licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
1394
abstract type AbstractTestDistributions end struct AsymptoticDist <: AbstractTestDistributions shift::Float64 cutoff::Float64 end """ asymptotic_dists(sqrtqmuA; base_dist = :normal) Return `S+B` and `B only` teststatistics distributions. """ function asymptotic_dists(sqrtqmuA; base_dist = :normal) cutoff = base_dist == :normal ? -Inf : -sqrtqmuA s_plus_b_dist = AsymptoticDist(-sqrtqmuA, cutoff) b_dist = AsymptoticDist(0.0, cutoff) return s_plus_b_dist, b_dist end """ pvalue(d::AsymptoticDist, value) -> Real Compute the p-value for a single teststatistics distribution. """ pvalue(d::AsymptoticDist, value) = cdf(Normal(), -(value - d.shift)) """ pvalue(teststat, s_plus_b_dist::AsymptoticDist, b_only_dist::AsymptoticDist) -> (CLsb, CLb, CLs) Compute the confidence level for `S+B`, `B` only, and `S`. """ function pvalue(teststat, s_plus_b_dist::AsymptoticDist, b_only_dist::AsymptoticDist) CLsb = pvalue(s_plus_b_dist, teststat) CLb = pvalue(b_only_dist, teststat) CLs = CLsb / CLb return CLsb, CLb, CLs end expected_sigma(d::AsymptoticDist, nsigma) = max(d.cutoff, d.shift + nsigma) function expected_pvalue(s_plus_b_dist::AsymptoticDist, b_only_dist::AsymptoticDist) stats_range = expected_sigma.(Ref(b_only_dist), 2:-1:-2) return [pvalue(s_plus_b_dist, i) / pvalue(b_only_dist, i) for i in stats_range] end
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
4517
abstract type AbstractInterp end const V64 = Vector{Float64} """ InterpCode0{T} Callable struct for interpolation for additive modifier. Code0 is the two-piece linear interpolation. """ struct InterpCode0 <: AbstractInterp Δ_up::V64 Δ_down::V64 end function InterpCode0(I0, I_up::T, I_down::T) where {T<:AbstractVector} Δ_up = I_up - I0 Δ_down = I0 - I_down InterpCode0(Float64.(Δ_up), Float64.(Δ_down)) end function (i::InterpCode0)(α) vs = Base.ifelse(α >= zero(α), i.Δ_up, i.Δ_down) return vs*α end """ InterpCode1{T} Callable struct for interpolation for multiplicative modifier. Code1 is the exponential interpolation. """ struct InterpCode1 <: AbstractInterp f_up::Float64 f_down::Float64 end function InterpCode1(I0, I_up::T, I_down::T) where {T<:AbstractVector} f_up = first(I_up ./ I0) f_down = first(I_down ./ I0) InterpCode1(f_up, f_down) end function (i::InterpCode1)(α) Base.ifelse(α >= zero(α), (i.f_up)^α, (i.f_down)^(-α)) end struct InterpCode2 <: AbstractInterp a::V64 b::V64 end function InterpCode2(I0, I_up::T, I_down::T) where {T<:AbstractVector} a = @. 0.5 * (I_up + I_down) - I0 b = @. 0.5 * (I_up - I_down) InterpCode2(Float64.(a), Float64.(b)) end function (i::InterpCode2)(α) (; a, b) = i if α > 1 @. (b + 2*a) * (α - 1) elseif α >= -1 @. a * α^2 + b * α else @. (b - 2*a) * (α + 1) end end """ InterpCode4{T} Callable struct for interpolation for additive modifier. Code4 is the exponential + 6-order polynomial interpolation. """ struct InterpCode4 <: AbstractInterp f_ups::V64 f_downs::V64 α0::Float64 inver::Matrix{Float64} end function InterpCode4(I0, I_up, I_down; α0=1.0) inver = _interp4_inverse(α0) InterpCode4(Float64.(I_up ./ I0), Float64.(I_down ./ I0), α0, inver) end function (i::InterpCode4)(α) (; f_ups, f_downs, inver, α0) = i delta_up = f_ups delta_down = f_downs mult = if α >= α0 @. (delta_up) ^ α elseif α <= -α0 @. (delta_down) ^ (-α) else delta_up_alpha0 = @. delta_up^α0 delta_down_alpha0 = @. delta_down^α0 b = @. [ delta_up_alpha0 - 1, delta_down_alpha0 - 1, log(delta_up) * delta_up_alpha0, -log(delta_down) * delta_down_alpha0, log(delta_up)^2 * delta_up_alpha0, log(delta_down)^2 * delta_down_alpha0, ] coefficients = inver * b 1 .+ sum(coefficients[i] * α^i for i=1:6) end mult end function _interp4_inverse(α0) alpha0 = α0 [15/(16*alpha0) -15/(16*alpha0) -7/16 -7/16 1/16*alpha0 -1/16*alpha0 3/(2*alpha0^2) 3/(2*alpha0^2) -9/(16*alpha0) 9/(16*alpha0) 1/16 1/16 -5/(8*alpha0^3) 5/(8*alpha0^3) 5/(8*alpha0^2) 5/(8*alpha0^2) -1/(8*alpha0) 1/(8*alpha0) 3/(-2*alpha0^4) 3/(-2*alpha0^4) -7/(-8*alpha0^3) 7/(-8*alpha0^3) -1/(8*alpha0^2) -1/(8*alpha0^2) 3/(16*alpha0^5) -3/(16*alpha0^5) -3/(16*alpha0^4) -3/(16*alpha0^4) 1/(16*alpha0^3) -1/(16*alpha0^3) 1/(2*alpha0^6) 1/(2*alpha0^6) -5/(16*alpha0^5) 5/(16*alpha0^5) 1/(16*alpha0^4) 1/(16*alpha0^4) ] end """ MultOneHot{T} <: AbstractVector{T} Internal type used to avoid allocation for per-bin multiplicative systematics. It behaves as a vector with length `nbins` and only has value `α` on `nthbin`-th index, the rest being `one(T)`. See also [binidentity](@ref). """ struct MultOneHot{T} <: AbstractVector{T} nbins::Int nthbin::Int α::T end Base.length(b::MultOneHot) = b.nbins Base.getindex(b::MultOneHot{T}, n::Integer) where T = Base.ifelse(n==b.nthbin, b.α, one(T)) Base.size(b::MultOneHot) = (b.nbins, ) """ binidentity(nbins, nthbin) A functional that used to track per-bin systematics. Returns the closure function over `nbins, nthbin`: ```julia α -> MultOneHot(nbins, nthbin, α) ``` """ function binidentity(nbins, nthbin) α -> MultOneHot(nbins, nthbin, α) end """ Pseudo flat prior in the sense that `logpdf()` always evaluates to zero, but `rand()`, `minimum()`, and `maximum()` behaves like `Uniform(a, b)`. """ struct FlatPrior <: Distributions.ContinuousUnivariateDistribution a::Float64 b::Float64 end Base.minimum(d::FlatPrior) = d.a Base.maximum(d::FlatPrior) = d.b Distributions.logpdf(d::FlatPrior, x::Real) = zero(x) Base.rand(rng::Random.AbstractRNG, d::FlatPrior) = rand(rng, Uniform(d.a, d.b))
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
5504
using Unrolled using SpecialFunctions: logabsgamma using LogExpFunctions: xlogy abstract type AbstractModifier end function _prior end function _init end """ Histosys is defined by two vectors represending bin counts in `hi_data` and `lo_data` """ struct Histosys{T<:AbstractInterp} <: AbstractModifier interp::T function Histosys(interp::T) where T @assert T <: Union{InterpCode0, InterpCode2, InterpCode4} new{T}(interp) end end Histosys(nominal, up, down) = Histosys(InterpCode0(nominal, up, down)) _prior(::Histosys) = Normal() _init(::Histosys) = 0.0 struct Normsys{T<:AbstractInterp} <: AbstractModifier interp::T end _prior(::Normsys) = Normal() _init(::Normsys) = 0.0 """ Normsys is defined by two multiplicative scalars """ Normsys(up::Number, down::Number) = Normsys(InterpCode1(up, down)) Normsys(nominal, ups, downs) = Normsys(InterpCode1(nominal, ups, downs)) """ Normfactor is unconstrained, so `interp` is just identity. """ struct Normfactor <: AbstractModifier # is unconstrained interp::typeof(identity) Normfactor() = new(identity) end _prior(::Normfactor) = FlatPrior(0, 5) _init(::Normfactor) = 1.0 """ Shapefactor is unconstrained, so `interp` is just identity. Unlike `Normfactor`, this is per-bin """ struct Shapefactor{T} <: AbstractModifier # is unconstrained interp::T function Shapefactor(nbins, nthbin) f = binidentity(nbins, nthbin) new{typeof(f)}(f) end end _prior(::Shapefactor) = FlatPrior(0, 5) _init(::Shapefactor) = 1.0 """ Shapesys doesn't need interpolation, similar to `Staterror` """ struct Shapesys{T} <: AbstractModifier σn2::Float64 interp::T function Shapesys(σneg2, nbins, nthbin) f = binidentity(nbins, nthbin) new{typeof(f)}(σneg2, f) end end """ RelaxedPoisson Poisson with `logpdf` continuous in `k`. Essentially by replacing denominator with `gamma` function. !!! warning The `Distributions.logpdf` has been redefined to be `logpdf(d::RelaxedPoisson, x) = logpdf(d, x*d.λ)`. This is to reproduce the Poisson constraint term in `pyhf`, which is a hack introduced for Asimov dataset. """ struct RelaxedPoisson{T} <: Distributions.ContinuousUnivariateDistribution λ::T end # https://github.com/scikit-hep/pyhf/blob/ce7057417ee8c4e845df8302c7375301901d2b7d/src/pyhf/tensor/numpy_backend.py#L390 @inline function _relaxedpoislogpdf(λ::T, x)::T where T xlogy(x, λ) - λ - logabsgamma(x + one(x))[1] end Distributions.logpdf(d::RelaxedPoisson, x) = _relaxedpoislogpdf(d.λ*x, d.λ) _prior(S::Shapesys) = RelaxedPoisson(S.σn2) _init(S::Shapesys) = 1.0 """ Staterror doesn't need interpolation, but it's a per-bin modifier. Information regarding which bin is the target is recorded in `bintwoidentity`. The `δ` is the absolute yield uncertainty in each bin, and the relative uncertainty: `δ` / nominal is taken to be the `σ` of the prior, i.e. `α ~ Normal(1, δ/nominal)` """ struct Staterror{T} <: AbstractModifier σ::Float64 interp::T function Staterror(σ, nbins, nthbin) f = binidentity(nbins, nthbin) new{typeof(f)}(σ, f) end end _prior(S::Staterror) = Normal(1, S.σ) _init(S::Staterror) = 1.0 """ Luminosity doesn't need interpolation, σ is provided at modifier construction time. In `pyhf` JSON, this information lives in the "Measurement" section, usually near the end of the JSON file. """ struct Lumi <: AbstractModifier σ::Float64 interp::typeof(identity) Lumi(σ) = new(σ, identity) end _prior(l::Lumi) = Normal(1, l.σ) _init(l::Lumi) = 1.0 """ struct ExpCounts{T, M} #M is a long Tuple for unrolling purpose. nominal::T modifier_names::Vector{Symbol} modifiers::M end A callable struct that returns the expected count given modifier nuisance parameter values. The # of parameters passed must equal to length of `modifiers`. See [_expkernel](@ref) """ struct ExpCounts{T<:Number, M} nominal::Vector{T} modifier_names::Vector{Symbol} modifiers::M end # stop crazy stracktrace function Base.show(io::IO, ::Type{<:ExpCounts}) println(io, "ExpCounts{}") end function exp_mod!(interp::InterpCode0, additive, factor, α) additive .+= interp(α) end function exp_mod!(interp::InterpCode2, additive, factor, α) additive .+= interp(α) end function exp_mod!(interp, additive, factor, α) factor .*= interp(α) end ExpCounts(nominal::Vector{<:Number}, names::Vector{Symbol}, modifiers::AbstractVector) = ExpCounts(nominal, names, tuple(modifiers...)) """ _expkernel(modifiers, nominal, αs) The `Unrolled.@unroll` kernel function that computs the expected counts. """ @unroll function _expkernel(modifiers, nominal, αs) T = eltype(αs) additive = T.(nominal) factor = ones(T, length(additive)) @unroll for i in 1:length(modifiers) @inbounds exp_mod!(modifiers[i].interp, additive, factor, αs[i]) end return factor .* additive end function (E::ExpCounts)(αs) (; modifiers, nominal) = E @assert length(modifiers) == length(αs) return _expkernel(modifiers, nominal, αs) end for T in (Normsys, Normfactor, Histosys, Staterror, Lumi, Shapefactor) @eval function Base.show(io::IO, E::$T) interp = Base.typename(typeof(E.interp)).name print(io, $T, "{$interp}") end end function Base.show(io::IO, E::ExpCounts) modifiers = E.modifiers elip = length(modifiers) > 5 ? "...\n" : "" println(io, "ExpCounts with $(length(modifiers)) modifiers:") end
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
6189
""" struct PyHFModel{E, O, P} <: AbstractModel expected::E observed::O priors::P prior_names inits::Vector{Float64} end Struct for holding result from [build_pyhf](@ref). List of accessor functions is - expected(p::PyHFModel) - observed(p::PyHFModel) - priors(p::PyHFModel) - prior_names(p::PyHFModel) - inits(p::PyHFModel) """ mutable struct PyHFModel{E, O, P} expected::E observed::O priors::P prior_names inits::Vector{Float64} end expected(p::PyHFModel) = p.expected expected(p::PyHFModel, paras) = expected(p)(paras) observed(p::PyHFModel) = p.observed priors(p::PyHFModel) = p.priors prior_names(p::PyHFModel) = p.prior_names inits(p::PyHFModel) = p.inits pyhf_logjointof(m::PyHFModel) = pyhf_logjointof(expected(m), observed(m), priors(m)) function Base.show(io::IO, P::PyHFModel) Nprior = length(priors(P)) print(io, "PyHFModel with $(Nprior) nuisance parameters.") end """ internal_expected(Es, Vs, αs) The `@generated` function that computes expected counts in `expected(PyHFModel, parameters)` evaluation. The `Vs::NTuple{N, Vector{Int64}}` has the same length as `Es::NTuple{N, ExpCounts}`. In general `αs` is shorter than `Es` and `Vs` because a given nuisance parameter `α` may appear in multiple sample / modifier. !!! note If for example `Vs[1] = [1,3,4]`, it means that the first `ExpCount` in `Es` is evaluated with ``` Es[1](@view αs[[1,3,4]]) ``` and so on. """ @generated function internal_expected(Es, Vs, αs) @assert Es <: Tuple @views expand(i) = i == 1 ? :(Es[1](αs[Vs[1]])) : :(+(Es[$i](αs[Vs[$i]]), $(expand(i-1)))) return expand(length(Es.parameters)) end function find_obs_data(name, observations) i = findfirst(x->x[:name] == name, observations) observations[i][:data] end """ Ensure POI parameter always comes first in the input array. """ function sortpoi!(priornames, priors, poi_name) poi_idx = findfirst(==(poi_name), priornames) if poi_idx != 1 deleteat!(priornames, poi_idx) pushfirst!(priornames, poi_name) poi_mod = priors[poi_idx] deleteat!(priors, poi_idx) pushfirst!(priors, poi_mod) end nothing end """ build_pyhf(load_pyhfjson(path)) -> PyHFModel the `expected(αs)` is a function that takes vector or tuple of length `N`, where `N` is also the length of `priors` and `priornames`. In other words, these three fields of the returned object are aligned. !!! note The bins from different channels are put into a `NTuple{Nbins, Vector}`. """ function build_pyhf(pyhfmodel) channels = [name => channel for (name, channel) in pyhfmodel if name != "misc"] v_obs = Tuple(find_obs_data(name, pyhfmodel["misc"][:observations]) for (name, _) in channels) poi_name = pyhfmodel["misc"][:measurements][1][:config][:poi] |> Symbol global_unique = reduce(vcat, [sample[2].modifier_names for (name, C) in channels for sample in C]) |> unique # intentional type-insability, avoid latency all_expected = [] all_lookup = Dict() for c in channels exp, lk = build_pyhfchannel(c, global_unique) push!(all_expected, exp) merge!(all_lookup, lk) end input_modifiers = [all_lookup[k] for k in global_unique] priornames_v = Symbol.(global_unique) priors_v = _prior.(input_modifiers) sortpoi!(priornames_v, priors_v, poi_name) priornames = Tuple(priornames_v) priors = NamedTuple{priornames}(priors_v) inits = Vector{Float64}(_init.(input_modifiers)) total_expected = let Es = Tuple(all_expected) αs -> map(E->E(αs), Es) end return PyHFModel(total_expected, v_obs, priors, priornames, inits) end function build_pyhfchannel(channel, global_unique) #### this is within the channel, we use `global_unique` vector to align back name, samples = channel all_expcounts = Tuple(sample[2] for sample in samples) all_v_names = Any[E.modifier_names for E in all_expcounts] all_names = reduce(vcat, all_v_names) channel_unique = unique(all_names) all_modifiers = [] for E in all_expcounts append!(all_modifiers, E.modifiers) end lookup = Dict(all_names .=> all_modifiers) # Special case: same name can appear multiple times with different modifier type # if masks[1] == [1,2,4] that means the first `ExpCounts(αs[[1,2,4]])` masks = Tuple([findfirst(==(i), global_unique) for i in names] for names in all_v_names) expected = αs -> internal_expected(all_expcounts, masks, αs) return expected, lookup end """ pyhf_loglikelihoodof(expected, obs) Return a callable Function `L(αs)` that would calculate the log likelihood. `expected` is a callable of `αs` as well. !!! note The so called "constraint" terms (from priors) are NOT included here. """ function pyhf_loglikelihoodof(expected, obs) f(e, o) = e < zero(e) ? oftype(e, -Inf) : _relaxedpoislogpdf(e, o) return function log_likelihood(αs) mapreduce(+, expected(αs), obs) do E, O # sum over channels sum(Base.Broadcast.broadcasted(f, E, O)) end end end @generated function internal_constrainteval(pris, αs) @assert pris <: Tuple @views expand(i) = i == 1 ? :(logpdf(pris[1], αs[1])) : :(+(logpdf(pris[$i], αs[$i]), $(expand(i-1)))) return expand(length(pris.parameters)) end """ pyhf_logpriorof(priors) Return a callable Function `L(αs)` that would calculate the log likelihood for the priors. !!! note Sometimes these are called the "constraint" terms. """ function pyhf_logpriorof(priors) pris = values(priors) function (αs) @assert length(αs) == length(pris) internal_constrainteval(pris, αs) end end """ pyhf_logjointof(expected, obs, priors) Return a callable Function that would calculate the joint log likelihood of likelihood and priors. Equivalent of adding `loglikelihood` and `logprior` together. !!! note The "constraint" terms are included here. """ function pyhf_logjointof(expected, obs, priors) L1 = pyhf_loglikelihoodof(expected, obs) L2 = pyhf_logpriorof(priors) return αs -> L1(αs) + L2(αs) end
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
3649
using JSON3 const _modifier_dict = Dict( "normfactor" => Normfactor, "histosys" => Histosys, "normsys" => Normsys, "shapesys" => Shapesys, "staterror" => Staterror, "lumi" => Lumi, "shapefactor" => Shapefactor, ) function hilo_data(jobj) promote(collect(jobj[:hi_data]), collect(jobj[:lo_data])) end function hilo_factor(jobj) jobj[:hi], jobj[:lo] end """ build_modifier(rawjdict[:channels][1][:samples][2][:modifiers][1]) => <:AbstractModifier """ function build_modifier!(jobj, names; misc, mcstats, parent) mod = build_modifier(jobj, _modifier_dict[jobj[:type]]; misc, mcstats, parent) mod_name = Symbol(jobj[:name]) if mod isa Vector # for stuff like Staterror, which inflates to multiple `γ` for i in eachindex(mod) push!(names, Symbol(mod_name, "_bin$i")) end else push!(names, mod_name) end return mod end """ build_modifier(...[:modifiers][1][:data], Type) => <:AbstractModifier """ function build_modifier(modobj, modifier_type::Type{T}; misc, mcstats, parent) where T modname = modobj[:name] moddata = modobj[:data] nominal = parent[:data] nbins = length(nominal) if T == Histosys hi,lo = hilo_data(moddata) T(nominal, hi, lo) elseif T == Normsys T(hilo_factor(moddata)...) elseif T == Staterror # each Staterror keepds track of which bin it should modifier nominalsums, sumδ2 = mcstats[modname] T.(sqrt.(sumδ2) ./ nominalsums, nbins, eachindex(moddata)) elseif T == Lumi paras = misc[:measurements][1][:config][:parameters] lumi_idx = findfirst(x->x[:name] == modname, paras) σ = only(paras[lumi_idx][:sigmas]) T(σ) elseif T == Shapesys T.((nominal ./ moddata).^2, nbins, eachindex(moddata)) elseif T == Shapefactor T.(eachindex(moddata)) else T() end end """ build_sample(rawjdict[:channels][1][:samples][2]) => ExpCounts """ function build_sample(jobj, names=Symbol[]; misc, mcstats) modifiers = build_modifier!.(jobj[:modifiers], Ref(names); misc, mcstats, parent=jobj) modifiers = any(x->x <: Vector, typeof.(modifiers)) ? reduce(vcat, modifiers) : modifiers #flatten it @assert length(names) == length(modifiers) ExpCounts(collect(jobj[:data]), names, modifiers) end """ build_channel(rawjdict[:channels][1][:samples][2]) => Dict{String, ExpCounts} """ function build_channel(jobj; misc) mcstats = Dict() # accumulate MC stats related quantities for sample in jobj[:samples], m in sample[:modifiers] m[:type] != "staterror" && continue modname = m[:name] if haskey(mcstats, modname) mcstats[modname] = mcstats[modname] .+ (sample[:data], m[:data] .^ 2) else mcstats[modname] = (sample[:data], m[:data] .^ 2) end end # build modifiers res = Dict() for sample in jobj[:samples] res[sample[:name]] = build_sample(sample; misc, mcstats) end res end """ load_pyhfjson(path) """ function load_pyhfjson(path) jobj = JSON3.read(read(path)) mes = get(jobj, :measurements, Dict()) obs = get(jobj, :observations, Dict()) misc = Dict(:measurements => mes, :observations => obs) res = Dict{String, Any}(obj[:name] => build_channel(obj; misc) for obj in jobj[:channels]) res["misc"] = misc res end
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
6601
function free_maximize(f, inits; alg = Optim.LBFGS()) res = Optim.maximize(f, inits, alg, Optim.Options(g_tol = 1e-9, iterations=10^4); autodiff=:forward) @assert Optim.converged(res) maximum(res), Optim.maximizer(res) end free_maximize(m::PyHFModel; kwd...) = free_maximize(pyhf_logjointof(m), m.inits; kwd...) function cond_maximize(LL, μ, partial_inits; kwd...) cond_LL= get_condLL(LL, μ) free_maximize(cond_LL, partial_inits; kwd...) end cond_maximize(m::PyHFModel, μ) = cond_maximize(pyhf_logjointof(m), μ, m.inits[2:end]) const fix_poi_fit = cond_maximize """ get_condLL(LL, μ) Given the original log-likelihood function and a value for parameter of interest, return a function `condLL(nuisance_θs)` that takes one less argument than the original `LL`. The `μ` is assumed to be the first element in input vector. """ function get_condLL(LL, μ) function condLL(nuisance_θs) θs = vcat(μ, nuisance_θs) LL(θs) end end @doc raw""" get_lnLR(LL, inits) A functional that returns a function `lnLR(μ::Number)` that evaluates to log of likelihood-ratio: ```math \ln\lambda(\mu) = \ln(\frac{L(\mu, \hat{\hat\theta)}}{L(\hat\mu, \hat\theta)}) = LL(\mu, \hat{\hat\theta}) - LL(\hat\mu, \hat\theta) ``` !!! warning we assume the POI is the first in the input array. """ function get_lnLR(LL, inits; POI_idx=1) LL_hat, θ0_hat = free_maximize(LL, inits) nuisance_inits = inits[2:end] function lnLR(μ) LL_doublehat, _ = cond_maximize(LL, μ, nuisance_inits) return LL_doublehat - LL_hat end end @doc raw""" get_lnLRtilde(LL, inits) A functional that returns a function `lnLRtilde(μ::Number)` that evaluates to log of likelihood-ratio: ```math \ln\widetilde{\lambda(\mu)} ``` See equation 10 in: https://arxiv.org/pdf/1007.1727.pdf for refercen. """ function get_lnLRtilde(LL, inits) LL_hat, θ_hat = free_maximize(LL, inits) nuisance_inits = inits[2:end] if θ_hat[1] < 0 # re-fit with μ set to 0 LL_hat, _ = cond_maximize(LL, 0.0, nuisance_inits) end function lnLRtilde(μ) LL_doublehat, _ = cond_maximize(LL, μ, nuisance_inits) return LL_doublehat - LL_hat end end abstract type AbstractTestStatistics end const ATS = AbstractTestStatistics @doc raw""" T_tmu ```math t_\mu = -2\ln\lambda(\mu) ``` """ struct T_tmu <: ATS end @doc raw""" T_tmutilde(LL, inits) ```math \widetilde{t_\mu} = -2\ln\widetilde{\lambda(\mu)} ``` """ struct T_tmutilde <: ATS end @doc raw""" Test statistic for discovery of a positive signal q_0 = \tilde{t}_0 See equation 12 in: https://arxiv.org/pdf/1007.1727.pdf for reference. Note that this IS NOT a special case of q_\mu for \mu = 0. """ struct T_q0 <: ATS end @doc raw""" Test statistic for upper limits See equation 14 in: https://arxiv.org/pdf/1007.1727.pdf for reference. Note that q_0 IS NOT a special case of q_\mu for \mu = 0. """ struct T_qmu <: ATS end struct T_qmutilde <: ATS end @doc raw""" get_teststat(LL, inits, ::Type{T}) where T <: ATS Return a callable function `t(μ)` that evaluates to the value of corresponding test statistics. """ function get_teststat(LL, inits, ::Type{T_tmu}) lnLR = get_lnLR(LL, inits) function t(μ) max(0.0, -2*lnLR(μ)) end end function get_teststat(LL, inits, ::Type{T_tmutilde}) lnLRtilde = get_lnLRtilde(LL, inits) function tmutilde(μ) max(0.0, -2*lnLRtilde(μ)) end end function get_teststat(LL, inits, ::Type{T_q0}) res = get_teststate(LL, inits, T_tmutilde)(0.0) function q0(μ=0) @assert iszero(μ) "q0 by definition demands μ=0" #q0 is forced to have μ == 0 return max(res, 0.0) end end function get_teststat(LL, inits, ::Type{T_qmu}) _, θ0 = free_maximize(LL, inits) μ_hat = θ0[1] function qmu(μ) if μ_hat <= μ lnLR = get_lnLR(LL, inits) -2*lnLR(μ) else 0.0 end end end function get_teststat(LL, inits, ::Type{T_qmutilde}) _, θ0 = free_maximize(LL, inits) lnLRtilde = get_lnLRtilde(LL, inits) μ_hat = θ0[1] function qmutilde(μ) if μ_hat <= μ -2*lnLRtilde(μ) else 0.0 end end end """ asimovdata(model::PyHFModel, μ) Generate the Asimov dataset and asimov priors, which is the expected counts after fixing POI to `μ` and optimize the nuisance parameters. """ function asimovdata(model::PyHFModel, μ) LL = pyhf_logjointof(model) nuisance_inits = inits(model)[2:end] _, θs = cond_maximize(LL, μ, nuisance_inits) asimov_params = vcat(μ, θs) ps = priors(model) new_priors = NamedTuple{keys(ps)}(map(asimovprior, ps, asimov_params)) expected(model, asimov_params), new_priors end """ AsimovModel(model::PyHFModel, μ)::PyHFModel Generate the Asimov model when fixing `μ` (POI) to a value. Notice this changes the `priors` and `observed` compare to the original `model`. """ function AsimovModel(model::PyHFModel, μ) A_data, A_priors = asimovdata(model, μ) PyHFModel(expected(model), A_data, A_priors, prior_names(model), inits(model)) end asimovprior(dist::Normal, θ) = Normal(θ, dist.σ) asimovprior(dist::FlatPrior, θ) = dist function T_qmu(model::PyHFModel, qmuA_f) LL0 = pyhf_logjointof(model) qmu_f = get_teststat(LL0, inits(model), T_qmu) μ -> sqrt(qmu_f(μ)) - sqrt(qmuA_f(μ)) end function T_qmu(model::PyHFModel) A_model = AsimovModel(model, 0.0) A_LL = pyhf_logjointof(A_model) qmuA_f = get_teststat(A_LL, inits(A_model), T_qmu) TS_q(model, qmuA_f) end function T_q0(model::PyHFModel, q0A_f) LL0 = pyhf_logjointof(model) q0_f = get_teststat(LL0, inits(model), T_q0) function (μ=0) return sqrt(q0_f(μ)) - sqrt(q0A_f(μ)) end end function T_q0(model::PyHFModel) A_model = AsimovModel(model, 1.0) A_LL = pyhf_logjointof(A_model) q0A_f = get_q0(A_LL, inits(A_model)) TS_q0(model, q0A_f) end function T_qmutilde(model::PyHFModel, qtildeA_f) LL0 = pyhf_logjointof(model) qtilde_f = get_teststat(LL0, inits(model), T_qmutilde) function (x) qmu = qtilde_f(x) qmu_A = qtildeA_f(x) sqrtqmu = sqrt(qmu) sqrtqmuA = sqrt(qmu_A) if sqrtqmu < sqrtqmuA sqrtqmu - sqrtqmuA else (qmu - qmu_A) / (2 * sqrtqmuA) end end end function T_qmutilde(model::PyHFModel) A_model = AsimovModel(model, 0.0) A_LL = pyhf_logjointof(A_model) qtildeA_f = get_teststat(A_LL, inits(A_model), T_qmutilde) TS_qtilde(model, qtildeA_f) end
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
4477
using LiteHF, Optim using Test @testset "Interpolations" begin # Ref https://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf nominal = [2.5, 2.0] hi_shape_var= [1.4, 3.8] hi_shape_temp = nominal + hi_shape_var lo_shape_var= [1.3, 1.2] lo_shape_temp = nominal - lo_shape_var @testset "InterpCode0" begin i0 = LiteHF.InterpCode0(nominal, hi_shape_temp, lo_shape_temp) i0two = LiteHF.InterpCode0(hi_shape_var, lo_shape_var) @test i0.Δ_up ≈ i0two.Δ_up @test i0.Δ_down ≈ i0two.Δ_down @test i0(0.0) == zeros(2) @test i0(1.0) + nominal == hi_shape_temp @test i0(-1.0) + nominal == lo_shape_temp @test i0(-0.5) + nominal == nominal - 0.5*lo_shape_var end @testset "InterpCode2" begin i2 = LiteHF.InterpCode2(nominal, hi_shape_temp, lo_shape_temp) @test i2.a == 0.5 * (hi_shape_temp + lo_shape_temp) - nominal @test i2.b == 0.5 * (hi_shape_temp - lo_shape_temp) @test i2(0.0) == zeros(2) @test i2(1.0) + nominal == hi_shape_temp @test i2(-1.0) + nominal ≈ lo_shape_temp α = -0.5 @test i2(α) ≈ i2.a * α^2 + i2.b * α α = 1.2 @test i2(α) ≈ @. (i2.b + 2*i2.a) * (α - 1) α = -1.4 @test i2(α) ≈ @. (i2.b - 2*i2.a) * (α + 1) end @testset "InterpCode4" begin i4 = LiteHF.InterpCode4(nominal, hi_shape_temp, lo_shape_temp) @test i4(0.0) == ones(length(nominal)) @test i4(1.0) .* nominal ≈ hi_shape_temp @test i4(-1.0) .* nominal ≈ lo_shape_temp end hi_sf= 1.1 lo_sf= 0.84 hi_sf_temp = hi_sf * nominal lo_sf_temp = lo_sf * nominal @testset "InterpCode1" begin i1 = LiteHF.InterpCode1(nominal, hi_sf_temp, lo_sf_temp) i1two = LiteHF.InterpCode1(hi_sf, lo_sf) @test i1.f_up ≈ i1two.f_up @test i1.f_down ≈ i1two.f_down @test i1(1.0)*nominal ≈ hi_sf_temp @test i1(-1.0)*nominal ≈ lo_sf_temp end end function loadmodel(path) pydict = load_pyhfjson(path) pyhfmodel = build_pyhf(pydict) end testmodel(path::String, OPT = BFGS()) = testmodel(loadmodel(path), OPT) function testmodel(pyhfmodel, OPT = BFGS()) LL = pyhf_logjointof(pyhfmodel) res = maximize(LL, inits(pyhfmodel), OPT, Optim.Options(g_tol=1e-5); autodiff=:forward) best_paras = Optim.maximizer(res) twice_nll = -2*LL(best_paras) end stateerror_shape = loadmodel(joinpath(@__DIR__, "./pyhfjson/sample_staterror_shapesys.json")) @testset "Basic expected tests" begin R = stateerror_shape @test R.expected(ones(5))[1] == [23.0, 15.0] @test R.expected(R.inits)[1] == [23.0, 15.0] @test R.expected([0.81356312, 0.99389009, 1.01090199, 0.99097032, 1.00290362])[1] ≈ [22.210797046385544, 14.789399036653428] end @testset "loglikelihood" begin test_f = pyhf_loglikelihoodof(x->([-x[1], -x[2]]), [1,2]) @test test_f(ones(2)) == -Inf RR = loadmodel(joinpath(@__DIR__, "./pyhfjson/sample_normsys.json")) likelihood, _ = cond_maximize(pyhf_logjointof(RR), 1.0, inits(RR)[2:end]) @test -2*likelihood <= 21.233919574137236 # better than pyhf value likelihood, _ = cond_maximize(pyhf_logjointof(RR), 0.0, inits(RR)[2:end]) @test -2*likelihood <= 27.6021945001722 end @testset "Full json MLE" begin @test testmodel(joinpath(@__DIR__, "./pyhfjson/single_channel_big.json")) ≈ 80.67893633848638 rtol=0.0001 @test testmodel(joinpath(@__DIR__, "./pyhfjson/multi_channel.json")) ≈ 39.02800819146104 rtol=0.0001 @test testmodel(stateerror_shape) ≈ 16.66838236805484 rtol = 0.0001 end @testset "qtilde CLs" begin RR = loadmodel(joinpath(@__DIR__, "./pyhfjson/sample_normsys.json")) A_model = AsimovModel(RR, 0.0) A_LL = pyhf_logjointof(A_model) Asimov_qtilde = LiteHF.get_teststat(A_LL, inits(A_model), T_qmutilde) sqrtqmuA = sqrt(Asimov_qtilde(1.0)) SplusB, Bonly = asymptotic_dists(sqrtqmuA) @test isapprox(expected_pvalue(SplusB, Bonly), [ 0.002506004033129367, 0.01340873040275629, 0.06307942967469633, 0.23209511537562486, 0.5691591400023538 ]; rtol=0.005 ) end
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
410
using LiteHF, BAT pydict = load_pyhfjson("./test/sample.json"); pyhfmodel = build_pyhf(pydict); # the 2-argument version does NOT include prior ("constraint") terms in likelihood LL = pyhf_logjointpf(pyhfmodel) mylikelihood(αs) = BAT.LogDVal(LL(αs)) posterior = PosteriorDensity(mylikelihood, pyhfmodel.priors) @show bat_findmode(posterior).result # (mu = 1.3064647047644158, theta = -0.06049852104383994)
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
code
603
using LiteHF, Turing, Optim dict = load_pyhfjson("./test/pyhfjson/sample.json"); const pyhfmodel = build_pyhf(dict); const priors_array = collect(values(pyhfmodel.priors)) @model function mymodel(observed) αs ~ arraydist(priors_array) expected = pyhfmodel.expected(αs) @. observed ~ Poisson(expected) end observed_data = [34,22,13,11]; @show optimize(mymodel(observed_data), MAP(), pyhfmodel.inits) #ModeResult with maximized lp of -13.51 # 2-element Named Vector{Float64} # A │ # ────────────────┼─────────── # Symbol("αs[1]") │ 1.30648 # Symbol("αs[2]") │ -0.0605151
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
docs
3369
# LiteHF.jl [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliahep.github.io/LiteHF.jl/dev/) [![Build Status](https://github.com/JuliaHEP/LiteHF.jl/workflows/CI/badge.svg)](https://github.com/JuliaHEP/LiteHF.jl/actions) [![Codecov](https://codecov.io/gh/JuliaHEP/LiteHF.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/JuliaHEP/LiteHF.jl) [![DOI](https://zenodo.org/badge/482332815.svg)](https://zenodo.org/badge/latestdoi/482332815) ## TODO - [ ] Implement teststatistics helper functions - [ ] Re-structre the `PyHFModel` such that the `POI` component can be swapped out. ## Load `pyhf` JSON: ```julia using LiteHF, Optim dict = load_pyhfjson("./test/sample.json"); pyhfmodel = build_pyhf(dict); LL = pyhf_logjointof(pyhfmodel) @show Optim.maximizer(maximize(LL, pyhfmodel.inits)) # 2-element Vector{Float64}: # 1.3064374172547253 # -0.060413406717672286 @show pyhfmodel.prior_names # (:mu, :theta) ``` ## `pyhf` JSON + Turing.jl: ```julia using LiteHF, Turing, Optim dict = load_pyhfjson("./test/sample.json"); const pyhfmodel = build_pyhf(dict); # unpack `NamedTuple` into just an array of prior distributions const priors_array = collect(values(priors(pyhfmodel))) @model function mymodel(observed) αs ~ arraydist(priors_array) expected = pyhfmodel.expected(αs) @. observed ~ Poisson(expected) end observed_data = [34,22,13,11]; @show optimize(mymodel(observed_data), MAP(), inits(pyhfmodel)) #ModeResult with maximized lp of -13.51 # 2-element Named Vector{Float64} # A │ # ────────────────┼─────────── # Symbol("αs[1]") │ 1.30648 # Symbol("αs[2]") │ -0.0605151 ``` ## `pyhf` JSON + BAT.jl: ```julia using LiteHF, BAT pydict = load_pyhfjson("./test/sample.json"); pyhfmodel = build_pyhf(pydict); LL = pyhf_logjointof(pyhfmodel) mylikelihood(αs) = BAT.LogDVal(LL(αs)) posterior = PosteriorDensity(mylikelihood, priors(pyhfmodel)) @show bat_findmode(posterior).result # (mu = 1.3064647047644158, theta = -0.06049852104383994) ``` ## Manual Example ```julia using Turing, LiteHF, Optim ###### Dummy data ###### const v_data = [34,22,13,11] # observed data const v_sig = [2,3,4,5] # signal const v_bg = [30,19,9,4] # BKG const variations = [1,2,3,3] ###### Background and Signal modifier definitions ###### const bkgmodis =[ Histosys(v_bg .+ variations, v_bg .- variations), Normsys(1.1, 0.9) ] const bkgexp = ExpCounts(v_bg, ["theta1", "theta2"], bkgmodis) const sigmodis = [Normfactor()]; const sigexp = ExpCounts(v_sig, ["mu"], sigmodis); ###### Expected counts as a function of μ and θs function expected_bincounts2(μ, θs) sigexp((mu = μ, )) + bkgexp((theta1=θs[1], theta2=θs[2])) end ###### Turing.jl models @model function binned_b(bincounts) μ ~ Turing.Flat() θs ~ filldist(Normal(), 2) expected = expected_bincounts2(μ, θs) @. bincounts ~ Poisson(expected) end ###### Feed observed data to model to construct a posterior/likelihood object const mymodel = binned_b(v_data); ###### Inference chain_map = optimize(mymodel, MAP(), [1,1,1]) # initial guesses display(chain_map) ``` Result: ``` ModeResult with maximized lp of -13.23 3-element Named Vector{Float64} A │ ────────────────┼─────────── :μ │ 1.0383 Symbol("θs[1]") │ 0.032979 Symbol("θs[2]") │ -0.0352236⏎ ```
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
docs
1400
## Frequentist <-> Bayesian usage HistFactory and thus pyhf are not Bayesian procedure (some prefer to call them not frequentist either, instead, they call what we do Likelihoodist). However, there's a very straightforward connection between the two, with a subtle but important twist -- evaluate prior at `x` (Bayesian) vs. shitfting "prior" to `x` and evlauate at `0` (pyhf). To use a pyhf model in Bayesian procedure, it's almost enough to just take `pyhf_logjointof(model::PyHFModel)` and sample posterior, bypassing all the likelihood ratio, teststatistics, and Asimov data. More specifically, these two likelihood are almost exactly the same: - pyhf, frequentist likelihood of the bin counts (Poisson) + constraint terms for systematcs - Bayesian joint likelihood of the bin counts (Poisson) + nuisance parameters priors. In fact, if we only ever have priors like `Normal(0, 1)`, the above difference coincidentally doesn't matter, because `pdf(x | Normal(0, 1)) === pdf(0 | Normal(x, 1))` -- it's numerically equivalent to evaluate nuisance parameter prior at `x` (like a Bayesian), or shift the unit Gaussian to `x` and evaluate at still `0`. This numerical coincidence goes away for the (relaxed, continuous) Poisson prior we need for MC Stat systematics. In this type of prior, the distribution is not symmetric around the mean `λ` -- causing discrepency between the two procedures.
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
docs
106
# LiteHF.jl Documentation for LiteHF.jl ```@autodocs Modules = [LiteHF] Order = [:type, :function] ```
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
65ed29fdaeaa926169e7d7a8be0b74dec60680db
docs
298
```julia function f(path) pydict = load_pyhfjson(path) pyhfmodel = build_pyhf(pydict) pyhfmodel end R = f("./blah.json") maximize( R.LogLikelihood, R.inits, BFGS(), Optim.Options(f_tol=1e-5, time_limit=10); autodiff=:forward ); ```
LiteHF
https://github.com/JuliaHEP/LiteHF.jl.git
[ "MIT" ]
0.1.0
7cfa221ecf6333b652d24c7216e1a986c8c65972
code
2621
#Pkg.add("JuliaBerry") #Pkg.add("PyCall") #Run with `sudo` -- needed for keyboard. using JuliaBerry using JuliaBerry.ExplorerHat using PyCall @pyimport keyboard function movef(x) forward(ExplorerHat.motor[1], 50) forward(ExplorerHat.motor[2], 50) sleep(x) stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) end function moveb(x) on(ExplorerHat.led) backward(ExplorerHat.motor[1], 50) backward(ExplorerHat.motor[2], 50) sleep(x) stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) on(ExplorerHat.led) end function movel(x) forward(ExplorerHat.motor[2], 75) forward(ExplorerHat.motor[1], 5) sleep(x) stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) end function mover(x) forward(ExplorerHat.motor[2], 5) forward(ExplorerHat.motor[1], 75) sleep(x) stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) end function movebl(x) explorerhat.light.on() backward(ExplorerHat.motor[2], 5) backward(ExplorerHat.motor[1], 75) sleep(x) stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) explorerhat.light.off() end function movebr(x) explorerhat.light.on() backward(ExplorerHat.motor[2], 75) backward(ExplorerHat.motor[1], 5) sleep(x) stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) explorerhat.light.off() end function square() for i in 1:4 movef(3) mover(2) end end function eight() for i in 1:3 movef(3) mover(2) end movef(6) for i in 1:3 movel(2) movef(3) end end function disco(x) y = x/8 forward(ExplorerHat.motor[1], 50) backward(ExplorerHat.motor[2], 50) for i in 1:8 on(ExplorerHat.led) sleep(y) off(ExplorerHat.led) sleep(y) end stop(ExplorerHat.motor[1]) stop(ExplorerHat.motor[2]) end println("Starting main loop") while true if keyboard.is_pressed("w") movef(0.01) elseif keyboard.is_pressed("a") movel(0.01) elseif keyboard.is_pressed("d") mover(0.01) elseif keyboard.is_pressed("s") moveb(0.01) elseif keyboard.is_pressed("z") movebl(0.01) elseif keyboard.is_pressed("c") movebr(0.01) elseif keyboard.is_pressed("4") square() elseif keyboard.is_pressed("8") eight() elseif keyboard.is_pressed("l") disco(7) elseif keyboard.is_pressed(" ") if is_on(ExplorerHat.output[1]) off(ExplorerHat.output[1]) else on(ExplorerHat.output[1]) end end end
JuliaBerry
https://github.com/JuliaBerry/JuliaBerry.jl.git
[ "MIT" ]
0.1.0
7cfa221ecf6333b652d24c7216e1a986c8c65972
code
2023
module JuliaBerry __precompile__(false) using PiGPIO export Pin, InputPin, OuputPin, LED, Motor, forward, backward, speed, stop, on, off, is_on, is_off # package code goes here abstract type Thing end struct Pin <: Thing pin::Int function Pin(pin, mode) PiGPIO.set_mode(_pi[], pin, mode) new(pin) end end InputPin(pin) = Pin(pin, PiGPIO.INPUT) OutputPin(pin) = Pin(pin, PiGPIO.OUTPUT) struct LED <: Thing pin::Int function LED(pin) PiGPIO.set_mode(_pi[], pin, PiGPIO.OUTPUT) new(pin) end end function on(x::Thing) PiGPIO.write(_pi[], x.pin, 1) end function off(x::Thing) PiGPIO.write(_pi[], x.pin, 0) end on(x::Array{T}) where T<:Thing = on.(x) off(x::Array{T}) where T<:Thing = off.(x) is_off(x::Thing) = PiGPIO.read(_pi[], x.pin) == 0 is_on(x::Thing) = PiGPIO.read(_pi[], x.pin) == 1 struct Motor <: Thing fw_pin::Int bw_pin::Int function Motor(fw_pin, bw_pin) PiGPIO.set_mode(_pi[], fw_pin, PiGPIO.OUTPUT) PiGPIO.set_mode(_pi[], bw_pin, PiGPIO.OUTPUT) PiGPIO.set_PWM_range(_pi[], fw_pin, 100) PiGPIO.set_PWM_range(_pi[], bw_pin, 100) PiGPIO.set_PWM_dutycycle(_pi[], fw_pin, 0) PiGPIO.set_PWM_dutycycle(_pi[], bw_pin, 0) new(fw_pin, bw_pin) end end function speed(x::Motor, speed::Int=100) if speed>0 forward(x, speed) elseif speed<0 backward(x, abs(speed)) end end function stop(x::Motor) PiGPIO.set_PWM_dutycycle(_pi[], x.fw_pin, 0) PiGPIO.set_PWM_dutycycle(_pi[], x.bw_pin, 0) end function forward(x::Motor, speed::Int) PiGPIO.set_PWM_dutycycle(_pi[], x.fw_pin, speed) PiGPIO.set_PWM_dutycycle(_pi[], x.bw_pin, 0) end function backward(x::Motor, speed::Int) PiGPIO.set_PWM_dutycycle(_pi[], x.fw_pin, 0) PiGPIO.set_PWM_dutycycle(_pi[], x.bw_pin, speed) end global const _pi = Ref{Pi}() function __init__() _pi[] = Pi() end #TODO remove __init__() setpi(p::Pi) = _pi[]=p include("explorerhat.jl") end # module
JuliaBerry
https://github.com/JuliaBerry/JuliaBerry.jl.git
[ "MIT" ]
0.1.0
7cfa221ecf6333b652d24c7216e1a986c8c65972
code
1104
module ExplorerHat import JuliaBerry.Motor import JuliaBerry.LED import JuliaBerry.OutputPin import JuliaBerry.InputPin # Onboard LEDs above 1, 2, 3, 4 const LED1 = 4 const LED2 = 17 const LED3 = 27 const LED4 = 5 # Outputs via ULN2003A const OUT1 = 6 const OUT2 = 12 const OUT3 = 13 const OUT4 = 16 # 5v Tolerant Inputs const IN1 = 23 const IN2 = 22 const IN3 = 24 const IN4 = 25 # Motor, via DRV8833PWP Dual H-Bridge const M1B = 19 const M1F = 20 const M2B = 21 const M2F = 26 # Number of times to update # pulsing LEDs per second const PULSE_FPS = 50 const PULSE_FREQUENCY = 1000 const DEBOUNCE_TIME = 20 const CAP_PRODUCT_ID = 107 function __init__() global motor = [ Motor(M1F, M1B), Motor(M2F, M2B) ] global led = [ LED(LED1), LED(LED2), LED(LED3), LED(LED4) ] global output = [ OutputPin(OUT1), OutputPin(OUT2), OutputPin(OUT3), OutputPin(OUT4) ] global input = [ InputPin(OUT1), InputPin(OUT2), InputPin(OUT3), InputPin(OUT4) ] end end
JuliaBerry
https://github.com/JuliaBerry/JuliaBerry.jl.git
[ "MIT" ]
0.1.0
7cfa221ecf6333b652d24c7216e1a986c8c65972
code
142
using JuliaBerry @static if VERSION < v"0.7.0-DEV.2005" using Base.Test else using Test end # write your own tests here @test 1 == 2
JuliaBerry
https://github.com/JuliaBerry/JuliaBerry.jl.git
[ "MIT" ]
0.1.0
7cfa221ecf6333b652d24c7216e1a986c8c65972
docs
592
# JuliaBerry An omnibus package with a high level API for controlling peripherals on the Raspberry Pi computer. Currently has support for the GPIO pins on the Pi, and the ExplorerHat. ## GPIO ### Generic Pins ``` x = OutputPin(17) on(x) off(x) ``` ### LED ``` x = LED(17) on(x) off(x) ``` ### Motors ``` x = Motor(17, 23) forward(x, 50) stop(x) backward(x, 50) stop(x) ``` ## Explorer Hat ``` using JuliaBerry.ExplorerHat on(ExplorerHat.led[1]) on.(ExplorerHat.led) off.(ExplorerHat.led) on(ExploerHat.output[1]) forward(ExplorerHat.motor[1], 75) stop(ExplorerHat.motor[1]) ```
JuliaBerry
https://github.com/JuliaBerry/JuliaBerry.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
480
using FredMDQD using Documenter DocMeta.setdocmeta!(FredMDQD, :DocTestSetup, :(using FredMDQD); recursive=true) makedocs(; modules=[FredMDQD], authors="Enrico Wegner", sitename="FredMDQD.jl", format=Documenter.HTML(; canonical="https://enweg.github.io/FredMDQD.jl", edit_link="main", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/enweg/FredMDQD.jl", devbranch="main", )
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
232
module FredMDQD using DataFrames using CSV using Dates using Pkg.Artifacts include("utils.jl") include("transforms.jl") include("qd.jl") include("md.jl") include("search-appendix.jl") export FredMD, FredQD, search_appendix end
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
2482
function load_fred_md(fred_md::DataFrame) fred_md = drop_missing_row(fred_md) tcodes = Int.(collect(fred_md[1, 2:end])) # first column is the date original = fred_md[2:end, :] # first two rows are transformation code and factor boolean if length(split(original[1, 1], "/")[3]) < 4 @warn "FRED MD dates are ambiguous. I will therefore keep them as string" else original[!, 1] = Date.(original[:, 1], dateformat"mm/dd/yyyy") end transformed = copy(original) for c=2:size(transformed, 2) transformed[!, c] = fred_transform(Val(tcodes[c-1]), transformed[:, c]) end return (original = original, tcodes = tcodes, transformed = transformed) end """ FredMD(path::String) FredMD(d::Date) FredMD() Load Fred MD data. ## Arguments - `path::String`: Path to a manually downloaded version of Fred MD. - `d::Date`: Date of a vintage. ## Details - If no arguments are provided, the most recent version of Fred MD will be downloaded. - If a `d::Date` is provided, the Fred MD vintage corresponding to the date will be downloaded. - If a `path::String` is provided, then the Fred MD file at the `path` will be loaded. ## Notes - Fred MD data is compiled by Michael W. McCracken at the Federal Reserve Bank of St. Louis. For more information check out the official website at https://research.stlouisfed.org/econ/mccracken/fred-databases/ """ struct FredMD original::DataFrame transformed::DataFrame tcodes::Vector{Union{Missing, Int64}} function FredMD(path::String) fred_md = CSV.read(path, DataFrame) original, tcodes, transformed = load_fred_md(fred_md) new(original, transformed, tcodes) end function FredMD(d::Date) vintage = Dates.format(d, dateformat"yyyy-mm") url = "https://files.stlouisfed.org/files/htdocs/fred-md/monthly/$(vintage).csv" fred_md = CSV.read(download(url), DataFrame) original, tcodes, transformed = load_fred_md(fred_md) new(original, transformed, tcodes) end function FredMD() @info "Retrieving the most recent FRED MD data. \n For publishable research it is better to specify the vintage using FredMD(d::Date)." url = "https://files.stlouisfed.org/files/htdocs/fred-md/monthly/current.csv" fred_md = CSV.read(download(url), DataFrame) original, tcodes, transformed = load_fred_md(fred_md) new(original, transformed, tcodes) end end
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
2480
function load_fred_qd(fred_qd::DataFrame) fred_qd = drop_missing_row(fred_qd) tcodes = Int.(collect(fred_qd[2, 2:end])) # first column is the date original = fred_qd[3:end, :] # first two rows are transformation code and factor boolean if length(split(original[1, 1], "/")[3]) < 4 @warn "FRED QD dates are ambiguous. I will therefore keep them as string" else original[!, 1] = Date.(original[:, 1], dateformat"mm/dd/yyyy") end transformed = copy(original) for c = 2:size(transformed, 2) transformed[!, c] = fred_transform(Val(tcodes[c-1]), transformed[:, c]) end return (original=original, tcodes=tcodes, transformed=transformed) end """ FredQD(path::String) FredQD(d::Date) FredQD() Load Fred QD data. ## Arguments - `path::String`: Path to a manually downloaded version of Fred QD. - `d::Date`: Date of a vintage. ## Details - If no arguments are provided, the most recent version of Fred QD will be downloaded. - If a `d::Date` is provided, the Fred QD vintage corresponding to the date will be downloaded. - If a `path::String` is provided, then the Fred QD file at the `path` will be loaded. ## Notes - Fred QD data is compiled by Michael W. McCracken at the Federal Reserve Bank of St. Louis. For more information check out the official website at https://research.stlouisfed.org/econ/mccracken/fred-databases/ """ struct FredQD original::DataFrame transformed::DataFrame tcodes::Vector{Union{Missing,Int64}} function FredQD(path::String) fred_qd = CSV.read(path, DataFrame) original, tcodes, transformed = load_fred_qd(fred_qd) new(original, transformed, tcodes) end function FredQD(d::Date) vintage = Dates.format(d, dateformat"yyyy-mm") url = "https://files.stlouisfed.org/files/htdocs/fred-md/quarterly/$(vintage).csv" fred_qd = CSV.read(download(url), DataFrame) original, tcodes, transformed = load_fred_qd(fred_qd) new(original, transformed, tcodes) end function FredQD() @info "Retrieving the most recent FRED QD data. \n For publishable research it is better to specify the vintage using FredQD(d::Date)." url = "https://files.stlouisfed.org/files/htdocs/fred-md/quarterly/current.csv" fred_qd = CSV.read(download(url), DataFrame) original, tcodes, transformed = load_fred_qd(fred_qd) new(original, transformed, tcodes) end end
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
1796
APPENDIX_PATH = artifact"FredMDQD" function search_appendix(path, needle; case_sensitive=false) appendix = CSV.read(path, DataFrame) if !isa(needle, Regex) needle = case_sensitive ? Regex(needle) : Regex(needle, "i") end m = map(x -> contains.(string.(x), needle), eachcol(appendix)) m = reduce(hcat, m) m = map(any, eachrow(m)) return(appendix[m, :]) end """ search_appendix(s::Symbol, args..., kwargs...) Search the appendix for variable names. ## Arguments - `s::Symbol`: Should be `:MD` for Fred MD and `:QD` for Fred QD. - `needle::Union{String, Regex}`: Pattern to find in the appendix. ## Keyword Arguments - `case_sensitive::Bool=false`: Should the search be case sensitive? - `historic::Bool=false`: Should the search be in the current or historic appendix? ## Returns - Returns a `DataFrame` of all the matches in the appendix. """ search_appendix(s::Symbol, args...; kwargs...) = search_appendix(Val(s), args...; kwargs...) function search_appendix(::Val{:QD}, needle; case_sensitive=false, historic=false) path_current = joinpath(APPENDIX_PATH, "FRED-QD-Appendix", "FRED-QD_updated_appendix.csv") path_historic = joinpath(APPENDIX_PATH, "FRED-QD-Appendix", "FRED-QD_historic_appendix.csv") path = historic ? path_historic : path_current return search_appendix(path, needle; case_sensitive=case_sensitive) end function search_appendix(::Val{:MD}, needle; case_sensitive=false, historic=false) path_current = joinpath(APPENDIX_PATH, "FRED-MD-Appendix", "FRED-MD_updated_appendix.csv") path_historic = joinpath(APPENDIX_PATH, "FRED-MD-Appendix", "FRED-MD_historic_appendix.csv") path = historic ? path_historic : path_current return search_appendix(path, needle; case_sensitive=case_sensitive) end
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
1210
""" return x """ function fred_transform(::Val{1}, x) return x end """ return Δx """ function fred_transform(::Val{2}, x) return vcat(missing, x[2:end] - x[1:(end-1)]) end """ return Δ²x """ function fred_transform(::Val{3}, x) x = fred_transform(Val(2), x) return fred_transform(Val(2), x) end """ return log(x) """ function fred_transform(::Val{4}, x) return log.(x) end """ return Δlog(x) """ function fred_transform(::Val{5}, x) x = fred_transform(Val(4), x) return fred_transform(Val(2), x) end """ return Δ²log(x) """ function fred_transform(::Val{6}, x) x = fred_transform(Val(4), x) return fred_transform(Val(3), x) end """ return Δ(xₜ₊₁ / xₜ - 1) """ function fred_transform(::Val{7}, x) x = vcat(missing, x[2:end] ./ x[1:(end-1)] .- 1) return fred_transform(Val(2), x) end @doc raw""" Apply a FRED tranformation code ## Arguments - `tcode`: FRED transformation code - `x`: a vector of data ## Transformation Codes The following transformation codes are currently supported 1. ``x`` 2. ``\Delta x`` 3. ``\Delta^2 x`` 4. ``log(x)`` 5. ``\Delta log(x)`` 6. ``\Delta^2 log(x)`` 7. ``Δ(x_{t+1} / x_t - 1) """ fred_transform(tcode::Int, x) = fred_transform(Val(tcode), x)
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
347
function drop_missing_row(df::DataFrame) all_missing = map(row -> all(map(ismissing, row)), eachrow(df)) return df[(!).(all_missing), :] end """ Provide information about `FredMDQD`. """ function info() rootpath = artifact"FredMDQD" path = joinpath(rootpath, "info.md") info_text = read(path, String) print(info_text) end
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
code
89
using FredMDQD using Test @testset "FredMDQD.jl" begin # Write your tests here. end
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
docs
3929
# FredMDQD [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://enweg.github.io/FredMDQD.jl/stable/) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://enweg.github.io/FredMDQD.jl/dev/) [![Build Status](https://github.com/enweg/FredMDQD.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/enweg/FredMDQD.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/enweg/FredMDQD.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/enweg/FredMDQD.jl) ## What is FredMDQD? `FredMDQD` aims to make working with Fred MD and Fred QD data easy. It started as a small weekend project consisting of a set of scripts and evolved into a stand-alone package. ## What are Fred MD and Fred QD? [Fred MD and Fred QD](https://research.stlouisfed.org/econ/mccracken/fred-databases/) are pre-compiled sets of monthly and quarterly indicators respectively. Both are compiled and maintained by Michael W. McCracken at the Federal Reserve Bank of St. Louis. Fred MD consists of 126 monthly indicators, while Fred QD consists of 245 quarterly indicators. The earliest observations for Fred MD are from January 1959 while the earliest observations for Fred QD are from Q1 1959. ## How do I load Fred MD or Fred QD data? `FredMDQD` provides various ways to load Fred MD and Fred QD data. The easiest is to just load the current version of either of the data sets. This can be done using the following lines. ```julia using FredMDQD using DataFrames fmd = FredMD() # Loads most recent version of Fred MD fqd = FredQD() # Loads most recent version of Fred QD ``` `FredMD` and `FredQD` return a struct containing the following: - `original::DataFrame`: Fred MD/QD data in without transformations. - `transformed::DataFrame`: McCracken provides recommended transformation to make each variable stationary. The `transformed` DataFrame uses these recommended transformations. - `tcodes::Vector{Int}`: provides the transformation codes used for each variable except the date column. The corresponding mathematical transformations are privided in `@doc fred_transform`. `FredMDQD` also allows for loading a specific vintage of Fred MD/QD. This can be achieved by providing a date as an argument. To obtain the vintage from March 2022, the following code can be used. ```julia using Dates d = Date("2022/03", dateformat"yyyy/mm") fmd = FredMD(d) fqd = FredQD(d) ``` Lastly, if manual download of either Fred MD or QD exits, then `FredMDQD` can be used to load this manual download by providing a path to the file. ```julia path_md = "path to manual download of Fred MD" path_qd = "path to manual download of Fred QD" fmd = FredMD(path_md) fqd = FredQD(path_qd) ``` ## What does a variable mean? Fred MD/QD use abbreviations for variables that are not always intuitive. To find the meaning behind an abbreviation, or to find an abbreviation corresponding to a specific indicator, the `seach_appendix` function can be used. `search_appendix` searches through the Fred MD/QD appendices to find a specific search term. For example, Fred MD include the indicator DPCERA3M086SBEA. To find the meaning behind this indicator, we can run ```julia search_appendix(:MD, "DPCERA3M086SBEA") ``` This returns a `DataFrame` search results matching our criteria. The indicator DPCERA3M086SBEA corresponds to "Real personal consumption expenditures". Similarly, if we wanted to find an indicator in Fred QD corresponding to house prices, we can search for 'house' to see if any such indicator exists. ```julia search_appendix(:QD, "house") ``` Thus, Fred QD includes USSTHPI corresponding to "All-Transactions House Price Index for the United States (Index 1980 Q1=100)". ## Where can I find more information? More information can be found at the offical website for [Fred MD and Fred QD](https://research.stlouisfed.org/econ/mccracken/fred-databases/).
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
0.0.1
76f43ab7700a98292a7598543307ed5e7d44cbc0
docs
173
```@meta CurrentModule = FredMDQD ``` # FredMDQD Documentation for [FredMDQD](https://github.com/enweg/FredMDQD.jl). ```@index ``` ```@autodocs Modules = [FredMDQD] ```
FredMDQD
https://github.com/enweg/FredMDQD.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
code
834
using PowerFlowData using Documenter using Tables DocMeta.setdocmeta!(PowerFlowData, :DocTestSetup, :(using PowerFlowData); recursive=true) makedocs(; modules=[PowerFlowData], authors="Nick Robinson <[email protected]> and contributors", repo="https://github.com/nickrobinson251/PowerFlowData.jl/blob/{commit}{path}#{line}", sitename="PowerFlowData.jl", format=Documenter.HTML( canonical="https://nickrobinson251.github.io/PowerFlowData.jl", prettyurls=false, ), pages=[ "Home" => "index.md", "API" => "api.md", "Alternatives" => "alternatives.md", "Implementation" => "implementation.md", ], strict=true, checkdocs=:exports, ) deploydocs(; repo="github.com/nickrobinson251/PowerFlowData.jl", devbranch="main", push_preview=true, )
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
code
1007
module PowerFlowData using DocStringExtensions using InlineStrings: InlineString1, InlineString3, InlineString15 using Parsers: Parsers, xparse, checkdelim! using Parsers: codes, eof, invalid, invaliddelimiter, newline, valueok, peekbyte using PrettyTables: pretty_table using Tables export parse_network export Network export CaseID, Buses, Buses30, Buses33, Branches, Branches30, Branches33 export FixedShunts, Loads, Generators, Transformers, AreaInterchanges export SwitchedShunts, SwitchedShunts30, SwitchedShunts33 export TwoTerminalDCLines, TwoTerminalDCLines30, TwoTerminalDCLines33 export VSCDCLines, ImpedanceCorrections export MultiTerminalDCLines, MultiTerminalDCLine, DCLineID, DCLineID30, DCLineID33 export ACConverters, DCBuses, DCLinks export MultiSectionLineGroups, MultiSectionLineGroups30, MultiSectionLineGroups33 export Zones, InterAreaTransfers, Owners export FACTSDevices, FACTSDevices30, FACTSDevices33 include("debug.jl") include("types.jl") include("parsing.jl") end # module
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
code
678
# This is a simple `@debug` macro that we can use in the code # without it slowing the code down, unlike `Base.@debug`. const DEBUG_LEVEL = Ref(0) function setdebug!(level::Int) DEBUG_LEVEL[] = level return nothing end """ withdebug(level::Int) do func() end """ function withdebug(f, level) lvl = DEBUG_LEVEL[] try setdebug!(level) f() finally setdebug!(lvl) end end """ @debug 1 "msg" """ macro debug(level, msg) esc(quote if DEBUG_LEVEL[] >= $level println(string("DEBUG: ", $(QuoteNode(__source__.file)), ":", $(QuoteNode(__source__.line)), " ", $msg)) end end) end
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
code
17632
### ### parsing ### # We currently support comma-delimited and space-delimited files, # so just always create these two options, rather than having to # create `Options` anew each time we parse a file. const OPTIONS_COMMA = Parsers.Options( sentinel=missing, quoted=true, openquotechar='\'', closequotechar='\'', stripquoted=true, delim=',', ) const OPTIONS_SPACE = Parsers.Options( sentinel=missing, quoted=true, openquotechar='\'', closequotechar='\'', stripquoted=true, delim=' ', ignorerepeated=true, wh1=0x00, ) @inline getoptions(delim::Char) = ifelse(delim === ',', OPTIONS_COMMA, OPTIONS_SPACE) getbytes(source::Vector{UInt8}) = source, 1, length(source) getbytes(source::IOBuffer) = source.data, source.ptr, source.size getbytes(source) = getbytes(read(source)) # `delim` can either be comma `','` or space `' '` # The documented PSSE format specifies comma... but some files somehow use spaces instead. # We look for commas in the first line and if found assume comma is the delim, # but if none found we assume space is the delim. function detectdelim(bytes, pos, len) eof(bytes, pos, len) && return ',' # doesn't matter which we return b = peekbyte(bytes, pos) while b !== UInt8('\n') && b !== UInt8('\r') b == UInt8(',') && return ',' pos += 1 eof(bytes, pos, len) && return ',' b = peekbyte(bytes, pos) end return ' ' end """ parse_network(source) -> Network Read a PSS/E-format `.raw` Power Flow Data file and return a [`Network`](@ref) object. The version of the PSS/E format can be specified with the `v` keyword, like `v=33`, or else it will be automatically detected when parsing the file. The delimiter can be specified with the `delim` keyword, like `delim=' '`, or else it will be automatically detected when parsing the file. """ function parse_network(source; v::Union{Integer,Nothing}=nothing, delim::Union{Nothing,Char}=nothing) @debug 1 "source = $source, v = $v" bytes, pos, len = getbytes(source) d = delim === nothing ? detectdelim(bytes, pos, len) : delim options = getoptions(d) if options.ignorerepeated # skip any delimiters at the very start of the file pos = checkdelim!(bytes, pos, len, options) end caseid, pos = parse_idrow(CaseID, bytes, pos, len, options) @debug 1 "Parsed CaseID: rev = $(caseid.rev), pos = $pos" # when `v` not given, if `caseid.rev` missing we assume it is because data is v30 format version = something(v, coalesce(caseid.rev, 30)) is_v33 = version == 33 @debug 1 "Set version = $version" # Skip the 2 lines of comments pos = next_line(bytes, pos, len, options) pos = next_line(bytes, pos, len, options) @debug 1 "Parsed comments: pos = $pos" return if is_v33 parse_network33(source, version, caseid, bytes, pos, len, options) else parse_network30(source, version, caseid, bytes, pos, len, options) end end function parse_network33(source, version, caseid, bytes, pos, len, options) buses, pos = parse_records!(Buses33(len÷1000), bytes, pos, len, options) nbuses = length(buses) loads, pos = parse_records!(Loads(nbuses), bytes, pos, len, options) fixed_shunts, pos = parse_records!(FixedShunts(), bytes, pos, len, options) gens, pos = parse_records!(Generators(nbuses÷10), bytes, pos, len, options) ngens = length(gens) branches, pos = parse_records!(Branches33(nbuses), bytes, pos, len, options) transformers, pos = parse_records!(Transformers(ngens*2), bytes, pos, len, options) interchanges, pos = parse_records!(AreaInterchanges(), bytes, pos, len, options) two_terminal_dc, pos = parse_records!(TwoTerminalDCLines33(), bytes, pos, len, options) vsc_dc, pos = parse_records!(VSCDCLines(), bytes, pos, len, options) impedance_corrections, pos = parse_records!(ImpedanceCorrections(), bytes, pos, len, options) multi_terminal_dc, pos = parse_records!(MultiTerminalDCLines{DCLineID33}(), bytes, pos, len, options) multi_section_lines, pos = parse_records!(MultiSectionLineGroups33(), bytes, pos, len, options) zones, pos = parse_records!(Zones(), bytes, pos, len, options) area_transfers, pos = parse_records!(InterAreaTransfers(), bytes, pos, len, options) owners, pos = parse_records!(Owners(), bytes, pos, len, options) facts, pos = parse_records!(FACTSDevices33(), bytes, pos, len, options) switched_shunts, pos = parse_records!(SwitchedShunts33(nbuses÷11), bytes, pos, len, options) return Network( version, caseid, buses, loads, fixed_shunts, gens, branches, transformers, interchanges, two_terminal_dc, vsc_dc, switched_shunts, impedance_corrections, multi_terminal_dc, multi_section_lines, zones, area_transfers, owners, facts, ) end function parse_network30(source, version, caseid, bytes, pos, len, options) buses, pos = parse_records!(Buses30(len÷1000), bytes, pos, len, options) nbuses = length(buses) loads, pos = parse_records!(Loads(nbuses), bytes, pos, len, options) fixed_shunts = nothing gens, pos = parse_records!(Generators(nbuses÷10), bytes, pos, len, options) ngens = length(gens) branches, pos = parse_records!(Branches30(nbuses), bytes, pos, len, options) transformers, pos = parse_records!(Transformers(ngens*2), bytes, pos, len, options) interchanges, pos = parse_records!(AreaInterchanges(), bytes, pos, len, options) two_terminal_dc, pos = parse_records!(TwoTerminalDCLines30(), bytes, pos, len, options) vsc_dc, pos = parse_records!(VSCDCLines(), bytes, pos, len, options) switched_shunts, pos = parse_records!(SwitchedShunts30(nbuses÷11), bytes, pos, len, options) impedance_corrections, pos = parse_records!(ImpedanceCorrections(), bytes, pos, len, options) multi_terminal_dc, pos = parse_records!(MultiTerminalDCLines{DCLineID30}(), bytes, pos, len, options) multi_section_lines, pos = parse_records!(MultiSectionLineGroups30(), bytes, pos, len, options) zones, pos = parse_records!(Zones(), bytes, pos, len, options) area_transfers, pos = parse_records!(InterAreaTransfers(), bytes, pos, len, options) owners, pos = parse_records!(Owners(), bytes, pos, len, options) facts, pos = parse_records!(FACTSDevices30(), bytes, pos, len, options) return Network( version, caseid, buses, loads, fixed_shunts, gens, branches, transformers, interchanges, two_terminal_dc, vsc_dc, switched_shunts, impedance_corrections, multi_terminal_dc, multi_section_lines, zones, area_transfers, owners, facts, ) end # identify `0` or `'0'` @inline function _iszero(bytes, pos, len) peekbyte(bytes, pos) == UInt8('0') || peekbyte(bytes, pos) == UInt8('\'') && !eof(bytes, pos+1, len) && peekbyte(bytes, pos+1) == UInt8('0') end function parse_records!(rec::R, bytes, pos, len, options)::Tuple{R, Int} where {R <: Records} # Records terminated by specifying a bus number of zero or `Q`. while !( eof(bytes, pos, len) || _iszero(bytes, pos, len) || peekbyte(bytes, pos) == UInt8(' ') && !eof(bytes, pos+1, len) && _iszero(bytes, pos+1, len) || peekbyte(bytes, pos) == UInt8('Q') ) _, pos = parse_row!(rec, bytes, pos, len, options) end pos = next_line(bytes, pos, len, options) # Move past a "0 bus" line. @debug 1 "Parsed $R: nrows = $(length(rec)), pos = $pos" return rec, pos end # Taken from `Parsers.checkcmtemptylines` # TODO: move to Parsers.jl? function next_line(bytes, pos, len, options) eof(bytes, pos, len) && return pos b = peekbyte(bytes, pos) while b !== UInt8('\n') && b !== UInt8('\r') pos += 1 eof(bytes, pos, len) && break b = peekbyte(bytes, pos) end # Move forward to be past the `\r` or `\n` byte. pos += 1 # if line ends `\r\n`, then we're at `\n`and need to move forward again. if b === UInt8('\r') && !eof(bytes, pos, len) && peekbyte(bytes, pos) === UInt8('\n') pos += 1 end if options.ignorerepeated # find the start of the values in the next line; if we're ignoring repeated # delimiters, then we ignore any that start a row. pos = checkdelim!(bytes, pos, len, options) end return pos end function parse_value(::Type{T}, bytes, pos, len, options) where {T} res = xparse(T, bytes, pos, len, options) code = res.code if invalid(code) if !(newline(code) && invaliddelimiter(code)) # not due to end-of-line comments @warn codes(res.code) pos end end pos += res.tlen return res.val, pos, res.code end function parse_value!(rec, col::Int, ::Type{T}, bytes, pos, len, options) where {T} val, pos, code = parse_value(nonmissingtype(T), bytes, pos, len, options) push!(getfield(rec, col)::Vector{T}, val) return rec, pos, code end @generated function parse_row!(rec::R, bytes, pos, len, options) where {R <: Records} block = Expr(:block) for col in 1:fieldcount(R) T = eltype(fieldtype(R, col)) push!(block.args, quote rec, pos, code = parse_value!(rec, $col, $T, bytes, pos, len, options) end) end # @show block return block end ### ### transformers ### function _setmissing(a::Int, b::Int) exprs = Expr[] for col in a:b push!(exprs, :(push!(getfield(rec, $col), missing))) end return exprs end function _parse_values(::Type{R}, a::Int, b::Int) where {R <: Records} exprs = Expr[] for col in a:b T = eltype(fieldtype(R, col)) push!(exprs, :((rec, pos, code) = parse_value!(rec, $col, $T, bytes, pos, len, options))) end return exprs end function _parse_maybemissing(R, col) T = eltype(fieldtype(R, col)) return quote if newline(code) push!(getfield(rec, $col), missing) else (rec, pos, code) = parse_value!(rec, $col, $T, bytes, pos, len, options) end end end function _parse_maybemissing(R, col1, col2) T1 = eltype(fieldtype(R, col1)) T2 = eltype(fieldtype(R, col2)) return quote if newline(code) push!(getfield(rec, $col1), missing) push!(getfield(rec, $col2), missing) else (rec, pos, code) = parse_value!(rec, $col1, $T1, bytes, pos, len, options) (rec, pos, code) = parse_value!(rec, $col2, $T2, bytes, pos, len, options) end end end function _parse_maybezero(R, col1, col2) T1 = eltype(fieldtype(R, col1)) T2 = eltype(fieldtype(R, col2)) return quote if newline(code) push!(getfield(rec, $col1), zero($T1)) push!(getfield(rec, $col2), zero($T2)) else (rec, pos, code) = parse_value!(rec, $col1, $T1, bytes, pos, len, options) (rec, pos, code) = parse_value!(rec, $col2, $T2, bytes, pos, len, options) end end end function _parse_t2() block = Expr(:block) append!(block.args, _setmissing(EOL_COLS[1]+1+T2_COLS[2], EOL_COLS[2])) append!(block.args, _parse_values(Transformers, EOL_COLS[2]+1, EOL_COLS[3]-1)) push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[3])) append!(block.args, _parse_values(Transformers, EOL_COLS[3]+1, EOL_COLS[3]+T2_COLS[4])) append!(block.args, _setmissing(EOL_COLS[3]+1+T2_COLS[4], EOL_COLS[5])) return block end function _parse_t3() block = Expr(:block) append!(block.args, _parse_values(Transformers, EOL_COLS[1]+1+T2_COLS[2], EOL_COLS[3]-1)) push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[3])) append!(block.args, _parse_values(Transformers, EOL_COLS[3]+1, EOL_COLS[4]-1)) push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[4])) append!(block.args, _parse_values(Transformers, EOL_COLS[4]+1, EOL_COLS[5]-1)) push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[5])) return block end # 2-winding transformers (T2) have a subset of the data for 3-winding transformers (T3). # T2 has data over 4 lines, T3 has data for 5 lines: # - Line 1 is the same for both # - Line 2 has only 3 entries for T2 data, and more for T3 # - Line 3 is the same for both # - Line 4 has only 2 entries for T2 data, and more for T3 (similar to line 2) # - Line 5 only exists for T3 data # We determine data is T2 if there is a newline after 3 entries of line 2, else it's T3. # This means T2 data with a comment after the last entry on line 2 will fool us. @generated function parse_row!(rec::R, bytes, pos, len, options) where {R <: Transformers} block = Expr(:block) # parse row 1 append!(block.args, _parse_values(R, 1, EOL_COLS[1]-7)) # parse possibly missing o2,f2,o3,f3,o4,f4 push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[1]-6, EOL_COLS[1]-5)) push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[1]-4, EOL_COLS[1]-3)) push!(block.args, _parse_maybemissing(Transformers, EOL_COLS[1]-2, EOL_COLS[1]-1)) push!(block.args, _parse_maybemissing(R, EOL_COLS[1])) # last col only in v33 data (not v30) # parse first part of row 2 append!(block.args, _parse_values(R, EOL_COLS[1]+1, EOL_COLS[1]+T2_COLS[2])) # now we can detect if it is two-winding or three-winding data push!(block.args, :(newline(code) ? $(_parse_t2()) : $(_parse_t3()))) push!(block.args, :(return rec, pos)) # @show block return block end ### ### SwitchedShunts, ImpedanceCorrections ### const N_SPECIAL = IdDict( # SwitchedShunts can have anywhere between 1 - 8 `N` and `B` values in the data itself, # if n2, b2, ..., n8, b8 are not present, we set them to zero. # i.e. the last 14 = 7(n) + 7(b) columns reqire special handling. SwitchedShunts30 => 14, SwitchedShunts33 => 14, # ImpedanceCorrections can have anywhere between 2 - 11 `T` and `F` values in the data itself, # if t3, f3, ..., t11, f11 are not present, we set them to zero. # i.e. the last 18 = 9(t) + 9(f) columns reqire special handling. ImpedanceCorrections => 18, # MultiSectionLineGroups can have between 1 - 9 `DUM_i` columns MultiSectionLineGroups30 => 8, MultiSectionLineGroups33 => 8, # Loads have 2 extra columns in v33 compared to v30 Loads => 2, # Generators have 1 - 4 `Oi`, `Fi` values, plus 2 extra columns in v33 compared to v30 Generators => 8, # 3*2 + 2 # Branches have 1 - 4 `Oi`, `Fi` values Branches30 => 6, # 3*2 Branches33 => 6, # 3*2 ) @generated function parse_row!(rec::R, bytes, pos, len, options) where {R <: Union{SwitchedShunts, ImpedanceCorrections, Branches}} block = Expr(:block) N = fieldcount(R) - N_SPECIAL[R] append!(block.args, _parse_values(R, 1, N)) coln = N + 1 colb = N + 2 for _ in 1:(N_SPECIAL[R] ÷ 2) push!(block.args, _parse_maybezero(R, coln, colb)) coln += 2 colb += 2 end push!(block.args, :(return rec, pos)) # @show block return block end ### ### Loads, Generators, MultiSectionLineGroups ### @generated function parse_row!( rec::R, bytes, pos, len, options ) where {R <: Union{Loads,Generators,MultiSectionLineGroups}} block = Expr(:block) N = fieldcount(R) - N_SPECIAL[R] append!(block.args, _parse_values(R, 1, N)) for col in (N + 1):fieldcount(R) push!(block.args, _parse_maybemissing(R, col)) end push!(block.args, :(return rec, pos)) # @show block return block end ### ### MultiTerminalDCLines ### function parse_row!(rec::R, bytes, pos, len, options) where {I, R <: MultiTerminalDCLines{I}} line_id, pos = parse_idrow(I, bytes, pos, len, options) nconv = line_id.nconv converters = ACConverters(nconv) for _ in 1:nconv converters, pos = parse_row!(converters, bytes, pos, len, options) end ndcbs = line_id.ndcbs dc_buses = DCBuses(ndcbs) for _ in 1:ndcbs dc_buses, pos = parse_row!(dc_buses, bytes, pos, len, options) end ndcln = line_id.ndcln dc_links = DCLinks(ndcln) for _ in 1:ndcln dc_links, pos = parse_row!(dc_links, bytes, pos, len, options) end line = MultiTerminalDCLine(line_id, converters, dc_buses, dc_links) push!(rec.lines, line) return rec, pos end ### ### IDRow ### function parse_value!(args, ::Type{T}, bytes, pos, len, options) where {T} res = xparse(T, bytes, pos, len, options) code = res.code val = ifelse(valueok(code), res.val, missing) push!(args, val) pos += res.tlen return pos, code end @generated function parse_idrow(::Type{R}, bytes, pos, len, options) where {R <: IDRow} block = Expr(:block) nfields = fieldcount(R) T = nonmissingtype(fieldtype(R, 1)) push!(block.args, quote args = Any[] (pos, code) = parse_value!(args, $T, bytes, pos, len, options) end) for i in 2:nfields T = nonmissingtype(fieldtype(R, i)) push!(block.args, quote if invalid(code) || newline(code) push!(args, missing) else (pos, code) = parse_value!(args, $T, bytes, pos, len, options) end end) end push!(block.args, quote if !newline(code) pos = next_line(bytes, pos, len, options) end return R(args...), pos end) # @show block return block end
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
code
120713
### ### types ### abstract type IDRow <: Tables.AbstractRow end # TODO: should the various bits of free text / comments / timestamps be in this struct? # Data can look like: # 0, 100.00 / PSS/E-30.3 WED, SEP 15 2021 21:04 # SE SNAPSHOT 09-15-2021 PEAK CASE 18:00 # FULL COPY OF ETC. """ $TYPEDEF Case identification data. # Fields $TYPEDFIELDS """ struct CaseID <: IDRow """ IC Change code: 0 - base case (i.e., clear the working case before adding data to it). 1 - add data to the working case. """ ic::Int8 "System base MVA." sbase::Float64 "PSSE revision number (if known)." rev::Union{Int,Missing} """ Units of transformer ratings (see [`Transformers`](@ref)). `xfrrat` ≤ 0 for MVA. `xfrrat` > 0 for current expressed as MVA. """ xfrrat::Union{Int8,Missing} """ Units of ratings of non-transformer branches (refer to Non-Transformer Branch Data). `nxfrat` ≤ 0 for MVA. `nxfrat` > 0 for current expressed as MVA. """ nxfrat::Union{Int8,Missing} "System base frequency in Hertz." basfrq::Union{Float64,Missing} end function CaseID(; ic=0, sbase=100.0, rev=missing, xfrrat=missing, nxfrat=missing, basfrq=missing) return CaseID(ic, sbase, rev, xfrrat, nxfrat, basfrq) end Tables.columnnames(::CaseID) = fieldnames(CaseID) Tables.getcolumn(cid::CaseID, i::Int) = getfield(cid, i) Tables.getcolumn(cid::CaseID, nm::Symbol) = getfield(cid, nm) # So all tabular data records (buses, loads, ...) can be handled the same. abstract type Records end # Store data in column table so conversion to DataFrame efficient. Tables.istable(::Type{<:Records}) = true Tables.columnaccess(::Type{<:Records}) = true Tables.columns(x::Records) = x Tables.getcolumn(x::Records, i::Int) = getfield(x, i) Tables.columnnames(R::Type{<:Records}) = fieldnames(R) Tables.schema(x::R) where {R <: Records} = Tables.Schema(fieldnames(R), map(eltype, fieldtypes(R))) Tables.rowcount(x::Records) = length(x) # faster than going via `columnnames` Base.length(x::Records) = length(getfield(x, 1)::Vector) Base.size(x::R) where {R <: Records} = (length(x), fieldcount(R)) Base.isempty(x::Records) = length(x) == 0 const BusNum = Int32 const AreaNum = Int16 const ZoneNum = Int16 const OwnerNum = Int16 const LineNum = Int16 """ $TYPEDEF Each network bus to be represented in PSSE is introduced by a bus data record. The bus data record depends on the PSSE version: - See [`Buses30`](@ref) for PSSE v30 files. - See [`Buses33`](@ref) for PSSE v33 files. """ abstract type Buses <: Records end """ $TYPEDEF Network bus data records (in PSSE v30 format). Each bus data record includes not only data for the basic bus properties but also includes information on an optionally connected shunt admittance to ground. That admittance can represent a shunt capacitor or a shunt reactor (both with or without a real component) or a shunt resistor. It must not represent line connected admittance, loads, line charging or transformer magnetizing impedance, all of which are entered in other data categories. # Fields $TYPEDFIELDS """ struct Buses30 <: Buses "Bus number (1 to 999997)." i::Vector{BusNum} """ Alphanumeric identifier assigned to bus "I". The name may be up to twelve characters and must be enclosed in single quotes. NAME may contain any combination of blanks, uppercase letters, numbers and special characters, but the first character must not be a minus sign. """ name::Vector{InlineString15} "Bus base voltage; entered in kV." basekv::Vector{Float64} """ Bus type code: 1 - load bus or other bus without any generator boundary condition. 2 - generator or plant bus either regulating voltage or with a fixed reactive power (Mvar). A generator that reaches its reactive power limit will no longer control voltage but rather hold reactive power at its limit. 3 - swing bus or slack bus. It has no power or reactive limits and regulates voltage at a fixed reference angle. 4 - disconnected or isolated bus. """ ide::Vector{Int8} # 1, 2, 3 or 4 """ Active component of shunt admittance to ground; entered in MW at one per unit voltage. GL should not include any resistive admittance load, which is entered as part of load data. """ gl::Vector{Float64} """ Reactive component of shunt admittance to ground; entered in Mvar at one per unit voltage. BL should not include any reactive impedance load, which is entered as part of load data; line charging and line connected shunts, which are entered as part of non-transformer branch data; or transformer magnetizing admittance, which is entered as part of transformer data. BL is positive for a capacitor, and negative for a reactor or an inductive load. """ bl::Vector{Float64} "Area number. 1 through the maximum number of areas at the current size level." area::Vector{AreaNum} """ Zone number. 1 through the maximum number of zones at the current size level. See [`Zones`](@ref). """ zone::Vector{ZoneNum} "Bus voltage magnitude; entered in pu." vm::Vector{Float64} "Bus voltage phase angle; entered in degrees." va::Vector{Float64} """ Owner number. 1 through the maximum number of owners at the current size level. See [`Owners`](@ref). """ owner::Vector{OwnerNum} end """ $TYPEDEF Network bus data records (in PSSE v33 format). # Fields $TYPEDFIELDS """ struct Buses33 <: Buses "Bus number (1 to 999997)." i::Vector{BusNum} """ Alphanumeric identifier assigned to bus "I". The name may be up to twelve characters and must be enclosed in single quotes. NAME may contain any combination of blanks, uppercase letters, numbers and special characters, but the first character must not be a minus sign. """ name::Vector{InlineString15} "Bus base voltage; entered in kV." basekv::Vector{Float64} """ Bus type code: 1 - load bus or other bus without any generator boundary condition. 2 - generator or plant bus either regulating voltage or with a fixed reactive power (Mvar). A generator that reaches its reactive power limit will no longer control voltage but rather hold reactive power at its limit. 3 - swing bus or slack bus. It has no power or reactive limits and regulates voltage at a fixed reference angle. 4 - disconnected or isolated bus. """ ide::Vector{Int8} # 1, 2, 3 or 4 "Area number. 1 through the maximum number of areas at the current size level." area::Vector{AreaNum} """ Zone number. 1 through the maximum number of zones at the current size level. See [`Zones`](@ref). """ zone::Vector{ZoneNum} """ Owner number. 1 through the maximum number of owners at the current size level. See [`Owners`](@ref). """ owner::Vector{OwnerNum} "Bus voltage magnitude; entered in pu." vm::Vector{Float64} "Bus voltage phase angle; entered in degrees." va::Vector{Float64} "Normal voltage magnitude high limit; entered in pu. `nvhi` = 1.1 by default." nvhi::Vector{Float64} "Normal voltage magnitude low limit, entered in pu. `nvlo` = 0.9 by default." nvlo::Vector{Float64} "Emergency voltage magnitude high limit; entered in pu. `evhi` = 1.1 by default." evhi::Vector{Float64} "Emergency voltage magnitude low limit; entered in pu. `evlo` = 0.9 by default." evlo::Vector{Float64} end """ $TYPEDEF Each network bus at which a load is to be represented must be specified in at least one load data record. If multiple loads are to be represented at a bus, they must be individually identified in a load data record for the bus with a different load identifier. Each load at a bus can be a mixture of loads with different characteristics. # Fields $TYPEDFIELDS """ struct Loads <: Records "Buses number, or extended buses name enclosed in single quotes." i::Vector{BusNum} """ One- or two-character uppercase non blank alphanumeric load identifier used to distinguish among multiple loads at bus "I". It is recommended that, at buses for which a single load is present, the load be designated as having the load identifier '1'. """ id::Vector{InlineString3} # TODO: confirm 3 is enough in practice, when whitespace can be present "Initial load status of one for in-service and zero for out-of-service." status::Vector{Bool} "Area to which the load is assigned (1 through the maximum number of areas at the current size level)." area::Vector{AreaNum} """ Zone to which the load is assigned (1 through the maximum number of zones at the current size level). See [`Zones`](@ref). """ zone::Vector{ZoneNum} "Active power component of constant MVA load; entered in MW." pl::Vector{Float64} "Reactive power component of constant MVA load; entered in Mvar." ql::Vector{Float64} "Active power component of constant current load; entered in MW at one per unit voltage." ip::Vector{Float64} "Reactive power component of constant current load; entered in Mvar at one per unit voltage." iq::Vector{Float64} "Active power component of constant admittance load; entered in MW at one per unit voltage." yp::Vector{Float64} """ Reactive power component of constant admittance load; entered in Mvar at one per unit voltage. YQ is a negative quantity for an inductive load and positive for a capacitive load. """ yq::Vector{Float64} """ Owner to which the load is assigned. 1 through the maximum number of owners at the current size level. See [`Owners`](@ref). """ owner::Vector{OwnerNum} """ Load scaling flag of one for a scalable load and zero for a fixed load. `scale` = 1 by default. """ scale::Vector{Union{Bool,Missing}} """ Interruptible load flag of one for an interruptible load for zero for a non interruptible load. `intrpt`=0 by default. """ intrpt::Vector{Union{Bool,Missing}} end """ $TYPEDEF Each network bus at which fixed bus shunt is to be represented must be specified in at least one fixed bus shunt data record. Multiple fixed bus shunts may be represented at a bus by specifying more than one fixed bus shunt data record for the bus, each with a different shunt identifier. The admittance specified in the data record can represent a shunt capacitor or a shunt reactor (both with or without a real component) or a shunt resistor. It must not represent line connected admittance, switched shunts, loads, line charging or transformer magnetizing impedance, all of which are entered in other data categories. !!! compat "Not present in v30 files" v30 files do not have `FixedShunts`; refer to [`Buses`](@ref) and [`SwitchedShunts`](@ref). """ struct FixedShunts <: Records "Bus number, or extended bus name enclosed in single quotes. No default." i::Vector{BusNum} """ One- or two-character uppercase non-blank alphanumeric shunt identifier used to distinguish among multiple shunts at bus `i`. It is recommended that, at buses for which a single shunt is present, the shunt be designated as having the shunt identifier 1. `id` = 1 by default. """ id::Vector{InlineString3} "Shunt status of one for in-service and zero for out-of-service. `status` = 1 by default." status::Vector{Bool} """ Active component of shunt admittance to ground; entered in MW at one per unit voltage. `gl` should not include any resistive impedance load, which is entered as part of load data (see [`Loads`](@ref). `gl` = 0.0 by default. """ gl::Vector{Float64} """ Reactive component of shunt admittance to ground; entered in Mvar at one per unit voltage. `bl` should not include any reactive impedance load, which is entered as part of load data (see [`Loads`](@ref)); line charging and line connected shunts, which are entered as part of non-transformer branch data (see [`Branches`](@ref)); transformer magnetizing admittance, which is entered as part of transformer data (see [`Transformers`](@ref)); or switched shunt admittance, which is entered as part of switched shunt data (see [`SwitchedShunts`](@ref). `bl` is positive for a capacitor, and negative for a reactor or an inductive load. `bl` = 0.0 by default. """ bl::Vector{Float64} end """ $TYPEDEF Each network bus to be represented as a generator or plant bus in PSS/E must be specified in a generator data record. In particular, each bus specified in the bus data input with a type code of two (2) or three (3) must have a generator data record entered for it. # Fields $TYPEDFIELDS """ struct Generators <: Records "Bus number, or extended bus name enclosed in single quotes." i::Vector{BusNum} """ One- or two-character uppercase non blank alphanumeric machine identifier used to distinguish among multiple machines at bus "I". It is recommended that, at buses for which a single machine is present, the machine be designated as having the machine identifier ’1’. ID = ’1’ by default. """ id::Vector{InlineString3} # TODO: confirm 3 is enough in practice, when whitespace can be present "Generator active power output; entered in MW. PG = 0.0 by default." pg::Vector{Float64} """ Generator reactive power output; entered in Mvar. QG needs to be entered only if the case, as read in, is to be treated as a solved case. QG = 0.0 by default. """ qg::Vector{Float64} """ Maximum generator reactive power output; entered in Mvar. For fixed output gen- erators (i.e., nonregulating), QT must be equal to the fixed Mvar output. QT = 9999.0 by default. """ qt::Vector{Float64} """ Minimum generator reactive power output; entered in Mvar. For fixed output generators, QB must be equal to the fixed Mvar output. QB = -9999.0 by default. """ qb::Vector{Float64} "Regulated voltage setpoint; entered in pu. VS = 1.0 by default." vs::Vector{Float64} """ Bus number, or extended bus name enclosed in single quotes, of a remote type 1 or 2 bus whose voltage is to be regulated by this plant to the value specified by VS. If bus IREG is other than a type 1 or 2 bus, bus "I" regulates its own voltage to the value specified by VS. IREG is entered as zero if the plant is to regulate its own voltage and must be zero for a type three (swing) bus. IREG = 0 by default. """ ireg::Vector{BusNum} """ Total MVA base of the units represented by this machine; entered in MVA. This quantity is not needed in normal power flow and equivalent onstruction work, but is required for switching studies, fault analysis, and dynamic simulation. MBASE = system base MVA by default. """ mbase::Vector{Float64} """ Complex machine impedance, ZSORCE; entered in pu on MBASE base. This data is not needed in normal power flow and equivalent construction work, but is required for switching studies, fault analysis, and dynamic simulation. For dynamic simulation, this impedance must be set equal to the unsaturated subtransient impedance for those generators to be modeled by subtransient level machine models, and to unsaturated transient impedance for those to be modeled by classical or transient level models. For short-circuit studies, the saturated subtransient or transient impedance should be used. ZR = 0.0 by default. """ zr::Vector{Float64} "See `zr`. ZX = 1.0 by default." zx::Vector{Float64} """ Step-up transformer impedance, XTRAN; entered in pu on MBASE base. XTRAN should be entered as zero if the step-up transformer is explicitly modeled as a network branch and bus "I" is the terminal bus. RT+jXT = 0.0 by default. """ rt::Vector{Float64} "See `rt`. RT+jXT = 0.0 by default." xt::Vector{Float64} """ Step-up transformer off-nominal turns ratio; entered in pu. GTAP is used only if XTRAN is nonzero. GTAP = 1.0 by default. """ gtap::Vector{Float64} """ Initial machine status of one for in-service and zero for out-of-service. STAT = 1 by default. """ stat::Vector{Bool} """ Percent of the total Mvar required to hold the voltage at the bus controlled by this bus "I" that are to be contributed by the generation at bus "I"; RMPCT must be positive. RMPCT is needed if IREG specifies a valid remote bus and there is more than one local or remote voltage controlling device (plant, switched shunt, FACTS device shunt element, or VSC DC line converter) controlling the voltage at bus IREG to a setpoint. RMPCT is needed also if bus "I" itself is being controlled locally or remotely by one or more other setpoint mode voltage controlling devices. RMPCT = 100.0 by default. """ rmpct::Vector{Float64} "Maximum generator active power output; entered in MW. PT = 9999.0 by default." pt::Vector{Float64} "Minimum generator active power output; entered in MW. PB = -9999.0 by default." pb::Vector{Float64} """ Owner number (1 through the maximum number of owners at the current size level). Each machine may have up to four owners. See [`Owners`](@ref). By default, `o1` is the owner to which bus `i` is assigned and `o2`, `o3`, and `o4` are zero. """ o1::Vector{OwnerNum} """ Fraction of total ownership assigned to owner `oi`; each `fi` must be positive. The `fi` values are normalized such that they sum to 1.0 before they are placed in the working case. By default, each `fi` is 1.0. """ f1::Vector{Union{Float64,Missing}} o2::Vector{Union{OwnerNum,Missing}} f2::Vector{Union{Float64,Missing}} o3::Vector{Union{OwnerNum,Missing}} f3::Vector{Union{Float64,Missing}} o4::Vector{Union{OwnerNum,Missing}} f4::Vector{Union{Float64,Missing}} """ Wind machine control mode; `wmod` is used to indicate whether a machine is a wind machine, and, if it is, the type of reactive power limits to be imposed. * 0 for a machine that is not a wind machine. * 1 for a wind machine for which reactive power limits are specified by QT and QB. * 2 for a wind machine for which reactive power limits are determined from the machine’s active power output and `wpf`; limits are of equal magnitude and opposite sign. * 3 for a wind machine with a fixed reactive power setting determined from the machine’s active power output and `wpf`; when `wpf` is positive, the machine’s reactive power has the same sign as its active power; when `wpf` is negative, the machine’s reactive power has the opposite sign of its active power. `wmod` = 0 by default. """ wmod::Vector{Union{Int8,Missing}} # 0, 1, 2, or 3 """ Power factor used in calculating reactive power limits or output when `wmod` is 2 or 3. `wpf` = 1.0 by default. """ wpf::Vector{Union{Float64,Missing}} end """ $TYPEDEF The branches data record depends on the PSSE version: - See [`Branches30`](@ref) for PSSE v30 files. - See [`Branches33`](@ref) for PSSE v33 files. """ abstract type Branches <: Records end for v in (30, 33) T = Symbol(:Branches, v) met_doc, met_col = if v == 33 :(""" Metered end flag. * ≤1 to designate bus `i` as the metered end. * ≥2 to designate bus `j` as the metered end. `met` = 1 by default. """), :(met::Vector{Int8}) else :(""), :("") end compat = if v == 33 "In PSSE v33, to represent shunts connected to buses, that shunt data should be entered in [`FixedShunts`](@ref) and/or [`SwitchedShunts`](@ref) data records." else "In PSSE v30, to represent shunts connected to buses, that shunt data should be entered in the [`Buses`](@ref) data records." end @eval begin """ $TYPEDEF In PSS/E, the basic transmission line model is an Equivalent Pi connected between network buses. Data for shunt equipment units, such as reactors, which are connected to and switched with the line, are entered in the same data record. !!! compat "Shunts connected to buses" $($compat) !!! note "Transformers" Branches to be modeled as transformers are not specified in this data category; rather, they are specified in the [`Transformers`](@ref) data category. # Fields $TYPEDFIELDS """ struct $T <: Branches "Branch \"from bus\" number, or extended bus name enclosed in single quotes." i::Vector{BusNum} """ Branch "to bus" number, or extended bus name enclosed in single quotes. "J" is entered as a negative number, or with a minus sign before the first character of the extended bus name, to designate it as the metered end; otherwise, bus "I" is assumed to be the metered end. """ j::Vector{BusNum} """ One- or two-character uppercase nonblank alphanumeric branch circuit identifier; the first character of CKT must not be an ampersand "&". It is recommended that single circuit branches be designated as having the circuit identifier '1'. CKT = '1' by default. """ ckt::Vector{InlineString3} "Branch resistance; entered in pu. A value of R must be entered for each branch." r::Vector{Float64} "Branch reactance; entered in pu. A nonzero value of X must be entered for each branch." x::Vector{Float64} "Total branch charging susceptance; entered in pu. B = 0.0 by default." b::Vector{Float64} """ First loading rating; entered in MVA. If RATEA is set to 0.0, the default value, this branch will not be included in any examination of circuit loading. Ratings are entered as: ``MVA_{rated} = sqrt(3) × E_{base} × I_{rated} × 10^{-6}`` where: - ``E_{base}`` is the base line-to-line voltage in volts of the buses to which the terminal of the branch is connected. - ``I_{rated}`` is the branch rated phase current in amperes. """ rate_a::Vector{Float64} "Second loading rating; entered in MVA. RATEB = 0.0 by default." rate_b::Vector{Float64} "Third loading rating; entered in MVA. RATEC = 0.0 by default." rate_c::Vector{Float64} """ Complex admittance of the line shunt at the bus "I" end of the branch; entered in pu. BI is negative for a line connected reactor and positive for line connected capacitor. GI + jBI = 0.0 by default. """ gi::Vector{Float64} """ Complex admittance of the line shunt at the bus "I" end of the branch; entered in pu. BI is negative for a line connected reactor and positive for line connected capacitor. GI + jBI = 0.0 by default. """ bi::Vector{Float64} """ Complex admittance of the line shunt at the bus "J" end of the branch; entered in pu. BJ is negative for a line connected reactor and positive for line connected capacitor. GJ + jBJ = 0.0 by default. """ gj::Vector{Float64} """ Complex admittance of the line shunt at the bus "J" end of the branch; entered in pu. BJ is negative for a line connected reactor and positive for line connected capacitor. GJ + jBJ = 0.0 by default. """ bj::Vector{Float64} """ Initial branch status where 1 designates in-service and 0 designates out-of-service. ST = 1 by default. """ st::Vector{Bool} $met_doc $met_col "Line length; entered in user-selected units. LEN = 0.0 by default." len::Vector{Float64} """ Owner number; 1 through the maximum number of owners at the current size level. Each branch may have up to four owners. See [`Owners`](@ref). By default, `o1` is the owner to which bus `i` is assigned and `o2`, `o3`, and `o4` are zero. """ o1::Vector{OwnerNum} """ Fraction of total ownership assigned to owner ``O_i``; each ``F_i`` must be positive. The ``fi` values are normalized such that they sum to 1.0 before they are placed in the working case. By default, each `fi` is 1.0. """ f1::Vector{Float64} o2::Vector{Union{OwnerNum,Missing}} f2::Vector{Union{Float64,Missing}} o3::Vector{Union{OwnerNum,Missing}} f3::Vector{Union{Float64,Missing}} o4::Vector{Union{OwnerNum,Missing}} f4::Vector{Union{Float64,Missing}} end end # eval end ### ### Transformers ### """ $TYPEDEF Each AC transformer to be represented in PSS/E is introduced through transformer data records that specify all the data required to model transformers in power flow calculations, with one exception. That exception is a set of ancillary data, comprising transformer impedance correction records, which define the manner in which transformer impedance changes as off-nominal turns ratio or phase shift angle is adjusted. Those data records are described in Transformer Impedance Correction Records, [`ImpedanceCorrections`](@ref). Both two-winding and three-winding transformers are specified in the transformer data records. The data records for the two-winding transformer are common to the three-winding transformer; the data block for two-winding transformers is a subset of the data required for three-winding transformers. # Fields $TYPEDFIELDS """ struct Transformers <: Records # first row """ The bus number, or extended bus name enclosed in single quotes, of the bus to which the first winding is connected. The transformer’s magnetizing admittance is modeled on winding one. The first winding is the only winding of a two-winding transformer whose tap ratio or phase shift angle may be adjusted by the power flow solution activities; any winding(s) of a three-winding transformer may be adjusted. No default is allowed. """ i::Vector{BusNum} """ The bus number, or extended bus name enclosed in single quotes, of the bus to which the second winding is connected. This winding may have a fixed, off-nominal tap ratio assigned to it. No default is allowed. """ j::Vector{BusNum} """ The bus number, or extended bus name enclosed in single quotes, of the bus to which the third winding is connected. Zero is used to indicate that no third winding is present. _Always equal to zero for a two-winding transformer._ """ k::Vector{BusNum} """ One- or two-character uppercase nonblank alphanumeric transformer circuit identifier; the first character of `ckt` must not be an ampersand ('&'). """ ckt::Vector{InlineString3} """ The winding data I/O code which defines the units in which the turns ratios `windv1` and `windv2` are specified (the units of `rma1` and `rmi1` are also governed by `cw` when `|cod1|` is 1 or 2): * 1 for off-nominal turns ratio in pu of winding bus base voltage; * 2 for winding voltage in kV. `cw` = 1 by default. """ cw::Vector{Int8} # 1 or 2 """ The impedance data I/O code that defines the units in which the winding impedances `r1_2` and `x1_2` are specified: * 1 for resistance and reactance in pu on system base quantities; * 2 for resistance and reactance in pu on a specified base MVA and winding bus base voltage; * 3 for transformer load loss in watts and impedance magnitude in pu on a specified base MVA and winding bus base voltage. `cz` = 1 by default. """ cz::Vector{Int8} # 1, 2 or 3 """ The magnetizing admittance I/O code that defines the units in which `mag1` and `mag2` are specified: * 1 for complex admittance in pu on system base quantities; * 2 for no load loss in watts and exciting current in pu on winding one to two base MVA and nominal voltage. `cm` = 1 by default. """ cm::Vector{Int8} # 1 or 2 """ When `cm` is 1, `mag1` is the magnetizing conductance in pu on system base quantities; when `cm` is 2, `mag1` is the no load loss in watts. `mag1` = 0.0 by default. """ mag1::Vector{Float64} """ When `cm` is 1, `mag2` is the magnetizing susceptance in pu on system base quantities; when `cm` is 2, `mag2` is the exciting current in pu on winding one to two base MVA (`sbase1_2`) and nominal voltage (`nomv1`). `mag2` = 0.0 by default. """ mag2::Vector{Float64} """ The nonmetered end code of either: * 1 (for the winding one bus), or * 2 (for the winding two bus). `nmetr` = 2 by default. """ nmetr::Vector{Int8} # 1 or 2 """ An alphanumeric identifier assigned to the transformer. The name may be up to twelve characters. `name` may contain any combination of blanks, uppercase letters, numbers and special characters. `name` is twelve blanks by default. """ name::Vector{InlineString15} """ The initial transformer status, where 1 designates in-service and 0 designates out-of-service. `stat` = 1 by default. """ stat::Vector{Bool} """ An owner number; (1 through the maximum number of owners at the current size level). Each transformer may have up to four owners. See [`Owners`](@ref). By default, O1 is the owner to which bus "I" is assigned """ o1::Vector{OwnerNum} """ The fraction of total ownership assigned to owner `Oi`; each Fi must be positive. The Fi values are normalized such that they sum to 1.0 before they are placed in the working case. By default, each `fi` is 1.0. """ f1::Vector{Float64} o2::Vector{Union{OwnerNum,Missing}} f2::Vector{Union{Float64,Missing}} o3::Vector{Union{OwnerNum,Missing}} f3::Vector{Union{Float64,Missing}} o4::Vector{Union{OwnerNum,Missing}} f4::Vector{Union{Float64,Missing}} """ Alphanumeric identifier specifying vector group based on transformer winding connections and phase angles. `vecgrp` value is used for information purpose only. `vecgrp` is 12 blanks by default. """ vecgrp::Vector{Union{InlineString15,Missing}} # second row """ The measured impedance of the transformer between the buses to which its first and second windings are connected (see also `x1_2`). * When `cz` is 1, `r1_2` is the resistance in pu on system base quantities; * when `cz` is 2, `r1_2` is the resistance in pu on winding one to two base MVA (`sbase1_2`) and winding one bus base voltage; * when `cz` is 3, `r1_2` is the load loss in watts. `r1_2` = 0.0 by default. """ r1_2::Vector{Float64} """ The measured impedance of the transformer between the buses to which its first and second windings are connected (see also `r1_2`). * When `cz` is 1, `x1_2` is the reactance in pu on system base quantities; * when `cz` is 2, `x1_2` is the reactance in pu on winding one to two base MVA (`sbase1_2`) and winding one bus base voltage; * when `cz` is 3, `x1_2` is the impedance magnitude in pu on winding one to two base MVA (`sbase1_2`) and winding one bus base voltage. `x1_2` has no default. """ x1_2::Vector{Float64} """ The winding one to two base MVA of the transformer. `sbase1_2` = `sbase` (the system base MVA) by default. """ sbase1_2::Vector{Float64} # second row, but 3-winding transformers only """ The measured impedance of a three-winding transformer between the buses to which its second and third windings are connected (see also `x2_3`). * When `cz` is 1, `r2_3` is the resistance in pu on system base quantities; * when `cz` is 2, `r2_3` is the resistance in pu on winding two to three base MVA (`sbase2_3`) and winding two bus base voltage; * when `cz` is 3, `r2_3` is the load loss in watts `r2_3` = 0.0 by default. _Ignored for a two-winding transformer._ """ r2_3::Vector{Union{Float64, Missing}} """ The measured impedance of a three-winding transformer between the buses to which its second and third windings are connected (see also `x2_3`). * When `cz` is 1, `x2_3` is the reactance in pu on system base quantities; * when `cz` is 2, `x2_3` is the reactance in pu on winding one to two base MVA (`sbas2_3`) and winding one bus base voltage; * when `cz` is 3, `x2_3` is the impedance magnitude in pu on winding two to three base MVA (`sbase2_3`) and winding two bus base voltage. `x2_3` has no default. _Ignored for a two-winding transformer._ """ x2_3::Vector{Union{Float64, Missing}} """ The winding two to three base MVA of a three-winding transformer; ignored for a two-winding transformer. `sbase2_3` = `sbase` (the system base MVA) by default. _Ignored for a two-winding transformer._ """ sbase2_3::Vector{Union{Float64, Missing}} """ The measured impedance of a three-winding transformer between the buses to which its third and first windings are connected (see also `x3_1`). * When `cz` is 1, `r3_1` is the resistance in pu on system base quantities; * when `cz` is 2, `r3_1` is the resistance in pu on winding three to one base MVA (`sbase3_1`) and winding three bus base voltage; * when `cz` is 3, `r3_1` is the load loss in watts `r3_1` = 0.0 by default. _Ignored for a two-winding transformer._ """ r3_1::Vector{Union{Float64, Missing}} """ The measured impedance of a three-winding transformer between the buses to which its third and first windings are connected (see also `x3_1`). * When `cz` is 1, `x3_1` is the reactance in pu on system base quantities; * when `cz` is 2, `x3_1` is the reactance in pu on winding three to one base MVA (`sbas3_1`) and winding three bus base voltage; * when `cz` is 3, `x3_1` is the impedance magnitude in pu on winding three to one base MVA (`sbase3_1`) and winding three bus base voltage. `x3_1` has no default. _Ignored for a two-winding transformer._ """ x3_1::Vector{Union{Float64, Missing}} """ The winding three to one base MVA of a three-winding transformer. `sbase3_1` = `sbase` (the system base MVA) by default. _Ignored for a two-winding transformer._ """ sbase3_1::Vector{Union{Float64, Missing}} """ The voltage magnitude at the hidden star point bus; entered in pu. `vmstar` = 1.0 by default. _Ignored for a two-winding transformer._ """ vmstar::Vector{Union{Float64, Missing}} """ The bus voltage phase angle at the hidden star point bus; entered in degrees. `anstar` = 0.0 by default. _Ignored for a two-winding transformer._ """ anstar::Vector{Union{Float64, Missing}} # third row """ When `cw` is 1, `windv1` is the winding one off-nominal turns ratio in pu of winding one bus base voltage, and windv1 = 1.0 by default. When `cw` is 2, `windv1` is the actual winding one voltage in kV, and `windv1` is equal to the base voltage of bus "I" by default. """ windv1::Vector{Float64} """ The nominal (rated) winding one voltage in kV, or zero to indicate that nominal winding one voltage is to be taken as the base voltage of bus "I". `nomv1` is used only in converting magnetizing data between per unit admittance values and physical units when `cm` is 2. `nomv1` = 0.0 by default. """ nomv1::Vector{Float64} """ The winding one phase shift angle in degrees. `ang1` is positive for a positive phase shift from the winding one side to the winding two side (for a two-winding transformer). `ang1` must be greater than -180.0 and less than or equal to +180.0. `ang1` = 0.0 by default. """ ang1::Vector{Float64} """ The first winding’s first rating entered in MVA (not current expressed in MVA). """ rata1::Vector{Float64} """ The first winding’s second rating entered in MVA (not current expressed in MVA). """ ratb1::Vector{Float64} """ The first winding’s third rating entered in MVA (not current expressed in MVA). """ ratc1::Vector{Float64} """ The transformer control mode for automatic adjustments of the winding one tap or phase shift angle during power flow solutions: * 0 for no control (fixed tap and phase shift); * ±1 for voltage control; * ±2 for reactive power flow control; * ±3 for active power flow control; * ±4 for control of a DC line quantity. If the control mode is entered as a positive number, automatic adjustment of this transformer winding is enabled when the corresponding adjustment is activated during power flow solutions; a negative control mode suppresses the automatic adjustment of this transformer winding. `cod1` = 0 by default. """ cod1::Vector{Int8} # one of: -4, -3, -2, -1, 0, 1, 2, 3, 4 """ The bus number, or extended bus name enclosed in single quotes, of the bus whose voltage is to be controlled by the transformer turns ratio adjustment option of the power flow solution activities when `cod1` is 1. `cont1` should be non-zero only for voltage controlling transformer windings. `cont1` may specify a bus other than "I", "J", or "K"; in this case, the sign of `cont1` defines the location of the controlled bus relative to the transformer winding. If `cont1` is entered as a positive number, the ratio is adjusted as if bus `cont1` is on the winding two side of the transformer; if `cont1` is entered as a negative number, the ratio is adjusted as if bus `|cont1|` is on the winding one side of the transformer. `cont1` = 0 by default. """ cont1::Vector{BusNum} """ `rma1` is the upper limit (and `rmi1` the lower limit) of either: * Off-nominal turns ratio in pu of winding one bus base voltage when `|cod1|` is 1 or 2 and `cw` is 1; `rma1` = 1.1 and `rmi1` = 0.9 by default. * Actual winding one voltage in kV when `|cod1|` is 1 or 2 and `cw` is 2. No default is allowed. * Phase shift angl e in degrees when `|cod1|` is 3. No default is allowed. * Not used when `|cod1|` is 0 or 4; `rma1` = 1.1 and `rmi1` = 0.9 by default. """ rma1::Vector{Float64} "The lower limit to `rma1`'s upper limit. See `rma1` for details." rmi1::Vector{Float64} """ `vma1` is the upper limit (and `vmi1` the lower limit) of either: * Voltage at the controlled bus (bus `|cont1|`) in pu when `|cod1|` is 1. `vma1` = 1.1 and `vmi1` = 0.9 by default. * Reactive power flow into the transformer at the winding one bus end in Mvar when `|cod1|` is 2. no default is allowed. * Active power flow into the transformer at the winding one bus end in MW when `|cod1|` is 3. no default is allowed. * Not used when `|cod1|` is 0 or 4; `vma1` = 1.1 and `vmi1` = 0.9 by default. """ vma1::Vector{Float64} "The lower limit to `vma1`'s upper limit. See `vma1` for details." vmi1::Vector{Float64} """ The number of tap positions available; used when `cod1` is 1 or 2. `ntp1` must be between 2 and 9999. `ntp1` = 33 by default. """ ntp1::Vector{Int16} """ The number of a transformer impedance correction record if this transformer winding’s impedance is to be a function of either off-nominal turns ratio or phase shift angle, or 0 if no transformer impedance correction is to be applied to this transformer winding. See [`ImpedanceCorrections`](@ref). `tab1` = 0 by default. """ tab1::Vector{Int} """ The load drop compensation impedance for voltage controlling transformers entered in pu on system base quantities; used when `cod1` is 1. `cr1` + j`cx1` = 0.0 by default. """ cr1::Vector{Float64} "See `cr1` for details." cx1::Vector{Float64} """ Winding connection angle in degrees; used when `cod1` is 5. There are no restrictions on the value specified for `cnxa1`; if it is outside of the range from -90.0 to +90.0, `cnxa1` is normalized to within this range. `cnxa1` = 0.0 by default. """ cnxa1::Vector{Union{Float64,Missing}} # fourth row """ When `cw` is 1, `windv2` is the winding two off-nominal turns ratio in pu of winding two bus base voltage, and `windv2` = 1.0 by default. When `cw` is 2, `windv2` is the actual winding two voltage in kV, and `windv2` is equal to the base voltage of bus `j` by default. """ windv2::Vector{Float64} """ The nominal (rated) winding two voltage in kV, or zero to indicate that nominal winding two voltage is to be taken as the base voltage of bus `j`. `nomv2` is present for information purposes only; it is not used in any of the calculations for modeling the transformer. `nomv2` = 0.0 by default. """ nomv2::Vector{Float64} # fourth row, but 3-winding transformers only """ The winding two phase shift angle in degrees. `ang2` is positive for a positive phase shift from the winding two side to the "T" (or star) point bus. `ang2` must be greater than -180.0 and less than or equal to +180.0. `ang2` = 0.0 by default. _Ignored for a two-winding transformer._ """ ang2::Vector{Union{Float64, Missing}} """ The second winding’s first rating entered in MVA (not current expressed in MVA). _Ignored for a two-winding transformer._ """ rata2::Vector{Union{Float64, Missing}} """ The second winding’s second rating entered in MVA (not current expressed in MVA). _Ignored for a two-winding transformer._ """ ratb2::Vector{Union{Float64, Missing}} """ The second winding’s third rating entered in MVA (not current expressed in MVA). _Ignored for a two-winding transformer._ """ ratc2::Vector{Union{Float64, Missing}} """ The transformer control mode for automatic adjustments of the winding two tap or phase shift angle during power flow solutions: * 0 for no control (fixed tap and phase shift); * ±1 for voltage control; * ±2 for reactive power flow control; * ±3 for active power flow control. If the control mode is entered as a positive number, automatic adjustment of this transformer winding is enabled when the corresponding adjustment is activated during power flow solutions; a negative control mode suppresses the automatic adjustment of this transformer winding. `cod2` = 0 by default. _Ignored for a two-winding transformer._ """ cod2::Vector{Union{Int8, Missing}} # one of: -3, -2, -1, 0, 1, 2, 3 """ The bus number, or extended bus name enclosed in single quotes, of the bus whose voltage is to be controlled by the transformer turns ratio adjustment option of the power flow solution activities when `cod2` is 1. `cont2` should be nonzero only for voltage controlling transformer windings. `cont2` may specify a bus other than `i`, `j`, or `k`; in this case, the sign of `cont2` defines the location of the controlled bus relative to the transformer winding. If `cont2` is entered as a positive number, or a quoted extended bus name, the ratio is adjusted as if bus `cont2` is on the winding one or winding three side of the transformer; if `cont2` is entered as a negative number, or a quoted extended bus name with a minus sign preceding the first character, the ratio is adjusted as if bus `|cont2|` is on the winding two side of the transformer. `cont2` = 0 by default. _Ignored for a two-winding transformer._ """ cont2::Vector{Union{BusNum, Missing}} """ `rma2` is the upper limit (and `rmi2` the lower limit) of either: * Off-nominal turns ratio in pu of winding two bus base voltage when `|cod2|` is 1 or 2 and `cw` is 1; `rma2` = 1.1 and `rmi2` = 0.9 by default. * Actual winding one voltage in kV when `|cod2|` is 1 or 2 and `cw` is 2. No default is allowed. * Phase shift angle in degrees when `|cod2|` is 3. No default is allowed. * Not used when `|cod2|` is 0; `rma2` = 1.1 and `rmi2` = 0.9 by default. _Ignored for a two-winding transformer._ """ rma2::Vector{Union{Float64, Missing}} """ The lower limit to `rma2`'s upper limit. See `rma2` for details. _Ignored for a two-winding transformer._ """ rmi2::Vector{Union{Float64, Missing}} """ `vma2` is the upper limit (and `vmi2` the lower limit) of either: * Voltage at the controlled bus (bus `|cont2|`) in pu when `|cod2|` is 1. `vma2` = 1.1 and `vmi2` = 0.9 by default. * Reactive power flow into the transformer at the winding two bus end in Mvar when `|cod2|` is 2. No default is allowed. * Active power flow into the transformer at the winding two bus end in MW when `|cod2|` is 3. No default is allowed. * Not used when `|cod2|` is 0; `vma2` = 1.1 and `vmi2` = 0.9 by default. _Ignored for a two-winding transformer._ """ vma2::Vector{Union{Float64, Missing}} """ The lower limit to `vma1`'s upper limit. See `vma1` for details. _Ignored for a two-winding transformer._ """ vmi2::Vector{Union{Float64, Missing}} """ The number of tap positions available; used when `cod2` is 1 or 2. `ntp2` must be between 2 and 9999. `ntp2` = 33 by default. _Ignored for a two-winding transformer._ """ ntp2::Vector{Union{Int16, Missing}} """ The number of a transformer impedance correction record if this transformer winding’s impedance is to be a function of either off-nominal turns ratio or phase shift angle, or 0 if no transformer impedance correction is to be applied to this transformer winding. See [`ImpedanceCorrections`](@ref). `tab2` = 0 by default. _Ignored for a two-winding transformer._ """ tab2::Vector{Union{Int, Missing}} """ The load drop compensation impedance for voltage controlling transformers entered in pu on system base quantities; used when `cod2` is 1. `cr2` + j`cx2` = 0.0 by default. _Ignored for a two-winding transformer._ """ cr2::Vector{Union{Float64, Missing}} """ See `cr2` for details. _Ignored for a two-winding transformer._ """ cx2::Vector{Union{Float64, Missing}} """ Winding connection angle in degrees; used when `cod2` is 5. There are no restrictions on the value specified for `cnxa2`; if it is outside of the range from -90.0 to +90.0, `cnxa2` is normalized to within this range. `cnxa2` = 0.0 by default. """ cnxa2::Vector{Union{Float64,Missing}} # fifth row, only 3-winding transformers """ When `cw` is 1, `windv3` is the winding three off-nominal turns ratio in pu of winding three bus base voltage, and windv3 = 1.0 by default. When `cw` is 2, `windv3` is the actual winding three voltage in kV, and `windv3` is equal to the base voltage of bus `k` by default. _Ignored for a two-winding transformer._ """ windv3::Vector{Union{Float64, Missing}} """ The nominal (rated) winding three voltage in kV, or zero to indicate that nominal winding two voltage is to be taken as the base voltage of bus `j`. `nomv3` is present for information purposes only; it is not used in any of the calculations for modeling the transformer. `nomv3` = 0.0 by default. _Ignored for a two-winding transformer._ """ nomv3::Vector{Union{Float64, Missing}} """ The winding three phase shift angle in degrees. `ang3` is positive for a positive phase shift from the winding two side to the "T" (or star) point bus. `ang3` must be greater than -180.0 and less than or equal to +180.0. `ang3` = 0.0 by default. _Ignored for a two-winding transformer._ """ ang3::Vector{Union{Float64, Missing}} """ The third winding’s first rating entered in MVA (not current expressed in MVA). _Ignored for a two-winding transformer._ """ rata3::Vector{Union{Float64, Missing}} """ The third winding’s second rating entered in MVA (not current expressed in MVA). _Ignored for a two-winding transformer._ """ ratb3::Vector{Union{Float64, Missing}} """ The third winding’s third rating entered in MVA (not current expressed in MVA). _Ignored for a two-winding transformer._ """ ratc3::Vector{Union{Float64, Missing}} """ The transformer control mode for automatic adjustments of the winding three tap or phase shift angle during power flow solutions: * 0 for no control (fixed tap and phase shift); * ±1 for voltage control; * ±2 for reactive power flow control; * ±3 for active power flow control. If the control mode is entered as a positive number, automatic adjustment of this transformer winding is enabled when the corresponding adjustment is activated during power flow solutions; a negative control mode suppresses the automatic adjustment of this transformer winding. `cod3` = 0 by default. _Ignored for a two-winding transformer._ """ cod3::Vector{Union{Int8, Missing}} # one of: -3, -2, -1, 0, 1, 2, 3 """ The bus number, or extended bus name enclosed in single quotes, of the bus whose voltage is to be controlled by the transformer turns ratio adjustment option of the power flow solution activities when `cod3` is 1. `cont3` should be nonzero only for voltage controlling transformer windings. `cont3` may specify a bus other than `i`, `j`, or `k`; in this case, the sign of `cont3` defines the location of the controlled bus relative to the transformer winding. If `cont3` is entered as a positive number, or a quoted extended bus name, the ratio is adjusted as if bus `cont3` is on the winding one or winding two side of the transformer; if `cont3` is entered as a negative number, or a quoted extended bus name with a minus sign preceding the first character, the ratio is adjusted as if bus `|cont3|` is on the winding three side of the transformer. `cont3` = 0 by default. _Ignored for a two-winding transformer._ """ cont3::Vector{Union{BusNum, Missing}} """ `rma3` is the upper limit (and `rmi3` the lower limit) of either: * Off-nominal turns ratio in pu of winding three bus base voltage when `|cod3|` is 1 or 2 and `cw` is 1; `rma3` = 1.1 and `rmi3` = 0.9 by default. * Actual winding one voltage in kV when `|cod3|` is 1 or 2 and `cw` is 2. No default is allowed. * Phase shift angle in degrees when `|cod3|` is 3. No default is allowed. * Not used when `|cod3|` is 0; `rma3` = 1.1 and `rmi3` = 0.9 by default. _Ignored for a two-winding transformer._ """ rma3::Vector{Union{Float64, Missing}} """ The lower limit to `rma3`'s upper limit. See `rma3` for details. _Ignored for a two-winding transformer._ """ rmi3::Vector{Union{Float64, Missing}} """ `vma3` is the upper limit (and `vmi3` the lower limit) of either: * Voltage at the controlled bus (bus `|cont3|`) in pu when `|cod3|` is 1. `vma3` = 1.1 and `vmi3` = 0.9 by default. * Reactive power flow into the transformer at the winding three bus end in Mvar when `|cod3|` is 2. No default is allowed. * Active power flow into the transformer at the winding two bus end in MW when `|cod3|` is 3. No default is allowed. * Not used when `|cod3|` is 0; `vma3` = 1.1 and `vmi3` = 0.9 by default. _Ignored for a two-winding transformer._ """ vma3::Vector{Union{Float64, Missing}} """ The lower limit to `vma3`'s upper limit. See `vma3` for details. _Ignored for a two-winding transformer._ """ vmi3::Vector{Union{Float64, Missing}} """ The number of tap positions available; used when `cod3` is 1 or 2. `ntp3` must be between 2 and 9999. `ntp3` = 33 by default. _Ignored for a two-winding transformer._ """ ntp3::Vector{Union{Int16, Missing}} """ The number of a transformer impedance correction record if this transformer winding’s impedance is to be a function of either off-nominal turns ratio or phase shift angle, or 0 if no transformer impedance correction is to be applied to this transformer winding. See [`ImpedanceCorrections`](@ref). `tab3` = 0 by default. _Ignored for a two-winding transformer._ """ tab3::Vector{Union{Int, Missing}} """ The load drop compensation impedance for voltage controlling transformers entered in pu on system base quantities; used when `cod3` is 1. `cr3` + j`cx3` = 0.0 by default. _Ignored for a two-winding transformer._ """ cr3::Vector{Union{Float64, Missing}} """ See `cr3` for details. _Ignored for a two-winding transformer._ """ cx3::Vector{Union{Float64, Missing}} """ Winding connection angle in degrees; used when `cod3` is 5. There are no restrictions on the value specified for `cnxa3`; if it is outside of the range from -90.0 to +90.0, `cnxa3` is normalized to within this range. `cnxa3` = 0.0 by default. """ cnxa3::Vector{Union{Float64,Missing}} end # Constants for Transformers data. # # Transformers data is a bit special, as records have 2 possible schemas # see https://github.com/nickrobinson251/PowerFlowData.jl/issues/17 # # Each two-winding transformer ("T2") is 4 lines with (20, 3, 16, 2) columns each in v30, # or (21, 3, 17, 2) columns each in v33. # In both cases, the o2,f2,o3,f3,o4,f4 on row 1 may or may not be present. # Each three-winding transformer ("T3") is 5 lines with (14, 11, 16, 16, 16) columns each in v30, # or (15, 11, 17, 17, 17) columns each in v33. # `TX_COLS[i]` is the (expected) number of columns on line i of X-winding transformer data (in v33). const T2_COLS = (21, 3, 17, 2) const T3_COLS = (21, 11, 17, 17, 17) @assert sum(T3_COLS) == fieldcount(Transformers) # The "columns" (fields) which come at the end of a line in the data. const EOL_COLS = cumsum(T3_COLS) # The fields of the struct that contain data for two-winding transformers. const T2_FIELDS = ( 1:T2_COLS[1]..., (EOL_COLS[1] + 1):(EOL_COLS[1] + T2_COLS[2])..., (EOL_COLS[2] + 1):(EOL_COLS[2] + T2_COLS[3])..., (EOL_COLS[3] + 1):(EOL_COLS[3] + T2_COLS[4])..., ) _is_t2(x::Transformers) = all(ismissing, x.cx3) # Since 2-winding data is a subset of 3-winding data, check at runtime if we have any # 3-winding data and if not just return the subset of columns required for 2-winding data. function Tables.columnnames(x::R) where {R <: Transformers} if _is_t2(x) fieldname.(R, T2_FIELDS) else fieldnames(R) end end function Tables.schema(x::R) where {R <: Transformers} cols = Tables.columnnames(x) typs = eltype.(fieldtype.(R, cols)) return Tables.Schema(cols, typs) end # `DataFrame` just calls `columns`, so we need that to return something that respects the # schema. For `Transformers` schema depends on the values, so cannot rely on the # default `columns(::Records)` method. Tables.columns(x::Transformers) = Tables.columntable(Tables.schema(x), x) # Again, respect the schema. Base.size(x::Transformers) = (length(x), length(Tables.columnnames(x))) ### ### AreaInterchanges ### """ $TYPEDEF Area interchange is a required net export of power from, or net import of power to, a specific area. This does not imply that the power is destined to be transferred to or from any other specific area. To specify transfers between specific pairs of areas see `InterAreaTransfers`. # Fields $TYPEDFIELDS """ struct AreaInterchanges <: Records """ Area number (1 through the maximum number of areas at the current size level) """ i::Vector{AreaNum} """ Bus number, or extended bus name enclosed in single quotes, of the area slack bus for area interchange control. The bus must be a generator (type two) bus in the specified area. Any area containing a system swing bus (type three) must have either that swing bus or a bus number of zero specified for its area slack bus number. `isw` = 0 by default. """ isw::Vector{BusNum} """ Desired net interchange leaving the area (export); entered in MW. `pdes` = 0.0 by default. """ pdes::Vector{Float64} """ Interchange tolerance bandwidth; entered in MW. `ptol` = 10.0 by default. """ ptol::Vector{Float64} """ Alphanumeric identifier assigned to area I. The name may contain up to twelve characters. `arname` is set to twelve blanks by default. """ arname::Vector{InlineString15} end ### ### Two-terminal DC Lines ### """ $TYPEDEF The TwoTerminalDCLines data record depends on the PSSE version: - See [`TwoTerminalDCLines30`](@ref) for PSSE v30 files. - See [`TwoTerminalDCLines33`](@ref) for PSSE v33 files. """ abstract type TwoTerminalDCLines <: Records end for v in (30, 33) T = Symbol(:TwoTerminalDCLines, v) firstdoc, firstcol = if v == 30 :("The DC line number."), :(i::Vector{LineNum}) else :(""" The non-blank alphanumeric identifier assigned to this DC line. Each two-terminal DC line must have a unique `name. `name` may be up to twelve characters and may contain any combination of blanks, uppercase letters, numbers and special characters. name must be enclosed in single or double quotes if it contains any blanks or special characters. No default allowed. """), :(name::Vector{InlineString15}) end @eval begin """ $TYPEDEF The two-terminal DC transmission line model is used to simulate either a point-to-point system with rectifier and inverter separated by a bipolar or mono-polar transmission system or a Back-to-Back system where the rectifier and inverter are physically located at the same site and separated only by a short bus-bar. The data requirements fall into three groups: * Control parameters and set-points * Converter transformers * The DC line characteristics The steady-state model comprising this data enables not only power flow analysis but also establishes the initial steady-state for dynamic analysis. # Fields $TYPEDFIELDS """ struct $T <: TwoTerminalDCLines # Data for each TwoTerminalDCLine is specified on three consecutive lines of the file. # First line: defines various line quantities and control parameters $firstdoc $firstcol """ Control mode: * 0 for blocked, * 1 for power, * 2 for current. `mdc` = 0 by default. """ mdc::Vector{Int8} # 0, 1, or 2 """ The DC line resistance; entered in ohms. No default. """ rdc::Vector{Float64} """ Current (amps) or power (MW) demand. When `mdc` is 1, a positive value of `setvl` specifies desired power at the rectifier and a negative value specifies desired inverter power. No default. """ setvl::Vector{Float64} """ Scheduled compounded DC voltage; entered in kV. No default. """ vschd::Vector{Float64} """ Mode switch DC voltage; entered in kV. When the inverter DC voltage falls below this value and the line is in power control mode (i.e. `mdc` = 1), the line switches to current control mode with a desired current corresponding to the desired power at scheduled DC voltage. `vcmod` = 0.0 by default. """ vcmod::Vector{Float64} """ Compounding resistance; entered in ohms. Gamma and/or TAPI is used to attempt to hold the compounded voltage (``vdci + dccur ∗ rcomp``) at `vschd`. * To control the inverter end DC voltage VDCI, set `rcomp` to zero; * to control the rectifier end DC voltage VDCR, set `rcomp` to the DC line resistance, `rdc`; * otherwise, set `rcomp` to the appropriate fraction of `rdc`. `rcomp` = 0.0 by default. """ rcomp::Vector{Float64} """ Margin entered in per unit of desired DC power or current. This is the fraction by which the order is reduced when alpha is at its minimum (`alfmn`) and the inverter is controlling the line current. `delti` = 0.0 by default. """ delti::Vector{Float64} """ Metered end code of either "R" (for rectifier) or "I" (for inverter). `meter` = "I" by default. """ meter::Vector{InlineString1} # I or R """ Minimum compounded DC voltage; entered in kV. Only used in constant gamma operation (i.e. when `gammx` = `gammn`) when TAPI is held constant and an AC transformer tap is adjusted to control DC voltage (i.e. when `ifi`, `iti`, and `idi` specify a two-winding transformer). `dcvmin` = 0.0 by default. """ dcvmin::Vector{Float64} """ Iteration limit for capacitor commutated two-terminal DC line Newton solution procedure. `cccitmx` = 20 by default. """ cccitmx::Vector{Int32} """ Acceleration factor for capacitor commutated two-terminal DC line Newton solution procedure. `cccacc` = 1.0 by default. """ cccacc::Vector{Float64} # Second line: defines rectifier end data quantities and control parameters """ Rectifier converter bus number, or extended bus name enclosed in single quotes. No default. """ ipr::Vector{BusNum} """ Number of bridges in series (rectifier). No default. """ nbr::Vector{Int32} """ Nominal maximum rectifier firing angle; entered in degrees. No default. """ alfmx::Vector{Float64} """ Minimum steady-state rectifier firing angle; entered in degrees. No default. """ alfmn::Vector{Float64} """ Rectifier commutating transformer resistance per bridge; entered in ohms. No default allowed. """ rcr::Vector{Float64} """ Rectifier commutating transformer reactance per bridge; entered in ohms. No default allowed. """ xcr::Vector{Float64} """ Rectifier primary base AC voltage; entered in kV. No default. """ ebasr::Vector{Float64} """ Rectifier transformer ratio. `trr` = 1.0 by default. """ trr::Vector{Float64} """ Rectifier tap setting. `tapr` = 1.0 by default. """ tapr::Vector{Float64} """ Maximum rectifier tap setting. `tmxr` = 1.5 by default. """ tmxr::Vector{Float64} """ Minimum rectifier tap setting. `tmnr` = 0.51 by default. """ tmnr::Vector{Float64} """ Rectifier tap step; must be positive. `stpr` = 0.00625 by default. """ stpr::Vector{Float64} """ Rectifier firing angle measuring bus number, or extended bus name enclosed in single quotes. The firing angle and angle limits used inside the DC model are adjusted by the difference between the phase angles at this bus and the AC/DC interface (i.e. the converter bus, `ipr`). `icr` = 0 by default. """ icr::Vector{BusNum} """ Winding one side "from bus" number, or extended bus name enclosed in single quotes, of a two-winding transformer. `ifr` = 0 by default. """ ifr::Vector{BusNum} """ Winding two side "to bus" number, or extended bus name enclosed in single quotes, of a two-winding transformer. `itr` = 0 by default. """ itr::Vector{BusNum} """ Circuit identifier; the branch described by `ifr`, `itr`, and `idr` must have been entered as a two-winding transformer; an AC transformer may control at most only one DC converter. `idr` = '1' by default. If no branch is specified, `tapr` is adjusted to keep alpha within limits; otherwise, `tapr` is held fixed and this transformer’s tap ratio is adjusted. The adjustment logic assumes that the rectifier converter bus is on the winding two side of the transformer. The limits `tmxr` and `tmnr` specified here are used; except for the transformer control mode flag (`cod` of `Transformers`), the AC tap adjustment data is ignored. """ idr::Vector{InlineString3} """ Commutating capacitor reactance magnitude per bridge; entered in ohms. `xcapr` = 0.0 by default. """ xcapr::Vector{Float64} # Third line: contains the inverter quantities corresponding to the rectifier quantities # specified on the second line above. The significant difference is that the control angle # `ALFA` for the rectifier is replaced by the control angle `GAMMA` for the inverter. """ Inverter converter bus number, or extended bus name enclosed in single quotes. """ ipi::Vector{BusNum} """ Number of bridges in series (inverter). """ nbi::Vector{Int32} """ Nominal maximum inverter firing angle; entered in degrees. """ gammx::Vector{Float64} """ Minimum steady-state inverter firing angle; entered in degrees. """ gammn::Vector{Float64} """ Inverter commutating transformer resistance per bridge; entered in ohms. """ rci::Vector{Float64} """ Inverter commutating transformer reactance per bridge; entered in ohms. """ xci::Vector{Float64} """ Inverter primary base AC voltage; entered in kV. """ ebasi::Vector{Float64} """ Inverter transformer ratio. """ tri::Vector{Float64} """ Inverter tap setting. """ tapi::Vector{Float64} """ Maximum inverter tap setting. """ tmxi::Vector{Float64} """ Minimum inverter tap setting. """ tmni::Vector{Float64} """ Inverter tap step; must be positive. """ stpi::Vector{Float64} """ Inverter firing angle measuring bus number, or extended bus name enclosed in single quotes. """ ici::Vector{BusNum} """ Winding one side "from bus" number, or extended bus name enclosed in single quotes, of a two-winding transformer. """ ifi::Vector{BusNum} """ Winding two side "to bus" number, or extended bus name enclosed in single quotes, of a two-winding transformer. """ iti::Vector{BusNum} """ Circuit identifier; the branch described by `ifr`, `itr`, and `idr` must have been entered as a two-winding transformer; an AC transformer may control at most only one DC converter. """ idi::Vector{InlineString3} """ Commutating capacitor reactance magnitude per bridge; entered in ohms. """ xcapi::Vector{Float64} end end # eval end """ $TYPEDEF Voltage source converter (VSC) DC lines. Defines line quantities and control parameters, and the converter buses (converter 1 and converter 2), along with their data quantities and control parameters. # Fields $TYPEDFIELDS """ struct VSCDCLines <: Records # First line of data """ The non-blank alphanumeric identifier assigned to this VSC DC line. Each VSC DC line must have a unique `name`. The name may be up to twelve characters and must be enclosed in single quotes. `name` may contain any combination of blanks, uppercase letters, numbers and special characters. No default. """ name::Vector{InlineString15} """ Control mode: * 0 for out-of-service, * 1 for in-service. `mdc` = 1 by default. """ mdc::Vector{Int8} """ The DC line resistance entered in ohms. `rdc` must be positive. No default. """ rdc::Vector{Float64} """ An owner number; (1 through the maximum number of owners at the current size level). Each VSC DC line may have up to four owners. See [`Owners`](@ref). By default, `01` is 1, and O2, O3 and O4 are zero. """ o1::Vector{OwnerNum} """ The fraction of total ownership assigned to owner `o1`; each F_i must be positive. The F_i values are normalized such that they sum to 1.0 before they are placed in the working case. By default, each F_i is 1.0. """ f1::Vector{Float64} # TODO: are o2, f2, o3, f3, o4, f4 always present? """ An owner number; (1 through the maximum number of owners at the current size level). See [`Owners`](@ref). By default, `o2` is zero. """ o2::Vector{OwnerNum} """ The fraction of total ownership assigned to owner `o2`; must be positive. By default, `f2` is 1.0. """ f2::Vector{Float64} """ An owner number; (1 through the maximum number of owners at the current size level). By default, `o3` is zero. """ o3::Vector{OwnerNum} """ The fraction of total ownership assigned to owner `o2`; must be positive. By default, `f3` is 1.0. """ f3::Vector{Float64} """ An owner number; (1 through the maximum number of owners at the current size level). By default, `o4` is zero. """ o4::Vector{OwnerNum} """ The fraction of total ownership assigned to owner `o2`; must be positive. By default, `f4` is 1.0. """ f4::Vector{Float64} # Second line: data for Converter 1 "Converter 1 bus number, or extended bus name enclosed in single quotes. No default." ibus1::Vector{BusNum} """ Code for the type of converter 1 DC control: * 0 for converter out-of-service, * 1 for DC voltage control, * 2 for MW control. When both converters are in-service, exactly one converter of each VSC DC line must be type 1. No default. """ type1::Vector{Int8} # 0, 1, or 2 """ Converter 1 AC control mode: * 1 for AC voltage control, * 2 for fixed AC power factor. `mode` = 1 by default. """ mode1::Vector{Int8} # 1 or 2 """ Converter 1 DC setpoint. * For `type` = 1, `dcset` is the scheduled DC voltage on the DC side of the converter bus; entered in kV. * For `type` = 2, `dcset` is the power demand, where a positive value specifies that the converter is feeding active power into the AC network at bus `ibus`, and a negative value specifies that the converter is withdrawing active power from the AC network at bus `ibus`; entered in MW. No default . """ docet1::Vector{Float64} """ Converter 1 AC setpoint. * For `mode` = 1, `acset` is the regulated AC voltage setpoint; entered in pu. * For `mode` = 2, `acset` is the power factor setpoint. `acset` = 1.0 by default. """ acset1::Vector{Float64} """ Coefficients of the linear equation used to calculate converter 1 losses: ``KW_{conv loss} = A_{loss} + I_{dc} * B_{loss}`` `aloss` is entered in kW. `aloss` = `bloss` = 0.0 by default. """ aloss1::Vector{Float64} """ Coefficients of the linear equation used to calculate converter 1 losses: ``KW_{conv loss} = A_{loss} + I_{dc} * B_{loss}`` `bloss` is entered in kW/amp. `aloss` = `bloss` = 0.0 by default. """ bloss1::Vector{Float64} "Minimum converter 1 losses; entered in kW. `minloss` = 0.0 by default." minloss1::Vector{Float64} """ Converter 1 MVA rating; entered in MVA. `smax` = 0.0 to allow unlimited converter MVA loading. `smax` = 0.0 by default. """ smax1::Vector{Float64} """ Converter 1 AC current rating; entered in amps. `imax` = 0.0 to allow unlimited converter current loading. If a positive `imax` is specified, the base voltage assigned to bus `ibus` must be positive. `imax` = 0.0 by default. """ imax1::Vector{Float64} """ Power weighting factor fraction (0.0 < `pwf` < 1.0) used in reducing the active power order and either the reactive power order (when `mode` is 2) or the reactive power limits (when `mode` is 1) when the converter MVA or current rating is violated. When `pwf` is 0.0, only the active power is reduced; when `PWF` is 1.0, only the reactive power is reduced; otherwise, a weighted reduction of both active and reactive power is applied. `pwf` = 1.0 by default. """ pwf1::Vector{Float64} """ Reactive power upper limit; entered in Mvar. A positive value of reactive power indicates reactive power flowing into the AC network from the converter; a negative value of reactive power indicates reactive power withdrawn from the AC network. Not used if `mode` = 2. `maxq` = 9999.0 by default. """ maxq1::Vector{Float64} """ Reactive power lower limit; entered in Mvar. A positive value of reactive power indicates reactive power flowing into the AC network from the converter; a negative value of reactive power indicates reactive power withdrawn from the AC network. Not used if `mode` = 2. `minq` = -9999.0 by default. """ minq1::Vector{Float64} """ Bus number, or extended bus name enclosed in single quotes, of a remote type 1 or 2 bus whose voltage is to be regulated by this converter to the value specified by `acset`. If bus `remot` is other than a type 1 or 2 bus, bus `ibus` regulates its own voltage to the value specified by `acset`. `remot` is entered as zero if the converter is to regulate its own voltage. Not used if `mode` = 2. `remot` = 0 by default. """ remot1::Vector{BusNum} """ Percent of the total Mvar required to hold the voltage at the bus controlled by bus `ibus` that are to be contributed by this VSC; `rmpct` must be positive. `rmpct` is needed only if `remot` specifies a valid remote bus and there is more than one local or remote voltage controlling device (plant, switched shunt, FACTS device shunt element, or VSC DC line converter) controlling the voltage at bus `remot` to a setpoint, or `remot` is zero but bus `ibus` is the controlled bus, local or remote, of one or more other setpoint mode voltage controlling devices. Not used if `mode` = 2. `rmpct` = 100.0 by default. """ rmpct1::Vector{Float64} # Third line: data for Converter 2 "Converter 2 bus number, or extended bus name enclosed in single quotes. No default." ibus2::Vector{BusNum} "Code for the type of converter 2 DC control" type2::Vector{Int8} # 0, 1, or 2 "Converter 2 AC control mode" mode2::Vector{Int8} # 1 or 2 "Converter 2 DC setpoint." docet2::Vector{Float64} " Converter 2 AC setpoint." acset2::Vector{Float64} "Coefficient ``A_{loss}`` of the linear equation used to calculate converter 2 losses." aloss2::Vector{Float64} "Coefficient ``B_{loss}`` of the linear equation used to calculate converter 2 losses." bloss2::Vector{Float64} "Minimum converter 2 losses; entered in kW. `minloss` = 0.0 by default." minloss2::Vector{Float64} "Converter 2 MVA rating; entered in MVA." smax2::Vector{Float64} "Converter 2 AC current rating; entered in amps." imax2::Vector{Float64} "Power weighting factor fraction (0.0 < `pwf` < 1.0) for converter 2." pwf2::Vector{Float64} "Reactive power upper limit for converter 2; entered in Mvar." maxq2::Vector{Float64} "Reactive power lower limit for converter 2; entered in Mvar." minq2::Vector{Float64} "Bus number to be regulated by converter 2 to the value specified by `acset2`." remot2::Vector{BusNum} rmpct2::Vector{Float64} end """ $TYPEDEF The SwitchedShunts data record depends on the PSSE version: - See [`SwitchedShunts30`](@ref) for PSSE v30 files. - See [`SwitchedShunts33`](@ref) for PSSE v33 files. """ abstract type SwitchedShunts <: Records end for v in (30, 33) T = Symbol(:SwitchedShunts, v) adjm_doc, adjm_col = if v == 33 :(""" Adjustment method: * 0 - steps and blocks are switched on in input order, and off in reverse input order; this adjustment method was the only method available prior to PSS®E-32.0. * 1 - steps and blocks are switched on and off such that the next highest (or lowest, as appropriate) total admittance is achieved. `adjm` = 0 by default. """), :(adjm::Vector{Bool}) else :(""), :("") end stat_doc, stat_col = if v == 33 :(""" Initial switched shunt status of one for in-service and zero for out-of-service. `stat` = 1 by default. """), :(stat::Vector{Bool}) else :(""), :("") end @eval begin """ $TYPEDEF Represents switched shunt devices, in the form of capacitors and/or reactors on a network bus. The switched shunt elements at a bus may consist entirely of blocks of shunt reactors (each Bi is a negative quantity) or entirely of blocks of capacitor banks (each Bi is a positive quantity). Any bus can have both switched capacitors and reactors. Each network bus to be represented in PSS/E with switched shunt admittance devices must have a switched shunt data record specified for it. The switched shunts are represented with up to eight blocks of admittance, each one of which consists of up to nine steps of the specified block admittance. # Fields $TYPEDFIELDS """ struct $T <: SwitchedShunts """ Bus number, or extended bus name enclosed in single quotes. """ i::Vector{BusNum} """ Control mode: * 0 - fixed * 1 - discrete adjustment, controlling voltage locally or at bus `swrem` * 2 - continuous adjustment, controlling voltage locally or at bus `swrem` * 3 - discrete adjustment, controlling reactive power output of the plant at bus `swrem` * 4 - discrete adjustment, controlling reactive power output of the VSC DC line converter at bus `swrem` of the VSC DC line whose name is specified as `rmidnt` * 5 - discrete adjustment, controlling admittance setting of the switched shunt at bus `swrem` `modsw` = 1 by default. """ modsw::Vector{Int8} # 0, 1, 2, 3, 4, or 5 $adjm_doc $adjm_col $stat_doc $stat_col """ When `modsw` is 1 or 2, the controlled voltage upper limit; entered in pu. When `modsw` is 3, 4 or 5, the controlled reactive power range upper limit; entered in pu of the total reactive power range of the controlled voltage controlling device. `vswhi` is not used when `modsw` is 0. `vswhi` = 1.0 by default. """ vswhi::Vector{Float64} """ When `modsw` is 1 or 2, the controlled voltage lower limit; entered in pu. When `modsw` is 3, 4 or 5, the controlled reactive power range lower limit; entered in pu of the total reactive power range of the controlled voltage controlling device. `vswlo` is not used when `modsw` is 0. `vswlo` = 1.0 by default. """ vswlo::Vector{Float64} """ Bus number, or extended bus name enclosed in single quotes, of the bus whose voltage or connected equipment reactive power output is controlled by this switched shunt. * When `modsw` is 1 or 2, `swrem` is entered as 0 if the switched shunt is to regulate its own voltage; otherwise, `swrem` specifies the remote type one or two bus whose voltage is to be regulated by this switched shunt. * When `modsw` is 3, `swrem` specifies the type two or three bus whose plant reactive power output is to be regulated by this switched shunt. Set `swrem` to "I" if the switched shunt and the plant which it controls are connected to the same bus. * When `modsw` is 4, `swrem` specifies the converter bus of a VSC dc line whose converter reactive power output is to be regulated by this switched shunt. Set `swrem` to "I" if the switched shunt and the VSC dc line converter which it controls are connected to the same bus. * When `modsw` is 5, `swrem` specifies the remote bus to which the switched shunt whose admittance setting is to be regulated by this switched shunt is connected. * `swrem` is not used when `modsw` is 0. `swrem` = 0 by default. """ swrem::Vector{BusNum} """ Percent of the total Mvar required to hold the voltage at the bus controlled by bus `I` that are to be contributed by this switched shunt; `rmpct` must be positive. `rmpct` is needed only if `swrem` specifies a valid remote bus and there is more than one local or remote voltage controlling device (plant, switched shunt, FACTS device shunt element, or VSC DC line converter) controlling the voltage at bus `swrem` to a setpoint, or `swrem` is zero but bus I is the controlled bus, local or remote, of one or more other setpoint mode voltage controlling devices. Only used if `modsw` = 1 or 2. `rmpct` = 100.0 by default. """ rmpct::Vector{Float64} """ When `modsw` is 4, the name of the VSC DC line whose converter bus is specified in `swrem`. `rmidnt` is not used for other values of `modsw`. `rmidnt` is a blank name by default. """ rmidnt::Vector{InlineString15} """ Initial switched shunt admittance; entered in Mvar at unity voltage. `binit` = 0.0 by default. """ binit::Vector{Float64} """ Number of steps for block i. The first zero value of N_i or B_i is interpreted as the end of the switched shunt blocks for bus I. `ni` = 0 by default. """ n1::Vector{Int32} """ Admittance increment for each of N_i steps in block i; entered in Mvar at unity voltage. `bi` = 0.0 by default. """ b1::Vector{Float64} n2::Vector{Int32} b2::Vector{Float64} n3::Vector{Int32} b3::Vector{Float64} n4::Vector{Int32} b4::Vector{Float64} n5::Vector{Int32} b5::Vector{Float64} n6::Vector{Int32} b6::Vector{Float64} n7::Vector{Int32} b7::Vector{Float64} n8::Vector{Int32} b8::Vector{Float64} end end # eval end """ $TYPEDEF Transformer impedance corrections are used to model a change of transformer impedance as off-nominal turns ratio or phase shift angle is adjusted. The ``T_i`` values on a transformer impedance correction record must all be either tap ratios or phase shift angles. They must be entered in strictly ascending order; i.e. for each ``i``, ``T_{i+1} > T_i``. Each ``F_i`` entered must be greater than zero. On each record, at least 2 pairs of values must be specified and up to 11 may be entered. The ``T_i`` values that are a function of tap ratio (rather than phase shift angle) are in units of the controlling winding’s off-nominal turns ratio in pu of the controlling winding’s bus base voltage. Although a transformer winding is assigned to an impedance correction record, each record may be shared among many transformer windings. If the first ``T`` in a record is less than 0.5 or the last ``T`` entered is greater than 1.5, ``T`` is assumed to be the phase shift angle and the impedance of each transformer winding assigned to the record is treated as a function of phase shift angle. Otherwise, the impedances of the transformer windings assigned to the record are made sensitive to off-nominal turns ratio. # Fields $TYPEDFIELDS """ struct ImpedanceCorrections <: Records "Impedance correction record number." i::Vector{Int16} """ Either off-nominal turns ratio in pu or phase shift angle in degrees. `ti` = 0.0 by default. """ t1::Vector{Float64} """ Scaling factor by which transformer nominal impedance is to be multiplied to obtain the actual transformer impedance for the corresponding `ti`. `fi` = 0.0 by default. """ f1::Vector{Float64} t2::Vector{Float64} f2::Vector{Float64} t3::Vector{Float64} f3::Vector{Float64} t4::Vector{Float64} f4::Vector{Float64} t5::Vector{Float64} f5::Vector{Float64} t6::Vector{Float64} f6::Vector{Float64} t7::Vector{Float64} f7::Vector{Float64} t8::Vector{Float64} f8::Vector{Float64} t9::Vector{Float64} f9::Vector{Float64} t10::Vector{Float64} f10::Vector{Float64} t11::Vector{Float64} f11::Vector{Float64} end ### ### MultiTerminalDCLines ### # `MultiTerminalDCLines` records are a bit special... # Each "record" is actually # - a row of data about the line, followed by # - arbitrary number of rows about the converters # - arbitrary number of rows about the buses # - arbitrary number of rows about the links # So we treat `MultiTerminalDCLines` as a single column table, where each value is a # dedicated `MultiTerminalDCLine` object. And each `MultiTerminalDCLine` is a bit like a # `Network`, with a `DCLineID` (`CaseID`) and 3 `Records` (`ACConverters, `DCBuses`, `DCLinks`) """ $TYPEDEF The DCLineID data record depends on the PSSE version: - See [`DCLineID30`](@ref) for PSSE v30 files. - See [`DCLineID33`](@ref) for PSSE v33 files. """ abstract type DCLineID <: IDRow end for v in (30, 33) T = Symbol(:DCLineID, v) firstdoc, firstcol = if v == 30 :("Multi-terminal DC line number."), :(i::LineNum) else :(""" The non-blank alphanumeric identifier assigned to this DC line. Each multi-terminal DC line must have a unique `name. `name` may be up to twelve characters and may contain any combination of blanks, uppercase letters, numbers and special characters. name must be enclosed in single or double quotes if it contains any blanks or special characters. No default allowed. """), :(name::InlineString15) end @eval begin """ $TYPEDEF # Fields $TYPEDFIELDS """ struct $T <: DCLineID $firstdoc $firstcol "Number of AC converter station buses in multi-terminal DC line `i`. No default." nconv::Int8 "Number of DC buses in multi-terminal DC line `i` (`nconv` < `ndcbs`). No default." ndcbs::Int8 "Number of DC links in multi-terminal DC line `i`. No default." ndcln::Int """ Control mode * 0 - blocked * 1 - power * 2 - current `mdc` = 0 by default. """ mdc::Int8 # 0, 1, or 2 """ Bus number, or extended bus name enclosed in single quotes, of the AC converter station bus that controls DC voltage on the positive pole of multi-terminal DC line `i`. Bus `vconv` must be a positive pole inverter. No default. """ vconv::BusNum """ Mode switch DC voltage; entered in kV. When any inverter DC voltage magnitude falls below this value and the line is in power control mode (i.e. `mdc` = 1), the line switches to current control mode with converter current setpoints corresponding to their desired powers at scheduled DC voltage. `vcmod` = 0.0 by default. """ vcmod::Float64 """ Bus number, or extended bus name enclosed in single quotes, of the AC converter station bus that controls DC voltage on the negative pole of multi-terminal DC line `i`. If any negative pole converters are specified (see below), bus `vconvn` must be a negative pole inverter. If the negative pole is not being modeled, `vconvn` must be specified as zero. `vconvn` = 0 by default. """ vconvn::BusNum end # Accept arguments as keywords to get both a `repr` that's both pretty and parseable. $T(; kwargs...) = $T(values(kwargs)...) end # eval end Tables.columnnames(::T) where T<:DCLineID = fieldnames(T) Tables.getcolumn(dcln::DCLineID, i::Int) = getfield(dcln, i) Tables.getcolumn(dcln::DCLineID, nm::Symbol) = getfield(dcln, nm) """ $TYPEDEF # Fields $TYPEDFIELDS """ struct ACConverters <: Records """ AC converter bus number, or extended bus name enclosed in single quotes. No default. """ ib::Vector{BusNum} "Number of bridges in series. No default." n::Vector{Int8} "Nominal maximum ALPHA or GAMMA angle; entered in degrees. No default." angmx::Vector{Float64} "Minimum steady-state ALPHA or GAMMA angle; entered in degrees. No default." angmn::Vector{Float64} "Commutating resistance per bridge; entered in ohms. No default." rc::Vector{Float64} "Commutating reactance per bridge; entered in ohms. No default." xc::Vector{Float64} "Primary base AC voltage; entered in kV. No default." ebas::Vector{Float64} "Actual transformer ratio. `tr` = 1.0 by default." tr::Vector{Float64} "Tap setting. `tap` = 1.0 by default." tap::Vector{Float64} "Maximum tap setting. `tpmx` = 1.5 by default." tpmx::Vector{Float64} "Minimum tap setting. `tpmx` = 0.51 by default." tpmn::Vector{Float64} "Tap step; must be a positive number. `tstp` = 0.00625 by default." tstp::Vector{Float64} """ Converter setpoint. When `ib` is equal to `vconv` or `vconvn`, `setvl` specifies the scheduled DC voltage magnitude, entered in kV, across the converter. For other converter buses, `setvl` contains the converter current (amps) or power (MW) demand; a positive value of `setvl` indicates that bus `ib` is a rectifier, and a negative value indicates an inverter. No default. """ setvl::Vector{Float64} """ Converter participation factor. When the order at any rectifier in the multi-terminal DC line is reduced, either to maximum current or margin, the orders at the remaining converters on the same pole are modified according to their ``DCPF``s to: ``SETVL + (DCPF/SUM)∗R``` where ``SUM`` is the sum of the ``DCPF``s at the unconstrained converte rs on the same pole as the constrained rectifier, and ``R`` is the order reduction at the constrained rectifier. `dcpf` = 1. by default. """ dcpf::Vector{Float64} """ Rectifier margin entered in per unit of desired DC power or current. The converter order reduced by this fraction, ``(1.0 - MARG) ∗ SETVL``, defines the minimum order for this rectifier. `marg` is used only at rectifiers. `marg` = 0.0 by default. """ marg::Vector{Float64} """ Converter code. A positive value or zero must be entered if the converter is on the positive pole of multi-terminal DC line `i`. A negative value must be entered for negative pole converters. `cnvcod` = 1 by default. """ cnvcod::Vector{Int8} end """ $TYPEDEF # Fields $TYPEDFIELDS """ struct DCBuses <: Records """ DC bus number (1 to `NDCBS`). The DC buses are used internally within each multi-terminal DC line and must be numbered 1 through `ndcbs`. no default. """ idc::Vector{BusNum} """ AC converter bus number, or extended bus name enclosed in single quotes, or zero. Each converter station bus specified in a converter record must be specified as `ib` in exactly one DC bus record. DC buses that are connected only to other DC buses by DC links and not to any AC converter buses must have a zero specified for `ib`. A DC bus specified as `idc2` on one or more other DC bus records must have a zero specified for `ib` on its own DC bus record. `ib` = 0 by default. """ ib::Vector{BusNum} """ Area number (1 through the maximum number of areas at the current size level). `ia` = 1 by default. """ ia::Vector{AreaNum} """ Zone number (1 through the maximum number of zones at the current size level). `zone` = 1 by default. """ zone::Vector{ZoneNum} """ Alphanumeric identifier assigned to DC bus `idc`. The name may be up to twelve characters and must be enclosed in single quotes. `name` may contain any combination of blanks, uppercase letters, numbers, and special characters. `name` is twelve blanks by default. """ name::Vector{InlineString15} idc2::Vector{BusNum} """ Second DC bus to which converter `ib` is connected, or zero if the converter is connected directly to ground. * For voltage controlling converters, this is the DC bus with the lower DC voltage magnitude and `setvl` specifies the voltage difference between buses `idc` and `idc2`. * For rectifiers, DC buses should be specified such that power flows from bus `idc2` to bus `idc`. * For inverters, DC buses should be specified such that power flows from bus `idc` to bus `idc2`. `idc2` is ignored on those dc bus records that have `ib` specified as zero. `idc2` = 0 by default. """ rgrnd::Vector{Float64} """ Owner number (1 through the maximum number of owners at the current size level). `owner` = 1 by default. """ owner::Vector{OwnerNum} end """ $TYPEDEF # Fields $TYPEDFIELDS """ struct DCLinks <: Records "Branch \"from bus\" DC bus number." idc::Vector{BusNum} """ Branch "to bus" DC bus number. `jdc` is entered as a negative number to designate it as the metered end for area and zone interchange calculations. Otherwise, bus `idc` is assumed to be the metered end. """ jdc::Vector{BusNum} """ One-character uppercase alphanumeric branch circuit identifier. It is recommended that single circuit branches be designated as having the circuit identifier "1". `dcckt` = "1" by default. """ dcckt::Vector{InlineString1} "DC link resistance, entered in ohms. No default." rdc::Vector{Float64} """ DC link inductance, entered in mH. `ldc` is not used by the power flow solution activities but is available to multi-terminal DC line dynamics models. `ldc` = 0.0 by default. """ ldc::Vector{Float64} end """ $TYPEDEF Each multi-terminal DC line record defines the number of converters, number of DC buses and number of DC links as well as related bus numbers and control mode (see [`DCLineID`](@ref)), then data for: * each converter (see [`ACConverters`](@ref)) * each DC bus (see [`DCBuses`](@ref)) * each DC link (see [`DCLinks`](@ref)) # Fields $TYPEDFIELDS """ struct MultiTerminalDCLine "High-level data about this line." line_id::DCLineID "`line.nconv` converter records." converters::ACConverters "`line.ndcbs` DC bus records." buses::DCBuses "`line.ndcln` DC link records." links::DCLinks end """ $TYPEDEF PSS/E allows the representation of up to 12 converter stations on one multi-terminal DC line. Further, it allows the modelling of multi-terminal networks of up to 20 buses including the AC convertor buses and the DC network buses. ## Notes The following are notes on multi-terminal links: * Conventional two-terminal and multi-terminal DC lines are stored separately. Therefore, there may simultaneously exist, for example, a two-terminal DC line identified as DC line number 1 along with a multi-terminal line numbered 1. * Multi-terminal lines should have at least three converter terminals; conventional DC lines consisting of two terminals should be modeled as two-terminal lines (see [`TwoTerminalDCLines`](@ref). * AC converter buses may be type one, two, or three buses. Generators, loads, fixed and switched shunt elements, other DC line converters, and FACTS device sending ends are permitted at converter buses. * Each multi-terminal DC line is treated as a subnetwork of DC buses and DC links connecting its AC converter buses. For each multi-terminal DC line, the DC buses must be numbered 1 through `ndcbs`. * Each AC converter bus must be specified as `ib` on exactly one DC bus record; there may be DC buses connected only to other DC buses by DC links but not to any AC converter bus. * AC converter bus `ib` may be connected to a DC bus `idc`, which is connected directly to ground. `ib` is specified on the DC bus record for DC bus `idc`; the `idc2` field is specified as zero. * Alternatively, AC converter bus `ib` may be connected to two DC buses `idc` and `idc2`, the second of which is connected to ground through a specified resistance. `ib` and `idc2` are specified on the DC bus record for DC bus `idc`; on the DC bus record for bus `idc2`, the AC converter bus and second DC bus fields (`ib` and `idc2`, respectively) must be specified as zero and the grounding resistance is specified as `rgrnd`. * The same DC bus may be specified as the second DC bus for more than one AC converter bus. * All DC buses within a multi-terminal DC line must be reachable from any other point within the subnetwork. * The area number assigned to DC buses and the metered end designation of DC links are used in calculating area interchange and assigning losses as well as in the interchange control option of the power flow solution activities. Similarly, the zone assignment and metered end specification are used in Zonal reporting activities. # Fields $TYPEDFIELDS """ struct MultiTerminalDCLines{I<:DCLineID} <: Records lines::Vector{MultiTerminalDCLine} # Avoid ambiguity with generic 1-arg Records constructor MultiTerminalDCLines{I}(lines::AbstractVector) where I = new{I}(lines) MultiTerminalDCLines{I}(sizehint::Integer=0) where I = new{I}(sizehint!(MultiTerminalDCLine[], sizehint)) end MultiTerminalDCLines(args...) = MultiTerminalDCLines{DCLineID30}(args...) ### ### MultiSectionLineGroups ### """ $TYPEDEF The MultiSectionLineGroups data record depends on the PSSE version: - See [`MultiSectionLineGroups30`](@ref) for PSSE v30 files. - See [`MultiSectionLineGroups33`](@ref) for PSSE v33 files. """ abstract type MultiSectionLineGroups <: Records end for v in (30, 33) T = Symbol(:MultiSectionLineGroups, v) met_doc, met_col = if v == 33 :(""" Metered end flag. * ≤1 to designate bus `i` as the metered end. * ≥2 to designate bus `j` as the metered end. `met` = 1 by default. """), :(met::Vector{Int8}) else :(""), :("") end @eval begin """ $TYPEDEF Multi-section line groups. Transmission lines commonly have a series of sections with varying physical structures. The section might have different tower configurations, conductor types and bundles or various combinations of these. The physical differences can result in the sections having different resistance, reactance and charging. A transmission line with several distinct sections can be represented as one multi-section line group. The DUM_i values on each record define the branches connecting bus `i` to bus `j`, and are entered so as to trace the path from bus `i` to bus `j`. ## Example For a multi-section line grouping consisting of three line sections (and hence two dummy buses): | From | To | Circuit | |------|----|---------| | I | D1 | C1 | | D1 | D2 | C2 | | D2 | J | C3 | If this multi-section line grouping is to be assigned the line identifier `id` "&1", the corresponding multi-section line grouping data record is given by: ``` I, J, '&1', D1, D2 ``` Or in v33 (and if I is the metered end): ``` I, J, '&1', 1, D1, D2 ``` ## Notes The following notes apply to multi-section line groups: * Up to 10 line sections (and hence 9 dummy buses) may be defined in each multi-section line grouping. A branch may be a line section of at most one multi-section line grouping. * Each dummy bus must have exactly two branches connected to it, both of which must be members of the same multi-section line grouping. A multi-section line dummy bus may not be a converter bus of a DC transmission line. A FACTS control device may not be connected to a multi-section line dummy bus. * The status of line sections and type codes of dummy buses are set such that the multi-section line is treated as a single entity with regards to its service status. # Fields $TYPEDFIELDS """ struct $T <: MultiSectionLineGroups "\"From bus\" number, or extended bus name enclosed in single quotes." i::Vector{BusNum} """ "To bus" number, or extended bus name enclosed in single quotes. `j` is entered as a negative number or with a minus sign before the first character of the extended bus name to designate it as the metered end; otherwise, bus `i` is assumed to be the metered end. """ j::Vector{BusNum} """ Two-character upper-case alphanumeric multi-section line grouping identifier. The first character must be an ampersand ("&"). `id` = "&1" by default. """ id::Vector{InlineString3} $met_doc $met_col """ Bus numbers, or extended bus names enclosed in single quotes, of the dummy buses connected by the branches that comprise this multi-section line grouping. No defaults. """ dum1::Vector{BusNum} dum2::Vector{Union{BusNum,Missing}} dum3::Vector{Union{BusNum,Missing}} dum4::Vector{Union{BusNum,Missing}} dum5::Vector{Union{BusNum,Missing}} dum6::Vector{Union{BusNum,Missing}} dum7::Vector{Union{BusNum,Missing}} dum8::Vector{Union{BusNum,Missing}} dum9::Vector{Union{BusNum,Missing}} end end # eval end """ $TYPEDEF All buses (AC and DC) and loads can be assigned to reside in a zone of the network. To enable this facility, each zone should be assigned a name and number. Specifically, the zone number is entered as part of the data records for the [`Buses`](@ref) and [`Loads`](@ref). The use of zones enables the user to develop reports and to check results on the basis of zones and, consequently be highly specific when reporting and interpreting analytical results. # Fields $TYPEDFIELDS """ struct Zones <: Records "Zone number (1 through the maximum number of zones at the current size level)" i::Vector{ZoneNum} """ Alphanumeric identifier assigned to zone `i`. The name may contain up to twelve characters and must be enclosed in single quotes. `zoname` may be any combination of blanks, uppercase letters, numbers, and special characters. `zoname` is set to twelve blanks by default. """ zoname::Vector{InlineString15} end """ $TYPEDEF Using PSS/E, the user has the capability to identify in which area each [bus](@ref Buses) or [load](@ref Loads) resides. Further, the user can schedule active power transfers between pairs of areas. See [`AreaInterchanges`](@ref) for desired net interchange. # Fields $TYPEDFIELDS """ struct InterAreaTransfers <: Records "\"From area\" number (1 through the maximum number of areas at the current size level)." arfrom::Vector{AreaNum} "\"To area\" number (1 through the maximum number of areas at the current size level)." arto::Vector{AreaNum} """ Single-character (0 through 9 or A through Z) upper-case interarea transfer identifier used to distinguish among multiple transfers between areas `arfrom` and `arto`. `trid` = "1" by default. """ trid::Vector{InlineString1} """ MW comprising this transfer. A positive `ptran` indicates that area `arfrom` is selling to area `arto`. `ptran` = 0.0 by default. """ ptran::Vector{Float64} end """ $TYPEDEF PSS/E allows the user to identify which organization or utility actually owns a facility, a piece of equipment, or a load. Major network elements can have up to four different owners. This facilitates interpretation of results and reporting of results on the basis of ownership. # Fields $TYPEDFIELDS """ struct Owners <: Records "Owner number (1 through the maximum number of owners at the current size level)." i::Vector{OwnerNum} """ Alphanumeric identifier assigned to owner `i`. The name may contain up to twelve characters and must be enclosed in single quotes. `owname` may be any combination of blanks, uppercase letters, numbers, and special characters. `owname` is set to twelve blanks by default. """ owname::Vector{InlineString15} end """ $TYPEDEF The FACTSDevices data record depends on the PSSE version: - See [`FACTSDevices30`](@ref) for PSSE v30 files. - See [`FACTSDevices33`](@ref) for PSSE v33 files. """ abstract type FACTSDevices <: Records end for v in (30, 33) T = Symbol(:FACTSDevices, v) firstdoc, firstcol = if v == 30 :("FACTS device number."), :(n::Vector{Int16}) else :(""" The non-blank alphanumeric identifier assigned to this FACTS device. Each FACTS device must have a unique `name. `name` may be up to twelve characters and may contain any combination of blanks, uppercase letters, numbers and special characters. name must be enclosed in single or double quotes if it contains any blanks or special characters. No default allowed. """), :(name::Vector{InlineString15}) end remot_doc, remot_col = if v == 33 :(""" Bus number, or extended bus name enclosed in single quotes, of a remote Type 1 or 2 bus where voltage is to be regulated by the shunt element of this FACTS device to the value specified by `vset`. if bus `remot` is other than a type 1 or 2 bus, the shunt element regulates voltage at the sending end bus to the value specified by `vset`. `remot` is entered as zero if the shunt element is to regulate voltage at the sending end bus and must be zero if the sending end bus is a type 3 (swing) bus. `remot` = 0 by default. """), :(remot::Vector{BusNum}) else :(""), :("") end mname_doc, mname_col = if v == 33 :(""" The name of the FACTS device that is the IPFC master device when this FACTS device is the "slave" device of an IPFC (i.e., its `mode` is specified as 6 or 8). `mname` must be enclosed in single or double quotes if it contains any blanks or special characters. `mname` is blank by default. """), :(mname::Vector{InlineString15}) else :(""), :("") end @eval begin """ $TYPEDEF Flexible AC Transmission System devices. There is a multiplicity of Flexible AC Transmission System devices currently available comprising shunt devices, such as the Static Compensator (STATCOM), series devices such as the Static Synchronous Series Compensator (SSSC), combined devices such as the Unified Power Flow Controller (UPFC) and the Interline Power Flow Controllers (IPFC), of which the latter are parallel series devices. # Fields $TYPEDFIELDS """ struct $T <: FACTSDevices $firstdoc $firstcol """ Sending end bus number, or extended bus name enclosed in single quotes. No default. """ i::Vector{BusNum} """ Terminal end bus number, or extended bus name enclosed in single quotes. 0 for a STATCON. `j` = 0 by default. """ j::Vector{BusNum} """ Control mode: * 0 - out-of-service (i.e., series and shunt links open). * 1 - series and shunt links operating. * 2 - series link bypassed (i.e., like a zero impedance line) and shunt link operating as a STATCON. * 3 - series and shunt links operating with series link at constant series impedance. * 4 - series and shunt links operating with series link at constant series voltage. * 5 - master device of an IPFC with P and Q setpoints specified; FACTS device N+1 must be the slave device (i.e., its `mode` is 6 or 8) of this IPFC. * 6 - slave device of an IPFC with P and Q setpoints specified; FACTS device N-1 must be the master device (i.e., its `mode` is 5 or 7) of this IPFC. The Q setpoint is ignored as the master device dictates the active power exchanged between the two devices. * 7 - master device of an IPFC with constant series voltage setpoints specified; FACTS device N+1 must be the slave device (i.e., its `mode` is 6 or 8) of this IPFC. * 8 - slave device of an IPFC with constant series voltage setpoints specified; FACTS device N-1 must be the master device (i.e., its `mode` is 5 or 7) of this IPFC. The complex ``V_d + j V_q`` setpoint is modified during power flow solutions to reflect the active power exchange determined by the master device. If `j` is specified as 0, `mode` must be either 0 or 1. `mode` = 1 by default. """ mode::Vector{Int8} """ Desired active power flow arriving at the terminal end bus; entered in MW. `pdes` = 0.0 by default. """ pdes::Vector{Float64} """ Desired reactive power flow arriving at the terminal end bus; entered in MVAR. `qdes` = 0.0 by default. """ qdes::Vector{Float64} "Voltage setpoint at the sending end bus; entered in pu. `vset` = 1.0 by default." vset::Vector{Float64} """ Maximum shunt current at the sending end bus; entered in MVA at unity voltage. `shmx` = 9999.0 by default. """ shmx::Vector{Float64} "Maximum bridge active power transfer; entered in MW. `trmx` = 9999.0 by default." trmx::Vector{Float64} "Minimum voltage at the terminal end bus; entered in pu. `vtmn` = 0.9 by default." vtmn::Vector{Float64} "Maximum voltage at the terminal end bus; entered in pu. `vtmx` = 1.1 by default." vtmx::Vector{Float64} "Maximum series voltage; entered in pu. `vsmx` = 1.0 by default." vsmx::Vector{Float64} """ Maximum series current, or zero for no series current limit; entered in MVA at unity voltage. `imx` = 0.0 by default. """ imx::Vector{Float64} """ Reactance of the dummy series element used during model solution; entered in pu. `linx` = 0.05 by default. """ linx::Vector{Float64} """ Percent of the total Mvar required to hold the voltage at bus `i` that are to be contributed by the shunt element of this FACTS device; `rmpct` must be positive. `rmpct` is needed only if there is more than one local or remote voltage controlling device (plant, switched shunt, FACTS device shunt element, or VSC dc line converter) controlling the voltage at bus `i` to a setpoint. `rmpct` = 100.0 by default. """ rmpct::Vector{Float64} """ Owner number (1 through the maximum number of owners at the current size level). `owner` = 1 by default. """ owner::Vector{OwnerNum} """ If `mode` is 3, resistance and reactance respectively of the constant impedance, entered in pu; if `mode` is 4, the magnitude (in pu) and angle (in degrees) of the constant series voltage with respect to the quantity indicated by `vsref`; if `mode` is 7 or 8, the real (vd) and imaginary (vq) components (in pu) of the constant series voltage with respect to the quantity indicated by `vsref`; for other values of `mode`, `set1` and set2 are read, but not saved or used during power flow solutions. `set1` = 0.0 by default. """ set1::Vector{Float64} "See `set1`. `set2` = 0.0 by default." set2::Vector{Float64} """ Series voltage reference code to indicate the series voltage reference of `set1` and `set2` when `mode` is 4, 7 or 8: 0 for sending end voltage, 1 for series current. `vsref` = 0 by default. """ vsref::Vector{Int8} # 0 or 1... i think $remot_doc $remot_col $mname_doc $mname_col end end # eval end ### ### Network ### """ $TYPEDEF Representation of a power network. The PSS/E data format comprises 16 data categories of network and equipment elements, each of which requires a particular type of data. Similarly, a `Network` stores the data from each category in its own dedicated structure. Currently supported are: 1. [`CaseID`](@ref) 1. [`Buses`](@ref) 1. [`Loads`](@ref) 1. [`FixedShunts`](@ref) 1. [`Generators`](@ref) 1. [`Branches`](@ref) 1. [`Transformers`](@ref) 1. [`AreaInterchanges`](@ref) 1. [`TwoTerminalDCLines`](@ref) 1. [`VSCDCLines`](@ref) 1. [`SwitchedShunts`](@ref) 1. [`ImpedanceCorrections`](@ref) 1. [`MultiTerminalDCLines`](@ref) 1. [`MultiSectionLineGroups`](@ref) 1. [`Zones`](@ref) 1. [`InterAreaTransfers`](@ref) 1. [`Owners`](@ref) 1. [`FACTSDevices`](@ref) `CaseID` data is a single row (in the Tables.jl-sense). You can access it like `network.caseid` and interact with it like a `NamedTuple`, or even convert it to a `NamedTuple` with `NamedTuple(caseid)`. All other records (buses, loads, etc.) can be accessed also via the fields, for example `network.buses`, and each is returned as lightweight table structure (again, in the Tables.jl-sense). That is, all structures implement the Tables.jl interface, so can be passed to any valid sink, such as a `DataFrame` like `DataFrame(network.buses)`. For more info on working with tables see [Tables.jl](https://tables.juliadata.org/), and for common table operations see [TableOperations.jl](https://github.com/JuliaData/TableOperations.jl). # Fields $TYPEDFIELDS """ Base.@kwdef struct Network "Version of the PSS/E data version given or detected when parsing." version::Int8 "Case identification data." caseid::CaseID=CaseID() "Bus records." buses::Buses=(version == 33 ? Buses33() : Buses30()) "Load records." loads::Loads=Loads() "Fixed Bus Shunt records." fixed_shunts::Union{FixedShunts,Nothing}=(version == 33 ? FixedShunts() : nothing) "Generator records." generators::Generators=Generators() "Non-transformer Branch records." branches::Branches=(version == 33 ? Branches33() : Branches30()) "Transformer records." transformers::Transformers=Transformers() "Area Interchange records." area_interchanges::AreaInterchanges=AreaInterchanges() "Two-terminal DC Line records." two_terminal_dc::TwoTerminalDCLines=(version == 33 ? TwoTerminalDCLines33() : TwoTerminalDCLines30()) "Voltage Source Converter DC Line records." vsc_dc::VSCDCLines=VSCDCLines() "Switched Shunt records." switched_shunts::SwitchedShunts=(version == 33 ? SwitchedShunts33() : SwitchedShunts30()) "Transformer impedance correction records." impedance_corrections::ImpedanceCorrections=ImpedanceCorrections() "Multi-terminal DC Line records." multi_terminal_dc::MultiTerminalDCLines=MultiTerminalDCLines() "Multi-section line group records." multi_section_lines::MultiSectionLineGroups=(version == 33 ? MultiSectionLineGroups33() : MultiSectionLineGroups30()) "Zone records." zones::Zones=Zones() "Inter-area transfer records." area_transfers::InterAreaTransfers=InterAreaTransfers() "Owner records." owners::Owners=Owners() "FACTS device records." facts::FACTSDevices=(version == 33 ? FACTSDevices33() : FACTSDevices30()) end ### ### constructors ### # Create a instance of a `Records` subtype, with all fields (assumed to be Vector) # expected to be populated with roughly `sizehint` elements # (::Type{R})(sizehint::Integer=0) where {R <: Records} = (R(map(T -> sizehint!(T(), sizehint), fieldtypes(R))...))::R for R in ( :Buses30, :Buses33, :Loads, :FixedShunts, :Generators, :Branches30, :Branches33, :Transformers, :AreaInterchanges, :TwoTerminalDCLines30, :TwoTerminalDCLines33, :VSCDCLines, :SwitchedShunts30, :SwitchedShunts33, :ImpedanceCorrections, :ACConverters, :DCLinks, :DCBuses, :MultiSectionLineGroups30, :MultiSectionLineGroups33, :Zones, :InterAreaTransfers, :Owners, :FACTSDevices30, :FACTSDevices33, ) @eval $R(sizehint::Integer=0) = $R(map(T -> sizehint!(T(), sizehint), fieldtypes($R))...)::$R end function Base.isempty(net::T) where {T <: Network} for i in 1:fieldcount(T) if fieldtype(T, i) <: Records && !isempty(getfield(net, i)) return false end end return true end ### ### show ### function Base.show(io::IO, mime::MIME"text/plain", network::T) where {T <: Network} show(io, mime, T) get(io, :compact, false)::Bool && return nothing print(io, " (v$(network.version))") records = (getfield(network, i) for i in 2:fieldcount(T)) # version is field 1 nrec = count(!isnothing, records) print(io, " with $nrec data categories:") io_compact = IOContext(io, :compact => true) for rec in records rec === nothing && continue print(io, "\n ") show(io_compact, mime, rec) end return nothing end function Base.show(io::IO, dcline::T) where {T <: MultiTerminalDCLine} # only show the `DCLineID` info when in containers, such as in the table shown by # `network.multi_terminal_dc` or the vector shown by `multi_terminal_dc.lines` if get(io, :limit, false)::Bool show(io, dcline.line_id) else Base.show_default(io, dcline) end end # Each MultiTerminalDCLine is its own little network-like thing... function Base.show(io::IO, mime::MIME"text/plain", dcline::T) where {T <: MultiTerminalDCLine} show(io, mime, dcline.line_id) get(io, :compact, false)::Bool && return nothing nfields = fieldcount(T) foreach(2:nfields) do i print(io, "\n") show(io, mime, getfield(dcline, i)) end return nothing end Base.show(io::IO, x::T) where {T <: IDRow} = print(io, T, NamedTuple(x)) # parseable repr function Base.show(io::IO, ::MIME"text/plain", x::T) where {T <: IDRow} print(io, T, ": ", NamedTuple(x)) end Base.summary(io::IO, x::R) where {R <: Records} = print(io, _summary(R), " with $(length(x)) records") _summary(::Type{R}) where {R} = string(R) _summary(::Type{<:Buses}) = "Buses" _summary(::Type{<:Branches}) = "Branches" _summary(::Type{<:TwoTerminalDCLines}) = "TwoTerminalDCLines" _summary(::Type{<:MultiTerminalDCLines}) = "MultiTerminalDCLines" _summary(::Type{<:MultiSectionLineGroups}) = "MultiSectionLineGroups" _summary(::Type{<:FACTSDevices}) = "FACTSDevices" _summary(::Type{<:SwitchedShunts}) = "SwitchedShunts" function Base.show(io::IO, mime::MIME"text/plain", x::R) where {R <: Records} if get(io, :compact, false)::Bool || isempty(x) Base.summary(io, x) else R_str = _summary(R) printstyled(io, R_str; bold=true) print(io, " with $(length(x)) records,") print(io, " $(length(Tables.columnnames(x))) columns:\n") (vsize, hsize) = displaysize(io) pretty_table( io, x; alignment_anchor_fallback=:r, # align right as best for integers alignment_anchor_regex=Dict(0 => [r"\."]), # align floating point numbers compact_printing=true, crop=:both, display_size=(max(1, vsize-3), hsize), # save some vertical space for summary header=collect(Symbol, Tables.columnnames(x)), newline_at_end=false, vcrop_mode=:middle, # show first and last rows vlines=Int[], # no vertical lines ) end return nothing end
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
code
23281
using DataFrames using InteractiveUtils: subtypes using InlineStrings: InlineStrings # for `eval(repr(...))` using PowerFlowData using Tables using Test @testset "PowerFlowData.jl" begin @testset "Infers" begin for T in subtypes(PowerFlowData.Records) isabstracttype(T) && continue @inferred T() @inferred T(1) end end @testset "Tables interface" begin struct TestRecs <: PowerFlowData.Records x1::Vector{Int} yy::Vector{Float64} end recs = TestRecs([1, 2, 3], [3.14, 1.72, 0.05]) @test Tables.istable(TestRecs) @test Tables.columnaccess(TestRecs) @test Tables.columns(recs) === recs @test Tables.columnnames(recs) == (:x1, :yy) @test recs.x1 == [1, 2, 3] @test Tables.getcolumn(recs, :x1) == [1, 2, 3] @test Tables.getcolumn(recs, 1) == [1, 2, 3] @test length(recs) == 3 @test size(recs) == (3, 2) @test Tables.rowtable(recs)[1] == (x1=1, yy=3.14) @test NamedTuple(first(Tables.rows(recs))) == (x1=1, yy=3.14) @test first(Tables.namedtupleiterator(recs)) == (x1=1, yy=3.14) df = DataFrame(recs) @test df isa DataFrame @test size(df) == (3, 2) for T in ( Buses, Loads, Generators, Branches, Transformers, AreaInterchanges, TwoTerminalDCLines, VSCDCLines, SwitchedShunts, ImpedanceCorrections, MultiTerminalDCLines, MultiSectionLineGroups, Zones, InterAreaTransfers, Owners, FACTSDevices ) @test T <: PowerFlowData.Records @test Tables.istable(T) end caseid = CaseID(ic=0, sbase=100.0) @test caseid[1] == caseid[:ic] @test caseid[2] == caseid[:sbase] @test NamedTuple(caseid) isa NamedTuple end @testset "show" begin # test of file which has MultiTerminalDCLines as they have their own `show`. net = parse_network("testfiles/synthetic_data_v29.raw") # CaseID should have a parseable `repr`; `AbstractRows` don't get this for free. @test startswith(repr(net.caseid), "CaseID(ic = 0, sbase = 100.0, ") @test isequal(eval(Meta.parse(repr(net.caseid))), CaseID(ic=0, sbase=100.0)) mime = MIME("text/plain") context = :compact => true @test repr(mime, net; context) == "Network" @test repr(mime, net) == strip( """ Network (v30) with 17 data categories: $(sprint(show, mime, net.caseid)) $(sprint(show, mime, net.buses; context)) $(sprint(show, mime, net.loads; context)) $(sprint(show, mime, net.generators; context)) $(sprint(show, mime, net.branches; context)) $(sprint(show, mime, net.transformers; context)) $(sprint(show, mime, net.area_interchanges; context)) $(sprint(show, mime, net.two_terminal_dc; context)) $(sprint(show, mime, net.vsc_dc; context)) $(sprint(show, mime, net.switched_shunts; context)) $(sprint(show, mime, net.impedance_corrections; context)) $(sprint(show, mime, net.multi_terminal_dc; context)) $(sprint(show, mime, net.multi_section_lines; context)) $(sprint(show, mime, net.zones; context)) $(sprint(show, mime, net.area_transfers; context)) $(sprint(show, mime, net.owners; context)) $(sprint(show, mime, net.facts; context)) """ ) @test startswith(repr(mime, net.caseid), "CaseID: (ic = 0, sbase = 100.0, ") @test repr(mime, net.buses; context=(:compact => true)) == "Buses with 2 records" @test startswith(repr(mime, net.buses), "Buses with 2 records, 11 columns:\n──") mt_dc_line = net.multi_terminal_dc.lines[1] @test eval(Meta.parse(repr(mt_dc_line))) isa MultiTerminalDCLine @test repr(mime, mt_dc_line) == strip( """ $(sprint(show, mime, mt_dc_line.line_id)) $(sprint(show, mime, mt_dc_line.converters)) $(sprint(show, mime, mt_dc_line.buses)) $(sprint(show, mime, mt_dc_line.links)) """ ) line_id = mt_dc_line.line_id @test eval(Meta.parse(repr(line_id))) isa DCLineID end @testset "v30 file" begin net1 = parse_network("testfiles/synthetic_data_v30.raw") @test net1 isa Network caseid = net1.caseid @test caseid.ic == 0 @test caseid.sbase == 100.0 # Test first and last columns are parsed as expected buses = net1.buses @test buses.i == [111, 112, 113] @test buses.owner == [1, 2, 2] # Test string column as expected @test buses.name[2] == "D2JK" loads = net1.loads @test loads.i == [111, 113] # first col @test loads.owner == [1, 2] # last col @test isequal(loads.intrpt, [missing, missing]) gens = net1.generators @test gens.i == [111, -112, 113] @test gens.f1 == [1.0, 1.0, 1.0] # last col guaranteed to exist @test isequal(gens.wpf, [missing, missing, missing]) @test gens.id[1] == "ST" branches = net1.branches @test branches.i == [111, 111, 112] @test branches.j == [112, -113, 113] # negative numbers should be allowed @test branches.f1 == [1.0, 1.0, 1.0] @test branches.ckt[1] == "3" transformers = net1.transformers @test transformers.i == [112, 113] # 1st entry of 1st row @test transformers.f1 == [1.0, 1.0] # last entry of 1st row @test transformers.r1_2 == [0.032470, 0.039570] # 1st entry of 2nd row @test transformers.sbase1_2 == [200.0, 200.0] # last entry of 2nd row (T2) @test isequal(transformers.anstar, [missing, 1.01893]) # last entry of 2nd row (T3) @test transformers.windv1 == [1.0, 1.0] # 1st entry of 3rd row @test transformers.cx1 == [0.0, 0.0] # last entry of 3rd row @test transformers.windv2 == [1.0, 1.0] # 1st entry of 4th row @test transformers.nomv2 == [169.0, 169.0] # last entry of 4th row (T2) @test isequal(transformers.cx2, [missing, 0.0]) # last entry of 4th row (T3) @test isequal(transformers.windv3, [missing, 13.8]) # 1st entry of 5th row @test isequal(transformers.cx3, [missing, 0.0]) # last entry of 5th row @test transformers.ckt[1] == "G1" # string col # v30 testfile has both 2-winding and 3-winding data, so should return all columns @test length(Tables.columnnames(transformers)) == fieldcount(Transformers) @test size(DataFrame(transformers)) == (2, fieldcount(Transformers)) @test size(transformers) == (2, fieldcount(Transformers)) @test length(transformers) == 2 area_interchanges = net1.area_interchanges @test area_interchanges.i == [113] @test area_interchanges.isw == [456] @test area_interchanges.pdes == [2121.7211] @test area_interchanges.ptol == [6.0] @test area_interchanges.arname == ["ABC"] two_terminal_dc = net1.two_terminal_dc @test two_terminal_dc.i == [11] # 1st entry of 1st row @test two_terminal_dc.cccacc == [1.0] # last entry of 1st row @test two_terminal_dc.ipr == [112] # 1st entry of 2nd row @test two_terminal_dc.xcapr == [0.0] # last entry of 2nd row @test two_terminal_dc.ipi == [2222] # 1st entry of 3nd row @test two_terminal_dc.xcapi == [2.0] # last entry of 3rd row vsc_dc = net1.vsc_dc @test vsc_dc.name == ["line 1"] # 1st entry of 1st row @test vsc_dc.f4 == [1.0] # last entry of 1st row @test vsc_dc.ibus1 == [1117] # 1st entry of 2nd row @test vsc_dc.rmpct1 == [100.0] # last entry of 2nd row @test vsc_dc.ibus2 == [114] # 1st entry of 3nd row @test vsc_dc.rmpct2 == [100.0] # last entry of 3nd row switched_shunts = net1.switched_shunts @test switched_shunts.i == [113] # first col @test switched_shunts.n1 == [1] # `n1` always present @test switched_shunts.b1 == [26.0] # `b1` always present @test switched_shunts.n8 == [0] # `n8` not present; should default to zero @test switched_shunts.b8 == [0.0] # last col; `b8` not present; default to zero impedance_corrections = net1.impedance_corrections @test impedance_corrections.i == [1] # first col @test impedance_corrections.f11 == [0.0] # last col; `f11` not present; default to zero multi_terminal_dc = net1.multi_terminal_dc @test isempty(multi_terminal_dc) multi_section_lines = net1.multi_section_lines @test multi_section_lines.i == [1, 114] # first col @test multi_section_lines.id == ["&1", "&2"] # string col @test isequal(multi_section_lines.dum2, [missing, 5]) # `dum2` present only for 1 row of the data @test isequal(multi_section_lines.dum9, [missing, missing]) # last col; not present; default to missing zones = net1.zones @test zones.i == [117, 127, 227] @test zones.zoname == ["ABC", "CDEF", "CDEG"] area_transfers = net1.area_transfers @test area_transfers.arfrom == [1, 1] @test area_transfers.ptran == [10.0, -20.0] owners = net1.owners @test owners.i == [1, 2] @test owners.owname == ["ABC", "CDE"] facts = net1.facts @test facts.n == [1] @test facts.vsref == [0] end @testset "v29 file" begin net2 = parse_network("testfiles/synthetic_data_v29.raw") caseid = net2.caseid @test caseid.ic == 0 @test caseid.sbase == 100.0 # Test first and last columns are parsed as expected buses = net2.buses @test buses.i == [1, 222222] @test buses.owner == [1, 7] # Test string column as expected @test buses.name[2] == "PRPR C D" loads = net2.loads @test loads.i == [1, 222222] # first col @test loads.owner == [1, 7] # last col @test isequal(loads.intrpt, [missing, missing]) gens = net2.generators @test gens.i == [104] # first col @test gens.f1 == [1.0] # last col guaranteed to exist @test isequal(gens.wpf, [missing]) @test gens.id[1] == "1" # string col branches = net2.branches @test branches.i == [1, 2, 222222] @test branches.j == [-543210, 9, 333333] # negative numbers should be allowed @test branches.f1 == [1.0, 1.0, 1.0] @test branches.ckt[2] == "6" transformers = net2.transformers @test length(transformers.i) == 3 @test transformers.i == [42, 4774, 222222] # 1st entry of 1st row @test transformers.f1 == [1.0, 1.0, 1.0] # last entry of 1st row @test transformers.r1_2 == [0.0025, 0.0, 0.0005] # 1st entry of 2nd row @test transformers.sbase1_2 == [100.0, 100.0, 100.0] # last entry of 2nd row @test transformers.windv1 == [1.0, 1.0462, 1.0] # 1st entry of 3rd row @test transformers.cx1 == [0.0, 0.0, 0.0] # last entry of 3rd row # Important to test a row where the 1st character is '0', to get it does not # get misinterpreted as the start of a "0 bus" records terminating the section. @test transformers.windv2 == [1.0, 1.045, 0.98250] # 1st entry of 4th row @test transformers.nomv2 == [138.0, 240.35, 345.0] # last entry of 4th row @test transformers.ckt == ["K1", "90", "B1"] # string col # v29 testfile has only 2-winding data, so should return only 2-winding columns ncols_expected = 43 @test length(Tables.columnnames(transformers)) == ncols_expected @test size(DataFrame(transformers)) == (3, ncols_expected) @test size(transformers) == (3, ncols_expected) @test length(transformers) == 3 area_interchanges = net2.area_interchanges @test area_interchanges.i == [615, 762] @test area_interchanges.isw == [615001, 1234] @test area_interchanges.pdes == [32.677, -224.384] @test area_interchanges.ptol == [5.0, 5.0] @test area_interchanges.arname == ["RE", "OTP"] two_terminal_dc = net2.two_terminal_dc @test isempty(two_terminal_dc) vsc_dc = net2.vsc_dc @test isempty(vsc_dc) switched_shunts = net2.switched_shunts @test switched_shunts.i == [175, 177] # first col @test switched_shunts.n1 == [2, 1] # `n1` col present for both @test switched_shunts.b1 == [19.76, 15.60] # `b1` col present for both @test switched_shunts.n2 == [0, 1] # `n2` col present only for second entry @test switched_shunts.b2 == [0.0, 17.69] # `b2` col present only for second entry @test switched_shunts.n8 == [0, 0] # `n8` col not present for either entry @test switched_shunts.b8 == [0.0, 0.0] # last col; `b8` col not present for either entry impedance_corrections = net2.impedance_corrections @test impedance_corrections.i == [1, 2] # first col @test impedance_corrections.f11 == [3.34, 1.129] # last col multi_terminal_dc = net2.multi_terminal_dc @test length(multi_terminal_dc) == 1 mt_dc = only(multi_terminal_dc.lines) line_id = mt_dc.line_id @test line_id.i == 1 # first val @test line_id.vconvn == 0 # last val converters = mt_dc.converters @test length(converters) == line_id.nconv == 4 @test converters.ib == [402, 401, 212, 213] @test converters.cnvcod == [3, 3, 1, 4] dc_buses = mt_dc.buses @test length(dc_buses) == line_id.ndcbs == 5 @test dc_buses.idc == [1, 2, 3, 4, 5] @test dc_buses.owner == [4, 2, 4, 2, 4] dc_links = mt_dc.links @test length(dc_links) == line_id.ndcln == 4 @test dc_links.idc == [1, 2, 3, 4] @test dc_links.ldc == [0.0, 0.0, 0.0, 0.0] multi_section_lines = net2.multi_section_lines @test isempty(multi_section_lines) zones = net2.zones @test zones.i == [1, 9] @test zones.zoname == ["ABL", "EFGN"] area_transfers = net2.area_transfers @test isempty(area_transfers) owners = net2.owners @test owners.i == [1, 2] @test owners.owname == ["EAI", "OUYK"] facts = net2.facts @test isempty(facts) end @testset "v33 file" begin net33 = parse_network("testfiles/synthetic_data_v33.RAW") @test net33 isa Network @test net33.version == 33 caseid = net33.caseid @test caseid.ic == 0 @test caseid.sbase == 100.0 @test caseid.rev == 33 buses = net33.buses @test buses.i == [1, 500] # first col @test buses.name == ["WINNSBORO 0", "MC CORMICK 0"] # string col @test buses.evlo == [0.9, 0.9] # last col loads = net33.loads @test loads.i == [2, 500] # first col @test loads.scale == [1, 1] # last col @test isequal(loads.intrpt, [missing, missing]) # possible last col fixed_shunts = net33.fixed_shunts @test fixed_shunts.i == [320, 784] # first col @test fixed_shunts.bl == [48.274, 19.939] # last col gens = net33.generators @test gens.i == [9, 498] # first col @test gens.wpf == [1.0, 1.0] # last col branches = net33.branches @test branches.i == [2, 500] # first col @test branches.met == [1, 1] # only in v33 @test branches.f4 == [1.0, 1.0] # last col # v33 has extra columns on rows 1, 3, 4, 5. transformers = net33.transformers @test transformers.i == [8, 190, 498] # 1st entry of 1st row @test all(transformers.vecgrp .== "") # last entry of 1st row @test transformers.r1_2 == [3.55062E-4, 7.65222E-4, 4.00610E-3] # 1st entry of 2nd row @test transformers.sbase1_2 == [100.0, 100.0, 100.0] # last entry of 2nd row (T2) @test isequal(transformers.anstar, [missing, -65.843144, missing]) # last entry of 2nd row (T3) @test transformers.windv1 == [1.0, 1.0, 1.0] # 1st entry of 3rd row @test transformers.cnxa1 == [0.0, 0.0, 0.0] # last entry of 3rd row @test transformers.windv2 == [1.0, 1.0, 1.0] # 1st entry of 4th row @test transformers.nomv2 == [345.0, 115.0, 138.0] # last entry of 4th row (T2) @test isequal(transformers.cnxa2, [missing, 0.0, missing]) # last entry of 4th row (T3) @test isequal(transformers.windv3, [missing, 1.0, missing]) # 1st entry of 5th row @test isequal(transformers.cnxa3, [missing, 0.0, missing]) # last entry of 5th row @test transformers.ckt[1] == "1" # string col # v33 testfile has both 2-winding and 3-winding data, so should return all columns @test length(Tables.columnnames(transformers)) == fieldcount(Transformers) @test size(DataFrame(transformers)) == (3, fieldcount(Transformers)) @test size(transformers) == (3, fieldcount(Transformers)) @test length(transformers) == 3 area_interchanges = net33.area_interchanges @test area_interchanges.i == [1] @test area_interchanges.arname == ["SouthCarolin"] two_terminal_dc = net33.two_terminal_dc @test two_terminal_dc.name == ["DC Line 1", "DC Line 1"] # first col @test two_terminal_dc.cccacc == [0.0, 0.0] # last entry of 1st row @test two_terminal_dc.ipr == [2060653, 3008030] # 1st entry of 2nd row @test two_terminal_dc.xcapr == [0.0, 0.0] # last entry of 2nd row @test two_terminal_dc.ipi == [66353, 61477] # 1st entry of 3nd row @test two_terminal_dc.xcapi == [0.0, 0.0] # last entry of 3rd row vsc_dc = net33.vsc_dc @test isempty(vsc_dc) impedance_corrections = net33.impedance_corrections @test impedance_corrections.i == [1, 2, 3] # first col @test impedance_corrections.f6 == [1.03, 0.0, 1.41] # col present on some rows not others @test impedance_corrections.f11 == [0.0, 0.0, 0.0] # last col (missing, default to zero) multi_terminal_dc = net33.multi_terminal_dc @test length(multi_terminal_dc) == 1 mt_dc = only(multi_terminal_dc.lines) line_id = mt_dc.line_id @test line_id.name == "DC Line 1" # first val @test line_id.vconvn == 0 # last val multi_section_lines = net33.multi_section_lines @test multi_section_lines.i == [1] # first col @test multi_section_lines.id == ["&1"] # string col @test multi_section_lines.met == [1] # only in v33 data @test isequal(multi_section_lines.dum1, [3]) # `dum1` is last col present @test isequal(multi_section_lines.dum9, [missing]) # last col; not present; default to missing zones = net33.zones @test zones.i == [1, 2] @test zones.zoname == ["Upstate", "Midlands"] area_transfers = net33.area_transfers @test isempty(area_transfers) owners = net33.owners @test owners.i == [1] @test owners.owname == ["1"] facts = net33.facts @test isempty(facts) switched_shunts = net33.switched_shunts @test switched_shunts.i == [27, 491] # first col @test switched_shunts.adjm == [0, 0] # 3rd col (only in v33) @test switched_shunts.stat == [1, 1] # 4th col (only in v33) @test switched_shunts.n1 == [1, 1] # `n1` col always present @test switched_shunts.b1 == [80.0, 50.0] # `b1` col always present @test switched_shunts.n8 == [0, 0] # `n8` col not present; default to zero @test switched_shunts.b8 == [0.0, 0.0] # `b8` col not present; default to zero end @testset "delim=' '" begin net_space = parse_network("testfiles/spacedelim.raw") caseid = net_space.caseid @test caseid == CaseID(ic=0, sbase=100.0) buses = net_space.buses @test length(buses) == 2 @test buses.name == ["ABC", "ABCDEFGH"] loads = net_space.loads @test loads.i == [7, 8478] gens = net_space.generators @test gens.i == [24, 9008] branches = net_space.branches @test branches.i == [1, 8151] transformers = net_space.transformers @test transformers.i == [1, 8462] area_interchanges = net_space.area_interchanges @test area_interchanges.i == [1] @test isempty(net_space.two_terminal_dc) @test isempty(net_space.vsc_dc) switched_shunts = net_space.switched_shunts @test switched_shunts.i == [2, 8460] @test isempty(net_space.impedance_corrections) @test isempty(net_space.multi_terminal_dc) @test isempty(net_space.multi_section_lines) zones = net_space.zones @test zones.zoname == ["FIRST", "ISOLATED"] @test isempty(net_space.area_transfers) owners = net_space.owners @test owners.owname == ["OWNER1"] @test isempty(net_space.facts) # test we allow specifying the delimiter manually net_space_manual = parse_network("testfiles/spacedelim.raw"; delim=' ') @test net_space.branches.j == net_space_manual.branches.j end @testset "issues" begin sz = parse_network("testfiles/spacezero.raw") @test length(sz.buses) == 2 @test length(sz.loads) == 1 qz = parse_network("testfiles/quotedzero.raw") @test length(qz.buses) == 2 # These records are after the quoted zero @test length(qz.switched_shunts) == 2 @test length(qz.zones) == 2 end @testset "`Tables.namedtupleiterator(::Records)`" begin # https://github.com/nickrobinson251/PowerFlowData.jl/issues/76 net = parse_network("testfiles/synthetic_data_v30.raw") buses = net.buses @test first(Tables.namedtupleiterator(buses)).i == 111 # Transformers has own `Tables.schema` definition so needs testing specifically. transformers = net.transformers @test first(Tables.namedtupleiterator(transformers)).i == 112 end @testset "empty network" begin empty_net = Network(version=30) @test isempty(empty_net) nonempty_net = Network(version=30, owners=Owners([1], ["Owner1"])) @test !isempty(nonempty_net) end end
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
docs
1491
# PowerFlowData [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://nickrobinson251.github.io/PowerFlowData.jl/dev) [![Build Status](https://github.com/nickrobinson251/PowerFlowData.jl/workflows/CI/badge.svg)](https://github.com/nickrobinson251/PowerFlowData.jl/actions) [![Coverage](https://codecov.io/gh/nickrobinson251/PowerFlowData.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/nickrobinson251/PowerFlowData.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![ColPrac: Contributor Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [PowerFlowData.jl](https://github.com/nickrobinson251/PowerFlowData.jl) provides a parser for PSS/E-format `.raw` Power Flow Data Files. To read a `.raw` file, use `parse_network`: ```julia using PowerFlowData parse_network("file.raw") ``` This will return a `Network` object, which contains the data parsed into dedicated structures matching the [PSS/E](https://en.wikipedia.org/wiki/Power_system_simulator_for_engineering)-format specification. **[Documentation](https://nickrobinson251.github.io/PowerFlowData.jl/dev)** The format specification is based on old PSS/E user-manuals and example files I could find online. Currently v30 and v33 of the format are supported. Please open an issue if you run into any problems or missing features.
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
docs
1782
# Alternatives ## Julia I am are aware of two other open-source packages with functionality to parse PSS/E files: - [PowerModels.jl](https://lanl-ansi.github.io/PowerModels.jl/stable/parser/#PTI-Data-Files-(PSS/E)) - [PowerSystems.jl](https://nrel-siip.github.io/PowerSystems.jl/stable/modeler_guide/generated_parsing/) I have not used either so cannot recommend one over the other. From what I can see, these parsers are almost identical to each other. It seems PowerSystems.jl originally vendored the PowerModels.jl code, but the parsers may have diverged slightly over time. Both of these packages only support parsing v33 PSS/E files, and only parse a subset of the data categories in the file. Whereas PowerFlowData.jl (this package) can parse all data categories from both v30 and v33 PSS/E files. Importantly, these alternatives also take a completely different approach to this package. These other parsers read the `.raw` files as a `String` (e.g. using `readlines`), then operate on string data, and parse strings into other Julia types as necessary. PowerFlowData.jl reads the `.raw` files as a bytes buffer (`Vector{UInt8}`) then parses the bytes directly into Julia types, which is much faster and more memory efficient. This package was originally developed as a fun exercise, but should correctly implement the full data format specification. Please feel encouraged to give this package a try, and open issues if you encounter any problems or missing features. ## Others In Python, there is a package named [`grg-pssedata`](https://github.com/lanl-ansi/grg-pssedata), which says it parses PSSE v33 data files. In Matlab, the [`MATPOWER`](https://github.com/MATPOWER/matpower/) package says it has parsing functionality for (unspecified) PSSE data files.
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
docs
1150
# API ```@docs parse_network ``` ## Network ```@docs Network ``` ## Case ID ```@docs CaseID ``` ## Buses ```@docs Buses Buses30 Buses33 ``` ## Loads ```@docs Loads ``` ## Fixed Shunts ```@docs FixedShunts ``` ## Generators ```@docs Generators ``` ## Branches ```@docs Branches Branches30 Branches33 ``` ## Transformers ```@docs Transformers ``` ## Area Interchanges ```@docs AreaInterchanges ``` ## Two-Terminal DC Lines ```@docs TwoTerminalDCLines TwoTerminalDCLines30 TwoTerminalDCLines33 ``` ## VSC DC Lines ```@docs VSCDCLines ``` ## Switched Shunts ```@docs SwitchedShunts SwitchedShunts30 SwitchedShunts33 ``` ## Transformer Impedance Corrections ```@docs ImpedanceCorrections ``` ## Multi-Terminal DC Lines ```@docs MultiTerminalDCLines MultiTerminalDCLine DCLineID DCLineID30 DCLineID33 ACConverters DCBuses DCLinks ``` ## Multi-Section Line Groups ```@docs MultiSectionLineGroups MultiSectionLineGroups30 MultiSectionLineGroups33 ``` ## Zones ```@docs Zones ``` ## Inter-Area Transfers ```@docs InterAreaTransfers ``` ## Owners ```@docs Owners ``` ## FACTS Devices ```@docs FACTSDevices FACTSDevices30 FACTSDevices33 ```
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
docs
1848
# Implementation details This page has rough notes about the internals of PowerFlowData.jl. We use [Parsers.jl](https://github.com/JuliaData/Parsers.jl/) to parse bytes into Julia types. Broadly speaking, we use `Parsers.Options` to configure the parsing based on the `.raw` format (e.g. `,` characters are delimiters), and then `Parsers.xparse` to actually parse the bytes between delimiters into the expected Julia types. The expected Julia type depends on the category of data we are reading at that point in the file (buses, loads, …); if the PSS/E user manual says "load records" should come after "bus records", and each load record should have 12 columns with the first column containing an integer "bus number", then we try to parse the first value in a load record as an `Int`, and so on. The aim is to capture the domain knowledge / format specification in the types, and keep the parsing code as minimal as possible (relying on the types for the domain knowledge). When trying to support multiple versions of the format, the rough strategy is: * if a wholly new data category exists in the new format, create a new `Records` subtype * if a data category has added a new column to the end of a record, add a new `Union{T, Missing}` field to the existing `Records` subtype * if a data category has added/removed columns in the middle of a record, or changed the element type of a column, create a new `Records` subtype with a common supertype as the existing `Records` subtype for the category (e.g. `Buses30 <: Buses`, `Buses33 <: Buses`, `Buses <: Records`) * if a version-specific `Records` subtype is being used, update the top-level `parse_network` function to parse the records into the appropriate type, and in the order expected by the version of the format (using the version number extracted as part of the Case ID data).
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
docs
2093
```@meta CurrentModule = PowerFlowData ``` # PowerFlowData [PowerFlowData.jl](https://github.com/nickrobinson251/PowerFlowData.jl) provides a parser for PSS/E-format `.raw` Power Flow Data Files. To read a `.raw` file, use [`parse_network`](@ref): ```julia parse_network("file.raw") ``` This will return a [`Network`](@ref) object, which contains the data parsed into dedicated structures matching the PSS/E-format specification. You can specify what version of the PSS/E data format the file is in using the `v` keyword, like: ```julia parse_network("file.raw"; v=33) ``` Alternatively, the version of the data format will automatically be determined when parsing. Versions 30 and 33 of the format are currently supported. You can specify which character separates values in the file using the `delim` keyword, like: ```julia parse_network("file.raw"; delim=' ') ``` If not specified, the delimiter will automatically be detected when parsing. Comma delimited files `delim=','` and space delimited files `delim=' '` are currently supported. ## Example Usually your data will be in a file, and you'd read it with `parse_network("file.raw")`, but here we'll pass in the data directly, to show how it matches to the output: ```@repl example1 using PowerFlowData, DataFrames data = IOBuffer(""" 0, 100.00 / PSS/E-30.3 WED, SEP 15 2021 21:04 SE SNAPSHOT 15-09-2021 PEAK CASE 18:00 FULL COPY OF SYNTHETIC 1,'AAA 3 ', 111.0000,4, 0.000, 0.000, 327, 1,0.00000, 0.0000, 1 222222,'PRPR C D ', 42.0000,1, 0.000, 0.000, 694, 24,1.11117, 20.0606, 7 0 / END OF BUS DATA, BEGIN LOAD DATA """ ); network = parse_network(data; v=30); NamedTuple(network.caseid) # Case Identification data is a single row. DataFrame(network.buses) # Bus data, and all other data, is a table. ``` For working with the tabular data within a [`Network`](@ref) directly you can use Tables.jl. For example, to iterate the [`Buses`](@ref): ```@repl example1 using Tables for bus in Tables.rows(network.buses) @show bus.name end ```
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
1.5.0
04167df719ef1e8a1471a7033634c441f69bda1c
docs
997
# Test Files ### Synthetic Data These were created by hand, to match the schema of realistic files, but using entirely made up data. Note that the files are not representative of real data beyond the schema. For example, the branches data might references buses which are not present in the buses data, which should never happen in realistic files. 1. `_v30.raw`: v30 format data. 2. `_v29.raw`: v29 format data. 3. `_v33.raw`: v33 format data. ### Issues These files were created to demonstrate issues that the parser should now be able to handle. 1. `spacezero.raw`: v30 format data with a space before the `0` bus number that indicates the end of the records. 1. `spacedelim.raw`: v30 format data with space as the delimiter. 1. `quotedzero.raw`: v30 format data with a quoted zero `'0'` bus number indicating the end of one of the records. Based on the `spacedelim.raw` file. --- _This is a work of fiction. Any resemblance to actual datas, living or dead, is purely coincidental._
PowerFlowData
https://github.com/nickrobinson251/PowerFlowData.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
267
using Documenter, NLIDatasets makedocs(sitename = "NLIDatasets.jl", format = Documenter.HTML(), modules = [NLIDatasets], pages = ["Home" => "index.md"], doctest = true) deploydocs(repo = "github.com/dellison/NLIDatasets.jl.git")
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
691
module NLIDatasets using DataDeps using HTTP function getzip(url, file) headers = ["User-Agent" => "NLIDatasets.jl", "Accept" => "*/*", "Accept-Encoding" => "gzip, deflate, br"] HTTP.download(url, file, headers) end function register_data(name, descr, url, sha; fetch=getzip, postfetch=unpack) kw = (fetch_method=fetch, post_fetch_method=postfetch) DataDeps.register(DataDep(name, descr, url, sha; kw...)) end include("snli.jl") include("multinli.jl") include("xnli.jl") include("scitail.jl") include("hans.jl") include("breaking_nli.jl") include("anli.jl") using .SNLI, .MultiNLI, .XNLI, .SciTail, .HANS, .BreakingNLI, .ANLI end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1382
""" ANLI For details, see the [GitHub page](https://github.com/facebookresearch/anli) or read the [2019 paper](https://arxiv.org/pdf/1910.14599.pdf). Available data: ```julia ANLI.R1_train_jsonl() ANLI.R1_dev_jsonl() ANLI.R1_test_jsonl() ANLI.R2_train_jsonl() ANLI.R2_dev_jsonl() ANLI.R2_test_jsonl() ANLI.R3_train_jsonl() ANLI.R3_dev_jsonl() ANLI.R3_test_jsonl() ``` """ module ANLI import ...register_data using DataDeps: @datadep_str, unpack anli_file(file, files...) = joinpath(datadep"ANLI", "anli_v0.1", file, files...) R1_train_jsonl() = anli_file("R1", "train.jsonl") R1_dev_jsonl() = anli_file("R1", "dev.jsonl") R1_test_jsonl() = anli_file("R1", "test.jsonl") R2_train_jsonl() = anli_file("R2", "train.jsonl") R2_dev_jsonl() = anli_file("R2", "dev.jsonl") R2_test_jsonl() = anli_file("R2", "test.jsonl") R3_train_jsonl() = anli_file("R3", "train.jsonl") R3_dev_jsonl() = anli_file("R3", "dev.jsonl") R3_test_jsonl() = anli_file("R3", "test.jsonl") function __init__() register_data( "ANLI", """ ANLI is the Adversarial Natural Language Inference Benchmark. ANLI is licensed under Creative Commons-Non Commercial 4.0. """, "https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip", "16ac929a7e90ecf9093deaec89cc81fe86a379265a5320a150028efe50c5cde8", postfetch=unpack ) end end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
2086
""" BreakingNLI A dataset of 8193 premise-hypothesis sentence-pairs for NLI. Each example is annotated to entailment, contradiction, and neutral. The premise and the hypothesis are identical except for one word/phrase that was replaced. This dataset is meant for testing methods trained to solve the natural language inference task, and it requires some lexical and world knowledge to achieve reasonable performance on it. For details, see the [GitHub page](https://github.com/BIU-NLP/Breaking_NLI) or read the [2018 paper](https://aclweb.org/anthology/P18-2103/). Available data: ```julia BreakingNLI.test_jsonl() ``` """ module BreakingNLI import ...register_data using DataDeps: @datadep_str, unpack test_jsonl() = joinpath(datadep"Breaking_NLI", "data", "dataset.jsonl") function __init__() register_data( "Breaking_NLI", """ Each example is annotated to entailment, contradiction, and neutral. The premise and the hypothesis are identical except for one word/phrase that was replaced. This dataset is meant for testing methods trained to solve the natural language inference task, and it requires some lexical and world knowledge to achieve reasonable performance on it. For details, see the [GitHub page](https://github.com/BIU-NLP/Breaking_NLI) or read the [2018 paper](https://aclweb.org/anthology/P18-2103/). This dataset is distributed as a Licensed under a Creative Commons Attribution-ShareAlike 4.0 International License: https://creativecommons.org/licenses/by-sa/4.0/ """, "https://github.com/BIU-NLP/Breaking_NLI/archive/8a7658c1ce6b732f4e8af3b06560f1a13b8b18b0.zip", "0ccf9e308245036dec52e369316b94326ef06c96729b336d0269974b0814581e", postfetch = function (zip) unpack(zip) unpack(joinpath(datadep"Breaking_NLI", "Breaking_NLI-8a7658c1ce6b732f4e8af3b06560f1a13b8b18b0", "breaking_nli_dataset.zip")) end ) end end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1439
""" HANS HANS (Heauristic Analysis for NLI Systems) is a dataset for NLI. It contains the set of examples used in the 2019 paper "Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference" by R. Tom McCoy, Ellie Pavlick, and Tal Linzen. For details, see the [2019 paper](https://www.aclweb.org/anthology/P19-1334) "Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference" by by R. Tom McCoy, Ellie Pavlick, and Tal Linzen. Consists of a set of examples for evaluation, provided with `test_tsv`. ```julia HANS.test_tsv() ``` """ module HANS import ...register_data using DataDeps: @datadep_str hansfile(filename) = joinpath(datadep"HANS", "hans-0e52769572ab97da1b919baf222f355bdf481d88", filename) test_tsv() = hansfile("heuristics_evaluation_set.txt") function __init__() register_data( "HANS", """ HANS (Heauristic Analysis for NLI Systems) is a dataset for natural language inference. It contains the set of examples used in the 2019 paper "Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference" by R. Tom McCoy, Ellie Pavlick, and Tal Linzen. """, "https://github.com/tommccoy1/hans/archive/0e52769572ab97da1b919baf222f355bdf481d88.zip", "24316fa3d7298dfd5198059ed1c4eab0b84876cfbc8851df48e96abaa36ead8c") end end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1822
""" MultiNLI A corpus of 433k sentence pairs for NLI. For details, see the [MultiNLI home page](https://www.nyu.edu/projects/bowman/multinli/) or read the [2018 paper](https://www.nyu.edu/projects/bowman/multinli/paper.pdf) "A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference" by Adina Williams, NIkita Nangia, and Samuel R. Bowman. Included data: ```julia MultiNLI.train_tsv() MultiNLI.train_jsonl() MultiNLI.dev_matched_tsv() MultiNLI.dev_matched_jsonl() MultiNLI.dev_mismatched_tsv() MultiNLI.dev_mismatched_jsonl() ``` """ module MultiNLI import ...register_data using DataDeps: @datadep_str multinli_file(filename) = joinpath(datadep"MultiNLI", "multinli_1.0", filename) train_tsv() = multinli_file("multinli_1.0_train.txt") train_jsonl() = multinli_file("multinli_1.0_train.jsonl") dev_matched_tsv() = multinli_file("multinli_1.0_dev_matched.txt") dev_matched_jsonl() = multinli_file("multinli_1.0_dev_matched.jsonl") dev_mismatched_tsv() = multinli_file("multinli_1.0_dev_mismatched.txt") dev_mismatched_jsonl() = multinli_file("multinli_1.0_dev_mismatched.jsonl") function __init__() register_data( "MultiNLI", """ The Multi-Genre Natural Language Inference (MultiNLI) corpus is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information. https://www.nyu.edu/projects/bowman/multinli/ The dataset is distributed as a 227MB zip file. For license details, see details the data description paper: https://www.nyu.edu/projects/bowman/multinli/paper.pdf """, "https://www.nyu.edu/projects/bowman/multinli/multinli_1.0.zip", "049f507b9e36b1fcb756cfd5aeb3b7a0cfcb84bf023793652987f7e7e0957822") end end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1516
""" SciTail SciTail is a NLI dataset created from multiple-choice science exams and web sentences. For details, see the [2018 paper](http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf) "SciTail: A Textual Entailment Dataset from Science Question Answering" by Tushar Khot, Asish Sabharwal, and Peter Clark. ```julia SciTail.train_tsv() SciTail.train_jsonl() SciTail.dev_tsv() SciTail.dev_jsonl() SciTail.test_tsv() SciTail.test_jsonl() ``` """ module SciTail import ...register_data using DataDeps: @datadep_str scitail_base() = joinpath(datadep"SciTailV1.1", "SciTailV1.1") scitail_jsonl(filename) = joinpath(scitail_base(), "snli_format", filename) scitail_tsv(filename) = joinpath(scitail_base(), "tsv_format", filename) train_tsv() = scitail_tsv("scitail_1.0_train.tsv") train_jsonl() = scitail_jsonl("scitail_1.0_train.txt") dev_tsv() = scitail_tsv("scitail_1.0_dev.tsv") dev_jsonl() = scitail_jsonl("scitail_1.0_dev.txt") test_tsv() = scitail_tsv("scitail_1.0_test.tsv") test_jsonl() = scitail_jsonl("scitail_1.0_test.txt") function __init__() register_data( "SciTailV1.1", """ The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. See: http://data.allenai.org/scitail/ """, "http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip", "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5") end end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1965
""" SNLI A corpus of 570k human-written English sentence pairs for NLI. SNLI sentence pairs are manually labeled with labels entailment, contradiction, and neutral. For details, see the [SNLI home page](https://nlp.stanford.edu/projects/snli/) or read the [2015 paper](https://nlp.stanford.edu/pubs/snli_paper.pdf) "A large annotated corpus for learning natural language inference" by Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher Manning. Included data: ```julia SNLI.train_tsv() SNLI.train_jsonl() SNLI.dev_tsv() SNLI.dev_jsonl() SNLI.test_tsv() SNLI.test_jsonl() ``` """ module SNLI import ...register_data using DataDeps: @datadep_str snli_file(filename) = joinpath(datadep"SNLI", "snli_1.0", filename) train_tsv() = snli_file("snli_1.0_train.txt") train_jsonl() = snli_file("snli_1.0_train.jsonl") dev_tsv() = snli_file("snli_1.0_dev.txt") dev_jsonl() = snli_file("snli_1.0_dev.jsonl") test_tsv() = snli_file("snli_1.0_test.txt") test_jsonl() = snli_file("snli_1.0_test.jsonl") function __init__() register_data( "SNLI", """ The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). https://nlp.stanford.edu/projects/snli/ The dataset is distributed as a 100MB zip file. The Stanford Natural Language Inference Corpus by The Stanford NLP Group is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Based on a work at http://shannon.cs.illinois.edu/DenotationGraph/. """, "https://nlp.stanford.edu/projects/snli/snli_1.0.zip", "afb3d70a5af5d8de0d9d81e2637e0fb8c22d1235c2749d83125ca43dab0dbd3e") end end # module
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1012
""" XNLI A collection of 5,000 test and 2,500 dev pairs for the `MultiNLI` corpus. For details, see the [2018 paper](https://www.aclweb.org/anthology/papers/D/D18/D18-1269/) "XNLI: Evaluating Cross-lingual Sentence Representations." ```julia XNLI.dev_tsv() XNLI.dev_jsonl() XNLI.test_tsv() XNLI.test_jsonl() ``` """ module XNLI import ...register_data using DataDeps: @datadep_str xnlifile(filename) = joinpath(datadep"XNLI", "XNLI-1.0", filename) dev_tsv() = xnlifile("xnli.dev.tsv") dev_jsonl() = xnlifile("xnli.dev.jsonl") test_tsv() = xnlifile("xnli.test.tsv") test_jsonl() = xnlifile("xnli.test.jsonl") function __init__() register_data( "XNLI", """ The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and 2,500 dev pairs for the `MultiNLI` corpus. """, "http://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip", "4ba1d5e1afdb7161f0f23c66dc787802ccfa8a25a3ddd3b165a35e50df346ab1") end end
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
code
1965
using NLIDatasets, Test @testset "NLIDatasets.jl" begin @testset "SNLI" begin using NLIDatasets: SNLI @test isfile(SNLI.train_tsv()) @test isfile(SNLI.train_jsonl()) @test isfile(SNLI.dev_tsv()) @test isfile(SNLI.dev_jsonl()) @test isfile(SNLI.test_tsv()) @test isfile(SNLI.test_jsonl()) end @testset "MultiNLI" begin using NLIDatasets: MultiNLI @test isfile(MultiNLI.train_tsv()) @test isfile(MultiNLI.train_jsonl()) @test isfile(MultiNLI.dev_matched_tsv()) @test isfile(MultiNLI.dev_matched_jsonl()) @test isfile(MultiNLI.dev_mismatched_tsv()) @test isfile(MultiNLI.dev_mismatched_jsonl()) end @testset "XNLI" begin using NLIDatasets: XNLI @test isfile(XNLI.dev_tsv()) @test isfile(XNLI.dev_jsonl()) @test isfile(XNLI.test_tsv()) @test isfile(XNLI.test_jsonl()) end @testset "SciTail" begin using NLIDatasets: SciTail @test isfile(SciTail.train_tsv()) @test isfile(SciTail.train_jsonl()) @test isfile(SciTail.dev_tsv()) @test isfile(SciTail.dev_jsonl()) @test isfile(SciTail.test_tsv()) @test isfile(SciTail.test_jsonl()) end @testset "HANS" begin using NLIDatasets: HANS @test isfile(HANS.test_tsv()) end @testset "Breaking_NLI" begin using NLIDatasets: BreakingNLI @test isfile(BreakingNLI.test_jsonl()) end @testset "ANLI" begin using NLIDatasets: ANLI @test isfile(ANLI.R1_train_jsonl()) @test isfile(ANLI.R1_dev_jsonl()) @test isfile(ANLI.R1_test_jsonl()) @test isfile(ANLI.R2_train_jsonl()) @test isfile(ANLI.R2_dev_jsonl()) @test isfile(ANLI.R2_test_jsonl()) @test isfile(ANLI.R3_train_jsonl()) @test isfile(ANLI.R3_dev_jsonl()) @test isfile(ANLI.R3_test_jsonl()) end end
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
docs
1586
# NLIDatasets.jl [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://dellison.github.io/NLIDatasets.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://dellison.github.io/NLIDatasets.jl/dev) [![Build Status](https://travis-ci.org/dellison/NLIDatasets.jl.svg?branch=master)](https://travis-ci.org/dellison/NLIDatasets.jl) [![codecov](https://codecov.io/gh/dellison/NLIDatasets.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/dellison/NLIDatasets.jl) NLIDatasets.jl is a Julia package for working with Natural Language Inference datasets. ## Datasets - [SNLI](https://nlp.stanford.edu/projects/snli/) (see [paper](https://nlp.stanford.edu/pubs/snli_paper.pdf)) - [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) (see [paper](https://www.nyu.edu/projects/bowman/multinli/paper.pdf)) - [XNLI](https://www.nyu.edu/projects/bowman/xnli/) (see [paper](https://www.aclweb.org/anthology/papers/D/D18/D18-1269/)) - [SciTail](http://data.allenai.org/scitail/) (see [paper](http://ai2-website.s3.amazonaws.com/publications/scitail-aaai-2018_cameraready.pdf)) - [HANS](https://github.com/tommccoy1/hans) (see [paper](https://www.aclweb.org/anthology/P19-1334)) - [BreakingNLI](https://github.com/BIU-NLP/Breaking_NLI) (see [paper](https://www.aclweb.org/anthology/P18-2103/)) - [ANLI](https://github.com/facebookresearch/anli) (see [paper](https://arxiv.org/abs/1910.14599)) ## Usage See the [documentation](https://dellison.github.io/NLIDatasets.jl/dev). ```julia using NLIDatasets: SNLI train, dev = SNLI.train_tsv(), SNLI.dev_tsv() ```
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
a7aa61929eb960c930fcb27e12c7a975f463c05f
docs
689
# NLIDatasets.jl NLIDatasets.jl is a Julia package for working with datasets for the Natural Language Inference task (also called Relational Text Entailment, or RTE). Provides an interface to the following datasets: - [SNLI](@ref SNLI) - [MultiNLI](@ref MultiNLI) - [XNLI](@ref XNLI) - [HANS](@ref HANS) - [BreakingNLI](@ref BreakingNLI) - [SciTail](@ref SciTail) - [ANLI](@ref ANLI) ## SNLI ```@docs NLIDatasets.SNLI ``` ## MultiNLI ```@docs NLIDatasets.MultiNLI ``` ## XNLI ```@docs NLIDatasets.XNLI ``` ## HANS ```@docs NLIDatasets.HANS ``` ## BreakingNLI ```@docs NLIDatasets.BreakingNLI ``` ## SciTail ```@docs NLIDatasets.SciTail ``` ## ANLI ```@docs NLIDatasets.ANLI ```
NLIDatasets
https://github.com/dellison/NLIDatasets.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
code
151
module PolygonInbounds export inpoly2, Demo include("generic.jl") include("utilities.jl") include("inpoly2.jl") include("polydemo.jl") end # module
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
code
8008
""" PolygonMesh(nodes[, edges]) Polygon given by `nodes` and `edges`. Several formats are supported: * nodes as nx2 matrix * nodes as n-vector of 2-vectors or 2-tuples of x-y-coordinates * edges as nx2 matrix of indices * edges as n-vector of indices` * edges empty Incomplete edges are filles up by best guess. The columns must be permutations of `1:n`. """ struct PolygonMesh{A,U,E<:Union{Nothing,AbstractArray{<:Integer}}} nodes::U edges::E function PolygonMesh(n::U, ed::E) where {U,E} A = ed isa AbstractMatrix ? max(size(ed, 2) - 2, 0) : 0 # the number of stored area indices per edge checkarguments(n, ed) new{A,U,E}(n, ed) end PolygonMesh(n::U) where U = PolygonMesh(n, nothing) end """ PointsInbound(p) Vector of points. Several formats are supported for points: * as 2-vector of real numbers (set of single point) * as nx2 matrix of real numbers - each row represents `(x, y)` * as n-vector of 2-vectors or 2-tuples of x-y-coordinates """ struct PointsInbound{V} points::V PointsInbound(p::V) where V = new{V}(p) end """ see `InOnOut` and `InOnBit` """ abstract type AbstractOutputFormat end """ InOnOut{IN,ON,OUT} Expected format of output is one of three constant values. `InOnOut{1,0,-1}` returns `1`, `0`, `-1` if point is in, on, or out respectively. """ struct InOnOut{IN,ON,OUT} <: AbstractOutputFormat end """ InOnBit Expected output is a pair of booleans, the first one, `inout`, indicating the point is inside, the second one, `bnds`, indicating the point is close to the border. Vectors are stored in `BitArray`s of 3 dimensions. Depending on the used algorithm, the value of `inout` may be invalid, if `bnds` is true. """ struct InOnBit <: AbstractOutputFormat end # interface for above structures standard cases # access functions for PolygonMesh function nodecount(poly::PolygonMesh) size(poly.nodes, 1) end function Base.length(poly::PolygonMesh) nodecount(poly) end function edgecount(poly::PolygonMesh{<:Any,<:Any,<:Union{Nothing,AbstractArray{<:Any,0}}}) length(poly) end function edgecount(poly::PolygonMesh{<:Any,<:Any,<:AbstractArray}) size(poly.edges, 1) end function edgeindex(poly::PolygonMesh{0,<:Any,<:Union{Nothing,AbstractArray{<:Any,0}}}, i::Integer, n::Integer) n == 1 ? i : i % nodecount(poly) + 1 end function edgeindex(poly::PolygonMesh{<:Any,<:Any,<:AbstractVector}, i::Integer, n::Integer) n == 1 ? i : poly.edges[i] end function edgeindex(poly::PolygonMesh{<:Any,<:Any,<:AbstractMatrix}, i::Integer, n::Integer) poly.edges[i,n] end function areaindex(poly::PolygonMesh{A}, i::Integer, a::Integer) where A A >= 1 ? poly.edges[i,a+2] : 1 end function areacount(poly::PolygonMesh{A}) where A if A >= 1 maximum(view(poly.edges, :, 3:A+2)) else 1 end end function all_areas(poly::PolygonMesh{A}) where A if A >= 1 edges = poly.edges m = size(edges, 2) m <= 2 ? [1] : [a for a in unique(vec(view(edges,:, 3:m))) if a != 0] else [1] end end function edges_dict_for_area(poly::PolygonMesh{A}, a::Integer) where A edges = poly.edges n, m = size(edges) if A >= 1 has(edges, i, a) = any(view(edges, i, 3:m) .== a) Dict((edges[k,1], edges[k,2]) for k in 1:n if has(edges, k, a)) else Dict((edges[k,1], edges[k,2]) for k in 1:n) end end function all_edges(poly::PolygonMesh) ((edgeindex(poly, i, 1), edgeindex(poly, i, 2)) for i in 1:edgecount(poly)) end function all_boxlengths(poly::PolygonMesh, xy::Integer) (abs(vertex(poly,v,xy) - vertex(poly,w,xy)) for (v, w) in all_edges(poly)) end function vertex(poly::PolygonMesh{<:Any,<:AbstractMatrix{<:Real}}, v::Integer, xy::Integer) poly.nodes[v,xy] end function vertex(poly::PolygonMesh{<:Any,<:AbstractVector}, v::Integer, xy::Integer) poly.nodes[v][xy] end # access functions for PointsInbounds function Base.length(p::PointsInbound{<:AbstractVector{<:Real}}) 1 end function Base.length(p::PointsInbound{<:AbstractMatrix{<:Real}}) size(p.points, 1) end function Base.length(p::PointsInbound{<:AbstractVector}) length(p.points) end function vertex(p::PointsInbound{<:AbstractVector{<:Real}}, v::Integer, xy::Integer) p.points[xy] end function vertex(p::PointsInbound{<:AbstractMatrix{<:Real}}, v::Integer, xy::Integer) p.points[v,xy] end function vertex(p::PointsInbound{<:AbstractVector}, v::Integer, xy::Integer) p.points[v][xy] end # standard functions for PointsInbound function Base.minimum(p::Union{PointsInbound,PolygonMesh}) n = length(p) minimum([[vertex(p, k, 1) for k = 1:n] [vertex(p, k, 2) for k = 1:n]], dims = 1) end function Base.maximum(p::Union{PointsInbound,PolygonMesh}) n = length(p) maximum([[vertex(p, k, 1) for k = 1:n] [vertex(p, k, 2) for k = 1:n]], dims = 1) end function Base.sortperm(p::PointsInbound, ix::Integer) n = length(p) sortperm([vertex(p, k, ix) for k in 1:n]) end function Base.sortperm(p::PointsInbound{<:AbstractMatrix}, ix::Integer) sortperm(view(p.points, :, ix)) end # conversion between different output formats function convertout(to::Type{T}, from::Type{S}, args...) where {S<:AbstractOutputFormat,T<:AbstractOutputFormat} T == S && return length(args) == 1 ? args[1] : args convertto(to, convertfrom(from, args...)...) end function convertfrom(::Type{<:InOnBit}, stat::T, bnds::T) where T<:Bool stat, bnds end function convertfrom(::Type{<:InOnBit}, stat::T) where T<:AbstractArray{Bool} stat end function convertfrom(::Type{InOnOut{IN,ON,OUT}}, stat::Integer) where {IN,ON,OUT} if stat == IN true, false elseif stat == OUT false, false elseif stat == ON true, true else false, true end end function convertfrom(::Type{OT}, stat::Union{AbstractVector{T},AbstractMatrix{T}}) where {T<:Integer,OT<:InOnOut} n, m = size(stat) inout = BitArray(undef, n, 2, m) for j = 1:m for i in 1:n a, b = convertfrom(OT, stat[i,j]) inout[i,1,j] = a inout[i,2,j] = a end end inout, bnds end function convertto(::Type{<:InOnBit}, stat::T, bnds::T) where T<:Bool stat, bnds end function convertto(::Type{<:InOnBit}, stat::T, bnds::T) where T<:BitArray stat end function convertto(::Type{InOnOut{IN,ON,OUT}}, stat::Bool, bnds::Bool) where {IN,ON,OUT} bnds ? ON : stat ? IN : OUT end function convertto(::Type{OT}, stat::T) where {OT<:InOnOut,T<:AbstractArray{Bool}} convertto.(OT, view(stat, :,1,:), view(stat, :, 2, :)) end # check functions for PolygonMesh constructor function checknodes(nodes::AbstractMatrix) size(nodes, 2) >= 2 || throw(ArgumentError("nodes require at least 2 coordinates")) nothing end function checknodes(nodes::AbstractVector) nothing end function checknodes(nodes) nothing end function checkarguments(nodes, edges::Union{Nothing,AbstractArray{<:Integer,0}}) checknodes(nodes) nothing end function checkarguments(nodes, edges::AbstractVector{<:Integer}) checknodes(nodes) n = size(nodes, 1) mi, ma = extrema(edges) 0 < mi <= ma <= n || throw(ArgumentError("invalid edge indices")) nothing end function checkarguments(nodes, edges::AbstractMatrix{<:Integer}) checknodes(nodes) n, m = size(edges) m >= 2 || throw(ArgumentError("edges matrix requires at least 2 columns")) m <= 5 || throw(ArgumentError("edges matrix accepts at most 3 area columns")) mi, ma = extrema(view(edges, :, 1:2)) 0 < mi <= ma <= n || throw(ArgumentError("invalid edge indices")) if m > 2 mi, ma = extrema(view(edges, :, 3:m)) 0 <= mi <= 4096 || throw(ArgumentError("invalid area indices ($mi, $ma)")) end if m <= 2 || m == 3 && mi == ma check(i) = isperm(view(edges, :, i)) || throw(ArgumentError("edges column $i is no permutation")) check(1) check(2) end nothing end
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
code
6471
""" s = inpoly2(vert, node, [edge=Nothing, atol=0.0, rtol=eps(), outformat=InOnOut{1,0,-1}]) Check all points defined by `vert` are inside, outside or on bounds of polygon defined by `node` and `edge`. `vert` and `node` are matrices with the x-coordinates in the first and the y-coordinates in the second column. `edge` is an integer matrix of same size as `node`. The first column contains the index of the starting node, the second column the index of the ending node. The polygon needs to be closed. It may contain unconnected cycles. A point is considered on boundary, if its Euclidian distance to any edge is less than or equal `max(atol, rtol * span)`, where span is the maximum extension of the polygon in either direction. If a point is considered on bounds, no further check is made to determine it it is inside or outside numerically. Expected effort of the algorithm is `(N+M)*log(M)`, where `M` is the number of points and `N` is the number of polygon edges. """ function inpoly2(vert, node, edge=zeros(Int); atol::T=0.0, rtol::T=NaN, outformat=InOnBit) where T<:AbstractFloat rtol = !isnan(rtol) ? rtol : iszero(atol) ? eps(T)^0.85 : zero(T) poly = PolygonMesh(node, edge) points = PointsInbound(vert) npoints = length(points) vmin = minimum(points) vmax = maximum(points) pmin = minimum(poly) pmax = maximum(poly) lbar = sum(pmax - pmin) tol = max(abs(rtol * lbar), abs(atol)) ac = areacount(poly) stat = ac > 1 ? falses(npoints,2,ac) : falses(npoints,2) # flip coordinates so expected efford is minimal dvert = vmax - vmin ix = dvert[1] < dvert[2] ? 1 : 2 iyperm = sortperm(points, 3 - ix) inpoly2!(points, iyperm, poly, ix, tol, stat) convertout(outformat, InOnBit, stat) end """ inpoly2_mat(vert, node, edge, fTolx, ftoly, stats) INPOLY2_MAT the local m-code version of the crossing-number test. Loop over edges; do a binary-search for the first ve- rtex that intersects with the edge y-range; do crossing-nu- mber comparisons; break when the local y-range is exceeded. """ function inpoly2!(points, iyperm, poly, ix::Integer, veps::T, stat::S) where {N,T<:AbstractFloat,S<:AbstractArray{Bool,N}} nvrt = length(points) # number of points to be checked nedg = edgecount(poly) # number of edges of the polygon mesh vepsx = vepsy = veps iy = 3 - ix #----------------------------------- loop over polygon edges for epos = 1:nedg inod = edgeindex(poly, epos, 1) # from jnod = edgeindex(poly, epos, 2) # to # swap order of vertices if vertex(poly, inod, iy) > vertex(poly, jnod, iy) inod, jnod = jnod, inod end #------------------------------- calc. edge bounding-box xone = vertex(poly, inod, ix) yone = vertex(poly, inod, iy) xtwo = vertex(poly, jnod, ix) ytwo = vertex(poly, jnod, iy) xmin0 = min(xone, xtwo) xmax0 = max(xone, xtwo) xmin = xmin0 - vepsx xmax = xmax0 + vepsx ymin = yone - vepsy ymax = ytwo + vepsy ydel = ytwo - yone xdel = xtwo - xone xysq = xdel^2 + ydel^2 feps = sqrt(xysq) * veps # find top points[:,iy] < ymin by binary search ilow = searchfirst(points, iy, iyperm, ymin) #------------------------------- calc. edge-intersection # loop over all points with y ∈ [ymin,ymax) for jpos = ilow:nvrt jorig = iyperm[jpos] ypos = vertex(points, jorig, iy) ypos > ymax && break xpos = vertex(points, jorig, ix) if xpos >= xmin if xpos <= xmax #--------- inside extended bounding box of edge mul1 = ydel * (xpos - xone) mul2 = xdel * (ypos - yone) if abs(mul2 - mul1) <= feps #------- distance from line through edge less veps mul3 = xdel * (2xpos-xone-xtwo) + ydel * (2ypos-yone-ytwo) if abs(mul3) <= xysq || hypot(xpos- xone, ypos - yone) <= veps || hypot(xpos- xtwo, ypos - ytwo) <= veps # ---- round boundaries around endpoints of edge setonbounds!(poly, stat, jorig, epos) end if mul1 < mul2 && yone <= ypos < ytwo #----- left of line && ypos exact to avoid multiple counting flipio!(poly, stat, jorig, epos) end elseif mul1 < mul2 && yone <= ypos < ytwo #----- left of line && ypos exact to avoid multiple counting flipio!(poly, stat, jorig, epos) end end else # xpos < xmin - left of bounding box if yone <= ypos < ytwo #----- ypos exact to avoid multiple counting flipio!(poly, stat, jorig, epos) end end end end stat end """ search lowest iy coordinate >= ymin """ function searchfirst(points::PointsInbound, iy::Integer, iyperm, ymin) ilow = 0 iupp = length(points) + 1 @inbounds while ilow < iupp - 1 imid = ilow + (iupp-ilow) >>> 0x01 if vertex(points, iyperm[imid], iy) < ymin ilow = imid else iupp = imid end end iupp end """ flipio!(poly, stat, p, epos) Flip boolean value of in-out-status of point `p` for all areas associated with edge `epos`. """ function flipio!(poly::PolygonMesh, stat::AbstractArray{Bool}, i::Integer, j::Integer) statop!((stat,j,a) -> begin stat[j,1,a] = !stat[j,1,a]; end, poly, stat, i, j) end """ setonbounds!(poly, stat, p, epos) Set boolean value of on-bounds-status of point `p` for all areas associated with edge `epos`. """ function setonbounds!(poly::PolygonMesh, stat::AbstractArray{Bool}, i::Integer, j::Integer) statop!((stat, j,a) -> begin stat[j,2,a] = true; end, poly, stat, i, j) end function statop!(f!::Function, poly::PolygonMesh{A}, stat::AbstractArray{Bool,N}, p::Integer, ed::Integer) where {A,N} for k in 1:max(A, 1) area = N == 3 ? areaindex(poly, ed, k) : 1 if area > 0 f!(stat, p, area) end end end
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
code
8664
module Demo using PolygonInbounds using PolygonInbounds: PolygonMesh, all_areas, edges_dict_for_area, vertex export polydemo struct Dummy end Base.getproperty(::Dummy,::Symbol) = dummy(a...;kw...) = nothing setplot(x) = global Plot = x Plot = Dummy() plot(a...;kw...) = Plot.plot(a...;kw...) plot!(a...;kw...) = Plot.plot!(a...;kw...) scatter(a...;kw...) = Plot.scatter(a...;kw...) scatter!(a...;kw...) = Plot.scatter!(a...;kw...) savefig(a...) = Plot.savefig(a...) display(a...) = Plot.display(a...) const PLOTARG = (legend = :topleft, size = (1024, 780)) """ %POLYDEMO run a series of point-in-polygon demos. % POLYDEMO(II) runs the II-th demo, where +1 <= II <= +3. % Demo problems illustrate varying functionality for the % INPOLY2 routine. % % See also INPOLY2, INPOLYGON % Darren Engwirda : 2018 -- % Email : [email protected] % Last updated : 28/10/2018 """ function polydemo(id::Integer=1; args...) [demo1, demo2, demo3, demo4, demo5][id](;args...) end #----------------------------------------------------------- function demo1(;tol=1e-2, r=10^5, do_plot=true) do_plot && println(""" INPOLY2 provides fast point-in-polygon queries for ob-\n jects in R^2. Like INPOLYGON, it detects points inside\n and on the boundary of polygonal geometries.\n """) nodes = [ 2.0 0; 8 4; 4 8; 0 4; 5 0; 7 4; 3 6; 6 1 # inner nodes 3 3; 5 3; 5 5; 3 5 ] # outer nodes edges = [ 1 2; 2 3; 3 4; 4 5; 5 6; 6 7; 7 8; 8 1 9 10; 10 11; 11 12; 12 9 ] poly = PolygonMesh(nodes, edges) dx = 10 * sqrt(1/r) a = [(x,y) for x in -1:dx:9 for y in -1:dx:9] xpos, ypos = [p[1] for p in a], [p[2] for p in a] stat = @time inpoly2([xpos ypos], nodes, edges, atol=tol) if do_plot p = plot(title="demo1 (r $r, atol $tol)"; PLOTARG...) p = plotpoints(p, xpos, ypos, stat) p = plotpolygon(p, poly) savefig(p, "demo1.png") display(p) end stat end #----------------------------------------------------------- function demo2(;r=2500, tol=1e-3, do_plot=true) do_plot && println(""" INPOLY2 supports multiply-connected geometries, consi-\n sting of arbitrarily nested sets of outer + inner bou-\n ndaries.\n """) xpos, ypos, nodes, edges = testdata("lakes.msh", r) poly = PolygonMesh(nodes, edges) stat = @time inpoly2([xpos ypos], nodes, edges, rtol=tol) if do_plot p = plot(title="demo2 - lakes (r $r, rtol $tol)"; PLOTARG...) p = plotpoints(p, xpos, ypos, stat) p = plotpolygon(p, poly) savefig(p, "demo2.png") display(p) end stat end #----------------------------------------------------------- function demo3(;r=2500, tol=1e-3, do_plot=true) do_plot && println(""" INPOLY2 implements a "pre-sorted" variant of the cros-\n sing-number test - returning queries in approximately \n O((N+M)*LOG(N)) time for configurations consisting of \n N test points and M edges. This is often considerably \n faster than conventional approaches that typically re-\n quire O(N*M) operations.\n """); xpos, ypos, nodes, edges = testdata("coast.msh", r) poly = PolygonMesh(nodes, edges) stat = @time inpoly2([xpos ypos], nodes, edges, rtol=tol) if do_plot p = plot(title="demo3 - coast (r $r, rtol $tol)"; PLOTARG...) p = plotpoints(p, xpos, ypos, stat) p = plotpolygon(p, poly) savefig(p, "demo3.png") display(p) end stat end #----------------------------------------------------------- function demo4(;r=5*10^5, tol=1e-2, do_plot=true) do_plot && println(""" INPOLY2 provides fast point-in-polygon queries for ob-\n jects in R^2. Like INPOLYGON, it detects points inside\n and on the boundary of polygonal geometries.\n """) nodes = [0.0 0; 3 4; 7 5; 10 0] edges = [1 2; 2 3; 3 4; 4 1] poly = PolygonMesh(nodes, edges) rpts = testbox(r, [-1.0 -1.0], [ 11.0 6.0]) xpos, ypos = rpts[:,1], rpts[:,2] stat = @time inpoly2(rpts, nodes, edges, atol=tol) if do_plot p = plot(title="demo4 (r $r, atol $tol)"; PLOTARG...) p = plotpoints(p, xpos, ypos, stat) p = plotpolygon(p, poly) savefig(p, "demo4.png") display(p) end stat end #----------------------------------------------------------- function demo5(;r=5*10^5, tol=1e-2, do_plot=true) do_plot && println(""" INPOLY2 provides fast point-in-polygon queries for ob-\n jects in R^2. Like INPOLYGON, it detects points inside\n and on the boundary of polygonal geometries.\n """) nodes = [0.0 0; 3 4; 7 5; 10 0; 11 4] edges = [1 2 1; 2 3 1; 3 4 1; 4 1 1; 3 4 2; 4 5 2; 5 3 2] poly = PolygonMesh(nodes, edges) rpts = testbox(r, [-1.0 -1.0], [ 11.0 6.0]) xpos, ypos = rpts[:,1], rpts[:,2] stat = @time inpoly2(rpts, nodes, edges, atol=tol) if do_plot p = plot(title="demo5 (r $r, atol $tol)"; PLOTARG...) p = plotpoints(p, xpos, ypos, stat) p = plotpolygon(p, poly) savefig(p, "demo5.png") display(p) end stat end #----- Utility functions function testdata(dataset, r::Integer) filepath = @__DIR__ nodes, edges = loadmsh(joinpath(filepath, "..", "test-data", dataset)) emid = .5 * nodes[edges[:,1],:] + .5 * nodes[edges[:,2],:] ma, mi = maximum(nodes, dims=1), minimum(nodes, dims=1) rpts = testbox(r, mi, ma) vert = r <= 100 ? [rpts;] : [nodes; emid; rpts] vert[:,1], vert[:,2], nodes, edges end function testbox(r::Integer, mi, ma) mi = reshape(mi, 1, 2) ma = reshape(ma, 1, 2) half = (ma + mi) / 2 scal = ma - mi rpts = (rand(r, 2) .- 0.5).* scal .* 1.1 .+ half end function plotpolygon(p, poly::PolygonMesh) areas = all_areas(poly) T = Float64 for a in areas d = edges_dict_for_area(poly, a) while !isempty(d) start = j = minimum(keys(d)) n = length(d) xpos = Vector{T}(undef, n+1) ypos = Vector{T}(undef, n+1) k = 0 while k <= n k += 1 xpos[k] = vertex(poly, j,1) ypos[k] = vertex(poly, j,2) j == start && k > 1 && break j = pop!(d, j) end resize!(xpos, k) resize!(ypos, k) p = plot!(p, xpos, ypos, color=:purple, width=1.5) end end p end function plotpoints(p, xpos, ypos, stat) function sca(ina, color=:black, mshape=:cross) scatter!(p, xpos[ina], ypos[ina]; markershape=mshape, markersize=ms, color=color) end ms = 1.0 inside = onbound = nothing for area in axes(stat,3) inside = stat[:,1,area] onbound = stat[:,2,area] ina = inside .& (!).(onbound) inb = inside .& onbound sca(ina, area == 1 ? :green : :brown) sca(inb, :yellow) end if size(stat,3) > 1 inside = BitVector([any(view(stat,i,1,:)) for i in axes(stat,1)]) onbound = BitVector([any(view(stat,i,2,:)) for i in axes(stat,1)]) end outa = (!).(inside) .& (!).(onbound) outb = (!).(inside) .& onbound sca(outb, :blue) sca(outa, :lightblue) p end function loadmsh(file) nodes = Float64[] edges = Int[] m = 0 n = 0 open(file) do io name ="" while !eof(io) line = readline(io) startswith(line, "#") && continue ls = split(line, "=") if length(ls) == 2 name = ls[1] if name == "point" n = parse(Int, ls[2]) nodes = Vector{Float64}(undef, 2n) m = 0 elseif name == "edge2" n = parse(Int, ls[2]) edges = Vector{Int}(undef, 2n) m = 0 end continue end ls = split(line, ";") if length(ls) >= 2 m >= 2n - 1 && continue if name == "point" nodes[m+=1] = parse(Float64, ls[1]) nodes[m+=1] = parse(Float64, ls[2]) elseif name == "edge2" edges[m+=1] = parse(Int, ls[1]) + 1 edges[m+=1] = parse(Int, ls[2]) + 1 end end end end res(nodes) = permutedims(reshape(nodes, 2, length(nodes)÷2)) res(nodes), res(edges) end end # Demo
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
code
2185
""" mean_overlap(a, y0, x0, x1, y1) Mean overlap of an interval of length `a` and interval `[x0,x1]`, when moving inside `[y0,y1]`. Assumptions `a <= y1 - y0` and ` y0 <= x0 <= x1 <= y1`. Return `result` with `min(x1 - x0, a) <= result <= a`. """ function mean_overlap(a::T, y0::T, x0::T, x1::T, y1::T) where T <: Real x0 = max(x0, y0) x1 = min(x1, y1) y0 <= x0 <= x1 <= y1 || throw(ArgumentError("violating ordering of boundaries")) a = min(a, y1 - y0) y10 = y1 - y0 - a if y10 <= (eps())*a return min(x1 - x0, a) end m11 = max(x0 - y0 - a, 0) m12 = max(min(x0+a, x1) - max(y0+a, x0), 0) d12 = (min(x0+a, x1) + max(y0+a, x0)) / 2 - x0 m13 = max(min(x0+a, y1) - max(y0+a, x1), 0) m22 = max(x1 - x0 - a, 0) m23 = max(min(x1+a, y1) - max(x0+a, x1), 0) d23 = -(min(x1+a, y1) + max(x0+a, x1)) /2 + x1 + a m33 = max(y1 - x1 - a, 0) #println(m11 + m12 + m13 + m22 + m23 + m33 - y1 + y0 + a) #display([m11 m12 m13 m22 m23 m33;0 d12 x1 - x0 a d23 0]) (m12*d12 + m13*(x1-x0) + m22*a + m23*d23) / y10 end function sumeff(points, vmin, vmax, poly, pmin, pmax, xy, tol) pmi = pmin[xy] - tol pma = pmax[xy] + tol vmi = vmin[xy] - tol vma = vmax[xy] + tol sum(mean_overlap.(all_boxlengths(poly, xy) .+ 2tol, pmi, vmi, vma, pma)) end function countmid(points, pmin, pmax, xy, tol) npoints = length(points) v = (vertex(points, k, xy) for k = 1:npoints) pmi = pmin[xy] - tol pma = pmax[xy] + tol low, mid, hi = sum([x < pmi, pmi <= x <= pma, x > pma] for x in v) mid end function estimate_effort(points, vmin, vmax, poly, pmin, pmax, tol) sumx = sumeff(points, vmin, vmax, poly, pmin, pmax, 1, tol) sumy = sumeff(points, vmin, vmax, poly, pmin, pmax, 2, tol) sumx0 = sumeff(points, vmin, vmax, poly, pmin, pmax, 1, 0.0) sumy0 = sumeff(points, vmin, vmax, poly, pmin, pmax, 2, 0.0) xmid = countmid(points, pmin, pmax, 1, tol) ymid = countmid(points, pmin, pmax, 2, tol) xmid0 = countmid(points, pmin, pmax, 1, 0.0) ymid0 = countmid(points, pmin, pmax, 2, 0.0) xmid * sumx, ymid * sumy, xmid0 * sumx0, ymid0 * sumy0 end
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
code
1826
using Test using PolygonInbounds using .Demo @testset "PolygonInboundsTests" begin @testset "argument checks" begin @test inpoly2([0.0 0], [0.0 0]) == [false true] @test_throws ArgumentError inpoly2([0.0 0], [0.0 0], [1;2]) @test inpoly2([0.0 0], [-1.0 1; 1 -1]) == [false true] @test inpoly2([0.0 0], [-1.0 1; 1 -1], [1; 2]) == [false false] @test inpoly2([0.0 0], [-1.0 1; 1 -1], [2; 1]) == [false true] @test_throws ArgumentError inpoly2([0.0 0], [-1.0 1; 1 -1], [2 1]) @test inpoly2([0.0 0], [-1.0 1; 1 -1], [1 1]) == [false false] @test_throws ArgumentError inpoly2([0.0 0], [-1.0 1; 1 -1], [2 1; 2 2]) @test_throws ArgumentError inpoly2([0.0 0], [-1.0 1; 1 -1], [2 2; 1 2]) @test_throws ArgumentError inpoly2([0.0 0], [-1.0 1; 1 -1], [1 1 1 2 3 4]) end let stat = polydemo(4, r=10^5, tol=1e-2, do_plot=false) @testset "functionality" begin @test 300 <= count(stat[:,2]) < 600 @test 29000 <= count(stat[:,1]) < 32000 @test 67000 <= count((!).(stat[:,1])) < 70000 end end @testset "utilities" begin @test PolygonInbounds.mean_overlap(0.0, 0.0, 2.0, 8.0, 10.0) == 0 @test PolygonInbounds.mean_overlap(2.0, 0.0, 2.0, 8.0, 10.0) == 1.5 @test PolygonInbounds.mean_overlap(8.0, 0.0, 2.0, 8.0, 10.0) == 6 @test PolygonInbounds.mean_overlap(11.0, 0.0, 2.0, 8.0, 10.0) == 6 end @testset "means estimations" begin r = 100 nodes = [0.0 0; 3 4; 7 5; 10 0] edges = [1 2; 2 3; 3 4; 4 1] poly = PolygonInbounds.PolygonMesh(nodes, edges) rpts = PolygonInbounds.PointsInbound(Demo.testbox(r, [-1.0 -1.0], [ 11.0 6.0])) x = PolygonInbounds.estimate_effort(rpts, [-1.0 -1.0], [11.0 6.0], poly, [0.0 0.0], [10.0 5.0], 1e-6) @test length(x) == 4 end end # to improve test coverage for i = 1:5 polydemo(i) end
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
docs
3237
# PolygonInbounds [![Build Status](https://travis-ci.com/KlausC/PolygonInbounds.jl.svg?branch=master)](https://travis-ci.com/KlausC/PolygonInbounds.jl) [![Codecov](https://codecov.io/gh/KlausC/PolygonInbounds.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/KlausC/PolygonInbounds.jl) ## INPOLY: Fast points-in-polygon query in Julia Implementation and improvement of function INPOLY2 in Julia. Some new features have been added. The implementation claims to be fast for multiple points to check at once. The cost is `O((N+M)*(log(M)+1))` where `M` is the number of points to check and `N` the number of edges. Link to original Matlab sources: [inpoly2.m](https://github.com/dengwirda/inpoly) The original algorithm was developed by Darren Engwirda in 2017. The Euclidian distance definition of "on-boundary" and the support for multiple areas has been added. ## Description ``` stat = inpoly2(points, nodes, edges[, atol=, rtol=]) ``` determines for each point of `points` two status bits: `inside` and `onboundary`. These bits are stored in the output matrix `stat[:,1:2]` with the same row indices as `points`. A point is considered "inside", if the ray starting from x heading east intersects an odd number of edges. A point is considered "on-boundary", if its Euclidian distance to any of the edges of the polygon is less than `tol = max(atol, rtol*sizefactor)`. `sizefactor` is the maximum extension of the smallest box containing all edges. The cost factor depends severely on `tol`, if that is greater than the average length of the edges. `points` and `nodes` are matrices consisting of x, y in first and second column or vectors of point-objects `p` with `p[1]` and `p[2]` the x and y coordinates. `edges` is a matrix of indices into `nodes`, which define the egdges of a polygon or collection of polygons. The polygons may be unconnected and self-intersecting. Each edge may be associated with one or more area indices, which are stored in adjacent columns of `edges[:,3:end]`. If there is more than one additional area colum, the output array becomes 3-dimensional with elements `stats[:,1:2,area]`. Here `area` are the area indices as stored in the additional columns of `edges`. The definitions of "inside" and "on-boundary" related to an area consider only edges, which have this area associated in one of the added columns of `edges`. Area index `0` indicates unused. It is possible to assign each edge to zero, one, or more areas in this way. The `polydemo` functions produce plots of some selected examples and may be used to enjoy. ### Usage: ```julia Pkg>add PolygonInbounds using Plots using PolygonInbounds using .Demo Demo.setplot(Plots) polydemo(1; tol=0.2); # r is the number of points on a grid polydemo(2; r = 10^5, tol=0.01); # polygons of the "lakes" mesh data set polydemo(3; r = 10^5, tol=0.01); # polygons of the "coast" mesh data set polydemo(4; tol=0.1) # simple tetragon polydemo(5; tol=0.2) # two polygons with different areas points = [0.05 0.0; 1 1; -1 1] nodes = [0.0 0; 0 10; 10 10; 10 0] edges = [1 2; 2 3; 3 4; 4 1] tol = 1e-1 stat = inpoly2(points, nodes, edges, atol=tol) ``` Docu of the original Matlab implementation: [inpoly2](./doc/original.md).
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
0.2.0
8d50c96f4ba5e1e2fd524116b4ef97b29d5f77da
docs
2508
``` INPOLY2 compute "points-in-polygon" queries. [STAT] = INPOLY2(VERT,NODE,EDGE) returns the "inside/ou- tside" status for a set of vertices VERT and a polygon {NODE,EDGE} embedded in a two-dimensional plane. General non-convex and multiply-connected polygonal regions can be handled. VERT is an N-by-2 array of XY coordinates to be tested. STAT is an associated N-by-1 logical array, with STAT(II) = TRUE if VERT(II,:) is an interior point. The polygonal region is defined as a piecewise-straight- line-graph, where NODE is an M-by-2 array of polygon ve- rtices and EDGE is a P-by-2 array of edge indexing. Each row in EDGE represents an edge of the polygon, such that NODE(EDGE(KK,1),:) and NODE(EDGE(KK,2),:) are the coord- inates of the endpoints of the KK-TH edge. If the argum- ent EDGE is omitted it assumed that the vertices in NODE are connected in ascending order. [STAT,BNDS] = INPOLY2(..., FTOL) also returns an N-by-1 logical array BNDS, with BNDS(II) = TRUE if VERT(II,:) lies "on" a boundary segment, where FTOL is a floating- point tolerance for boundary comparisons. By default, FTOL = EPS ^ 0.85. See also INPOLYGON This algorithm is based on a "crossing-number" test, co- unting the number of times a line extending from each point past the right-most region of the polygon interse- cts with the polygonal boundary. Points with odd counts are "inside". A simple implementation requires that each edge intersection be checked for each point, leading to O(N*M) complexity... This implementation seeks to improve these bounds: * Sorting the query points by y-value and determining can- didate edge intersection sets via binary-search. Given a configuration with N test points, M edges and an average point-edge "overlap" of H, the overall complexity scales like O(M*H + M*LOG(N) + N*LOG(N)), where O(N*LOG(N)) operations are required for sorting, O(M*LOG(N)) operat- ions required for the set of binary-searches, and O(M*H) operations required for the intersection tests, where H is typically small on average, such that H << N. * Carefully checking points against the bounding-box asso- ciated with each polygon edge. This minimises the number of calls to the (relatively) expensive edge intersection test. Darren Engwirda : 2017 -- Email : [email protected] Last updated : 27/10/2018 ```
PolygonInbounds
https://github.com/KlausC/PolygonInbounds.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1427
module DelayDiffEq using Reexport @reexport using OrdinaryDiffEq using DataStructures using LinearAlgebra using Logging using Printf using RecursiveArrayTools using SimpleUnPack import ArrayInterface import SimpleNonlinearSolve using DiffEqBase: AbstractDDEAlgorithm, AbstractDDEIntegrator, AbstractODEIntegrator, DEIntegrator, AbstractDDEProblem using DiffEqBase: @.. if isdefined(OrdinaryDiffEq, :FastConvergence) using OrdinaryDiffEq: FastConvergence, Convergence, SlowConvergence, VerySlowConvergence, Divergence, AbstractNLSolverCache, NLNewton, NLAnderson, NLFunctional else using DiffEqBase: FastConvergence, Convergence, SlowConvergence, VerySlowConvergence, Divergence, AbstractNLSolverCache end using OrdinaryDiffEq: RosenbrockMutableCache import SciMLBase export Discontinuity, MethodOfSteps include("discontinuity_type.jl") include("functionwrapper.jl") include("integrators/type.jl") include("integrators/utils.jl") include("integrators/interface.jl") include("fpsolve/type.jl") include("fpsolve/fpsolve.jl") include("fpsolve/utils.jl") include("fpsolve/functional.jl") include("cache_utils.jl") include("interpolants.jl") include("history_function.jl") include("algorithms.jl") include("track.jl") include("alg_utils.jl") include("solve.jl") include("utils.jl") end # module
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2973
## SciMLBase Trait Definitions function SciMLBase.isautodifferentiable(alg::AbstractMethodOfStepsAlgorithm) SciMLBase.isautodifferentiable(alg.alg) end function SciMLBase.allows_arbitrary_number_types(alg::AbstractMethodOfStepsAlgorithm) SciMLBase.allows_arbitrary_number_types(alg.alg) end function SciMLBase.allowscomplex(alg::AbstractMethodOfStepsAlgorithm) SciMLBase.allowscomplex(alg.alg) end SciMLBase.isdiscrete(alg::AbstractMethodOfStepsAlgorithm) = SciMLBase.isdiscrete(alg.alg) SciMLBase.isadaptive(alg::AbstractMethodOfStepsAlgorithm) = SciMLBase.isadaptive(alg.alg) ## DelayDiffEq Internal Traits function isconstrained(alg::AbstractMethodOfStepsAlgorithm{constrained}) where {constrained} constrained end OrdinaryDiffEq.uses_uprev(alg::AbstractMethodOfStepsAlgorithm, adaptive) = true function OrdinaryDiffEq.isimplicit(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.isimplicit(alg.alg) end function OrdinaryDiffEq.isdtchangeable(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.isdtchangeable(alg.alg) end function OrdinaryDiffEq.ismultistep(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.ismultistep(alg.alg) end function OrdinaryDiffEq.isautoswitch(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.isautoswitch(alg.alg) end function OrdinaryDiffEq.get_chunksize(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.get_chunksize(alg.alg) end function OrdinaryDiffEq.get_chunksize_int(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.get_chunksize_int(alg.alg) end function OrdinaryDiffEq.alg_autodiff(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.alg_autodiff(alg.alg) end function OrdinaryDiffEq.alg_difftype(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.alg_difftype(alg.alg) end function OrdinaryDiffEq.standardtag(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.standardtag(alg.alg) end function OrdinaryDiffEq.concrete_jac(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.concrete_jac(alg.alg) end function OrdinaryDiffEq.alg_extrapolates(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.alg_extrapolates(alg.alg) end function OrdinaryDiffEq.alg_order(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.alg_order(alg.alg) end function OrdinaryDiffEq.alg_maximum_order(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.alg_maximum_order(alg.alg) end function OrdinaryDiffEq.alg_adaptive_order(alg::AbstractMethodOfStepsAlgorithm) OrdinaryDiffEq.alg_adaptive_order(alg.alg) end """ iscomposite(alg) Return if algorithm `alg` is a composite algorithm. """ iscomposite(alg) = false iscomposite(::OrdinaryDiffEq.OrdinaryDiffEqCompositeAlgorithm) = true iscomposite(alg::AbstractMethodOfStepsAlgorithm) = iscomposite(alg.alg) function DiffEqBase.prepare_alg(alg::MethodOfSteps, u0, p, prob) MethodOfSteps(DiffEqBase.prepare_alg(alg.alg, u0, p, prob); constrained = isconstrained(alg), fpsolve = alg.fpsolve) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1382
abstract type DelayDiffEqAlgorithm <: AbstractDDEAlgorithm end abstract type AbstractMethodOfStepsAlgorithm{constrained} <: DelayDiffEqAlgorithm end struct MethodOfSteps{algType, F, constrained} <: AbstractMethodOfStepsAlgorithm{constrained} alg::algType fpsolve::F end """ MethodOfSteps(alg; constrained = false, fpsolve = NLFunctional()) Construct an algorithm that solves delay differential equations by the method of steps, where `alg` is an ODE algorithm from OrdinaryDiffEq.jl upon which the calculation of steps is based. If the algorithm is `constrained` only steps of size at most the minimal delay will be taken. If it is unconstrained, fixed-point iteration `fpsolve` is applied for step sizes that exceed the minimal delay. Citations: General Approach ZivariPiran, Hossein, and Wayne H. Enright. "An efficient unified approach for the numerical solution of delay differential equations." Numerical Algorithms 53.2-3 (2010): 397-417. State-Dependent Delays S. P. Corwin, D. Sarafyan and S. Thompson in "DKLAG6: a code based on continuously imbedded sixth-order Runge-Kutta methods for the solution of state-dependent functional differential equations", Applied Numerical Mathematics, 1997. """ function MethodOfSteps(alg; constrained = false, fpsolve = NLFunctional()) MethodOfSteps{typeof(alg), typeof(fpsolve), constrained}(alg, fpsolve) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
385
function DiffEqBase.unwrap_cache(integrator::DDEIntegrator, is_stiff) alg = integrator.alg cache = integrator.cache iscomp = alg isa CompositeAlgorithm if !iscomp return cache elseif alg.choice_function isa AutoSwitch num = is_stiff ? 2 : 1 return cache.caches[num] else return cache.caches[integrator.cache.current] end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2078
""" Discontinuity(t, order) Object of discontinuity of order `order` at time `t`, i.e. discontinuity of `order`th derivative at time `t`. """ struct Discontinuity{tType, O} t::tType order::O end # ordering of discontinuities Base.:<(a::Discontinuity, b::Discontinuity) = a.t < b.t || (a.t == b.t && a.order < b.order) function Base.isless(a::Discontinuity, b::Discontinuity) isless(a.t, b.t) || (isequal(a.t, b.t) && isless(a.order, b.order)) end function Base.isequal(a::Discontinuity, b::Discontinuity) isequal(a.t, b.t) && isequal(a.order, b.order) end Base.:(==)(a::Discontinuity, b::Discontinuity) = a.t == b.t && a.order == b.order # ordering with numbers Base.:<(a::Discontinuity, b::Number) = a.t < b Base.:<(a::Number, b::Discontinuity) = a < b.t Base.isless(a::Discontinuity, b::Number) = isless(a.t, b) Base.isless(a::Number, b::Discontinuity) = isless(a, b.t) Base.:(==)(a::Discontinuity, b::Number) = a.t == b Base.:(==)(a::Number, b::Discontinuity) = a == b.t Base.isequal(a::Discontinuity, b::Number) = isequal(a.t, b) Base.isequal(a::Number, b::Discontinuity) = isequal(a, b.t) # multiplication with numbers Base.:*(a::Discontinuity, b::Number) = Discontinuity(a.t * b, a.order) Base.:*(a::Number, b::Discontinuity) = Discontinuity(a * b.t, b.order) # conversion to numbers Base.convert(::Type{T}, d::Discontinuity) where {T <: Number} = convert(T, d.t) Base.convert(::Type{T}, d::Discontinuity{T}) where {T <: Number} = d.t # conversion to discontinuity function Base.convert(::Type{Discontinuity{T}}, x::Number) where {T <: Number} return convert(Discontinuity{T, Int}, x) end function Base.convert(::Type{Discontinuity{T, O}}, x::Number) where {T <: Number, O} return Discontinuity{T, O}(convert(T, x), zero(O)) end function Base.convert(::Type{Discontinuity{T, O}}, x::T) where {T <: Number, O} return Discontinuity{T, O}(x, zero(O)) end # display Base.show(io::IO, d::Discontinuity) = print(io, d.t, " (order ", d.order, ")") Base.show(io::IO, ::MIME"text/plain", d::Discontinuity) = print(io, typeof(d), ":\n ", d)
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1889
# convenience macro macro wrap_h(signature) Meta.isexpr(signature, :call) || throw(ArgumentError("signature has to be a function call expression")) name = signature.args[1] args = signature.args[2:end] args_wo_h = [arg for arg in args if arg !== :h] quote if f.$name === nothing nothing else if isinplace(f) let _f = f.$name, h = h ($(args_wo_h...),) -> _f($(args...)) end else let _f = f.$name, h = h ($(args_wo_h[2:end]...),) -> _f($(args[2:end]...)) end end end end |> esc end struct ODEFunctionWrapper{iip, F, H, TMM, Ta, Tt, TJ, JP, SP, TW, TWt, TPJ, S, TCV} <: DiffEqBase.AbstractODEFunction{iip} f::F h::H mass_matrix::TMM analytic::Ta tgrad::Tt jac::TJ jac_prototype::JP sparsity::SP Wfact::TW Wfact_t::TWt paramjac::TPJ sys::S colorvec::TCV end function ODEFunctionWrapper(f::DiffEqBase.AbstractDDEFunction, h) # wrap functions jac = @wrap_h jac(J, u, h, p, t) Wfact = @wrap_h Wfact(W, u, h, p, dtgamma, t) Wfact_t = @wrap_h Wfact_t(W, u, h, p, dtgamma, t) ODEFunctionWrapper{isinplace(f), typeof(f.f), typeof(h), typeof(f.mass_matrix), typeof(f.analytic), typeof(f.tgrad), typeof(jac), typeof(f.jac_prototype), typeof(f.sparsity), typeof(Wfact), typeof(Wfact_t), typeof(f.paramjac), typeof(f.sys), typeof(f.colorvec)}(f.f, h, f.mass_matrix, f.analytic, f.tgrad, jac, f.jac_prototype, f.sparsity, Wfact, Wfact_t, f.paramjac, f.sys, f.colorvec) end (f::ODEFunctionWrapper{true})(du, u, p, t) = f.f(du, u, f.h, p, t) (f::ODEFunctionWrapper{false})(u, p, t) = f.f(u, f.h, p, t)
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
3105
""" HistoryFunction(h, integrator) Wrap history function `h` and integrator `integrator` to create a common interface for retrieving values at any time point with varying accuracy. Before the initial time point of the `integrator` values are calculated by history function `h`, for time points up to the final time point of the solution interpolated values of the solution are returned, and after the final time point an inter- or extrapolation of the current state of the `integrator` is retrieved. """ mutable struct HistoryFunction{H, I <: DEIntegrator} <: DiffEqBase.AbstractHistoryFunction h::H integrator::I isout::Bool end HistoryFunction(h, integrator) = HistoryFunction(h, integrator, false) function (f::HistoryFunction)(p, t, ::Type{Val{deriv}} = Val{0}; idxs = nothing) where {deriv} @unpack integrator = f @unpack tdir, sol = integrator tdir_t = tdir * t if tdir_t < tdir * sol.prob.tspan[1] if deriv == 0 && idxs === nothing return f.h(p, t) elseif idxs === nothing return f.h(p, t, Val{deriv}) elseif deriv == 0 return f.h(p, t; idxs = idxs) else return f.h(p, t, Val{deriv}; idxs = idxs) end end if !isempty(sol.t) tdir_solt = tdir * sol.t[end] if tdir_t <= tdir_solt return sol.interp(t, idxs, Val{deriv}, p) end # history function is evaluated at time point past the final time point of # the current solution if tdir_t - tdir_solt > 10 * eps(tdir_t) f.isout = true end else f.isout = true end if integrator.t == sol.prob.tspan[1] # handle extrapolations at initial time point return constant_extrapolant(t, integrator, idxs, Val{deriv}) else return integrator(t, Val{deriv}; idxs = idxs) end end function (f::HistoryFunction)(val, p, t, ::Type{Val{deriv}} = Val{0}; idxs = nothing) where {deriv} @unpack integrator = f @unpack tdir, sol = integrator tdir_t = tdir * t if tdir_t < tdir * sol.prob.tspan[1] if deriv == 0 && idxs === nothing return f.h(val, p, t) elseif idxs === nothing return f.h(val, p, t, Val{deriv}) elseif deriv == 0 return f.h(val, p, t; idxs = idxs) else return f.h(val, p, t, Val{deriv}; idxs = idxs) end end if !isempty(sol.t) tdir_solt = tdir * sol.t[end] if tdir_t <= tdir_solt return sol.interp(val, t, idxs, Val{deriv}, p) end # history function is evaluated at time point past the final time point of # the current solution if tdir_t - tdir_solt > 10 * eps(tdir_t) f.isout = true end else f.isout = true end if integrator.t == sol.prob.tspan[1] # handle extrapolations at initial time point return constant_extrapolant!(val, t, integrator, idxs, Val{deriv}) else return integrator(val, t, Val{deriv}; idxs = idxs) end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1885
""" constant_extrapolant(t, integrator::DEIntegrator, idxs, deriv) Calculate constant extrapolation of derivative `deriv` at time `t` and indices `idxs` for `integrator`. """ function constant_extrapolant(t, integrator::DEIntegrator, idxs, deriv) [constant_extrapolant(τ, integrator, idxs, deriv) for τ in t] end function constant_extrapolant(t::Number, integrator::DEIntegrator, idxs, T::Type{Val{0}}) idxs === nothing ? integrator.u : integrator.u[idxs] end function constant_extrapolant(t::Number, integrator::DEIntegrator, idxs, T::Type{Val{1}}) idxs === nothing ? zero(integrator.u) ./ oneunit(t) : zero(integrator.u[idxs]) ./ oneunit(t) end """ constant_extrapolant!(val, t, integrator::DEIntegrator, idxs, deriv) Calculate constant extrapolation of derivative `deriv` at time `t` and indices `idxs` for `integrator`, and save result in `val` if `val` is not `nothing`. """ function constant_extrapolant!(val, t, integrator::DEIntegrator, idxs, deriv) [constant_extrapolant!(val, τ, integrator, idxs, deriv) for τ in t] end function constant_extrapolant!(val, t::Number, integrator::DEIntegrator, idxs, T::Type{Val{0}}) if val === nothing if idxs === nothing return integrator.u else return integrator.u[idxs] end elseif idxs === nothing @. val = integrator.u else @views @. val = integrator.u[idxs] end end function constant_extrapolant!(val, t::Number, integrator::DEIntegrator, idxs, T::Type{Val{1}}) if val === nothing if idxs === nothing return zero(integrator.u) ./ oneunit(t) else return zero(integrator.u[idxs]) ./ oneunit(t) end elseif idxs === nothing val .= zero(integrator.u) ./ oneunit(t) else @views val .= zero(integrator.u[idxs]) ./ oneunit(t) end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
23204
function DiffEqBase.__solve(prob::DiffEqBase.AbstractDDEProblem, alg::AbstractMethodOfStepsAlgorithm, args...; kwargs...) integrator = DiffEqBase.__init(prob, alg, args...; kwargs...) DiffEqBase.solve!(integrator) integrator.sol end function DiffEqBase.__init(prob::DiffEqBase.AbstractDDEProblem, alg::AbstractMethodOfStepsAlgorithm, timeseries_init = (), ts_init = (), ks_init = (); saveat = (), tstops = (), d_discontinuities = (), save_idxs = nothing, save_everystep = isempty(saveat), save_on = true, save_start = save_everystep || isempty(saveat) || saveat isa Number || prob.tspan[1] in saveat, save_end = nothing, callback = nothing, dense = save_everystep && isempty(saveat), calck = (callback !== nothing && callback != CallbackSet()) || # Empty callback dense, # and no dense output dt = zero(eltype(prob.tspan)), dtmin = DiffEqBase.prob2dtmin(prob; use_end_time = false), dtmax = eltype(prob.tspan)(prob.tspan[end] - prob.tspan[1]), force_dtmin = false, adaptive = DiffEqBase.isadaptive(alg), gamma = OrdinaryDiffEq.gamma_default(alg.alg), abstol = nothing, reltol = nothing, qmin = OrdinaryDiffEq.qmin_default(alg.alg), qmax = OrdinaryDiffEq.qmax_default(alg.alg), qsteady_min = OrdinaryDiffEq.qsteady_min_default(alg.alg), qsteady_max = OrdinaryDiffEq.qsteady_max_default(alg.alg), qoldinit = DiffEqBase.isadaptive(alg) ? 1 // 10^4 : 0, controller = nothing, fullnormalize = true, failfactor = 2, beta1 = nothing, beta2 = nothing, maxiters = adaptive ? 1000000 : typemax(Int), internalnorm = DiffEqBase.ODE_DEFAULT_NORM, internalopnorm = LinearAlgebra.opnorm, isoutofdomain = DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN, unstable_check = DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK, verbose = true, timeseries_errors = true, dense_errors = false, advance_to_tstop = false, stop_at_next_tstop = false, initialize_save = true, progress = false, progress_steps = 1000, progress_name = "DDE", progress_message = DiffEqBase.ODE_DEFAULT_PROG_MESSAGE, progress_id = :DelayDiffEq, userdata = nothing, allow_extrapolation = OrdinaryDiffEq.alg_extrapolates(alg), initialize_integrator = true, alias_u0 = false, # keyword arguments for DDEs discontinuity_interp_points::Int = 10, discontinuity_abstol = eltype(prob.tspan)(1 // Int64(10)^12), discontinuity_reltol = 0, kwargs...) if haskey(kwargs, :initial_order) @warn "initial_order has been deprecated. Please specify order_discontinuity_t0 in the DDEProblem instead." order_discontinuity_t0::Int = kwargs[:initial_order] else order_discontinuity_t0 = prob.order_discontinuity_t0 end if alg.alg isa CompositeAlgorithm && alg.alg.choice_function isa AutoSwitch auto = alg.alg.choice_function alg = MethodOfSteps(CompositeAlgorithm(alg.alg.algs, OrdinaryDiffEq.AutoSwitchCache(0, 0, auto.nonstiffalg, auto.stiffalg, auto.stiffalgfirst, auto.maxstiffstep, auto.maxnonstiffstep, auto.nonstifftol, auto.stifftol, auto.dtfac, auto.stiffalgfirst, auto.switch_max))) end if haskey(kwargs, :minimal_solution) @warn "minimal_solution is ignored" end if !isempty(saveat) && dense @warn("Dense output is incompatible with saveat. Please use the SavingCallback from the Callback Library to mix the two behaviors.") end progress && @logmsg(-1, progress_name, _id=progress_id, progress=0) isdae = prob.f.mass_matrix !== I && !(prob.f.mass_matrix isa Tuple) && ArrayInterface.issingular(prob.f.mass_matrix) # unpack problem @unpack f, u0, h, tspan, p, neutral, constant_lags, dependent_lags = prob # determine type and direction of time tType = eltype(tspan) t0 = first(tspan) tdir = sign(last(tspan) - t0) tTypeNoUnits = typeof(one(tType)) # Allow positive dtmax, but auto-convert dtmax > zero(dtmax) && tdir < zero(tdir) && (dtmax *= tdir) # no fixed-point iterations for constrained algorithms, # and thus `dtmax` should match minimal lag if isconstrained(alg) && has_constant_lags(prob) dtmax = tdir * min(abs(dtmax), minimum(abs, constant_lags)) end # get absolute and relative tolerances abstol_internal = get_abstol(u0, tspan, alg.alg; abstol = abstol) reltol_internal = get_reltol(u0, tspan, alg.alg; reltol = reltol) # get rate prototype rate_prototype = rate_prototype_of(u0, tspan) # get states (possibly different from the ODE integrator!) u, uprev, uprev2 = u_uprev_uprev2(u0, alg; alias_u0 = alias_u0, adaptive = adaptive, allow_extrapolation = allow_extrapolation, calck = calck) uEltypeNoUnits = recursive_unitless_eltype(u) uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u) # get the differential vs algebraic variables differential_vars = prob isa DAEProblem ? prob.differential_vars : OrdinaryDiffEq.get_differential_vars(f, u) # create a history function history = build_history_function(prob, alg, rate_prototype, reltol_internal, differential_vars; dt = dt, dtmin = dtmin, calck = false, adaptive = adaptive, internalnorm = internalnorm) f_with_history = ODEFunctionWrapper(f, history) # initialize output arrays of the solution k = typeof(rate_prototype)[] ts, timeseries, ks = solution_arrays(u, tspan, rate_prototype; timeseries_init = timeseries_init, ts_init = ts_init, ks_init = ks_init, save_idxs = save_idxs, save_start = save_start) # build cache ode_integrator = history.integrator cache = OrdinaryDiffEq.alg_cache(alg.alg, u, rate_prototype, uEltypeNoUnits, uBottomEltypeNoUnits, tTypeNoUnits, uprev, uprev2, f_with_history, t0, zero(tType), reltol_internal, p, calck, Val(isinplace(prob))) # separate statistics of the integrator and the history stats = SciMLBase.DEStats(0) # create solution alg_choice = iscomposite(alg) ? Int[] : nothing id = OrdinaryDiffEq.InterpolationData(f_with_history, timeseries, ts, ks, alg_choice, dense, cache, differential_vars, false) sol = DiffEqBase.build_solution(prob, alg.alg, ts, timeseries; dense = dense, k = ks, interp = id, alg_choice = id.alg_choice, calculate_error = false, stats = stats) # retrieve time stops, time points at which solutions is saved, and discontinuities tstops_internal = OrdinaryDiffEq.initialize_tstops(tType, tstops, d_discontinuities, tspan) saveat_internal = OrdinaryDiffEq.initialize_saveat(tType, saveat, tspan) d_discontinuities_internal = OrdinaryDiffEq.initialize_d_discontinuities( Discontinuity{ tType, Int }, d_discontinuities, tspan) maximum_order = OrdinaryDiffEq.alg_maximum_order(alg) tstops_propagated, d_discontinuities_propagated = initialize_tstops_d_discontinuities_propagated( tType, tstops, d_discontinuities, tspan, order_discontinuity_t0, maximum_order, constant_lags, neutral) # reserve capacity for the solution sizehint!(sol, alg, tspan, tstops_internal, saveat_internal; save_everystep = save_everystep, adaptive = adaptive, dt = tType(dt), dtmin = dtmin, internalnorm = internalnorm) # create array of tracked discontinuities # used to find propagated discontinuities with callbacks and to keep track of all # passed discontinuities tracked_discontinuities = Discontinuity{tType, Int}[] if order_discontinuity_t0 ≤ maximum_order push!(tracked_discontinuities, Discontinuity(tdir * t0, order_discontinuity_t0)) end # Create set of callbacks and its cache callback_set, callback_cache = callback_set_and_cache(prob, callback) # separate options of integrator and of dummy ODE integrator since ODE integrator always saves # every step and every index (necessary for history function) QT = tTypeNoUnits <: Integer ? typeof(qmin) : typeof(internalnorm(u, t0)) # Setting up the step size controller if (beta1 !== nothing || beta2 !== nothing) && controller !== nothing throw(ArgumentError("Setting both the legacy PID parameters `beta1, beta2 = $((beta1, beta2))` and the `controller = $controller` is not allowed.")) end if (beta1 !== nothing || beta2 !== nothing) message = "Providing the legacy PID parameters `beta1, beta2` is deprecated. Use the keyword argument `controller` instead." Base.depwarn(message, :init) Base.depwarn(message, :solve) end if controller === nothing controller = OrdinaryDiffEq.default_controller(alg.alg, cache, convert(QT, qoldinit)::QT, beta1, beta2) end save_end_user = save_end save_end = save_end === nothing ? save_everystep || isempty(saveat) || saveat isa Number || prob.tspan[2] in saveat : save_end # added in OrdinaryDiffEq.jl#2032 if hasfield(OrdinaryDiffEq.DEOptions, :progress_id) opts = OrdinaryDiffEq.DEOptions{typeof(abstol_internal), typeof(reltol_internal), QT, tType, typeof(controller), typeof(internalnorm), typeof(internalopnorm), typeof(save_end_user), typeof(callback_set), typeof(isoutofdomain), typeof(progress_message), typeof(unstable_check), typeof(tstops_internal), typeof(d_discontinuities_internal), typeof(userdata), typeof(save_idxs), typeof(maxiters), typeof(tstops), typeof(saveat), typeof(d_discontinuities)}(maxiters, save_everystep, adaptive, abstol_internal, reltol_internal, QT(gamma), QT(qmax), QT(qmin), QT(qsteady_max), QT(qsteady_min), QT(qoldinit), QT(failfactor), tType(dtmax), tType(dtmin), controller, internalnorm, internalopnorm, save_idxs, tstops_internal, saveat_internal, d_discontinuities_internal, tstops, saveat, d_discontinuities, userdata, progress, progress_steps, progress_name, progress_message, progress_id, timeseries_errors, dense_errors, dense, save_on, save_start, save_end, save_end_user, callback_set, isoutofdomain, unstable_check, verbose, calck, force_dtmin, advance_to_tstop, stop_at_next_tstop) else opts = OrdinaryDiffEq.DEOptions{typeof(abstol_internal), typeof(reltol_internal), QT, tType, typeof(controller), typeof(internalnorm), typeof(internalopnorm), typeof(save_end_user), typeof(callback_set), typeof(isoutofdomain), typeof(progress_message), typeof(unstable_check), typeof(tstops_internal), typeof(d_discontinuities_internal), typeof(userdata), typeof(save_idxs), typeof(maxiters), typeof(tstops), typeof(saveat), typeof(d_discontinuities)}(maxiters, save_everystep, adaptive, abstol_internal, reltol_internal, QT(gamma), QT(qmax), QT(qmin), QT(qsteady_max), QT(qsteady_min), QT(qoldinit), QT(failfactor), tType(dtmax), tType(dtmin), controller, internalnorm, internalopnorm, save_idxs, tstops_internal, saveat_internal, d_discontinuities_internal, tstops, saveat, d_discontinuities, userdata, progress, progress_steps, progress_name, progress_message, #progress_id, timeseries_errors, dense_errors, dense, save_on, save_start, save_end, save_end_user, callback_set, isoutofdomain, unstable_check, verbose, calck, force_dtmin, advance_to_tstop, stop_at_next_tstop) end # create fixed point solver fpsolver = build_fpsolver(alg, alg.fpsolve, u, uEltypeNoUnits, uBottomEltypeNoUnits, Val(isinplace(prob))) # initialize indices of u(t) and u(tprev) in the dense history prev_idx = 1 prev2_idx = 1 # create integrator combining the new defined problem function with history # information, the new solution, the parameters of the ODE integrator, and # parameters of fixed-point iteration # do not initialize fsalfirst and fsallast # rate/state = (state/time)/state = 1/t units, internalnorm drops units eigen_est = inv(one(tType)) tprev = t0 dtcache = tType(dt) dtpropose = tType(dt) iter = 0 kshortsize = 0 reeval_fsal = false u_modified = false EEst = QT(1) just_hit_tstop = false do_error_check = true isout = false accept_step = false force_stepfail = false last_stepfail = false event_last_time = 0 vector_event_last_time = 1 last_event_error = zero(uBottomEltypeNoUnits) dtchangeable = OrdinaryDiffEq.isdtchangeable(alg.alg) q11 = QT(1) success_iter = 0 erracc = QT(1) dtacc = tType(1) if isdefined(OrdinaryDiffEq, :get_fsalfirstlast) fsalfirst, fsallast = OrdinaryDiffEq.get_fsalfirstlast(cache, rate_prototype) integrator = DDEIntegrator{typeof(alg.alg), isinplace(prob), typeof(u0), tType, typeof(p), typeof(eigen_est), QT, typeof(tdir), typeof(k), typeof(sol), typeof(f_with_history), typeof(cache), typeof(ode_integrator), typeof(fpsolver), typeof(opts), typeof(discontinuity_abstol), typeof(discontinuity_reltol), typeof(history), typeof(tstops_propagated), typeof(d_discontinuities_propagated), typeof(fsalfirst), typeof(last_event_error), typeof(callback_cache), typeof(differential_vars)}(sol, u, k, t0, tType(dt), f_with_history, p, uprev, uprev2, tprev, prev_idx, prev2_idx, fpsolver, order_discontinuity_t0, tracked_discontinuities, discontinuity_interp_points, discontinuity_abstol, discontinuity_reltol, tstops_propagated, d_discontinuities_propagated, alg.alg, dtcache, dtchangeable, dtpropose, tdir, eigen_est, EEst, QT(qoldinit), q11, erracc, dtacc, success_iter, iter, length(ts), length(ts), cache, callback_cache, kshortsize, force_stepfail, last_stepfail, just_hit_tstop, do_error_check, event_last_time, vector_event_last_time, last_event_error, accept_step, isout, reeval_fsal, u_modified, isdae, opts, stats, history, differential_vars, ode_integrator, fsalfirst, fsallast) else integrator = DDEIntegrator{typeof(alg.alg), isinplace(prob), typeof(u0), tType, typeof(p), typeof(eigen_est), QT, typeof(tdir), typeof(k), typeof(sol), typeof(f_with_history), typeof(cache), typeof(ode_integrator), typeof(fpsolver), typeof(opts), typeof(discontinuity_abstol), typeof(discontinuity_reltol), typeof(history), typeof(tstops_propagated), typeof(d_discontinuities_propagated), OrdinaryDiffEq.fsal_typeof(alg.alg, rate_prototype), typeof(last_event_error), typeof(callback_cache), typeof(differential_vars)}(sol, u, k, t0, tType(dt), f_with_history, p, uprev, uprev2, tprev, prev_idx, prev2_idx, fpsolver, order_discontinuity_t0, tracked_discontinuities, discontinuity_interp_points, discontinuity_abstol, discontinuity_reltol, tstops_propagated, d_discontinuities_propagated, alg.alg, dtcache, dtchangeable, dtpropose, tdir, eigen_est, EEst, QT(qoldinit), q11, erracc, dtacc, success_iter, iter, length(ts), length(ts), cache, callback_cache, kshortsize, force_stepfail, last_stepfail, just_hit_tstop, do_error_check, event_last_time, vector_event_last_time, last_event_error, accept_step, isout, reeval_fsal, u_modified, isdae, opts, stats, history, differential_vars, ode_integrator) end # initialize DDE integrator if initialize_integrator initialize_solution!(integrator) OrdinaryDiffEq.initialize_callbacks!(integrator, initialize_save) OrdinaryDiffEq.initialize!(integrator) end # take care of time step dt = 0 and dt with incorrect sign OrdinaryDiffEq.handle_dt!(integrator) integrator end function DiffEqBase.solve!(integrator::DDEIntegrator) @unpack tdir, opts, sol = integrator @unpack tstops = opts # step over all stopping time points, similar to solving with ODE integrators @inbounds while !isempty(tstops) while tdir * integrator.t < first(tstops) # apply step or adapt step size OrdinaryDiffEq.loopheader!(integrator) # abort integration following same criteria as for ODEs: # maxiters exceeded, dt <= dtmin, integration unstable DiffEqBase.check_error!(integrator) == ReturnCode.Success || return sol # calculate next step OrdinaryDiffEq.perform_step!(integrator) # calculate proposed next step size, handle callbacks, and update solution OrdinaryDiffEq.loopfooter!(integrator) isempty(tstops) && break end # remove hit or passed stopping time points OrdinaryDiffEq.handle_tstop!(integrator) end # clean up solution DiffEqBase.postamble!(integrator) f = sol.prob.f if DiffEqBase.has_analytic(f) DiffEqBase.calculate_solution_errors!(sol; timeseries_errors = opts.timeseries_errors, dense_errors = opts.dense_errors) end sol.retcode == ReturnCode.Default || return sol integrator.sol = DiffEqBase.solution_new_retcode(sol, ReturnCode.Success) end function OrdinaryDiffEq.initialize_callbacks!(integrator::DDEIntegrator, initialize_save = true) callbacks = integrator.opts.callback prob = integrator.sol.prob # set up additional initial values of newly created DDE integrator # (such as fsalfirst) and its callbacks integrator.u_modified = true u_modified = initialize!(callbacks, integrator.u, integrator.t, integrator) # if the user modifies u, we need to fix previous values before initializing # FSAL in order for the starting derivatives to be correct if u_modified if isinplace(prob) recursivecopy!(integrator.uprev, integrator.u) else integrator.uprev = integrator.u end if OrdinaryDiffEq.alg_extrapolates(integrator.alg) if isinplace(prob) recursivecopy!(integrator.uprev2, integrator.uprev) else integrator.uprev2 = integrator.uprev end end # update heap of discontinuities # discontinuity is assumed to be of order 0, i.e. solution x is discontinuous add_next_discontinuities!(integrator, 0, integrator.t) # reset this as it is now handled so the integrators should proceed as normal reeval_internals_due_to_modification!(integrator, Val{false}) if initialize_save && (any((c) -> c.save_positions[2], callbacks.discrete_callbacks) || any((c) -> c.save_positions[2], callbacks.continuous_callbacks)) savevalues!(integrator, true) end end # reset this as it is now handled so the integrators should proceed as normal integrator.u_modified = false end function initialize_tstops_d_discontinuities_propagated(::Type{T}, tstops, d_discontinuities, tspan, order_discontinuity_t0, alg_maximum_order, constant_lags, neutral) where {T} # create heaps for propagated discontinuities and corresponding time stops tstops_propagated = BinaryMinHeap{T}() d_discontinuities_propagated = BinaryMinHeap{Discontinuity{T, Int}}() # add discontinuities and time stops propagated from initial discontinuity if constant_lags !== nothing && !isempty(constant_lags) && order_discontinuity_t0 ≤ alg_maximum_order sizehint!(tstops_propagated, length(constant_lags)) sizehint!(d_discontinuities_propagated, length(constant_lags)) t0, tf = tspan tdir = sign(tf - t0) maxlag = tdir * (tf - t0) next_order = neutral ? order_discontinuity_t0 : order_discontinuity_t0 + 1 for lag in constant_lags if tdir * lag < maxlag t = tdir * (t0 + lag) push!(tstops_propagated, t) d = Discontinuity{T, Int}(t, next_order) push!(d_discontinuities_propagated, d) end end end return tstops_propagated, d_discontinuities_propagated end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
5389
""" track_propagated_discontinuities!(integrator::DDEIntegrator) Try to find a propagated discontinuity in the time interval `[integrator.t, integrator.t + integrator.dt]` and add it to the set of discontinuities and grid points of the `integrator`. """ function track_propagated_discontinuities!(integrator::DDEIntegrator) # calculate interpolation points interp_points = integrator.discontinuity_interp_points Θs = range(zero(integrator.t); stop = oneunit(integrator.t), length = interp_points) # for dependent lags and previous discontinuities for lag in integrator.sol.prob.dependent_lags, discontinuity in integrator.tracked_discontinuities # obtain time of previous discontinuity T = discontinuity.t # estimate subinterval of current integration step that contains a propagated # discontinuity induced by the lag and the previous discontinuity interval = discontinuity_interval(integrator, lag, T, Θs) # if a discontinuity exists in the current integration step if interval !== nothing # estimate time point of discontinuity t = discontinuity_time(integrator, lag, T, interval) # add new discontinuity of correct order at the estimated time point if integrator.sol.prob.neutral d = Discontinuity(t, discontinuity.order) else d = Discontinuity(t, discontinuity.order + 1) end push!(integrator.opts.d_discontinuities, d) push!(integrator.opts.tstops, t) # analogously to RADAR5 we do not strive for finding the first discontinuity break end end nothing end """ discontinuity_function(integrator::DDEIntegrator, lag, T, t) Evaluate function ``f(x) = T + lag(u(x), p, x) - x`` at time point `t`, where `T` is time point of a previous discontinuity and `lag` is a dependent delay. """ function discontinuity_function(integrator::DDEIntegrator, lag, T, t) tmp = get_tmp_cache(integrator) cache = tmp === nothing ? nothing : first(tmp) # estimate state at the given time if cache === nothing ut = integrator(t, Val{0}) else integrator(cache, t, Val{0}) ut = cache end T + lag(ut, integrator.p, t) - t end """ discontinuity_interval(integrator::DDEIntegrator, lag, T, Θs) Return an estimated subinterval of the current integration step of the `integrator` that contains a propagated discontinuity induced by the dependent delay `lag` and the discontinuity at time point `T`, or `nothing`. The interval is estimated by checking the signs of `T + lag(u(t), p, t) - t` for time points `integrator.t .+ θs` in the interval `[integrator.t, integrator.t + integrator.dt]`. """ function discontinuity_interval(integrator::DDEIntegrator, lag, T, Θs) # use start and end point of last time interval to check for discontinuities previous_condition = discontinuity_function(integrator, lag, T, integrator.t) if isapprox(previous_condition, 0; rtol = integrator.discontinuity_reltol, atol = integrator.discontinuity_abstol) prev_sign = 0 else prev_sign = cmp(previous_condition, zero(previous_condition)) end new_condition = discontinuity_function(integrator, lag, T, integrator.t + integrator.dt) new_sign = cmp(new_condition, zero(new_condition)) # if signs are different we already know that a discontinuity exists if prev_sign * new_sign < 0 return (zero(eltype(Θs)), one(eltype(Θs))) end # recheck interpolation intervals if no discontinuity found yet prev_Θ = zero(eltype(Θs)) for i in 2:length(Θs) # evaluate sign at next interpolation point new_Θ = Θs[i] new_t = integrator.t + new_Θ * integrator.dt new_condition = discontinuity_function(integrator, lag, T, new_t) new_sign = cmp(new_condition, zero(new_condition)) # return estimated interval if we find a root or observe a switch of signs if new_sign == 0 return (new_Θ, new_Θ) elseif prev_sign * new_sign < 0 return (prev_Θ, new_Θ) else # otherwise update lower estimate of subinterval prev_sign = new_sign prev_Θ = new_Θ end end nothing end """ discontinuity_time(integrator::DDEIntegrator, lag, T, interval) Estimate time point of the propagated discontinuity induced by the dependent delay `lag` and the discontinuity at time point `T` inside the `interval` of the current integration step of the `integrator`. """ function discontinuity_time(integrator::DDEIntegrator, lag, T, (bottom_Θ, top_Θ)) if bottom_Θ == top_Θ # in that case we have already found the time point of a discontinuity Θ = top_Θ else # define function for root finding zero_func = let integrator = integrator, lag = lag, T = T, t = integrator.t, dt = integrator.dt (θ, p = nothing) -> discontinuity_function(integrator, lag, T, t + θ * dt) end Θ = SimpleNonlinearSolve.solve( SimpleNonlinearSolve.IntervalNonlinearProblem{false}(zero_func, (bottom_Θ, top_Θ)), SimpleNonlinearSolve.Falsi()).left end integrator.t + Θ * integrator.dt end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
11687
""" has_constant_lags(integrator::DDEIntegrator) Return if the DDE problem of the `integrator` contains constant delays. """ has_constant_lags(integrator::DDEIntegrator) = has_constant_lags(integrator.sol.prob) """ has_dependent_lags(integrator::DDEIntegrator) Return if the DDE problem of the `integrator` contains dependent delays. """ has_dependent_lags(integrator::DDEIntegrator) = has_dependent_lags(integrator.sol.prob) """ has_constant_lags(prob::DDEProblem) Return if the DDE problem `prob` contains constant delays. """ function has_constant_lags(prob::DDEProblem) prob.constant_lags !== nothing && !isempty(prob.constant_lags) end """ has_dependent_lags(prob::DDEProblem) Return if the DDE problem `prob` contains dependent delays. """ function has_dependent_lags(prob::DDEProblem) prob.dependent_lags !== nothing && !isempty(prob.dependent_lags) end """ u_uprev(u0, alg; kwargs...) Return state vectors `u` and `uprev` (possibly aliased) for solving the differential equation problem for initial state `u0` with algorithm `alg`. """ function u_uprev(u0, alg; alias_u0 = false, adaptive = DiffEqBase.isadaptive(alg), calck = false) if alias_u0 u = u0 else u = recursivecopy(u0) end # Some algorithms do not use `uprev` explicitly. In that case, we can save # some memory by aliasing `uprev = u`, e.g. for "2N" low storage methods. if OrdinaryDiffEq.uses_uprev(alg, adaptive) || calck uprev = recursivecopy(u) else uprev = u end u, uprev end """ u_uprev_uprev2(u0, alg; kwargs...) Return state vectors `u`, `uprev`, and `uprev2` (possibly aliased) for solving the differential equation problem for initial state `u0` with algorithm `alg`. """ function u_uprev_uprev2(u0, alg; allow_extrapolation = alg_extrapolates(alg), kwargs...) # compute u and uprev first u, uprev = u_uprev(u0, alg; kwargs...) if allow_extrapolation uprev2 = recursivecopy(u) else uprev2 = uprev end u, uprev, uprev2 end """ get_abstol(u, tspan, alg; abstol = nothing) Return the absolute tolerance for solving the differential equation problem with state variable `u` and time span `tspan` with algorithm `alg`. """ function get_abstol(u, tspan, alg; abstol = nothing) if alg isa FunctionMap _abstol = real.(zero.(u)) elseif abstol === nothing uBottomEltype = recursive_bottom_eltype(u) uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u) if uBottomEltypeNoUnits == uBottomEltype _abstol = real(convert(uBottomEltype, oneunit(uBottomEltype) * 1 // 10^6)) else _abstol = real.(oneunit.(u) .* 1 // 10^6) end else _abstol = real.(abstol) end _abstol end """ get_reltol(u, tspan, alg; reltol = nothing) Return the relative tolerance for solving the differential equation problem with state variable `u` and time span `tspan` with algorithm `alg`. """ function get_reltol(u, tspan, alg; reltol = nothing) if alg isa FunctionMap _reltol = real.(zero(first(u) / t)) elseif reltol === nothing uBottomEltype = recursive_bottom_eltype(u) uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u) if uBottomEltypeNoUnits == uBottomEltype _reltol = real(convert(uBottomEltype, oneunit(uBottomEltype) * 1 // 10^3)) else _reltol = real.(oneunit.(u) .* 1 // 10^3) end else _reltol = real.(reltol) end _reltol end """ callback_set_and_cache(prob, callback) Return set of callbacks and its cache for the differential equation problem `prob` and the user-provided `callback`. """ function callback_set_and_cache(prob, callback) callback_set = CallbackSet(callback) max_len_cb = DiffEqBase.max_vector_callback_length(callback_set) if max_len_cb isa VectorContinuousCallback uBottomEltype = recursive_bottom_eltype(prob.u0) callback_cache = DiffEqBase.CallbackCache(max_len_cb.len, uBottomEltype, uBottomEltype) else callback_cache = nothing end callback_set, callback_cache end """ rate_prototype_of(u0, tspan) Return prototype of rates for a given differential equation problem with state `u` and time span `tspan`. """ rate_prototype_of(u0, tspan) = DiffEqBase.@.. u0 * $(inv(oneunit(eltype(tspan)))) """ solution_arrays(u, tspan, rate_prototype; kwargs...) Return arrays of saved time points, states, and rates, initialized with the solution at the first time point if `save_start = true` (the default). """ function solution_arrays(u, tspan, rate_prototype; timeseries_init, ts_init, ks_init, save_idxs, save_start) # determine types of time and state uType = typeof(u) tType = eltype(tspan) # initialize vector of saved time points ts = ts_init === () ? tType[] : convert(Vector{tType}, ts_init) # initialize vector of saved states if save_idxs === nothing timeseries = timeseries_init === () ? uType[] : convert(Vector{uType}, timeseries_init) else u_initial = u[save_idxs] timeseries = timeseries_init === () ? typeof(u_initial)[] : convert(Vector{typeof(u_initial)}, timeseries_init) end # initialize vector of saved rates if save_idxs === nothing ksEltype = Vector{typeof(rate_prototype)} else ks_prototype = rate_prototype[save_idxs] ksEltype = Vector{typeof(ks_prototype)} end ks = ks_init === () ? ksEltype[] : convert(Vector{ksEltype}, ks_init) # save solution at initial time point if save_start copyat_or_push!(ts, 1, first(tspan)) if save_idxs === nothing copyat_or_push!(timeseries, 1, u) copyat_or_push!(ks, 1, [rate_prototype]) else u_initial = u[save_idxs] copyat_or_push!(timeseries, 1, u_initial, Val{false}) copyat_or_push!(ks, 1, [ks_prototype]) end end ts, timeseries, ks end """ sizehint!(sol::DESolution, n) Suggest that solution `sol` reserves capacity for at least `n` elements. """ function Base.sizehint!(sol::DESolution, n) sizehint!(sol.u, n) sizehint!(sol.t, n) sizehint!(sol.k, n) nothing end """ sizehint!(sol::DESolution, alg, tspan, tstops, saveat; kwargs...) Suggest that solution `sol` reserves capacity for a number of elements that depends on the parameter settings of the numerical solver. """ function Base.sizehint!(sol::DESolution, alg, tspan, tstops, saveat; save_everystep, adaptive, internalnorm, dt, dtmin) # obtain integration time t0 = first(tspan) integrationtime = last(tspan) - t0 if !adaptive && save_everystep && !isinf(integrationtime) # determine number of steps if known a priori if iszero(dt) steps = length(tstops) else abs(dt) < dtmin && throw(ArgumentError("Supplied dt is smaller than dtmin")) steps = ceil(Int, internalnorm(integrationtime / dt, t0)) end sizehint!(sol, steps + 1) elseif save_everystep sizehint!(sol, 50) elseif !isempty(saveat) sizehint!(sol, length(saveat) + 1) else sizehint!(sol, 2) end nothing end function build_history_function(prob, alg, rate_prototype, reltol, differential_vars; dt, dtmin, adaptive, calck, internalnorm) @unpack f, u0, tspan, p = prob t0 = first(tspan) tType = eltype(tspan) tTypeNoUnits = typeof(one(tType)) tdir = sign(last(tspan) - t0) uEltypeNoUnits = recursive_unitless_eltype(u0) uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u0) # bootstrap an ODE integrator # - whose solution captures the dense history of the simulation # - that is used for extrapolation of the history for time points past the # already fixed history # - that is used for interpolation of the history for time points in the # current integration step (so the interpolation is fixed while updating the stages) # we wrap the user-provided history function such that function calls during the setup # of the integrator do not fail ode_f = ODEFunctionWrapper(f, prob.h) ode_prob = ODEProblem{isinplace(prob)}(ode_f, u0, tspan, p) # get states of ODE integrator (do not alias uprev) ode_u, ode_uprev = u_uprev(u0, alg; alias_u0 = false, calck = true) # initialize output arrays ode_k = typeof(rate_prototype)[] ode_ts, ode_timeseries, ode_ks = solution_arrays(ode_u, tspan, rate_prototype; timeseries_init = (), ts_init = (), ks_init = (), save_idxs = nothing, save_start = true) # obtain cache (we alias uprev2 and uprev) ode_cache = OrdinaryDiffEq.alg_cache(alg.alg, ode_u, rate_prototype, uEltypeNoUnits, uBottomEltypeNoUnits, tTypeNoUnits, ode_uprev, ode_uprev, ode_f, t0, zero(tType), reltol, p, calck, Val(isinplace(prob))) # build dense interpolation of history ode_alg_choice = iscomposite(alg) ? Int[] : nothing ode_id = OrdinaryDiffEq.InterpolationData(ode_f, ode_timeseries, ode_ts, ode_ks, ode_alg_choice, true, ode_cache, differential_vars, false) ode_sol = DiffEqBase.build_solution(ode_prob, alg.alg, ode_ts, ode_timeseries; dense = true, k = ode_ks, interp = ode_id, alg_choice = ode_alg_choice, calculate_error = false, stats = DiffEqBase.Stats(0)) # reserve capacity sizehint!(ode_sol, alg.alg, tspan, (), (); save_everystep = true, adaptive = adaptive, internalnorm = internalnorm, dt = dt, dtmin = dtmin) # create simple integrator tdirType = typeof(sign(zero(tType))) ode_integrator = HistoryODEIntegrator{ typeof(alg.alg), isinplace(prob), typeof(prob.u0), tType, tdirType, typeof(ode_k), typeof(ode_sol), typeof(ode_cache), typeof(differential_vars)}(ode_sol, ode_u, ode_k, t0, zero(tType), ode_uprev, t0, alg.alg, zero(tType), tdir, 1, 1, ode_cache, differential_vars) # combine the user-provided history function and the ODE integrator with dense solution # to a joint dense history of the DDE # we use this history information to create a problem function of the DDE with all # available history information that is of the form f(du,u,p,t) or f(u,p,t) such that # ODE algorithms can be applied HistoryFunction(prob.h, ode_integrator) end """ initialize_solution!(integrator::DDEIntegrator) Initialize the solution of an integrator by adjusting the cache for composite algorithms. """ function initialize_solution!(integrator::DDEIntegrator) if iscomposite(integrator.alg) copyat_or_push!(integrator.integrator.sol.alg_choice, 1, integrator.cache.current) if integrator.opts.save_start copyat_or_push!(integrator.sol.alg_choice, 1, integrator.cache.current) end end nothing end function unwrap_alg(integrator::DDEIntegrator, is_stiff) alg = integrator.alg iscomp = alg isa CompositeAlgorithm if !iscomp return alg elseif alg.choice_function isa AutoSwitch num = is_stiff ? 2 : 1 return alg.algs[num] else return alg.algs[integrator.cache.current] end end function OrdinaryDiffEq.nlsolve_f(integrator::DDEIntegrator) OrdinaryDiffEq.nlsolve_f(integrator.f, unwrap_alg(integrator, true)) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
540
OrdinaryDiffEq.initial_η(fpsolver::FPSolver, integrator::DDEIntegrator) = fpsolver.ηold OrdinaryDiffEq.apply_step!(fpsolver::FPSolver, integrator::DDEIntegrator) = nothing function DiffEqBase.postamble!(fpsolver::FPSolver, integrator::DDEIntegrator) integrator.stats.nfpiter += fpsolver.iter if OrdinaryDiffEq.nlsolvefail(fpsolver) integrator.stats.nfpconvfail += 1 end integrator.force_stepfail = OrdinaryDiffEq.nlsolvefail(fpsolver) || integrator.force_stepfail nothing end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
4821
function OrdinaryDiffEq.compute_step!(fpsolver::FPSolver{<:NLFunctional}, integrator::DDEIntegrator) # update ODE integrator to next time interval together with correct interpolation if fpsolver.iter == 1 advance_ode_integrator!(integrator) else update_ode_integrator!(integrator) end compute_step_fixedpoint!(fpsolver, integrator) end function OrdinaryDiffEq.compute_step!(fpsolver::FPSolver{<:NLAnderson, false}, integrator::DDEIntegrator) @unpack cache, iter = fpsolver @unpack aa_start = cache # perform Anderson acceleration previter = iter - 1 if previter == aa_start # update cached values for next step of Anderson acceleration cache.dzold = cache.dz cache.z₊old = integrator.u elseif previter > aa_start # actually perform Anderson acceleration integrator.u = OrdinaryDiffEq.anderson(integrator.u, cache) integrator.stats.nsolve += 1 end # update ODE integrator to next time interval together with correct interpolation if iter == 1 advance_ode_integrator!(integrator) else # force recomputation of all interpolation data if Anderson acceleration was performed update_ode_integrator!(integrator, previter > aa_start) end # compute next step compute_step_fixedpoint!(fpsolver, integrator) end function OrdinaryDiffEq.compute_step!(fpsolver::FPSolver{<:NLAnderson, true}, integrator::DDEIntegrator) @unpack cache, iter = fpsolver @unpack aa_start = cache # perform Anderson acceleration previter = iter - 1 if previter == aa_start # update cached values for next step of Anderson acceleration @.. cache.dzold = cache.dz @.. cache.z₊old = integrator.u elseif previter > aa_start # actually perform Anderson acceleration OrdinaryDiffEq.anderson!(integrator.u, cache) integrator.stats.nsolve += 1 end # update ODE integrator to next time interval together with correct interpolation if iter == 1 advance_ode_integrator!(integrator) else # force recomputation of all interpolation data if Anderson acceleration was performed update_ode_integrator!(integrator, previter > aa_start) end # compute next step compute_step_fixedpoint!(fpsolver, integrator) end function compute_step_fixedpoint!( fpsolver::FPSolver{<:Union{NLFunctional, NLAnderson}, false}, integrator::DDEIntegrator) @unpack t, opts = integrator @unpack cache = fpsolver ode_integrator = integrator.integrator # recompute next integration step OrdinaryDiffEq.perform_step!(integrator, integrator.cache, true) # compute residuals dz = integrator.u .- ode_integrator.u atmp = OrdinaryDiffEq.calculate_residuals(dz, ode_integrator.u, integrator.u, opts.abstol, opts.reltol, opts.internalnorm, t) # cache results if isdefined(cache, :dz) cache.dz = dz end opts.internalnorm(atmp, t) end function compute_step_fixedpoint!( fpsolver::FPSolver{<:Union{NLFunctional, NLAnderson}, true}, integrator::DDEIntegrator) @unpack t, opts = integrator @unpack cache = fpsolver @unpack dz, atmp = cache ode_integrator = integrator.integrator # recompute next integration step OrdinaryDiffEq.perform_step!(integrator, integrator.cache, true) # compute residuals @.. dz = integrator.u - ode_integrator.u OrdinaryDiffEq.calculate_residuals!(atmp, dz, ode_integrator.u, integrator.u, opts.abstol, opts.reltol, opts.internalnorm, t) opts.internalnorm(atmp, t) end ## resize! function Base.resize!(fpcache::FPFunctionalCache, i::Int) resize!(fpcache.atmp, i) resize!(fpcache.dz, i) nothing end function Base.resize!(fpcache::FPAndersonCache, fpsolver::FPSolver{<:NLAnderson}, integrator::DDEIntegrator, i::Int) resize!(fpcache, fpsolver.alg, i) end function Base.resize!(fpcache::FPAndersonCache, fpalg::NLAnderson, i::Int) @unpack z₊old, Δz₊s = fpcache resize!(fpcache.atmp, i) resize!(fpcache.dz, i) resize!(fpcache.dzold, i) resize!(z₊old, i) # update history of Anderson cache max_history_old = length(Δz₊s) max_history = min(fpalg.max_history, fpalg.max_iter, i) resize!(fpcache.γs, max_history) resize!(fpcache.Δz₊s, max_history) if max_history != max_history_old fpcache.Q = typeof(fpcache.Q)(undef, i, max_history) fpcache.R = typeof(fpcache.R)(undef, max_history, max_history) end max_history = length(Δz₊s) if max_history > max_history_old for i in (max_history_old + 1):max_history Δz₊s[i] = zero(z₊old) end end nothing end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1200
# solver mutable struct FPSolver{algType, iip, uTolType, C <: AbstractNLSolverCache} <: OrdinaryDiffEq.AbstractNLSolver{algType, iip} alg::algType κ::uTolType fast_convergence_cutoff::uTolType ηold::uTolType iter::Int maxiters::Int status::OrdinaryDiffEq.NLStatus cache::C nfails::Int end # caches struct FPFunctionalCache{uType, uNoUnitsType} <: AbstractNLSolverCache atmp::uNoUnitsType dz::uType end struct FPFunctionalConstantCache <: AbstractNLSolverCache end mutable struct FPAndersonCache{uType, uNoUnitsType, uEltypeNoUnits, D} <: AbstractNLSolverCache atmp::uNoUnitsType dz::uType dzold::uType z₊old::uType Δz₊s::Vector{uType} Q::Matrix{uEltypeNoUnits} R::Matrix{uEltypeNoUnits} γs::Vector{uEltypeNoUnits} history::Int aa_start::Int droptol::D end mutable struct FPAndersonConstantCache{uType, uEltypeNoUnits, D} <: AbstractNLSolverCache dz::uType dzold::uType z₊old::uType Δz₊s::Vector{uType} Q::Matrix{uEltypeNoUnits} R::Matrix{uEltypeNoUnits} γs::Vector{uEltypeNoUnits} history::Int aa_start::Int droptol::D end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2904
# construct solver for fixed-point iterations function build_fpsolver(alg, fpalg::Union{NLFunctional, NLAnderson}, u, uEltypeNoUnits, uBottomEltypeNoUnits, ::Val{true}) # no fixed-point iterations if the algorithm is constrained isconstrained(alg) && return # define unitless type uTolType = real(uBottomEltypeNoUnits) # could use integrator.cache.atmp if guaranteed to exist atmp = similar(u, uEltypeNoUnits) dz = similar(u) # build cache if fpalg isa NLFunctional fpcache = FPFunctionalCache(atmp, dz) elseif fpalg isa NLAnderson max_history = min(fpalg.max_history, fpalg.max_iter, length(u)) Δz₊s = [zero(u) for i in 1:max_history] Q = Matrix{uEltypeNoUnits}(undef, length(u), max_history) R = Matrix{uEltypeNoUnits}(undef, max_history, max_history) γs = Vector{uEltypeNoUnits}(undef, max_history) dzold = zero(u) z₊old = zero(u) fpcache = FPAndersonCache( atmp, dz, dzold, z₊old, Δz₊s, Q, R, γs, 0, fpalg.aa_start, fpalg.droptol) end # build solver ηold = one(uTolType) FPSolver{typeof(fpalg), true, uTolType, typeof(fpcache)}(fpalg, uTolType(fpalg.κ), uTolType(fpalg.fast_convergence_cutoff), ηold, 10000, fpalg.max_iter, SlowConvergence, fpcache, 0) end function build_fpsolver(alg, fpalg::Union{NLFunctional, NLAnderson}, u, uEltypeNoUnits, uBottomEltypeNoUnits, ::Val{false}) # no fixed-point iterations if the algorithm is constrained isconstrained(alg) && return # define unitless type uTolType = real(uBottomEltypeNoUnits) # build cache if fpalg isa NLFunctional fpcache = FPFunctionalConstantCache() elseif fpalg isa NLAnderson max_history = min(fpalg.max_history, fpalg.max_iter, length(u)) Δz₊s = Vector{typeof(u)}(undef, max_history) Q = Matrix{uEltypeNoUnits}(undef, length(u), max_history) R = Matrix{uEltypeNoUnits}(undef, max_history, max_history) γs = Vector{uEltypeNoUnits}(undef, max_history) dz = u dzold = u z₊old = u fpcache = FPAndersonConstantCache(dz, dzold, z₊old, Δz₊s, Q, R, γs, 0, fpalg.aa_start, fpalg.droptol) end # build solver ηold = one(uTolType) FPSolver{typeof(fpalg), false, uTolType, typeof(fpcache)}(fpalg, uTolType(fpalg.κ), uTolType(fpalg.fast_convergence_cutoff), ηold, 10_000, fpalg.max_iter, SlowConvergence, fpcache, 0) end ## resize function resize_fpsolver!(integrator::DDEIntegrator, i::Int) @unpack fpsolver = integrator if fpsolver !== nothing resize!(fpsolver, integrator, i) end nothing end function Base.resize!(fpsolver::FPSolver, integrator::DDEIntegrator, i::Int) resize!(fpsolver.cache, fpsolver, integrator, i) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
20564
# accept/reject computed integration step, propose next step, and apply callbacks function OrdinaryDiffEq.loopfooter!(integrator::DDEIntegrator) # apply same logic as in OrdinaryDiffEq OrdinaryDiffEq._loopfooter!(integrator) if !integrator.accept_step # reset ODE integrator to the cached values if the last step failed move_back_ode_integrator!(integrator) # track propagated discontinuities for dependent delays if integrator.opts.adaptive && integrator.iter > 0 && has_dependent_lags(integrator) track_propagated_discontinuities!(integrator) end end nothing end # save current state of the integrator function DiffEqBase.savevalues!(integrator::HistoryODEIntegrator, force_save = false, reduce_size = false)::Tuple{Bool, Bool} integrator.saveiter += 1 # TODO: save history only for a subset of components copyat_or_push!(integrator.sol.t, integrator.saveiter, integrator.t) copyat_or_push!(integrator.sol.u, integrator.saveiter, integrator.u) integrator.saveiter_dense += 1 copyat_or_push!(integrator.sol.k, integrator.saveiter_dense, integrator.k) if iscomposite(integrator.alg) copyat_or_push!(integrator.sol.alg_choice, integrator.saveiter, integrator.cache.current) end true, true end function DiffEqBase.savevalues!(integrator::DDEIntegrator, force_save = false, reduce_size = false)::Tuple{Bool, Bool} ode_integrator = integrator.integrator # update time of ODE integrator (can be slightly modified (< 10ϵ) because of time stops) # integrator.EEst has unitless type of integrator.t if integrator.EEst isa AbstractFloat if ode_integrator.t != integrator.t abs(integrator.t - ode_integrator.t) < 100eps(integrator.t) || error("unexpected time discrepancy detected") ode_integrator.t = integrator.t ode_integrator.dt = ode_integrator.t - ode_integrator.tprev end end # if forced, then the user or an event changed the state u directly. if force_save if isinplace(integrator.sol.prob) ode_integrator.u .= integrator.u else ode_integrator.u = integrator.u end end # update history saved, savedexactly = DiffEqBase.savevalues!(ode_integrator, force_save, false) # reduce_size = false # check that history was actually updated saved || error("dense history could not be updated") # update prev2_idx to indices of tprev and u(tprev) in solution # allows reset of ODE integrator (and hence history function) to the last # successful time step after failed steps integrator.prev2_idx = integrator.prev_idx # cache dt of interval [tprev, t] of ODE integrator since it can only be retrieved by # a possibly incorrect subtraction # NOTE: does not interfere with usual use of dtcache for non-adaptive methods since ODE # integrator is only used for inter- and extrapolation of future values and saving of # the solution but does not affect the size of time steps ode_integrator.dtcache = ode_integrator.dt # update solution OrdinaryDiffEq._savevalues!(integrator, force_save, reduce_size) end # clean up the solution of the integrator function DiffEqBase.postamble!(integrator::HistoryODEIntegrator) if integrator.saveiter == 0 || integrator.sol.t[integrator.saveiter] != integrator.t integrator.saveiter += 1 copyat_or_push!(integrator.sol.t, integrator.saveiter, integrator.t) copyat_or_push!(integrator.sol.u, integrator.saveiter, integrator.u) integrator.saveiter_dense += 1 copyat_or_push!(integrator.sol.k, integrator.saveiter_dense, integrator.k) if iscomposite(integrator.alg) copyat_or_push!(integrator.sol.alg_choice, integrator.saveiter, integrator.cache.current) end end resize!(integrator.sol.t, integrator.saveiter) resize!(integrator.sol.u, integrator.saveiter) resize!(integrator.sol.k, integrator.saveiter_dense) nothing end function DiffEqBase.postamble!(integrator::DDEIntegrator) # clean up solution of the ODE integrator DiffEqBase.postamble!(integrator.integrator) # clean solution of the DDE integrator OrdinaryDiffEq._postamble!(integrator) end # perform next integration step function OrdinaryDiffEq.perform_step!(integrator::DDEIntegrator) @unpack cache, history = integrator # reset boolean which indicates if the history function was evaluated at a time point # past the final point of the current solution history.isout = false # perform always at least one calculation of the stages OrdinaryDiffEq.perform_step!(integrator, cache) # if the history function was evaluated at time points past the final time point of the # solution, i.e. returned extrapolated values, continue with a fixed-point iteration if history.isout # perform fixed-point iteration OrdinaryDiffEq.nlsolve!(integrator.fpsolver, integrator) end # update ODE integrator to next time interval together with correct interpolation advance_or_update_ode_integrator!(integrator) nothing end # initialize the integrator function OrdinaryDiffEq.initialize!(integrator::DDEIntegrator) ode_integrator = integrator.integrator # initialize the cache OrdinaryDiffEq.initialize!(integrator, integrator.cache) # copy interpolation data to the ODE integrator @inbounds for i in 1:length(integrator.k) copyat_or_push!(ode_integrator.k, i, integrator.k[i]) end nothing end # signal the integrator that state u was modified function DiffEqBase.u_modified!(integrator::DDEIntegrator, bool::Bool) integrator.u_modified = bool end # return next integration time step DiffEqBase.get_proposed_dt(integrator::DDEIntegrator) = integrator.dtpropose # set next integration time step function DiffEqBase.set_proposed_dt!(integrator::DDEIntegrator, dt) integrator.dtpropose = dt nothing end # obtain caches function DiffEqBase.get_tmp_cache(integrator::DDEIntegrator) get_tmp_cache(integrator, integrator.alg, integrator.cache) end DiffEqBase.user_cache(integrator::DDEIntegrator) = user_cache(integrator.cache) DiffEqBase.u_cache(integrator::DDEIntegrator) = u_cache(integrator.cache) DiffEqBase.du_cache(integrator::DDEIntegrator) = du_cache(integrator.cache) DiffEqBase.full_cache(integrator::DDEIntegrator) = full_cache(integrator.cache) # change number of components Base.resize!(integrator::DDEIntegrator, i::Int) = resize!(integrator, integrator.cache, i) function Base.resize!(integrator::DDEIntegrator, cache, i) # resize ODE integrator (do only have to care about u and k) ode_integrator = integrator.integrator resize!(ode_integrator.u, i) for k in ode_integrator.k resize!(k, i) end # resize DDE integrator for c in full_cache(cache) resize!(c, i) end OrdinaryDiffEq.resize_nlsolver!(integrator, i) OrdinaryDiffEq.resize_J_W!(cache, integrator, i) resize_non_user_cache!(integrator, cache, i) resize_fpsolver!(integrator, i) nothing end DiffEqBase.resize_non_user_cache!(integrator::DDEIntegrator, cache, i) = nothing function DiffEqBase.resize_non_user_cache!(integrator::DDEIntegrator, cache::RosenbrockMutableCache, i) cache.J = similar(cache.J, i, i) cache.W = similar(cache.W, i, i) OrdinaryDiffEq.resize_jac_config!(cache.jac_config, i) OrdinaryDiffEq.resize_grad_config!(cache.grad_config, i) nothing end # delete component(s) function Base.deleteat!(integrator::DDEIntegrator, idxs) # delete components of ODE integrator (do only have to care about u and k) ode_integrator = integrator.integrator deleteat!(ode_integrator.u, idxs) for k in ode_integrator.k deleteat!(k, idxs) end # delete components of DDE integrator for c in full_cache(integrator) deleteat!(c, idxs) end deleteat_non_user_cache!(integrator, integrator.cache, i) end function DiffEqBase.deleteat_non_user_cache!(integrator::DDEIntegrator, cache, idxs) i = length(integrator.u) resize_non_user_cache!(integrator, cache, i) end # add component(s) function DiffEqBase.addat!(integrator::DDEIntegrator, idxs) # add components to ODE integrator (do only have to care about u and k) ode_integrator = integrator.integrator addat!(ode_integrator.u, idxs) for k in ode_integrator.k addat!(k, idxs) end # add components to DDE integrator for c in full_cache(integrator) addat!(c, idxs) end addat_non_user_cache!(integrator, integrator.cache, idxs) end function DiffEqBase.addat_non_user_cache!(integrator::DDEIntegrator, cache, idxs) i = length(integrator.u) resize_non_user_cache!(integrator, cache, i) end # error check function DiffEqBase.last_step_failed(integrator::DDEIntegrator) integrator.last_stepfail && !integrator.opts.adaptive end # terminate integration function DiffEqBase.terminate!(integrator::DDEIntegrator, retcode = ReturnCode.Terminated) integrator.sol = DiffEqBase.solution_new_retcode(integrator.sol, retcode) integrator.opts.tstops.valtree = typeof(integrator.opts.tstops.valtree)() nothing end # integrator can be reinitialized DiffEqBase.has_reinit(::HistoryODEIntegrator) = true DiffEqBase.has_reinit(integrator::DDEIntegrator) = true function DiffEqBase.reinit!(integrator::HistoryODEIntegrator, u0 = integrator.sol.prob.u0; t0 = integrator.sol.prob.tspan[1], tf = integrator.sol.prob.tspan[end], erase_sol = true) # reinit initial values of the integrator if isinplace(integrator.sol.prob) recursivecopy!(integrator.u, u0) recursivecopy!(integrator.uprev, integrator.u) else integrator.u = u0 integrator.uprev = integrator.u end integrator.t = t0 integrator.tprev = t0 integrator.dt = zero(integrator.dt) integrator.dtcache = zero(integrator.dtcache) # erase solution if erase_sol # resize vectors in solution resize!(integrator.sol.u, 1) resize!(integrator.sol.t, 1) resize!(integrator.sol.k, 1) iscomposite(integrator.alg) && resize!(integrator.sol.alg_choice, 1) # save initial values copyat_or_push!(integrator.sol.t, 1, integrator.t) copyat_or_push!(integrator.sol.u, 1, integrator.u) # reset iteration counter integrator.saveiter = 1 integrator.saveiter_dense = 1 end nothing end """ reinit!(integrator::DDEIntegrator[, u0 = integrator.sol.prob.u0; t0 = integrator.sol.prob.tspan[1], tf = integrator.sol.prob.tspan[2], erase_sol = true, kwargs...]) Reinitialize `integrator` with (optionally) different initial state `u0`, different integration interval from `t0` to `tf`, and erased solution if `erase_sol = true`. """ function DiffEqBase.reinit!(integrator::DDEIntegrator, u0 = integrator.sol.prob.u0; t0 = integrator.sol.prob.tspan[1], tf = integrator.sol.prob.tspan[end], erase_sol = true, tstops = integrator.opts.tstops_cache, saveat = integrator.opts.saveat_cache, d_discontinuities = integrator.opts.d_discontinuities_cache, order_discontinuity_t0 = t0 == integrator.sol.prob.tspan[1] && u0 == integrator.sol.prob.u0 ? integrator.order_discontinuity_t0 : 0, reset_dt = iszero(integrator.dtcache) && integrator.opts.adaptive, reinit_callbacks = true, initialize_save = true, reinit_cache = true) # reinit history reinit!(integrator.integrator, u0; t0 = t0, tf = tf, erase_sol = true) # reinit initial values of the integrator if isinplace(integrator.sol.prob) recursivecopy!(integrator.u, u0) recursivecopy!(integrator.uprev, integrator.u) else integrator.u = u0 integrator.uprev = integrator.u end if OrdinaryDiffEq.alg_extrapolates(integrator.alg) if isinplace(integrator.sol.prob) recursivecopy!(integrator.uprev2, integrator.uprev) else integrator.uprev2 = integrator.uprev end end integrator.t = t0 integrator.tprev = t0 # reinit time stops, time points at which solution is saved, and discontinuities tType = typeof(integrator.t) tspan = (tType(t0), tType(tf)) integrator.opts.tstops = OrdinaryDiffEq.initialize_tstops(tType, tstops, d_discontinuities, tspan) integrator.opts.saveat = OrdinaryDiffEq.initialize_saveat(tType, saveat, tspan) integrator.opts.d_discontinuities = OrdinaryDiffEq.initialize_d_discontinuities( Discontinuity{ tType, Int }, d_discontinuities, tspan) # update order of initial discontinuity and propagated discontinuities integrator.order_discontinuity_t0 = order_discontinuity_t0 maximum_order = OrdinaryDiffEq.alg_maximum_order(integrator.alg) tstops_propagated, d_discontinuities_propagated = initialize_tstops_d_discontinuities_propagated( tType, tstops, d_discontinuities, tspan, order_discontinuity_t0, maximum_order, integrator.sol.prob.constant_lags, integrator.sol.prob.neutral) integrator.tstops_propagated = tstops_propagated integrator.d_discontinuities_propagated = d_discontinuities_propagated # erase solution if erase_sol # resize vectors in solution resize_start = integrator.opts.save_start ? 1 : 0 resize!(integrator.sol.u, resize_start) resize!(integrator.sol.t, resize_start) resize!(integrator.sol.k, resize_start) iscomposite(integrator.alg) && resize!(integrator.sol.alg_choice, resize_start) integrator.sol.u_analytic !== nothing && resize!(integrator.sol.u_analytic, 0) # save initial values if integrator.opts.save_start copyat_or_push!(integrator.sol.t, 1, integrator.t) if integrator.opts.save_idxs === nothing copyat_or_push!(integrator.sol.u, 1, integrator.u) else u_initial = integrator.u[integrator.opts.save_idxs] copyat_or_push!(integrator.sol.u, 1, u_initial, Val{false}) end end # reset iteration counter integrator.saveiter = resize_start if integrator.opts.dense integrator.saveiter_dense = resize_start end # erase array of tracked discontinuities if order_discontinuity_t0 ≤ OrdinaryDiffEq.alg_maximum_order(integrator.alg) resize!(integrator.tracked_discontinuities, 1) integrator.tracked_discontinuities[1] = Discontinuity( integrator.tdir * integrator.t, order_discontinuity_t0) else resize!(integrator.tracked_discontinuities, 0) end # reset history counters integrator.prev_idx = 1 integrator.prev2_idx = 1 end # reset integration counters integrator.iter = 0 integrator.success_iter = 0 # full re-initialize the PI in timestepping integrator.qold = integrator.opts.qoldinit integrator.q11 = one(integrator.t) integrator.erracc = one(integrator.erracc) integrator.dtacc = one(integrator.dtacc) integrator.u_modified = false if reset_dt DiffEqBase.auto_dt_reset!(integrator) end if reinit_callbacks OrdinaryDiffEq.initialize_callbacks!(integrator, initialize_save) end if reinit_cache OrdinaryDiffEq.initialize!(integrator) end nothing end function DiffEqBase.auto_dt_reset!(integrator::DDEIntegrator) @unpack f, u, t, tdir, opts, sol, stats = integrator @unpack prob = sol @unpack abstol, reltol, internalnorm = opts # determine maximal time step if has_constant_lags(prob) dtmax = tdir * min(abs(opts.dtmax), minimum(abs, prob.constant_lags)) else dtmax = opts.dtmax end # determine initial time step ode_prob = ODEProblem(f, prob.u0, prob.tspan, prob.p) integrator.dt = OrdinaryDiffEq.ode_determine_initdt(u, t, tdir, dtmax, opts.abstol, opts.reltol, opts.internalnorm, ode_prob, integrator) # update statistics stats.nf += 2 nothing end function DiffEqBase.add_tstop!(integrator::DDEIntegrator, t) integrator.tdir * (t - integrator.t) < 0 && error("Tried to add a tstop that is behind the current time. This is strictly forbidden") push!(integrator.opts.tstops, integrator.tdir * t) end function DiffEqBase.add_saveat!(integrator::DDEIntegrator, t) integrator.tdir * (t - integrator.t) < 0 && error("Tried to add a saveat that is behind the current time. This is strictly forbidden") push!(integrator.opts.saveat, integrator.tdir * t) end @inline function DiffEqBase.get_du(integrator::DDEIntegrator) integrator.fsallast end @inline function DiffEqBase.get_du!(out, integrator::DDEIntegrator) out .= integrator.fsallast end DiffEqBase.has_stats(::DDEIntegrator) = true # https://github.com/SciML/OrdinaryDiffEq.jl/pull/1753 # Backwards compatability @static if isdefined(OrdinaryDiffEq, :DEPRECATED_ADDSTEPS) const _ode_addsteps! = OrdinaryDiffEq._ode_addsteps! const ode_addsteps! = OrdinaryDiffEq.ode_addsteps! else const _ode_addsteps! = DiffEqBase.addsteps! const ode_addsteps! = OrdinaryDiffEq._ode_addsteps! end function DiffEqBase.addsteps!(integrator::DDEIntegrator, args...) ode_addsteps!(integrator, args...) end function DiffEqBase.change_t_via_interpolation!(integrator::DDEIntegrator, t, modify_save_endpoint::Type{Val{T}} = Val{ false }) where { T } OrdinaryDiffEq._change_t_via_interpolation!(integrator, t, modify_save_endpoint) end # update integrator when u is modified by callbacks function OrdinaryDiffEq.handle_callback_modifiers!(integrator::DDEIntegrator) integrator.reeval_fsal = true # recalculate fsalfirst after applying step # update heap of discontinuities # discontinuity is assumed to be of order 0, i.e. solution x is discontinuous push!(integrator.opts.d_discontinuities, Discontinuity(integrator.tdir * integrator.t, 0)) end # recalculate interpolation data and update the ODE integrator function DiffEqBase.reeval_internals_due_to_modification!(integrator::DDEIntegrator, x::Type{Val{not_initialization}} = Val{ true }) where { not_initialization } ode_integrator = integrator.integrator if not_initialization # update interpolation data of the integrator using the old dense history # of the ODE integrator resize!(integrator.k, integrator.kshortsize) ode_addsteps!(integrator, integrator.f, true, true, true) # copy interpolation data to the ODE integrator recursivecopy!(ode_integrator.k, integrator.k) end # adjust current interval of the ODE integrator ode_integrator.t = integrator.t ode_integrator.dt = integrator.dt if isinplace(integrator.sol.prob) recursivecopy!(ode_integrator.u, integrator.u) else ode_integrator.u = integrator.u end integrator.u_modified = false end # perform one step function DiffEqBase.step!(integrator::DDEIntegrator) @inbounds begin if integrator.opts.advance_to_tstop while integrator.tdir * integrator.t < first(integrator.opts.tstops) OrdinaryDiffEq.loopheader!(integrator) DiffEqBase.check_error!(integrator) == ReturnCode.Success || return OrdinaryDiffEq.perform_step!(integrator) OrdinaryDiffEq.loopfooter!(integrator) end else OrdinaryDiffEq.loopheader!(integrator) DiffEqBase.check_error!(integrator) == ReturnCode.Success || return OrdinaryDiffEq.perform_step!(integrator) OrdinaryDiffEq.loopfooter!(integrator) while !integrator.accept_step OrdinaryDiffEq.loopheader!(integrator) OrdinaryDiffEq.perform_step!(integrator) OrdinaryDiffEq.loopfooter!(integrator) end end OrdinaryDiffEq.handle_tstop!(integrator) end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
8471
mutable struct HistoryODEIntegrator{ algType, IIP, uType, tType, tdirType, ksEltype, SolType, CacheType, DV} <: AbstractODEIntegrator{algType, IIP, uType, tType} sol::SolType u::uType k::ksEltype t::tType dt::tType uprev::uType tprev::tType alg::algType dtcache::tType tdir::tdirType saveiter::Int saveiter_dense::Int cache::CacheType differential_vars::DV end function (integrator::HistoryODEIntegrator)(t, deriv::Type = Val{0}; idxs = nothing) OrdinaryDiffEq.current_interpolant(t, integrator, idxs, deriv) end function (integrator::HistoryODEIntegrator)(val::AbstractArray, t::Union{Number, AbstractArray}, deriv::Type = Val{0}; idxs = nothing) OrdinaryDiffEq.current_interpolant!(val, t, integrator, idxs, deriv) end @static if isdefined(OrdinaryDiffEq, :get_fsalfirstlast) mutable struct DDEIntegrator{algType, IIP, uType, tType, P, eigenType, tTypeNoUnits, tdirType, ksEltype, SolType, F, CacheType, IType, FP, O, dAbsType, dRelType, H, tstopsType, discType, FSALType, EventErrorType, CallbackCacheType, DV} <: AbstractDDEIntegrator{algType, IIP, uType, tType} sol::SolType u::uType k::ksEltype t::tType dt::tType f::F p::P uprev::uType uprev2::uType tprev::tType prev_idx::Int prev2_idx::Int fpsolver::FP order_discontinuity_t0::Int "Discontinuities tracked by callback." tracked_discontinuities::Vector{Discontinuity{tType, Int}} discontinuity_interp_points::Int discontinuity_abstol::dAbsType discontinuity_reltol::dRelType "Future time stops for propagated discontinuities." tstops_propagated::tstopsType "Future propagated discontinuities." d_discontinuities_propagated::discType alg::algType dtcache::tType dtchangeable::Bool dtpropose::tType tdir::tdirType eigen_est::eigenType EEst::tTypeNoUnits qold::tTypeNoUnits q11::tTypeNoUnits erracc::tTypeNoUnits dtacc::tType success_iter::Int iter::Int saveiter::Int saveiter_dense::Int cache::CacheType callback_cache::CallbackCacheType kshortsize::Int force_stepfail::Bool last_stepfail::Bool just_hit_tstop::Bool do_error_check::Bool event_last_time::Int vector_event_last_time::Int last_event_error::EventErrorType accept_step::Bool isout::Bool reeval_fsal::Bool u_modified::Bool isdae::Bool opts::O stats::SciMLBase.DEStats history::H differential_vars::DV integrator::IType fsalfirst::FSALType fsallast::FSALType end else mutable struct DDEIntegrator{algType, IIP, uType, tType, P, eigenType, tTypeNoUnits, tdirType, ksEltype, SolType, F, CacheType, IType, FP, O, dAbsType, dRelType, H, tstopsType, discType, FSALType, EventErrorType, CallbackCacheType, DV} <: AbstractDDEIntegrator{algType, IIP, uType, tType} sol::SolType u::uType k::ksEltype t::tType dt::tType f::F p::P uprev::uType uprev2::uType tprev::tType prev_idx::Int prev2_idx::Int fpsolver::FP order_discontinuity_t0::Int "Discontinuities tracked by callback." tracked_discontinuities::Vector{Discontinuity{tType, Int}} discontinuity_interp_points::Int discontinuity_abstol::dAbsType discontinuity_reltol::dRelType "Future time stops for propagated discontinuities." tstops_propagated::tstopsType "Future propagated discontinuities." d_discontinuities_propagated::discType alg::algType dtcache::tType dtchangeable::Bool dtpropose::tType tdir::tdirType eigen_est::eigenType EEst::tTypeNoUnits qold::tTypeNoUnits q11::tTypeNoUnits erracc::tTypeNoUnits dtacc::tType success_iter::Int iter::Int saveiter::Int saveiter_dense::Int cache::CacheType callback_cache::CallbackCacheType kshortsize::Int force_stepfail::Bool last_stepfail::Bool just_hit_tstop::Bool do_error_check::Bool event_last_time::Int vector_event_last_time::Int last_event_error::EventErrorType accept_step::Bool isout::Bool reeval_fsal::Bool u_modified::Bool isdae::Bool opts::O stats::SciMLBase.DEStats history::H differential_vars::DV integrator::IType fsalfirst::FSALType fsallast::FSALType # incomplete initialization without fsalfirst and fsallast function DDEIntegrator{algType, IIP, uType, tType, P, eigenType, tTypeNoUnits, tdirType, ksEltype, SolType, F, CacheType, IType, FP, O, dAbsType, dRelType, H, tstopsType, discType, FSALType, EventErrorType, CallbackCacheType, DV}(sol, u, k, t, dt, f, p, uprev, uprev2, tprev, prev_idx, prev2_idx, fpsolver, order_discontinuity_t0, tracked_discontinuities, discontinuity_interp_points, discontinuity_abstol, discontinuity_reltol, tstops_propagated, d_discontinuities_propagated, alg, dtcache, dtchangeable, dtpropose, tdir, eigen_est, EEst, qold, q11, erracc, dtacc, success_iter, iter, saveiter, saveiter_dense, cache, callback_cache, kshortsize, force_stepfail, last_stepfail, just_hit_tstop, do_error_check, event_last_time, vector_event_last_time, last_event_error, accept_step, isout, reeval_fsal, u_modified, isdae, opts, stats, history, differential_vars, integrator) where { algType, IIP, uType, tType, P, eigenType, tTypeNoUnits, tdirType, ksEltype, SolType, F, CacheType, IType, FP, O, dAbsType, dRelType, H, tstopsType, discType, FSALType, EventErrorType, CallbackCacheType, DV} new{algType, IIP, uType, tType, P, eigenType, tTypeNoUnits, tdirType, ksEltype, SolType, F, CacheType, IType, FP, O, dAbsType, dRelType, H, tstopsType, discType, FSALType, EventErrorType, CallbackCacheType, DV}( sol, u, k, t, dt, f, p, uprev, uprev2, tprev, prev_idx, prev2_idx, fpsolver, order_discontinuity_t0, tracked_discontinuities, discontinuity_interp_points, discontinuity_abstol, discontinuity_reltol, tstops_propagated, d_discontinuities_propagated, alg, dtcache, dtchangeable, dtpropose, tdir, eigen_est, EEst, qold, q11, erracc, dtacc, success_iter, iter, saveiter, saveiter_dense, cache, callback_cache, kshortsize, force_stepfail, last_stepfail, just_hit_tstop, do_error_check, event_last_time, vector_event_last_time, last_event_error, accept_step, isout, reeval_fsal, u_modified, isdae, opts, stats, history, differential_vars, integrator) end end end function (integrator::DDEIntegrator)(t, deriv::Type = Val{0}; idxs = nothing) OrdinaryDiffEq.current_interpolant(t, integrator, idxs, deriv) end function (integrator::DDEIntegrator)(val::AbstractArray, t::Union{Number, AbstractArray}, deriv::Type = Val{0}; idxs = nothing) OrdinaryDiffEq.current_interpolant!(val, t, integrator, idxs, deriv) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
10312
""" advance_or_update_ode_integrator!(integrator::DDEIntegrator[, always_calc_begin = false]) Advance or update the ODE integrator of `integrator` to the next time interval by updating its values and interpolation data with the current values and a full set of interpolation data of `integrator`. """ function advance_or_update_ode_integrator!(integrator, always_calc_begin = false) ode_integrator = integrator.integrator if ode_integrator.t != integrator.t + integrator.dt advance_ode_integrator!(integrator, always_calc_begin) else update_ode_integrator!(integrator, always_calc_begin) end end """ advance_ode_integrator!(integrator::DDEIntegrator[, always_calc_begin = false]) Advance the ODE integrator of `integrator` to the next time interval by updating its values and interpolation data with the current values and a full set of interpolation data of `integrator`. """ function advance_ode_integrator!(integrator::DDEIntegrator, always_calc_begin = false) @unpack f, u, t, p, k, dt, uprev, alg, cache = integrator ode_integrator = integrator.integrator # algorithm only works if current time of DDE integrator equals final time point # of solution t != ode_integrator.sol.t[end] && error("cannot advance ODE integrator") # complete interpolation data of DDE integrator for time interval [t, t+dt] # and copy it to ODE integrator # has to be done before updates to ODE integrator, otherwise history function # is incorrect if iscomposite(alg) _ode_addsteps!(k, t, uprev, u, dt, f, p, cache.caches[cache.current], always_calc_begin, true, true) else _ode_addsteps!(k, t, uprev, u, dt, f, p, cache, always_calc_begin, true, true) end @inbounds for i in 1:length(k) copyat_or_push!(ode_integrator.k, i, k[i]) end # move ODE integrator to interval [t, t+dt] ode_integrator.t = t + dt ode_integrator.tprev = t ode_integrator.dt = dt if iscomposite(alg) ode_integrator.cache.current = cache.current end if isinplace(integrator.sol.prob) recursivecopy!(ode_integrator.u, u) else ode_integrator.u = u end # u(t) is not modified hence we do not have to copy it ode_integrator.uprev = ode_integrator.sol.u[end] # update prev_idx to index of t and u(t) in solution integrator.prev_idx = length(ode_integrator.sol.t) nothing end """ update_ode_integrator!(integrator::DDEIntegrator[, always_calc_begin = false]) Update the ODE integrator of `integrator` by updating its values and interpolation data with the current values and a full set of interpolation data of `integrator`. """ function update_ode_integrator!(integrator::DDEIntegrator, always_calc_begin = false) @unpack f, u, t, p, k, dt, uprev, alg, cache = integrator ode_integrator = integrator.integrator # algorithm only works if the ODE integrator is already moved to the current integration # interval ode_integrator.t != t + dt && error("cannot update ODE integrator") if iscomposite(alg) _ode_addsteps!(k, t, uprev, u, dt, f, p, cache.caches[cache.current], always_calc_begin, true, true) else _ode_addsteps!(k, t, uprev, u, dt, f, p, cache, always_calc_begin, true, true) end @inbounds for i in 1:length(k) copyat_or_push!(ode_integrator.k, i, k[i]) end # update state of the dummy ODE solver if isinplace(integrator.sol.prob) recursivecopy!(ode_integrator.u, u) else ode_integrator.u = integrator.u end nothing end """ move_back_ode_integrator!(integrator::DDEIntegrator) Move the ODE integrator of `integrator` one integration step back by reverting its values and interpolation data to the values saved in the dense history. """ function move_back_ode_integrator!(integrator::DDEIntegrator) ode_integrator = integrator.integrator @unpack sol = ode_integrator # set values of the ODE integrator back to the values in the solution if isinplace(sol.prob) recursivecopy!(ode_integrator.u, sol.u[end]) else ode_integrator.u = sol.u[end] end ode_integrator.t = sol.t[end] ode_integrator.tprev = sol.t[integrator.prev2_idx] # u(tprev) is not modified hence we do not have to copy it ode_integrator.uprev = sol.u[integrator.prev2_idx] # revert to the previous time step ode_integrator.dt = ode_integrator.dtcache # we do not have to reset the interpolation data in the initial time step since always a # constant extrapolation is used (and interpolation data of solution at initial # time point is not complete!) if length(sol.t) > 1 recursivecopy!(ode_integrator.k, sol.k[end]) end nothing end #= Dealing with discontinuities If we hit a discontinuity (this is checked in `apply_step!`), then we remove the discontinuity, additional discontinuities at the current time point (if present), and maybe also discontinuities and time stops coming shortly after the current time point in `handle_discontinuities!`. The order of the discontinuity at the current time point is defined as the lowest order of all these discontinuities. If the problem is not neutral, we will only add additional discontinuities if this order is less or equal to the order of the algorithm in `add_next_discontinuities!`. If we add discontinuities, we add discontinuities of the next order caused by constant lags (these we can calculate explicitly and just add them to `d_discontinuities` and `tstops`) and we add the current discontinuity to `tracked_discontinuities` which is the array of old discontinuities that are checked by a `DiscontinuityCallback` (if existent). =# # handle discontinuities at the current time point of the `integrator` function OrdinaryDiffEq.handle_discontinuities!(integrator::DDEIntegrator) # remove all discontinuities at current time point and calculate minimal order # of these discontinuities d = OrdinaryDiffEq.pop_discontinuity!(integrator) order = d.order tdir_t = integrator.tdir * integrator.t while OrdinaryDiffEq.has_discontinuity(integrator) && OrdinaryDiffEq.first_discontinuity(integrator) == tdir_t d2 = OrdinaryDiffEq.pop_discontinuity!(integrator) order = min(order, d2.order) end # remove all discontinuities close to the current time point as well and # calculate minimal order of these discontinuities # integrator.EEst has unitless type of integrator.t if integrator.EEst isa AbstractFloat maxΔt = 10eps(integrator.t) while OrdinaryDiffEq.has_discontinuity(integrator) && abs(OrdinaryDiffEq.first_discontinuity(integrator).t - tdir_t) < maxΔt d2 = OrdinaryDiffEq.pop_discontinuity!(integrator) order = min(order, d2.order) end # also remove all corresponding time stops while OrdinaryDiffEq.has_tstop(integrator) && abs(OrdinaryDiffEq.first_tstop(integrator) - tdir_t) < maxΔt OrdinaryDiffEq.pop_tstop!(integrator) end end # add discontinuities of next order to integrator add_next_discontinuities!(integrator, order) nothing end """ add_next_discontinuities!(integrator::DDEIntegrator, order[, t=integrator.t]) Add discontinuities of next order that are propagated from discontinuity of order `order` at time `t` in `integrator`, but only if `order` is less or equal than the order of the applied method or the problem is neutral. Discontinuities caused by constant delays are immediately calculated, and discontinuities caused by dependent delays are tracked by a callback. """ function add_next_discontinuities!(integrator, order, t = integrator.t) neutral = integrator.sol.prob.neutral next_order = neutral ? order : order + 1 # only track discontinuities up to order of the applied method alg_maximum_order = OrdinaryDiffEq.alg_maximum_order(integrator.alg) next_order <= alg_maximum_order + 1 || return # discontinuities caused by constant lags if has_constant_lags(integrator) constant_lags = integrator.sol.prob.constant_lags maxlag = integrator.tdir * (integrator.sol.prob.tspan[end] - t) for lag in constant_lags if integrator.tdir * lag < maxlag # calculate discontinuity and add it to heap of discontinuities and time stops d = Discontinuity(integrator.tdir * (t + lag), next_order) push!(integrator.d_discontinuities_propagated, d) push!(integrator.tstops_propagated, d.t) end end end # track propagated discontinuities with callback push!(integrator.tracked_discontinuities, Discontinuity(integrator.tdir * t, order)) nothing end # Interface for accessing and removing next time stops and discontinuities function OrdinaryDiffEq.has_tstop(integrator::DDEIntegrator) return _has(integrator.opts.tstops, integrator.tstops_propagated) end function OrdinaryDiffEq.first_tstop(integrator::DDEIntegrator) return _first(integrator.opts.tstops, integrator.tstops_propagated) end function OrdinaryDiffEq.pop_tstop!(integrator::DDEIntegrator) return _pop!(integrator.opts.tstops, integrator.tstops_propagated) end function OrdinaryDiffEq.has_discontinuity(integrator::DDEIntegrator) return _has(integrator.opts.d_discontinuities, integrator.d_discontinuities_propagated) end function OrdinaryDiffEq.first_discontinuity(integrator::DDEIntegrator) return _first(integrator.opts.d_discontinuities, integrator.d_discontinuities_propagated) end function OrdinaryDiffEq.pop_discontinuity!(integrator::DDEIntegrator) return _pop!(integrator.opts.d_discontinuities, integrator.d_discontinuities_propagated) end _has(x, y) = !isempty(x) || !isempty(y) function _first(x, y) if isempty(x) return first(y) elseif isempty(y) return first(x) else return min(first(x), first(y)) end end function _pop!(x, y) if isempty(x) pop!(y) elseif isempty(y) pop!(x) else if first(x) < first(y) pop!(x) else pop!(y) end end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
3026
using SafeTestsets const GROUP = get(ENV, "GROUP", "All") if GROUP == "All" || GROUP == "Interface" @time @safetestset "AD Tests" begin include("interface/ad.jl") end @time @safetestset "Backwards Tests" begin include("interface/backwards.jl") end @time @safetestset "Composite Solution Tests" begin include("interface/composite_solution.jl") end @time @safetestset "Constrained Time Steps Tests" begin include("interface/constrained.jl") end @time @safetestset "Dependent Delay Tests" begin include("interface/dependent_delays.jl") end @time @safetestset "Discontinuity Tests" begin include("interface/discontinuities.jl") end @time @safetestset "Export Tests" begin include("interface/export.jl") end @time @safetestset "Fixed-point Iteration Tests" begin include("interface/fpsolve.jl") end @time @safetestset "History Function Tests" begin include("interface/history_function.jl") end @time @safetestset "Jacobian Tests" begin include("interface/jacobian.jl") end @time @safetestset "Mass matrix Tests" begin include("interface/mass_matrix.jl") end @time @safetestset "Parameterized Function Tests" begin include("interface/parameters.jl") end @time @safetestset "saveat Tests" begin include("interface/saveat.jl") end @time @safetestset "save_idxs Tests" begin include("interface/save_idxs.jl") end @time @safetestset "Unconstrained Time Steps Tests" begin include("interface/unconstrained.jl") end @time @safetestset "Units Tests" begin include("interface/units.jl") end end if GROUP == "All" || GROUP == "Integrators" @time @safetestset "Cache Tests" begin include("integrators/cache.jl") end @time @safetestset "Event Tests" begin include("integrators/events.jl") end @time @safetestset "Iterator Tests" begin include("integrators/iterator.jl") end @time @safetestset "Reinitialization Tests" begin include("integrators/reinit.jl") end @time @safetestset "Residual Control Tests" begin include("integrators/residual_control.jl") end @time @safetestset "Return Code Tests" begin include("integrators/retcode.jl") end @time @safetestset "Rosenbrock Tests" begin include("integrators/rosenbrock.jl") end @time @safetestset "SDIRK Tests" begin include("integrators/sdirk.jl") end @time @safetestset "Unique Timepoints Tests" begin include("integrators/unique_times.jl") end @time @safetestset "Verner Tests" begin include("integrators/verner.jl") end end if GROUP == "All" || GROUP == "Regression" @time @safetestset "Inference Tests" begin include("regression/inference.jl") end @time @safetestset "Waltman Problem Tests" begin include("regression/waltman.jl") end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1525
using DelayDiffEq, Test using Random Random.seed!(213) const CACHE_TEST_ALGS = [Vern7(), Euler(), Midpoint(), RK4(), SSPRK22(), SSPRK33(), ORK256(), CarpenterKennedy2N54(), SHLDDRK64(), DGLDDRK73_C(), CFRLDDRK64(), TSLDDRK74(), CKLLSRK43_2(), ParsaniKetchesonDeconinck3S32(), BS3(), BS5(), DP5(), DP8(), Feagin10(), Feagin12(), Feagin14(), TanYam7(), Tsit5(), TsitPap8(), Vern6(), Vern7(), Vern8(), Vern9(), OwrenZen3(), OwrenZen4(), OwrenZen5()] function f(du, u, h, p, t) for i in 1:length(u) du[i] = (0.3 / length(u)) * u[i] end nothing end condition(u, t, integrator) = 1 - maximum(u) function affect!(integrator) u = integrator.u resize!(integrator, length(u) + 1) maxidx = findmax(u)[2] Θ = rand() / 5 + 0.25 u[maxidx] = Θ u[end] = 1 - Θ nothing end const prob = DDEProblem(f, [0.2], nothing, (0.0, 10.0); callback = ContinuousCallback(condition, affect!)) println("Check for stochastic errors") for i in 1:10 @test_nowarn solve(prob, MethodOfSteps(Tsit5()); dt = 0.5) end println("Check some other integrators") println("Rosenbrock23") @test_nowarn solve(prob, MethodOfSteps(Rosenbrock23(chunk_size = 1)); dt = 0.5) for alg in CACHE_TEST_ALGS println(nameof(typeof(alg))) @test_nowarn solve(prob, MethodOfSteps(alg); dt = 0.5) end println("Rodas4") @test_nowarn solve(prob, MethodOfSteps(Rodas4(chunk_size = 1)); dt = 0.5) println("Rodas5") @test_nowarn solve(prob, MethodOfSteps(Rodas5(chunk_size = 1)); dt = 0.5)
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2208
using DelayDiffEq, DDEProblemLibrary, DiffEqDevTools, DiffEqCallbacks using Test const prob = prob_dde_constant_1delay_scalar const alg = MethodOfSteps(Tsit5(); constrained = false) # continuous callback @testset "continuous" begin cb = ContinuousCallback((u, t, integrator) -> t - 2.60, # Event when event_f(t,u,k) == 0 integrator -> (integrator.u = -integrator.u)) sol1 = solve(prob, alg, callback = cb) ts = findall(x -> x ≈ 2.6, sol1.t) @test length(ts) == 2 @test sol1.u[ts[1]] == -sol1.u[ts[2]] @test sol1(prevfloat(2.6); continuity = :right)≈-sol1(prevfloat(2.6); continuity = :left) atol=1e-5 # fails on 32bit?! # see https://github.com/SciML/DelayDiffEq.jl/pull/180 if Int === Int64 sol2 = solve(prob, alg, callback = cb, dtmax = 0.01) ts = findall(x -> x ≈ 2.6, sol2.t) @test length(ts) == 2 @test sol2.u[ts[1]] == -sol2.u[ts[2]] @test sol2(prevfloat(2.6); continuity = :right) ≈ -sol2(prevfloat(2.6); continuity = :left) sol3 = appxtrue(sol1, sol2) @test sol3.errors[:L2] < 1.5e-2 @test sol3.errors[:L∞] < 3.5e-2 end end # discrete callback @testset "discrete" begin # Automatic absolute tolerances cb = AutoAbstol() sol1 = solve(prob, alg, callback = cb) sol2 = solve(prob, alg, callback = cb, dtmax = 0.01) sol3 = appxtrue(sol1, sol2) @test sol3.errors[:L2] < 1.4e-3 @test sol3.errors[:L∞] < 4.1e-3 # Terminate early cb = DiscreteCallback((u, t, integrator) -> t == 4, terminate!) sol = @test_logs solve(prob, alg; callback = cb, tstops = [4.0]) @test sol.t[end] == 4 end @testset "save discontinuity" begin f(du, u, h, p, t) = (du .= 0) prob = DDEProblem(f, [0.0], nothing, (0.0, 1.0)) condition(u, t, integrator) = t == 0.5 global iter function affect!(integrator) integrator.u[1] += 100 global iter = integrator.iter end cb = DiscreteCallback(condition, affect!) sol = solve(prob, MethodOfSteps(Tsit5()), callback = cb, tstops = [0.5]) @test sol.t[iter + 1] == sol.t[iter + 2] @test sol.u[iter + 1] == [0.0] @test sol.u[iter + 2] != [0.0] end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2356
using DelayDiffEq, DDEProblemLibrary using Test const prob = prob_dde_constant_1delay_scalar @testset "Basic iterator" begin # compute the solution of the DDE sol = solve(prob, MethodOfSteps(BS3()); dt = 1 // 2^(4), tstops = [1.5], saveat = 0.01, save_everystep = true) # initialize integrator integrator = init(prob, MethodOfSteps(BS3()); dt = 1 // 2^(4), tstops = [1.5], saveat = 0.01, save_everystep = true) # perform one step step!(integrator) @test integrator.iter == 1 # move to next grid point integrator.opts.advance_to_tstop = true step!(integrator) @test integrator.t == 1.5 # solve the DDE solve!(integrator) @test integrator.t == 10 @test integrator.sol(9) ≈ sol(9) # move to next grid point push!(integrator.opts.tstops, 15) step!(integrator) @test integrator.t == 15 # move just one step integrator.opts.advance_to_tstop = false step!(integrator) @test integrator.t > 15 end @testset "Advanced iterators" begin # move to grid point in one step integrator1 = init(prob, MethodOfSteps(Tsit5()); dt = 1 // 2^(4), tstops = [0.5], advance_to_tstop = true) for (u, t) in tuples(integrator1) @test 0.5 ≤ t ≤ 10 end # move to grid point in one step and stop there integrator2 = init(prob, MethodOfSteps(Tsit5()); dt = 1 // 2^(4), tstops = [0.5], advance_to_tstop = true, stop_at_next_tstop = true) for (u, t) in tuples(integrator2) @test t == 0.5 end integrator2([10; 20]) # step and show intervals integrator3 = init(prob, MethodOfSteps(Tsit5()); dt = 1 // 2^(4), tstops = [0.5]) for (uprev, tprev, u, t) in intervals(integrator3) @show tprev, t end integrator3([10; 20]) # iterator for chosen time points integrator4 = init(prob, MethodOfSteps(Tsit5()); dt = 1 // 2^(4)) ts = 1:10 us = Float64[] for (u, t) in TimeChoiceIterator(integrator4, ts) push!(us, u) end @test us ≈ integrator4.sol(ts) end @testset "iter" begin integrator = init(prob, MethodOfSteps(RK4()); dt = 1 // 2^(9), adaptive = false) for i in Base.Iterators.take(integrator, 12) end @test integrator.iter == 12 for i in Base.Iterators.take(integrator, 12) end @test integrator.iter == 24 end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1583
using DelayDiffEq, DDEProblemLibrary, RecursiveArrayTools using Test const prob_ip = prob_dde_constant_1delay_ip const prob_scalar = prob_dde_constant_1delay_scalar const alg = MethodOfSteps(BS3(); constrained = false) @testset for inplace in (true, false) prob = inplace ? prob_ip : prob_scalar @testset "integrator" begin integrator = init(prob, alg, dt = 0.01) solve!(integrator) u = recursivecopy(integrator.sol.u) t = copy(integrator.sol.t) reinit!(integrator) integrator.dt = 0.01 solve!(integrator) @test u == integrator.sol.u @test t == integrator.sol.t end @testset "solution" begin integrator = init(prob, alg, dt = 0.01, tstops = [0.5], saveat = [0.33]) sol = solve!(integrator) u = recursivecopy(sol.u) t = copy(sol.t) reinit!(integrator) integrator.dt = 0.01 sol = solve!(integrator) @test u == sol.u @test t == sol.t end # https://github.com/SciML/OrdinaryDiffEq.jl/issues/1394 @testset "saveiter_dense" begin integrator = init(prob, alg) solve!(integrator) # ensure that the counters were updated for i in (integrator, integrator.integrator) @test i.saveiter > 1 @test i.saveiter_dense > 1 end reinit!(integrator) # check that the counters are reset for i in (integrator, integrator.integrator) @test i.saveiter == 1 @test i.saveiter_dense == 1 end end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1607
using DelayDiffEq, DDEProblemLibrary using Test const alg = MethodOfSteps(RK4(); constrained = false) const prob = prob_dde_constant_1delay_scalar # reference solution with delays specified @testset "reference" begin sol = solve(prob, alg) @test sol.errors[:l∞] < 5.6e-5 @test sol.errors[:final] < 1.8e-6 @test sol.errors[:l2] < 2.0e-5 end # problem without delays specified const prob_wo = remake(prob; constant_lags = nothing) # solutions with residual control @testset "residual control" begin sol = solve(prob_wo, alg) @test sol.errors[:l∞] < 1.4e-4 @test sol.errors[:final] < 3.5e-6 @test sol.errors[:l2] < 6.5e-5 sol = solve(prob_wo, alg; abstol = 1e-9, reltol = 1e-6) @test sol.errors[:l∞] < 6.0e-8 @test sol.errors[:final] < 3.4e-9 @test sol.errors[:l2] < 2.2e-8 sol = solve(prob_wo, alg; abstol = 1e-13, reltol = 1e-13) # relaxed tests to prevent floating point issues @test sol.errors[:l∞] < 5e-10 @test sol.errors[:final] < 4.5e-12 @test sol.errors[:l2] < 7.7e-11 # 7.7e-12 end ######## Now show that non-residual control is worse # solutions without residual control @testset "non-residual control" begin sol = solve(prob_wo, MethodOfSteps(OwrenZen5(); constrained = false)) @test sol.errors[:l∞] > 1.1e-1 @test sol.errors[:final] > 1.2e-3 @test sol.errors[:l2] > 4.5e-2 sol = solve(prob_wo, MethodOfSteps(OwrenZen5(); constrained = false); abstol = 1e-13, reltol = 1e-13) @test sol.errors[:l∞] > 1.1e-1 @test sol.errors[:final] > 1.2e-3 @test sol.errors[:l2] > 5.5e-2 end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
525
using DelayDiffEq, DDEProblemLibrary using Test const prob = prob_dde_constant_1delay_ip @testset for composite in (true, false) alg = MethodOfSteps(composite ? AutoTsit5(Rosenbrock23()) : Tsit5(); constrained = false) sol1 = solve(prob, alg) @test sol1.retcode == ReturnCode.Success sol2 = solve(prob, alg; maxiters = 1, verbose = false) @test sol2.retcode == ReturnCode.MaxIters sol3 = solve(prob, alg; dtmin = 5, verbose = false) @test sol3.retcode == ReturnCode.DtLessThanMin end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
700
using DelayDiffEq, DDEProblemLibrary using Test const prob_ip = prob_dde_constant_1delay_ip const prob_scalar = prob_dde_constant_1delay_scalar const ts = 0:0.1:10 # ODE algorithms const algs = [Rosenbrock23(), Rosenbrock32(), ROS3P(), Rodas3(), RosShamp4(), Veldd4(), Velds4(), GRK4T(), GRK4A(), Ros4LStab(), Rodas4(), Rodas42(), Rodas4P(), Rodas5()] @testset "Algorithm $(nameof(typeof(alg)))" for alg in algs println(nameof(typeof(alg))) stepsalg = MethodOfSteps(alg) sol_ip = solve(prob_ip, stepsalg) sol_scalar = solve(prob_scalar, stepsalg) @test sol_ip(ts, idxs = 1) ≈ sol_scalar(ts) @test sol_ip.t ≈ sol_scalar.t @test sol_ip[1, :] ≈ sol_scalar.u end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1741
using DelayDiffEq, DDEProblemLibrary using Test const prob_ip = prob_dde_constant_1delay_ip const prob_scalar = prob_dde_constant_1delay_scalar const ts = 0:0.1:10 # ODE algorithms noreuse = NLNewton(fast_convergence_cutoff = 0) const working_algs = [ImplicitMidpoint(), SSPSDIRK2(), KenCarp5(nlsolve = noreuse), ImplicitEuler(nlsolve = noreuse), Trapezoid(nlsolve = noreuse), TRBDF2(nlsolve = noreuse), SDIRK2(nlsolve = noreuse), Kvaerno3(nlsolve = noreuse), KenCarp3(nlsolve = noreuse), Cash4(nlsolve = noreuse), Hairer4(nlsolve = noreuse), Hairer42(nlsolve = noreuse), Kvaerno4(nlsolve = noreuse), KenCarp4(nlsolve = noreuse), Kvaerno5(nlsolve = noreuse)] const broken_algs = [ImplicitEuler(), Trapezoid(), TRBDF2(), SDIRK2(), Kvaerno3(), KenCarp3(), Cash4(), Hairer4(), Hairer42(), Kvaerno4(), KenCarp4(), Kvaerno5()] @testset "Algorithm $(nameof(typeof(alg)))" for alg in working_algs println(nameof(typeof(alg))) stepsalg = MethodOfSteps(alg) sol_ip = solve(prob_ip, stepsalg; dt = 0.1) sol_scalar = solve(prob_scalar, stepsalg; dt = 0.1) @test sol_ip(ts, idxs = 1) ≈ sol_scalar(ts) @test sol_ip.t ≈ sol_scalar.t @test sol_ip[1, :] ≈ sol_scalar.u end @testset "Algorithm $(nameof(typeof(alg)))" for alg in broken_algs println(nameof(typeof(alg))) stepsalg = MethodOfSteps(alg) sol_ip = solve(prob_ip, stepsalg; dt = 0.1) sol_scalar = solve(prob_scalar, stepsalg; dt = 0.1) @test_broken sol_ip(ts, idxs = 1) ≈ sol_scalar(ts) # this test is not broken for KenCarp4 #if alg isa KenCarp4 # @test sol_ip.t ≈ sol_scalar.t #else @test_broken sol_ip.t ≈ sol_scalar.t #end @test_broken sol_ip[1, :] ≈ sol_scalar.u end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
243
using DelayDiffEq, DDEProblemLibrary using Test const prob = prob_dde_constant_1delay_long_ip @testset for constrained in (false, true) sol = solve(prob, MethodOfSteps(Tsit5(); constrained = constrained)) @test allunique(sol.t) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2114
using DelayDiffEq, DDEProblemLibrary using Test # simple problems @testset "simple problems" begin prob_ip = prob_dde_constant_1delay_ip prob_scalar = prob_dde_constant_1delay_scalar ts = 0:0.1:10 # Vern6 println("Vern6") @testset "Vern6" begin alg = MethodOfSteps(Vern6()) sol_ip = solve(prob_ip, alg) @test sol_ip.errors[:l∞] < 8.7e-4 @test sol_ip.errors[:final] < 6e-6 @test sol_ip.errors[:l2] < 5.4e-4 sol_scalar = solve(prob_scalar, alg) # fails due to floating point issues @test sol_ip(ts, idxs = 1)≈sol_scalar(ts) atol=1e-5 end # Vern7 println("Vern7") @testset "Vern7" begin alg = MethodOfSteps(Vern7()) sol_ip = solve(prob_ip, alg) @test sol_ip.errors[:l∞] < 4.0e-4 @test sol_ip.errors[:final] < 3.5e-7 @test sol_ip.errors[:l2] < 1.9e-4 sol_scalar = solve(prob_scalar, alg) @test sol_ip(ts, idxs = 1)≈sol_scalar(ts) atol=1e-5 end # Vern8 println("Vern8") @testset "Vern8" begin alg = MethodOfSteps(Vern8()) sol_ip = solve(prob_ip, alg) @test sol_ip.errors[:l∞] < 2.0e-3 @test sol_ip.errors[:final] < 1.8e-5 @test sol_ip.errors[:l2] < 8.8e-4 sol_scalar = solve(prob_scalar, alg) @test sol_ip(ts, idxs = 1)≈sol_scalar(ts) atol=1e-5 end # Vern9 println("Vern9") @testset "Vern9" begin alg = MethodOfSteps(Vern9()) sol_ip = solve(prob_ip, alg) @test sol_ip.errors[:l∞] < 1.5e-3 @test sol_ip.errors[:final] < 3.8e-6 @test sol_ip.errors[:l2] < 6.5e-4 sol_scalar = solve(prob_scalar, alg) @test sol_ip(ts, idxs = 1)≈sol_scalar(ts) atol=1e-5 end end # model of Mackey and Glass println("Mackey and Glass") @testset "Mackey and Glass" begin prob = prob_dde_DDETST_A1 # Vern6 solve(prob, MethodOfSteps(Vern6())) # Vern7 solve(prob, MethodOfSteps(Vern7())) # Vern8 solve(prob, MethodOfSteps(Vern8())) # Vern9 solve(prob, MethodOfSteps(Vern9())) end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
4252
using DelayDiffEq import FiniteDiff import ForwardDiff using Test # Hutchinson's equation f(u, h, p, t) = p[2] * u * (1 - h(p, t - p[1]) / p[3]) h(p, t) = p[4] @testset "Gradient" begin function test(p) prob = DDEProblem(f, p[5], h, eltype(p).((0.0, 10.0)), copy(p); constant_lags = (p[1],)) sol = solve(prob, MethodOfSteps(Tsit5()); abstol = 1e-14, reltol = 1e-14, saveat = 1.0) sum(sol) end # without delay length estimation p = [1.5, 1.0, 0.5] findiff = FiniteDiff.finite_difference_gradient(p -> test(vcat(1, p, p[end])), p) fordiff = ForwardDiff.gradient(p -> test(vcat(1, p, p[end])), p) @test maximum(abs.(findiff .- fordiff)) < 1e-6 # with delay length estimation and without discontinuity p = [1.0, 1.5, 1.0, 0.5] findiff2 = FiniteDiff.finite_difference_gradient(p -> test(vcat(p, p[end])), p) fordiff2 = ForwardDiff.gradient(p -> test(vcat(p, p[end])), p) @test_broken maximum(abs.(findiff2 .- fordiff2)) < 2 # with discontinuity and without delay length estimation p = [1.5, 1.0, 0.5, 1.0] findiff3 = FiniteDiff.finite_difference_gradient(p -> test(vcat(1, p)), p) fordiff3 = ForwardDiff.gradient(p -> test(vcat(1, p)), p) @test maximum(abs.(findiff3 .- fordiff3)) < 9 # consistency checks @test findiff2[2:end] ≈ findiff @test fordiff2[2:end] ≈ fordiff @test_broken findiff3[1:(end - 1)] ≈ findiff @test_broken fordiff3[1:(end - 1)] ≈ fordiff end @testset "Jacobian" begin function test(p) prob = DDEProblem(f, p[5], h, eltype(p).((0.0, 10.0)), copy(p); constant_lags = (p[1],)) sol = solve(prob, MethodOfSteps(Tsit5()); abstol = 1e-14, reltol = 1e-14, saveat = 1.0) sol.u end # without delay length estimation p = [1.5, 1.0, 0.5] findiff = FiniteDiff.finite_difference_jacobian(p -> test(vcat(1, p, p[end])), p) fordiff = ForwardDiff.jacobian(p -> test(vcat(1, p, p[end])), p) @test maximum(abs.(findiff .- fordiff)) < 2e-6 # with delay length estimation and without discontinuity p = [1.0, 1.5, 1.0, 0.5] findiff2 = FiniteDiff.finite_difference_jacobian(p -> test(vcat(p, p[end])), p) fordiff2 = ForwardDiff.jacobian(p -> test(vcat(p, p[end])), p) @test_broken maximum(abs.(findiff2 .- fordiff2)) < 3 # with discontinuity and without delay length estimation p = [1.5, 1.0, 0.5, 1.0] findiff3 = FiniteDiff.finite_difference_jacobian(p -> test(vcat(1, p)), p) fordiff3 = ForwardDiff.jacobian(p -> test(vcat(1, p)), p) @test maximum(abs.(findiff3 .- fordiff3)) < 1 # consistency checks @test findiff2[:, 2:end] ≈ findiff @test fordiff2[:, 2:end] ≈ fordiff @test_broken findiff3[:, 1:(end - 1)] ≈ findiff @test_broken fordiff3[:, 1:(end - 1)] ≈ fordiff end @testset "Hessian" begin function test(p) prob = DDEProblem(f, p[5], h, eltype(p).((0.0, 10.0)), copy(p); constant_lags = (p[1],)) sol = solve(prob, MethodOfSteps(Tsit5()); abstol = 1e-14, reltol = 1e-14, saveat = 1.0) sum(sol) end # without delay length estimation and without discontinuity p = [1.5, 1.0, 0.5] findiff = FiniteDiff.finite_difference_hessian(p -> test(vcat(1, p, p[end])), p) fordiff = ForwardDiff.hessian(p -> test(vcat(1, p, p[end])), p) @test maximum(abs.(findiff .- fordiff)) < 1e-5 # with delay length estimation and without discontinuity p = [1.0, 1.5, 1.0, 0.5] findiff2 = FiniteDiff.finite_difference_hessian(p -> test(vcat(p, p[end])), p) fordiff2 = ForwardDiff.hessian(p -> test(vcat(p, p[end])), p) @test_broken maximum(abs.(findiff2 .- fordiff2)) < 25 # with discontinuity and without delay length estimation p = [1.5, 1.0, 0.5, 1.0] findiff3 = FiniteDiff.finite_difference_hessian(p -> test(vcat(1, p)), p) fordiff3 = ForwardDiff.hessian(p -> test(vcat(1, p)), p) @test maximum(abs.(findiff3 .- fordiff3)) < 1 # consistency checks @test findiff2[2:end, 2:end] ≈ findiff @test fordiff2[2:end, 2:end] ≈ fordiff @test_broken findiff3[1:(end - 1), 1:(end - 1)] ≈ findiff @test_broken fordiff3[1:(end - 1), 1:(end - 1)] ≈ fordiff end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2001
using DelayDiffEq using Test h(p, t) = 1.0 const tspan = (2.0, 0.0) f(u, h, p, t) = h(p, t + 1) # solution on [0,2] f_analytic(u₀, ::typeof(h), p, t) = t < 1 ? (t^2 - 1) / 2 : t - 1 const dde_f = DDEFunction(f, analytic = f_analytic) @testset "Without lags" begin sol = solve(DDEProblem(dde_f, h, tspan), MethodOfSteps(RK4())) @test sol.errors[:l∞] < 1.2e-12 # 1.2e-16 end @testset "Constant lags" begin @testset "incorrect" begin prob = DDEProblem(dde_f, h, tspan; constant_lags = [1.0]) @test_throws ErrorException solve(prob, MethodOfSteps(Tsit5())) end @testset "correct" begin prob = DDEProblem(dde_f, h, tspan; constant_lags = [-1.0]) dde_int = init(prob, MethodOfSteps(Tsit5())) @test dde_int.tracked_discontinuities == [Discontinuity(-2.0, 1)] @test dde_int.d_discontinuities_propagated.valtree == [Discontinuity(-1.0, 2)] @test isempty(dde_int.opts.d_discontinuities) sol = solve!(dde_int) @test sol.errors[:l∞] < 3.9e-12 # 3.9e-15 @test dde_int.tracked_discontinuities == [Discontinuity(-2.0, 1), Discontinuity(-1.0, 2)] @test isempty(dde_int.d_discontinuities_propagated) @test isempty(dde_int.opts.d_discontinuities) end end @testset "Dependent lags" begin prob = DDEProblem(dde_f, h, tspan; dependent_lags = ((u, p, t) -> -1.0,)) dde_int = init(prob, MethodOfSteps(Tsit5())) @test isempty(dde_int.opts.d_discontinuities) sol = solve!(dde_int) @test sol.errors[:l∞] < 3.9e-12 # 3.9e-15 @test dde_int.tracked_discontinuities == [Discontinuity(-2.0, 1)] end @testset "dt and dtmax" begin prob = DDEProblem(dde_f, h, tspan) dde_int = init(prob, MethodOfSteps(RK4()); dt = 0.1, dtmax = 0.5) @test dde_int.dt == -0.1 @test dde_int.opts.dtmax == -0.5 sol1 = solve!(dde_int) sol2 = solve(prob, MethodOfSteps(RK4()); dt = -0.1, dtmax = -0.5) @test sol1.t == sol2.t @test sol1.u == sol2.u end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1371
using DelayDiffEq, DDEProblemLibrary using Test @testset "integrator" begin prob = prob_dde_constant_1delay_ip integrator = init(prob, MethodOfSteps(AutoTsit5(Rosenbrock23()))) @test integrator.sol isa SciMLBase.ODESolution @test integrator.integrator.sol isa SciMLBase.ODESolution sol1 = solve!(integrator) @test sol1 isa SciMLBase.ODESolution # compare integration grid sol2 = solve(prob, MethodOfSteps(Tsit5())) @test sol1.t == sol2.t @test sol1.u == sol2.u # compare interpolation @test sol1(0:0.1:1) == sol2(0:0.1:1) end @testset "issue #148" begin alg = MethodOfSteps(Tsit5()) compositealg = MethodOfSteps(CompositeAlgorithm((Tsit5(), RK4()), integrator -> 1)) prob = DDEProblem((du, u, h, p, t) -> (du[1] = -h(p, t - 1)[1]; nothing), [1.0], (p, t) -> [1.0], (0.0, 5.0)) sol = solve(prob, alg) compositesol = solve(prob, compositealg) @test compositesol isa SciMLBase.ODESolution @test sol.t == compositesol.t @test sol.u == compositesol.u prob_oop = DDEProblem((u, h, p, t) -> -h(p, t - 1), [1.0], (p, t) -> [1.0], (0.0, 5.0)) sol_oop = solve(prob_oop, alg) compositesol_oop = solve(prob_oop, compositealg) @test compositesol_oop isa SciMLBase.ODESolution @test sol_oop.t == compositesol_oop.t @test sol_oop.u == compositesol_oop.u end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1424
using DelayDiffEq, DDEProblemLibrary using Test # Check that numerical solutions approximate analytical solutions, # independent of problem structure const alg = MethodOfSteps(BS3(); constrained = true) # Single constant delay @testset "single constant delay" begin ## Scalar function sol_scalar = solve(prob_dde_constant_1delay_scalar, alg; dt = 0.1) @test sol_scalar.errors[:l∞] < 3.0e-5 @test sol_scalar.errors[:final] < 2.1e-5 @test sol_scalar.errors[:l2] < 1.3e-5 ## Out-of-place function sol_oop = solve(prob_dde_constant_1delay_oop, alg; dt = 0.1) @test sol_scalar.t ≈ sol_oop.t && sol_scalar.u ≈ sol_oop[1, :] ## In-place function sol_ip = solve(prob_dde_constant_1delay_ip, alg; dt = 0.1) @test sol_scalar.t ≈ sol_ip.t && sol_scalar.u ≈ sol_ip[1, :] end # Two constant delays @testset "two constant delays" begin ## Scalar function sol_scalar = solve(prob_dde_constant_2delays_scalar, alg; dt = 0.1) @test sol_scalar.errors[:l∞] < 4.1e-6 @test sol_scalar.errors[:final] < 1.5e-6 @test sol_scalar.errors[:l2] < 2.3e-6 ## Out-of-place function sol_oop = solve(prob_dde_constant_2delays_oop, alg; dt = 0.1) @test sol_scalar.t ≈ sol_oop.t && sol_scalar.u ≈ sol_oop[1, :] ## In-place function sol_ip = solve(prob_dde_constant_2delays_ip, alg; dt = 0.1) @test sol_scalar.t ≈ sol_ip.t && sol_scalar.u ≈ sol_ip[1, :] end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1707
using DelayDiffEq, DDEProblemLibrary using Test const alg = MethodOfSteps(BS3()) const prob = prob_dde_constant_1delay_ip const dde_int = init(prob, alg) const sol = solve!(dde_int) @testset "reference" begin @test sol.errors[:l∞] < 3.0e-5 @test sol.errors[:final] < 2.1e-5 @test sol.errors[:l2] < 1.2e-5 end @testset "constant lag function" begin # constant delay specified as lag function prob2 = remake(prob; constant_lags = nothing, dependent_lags = ((u, p, t) -> 1,)) dde_int2 = init(prob2, alg) sol2 = solve!(dde_int2) @test getfield.(dde_int.tracked_discontinuities, :t) ≈ getfield.(dde_int2.tracked_discontinuities, :t) @test getfield.(dde_int.tracked_discontinuities, :order) == getfield.(dde_int2.tracked_discontinuities, :order) # worse than results above with constant delays specified as scalars @test sol2.errors[:l∞] < 3.2e-3 @test sol2.errors[:final] < 1.2e-4 @test sol2.errors[:l2] < 1.2e-3 # simple convergence tests @testset "convergence" begin sol3 = solve(prob2, alg; abstol = 1e-9, reltol = 1e-6) @test sol3.errors[:l∞] < 3.0e-6 @test sol3.errors[:final] < 1.4e-7 @test sol3.errors[:l2] < 9.6e-7 sol4 = solve(prob2, alg; abstol = 1e-13, reltol = 1e-13) @test sol4.errors[:l∞] < 6.0e-11 @test sol4.errors[:final] < 4.7e-11 @test sol4.errors[:l2] < 8e-12 end end # without any delays specified is worse @testset "without delays" begin prob2 = remake(prob; constant_lags = nothing) sol2 = solve(prob2, alg) @test sol2.errors[:l∞] > 1.0e-2 @test sol2.errors[:final] > 1e-6 @test sol2.errors[:l2] > 4.6e-3 end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2575
using DelayDiffEq, DDEProblemLibrary using Test const prob = prob_dde_constant_2delays_ip # total order @testset "total order" begin a = Discontinuity(1, 3) @test a > 0 @test a < 2 @test a == 1 b = Discontinuity(2.0, 2) @test !(a > b) @test a < b @test a != b c = Discontinuity(1.0, 2) @test a > c @test !(a < c) @test a != c end # simple DDE example @testset "DDE" begin integrator = init(prob, MethodOfSteps(BS3())) # initial discontinuities @testset "initial" begin @test integrator.tracked_discontinuities == [Discontinuity(0.0, 0)] @test length(integrator.d_discontinuities_propagated) == 2 && issubset([Discontinuity(1 / 5, 1), Discontinuity(1 / 3, 1)], integrator.d_discontinuities_propagated.valtree) @test isempty(integrator.opts.d_discontinuities) @test isempty(integrator.opts.d_discontinuities_cache) end # tracked discontinuities @testset "tracked" begin solve!(integrator) discs = [Discontinuity(t, order) for (t, order) in ((0.0, 0), (1 / 5, 1), (1 / 3, 1), (2 / 5, 2), (8 / 15, 2), (3 / 5, 3), (2 / 3, 2), (11 / 15, 3), (13 / 15, 3))] for (tracked, disc) in zip(integrator.tracked_discontinuities, discs) @test tracked.t ≈ disc.t && tracked.order == disc.order end end end # additional discontinuities @testset "DDE with discontinuities" begin integrator = init(prob, MethodOfSteps(BS3()); d_discontinuities = [Discontinuity(0.3, 4), Discontinuity(0.6, 5)]) @test integrator.tracked_discontinuities == [Discontinuity(0.0, 0)] @test length(integrator.d_discontinuities_propagated) == 2 && issubset([Discontinuity(1 / 5, 1), Discontinuity(1 / 3, 1)], integrator.d_discontinuities_propagated.valtree) @test length(integrator.opts.d_discontinuities) == 2 && issubset([Discontinuity(0.3, 4), Discontinuity(0.6, 5)], integrator.opts.d_discontinuities.valtree) @test integrator.opts.d_discontinuities_cache == [Discontinuity(0.3, 4), Discontinuity(0.6, 5)] end # discontinuities induced by callbacks @testset "#190" begin cb = ContinuousCallback((u, t, integrator) -> 1, integrator -> nothing) integrator = init(prob_dde_constant_1delay_ip, MethodOfSteps(Tsit5()); callback = cb) sol = solve!(integrator) for t in 0:5 @test t ∈ sol.t @test Discontinuity(Float64(t), t) ∈ integrator.tracked_discontinuities end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
96
using DelayDiffEq, DiffEqBase using Test @test DiffEqBase.undefined_exports(DelayDiffEq) == []
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
2950
using DelayDiffEq, DDEProblemLibrary, DiffEqDevTools using LinearAlgebra using Test const prob = prob_dde_constant_2delays_long_ip const prob_oop = prob_dde_constant_2delays_long_oop const prob_scalar = prob_dde_constant_2delays_long_scalar const testsol = TestSolution(solve(prob, MethodOfSteps(Vern9()); abstol = 1 / 10^14, reltol = 1 / 10^14)) @testset "NLFunctional" begin alg = MethodOfSteps(Tsit5(); fpsolve = NLFunctional(; max_iter = 10)) ## in-place problem sol = solve(prob, alg) # check statistics @test sol.stats.nf > 3000 @test sol.stats.nsolve == 0 @test sol.stats.nfpiter > 300 @test sol.stats.nfpconvfail > 50 # compare it with the test solution sol2 = appxtrue(sol, testsol) @test sol2.errors[:L∞] < 2.7e-4 ## out-of-place problem sol_oop = solve(prob_oop, alg) # compare it with the in-place solution @test sol_oop.stats.nf == sol.stats.nf @test sol_oop.stats.nsolve == sol.stats.nsolve @test sol_oop.stats.nfpiter == sol.stats.nfpiter @test sol_oop.stats.nfpconvfail == sol.stats.nfpconvfail @test sol_oop.t≈sol.t atol=1e-3 @test sol_oop.u ≈ sol.u @test isapprox(sol.u, sol_oop.u; atol = 1e-7) ## scalar problem sol_scalar = solve(prob_scalar, alg) # compare it with the in-place solution @test sol_scalar.stats.nf == sol.stats.nf @test sol_scalar.stats.nsolve == sol.stats.nsolve @test sol_scalar.stats.nfpiter == sol.stats.nfpiter @test sol_scalar.stats.nfpconvfail == sol.stats.nfpconvfail @test sol_scalar.t≈sol.t atol=1e-3 @test sol_scalar.u ≈ sol[1, :] end @testset "NLAnderson" begin alg = MethodOfSteps(Tsit5(); fpsolve = NLAnderson(; max_iter = 10)) ## in-place problem sol = solve(prob, alg) # check statistics @test sol.stats.nf < 2500 @test sol.stats.nsolve > 0 @test sol.stats.nfpiter < 250 @test sol.stats.nfpconvfail < 50 # compare it with the test solution sol2 = appxtrue(sol, testsol) @test sol2.errors[:L∞] < 2.7e-4 ## out-of-place problem sol_oop = solve(prob_oop, alg) # compare it with the in-place solution @test_broken sol_oop.stats.nf == sol.stats.nf @test_broken sol_oop.stats.nsolve == sol.stats.nsolve @test_broken sol_oop.stats.nfpiter == sol.stats.nfpiter @test_broken sol_oop.stats.nfpconvfail == sol.stats.nfpconvfail @test_broken sol_oop.t ≈ sol.t @test_broken sol_oop.u ≈ sol.u @test appxtrue(sol, sol_oop).errors[:L∞] < 3e-6 ## scalar problem sol_scalar = solve(prob_scalar, alg) # compare it with the in-place solution @test_broken sol_scalar.stats.nf == sol.stats.nf @test_broken sol_scalar.stats.nsolve == sol.stats.nsolve @test_broken sol_scalar.stats.nfpiter == sol.stats.nfpiter @test_broken sol_scalar.stats.nfpconvfail == sol.stats.nfpconvfail @test_broken sol_scalar.t ≈ sol.t @test_broken sol_scalar.u ≈ sol[1, :] end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
4846
using DelayDiffEq using Test # check constant extrapolation with problem with vanishing delays at t = 0 @testset "vanishing delays" begin prob = DDEProblem((u, h, p, t) -> -h(p, t / 2), 1.0, (p, t) -> 1.0, (0.0, 10.0)) solve(prob, MethodOfSteps(RK4())) end @testset "general" begin # naive history functions h_notinplace(p, t; idxs = nothing) = idxs === nothing ? [t, -t] : [t, -t][idxs] function h_inplace(val, p, t; idxs = nothing) if idxs === nothing val[1] = t val[2] = -t else val .= [t; -t][idxs] end end # ODE integrator prob = ODEProblem((du, u, p, t) -> @.(du=p * u), ones(2), (0.0, 1.0), 1.01) integrator = init(prob, Tsit5()) # combined history function history_notinplace = DelayDiffEq.HistoryFunction(h_notinplace, integrator) history_inplace = DelayDiffEq.HistoryFunction(h_inplace, integrator) # test evaluation of history function @testset "evaluation" for idxs in (nothing, [2]) # expected value trueval = h_notinplace(nothing, -1; idxs = idxs) # out-of-place @test history_notinplace(nothing, -1, Val{0}; idxs = idxs) == trueval # in-place val = zero(trueval) history_inplace(val, nothing, -1; idxs = idxs) @test val == trueval val = zero(trueval) history_inplace(val, nothing, -1, Val{0}; idxs = idxs) @test val == trueval end # test constant extrapolation @testset "constant extrapolation" for deriv in (Val{0}, Val{1}), idxs in (nothing, [2]) # expected value trueval = deriv == Val{0} ? (idxs === nothing ? integrator.u : integrator.u[[2]]) : (idxs === nothing ? zeros(2) : [0.0]) # out-of-place history_notinplace.isout = false @test history_notinplace(nothing, 1, deriv; idxs = idxs) == trueval @test history_notinplace.isout # in-place history_inplace.isout = false @test history_inplace(nothing, nothing, 1, deriv; idxs = idxs) == trueval @test history_inplace.isout history_inplace.isout = false val = 1 .- trueval # ensures that val ≠ trueval history_inplace(val, nothing, 1, deriv; idxs = idxs) @test val == trueval @test history_inplace.isout end # add step to integrator @testset "update integrator" begin OrdinaryDiffEq.loopheader!(integrator) OrdinaryDiffEq.perform_step!(integrator, integrator.cache) integrator.t = integrator.dt @test 0.01 < integrator.t < 1 @test integrator.sol.t[end] == 0 end # test integrator interpolation @testset "integrator interpolation" for deriv in (Val{0}, Val{1}), idxs in (nothing, [2]) # expected value trueval = OrdinaryDiffEq.current_interpolant(0.01, integrator, idxs, deriv) # out-of-place history_notinplace.isout = false @test history_notinplace(nothing, 0.01, deriv; idxs = idxs) == trueval @test history_notinplace.isout # in-place history_inplace.isout = false val = zero(trueval) history_inplace(val, nothing, 0.01, deriv; idxs = idxs) @test val == trueval @test history_inplace.isout end # add step to solution @testset "update solution" begin integrator.t = 0 OrdinaryDiffEq.loopfooter!(integrator) @test integrator.t == integrator.sol.t[end] end # test solution interpolation @testset "solution interpolation" for deriv in (Val{0}, Val{1}), idxs in (nothing, [2]) # expected value trueval = integrator.sol.interp(0.01, idxs, deriv, integrator.p) # out-of-place history_notinplace.isout = false @test history_notinplace(nothing, 0.01, deriv; idxs = idxs) == trueval @test !history_notinplace.isout # in-place history_inplace.isout = false val = zero(trueval) history_inplace(val, nothing, 0.01, deriv; idxs = idxs) @test val == trueval @test !history_inplace.isout end # test integrator extrapolation @testset "integrator extrapolation" for deriv in (Val{0}, Val{1}), idxs in (0, [2]) idxs == 0 && (idxs = nothing) # expected value trueval = OrdinaryDiffEq.current_interpolant(1, integrator, idxs, deriv) # out-of-place history_notinplace.isout = false @test history_notinplace(nothing, 1, deriv; idxs = idxs) == trueval @test history_notinplace.isout # in-place history_inplace.isout = false val = zero(trueval) history_inplace(val, nothing, 1, deriv; idxs = idxs) @test val == trueval @test history_inplace.isout end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
5248
using DelayDiffEq using Test @testset "in-place" begin # define functions (Hutchinson's equation) function f(du, u, h, p, t) du[1] = u[1] * (1 - h(p, t - 1)[1]) nothing end njacs = Ref(0) function jac(J, u, h, p, t) njacs[] += 1 J[1, 1] = 1 - h(p, t - 1)[1] nothing end nWfacts = Ref(0) function Wfact(W, u, h, p, dtgamma, t) nWfacts[] += 1 W[1, 1] = dtgamma * (1 - h(p, t - 1)[1]) - 1 nothing end nWfact_ts = Ref(0) function Wfact_t(W, u, h, p, dtgamma, t) nWfact_ts[] += 1 W[1, 1] = 1 - h(p, t - 1)[1] - inv(dtgamma) nothing end h(p, t) = [0.0] # define problems prob = DDEProblem(DDEFunction{true}(f), [1.0], h, (0.0, 40.0); constant_lags = [1]) prob_jac = remake(prob; f = DDEFunction{true}(f; jac = jac)) prob_Wfact = remake(prob; f = DDEFunction{true}(f; Wfact = Wfact)) prob_Wfact_t = remake(prob; f = DDEFunction{true}(f; Wfact_t = Wfact_t)) # compute solutions for alg in (Rosenbrock23(), TRBDF2()) sol = solve(prob, MethodOfSteps(alg)) ## Jacobian njacs[] = 0 sol_jac = solve(prob_jac, MethodOfSteps(alg)) # check number of function evaluations @test !iszero(njacs[]) @test njacs[] == sol_jac.stats.njacs @test njacs[] <= sol_jac.stats.nw # check resulting solution @test sol.t ≈ sol_jac.t @test sol.u ≈ sol_jac.u ## Wfact nWfacts[] = 0 sol_Wfact = solve(prob_Wfact, MethodOfSteps(alg)) # check number of function evaluations if alg isa Rosenbrock23 @test !iszero(nWfacts[]) @test nWfacts[] >= njacs[] @test iszero(sol_Wfact.stats.njacs) else @test_broken !iszero(nWfacts[]) @test_broken nWfacts[] >= njacs[] @test_broken iszero(sol_Wfact.stats.njacs) end @test_broken nWfacts[] == sol_Wfact.stats.nw # check resulting solution @test sol.t ≈ sol_Wfact.t @test sol.u ≈ sol_Wfact.u ## Wfact_t nWfact_ts[] = 0 sol_Wfact_t = solve(prob_Wfact_t, MethodOfSteps(alg)) # check number of function evaluations if alg isa Rosenbrock23 @test_broken !iszero(nWfact_ts[]) @test_broken nWfact_ts[] == njacs[] @test_broken iszero(sol_Wfact_t.stats.njacs) else @test !iszero(nWfact_ts[]) @test_broken nWfact_ts[] == njacs[] @test iszero(sol_Wfact_t.stats.njacs) end @test_broken nWfact_ts[] == sol_Wfact_t.stats.nw # check resulting solution if alg isa Rosenbrock23 @test sol.t ≈ sol_Wfact_t.t @test sol.u ≈ sol_Wfact_t.u else @test_broken sol.t ≈ sol_Wfact_t.t @test_broken sol.u ≈ sol_Wfact_t.u end end end @testset "out-of-place" begin # define functions (Hutchinson's equation) f(u, h, p, t) = u[1] .* (1 .- h(p, t - 1)) njacs = Ref(0) function jac(u, h, p, t) njacs[] += 1 reshape(1 .- h(p, t - 1), 1, 1) end nWfacts = Ref(0) function Wfact(u, h, p, dtgamma, t) nWfacts[] += 1 reshape(dtgamma .* (1 .- h(p, t - 1)) .- 1, 1, 1) end nWfact_ts = Ref(0) function Wfact_t(u, h, p, dtgamma, t) nWfact_ts[] += 1 reshape((1 - inv(dtgamma)) .- h(p, t - 1), 1, 1) end h(p, t) = [0.0] # define problems prob = DDEProblem(DDEFunction{false}(f), [1.0], h, (0.0, 40.0); constant_lags = [1]) prob_jac = remake(prob; f = DDEFunction{false}(f; jac = jac)) prob_Wfact = remake(prob; f = DDEFunction{false}(f; Wfact = Wfact)) prob_Wfact_t = remake(prob; f = DDEFunction{false}(f; Wfact_t = Wfact_t)) # compute solutions for alg in (Rosenbrock23(), TRBDF2()) sol = solve(prob, MethodOfSteps(alg)) ## Jacobian njacs[] = 0 sol_jac = solve(prob_jac, MethodOfSteps(alg)) # check number of function evaluations @test !iszero(njacs[]) @test_broken njacs[] == sol_jac.stats.njacs @test_broken njacs[] == sol_jac.stats.nw # check resulting solution @test sol.t ≈ sol_jac.t @test sol.u ≈ sol_jac.u ## Wfact nWfacts[] = 0 sol_Wfact = solve(prob_Wfact, MethodOfSteps(alg)) # check number of function evaluations @test_broken !iszero(nWfacts[]) @test_broken nWfacts[] == njacs[] @test_broken iszero(sol_Wfact.stats.njacs) @test_broken nWfacts[] == sol_Wfact.stats.nw # check resulting solution @test sol.t ≈ sol_Wfact.t @test sol.u ≈ sol_Wfact.u ## Wfact_t nWfact_ts[] = 0 sol_Wfact_t = solve(prob_Wfact_t, MethodOfSteps(alg)) # check number of function evaluations @test_broken !iszero(nWfact_ts[]) @test_broken nWfact_ts[] == njacs[] @test_broken iszero(sol_Wfact_ts.stats.njacs) @test_broken nWfact_ts[] == sol_Wfact_t.stats.nw # check resulting solution @test sol.t ≈ sol_Wfact_t.t @test sol.u ≈ sol_Wfact_t.u end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1843
using DelayDiffEq using DiffEqDevTools using LinearAlgebra using Test @testset "SIR" begin function sir_dde!(du, u, h, p, t) S, I, _ = u γ, τ = p infection = γ * I * S Sd, Id, _ = h(p, t - τ) recovery = γ * Id * Sd @inbounds begin du[1] = -infection du[2] = infection - recovery du[3] = recovery end nothing end u0 = [0.99, 0.01, 0.0] sir_history(p, t) = [1.0, 0.0, 0.0] tspan = (0.0, 40.0) p = (γ = 0.5, τ = 4.0) prob_dde = DDEProblem(sir_dde!, u0, sir_history, tspan, p; constant_lags = (p.τ,)) sol_dde = TestSolution(solve(prob_dde, MethodOfSteps(Vern9()); reltol = 1e-14, abstol = 1e-14)) function sir_ddae!(du, u, h, p, t) S, I, R = u γ, τ = p infection = γ * I * S Sd, Id, _ = h(p, t - τ) recovery = γ * Id * Sd @inbounds begin du[1] = -infection du[2] = infection - recovery du[3] = S + I + R - 1 end nothing end prob_ddae = DDEProblem( DDEFunction{true}(sir_ddae!; mass_matrix = Diagonal([1.0, 1.0, 0.0])), u0, sir_history, tspan, p; constant_lags = (p.τ,)) ode_f = DelayDiffEq.ODEFunctionWrapper(prob_ddae.f, prob_ddae.h) @test ode_f.mass_matrix == Diagonal([1.0, 1.0, 0.0]) int = init(prob_ddae, MethodOfSteps(Rosenbrock23())) @test int.isdae @test int.f.mass_matrix == Diagonal([1.0, 1.0, 0.0]) for (alg, reltol) in ((Rosenbrock23(), nothing), (Rodas4(), nothing), (QNDF(), 1e-6), (Trapezoid(), 1e-6)) sol_ddae = solve(prob_ddae, MethodOfSteps(alg); reltol = reltol) sol = appxtrue(sol_ddae, sol_dde) @test sol.errors[:L∞] < 5e-3 end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git