licenses
listlengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2292 | #RSDeltaSigma: Array manipulations
#-------------------------------------------------------------------------------
#==Converters to make input data uniform
===============================================================================#
"""`conv2seriesmatrix2D(x)`
Ensure we have a 2D matrix representing series data (Vector->2×N Array)
"""
conv2seriesmatrix2D(x::T) where T =
throw(ErrorException("Cannot convert $T to a \"series data matrix\""))
conv2seriesmatrix2D(x::AbstractVector) = collect(x')
conv2seriesmatrix2D(x::Array{T, 2}) where T<:Number = x #Assume format is ok.
#==Array/Vector padding
===============================================================================#
"""`y = padl(x, n, val)`
Pad a matrix x on the left to length n with value val(0)
The empty matrix is assumed to be have 1 empty row
"""
padl(x, n::Int, val=0) =
[ val*ones(eltype(x), max(1,size(x,1)), n-size(x,2)) x ]
padl(x::Vector, n::Int, val=0) = vcat(val*ones(eltype(x), n-length(x)), x)
"""`y = padr(x, n, val)`
Pad a matrix x on the right to length n with value val(0)
The empty matrix is assumed to be have 1 empty row
"""
padr(x, n::Int, val=0) =
[ x val*ones(eltype(x), max(1,size(x,1)), n-size(x,2)) ]
padr(x::Vector, n::Int, val=0) = vcat(x, val*ones(eltype(x), n-length(x)))
"""`y = padt(x, n, val)`
Pad a matrix x on the top to length n with value val(0)
The empty matrix is assumed to be have 1 empty column
"""
padt(x, n::Int, val=0) =
[ val*ones(eltype(x), n-size(x,1), max(1,size(x,2))); x ]
padt(x::Vector, n::Int, val=0) = padl(x,n,val)
"""`y = padb(x, n, val)`
Pad a matrix x on the bottom to length n with value val(0)
The empty matrix is assumed to be have 1 empty column
"""
padb(x, n::Int, val=0) =
[ x ; val*ones(eltype(x), n-size(x,1), max(1,size(x,2))) ]
padb(x::Vector, n::Int, val=0) = padr(x,n,val)
#==Quadrature <--> real
===============================================================================#
"""`A = mapQtoR(Z)`
Convert a quadrature matrix into its real equivalent.
Each element in `Z` is represented by a 2x2 matrix in `A`:
- `z -> [x -y; y x]`
"""
function mapQtoR(Z)
A = zeros(2*size(Z))
A[1:2:end,1:2:end] = real(Z)
A[2:2:end,2:2:end] = real(Z)
A[1:2:end,2:2:end] = -imag(Z)
A[2:2:end,1:2:end] = imag(Z)
return A
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 4871 | #RSDeltaSigma: Base functionnality and types
#-------------------------------------------------------------------------------
#=Info
- Circumvent using ControlSystems.jl for now by specifying custom zpk()
functions & data structures.
=#
#==Type definitions
===============================================================================#
const IndexRange = UnitRange{Int64}
const MISSINGARG = ArgumentError("Missing Argument")
#Type used to dispatch on a symbol & minimize namespace pollution:
struct DS{Symbol}; end; #Dispatchable symbol
DS(v::Symbol) = DS{v}()
"""`ZPKData`
Custom structure to store zpk data.
"""
mutable struct ZPKData
z
p
k
Ts::Real
end
function _zpk(z, p, k, Ts::Number=0)
ZPKData(z, p, k, Ts)
end
function _zpkdata(d::ZPKData, idx=0)
accesspz(v::Array, idx) = v[idx]
accesspz(v::Array{T}, idx) where T<:Number =
(if idx != 1; throw("no data at given index"); end; return v)
accessk(v::Array, idx) = v[idx]
accessk(v::Number, idx) =
(if idx != 1; throw("no data at given index"); end; return v)
(z, p, k) = (d.z, d.p, d.k)
if idx > 0
z = accesspz(z, idx)
p = accesspz(p, idx)
k = accessk(k, idx)
end
return (z, p, k)
end
abstract type AbstractDSM; end
"""`RealDSM(;order=3, OSR=16, M=1, f0=0, form=:CRFB, Hinf=1.5, opt=1)`
Describe a real-valued (not quadrature) ΔΣ modulator.
# Inputs
- `order`: order of the modulator
- `OSR`: oversampling ratio
- `M`: Number of quantizer steps (`M=nlev-1`)
- `f0`: center frequency (1->fs)
- `form`:
- `H_inf`: maximum NTF gain
- `opt`: flag for optimized zeros
- `--> opt=0` -> not optimized,
- `--> opt=1` -> optimized,
- `--> opt=2` -> optimized with at least one zero at band-center,
- `--> opt=3` -> optimized zeros (Requires MATLAB6 and Optimization Toolbox),
- `--> opt=[z]` -> zero locations in complex form (TODO?)
"""
struct RealDSM <: AbstractDSM
order::Int
OSR::Int
M::Int #Num steps
f0::Float64
form::Symbol
Hinf::Float64
opt::Int
end
RealDSM(;order=3, OSR=16, M=1, f0=0, form=:CRFB, Hinf=1.5, opt=1) =
RealDSM(order, OSR, M, f0, form, Hinf, opt)
struct QuadratureDSM <: AbstractDSM
order::Int
OSR::Int
M::Int #Num steps
f0::Float64
form::Symbol
NG::Int
ING::Int
end
QuadratureDSM(;order=4, OSR=32, M=1, f0=1/16, form=:PFB, NG=-50, ING=-10) =
QuadratureDSM(order, OSR, M, f0, form, NG, ING)
"""`CTDTPrefilters`
The mixed CT/DT prefilters which form the samples.
"""
mutable struct CTDTPrefilters
Hs #TODO Type should be transfer function
Hz #TODO Type should be transfer function
end
#==Accessors
===============================================================================#
isquadrature(::RealDSM) = false
isquadrature(::QuadratureDSM) = true
#==Helper functions
===============================================================================#
function orderinfo(order::Int)
order2 = div(order, 2)
Δodd = mod(order, 2)
isodd = order > 2*order2
return (order2, isodd, Δodd)
end
orderinfo(dsm::AbstractDSM) = orderinfo(dsm.order)
#Sort roots such that real values show up first
function realfirst(a)
epstol = 100
#Index of real roots:
Δmin = epstol*eps.(abs.(a)) #Threshold for numerical error
ireal = abs.(imag.(a)) .< Δmin
areal = real.(a[ireal]) #Clean up real roots
acplx = a[.!ireal] #complex pairs
return vcat(sort(areal), acplx) #Sort roots
end
#==Basic frequency calculations/defaults
===============================================================================#
"""`(f1, f2) = ds_f1f2(;OSR=64, f0=0, iscomplex=0)`
Deprecated. Use `default_fband()` instead.
# See also:
[`default_fband`](@ref), [`default_ftest`](@ref)
"""
function ds_f1f2(;OSR::Int=64, f0::Float64=0, iscomplex::Bool=false)
local f1, f2
if iscomplex
f1 = f0-0.5/OSR
f2 = f0+0.5/OSR
else
if f0>0.25/OSR
f1 = f0-0.25/OSR
f2 = f0+0.25/OSR
else
f1 = 0
f2 = 0.5/OSR
end
end
return (f1, f2)
end
"""`[f1, f2] = default_fband(dsm)`
Compute a default application band (normalized frequency limits) for the given
ΔΣ modulator.
# See also:
[`default_ftest`](@ref)
""" default_fband
default_fband(OSR::Int; f0::Float64=0.0, quadrature::Bool=false) =
collect(ds_f1f2(OSR=OSR, f0=f0, iscomplex=quadrature)) #Vector form
default_fband(dsm::RealDSM) = default_fband(dsm.OSR, f0=dsm.f0, quadrature=false)
default_fband(dsm::QuadratureDSM) = default_fband(dsm.OSR, f0=dsm.f0, quadrature=false)
"""`default_ftest(dsm)`
Compute a default test (normalized) frequency for the given ΔΣ modulator.
# See also:
[`default_fband`](@ref)
""" default_ftest
function default_ftest(OSR::Int; f0::Float64=0, quadrature::Bool=false)
if quadrature
return ftest = 0.15/OSR
else
return (0==f0) ? 0.15/OSR : f0 + 0.08/OSR
end
end
default_ftest(dsm::RealDSM) = default_ftest(dsm.OSR, f0=dsm.f0, quadrature=false)
default_ftest(dsm::QuadratureDSM) = default_ftest(dsm.OSR, f0=dsm.f0, quadrature=true)
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1846 | #RSDeltaSigmaPort: Calculate frequency spectrum information
#-------------------------------------------------------------------------------
#==calcSpecInfo
===============================================================================#
"""
Calculate spectrum information
# Inputs
- sig: Signal to analyze
- NTF: Noise transfer function to compute theoretical noise spectrum
- fband: Specifies (𝑓min, 𝑓max) band limits of the modulator (normalized 𝑓)
- ftest: test frequency (normalized 𝑓)
- M: Number of quantizer steps (nlev = M+1)
- quadrature:
"""
function calcSpecInfo(sig, NTF, fband, ftest::Float64; M::Int=1, quadrature::Bool=false)
sig = conv2seriesmatrix2D(sig)
R, N = size(sig)
if R!=1
throw("FIXME: replicate hann window rows for R>0")
end
iband = round(Int, minimum(fband)*N):round(Int, maximum(fband)*N)
itest = round(Int, ftest*N)
Δ = 2
NBW = 1.5/N
spec0 = fft(applywnd(sig, ds_hann(N)))/(M*N/4)
local 𝑓, specdB, SNR, ePSD
if !quadrature
𝑓pts = div(N,2)+1 #Only need half the spectrum for display purposes
𝑓 = range(0, stop=0.5, length=𝑓pts)
specdB = dbv.(spec0[1:𝑓pts])
# @show iband .+ 1, itest-minimum(iband)
SNR = calculateSNR(spec0[iband .+ 1], itest-minimum(iband))
#Compute Expected power spetral density:
# Sqq = 4 * evalTF(NTF ,exp.(2π*j*𝑓)).^2 / (3*M^2)
Snn = abs.(evalTF(NTF, exp.(2π*j*𝑓))).^2 * 2*2/12 * (Δ/M)^2
ePSD = dbp.(Snn*NBW)
else
throw("Not implemented")
end
return (freq=𝑓, spec0=spec0, specdB=specdB, ePSD=ePSD,
SNR=SNR, NBW=NBW, NTF=NTF, M=M, iband=iband, itest=itest
)
end
function calcSpecInfo(sig, dsm::RealDSM, fband=nothing, ftest=nothing)
if isnothing(fband); fband = default_fband(dsm); end
if isnothing(ftest); ftest = default_ftest(dsm); end
NTF = synthesizeNTF(dsm)
return calcSpecInfo(sig, NTF, fband, ftest, M=dsm.M, false)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 655 | #RSDeltaSigmaPort: Dataset manipulations
#-------------------------------------------------------------------------------
#Validate x, y pair simple vectors
function validatexy_vec(x, y)
sz = size(x); sz_y = size(y)
if sz != sz_y
throw("x & y sizes do not match")
elseif length(sz) > 1
throw("Dimension of data too large (Simple vector expected).")
end
return
end
#Validate x, y pair for 1 parameter sweep (2D array)
function validatexy_1param(x, y)
sz = size(x); sz_y = size(y)
if sz != sz_y
throw("x & y sizes do not match")
elseif length(sz) > 2
throw("Dimension of data too large (2D arrays expected).")
end
return
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 11593 | #RSDeltaSigma: designHBF() algorithm
#-------------------------------------------------------------------------------
#=IMPORTANT
designHBF6() (a version that doesn't need firpm()) no longer exists in the
source code used in this port. It actually just copies designHBF7().
=#
#==Helper functions
===============================================================================#
"""`F1 = evalF1(f1, z, phi)`
Calculate the values of the F1 filter (tranformed prototype filter) of a
Saramaki HBF at the given points.
"""
function evalF1(f1, z)
F1 = 0.5
for i = 1:length(f1)
F1 = F1 .+ f1[i] * z .^ (2*i-1)
end
return F1
end
evalF1(f1, z, phi::Float64) = evalF1(f1, z/phi)
"""`F0 = evalF0(f1, z, phi)`
Calculate the values of the F0 (prototype) filter of a Saramaki HBF
at the given points.
"""
evalF0(f1, z, phi::Float64) =
evalF1( f1, 0.5*(z + 1 ./ z), phi )
#==frespHBF()
===============================================================================#
function _frespHBF(f, f1, f2, fp, calcripples::Bool)
Npts = length(f)
w = 2*pi*f
z = exp.(j*w)
cos_w = real.(z)
n2 = length(f2)
F2 = zeros(size(w))
for i = 1:n2
F2 = F2 + f2[i]*cos.(w*(2*i-1))
end
F2 = F2*2
mag = evalF1(f1, F2)
pbr = sbr = nothing
if calcripples
passband = 1:floor(Int, 2*fp*(Npts-1)+1)
stopband = (Npts + 1) .- passband
pbr = maximum( abs.(abs.(mag[passband]) .- 1) )
sbr = maximum( abs.(mag[stopband]) )
end
return (z, mag, F2, pbr, sbr)
end
"""`(mag, pbr, sbr) = frespHBF(f,f1,f2,phi=1.0,fp=0.2,msg="")`
Compute the frequency response, the passband ripple and the stopband ripple
of a Saramaki HBF. If msg is non-null, a plot is made.
- `fp` is the passband edge.
- `phi` is used by designHBF.
"""
function frespHBF(f,f1,f2; phi=1.0, fp=0.2, msg="", calcripples=true)
if isa(f, Number) && isnan(f)
f = range(0, stop=.5, length=1024)
end
if isa(f1, Vector{CoeffCSD})
f1 = values(f1)
end
if isa(f2, Vector{CoeffCSD})
f2 = values(f2)
end
calcripples = calcripples || isempty(msg)
(z, mag, F2, pbr, sbr) = _frespHBF(f, f1, f2, fp, calcripples)
if !isempty(msg)
F1 = evalF0(f1, z, phi)
plot = cons(:plot, linlin, nstrips=2, title="Frequency Response", legend=true,
xaxis=set(label="Normalized Frequency", min=0, max=0.5),
ystrip1=set(axislabel="Mag", min=0, max=1.1),
ystrip2=set(axislabel="Mag [dB]", min=-150, max=10),
)
plot.title = msg
w1 = waveform(f, abs.(F1))
w2 = waveform(f, phi*abs.(F2))
w3 = waveform(f, abs.(mag))
w4 = waveform(f, dbv.(mag))
pbr_str = @sprintf("pbr = %.1e", pbr) #orig. coords: (0.0,-10)
sbr_str = @sprintf("sbr = %.0fdB", dbv(sbr)) #orig. coords: (0.0,dbv(sbr))
push!(plot,
cons(:wfrm, w1, line=set(style=:dash, color=:blue, width=2), label="F1"),
cons(:wfrm, w2, line=set(style=:dot, color=:red, width=2), label="F2"),
cons(:wfrm, w3, line=set(style=:solid, color=:green, width=2), label="HBF"),
cons(:wfrm, w4, line=set(style=:solid, color=:green, width=2), label="HBF", strip=2),
cons(:atext, pbr_str, y=-10, reloffset=set(x=0.05), align=:tl, strip=2),
cons(:atext, sbr_str, y=dbv(sbr), reloffset=set(x=.95), align=:br, strip=2),
)
displaygui(plot)
end
return (mag,pbr,sbr)
end
#==designF1()
===============================================================================#
"""`(f1, zetap, phi) = designF1(delta, fp1)`
Design the F1 sub-filter of a Saramaki halfband filter.
This function is called by designHBF()
- `f1`: A structure array containing the F1 filter coefficents and
Their CSD representation.
- `phi`: The scaling factor for the F2 filter (imbedded in the f1 coeffs.)
"""
function designF1(delta, fp1)
passband = exp.(4π*j*range(0, stop=fp1, length=10))
ok = false
n1_found = 7
local h
for n1 in 1:2:7 #Odd values only
if n1 == 1
h = [0.5, 0.5]
else
h = remez(2*n1, [(0,4*fp1)=>1, (1,1)=>0], Hz=2)
if !(abs(sum(h)-1) < 1e-3) #remez bug! Use firls instead
throw("Remez bug! workaround not yet implemented")
#h = firls(2*n1-1,[0 4*fp1 1-1e-6 1],[1 1 0 0]) #workaround
end
end
fresp = abs.( polyval(h,passband) )
if maximum( abs.(fresp .- 1) ) <= delta
n1_found = n1
ok = true
break
end
end
n1 = n1_found
if !ok
zetap = 1 #Use this as an indication that the function failed.
return ([], zetap, 0)
end
#Transform h(n) to a chebyshev polynomial f1(n)
#Sum(f1(i)*cos(w)^n)|i=1:n1 + Sum(h(n1+i))*cos(n*w))|i=1:n1, n = 2*i-1;
w = π*rand(1,n1)
cos_w = cos.(w)
A = zeros(n1,length(w))
B = zeros(1,n1)
for i in 1:n1
n = 2*i-1
A[i,:] = cos_w .^ n
B = B .+ h[n1+i] * cos.(n*w)
end
f1 = B/A
f1 = f1[:] #Vectorize
phivecb = []
#Optimize the quantized version of f1 to maximize the stopband width
#( = acos(zetap) )
zetap = 1
phi = 0
f1_saved = nothing
testPoints = vcat(0, 10 .^ range(-2, stop=0, length=128)) .- 1
for nsd in 3:8
f1a = f1; f1b = f1 #First try the unperturbed filter.
for phia in 1 ./ vcat(1, f1)
phia = phia / 2^nextpow(2, abs(phia)) #keep phi in (0.5,1]
#Try a bunch of coefficients in the current neighborhood,
#shrinking the neighborhood once 10 successive trial values show no
#improvement. If 2 successive shrinkages do no good, try a higher nsd.
count = 0
nohelp = 0
neighborhood = .05
while neighborhood > 1e-5
phivec = phia .^ collect(1:2:2*n1-1)
#Matlab Ver. 5 change:
if isempty(phivecb); phivecb = phivec; end
f1q = bquantize( f1a .* phivec, nsd )
f1qval = values(f1q)
F1 = evalF1( f1qval, testPoints, phia )
fi = findall( abs.(F1) .> delta )
zeta = -testPoints[ max(fi[1]-1, 1) ]
#fprintf(2,'nsd=%d, nbhd= %f, count=%d, zeta = %f, phia=%f\n', ...
# nsd, neighborhood, count, zeta, phia )
if zeta < zetap
count = 0
nohelp = 0
zetap = zeta
f1b = f1qval
f1_saved = f1q
phi = phia
phivecb = phivec
else
count = count + 1
end
if count > 10
count = 0
neighborhood = neighborhood/2
nohelp = nohelp + 1
if nohelp > 2
break
end
end
f1a = f1b ./ phivecb + neighborhood*(rand(size(f1b)...) .- 0.5)
phia = phia .+ neighborhood*(rand()-0.5)
end #while neighborhood ...
if zetap < 1 #Found a filter with adequate attn.
break
end
end #for phia ...
if zetap < 1 #Found a filter with adequate attn.
break
end
end #for nsd ...
return (f1_saved, zetap, phi)
end
#==designF2()
===============================================================================#
"""`f2 = designF2(fp,zetap,phi)`
Design the F2 sub-filter of a Saramaki halfband filter.
This function is called by designHBF().
# subfilter design:
`1 - delta2' < |F2/phi| < 1` for `f` in `[0 fp]`
`-1 < |F2/phi| < -1 + delta2` for `f` in `[0.5-fp, 0.5]`
`1-delta2 = (1-delta2)/(1+delta2)`
"""
function designF2(fp, zetap, phi)
delta2 = (1-zetap)/(1+zetap)
#delta2p = 1 - (1-delta2)/(1+delta2)
#determine the minimum order required by the filter
passband = exp.(j*range(0, stop=4π*fp, length=10))
nsub_found = 17
for nsub in 3:2:17
h2 = remez(nsub+1, [(0,4*fp)=>1, (1,1)=>0], Hz=2)
mag = abs.( polyval(h2, passband) )
if maximum(abs.(mag .- 1)) < delta2
nsub_found = nsub
break
end
end
n2min = (nsub_found+1)/2
#Search all n2,nsd pairs, in order of the product n2*(nsd+1)
#allowing fp to be a variable?
success = false
nsdmin = 3; nsdmax = 6
for product in (nsdmin+1)*n2min:(nsdmax+1)*n2min
for nsd in nsdmin:nsdmax
n2 = product/(nsd+1)
if floor(n2) != n2 #Only take integer n2,nsd pairs
break
end
n2 = floor(Int, n2)
nsub = 2*n2-1
#Could try a bunch of fp values
#fprintf(2,'designF2: Trying (n2,nsd2,fp)=(%2d,%2d,%6.4f)\n',n2,nsd,fp);
h2 = remez(nsub+1, [(0,4*fp)=>1, (1,1)=>0], Hz=2)
h2 = h2/(phi*(1+delta2)) #Adjust the coefficients.
f2 = bquantize( h2[n2+1:nsub+1], nsd )
f2val = values(f2)
h2 = (1+delta2)*phi*vcat(f2val[n2:-1:1], f2val)
mag = abs.( polyval(h2, passband) )
if maximum(abs.(mag .- 1)) < delta2
success = true
break
end
end
if success
break
end
end
if !success
f2 = []
q2 = []
end
return f2
end
#==designHBF()
===============================================================================#
"""`(f1,f2,info)=designHBF(fp(=0.2),delta=1e-5,debug=false)`
Design a half-band filter which can be realized without general multipliers.
The filter is a composition of a prototype and sub- filter.
# Input
- `fp`: The normalized cutoff frequency of the filter. Due to the
symmetry imposed by a HBF, the stopband begins at `0.5-fp`.
- `delta`: The absolute value of the deviation of the frequency response from
the ideal values of 1 in the passband and 0 in the stopband.
# Output
- `f1`,`f2`: The coefficients of the prototype and sub-filters
and their canonical-signed digit (csd) representation.
- `info`: A vector containing the following data (only set when debug=1):
- -->`complexity`: The number of additions per output sample.
- -->`n1,n2`: The length of the f1 and f2 vectors.
- -->`sbr`: The achieved stob-band attenuation (dB).
- -->`phi`: The scaling factor for the F2 filter.
"""
function designHBF(fp::Float64=0.2; delta::Float64=1e-5, debug::Bool=false)
f1_saved = f2_saved = nothing #Declare variables
phi_saved = 0.0
#=To Do:
Clean up the code a bit more, esp. wrt the use of the struct. arrays.
Use the phi variable to cut down on the number of adders in F2.
Apply a simulated annealing/genetic optimization alg instead
of the ad hoc one I have now.
=#
#Try several different values for the fp1 parameter.
#The best values are usually around .04
#Surrender if 3 successive attempts yield progressively greater complexity.
lowest_complexity = Inf; prev_complexity = Inf;
local worse
for fp1 in [.03, .035, .025, .040, .020, .045, .015, .05]
failed = false
(f1, zetap, phi) = designF1(delta, fp1)
if zetap == 1 #designF1 failed
failed = true
if debug
@warn("designF1 failed at fp1=$fp1\n")
end
end
if !failed
f2 = designF2(fp, zetap, phi)
n1 = length(f1); n2 = length(f2)
if n2 == 0 #designF2 failed
failed = true
if debug
@warn("designF2 failed when zetap=$zetap, phi=$phi\n")
end
end
end
if !failed
#complexity(+ performance) = the number of two-input adders (+ sbr)
complexity = sum(csdsize2(f1)) + (2*n1-1)*(n2+sum(csdsize2(f2))-1) #VERIFYME
msg = ""
if debug
msg = @sprintf("%d adders: n1=%d, n2=%d, (fp1=%.2f, zetap=%.3f, phi=%4.2f)",
complexity, n1, n2, fp1, zetap, phi
)
end
(fresp, pbr, sbr) = frespHBF(NaN, f1, f2, phi=phi, fp=fp, msg=msg)
if pbr <= delta && sbr <= delta
complexity = complexity + sbr
if complexity < prev_complexity
worse = 0
if complexity < lowest_complexity
lowest_complexity = complexity
f1_saved = f1; f2_saved = f2
phi_saved = phi
if debug; println(msg); end
end
else
worse = worse + 1
if worse > 2; break; end
end
prev_complexity = complexity
end #if pbr <= delta
end #!failed
end #for fp1
info=nothing
if isinf(lowest_complexity)
@warn("designHBF: Unable to meet the design requirements.")
else
complexity = floor(lowest_complexity)
msg = "Final Design: $complexity adders"
(junk, pbr, sbr) = frespHBF(NaN, f1_saved, f2_saved, phi=phi_saved, fp=fp, msg=msg)
n1 = length(f1_saved); n2 = length(f2_saved)
if debug
msg *= @sprintf(" (%d,%d,%.0fdB)", n1, n2, dbv(sbr))
println(msg)
end
info = (complexity=complexity, n1=n1, n2=n2, sbr=dbv(sbr), phi=phi_saved)
end
return (f1_saved, f2_saved, info)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 13003 | #RSDeltaSigma: designLCBP() algorithm
#-------------------------------------------------------------------------------
#==Types
===============================================================================#
"""`LCBPParameters`
A struct containing the (`n`, `OSR`, `Hinf`, `f0`, `t` and `form`) arguments
for the LCBP filter, plus the following fields:
- `t`: A two-element vector containing the start and end times of the
feedback waveform. Default `= [0 1]`.
- `l`: The inductances in each tank.
- `c`: The capacitances in each tank.
- `gu`: The transconductance from the u input to each of the tanks.
The final term is the voltage gain from u to the comparator input.
Default `= [1 0 .. ]`. (1 by n+1)
- `gv`: The transconductance from the v output to each of the tanks. (1 by n+1)
- `gw`: The inter-stage transconductances. Default `= [1 1 .. ]`. (1 by n-1)
- `gx`: The gains from the top of each tank resistor to the comparator.
Default `= [0 0 .. 1]`. (1 by n)
- `rx`: The resistances inserted between the output of each interstage
transconductance and top of each tank. Default `= [0 ..]`. (1 by n)
Note that rx[1] is not used.
- `rl`: The series resistance of each inductor. Default `= [0 ..]`. (1 by n)
- `gc`: The parallel conductances of each tank. Default `= [0 ..]`. (1 by n)
"""
mutable struct LCBPParameters
n::Int
OSR::Int
Hinf::Float64
f0::Float64
t
form::Symbol
l::Array{Float64}; c::Array{Float64}
gu::Array{Float64}; gv::Array{Float64}; gw::Array{Float64}; gx::Array{Float64}
rx::Array{Float64}; rl::Array{Float64}; gc::Array{Float64}
end
LCBPParameters(n=3; OSR=64, Hinf=1.6, f0=0.25, t=[0 1], form::Symbol=:FB) =
LCBPParameters(n, OSR, Hinf, f0, t, form, [], [], [], [], [], [], [], [], [])
#==
===============================================================================#
"""`(H,L0,ABCD,k)=LCparam2tf(param,k=1)`
Compute the transfer functions (and the Q. gain, k) of an LC modulator.
# Arguments
- `param`: A LCBPParameters struct.
- `k`: The value to assume for the quantizer gain.
# Note:
- If `k` is omitted or if `k` is defaulted, `k` is taken to be 1.
- If `k` is `0`, a value is computed by the formula
`k = mean(abs(y))/mean(y.^2)`, where y is the quantizer input
sequence when the modulator is fed with a small input at f0.
# Output
- `H`: The closed-loop noise transfer function (in z).
- `L0`: The open-loop tf (in s) from u to v. G may be evaluated
using `evalContSTF(L0,H,f)`.
- `k`: The value of the quantizer gain used to compute the above tfs.
- `ABCD`: The state-space description of the discrete-time system
For the conversion from continuous to discrete time, corrections to the
standard MATLAB formulae need to be applied in order for the sampled-data
value to be taken at the END of the time interval.
This effectively makes t1>0 and requires corrections if t2>=1 and gv(n+1)~=0.
More complex formulae are needed for t2>=1, so for the moment this code
requires t2<1.
"""
function LCparam2tf(param::LCBPParameters, k::Float64=1.0)
l = param.l; c = param.c
f0 = mean(1 ./ sqrt.(l .* c)) ./ (2π *pi)
n = length(l)
gu = param.gu
isempty(gu) && (gu = vcat(1, zeros(n))) #Defaults, if needed
gu = padr(gu, n+1, 0) #Pad out with zeros, if needed.
gv = padr(param.gv, n+1, 0) #Pad out with zeros, if needed.
gw = param.gw
isempty(gw) && (gw = ones(n-1)) #Defaults, if needed
gx = param.gx
isempty(gx) && (gx = vcat(zeros(n-1), 1)) #Defaults, if needed
rx = param.rx
if isempty(rx)
rx = zeros(n)
elseif 1==length(rx)
throw("Not sure: Original code did not seem to make sense.")
rx = ones(n)
end
t = param.t
isempty(t) && (t = [0 1]) #Defaults, if needed
rl = param.rl
if isempty(rl)
rl = zeros(n)
elseif 1==length(rl)
throw("Not sure: Original code did not seem to make sense.")
rl = ones(n)
end
gc = param.gc
if isempty(gc)
gc = zeros(n)
elseif 1==length(gc)
throw("Not sure: Original code did not seem to make sense.")
gc = ones(n)
end
#Form the state-space description of the modulator
#The states are ordered v1, i1, v2, i2 ...
n2 = 2*n
local y
ABc = zeros(n2,n2+2); CDc = zeros(1,n2+2)
for i = 1:n
i2 = 2*i-1
#y represents the voltage at the top of the resistor stacked on the tank.
if i == 1
y = vcat(1, zeros(n2+1))
else
ABc[i2,:] = gw[i-1]*y
y = rx[i]*gw[i-1]*y; y[i2] = 1
end
ABc[i2,n2+1:n2+2] = [gu[i] -gv[i]]
ABc[i2:i2+1,i2:i2+1] = [-gc[i] -1; 1 -rl[i]]
ABc[i2,:] = ABc[i2,:]/c[i]
ABc[i2+1,:] = ABc[i2+1,:]/l[i]
CDc = CDc + (gx[i]*y)'
end
CDc = CDc + [zeros(1,n2) gu[n+1] -gv[n+1]]
#THIS IS THE NEW CODE !!
(Ac,Bc,Cc,Dc) = partitionABCD([ABc;CDc], 2)
sys_c = _ss( Ac, Bc[:,2], Cc, Dc[2] )
(sys,) = mapCtoD(sys_c, t=t, f0=f0)
#Augment the input matrix.
A=sys.A
B=[padb(Bc[:,1],size(sys.B,1)) sys.B]
C=sys.C
D=[Dc[1] sys.D]
#Compute L0; use the LC parameters to compute the poles and thereby
#ensure exact agreement with the zeros in H.
#!! THIS IS GOING TO NEED FIXING
s_poles = zeros(2*n) .+ 0j #Make complex
for i in 1:n
_v = [l[i]*c[i], rl[i]*c[i] + gc[i]*l[i], 1+rl[i]*gc[i]]
s_poles[2*i-1:2*i] = _roots(_v)
end
LF0 = _ss(Ac, Bc[:,1], Cc, Dc[1])
L0 = _zpk( LF0 )
L0.p = s_poles
#Compute H. Use the poles in L0 to compute the zeros in H.
ABCD =[A B; C D]
if k==0 #Estimate k by simulatiing the modulator with a small input
w0 = mean(1/sqrt.(l .* c))
H = calculateTF(ABCD)
H.z = exp.(s_poles)
stf0 = abs(evalTFP(L0, H, w0/(2π)))
u = 0.1/stf0*sin.(w0*(0:10000))
y = simulateDSM(u, [A B; C D]).y
k = mean(abs.(y))/mean(y .^ 2)
end
(H, STF) = calculateTF(ABCD, [k])
H.z = exp.(s_poles)
#Correct L0k to include the quantizer gain
L0.k = L0.k*k
return (H,L0,ABCD,k)
end
#Dead code???
function XLCoptparam2tf(x, param)
n = param.n
#Uncomment the following line to take into account the quantizer gain
#before returning results and doing the plots
#(H, L0, ABCD, k) = LCparam2tf(param, 0)
#Uncomment the following lines to yield parameters corresponding to k=1
#param.gu = k*param.gu; param.gv = k*param.gv
#ABCD[2*n+1, :] = ABCD[2*n+1, :] / k
#ABCD[:, 2*n+[1 2]] = ABCD[:, 2*n+[1 2]] * k
#Now fix up the inputs for 0dB gain at f0.
gain_f0 = abs(evalTFP(L0, H, f0))
param.gu = param.gu/gain_f0; L0.k = L0.k/gain_f0
ABCD[:,2*n+1] = ABCD[:,2*n+1]/gain_f0
if (:FF==form) || (:FFR==form)
param.gu[n+1] = 1 #For the flattest STF
end
if dbg
@warn("LCplotTF: not yet implemented")
#LCplotTF(H,L0,param)
end
return (H, L0, ABCD, param)
end
"""`LCoptparam2tf(...)`
Convert optimization parameters to transfer functions.
"""
function LCoptparam2tf(x,param)
n = param.n
param.gw = ones(n-1)
if :FB == param.form
param.gu = vcat(1, zeros(n))
param.gv = vcat(x)
param.gx = vcat(zeros(n-1), 1)
param.rx = zeros(n)
elseif :FF == param.form
param.gu = vcat(1, zeros(n-1), 1)
param.gv = vcat(1, zeros(n))
param.gx = vcat(x)
param.rx = zeros(n)
elseif :FFR == param.form
param.gu = vcat(1, zeros(n-1), 1)
param.gv = vcat(x[1], zeros(n))
param.gx = vcat(zeros(n-1), 1)
param.rx = vcat(0, x[2:n])
elseif :GEN == param.form
param.gv = x[1:n]
param.rx = vcat(0, x[n+1:2*n-1])
else
form = param.form
throw("form=:$form is not supported.")
end
(H, L0, ABCD) = LCparam2tf(param)
return (H,L0,ABCD,param)
end
"""`f = LCObj1a(x, param, max_radius, dbg)`
The objective function for the initial optimization process used to put
the roots of the denominator of the LCBP NTF inside the unit circle.
"""
function LCObj1a(x, param, max_radius, dbg)
return f=1 #No actual objective
end
"""`(C, Ceq) = LCObj1b(x, param, max_radius, dbg)`
The constraints function for the initial optimization process used to put
the roots of the denominator of the LCBP NTF inside the unit circle.
"""
function LCObj1b(x, param, max_radius, dbg)
(H,) = LCoptparam2tf(x,param)
objective = 1 #No actual objective
rmax = maximum(abs.(H.p[:]))
C = rmax - max_radius
Ceq = []
if dbg
@show(x)
@show(rmax)
end
return (C, Ceq)
end
#The objective function
function LCObj2a(x, param, rmax, dbg)
if dbg
@show(x)
end
(H, L0, ABCD) = LCoptparam2tf(x, param)
#The objective is the in-band noise, in dB
f1 = param.f0 - 0.25/param.OSR
f2 = param.f0 + 0.25/param.OSR
objective = dbv(rmsGain(H,f1,f2)/sqrt(3*param.OSR))
println(@sprintf("N0^2 = %.1fdB", objective))
return objective
end
"""`(C, Ceq) = LCObj2b(x,param,rmax,dbg)`
% The constraints: r-rmax, Hinf-Hinfdesired, quantizer input,
% and for the FB form, |stf|-1.1.
"""
function LCObj2b(x, param, rmax, dbg)
(H, L0, ABCD) = LCoptparam2tf(x, param)
Ceq = []
local C
#The constraints are on the maximum radius of the poles of the NTF
#the infinity-norm of the NTF, the peaking of the STF (for the 'FB' form),
#and the maximum input to the quantizer.
max_radius = maximum(abs(H.p[:]))
H_inf = infnorm(H)
stf0 = abs( evalTFP(L0, H, param.f0) )
y = simulateDSM(0.5/stf0*sin(2π*param.f0*(0:1000)), ABCD).y
ymax = maximum(abs.(y))
if :FB == param.form
f1 = param.f0 - 0.25/param.OSR
f2 = param.f0 + 0.25/param.OSR
stf1 = abs( evalTFP(L0, H, f1) )/stf0
stf2 = abs( evalTFP(L0, H, f2) )/stf0
C = vcat(100*(max_radius .- rmax), H_inf-param.Hinf, stf1-1.01, stf2-1.01, (ymax-5)/10)
#C = vcat(100*(max_radius .- rmax), H_inf-param.Hinf, stf1-1.01, stf2-1.01, log(ymax/5))
else
C = vcat(100*(max_radius .- rmax), H_inf-param.Hinf, (ymax-5)/10)
end
if dbg
println(@sprintf("constraints = %8.5f", C))
println(@sprintf("rmax = %5.3f, Hinf = %4.2f, ymax = %5.3f\n",
max_radius, H_inf, ymax)
)
end
return (C, Ceq)
end
#==Main algorithm
===============================================================================#
"""`(param,H,L0,ABCD,x)=designLCBP(n=3,OSR=64,opt=2,Hinf=1.6,f0=1/4,t=[0 1],form='FB',x0,dbg=0)`
Design an LC modulator of order `2*n` with center frequency `f0`.
The feedback waveform is a rectangular pulse from `t[1]` to `t[2]`.
# Arguments
- `n`: The number of LC tanks.
- `OSR`: The oversampling ratio.
- `opt`: A flag for NTF zero optimization. See synthesizeNTF.
- `Hinf`: The target out-of-band gain of the NTF.
- `f0`: The center frequency of the modulator, normalized to fs.
- `t`: A 2-element vector containing the (normalized) feedback pulse edge times.
- `form`: The modulator topology. One of `:FB`, `:FF`, `:FFR` or `:GEN`.
- `x0`: An initial guess at the parameter vector for the optimizer.
- `dbg`: A flag for enabling debugging/progress report output.
# Output
- `param`: A LCBPParameters struct.
- `H`: The noise transfer function of the modulator, taking into account
the post-design quantizer gain.
- `L0`: A description of the open-loop TF from u to v, for use with evalTFP().
- `ABCD`: The state-space representation of the discrete-time equivalent.
"""
function designLCBP(n=3; OSR=64, opt=2, Hinf=1.6, f0=0.25, t=[0 1],
form::Symbol=:FB, x0=NaN, dbg::Bool=false)
param = LCBPParameters(n, OSR=OSR, Hinf=Hinf, f0=f0, t=t, form=form)
#Compute the resonant frequencies for the LC tanks
#and the L and C values.
local w
if opt>0
w = 2π*(f0 .+ 0.25/OSR*ds_optzeros(n,opt))
else
w = 2π*f0*ones(n)
end
param.l = (1 ./ w); param.c = (1 ./ w) #Impedance scaling is possible.
#Find values for the parameters that yield a stable system.
#?? Could some control theory help here ??
x = x0
if isnan(x0)
x = collect(2:n+1)*1.0 #Needs to be Float64
elseif length(x0) != n
throw("Initial guess (x0) has the wrong number of parameters.")
end
if dbg
println("Iterations for initial pole placement:")
end
max_radius = 0.97
opt = Optim.Options(x_tol=0.001, f_tol=1, iterations=1000)
lx = Float64[0,0,0]; ux = Float64[10,10,10]
lc = [-Inf]; uc = [max_radius^2]
fun1!(x) = LCObj1a(x, param, max_radius, dbg)
con_c1!(c, x) = ((C, Ceq)=LCObj1b(x, param, max_radius, dbg); C)
# dfc = TwiceDifferentiableConstraints(con_c!, con_jacobian!, con_h!,lx,ux,lc,uc)
dfc = TwiceDifferentiableConstraints(con_c1!,lx,ux,lc,uc)#,:forward)
# x = optimize(fun1!, dfc, x, IPNewton()).minimum
x = optimize(fun1!, con_c1!, x, LBFGS()).minimum
#x = fmincon(@LCObj1a,x,[],[],[],[],[],[],@LCObj1b,options,param,0.97,dbg);
(H,) = LCoptparam2tf(x,param)
rmax = maximum(abs.(H.p[:]))
if rmax>max_radius #Failure to converge!
throw("Unable to find parameter values which stabilize the system.")
end
#Do the main optimization for the feedback parameters.
if dbg
println("\nParameter Optimization:")
end
max_radius = 0.97
opt = Optim.Options(x_tol=0.001, f_tol=1, iterations=1000,
show_trace=dbg, #Extra debugging info
g_tol=0.01 #Solver-specific
)
lx = Float64[]; ux = Float64[]
lc = [-Inf]; uc = [max_radius^2]
fun2!(x) = LCObj2a(x, param, max_radius, dbg)
con_c2!(c, x) = ((C, Ceq)=LCObj2b(x, param, max_radius, dbg); C)
dfc = TwiceDifferentiableConstraints(con_c2!,lx,ux,lc,uc,:forward)
x = optimize(fun2!, dfc, x, IPNewton()).minimum
#x = fmincon(@LCObj2a,x,[],[],[],[],[],[],@LCObj2b,options,param,0.97,dbg);
return (param,H,L0,ABCD,x)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 3582 | #RSDeltaSigmaPort display facilities
#-------------------------------------------------------------------------------
const PlotOrColl = Union{EasyPlot.Plot, EasyPlot.PlotCollection}
struct ImageRepr{T}
obj::T #Object to display as image
width::Float64 #Width of resultant image
AR::Float64 #Aspect ratio
end
"""`ImageRepr{T}(obj::T; width=640, AR=1)`
Wrapper object requesting an image representation of something using a specific
width and aspect ratio.
"""
ImageRepr(obj; width=640, AR=1) = ImageRepr(obj, Float64(width), Float64(AR))
#==helper functions
===============================================================================#
#Convert EasyPlot.Plot -> EasyPlot.PlotCollection
_plt2coll(plot::EasyPlot.Plot) = push!(cons(:plot_collection), plot)
#=="show" interface
===============================================================================#
function _show(io::IO, mime::MIME, r::ImageRepr{EasyPlot.PlotCollection})
w=round(Int, r.width); h = round(Int, w/r.AR)
set = EasyPlot.set
opt = EasyPlot.ShowOptions(dim=set(w=w, h=h))
b = EasyPlot.getbuilder(:image, :InspectDR)
nativeplot = EasyPlot.build(b, r.obj)
EasyPlot._show(io, mime, opt, nativeplot)
return nothing
end
function _show(io::IO, mime::MIME, r::ImageRepr{EasyPlot.Plot})
pcoll = _plt2coll(r.obj)
return _show(io, mime, ImageRepr(pcoll, width=r.width, AR=r.AR))
end
#Only publicly provide Base.show() for MIME"image/png":
Base.show(io::IO, mime::MIME"image/png", r::ImageRepr{T}) where T<:PlotOrColl = _show(io, mime, r)
function Base.show(io::IO, mime::MIME"text/plain", r::ImageRepr{EasyPlot.PlotCollection})
#Do not warn. Jupyter calls function even if it doesn't use the results.
#Might it be generating text for a hover-pop-up or something?
# @warn("Trying to display inline plot on simple text display.")
println(io, "[INLINE PLOT]: ", r.obj.title)
return nothing
end
function Base.show(io::IO, mime::MIME"text/plain", r::ImageRepr{EasyPlot.Plot})
println(io, "[INLINE PLOT]: ", r.obj.title)
return nothing
end
#=="showable" interface
===============================================================================#
#Base.showable(mime::MIME"image/png", p::ImageRepr) = true
#==User-facing interface
===============================================================================#
"""`inlinedisp(plot; AR=1, scalew=1, maxw=900)`
Display plot as inline image.
# Arguments
- `AR`: Aspect ratio (w/h) of generated image.
- `maxw`: Reference width of image (typ. max width of display).
- `scalew`: Amount by which to scale image before rendering it (`imagew=maxw*scalew`)
"""
inlinedisp(plot; AR=1, scalew=1, maxw=900) =
display(ImageRepr(plot; AR=AR, width=maxw*scalew))
_write(mime::Symbol, filepath::String, nativeplot; opt_kwargs...) =
_write(mime, filepath, ShowOptions(; opt_kwargs...), nativeplot)
"""`saveimage(mime::Symbol, filepath::String, plot; AR=1, width=900)`
Saves plot as an image.
# Arguments
- `AR`: Aspect ratio (w/h) of generated image.
- `maxw`: Reference width of image (typ. max width of display).
- `scalew`: Amount by which to scale image before rendering it (`imagew=maxw*scalew`)
"""
function saveimage(mime::Symbol, filepath::String, plot::PlotOrColl; AR=1, width=900)
ir = ImageRepr(plot; AR=AR, width=width)
open(filepath, "w") do io
_show(io, EasyPlot._getmime(mime), ir)
end
end
function displaygui(plot::PlotOrColl)
result = EasyPlot.displaygui(:InspectDR, plot)
sleep(0.1) #Get GUI to refresh (Ideally: `doevents()`, or something)
#NOTE: Appears sleep needs to be > 0 to refresh.
return result
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2155 | #RSDeltaSigma: exampleHBF() function
#-------------------------------------------------------------------------------
function HBFex1()
q1 = [
0 -4 -5;
1 1 1;
0 -4 -5;
-1 -1 -1;
-1 -3 -5;
1 1 1;
-3 -5 0;
-1 -1 0;
]
q2 = [
-1 -3 -7;
1 1 1;
-2 -5 -7;
-1 1 1;
-3 -8 0;
1 -1 0;
-4 -6 -8;
-1 -1 -1;
-4 -8 0;
1 -1 0;
-5 -7 -8;
-1 -1 -1;
-5 0 0;
1 0 0;
-6 -7 0;
-1 -1 0;
-7 -8 0;
-1 -1 0;
-6 0 0;
1 0 0;
]
return (q1,q2)
end
"""`HBFex2()`
Coefficients from toolbox v2.0 documentation.
"""
function HBFex2()
q1 = [
0 -4 -7;
1 -1 1;
-1 -3 -6;
-1 -1 -1;
-2 -4 -7;
1 -1 1;
]
q2 = [
-1 -3 -8;
1 1 -1;
-2 -4 -9;
-1 1 -1;
-3 -5 -9;
1 -1 1;
-4 -7 -8;
-1 1 1;
-5 -8 -11;
1 -1 -1;
-6 -9 -11;
-1 1 -1;
]
return (q1,q2)
end
"""`Saramaki88()`
Coefficients from "Efficient VLSI-Realizable Decimators for Sigma-Delta
Analog-to-Digital Converters," T. Saramaki and H. Tenhunen, ISCAS 1988,
pp 1525-2528.
"""
function Saramaki88()
q1 = [
0 -2;
1 -1;
-2 -9;
-1 1;
]
q2 = [
-1 -3 0;
1 1 0;
-3 -5 -6;
-1 -1 -1;
-4 -6 0;
1 1 0;
]
return (q1,q2)
end
"""`Saramaki90()`
Coefficients from "Multiplier-Free Decimation Algorithms for Superresolution
Oversampled Converters," T. Saramaki, T. Karema, T. Ritoniemi, and H. Tenhunen
ISCAS 1990, vol. 4. pp 1525-2528.
"""
function Saramaki90()
q1 = [
0 -4 -5;
1 1 1;
0 -4 -5;
-1 -1 -1;
-1 -3 -5;
1 1 1;
-3 -5 -20;
-1 -1 1;
]
q2 = [
-1 -3 -7;
1 1 1;
-2 -5 -7;
-1 1 1;
-3 -8 0;
1 -1 0;
-4 -6 -8;
-1 -1 -1;
-4 -8 0;
1 -1 0;
-5 -7 -8;
-1 -1 -1;
-5 0 0;
1 0 0;
-6 -7 0;
-1 -1 0;
-6 0 0;
1 0 0;
-7 -8 0;
-1 -1 0;
-6 0 0;
1 0 0;
]
return (q1,q2)
end
function exampleHBF(n::Int = 0)
fnlist = [HBFex1, HBFex2, Saramaki88, Saramaki90]
if !in(n, keys(fnlist))
throw("exampleHBF: No code for example $n.")
end
fn = fnlist[n]
(q1, q2) = fn()
F1 = convertForm(bunquantize(q1),q1)
F2 = convertForm(bunquantize(q2),q2)
return (F1, F2)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2389 | #RSDeltaSigma: Base functions to assist with filtering operations
#-------------------------------------------------------------------------------
#==Types
===============================================================================#
"""`CoeffCSD`
A structure containing filter coefficents and their canonical-signed digit (CSD)
representation.
"""
struct CoeffCSD
val
csd
end
#==Accessors
===============================================================================#
csdsize2(f::Vector{CoeffCSD}) = [size(fi.csd,2) for fi in f] #VERIFYME
Base.values(f::Vector{CoeffCSD}) = [fi.val for fi in f]
#==Functions
===============================================================================#
"""`bquantize(x, nsd=3, abstol=eps, reltol=10*eps)`
Bidirectionally quantize a n by 1 vector x to nsd signed digits.
Terminate early if the error is less than the specified tolerances.
# Output
y is a CoeffCSD[] with the following fields:
- `y[i].val` is the quantized value in floating-point form
- `y[i].csd` is a 2-by-nsd (or less) matrix containing
the powers of two (first row) and their signs (second row).
# See also:
[`bunquantize`](@ref)
"""
function bquantize(x, nsd::Int=3, abstol::Float64=eps(1.0), reltol::Float64=10*eps(1.0))
n = length(x)
q = zeros(2*n,nsd)
y = Array{CoeffCSD}(undef, n)
offset = -log2(0.75)
for i in 1:n
xp = x[i]
val = 0
csd = zeros(2,nsd)
for j in 1:nsd
error = abs(val-x[i])
if error <= abstol || error <= abs(x[i])*reltol
break
end
p = floor( log2(abs(xp)) + offset )
p2 = 2^p
sx = sign(xp)
xp = xp - sx*p2
val = val + sx*p2
csd[1:2, j] = [p; sx]
end
y[i] = CoeffCSD(val, csd)
end
return y
end
"""`bunquantize(q)`
Calculate the value corresponding to a bidirectionally quantized quantity.
q is a 2n by m matrix containing the powers of 2 and their signs for each
quantized value.
# See also:
[`bquantize`](@ref)
"""
function bunquantize(q)
q = 1.0*q #Ensure we have floating point values
n = size(q,1)/2
y = zeros(array_round(n),1)
signs = 2:2:array_round(2*n)
powers = signs .- 1
for i in 1:size(q,2)
y = y + 2 .^ q[powers,i] .* q[signs,i]
end
return y
end
function convertForm(f,q)
n = length(f)
F = CoeffCSD[]
for i in 1:n
val = f[i]
csdrep = q[2*i-1:2*i,:]
csd = csdrep[:,findall(csdrep[1,:] .!=0)]
push!(F, CoeffCSD(val, csd))
end
return F
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 6388 | #RSDeltaSigma: mapCtoD (State space utility)
#-------------------------------------------------------------------------------
#==Helper functions
===============================================================================#
function B2formula(Ac, t1, t2, B2)
local term=0
local term1=0
if t1==0 && t2==0
term = B2
return term
end
n = size(Ac, 1)
tmp = eye(n) - exp(-Ac)
if cond(tmp) < 1e6
term = ( (exp(-Ac*t1) - exp(-Ac*t2)) * inv(tmp)) * B2
return term
end
#Numerical trouble. Perturb slightly and check the result
ntry = 0
k = sqrt(eps(1.0))
Ac0 = Ac
#Make this operation repeatable
#rng_state = rng; rng('default') #Original code
Random.seed!(0)
while ntry <2
Ac = Ac0 + k*rand(n,n)
tmp = eye(n) - exp(-Ac)
if cond(tmp) < 1/sqrt(eps(1.0))
ntry = ntry+1
if ntry == 1
term = ( (exp(-Ac*t1) - exp(-Ac*t2)) * inv(tmp)) * B2
else
term1 = ( (exp(-Ac*t1) - exp(-Ac*t2)) * inv(tmp)) * B2
end
end
k = k*sqrt(2)
end
Random.seed!() #original code restores state: rng(rng_state)
if norm(term1-term) > 1e-3
@warn("Inaccurate calculation in mapCtoD.")
end
return term
end
"""`(sys, Gp) = mapCtoD(sys_c, t=[0 1], f0=0, calcGp=false)`
Map a MIMO continuous-time system to a SIMO discrete-time equivalent.
The criterion for equivalence is that the sampled pulse response
of the CT system must be identical to the impulse response of the DT system.
i.e. If yc is the output of the CT system with an input vc taken
from a set of DACs fed with a single DT input v, then y, the output
of the equivalent DT system with input v satisfies
y(n) = yc(n-) for integer n. The DACs are characterized by
rectangular impulse responses with edge times specified in the t matrix.
# Input
- `sys_c`: The LTI description of the CT system.
- `t`: The edge times of the DAC pulse used to make CT waveforms
from DT inputs. Each row corresponds to one of the system
inputs; `[-1 -1]` denotes a CT input. The default is `[0 1]`,
for all inputs except the first.
- `f0`: The (normalized) frequency at which the Gp filters' gains are
to be set to unity. Default 0 (DC).
# Output
- `sys`: The LTI description for the DT equivalent
- `Gp`: The mixed CT/DT prefilters which form the samples
fed to each state for the CT inputs.
# Reference
- R. Schreier and B. Zhang, "Delta-sigma modulators employing continuous-time
circuitry," IEEE Transactions on Circuits and Systems I, vol. 43, no. 4,
pp. 324-332, April 1996.
"""
function mapCtoD(sys_c; t=[0 1], f0::Float64=0.0, calcGp::Bool = false)
ni = size(sys_c.B, 2)
if size(t) == (1,2) && (ni > 1) #VERIFYME
t = [-1 -1; ones(ni-1,1)*t]
end
if size(t) != (ni, 2) #VERIFYME
error("The t argument has the wrong dimensions.")
end
di = ones(ni)
for i in 1:ni
if t[[i],:]==[-1 -1]
di[i] = 0
end
end
di = (di .!= 0) #Convert to logical array.
i!di = findall(.!di); idi = findall(di)
#c2d assumes t1=0, t2=1.
#Also c2d often complains about poor scaling and can even produce
#incorrect results.
NEEDS_DELAY = false #VERSIONSWITCH
if NEEDS_DELAY
#set(sys_c,'InputDelay',0)
end
sys = _c2d(sys_c, 1, :zoh)
Ac = sys_c.A
Bc1 = sys_c.B[:, i!di]
A = sys.A; B = sys.B; C = sys.C; D = sys.D
B1 = B[:, i!di]; D1 = D[:, i!di]
#Examine the discrete-time inputs to see how big the
#augmented matrices need to be.
n = size(A,1)
t2 = ceil.(Int, t[idi,2])
esn = (t2 .== t[idi,2]) .& (D[[1],idi] .!= 0)' #extra states needed?
np = n + maximum(t2 .- 1 + esn)
#Augment A to np x np, B to np x 1, C to 1 x np.
Ap = padb( padr(A,np), np )
for i in n+2:np
Ap[i, i-1] = 1
end
Bp = zeros(np, 1)
if np>n
Bp[n+1] = 1
end
Cp = padr(C, np)
Dp = 0
#Add in the contributions from each DAC
for i in findall(di)
t1 = t[i,1]
t2 = t[i,2]
B2 = B[:,i]
D2 = D[:,i]
if t1==0 && t2==1 && all(D2 .== 0) #No fancy stuff necessary
Bp = Bp + padb(B2,np)
else
n1 = floor(Int, t1); n2 = ceil(Int, t2)-n1-1
t1 = t1-n1; t2 = t2-n2-n1
if t2==1 && all(D2 .!= 0)
n2 = n2+1
extraStateNeeded = true
else
extraStateNeeded = false
end
nt = n+n1+n2
if n2>0 && t2!=1
Ap[1:n,nt] = Ap[1:n,nt] + B2formula(Ac, 0, t2, B2)
end
local Btmp
if n2>0 #pulse extends to the next period
Btmp = B2formula(Ac,t1,1,B2)
else #pulse ends in this period
Btmp = B2formula(Ac,t1,t2,B2)
end
if n1>0
Ap[1:n,n+n1] = Ap[1:n,n+n1] + Btmp
else
Bp = Bp + padb(Btmp,np)
end
if n2>0
Cp = Cp + padr([zeros(size(D2,1),n+n1) D2*ones(1,n2)], np)
end
end
end
sys = _ss(Ap, Bp, Cp, Dp, 1)
Gp = nothing
if any(di .== 0)
if calcGp
#Compute the prefilters and add in the CT feed-ins.
#Gp = inv(sI-Ac) * (zI-A)/z *Bc1
(n, m) = size(Bc1)
Gp = fill(CTDTPrefilters[], n,m)
ztf = Array{Any}(nothing, size(Bc1)) #!!Make this like stf: an array of zpk objects
#Compute the z-domain portions of the filters
ABc1 = A*Bc1
for h in 1:m
for i in 1:n
if Bc1[i,h]==0
ztf[i,h] = _zpk([],0,-ABc1[i,h],1)
else
ztf[i,h] = _zpk(ABc1[i,h]/Bc1[i,h],0,Bc1[i,h],1)
end
end
end
#Compute the s-domain portions of each of the filters
stf = _zpk(_ss(Ac,eye(n),eye(n),zeros(n,n))) #Doesn't do pole-zero cancelation
for h in 1:m
for i in 1:n
for j=1:n
if stf.k[i,j]!=0 && ztf[j].k!=0 #A non-zero term
push!(Gp[i,h], CTDTPrefilters(stf(i,j), ztf[j,h]))
end
end
end
end
if f0 != 0 #Need to correct the gain terms calculated by c2d
#B1 = gains of Gp @f0;
for h in 1:m
for i in 1:n
B1[i,h] = evalMixedTF(Gp[i,h],f0)
#abs() used because ss() whines if B has complex entries...
#This is clearly incorrect.
#I've fudged the complex stuff by including a sign....
B1[i,h] = abs(B1[i,h]) * sign(real(B1[i,h]))
if abs(B1[i,h]) < 1e-9
B1[i,h] = 1e-9 #This prevents NaN in line 174
end
end
end
end
#Adjust the gains of the pre-filters
for h in 1:m
for i in 1:n
for j in 1:length(Gp[i,h])
Gp[i,h][j].Hs.k = Gp[i,h][j].Hs.k/B1[i,h] #This is line 174
end
end
end
newB = [padb(B1,np) sys.B]; newD = [D1 sys.D]
sys = _ss(sys.A, newB, sys.C, newD)
else #Cheat and just dublicate the B1 terms
newB = [padb(Bc1,np) sys.B]; newD = [D1 sys.D]
sys = _ss(sys.A, newB, sys.C, newD)
end
end
return (sys, Gp)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 3978 | #RSDeltaSigmaPort: Implement missing core functionality
#-------------------------------------------------------------------------------
"""Emulates rounding of array indices"""
array_round(i) = round(Int, i) #VERIFYME
function rat(v::Real, tol::Float64)
r=rationalize(Float64(v), tol=tol)
return (r.num, r.den)
end
function squeeze(a)
sz = collect(size(a))
for i in reverse(keys(sz))
if sz[i]<2
a = dropdims(a, dims=i)
end
end
return a
end
#Sort complex poles
function _cplxpair(a)
epstol = 100
#Sorts real first, then imaginary:
function isrealless(a,b)
Δmin = epstol*eps(abs(a))
if abs(real(a) - real(b)) < Δmin
return imag(a) < imag(b)
else
return real(a) < real(b)
end
end
a = sort(a, lt=isrealless)
i = 1
while i < length(a)
v = a[i]
Δmin = epstol*eps(abs(v))
if abs(imag(v)) < Δmin #Really a real number
a[i] = real(v)
i+=1
break
elseif i < length(a)
if abs(v-conj(a[i+1])) < Δmin
i+=2 #Skip both cplx conj pairs.
break
else
throw(ErrorException("cplxpair failed."))
end
else
throw(ErrorException("cplxpair failed."))
end
end
return a
end
"""`cplxpair(a)`
Sort roots in array a such that complex pairs are in ascending order of their
real parts, then by their imaginary part. In the output, the real roots
re-positionned after the complex roots.
"""
function cplxpair(a)
epstol = 100
#Index of real roots:
Δmin = epstol*eps.(abs.(a)) #Threshold for numerical error
ireal = abs.(imag.(a)) .< Δmin
areal = real.(a[ireal]) #Clean up real roots
acplx = a[.!ireal] #complex pairs
return vcat(_cplxpair(acplx), sort(areal)) #Sort roots
end
#Custom function to ensure complex conjugate pairs match exactly.
function cleancplxpair(l)
epstol = 100
if length(l) < 2
return l
end
l = cplxpair(l) #Sort to group complex conjugates together
result = similar(l)
if length(l)>0
#Copy last value in case not part of conjugate pair
#(ignored by following algorithm)
result[end] = l[end]
end
i = 1
while i < length(l)
a, b = l[i], l[i+1]
ΔRmin = epstol*eps(real(a))
ΔXmin = epstol*eps(imag(a))
result[i] = a
if abs(real(a) - real(b)) < ΔRmin && abs(imag(a) + imag(b)) < ΔXmin
a = (a+conj(b))/2 #Take mean & re-write
result[i] = a
result[i+1] = conj(a)
i+=1
end
i+=1
end
return result
end
#TODO: Will algorithms work without collect (possibly faster?):
eye(n::Int) = collect(LinearAlgebra.I(n))
#It sounds like this should be implementation of orth:
#orth(A) = LinearAlgebra.qr(A).Q
#But scipy seems to do it this way:
orth(A) = LinearAlgebra.svd(A).U
#Convert array of roots into polynomial:
function poly(rA)
result = [1]
for r in rA
result = conv(result, [1, -r])
end
return result
end
eig(a) = eigen(a).values
#Implement interp1 using linear interpolation:
function interp1_lin(xA, yA, xv)
ILib = Interpolations
itp = ILib.interpolate((x,), y, ILib.Gridded(ILib.Linear()))
return itp(xv)
end
#Implement interp1 using cubic interpolation:
function interp1_cubic(xA, yA, xv)
ILib = Interpolations
itp = ILib.interpolate(yA, ILib.BSpline(ILib.Cubic(ILib.Natural())), ILib.OnGrid())
intf = ILib.scale(itp, xA)
return intf(xv)
end
#FIXME/VERIFYME
#Algoritm assembled together by MALaforge, hoping it will be sufficient.
#Probably a good idea to have an expert implement proper function.
function interp(v, OSR::Int)
thresh = .01
Δs = OSR*ceil(Int, 1/(thresh*π))
x = -Δs:1:Δs
v_0 = zeros(length(v)*OSR)
for i in 0:length(v)-1
v_0[1+OSR*i] = v[1+i]
end
_filt = sinc.(x/OSR)
result = conv(_filt, v_0)
result = result[Δs .+ (1:length(v_0))]
return result
end
#Evaluate polynomial p at value x
function polyval(p, x)
#NOTE: [1, 2, 3] => 1 + 2x¹ + 3x²
polyfn = Polynomial(p)
return polyfn.(x) #Evaluates polynomial
end
#_roots so as to not confuse it with Polynomials.roots
#NOTE: Polynomial expects the coefficients in opposite order:
_roots(p) = Polynomials.roots(Polynomial(reverse(p)))
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1622 | #RSDeltaSigmaPort: Implement missing core functionality using ControlSystems.jl
#-------------------------------------------------------------------------------
#=TODO (Goal)
Want to not depend on ControlSystems.jl (slows down compile time significantly).
UPDATE: Much better in Julia 1.6 - especially using Revise.jl.
Maybe ok to depend on ControlSystems.jl.
=#
_c2d(sys, Ts, method=:zoh) = ControlSystems.c2d(sys, Ts, method)
_ss(A,B,C,D) = ControlSystems.ss(A,B,C,D) #Ts=0.0 default: continuous-time system
_ss(A,B,C,D,Ts) = ControlSystems.ss(A,B,C,D,Ts)
function _zpk(sys::ControlSystems.StateSpace)
H=ControlSystems.zpk(sys)
z, p, k = ControlSystems.zpkdata(H)
#Cannot access sys.Ts for continuous time:
#(use sys because Ts does not get ported over in zpk() for some reason)
Ts = isdiscrete(sys) ? sys.Ts : 0.0
return _zpk(z, p, k, Ts)
end
function _zp2ss(z, p, k)
H = ControlSystems.zpk(z, p, k)
return ControlSystems.ss(H)
end
function _zp2tf(z, p, k)
H = ControlSystems.zpk(z, p, k)
_num = ControlSystems.num(H)
_den = ControlSystems.den(H)
return (_num, _den)
end
function _freqz(num, den, w)
H = ControlSystems.tf(num, den, 1)
return ControlSystems.freqresp(H, w)
end
_tf(num, den, ts) = ControlSystems.tf(num, den, ts)
_minreal(sys, tol) = ControlSystems.minreal(sys, tol)
function _impulse(sys, t)
y, t, x = ControlSystems.impulse(sys, t)
return (y, t, x)
end
function _lsim(sys, u)
if !isdiscrete(sys)
throw("_lsim: must specify t-vector")
end
Ts = sys.Ts
t = range(0, step=Ts, length=length(u))
y, t, x = ControlSystems.lsim(sys, u, t)
return (y, t, x)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2517 | #RSDeltaSigmaPort: Optimization functions
#-------------------------------------------------------------------------------
"values for optimal zeros when opt==1"
const _VALUES_OPTZEROS_OPT1 = [ #Currently not type stable
[0.0], # n = 1
[sqrt(1/3)],
[sqrt(3/5), 0],
sqrt.([3/7+sqrt(9/49-3/35), 3/7-sqrt(9/49-3/35)]),
sqrt.([5/9+sqrt(25/81-5/21), 5/9-sqrt(25/81-5/21), 0]), # n = 5
[0.23862059, 0.66120988, 0.9324696],
[0, 0.40584371, 0.74153078, 0.94910785],
[0.18343709, 0.52553345, 0.79666684, 0.96028993],
[0, 0.32425101, 0.61337056, 0.83603082, 0.9681602],
[0.1834370913, 0.5255334458, 0.7966668433, 0.9602899327], # n = 10
[0, 0.26953955, 0.51909468, 0.73015137, 0.88706238, 0.97822864],
[0.12523875, 0.36783403, 0.58731921, 0.7699033, 0.90411753, 0.9815607],
[0, 0.23045331, 0.44849063, 0.64234828, 0.8015776, 0.91759824, 0.98418306],
[0.10806212, 0.31911586, 0.51525046, 0.68729392, 0.82720185, 0.92843513, 0.98628389], # n = 14
]
"values for optimal zeros when opt==2" #or other?; is it called in other cases?
const _VALUES_OPTZEROS_OPT2 = [
_VALUES_OPTZEROS_OPT1[1], # n = 1
[0.0],
_VALUES_OPTZEROS_OPT1[3],
[0, sqrt(5/7)],
_VALUES_OPTZEROS_OPT1[5], # n = 5
sqrt.([0, 7/11+sqrt(56)/33, 7/11-sqrt(56)/33]),
_VALUES_OPTZEROS_OPT1[7],
[0, 0.50563161, 0.79017286, 0.95914731],
_VALUES_OPTZEROS_OPT1[9],
[0, 0.41572267, 0.67208682, 0.86238894, 0.97342121], # n = 10
_VALUES_OPTZEROS_OPT1[11],
[0, 0.35222363, 0.58006251, 0.76647993, 0.90281326, 0.98132047],
_VALUES_OPTZEROS_OPT1[13],
[0, 0.30524384, 0.50836649, 0.6836066, 0.82537239, 0.92772336, 0.98615167], # n = 14
]
@assert(length(_VALUES_OPTZEROS_OPT1) == length(_VALUES_OPTZEROS_OPT2))
"""`optZeros = ds_optzeros( n, opt=1 )`
A helper function for the synthesizeNTF function of the Delta-Sigma Toolbox.
Returns the zeros which minimize the in-band noise power of
a delta-sigma modulator's NTF.
"""
function ds_optzeros(n, opt=1)
norig = n; n = array_round(n) #VERIFYME
local optZeros
if opt==0
optZeros = zeros(ceil(Int, norig/2))
elseif n > length(_VALUES_OPTZEROS_OPT1)
throw(ErrorException("Optimized zeros for n>14 are not available."))
elseif opt==1
optZeros = _VALUES_OPTZEROS_OPT1[n]
else
optZeros = _VALUES_OPTZEROS_OPT2[n]
end
# Sort the zeros and replicate them.
z = sort(optZeros)
optZeros = zeros(n)
m=1
if mod(n,2)==1
optZeros[1] = z[1]
z = z[2:length(z)]
m=m+1
end
for i=1:length(z)
optZeros[m] = z[i]
optZeros[m+1] = -z[i]
m = m+2
end
return optZeros
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 7346 | #RSDeltaSigmaPort: Generate plots for noise transfer functions
#-------------------------------------------------------------------------------
#==Vector generators
===============================================================================#
"""`𝑓 = ds_freq(OSR=64, f0=0, quadrature=false)`
Frequency vector suitable for plotting the frequency response of an NTF.
"""
function ds_freq(;OSR::Int=64, f0::Float64=0, quadrature::Bool=false)
local f_left, f_special
if quadrature
f_left = -0.5
f_special = [f0 -f0]
else
f_left = 0
f_special = f0
end
𝑓 = collect(range(f_left, stop=0.5, length=100))
#Use finer spacing in the vicinity of the passband
for fx = f_special
f1 = max(f_left, fx-1/OSR)
f2 = min(0.5,fx+2/OSR)
deleteat!(𝑓, (𝑓 .<= f2) .& (𝑓 .>= f1))
𝑓 = sort( vcat(𝑓, range(f1, stop=f2, length=100)) )
end
return 𝑓
end
#==NTF plots
===============================================================================#
function plotNTF(isbandpass)
dBmin = -100 #Limit dB window to finite value
𝑓min_log = 10^-2 #Limit min 𝑓 for log(𝑓-norm) plots
nogrid = set(vmajor = false, vminor = false, hmajor=false, hminor=false)
vgridonly = set(vmajor = true, vminor = true, hmajor=false, hminor=false)
plot_PZ = plotPZ()
plot_PZ.title = "NTF Poles and Zeros"
plot_NTFlin = cons(:plot, legend=false,
title = "NTF Magnitude Response",
xyaxes=set(xscale=:lin, yscale=:lin, ymin=dBmin),
labels=set(xaxis="Normalized frequency (1→f_s)", yaxis="dB"),
)
plot_NTFlog = cons(:plot, legend=false, grid = vgridonly,
# title = "NTF Magnitude Response",
xyaxes=set(xscale=:log, yscale=:lin, xmin=𝑓min_log, ymin=dBmin),
labels=set(xaxis="Normalized frequency (1→f_B)", yaxis="dB"),
)
plot_NTFzoom = cons(:plot, legend=false, grid = vgridonly,
# title = "NTF Magnitude Response",
xyaxes=set(xscale=:lin, yscale=:lin, xmin=-0.6, ymax=0.6, ymin=dBmin),
labels=set(xaxis="Normalized frequency offset", yaxis="dB"),
)
if !isbandpass; plot_NTFzoom = plot_NTFlog; end
pcoll = push!(cons(:plot_collection, title="Sample Plot"),
plot_PZ, plot_NTFlin, plot_NTFzoom
)
pcoll.bblist = [
BoundingBox(0, 0.5, 0, 1), #Pole-zero
BoundingBox(0.5, 1, 0, 0.5), #NTF linf
BoundingBox(0.5, 1, 0.5, 1), #NTF zoom
]
return pcoll
end
function plotNTF!(pcoll, NTF::ZPKData, OSR::Int; color=:blue, f0::Real=0, STF=nothing)
dfltline = cons(:a, line=set(style=:solid, color=color, width=2))
gainline = cons(:a, line=set(style=:solid, color=:red, width=2))
markerline = cons(:a, line=set(style=:dash, width=2.5))
plot_PZ, plot_NTFlin, plot_NTFzoom = pcoll.plotlist
isbandpass = f0!=0
#Plot poles and zeros
plotPZ!(plot_PZ, NTF, color=color)
#Plot full-range NTF
𝑓 = vcat(range(0, stop=0.75/OSR, length=100), range(0.75/OSR, stop=0.5, length=100))
if isbandpass
f1 = f0-1/(2*OSR); f2 = f0+1/(2*OSR)
𝑓 = vcat(range(0, stop=f1, length=50), range(f1, stop=f2, length=100), range(f2, stop=0.5, length=50))
end
z = exp.(2j*π*𝑓)
magNTF = dbv(evalTF(NTF, z))
push!(plot_NTFlin,
cons(:wfrm, DataF1(𝑓, magNTF), dfltline, label="|NTF|")
)
if STF != nothing
plot_NTFlin.title = "NTF/STF Magnitude Response"
magSTF = dbv(evalTF(STF,z))
push!(plot_NTFlin,
cons(:wfrm, DataF1(𝑓, magSTF), gainline, label="|STF|")
)
end
#Plot "zoomed-in" NTF
𝑓start = 0.01
𝑓 = collect(range(𝑓start, stop=1.2, length=200)/(2*OSR))
∫rng = [0, 0.5/OSR]
if isbandpass
f1 = f0-0.3/OSR; f2 = f0+0.3/OSR
𝑓 = collect(range(f1, stop=f2, length=100))
∫rng = f0 .+ [-.25, .25]/OSR
end
z = exp.(2j*π*𝑓)
𝑓norm = (𝑓 .- f0)*(2*OSR)
magNTF = dbv(evalTF(NTF, z))
σ_NTF = dbv(rmsGain(NTF, ∫rng[1], ∫rng[2]))
rmsgain_str = @sprintf("RMS Gain = %5.0fdB", σ_NTF)
push!(plot_NTFzoom,
cons(:wfrm, DataF1(𝑓norm, magNTF), dfltline, label="|NTF|"),
cons(:atext, rmsgain_str, y=σ_NTF, offset=set(y=3), reloffset=set(x=0.5), align=:bc),
cons(:hmarker, σ_NTF, markerline, strip=2),
)
return pcoll
end
plotNTF(NTF::ZPKData, args...; f0=0, kwargs...) =
plotNTF!(plotNTF(f0!=0), NTF::ZPKData, args...; f0=f0, kwargs...)
#==documentNTF
===============================================================================#
"""`plot = documentNTF(NTF|ABCD|mod_struct; OSR=64, f0=0, quadrature=false, frespOnly=false, sizes=nothing)`
The first argument is either the NTF, ABCD matrix or a struct containing
NTF, OSR=64, f0=0, quadrature=0 and optionally stf.
If the first argument is a struct, then no other arguments should be supplied.
If the first argument is ABCD, the stf is also plotted.
"""
function documentNTF(arg1; OSR::Int=64, f0::Float64=0.0, quadrature::Bool=false, frespOnly::Bool=false, sizes=nothing)
STF=nothing
local NTF
if isa(arg1, ZPKData)
NTF = arg1
else #if isa(arg1, Array) #Assume ABCD matrix
ABCD = arg1
NTF, STF = calculateTF(ABCD)
end
logplot = f0==0
if quadrature
f_left = -0.5
elseif logplot
f_left = 1e-3
else
f_left = 0.0
end
pcoll = cons(:plot_collection, ncolumns=2, title="")
if !frespOnly
#Plot poles and zeros
plot = plotPZ(NTF, color=:blue)
push!(pcoll, plot)
pcoll.bblist = [ #Format plot locations
BoundingBox(0, 0.5, 0, 1), #Pole-zero plot
BoundingBox(0.5, 1, 0, 1), #Frequency spectrum
]
end
#Frequency response
𝑓 = ds_freq(OSR=OSR, f0=f0, quadrature=quadrature)
z = exp.(2π*j*𝑓)
H = dbv.(evalTF(NTF, z))
axes = logplot ? loglin : linlin
plot = cons(:plot, axes, title="Frequency Response", legend=false,
labels=set(xaxis="Normalized Frequency", yaxis=""),
xyaxes=set(xmin=f_left, xmax=0.5, ymin=-100, ymax=15),
)
push!(pcoll, plot)
H = waveform(𝑓, H)
push!(plot,
cons(:wfrm, H, line=set(style=:solid, color=:blue, width=2), label=""),
)
if !isnothing(STF)
# plot.title = "NTF and STF"
G = dbv.(evalTF(STF,z))
G = waveform(𝑓, G)
push!(plot,
cons(:wfrm, G, line=set(style=:solid, color=:magenta, width=2), label=""),
)
end
f1, f2 = ds_f1f2(OSR=OSR, f0=f0, iscomplex=quadrature)
NG0 = dbv.(rmsGain(NTF, f1, f2))
NG0w = waveform([max(f1,f_left), f2], NG0*[1,1])
push!(plot,
cons(:wfrm, NG0w, line=set(style=:dash, color=:black, width=2), label=""),
)
tstr = @sprintf(" %.0fdB", NG0)
if f0==0 && logplot
a = cons(:atext, tstr, x=sqrt(f_left*0.5/OSR), y=NG0+2, align=:bc)
else
a = cons(:atext, tstr, x=f2, y=NG0-1, align=:cl)
end
push!(plot, a)
#set(h, 'FontSize',sizes.fs, 'FontWeight',sizes.fw);
msg = @sprintf(" Inf-norm of H = %.2f\n 2-norm of H = %.2f", infnorm(NTF)[1], rmsGain(NTF,0,1));
if f0<0.25
a = cons(:atext, msg, x=0.48, y=0.0, align=:tr)
else
a = cons(:atext, msg, x=f_left, y=0.0, align=:tl)
end
push!(plot, a)
#set(h, 'FontSize',sizes.fs, 'FontWeight',sizes.fw);
if quadrature
ING0 = dbv(rmsGain(ntf,-f1,-f2))
ING0w = waveform(-1*[f1, f2], ING0*[1, 1])
tstr = @sprintf("%.0fdB", ING0)
push!(plot,
cons(:wfrm, NG0w, line=set(style=:solid, color=:black, width=2), label=""),
cons(:atext, tstr, x=-f0, y=ING0+1, align=:bc),
)
end
#set(h, 'FontSize',sizes.fs, 'FontWeight',sizes.fw);
return pcoll
end
"""`documentNTF(dsm, SYS=nothing; frespOnly=false, sizes=nothing)`
"""
function documentNTF(dsm::AbstractDSM, SYS=nothing; frespOnly::Bool=false, sizes=nothing)
isnothing(SYS) && (SYS = synthesizeNTF(SYS))
return documentNTF(SYS; OSR=dsm.OSR, f0=dsm.f0, quadrature=false, frespOnly=frespOnly, sizes=sizes)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1586 | #RSDeltaSigmaPort: Generate plots of the Signal-to-Noise Ratio
#-------------------------------------------------------------------------------
#==SNR plot
===============================================================================#
#TODO: Rename `plotSQNR`?
function plotSNR()
plot = cons(:plot, linlin, title="SQNR vs. Input Level", legend=true,
#xyaxes=set(xmin=-120, xmax=0, ymin=0, ymax=120),
xyaxes=set(ymax=120), #Clip infinite gains only
labels=set(xaxis="Input Level (dBFS)", yaxis="SQNR (dB)"),
)
return plot
end
function plotSNR!(plot, snrinfo, dsm::RealDSM; id::String="simulation", color=:green)
simglyph = cons(:a, glyph=set(shape=:o, size=1, color=color, fillcolor=color))
#Access data:
(amp, SNR) = snrinfo.vs_amp_sim
(pk_amp, pk_SNR) = snrinfo.peak
#Convert to waveforms:
SNR = waveform(amp, SNR)
infostr = @sprintf("peak SNR = %4.1fdB\n@ A = %4.1f dBFS (OSR = %d)",
pk_SNR, pk_amp, dsm.OSR #orig. coords: (-25, 85)
)
push!(plot,
cons(:wfrm, SNR, simglyph, line=set(style=:dashdot, color=color, width=2), label="simulation"),
cons(:atext, infostr, x=-25, y=85, align=:cr),
)
if !isnothing(snrinfo.vs_amp_predicted)
(amp_pred, SNR_pred) = snrinfo.vs_amp_predicted
SNR_pred = waveform(amp_pred, SNR_pred) #Convert to waveform
push!(plot,
cons(:wfrm, SNR_pred, line=set(style=:solid, color=:red, width=2), label="theory"),
)
end
return plot
end
function plotSNR(snrinfo, dsm::RealDSM; id::String="simulation", color=:green)
plot = plotSNR()
plotSNR!(plot, snrinfo, dsm, id=id, color=color)
return plot
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 4225 | #RSDeltaSigmaPort: Base plot generation tools
#-------------------------------------------------------------------------------
#==Useful constants
===============================================================================#
const linlin = cons(:a, xyaxes=set(xscale=:lin, yscale=:lin))
const linlog = cons(:a, xyaxes=set(xscale=:lin, yscale=:log))
const loglin = cons(:a, xyaxes=set(xscale=:log, yscale=:lin))
const loglog = cons(:a, xyaxes=set(xscale=:log, yscale=:log))
const dfltline = cons(:a, line=set(style=:solid, color=:blue, width=2))
#==Waveform builders
===============================================================================#
function _wfrm__(x::Vector, y::Vector, sweepid::String)
validatexy_vec(x, y)
return DataF1(x,y)
end
_wfrm__(x::AbstractVector, y::Vector, sweepid::String) = _wfrm__(collect(x), y, sweepid)
function _wfrm__(x::Array{Float64,2}, y::Array{Float64,2}, sweepid::String)
validatexy_1param(x, y)
N = size(x, 1)
wfrm = fill(DataRS{DataF1}, PSweep(sweepid, collect(1:N))) do i
return DataF1(x[i,:], y[i,:]) #Returns from implicit "do" function
end
return wfrm
end
"""`waveform(x, y; sweepid="i")`
Create a waveform object with a given string to identify the sweep.
"""
waveform(x, y; sweepid::String="i") = _wfrm__(x, y, sweepid)
#==logsmooth
===============================================================================#
"""`(f, p) = logsmooth(X,inBin,nbin=8,n=3)`
Smooth the fft, X, and convert it to dB.
- Use nbin bins from 0 to 3*inBin, thereafter increase bin sizes by a factor
of 1.1, staying less than 2^10.
- For the n sets of bins inBin+[0:2], 2*inBin+[0:2], ... n*inBin+[0:2], don't
do averaging. This way, the noise BW and the scaling of the tone and its
harmonics are unchanged.
Unfortunately, harmonics above the nth appear smaller than they
really are because their energy is averaged over many bins.
"""
function logsmooth(X, inBin; nbin::Int=8, n::Int=3)
#= Comment (MALaforge): VERIFYME
- Goes infinite @inBin because startbin[] values jump back on 1st iteration of
`for i in 1:n`.
- Was this ententional to help user locate inBin?
=#
N=length(X); N2=div(N,2)
f1 = mod(inBin-1, nbin) + 1
startbin = vcat(f1:nbin:inBin-1, inBin:inBin+2)
for i in 1:n
startbin = vcat(startbin, startbin[end]+1:nbin:i*inBin-1, i*inBin .+ (0:2))
end
m = startbin[length(startbin)]+nbin
while m < N2
startbin = vcat(startbin, m)
nbin = min(nbin*1.1, 2^10)
m = round(Int, m+nbin)
end
stopbin = vcat(startbin[2:length(startbin)] .- 1, N2)
f = ((startbin .+ stopbin)/2 .- 1)/N
p = zeros(size(f))
for i in 1:length(f)
p[i] = dbp(norm(X[startbin[i]:stopbin[i]])^2 / (stopbin[i]-startbin[i]+1))
end
return (f, p)
end
#==plotUsage()
===============================================================================#
"""`plotUsage(sv,colors=[:blue, :green, :red, :yellow])`
Plot the element usage for a multi-elemet DAC.
The colors are for sv = 1,-1,i,-i.
"""
function plotUsage(sv,colors=[:blue, :green, :red, :yellow])
(M, T) = size(sv)
T2 = ceil(Int, (T+1)/2)
plot = cons(:plot, linlin, title = "", legend=false,
xyaxes=set(xmin=0, xmax=T, ymin=0, ymax=M),
labels=set(xaxis="Time", yaxis="Element Number"),
)
#Plot the grid
x = [(0:T)'; (0:T)']
x = x[:]
y = [zeros(1,T2); M*ones(2,T2); zeros(1,T2)]
y = y[1:2*(T+1)]
yw = waveform(x, y) #Convert to waveform
push!(plot,
cons(:wfrm, yw, line=set(style=:solid, color=:black, width=2), label=""),
)
M2 = ceil(Int, (M+1)/2)
x = [zeros(1,M2); T*ones(2,M2); zeros(1,M2)]
x = x[1:2*(M+1)]
y = [0:M; 0:M]
y = y[:]
yw = waveform(x, y) #Convert to waveform
push!(plot,
cons(:wfrm, yw, line=set(style=:solid, color=:black, width=2), label=""),
)
@warn("TODO (plotUsage): draw polygons.")
#=Create polygons
#Not yet supported by EasyPlot (would have to manipulate InspectDR manually)
for t in 1:T
for i in 1:M
if sv[i,t] == 1
fill([t-1 t-1 t t],[i-1 i i i-1],colors(1));
elseif sv(i,t) == -1
fill([t-1 t-1 t t],[i-1 i i i-1],colors(2));
elseif sv(i,t) == 1i
fill([t-1 t-1 t t],[i-1 i i i-1],colors(3));
elseif sv(i,t) == -1i
fill([t-1 t-1 t t],[i-1 i i i-1],colors(4));
end
end
end
=#
return plot
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 7146 | #RSDeltaSigmaPort: Generate frequency spectrum plots
#-------------------------------------------------------------------------------
#==Frequency-spectrum plots
===============================================================================#
function plotSpec()
plot = cons(:plot, linlin, title = "Signal Spectrum", legend=true,
xyaxes=set(xmin=0, xmax=0.5, ymin=-120, ymax=0),
labels=set(xaxis="Normalized Frequency", yaxis="dBFS"),
)
return plot
end
function plotSpec!(plot, sig; M::Int=1, id::String="signal", color=:blue)
sig = conv2seriesmatrix2D(sig)
M, N = size(sig)
𝑓pts = div(N,2)+1 #Only need half the spectrum
𝑓 = range(0, stop=0.5, length=𝑓pts)
𝑓 = ones(M)*𝑓' #2D frequency matrix for downstream algorithms
spec = fft(sig)/(M*N/4)
specdB = dbv.(spec[:,1:𝑓pts])
#Convert to waveforms:
specdB = waveform(𝑓, specdB)
push!(plot,
cons(:wfrm, specdB, line=set(style=:solid, color=color, width=2), label=id),
)
return plot
end
function plotSpec(sig; M::Int=1, id::String="signal", color=:blue)
plot = plotSpec()
return plotSpec!(plot, sig, id=id, color=color, M=M)
end
#==Modulator output spectrum
===============================================================================#
function plotModSpectrum()
plot = plotSpec()
plot.title = "Modulator Output Spectrum"
return plot
end
function plotModSpectrum!(plot, specinfo; id::String="Simulation", color=:blue)
𝑓 = specinfo.freq
#Convert to waveforms:
ePSD = waveform(𝑓, specinfo.ePSD)
specdB = waveform(𝑓, specinfo.specdB)
snr_str = @sprintf("SNR = %4.1fdB", specinfo.SNR) #orig. coords: (0.05,-10)
nbw_str = @sprintf("NBW = %4.1E × 𝑓s", specinfo.NBW) #orig. coords: (0.5, -90)
ann_str = string(snr_str, "\n", nbw_str)
push!(plot,
cons(:wfrm, specdB, line=set(style=:solid, color=color, width=2), label=id),
cons(:wfrm, ePSD, line=set(style=:solid, color=:red, width=2), label="Expected PSD"),
cons(:atext, ann_str, y=-90, reloffset=set(x=0.5), align=:cc),
)
return plot
end
"""`plotModSpectrum(sig, NTF, iband, f; M=1, title, id)`
Generate plot of modulator output spectrum:
- `sig`: Time domain ΔΣ signal.
- `NTF`:
- `f`: Bin location of input signal.
- `M`: Number of modulator steps (= nlev-1).
"""
function plotModSpectrum(specinfo; id::String="Simulation", color=:blue)
plot = plotModSpectrum()
plotModSpectrum!(plot, specinfo, id=id, color=color)
return plot
end
#==plotSpectrum()
===============================================================================#
function plotSpectrum()
plot = cons(:plot, loglin, title = "Smoothed Spectrum", legend=true,
xyaxes=set(xmin=1e-3, xmax=0.5, ymin=-120, ymax=0),
labels=set(xaxis="Normalized Frequency", yaxis=""),
)
return plot
end
function plotSpectrum!(plot, X, fin; nbin::Int=8, n::Int=3, lw=1, color=:blue, id="")
(f, p) = logsmooth(X, fin, nbin=nbin, n=n)
pw = waveform(f, p)
push!(plot,
cons(:wfrm, pw, line=set(style=:solid, color=color, width=lw), label=id),
)
return plot
end
"""`plotSpectrum(X, fin, nbin=8, n=3, lw=1)`
Plot a smoothed spectrum.
"""
function plotSpectrum(X, fin; nbin::Int=8, n::Int=3, lw=1, color=:blue, id="")
plot = plotSpectrum()
plotSpectrum!(plot, X, fin, nbin=nbin, n=n, lw=lw, color=color, id=id)
return plot
end
#==plotExampleSpectrum
===============================================================================#
"""`plotExampleSpectrum(NTF, OSR=64, M=1, f0=0, quadrature=false, ampdB=-3, ftest=nothing, N=2^12, sizes=nothing)`
#Inputs
- `M`: Number of modulator steps (= nlev-1).
- `ampdB`: Test tone amplitude, relative to full-scale.
"""
function plotExampleSpectrum(NTF; OSR::Int=64, M::Int=1, f0::Float64=0, quadrature::Bool=false,
ampdB::Float64=-3.0, ftest=nothing, N::Int=2^12, sizes=nothing)
#Computed defaults
if isnothing(ftest)
ftest = default_ftest(OSR, f0=f0, quadrature=quadrature)
end
fband = default_fband(OSR, f0=f0, quadrature=quadrature)
delta = 2
usrsizes = sizes
sizes = Dict{Symbol, Any}( #Defaults
:lw => 1, #LineWidth
:ms => 5, #MarkerSize
:fs => 12, #FontSize
:fw => "normal", #FontWeight
)
if isa(usrsizes, Dict) #Overwrite with user supplied values
push!(sizes, usrsizes...)
end
#Plot an example spectrum
# fin = round(Int, ftest*N)
local u, simresult
if !quadrature
phi0=π/2 #Switch from sin to cos
(u, iftest) = genTestTone_sin(ampdB, ftest, M=M, phi0=phi0, N=N)
simresult = simulateDSM(u, NTF, nlev=M+1)
else
(u, iftest) = genTestTone_quad(ampdB, ftest, M=M, N=N)
simresult = simulateQDSM(u, NTF, nlev=M+1)
end
plot = cons(:plot, linlin, title = "Modulator Output Spectrum", legend=true,
labels=set(xaxis="Normalized Frequency", yaxis="PSD [dBFS/NBW]"),
xyaxes=set(ymin=-140, ymax=0),
)
specinfo = calcSpecInfo(simresult.v, NTF, fband, ftest, M=M, quadrature=quadrature)
if !quadrature
if 0==f0
# set(plot, loglin, xyaxes=set(xmin=.001))
end
#circular smoothing; not re-scaled
spec_smoothed = circ_smooth(abs.(specinfo.spec0).^2, 16)
A = dbv(specinfo.spec0[specinfo.itest+1])
#Convert to waveforms & add to plot:
𝑓 = specinfo.freq; 𝑓pts = length(𝑓)
specw = waveform(𝑓, specinfo.specdB)
spec_sw = waveform(𝑓, dbp.(spec_smoothed[1:𝑓pts]))
ePSDw = waveform(𝑓, specinfo.ePSD)
push!(plot,
cons(:wfrm, specw, line=set(style=:solid, color=:cyan, width=2), label=""),
cons(:wfrm, spec_sw, line=set(style=:solid, color=:blue, width=2), label=""),
cons(:wfrm, ePSDw, line=set(style=:solid, color=:magenta, width=1), label=""),
)
alignleft = f0<0.25
align = alignleft ? :tl : :tr
annx = alignleft ? f0+0.5/OSR : f0-0.5/OSR
tstr = @sprintf(" SQNR = %.1fdB\n @ A = %.1fdBFS\n & OSR = %.0f\n",
specinfo.SNR, A, OSR
)
nbwstr = @sprintf("NBW=%.1e ", specinfo.NBW)
#TODO: use `sizes` atext:
push!(plot,
cons(:atext, tstr, x=annx, y=-5, align=align),
cons(:atext, nbwstr, x=0.5, y=-135, align=:cr),
)
else
error("plotExampleSpectrum not implemented for quadrature modulators.")
#=
spec0 = fftshift(spec0/2)
freq = range(-0.5, stop=0.5, length=N+1)
freq = deleteat!(collect(freq), N+1)
plot(freq,dbv(spec0),'c','Linewidth',1);
spec_smoothed = circ_smooth(abs(spec0).^2, 16);
plot(freq, dbp(spec_smoothed), 'b', 'Linewidth', 3);
Snn = abs(evalTF(NTF,exp(2i*pi*freq))).^2 * 2/12 * (delta/M)^2;
plot(freq, dbp(Snn*NBW), 'm', 'Linewidth', 1);
SNR = calculateSNR(spec0(N/2+1+[f1_bin:f2_bin]),fin-f1_bin);
msg = sprintf('SQNR = %.1fdB\n @ A=%.1fdBFS & OSR=%.0f\n', ...
SNR, dbv(spec0(N/2+fin+1)), OSR );
if f0>=0
text(f0-0.05, -15, msg,'Hor','Right');
else
text(f0+0.05, -15, msg,'Hor','Left');
end
text(-0.5,-135,sprintf(' NBW=%.1e',NBW),'hor','left');
figureMagic([-0.5 0.5],0.125,2, [-140 0],10,2);
=#
end
return plot
end
"""`plotExampleSpectrum(dsm, NTF=nothing; ampdB=-3, ftest=nothing, N=2^12, sizes=sizes)`
"""
function plotExampleSpectrum(dsm::AbstractDSM, NTF=nothing; ampdB=-3.0, ftest=nothing, N=2^12, sizes=nothing)
isnothing(NTF) && (NTF = synthesizeNTF(dsm))
return plotExampleSpectrum(NTF, OSR=dsm.OSR, M=dsm.M, f0=dsm.f0, quadrature=isquadrature(dsm),
ampdB=ampdB, ftest=ftest, N=N, sizes=sizes
)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1557 | #RSDeltaSigmaPort: Generate plots of internal state
#-------------------------------------------------------------------------------
#==Plot state maxima
===============================================================================#
"""`plotStateMaxima(u, ABCD, test_sig=nothing; nlev::Int=2, N::Int=10^5)`
# Inputs
- `N`: Number of points used to generate a test signal
(only used if `test_sig=nothing`).
"""
function plotStateMaxima(u, ABCD, test_sig=nothing; nlev::Int=2, N::Int=10^5)
title = "Simulated State Maxima"; color = :blue
u = collect(u)
if isnothing(test_sig)
test_sig = ones(1,N)
end
nu, nq, order = get_nu_nq_order(test_sig, ABCD, nlev)
maxima = zeros(order,length(u))
for i = 1:length(u)
ui = u[i]
simresult = simulateDSM(ui*test_sig, ABCD, nlev=nlev, trackmax=true)
maxima[:,i] = simresult.xmax[:]
if any(simresult.xmax .> 1e2)
@warn("plotStateMaxima(): umax was too high.")
umax = ui
u = u[1:i]
maxima = maxima[:,1:i]
break
end
end
plot = cons(:plot, linlog, title = title, legend=true,
# xyaxes=set(xmin=0, xmax=0.6, ymin=1e-4, ymax=10),
xyaxes=set(ymin=1e-4, ymax=10),
labels=set(xaxis="DC input", yaxis="Peak value"),
)
colors = range(HSV(0,1,1), stop=HSV(-360,1,1), length=order)
for i in 1:order
id = "state $i"; c = colors[i]
simglyph = cons(:a, glyph=set(shape=:o, size=1, color=c, fillcolor=c))
_maxima = waveform(u, maxima[i,:])
push!(plot,
cons(:wfrm, _maxima, simglyph, line=set(style=:dash, color=c, width=2), label=id),
)
end
return plot
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 3852 | #RSDeltaSigmaPort: Generate time-domain plots of ΔΣ signals
#-------------------------------------------------------------------------------
#==Waveform builders
===============================================================================#
function _stairs__(x::Vector, y::Vector, sweepid::String)
validatexy_vec(x, y)
if length(x) < 1
throw("Does not support zero-length arrays")
end
xs = similar(x, 2*length(x))
ys = similar(y, 2*length(y))
ii = io = 1
while ii < length(x)
xs[io] = x[ii]
xs[io+1] = x[ii+1]
ii += 1; io +=2
end
if ii <= length(x) #last point
Δx = 1 #Step size (if x has a single point)
if length(x) > 1; Δx = x[end]-x[end-1]; end
xs[io] = x[ii]
xs[io+1] = x[ii]+Δx #Use final step size
end
ii = io = 1
while ii <= length(y)
_y = y[ii]
ys[io] = _y
ys[io+1] = _y
ii += 1; io +=2
end
return DataF1(xs, ys)
end
function _stairs__(x::Array{Float64,2}, y::Array{Float64,2}, sweepid::String)
validatexy_1param(x, y)
N = size(x, 1)
wfrm = fill(DataRS{DataF1}, PSweep(sweepid, collect(1:N))) do i
return _stairs__(x[i,:], y[i,:], "") #Returns from implicit "do" function
end
return wfrm
end
"""`wfrm_stairs(x, y; sweepid="i")`
Create a staircase-waveform object with a given string to identify the sweep.
"""
wfrm_stairs(x, y; sweepid::String="i") = _stairs__(x, y, sweepid)
"""`(values, sticks) = lollipop(x, y; ybot=0.0)`
Generate waveforms suitable for "lollipop" plots (o's and sticks)
"""
function lollipop(x, y; ybot::Float64=0.0)
#Make sure we have column vectors of Float64 (Required by InspectDR):
x = Float64.(x[:]); y = Float64.(abs.(y[:]))
len = length(x)
if length(y) != len
error("x & y array lengths must match.")
end
#Generate sticks
xsticks = [x'; x'; fill(NaN, (1,len))]
ysticks = [y'; fill(ybot, (1,len)); fill(NaN, (1,len))]
xsticks = xsticks[:]; ysticks = ysticks[:] #Need to re-sort as vectors
#Generate waveforms:
values = waveform(x, y)
sticks = waveform(xsticks, ysticks)
return (values, sticks)
end
#==Time domain plots of modulator
===============================================================================#
function plotModTransient(; legend::Bool=true)
plot = cons(:plot, linlin, title = "Modulator Input & Output", legend=legend,
labels=set(xaxis="Sample Number", yaxis="Amplitude [V]"),
)
return plot
end
function plotModTransient!(plot, sig; color=:blue, label::String="")
#Ensure we have a 2D-`Array`, not a `Vector`:
sig = conv2seriesmatrix2D(sig)
#Generate matrix of sample numbers:
M = size(sig,1) #Number of rows (ex: quantizers)
N = size(sig,2) #Number of samples
n = 1:N
sn = ones(Float64, M)*n' #Matrix of "sample number" (Use Float64s for downstream functions)
#Generate staircase waveform of signal:
sig = wfrm_stairs(sn, sig)
push!(plot,
cons(:wfrm, sig, line=set(style=:solid, color=color, width=2), label=label),
)
return plot
end
function plotModTransient(inputSig, outputSig; legend::Bool=true, color=:blue)
plot = plotModTransient(legend=legend)
plotModTransient!(plot, outputSig, color=color, label="output")
plotModTransient!(plot, inputSig, color=:red, label="input")
return plot
end
"""`plotLollipop(x, y; color=:blue, lw=2.0, ybot=0.0, label="", legend=false)`
Generate "lollipop" plot (o's and sticks).
"""
function plotLollipop(x, y; color=:blue, lw::Float64=2.0, ybot::Float64=0.0, label="", legend=false)
plot = cons(:plot, linlin, title = "Time-domain", legend=legend,
labels=set(xaxis="Time", yaxis="Amplitude"),
)
(values, sticks) = lollipop(x, y, ybot=ybot)
simglyph = cons(:a, glyph=set(shape=:o, size=1.5, color=color, fillcolor=color))
push!(plot,
cons(:wfrm, sticks, line=set(style=:solid, color=color, width=lw), label=label),
cons(:wfrm, values, simglyph, line=set(style=:none, color=color, width=lw), label=label),
)
return plot
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2822 | #RSDeltaSigmaPort: Generate plots of the complex Z-plane
#-------------------------------------------------------------------------------
#==Waveform builders
===============================================================================#
function plot_unitcircle!(plot; color=:black, width=2, nseg::Int=360)
Θ = range(0, stop=2π, length=nseg+1)
cplxcircle = exp.((2π*j)*Θ)
circle = DataF1(real(cplxcircle), imag(cplxcircle))
push!(plot,
cons(:wfrm, circle, line=set(style=:solid, color=color, width=width))
)
return plot
end
#==Pole-zero plots
===============================================================================#
#Create empty pole-zero plot
function plotPZ()
plot = cons(:plot, title = "Pole-Zero Plot", legend=false,
xyaxes=set(xscale=:lin, yscale=:lin, xmin=-1.1, xmax=1.1, ymin=-1.1, ymax=1.1),
labels=set(xaxis="Real", yaxis="Imag"),
)
plot_unitcircle!(plot)
return plot
end
"""`function plotPZ!(H,color=:black,markersize=5,list=false)`
Plot the poles and zeros of a transfer function.
If list=true, a list of the poles and zeros is superimposed on the plot.
"""
function plotPZ!(plot, H::ZPKData; color=:blue, markersize=2, list::Bool=false)
isVector = isa(color, Vector)
color_pole = isVector ? color[1] : color
color_zero = isVector ? color[end] : color
attrib_poles = cons(:a,
glyph=set(shape=:x, color=color_pole, size=markersize), line=set(style=:none, width=2)
)
attrib_zeros = cons(:a,
glyph=set(shape=:o, color=color_zero, size=markersize), line=set(style=:none, width=2)
)
z, p, k = _zpkdata(H)
# Plot x and o for poles and zeros, respectively:
push!(plot, cons(:wfrm, DataF1(real(p), imag(p)), attrib_poles))
if !isempty(z) #Add zeros
push!(plot, cons(:wfrm, DataF1(real(z), imag(z)), attrib_zeros))
end
#=
if list
# List the poles and zeros
p = cplxpair(p);
y = 0.05*(ceil(length(p)/2)+1);
str = 'Poles: ';
text( 0, y, str, 'Hor', 'Right', 'Ver', 'Mid'); y = y - 0.1;
for i = 1:2:length(p);
if abs(imag(p(i))) < 1e-6
str = sprintf('%+.4f ', real(p(i)) );
else
str = sprintf( '%+.4f+/-j%.4f ', real(p(i)), abs(imag(p(i))) );
end
text( 0, y, str, 'Hor', 'Right', 'Ver', 'Mid'); y = y - 0.1;
end
if !isempty(z)
z = z( !isnan(z) && !isinf(z) );
z = cplxpair(z);
y = 0.05*(ceil(length(z)/2)+1);
str = ' Zeros:';
text( 0, y, str, 'Hor', 'Left', 'Ver', 'Mid'); y = y - 0.1;
for i = 1:2:length(z);
if abs(imag(z(i))) < 1e-6
str = sprintf('%+.4f ', real(z(i)) );
else
str = sprintf( ' %+.4f+/-j%.4f', real(z(i)), abs(imag(z(i))) );
end
text( 0, y, str, 'Hor', 'Left', 'Ver', 'Mid');
y = y - 0.1;
end
end
end
=#
return plot
end
plotPZ(H::ZPKData, args...; kwargs...) = plotPZ!(plotPZ(), H::ZPKData, args...; kwargs...)
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 913 | #RSDeltaSigmaPort: Compute power values.
#-------------------------------------------------------------------------------
"""`dbm(v,R=50) = 10*log10(v^2/R*1000)`
The equivalent in dBm of an RMS voltage v
"""
dbm(v; R::Float64=50.0) = 10*log10.(abs.(v .^ 2)/R) .+ 30;
"""`dbp(x) = 10*log10(x)`
The dB equivalent of the power x
"""
dbp(x) = 10*log10.(abs.(x))
"""`dbv(x) = 20*log10(abs(x))`
The dB equivalent of the voltage x
"""
dbv(x) = 20*log10.(abs.(x))
"`y = rms(x; no_dc=false)`"
function rms(x; no_dc::Bool=false)
if no_dc
x = x - mean(x)
end
return norm(x)/sqrt(length(x))
end
"""`v = undbm(p, z=50) = sqrt(z*10^(p/10-3))`
RMS voltage equivalent to a power p in dBm
"""
undbm(p; z::Float64=50.0) = sqrt.(z*10 .^ (p/10 .- 3))
"""`y = undbp(x)`
Convert x from dB to a power
"""
undbp(x) = 10 .^ (x/10)
"""`y = undbv(x)`
Convert x from dB to a voltage
"""
undbv(x) = 10 .^ (x/20)
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1917 | #RSDeltaSigma: Quantizer functionnality
#-------------------------------------------------------------------------------
#Version from simulateDSM.m
#-------------------------------------------------------------------------------
#VERIFYME: Did this one actually get called? Was the other version the one being called??
"""`ds_quantize_DSM(y,n)`
Quantize y to:
- an odd integer in [-n+1, n-1], if n is even, or
- an even integer in [-n, n], if n is odd.
This definition gives the same step height for both mid-rise
and mid-tread quantizers.
"""
function ds_quantize_DSM(y, n::Int)
if mod(n,2)==0 #mid-rise quantizer
v = 2*floor.(0.5*y) .+ 1
else #mid-tread quantizer
v = 2*floor.(0.5*(y .+ 1))
end
#Limit the output
for qi in 1:length(n) #Loop for multiple quantizers
L = n[qi]-1
i = v[qi,:] .> L
if any(i)
v[qi,i] .= L
end
i = v[qi,:] .< -L
if any(i)
v[qi,i] .= -L
end
end
return v
end
#Pretty sure mod(n,2) code needs to be adapted for Vector:
ds_quantize_DSM(y, n::Vector{Int}) =
throw(ErrorException("ds_quantizer: does not support n::Vector"))
#Version from ds_quantize.m:
#-------------------------------------------------------------------------------
#=
function v = ds_quantize(y,n)
%v = ds_quantize(y,n=2)
%Quantize y to
% an odd integer in [-n+1, n-1], if n is even, or
% an even integer in [-n+1, n-1], if n is odd.
%This definition gives the same step height for both mid-rise
%and mid-tread quantizers.
%n can be a column vector which specifies how to quantize the rows of y
if nargin<2
n=2;
end
if length(n)==1
n = n*ones(size(y));
elseif size(n,1)==size(y,1)
n = n*ones(1,size(y,2));
end
i = rem(n,2)==0;
v = zeros(size(y));
v(i) = 2*floor(0.5*y(i))+1; % mid-rise quantizer
v(~i) = 2*floor(0.5*(y(~i)+1)); % mid-tread quantizer
% Limit the output
L = n-1;
for m=[-1 1]
i = m*v>L;
if any(i(:))
v(i) = m*L(i);
end
end
=#
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 12761 | #RSDeltaSigma: realize transfer functions
#-------------------------------------------------------------------------------
#==Calcualtions for realizeNTF
===============================================================================#
function _calc_agb!(::DS{:CRFB}, a::Array{Float64}, g::Array{Float64}, b::Array{Float64},
order::Int, ntf_z, ntf_p, zSet, T, hasSTF::Bool)
(order2, isodd, Δodd) = orderinfo(order)
#Find g
#Assume the roots are ordered, real first, then cx conj. pairs
for i in 1:order2
g[i] = 2*(1-real(ntf_z[2*i-1+Δodd]))
end
L1 = zeros(ComplexF64, 1, order*2)
#Form the linear matrix equation a*T*=L1
for i in 1:order*2
z = zSet[i]
#L1(z) = 1-1/H(z)
L1[i] = 1 - evalRPoly(ntf_p,z) ./ evalRPoly(ntf_z,z)
Dfactor = (z-1)/z
product=1
for j in order:-2:(1+Δodd)
product = z ./ evalRPoly(ntf_z[(j-1):j],z) .* product
T[j,i] = product*Dfactor
T[j-1,i] = product
end
if isodd
T[1,i]=product/(z-1)
end
end
a[:] = -real.(L1/T)
if !hasSTF
b[keys(a)] = a[:]
b[order+1] = 1
end
return
end
function _calc_agb!(::DS{:CRFF}, a::Array{Float64}, g::Array{Float64}, b::Array{Float64},
order::Int, ntf_z, ntf_p, zSet, T)
(order2, isodd, Δodd) = orderinfo(order)
#Find g
#Assume the roots are ordered, real first, then cx conj. pairs
for i in 1:order2
g[i] = 2*(1-real(ntf_z[2*i-1+odd]))
end
L1 = zeros(ComplexF64, 1, order*2)
#Form the linear matrix equation a*T*=L1
for i in 1:order*2
z = zSet[i]
#L1(z) = 1-1/H(z)
L1[i] = 1 - evalRPoly(ntf_p,z) ./ evalRPoly(ntf_z,z)
if isodd
Dfactor = z-1
product = 1/Dfactor
T[1,i] = product
else
Dfactor = (z-1)/z
product=1
end
for j in 1+odd:2:order
product = z ./ evalRPoly(ntf_z[j:j+1],z) .* product
T[j,i] = product*Dfactor
T[j+1,i] = product
end
end
a[:] = -real.(L1/T)
if !hasSTF
b[:] = [1 zeros(1,order-1) 1]
end
return
end
#=
case 'CIFB'
%Assume the roots are ordered, real first, then cx conj. pairs
%Note ones which are moved significantly.
if any( abs(real(ntf_z)-1) > 1e-3)
fprintf(stderr,'%s Warning: The ntf''s zeros have had their real parts set to one.\n', mfilename);
end
ntf_z = 1 + 1i*imag(ntf_z);
for i=1:order2
g(i) = imag(ntf_z(2*i-1+odd))^2;
end
L1 = zeros(1,order);
%Form the linear matrix equation a*T*=L1
for i=1:order*2
z = zSet(i);
%L1(z) = 1-1/H(z)
L1(i) = 1-evalRPoly(ntf_p,z)/evalRPoly(ntf_z,z);
Dfactor = (z-1);
product = 1;
for j=order:-2:(1+odd)
product = product/evalRPoly(ntf_z((j-1):j),z);
T(j,i) = product*Dfactor;
T(j-1,i) = product;
end
if( odd )
T(1,i) = product/(z-1);
end
end
a = -real(L1/T);
if isempty(stf)
b = a;
b(order+1) = 1;
end
case 'CIFF'
%Assume the roots are ordered, real first, then cx conj. pairs
%Note ones which are moved significantly.
if any( abs(real(ntf_z)-1) > 1e-3 )
fprintf(stderr,'%s Warning: The ntf''s zeros have had their real parts set to one.\n', mfilename);
end
ntf_z = 1 + 1i*imag(ntf_z);
for i=1:order2
g(i) = imag(ntf_z(2*i-1+odd))^2;
end
L1 = zeros(1,order);
%Form the linear matrix equation a*T*=L1
for i=1:order*2
z = zSet(i);
%L1(z) = 1-1/H(z)
L1(i) = 1-evalRPoly(ntf_p,z)/evalRPoly(ntf_z,z);
Dfactor = (z-1);
if( odd )
product = 1/(z-1);
T(1,i) = product;
else
product = 1;
end
for j=odd+1:2:order-1
product = product/evalRPoly(ntf_z(j:j+1),z);
T(j,i) = product*Dfactor;
T(j+1,i) = product;
end
end
a = -real(L1/T);
if isempty(stf)
b = [ 1 zeros(1,order-1) 1];
end
case 'CRFBD'
%Find g
%Assume the roots are ordered, real first, then cx conj. pairs
for i=1:order2
g(i) = 2*(1-real(ntf_z(2*i-1+odd)));
end
L1 = zeros(1,order);
%Form the linear matrix equation a*T*=L1
for i=1:order*2
z = zSet(i);
%L1(z) = 1-1/H(z)
L1(i) = 1-evalRPoly(ntf_p,z)/evalRPoly(ntf_z,z);
Dfactor = (z-1);
product=1/z;
for j=order:-2:(1+odd)
product = z/evalRPoly(ntf_z((j-1):j),z)*product;
T(j,i) = product*Dfactor;
T(j-1,i) = product;
end
if( odd )
T(1,i)=product*z/(z-1);
end
end
a = -real(L1/T);
if isempty(stf)
b = a;
b(order+1) = 1;
end
case 'CRFFD'
%Find g
%Assume the roots are ordered, real first, then cx conj. pairs
for i=1:order2
g(i) = 2*(1-real(ntf_z(2*i-1+odd)));
end
%zL1 = z*(1-1/H(z))
zL1 = zSet .* (1-1./evalTF(ntf,zSet));
%Form the linear matrix equation a*T*=zL1
for i=1:order*2
z = zSet(i);
if( odd )
Dfactor = (z-1)/z;
product = 1/Dfactor;
T(1,i) = product;
else
Dfactor = z-1;
product=1;
end
for j=1+odd:2:order
product = z/evalRPoly(ntf_z(j:j+1),z)*product;
T(j,i) = product*Dfactor;
T(j+1,i) = product;
end
end
a = -real(zL1/T);
if isempty(stf)
b = [ 1 zeros(1,order-1) 1];
end
case 'PFF'
%Find g
%Assume the roots are ordered, real first, then cx conj. pairs
% with the secondary zeros after the primary zeros
for i=1:order2
g(i) = 2*(1-real(ntf_z(2*i-1+odd)));
end
% Find the dividing line between the zeros
theta0 = abs(angle(ntf_z(1)));
% !! 0.5 radians is an arbitrary separation !!
i = find( abs(abs(angle(ntf_z)) - theta0) > 0.5 );
order_1 = i(1)-1;
order_2 = order-order_1;
if length(i) ~= order_2
keyboard
error('For the PFF form, the NTF zeros must be sorted into primary and secondary zeros');
end
odd_1 = mod(order_1,2);
odd_2 = mod(order_2,2);
L1 = zeros(1,order);
%Form the linear matrix equation a*T*=L1
for i=1:order*2
z = zSet(i);
%L1(z) = 1-1/H(z)
L1(i) = 1-evalRPoly(ntf_p,z)/evalRPoly(ntf_z,z);
if( odd_1 )
Dfactor = z-1;
product = 1/Dfactor;
T(1,i) = product;
else
Dfactor = (z-1)/z;
product=1;
end
for j=1+odd_1:2:order_1
product = z/evalRPoly(ntf_z(j:j+1),z)*product;
T(j,i) = product*Dfactor;
T(j+1,i) = product;
end
if( odd_2 )
Dfactor = z-1;
product = 1/Dfactor;
T(order_1+1,i) = product;
else
Dfactor = (z-1)/z;
product=1;
end
for j=order_1+1+odd_2:2:order
product = z/evalRPoly(ntf_z(j:j+1),z)*product;
T(j,i) = product*Dfactor;
T(j+1,i) = product;
end
end
a = -real(L1/T);
if isempty(stf)
b = [ 1 zeros(1,order_1-1) 1 zeros(1,order_2-1) 1];
end
case 'Stratos'
% code copied from case 'CRFF':
%Find g
%Assume the roots are ordered, real first, then cx conj. pairs
for i=1:order2
g(i) = 2*(1-real(ntf_z(2*i-1+odd)));
end
% code copied from case 'CIFF':
L1 = zeros(1,order);
%Form the linear matrix equation a*T*=L1
for i=1:order*2
z = zSet(i);
%L1(z) = 1-1/H(z)
L1(i) = 1-evalRPoly(ntf_p,z)/evalRPoly(ntf_z,z);
Dfactor = (z-1);
if( odd )
product = 1/(z-1);
T(1,i) = product;
else
product = 1;
end
for j=odd+1:2:order-1
product = product/evalRPoly(ntf_z(j:j+1),z);
T(j,i) = product*Dfactor;
T(j+1,i) = product;
end
end
a = -real(L1/T);
if isempty(stf)
b = [ 1 zeros(1,order-1) 1];
end
case 'DSFB'
%Find g
%Assume the roots are ordered, real first, then cx conj. pairs
for i=1:(order+odd)/2 -1
g(i) = tan( angle( ntf_z(2*i-1+odd) ) /2 ) ^ 2;
end
if ~odd
g(order/2) = 2*(1 - cos( angle( ntf_z(order) ) ));
end
L1 = zeros(1,order);
% Form the linear matrix equation a*T = L1
for i=1:order*2
z = zSet(i);
%L1(z) = 1-1/H(z)
L1(i) = 1-evalRPoly(ntf_p,z)/evalRPoly(ntf_z,z);
if odd
product = 1/(z-1);
T(order,i) = product;
else
Dfactor = (z-1)^2 + g(order/2)*z;
T(order,i) = (z-1)/Dfactor;
product = (z+1)/Dfactor;
T(order-1,i) = product;
end
for j=order+odd-2:-2:1
Dfactor = (z-1)^2 + g(j/2)*(z+1)^2;
product = product/Dfactor;
T(j,i) = product*(z^2-1);
product = product*(z+1)^2;
T(j-1,i) = product;
end
end
a = -real(L1/T);
if isempty(stf)
b = a;
b(order+1) = 1;
end
otherwise
error( 'Unsupported form %s', form );
end
=#
#==realizeNTF
===============================================================================#
"""`[a,g,b,c] = realizeNTF(ntf,form='CRFB',stf=nothing)`
Convert a noise transfer function into coefficients for the desired structure.
Supported structures are:
- CRFB: Cascade of resonators, feedback form.
- CRFF: Cascade of resonators, feedforward form.
- CIFB: Cascade of integrators, feedback form.
- CIFF: Cascade of integrators, feedforward form.
- CRFBD: CRFB with delaying quantizer.
- CRFFD: CRFF with delaying quantizer.
- PFF: Parallel feed-forward.
- Stratos: A CIFF-like structure with non-delaying resonator feedbacks,
(contributed in 2007 by Jeff Gealow)
- DSFB: Cascade of double-sampled integrators, feedback form.
See the accompanying documentation for block diagrams of each structure
The order of the NTF zeros must be (real, complex conj. pairs).
The order of the zeros is used when mapping the NTF onto the chosen topology.
stf is a zpk transfer function
The basic idea is to equate the loop filter at a set of
points in the z-plane to L1 = 1-1/ntf at those points.
"""
function realizeNTF(ntf, form::Symbol=:CRFB, stf=nothing)
#Code common to all functions:
(ntf_z, ntf_p) = _zpkdata(ntf)
order = length(ntf_p)
(order2, isodd, Δodd) = orderinfo(order)
strform = string(form)
isFF = length(strform) >= 4 && ("FF" == strform[3:4])
ntf_z = realfirst(ntf_z); ntf_p = realfirst(ntf_p)
a = zeros(1, order)
g = zeros(1, order2)
b = zeros(1, order+1)
c = ones(1, order)
#Choose a set of points in the z-plane at which to try to make L1 = 1-1/H
#I don't know how to do this properly, but the code below seems to work
#for order <= 11
N = 200
min_distance = 0.09
C = zeros(N)
j = 1
for i=1:N
z = 1.1*exp(2i*pi*i/N)
if all( abs.(ntf_z .- z) .> min_distance )
C[j] = z
j = j+1
end
end
deleteat!(C, j:length(C))
zSet = C
T = zeros(ComplexF64, order,2*order)
_calc_agb!(DS(form), a, g, b, order, ntf_z, ntf_p, zSet, T, stf != nothing)
if stf != nothing
#Compute the TF from each feed-in to the output
#and solve for coefficients which yield the best match
#THIS CODE IS NOT OPTIMAL, in terms of computational efficiency.
stfList = Array{Any}(undef, (1,order+1))
for i in 1:order+1
bi = zeros(1,order+1); bi[i]=1
ABCD = stuffABCD(a,g,bi,c,form)
if isFF
ABCD[1,order+2] = -1 #b1 is used to set the feedback
end
(junk, stfList[i]) = calculateTF(ABCD)
end
#Build the matrix equation b A = x and solve it.
A = zeros(order+1,length(zSet))
for i = 1:order+1
A[i,:] = evalTF(stfList[i],zSet)
end
x = evalTF(stf,zSet)
b[:] = real.(x'/A)
end
return (a, g, b, c)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 6839 | #RSDeltaSigma: realize continuous-time NTF
#-------------------------------------------------------------------------------
#==Helper functions
===============================================================================#
#==realizeNTF_ct
===============================================================================#
"""`(ABCDc, tdac2) = realizeNTF_ct(NTF, form='FB', tdac, ordering=[1:n], bp=zeros(...), ABCDc)`
Realize a NTF with a continuous-time loop filter.
# Output
- `ABCDc`: A state-space description of the CT loop filter
- `tdac2`: A matrix with the DAC timings, including ones that were
automatically added.
# Input Arguments
- `NTF`: A noise transfer function in pole-zero form.
- `form`: `= {:FB, :FF}` Specifies the topology of the loop filter.
- `-->` For the `:FB` structure, the elements of `Bc` are calculated
so that the sampled pulse response matches the `L1` impulse respnse.
- `-->` For the `:FF` structure, `Cc` is calculated.
- `tdac`: The timing for the feedback DAC(s).
- `-->` If `tdac[1]>=1`, direct feedback terms are added to the quantizer.
- `-->` Multiple timings (1 or more per integrator) for the `:FB`
topology can be specified by making `tdac` a cell array, e.g.
`tdac = { [1,2]; [1 2]; {[0.5 1],[1 1.5]}; []}`.
- `-->` In above example, the first two integrators have dacs with `[1,2]`
timing, the third has a pair of dacs, one with `[0.5 1]` timing and the
other with `[1 1.5]` timing, and there is no direct feedback DAC to the
quantizer
- `ordering`: A vector specifying which NTF zero-pair to use in each
resonator. Default is for the zero-pairs to be used in the order specified
in the NTF.
- `bp`: A vector specifying which resonator sections are bandpass.
The default (zeros(...)) is for all sections to be lowpass.
- `ABCDc`: The loop filter structure, in state-space form.
If this argument is omitted, ABCDc is constructed according to `form`.
"""
function realizeNTF_ct(ntf, form=:FB, tdac=[0 1], ordering=1:0, bp=Int[], ABCDc=Float64[])
(ntf_z, ntf_p) = _zpkdata(ntf, 1)
ntf_z = deepcopy(ntf_z); ntf_p = deepcopy(ntf_p) #Don't modify original
ntf_z = realfirst(ntf_z); ntf_p = realfirst(ntf_p) #VERIFYME: Expected by realizeNTF... here too?
ntf_z_orig = deepcopy(ntf_z) #VERIFYME: Doesn't get modified to match legacy code. Intentional or omission??
order = length(ntf_p)
(order2, isodd, Δodd) = orderinfo(order)
if isempty(ordering); ordering = 1:order2; end
if isempty(bp); bp = zeros(Int, order2); end
#compensate for limited accuracy of zero calculation
ntf_z[findall( abs.(ntf_z .- 1) .< eps(1.0)^(1/(1+order)) )] .= 1.0
#ntf_z_orig=ntf_z #???
multi_tmg = (eltype(tdac)<:Array)
if multi_tmg
if size(tdac) != (order+1,)
error("For multi-array tdac, tdac be a vector of length `order+1`")
end
if form != :FB
error("Currently only supporting form=:FB for multi-array tdac")
end
else
if size(tdac) != (1, 2)
#TODO: Update message
error("For non cell array tdac, size(tdac) must be (1, 2)")
end
end
n_direct = 0
n_extra = 0
tdac2 = Float64[-1 -1]
if !multi_tmg
#Need direct terms for every interval of memory in the DAC
n_direct = ceil(Int, tdac[2]) - 1
if ceil(Int, tdac[2]) - floor(Int, tdac[1]) > 1
n_extra = n_direct-1 #tdac pulse spans a sample point
else
n_extra = n_direct
end
tdac2 = Float64[ -1 -1;
tdac;
0.5*ones(n_extra,1)*[-1 1] .+ cumsum(ones(n_extra,2), dims=1)
]
end
if isempty(ABCDc)
ABCDc = zeros(order+1, order+2);
#Stuff the A portion
if isodd
ABCDc[1,1] = real( log( ntf_z[1] ) )
ABCDc[2,1] = 1
end
for i = 1:order2
n = bp[i]
i1 = 2*i + Δodd - 1
zi = 2*ordering[i] + Δodd - 1
w = abs( angle( ntf_z[zi] ) )
ABCDc[i1 .+ [0 1 2], i1 .+ [0 1]] = [
0 -w^2;
1 0;
n 1-n;
]
end
ABCDc[1,order+1] = 1
ABCDc[1,order+2] = -1 #2006.10.02 Changed to -1 to make FF STF have +ve gain at DC
end
Ac = ABCDc[1:order, 1:order]
local Bc, Cc, Dc, tp
if :FB == form
Cc = ABCDc[[order+1],1:order]
if !multi_tmg
Bc = [eye(order) zeros(order,1)]
Dc = [zeros(1,order) 1]
tp = repeat(tdac,order+1,1)
else #Assemble tdac2, Bc and Dc
tdac2 = Float64[-1 -1]
Bc = ones(order, 0) #0-column
Bci = [eye(order) zeros(order,1)]
Dc = ones(1, 0)
Dci = [zeros(1,order) 1]
for i in 1:length(tdac)
tdi = tdac[i]
if (eltype(tdi)<:Array)
for j in 1:length(tdi)
tdj = tdi[j]
tdac2 = [tdac2; tdj]
Bc = [Bc Bci[:,i]]
Dc = [Dc Dci[:,i]]
end
elseif !isempty(tdi)
tdac2 = [tdac2; tdi]
Bc = [Bc Bci[:,i]]
Dc = [Dc Dci[:,i]]
end
end
tp = tdac2[2:end,:]
end
elseif :FF == form
Cc = [eye(order); zeros(1,order)]
Bc = [-1; zeros(order-1,1)]
Dc = [zeros(order,1); 1]
tp = tdac #2008-03-24 fix from Ayman Shabra
else
error("Sorry, no code for form ", form)
end
#Sample the L1 impulse response
n_imp = ceil(Int, 2*order + maximum(tdac2[:,2]) + 1)
y = impL1(ntf,n_imp)
sys_c = _ss( Ac, Bc, Cc, Dc )
yy = pulse(sys_c, tp, 1.0, 1.0*n_imp, true)
yy = squeeze(yy)
#Endow yy with n_extra extra impulses.
#These will need to be implemented with n_extra extra DACs.
#!! Note: if t1=int, matlab says pulse(sys) @t1 ~=0
#!! This code corrects this problem.
if n_extra>0
y_right = padb([zeros(1,n_extra+1); eye(n_extra+1)], n_imp+1)
#Replace the last column in yy with an ordered set of impulses
yy = [yy[:,1:end-1] y_right[:,end:-1:1]]
end
#Solve for the coefficients:
x = yy\y
if norm(yy*x - y) > 1e-4
@warn("Pulse response fit is poor.")
end
local Bc2, Dc2
if :FB == form
if !multi_tmg
Bc2 = [ x[1:order] zeros(order,n_extra) ]
Dc2 = x[order+1:end]'
else
BcDc = [Bc; Dc]
i = findall(BcDc .!= 0)
BcDc[i] = x
Bc2 = BcDc[1:end-1,:]
Dc2 = BcDc[[end],:]
end
elseif :FF == form
Bc2 = [Bc zeros(order,n_extra)]
Cc = x[1:order]'
Dc2 = x[order+1:end]'
else
error("No code for form \"$form\"")
end
Dc1 = 0
Dc = [Dc1 Dc2]
Bc1 = [1; zeros(order-1,1)]
Bc = [Bc1 Bc2]
#Scale Bc1 for unity STF magnitude at f0
fz = angle.(ntf_z_orig)/(2π)
f1 = fz[1]
ibz = findall(abs.(fz .- f1) .<= abs.(fz .+ f1))
fz = fz[ibz]
f0 = mean(fz)
if minimum(abs.(fz)) < 3*minimum(abs.(fz .- f0))
f0 = 0
end
#MALaforge: FIXME: ss->zpk conversion appears not to be numerically stable
L0c = _zpk(_ss(Ac,Bc1,Cc,Dc1))
#Hard-coded approximation of L0c's poly-ratio representation:
msg = "FIXME: Using hard-coded system to get realizeNTF_ct to work."
msg *= "\nThis is NOT ok; results are probably not useful."
@warn(msg)
L0c = ControlSystems.tf([1], [1, 0, 0.0057829713287632966, 0])
(_z, _p, _k) = ControlSystems.zpkdata(L0c)
L0c = _zpk(_z, _p, _k)
G0 = evalTFP(L0c, ntf, f0)
Bc[:,1] = Bc[:,1]/abs.(G0)
ABCDc = [Ac Bc; Cc Dc]
return (ABCDc, tdac2)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 4758 | #RSDeltaSigma: time-domain signal generators
#-------------------------------------------------------------------------------
#==Input signal generators
===============================================================================#
"""`genTestTone_sin()`
Limiation:
If N is small relative to ftest (you don't generate a whole period), iftest gets rounded to nothing.
Typical ampdB: -3dB
"""
function genTestTone_sin(ampdB::Float64, ftest::Float64; M::Int=1, phi0::Float64=0.0, N::Int=2^12)
amp = undbv(ampdB) #Test tone amplitude, relative to full-scale.
iftest = round(Int, ftest*N)
u = amp*M*sin.((2π/N)*iftest * (0:N-1) .+ phi0)
return (u, iftest)
end
function genTestTone_quad(ampdB::Float64, ftest::Float64; M::Int=1, phi0::Float64=0.0, N::Int=2^12)
amp = undbv(ampdB) #Test tone amplitude, relative to full-scale.
iftest = round(Int, ftest*N)
u = amp*M*exp.((2π*j/N)*iftest * (0:N-1) .+ phi0)
return (u, iftest)
end
genTestTone(dsm::RealDSM, ampdB::Float64, ftest::Float64; phi0::Float64=0.0, N::Int=2^12) =
genTestTone_sin(ampdB, ftest, M=dsm.M, phi0=phi0, N=N)
genTestTone(dsm::QuadratureDSM, ampdB::Float64, ftest::Float64; phi0::Float64=0.0, N::Int=2^12) =
genTestTone_quad(ampdB, ftest, M=dsm.M, phi0=phi0, N=N)
#==impL1
===============================================================================#
"""`y=impL1(ntf, n=10)`
Compute the impulse response from the comparator
output to the comparator input for the given NTF.
n is the (optional) number of points (10).
This function is useful when verifying the realization
of a NTF with a specified topology.
"""
function impL1(ntf::ZPKData, n::Int=10)
(z, p) = _zpkdata(ntf)
lf_den = padr(poly(z), length(p)+1)
lf_num = lf_den .- poly(p)
if any(imag.(vcat(lf_num, lf_den)) .!= 0)
#Complex loop filter
lfr_den = real.( conv(lf_den, conj.(lf_den)) )
lfr_num = conv(lf_num, conj.(lf_den))
lf_i = _tf(real.(lfr_num), lfr_den, 1)
lf_q = _tf(imag.(lfr_num), lfr_den, 1)
(yi,) = _impulse(lf_i, n)
(yq,) = _impulse(lf_q, n)
y = yi .+ j*yq
else
lf_num = real.(lf_num); lf_den = real(lf_den)
(y,) = _impulse(_tf(lf_num, lf_den, 1), n)
end
return y
end
#==pulse
===============================================================================#
"""`y = pulse(S, tp=[0 1], dt=1, tfinal=10, nosum=true)`
Calculate the sampled pulse response of a ct system. `tp` may be an array of
pulse timings, one for each input.
# Outputs
- `y` The pulse response.
# Inputs
- `S`: An LTI object specifying the system.
- `tp`: An nx2 array of pulse timings.
- `dt`: The time increment.
- `tfinal`: The time of the last desired sample.
- `nosum`: A flag indicating that the responses are not to be summed.
"""
function pulse(S, tp=[0 1], dt::Float64=1.0, tfinal::Float64=10.0, nosum::Bool=false)
#Check the arguments
if isdiscrete(S)
error("S must be a cts-time system.")
end
#Compute the time increment
dd = 1
for i in 1:prod(size(tp))
(x, di) = rat(tp[i],1e-3)
dd = lcm(di,dd);
end
(x, ddt) = rat(dt,1e-3)
(x, df) = rat(tfinal,1e-3)
delta_t = 1 / lcm( dd, lcm(ddt,df) )
delta_t = max(1e-3, delta_t) #Put a lower limit on delta_t
(y1, ty1, xy1) = step(S, 0:delta_t:tfinal)
#= #DEBUG
p=cons(:plot, title="")
for i in 1:size(y1, 3)
push!(p, cons(:wfrm, waveform(collect(ty1[:]), y1[:,1,i])))
end
displaygui(p)
=#
nd = round(Int, dt/delta_t)
nf = round(Int, tfinal/delta_t)
ndac = size(tp,1)
ni = size(S.B,2)
if mod(ni,ndac) != 0
error("The number of inputs must be divisible by the number of dac timings.")
#This requirement comes from the complex case, where the number of inputs
#is 2 times the number of dac timings. I think this could be tidied up.
end
nis = div(ni,ndac) #Number of inputs grouped together with a common DAC timing
# (2 for the complex case)
if !nosum #Sum the responses due to each input set
y = zeros(array_round(tfinal/dt+1),size(S.C,1),nis)
else
y = zeros(array_round(tfinal/dt+1),size(S.C,1),ni)
end
for i = 1:ndac
n1 = round(Int, tp[i,1]/delta_t)
n2 = round(Int, tp[i,2]/delta_t)
z1 = (n1, size(y1,2), nis)
z2 = (n2, size(y1,2), nis)
yy = [zeros(z1); y1[1:nf-n1+1,:,(i-1)*nis+1:i*nis]] .-
[zeros(z2); y1[1:nf-n2+1,:,(i-1)*nis+1:i*nis]]
yy = yy[1:nd:end,:,:]
if !nosum #Sum the responses due to each input set
y = y .+ yy
else
y[:,:,i] = yy
end
end
return y
end
#==pulse
===============================================================================#
"""`sv = ds_therm(v,M)`
`sv` is an `M` by `length(v)` matrix of `+/-1`s
where `sum(sv)=v` and the `-1`s are located in the bottom rows
"""
function ds_therm(v, M::Int)
sv = -ones(M, length(v))
for i in 1:length(v)
iend = array_round((M+v[i])/2)
sv[1:iend, i] .= 1
end
return sv
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 3111 | #RSDeltaSigma: simulateDSM() algorithm
#-------------------------------------------------------------------------------
#==simulateDSM()
===============================================================================#
#Main algorithm for simulateDSM
function _simulateDSM(u, nq, nlev, x0, order, A, B, C, D1, savestate::Bool, trackmax::Bool)
if isnan(x0)
x0 = zeros(order,1)
end
N = length(u)
v = zeros(nq,N)
y = zeros(nq,N)
xn = nothing; xmax = nothing
if savestate #Need to store the state information
xn = zeros(order,N)
end
if trackmax #Need to keep track of the state maxima
xmax = abs.(x0)
end
for i=1:N
y[:,i] = C*x0 .+ D1 .* u[:,i]
v[:,i] = ds_quantize_DSM(y[:,i], nlev)
x0 = A * x0 .+ B * [u[:,i]; v[:,i]]
if savestate #Save the next state
xn[:,i] = x0
end
if trackmax #Keep track of the state maxima
xmax = max.(abs.(x0), xmax)
end
end
result = (v=v, y=y)
if savestate
result = merge(result, (xn=xn,))
end
if trackmax
result = merge(result, (xmax=xmax,))
end
return result
end
function simulateDSM(u, ntf::ZPKData; nlev=2, x0=NaN, savestate::Bool=false, trackmax::Bool=false)
u = conv2seriesmatrix2D(u)
nq = length(nlev) #Number of quantizers
order = length(ntf.z)
_ss = _zp2ss(ntf.p,ntf.z,-1) #realization of 1/H
A, B2, C, D2 = _ss.A, _ss.B, _ss.C, _ss.D
#Transform the realization so that C = [1 0 0 ...]
Sinv = orth([C' eye(order)])/norm(C); S = inv(Sinv)
C = C*Sinv
if C[1]<0
S = -S
Sinv = -Sinv
end
A = S*A*Sinv; B2 = S*B2; C = [1 zeros(1,order-1)]; #C=C*Sinv
D2 = 0
#!!!! Assume stf=1
B1 = -B2
D1 = 1
B = [B1 B2]
return _simulateDSM(u, nq, nlev, x0, order, A, B, C, D1, savestate, trackmax)
end
function simulateDSM(u, ABCD::Array; nlev=2, x0=NaN, savestate::Bool=false, trackmax::Bool=false)
u = conv2seriesmatrix2D(u)
nu, nq, order = get_nu_nq_order(u, ABCD, nlev)
A = ABCD[1:order, 1:order]
B = ABCD[1:order, order+1:order+nu+nq]
C = ABCD[order+1:order+nq, 1:order]
D1= ABCD[order+1:order+nq, order+1:order+nu]
return _simulateDSM(u, nq, nlev, x0, order, A, B, C, D1, savestate, trackmax)
end
"""`simresult = simulateDSM(u, [NTF|ABCD]; nlev=2, x0=NaN, savestate=false, trackmax=false))`
Compute the output of a general ΔΣ modulator.
# Inputs
- `u[]`: Input signal (Multiple inputs are implied by the number of rows in `u`)
- `[NTF|ABCD]`: NTF or ABCD (state-space)
- `nlev`: Quantizer levels (Multiple quantizers are implied by making `nlev` an array)
- `x0[]`: Initial state x0 (default zero).
The NTF is zpk object. (The STF is assumed to be 1.)
The structure that is simulated is the block-diagional structure used by
zp2ss.m.
# Returns `simresult::NamedTuple`:
- .v: Output signal of ΔΣ modulator.
- .xn: Internal state of ΔΣ modulator.
- .xmax: Maximum internal state of ΔΣ modulator.
- .y:
""" simulateDSM
@warn("Implements .m version of simulateDSM(). C code might be more efficient/validated.")
#==simulateQDSM
===============================================================================#
simulateQDSM(args...; kwargs...) = throw("simulateQDSM() not implemented")
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2258 | #RSDeltaSigma: simulateHBF() algorithm
#-------------------------------------------------------------------------------
"""`y = simulateHBF(x, f1, f2, mode=0)`
Simulate a Saramaki half-band filter.
The `f1` and `f2` vectors contain coefficients for the structure.
(`f1` and `f2` can also be struct arrays like those returned from designHBF.m
i.e. struct arrays whose .val fields contain the coeffiecients.)
The `mode` flag determines whether the input is filtered, interpolated,
or decimated according to the following table:
- `mode = 0`: Plain filtering, no interpolation or decimation.
- `mode = 1`: The input is interpolated.
- `mode = 2`: The output is decimated, even samples are taken.
- `mode = 3`: The output is decimated, odd samples are taken.
"""
function simulateHBF(x, f1, f2, mode::Int=0)
if isa(f1, Number) && isnan(f1)
(f1, f2) = exampleHBF(4)
end
if isa(f1, Vector{CoeffCSD})
f1 = values(f1)
end
if isa(f2, Vector{CoeffCSD})
f2 = values(f2)
end
x = (x[:])' #Row matrix
f1 = f1[:]; f2 = f2[:] #Redundant unless `val`s are not always simple numbers
n1 = length(f1); n2 = length(f2)
f2imp = vcat(f2[end:-1:1], f2)
if 0 == mode #Insert zeros
f2imp = vcat(f2imp, zeros(2*n2))
f2imp = f2imp[1:4*n2-1]
end
F2 = _tf(f2imp, vcat(1, zeros(length(f2imp)-1)), 1)
if 0 == mode #Plain
(up,) = _lsim(F2,x)
y = 0.5*delay(x,2*n2-1) + f1[1]*up
for i in 2:n1
(up,) = _lsim(F2,up)
(up,) = _lsim(F2,up)
y = f1[i]*up + delay(y, 4*n2-2)
end
elseif 1 == mode #Interpolating
up = zeros(size(x))
nz = 2*n2-1
for i in n1:-1:1
if i==1
(up,) = _lsim(F2,up+f1[i]*x)
nz = n2-1
else
(up,) = _lsim(F2,up+f1[i]*x)
(up,) = _lsim(F2,up)
end
x = delay(x,nz)
end
y = [2*up'; x']; y = y[:] #Interleave the upper and lower streams
elseif mode in [2, 3] #Decimating
x = x[1:2*div(end,2)]
if 3 == mode
y = 0.5*x[1:2:end]
up = x[2:2:end]
nz = n2-1
else
y = 0.5*x[2:2:end]
up = x[1:2:end]
nz = n2
end
for i in 1:n1
if i==1
(up,) = _lsim(F2,up)
else
(up,) = _lsim(F2,up)
(up,) = _lsim(F2,up)
end
y = f1[i]*up + delay(y,nz)
nz = 2*n2-1
end
else
throw("$mode is not a valid value for the mode variable.")
end
return y
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2868 | #RSDeltaSigma: simulateMS() algorithm
#-------------------------------------------------------------------------------
#==simulateMS()
===============================================================================#
"""`simulateMS(v, M=16, mtf=zpk(1,0,1,1), d=0, dw=[1..], sx0=[0..])`
Simulate the vector-based Mismatch-Shaping for a multi-element DAC:
- simresult = (sv, sx, sigma_se, max_sx, max_sy)
# Inputs:
- `v`: A vector of the digital input values. v is in (-M:2:M) if dw=[1..]
otherwise v is in [-sum(dw),sum(dw)].
- `M`: The number of elements.
- `mtf`: The mismatch-shaping transfer function, given in zero-pole form.
- `d`: Dither uniformly distributed in [-d,d] is added to sy.
- `dw`: A vector of dac element weights
- `sx0`: A matrix whose columns are the initial states of the ESL.
# Outputs:
- `sv`: An MxN matrix whose columns are the selection vectors.
- `sx`: An orderxM matrix containing the final state of the ESL.
- `sigma_se`: The rms value of the selection error.
- `max_sx`: The maximum absolute value of the state for all modulators.
- `max_sy`: The maximum absolute value of the input to the VQ.
# Notes:
For a brief description of the theory of mismatch-shaping DACs, see
R. Schreier and B. Zhang "Noise-shaped multibit D/A convertor employing
unit elements", Electronics Letters, vol. 31, no. 20, pp. 1712-1713,
Sept. 28 1995.
"""
function simulateMS(v; M::Int=16, mtf=[], d::Float64=0.0, dw::Vector=[], sx0=[])
local mtf_z; local mtf_p; local mtf_k
if isa(mtf, Array) && isempty(mtf)
mtf_z = [1]; mtf_p = [0]
elseif isa(mtf, ZPKData)
(mtf_z, mtf_p, mtf_k) = _zpkdata(mtf)
else
_type = typeof(mtf)
throw("mtf type not supported: $_type.")
end
order = length(mtf_p)
if isempty(sx0)
sx0 = zeros(order,M)
end
if isempty(dw)
dw = ones(M)
end
#B/A = MTF-1
num = poly(mtf_z)
den = poly(mtf_p)
A = real.(-den[2:order+1])
B = real.(num[2:order+1]+A)
A = A'; B = B' #Need row vectors
N = length(v)
sv = zeros(M,N)
sx = sx0
max_sx = maximum(maximum(abs.(sx)))
max_sy = 0
sum_se2 = 0
for i in 1:N
#Compute the sy vector.
sy = B*sx
#Normalize sy for a minimum value of zero.
sy = sy .- minimum(sy)
syd = (sy + d*(2*rand(1,M) .- 1))[:]
#Pick the elements that have the largest desired_usage (sy) values.
sv[:,i] = selectElement(v[i], syd, dw)
#Compute the selection error.
se = sv[:,[i]]' - sy
#Compute the new sx matrix
sxn = A*sx + se
sx = [ sxn; sx[1:order-1,:]]
#Keep track of some statistics.
sum_se2 = sum_se2 + sum((se .- mean(se)) .^ 2)
max_sx = maximum([max_sx abs.(sxn)])
max_sy = maximum([max_sy abs.(sy)])
end
sigma_se = sqrt(sum_se2/(M*N))
simresult = (sv=sv, sx=sx, sigma_se=sigma_se, max_sx=max_sx, max_sy=max_sy)
return simresult
end
@warn("Implements .m version of simulateMS(). C code might be more efficient/validated.")
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 2187 | #RSDeltaSigma: Tools used to aid with simulations
#-------------------------------------------------------------------------------
#==selectElement()
===============================================================================#
"""`sv = selectElement(v, sy, dw=[], tri=false)`
Select elements of a multi-element DAC to minimize the selection error,
subject to the constraint that the nominal DAC output is v, i.e. v = sv'*dw.
Assume that the preferred usage order is that given by dw.
# Input
- `v`: DSM output in `-M:2:M`
- `sy`: Mx1 desired usage vector
- `dw`: Mx1 vector of element weights
- `tri`: Flag indicating the elements are tri-level, i.e. `sv=0` is allowed.
NOT SUPPORTED YET.
# Output
- `sv`: Mx1 selection vector. `+/-1` if `tri==false`, `{0,+-1}` if `tri==true`.
"""
function selectElement(v, sy::Vector, dw::Vector=[], tri=false) %#ok<INUSD>
M = length(sy)
sdw = M
dw_is_one = (isempty(dw) || all(dw .== 1))
if !dw_is_one
sdw = sum(dw)
end
if abs(v) > sdw
throw("|v| is too large.")
elseif v == sdw
return ones(M,1)
elseif v == -sdw
return -ones(M,1)
end
sv = -ones(M,1)
possibilities = sortperm(-sy) #Determine the element priority
#Speed up selection in the usual case where all element weights are one.
#Suggested 1997-03-05 by J. A. Cherry.
if dw_is_one
sv[possibilities[1:array_round((M+v)/2)]] .= 1
return sv
end
#Go through sv possibilities one by one, until one which meets the
#v = sv'*dw constraint is found.
i = 1 #Selection level
pointer = ones(1,M) #Array of pointers to selected elements
selected = zeros(1,M) #Selected elements
dw0 = [0; dw]
while true
while pointer[i]>M
#backtrack
i = i-1
if i==0
break #failure!
end
pointer[i] = pointer[i] + 1
selected[i+1:end] = 0
end
selected[i] = possibilities[pointer[i]]
dv = 2*sum(dw0[selected+1]) - sdw
if dv==v
break #success!
elseif dv<v
#Proceed to the next level of selection
pointer[i+1] = pointer[i] + 1
i = i+1
else
#Try the next element at the current level.
pointer[i] = pointer[i] + 1
end
end
selected = selected[findall(selected .!= 0)]
sv[selected] = 1
return sv
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 11575 | #RSDeltaSigmaPort SNR calculations
#-------------------------------------------------------------------------------
"""`snr = calculateSNR(hwfft,f,nsig=1)`
Estimate the signal-to-noise ratio, given the in-band bins of a (Hann-windowed)
fft and the location of the input signal (f>0).
- For nsig=1, the input tone is contained in `hwfft(f:f+2)`;
this range is appropriate for a Hann-windowed fft.
- Each increment in `nsig` adds a bin to either side.
- The SNR is expressed in dB.
"""
function calculateSNR(hwfft, f::Int, nsig::Int = 1)
signalBins = f-nsig+1:f+nsig+1
signalBins = signalBins[signalBins .> 0]
signalBins = signalBins[signalBins .<= length(hwfft)]
s = norm(hwfft[signalBins]) #*4/(N*sqrt(3)) for true rms value
noiseBins = collect(1:length(hwfft))
deleteat!(noiseBins, signalBins)
n = norm(hwfft[noiseBins])
snr = (n!=0) ? dbv(s/n) : Inf
return snr
end
"""`(peak_snr,peak_amp) = peakSNR(snr,amp)`
Estimate the snr peak by threading a line of slope 1 through the (amp,snr) data.
Both amp and snr are expressed in dB.
"""
function peakSNR(snr, amp)
snr = deepcopy(snr); amp = deepcopy(amp)
#Delete garbage data
i = abs.(snr) .== Inf; deleteat!(snr, i); deleteat!(amp, i)
i = isnan.(snr); deleteat!(snr, i); deleteat!(amp, i)
i = snr .< 3; deleteat!(snr, i); deleteat!(amp, i)
n = length(amp)
#Sort by amplitude
i = sortperm(amp)
amp = amp[i]; snr = snr[i]
i = [true]
local m = 0.0
while any(i) && n > 3
#Draw a 45-degree median line through the data
tmp = sort(snr .- amp)
if mod(n,2) == 0
m = mean( tmp[div(n,2) .+ [1, 0]] )
else
m = tmp[div(n+1,2)]
end
#Discard data that is more than 6dB off
i = abs.(amp .- snr .+ m) .> 6
deleteat!(snr, i); deleteat!(amp, i)
n = length(amp)
end
peak_amp = maximum(amp)
peak_snr = peak_amp + m
return (peak_snr, peak_amp)
end
"""`(snr,amp,k0,k1,sigma_e2) = predictSNR(ntf,R=64,amp=...,f0=0)`
Predict the SNR curve of a binary delta-sigma modulator by using
the describing function method of Ardalan and Paulos.
The modulator is specified by a noise transfer function (ntf).
The band of interest is defined by the oversampling ratio (R)
and the center frequency (f0).
The input signal is characterized by the amp vector.
amp defaults to [-120 -110...-20 -15 -10 -9 -8 ... 0]dB, where 0 dB means
a full-scale (peak value = 1) sine wave.
The algorithm assumes that the amp vector is sorted in increasing order;
once instability is detected, the remaining SNR values are set to -Inf.
# Output:
- snr: a vector of SNR values (in dB)
- amp: a vector of amplitudes (in dB)
- k0: the quantizer signal gain
- k1: the quantizer noise gain
- sigma_e2: the power of the quantizer noise (not in dB)
The describing function method of A&P assumes that the quantizer processes
signal and noise components separately. The quantizer is modelled as two
(not necessarily equal) linear gains, k0 and k1, and an additive white
gaussian noise source of power sigma_e2. k0, k1 and sigma_e2 are calculated
as functions of the input.
The modulator's loop filter is assumed to have nearly infinite gain at
the test frequency.
Future versions may accommodate STFs.
"""
function predictSNR(ntf, R=64, amp=vcat(-120:10:-20, -15, -10:0); f0::Float64=0.0)
Nb = 100
XTAB = range(-2, stop=0, length=21)
#The following code was used to create the YTAB matrix
#YTAB = [];
#for xi=XTAB
# YTAB = [YTAB; hypergeo(0.5,1,xi) hypergeo(0.5,2,xi)];
#end
YTAB = [0.46575960516930 0.67366999387741;
0.47904652357101 0.68426650762558;
0.49316295981407 0.69527947902679;
0.50817364454269 0.70673173666000;
0.52414894104004 0.71864765882492;
0.54116523265839 0.73105299472809;
0.55930554866791 0.74397552013397;
0.57866013050079 0.75744456052780;
0.59932720661163 0.77149158716202;
0.62141352891922 0.78615015745163;
0.64503526687622 0.80145609378815;
0.67031890153885 0.81744754314423;
0.69740217924118 0.83416539430618;
0.72643494606018 0.85165339708328;
0.75758063793182 0.86995816230774;
0.79101717472076 0.88912981748581;
0.82693856954575 0.90922164916992;
0.86555624008179 0.93029111623764;
0.90710091590881 0.95239937305450;
0.95182400941849 0.97561222314835;
1.00000000000000 1.00000000000000;
]
if f0==0
band_of_interest = range(0, stop=pi/R, length=Nb)
else
band_of_interest = range(2*pi*(f0-0.25/R), stop=2*pi*(f0+0.25/R), length=Nb)
end
num, den = _zp2tf(ntf.z, ntf.p, 1)
num1 = num - den
N = length(amp)
snr = zeros(1,N) .- Inf
k0 = zeros(1,N)
k1 = zeros(1,N)
sigma_e2 = zeros(1,N)
u = 10 .^ (amp/20)
Nimp = 100
unstable = false
f_prev = 0.0; fprime = 0.0
m0 = 0.0; rho = 0.0; erfinvu = 0.0
for n=1:N
#Calculate sigma_e2
if f0==0
erfinvu = erfinv(u[n])
sigma_e2[n] = 1 - u[n]^2 - 2/pi*exp(-2*erfinvu^2)
else #Sinusoidal input.
#Solve sqrt(pi)*u/2 = rho * hypergeo(0.5,2,-rho^2);
#Formulate as solve f(rho)=0, f = rho*M(0.5,2,-rho^2)-K
#and use the secant method.
K = 0.5 * sqrt(pi) * u[n]
if n==1
rho = u[n]^2 #Initial guess; otherwise use previous value.
fprime = 1.0
end
drho = 1.0
for itn = 1:20
m0 = interp1_cubic(XTAB,YTAB[:,2],-rho^2)
f = rho*m0 - K
if( itn >1 )
fprime = max((f-f_prev)/drho,0.5) #Secant approx.
end
if abs(f) < 1e-8; break; end #!Converged
drho = -f/fprime
if abs(drho) > 0.2; drho = sign(drho)*0.2; end
if abs(drho) < 1e-6; break; end #!Converged
rho = rho + drho
f_prev = f
end
m1 = interp1_cubic(XTAB,YTAB[:,1], -rho^2)
sigma_e2[n] = 1 - u[n]^2/2 - 2/pi*m1^2
end #Sinusoidal input
#Iterate to solve for k1 and sigma_1.
#Using one of MATLAB's nonlinear equation solvers would be more efficient,
#but this function code would then require the optimization toolbox.
#!Future work: put in 2-D BFGS code.
k1[n] = (n>1) ? k1[n-1] : 1.2 #Use the previous value of k1 as the initial guess.
k1_prev = 0
itn = 0
k1sigma1 = (f0==0) ? sqrt(2/pi)*exp(-erfinvu^2) : sqrt(2/pi)*m1
local sigma_1 = 0.0
while abs(k1[n]-k1_prev) > 1e-6*(1+k1[n]) && itn < 100
#Create the function: H_hat = L1/(1-k1*L1)=(H-1)/(H*(1-k1)+k1).
den1 = (1-k1[n])*num + den*k1[n]
#Calculate pGain, the square of the 2-norm of H_hat.
pGain, Nimp = powerGain(num1, den1, Nimp)
if isinf(pGain)
unstable = true
break
end
sigma_1 = sqrt(pGain*sigma_e2[n])
k1_prev = k1[n]
k1[n] = k1sigma1/sigma_1
itn = itn+1
end
if unstable
break
end
if f0==0
y0 = sqrt(2)*erfinvu*sigma_1
k0[n] = u[n]/y0
else
k0[n] = sqrt(2/pi)*m0/sigma_1
end
h = _freqz(num, (1-k1[n])*num + k1[n]*den, band_of_interest)
#For both DC and sine wave inputs, use u^2/2 as the signal
#power since true DC measurements are usually impossible.
snr[n] = dbp( 0.5*u[n]^2 / (sum(h.^2)/(R*Nb)*sigma_e2[n]) )
end
return (snr, amp, k0, k1, sigma_e2)
end
"""`(snr,amp) = simulateSNR(ΔΣmodel,osr,amp; f0=0,nlev=2,f=1/(4*osr),k=13,quadrature=false)`
Determine the SNR for a delta-sigma modulator by using simulations.
`ΔΣmodel` describes the modulator by a noise transfer function (ntf) and the
number of quantizer levels (`nlev`). Alternatively, `ΔΣmodel` may be a
function taking the input signal as its sole argument:
- `ΔΣmodel::ZPKData`: z, p, k transfer function
- `ΔΣmodel::Array` ABCD matrix
- `ΔΣmodel::Function` funΔΣ(u) generating ΔΣ output.
The band of interest is defined by the oversampling ratio (`osr`)
and the center frequency (`f0`).
The input signal is characterized by the `amp` vector and the `f` variable.
- `amp` defaults to [-120 -110...-20 -15 -10 -9 -8 ... 0]dB, where 0 dB means
a full-scale (peak value = nlev-1) sine wave.
- `f` is the input frequency, normalized such that 1 -> fs;
- `f` is rounded to an FFT bin.
Using sine waves located in FFT bins, the SNR is calculated as the ratio
of the sine wave power to the power in all in-band bins other than those
associated with the input tone. Due to spectral smearing, the input tone
is not allowed to lie in bins 0 or 1. The length of the FFT is 2^k.
- If ntf is complex, simulateQDSM (which is slow) is called.
- If ABCD is complex, simulateDSM is used with the real equivalent of ABCD
in order to speed up simulations.
Future versions may accommodate STFs.
"""
function simulateSNR(arg1, osr::Int=64, amp=vcat(-120:10:-20, -15, -10:0);
f0::Float64=0.0, nlev::Int=2, f::Float64=NaN, k::Int=13, quadrature::Bool=false
)
is_function = isa(arg1, Function)
#Look at arg1 and decide if the system is quadrature
quadrature_ntf = false
if !is_function
if isa(arg1, ZPKData)
pz = [arg1.p, arg1.z]
for i=1:2
if any( abs.(imag.(poly(pz[i]))) .> 1e-4 )
quadrature = true
quadrature_ntf = true
end
end
else #ABCD matrix
if !all(all(imag.(arg1) .== 0))
quadrature = true
end
end
end
osr_mult = 2
if f0!=0 && !quadrature
osr_mult = 2*osr_mult
end
if isnan(f)
f = f0 + 0.5/(osr*osr_mult) #Halfway across the band
end
M = nlev-1
if quadrature && !quadrature_ntf
#Modify arg1 (ABCD) and nlev so that simulateDSM can be used
nlev = [nlev; nlev]
arg1 = mapQtoR(arg1)
end
if abs(f-f0) > 1/(osr*osr_mult)
@warn("The input tone is out-of-band.")
end
N = 2^k
if N < 8*2*osr #Require at least 8 bins to be "in-band"
@warn("Increasing k to accommodate a large oversampling ratio.")
k = ceil(Int, log2(8*2*osr))
N = 2^k
end
F = round(Int, f*N)
if abs(F)<=1
@warn("Increasing k to accommodate a low input frequency.")
#Want f*N >= 1
k = ceil(Int, log2(1/f))
N = 2^k
F = 2
end
Ntransient = 100
soft_start = 0.5*(1 .- cos.(2π/Ntransient * (0:div(Ntransient,2)-1)))
if !quadrature
tone = M * sin.(2π*F/N * (0:(N+Ntransient-1)))
tone[1:div(Ntransient,2)] = tone[1:div(Ntransient,2)] .* soft_start
else
tone = M * exp.(2π*j*F/N * (0:(N+Ntransient-1)) )
tone[1:div(Ntransient,2)] = tone[1:div(Ntransient,2)] .* soft_start
if !quadrature_ntf
tone = [real(tone); imag(tone)]
end
end
window = .5*(1 .- cos.(2π*(0:N-1)/N) ) #Hann window
if f0==0
#Exclude DC and its adjacent bin
inBandBins = div(N,2) .+ (3:round(Int, N/(osr_mult*osr)))
F = F-2
else
f1 = round(Int, N*(f0-1/(osr_mult*osr)))
f2 = round(Int, N*(f0+1/(osr_mult*osr)))
inBandBins = div(N,2) .+ (f1:f2) #Should exclude DC
F = F-f1+1
end
snr = zeros(size(amp))
i=1
for A = 10 .^ (amp/20)
if is_function
v = arg1(A*tone)
elseif quadrature_ntf
v = simulateQDSM(A*tone, arg1, nlev=nlev).v
else
v = simulateDSM(A*tone, arg1, nlev=nlev).v
if quadrature
v = v[1,:] + im*v[2,:]
end
end
hwfft = fftshift(fft(applywnd(v[1+Ntransient:N+Ntransient], window)))
snr[i] = calculateSNR(hwfft[inBandBins], F)
i=i+1
end
return (snr,amp)
end
#Not meant to be called externally:
function _calcSNRInfo(NTF, OSR::Int, M::Int, f0::Float64)
nlev=M+1
SNR, amp = simulateSNR(NTF, OSR, f0=f0, nlev=nlev)
pk_snr, pk_amp = peakSNR(SNR, amp) #Single values
vs_amp_predicted = nothing
if nlev == 2 #predictSNR() only supports 2 levels
SNR_pred, amp_pred = predictSNR(NTF, OSR, f0=f0)
amp_pred = conv2seriesmatrix2D(amp_pred*1.0) #Ensure amplitudes are Float64
vs_amp_predicted=(amp_pred, SNR_pred)
end
return (vs_amp_sim=(amp, SNR), peak=(pk_amp, pk_snr),
vs_amp_predicted=vs_amp_predicted, OSR=OSR
)
end
"""`calcSNRInfo(sig, dsm::RealDSM; NTF=nothing)`
"""
function calcSNRInfo(dsm::RealDSM; NTF=nothing)
isnothing(NTF) && (NTF = synthesizeNTF(dsm))
return _calcSNRInfo(NTF, dsm.OSR, dsm.M, dsm.f0)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 16355 | #RSDeltaSigma: State space utilities
#-------------------------------------------------------------------------------
#SEARCH: even, odd
#==getorder
===============================================================================#
#Figure out nu, nq, and order of the system & ensure dimensions are ok
function get_nu_nq_order(u, ABCD, nlev)
u = conv2seriesmatrix2D(u)
nu = size(u,1)
nq = length(nlev)
if !(size(ABCD,2) > 2 && size(ABCD,2)==nu+size(ABCD,1))
msg = "The ABCD argument does not have proper dimensions."
throw(ArgumentError(msg))
end
order = size(ABCD,1)-nq
return (nu, nq, order)
end
#==partitionABCD
===============================================================================#
"""`[A B C D] = partitionABCD(ABCD, m)`
Partition ABCD into A, B, C, D for an m-input state-space system.
"""
function partitionABCD(ABCD, m=nothing)
n = 0
if m!= nothing
n = size(ABCD,2) - m
else
n = minimum(size(ABCD)) - 1
m = size(ABCD,2) - n
end
r = size(ABCD,1) - n
A = ABCD[1:n, 1:n]
B = ABCD[1:n, n+1:n+m]
C = ABCD[n+1:n+r, 1:n]
D = ABCD[n+1:n+r, n+1:n+m]
return (A, B, C, D)
end
#==stuffABCD
===============================================================================#
function _stuffABCD(::DS{:CRFB}, a,g,b,c)
order = length(a)
ABCD = zeros(order+1,order+2)
(order2, isodd, Δodd) = orderinfo(order)
Δeven = 1-Δodd
#C=(0 0...c_n)
#This is done as part of the construction of A, below
#B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD[:,order+1] = b'
#B2 = -(a_1 a_2... a_n)
ABCD[1:order,order+2] = -a'
diagonal = 1:(order+2):order*(order+1)
ABCD[diagonal] = ones(1,order)
subdiag = diagonal[(1+Δeven):2:order] .+ 1
ABCD[subdiag] = c[1+Δeven:2:order]
supdiag = subdiag[(1+Δodd):length(subdiag)] .- 2
ABCD[supdiag] = -g
dly = (2+Δodd):2:order #row numbers of delaying integrators
ABCD[dly,:] = ABCD[dly,:] .+ diagm(c[dly .- 1]) * ABCD[dly .- 1,:]
return ABCD
end
#=
switch form
case 'CRFF'
%B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD(:,order+1) = b';
%B2 = -(c_1 0... 0)
ABCD(1,order+2) = -c(1);
diagonal = 1:(order+2):order*(order+1); % # of elements = order
ABCD(diagonal) = ones(1,order);
subdiag = diagonal(1:2:order-1)+1;
ABCD(subdiag)= c(2:2:order);
if even
multg = 1:2:order; % rows to have g*(following row) subtracted.
ABCD(multg,:) = ABCD(multg,:) - diagm(g)*ABCD(multg+1,:);
elseif order >= 3
supdiag = diagonal(3:2:order)-1;
ABCD(supdiag) = -g;
end
multc = 3:2:order; % rows to have c*(preceding row) added.
ABCD(multc,:) = ABCD(multc,:) + diagm(c(multc))*ABCD(multc-1,:);
ABCD(order+1,1:2:order) = a(1:2:order);
for i = 2:2:order
ABCD(order+1,:) = ABCD(order+1,:) + a(i)*ABCD(i,:);
end
case 'CIFB'
%C=(0 0...c_n)
% This is done as part of the construction of A, below
%B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD(:,order+1) = b';
%B2 = -(a_1 a_2... a_n)
ABCD(1:order,order+2) = -a';
diagonal = 1:(order+2):order*(order+1);
ABCD(diagonal) = ones(1,order);
subdiag = diagonal(1:order)+1;
ABCD(subdiag)= c;
supdiag = diagonal((2+odd):2:order)-1;
ABCD(supdiag) = -g;
case 'CIFF'
%B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD(:,order+1) = b';
%B2 = -(c_1 0... 0)
ABCD(1,order+2) = -c(1);
diagonal = 1:(order+2):order*(order+1);
ABCD(diagonal) = ones(1,order);
subdiag = diagonal(1:order-1)+1;
ABCD(subdiag)= c(2:end);
%C = (a_1 a_2... a_n)
ABCD(order+1,1:order) = a(1:order);
supdiag = diagonal((2+odd):2:order)-1;
ABCD(supdiag) = -g;
case 'CRFBD'
%C=(0 0...c_n)
ABCD(order+1,order) = c(order);
%B1 = (b_1 b_2... b_n), D=(b_n+1 0)
ABCD(:,order+1) = b';
%B2 = -(a_1 a_2... a_n)
ABCD(1:order,order+2) = -a';
diagonal = 1:(order+2):order*(order+1);
ABCD(diagonal) = ones(1,order);
dly = (1+odd):2:order; % row numbers of delaying integrators
subdiag = diagonal(dly)+1;
ABCD(subdiag)= c(dly);
supdiag = subdiag((1+odd):length(subdiag))-2;
ABCD(dly,:) = ABCD(dly,:) - diagm(g)*ABCD(dly+1,:);
if order>2
coupl = 2+even:2:order;
ABCD(coupl,:) = ABCD(coupl,:) + diagm(c(coupl-1))*ABCD(coupl-1,:);
end
case 'CRFFD'
diagonal = 1:(order+2):order*(order+1);
subdiag = diagonal(1:order-1)+1;
supdiag = diagonal(2:order)-1;
%B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD(:,order+1) = b';
%B2 = -(c_1 0... 0)
ABCD(1,order+2) = -c(1);
ABCD(diagonal) = ones(1,order);
multc = 2:2:order; % rows to have c*(preceding row) added.
if order>2
ABCD(subdiag(2:2:end)) = c(3:2:end);
end
if even
ABCD(supdiag(1:2:end)) = -g;
else
% subtract g*(following row) from the multc rows
ABCD(multc,:) = ABCD(multc,:) - diagm(g)*ABCD(multc+1,:);
end
ABCD(multc,:) = ABCD(multc,:) + diagm(c(multc))*ABCD(multc-1,:);
% C
ABCD(order+1,2:2:order) = a(2:2:order);
for i = 1:2:order
ABCD(order+1,:) = ABCD(order+1,:) + a(i)*ABCD(i,:);
end
% The above gives y(n+1); need to add a delay to get y(n).
% Do this by augmenting the states. Note: this means that
% the apparent order of the NTF is one higher than it acually is.
[A B C D] = partitionABCD(ABCD,2);
A = [A zeros(order,1); C 0];
B = [B; D];
C = [zeros(1,order) 1];
D = [0 0];
ABCD = [A B; C D];
case 'PFF'
%B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD(:,order+1) = b';
odd_1 = odd; % !! Bold assumption !!
odd_2 = 0; % !! Bold assumption !!
gc = g.* c(1+odd_1:2:end);
theta = acos(1-gc/2);
if odd_1
theta0 = 0;
else
theta0 = theta(1);
end
order_2 = 2*length(find(abs(theta-theta0)>0.5));
order_1 = order - order_2;
%B2 = -(c_1 0...0 c_n 0...0)
ABCD(1,order+2) = -c(1);
ABCD(order_1+1,order+2) = -c(order_1+1);
diagonal = 1:(order+2):order*(order+1); % # of elements = order
ABCD(diagonal) = ones(1,order);
i = [1:2:order_1-1 order-order_2+1:2:order]
subdiag = diagonal(i)+1;
ABCD(subdiag)= c(i+1);
if odd_1
if order_1 >= 3
supdiag = diagonal(3:2:order_1)-1;
ABCD(supdiag) = -g(1:(order_1-1)/2);
end
else
multg = 1:2:order_1; % rows to have g*(following row) subtracted.
ABCD(multg,:) = ABCD(multg,:) - diagm(g(1:order_1/2))*ABCD(multg+1,:);
end
if odd_2
if order_2 >= 3
supdiag = diagonal(order_1+2:2:order)-1;
ABCD(supdiag) = -g(1:(order_1-1)/2);
end
else
multg = order_1+1:2:order; % rows to have g*(following row) subtracted.
gg = g((order_1-odd_1)/2+1:end);
ABCD(multg,:) = ABCD(multg,:) - diagm(gg)*ABCD(multg+1,:);
end
% Rows to have c*(preceding row) added.
multc = [3:2:order_1 order_1+3:2:order];
ABCD(multc,:) = ABCD(multc,:) + diagm(c(multc))*ABCD(multc-1,:);
% C portion of ABCD
i = [1:2:order_1 order_1+1:2:order];
ABCD(order+1,i) = a(i);
for i = [2:2:order_1 order_1+2:2:order]
ABCD(order+1,:) = ABCD(order+1,:) + a(i)*ABCD(i,:);
end
case 'Stratos'
% code copied from case 'CIFF':
%B1 = (b_1 b_2... b_n), D=(b_(n+1) 0)
ABCD(:,order+1) = b';
%B2 = -(c_1 0... 0)
ABCD(1,order+2) = -c(1);
diagonal = 1:(order+2):order*(order+1);
ABCD(diagonal) = ones(1,order);
subdiag = diagonal(1:order-1)+1;
ABCD(subdiag)= c(2:end);
% code based on case 'CRFF':
multg = 1+odd:2:order-1; % rows to have g*(following row) subtracted.
ABCD(multg,:) = ABCD(multg,:) - diagm(g)*ABCD(multg+1,:);
% code copied from case 'CIFF':
%C = (a_1 a_2... a_n)
ABCD(order+1,1:order) = a(1:order);
case 'DSFB'
I = eye(order);
A0 = I;
A1 = zeros(order,order);
indices = 2:order+1:(order-1)*order; % subdiagonal
A1(indices) = c(1:order-1);
indices = order+1 : 2*(order+1) : order*order-1; %supdiagonal
A1(indices) = -g;
C0 = I;
C1 = I;
D0 = zeros(order,2);
if odd
C1(order,order) = 0;
else
A1(order-1:order,order-1:order) = [ 0 -g(end)/2; c(end-1) 0];
C0(order,order) = 0;
D0(order-1,2) = g(end)/2;
end
M = inv(I - A1*C1);
A = M * (A0 + A1*C0 );
B = M * ( [b(1:order)' -a'] + A1*D0 );
C = [zeros(1,order-1) c(order)];
D = [b(order+1) 0];
ABCD = [A B; C D];
otherwise
fprintf(1,'%s error: Form %s is not yet supported.\n',mfilename,form)
end
=#
"""`ABCD = stuffABCD(a,g,b,c,form='CRFB')`
Compute the ABCD matrix for the specified structure.
See realizeNTF.m for a list of supported structures.
`mapABCD` is the inverse function.
"""
function stuffABCD(a,g,b,c, form::Symbol=:CRFB)
order = length(a)
if length(b)==1
b = [b zeros(1,order)]
end
return _stuffABCD(DS(form), a, g, b, c)
end
#==mapABCD
===============================================================================#
#Common implementation for CRFB, CIFB, & CRFBD:
function _mapABCD_CRFB_CIFB_CRFBD(ABCD, subdiag, supdiag, order::Int, form::Symbol)
order2, isodd, Δodd = orderinfo(order)
Δeven = 1 - Δodd
c = ABCD[subdiag]
g = -ABCD[supdiag]
if :CRFB == form
dly = (2+Δodd):2:order #row numbers of delaying integrators.
ABCD[dly,:] = ABCD[dly,:] .- diagm(c[dly .- 1])*ABCD[dly .- 1,:]
elseif :CRFBD == form
dly = (1+Δodd):2:order #row numbers of delaying integrators.
ABCD[dly,:] = ABCD[dly,:] .+ diagm(g)*ABCD[dly .+ 1,:]
if order>2
coupl = 2+Δeven:2:order
ABCD[coupl,:] = ABCD[coupl,:] .- diagm(c[coupl .- 1])*ABCD[coupl .- 1,:]
end
end
a = -ABCD[1:order,order+2]'
b = ABCD[:,order+1]'
return (a,g,b,c)
end
_mapABCD(::DS{:CRFB}, ABCD, diagonal, subdiag, supdiag, order::Int) =
_mapABCD_CRFB_CIFB_CRFBD(ABCD, subdiag, supdiag, order, :CRFB)
_mapABCD(::DS{:CIFB}, ABCD, diagonal, subdiag, supdiag, order::Int) =
_mapABCD_CRFB_CIFB_CRFBD(ABCD, subdiag, supdiag, order, :CIFB)
_mapABCD(::DS{:CRFBD}, ABCD, diagonal, subdiag, supdiag, order::Int) =
_mapABCD_CRFB_CIFB_CRFBD(ABCD, subdiag, supdiag, order, :CRFBD)
#=
case 'CRFF'
c = [-ABCD(1,order+2) ABCD(subdiag(1:end-1))];
g = -ABCD(supdiag);
if even
multg = 1:2:order; %Rows to have g*(following row) added.
ABCD(multg,:) = ABCD(multg,:)+diag(g)*ABCD(multg+1,:);
end
multc=3:2:order; %Rows to have c*(preceding row) subtracted.
ABCD(multc,:)=ABCD(multc,:)-diag(c(multc))*ABCD(multc-1,:);
a(2:2:order)=ABCD(order+1,2:2:order);
for i=2:2:order %Recover a coeff.
ABCD(order+1,:)=ABCD(order+1,:)-a(i)*ABCD(i,:);
end
a(1:2:order)=ABCD(order+1,1:2:order);
b = ABCD(:,order+1)';
case 'CRFFD'
% CRFFD has an extra order. Correct the common variables
order = order-1;
order2, isodd, Δodd = orderinfo(order)
odd = rem(order,2); even = ~odd;
diagonal = diagonal(1:order);
subdiag = diagonal(1:order-1)+1;
supdiag = diagonal(2+Δodd:2:order)-1;
g = -ABCD(supdiag);
c = [-ABCD(1,order+3) ABCD(subdiag)];
a = zeros(1,order);
for i=1:2:order %Recover the a coefficients
a(i) = ABCD(order+1,i);
ABCD(order+1,:) = ABCD(order+1,:) - a(i)*ABCD(i,:);
end
a(2:2:order) = ABCD(order+1,2:2:order);
b = ABCD(1:order+1,order+2)';
for i=2:2:order %Recover the b coefficients
b(i) = b(i) - c(i) *b(i-1);
if isodd
b(i) = b(i) + g(i/2) *b(i+1);
end
end
yscale = ABCD(order+2,order+1);
a = a*yscale;
b(end) = b(end)*yscale;
case {'CIFF','Stratos'}
a = ABCD(order+1,1:order);
c = [-ABCD(1,order+2) ABCD(subdiag(1:end-1))];
g = -ABCD(supdiag);
b = ABCD(:,order+1)';
otherwise
fprintf(1,'%s error: Form %s is not yet supported.\n',mfilename,form)
end
=#
"""`(a,g,b,c) = mapABCD(ABCD, form=:CRFB)`
Compute the coefficients for the specified structure.
See `realizeNTF` for a list of supported structures.
`stuffABCD` is the inverse function.
"""
function mapABCD(ABCD, form::Symbol=:CRFB)
order=size(ABCD,1)-1
order2, isodd, Δodd = orderinfo(order)
diagonal = 1:(order+2):order*(order+1)
subdiag = diagonal[1:order] .+ 1
supdiag = diagonal[2+Δodd:2:order] .- 1
#Algorithm below modifies ABCDs copy so as not to modify original:
ABCD = deepcopy(ABCD)
#Do the mapping.
return _mapABCD(DS(form), ABCD, diagonal, subdiag, supdiag, order)
end
#==scaleABCD
===============================================================================#
"""`(ABCDs,umax,S)=scaleABCD(ABCD; nlev=2,f=0,xlim=1,ymax=nlev+5,umax,N=10^5,N0=10)`
Scale the loop filter of a general delta-sigma modulator for dynamic range.
- ABCD: The state-space description of the loop filter.
- nlev: The number of levels in the quantizer.
- xlim: A vector or scalar specifying the limit for each state variable.
- ymax: The stability threshold. Inputs that yield quantizer inputs above ymax
are considered to be beyond the stable range of the modulator.
- umax: The maximum allowable input amplitude. umax is calculated if it
is not supplied.
- ABCDs: The state-space description of the scaled loop filter.
- S: The diagonal scaling matrix, ABCDs = [S*A*Sinv S*B; C*Sinv D];
xs = S*x;
"""
function scaleABCD(ABCD; nlev::Int=2, f=0, xlim=1, ymax=NaN, umax=NaN, N::Int=10^5, N0=10)
N_sim=N
order = size(ABCD,1)-1
if isnan(ymax)
ymax=nlev+5
end
if length(xlim)==1
xlim = xlim * ones(1,order) #Convert scalar xlim to a vector
end
quadrature = !isreal(ABCD)
#Make this function repeatable
#rng_state = rng; rng('default') #Original code
Random.seed!(0)
#Envelope for smooth start-up
raised_cosine = 0.5*(1 .- cos.(pi/N0 * (0:N0-1)))'
if isnan(umax)
#Simulate the modulator with DC or sine wave inputs to detect its stable
#input range.
#First get a rough estimate of umax.
ulist =(0.1:0.1:1.0) * (nlev-1)
umax = nlev-1
N = 10^3
u0 = [ exp.(2π*j*f*(-N0:-1))' .* raised_cosine exp.(2π*j*f*(0:N-1))' ] .+ 0.01*[1 j]*randn(2, N+N0)
if !quadrature; u0 = real.(u0); end
local simresult
for u in ulist
if !quadrature
simresult = simulateDSM(u*u0,ABCD, nlev=nlev, trackmax=true)
else
simresult = simulateQDSM(u*u0,ABCD, nlev=nlev, trackmax=true)
end
if maximum(abs.(simresult.y)) > ymax
umax = u #umax is the smallest input found which causes 'instability'
break
end
end
if umax == ulist[1]
umaxstr = @sprintf("%.1f", umax)
msg = "Modulator is unstable even with an input amplitude of $umaxstr."
throw(msg)
end
end
#More detailed simulation
N = N_sim
u0 = [ exp.(2π*j*f*(-N0:-1))' .* raised_cosine exp.(2π*j*f*(0:N-1))' ] + 0.01*[1 j]*randn(2, N+N0)
if !quadrature; u0 = real.(u0); end
maxima = zeros(1,order) .- 1
ulist = range(0.7*umax, stop=umax, length=10)
local simresult
for u in ulist
if !quadrature
simresult = simulateDSM(u*u0,ABCD, nlev=nlev, trackmax=true)
else
simresult = simulateQDSM(u*u0,ABCD, nlev=nlev, trackmax=true)
end
if maximum(abs.(simresult.y)) > ymax
break
end
#We need to do this at least once.
umax = u #umax is the largest input which keeps |y| < ymax
#maxima = maximum([maxima; simresult.xmax'], dims=1)
maxima = max.(maxima, simresult.xmax')
end
#Scale the modulator so that all states are at most xlim.
scale = maxima ./ xlim
scale = scale[:] #Convert to simple vector
S = diagm(1 ./ scale); Sinv = diagm(scale) #xs = S * x
(A, B, C, D) = partitionABCD(ABCD)
ABCDs = [S*A*Sinv S*B; C*Sinv D]
Random.seed!() #original code restores state: rng(rng_state)
return (ABCDs, umax, S)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 10869 | #RSDeltaSigmaPort: Synthesize NTFs
#-------------------------------------------------------------------------------
#==Warnings
===============================================================================#
function _synthesizeNTF_warn_Hinf()
msg = string(@__FILE__, ": Unable to achieve specified Hinf.\n",
"Setting all NTF poles to zero."
)
@warn(msg)
end
function _synthesizeNTF_warn_iter()
msg = string(@__FILE__, ": Danger! Iteration limit exceeded.")
@error(msg)
end
function _synthesizeNTF_warn_Hinf_iter()
msg = string(@__FILE__, ": Danger! Hinf iteration limit exceeded.")
@error(msg)
end
#==synthesizeNTF_setup()
===============================================================================#
function synthesizeNTF_setup(order::Int, OSR::Int, opt, f0::Float64, isNTF1::Bool)
local z
order = Float64(order) #Type stability
dw = π/OSR
if f0!=0 #Bandpass design-- halve the order temporarily.
order = order/2
dw = π/(2*OSR)
end
order_i = array_round(order)
#Determine the zeros.
if length(opt)==1
if opt==0
z = zeros(order_i)
else
opt_for_zeros = isNTF1 ? (1+mod(opt-1,2)) : opt
z = dw*ds_optzeros(order, opt_for_zeros)
if isempty(z)
throw_unreachable()
return;
end
end
if f0!=0 # Bandpass design-- shift and replicate the zeros.
order = order*2
z = z .+ 2π*f0
z = conj.(z)
z = vcat(z, -z)
end
z = exp.(j*z)
else
z = opt[:] * complex(1.0) #Ensure is Vector{Complex{Float64}}
end
#Order might possibly be a N.5 value (float) here. Not sure if this is actually the intent.
return (order, z) #Order potentially gets modified. Not sure this is actually the intent.
end
#==synthesizeNTF0()
===============================================================================#
function _synthesizeNTF0_z(order::Float64, OSR::Int, z::Vector{Complex{Float64}}, H_inf::Float64, f0::Float64)
order_i = array_round(order)
Ts = 1.0
ntf = _zpk(z,zeros(order_i),1,Ts)
itn_limit = 100
#ntf_z, ntf_p, ntf_k, = zpkdata(ntf)
# Iteratively determine the poles by finding the value of the x-parameter
# which results in the desired H_inf.
if f0 == 0 # Lowpass design
HinfLimit = 2^order # !!! The limit is actually lower for opt=1 and low OSR
if H_inf >= HinfLimit
_synthesizeNTF_warn_Hinf()
ntf.p = zeros(order_i)
else
x=0.3^(order-1) # starting guess
converged = 0
local fprev = 0 #Initialize
local delta_x = 0 #Initialize
for itn=1:itn_limit
me2 = -0.5*(x^(2/order))
w = (2*collect(1:order_i) .- 1)*π/order #VERIFYME
mb2 = 1 .+ me2*exp.(j*w)
p = mb2 - sqrt.(mb2 .^ 2 .- 1)
out = findall(abs.(p) .> 1)
p[out] = 1 ./ p[out] # reflect poles to be inside the unit circle.
ntf.z = z; ntf.p = cplxpair(p)
f = real(evalTF(ntf,-1))-H_inf
# [ x f ]
if itn==1
delta_x = -f/100
else
delta_x = -f*delta_x/(f-fprev)
end
xplus = x+delta_x
if xplus>0
x = xplus
else
x = x*0.1
end
fprev = f;
if abs(f)<1e-10 || abs(delta_x)<1e-10
converged = 1
break
end
if x>1e6
_synthesizeNTF_warn_Hinf()
ntf.z = z; ntf.p = zeros(order_i)
break;
end
if itn == itn_limit
_synthesizeNTF_warn_iter()
end
end
end
else # Bandpass design.
x = 0.3^(order/2-1) # starting guess (not very good for f0~0)
if f0>0.25
z_inf=1
else
z_inf=-1
end
c2pif0 = cos(2π*f0)
local fprev = 0 #Initialize
local delta_x = 0 #Initialize
for itn=1:itn_limit
e2 = 0.5*x^(2/order)
w = (2*collect(1:order_i) .- 1)*π/order #VERIFYME
mb2 = c2pif0 .+ e2*exp.(j*w)
p = mb2 .- sqrt.(mb2.^2 .- 1)
# reflect poles to be inside the unit circle.
out = findall(abs.(p) .> 1)
p[out] = 1 ./ p[out]
ntf.z = z; ntf.p = cplxpair(p)
f = real(evalTF(ntf,z_inf))-H_inf
# [x f]
if itn==1
delta_x = -f/100
else
delta_x = -f*delta_x/(f-fprev)
end
xplus = x+delta_x
if xplus > 0
x = xplus
else
x = x*0.1
end
fprev = f
if abs(f)<1e-10 || abs(delta_x)<1e-10
break
end
if x>1e6
_synthesizeNTF_warn_Hinf()
ntf.p = zeros(order_i)
break
end
if itn == itn_limit
_synthesizeNTF_warn_iter()
end
end
end
ntf.z = cleancplxpair(ntf.z)
ntf.p = cleancplxpair(ntf.p)
return ntf
end
function synthesizeNTF0(order::Int, OSR::Int, opt, H_inf::Float64, f0::Float64)
(order, z) = synthesizeNTF_setup(order, OSR, opt, f0, false)
_synthesizeNTF0_z(order, OSR, z, H_inf, f0)
end
#==synthesizeNTF1()
===============================================================================#
function _synthesizeNTF1_z(order::Float64, osr::Int, opt, z::Vector{Complex{Float64}}, H_inf::Float64, f0::Float64)
order_i = array_round(order)
zp = z[findall(angle.(z) .> 0)]
x0 = (angle.(zp) .- 2π*f0) * osr / π
if opt==4 && f0 != 0
#Do not optimize the zeros at f0
deleteat!(x0, abs.(x0) .< 1e-10)
end
Ts = 1.0
ntf = _zpk(z,zeros(order_i),1,Ts)
Hinf_itn_limit = 100
opt_iteration = 5 #Max number of zero-optimizing/Hinf iterations
while opt_iteration > 0
#Iteratively determine the poles by finding the value of the x-parameter
#which results in the desired H_inf.
ftol = 1e-10
z_inf = f0>0.25 ? 1 : -1
if f0 == 0 #Lowpass design
HinfLimit = 2^order #!!! The limit is actually lower for opt=1 and low osr
if H_inf >= HinfLimit
_synthesizeNTF_warn_Hinf()
ntf.p = zeros(order_i,1)
else
x=0.3^(order-1) #starting guess
converged = false
local delta_x
local fprev
for itn in 1:Hinf_itn_limit
me2 = -0.5*(x^(2/order))
w = (2*collect(1:order_i) .- 1)*π/order #VERIFYME
mb2 = 1 .+ me2*exp.(j*w)
p = mb2 .- sqrt.(mb2 .^ 2 .- 1)
out = findall(abs.(p) .> 1)
p[out] = 1 ./ p[out] #reflect poles to be inside the unit circle.
p = cplxpair(p)
ntf.z = z; ntf.p = p
f = real(evalTF(ntf, z_inf))-H_inf
#[ x f ]
if itn==1
delta_x = -f/100
else
delta_x = -f*delta_x/(f-fprev)
end
xplus = x+delta_x
x = (xplus>0) ? xplus : x*0.1
fprev = f
if abs(f)<ftol || abs(delta_x)<1e-10
converged = true
break
end
if x>1e6
_synthesizeNTF_warn_Hinf()
ntf.z = z; ntf.p = zeros(order_i,1)
break
end
if itn == Hinf_itn_limit
_synthesizeNTF_warn_iter()
end
end
end
else #Bandpass design.
x = 0.3^(order/2-1) #starting guess (not very good for f0~0)
c2pif0 = cos(2π*f0)
local delta_x
local fprev
for itn=1:Hinf_itn_limit
e2 = 0.5*x^(2/order)
w = (2*collect(1:order_i) .- 1)*π/order
mb2 = c2pif0 .+ e2*exp.(j*w)
p = mb2 .- sqrt.(mb2 .^ 2 .- 1)
#reflect poles to be inside the unit circle.
out = findall(abs.(p) .> 1)
p[out] = 1 ./ p[out]
p = cplxpair(p)
ntf.z = z; ntf.p = p
f = real(evalTF(ntf, z_inf)) - H_inf
#[x f]
if itn==1
delta_x = -f/100
else
delta_x = -f*delta_x/(f-fprev)
end
xplus = x+delta_x
x = (xplus>0) ? xplus : x*0.1
fprev = f
if abs(f)<ftol || abs(delta_x)<1e-10
break
end
if x>1e6
_synthesizeNTF_warn_Hinf()
p = zeros(order_i,1)
ntf.p = p
break
end
if itn == Hinf_itn_limit
_synthesizeNTF_warn_Hinf_iter()
end
end
end
########################################################
if opt < 3 #Do not optimize the zeros
opt_iteration = 0
else
if f0 == 0
ub = ones(size(x0))
lb = zeros(size(x0))
else
ub = 0.5*ones(size(x0))
lb = -ub
end
opt = Optim.Options(x_tol=0.001, f_tol=0.01, iterations=100)
f2min(x) = ds_synNTFobj1(x,p,osr,f0) #Function to minimize (optimum point)
x = optimize(f2min, x0, lb, ub, Fminbox(GradientDescent())).minimum
x0 = x
z = exp.(2π*j*(f0 .+ 0.5/osr*x))
if f0>0
z = padt(z, array_round(length(p)/2), val=exp(2π*j*f0))
end
z = vcat(z, conj.(z))
if f0==0
z = padt(z, length(p), val=1.0)
end
ntf.z = z; ntf.p = p
if abs( real(evalTF(ntf, z_inf)) - H_inf ) < ftol
opt_iteration = 0
else
opt_iteration = opt_iteration - 1
end
end
end
ntf.z = cleancplxpair(ntf.z)
ntf.p = cleancplxpair(ntf.p)
return ntf
end
function synthesizeNTF1(order::Int, OSR::Int, opt, H_inf::Float64, f0::Float64)
(order, z) = synthesizeNTF_setup(order, OSR, opt, f0, true)
_synthesizeNTF1_z(order, OSR, opt, z, H_inf, f0)
end
#==synthesizeNTF()
===============================================================================#
"""`NTF = synthesizeNTF(order=3, OSR=64, opt=0, H_inf=1.5, f0=0)`
Synthesize a noise transfer function for a delta-sigma modulator.
# Inputs
- `order`: order of the modulator
- `OSR`: oversampling ratio
- `opt`: flag for optimized zeros\r
- `--> opt=0` -> not optimized,
- `--> opt=1` -> optimized,
- `--> opt=2` -> optimized with at least one zero at band-center,
- `--> opt=3` -> optimized zeros (Requires MATLAB6 and Optimization Toolbox),
- `--> opt=[z]` -> zero locations in complex form (TODO?)
- `H_inf`: maximum NTF gain
- `f0`: center frequency (1->fs)
# Output
`NTF` is a `_zpk` object containing the zeros and poles of the NTF
(See [`_zpk`](@ref)).
# Note
This is actually a wrapper function which calls either the
appropriate version of `synthesizeNTF` based on the availability
of the `fmincon` function from the Optimization Toolbox
"""
function synthesizeNTF(order::Int=3, osr::Int=64; opt=0, H_inf::Float64=1.5, f0::Float64=0.0)
if f0 > 0.5
throw(ErrorException("f0 must be less than 0.5."))
end
if f0 != 0 && f0 < 0.25/osr
@warn(string("(", @__FILE__, ") Creating a lowpass ntf."))
f0 = 0
end
if f0 != 0 && mod(order,2) != 0
throw(ErrorException("order must be even for a bandpass modulator."))
end
if length(opt)>1 && length(opt)!=order
throw(ErrorException("The opt vector must be of length $order(=order)."))
end
if true #Use version that applies optimization
#throw_notimplemented()
return synthesizeNTF1(order,osr,opt,H_inf,f0)
else
return synthesizeNTF0(order,osr,opt,H_inf,f0)
end
end
"""`NTF = synthesizeNTF(dsm)`
Synthesize a noise transfer function for a ΔΣ modulator.
# Output
`NTF` is a `_zpk` object containing the zeros and poles of the NTF
(See [`_zpk`](@ref)).
# See also:
- `dsm` types: [`RealDSM`](@ref), [`QuadratureDSM`](@ref)
- [`clans()`](@ref): "Closed-loop analysis of noise-shaper." An alternative
method for selecting NTFs based on the 1-norm of the impulse
response of the NTF.
- [`synthesizeChebyshevNTF`](@ref): Select a type-2 highpass Chebyshev NTF.
This function does a better job than `synthesizeNTF` if `OSR` or `H_inf`
is low.
- [`_zpk`](@ref)
""" synthesizeNTF
synthesizeNTF(dsm::RealDSM) =
synthesizeNTF(dsm.order, dsm.OSR, opt=dsm.opt, H_inf=dsm.Hinf, f0=dsm.f0)
#synthesizeNTF(dsm::QuadratureDSM) =
# synthesizeQNTF(dsm.order, dsm.OSR, dsm.f0, dsm.NG, dsm.ING)
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 711 | #RSDeltaSigma: Text generation
#-------------------------------------------------------------------------------
const ORDINAL_STRING = [
"Zeroth", "First", "Second", "Third", "Fourth", "Fifth",
"Sixth", "Seventh", "Eighth", "Nineth", "Tenth",
"Twelfth", "Thirteenth",
]
function ds_orderString(n::Int, capitalize::Bool=false)
idx = n+1
if idx in keys(ORDINAL_STRING)
s = ORDINAL_STRING[idx]
capitalize || (s = lowercase(s))
else
s = "$(n)th"
end
return s
end
function str_modulatortype(dsm::AbstractDSM)
typestr = (0==dsm.f0) ? "Lowpass" : "Bandpass"
if isquadrature(dsm)
typestr = "Quadrature " * typestr
end
return ds_orderString(dsm.order, true) * "-Order " * typestr
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1465 | #RSDeltaSigmaPort: Time domain operations/utilities
#-------------------------------------------------------------------------------
"""`y = delay(x, n=1)`
Delay signal x by n samples
"""
function delay(x, n::Int=1)
local y
nx = length(x)
if nx <= n
y = zeros(size(x))
else
if 1 == length(size(x))
y = vcat(zeros(n), x[1:nx-n])
elseif 1 == size(x, 2) #Still a row vector, but 2D+ now
y = vcat(zeros(n,1), x[1:nx-n,[1]])
else #Assume a single row vector:
y = hcat(zeros(1,n), x[[1],1:nx-n])
end
end
return y
end
"""`y = sinc_decimate(x, m, r)`
Decimate x by m-th order sinc of length r.
"""
function sinc_decimate(x, m::Int, r::Int)
x = x[:] #Vector form
for i in 1:m
x = cumsum(x)
x = vcat(x[1:r], x[r+1:end] .- x[1:end-r])/r
end
y = x[r:r:end]
return y
end
"""`applywnd(v, wnd)`
Safely apply window `wnd`.
Avoids calling `fft()` on an accidentally large matrix.
"""
function applywnd(v, wnd)
szv = size(v); szw = size(wnd)
if length(szv) < 1 || length(szw) < 1
throw("applywnd: Does not support 0-length arrays")
elseif length(szv) > 2 || length(szw) > 2
throw("applywnd: Does not yet support 3D+ arrays")
elseif szv == szw
return v .* wnd
elseif 1 == length(szw) #Wnd is 1D (column) matrix
if szv[2] == szw[1]
return v .* wnd'
end
elseif 1 == szw[1] #Wnd is a row matrix
if szv[2] == szw[2]
return v .* wnd
end
end
throw(ArgumentError("Unexpected input sizes: $szv & $szw"))
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 8661 | #RSDeltaSigmaPort: utilities for transfer functions
#-------------------------------------------------------------------------------
"""`y = evalRPoly(roots,x,k=1)`
Compute the value of a polynomial which is given in terms of its roots.
"""
function evalRPoly(roots,x::AbstractArray,k=1)
y = k * ones(size(x))
finiteroots = findall(isfinite.(roots))
roots = roots[finiteroots]
for i in 1:length(roots)
y = y.*(x .- roots[i])
end
return y
end
evalRPoly(roots,x,k=1) = evalRPoly(roots, [x], k)[1]
"""`h = evalTF(tf,z)`
Evaluates the rational function described by the struct tf
at the point(s) given in the z vector.
TF must be either a zpk object or a struct containing
- form: 'zp' or 'coeff'
- zeros,poles,k: if form=='zp'
- num,den: if form=='coeff'
In Matlab 5, the ss/freqresp() function does nearly the same thing.
"""
function evalTF(tf::ZPKData,z)
h = tf.k * evalRPoly(tf.z,z) ./ evalRPoly(tf.p,z)
return h
end
function evalTF(tf,z)
throw(ErrorException("Transfer function of this type not currently supported."))
#elseif any(strcmp(fieldnames(tf),'form'))
# if strcmp(tf.form,'zp')
# h = tf.k * evalRPoly(tf.zeros,z) ./ evalRPoly(tf.poles,z);
# elseif strcmp(tf.form,'coeff')
# h = polyval(tf.num,z) ./ polyval(tf.den,z);
# else
# fprintf(1,'%s: Unknown form: %s\n', mfilename, tf.form);
# end
#else % Assume zp form
# h = tf.k * evalRPoly(tf.zeros,z) ./ evalRPoly(tf.poles,z);
#end
end
"""`H=evalTFP(Hs, Hz, f)`
Compute the value of a transfer function product Hs*Hz at a frequency f,
where Hs is a cts-time TF and Hz is a discrete-time TF.
Both Hs and Hz are SISO zpk objects.
This function attempts to cancel poles in Hs with zeros in Hz.
"""
function evalTFP(Hs,Hz,f::AbstractArray)
(szeros, spoles, sk) = _zpkdata(Hs, 1)
(zzeros, zpoles, zk) = _zpkdata(Hz, 1)
slim = min(1e-3, max(1e-5, eps(1.0)^(1/(1+length(spoles)))))
zlim = min(1e-3, max(1e-5, eps(1.0)^(1/(1+length(zzeros)))))
H = zeros(size(f))
w = 2*pi*f; s = j*w; z=exp.(s)
for i in 1:length(f)
wi = w[i]; si = s[i]; zi = z[i]
cancel = false
if !isempty(spoles)
cancel = abs.(si .- spoles) .< slim
end
if !any(cancel)
#wi is far from a pole, so just use the product Hs*Hz
#H[i] = evalTF(Hs,si) * evalTF(Hz,zi);
#use evalRPoly directly with z/p/k data, much faster. (David Alldred, Feb 4 2013)
H[i] = sk * evalRPoly(szeros,si) / evalRPoly(spoles,si) *
zk * evalRPoly(zzeros,zi) / evalRPoly(zpoles,zi)
else
#cancel pole(s) of Hs with corresponding zero(s) of Hz
cancelz = abs.(zi .- zzeros) .< zlim
sumcancel = sum(1*cancel); sumcancelz = sum(1*cancelz)
if sumcancelz > sumcancel
H[i] = 0.0
elseif sumcancelz < sumcancel
H[i] = Inf
else
H[i] = evalRPoly(szeros,si,sk) *
zi^sumcancel * evalRPoly(zzeros[.!cancelz],zi,zk) /
(evalRPoly(spoles[.!cancel],si,1)*evalRPoly(zpoles,zi,1))
end
end
end
return H
end
evalTFP(Hs,Hz,f) = evalTFP(Hs,Hz,[f])[1] #Single value
"""`evalMixedTF(tf,f, df=1e-5)`
Compute the mixed transfer function tf at a frequency f.
tf is a struct array with fields Hs and Hz wich represent
a continuous-time/discrete-time tfs which must be multiplied together
and then added up.
"""
function evalMixedTF(tf::CTDTPrefilters, f; df=1e-5)
H = zeros(size(f))
for i = 1:length(tf)
H = H + evalTFP(tf[i].Hs, tf[i].Hz, f)
end
err = findall(isnan.(H) .| isinf.(H))
if !isempty(err)
#Need to fill in the holes. !! Use a "nearby" frequency point
for i in err
H[i] = evalMixedTF(tf, f[i] .+ df, df=df*10)
end
end
return H
end
#==Calculators
===============================================================================#
"""`g = rmsGain(H,f1,f2,N=100)`
Compute the root mean-square gain of the discrete-time
tf H in the frequency band (f1,f2)
"""
function rmsGain(H,f1,f2,N::Int=100)
w = collect(range(2*pi*f1, stop=2*pi*f2, length=N))
g = norm( evalTF(H, exp.(j*w)) ) / sqrt(N)
return g
end
"""`(pGain, Nimp) = powerGain(num,den,Nimp0=100)`
Calculate the power gain of a TF given in coefficient form.
- `Nimp` is the recommended number of impulse response samples for use
in future calls and `Nimp0` is the suggested number to use.
"""
function powerGain(num, den, Nimp0::Int=100)
Nimp = Nimp0
unstable = false
sys = _tf(num,den,1)
(imp,) = _impulse(sys, Nimp)
if sum(abs.(imp[Nimp-10:Nimp])) < 1e-8 && Nimp > 50 #Use fewer samples.
Nimp = round(Int, Nimp/1.3)
else
while sum(abs.(imp[Nimp-10:Nimp])) > 1e-6
Nimp = Nimp*2
(imp,) = _impulse(sys, Nimp)
if sum(abs.(imp[Nimp-10:Nimp])) >= 50 || Nimp >= 1e4
#H is close to being unstable
unstable = true
break
end
end
end
pGain = unstable ? Inf : sum(imp .^ 2)
return (pGain, Nimp)
end
"""`zpk2 = cancelPZ(zpk1, tol=1e-6)`
Cancel zeros/poles in a zpk system
"""
function cancelPZ(zpk1, tol::Float64=1e-6)
(z, p) = _zpkdata(zpk1, 1)
zpk2 = deepcopy(zpk1) #Captures k, and whether tf is in s or z
#Need to go in reverse order because z gets smaller with each cancellation
for i = length(z):-1:1
d = z[i] .- p
cancel = findall(abs.(d) .< tol)
if !isempty(cancel)
deleteat!(p, cancel[1])
deleteat!(z, i)
end
end
zpk2.z = z
zpk2.p = p
return zpk2
end
#==infnorm
===============================================================================#
"""`nabsH(w, H)`
Computes the negative of the absolute value of H
at the specified frequency on the unit circle.
This function is used by infnorm().
"""
function nabsH(w, H)
z = exp.(j*w)
return -abs.(evalTF(H, z))
end
"""`(Hinf,fmax) = infnorm(H)`
Find the infinity norm of a z-domain transfer function.
Get a rough idea of the location of the maximum.
"""
function infnorm(H)
N = 129
w = range(0, stop=2π, length=N); dw = 2π/(N-1)
Hval = abs.(evalTF(H, exp.(j*w)))
wi = argmax(abs.(Hval))[1]
Hinf = Hval[wi]
local wmax
if true #NEEDS_OPTIMIZATION
opt = Optim.Options(x_tol=1e-8, f_tol=1e-6)
f2min(w) = nabsH(w, H) #Function to minimize (optimum point)
lower = w[wi]-dw; upper = w[wi]+dw
wmax = optimize(f2min, lower, upper, GoldenSection()).minimum
else
msg = "Hinf: Warning. Optimization toolbox functions not found.\n" *
" The result returned may not be very accurate."
@warn(msg)
wmax = w[wi]
end
Hinf = -nabsH(wmax, H)
fmax = wmax/(2*pi)
return (Hinf, wmax)
end
#==calculateTF
===============================================================================#
#Use a loophole to set complex poles and zeros in zpk objects
#MALaforge: I think this tries to implement minreal()
function setPolesAndZeros(z,p,k)
tol = 3e-5 #tolerance for pole-zero cancellation
z = deepcopy(z) #Don't change original
Z = _zpk(ComplexF64[0.0],ComplexF64[],1.0,1.0)
ztf = _zpk(ComplexF64[],ComplexF64[],k,1.0)
for i in 1:length(p)
match = abs.(p[i] .- z) .< tol
if any(match)
f = findall(match)
deleteat!(z, f[1])
else
#ztf = ztf/(Z-p[i]) #Original code
push!(ztf.p, p[i]) #VERIFYME: Think this is intent of original code
end
end
for i in 1:length(z)
#ztf = ztf*(Z-z[i]) #Original code
push!(ztf.z, z[i]) #VERIFYME: Think this is intent of original code
end
return ztf
end
"""`(NTF,STF) = calculateTF(ABCD, k=1, wantSTF=true)`
Calculate the NTF and STF of a delta-sigma modulator whose loop filter
is described by the ABCD matrix, assuming a quantizer gain of k.
The NTF and STF are zpk objects.
"""
function calculateTF(ABCD, k::Vector=[1], wantSTF::Bool=true)
nq = length(k)
n = size(ABCD,1) - nq
nu = size(ABCD,2) - size(ABCD,1)
A,B,C,D = partitionABCD(ABCD, nu+nq)
B1 = B[:,1:nu]
B2 = B[:,nu+1:end]
D1 = D[:,1:nu]
if any(any( D[:,nu+1:end] .!= 0 ))
throw("D2 must be zero")
end
K = diagm(k)
#Find the noise transfer function by forming the closed-loop
#system (sys_cl) in state-space form.
Acl = A + B2*K*C
Bcl = hcat(B1 + B2*K*D1, B2)
Ccl = K*C
Dcl = [K*D1 eye(nq)]
#map(display, [Acl, Bcl, Ccl, Dcl])
local NTF, STF
tol = min(1e-3, max(1e-6, eps(1.0)^(1/(size(ABCD,1)))))
if false # true || all(imag.(ABCD) .== 0) #real modulator
#REQUESTHELP
sys_cl = _ss(Acl,Bcl,Ccl,Dcl,1)
sys_tf = ControlSystems.tf(sys_cl)
mtfs = _minreal(sys_tf, tol)
display(mtfs)
@show (mtfs.nu, mtfs.ny), (nu, nq)
#MALaforge: Can't make sense of the following; not sure what structure should be:
STF = mtfs[:,1:nu]
NTF = mtfs[:,nu+1:nu+nq]
else #quadrature modulator and less advanced language features
p = eig(Acl)
NTFz = eig(A)
NTF = setPolesAndZeros(NTFz, p, 1)
if wantSTF
@warn("Sorry. calculateTF cannot compute the STF for a complex modulator with this version of the code.")
end
STF=nothing
end
return (NTF, STF)
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 778 | #RSDeltaSigmaPort: Windowing functions
#-------------------------------------------------------------------------------
"""`w = ds_hann(n)`
A Hann window of length n. Does not smear tones located exactly in a bin.
"""
function ds_hann(n::Int)
w = .5*(1 .- cos.(2*pi*collect(0:n-1)/n) )
return w
end
"""`circ_smooth(x,n)`
"""
function circ_smooth(x::Array{T, 2}, n::Int) where T <: Number
szx = size(x)
if szx[1] != 1
throw("Arrays with nrows!=1 are not yet supported")
end
nx = szx[2]
w = ds_hann(n)'/(n/2)
xw = conv(x, w)
y = circshift(hcat(xw[:, n:nx], xw[:, 1:n-1] .+ xw[:, nx+1:end]), (0, div(n,2)-1))
return y
end
function circ_smooth(x::Vector, n::Int)
x = conv2seriesmatrix2D(x)
return circ_smooth(x, n)[:] #Keep things in vector form
end
#Last line
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 562 | @testset "Array-related tests" begin show_testset_section() #Scope for test data
@testset "pad*()" begin show_testset_description()
v = [4,5,6,10]
@test padt(v, 7) == [0,0,0, 4,5,6,10]
@test padl(v, 7) == [0,0,0, 4,5,6,10]
@test padb(v, 7) == [4,5,6,10, 0,0,0]
@test padr(v, 7) == [4,5,6,10, 0,0,0]
v = [4 5 6; 8 10 11]
@test padt(v, 5) == [0 0 0; 0 0 0; 0 0 0; 4 5 6; 8 10 11]
@test padb(v, 5) == [4 5 6; 8 10 11; 0 0 0; 0 0 0; 0 0 0]
@test padl(v, 7) == [0 0 0 0 4 5 6; 0 0 0 0 8 10 11]
@test padr(v, 7) == [4 5 6 0 0 0 0; 8 10 11 0 0 0 0]
end
end
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 1284 | @testset "Ml function tests" begin show_testset_section() #Scope for test data
p = exp.((2*pi*im/7) .* collect(0:6))
#=
1.0 + 0.0im
0.6234898018587336 + 0.7818314824680298im
-0.22252093395631434 + 0.9749279121818236im
-0.900968867902419 + 0.43388373911755823im
-0.9009688679024191 - 0.433883739117558im
-0.2225209339563146 - 0.9749279121818236im
0.6234898018587334 - 0.7818314824680299im
=#
@testset "cplxpair()" begin show_testset_description()
rtol = 1e-12
pA = exp.((2*pi*im/7) .* collect(0:6))
pA = RSDeltaSigmaPort.cplxpair(pA)
p = -0.900968867902419 + 0.43388373911755823im
@test pA[1] ≈ conj(p) rtol = rtol
@test pA[2] ≈ p rtol = rtol
p = -0.22252093395631434 + 0.9749279121818236im
@test pA[3] ≈ conj(p) rtol = rtol
@test pA[4] ≈ p rtol = rtol
p = 0.6234898018587336 + 0.7818314824680298im
@test pA[5] ≈ conj(p) rtol = rtol
@test pA[6] ≈ p rtol = rtol
p = 1.0 + 0.0im
@test pA[7] ≈ p rtol = rtol
end
@testset "poly()" begin show_testset_description()
@test RSDeltaSigmaPort.poly([3,4,5]) == [1, -12, 47, -60]
end
@testset "interp()" begin show_testset_description()
abstol = 1e-15
v = sin.(0:.1:2π)
OSR = 32
@test all(abs.(RSDeltaSigmaPort.interp(v, OSR)[1:OSR:end] .- v[:]) .< abstol)
end
end
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | code | 432 | using Test, RSDeltaSigmaPort
function printheader(title)
println("\n", title, "\n", repeat("=", 80))
end
function show_testset_section()
println()
@info "SECTION: " * Test.get_testset().description * "\n" * repeat("=", 80)
end
function show_testset_description()
@info "Testing: " * Test.get_testset().description
end
testfiles = ["mlfunc.jl", "arrays.jl"]
for testfile in testfiles
include(testfile)
end
:Test_Complete
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | docs | 6570 | <!-- Reference-style links to make tables & lists more readable -->
[Gallery]: <https://github.com/ma-laforge/FileRepo/blob/master/RSDeltaSigmaPort/notebook>
[CMDimDataJL]: <https://github.com/ma-laforge/CMDimData.jl>
[InspectDRJL]: <https://github.com/ma-laforge/InspectDR.jl>
# RSDeltaSigmaPort.jl: Port of Richard Schreier's Delta Sigma Toolbox¹
**Galleries:** [:art: Sample notebooks (w/outputs)][Gallery]
¹Richard Schreier (2021). Delta Sigma Toolbox (<https://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox>), MATLAB Central File Exchange. Retrieved March 20, 2021.
[](https://github.com/ma-laforge/RSDeltaSigmaPort.jl/actions?query=workflow%3ACI)
### :warning: Progress report
***INTERMEDIATE STAGE OF PORT***: A significant portion of the Delta Sigma toolbox has been ported.
The following high-level functionnality has (at least partially) been ported:
- `simulateDSM`, `simulateMS`, `simulateSNR`, `simulateHBF`
- `synthesizeNTF`, `realizeNTF`, `realizeNTF_ct`
- `calculateSNR`, `peakSNR`, `predictSNR`
- `calculateTF`, `evalTF`, `evalTFP`
- `stuffABCD`, `scaleABCD`, `mapABCD`, `partitionABCD`
- `mapCtoD`, `mapQtoR`
- `exampleHBF`
- `pulse`, `impL1`
- `lollipop`, `logsmooth`
- `documentNTF`, `plotExampleSpectrum`
And demos:
- `dsdemo1`, ..., `dsdemo6`, `dsexample1`, `dsexample2`, `demoLPandBP`
## Table of contents
1. [Description](#Description)
1. Sample usage
1. [IJupyter notebooks (`notebook/`)](notebook/)
1. [IJupyter notebooks (with output) ↪][Gallery]
1. [Sample directory w/plain `.jl` files (`sample/`)](sample/)
1. [Plotting](#Plotting)
1. [Installation](#Installation)
1. [Running sample scripts](#SampleScripts)
1. [Function (API) help](#APIHelp)
1. [Julia tips](doc/juliatips.md)
1. [Useful functions](doc/juliatips.md#FunctionLibraries)
1. [`linspace()` & `logspace()`](doc/juliatips.md#LinLogSpace)
1. [Known limitations](#KnownLimitations)
1. [TODO](doc/todo.md)
<a name="Description"></a>
## Description
As its name suggests, `RSDeltaSigmaPort.jl` is a Julia port of Richard Schreier's Delta Sigma Toolbox.
### Module name
Note that this module is not named something like `DeltaSigmaModulators.jl`, thus allowing someone else to appropriate the package name later on. Hopefully, `RSDeltaSigmaPort` will eventually be superseded by a more generically named package that is better integrated with Julia's ecosystem than this simple port.
### Design decisions
This module tries to remain true to the original Delta Sigma Toolbox while conforming to some Julia patterns, including:
- Multiple dispatch (make function calls simpler to write).
- ***Not*** writing each function definition in its own, separate file.
- Using keyword arguments when deemed appropriate.
- Returning `NamedTuple`s instead of simple arrays when multiple values are returned.
- ...
Progressively replacing modulator parameters in function calls with `RealDSM` and `QuadratureDSM` objects:
- Simplifies function interface for user.
- Centralizes defaults for parameter values on construction of `RealDSM` and `QuadratureDSM`.
- Looking to keep "original" function interface (with individual modulator parameters) available for accustomed users.
- Looking to remove default values from said interface to avoid unexpected bugs from inconsistent defaults.
- Might change with time (not sure if certain parameters, like `opt`, should migrate to a NTF structure or something).
<a name="Plotting"></a>
## Plotting
`RSDeltaSigmaPort.jl` uses [CMDimData.jl/EasyPlot][CMDimDataJL] to handle plotting.
For examples on how to generate ***new/customized*** plots, see the built-in
functions found in `plot_*.jl` files in the source directory:
- [`src/`](src/)
<a name="Installation"></a>
## Installation
The `RSDeltaSigmaPort.jl` toolbox is written using the Julia programming
language. Unless you already have Julia installed, you will need to first
install the base language. Simply download \& install the most recent version
of Julia from Julia's official "downloads" page.
**Julia's official "downloads" page:**
- <https://julialang.org/downloads/>
Step 2 is to install the `RSDeltaSigmaPort.jl` package itself. Since
`RSDeltaSigmaPort.jl` is registered with Julia's **General** registry, you can
automatically download & install it from Julia's built-in package manager.
Simply launch Julia, and run the following from the command prompt:
```julia-repl
julia> ]
pkg> add RSDeltaSigmaPort
```
<a name="SampleScripts"></a>
## Running sample scripts
Sample scripts in the `sample/` subdirectory can be run using `include()`.
For convenience, the `@runsample` macro automatically locates the script path
and executes `include()` for you:
```julia-repl
julia> using RSDeltaSigmaPort #Will take a while to load, compile, etc...
julia> import RSDeltaSigmaPort: @runsample
julia> @runsample("dsdemo1.jl")
julia> @runsample("dsdemo2.jl")
julia> @runsample("dsdemo3.jl")
julia> @runsample("dsdemo4_audio.jl")
julia> @runsample("dsdemo5.jl")
julia> @runsample("dsdemo6.jl")
julia> @runsample("dsexample1.jl")
julia> @runsample("dsexample2.jl")
julia> @runsample("demoLPandBP.jl")
```
<a name="APIHelp"></a>
## Function (API) help
Typing `?RSDeltaSigmaPort` in Julia's command line gives you a list of available functions:
```julia-repl
julia> ?
help?> RSDeltaSigmaPort
```
Information on individual functions can be obtained in a similar fashion. Example:
```julia-repl
julia> ?
help?> simulateDSM
```
### Original documentation
Richard Schreier's original documentation is available here:
- [`original_source/delsig/OnePageStory.pdf`](original_source/delsig/OnePageStory.pdf)
- [`original_source/delsig/DSToolbox.pdf`](original_source/delsig/DSToolbox.pdf)
<a name="KnownLimitations"></a>
## Known limitations
Functions that are not supported:
- `printmif()`
### [TODO](doc/todo.md)
### Compatibility
Extensive compatibility testing of `RSDeltaSigmaPort.jl` has not been performed.
The module has been tested using the following environment(s):
- Linux / Julia-1.6.0
## :warning: Disclaimer
- ***INTERMEDIATE STAGE OF PORT***: A significant portion of the Delta Sigma toolbox has been ported.
- Jupyter [notebooks](notebook/) might be slightly broken/out of date. If so,
see their counterparts in the [`sample/`](sample/) directory for a more
regularly maintained example.
- The `RSDeltaSigmaPort.jl` module is not yet mature. Expect significant changes.
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | docs | 1392 | # RSDeltaSigma: Julia tips
1. [Useful functions](#FunctionLibraries)
1. [`linspace()` & `logspace()`](#LinLogSpace)
<a name="FunctionLibraries"></a>
## Useful functions
Not all functions you might want to use are directly available in julia.
In many cases, you need to make functions available by importing them from
different libraries:
```julia
import Random
import Statistics: mean
import LinearAlgebra
import LinearAlgebra: norm, diagm, eigen
import SpecialFunctions: erfinv
import FFTW: fft, fftshift
import DSP: conv
import Polynomials: roots, Polynomial
import Printf: @sprintf
```
`RSDeltaSigma` does not automatically export these symbols/functions (make
the functions available to the user). This choice was deliberatly made to
avoid symbol collisions in cases where the user needs to manually import
said symbols to get other portions of their code working.
<a name="LinLogSpace"></a>
## `linspace()` & `logspace()`
Functions `linspace()` & `logspace()` don't exist in Julia 1.0+. Instead, you should use `range()`:
1. `range(start, stop=stop, length=n)`: Constructs a `StepRangeLen` object.
- `collect(range(0, stop=100, length=101))`: Generates a `Vector{Float64}` (not `Vector{Int}`).
1. `10 .^ range(start, stop=stop, length=n)`: Generates a `Vector{Float64}` object.
- `10 .^ range(-10, stop=10, length=101)`: Log-spaced values ∈ [1.0e-10, 1.0e10].
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | docs | 615 | # RSDeltaSigma: TODO
## Migrate to use ControlSystems.jl directly?
Deprecate legacy functions/names to use slightly altered API from ControlSystems.jl?
```julia
#See:
export _ss, _zpk, _zpkdata
export _zp2ss, _zp2tf, _freqz, _tf, _minreal, _impulse
#etc.
```
## Deprecate `array_round()`
- Figure out if orignial code rounded indicies to nearest integer, or implicitly applied `floor()`, etc.
- Start using `div(num, den)` more if possible (should be faster than `round`/`floor`/`ceil`).
## Add regression tests.
Very little code is tested at the moment.
## List other known elements needing attention HERE.
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"BSD-3-Clause",
"MIT"
]
| 0.4.2 | 286a0cf04d4e951697988474d818613ec4632282 | docs | 638 | <!-- Reference-style links to make tables & lists more readable -->
[Gallery]: <https://github.com/ma-laforge/FileRepo/blob/master/RSDeltaSigmaPort/notebook>
# RSDeltaSigmaPort: Sample notebooks
## :warning: Environment stack
Jupyter notebooks seems to have a built-in mechanism that recursively adds
***all*** `Project.toml` files appearing in the active `.ipynb` notebook's
("real path") parent directories to the environment stack.
## Blank notebooks
The notebooks in this folder should all be clear of data to avoid repository bloat.
## Notebooks that include outputs
Notebooks that include outputs can be found [here][Gallery].
| RSDeltaSigmaPort | https://github.com/ma-laforge/RSDeltaSigmaPort.jl.git |
|
[
"MIT"
]
| 0.1.0 | 69f74150a58a45cce84e62ad44460df0fd29ce34 | code | 290 | # A very complicated example to use `BEE.jl`
#
# We will *prove* the following fact
using BEE
@beeint x 0 5
@beeint y -4 9
@beeint z -5 10
x + y == z
@beeint w 0 10
xl = [beebool("x$i") for i=1:4]
xl[1] == -xl[2]
xl[2] == true
sum([-xl[1], xl[2], -xl[3], xl[4]]) == w
BEE.render()
| BeeEncoder | https://github.com/newptcai/BeeEncoder.jl.git |
|
[
"MIT"
]
| 0.1.0 | 69f74150a58a45cce84e62ad44460df0fd29ce34 | code | 295 | # A simple example to use `BeeEncoder.jl`
using BeeEncoder
@beeint x 0 5
@beeint y -4 9
@beeint z -5 10
@constrain x + y == z
@beeint w 0 10
xl = @beebool x[1:4]
@constrain xl[1] == -xl[2]
@constrain xl[2] == true
@constrain sum([-xl[1], xl[2], -xl[3], xl[4]]) == w
BeeEncoder.render()
| BeeEncoder | https://github.com/newptcai/BeeEncoder.jl.git |
|
[
"MIT"
]
| 0.1.0 | 69f74150a58a45cce84e62ad44460df0fd29ce34 | code | 22434 | module BeeEncoder
import Base: -, +, *, /, mod, max, min, ==, <, <=, !=, >, >=, sum, show, convert, isequal, in
using Suppressor
export BeeInt,
BeeBool,
BeeModel,
BeeSolution,
@beeint,
@beebool,
beeint,
beebool,
render,
reset,
and,
or,
iff,
alldiff,
constrain,
@constrain,
solve,
hasvar,
hasbool,
hasint,
fetchbool,
getbool,
getint,
GBL_MODEL,
capture_render
# -------------------------------------------------------------
# abstract types
# -------------------------------------------------------------
"An object that can be rendered to BEE syntax"
abstract type BeeObject end
"A symbol in BEE sytanx. Can be either a variable or a value."
abstract type BeeSymbol <: BeeObject end
abstract type BeeBoolean <: BeeSymbol end
abstract type BeeInteger <: BeeSymbol end
BB = Union{BeeBoolean, Bool}
ZZ = Union{BeeInteger, Int}
"Reload `isequal` to allow using `BeeSymbol` comparing them for `Dict`."
isequal(v1::BeeSymbol, v2::BeeSymbol) = v1 === v2
"Reload `in` to allow checking if a `BeeSymbol` is in an array"
function in(v::T, vs::Array{T,1}) where T <: BeeSymbol
for s in vs
if v === s
return true
end
end
false
end
# -------------------------------------------------------------
# BEE integer variable
# -------------------------------------------------------------
"An integer variable in BEE syntax"
struct BeeInt <: BeeInteger
name::String
lo::Int
hi::Int
function BeeInt(model, name, lo, hi)
if lo > hi
error("$lo > $hi")
end
if hasvar(model, name)
error("Variable $name has already been defined in $model")
end
var = new(name, lo, hi)
model.intdict[name] = var
end
end
BeeInt(name::String, lo::Int, hi::Int) = BeeInt(GBL_MODEL, name, lo, hi)
BeeInt(name::Symbol, lo, hi) = BeeInt(string(name), lo, hi)
macro beeint(name, lo, hi)
q = Expr(:block)
if isa(name, Symbol)
ex = :($(esc(name)) = beeint($(string(name)), $lo, $hi))
push!(q.args, ex)
push!(q.args, escvar(name)) # return all of the variables we created
elseif isa(name, Expr) && name.head == :ref
vhead = name.args[1]
vlist = []
for i in eval(name.args[2])
vhead = name.args[1]
vstr = "$vhead$i"
vsym = Symbol(vstr)
ex = :($(esc(vsym)) = beeint($(vstr), $lo, $hi))
push!(vlist, vsym)
push!(q.args, ex)
end
push!(q.args, escvar(vlist))
end
q
end
"Create an integer varaible called `name` in `GBL_MODEL`"
beeint(name, lo, hi) = beeint(GBL_MODEL, name, lo, hi)
"Create an integer varaible called `name` in `GBL_MODEL`"
beeint(model, name, lo, hi) = BeeInt(model, name, lo, hi)
render(io::IO, var::BeeInt) = print(io, "new_int($var, $(var.lo), $(var.hi))\n")
# -------------------------------------------------------------
# BEE boolean variable
# -------------------------------------------------------------
"A boolean variable in BEE syntax"
struct BeeBool <: BeeBoolean
name::String
function BeeBool(model, name)
if hasvar(model, name)
error("Variable $name has already been defined in $model")
end
var = new(name)
model.booldict[name] = var
end
end
BeeBool(name::String) = BeeBool(GBL_MODEL, name)
BeeBool(name::Symbol) = BeeBool(string(name))
function escvar(var)
if isa(var, Symbol)
vs = esc(var)
else
vs = Expr(:vect, [esc(v) for v in var]...)
end
vs
end
macro beebool(namelist...)
q = Expr(:block)
varlist = [] # list of boolean variables to create
for name in namelist
if isa(name, Symbol)
push!(varlist, name)
ex = :($(esc(name)) = beebool($(string(name))))
push!(q.args, ex)
elseif isa(name, Expr) && name.head == :ref
vhead = name.args[1]
vlist = []
for i in eval(name.args[2])
vhead = name.args[1]
vstr = "$vhead$i"
vsym = Symbol(vstr)
ex = :($(esc(vsym)) = beebool($(vstr)))
push!(vlist, vsym)
push!(q.args, ex)
end
push!(varlist, vlist)
end
end
if length(varlist) > 1
ret = Expr(:tuple, map(escvar, varlist)...)
else
ret = escvar(varlist[1])
end
push!(q.args, ret) # return all of the variables we created
q
end
"Create a boolean varaible called `name` in `GBL_MODEL`"
beebool(name) = beebool(GBL_MODEL, name)
"Create a boolean varaible called `name` in `model`"
beebool(model, name) = BeeBool(model, name)
render(io::IO, var::BeeBool) = print(io, "new_bool($var)\n")
"The negate of a boolean variable in BEE syntax"
struct BeeNegateBool <:BeeBoolean
boolvar::BeeBool
end
show(io::IO, v::BeeNegateBool) = print(io, "-", v.boolvar)
(-)(var::BeeBool) = BeeNegateBool(var)
(-)(var::BeeNegateBool) = var.boolvar
# -------------------------------------------------------------
# BEE literals
# -------------------------------------------------------------
"An integer value like `1`"
struct BeeIntLiteral <: BeeInteger
val::Int
end
show(io::IO, v::BeeIntLiteral) = print(io, v.val)
convert(::Type{BeeInteger}, v::Int) = BeeIntLiteral(v)
convert(::Type{BeeSymbol}, v::Int) = BeeIntLiteral(v)
"A boolean value, i.e., `true` or `false`"
struct BeeBoolLiteral <: BeeBoolean
val::Bool
end
show(io::IO, v::BeeBoolLiteral) = print(io, v.val)
convert(::Type{BeeBoolean}, v::Bool) = BeeBoolLiteral(v)
convert(::Type{BeeSymbol}, v::Bool) = BeeBoolLiteral(v)
"""
render(obj::BeeObject)
Render `obj` to BEE syntax and print it to `stdout`.
"""
render(obj::BeeObject) = render(Base.stdout, obj)
render(arr::Array{T, 1}) where T <: Any = render(Base.stdout, arr)
render(io::IO, arr::Array{T, 1}) where T <: BeeObject = show(io, arr)
show(io::IO, v::BeeSymbol) = print(io, v.name)
function show(io::IO, arr::Array{T, 1}) where T <: BeeObject
print(io, "[", join(arr, ", "), "]")
end
# -------------------------------------------------------------
# BEE expressions
# -------------------------------------------------------------
"""
An expression can be made part of a `BeeObject`, but they themselves cannot be rendered.
"""
abstract type BeeExpression end
function show(io::IO,
tuple::NTuple{N, T} where {N, T <: BeeSymbol})
print(io, join(tuple, ", "))
end
# -------------------------------------------------------------
# BEE Constrains
# -------------------------------------------------------------
struct BeeConstraint <: BeeObject
name::String
# Don't check the type of the array
varlist::Array{T, 1} where T
end
"""
render(io, cons)
Render `cons` to BEE syntax. For constraints, there's is no difference between how they are rendered
and printed.
"""
render(io::IO, constraint::BeeConstraint) = print(io, constraint, "\n")
function show(io::IO, constraint::BeeConstraint)
varstr = join(constraint.varlist, ", ")
print(io, constraint.name, "(", varstr, ")")
end
# -------------------------------------------------------------
# BEE model
# -------------------------------------------------------------
struct BeeModel <: BeeObject
name::String
intdict::Dict{String, BeeInt}
booldict::Dict{String, BeeBool}
conslist::Array{BeeConstraint, 1}
end
BeeModel(name::String) = BeeModel(name, Dict{String, BeeInt}(), Dict{String, BeeBool}(), Array{BeeConstraint,1}())
show(io::IO, m::BeeModel) = print(io, "BEE model [$(m.name)]")
show(io::IO, ::MIME"text/plain", m::BeeModel) = print(io,
"""BEE model [$(m.name)]:
* Integer variables: $(collect(values(m.intdict)))
* Boolean variables: $(collect(values(m.booldict)))
* Constraint: $(m.conslist)""")
"Check if the model has a variable called `name`"
hasvar(model::BeeModel, name::String) = haskey(model.intdict, name) || haskey(model.booldict, name)
"Check if the model has a bollean variable called `name` in `model`"
hasbool(model::BeeModel, name) = haskey(model.booldict, name)
"Check if the model has a bollean variable called `name` in `GBL_MODEL`"
hasbool(name) = hasbool(GBL_MODEL, name)
"Check if the model has a integer variable called `name` in `model`"
hasint(model::BeeModel, name) = haskey(model.intdict, name)
"Check if the model has a integer variable called `name` in `GBL_MODEL`"
hasint(name) = hasint(GBL_MODEL, name)
"Retrive an existing integer variable called `name` in `GBL_MODEL`"
getint(model, name) = model.intdict[name]
"Retrive an existing integer variable called `name` in `GBL_MODEL`"
getint(name) = getint(GBL_MODEL, name)
"Either create or retrive an existing boolean variable called `name` in `model`"
function fetchbool(model::BeeModel, name)
if hasbool(model, name)
model.booldict[name]
else
beebool(model, name)
end
end
"Either create or retrive an existing boolean variable called `name` in `GBL_MODEL`"
fetchbool(name) = fetchbool(GBL_MODEL, name)
"Retrive an existing boolean variable called `name` in `GBL_MODEL`"
getbool(model, name) = model.booldict[name]
"Retrive an existing boolean variable called `name` in `GBL_MODEL`"
getbool(name) = getbool(GBL_MODEL, name)
"""
constrain(model, cons)
Add the `cons` to `model`. Note that unlike a variable, a constraint is not automatically added to
any model when it is created.
"""
function constrain(model::BeeModel, cons::BeeConstraint)
push!(model.conslist, cons)
cons
end
constrain(cons) = constrain(GBL_MODEL, cons)
macro constrain(cons)
:(constrain($(esc(cons))))
end
"Render the global model `GBL_MODEL` to BEE syntax and print it to `stdout`."
render() = render(Base.stdout, GBL_MODEL)
"Render the global model `GBL_MODEL` to BEE syntax and print it to `io`."
render(io::IO) = render(io, GBL_MODEL)
function render(io::IO, model::BeeModel)
for intv in values(model.intdict)
render(io, intv)
end
for boolv in values(model.booldict)
render(io, boolv)
end
for cons in model.conslist
render(io, cons)
end
print(io, "solve satisfy\n")
end
"Delete all variables and constraints from the default model."
function reset()
global GBL_MODEL = BeeModel("defaul model")
end
# -------------------------------------------------------------
# Call BumbleBEE directly from Julia
# -------------------------------------------------------------
struct BeeSolution
sat::Bool
intdict::Dict{String, Int}
booldict::Dict{String, Bool}
end
"Call `BumbleBEE` to solve the `model` and print the output into `io`"
function solve(model::BeeModel, io::IO, deletefile=true)
# Find where is BumbleBEE
beepath = Sys.which("BumbleBEE")
beedir = dirname(beepath)
# Render solution to the file
tempf = tempname() * ".bee"
open(tempf, "w") do io
render(io)
end
tempout = tempname() * ".sol"
# Solve with BumbleBEE
curdir = pwd()
cd(beedir)
println(tempout)
run(pipeline(`./BumbleBEE $tempf`, stdout=tempout))
output = readlines(tempout)
cd(curdir)
if deletefile
rm(tempf)
rm(tempout)
end
# filter comments
rc = r"^%"
ri = r"^\s*(\w+)\s*=\s*(-?+\d+)"
rb = r"^\s*(\w+)\s*=\s*(true|false)"
runsat = r"=====UNSATISFIABLE====="
sat = true
intdict = Dict{String, Int}()
booldict = Dict{String, Bool}()
for line in output
println(io, line)
if match(runsat, line) !== nothing
sat = false
end
if match(rc, line) !== nothing
continue
elseif (m = match(ri, line)) !== nothing
name, val = m.captures
intdict[name] = parse(Int, val)
elseif (m = match(rb, line)) !== nothing
name, val = m.captures
booldict[name] = parse(Bool, val)
end
end
BeeSolution(sat, intdict, booldict)
end
" Solve the default model and print the solution to `stdout`."
solve() = solve(GBL_MODEL, Base.stdout)
solve(deletefile::Bool) = solve(GBL_MODEL, Base.stdout, deletefile)
show(io::IO, ::MIME"text/plain", sol::BeeSolution) = print(io,
"""
BEE solution:
* Satisfiable: $(sol.sat)
* Integer variables: $(sol.intdict)
* Boolean variables: $(sol.booldict)""")
# -------------------------------------------------------------
# BEE operator for both integer and boolean
# -------------------------------------------------------------
# Create BEE summation expression, which applies to list of symbols
struct BeeSum{T <: BeeSymbol} <: BeeExpression
varlist::Array{BeeSymbol, 1}
end
sum(varlist::Array{T, 1}) where T <: BeeBoolean = BeeSum{T}(varlist)
sum(varlist::Array{T, 1}) where T <: BeeInteger = BeeSum{T}(varlist)
# Create BEE operator on summation.
for (VT, VF) in [(:BeeBoolean, :bool), (:BeeInteger, :int)],
(OP, EF) in [(:(<=), :leq), (:(>=), :geq), (:(==), :eq), (:(<), :lt), (:(>), :gt), (:(!=), :neq)]
@eval BeeEncoder begin
# Some of these are not symmetirc. Let's don't switch order
# $OP(lhs::ZZ, rhs::BeeSum{T} where T <: $VT) = $OP(rhs, lhs)
$OP(lhs::BeeSum{T} where T <: $VT, rhs::ZZ) = $(Symbol(VF, :_array_sum_, EF))(lhs.varlist, rhs)
end
end
# -------------------------------------------------------------
# BEE operator for integers
# -------------------------------------------------------------
# Boolean operator on two integers
intBOP = [(:BeeLeq, :leq, :(<=)), (:BeeGeq, :geq, :(>=)), (:BeeEq, :eq, :(==)),
(:BeeLt, :lt, :(<)), (:BeeGt, :gt, :(>)), (:BeeNeq, :neq, :(!=))]
# Arithmetic operator on two integers
intAOP = [(:BeePlus, :plus, :+), (:BeeTimes, :times, :*), (:BeeMax, :max, :max),
(:BeeMin, :min, :min), (:BeeDiv, :div, :/), (:BeeMod, :mod, :mod)]
# Define function for integer $OP integer. Avoid matching `Int` $OP `Int`
for (ET, EF, OP) in [intBOP; intAOP]
@eval BeeEncoder begin
$OP(lhs::Int, rhs::BeeInteger) = $ET(BeeIntLiteral(lhs), rhs)
$OP(lhs::BeeInteger, rhs::Int) = $ET(lhs, BeeIntLiteral(rhs))
$OP(lhs::BeeInteger, rhs::BeeInteger) = $ET(lhs, rhs)
end
end
# Create BEE boolean expression for two integers, which applies to two `BeeInteger`.
for (ET, EF, OP) in intBOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
lhs::BeeInteger
rhs::BeeInteger
end
# `lhs` is true `iff` rhs is true
(==)(lhs::BeeBoolean, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::BeeBoolean)
$(Symbol(:int_, EF, :_reif))(lhs.lhs, lhs.rhs, rhs)
end
# `lhs` is true `iff` rhs is true
(==)(lhs::Bool, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::Bool)
if rhs
$(Symbol(:int_, EF))(lhs.lhs, lhs.rhs)
else
$(Symbol(:int_, EF, :_reif))(lhs.lhs, lhs.rhs, rhs)
end
end
end
end
# Create BEE arithmetic expression for two integers, which applies to two `BeeInteger`.
for (ET, EF, OP) in intAOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
lhs::BeeInteger
rhs::BeeInteger
end
# `lhs` == `rhs` is true
(==)(lhs::ZZ, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::ZZ)
$(Symbol(:int_, EF))(lhs.lhs, lhs.rhs, rhs)
end
end
end
# Create BEE allDiff operations on one integer array
intarrayOP = [(:BeeArrayAllDiff, :allDiff, :alldiff, :_reif)]
for (ET, EF, OP, TAIL) in intarrayOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
varlist::Array{BeeInteger, 1}
end
# No need to check type here
$OP(varlist::Array{T, 1} where T <: ZZ) = $ET(varlist)
(==)(lhs::BeeInteger, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::BeeInteger)
$(Symbol(:int_array_, EF, TAIL))(lhs.varlist, rhs)
end
(==)(lhs::Bool, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::Bool)
if rhs
$(Symbol(:int_array_, EF))(lhs.varlist)
else
$(Symbol(:int_array_, EF, TAIL))(lhs.varlist, rhs)
end
end
end
end
# Create BEE operations on one integer array
intarrayOP = [(:BeeArrayPlus, :plus, :plus),
(:BeeArrayTimes, :times, :times),
(:BeeArrayMax, :max, :max),
(:BeeArrayMin, :min, :min)]
for (ET, EF, OP) in intarrayOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
varlist::Array{BeeInteger, 1}
end
# No need to check type here
$OP(varlist::Array{T, 1} where T <: ZZ) = $ET(varlist)
(==)(lhs::BeeInteger, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::BeeInteger)
$(Symbol(:int_array_, EF))(lhs.varlist, rhs)
end
end
end
# -------------------------------------------------------------
# BEE operator for boolean
# -------------------------------------------------------------
# hard code this bit since it's just one function
(==)(lhs::Bool, rhs::BeeBoolean) = bool_eq(lhs, rhs)
(==)(lhs::BeeBoolean, rhs::Bool) = bool_eq(lhs, rhs)
(==)(lhs::BeeBoolean, rhs::BeeBoolean) = bool_eq(lhs, rhs)
# Logic Expressions on two boolean.
boolOP = [(:BeeAnd, :and, :and), (:BeeOr, :or, :or), (:BeeXor, :xor, :xor), (:BeeIff, :iff, :iff)]
for (ET, EF, OP) in boolOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
lhs::BeeSymbol
rhs::BeeSymbol
end
# No need to check type here
$OP(lhs, rhs) = $ET(lhs, rhs)
(==)(lhs::BeeBoolean, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::BeeBoolean)
$(Symbol(:bool_, EF, :_reif))(lhs.lhs, lhs.rhs, rhs)
end
(==)(lhs::Bool, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::Bool)
if rhs
$(Symbol(:bool_, EF))(lhs.lhs, lhs.rhs)
else
$(Symbol(:bool_, EF, :_reif))(lhs.lhs, lhs.rhs, rhs)
end
end
end
end
# Create BEE operators on boolean arrays. Note that
boolarrayOP = [(:BeeArrayAnd, :and, :and), (:BeeArrayOr, :or, :or), (:BeeArrayXor, :xor, :xor), (:BeeArrayIff, :iff, :iff)]
for (ET, EF, OP) in boolarrayOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
varlist::Array{BeeBoolean, 1}
end
# No need to check type here
$OP(varlist) = $ET(varlist)
(==)(lhs::BeeBoolean, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::BeeBoolean)
$(Symbol(:bool_array_, EF, :_reif))(lhs.varlist, rhs)
end
(==)(lhs::Bool, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::Bool)
if rhs
$(Symbol(:bool_array_, EF))(lhs.varlist)
else
$(Symbol(:bool_array_, EF, :_reif))(lhs.varlist, rhs)
end
end
end
end
# Create BEE operators on two boolean arrays
bool2arrayOP = [(:BeeArrayEq, :eq, :(==)), (:BeeArrayNeq, :neq, :(!=)),
(:BeeLex, :lex, :(<=)), (:BeelexLt, :lexLt, :(<))]
for (ET, EF, OP) in bool2arrayOP
@eval BeeEncoder begin
struct $ET <: BeeExpression
lhs::Array{BeeBoolean, 1}
rhs::Array{BeeBoolean, 1}
end
$OP(lhs::Array{T, 1} where T <: BB, rhs::Array{T, 1} where T <: BB) = $ET(lhs, rhs)
(==)(lhs::BeeBoolean, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::BeeBoolean)
$(Symbol(:bool_arrays_, EF, :_reif))(lhs.lhs, lhs.rhs, rhs)
end
(==)(lhs::Bool, rhs::$ET) = rhs == lhs
function (==)(lhs::$ET, rhs::Bool)
if rhs
$(Symbol(:bool_arrays_, EF))(lhs.lhs, lhs.rhs)
else
$(Symbol(:bool_arrays_, EF, :_reif))(lhs.lhs, lhs.rhs, rhs)
end
end
end
end
# -------------------------------------------------------------
# BEE functions
# -------------------------------------------------------------
# Adding constraint function. Do not do any check. Let BEE to report errors.
for F in (:int_order2bool_array,
:bool2int,
:bool_eq,
:bool_array_eq_reif,
:bool_array_or, :bool_array_and, :bool_array_xor, :bool_array_iff,
:bool_array_or_reif, :bool_array_and_reif, :bool_array_xor_reif, :bool_array_iff_reif,
:bool_or_reif, :bool_and_reif, :bool_xor_reif, :bool_iff_reif,
:bool_ite,
:bool_ite_reif,
:int_leq, :int_geq, :int_eq, :int_lt, :int_gt, :int_neq,
:int_leq_reif, :int_geq_reif, :int_eq_reif, :int_lt_reif, :int_gt_reif, :int_neq_reif,
:int_array_allDiff,
:int_array_allDiff_reif,
:int_array_allDiffCond,
:int_abs,
:int_plus, :int_times, :int_div, :int_mod, :int_max, :int_min,
:int_array_plus, :int_array_times, :int_array_max, :int_array_min,
:bool_array_sum_leq, :bool_array_sum_geq, :bool_array_sum_eq, :bool_array_sum_lt, :bool_array_sum_gt,
:bool_array_pb_leq, :bool_array_pb_geq, :bool_array_pb_eq, :bool_array_pb_lt, :bool_array_pb_gt,
:int_array_sum_leq, :int_array_sum_geq, :int_array_sum_eq, :int_array_sum_lt, :int_array_sum_gt,
:int_array_lin_leq, :int_array_lin_geq, :int_array_lin_eq, :int_array_lin_lt, :int_array_lin_gt,
:int_array_sumCond_leq, :int_array_sumCond_geq, :int_array_sumCond_eq, :int_array_sumCond_lt, :int_array_sumCond_gt,
:bool_array_sum_modK,
:bool_array_sum_divK,
:bool_array_sum_divModK,
:int_array_sum_modK,
:int_array_sum_divK,
:int_array_sum_divModK,
:bool_arrays_eq, :bool_arrays_neq,
:bool_arrays_eq_reif, :bool_arrays_neq_reif,
:bool_arrays_lex,
:bool_arrays_lexLt,
:bool_arrays_lex_reif,
:bool_arrays_lexLt_reif,
:int_arrays_eq, :int_arrays_neq,
:int_arrays_eq_reif, :int_arrays_neq_reif,
:int_arrays_lex,
:int_arrays_lexLt,
:int_arrays_lex_implied,
:int_arrays_lexLt_implied,
:int_arrays_lex_reif,
:int_arrays_lexLt_reif)
SF = String(F)
@eval BeeEncoder $F(var...) = BeeConstraint($SF, [var...])
end
# -------------------------------------------------------------
# Initialize module
# -------------------------------------------------------------
reset()
# -------------------------------------------------------------
# For testing
# -------------------------------------------------------------
function capture_render(c)
@capture_out render(c)
end
function capture_render()
@capture_out render()
end
end
| BeeEncoder | https://github.com/newptcai/BeeEncoder.jl.git |
|
[
"MIT"
]
| 0.1.0 | 69f74150a58a45cce84e62ad44460df0fd29ce34 | code | 6251 | using BeeEncoder
using Suppressor
using Test
@testset "BeeEncoder.jl" begin
@testset "simple" begin
BeeEncoder.reset()
example="""new_int(w, 0, 10)
new_int(x, 0, 5)
new_int(z, -5, 10)
new_int(y, -4, 9)
new_bool(x1)
new_bool(x4)
new_bool(x2)
new_bool(x3)
int_plus(x, y, z)
bool_eq(x1, -x2)
bool_eq(x2, true)
bool_array_sum_eq([-x1, x2, -x3, x4], w)
solve satisfy
"""
ret = @capture_out include("../example/simple-example.jl")
@test ret == example
@test "new_int(w, 0, 10)\n" == capture_render(w)
c = x+y == z
@test "int_plus(x, y, z)\n" == capture_render(c)
c = xl[1] == -xl[2]
@test "bool_eq(x1, -x2)\n" == capture_render(c)
BeeEncoder.reset()
@constrain xl[1] == -xl[2]
@test "bool_eq(x1, -x2)\nsolve satisfy\n" == capture_render()
BeeEncoder.reset()
constrain(xl[1] == -xl[2])
@test "bool_eq(x1, -x2)\nsolve satisfy\n" == capture_render()
end
@testset "Declaring Variable" begin
BeeEncoder.reset()
@beebool x1
@test "new_bool(x1)\n" == capture_render(x1)
x2 = beebool("x2")
@test "new_bool(x2)\n" == capture_render(x2)
x3 = beebool("x3")
@test "new_bool(x3)\n" == capture_render(x3)
@test hasbool("x3")
@test !hasbool("x4")
x5 = fetchbool("x5")
@test isa(x5, BeeBool)
@test x5.name == "x5"
@test x5 === fetchbool("x5")
@test x5 === getbool("x5")
@test_throws KeyError getbool("x6")
xx1 = fetchbool("xx")
xx2 = fetchbool("xx")
@test isequal(xx1, xx2)
yl = @beebool y1 y2 y3
for i in 1:3
@test "new_bool(y$i)\n" == capture_render(yl[i])
end
zl = @beebool z[1:10]
for i in 1:10
@test "new_bool(z$i)\n" == capture_render(zl[i])
end
z1 = fetchbool("z1")
@test z1 in zl
(a, b, cl, d) = @beebool a b c[1:10] d
for i in 1:10
@test "new_bool(c$i)\n" == capture_render(cl[i])
end
BeeEncoder.reset()
@beeint xx 3 55
@test isequal(xx, xx)
@test "new_int(xx, 3, 55)\n" == capture_render(xx)
il = @beeint i[1:10] 3 7
for i in 1:10
@test "new_int(i$i, 3, 7)\n" == capture_render(il[i])
end
@test "[i1, i2, i3]" == capture_render(il[1:3])
i1 = getint("i1")
@test i1 in il
@test hasint("i4")
@test !hasint("i12")
@test xx === getint("xx")
@test_throws KeyError getint("x6")
end
@testset "Boolean statements" begin
BeeEncoder.reset()
@beebool x1
@beebool x2
x3 = BeeBool("x3")
c = x1 == x2
@test "bool_eq(x1, x2)\n" == capture_render(c)
c = -x1 == x2
@test "bool_eq(-x1, x2)\n" == capture_render(c)
c = true == and([x1, -x2, x3])
@test "bool_array_and([x1, -x2, x3])\n" == capture_render(c)
c = and([x1, x2]) == -x3
@test "bool_array_and_reif([x1, x2], -x3)\n" == capture_render(c)
c = -x3 == BeeEncoder.xor(-x1, x2)
@test "bool_xor_reif(-x1, x2, -x3)\n" == capture_render(c)
end
@testset "Integer statements" begin
BeeEncoder.reset()
@beeint x1 3 7
@beeint x2 4 6
x3 = beeint("x3", 10, 15)
c = (x1 < x2) == true
@test "int_lt(x1, x2)\n" == capture_render(c)
c = true == (x1 < x2)
@test "int_lt(x1, x2)\n" == capture_render(c)
c = false == (x1 < x2)
@test "int_lt_reif(x1, x2, false)\n" == capture_render(c)
c = (x1 < x2) == false
@test "int_lt_reif(x1, x2, false)\n" == capture_render(c)
c = alldiff([x1, x2, x3]) == true
@test "int_array_allDiff([x1, x2, x3])\n" == capture_render(c)
c = true == alldiff([x1, x2, x3])
@test "int_array_allDiff([x1, x2, x3])\n" == capture_render(c)
c = alldiff([x1, x2]) == x3
@test "int_array_allDiff_reif([x1, x2], x3)\n" == capture_render(c)
c = x3 == alldiff([x1, x2])
@test "int_array_allDiff_reif([x1, x2], x3)\n" == capture_render(c)
c = x1 * x2 == x3
@test "int_times(x1, x2, x3)\n" == capture_render(c)
c = x3 == x1 * x2
@test "int_times(x1, x2, x3)\n" == capture_render(c)
c = x1 + x2 == 33
@test "int_plus(x1, x2, 33)\n" == capture_render(c)
c = 33 == x1 + x2
@test "int_plus(x1, x2, 33)\n" == capture_render(c)
c = max([x1, x2]) == x3
@test "int_array_max([x1, x2], x3)\n" == capture_render(c)
c = x3 == max([x1, x2])
@test "int_array_max([x1, x2], x3)\n" == capture_render(c)
end
@testset "Cardinality" begin
BeeEncoder.reset()
xl = [beebool("x$i") for i in 1:3]
il = [beeint("i$i", 3, 5) for i in 1:3]
c = sum(il) == il[1]
@test "int_array_sum_eq([i1, i2, i3], i1)\n" == capture_render(c)
c = sum(xl) >= il[1]
@test "bool_array_sum_geq([x1, x2, x3], i1)\n" == capture_render(c)
c = sum(xl) > il[1]
@test "bool_array_sum_gt([x1, x2, x3], i1)\n" == capture_render(c)
end
@testset "Boolean arrays relation" begin
BeeEncoder.reset()
xl = [beebool("x$i") for i in 1:3]
il = [beebool("i$i") for i in 1:3]
@beebool b
c = (xl == il) == true
@test "bool_arrays_eq([x1, x2, x3], [i1, i2, i3])\n" == capture_render(c)
c = (xl != il) == true
@test "bool_arrays_neq([x1, x2, x3], [i1, i2, i3])\n" == capture_render(c)
c = (xl <= il) == true
@test "bool_arrays_lex([x1, x2, x3], [i1, i2, i3])\n" == capture_render(c)
c = (xl < il) == true
@test "bool_arrays_lexLt([x1, x2, x3], [i1, i2, i3])\n" == capture_render(c)
c = (xl <= il) == b
@test "bool_arrays_lex_reif([x1, x2, x3], [i1, i2, i3], b)\n" == capture_render(c)
c = (xl < il) == b
@test "bool_arrays_lexLt_reif([x1, x2, x3], [i1, i2, i3], b)\n" == capture_render(c)
end
end
| BeeEncoder | https://github.com/newptcai/BeeEncoder.jl.git |
|
[
"MIT"
]
| 0.1.0 | 69f74150a58a45cce84e62ad44460df0fd29ce34 | docs | 14214 | # Using `BEE` and `BeeEncoder.jl` 🐝️ to solve SAT problems
[](https://travis-ci.org/newptcai/BeeEncoder.jl)
[](https://opensource.org/licenses/MIT)
*This package was originally named [`BEE.jl`](https://github.com/newptcai/BEE.jl). The name was changed so it can be registered in Julia's package repository.*
## The beauty of brute force 🤜️
<p align="center">
<img src="images/egg-power.jpg" alt="Brute force" width="450" />
</p>
Modern [SAT](https://en.wikipedia.org/wiki/Boolean_satisfiability_problem) solver are often capable
of handling problems with *HUGE* size. They have been successfully applied to many combinatorics
problems. Communications ACM has an article titled [The Science of Brute
Force](https://cacm.acm.org/magazines/2017/8/219606-the-science-of-brute-force/fulltext) on how the
[Boolean Pythagorean Triples problem](https://www.cs.utexas.edu/~marijn/publications/ptn.pdf) was
solved with an SAT solver. Another well-known example is [Paul Erdős Discrepancy
Conjecture](https://www.quantamagazine.org/terence-taos-answer-to-the-erdos-discrepancy-problem-20151001/),
which was [initially attacked with the help of computer](https://arxiv.org/pdf/1402.2184.pdf).
Thus it is perhaps beneficial 🥦️ for anyone who is interested in combinatorics 🀄️ to learn how to
harness the beautiful brute force 🔨 of SAT solvers. Doing experiments with SAT solver can search much
bigger space than pencil and paper. New patterns can be spotted 👁️. Conjectures can be proved or
disapproved 🎉️.
However, combinatorial problems are often difficult to encode into CNF formulas, which can only
contain boolean variables. So integers must be represented by such boolean variables with some
encoding scheme. Doing so manually can be very tedious 😑️.
Of course you can use solvers which go beyond CNF. For example Microsoft has a
[`Z3`](https://github.com/Z3Prover/z3) theorem proved. You can solve many more types of problems
with it. But if the size of your problem matters, pure CNF solver is still way much faster 🚀️.
## What is `BEE` 🐝️
One project that tries to ease using SAT solvers is [`BEE` (Ben-Gurion
University Equi-propagation Encoder)](http://amit.metodi.me/research/bee/), which
> ... is a
> compiler which enables to encode finite domain constraint problems to CNF. During compilation, `BEE`
> applies optimizations which include equi-propagation (see paper), partial-evaluation, and a careful
> selection of encoding techniques per constraint, depending on various parameters of the constraint.
From my experiments, `BEE` has a good balance of expressive power and performance.
## Many ways to use `BEE` 🤔️
`BEE` is written in [`Prolog`](https://en.wikipedia.org/wiki/Prolog). So you either have to learn
`Prolog`, or you can
1. encode your problem in a syntax defined by `BEE`,
2. use a program `BumbleBEE` that comes with the package to solve it directly with `BEE`
3. or use `BumbleBEE` to compile your problem to a [DIMACS CNF file](https://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html), which can be solved by the numerous
SAT solvers out there.
My choice is to use [Julia](https://julialang.org/) to convert combinatorics problems into
`BumbleBEE` code and this is why I wrote the package [`BeeEncoder.jl`](https://github.com/newptcai/BeeEncoder.jl).
Here's my workflow for smaller problems
```shell
Julia code --(BeeEncoder.jl)--> BEE code --(BumbleBEE)--> solution/unsatisfiable
```
When the problem is getting bigger, I try
```shell
Julia code --(BeeEncoder.jl)--> BEE code -- (BumbleBEE)--> CNF --(SAT Solver)
|
+-------------------------+--------------------------------+
| |
v v
unsatisfiable CNF solution --(BumbleSol)--> BEE solution
```
In the rest of this article, I will mostly describe how to use `BEE` 😀️. You do not need to know any
Julia to understand this part. I will only briefly mention what `BeeEncoder.jl` does by the
end.
## `BEE` and SAT solver for beginners
### Docker image
The easiest way to try `BEE` and `BeeEncoder.jl` is to use this [docker
image](https://hub.docker.com/r/newptcai/beeencoder) with everything you need.
If you have [docker](https://www.docker.com/) install, simply type in a terminal
```shell
docker pull newptcai/beeencoder
docker run -it newptcai/beeencoder
```
This will download and start a bash shell within the image. You will find `BEE` install in the
folder `/bee`. To check it works, run
```shell
cd bee && ./BumbleBEE beeSolver/bExamples/ex_sat.bee
```
`BeeEncoder.jl` is also included in this image. You can start Julia REPL and use it immediately.
The drawback of this method is that the image is quite large (about 600MB). This is unavoidable if we
use docker. Julia itself needs about 400MB, and Prolog costs another 100MB. 😑️
### Compiling and running `BEE`
I ran into some difficulties when I tried to compile [2017 version of
`BEE`](http://amit.metodi.me/research/bee/bee20170615.zip). Here is how to do it correctly on
Ubuntu. Other Linux system should work in similar ways.
First install [SWI-Prolog](https://www.swi-prolog.org/build/PPA.txt). You can do this in a terminal
by typing
```shell
sudo apt-add-repository ppa:swi-prolog/stable
sudo apt-get update
sudo apt-get install swi-prolog-nox
```
Download `BEE` using the link above and unzip it somewhere on your computer.
In a terminal, change directory to
```shell
cd /path-to-downloaded-file/bee20170615/satsolver_src
```
Compile sat solvers coming with `BEE` by
```shell
env CPATH="/usr/lib/swi-prolog/include/" make satSolvers
```
If compilation is successful, you should be able to excute
```shell
cd ../satsolver && ls
```
and see the following output
```shell
pl-glucose4.so pl-glucose.so pl-minisat.so satsolver.pl
```
Next we compile `BumbleBEE` by
```shell
cd ../beeSolver/ && make
```
If you succeed, you will be able to find `BumbleBEE` and `BumbleSol` one directory above by
```shell
cd .. && ls
```
And you should see these files
```shell
bApplications beeSolver BumbleSol pl-satsolver.so satsolver
beeCompiler BumbleBEE Constraints.pdf README.txt satsolver_src
```
### Using `BumbleBEE`
We can now give `BEE` a try 😁️. You can find examples of `BumbleBEE` problems in the folder
`beeSolver/bExamples`. A very simple one is the following
`ex_sat.bee`.
```shell
new_int(x,0,5)
new_int(y,-4,9)
new_int(z,-5,10)
int_plus(x,y,z)
new_int(w,0,10)
new_bool(x1)
new_bool(x2)
new_bool(x3)
new_bool(x4)
bool_eq(x1,-x2)
bool_eq(x2,true)
bool_array_sum_eq([-x1,x2,-x3,x4],w)
solve satisfy
```
It defines 4 integer variables `x, y, z, w` in various range and 4 boolean variables `x1, x2, x3, x4`.
Then it adds various constraints on these variables, for example, `x+y==z` and `x1==x2`. For the
syntax, check the [document](http://amit.metodi.me/research/bee/Constraints.pdf).
### Solving problem directly
We can solve problem directly with `BumbleBEE` by
```shell
./BumbleBEE beeSolver/bExamples/ex_sat.bee
```
And the solution should be
```shell
(base) xing@MAT-WL-xinca341:bee20170615$ ./BumbleBEE beeSolver/bExamples/ex_sat.bee
% \'''/ // BumbleBEE / \_/ \_/ \
% -(|||)(') (15/06/2017) \_/ \_/ \_/
% ^^^ by Amit Metodi / \_/ \_/ \
%
% reading BEE file ... done
% load pl-satSolver ... % SWI-Prolog interface to Glucose v4.0 ... OK
% encoding BEE model ... done
% solving CNF (satisfy) ...
x = 0
y = -4
z = -4
w = 3
x1 = false
x2 = true
x3 = false
x4 = false
----------
```
You can check that all the constraints are satisfied.
<font size="+2">⚠️ </font> But here is a caveat -- you must run `BumbleBEE` with the current
directory `PWD` set to be where the file
`BumbleBEE` is. You cannot use any other directory 🤦. For example if you try
```shell
cd .. && bee20170615/BumbleBEE bee20170615/beeSolver/bExamples/ex_sat.bee
```
You will only get error messages.
### Convert the problem to CNF
As I mentioned earlier, you can also compile your problem into CNF DIMACS format. For example
```shell
./BumbleBEE beeSolver/bExamples/ex_sat.bee -dimacs ./ex_sat.cnf ./ex_sat.map
```
will create two files `ex_sat.cnf` and `ex_sat.map`. The top few lines of
`ex_sat.cnf` looks like this
```shell
c DIMACS File generated by BumbleBEE
p cnf 37 189
1 0
-6 5 0
-5 4 0
-4 3 0
-3 2 0
-19 18 0
-18 17 0
-17 16 0
```
A little bit explanation for the first 4 lines
1. A line with `c` at the beginning is a comment.
2. The line with `p` says that this is a CNF formula with `37` variables and `189` clauses.
3. `1 0` is a clause which says that variable `1` must be true. `0` is symbol to end a
clause.
4. `-6 5` means either the negate of variable `6` is true or variable `5` is true ...
As you can see, with integers are needed, even a toy problem needs a large numbers of
boolean variables. This is why efficient coding of integers are critical. And this is where `BEE`
helps.
Now you can try your favourite SAT solver on the problem. I often use
[`CryptoMiniSat`](https://www.msoos.org/cryptominisat5/). Assuming that you have it on your `PATH`, you
can now use
```shell
cryptominisat5 ex_sat.cnf > ex_sat.sol
```
to solve the problem and save the solution into a file `ex_sat.sol`. Most of `ex_sat.sol` are
comments except the last 3 lines
```shell
s SATISFIABLE
v 1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22
v -23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 34 -35 -36 -37 0
```
It says the problem is satisfiable and one solution is given. A number in the line starting with an `v`
means a variables. Without a `-` sign in front of it, a variable is assigned the value `true`
otherwise it is assigned `false`.
<font size="+2">⚠️ </font> To get back to a solution to `BEE` variables, we use `BumbleSol`, which is
at the same folder as `BumbleBEE`. But `BumbleSol` needs bit help 😑️. Remove the starting `s` and `v`
in the `ex_sat.sol` to make it like this
```shell
SATISFIABLE
1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -22
-23 -24 -25 -26 -27 -28 -29 -30 -31 -32 -33 34 -35 -36 -37 0
```
Then we can run
```shell
./BumbleSol ex_sat.map ex_sat.sol
```
and get
```shell
% \'''/ // BumbleBEE Solution Reader / \_/ \_/ \
% -(|||)(') (04/06/2016) \_/ \_/ \_/
% ^^^ by Amit Metodi / \_/ \_/ \
%
% reading Dimacs solution file ... done
% reading and decoding BEE map file ...
x = 0
y = -4
z = -4
w = 2
x1 = false
x2 = true
x3 = false
x4 = false
----------
==========
```
That's it! Now you know how to use `BEE` 🐝️! Have fan with your problem 🤣️.
### Choice of SAT solver
Some top-level SAT solvers are
* [CaDical](https://github.com/arminbiere/cadical) -- Winner of [2019 SAT
Race](http://sat-race-2019.ciirc.cvut.cz/). Tends to be
fastest in dealing with solvable problems.
* [Lingeling, Plingeling and Treengeling](http://fmv.jku.at/lingeling/) -- Good at parallelization.
* [Painless](https://www.lrde.epita.fr/wiki/Painless) -- Uses a divide and conquer strategy for
parallelization.
* MapleLCMDiscChronoBT-DL -- Winner of 2019 SAT Race for unsatisfiable problem. But I have not
found any documents of it.
My experience is that all these SAT solvers have similar performance. It is always more important to
try to encode your problem better.
## How to use `BeeEncoder.jl`
When your problems becomes bigger, you don't want to write all `BEE` code manually. Here's what
`BeeEncoder.jl` may help. You can write your problem in Julia, and `BeeEncoder.jl` will convert it to `BEE` syntax.
Here's how to do the example above with `BeeEncoder.jl`
First install `BeeEncoder.jl` by typing this in `Julia REPL`.
```Julia
using Pkg; Pkg.add("BeeEncoder")
```
Then run the following code in Julia REPL
```Julia
using BeeEncoder
@beeint x 0 5
@beeint y -4 9
@beeint z -5 10
@constrain x + y == z
@beeint w 0 10
xl = @beebool x[1:4]
@constrain xl[1] == -xl[2]
@constrain xl[2] == true
@constrain sum([-xl[1], xl[2], -xl[3], xl[4]]) == w
BEE.render()
```
You will get output like this
```Julia
new_int(w, 0, 10)
new_int(x, 0, 5)
new_int(z, -5, 10)
new_int(y, -4, 9)
new_bool(x1)
new_bool(x4)
new_bool(x2)
new_bool(x3)
int_plus(x, y, z)
bool_eq(x1, -x2)
bool_eq(x2, true)
bool_array_sum_eq(([-x1, x2, -x3, x4], w))
solve satisfy
```
Exactly as above.
You can solve this into a file and solve it with `BumbleBEE` as I described before.
If you have `BEE` installed and `BumbleBEE` can be found through your `PATH` environment variable, then you can run
`BEE.solve()` directly in Julia and get the solution, like this.
```Julia
julia> output = solve();
% SWI-Prolog interface to Glucose v4.0 ... OK
% \'''/ // BumbleBEE / \_/ \_/ \
% -(|||)(') (15/06/2017) \_/ \_/ \_/
% ^^^ by Amit Metodi / \_/ \_/ \
%
% reading BEE file ... done
% load pl-satSolver ... % encoding BEE model ... done
% solving CNF (satisfy) ...
w = 2
x = 0
z = -4
y = -4
x1 = false
x4 = false
x2 = true
x3 = true
----------
==========
```
And if you check `output`, you will it is a dictionary containing the solution.
```Julia
julia> out
BEE solution:
* Satisfiable: true
* Integer variables: Dict("w" => 2,"x" => 0,"z" => -4,"y" => -4)
* Boolean variables: Dict{String,Bool}("x1" => 0,"x4" => 0,"x2" => 1,"x3" => 1)
```
To reset the model, use `reset()`.
## Acknowledgement 🙏️
I want to thank all the generous ❤️ people who have spend their time to create these amazing SAT
solvers and made them freely available to everyone.
By writing this module, I have learn quite a great deal of Julia and its convenient meta-programming
features. I want to thank everyone 💁 on GitHub and [Julia Slack channel](https://slackinvite.julialang.org/) who has helped me, in
particular Alex Arslan, [David Sanders](https://github.com/dpsanders), Syx Pek, and [Jeffrey
Sarnoff](https://github.com/JeffreySarnoff).
I also want to thank my dear friend [Yelena Yuditsky](https://sites.google.com/view/yuditsky/home) for
giving me a problem to solve so that I have the motivation to do all this.
| BeeEncoder | https://github.com/newptcai/BeeEncoder.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 10968 | # (-1)^k B_{2k}/(2k)! where B_{2k} are the even Bernoulli numbers
# B(k) = 2*(-1)^(2*k + 1)*SpecialFunctions.zeta(2*k)/(2*pi)^(2*k)
const B = (
-8.3333333333333333e-002,-1.3888888888888889e-003,-3.3068783068783069e-005,-8.2671957671957672e-007,
-2.0876756987868099e-008,-5.2841901386874932e-010,-1.3382536530684679e-011,-3.3896802963225829e-013,
-8.5860620562778446e-015,-2.1748686985580619e-016,-5.5090028283602295e-018,-1.3954464685812523e-019,
-3.5347070396294675e-021,-8.9535174270375469e-023,-2.2679524523376831e-024,-5.7447906688722024e-026,
-1.4551724756148649e-027,-3.6859949406653102e-029,-9.3367342570950447e-031,-2.3650224157006299e-032,
-5.9906717624821343e-034,-1.5174548844682903e-035,-3.8437581254541882e-037,-9.7363530726466910e-039,
-2.4662470442006810e-040,-6.2470767418207437e-042,-1.5824030244644914e-043,-4.0082736859489360e-045,
-1.0153075855569556e-046,-2.5718041582418717e-048,-6.5144560352338149e-050,-1.6501309906896525e-051,
-4.1798306285394759e-053,-1.0587634667702909e-054,-2.6818791912607707e-056,-6.7932793511074212e-058,
-1.7207577616681405e-059,-4.3587303293488938e-061,-1.1040792903684667e-062,-2.7966655133781345e-064,
-7.0840365016794702e-066,-1.7944074082892241e-067,-4.5452870636110961e-069,-1.1513346631982052e-070,
-2.9163647710923614e-072,-7.3872382634973376e-074,-1.8712093117637953e-075,-4.7398285577617994e-077,
-1.2006125993354507e-078,-3.0411872415142924e-080,-7.7034172747051063e-082,-1.9512983909098831e-083,
-4.9426965651594615e-085,-1.2519996659171848e-086,-3.1713522017635155e-088,-8.0331289707353345e-090,
-2.0348153391661466e-091,-5.1542474664474739e-093,-1.3055861352149467e-094,-3.3070883141750912e-096,
-8.3769525600490913e-098,-2.1219068717497138e-099,-5.3748528956122803e-101,-1.3614661432172069e-102,
-3.4486340279933990e-104,-8.7354920416383551e-106,-2.2127259833925497e-107,-5.6049003928372242e-109,
-1.4197378549991788e-110,-3.5962379982587627e-112,-9.1093772660782319e-114,-2.3074322171091233e-115,
-5.8447940852990020e-117,-1.4805036371705745e-118,-3.7501595226227197e-120,-9.4992650419929583e-122,
-2.4061919444675199e-123,-6.0949553971026848e-125,-1.5438702377042471e-126,-3.9106689968592923e-128,
-9.9058402898794298e-130,-2.5091786578563553e-131,-6.3558237896024598e-133,-1.6099489734616250e-134,
-4.0780483898724622e-136,-1.0329817245315190e-137,-2.6165732752609202e-139,-6.6278575334086228e-141,
-1.6788559257443673e-142,-4.2525917390343006e-144,-1.0771940713664573e-145,-2.7285644580839580e-147,
-6.9115345134370137e-149,-1.7507121442157682e-150,-4.4346056667239196e-152,-1.1232987378487150e-153,
-2.8453489425693971e-155,-7.2073530684151368e-157,-1.8256438595501418e-158,-4.6244099189746555e-160,
-1.1713767165946985e-161,-2.9671318854112523e-163,-7.5158328663197353e-165,-1.9037827051837494e-166,
-4.8223379271757316e-168,-1.2215124667619569e-169,-3.0941272241548313e-171,-7.8375158172837117e-173,
-1.9852659485568249e-174,-5.0287373938151486e-176,-1.2737940624195893e-177,-3.2265580530233667e-179,
-8.1729670255761088e-181,-2.0702367322529201e-182,-5.2439709032927841e-184,-1.3283133472690102e-185,
-3.3646570148302941e-187,-8.5227757823275058e-189,-2.1588443254591854e-190,-5.4684165588767235e-192,
-1.3851660959868732e-193,-3.5086667096656512e-195,-8.8875566007447618e-197,-2.2512443861893281e-198,
-5.7024686469217722e-200,-1.4444521824735857e-201,-3.6588401210745441e-203,-9.2679502956336812e-205,
-2.3475992347298971e-206,-5.9465383295169881e-208,-1.5062757553029781e-209,-3.8154410604763518e-211,
-9.6646251091260105e-213,-2.4480781387902631e-214,-6.2010543667790175e-216,-1.5707454206813435e-217,
-3.9787446306053875e-219,-1.0078277884588346e-220,-2.5528576108572180e-222,-6.4664638700600961e-224,
-1.6379744332372530e-225,-4.1490377087871461e-227,-1.0509635290775169e-228,-2.6621217182765621e-230,
-6.7432330873938832e-232,-1.7080808949773099e-233,-4.3266194508991167e-235,-1.0959455098376500e-236,
-2.7760624066064009e-238,-7.0318482225589324e-240,-1.7811879627573501e-241,-4.5118018169014740e-243,
-1.1428527511202687e-244,-2.8948798368101921e-246,-7.3328162891986569e-248,-1.8574240646335573e-249,
-4.7049101188608530e-251,-1.1917676554344843e-252,-3.0187827368818927e-254,-7.6466660014982318e-256,
-1.9369231254735576e-257,-4.9062835924299293e-259,-1.2427761521749539e-260,-3.1479887685209103e-262,
-7.9739487029830971e-264,-2.0198248022238287e-265,-5.1162759927867278e-267,-1.2959678485750701e-268,
-3.2827249095010017e-270,-8.3152393350706909e-272,-2.1062747292467202e-273,-5.3352562160805552e-275,
-1.3514361871210552e-276,-3.4232278524048296e-278,-8.6711374470768819e-280,-2.1964247741580717e-281,
-5.5636089474762561e-283,-1.4092786097034883e-284,-3.5697444204246398e-286,-9.0422682494513886e-288,
-2.2904333046148606e-289,-5.8017353369352214e-291,-1.4695967287946349e-292,-3.7225320009595016e-294,
-9.4292837120924187e-296,-2.3884654665215509e-297,-6.0500537039203004e-299,-1.5324965059522865e-300,
-3.8818589977708149e-302,-9.8328637096699497e-304,-2.4906934741438690e-305,-6.3090002722625804e-307,
-1.5980884379636898e-308,-4.0480053024903931e-310,-1.0253717215969654e-311,-2.5972969126396544e-313,
-6.5790299364809836e-315,-1.6664877509565689e-316,-4.2212627863094242e-318,-1.0692583549355590e-319,
-2.7084630535382438e-321,-6.8606170609008831e-323
)
# Binomial coefficents, [ binomial(n,k) for n=0:7, k=0:7 ]
const binomial_coeffs = (
(1, 0, 0, 0, 0, 0, 0, 0),
(1, 1, 0, 0, 0, 0, 0, 0),
(1, 2, 1, 0, 0, 0, 0, 0),
(1, 3, 3, 1, 0, 0, 0, 0),
(1, 4, 6, 4, 1, 0, 0, 0),
(1, 5, 10, 10, 5, 1, 0, 0),
(1, 6, 15, 20, 15, 6, 1, 0),
(1, 7, 21, 35, 35, 21, 7, 1)
)
# 1/n! for integer n = 0, 1, 2, ...
const inverse_factorials = (
1.0, 1.0, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040, 1/40320
)
# zeta(n) for n = 2,...,9
const zetas = (
1.6449340668482264, 1.2020569031595943, 1.0823232337111382,
1.0369277551433699, 1.0173430619844491, 1.0083492773819228,
1.0040773561979443, 1.0020083928260822
)
# returns binomial(n,k) using pre-computed table
function binomial_coeff(n::Integer, k::Integer)
binomial_coeffs[n + 1][k + 1]
end
# returns 1/n!
function inverse_factorial(n::Integer)
inverse_factorials[n + 1]
end
# returns zeta(n)
function zeta(n::Integer)
zetas[n - 1]
end
# returns P_n(x)
function pcal(n::Integer, x::Float64)
sum = zero(x)
x2 = x*x
fl = (n - 1)÷2
for i in 3:2:n
sgn = iseven(fl + (i - 1)÷2) ? 1.0 : -1.0
sum = x2*sum + sgn*zeta(i)*inverse_factorial(n - i)
end
if iseven(n)
sum *= x
end
sum
end
# returns N_n(x) from Eq.(2.11)
function ncal(n::Integer, x::Float64)
sum = zero(x)
xn1 = x^(n + 1)
x2 = x*x
xn = xn1*x2 # x^(n + 3)
for k in one(n):length(B)
old_sum = sum
sum += B[k]*xn/(2*k + n + 1)
sum == old_sum && break
xn *= x2
end
(xn1/(n + 1) + sum)/(n + 1)
end
# returns sum in Eq.(2.13), n > 1
function nsum(n::Integer, x::Float64)
sum = zero(x)
xn = one(x)
for i in zero(n):(n - 3)
sum += binomial_coeff(n - 2, i)*xn*ncal(n - 2 - i, x)
xn *= -x
end
sum + xn*ncal(0, x)
end
# returns Cl(n,x) using the naive series expansion
function cl_series(n::Integer, x::Float64)
if iseven(n)
si_series(n, x)
else
co_series(n, x)
end
end
"""
cl(n, z)
Returns the value of the Clausen function ``\\operatorname{Cl}_n(z)``
for all integers ``n\\in\\mathbb{Z}`` and arguments ``z`` of type
`Real` or `Complex`. For complex ``z\\in\\mathbb{C}`` this function
is defined as
```math
\\begin{aligned}
\\operatorname{Cl}_n(z) &= \\frac{i}{2}\\left[\\operatorname{Li}_n(e^{-iz}) - \\operatorname{Li}_n(e^{iz})\\right], \\qquad \\text{for}~n~\\text{even}, \\\\
\\operatorname{Cl}_n(z) &= \\frac{1}{2}\\left[\\operatorname{Li}_n(e^{-iz}) + \\operatorname{Li}_n(e^{iz})\\right], \\qquad \\text{for}~n~\\text{odd}.
\\end{aligned}
```
For real ``z\\in\\mathbb{R}`` the function simplifies to
```math
\\begin{aligned}
\\operatorname{Cl}_n(z) &= \\Im[\\operatorname{Li}_n(e^{iz})] = \\sum_{k=1}^\\infty \\frac{\\sin(kz)}{k^n}, \\qquad \\text{for even}~n>0, \\\\
\\operatorname{Cl}_n(z) &= \\Re[\\operatorname{Li}_n(e^{iz})] = \\sum_{k=1}^\\infty \\frac{\\cos(kz)}{k^n}, \\qquad \\text{for odd}~n>0.
\\end{aligned}
```
Note: ``\\operatorname{Cl}_1(z)`` is not defined for ``z=2k\\pi`` with
``k\\in\\mathbb{Z}``.
For ``z`` of type `Float16`, `Float32` or `Float64` the implementation
follows the approach presented in [Jiming Wu, Xiaoping Zhang, Dongjie
Liu, "An efficient calculation of the Clausen functions Cl_n(θ)(n >=
2)", Bit Numer Math 50, 193-206 (2010)
[https://doi.org/10.1007/s10543-009-0246-8](https://doi.org/10.1007/s10543-009-0246-8)].
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl(10, 1.0)
0.8423605391686301
julia> cl(10, big"1")
0.8423605391686302305168624869816554653186479602725762955247227248477087749849797
julia> cl(10, 1.0 + 1.0im)
1.301796548970136 + 0.6333106255561783im
julia> cl(10, big"1" + 1im)
1.301796548970136401486390838171927382622047488046695826621336318796926878116022 + 0.6333106255561785282041229828047700199791464296534659278461150656661132141323808im
```
"""
cl
cl(n::Integer, x::Real) = _cl(n, float(x))
_cl(n::Integer, x::Float16) = oftype(x, _cl(n, Float32(x)))
_cl(n::Integer, x::Float32) = oftype(x, _cl(n, Float64(x)))
function _cl(n::Integer, x::Float64)::Float64
n < 1 && return invoke(_cl, Tuple{Integer, Real}, n, x)
n == 1 && return cl1(x)
n == 2 && return cl2(x)
n == 3 && return cl3(x)
n == 4 && return cl4(x)
n == 5 && return cl5(x)
n == 6 && return cl6(x)
(x, sgn) = range_reduce(n, x)
if iseven(n) && iszero(x)
x
elseif iseven(n) && x == convert(Float64, pi)
zero(x)
elseif n < 10
sign1 = iseven((n + 1)÷2) ? 1.0 : -1.0;
# first line in Eq.(2.13)
term1 = iszero(x) ?
zero(x) :
sign1*x^(n - 1)*inverse_factorial(n - 1)*log(2*sin(x/2))
sign2 = iseven(n÷2) ? 1.0 : -1.0
# second line in Eq.(2.13)
term2 = pcal(n, x) - sign2*inverse_factorial(n - 2)*nsum(n, x)
# Eq.(2.13)
sgn*(term1 + term2)
else # n >= 10
sgn*cl_series(n, x)
end
end
function _cl(n::Integer, x::Real)
if iseven(n)
imag(PolyLog.li(n, cis(x)))
else
real(PolyLog.li(n, cis(x)))
end
end
function cl(n::Integer, z::Complex)
eiz = cis(z)
if iseven(n)
if iszero(z)
z
else
(PolyLog.li(n, inv(eiz)) - PolyLog.li(n, eiz))*im/2
end
else
(PolyLog.li(n, inv(eiz)) + PolyLog.li(n, eiz))/2
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1294 | """
cl1(z)
Returns the value of the Clausen function ``\\operatorname{Cl}_1(z)``
for an argument ``z`` of type `Real` or `Complex`. This function is
defined as
```math
\\operatorname{Cl}_1(z) = -\\frac{1}{2}\\left[\\log(1 - e^{iz}) + \\log(1 - e^{-iz})\\right]
```
Note: ``\\operatorname{Cl}_1(z)`` is not defined for ``z=2k\\pi`` with
``k\\in\\mathbb{Z}``.
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl1(1.0)
0.04201950582536895
julia> cl1(big"1")
0.04201950582536896172579838403790203712453892055703441769956888996856898991572203
julia> cl1(1.0 + 1.0im)
-0.3479608285425303 - 0.7021088550913619im
julia> cl1(big"1" + 1im)
-0.3479608285425304681676697311626225254052481291939705626677618712960309352197459 - 0.7021088550913618982002640571209884840333848751442483836897991093694470903764252im
```
"""
cl1
cl1(x::Float16) = oftype(x, cl1(Float32(x)))
cl1(x::Float32) = oftype(x, cl1(Float64(x)))
function cl1(x::Float64)::Float64
x = range_reduce_odd(x)
if iszero(x)
return Inf
end
-log(2*sin(one(x)/2*x))
end
function cl1(x::Real)
-log(hypot(one(x) - cos(x), sin(x)))
end
function cl1(z::Complex)
eiz = cis(z)
-(log(one(z) - eiz) + log(one(z) - inv(eiz)))/2
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1729 | """
cl2(x::Real)::Real
Returns the value of the Clausen function ``\\operatorname{Cl}_2(x)``
for a real angle ``x`` of type `Real`. The Clausen function is
defined as
```math
\\operatorname{Cl}_2(x) = -\\int_0^x \\log|2\\sin(t/2)| dt
```
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl2(1.0)
1.0139591323607684
```
"""
cl2(x::Real) = _cl2(float(x))
_cl2(x::Float16) = oftype(x, _cl2(Float32(x)))
_cl2(x::Float32) = oftype(x, _cl2(Float64(x)))
function _cl2(x::Float64)::Float64
(x, sgn) = range_reduce_even(x)
if iszero(x)
x
elseif x < pi/2
P = (1.3888888888888889e-02, -4.3286930203743071e-04,
3.2779814789973427e-06, -3.6001540369575084e-09)
Q = (1.0000000000000000e+00, -3.6166589746694121e-02,
3.6015827281202639e-04, -8.3646182842184428e-07)
y = x*x
y2 = y*y
p = P[1] + y * P[2] + y2 * (P[3] + y * P[4])
q = Q[1] + y * Q[2] + y2 * (Q[3] + y * Q[4])
sgn*x*(1.0 - log(x) + y*p/q)
elseif x < pi
P = (6.4005702446195512e-01, -2.0641655351338783e-01,
2.4175305223497718e-02, -1.2355955287855728e-03,
2.5649833551291124e-05, -1.4783829128773320e-07)
Q = (1.0000000000000000e+00, -2.5299102015666356e-01,
2.2148751048467057e-02, -7.8183920462457496e-04,
9.5432542196310670e-06, -1.8184302880448247e-08)
y = pi - x
z = y*y - pi*pi/8
z2 = z*z
z4 = z2*z2
p = P[1] + z * P[2] + z2 * (P[3] + z * P[4]) + z4 * (P[5] + z * P[6])
q = Q[1] + z * Q[2] + z2 * (Q[3] + z * Q[4]) + z4 * (Q[5] + z * Q[6])
sgn*y*p/q
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1785 | """
cl3(x::Real)::Real
Returns the value of the Clausen function ``\\operatorname{Cl}_3(x)``
for a real angle ``x`` of type `Real`. This function is defined as
```math
\\operatorname{Cl}_3(x) = \\Re[\\operatorname{Li}_3(e^{ix})] = \\sum_{k=1}^\\infty \\frac{\\cos(kx)}{k^3}
```
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl3(1.0)
0.44857300728001737
```
"""
cl3(x::Real) = _cl3(float(x))
_cl3(x::Float16) = oftype(x, _cl3(Float32(x)))
_cl3(x::Float32) = oftype(x, _cl3(Float64(x)))
function _cl3(x::Float64)::Float64
zeta3 = 1.2020569031595943
x = range_reduce_odd(x)
if iszero(x)
zeta3
elseif x < pi/2
P = (-7.5000000000000001e-01, 1.5707637881835541e-02,
-3.5426736843494423e-05, -2.4408931585123682e-07)
Q = (1.0000000000000000e+00, -2.5573146805410089e-02,
1.5019774853075050e-04, -1.0648552418111624e-07)
y = x*x
y2 = y*y
p = P[1] + y * P[2] + y2 * (P[3] + y * P[4])
q = Q[1] + y * Q[2] + y2 * (Q[3] + y * Q[4])
zeta3 + y*(p/q + 0.5*log(x))
else
P = (-4.9017024647634973e-01, 4.1559155224660940e-01,
-7.9425531417806701e-02, 5.9420152260602943e-03,
-1.8302227163540190e-04, 1.8027408929418533e-06)
Q = (1.0000000000000000e+00, -1.9495887541644712e-01,
1.2059410236484074e-02, -2.5235889467301620e-04,
1.0199322763377861e-06, 1.9612106499469264e-09)
y = pi - x
z = y*y - pi*pi/8
z2 = z*z
z4 = z2*z2
p = P[1] + z * P[2] + z2 * (P[3] + z * P[4]) + z4 * (P[5] + z * P[6])
q = Q[1] + z * Q[2] + z2 * (Q[3] + z * Q[4]) + z4 * (Q[5] + z * Q[6])
p/q
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1805 | """
cl4(x::Real)::Real
Returns the value of the Clausen function ``\\operatorname{Cl}_4(x)``
for a real angle ``x`` of type `Real`. This function is defined as
```math
\\operatorname{Cl}_4(x) = \\Im[\\operatorname{Li}_4(e^{ix})] = \\sum_{k=1}^\\infty \\frac{\\sin(kx)}{k^4}
```
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl4(1.0)
0.8958052386793799
```
"""
cl4(x::Real) = _cl4(float(x))
_cl4(x::Float16) = oftype(x, _cl4(Float32(x)))
_cl4(x::Float32) = oftype(x, _cl4(Float64(x)))
function _cl4(x::Float64)::Float64
(x, sgn) = range_reduce_even(x)
if iszero(x)
x
elseif x < pi/2
zeta3 = 1.2020569031595943
P = (-3.0555555555555556e-01, 6.0521392328447206e-03,
-1.9587493942041528e-05, -3.1137343767030358e-08)
Q = (1.0000000000000000e+00, -2.2079728398400851e-02,
1.0887447112236682e-04, -6.1847621370547954e-08)
y = x*x
y2 = y*y
p = P[1] + y * P[2] + y2 * (P[3] + y * P[4])
q = Q[1] + y * Q[2] + y2 * (Q[3] + y * Q[4])
sgn*x*(zeta3 + y*(p/q + 1/6*log(x)))
else
P = (7.6223911686491336e-01, -2.4339587368267260e-01,
2.8715364937979943e-02, -1.5368612510964667e-03,
3.6261044225761673e-05, -2.8557977333851308e-07)
Q = (1.0000000000000000e+00, -1.7465715261403233e-01,
9.5439417991615653e-03, -1.7325070821666274e-04,
5.9283675098376635e-07, 9.4127575773361230e-10)
y = pi - x
z = y*y - pi*pi/8
z2 = z*z
z4 = z2*z2
p = P[1] + z * P[2] + z2 * (P[3] + z * P[4]) + z4 * (P[5] + z * P[6])
q = Q[1] + z * Q[2] + z2 * (Q[3] + z * Q[4]) + z4 * (Q[5] + z * Q[6])
sgn*y*p/q
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1817 | """
cl5(x::Real)::Real
Returns the value of the Clausen function ``\\operatorname{Cl}_5(x)``
for a real angle ``x`` of type `Real`. This function is defined as
```math
\\operatorname{Cl}_5(x) = \\Re[\\operatorname{Li}_5(e^{ix})] = \\sum_{k=1}^\\infty \\frac{\\cos(kx)}{k^5}
```
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl5(1.0)
0.5228208076420943
```
"""
cl5(x::Real) = _cl5(float(x))
_cl5(x::Float16) = oftype(x, _cl5(Float32(x)))
_cl5(x::Float32) = oftype(x, _cl5(Float64(x)))
function _cl5(x::Float64)::Float64
x = range_reduce_odd(x)
if iszero(x)
1.0369277551433699 # zeta(5)
elseif x < pi/2
P = (1.0369277551433699e+00, -6.1354800479984468e-01,
9.4076401395712763e-02, -9.4056155866704436e-04)
Q = (1.0000000000000000e+00, -1.2073698633244778e-02,
1.3703409625482991e-05, -1.9701280330628469e-09,
2.1944550184416500e-11)
y = x*x
y2 = y*y
p = P[1] + y * P[2] + y2 * (P[3] + y * P[4])
q = Q[1] + y * Q[2] + y2 * (Q[3] + y * Q[4] + y2 * Q[5])
p/q - 1/24*y2*log(x)
else
P = (-4.5930112735784898e-01, 4.3720705508867954e-01,
-7.5895226486465095e-02, 5.2244176912488065e-03,
-1.5677716622013956e-04, 1.6641624171748576e-06)
Q = ( 1.0000000000000000e+00, -1.2211486825401188e-01,
3.8940070749313620e-03, -2.2674805547074318e-05,
-7.4383354448335299e-08, -3.4131758392216437e-10)
y = pi - x
z = y*y - pi*pi/8
z2 = z*z
z4 = z2*z2
p = P[1] + z * P[2] + z2 * (P[3] + z * P[4]) + z4 * (P[5] + z * P[6])
q = Q[1] + z * Q[2] + z2 * (Q[3] + z * Q[4]) + z4 * (Q[5] + z * Q[6])
p/q
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1720 | """
cl6(x::Real)::Real
Returns the value of the Clausen function ``\\operatorname{Cl}_6(x)``
for a real angle ``x`` of type `Real`. This function is defined as
```math
\\operatorname{Cl}_6(x) = \\Im[\\operatorname{Li}_6(e^{ix})] = \\sum_{k=1}^\\infty \\frac{\\sin(kx)}{k^6}
```
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> cl6(1.0)
0.855629273183937
```
"""
cl6(x::Real) = _cl6(float(x))
_cl6(x::Float16) = oftype(x, _cl6(Float32(x)))
_cl6(x::Float32) = oftype(x, _cl6(Float64(x)))
function _cl6(x::Float64)::Float64
(x, sgn) = range_reduce_even(x)
if iszero(x)
x
elseif x < pi/2
P = (1.0369277551433699e+00, -2.087195444107175e-01,
2.0652251045312954e-02, -1.383438138256840e-04)
Q = (1.0000000000000000e+00, -8.0784096827362542e-03,
5.8074568862993102e-06, -5.1960620033050114e-10)
y = x*x
y2 = y*y
p = P[1] + y * P[2] + y2 * (P[3] + y * P[4])
q = Q[1] + y * Q[2] + y2 * (Q[3] + y * Q[4])
sgn*x*(p/q - 1/120*y2*log(x))
else
P = (7.9544504578027050e-01, -1.9255025309738589e-01,
1.5805208288846591e-02, -5.4175380521534706e-04,
6.7577493541009068e-06)
Q = (1.0000000000000000e+00, -7.0798422394109274e-02,
7.1744189715634762e-04, 3.9098747334347093e-06,
3.5669441618295266e-08, 2.5315391843409925e-10)
y = pi - x
z = y*y - pi*pi/8
z2 = z*z
z4 = z2*z2
p = P[1] + z * P[2] + z2 * (P[3] + z * P[4]) + z4 * P[5]
q = Q[1] + z * Q[2] + z2 * (Q[3] + z * Q[4]) + z4 * (Q[5] + z * Q[6])
sgn*y*p/q
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 326 | module ClausenFunctions
import PolyLog
include("range_reduction.jl")
include("Cl1.jl")
include("Cl2.jl")
include("Cl3.jl")
include("Cl4.jl")
include("Cl5.jl")
include("Cl6.jl")
include("Cl.jl")
include("Series.jl")
include("Sl.jl")
export cl1
export cl2
export cl3
export cl4
export cl5
export cl6
export cl
export sl
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 874 | # returns sum(k=1:inf, cos(k*x)/k^n)
function co_series(n::Integer, x::Number)
kmax = max_terms(n, typeof(x))
co = cos(x)
co2 = one(x) # cos((k-2)*x)
co1 = co # cos((k-1)*x)
sum = co
for k in 2:kmax
con = 2*co*co1 - co2 # cos(k*x)
co2 = co1
co1 = con
sum += con/oftype(x, k)^n
end
sum
end
# returns sum(k=1:inf, sin(k*x)/k^n)
function si_series(n::Integer, x::Number)
kmax = max_terms(n, typeof(x))
si, co = sincos(x)
si2 = zero(x) # sin((k-2)*x)
si1 = si # sin((k-1)*x)
sum = si
for k in 2:kmax
si = 2*co*si1 - si2 # sin(k*x)
si2 = si1
si1 = si
sum += si/oftype(x, k)^n
end
sum
end
# returns maximum number of terms in co_series or si_series
function max_terms(n::Integer, ::Type{T}) where T
ceil(typeof(n), eps(T)^(-inv(n)))
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 8816 | # returns Sl(n,x) using the naive series expansion
function sl_series(n::Integer, x::Number)
if iseven(n)
co_series(n, x)
else
si_series(n, x)
end
end
"""
sl(n, z)
Returns the value of the Glaisher-Clausen function
``\\operatorname{Sl}_n(z)`` for all integers ``n\\in\\mathbb{Z}`` and
arguments ``z`` of type `Real` or `Complex`. For complex
``z\\in\\mathbb{C}`` this function is defined as
```math
\\begin{aligned}
\\operatorname{Sl}_n(z) &= \\frac{1}{2}\\left[\\operatorname{Li}_n(e^{-iz}) + \\operatorname{Li}_n(e^{iz})\\right], \\qquad \\text{for}~n~\\text{even}, \\\\
\\operatorname{Sl}_n(z) &= \\frac{i}{2}\\left[\\operatorname{Li}_n(e^{-iz}) - \\operatorname{Li}_n(e^{iz})\\right], \\qquad \\text{for}~n~\\text{odd}.
\\end{aligned}
```
For real ``z\\in\\mathbb{R}`` the function simplifies to
```math
\\begin{aligned}
\\operatorname{Sl}_n(z) &= \\Re[\\operatorname{Li}_n(e^{iz})] = \\sum_{k=1}^\\infty \\frac{\\cos(kz)}{k^n}, \\qquad \\text{for even}~n>0, \\\\
\\operatorname{Sl}_n(z) &= \\Im[\\operatorname{Li}_n(e^{iz})] = \\sum_{k=1}^\\infty \\frac{\\sin(kz)}{k^n}, \\qquad \\text{for odd}~n>0.
\\end{aligned}
```
Note: We set ``\\operatorname{Sl}_1(0) = 0`` for consistency with the
series expansion.
Author: Alexander Voigt
License: MIT
# Example
```jldoctest; setup = :(using ClausenFunctions), output = false
julia> sl(10, 1.0)
0.5398785706335891
julia> sl(10, big"1")
0.5398785706335893473201701431352733846690266746377581980285682505050227015352517
julia> sl(10, 1.0 + 1.0im)
0.832020890646937 - 0.9921163924162678im
julia> sl(10, big"1" + 1im)
0.832020890646937194384242195240640660735825609698824394209500978844042810286907 - 0.9921163924162683284596904585334878021171116435958891901780686447162617670776108im
```
"""
sl(n::Integer, x::Real) = _sl(n, float(x))
_sl(n::Integer, x::Float16) = oftype(x, _sl(n, Float32(x)))
_sl(n::Integer, x::Float32) = oftype(x, _sl(n, Float64(x)))
function _sl(n::Integer, x::Float64)::Float64
n < 0 && return zero(x)
n == 0 && return -1/2
(x, sgn) = range_reduce(n + 1, x)
isodd(n) && iszero(x) && return x
n == 1 && return sgn*(pi/2 - 1/2*x)
n == 2 && return sgn*(pi^2/6 + (-1/2*pi + 1/4*x)*x)
n == 3 && return sgn*(x*(pi^2/6 + (-1/4*pi + 1/12*x)*x))
x2 = x*x
n == 4 && return sgn*(pi^4/90 + x2*(-1/12*pi^2 + (pi/12 - 1/48*x)*x))
n == 5 && return sgn*(x*(pi^4/90 + x2*(-1/36*pi^2 + (pi/48 - 1/240*x)*x)))
n == 6 && return sgn*(pi^6/945 + x2*(-1/180*pi^4 + x2*(pi^2/144 + (-1/240*pi + 1/1440*x)*x)))
n == 7 && return sgn*(x*(pi^6/945 + x2*(-1/540*pi^4 + x2*(pi^2/720 + (-1/1440*pi + 1/10080*x)*x))))
n == 8 && return sgn*(pi^8/9450 + x2*(-1/1890*pi^6 + x2*(pi^4/2160 + x2*(-1/4320*pi^2 + (pi/10080 - 1/80640*x)*x))))
n == 9 && return sgn*(x*(pi^8/9450 + x2*(-1/5670*pi^6 + x2*(pi^4/10800 + x2*(-1/30240*pi^2 + (pi/80640 - 1/725760*x)*x)))))
n == 10 && return sgn*(pi^10/93555 + x2*(-1/18900*pi^8 + x2*(pi^6/22680 + x2*(-1/64800*pi^4 + x2*(pi^2/241920 + (-1/725760*pi + 1/7257600*x)*x)))))
n == 11 && return sgn*(x*(pi^10/93555 + x2*(-1/56700*pi^8 + x2*(pi^6/113400 + x2*(-1/453600*pi^4 + x2*(pi^2/2177280 + (-1/7257600*pi + 1/79833600*x)*x))))))
n == 12 && return sgn*((691*pi^12)/638512875 + x2*(-1/187110*pi^10 + x2*(pi^8/226800 + x2*(-1/680400*pi^6 + x2*(pi^4/3628800 + x2*(-1/21772800*pi^2 + (pi/79833600 - 1/958003200*x)*x))))))
n == 13 && return sgn*(x*((691*pi^12)/638512875 + x2*(-1/561330*pi^10 + x2*(pi^8/1134000 + x2*(-1/4762800*pi^6 + x2*(pi^4/32659200 + x2*(-1/239500800*pi^2 + (pi/958003200 - 1/12454041600*x)*x)))))))
n == 14 && return sgn*((2*pi^14)/18243225 + x2*((-691*pi^12)/1277025750 + x2*(pi^10/2245320 + x2*(-1/6804000*pi^8 + x2*(pi^6/38102400 + x2*(-1/326592000*pi^4 + x2*(pi^2/2874009600 + (-1/12454041600*pi + 1/174356582400*x)*x)))))))
n == 15 && return sgn*(x*((2*pi^14)/18243225 + x2*((-691*pi^12)/3831077250 + x2*(pi^10/11226600 + x2*(-1/47628000*pi^8 + x2*(pi^6/342921600 + x2*(-1/3592512000*pi^4 + x2*(pi^2/37362124800 + (-1/174356582400*pi + 1/2615348736000*x)*x))))))))
n == 16 && return sgn*((3617*pi^16)/325641566250 + x2*(-1/18243225*pi^14 + x2*((691*pi^12)/15324309000 + x2*(-1/67359600*pi^10 + x2*(pi^8/381024000 + x2*(-1/3429216000*pi^6 + x2*(pi^4/43110144000 + x2*(-1/523069747200*pi^2 + (pi/2615348736000 - 1/41845579776000*x)*x))))))))
n == 17 && return sgn*(x*((3617*pi^16)/325641566250 + x2*(-1/54729675*pi^14 + x2*((691*pi^12)/76621545000 + x2*(-1/471517200*pi^10 + x2*(pi^8/3429216000 + x2*(-1/37721376000*pi^6 + x2*(pi^4/560431872000 + x2*(-1/7846046208000*pi^2 + (pi/41845579776000 - 1/711374856192000*x)*x)))))))))
n == 18 && return sgn*((43867*pi^18)/38979295480125 + x2*((-3617*pi^16)/651283132500 + x2*(pi^14/218918700 + x2*((-691*pi^12)/459729270000 + x2*(pi^10/3772137600 + x2*(-1/34292160000*pi^8 + x2*(pi^6/452656512000 + x2*(-1/7846046208000*pi^4 + x2*(pi^2/125536739328000 + (-1/711374856192000*pi + 1/12804747411456000*x)*x)))))))))
n == 19 && return sgn*(x*((43867*pi^18)/38979295480125 + x2*((-3617*pi^16)/1953849397500 + x2*(pi^14/1094593500 + x2*((-691*pi^12)/3218104890000 + x2*(pi^10/33949238400 + x2*(-1/377213760000*pi^8 + x2*(pi^6/5884534656000 + x2*(-1/117690693120000*pi^4 + x2*(pi^2/2134124568576000 + (-1/12804747411456000*pi + 1/243290200817664000*x)*x))))))))))
n == 20 && return sgn*((174611*pi^20)/1531329465290625 + x2*((-43867*pi^18)/77958590960250 + x2*((3617*pi^16)/7815397590000 + x2*(-1/6567561000*pi^14 + x2*((691*pi^12)/25744839120000 + x2*(-1/339492384000*pi^10 + x2*(pi^8/4526565120000 + x2*(-1/82383485184000*pi^6 + x2*(pi^4/1883051089920000 + x2*(-1/38414242234368000*pi^2 + (pi/243290200817664000 - 1/4865804016353280000*x)*x))))))))))
n == 21 && return sgn*(x*((174611*pi^20)/1531329465290625 + x2*((-43867*pi^18)/233875772880750 + x2*((3617*pi^16)/39076987950000 + x2*(-1/45972927000*pi^14 + x2*((691*pi^12)/231703552080000 + x2*(-1/3734416224000*pi^10 + x2*(pi^8/58845346560000 + x2*(-1/1235752277760000*pi^6 + x2*(pi^4/32011868528640000 + x2*(-1/729870602452992000*pi^2 + (pi/4865804016353280000 - 1/102181884343418880000*x)*x)))))))))))
n == 22 && return sgn*((155366*pi^22)/13447856940643125 + x2*((-174611*pi^20)/3062658930581250 + x2*((43867*pi^18)/935503091523000 + x2*((-3617*pi^16)/234461927700000 + x2*(pi^14/367783416000 + x2*((-691*pi^12)/2317035520800000 + x2*(pi^10/44812994688000 + x2*(-1/823834851840000*pi^8 + x2*(pi^6/19772036444160000 + x2*(-1/576213633515520000*pi^4 + x2*(pi^2/14597412049059840000 + (-1/102181884343418880000*pi + 1/2248001455555215360000*x)*x)))))))))))
n == 23 && return sgn*(x*((155366*pi^22)/13447856940643125 + x2*((-174611*pi^20)/9187976791743750 + x2*((43867*pi^18)/4677515457615000 + x2*((-3617*pi^16)/1641233493900000 + x2*(pi^14/3310050744000 + x2*((-691*pi^12)/25487390728800000 + x2*(pi^10/582568930944000 + x2*(-1/12357522777600000*pi^8 + x2*(pi^6/336124619550720000 + x2*(-1/10948059036794880000*pi^4 + x2*(pi^2/306545653030256640000 + (-1/2248001455555215360000*pi + 1/51704033477769953280000*x)*x))))))))))))
n == 24 && return sgn*((236364091*pi^24)/201919571963756521875 + x2*((-77683*pi^22)/13447856940643125 + x2*((174611*pi^20)/36751907166975000 + x2*((-43867*pi^18)/28065092745690000 + x2*((3617*pi^16)/13129867951200000 + x2*(-1/33100507440000*pi^14 + x2*((691*pi^12)/305848688745600000 + x2*(-1/8155965033216000*pi^10 + x2*(pi^8/197720364441600000 + x2*(-1/6050243151912960000*pi^6 + x2*(pi^4/218961180735897600000 + x2*(-1/6744004366665646080000*pi^2 + (pi/51704033477769953280000 - 1/1240896803466478878720000*x)*x))))))))))))
n == 25 && return sgn*(x*((236364091*pi^24)/201919571963756521875 + x2*((-77683*pi^22)/40343570821929375 + x2*((174611*pi^20)/183759535834875000 + x2*((-43867*pi^18)/196455649219830000 + x2*((3617*pi^16)/118168811560800000 + x2*(-1/364105581840000*pi^14 + x2*((691*pi^12)/3976032953692800000 + x2*(-1/122339475498240000*pi^10 + x2*(pi^8/3361246195507200000 + x2*(-1/114954619886346240000*pi^6 + x2*(pi^4/4598184795453849600000 + x2*(-1/155112100433309859840000*pi^2 + (pi/1240896803466478878720000 - 1/31022420086661971968000000*x)*x)))))))))))))
sgn*sl_series(n, x)
end
function _sl(n::Integer, x::Real)
if n < 0
zero(x)
elseif iszero(n)
-one(x)/2
elseif n == one(n) && iszero(x)
x
elseif iseven(n)
real(PolyLog.li(n, cis(x)))
else
imag(PolyLog.li(n, cis(x)))
end
end
function sl(n::Integer, z::Complex)
if n < 0
zero(z)
elseif iszero(n)
-one(z)/2
elseif isodd(n) && iszero(z)
z
else
eiz = cis(z)
if iseven(n)
(PolyLog.li(n, inv(eiz)) + PolyLog.li(n, eiz))/2
else
(PolyLog.li(n, inv(eiz)) - PolyLog.li(n, eiz))*im/2
end
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1148 | # returns 2pi - x, avoiding a catastrophic cancellation
function two_pi_minus(x::Float16)::Float16
2pi - x
end
# returns 2pi - x, avoiding a catastrophic cancellation
function two_pi_minus(x::Float32)::Float32
2pi - x
end
# returns 2pi - x, avoiding a catastrophic cancellation
function two_pi_minus(x::Float64)
p0 = 6.28125
p1 = 0.0019353071795864769253
(p0 - x) + p1
end
# returns range-reduced x in [0,pi] for odd n
function range_reduce_odd(x::Real)
if x < zero(x)
x = -x
end
if x >= 2pi
x = mod(x, 2pi)
end
if x > pi
x = two_pi_minus(x)
end
x
end
# returns (x, sign) with range-reduced x in [0,pi] for even n
function range_reduce_even(x::Real)
sgn = one(x)
if x < zero(x)
x = -x
sgn = -one(x)
end
if x >= 2pi
x = mod(x, 2pi)
end
if x > pi
x = two_pi_minus(x)
sgn = -sgn
end
(x, sgn)
end
# returns (x, sign) with range-reduced x in [0,pi]
function range_reduce(n::Integer, x::Real)
if iseven(n)
range_reduce_even(x)
else
(range_reduce_odd(x), one(x))
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 2655 | import ClausenFunctions
n = 10_000_000
x_min = 0.0
x_max = pi
data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n)
cdata = (x_max - x_min)*rand(ComplexF64, n) + x_min*ones(n)
println("Benchmarking cl1::Float64")
time_cl1(data) = @time map(ClausenFunctions.cl1, data)
map(ClausenFunctions.cl1, data) # trigger compilation
time_cl1(data) # trigger compilation
time_cl1(data)
time_cl1(data)
println("Benchmarking cl1::ComplexF64")
map(ClausenFunctions.cl1, cdata) # trigger compilation
time_cl1(cdata) # trigger compilation
time_cl1(cdata)
time_cl1(cdata)
println("Benchmarking cl2::Float64")
time_cl2(data) = @time map(ClausenFunctions.cl2, data)
map(ClausenFunctions.cl2, data) # trigger compilation
time_cl2(data) # trigger compilation
time_cl2(data)
time_cl2(data)
println("Benchmarking cl3::Float64")
time_cl3(data) = @time map(ClausenFunctions.cl3, data)
map(ClausenFunctions.cl3, data) # trigger compilation
time_cl3(data) # trigger compilation
time_cl3(data)
time_cl3(data)
println("Benchmarking cl4::Float64")
time_cl4(data) = @time map(ClausenFunctions.cl4, data)
map(ClausenFunctions.cl4, data) # trigger compilation
time_cl4(data) # trigger compilation
time_cl4(data)
time_cl4(data)
println("Benchmarking cl5::Float64")
time_cl5(data) = @time map(ClausenFunctions.cl5, data)
map(ClausenFunctions.cl5, data) # trigger compilation
time_cl5(data) # trigger compilation
time_cl5(data)
time_cl5(data)
println("Benchmarking cl6::Float64")
time_cl6(data) = @time map(ClausenFunctions.cl6, data)
map(ClausenFunctions.cl6, data) # trigger compilation
time_cl6(data) # trigger compilation
time_cl6(data)
time_cl6(data)
println("Benchmarking cl::Float64")
time_cl(k, data) = @time map(x -> ClausenFunctions.cl(k, x), data)
n = 1_000_000
data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n)
for k in vcat(collect(1:16), [1000, 1001, 1_000_000])
println("Benchmarking cl($(k),x)::Float64")
map(x -> ClausenFunctions.cl(k, x), data) # trigger compilation
time_cl(k, data) # trigger compilation
time_cl(k, data)
time_cl(k, data)
end
println("Benchmarking sl::Float64")
time_sl(k, data) = @time map(x -> ClausenFunctions.sl(k, x), data)
n = 1_000_000
data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n)
for k in vcat(collect(1:31), [1000, 1001, 1_000_000])
println("Benchmarking sl($(k),x)::Float64")
map(x -> ClausenFunctions.sl(k, x), data) # trigger compilation
time_sl(k, data) # trigger compilation
time_sl(k, data)
time_sl(k, data)
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 5718 | @testset "cl" for TN in (Int8, Int16, Int32, Int64, Int128)
for n in vcat(collect(1:16), [1000, 1001, 1_000_000, 0, -1, -2, -3])
(n > typemax(TN) || n < typemin(TN)) && continue
data = open(readdlm, joinpath(@__DIR__, "data", "Cl$(n).txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
sgn = -(-1)^n
cl = ClausenFunctions.cl(TN(n), x)
clm = sgn*ClausenFunctions.cl(TN(n), -x)
ccl = ClausenFunctions.cl(TN(n), Complex(x))
@test cl == clm
@test cl ≈ expected rtol=1e-14 atol=1e-14
@test ccl ≈ expected rtol=1e-14 atol=1e-14
(n > typemax(TN) || n < typemin(TN)) && continue
if n > 0
@test ClausenFunctions.cl(TN(n), Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl(TN(n), Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
@test ClausenFunctions.cl(TN(n), Complex(Float16(x))) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl(TN(n), Complex(Float32(x))) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
end
end
# test zeros at pi
for n in 2:2:20
@test iszero(ClausenFunctions.cl(TN(n), pi))
end
@test ClausenFunctions.cl(TN(1), 1//2) ≈ 0.70358563513784466 rtol=1e-14
@test ClausenFunctions.cl(TN(2), 1//2) ≈ 0.84831187770367927 rtol=1e-14
@test ClausenFunctions.cl(TN(3), 1//2) ≈ 0.92769631047023043 rtol=1e-14
@test ClausenFunctions.cl(TN(4), 1//2) ≈ 0.54837172654589549 rtol=1e-14
@test ClausenFunctions.cl(TN(5), 1//2) ≈ 0.89390286951083851 rtol=1e-14
@test ClausenFunctions.cl(TN(6), 1//2) ≈ 0.49419627977618802 rtol=1e-14
@test ClausenFunctions.cl(TN(1), Complex(1//2)) ≈ 0.70358563513784466 rtol=1e-14
@test ClausenFunctions.cl(TN(2), Complex(1//2)) ≈ 0.84831187770367927 rtol=1e-14
@test ClausenFunctions.cl(TN(3), Complex(1//2)) ≈ 0.92769631047023043 rtol=1e-14
@test ClausenFunctions.cl(TN(4), Complex(1//2)) ≈ 0.54837172654589549 rtol=1e-14
@test ClausenFunctions.cl(TN(5), Complex(1//2)) ≈ 0.89390286951083851 rtol=1e-14
@test ClausenFunctions.cl(TN(6), Complex(1//2)) ≈ 0.49419627977618802 rtol=1e-14
@test ClausenFunctions.cl(TN(-2), 1.0 + 1.0im) ≈ 0.50688457710655124 + 0.50950616274374456im rtol=1e-14
@test ClausenFunctions.cl(TN(-2), 1.0 - 1.0im) ≈ 0.50688457710655124 - 0.50950616274374456im rtol=1e-14
@test ClausenFunctions.cl(TN(-1), 1.0 + 1.0im) ≈ -0.08267495282794197 + 0.49171277760817954im rtol=1e-14
@test ClausenFunctions.cl(TN(-1), 1.0 - 1.0im) ≈ -0.08267495282794197 - 0.49171277760817954im rtol=1e-14
@test ClausenFunctions.cl(TN( 0), 1.0 + 1.0im) ≈ cot(1/2 + im/2)/2 rtol=1e-14
@test ClausenFunctions.cl(TN( 0), 1.0 - 1.0im) ≈ coth(1/2 + im/2)*im/2 rtol=1e-14
@test ClausenFunctions.cl(TN( 1), 0.0 + 1.0im) ≈ -0.0413248546129181 - 1.5707963267948966im rtol=1e-14
@test ClausenFunctions.cl(TN( 1), 0.0 - 1.0im) ≈ -0.0413248546129181 - 1.5707963267948966im rtol=1e-14
@test ClausenFunctions.cl(TN( 2), 0.0 + 1.0im) ≈ 1.5707963267948966 + 0.9861797794993302im rtol=1e-14
@test ClausenFunctions.cl(TN( 2), 0.0 - 1.0im) ≈ -1.5707963267948966 - 0.9861797794993302im rtol=1e-14
@test ClausenFunctions.cl(TN( 2), 1.0 + 1.0im) ≈ 1.4107754938116412 - 0.1044778629291566im rtol=1e-14
@test ClausenFunctions.cl(TN( 2), 1.0 - 1.0im) ≈ 1.4107754938116412 + 0.1044778629291566im rtol=1e-14
@test ClausenFunctions.cl(TN(-2), big(1)) ≈ 1im*(1 + exp(big(1)*im))*exp(big(1)*im)/(exp(big(1)*im) - 1)^3 rtol=1e-40
@test ClausenFunctions.cl(TN(-2), big(1) + 0im) ≈ 1im*(1 + exp(big(1)*im))*exp(big(1)*im)/(exp(big(1)*im) - 1)^3 rtol=1e-40
@test ClausenFunctions.cl(TN(-1), big(1)) ≈ exp(big(1)*im)/(exp(big(1)*im) - 1)^2 rtol=1e-40
@test ClausenFunctions.cl(TN(-1), big(1) + 0im) ≈ exp(big(1)*im)/(exp(big(1)*im) - 1)^2 rtol=1e-40
@test ClausenFunctions.cl(TN( 0), big(1)) ≈ cot(BigFloat("0.5"))/2 rtol=1e-40
@test ClausenFunctions.cl(TN( 0), big(1) + 0im) ≈ cot(BigFloat("0.5"))/2 rtol=1e-40
@test ClausenFunctions.cl(TN( 1), big(1)) ≈ BigFloat("0.04201950582536896172579838403790203712454") rtol=1e-40
@test ClausenFunctions.cl(TN( 1), big(1) + 0im) ≈ BigFloat("0.04201950582536896172579838403790203712454") rtol=1e-40
@test ClausenFunctions.cl(TN( 2), big(1)) ≈ BigFloat("1.0139591323607685042945743388859146875612") rtol=1e-40
@test ClausenFunctions.cl(TN( 2), big(1) + 0im) ≈ BigFloat("1.0139591323607685042945743388859146875612") rtol=1e-40
# test handling of negative zero
for n in -100:2:100
@test !signbit(ClausenFunctions.cl(TN(n), 0.0))
@test signbit(ClausenFunctions.cl(TN(n), -0.0))
@test !signbit(ClausenFunctions.cl(TN(n), BigFloat("0.0")))
@test signbit(ClausenFunctions.cl(TN(n), BigFloat("-0.0")))
@test !signbit(real(ClausenFunctions.cl(TN(n), Complex(0.0, 0.0))))
@test !signbit(imag(ClausenFunctions.cl(TN(n), Complex(0.0, 0.0))))
@test !signbit(real(ClausenFunctions.cl(TN(n), Complex(0.0, -0.0))))
@test signbit(imag(ClausenFunctions.cl(TN(n), Complex(0.0, -0.0))))
@test signbit(real(ClausenFunctions.cl(TN(n), Complex(-0.0, 0.0))))
@test !signbit(imag(ClausenFunctions.cl(TN(n), Complex(-0.0, 0.0))))
@test signbit(real(ClausenFunctions.cl(TN(n), Complex(-0.0, -0.0))))
@test signbit(imag(ClausenFunctions.cl(TN(n), Complex(-0.0, -0.0))))
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 3183 | @testset "cl1" begin
data = open(readdlm, joinpath(@__DIR__, "data", "Cl1.txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.cl1(x) ≈ expected rtol=1e-13
@test ClausenFunctions.cl1(-x) ≈ expected rtol=1e-13
@test ClausenFunctions.cl1(x - 2pi) ≈ expected rtol=1e-12
@test ClausenFunctions.cl1(x + 2pi) ≈ expected rtol=1e-13
@test ClausenFunctions.cl1(Float16(x)) ≈ Float16(expected) atol=10*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl1(Float32(x)) ≈ Float32(expected) atol=10*eps(Float32) rtol=30*eps(Float32)
@test ClausenFunctions.cl1(x) ≈ real(ClausenFunctions.cl1(Complex(x))) rtol=1e-13
end
@test ClausenFunctions.cl1(1//2) ≈ 0.70358563513784466 rtol=1e-14
@test ClausenFunctions.cl1(1) ≈ ClausenFunctions.cl1(1.0) rtol=1e-14
@test ClausenFunctions.cl1(0.0) == Inf
# test complex Clausen function cl1
@test ClausenFunctions.cl1(Complex(1/2)) ≈ 0.70358563513784466 rtol=1e-14
@test ClausenFunctions.cl1(Complex(1/2, 1)) ≈ -0.14296382186432422 - 1.06599896593689653im rtol=1e-14
@test ClausenFunctions.cl1(Complex(1/2, -1)) ≈ -0.14296382186432422 + 1.06599896593689653im rtol=1e-14
@test ClausenFunctions.cl1(Complex(1, 0)) ≈ 0.042019505825368962 rtol=1e-14
@test ClausenFunctions.cl1(Complex(1, 1)) ≈ -0.34796082854253047 - 0.70210885509136190im rtol=1e-14
@test ClausenFunctions.cl1(Complex(2, 0)) ≈ -0.52054343429085363 rtol=1e-14
@test ClausenFunctions.cl1(Complex(1.0, 0.0)) ≈ 0.042019505825368962 rtol=1e-14
@test ClausenFunctions.cl1(Complex(1.0, 1.0)) ≈ -0.34796082854253047 - 0.70210885509136190im rtol=1e-14
@test ClausenFunctions.cl1(Complex(2.0, 0.0)) ≈ -0.52054343429085363 rtol=1e-14
@test ClausenFunctions.cl1(Complex(2.0, 1.0)) ≈ -0.68284871442091651 - 0.28844676165196074im rtol=1e-14
@test ClausenFunctions.cl1(Complex(2.0, -1.0)) ≈ -0.68284871442091651 + 0.28844676165196074im rtol=1e-14
@test imag(ClausenFunctions.cl1(Complex(2.0, eps(Float64)))) < 0.0
@test imag(ClausenFunctions.cl1(Complex(2.0, -eps(Float64)))) > 0.0
@test ClausenFunctions.cl1(Complex(2.0, -eps(Float64))) ≈ -0.52054343429085363 rtol=1e-14
@test ClausenFunctions.cl1(Complex(0)) == Inf
@test ClausenFunctions.cl1(Complex(0.0)) == Inf
# test BigFloat
setprecision(BigFloat, 100) do
@test isapprox(ClausenFunctions.cl1(BigFloat("1")), BigFloat("0.042019505825368961725798384037902037124538920557034"); rtol=10*eps(BigFloat))
@test isapprox(ClausenFunctions.cl1(BigFloat("0.5") + BigFloat("1")*im), BigFloat("-0.14296382186432422499606514633517958638642188617714") + BigFloat("-1.0659989659368965336455070335833947446477603110289")*im; rtol=10*eps(BigFloat))
@test isapprox(ClausenFunctions.cl1(BigFloat("2") + BigFloat("-1")*im), BigFloat("-0.68284871442091650950302220327572227276874425568964") + BigFloat("0.28844676165196073566657598635590990207739789086077")*im; rtol=10*eps(BigFloat))
@test isapprox(ClausenFunctions.cl1(BigFloat("0")), BigFloat("Inf"); rtol=10*eps(BigFloat))
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1102 | @testset "cl2" begin
data = open(readdlm, joinpath(@__DIR__, "data", "Cl2.txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.cl2(x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl2(-x) ≈ -expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl2(x - 2pi) ≈ expected rtol=1e-13 atol=1e-13
@test ClausenFunctions.cl2(x + 2pi) ≈ expected rtol=1e-13 atol=1e-13
@test ClausenFunctions.cl2(Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl2(Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
@test ClausenFunctions.cl2(0.0) == 0.0
@test ClausenFunctions.cl2(pi) == 0.0
@test ClausenFunctions.cl2(pi/2) ≈ 0.915965594177219015054603514932384110 rtol=1e-14
@test ClausenFunctions.cl2(1//2) ≈ 0.84831187770367927 rtol=1e-14
# test handling of negative zero
@test !signbit(ClausenFunctions.cl2(0.0))
@test signbit(ClausenFunctions.cl2(-0.0))
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 797 | @testset "cl3" begin
data = open(readdlm, joinpath(@__DIR__, "data", "Cl3.txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.cl3(x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl3(-x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl3(x - 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl3(x + 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl3(Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl3(Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
@test ClausenFunctions.cl3(1//2) ≈ 0.92769631047023043 rtol=1e-14
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1013 | @testset "cl4" begin
data = open(readdlm, joinpath(@__DIR__, "data", "Cl4.txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.cl4(x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl4(-x) ≈ -expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl4(x - 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl4(x + 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl4(Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl4(Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
@test ClausenFunctions.cl4(0.0) == 0.0
@test ClausenFunctions.cl4(pi) == 0.0
@test ClausenFunctions.cl4(1//2) ≈ 0.54837172654589549 rtol=1e-14
# test handling of negative zero
@test !signbit(ClausenFunctions.cl4(0.0))
@test signbit(ClausenFunctions.cl4(-0.0))
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 797 | @testset "cl5" begin
data = open(readdlm, joinpath(@__DIR__, "data", "Cl5.txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.cl5(x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl5(-x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl5(x - 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl5(x + 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl5(Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl5(Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
@test ClausenFunctions.cl5(1//2) ≈ 0.89390286951083851 rtol=1e-14
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 1013 | @testset "cl6" begin
data = open(readdlm, joinpath(@__DIR__, "data", "Cl6.txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.cl6(x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl6(-x) ≈ -expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.cl6(x - 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl6(x + 2pi) ≈ expected rtol=1e-14 atol=1e-13
@test ClausenFunctions.cl6(Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.cl6(Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
@test ClausenFunctions.cl6(0.0) == 0.0
@test ClausenFunctions.cl6(pi) == 0.0
@test ClausenFunctions.cl6(1//2) ≈ 0.49419627977618802 rtol=1e-14
# test handling of negative zero
@test !signbit(ClausenFunctions.cl6(0.0))
@test signbit(ClausenFunctions.cl6(-0.0))
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 5439 | @testset "sl" for TN in (Int8, Int16, Int32, Int64, Int128)
Sl1(x) = 0.5*(pi - x)
Sl2(x) = pi^2/6 - pi/2*x + x^2/4
Sl3(x) = pi^2/6*x - pi/4*x^2 + x^3/12
Sl4(x) = pi^4/90 - pi^2/12*x^2 + pi/12*x^3 - x^4/48
n = 10
x_min = 0.0
x_max = 2pi
data = (x_max - x_min)*rand(Float64, n) + x_min*ones(n)
for x in data
@test ClausenFunctions.sl(TN(1), x) ≈ Sl1(x) rtol=1e-14 atol=1e-14
@test ClausenFunctions.sl(TN(2), x) ≈ Sl2(x) rtol=1e-14 atol=1e-14
@test ClausenFunctions.sl(TN(3), x) ≈ Sl3(x) rtol=1e-14 atol=1e-14
@test ClausenFunctions.sl(TN(4), x) ≈ Sl4(x) rtol=1e-14 atol=1e-13
end
for n in vcat(collect(-2:31), [1000, 1001])
(n > typemax(TN) || n < typemin(TN)) && continue
data = open(readdlm, joinpath(@__DIR__, "data", "Sl$(n).txt"))
for r in 1:size(data, 1)
row = data[r, :]
x = row[1]
expected = row[2]
@test ClausenFunctions.sl(TN(n), x) == (-1)^TN(n)*ClausenFunctions.sl(TN(n), -x)
@test ClausenFunctions.sl(TN(n), x) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.sl(TN(n), Float16(x)) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.sl(TN(n), Float32(x)) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
@test ClausenFunctions.sl(TN(n), Complex(x)) ≈ expected rtol=1e-14 atol=1e-14
@test ClausenFunctions.sl(TN(n), Complex(Float16(x))) ≈ Float16(expected) atol=30*eps(Float16) rtol=30*eps(Float16)
@test ClausenFunctions.sl(TN(n), Complex(Float32(x))) ≈ Float32(expected) atol=30*eps(Float32) rtol=30*eps(Float32)
end
end
@test ClausenFunctions.sl(TN(1), 1//2) ≈ 1.3207963267948966 rtol=1e-14
@test ClausenFunctions.sl(TN(2), 1//2) ≈ 0.92203590345077813 rtol=1e-14
@test ClausenFunctions.sl(TN(3), 1//2) ≈ 0.63653415924141781 rtol=1e-14
@test ClausenFunctions.sl(TN(4), 1//2) ≈ 0.90812931549667023 rtol=1e-14
@test ClausenFunctions.sl(TN(5), 1//2) ≈ 0.51085256423059275 rtol=1e-14
@test ClausenFunctions.sl(TN(6), 1//2) ≈ 0.88593812938731573 rtol=1e-14
@test ClausenFunctions.sl(TN(1), Complex(1//2)) ≈ 1.3207963267948966 rtol=1e-14
@test ClausenFunctions.sl(TN(2), Complex(1//2)) ≈ 0.92203590345077813 rtol=1e-14
@test ClausenFunctions.sl(TN(3), Complex(1//2)) ≈ 0.63653415924141781 rtol=1e-14
@test ClausenFunctions.sl(TN(4), Complex(1//2)) ≈ 0.90812931549667023 rtol=1e-14
@test ClausenFunctions.sl(TN(5), Complex(1//2)) ≈ 0.51085256423059275 rtol=1e-14
@test ClausenFunctions.sl(TN(6), Complex(1//2)) ≈ 0.88593812938731573 rtol=1e-14
@test ClausenFunctions.sl(TN(1), 0.0 + 1.0im) ≈ 1.5707963267948966 - 0.5im rtol=1e-14
@test ClausenFunctions.sl(TN(1), 0.0 - 1.0im) ≈ -1.5707963267948966 + 0.5im rtol=1e-14 # @todo check
@test ClausenFunctions.sl(TN(2), 0.0 + 1.0im) ≈ 1.3949340668482264 - 1.5707963267948966im rtol=1e-14
@test ClausenFunctions.sl(TN(2), 0.0 - 1.0im) ≈ 1.3949340668482264 - 1.5707963267948966im rtol=1e-14 # @todo check
@test ClausenFunctions.sl(TN(2), 1.0 + 1.0im) ≈ 0.07413774005332982 - 1.07079632679489662im rtol=1e-14
@test ClausenFunctions.sl(TN(2), 1.0 - 1.0im) ≈ 0.07413774005332982 + 1.07079632679489662im rtol=1e-14
@test ClausenFunctions.sl(TN(3), 0.0 + 1.0im) ≈ 0.7853981633974483 + 1.5616007335148931im rtol=1e-14
@test ClausenFunctions.sl(TN(3), 0.0 - 1.0im) ≈ -0.7853981633974483 - 1.5616007335148931im rtol=1e-14 # @todo check
@test ClausenFunctions.sl(TN(-2), big(1)) == 0
@test ClausenFunctions.sl(TN(-2), big(1) + 0im) == 0
@test ClausenFunctions.sl(TN(-1), big(1)) == 0
@test ClausenFunctions.sl(TN(-1), big(1) + 0im) == 0
@test ClausenFunctions.sl(TN( 0), big(1)) ≈ -BigFloat("0.5") rtol=1e-40
@test ClausenFunctions.sl(TN( 0), big(1) + 0im) ≈ -BigFloat("0.5") rtol=1e-40
@test ClausenFunctions.sl(TN( 1), big(0)) == BigFloat(0)
@test ClausenFunctions.sl(TN( 1), big(1)) ≈ BigFloat("1.07079632679489661923132169163975144209858") rtol=1e-40
@test ClausenFunctions.sl(TN( 1), big(1) + 0im) ≈ BigFloat("1.07079632679489661923132169163975144209858") rtol=1e-40
@test ClausenFunctions.sl(TN( 2), big(1)) ≈ BigFloat("0.324137740053329817241093475006273747120365") rtol=1e-40
@test ClausenFunctions.sl(TN( 2), big(1) + 0im) ≈ BigFloat("0.324137740053329817241093475006273747120365") rtol=1e-40
# test handling of negative zero
for n in 1:2:101
@test !signbit(ClausenFunctions.sl(TN(n), 0.0))
@test signbit(ClausenFunctions.sl(TN(n), -0.0))
@test !signbit(ClausenFunctions.sl(TN(n), BigFloat("0.0")))
@test signbit(ClausenFunctions.sl(TN(n), BigFloat("-0.0")))
@test !signbit(real(ClausenFunctions.sl(TN(n), Complex(0.0, 0.0))))
@test !signbit(imag(ClausenFunctions.sl(TN(n), Complex(0.0, 0.0))))
@test !signbit(real(ClausenFunctions.sl(TN(n), Complex(0.0, -0.0))))
@test signbit(imag(ClausenFunctions.sl(TN(n), Complex(0.0, -0.0))))
@test signbit(real(ClausenFunctions.sl(TN(n), Complex(-0.0, 0.0))))
@test !signbit(imag(ClausenFunctions.sl(TN(n), Complex(-0.0, 0.0))))
@test signbit(real(ClausenFunctions.sl(TN(n), Complex(-0.0, -0.0))))
@test signbit(imag(ClausenFunctions.sl(TN(n), Complex(-0.0, -0.0))))
end
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 2714 | @testset "range_reduction (n = $n)" for n in 1:2
rr(x) = ClausenFunctions.range_reduce(n, x)[1]
# cases with catastrophic cancellation (therefore not tested with rtol)
@test rr(2pi) ≈ zero(Float64) atol=eps(Float64)
@test rr(2pi + 1e-15) ≈ 1e-15 atol=eps(Float64)
@test rr(2pi + 1e-14) ≈ 1e-14 atol=2*eps(Float64)
@test rr(2pi + 1e-13) ≈ 1e-13 atol=2*eps(Float64)
@test rr(2pi + 1e-12) ≈ 1e-12 atol=2*eps(Float64)
# cases with catastrophic cancellation (therefore not tested with rtol)
@test rr(prevfloat(2pi)) ≈ 1.4769252867665590e-15 atol=10*eps(Float64)
@test rr(2pi - 1e-15) ≈ 1e-15 atol=eps(Float64)
@test rr(2pi - 1e-14) ≈ 1e-14 atol=2*eps(Float64)
@test rr(2pi - 1e-13) ≈ 1e-13 atol=4*eps(Float64)
@test rr(2pi - 1e-12) ≈ 1e-12 atol=2*eps(Float64)
# cases w/o catastrophic cancellation
@test rr(3pi) ≈ pi rtol=eps(Float64)
@test rr(nextfloat(3pi)) ≈ 3.1415926535897920 rtol=eps(Float64)
@test rr(3pi + 1e-15) ≈ pi - 1e-15 rtol=eps(Float64)
@test rr(3pi + 1e-14) ≈ pi - 1e-14 rtol=eps(Float64)
@test rr(3pi + 1e-13) ≈ pi - 1e-13 rtol=2*eps(Float64)
@test rr(3pi + 1e-12) ≈ pi - 1e-12 rtol=eps(Float64)
end
@testset "two_pi_minus" begin
f(x) = ClausenFunctions.two_pi_minus(x)
# Float16
@test f(Float16(2pi)) ≈ zero(Float16) atol=2*eps(Float16)
@test f(nextfloat(Float16(2pi))) ≈ -eps(Float16(2pi)) atol=2*eps(Float16)
@test f(nextfloat(Float16(2pi), 2)) ≈ -2*eps(Float16(2pi)) atol=2*eps(Float16)
@test f(prevfloat(Float16(2pi))) ≈ eps(Float16(2pi)) atol=2*eps(Float16)
@test f(prevfloat(Float16(2pi), 2)) ≈ 2*eps(Float16(2pi)) atol=2*eps(Float16)
# Float32
@test f(Float32(2pi)) ≈ zero(Float32) atol=2*eps(Float32)
@test f(nextfloat(Float32(2pi))) ≈ -eps(Float32(2pi)) atol=2*eps(Float32)
@test f(nextfloat(Float32(2pi), 2)) ≈ -2*eps(Float32(2pi)) atol=2*eps(Float32)
@test f(prevfloat(Float32(2pi))) ≈ eps(Float32(2pi)) atol=2*eps(Float32)
@test f(prevfloat(Float32(2pi), 2)) ≈ 2*eps(Float32(2pi)) atol=2*eps(Float32)
# Float64
@test f(2pi) ≈ zero(Float64) atol=2*eps(Float64)
@test f(nextfloat(2pi)) ≈ -eps(2pi) atol=2*eps(Float64)
@test f(nextfloat(2pi, 2)) ≈ -2*eps(2pi) atol=2*eps(Float64)
@test f(prevfloat(2pi)) ≈ eps(2pi) atol=2*eps(Float64)
@test f(prevfloat(2pi, 2)) ≈ 2*eps(2pi) atol=2*eps(Float64)
end
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | code | 229 | using Test
using DelimitedFiles
import ClausenFunctions
include("Cl1.jl")
include("Cl2.jl")
include("Cl3.jl")
include("Cl4.jl")
include("Cl5.jl")
include("Cl6.jl")
include("Cl.jl")
include("Sl.jl")
include("range_reduction.jl")
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 1.16.0 | 29b6b51b22e92c7815878573834576744c1119d2 | docs | 1993 | ClausenFunctions.jl
===================
[](https://github.com/Expander/ClausenFunctions.jl/actions/workflows/build.yml)
[](https://coveralls.io/github/Expander/ClausenFunctions.jl)
The ClausenFunctions.jl package provides Julia implementations of the
Standard Clausen functions and Glaisher-Clausen functions of integer
order for real or complex arguments.
Example
-------
```.jl
using ClausenFunctions
# real arguments
cl1(1.0) # Standard Clausen function Cl_1(x)
cl2(1.0) # Standard Clausen function Cl_2(x)
cl3(1.0) # Standard Clausen function Cl_3(x)
cl4(1.0) # Standard Clausen function Cl_4(x)
cl5(1.0) # Standard Clausen function Cl_5(x)
cl6(1.0) # Standard Clausen function Cl_6(x)
cl(10, 1.0) # Standard Clausen function Cl_n(x)
cl(10, big"1") # Standard Clausen function Cl_n(x)
sl(10, 1.0) # Glaisher-Clausen function Sl_n(x)
sl(10, big"1") # Glaisher-Clausen function Sl_n(x)
# complex arguments
cl1(1.0 + 1.0im) # Standard Clausen function Cl_1(x)
cl(10, 1.0 + 1.0im) # Standard Clausen function Cl_n(x)
cl(10, big"1" + 1im) # Standard Clausen function Cl_n(x)
sl(10, 1.0 + 1.0im) # Glaisher-Clausen function Sl_n(x)
sl(10, big"1" + 1im) # Glaisher-Clausen function Sl_n(x)
```
Documentation
-------------
[https://docs.juliahub.com/ClausenFunctions/](https://docs.juliahub.com/ClausenFunctions/)
Notes
-----
The implementation of the Standard Clausen function `cl(n,x)` for real
`x` follows the approach presented in [Jiming Wu, Xiaoping Zhang,
Dongjie Liu, "An efficient calculation of the Clausen functions
Cl_n(θ)(n >= 2)", Bit Numer Math 50, 193-206 (2010)
[https://doi.org/10.1007/s10543-009-0246-8](https://doi.org/10.1007/s10543-009-0246-8)].
Copying
-------
ClausenFunctions.jl is licenced under the MIT License.
| ClausenFunctions | https://github.com/Expander/ClausenFunctions.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 3086 | using Distributed
nprocs() == 1 && addprocs()
@everywhere begin
using AutoOfflineRL
using AutoMLPipeline
using Parquet
using DataFrames
end
@everywhere begin
# load preprocessing elements
#### Scaler
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
norm = SKPreprocessor("Normalizer");
mx = SKPreprocessor("MinMaxScaler");
std = SKPreprocessor("StandardScaler")
##### Column selector
catf = CatFeatureSelector();
numf = NumFeatureSelector();
## load filters
##### Decomposition
#apca = SKPreprocessor("PCA",Dict(:autocomponent=>true,:name=>"autoPCA"));
#afa = SKPreprocessor("FactorAnalysis",Dict(:autocomponent=>true,:name=>"autoFA"));
#aica = SKPreprocessor("FastICA",Dict(:autocomponent=>true,:name=>"autoICA"));
pca = SKPreprocessor("PCA");
fa = SKPreprocessor("FactorAnalysis");
ica = SKPreprocessor("FastICA");
noop = Identity(Dict(:name => "Noop"));
end
# load dataset
path = pkgdir(AutoOfflineRL)
dataset = "$path/data/smalldata.parquet"
df = Parquet.read_parquet(dataset) |> DataFrame |> dropmissing
#df = df[:,["day", "hour", "minute", "dow"]]
#df.sensor1 = rand(1:500,srow)
#df.sensor2 = rand(1:200,srow)
#df.sensor3 = rand(1:100,srow)
#df.action = rand([10,50,100],srow)
#df.reward = rand(srow)
srow,_ = size(df)
observation = df[:, ["day", "hour", "minute", "dow", "sensor1", "sensor2", "sensor3"]]
reward = df[:,["reward"]] |> deepcopy |> DataFrame
action = df[:,["action"]] |> deepcopy |> DataFrame
_terminals = zeros(Int,srow)
_terminals[collect(100:1000:9000)] .= 1
_terminals[end] = 1
dterminal = DataFrame(terminal=_terminals)
action_reward_terminal = DataFrame[action, reward, dterminal]
agent = DiscreteRLOffline("NFQ")
pipe = (numf |> mx |> pca) |> agent
crossvalidateRL(pipe,observation,action_reward_terminal)
function pipelinesearch()
agentnames = ["DiscreteCQL","NFQ","DoubleDQN","DiscreteSAC","DiscreteBCQ","DiscreteBC","DQN"]
scalers = [rb,pt,norm,std,mx,noop]
extractors = [pca,ica,fa,noop]
dfresults = @sync @distributed (vcat) for agentname in agentnames
@distributed (vcat) for sc in scalers
@distributed (vcat) for xt in extractors
try
rlagent = DiscreteRLOffline(agentname,Dict(:runtime_args=>Dict(:n_epochs=>1)))
rlpipeline = ((numf |> sc |> xt)) |> rlagent
res = crossvalidateRL(rlpipeline,observation,action_reward_terminal)
scn = sc.name[1:end - 4]; xtn = xt.name[1:end - 4]; lrn = rlagent.name[1:end - 4]
pname = "$scn |> $xtn |> $lrn"
if !isnan(res)
DataFrame(pipeline=pname,td_error=res)
else
DataFrame()
end
catch e
println("error in $agentname")
DataFrame()
end
end
end
end
#sort!(dfresults,:percent_action_matches,rev=true)
return dfresults
end
dftable= pipelinesearch()
sort!(dftable,:td_error,rev=false)
show(dftable,allcols=true,allrows=true,truncate=0)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 3086 | using Distributed
nprocs() == 1 && addprocs()
@everywhere begin
using AutoOfflineRL
using AutoMLPipeline
using Parquet
using DataFrames
end
@everywhere begin
# load preprocessing elements
#### Scaler
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
norm = SKPreprocessor("Normalizer");
mx = SKPreprocessor("MinMaxScaler");
std = SKPreprocessor("StandardScaler")
##### Column selector
catf = CatFeatureSelector();
numf = NumFeatureSelector();
## load filters
##### Decomposition
#apca = SKPreprocessor("PCA",Dict(:autocomponent=>true,:name=>"autoPCA"));
#afa = SKPreprocessor("FactorAnalysis",Dict(:autocomponent=>true,:name=>"autoFA"));
#aica = SKPreprocessor("FastICA",Dict(:autocomponent=>true,:name=>"autoICA"));
pca = SKPreprocessor("PCA");
fa = SKPreprocessor("FactorAnalysis");
ica = SKPreprocessor("FastICA");
noop = Identity(Dict(:name => "Noop"));
end
# load dataset
path = pkgdir(AutoOfflineRL)
dataset = "$path/data/smalldata.parquet"
df = Parquet.read_parquet(dataset) |> DataFrame |> dropmissing
#df = df[:,["day", "hour", "minute", "dow"]]
#df.sensor1 = rand(1:500,srow)
#df.sensor2 = rand(1:200,srow)
#df.sensor3 = rand(1:100,srow)
#df.action = rand([10,50,100],srow)
#df.reward = rand(srow)
srow,_ = size(df)
observation = df[:, ["day", "hour", "minute", "dow", "sensor1", "sensor2", "sensor3"]]
reward = df[:,["reward"]] |> deepcopy |> DataFrame
action = df[:,["action"]] |> deepcopy |> DataFrame
_terminals = zeros(Int,srow)
_terminals[collect(100:1000:9000)] .= 1
_terminals[end] = 1
dterminal = DataFrame(terminal=_terminals)
action_reward_terminal = DataFrame[action, reward, dterminal]
agent = DiscreteRLOffline("NFQ")
pipe = (numf |> mx |> pca) |> agent
crossvalidateRL(pipe,observation,action_reward_terminal)
function pipelinesearch()
agentnames = ["DiscreteCQL","NFQ","DoubleDQN","DiscreteSAC","DiscreteBCQ","DiscreteBC","DQN"]
scalers = [rb,pt,norm,std,mx,noop]
extractors = [pca,ica,fa,noop]
dfresults = @sync @distributed (vcat) for agentname in agentnames
@distributed (vcat) for sc in scalers
@distributed (vcat) for xt in extractors
try
rlagent = DiscreteRLOffline(agentname,Dict(:runtime_args=>Dict(:n_epochs=>1)))
rlpipeline = ((numf |> sc |> xt)) |> rlagent
res = crossvalidateRL(rlpipeline,observation,action_reward_terminal)
scn = sc.name[1:end - 4]; xtn = xt.name[1:end - 4]; lrn = rlagent.name[1:end - 4]
pname = "$scn |> $xtn |> $lrn"
if !isnan(res)
DataFrame(pipeline=pname,td_error=res)
else
DataFrame()
end
catch e
println("error in $agentname")
DataFrame()
end
end
end
end
#sort!(dfresults,:percent_action_matches,rev=true)
return dfresults
end
dftable= pipelinesearch()
sort!(dftable,:td_error,rev=false)
show(dftable,allcols=true,allrows=true,truncate=0)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 1414 | module AutoOfflineRL
using DataFrames
using CSV
export fit, fit!, transform, transform!,fit_transform, fit_transform!
import AMLPipelineBase.AbsTypes: fit, fit!, transform, transform!
using AMLPipelineBase
using AMLPipelineBase: AbsTypes, Utils, BaselineModels, Pipelines
using AMLPipelineBase: BaseFilters, FeatureSelectors, DecisionTreeLearners
using AMLPipelineBase: EnsembleMethods, CrossValidators
using AMLPipelineBase: NARemovers
export Machine, Learner, Transformer, Workflow, Computer
export holdout, kfold, score, infer_eltype, nested_dict_to_tuples,
nested_dict_set!, nested_dict_merge, create_transformer,
mergedict, getiris,getprofb,
skipmean,skipmedian,skipstd,
aggregatorclskipmissing
export Baseline, Identity
export Imputer,OneHotEncoder,Wrapper
export PrunedTree,RandomForest,Adaboost
export VoteEnsemble, StackEnsemble, BestLearner
export FeatureSelector, CatFeatureSelector, NumFeatureSelector, CatNumDiscriminator
export crossvalidate
export NARemover
export @pipeline
export @pipelinex
export @pipelinez
export +, |>, *, |, >>
export Pipeline, ComboPipeline
#export RLMachine, RLOffline, WeeklyEpisodes
#Base.@kwdef struct WeeklyEpisodes <: RLMachine
# _params::Dict = Dict()
# _model::Dict = Dict()
#end
include("offlinerls.jl")
using .OfflineRLs
export DiscreteRLOffline, fit!
export driver, listdiscreateagents
export crossvalidateRL
end # module
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 9687 | module OfflineRLs
using AutoOfflineRL
using PythonCall
import Statistics
using Parquet
using Distributed
using DataFrames: DataFrame, dropmissing
using Random
using CSV
using Dates
using ..AbsTypes
using ..Utils
import ..AbsTypes: fit, fit!, transform, transform!
import PythonCall
const PYC = PythonCall
using ..Utils: nested_dict_merge
export DiscreteRLOffline, fit!, transform!, fit, transform
export listdiscreateagents, driver
export crossvalidateRL
const rl_dict = Dict{String, PYC.Py}()
const metric_dict = Dict{String, PYC.Py}()
const PYRL = PYC.pynew()
const PYPD = PYC.pynew()
const PYNP = PYC.pynew()
const PYDT = PYC.pynew()
const PYMT = PYC.pynew()
const PYSK = PYC.pynew()
function __init__()
PYC.pycopy!(PYRL, PYC.pyimport("d3rlpy.algos"))
PYC.pycopy!(PYDT, PYC.pyimport("d3rlpy.datasets"))
PYC.pycopy!(PYSK, PYC.pyimport("sklearn.model_selection"))
PYC.pycopy!(PYMT, PYC.pyimport("d3rlpy.metrics"))
PYC.pycopy!(PYPD, PYC.pyimport("pandas"))
PYC.pycopy!(PYNP, PYC.pyimport("numpy"))
# OfflineRLs
metric_dict["cross_validate"] = PYSK.cross_validate
metric_dict["train_test_split"] = PYSK.train_test_split
metric_dict["td_error_scorer"] = PYMT.td_error_scorer
metric_dict["discrete_action_match_scorer"] = PYMT.discrete_action_match_scorer
metric_dict["average_value_estimation_scorer"] = PYMT.average_value_estimation_scorer
metric_dict["get_cartpole"] = PYDT.get_cartpole
rl_dict["DiscreteBC"] = PYRL
rl_dict["DQN"] = PYRL
rl_dict["NFQ"] = PYRL
rl_dict["DoubleDQN"] = PYRL
rl_dict["DiscreteBCQ"] = PYRL
rl_dict["DiscreteCQL"] = PYRL
rl_dict["DiscreteSAC"] = PYRL
#rl_dict["DiscreteRandomPolicy"] = PYRL
end
mutable struct DiscreteRLOffline <: Learner
name::String
model::Dict{Symbol,Any}
function DiscreteRLOffline(args=Dict{Symbol,Any}())
default_args = Dict{Symbol,Any}(
:name => "DQN",
:tag => "RLOffline",
:rlagent => "DQN",
:iterations => 100,
:save_metrics => false,
:rlobjtrained => PYC.PyNULL,
:o_header => ["day", "hour", "minute", "dow", "metric1", "metric2", "metric3", "metric4"],
:a_header => ["action"],
:r_header => ["reward"],
:save_model => false,
:runtime_args => Dict{Symbol, Any}(
:n_epochs => 3,
),
:impl_args => Dict{Symbol,Any}(
:scaler => "min_max",
:use_gpu => false,
)
)
cargs = nested_dict_merge(default_args,args)
#datestring = Dates.format(now(), "yyyy-mm-dd-HH-MM")
cargs[:name] = cargs[:name]*"_"*randstring(3)
rlagent = cargs[:rlagent]
if !(rlagent in keys(rl_dict))
println("error: $rlagent is not supported.")
println()
discreteagents()
error("Argument keyword error")
end
new(cargs[:name],cargs)
end
end
function DiscreteRLOffline(rlagent::String, args::Dict)
DiscreteRLOffline(Dict(:rlagent => rlagent, :name => rlagent, args...))
end
function DiscreteRLOffline(rlagent::String; args...)
DiscreteRLOffline(Dict(
:rlagent => rlagent,
:name => rlagent,
args...
))
end
function listdiscreateagents()
println()
println("RL Discrete Agents:")
agents = keys(rl_dict) |> collect
[println(" ",agent," ") for agent in agents]
println("See d3rlpy python package for details about the agent arguments.")
nothing
end
function discreteagents()
println()
println("syntax: DiscreteRLOffline(name::String, args::Dict)")
println("and 'args' are the agent's parameters")
println("See d3rlpy python package for details about the agent arguments.")
println("use: listdiscreateagents() to get the available RL agents")
end
function createmdpdata!(agent::DiscreteRLOffline, df::DataFrame, action_reward_term::Vector)
_observations = df |> Array .|> PYC.float |> x -> PYNP.array(x, dtype = "float32")
_actions = action_reward_term[1] |> Array .|> PYC.float |> x -> PYNP.array(x, dtype = "float32")
_rewards = action_reward_term[2] |> Array .|> PYC.float |> x -> PYNP.array(x, dtype = "float32")
_terminals = action_reward_term[3] |> Array .|> PYC.float |> x -> PYNP.array(x, dtype = "float32")
## create dataset for RLOffline
mdp_dataset = PYDT.MDPDataset(
observations = _observations,
actions = _actions,
rewards = _rewards,
terminals = _terminals,
)
## save params
agent.model[:mdp_dataset] = mdp_dataset
agent.model[:np_observations] = _observations
agent.model[:np_actions] = _actions
agent.model[:np_rewards] = _rewards
return mdp_dataset
end
function checkheaders(agent::DiscreteRLOffline, df)
o_header = agent.model[:o_header]
a_header = agent.model[:a_header]
r_header = agent.model[:r_header]
dfnames = names(df)
[@assert header in dfnames "\"$header\" is not in data header"
for header in vcat(o_header, a_header, r_header)]
end
function fit!(agent::DiscreteRLOffline, df::DataFrame, action_reward_term::Vector)::Nothing
# check if headers exist
#checkheaders(agent::DiscreteRLOffline, df)
# create mdp data
nrow, ncol = size(df)
mdp_dataset = createmdpdata!(agent, df,action_reward_term)
## prepare algorithm
runtime_args = agent.model[:runtime_args]
logging = agent.model[:save_metrics]
impl_args = copy(agent.model[:impl_args])
rlagent = agent.model[:rlagent]
py_rlagent = getproperty(rl_dict[rlagent],rlagent)
pyrlobj = py_rlagent(;impl_args...)
pyrlobj.fit(mdp_dataset; save_metrics = logging, runtime_args... )
## save rl to model dictionary
agent.model[:rlobjtrained] = pyrlobj
agent.model[:nrow] = nrow
agent.model[:ncol] = ncol
## save model to file
if agent.model[:save_model] == true
path = pkgdir(AutoOfflineRL)
agentname = agent.model[:name]
tag = agent.model[:tag]
fnmodel = "$path/model/$(agentname)_$(tag)_model.pt"
fnpolicy = "$path/model/$(agentname)_$(tag)_policy.pt"
pyrlobj.save_model(fnmodel)
pyrlobj.save_policy(fnpolicy)
end
return nothing
end
function transform!(agent::DiscreteRLOffline,df::DataFrame=DataFrame())::Vector
pyrlobj = agent.model[:rlobjtrained]
#o_header = agent.model[:o_header]
observations = df |> Array .|> PYC.float |> x -> PYNP.array(x, dtype = "float32")
res = map(observations) do obs
action = pyrlobj.predict(obs)
value = pyrlobj.predict_value([obs],action)
action = PYC.pyconvert.(Float64,action)
value = PYC.pyconvert.(Float64,value)
obs = PYC.pyconvert.(Float64,obs)
(;obs,action,value)
end
return res
end
function prp_fit_transform(pipe::Machine, instances::DataFrame,actrewterm::Vector)
machines = pipe.model[:machines]
machine_args = pipe.model[:machine_args]
current_instances = instances
trlength = length(machines)
for t_index in 1:(trlength - 1)
machine = createmachine(machines[t_index], machine_args)
fit!(machine, current_instances, actrewterm)
current_instances = transform!(machine, current_instances)
end
return current_instances
end
function driver()
path = pkgdir(AutoOfflineRL)
dataset = "$path/data/smalldata.parquet"
df = Parquet.read_parquet(dataset) |> DataFrame |> dropmissing
df_input = df[:, ["day", "hour", "minute", "dow", "metric1", "metric2", "metric3", "metric4"]]
reward = df[:,["reward"]] |> deepcopy |> DataFrame
action = df[:,["action"]] |> deepcopy |> DataFrame
action_reward = DataFrame[action, reward]
agentname="NFQ"
agent = DiscreteRLOffline(agentname)
#fit_transform!(agent,df_input,action_reward)
end
function traintesteval(agent::DiscreteRLOffline,mdp_dataset::Py)
runtime_args = agent.model[:runtime_args]
logging = agent.model[:save_metrics]
impl_args = copy(agent.model[:impl_args])
rlagent = agent.model[:rlagent]
py_rlagent = getproperty(rl_dict[rlagent],rlagent)
pyrlobj = py_rlagent(;impl_args...)
py_train_test_split = metric_dict["train_test_split"]
trainepisodes,testepisodes = py_train_test_split(mdp_dataset)
td_error_scorer = PYMT.td_error_scorer
discrete_action_match_scorer = PYMT.discrete_action_match_scorer
runconfig = Dict(:scorers=>Dict("td_error"=>td_error_scorer))
#runconfig = Dict(:scorers=>Dict("metric"=>discrete_action_match_scorer))
score=pyrlobj.fit(trainepisodes;
eval_episodes=testepisodes,
runtime_args...,runconfig...)
vals = pyconvert(Array,score)
mvals = [v[2]["td_error"] for v in vals] |> Statistics.mean
#mvals = [v[2]["metric"] for v in vals] |> Statistics.mean
return mvals
end
function crossvalidateRL(pp::Machine, dfobs::DataFrame, actrewterm::Vector; cv=3)
pipe = deepcopy(pp)
features = deepcopy(dfobs)
machines = pipe.model[:machines]
agent = machines[end]
df_input = prp_fit_transform(pipe,features,actrewterm)
mdp_dataset = createmdpdata!(agent,df_input,actrewterm)
scores= [traintesteval(agent,mdp_dataset) for i in 1:cv]
return Statistics.mean(scores)
#pyskcrossvalidate = metric_dict["cross_validate"]
#td_error_scorer = metric_dict["td_error_scorer"]
#average_value_estimation_scorer = metric_dict["average_value_estimation_scorer"]
#runconfig = Dict(:scoring=>Dict("td_error"=>td_error_scorer,
# "value_scale"=>average_value_estimation_scorer),
# :fit_params=>Dict("n_epochs"=>1))
#scores = pyskcrossvalidate(pyrlobj,mdp_dataset; runconfig...)
#return scores
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 2098 | module TestOfflineRL
using AutoOfflineRL
using Test
using DataFrames
using PythonCall
using Parquet
const PYC=PythonCall
@testset "Load Agents with Default Params" begin
for agentid in keys(AutoOfflineRL.OfflineRLs.rl_dict)
@info "loading $agentid default params"
rlagent = DiscreteRLOffline(agentid)
@test typeof(rlagent) <: AutoOfflineRL.Learner
end
end
@testset "Load Agents with Param Args" begin
println()
for agentid in keys(AutoOfflineRL.OfflineRLs.rl_dict)
@info "loading $agentid with customized params"
rlagent = DiscreteRLOffline(agentid,
Dict(:name=>agentid,
:iterations=>10000,
:epochs=>100)
)
@test typeof(rlagent) <: AutoOfflineRL.Learner
end
end
@testset "Test Exceptions" begin
@test_throws ErrorException DiscreteRLOffline("dummy")
end
@testset "Test Agent fit!/transform Runs" begin
println()
path = pkgdir(AutoOfflineRL)
dataset = "$path/data/smalldata.parquet"
df = Parquet.read_parquet(dataset) |> DataFrame |> dropmissing
srow,_ = size(df)
df_input = df[:, ["day", "hour", "minute", "dow", "sensor1", "sensor2", "sensor3"]]
reward = df[:,["reward"]] |> deepcopy |> DataFrame
action = df[:,["action"]] |> deepcopy |> DataFrame
_terminals = zeros(Int,srow)
_terminals[collect(100:1000:9000)] .= 1
_terminals[end] = 1
dterminal = DataFrame(terminal=_terminals)
action_reward_terminal = DataFrame[action, reward, dterminal]
for agentid in keys(AutoOfflineRL.OfflineRLs.rl_dict)
@info "training $agentid"
agent = DiscreteRLOffline(agentid; save_model=false,runtime_args=Dict(:n_epochs=>1,:verbose=>false, :show_progress=>true))
o_header = agent.model[:o_header]
fit!(agent,df_input,action_reward_terminal)
@test agent.model[:rlobjtrained] !== PYC.PyNULL
@info "transform $agentid"
adf = df_input[1:2,:]
if agentid != "DiscreteBC"
res = AutoOfflineRL.transform!(agent,adf)
@test typeof(res[1]) .== NamedTuple{(:obs,:action, :value), Tuple{Vector{Float64},Vector{Float64}, Vector{Float64}}}
end
end
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 837 | using Documenter, AutoMLPipeline
makedocs(
source = "src",
build = "build",
modules = [AutoMLPipeline],
clean = true,
sitename = "AutoMLPipeline Documentation",
doctest = false,
pages = Any[
"HOME" => "index.md",
"Tutorial" => Any[
"tutorial/pipeline.md",
"tutorial/preprocessing.md",
"tutorial/learning.md",
"tutorial/extending.md"
],
"Manual" => Any[
"Pipeline" => "man/pipeline.md",
"Preprocessors" => "man/preprocessors.md",
"Learners" => "man/learners.md",
"Meta-Ensembles" => "man/metaensembles.md"
],
"Library" => Any[
"Types and Functions" => "lib/typesfunctions.md"
]
],
format = Documenter.HTML(
prettyurls = get(ENV, "CI", nothing) == "true"
)
)
deploydocs(
repo = "github.com/IBM/AutoMLPipeline.jl.git",
)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 177 | import AMLPipelineBase
include(joinpath(pkgdir(AMLPipelineBase), "test", "runtests.jl"))
import AutoMLPipeline
include(joinpath(pkgdir(AutoMLPipeline), "test", "runtests.jl"))
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 395 | using PackageCompiler
create_sysimage(["AMLPipelineBase","DataFrames","StatsBase",
"ArgParse","AutoMLPipeline","CSV","Dates","Distributed",
"Random","ArgParse","Test","Distributed","PythonCall",
"Statistics","Serialization","StatsBase","Test"],
sysimage_path="automl.so", precompile_execution_file="automl_precompile.jl")
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 3316 | # make sure local environment is activated
using Pkg
Pkg.activate(".")
# Symbolic Pipeline Composition
# For parallel search
using AutoMLPipeline
using Distributed
using DataFrames
# Add workers
nprocs() ==1 && addprocs(exeflags=["--project=$(Base.active_project())"])
workers()
# disable warnings
@everywhere import PythonCall
@everywhere const PYC=PythonCall
@everywhere warnings = PYC.pyimport("warnings")
@everywhere warnings.filterwarnings("ignore")
@sync @everywhere using AutoMLPipeline
@sync @everywhere using DataFrames
# get data
begin
data = getprofb()
X = data[:,2:end]
Y = data[:,1] |> Vector
end
#### feature selectors
catf = CatFeatureSelector();
numf = NumFeatureSelector();
# hot-bit encoder
ohe = OneHotEncoder();
#### feature scalers
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
mx = SKPreprocessor("MinMaxScaler");
std = SKPreprocessor("StandardScaler");
norm = SKPreprocessor("Normalizer");
#### feature extractors
pca = SKPreprocessor("PCA", Dict(:autocomponent => true));
ica = SKPreprocessor("FastICA", Dict(:autocomponent => true));
fa = SKPreprocessor("FactorAnalysis", Dict(:autocomponent => true));
#### Learners
rf = SKLearner("RandomForestClassifier", Dict(:impl_args => Dict(:n_estimators => 10)));
gb = SKLearner("GradientBoostingClassifier");
lsvc = SKLearner("LinearSVC");
mlp = SKLearner("MLPClassifier");
stack = StackEnsemble();
rbfsvc = SKLearner("SVC");
ada = SKLearner("AdaBoostClassifier");
vote = VoteEnsemble();
best = BestLearner();
tree = PrunedTree();
sgd = SKLearner("SGDClassifier");
noop = Identity(Dict(:name => "Noop"));
pipe = @pipeline catf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline catf |> ohe;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf |> norm;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe);
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> rf;
pred = fit_transform!(pipe, X, Y)
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> sgd;
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm |> pca) + (numf |> rb |> pca) + (catf |> ohe) |> tree;
crossvalidate(pipe,X,Y)
# Parallel Search for Datamining Optimal Pipelines
function prpsearch()
learners = [rf,ada,sgd,tree,rbfsvc,lsvc,gb];
scalers = [rb,pt,norm,std,mx,noop];
extractors = [pca,ica,fa,noop];
dftable = @sync @distributed (vcat) for lr in learners
@distributed (vcat) for sc in scalers
@distributed (vcat) for xt in extractors
pipe = @pipeline (catf |> ohe) + (numf |> sc |> xt) |> lr
scn = sc.name[1:end - 4]; xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "$scn |> $xtn |> $lrn"
ptime = @elapsed begin
mean, sd, kfold, _ = crossvalidate(pipe, X, Y, "accuracy_score", 3)
end
DataFrame(pipeline=pname, mean=mean, sd=sd, time=ptime, folds=kfold)
end
end
end
sort!(dftable, :mean, rev=true);
dftable
end
runtime = @elapsed begin
df = prpsearch()
end;
serialtime = df.time |> sum;
(serialtime = "$(round(serialtime / 60.0)) minutes", paralleltime = "$(round(runtime)) seconds")
# pipeline performances
@show df
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 1114 | using PrecompileTools: @setup_workload, @compile_workload
using Distributed
using DataFrames
using AutoMLPipeline
using CSV
using K8sClusterManagers
addprocs(K8sClusterManagers.K8sClusterManager(2; cpu=1, namespace="argo",memory="10000Mi", pending_timeout=300); exeflags=["--project=$(Base.active_project())"])
#workers=5
#nprocs() == 1 && addprocs(workers; exeflags=["--project=$(Base.active_project())"])
#addprocs(K8sClusterManager(10, cpu=1, memory="300Mi", pending_timeout=300); exeflags="--project")
#nprocs() == 1 && addprocs(; exeflags = "--project")
@setup_workload begin
@compile_workload begin
include("twoblocks.jl")
end
end
@everywhere include("twoblocks.jl")
@everywhere using Main.TwoBlocksPipeline
dataset = getiris()
X = dataset[:,1:4]
Y = dataset[:,5] |> collect
X = dataset[:,2:end-1]
#dataset=CSV.read("environment_data.csv",DataFrame)
#X = select(dataset, Not([:state,:time]))
#Y = dataset.state
results=TwoBlocksPipeline.twoblockspipelinesearch(X,Y)
# println(results)
println("best pipeline is: ", results[1,1],", with mean ± sd: ",results[1,2], " ± ",results[1,3])
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 926 | using PrecompileTools: @setup_workload, @compile_workload
using Distributed
using DataFrames
using AutoMLPipeline
using CSV
workers=5
nprocs() == 1 && addprocs(workers; exeflags=["--project=$(Base.active_project())"])
#addprocs(K8sClusterManager(10, cpu=1, memory="300Mi", pending_timeout=300); exeflags="--project")
#nprocs() == 1 && addprocs(; exeflags = "--project")
@setup_workload begin
@compile_workload begin
include("twoblocks.jl")
end
end
@everywhere include("twoblocks.jl")
@everywhere using Main.TwoBlocksPipeline
dataset = getiris()
X = dataset[:,1:4]
Y = dataset[:,5] |> collect
X = dataset[:,2:end-1]
#dataset=CSV.read("environment_data.csv",DataFrame)
#X = select(dataset, Not([:state,:time]))
#Y = dataset.state
results=TwoBlocksPipeline.twoblockspipelinesearch(X,Y)
# println(results)
println("best pipeline is: ", results[1,1],", with mean ± sd: ",results[1,2], " ± ",results[1,3])
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 925 | using PrecompileTools: @setup_workload, @compile_workload
using Distributed
using DataFrames
using AutoMLPipeline
using CSV
workers=5
nprocs() == 1 && addprocs(workers; exeflags=["--project=$(Base.active_project())"])
#addprocs(K8sClusterManager(10, cpu=1, memory="300Mi", pending_timeout=300); exeflags="--project")
#nprocs() == 1 && addprocs(; exeflags = "--project")
@setup_workload begin
@compile_workload begin
include("twoblocks.jl")
end
end
@everywhere include("twoblocks.jl")
@everywhere using Main.TwoBlocksPipeline
dataset = getiris()
X = dataset[:,1:4]
Y = dataset[:,5] |> collect
X = dataset[:,2:end-1]
#dataset=CSV.read("environment_data.csv",DataFrame)
#X = select(dataset, Not([:state,:time]))
#Y = dataset.state
results=TwoBlocksPipeline.twoblockspipelinesearch(X,Y)
# println(results)
println("best pipeline is: ", results[1,1],", with mean ± sd: ",results[1,2], " ± ",results[1,3])
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 2947 | using Distributed
using ArgParse
using CSV
using DataFrames
using AutoMLPipeline
function parse_commandline()
s = ArgParseSettings()
@add_arg_table! s begin
"--pipeline_complexity", "-c"
help = "pipeline complexity"
arg_type = String
default = "low"
"--prediction_type", "-t"
help = "classification or regression"
arg_type = String
default = "classification"
"--output_file", "-o"
help = "output location"
arg_type = String
default = "NONE"
"--nfolds", "-f"
help = "number of crossvalidation folds"
arg_type = Int64
default = 3
"--workers", "-w"
help = "number of workers"
arg_type = Int64
default = 5
"--no_save"
help = "save model"
action = :store_true
"csvfile"
help = "input csv file"
required = true
#default="iris.csv"
end
return parse_args(s;as_symbols=true)
end
#function extract_args()
# parsed_args = parse_commandline()
# println("Parsed args:")
# for (arg,val) in parsed_args
# println(" $arg => $val")
# end
# fname = parsed_args[:input_csvfile]
# data = CSV.read(fname,DataFrame)
# X = data[:,1:(end-1)]
# Y = data[:,end] |> collect
# #return(workers,X,Y)
# return (;parsed_args...)
#end
#
#const (csv,X,Y)=extract_args()
const _cliargs = (;parse_commandline()...)
const _workers = _cliargs[:workers]
nprocs() == 1 && addprocs(_workers;exeflags=["--project=$(Base.active_project())"])
if _cliargs[:prediction_type] == "classification"
@everywhere include("pipelineblocksclassification.jl")
@everywhere using .PipelineBlocksClassification:twoblockspipelinesearch
@everywhere using .PipelineBlocksClassification:oneblockpipelinesearch
elseif _cliargs[:prediction_type] == "regression"
@everywhere include("pipelineblocksregression.jl")
@everywhere using .PipelineBlocksRegression:twoblockspipelinesearch
@everywhere using .PipelineBlocksRegression:oneblockpipelinesearch
else
error("cli argument error for prediction type")
end
function mymain()
fname = _cliargs[:csvfile]
data = CSV.read(fname,DataFrame)
X = data[:,1:(end-1)]
Y = data[:,end] |> collect
best = if _cliargs[:pipeline_complexity] == "low"
oneblockpipelinesearch(X,Y;nfolds=_cliargs[:nfolds])
else
twoblockspipelinesearch(X,Y;nfolds=_cliargs[:nfolds])
end
r(x)=round(x,digits=2)
println("best model: $(best[1])")
println(" mean ± sd: $(r(best[2])) ± $(r(best[3]))")
ofile = _cliargs[:output_file]
if ofile != "NONE"
stfile = open(ofile,"w")
println(stfile,"best model: $(best[1])")
println(stfile," mean ± sd: $(r(best[2])) ± $(r(best[3]))")
close(stfile)
end
return best
end
mymain()
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 6264 | module PipelineBlocksClassification
export twoblockspipelinesearch, oneblockpipelinesearch
using Distributed
using AutoMLPipeline
using DataFrames
using DataFrames:DataFrame
using AutoMLPipeline: score
using Random
# disable truncation of dataframes columns
import Base.show
show(df::AbstractDataFrame) = show(df,truncate=0)
show(io::IO,df::AbstractDataFrame) = show(io,df;truncate=0)
# define scalers
const rb = SKPreprocessor("RobustScaler",Dict(:name=>"rb"))
const pt = SKPreprocessor("PowerTransformer",Dict(:name=>"pt"))
const norm = SKPreprocessor("Normalizer",Dict(:name=>"norm"))
const mx = SKPreprocessor("MinMaxScaler",Dict(:name=>"mx"))
const std = SKPreprocessor("StandardScaler",Dict(:name=>"std"))
# define extractors
const pca = SKPreprocessor("PCA",Dict(:name=>"pca"))
const fa = SKPreprocessor("FactorAnalysis",Dict(:name=>"fa"))
const ica = SKPreprocessor("FastICA",Dict(:name=>"ica"))
# define learners
const rf = SKLearner("RandomForestClassifier",Dict(:name => "rf"))
const ada = SKLearner("AdaBoostClassifier",Dict(:name => "ada"))
const gb = SKLearner("GradientBoostingClassifier",Dict(:name => "gb"))
const lsvc = SKLearner("LinearSVC",Dict(:name => "lsvc"))
const rbfsvc = SKLearner("SVC",Dict(:name => "rbfsvc"))
const dt = SKLearner("DecisionTreeClassifier",Dict(:name =>"dt"))
const et = SKLearner("ExtraTreesClassifier",Dict(:name =>"et"))
const ridge = SKLearner("RidgeClassifier",Dict(:name =>"ridge"))
const sgd = SKLearner("SGDClassifier",Dict(:name =>"sgd"))
#const gp = SKLearner("GaussianProcessClassifier",Dict(:name =>"gp"))
const bg = SKLearner("BaggingClassifier",Dict(:name =>"bg"))
const pa = SKLearner("PassiveAggressiveClassifier",Dict(:name =>"pa"))
# preprocessing
const noop = Identity(Dict(:name =>"noop"))
const ohe = OneHotEncoder(Dict(:name=>"ohe"))
const catf = CatFeatureSelector(Dict(:name=>"catf"))
const numf = NumFeatureSelector(Dict(:name=>"numf"))
const vscalers = [rb,pt,norm,mx,std,noop]
const vextractors = [pca,fa,ica,noop]
const vlearners = [rf,gb,lsvc,rbfsvc,ada,dt,et,ridge,sgd,bg,pa]
const learnerdict = Dict("rf"=>rf,"gb"=>gb,"lsvc"=>lsvc,"rbfsvc"=>rbfsvc,"ada"=>ada,
"dt"=>dt,"et"=>et,"ridge"=>ridge,
"sgd"=>sgd,"bg"=>bg,"pa"=>pa
)
function oneblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt in extractors
@distributed (vcat) for sc in scalers
# baseline preprocessing
prep = @pipeline ((catf |> ohe) + numf)
# one-block prp
expx = @pipeline prep |> (sc |> xt) |> lr
scn = sc.name[1:end - 4];xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "($scn |> $xtn) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
return results
end
function evaluate_pipeline(dfpipelines,X,Y;folds=3)
res=@distributed (vcat) for prow in eachrow(dfpipelines)
perf = crossvalidate(prow.Pipeline,X,Y,"balanced_accuracy_score";nfolds=folds)
DataFrame(;Description=prow.Description,mean=perf.mean,sd=perf.std,prow.Pipeline)
end
return res
end
function twoblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt1 in extractors
@distributed (vcat) for xt2 in extractors
@distributed (vcat) for sc1 in scalers
@distributed (vcat) for sc2 in scalers
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> ((sc1 |> xt1) + (sc2 |> xt2)) |> lr
scn1 = sc1.name[1:end - 4];xtn1 = xt1.name[1:end - 4];
scn2 = sc2.name[1:end - 4];xtn2 = xt2.name[1:end - 4];
lrn = lr.name[1:end - 4]
pname = "($scn1 |> $xtn1) + ($scn2 |> $xtn2) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
end
end
return results
end
function model_selection_pipeline(learners)
results = @distributed (vcat) for lr in learners
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> (rb |> pca) |> lr
pname = "(rb |> pca) |> $(lr.name[1:end-4])"
DataFrame(Description=pname,Pipeline=expx)
end
return results
end
function lname(n::Learner)
n.name[1:end-4]
end
function twoblockspipelinesearch(X::DataFrame,Y::Vector;scalers=vscalers,extractors=vextractors,learners=vlearners,nfolds=3)
dfpipes = model_selection_pipeline(vlearners)
# find the best model by evaluating the models
modelsperf = evaluate_pipeline(dfpipes,X,Y;folds=nfolds)
sort!(modelsperf,:mean, rev = true)
# get the string name of the top model
bestm = filter(x->occursin(x,modelsperf.Description[1]),lname.(vlearners))[1]
# get corresponding model object
bestmodel = learnerdict[bestm]
# use the best model to generate pipeline search
dfp = twoblock_pipeline_factory(vscalers,vextractors,[bestmodel])
# evaluate the pipeline
bestp=evaluate_pipeline(dfp,X,Y;folds=nfolds)
sort!(bestp,:mean, rev = true)
show(bestp;allrows=false,truncate=1,allcols=false)
println()
optmodel = bestp[1,:]
return optmodel
end
function oneblockpipelinesearch(X::DataFrame,Y::Vector;scalers=vscalers,extractors=vextractors,learners=vlearners,nfolds=3)
dfpipes = model_selection_pipeline(vlearners)
# find the best model by evaluating the models
modelsperf = evaluate_pipeline(dfpipes,X,Y;folds=nfolds)
sort!(modelsperf,:mean, rev = true)
# get the string name of the top model
bestm = filter(x->occursin(x,modelsperf.Description[1]),lname.(vlearners))[1]
# get corresponding model object
bestmodel = learnerdict[bestm]
# use the best model to generate pipeline search
dfp = oneblock_pipeline_factory(vscalers,vextractors,[bestmodel])
# evaluate the pipeline
bestp=evaluate_pipeline(dfp,X,Y;folds=nfolds)
sort!(bestp,:mean, rev = true)
show(bestp;allrows=false,truncate=1,allcols=false)
println()
optmodel = bestp[1,:]
return optmodel
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 6229 | module PipelineBlocksRegression
export twoblockspipelinesearch, oneblockpipelinesearch
using Distributed
using AutoMLPipeline
using DataFrames
using DataFrames:DataFrame
using AutoMLPipeline: score
using Random
# disable truncation of dataframes columns
import Base.show
show(df::AbstractDataFrame) = show(df,truncate=0)
show(io::IO,df::AbstractDataFrame) = show(io,df;truncate=0)
# define scalers
const rb = SKPreprocessor("RobustScaler",Dict(:name=>"rb"))
const pt = SKPreprocessor("PowerTransformer",Dict(:name=>"pt"))
const norm = SKPreprocessor("Normalizer",Dict(:name=>"norm"))
const mx = SKPreprocessor("MinMaxScaler",Dict(:name=>"mx"))
const std = SKPreprocessor("StandardScaler",Dict(:name=>"std"))
# define extractors
const pca = SKPreprocessor("PCA",Dict(:name=>"pca"))
const fa = SKPreprocessor("FactorAnalysis",Dict(:name=>"fa"))
const ica = SKPreprocessor("FastICA",Dict(:name=>"ica"))
# define learners
const rf = SKLearner("RandomForestRegressor",Dict(:name => "rf"))
const ada = SKLearner("AdaBoostRegressor",Dict(:name => "ada"))
const gb = SKLearner("GradientBoostingRegressor",Dict(:name => "gb"))
const ridge = SKLearner("Ridge",Dict(:name => "ridge"))
const svr = SKLearner("SVR",Dict(:name => "svr"))
const dt = SKLearner("DecisionTreeRegressor",Dict(:name =>"dt"))
const lasso = SKLearner("Lasso",Dict(:name =>"lasso"))
const enet = SKLearner("ElasticNet",Dict(:name =>"enet"))
const ard = SKLearner("ARDRegression",Dict(:name =>"ard"))
const lars = SKLearner("Lars",Dict(:name =>"lars"))
const sgd = SKLearner("SGDRegressor",Dict(:name =>"sgd"))
const kridge = SKLearner("KernelRidge",Dict(:name =>"kridge"))
# preprocessing
const noop = Identity(Dict(:name =>"noop"))
const ohe = OneHotEncoder(Dict(:name=>"ohe"))
const catf = CatFeatureSelector(Dict(:name=>"catf"))
const numf = NumFeatureSelector(Dict(:name=>"numf"))
const vscalers = [rb,pt,norm,mx,std,noop]
const vextractors = [pca,fa,ica,noop]
const vlearners = [rf,gb,ridge,svr,ada,dt,lasso,enet,ard,lars,sgd,kridge]
const learnerdict = Dict("rf"=>rf,"gb"=>gb,"ridge"=>ridge,"svr"=>svr,
"ada"=>ada,"dt"=>dt,"lasso"=>lasso,"enet"=>enet,"ard"=>ard,
"lars"=>lars,"sgd"=>sgd,"kridge"=>kridge
)
function oneblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt in extractors
@distributed (vcat) for sc in scalers
# baseline preprocessing
prep = @pipeline ((catf |> ohe) + numf)
# one-block prp
expx = @pipeline prep |> (sc |> xt) |> lr
scn = sc.name[1:end - 4];xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "($scn |> $xtn) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
return results
end
function evaluate_pipeline(dfpipelines,X,Y;folds=3)
res=@distributed (vcat) for prow in eachrow(dfpipelines)
perf = crossvalidate(prow.Pipeline,X,Y,"mean_squared_error";nfolds=folds)
DataFrame(;Description=prow.Description,mean=perf.mean,sd=perf.std,prow.Pipeline)
end
return res
end
function twoblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt1 in extractors
@distributed (vcat) for xt2 in extractors
@distributed (vcat) for sc1 in scalers
@distributed (vcat) for sc2 in scalers
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> ((sc1 |> xt1) + (sc2 |> xt2)) |> lr
scn1 = sc1.name[1:end - 4];xtn1 = xt1.name[1:end - 4];
scn2 = sc2.name[1:end - 4];xtn2 = xt2.name[1:end - 4];
lrn = lr.name[1:end - 4]
pname = "($scn1 |> $xtn1) + ($scn2 |> $xtn2) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
end
end
return results
end
function model_selection_pipeline(learners)
results = @distributed (vcat) for lr in learners
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> (rb |> pca) |> lr
pname = "(rb |> pca) |> $(lr.name[1:end-4])"
DataFrame(Description=pname,Pipeline=expx)
end
return results
end
function lname(n::Learner)
n.name[1:end-4]
end
function twoblockspipelinesearch(X::DataFrame,Y::Vector;scalers=vscalers,extractors=vextractors,learners=vlearners,nfolds=3)
dfpipes = model_selection_pipeline(vlearners)
# find the best model by evaluating the models
modelsperf = evaluate_pipeline(dfpipes,X,Y;folds=nfolds)
sort!(modelsperf,:mean, rev = false)
# get the string name of the top model
bestm = filter(x->occursin(x,modelsperf.Description[1]),lname.(vlearners))[1]
# get corresponding model object
bestmodel = learnerdict[bestm]
# use the best model to generate pipeline search
dfp = twoblock_pipeline_factory(vscalers,vextractors,[bestmodel])
# evaluate the pipeline
bestp=evaluate_pipeline(dfp,X,Y;folds=nfolds)
sort!(bestp,:mean, rev = false)
show(bestp;allrows=false,truncate=1,allcols=false)
println()
optmodel = bestp[1,:]
return optmodel
end
function oneblockpipelinesearch(X::DataFrame,Y::Vector;scalers=vscalers,extractors=vextractors,learners=vlearners,nfolds=3)
dfpipes = model_selection_pipeline(vlearners)
# find the best model by evaluating the models
modelsperf = evaluate_pipeline(dfpipes,X,Y;folds=nfolds)
sort!(modelsperf,:mean, rev = false)
# get the string name of the top model
bestm = filter(x->occursin(x,modelsperf.Description[1]),lname.(vlearners))[1]
# get corresponding model object
bestmodel = learnerdict[bestm]
# use the best model to generate pipeline search
dfp = oneblock_pipeline_factory(vscalers,vextractors,[bestmodel])
# evaluate the pipeline
bestp=evaluate_pipeline(dfp,X,Y;folds=nfolds)
sort!(bestp,:mean, rev = false)
show(bestp;allrows=false,truncate=1,allcols=false)
println()
optmodel = bestp[1,:]
return optmodel
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 157 | import AMLPipelineBase
include(joinpath(pkgdir(AMLPipelineBase), "test", "runtests.jl"))
import TSML
include(joinpath(pkgdir(TSML), "test", "runtests.jl"))
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 378 | import SimpleContainerGenerator
pkgs = ["ArgParse","AutoMLPipeline","CSV","DataFrames","Distributed","Random"]
julia_version = "1.10.2"
SimpleContainerGenerator.create_dockerfile(pkgs;
output_directory=pwd(),
julia_version = julia_version)
run(`nerdctl build -t ppalmes/automlpipeline .`)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 320 | using PackageCompiler
create_sysimage(["AMLPipelineBase","DataFrames","StatsBase",
"CSV","Dates","Distributed","TSML",
"Random","ArgParse","Test",
"Statistics","Serialization"],
sysimage_path="amlp.so", precompile_execution_file="precompile.jl")
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 4886 | module TwoBlocksPipeline
export twoblockspipelinesearch
using Distributed
#nprocs() == 1 && addprocs(; exeflags = "--project")
#nprocs() == 1 && addprocs()
using AutoMLPipeline
using DataFrames
using DataFrames:DataFrame
using AutoMLPipeline: score
using Random
# disable truncation of dataframes columns
import Base.show
show(df::AbstractDataFrame) = show(df,truncate=0)
show(io::IO,df::AbstractDataFrame) = show(io,df;truncate=0)
# define scalers
const rb = SKPreprocessor("RobustScaler",Dict(:name=>"rb"))
const pt = SKPreprocessor("PowerTransformer",Dict(:name=>"pt"))
const norm = SKPreprocessor("Normalizer",Dict(:name=>"norm"))
const mx = SKPreprocessor("MinMaxScaler",Dict(:name=>"mx"))
const std = SKPreprocessor("StandardScaler",Dict(:name=>"std"))
# define extractors
const pca = SKPreprocessor("PCA",Dict(:name=>"pca"))
const fa = SKPreprocessor("FactorAnalysis",Dict(:name=>"fa"))
const ica = SKPreprocessor("FastICA",Dict(:name=>"ica"))
# define learners
const rf = SKLearner("RandomForestClassifier",Dict(:name => "rf"))
const ada = SKLearner("AdaBoostClassifier",Dict(:name => "ada"))
const gb = SKLearner("GradientBoostingClassifier",Dict(:name => "gb"))
const lsvc = SKLearner("LinearSVC",Dict(:name => "lsvc"))
const rbfsvc = SKLearner("SVC",Dict(:name => "rbfsvc"))
const dt = SKLearner("DecisionTreeClassifier",Dict(:name =>"dt"))
# preprocessing
const noop = Identity(Dict(:name =>"noop"))
const ohe = OneHotEncoder(Dict(:name=>"ohe"))
const catf = CatFeatureSelector(Dict(:name=>"catf"))
const numf = NumFeatureSelector(Dict(:name=>"numf"))
const vscalers = [rb,pt,norm,mx,std,noop]
const vextractors = [pca,fa,ica,noop]
const vlearners = [rf,gb,lsvc,rbfsvc,ada,dt]
const learnerdict = Dict("rf"=>rf,"gb"=>gb,"lsvc"=>lsvc,"rbfsvc"=>rbfsvc,"ada"=>ada,"dt"=>dt)
function oneblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt in extractors
@distributed (vcat) for sc in scalers
# baseline preprocessing
prep = @pipeline ((catf |> ohe) + numf)
# one-block prp
expx = @pipeline prep |> (sc |> xt) |> lr
scn = sc.name[1:end - 4];xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "($scn |> $xtn) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
return results
end
function evaluate_pipeline(dfpipelines,X,Y;folds=3)
res=@distributed (vcat) for prow in eachrow(dfpipelines)
perf = crossvalidate(prow.Pipeline,X,Y,"balanced_accuracy_score";nfolds=folds)
DataFrame(;Description=prow.Description,mean=perf.mean,sd=perf.std,prow.Pipeline)
end
return res
end
function twoblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt1 in extractors
@distributed (vcat) for xt2 in extractors
@distributed (vcat) for sc1 in scalers
@distributed (vcat) for sc2 in scalers
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> ((sc1 |> xt1) + (sc2 |> xt2)) |> lr
scn1 = sc1.name[1:end - 4];xtn1 = xt1.name[1:end - 4];
scn2 = sc2.name[1:end - 4];xtn2 = xt2.name[1:end - 4];
lrn = lr.name[1:end - 4]
pname = "($scn1 |> $xtn1) + ($scn2 |> $xtn2) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
end
end
return results
end
function model_selection_pipeline(learners)
results = @distributed (vcat) for lr in learners
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> (rb |> pca) |> lr
pname = "(rb |> pca) |> $(lr.name[1:end-4])"
DataFrame(Description=pname,Pipeline=expx)
end
return results
end
function lname(n::Learner)
n.name[1:end-4]
end
function twoblockspipelinesearch(X::DataFrame,Y::Vector;scalers=vscalers,extractors=vextractors,learners=vlearners,nfolds=3)
dfpipes = model_selection_pipeline(vlearners)
# find the best model by evaluating the models
modelsperf = evaluate_pipeline(dfpipes,X,Y;folds=nfolds)
sort!(modelsperf,:mean, rev = true)
# get the string name of the top model
bestm = filter(x->occursin(x,modelsperf.Description[1]),lname.(vlearners))[1]
# get corresponding model object
bestmodel = learnerdict[bestm]
# use the best model to generate pipeline search
dfp = twoblock_pipeline_factory(vscalers,vextractors,[bestmodel])
# evaluate the pipeline
bestp=evaluate_pipeline(dfp,X,Y;folds=nfolds)
sort!(bestp,:mean, rev = true)
show(bestp;allrows=false,truncate=1,allcols=false)
println()
optmodel = bestp[1,:]
return bestp
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 1267 | module End2EndAI
__precompile__(false)
using DataFrames
using CSV
using ArgParse
using Distributed
export automlmain
workers=5
nprocs() == 1 && addprocs(workers; exeflags=["--project=$(Base.active_project())"])
include("twoblocks.jl")
@everywhere include("twoblocks.jl")
@everywhere using .TwoBlocksPipeline
function parse_commandline()
s = ArgParseSettings()
@add_arg_table! s begin
"--pipeline_level"
help = "small, medium, large"
arg_type = String
default = "small"
"--model"
help = "small, medium, large"
arg_type = String
default = "small"
"--save"
help = "save results"
action = :store_true
"csvfilename"
help = "csv file to process"
default = "iris.csv"
#required = true
end
return parse_args(s,as_symbols=true)
end
function automlmain()
parsed_args = parse_commandline()
createrunpipeline(parsed_args)
end
function createrunpipeline(args::Dict)
fname = args[:csvfilename]
df = CSV.read(fname,DataFrame)
X = df[:,1:(end-1)]
Y = df[:,end] |> collect
results = TwoBlocksPipeline.twoblockspipelinesearch(X,Y)
println(results[1:1,:])
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 2834 | module ArgumentParsers
using Dates
using DataFrames
using CSV
using ArgParse
using AutoMLPipeline
export automlmain
function parse_commandline()
s = ArgParseSettings()
@add_arg_table! s begin
"--aggregate"
help = "aggregate interval such as: minutely, hourly, weekly, monthly, Dates.Minute(30),Dates.Hour(2)"
arg_type = String
default = "hourly"
"--dateformat"
help = "date and time format"
arg_type = String
default = "dd/mm/yyyy HH:MM"
"--impute"
help = "impute with NN"
action = :store_true
"--mono"
help = "normalize monotonic"
action = :store_true
"--clean"
help = "remove outliers"
action = :store_true
"--stat"
help = "get statistics"
action = :store_true
"--save"
help = "save results"
action = :store_true
"csvfilename"
help = "csv file to process"
required = true
end
return parse_args(s,as_symbols=true)
end
function automlmain()
parsed_args = parse_commandline()
createrunpipeline(parsed_args)
end
function createrunpipeline(args::Dict)
dateformat = args[:dateformat]
fname = args[:csvfilename]
csvreader = CSVDateValReader(Dict(:filename=>fname,:dateformat=>dateformat))
csvwriter = CSVDateValWriter()
fnameoutput = ""
if args[:save] == true
name = split(fname,".csv")[1]
fnameoutput = name*"_output"*".csv"
csvwriter.args[:filename] = fnameoutput
end
# extract date interval
dateintervalstring = args[:aggregate]
dateinterval = Dates.Hour(1)
if dateintervalstring in keys(DATEINTERVAL)
dateinterval = DATEINTERVAL[dateintervalstring]
else
# parse the string into expression and evaluate
# example: "Dates.Hour(1)" or "Dates.Minute(30)"
dateinterval = eval(Meta.parse(dateintervalstring))
end
commonarg = Dict(:dateformat=>dateformat,:dateinterval=>dateinterval)
valgator = DateValgator(commonarg)
imputer = DateValNNer(commonarg)
mono = Monotonicer()
outliernicer = Outliernicer(commonarg)
statifier = Statifier(Dict(:processmissing=>true))
transformers = [csvreader,valgator]
if args[:impute] == true
transformers = [transformers;imputer]
end
if args[:mono] == true
transformers = [transformers;mono]
end
if args[:clean] == true
transformers = [transformers;outliernicer]
end
if args[:stat] == true
transformers = [transformers;statifier]
end
if args[:save] == true
transformers = [transformers;csvwriter]
end
pipeline = Pipeline(transformers)
fit_transform!(pipeline)
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 3316 | # make sure local environment is activated
using Pkg
Pkg.activate(".")
# Symbolic Pipeline Composition
# For parallel search
using AutoMLPipeline
using Distributed
using DataFrames
# Add workers
nprocs() ==1 && addprocs(exeflags=["--project=$(Base.active_project())"])
workers()
# disable warnings
@everywhere import PythonCall
@everywhere const PYC=PythonCall
@everywhere warnings = PYC.pyimport("warnings")
@everywhere warnings.filterwarnings("ignore")
@sync @everywhere using AutoMLPipeline
@sync @everywhere using DataFrames
# get data
begin
data = getprofb()
X = data[:,2:end]
Y = data[:,1] |> Vector
end
#### feature selectors
catf = CatFeatureSelector();
numf = NumFeatureSelector();
# hot-bit encoder
ohe = OneHotEncoder();
#### feature scalers
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
mx = SKPreprocessor("MinMaxScaler");
std = SKPreprocessor("StandardScaler");
norm = SKPreprocessor("Normalizer");
#### feature extractors
pca = SKPreprocessor("PCA", Dict(:autocomponent => true));
ica = SKPreprocessor("FastICA", Dict(:autocomponent => true));
fa = SKPreprocessor("FactorAnalysis", Dict(:autocomponent => true));
#### Learners
rf = SKLearner("RandomForestClassifier", Dict(:impl_args => Dict(:n_estimators => 10)));
gb = SKLearner("GradientBoostingClassifier");
lsvc = SKLearner("LinearSVC");
mlp = SKLearner("MLPClassifier");
stack = StackEnsemble();
rbfsvc = SKLearner("SVC");
ada = SKLearner("AdaBoostClassifier");
vote = VoteEnsemble();
best = BestLearner();
tree = PrunedTree();
sgd = SKLearner("SGDClassifier");
noop = Identity(Dict(:name => "Noop"));
pipe = @pipeline catf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline catf |> ohe;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf |> norm;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe);
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> rf;
pred = fit_transform!(pipe, X, Y)
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> sgd;
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm |> pca) + (numf |> rb |> pca) + (catf |> ohe) |> tree;
crossvalidate(pipe,X,Y)
# Parallel Search for Datamining Optimal Pipelines
function prpsearch()
learners = [rf,ada,sgd,tree,rbfsvc,lsvc,gb];
scalers = [rb,pt,norm,std,mx,noop];
extractors = [pca,ica,fa,noop];
dftable = @sync @distributed (vcat) for lr in learners
@distributed (vcat) for sc in scalers
@distributed (vcat) for xt in extractors
pipe = @pipeline (catf |> ohe) + (numf |> sc |> xt) |> lr
scn = sc.name[1:end - 4]; xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "$scn |> $xtn |> $lrn"
ptime = @elapsed begin
mean, sd, kfold, _ = crossvalidate(pipe, X, Y, "accuracy_score", 3)
end
DataFrame(pipeline=pname, mean=mean, sd=sd, time=ptime, folds=kfold)
end
end
end
sort!(dftable, :mean, rev=true);
dftable
end
runtime = @elapsed begin
df = prpsearch()
end;
serialtime = df.time |> sum;
(serialtime = "$(round(serialtime / 60.0)) minutes", paralleltime = "$(round(runtime)) seconds")
# pipeline performances
@show df
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 815 | module MyMain
using Distributed
using DataFrames
using AutoMLPipeline
using CSV
workers=5
nprocs() == 1 && addprocs(workers; exeflags=["--project=$(Base.active_project())"])
#addprocs(K8sClusterManager(10, cpu=1, memory="300Mi", pending_timeout=300); exeflags="--project")
#nprocs() == 1 && addprocs(; exeflags = "--project")
include("twoblocks.jl")
@everywhere include("twoblocks.jl")
@everywhere using Main.TwoBlocksPipeline
dataset = getiris()
X = dataset[:,1:4]
Y = dataset[:,5] |> collect
X = dataset[:,2:end-1]
#dataset=CSV.read("environment_data.csv",DataFrame)
#X = select(dataset, Not([:state,:time]))
#Y = dataset.state
results=TwoBlocksPipeline.twoblockspipelinesearch(X,Y)
# println(results)
println("best pipeline is: ", results[1,1],", with mean ± sd: ",results[1,2], " ± ",results[1,3])
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 4804 | module TwoBlocksPipeline
export twoblockspipelinesearch
using Distributed
using AutoMLPipeline
using DataFrames
using DataFrames:DataFrame
using AutoMLPipeline: score
using Random
# disable truncation of dataframes columns
import Base.show
show(df::AbstractDataFrame) = show(df,truncate=0)
show(io::IO,df::AbstractDataFrame) = show(io,df;truncate=0)
# define scalers
const rb = SKPreprocessor("RobustScaler",Dict(:name=>"rb"))
const pt = SKPreprocessor("PowerTransformer",Dict(:name=>"pt"))
const norm = SKPreprocessor("Normalizer",Dict(:name=>"norm"))
const mx = SKPreprocessor("MinMaxScaler",Dict(:name=>"mx"))
const std = SKPreprocessor("StandardScaler",Dict(:name=>"std"))
# define extractors
const pca = SKPreprocessor("PCA",Dict(:name=>"pca"))
const fa = SKPreprocessor("FactorAnalysis",Dict(:name=>"fa"))
const ica = SKPreprocessor("FastICA",Dict(:name=>"ica"))
# define learners
const rf = SKLearner("RandomForestClassifier",Dict(:name => "rf"))
const ada = SKLearner("AdaBoostClassifier",Dict(:name => "ada"))
const gb = SKLearner("GradientBoostingClassifier",Dict(:name => "gb"))
const lsvc = SKLearner("LinearSVC",Dict(:name => "lsvc"))
const rbfsvc = SKLearner("SVC",Dict(:name => "rbfsvc"))
const dt = SKLearner("DecisionTreeClassifier",Dict(:name =>"dt"))
# preprocessing
const noop = Identity(Dict(:name =>"noop"))
const ohe = OneHotEncoder(Dict(:name=>"ohe"))
const catf = CatFeatureSelector(Dict(:name=>"catf"))
const numf = NumFeatureSelector(Dict(:name=>"numf"))
const vscalers = [rb,pt,norm,mx,std,noop]
const vextractors = [pca,fa,ica,noop]
const vlearners = [rf,gb,lsvc,rbfsvc,ada,dt]
const learnerdict = Dict("rf"=>rf,"gb"=>gb,"lsvc"=>lsvc,"rbfsvc"=>rbfsvc,"ada"=>ada,"dt"=>dt)
function oneblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt in extractors
@distributed (vcat) for sc in scalers
# baseline preprocessing
prep = @pipeline ((catf |> ohe) + numf)
# one-block prp
expx = @pipeline prep |> (sc |> xt) |> lr
scn = sc.name[1:end - 4];xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "($scn |> $xtn) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
return results
end
function evaluate_pipeline(dfpipelines,X,Y;folds=3)
res=@distributed (vcat) for prow in eachrow(dfpipelines)
perf = crossvalidate(prow.Pipeline,X,Y,"balanced_accuracy_score";nfolds=folds)
DataFrame(;Description=prow.Description,mean=perf.mean,sd=perf.std,prow.Pipeline)
end
return res
end
function twoblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt1 in extractors
@distributed (vcat) for xt2 in extractors
@distributed (vcat) for sc1 in scalers
@distributed (vcat) for sc2 in scalers
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> ((sc1 |> xt1) + (sc2 |> xt2)) |> lr
scn1 = sc1.name[1:end - 4];xtn1 = xt1.name[1:end - 4];
scn2 = sc2.name[1:end - 4];xtn2 = xt2.name[1:end - 4];
lrn = lr.name[1:end - 4]
pname = "($scn1 |> $xtn1) + ($scn2 |> $xtn2) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
end
end
return results
end
function model_selection_pipeline(learners)
results = @distributed (vcat) for lr in learners
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> (rb |> pca) |> lr
pname = "(rb |> pca) |> $(lr.name[1:end-4])"
DataFrame(Description=pname,Pipeline=expx)
end
return results
end
function lname(n::Learner)
n.name[1:end-4]
end
function twoblockspipelinesearch(X::DataFrame,Y::Vector;scalers=vscalers,extractors=vextractors,learners=vlearners,nfolds=3)
dfpipes = model_selection_pipeline(vlearners)
# find the best model by evaluating the models
modelsperf = evaluate_pipeline(dfpipes,X,Y;folds=nfolds)
sort!(modelsperf,:mean, rev = true)
# get the string name of the top model
bestm = filter(x->occursin(x,modelsperf.Description[1]),lname.(vlearners))[1]
# get corresponding model object
bestmodel = learnerdict[bestm]
# use the best model to generate pipeline search
dfp = twoblock_pipeline_factory(vscalers,vextractors,[bestmodel])
# evaluate the pipeline
bestp=evaluate_pipeline(dfp,X,Y;folds=nfolds)
sort!(bestp,:mean, rev = true)
show(bestp;allrows=false,truncate=1,allcols=false)
println()
optmodel = bestp[1,:]
return bestp
end
end
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 1931 | # from discourse discussion with zevelev
# make sure local environment is activated
using Pkg
Pkg.activate(".")
using Distributed
using AutoMLPipeline
using DataFrames
# add workers
nprocs() ==1 && addprocs(exeflags=["--project=$(Base.active_project())"])
workers()
# disable warnings
@everywhere import PythonCall
@everywhere const PYC=PythonCall
@everywhere warnings = PYC.pyimport("warnings")
@everywhere warnings.filterwarnings("ignore")
@everywhere using AutoMLPipeline
@everywhere using DataFrames
#Get models.
sk= AutoMLPipeline.SKLearners.learner_dict |> keys |> collect;
sk= sk |> x-> sort(x,lt=(x,y)->lowercase(x)<lowercase(y));
m_cl= sk[occursin.("Classifier", sk)];
m_cl= m_cl ∪ sk[occursin.("NB", sk)];
m_cl= m_cl ∪ sk[occursin.("SVC", sk)];
m_cl= m_cl ∪ ["LDA", "QDA"];
iris = AutoMLPipeline.Utils.getiris();
X = iris[:,1:4];
Y = iris[:,end] |> Vector;
# find optimal learners
learners = @distributed (vcat) for m in m_cl
learner = skoperator(m)
pcmc = AutoMLPipeline.@pipeline learner
println(learner.name)
mean,sd,folds,err = crossvalidate(pcmc,X,Y,"accuracy_score",5)
if !isnan(mean)
DataFrame(name=learner.name,mean=mean,sd=sd,folds=folds,errors=err)
else
DataFrame()
end
end;
sort!(learners,:mean,rev=true)
@show learners;
# optimized C
results=@distributed (vcat) for C in 1:5
@distributed (vcat) for gamma = 1:5
svcmodel = SKLearner("SVC",Dict(:impl_args=>Dict(:kernel=>"rbf",:C=>C,:gamma=>gamma) ))
mn,sd,fld,err = crossvalidate(svcmodel,X,Y)
DataFrame(name=svcmodel.name,mean=mn,sd=sd,C=C,gamma=gamma,folds=fld,errors=err)
end
end
sort!(results,:mean,rev=true)
@show results
# search best learner by crossvalidation and use it for prediction
learners = SKLearner.(["AdaBoostClassifier","BaggingClassifier","SGDClassifier","SVC","LinearSVC"])
blearner = BestLearner(learners)
crossvalidate(blearner,X,Y,"accuracy_score")
fit!(blearner,X,Y)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 3316 | # make sure local environment is activated
using Pkg
Pkg.activate(".")
# Symbolic Pipeline Composition
# For parallel search
using AutoMLPipeline
using Distributed
using DataFrames
# Add workers
nprocs() ==1 && addprocs(exeflags=["--project=$(Base.active_project())"])
workers()
# disable warnings
@everywhere import PythonCall
@everywhere const PYC=PythonCall
@everywhere warnings = PYC.pyimport("warnings")
@everywhere warnings.filterwarnings("ignore")
@sync @everywhere using AutoMLPipeline
@sync @everywhere using DataFrames
# get data
begin
data = getprofb()
X = data[:,2:end]
Y = data[:,1] |> Vector
end
#### feature selectors
catf = CatFeatureSelector();
numf = NumFeatureSelector();
# hot-bit encoder
ohe = OneHotEncoder();
#### feature scalers
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
mx = SKPreprocessor("MinMaxScaler");
std = SKPreprocessor("StandardScaler");
norm = SKPreprocessor("Normalizer");
#### feature extractors
pca = SKPreprocessor("PCA", Dict(:autocomponent => true));
ica = SKPreprocessor("FastICA", Dict(:autocomponent => true));
fa = SKPreprocessor("FactorAnalysis", Dict(:autocomponent => true));
#### Learners
rf = SKLearner("RandomForestClassifier", Dict(:impl_args => Dict(:n_estimators => 10)));
gb = SKLearner("GradientBoostingClassifier");
lsvc = SKLearner("LinearSVC");
mlp = SKLearner("MLPClassifier");
stack = StackEnsemble();
rbfsvc = SKLearner("SVC");
ada = SKLearner("AdaBoostClassifier");
vote = VoteEnsemble();
best = BestLearner();
tree = PrunedTree();
sgd = SKLearner("SGDClassifier");
noop = Identity(Dict(:name => "Noop"));
pipe = @pipeline catf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline catf |> ohe;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf |> norm;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe);
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> rf;
pred = fit_transform!(pipe, X, Y)
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> sgd;
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm |> pca) + (numf |> rb |> pca) + (catf |> ohe) |> tree;
crossvalidate(pipe,X,Y)
# Parallel Search for Datamining Optimal Pipelines
function prpsearch()
learners = [rf,ada,sgd,tree,rbfsvc,lsvc,gb];
scalers = [rb,pt,norm,std,mx,noop];
extractors = [pca,ica,fa,noop];
dftable = @sync @distributed (vcat) for lr in learners
@distributed (vcat) for sc in scalers
@distributed (vcat) for xt in extractors
pipe = @pipeline (catf |> ohe) + (numf |> sc |> xt) |> lr
scn = sc.name[1:end - 4]; xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "$scn |> $xtn |> $lrn"
ptime = @elapsed begin
mean, sd, kfold, _ = crossvalidate(pipe, X, Y, "accuracy_score", 3)
end
DataFrame(pipeline=pname, mean=mean, sd=sd, time=ptime, folds=kfold)
end
end
end
sort!(dftable, :mean, rev=true);
dftable
end
runtime = @elapsed begin
df = prpsearch()
end;
serialtime = df.time |> sum;
(serialtime = "$(round(serialtime / 60.0)) minutes", paralleltime = "$(round(runtime)) seconds")
# pipeline performances
@show df
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 5204 | # Brief Intro
# - Paulito Palmes, PhD
# - IBM Research Scientist
# - IBM Dublin Research Lab
#
# Acknowledgement
#
# Problem Overview
# - given a set of pipeline elements (prp):
# - feature selectors (fsl) : catf, numf
# - scalers (fsc) : norm, minmax, std, rb
# - feature extractors (fxt) : pca, ica, fa
# - learners (lr) : rf, xgb, svm
#
# - Find optimal U{fsl |> fsc |> fxt} |> lr
# - Note: x |> f => f(x); x + y => U{x,y}
# - Assume one-block prp: fsl |> fsc |> fxt
# - Optimize: prp1 + prp2 + ... + prpn |> lr
# - Optimize: matching between {prps} x {lrs} s.t.
# chosen prp |> lr is optimal
# - Complexity: n(prps) x n(lrs)
# - exponential/combinatorial complexity
#
# - Two-stage strategy (avoid simultaneous search prps and lrs)
# - Pick a surrogate pipeline and search best lr in {lrs}
# - Use lr to search for best prp in {prps}
# - Reduce complexity from n(prps) x n(lrs) to n(prps) + n(lrs)
# - limitations:
# - only pipeline structure optimization
# - no hyper-parameter optimization
# - for classification tasks
#
# - Current Toolkits
# sklearn: Pipeline, FeatureUnion, Hyperparam-Optim
# caret: No pipeline, Hyperparam-Optim
# lale: sklearn + AutoML (CASH)
# - bayesian optimization, tree search, random, stochastic, evolutionary
#
# AutoMLPipeline: A package that makes it trivial to create and evaluate machine
# learning pipeline architectures. It can be used as building block
# for developing AutoML algorithms similar to lale but in Julia
# ecosystem.
#
# -------------------------------
# Sample Workflow
# -------------------------------
# make sure local environment is activated
using Pkg
Pkg.activate(".")
# Symbolic Pipeline Composition
# For parallel search
using AutoMLPipeline
using Distributed
using DataFrames
# disable truncation of dataframes columns
import Base.show
show(df::AbstractDataFrame) = show(df,truncate=0)
show(io::IO,df::AbstractDataFrame) = show(io,df;truncate=0)
# add workers
nprocs() ==1 && addprocs(exeflags=["--project=$(Base.active_project())"])
workers()
# disable warnings
@everywhere import PythonCall
@everywhere const PYC=PythonCall
@everywhere warnings = PYC.pyimport("warnings")
@everywhere warnings.filterwarnings("ignore")
@sync @everywhere using AutoMLPipeline
@sync @everywhere using DataFrames
# get data
begin
data = getprofb()
X = data[:,2:end]
Y = data[:,1] |> Vector
end
#### feature selectors
catf = CatFeatureSelector();
numf = NumFeatureSelector();
# hot-bit encoder
ohe = OneHotEncoder();
#### feature scalers
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
mx = SKPreprocessor("MinMaxScaler");
std = SKPreprocessor("StandardScaler");
norm = SKPreprocessor("Normalizer");
#### feature extractors
pca = SKPreprocessor("PCA", Dict(:autocomponent => true));
ica = SKPreprocessor("FastICA", Dict(:autocomponent => true));
fa = SKPreprocessor("FactorAnalysis", Dict(:autocomponent => true));
#### Learners
rf = SKLearner("RandomForestClassifier", Dict(:impl_args => Dict(:n_estimators => 10)));
gb = SKLearner("GradientBoostingClassifier");
lsvc = SKLearner("LinearSVC");
mlp = SKLearner("MLPClassifier");
stack = StackEnsemble();
rbfsvc = SKLearner("SVC");
ada = SKLearner("AdaBoostClassifier");
vote = VoteEnsemble();
best = BestLearner();
tree = PrunedTree();
sgd = SKLearner("SGDClassifier");
noop = Identity(Dict(:name => "Noop"));
pipe = @pipeline catf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline catf |> ohe;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline numf |> norm;
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe);
pred = fit_transform!(pipe, X, Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> rf;
pred = fit_transform!(pipe, X, Y);
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm) + (catf |> ohe) |> sgd;
crossvalidate(pipe,X,Y)
pipe = @pipeline (numf |> norm |> pca) + (numf |> rb |> pca) + (catf |> ohe) |> tree;
crossvalidate(pipe,X,Y)
# Parallel Search for Datamining Optimal Pipelines
function prpsearch()
learners = [rf,ada,sgd,tree,rbfsvc,lsvc,gb];
scalers = [rb,pt,norm,std,mx,noop];
extractors = [pca,ica,fa,noop];
dftable = @sync @distributed (vcat) for lr in learners
@distributed (vcat) for sc in scalers
@distributed (vcat) for xt in extractors
pipe = @pipeline (catf |> ohe) + (numf |> sc |> xt) |> lr
scn = sc.name[1:end - 4]; xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "$scn |> $xtn |> $lrn"
ptime = @elapsed begin
mean, sd, kfold, _ = crossvalidate(pipe, X, Y, "accuracy_score", 3)
end
DataFrame(pipeline=pname, mean=mean, sd=sd, time=ptime, folds=kfold)
end
end
end
sort!(dftable, :mean, rev=true);
dftable
end
runtime = @elapsed begin
df = prpsearch()
end;
serialtime = df.time |> sum;
(serialtime = "$(round(serialtime / 60.0)) minutes", paralleltime = "$(round(runtime)) seconds")
# pipeline performances
sort!(df,:mean,rev=true)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 5858 | # ----------------------------------
# Implementation
# ----------------------------------
# make sure local environment is activated
using Pkg
Pkg.activate(".")
using Distributed
# add workers
nprocs() ==1 && addprocs(exeflags=["--project=$(Base.active_project())"])
workers()
# disable warnings
@everywhere import PythonCall
@everywhere const PYC=PythonCall
@everywhere warnings = PYC.pyimport("warnings")
@everywhere warnings.filterwarnings("ignore")
@everywhere using AutoMLPipeline
@everywhere using DataFrames
@everywhere using AutoMLPipeline: score
@everywhere using Random
ENV["COLUMNS"]=1000
ENV["LINES"]=100;
# disable truncation of dataframes columns
import Base.show
show(df::AbstractDataFrame) = show(df,truncate=0)
show(io::IO,df::AbstractDataFrame) = show(io,df;truncate=0)
# brief overview of AutoMLPipeline package
# more details is in my Juliacon2020 presentation about this package
# we use AutoMLPipeline to develop the pipeline optimizer
# define scalers
rb = SKPreprocessor("RobustScaler",Dict(:name=>"rb"))
pt = SKPreprocessor("PowerTransformer",Dict(:name=>"pt"))
norm = SKPreprocessor("Normalizer",Dict(:name=>"norm"))
mx = SKPreprocessor("MinMaxScaler",Dict(:name=>"mx"))
std = SKPreprocessor("StandardScaler",Dict(:name=>"std"))
# define extractors
pca = SKPreprocessor("PCA",Dict(:name=>"pca"))
fa = SKPreprocessor("FactorAnalysis",Dict(:name=>"fa"))
ica = SKPreprocessor("FastICA",Dict(:name=>"ica"))
# define learners
rf = SKLearner("RandomForestClassifier",Dict(:name => "rf"))
ada = SKLearner("AdaBoostClassifier",Dict(:name => "ada"))
gb = SKLearner("GradientBoostingClassifier",Dict(:name => "gb"))
lsvc = SKLearner("LinearSVC",Dict(:name => "lsvc"))
rbfsvc = SKLearner("SVC",Dict(:name => "rbfsvc"))
dt = SKLearner("DecisionTreeClassifier",Dict(:name =>"dt"))
# preprocessing
noop = Identity(Dict(:name =>"noop"))
ohe = OneHotEncoder(Dict(:name=>"ohe"))
catf = CatFeatureSelector(Dict(:name=>"catf"))
numf = NumFeatureSelector(Dict(:name=>"numf"))
vscalers = [rb,pt,norm,mx,std,noop]
vextractors = [pca,fa,ica,noop]
vlearners = [rf,gb,lsvc,rbfsvc,ada,dt]
dataset = getiris()
X = dataset[:,1:4]
Y = dataset[:,5] |> collect
# one-block pipeline
prep = @pipeline (catf |> ohe) + numf
ppl1 = @pipeline prep |> (mx |> pca) |> rf
crossvalidate(ppl1,X,Y)
# two-block pipeline
ppl2 = @pipeline prep |> ((norm |> ica) + (pt |> pca)) |> lsvc
crossvalidate(ppl2,X,Y)
function oneblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt in extractors
@distributed (vcat) for sc in scalers
# baseline preprocessing
prep = @pipeline ((catf |> ohe) + numf)
# one-block prp
expx = @pipeline prep |> (sc |> xt) |> lr
scn = sc.name[1:end - 4];xtn = xt.name[1:end - 4]; lrn = lr.name[1:end - 4]
pname = "($scn |> $xtn) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
return results
end
res_oneblock = oneblock_pipeline_factory(vscalers,vextractors,vlearners)
crossvalidate(res_oneblock.Pipeline[1],X,Y)
function evaluate_pipeline(dfpipelines,X,Y;folds=3)
res=@distributed (vcat) for prow in eachrow(dfpipelines)
perf = crossvalidate(prow.Pipeline,X,Y;nfolds=folds)
DataFrame(Description=prow.Description,mean=perf.mean,sd=perf.std,Pipeline=prow.Pipeline,)
end
return res
end
cross_res_oneblock = evaluate_pipeline(res_oneblock,X,Y)
sort!(cross_res_oneblock,:mean, rev = true)
show(cross_res_oneblock;allrows=true,allcols=true,truncate=0)
function twoblock_pipeline_factory(scalers,extractors,learners)
results = @distributed (vcat) for lr in learners
@distributed (vcat) for xt1 in extractors
@distributed (vcat) for xt2 in extractors
@distributed (vcat) for sc1 in scalers
@distributed (vcat) for sc2 in scalers
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> ((sc1 |> xt1) + (sc2 |> xt2)) |> lr
scn1 = sc1.name[1:end - 4];xtn1 = xt1.name[1:end - 4];
scn2 = sc2.name[1:end - 4];xtn2 = xt2.name[1:end - 4];
lrn = lr.name[1:end - 4]
pname = "($scn1 |> $xtn1) + ($scn2 |> $xtn2) |> $lrn"
DataFrame(Description=pname,Pipeline=expx)
end
end
end
end
end
return results
end
res_twoblock = twoblock_pipeline_factory(vscalers,vextractors,vlearners)
function model_selection_pipeline(learners)
results = @distributed (vcat) for lr in learners
prep = @pipeline ((catf |> ohe) + numf)
expx = @pipeline prep |> (rb |> pca) |> lr
pname = "(rb |> pca) |> $(lr.name[1:end-4])"
DataFrame(Description=pname,Pipeline=expx)
end
return results
end
dfpipes = model_selection_pipeline(vlearners)
# find the best model
@everywhere Random.seed!(10)
res = evaluate_pipeline(dfpipes,X,Y;folds=10)
sort!(res,:mean, rev = true)
# use the best model to generate pipeline search
dfp = twoblock_pipeline_factory(vscalers,vextractors,[rbfsvc])
# evaluate the pipeline
@everywhere Random.seed!(10)
bestp=evaluate_pipeline(dfp,X,Y;folds=3)
sort!(bestp,:mean, rev = true)
show(bestp;allrows=false,truncate=0,allcols=false)
# create pipeline factory
# - create oneblock factory
# - create twoblocks factory
#
# evaluate pipeline factory
# Model selection should be given more priority than pipeline and hyperparam search
# Algo:
# - start with an arbitrary pipeline and search for the best model
# using their default parameters
# - with the best model selected, refine the solution
# by searching for the best pipeline
# - refine the model more by hyperparm search if needed
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
|
[
"MIT"
]
| 0.4.6 | 02a92d379ef775b7e3bf07414a4459ec72cca73d | code | 2232 | # activate local env
using Pkg
Pkg.activate(".")
# load packages/modules
using DataFrames
using AutoMLPipeline
using AbstractTrees
# disable warnings
import PythonCall
const PYC=PythonCall
warnings = PYC.pyimport("warnings")
warnings.filterwarnings("ignore")
## get data
profbdata = getprofb()
X = profbdata[:,2:end];
Y = profbdata[:,1] |> Vector;
topdf(x)=first(x,5)
topdf(profbdata)
##
# load filters
#### Decomposition
pca = SKPreprocessor("PCA");
fa = SKPreprocessor("FactorAnalysis");
ica = SKPreprocessor("FastICA");
#### Scaler
rb = SKPreprocessor("RobustScaler");
pt = SKPreprocessor("PowerTransformer");
norm = SKPreprocessor("Normalizer");
mx = SKPreprocessor("MinMaxScaler");
#### categorical preprocessing
ohe = OneHotEncoder()
#### Column selector
catf = CatFeatureSelector();
numf = NumFeatureSelector();
#### Learners
rf = SKLearner("RandomForestClassifier",Dict(:impl_args=>Dict(:n_estimators => 100)));
gb = SKLearner("GradientBoostingClassifier");
lsvc = SKLearner("LinearSVC");
mlp = SKLearner("MLPClassifier");
jrf = RandomForest();
stack = StackEnsemble();
svc = SKLearner("SVC");
ada = SKLearner("AdaBoostClassifier");
vote = VoteEnsemble();
best = BestLearner();
# filter categories and hotbit encode
pohe = @pipeline catf |> ohe;
tr = fit_transform!(pohe,X,Y)
pohe = @pipeline numf |> pca;
tr = fit_transform!(pohe,X,Y)
# filter numeric and apply pca and ica
pdec = @pipeline (numf |> pca) + (numf |> ica);
tr = fit_transform!(pdec,X,Y)
# filter numeric, apply rb/pt transforms and ica/pca extractions
ppt = @pipeline (numf |> rb |> ica) + (numf |> pt |> pca)
tr = fit_transform!(ppt,X,Y)
# rf learn baseline
rfp1 = @pipeline ( (catf |> ohe) + (catf |> ohe) + (numf) ) |> rf;
crossvalidate(rfp1, X,Y)
# rf learn: bigrams, 2-blocks
rfp2 = @pipeline ((catf |> ohe) + numf |> rb |> ica) + (numf |> pt |> pca) |> ada;
crossvalidate(rfp2, X,Y)
# lsvc learn: bigrams, 3-blocks
plsvc = @pipeline ((numf |> rb |> pca)+(numf |> rb |> fa)+(numf |> rb |> ica)+(catf |> ohe )) |> lsvc;
pred = fit_transform!(plsvc,X,Y)
crossvalidate(plsvc,X,Y)
expressiontree = @pipelinex ((numf |> rb |> pca)+(numf |> rb |> fa)+(numf |> rb |> ica)+(catf |> ohe )) |> lsvc
print_tree(expressiontree)
| AutoMLPipeline | https://github.com/IBM/AutoMLPipeline.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.