licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1083
using DelayDiffEq using Test # Test parameterized delayed logistic equation # delayed logistic equation f_inplace(du, u, h, p, t) = (du[1] = p[1] * u[1] * (1 - h(p, t - 1; idxs = 1))) f_scalar(u, h, p, t) = p[1] * u * (1 - h(p, t - 1)) # simple history function h(p, t; idxs = nothing) = 0.1 @testset for inplace in (true, false) # define problem # we specify order_discontinuity_t0 = 1 to indicate that the discontinuity at # t = 0 is of first order prob = DDEProblem(inplace ? f_inplace : f_scalar, inplace ? [0.1] : 0.1, h, (0.0, 50.0), [0.3]; constant_lags = [1], order_discontinuity_t0 = 1) # solve problem with initial parameter: sol1 = solve(prob, MethodOfSteps(Tsit5())) @test length(sol1) == 21 @test first(sol1(12))≈0.884 atol=1e-4 @test first(sol1.u[end])≈1 atol=1e-5 # solve problem with updated parameter prob.p[1] = 1.4 sol2 = solve(prob, MethodOfSteps(Tsit5())) @test length(sol2) == 47 @test first(sol2(12))≈1.125 atol=5e-4 @test first(sol2.u[end])≈0.994 atol=2e-5 end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
3921
using DelayDiffEq using Test # out-of-place problem function f_notinplace(u, h, p, t) [-h(p, t - 1 / 5)[1] + u[1]; -h(p, t - 1 / 3)[2] - h(p, t - 1 / 5)[2]] end const prob_notinplace = DDEProblem(f_notinplace, ones(2), (p, t) -> zeros(2), (0.0, 100.0), constant_lags = [1 / 5, 1 / 3]) # in-place problem function f_inplace(du, u, h, p, t) du[1] = -h(p, t - 1 / 5)[1] + u[1] du[2] = -h(p, t - 1 / 3)[2] - h(p, t - 1 / 5)[2] end const prob_inplace = DDEProblem(f_inplace, ones(2), (p, t) -> zeros(2), (0.0, 100.0), constant_lags = [1 / 5, 1 / 3]) const alg = MethodOfSteps(BS3()) @testset for prob in (prob_notinplace, prob_inplace) # reference solution dde_int = init(prob, alg) sol = solve!(dde_int) # save all components @testset "all components" begin # without keyword argument @testset "without keyword" begin # solution, solution of DDE integrator, and solution of ODE integrator # contain all components @test length(sol.u[1]) == 2 @test length(dde_int.sol.u[1]) == 2 @test length(dde_int.integrator.sol.u[1]) == 2 # solution and solution of DDE integrator are equal @test sol.t == dde_int.sol.t @test sol.u == dde_int.sol.u ## interpolation @test sol(25:100, idxs = 2) ≈ [u[1] for u in sol(25:100, idxs = [2])] end # with keyword argument @testset "with keyword" begin dde_int2 = init(prob, alg; save_idxs = [1, 2]) sol2 = solve!(dde_int2) # solution, solution of DDE integrator, and solution of ODE integrator # contain all components @test length(sol2.u[1]) == 2 @test length(dde_int2.sol.u[1]) == 2 @test length(dde_int2.integrator.sol.u[1]) == 2 # solution and solution of DDE integrator are equal @test sol.t == dde_int.sol.t @test sol.u == dde_int.sol.u # interpolation @test sol[2, :] ≈ dde_int.integrator.sol(sol.t, idxs = 2) end end # save only second component @testset "second component" begin # array index @testset "array index" begin dde_int2 = init(prob, alg; save_idxs = [2]) sol2 = solve!(dde_int2) # solution and solution of DDE integrator contain only second component @test length(sol2.u[1]) == 1 @test length(dde_int2.sol.u[1]) == 1 # solution of ODE integrator contains both components @test length(dde_int2.integrator.sol.u[1]) == 2 # solution and solution of DDE integrator are equal @test sol2.t == dde_int2.sol.t @test sol2.u == dde_int2.sol.u # interpolation @test sol(25:100, idxs = 2) ≈ sol2(25:100, idxs = 1) @test sol(25:100, idxs = [2]) ≈ sol2(25:100, idxs = [1]) end # scalar index @testset "scalar index" begin dde_int2 = init(prob, alg; save_idxs = 2) sol2 = solve!(dde_int2) # solution and solution of DDE integrator is only vector of floats @test typeof(sol2.u) === Vector{Float64} @test typeof(dde_int2.sol.u) === Vector{Float64} # solution of ODE integrator contains both components @test length(dde_int2.integrator.sol.u[1]) == 2 # solution and solution of DDE integrator are equal @test sol2.t == dde_int2.sol.t @test sol2.u == dde_int2.sol.u # solution equals second component of complete solution @test sol.t ≈ sol2.t && sol[2, :] ≈ sol2.u # interpolation of solution equals second component of # interpolation of complete solution @test sol(25:100, idxs = 2) ≈ sol2(25:100, idxs = 1) end end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
5103
using DelayDiffEq, DDEProblemLibrary using Test const prob = prob_dde_constant_1delay_long_ip const alg = MethodOfSteps(Tsit5()) # reference integrator and solution const dde_int = init(prob, alg) const sol = solve!(dde_int) @testset "reference" begin # solution equals solution of DDE integrator @test sol.t == dde_int.sol.t @test sol.u == dde_int.sol.u # solution equals solution of ODE integrator @test sol.t == dde_int.integrator.sol.t @test sol.u == dde_int.integrator.sol.u end # do not save every step @testset "not every step (save_start=$save_start)" for save_start in (false, true) # for time(s) as scalar (implicitly adds end point as well!) and vectors for saveat in (25.0, [25.0, 50.0, 75.0]) dde_int2 = init(prob, alg; saveat = saveat, save_start = save_start) # end point is saved if saveat is a scalar @test dde_int2.opts.save_end == (saveat isa Number) sol2 = solve!(dde_int2) # solution is equal to solution of DDE integrator @test sol2.t == dde_int2.sol.t @test sol2.u == dde_int2.sol.u # time point of solution if saveat isa Number @test sol2.t == (save_start ? [0.0, 25.0, 50.0, 75.0, 100.0] : [25.0, 50.0, 75.0, 100.0]) else @test sol2.t == (save_start ? [0.0, 25.0, 50.0, 75.0] : [25.0, 50.0, 75.0]) end # history is equal to solution above @test sol.t == dde_int2.integrator.sol.t @test sol.u == dde_int2.integrator.sol.u end end # do not save every step @testset "not every step (save_end=$save_end)" for save_end in (false, true) # for time(s) as scalar (implicitly adds end point as well!) and vectors for saveat in (25.0, [25.0, 50.0, 75.0]) dde_int2 = init(prob, alg; saveat = saveat, save_end = save_end) # start point is saved if saveat is a scalar @test dde_int2.opts.save_start == (saveat isa Number) sol2 = solve!(dde_int2) # solution is equal to solution of DDE integrator @test sol2.t == dde_int2.sol.t @test sol2.u == dde_int2.sol.u # time point of solution if saveat isa Number @test sol2.t == (save_end ? [0.0, 25.0, 50.0, 75.0, 100.0] : [0.0, 25.0, 50.0, 75.0]) else @test sol2.t == (save_end ? [25.0, 50.0, 75.0, 100.0] : [25.0, 50.0, 75.0]) end # history is equal to solution above @test sol.t == dde_int2.integrator.sol.t @test sol.u == dde_int2.integrator.sol.u end end # save every step @testset "every step (save_start=$save_start)" for save_start in (false, true) for saveat in (25.0, [25.0, 50.0, 75.0]) dde_int2 = init(prob, alg; saveat = saveat, save_everystep = true, save_start = save_start) # end point is saved implicitly @test dde_int2.opts.save_end sol2 = solve!(dde_int2) # solution is equal to solution of DDE integrator @test sol2.t == dde_int2.sol.t @test sol2.u == dde_int2.sol.u # time points of solution @test symdiff(sol.t, sol2.t) == (save_start ? [25.0, 50.0, 75.0] : [0.0, 25.0, 50.0, 75.0]) # history is equal to solution above @test sol.t == dde_int2.integrator.sol.t @test sol.u == dde_int2.integrator.sol.u end end # save every step @testset "every step (save_end=$save_end)" for save_end in (false, true) for saveat in (25.0, [25.0, 50.0, 75.0]) dde_int2 = init(prob, alg; saveat = saveat, save_everystep = true, save_end = save_end) # start point is saved implicitly @test dde_int2.opts.save_start sol2 = solve!(dde_int2) # solution is equal to solution of DDE integrator @test sol2.t == dde_int2.sol.t @test sol2.u == dde_int2.sol.u # time points of solution @test symdiff(sol.t, sol2.t) == (save_end ? [25.0, 50.0, 75.0] : [100.0, 25.0, 50.0, 75.0]) # history is equal to solution above @test sol.t == dde_int2.integrator.sol.t @test sol.u == dde_int2.integrator.sol.u end end @testset "not matching end time point" begin sol = solve(prob, alg; saveat = 40) @test sol.t == [0.0, 40, 80, 100] end @testset "changing end time point saveat" begin _saveat = [0.0, 0.25, 0.5, 1.0] integ = init(DDEProblem((u, h, p, t) -> u, 0.0, (p, t) -> 0.0, (0.0, 1.0)), MethodOfSteps(Tsit5()), saveat = _saveat) add_tstop!(integ, 2.0) solve!(integ) @test integ.sol.t == _saveat integ = init(DDEProblem((u, h, p, t) -> u, 0.0, (p, t) -> 0.0, (0.0, 1.0)), MethodOfSteps(Tsit5()), saveat = _saveat, save_end = true) add_tstop!(integ, 2.0) solve!(integ) @test integ.sol.t == [0.0, 0.25, 0.5, 1.0, 2.0] integ = init(DDEProblem((u, h, p, t) -> u, 0.0, (p, t) -> 0.0, (0.0, 1.0)), MethodOfSteps(Tsit5()), saveat = _saveat, save_end = false) add_tstop!(integ, 2.0) solve!(integ) @test integ.sol.t == [0.0, 0.25, 0.5] end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
4154
using DelayDiffEq, DDEProblemLibrary using Test # Check that numerical solutions approximate analytical solutions, # independent of problem structure @testset "standard history" begin # standard algorithm alg = MethodOfSteps(BS3(); constrained = false) alg1 = MethodOfSteps(Tsit5(); constrained = false, fpsolve = NLFunctional(; max_iter = 100)) alg2 = MethodOfSteps(DP8(); constrained = false, fpsolve = NLFunctional(; max_iter = 10)) alg3 = MethodOfSteps(Tsit5(); constrained = true) alg4 = MethodOfSteps(DP5(); constrained = false, fpsolve = NLFunctional(; max_iter = 100)) ## Single constant delay @testset "single constant delay" begin @testset "short time span" begin ### Scalar function sol_scalar = solve(prob_dde_constant_1delay_scalar, alg) @test sol_scalar.errors[:l∞] < 3.0e-5 @test sol_scalar.errors[:final] < 2.1e-5 @test sol_scalar.errors[:l2] < 1.2e-5 ### Out-of-place function sol_oop = solve(prob_dde_constant_1delay_oop, alg) @test sol_scalar.t ≈ sol_oop.t && sol_scalar.u ≈ sol_oop[1, :] ### In-place function sol_ip = solve(prob_dde_constant_1delay_ip, alg) @test sol_scalar.t ≈ sol_ip.t && sol_scalar.u ≈ sol_ip[1, :] end @testset "long time span" begin prob = prob_dde_constant_1delay_long_scalar sol1 = solve(prob, alg1; abstol = 1e-12, reltol = 1e-12) sol2 = solve(prob, alg2; abstol = 1e-8, reltol = 1e-10) sol3 = solve(prob, alg3; abstol = 1e-8, reltol = 1e-10) sol4 = solve(prob, alg4; abstol = 1e-12, reltol = 1e-12) # relaxed tests to prevent floating point issues @test abs(sol1.u[end] - sol2.u[end]) < 2.5e-8 @test abs(sol1.u[end] - sol3.u[end]) < 3.7e-8 @test abs(sol1.u[end] - sol4.u[end]) < 9.0e-11 # 9.0e-13 end end ## Two constant delays @testset "two constant delays" begin @testset "short time span" begin ### Scalar function sol_scalar = solve(prob_dde_constant_2delays_scalar, alg) @test sol_scalar.errors[:l∞] < 2.4e-6 @test sol_scalar.errors[:final] < 2.1e-6 @test sol_scalar.errors[:l2] < 1.2e-6 ### Out-of-place function sol_oop = solve(prob_dde_constant_2delays_oop, alg) @test sol_scalar.t ≈ sol_oop.t && sol_scalar.u ≈ sol_oop[1, :] ### In-place function sol_ip = solve(prob_dde_constant_2delays_ip, alg) @test sol_scalar.t ≈ sol_ip.t && sol_scalar.u ≈ sol_ip[1, :] end @testset "long time span" begin prob = prob_dde_constant_2delays_long_scalar sol1 = solve(prob, alg1; abstol = 1e-12, reltol = 1e-12) sol2 = solve(prob, alg2; abstol = 1e-8, reltol = 1e-10) sol3 = solve(prob, alg3; abstol = 1e-8, reltol = 1e-10) sol4 = solve(prob, alg4; abstol = 1e-12, reltol = 1e-12) # relaxed tests to prevent floating point issues @test abs(sol1.u[end] - sol3.u[end]) < 1.2e-13 # 1.2e-15 @test abs(sol1.u[end] - sol4.u[end]) < 3.1e-13 # 3.1e-15 end end end ## Non-standard history functions @testset "non-standard history" begin alg = MethodOfSteps(Tsit5(); constrained = false, fpsolve = NLFunctional(; max_iter = 100)) @testset "idxs" begin function f(du, u, h, p, t) du[1] = -h(p, t - 0.2; idxs = 1) + u[1] end h(p, t; idxs = nothing) = idxs isa Number ? 0.0 : [0.0] prob = DDEProblem(f, [1.0], h, (0.0, 100.0); constant_lags = [0.2]) solve(prob, alg; abstol = 1e-12, reltol = 1e-12) end @testset "in-place" begin function f(du, u, h, p, t) h(du, p, t - 0.2) du[1] = -du[1] + u[1] end h(val, p, t) = (val .= 0.0) prob = DDEProblem(f, [1.0], h, (0.0, 100.0); constant_lags = [0.2]) solve(prob, alg; abstol = 1e-12, reltol = 1e-12) end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1677
using DelayDiffEq, DDEProblemLibrary, Unitful using Test using DDEProblemLibrary: remake_dde_constant_u0_tType const probs = Dict( true => remake_dde_constant_u0_tType(prob_dde_constant_1delay_long_ip, [1.0u"N"], typeof(1.0u"s")), false => remake_dde_constant_u0_tType(prob_dde_constant_1delay_long_scalar, 1.0u"N", typeof(1.0u"s"))) # we test the current handling of units for regressions # however, it is broken upstream: https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl/issues/828 @testset for inplace in (true, false) prob = probs[inplace] alg = MethodOfSteps(Tsit5(); constrained = false, fpsolve = NLFunctional(; max_iter = 100)) # default sol1 = solve(prob, alg) # without units if inplace @test_throws Unitful.DimensionError solve(prob, alg; abstol = 1e-6, reltol = 1e-3) else sol2 = solve(prob, alg; abstol = 1e-6, reltol = 1e-3) @test sol1.t == sol2.t @test sol1.u == sol2.u end # with correct units sol3 = solve(prob, alg; abstol = 1e-6u"N", reltol = 1e-3u"N") @test sol1.t == sol3.t @test sol1.u == sol3.u # with correct units as vectors if inplace sol4 = solve(prob, alg; abstol = [1e-6u"N"], reltol = [1e-3u"N"]) @test sol1.t == sol4.t @test sol1.u == sol4.u end # with incorrect units for absolute tolerance @test_throws Unitful.DimensionError solve(prob, alg; abstol = 1e-6u"s", reltol = 1e-3u"N") # with incorrect units for relative tolerance @test_throws Unitful.DimensionError solve(prob, alg; abstol = 1e-6u"N", reltol = 1e-3u"s") end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
975
using DelayDiffEq, DDEProblemLibrary using Test @testset "init" begin prob = prob_dde_constant_1delay_ip prob_scalar = prob_dde_constant_1delay_scalar inferred = [BS3(), Tsit5(), RK4(), Vern6()] for alg in inferred ddealg = MethodOfSteps(alg) @test_broken @inferred init(prob, ddealg) @test_broken @inferred init(prob_scalar, ddealg) end notinferred = [SDIRK2(), TRBDF2(), KenCarp4(), Rosenbrock23(), Rodas4()] for alg in notinferred ddealg = MethodOfSteps(alg) @test_broken @inferred init(prob, ddealg) @test_broken @inferred init(prob_scalar, ddealg) end end @testset "discontinuity_time" begin prob_inplace = prob_dde_constant_1delay_ip prob_scalar = prob_dde_constant_1delay_scalar for prob in (prob_inplace, prob_scalar) int = init(prob, MethodOfSteps(Tsit5())) @inferred DelayDiffEq.discontinuity_time(int, (u, p, t) -> 1.0, 0.0, (0.5, 1.5)) end end
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
code
1341
using DelayDiffEq, DDEProblemLibrary using LinearAlgebra, Test, LinearSolve const PROB_WALTMAN = DDEProblemLibrary.prob_dde_RADAR5_waltman_5 const PROB_KWARGS = (reltol = 1e-7, abstol = [1e-21, 1e-21, 1e-21, 1e-21, 1e-9, 1e-9]) # solution at final time point T = 300 obtained from RADAR5 # with relative tolerance 1e-6 and componentwise absolute tolerances # 1e-21, 1e-21, 1e-21, 1e-21, 1e-9, and 1e-9 const RADAR5_SOL = [6.154488183e-16, 3.377120916e-7, 4.22140331e-7, 2.142554562e-6, 299.9999999, 299.6430338] function test_waltman_sol(sol) @test sol.retcode == ReturnCode.Success @test sol.t[end] == 300 # compare solution at the final time point with RADAR5 for i in 1:6 @test sol.u[end][i]≈RADAR5_SOL[i] rtol=1e-3 atol=1e-17 end end # standard factorization sol1 = solve(PROB_WALTMAN, MethodOfSteps(Rosenbrock23()); PROB_KWARGS...) test_waltman_sol(sol1) # in-place LU factorization sol2 = solve(PROB_WALTMAN, MethodOfSteps(Rosenbrock23(linsolve = GenericFactorization(lu!))); PROB_KWARGS...) test_waltman_sol(sol2) # out-of-place LU factorization sol3 = solve( PROB_WALTMAN, MethodOfSteps(Rosenbrock23(linsolve = GenericFactorization(lu))); PROB_KWARGS...) test_waltman_sol(sol3) # compare in-place and out-of-place LU factorization @test sol2.t == sol3.t @test sol2.u == sol3.u
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
5.48.1
066f60231c1b0ae2905ffd2651e207accd91f627
docs
3496
# DelayDiffEq.jl [![Build Status](https://github.com/SciML/DelayDiffEq.jl/workflows/CI/badge.svg?branch=master)](https://github.com/SciML/DelayDiffEq.jl/actions?query=workflow%3ACI%20branch%3Amaster) [![Coverage Status](https://coveralls.io/repos/SciML/DelayDiffEq.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/SciML/DelayDiffEq.jl?branch=master) [![codecov](https://codecov.io/gh/SciML/DelayDiffEq.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/DelayDiffEq.jl) DelayDiffEq.jl is a component package in the DifferentialEquations ecosystem. It holds the delay differential equation solvers and utilities. It is built on top of OrdinaryDiffEq to extend those solvers for delay differential equations. While completely independent and usable on its own, users interested in using this functionality should check out [DifferentialEquations.jl](https://github.com/SciML/DifferentialEquations.jl). ## API DelayDiffEq.jl is part of the JuliaDiffEq common interface, but can be used independently of DifferentialEquations.jl. The only requirement is that the user passes a DelayDiffEq.jl algorithm to `solve`. For example, we can solve the [DDE tutorial from the documentation](https://diffeq.sciml.ai/stable/tutorials/dde_example/) using the `MethodOfSteps(Tsit5())` algorithm: ```julia using DelayDiffEq const p0 = 0.2; const q0 = 0.3; const v0 = 1; const d0 = 5 const p1 = 0.2; const q1 = 0.3; const v1 = 1; const d1 = 1 const d2 = 1; const beta0 = 1; const beta1 = 1; const tau = 1 function bc_model(du,u,h,p,t) du[1] = (v0/(1+beta0*(h(p, t-tau)[3]^2))) * (p0 - q0)*u[1] - d0*u[1] du[2] = (v0/(1+beta0*(h(p, t-tau)[3]^2))) * (1 - p0 + q0)*u[1] + (v1/(1+beta1*(h(p, t-tau)[3]^2))) * (p1 - q1)*u[2] - d1*u[2] du[3] = (v1/(1+beta1*(h(p, t-tau)[3]^2))) * (1 - p1 + q1)*u[2] - d2*u[3] end lags = [tau] h(p, t) = ones(3) tspan = (0.0,10.0) u0 = [1.0,1.0,1.0] prob = DDEProblem(bc_model,u0,h,tspan,constant_lags = lags) alg = MethodOfSteps(Tsit5()) sol = solve(prob,alg) using Plots; plot(sol) ``` Both constant and state-dependent lags are supported. Interfacing with OrdinaryDiffEq.jl for implicit methods for stiff equations is also supported. ## Available Solvers For the list of available solvers, please refer to the [DifferentialEquations.jl DDE Solvers page](https://diffeq.sciml.ai/stable/solvers/dde_solve/). For options for the `solve` command, see the [common solver options page](https://diffeq.sciml.ai/stable/basics/common_solver_opts/). ## Citing If you use DelayDiffEq.jl in your work, please cite the following: ```bib @article{DifferentialEquations.jl-2017, author = {Rackauckas, Christopher and Nie, Qing}, doi = {10.5334/jors.151}, journal = {The Journal of Open Research Software}, keywords = {Applied Mathematics}, note = {Exported from https://app.dimensions.ai on 2019/05/05}, number = {1}, pages = {}, title = {DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia}, url = {https://app.dimensions.ai/details/publication/pub.1085583166 and http://openresearchsoftware.metajnl.com/articles/10.5334/jors.151/galley/245/download/}, volume = {5}, year = {2017} } @article{widmann2022delaydiffeq, title={DelayDiffEq: Generating Delay Differential Equation Solvers via Recursive Embedding of Ordinary Differential Equation Solvers}, author={Widmann, David and Rackauckas, Chris}, journal={arXiv preprint arXiv:2208.12879}, year={2022} } ```
DelayDiffEq
https://github.com/SciML/DelayDiffEq.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
code
763
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ module DrillHoles using Meshes using Unitful using GeoTables using DataFrames using DataScienceTraits using TableTransforms using LinearAlgebra import Tables import Interpolations const Continuous = DataScienceTraits.Continuous const Categorical = DataScienceTraits.Categorical const LinearItp = Interpolations.linear_interpolation const LinearBC = Interpolations.Line include("units.jl") include("tables.jl") include("desurvey.jl") include("composite.jl") export # types MiningTable, Survey, Collar, Interval, # functions desurvey end
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
code
2636
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ composite(itable, len) Composite interval table `itable` to a given length `len`. ## References * Abzalov, M. 2018. [Applied Mining Geology](https://www.springer.com/gp/book/9783319392639) """ function composite(itable, len) # initialize rows rows = [] # process each drillhole separately for dh in groupby(itable, :HOLEID) # skip if hole has no data isempty(dh) && continue # retrieve depth columns FROM, TO = dh.FROM, dh.TO # number of composite intervals N = ceil(Int, (TO[end] - FROM[begin]) / len) # split original intervals into sub-intervals # that fit perfectly within composite intervals j = 1 id = Int[] df = similar(dh, 0) for i in 1:(N - 1) # current interface AT = FROM[begin] + i * len # copy all intervals before interface while TO[j] < AT push!(df, dh[j, :]) push!(id, i) j += 1 end # make sure this is not a gap if FROM[j] < AT # first sub-interval at interface push!(df, dh[j, :]) push!(id, i) df.TO[end] = AT # second sub-interval at interface push!(df, dh[j, :]) push!(id, i + 1) df.FROM[end] = AT end end # last composite interval (i = N) while j < size(dh, 1) j += 1 push!(df, dh[j, :]) push!(id, N) end # composite id and interval lengths df[!, :ID_] = id df[!, :LEN_] = df.TO - df.FROM # variables of interest allcols = propertynames(df) discard = [:FROM, :TO, :ID_, :LEN_] allvars = setdiff(allcols, discard) # perform aggregation for d in groupby(df, :ID_) row = Dict{Symbol,Any}() row[:SOURCE] = :INTERVAL row[:HOLEID] = dh.HOLEID[begin] row[:FROM] = d.FROM[begin] row[:TO] = d.TO[end] for var in allvars x = d[!, var] l = d[!, :LEN_] x̄ = aggregate(x, l) row[var] = x̄ end push!(rows, row) end end # return table with all composites DataFrame(rows) end # helper function to aggregate vectors function aggregate(x, l) # discard missing m = @. !ismissing(x) xm = x[m] lm = l[m] # aggregate if possible if isempty(lm) || iszero(sum(lm)) missing else _aggregate(elscitype(x), xm, lm) end end _aggregate(::Type{Continuous}, x, l) = (x ⋅ l) / sum(l) _aggregate(::Type{Categorical}, x, l) = x[argmax(l)]
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
code
10906
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ desurvey(collar, survey, intervals; step=:arc, indip=:auto, outdip=:down, inunit=u"m", outunit=inunit, len=nothing, geom=:point, radius=1.0u"m") Desurvey drill holes based on `collar`, `survey` and `intervals` tables. Optionally, specify a `step` method, an input dip angle convention `indip`, an output dip angle convention `outdip`, an input unit `inunit` and an output unit in length units. The option `len` can be used to composite samples to a given length, and the option `geom` can be used to specify the geometry of each sample. In the case of `:cylinder` geometry, the option `radius` can be used to specify the radius of each cylinder. ## Step methods * `:arc` - spherical arc step * `:tan` - simple tanget step See https://help.seequent.com/Geo/2.1/en-GB/Content/drillholes/desurveying.htm ## Dip conventions ### Input dip angle * `:auto` - most frequent dip sign points downwards * `:down` - positive dip points downwards * `:up` - positive dip points upwards ### Output dip angle * `:down` - positive dip points downwards * `:up` - positive dip points upwards ## Output geometries * `:cylinder` - geospatial data with cylinders * `:point` - geospatial data with points * `:none` - data frame with usual columns """ function desurvey( collar, survey, intervals; step=:arc, indip=:auto, outdip=:down, inunit=u"m", outunit=inunit, len=nothing, geom=:point, radius=1.0u"m" ) # sanity checks @assert step ∈ [:arc, :tan] "invalid step method" @assert indip ∈ [:auto, :down, :up] "invalid input dip convention" @assert outdip ∈ [:down, :up] "invalid output dip convention" @assert dimension(inunit) == u"𝐋" "invalid input unit" @assert dimension(outunit) == u"𝐋" "invalid output unit" # pre-process input tables ctable, stable, itables = preprocess(collar, survey, intervals, indip, inunit) # combine all intervals into single table and # assign values to sub-intervals when possible itable = interleave(itables) # composite samples to a specified length ltable = isnothing(len) ? itable : composite(itable, aslen(len, u"m")) # combine composites with survey table and # interpolate AZM and DIP angles ftable = position(ltable, stable) # combine samples with collar table and # compute Cartesian coordinates X, Y and Z result = locate(ftable, ctable, step) # post-process output table postprocess(result, outdip, outunit, geom, aslen(radius, u"m")) end function preprocess(collar, survey, intervals, indip, inunit) withunit(x) = aslen(x, inunit) # select relevant columns of collar table and # standardize column names to HOLEID, X, Y, Z ctable = let f1 = Rename(collar.holeid => :HOLEID, collar.x => :X, collar.y => :Y, collar.z => :Z) f2 = Select(:HOLEID, :X, :Y, :Z) f3 = DropMissing() f4 = Coerce(:X => Continuous, :Y => Continuous, :Z => Continuous) f5 = Functional(:X => withunit, :Y => withunit, :Z => withunit) DataFrame(collar.table) |> (f1 → f2 → f3 → f4 → f5) end # select relevant columns of survey table and # standardize column names to HOLEID, AT, AZM, DIP stable = let f1 = Rename(survey.holeid => :HOLEID, survey.at => :AT, survey.azm => :AZM, survey.dip => :DIP) f2 = Select(:HOLEID, :AT, :AZM, :DIP) f3 = DropMissing() f4 = Coerce(:AT => Continuous, :AZM => Continuous, :DIP => Continuous) f5 = Functional(:AT => withunit, :AZM => asdeg, :DIP => asdeg) DataFrame(survey.table) |> (f1 → f2 → f3 → f4 → f5) end # flip sign of dip angle if necessary indip == :auto && (indip = dipguess(stable)) indip == :down && (stable.DIP *= -1) # duplicate rows if hole id has a single row singles = [] for hole in groupby(stable, :HOLEID) if size(hole, 1) == 1 single = copy(hole) single.AT .+= oneunit(eltype(single.AT)) push!(singles, single) end end stable = vcat(stable, singles...) # select all columns of interval tables and # standardize column names to HOLEID, FROM, TO itables = map(intervals) do interval f1 = Rename(interval.holeid => :HOLEID, interval.from => :FROM, interval.to => :TO) f2 = Functional(:FROM => withunit, :TO => withunit) DataFrame(interval.table) |> (f1 → f2) end ctable, stable, itables end dipguess(stable) = sum(sign, stable.DIP) > 0 ? :down : :up function postprocess(table, outdip, outunit, geom, radius) # flip sign of dip angle if necessary outdip == :down && (table.DIP *= -1) # fix output units fixunit(x) = uconvert(outunit, x) fixunits = Functional(:FROM => fixunit, :TO => fixunit, :AT => fixunit, :X => fixunit, :Y => fixunit, :Z => fixunit) # discard auxiliary SOURCE information samples = view(table, table.SOURCE .== :INTERVAL, Not(:SOURCE)) # sort columns for clarity samples = select(samples, sort(names(samples))) # place actual variables at the end cols = [:HOLEID, :FROM, :TO, :AT, :AZM, :DIP, :X, :Y, :Z] holes = select(samples, cols, Not(cols)) |> fixunits # return data frame if no geometry is specified geom == :none && return holes # initialize result geotables = [] # process each drillhole separately for dh in groupby(holes, :HOLEID) # skip if hole has no data isempty(dh) && continue # columns with data values = select(dh, Not(cols[2:end])) # coordinates of centroids coords = collect(zip(dh.X, dh.Y, dh.Z)) # centroids as points points = Point.(coords) # geometry elements along hole domain = if geom == :cylinder CylindricalTrajectory(points, radius) else PointSet(points) end push!(geotables, georef(values, domain)) end reduce(vcat, geotables) end function interleave(itables) # stack tables in order to see all variables table = vcat(itables..., cols=:union) # intialize rows of result table rows = [] # process each drillhole separately for hole in groupby(table, :HOLEID) # save hole id for later holeid = first(hole.HOLEID) # find all possible depths depths = [hole.FROM; hole.TO] |> unique |> sort # loop over all sub-intervals for i in 2:length(depths) # current sub-interval from, to = depths[i - 1], depths[i] # intialize row with metadata row = Dict{Symbol,Any}(:HOLEID => holeid, :FROM => from, :TO => to) # find all intervals which contain sub-interval samples = filter(I -> I.FROM ≤ from && to ≤ I.TO, hole, view=true) # fill values when that is possible assuming homogeneity props = select(samples, Not([:HOLEID, :FROM, :TO])) for name in propertynames(props) ind = findfirst(!ismissing, props[!, name]) val = isnothing(ind) ? missing : props[ind, name] row[name] = val end # save row and continue push!(rows, row) end end # concatenate rows DataFrame(rows) end function position(itable, stable) # copy table to avoid mutation interv = copy(itable) # depth equals to middle of interval interv[!, :AT] = (interv.FROM .+ interv.TO) ./ 2 # register source of data for interval table interv[!, :SOURCE] .= :INTERVAL # join attributes and trajectory table = outerjoin(interv, stable, on=[:HOLEID, :AT]) # register source of data for survey table table.SOURCE = coalesce.(table.SOURCE, :SURVEY) # initialize drillholes drillholes = [] # process each drillhole separately for hole in groupby(table, :HOLEID) dh = sort(hole, :AT) # interpolate azm and dip angles interpolate!(dh, :AT, :AZM) interpolate!(dh, :AT, :DIP) push!(drillholes, dh) end # concatenate all drillholes attrib = reduce(vcat, drillholes) # fill FROM and TO of survey table # with AT (degenerate interval) for row in eachrow(attrib) ismissing(row.FROM) && (row.FROM = row.AT) ismissing(row.TO) && (row.TO = row.AT) end # drop missing type from complete columns dropmissing!(attrib, [:FROM, :TO, :AZM, :DIP]) end # interpolate ycol from xcol assuming table is sorted function interpolate!(table, xcol, ycol) xs = table[!, xcol] ys = table[!, ycol] is = findall(!ismissing, ys) if !isempty(is) itp = LinearItp(xs[is], ys[is], extrapolation_bc=LinearBC()) @inbounds Threads.@threads for i in 1:length(xs) ys[i] = itp(xs[i]) end end end function locate(attrib, ctable, method) # collar coordinates are at depth 0 ctableat = copy(ctable) ctableat[!, :AT] .= zero(eltype(attrib.AT)) # join tables on hole id and depth table = leftjoin(attrib, ctableat, on=[:HOLEID, :AT]) # choose a step method step = method == :arc ? arcstep : tanstep # initialize drillholes drillholes = [] # process each drillhole separately for hole in groupby(table, :HOLEID) # sort intervals by depth dh = sort(hole, :AT) # view rows from survey table survey = view(dh, dh.SOURCE .== :SURVEY, :) # cannot interpolate a single row size(survey, 1) > 1 || continue # use step method to calculate coordinates on survey at, azm, dip = survey.AT, survey.AZM, survey.DIP x, y, z = survey.X, survey.Y, survey.Z @inbounds for i in 2:size(survey, 1) # compute increments dx, dy, dz az1, dp1 = azm[i - 1], dip[i - 1] az2, dp2 = azm[i], dip[i] d12 = at[i] - at[i - 1] dx, dy, dz = step(az1, dp1, az2, dp2, d12) # add increments to x, y, z x[i] = x[i - 1] + dx y[i] = y[i - 1] + dy z[i] = z[i - 1] + dz end # interpolate coordinates linearly on intervals interpolate!(dh, :AT, :X) interpolate!(dh, :AT, :Y) interpolate!(dh, :AT, :Z) push!(drillholes, dh) end # concatenate drillhole trajectories result = reduce(vcat, drillholes) # drop missing type from complete columns dropmissing!(result, [:X, :Y, :Z]) end # ------------- # STEP METHODS # ------------- # assumes positive dip points upwards function arcstep(az1, dp1, az2, dp2, d12) dp1, dp2 = (90.0u"°" - dp1), (90.0u"°" - dp2) sindp1, cosdp1 = sincos(dp1) sindp2, cosdp2 = sincos(dp2) sinaz1, cosaz1 = sincos(az1) sinaz2, cosaz2 = sincos(az2) DL = acos(cos(dp2 - dp1) - sindp1 * sindp2 * (1 - cos(az2 - az1))) RF = DL ≈ 0.0 ? 1.0 : 2 * tan(DL / 2) / DL dx = 0.5 * d12 * (sindp1 * sinaz1 + sindp2 * sinaz2) * RF dy = 0.5 * d12 * (sindp1 * cosaz1 + sindp2 * cosaz2) * RF dz = 0.5 * d12 * (cosdp1 + cosdp2) * RF dx, dy, dz end # assumes positive dip points upwards function tanstep(az1, dp1, az2, dp2, d12) dp1 = (90.0u"°" - dp1) sindp1, cosdp1 = sincos(dp1) sinaz1, cosaz1 = sincos(az1) dx = d12 * sindp1 * sinaz1 dy = d12 * sindp1 * cosaz1 dz = d12 * cosdp1 dx, dy, dz end
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
code
6555
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ """ MiningTable A table from the mining industry (e.g. survey, collar, interval). """ abstract type MiningTable end """ required(table) Return the required columns of mining `table`. """ function required end """ selection(table) Return the subtable of mining `table` with required columns. """ selection(t::MiningTable) = t.table |> Select(required(t)) # ----------------- # TABLES INTERFACE # ----------------- Tables.istable(::Type{<:MiningTable}) = true Tables.rowaccess(::Type{<:MiningTable}) = true Tables.columnaccess(::Type{<:MiningTable}) = true Tables.rows(t::MiningTable) = Tables.rows(selection(t)) Tables.columns(t::MiningTable) = Tables.columns(selection(t)) Tables.columnnames(t::MiningTable) = Tables.columnnames(selection(t)) # ----------- # IO METHODS # ----------- Base.show(io::IO, mime::MIME"text/plain", t::MiningTable) = _show(io, mime, t) Base.show(io::IO, mime::MIME"text/html", t::MiningTable) = _show(io, mime, t) _show(io, mime, t) = show(io, mime, selection(t)) # ---------------- # IMPLEMENTATIONS # ---------------- """ Collar(table; [holeid], [x], [y], [z]) The collar `table` stores the `x`, `y`, `z` coordinates (usually in meters) of the head of the drill holes with specified `holeid`. Common column names are searched in the `table` when keyword arguments are ommitted. ## Examples ```julia Collar(table, holeid="BHID", x="EASTING", y="NORTHING") Collar(table, x="XCOLLAR", y="YCOLLAR", z="ZCOLLAR") ``` See also [`Survey`](@ref), [`Interval`](@ref). """ struct Collar{𝒯} <: MiningTable table::𝒯 holeid::Symbol x::Symbol y::Symbol z::Symbol function Collar{𝒯}(table, holeid, x, y, z) where {𝒯} assertspec(table, [holeid, x, y, z]) assertreal(table, [x, y, z]) new(table, holeid, x, y, z) end end Collar(table; holeid=defaultid(table), x=defaultx(table), y=defaulty(table), z=defaultz(table)) = Collar{typeof(table)}(table, Symbol(holeid), Symbol(x), Symbol(y), Symbol(z)) required(table::Collar) = (table.holeid, table.x, table.y, table.z) """ Survey(table; [holeid], [at], [azm], [dip]) The survey `table` stores the `azm` and `dip` angles (usually in degrees) `at` each depth (usually in meters) along drill holes with specified `holeid`. Common column names are searched in the `table` when keyword arguments are ommitted. ## Examples ```julia Survey(table, holeid="BHID", at="DEPTH") Survey(table, azm="AZIMUTH") ``` See also [`Collar`](@ref), [`Interval`](@ref). """ struct Survey{𝒯} <: MiningTable table::𝒯 holeid::Symbol at::Symbol azm::Symbol dip::Symbol function Survey{𝒯}(table, holeid, at, azm, dip) where {𝒯} assertspec(table, [holeid, at, azm, dip]) assertreal(table, [at, azm, dip]) new(table, holeid, at, azm, dip) end end Survey(table; holeid=defaultid(table), at=defaultat(table), azm=defaultazm(table), dip=defaultdip(table)) = Survey{typeof(table)}(table, Symbol(holeid), Symbol(at), Symbol(azm), Symbol(dip)) required(table::Survey) = (table.holeid, table.at, table.azm, table.dip) """ Interval(table; [holeid], [from], [to]) The interval `table` stores the interval `from` a given depth `to` another greater depth (usually in meters), along drill holes with specified `holeid`. Besides the intervals, the `table` stores measurements of variables such as grades, mineralization domains, geological interpretations, etc. Common column names are searched in the `table` when keyword arguments are ommitted. ## Examples ```julia Interval(table, holeid="BHID", from="START", to="FINISH") Interval(table, from="BEGIN", to="END") ``` See also [`Collar`](@ref), [`Survey`](@ref). """ struct Interval{𝒯} <: MiningTable table::𝒯 holeid::Symbol from::Symbol to::Symbol function Interval{𝒯}(table, holeid, from, to) where {𝒯} assertspec(table, [holeid, from, to]) assertreal(table, [from, to]) new(table, holeid, from, to) end end Interval(table; holeid=defaultid(table), from=defaultfrom(table), to=defaultto(table)) = Interval{typeof(table)}(table, Symbol(holeid), Symbol(from), Symbol(to)) required(table::Interval) = (table.holeid, table.from, table.to) function selection(t::Interval) all = Tables.columnnames(t.table) req = collect(required(t)) not = setdiff(all, req) t.table |> Select([req; not]) end # --------- # DEFAULTS # --------- # helper function to find default column names # from a list of candidate names function default(table, names, kwarg) cols = Tables.columns(table) available = Tables.columnnames(cols) augmented = augment(names) for name in augmented if name ∈ available return name end end ag = join(augmented, ", ", " and ") av = join(available, ", ", " and ") throw(ArgumentError("""\n None of the column names $ag was found in table. Please specify $kwarg=... explicitly. Available names: $av. """)) end defaultid(table) = default(table, [:holeid, :bhid], :holeid) defaultx(table) = default(table, [:x, :xcollar, :easting], :x) defaulty(table) = default(table, [:y, :ycollar, :northing], :y) defaultz(table) = default(table, [:z, :zcollar, :elevation], :z) defaultazm(table) = default(table, [:azimuth, :azm, :brg], :azm) defaultdip(table) = default(table, [:dip], :dip) defaultat(table) = default(table, [:at, :depth], :at) defaultfrom(table) = default(table, [:from], :from) defaultto(table) = default(table, [:to], :to) function augment(names) snames = string.(names) anames = [snames; uppercasefirst.(snames); uppercase.(snames)] Symbol.(unique(anames)) end # ----------- # ASSERTIONS # ----------- function assertspec(table, names) cols = Tables.columns(table) avail = Tables.columnnames(cols) if !(names ⊆ avail) wrong = join(setdiff(names, avail), ", ", " and ") throw(ArgumentError("None of the names $wrong was found in the table.")) end end function assertreal(table, names) cols = Tables.columns(table) for name in names x = Tables.getcolumn(cols, name) T = eltype(x) if !(T <: Union{Real,Missing}) throw(ArgumentError("""\n Column $name should contain real values, but it currently has values of type $T. Please fix the type before trying to load the data into the mining table. """)) end end end
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
code
366
# ------------------------------------------------------------------ # Licensed under the MIT License. See LICENSE in the project root. # ------------------------------------------------------------------ const Len{T} = Quantity{T,u"𝐋"} const Deg{T} = Quantity{T,NoDims,typeof(u"°")} aslen(x, u) = x * u aslen(x::Len, _) = x asdeg(x) = x * u"°" asdeg(x::Deg) = x
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
code
7485
using DrillHoles using DataFrames using Unitful using Meshes using Test @testset "DrillHoles.jl" begin collar = Collar(DataFrame(HOLEID=1:2, X=1:2, Y=1:2, Z=1:2)) survey = Survey(DataFrame(HOLEID=[1, 1, 2, 2], AT=[0, 5, 0, 5], AZM=[0, 1, 20, 21], DIP=[89, 88, 77, 76])) assays = Interval(DataFrame(HOLEID=[1, 1, 2], FROM=[1, 3.5, 0], TO=[3.5, 8, 7], A=[1, 2, 3])) lithos = Interval(DataFrame(HOLEID=[1, 2, 2], FROM=[0, 0, 4.4], TO=[8, 4.4, 8], L=["A", "B", "C"])) dh = desurvey(collar, survey, [assays, lithos], geom=:none) @test dh.HOLEID == [1, 1, 1, 2, 2, 2] @test dh.FROM ≈ [0.0, 1.0, 3.5, 0.0, 4.4, 7.0] * u"m" @test dh.TO ≈ [1.0, 3.5, 8.0, 4.4, 7.0, 8.0] * u"m" @test dh.AT ≈ [0.5, 2.25, 5.75, 2.2, 5.7, 7.5] * u"m" @test dh.AZM ≈ [0.1, 0.45, 1.15, 20.44, 21.14, 21.5] * u"°" @test dh.DIP ≈ [88.9, 88.55, 87.85, 76.56, 75.86, 75.5] * u"°" @test isapprox( dh.X, [ 1.000152273918042, 1.0006852326311886, 1.001751150057482, 2.180003148116409, 2.466371792847059, 2.6136470958513938 ] * u"m", atol=1e-5u"m" ) @test isapprox( dh.Y, [ 1.0130869793585429, 1.058891407113443, 1.1505002626232426, 2.4809751054874134, 3.2461627733082983, 3.6396878596161817 ] * u"m", atol=1e-5u"m" ) @test isapprox( dh.Z, [ 0.5001776737812189, -1.2492004679845148, -4.747956751515982, -0.1391896286156471, -3.5424458559587215, -5.292691915735159 ] * u"m", atol=1e-5u"m" ) @test isequal(dh.A, [missing, 1, 2, 3, 3, missing]) @test isequal(dh.L, ["A", "A", "A", "B", "C", "C"]) # changing step method only changes coordinates X, Y, Z dh2 = desurvey(collar, survey, [assays, lithos], step=:tan, geom=:none) @test isequal(dh[!, Not([:X, :Y, :Z])], dh2[!, Not([:X, :Y, :Z])]) @test isapprox( dh2.X, [1.0, 1.0, 1.0, 2.169263142065488, 2.4385454135333093, 2.5770334388596177] * u"m", atol=1e-5u"m" ) @test isapprox( dh2.Y, [ 1.0087262032186417, 1.039267914483888, 1.10035133701438, 2.4650466607708674, 3.204893621088157, 3.5853863435370488 ] * u"m", atol=1e-5u"m" ) @test isapprox( dh2.Z, [ 0.5000761524218044, -1.2496573141018803, -4.74912424714925, -0.1436141425275177, -3.553909369275841, -5.307775485889264 ] * u"m", atol=1e-5u"m" ) # input dip option dh = desurvey(collar, survey, [assays, lithos], indip=:down, geom=:none) @test dh.DIP ≈ [88.9, 88.55, 87.85, 76.56, 75.86, 75.5] * u"°" dh = desurvey(collar, survey, [assays, lithos], indip=:up, geom=:none) @test dh.DIP ≈ [-88.9, -88.55, -87.85, -76.56, -75.86, -75.5] * u"°" # output dip option dh = desurvey(collar, survey, [assays, lithos], outdip=:down, geom=:none) @test dh.DIP ≈ [88.9, 88.55, 87.85, 76.56, 75.86, 75.5] * u"°" dh = desurvey(collar, survey, [assays, lithos], outdip=:up, geom=:none) @test dh.DIP ≈ [-88.9, -88.55, -87.85, -76.56, -75.86, -75.5] * u"°" # input unit option dh = desurvey(collar, survey, [assays, lithos], inunit=u"ft", geom=:none) @test unit(eltype(dh.FROM)) == u"ft" @test unit(eltype(dh.TO)) == u"ft" @test unit(eltype(dh.AT)) == u"ft" @test unit(eltype(dh.X)) == u"ft" @test unit(eltype(dh.Y)) == u"ft" @test unit(eltype(dh.Z)) == u"ft" # output unit option dh = desurvey(collar, survey, [assays, lithos], inunit=u"ft", outunit=u"m", geom=:none) @test unit(eltype(dh.FROM)) == u"m" @test unit(eltype(dh.TO)) == u"m" @test unit(eltype(dh.AT)) == u"m" @test unit(eltype(dh.X)) == u"m" @test unit(eltype(dh.Y)) == u"m" @test unit(eltype(dh.Z)) == u"m" # len option dh1 = desurvey(collar, survey, [assays, lithos], len=1.0, geom=:none) dh2 = desurvey(collar, survey, [assays, lithos], len=1.0u"m", geom=:none) @test isequal(dh1, dh2) # radius option dh1 = desurvey(collar, survey, [assays, lithos], radius=1.0, geom=:none) dh2 = desurvey(collar, survey, [assays, lithos], radius=1.0u"m", geom=:none) @test isequal(dh1, dh2) # geom option dh = desurvey(collar, survey, [assays, lithos], geom=:cylinder) @test eltype(dh.geometry) <: Cylinder # point geometries by default dh = desurvey(collar, survey, [assays, lithos]) @test eltype(dh.geometry) <: Point # guess column names collar = Collar(DataFrame(holeid=1:2, XCOLLAR=1:2, Y=1:2, z=1:2)) @test collar.holeid == :holeid @test collar.x == :XCOLLAR @test collar.y == :Y @test collar.z == :z survey = Survey(DataFrame(HOLEID=[1, 1, 2, 2], at=[0, 5, 0, 5], BRG=[0, 1, 20, 21], DIP=[89, 88, 77, 76])) @test survey.holeid == :HOLEID @test survey.at == :at @test survey.azm == :BRG @test survey.dip == :DIP assays = Interval(DataFrame(holeid=[1, 1, 2], FROM=[1, 3.5, 0], to=[3.5, 8, 7], A=[1, 2, 3])) @test assays.holeid == :holeid @test assays.from == :FROM @test assays.to == :to # result has standard column names dh = desurvey(collar, survey, [assays], geom=:none) @test propertynames(dh) == [:HOLEID, :FROM, :TO, :AT, :AZM, :DIP, :X, :Y, :Z, :A] # custom column names cdf = DataFrame(HoleId=1:2, XCollar=1:2, YCollar=1:2, ZCollar=1:2) collar = Collar(cdf, holeid=:HoleId, x="XCollar", y=:YCollar, z="ZCollar") @test collar.holeid == :HoleId @test collar.x == :XCollar @test collar.y == :YCollar @test collar.z == :ZCollar sdf = DataFrame(HoleId=[1, 1, 2, 2], At=[0, 5, 0, 5], Azimuth=[0, 1, 20, 21], Dip=[89, 88, 77, 76]) survey = Survey(sdf, holeid=:HoleId, at="At", azm=:Azimuth, dip="Dip") @test survey.holeid == :HoleId @test survey.at == :At @test survey.azm == :Azimuth @test survey.dip == :Dip idf = DataFrame(HoleId=[1, 1, 2], From=[1, 3.5, 0], To=[3.5, 8, 7]) assays = Interval(idf, holeid=:HoleId, from="From", to=:To) @test assays.holeid == :HoleId @test assays.from == :From @test assays.to == :To # Tables.jl interface collar = Collar(DataFrame(holeid=1:2, XCOLLAR=1:2, Y=1:2, z=1:2, w=1:2)) @test Tables.istable(collar) @test Tables.rowaccess(collar) == true @test Tables.columnaccess(collar) == true @test Tables.columnnames(collar) == [:holeid, :XCOLLAR, :Y, :z] result = DataFrame(holeid=1:2, XCOLLAR=1:2, Y=1:2, z=1:2) @test DataFrame(Tables.rows(collar)) == result @test DataFrame(Tables.columns(collar)) == result @test DataFrame(collar) == result survey = Survey(DataFrame(HOLEID=[1, 1, 2, 2], at=[0, 5, 0, 5], BRG=[0, 1, 20, 21], DIP=[89, 88, 77, 76], BAR=[1, 2, 3, 4])) @test Tables.istable(survey) @test Tables.rowaccess(survey) == true @test Tables.columnaccess(survey) == true @test Tables.columnnames(survey) == [:HOLEID, :at, :BRG, :DIP] result = DataFrame(HOLEID=[1, 1, 2, 2], at=[0, 5, 0, 5], BRG=[0, 1, 20, 21], DIP=[89, 88, 77, 76]) @test DataFrame(Tables.rows(survey)) == result @test DataFrame(Tables.columns(survey)) == result @test DataFrame(survey) == result assays = Interval(DataFrame(foo=[1, 2, 3], holeid=[1, 1, 2], FROM=[1, 3.5, 0], to=[3.5, 8, 7], A=[1, 2, 3])) @test Tables.istable(assays) @test Tables.rowaccess(assays) == true @test Tables.columnaccess(assays) == true @test Tables.columnnames(assays) == [:holeid, :FROM, :to, :foo, :A] result = DataFrame(holeid=[1, 1, 2], FROM=[1, 3.5, 0], to=[3.5, 8, 7], foo=[1, 2, 3], A=[1, 2, 3]) @test DataFrame(Tables.rows(assays)) == result @test DataFrame(Tables.columns(assays)) == result @test DataFrame(assays) == result end
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
1.4.9
acbeb83e1710ce103d505fae4431e970a2825791
docs
2599
# DrillHoles.jl [![Build Status][build-img]][build-url] [![Coverage][codecov-img]][codecov-url] Desurvey and composite drill hole tables from the mining industry. ## Installation Get the latest stable release with Julia's package manager: ``` ] add DrillHoles ``` ## Usage Given a *collar table*, a *survey table* and at least one *interval table* (such as assay and lithology), the function `desurvey` can be used for desurveying and compositing. Examples of these tables are shown bellow: ![tables](docs/example.png) - *Collar table*: stores the coordinates (X, Y, Z) of each drill hole with given ID (HOLEID). - *Survey table*: stores the arc length (AT) and azimuth (AZM) and dip (DIP) angles along the drill hole trajectory. Together with the collar table it fully specifies the trajectory. - *Interval table*: stores the actual measurements taken on cylinders of rock defined by an interval of arc lenghts (FROM and TO). Usually, there are multiple interval tables with different types of measurements. Assuming that each of these tables was loaded into a [Tables.jl](https://github.com/JuliaData/Tables.jl) table (e.g. CSV.File, DataFrame), we can use the following constructors to automatically detect the columns: ```julia using DrillHoles using CSV collar = Collar(CSV.File("collar.csv")) survey = Survey(CSV.File("survey.csv")) assay = Interval(CSV.File("assay.csv")) litho = Interval(CSV.File("litho.csv")) ``` If the columns of the tables follow an exotic naming convention, users can manually specify the names with keyword arguments: ```julia # manually specify column with hole ID Collar(CSV.File("collar.csv"), holeid = "MyHoleID") ``` Please check the documentation of `Collar`, `Survey` and `Interval` for more details. By default, the `desurvey` function returns a `GeoTable` compatible with the [GeoStats.jl](https://github.com/JuliaEarth/GeoStats.jl) framework. It supports different dip angle conventions from open pit and underground mining as well as different stepping methods: ```julia samples = desurvey(collar, survey, [assay, litho]) ``` The option `geom` can be used to control the output format, and the option `len` can be used for compositing. Please check the documentation for more details. [build-img]: https://img.shields.io/github/actions/workflow/status/JuliaEarth/DrillHoles.jl/CI.yml?branch=master&style=flat-square [build-url]: https://github.com/JuliaEarth/DrillHoles.jl/actions [codecov-img]: https://codecov.io/gh/JuliaEarth/DrillHoles.jl/branch/master/graph/badge.svg [codecov-url]: https://codecov.io/gh/JuliaEarth/DrillHoles.jl
DrillHoles
https://github.com/JuliaEarth/DrillHoles.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
code
998
using GrayCoding using Documenter DocMeta.setdocmeta!(GrayCoding, :DocTestSetup, :(using GrayCoding); recursive=true) push!(LOAD_PATH,"../src/") makedocs(; modules=[GrayCoding], authors="Nivedita Rethnakar et al.", repo="https://github.com/nivupai/GrayCoding.jl/blob/{commit}{path}#{line}", sitename="GrayCoding.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://nivupai.github.io/GrayCoding.jl", assets=String[], ), pages=[ "Home" => "index.md", "Algebra of Gray Codes" => "algebra.md", "Applications" => [ "List of Applications" => "applications.md", "Quantum Algorithms and Circuits" => "quantum.md", "QAM modulation in WiFi communications" => "wireless.md", "DNA Coding" => "dna.md" ], "Tutorials" => "tutorials.md", ], ) deploydocs(; repo="github.com/nivupai/GrayCoding.jl", devbranch="main", )
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
code
19344
module GrayCoding using LinearAlgebra using Gadfly # Write your package code here. """ Generate Encoding and Decoding matrices for Gray Codes of alphabet. ```julia-repl julia> G,B,g,b=GrayMatrix(4, 2); julia> G 4×4 Matrix{Int64}: 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 julia> B 4×4 Matrix{Int64}: 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 julia> g 4×16 Matrix{Int64}: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 julia> b 4×16 Matrix{Int64}: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 ``` """ function GrayMatrix(n::Int64=3, q::Int64=2) M = q^n G = Array(Bidiagonal(ones(1, n)[:], (q - 1) * ones(1, n - 1)[:], :L)) B = mod.(inv(G), q) G = convert.(Int64, G) B = convert.(Int64, B) x = 0:M-1 a = digits.(x, base = q, pad = n) # left-lsb # a=digits.(x,base=2,pad=num_bits)|> reverse # left-msb b = hcat(a...) b = reverse(b, dims = 1) g = Int.(mod.(G * b, q)) return B, G, b, g end """ Plots a matrix into a 2D with labels. Optional arguments including colors ```julia-repl julia> using Random; julia> A= rand(0:9,10,10); julia> matrixplot(A) ``` """ function matrixplot(A;kwargs...) a,b=size(A) X = transpose(repeat(1:b, 1, a))[:] Y = repeat(a:-1:1, b)[:] Gadfly.plot(x = X, y = Y, Geom.rectbin(), color = A,alpha=[0.5], Coord.cartesian(fixed = true), Theme(bar_spacing = 0.1cm), Geom.label(position = :centered), label = string.(A)[:], Theme(key_position = :none, grid_line_width = 0pt, panel_stroke = nothing), Guide.xticks(ticks = nothing, label = false), Guide.yticks(ticks = nothing, label = false), Guide.xlabel(nothing), Guide.ylabel(nothing);kwargs...) end """ Plot the DNA codon matrix ```julia-repl julia> dnamatrix() ``` """ function dnamatrix() U = [(x,y) for x ∈ 0:7, y ∈ 0:7] B,G,b,g=GrayMatrix(3,2) V = [string(g[:,y+1]...)string(g[:,x+1]...) for x ∈ 0:7, y ∈ 0:7] revV = [string(g[:,y+1]...)string(g[:,x+1]...) for x ∈ 0:7, y ∈ 0:7] Vx = [string(g[:,y+1]...) for x ∈ 0:7, y ∈ 0:7] Vy = [string(g[:,x+1]...) for x ∈ 0:7, y ∈ 0:7] VM=[(Vx[i,j][1]Vy[i,j][1]Vx[i,j][2]Vy[i,j][2]Vx[i,j][3]Vy[i,j][3]) for i ∈ 1:8, j ∈ 1:8] DNA=parse.(Int,VM,base=2) # DM0=[replace(Vx[i,j][1]Vy[i,j][1],"00"=>"C","01"=>"A","10"=>"U","11"=>"G")replace(Vx[i,j][2]Vy[i,j][2],"00"=>"C","01"=>"A","10"=>"U","11"=>"G")replace(Vx[i,j][3]Vy[i,j][3],"00"=>"C","01"=>"A","10"=>"U","11"=>"G") for i ∈ 1:8, j ∈ 1:8] DM=[replace(Vx[i,j][1]Vy[i,j][1],"00"=>"C","01"=>"A","10"=>"U","11"=>"G")replace(Vx[i,j][2]Vy[i,j][2],"00"=>"C","01"=>"A","10"=>"U","11"=>"G")replace(Vx[i,j][3]Vy[i,j][3],"00"=>"C","01"=>"A","10"=>"U","11"=>"G") for j ∈ 1:8, i ∈ 1:8] AA=copy(DM) # Amino Acid replace!(AA,"CUU"=>"Leucine","CUC"=>"Leucine","CUA"=>"Leucine","CUG"=>"Leucine","UUA"=>"Leucine","UUG"=>"Leucine","UUU"=>"Phenylalanine","UUC"=>"Phenylalanine","AUC"=>"Isoleucine","AUA"=>"Isoleucine","AUU"=>"Isoleucine","AUG"=>"Methionine","GUA"=>"Valine","GUC"=>"Valine","GUU"=>"Valine","GUG"=>"START","UCA"=>"Serine","UCC"=>"Serine","UCU"=>"Serine","UCG"=>"Serine","CCC"=>"Proline","CCA"=>"Proline","CCU"=>"Proline","CCG"=>"Proline","ACU"=>"Threonine","ACA"=>"Threonine","ACC"=>"Threonine","ACG"=>"Threonine","GCC"=>"Alanine","GCU"=>"Alanine","GCA"=>"Alanine","GCG"=>"Alanine","GGU"=>"Glycine","GGA"=>"Glycine","GGC"=>"Glycine","GGG"=>"Glycine","CGA"=>"Arginine","CGC"=>"Arginine","CGU"=>"Arginine","CGG"=>"Arginine","GAU"=>"Aspartic acid","GAC"=>"Aspartic acid","GAA"=>"Glutamic acid","GAG"=>"Glutamic acid","AAU"=>"Asparagine","AAC"=>"Asparagine","UGU"=>"Cysteine","UGC"=>"Cysteine","UGG"=>"Tryptophan","CAA"=>"Glutamine","CAG"=>"Glutamine","UAA"=>"STOP","UAG"=>"STOP","UAU"=>"Tyrosine","UAC"=>"Tyrosine","AAA"=>"Lysine","AAG"=>"Lysine","CAC"=>"Histidine","CAU"=>"Histidine","AGG"=>"Arginine","AGA"=>"Arginine","AGU"=>"Serine","AGC"=>"Serine","UGA"=>"STOP" ) return DM,VM,AA,Vx,Vy,DNA end """ Decimal to binary conversion ```julia-repl julia> dec2bin(10,7) ``` """ function dec2bin(x,n) a=digits.(x,base=2,pad=n) # left-lsb # a=digits.(x,base=2,pad=num_bits)|> reverse # left-msb b=hcat(a...); return b end """ Binary to decimal number conversion. Input can be - binary strings, - binary digits or - a vector of binary string or digits ```julia-repl julia> bin2dec([011,"0111",0111]) ``` """ bin2dec(u) =[parse(Int,string(u[:,ii]...),base=2) for ii in 1:size(u,2)] bin2dec(x::AbstractVector) = parse(Int,string(x...),base=2) bin2dec(x::Int64) = parse(Int,string(x),base=2) bin2dec(x::AbstractString) = parse(Int,x,base=2) """ Pulse amplitude modulation (PAM) mapping. This is a type of digital modulation mapping used in Communication systems. """ function pam_encode(x,M) # M --> M-QAM n=Int(ceil(log2(M)/2)) B,G,b,g=find_gray_matrix(n) u=digits(x,base=2,pad=n) |> reverse v=Int.(mod.(G*u,2)) w=bin2dec(v) y=-sqrt(M)+1+2*w return y end """ Generate Gray vectors """ function gen_gray(m) x=[0 1] for i in 2:m rev_x=reverse(x) x=[x rev_x.+2^(i-1)] end return x[:] end """ Decimal to binary conversion """ function dec2bin(x,n) a=digits.(x,base=2,pad=n) # left-lsb # a=digits.(x,base=2,pad=num_bits)|> reverse # left-msb b=hcat(a...); return b end """ Recursive function to illustrate the reflection+shift property of Gray mapping. ### Arguents * n - The iteration number `n ≥ 0` * C - The decimal sequence of the gray mapped bits * R - The reflected sequence (without shifting) ```julia-repl julia> C,R = gray_recursion(4) ``` """ function gray_recursion(n::Int) C= n < 1 ? [0] : vcat(gray_recursion(n - 1)[1:end], gray_recursion(n - 1)[end:-1:1] .+ Int(exp2(n-1)) ) return C end """ Reflected code. ```julia-repl julia>reflect_code(3) [0,1,3,2,2,3,1,0] ``` """ function reflect_code(n) n<1 ? [0] : vcat(gray_recursion(n-1),reverse(gray_recursion(n-1))) end """ Recursive construction of binary Gray code digits. Gray code ``g[n]`` can be recursively constructed as follows. Start with `` g[1] = (0,1) = (g_{1},g_{2})`` ```math g[n+1] = 0g_{1},...,0g_{N−1},0g_{N},1g_{N},1g_{N−1},...,1g_{1}. ``` ### Examples ```julia-repl julia> gray(3) 3×8 Matrix{Int64}: 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 ``` """ function gray(n) n < 2 ? [0 1] : hcat(vcat(0,gray(n-1)),vcat(1,reverse(gray(n-1)))) end """ Find the Givens embedding ``{}^{i}G_{j,k}(A)`` """ function G(A,i,j,k) n = size(A,2) G = Matrix(1.0I(n).+0im) α = A[k,i] β = A[j,i] Γ0 = [ α' β' -β α ] N = norm(Γ0[1,:],2); Γ = Γ0./N # Embed the Givens matrix Γ in G G[k,k] = Γ[1,1] G[k,j] = Γ[1,2] G[j,k] = Γ[2,1] G[j,j] = Γ[2,2] return G,G*A end """ Find the matrix which has a Givens matrix embedding ``{}^{i}G_{j,k}(A)``. For a given matrix ``A``, a generic rotation matrix ``{}^{i}G_{j,k}(A)`` is generated. The matrix ``{}^{i}G_{j,k}(A)`` is such that it helps to selectively nullifies an element of matrix ``V={}^{i}G_{j,k}(A) A``. That is, ``V_{j,i}=0`` where ``V={}^{i}G_{j,k}(A) A``. The fllowing Givens rotation matrix ``{}^{i}\\Gamma_{j,k}`` ```math \\begin{aligned} {}^{i}\\Gamma_{j,k} &= \\begin{pmatrix} {}^{i}g_{k,k} & {}^{i}g_{k,j} \\\\ {}^{i}g_{j,k} & {}^{i}g_{j,j}\\end{pmatrix} \\\\ &=\\frac{1}{\\sqrt{\\lvert a_{j,i} \\rvert^{2}+ \\lvert a_{k,i} \\rvert^{2}}}\\begin{pmatrix} a_{k,i}^{*} & a_{j,i}^{*} \\\\ -a_{j,i} & {}^{i}a_{k,i}\\end{pmatrix}. \\end{aligned} ``` is embedded in an identity matrix ``I(n)`` to produce, ```math {}^{i}G_{j,k}(A) = \\begin{pmatrix} 1 & 0 & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & 0 \\\\ 0 & 1 & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\vdots \\\\ \\vdots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\vdots \\\\ 0 & 0 & \\ddots & {\\color{red} {}^{i}g_{k,k}} & \\ddots & {\\color{red} {}^{i}g_{k,j}} & \\ddots & \\ddots & \\vdots \\\\ \\vdots & \\ddots & \\ddots & \\ddots & \\ddots \\ddots & & \\ddots & \\ddots & \\vdots \\\\ 0 & 0 & \\ddots & {\\color{red} {}^{i}g_{j,k}} & \\ddots & {\\color{red} {}^{i}g_{j,j}} & \\ddots & \\ddots & \\vdots \\\\ \\vdots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\vdots \\\\ 0 & 0 & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & 1 & 0 \\\\ 0 & 0 & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & 1 \\end{pmatrix}. ``` Essentially, ``{}^{i}G_{j,k}(A)`` is a modified identity matrix such that four non trivial elements are taken from the givens rotation matrix ``{}^{i}\\Gamma_{j,k}``. """ function GivensG(A,i,j,k) n = size(A,2) G = Matrix(1.0I(n).+0im) α = A[k,i] β = A[j,i] Γ0 = [ α' β' -β α ] N = norm(Γ0[1,:],2); Γ = Γ0./N # Embed the Givens matrix Γ in G G[k,k] = Γ[1,1] G[k,j] = Γ[1,2] G[j,k] = Γ[2,1] G[j,j] = Γ[2,2] return G,G*A end """ Given unitary matrux ``U(n) \\in S(2^n)``, it uses a a repeated Givens rotations to get a to level matrix as follows. ```math \\prod_{j=1}^{n-2}{ {}^{1}G_{n-j,n-j-1} U(n)} = \\begin{pmatrix} 1 & 0 \\\\ 0 & U(n-1)\\end{pmatrix} ``` ### Parameters * U -- Input. Unitary matrix of size ``2^n`` * V -- Output unitary matrix in two level form `[1 0;0 U']` form where `U'` is a unitary matrix of size ``2^{n-1}``. * GG -- The ``n-2`` sequence of Given matrices (in augmented form) ``[{}^{1}G_{n}\\lvert{}^{1}G_{n-1}\\lvert\\ldots\\lvert{}^{1}G_{2}]`` ### Examples ```julia-repl julia> level2unitary(U) ``` """ function level2unitary(U) n=size(U,2) V=I(n)*U; GG=Matrix(I(n)) for i=1:1 for j=0:n-1-i G0,V=GivensG(V,i,n-j,n-j-1) GG=[GG;G0] end end return GG[n+1:end,:],V end """ Decomposition of aribtrary unitary matrix ``U(n) \\in S(2^n)``, as a cascade of two level Givens matrices. Using the following property, ```math \\prod_{j=0}^{n-1}{ {}^{1}G_{n-j,n-j-1} U(n)} = \\begin{pmatrix} 1 & 0 \\\\ 0 & U(n-1)\\end{pmatrix} ``` ```math \\prod_{i=1}^{n-1} \\prod_{j=0}^{n-1-i}{ {}^{i}G_{n-j,n-j-1} U(n)} = \\begin{pmatrix} 1 & \\ldots & 0 \\\\ \\vdots & \\ddots & \\vdots \\\\ 0 & \\ldots & \\det(U)\\end{pmatrix}. ``` There are ``2^{n-1}(2^{n}-1)`` number of unitary two-level matrices (each of them formed by embedding a Givens rotaton matrix into indentity matrix). Note that ``\\sum_{i=1}^{2^{n}}{N-i}=2^{n-1}(2^{n}-1)``. ### Parameters * U -- Input. Unitary matrix of size ``2^n`` * V -- Output unitary matrix in two level form `[1 0;0 U']` form where `U'` is a unitary matrix of size ``2^{n-1}``. * Gm -- The ``(n-2)(n-1)`` sequence of Given matrices (in augmented form) ``[{}^{1}G_{n}\\lvert{}^{1}G_{n-1}\\lvert\\ldots\\lvert{}^{1}G_{2}\\lvert {}^{2}G_{n}\\lvert{}^{2}G_{n-1}\\lvert\\ldots\\lvert{}^{2}G_{3}\\lvert\\ldots\\lvert{}^{n-2}G_{n}\\lvert{}^{n-2}G_{n-1}\\lvert{}^{n-1}G_{n}]`` * Gs -- The ``(n-2)(n-1)`` sequence of Given matrices (in augmented form) left to right ``[ {}^{n-1}G_{n} \\lvert {}^{n-2}G_{n-1} \\lvert {}^{n-2}G_{n} \\lvert \\ldots \\lvert {}^{2}G_{3} \\lvert \\ldots \\lvert {}^{2}G_{n-1} \\lvert {}^{2}G_{n} \\lvert{}^{1}G_{2} \\lvert \\ldots \\lvert {}^{1}G_{n-1} \\lvert {}^{1}G_{n} ]`` ### Examples ```julia-repl julia> using LinearAlgebra julia> N=4;A=rand(N,N)+im*rand(N,N);S=svd(A);U=S.U julia> Gn(U) ``` """ function Gn(A) n=size(A,2) V=I(n)*A; Gm=Matrix(I(n)) Gs=Matrix(I(n)) for i=1:n-1 for j = 0:n-1-i G1,V = GivensG(V,i,n-j,n-j-1) Gm = [Gm ; G1] Gs = [G1 ; Gs] end end return V,Gm[n+1:end,:],Gs[1:end-n,:] end """ For a given unitary matrix ``U``, it finds the cascaded rotation matrix ``C`` such that ``C\\times U =I``, except for the diagonal element of the ``n``th element which is ``\\det(U)``. The matrix ``C`` is obtained by the cascade of several (i.e., ``2^{n-1}(2^{n}-1)``) two level Givens rotation matrices, namely, ```math C = \\prod_{i=1}^{n-1} \\prod_{j=0}^{n-1-i}{ {}^{i}G_{n-j,n-j-1}} ``` ```math \\prod_{i=1}^{n-1} \\prod_{j=0}^{n-1-i}{ {}^{i}G_{n-j,n-j-1} U(n)} = \\begin{pmatrix} 1 & \\ldots & 0 \\\\ \\vdots & \\ddots & \\vdots \\\\ 0 & \\ldots & \\det(U)\\end{pmatrix}. ``` ### Parameters * U -- Input. Unitary matrix of size ``n`` * Ic -- Identity matix with the exception that the last diagonal entry (``n``th diagonal element) which is ``\\det(U)``. * C -- The cascaded rotation matrix ``{}^{n-1}G_{n} \\times {}^{n-2}G_{n-1} \\times {}^{n-2}G_{n} \\times \\ldots \\times {}^{2}G_{3} \\times \\ldots \\times {}^{2}G_{n-1} \\times {}^{2}G_{n} \\times {}^{1}G_{2} \\times \\ldots \\times {}^{1}G_{n-1} \\times {}^{1}G_{n} `` ### Examples ```julia-repl julia> using LinearAlgebra julia> N=4;A=rand(N,N)+im*rand(N,N);S=svd(A);U=S.U 4×4 Matrix{ComplexF64}: -0.4-0.06im 0.23-0.73im -0.03-0.14im 0.39-0.27im -0.61-0.32im 0.07+0.06im 0.32+0.02im -0.64-0.08im -0.38-0.33im -0.48+0.38im -0.07-0.4im 0.46+0.07im -0.2-0.26im -0.09-0.14im -0.7+0.47im -0.09+0.38im julia> Gc,Ic=Gcascaded(U) 4×4 Matrix{ComplexF64}: 1.0+0.0im 0.0+0.0im -0.0+0.0im 0.0-0.0im 0.0+0.0im 1.0-0.0im 0.0+0.0im -0.0-0.0im 0.0-0.0im -0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0-0.0im -0.0+0.0im 0.0-0.0im 0.4-0.9im julia> det(A) 0.4166084175706718 - 0.9090860390575042im ``` """ function Gcascaded(U) Gv=Gn(U)[3] Gc=Matrix(I(4)) m=Int(size(Gv,1)/4) for q in 0:m-1 Gc=Gc*Gv[1+q*4:4*(q+1),:] end Ic=Gc*U return Gc,Ic end """ For ``n`` bits, with the corresponding decimal sequence ``x=0,1,2,\\ldots,2^{n-1}``, find the gray ordering sequence using the bitwise `XOR` logic. Namely. ``gπ= x ⊻ \\lfloor x/2 \\rfloor = x \\oplus \\lfloor x/2 \\rfloor`` where ``⊻`` is the bitwise `XOR` operation. ```julia-repl julia> gray_ordering(3) [0,1,3,2,6,7,5,4] ``` """ function gray_ordering(n) N=2^n x=Int.(vcat(range(start=0,stop=N-1,step=1))) y = Int.(floor.(x/2)) gπ=[x[i] ⊻ y[i] for i=1:N] return gπ end """ Converts a gray mapped decimal number to simple binary mapped decimal number. This routine follows the inverse mapping of the function `gray_ordering()` ### Parameters * ``n`` The number of digits in the equivalent binary mapping * ``g`` The gray mapped decimal number * ``d`` The simple binary mapped decimal number ```julia-repl julia> G2D.(0:7,3) [0,1,3,2,7,6,4,5] ``` """ function G2D(g::Int,n) xx=gray_ordering(n) .+1 a=collect(1:2^n) p=invperm(xx) d=p[g+1] return d-1 end """ Quantum circuit decomposition. For nan arbitrary unitary matix for ``n`` qubits. Arbitrary quantum circuit abstracted by unitary matrix ``U`` decomposed by ``2^{n-1}2^{n}`` unitary two-level matrices, each of which corresponds ``{}^{i}\\Gamma_{j,k}``. The program produce the ``\\Gamma`` matrix and the coefficients ``i,j,k``. The quantum circuit of this decomposition can be visualized as a cascade (from left to right) of this matrix. """ function sequenceΓ(k::Int64) n=Int(2^k) N=Int(n*(n-1)/2) idxI=-100 idxJ=-100 m=0 for i=1:n-1 for j = n:-1:(i+1) idxI=[idxI n-i] idxJ=[idxJ j] end end dI,dJ=Int.(idxI[2:end] .+0),Int.(idxJ[2:end] .+0) gV=gray_ordering(k) gJ2 = gV[dJ .- 1] .+1 gI=gV[-dI.+0 .+ n] .+1 gJ= gV[dJ] .+1 ii=reverse(gI) jj=reverse(gJ) kk=reverse(gJ2) Γ = hcat(ii,jj,kk)' return ii,jj,kk,Γ end """ The unitary matrix ``U`` corresponding to of the 3 quibit Tiffoli quantum gate ```math U=\\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\\\ 0 & 0 & 0 & 0 & 0 & 0 & {\\color{red}0} & {\\color{red}1} \\\\ 0 & 0 & 0 & 0 & 0 & 0 & {\\color{red}1} & {\\color{red}0} \\\\ \\end{pmatrix} ``` """ function tiffoli_matrix() U=Matrix(I(8)) U[8,8]=U[7,7]=0 U[8,7]=U[7,8]=1 return U end """ Given a matrix ``A`` (usually a unitary matrix) and indices ``(i,j,k)``, find the ``\\Gamma`` Givens rotation matrix and the Givens matrix embedding ``{}^{i}G_{j,k}(A)`` matrix. For a given matrix ``A``, a generic rotation matrix ``{}^{i}G_{j,k}(A)`` is generated. The matrix ``{}^{i}G_{j,k}(A)`` is such that it helps to selectively nullifies an element of matrix ``V={}^{i}G_{j,k}(A) A``. That is, ``V_{j,i}=0`` where ``V={}^{i}G_{j,k}(A) A``. The fllowing Givens rotation matrix ``{}^{i}\\Gamma_{j,k}`` ```math \\begin{aligned} {}^{i}\\Gamma_{j,k} &= \\begin{pmatrix} {}^{i}g_{k,k} & {}^{i}g_{k,j} \\\\ {}^{i}g_{j,k} & {}^{i}g_{j,j}\\end{pmatrix} \\\\ &=\\frac{1}{\\sqrt{\\lvert a_{j,i} \\rvert^{2}+ \\lvert a_{k,i} \\rvert^{2}}}\\begin{pmatrix} a_{k,i}^{*} & a_{j,i}^{*} \\\\ -a_{j,i} & {}^{i}a_{k,i}\\end{pmatrix}. \\end{aligned} ``` is embedded in an identity matrix ``I(n)`` to produce, ```math {}^{i}G_{j,k}(A) = \\begin{pmatrix} 1 & 0 & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & 0 \\\\ 0 & 1 & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\vdots \\\\ \\vdots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\vdots \\\\ 0 & 0 & \\ddots & {\\color{red} {}^{i}g_{k,k}} & \\ddots & {\\color{red} {}^{i}g_{k,j}} & \\ddots & \\ddots & \\vdots \\\\ \\vdots & \\ddots & \\ddots & \\ddots & \\ddots \\ddots & & \\ddots & \\ddots & \\vdots \\\\ 0 & 0 & \\ddots & {\\color{red} {}^{i}g_{j,k}} & \\ddots & {\\color{red} {}^{i}g_{j,j}} & \\ddots & \\ddots & \\vdots \\\\ \\vdots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\ddots & \\vdots \\\\ 0 & 0 & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & 1 & 0 \\\\ 0 & 0 & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & \\ldots & 1 \\end{pmatrix}. ``` Essentially, ``{}^{i}G_{j,k}(A)`` is a modified identity matrix such that four non trivial elements are taken from the givens rotation matrix ``{}^{i}\\Gamma_{j,k}``. ```julia-repl julia> using LinearAlgebra julia> using GrayCoding julia>n=2;N=2^n;A=rand(N,N)+im*rand(N,N);S=svd(A);U=S.U 4×4 Matrix{ComplexF64}: -0.365903-0.405021im 0.442293-0.0769938im … 0.115307-0.288609im -0.285173-0.35669im -0.671764+0.0698449im -0.384583+0.295428im -0.196831-0.611652im -0.154487+0.0160399im 0.379159-0.121825im -0.177839-0.221435im 0.536228-0.175044im -0.338822+0.62835im julia> i,j,k=1,2,4 julia> Γ,G,GA=quantumΓ(U,i,j,k); julia> round.(quantumΓ(S.U,1,2,4)[1],digits=1) 2×2 Matrix{ComplexF64}: -0.3+0.4im -0.5+0.7im 0.5+0.7im -0.3-0.4im julia> round.(quantumΓ(S.U,1,2,4)[2],digits=1) 4×4 Matrix{ComplexF64}: 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im -0.3-0.4im 0.0+0.0im 0.5+0.7im 0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+0.0im 0.0+0.0im -0.5+0.7im 0.0+0.0im -0.3+0.4im julia> round.(quantumΓ(S.U,1,2,4)[3],digits=1) 4×4 Matrix{ComplexF64}: -0.4-0.4im 0.4-0.1im 0.6+0.1im 0.1-0.3im 0000000 0.7+0.5im -0.2-0.4im -0.3+0.2im -0.2-0.6im -0.2+0.0im -0.4-0.5im 0.4-0.1im 0.5+0.0im 0.2-0.2im -0.2-0.1im -0.1-0.8im ``` """ function quantumΓ(A,i,j,k) n = size(A,2) G = Matrix(1.0I(n).+0im) α = A[k,i] β = A[j,i] Γ0 = [ α' β' -β α ] N = norm(Γ0[1,:],2); Γ = Γ0./N # Embed the Givens matrix Γ in G G[k,k] = Γ[1,1] G[k,j] = Γ[1,2] G[j,k] = Γ[2,1] G[j,j] = Γ[2,2] return Γ,G,G*A end end
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
code
93
using GrayCoding using Test @testset "GrayCoding.jl" begin # Write your tests here. end
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
1107
# GrayCoding # Introduction Welcome to the documentation for GrayCoding! ## What is GrayCocoding? [GrayCoding](https://github.com/nivupai/GrayCoding.jl) is a formal Linear Algebraic framework for ``q``-ry Gray Code. Encoding and Decooding of Gray codes can be treated as a special case of algebraic block coding. * Encoding: ``g=G*b `` * Decoding: ``b=B*g `` ![](./docs/src/assets/fig_gray_algebra_binary.png) !!! tip This is still under active devlopment. ## Resources for getting started There are few ways to get started with GrayCoding: * Read TBD. [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://nivupai.github.io/GrayCoding.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://nivupai.github.io/GrayCoding.jl/dev) [![Build Status](https://github.com/nivupai/GrayCoding.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/nivupai/GrayCoding.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/nivupai/GrayCoding.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/nivupai/GrayCoding.jl)
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
3442
# Algebraic framework of Gray Codes The classical algorithmic procedure of encoding and decoding are as follows: ## Encoding q-ry digits ``d`` to gray digits ``g`` conversion. `` g_{i} = \begin{cases} d_{i} , & \text{if} \mod\left(\displaystyle{\sum_{j=1}^{i-1}{g_{j}}},2\right)=0 \\ q-1-d_{i} , & \text{if} \mod\left(\displaystyle \sum_{j=1}^{i-1}{g_{j}},2\right)=1 \end{cases} `` and ``g_{1} = d_{1}``. ## Decoding `` d_{i} = \begin{cases} g_{i} , & \text{if} \mod\left(\displaystyle{\sum_{j=1}^{i-1}{g_{j}}},2\right)=0 \\ q-1-g_{i} , & \text{if} \mod\left(\displaystyle \sum_{j=1}^{i-1}{g_{j}},2\right)=1 \end{cases} `` and ``d_{1} = g_{1}``. # Linear Algebraic Formulation (N.Rethnakar 2020) Example of generator matrix ``G`` for binary to gray mapping is given by, ```math G=\begin{pmatrix} 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ 1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & 1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & 1 & 1 & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & 1 & 1 & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & 1 & 1 \end{pmatrix} ``` The decoding matrix ``B=G^{-1}`` is given by, ```math B=\begin{pmatrix} 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ 1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ 1 & 1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ 1 & 1 & 1 & 1 & {\color{gray}0} & {\color{gray}0} \\ 1 & 1 & 1 & 1 & 1 & {\color{gray}0} \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} ``` ## Illustration of Binary Code ![](./assets/fig_gray_algebra_binary.png) ### Generalized ``q``-ry Gray Code ```math G=\begin{pmatrix} 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ q-1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & q-1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & q-1 & 1 & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & q-1 & 1 & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & q-1 & 1 \end{pmatrix} \equiv \begin{pmatrix} 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ -1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & -1 & 1 & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & -1 & 1 & {\color{gray}0} & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & -1 & 1 & {\color{gray}0} \\ {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & {\color{gray}0} & -1 & 1 \end{pmatrix}_{\mathbb{F}_{q}} ``` ## Gray Encoding as Differentiation Encoding matrix operation act as a forward discrete differentiation operation in ``\mathbb{F}_{q}``. ![](./assets/fig_wheel_bin2gray.png) ## Gray Decoding as Integrator ![](./assets/fig_wheel_gray2bin.png)
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
144
# Applications * Digital Modulation Schemes: * DNA Codon mapping * Quantum Circuits and Gates * Digital Electronics/Counters * Music/Puzzles
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
165
# DNA Codon mapping ## 3ry Gray Codes ## Binary equivalance ![](./assets/fig_dna_gray_map.png) ## Codong matrix mapping ![](./assets/fig_dna_codon_matrix.png)
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
1443
```@meta CurrentModule = GrayCoding ``` # GrayCoding Documentation for [GrayCoding](https://github.com/nivupai/GrayCoding.jl). # Introduction Welcome to the documentation for GrayCoding! ## What is GrayCocoding.jl? [GrayCoding](https://github.com/nivupai/GrayCoding.jl) is a formal Linear Algebraic framework for ``q``-ry Gray Code. Encoding and Decooding of Gray codes can be treated as a special case of algebraic block coding. * Encoding: ``\textbf{g}=G \textbf{b} `` * Decoding: ``\textbf{b}=B \textbf{g} `` ![](./assets/fig_gray_algebra_binary.png) !!! tip This is still under active devlopment. ## Resources for getting started There are few ways to get started with GrayCoding: ## Installation Open a Julia session and enter ```julia using Pkg; Pkg.add("GrayCoding") ``` this will download the package and all the necessary dependencies for you. Next you can import the package with ```julia using GrayCoding ``` and you are ready to go. ## Quickstart ```julia using GrayCoding ``` ## Citation If you use this package in your work, please cite it as ``` @software{nrethnakar2022GrayAlgebra, author = { Nivedita Rethnakar }, title = {GrayCoding.jl: Algebra of Gray Coding and Applications}, month = {1}, year = {2022}, doi = {10.5281/zenodo.5989996}, url = {https://github.com/nivupai/GrayCoding.jl} } ``` * Read TBD. ```@index ``` ```@autodocs Modules = [GrayCoding] ```
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
7249
# Quantum Computing Broadly stated, the term quantum computation comprieses of the following three elements: * A register or a set of registers, * A unitary matrix ``U``, as an abstract representation of the quantum algorithm, * Measurements to extract the information of interest. As a mathematial abstraction, a quantum computation is the set ``\{\mathcal{H},U,\{Mm\}\}``, where ``H = \mathbb{C}^{2^{n}}`` is the Hilbert space of an ``n-``qubit register, ``U \in U\left(2^{n}\right)`` represents the quantum algorithm and ``\{M_{m}\}`` is the set of measurement operators. The hardware circuitry along with equipment to control and manipulate the qubits is called a quantum computer. !!! info "More on Quantum Computation Information" Quantum Computing is a fascinating subject. In this, we cover only the very basic things to connect the Gray Code framework that we've devloped to Quantum circuits. The classic book on this subject by Michael A. Nielsen’s and Isaac L. Chuang titled “Quantum Computation and Quantum Information” is the go to place for more (Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press (2000)). # Single qubit gates These are the simplest set of gates which take one qubit as an input, act upon (change the state) and produce a qubit at the output. A generic 1-qubit quantum gate corresponds to a ``2 \times 2`` unitary matrix, which has the following form: ```math U = e^{\imath \theta} \begin{pmatrix} a & -b^{*} \\\ b & a^{*} \end{pmatrix} ``` where ``a,b \in \mathbb{C}`` such that ``\lvert a \rvert^{2}+ \lvert b \rvert^{2} = 1``, and ``\alpha \in \mathbb{R}`` results in arbitrary rotation. This matrix is essentially a `Givens` rotation matrix [Wikipedia](https://en.wikipedia.org/wiki/Givens_rotation). ## Examples ### ``X`` gate. * This gate *flips* the state of the qubit. In other words, it changes the state of the qubit from `` a\vert 0 \rangle + b\vert 1 \rangle`` to `` a\vert 1 \rangle+ b\vert 0 \rangle ``. * The matrix representation for``X`` gate is, `` \sigma_{x}=\begin{pmatrix} 0 & 1 \\\ 1 & 0 \end{pmatrix} ``. Multiplying the vector representing the qubit to the matrix is equivalent to the gate operation. i.e., `` \begin{pmatrix} b \\\ a \end{pmatrix} =\begin{pmatrix} 0 & 1 \\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\\ b \end{pmatrix} `` ### ``Y`` gate. * This gate perform two *flips* (a *bit flip* and a *phase flip*) on the state of the qubit. In other words, it changes the state of the qubit from `` a\vert 0 \rangle + b\vert 1 \rangle``, to `` b\vert 0 \rangle - a\vert 1 \rangle``. * The matrix representation for``Y`` gate is, `` \sigma_{y}=\begin{pmatrix} 0 & -1 \\\ 1 & 0 \end{pmatrix} ``. Multiplying the vector representing the qubit to the matrix is equivalent to the gate operation. ### ``Z`` gate. * This gate performs a *sign flip* on the state of the qubit. In other words, it changes the state of the qubit from `` a\vert 0 \rangle + b\vert 1 \rangle``, to `` a\vert 0 \rangle - \vert 1 \rangle``. * The matrix representation for ``X`` gate is, `` \sigma_{z}=\begin{pmatrix} 1 & 0 \\\ 0 & -1 \end{pmatrix} ``. Multiplying the vector representing the qubit to the matrix is equivalent to the gate operation. The matrix representations `` \sigma_{x}, \;\sigma_y\;and\; \sigma_z `` are known as Pauli's matrices. ### Hadamard gate: ``H`` gate * This gate works as follows: ``\vert 0 \rangle`` changes to `` \frac{1}{\sqrt2}(\vert 0 \rangle +\; \vert 1 \rangle) ``, and the ``\vert 1 \rangle`` changes to `` \frac{1}{\sqrt2}(\vert 0 \rangle - \vert 1 \rangle)``. * For an example, `` a\vert 0 \rangle + b\vert 1 \rangle, `` changes to, `` \frac{a}{\sqrt2}(\vert 0 \rangle + \vert 1 \rangle) + \frac{b}{\sqrt2}(\vert 0 \rangle - \vert 1 \rangle)``. * It can be simplified to give, ``\frac{a+b}{\sqrt2}\vert 0 \rangle + \frac{a-b}{\sqrt2} \vert 1 \rangle``. Mathematically, the following transformation captures the essence of ``H`` gate. ```math \begin{pmatrix} \frac{a+b}{\sqrt2} \\\\ \frac{a-b}{\sqrt2} \end{pmatrix} = \frac{1}{\sqrt2} \begin{pmatrix} 1 & 1 \\\ 1 & -1 \end{pmatrix} \begin{pmatrix} a \\\ b \end{pmatrix} ``` # Decomposition of Quantum Gates ## Two level decomposition A 2-level unitary correspond to unitary operation that non-trivially perform on only 2 of the states. Any controlled 1-qubit gate can be abstracted into a 2-level unitary matrix, e.g. for a single qubit gate ``U = \begin{pmatrix} a & b \\\\ c & d \end{pmatrix}``. ## Universal Decomposition Any arbitrary unitary gate acting on n-qubit can be implemented as a cascade of single-qubit and controlled-NOT (CNOT) gates. ```math \textbf{U}|\psi \rangle = \begin{pmatrix} u_{11} & u_{12} & \ldots & u_{1,N} \\ u_{11} & u_{12} & \ldots & u_{1,N} \end{pmatrix} ``` ## CNOT gates CNOT stands for Controlled-NOT, which is one of the key quantum logic gate. It is a two qubit gate. The gate flips the second qubit (called the target qubit) when the first gate (the control gate) is ``\lvert 1 \rangle``, while the target qubit remain unchanged when the control gate is in state ``\lvert 0 \rangle``. ```math \begin{aligned} U_{\text{CNOT}} &= \lvert 0 \rangle \otimes \langle 0 \rvert \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \lvert 1 \rangle \otimes \langle 1 \rvert \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\ &= \lvert 0 \rangle \langle 0 \rvert \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \lvert 1 \rangle \langle 1 \rvert \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\ &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{pmatrix} \end{aligned} ``` In terms of Gray matrix, we can also simply express this as, ```math \begin{aligned} \begin{pmatrix} \lvert \acute{\psi}_{1} \rangle \\ \lvert \acute{\psi}_{2} \rangle \end{pmatrix} &= G_{2} \begin{pmatrix} \lvert \psi_{1} \rangle \\ \lvert \psi_{2} \rangle \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \lvert \psi_{1} \rangle \\ \lvert \psi_{2} \rangle \end{pmatrix} \end{aligned} ``` --- The simplest CNOT gate is the single qubit controlled CNOT discussed above, which can be explicitly denoted as ``C^{1}\text{NOT}``. Generalization of this to multi quibit controlled CNOT, denoted by ``C^{n-1}\text{NOT}``. --- In quantum circuit design, applying a rotation for which the binary representations of i − 1 and j − 1 differ in a single bit can be accomplished by a single fully-controlled one-qubit rotation (a particular Givens rotation) and hence costs a small number of gates. All other rotations require a permutation of data before the rotation is applied and thus should be avoided. ### Generic U decomposion #### Examples: 3 cubit generic quantum gate ```julia-repl julia> A1,A2,A3,A4=sequenceΓ(3); julia> A4 3×28 adjoint(::Matrix{Int64}) with eltype Int64: 6 8 8 7 7 7 3 3 3 3 4 4 4 4 4 2 2 2 2 2 2 1 1 1 1 1 1 1 5 6 5 8 6 5 7 8 6 5 3 7 8 6 5 4 3 7 8 6 5 2 4 3 7 8 6 5 6 8 6 7 8 6 3 7 8 6 4 3 7 8 6 2 4 3 7 8 6 1 2 4 3 7 8 6 ``` ![](./assets/fig_quantum_decomposition_example3.png)
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
3200
# Examples ## Recursive construction ![](./assets/gray_recursion2.svg) ### Recursive procedure ![](./assets/gray_recursion1.svg) Reflect ``C[n-1]``, shift by ``q^{n-1}`` and augment (TBD). For ``n \in \mathbb{N}``, positive integer and ``N = 2^{n}``. A Gray code ``G_{n}`` is an tuple ``G_{n} = (X_{1},X_{2},...,X_{N})`` which satisfies the following properties: * ``X_{1}, X_{2}, ... , X_{N}`` are binary sequences (of length ``n``) corresponding to the binary representation of the numbers ``0, 1, \ldots , N − 1``, arranged in a specific order, * For any `` 0 \le j \le N-1``, adjacent pairs ``X_{j},X_{j+1}`` differ in only one position (i.e., only one of the ``n`` bits would differ), * The start and end sequences (i.e., sequences ``X_{1}`` and ``X_{N}`` differ in just one position. Gray code ``G_{n}`` can be recursively constructed as follows. Start with ``G_{1} = (0,1)`` and for ``N=2^n, n \ge 1``, Let ``G_{n} = \left(X_{1},\ldots,X_{N−1},X_{N}\right)``, ```math G_{n+1} = \left(0X_{1},\ldots,0X_{N−1},0X_{N},1X_{N},1X_{N−1},...,1X_{1}\right). ``` ## Illustration ```julia-repl using Plots function plotmatrix(A;kwargs...) a,b=size(A) X = transpose(repeat(1:b, 1, a))[:] Y = repeat(a:-1:1, b)[:] scatter(X,Y, marker_z = A[:], marker=:rect,markersize = 4, color = :viridis,aspectratio=1,ylims=[0,size(G,1)+1],alpha=1,label=:none,colorkey=:none,axis=:none;kwargs...) julia> plotmatrix(gray(6)); julia> plotmatrix(G,size=(800,400),color=:summer) julia> plotmatrix(G,size=(800,200),color=:summer,markersize=7,xlims=[1,size(G,2)+0],ylims=[1/2,size(G,1)-0]) end ``` #### Binary Gray Code ``n=4`` ![](./assets/gray4plot.svg) #### Binary Gray Code ``n=5`` ![](./assets/gray5plot.svg) #### Binary Gray Code ``n=6`` ![](./assets/gray6plot.svg) ## Linear Algebraic method TBD ``g=Gb`` and ``b=Bg``, where ``G`` is a Jordan matrix, which is ```julia-repl julia> n,q=4,2 julia> GrayCoding.GrayMatrix(n,q) 4×4 Matrix{Int64}: 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 4×4 Matrix{Int64}: 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 4×16 Matrix{Int64}: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 4×16 Matrix{Int64}: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 julia> G,B,g,b=GrayCoding.GrayMatrix(10,5); julia> G 10×10 Matrix{Int64}: 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 julia>B 10×10 Matrix{Int64}: 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 4 1 ```
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.5
5eab5deb315ab62dd45d01e19f79a2b5d98b8839
docs
124
# Digital Modulation scheme in Wireless Communication # QAM modulation in WiFi systems ![](./assets/fig_qam_encoding.png)
GrayCoding
https://github.com/nivupai/GrayCoding.jl.git
[ "MIT" ]
0.1.0
395e378bf16dca15f10aa4875e745363f77960ec
code
102
# This file is a part of BitArraynge.jl, licensed under the MIT License (MIT). println("building...")
BitArraynge
https://github.com/AstroFloof/BitArraynge.jl.git
[ "MIT" ]
0.1.0
395e378bf16dca15f10aa4875e745363f77960ec
code
1283
# This file is a part of BitArraynge.jl, licensed under the MIT License (MIT). baremodule BitArraynge using Base using BitOperations #= Credit to Gandalf#4004 in the Humans of Julia discord I might use this at some point =# # _cvt_int(x) = (bv = BitVector((false,)) ; bv.chunks[1] = UInt64(x) ; bv.len = 64 ; bv) _bitindices(I) = range(bsizeof(I)-1, step=(-1), stop=0) export bitsof @inline bitsof(n::I, b_inds::StepRange) where {I <: Integer} = bget.(n, b_inds) @inline bitsof(n::I) where {I <: Integer} = bget.(n, _bitindices(I)) export appendbitsof! appendbitsof!(V::BitVector, n::I) where I <: Integer = append!(V, bitsof(n, _bitindices(I))) appendbitsof!(V::BitVector, n::I, bitindices::StepRange) where I <: Integer = append!(V, bitsof(n, bitindices)) function appendbitsof!(V::BitVector, N::Vector{I}) where I <: Integer bitindices = _bitindices(I) for n in N appendbitsof!(V, n, bitindices) end end export bmat_from_ints function bmat_from_ints(V::Vector{I}) where {I <: Integer} hcat((V .|> bitsof)...) end export bvec_from_ints function bvec_from_ints(V::Vector{I}) where {I <: Integer} vcat((v .|> bitsof)...) end export bvec_from_int @inline bvec_from_int(n::I) where {I <: Integer} = bitsof.(n) end # module
BitArraynge
https://github.com/AstroFloof/BitArraynge.jl.git
[ "MIT" ]
0.1.0
395e378bf16dca15f10aa4875e745363f77960ec
code
92
# This file is a part of BitArraynge.jl, licensed under the MIT License (MIT). @assert true
BitArraynge
https://github.com/AstroFloof/BitArraynge.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
14160
module DistributedJLFluxML using Distributed using Flux.Optimise: AbstractOptimiser using Flux # using Zygote: @nograd # has been useful in the past, keeping it here incase. function cond_put!(chan, dat) if chan != nothing return put!(chan, dat) else return nothing end end function makeStatDict(status_name::String; kwargs...) Dict(:statusName=>status_name, :myid=>myid(), :hostname=>gethostname(), :timestamp=>time(), kwargs...) end include("OptOutAllReduce.jl") """ Leaving this hear for future work. Looks like theres a problem with Distributed & Threads that might be breaking this. See https://github.com/JuliaLang/julia/issues/32677 and https://github.com/JuliaLang/julia/pull/33555 When Julia 1.8 is realeased, readdress this """ function build_data_loader_from_RemoteChannel(rChan) chan = Channel() do ch while true try res = take!(rChan) put!(ch, res) catch err if isa(err, InvalidStateException) & (err.state == :closed) break end if isa(err, RemoteException) & isa(err.captured.ex, InvalidStateException) & (err.captured.ex.state == :closed) break end #rethrow() end end end end """ std_grad_calc(xy, loss_f, model; device) Standard combination on loss_f, model, input and output to be used in ``` l = Flux.gradient(θ) do ... end ``` # Arguments - `xy::Tuple`: A tuple with the first item as the model input and second item the expected model output - `loss_f::Function`: evauates `loss_f(y̅, y)` - `model::Chain`: The model to be trained # Returns - `Float`: the value of the loss calculated by loss_f """ function std_grad_calc(xy, loss_f, model; device=gpu) x, y = xy xs = size(x) loss_fac_cpu = Float32(reduce(*, xs)) loss_fac_gpu = loss_fac_cpu |> device loss_f(model(x), y, agg=sum)/loss_fac_gpu end """ do_train_on_remote() Not documented. Called though @swpanat in `train!()`. No one whould be calling this directly. """ function do_train_on_remote(loss_f, model, data, opt; status_chan=nothing, saved_model_dir=nothing, master=myid(), cb=()->nothing, device=gpu, size_data_load_buff=2, save_on_step_cb=st -> true, grad_calc=std_grad_calc) if (master == myid()) & (saved_model_dir != nothing) global save_model_f = open(joinpath(saved_model_dir, "savedModelParam.jlb"), "w") end θ = Flux.params(model) gr_share = [zeros(Float32, size(l)) for l in θ] acum_gr_share = copy(gr_share) # TODO: In future versions of Julia, we may not need to handle # remote channels ourselves 5/13/22:saxton # https://github.com/JuliaLang/julia/pull/33555 # https://github.com/JuliaLang/julia/pull/41966 #if isa(data, RemoteChannel) # global data_dl = build_data_loader_from_RemoteChannel(data) #else # global data_dl = data #end # See docstring in build_data_loader_from_RemoteChannel data_dl = Channel(size_data_load_buff, spawn=true) do ch while true t_dat = take!(data) if typeof(t_dat) == Symbol if t_dat == :End put!(ch, t_dat) break end end gpu_data = (_d |> device for _d in t_dat) put!(ch, gpu_data) end end loss_rep = Float32(0.0) step = 0 while true xy = take!(data_dl) if typeof(xy) == Symbol if xy == :End cond_put!(status_chan, makeStatDict("do_train_on_remote.finished"; :step=>step)) break end end step += 1 cond_put!(status_chan, makeStatDict("do_train_on_remote.step"; :step=>step)) #loss_fac_cpu = Float32(230400) gr = Flux.gradient(θ) do #l = loss(xy...) #l = loss_f(model(x), y; agg=sum)/loss_fac_gpu #l = loss(x, y)/loss_fac_gpu l = grad_calc(xy, loss_f, model; device=device) loss_rep = l |> f32 return l end cond_put!(status_chan, makeStatDict("do_train_on_remote.step.grad"; :step=>step, :loss=>loss_rep, :ImNew=>3)) for (sh, acumm_sh, p) in zip(gr_share, acum_gr_share, gr.params) if gr.grads[p] != nothing copyto!(sh, gr.grads[p]) _ret_sh = OptOutAllReduce.allReduce(+, sh) copyto!(gr.grads[p], _ret_sh[1]/_ret_sh[2]) end end cond_put!(status_chan, makeStatDict("do_train_on_remote.step.shared"; :step=>step)) Flux.Optimise.update!(opt, θ, gr) cb() if (master == myid()) & (saved_model_dir != nothing) & save_on_step_cb(step) serialize(save_model_f, (step, θ)) flush(save_model_f) cond_put!(status_chan, makeStatDict("do_train_on_remote.step.saved_model"; :step=>step)) end end cond_put!(status_chan, makeStatDict("do_train_on_remote.finished.wait"; :step=>step)) _ret_sh = OptOutAllReduce.allReduce(+, :Skip) while true if _ret_sh[2] ==0 break end _ret_sh = OptOutAllReduce.allReduce(+, :Skip) end cond_put!(status_chan, makeStatDict("do_train_on_remote.finished.done"; :step=>step)) return [p |> cpu for p in θ] end unit_test_example_path = joinpath(splitpath(pathof(DistributedJLFluxML))[1:end-2]...,"test") """ train!(loss, model, data, opt, workers; cb, save_on_step_cb, status_chan, save_model_dir, device, no_block, grad_calc=std_grad_calc) Uses a `loss` function and training `data` to improve the `model` parameters according to a particular optimisation rule `opt`. Runs the training loop in parellel on `workers`, agrigates the gradients through an **allReduce**, then updates the model parameters. # Example See test dir $(unit_test_example_path), in particular $(joinpath(unit_test_example_path, "trainModel.jl")), for more details. Partition and load data on workers. The following example loads an already partitioned version of the iris dataset ``` batch_size=8 epochs = 50 deser_fut = [@spawnat w global rawData = deserialize(f) for (w, f) in zip(workersToHostData, shard_file_list)] for fut in deser_fut wait(fut) end epoch_length_worker = @fetchfrom p[1] nrow(rawData) @everywhere p labels = ["Iris-versicolor", "Iris-virginica", "Iris-setosa"] @everywhere p x_array = Array(rawData[:, [:sepal_l, :sepal_w, :petal_l, :petal_w ]]) @everywhere p y_array = Flux.onehotbatch(rawData[:,"class"], labels) @everywhere p dataChan = Channel(1) do ch n_chunk = ceil(Int,size(x_array)[1]/\$batch_size) x_dat = Flux.chunk(transpose(x_array), n_chunk) y_dat = Flux.chunk(y_array, n_chunk) for epoch in 1:\$epochs for d in zip(x_dat, y_dat) put!(ch, d) end end end @everywhere p datRemChan = RemoteChannel(() -> dataChan, myid()) datRemChansDict = Dict(k => @fetchfrom w datRemChan for (k, w) in zip(workersToRunTrain,workersToHostData)) ``` Once the data is set up for your needs, then you need to define the model, loss, optimizer and pass it to `train!` ``` loss_f = Flux.Losses.logitcrossentropy opt = Flux.Optimise.ADAM(0.001) model = Chain(Dense(4,8),Dense(8,16), Dense(16,3)) DistributedJLFluxML.train!(loss_f, model, datRemChansDict, opt, p) ``` # Example Argument `grad_calc` is meant for novel nomalization schemes. For example, if your `DataChannel` returns a 3 touple, say `(x, s, y)`, a desired grad calc coule be ``` function node_norm_grad_calc(xsy, loss_f, model; device=gpu) x,s,y = xsy loss_f(model(x), y, agg=sum)/s end ``` When `train!` returns, it will have updated the parameters of `model`. # Arguments - `loss::Function`: evauates `loss(y, y̅)` - `model::Chain`: The model to be trained - `data::Dict{Int,RemoteChannel}`: The dict key is the worker id that the remote channel will be sent to - `opt::AbstractOptimizer`: The optimized used during training - `workers::AbstractArray`: List of workers ids to perform training on. - `cb::Function`: a callback that is called after optimize.update! on each training worker - `save_on_step_cb::Function`: The training step is passed to this cb on each training iteration. If the cb returns true, a copy of the model will be saved to `saved_model_dir` - `saved_model_dir::String`: path to directory where saved model will be placed - `device::Function`: the device a model will be copied to on remote worker. usually `gpu` or `cpu` - `grad_calc::Function`: a function that will be called in Flux.gradient to combine a single data sample, the model, and the loss function. See `std_grad_calc` as an example. # Returns - `nothing` # Throws - `nothing` """ function train!(_loss_f, _model::Chain, _data, _opt::AbstractOptimiser, trainWorkers; cb=()->nothing, save_on_step_cb=st -> true, status_chan=nothing, saved_model_dir=nothing, device=gpu, grad_calc=std_grad_calc) OptOutAllReduce.init(trainWorkers) model_fut = [@spawnat w global model = _model |> device for w in trainWorkers]; loss_f_fut = [@spawnat w global loss_f = _loss_f for w in trainWorkers]; opt_fut = [@spawnat w global opt = _opt for w in trainWorkers]; wait.([model_fut..., loss_f_fut..., opt_fut...]) train_fut = [] for w in trainWorkers fut = @spawnat w do_train_on_remote(loss_f, model, _data[w], opt; status_chan=status_chan, saved_model_dir=saved_model_dir, master=trainWorkers[1], device=device, save_on_step_cb=st -> true, grad_calc=grad_calc) push!(train_fut, fut) end wait.(train_fut) θ = Flux.params(_model) θ_rem = fetch(train_fut[1]) for (p1,p2) in zip(θ, θ_rem) copy!(p1, p2) end return train_fut end function do_eval_on_remote(model, data_dl; status_chan=nothing, get_step=nothing, device=gpu) cond_put!(status_chan, makeStatDict("do_eval_on_remote.start"; :message=>"Starting", )) y=[] while true x = take!(data_dl) if typeof(x) == Symbol if x == :End break end end x_device = x |> device y_cpu = model(x_device) |> cpu push!(y,y_cpu) end return y end """ eval_model(saved_model_dir::String, model, _data, workers; status_chan=nothing, get_step=nothing, device=gpu) Not tested yet. Still need to build model saving in `train!` """ function eval_model(saved_model_dir::String, model, _data, workers; status_chan=nothing, get_step=nothing, device=gpu) save_model_f = open(joinpath(saved_model_dir, "savedModelParam.jlb"), "r") open(save_mdel_f) do f while true try global (step, _θ) = deserialize(f) catch e if isa(e, EOFError) break end end if step == get_step break end end end θ = Flux.params(model) for (ld, ls) in zip(θ, _θ) copy!(ld, ls) end res = eval_model(model, _data, workers; status_chan=status_chan, get_step=get_step,device=device) return res end """ eval_model(model, data, evalWorkers; status_chan=nothing, get_step=nothing, device=gpu) This function evaluates the model on a set of data partitioned across many workers. `eval_model` will deploy `model` and the approprate `RemoteChannel` from `data` to `evalWorkers`. There, it will call `model(x)` on the data iterated by `data[myid()]`. Finally, the results will be fetched and aggregated into a single array. # Arguments - `model::Chain`: The model that will be evaluated - `data::Dict{Int,RemoteChannel}`: The dict key is the worker id that the remote channel will be sent to - `evalWorkers::AbstractArray`: List of workers ids to perform evaluation on. - `statusChan::RemoteChannel`: status messages and data will be placed on this channel to monitor progress - `device::Function`: the device a model will be copied to on remote worker. usually `gpu` or `cpu` # Returns - `Array`: concatenated array of results from each of the workers # Throws - `nothing` """ function eval_model(_model, _data, evalWorkers; status_chan=nothing, device=gpu) model_fut = [@spawnat w global model = _model |> device for w in evalWorkers]; wait.(model_fut) eval_fut = [] for w in evalWorkers fut = @spawnat w DistributedJLFluxML.do_eval_on_remote(model, _data[w]; status_chan=status_chan) push!(eval_fut, fut) end wait.(eval_fut) res = vcat(fetch.(eval_fut)...) return res end end # module
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
4439
module OptOutAllReduce using Distributed """ init(_allReduceWorkers; ReduceType=Any, ChanDepth=2) `init()` sets up `RemoteChannel()`'s and related indices for `allRecude()` to use on subsequent calls. See `allReduce` help for more details. # Arguments - `allReduceWorkers::Array{Int}`: Array of worker idx that will perform a allReduce between. # Returns - Nothing # Throws - Nothing """ function init(_allReduceWorkers; ReduceType=Any, ChanDepth=2) if any([@fetchfrom w isdefined(OptOutAllReduce, :finished_init) for w in _allReduceWorkers]) return end totAllReduceChan = Dict(w_i => RemoteChannel(()->Channel{ReduceType}(ChanDepth), w_i) for w_i in _allReduceWorkers) n_w = length(_allReduceWorkers) w_l = sort(_allReduceWorkers) allReduce_chan_fut = [] for m_id in _allReduceWorkers w_i_i_map = Dict(w_i => i for (i,w_i) in zip(0:(n_w-1), w_l)) i_w_i_map = Dict(i => w_i for (i,w_i) in zip(0:(n_w-1), w_l)) _right_id = i_w_i_map[(w_i_i_map[ m_id] + 1) % n_w] fut = @spawnat m_id global right_id = _right_id push!(allReduce_chan_fut, fut) fut = @spawnat m_id global allReduceChan = Dict(m_id => totAllReduceChan[m_id], _right_id => totAllReduceChan[_right_id]) push!(allReduce_chan_fut, fut) fut = @spawnat m_id global allReduceWorkers = _allReduceWorkers push!(allReduce_chan_fut, fut) fut = @spawnat m_id global finished_init = true push!(allReduce_chan_fut, fut) end for fut in allReduce_chan_fut wait(fut) end end """ allReduce(func, dat) `allRecude()` performes the All Reduce collective, with an "Opt Out" option, accross the group of workers passed to init(). If a worker calls `allReduce()` passing the symbol `:Skip` to `dat` that worker will perform a "No Op" on the reduce. Lastly, values returned are a 2 item tuple with the first item is the value of the reduce and the second is number of items that were reduced. # Examples ``` using Distributed p = addProc(3) @everywhere using DistributedFluxML DistributedFluxML.OptOutAllReduce.init(p) mock_vals = [1,2,3] allR_fut = [@spawnat w DistributedFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(mock_vals,p)] [fetch(fut) for fut in allR_fut] # [(6,3), (6,3), (6,3)] mock_vals = [1,:Skip,3] allR_fut = [@spawnat w DistributedFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(mock_vals,p)] [fetch(fut) for fut in allR_fut] # [(4,2), (4,2), (4,2)] ``` # Arguments - `func(x,y)::Function`: Aggrigation function is use in reduce. `func()` must be associative to produce meaninful results. - `dat::Any`: Singlton data point to aggrigate or `Symbol` `:Skip` to skip reduce op. # Returns - `allReduce(...)::Tuple{Any, Int64}` # Throws - `ERROR`: If `init()` was not run or finish correctly, thows an error message telling you so """ function allReduce(func, dat) if !@isdefined finished_init throw("""allReduce is not being called on a worker which """* """init() was run. """* """See allReduce() docString for help. myid() $(myid()) """) end if !finished_init throw("init() did not run successfully for $(myid())") end countD = dat == :Skip ? 0 : 1 pDat = countD n_rWorkers = length(allReduceWorkers) for _i in 1:(n_rWorkers-1) put!(allReduceChan[myid()], pDat) tDat = take!(allReduceChan[right_id]) pDat = tDat + countD end put!(allReduceChan[myid()], pDat) numReduceSteps = take!(allReduceChan[right_id]) if numReduceSteps == 0 return (nothing, 0) end if dat == :Skip tDat = nothing for _i in 1:(n_rWorkers) tDat = take!(allReduceChan[right_id]) put!(allReduceChan[myid()], tDat) end return (tDat, numReduceSteps) else pDat = dat tDat = nothing for _i in 1:(numReduceSteps-1) put!(allReduceChan[myid()], pDat) tDat = take!(allReduceChan[right_id]) pDat = func(tDat,dat) end for _i in 1:(n_rWorkers-numReduceSteps+1) put!(allReduceChan[myid()], pDat) tDat = take!(allReduceChan[right_id]) pDat = tDat end return (pDat, numReduceSteps) end end end
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
2664
@testset "Opt Out All Reduce" begin DistributedJLFluxML.OptOutAllReduce.init(p) @test all([@fetchfrom w DistributedJLFluxML.OptOutAllReduce.finished_init for w in p]) right_ids = Set([@fetchfrom w DistributedJLFluxML.OptOutAllReduce.right_id for w in p]) @test right_ids == Set(p) test_vals = [1,2,3] allR_fut = [@spawnat w DistributedJLFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(test_vals,p)] if !all([isready(fut) for fut in allR_fut]) sleep(2) end t = @test all([isready(fut) for fut in allR_fut]) if isa(t, Test.Pass) @test [fetch(fut) for fut in allR_fut] == [(6,3), (6,3), (6,3)] end test_vals = [1,:Skip,3] allR_fut = [@spawnat w DistributedJLFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(test_vals,p)] if !all([isready(fut) for fut in allR_fut]) sleep(2) end t = @test all([isready(fut) for fut in allR_fut]) if isa(t, Test.Pass) @test [fetch(fut) for fut in allR_fut] == [(4,2), (4,2), (4,2)] end test_vals = [1,:Skip,:Skip] allR_fut = [@spawnat w DistributedJLFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(test_vals,p)] if !all([isready(fut) for fut in allR_fut]) sleep(2) end t = @test all([isready(fut) for fut in allR_fut]) if isa(t, Test.Pass) @test [fetch(fut) for fut in allR_fut] == [(1,1), (1,1), (1,1)] end test_vals = [:Skip, :Skip,3] allR_fut = [@spawnat w DistributedJLFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(test_vals,p)] if !all([isready(fut) for fut in allR_fut]) sleep(2) end t = @test all([isready(fut) for fut in allR_fut]) if isa(t, Test.Pass) @test [fetch(fut) for fut in allR_fut] == [(3,1), (3,1), (3,1)] end test_vals = [:Skip,2,:Skip] allR_fut = [@spawnat w DistributedJLFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(test_vals,p)] if !all([isready(fut) for fut in allR_fut]) sleep(2) end t = @test all([isready(fut) for fut in allR_fut]) if isa(t, Test.Pass) @test [fetch(fut) for fut in allR_fut] == [(2,1), (2,1), (2,1)] end test_vals = [:Skip,:Skip,:Skip] allR_fut = [@spawnat w DistributedJLFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(test_vals,p)] if !all([isready(fut) for fut in allR_fut]) sleep(2) end t = @test all([isready(fut) for fut in allR_fut]) if isa(t, Test.Pass) @test [fetch(fut) for fut in allR_fut] == [(nothing,0),(nothing,0),(nothing,0)] end end
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
1988
@testset "evaluate model" begin batch_size=8 @everywhere p evalDataChan = Channel(1) do ch n_chunk = ceil(Int,size(x_array)[1]/$batch_size) x_dat = Flux.chunk(transpose(x_array), n_chunk) for d in x_dat put!(ch, d) end put!(ch, :End) end @everywhere p evalDatRemChan = RemoteChannel(() -> evalDataChan, myid()) test_path = joinpath(splitpath(pathof(DistributedJLFluxML))[1:end-2]..., "test") trainWorkers_shift = circshift(p, 1) # ^^^ shift workers to reuse workers as ^^^ # ^^^ remote data hosts ^^^ datRemChansDict = Dict(k => @fetchfrom w evalDatRemChan for (k,w) in zip(p, trainWorkers_shift)) model = @fetchfrom p[1] DistributedJLFluxML.model global res = DistributedJLFluxML.eval_model(model, datRemChansDict, p; status_chan) y = vcat([@fetchfrom w Flux.chunk(y_array, ceil(Int,size(y_array)[2]/batch_size)) for w in trainWorkers_shift]...) loss_f = Flux.Losses.logitcrossentropy evalLosses = [loss_f(r,_y) for (r, _y) in zip(res, y)] n_steps_in_batch = length(evalLosses) _dtor_status_array = [s for s in status_array if (s[:statusName] == "do_train_on_remote.step.grad")] last_step = maximum([s[:step] for s in _dtor_status_array]) trainLosses = [s[:loss] for s in _dtor_status_array if (s[:step] > (last_step - n_steps_in_batch))] @test mean(evalLosses) < mean(trainLosses) + sqrt(r2(ols))*3 # test that eval_model used the model that we passed max_block = maximum([length(i) for i in y]) shuf_mask = [length(i) == max_block for i in y] shuffle_idx = collect(1:(length(y[shuf_mask]))) shuffle!(shuffle_idx) shufEvalLosses = [loss_f(r,_y) for (r, _y) in zip(res[shuf_mask], y[shuf_mask][shuffle_idx])] @test mean(shufEvalLosses) > mean(evalLosses) #test that eval_model consitantly agrigates w.r.t. it's input end
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
2457
using Test using Distributed using ClusterManagers using Pkg using Flux using Statistics using Random using GLM using DataFrames using CSV if Base.current_project() != nothing proj_path = joinpath(["/", splitpath(Base.current_project())[1:end-1]...]) p = addprocs(SlurmManager(3), time="00:30:00", exeflags="--project=$(proj_path)", ntasks_per_node=1) else p = addprocs(SlurmManager(3), time="00:30:00", ntasks_per_node=1) end ap_dir = joinpath(splitpath(Base.active_project())[1:end-1]) if "tmp" == splitpath(ap_dir)[2] hostNames = [@fetchfrom w gethostname() for w in p] ap_dir_list = [joinpath(ap_dir, d) for d in readdir(ap_dir)] for (w, hn) in zip(p, hostNames) @fetchfrom w begin open(`mkdir $(ap_dir)`) do f read(f, String) end end end for hn in hostNames for fpn in ap_dir_list open(`scp $(fpn) $(hn):$(fpn)`) do f read(f, String) end end end end @everywhere begin using Pkg Pkg.activate($(ap_dir)) # Pkg.instantiate() end @everywhere begin using GLM using DistributedJLFluxML using Flux using DataFrames using CSV end status_chan = RemoteChannel(()->Channel{Any}(10000), myid()) status_array = [] stat_tsk = @async begin while isopen(status_chan) push!(status_array, take!(status_chan)) if length(status_array) > 10000 popfirst!(status_array) end end end ## Load Mock data mockData_path = joinpath( splitpath(pathof(DistributedJLFluxML))[1:end-2]..., "mockData", "iris.data" ) headers = [:sepal_l, :sepal_w, :petal_l, :petal_w, :class] __totData = CSV.read(mockData_path, DataFrame, header=headers) _totData = [__totData[1:50, :], __totData[51:100, :], __totData[101:end, :] ] totData = Dict(i=>v for (i,v) in zip(p, _totData)) @everywhere p rawData = $(totData)[myid()] epoch_length_worker = @fetchfrom p[1] nrow(rawData) @everywhere p labels = ["Iris-versicolor", "Iris-virginica", "Iris-setosa"] @everywhere p x_array = Array{Float32}(rawData[:, [:sepal_l, :sepal_w, :petal_l, :petal_w ]]) @everywhere p y_array = Flux.onehotbatch(rawData[:,:class], labels)
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
587
using DataFrames using CSV using Random using Serialization mockData_path = joinpath(splitpath(pathof(DistributedFluxML))[1:end-2]...,"mockData") data_fn = joinpath(mockData_path, "iris.data") #bezdekIris.data col_names = ["sepal_l", "sepal_w", "petal_l", "petal_w", "class"] df_tot = CSV.read(data_fn, DataFrame; header=col_names) data_shard_fns = [joinpath(mockData_path, "iris_df_$(i).jlb") for i in 1:3] sh_idx = collect(1:nrow(df_tot)) shuffle!(sh_idx) for (fn, idx) in zip(data_shard_fns, [sh_idx[1:50], sh_idx[51:100], sh_idx[101:end]]) serialize(fn, df_tot[idx, :]) end
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
145
using DistributedJLFluxML include("globalTestInit.jl") include("OptOutAllReduce.jl") include("trainModel.jl") include("evalModel.jl") rmprocs(p)
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
code
2164
@testset "train model" begin batch_size=8 epochs = 50 @everywhere p dataChan = Channel(1) do ch n_chunk = ceil(Int,size(x_array)[1]/$batch_size) x_dat = Flux.chunk(transpose(x_array), n_chunk) y_dat = Flux.chunk(y_array, n_chunk) for epoch in 1:$epochs for d in zip(x_dat, y_dat) put!(ch, d) end end put!(ch, :End) end @everywhere p datRemChan = RemoteChannel(() -> dataChan, myid()) trainWorkers_shift = circshift(p, 1) # ^^^ shift workers to reuse workers as ^^^ # ^^^ remote data hosts ^^^ datRemChansDict = Dict(k => @fetchfrom w datRemChan for (k,w) in zip(p, trainWorkers_shift)) loss_f = Flux.Losses.logitcrossentropy opt = Flux.Optimise.Adam(0.001) model = Chain(Dense(4,8),Dense(8,16), Dense(16,3)) empty!(status_array) DistributedJLFluxML.train!(loss_f, model, datRemChansDict, opt, p; status_chan) finished_workers = Set([s[:myid] for s in status_array if s[:statusName] == "do_train_on_remote.finished"]) test_finshed_res = @test finished_workers == Set(p) if isa(test_finshed_res, Test.Pass) remote_params = [@fetchfrom w Flux.params(DistributedJLFluxML.model) for w in p] θ = Flux.params(model) @test all(θ .≈ remote_params[1]) @test all(θ .≈ remote_params[2]) @test all(θ .≈ remote_params[3]) end global log_loss_dict = Dict(w => [(s[:step], log(s[:loss])) for s in status_array if s[:statusName] == "do_train_on_remote.step.grad" && s[:myid] == w] for w in p) raw_data= vcat(values(log_loss_dict)...) raw_data_trunk = [l for l in raw_data if l[1] > epoch_length_worker*1] data = DataFrame(raw_data_trunk) rename!(data, [:Step, :LLoss]) data[!,:LLoss] = convert.(Float64,data[!,:LLoss]) global ols = lm(@formula(LLoss ~ Step), data) @test coef(ols)[2] < 1e-4 # tests if loss is decaying @test ftest(ols.model).pval < 1e-20 # tests if loss is decaying end
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.1.0
e633f4f35195771abc47d2715e4173b19cfa0a6a
docs
2817
# jlDistributedFluxML This package is to be used with FluxML to train, evaluate (inference), and analyze models on a distributed cluster. At the moment only the Slurm cluster manager has been tested. ## Getting started Comming soon ### Training These examples assumes that you have already partitioned the data into multiple `DataFrame`s and serialized them using `Serialization` package into `shard_file_list` ``` using Distributed p = addProc(3) @everywhere using DistributedFluxML batch_size=8 epochs = 50 deser_fut = [@spawnat w global rawData = deserialize(f) for (w, f) in zip(p, shard_file_list)] for fut in deser_fut wait(fut) end @everywhere p labels = ["Iris-versicolor", "Iris-virginica", "Iris-setosa"] @everywhere p x_array = Array(rawData[:, [:sepal_l, :sepal_w, :petal_l, :petal_w ]]) @everywhere p y_array = Flux.onehotbatch(rawData[:,"class"], labels) @everywhere p dataChan = Channel(1) do ch n_chunk = ceil(Int,size(x_array)[1]/$batch_size) x_dat = Flux.chunk(transpose(x_array), n_chunk) y_dat = Flux.chunk(y_array, n_chunk) for epoch in 1:$epochs for d in zip(x_dat, y_dat) put!(ch, d) end end put!(ch, :End) end @everywhere p datRemChan = RemoteChannel(() -> dataChan, myid()) trainWorkers_shift = circshift(p, 1) # ^^^ shift workers to reuse workers as ^^^ # ^^^ remote data hosts ^^^ datRemChansDict = Dict(k => @fetchfrom w datRemChan for (k,w) in zip(p, trainWorkers_shift)) loss_f = Flux.Losses.logitcrossentropy opt = Flux.Optimise.ADAM(0.001) model = Chain(Dense(4,8),Dense(8,16), Dense(16,3)) empty!(status_array) DistributedFluxML.train!(loss_f, model, datRemChansDict, opt, p; status_chan) ``` ### Custom Gradiant Calc Argument `grad_calc` in `train!` is meant for novel nomalization schemes. For example, if your `DataChannel` returns a 3 touple, say `(x, s, y)`, a desired grad calc coule be ``` function node_norm_grad_calc(xsy, loss_f, model; device=gpu) x,s,y = xsy loss_f(model(x), y, agg=sum)/s end ``` ### Opt Out All Reduce ``` using Distributed p = addProc(3) @everywhere using DistributedFluxML DistributedFluxML.OptOutAllReduce.init(p) mock_vals = [1,2,3] allR_fut = [@spawnat w DistributedFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(mock_vals,p)] [fetch(fut) for fut in allR_fut] # [(6,3), (6,3), (6,3)] mock_vals = [1,:Skip,3] allR_fut = [@spawnat w DistributedFluxML.OptOutAllReduce.allReduce(+, v) for (v,w) in zip(mock_vals,p)] [fetch(fut) for fut in allR_fut] # [(4,2), (4,2), (4,2)] ```
DistributedJLFluxML
https://github.com/asaxton/DistributedJLFluxML.jl.git
[ "MIT" ]
0.2.0
525d055f0c6b9476e6dcf032286383ea941a395c
code
10350
# * Bits module Bits export bit, bits, bitsize, low0, low1, mask, masked, scan0, scan1, tstbit, weight using Base: BitInteger, BitIntegerType # * constants const Index = Int # do not change const Word = UInt # default integer type """ `INF::Int` indicates the position of the bit at "infinity", for types which can carry an arbitrary number of bits, like BigInt. `INF` is also used to indicate an arbitrary large number of bits. Currently, `Bits.INF == typemax(Int)`. """ const INF = typemax(Index) """ `NOTFOUND::Int` indicates that no position matches the request, similar to `nothing` with `findnext`. Currently, `Bits.NOTFOUND == 0`. """ const NOTFOUND = 0 const BitFloats = Union{Float16,Float32,Float64} const MPFR_EXP_BITSIZE = sizeof(Clong) * 8 # * bitsize """ bitsize(T::Type) -> Int bitsize(::T) -> Int Return the number of bits that can be held by type `T`. Only the second method may be defined when the number of bits is a dymanic value, like for `BitFloat`. # Examples ```jldoctest julia> bitsize(Int32) == 32 && bitsize(true) == 1 && bitsize(big(0)) == Bits.INF && bitsize(1.2) == 64 true julia> x = big(1.2); bitsize(x) == 256 + sizeof(x.exp)*8 + 1 true ``` """ bitsize(::Type{BigInt}) = INF bitsize(::Type{Bool}) = 1 bitsize(T::Type) = bitsize(Val(isbitstype(T)), T) bitsize(isbits::Val{true}, T::Type) = sizeof(T) * 8 bitsize(isbits::Val{false}, T::Type) = throw(MethodError(bitsize, (T,))) bitsize(x) = bitsize(typeof(x)) bitsize(x::BigFloat) = 1 + MPFR_EXP_BITSIZE + precision(x) lastactualpos(x) = bitsize(x) lastactualpos(x::BigInt) = abs(x.size) * sizeof(Base.GMP.Limb) * 8 asint(x::Integer) = x asint(x::AbstractFloat) = reinterpret(Signed, x) # * bit functions: weight, bit, tstbit, mask, low0, low1, scan0, scan1 # ** weight """ weight(x::Real) -> Int Hamming weight of `x` considered as a binary vector. Similarly to `count_ones(x)`, counts the number of `1` in the bit representation of `x`, but not necessarily at the "bare-metal" level; for example `count_ones(big(-1))` errors out, while `weight(big(-1)) == Bits.INF`, i.e. a `BigInt` is considered to be an arbitrary large field of bits with twos complement arithmetic. # Examples ```jldoctest julia> weight(123) 6 julia> count(bits(123)) 6 ``` """ weight(x::Real) = count_ones(x) weight(x::BigInt) = x < 0 ? INF : count_ones(x) # ** bit """ bit(x::Integer, i::Integer) -> typeof(x) bit(x::AbstractFloat, i::Integer) -> Integer Return the bit of `x` at position `i`, with value `0` or `1`. If `x::Integer`, the returned bit is of the same type. If `x::AbstractFloat` is a bits type, the returned bit is a signed integer with the same [`bitsize`](@ref) as `x`. See also [`tstbit`](@ref). # Examples ```jldoctest julia> bit(0b101, 1) 0x01 julia> bit(0b101, 2) 0x00 julia> bit(-1.0, 64) 1 ``` """ bit(x::Integer, i::Integer) = (x >>> UInt(i-1)) & one(x) bit(x::AbstractFloat, i::Integer) = bit(asint(x), i) bit(x::Union{BigInt,BigFloat}, i::Integer) = tstbit(x, i) ? big(1) : big(0) # ** tstbit """ tstbit(x::Real, i::Integer) -> Bool Similar to [`bit`](@ref) but returns the bit at position `i` as a `Bool`. # Examples ```jldoctest julia> tstbit(0b101, 3) true ``` """ tstbit(x, i::Integer) = bit(x, i) % Bool tstbit(x::BigInt, i::Integer) = Base.GMP.MPZ.tstbit(x, i-1) # from Random module using Base.GMP: Limb const bits_in_Limb = bitsize(Limb) const Limb_high_bit = one(Limb) << (bits_in_Limb-1) function tstbit(x::BigFloat, i::Integer) prec = precision(x) if i > prec i -= prec if i > MPFR_EXP_BITSIZE i == MPFR_EXP_BITSIZE + 1 ? (x.sign == -1) : false else tstbit(x.exp, i) end else nlimbs = (prec-1) ÷ bits_in_Limb + 1 tstbit(x.d, i + nlimbs * bits_in_Limb - prec) end end tstbit(p::Ptr{T}, i::Integer) where {T} = tstbit(unsafe_load(p, 1 + (i-1) ÷ bitsize(T)), mod1(i, bitsize(T))) # ** mask """ mask(T::Type{<:Integer}:=UInt, i::Integer=bitsize(T)) -> T Return an integer of type `T` whose `i` right-most bits are `1`, and the others are `0` (i.e. of the form `0b0...01...1` with exactly `i` `1`s. When `i` is not specified, all possible bits are set to `1`. When `i < 0`, the result is not specified. `T` defaults to `UInt`. # Examples ```jldoctest julia> mask(3) 0x0000000000000007 julia> mask(UInt8) 0xff julia> bits(mask(Int32, 24)) <00000000 11111111 11111111 11111111> ``` """ mask(::Type{T}, i::Integer) where {T} = one(T) << i - one(T) # alternate implementation: mask_2(T::BitIntegerType, i::Integer) = let s = bitsize(T)-i mask(T) << s >>> s end mask(i::Integer) = mask(Word, i) mask(::Type{T}=Word) where {T} = ~zero(T) # TODO: optimize mask(::Type{BigInt}, i::Integer) = one(BigInt) << i - 1 """ mask(T::Type{<:Integer} := UInt, j::Integer, i::Integer) -> T Return an integer of type `T` whose `j` right-most bits are `0`, the following `i-j` bits are `1`, and the remaining bits are `0` (i.e. of the form `0b0...01...10...0` with exactly `i-j` `1`s preceded by `j` `0`s). When `j < 0`, the result is not specified. When `i < 0`, the result is equal to `~mask(T, j)`, i.e. of the form `1...10...0` with exactly `j` zeros. NOTE: unstable API, could be changed to mask(j, i-j) instead. # Examples ```jldoctest julia> bits(mask(UInt8, 2, 5)) <00011100> julia> bits(mask(BigInt, 3, -1)) <...1 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111000> ``` """ mask(::Type{T}, j::Integer, i::Integer) where {T} = mask(T, i-j) << j # alternate implementation mask_2(::Type{T}, j::Integer, i::Integer) where {T} = mask(T, i) & ~mask(T, j) mask(j::Integer, i::Integer) = mask(Word, j, i) # ** masked """ masked(x, [j::Integer], i::Integer) -> typeof(x) Return the result of applying the mask `mask(x, [j], i)` to `x`, i.e. `x & mask(x, [j], i)`. If `x` is a float, apply the mask to the underlying bits. # Examples ```jldoctest julia> masked(0b11110011, 1, 5) === 0b00010010 true julia> x = rand(); masked(-x, 0, 63) === x true ``` """ masked(x, i::Integer) = x & mask(typeof(x), i) masked(x, j::Integer, i::Integer) = x & mask(typeof(x), j, i) masked(x::AbstractFloat, i::Integer) = reinterpret(typeof(x), masked(asint(x), i)) masked(x::AbstractFloat, j::Integer, i::Integer) = reinterpret(typeof(x), masked(asint(x), j, i)) # ** low0 & low1, scan0 & scan1 """ low0(x, n::Integer=1) low1(x, n::Integer=1) Return the position of the `n`th `0` (for `low0`) or `1` (for `low1`) in `x. # Examples ```jldoctest julia> low0(0b10101, 2) 4 julia> low1(0b10101, 4) == Bits.NOTFOUND true ``` """ low0, low1 low0(x) = scan0(x) low1(x) = scan1(x) low0(x, n::Integer) = low1(~asint(x), n) function low1(x, n::Integer) i = 0 while n > 0 i = scan1(x, i+1) i === 0 && break n -= 1 end i end """ scan0(x, n::Integer=1) scan1(x, n::Integer=1) Return the position of the first `0` (for `scan0`) or `1` (for `scan1`) after or including `n` in `x`. # Examples ```jldoctest julia> scan0(0b10101, 1) 2 julia> scan1(0b10101, 6) == Bits.NOTFOUND true ``` """ scan0, scan1 scan0(x, i::Integer=1) = scan1(~asint(x), i) function scan1(x, i::Integer=1) i < 1 && return NOTFOUND y = asint(x) >>> (i % UInt - 1) iszero(y) ? NOTFOUND : i + trailing_zeros(y) end @assert NOTFOUND === 0 # unfortunately, in Base.GMP.MPZ the wrapper converts to Int and fails for big(-1) or big(0) scan0(x::BigInt, i::Integer=1) = 1 + ccall((:__gmpz_scan0, :libgmp), Culong, (Ref{BigInt}, Culong), x, i % Culong - 1) % Int scan1(x::BigInt, i::Integer=1) = 1 + ccall((:__gmpz_scan1, :libgmp), Culong, (Ref{BigInt}, Culong), x, i % Culong - 1) % Int # * bits & BitVector1 """ bits(x::Real) Create an immutable view on the bits of `x` as a vector of `Bool`, similar to a `BitVector`. If `x` is a `BigInt`, the vector has length [`Bits.INF`](@ref). Currently, no bounds check is performed when indexing into the vector. # Examples ```jldoctest julia> v = bits(Int16(2^8+2^4+2+1)) <00000001 00010011> julia> permutedims([v[i] for i in 8:-1:1]) 1×8 Array{Bool,2}: false false false true false false true true julia> bits(true) <1> julia> bits(big(2)^63) <...0 10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000> julia> bits(Float32(-7)) <1|10000001|1100000 00000000 00000000> julia> ans[1:23] # creates a vector of bits with a specific length <1100000 00000000 00000000> ``` """ bits(x::Real) = BitVector1(x) # ** BitVector1 # similar to a BitVector, but with only 1 word to store bits (instead of 1 array thereof) abstract type AbstractBitVector1 <: AbstractVector{Bool} end struct BitVector1{T<:Real} <: AbstractBitVector1 x::T end struct BitVector1Mask{T<:Real} <: AbstractBitVector1 x::T len::Int end Base.size(v::BitVector1) = (bitsize(v.x),) Base.size(v::BitVector1Mask) = (v.len,) Base.getindex(v::AbstractBitVector1, i::Integer) = tstbit(v.x, i) function Base.getindex(v::AbstractBitVector1, a::AbstractVector{<:Integer}) xx, _ = foldl(a, init=(zero(asint(v.x)), 0)) do xs, i x, s = xs (x | bit(v.x, i) << s, s+1) end BitVector1Mask(xx, length(a)) end function Base.getindex(v::AbstractBitVector1, a::AbstractUnitRange{<:Integer}) j, i = extrema(a) x = masked(asint(v.x), j-1, i) >> (j-1) BitVector1Mask(x, length(a)) end # ** show sig_exp_bits(x) = Base.Math.significand_bits(typeof(x)), Base.Math.exponent_bits(typeof(x)) sig_exp_bits(x::BigFloat) = precision(x), MPFR_EXP_BITSIZE showsep(io, x, i) = (i % 8 == 0) && print(io, ' ') function showsep(io, x::AbstractFloat, i) sigbits, expbits = sig_exp_bits(x) if i == sigbits || i == sigbits + expbits print(io, '|') elseif i < sigbits && i % 8 == 0 || i > sigbits && (i-sigbits) % 8 == 0 print(io, ' ') end end function Base.show(io::IO, v::AbstractBitVector1) if v.x isa BigInt && v isa BitVector1 print(io, "<...", v.x < 0 ? "1 " : "0 ") else print(io, "<") end l = v isa BitVector1 ? lastactualpos(v.x) : v.len for i = l:-1:1 i != l && showsep(io, v.x, i) show(io, v[i] % Int) end print(io, ">") end Base.show(io::IO, ::MIME"text/plain", v::AbstractBitVector1) = show(io, v) end # module
Bits
https://github.com/rfourquet/Bits.jl.git
[ "MIT" ]
0.2.0
525d055f0c6b9476e6dcf032286383ea941a395c
code
6885
using Bits, Test using Bits: NOTFOUND x ≜ y = typeof(x) == typeof(y) && x == y @testset "bitsize" begin for T in (Base.BitInteger_types..., Float16, Float32, Float64) @test bitsize(T) === sizeof(T) * 8 @test bitsize(zero(T)) === bitsize(one(T)) === bitsize(T) end @test bitsize(BigInt) === Bits.INF @test bitsize(Bool) === 1 @test bitsize(Float64) === 64 @test bitsize(Float32) === 32 @test bitsize(Float16) === 16 @test_throws MethodError bitsize(BigFloat) @test bitsize(BigFloat(1, 256)) == 321 @test bitsize(BigFloat(1, 100)) == 165 end @testset "bit functions" begin @testset "weight" begin for T = (Base.BitInteger_types..., BigInt) @test weight(T(123)) === 6 T == BigInt && continue @test weight(typemax(T)) === bitsize(T) - (T <: Signed) @test weight(typemin(T)) === Int(T <: Signed) end @test weight(big(-1)) === weight(big(-999)) === Bits.INF end @testset "bit & tstbit" begin val(::typeof(bit), x) = x val(::typeof(tstbit), x) = x % Bool for _bit = (bit, tstbit) for T = (Base.BitInteger_types..., BigInt) T0, T1 = T(0), T(1) @test _bit(T(0), rand(1:bitsize(T))) ≜ val(_bit, T0) @test _bit(T(1), 1) ≜ val(_bit, T1) @test _bit(T(1), 2) ≜ val(_bit, T0) @test _bit(T(5), 1) ≜ val(_bit, T1) @test _bit(T(5), 2) ≜ val(_bit, T0) @test _bit(T(5), 3) ≜ val(_bit, T1) @test _bit(T(5), 4) ≜ val(_bit, T0) end @test _bit( 1.0, 64) ≜ val(_bit, 0) @test _bit(-1.0, 64) ≜ val(_bit, 1) @test _bit( Float32(1.0), 32) ≜ val(_bit, Int32(0)) @test _bit(-Float32(1.0), 32) ≜ val(_bit, Int32(1)) x = BigFloat(-1.0, 128) for i=1:128+65 @test _bit(x, i) == val(_bit, big(i ∈ [128, 129, 128+65])) end end end @testset "mask" begin for T = Base.BitInteger_types i = rand(0:min(999, bitsize(T))) @test mask(T, i) ≜ Bits.mask_2(T, i) @test mask(T) ≜ -1 % T end i = rand(0:bitsize(Bits.Word)) @test mask(Bits.Word, i) === mask(i) @test mask(Bits.Word) === mask() @test mask(0) == 0 @test mask(1) == 1 @test mask(Sys.WORD_SIZE) === mask() === 0xffffffffffffffff @test mask(UInt64, 64) == mask(64) @test mask(UInt64, 63) == 0x7fffffffffffffff @test mask(BigInt, 0) ≜ big(0) @test mask(BigInt, 1) ≜ big(1) @test mask(BigInt, 1024) ≜ big(2)^1024 - 1 # 2-arg mask for T = (Base.BitInteger_types..., BigInt) j, i = minmax(rand(0:min(999, bitsize(T)), 2)...) m = mask(T, j, i) @test m ≜ Bits.mask_2(T, j, i) if T === Bits.Word @test m === mask(j, i) end @test count_ones(m) == i-j @test m >>> j ≜ mask(T, i-j) @test mask(T, j, -1) ≜ ~mask(T, j) end @test mask(UInt64, 2, 4) === 0x000000000000000c end @testset "masked" begin for T = (Base.BitInteger_types..., BigInt) j, i = minmax(rand(0:min(999, bitsize(T)), 2)...) @test masked(mask(T), j) ≜ mask(T, j) @test masked(mask(T), j, i) ≜ mask(T, j, i) @test masked(mask(T, i), i) ≜ mask(T, i) @test masked(mask(T, i), j, i) ≜ mask(T, j, i) T == BigInt && continue x = rand(T) @test masked(x, j) ≜ x & mask(T, j) @test masked(x, j, i) ≜ x & mask(T, j, i) end @test masked(0b11110011, 1, 5) ≜ 0b00010010 @test masked(-1.0, 52, 63) === 1.0 end @testset "low0, low1, scan0, scan1" begin for T = (Base.BitInteger_types..., BigInt) x = T(0b01011010) @test low1(x, 0) == NOTFOUND @test low1(x) == 2 @test low1(x, 1) == 2 @test low1(x, 2) == 4 @test low1(x, 3) == 5 @test low1(x, 4) == 7 for i = 5:min(128, bitsize(T))+1 @test low1(x, i) == NOTFOUND end @test low0(x, 0) == NOTFOUND @test low0(x) == 1 @test low0(x, 1) == 1 @test low0(x, 2) == 3 @test low0(x, 3) == 6 @test low0(x, 4) == 8 for i = 5:min(128, bitsize(T)) @test low0(x, i) == (i+4 <= bitsize(T) ? i+4 : NOTFOUND) end @test scan1(x, 0) == NOTFOUND @test scan1(x, 1) == 2 @test scan1(x) == 2 @test scan1(x, 2) == 2 @test scan1(x, 3) == 4 @test scan1(x, 4) == 4 @test scan1(x, 5) == 5 @test scan1(x, 6) == 7 @test scan1(x, 7) == 7 for i = 8:min(128, bitsize(T))+1 @test scan1(x, i) == NOTFOUND end @test scan0(x, 0) == NOTFOUND @test scan0(x, 1) == 1 @test scan0(x) == 1 @test scan0(x, 2) == 3 @test scan0(x, 3) == 3 @test scan0(x, 4) == 6 @test scan0(x, 5) == 6 @test scan0(x, 6) == 6 @test scan0(x, 7) == 8 @test scan0(x, 8) == 8 for i = 9:min(128, bitsize(T)) @test scan0(x, i) == i end T === BigInt && continue @test scan0(x, bitsize(T)+1) == NOTFOUND end end end @testset "bits" begin for T in Base.BitInteger_types v = bits(one(T)) @test length(v) == bitsize(T) @test v[1] === true @test count(v) == 1 v = bits(zero(T)) @test length(v) == bitsize(T) @test v[1] === false @test count(v) == 0 end v = bits(7) @test v[1] === v[2] === v[3] === true @test count(v) == 3 for T = (Int64, UInt64) v = bits(T(2)^63) @test v[64] === true @test count(v) == 1 end @test bits(Float64(-16))[53:end] == [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1] @test count(bits(Float64(-16))) == 4 @testset "array indexing" begin v = bits(1234)[1:8] @test v == [0, 1, 0, 0, 1, 0, 1, 1] @test v isa Bits.BitVector1Mask v = bits(1.2)[10:17] @test v == [1, 0, 0, 1, 1, 0, 0, 1] @test v isa Bits.BitVector1Mask{Int64} @test all(bits(123)[[1, 2, 4, 5, 6, 7]]) @test count(bits(123)) == 6 # test optimization for v[i:j] for T = (Base.BitInteger_types..., BigInt) i, j = minmax(rand(1:min(999, bitsize(T)), 2)...) v = bits(rand(T == BigInt ? (big(-999):big(999)) : T)) @test v[i:j] == v[i:1:j] end end end
Bits
https://github.com/rfourquet/Bits.jl.git
[ "MIT" ]
0.2.0
525d055f0c6b9476e6dcf032286383ea941a395c
docs
841
# Bits [![Build Status](https://travis-ci.org/rfourquet/Bits.jl.svg?branch=master)](https://travis-ci.org/rfourquet/Bits.jl) This package implements functions to play with bits, of integers, and of floats to a certain extent. For example: ```julia julia> bits(0b110101011) <00000001 10101011> julia> ans[1:4] <1011> ``` Currently, the following functions are exported: `bit`, `bits`, `bitsize`, `low0`, `low1`, `mask`, `masked`, `scan0`, `scan1`, `tstbit`, `weight`. They have a docstring, but no HTML documentation is available yet. In these functions, the right-most bit of a value has index `1`, but in some applications it's more natural for it to have index `0`. So the functions will likely be also implemented with indexes starting at `0`, and both alternatives will be available. It's possible that the default will be changed.
Bits
https://github.com/rfourquet/Bits.jl.git
[ "MIT" ]
0.1.0
a3bd92d3cd222cd5cf9aa602ffe842faa909773a
code
2282
module AsmMacro export @asm function gen_arg(args, arg::Expr) if arg.head === :ref string(arg.args[2], "(", gen_arg(args, arg.args[1]), ")") elseif arg.head === :macrocall string(".", string(arg.args[1])[2:end]) else error("?!! $arg") end end function gen_arg(args, arg::Symbol) idx = findfirst(isequal(arg), args) idx === nothing && return string("%", arg) "\$$(idx-1)" end # TODO add more of those typ_to_llvm(::Type{Float64}) = "double" typ_to_llvm(::Type{Float32}) = "float" typ_to_llvm(::Type{Int32}) = "i32" typ_to_llvm(::Type{Int64}) = "i64" typ_to_llvm(::Type{Ptr{T}}) where {T} = typ_to_llvm(Int) const DEBUG_ASM = Ref(false) function gen_asm(args, xs) io = IOBuffer() argnames = Symbol[] typs = [] for a in args isa(a,Expr) && a.head === :(::) || error("invalid arg sig $a") typ = eval(a.args[2]) push!(argnames,a.args[1]) push!(typs,typ) end println(io, "call void asm \"") for ex in xs isa(ex, LineNumberNode) && continue isa(ex, Expr) && ex.head === :line && continue if isa(ex,Expr) if ex.head === :call op = string(ex.args[1]) opargs = join(map(a -> gen_arg(argnames, a), ex.args[2:end]), ", ") println(io, op, " ", opargs) elseif ex.head === :macrocall println(io, ".", string(ex.args[1])[2:end], ":") else dump(ex) error("unknown expr $ex") end else error("??? $(typeof(ex))") end end llvmtypes = map(typ_to_llvm, typs) for i = 1:length(llvmtypes) llvmtypes[i] = string(llvmtypes[i], " %", i-1) end constr = map(_ -> "r", llvmtypes) println(io, "\",\"", join(constr, ","), "\"(", join(llvmtypes, ", "), ")") println(io, "ret void") asm = String(take!(io)) DEBUG_ASM[] && println(asm) Expr(:call, GlobalRef(Base, :llvmcall), asm, Cvoid, Tuple{typs...}, args...) end macro asm(f) @assert f.head === :function sig = f.args[1] @assert sig.head === :call body = f.args[2] @assert body.head === :block body.args = Any[gen_asm(sig.args[2:end], body.args)] esc(f) end end # module
AsmMacro
https://github.com/YingboMa/AsmMacro.jl.git
[ "MIT" ]
0.1.0
a3bd92d3cd222cd5cf9aa602ffe842faa909773a
code
1336
using AsmMacro, Test @testset "@asm" begin @asm function add_loop_vec2(x::Ptr{Float64},n::Int,z::Ptr{Float64}) movq(n, rcx) movapd(x[0], xmm0) xorpd(xmm1,xmm1) @loop addpd(xmm0,xmm1) dec(rcx) jnz(@loop) movapd(xmm1, z[0]) end x = [1.0,2.0] n = 10 z = similar(x) add_loop_vec2(pointer(x),n,pointer(z)) @test z == x*n @asm function add(z::Ptr{Int64}, x::Int64, y::Int64) addq(x, y) movq(y, z[0]) end z = Int64[100] add(pointer(z), Int64(1), Int64(2)) @test z[1] === Int64(3) @asm function add(z::Ptr{Int32}, x::Int32, y::Int32) addl(x, y) movl(y, z[0]) end z = Int32[100] add(pointer(z), Int32(1), Int32(2)) @test z[1] === Int32(3) @asm function add(z::Ptr{Float64}, x::Float64, y::Float64) vaddsd(xmm0, xmm1, xmm1) movq(xmm1, z[0]) end z = Float64[100] add(pointer(z), Float64(1), Float64(2)) @test z[1] === Float64(3.0) @asm function add(z::Ptr{Float32}, x::Float32, y::Float32) vaddss(xmm0, xmm1, xmm1) movq(xmm1, z[0]) end z = Float32[100] add(pointer(z), Float32(1), Float32(2)) @test z[1] === Float32(3.0) @test_throws Any (@eval @asm function add(x::Float64) ___ end) end
AsmMacro
https://github.com/YingboMa/AsmMacro.jl.git
[ "MIT" ]
0.1.0
a3bd92d3cd222cd5cf9aa602ffe842faa909773a
docs
1283
# AsmMacro.jl [![Build Status](https://travis-ci.org/YingboMa/AsmMacro.jl.svg?branch=master)](https://travis-ci.org/YingboMa/AsmMacro.jl) [![codecov](https://codecov.io/gh/YingboMa/AsmMacro.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/YingboMa/AsmMacro.jl) `AsmMacro.jl` provides a relatively simple way to write assembly code in Julia. ## Examples ```julia using AsmMacro # z[1:4] <- x[1:4] + y[1:4] @asm function add_avx256(x::Ptr{Float64},y::Ptr{Float64},z::Ptr{Float64}) vmovupd(x[0], ymm0) vmovupd(y[0], ymm1) vaddpd(ymm0, ymm1, ymm1) vmovupd(ymm1, z[0]) end x = [1.0,2.0,3.0,4.0] y = [4.0,3.0,2.0,1.0] z = similar(x) add_avx256(pointer(x),pointer(y),pointer(z)) julia> z 4-element Array{Float64,1}: 5.0 5.0 5.0 5.0 ``` ```julia using AsmMacro # z[1:2] <- x[1:2]*n (with a loop) @asm function add_loop_sse(x::Ptr{Float64},n::Int,z::Ptr{Float64}) movq(n, rcx) movapd(x[0], xmm0) xorpd(xmm1,xmm1) @loop addpd(xmm0,xmm1) dec(rcx) jnz(@loop) movapd(xmm1, z[0]) end x = [1.0,2.0] n = 10 z = similar(x) add_loop_sse(pointer(x),n,pointer(z)) julia> z 2-element Array{Float64,1}: 10.0 20.0 ``` ## Acknowledgement This package is based on the original code by [Oscar Blumberg](https://github.com/carnaval).
AsmMacro
https://github.com/YingboMa/AsmMacro.jl.git
[ "MIT" ]
0.4.2
4d90e518619265f7e97d16fdb6aa6af492d82285
code
3972
module ScanDir export scandir, scandirtree, DirEntry import Base.Filesystem: uv_dirent_t import Base: uv_error, _sizeof_uv_fs module PosixFileTypes @enum PosixFileType Unknown File Directory Link FIFO Socket CharDev BlockDev end using .PosixFileTypes: PosixFileType struct DirEntry name::String path::String type::PosixFileType end function Base.show(io::IO, ::MIME"text/plain", e::DirEntry) print(io, "<", lowercase(string(e.type)), " ", repr(e.path), ">") end _islink(e::DirEntry) = e.type == PosixFileTypes.Link for (i,s) in enumerate((:isfile, :isdir, :islink, :isfifo, :issocket, :ischardev, :isblockdev)) @eval Base.Filesystem.$s(e::DirEntry) = e.type == PosixFileType($i) || _islink(e) && $s(e.path) end filename(e::DirEntry) = e.name # Implementation copied from Base.readdir and modified to return DirEntry's function scandir(dir::AbstractString="."; sort=true) # Allocate space for uv_fs_t struct req = Libc.malloc(_sizeof_uv_fs) try # defined in sys.c, to call uv_fs_readdir, which sets errno on error. err = ccall(:uv_fs_scandir, Int32, (Ptr{Cvoid}, Ptr{Cvoid}, Cstring, Cint, Ptr{Cvoid}), C_NULL, req, dir, 0, C_NULL) err < 0 && uv_error("readdir($(repr(dir)))", err) # iterate the listing into entries entries = DirEntry[] ent = Ref{uv_dirent_t}() while Base.UV_EOF != ccall(:uv_fs_scandir_next, Cint, (Ptr{Cvoid}, Ptr{uv_dirent_t}), req, ent) ent_name = unsafe_string(ent[].name) ent_path = joinpath(dir, ent_name) push!(entries, DirEntry(ent_name, ent_path, PosixFileType(ent[].typ))) end # Clean up the request string # on newer julia versions this can be: Base.Filesystem.uv_fs_req_cleanup(req) ccall(:uv_fs_req_cleanup, Cvoid, (Ptr{Cvoid},), req) # sort entries unless opted out sort && sort!(entries; by=filename) return entries finally Libc.free(req) end end _channel_try_io(f, channel, onerror) = try f() catch err isa(err, Base.IOError) || rethrow() try onerror(err) catch err2 close(channel, err2) end return end # Implementation copied from Base.walkdir and modified to use scandir, # to avoid unnecessary stat()ing function scandirtree(root="."; topdown=true, follow_symlinks=false, onerror=throw, prune=_->false) function _scandirtree(chnl, root) isfilelike(e) = (!follow_symlinks && islink(e)) || !isdir(e) tryf(f, p) = _channel_try_io(()->f(p), chnl, onerror) content = tryf(scandir, root) content === nothing && return dirs = DirEntry[] files = DirEntry[] for entry in content prune(entry) && continue filelike = tryf(isfilelike, entry) filelike === nothing && return push!(filelike ? files : dirs, entry) end if topdown push!(chnl, (; root, dirs, files)) end for dir in dirs _scandirtree(chnl, joinpath(root, dir.name)) end if !topdown push!(chnl, (; root, dirs, files)) end nothing end TreeEntry = NamedTuple{(:root, :dirs, :files), Tuple{String, Vector{DirEntry}, Vector{DirEntry}}} return Channel{TreeEntry}(chnl -> _scandirtree(chnl, root)) end function walkdir(root="."; topdown=true, follow_symlinks=false, onerror=throw, prune=_->false) scan_channel = scandirtree(root; topdown, follow_symlinks, onerror, prune) WalkdirEntry = NamedTuple{(:root, :dirs, :files), Tuple{String, Vector{String}, Vector{String}}} return Channel{WalkdirEntry}() do channel _channel_try_io(channel, onerror) do for (root, dirs, files) in scan_channel push!(channel, (; root, dirs = [e.name for e in dirs], files = [e.name for e in files])) end end end end end # module
ScanDir
https://github.com/yha/ScanDir.jl.git
[ "MIT" ]
0.4.2
4d90e518619265f7e97d16fdb6aa6af492d82285
code
5963
using Test using ScanDir # Tests copied and modified from julia's test/file.jl dirwalk = mktempdir() cd(dirwalk) do for i=1:2 mkdir("sub_dir$i") open("file$i", "w") do f end mkdir(joinpath("sub_dir1", "subsub_dir$i")) touch(joinpath("sub_dir1", "file$i")) end touch(joinpath("sub_dir2", "file_dir2")) has_symlinks = !Sys.iswindows() || (Sys.windows_version() >= Sys.WINDOWS_VISTA_VER) follow_symlink_vec = has_symlinks ? [true, false] : [false] has_symlinks && symlink(abspath("sub_dir2"), joinpath("sub_dir1", "link")) for prune_subsub in [false, true] prune = prune_subsub ? e->startswith(e.name,"subsub") : _->false subsubs = prune_subsub ? [] : ["subsub_dir1", "subsub_dir2"] for follow_symlinks in follow_symlink_vec chnl = ScanDir.walkdir(".", follow_symlinks=follow_symlinks, prune=prune) root, dirs, files = take!(chnl) @test root == "." @test dirs == ["sub_dir1", "sub_dir2"] @test files == ["file1", "file2"] root, dirs, files = take!(chnl) @test root == joinpath(".", "sub_dir1") if has_symlinks if follow_symlinks @test dirs == ["link"; subsubs] @test files == ["file1", "file2"] else @test dirs == subsubs @test files == ["file1", "file2", "link"] end else @test dirs == subsubs @test files == ["file1", "file2"] end root, dirs, files = take!(chnl) if follow_symlinks @test root == joinpath(".", "sub_dir1", "link") @test dirs == [] @test files == ["file_dir2"] root, dirs, files = take!(chnl) end if !prune_subsub for i=1:2 @test root == joinpath(".", "sub_dir1", "subsub_dir$i") @test dirs == [] @test files == [] root, dirs, files = take!(chnl) end end @test root == joinpath(".", "sub_dir2") @test dirs == [] @test files == ["file_dir2"] @test !isready(chnl) end for follow_symlinks in follow_symlink_vec chnl = ScanDir.walkdir(".", follow_symlinks=follow_symlinks, topdown=false, prune=prune) root, dirs, files = take!(chnl) if follow_symlinks @test root == joinpath(".", "sub_dir1", "link") @test dirs == [] @test files == ["file_dir2"] root, dirs, files = take!(chnl) end if !prune_subsub for i=1:2 @test root == joinpath(".", "sub_dir1", "subsub_dir$i") @test dirs == [] @test files == [] root, dirs, files = take!(chnl) end end @test root == joinpath(".", "sub_dir1") if has_symlinks if follow_symlinks @test dirs == ["link"; subsubs] @test files == ["file1", "file2"] else @test dirs == subsubs @test files == ["file1", "file2", "link"] end else @test dirs == subsubs @test files == ["file1", "file2"] end root, dirs, files = take!(chnl) @test root == joinpath(".", "sub_dir2") @test dirs == [] @test files == ["file_dir2"] root, dirs, files = take!(chnl) @test root == "." @test dirs == ["sub_dir1", "sub_dir2"] @test files == ["file1", "file2"] @test !isready(chnl) end end # These subtly depend on timing, so removed for now # TODO need better way to test onerror # #test of error handling # chnl_error = ScanDir.walkdir(".") # chnl_noerror = ScanDir.walkdir(".", onerror=x->x) # root, dirs, files = take!(chnl_error) # #@show root # @test root == "." # @test dirs == ["sub_dir1", "sub_dir2"] # @test files == ["file1", "file2"] # rm(joinpath("sub_dir1"), recursive=true) # @test_throws Base.IOError take!(chnl_error) # throws an error because sub_dir1 do not exist # root, dirs, files = take!(chnl_noerror) # @test root == "." # @test dirs == ["sub_dir1", "sub_dir2"] # @test files == ["file1", "file2"] # root, dirs, files = take!(chnl_noerror) # skips sub_dir1 as it no longer exist # @test root == joinpath(".", "sub_dir2") # @test dirs == [] # @test files == ["file_dir2"] # Test that symlink loops don't cause errors if has_symlinks mkdir(joinpath(".", "sub_dir3")) foo = joinpath(".", "sub_dir3", "foo") # this symlink requires admin privileges on Windows: symlink_err = false try symlink("foo", foo) catch e symlink_err = true showerror(stderr, e); println(stderr) @warn "Could not create symlink. Symlink loop tests skipped." end if !symlink_err let files = ScanDir.walkdir(joinpath(".", "sub_dir3"); follow_symlinks=true) # wording of this error differs on julia 1.5, so just check for IOError #@test_throws Base._UVError("stat($(repr(foo)))", Base.UV_ELOOP) take!(files) @test_throws Base.IOError take!(files) end root, dirs, files = take!(ScanDir.walkdir(joinpath(".", "sub_dir3"); follow_symlinks=false)) @test root == joinpath(".", "sub_dir3") @test dirs == [] @test files == ["foo"] end end end rm(dirwalk, recursive=true)
ScanDir
https://github.com/yha/ScanDir.jl.git
[ "MIT" ]
0.4.2
4d90e518619265f7e97d16fdb6aa6af492d82285
docs
2762
# ScanDir.jl *Faster reading of directories* This package provides two functions: - `scandir`, which returns a vector of `DirEntry` objects, each specifying a filename and a type (file, directory, link etc.). - `ScanDir.walkdir`, which is a faster version of `Base.walkdir`, using `scandir` to avoid unnecessary `stat` calls. Julia's builtin `readdir` function returns filenames in a directory but discards the type information returned from the underlying `libuv` function call. The `scandir` function exposes this information in the `DirEntry` struct. The name `scandir` was chosen to parallel python's `os.scandir`, which offers similar functionality. Benchmarks of `ScanDir.walkdir` on one Windows machine have shown a speedup factor of 4\~4.5 on a local drive, and 30\~35 (!) on a network-mapped drive, compared to `Base.walkdir`. ## Usage `scandir(path::AbstractString=".")` returns a vector of `DirEntry`. Each `DirEntry`'s filename is accessible via the `name` field. Its type can be queried by the standard `Base` functions (`isfile`, `isdir`, `islink`, `isfifo`, `issocket`, `ischardev`, `isblockdev`). This will only call `stat` if necessary -- which happens if the entry is a symlink and the type of the target needs to be determined. In this case, the link is followed from the path supplied to `scandir`, so the result may depend on the working directory if that path is relative. ```julia julia> dir = mktempdir(); julia> cd(dir) julia> mkdir("subdir"); julia> touch("file"); julia> symlink("subdir", "link") julia> entries = scandir() 3-element Array{ScanDir.DirEntry,1}: ScanDir.DirEntry("file", ".\\file", 1) ScanDir.DirEntry("link", ".\\link", 3) ScanDir.DirEntry("subdir", ".\\subdir", 2) julia> isdir.(entries) # triggers `stat` call for "link" only 3-element BitArray{1}: 0 1 1 ``` `ScanDir.walkdir` is a faster implementation of `Base.walkdir` (https://docs.julialang.org/en/v1/base/file/#Base.Filesystem.walkdir), and has a compatible interface. Its interface differs from `Base.walkdir` in two ways: - it returns named tuples (root=..., dirs=..., file=...) - it supports a `prune` keyword argument to filter the returned contents. ```julia julia> touch("subdir/file2"); julia> mkdir("subdir/skipme"); julia> touch("subdir/skipme/file3"); julia> collect(ScanDir.walkdir(".")) 3-element Array{Any,1}: (root = ".", dirs = ["subdir"], files = ["file", "link"]) (root = ".\\subdir", dirs = ["skipme"], files = ["file2"]) (root = ".\\subdir\\skipme", dirs = String[], files = ["file3"]) julia> collect(ScanDir.walkdir(".", prune = e->startswith(e.name, "skip"))) 2-element Array{Any,1}: (root = ".", dirs = ["subdir"], files = ["file", "link"]) (root = ".\\subdir", dirs = String[], files = ["file2"]) ```
ScanDir
https://github.com/yha/ScanDir.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
10994
#TODO add precompile statements """ kmeans(data::PopData; k::Int64, iterations::Int64 = 100, matrixtype::Symbol = :pca) Perform Kmeans clustering (using Kmeans++) on a `PopData` object. Returns a `KmeansResult` object. Use the keyword argument `iterations` (default: 100) to set the maximum number of iterations allowed to achieve convergence. Interally, kmeans clustering is performed on either the principal components of the scaled allele frequencies, or just the scaled allele frequencies themselves. In both cases, `missing` values are replaced by the global mean allele frequency. **Keyword Arguments** - `k`: the number of desired clusters, given as an `Integer` - `iterations::Int64`: the maximum number of iterations to attempt to reach convergence (default: `100`) - `matrixtype`: type of input matrix to compute (default: `:pca`) - `:pca`: matrix of Principal Components - `:freq`: matrix of scaled allele frequencies **Example** ```julia julia> cats = @nancycats ; julia> km = kmeans(cats, k = 2) ``` """ function kmeans(data::PopData; k::Int64, iterations::Int64 = 100, matrixtype::Symbol = :pca) mtx = matrixtype == :pca ? pca(data, center = false, scale = true).proj |> permutedims : matrixtype == :freq ? matrix(data, center = false, scale = true) : throw(ArgumentError("matrixtype :$matrixtype invalid, choose between :pca or :freq")) kmeans(mtx, k, maxiter = iterations) end """ kmedoids(data::PopData; k::Int64, iterations::Int64 = 100, distance::PreMetric = euclidean, matrixtype::Symbol = :pca) Perform Kmedoids clustering on a `PopData` object. Returns a `KmedoidsResult` object. Use the keyword argument `iterations` (default: 100) to set the maximum number of iterations allowed to achieve convergence. Interally, kmeans clustering is performed on either the principal components of the scaled allele frequencies, or just the scaled allele frequencies themselves. In both cases, `missing` values are replaced by the global mean allele frequency. **Keyword Arguments** - `k`: the number of desired clusters, given as an `Integer` - `iterations::Int64`: the maximum number of iterations to attempt to reach convergence (default: `100`) - `distance`: type of distance matrix to calculate on `matrixtype` (default: `euclidean`) - see [Distances.jl](https://github.com/JuliaStats/Distances.jl) for a list of options (e.g. sqeuclidean, etc.) - `matrixtype`: type of input matrix to compute (default: `:pca`) - `:pca`: matrix of Principal Components - `:freq`: matrix of scaled allele frequencies """ function kmedoids(data::PopData; k::Int64, iterations::Int64 = 100, distance::PreMetric = euclidean, matrixtype::Symbol = :pca) mtx = matrixtype == :pca ? pairwise(distance, pca(data, center = false, scale = true).proj |> permutedims, dims = 2) : matrixtype == :freq ? pairwise(distance, matrix(data, center = false, scale = true), dims = 1) : throw(ArgumentError("matrixtype :$matrixtype invalid, choose between :pca or :freq")) kmedoids(mtx, k, maxiter = iterations) end """ hclust(data::PopData; linkage::Symbol = :single, branchorder::Symbol = :r, distance::PreMetric = euclidean, matrixtype::Symbol = :pca) An expansion of `Clustering.hclust` (from Clustering.jl) to perform hierarchical clustering on a PopData object. This is a convenience method which converts the `PopData` object to either an allele frequency or PCA matrix, converts that into a distance matrix, and performs hierarchical clustering on that distance matrix. Returns an `Hclust` object, which contains many metrics but does not include cluster assignments. Use `cutree(::PopData, ::Hclust; krange...)` to compute the sample assignments for a range of `k` clusters. **Keyword Arguments** - `linkage`: defines how the distances between the data points are aggregated into the distances between the clusters (default: `:single`) - `:single`: use the minimum distance between any of the cluster members - `:average`: use the mean distance between any of the cluster members - `:complete`: use the maximum distance between any of the members - `:ward`: the distance is the increase of the average squared distance of a point to its cluster centroid after merging the two clusters - `:ward_presquared`: same as `:ward`, but assumes that the distances in the distance matrix are already squared. - `branchorder`: algorithm to order leaves and branches (default: `:r`) - `:r`: ordering based on the node heights and the original elements order (compatible with R's hclust) - `:optimal`: branches are ordered to reduce the distance between neighboring leaves from separate branches using the "fast optimal leaf ordering" [algorithm](https://doi.org/10.1093/bioinformatics/17.suppl_1.S22) - `distance`: type of distance matrix to calculate on `matrixtype` (default: `euclidean`) - see [Distances.jl](https://github.com/JuliaStats/Distances.jl) for a list of options (e.g. sqeuclidean, etc.) - `matrixtype`: type of input matrix (default: `:pca`) - `:pca`: matrix of Principal Components - `:freq`: matrix of allele frequencies """ function hclust(data::PopData; linkage::Symbol = :single, branchorder::Symbol = :r, distance::PreMetric = euclidean, matrixtype::Symbol = :pca) mtx = matrixtype == :pca ? pairwise(distance, pca(data, center = false, scale = true).proj |> permutedims, dims = 2) : matrixtype == :freq ? pairwise(distance, matrix(data, center = false, scale = true), dims = 1) : throw(ArgumentError("matrixtype :$matrixtype invalid, choose between :pca or :freq")) hclust(mtx, linkage = linkage, branchorder = branchorder) end """ cutree(::PopData, hcres::Hclust; krange::UnitRange{Int64}, height::Union{Int64, Nothing} = nothing) cutree(::PopData, hcres::Hclust; krange::Vector{Int64}, height::Union{Int64, Nothing} = nothing) An expansion to the `Clustering.cutree` method (from Clustering.jl) that performs cluster assignments over `krange` on the `Hclust` output from `hclust()`. Returns a `DataFrame` of sample names and columns corresponding to assignments per k in `krange`. The `PopData` object is used only for retrieving the sample names. **Keyword Arguments** - `krange`: the number of desired clusters, given as a vector (ex. `[2,4,5]`) or range (`2:5`) - `h::Integer`: the height at which the tree is cut (optional) """ function cutree(data::PopData, hcres::Hclust; krange::Union{UnitRange{Int64},Vector{Int64}}, height::Union{Int64, Nothing} = nothing) tmp = map(i -> cutree(hcres, k = i, h = height), krange) out = DataFrame([tmp[i] for i in 1:length(krange)], Symbol.(krange)) insertcols!(out, 1, :name => unique(data.genodata.name)) return out end """ fuzzycmeans(data::PopData; c::Int64, fuzziness::Int64 = 2, iterations::Int64 = 100, matrixtype::Symbol = :pca) An expansion of `Clustering.fuzzy_cmeans` (from Clustering.jl) to perform Fuzzy C-means clustering on a PopData object. This is a convenience method which converts the `PopData` object to either an allele frequency or PCA matrix, and performs Fuzzy C-means clustering on the Euclidean distance matrix of that. Returns a `FuzzyCMeansResult` object, which contains the assignment weights in the `.weights` field. **Keyword Arguments** - `c`: the number of desired clusters, given as an `Integer` - `fuzziness::Integer`: clusters' fuzziness, must be >1 (default: `2`) - a fuzziness of 2 is common for systems with unknown numbers of clusters - `iterations::Int64`: the maximum number of iterations to attempt to reach convergence (default: `100`) - `matrixtype`: type of input matrix to compute (default: `:pca`) - `:pca`: matrix of Principal Components - `:freq`: matrix of scaled allele frequencies """ function fuzzycmeans(data::PopData; c::Int64, fuzziness::Int64 = 2, iterations::Int64 = 100, matrixtype::Symbol = :pca) mtx = matrixtype == :pca ? pca(data, center = false, scale = true).proj |> permutedims : matrixtype == :freq ? matrix(data, center = false, scale = true) : throw(ArgumentError("matrixtype :$matrixtype invalid, choose between :pca or :freq")) fuzzy_cmeans(mtx, c, fuzziness, maxiter = iterations) end """ dbscan(::PopData; radius::Float64, minpoints::Int64 = 2, distance::PreMetric = euclidean, matrixtype::Symbol = :pca) An expansion of `Clustering.dbscan` (from Clustering.jl) to perform Density-based Spatial Clustering of Applications with Noise (DBSCAN) on a PopData object. This is a convenience method which converts the `PopData` object to either an allele frequency or PCA matrix, and performs DBSCAN clustering on the distance matrix of that. Returns a `DbscanResult` object, which contains the assignments in the `.assignments` field. **Keyword Arguments** - `radius::Float64`: the radius of a point neighborhood - `minpoints::Int`: the minimum number of a core point neighbors (default: `2`) - `distance`: type of distance matrix to calculate on `matrixtype` (default: `euclidean`) - see [Distances.jl](https://github.com/JuliaStats/Distances.jl) for a list of options (e.g. sqeuclidean, etc.) - `matrixtype`: type of input matrix (default: `:pca`) - `:pca`: matrix of Principal Components - `:freq`: matrix of allele frequencies """ function dbscan(data::PopData; radius::Float64, minpoints::Int64 = 2, distance::PreMetric = euclidean, matrixtype::Symbol = :pca) mtx = matrixtype == :pca ? pairwise(distance, pca(data, center = false, scale = true).proj |> permutedims, dims = 2) : matrixtype == :freq ? pairwise(distance, matrix(data, center = false, scale = true), dims = 1) : throw(ArgumentError("matrixtype :$matrixtype invalid, choose between :pca or :freq")) dbscan(mtx, radius, minpoints) end """ ```julia cluster(::PopData, method::Function ; kwargs) ``` A convenience wrapper to perform clustering on a `PopData` object determined by a designated `method` (see below). The chosen method must also be supplied with the appropriate keyword arguments for that method. For more information on a specific method, see its docstring with `?methodname` **Clustering Methods** - `kmeans`: K-means++ clustering - kwargs: `k`, `iterations`, `matrixtype` - `kmedoids`: K-medoids clustering - kwargs: `k`, `iterations`, `distance`, `matrixtype` - `hclust`: Hierarchical clustering - kwargs: `linkage`, `branchorder`, `distance`, `matrixtype` - `fuzzycmeans`: Fuzzy C-means lustering - kwargs: `c`, `fuzziness`, `iterations`, `matrixtype` - `dbscan`: Density-based Spatial Clustering of Applications with Noise (DBSCAN) - kwargs: `radius`, `minpoints`, `distance`, `matrixtype` """ function cluster(data::PopData, method::Function ; kwargs...) methodlist = [:kmeans, :kmedoids, :hclust, :fuzzycmeans, :dbscan] Symbol(method) ∉ methodlist && throw(ArgumentError("$method (2nd positional argument) is not a valid method. See `?cluster` for more information.")) method(data; kwargs...) end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
10796
""" missingdata(data::PopData; by::Union{String, Symbol} = "sample") Get missing genotype information in a `PopData`. Specify a mode of operation to return a DataFrame corresponding with that missing information. #### Modes - "sample" - returns a count and list of missing loci per individual (default) - "population" - returns a count of missing genotypes per population - "locus" - returns a count of missing genotypes per locus - "locusxpopulation" - returns a count of missing genotypes per locus per population ### Example: ``` missingdata(@gulfsharks, by = "pop") ``` """ function missingdata(data::PopData; by::Union{String, Symbol} = "sample") if string(by) ∈ ["sample", "population", "locus", "locusxpopulation"] _missingdata(data, Val(Symbol(by))) else throw(ArgumentError("Mode \"$by\" not recognized. Please specify one of: sample, population, locus, or full")) end end function _missingdata(data::PopData, ::Val{:sample}) DataFrames.combine(DataFrames.groupby(data.genodata, :name), :genotype => (i -> count(ismissing, i)) => :missing) end function _missingdata(data::PopData, ::Val{:population}) DataFrames.combine(DataFrames.groupby(data.genodata, :population), :genotype => (i -> count(ismissing, i)) => :missing) end function _missingdata(data::PopData, ::Val{:locus}) DataFrames.combine(DataFrames.groupby(data.genodata, :locus), :genotype => (i -> count(ismissing, i)) => :missing) end function _missingdata(data::PopData, ::Val{:locusxpopulation}) DataFrames.combine(DataFrames.groupby(data.genodata, [:locus, :population]), :genotype => (i -> count(ismissing, i)) => :missing) end function _pwiseidenticalhelper(x::T,y::U)::Float64 where T<:AbstractArray where U<:AbstractArray μsum = 0 l = 0 for i in 1:length(x) eq = x[i] == y[i] μsum += eq === missing ? 0 : eq l += eq === missing ? 0 : 1 end return μsum / l end """ pairwiseidentical(data::PopData) Return a pairwise matrix of the percent of identical genotypes at each locus between all pairs of individuals. ### Example: ``` julia> cats = @nancycats ; julia> pairwiseidentical(cats) 237×237 Named Matrix{Float64} A ╲ B │ N215 N216 … N289 N290 ──────┼────────────────────────────────────────── N215 │ 1.0 0.5 … 0.142857 0.166667 N216 │ 0.5 1.0 0.142857 0.166667 N217 │ 0.25 0.125 0.125 0.142857 N218 │ 0.375 0.25 0.25 0.142857 N219 │ 0.375 0.375 0.25 0.142857 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ N296 │ 0.5 0.333333 0.0 0.0 N297 │ 0.166667 0.166667 0.428571 0.285714 N281 │ 0.142857 0.142857 0.25 0.428571 N289 │ 0.142857 0.142857 1.0 0.142857 N290 │ 0.166667 0.166667 … 0.142857 1.0 ``` """ function pairwiseidentical(data::PopData) locmtx = locimatrix(data) ids = samplenames(data) n = length(ids) result = NamedArray(zeros(Float64, n, n)) setnames!(result, String.(ids),1) setnames!(result, String.(ids),2) @inbounds for i in 1:n-1 @inbounds v1 = view(locmtx,i,:) @inbounds for j in i+1:n @inbounds v2 = view(locmtx,j,:) res = _pwiseidenticalhelper(v1, v2) @inbounds result[i,j] = res @inbounds result[j,i] = res end end # fill in diagonal for i in 1:n @inbounds result[i,i] = 1.0 end return result end """ pairwiseidentical(data::PopData, sample_names::Vector{String}) Return a pairwise matrix of the percent of identical genotypes at each nonmissing locus between all pairs of provided `sample_names`. ### Example: ``` julia> cats = @nancycats ; julia> interesting_cats = samplenames(cats)[1:5] 5-element Array{String,1}: "N215" "N216" "N217" "N218" "N219" julia> pairwiseidentical(cats, interesting_cats) 5×5 Named Matrix{Float64} A ╲ B │ N217 N218 N219 N220 N221 ──────┼───────────────────────────────────────────────── N217 │ 1.0 0.0 0.111111 0.222222 0.111111 N218 │ 0.0 1.0 0.333333 0.111111 0.444444 N219 │ 0.111111 0.333333 1.0 0.111111 0.333333 N220 │ 0.222222 0.111111 0.111111 1.0 0.222222 N221 │ 0.111111 0.444444 0.333333 0.222222 1.0 ``` """ function pairwiseidentical(data::PopData, sample_names::Vector{T}) where T<:AbstractString all_samples = samplenames(data) missingsamples = setdiff(sample_names, all_samples) if !isempty(missingsamples) throw(ArgumentError("Samples not found in the PopData:\n " * join(missingsamples, "\n "))) end sampidx = indexin(sample_names, all_samples) locmtx = locimatrix(data) n = length(sampidx) result = NamedArray(zeros(Float64, n, n)) s_names = T == String ? sample_names : string.(sample_names) setnames!(result, s_names,1) setnames!(result, s_names,2) @inbounds for i in 1:n-1 @inbounds v1 = view(locmtx,sampidx[i],:) @inbounds for j in i+1:n @inbounds v2 = view(locmtx,sampidx[j],:) res = _pwiseidenticalhelper(v1, v2) @inbounds result[i,j] = res @inbounds result[j,i] = res end end # fill in diagonal for i in 1:n @inbounds result[i,i] = 1.0 end return result end """ genofreqtable(data::PopData; by::Union{Symbol,String} = "global") Return a table of the observed `global` (default) or `population` genotype frequencies in a PopData object. ### Example: ``` julia> cats = @nancycats ; julia> genofreqtable(cats) 341×4 DataFrame Row │ locus genotype count frequency │ String Tuple… Int64 Float64 ─────┼─────────────────────────────────────── 1 │ fca8 (135, 143) 16 0.0737327 2 │ fca8 (133, 135) 9 0.0414747 3 │ fca8 (135, 135) 23 0.105991 4 │ fca8 (137, 143) 8 0.0368664 ⋮ │ ⋮ ⋮ ⋮ ⋮ 338 │ fca37 (206, 220) 1 0.00421941 339 │ fca37 (208, 218) 1 0.00421941 340 │ fca37 (184, 184) 3 0.0126582 341 │ fca37 (208, 210) 3 0.0126582 333 rows omitted julia> genofreqtable(cats, by = "population") 1094×5 DataFrame Row │ locus population genotype count frequency │ String String Tuple… Int64 Float64 ──────┼────────────────────────────────────────────────── 1 │ fca8 1 (135, 143) 3 0.375 2 │ fca8 1 (133, 135) 2 0.25 3 │ fca8 1 (135, 135) 2 0.25 4 │ fca8 1 (137, 143) 1 0.125 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ 1091 │ fca37 17 (208, 208) 10 0.769231 1092 │ fca37 17 (182, 182) 1 0.0769231 1093 │ fca37 17 (182, 208) 1 0.0769231 1094 │ fca37 17 (208, 220) 1 0.0769231 1086 rows omitted ``` """ function genofreqtable(data::PopData; by::Union{Symbol,String} = "global") strby = lowercase(string(by)) if strby == "global" grp = groupby(dropmissing(data.genodata, :genotype), [:locus, :genotype]) counts = DataFrames.combine(grp, nrow => :count) counts = DataFrames.combine( groupby(counts, :locus), :genotype, :count, :count => (x -> x / sum(x)) => :frequency ) elseif strby == "population" grp = groupby(dropmissing(data.genodata, :genotype), [:locus, :population, :genotype]) counts = DataFrames.combine(grp, nrow => :count) counts = DataFrames.combine( groupby(counts, [:locus, :population]), :genotype, :count, :count => (x -> x / sum(x)) => :frequency ) else throw(ArgumentError("Please use by = \"global\" (default) or \"population\"")) end end """ allelefreqtable(data::PopData; by::Union{Symbol,String} = "global") Return a table of the observed `global` (default) or `population` allele frequencies in a PopData object. ### Example: ``` julia> cats = @nancycats ; julia> allelefreqtable(cats) 108×4 DataFrame Row │ locus allele count frequency │ String Int16? Int64 Float64 ─────┼─────────────────────────────────── 1 │ fca8 135 105 0.241935 2 │ fca8 143 44 0.101382 3 │ fca8 133 33 0.0760369 4 │ fca8 137 83 0.191244 ⋮ │ ⋮ ⋮ ⋮ ⋮ 105 │ fca37 226 2 0.00421941 106 │ fca37 216 7 0.0147679 107 │ fca37 224 2 0.00421941 108 │ fca37 204 6 0.0126582 100 rows omitted julia> allelefreqtable(cats, by = "population") 839×5 DataFrame Row │ locus population allele count frequency │ String String Int16? Int64 Float64 ─────┼────────────────────────────────────────────── 1 │ fca8 1 135 9 0.5625 2 │ fca8 1 143 4 0.25 3 │ fca8 1 133 2 0.125 4 │ fca8 1 137 1 0.0625 ⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ 836 │ fca37 16 210 5 0.208333 837 │ fca37 17 208 22 0.846154 838 │ fca37 17 182 3 0.115385 839 │ fca37 17 220 1 0.0384615 831 rows omitted ``` """ function allelefreqtable(data::PopData; by::Union{Symbol,String} = "global") strby = lowercase(string(by)) if strby == "global" grp = groupby(dropmissing(data.genodata, :genotype), :locus) _alleles = DataFrames.combine(grp, :genotype => alleles => :allele, ungroup = false) counts = DataFrames.combine( _alleles, :allele, nrow => :n, ungroup = false ) counts = DataFrames.combine( groupby(DataFrame(counts), [:locus, :allele]), nrow => :count, [:n, :allele] => ((n,al) -> length(al)/first(n)) => :frequency ) elseif strby == "population" grp = groupby(dropmissing(data.genodata, :genotype), [:locus, :population]) _alleles = DataFrames.combine(grp, :genotype => alleles => :allele, ungroup = false) counts = DataFrames.combine( _alleles, :allele, nrow => :n, ungroup = false ) counts = DataFrames.combine( groupby(DataFrame(counts), [:locus, :population, :allele]), nrow => :count, [:n, :allele] => ((n,al) -> length(al)/first(n)) => :frequency ) else throw(ArgumentError("Please use by = \"global\" (default) or \"population\"")) end end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
2611
""" _chisqlocus(locus::T) where T <: GenoArray Calculate the chi square statistic and p-value for a locus Returns a tuple with chi-square statistic, degrees of freedom, and p-value """ function _chisqlocus(locus::T) where T <: GenoArray ## Get expected number of genotypes in a locus expected = genocount_expected(locus) ## Get observed number of genotypes in a locus observed = genocount_observed(locus) chisq_stat = expected @inbounds for (genotype, freq) in expected o = get(observed, genotype, 0.0) e = freq @inbounds chisq_stat[genotype] = (o - e)^2 / e end chisq_stat = sum(values(chisq_stat)) df = length(expected) - allelecount(locus) p_val = df > 0 ? 1.0 - Distributions.cdf(Distributions.Chisq(df), chisq_stat) : missing return (chisq_stat, df, p_val) end """ hwetest(data::PopData; by::String = "locus", correction = "none") Calculate chi-squared test of HWE for each locus and returns observed and expected heterozygosity with chi-squared, degrees of freedom and p-values for each locus. Use `by = "population"` to perform this separately for each population (default: `by = "locus"`). Use `correction =` to specify a P-value adjustment method for multiple testing. #### example `hwetest(@gulfsharks, correction = "bh")` \n `hwetest(@gulfsharks, by = "population", correction = "bh")` \n ### `correction` methods (case insensitive) - `"bonferroni"` : Bonferroni adjustment - `"holm"` : Holm adjustment - `"hochberg"` : Hochberg adjustment - `"bh"` : Benjamini-Hochberg adjustment - `"by"` : Benjamini-Yekutieli adjustment - `"bl"` : Benjamini-Liu adjustment - `"hommel"` : Hommel adjustment - `"sidak"` : Šidák adjustment - `"forwardstop"` or `"fs"` : Forward-Stop adjustment - `"bc"` : Barber-Candès adjustment """ @inline function hwetest(data::PopData; by::String = "locus", correction::String = "none") if by == "locus" out_table =DataFrames.combine( groupby(data.genodata, :locus), :genotype => _chisqlocus => :chisq ) DataFrames.select!(out_table, :locus, :chisq => [:chisq, :df, :P]) else tmp =DataFrames.combine( groupby(data.genodata, [:locus, :population]), :genotype => _chisqlocus => :chisq ) out_table = select!(tmp, :locus, :population, :chisq => [:chisq, :df, :P]) end if correction == "none" return out_table else column_name = Symbol("P_"*correction) transform!(out_table, :P => (i -> _p_adjust(i, correction)) => column_name) end end const hwe = hwetest
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
5841
""" counthet(geno::T, allele::Int) where T<:GenoArray counthet(geno::T, allele::AbstractVector{U}) where T<:GenoArray where U<:Integer Given a `GenoArray`, count the number of times `allele` appears in the heterozygous state. """ function counthet(geno::T, allele::U) where T<:GenoArray where U<:Integer mapreduce(i -> _ishet(i, allele), +, skipmissing(geno)) end function counthet(geno::T, allele::AbstractVector{U}) where T<:GenoArray where U<:Integer tmp = skipmissing(geno) isempty(tmp) && return fill(0, length(allele)) map(_allele -> mapreduce(i -> _ishet(i, _allele), +, tmp), allele) end """ counthom(geno::T, allele::Int) where T<:GenoArray Given a `GenoArray`, count the number of times `allele` appears in the homozygous state. """ function counthom(geno::T, allele::U) where T<:GenoArray where U <: Signed mapreduce(i -> _ishom(i, allele), +, skipmissing(geno)) end function counthom(geno::T, allele::AbstractVector{U}) where T<:GenoArray where U<:Integer tmp = skipmissing(geno) isempty(tmp) && return fill(0, length(allele)) map(_allele -> mapreduce(i -> _ishom(i, _allele), +, tmp), allele) end """ _genediversitynei87(het_exp::Union{Missing,AbstractFloat}, het_obs::Union{Missing,AbstractFloat}, n::Union{Integer, Float64}, corr::Bool = true) Calculate overall gene diversity with the adjustment/correction, use `corr = false` to ignore sample-size correction `* n/(n-1)`. Hₜ = 1 −sum(pbar²ᵢ + Hₛ/(ñ * np) − Het_obs/(2ñ*np)) - _ñ_ is the number of genotypes for a locus for a population - _np_ is the number of genotypes of a locus across all populations - i.e. sum(_ñ_) - _pbar²_ is the observed homozygosity of a locus for that population - _Hₛ_ is the within population gene diversity given by: - Hₛ = ñ/(ñ-1) * (1 - sum(pbar²ᵢ - Het_observed / 2ñ)) (Nei M. (1987) Molecular Evolutionary Genetics. Columbia University Press). """ @inline function _genediversitynei87(het_exp::T, het_obs::T, n::Union{Integer,T}; corr::Bool = true) where T<: AbstractFloat corr_val = corr ? n/(n-1.0) : 1.0 return @fastmath (het_exp - (het_obs/n/2.0)) * corr_val end @inline function _genediversitynei87(het_exp::AbstractFloat, het_obs::Missing, n::Union{Integer,AbstractFloat}; corr::Bool = true) return missing end @inline function _genediversitynei87(het_exp::Missing, het_obs::AbstractFloat, n::Union{Integer,AbstractFloat}; corr::Bool = true) return missing end @inline function _genediversitynei87(het_exp::Missing, het_obs::Missing, n::Union{Integer,AbstractFloat}; corr::Bool = true) return missing end """ _hetero_obs(data::T) where T <: GenoArray Returns observed heterozygosity as a mean of the number of heterozygous genotypes, defined as genotypes returning `true` for `_ishet()`. This is numerically feasible because `true` values are mathematically represented as `1`, whereas `false` are represented as `0`. """ @inline function _hetero_obs(data::T) where T <: GenoArray skipm = skipmissing(data) isempty(skipm) && return missing h = 0 n = 0.0 for i in skipm h += _ishet(i) n += 1.0 end h / n end """ _hetero_exp(allele_freqs::Vector{T}) where T <: GenoArray Returns the expected heterozygosity of an array of genotypes, calculated as 1 - sum of the squared allele frequencies. """ @inline function _hetero_exp(data::T) where T <: GenoArray frq = allelefreq(data) isempty(frq) && return missing exp = 0.0 @inbounds for i in values(frq) exp += i^2 end 1.0 - exp end """ heterozygosity(data::PopData; by::Union{Symbol,String} = "locus") Calculate observed and expected heterozygosity in a `PopData` object. For loci, heterozygosity is calculated in the Nei fashion, such that heterozygosity is calculated as the average over heterozygosity per locus per population. ### Modes - `"locus"` : heterozygosity per locus (default) - `"sample"` : heterozygosity per individual/sample - `"population"`: heterozygosity per population ## Example heterozygosity(@nancycats, by = "population" ) """ function heterozygosity(data::PopData; by::Union{String, Symbol} = "locus") strby = lowercase(string(by)) if strby ∈ ["locus", "sample", "population"] _heterozygosity(data, Val(Symbol(strby))) else error("please specify by = \"locus\", \"sample\", or \"population\"") end end function _heterozygosity(data::PopData, ::Val{:locus}) tmp = DataFrames.combine( groupby(data.genodata, [:locus, :population]), :genotype => nonmissing => :n_tmp, :genotype => _hetero_obs => :het_pop_obs, :genotype => _hetero_exp => :het_pop_exp ) DataFrames.combine( groupby(tmp, :locus), :n_tmp => sum => :n, :het_pop_obs => (h_o -> mean(skipmissing(h_o))) => :het_obs, :het_pop_exp => (h_e -> mean(skipmissing(h_e))) => :het_exp ) end function _heterozygosity(data::PopData, ::Val{:sample}) DataFrames.combine( groupby(data.genodata, :name), :genotype => nonmissing => :n, :genotype => _hetero_obs => :het_obs ) end function _heterozygosity(data::PopData, ::Val{:population}) DataFrames.combine( groupby(data.genodata, :population), :genotype => nonmissing => :n, :genotype => _hetero_obs => :het_obs, :genotype => _hetero_exp => :het_exp ) end #NOTE this is not intended to be performant. It's a convenience function. """ samplehet(data::PopData, individual::String) Calculate the observed heterozygosity for an individual in a `PopData` object. """ @inline function samplehet(data::PopData, individual::String) individual ∉ samplenames(data) && throw(ArgumentError("$individual not found in data")) data.genodata[data.genodata.name .== individual, :genotype] |> _hetero_obs end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
1646
""" pca(data::PopData; maxpc::Int = 0, method::Symbol = :svd, missings::String = "mean", pratio::Float64 = 0.99, center::Bool = false, scale::Bool = true) Perform a Principal Component Analysis on a PopData object. Returns an indexible `MultivariateStats.PCA` object. #### Arguments - `data::PopData`: a `PopData` object #### keyword arguments - `method::Symbol`: The PCA method to use (default: `:svd`) - `:cov`: based on covariance matrix decomposition - `:svd`: based on Singular Value Decomposition of the input data - `maxpc::Int`: The maximum number of principal components to retain (default: 0 = `(min(d, ncol-1))`) - `missings::String`: How to treat missing genotypes in the allele frequency matrix (default: `mean`) - `"mean"`: replace `missing` values with the mean frequency for that allele in that locus - `"missing"`: keep `missing` values as they are - `"zero"`: replace `missing` values with `0` - `pratio::Float64`: The maxium ratio of variances preserved in the principal subspace (default = `0.99`) - `center::Bool`: whether to center the allele frequency matrix (default: `false`) - `scale::Bool`: whether to Z-score scale the allele frequency matrix (default: `true`) """ function pca(data::PopData; maxpc::Int = 0, method::Symbol = :svd, missings::String = "mean", pratio::Float64 = 0.99, center::Bool = false, scale::Bool = true) meankw = center ? 0 : nothing mtx = matrix(data, scale = scale, center = center, missings = missings) pckw = iszero(maxpc) ? min(size(mtx, 1), size(mtx,2) - 1) : maxpc fit(PCA, mtx; maxoutdim=pckw, mean = meankw, pratio = pratio, method = method) end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
3839
""" # Population genetics analyses in Julia Repository: https://www.github.com/biojulia/PopGen.jl/ Documentation: https://biojulia.net/PopGen.jl/ \nA few things things you can do to get started: ## Import Data - `PopGen.read(filename, kwargs...)` - `genepop(infile, kwargs...)` or similar file-specific importer - use available `@gulfsharks` or `@nancycats` datasets ## Explore PopData - `populations(PopData)` to view population information - `loci(PopData)` to view locus names - `samplenames(PopData)` to view sample names - `missingdata(PopData, by = ...)` to view missing information ## Manipulate PopData - `populations!(PopData, ...)` to rename populations - `locations!(PopData, ...)` to add geographical coordinates - `exclude!(PopData, kwargs...)` to selectively remove data ## Analyses - `richness(PopData)` to calculate allelic richness - `Kinship(PopData, method = ...)` to get pairwise Kinship of individuals - `summary(PopData)` to calculate F-statistics, heterozygosity, etc. - `hwetest(PopData)` to test for Hardy-Weinberg Equilibrium - `pairwisefst(PopData)` to calculate FST between pairs of populations - `cluster(PopData, kmeans, k = 3)` to perform Kmeans++ clustering """ module PopGen # o O o O o O o O o O # o | | O o | | O o | | O o | | O o | | O # | | | | O | | | | Dependencies| | | | O | | | | O # O | | o O | | o O | | o O | | o O | | o # O o O o O o O o O o using Reexport using PopGenCore @reexport module PopGenCore export PopData, PopDataInfo, GenoArray, Genotype, SNP, Msat export genodata, metadata, info export isbiallelic, ishom, ishet export baypass, delimited, csv, genepop, vcf, bcf, plink, @nancycats, @gulfsharks export sampleinfo, sampleinfo!, locusinfo, locusinfo!, samplenames, loci export copy, size, sort, dropmonomorphic, dropmonomorphic! export dropmultiallelic, dropmultiallelic! export locationdata, locationdata! export locidataframe, locimatrix export genotypes, genotypes export populations, populations! export exclude, remove, omit, exclude!, remove!, omit!, keep, keep! export filter, filter! end @reexport import PopGenCore: read, write using Distributions, DataFrames, PooledArrays, NamedArrays using Distances using Random: shuffle using OnlineStats using Term.Progress using MultipleTesting, StatsBase import Clustering: kmeans, kmedoids, hclust, Hclust, cutree, fuzzy_cmeans, dbscan import MultivariateStats: fit, PCA import TSne: tsne # o O o O o O o O o O # o | | O o | | O o | | O o | | O o | | O # | | | | O | | | |Include Files| | | | O | | | | O # O | | o O | | o O | | o O | | o O | | o # O o O o O o O o O o include("Utils.jl") # heterozygosity functions include("Heterozygosity.jl") export heterozygosity, samplehet # manipulation and exploration include("DataExploration.jl") export pairwiseidentical, missingdata, genofreqtable, allelefreqtable # summary information include("SummaryInfo.jl") export alleleaverage, richness, summary, summarystats #Analyses include("HardyWeinberg.jl") export hwetest, hwe include("FStatistics/FstGlobal.jl") include("FStatistics/FstByLocus.jl") include("FStatistics/PairwiseFST.jl") include("FStatistics/FstPermutations.jl") export pairwisefst, Hudson, Nei, WeirCockerham include("Kinship/KinshipPairwise.jl") export kinship, kinshiptotable include("Kinship/KinshipMoments.jl") export QuellerGoodnight, Ritland, Lynch, LynchRitland, LynchLi, LiHorvitz, Moran, Blouin, Loiselle #, Wang include("Kinship/KinshipPostHocs.jl") export kinshipposthoc include("Clustering.jl") export cluster, kmeans, kmedoids, hclust, cutree, fuzzycmeans, dbscan include("PCA.jl") export pca include("TSne.jl") export tsne end # module PopGen
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
928
function _onehot_biallelic(data::PopData) data.metadata.biallelic == false && throw(ArgumentError("Data must be biallelic. If practical to do so, use dropmultiallelic() to remove non-biallelic loci")) gmtx = locimatrix(data) mapreduce(hcat, eachcol(gmtx)) do locus alle = uniquebialleles(locus) d = Dict{Union{Missing, NTuple{2, eltype(alle)}}, Int8}( (alle[1], alle[1]) => Int8(0), (alle[1], alle[2]) => Int8(1), (alle[2], alle[2]) => Int8(2), missing => Int8(-1) ) Int8[d[i] for i in locus] end end function randomforest(data::PopData) missing ∈ data.genodata.genotype && throw(error("Unfortunately, random forest analysis cannot work with missing data. You may try to filter out loci and/or samples with missing data or use a genotype inputation method (e.g. fastPhase, BEAGLE).")) input = _onehot_biallelic(data) end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
5474
""" alleleaverage(data::PopData; rounding::Bool = true) Returns a NamedTuple of the average number of alleles ('mean') and standard deviation (`stdev`) of a `PopData`. Use `rounding = false` to not round results. Default (`true`) rounds to 4 digits. """ function alleleaverage(data::PopData; rounding::Bool = true) tmp = richness(data) if rounding (mean = round(mean(tmp.richness), digits = 4), stdev = round(variation(tmp.richness), digits = 4)) else (mean = mean(tmp.richness), stdev = variation(tmp.richness)) end end """ richness(data::PopData; by::String = "locus") Calculates various allelic richness and returns a table of per-locus allelic richness. Use `by = "population"` to calculate richness by locus by population. """ function richness(data::PopData; by::String = "locus") if by == "locus" grp = groupby(data.genodata, :locus) elseif by == "population" grp = groupby(data.genodata, [:locus, :population]) else throw(ArgumentError("Please use by = \"locus\" (default) or \"population\"")) end DataFrames.combine( grp, :genotype => (geno -> length(uniquealleles(geno))) => :richness ) end """ summary(data::PopData; by::String = "global") Provides summary statistics for a `PopData` object. Use `by = "locus"` for summary information by locus. Global values are given as unweighted means of the per-locus parameters. ### Het_obs observed heterozygosity given as:\n 1 - ∑ₖ ∑ᵢ Pₖᵢᵢ/np \n where Pkii represents the proportion of homozygote `i` in sample `k` and `np` is the number of samples in that population ### HT overall gene diversity given as: \n 1 - ∑ᵢ(p̄ᵢ² + (HS / (ñ × np)) - Het_obs / (2 × ñ × np)) \n where p̄ᵢ = ∑ₖpₖᵢ / np ### HS within population gene diversity given as: \n 1 - ∑ᵢ(pᵢ² + HS / (ñ × np) - Het_obs / (2 × ñ × np)) \n where ñ = np / ∑ₖ(1/nₖ) \n where p̄ᵢ² = ∑ₖ(pᵢₖ² / np) ### DST amount of gene diversity among samples given as: \n HT - HS ### DST′ amount of gene diversity among samples adjusted for sample size given as: \n (np / (np-1)) × Dst ### HT′ overall gene diversity adjusted for sample size given as: \n HS + DST′ ### FST proportion of the total genetic variance in subpopulations relative to the total genetic variance given as: \n DST / HT ### FST′ proportion of the total genetic variance in subpopulations relative to the total genetic variance, adjusted for heterozygosity given as: \n DST′ / HT′ ### FIS proportion of the genetic variance in a locus relative to the genetic variance within subpopulations given as: \n 1 - (Het_obs / HS) ### DEST population differentiation (Jost 2008) given as: \n (np/(np-1)) × (Ht'-Hs) / (1-Hs) """ function Base.summary(data::PopData; by::String = "global") # observed/expected het per locus per pop het_df = DataFrames.combine( groupby(data.genodata, [:locus, :population]), :genotype => nonmissing => :n, :genotype => _hetero_obs => :het_obs, :genotype => _hetero_exp => :het_exp, :genotype => allelefreq => :alleles ) # collapse down to retrieve averages and counts n_df = DataFrames.combine( groupby(het_df, :locus), :n => countnonzeros => :count, :n => (n -> countnonzeros(n) / reciprocalsum(n)) => :mn, [:het_obs, :het_exp, :n] => ((o,e,n) -> mean(skipmissing(_genediversitynei87.(e, o, countnonzeros(n) / reciprocalsum(n))))) => :HS, :het_obs => (o -> mean(skipmissing(o)))=> :Het_obs, :alleles => (alleles -> sum(values(avg_allelefreq(alleles, 2))))=> :avg_freq ) Ht = 1.0 .- n_df.avg_freq .+ (n_df.HS ./ n_df.mn ./ n_df.count) - (n_df.Het_obs ./ 2.0 ./ n_df.mn ./ n_df.count) DST = Ht .- n_df.HS DST′ = n_df.count ./ (n_df.count .- 1) .* DST HT′ = n_df.HS .+ DST′ if lowercase(by) == "locus" FIS = 1.0 .- (n_df.Het_obs ./ n_df.HS) FST = DST ./ Ht DEST = DST′ ./ (1.0 .- n_df.HS) FST′ = DST′ ./ HT′ insertcols!( select!( n_df, :locus, :Het_obs => (i -> round.(i, digits = 4)) => :Het_obs, :HS => (i -> round.(i, digits = 4)) => :HS, ), :HT => round.(Ht, digits = 4), :DST => round.(DST, digits = 4), :HT′ => round.(HT′, digits = 4), :DST′ => round.(DST′, digits = 4), :FST => round.(FST, digits = 4), :FST′ => round.(FST′, digits = 4), :FIS => round.(FIS, digits = 4), :DEST => round.(DEST, digits = 4) ) elseif lowercase(by) == "global" Het_obs = mean(skipinfnan(n_df.Het_obs)) HS = mean(skipinfnan(n_df.HS)) Ht = mean(skipinfnan(Ht)) DST = mean(skipinfnan(DST)) DST′ = mean(skipinfnan(DST′)) HT′ = mean(skipinfnan(HT′)) DataFrame( :Het_obs => round.(Het_obs, digits = 4), :HS => round.(HS, digits = 4), :HT => round.(Ht , digits = 4), :DST => round.(DST, digits = 4), :HT′ => round.(HT′, digits = 4), :DST′ => round.(DST′, digits = 4), :FST => round(DST / Ht, digits = 4), :FST′ => round(DST′ / HT′, digits = 4), :FIS => round(1.0 - (Het_obs / HS), digits = 4), :DEST => round(DST′ / (1.0 - HS), digits = 4) ) else throw(ArgumentError("Use by = \"global\" or \"locus\"")) end end const summarystats = summary
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
2283
""" tsne(data::PopData, args...; kwargs...) Perform t-SNE (t-Stochastic Neighbor Embedding) on a PopData object, returning a DataFrame. Converts the PopData object into a matrix of allele frequencies with missing values replaced with the global mean frequency of that allele. First performs PCA on that matrix, retaining `reduce_dims` dimensions of the PCA prior to t-SNE analysis. The positional and keyword arguments are the same as `tsne` from `TSne.jl`. ### Arguments - `data`: a `PopData` object - `ndims`: Dimension of the embedded space (default: `2`) - `reduce_dims` the number of the first dimensions of X PCA to use for t-SNE, if 0, all available dimension are used (default: `0`) - `max_iter`: Maximum number of iterations for the optimization (default: `1000`) - `perplexity`: The perplexity is related to the number of nearest neighbors that is used in other manifold learning algorithms. Larger datasets usually require a larger perplexity. Consider selecting a value between 5 and 50. Different values can result in significantly different results (default: `30`) ### Keyword Arguments (optional) - `distance`: type `Function` or `Distances.SemiMetric`, specifies the function to use for calculating the distances between the rows - `pca_init`: whether to use the first `ndims` of the PCA as the initial t-SNE layout, if `false` (the default), the method is initialized with the random layout - `max_iter`: how many iterations of t-SNE to do - `verbose`: output informational and diagnostic messages - `progress`: display progress meter during t-SNE optimization (default: `true`) - `min_gain`: `eta`: `initial_momentum`, `final_momentum`, `momentum_switch_iter`, `stop_cheat_iter`: `cheat_scale` low-level parameters of t-SNE optimization - `extended_output`: if `true`, returns a tuple of embedded coordinates matrix, point perplexities and final Kullback-Leibler divergence """ function tsne(data::PopData, ndim, reduce_dims, max_iter, perplexity; kwargs...) mtx = freqmatrix_mean(data) _sne = tsne(mtx, ndim, reduce_dims, max_iter, perplexity; kwargs...) res = DataFrame(_sne, String["dim"*"$i" for i in 1:size(_sne, 2)]) insertcols!(res, 1, :name => data.sampleinfo.name, :population => data.sampleinfo.population) return res end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
2641
## experimental and not exported or documented! function _adjacency_matrix(data::PopData) data_loci = groupby(data.genodata, :locus) out_vec = Vector{Array{Int8,2}}(undef, data.metadata.loci) for (j,i) in enumerate(data_loci) uniq = unique(skipmissing(i.genotype)) adj_mat = fill(Int8(0), data.metadata.samples, length(uniq)) for (j,k) in zip(i.genotype, eachrow(adj_mat)) k .= Ref(j) .=== uniq end out_vec[j] = adj_mat end return out_vec end """ _p_adjust(pvals::Vector{T}, method::String) where T <: Union{Missing, <:AbstractFloat} Modification to `MultipleTesting.adjust` to include `missing` values in the returned array. See MultipleTesting.jl docs for full more detailed information. **Example** ``` julia> _p_adjust([0.1, 0.01, 0.005, 0.3], "bh") ``` ### `correction` methods (case insensitive) - `"bonferroni"` : Bonferroni adjustment - `"holm"` : Holm adjustment - `"hochberg"` : Hochberg adjustment - `"bh"` : Benjamini-Hochberg adjustment - `"by"` : Benjamini-Yekutieli adjustment - `"bl"` : Benjamini-Liu adjustment - `"hommel"` : Hommel adjustment - `"sidak"` : Šidák adjustment - `"forwardstop"` or `"fs"` : Forward-Stop adjustment - `"bc"` : Barber-Candès adjustment """ @inline function _p_adjust(pvals::Vector{T}, method::String) where T <: Union{Missing, <:AbstractFloat} # make a dict of all possible tests and their respective functions d = Dict( "bonferroni" => Bonferroni(), "holm" => Holm(), "hochberg" => Hochberg(), "bh" => BenjaminiHochberg(), "by" => BenjaminiYekutieli(), "bl" => BenjaminiLiu(), "hommel" => Hommel(), "sidak" => Sidak(), "forwardstop" => ForwardStop(), "fs" => ForwardStop(), "bc" => BarberCandes(), ) p_copy = copy(pvals) p_copy[.!ismissing.(p_copy)] .= adjust(p_copy[.!ismissing.(p_copy)] |> Vector{Float64}, d[lowercase(method)]) return p_copy end """ _relabel(arr::Vector{T}) where T<:AbstractString Relable a vector of strings into integers as though it is factors. This is useful for reclassifying e.g. population names as integers. """ function _relabel(arr::AbstractVector{T}) where T<:AbstractString findfirst.(isequal.(arr), Ref(unique(arr))) end feature_req() = "\nPlease open an Issue or Pull Request on https://www.github.com/biojulia/PopGen.jl if you would like this feature implemented" """ _is_logging(io) Returns `false` if in a normal session, `true` if in a CI/HPC environment """ _is_logging(io) = isa(io, Base.TTY) == false || (get(ENV, "CI", nothing) == "true")
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
4051
function _hudson_fst_lxl(data::PopData) idx_pdata = groupby(data.genodata, :population) pops = getindex.(keys(idx_pdata), :population) nloci = data.metadata.loci locnames = loci(data) allpairs = pairwisepairs(pops) npops = data.metadata.populations npairs = Int64(npops * (npops-1) / 2) results = Vector{Vector{Union{Missing, Float64}}}(undef, npairs) p1 = PooledArray(repeat(getindex.(allpairs,1), inner = nloci), compress = true) p2 = PooledArray(repeat(getindex.(allpairs,2), inner = nloci), compress = true) locs = PooledArray(repeat(locnames, outer = npairs), compress = true) @inbounds @sync for (i,j) in enumerate(allpairs) Base.Threads.@spawn begin @inbounds pop1 = reshape(idx_pdata[(population = j[1],)].genotype, :, nloci) @inbounds pop2 = reshape(idx_pdata[(population = j[2],)].genotype, :, nloci) @inbounds results[i] = _hudson_fst_lxl(pop1, pop2) end end return PairwiseFST( DataFrame(:population1 => p1, :population2 => p2,:locus => locs, :fst => reduce(vcat, results)), "Hudson estimator" ) end function _hudson_fst_lxl(population_1::T, population_2::T) where T<:AbstractMatrix @views Union{Float64,Missing}[Hudson(population_1[:,i], population_2[:,i]) for i in 1:size(population_1,2)] end function _nei_fst_lxl(population_1::T, population_2::T) where T<:AbstractMatrix result = Vector{Union{Missing,Float64}}(undef, size(population_1, 2)) for (i,p1) in enumerate(eachcol(population_1)) p2 = view(population_2, :, i) n1 = nonmissing(p1) n2 = nonmissing(p2) # number of populations represented per locus n_pop_per_loc = Float64((n1 > 0) + (n2 > 0)) n_pop_per_loc < 2.0 && continue # corrected n for population size corr_n_per_loc = n_pop_per_loc / (reciprocal(n1) + reciprocal(n2)) # observed heterozygosity het_obs_p1 = _hetero_obs(p1) het_obs_p2 = _hetero_obs(p2) # expected heterozygosity het_exp_p1 = _hetero_exp(p1) het_exp_p2 = _hetero_exp(p2) # genic diversity for population 1 and 2 p1_nei = _genediversitynei87(het_exp_p1, het_obs_p1, corr_n_per_loc) p2_nei = _genediversitynei87(het_exp_p2, het_obs_p2, corr_n_per_loc) # mean genic diversity HS = (p1_nei + p2_nei) / n_pop_per_loc alle_freq_p1 = allelefreq(p1) alle_freq_p2 = allelefreq(p2) avg_freq = sum(values(avg_allelefreq([alle_freq_p1, alle_freq_p2],2))) Het_obs = (het_obs_p1 + het_obs_p2) / n_pop_per_loc Ht = 1.0 - avg_freq + (HS / corr_n_per_loc / n_pop_per_loc) - (Het_obs / 2.0 / corr_n_per_loc / n_pop_per_loc) DST = 2 * (Ht - HS) DST′ = DST * (n_pop_per_loc - 1) HT′ = HS + DST′ @inbounds result[i] = round(DST′ / HT′, digits = 5) end return result end function _nei_fst_lxl(data::PopData) idx_pdata = groupby(data.genodata, :population) pops = getindex.(keys(idx_pdata), :population) npops = length(pops) nloci = data.metadata.loci locnames = loci(data) allpairs = pairwisepairs(pops) npairs = Int64(npops * (npops-1) / 2) results = Vector{Vector{Union{Missing,Float64}}}(undef, npairs) @inbounds p1 = PooledArray(repeat(getindex.(allpairs,1), inner = nloci), compress = true) @inbounds p2 = PooledArray(repeat(getindex.(allpairs,2), inner = nloci), compress = true) locs = PooledArray(repeat(locnames, outer = npairs), compress = true) @inbounds @sync for (i,j) in enumerate(allpairs) Base.Threads.@spawn begin @inbounds pop1 = reshape(idx_pdata[(population = j[1],)].genotype, :, nloci) @inbounds pop2 = reshape(idx_pdata[(population = j[2],)].genotype, :, nloci) @inbounds results[i] = _nei_fst_lxl(pop1, pop2) end end return PairwiseFST( DataFrame(:population1 => p1, :population2 => p2,:locus => locs, :fst => reduce(vcat, results)), "Nei estimator" ) end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
9056
function Hudson(data::PopData) idx_pdata = groupby(data.genodata, :population) pops = getindex.(keys(idx_pdata), :population) npops = data.metadata.populations n_loci = data.metadata.loci results = zeros(Float64, npops, npops) @sync for i in 2:npops Base.Threads.@spawn begin for j in 1:(i-1) @inbounds pop1 = reshape(idx_pdata[i].genotype, :, n_loci) @inbounds pop2 = reshape(idx_pdata[j].genotype, :, n_loci) @inbounds results[i,j] = Hudson(pop1,pop2) end end end return PairwiseFST(DataFrame(results, Symbol.(pops)), "Hudson et al. 1992") end # helper function to do the math for Hudson FST on a locus function Hudson(pop1::T, pop2::T) where T<:GenoArray p1_frq = allelefreq(pop1) p2_frq = allelefreq(pop2) # find the first allele and assume it's "p" p_allele = first(keys(p1_frq)) p1 = get(p1_frq, p_allele, 0.0) q1 = 1.0 - p1 p2 = get(p2_frq, p_allele, 0.0) q2 = 1.0 - p2 # degrees of freedom is the number of loci - 1 df1 = (nonmissing(pop1) * 2.0) - 1.0 df2 = (nonmissing(pop2) * 2.0) - 1.0 numerator = (p1 - p2)^2 - (p1*q1/df1) - (p2*q2/df2) denominator = (p1*q2) + (p2*q1) return numerator/denominator end function Hudson(population_1::T, population_2::T) where T<:AbstractMatrix tot = 0.0 n = 0.0 for i in 1:size(population_1, 2) fst = Hudson(view(population_1,:,i), view(population_2,:,i)) tot += !isnan(fst) && !ismissing(fst) ? fst : continue n += 1.0 end return tot/n end ## Nei 1987 FST ## function Nei(population_1::T, population_2::T) where T<:AbstractMatrix DSTtot = 0.0 HTtot = 0.0 Ntot = 0.0 for (i,p1) in enumerate(eachcol(population_1)) p2 = view(population_2, :, i) n1 = nonmissing(p1) n2 = nonmissing(p2) # number of populations represented per locus n_pop_per_loc = Float64((n1 > 0) + (n2 > 0)) n_pop_per_loc < 2.0 && continue # corrected n for population size corr_n_per_loc = n_pop_per_loc / (reciprocal(n1) + reciprocal(n2)) # observed heterozygosity het_obs_p1 = _hetero_obs(p1) het_obs_p2 = _hetero_obs(p2) # expected heterozygosity het_exp_p1 = _hetero_exp(p1) het_exp_p2 = _hetero_exp(p2) # genic diversity for population 1 and 2 p1_nei = _genediversitynei87(het_exp_p1, het_obs_p1, corr_n_per_loc) p2_nei = _genediversitynei87(het_exp_p2, het_obs_p2, corr_n_per_loc) # mean genic diversity HS = (p1_nei + p2_nei) / n_pop_per_loc alle_freq_p1 = allelefreq(p1) alle_freq_p2 = allelefreq(p2) avg_freq = sum(values(avg_allelefreq([alle_freq_p1, alle_freq_p2],2))) Het_obs = (het_obs_p1 + het_obs_p2) / n_pop_per_loc Ht = 1.0 - avg_freq + (HS / corr_n_per_loc / n_pop_per_loc) - (Het_obs / 2.0 / corr_n_per_loc / n_pop_per_loc) DST = 2 * (Ht - HS) DST′ = DST * (n_pop_per_loc - 1) HT′ = HS + DST′ DSTtot += DST′ HTtot += HT′ Ntot += 1.0 end return round((DSTtot/Ntot) / (HTtot/Ntot), digits = 5) end function Nei(data::PopData) idx_pdata = groupby(data.genodata, :population) pops = getindex.(keys(idx_pdata), :population) npops = data.metadata.populations n_loci = data.metadata.loci results = zeros(Union{Missing,Float64}, npops, npops) @inbounds @sync for i in 2:npops Base.Threads.@spawn begin @inbounds for j in 1:(i-1) @inbounds pop1 = reshape(idx_pdata[i].genotype, :, n_loci) @inbounds pop2 = reshape(idx_pdata[j].genotype, :, n_loci) @inbounds results[i,j] = Nei(pop1,pop2) end end end return PairwiseFST(DataFrame(results, Symbol.(pops)), "Nei 1987") end ## Weir & Cockerham 1984 FST ## function WeirCockerham(population_1::T, population_2::T) where T<:AbstractMatrix n_pops = 2 # get genotype counts # reshape as a matrix of loci x pop (row x col) n_per_locpop = hcat(map(nonmissing, eachcol(population_1)), map(nonmissing, eachcol(population_2))) n_total = sum(n_per_locpop, dims = 2) # screen for completely absent loci present_loc = 0 .∉ eachrow(n_per_locpop) if 0 ∈ present_loc # index locus names by the missing indices pop_1 = @view population_1[:,present_loc] pop_2 = @view population_2[:,present_loc] n_per_locpop = hcat(map(nonmissing, eachcol(pop_1)), map(nonmissing, eachcol(pop_2))) n_total = sum(n_per_locpop, dims = 2) else pop_1 = population_1 pop_2 = population_2 end merged = vcat(pop_1, pop_2) n_pop_per_loc = map(countnonzeros, eachrow(n_per_locpop)) # global allele counts glob_allelecounts = map(allelecount, eachcol(merged)) # global allele frequencies glob_allelefreqs = map(allelefreq, eachcol(merged)) # allele freqs per locus per population pop_1_freq = map(allelefreq, eachcol(pop_1)) pop_2_freq = map(allelefreq, eachcol(pop_2)) # expand out the n matrix to be same dimensions as uniquealleles x pop n_expanded = reduce(hcat, repeat.(eachrow(n_per_locpop), 1, glob_allelecounts)) |> permutedims # expand n_total matrix to be same dimensions as uniquealleles x pop n_tot_expanded = reduce(vcat, repeat.(eachrow(n_total), glob_allelecounts)) # calculate corrected n per locus corr_n_per_loc = (n_total .- (sum(n_per_locpop .^2, dims = 2) ./ n_total)) ./ (n_pop_per_loc .- 1) # expand corr_n matrix to be same dimensions as uniquealleles x pop corr_n_per_loc_exp = reduce(vcat, repeat.(eachrow(corr_n_per_loc), glob_allelecounts)) # list of alleles in each locus _alleles_perloc = [sort(uniquealleles(i)) for i in eachcol(merged)] # extremely convoluted, creates a big matrix of allele freqs per locus per population # TODO are there too many reshapes going on? #TODO move into its own function? This seems like it could be a recurring thing afreq_tmp = hcat(pop_1_freq, pop_2_freq) allelefreq_pop = reshape( reduce(vcat, map(zip(eachrow(afreq_tmp), _alleles_perloc)) do (_freqs_p, _alle) reduce(hcat, map(_freqs_p) do _freqs [get(_freqs, i, 0.) for i in _alle] # query the dict of allele freqs end ) end ), :, n_pops # reshape by these dimensions ) # global allele freqs _freqs = map(i -> values(sort(i)), glob_allelefreqs) |> Base.Iterators.flatten |> collect #heterozygotes per allele per locus per population # gets emptied from the popfirst! calls below(!) _p1 = collect(eachcol(pop_1)) _p2 = collect(eachcol(pop_2)) genos_vec = permutedims([_p1 _p2])[:] # create matrix of heterozygote occurrences per allele per pop het_mtx = reduce(vcat, # vcat will concatenate the returned matrices into a single matrix map(_alleles_perloc) do _alleles # map across the vector of alleles for each locus reduce(hcat, # each element in x is locus × population, so use a comprehension to # do counthet() as many times as there are populations, popfirst!'ing # the first element of x until it's ultimately empty # then concatenate it into a matrix [counthet(popfirst!(genos_vec), _alleles) for pop_n in 1: n_pops] ) end ) μ_het = (2 * n_expanded .* allelefreq_pop - het_mtx) / 2 SSG = sum(n_expanded .* allelefreq_pop - μ_het, dims = 2) SSi = sum(n_expanded .* (allelefreq_pop - 2 * allelefreq_pop .^ 2) + μ_het, dims = 2) SSP = 2 .* sum(n_expanded .* reduce(hcat, map(i -> (i .- _freqs) .^ 2, eachcol(allelefreq_pop))), dims = 2) n_correction = reduce(vcat, fill.(n_pop_per_loc, glob_allelecounts)) MSG = SSG ./ n_tot_expanded MSP = SSP ./ (n_correction .- 1) MSI = SSi ./ (n_tot_expanded - n_correction) σ_w = MSG σ_b = 0.5 * (MSI - MSG) σ_a = 0.5 ./ corr_n_per_loc_exp .* (MSP - MSI) σ = hcat(σ_a, σ_b, σ_w) σ_total = map(i -> sum(skipinfnan(i)), eachcol(σ)) fst_total = round(σ_total[1] / sum(σ_total), digits = 5) end function WeirCockerham(data::PopData) idx_pdata = groupby(data.genodata, :population) pops = getindex.(keys(idx_pdata), :population) npops = data.metadata.populations n_loci = data.metadata.loci results = zeros(Float64, npops, npops) @sync for i in 2:npops Base.Threads.@spawn begin for j in 1:(i-1) @inbounds pop1 = reshape(idx_pdata[i].genotype, :, n_loci) @inbounds pop2 = reshape(idx_pdata[j].genotype, :, n_loci) @inbounds results[i,j] = WeirCockerham(pop1,pop2) end end end return PairwiseFST(DataFrame(results, Symbol.(pops)), "Weir & Cockerham") end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
2476
""" _fst_permute(population_1::T, population_2::T) where T<:AbstractMatrix Returns two matrices with rows (samples) shuffled between them. Respects the number of rows of the original matrices (i.e. population sizes). """ function _fst_permute(data::T, n1::Integer, n2::Integer) where T<:AbstractMatrix perm_matrix = @inbounds view(data, shuffle(1:(n1 +n2)), :) #partition shuffled matrix into original sample sizes new_pop_1, new_pop_2 = partitionarray(perm_matrix, [n1, n2]) return new_pop_1, new_pop_2 end #= deprecated? # function _fst_permutation(data::T) where T<:AbstractMatrix @inbounds data[shuffle(1:size(data,1)), :] end =# """ _fst_permution(data::PopData, method::Function, iterations::Int64) Returns a `PairwiseFST` object containing a dataframe of Pairwise FST calculations. The contained dataframe has FST values below the diagonal and P values above it. This method is used internally and wrapped by the public API provided in `pairwisefst()`. """ function _fst_permutation(data::PopData, method::Function, iterations::Int64) idx_pdata = groupby(data.genodata, :population) pops = getindex.(keys(idx_pdata), :population) npops = data.metadata.populations n_loci = data.metadata.loci results = zeros(Float64, npops, npops) #perm_vector = zeros(Int64, iterations-1) pbar = ProgressBar(;refresh_rate=90, transient = true) job = addjob!(pbar; description= "$(string(method)) FST: ", N = Int64((npops * (npops-1))/2)) start!(pbar) @inbounds for i in 2:npops pop1 = reshape(idx_pdata[i].genotype, :, n_loci) n_pop1 = size(pop1, 1) @inbounds for j in 1:(i-1) pop2 = reshape(idx_pdata[j].genotype, :, n_loci) n_pop2 = size(pop2, 1) merged = vcat(pop1, pop2) fst_val = method(pop1,pop2) pval = 0 @inbounds @sync for iter in 1:iterations-1 Base.Threads.@spawn begin @inbounds perm_p1, perm_p2 = _fst_permute(merged, n_pop1, n_pop2) pval += fst_val <= method(perm_p1, perm_p2) end end @inbounds results[i,j] = fst_val @inbounds results[j,i] = (pval + 1) / iterations update!(job) end end stop!(pbar) println("Below diagonal: FST values | Above diagonal: P values") return PairwiseFST(DataFrame(results, Symbol.(pops)), "$method estimator (with p-values)") end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
2829
# generate a wrapper struct so we can nicely print the results """ ```julia struct PairwiseFST results::DataFrame method::String ``` A convenience data structure which stores the `results` and `method` of a `pairwisefst` analysis. The object pretty-prints a bit more information to the console, especially when doing a global pairwise FST. """ struct PairwiseFST results::DataFrame method::String end # pretty-printing of FST results function Base.show(io::IO, data::PairwiseFST) issymmetrical = size(data.results, 1) == size(data.results, 2) rwnames = issymmetrical ? names(data.results) : nothing show( io, data.results, show_row_number = false, rowlabel = Symbol(" "), eltypes = false, row_names = rwnames, title = "Pairwise FST: " * data.method ) end #TODO update the docs with this implementation """ pairwisefst(data::PopData; method::Function, by::String = "global", iterations::Int64) Calculate pairwise FST between populations in a `PopData` object. Set `iterations` to a value greater than `0` to perform a single-tailed permutation test to obtain P-values of statistical significance. Use `by = "locus"` to perform a locus-by-locus FST for population pairs (iterations and significance testing ignored). Returns a `PairwiseFST` object, stores a `DataFrame` of the `results`, along with the `method` used to obtain the estimates. #### Methods: - `Hudson`: Hudson et al. (1992) method (only for biallelic data) - `Nei`: Nei (1987) method - `WeirCockerham` : Weir & Cockerham (1984) method (default) **Examples** ```julia data = @nancycats wc = pairwise_fst(data, method = WeirCockerham) wc_sig = pairwise_fst(data, iterations = 1000) ``` """ function pairwisefst(data::PopData; method::Function = WeirCockerham, by::String = "global", iterations::Int64 = 0) # sanity checks mth = Symbol(method) if mth ∉ [:Hudson, :Nei, :WeirCockerham] throw(ArgumentError("The \`method\` keyword argument ($method) is not recognized and must be one of Hudson, Nei, or WeirCockerham. See ?pairwisefst for usage information")) elseif mth == :Hudson isbiallelic(data) || throw(ArgumentError("Data must be biallelic to se the Hudson estimator")) end if by == "locus" if mth == :Hudson return _hudson_fst_lxl(data) elseif mth == :Nei return _nei_fst_lxl(data) else throw(ArgumentError("Method $mth is not (yet) supported for by-locus calculations.")) end elseif by == "global" if iterations == 0 method(data) else _fst_permutation(data, method, iterations) end else throw(ArgumentError("The keyword argument \`by\` must be either \"global\" or \"locus\"")) end end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
8475
using Convex using ECOS """ probability_state_table(x::Tuple, y::Tuple, loc::Symbol, alleles::Dict) Calculate the probability of observing the particular allele state given each of the 9 Jacquard Identity States for a single locus to create Table 1 from Milligan 2003. """ function probability_state_table(x::Tuple, y::Tuple, alleles::Dict) #TODO Improve how groups are decided based on how similar things are done with moments estimators #= Calculate Pr(Li | Sj) If the allele identity falls into this class (L1-L9), generate the probabilities of it belonging to each of the different classes and return that array of 9 distinct probabilities =# ## class L1 - AᵢAᵢ AᵢAᵢ ## if x[1] == x[2] == y[1] == y[2] p = alleles[x[1]] [p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4] ## class L2 - AᵢAᵢ AⱼAⱼ ## elseif (x[1] == x[2]) & (y[1] == y[2]) & (x[1] != y[1]) p = (alleles[x[1]], alleles[y[1]]) [0, prod(p), 0, prod(p) * p[2], 0, prod(p) * p[1], 0, 0, prod(p) * prod(p)] ## class L3a - AᵢAᵢ AᵢAⱼ ## - has issues because of allele order elseif ((x[1] == x[2] == y[1]) & (x[1] != y[2])) p = (alleles[x[1]], alleles[y[2]]) [0, 0, prod(p), 2 * prod(p) * p[1], 0, 0, 0, prod(p) * p[1], 2 * prod(p) * p[1]^2] ## class L3b - AᵢAᵢ AⱼAᵢ ## - has issues because of allele order elseif ((x[1] == x[2] == y[2]) & (x[1] != y[1])) p = (alleles[x[1]], alleles[y[1]]) [0, 0, prod(p), 2 * prod(p) * p[1], 0, 0, 0, prod(p) * p[1], 2 * prod(p) * p[1]^2] ## class L4 - AᵢAᵢ AⱼAₖ ## elseif (x[1] == x[2]) & (y[1] != y[2]) & (x[1] != y[1]) & (x[1] != y[2]) p = (alleles[x[1]], alleles[y[1]], alleles[y[2]]) [0, 0, 0, 2 * prod(p), 0, 0, 0, 0, 2 * prod(p) * p[1]] ## L5a - AiAj AiAi ## - has issues because of allele order elseif ((x[1] == y[1] == y[2]) & (x[1] != x[2])) p = (alleles[x[1]], alleles[x[2]]) [0, 0, 0, 0, prod(p), 2 * prod(p) * p[1], 0, prod(p) *p[1], 2 * prod(p) * p[1]^2] ## L5b - AjAi AiAi ## - has issues because of allele order elseif (x[2] == y[1] == y[2] & (x[1] != x[2])) p = (alleles[x[2]], alleles[x[1]]) [0, 0, 0, 0, prod(p), 2 * prod(p) * p[1], 0, prod(p) *p[1], 2 * prod(p) * p[1]^2] ## L6 - AjAk AiAi ## elseif (x[1] != x[2]) & (y[1] == y[2]) & (x[1] != y[1]) & (x[2] != y[1]) p = (alleles[y[1]], alleles[x[1]], alleles[x[2]]) [0, 0, 0, 0, 0, 2 * prod(p), 0, 0, 2 * prod(p) * p[1]] ## L7 - AiAj AiAj ## elseif (x[1] == y[1]) & (x[2] == y[2]) & (x[1] != x[2]) p = (alleles[x[1]], alleles[x[2]]) [0, 0, 0, 0, 0, 0, 2 * prod(p), prod(p) * sum(p), 4 * prod(p) * prod(p)] ## L8a - AiAj AiAk ## - has issues because of allele order elseif ((x[1] == y[1]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[2] != y[2])) p = (alleles[x[1]], alleles[x[2]], alleles[y[2]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L8b - AjAi AkAi ## - has issues because of allele order elseif ((x[2] == y[2]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[1] != y[1])) p = (alleles[x[2]], alleles[x[1]], alleles[y[1]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L8c - AjAi AiAk ## - has issues because of allele order elseif ((x[2] == y[1]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[1] != y[2])) p = (alleles[x[2]], alleles[x[1]], alleles[y[2]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L8d - AiAj AkAi ## - has issues because of allele order elseif ((x[1] == y[2]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[1] != y[1])) p = (alleles[x[1]], alleles[x[2]], alleles[y[1]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L9 - AiAj AkAl ## elseif (x[1] != x[2]) & (x[1] != y[1]) & (x[1] != y[2]) & (x[2] != y[1]) & (x[2] != y[2]) & (y[1] != x[2]) p = (alleles[x[1]], alleles[x[2]], alleles[y[1]], alleles[y[2]]) [0, 0, 0, 0, 0, 0, 0, 0, 4 * prod(p)] else [-9, -9, -9, -9, -9, -9, -9, -9, -9] end end """ Δ_optim(Pr_L_S::Transpose{Float64,Array{Float64,2}}, verbose::Bool) Takes the probability of the allelic state given the identity by descent from all available loci (either allowing for inbreeding or not) and calculated the maximum likelihood Δ coefficients """ function Δ_optim(Pr_L_S::Array{Float64,2}, verbose::Bool = false) #Δ is what needs to be optimized #consist of 9 values between 0 and 1 which must also sum to 1 #is then used to calculate relatedness Δ = Variable(9) problem = maximize(sum(log(Pr_L_S * Δ))) problem.constraints += 0 <= Δ[1:9] problem.constraints += Δ[1:9] <= 1 problem.constraints += sum(Δ) <= 1 problem.constraints += 0 <= sum(Δ) problem.constraints += 2 * (Δ[1] + 0.5 * (Δ[3] + Δ[5] + Δ[7]) + 0.25 * Δ[8]) <= 1 problem.constraints += 0 <= 2 * (Δ[1] + 0.5 * (Δ[3] + Δ[5] + Δ[7]) + 0.25 * Δ[8]) Convex.solve!(problem, ECOS.Optimizer(verbose = verbose, maxit=100), verbose = verbose) #maxit=100, #Convex.solve!(problem, ECOSSolver(verbose = verbose, maxit=100, feastol=5e-6, reltol = 1e-3, reltol_inacc = 5e-2), verbose = verbose) #Convex.solve!(problem, SCSSolver(verbose = verbose, max_iters = 100), verbose = verbose) Δ.value, problem.status # Should probably include some output that confirms that it did in fact # converge and/or use multiple random starts to confirm not a local maxima end #### No inbreeding assumption function Δ_optim_noInbreeding(Pr_L_S::Array{Float64,2}, verbose::Bool = false) #Δ is what needs to be optimized #consist of 9 values between 0 and 1 which must also sum to 1 #is then used to calculate relatedness Δ = Variable(3) problem = maximize(sum(log(Pr_L_S * Δ))) problem.constraints += 0 <= Δ[1:3] problem.constraints += Δ[1:3] <= 1 problem.constraints += sum(Δ) <= 1 problem.constraints += 0 <= sum(Δ) problem.constraints += 2 * (0.5 * Δ[1] + 0.25 * Δ[2]) <= 1 problem.constraints += 0 <= 2 * (0.5 * Δ[1] + 0.25 * Δ[2]) Convex.solve!(problem, ECOS.Optimizer(verbose = verbose, maxit=100), verbose = verbose) #maxit=100, #Convex.solve!(problem, ECOSSolver(verbose = verbose, maxit=100, feastol=5e-6, reltol = 1e-3, reltol_inacc = 5e-2), verbose = verbose) #Convex.solve!(problem, SCSSolver(verbose = verbose, max_iters = 100), verbose = verbose) Δ.value, problem.status # Should probably include some output that confirms that it did in fact # converge and/or use multiple random starts to confirm not a local maxima end """ dyadicLikelihood(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the maximum likelihood based kinship using all available loci following following Milligan (2002) -Single Locus Equation: -How to combine multiple loci: NA inherently multi-locus -Assumes inbreeding can be present Milligan, B. G. (2003). Maximum-likelihood estimation of relatedness. Genetics, 163(3), 1153-1167. """ function dyadicLikelihood(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple kw_dict = Dict(kwargs...) Pr_Ls = Array{Float64}(undef, length(locus_names), 9) idx = 0 @inbounds for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) idx += 1 Pr_Ls[idx, :] = probability_state_table(gen1, gen2, alleles[loc]) end if kw_dict[:inbreeding] == true Δ = Δ_optim(Pr_Ls) θ = Δ[1][1] + 0.5 * (Δ[1][3] + Δ[1][5] + Δ[1][7]) + 0.25 * Δ[1][8] else Pr_Ls = Pr_Ls[:, 7:9] Δ = Δ_optim_noInbreeding(Pr_Ls) θ = (0.5 * Δ[1][1] + 0.25 * Δ[1][2]) end return 2 * θ#, Δ[1], Δ[2] #secondary outputs for convergence & Δvalues if we want end #= should be redundant now function dyadicLikelihood_noInbreeding(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple #TODO Add inbreeding toggle Pr_Ls = Array{Float64}(undef, length(locus_names), 9) idx = 0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) idx += 1 Pr_Ls[idx, :] = probability_state_table(gen1, gen2, allelefrequencies[loc]) end Pr_Ls = Pr_Ls[:, 7:9] Δ = Δ_optim_noInbreeding(Pr_Ls) θ = (0.5 * Δ[1][1] + 0.25 * Δ[1][2]) return 2 * θ#, Δ[1], Δ[2] #secondary outputs for convergence & Δvalues if we want end =#
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
8318
######## Moments-based Estimator Methods ########### function _blouin(geno1::NTuple{2,T}, geno2::NTuple{2,T})::Float64 where T<:Union{Int16, Int8} @inbounds ((geno1[1] ∈ geno2) & (geno2[1] ∈ geno1)) + ((geno1[2] ∈ geno2) & (geno2[2] ∈ geno1)) end function Blouin(ind1::GenoArray, ind2::GenoArray)::Float64 res = 0.0 n = 0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] if (i1 === missing) | (i2 === missing) continue else res += _blouin(i1, i2) n += 1 end end return res / n / 2.0 end function _lihorvitz(geno1::NTuple{2,T}, geno2::NTuple{2,T})::Float64 where T<:Union{Int16, Int8} @inbounds (geno1[1] == geno2[1]) + (geno1[1] == geno2[2]) + (geno1[2] == geno2[1]) + (geno1[2] == geno2[2]) end function LiHorvitz(ind1::GenoArray, ind2::GenoArray)::Float64 res = 0.0 n = 0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] if (i1 === missing) | (i2 === missing) continue else res += _lihorvitz(i1, i2) n += 1 end end res / n / 4.0 end function _lynch(geno1::NTuple{2,T}, geno2::NTuple{2,T})::Float64 where T<:Union{Int16, Int8} @inbounds ((geno1[1] ∈ geno2) + (geno1[2] ∈ geno2) + (geno2[1] ∈ geno1) + (geno2[2] ∈ geno1)) end function Lynch(ind1::GenoArray, ind2::GenoArray)::Float64 res = 0.0 n = 0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] if (i1 === missing) | (i2 === missing) continue else res += _lynch(i1, i2) n += 1 end end res / n / 4.0 end function _loiselle_num(geno1::NTuple{2,T}, geno2::NTuple{2,T}, frqdict::Dict{T, Float64})::Float64 where T<:Union{Int16, Int8} sum(pairs(frqdict)) do (allele, frq) @inbounds ((((geno1[1] == allele) + (geno1[2] == allele)) / 2.0) - frq) * ((((geno2[1] == allele) + (geno2[2] == allele)) / 2.0) - frq) end end function _loiselle_denom(freqs)::Float64 sum(freqs) do fq fq * (1.0-fq) end end function Loiselle(ind1::GenoArray, ind2::GenoArray, allelefrq::U; kwargs...) where U <: Tuple numer = 0.0 denom = 0.0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] if (i1 === missing) | (i2 === missing) continue else @inbounds frqs = allelefrq[i] fq = values(frqs) numer += _loiselle_num(i1, i2, frqs) @inbounds denom += _loiselle_denom(fq) end end numer / denom + 2.0 / (2.0 * kwargs[:n_samples] - 1.0) end ##BUG THIS DOESNT AGREE WITH THE ORIGINAL ## CHECK AGAINST COANCESTRY function _lynchli(geno1::NTuple{2,T}, geno2::NTuple{2,T})::Float64 where T<:Union{Int16, Int8} a,b = geno1 ; c,d = geno2 0.5 * (((a == c) + (a == d) + (b == c) + (b == d)) / (2.0 * (1.0 + (a == b))) + ((a == c) + (a == d) + (b == c) + (b == d)) / (2.0 * (1.0 + (c == d)))) end function _lynchliS0(alleles)::Float64 res1 = 0.0 res2 = 0.0 @inbounds for i in alleles res1 += i^2 res2 += i^3 end return 2.0 * res1 - res2 end function LynchLi(ind1::T, ind2::T, alleles::U; kwargs...) where T <: GenoArray where U <: Tuple #TODO Change to unbiased formulation (eq 25) numerator = 0.0 denom = 0.0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] @inbounds loc = values(alleles[i]) S0 = _lynchliS0(loc) if (i1 === missing) | (i2 === missing) continue else # this is Sxy - S0 numerator += _lynchli(i1, i2) - S0 denom += 1.0 - S0 end end return numerator / denom end #BUG not consistent with Coancestry function _lynchritland(geno1::NTuple{2,T}, geno2::NTuple{2,T}, frqdict::Dict{T, Float64}) where T<:Union{Int16, Int8} a,b = geno1 c,d = geno2 fq_a = frqdict[a] fq_b = frqdict[b] fq_c = frqdict[c] fq_d = frqdict[d] n1 = fq_a * ((b == c) + (b == d)) + fq_b * ((a == c) + (a == d)) - 4.0 * fq_a * fq_b n2 = fq_c * ((d == a) + (d == b)) + fq_d * ((c == a) + (c == b)) - 4.0 * fq_c * fq_d d1 = 2.0 * (1.0 + (a == b)) * (fq_a + fq_b) - 8.0 * fq_a * fq_b d2 = 2.0 * (1.0 + (c == d)) * (fq_c + fq_d) - 8.0 * fq_c * fq_d WL1 = ((1.0 + (a == b)) * (fq_a + fq_b) - 4.0 * fq_a * fq_b) / (2.0 * fq_a * fq_b) WL2 = ((1.0 + (c == d)) * (fq_c + fq_d) - 4.0 * fq_c * fq_d) / (2.0 * fq_c * fq_d) numer = ((n1 / d1) * WL1 + (n2 / d2) * WL2) denom = WL1 + WL2 return (numer, denom) end function LynchRitland(ind1::GenoArray, ind2::GenoArray, allelefrq::U; kwargs...) where U <: Tuple numer = 0.0 denom = 0.0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] @inbounds freqs = allelefrq[i] if (i1 === missing) | (i2 === missing) continue else n, d = _lynchritland(i1, i2, freqs) numer += n denom += d end end return numer / (denom / 2.0) end function _moran(geno1::NTuple{2,T}, geno2::NTuple{2,T}, frqdict::Dict{T, Float64}) where T<:Union{Int16, Int8} num = 0.0 ; denom = 0.0 @inbounds for (allele, fq) in frqdict g1 = ((((geno1[1] == allele) + (geno1[2] == allele)) / 2.0) - fq) g2 = ((((geno2[1] == allele) + (geno2[2] == allele)) / 2.0) - fq) num += g1 * g2 denom += ((g1^2) + (g2^2)) end return (num, denom) end function Moran(ind1::GenoArray, ind2::GenoArray, allelefrq::U; kwargs...) where U <: Tuple #TODO NEED TO CHECK TO CONFIRM EQUATIONS numer = 0.0 denom = 0.0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] @inbounds freqs = allelefrq[i] if (i1 === missing) | (i2 === missing) continue else n, d = _moran(i1, i2, freqs) numer += n denom += d end end return numer/(denom / 2.0) end #BUG not consistent with Coancestry function _quellergoodnight(geno1::NTuple{2,T}, geno2::NTuple{2,T}, frqdict::Dict{T, Float64}) where T<:Union{Int16, Int8} a,b = geno1 c,d = geno2 ident = ((a == c) + (a == d) + (b == c) + (b == d)) fq_a = frqdict[a] fq_b = frqdict[b] fq_c = frqdict[c] fq_d = frqdict[d] num1 = ident - 2.0 * (fq_a + fq_b) num2 = ident - 2.0 * (fq_c + fq_d) denom1 = (2.0 * (1.0 + (a==b) - fq_a - fq_b)) denom2 = (2.0 * (1.0 + (c==d) - fq_c - fq_d)) return (num1, num2, denom1, denom2) end function QuellerGoodnight(ind1::GenoArray, ind2::GenoArray, allelefrq::U; kwargs...) where U <: Tuple numer1 = 0.0 denom1 = 0.0 numer2 = 0.0 denom2 = 0.0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] @inbounds freqs = allelefrq[i] if (i1 === missing) | (i2 === missing) continue else @inbounds n1, n2, d1, d2 = _quellergoodnight(i1, i2, freqs) numer1 += n1 denom1 += d1 numer2 += n2 denom2 += d2 end end return (numer1/denom1 + numer2/denom2)/2.0 end #BUG Math not consistent with Coancestry function _ritland(geno1::NTuple{2,T}, geno2::NTuple{2,T}, frqdict::Dict{T, Float64}) where T<:Union{Int16, Int8} a,b = geno1 c,d = geno2 A = length(frqdict) - 1.0 R = 0.0 for (allele, frq) in frqdict R += ((((a == allele) + (b == allele)) * ((c == allele) + (d == allele))) / (4.0 * frq)) end R = ((2.0 / A) * (R - 1.0)) * A return (R, A) end function Ritland(ind1::GenoArray, ind2::GenoArray, allelefrq::U; kwargs...) where U <: Tuple numer = 0.0 denom = 0.0 @inbounds for i in eachindex(ind1) @inbounds i1 = ind1[i] @inbounds i2 = ind2[i] @inbounds freqs = allelefrq[i] if (i1 === missing) | (i2 === missing) continue else n, d = _ritland(i1, i2, freqs) numer += n denom += d end end return numer / denom end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
17304
""" Blouin(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Allele sharing index described by Blouin (1996) - Single Locus Equation: The number of alleles shared between individuals over ploidy. - If both allele positions are shared (e.g. AA x AA or AB x AB) then 1 - If one allele position is shared (e.g. AB x AC) then 0.5 - If neither allele position is shared (e.g. AB x CD) then 0 - How to combine multiple loci: Single locus estimates are simply averaged together - Assumes no inbreeding Blouin, M. S., Parsons, M., Lacaille, V., & Lotz, S. (1996). Use of microsatellite loci to classify individuals by relatedness. Molecular ecology, 5(3), 393-401. """ function Blouin(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing Mxy = Vector{Float64}(undef, length(locus_names)) loc_id = 0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) loc_id += 1 i,j = gen1 k,l = gen2 Mxy[loc_id] = (((i ∈ gen2) & (k ∈ gen1)) + ((j ∈ gen2) & (l ∈ gen1))) / 2 end return mean(Mxy) end """ LiHorvitz(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Allele sharing index described by Li and Horvitz (1953) -Single Locus Equation: If all alleles are the same between individuals (eg. AA x AA) then 1. - If two alleles are shared between individuals (eg. AA x AB or AB x AB) then 0.5. - If only one allele is shared between individuals (eg. AB x AC) then 0.25. - If no alleles are shared (eg. AB x CD) then 0. - How to combine multiple loci: Single locus estimates are simply averaged together - Assumes no inbreeding Li, C. C., & Horvitz, D. G. (1953). Some methods of estimating the inbreeding coefficient. American journal of human genetics, 5(2), 107. """ function LiHorvitz(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing Bxy = Vector{Float64}(undef, length(locus_names)) loc_id = 0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) loc_id += 1 i,j = gen1 k,l = gen2 Bxy[loc_id] = sum([i, j] .∈ [k,l]') / 4 end return mean(Bxy) end """ Loiselle(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the moments based estimator of pairwise relatedness using the estimator propsed by Loiselle et al (1995) and modified to individual dyads by Heuertz et al. (2003). - Multiple Locus Equation: - Assumes no inbreeding See equations 22 in: Wang(2017) for variant of estimator used Loiselle, B. A., Sork, V. L., Nason, J., & Graham, C. (1995). Spatial genetic structure of a tropical understory shrub, <i>Psychotria officinalis</i> (Rubiaceae). American journal of botany, 82(11), 1420-1425. Heuertz, M., Vekemans, X., Hausman, J. F., Palada, M., & Hardy, O. J. (2003). Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Molecular Ecology, 12(9), 2483-2495. Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5), 302-313. """ function Loiselle(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing d_kw = Dict(kwargs...) numerator1 = 0.0 denominator1 = 0.0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) for allele in keys(alleles[loc]) fq = alleles[loc][allele] numerator1 += ((sum(gen1 .== allele) / 2.0) - fq) * ((sum(gen2 .== allele) / 2.0) - fq) denominator1 += fq * (1.0 - fq) end end return numerator1 / denominator1 + 2.0 / (2 * d_kw[:n_samples] - 1) end """ Lynch(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Allele sharing index described by Lynch (1988) - Single Locus Equation: If all alleles are the same between individuals (eg. AA x AA) then 1. - If both individuals are heterozygous with the same alleles or one is homozygous for the shared allele (eg. AB x AB or AA x AB) then 0.75. - If only one allele is shared between individuals (eg. AB x AC) then 0.5. - If no alleles are shared (eg. AB x CD) then 0. - How to combine multiple loci: Single locus estimates are simply averaged together - Assumes no inbreeding Lynch, M. (1988). Estimation of relatedness by DNA fingerprinting. Molecular biology and evolution, 5(5), 584-599. """ function Lynch(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing Sxy = Vector{Float64}(undef, length(locus_names)) loc_id = 0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) loc_id += 1 i,j = gen1 k,l = gen2 Sxy[loc_id] = ((i ∈ gen2) + (j ∈ gen2) + (k ∈ gen1) + (l ∈ gen1)) / 4 end return mean(Sxy) end """ LynchLi(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the moments based estimator of pairwise relatedness by Lynch (1988) & improved by Li et al. (1993). - Single Locus Equation: - How to combine multiple loci: Sum the difference between observed and expected similarity across all loci and then divide by the sum of 1 - the expected similarity - Assumes no inbreeding See equations 13 - 16 in Wang (2017) for variant of estimator used Li, C. C., Weeks, D. E., & Chakravarti, A. (1993). Similarity of DNA fingerprints due to chance and relatedness. Human heredity, 43(1), 45-52. Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5), 302-313. """ function LynchLi(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing numerator1 = 0.0 denominator1 = 0.0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) a,b = gen1 c,d = gen2 Sxy = (0.5) * (((a == c) + (a == d) + (b == c) + (b == d)) / (2.0 * (1.0 + (a == b))) + ((a == c) + (a == d) + (b == c) + (b == d)) / (2.0 * (1.0 + (c == d)))) #TODO Change to unbiased formulation (eq 25) S0 = 2.0 * sum(values(alleles[loc]) .^ 2) - sum(values(alleles[loc]) .^ 3) numerator1 += Sxy - S0 denominator1 += 1.0 - S0 end return numerator1 / denominator1 end """ LynchRitland(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the moments based estimator of pairwise relatedness by Lynch and Ritland (1999). - Single Locus Equation: - How to combine multiple loci: Weighted average of each term seperately weighted by the sample variance (assuming zero relatedness) and subsequently divided by the average sampling variance - Assumes no inbreeding See equation 10 in Wang (2017) for variant of estimator used Lynch, M., & Ritland, K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics, 152(4), 1753-1766. Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5), 302-313. """ function LynchRitland(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing numerator1 = 0.0 denominator1 = 0.0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) a,b = gen1 c,d = gen2 fq_a, fq_b, fq_c, fq_d = map(i -> alleles[loc][i], (a,b,c,d)) n1 = fq_a * ((b == c) + (b == d)) + fq_b * ((a == c) + (a == d)) - 4.0 * fq_a * fq_b n2 = fq_c * ((d == a) + (d == b)) + fq_d * ((c == a) + (c == b)) - 4.0 * fq_c * fq_d d1 = 2.0 * (1.0 + (a == b)) * (fq_a + fq_b) - 8.0 * fq_a * fq_b d2 = 2.0 * (1.0 + (c == d)) * (fq_c + fq_d) - 8.0 * fq_c * fq_d WL1 = ((1 + (a == b)) * (fq_a + fq_b) - 4 * fq_a * fq_b) / (2 * fq_a * fq_b) WL2 = ((1 + (c == d)) * (fq_c + fq_d) - 4 * fq_c * fq_d) / (2 * fq_c * fq_d) numerator1 += ((n1 / d1) * WL1 + (n2 / d2) * WL2) denominator1 += (WL1 + WL2) / 2.0 end return numerator1 / denominator1 end """ Moran(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Reinterpretation of Moran's I (commonly used for spatial autocorrelation) to estimate genetic relatedness by Hardy and Vekemans (1999) - Multiple Locus Equation: - Assumes no inbreeding Hardy, O. J., & Vekemans, X. (1999). Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity, 83(2), 145-154. """ function Moran(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple #TODO NEED TO CHECK TO CONFIRM EQUATIONS isempty(locus_names) && return missing numerator1 = 0.0 denominator1 = 0.0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) for allele in keys(alleles[loc]) fq = alleles[loc][allele] numerator1 += ((sum(gen1 .== allele) / 2.0) - fq) * ((sum(gen2 .== allele) / 2.0) - fq) #denominator1 += ((sum(gen1 .== allele) / 2.0) - fq)^2 denominator1 += (((sum(gen1 .== allele) / 2.0) - fq)^2 + ((sum(gen2 .== allele) / 2.0) - fq)^2) / 2.0 end #denominator1 += (1 / (length(alleles[loc]) - 1)) end return (numerator1 / denominator1) end function Moran_experimental(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple #TODO NEED TO CHECK TO CONFIRM EQUATIONS isempty(locus_names) && return missing numerator1 = Vector{Float64}(undef, length(locus_names)) denominator1 = similar(numerator1) numerator1 = numerator1 .* 0.0 denominator1 = denominator1 .* 0.0 idx = 0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) idx += 1 for allele in keys(alleles[loc]) fq = alleles[loc][allele] numerator1[idx] += ((sum(gen1 .== allele) / 2.0) - fq) * ((sum(gen2 .== allele) / 2.0) - fq) denominator1[idx] += (((sum(gen1 .== allele) / 2.0) - fq)^2) #+ ((sum(gen2 .== allele) / 2.0) - fq)^2) / 2 end denominator1[idx] += (1 / (length(alleles[loc]) - 1)) end return mean(numerator1 ./ denominator1) end """ QuellerGoodnight(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the moments based estimator of pairwise relatedness developed by Queller & Goodnight (1989). - Single Locus Equation: - How to combine multiple loci: - Multiple loci are combined by independently summing the two numerator and two denominator terms before performing the final division and averaging the two components. - Assumes no inbreeding See equation 3 in Wang(2017) for variant of estimator used. Queller, D. C., & Goodnight, K. F. (1989). Estimating relatedness using genetic markers. Evolution, 43(2), 258-275. Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5), 302-313. """ function QuellerGoodnight(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing numerator1 = 0.0 numerator2 = 0.0 denominator1 = 0.0 denominator2 = 0.0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) a,b = gen1 c,d = gen2 ident = ((a == c) + (a == d) + (b == c) + (b == d)) fq_a, fq_b, fq_c, fq_d = map(i -> alleles[loc][i], (a,b,c,d)) numerator1 += ident - 2.0 * (fq_a + fq_b) numerator2 += ident - 2.0 * (fq_c + fq_d) denominator1 += (2.0 * (1.0 + (a==b) - fq_a - fq_b)) denominator2 += (2.0 * (1.0 + (c==d) - fq_c - fq_d)) end return (numerator1/denominator1 + numerator2/denominator2)/2.0 end """ Ritland(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the moments based estimator of pairwise relatedness proposed by Li and Horvitz (1953) and implemented/made popular by Ritland (1996). - Single Locus Equation: - How to combine multiple loci: A weighted average of individual locus specific estimates weighted by sampling variance - Assumes no inbreeding See equation 7 in: Wang (2017) for variant of estimator used Ritland, K. (1996). Estimators for pairwise relatedness and individual inbreeding coefficients. Genetics Research, 67(2), 175-185. Wang, J. (2017). Estimating pairwise relatedness in a small sample of individuals. Heredity, 119(5), 302-313. """ function Ritland(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple isempty(locus_names) && return missing numerator1 = 0.0 denominator1 = 0.0 for (loc,gen1,gen2) in zip(locus_names, ind1, ind2) a,b = gen1 c,d = gen2 A = ((alleles[loc] |> length) - 1) R = 0.0 for i in unique((a,b,c,d)) # Individual locus relatedness value (eq 7 in paper) R += ((((a == i) + (b == i)) * ((c == i) + (d == i))) / (4.0 * alleles[loc][i])) end R = (2.0 / A) * (R - 1.0) # numerator for weighted combination of loci numerator1 += (R * A) # denominator for weighted combination of loci denominator1 += A end return numerator1 / denominator1 end ### Wang 2002 helper functions ### function _a_wang_base(m::Int, alleles::Dict) sum(values(alleles) .^ m) end function _a_wang(N::Int, alleles::Dict) #unbiased estimator a = 0.0 b = (N * _a_wang_base(2, alleles) - 1) / (N - 1) c = (N^2 * _a_wang_base(3, alleles) - 3 * (N - 1) * b - 1) / ((N - 1) * (N - 2)) d = (N^3 * _a_wang_base(4, alleles) - 6 * (N - 1) * (N - 2) * c - 7 * (N - 1) * b - 1) / (N^3 - 6 * N^2 + 11 * N - 6) return [a, b, c, d] end """ Wang(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}; alleles::NamedTuple) Calculates the moments based estimator of pairwise relatedness by Wang (2002). -Single Locus Equation: -How to combine multiple loci: Each individual locus subcomponent (b-g) and each genotypic state (P1-P3) is averaged weighted by the average similarity of unrelated dyads at each locus. Then the values of V, Φ, Δ, and r are calculated -Assumes no inbreeding -Corrected for sampling bias in allele frequencies to get an unbiased estimator Wang, J. (2002). An estimator for pairwise relatedness using molecular markers. Genetics, 160(3), 1203-1215. """ function Wang(ind1::T, ind2::T, locus_names::Vector{Symbol}, alleles::U; kwargs...) where T <: GenoArray where U <: NamedTuple #TODO NEED TO CHECK TO CONFIRM EQUATIONS isempty(locus_names) && return missing kw_dict = Dict(kwargs...) P1 = Vector{Float64}(undef, length(locus_names)) P2, P3, P4, u, b, c, d, e, f, g = map(i -> similar(P1), 1:10) loc_id = 0 for (loc,gen1,gen2, N) in zip(locus_names, ind1, ind2, kw_dict[:loc_n]) loc_id += 1 i,j = gen1 k,l = gen2 #N = nonmissing(data.genodata[data.genodata.locus .== string(loc), :genotype]) a = _a_wang(2 * N, alleles[loc]) a2_sq = a[2] ^ 2 u[loc_id] = 2 * a[2] - a[3] # Which category of dyad Sxy = ((i ∈ gen2) + (j ∈ gen2) + (k ∈ gen1) + (l ∈ gen1)) / 4 # Both alleles shared between individuals either the same or different P1[loc_id] = 1.0 * (Sxy == 1) # One allele shared between individuals and one is homozygous for that allele P2[loc_id] = 1.0 * (Sxy == (3/4)) # One allele shared with the other two being unique P3[loc_id] = 1.0 * (Sxy == (1/2)) P4[loc_id] = 1.0 * ((P1 + P2 + P3) == 0) b[loc_id] = (2.0 * a2_sq - a[4]) c[loc_id] = (a[2] - 2.0 * a2_sq + a[4]) d[loc_id] = (4.0 * (a[3] - a[4])) e[loc_id] = (2.0 * (a[2] - 3.0 * a[3] + 2.0 * a[4])) f[loc_id] = (4.0 * (a[2] - a2_sq - 2.0 * a[3] + 2.0 * a[4])) g[loc_id] = (1.0 - 7.0 * a[2] + 4.0 * a2_sq + 10.0 * a[3] - 8.0 * a[4]) end #return (1 / (sum(1/u) * u)) * r w = (1 / (sum(1/u) * u)) P1 = w * P1 P2 = w * P2 P3 = w * P3 b = w * b c = w * c d = w * d e = w * e f = w * f g = w * g #Eq 11 V = (1.0 - b)^2 * (e^2 * f + d * g^2) - (1.0 - b) * (e * f - d * g)^2 + 2.0 * c * d * f * (1.0 - b) * (g + e) + c^2 * d * f * (d + f) #Eq 9 Φ = (d * f * ((e + g) * (1.0 - b) + c * (d + f)) * (P1 - 1.0) + d * (1.0 - b) * (g * (1.0 - b - d) + f * (c + e)) * P3 + f * (1.0 - b) * (e * (1.0 - b - f) + d * (c + g)) * P2) / V #Eq 10 Δ = (c * d * f * (e + g) * (P1 + 1.0 - 2 * b) + ((1.0 - b) * (f * e^2 + d * g^2) - (e * f - d * g)^2) * (P1 - b) + c * (d * g - e * f) * (d * P3 - f * P2) - c^2 * d * f * (P3 + P2 - d - f) - c * (1.0 - b) * (d * g * P3 + e * f * P2)) / V r = (Φ/2.0 + Δ) return r end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
10212
#= function testkin(x, y) sym = Symbol(y) old = kinship(x, method = y) new = kinshiptotable(kinship_new(x, method = y)) old[:, sym] = round.(old[:, sym], digits = 5) new[:, :kinship] = round.(new.kinship, digits = 5) if old[:, sym] == new.kinship return true else insertcols!(old, :new => new.kinship) return old[old[:, sym] .!= old.new, :] end end =# function kinship(data::PopData; method::Function, iterations::Int = 0, interval::Vector{Float64} = [0.025, 0.975]) # sanity checks data.metadata.ploidy != 2 && error("kinship analyses currently only support diploid samples") length(interval) != 2 && throw(ArgumentError("Keyword argument \`interval\` must be a vector with 2 elements.")) if (iterations == 0) && (Symbol(method) ∈ [:Blouin, :LiHorvitz, :Lynch]) _kinship_noboot_nofreq(data, method) elseif (iterations == 0) && (Symbol(method) ∈ [:Loiselle, :LynchLi, :LynchRitland, :Moran, :QuellerGoodnight, :Ritland]) _kinship_noboot_freq(data, method) elseif (iterations > 0) && (Symbol(method) ∈ [:Blouin, :LiHorvitz, :Lynch]) _kinship_boot_nofreq(data, method, iterations, interval) elseif (iterations > 0) && (Symbol(method) ∈ [:Loiselle, :LynchLi, :LynchRitland, :Moran, :QuellerGoodnight, :Ritland]) _kinship_boot_freq(data, method, iterations, interval) else throw(ArgumentError("Invalid method provided: $method. See the docstring \`?kinship\` for usage information.")) end end function kinship(data::PopData, samplenames::AbstractVector{T}; method::Function, iterations::Int = 0, interval::Vector{Float64} = [0.025, 0.975]) where T<:AbstractString # sanity checks data.metadata.ploidy != 2 && error("kinship analyses currently only support diploid samples") length(interval) != 2 && throw(ArgumentError("Keyword argument \`interval\` must be a vector with 2 elements.")) newdata = data[data.genodata.name .∈ Ref(samplenames)] if (iterations == 0) && (Symbol(method) ∈ [:Blouin, :LiHorvitz, :Lynch]) _kinship_noboot_nofreq(newdata, method) elseif (iterations == 0) && (Symbol(method) ∈ [:Loiselle, :LynchLi, :LynchRitland, :Moran, :QuellerGoodnight, :Ritland]) _kinship_noboot_freq(newdata, method) elseif (iterations > 0) && (Symbol(method) ∈ [:Blouin, :LiHorvitz, :Lynch]) _kinship_boot_nofreq(newdata, method, iterations, interval) elseif (iterations > 0) && (Symbol(method) ∈ [:Loiselle, :LynchLi, :LynchRitland, :Moran, :QuellerGoodnight, :Ritland]) _kinship_boot_freq(newdata, method, iterations, interval) else throw(ArgumentError("Invalid method provided: $method. See the docstring \`?kinship\` for usage information.")) end end ### Internal implementations ### #### Non-Bootstrapped #### # Returns a NamedMatrix function _kinship_noboot_nofreq(data::PopData, method::Function) locmtx = locimatrix(data) ids = samplenames(data) n = length(ids) result = NamedArray{Float64}(n, n) setnames!(result, String.(ids),1) setnames!(result, String.(ids),2) @inbounds for i in 1:n-1 @inbounds v1 = view(locmtx,i,:) @inbounds for j in i+1:n @inbounds v2 = view(locmtx,j,:) est = method(v1, v2) @inbounds result[j,i] = result[i,j] = est end end return result end function _kinship_noboot_freq(data::PopData, method::Function) locmtx = locimatrix(data) ids = samplenames(data) n = length(ids) result = NamedArray{Float64}(n, n) setnames!(result, String.(ids),1) setnames!(result, String.(ids),2) allelefrequencies = @inbounds Tuple(allelefreq(i) for i in eachcol(locmtx)) @inbounds for i in 1:n-1 @inbounds v1 = view(locmtx,i,:) @inbounds for j in i+1:n @inbounds v2 = view(locmtx,j,:) @inbounds result[j,i] = result[i,j] = method(v1, v2, allelefrequencies, n_samples = n) end end return result end #### Bootstrapped #### # Returns a DataFrame # Includes a progress bar from Term.jl # Uses OnlineStats.jl to calculate mean/variance/CI without additional allocations function _kinship_boot_nofreq(data::PopData, method::Function, iterations::Int, interval::Vector{Float64} = [0.025, 0.975]) locmtx = locimatrix(data) ids = samplenames(data) n = length(ids) nloc = size(locmtx, 2) idxrange = 1:nloc result = NamedArray{Float64}(n, n) setnames!(result, String.(ids),1) setnames!(result, String.(ids),2) bresult = Matrix{Float64}(undef, n,n) b_sdev = similar(bresult) b_ci = Matrix{Vector{Float64}}(undef, n,n) pbar = ProgressBar(;refresh_rate=90, transient = true) job = addjob!(pbar; description= "Kinship: ", N= Int64((n * (n-1))/2)) start!(pbar) @inbounds @sync for i in 1:n-1 Base.Threads.@spawn begin @inbounds v1 = view(locmtx,i,:) boot_idx = Vector{Int64}(undef, nloc) sizehint!(boot_idx, nloc) @inbounds for j in i+1:n @inbounds v2 = view(locmtx,j,:) @inbounds result[j,i] = result[i,j] = method(v1, v2) bootstats = Series(Variance(), Quantile(interval)) k = 1 while k <= iterations k += 1 @inbounds boot_idx .= rand(idxrange, nloc) v1b = @inbounds view(locmtx, i,boot_idx) v2b = @inbounds view(locmtx, j, boot_idx) b_est = method(v1b, v2b) isnan(b_est) ? continue : fit!(bootstats, b_est) end @inbounds bresult[i,j] = bootstats.stats[1].μ @inbounds b_sdev[i,j] = sqrt(bootstats.stats[1].σ2) @inbounds b_ci[i,j] = value(bootstats.stats[2]) update!(job) end end end stop!(pbar) ci = uppertri2vec(b_ci) cilow = getindex.(ci, 1) cihi = getindex.(ci,2) out = kinshiptotable(result, Symbol(method)) insertcols!(out, :bootmean => uppertri2vec(bresult), :std => uppertri2vec(b_sdev), :CI_lower => cilow, :CI_upper => cihi) return out end function _kinship_boot_freq(data::PopData, method::Function, iterations::Int, interval::Vector{Float64} = [0.025, 0.975]) locmtx = locimatrix(data) ids = samplenames(data) n = length(ids) nloc = size(locmtx, 2) idxrange = 1:nloc result = NamedArray{Float64}(n, n) setnames!(result, String.(ids),1) setnames!(result, String.(ids),2) bresult = Matrix{Float64}(undef, n,n) b_sdev = similar(bresult) b_ci = Matrix{Vector{Float64}}(undef, n,n) pbar = ProgressBar(;refresh_rate=90, transient = true) job = addjob!(pbar; description= "Kinship: ", N= Int64((n * (n-1))/2)) start!(pbar) allelefrequencies = @inbounds Tuple(allelefreq(i) for i in eachcol(locmtx)) @inbounds @sync for i in 1:n-1 Base.Threads.@spawn begin @inbounds v1 = view(locmtx,i,:) boot_idx = Vector{Int64}(undef, nloc) sizehint!(boot_idx, nloc) @inbounds for j in i+1:n @inbounds v2 = view(locmtx,j,:) @inbounds result[j,i] = result[i,j] = method(v1, v2, allelefrequencies, n_samples = n) bootstats = Series(Variance(), Quantile(interval)) k = 1 while k <= iterations k += 1 @inbounds boot_idx .= rand(idxrange, nloc) v1b = @inbounds view(locmtx, i,boot_idx) v2b = @inbounds view(locmtx, j, boot_idx) b_est = method(v1b, v2b, allelefrequencies, n_samples = n) isnan(b_est) ? continue : fit!(bootstats, b_est) end @inbounds bresult[i,j] = bootstats.stats[1].μ @inbounds b_sdev[i,j] = sqrt(bootstats.stats[1].σ2) @inbounds b_ci[i,j] = value(bootstats.stats[2]) update!(job) end end end stop!(pbar) ci = uppertri2vec(b_ci) cilow = getindex.(ci, 1) cihi = getindex.(ci,2) out = kinshiptotable(result, Symbol(method)) insertcols!(out, :bootmean => uppertri2vec(bresult), :std => uppertri2vec(b_sdev), :CI_lower => cilow, :CI_upper => cihi) return out end """ kinshiptotable(kinshipresults::T, methd::Symbol) where T<:NamedMatrix Converts the `NamedMatrix` result from the non-bootstrapped `kinship()` results into a `DataFrame`. The second positonal argument (`methd`) is the name of the value column (default: `kinship`). For better analysis workflow, it would be useful to specify the method for this column, to keep track of which estimator was used (e.g., `Blouin`, `LynchLi`, etc.) **Example** ```julia julia> cats = @nancycats ; kin = kinship(cats, method = Moran) ; julia> kinshiptotable(kin, :Moran) 22366×3 DataFrame Row │ sample1 sample2 Moran │ String String Float64 ───────┼──────────────────────────────── 1 │ cc_001 cc_002 0.00688008 2 │ cc_001 cc_003 -0.0286812 3 │ cc_001 cc_005 -0.000749142 4 │ cc_001 cc_007 0.0516361 5 │ cc_001 cc_008 0.0261128 6 │ cc_001 cc_009 -0.00187027 7 │ cc_001 cc_010 0.0182852 ⋮ │ ⋮ ⋮ ⋮ 22361 │ seg_028 seg_029 -0.0472928 22362 │ seg_028 seg_030 -0.0172853 22363 │ seg_028 seg_031 -0.00240921 22364 │ seg_029 seg_030 -0.0278483 22365 │ seg_029 seg_031 0.0297876 22366 │ seg_030 seg_031 -0.0371295 22353 rows omitted ``` """ function kinshiptotable(kinshipresults::T, mthd::Symbol=:nothing) where T<:NamedMatrix n = size(kinshipresults,1) n == size(kinshipresults,2) || throw(DimensionMismatch("The input matrix must be symmetrical, but has size $(size(kinshipresults))")) ids = names(kinshipresults)[1] vals = uppertri2vec(kinshipresults) idpairs = pairwisepairs(ids) meth = mthd == :nothing ? :kinship : mthd DataFrame(:sample1 => first.(idpairs), :sample2 => getindex.(idpairs, 2), meth => vals) end #TODO update kinshipposthoc for this new interface
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
22152
""" _bootstrapsummary(::Vector{Union{Missing, Float64}}, width::Tuple{Float64, Float64}) Return the mean, median, standard error, and quantiles (given by `witdth`) of kinship resampling. """ @inline function _bootstrapsummary(boot_out::Vector{Union{Missing, Float64}}, width::Tuple{Float64, Float64}) isallmissing(boot_out) == true && return missing, missing, missing, missing boot_skipmissing = collect(skipmissing(boot_out)) n_nonmiss = length(boot_skipmissing) Mean = mean(boot_skipmissing) Median = median(boot_skipmissing) SE = sqrt(sum((boot_skipmissing - (boot_skipmissing / n_nonmiss)).^2) / (n_nonmiss - 1)) quants = quantile(boot_skipmissing, width) return Mean, Median, SE, quants end """ _bootstrapgenos_all(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}, n_per_loc::Vector{Int}, alleles::NamedTuple; method::Function, iterations::Int) Perform `iterations` number of bootstrap resampling iterations of all genotypes between pair (`ind1` `ind2`). Returns a vector of length `iterations` of the kinship estimate given by method `method`. This is an internal function with `locus_names`, `n_per_loc`, and `alleles` supplied by `_kinship_boot_all`. """ @inline function _bootstrapgenos_all(ind1::T, ind2::T, locus_names::Vector{Symbol}, n_per_loc::Vector{Int}, alleles::U; method::F, iterations::Int, inbreeding::Bool, n::Int) where T <: GenoArray where U <: NamedTuple where F relate_vec_boot = Vector{Union{Missing,Float64}}(undef, iterations) n_loc = length(locus_names) @sync for iter in 1:iterations Base.Threads.@spawn begin # bootstrap the indices boot_idx = rand(1:n_loc, n_loc) # sample the source vectors with the resampled/bootstrapped indices ind1_boot, ind2_boot, loc_boot, n_per_loci = map(i -> getindex(i, boot_idx), [ind1, ind2, locus_names, n_per_loc]) # get index for genotype appearing missing in at least one individual in the pair keep_idx = nonmissings(ind1_boot, ind2_boot) relate_vec_boot[iter] = method(ind1_boot[keep_idx], ind2_boot[keep_idx], loc_boot[keep_idx], alleles, loc_n = n_per_loci[keep_idx], n_samples = n_loc, inbreeding = inbreeding) end end return relate_vec_boot end """ _bootstrapgenos_nonmissing(ind1::GenoArray, ind2::GenoArray, locus_names::Vector{Symbol}, n_per_loc::Vector{Int}, alleles::NamedTuple; method::Function, iterations::Int) Perform `iterations` number of bootstrap resampling iterations of only shared (nonmissing) genotypes between pair (`ind1` `ind2`). Returns a vector of length `interatotions` of the kinship estimate given by method `method`. This is an internal function with `locus_names`, `n_per_loc`, and `alleles` supplied by `_kinship_boot_nonmissing`. """ @inline function _bootstrapgenos_nonmissing(ind1::T, ind2::T, locus_names::Vector{Symbol}, n_per_loc::Vector{Int}, alleles::U; method::F, iterations::Int, inbreeding::Bool) where T <: GenoArray where U <: NamedTuple where F relate_vec_boot = Vector{Union{Missing,Float64}}(undef, iterations) n_loc = length(locus_names) @sync for iter in 1:iterations Base.Threads.@spawn begin # bootstrap the indices boot_idx = rand(1:n_loc, n_loc) # sample the source vectors with the resampled/bootstrapped indices ind1_boot, ind2_boot, loc_boot, n_per_loci = map(i -> getindex(i, boot_idx), [ind1, ind2, locus_names, n_per_loc]) # faster/cheaper n counting relate_vec_boot[iter] = method(ind1_boot, ind2_boot, loc_boot, alleles, loc_n = n_per_loci, n_samples = n_loc, inbreeding = inbreeding) end end return relate_vec_boot end #FEATURE namedtuple output """ _kinship_boot_all(::PopData, sample_names::Vector{String}; method::Function, iterations::Int, interval::Tuple{Float64, Float64}) Calculate pairwise kinship between all combinations of the provided `sample_names` for each `method` provided. Bootstrapping resamples using the `all` method, where resampling occurs over all loci. This is an internal function with all arguments provided by `kinship`. """ function _kinship_boot_all(data::PopData, sample_names::Vector{T}; method::F, iterations::Int = 100, interval::Tuple{Float64, Float64} = (0.025, 0.975), inbreeding::Bool) where F where T<:AbstractString loci_names = Symbol.(loci(data)) uniq_pops = unique(data.metadata.sampleinfo.population) if first(uniq_pops) ∈ ["fullsib", "halfsib", "unrelated", "parent_offspring"] sample_pairs = simpairs(sample_names) |> collect else sample_pairs = pairwisepairs(sample_names) |> collect end n_pairs = length(sample_pairs) n_samples = data.metadata.samples allelefrequencies = allelefreq(data) n_per_loci = DataFrames.combine(groupby(data.genodata, :locus), :genotype => nonmissing => :n)[:, :n] relate_vecs = map(i -> Vector{Union{Missing,Float64}}(undef, n_pairs), 1:length(method)) boot_means, boot_medians, boot_ses = map(i -> deepcopy(relate_vecs), 1:3) boot_CI = map(i -> Vector{Union{Missing,Tuple{Float64,Float64}}}(undef, n_pairs), 1:length(method)) shared_loci = Vector{Int}(undef, n_pairs) #p = Progress(n_pairs*length(method), dt = 1, color = :blue, barglyphs = BarGlyphs("|=> |"), barlen = 30) popdata_idx = groupby(data.genodata, :name) @inbounds for i in 1:n_pairs @inbounds geno1 = popdata_idx[(sample_pairs[i][1],)].genotype @inbounds geno2 = popdata_idx[(sample_pairs[i][2],)].genotype # get index for genotype appearing missing in at least one individual in the pair keep_idx = nonmissings(geno1, geno2) # generate nonmissing genotype data gen1, gen2, loc, n_per_loc = (i[keep_idx] for i in (geno1, geno2, loci_names, n_per_loci)) @inbounds shared_loci[i] = length(keep_idx) @sync @inbounds for (j, mthd) in enumerate(method) Base.Threads.@spawn begin @inbounds relate_vecs[j][i] = mthd(gen1, gen2, loc, allelefrequencies, loc_n = n_per_loci, n_samples = n_samples, inbreeding = inbreeding) boot_out = _bootstrapgenos_all(geno1, geno2, loci_names, n_per_loci, allelefrequencies, method = mthd, iterations = iterations, inbreeding = inbreeding, n = j+1) @inbounds boot_means[j][i], boot_medians[j][i], boot_ses[j][i], boot_CI[j][i] = _bootstrapsummary(boot_out, interval) #pair_text = sample_pairs[i][1] * " × " * sample_pairs[i][2] * " ($i" * " of " * "$(n_pairs)" * ")" #ProgressMeter.next!(p; showvalues = [(:Pair, pair_text), (:Method, mthd)]) end end end method_colnames = [Symbol("$i") for i in method] boot_mean_colnames = [Symbol("$i"*"_mean") for i in method] boot_median_colnames = [Symbol("$i"*"_median") for i in method] boot_se_colnames = [Symbol("$i"*"_SE") for i in method] CI_percent = convert(Int64, round(interval[2] - interval[1], digits = 2) * 100) boot_CI_colnames = [Symbol("$i"*"_CI_"*"$CI_percent") for i in method] out_dfs = map(method_colnames) do mthod DataFrame(:sample_1 => map(i -> i[1], sample_pairs), :sample_2 => map(i -> i[2], sample_pairs), :n_loci => shared_loci) end @inbounds for (i, mth) in enumerate(method_colnames) out_dfs[i][:, mth] = relate_vecs[i] out_dfs[i][:, boot_mean_colnames[i]] = boot_means[i] out_dfs[i][:, boot_median_colnames[i]] = boot_medians[i] out_dfs[i][:, boot_se_colnames[i]] = boot_ses[i] out_dfs[i][:, boot_CI_colnames[i]] = boot_CI[i] end return (; (method_colnames .=> out_dfs)...) end """ _kinship_boot_nonmissing(::PopData, sample_names::Vector{String}; method::F, iterations::Int, interval::Tuple{Float64, Float64}) where F Calculate pairwise kinship between all combinations of the provided `sample_names` for each `method` provided. Bootstrapping resamples using the `nonmissing` method, where resampling occurs over only shared non-missing loci. This is an internal function with all arguments provided by `kinship`. """ function _kinship_boot_nonmissing(data::PopData, sample_names::Vector{T}; method::F, iterations::Int, interval::Tuple{Float64, Float64} = (0.025, 0.975), inbreeding::Bool) where F where T<: AbstractString loci_names = Symbol.(loci(data)) uniq_pops = unique(data.metadata.sampleinfo.population) if first(uniq_pops) ∈ ["fullsib", "halfsib", "unrelated", "parent_offspring"] sample_pairs = simpairs(sample_names) |> collect else sample_pairs = pairwisepairs(sample_names) |> collect end n_pairs = length(sample_pairs) n_samples = data.metadata.samples n_per_loci = DataFrames.combine(groupby(data.genodata, :locus), :genotype => nonmissing => :n)[:, :n] allelefrequencies = allelefreq(data) relate_vecs = map(i -> Vector{Union{Missing,Float64}}(undef, n_pairs), 1:length(method)) boot_means, boot_medians, boot_ses = map(i -> deepcopy(relate_vecs), 1:3) boot_CI = map(i -> Vector{Union{Missing,Tuple{Float64,Float64}}}(undef, n_pairs), 1:length(method)) shared_loci = Vector{Int}(undef, n_pairs) #p = Progress(n_pairs * length(method), dt = 1, color = :blue, barglyphs = BarGlyphs("|=> |"), barlen = 30) popdata_idx = groupby(data.genodata, :name) @inbounds for i in 1:n_pairs @inbounds geno1 = popdata_idx[(sample_pairs[i][1],)].genotype @inbounds geno2 = popdata_idx[(sample_pairs[i][2],)].genotype # get index for genotype appearing missing in at least one individual in the pair keep_idx = nonmissings(geno1, geno2) # generate nonmissing genotype data gen1, gen2, loc, n_per_loc = (i[keep_idx] for i in (geno1, geno2, loci_names, n_per_loci)) @inbounds shared_loci[i] = length(keep_idx) @inbounds @sync for (j, mthd) in enumerate(method) Base.Threads.@spawn begin @inbounds relate_vecs[j][i] = mthd(gen1, gen2, loc, allelefrequencies, loc_n = n_per_loc, n_samples = n_samples, inbreeding = inbreeding) boot_out = _bootstrapgenos_nonmissing(gen1, gen2, loc, n_per_loc, allelefrequencies, method = mthd, iterations = iterations, inbreeding = inbreeding) @inbounds boot_means[j][i], boot_medians[j][i], boot_ses[j][i], boot_CI[j][i] = _bootstrapsummary(boot_out, interval) #pair_text = sample_pairs[i][1] * " × " * sample_pairs[i][2] * " ($i" * " of " * "$n_pairs" * ")" #ProgressMeter.next!(p; showvalues = [(:Pair, pair_text), (:Method, mthd)]) end end end method_colnames = [Symbol("$i") for i in method] boot_mean_colnames = [Symbol("$i"*"_mean") for i in method] boot_median_colnames = [Symbol("$i"*"_median") for i in method] boot_se_colnames = [Symbol("$i"*"_SE") for i in method] CI_percent = convert(Int64, round(interval[2] - interval[1], digits = 2) * 100) boot_CI_colnames = [Symbol("$i"*"_CI_"*"$CI_percent") for i in method] out_dfs = map(method_colnames) do mthod DataFrame(:sample_1 => map(i -> i[1], sample_pairs), :sample_2 => map(i -> i[2], sample_pairs), :n_loci => shared_loci) end @inbounds for (i, mth) in enumerate(method_colnames) out_df[:, mth] = relate_vecs[i] out_df[:, boot_mean_colnames[i]] = boot_means[i] out_df[:, boot_median_colnames[i]] = boot_medians[i] out_df[:, boot_se_colnames[i]] = boot_ses[i] out_df[:, boot_CI_colnames[i]] = boot_CI[i] end return (; (method_colnames .=> out_dfs)...) end """ _kinship_noboot(::PopData, sample_names::Vector{String}; method::F) where F Calculate pairwise kinship between all combinations of the provided `sample_names` for each `method` provided. This is an internal function with arguments provided by `kinship`. """ function _kinship_noboot(data::PopData, sample_names::Vector{T}; method::F, inbreeding::Bool) where F where T <: AbstractString loci_names = Symbol.(loci(data)) n_samples = data.metadata.samples uniq_pops = unique(data.metadata.sampleinfo.population) if first(uniq_pops) ∈ ["fullsib", "halfsib", "unrelated", "parent_offspring"] sample_pairs = simpairs(sample_names) |> collect else sample_pairs = pairwisepairs(sample_names) |> collect end n_pairs = length(sample_pairs) n_per_loci = DataFrames.combine(groupby(data.genodata, :locus), :genotype => nonmissing => :n)[:, :n] allelefrequencies = allelefreq(data) relate_vecs = map(i -> Vector{Union{Missing,Float64}}(undef, n_pairs), 1:length(method)) shared_loci = Vector{Int}(undef, n_pairs) #p = Progress(n_pairs* length(method), dt = 1, color = :blue, barglyphs = BarGlyphs("|=> |"), barlen = 30) popdata_idx = groupby(data.genodata, :name) @inbounds @sync for i in 1:n_pairs Base.Threads.@spawn begin @inbounds geno1 = popdata_idx[(sample_pairs[i][1],)].genotype @inbounds geno2 = popdata_idx[(sample_pairs[i][2],)].genotype keep_idx = nonmissings(geno1, geno2) @inbounds shared_loci[i] = length(keep_idx) @inbounds for (j, mthd) in enumerate(method) @inbounds relate_vecs[j][i] = mthd(geno1[keep_idx], geno2[keep_idx], loci_names[keep_idx], allelefrequencies, loc_n = n_per_loci[keep_idx], n_samples = n_samples, inbreeding = inbreeding) #pair_text = sample_pairs[i][1] * " × " * sample_pairs[i][2] * " ($i" * " of " * "$(n_pairs)" * ")" #ProgressMeter.next!(p; showvalues = [(:Pair, pair_text), (:Method, mthd)]) end end end method_colnames = [Symbol("$i") for i in method] out_df = DataFrame(:sample_1 => getindex.(sample_pairs, 1), :sample_2 => getindex.(sample_pairs, 2), :n_loci => shared_loci) [out_df[:, mth] = relate_vecs[i] for (i, mth) in enumerate(method_colnames)] return out_df end """ ``` # compare all samples kinship(::PopData; method::Function, iterations::Int64, interval::Tuple{Float64, Float64}, resample::String, inbreeding::Bool = false) # to compare specific samples kinship(::PopData, samples::Vector{String}; method::F, iterations::Int64, interval::Tuple{Float64, Float64}, resample::String, inbreeding::Bool = false) ``` Return a dataframe of pairwise kinship estimates for all or select pairs of `samples` in a `PopData` object using method(s) `F` where `F` is one or several of the methods listed below. If no bootstrapping is required, then the only necessary keyword to provide is `method = ` and `inbreeding = ` for the `dyadicLikelihood` method (see examples below). **Note:** samples must be diploid. ### Estimator methods The available estimators are listed below and are functions themselves. `kinship` takes the function names as arguments (**case sensitive**), therefore do not use quotes or colons in specifying the methods. Multiple methods can be supplied as a vector. All of these methods will tab-autocomplete. For more information on a specific method, please see the respective docstring (e.g. `?Loiselle`). - `Blouin` - `LiHorvitz` - `Loiselle` - `Lynch` - `LynchLi` - `LynchRitland` - `Moran` - `QuellerGoodnight` - `Ritland` ### Simulated siblingship comparison If validating the estimators using `PopGenSims.jl` to simulate sibship relationships, `kinship` will recognize `PopData` generated in that manner (the `population` column) and only compare siblingship pairs. ### Inbreeding Use the `inbreeding` keyword to specify whether to allow inbreeding (`true`) or not (`false`, default). This is only relevant for the `dyadicLikelihood` method (not yet released) ### Bootstrapping To calculate means, medians, standard errors, and confidence intervals using bootstrapping, set `iterations = n` where `n` is an integer greater than `0` (the default) corresponding to the number of bootstrap iterations you wish to perform for each pair. The default confidence interval is `(0.05, 0.95)` (i.e. 90%), however that can be changed by supplying the keyword `interval = (low, high)` where `low` and `high` are the intervals you want (as `AbstractFloat`). Performing bootstrapping will return a NamedTuple of DataFrames, with each field in the NamedTuple corresponding to the estimator `Method` it describes, which can be merged into one large dataframe using `mergekinship()`. #### Resampling methods There are two available resampling methods, `"all"` (default & recommended) and `"nonmissing"`. - `"all"` : resamples all loci for a pair of individuals and then drops missing loci between them - speed: slower - pro: better resampling variation - con: by chance some iterations may have a lot of missing loci that have to be dropped - `"nonmissing"` : resamples only the shared non-missing loci between the pair - speed: faster - pro: every iteration guarantees the same number of loci compared between the pair - con: too-tight confidence intervals due to less possible variation **Examples** ``` julia> cats = @nancycats; julia> kinship(cats, method = Ritland) 27966×4 DataFrame Row │ sample_1 sample_2 n_loci Ritland │ String String Int64 Float64? ───────┼───────────────────────────────────────── 1 │ N215 N216 8 0.258824 2 │ N215 N217 8 0.193238 3 │ N215 N218 8 0.127497 4 │ N215 N219 8 0.0453471 ⋮ │ ⋮ ⋮ ⋮ ⋮ 27963 │ N297 N290 7 0.189647 27964 │ N281 N289 8 0.0892068 27965 │ N281 N290 7 0.104614 27966 │ N289 N290 7 0.0511663 27958 rows omitted julia> kinship(cats, ["N7", "N111", "N115"], method = [Ritland, Loiselle]) 3×5 DataFrame Row │ sample_1 sample_2 n_loci Ritland Loiselle │ String String Int64 Float64? Float64? ─────┼──────────────────────────────────────────────────── 1 │ N7 N111 9 -0.129432 -0.101618 2 │ N7 N115 9 -0.0183925 -0.0428898 3 │ N111 N115 9 0.0240152 0.13681 julia> rel_out = kinship(cats, ["N7", "N111", "N115"], method = [Loiselle, Moran], iterations = 100, interval = (0.025, 0.975)); julia> rel_out.Loiselle 3×8 DataFrame Row │ sample_1 sample_2 n_loci Loiselle Loiselle_mean Loiselle_median Loiselle_SE Loiselle_CI_95 │ String String Int64 Float64? Float64? Float64? Float64? Tuple…? ─────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────── 1 │ N7 N111 9 -0.101618 0.0164593 0.0168983 0.0511942 (-0.0670707, 0.104008) 2 │ N7 N115 9 -0.0428898 0.0771664 0.0880589 0.0982462 (-0.0428068, 0.183625) 3 │ N111 N115 9 0.13681 0.255124 0.24991 0.267319 (0.103864, 0.421979) # merge results into one big dataframe julia> mergekinship(rel_out) 3×13 DataFrame Row │ sample_1 sample_2 n_loci Loiselle Loiselle_mean Loiselle_ ⋯ │ String String Int64 Float64? Float64? Float64? ⋯ ─────┼─────────────────────────────────────────────────────────────────── 1 │ N7 N111 9 -0.101618 0.0164593 0.0 ⋯ 2 │ N7 N115 9 -0.0428898 0.0771664 0.0 3 │ N111 N115 9 0.13681 0.255124 0.2 8 columns omitted ``` """ function kinship(data::PopData, sample_names::Vector{T}; method::F, iterations::Int64 = 0, interval::Tuple{Float64, Float64} = (0.025, 0.975), resample::String = "all", inbreeding::Bool = false) where F where T<:AbstractString data.metadata.ploidy != 2 && error("kinship analyses currently only support diploid samples") errs = "" all_samples = string.(samplenames(data)) if sample_names != all_samples [errs *= "$i," for i in sample_names if i ∉ all_samples] errs != "" && error("Samples not found in the PopData: " * errs) end if eltype(method) != Function method = [method] end relate_mthds = [:QuellerGoodnight, :Ritland, :Lynch, :LynchLi, :LynchRitland, :Wang, :Loiselle, :Blouin, :Moran, :LiHorvitz, :dyadicLikelihood] [errs *= "$i is not a valid method\n" for i in Symbol.(method) if i ∉ relate_mthds] errs != "" && throw(ArgumentError(errs * "Methods are case-sensitive. Please see the docstring (?kinship) for additional help.")) if iterations > 0 if resample == "all" _kinship_boot_all(data, sample_names, method = method, iterations = iterations, interval = interval, inbreeding = inbreeding) elseif resample == "nonmissing" _kinship_boot_nonmissing(data, sample_names, method = method, iterations = iterations, interval = interval, inbreeding = inbreeding) else throw(ArgumentError("Invalid resample method. Please choose from resample methods \"all\" or \"nonmissing\"")) end else _kinship_noboot(data, sample_names, method = method, inbreeding = inbreeding) end end function kinship(data::PopData; method::F, iterations::Int64 = 0, interval::Tuple{Float64, Float64} = (0.025, 0.975), resample::String = "all", inbreeding::Bool = false) where F sample_names = samplenames(data) |> collect kinship(data, sample_names, method = method, iterations = iterations, interval = interval, resample = resample, inbreeding = inbreeding) end """ mergekinship(data::NamedTuple) A convenience function that takes the `NamedTuple` output from `kinship` performed with bootstrapping and returns one large DataFrame. """ function mergekinship(data::NamedTuple) k = keys(data) k1 = k[1] outdf = deepcopy(data[Symbol(k1)]) for key in k[2:end] outdf = innerjoin( outdf, select(data[Symbol(key)], Not(:n_loci)), on = [:sample_1, :sample_2] ) end return outdf end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
4938
function sig_within(data::PopData, results::DataFrame, population::String, iterations::Int = 20000) # add extra columns of population names pop_names = select(data.metadata, :name => :sample_1 ,:population => :pop_1) tmp_res = innerjoin(results, pop_names, on = :sample_1) select!(pop_names, :sample_1 => :sample_2,:pop_1 => :pop_2) tmp_res = innerjoin(tmp_res, pop_names, on = :sample_2) tmp_res.groups = collect(zip(tmp_res.pop_1, tmp_res.pop_2)) tmp_res.group = tmp_res.pop_1 .* tmp_res.pop_2 select!(tmp_res, Not([:sample_1, :sample_2, :n_loci, :pop_1, :pop_2])) size(tmp_res,1) == 0 && error("Samples in the kinship results not found in the provided PopData.") estimators = Symbol.(names(tmp_res)[begin:end-2]) # extract the values for within-population estimates within_coeff = [tmp_res[tmp_res.group .== population^2, i] for i in estimators] # get the mean of those values mean_within = mean.(within_coeff) # extract the values of the between-population estimates among_coeff = [tmp_res[(population .∈ tmp_res.groups) .& (tmp_res.group .!= population^2), i] for i in estimators] # get the mean of those values mean_among = mean.(among_coeff) # find the difference differ = mean_within - mean_among # setup bootstrap n_within = length(within_coeff[1]) n_among = length(among_coeff[1]) n_tot = n_within + n_among n_range = collect(1:n_tot) n_iter = iterations - 1 bootstrapped = [Vector{Float64}(undef, n_iter) for i in 1:length(estimators)] #p = Progress(iterations * length(estimators), dt = 1, color = :blue) for i in 1:length(estimators) est = estimators[i] iter_count = 0 @sync @inbounds for j in 1:n_iter Base.Threads.@spawn begin iter_count += 1 idx_within = sample(Xoroshiro128Star(), 1:n_tot, n_within, replace = false) idx_among = n_range[Not(idx_within)] mu_within = mean(results[:, est][idx_within]) mu_among = mean(results[:, est][idx_among]) bootstrapped[i][j] = mu_within - mu_among #pair_text = population * " $(iter_count)" * "/" * "$(iterations)" #ProgressMeter.next!(p; showvalues = [(:Population, pair_text), (:Method, string(est))]) end end end [(sum(differ[i] .<= bootstrapped[i]) + 1) / iterations for i in 1:length(estimators)] #(sum(differ .<= bootstrapped) + 1) / (iterations) end """ kinshipposthoc(::PopData, results::DataFrame; iterations::Int) Performs a posthoc analysis using the resulting DataFrame or NamedTuple from kinship(). This analysis uses permutations to test if a population has significantly higher within-population kinship than between-population kinship. The `results` object must have been generated from the provided `PopData`. Use `iterations = ` to specify the number of iterations for the permutation tests (default = `20000`). **Recommended** that you use `MultipleTesting.jl` to correct resulting P-values. **Example** ``` julia> cats = @nancycats ; julia> rel_out = kinship(cats, method = [Ritland, Moran], iterations = 100); julia> kinshipposthoc(cats, rel_out) 17x3 DataFrame Row │ population Ritland_P Moran_P │ String Float64 Float64 ─────┼──────────────────────────────── 1 │ 1 5.0e-5 5.0e-5 2 │ 2 5.0e-5 5.0e-5 3 │ 3 5.0e-5 5.0e-5 4 │ 4 5.0e-5 5.0e-5 5 │ 5 5.0e-5 5.0e-5 6 │ 6 5.0e-5 5.0e-5 7 │ 7 5.0e-5 5.0e-5 8 │ 8 5.0e-5 5.0e-5 9 │ 9 5.0e-5 5.0e-5 10 │ 10 5.0e-5 5.0e-5 11 │ 11 5.0e-5 5.0e-5 12 │ 12 5.0e-5 5.0e-5 13 │ 13 5.0e-5 5.0e-5 14 │ 14 5.0e-5 5.0e-5 15 │ 15 5.0e-5 5.0e-5 16 │ 16 5.0e-5 5.0e-5 17 │ 17 5.0e-5 5.0e-5 ``` """ function kinshipposthoc(data::PopData, results::DataFrame; iterations::Int = 20000) all_pops = unique(data.metadata.sampleinfo.population) estimators = Symbol.(names(results)[names(results) .∉ Ref(["sample_1", "sample_2", "n_loci"])] .* "_P") sigs = map(pop -> sig_within(data, results, pop, iterations), all_pops) DataFrame( :population => all_pops, [estimators[i] => getindex.(sigs,i) for i in 1:length(estimators)]... ) end function kinshipposthoc(data::PopData, results::NamedTuple; iterations::Int = 20000) estimators = keys(results) coeffs = [results[i][:, estimators[i]] for i in 1:length(estimators)] df = select(results[1], "sample_1", "sample_2", "n_loci") [df[:, estimators[i]] = coeffs[i] for i in 1:length(estimators)] kinshipposthoc(data, df, iterations = iterations) end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
1298
using MultivariateStats: MulticlassLDA function dapc(data::PopData, labels::T = [nothing]) where T<:AbstractVector#, covestimator_between=SimpleCovariance(), covestimator_within=SimpleCovariance()) if labels != [nothing] labs = _relabel(labels) else labs = _relabel(data.sampleinfo.population) end classes = length(unique(labs)) _pca = pca(data).proj |> permutedims #return labs, _pca lda = fit(MulticlassLDA, classes, _pca, labs) predict(lda, _pca) end function subspacedapc(data::PopData, labels::T = [nothing]; classes::Int64, nda::Int64 = 0, covestimator_between=SimpleCovariance(), covestimator_within=SimpleCovariance()) where T<:AbstractVector if labels != [nothing] labs = _relabel(labels) else labs = _relabel(data.sampleinfo.population) end lablen = length(unique(labs)) classes > lablen && error("Number of classes ($classes) must be equal or fewer than number of unique labels ($lablen)") _pca = pca(data) pca_mtx = permutedims(_pca.proj) ndakw = iszero(nda) ? min(size(pca_mtx, 1), size(pca_mtx,2) - 1) : nda MultivariateStats.fit(SubspaceLDA, classes, pca_mtx, labs, outdim = ndakw, covestimator_between= covestimator_between, covestimator_within = covestimator_within) end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
21197
## THIS FILE IS DEPRECATED ## export relatedness, pairwise_relatedness, kinship #=TODO Solve dyadic optimization issues combined backtracking failure - need to isolate and find cause #N111 N83 #N63 N64 ~1/3 - 1/5 not with optimal solution in cats dataset Multithread =# #= Would be good to include Implement alternative relatedness metrics Warning if a not implemented (or typo) of method included Streamline output =# """ pr_l_s(x::Tuple, y::Tuple, alleles::Dict) Calculate the probability of observing the particular allele state given each of the 9 Jacquard Identity States for a single locus to create Table 1 from Milligan 2003. """ function pr_l_s(x::Tuple, y::Tuple, alleles::Dict) #= Example cats = @nancycats cat1=genotype(cats, sample = "N100", locus = "fca23") cat2=genotype(cats, sample = "N111", locus = "fca23") allele = allelefreq(cats.genodata.fca23) pr_l_s(cat1, cat2, allele) =# #= Calculate Pr(Li | Sj) If the allele identity falls into this class (L1-L9), generate the probabilities of it belonging to each of the different classes and return that array of 9 distinct probabilities =# ## class L1 - AᵢAᵢ AᵢAᵢ ## if x[1] == x[2] == y[1] == y[2] x = string.(x) y = string.(y) p = alleles[x[1]] [p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4] ## class L2 - AᵢAᵢ AⱼAⱼ ## elseif (x[1] == x[2]) & (y[1] == y[2]) & (x[1] != y[1]) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[y[1]]) [0, prod(p), 0, prod(p) * p[2], 0, prod(p) * p[1], 0, 0, prod(p) * prod(p)] ## class L3a - AᵢAᵢ AᵢAⱼ ## - has issues because of allele order elseif ((x[1] == x[2] == y[1]) & (x[1] != y[2])) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[y[2]]) [0, 0, prod(p), 2 * prod(p) * p[1], 0, 0, 0, prod(p) * p[1], 2 * prod(p) * p[1]^2] ## class L3b - AᵢAᵢ AⱼAᵢ ## - has issues because of allele order elseif ((x[1] == x[2] == y[2]) & (x[1] != y[1])) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[y[1]]) [0, 0, prod(p), 2 * prod(p) * p[1], 0, 0, 0, prod(p) * p[1], 2 * prod(p) * p[1]^2] ## class L4 - AᵢAᵢ AⱼAₖ ## elseif (x[1] == x[2]) & (y[1] != y[2]) & (x[1] != y[1]) & (x[1] != y[2]) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[y[1]], alleles[y[2]]) [0, 0, 0, 2 * prod(p), 0, 0, 0, 0, 2 * prod(p) * p[1]] ## L5a - AiAj AiAi ## - has issues because of allele order elseif ((x[1] == y[1] == y[2]) & (x[1] != x[2])) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[x[2]]) [0, 0, 0, 0, prod(p), 2 * prod(p) * p[1], 0, prod(p) *p[1], 2 * prod(p) * p[1]^2] ## L5b - AjAi AiAi ## - has issues because of allele order elseif (x[2] == y[1] == y[2] & (x[1] != x[2])) x = string.(x) y = string.(y) p = (alleles[x[2]], alleles[x[1]]) [0, 0, 0, 0, prod(p), 2 * prod(p) * p[1], 0, prod(p) *p[1], 2 * prod(p) * p[1]^2] ## L6 - AjAk AiAi ## elseif (x[1] != x[2]) & (y[1] == y[2]) & (x[1] != y[1]) & (x[2] != y[1]) x = string.(x) y = string.(y) p = (alleles[y[1]], alleles[x[1]], alleles[x[2]]) [0, 0, 0, 0, 0, 2 * prod(p), 0, 0, 2 * prod(p) * p[1]] ## L7 - AiAj AiAj ## elseif (x[1] == y[1]) & (x[2] == y[2]) & (x[1] != x[2]) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[x[2]]) [0, 0, 0, 0, 0, 0, 2 * prod(p), prod(p) * sum(p), 4 * prod(p) * prod(p)] ## L8a - AiAj AiAk ## - has issues because of allele order elseif ((x[1] == y[1]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[2] != y[2])) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[x[2]], alleles[y[2]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L8b - AjAi AkAi ## - has issues because of allele order elseif ((x[2] == y[2]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[1] != y[1])) x = string.(x) y = string.(y) p = (alleles[x[2]], alleles[x[1]], alleles[y[1]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L8c - AjAi AiAk ## - has issues because of allele order elseif ((x[2] == y[1]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[1] != y[2])) x = string.(x) y = string.(y) p = (alleles[x[2]], alleles[x[1]], alleles[y[2]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L8d - AiAj AkAi ## - has issues because of allele order elseif ((x[1] == y[2]) & (x[1] != x[2]) & (y[1] != y[2]) & (x[1] != y[1])) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[x[2]], alleles[y[1]]) [0, 0, 0, 0, 0, 0, 0, prod(p), 4 * prod(p) * p[1]] ## L9 - AiAj AkAl ## elseif (x[1] != x[2]) & (x[1] != y[1]) & (x[1] != y[2]) & (x[2] != y[1]) & (x[2] != y[2]) & (y[1] != x[2]) x = string.(x) y = string.(y) p = (alleles[x[1]], alleles[x[2]], alleles[y[1]], alleles[y[2]]) [0, 0, 0, 0, 0, 0, 0, 0, 4 * prod(p)] else [-9, -9, -9, -9, -9, -9, -9, -9, -9] end end """ all_loci_Pr_L_S(data::PopObj, ind1::String, ind2::String, alleles::Dict) Calculate the probability of observing the particular allele state given each of the 9 Jacquard Identity States for all loci Creates Table 1 from Milligan 2002 """ function all_loci_Pr_L_S(data::PopData, ind1::String, ind2::String, alleles::Dict) #Need to skip loci where one or both individuals have missing data Pr_L_S = [] for locus in String.(names(data.genodata)) #Extract the pair of interest's genotypes gen1 = genotype(data, sample = ind1, locus = locus) gen2 = genotype(data, sample = ind2, locus = locus) if gen1 !== missing && gen2 !== missing tmp = pr_l_s(gen1, gen2, alleles[locus]) return tmp push!(Pr_L_S, tmp) end end return transpose(hcat(Pr_L_S...)) end #Pr_L_S_inbreeding = all_loci_Pr_L_S(ind1, ind2, data, allelefrequencies) """ no_inbreeding(Pr_L_S::LinearAlgebra.Transpose{Float64,Array{Float64,2}}) Remove Jacquard States which can only be the result of inbreeding """ function no_inbreeding(Pr_L_S::Transpose{Float64,Array{Float64,2}}) for i in 1:6 Pr_L_S[:,i] = 0 .* Pr_L_S[:,i] end return Pr_L_S end #Pr_L_S_noinbreeding = dyadic_ML(data, allelefrequencies) |> no_inbreeding ## Calculate Δ coefficients #Need to either maximize this sum or use it as the likelihood in a bayesian model and sample from the posterior. #currently only maximum likelihood optimization """ Δ_optim(Pr_L_S::Transpose{Float64,Array{Float64,2}}, verbose::Bool) Takes the probability of the allelic state given the identity by descent from all available loci (either allowing for inbreeding or not) and calculated the maximum likelihood Δ coefficients """ function Δ_optim(Pr_L_S::Transpose{Float64,Array{Float64,2}}, verbose::Bool = true) #Δ is what needs to be optimized #consist of 9 values between 0 and 1 which must also sum to 1 #is then used to calculate relatedness Δ = Variable(8) #problem = maximize(sum(log(Pr_L_S * vcat(1 - sum(Δ), Δ)))) problem = maximize(sum(Pr_L_S * vcat(1 - sum(Δ), Δ))) problem.constraints += 0 <= 1 - sum(Δ) problem.constraints += 1 - sum(Δ) <= 1 problem.constraints += 0 <= Δ[1:8] problem.constraints += Δ[1:8] <= 1 #shifted from actual relatedness calculations because the 1 - sum(Δ) goes at beginning # problem.constraints += 2 * ((1 - sum(Δ)) + 0.5 * (Δ[2] + Δ[4] + Δ[6]) + 0.25 * Δ[7]) <= 1 # problem.constraints += 0 <= 2 * ((1 - sum(Δ)) + 0.5 * (Δ[2] + Δ[4] + Δ[6]) + 0.25 * Δ[7]) Convex.solve!(problem, ECOSSolver(verbose = verbose, maxit = 100), verbose = verbose) #maxit=100, #Convex.solve!(problem, ECOSSolver(verbose = verbose, maxit=100, feastol=5e-6, reltol = 1e-3, reltol_inacc = 5e-2), verbose = verbose) #Convex.solve!(problem, SCSSolver(verbose = verbose, max_iters = 100), verbose = verbose) vcat(1-sum(Δ.value), Δ.value), problem.status # Should probably include some output that confirms that it did in fact # converge and/or use multiple random starts to confirm not a local maxima end # JuMP variant function Δ_optim(Pr_L_S::Transpose{Float64,Array{Float64,2}}, verbose::Bool = true) #Δ is what needs to be optimized #consist of 9 values between 0 and 1 which must also sum to 1 #is then used to calculate relatedness jacquard = Model(ECOS.Optimizer) @variable(jacquard, Δ[i=1:9]) @objective(jacquard, Max, sum(log(Pr_L_S * Δ))) @constraint(jacquard, con, sum(Δ) == 1) @constraint(jacquard, con_bounds, 0 .<= Δ .<= 1) end ## Calculate theta and r """ relatedness_dyadicML(Δ::Array{Float64,2}) Takes the Δ coefficents (with or without inbreeding allowed) and calculates the coefficient of relatedness """ function relatedness_from_Δ(Δ::Array{Float64,2}) θ = Δ[1] + 0.5 * (Δ[3] + Δ[5] + Δ[7]) + 0.25 * Δ[8] 2 * θ end #relatedness_dyadicML(Δ_inbreeding) #relatedness_dyadicML(Δ_noinbreeding) #Relatedness R package appears to have a bug. When allow.inbreeding = TRUE the relatedness value is the same as when I assume no inbreeding #when you set allow.inbreeding = FALSE then the relatedness calculated is the same as when I assume there is inbreeding """ dyadicML_relatedness(data::PopObj, ind1::String, ind2::String; alleles::Dict, inbreeding::Bool = true, verbose::Bool = true) Calculates the dyadic maximum likelihood relatedness using all available loci following Milligan 2002 dyadic relatedness - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1462494/pdf/12663552.pdf Inbreeding can either be assumed not to occur (inbreeding = false) or be included in the calculation of the relatedness coefficient Verbose controls the verbosity of the optimization process to find the Maximum likelihood Δ coefficents """ function dyadicML_relatedness(data::PopObj, ind1::String, ind2::String; alleles::Dict, inbreeding::Bool = true, verbose::Bool = true) #TODO - calculate inbreeding coeffificients Fx & Fy and include in r calculation #Coancestry Manual #Fx = sum(Δ[1:4]) #Fy = sum(Δ[1,2,5,6]) #rxy = (2Δ[1] + Δ[3] + Δ[5] + Δ[7] + (1/2)Δ[8]) / sqrt((1 + Fx) * (1 + Fy)) Pr_L_S = all_loci_Pr_L_S(data, ind1, ind2, alleles) if !inbreeding no_inbreeding(Pr_L_S) end Δ,convergence = Δ_optim(Pr_L_S, verbose) return relatedness_from_Δ(Δ), Δ, convergence end """ qg_relatedness(data::PopObj, ind1::String, ind2::String; alleles::Dict) Calculates the moments based estimator of pairwise relatedness developed by Queller & Goodnight (1989). - Bases allele frequencies on entire population - Inbreeding can only be assumed not to exist. See equation 3 in: https://www.nature.com/articles/hdy201752 for variant of estimator used """ function qg_relatedness(data::PopData, ind1::String, ind2::String; alleles::T) where T <: NamedTuple #NEED TO CHECK TO CONFIRM EQUATIONS n1 = 0.0 n2 = 0.0 d1 = 0.0 d2 = 0.0 for loc in loci(data) #Extract the pair of interest's genotypes gen1 = genotype(data, sample = ind1, locus = loc) gen2 = genotype(data, sample = ind2, locus = loc) #Skip missing if gen1 !== missing && gen2 !== missing a,b = gen1 c,d = gen2 sym_loc = Symbol(loc) n1 += sum((a == c, a == d, b == c, b == d)) - 2.0 * (alleles[sym_loc][a] + alleles[sym_loc][b]) n2 += sum((a == c, a == d, b == c, b == d)) - 2.0 * (alleles[sym_loc][c] + alleles[sym_loc][d]) d1 += 2.0 * (1.0 + (a==b) - alleles[sym_loc][a] - alleles[sym_loc][b]) d2 += 2.0 * (1.0 + (c==d) - alleles[sym_loc][c] - alleles[sym_loc][d]) end end return (n1/d1 + n2/d2)/2.0 end """ ritland_relatedness(data::PopObj, ind1::String, ind2::String; alleles::Dict) Calculates the moments based estimator of pairwise relatedness proposed by Li and Horvitz (1953) and implemented/made popular by Ritland (1996). - Bases allele frequencies on entire population - Inbreeding can only be assumed not to exist. See equation 7 in: https://www.nature.com/articles/hdy201752 for variant of estimator used Ritland original citation: https://www.cambridge.org/core/journals/genetics-research/article/estimators-for-pairwise-relatedness-and-individual-inbreeding-coefficients/9AE218BF6BF09CCCE18121AA63561CF7 """ function ritland_relatedness(data::PopData, ind1::String, ind2::String; alleles::T) where T <: NamedTuple #NEED TO CHECK TO CONFIRM EQUATIONS n = 0.0 d = 0.0 for loc in loci(data) #Extract the pair of interest's genotypes gen1 = genotype(data, sample = ind1, locus = loc) gen2 = genotype(data, sample = ind2, locus = loc) #Skip missing if gen1 !== missing && gen2 !== missing a,b = gen1 c,d = gen2 sym_loc = Symbol(loc) A = ((alleles[sym_loc] |> length) - 1) R = 0.0 for allele in keys(alleles[sym_loc]) # Individual locus relatedness value (eq 7 in paper) R += ((((a == allele) + (b == allele)) * ((c == allele) + (d == allele))) / (4.0 * alleles[sym_loc][allele])) end R = (2 / A) * (R - 1.0) # numerator for weighted combination of loci n += (R * A) # denominator for weighted combination of loci d += A end end return (n / d) end """ lr_relatedness(data::PopObj, ind1::String, ind2::String; alleles::Dict) Calculates the moments based estimator of pairwise relatedness by Ritland (1996). - Bases allele frequencies on entire population - Inbreeding can only be assumed not to exist. See equation 10 in: https://www.nature.com/articles/hdy201752 for variant of estimator used Ritland original citation: https://www.cambridge.org/core/journals/genetics-research/article/estimators-for-pairwise-relatedness-and-individual-inbreeding-coefficients/9AE218BF6BF09CCCE18121AA63561CF7 """ function lr_relatedness(data::PopData, ind1::String, ind2::String; alleles::T) where T <: NamedTuple #NEED TO CHECK TO CONFIRM EQUATIONS n = 0.0 d = 0.0 #Extract the pair of interest's genotypes gen1 = genotypes(data, ind1) gen2 = genotypes(data, ind2) # keep only loci where both are not missing # _f implies "filtered" #loc_f, gen1_f, gen2_f = skipmissings(Symbol.(loci(data)), gen1, gen2) for (loc,geno1,geno2) in zip(skipmissings(Symbol.(loci(data)), gen1, gen2)...) a,b = geno1 c,d = geno2 n1 = alleles[loc][a] * ((b == c) + (b == d)) + alleles[loc][b] * ((a == c) + (a == d)) - 4.0 * alleles[loc][a] * alleles[loc][b] n2 = alleles[loc][c] * ((d == a) + (d == b)) + alleles[loc][d] * ((c == a) + (c == b)) - 4.0 * alleles[loc][c] * alleles[loc][d] d1 = 2.0 * (1.0 + (a == b)) * (alleles[loc][a] + alleles[loc][b]) - 8.0 * alleles[loc][a] * alleles[loc][b] d2 = 2.0 * (1.0 + (c == d)) * (alleles[loc][c] + alleles[loc][d]) - 8.0 * alleles[loc][c] * alleles[loc][d] RL = (n1 / d1) + (n2 / d2) n += RL #JDS - CHECK THIS IS CORRECT d += ((alleles[loc] |> length) - 1) end return (n / d) end """ pairwise_relatedness(data::PopObj; method::String, inbreeding::Bool = true, verbose::Bool = true) Calculates various pairwise relatedness measures between all pairs of individuals based on the entire sample population allele frequency If verbose is set to false then there is a progress bar. If set to true then there is estimator specific feedback and statements when an individual has been compared to all other pairs If the method is able to account for inbreeding in it's calculation then that option may be used Available methods: - `"qg"` : Queller & Goodknight 1989 (diploid only) """ function pairwise_relatedness(data::PopData; method::String = "qg", inbreeding::Bool = true, verbose::Bool = true) # check that dataset is entirely diploid all(data.metadata.sampleinfo.ploidy .== 2) == false && error("Relatedness analyses currently only support diploid samples") allelefrequencies = NamedTuple{Tuple(Symbol.(loci(data)))}( Tuple(allelefreq.(locus.(Ref(data), loci(data)))) ) #= if !verbose n = size(data.samples)[1] n = n*(n-1) ÷ 2 prog = Progress(n, 1) end #Add switch to slightly change output depending on relatednes metric (e.g. convergence doesn't make sense for Moments Estimators) if method == "dyadml" output = DataFrame(ind1 = [], ind2 = [], relatedness = [], convergence = []) end =# sample_names = samplenames(data) sample_pairs = [tuple(sample_names[i], sample_names[j]) for i in 1:length(sample_names)-1 for j in i+1:length(sample_names)] relate_vec = zeros(length(sample_pairs)) idx = 0 if method == "qg" @inbounds for (sample_n, ind1) in enumerate(sample_names[1:end-1]) #Base.Threads.@threads @inbounds Base.Threads.@threads for ind2 in sample_names[sample_n+1:end] idx += 1 #= if method == "dyadml" dyad_out = dyadicML_relatedness(data, ind1, data.samples.name[ind2], alleles = allelefrequencies, inbreeding = inbreeding, verbose = verbose) append!(output,DataFrame(ind1 = ind1, ind2 = data.samples.name[ind2], relatedness = dyad_out[1], convergence = dyad_out[3])) end =# relate_vec[idx] += qg_relatedness(data, ind1, ind2, alleles = allelefrequencies) #= if !verbose next!(prog) end =# end end #= if verbose println("All pairs with ", ind1, " finished") end =# end method_colname = Symbol("relatedness_" * method) return DataFrame(:sample_1 => getindex.(sample_pairs, 1), :sample_2 => getindex.(sample_pairs, 2), method_colname => relate_vec) end #Multithreaded version - requires "Combinatorics" Package function pairwise_relatedness(data::PopObj; method::String, inbreeding::Bool = true, verbose::Bool = true) # check that dataset is entirely diploid all(data.samples.ploidy .== 2) == false && error("Relatedness analyses currently only support diploid samples") allelefrequencies = Dict() for locus in names(data.genodata) allelefrequencies[String(locus)] = allelefreq(data.genodata[:, locus]) end n = size(data.samples)[1] n = n*(n-1) ÷ 2 if !verbose prog = Progress(n, 1) end #Add switch to slightly change output depending on relatednes metric (e.g. convergence doesn't make sense for Moments Estimators) if method == "dyadml" output = DataFrame([String, String, Float64, Float64, Float64, Symbol], Symbol.(["Ind1", "Ind2", "I", "thread", "relatedness", "convergence"]), n) end if method == "qg" #output = DataFrame(ind1 = [], ind2 = [], relatedness = []) output = DataFrame([String, String, Float64, Float64, Float64], Symbol.(["Ind1", "Ind2", "I", "thread", "relatedness"]), n) end pairs = combinations(data.samples.name, 2) |> collect #This line requires Combinatorics pacakge Threads.@threads for i in 1:n ind1 = pairs[i][1] ind2 = pairs[i][2] output[i, :I] = i output[i, :Ind1] = ind1 output[i, :Ind2] = ind2 output[i, :thread] = Threads.threadid() if method == "qg" output[i, :relatedness] = qg_relatedness(data, ind1, ind2, alleles = allelefrequencies) end if method == "dyadml" dyad_out = dyadicML_relatedness(data, ind1, ind2, alleles = allelefrequencies, inbreeding = inbreeding, verbose = verbose) output[i, :relatedness] = dyad_out[1] output[i, :convergence] = dyad_out[3] end next!(prog) end return output end const relatedness = pairwise_relatedness const kinship = pairwise_relatedness # - `"dyadml"` : Milligan 2002 Dyadic Maximum Likelihood relatedness estimator #= cat_rel_noInbreeding = pairwise_relatedness(@nancycats, method = "dyadml", inbreeding = false, verbose = false) cat_rel_Inbreeding = pairwise_relatedness(@nancycats, method = "dyadml", inbreeding = true, verbose = false) cat_rel_qg = pairwise_relatedness(@nancycats, method = "qg", verbose = false) =# #= Testing area cat_rel_noInbreeding = pairwise_relatedness(@nancycats, method = "dyadml", inbreeding = false, verbose = false) cat_rel_Inbreeding = pairwise_relatedness(@nancycats, method = "dyadml", inbreeding = true, verbose = false) count(cat_rel_noInbreeding[i,4] == :Optimal for i in 1:27966) count(cat_rel_Inbreeding[i,4] == :Optimal for i in 1:27966) "N100" "N106" =#
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
11060
## Method 1 function get_uncondensed_state(ind1::T, ind2::T) where T <: Tuple i,j = ind1 k,l = ind2 δ = 1 * (i == j == k == l) + 2 * ((i == j == k) & (i != l)) + 3 * ((i == j == l) & (i != k)) + 4 * ((i == k == l) & (i != j)) + 5 * ((j == k == l) & (i != j)) + 6 * ((i == j) & (k == l) & (i != k)) + 7 * ((i == j) & (k != l) & (i != k) & (i != l)) + 8 * ((k == l) & (i != j) & (i != k) & (j != k)) + 9 * ((i == k) & (j == l) & (i != j) & (k != l)) + 10 * ((i == k) & (j != l) & (i != j) & (k != l)) + 11 * ((j == l) & (i != k) & (i != j) & (k != l)) + 12 * ((i == l) & (j == k) & (i != j) & (k != l)) + 13 * ((i == l) & (j != k) & (i != j) & (k != l)) + 14 * ((i != l) & (j == k) & (i != j) & (k != l)) + 15 * ((i != j) & (i != k) & (i != l) & (j != k) & (j != l) & (k != l)) return δ end s1(p) = [p[1], p[1]^2, p[1]^2, p[1]^3, p[1]^2, p[1]^3, p[1]^2, p[1]^3, p[1]^4] s2(p) = [0.0, 0.0, prod(p[[1,4]]), 2.0 * prod(p[[1,4]]) * p[1], 0.0, 0.0, 0.0, prod(p[[1,4]]) * p[1], 2.0 * prod(p[[1,4]]) * p[1]^2] #D3/S2 s3(p) = [0.0, 0.0, prod(p[[1,3]]), 2.0 * prod(p[[1,3]]) * p[1], 0.0, 0.0, 0.0, prod(p[[1,3]]) * p[1], 2.0 * prod(p[[1,3]]) * p[1]^2] #D3/S3 s4(p) = [0.0, 0.0, 0.0, 0.0, prod(p[[1,2]]), 2.0 * prod(p[[1,2]]) * p[1], 0.0, prod(p[[1,2]]) *p[1], 2.0 * prod(p[[1,2]]) * p[1]^2] #D5/S4 s5(p) = [0.0, 0.0, 0.0, 0.0, prod(p[[1,2]]), 2.0 * prod(p[[1,2]]) * p[2], 0.0, prod(p[[1,2]]) *p[2], 2.0 * prod(p[[1,2]]) * p[2]^2] #D5/S5 s6(p) = [0.0, prod(p[[1,3]]), 0.0, prod(p[[1,3]]) * p[3], 0.0, prod(p[[1,3]]) * p[1], 0.0, 0.0, prod(p[[1,3]])^2] #D2/S6 s7(p) = [0.0, 0.0, 0.0, 2.0 * prod(p[[1,3,4]]), 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,3,4]]) * p[1]] #D4/S7 s8(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,2,3]]), 0.0, 0.0, 2.0 * prod(p[[1,2,3]]) * p[3]] #D6/S8 s9(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,2]]), prod(p[[1,2]]) * sum(p[[1,2]]), 4.0 * prod(p[[1,2]])^2] #D7/S9 s10(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,4]]), 4.0 * prod(p[[1,2,4]]) * p[1]] #D8/S10 s11(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,3]]), 4.0 * prod(p[[1,2,3]]) * p[2]] #D8/S11 s12(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,2]]), prod(p[[1,2]]) * sum(p[[1,2]]), 4.0 * prod(p[[1,2]])^2] #D7/S12 s13(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,3]]), 4.0 * prod(p[[1,2,3]]) * p[1]] #D8/S13 s14(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,4]]), 4.0 * prod(p[[1,2,4]]) * p[2]] #D8/S14 s15(p) = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0 * prod(p)] #D9/S15 δ = (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15) function probability_states(ind1::T, ind2::T, alleles::Dict) where T <: Tuple i,j = ind1 k,l = ind2 p = [alleles[i], alleles[j], alleles[k], alleles[l]] return δ[get_uncondensed_state(ind1, ind2)](p) end s1(p) = (p[1], p[1]^2, p[1]^2, p[1]^3, p[1]^2, p[1]^3, p[1]^2, p[1]^3, p[1]^4) s2(p) = (0.0, 0.0, prod(p[[1,4]]), 2.0 * prod(p[[1,4]]) * p[1], 0.0, 0.0, 0.0, prod(p[[1,4]]) * p[1], 2.0 * prod(p[[1,4]]) * p[1]^2) #D3/S2 s3(p) = (0.0, 0.0, prod(p[[1,3]]), 2.0 * prod(p[[1,3]]) * p[1], 0.0, 0.0, 0.0, prod(p[[1,3]]) * p[1], 2.0 * prod(p[[1,3]]) * p[1]^2) #D3/S3 s4(p) = (0.0, 0.0, 0.0, 0.0, prod(p[[1,2]]), 2.0 * prod(p[[1,2]]) * p[1], 0.0, prod(p[[1,2]]) *p[1], 2.0 * prod(p[[1,2]]) * p[1]^2) #D5/S4 s5(p) = (0.0, 0.0, 0.0, 0.0, prod(p[[1,2]]), 2.0 * prod(p[[1,2]]) * p[2], 0.0, prod(p[[1,2]]) *p[2], 2.0 * prod(p[[1,2]]) * p[2]^2) #D5/S5 s6(p) = (0.0, prod(p[[1,3]]), 0.0, prod(p[[1,3]]) * p[3], 0.0, prod(p[[1,3]]) * p[1], 0.0, 0.0, prod(p[[1,3]])^2) #D2/S6 s7(p) = (0.0, 0.0, 0.0, 2.0 * prod(p[[1,3,4]]), 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,3,4]]) * p[1]) #D4/S7 s8(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,2,3]]), 0.0, 0.0, 2.0 * prod(p[[1,2,3]]) * p[3]) #D6/S8 s9(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,2]]), prod(p[[1,2]]) * sum(p[[1,2]]), 4.0 * prod(p[[1,2]])^2) #D7/S9 s10(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,4]]), 4.0 * prod(p[[1,2,4]]) * p[1]) #D8/S10 s11(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,3]]), 4.0 * prod(p[[1,2,3]]) * p[2]) #D8/S11 s12(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p[[1,2]]), prod(p[[1,2]]) * sum(p[[1,2]]), 4.0 * prod(p[[1,2]])^2) #D7/S12 s13(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,3]]), 4.0 * prod(p[[1,2,3]]) * p[1]) #D8/S13 s14(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p[[1,2,4]]), 4.0 * prod(p[[1,2,4]]) * p[2]) #D8/S14 s15(p) = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0 * prod(p)) #D9/S15 δ_t = (s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15) function probability_states_tuple(ind1::T, ind2::T, alleles::Dict) where T <: Tuple i,j = ind1 k,l = ind2 p = [alleles[i], alleles[j], alleles[k], alleles[l]] return δ_t[get_uncondensed_state(ind1, ind2)](p) end ## Method 2 S1 = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4] S2 = [1 2; 3 4] S3 = [1 2; 1 3; 2 3] S4 = [1 2] S5 = [1 3; 1 4; 3 4] S6 = [3 4] S7 = [1 3; 2 4] S8 = [1 3] S9 = [1 3][[1 3][:,1] .!= 1, :] ibd_states = [S1, S2, S3, S4, S5, S6, S7, S8, S9] function get_jacquard_state(ind1::T, ind2::T, ibd_states = ibd_states) where T <: Tuple the_shared = [intersect(ind1, ind2)...,0] the_lone = [setdiff(ind1, ind2)..., setdiff(ind2, ind1)...,0] ind1_resort = [ind1[(sum(ind1 .∈ the_shared',dims=2) .>= 1)[:,1]]..., ind1[(sum(ind1 .∈ the_lone',dims=2) .>= 1)[:,1]]...] ind2_resort = [ind2[(sum(ind2 .∈ the_shared',dims=2) .>= 1)[:,1]]..., ind2[(sum(ind2 .∈ the_lone',dims=2) .>= 1)[:,1]]...] adj_mat = Array{Int8}(undef, 6, 2) idx = 0 for i in 1:3, j in i+1:4 idx += 1 adj_mat[idx,1:2] = [i,j] .* (1.0 * ([ind1_resort..., ind2_resort...][i] == [ind1_resort..., ind2_resort...][j])) end adj_mat = adj_mat[adj_mat[:,1] .> 0,:] jaq_state = 0 for i in 1:9 jaq_state += i * (adj_mat == ibd_states[i]) end return jaq_state end ## Single type? struct JacquardPair genotype1::Genotype genotype2::Genotype state::Int end function probability_state(genos::JacquardPair, alleles::Dict)::Vector{Float64} state = genos.state if state == 1 p = alleles[genos.genotype1[1]] [p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4] elseif state == 2 p = (alleles[genos.genotype1[1]], alleles[genos.genotype2[1]]) [0.0, prod(p), 0.0, prod(p) * p[2], 0.0, prod(p) * p[1], 0.0, 0.0, prod(p)^2] elseif state == 3 p = (alleles[genos.genotype1[1]], alleles[genos.genotype2[2]]) [0.0, 0.0, prod(p), 2.0 * prod(p) * p[1], 0.0, 0.0, 0.0, prod(p) * p[1], 2.0 * prod(p) * p[1]^2] elseif state == 4 p = (alleles[genos.genotype1[1]], alleles[genos.genotype2[1]], alleles[genos.genotype2[2]]) [0.0, 0.0, 0.0, 2.0 * prod(p), 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p) * p[1]] elseif state == 5 p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]]) [0.0, 0.0, 0.0, 0.0, prod(p), 2.0 * prod(p) * p[1], 0.0, prod(p) *p[1], 2.0 * prod(p) * p[1]^2] elseif state == 6 p = (alleles[genos.genotype2[1]], alleles[genos.genotype1[1]], alleles[genos.genotype1[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p), 0.0, 0.0, 2.0 * prod(p) * p[1]] elseif state == 7 p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p), prod(p) * sum(p), 4.0 * prod(p)^2] elseif state == 8 p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]], alleles[genos.genotype2[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p), 4.0 * prod(p) * p[1]] elseif state == 9 p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]], alleles[genos.genotype2[1]], alleles[genos.genotype2[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.0 * prod(p)] else [-9.0, -9.0, -9.0, -9.0, -9.0, -9.0, -9.0, -9.0, -9.0] end end ## multiple types? struct JacquardZero genotype1::Genotype genotype2::Genotype end struct JacquardOne genotype1::Genotype genotype2::Genotype end struct JacquardTwo genotype1::Genotype genotype2::Genotype end struct JacquardThree genotype1::Genotype genotype2::Genotype end struct JacquardFour genotype1::Genotype genotype2::Genotype end struct JacquardFive genotype1::Genotype genotype2::Genotype end struct JacquardSix genotype1::Genotype genotype2::Genotype end struct JacquardSeven genotype1::Genotype genotype2::Genotype end struct JacquardEight genotype1::Genotype genotype2::Genotype end struct JacquardNine genotype1::Genotype genotype2::Genotype end function probability_state(genos::JacquardZero, alleles::Dict)::Vector{Float64} [-9.0, -9.0, -9.0, -9.0, -9.0, -9.0, -9.0, -9.0, -9.0] end function probability_state(genos::JacquardOne, alleles::Dict)::Vector{Float64} p = alleles[genos.genotype1[1]] [p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4] end function probability_state(genos::JacquardTwo, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[1]], alleles[genos.genotype2[1]]) [0.0, prod(p), 0.0, prod(p) * p[2], 0.0, prod(p) * p[1], 0.0, 0.0, prod(p) * prod(p)] end function probability_state(genos::JacquardThree, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[1]], alleles[genos.genotype2[1]]) [0.0, 0.0, prod(p), 2.0 * prod(p) * p[1], 0.0, 0.0, 0.0, prod(p) * p[1], 2.0 * prod(p) * p[1]^2] end function probability_state(genos::JacquardFour, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[1]], alleles[genos.genotype2[1]], alleles[genos.genotype2[2]]) [0.0, 0.0, 0.0, 2.0 * prod(p), 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p) * p[1]] end function probability_state(genos::JacquardFive, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[2]], alleles[genos.genotype1[1]]) [0.0, 0.0, 0.0, 0.0, prod(p), 2.0 * prod(p) * p[1], 0.0, prod(p) *p[1], 2.0 * prod(p) * p[1]^2] end function probability_state(genos::JacquardSix, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype2[1]], alleles[genos.genotype1[1]], alleles[genos.genotype1[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p), 0.0, 0.0, 2.0 * prod(p) * p[1]] end function probability_state(genos::JacquardSeven, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0 * prod(p), prod(p) * sum(p), 4 * prod(p) * prod(p)] end function probability_state(genos::JacquardEight, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]], alleles[genos.genotype2[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, prod(p), 4 * prod(p) * p[1]] end function probability_state(genos::JacquardNine, alleles::Dict)::Vector{Float64} p = (alleles[genos.genotype1[1]], alleles[genos.genotype1[2]], alleles[genos.genotype2[1]], alleles[genos.genotype2[2]]) [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4 * prod(p)] end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
1057
#Run all lines of code in PopGen.jl #Then read in all functions within PairwiseRelatedness.jl verbose = true data = @nancycats alleles = Dict() for loc in loci(data) alleles[loc] = allelefreq(locus(data, loc)) end alleles #Working pair ind1 = "N100" ind2 = "N106" #Not working pair ex. ind1 = "N111" ind2 = "N83" L = all_loci_Pr_L_S(data, ind1, ind2, alleles) Δ = Variable(8) problem = maximize(sum(log(L * vcat(1 - sum(Δ), Δ)))) problem.constraints += 0 <= 1 - sum(Δ) problem.constraints += 1 - sum(Δ) <= 1 problem.constraints += 0 <= Δ[1:8] problem.constraints += Δ[1:8] <= 1 #shifted from actual relatedness calculations because the 1 - sum(Δ) goes at beginning problem.constraints += 2 * ((1 - sum(Δ)) + 0.5 * (Δ[2] + Δ[4] + Δ[6]) + 0.25 * Δ[7]) <= 1 problem.constraints += 0 <= 2 * ((1 - sum(Δ)) + 0.5 * (Δ[2] + Δ[4] + Δ[6]) + 0.25 * Δ[7]) Convex.solve!(problem, ECOSSolver(verbose = verbose, maxit = 100), verbose = verbose) n = Variable(9) problem2 = minimize(sum(log(L * exp(n)) / sum(exp(n)))) Convex.solve!(problem2, ECOSSolver())
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
268
function pwsimilarhelper(x::Int8, y::Int8) (x == -1 | y == -1) && return missing (x == 0 & y == 0) && return false x == y && return true (x != 0 & y != 0) && return true end function pwsimilar(data::PopData) allelemtx = matrix(data, "count") end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
5163
function probstates(ind1::Tuple, ind2::Tuple) ListOfTuples = [ind1, ind2] Edge = Dict{Tuple{Int64,Int64},Int64}() Ct = 1 for i in 1:4 for j in (i+1):4 Edge[(i,j)] = Ct Ct += 1 end end return Edge A = zeros(6) for (i, j) in ListOfTuples if i > j i, j = j, i end A[Edge[(i,j)]] = 1 end A == [1,1,1,1,1,1] && return 1 A == [1,0,0,0,0,1] && return 2 A == [1,1,0,1,0,0] && return 3 A == [1,0,0,0,0,0] && return 4 A == [0,1,1,0,0,1] && return 5 A == [0,0,0,0,0,1] && return 6 A == [0,1,0,0,1,0] && return 7 A == [0,1,0,0,0,0] && return 8 A == [0,0,0,0,0,0] && return 9 end if A[1] == 1 if A[2] == 1 A[5] == 1 ? return 1 : return 3 else A[6] == 1 ? return 2 : return 4 end else if A[2] == 1 A[3] == 1 && return 5 A[5] == 1 ? return 7 : return 8 else A[6] == 1 ? return 6 : return 9 end end #################### #################### #= Calculate Pr(Li | Sj) If the allele identity falls into this class (L1-L9), generate the probabilities of it belonging to each of the different classes and return that array of 9 distinct probabilities =# function probability_state_table(x::Tuple, y::Tuple, alleles::Dict) #TODO Improve how groups are decided based on how similar things are done with moments estimators x1, x2 = x y1, y2 = y ## class L1 - AᵢAᵢ AᵢAᵢ ## if x1 == x2 == y1 == y2 p = alleles[x1] (p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4) ## class L2 - AᵢAᵢ AⱼAⱼ ## elseif x1 == x2 != y1 == y2 # (x1 == x2) & (y1 == y2) & (x1 != y1) p1,p2 = alleles[x1], alleles[y1] prod_p = prod((p1,p2)) [0, prod_p, 0, prod_p * p2, 0, prod_p * p1, 0, 0, prod_p^2] ## class L3a - AᵢAᵢ AᵢAⱼ ## - has issues because of allele order elseif x1 == x2 == y1 != y2 #((x1 == x2 == y1) & (x1 != y2)) p1,p2 = alleles[x1], alleles[y2] prod_p = prod(p) [0, 0, prod_p, 2 * prod_p * p1, 0, 0, 0, prod_p * p1, 2 * prod_p * p1^2] ## class L3b - AᵢAᵢ AⱼAᵢ ## - has issues because of allele order elseif x1 == x2 == y2 != y1 p1,p2 = alleles[x1], alleles[y1] prod_p = prod(p) [0, 0, prod_p, 2 * prod_p * p1, 0, 0, 0, prod_p * p1, 2 * prod_p * p1^2] ## class L4 - AᵢAᵢ AⱼAₖ ## elseif x1 == x2 != y1 != y2 != x1 #(x1 == x2) & (y1 != y2) & (x1 != y1) & (x1 != y2) p = (alleles[x1], alleles[y1], alleles[y2]) prod_p = prod(p) [0, 0, 0, 2 * prod_p, 0, 0, 0, 0, 2 * prod_p * p[1]] ## L5a - AiAj AiAi ## - has issues because of allele order elseif x1 == y1 == y2 != x2 p1,p2 = alleles[x1], alleles[x2] prod_p = prod(p) [0, 0, 0, 0, prod_p, 2 * prod_p * p1, 0, prod_p * p1, 2 * prod_p * p1^2] ## L5b - AjAi AiAi ## - has issues because of allele order elseif x2 == y1 == y2 != x2 p1,p2 = alleles[x2], alleles[x1] prod_p = prod(p) [0, 0, 0, 0, prod_p, 2 * prod_p * p1, 0, prod_p *p1, 2 * prod_p * p1^2] ## L6 - AjAk AiAi ## elseif y1 != x2 != x1 != y1 == y2 #(x1 != x2) & (y1 == y2) & (x1 != y1) & (x2 != y1) p = (alleles[y1], alleles[x1], alleles[x2]) prod_p = prod(p) [0, 0, 0, 0, 0, 2 * prod_p, 0, 0, 2 * prod_p * p[1]] ## L7 - AiAj AiAj ## elseif y1 == x1 != x2 == y2 #(x1 == y1) & (x2 == y2) & (x1 != x2) p = (alleles[x1], alleles[x2]) prod_p = prod(p) [0, 0, 0, 0, 0, 0, 2 * prod_p, prod_p * sum(p), 4 * prod_p * prod_p] ## L8a - AiAj AiAk ## - has issues because of allele order elseif x2 != x1 == y1 != y2 != x2 #(x1 == y1) & (x1 != x2) & (y1 != y2) & (x2 != y2) p = (alleles[x1], alleles[x2], alleles[y2]) prod_p = prod(p) [0, 0, 0, 0, 0, 0, 0, prod_p, 4 * prod_p * p[1]] ## L8b - AjAi AkAi ## - has issues because of allele order elseif x1 != x2 == y2 != y1 != x1 #(x2 == y2) & (x1 != x2) & (y1 != y2) & (x1 != y1) p = (alleles[x2], alleles[x1], alleles[y1]) prod_p = prod(p) [0, 0, 0, 0, 0, 0, 0, prod_p, 4 * prod_p * p[1]] ## L8c - AjAi AiAk ## - has issues because of allele order elseif x1 != x2 == y1 != y2 != x1 #(x2 == y1) & (x1 != x2) & (y1 != y2) & (x1 != y2) p = (alleles[x2], alleles[x1], alleles[y2]) prod_p = prod(p) [0, 0, 0, 0, 0, 0, 0, prod_p, 4 * prod_p * p[1]] ## L8d - AiAj AkAi ## - has issues because of allele order elseif x2 != x1 == y2 != y2 & (x1 != y1) #(x1 == y2) & (x1 != x2) & (y1 != y2) & (x1 != y1) p = (alleles[x1], alleles[x2], alleles[y1]) prod_p = prod(p) [0, 0, 0, 0, 0, 0, 0, prod_p, 4 * prod_p * p[1]] ## L9 - AiAj AkAl ## elseif x1 != x2 != y1 != y2 != x1 != y1 & (y2 != x2) #(x1 != x2) & (x1 != y1) & (x1 != y2) & (x2 != y1) & (x2 != y2) & (y1 != x2) p = (alleles[x1], alleles[x2], alleles[y1], alleles[y2]) [0, 0, 0, 0, 0, 0, 0, 0, 4 * prod(p)] else [-9, -9, -9, -9, -9, -9, -9, -9, -9] end end
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
1631
module TestClustering using PopGen using Test using Clustering using DataFrames using Distances cats = @nancycats; @testset "Clustering.jl" begin @testset "k-means" begin @test kmeans(cats, k = 2) isa Clustering.KmeansResult @test kmeans(cats, k = 2, matrixtype = :freq) isa Clustering.KmeansResult @test kmeans(cats, k = 2, iterations = 30) isa Clustering.KmeansResult end @testset "k-medoids" begin @test kmedoids(cats, k = 2) isa Clustering.KmedoidsResult @test kmedoids(cats, k = 2, distance = sqeuclidean) isa Clustering.KmedoidsResult @test kmedoids(cats, k = 2, distance = sqeuclidean, matrixtype = :freq) isa Clustering.KmedoidsResult end @testset "h-clust" begin hcout = hclust(cats) @test hcout isa Hclust @test hclust(cats, matrixtype = :freq) isa Hclust @test hclust(cats, distance = sqeuclidean) isa Hclust @test cutree(cats, hcout, krange = 2:5) isa DataFrame end @testset "fuzzy-c" begin @test fuzzycmeans(cats, c = 2) isa FuzzyCMeansResult @test fuzzycmeans(cats, c = 2, fuzziness = 3) isa FuzzyCMeansResult @test fuzzycmeans(cats, c = 2, iterations = 30) isa FuzzyCMeansResult @test fuzzycmeans(cats, c = 2, matrixtype = :freq) isa FuzzyCMeansResult end @testset "dbscan" begin @test dbscan(cats, radius = 0.5, minpoints = 2) isa DbscanResult @test dbscan(cats, radius = 0.5, minpoints = 2, distance = sqeuclidean) isa DbscanResult @test dbscan(cats, radius = 0.5, matrixtype = :freq) isa DbscanResult end end end #module
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
1021
module TestDataExploration using PopGen using DataFrames using Test cats = @nancycats; @testset "Data Exploration" begin @testset "missing data" begin @test missingdata(cats) isa DataFrame @test missingdata(cats, by = "population") isa DataFrame @test missingdata(cats, by = "locus") isa DataFrame @test missingdata(cats, by = "locusxpopulation") isa DataFrame end @testset "pairwise identical" begin pw_i = pairwiseidentical(cats) @test pw_i isa AbstractMatrix @test size(pw_i) == (237, 237) pw_i_2 = pairwiseidentical(cats, cats.sampleinfo.name[1:10]) @test pw_i_2 isa AbstractMatrix @test size(pw_i_2) == (10, 10) end @testset "frequency tables" begin @test genofreqtable(cats) isa DataFrame @test genofreqtable(cats, by = "population") isa DataFrame @test allelefreqtable(cats) isa DataFrame @test allelefreqtable(cats, by = "population") isa DataFrame end end end # module
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
510
module TestHardyWeinberg using PopGen using DataFrames using Test cats = @nancycats; testarray = cats.genodata.genotype[1:10] @testset "Hardy Weinberg" begin @test PopGen._chisqlocus(testarray) == (5.135802469135802, 6, 0.5265173055755079) tmp = hwetest(cats) @test tmp isa DataFrame @test size(tmp) == (9,4) tmp = hwetest(cats, correction = "bh") @test size(tmp) == (9,5) tmp = hwetest(cats, by = "population", correction = "bh") @test size(tmp) == (153,6) end end #module
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
1615
module TestHeterozygosity using PopGen using DataFrames using Test cats = @nancycats; testarray = cats.genodata.genotype[1:10] @testset "Heterozygosity.jl" begin @testset "counthet" begin @test PopGen.counthet(testarray, 135) == 5 @test PopGen.counthet(testarray, 143) == 4 @test PopGen.counthet(testarray, [135,143]) == [5,4] end @testset "counthom" begin @test PopGen.counthom(testarray, 135) == 2 @test PopGen.counthom(testarray, 143) == 0 @test PopGen.counthom(testarray, [135,143]) == [2,0] end @testset "het obs/exp" begin @test PopGen._hetero_obs(testarray) == 0.75 @test PopGen._hetero_exp(testarray) == 0.6015625 end @testset "Nei het" begin @test ismissing(PopGen._genediversitynei87(missing,0.5,11)) @test ismissing(PopGen._genediversitynei87(0.5,missing,11)) @test ismissing(PopGen._genediversitynei87(missing,missing,11)) @test PopGen._genediversitynei87(0.5,0.5,11) == 0.525 @test PopGen._genediversitynei87(0.5,0.5,11, corr = false) == 0.4772727272727273 end @testset "heterozygosity" begin tmp = heterozygosity(cats) @test tmp isa DataFrame @test size(tmp) == (9,4) tmp = heterozygosity(cats, by = "sample") @test tmp isa DataFrame @test size(tmp) == (237,3) tmp = heterozygosity(cats, by = "population") @test tmp isa DataFrame @test size(tmp) == (17,4) @test samplehet(cats, "N215") == 3/8 @test_throws ArgumentError samplehet(cats, "M115") end end end #module
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
509
module TestPCA using PopGen using Test cats = @nancycats; @testset "PCA.jl" begin @testset "pca" begin @test size(pca(cats).proj) == (237,93) @test size(pca(cats, maxpc = 25).proj) == (237,25) @test size(pca(cats, maxpc = 25).proj) == (237,25) @test size(pca(cats, maxpc = 25, center = true).proj) == (237,25) @test size(pca(cats, maxpc = 25, scale = false).proj) == (237,25) @test size(pca(cats, pratio = 0.7).proj) == (237,39) end end end #module
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
841
fatalerrors = length(ARGS) > 0 && ARGS[1] == "-f" quiet = length(ARGS) > 0 && ARGS[1] == "-q" anyerrors = 0 using PopGen using Test all_tests = [ "dataexploration.jl", "summaryinfo.jl", "heterozygosity.jl", "hardyweinberg.jl", "clustering.jl", "pca.jl" ] println("Running tests:") @testset "All Tests" begin for a_test in all_tests try include(a_test) println("\t\033[1m\033[32mPASSED\033[0m: $(a_test)") catch e global anyerrors += 1 println("\t\033[1m\033[31mFAILED\033[0m: $(a_test)") if fatalerrors rethrow(e) elseif !quiet showerror(stdout, e, backtrace()) println() end end end end anyerrors > 0 && throw("$anyerrors files of tests failed :(")
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
code
897
module SummaryInfo using PopGen using DataFrames using Test cats = @nancycats; @testset "alleleaverage" begin @test length(alleleaverage(cats, rounding = true)) == 2 @test alleleaverage(cats, rounding = true) isa NamedTuple @test length(alleleaverage(cats, rounding = false)) == 2 @test alleleaverage(cats, rounding = false) isa NamedTuple end @testset "richness" begin @test richness(cats, by = "locus") isa DataFrame @test size(richness(cats, by = "locus")) == (9, 2) @test richness(cats, by = "population") isa DataFrame @test size(richness(cats, by = "population")) == (153, 3) end @testset "summary F/D/etc. stats" begin smry_glob = summary(cats) smry_loc = summary(cats, by = "locus") @test smry_glob isa DataFrame @test smry_loc isa DataFrame @test size(smry_glob) == (1, 10) @test size(smry_loc) ==(9, 11) end end # module
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
5218
# Contributor Covenant Code of Conduct ## Our Pledge We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion, or sexual identity and orientation. We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community. ## Our Standards Examples of behavior that contributes to a positive environment for our community include: * Demonstrating empathy and kindness toward other people * Being respectful of differing opinions, viewpoints, and experiences * Giving and gracefully accepting constructive feedback * Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience * Focusing on what is best not just for us as individuals, but for the overall community Examples of unacceptable behavior include: * The use of sexualized language or imagery, and sexual attention or advances of any kind * Trolling, insulting or derogatory comments, and personal or political attacks * Public or private harassment * Publishing others' private information, such as a physical or email address, without their explicit permission * Other conduct which could reasonably be considered inappropriate in a professional setting ## Enforcement Responsibilities Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive, or harmful. Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation decisions when appropriate. ## Scope This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing the community in public spaces. Examples of representing our community include using an official e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. ## Enforcement Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders responsible for enforcement at [email protected]. All complaints will be reviewed and investigated promptly and fairly. All community leaders are obligated to respect the privacy and security of the reporter of any incident. ## Enforcement Guidelines Community leaders will follow these Community Impact Guidelines in determining the consequences for any action they deem in violation of this Code of Conduct: ### 1. Correction **Community Impact**: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community. **Consequence**: A private, written warning from community leaders, providing clarity around the nature of the violation and an explanation of why the behavior was inappropriate. A public apology may be requested. ### 2. Warning **Community Impact**: A violation through a single incident or series of actions. **Consequence**: A warning with consequences for continued behavior. No interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes avoiding interactions in community spaces as well as external channels like social media. Violating these terms may lead to a temporary or permanent ban. ### 3. Temporary Ban **Community Impact**: A serious violation of community standards, including sustained inappropriate behavior. **Consequence**: A temporary ban from any sort of interaction or public communication with the community for a specified period of time. No public or private interaction with the people involved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent ban. ### 4. Permanent Ban **Community Impact**: Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals. **Consequence**: A permanent ban from any sort of public interaction within the community. ## Attribution This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 2.0, available at https://www.contributor-covenant.org/version/2/0/code_of_conduct.html. Community Impact Guidelines were inspired by [Mozilla's code of conduct enforcement ladder](https://github.com/mozilla/diversity). [homepage]: https://www.contributor-covenant.org For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
3212
# Contributing We welcome contributions in the form of pull requests. For your code to be considered it must meet the following guidelines. * By making a pull request, you're agreeing to license your code under an MIT license. See LICENSE.md. * Types and functions must be documented using Julia's [docstrings](http://docs.julialang.org/en/latest/manual/documentation/). Documentation regarding specific implementation details that aren't relevant to users should be in the form of comments. Documentation may be omitted if the function is not exported (i.e. only used internally) and is short and obvious. E.g. `cube(x) = x^3`. * All significant code must be tested. Tests should be organized into contexts, and into separate files based on module. * Contributions are included if the code has been reviewed by at least two team members who are **not** the author of the proposed contribution, and there is general consensus (or general lack of objections) that it's useful and fits with the intended scope of PopGen.jl. * Code must be consistent with the prevailing style in PopGen.jl, which includes, but is not necessarily limited to the following style guide. * Code contributed should be compatible with Julia v1.0. ## Style * Indent with 4 spaces. * Type names are camel case, with the first letter capitalized. E.g. `SomeVeryUsefulType`. * Module names are also camel case. * Function names, apart from constructors, are all lowercase. Include underscores between words only if the name would be hard to read without. E.g. `start`, `stop`, `findletter` `find_last_digit`. * Generally try to keep lines below 80-columns, unless splitting a long line onto multiple lines makes it harder to read. * Files that declare modules should only declare the module, and import any modules that it requires. Any code should be included from separate files. E.g. ```julia module AwesomeFeatures using IntervalTrees, JSON include("feature1.jl") include("feature2.jl") end ``` * Files that declare modules should have the same name name of the module, e.g the module `SomeModule` is declared under the file `SomeModule.jl`. * Separate logical blocks of code with one blank line, or two blank lines for function/type definitions. * When extending method definitions, explicitly import the method. ```julia import Base: start, next, done ``` * Document functions using bare docstrings before a definition: ```julia "This function foo's something" foo(x) = 2*x ``` or ```julia """ This function foo's something """ foo(x) = 2*x ``` * Functions that get or set variables in a type should not be prefixed with 'get' or 'set'. The getter should be named for the variable it sets, and the setter should have the same name as the getter, with the suffix `!`. For exmaple, for the variable `names`: ```julia name(node) # get node name name!(node, "somename") # set node name ``` ## Conduct We adhere to the Julia [community standards](http://julialang.org/community/standards/). ![error cactus](/PopGen.jl/images/terminal_cactus.png)
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
1146
![logo](misc/logo.png) Population Genetics in Julia. [![alt text](https://img.shields.io/badge/docs-stable-informational?style=for-the-badge&logo=Read%20The%20Docs&logoColor=white)](https://BioJulia.net/PopGen.jl/) [![Cite](https://img.shields.io/badge/Cite-10.5281/zenodo.6077852-e1e1e1?style=for-the-badge)](https://zenodo.org/badge/latestdoi/204318876) ![build_status](https://img.shields.io/github/workflow/status/pdimens/PopGen.jl/CI_dev?label=Dev%20Build&logo=GitHub&style=for-the-badge) ### How to install: Invoke the package manager by pressing `]` on an empty line and `add PopGen` ![install_instructions](misc/install_carbon.png) ---- <h3 align="center"> Cite As </h3> Pavel V. Dimens, & Jason Selwyn. (2022). BioJulia/PopGen.jl: v0.8.0 (v0.8.0). Zenodo. https://doi.org/10.5281/zenodo.6450254 ---- <h3 align="center"> Authors </h3> [![alt text](misc/orcid.png)](https://orcid.org/0000-0003-3823-0373) [![alt text](misc/twitter.png)](https://twitter.com/PVDimens) Pavel Dimens [![alt text](misc/orcid.png)](http://orcid.org/0000-0002-9100-217X) [![alt text](misc/twitter.png)](https://twitter.com/JasonSelwyn) Jason Selwyn
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
2614
# A clear and descriptive title (No issue numbers please) > _This template is extensive, so fill out all that you can. If are a new contributor or unsure about any section, leave it empty and a reviewer will help you_ :smile:. If anything in this template isn't relevant, just delete or ignore it._ ## Types of changes This PR implements the following changes: _(tick any that apply)_ * [ ] :sparkles: New feature (A non-breaking change which adds functionality). * [ ] :bug: Bug fix (A non-breaking change, which fixes an issue). * [ ] :boom: Breaking change (fix or feature that would cause existing functionality to change). ## :clipboard: Additional details >_replace this block of text with your information_ - If you have implemented new features or behaviour - **Provide a description of the addition** in as many details as possible. - **Provide justification of the addition**. - **Provide a runnable example of use of your addition**. This lets reviewers and others try out the feature before it is merged or makes it's way to release. - If you have changed current behaviour... - **Describe the behaviour prior to you changes** - **Describe the behaviour after your changes** and justify why you have made the changes, Please describe any breakages you anticipate as a result of these changes. - **Does your change alter APIs or existing exposed methods/types?** If so, this may cause dependency issues and breakages, so the maintainer will need to consider this when versioning the next release. - If you are implementing changes that are intended to increase performance, you should provide the results of a simple performance benchmark exercise demonstrating the improvement. Especially if the changes make code less legible. ## :ballot_box_with_check: Checklist >_it's ok if not all the boxes are checked :smile:_ - [ ] :art: The changes implemented is consistent with the [julia style guide](https://docs.julialang.org/en/v1/manual/style-guide/). - [ ] :blue_book: I have updated and added relevant docstrings, in a manner consistent with the [documentation styleguide](https://docs.julialang.org/en/v1/manual/documentation/). - [ ] :blue_book: I have added or updated relevant user and developer manuals/documentation in `docs/src/`. - [ ] :ok: There are unit tests that cover the code changes I have made. - [ ] :ok: The unit tests cover my code changes AND they pass. - [ ] :ok: All changes should be compatible with the latest stable version of Julia. - [ ] :thought_balloon: I have commented liberally for any complex pieces of internal code.
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
246
--- name: Bug report about: Create a report to help us improve title: "[bug]" labels: bug assignees: '' --- **description** **minimal example to reproduce** ```julia ``` **expected behavior** **screenshots (optional)** **additional info**
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
300
--- name: Feature request about: Suggest a new feature title: "[feature]" labels: enhancement assignees: '' --- **Is your feature request related to a problem and which?** **Describe the solution/feature you'd like (with examples)** ```julia ``` **are there alternatives?** **additional info**
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "MIT" ]
0.9.4
5ae136673280da008bcf55e551553a254fd463ca
docs
165
--- name: Question about: Questions about how/why things in PopGen.jl work title: '' labels: help wanted, question assignees: '' --- **what needs clarification?**
PopGen
https://github.com/BioJulia/PopGen.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
804
# Demonstrate MASH system using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import RSDeltaSigmaPort: BoundingBox import Printf: @sprintf j=im #== ===============================================================================# ABCD = [ 1 0 0 0 1 -1 0; 1 1 0 0 0 -2 0; 0 1 1 0 0 0 -1; 0 0 1 1 0 0 -2; 0 1 0 0 0 0 0; 0 0 0 1 0 0 0; ] nlev = [9 9] (ntf, stf) = calculateTF(ABCD, [1,1]) println() @error("Need to get minreal() calcualtion to work in calculateTF() to proceed.") println() @info("TODO: Port rest of code once this is done.") throw(:ERROR) ncf1 = -ntf[2,1] #2*(z-0.5)^2/z^4 ncf2 = ntf[1,1] #(z-1)^2/z^2 #stf_eff = stf[1,1]*ncf1 + stf[2,1]*ncf2 stf_eff = cancelPZ( _zpk(_tf(stf[1,1]*ncf1) + tf(stf[2,1]*ncf2)) ) ntf_eff = ntf(2,2)*ncf2 #(z-1)^4/z^4 :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
1275
#Lowpass and Bandpass Demonstration Script include("dsexample1_fn.jl") #Reminder: nlev=M+1 function wait_for_user(dsm) println("\nSimulation complete for modulator:\n\t$dsm") println("\n*** Press ENTER to continue ***") readline(stdin) end #2nd-order lowpass dsm = RealDSM(order=2, OSR=16, M=8, Hinf=2.0, opt=0) dsexample1(dsm, LiveDemo=true) wait_for_user(dsm) #5th-order lowpass dsm = RealDSM(order=5, OSR=16, M=8, Hinf=2.0, opt=0) dsexample1(dsm, LiveDemo=true) wait_for_user(dsm) #5th-order lowpass with optimized zeros dsm = RealDSM(order=5, OSR=16, M=8, Hinf=2.0, opt=1) dsexample1(dsm, LiveDemo=true) wait_for_user(dsm) #5th-order lowpass with optimized zeros and larger Hinf dsm = RealDSM(order=5, OSR=16, M=8, Hinf=3.0, opt=1) dsexample1(dsm, LiveDemo=true) wait_for_user(dsm) #7th-order lowpass; Hinf=2 dsm = RealDSM(order=7, OSR=8, M=16, Hinf=2.0, opt=1) dsexample1(dsm, ampdB=-6.0, LiveDemo=true) wait_for_user(dsm) #7th-order lowpass; Hinf=8 dsm = RealDSM(order=7, OSR=8, M=16, Hinf=8.0, opt=1) dsexample1(dsm, ampdB=-6.0, LiveDemo=true) wait_for_user(dsm) #6th-order bandpass f0 = 1/6 #Normalized center frequency dsm = RealDSM(order=6, OSR=16, M=8, f0=f0, Hinf=2.0, opt=1) dsexample1(dsm, ampdB=-6.0, LiveDemo=true) wait_for_user(dsm) :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
2290
# Demonstrate NTF synthesis (synthesizeNTF) using RSDeltaSigmaPort j=im #==Baseband modulator ===============================================================================# println("\n*** 5th order, 2-level, baseband modulator") OSR = 32 @info("Synthesizing NTF without zero-optimization..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- NTF_noopt = synthesizeNTF(5, OSR, opt=0) println("\tdone.") plot = plotNTF(NTF_noopt, OSR, color=:blue) plot.title = "5th-Order Modulator (No Zero-Optimization)" saveimage(:png, "dsdemo1_o5_noopt.png", plot, AR=2/1, width=900) displaygui(plot) @info("Synthesizing NTF with optimized zeros..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- NTF_opt = synthesizeNTF(5, OSR, opt=1) println("\tdone.") plot = plotNTF(NTF_opt, OSR, color=:red) plot.title = "5th-Order Modulator (Optimized Zeros)" saveimage(:png, "dsdemo1_o5_zopt.png", plot, AR=2/1, width=900) displaygui(plot) @info("Plotting NTF comparison (overlay results)") #------------------------------------------------------------------------------- plot = plotNTF(NTF_noopt, OSR, color=:blue) plot = plotNTF!(plot, NTF_opt, OSR, color=:red) plot.title = "5th-Order Modulator (Optimized Zeros - Overlay)" saveimage(:png, "dsdemo1_o5_cmp.png", plot, AR=2/1, width=900) displaygui(plot) #==Bandpass modulator ===============================================================================# println("\n*** 8th order, 2-level, bandpass modulator") OSR = 64 order = 8 f0 = 0.125 #fs/8 function calcSTF(order, OSR, NTF, f0) G = _zpk(zeros(array_round(order/2)),NTF.p,1,1) G.k = 1/abs(evalTF(G,exp(2π*j*f0))) return G end @info("Synthesizing NTF..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- NTF = synthesizeNTF(order, OSR, opt=2, f0=f0) println("\tdone.") @info("Plotting NTF") #------------------------------------------------------------------------------- STF = calcSTF(order, OSR, NTF, f0) plot = plotNTF(NTF, OSR, color=:blue, f0=f0, STF=STF) plot.title = "8th-Order Bandpass Modulator" saveimage(:png, "dsdemo1_o8_bp.png", plot, AR=2/1, width=900) displaygui(plot) :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
5989
# Demonstrate simulateDSM, (simulateSNR and predictSNR) => calcSNRInfo using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import RSDeltaSigmaPort: BoundingBox import Printf: @sprintf j=im #==Baseband modulator ===============================================================================# println("\n*** 5th order, 2-level, baseband modulator") OSR = 32 N = 8192 dsm = RealDSM(order=5, OSR=OSR, Hinf=1.5, opt=1) @info("Performing ΔΣ simulation..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- ftest = dsm.f0 + 1/(3*OSR); fband = default_fband(dsm) fband[1] += 2/N #Ignore first 2 low-frequency points (u, iftest) = genTestTone(dsm, dbv(0.5), ftest, N=N) NTF = synthesizeNTF(dsm) simresult = simulateDSM(u, NTF) println("\tdone.") @info("Plotting modulator signals") #------------------------------------------------------------------------------- plot = plotModTransient(u, simresult.v) set(plot, xyaxes=set(xmin=0, xmax=300, ymin=-1.2, ymax=1.2)) saveimage(:png, "dsdemo2_o5_sig.png", plot, AR=2/1, width=900) displaygui(plot) @info("Plotting output spectrum (simulated vs theory)") #------------------------------------------------------------------------------- specinfo = calcSpecInfo(simresult.v, NTF, fband, ftest) plot = plotModSpectrum(specinfo) plot.title="Modulator Output Spectrum @ OSR = $OSR." saveimage(:png, "dsdemo2_o5_spec.png", plot, AR=2/1, width=900) displaygui(plot) @info("Plotting SNR vs input power") #------------------------------------------------------------------------------- snrinfo = calcSNRInfo(dsm, NTF=NTF) plot = plotSNR(snrinfo, dsm) plot.title="SNR curve- theory and simulation" saveimage(:png, "dsdemo2_o5_snr.png", plot, AR=2/1, width=900) displaygui(plot) #==Bandpass modulator ===============================================================================# println("\n*** 8th order, 2-level, bandpass modulator") OSR=64 f0 = 1/8 N = 8192 dsm = RealDSM(order=8, OSR=OSR, f0=f0, Hinf=1.5, opt=1) display(dsm) @info("Performing ΔΣ simulation..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- ftest = dsm.f0 + 1/(6*OSR); fband = default_fband(dsm) (u, iftest) = genTestTone(dsm, dbv(0.5), ftest, N=N) #Half-scale sine-wave input NTF = synthesizeNTF(dsm) simresult = simulateDSM(u, NTF) println("\tdone.") @info("Plotting modulator signals") #------------------------------------------------------------------------------- plot = plotModTransient(u, simresult.v) set(plot, xyaxes=set(xmin=0, xmax=300, ymin=-1.2, ymax=1.2)) saveimage(:png, "dsdemo2_bp_o5_sig.png", plot, AR=2/1, width=900) displaygui(plot) @info("Plotting output spectrum (simulated vs theory)") #------------------------------------------------------------------------------- specinfo = calcSpecInfo(simresult.v, NTF, fband, ftest) plot = plotModSpectrum(specinfo) plot.title="Modulator Output Spectrum @ OSR = $OSR." saveimage(:png, "dsdemo2_bp_o5_spec.png", plot, AR=2/1, width=900) displaygui(plot) @info("Plotting SNR vs input power") #------------------------------------------------------------------------------- snrinfo = calcSNRInfo(dsm, NTF=NTF) plot = plotSNR(snrinfo, dsm) plot.title="SNR curve- theory and simulation" saveimage(:png, "dsdemo2_bp_o5_snr.png", plot, AR=2/1, width=900) displaygui(plot) #==15-step baseband modulator ===============================================================================# println("\n*** 7th order, 15-step, baseband modulator") OSR = 8 M = 16 #Shouldn'nt this be 15 (nlev=16?) N = 8192 Hinf_list = [2.0, 8.0] dsm_list = [RealDSM(order=7, OSR=OSR, M=M, opt=1, Hinf=Hinf) for Hinf in Hinf_list] color_list = [:blue, :green] @info("Performing ΔΣ simulation for H(∞)=$(Hinf_list)..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- id_list = [@sprintf("H(∞)=%.1f", Hinf) for Hinf in Hinf_list] ftest = 1/(7*OSR); fband = default_fband(OSR) fband[1] += 2/N #Ignore first 2 low-frequency points (u, iftest) = genTestTone(dsm, dbv(0.5*M), ftest, N=N) #Half-scale sine-wave input NTF_list = [synthesizeNTF(dsm) for dsm in dsm_list] v_list = [simulateDSM(u, NTF, nlev=M+1).v for NTF in NTF_list] #simulateDSM(..).v is mod output, v. println("\tdone.") @info("Plotting input/output characteristics of ΔΣ simulations") #------------------------------------------------------------------------------- ioplotc = cons(:plot_collection, title="15-step / 7th-order / H(∞)=$(Hinf_list)") #Plot input & output transients: for (v, c) in zip(v_list, color_list) #Each simulated output local plot = plotModTransient(u, v, color=c, legend=false) set(plot, xyaxes=set(xmin=0, xmax=100, ymin=-16, ymax=16)) push!(ioplotc, plot) end #Append SNR vs input curves: snrinfo = calcSNRInfo(dsm_list[1], NTF=NTF_list[1]) plot = plotSNR(snrinfo, dsm_list[1], color=color_list[1]) snrinfo = calcSNRInfo(dsm_list[2], NTF=NTF_list[2]) plotSNR!(plot, snrinfo, dsm_list[2], color=color_list[2]) set(plot, xyaxes=set(xmin=-100, xmax=0, ymin=0, ymax=120)) push!(ioplotc, plot) #Specify plot locations to help readability: ioplotc.bblist = [ #Format plot locations BoundingBox(0, 0.5, 0, 0.5), #1st modulator transient BoundingBox(0, 0.5, 0.5, 1), #2nd modulator transient BoundingBox(0.5, 1, 0, 1), #SNR curve ] saveimage(:png, "dsdemo2_o7_15s_io.png", ioplotc, AR=2/1, width=900) displaygui(ioplotc) @info("Plotting output spectrum (simulated vs theory)") #------------------------------------------------------------------------------- plot = plotModSpectrum() plot.title="Modulator Output Spectrum @ OSR = $OSR." set(plot, xyaxes=set(ymin=-160)) for i in keys(NTF_list) local specinfo = calcSpecInfo(v_list[i], NTF_list[i], fband, ftest, M=M) plotModSpectrum!(plot, specinfo, id=id_list[i], color=color_list[i]) end saveimage(:png, "dsdemo2_o7_15s_spec.png", plot, AR=2/1, width=900) displaygui(plot) :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
2177
# Realization and dynamic range scaling using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import Printf: @sprintf j=im function stringify(vA, digits=6) #ctx=IOContext(stdout, :compact=>true) #IOContext does not support # of digits #_s(v) = @sprintf("%.6f", v) #Cannot parameterize format specifier return [round(v, digits=6) for v in vA] end #== ===============================================================================# println("\n*** Modulator realization and scaling") OSR=42 order=5; opt=1 NTF = synthesizeNTF(order, OSR, opt=opt) plot = plotNTF(NTF, OSR) plot.title = string(order, "th-Order Modulator") #saveimage(:png, "dsdemo3_ntf.png", plot, AR=2/1, width=900) displaygui(plot) @info("Realizing NTF..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- a,g,b,c = realizeNTF(NTF) b = [b[1] zeros(1,length(b)-1)] #Use a single feed-in for the input println("\nUnscaled modulator") println(" DAC feedback coefficients = ", join(stringify(a), ", ")) println(" resonator feedback coefficients = ", join(stringify(g), ", ")) println() @info("Calculating the state maxima...") #------------------------------------------------------------------------------- ABCD = stuffABCD(a,g,b,c) u = range(0, stop=0.6, length=30) N = 10^4 plot = plotStateMaxima(u, ABCD, N=N) displaygui(plot) println() @info("Calculating the scaled coefficients...") #------------------------------------------------------------------------------- ABCDs, umax = scaleABCD(ABCD, N=N) as, gs, bs, cs = mapABCD(ABCDs) println("\nScaled modulator, umax=", @sprintf("%.2f", umax)) println(" DAC feedback coefficients = ", join(stringify(as), ", ")) println(" resonator feedback coefficients = ", join(stringify(gs), ", ")) println(" interstage coefficients = ", join(stringify(cs), ", ")) println(" feed-in coefficients = ", join(stringify(bs), ", ")) println() @info("Calculating the state maxima...") #------------------------------------------------------------------------------- u = range(0, stop=umax, length=30) N = 10^4 plot = plotStateMaxima(u, ABCDs, N=N) displaygui(plot) :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
9270
#dsdemo4_audio.jl: A GUI-based demonstration of delta-sigma with sound (Currently GUI-less). using RSDeltaSigmaPort @warn("dsdemo4_audio requires additional libraries:\n - MAT.jl\n - WAV.jl") if !@isdefined(DSAudioDemo) #Hack to avoid continuously appending docs @doc """# `DSAudioDemo`: Delta-Sigma Audio Demo Module - Set source, modulator and decimation filter paramters, - then click "Go." - Click on input or output waveforms to listen to them. - Click on the output spectrum to listen to the amplified error. ## TODO - Implement GUI, as originally intended. """ DSAudioDemo end module DSAudioDemo using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons using RSDeltaSigmaPort: fft using RSDeltaSigmaPort: linlin, loglin import Printf: @sprintf import MAT, WAV #==Constants ===============================================================================# const 𝑓ₛout = 8192 #Output sample rate is fixed const j=im "ABCD matrices of pre-defined modulators:" const MODABCD_PRESETS = Dict{Int, Array}( 1 => [1 1 -1; 1 0 0], 2 => [1 0 1 -1; 1 1 1 -2; 0 1 0 0], ) #==Types ===============================================================================# abstract type AbstractSource; end struct SrcRamp <: AbstractSource; end mutable struct SrcRaw <: AbstractSource u::Vector #{Float64} #Oversampled signal u0::Vector #{Float64} #Decimated signal end mutable struct SrcSine <: AbstractSource f::Int #Frequency (Hz) A::Float64 end SrcSine(;f=500, A=0.5) = SrcSine(Int(f), A) struct Modulator sys fsout::Int #Output sample rate OSR::Int sincorder::Int end #==Constructors ===============================================================================# function _Modulator(sys, 𝑓ₒₛ::Int, OSR::Nothing, sincorder::Int) #Round 𝑓ₒₛ to a multiple of 𝑓ₛout: OSR = round(Int, 𝑓ₒₛ/𝑓ₛout) OSR = max(1, OSR) 𝑓ₒₛnew = 𝑓ₛout*OSR #𝑓ₛout is always hardcoded in dsdemo4 if 𝑓ₒₛ < 𝑓ₛout @warn("Requested (over)-sampling frequency, 𝑓ₒₛ < 𝑓ₛout." * "\nSetting 𝑓ₒₛ = 𝑓ₛout = $𝑓ₛout Hz." ) elseif 𝑓ₒₛ != 𝑓ₒₛnew @warn("Adjusting (over)-sampling frequency\nfrom 𝑓ₒₛ = $𝑓ₒₛ" * "\nto 𝑓ₒₛ = $𝑓ₒₛnew (OSR = $OSR)." ) end return Modulator(sys, 𝑓ₛout, OSR, sincorder) end _Modulator(sys, 𝑓ₒₛ::Nothing, OSR::Int, sincorder::Int) = Modulator(sys, 𝑓ₛout, OSR, sincorder) #𝑓ₛout is always hardcoded in dsdemo4 _Modulator(sys, 𝑓ₒₛ::Nothing, OSR::Nothing, sincorder::Int) = _Modulator(sys, 𝑓ₒₛ, 32, sincorder) #Default OSR _Modulator(sys, 𝑓ₒₛ, OSR, sincorder::Int) = throw(ArgumentError("Modulator: Invalid type for 𝑓ₒₛ or OSR (or overspecified).")) Modulator(preset; fos=nothing, OSR=nothing, sincorder::Int=2) = _Modulator(MODABCD_PRESETS[preset], fos, OSR, sincorder) #==Helper functions/ data generators ===============================================================================# function validate(m::Modulator) (m.OSR < 1) && throw("Modulator: Invalid OSR value: $(m.OSR).") return end function generate(src::SrcSine, m::Modulator; N=10) (src.f > m.fsout/2) && throw("Source 𝑓 = $(src.f) too high. Must be <= 𝑓ₛout/2.") 𝑓ₒₛ = m.fsout*m.OSR 𝜔₀ = 2π*src.f tidx = (0:N-1); t = tidx/𝑓ₒₛ u = src.A * sin.((𝜔₀/𝑓ₒₛ) * tidx) .* ds_hann(N) u0 = u[1:m.OSR:end] return (t, u, u0) end function generate(src::SrcRamp, m::Modulator; N=10) 𝑓ₒₛ = m.fsout*m.OSR tidx = (0:N-1); t = tidx/𝑓ₒₛ u = collect(range(-0.7, stop=0.7, length=N)) u0 = u[1:m.OSR:end] return (t, u, u0) end function generate(src::SrcRaw, m::Modulator; N=10) 𝑓ₒₛ = m.fsout*m.OSR N = length(src.u) tidx = (0:N-1); t = tidx/𝑓ₒₛ return (t, src.u, src.u0) end function play(data::Vector) WAV.wavplay(data, 𝑓ₛout) return :PLAYBACK_COMLETE end #==Main algorithms ===============================================================================# function run(m::Modulator; Tsim::Float64=2.0, input=SrcSine(f=500)) validate(m) (m.fsout != 𝑓ₛout) && throw("dsdemo4 ony supports modulation schemes where 𝑓ₛout = $𝑓ₛout.") fos = 𝑓ₛout*m.OSR #(over)-sampling frequency #Compute signal `u` depending on desired source: N = round(Int, Tsim*fos) #Unless overwritten (t, u, u0) = generate(input, m, N=round(Int, Tsim*fos)) OSR = m.OSR #Copy for string interpolation #Plot signal `u0` plot_tdec = cons(:plot, linlin, title="Decimated Signal (dec=$OSR)", legend=false, xyaxes=set(ymin=-1, ymax=1), labels=set(xaxis="Time [s]", yaxis="u₀(t), w(t)"), ) N = length(u0) t = (0:N-1)/𝑓ₛout u0w = waveform(t, u0) push!(plot_tdec, cons(:wfrm, u0w, line=set(style=:solid, color=:blue, width=2), label="u₀"), ) #Plot U(𝑓), from 0 to 𝑓ₛout/2 plot_𝑓dec = cons(:plot, linlin, title="Spectrum (dec=$OSR)", legend=false, xyaxes=set(xmin=0, xmax=𝑓ₛout/2, ymin=-160, ymax=0), labels=set(xaxis="Frequency [Hz]", yaxis="U₀(𝑓), W(𝑓)"), ) if typeof(input) in [SrcSine, SrcRaw] N = length(u0) local U if isa(input, SrcSine) U = fft(u0)/(N/4) else #SrcRaw U = fft(applywnd(u0, ds_hann(N)))/(N/4) end 𝑓 = range(0, stop=𝑓ₛout, length=N+1); 𝑓 = 𝑓[1:div(N,2)+1] UdB = dbv.(U[keys(𝑓)]) UdBw = waveform(𝑓, UdB) push!(plot_𝑓dec, cons(:wfrm, UdBw, line=set(style=:solid, color=:blue, width=2), label="U₀"), ) end #Plot ΔΣ signals (time domain): Nplot = 300 #Number of samples to plot simresult = simulateDSM(u, m.sys) v = simresult.v; y = simresult.y q = v - y #Quantization error; assumes quantizer gain = 1. N = length(v) n = 1:N if N>Nplot #Sample values from the middle: n = floor.(Int, N/2-Nplot/2:N/2+Nplot/2-1) end plot_tos = cons(:plot, linlin, title="Signals @ Modulator Input/Output", legend=false, xyaxes=set(ymin=-1.2, ymax=1.2), labels=set(xaxis="samples", yaxis="v(t)"), ) _x = collect(0:length(n)-1) vw = wfrm_stairs(_x, v[n]) uw = waveform(_x, u[n]) push!(plot_tos, cons(:wfrm, vw, line=set(style=:solid, color=:blue, width=2), label="v"), cons(:wfrm, uw, line=set(style=:solid, color=:green, width=2), label="u"), ) #Plot V(𝑓), from 0 to 𝑓ₒₛ/2. Use the middle Nfft points of v N = length(v) Nfft = min(N, 16*8192) n = array_round((N-Nfft)/2+1):array_round((N+Nfft)/2) V = fft(applywnd(v[n], ds_hann(Nfft)))/(Nfft/4) inBin = ceil(Int, Nfft/1000) if isa(input, SrcSine) inBin = round(Int, input.f/fos*Nfft+1) #Bin of tone end (𝑓nrm, Vp) = logsmooth(V, inBin) plot_𝑓os = cons(:plot, loglin, title="Spectrum (OSR=$OSR)", legend=false, xyaxes=set(xmin=100, xmax=fos/2, ymin=-160, ymax=0), labels=set(xaxis="Frequency [Hz]", yaxis="V(𝑓)"), ) Vpw = waveform(𝑓nrm*fos, Vp) nbw_str = @sprintf("NBW = %.1f Hz", fos*1.5/Nfft) #orig. coords: (Fs/2, -90); :cr push!(plot_𝑓os, cons(:wfrm, Vpw, line=set(style=:solid, color=:blue, width=2), label="V"), cons(:atext, nbw_str, y=-90, reloffset=set(x=0.95), align=:cr), ) #Compute w w = sinc_decimate(v, m.sincorder, m.OSR) filtered_q = sinc_decimate(q, m.sincorder, m.OSR) N = length(w) t = collect(0:N-1)/𝑓ₛout ww = wfrm_stairs(t, w) push!(plot_tdec, cons(:wfrm, ww, line=set(style=:solid, color=:red, width=2), label="w"), ) #Plot W(𝑓), from 0 to 𝑓ₛout/2 if typeof(input) in [SrcSine, SrcRaw] Nfft = length(w) local W if isa(input, SrcSine) W = fft(w)/(N/4) else W = fft(applywnd(w, ds_hann(N)))/(N/4) end 𝑓 = range(0, stop=𝑓ₛout, length=Nfft+1); 𝑓 = 𝑓[1:div(Nfft,2)+1] WdB = dbv.(W[keys(𝑓)]) WdBw = waveform(𝑓, WdB) nbw_str = @sprintf("NBW = %.1f Hz", 𝑓ₛout*1.5/Nfft) #orig. coords: (10, -90); :cl push!(plot_𝑓dec, cons(:wfrm, WdBw, line=set(style=:solid, color=:red, width=2), label="W"), cons(:atext, nbw_str, y=-90, reloffset=set(x=0.05), align=:cl), ) end pcoll = push!(cons(:plot_collection, ncolumns=2), plot_tdec, plot_𝑓dec, plot_tos, plot_𝑓os, ) return (plot=pcoll, u0=u0, w=w, input=input) end end #module DSAudioDemo #==Auto-run test code: ===============================================================================# println() display(@doc(DSAudioDemo)) #Show user how to use DSAudioDemo function load_demo4_audio_data(m::DSAudioDemo.Modulator) srcpath = dirname(pathof(RSDeltaSigmaPort)) fpath = joinpath(srcpath, "..", "original_source", "delsig", "dsdemo4.mat") alldata = DSAudioDemo.MAT.matread(fpath) ds = alldata["ds"][:] sd = alldata["sd"][:] u0 = ds u = interp(sd, m.OSR) return DSAudioDemo.SrcRaw(u, u0) end function playresults(results) if isa(results.input, DSAudioDemo.SrcRamp) @warn("Will not playback ramp signal.") return end println() @info("Listening to ideally sampled/decimated signal...") flush(stdout); flush(stderr) @show DSAudioDemo.play(results.u0) println() @info("Listening to modulator output...") flush(stdout); flush(stderr) @show DSAudioDemo.play(results.w) println("\nReplay results with:") println("\tplayresults(results)") return end #Inputs dsm = DSAudioDemo.Modulator(1, OSR=32, sincorder=2) #sig = load_demo4_audio_data(dsm) sig = DSAudioDemo.SrcSine(f=500) #500, 4000, 4200 #sig = DSAudioDemo.SrcRamp() println("\nUsing modulator:") @show dsm println() @info("Performing ΔΣ audio simulation..."); flush(stdout); flush(stderr) results = DSAudioDemo.run(dsm, Tsim=3.0, input=sig) println("\tdone."); flush(stdout); flush(stderr) println() @info("Displaying results..."); flush(stdout); flush(stderr) displaygui(results.plot) playresults(results) println() :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
4562
# Demonstrate the simulateMS function using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import RSDeltaSigmaPort: fft import RSDeltaSigmaPort: BoundingBox import Printf: @sprintf j=im #==Demo5Module: Module to define types, etc ===============================================================================# module Demo5Module struct SimConfig A::Float64 f::Float64 mtf dither::Float64 # dw id::String end struct SimResult fin::Int #Input frequency sv::Array Svv::Array Sdd::Array leg::String end end #Demo5Module import .Demo5Module: SimConfig, SimResult #== ===============================================================================# show_usage = false OSR = 25 M = 16 N = 2^14 sigma_d = 0.01 #1% mismatch dsm2b = RealDSM(order=2, OSR=OSR, M=M, opt=1, Hinf=2) #Second-order shaping dsm4 = RealDSM(order=4, OSR=round(Int, OSR*0.9), M=M, opt=1, Hinf=1.3) #Fourth-order shaping dsm6 = RealDSM(order=6, OSR=OSR, M=M, opt=1, Hinf=4) mtf1 = _zpk(1,0,1,1) #First-order shaping mtf2 = _zpk([ 1 1 ], [ 0.3 0.3 ], 1, 1) #Second-order shaping mtf2b = synthesizeNTF(dsm2b) #Second-order shaping mtf4 = synthesizeNTF(dsm4) #Fourth-order shaping cases = [ SimConfig(undbv(-3), 0.01, [], 0, "Thermometer"), SimConfig(undbv(-3), 0.01, mtf1, 0, "Rotation"), SimConfig(undbv(-3), 0.01, mtf2, 0, "2^{nd}-order"), SimConfig(undbv(-30), 0.01, mtf1, 0, "Rotation"), SimConfig(undbv(-30), 0.01, mtf1, 0.5, "Rot + dither"), SimConfig(undbv(-3), 0.01, mtf2b, 0, "2^{nd}-order with zero"), SimConfig(undbv(-3), 0.01, mtf4, 0, "4^{th}-order"), ] comparisons = [ [1,2], [2,3], [4,5], [3,6], [6,7] ] if false #Debug cases = cases[1:2] comparisons = comparisons[1:1] end nconfig = length(cases) println("\nNumber of configurations to simulate: $nconfig"); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- NTF = synthesizeNTF(dsm6) window = ds_hann(N)'/(M*N/8) windowM = repeat(window, M) println() @info("Running simulations..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- simresults = SimResult[] #Simulation results for cfg in cases local u #Avoid complaints wrt "global u" local sv println("\t", cfg.id); flush(stdout); flush(stderr) fin = round(Int, cfg.f*N) inband = setdiff(2:1 .+ ceil(Int, 0.5*N/OSR), 1 .+ [0 1 fin .+ [-1 0 1]]) w = (2π/N)*fin u = M*cfg.A*sin.(w*(0:N-1)) v = simulateDSM(u, NTF, nlev=M+1).v #M unit elements requires an (M+1)-level quant. data = applywnd(v, window) Svv = abs.(fft(applywnd(v, window))) .^ 2 if isa(cfg.mtf, Array) && isempty(cfg.mtf) sv = ds_therm(v, M) else sv = simulateMS(v, M=M, mtf=cfg.mtf, d=cfg.dither).sv end Sdd = sigma_d^2 * sum( abs.(fft(applywnd(sv, windowM),2)) .^ 2 , dims=1) mnp = sum(Sdd[inband])/1.5 leg = @sprintf("%s (MNP= %.0f dBFS)", cfg.id, dbp(mnp)) push!(simresults, SimResult(fin, sv, Svv, Sdd, leg)) end println("\tdone.") println() @info("Plotting results..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- for case_nums in comparisons local plot #Avoid complaints wrt "global plot" nc = length(case_nums) #_cases = cases[case_nums] _results = simresults[case_nums] id1 = _results[1].leg; id2 = _results[2].leg #Only print out first 2 println("Mismatch-Shaping Unit-Element DAC") println("\tComparing $id1 vs. $id2") if show_usage pcoll = cons(:plot_collection, ncolumns=1, title="Element Usage") T = 25 for resi in _results plot = plotUsage(resi.sv[:,1:T]) push!(pcoll, plot) end displaygui(pcoll) end colors = [:blue, :magenta, :red, :green, :orange] plot = plotSpectrum() # plot.title = "Error Spectra" set(plot, xyaxes=set(xmin=1e-3, xmax=0.5, ymin=-140, ymax=-50), labels=set(yaxis="Error PSD"), ) for (i, resi) in enumerate(_results) plotSpectrum!(plot, sqrt.(resi.Sdd), resi.fin, lw=2, color=colors[i], id=resi.leg, n=4) end resi = _results[end] A = dbp(resi.Svv[resi.fin]) plotSpectrum!(plot, sqrt.(resi.Svv), resi.fin, color=:green, n=5) lwfrm = waveform([1e-3, 0.5/OSR], -140*[1, 1]) nbw_str = @sprintf("NBW = %.1e", 1.5/N) #orig. coords: (0.5, -140) push!(plot, cons(:wfrm, lwfrm, line=set(style=:solid, color=:black, width=8)), cons(:atext, nbw_str, y=-140, reloffset=set(x=0.95), align=:br), ) plot.title = @sprintf("A = %.0fdBFS", A) displaygui(plot) end if true #Quadrature example println() @warn("TODO: Quadrature example") end :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
1658
#Demonstrate Saramaki half-band filter design using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import RSDeltaSigmaPort: csdsize2, linlin import RSDeltaSigmaPort: BoundingBox import RSDeltaSigmaPort: fft import Printf: @sprintf j=im use_canned_example = false println("\n*** Half-band filter design (ALPHA VERSION)") f1=f2=0 #Define variables title=nothing if use_canned_example (f1, f2) = exampleHBF(2) else fp = 0.9*0.25 @warn("Need firls() equivalent to converge for small dB values.") #delta = undbv( -100 ) delta = undbv( -25 ) title = "designHBF Iterations" (f1, f2, info) = designHBF(fp, delta=delta, debug=true) end n1 = length(f1); n2 = length(f2) complexity = sum(csdsize2(f1)) + (2*n1-1)*(n2+sum(csdsize2(f2))-1) #VERIFYME @show complexity println() @info("Running simulations..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- #interleave the even and odd decimated impulse responses Nimp = 2^11 imp = simulateHBF(vcat(1, zeros(Nimp-1)),f1,f2) mag = abs.(fft(imp)) mag = mag[1:array_round(end/2+1)] t = range(0, stop=0.5, length=length(mag)) println("\tdone.") println() @info("Plotting resulting filter"); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- plot = cons(:plot, linlin, title="designHBF() result", legend=false, xyaxes=set(xmin=0, xmax=0.5, ymin=-150, ymax=10), labels=set(xaxis="Normalized Frequency", yaxis="|H| [dB]"), ) magdBw = waveform(t, dbv.(mag)) push!(plot, cons(:wfrm, magdBw, line=set(style=:solid, color=:blue, width=2), label=""), ) displaygui(plot) :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
736
#Demonstrate the designLCBP function #=WARNING: designLCBP is very ill-behaved due to deficiencies in MATLAB's constr() and minimax(). These functions frequently take a viable set of parameters as a starting point and turn them into an unstable modulator. I should provide a more robust implementation... =# using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import Printf: @sprintf j=im #== ===============================================================================# println("\n*** Continuous-Time LC Modulator Design") n = 3 OSR = 64 opt = 2 Hinf = 1.7 f0 = 1/16 t = [0.5 1] form = :FB dbg = true (param, H, L0, ABCD) = designLCBP(n, OSR=OSR, opt=opt, Hinf=Hinf, f0=f0, t=t, form=form, dbg=dbg ) :END_OF_DEMO
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
275
#Example lowpass/bandpass real/quadrature modulator design include("dsexample1_fn.jl") opt=2 #dsm = RealDSM(order=5, OSR=32, form=:CRFB, Hinf=1.5, opt=2) dsm = RealDSM(order=5, OSR=32, form=:CRFB, Hinf=1.5, opt=opt) results = dsexample1(dsm, LiveDemo=true) :END_OF_EXAMPLE
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
4039
#Example lowpass/bandpass real/quadrature modulator design using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import Printf: @sprintf j=im """`result = dsexample1(dsm; ampdB::Float64=-3.0, ftest=nothing, LiveDemo=false)` Example lowpass/bandpass real/quadrature modulator design. # Output `result`: `Dict` of: - :nlev, :NTF, :ABCD, :umax, :amp, :snr, :peak_snr - :coeff (a NamedTuple of: a, g, b c) """ function dsexample1(dsm::AbstractDSM; ampdB::Float64=-3.0, ftest=nothing, LiveDemo::Bool=false) #Computed defaults if isnothing(ftest) ftest = default_ftest(dsm) end #Derived parameters nlev = dsm.M + 1 dsmtypestr = str_modulatortype(dsm) println("*** ", dsmtypestr, " example... ") #TODO: support plot attributes?: sizes = Dict{Symbol, Any}( :lw => 1, #LineWidth :ms => 5, #MarkerSize :fs => 12, #FontSize :fw => "normal", #FontWeight ) if LiveDemo #Overwrite settings: push!(sizes, :lw => 2, :ms => 6, :fw => "bold", ) end LiveDemo && (@info("Realizing NTF..."); flush(stdout); flush(stderr)) #------------------------------------------------------------------------------- local NTF, ABCD if !isquadrature(dsm) NTF = synthesizeNTF(dsm) a,g,b,c = realizeNTF(NTF, dsm.form) z0 = exp(2π*j*dsm.f0) b = [abs(b[1]+b[2]*(1-z0)) zeros(1,length(b)-1)] #Use a single feed-in for the input ABCD = stuffABCD(a,g,b,c,dsm.form) else NTF = synthesizeQNTF(dsm) ABCD = realizeQNTF(NTF, dsm.form, 1) end LiveDemo && println("\tdone.") plot = documentNTF(dsm, ABCD, sizes=sizes, frespOnly=false) saveimage(:png, "dsexample1_NTF.png", plot, AR=2/1, width=900) displaygui(plot) LiveDemo && (@info("Performing time-domain simulations..."); flush(stdout); flush(stderr)) #------------------------------------------------------------------------------- N = 100 t = 0:N-1 #Do not use genTestTone() (N too small; ftest gets rounded to 0Hz). #(u, iftest) = genTestTone(dsm, ampdB, ftest, N=100) local simresult if !isquadrature(dsm) u = undbv(ampdB)*dsm.M*sin.( 2π*ftest*t ) simresult = simulateDSM(u, ABCD, nlev=nlev) else u = undbv(ampdB)*dsm.M*exp.( 2π*j*ftest*t ); simresult = simulateQDSM(u, ABCD, nlev=nlev) end LiveDemo && println("\tdone.") plot = plotModTransient(u, simresult.v, legend=false) ylim = (dsm.M+0.25) set(plot, xyaxes=set(ymin=-ylim, ymax=ylim)) displaygui(plot) #Example spectrum #------------------------------------------------------------------------------- plot = plotExampleSpectrum(dsm, NTF, ampdB=ampdB, ftest=ftest, sizes=sizes) displaygui(plot) #SQNR plot #------------------------------------------------------------------------------- snrinfo = calcSNRInfo(dsm, NTF=NTF) plot = plotSNR(snrinfo, dsm) #TODO: Apply sizes displaygui(plot) if isquadrature(dsm) #Example I/Q mismatch error("Quadrature section not ported over.") end umax = nothing coeffs = nothing if !isquadrature(dsm) #Dynamic range scaling LiveDemo && (@info("Performing dynamic range scaling..."); flush(stdout); flush(stderr)) #------------------------------------------------------------------------------- ABCD0 = ABCD ABCD, umax = scaleABCD(ABCD0, nlev=nlev, f=dsm.f0) a,g,b,c = mapABCD(ABCD, dsm.form) coeffs = (a=a, g=g, b=b, c=c) LiveDemo && println("\tdone.") LiveDemo && (@info("Verifying dynamic range scaling..."); flush(stdout); flush(stderr)) #------------------------------------------------------------------------------- N = 10^4; N0 = 50 u = range(0, stop=0.95*umax, length=30) test_tone = cos.(2π*dsm.f0 * (0:N-1)) test_tone[1:N0] = test_tone[1:N0] .* (0.5 .- 0.5*cos.(2π/N0 * (0:N0-1))) plot = plotStateMaxima(u, ABCD, test_tone, nlev=nlev) set(plot, RSDeltaSigmaPort.linlin, xyaxes=set(ymin=0, ymax=1)) LiveDemo && println("\tdone.") displaygui(plot) end results = Dict{Symbol, Any}( :nlev => nlev, :NTF => NTF, :ABCD => ABCD, :SNR_vs_amp_sim => snrinfo.vs_amp_sim, :peak_snr => snrinfo.peak[2], :umax => umax, :coeffs => coeffs ) return results end #Last line
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
5139
#Design example for a continuous-time lowpass ΔΣ ADC using RSDeltaSigmaPort using RSDeltaSigmaPort.EasyPlot #set, cons import Printf: @sprintf j=im #==Baseband modulator (continuous-time implementation) ===============================================================================# nlev=2 #dsm = RealDSM(order=3, OSR=100, M=nlev-1, f0=0, opt=0, Hinf=1.3, form=:FB) #dsm = RealDSM(order=3, OSR=32, M=nlev-1, f0=0, opt=0, Hinf=1.5, form=:FB) dsm = RealDSM(order=3, OSR=32, M=nlev-1, f0=0, opt=2, Hinf=1.5, form=:FB) umax = 0.83 #Parameters for the continuous-time implementation: tdac = [0 1] #DAC timing. [0 1] means zero-delay non-return-to-zero println("\n*** $(dsm.order)th-Order Continuous-Time Lowpass Example") @info("Performing NTF synthesis..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- NTF0 = synthesizeNTF(dsm) #Optimized zero placement #println("p:"); display(NTF0.p) #println("z:"); display(NTF0.z) plotcoll_NTF = documentNTF(dsm, NTF0) println("\tdone.") saveimage(:png, "dsexample2_NTF.png", plotcoll_NTF, AR=2/1, width=900) displaygui(plotcoll_NTF) displaygui(plotNTF(NTF0, dsm.OSR)) #ADDED MALaforge @info("Performing time-domain simulations..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- #Example spectrum #ftest = 0.3 * 0.5/dsm.OSR/3 #~1/3 of the way across the passband ftest = (0.5/dsm.OSR)/3 #~1/3 of the way across the passband plot = plotExampleSpectrum(dsm, NTF0, ftest=ftest,N=2^12) #16 #title('Example Spectrum'); saveimage(:png, "dsexample2_PSD.png", plot, AR=2/1, width=900) displaygui(plot) #SQNR plot snrinfo = calcSNRInfo(dsm, NTF=NTF0) plot = plotSNR(snrinfo, dsm) set(plot, xyaxes=set(xmin=-100, ymin=0, ymax=100)) println("\tdone.") saveimage(:png, "dsexample2_SQNR.png", plot, AR=2/1, width=900) displaygui(plot) @info("Mapping to continuous-time..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- (ABCDc,tdac2) = realizeNTF_ct(NTF0, dsm.form, tdac) (Ac, Bc, Cc, Dc) = partitionABCD(ABCDc) sys_c = _ss(Ac,Bc,Cc,Dc) println("\tdone.") #Verify that the sampled pulse response of the CT loop filter #matches the impulse response of the DT prototype n_imp = 10 y = -impL1(NTF0, n_imp) #Negate impL1 to make the plot prettier y_max = maximum(real.(y)) plot = plotLollipop(0:n_imp, y, color=:blue) plot.title = "Loop filter pulse/impulse responses (negated)" yl = floor(0.9*y_max); color=:blue ylw = waveform([0.5, 2], [yl, yl]) simglyph = cons(:a, glyph=set(shape=:o, size=1.5, color=color, fillcolor=color)) push!(plot, cons(:wfrm, ylw, simglyph, line=set(style=:solid, color=color, width=2), label=""), cons(:atext, " discrete-time", x=2, y=yl, align=:bl), ) dt = 1/16 t = collect(0:dt:n_imp) yy = -pulse(sys_c, [0 0;tdac], dt, n_imp*1.0) yy = squeeze(yy) yyw = waveform(t, yy) yl = floor(0.7*y_max); color=:green ylw = waveform([0.5, 2], [yl, yl]) push!(plot, #Add yy when it works cons(:wfrm, yyw, line=set(style=:solid, color=color, width=2), label=""), cons(:wfrm, ylw, line=set(style=:solid, color=color, width=2), label=""), cons(:atext, " continuous-time", x=2, y=yl, align=:bl), ) displaygui(plot) #Map the cts system to its discrete time equivalent and check the NTF (sys_d, Gp) = mapCtoD(sys_c, t=tdac) ABCD = [sys_d.A sys_d.B; sys_d.C sys_d.D] (NTF, G) = calculateTF(ABCD) NTF = cancelPZ(NTF) (plot_NTF, plot_fresp) = plotcoll_NTF.plotlist plotPZ!(plot_NTF, NTF, color=:cyan) #Also plot the STF L0 = _zpk(sys_c[1,1]) @warn("FIXME: Again, numerical error in ss->zpk gives 0 gain") f = range(0, stop=0.5, length=10) G = evalTFP(L0, NTF, f) Gw = waveform(f, dbv.(G)) push!(plot_fresp, cons(:wfrm, Gw, line=set(style=:solid, color=:magenta, width=2), label=""), ) plotcoll_NTF.title = "NTF and STF" displaygui(plotcoll_NTF) @info("Performing dynamic range scaling..."); flush(stdout); flush(stderr) #------------------------------------------------------------------------------- #!!! This code assumes that the scale factors for the DT equivalent apply #!!! to the CT system. A system with an RZ DAC will have inter-sample peaks #!!! that exceed the values an the sampling instants. (ABCDs, umax, S) = scaleABCD(ABCD, nlev=nlev, f=dsm.f0, xlim=1, umax=umax, N0=10^4) S = S[1:dsm.order,1:dsm.order] #Don't worry about the extra states used in the d-t model println("\tdone.") println("\nScaled ABCD matrix (ABCDs):") @show umax display(ABCDs) #Compute ABCDcs: Sinv = inv(S) Acs=S*Ac*Sinv; Bcs=S*Bc; Ccs=Cc*Sinv ABCDcs = [Acs Bcs; Ccs Dc] sys_cs = _ss(Acs, Bcs, Ccs, Dc) #ABCDcs needs to be checked with CT simulations to # 1. Verify pulse response # 2. Verify signal swings println("\nABCDcs matrix:") display(ABCDcs) adc = Dict{Symbol, Any}( :order => dsm.order, :OSR => dsm.OSR, :opt => dsm.opt, :M => dsm.M, :f0 => dsm.f0, :NTF => NTF, :ABCD => ABCD, :umax => umax, :peak_snr => snrinfo.peak[2], :form => dsm.form, :ABCDc => ABCDc, :L0 => L0, :sys_c => sys_c, :ABCDcs => ABCDcs, :sys_cs => sys_cs, ) println() display(adc) :END_OF_EXAMPLE
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git
[ "BSD-3-Clause", "MIT" ]
0.4.2
286a0cf04d4e951697988474d818613ec4632282
code
6094
#RSDeltaSigmaPort: A port of Richard Schreier's Delta Sigma Toolbox #------------------------------------------------------------------------------- #__precompile__(false) #Bit faster to develop when using ControlSystems.jl #=Conventions - Function name `_stairs__()` - Leading `_`: Private function (not meant to be called externally from this module). - Trailing `__`: Implementation for a specific function (do not call unless from within that parent function). =# """`RSDeltaSigmaPort`: A port of Richard Schreier's Delta Sigma Toolbox # Sample usage ```julia-repl julia> using RSDeltaSigmaPort #Will take a while to load, compile, etc... julia> import RSDeltaSigmaPort: @runsample julia> @runsample("dsdemo1.jl") julia> @runsample("dsdemo2.jl") julia> @runsample("dsdemo3.jl") julia> @runsample("dsdemo4_audio.jl") julia> @runsample("dsdemo5.jl") julia> @runsample("dsdemo6.jl") julia> @runsample("dsexample1.jl") julia> @runsample("dsexample2.jl") julia> @runsample("demoLPandBP.jl") ``` # See also: [`simulateDSM`](@ref), [`simulateMS`](@ref), [`simulateSNR`](@ref), [`simulateHBF`](@ref) | [`synthesizeNTF`](@ref), [`realizeNTF`](@ref), [`realizeNTF_ct`](@ref) | [`calculateSNR`](@ref), [`peakSNR`](@ref), [`predictSNR`](@ref) | [`calculateTF`](@ref), [`evalTF`](@ref), [`evalTFP`](@ref) | [`stuffABCD`](@ref), [`scaleABCD`](@ref), [`mapABCD`](@ref), [`partitionABCD`](@ref) | [`mapCtoD`](@ref), [`mapQtoR`](@ref) | [`exampleHBF`](@ref), [`designHBF`](@ref), [`simulateHBF`](@ref) | [`pulse`](@ref), [`impL1`](@ref) | [`lollipop`](@ref), [`logsmooth`](@ref) | [`documentNTF`](@ref), [`plotExampleSpectrum`](@ref) """ module RSDeltaSigmaPort const rootpath = realpath(joinpath(@__DIR__, "..")) #=Flags: -TODO -VERIFYME: is this the correct behaviour??? -VERSIONSWITCH: Algorithm originally depends on software version (Needs to be checked) -NEEDSTOOLKIT -REQUESTHELP =# import Random import Statistics: mean import LinearAlgebra import LinearAlgebra: norm, diagm, eigen, cond import SpecialFunctions: erfinv import Interpolations import FFTW: fft, fftshift import DSP: conv, filt, remez import Optim import Optim: optimize, GoldenSection, IPNewton, GradientDescent, LBFGS import Optim: Fminbox, TwiceDifferentiableConstraints import Polynomials import Polynomials: Polynomial import Printf: @sprintf using CMDimData using CMDimData.MDDatasets using CMDimData.EasyPlot using CMDimData.EasyPlot.Colors #Should be ok with whatever version it needs import CMDimData.EasyPlot: BoundingBox #Use this one to avoid version conflicts with Graphics. using InspectDR CMDimData.@includepkg EasyPlotInspect import ControlSystems import ControlSystems: isdiscrete #using ControlSystems: zpk, zpkdata function throw_unreachable() msg = "Code expected to be unreachable with exception handling" error(msg) end function throw_notimplemented() msg = "Feature not implemented" error(msg) end const j = im include("base.jl") include("arrays.jl") include("mlfun.jl") include("mlfun_control.jl") include("text.jl") include("datasets.jl") include("signals_time.jl") include("power.jl") include("timedomain.jl") include("windowing.jl") include("snr.jl") include("optimize.jl") include("transferfunctions.jl") include("statespace.jl") include("mapCtoD.jl") include("synthesizeNTF.jl") include("quantizer.jl") include("simulate_base.jl") include("simulateDSM.jl") include("simulateMS.jl") include("realizeNTF.jl") include("realizeNTF_ct.jl") include("filter_base.jl") include("exampleHBF.jl") include("designHBF.jl") include("designLCBP.jl") include("simulateHBF.jl") include("calc_spectrum.jl") include("plot_base.jl") include("plot_transient.jl") include("plot_spectrum.jl") include("plot_NTF.jl") include("plot_zplane.jl") include("plot_SNR.jl") include("plot_state.jl") include("display.jl") #==Convenience macros ===============================================================================# macro runsample(filename::String) fnstr = "$filename" fpath = realpath(joinpath(rootpath, "sample", fnstr)) @info("Running RSDeltaSigmaPort sample:\n$fpath...") m = quote include($fpath) end return esc(m) #esc: Evaluate in calling module end #==Exported interface ===============================================================================# #Simple calculations: export dbm, dbp, dbv, rms export undbm, undbp, undbv #Compatibility: #WARN: Might eventually collide with names from other packages: #NOTE: Some use "_" prefix to avoid collisions with similar functions in other packages export cplxpair export _ss, _zpk, _zpkdata export _zp2ss, _zp2tf, _freqz, _tf, _minreal, _impulse export interp1_lin, interp1_cubic #Specialized names export interp export squeeze export eye, orth, eig #Data/arrays: export AbstractDSM, RealDSM, QuadratureDSM export padl, padr, padt, padb export array_round #Converts a floating-point value to an (Int) index usable by Julia arrays. export mapQtoR #Accessors export isquadrature #Signal generators: export ds_f1f2, default_ftest, default_fband export genTestTone, genTestTone_quad, genTestTone_sin export pulse, impL1 #Windowing/time domain: export ds_hann, applywnd export ds_therm export sinc_decimate #Misc. calculations: export calcSpecInfo export calcSNRInfo, calculateSNR, peakSNR, predictSNR #Transfer functions: export synthesizeNTF, realizeNTF, realizeNTF_ct export calculateTF, evalTF, evalTFP export rmsGain, cancelPZ #State space: export stuffABCD, scaleABCD, mapABCD, partitionABCD export mapCtoD #Filters: export exampleHBF, designHBF, designLCBP #Simulations: export simulateDSM, simulateMS export simulateSNR, simulateHBF #Plotting: export waveform, wfrm_stairs, lollipop, logsmooth export plotPZ, plotPZ!, plotNTF, plotNTF! export documentNTF export plotSNR, plotSNR!, plotStateMaxima, plotUsage export plotModTransient, plotLollipop export plotSpec, plotSpec!, plotModSpectrum, plotModSpectrum! export plotSpectrum, plotSpectrum!, plotExampleSpectrum #Displaying plots: export inlinedisp, saveimage, displaygui #Display/text: export ds_orderString, str_modulatortype end # module
RSDeltaSigmaPort
https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git