module
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
3524
# Matrix type @enum(MatrixType::Int32, REAL_SYM = 1, REAL_SYM_POSDEF = 2, REAL_SYM_INDEF = -2, COMPLEX_STRUCT_SYM = 3, COMPLEX_HERM_POSDEF = 4, COMPLEX_HERM_INDEF = -4, COMPLEX_SYM = 6, REAL_NONSYM = 11, COMPLEX_NONSYM = 13, ) Base.isreal(v::MatrixType) = v in (REAL_SYM, REAL_SYM_POSDEF, REAL_SYM_INDEF, REAL_NONSYM) LinearAlgebra.issymmetric(v::MatrixType) = v in (REAL_SYM, REAL_SYM_POSDEF, REAL_SYM_INDEF, COMPLEX_STRUCT_SYM, COMPLEX_HERM_POSDEF, COMPLEX_HERM_INDEF, COMPLEX_SYM) LinearAlgebra.ishermitian(v::MatrixType) = v in (REAL_SYM_POSDEF, COMPLEX_HERM_POSDEF, COMPLEX_HERM_INDEF) isposornegdef(v::MatrixType) = v in (REAL_SYM_POSDEF, REAL_SYM_INDEF, COMPLEX_HERM_POSDEF, COMPLEX_HERM_INDEF) const MATRIX_STRING = Dict{MatrixType, String}( REAL_SYM => "Real structurally symmetric", REAL_SYM_POSDEF => "Real symmetric positive definite", REAL_SYM_INDEF => "Real symmetric indefinite", COMPLEX_STRUCT_SYM => "Complex structurally symmetric", COMPLEX_HERM_POSDEF => "Complex Hermitian postive definite", COMPLEX_HERM_INDEF => "Complex Hermitian indefinite", COMPLEX_SYM => "Complex symmetric", REAL_NONSYM => "Real nonsymmetric", COMPLEX_NONSYM => "Complex nonsymmetric" ) const REAL_MATRIX_TYPES = [REAL_SYM, REAL_SYM_POSDEF, REAL_SYM_INDEF, REAL_NONSYM] const COMPLEX_MATRIX_TYPES = [COMPLEX_STRUCT_SYM, COMPLEX_HERM_POSDEF, COMPLEX_HERM_INDEF, COMPLEX_NONSYM] # Messages @enum(MessageLevel::Int32, MESSAGE_LEVEL_OFF = 0, MESSAGE_LEVEL_ON = 1 ) # Solver @enum(Solver::Int32, DIRECT_SOLVER = 0, ITERATIVE_SOLVER = 1 ) const SOLVER_STRING = Dict{Solver, String}( DIRECT_SOLVER => "Direct solver", ITERATIVE_SOLVER => "Iterative solver" ) # Phase @enum(Phase::Int32, ANALYSIS = 11, ANALYSIS_NUM_FACT = 12, ANALYSIS_NUM_FACT_SOLVE_REFINE = 13, NUM_FACT = 22, SELECTED_INVERSION = -22, NUM_FACT_SOLVE_REFINE = 23, SOLVE_ITERATIVE_REFINE = 33, SOLVE_ITERATIVE_REFINE_ONLY_FORWARD = 331, SOLVE_ITERATIVE_REFINE_ONLY_DIAG = 332, SOLVE_ITERATIVE_REFINE_ONLY_BACKWARD = 333, RELEASE_LU_MNUM = 0, RELEASE_ALL = -1 ) const PHASE_STRING = Dict{Phase, String}( ANALYSIS => "Analysis", ANALYSIS_NUM_FACT => "Analysis, numerical factorization", ANALYSIS_NUM_FACT_SOLVE_REFINE => "Analysis, numerical factorization, solve, iterative refinement", NUM_FACT => "Numerical factorization", SELECTED_INVERSION => "Selected Inversion", NUM_FACT_SOLVE_REFINE => "Numerical factorization, solve, iterative refinement", SOLVE_ITERATIVE_REFINE => "Solve, iterative refinement", RELEASE_LU_MNUM => "Release internal memory for L and U matrix number MNUM", RELEASE_ALL => "Release all internal memory for all matrices", SOLVE_ITERATIVE_REFINE_ONLY_FORWARD => "like phase=33, but only forward substitution", SOLVE_ITERATIVE_REFINE_ONLY_DIAG => "like phase=33, but only diagonal substitution (if available)", SOLVE_ITERATIVE_REFINE_ONLY_BACKWARD => "like phase=33, but only backward substitution", )
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
3658
const MKL_DOMAIN_PARDISO = Int32(4) mutable struct MKLPardisoSolver <: AbstractPardisoSolver pt::Vector{Int} iparm::Vector{MklInt} mtype::MatrixType solver::Solver phase::Phase msglvl::MessageLevel maxfct::MklInt mnum::MklInt perm::Vector{MklInt} end function MKLPardisoSolver() if !(mkl_is_available()) error("MKL is not available") end pt = zeros(Int, 64) iparm = zeros(MklInt, 64) mtype = REAL_NONSYM solver = DIRECT_SOLVER phase = ANALYSIS_NUM_FACT_SOLVE_REFINE msglvl = MESSAGE_LEVEL_OFF mnum = MklInt(1) maxfct = MklInt(1) perm = MklInt[] ps = MKLPardisoSolver(pt, iparm, mtype, solver, phase, msglvl, maxfct, mnum, perm) return ps end show(io::IO, ps::MKLPardisoSolver) = print(io, string("$MKLPardisoSolver:\n", "\tMatrix type: $(MATRIX_STRING[get_matrixtype(ps)])\n", "\tPhase: $(PHASE_STRING[get_phase(ps)])")) set_nprocs!(ps::MKLPardisoSolver, n::Integer) = set_nprocs_mkl!(n) set_nprocs_mkl!(n::Integer) = ccall((:mkl_domain_set_num_threads, libmkl_rt[]), Cvoid, (Ptr{Int32}, Ptr{Int32}), Ref((Int32(n))), Ref(MKL_DOMAIN_PARDISO)) get_nprocs(ps::MKLPardisoSolver) = get_nprocs_mkl() get_nprocs_mkl() = ccall((:mkl_domain_get_max_threads, libmkl_rt[]), Int32, (Ptr{Int32},), Ref(MKL_DOMAIN_PARDISO)) valid_phases(ps::MKLPardisoSolver) = keys(MKL_PHASES) phases(ps::MKLPardisoSolver) = MKL_PHASES function ccall_pardisoinit(ps::MKLPardisoSolver) ERR = Ref{MklInt}(0) ccall((:pardisoinit, libmkl_rt[]), Cvoid, (Ptr{Int}, Ptr{MklInt}, Ptr{MklInt}), ps.pt, Ref(MklInt(ps.mtype)), ps.iparm) check_error(ps, ERR[]) end function ccall_pardiso(ps::MKLPardisoSolver, N, nzval::Vector{Tv}, colptr, rowval, NRHS, B::StridedVecOrMat{Tv}, X::StridedVecOrMat{Tv}) where {Tv} N = MklInt(N) colptr = convert(Vector{MklInt}, colptr) rowval = convert(Vector{MklInt}, rowval) resize!(ps.perm, size(B, 1)) NRHS = MklInt(NRHS) ERR = Ref{MklInt}(0) ccall((PARDISO_FUNC, libmkl_rt[]), Cvoid, (Ptr{Int}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{Tv}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{MklInt}, Ptr{Tv}, Ptr{Tv}, Ptr{MklInt}), ps.pt, Ref(ps.maxfct), Ref(ps.mnum), Ref(MklInt(ps.mtype)), Ref(MklInt(ps.phase)), Ref(N), nzval, colptr, rowval, ps.perm, Ref(NRHS), ps.iparm, Ref(MklInt(ps.msglvl)), B, X, ERR) check_error(ps, ERR[]) end function check_error(ps::MKLPardisoSolver, err::Integer) err != -1 || throw(PardisoException("Input inconsistent.")) err != -2 || throw(PardisoException("Not enough memory.")) err != -3 || throw(PardisoException("Reordering problem.")) err != -4 || throw(PardisoPosDefException("Zero pivot, numerical fact. or iterative refinement problem.")) err != -5 || throw(PardisoException("Unclassified (internal) error.")) err != -6 || throw(PardisoException("Preordering failed (matrix types 11, 13 only).")) err != -7 || throw(PardisoException("Diagonal matrix is singular")) err != -8 || throw(PardisoException("32-bit integer overflow problem.")) err != -9 || throw(PardisoException("Not enough memory for OOC.")) err != -10 || throw(PardisoException("Error opening OOC files.")) err != -11 || throw(PardisoException("Read/write error with OOC files.")) err != -12 || throw(PardisoException("pardiso_64 called from 32-bit library")) return end
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
6641
mutable struct PardisoSolver <: AbstractPardisoSolver pt::Vector{Int} iparm::Vector{Int32} dparm::Vector{Float64} mtype::MatrixType solver::Solver phase::Phase msglvl::MessageLevel maxfct::Int32 mnum::Int32 perm::Vector{Int32} end function PardisoSolver() if !panua_is_available() error("Panua pardiso library was not loaded") end pt = zeros(Int, 64) iparm = zeros(Int32, 64) dparm = zeros(Float64, 64) mtype = REAL_NONSYM solver = DIRECT_SOLVER phase = ANALYSIS_NUM_FACT_SOLVE_REFINE msglvl = MESSAGE_LEVEL_OFF # Set numper of processors to CPU_CORES unless "OMP_NUM_THREADS" is set if haskey(ENV, "OMP_NUM_THREADS") iparm[3] = parse(Int, ENV["OMP_NUM_THREADS"]) else # Assume 2 threads per core iparm[3] = max(div(Sys.CPU_THREADS, 2), 1) end mnum = 1 maxfct = 1 perm = Int32[] ps = PardisoSolver(pt, iparm, dparm, mtype, solver, phase, msglvl, maxfct, mnum, perm) return ps end show(io::IO, ps::PardisoSolver) = print(io, string("$PardisoSolver:\n", "\tSolver: $(SOLVER_STRING[get_solver(ps)])\n", "\tMatrix type: $(MATRIX_STRING[get_matrixtype(ps)])\n", "\tPhase: $(PHASE_STRING[get_phase(ps)])\n", "\tNum processors: $(get_nprocs(ps))")) phases(ps::PardisoSolver) = PHASES set_transposed(ps::PardisoSolver, t::Bool) = t ? set_iparm(ps, 12, 1) : set_iparm(ps, 12, 0) get_dparm(ps::PardisoSolver, i::Integer) = ps.dparm[i] get_dparms(ps::PardisoSolver) = ps.dparm set_dparm!(ps::PardisoSolver, i::Integer, v::AbstractFloat) = ps.dparm[i] = v get_nprocs(ps::PardisoSolver) = ps.iparm[3] set_solver!(ps::PardisoSolver, v::Int) = set_solver!(ps, Solver(v)) function set_solver!(ps::PardisoSolver, v::Solver) ps.solver = v end get_solver(ps::PardisoSolver) = ps.solver @inline function ccall_pardisoinit(ps::PardisoSolver) ERR = Ref{Int32}(0) ccall(init[], Cvoid, (Ptr{Int}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}), ps.pt, Ref(Int32(ps.mtype)), Ref(Int32(ps.solver)), ps.iparm, ps.dparm, ERR) check_error(ps, ERR[]) end @inline function ccall_pardiso(ps::PardisoSolver, N::Integer, nzval::Vector{Tv}, colptr, rowval, NRHS::Integer, B::StridedVecOrMat{Tv}, X::StridedVecOrMat{Tv}) where {Tv} N = Int32(N) colptr = convert(Vector{Int32}, colptr) rowval = convert(Vector{Int32}, rowval) resize!(ps.perm, size(B, 1)) NRHS = Int32(NRHS) ERR = Ref{Int32}(0) ccall(pardiso_f[], Cvoid, (Ptr{Int}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Tv}, Ptr{Int32}, Ptr{Float64}), ps.pt, Ref(ps.maxfct), Ref(Int32(ps.mnum)), Ref(Int32(ps.mtype)), Ref(Int32(ps.phase)), Ref(N), nzval, colptr, rowval, ps.perm, Ref(NRHS), ps.iparm, Ref(Int32(ps.msglvl)), B, X, ERR, ps.dparm) check_error(ps, ERR[]) end @inline function ccall_pardiso_get_schur(ps::PardisoSolver, S::Vector{Tv}, IS::Vector{Int32}, JS::Vector{Int32}) where Tv ccall(pardiso_get_schur_f[], Cvoid, (Ptr{Int}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Int32}, Ptr{Int32}), ps.pt, Ref(ps.maxfct), Ref(Int32(ps.mnum)), Ref(Int32(ps.mtype)),S, IS, JS) end # Different checks function printstats(ps::PardisoSolver, A::SparseMatrixCSC{Tv, Ti}, B::StridedVecOrMat{Tv}) where {Ti,Tv <: PardisoNumTypes} N = Int32(size(A, 2)) AA = A.nzval IA = convert(Vector{Int32}, A.colptr) JA = convert(Vector{Int32}, A.rowval) NRHS = Int32(size(B, 2)) ERR = Ref{Int32}(0) if Tv <: Complex f = pardiso_printstats_z[] else f = pardiso_printstats[] end ccall(f, Cvoid, (Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Int32}), Ref(Int32(ps.mtype)), Ref(N), AA, IA, JA, Ref(NRHS), B, ERR) check_error(ps, ERR[]) return end function checkmatrix(ps::PardisoSolver, A::SparseMatrixCSC{Tv, Ti}) where {Ti,Tv <: PardisoNumTypes} N = Int32(size(A, 1)) AA = A.nzval IA = convert(Vector{Int32}, A.colptr) JA = convert(Vector{Int32}, A.rowval) ERR = Ref{Int32}(0) if Tv <: Complex f = pardiso_chkmatrix_z[] else f = pardiso_chkmatrix[] end ccall(f, Cvoid, (Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Int32}, Ptr{Int32}, Ptr{Int32}), Ref(Int32(ps.mtype)), Ref(N), AA, IA, JA, ERR) check_error(ps, ERR[]) return end function checkvec(ps, B::StridedVecOrMat{Tv}) where {Tv <: PardisoNumTypes} N = Int32(size(B, 1)) NRHS = Int32(size(B, 2)) ERR = Int32[0] if Tv <: Complex f = pardiso_chkvec_z[] else f = pardiso_chkvec[] end ccall(f, Cvoid, (Ptr{Int32}, Ptr{Int32}, Ptr{Tv}, Ptr{Int32}), Ref(N), Ref(NRHS), B, ERR) check_error(ps, ERR[]) return end function check_error(ps::PardisoSolver, err::Integer) err != -1 || throw(PardisoException("Input inconsistent.")) err != -2 || throw(PardisoException("Not enough memory.")) err != -3 || throw(PardisoException("Reordering problem.")) err != -4 || throw(PardisoPosDefException("Zero pivot, numerical fact. or iterative refinement problem.")) err != -5 || throw(PardisoException("Unclassified (internal) error.")) err != -6 || throw(PardisoException("Preordering failed (matrix types 11, 13 only).")) err != -7 || throw(PardisoException("Diagonal matrix problem.")) err != -8 || throw(PardisoException("32-bit integer overflow problem.")) err != -10 || throw(PardisoException("No license file pardiso.lic found.")) err != -11 || throw(PardisoException("License is expired.")) err != -12 || throw(PardisoException("Wrong username or hostname.")) err != -100|| throw(PardisoException("Reached maximum number of Krylov-subspace iteration in iterative solver.")) err != -101|| throw(PardisoException("No sufficient convergence in Krylov-subspace iteration within 25 iterations.")) err != -102|| throw(PardisoException("Error in Krylov-subspace iteration.")) err != -103|| throw(PardisoException("Break-Down in Krylov-subspace iteration.")) return end
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
5532
ENV["OMP_NUM_THREADS"] = 2 using Pkg if Sys.isapple() Pkg.add(name="MKL_jll"; version = "2023") end using Test using Pardiso using Random using SparseArrays using LinearAlgebra Random.seed!(1234) available_solvers = empty([Pardiso.AbstractPardisoSolver]) if Pardiso.mkl_is_available() push!(available_solvers, MKLPardisoSolver) else @warn "Not testing MKL Pardiso solver" end if Pardiso.PARDISO_LOADED[] push!(available_solvers, PardisoSolver) else @warn "Not testing project Pardiso solver" end @show Pardiso.MklInt println("Testing ", available_solvers) # Test solver + for real and complex data @testset "solving" begin for pardiso_type in available_solvers ps = pardiso_type() for T in (Float64, ComplexF64) A1 = sparse(rand(T, 10,10)) for B in (rand(T, 10, 2), view(rand(T, 10, 4), 1:10, 2:3)) X = similar(B) # Test unsymmetric, herm indef, herm posdef and symmetric for A in SparseMatrixCSC[A1, A1 + A1', A1'A1, transpose(A1) + A1] solve!(ps, X, A, B) @test X ≈ A\Matrix(B) X = solve(ps, A, B) @test X ≈ A\Matrix(B) solve!(ps, X, A, B, :C) @test X ≈ A'\Matrix(B) X = solve(ps, A, B, :C) @test X ≈ A'\Matrix(B) solve!(ps, X, A, B, :T) @test X ≈ copy(transpose(A))\Matrix(B) X = solve(ps, A, B, :T) @test X ≈ copy(transpose(A))\Matrix(B) end end end end end #testset include("../examples/examplesym.jl") include("../examples/exampleunsym.jl") include("../examples/exampleherm.jl") for solver in available_solvers example_symmetric(solver) example_unsymmetric(solver) example_hermitian_psd(solver) end if Pardiso.mkl_is_available() if Sys.CPU_THREADS >= 4 @testset "procs" begin ps = MKLPardisoSolver() np = get_nprocs(ps) set_nprocs!(ps, 2) @test get_nprocs(ps) == 2 set_nprocs!(ps, np) @test get_nprocs(ps) == np end end end if Pardiso.PARDISO_LOADED[] @testset "schur" begin # reproduce example from Pardiso website include("schur_matrix_def.jl") @test norm(real(D) - real(C)*rA⁻¹*real(B) - s) < 1e-10*(8)^2 # @test norm(D - C*A⁻¹*B - S) < 1e-10*(8)^2 # try some random matrices m = 50; n = 15; p = .1 ps = PardisoSolver() for T in (Float64, )#ComplexF64) ps = PardisoSolver() pardisoinit(ps) if T == Float64 set_matrixtype!(ps, 11) else set_matrixtype!(ps, 13) end for j ∈ 1:100 A = 5I + sprand(T,m,m,p) A⁻¹ = inv(Matrix(A)) B = sprand(T,m,n,p) C = sprand(T,n,m,p) D = 5I + sprand(T,n,n,p) M = [A B; C D] # test integer block specification S = schur_complement(ps, M, n); @test norm(D - C*A⁻¹*B - S) < 1e-10*(m+n)^2 # test sparse vector block specification x = spzeros(T,m+n) x[(m+1):(m+n)] .= 1 S = schur_complement(ps, M, x); @test norm(D - C*A⁻¹*B - S) < 1e-10*(m+n)^2 # test sparse matrix block specification x = spzeros(T,m+n,2) x[(m+1):(m+n-1),1] .= 1 x[end,2] = 1 S = schur_complement(ps, M, x); @test norm(D - C*A⁻¹*B - S) < 1e-10*(m+n)^2 end end end # testset end @testset "error checks" begin for pardiso_type in available_solvers ps = pardiso_type() A = sparse(rand(10,10)) B = rand(10, 2) X = rand(10, 2) if pardiso_type == PardisoSolver printstats(ps, A, B) checkmatrix(ps, A) checkvec(ps, B) end set_matrixtype!(ps, 13) @test_throws ErrorException pardiso(ps, X, A, B) @test_throws ArgumentError solve(ps, A, B, :P) @test_throws ArgumentError solve!(ps, X, A, B, :P) set_matrixtype!(ps, 11) X = zeros(12, 2) @test_throws DimensionMismatch solve!(ps,X, A, B) B = rand(12, 2) @test_throws DimensionMismatch solve(ps, A, B) end end # testset @testset "getters and setters" begin for pardiso_type in available_solvers ps = pardiso_type() set_iparm!(ps, 1, 0) pardisoinit(ps) @test get_iparm(ps, 1) == 1 @test_throws ArgumentError set_phase!(ps, 5) @test_throws ArgumentError set_msglvl!(ps, 2) @test_throws ArgumentError set_matrixtype!(ps, 15) if pardiso_type == PardisoSolver @test_throws ArgumentError set_solver!(ps, 2) set_dparm!(ps, 5, 13.37) @test get_dparm(ps, 5) == 13.37 set_solver!(ps, 1) @test Int(get_solver(ps)) == 1 end set_iparm!(ps, 13, 100) @test get_iparm(ps, 13) == 100 set_matrixtype!(ps, Pardiso.REAL_SYM) @test get_matrixtype(ps) == Pardiso.REAL_SYM set_phase!(ps, Pardiso.ANALYSIS_NUM_FACT) @test get_phase(ps) == Pardiso.ANALYSIS_NUM_FACT set_msglvl!(ps, Pardiso.MESSAGE_LEVEL_ON) @test get_msglvl(ps) == Pardiso.MESSAGE_LEVEL_ON end @testset "pardiso" begin for pardiso_type in available_solvers A = sparse(rand(2,2) + im * rand(2,2)) b = rand(2) + im * rand(2) ps = pardiso_type() set_matrixtype!(ps, Pardiso.COMPLEX_NONSYM) x = Pardiso.solve(ps, A, b); set_phase!(ps, Pardiso.RELEASE_ALL) pardiso(ps) end end end # testset
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
code
3728
# emulating exmaple found on pardiso_unsym_schur.cpp found on https://pardiso-project.org n = 16 ia = [0, 9, 17, 24, 31, 38, 46, 53, 61, 63, 65, 67, 69, 71, 73, 75, 77] .+ 1 ja = [0, 2, 5, 6, 8, 9, 10, 11, 12, 1, 2, 4, 8, 9, 10, 11, 12, 2, 7, 8, 9, 10, 11, 12, 3, 6, 8, 9, 10, 11, 12, 1, 4, 8, 9, 10, 11, 12, 2, 5, 7, 8, 9, 10, 11, 12, 1, 6, 8, 9, 10, 11, 12, 2, 6, 7, 8, 9, 10, 11, 12, 0, 8, 1, 9, 2, 10, 3, 11, 4, 12, 5, 13, 6, 14, 7, 15] .+ 1 a = [ complex(7.0000000000000000, 1.), complex(1.0000000000000000, 1.), complex(2.0000000000000000, 1.), complex(7.0000000000000000, 1.), complex(0.8813528146570788, 0.), complex(0.9693082988664113, 0.), complex(0.0063764102307857, 0.), complex(0.0656724982252748, 0.), complex(0.1285133482338328, 0.), complex(-4.0000000000000000, 0.), complex(8.0000000000000000, 1.), complex(2.0000000000000000, 1.), complex(0.0246814022448006, 0.), complex(0.3913069588115609, 0.), complex(0.9199013631348676, 0.), complex(0.2300406237580992, 0.), complex(0.6371356638478847, 0.), complex(1.0000000000000000, 1.), complex(5.0000000000000000, 1.), complex(0.3412064600197927, 0.), complex(0.3135851048672553, 0.), complex(0.0179622413055945, 0.), complex(0.1170403198125443, 0.), complex(0.7464881699547887, 0.), complex(7.0000000000000000, 0.), complex(9.0000000000000000, 1.), complex(0.4214056775317185, 0.), complex(0.5533135799374451, 0.), complex(0.0294164798770650, 0.), complex(0.9897710614201980, 0.), complex(0.8052672976354331, 0.), complex(-4.0000000000000000, 1.), complex(0.0000000000000000, 0.), complex(0.0800111586678662, 0.), complex(0.7920480624973907, 0.), complex(0.7114519163682994, 0.), complex(0.0705164910828937, 0.), complex(0.2690271315860681, 0.), complex(7.0000000000000000, 1.), complex(3.0000000000000000, 1.), complex(8.0000000000000000, 0.), complex(0.0793538091733186, 0.), complex(0.7983140830802098, 0.), complex(0.5384141865401406, 0.), complex(0.0600236559152354, 0.), complex(0.4339797789833593, 0.), complex(1.0000000000000000, 1.), complex(11.0000000000000000, 1.), complex(0.0723762491986621, 0.), complex(0.8632585405599013, 0.), complex(0.5245885805189759, 0.), complex(0.6615771015291297, 0.), complex( 0.4018064872641355, 0.), complex(-3.0000000000000000, 1.), complex( 2.0000000000000000, 1.), complex( 5.0000000000000000, 0.), complex( 0.9003410060810889, 0.), complex( 0.7979622044473094, 0.), complex( 0.5022399304161738, 0.), complex( 0.3440577694777694, 0.), complex(0.6081423394349520, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.), complex(1.0000000000000000, 0.), complex(0.0000000000000000, 0.) ] M = SparseMatrixCSC(n,n,ia,ja,a) ps = PardisoSolver() set_matrixtype!(ps,Pardiso.COMPLEX_NONSYM) S = schur_complement(ps,M,8) m = real(M) set_matrixtype!(ps,Pardiso.REAL_NONSYM) s = schur_complement(ps,m,8) A = M[1:n-8,1:n-8] A⁻¹ = inv(Matrix(A)) rA⁻¹ = inv(real(Matrix(A))) B = M[1:n-8,n-7:end] C = M[n-7:end,1:n-8] D = M[n-7:end,n-7:end]
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
docs
15640
# Pardiso.jl [![CI Testing](https://github.com/JuliaSparse/Pardiso.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/JuliaSparse/Pardiso.jl/actions/workflows/CI.yml) The Pardiso.jl package provides an interface for using [Panua Pardiso](https://panua.ch/pardiso), it's predecessors from [pardiso-project.org](http://www.pardiso-project.org/), and [Intel MKL PARDISO](https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html) from the [Julia language](http://julialang.org). You cannot use `Pardiso.jl` without either having a valid license for Panua Pardiso or having the MKL library installed. This package is available free of charge and in no way replaces or alters any functionality of the linked libraries. ## Installation The package itself is installed with `Pkg.add("Pardiso")` but you also need to follow the installation instructions below to install a working PARDISO library. ### MKL PARDISO By default, when adding "Pardiso.jl" to the active environmnent, Julia will automatically install a suitable MKL for your platform by loading `MKL_jll.jl`. Note that if you use a mac you will need to pin `MKL_jll` to version 2023. If you instead use a self installed MKL, follow these instructions: * Set the `MKLROOT` environment variable. See the [MKL set environment variables manual](https://www.intel.com/content/www/us/en/docs/onemkl/developer-guide-linux/2024-0/scripts-to-set-environment-variables.html) for a thorough guide how to set this variable correctly, typically done by executing something like `source /opt/intel/oneapi/setvars.sh intel64` or running `"C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows\mkl\bin\mklvars.bat" intel64` * Run `Pkg.build("Pardiso", verbose=true)` * Eventually, run `Pardiso.show_build_log()` to see the build log for additional information. * Note that the `MKLROOT` environment variable must be set, and `LD_LIBRARY_PATH` must contain `$MKLROOT/lib` whenever using the library this way. ### PARDISO from [panua.ch](https://panua.ch) ("PanuaPardiso", formerly "ProjectPardiso") * Unzip the download file `panua-pardiso-yyyymmdd-os.zip` to some folder and set the environment variable `JULIA_PARDISO` to the `lib` subdirectory of this folder. For example, create an entry `ENV["JULIA_PARDISO"] = "/Users/Someone/panua-pardiso-yyyymmdd-os/lib"` in `.julia/config/startup.jl`. If you have a valid license for the predecessor from pardiso-project.org, put the PARDISO library to a subdirectory denoted by `ENV["JULIA_PARDISO"]` and evenutally rename it to `libpardiso.so`. * Perform the platform specific steps described below * Run `Pkg.build("Pardiso", verbose=true)` * Eventually, run `Pardiso.show_build_log()` to see the build log for additional information. Note: In the past, weird errors and problems with MKL Pardiso had been observed when PanuaPardiso is enabled (likely because some library that is needed by PanauaPardiso was problematic with MKL). In that case, if you want to use MKL Pardiso it is better to just disable PanuaPardiso by not setting the environment variable `JULIA_PARDISO` (and rerunning `Pkg.build("Pardiso")`). ##### Linux / macOS specific * Make sure that the version of `gfortran` corresponding to the pardiso library is installed. * Make sure OpenMP is installed. * Install a (fast) installation of a BLAS and LAPACK (this should preferably be single threaded since PARDISO handles threading itself), using for example [OpenBLAS](https://github.com/xianyi/OpenBLAS/wiki/Precompiled-installation-packages) `gfortran` and OpenMP usually come with recent version of gcc/gfortran. On Linux, Panua Pardiso looks for libraries `libgfortran.so` and `libgomp.so` . They may be named differently on your system. In this situation you may try to create links to them with names known to `Pardiso.jl` (bash; pathnames serve as examples here): ```` $ mkdir $HOME/extralibs $ ln -s /usr/lib64/libgomp.so.1 $HOME/extralibs/libgomp.so $ ln -s /usr/lib64/libgfortran.so.5 $HOME/extralibs/libgfortran.so $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/extralibs/ ```` ## Basic Usage This section will explain how to solve equations using `Pardiso.jl` with the default settings of the library. For more advanced users there is a section further down. ## Creating the PardisoSolver A `PardisoSolver` is created with `PardisoSolver()` for solving with PanuaPardiso or `MKLPardisoSolver()` for solving with MKL PARDISO. This object will hold the settings of the solver and will be passed into the solve functions. In the following sections an instance of a `PardisoSolver` or an `MKLPardisoSolver()` will be referred to as `ps`. ### Solving Solving equations is done with the `solve` and `solve!` functions. They have the following signatures: * `solve(ps, A, B)` solves `AX=B` and returns `X` * `solve!(ps, X, A, B)` solves `AX=B` and stores it in `X` The symbols `:T` or `:C` can be added as an extra argument to solve the transposed or the conjugate transposed system of equations, respectively. Here is an example of solving a system of real equations with two right-hand sides: ```jl ps = PardisoSolver() A = sparse(rand(10, 10)) B = rand(10, 2) X = zeros(10, 2) solve!(ps, X, A, B) ``` which happened to give the result ```jl julia> X 10x2 Array{Float64,2}: -0.487361 -0.715372 -0.644219 -3.38342 0.465575 4.4838 1.14448 -0.103854 2.00892 -7.04965 0.870507 1.7014 0.590723 -5.74338 -0.843841 -0.903796 -0.279381 7.24754 -1.17295 8.47922 ``` ### Schur Complement (PanuaPardiso only) Given a partitioned matrix `M = [A B; C D]`, the Schur complement of `A` in `M` is `S = D-CA⁻¹B`. This can be found with the function `schur_complement` with the following signatures: * `schur_complement(ps, M, n)` returns Schur complement of submatrix `A` in `M`, where `n` is the size of submatrix `D` (and therefore also of Schur complement) * `schur_complement(ps, M, x)` returns Schur complement of submatrix `A` in `M`, where submatrix `D` is defined by nonzero rows of `SparseVector` or `SparseMatrix` `x`. The symbols `:T` or `:C` can be added as an extra argument to solve the transposed or the conjugate transposed system of equations, respectively. Here is an example of finding the Schur complement: ```jl ps = PardisoSolver() m = 100; n = 5; p = .5; T = Float64 rng = MersenneTwister(1234); A = I + sprand(rng,T,m,m,p) A⁻¹ = inv(Matrix(A)) B = sprand(rng,T,m,n,p) C = sprand(rng,T,n,m,p) D = sprand(rng,T,n,n,p) M = [A B; C D] S = schur_complement(ps,M,n) ``` which gives ```jl julia> S 5×5 Array{Float64,2}: -0.121404 1.49473 -1.25965 7.40326 0.571538 -19.4928 -7.71151 12.9496 -7.13646 -20.4194 9.88029 3.35502 -7.2346 1.70651 13.9759 -9.06094 -5.86454 7.44917 -2.54985 -9.17327 -33.7006 -17.8323 20.2588 -19.5863 -37.6132 ``` We can check the validity by comparing to explicity form: ```jl julia> norm(D - C*A⁻¹*B - S) 5.033075778861378e-13 ``` At present there seems to be an instability in the Schur complement computation for complex matrices. ### Setting the number of threads The number of threads to use is set in different ways for MKL PARDISO and PanuaPardiso. #### MKL PARDISO ```jl set_nprocs!(ps, i) # Sets the number of threads to use get_nprocs(ps) # Gets the number of threads being used ``` #### PanuaPardiso The number of threads are set at the creation of the `PardisoSolver` by looking for the environment variable `OMP_NUM_THREADS`. This can be done in Julia with for example `ENV["OMP_NUM_THREADS"] = 2`. **Note:** `OMP_NUM_THREADS` must be set *before* `Pardiso` is loaded and can not be changed during runtime. The number of threads used by a `PardisoSolver` can be retrieved with `get_nprocs(ps)` ## More advanced usage. This section discusses some more advanced usage of `Pardiso.jl`. For terminology in this section please refer to the [PanuaPardiso manual](http://panua.ch/manual/manual.pdf) and the [oneMKL PARDISO manual](https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2024-0/onemkl-pardiso-parallel-direct-sparse-solver-iface.html). After using functionality in this section, calls should no longer be made to the `solve` functions but instead directly to the function ```jl pardiso(ps, X, A, B) ``` This will ensure that the properties you set will not be overwritten. If you want, you can use `get_matrix(ps, A, T)` to return a matrix that is suitable to use with `pardiso` depending on the matrix type that `ps` has set. The parameter `T` is a symbol representing if you will solve the normal, transposed or conjugated system. These are represented by `:N, :T, :C)` respectively. For ease of use, `Pardiso.jl` provides enums for most options. These are not exported so has to either be explicitly imported or qualified with the module name first. It is possible to both use the enum as an input key to the options or the corresponding integer as given in the manuals. ### Setting the matrix type The matrix type can be explicitly set with `set_matrixtype!(ps, key)` where the key has the following meaning: | enum | integer | Matrix type | |--------------------- |---------| ---------------------------------------- | | REAL_SYM | 1 | real and structurally symmetric | | REAL_SYM_POSDEF | 2 | real and symmetric positive definite | | REAL_SYM_INDEF | -2 | real and symmetric indefinite | | COMPLEX_STRUCT_SYM | 3 | complex and structurally symmetric | | COMPLEX_HERM_POSDEF | 4 | complex and Hermitian positive definite | | COMPLEX_HERM_INDEF | -4 | complex and Hermitian indefinite | | COMPLEX_SYM | 6 | complex and symmetric | | REAL_NONSYM | 11 | real and nonsymmetric | | COMPLEX_NONSYM | 13 | complex and nonsymmetric | The matrix type for a solver can be retrieved with `get_matrixtype(ps)`. ### Setting the solver (PanuaPardiso only) PanuatPardiso supports direct and iterative solvers. The solver is set with `set_solver!(ps, key)` where the key has the following meaning: | enum | integer | Solver | |--------------------|---------|----------------------------------| | DIRECT_SOLVER | 0 | sparse direct solver | | ITERATIVE_SOLVER | 1 | multi-recursive iterative solver | ### Setting the phase Depending on the phase calls to `solve` (and `pardiso` which is mentioned later) does different things. The phase is set with `set_phase!(ps, key)` where key has the meaning: | enum | integer | Solver Execution Steps | | --------------------------------------|---------|----------------------------------------------------------------| | ANALYSIS | 11 | Analysis | | ANALYSIS_NUM_FACT | 12 | Analysis, numerical factorization | | ANALYSIS_NUM_FACT_SOLVE_REFINE | 13 | Analysis, numerical factorization, solve, iterative refinement | | NUM_FACT | 22 | Numerical factorization | | SELECTED_INVERSION | -22 | Selected Inversion | | NUM_FACT_SOLVE_REFINE | 23 | Numerical factorization, solve, iterative refinement | | SOLVE_ITERATIVE_REFINE | 33 | Solve, iterative refinement | | SOLVE_ITERATIVE_REFINE_ONLY_FORWARD | 331 | MKL only, like phase=33, but only forward substitution | | SOLVE_ITERATIVE_REFINE_ONLY_DIAG | 332 | MKL only, like phase=33, but only diagonal substitution (if available) | | SOLVE_ITERATIVE_REFINE_ONLY_BACKWARD | 333 | MKL only, like phase=33, but only backward substitution | RELEASE_LU_MNUM | 0 | Release internal memory for L and U matrix number MNUM | | RELEASE_ALL | -1 | Release all internal memory for all matrices | ### Setting `IPARM` and `DPARM` explicitly Advanced users likely want to explicitly set and retrieve the `IPARM` and `DPARM` (PanuaPardiso only) parameters. This can be done with the getters and setters: ```jl get_iparm(ps, i) # Gets IPARM[i] get_iparms(ps) # Gets IPARM set_iparm!(ps, i, v) # Sets IPARM[i] = v # PanuaPardiso only get_dparm(ps, i) # Gets DPARM[i] get_dparms(ps) # Gets DPARM set_dparm!(ps, i, v) # Sets DPARM[i] = v ``` To set the default values of the `IPARM` and `DPARM` call `pardisoinit(ps)`. The default values depend on what solver and matrix type is set. ### Setting message level It is possible for Pardiso to print out timings and statistics when solving. This is done by `set_msglvl!(ps, key)` where `key` has the meaning: | enum | integer | Solver | |--------------------|---------|----------------------------------| | MESSAGE_LEVEL_OFF | 0 | no statistics printed | | MESSAGE_LEVEL_ON | 1 | statistics printed | ### Matrix and vector checkers PanuaPardiso comes with a few matrix and vector checkers to check the consistency and integrity of the input data. These can be called with the functions: ```jl printstats(ps, A, B) checkmatrix(ps, A) checkvec(ps, B) ``` In MKL PARDISO this is instead done by setting `IPARM[27]` to 1 before calling `pardiso`. ### MNUM, MAXFCT, PERM These are set and retrieved with the functions ```jl set_mnum!(ps, i) get_mnum(ps) set_maxfct!(ps, i) get_maxfct(ps) get_perm(ps) set_perm!(ps, perm) # Perm is a Vector{Int} ``` ### Schur Complement (PanuaPardiso only) The `pardiso(ps,...)` syntax can be used to compute the Schur compelement (as described below). The answer can be retrieved with `pardisogetschur(ps)`. To use the low-level API to compute the Schur complement: * use custom IPARMS (`set_iparm!(ps,1,1)`), set the Schur complement block size to `n` (`set_iparm!(ps,38,n)`), and set the phase to analyze & factorize (`set_phase!(ps,12)`). * compute the Schur complement by calling `pardiso(ps,X,M,X)`, where `B` is a dummy vector with `length(X)=size(M,1)` that shares element type with `M`. * retrieve with `pardisogetschur(ps)` ### Potential "gotchas" * Julia uses CSC sparse matrices while PARDISO expects a CSR matrix. These can be seen as transposes of each other so to solve `AX = B` the transpose flag (`IPARAM[12]`) should be set to 1. * For **symmetric** matrices, PARDISO needs to have the diagonal stored in the sparse structure even if the diagonal element happens to be 0. The manual recommends adding an `eps` to the diagonal when you suspect you might have 0 values diagonal elements that are not stored in the sparse structure. * Unless `IPARM[1] = 1`, all values in `IPARM` will be ignored and default values are used. * When solving a symmetric matrix, Pardiso expects only the upper triangular part. Since Julia has CSC matrices this means you should pass in `tril(A)` to the `pardiso` function. Use `checkmatrix` to see that you managed to get the matrix in a valid format. # Contributions If you have suggestions or idea of improving this package, please file an issue or even better, create a PR!
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.5.7
4b618484bf94a52f02595cd73ac8a6417f4c0c70
docs
89
This folder contains the examples for the PARDISO Matlab wrapper but rewritten in Julia.
Pardiso
https://github.com/JuliaSparse/Pardiso.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
799
using GaussianMixtureAlignment using Documenter DocMeta.setdocmeta!(GaussianMixtureAlignment, :DocTestSetup, :(using GaussianMixtureAlignment); recursive=true) makedocs(; modules=[GaussianMixtureAlignment], authors="Tom McGrath <[email protected]> and contributors", repo="https://github.com/tmcgrath325/GaussianMixtureAlignment.jl/blob/{commit}{path}#{line}", sitename="GaussianMixtureAlignment.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://tmcgrath325.github.io/GaussianMixtureAlignment.jl", edit_link="master", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/tmcgrath325/GaussianMixtureAlignment.jl", devbranch="master", )
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
242
module GaussianMixtureAlignmentMakieExt using GaussianMixtureAlignment using Makie # Needed to get legends working, see https://github.com/MakieOrg/Makie.jl/issues/1148 Makie.get_plots(p::GaussianMixtureAlignment.GMMDisplay) = p.plots end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
1966
""" GaussianMixtureAlignment.jl =========================== GaussianMixtureAlignment.jl is a package used to align Gaussian mixture models. In particular, it uses an implementation of the [GOGMA algorithm (Campbell, 2016)](https://arxiv.org/abs/1603.00150) to find globally optimal alignments of mixtures of isotropic (spherical) Gaussian distributions. REPL help ========= ? followed by an algorithm or constructor name will print help to the terminal. See: \n \t?IsotropicGaussian \n \t?IsotropicGMM \n \t?IsotropicMultiGMM \n \t?gogma_align \n \t?tiv_gogma_align \n \t?rocs_align \n """ module GaussianMixtureAlignment abstract type AbstractModel{N,T} end using StaticArrays using LinearAlgebra using GenericLinearAlgebra using PairedLinkedLists using MutableConvexHulls using Rotations using CoordinateTransformations using Distances using NearestNeighbors using Hungarian using Optim using MakieCore using GeometryBasics using Colors export AbstractGaussian, AbstractGMM export IsotropicGaussian, IsotropicGMM, IsotropicMultiGMM export overlap, force!, gogma_align, rot_gogma_align, trl_gogma_align, tiv_gogma_align export rocs_align export PointSet, MultiPointSet export kabsch, icp, iterative_hungarian, goicp_align, goih_align, tiv_goicp_align, tiv_goih_align export gmmdisplay include("tforms.jl") include("goicp/pointset.jl") include("gogma/gmm.jl") include("utils.jl") include("uncertaintyregion.jl") include("distancebounds.jl") include("gogma/combine.jl") include("gogma/transformation.jl") include("gogma/overlap.jl") include("gogma/bounds.jl") include("goicp/bounds.jl") include("goicp/correspondence.jl") include("goicp/kabsch.jl") include("goicp/icp.jl") include("goicp/rmsd.jl") include("goicp/local.jl") include("localalign.jl") include("branchbound.jl") include("gogma/tiv.jl") include("gogma/align.jl") include("goicp/tiv.jl") include("goicp/align.jl") include("rocs/rocsalign.jl") include("draw.jl") end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
14516
abstract type AlignmentResults end struct GlobalAlignmentResult{D,S,T,N,F<:AbstractAffineMap,X<:AbstractModel{D,S},Y<:AbstractModel{D,T}} <: AlignmentResults x::X y::Y upperbound::T lowerbound::T tform::F tform_params::NTuple{N,T} obj_calls::Int num_splits::Int num_blocks::Int stagnant_splits::Int progress::Vector{Tuple{Int,T,NTuple{N,T}}} terminated_by::String end struct TIVAlignmentResult{D,S,T,N,F<:AbstractAffineMap,X<:AbstractModel{D,S},Y<:AbstractModel{D,T},TD,TN,TF<:AbstractAffineMap,RD,RN,RF<:AbstractAffineMap,RX<:AbstractModel{TD,S},RY<:AbstractModel{TD,T}} <: AlignmentResults x::X y::Y upperbound::T lowerbound::T tform::F tform_params::NTuple{N,T} obj_calls::Int num_splits::Int num_blocks::Int rotation_result::GlobalAlignmentResult{RD,S,T,RN,RF,RX,RY} translation_result::GlobalAlignmentResult{TD,S,T,TN,TF,X,Y} end function lowestlbblock(hull::ChanLowerConvexHull{<:Tuple{T,T,<:SearchRegion}}, lb::T) where T lbnode = lowestlbnode(hull) (boxlb, boxub, bl) = lbnode.data lb = boxlb return lbnode, bl, lb end function randomblock(hull::ChanLowerConvexHull{<:Tuple{T,T,<:SearchRegion}}, lb::T) where T randidx = rand(1:length(hull)) lbnode = getnode(hull.hull, randidx) (boxlb, boxub, bl) = lbnode.data if boxlb == lb && !isempty(hull) lb = lowestlbnode(hull).data[1] end return lbnode, bl, lb end function lowestlbnode(hull::ChanLowerConvexHull) node = PairedLinkedLists.head(hull.hull) for n in ListNodeIterator(hull.hull) n.data[1] != node.data[1] && break node = n end return node end # Keyword arguments:\n # nsplits - an integer representing the number of splits that should be made along each dimension during branching # searchspace - an `UncertaintyRegion` that defines the searchspace, which defaults to the smallest space gauranteed to contain the global minimum # R - a `Rotationvec` containing a rotation position, which is passed to the `blockfun` # T - an `SVector{3}` containing a translation position, which is passed to the `blockfun` # centerinputs - a `Bool` indicating whether to center the input models (at their respective centroids) prior to starting the search # blockfun - the function used for generating `SearchRegion`s that define search subspaces (i.e. UncertaintyRegion, TranslationRegion, RotationRegion) # nextblockfun - the function used for selecting the next "block" to be investigated (i.e. randomblock, lowestlbblock) # localfun - the function used for local alignment # boundsfun - the function used to calculate the bounds on each `SearchRegion` # tformfun - the function used to convert the center of a `SearchRegion` to a rigid transformation (i.e. AffinMap, LinearMap, Translation) # atol - absolute tolerance. Search terminates when the upper bound is within `atol` of the lower bound # rtol - relative tolerance. Search terminates when the upper bound is within `rtol*lb` of the lower bound `lb` # maxblocks - the maximum number of `Block`s that can be held in the priority queue before search termination # maxsplits - the maximum number of `Block` splits that are allowed before search termination # maxevals - the maximum number of objective function evaluations allowed before search termination # maxstagnant - the maximum number of `Block` splits allowed without improvement before search termination """ result = branchbound(x, y; nsplits=2, searchspace=nothing, rot=nothing, trl=nothing, blockfun=fullBlock, objfun=alignment_objective, rtol=0.01, maxblocks=5e8, maxeva ls=Inf, maxstagnant=Inf, threads=false) Finds the globally optimal rigid transform for alignment between two isotropic Gaussian mixtures, `x` and `y`, using the [GOGMA algorithm](https://arxiv.org/abs/1603.00150). Returns a `GlobalAlignmentResult` that contains the maximized overlap of the two GMMs (the upperbound on the objective function), a lower bound on the alignment objective function, an `AffineMap` which aligns `x` with `y`, and information about the number of evaluations during the alignment procedure. """ function branchbound(xinput::AbstractModel, yinput::AbstractModel; nsplits=2, searchspace=nothing, blockfun=UncertaintyRegion, R=RotationVec(0.,0.,0.), T=SVector{3}(0.,0.,0.), nextblockfun=lowestlbblock, centerinputs=false, boundsfun=tight_distance_bounds, localfun=local_align, tformfun=AffineMap, atol=0.1, rtol=0, maxblocks=5e8, maxsplits=Inf, maxevals=Inf, maxstagnant=Inf, separatesplit=false) x = xinput y = yinput if isodd(nsplits) throw(ArgumentError("`nsplits` must be even")) end if dims(x) != dims(y) throw(ArgumentError("Dimensionality of the GMMs must be equal")) end t = promote_type(numbertype(x), numbertype(y)) centerx_tform = Translation([0,0,0]) centery_tform = Translation([0,0,0]) if centerinputs centerx_tform = center_translation(x) centery_tform = center_translation(y) x = centerx_tform(x) y = centery_tform(y) end # initialization if isnothing(searchspace) searchspace = blockfun(x, y, R, T) end ndims = length(center(searchspace)) rot_trl_split = separatesplit && typeof(searchspace) <: UncertaintyRegion nsblks = rot_trl_split ? nsplits^3 : nsplits^ndims sblks = fill(searchspace, nsblks) sblks2 = fill(searchspace, rot_trl_split ? nsblks : 0) lb, centerub = boundsfun(x, y, searchspace) hull = ChanLowerConvexHull{Tuple{t,t,typeof(searchspace)}}(CCW, true, x -> (x[1], -x[2])) addpoint!(hull, (lb, centerub, searchspace)) sbnds = fill((lb, centerub), nsblks) sbnds2 = fill((lb, centerub), rot_trl_split ? nsblks : 0) ub, bestloc = localfun(x, y, searchspace) progress = [(0, ub, bestloc)] # split cubes until convergence ndivisions = 0 sinceimprove = 0 evalsperdiv = rot_trl_split ? length(x)*length(y)*2*nsplits^3 : length(x)*length(y)*nsplits^ndims while !isempty(hull) if (length(hull) > maxblocks) || (ndivisions*evalsperdiv > maxevals) || (sinceimprove > maxstagnant) || (ndivisions > maxsplits) break end ndivisions += 1 sinceimprove += 1 # pick the next search region to subdivide lbnode, bl, lb = nextblockfun(hull, lb) # delete the chosen search region from the convex hull subhull = getfirst(x -> x.points===lbnode.target.list, hull.subhulls) removepoint!(subhull, lbnode.target) deletenode!(lbnode) # if the best solution so far is close enough to the best possible solution, end if abs((ub - lb)/lb) < rtol || abs(ub-lb) < atol tform = tformfun(bestloc) if centerinputs tform = centerx_tform ∘ tform ∘ inv(centery_tform) end return GlobalAlignmentResult(x, y, ub, lb, tform, bestloc, ndivisions*evalsperdiv, ndivisions, length(hull), sinceimprove, progress, "optimum within tolerance") end # split up the block into `nsplits` smaller blocks across each dimension if rot_trl_split # split rotation and translation separately rot_subregions!(sblks, bl, nsplits) for i=1:nsblks sbnds[i] = boundsfun(x,y,sblks[i]) end trl_subregions!(sblks2, bl, nsplits) for i=1:nsblks sbnds2[i] = boundsfun(x,y,sblks2[i]) end if sum(x -> x[1], sbnds) < sum(x -> x[1], sbnds2) # pick whichever maximizes summed lower bounds for i=1:nsblks sblks[i] = sblks2[i] sbnds[i] = sbnds2[i] end end else # split rotation and translation simultaneously subregions!(sblks, bl, nsplits) for i=1:nsblks sbnds[i] = boundsfun(x,y,sblks[i]) end end # reset the upper bound if appropriate minub, ubidx = findmin([sbnd[2] for sbnd in sbnds]) if minub < centerub centerub = minub nextub, nextbestloc = localfun(x, y, sblks[ubidx]) if minub < nextub if minub < ub ub, bestloc = minub, center(sblks[ubidx]) end else if nextub < ub ub, bestloc = nextub, nextbestloc end end push!(progress, (ndivisions, ub, bestloc)) sinceimprove = 0 end addblks = eltype(hull)[] addbnds = eltype(sbnds)[] for i=1:length(sblks) diff = abs(sbnds[i][2] - sbnds[i][1]) if sbnds[i][1] < ub && diff >= atol && abs(diff/sbnds[i][1]) >= rtol push!(addblks, (sbnds[i][1], sbnds[i][2], sblks[i])) push!(addbnds, sbnds[i]) end end if isempty(hull) if !isempty(addbnds) lb = minimum(addbnds)[1] end end try mergepoints!(hull, addblks) catch e @show lbnode.data[1], lbnode.data[2] @show ndivisions @show sbnds @show sbnds == sbnds2 throw(e) end end if isempty(hull) tform = tformfun(bestloc) if centerinputs tform = centerx_tform ∘ tform ∘ inv(centery_tform) end return GlobalAlignmentResult(x, y, ub, lb, tformfun(bestloc), bestloc, ndivisions*evalsperdiv, ndivisions, length(hull), sinceimprove, progress, "priority queue empty") else tform = tformfun(bestloc) if centerinputs tform = centerx_tform ∘ tform ∘ inv(centery_tform) end return GlobalAlignmentResult(x, y, ub, lowestlbnode(hull).data[1], tformfun(bestloc), bestloc, ndivisions*evalsperdiv, ndivisions, length(hull), sinceimprove, progress, "terminated early") end end """ result = rot_gogma_align(x, y; kwargs...) Finds the globally optimal rotation for alignment between two isotropic Gaussian mixtures, `x` and `y`, using the [GOGMA algorithm](https://arxiv.org/abs/1603.00150), for a given rotation, `rot`. That is, only rigid translation is allowed. For details about keyword arguments, see `gogma_align()`. """ function rot_branchbound(x::AbstractModel, y::AbstractModel; kwargs...) return branchbound(x, y; blockfun=RotationRegion, tformfun=LinearMap, kwargs...) end """ result = trl_gogma_align(x, y; kwargs...) Finds the globally optimal translation for alignment between two isotropic Gaussian mixtures, `x` and `y`, using the [GOGMA algorithm](https://arxiv.org/abs/1603.00150), for a given translation, `trl`. That is, only rigid rotation is allowed. For details about keyword arguments, see `gogma_align()`. """ function trl_branchbound(x::AbstractModel, y::AbstractModel; kwargs...) return branchbound(x, y; blockfun=TranslationRegion, tformfun=Translation, kwargs...) end # fit a plane to a set of points, returning the normal vector function planefit(pts) decomp = GenericLinearAlgebra.svd(pts .- sum(pts, dims=2)) dist, nvecidx = findmin(decomp.S) return decomp.U[:, nvecidx], dist end planefit(ps::AbstractSinglePointSet) = planefit(ps.coords) planefit(ps::AbstractSinglePointSet, R) = planefit(R*ps.coords) function planefit(gmm::AbstractIsotropicGMM, R) ptsmat = fill(zero(numbertype(gmm)), 3, length(gmm)) for (i,gauss) in enumerate(gmm.gaussians) ptsmat[:,i] = gauss.μ end return planefit(R * ptsmat) end function planefit(mgmm::AbstractIsotropicMultiGMM, R) len = sum([length(gmm) for gmm in values(mgmm.gmms)]) ptsmat = fill(zero(numbertype(mgmm)), 3, len) idx = 1 for gmm in values(mgmm.gmms) for gauss in gmm.gaussians ptsmat[:,idx] = gauss.μ idx += 1 end end return planefit(R * ptsmat) end function tiv_branchbound( x::AbstractModel, y::AbstractModel, tivx::AbstractModel, tivy::AbstractModel; boundsfun=tight_distance_bounds, rot_boundsfun=boundsfun, trl_boundsfun=boundsfun, localfun=local_align, rot_localfun=localfun, trl_localfun=localfun, kwargs...) t = promote_type(numbertype(x),numbertype(y)) p = t(π) z = zero(t) zeroTranslation = SVector{3}(z,z,z) rot_res = rot_branchbound(tivx, tivy; localfun=rot_localfun, boundsfun=rot_boundsfun, kwargs...) rotblock = RotationRegion(RotationVec(rot_res.tform_params...), zeroTranslation, p) rotscore, rotpos = rot_localfun(tivx, tivy, rotblock) # spin the moving tivgmm around to check for a better rotation (helps when the Gaussians are largely coplanar) R = RotationVec(rot_res.tform_params...) spinvec, dist = planefit(tivx, R) spinblock = RotationRegion(RotationVec(RotationVec(π*spinvec...) * R), zeroTranslation, z) spinscore, spinrotpos = rot_localfun(tivx, tivy, spinblock) if spinscore < rotscore rotpos = RotationVec(spinrotpos...) else rotpos = RotationVec(rotpos...) end # perform translation alignment of original models trl_res = trl_branchbound(x, y; R=rotpos, localfun=trl_localfun, boundsfun=trl_boundsfun, kwargs...) trlpos = SVector{3}(trl_res.tform_params) # perform local alignment in the full transformation space trlim = translation_limit(x, y) localblock = UncertaintyRegion(rotpos, trlpos, 2*p, trlim) min, bestpos = localfun(x, y, localblock) if trl_res.upperbound < min min = trl_res.upperbound bestpos = (rot_res.tform_params..., trl_res.tform_params...) end return TIVAlignmentResult(x, y, min, trl_res.lowerbound, AffineMap(bestpos), bestpos, rot_res.obj_calls+trl_res.obj_calls, rot_res.num_splits+trl_res.num_splits, rot_res.num_blocks+trl_res.num_blocks, rot_res, trl_res) end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
3846
const sqrt3 = √(3) const sqrt2pi = √(2π) const pisq = Float64(π^2) function infbounds(x,y) typeinf = typemax(promote_type(numbertype(x), numbertype(y))) return (typeinf, typeinf) end function loose_distance_bounds(x::SVector{3,<:Number}, y::SVector{3,<:Number}, σᵣ::Number, σₜ::Number, maximize::Bool = false) ubdist = norm(x - y) γₜ = sqrt3 * σₜ γᵣ = 2 * sin(min(sqrt3 * σᵣ, π) / 2) * norm(x) lb, ub = maximize ? (max(ubdist - γₜ - γᵣ, 0), ubdist) : (ubddist + γₜ + γᵣ, ubdist) numtype = promote_type(typeof(lb), typeof(ub)) return numtype(lb), numtype(ub) end loose_distance_bounds(x::SVector{3}, y::SVector{3}, R::RotationVec, T::SVector{3}, σᵣ, σₜ, maximize::Bool = false, ) = (R.sx^2 + R.sy^2 + R.sz^2) > pisq ? infbounds(x,y) : loose_distance_bounds(R*x, y-T, σᵣ, σₜ, maximize) # loose_distance_bounds(R*x, y-T, σᵣ, σₜ) loose_distance_bounds(x::SVector{3}, y::SVector{3}, block::UncertaintyRegion, maximize::Bool = false) = loose_distance_bounds(x, y, block.R, block.T, block.σᵣ, block.σₜ, maximize) loose_distance_bounds(x::SVector{3}, y::SVector{3}, block::SearchRegion, maximize::Bool = false) = loose_distance_bounds(x, y, UncertaintyRegion(block), maximize) """ lb, ub = tight_distance_bounds(x::SVector{3,<:Number}, y::SVector{3,<:Number}, σᵣ::Number, σₜ::Number) lb, ub = tight_distance_bounds(x::SVector{3,<:Number}, y::SVector{3,<:Number}, R::RotationVec, T<:SVector{3}, σᵣ::Number, σₜ::Number) Within an uncertainty region, find the bounds on distance between two points x and y. See [Campbell & Peterson, 2016](https://arxiv.org/abs/1603.00150) """ function tight_distance_bounds(x::SVector{3,<:Number}, y::SVector{3,<:Number}, σᵣ::Number, σₜ::Number, maximize::Bool = false) # prepare positions and angles xnorm, ynorm = norm(x), norm(y) if xnorm*ynorm == 0 cosα = one(promote_type(eltype(x),eltype(y))) else cosα = dot(x, y)/(xnorm*ynorm) end cosβ = cos(min(sqrt3*σᵣ, π)) # upper bound distance at hypercube center ubdist = norm(x - y) if maximize # this case is intended for situations where the objective function scales negatively with distance\ # lbdist, which will be the further point on the spherical cap, will be larger than ubdist if cosα + cosβ >= π lbdist = xnorm + ynorm + sqrt3*σₜ else lbdist = √(xnorm^2 + ynorm^2 - 2*xnorm*ynorm*(cosα*cosβ-√((1-cosα^2)*(1-cosβ^2)))) + sqrt3*σₜ end else # lower bound distance from the nearest point on the "spherical cap" if cosα >= cosβ lbdist = max(abs(xnorm-ynorm) - sqrt3*σₜ, 0) else lbdist = try max(√(xnorm^2 + ynorm^2 - 2*xnorm*ynorm*(cosα*cosβ+√((1-cosα^2)*(1-cosβ^2)))) - sqrt3*σₜ, 0) # law of cosines catch e # when the argument for the square root is negative (within machine precision of 0, usually) 0 end end end # evaluate objective function at each distance to get upper and lower bounds numtype = promote_type(typeof(lbdist), typeof(ubdist)) return (numtype(lbdist), numtype(ubdist)) end tight_distance_bounds(x::SVector{3,<:Number}, y::SVector{3,<:Number}, R::RotationVec, T::SVector{3}, σᵣ::Number, σₜ::Number, maximize::Bool = false, ) = (R.sx^2 + R.sy^2 + R.sz^2) > pisq ? infbounds(x,y) : tight_distance_bounds(R*x, y-T, σᵣ, σₜ, maximize) # tight_distance_bounds(R*x, y-T, σᵣ, σₜ) tight_distance_bounds(x::SVector{3}, y::SVector{3}, block::UncertaintyRegion, maximize::Bool = false) = tight_distance_bounds(x, y, block.R, block.T, block.σᵣ, block.σₜ, maximize) tight_distance_bounds(x::SVector{3}, y::SVector{3}, block::Union{RotationRegion, TranslationRegion}, maximize::Bool = false) = tight_distance_bounds(x, y, UncertaintyRegion(block), maximize)
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
3656
import MakieCore: plot! using MakieCore: @recipe, lines!, mesh!, Theme using GeometryBasics: Sphere using Colors: RGB const HALFWAY_RADIUS = sqrt(3) / 2 const EQUAL_VOL_CONST = 3*√π/4 const DEFAULT_COLORS = [ # CUD colors: https://jfly.uni-koeln.de/color/#assign RGB(0/255, 114/255, 178/255), # blue RGB(230/255, 159/255, 0/255 ), # orange RGB(0/255, 158/255, 115/255), # green RGB(204/255, 121/255, 167/255), # reddish purple RGB(86/255, 180/255, 233/255), # sky blue RGB(213/255, 94/255, 0/255 ), # vermillion RGB(240/255, 228/255, 66/255 ), # yellow ] # use cached calculations for positions of points on a circle θs = range(0, 2π, length=32) # use 32 points (arbitrary) const cosθs = [cos(θ) for θ in θs] const sinθs = [sin(θ) for θ in θs] equal_volume_radius(σ, ϕ) = (EQUAL_VOL_CONST*abs(ϕ))^(1/3) * σ function flat_circle!(f, pos, r, dim::Int; kwargs...) if dim == 3 xs = [r * cosθ + pos[1] for cosθ in cosθs] ys = [r * sinθ + pos[2] for sinθ in sinθs] zs = fill(pos[3], 32) elseif dim == 2 xs = [r * cosθ + pos[1] for cosθ in cosθs] ys = fill(pos[2], 32) zs = [r * sinθ + pos[3] for sinθ in sinθs] elseif dim == 1 xs = fill(pos[1], 32) ys = [r * cosθ + pos[2] for cosθ in cosθs] zs = [r * sinθ + pos[3] for sinθ in sinθs] end lines!(f, xs,ys,zs; kwargs...) end function wire_sphere!(f, pos, r; kwargs...) for dim in 1:3 flat_circle!(f, pos, r, dim; kwargs...) halfwaypos = Float32[0,0,0] halfwaypos[dim] = r / 2; flat_circle!(f, pos .- halfwaypos, r * HALFWAY_RADIUS, dim; kwargs...) flat_circle!(f, pos .+ halfwaypos, r * HALFWAY_RADIUS, dim; kwargs...) end end function solid_sphere!(f, pos, r; kwargs...) mesh!(f, Sphere(GeometryBasics.Point{3}(pos...), r); kwargs...) end @recipe(GaussianDisplay, g) do scene Theme( display = :wire, color = DEFAULT_COLORS[1], ) end function plot!(gd::GaussianDisplay{<:NTuple{<:Any, <:AbstractIsotropicGaussian}}) gauss = [gd[i][] for i=1:length(gd)] disp = gd[:display][] color = gd[:color][] label = gd[:label][] plotfun = disp == :wire ? wire_sphere! : ( disp == :solid ? solid_sphere! : throw(ArgumentError("Unrecognized display option: `$disp`"))) for g in gauss plotfun(gd, g.μ, g.σ; color=color, label) end return gd end @recipe(GMMDisplay, g) do scene Theme( display = :wire, palette = DEFAULT_COLORS, color = nothing, label = "", ) end function plot!(gd::GMMDisplay{<:NTuple{<:Any,<:AbstractIsotropicGMM}}) gmms = [gd[i][] for i=1:length(gd)] len = length(gmms) disp = gd[:display][] color = gd[:color][] palette = gd[:palette][] label = gd[:label][] for (i,gmm) in enumerate(gmms) col = isnothing(color) ? palette[(i-1) % len + 1] : color gaussiandisplay!(gd, gmm...; display=disp, color=col, label) end return gd end function plot!(gd::GMMDisplay{<:NTuple{<:Any,<:AbstractIsotropicMultiGMM{N,T,K}}}) where {N,T,K} mgmms = [gd[i][] for i=1:length(gd)] disp = gd[:display][] color = gd[:color][] palette = gd[:palette][] allkeys = Set{K}() for mgmm in mgmms allkeys = allkeys ∪ keys(mgmm) end len = length(allkeys) for (i,k) in enumerate(allkeys) col = isnothing(color) ? palette[(i-1) % len + 1] : color for mgmm in mgmms haskey(mgmm, k) && gmmdisplay!(gd, mgmm[k]; display=disp, color=col, palette=palette, label=string(k)) end end return gd end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
737
""" com = centroid(gmm) Returns the center of mass of `gmm`, where its first order moments are equal to 0. """ function centroid(positions::AbstractMatrix{<:Real}, weights::AbstractVector{<:Real}=ones(eltype(positions),size(positions,2))) normweights = weights / sum(weights) return SVector{size(positions,1)}(positions * normweights) end centroid(gaussians::AbstractVector{<:AbstractIsotropicGaussian}) = return centroid(hcat([g.μ for g in gaussians]...), [g.ϕ for g in gaussians]) centroid(x::AbstractPointSet) = centroid(x.coords, x.weights) centroid(gmm::AbstractIsotropicGMM) = centroid(gmm.gaussians) centroid(mgmm::AbstractMultiGMM) = centroid(collect(Iterators.flatten([gmm.gaussians for (k,gmm) in mgmm])))
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
2981
tformwithparams(X,x) = RotationVec(X[1:3]...)*x + SVector{3}(X[4:6]...) # function tformwithparams(X,x) # if sum(abs2, X[1:3]) == 0 # handled for autodiff around 0 # T = eltype(X) # θ = norm(X[1:3]) # a = θ > 0 ? X[1] / θ : one(T) # b = θ > 0 ? X[2] / θ : zero(T) # c = θ > 0 ? X[3] / θ : zero(T) # R = AngleAxis(θ, a, b, c) # @show R # else # R = RotationVec(X[1:3]...) # end # t = SVector{3}(X[4:6]...) # @show (R*x)[1] # return R*x + t # end overlapobj(X,x,y,args...) = -overlap(tformwithparams(X,x), y, args...) function distanceobj(X, x, y; correspondence = hungarian_assignment) tformedx = tformwithparams(X,x) return squared_deviation(tformedx, y, correspondence(tformedx,y)) end function alignment_objective(X, x::AbstractModel, y::AbstractModel, args...; objfun=overlapobj) return objfun(X,x,y,args...) end # alignment objective for a rigid transformation alignment_objective(X, x::AbstractModel, y::AbstractModel, block::UncertaintyRegion, args...; kwargs...) = alignment_objective(X,x,y,args...; kwargs...) # alignment objective for rigid rotation (i.e. the first stage of TIV-GOGMA) function alignment_objective(X, gmmx::AbstractModel, gmmy::AbstractModel, block::RotationRegion, args...; kwargs...) return alignment_objective((X..., block.T...), gmmx, gmmy, args...; kwargs...) end # alignment objective for translation (i.e. the second stage of TIV-GOGMA) function alignment_objective(X, gmmx::AbstractModel, gmmy::AbstractModel, block::TranslationRegion, args...; kwargs...) return alignment_objective((block.R.sx, block.R.sy, block.R.sz, X...), gmmx, gmmy, args...; kwargs...) end """ obj, pos = local_align(x, y, block, pσ=nothing, pϕ=nothing; R=nothing, T=nothing, maxevals=100) Performs local alignment within the specified `block` using L-BFGS to minimize objective function `objfun` for the provided GMMs, `x` and `y`. """ function local_align(x::AbstractModel, y::AbstractModel, block::SearchRegion, args...; maxevals=100, kwargs...) # set initial guess at the center of the block initial_X = center(block) # if (typeof(block) <: UncertaintyRegion && sum(abs2, initial_X[1:Int(end/2)]) == 0) || (typeof(block) <: RotationRegion && sum(abs2, initial_X) == 0) # T = eltype(initial_X) # initial_X = initial_X .+ [eps(T), zeros(T, length(initial_X)-1)...] # end # local optimization within the block f(X) = alignment_objective(X, x, y, block, args...; kwargs...) # res = optimize(f, lower, upper, initial_X, Fminbox(LBFGS()), Optim.Options(f_calls_limit=maxevals); autodiff = :forward) res = optimize(f, [initial_X...], LBFGS(), Optim.Options(f_calls_limit=maxevals); autodiff = :forward) return Optim.minimum(res), tuple(Optim.minimizer(res)...) end local_align(x::AbstractModel, y::AbstractModel; kwargs...) = local_align(x, y, UncertaintyRegion(x,y); kwargs...)
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
520
import CoordinateTransformations.AffineMap import CoordinateTransformations.LinearMap import CoordinateTransformations.Translation AffineMap(params::NTuple{6}) = AffineMap(RotationVec(params[1:3]...), SVector{3}(params[4:6]...)) LinearMap(params::NTuple{3}) = LinearMap(RotationVec(params...)) Translation(params::NTuple{3}) = Translation(SVector{3}(params)) function affinemap_to_params(tform::AffineMap) R = RotationVec(tform.linear) T = SVector{3}(tform.translation) return (R.sx, R.sy, R.sz, T...) end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
8923
## splitting up searchcubes function cuberanges(center::NTuple{N,T}, widths) where {N,T} return NTuple{N,Tuple{T,T}}([(center[i]-widths[i], center[i]+widths[i]) for i=1:length(center)]) end cuberanges(R::RotationVec, T::SVector{3}, σᵣ, σₜ) = cuberanges((R.sx,R.sy,R.sz,T[1],T[2],T[3]), (σᵣ,σᵣ,σᵣ,σₜ,σₜ,σₜ)) cuberanges(R::RotationVec, σᵣ::Number) = cuberanges((R.sx,R.sy,R.sz), (σᵣ,σᵣ,σᵣ)) cuberanges(T::SVector{3}, σₜ::Number) = cuberanges((T[1],T[2],T[3]), (σₜ,σₜ,σₜ)) """ sbrngs = subranges(ranges, nsplits) Takes `ranges`, a nested tuple describing intervals for each dimension in rigid-transformation space defining a hypercube, and splits the hypercube into `nsplits` even components along each dimension. If the cube is N-dimensional, the number of returned sub-cubes will be `nsplits^N`. """ function subranges(ranges, nsplits::Int=2) t = eltype(eltype(ranges)) len = length(ranges) # calculate even splititng points for each dimension splitvals = [range(r[1], stop=r[2], length=nsplits+1) |> collect for r in ranges] splits = [[(splitvals[i][j], splitvals[i][j+1]) for j=1:nsplits] for i=1:len] f(x) = splits[x[1]][x[2]] children = fill(ranges, nsplits^len) for (i,I) in enumerate(CartesianIndices(NTuple{len,UnitRange{Int}}(fill(1:nsplits, len)))) children[i] = NTuple{len,Tuple{t,t}}(map(x->f(x), enumerate(Tuple(I)))) end return children end function center(ranges::NTuple{N,Tuple{T,T}}) where {N,T} return NTuple{N,T}([sum(dim)/2 for dim in ranges]) end ## supertype for search regions abstract type SearchRegion{T} end ## rigid transformation AffineMap(sr::SearchRegion) = AffineMap(sr.R, sr.T) """ Describes an transformation uncertainty region centered at rotation R and translation T, with rotation and translation half-widths of σᵣ and σₜ respectively """ struct UncertaintyRegion{N<:Real} <: SearchRegion{N} R::RotationVec{N} T::SVector{3,N} σᵣ::N σₜ::N end function UncertaintyRegion(R::RotationVec,T::SVector{3},σᵣ::Number,σₜ::Number) t = promote_type(eltype(R), eltype(T), typeof(σᵣ), typeof(σₜ)) return UncertaintyRegion{t}(RotationVec{t}(R), SVector{3,t}(T), t(σᵣ), t(σₜ)) end UncertaintyRegion(σᵣ::Number, σₜ::Number) = UncertaintyRegion(one(RotationVec), zero(SVector{3}), σᵣ, σₜ) UncertaintyRegion(σₜ::Number) = UncertaintyRegion(one(RotationVec), zero(SVector{3}), π, σₜ) UncertaintyRegion() = UncertaintyRegion(one(RotationVec), zero(SVector{3}), π, 1.0) UncertaintyRegion(block::UncertaintyRegion) = block; center(ur::UncertaintyRegion) = (ur.R.sx, ur.R.sy, ur.R.sz, ur.T...); # for speeding up hashing and performance of the priority queue in the branch and bound procedure const hash_UncertaintyRegion_seed = UInt === UInt64 ? 0x4de49213ae1a23bf : 0xef78ce68 function Base.hash(B::UncertaintyRegion, h::UInt) h += hash_UncertaintyRegion_seed h = Base.hash(center(B), h) return h end ## only rotation struct RotationRegion{N<:Real} <: SearchRegion{N} R::RotationVec{N} T::SVector{3,N} σᵣ::N end function RotationRegion(R::RotationVec,T::SVector{3},σᵣ::Number) t = promote_type(eltype(R), eltype(T), typeof(σᵣ)) return RotationRegion{t}(RotationVec{t}(R), SVector{3,t}(T), t(σᵣ)) end RotationRegion(R,T,σᵣ::Number) = RotationRegion(R, T, σᵣ) RotationRegion(σᵣ::Number) = RotationRegion(one(RotationVec), zero(SVector{3}), σᵣ) RotationRegion() = RotationRegion(Float64(π)) center(rr::RotationRegion) = (rr.R.sx, rr.R.sy, rr.R.sz); UncertaintyRegion(rr::RotationRegion{T}) where T = UncertaintyRegion(rr.R, rr.T, rr.σᵣ, zero(T)) RotationRegion(ur::UncertaintyRegion) = RotationRegion(ur.R, ur.T, ur.σᵣ) # for speeding up hashing and performance of the priority queue in the branch and bound procedure const hash_RotationRegion_seed = UInt === UInt64 ? 0xee63e114344da2b9 : 0xe6cb1eb7 function Base.hash(B::RotationRegion, h::UInt) h += hash_RotationRegion_seed h = Base.hash(center(B), h) return h end ## only translation struct TranslationRegion{N<:Real} <: SearchRegion{N} R::RotationVec{N} T::SVector{3,N} σₜ::N end function TranslationRegion(R::RotationVec,T::SVector{3},σₜ::Number) t = promote_type(eltype(R), eltype(T), typeof(σₜ)) return TranslationRegion{t}(RotationVec{t}(R), SVector{3,t}(T), t(σₜ)) end TranslationRegion(R,T,σₜ) = TranslationRegion(R, T, σₜ) TranslationRegion(σₜ) = TranslationRegion(one(RotationVec{typeof(σₜ)}), zero(SVector{3, typeof(σₜ)}), σₜ) TranslationRegion() = TranslationRegion(1.0) center(tr::TranslationRegion) = (tr.T...,); UncertaintyRegion(tr::TranslationRegion{T}) where T = UncertaintyRegion(tr.R, tr.T, zero(T), tr.σₜ) TranslationRegion(ur::UncertaintyRegion) = TranslationRegion(ur.R, ur.T, ur.σₜ) # for speeding up hashing and performance of the priority queue in the branch and bound procedure const hash_TranslationRegion_seed = UInt === UInt64 ? 0x24f59aedb6bf903f : 0x76f5f734 function Base.hash(B::TranslationRegion, h::UInt) h += hash_TranslationRegion_seed h = Base.hash(center(B), h) return h end # Split SearchRegion function subregions!(subregionvec::Vector{S}, ur::S, nsplits=2) where S<:UncertaintyRegion σᵣ = ur.σᵣ / nsplits σₜ = ur.σₜ / nsplits lowercorner = center(ur) .- (ur.σᵣ, ur.σᵣ, ur.σᵣ, ur.σₜ, ur.σₜ, ur.σₜ) .+ (σᵣ, σᵣ, σᵣ, σₜ, σₜ, σₜ) for (i,I) in enumerate(CartesianIndices(NTuple{6,UnitRange{Int}}(fill(0:nsplits-1, 6)))) idxs = Tuple(I) c = lowercorner .+ (2*idxs[1]*σᵣ, 2*idxs[2]*σᵣ, 2*idxs[3]*σᵣ, 2*idxs[4]*σₜ, 2*idxs[5]*σₜ, 2*idxs[6]*σₜ) R = RotationVec(c[1], c[2], c[3]) T = SVector{3}(c[4], c[5], c[6]) subregionvec[i] = UncertaintyRegion(R,T,σᵣ,σₜ) end end function subregions!(subregionvec::Vector{S}, rr::S, nsplits=2) where S<:RotationRegion σᵣ = rr.σᵣ / nsplits lowercorner = (center(rr) .- rr.σᵣ) .+ σᵣ for (i,I) in enumerate(CartesianIndices(NTuple{3,UnitRange{Int}}(fill(0:nsplits-1, 3)))) idxs = Tuple(I) c = lowercorner .+ (2*idxs[1]*σᵣ, 2*idxs[2]*σᵣ, 2*idxs[3]*σᵣ) R = RotationVec(c[1], c[2], c[3]) subregionvec[i] = RotationRegion(R,rr.T,σᵣ) end end function subregions!(subregionvec::Vector{S}, tr::S, nsplits=2) where S<:TranslationRegion σₜ = tr.σₜ / nsplits lowercorner = (center(tr) .- tr.σₜ) .+ σₜ for (i,I) in enumerate(CartesianIndices(NTuple{3,UnitRange{Int}}(fill(0:nsplits-1, 3)))) idxs = Tuple(I) c = lowercorner .+ (2*idxs[1]*σₜ, 2*idxs[2]*σₜ, 2*idxs[3]*σₜ) T = SVector{3}(c[1], c[2], c[3]) subregionvec[i] = TranslationRegion(tr.R,T,σₜ) end end function subregions(sr::SearchRegion, nsplits=2) subregionvec = fill(sr, nsplits^length(center(sr))) subregions!(subregionvec, sr, nsplits) return subregionvec end # split only along translation or rotation axes function rot_subregions!(subregionvec::Vector{S}, ur::S, nsplits=2) where S<:UncertaintyRegion σᵣ = ur.σᵣ / nsplits lowercorner = (ur.R.sx, ur.R.sy, ur.R.sz) .- (ur.σᵣ, ur.σᵣ, ur.σᵣ) .+ (σᵣ, σᵣ, σᵣ) for (i,I) in enumerate(CartesianIndices(NTuple{3,UnitRange{Int}}(fill(0:nsplits-1, 3)))) idxs = Tuple(I) R = RotationVec((lowercorner .+ (2*idxs[1]*σᵣ, 2*idxs[2]*σᵣ, 2*idxs[3]*σᵣ))...) subregionvec[i] = UncertaintyRegion(R, ur.T, σᵣ, ur.σₜ) end end function trl_subregions!(subregionvec::Vector{S}, ur::S, nsplits=2) where S<:UncertaintyRegion σₜ = ur.σₜ / nsplits lowercorner = ur.T .- (ur.σₜ, ur.σₜ, ur.σₜ) .+ (σₜ, σₜ, σₜ) for (i,I) in enumerate(CartesianIndices(NTuple{3,UnitRange{Int}}(fill(0:nsplits-1, 3)))) idxs = Tuple(I) T = lowercorner .+ (2*idxs[1]*σₜ, 2*idxs[2]*σₜ, 2*idxs[3]*σₜ) subregionvec[i] = UncertaintyRegion(ur.R, T, ur.σᵣ, σₜ) end end function rot_subregions(sr::UncertaintyRegion, nsplits=2) subregionvec = fill(sr, nsplits^3) rot_subregions!(subregionvec, sr, nsplits) return subregionvec end function trl_subregions(sr::UncertaintyRegion, nsplits=2) subregionvec = fill(sr, nsplits^3) trl_subregions!(subregionvec, sr, nsplits) return subregionvec end # Initialize UncertaintyRegion for aligning two PointSets UncertaintyRegion(x::Union{AbstractPointSet, AbstractGMM}, y::Union{AbstractPointSet, AbstractGMM}, R::RotationVec = RotationVec(0.0,0.0,0.0), T::SVector{3} = SVector{3}(0.0,0.0,0.0)) = UncertaintyRegion(translation_limit(x, y)) TranslationRegion(x::Union{AbstractPointSet, AbstractGMM}, y::Union{AbstractPointSet, AbstractGMM}, R::RotationVec = RotationVec(0.0,0.0,0.0), T::SVector{3} = SVector{3}(0.0,0.0,0.0)) = TranslationRegion(R, zero(SVector{3}), translation_limit(x, y)) RotationRegion(x:: Union{AbstractPointSet, AbstractGMM}, y::Union{AbstractPointSet, AbstractGMM}, R::RotationVec = RotationVec(0.0,0.0,0.0), T::SVector{3} = SVector{3}(0.0,0.0,0.0)) = RotationRegion(RotationVec(0.0,0.0,0.0), T, π)
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
1323
# centroid of positions in A, weighted by weights in w (assumed to sum to 1) centroid(A, w=fill(1/size(A,2), size(A,2))) = A*w function centroid(m::AbstractModel) w = weights(m) return centroid(coords(m), w / sum(w)) end # translation moving centroid to origin center_translation(A, w=fill(1/size(A,2), size(A,2))) = Translation(-centroid(A,w)) center_translation(m::AbstractModel) = Translation(-centroid(m)) # convert between pointsets and GMMs function IsotropicGMM(ps::AbstractSinglePointSet{N,T}, σs = ones(T, length(ps))) where {N,T} μs = ps.coords ϕs = ps.weights return IsotropicGMM{N,T}([IsotropicGaussian(μs[:,i], σs[i], ϕs[i]) for i=1:length(ps)]) end PointSet(gmm::AbstractSingleGMM{N,T}) where {N,T} = PointSet{N,T}(coords(gmm), weights(gmm)) MultiPointSet(mgmm::AbstractMultiGMM{N,T,K}) where {N,T,K} = MultiPointSet{N,T,K}(Dict{K,PointSet{N,T}}([k => PointSet{N,T}(coords(gmm), weights(gmm)) for (k,gmm) in mgmm.gmms]...)) """ lim = translation_limit(gmmx, gmmy) Computes the largest translation needed to ensure that the searchspace contains the best alignment transformation. """ translation_limit(x::AbstractMatrix, y::AbstractMatrix) = max(maximum(abs.(x)), maximum(abs.(y))) translation_limit(x::AbstractModel, y::AbstractModel) = translation_limit(coords(x), coords(y))
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
1721
function gogma_align(gmmx::AbstractGMM, gmmy::AbstractGMM; interactions=nothing, kwargs...) pσ, pϕ = pairwise_consts(gmmx,gmmy,interactions) boundsfun(x,y,block) = gauss_l2_bounds(x,y,block,pσ,pϕ) localfun(x,y,block) = local_align(x,y,block,pσ,pϕ) return branchbound(gmmx, gmmy; boundsfun=boundsfun, localfun=localfun, kwargs...) end function rot_gogma_align(gmmx::AbstractGMM, gmmy::AbstractGMM; interactions=nothing, kwargs...) pσ, pϕ = pairwise_consts(gmmx,gmmy,interactions) boundsfun(x,y,block) = gauss_l2_bounds(x,y,block,pσ,pϕ) localfun(x,y,block) = local_align(x,y,block,pσ,pϕ) rot_branchbound(gmmx, gmmy; boundsfun=boundsfun, localfun=localfun, kwargs...) end function trl_gogma_align(gmmx::AbstractGMM, gmmy::AbstractGMM; interactions=nothing, kwargs...) pσ, pϕ = pairwise_consts(gmmx,gmmy,interactions) boundsfun(x,y,block) = gauss_l2_bounds(x,y,block,pσ,pϕ) localfun(x,y,block) = local_align(x,y,block,pσ,pϕ) trl_branchbound(gmmx, gmmy; boundsfun=boundsfun, localfun=localfun, kwargs...) end function tiv_gogma_align(gmmx::AbstractGMM, gmmy::AbstractGMM, cx=Inf, cy=Inf; kwargs...) tivgmmx, tivgmmy = tivgmm(gmmx, cx), tivgmm(gmmy, cy) pσ, pϕ = pairwise_consts(gmmx,gmmy) tivpσ, tivpϕ = pairwise_consts(tivgmmx,tivgmmy) boundsfun(x,y,block) = gauss_l2_bounds(x,y,block,pσ,pϕ) rot_boundsfun(x,y,block) = gauss_l2_bounds(x,y,block,tivpσ,tivpϕ) localfun(x,y,block) = local_align(x,y,block,pσ,pϕ) rot_localfun(x,y,block) = local_align(x,y,block,tivpσ,tivpϕ) tiv_branchbound(gmmx, gmmy, tivgmm(gmmx, cx), tivgmm(gmmy, cy); boundsfun=boundsfun, rot_boundsfun=rot_boundsfun, localfun=localfun, rot_localfun=rot_localfun, kwargs...) end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
6322
loose_distance_bounds(x::AbstractGaussian, y::AbstractGaussian, args...) = loose_distance_bounds(x.μ, y.μ, args...) tight_distance_bounds(x::AbstractGaussian, y::AbstractGaussian, args...) = tight_distance_bounds(x.μ, y.μ, args...) function validate_interactions(interactions::Dict{Tuple{K,K},V}) where {K,V<:Number} for (k1,k2) in keys(interactions) if k1 != k2 if haskey(interactions, (k2,k1)) return false end end end return true end # prepare pairwise values for `σx^2 + σy^2` and `ϕx * ϕy` for all gaussians in `gmmx` and `gmmy` function pairwise_consts(gmmx::AbstractIsotropicGMM, gmmy::AbstractIsotropicGMM, interactions=nothing) t = promote_type(numbertype(gmmx),numbertype(gmmy)) pσ, pϕ = zeros(t, length(gmmx), length(gmmy)), zeros(t, length(gmmx), length(gmmy)) for (i,gaussx) in enumerate(gmmx.gaussians) for (j,gaussy) in enumerate(gmmy.gaussians) pσ[i,j] = gaussx.σ^2 + gaussy.σ^2 pϕ[i,j] = gaussx.ϕ * gaussy.ϕ end end return pσ, pϕ end function pairwise_consts(mgmmx::AbstractMultiGMM{N,T,K}, mgmmy::AbstractMultiGMM{N,S,K}, interactions::Union{Nothing,Dict{Tuple{K,K},V}}=nothing) where {N,T,S,K,V <: Number} t = promote_type(numbertype(mgmmx),numbertype(mgmmy), isnothing(interactions) ? numbertype(mgmmx) : V) xkeys = keys(mgmmx.gmms) ykeys = keys(mgmmy.gmms) if isnothing(interactions) interactions = Dict{Tuple{K,K},t}() for key in xkeys ∩ ykeys interactions[(key,key)] = one(t) end else @assert validate_interactions(interactions) "Interactions must not include redundant key pairs (i.e. (k1,k2) and (k2,k1))" end mpσ, mpϕ = Dict{K, Dict{K, Matrix{t}}}(), Dict{K, Dict{K,Matrix{t}}}() ukeys = unique(Iterators.flatten(keys(interactions))) for key1 in ukeys if key1 ∈ xkeys push!(mpσ, key1 => Dict{K, Matrix{t}}()) push!(mpϕ, key1 => Dict{K, Matrix{t}}()) for key2 in ukeys keypair = (key1,key2) keypair = haskey(interactions, keypair) ? keypair : (key2,key1) if key2 ∈ ykeys && haskey(interactions, keypair) pσ, pϕ = pairwise_consts(mgmmx.gmms[key1], mgmmy.gmms[key2]) push!(mpσ[key1], key2 => pσ) push!(mpϕ[key1], key2 => interactions[keypair] .* pϕ) end end if isempty(mpσ[key1]) delete!(mpσ, key1) delete!(mpϕ, key1) end end end return mpσ, mpϕ end """ lowerbound, upperbound = gauss_l2_bounds(x::Union{IsotropicGaussian, AbstractGMM}, y::Union{IsotropicGaussian, AbstractGMM}, σᵣ, σₜ) lowerbound, upperbound = gauss_l2_bounds(x, y, R::RotationVec, T::SVector{3}, σᵣ, σₜ) Finds the bounds for overlap between two isotropic Gaussian distributions, two isotropic GMMs, or `two sets of labeled isotropic GMMs for a particular region in 6-dimensional rigid rotation space, defined by `R`, `T`, `σᵣ` and `σₜ`. `R` and `T` represent the rotation and translation, respectively, that are at the center of the uncertainty region. If they are not provided, the uncertainty region is assumed to be centered at the origin (i.e. x has already been transformed). `σᵣ` and `σₜ` represent the sizes of the rotation and translation uncertainty regions. See [Campbell & Peterson, 2016](https://arxiv.org/abs/1603.00150) """ function gauss_l2_bounds(x::AbstractIsotropicGaussian, y::AbstractIsotropicGaussian, R::RotationVec, T::SVector{3}, σᵣ, σₜ, s=x.σ^2 + y.σ^2, w=x.ϕ*y.ϕ; distance_bound_fun = tight_distance_bounds) (lbdist, ubdist) = distance_bound_fun(R*x.μ, y.μ-T, σᵣ, σₜ, w < 0) # evaluate objective function at each distance to get upper and lower bounds return -overlap(lbdist^2, s, w), -overlap(ubdist^2, s, w) end # gauss_l2_bounds(x::AbstractGaussian, y::AbstractGaussian, R::RotationVec, T::SVector{3}, σᵣ, σₜ, s=x.σ^2 + y.σ^2, w=x.ϕ*y.ϕ; kwargs... # ) = gauss_l2_bounds(R*x, y-T, σᵣ, σₜ, tform.translation, s, w; kwargs...) gauss_l2_bounds(x::AbstractGaussian, y::AbstractGaussian, block::UncertaintyRegion, s=x.σ^2 + y.σ^2, w=x.ϕ*y.ϕ; kwargs... ) = gauss_l2_bounds(x, y, block.R, block.T, block.σᵣ, block.σₜ, s, w; kwargs...) gauss_l2_bounds(x::AbstractGaussian, y::AbstractGaussian, block::SearchRegion, s=x.σ^2 + y.σ^2, w=x.ϕ*y.ϕ; kwargs... ) = gauss_l2_bounds(x, y, UncertaintyRegion(block), s, w; kwargs...) function gauss_l2_bounds(gmmx::AbstractSingleGMM, gmmy::AbstractSingleGMM, R::RotationVec, T::SVector{3}, σᵣ::Number, σₜ::Number, pσ=nothing, pϕ=nothing, interactions=nothing; kwargs...) # prepare pairwise widths and weights, if not provided if isnothing(pσ) || isnothing(pϕ) pσ, pϕ = pairwise_consts(gmmx, gmmy) end # sum bounds for each pair of points lb = 0. ub = 0. for (i,x) in enumerate(gmmx.gaussians) for (j,y) in enumerate(gmmy.gaussians) lb, ub = (lb, ub) .+ gauss_l2_bounds(x, y, R, T, σᵣ, σₜ, pσ[i,j], pϕ[i,j]; kwargs...) end end return lb, ub end function gauss_l2_bounds(mgmmx::AbstractMultiGMM, mgmmy::AbstractMultiGMM, R::RotationVec, T::SVector{3}, σᵣ::Number, σₜ::Number, mpσ=nothing, mpϕ=nothing, interactions=nothing) # prepare pairwise widths and weights, if not provided if isnothing(mpσ) || isnothing(mpϕ) mpσ, mpϕ = pairwise_consts(mgmmx, mgmmy, interactions) end # sum bounds for each pair of points lb = 0. ub = 0. for (key1, intrs) in mpσ for (key2, pσ) in intrs lb, ub = (lb, ub) .+ gauss_l2_bounds(mgmmx.gmms[key1], mgmmy.gmms[key2], R, T, σᵣ, σₜ, pσ, mpϕ[key1][key2]) end end return lb, ub end # gauss_l2_bounds(x::AbstractGMM, y::AbstractGMM, R::RotationVec, T::SVector{3}, args...; kwargs... # ) = gauss_l2_bounds(R*x, y-T, args...; kwargs...) gauss_l2_bounds(x::AbstractGMM, y::AbstractGMM, block::UncertaintyRegion, args...; kwargs... ) = gauss_l2_bounds(x, y, block.R, block.T, block.σᵣ, block.σₜ, args...; kwargs...) gauss_l2_bounds(x::AbstractGMM, y::AbstractGMM, block::SearchRegion, args...; kwargs... ) = gauss_l2_bounds(x, y, UncertaintyRegion(block), args...; kwargs...)
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
1823
""" gmm = combine(gmmx::IsotropicGMM, gmmy::IsotropicGMM) mgmm = combine(mgmmx::MultiGMM, mgmmy::MultiGMM) gmm = combine(gmms::Union{AbstractVector{<:IsotropicGMM},AbstractVector{<:MultiGMM}}) Creates a new `IsotropicGMM` or `MultiGMM` by concatenating the vectors of `IsotroicGaussian`s in the input GMMs. """ function combine(gmmx::AbstractSingleGMM, gmmy::AbstractSingleGMM) if dims(gmmx) != dims(gmmy) throw(ArgumentError("GMMs must have the same dimensionality")) end t = promote_type(typeof(gmmx), typeof(gmmy)) return t(vcat(gmmx.gaussians, gmmy.gaussians)) end function combine(mgmmx::IsotropicMultiGMM, mgmmy::IsotropicMultiGMM) if dims(mgmmx) != dims(mgmmy) throw(ArgumentError("GMMs must have the same dimensionality")) end t = IsotropicGMM{dims(mgmmx),promote_type(numbertype(mgmmx), numbertype(mgmmy))} d = promote_type(typeof(mgmmx.gmms), typeof(mgmmy.gmms)) gmms = d() xkeys, ykeys = keys(mgmmx.gmms), keys(mgmmy.gmms) for key in xkeys ∪ ykeys if key ∈ xkeys && key ∈ykeys push!(gmms, Pair(key, convert(t, combine(mgmmx.gmms[key], mgmmy.gmms[key])))) elseif key ∈ xkeys push!(gmms, Pair(key, convert(t, mgmmx.gmms[key]))) else @show convert(t,mgmmy.gmms[key]) push!(gmms, Pair(key, convert(t, mgmmy.gmms[key]))) end end return promote_type(typeof(mgmmx), typeof(mgmmy))(gmms) end function combine(gmms::Union{AbstractVector{<:AbstractSingleGMM},AbstractVector{<:AbstractMultiGMM}}) if length(gmms) > 1 return combine([combine(gmms[1],gmms[2]), gmms[3:end]...]) elseif length(gmms) == 1 return gmms[1] else throw(ArgumentError("provided no GMMs to combine")) end end combine(args...) = combine([args...])
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
6617
import Base: eltype, keytype, valtype, length, size, getindex, iterate, convert, promote_rule, keys, values, push!, pop!, empty!, haskey, get, get!, delete! # Type structure: leaving things open for adding anisotropic Gaussians and GMMs abstract type AbstractGaussian{N,T} end abstract type AbstractIsotropicGaussian{N,T} <: AbstractGaussian{N,T} end # concrete subtypes: # IsotropicGaussian # AtomGaussian (MolecularGaussians.jl) # FeatureGaussian (MolecularGaussians.jl) abstract type AbstractGMM{N,T} <: AbstractModel{N,T} end abstract type AbstractSingleGMM{N,T} <: AbstractGMM{N,T} end abstract type AbstractIsotropicGMM{N,T} <: AbstractSingleGMM{N,T} end # concrete subtypes: # IsotropicGMM # MolGMM (MolecularGaussians.jl) abstract type AbstractMultiGMM{N,T,K} <: AbstractGMM{N,T} end abstract type AbstractIsotropicMultiGMM{N,T,K} <: AbstractMultiGMM{N,T,K} end # concrete subtypes: # IsotropicMultiGMM # FeatureMolGMM (MolecularGaussians.jl) # # Base methods for Gaussians # numbertype(::AbstractGaussian{N,T}) where {N,T} = T # dims(::AbstractGaussian{N,T}) where {N,T} = N # length(::AbstractGaussian{N,T}) where {N,T} = N # size(::AbstractGaussian{N,T}) where {N,T} = (N,) # size(::AbstractGaussian{N,T}, idx::Int) where {N,T} = (N,)[idx] # Base methods for GMMs numbertype(::AbstractGMM{N,T}) where {N,T} = T dims(::AbstractGMM{N,T}) where {N,T} = N length(gmm::AbstractSingleGMM) = length(gmm.gaussians) getindex(gmm::AbstractSingleGMM, idx) = gmm.gaussians[idx] iterate(gmm::AbstractSingleGMM) = iterate(gmm.gaussians) iterate(gmm::AbstractSingleGMM, i) = iterate(gmm.gaussians, i) size(gmm::AbstractSingleGMM{N,T}) where {N,T} = (length(gmm.gaussians), N) size(gmm::AbstractSingleGMM{N,T}, idx::Int) where {N,T} = (length(gmm.gaussians), N)[idx] eltype(gmm::AbstractSingleGMM) = eltype(gmm.gaussians) push!(gmm::AbstractSingleGMM, g::AbstractGaussian) = push!(gmm.gaussians, g) pop!(gmm::AbstractSingleGMM) = pop!(gmm.gaussians) empty!(gmm::AbstractSingleGMM) = empty!(gmm.gaussians) coords(gmm::AbstractSingleGMM) = hcat([g.μ for g in gmm.gaussians]...) weights(gmm::AbstractSingleGMM) = [g.ϕ for g in gmm.gaussians] widths(gmm::AbstractSingleGMM) = [g.ϕ for g in gmm.gaussians] length(mgmm::AbstractMultiGMM) = length(mgmm.gmms) getindex(mgmm::AbstractMultiGMM, k) = mgmm.gmms[k] keys(mgmm::AbstractMultiGMM) = keys(mgmm.gmms) iterate(mgmm::AbstractMultiGMM) = iterate(mgmm.gmms) iterate(mgmm::AbstractMultiGMM, i) = iterate(mgmm.gmms, i) size(mgmm::AbstractMultiGMM{N,T,K}) where {N,T,K} = (length(mgmm.gmms), N) size(mgmm::AbstractMultiGMM{N,T,K}, idx::Int) where {N,T,K} = (length(mgmm.gmms), N)[idx] eltype(mgmm::AbstractMultiGMM) = eltype(mgmm.gmms) eltype(::Type{MGMM}) where MGMM<:AbstractMultiGMM = Pair{keytype(MGMM),valtype(MGMM)} keytype(mgmm::AbstractMultiGMM) = keytype(typeof(mgmm)) keytype(::Type{<:AbstractMultiGMM{N,T,K}}) where {N,T,K} = K valtype(mgmm::AbstractMultiGMM) = valtype(mgmm.gmms) haskey(mgmm::AbstractMultiGMM, k) = haskey(mgmm.gmms, k) get(mgmm::AbstractMultiGMM, k, default) = get(mgmm.gmms, k, default) get!(::Type{V}, mgmm::AbstractMultiGMM, k) where V = get!(V, mgmm.gmms, k) delete!(mgmm::AbstractMultiGMM, k) = delete!(mgmm.gmms, k) empty!(mgmm::AbstractMultiGMM) = empty!(mgmm.gmms) coords(mgmm::AbstractMultiGMM) = hcat([coords(gmm) for (k,gmm) in mgmm.gmms]...) weights(mgmm::AbstractMultiGMM) = vcat([weights(gmm) for (k,gmm) in mgmm.gmms]...) widths(mgmm::AbstractMultiGMM) = vcat([widths(gmm) for (k,gmm) in mgmm.gmms]...) """ A structure that defines an isotropic Gaussian distribution with the location of the mean, `μ`, standard deviation `σ`, and scaling factor `ϕ`. """ struct IsotropicGaussian{N,T} <: AbstractIsotropicGaussian{N,T} μ::SVector{N,T} σ::T ϕ::T end IsotropicGaussian(μ::SVector{N,T},σ::T,ϕ::T) where {N,T<:Real} = IsotropicGaussian{N,T}(μ,σ,ϕ) function IsotropicGaussian(μ::AbstractArray, σ::Real, ϕ::Real) t = promote_type(eltype(μ), typeof(σ), typeof(ϕ)) return IsotropicGaussian{length(μ),t}(SVector{length(μ),t}(μ), t(σ), t(ϕ)) end IsotropicGaussian(g::AbstractIsotropicGaussian) = IsotropicGaussian(g.μ, g.σ, g.ϕ) convert(::Type{IsotropicGaussian{N,T}}, g::AbstractIsotropicGaussian) where {N,T} = IsotropicGaussian{N,T}(g.μ, g.σ, g.ϕ) promote_rule(::Type{IsotropicGaussian{N,T}}, ::Type{IsotropicGaussian{N,S}}) where {N,T<:Real,S<:Real} = IsotropicGaussian{N,promote_type(T,S)} (g::IsotropicGaussian)(pos::AbstractVector) = exp(-sum(abs2, pos-g.μ)/(2*g.σ^2))*g.ϕ """ A collection of `IsotropicGaussian`s, making up a Gaussian Mixture Model (GMM). """ struct IsotropicGMM{N,T} <: AbstractIsotropicGMM{N,T} gaussians::Vector{IsotropicGaussian{N,T}} end IsotropicGMM(gmm::AbstractIsotropicGMM) = IsotropicGMM(gmm.gaussians) IsotropicGMM{N,T}() where {N,T} = IsotropicGMM{N,T}(IsotropicGaussian{N,T}[]) convert(::Type{GMM}, gmm::AbstractIsotropicGMM) where GMM<:IsotropicGMM = GMM(gmm.gaussians) promote_rule(::Type{IsotropicGMM{N,T}}, ::Type{IsotropicGMM{N,S}}) where {T,S,N} = IsotropicGMM{N,promote_type(T,S)} eltype(::Type{IsotropicGMM{N,T}}) where {N,T} = IsotropicGaussian{N,T} (gmm::IsotropicGMM)(pos::AbstractVector) = sum(g(pos) for g in gmm) """ A collection of labeled `IsotropicGMM`s, to each be considered separately during an alignment procedure. That is, only alignment scores between `IsotropicGMM`s with the same key are considered when aligning two `MultiGMM`s. """ struct IsotropicMultiGMM{N,T,K} <: AbstractIsotropicMultiGMM{N,T,K} gmms::Dict{K, IsotropicGMM{N,T}} end IsotropicMultiGMM(gmm::AbstractIsotropicMultiGMM) = IsotropicMultiGMM(gmm.gmms) convert(t::Type{IsotropicMultiGMM}, mgmm::AbstractIsotropicMultiGMM) = t(mgmm.gmms) promote_rule(::Type{IsotropicMultiGMM{N,T,K}}, ::Type{IsotropicMultiGMM{N,S,K}}) where {N,T,S,K} = IsotropicMultiGMM{N,promote_type(T,S),K} valtype(::Type{IsotropicMultiGMM{N,T,K}}) where {N,T,K} = IsotropicGMM{N,T} # descriptive display # TODO update to display type parameters, make use of supertypes, etc Base.show(io::IO, g::AbstractIsotropicGaussian) = println(io, summary(g), " with μ = $(g.μ), σ = $(g.σ), and ϕ = $(g.ϕ).\n" ) Base.show(io::IO, gmm::AbstractSingleGMM) = println(io, summary(gmm), " with $(length(gmm)) $(eltype(gmm.gaussians)) distributions." ) Base.show(io::IO, mgmm::AbstractMultiGMM) = println(io, summary(mgmm), " with $(length(mgmm)) labeled $(eltype(mgmm.gmms).parameters[2]) models made up of a total of $(sum([length(gmm) for (key,gmm) in mgmm.gmms])) $(eltype(values(mgmm.gmms))) distributions." )
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
4488
""" ovlp = overlap(distsq, s, w) Calculates the unnormalized overlap between two Gaussian distributions with width `s`, weight `w', and squared distance `distsq`. """ function overlap(distsq::Real, s::Real, w::Real) return w * exp(-distsq / (2*s)) # / (sqrt2pi * sqrt(s))^ndims # Note, the normalization term for the Gaussians is left out, since it is not required that the total "volume" of each Gaussian # is equal to 1 (e.g. satisfying the requirements for a probability distribution) end """ ovlp = overlap(dist, σx, σy, ϕx, ϕy) Calculates the unnormalized overlap between two Gaussian distributions with variances `σx` and `σy`, weights `ϕx` and `ϕy`, and means separated by distance `dist`. """ function overlap(dist::Real, σx::Real, σy::Real, ϕx::Real, ϕy::Real) return overlap(dist^2, σx^2 + σy^2, ϕx*ϕy) end """ ovlp = overlap(x::IsotropicGaussian, y::IsotropicGaussian) Calculates the unnormalized overlap between two `IsotropicGaussian` objects. """ function overlap(x::AbstractIsotropicGaussian, y::AbstractIsotropicGaussian, s=x.σ^2+y.σ^2, w=x.ϕ*y.ϕ) return overlap(sum(abs2, x.μ.-y.μ), s, w) end """ ovlp = overlap(x::AbstractSingleGMM, y::AbstractSingleGMM) Calculates the unnormalized overlap between two `AbstractSingleGMM` objects. """ function overlap(x::AbstractSingleGMM, y::AbstractSingleGMM, pσ=nothing, pϕ=nothing) # prepare pairwise widths and weights, if not provided if isnothing(pσ) && isnothing(pϕ) pσ, pϕ = pairwise_consts(x, y) end # sum overlaps for all pairwise combinations of Gaussians between x and y ovlp = zero(promote_type(numbertype(x),numbertype(y))) for (i,gx) in enumerate(x.gaussians) for (j,gy) in enumerate(y.gaussians) ovlp += overlap(gx, gy, pσ[i,j], pϕ[i,j]) end end return ovlp end """ ovlp = overlap(x::AbstractMultiGMM, y::AbstractMultiGMM) Calculates the unnormalized overlap between two `AbstractMultiGMM` objects. """ function overlap(x::AbstractMultiGMM, y::AbstractMultiGMM, mpσ=nothing, mpϕ=nothing, interactions=nothing) # prepare pairwise widths and weights, if not provided if isnothing(mpσ) && isnothing(mpϕ) mpσ, mpϕ = pairwise_consts(x, y, interactions) end # sum overlaps from each keyed pairs of GMM ovlp = zero(promote_type(numbertype(x),numbertype(y))) for k1 in keys(mpσ) for k2 in keys(mpσ[k1]) ovlp += overlap(x.gmms[k1], y.gmms[k2], mpσ[k1][k2], mpϕ[k1][k2]) end end return ovlp end """ l2dist = distance(x, y) Calculates the L2 distance between two GMMs made up of spherical Gaussian distributions. """ function distance(x::AbstractGMM, y::AbstractGMM) return overlap(x,x) + overlap(y,y) - 2*overlap(x,y) end """ tani = tanimoto(x, y) Calculates the tanimoto distance based on Gaussian overlap between two GMMs. """ function tanimoto(x::AbstractGMM, y::AbstractGMM) o = overlap(x,y) return o / (overlap(x,x) + overlap(y,y) - o) end ## Forces function force!(f::AbstractVector, x::AbstractVector, y::AbstractVector, s::Real, w::Real) Δ = y - x f .+= Δ / s * overlap(sum(abs2, Δ), s, w) end function force!(f::AbstractVector, x::AbstractIsotropicGaussian, y::AbstractIsotropicGaussian, s=x.σ^2+y.σ^2, w=x.ϕ*y.ϕ; coef=1) return force!(f, x.μ, y.μ, s, coef*w) end function force!(f::AbstractVector, x::AbstractIsotropicGaussian, y::AbstractIsotropicGMM, pσ=nothing, pϕ=nothing; kwargs...) if isnothing(pσ) && isnothing(pϕ) xσsq = x.σ^2 pσ = [xσsq + gy.σ^2 for gy in y.gaussians] pϕ = [x.ϕ * gy.ϕ for gy in y.gaussians] end for (gy, s, w) in zip(y.gaussians, pσ, pϕ) force!(f, x, gy, s, w; kwargs...) end end function force!(f::AbstractVector, x::AbstractIsotropicGMM, y::AbstractIsotropicGMM, pσ=nothing, pϕ=nothing; kwargs...) if isnothing(pσ) && isnothing(pϕ) pσ, pϕ = pairwise_consts(x, y) end for (i,gx) in enumerate(x.gaussians) force!(f, gx, y, pσ[i,:], pϕ[i,:]; kwargs...) end end function force!(f::AbstractVector, x::AbstractMultiGMM, y::AbstractMultiGMM; interactions=nothing) mpσ, mpϕ = pairwise_consts(x, y, interactions) for k1 in keys(mpσ) for k2 in keys(mpσ[k1]) # don't pass coef as a keyword argument, since the interaction coefficient is baked into mpϕ force!(f, x.gmms[k1], y.gmms[k2], mpσ[k1][k2], mpϕ[k1][k2]) end end end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
1471
""" tgmm = tivgmm(gmm::IsotropicGMM, c=Inf) tgmm = tivgmm(mgmm::MultiGMM, c=Inf) Returns a new `IsotropicGMM` or `MultiGMM` containing up to `c*length(gmm)` translation invariant vectors (TIVs) connecting Gaussian means in `gmm`. TIVs are chosen to maximize length multiplied by the weights of the connected distributions. See [Li et. al. (2019)](https://arxiv.org/abs/1812.11307) for a description of TIV construction. """ function tivgmm(gmm::AbstractIsotropicGMM, c=Inf) t = numbertype(gmm) npts, ndims = size(gmm) n = ceil(c*npts) if npts^2 < n n = npts^2 end scores = fill(zero(t), npts, npts) for i=1:npts for j = i:npts scores[i,j] = scores[j,i] = norm(gmm.gaussians[i].μ-gmm.gaussians[j].μ) * √(gmm.gaussians[i].ϕ * gmm.gaussians[j].ϕ) end end tivgaussians = IsotropicGaussian{ndims,t}[] order = sortperm(vec(scores), rev=true) for idx in order[1:Int(n)] i = Int(floor((idx-1)/npts)+1) j = mod(idx-1, npts)+1 x, y = gmm.gaussians[i], gmm.gaussians[j] push!(tivgaussians, IsotropicGaussian(x.μ-y.μ, √(x.σ*y.σ), √(x.ϕ*y.ϕ))) end return IsotropicGMM(tivgaussians) end function tivgmm(mgmm::AbstractIsotropicMultiGMM, c=Inf) gmms = Dict{Symbol, IsotropicGMM{dims(mgmm),numbertype(mgmm)}}() for key in keys(mgmm.gmms) push!(gmms, Pair(key, tivgmm(mgmm.gmms[key], c))) end return IsotropicMultiGMM(gmms) end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
3902
function Base.:*(R::AbstractMatrix{W}, x::IsotropicGaussian{N,V}) where {N,V,W} numtype = promote_type(V, W) return IsotropicGaussian{N,numtype}(R*x.μ, x.σ, x.ϕ) end function Base.:+(x::IsotropicGaussian{N,V}, T::AbstractVector{W}) where {N,V,W} numtype = promote_type(V, W) return IsotropicGaussian{N,numtype}(x.μ.+T, x.σ, x.ϕ) end Base.:-(x::IsotropicGaussian, T::AbstractVector,) = x + (-T) function Base.:*(R::AbstractMatrix{W}, x::IsotropicGMM{N,V}) where {N,V,W} numtype = promote_type(V, W) return IsotropicGMM{N,numtype}([R*g for g in x.gaussians]) end function Base.:+(x::IsotropicGMM{N,V}, T::AbstractVector{W}) where {N,V,W} numtype = promote_type(V, W) return IsotropicGMM{N,numtype}([g+T for g in x.gaussians]) end Base.:-(x::IsotropicGMM, T::AbstractVector,) = x + (-T) function Base.:*(R::AbstractMatrix{W}, x::IsotropicMultiGMM{N,V,K}) where {N,V,K,W} numtype = promote_type(V, W) gmmdict = Dict{K, IsotropicGMM{N,numtype}}() for (key, gmm) in x.gmms push!(gmmdict, key=>R*gmm) end return IsotropicMultiGMM(gmmdict) end function Base.:+(x::IsotropicMultiGMM{N,V,K}, T::AbstractVector{W}) where {N,V,K,W} numtype = promote_type(V, W) gmmdict = Dict{K, IsotropicGMM{N,numtype}}() for (key, gmm) in x.gmms push!(gmmdict, key=>gmm+T) end return IsotropicMultiGMM(gmmdict) end Base.:-(x::IsotropicMultiGMM, T::AbstractVector) = x + (-T) # There is some concern about the inferability of the functions below. Using Test.@inferred did not throw any errors # function Base.:*(R::AbstractMatrix, x::AbstractIsotropicGaussian) # ty = typeof(x) # otherfields = [getfield(x,fname) for fname in fieldnames(typeof(x))][5:end] # first 4 fields must be `μ`, `σ`, `ϕ`, and `dirs` # return ty.name.wrapper(R*x.μ, x.σ, x.ϕ, [R*dir for dir in x.dirs], otherfields...) # end # function Base.:+(x::AbstractIsotropicGaussian, T::AbstractVector,) # ty = typeof(x) # otherfields = [getfield(x,fname) for fname in fieldnames(typeof(x))][5:end] # first 4 fields must be `μ`, `σ`, `ϕ`, and `dirs` # return ty.name.wrapper(x.μ.+T, x.σ, x.ϕ, x.dirs, otherfields...) # end # Base.:-(x::AbstractIsotropicGaussian, T::AbstractVector,) = x + (-T) # function Base.:*(R::AbstractMatrix, x::AbstractIsotropicGMM) # ty = typeof(x) # otherfields = [getfield(x,fname) for fname in fieldnames(typeof(x))][2:end] # first fields must be `gaussians` # return ty.name.wrapper([R*g for g in x.gaussians], otherfields...) # end # function Base.:+(x::AbstractIsotropicGMM, T::AbstractVector,) # ty = typeof(x) # otherfields = [getfield(x,fname) for fname in fieldnames(typeof(x))][2:end] # first fields must be `gaussians` # return ty.name.wrapper([g+T for g in x.gaussians], otherfields...) # end # Base.:-(x::AbstractIsotropicGMM, T::AbstractVector,) = x + (-T) # function Base.:*(R::AbstractMatrix, x::AbstractIsotropicMultiGMM) # ty = typeof(x) # gmmkeys = keys(x.gmms) # gmmdict = Dict(first(gmmkeys)=>R*x.gmms[first(gmmkeys)]) # for (i,key) in enumerate(gmmkeys) # i === 1 ? continue : push!(gmmdict, key=>R*x.gmms[key]) # end # otherfields = [getfield(x,fname) for fname in fieldnames(typeof(x))][2:end] # first field must be `gmms` # return ty.name.wrapper(gmmdict, otherfields...) # end # function Base.:+(x::AbstractIsotropicMultiGMM, T::AbstractVector) # ty = typeof(x) # gmmkeys = keys(x.gmms) # gmmdict = Dict(first(gmmkeys)=>x.gmms[first(gmmkeys)]+T) # for (i,key) in enumerate(gmmkeys) # i === 1 ? continue : push!(gmmdict, key=>x.gmms[key]+T) # end # otherfields = [getfield(x,fname) for fname in fieldnames(typeof(x))][2:end] # first field must be `gmms` # return ty.name.wrapper(gmmdict, otherfields...) # end # Base.:-(x::AbstractIsotropicMultiGMM, T::AbstractVector) = x + (-T)
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
3654
function goicp_align(x::AbstractSinglePointSet, y::AbstractSinglePointSet; kwargs...) kdtree = KDTree(y.coords, Euclidean()) correspondence(xx::AbstractMatrix, yy::AbstractMatrix) = closest_points(xx, kdtree) boundsfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, sr::SearchRegion) = squared_dist_bounds(xx,yy,sr; correspondence = correspondence, distance_bound_fun = tight_distance_bounds) localfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, block::SearchRegion) = local_icp(xx, yy, block; kdtree=kdtree) return branchbound(x, y; boundsfun=boundsfun, localfun=localfun, kwargs...) end function trl_goicp_align(x::AbstractSinglePointSet, y::AbstractSinglePointSet; kwargs...) return goicp_align(x, y; blockfun=TranslationRegion, tformfun=Translation, kwargs...) end function goih_align(x::AbstractPointSet, y::AbstractPointSet; kwargs...) boundsfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, sr::SearchRegion) = squared_dist_bounds(xx,yy,sr; correspondence = hungarian_assignment, distance_bound_fun = tight_distance_bounds) branchbound(x, y; boundsfun=boundsfun, localfun=local_iterative_hungarian, kwargs...) end function tiv_goicp_align(x::AbstractSinglePointSet, y::AbstractSinglePointSet, cx=Inf, cy=Inf; kwargs...) tivx, tivy = tivpointset(x,cx), tivpointset(y,cy) kdtree = KDTree(y.coords, Euclidean()) tiv_kdtree = KDTree(tivy.coords, Euclidean()) correspondence(xx::AbstractMatrix, yy::AbstractMatrix) = closest_points(xx, kdtree) rot_correspondence(xx::AbstractMatrix, yy::AbstractMatrix) = closest_points(xx, tiv_kdtree) boundsfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, sr::SearchRegion) = squared_dist_bounds(xx,yy,sr; correspondence = correspondence, distance_bound_fun = tight_distance_bounds) rot_boundsfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, sr::SearchRegion) = squared_dist_bounds(xx,yy,sr; correspondence = rot_correspondence, distance_bound_fun = tight_distance_bounds) localfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, block::SearchRegion) = local_icp(xx, yy, block; kdtree=kdtree) objfun(X, x, y) = distanceobj(X, x, y; correspondence = correspondence); rot_objfun(X, x, y) = distanceobj(X, x, y; correspondence = rot_correspondence); rot_localfun(xx, yy, block; kwargs...) = iterate_local_alignment(xx, yy, block; correspondence = rot_correspondence, tformfun=LinearMap, kwargs...); trl_localfun(xx, yy, block; kwargs...) = iterate_local_alignment(xx, yy, block; correspondence = correspondence, tformfun=Translation, kwargs...); return tiv_branchbound(x, y, tivx, tivy; rot_boundsfun=rot_boundsfun, boundsfun=boundsfun, localfun=localfun, kwargs...) end function tiv_goih_align(x::AbstractPointSet, y::AbstractPointSet, cx=Inf, cy=Inf; kwargs...) boundsfun(xx::AbstractSinglePointSet, yy::AbstractSinglePointSet, sr::SearchRegion) = squared_dist_bounds(xx,yy,sr; correspondence = hungarian_assignment, distance_bound_fun = tight_distance_bounds) objfun(X, x, y) = distanceobj(X, x, y; correspondence = hungarian_assignment); rot_localfun(xx, yy, block; kwargs...) = iterate_local_alignment(xx, yy, block; correspondence = hungarian_assignment, tformfun=LinearMap, kwargs...); trl_localfun(xx, yy, block; kwargs...) = iterate_local_alignment(xx, yy, block; correspondence = hungarian_assignment, tformfun=Translation, kwargs...); return tiv_branchbound(x, y, tivpointset(x,cx), tivpointset(y,cy); boundsfun=squared_dist_bounds, localfun=local_iterative_hungarian, rot_localfun=rot_localfun, trl_localfun=rot_localfun, kwargs...) end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
1906
loose_distance_bounds(x::AbstractPoint, y::AbstractPoint, sr::Number, st::Number) = loose_distance_bounds(x.coords, y.coords, sr, st) tight_distance_bounds(x::AbstractPoint, y::AbstractPoint, sr::Number, st::Number) = tight_distance_bounds(x.coords, y.coords, sr, st) function squared_dist_bounds(x::AbstractSinglePointSet, y::AbstractSinglePointSet, σᵣ::Number, σₜ::Number; distance_bound_fun::Union{typeof(tight_distance_bounds),typeof(loose_distance_bounds)} = loose_distance_bounds, correspondence = hungarian_assignment) matches = correspondence(x.coords, y.coords) # sum bounds for each pair of points lb = 0. ub = 0. for (i,j) in matches (matchlb, matchub) = distance_bound_fun(x[i], y[j], σᵣ, σₜ) lb += matchlb^2 ub += matchub^2 end return lb, ub # , matches end function squared_dist_bounds(x::AbstractMultiPointSet{N,T,K}, y::AbstractMultiPointSet{N,S,L}, σᵣ, σₜ; kwargs...) where {N,T,K,S,L} # sum bounds for each matched pair of pointsets lb = 0. ub = 0. matches = Dict{promote_type(K,L), Vector{Tuple{Int,Int}}}() for key in keys(x.pointsets) ∩ keys(y.pointsets) keylb, keyub, keymatches = squared_dist_bounds(x.pointsets[key], y.pointsets[key], σᵣ, σₜ; kwargs...) lb += keylb ub += keyub push!(matches, keymatches) end return lb, ub # , matches end squared_dist_bounds(x::AbstractPointSet, y::AbstractPointSet, R::RotationVec, T::SVector{3}, σᵣ::Number, σₜ::Number; kwargs... ) = squared_dist_bounds(R*x, y-T, σᵣ, σₜ; kwargs...) squared_dist_bounds(x::AbstractPointSet, y::AbstractPointSet, ur::UncertaintyRegion; kwargs... ) = squared_dist_bounds(x, y, ur.R, ur.T, ur.σᵣ, ur.σₜ; kwargs...) squared_dist_bounds(x::AbstractPointSet, y::AbstractPointSet, sr::SearchRegion; kwargs... ) = squared_dist_bounds(x, y, UncertaintyRegion(sr); kwargs...)
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git
[ "MIT" ]
0.2.2
c81897832613bbcf7cc19639fd3a1a0a154abe1b
code
3083
# closest points using a particular metric, using a K-D tree implemented by NearestNeighbors function closest_points(P, kdtree::KDTree); # kdtree=KDTree(Q, Euclidean()) nearestidx, dists = nn(kdtree, P) return [(i,nearestidx[i]) for i=1:size(P,2)] end closest_points(P::AbstractMatrix, Q::AbstractMatrix) = closest_points(P, KDTree(Q, Euclidean())) closest_points(P::AbstractSinglePointSet, Q::AbstractSinglePointSet) = closest_points(P.coords, Q.coords) # function closest_points(P::AbstractMatrix, Q::AbstractMatrix) # matches = Vector{Tuple{Int,Int}}(undef, size(P,2)) # for i=1:size(P,2) # lowestDistSq = Inf # bestIdx = 0 # for j=1:size(Q,2) # distSq = sum(abs2, P[:,i] .- Q[:,j]) # if distSq < lowestDistSq # bestIdx = j # lowestDistSq = distSq # end # end # matches[i] = (i,bestIdx) # end # return matches # end # Hungarian algorithm for assignment function hungarian_assignment(P::AbstractMatrix{S}, Q::AbstractMatrix{T}, metric=SqEuclidean()) where {S,T} # weights = pairwise(metric, P, Q; dims=2) numtype = promote_type(S,T) weights = Matrix{numtype}(undef, size(P,2), size(Q,2)) for i=1:size(P,2) for j=1:size(Q,2) weights[i,j] = sum(abs2, P[:,i] .- Q[:,j]) end end assignment, cost = hungarian(weights) matches = Tuple{Int,Int}[] for (i,a) in enumerate(assignment) if a !== 0 push!(matches, (i,a)) end end return matches end hungarian_assignment(P::AbstractSinglePointSet, Q::AbstractSinglePointSet, metric=SqEuclidean()) = hungarian_assignment(P.coords, Q.coords, metric) function hungarian_assignment(P::AbstractMultiPointSet{N,T,K}, Q::AbstractMultiPointSet{N,T,K}, metric=SqEuclidean()) where {N,T,K} matchesdict = Dict{K, Vector{Tuple{Int,Int}}}(); for (key, ps) in P.pointsets push!(matchesdict, key => hungarian_assignment(ps, Q.pointsets[key], metric)); end return matchesdict end # generate matrices for Kabsch from a list of correspondences matched_points(P::AbstractMatrix, Q::AbstractMatrix, matches) = (hcat([P[:,i] for (i,j) in matches]...), hcat([Q[:,j] for (i,j) in matches]...)) matched_points(P, Q, matches) = ([P[i] for (i,j) in matches], [Q[j] for (i,j) in matches]) matched_points(P, Q; correspondence=closest_points, kwargs...) = matched_points(P, Q, correspondence(P,Q; kwargs...)) matched_points(P::AbstractSinglePointSet, Q::AbstractSinglePointSet, args...; kwargs...) = matched_points(P.coords, Q.coords, args...; kwargs...) function matched_points(P::AbstractMultiPointSet{N,T,K}, Q::AbstractMultiPointSet{N,T,K}, matchesdict::Dict{K, Vector{Tuple{Int,Int}}}) where {N,T,K} matchedP = Array{T}(undef, N, 0) matchedQ = Array{T}(undef, N, 0) for (key, matches) in matchesdict (mp, mq) = matched_points(P.pointsets[key], Q.pointsets[key], matches) matchedP = hcat(matchedP, mp) matchedQ = hcat(matchedQ, mq) end return matchedP, matchedQ end
GaussianMixtureAlignment
https://github.com/tmcgrath325/GaussianMixtureAlignment.jl.git