licenses
listlengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1789
""" show_nodes(io::IO, graph::DAG) Print a graph's nodes. Should only be used for small graphs as it prints every node in a list. """ function show_nodes(io::IO, graph::DAG) print(io, "[") first = true for n in graph.nodes if first first = false else print(io, ", ") end print(io, n) end return print(io, "]") end """ show(io::IO, graph::DAG) Print the given graph to io. If there are too many nodes it will print only a summary of them. """ function Base.show(io::IO, graph::DAG) apply_all!(graph) println(io, "Graph:") print(io, " Nodes: ") nodeDict = Dict{Type,Int64}() noEdges = 0 for node in graph.nodes if haskey(nodeDict, typeof(task(node))) nodeDict[typeof(task(node))] = nodeDict[typeof(task(node))] + 1 else nodeDict[typeof(task(node))] = 1 end noEdges += length(parents(node)) end if length(graph.nodes) <= 20 show_nodes(io, graph) else print(io, "Total: ", length(graph.nodes), ", ") first = true i = 0 for (type, number) in zip(keys(nodeDict), values(nodeDict)) i += 1 if first first = false else print(io, ", ") end if (i % 3 == 0) print(io, "\n ") end print(io, type, ": ", number) end end println(io) println(io, " Edges: ", noEdges) properties = get_properties(graph) println(io, " Total Compute Effort: ", properties.computeEffort) println(io, " Total Data Transfer: ", properties.data) return println(io, " Total Compute Intensity: ", properties.computeIntensity) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1433
""" get_properties(graph::DAG) Return the graph's [`GraphProperties`](@ref). """ function get_properties(graph::DAG) # make sure the graph is fully generated apply_all!(graph) # TODO: tests stop working without the if condition, which means there is probably a bug in the lazy evaluation and in the tests if (graph.properties.computeEffort <= 0.0) graph.properties = GraphProperties(graph) end return graph.properties end """ get_exit_node(graph::DAG) Return the graph's exit node. This assumes the graph only has a single exit node. If the graph has multiple exit nodes, the one encountered first will be returned. """ function get_exit_node(graph::DAG) for node in graph.nodes if (is_exit_node(node)) return node end end @assert false "The given graph has no exit node! It is either empty or not acyclic!" end """ get_entry_nodes(graph::DAG) Return a vector of the graph's entry nodes. """ function get_entry_nodes(graph::DAG) apply_all!(graph) result = Vector{Node}() for node in graph.nodes if (is_entry_node(node)) push!(result, node) end end return result end """ operation_stack_length(graph::DAG) Return the number of operations applied to the graph. """ function operation_stack_length(graph::DAG) return length(graph.appliedOperations) + length(graph.operationsToApply) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1956
using DataStructures """ PossibleOperations A struct storing all possible operations on a [`DAG`](@ref). To get the [`PossibleOperations`](@ref) on a [`DAG`](@ref), use [`get_operations`](@ref). """ mutable struct PossibleOperations nodeReductions::Set{NodeReduction} nodeSplits::Set{NodeSplit} end """ DAG The representation of the graph as a set of [`Node`](@ref)s. [`Operation`](@ref)s can be applied on it using [`push_operation!`](@ref) and reverted using [`pop_operation!`](@ref) like a stack. To get the set of possible operations, use [`get_operations`](@ref). The members of the object should not be manually accessed, instead always use the provided interface functions. """ mutable struct DAG nodes::Set{Union{DataTaskNode,ComputeTaskNode}} # The operations currently applied to the set of nodes appliedOperations::Stack{AppliedOperation} # The operations not currently applied but part of the current state of the DAG operationsToApply::Deque{Operation} # The possible operations at the current state of the DAG possibleOperations::PossibleOperations # The set of nodes whose possible operations need to be reevaluated dirtyNodes::Set{Union{DataTaskNode,ComputeTaskNode}} # "snapshot" system: keep track of added/removed nodes/edges since last snapshot # these are muted in insert_node! etc. diff::Diff # the cached properties of the DAG properties::GraphProperties end """ PossibleOperations() Construct and return an empty [`PossibleOperations`](@ref) object. """ function PossibleOperations() return PossibleOperations(Set{NodeReduction}(), Set{NodeSplit}()) end """ DAG() Construct and return an empty [`DAG`](@ref). """ function DAG() return DAG( Set{Node}(), Stack{AppliedOperation}(), Deque{Operation}(), PossibleOperations(), Set{Node}(), Diff(), GraphProperties(), ) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1674
""" is_connected(graph::DAG) Return whether the given graph is connected. """ function is_connected(graph::DAG) nodeQueue = Deque{Node}() push!(nodeQueue, get_exit_node(graph)) seenNodes = Set{Node}() while !isempty(nodeQueue) current = pop!(nodeQueue) push!(seenNodes, current) for child in current.children push!(nodeQueue, child[1]) end end return length(seenNodes) == length(graph.nodes) end """ is_valid(graph::DAG) Validate the entire graph using asserts. Intended for testing with `@assert is_valid(graph)`. """ function is_valid(graph::DAG) for node in graph.nodes @assert is_valid(graph, node) end for op in graph.operationsToApply @assert is_valid(graph, op) end for nr in graph.possibleOperations.nodeReductions @assert is_valid(graph, nr) end for ns in graph.possibleOperations.nodeSplits @assert is_valid(graph, ns) end for node in graph.dirtyNodes @assert node in graph "Dirty Node is not part of the graph!" @assert ismissing(node.nodeReduction) "Dirty Node has a NodeReduction!" @assert ismissing(node.nodeSplit) "Dirty Node has a NodeSplit!" end @assert is_connected(graph) "Graph is not connected!" return true end """ is_scheduled(graph::DAG) Validate that the entire graph has been scheduled, i.e., every [`ComputeTaskNode`](@ref) has its `.device` set. """ function is_scheduled(graph::DAG) for node in graph.nodes if (node isa DataTaskNode) continue end @assert !ismissing(node.device) end return true end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1623
""" AbstractModel Base type for all models. From this, [`AbstractProblemInstance`](@ref)s can be constructed. See also: [`problem_instance`](@ref) """ abstract type AbstractModel end """ problem_instance(::AbstractModel, ::Vararg) Interface function that must be implemented for any implementation of [`AbstractModel`](@ref). This function should return a specific [`AbstractProblemInstance`](@ref) given some parameters. """ function problem_instance end """ AbstractProblemInstance Base type for problem instances. An object of this type of a corresponding [`AbstractModel`](@ref) should uniquely identify a problem instance of that model. """ abstract type AbstractProblemInstance end """ input_type(problem::AbstractProblemInstance) Return the input type for a specific [`AbstractProblemInstance`](@ref). This can be a specific type or a supertype for which all child types are expected to work. """ function input_type end """ graph(::AbstractProblemInstance) Generate the [`DAG`](@ref) for the given [`AbstractProblemInstance`](@ref). Every entry node (see [`get_entry_nodes`](@ref)) to the graph must have a name set. Implement [`input_expr`](@ref) to return a valid expression for each of those names. """ function graph end """ input_expr(instance::AbstractProblemInstance, name::String, input_symbol::Symbol) For the given [`AbstractProblemInstance`](@ref), the entry node name, and the symbol of the problem input (where a variable of type `input_type(...)` will exist), return an `Expr` that gets that specific input value from the input symbol. """ function input_expr end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
943
""" ==(e1::Edge, e2::Edge) Equality comparison between two edges. """ function Base.:(==)(e1::Edge, e2::Edge) return e1.edge[1] == e2.edge[1] && e1.edge[2] == e2.edge[2] end """ ==(n1::Node, n2::Node) Fallback equality comparison between two nodes. For equal node types, the more specific versions of this function will be called. """ function Base.:(==)(n1::Node, n2::Node) return false end """ ==(n1::ComputeTaskNode, n2::ComputeTaskNode) Equality comparison between two [`ComputeTaskNode`](@ref)s. """ function Base.:(==)( n1::ComputeTaskNode{TaskType}, n2::ComputeTaskNode{TaskType} ) where {TaskType<:AbstractComputeTask} return n1.id == n2.id end """ ==(n1::DataTaskNode, n2::DataTaskNode) Equality comparison between two [`DataTaskNode`](@ref)s. """ function Base.:(==)( n1::DataTaskNode{TaskType}, n2::DataTaskNode{TaskType} ) where {TaskType<:AbstractDataTask} return n1.id == n2.id end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2622
function DataTaskNode(t::AbstractDataTask, name="") return DataTaskNode( t, Vector{Node}(), Vector{Tuple{Node,Int}}(), # TODO this can only ever be a single child UUIDs.uuid1(rng[threadid()]), missing, missing, name, ) end function ComputeTaskNode(t::AbstractComputeTask) return ComputeTaskNode( t, # task Vector{Node}(), # parents Vector{Tuple{Node,Int}}(), # children UUIDs.uuid1(rng[threadid()]), # id missing, # node reduction missing, # node split missing, # device ) end Base.copy(m::Missing) = missing Base.copy(n::ComputeTaskNode) = ComputeTaskNode(copy(task(n))) Base.copy(n::DataTaskNode) = DataTaskNode(copy(task(n)), n.name) """ make_node(t::AbstractTask) Fallback implementation of `make_node` for an [`AbstractTask`](@ref), throwing an error. """ function make_node(t::AbstractTask) return error("Cannot make a node from this task type") end """ make_node(t::AbstractDataTask) Construct and return a new [`DataTaskNode`](@ref) with the given task. """ function make_node(t::AbstractDataTask, name::String="") return DataTaskNode(t, name) end """ make_node(t::AbstractComputeTask) Construct and return a new [`ComputeTaskNode`](@ref) with the given task. """ function make_node(t::AbstractComputeTask) return ComputeTaskNode(t) end """ make_edge(n1::Node, n2::Node, index::Int) Fallback implementation of `make_edge` throwing an error. If you got this error it likely means you tried to construct an edge between two nodes of the same type. """ function make_edge(n1::Node, n2::Node, index::Int=0) return error("can only create edges from compute to data node or reverse") end """ make_edge(n1::ComputeTaskNode, n2::DataTaskNode, index::Int) Construct and return a new [`Edge`](@ref) pointing from `n1` (child) to `n2` (parent). The index parameter is 0 by default and is passed to the parent node as argument index for its child. """ function make_edge(n1::ComputeTaskNode, n2::DataTaskNode, index::Int=0) return Edge((n1, n2), index) end """ make_edge(n1::DataTaskNode, n2::ComputeTaskNode) Construct and return a new [`Edge`](@ref) pointing from `n1` (child) to `n2` (parent). The index parameter is 0 by default and is passed to the parent node as argument index for its child. """ function make_edge(n1::DataTaskNode, n2::ComputeTaskNode, index::Int=0) return Edge((n1, n2), index) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
576
""" show(io::IO, n::Node) Print a short string representation of the node to io. """ function Base.show(io::IO, n::Node) return print(io, "Node(", task(n), ")") end """ show(io::IO, e::Edge) Print a short string representation of the edge to io. """ function Base.show(io::IO, e::Edge) return print(io, "Edge(", e.edge[1], ", ", e.edge[2], ")") end """ to_var_name(id::UUID) Return the uuid as a string usable as a variable name in code generation. """ function to_var_name(id::UUID) str = "_" * replace(string(id), "-" => "_") return str end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
3248
""" is_entry_node(node::Node) Return whether this node is an entry node in its graph, i.e., it has no children. """ is_entry_node(node::Node) = length(children(node)) == 0 """ is_exit_node(node::Node) Return whether this node is an exit node of its graph, i.e., it has no parents. """ is_exit_node(node::Node)::Bool = length(parents(node)) == 0 """ task(node::Node) Return the node's task. """ function task( node::DataTaskNode{TaskType} )::TaskType where {TaskType<:Union{AbstractDataTask,AbstractComputeTask}} return node.task end function task( node::ComputeTaskNode{TaskType} )::TaskType where {TaskType<:Union{AbstractDataTask,AbstractComputeTask}} return node.task end """ children(node::Node) Return node's children. A node's children are its prerequisite nodes, nodes that need to execute before the task of this node. A node's children are the nodes that must run before it. """ function children(node::DataTaskNode) return node.children end function children(node::ComputeTaskNode) return node.children end """ parents(node::Node) Return the node's parents. A node's parents are its subsequent nodes, nodes that need this node to execute. """ function parents(node::DataTaskNode) return node.parents end function parents(node::ComputeTaskNode) return node.parents end """ siblings(node::Node) Return a vector of all siblings of this node. A node's siblings are all children of any of its parents. The result contains no duplicates and includes the node itself. """ function siblings(node::Node)::Set{Node} result = Set{Node}() push!(result, node) for parent in parents(node) union!(result, getindex.(children(parent), 1)) end return result end """ partners(node::Node) Return a vector of all partners of this node. A node's partners are all parents of any of its children. The result contains no duplicates and includes the node itself. !!! note This is very slow when there are multiple children with many parents. This is less of a problem in [`siblings(node::Node)`](@ref) because (depending on the model) there are no nodes with a large number of children, or only a single one. """ function partners(node::Node)::Set{Node} result = Set{Node}() push!(result, node) for (child, index) in children(node) union!(result, parents(child)) end return result end """ partners(node::Node, set::Set{Node}) Alternative version to [`partners(node::Node)`](@ref), avoiding allocation of a new set. Works on the given set and returns `nothing`. """ function partners(node::Node, set::Set{Node}) push!(set, node) for (child, index) in children(node) union!(set, parents(child)) end return nothing end """ is_parent(potential_parent::Node, node::Node) Return whether the `potential_parent` is a parent of `node`. """ function is_parent(potential_parent::Node, node::Node)::Bool return potential_parent in parents(node) end """ is_child(potential_child::Node, node::Node) Return whether the `potential_child` is a child of `node`. """ function is_child(potential_child::Node, node::Node)::Bool return potential_child in getindex.(children(node), 1) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
4067
using Random using UUIDs using Base.Threads # TODO: reliably find out how many threads we're running with (nthreads() returns 1 when precompiling :/) rng = [Random.MersenneTwister(0) for _ in 1:128] """ Node The abstract base type of every node. See [`DataTaskNode`](@ref), [`ComputeTaskNode`](@ref) and [`make_node`](@ref). """ abstract type Node end # declare this type here because it's needed abstract type Operation end """ DataTaskNode <: Node Any node that transfers data and does no computation. # Fields `.task`: The node's data task type. Usually [`DataTask`](@ref).\\ `.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\ `.children`: A vector of tuples of the node's children (i.e. nodes that this one depends on) and their indices, indicating their order in the resulting function call passed to the task.\\ `.id`: The node's id. Improves the speed of comparisons and is used as a unique identifier.\\ `.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\ `.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\ `.name`: The name of this node for entry nodes into the graph ([`is_entry_node`](@ref)) to reliably assign the inputs to the correct nodes when executing.\\ """ mutable struct DataTaskNode{TaskType<:AbstractDataTask} <: Node task::TaskType # use vectors as sets have way too much memory overhead parents::Vector{Node} children::Vector{Tuple{Node,Int}} # need a unique identifier unique to every *constructed* node # however, it can be copied when splitting a node id::Base.UUID # the NodeReduction involving this node, if it exists # Can't use the NodeReduction type here because it's not yet defined nodeReduction::Union{Operation,Missing} # the NodeSplit involving this node, if it exists nodeSplit::Union{Operation,Missing} # for input nodes we need a name for the node to distinguish between them name::String end """ ComputeTaskNode <: Node Any node that computes a result from inputs using an [`AbstractComputeTask`](@ref). # Fields `.task`: The node's compute task type. A concrete subtype of [`AbstractComputeTask`](@ref).\\ `.parents`: A vector of the node's parents (i.e. nodes that depend on this one).\\ `.children`: A vector of tuples with the node's children (i.e. nodes that this one depends on) and their index, used to order the arguments for the [`AbstractComputeTask`](@ref).\\ `.id`: The node's id. Improves the speed of comparisons and is used as a unique identifier.\\ `.nodeReduction`: Either this node's [`NodeReduction`](@ref) or `missing`, if none. There can only be at most one.\\ `.nodeSplit`: Either this node's [`NodeSplit`](@ref) or `missing`, if none. There can only be at most one.\\ `.device`: The Device this node has been scheduled on by a [`Scheduler`](@ref). """ mutable struct ComputeTaskNode{TaskType<:AbstractComputeTask} <: Node task::TaskType parents::Vector{Node} children::Vector{Tuple{Node,Int}} id::Base.UUID nodeReduction::Union{Operation,Missing} nodeSplit::Union{Operation,Missing} # the device this node is assigned to execute on device::Union{AbstractDevice,Missing} end """ Edge Type of an edge in the graph. Edges can only exist between a [`DataTaskNode`](@ref) and a [`ComputeTaskNode`](@ref) or vice versa, not between two of the same type of node. An edge always points from child to parent: `child = e.edge[1]` and `parent = e.edge[2]`. Additionally, the `Edge`` contains the `index` which is used as the child's index in the parent node. The child is the prerequisite node of the parent. """ struct Edge # edge points from child to parent edge::Union{Tuple{DataTaskNode,ComputeTaskNode},Tuple{ComputeTaskNode,DataTaskNode}} # the index of the child in parent index::Int end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2088
""" is_valid_node(graph::DAG, node::Node) Verify that a given node is valid in the graph. Call like `@test is_valid_node(g, n)`. Uses `@assert` to fail if something is invalid but also provide an error message. This function is very performance intensive and should only be used when testing or debugging. See also this function's specific versions for the concrete Node types [`is_valid(graph::DAG, node::ComputeTaskNode)`](@ref) and [`is_valid(graph::DAG, node::DataTaskNode)`](@ref). """ function is_valid_node(graph::DAG, node::Node) @assert node in graph "Node is not part of the given graph!" for parent in node.parents @assert typeof(parent) != typeof(node) "Node's type is the same as its parent's!" @assert parent in graph "Node's parent is not in the same graph!" @assert is_child(node, parent) "Node is not a child of its parent!" end for (child, index) in node.children @assert typeof(child) != typeof(node) "Node's type is the same as its child's!" @assert child in graph "Node's child is not in the same graph!" @assert node in child.parents "Node is not a parent of its child!" end #=if !ismissing(node.nodeReduction) @assert is_valid(graph, node.nodeReduction) end if !ismissing(node.nodeSplit) @assert is_valid(graph, node.nodeSplit) end=# return true end """ is_valid(graph::DAG, node::ComputeTaskNode) Verify that the given compute node is valid in the graph. Call with `@assert` or `@test` when testing or debugging. This also calls [`is_valid_node(graph::DAG, node::Node)`](@ref). """ function is_valid(graph::DAG, node::ComputeTaskNode) @assert is_valid_node(graph, node) return true end """ is_valid(graph::DAG, node::DataTaskNode) Verify that the given compute node is valid in the graph. Call with `@assert` or `@test` when testing or debugging. This also calls [`is_valid_node(graph::DAG, node::Node)`](@ref). """ function is_valid(graph::DAG, node::DataTaskNode) @assert is_valid_node(graph, node) return true end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
6060
""" apply_all!(graph::DAG) Apply all unapplied operations in the DAG. Is automatically called in all functions that require the latest state of the [`DAG`](@ref). """ function apply_all!(graph::DAG) while !isempty(graph.operationsToApply) # get next operation to apply from front of the deque op = popfirst!(graph.operationsToApply) # apply it appliedOp = apply_operation!(graph, op) # push to the end of the appliedOperations deque push!(graph.appliedOperations, appliedOp) end return nothing end """ apply_operation!(graph::DAG, operation::Operation) Fallback implementation of apply_operation! for unimplemented operation types, throwing an error. """ function apply_operation!(graph::DAG, operation::Operation) return error("unknown operation type") end """ apply_operation!(graph::DAG, operation::NodeReduction) Apply the given [`NodeReduction`](@ref) to the graph. Generic wrapper around [`node_reduction!`](@ref). Return an [`AppliedNodeReduction`](@ref) object generated from the graph's [`Diff`](@ref). """ function apply_operation!(graph::DAG, operation::NodeReduction) diff = node_reduction!(graph, operation.input) graph.properties += GraphProperties(diff) return AppliedNodeReduction(operation, diff) end """ apply_operation!(graph::DAG, operation::NodeSplit) Apply the given [`NodeSplit`](@ref) to the graph. Generic wrapper around [`node_split!`](@ref). Return an [`AppliedNodeSplit`](@ref) object generated from the graph's [`Diff`](@ref). """ function apply_operation!(graph::DAG, operation::NodeSplit) diff = node_split!(graph, operation.input) graph.properties += GraphProperties(diff) return AppliedNodeSplit(operation, diff) end """ revert_operation!(graph::DAG, operation::AppliedOperation) Fallback implementation of operation reversion for unimplemented operation types, throwing an error. """ function revert_operation!(graph::DAG, operation::AppliedOperation) return error("unknown operation type") end """ revert_operation!(graph::DAG, operation::AppliedNodeReduction) Revert the applied node reduction on the graph. Return the original [`NodeReduction`](@ref) operation. """ function revert_operation!(graph::DAG, operation::AppliedNodeReduction) revert_diff!(graph, operation.diff) return operation.operation end """ revert_operation!(graph::DAG, operation::AppliedNodeSplit) Revert the applied node split on the graph. Return the original [`NodeSplit`](@ref) operation. """ function revert_operation!(graph::DAG, operation::AppliedNodeSplit) revert_diff!(graph, operation.diff) return operation.operation end """ revert_diff!(graph::DAG, diff::Diff) Revert the given diff on the graph. Used to revert the individual [`AppliedOperation`](@ref)s with [`revert_operation!`](@ref). """ function revert_diff!(graph::DAG, diff::Diff) # add removed nodes, remove added nodes, same for edges # note the order for edge in diff.addedEdges _remove_edge!(graph, edge.edge[1], edge.edge[2]; track=false) end for node in diff.addedNodes _remove_node!(graph, node; track=false) end for node in diff.removedNodes _insert_node!(graph, node; track=false) end for edge in diff.removedEdges _insert_edge!(graph, edge.edge[1], edge.edge[2], edge.index; track=false) end graph.properties -= GraphProperties(diff) return nothing end """ node_reduction!(graph::DAG, nodes::Vector{Node}) Reduce the given nodes together into one node, return the applied difference to the graph. For details see [`NodeReduction`](@ref). """ function node_reduction!(graph::DAG, nodes::Vector{Node}) @assert is_valid_node_reduction_input(graph, nodes) # clear snapshot get_snapshot_diff(graph) n1 = nodes[1] n1_children = copy(children(n1)) n1_parents = Set(parents(n1)) # set of the new parents of n1 together with the index of the child nodes new_parents = Set{Tuple{Node,Int}}() # names of the previous children that n1 now replaces per parent new_parents_child_names = Dict{Node,Symbol}() # remove all of the nodes' parents and children and the nodes themselves (except for first node) for i in 2:length(nodes) n = nodes[i] for (child, index) in n1_children # no need to care about the indices here _remove_edge!(graph, child, n) end for parent in copy(parents(n)) removed_index = _remove_edge!(graph, n, parent) # collect all parents push!(new_parents, (parent, removed_index)) new_parents_child_names[parent] = Symbol(to_var_name(n.id)) end _remove_node!(graph, n) end for (parent, index) in new_parents # now add parents of all input nodes to n1 without duplicates if !(parent in n1_parents) # don't double insert edges _insert_edge!(graph, n1, parent, index) end end return get_snapshot_diff(graph) end """ node_split!(graph::DAG, n1::Node) Split the given node into one node per parent, return the applied difference to the graph. For details see [`NodeSplit`](@ref). """ function node_split!( graph::DAG, n1::Union{DataTaskNode{TaskType},ComputeTaskNode{TaskType}} ) where {TaskType<:AbstractTask} @assert is_valid_node_split_input(graph, n1) # clear snapshot get_snapshot_diff(graph) n1_parents = copy(parents(n1)) n1_children = copy(children(n1)) for parent in n1_parents _remove_edge!(graph, n1, parent) end for (child, index) in n1_children _remove_edge!(graph, child, n1) end _remove_node!(graph, n1) for parent in n1_parents n_copy = copy(n1) _insert_node!(graph, n_copy) _insert_edge!(graph, n_copy, parent) for (child, index) in n1_children _insert_edge!(graph, child, n_copy) end end return get_snapshot_diff(graph) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2640
# These are functions for "cleaning" nodes, i.e. regenerating the possible operations for a node """ find_reductions!(graph::DAG, node::Node) Find node reductions involving the given node. The function pushes the found [`NodeReduction`](@ref) (if any) everywhere it needs to be and returns nothing. """ function find_reductions!(graph::DAG, node::Node) # there can only be one reduction per node, avoid adding duplicates if !ismissing(node.nodeReduction) return nothing end reductionVector = nothing # possible reductions are with nodes that are partners, i.e. parents of children partners_ = partners(node) delete!(partners_, node) for partner in partners_ @assert partner in graph.nodes if can_reduce(node, partner) if reductionVector === nothing # only when there's at least one reduction partner, insert the vector reductionVector = Vector{Node}() push!(reductionVector, node) end push!(reductionVector, partner) end end if reductionVector !== nothing nr = NodeReduction(reductionVector) push!(graph.possibleOperations.nodeReductions, nr) for node in reductionVector if !ismissing(node.nodeReduction) # it can happen that the dirty node becomes part of an existing NodeReduction and overrides those ones now # this is only a problem insofar the existing NodeReduction has to be deleted and replaced also in the possibleOperations invalidate_caches!(graph, node.nodeReduction) end node.nodeReduction = nr end end return nothing end """ find_splits!(graph::DAG, node::Node) Find the node split of the given node. The function pushes the found [`NodeSplit`](@ref) (if any) everywhere it needs to be and returns nothing. """ function find_splits!(graph::DAG, node::Node) if !ismissing(node.nodeSplit) return nothing end if (can_split(node)) ns = NodeSplit(node) push!(graph.possibleOperations.nodeSplits, ns) node.nodeSplit = ns end return nothing end """ clean_node!(graph::DAG, node::Node) Sort this node's parent and child sets, then find reductions and splits involving it. Needs to be called after the node was changed in some way. """ function clean_node!( graph::DAG, node::Union{DataTaskNode{TaskType},ComputeTaskNode{TaskType}} ) where {TaskType<:AbstractTask} sort_node!(node) find_reductions!(graph, node) find_splits!(graph, node) return nothing end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
4390
# functions that find operations on the inital graph using Base.Threads """ insert_operation!(nf::NodeReduction) Insert the given node reduction into its input nodes' operation caches. This is thread-safe. """ function insert_operation!(nr::NodeReduction) for n in nr.input n.nodeReduction = nr end return nothing end """ insert_operation!(nf::NodeSplit) Insert the given node split into its input node's operation cache. This is thread-safe. """ function insert_operation!(ns::NodeSplit) ns.input.nodeSplit = ns return nothing end """ nr_insertion!(operations::PossibleOperations, nodeReductions::Vector{Vector{NodeReduction}}) Insert the node reductions into the graph and the nodes' caches. Employs multithreading for speedup. """ function nr_insertion!( operations::PossibleOperations, nodeReductions::Vector{Vector{NodeReduction}} ) total_len = 0 for vec in nodeReductions total_len += length(vec) end sizehint!(operations.nodeReductions, total_len) t = @task for vec in nodeReductions union!(operations.nodeReductions, Set(vec)) end schedule(t) @threads for vec in nodeReductions for op in vec insert_operation!(op) end end wait(t) return nothing end """ ns_insertion!(operations::PossibleOperations, nodeSplits::Vector{Vector{NodeSplits}}) Insert the node splits into the graph and the nodes' caches. Employs multithreading for speedup. """ function ns_insertion!( operations::PossibleOperations, nodeSplits::Vector{Vector{NodeSplit}} ) total_len = 0 for vec in nodeSplits total_len += length(vec) end sizehint!(operations.nodeSplits, total_len) t = @task for vec in nodeSplits union!(operations.nodeSplits, Set(vec)) end schedule(t) @threads for vec in nodeSplits for op in vec insert_operation!(op) end end wait(t) return nothing end """ generate_operations(graph::DAG) Generate all possible operations on the graph. Used initially when the graph is freshly assembled or parsed. Uses multithreading for speedup. Safely inserts all the found operations into the graph and its nodes. """ function generate_operations(graph::DAG) generatedReductions = [Vector{NodeReduction}() for _ in 1:nthreads()] generatedSplits = [Vector{NodeSplit}() for _ in 1:nthreads()] # make sure the graph is fully generated through apply_all!(graph) nodeArray = collect(graph.nodes) # sort all nodes @threads for node in nodeArray sort_node!(node) end checkedNodes = Set{Node}() checkedNodesLock = SpinLock() # --- find possible node reductions --- @threads for node in nodeArray # we're looking for nodes with multiple parents, those parents can then potentially reduce with one another if (length(node.parents) <= 1) continue end candidates = node.parents # sort into equivalence classes trie = NodeTrie() for candidate in candidates # insert into trie insert!(trie, candidate) end nodeReductions = collect(trie) for nrVec in nodeReductions # parent sets are ordered and any node can only be part of one nodeReduction, so a NodeReduction is uniquely identifiable by its first element # this prevents duplicate nodeReductions being generated lock(checkedNodesLock) if (nrVec[1] in checkedNodes) unlock(checkedNodesLock) continue else push!(checkedNodes, nrVec[1]) end unlock(checkedNodesLock) push!(generatedReductions[threadid()], NodeReduction(nrVec)) end end # launch thread for node reduction insertion # remove duplicates nr_task = @spawn nr_insertion!(graph.possibleOperations, generatedReductions) # find possible node splits @threads for node in nodeArray if (can_split(node)) push!(generatedSplits[threadid()], NodeSplit(node)) end end # launch thread for node split insertion ns_task = @spawn ns_insertion!(graph.possibleOperations, generatedSplits) empty!(graph.dirtyNodes) wait(nr_task) wait(ns_task) return nothing end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
453
# function to return the possible operations of a graph using Base.Threads """ get_operations(graph::DAG) Return the [`PossibleOperations`](@ref) of the graph at the current state. """ function get_operations(graph::DAG) apply_all!(graph) if isempty(graph.possibleOperations) generate_operations(graph) end clean_node!.(Ref(graph), graph.dirtyNodes) empty!(graph.dirtyNodes) return graph.possibleOperations end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1369
const _POSSIBLE_OPERATIONS_FIELDS = fieldnames(PossibleOperations) _POIteratorStateType = NamedTuple{ (:result, :state),Tuple{Union{NodeReduction,NodeSplit},Tuple{Symbol,Int64}} } @inline function Base.iterate( possibleOperations::PossibleOperations )::Union{Nothing,_POIteratorStateType} for fieldname in _POSSIBLE_OPERATIONS_FIELDS iterator = iterate(getfield(possibleOperations, fieldname)) if (!isnothing(iterator)) return (result=iterator[1], state=(fieldname, iterator[2])) end end return nothing end @inline function Base.iterate( possibleOperations::PossibleOperations, state )::Union{Nothing,_POIteratorStateType} newStateSym = state[1] newStateIt = iterate(getfield(possibleOperations, newStateSym), state[2]) if !isnothing(newStateIt) return (result=newStateIt[1], state=(newStateSym, newStateIt[2])) end # cycle to next field index = findfirst(x -> x == newStateSym, _POSSIBLE_OPERATIONS_FIELDS) + 1 while index <= length(_POSSIBLE_OPERATIONS_FIELDS) newStateSym = _POSSIBLE_OPERATIONS_FIELDS[index] newStateIt = iterate(getfield(possibleOperations, newStateSym)) if !isnothing(newStateIt) return (result=newStateIt[1], state=(newStateSym, newStateIt[2])) end index += 1 end return nothing end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
942
""" show(io::IO, ops::PossibleOperations) Print a string representation of the set of possible operations to io. """ function Base.show(io::IO, ops::PossibleOperations) print(io, length(ops.nodeReductions)) println(io, " Node Reductions: ") for nr in ops.nodeReductions println(io, " - ", nr) end print(io, length(ops.nodeSplits)) println(io, " Node Splits: ") for ns in ops.nodeSplits println(io, " - ", ns) end end """ show(io::IO, op::NodeReduction) Print a string representation of the node reduction to io. """ function Base.show(io::IO, op::NodeReduction) print(io, "NR: ") print(io, length(op.input)) print(io, "x") return print(io, task(op.input[1])) end """ show(io::IO, op::NodeSplit) Print a string representation of the node split to io. """ function Base.show(io::IO, op::NodeSplit) print(io, "NS: ") return print(io, task(op.input)) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2379
""" Operation An abstract base class for operations. An operation can be applied to a [`DAG`](@ref), changing its nodes and edges. Possible operations on a [`DAG`](@ref) can be retrieved using [`get_operations`](@ref). See also: [`push_operation!`](@ref), [`pop_operation!`](@ref) """ abstract type Operation end """ AppliedOperation An abstract base class for already applied operations. An applied operation can be reversed iff it is the last applied operation on the DAG. Every applied operation stores a [`Diff`](@ref) from when it was initially applied to be able to revert the operation. See also: [`revert_operation!`](@ref). """ abstract type AppliedOperation end """ NodeReduction <: Operation The NodeReduction operation. Represents the reduction of two or more nodes with one another. Only one of the input nodes is kept, while all others are deleted and their parents are accumulated in the kept node's parents instead. After the node reduction is applied, the graph has `length(nr.input) - 1` fewer nodes. # Requirements for successful application A vector of nodes can be reduced if: - All nodes are in the graph. - All nodes have the same task type. - All nodes have the same set of children. [`is_valid_node_reduction_input`](@ref) can be used to `@assert` these requirements. See also: [`can_reduce`](@ref) """ struct NodeReduction{NodeType<:Node} <: Operation input::Vector{NodeType} end """ AppliedNodeReduction <: AppliedOperation The applied version of the [`NodeReduction`](@ref). """ struct AppliedNodeReduction{NodeType<:Node} <: AppliedOperation operation::NodeReduction{NodeType} diff::Diff end """ NodeSplit <: Operation The NodeSplit operation. Represents the split of its input node into one node for each of its parents. It is the reverse operation to the [`NodeReduction`](@ref). # Requirements for successful application A node can be split if: - It is in the graph. - It has at least 2 parents. [`is_valid_node_split_input`](@ref) can be used to `@assert` these requirements. See also: [`can_split`](@ref) """ struct NodeSplit{NodeType<:Node} <: Operation input::NodeType end """ AppliedNodeSplit <: AppliedOperation The applied version of the [`NodeSplit`](@ref). """ struct AppliedNodeSplit{NodeType<:Node} <: AppliedOperation operation::NodeSplit{NodeType} diff::Diff end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
3559
""" isempty(operations::PossibleOperations) Return whether `operations` is empty, i.e. all of its fields are empty. """ function Base.isempty(operations::PossibleOperations) return isempty(operations.nodeReductions) && isempty(operations.nodeSplits) end """ length(operations::PossibleOperations) Return a named tuple with the number of each of the operation types as a named tuple. The fields are named the same as the [`PossibleOperations`](@ref)'. """ function Base.length(operations::PossibleOperations) return ( nodeReductions=length(operations.nodeReductions), nodeSplits=length(operations.nodeSplits), ) end """ delete!(operations::PossibleOperations, op::NodeReduction) Delete the given node reduction from the possible operations. """ function Base.delete!(operations::PossibleOperations, op::NodeReduction) delete!(operations.nodeReductions, op) return operations end """ delete!(operations::PossibleOperations, op::NodeSplit) Delete the given node split from the possible operations. """ function Base.delete!(operations::PossibleOperations, op::NodeSplit) delete!(operations.nodeSplits, op) return operations end """ can_reduce(n1::Node, n2::Node) Return whether the given two nodes can be reduced. See [`NodeReduction`](@ref) for the requirements. """ function can_reduce(n1::Node, n2::Node) return false end function can_reduce( n1::NodeType, n2::NodeType ) where { TaskType<:AbstractTask,NodeType<:Union{DataTaskNode{TaskType},ComputeTaskNode{TaskType}} } n1_length = length(children(n1)) n2_length = length(children(n2)) if (n1_length != n2_length) return false end # this seems to be the most common case so do this first # doing it manually is a lot faster than using the sets for a general solution if (n1_length == 2) if (children(n1)[1] != children(n2)[1]) if (children(n1)[1] != children(n2)[2]) return false end # 1_1 == 2_2 if (children(n1)[2] != children(n2)[1]) return false end return true end # 1_1 == 2_1 if (children(n1)[2] != children(n2)[2]) return false end return true end # this is simple if (n1_length == 1) return children(n1)[1] == children(n2)[1] end # this takes a long time return Set(children(n1)) == Set(children(n2)) end """ can_split(n1::Node) Return whether the given node can be split. See [`NodeSplit`](@ref) for the requirements. """ function can_split(n::Node) return length(parents(n)) > 1 end """ ==(op1::Operation, op2::Operation) Fallback implementation of operation equality. Return false. Actual comparisons are done by the overloads of same type operation comparisons. """ function Base.:(==)(op1::Operation, op2::Operation) return false end """ ==(op1::NodeReduction, op2::NodeReduction) Equality comparison between two node reductions. Two node reductions are considered equal when they have the same inputs. """ function Base.:(==)(op1::NodeReduction, op2::NodeReduction) # node reductions are equal exactly if their first input is the same return op1.input[1].id == op2.input[1].id end """ ==(op1::NodeSplit, op2::NodeSplit) Equality comparison between two node splits. Two node splits are considered equal if they have the same input node. """ function Base.:(==)(op1::NodeSplit, op2::NodeSplit) return op1.input == op2.input end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2980
# functions to throw assertion errors for inconsistent or wrong node operations # should be called with @assert # the functions throw their own errors though, to still have helpful error messages """ is_valid_node_reduction_input(graph::DAG, nodes::Vector{Node}) Assert for a gven node reduction input whether the nodes can be reduced. For the requirements of a node reduction see [`NodeReduction`](@ref). Intended for use with `@assert` or `@test`. """ function is_valid_node_reduction_input(graph::DAG, nodes::Vector{Node}) for n in nodes if n ∉ graph throw( AssertionError( "[Node Reduction] the given nodes are not part of the given graph" ), ) end @assert is_valid(graph, n) end t = typeof(task(nodes[1])) for n in nodes if typeof(task(n)) != t throw( AssertionError("[Node Reduction] the given nodes are not of the same type") ) end if (typeof(n) <: DataTaskNode) if (n.name != nodes[1].name) throw( AssertionError( "[Node Reduction] the given nodes do not have the same name" ), ) end end end n1_children = children(nodes[1]) for n in nodes if Set(n1_children) != Set(children(n)) throw( AssertionError( "[Node Reduction] the given nodes do not have equal prerequisite nodes which is required for node reduction", ), ) end end return true end """ is_valid_node_split_input(graph::DAG, n1::Node) Assert for a gven node split input whether the node can be split. For the requirements of a node split see [`NodeSplit`](@ref). Intended for use with `@assert` or `@test`. """ function is_valid_node_split_input(graph::DAG, n1::Node) if n1 ∉ graph throw(AssertionError("[Node Split] the given node is not part of the given graph")) end if length(n1.parents) <= 1 throw( AssertionError( "[Node Split] the given node does not have multiple parents which is required for node split", ), ) end @assert is_valid(graph, n1) return true end """ is_valid(graph::DAG, nr::NodeReduction) Assert for a given [`NodeReduction`](@ref) whether it is a valid operation in the graph. Intended for use with `@assert` or `@test`. """ function is_valid(graph::DAG, nr::NodeReduction) @assert is_valid_node_reduction_input(graph, nr.input) return true end """ is_valid(graph::DAG, nr::NodeSplit) Assert for a given [`NodeSplit`](@ref) whether it is a valid operation in the graph. Intended for use with `@assert` or `@test`. """ function is_valid(graph::DAG, ns::NodeSplit) @assert is_valid_node_split_input(graph, ns.input) return true end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1965
""" GreedyOptimizer An implementation of the greedy optimization algorithm, simply choosing the best next option evaluated with the given estimator. The fixpoint is reached when any leftover operation would increase the graph's total cost according to the given estimator. """ struct GreedyOptimizer{EstimatorType<:AbstractEstimator} <: AbstractOptimizer estimator::EstimatorType end function optimize_step!(optimizer::GreedyOptimizer, graph::DAG) # generate all options operations = get_operations(graph) if isempty(operations) return false end result = nothing lowestCost = reduce( (acc, op) -> begin op_cost = operation_effect(optimizer.estimator, graph, op) if isless(op_cost, acc) result = op return op_cost end return acc end, operations; init=typemax(cost_type(optimizer.estimator)), ) if lowestCost > zero(cost_type(optimizer.estimator)) return false end push_operation!(graph, result) return true end function fixpoint_reached(optimizer::GreedyOptimizer, graph::DAG) # generate all options operations = get_operations(graph) if isempty(operations) return true end lowestCost = reduce( (acc, op) -> begin op_cost = operation_effect(optimizer.estimator, graph, op) if isless(op_cost, acc) return op_cost end return acc end, operations; init=typemax(cost_type(optimizer.estimator)), ) if lowestCost > zero(cost_type(optimizer.estimator)) return true end return false end function optimize_to_fixpoint!(optimizer::GreedyOptimizer, graph::DAG) while optimize_step!(optimizer, graph) end return nothing end function String(optimizer::GreedyOptimizer) return "greedy_optimizer_$(optimizer.estimator)" end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2126
""" AbstractOptimizer Abstract base type for optimizer implementations. """ abstract type AbstractOptimizer end """ optimize_step!(optimizer::AbstractOptimizer, graph::DAG) Interface function that must be implemented by implementations of [`AbstractOptimizer`](@ref). Returns `true` if an operations has been applied, `false` if not, usually when a fixpoint of the algorithm has been reached. It should do one smallest logical step on the given [`DAG`](@ref), muting the graph and, if necessary, the optimizer's state. """ function optimize_step! end """ optimize!(optimizer::AbstractOptimizer, graph::DAG, n::Int) Function calling the given optimizer `n` times, muting the graph. Returns `true` if the requested number of operations has been applied, `false` if not, usually when a fixpoint of the algorithm has been reached. If a more efficient method exists, this can be overloaded for a specific optimizer. """ function optimize!(optimizer::AbstractOptimizer, graph::DAG, n::Int) for i in 1:n if !optimize_step!(optimizer, graph) return false end end return true end """ fixpoint_reached(optimizer::AbstractOptimizer, graph::DAG) Interface function that can be implemented by optimization algorithms that can reach a fixpoint, returning as a `Bool` whether it has been reached. The default implementation returns `false`. See also: [`optimize_to_fixpoint!`](@ref) """ function fixpoint_reached(optimizer::AbstractOptimizer, graph::DAG) return false end """ optimize_to_fixpoint!(optimizer::AbstractOptimizer, graph::DAG) Interface function that can be implemented by optimization algorithms that can reach a fixpoint. The algorithm will be run until that fixpoint is reached, at which point [`fixpoint_reached`](@ref) should return true. A usual implementation might look like this: ```julia function optimize_to_fixpoint!(optimizer::MyOptimizer, graph::DAG) while !fixpoint_reached(optimizer, graph) optimize_step!(optimizer, graph) end return nothing end ``` """ function optimize_to_fixpoint! end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1526
using Random """ RandomWalkOptimizer An optimizer that randomly pushes or pops operations. It doesn't optimize in any direction and is useful mainly for testing purposes. This algorithm never reaches a fixpoint, so it does not implement [`optimize_to_fixpoint!`](@ref). """ struct RandomWalkOptimizer <: AbstractOptimizer rng::AbstractRNG end function optimize_step!(optimizer::RandomWalkOptimizer, graph::DAG) operations = get_operations(graph) if sum(length(operations)) == 0 && length(graph.appliedOperations) + length(graph.operationsToApply) == 0 # in case there are zero operations possible at all on the graph return false end r = optimizer.rng # try until something was applied or popped while true # choose push or pop if rand(r, Bool) # push # choose one of split/reduce option = rand(r, 1:2) if option == 1 && !isempty(operations.nodeReductions) push_operation!(graph, rand(r, collect(operations.nodeReductions))) return true elseif option == 2 && !isempty(operations.nodeSplits) push_operation!(graph, rand(r, collect(operations.nodeSplits))) return true end else # pop if (can_pop(graph)) pop_operation!(graph) return true end end end end function String(::RandomWalkOptimizer) return "random_walker" end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1061
""" ReductionOptimizer An optimizer that simply applies an available [`NodeReduction`](@ref) on each step. It implements [`optimize_to_fixpoint!`](@ref). The fixpoint is reached when there are no more possible [`NodeReduction`](@ref)s in the graph. See also: [`SplitOptimizer`](@ref) """ struct ReductionOptimizer <: AbstractOptimizer end function optimize_step!(optimizer::ReductionOptimizer, graph::DAG) # generate all options operations = get_operations(graph) if fixpoint_reached(optimizer, graph) return false end push_operation!(graph, first(operations.nodeReductions)) return true end function fixpoint_reached(optimizer::ReductionOptimizer, graph::DAG) operations = get_operations(graph) return isempty(operations.nodeReductions) end function optimize_to_fixpoint!(optimizer::ReductionOptimizer, graph::DAG) while !fixpoint_reached(optimizer, graph) optimize_step!(optimizer, graph) end return nothing end function String(::ReductionOptimizer) return "reduction_optimizer" end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1021
""" SplitOptimizer An optimizer that simply applies an available [`NodeSplit`](@ref) on each step. It implements [`optimize_to_fixpoint!`](@ref). The fixpoint is reached when there are no more possible [`NodeSplit`](@ref)s in the graph. See also: [`ReductionOptimizer`](@ref) """ struct SplitOptimizer <: AbstractOptimizer end function optimize_step!(optimizer::SplitOptimizer, graph::DAG) # generate all options operations = get_operations(graph) if fixpoint_reached(optimizer, graph) return false end push_operation!(graph, first(operations.nodeSplits)) return true end function fixpoint_reached(optimizer::SplitOptimizer, graph::DAG) operations = get_operations(graph) return isempty(operations.nodeSplits) end function optimize_to_fixpoint!(optimizer::SplitOptimizer, graph::DAG) while !fixpoint_reached(optimizer, graph) optimize_step!(optimizer, graph) end return nothing end function String(::SplitOptimizer) return "split_optimizer" end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2166
""" GraphProperties() Create an empty [`GraphProperties`](@ref) object. """ function GraphProperties() return ( data=0.0, computeEffort=0.0, computeIntensity=0.0, noNodes=0, noEdges=0 )::GraphProperties end @inline function _props( node::DataTaskNode{TaskType} )::Tuple{Float64,Float64,Int64} where {TaskType<:AbstractDataTask} return (data(task(node)) * length(parents(node)), 0.0, length(parents(node))) end @inline function _props( node::ComputeTaskNode{TaskType} )::Tuple{Float64,Float64,Int64} where {TaskType<:AbstractComputeTask} return (0.0, compute_effort(task(node)), length(parents(node))) end """ GraphProperties(graph::DAG) Calculate the graph's properties and return the constructed [`GraphProperties`](@ref) object. """ function GraphProperties(graph::DAG) # make sure the graph is fully generated apply_all!(graph) d = 0.0 ce = 0.0 ed = 0 for node in graph.nodes props = _props(node) d += props[1] ce += props[2] ed += props[3] end return ( data=d, computeEffort=ce, computeIntensity=(d == 0) ? 0.0 : ce / d, noNodes=length(graph.nodes), noEdges=ed, )::GraphProperties end """ GraphProperties(diff::Diff) Create the graph properties difference from a given [`Diff`](@ref). The graph's properties after applying the [`Diff`](@ref) will be `get_properties(graph) + GraphProperties(diff)`. For reverting a diff, it's `get_properties(graph) - GraphProperties(diff)`. """ function GraphProperties(diff::Diff) ce = reduce(+, compute_effort(task(n)) for n in diff.addedNodes; init=0.0) - reduce(+, compute_effort(task(n)) for n in diff.removedNodes; init=0.0) d = reduce(+, data(task(n)) for n in diff.addedNodes; init=0.0) - reduce(+, data(task(n)) for n in diff.removedNodes; init=0.0) return ( data=d, computeEffort=ce, computeIntensity=(d == 0) ? 0.0 : ce / d, noNodes=length(diff.addedNodes) - length(diff.removedNodes), noEdges=length(diff.addedEdges) - length(diff.removedEdges), )::GraphProperties end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
489
""" GraphProperties Representation of a [`DAG`](@ref)'s properties. # Fields: `.data`: The total data transfer.\\ `.computeEffort`: The total compute effort.\\ `.computeIntensity`: The compute intensity, will always equal `.computeEffort / .data`.\\ `.noNodes`: Number of [`Node`](@ref)s.\\ `.noEdges`: Number of [`Edge`](@ref)s. """ const GraphProperties = NamedTuple{ (:data, :computeEffort, :computeIntensity, :noNodes, :noEdges), Tuple{Float64,Float64,Float64,Int,Int}, }
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1823
""" -(prop1::GraphProperties, prop2::GraphProperties) Subtract `prop1` from `prop2` and return the result as a new [`GraphProperties`](@ref). Also take care to keep consistent compute intensity. """ function Base.:-(prop1::GraphProperties, prop2::GraphProperties) return ( data=prop1.data - prop2.data, computeEffort=prop1.computeEffort - prop2.computeEffort, computeIntensity=if (prop1.data - prop2.data == 0) 0.0 else (prop1.computeEffort - prop2.computeEffort) / (prop1.data - prop2.data) end, noNodes=prop1.noNodes - prop2.noNodes, noEdges=prop1.noEdges - prop2.noEdges, )::GraphProperties end """ +(prop1::GraphProperties, prop2::GraphProperties) Add `prop1` and `prop2` and return the result as a new [`GraphProperties`](@ref). Also take care to keep consistent compute intensity. """ function Base.:+(prop1::GraphProperties, prop2::GraphProperties) return ( data=prop1.data + prop2.data, computeEffort=prop1.computeEffort + prop2.computeEffort, computeIntensity=if (prop1.data + prop2.data == 0) 0.0 else (prop1.computeEffort + prop2.computeEffort) / (prop1.data + prop2.data) end, noNodes=prop1.noNodes + prop2.noNodes, noEdges=prop1.noEdges + prop2.noEdges, )::GraphProperties end """ -(prop::GraphProperties) Unary negation of the graph properties. `.computeIntensity` will not be negated because `.data` and `.computeEffort` both are. """ function Base.:-(prop::GraphProperties) return ( data=-prop.data, computeEffort=-prop.computeEffort, computeIntensity=prop.computeIntensity, # no negation here! noNodes=-prop.noNodes, noEdges=-prop.noEdges, )::GraphProperties end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1821
""" GreedyScheduler A greedy implementation of a scheduler, creating a topological ordering of nodes and naively balancing them onto the different devices. """ struct GreedyScheduler <: AbstractScheduler end function schedule_dag(::GreedyScheduler, graph::DAG, machine::Machine) nodeQueue = PriorityQueue{Node,Int}() # use a priority equal to the number of unseen children -> 0 are nodes that can be added for node in get_entry_nodes(graph) enqueue!(nodeQueue, node => 0) end schedule = Vector{FunctionCall}() sizehint!(schedule, length(graph.nodes)) # keep an accumulated cost of things scheduled to this device so far deviceAccCost = PriorityQueue{AbstractDevice,Float64}() for device in machine.devices enqueue!(deviceAccCost, device => 0) end node = nothing while !isempty(nodeQueue) @assert peek(nodeQueue)[2] == 0 node = dequeue!(nodeQueue) # assign the device with lowest accumulated cost to the node (if it's a compute node) if (isa(node, ComputeTaskNode)) lowestDevice = peek(deviceAccCost)[1] node.device = lowestDevice deviceAccCost[lowestDevice] = compute_effort(task(node)) end if (node isa DataTaskNode && length(children(node)) == 0) push!(schedule, get_init_function_call(node, entry_device(machine))) else push!(schedule, get_function_call(node)...) end for parent in parents(node) # reduce the priority of all parents by one if (!haskey(nodeQueue, parent)) enqueue!(nodeQueue, parent => length(children(parent)) - 1) else nodeQueue[parent] = nodeQueue[parent] - 1 end end end return schedule end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
858
""" AbstractScheduler Abstract base type for scheduler implementations. The scheduler is used to assign each node to a device and create a topological ordering of tasks. """ abstract type AbstractScheduler end """ schedule_dag(::Scheduler, ::DAG, ::Machine) Interface functions that must be implemented for implementations of [`Scheduler`](@ref). The function assigns each [`ComputeTaskNode`](@ref) of the [`DAG`](@ref) to one of the devices in the given [`Machine`](@ref) and returns a `Vector{Node}` representing a topological ordering. [`DataTaskNode`](@ref)s are not scheduled to devices since they do not compute. Instead, a data node transfers data from the [`AbstractDevice`](@ref) of their child to all [`AbstractDevice`](@ref)s of its parents. Return a `Vector{FunctionCall}`. See [`FunctionCall`](@ref) """ function schedule_dag end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
568
using StaticArrays """ FunctionCall{N} Type representing a function call with `N` parameters. Contains the function to call, argument symbols, the return symbol and the device to execute on. """ struct FunctionCall{VectorType<:AbstractVector,N} func::Function # TODO: this should be a tuple value_arguments::SVector{N,Any} # value arguments for the function call, will be prepended to the other arguments arguments::VectorType # symbols of the inputs to the function call return_symbol::Symbol device::AbstractDevice end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
768
""" ==(t1::AbstractTask, t2::AbstractTask) Fallback implementation of equality comparison between two abstract tasks. Always returns false. For equal specific types of t1 and t2, a more specific comparison is called instead, doing an actual comparison. """ function Base.:(==)(t1::AbstractTask, t2::AbstractTask) return false end """ ==(t1::AbstractComputeTask, t2::AbstractComputeTask) Equality comparison between two compute tasks. """ function Base.:(==)(t1::AbstractComputeTask, t2::AbstractComputeTask) return typeof(t1) == typeof(t2) end """ ==(t1::AbstractDataTask, t2::AbstractDataTask) Equality comparison between two data tasks. """ function Base.:(==)(t1::AbstractDataTask, t2::AbstractDataTask) return data(t1) == data(t2) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
2714
using StaticArrays """ get_function_call(n::Node) get_function_call(t::AbstractTask, device::AbstractDevice, in_symbols::AbstractVector, out_symbol::Symbol) For a node or a task together with necessary information, return a vector of [`FunctionCall`](@ref)s for the computation of the node or task. For ordinary compute or data tasks the vector will contain exactly one element. """ function get_function_call( t::CompTask, device::AbstractDevice, in_symbols::AbstractVector, out_symbol::Symbol ) where {CompTask<:AbstractComputeTask} return [FunctionCall(compute, SVector{1,Any}(t), in_symbols, out_symbol, device)] end function get_function_call(node::ComputeTaskNode) @assert length(children(node)) <= children(task(node)) "node $(node) has too many children for its task: node has $(length(node.children)) versus task has $(children(task(node)))\nnode's children: $(getfield.(node.children, :children))" @assert !ismissing(node.device) "trying to get expression for an unscheduled ComputeTaskNode\nnode: $(node)" # make sure the node is sorted so the arguments keep their order sort_node!(node) if (length(node.children) <= 800) #only use an SVector when there are few children return get_function_call( node.task, node.device, SVector{length(node.children),Symbol}( Symbol.(to_var_name.(getfield.(getindex.(children(node), 1), :id)))... ), Symbol(to_var_name(node.id)), ) else return get_function_call( node.task, node.device, Symbol.(to_var_name.(getfield.(getindex.(children(node), 1), :id))), Symbol(to_var_name(node.id)), ) end end function get_function_call(node::DataTaskNode) @assert length(children(node)) == 1 "trying to call get_expression on a data task node that has $(length(node.children)) children instead of 1" # TODO: dispatch to device implementations generating the copy commands return [ FunctionCall( unpack_identity, SVector{0,Any}(), SVector{1,Symbol}(Symbol(to_var_name(first(children(node))[1].id))), Symbol(to_var_name(node.id)), first(children(node))[1].device, ), ] end function get_init_function_call(node::DataTaskNode, device::AbstractDevice) @assert isempty(children(node)) "trying to call get_init_expression on a data task node that is not an entry node." return FunctionCall( unpack_identity, SVector{0,Any}(), SVector{1,Symbol}(Symbol("$(to_var_name(node.id))_in")), Symbol(to_var_name(node.id)), device, ) end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
340
""" copy(t::AbstractDataTask) Fallback implementation of the copy of an abstract data task, throwing an error. """ Base.copy(t::AbstractDataTask) = error("need to implement copying for your data tasks") """ copy(t::AbstractComputeTask) Return a copy of the given compute task. """ Base.copy(t::AbstractComputeTask) = typeof(t)()
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
1169
""" compute(t::AbstractTask; data...) Fallback implementation of the compute function of a compute task, throwing an error. """ function compute end """ compute_effort(t::AbstractTask) Fallback implementation of the compute effort of a task, throwing an error. """ function compute_effort end """ data(t::AbstractTask) Fallback implementation of the data of a task, throwing an error. """ function data end """ compute_effort(t::AbstractDataTask) Return the compute effort of a data task, always zero, regardless of the specific task. """ compute_effort(t::AbstractDataTask)::Float64 = 0.0 """ data(t::AbstractDataTask) Return the data of a data task. Given by the task's `.data` field. """ data(t::AbstractDataTask)::Float64 = getfield(t, :data) """ copy(t::DataTask) Copy the data task and return it. """ Base.copy(t::DataTask) = DataTask(t.data) """ children(::DataTask) Return the number of children of a data task (always 1). """ children(::DataTask) = 1 """ data(t::AbstractComputeTask) Return the data of a compute task, always zero, regardless of the specific task. """ data(t::AbstractComputeTask)::Float64 = 0.0
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
522
""" AbstractTask The shared base type for any task. """ abstract type AbstractTask end """ AbstractComputeTask <: AbstractTask The shared base type for any compute task. """ abstract type AbstractComputeTask <: AbstractTask end """ AbstractDataTask <: AbstractTask The shared base type for any data task. """ abstract type AbstractDataTask <: AbstractTask end """ DataTask <: AbstractDataTask Task representing a specific data transfer. """ struct DataTask <: AbstractDataTask data::Float64 end
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
179
using SafeTestsets @safetestset "Utility Unit Tests " begin include("unit_tests_utility.jl") end # TODO: Make a new simple test model and rewrite tests here
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
code
438
using ComputableDAGs import ComputableDAGs.bytes_to_human_readable @test bytes_to_human_readable(0) == "0.0 B" @test bytes_to_human_readable(1020) == "1020.0 B" @test bytes_to_human_readable(1025) == "1.001 KiB" @test bytes_to_human_readable(684235) == "668.2 KiB" @test bytes_to_human_readable(86214576) == "82.22 MiB" @test bytes_to_human_readable(9241457698) == "8.607 GiB" @test bytes_to_human_readable(3218598654367) == "2.927 TiB"
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
2087
# ComputableDAGs.jl [![Build Status](https://github.com/ComputableDAGs/ComputableDAGs.jl/actions/workflows/unit_tests.yml/badge.svg?branch=main)](https://github.com/ComputableDAGs/ComputableDAGs.jl/actions/workflows/unit_tests.yml/) [![Doc Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://ComputableDAGs.github.io/ComputableDAGs.jl/dev/) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) Represent computations as Directed Acyclic Graphs (DAGs), analyze and optimize them, then compile to native code and run! ## Usage For all the julia calls, use `-t n` to give julia `n` threads. Instantiate the project first: `julia --project=./ -e 'import Pkg; Pkg.instantiate()'` ### Run Tests To run all tests, run `julia --project=./ -e 'import Pkg; Pkg.test()' -O0` ## Concepts ### Generate Operations from chains We assume we have a (valid) DAG given. We can generate all initially possible graph operations from it, and we can calculate the graph properties like compute effort and total data transfer. Goal: For some operation, regenerate possible operations after that one has been applied, but without having to copy the entire graph. This would be helpful for optimization algorithms to try paths of optimizations and build up tree structures, like for example chess computers do. Idea: Keep the original graph, a list of possible operations at the current state, and a queue of applied operations together. The "actual" graph is then the original graph with all operations in the queue applied. We can push and pop new operations to/from the queue, automatically updating the graph's global metrics and possible optimizations from there. ## Acknowledgements and Funding This work was partly funded by the Center for Advanced Systems Understanding (CASUS) that is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament.
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
146
# Contribution Feel free to open issues or pull requests to the official repository. Ideas, tips, bug reports, or contributions are all welcome.
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
3703
# ComputableDAGs.jl *A domain-specific DAG-optimizer* ## General This packages provides a way to represent large computations in a graph representation. Once such a graph is created, it can - be analyzed to extract properties such as total compute effort or data transfer necessary, - be optimized using optimization algorithms, - be scheduled on heterogeneous machines, making use of all available hardware - be compiled and executed within the same session of julia. ### Requirements for use There are some hard requirements for this to be possible to a specific computation problem: - The computation must be static, i.e., the structure of the graph may not dynamically change during the computation. - All data dependencies within the graph must be known in advance. - The overall computation must be separable into smaller parts with less than total interdependency. Some more soft requirements exist for the project to be *useful*: - For optimizations to be effective, the functions should have a predictable compute effort that can be known in advance. - The individual tasks should not be too *small* (ideally at least a few dozen FLOPs) because the compiler is smarter at optimizing very small functions than we can be. - The individual tasks should not be too *large* so the graph has a large enough number of nodes to allow for a larger optimization space. - Tasks should [not have side-effects](https://en.wikipedia.org/wiki/Side_effect_(computer_science)) because the order and number of times a function is executed can not be relied upon. ### Overview of the Project Structure ![Parts of the Project](structure.png) The project consists of several parts that are designed to be mostly orthogonal interfaces, extendable with new implementations without having to change other parts of the code. For example implementations, refer to the [manual](manual.md), the tests, or other projects in the [ComputableDAGs project](https://github.com/ComputableDAGs). The [*Graph*](lib/internals/graph.md) is the central part. It consists of [*Nodes*](lib/internals/node.md) and *Edges*. Nodes represent a [*Task*](lib/internals/task.md), which is either a computation or a data transfer. Edges purely represent the dependencies between the nodes. A graph has to be generated first, which is done by defining a [*Model*](lib/internals/models.md) and providing some form of *Generator* for a specific problem instance of that model. This part is entirely up to the user. A generator might parse a file and generate a graph from that, or it may generate a basic graph by itself. [*Estimators*](lib/internals/estimator.md) can be used to collect properties of the graph, for example the total compute effort defined by tasks. From any state of the graph, possible [*Operations*](lib/internals/operation.md) can be generated. These represent topological changes to the graph which do not change the total computation. Operations can be applied and popped similar to a [stack](https://en.wikipedia.org/wiki/Stack_(abstract_data_type)). The [*Optimizer*](lib/internals/optimization.md) interface then allows to use an estimator to push and pop operations to reduce the execution time. Finally, the [*Scheduler*](lib/internals/scheduler.md) can use [*Device*](lib/internals/devices.md) information to [*generate*](lib/internals/code_gen.md) the code. For detailed information on all the interfaces und functionality provided, please refer to the [public](lib/public.md) documentation or the respective internals, as linked above. ## Library Outline ```@contents Pages = [ "lib/public.md", "lib/internals.md" ] ``` ### [Index](@id main-index) ```@index Pages = ["lib/public.md"] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
413
# Manual ## Application repositories The following repositories use this package productively, which can be referred to as examples: - [QEDFeynman](https://github.com/ComputableDAGs/QEDFeynman.jl): Compute differential cross-sections of scattering processes in ABC and QED models. ## Jupyter Notebooks In the `notebooks` directory are notebooks containing some examples of the usage of this repository. TBW
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
368
# Public Documentation Documentation for `ComputableDAGs.jl`'s public interface. See the Internals section of the manual for documentation of everything else. ```@autodocs Modules = [ComputableDAGs] Pages = ["ComputableDAGs.jl"] Order = [:module] ``` ## Contents ```@contents Pages = ["public.md"] Depth = 2 ``` ## Index ```@index Pages = ["public.md"] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
750
# Code Generation ## Types ```@autodocs Modules = [ComputableDAGs] Pages = ["code_gen/type.jl"] Order = [:type, :constant, :function] ``` ## Function Generation Implementations for generation of a callable function. A function generated this way cannot immediately be called. One Julia World Age has to pass before this is possible, which happens when the global Julia scope advances. If the DAG and therefore the generated function becomes too large, use the tape machine instead, since compiling large functions becomes infeasible. ```@autodocs Modules = [ComputableDAGs] Pages = ["code_gen/function.jl"] Order = [:function] ``` ## Tape Machine ```@autodocs Modules = [ComputableDAGs] Pages = ["code_gen/tape_machine.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
695
# Devices ## Interface ```@autodocs Modules = [ComputableDAGs] Pages = ["devices/interface.jl"] Order = [:type, :constant, :function] ``` ## Detect ```@autodocs Modules = [ComputableDAGs] Pages = ["devices/detect.jl"] Order = [:function] ``` ## Measure ```@autodocs Modules = [ComputableDAGs] Pages = ["devices/measure.jl"] Order = [:function] ``` ## Implementations ### General ```@autodocs Modules = [ComputableDAGs] Pages = ["devices/impl.jl"] Order = [:type, :function] ``` ### NUMA ```@autodocs Modules = [ComputableDAGs] Pages = ["devices/numa/impl.jl"] Order = [:type, :function] ``` ### GPUs ```@autodocs Modules = [ComputableDAGs] Pages = ["devices/ext.jl"] Order = [:type] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
320
# Diff ## Type ```@autodocs Modules = [ComputableDAGs] Pages = ["diff/type.jl"] Order = [:type] ``` ## Properties ```@autodocs Modules = [ComputableDAGs] Pages = ["diff/properties.jl"] Order = [:function] ``` ## Printing ```@autodocs Modules = [ComputableDAGs] Pages = ["diff/print.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
473
# Estimation ## Interface The interface that has to be implemented for an estimator. ```@autodocs Modules = [ComputableDAGs] Pages = ["estimator/interface.jl"] Order = [:type, :constant, :function] ``` ## Global Metric Estimator Implementation of a global metric estimator. It uses the graph properties compute effort, data transfer, and compute intensity. ```@autodocs Modules = [ComputableDAGs] Pages = ["estimator/global_metric.jl"] Order = [:type, :function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
749
# Graph ## Type ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/type.jl"] Order = [:type] ``` ## Interface ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/interface.jl"] Order = [:function] ``` ## Compare ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/compare.jl"] Order = [:function] ``` ## Mute ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/mute.jl"] Order = [:function] ``` ## Print ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/print.jl"] Order = [:function] ``` ## Properties ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/properties.jl"] Order = [:function] ``` ## Validate ```@autodocs Modules = [ComputableDAGs] Pages = ["graph/validate.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
246
# Models ## Interface The interface that has to be implemented for a model to be usable is defined in `src/models/interface.jl`. ```@autodocs Modules = [ComputableDAGs] Pages = ["models/interface.jl"] Order = [:type, :constant, :function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
635
# Node ## Type ```@autodocs Modules = [ComputableDAGs] Pages = ["node/type.jl"] Order = [:type] ``` ## Create ```@autodocs Modules = [ComputableDAGs] Pages = ["node/create.jl"] Order = [:function] ``` ## Compare ```@autodocs Modules = [ComputableDAGs] Pages = ["node/compare.jl"] Order = [:function] ``` ## Properties ```@autodocs Modules = [ComputableDAGs] Pages = ["node/properties.jl"] Order = [:function] ``` ## Print ```@autodocs Modules = [ComputableDAGs] Pages = ["node/print.jl"] Order = [:function] ``` ## Validate ```@autodocs Modules = [ComputableDAGs] Pages = ["node/validate.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
867
# Operation ## Types ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/type.jl"] Order = [:type] ``` ## Find ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/find.jl"] Order = [:function] ``` ## Apply ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/apply.jl"] Order = [:function] ``` ## Get ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/get.jl"] Order = [:function] ``` ## Clean ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/clean.jl"] Order = [:function] ``` ## Utility ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/utility.jl"] Order = [:function] ``` ## Print ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/print.jl"] Order = [:function] ``` ## Validate ```@autodocs Modules = [ComputableDAGs] Pages = ["operation/validate.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
974
# Optimization ## Interface The interface that has to be implemented for an optimization algorithm. ```@autodocs Modules = [ComputableDAGs] Pages = ["optimization/interface.jl"] Order = [:type, :constant, :function] ``` ## Random Walk Optimizer Implementation of a random walk algorithm. ```@autodocs Modules = [ComputableDAGs] Pages = ["optimization/random_walk.jl"] Order = [:type, :function] ``` ## Reduction Optimizer Implementation of a an optimizer that reduces as far as possible. ```@autodocs Modules = [ComputableDAGs] Pages = ["optimization/reduce.jl"] Order = [:type, :function] ``` ## Split Optimizer Implementation of an optimizer that splits as far as possible. ```@autodocs Modules = [ComputableDAGs] Pages = ["optimization/split.jl"] Order = [:type, :function] ``` ## Greedy Optimizer Implementation of a greedy optimization algorithm. ```@autodocs Modules = [ComputableDAGs] Pages = ["optimization/greedy.jl"] Order = [:type, :function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
337
# Properties ## Type ```@autodocs Modules = [ComputableDAGs] Pages = ["properties/type.jl"] Order = [:type] ``` ## Create ```@autodocs Modules = [ComputableDAGs] Pages = ["properties/create.jl"] Order = [:function] ``` ## Utility ```@autodocs Modules = [ComputableDAGs] Pages = ["properties/utility.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
363
# Scheduler ## Interface ```@autodocs Modules = [ComputableDAGs] Pages = ["scheduler/interface.jl"] Order = [:type, :function] ``` ## Types ```@autodocs Modules = [ComputableDAGs] Pages = ["scheduler/type.jl"] Order = [:type, :function] ``` ## Greedy ```@autodocs Modules = [ComputableDAGs] Pages = ["scheduler/greedy.jl"] Order = [:type, :function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
531
# Task ## Type ```@autodocs Modules = [ComputableDAGs] Pages = ["task/type.jl"] Order = [:type] ``` ## Create ```@autodocs Modules = [ComputableDAGs] Pages = ["task/create.jl"] Order = [:function] ``` ## Compare ```@autodocs Modules = [ComputableDAGs] Pages = ["task/compare.jl"] Order = [:function] ``` ## Compute ```@autodocs Modules = [ComputableDAGs] Pages = ["task/compute.jl"] Order = [:function] ``` ## Properties ```@autodocs Modules = [ComputableDAGs] Pages = ["task/properties.jl"] Order = [:function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT" ]
0.1.1
30cc181d3443bdf6e274199b938e3354f6ad87fb
docs
399
# Utility ## Helper Functions ```@autodocs Modules = [ComputableDAGs] Pages = ["utils.jl"] Order = [:type, :function] ``` ## Trie Helper This is a simple implementation of a [Trie Data Structure](https://en.wikipedia.org/wiki/Trie) to greatly improve the performance of the Node Reduction search. ```@autodocs Modules = [ComputableDAGs] Pages = ["trie.jl"] Order = [:type, :function] ```
ComputableDAGs
https://github.com/ComputableDAGs/ComputableDAGs.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
2208
module DifferentialDynamicProgramming using LinearTimeVaryingModelsBase, Requires, ValueHistories, LinearAlgebra, Statistics, Printf const DEBUG = false # Set this flag to true in order to print debug messages export QPTrace, boxQP, demoQP, iLQG,iLQGkl, demo_linear, demo_linear_kl, demo_pendcart, GaussianPolicy eye(n) = Matrix{Float64}(I,n,n) function __init__() @require Plots="91a5bcdd-55d7-5caf-9e0b-520d859cae80" begin @eval LinearAlgebra.adjoint(x::String) = x @eval function plotstuff_linear(x,u,cost,totalcost) p = Plots.plot(layout=(2,2)) Plots.plot!(p,x', title="State Trajectories", xlabel="Time step",legend=false, subplot=1, show=false) Plots.plot!(p,cost,c=:black,linewidth=3, title="Cost", xlabel="Time step", subplot=2, show=false) Plots.plot!(p,u',title="Control signals", xlabel="Time step", subplot=3, show=false) Plots.plot!(p,totalcost,title="Total cost", xlabel="Iteration", subplot=4, show=false) Plots.gui() end @eval function plotstuff_pendcart(x00, u00, x,u,cost00,cost,otrace) cp = Plots.plot(layout=(1,3)) sp = Plots.plot(x00',title=["\$x_$(i)\$" for i=1:size(x00,1)]', lab="Simulation", layout=(2,2)) Plots.plot!(sp,x', title=["\$x_$(i)\$" for i=1:size(x00,1)]', lab="Optimized", xlabel="Time step", legend=true) Plots.plot!(cp,cost00, title="Cost", lab="Simulation", subplot=2) Plots.plot!(cp,u', legend=true, title="Control signal",lab="Optimized", subplot=1) Plots.plot!(cp,cost[2:end], legend=true, title="Cost",lab="Optimized", xlabel="Time step", subplot=2, yscale=:log10) iters = sum(cost .> 0) filter!(x->x>0,cost) Plots.plot!(cp, get(otrace, :cost)[2], yscale=:log10,xscale=:log10, title="Total cost", xlabel="Iteration", legend=false, subplot=3) Plots.plot(sp,cp) Plots.gui() end end end dir(paths...) = joinpath(@__DIR__, "..", paths...) include("boxQP.jl") include("iLQG.jl") include("iLQGkl.jl") include("forward_pass.jl") include("backward_pass.jl") include("demo_linear.jl") include("system_pendcart.jl") function debug(x) DEBUG && printstyled(string(x),"\n", color=:blue) end end # module
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
11938
choleskyvectens(a,b) = permutedims(sum(a.*b,1), [3 2 1]) macro setupQTIC() quote m = size(u,1) n,_,N = size(fx) @assert size(cx) == (n, N) "size(cx) should be (n, N)" @assert size(cu) == (m, N) "size(cu) should be (m, N)" @assert size(cxx) == (n, n) "size(cxx) should be(n, n) " @assert size(cxu) == (n, m) "size(cxu) should be(n, m) " k = zeros(m,N) K = zeros(m,n,N) Vx = zeros(n,N) Vxx = zeros(n,n,N) Quu = Array{T}(undef,m,m,N) Quui = Array{T}(undef,m,m,N) dV = [0., 0.] Vx[:,N] = cx[:,N] Vxx[:,:,N] = cxx Quu[:,:,N] = cuu diverge = 0 end |> esc end macro end_backward_pass() quote QuF = Qu if isempty(lims) || lims[1,1] > lims[1,2] # debug("# no control limits: Cholesky decomposition, check for non-PD") local R try R = cholesky(Hermitian(QuuF)) catch diverge = i return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx, dV end # debug("# find control law") k_i = -(R\QuF) K_i = -(R\Qux_reg) else # debug("# solve Quadratic Program") lower = lims[:,1]-u[:,i] upper = lims[:,2]-u[:,i] local k_i,result,free try k_i,result,R,free = boxQP(QuuF,QuF,lower,upper,k[:,min(i+1,N-1)]) catch result = 0 end if result < 1 diverge = i return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx, dV end K_i = zeros(m,n) if any(free) Lfree = -R\(R'\Qux_reg[free,:]) K_i[free,:] = Lfree end end # debug("# update cost-to-go approximation") dV = dV + [k_i'Qu; .5*k_i'Quu[:,:,i]*k_i] Vx[:,i] = Qx + K_i'Quu[:,:,i]*k_i + K_i'Qu + Qux'k_i Vxx[:,:,i] = Qxx + K_i'Quu[:,:,i]*K_i + K_i'Qux + Qux'K_i Vxx[:,:,i] = .5*(Vxx[:,:,i] + Vxx[:,:,i]') # debug("# save controls/gains") k[:,i] = k_i K[:,:,i] = K_i end |> esc end function back_pass(cx,cu,cxx::AbstractArray{T,3},cxu,cuu,fx::AbstractArray{T,3},fu,fxx,fxu,fuu,λ,regType,lims,x,u) where T # nonlinear time variant m,N = size(u) n = size(cx,1) @assert size(cx) == (n, N) @assert size(cu) == (m, N) @assert size(cxx) == (n, n, N) @assert size(cxu) == (n, m, N) @assert size(cuu) == (m, m, N) k = zeros(m,N) K = zeros(m,n,N) Vx = zeros(n,N) Vxx = zeros(n,n,N) Quu = Array{T}(undef,m,m,N) Quui = Array{T}(undef,m,m,N) dV = [0., 0.] Vx[:,N] = cx[:,N] Vxx[:,:,N] = cxx[:,:,N] Quu[:,:,N] = cuu[:,:,N] diverge = 0 for i = N-1:-1:1 Qu = cu[:,i] + fu[:,:,i]'Vx[:,i+1] Qx = cx[:,i] + fx[:,:,i]'Vx[:,i+1] Qux = cxu[:,:,i]' + fu[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] if !isempty(fxu) fxuVx = vectens(Vx[:,i+1],fxu[:,:,:,i]) Qux = Qux + fxuVx end Quu[:,:,i] = cuu[:,:,i] + fu[:,:,i]'Vxx[:,:,i+1]*fu[:,:,i] if !isempty(fuu) fuuVx = vectens(Vx[:,i+1],fuu[:,:,:,i]) Quu[:,:,i] .+= fuuVx end Qxx = cxx[:,:,i] + fx[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] isempty(fxx) || (Qxx .+= vectens(Vx[:,i+1],fxx[:,:,:,i])) Vxx_reg = Vxx[:,:,i+1] .+ (regType == 2 ? λ*eye(n) : 0) Qux_reg = cxu[:,:,i]' + fu[:,:,i]'Vxx_reg*fx[:,:,i] isempty(fxu) || (Qux_reg .+= fxuVx) QuuF = cuu[:,:,i] + fu[:,:,i]'Vxx_reg*fu[:,:,i] .+ (regType == 1 ? λ*eye(m) : 0) isempty(fuu) || (QuuF .+= fuuVx) @end_backward_pass end return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx,dV end function back_pass(cx,cu,cxx::AbstractArray{T,2},cxu,cuu,fx::AbstractArray{T,3},fu,fxx,fxu,fuu,λ,regType,lims,x,u) where T # quadratic timeinvariant cost, dynamics nonlinear time variant @setupQTIC for i = N-1:-1:1 Qu = cu[:,i] + fu[:,:,i]'Vx[:,i+1] Qx = cx[:,i] + fx[:,:,i]'Vx[:,i+1] Qux = cxu' + fu[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] if !isempty(fxu) fxuVx = vectens(Vx[:,i+1],fxu[:,:,:,i]) Qux = Qux + fxuVx end Quu[:,:,i] = cuu + fu[:,:,i]'Vxx[:,:,i+1]*fu[:,:,i] if !isempty(fuu) fuuVx = vectens(Vx[:,i+1],fuu[:,:,:,i]) Quu[:,:,i] = Quu[:,:,i] + fuuVx end Qxx = cxx + fx[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] isempty(fxx) || (Qxx .+= vectens(Vx[:,i+1],fxx[:,:,:,i])) Vxx_reg = Vxx[:,:,i+1] .+ (regType == 2 ? λ*eye(n) : 0) Qux_reg = cxu' + fu[:,:,i]'Vxx_reg*fx[:,:,i] isempty(fxu) || (Qux_reg .+= fxuVx) QuuF = cuu + fu[:,:,i]'Vxx_reg*fu[:,:,i] .+ (regType == 1 ? λ*eye(m) : 0) isempty(fuu) || (QuuF .+= fuuVx) @end_backward_pass end return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx,dV end function back_pass(cx,cu,cxx::AbstractArray{T,2},cxu,cuu,fx::AbstractArray{T,3},fu,λ,regType,lims,x,u) where T # quadratic timeinvariant cost, linear time variant dynamics @setupQTIC for i = N-1:-1:1 Qu = cu[:,i] + fu[:,:,i]'Vx[:,i+1] Qx = cx[:,i] + fx[:,:,i]'Vx[:,i+1] Qux = cxu' + fu[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] Quu[:,:,i] = cuu + fu[:,:,i]'Vxx[:,:,i+1]*fu[:,:,i] Qxx = cxx + fx[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] Vxx_reg = Vxx[:,:,i+1] .+ (regType == 2 ? λ*eye(n) : 0) Qux_reg = cxu' + fu[:,:,i]'Vxx_reg*fx[:,:,i] QuuF = cuu + fu[:,:,i]'Vxx_reg*fu[:,:,i] .+ (regType == 1 ? λ*eye(m) : 0) @end_backward_pass end return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx,dV end function back_pass(cx,cu,cxx::AbstractArray{T,3},cxu,cuu,fx::AbstractArray{T,3},fu,λ,regType,lims,x,u) where T # quadratic timeVariant cost, linear time variant dynamics m = size(u,1) n,N = size(fx,1,3) @assert size(cx) == (n, N) @assert size(cu) == (m, N) @assert size(cxx) == (n, n, N) @assert size(cxu) == (n, m, N) @assert size(cuu) == (m, m, N) k = zeros(m,N) K = zeros(m,n,N) Vx = zeros(n,N) Vxx = zeros(n,n,N) Quu = Array{T}(undef,m,m,N) Quui = Array{T}(undef,m,m,N) dV = [0., 0.] Vx[:,N] = cx[:,N] Vxx[:,:,N] = cxx[:,:,end] Quu[:,:,N] = cuu[:,:,N] diverge = 0 for i = N-1:-1:1 Qu = cu[:,i] + fu[:,:,i]'Vx[:,i+1] Qx = cx[:,i] + fx[:,:,i]'Vx[:,i+1] Vxx_reg = Vxx[:,:,i+1] .+ (regType == 2 ? λ*eye(n) : 0) Qux_reg = cxu[:,:,i]' + fu[:,:,i]'Vxx_reg*fx[:,:,i] QuuF = cuu[:,:,i] + fu[:,:,i]'Vxx_reg*fu[:,:,i] .+ (regType == 1 ? λ*eye(m) : 0) Qux = cxu[:,:,i]' + fu[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] Quu[:,:,i] .= cuu[:,:,i] .+ fu[:,:,i]'Vxx[:,:,i+1]*fu[:,:,i] Qxx = cxx[:,:,i] + fx[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] @end_backward_pass end return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx,dV end function back_pass(cx,cu,cxx::AbstractArray{T,2},cxu,cuu,fx::AbstractMatrix{T},fu,λ,regType,lims,x,u) where T # cost quadratic and cost and LTI dynamics m,N = size(u) n = size(fx,1) @assert size(cx) == (n, N) @assert size(cu) == (m, N) @assert size(cxx) == (n, n) @assert size(cxu) == (n, m) @assert size(cuu) == (m, m) k = zeros(m,N) K = zeros(m,n,N) Vx = zeros(n,N) Vxx = zeros(n,n,N) Quu = Array{T}(undef,m,m,N) Quui = Array{T}(undef,m,m,N) dV = [0., 0.] Vx[:,N] = cx[:,N] Vxx[:,:,N] = cxx Quu[:,:,N] = cuu diverge = 0 for i = N-1:-1:1 Qu = cu[:,i] + fu'Vx[:,i+1] Qx = cx[:,i] + fx'Vx[:,i+1] Qux = cxu' + fu'Vxx[:,:,i+1]*fx Quu[:,:,i] = cuu + fu'Vxx[:,:,i+1]*fu Qxx = cxx + fx'Vxx[:,:,i+1]*fx Vxx_reg = Vxx[:,:,i+1] .+ (regType == 2 ? λ*eye(n) : 0) Qux_reg = cxu' + fu'Vxx_reg*fx QuuF = cuu + fu'Vxx_reg*fu .+ (regType == 1 ? λ*eye(m) : 0) @end_backward_pass end return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx,dV end function graphics(x...) return 0 end function back_pass_gps(cx,cu,cxx::AbstractArray{T,3},cxu,cuu, fx::AbstractArray{T,3},fu,lims,x,u,kl_cost_terms) where T # quadratic timeVariant cost, linear time variant dynamics m = size(u,1) n,_,N = size(fx) ηbracket = kl_cost_terms[2] η = isa(ηbracket,AbstractMatrix) ? ηbracket[2,N] : ηbracket[2] cxkl,cukl,cxxkl,cxukl,cuukl = kl_cost_terms[1] @assert size(cx) == (n, N) @assert size(cu) == (m, N) @assert size(cxx) == (n, n, N) @assert size(cxu) == (n, m, N) @assert size(cuu) == (m, m, N) k = zeros(m,N) K = zeros(m,n,N) Vx = zeros(n,N) Vxx = zeros(n,n,N) Quu = Array{T}(undef,m,m,N) Quui = Array{T}(undef,m,m,N) dV = [0., 0.] Vx[:,N] = cx[:,N] Vxx[:,:,N] = cxx[:,:,end] Quu[:,:,N] = cuu[:,:,N]./ η .+ cuukl[:,:,N] Quui[:,:,N] = inv(Quu[:,:,N]) diverge = 0 for i = N-1:-1:1 Qu = cu[:,i] + fu[:,:,i]'Vx[:,i+1] Qx = cx[:,i] + fx[:,:,i]'Vx[:,i+1] Qux = cxu[:,:,i]' + fu[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] Quu[:,:,i] .= cuu[:,:,i] .+ fu[:,:,i]'Vxx[:,:,i+1]*fu[:,:,i] Qxx = cxx[:,:,i] + fx[:,:,i]'Vxx[:,:,i+1]*fx[:,:,i] ηbracket = kl_cost_terms[2] η = isa(ηbracket,AbstractMatrix) ? ηbracket[2,i] : ηbracket[2] Qu = Qu ./ η + cukl[:,i] Qux = Qux ./ η + cxukl[:,:,i] Quu[:,:,i] = Quu[:,:,i] ./ η + cuukl[:,:,i] Qx = Qx ./ η + cxkl[:,i] Qxx = Qxx ./ η + cxxkl[:,:,i] Quu[:,:,i] = 0.5*(Quu[:,:,i] + Quu[:,:,i]') if isempty(lims) || lims[1,1] > lims[1,2] # debug("# no control limits: Cholesky decomposition, check for non-PD") local R try R = cholesky(Hermitian(Quu[:,:,i])) catch diverge = i return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx, dV end # debug("# find control law") k_i = -(R\Qu) K_i = -(R\Qux) else # debug("# solve Quadratic Program") lower = lims[:,1]-u[:,i] upper = lims[:,2]-u[:,i] local k_i,result,free try k_i,result,R,free = boxQP(Quu[:,:,i],Qu,lower,upper,k[:,min(i+1,N-1)]) catch result = 0 end if result < 1 diverge = i return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx, dV end K_i = zeros(m,n) if any(free) Lfree = -R\(R'\Qux[free,:]) K_i[free,:] = Lfree end end # debug("# update cost-to-go approximation") dV = dV + [k_i'Qu; .5*k_i'Quu[:,:,i]*k_i] Vx[:,i] = Qx + K_i'Quu[:,:,i]*k_i + K_i'Qu + Qux'k_i Vxx[:,:,i] = Qxx + K_i'Quu[:,:,i]*K_i + K_i'Qux + Qux'K_i Vxx[:,:,i] = .5*(Vxx[:,:,i] + Vxx[:,:,i]') # debug("# save controls/gains") k[:,i] = k_i K[:,:,i] = K_i Quui[:,:,i] = inv(Quu[:,:,i]) end return diverge, GaussianPolicy(N,n,m,K,k,Quui,Quu), Vx, Vxx,dV end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
5996
mutable struct QPTrace x xc value search clamped nfactor end """ Minimize `0.5*x'*H*x + x'*g` s.t. lower<=x<=upper inputs: `H` - positive definite matrix (n * n) `g` - bias vector (n) `lower` - lower bounds (n) `upper` - upper bounds (n) optional inputs: `x0` - initial state (n) `options` - see below (7) outputs: `x` - solution (n) `result` - result type (roughly, higher is better, see below) `Hfree` - subspace cholesky factor (n_free * n_free) `free` - set of free dimensions (n) """ function boxQP(H,g,lower,upper,x0::AbstractVector; maxIter = 100, minGrad = 1e-8, minRelImprove = 1e-8, stepDec = 0.6, minStep = 1e-22, Armijo = 0.1, print = 0) # maxIter = 100 # maximum number of iterations # minGrad = 1e-8 # minimum norm of non-fixed gradient # minRelImprove = 1e-8 # minimum relative improvement # stepDec = 0.6 # factor for decreasing stepsize # minStep = 1e-22 # minimal stepsize for linesearch # Armijo = 0.1 # Armijo parameter (fraction of linear improvement required) # print = 0 # verbosity n = size(H,1) clamped = falses(n) free = trues(n) oldvalue = 0. result = 0 gnorm = 0. nfactor = 0 trace = Array{QPTrace}(undef, maxIter) Hfree = zeros(n,n) # debug("# initial state") x = clamp.(x0,lower,upper) LU = [lower upper] LU[.!isfinite.(LU)] .= NaN # debug("# initial objective value") value = (x'g + 0.5x'H*x )[1] if print > 0 @printf("==========\nStarting box-QP, dimension %-3d, initial value: %-12.3f\n",n, value) end # debug("# main loop") iter = 1 while iter <= maxIter if result != 0 break end # debug("# check relative improvement") if iter>1 && (oldvalue - value) < minRelImprove*abs(oldvalue) result = 4 break end oldvalue = value # debug("# get gradient") grad = g + H*x # debug("# find clamped dimensions") old_clamped = clamped clamped = falses(n) # clamped[(x[:,1] .== lower)&(grad[:,1].>0)] = true # clamped[(x[:,1] .== upper)&(grad[:,1].<0)] = true for i = 1:n clamped[i] = ((x[i,1] == lower[i])&&(grad[i,1]>0)) || ((x[i,1] == upper[i])&&(grad[i,1]<0)) end free = .!clamped # debug("# check for all clamped") if all(clamped) result = 6 break end # debug("# factorize if clamped has changed") if iter == 1 factorize = true else factorize = any(old_clamped != clamped) end if factorize Hfree = cholesky(H[free,free]).U # was (Hfree, indef) = chol(H[free,free]) # if indef # result = -1 # break # end nfactor += 1 end # debug("# check gradient norm") gnorm = norm(grad[free]) if gnorm < minGrad result = 5 break end # debug("# get search direction") grad_clamped = g + H*(x.*clamped) search = zeros(n,1) search[free] = -Hfree\(Hfree'\grad_clamped[free]) - x[free] # debug("# check for descent direction") sdotg = sum(search.*grad) if sdotg >= 0 # (should not happen) break end # debug("# armijo linesearch") step = 1 nstep = 0 xc = clamp.(x+step*search,lower,upper) vc = (xc'*g + 0.5*xc'*H*xc)[1] while (vc - oldvalue)/(step*sdotg) < Armijo step = step*stepDec nstep += 1 xc = clamp.(x+step*search,lower,upper) vc = (xc'*g + 0.5*xc'*H*xc)[1] if step<minStep result = 2 break end end if print > 1 @printf("iter %-3d value % -9.5g |g| %-9.3g reduction %-9.3g linesearch %g^%-2d n_clamped %d\n", iter, vc, gnorm, oldvalue-vc, stepDec, nstep, sum(clamped)) end trace[iter] = QPTrace(x,xc,value,search,clamped,nfactor ) # debug("# accept candidate") x = xc value = vc iter += 1 end if iter == maxIter result = 1 end results = ["Hessian is not positive definite", # result = -1 "No descent direction found", # result = 0 SHOULD NOT OCCUR "Maximum main iterations exceeded", # result = 1 "Maximum line-search iterations exceeded", # result = 2 "No bounds, returning Newton point", # result = 3 "Improvement smaller than tolerance", # result = 4 "Gradient norm smaller than tolerance", # result = 5 "All dimensions are clamped"] # result = 6 if print > 0 @printf("RESULT: %s.\niterations %d gradient %-12.6g final value %-12.6g factorizations %d\n", results[result+2], iter, gnorm, value, nfactor) end return x,result,Hfree,free,trace end function demoQP(;kwargs...) n = 500 g = randn(n) H = randn(n,n) H = H*H' lower = -ones(n) upper = ones(n) @time boxQP(H, g, lower, upper, randn(n);print=1, kwargs...) end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
4033
plotstuff_linear(args...) = println("Install package Plots.jl (and call using Plots) to plot results in the end of demo_linear") function demo_linear(;kwargs...) println("Running linear demo function for DifferentialDynamicProgramming.jl") # make stable linear dynamics h = .01 # time step n = 10 # state dimension m = 2 # control dimension A = randn(n,n) A = A-A' # skew-symmetric = pure imaginary eigenvalues A = exp(h*A) # discrete time B = h*randn(n,m) # quadratic costs Q = h*eye(n) R = .1*h*eye(m) # control limits lims = [] #ones(m,1)*[-1 1]*.6 T = 1000 # horizon x0 = ones(n,1) # initial state u0 = .1*randn(m,T) # initial controls # optimization problem N = T+1 fx = A fu = B cxx = Q cxu = zeros(size(B)) cuu = R function lin_dyn_df(x,u,Q,R) u[isnan.(u)] .= 0 cx = Q*x cu = R*u fxx=fxu=fuu = [] return fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu end function lin_dyn_f(x,u,A,B,Q,R) u[isnan.(u)] .= 0 xnew = A*x + B*u return xnew end lin_dyn_fT(x,Q) = 0.5*sum(x.*(Q*x)) f(x,u,i) = lin_dyn_f(x,u,A,B,Q,R) costfun(x,u) = 0.5*sum(x.*(Q*x)) + 0.5*sum(u.*(R*u)) df(x,u) = lin_dyn_df(x,u,Q,R) # plotFn(x) = plot(squeeze(x,2)') # run the optimization @time x, u, traj_new, Vx, Vxx, cost, otrace = iLQG(f,costfun,df, x0, u0; lims=lims,kwargs...); totalcost = get(otrace, :cost)[2] plotstuff_linear(x,u,[cost],totalcost) x, u, traj_new, Vx, Vxx, cost, otrace end function demo_linear_kl(;kwargs...) println("Running linear demo function with KL-divergence constraint for DifferentialDynamicProgramming.jl") # make stable linear dynamics h = .01 # time step n = 10 # state dimension m = 2 # control dimension A = randn(n,n) A = A-A' # skew-symmetric = pure imaginary eigenvalues A = exp(h*A) # discrete time B = h*randn(n,m) # quadratic costs Q = h*eye(n) R = .1*h*eye(m) # control limits lims = [] #ones(m,1)*[-1 1]*.6 T = 1000 # horizon x0 = ones(n) # initial state u = .1*randn(m,T) # initial controls # optimization problem N = T+1 fx = repeat(A,1,1,T) fu = repeat(B,1,1,T) cxx = repeat(Q,1,1,T) cxu = repeat(zeros(size(B)),1,1,T) cuu = repeat(R,1,1,T) function lin_dyn_df(x,u,Q,R) u[isnan.(u)] .= 0 cx = Q*x cu = R*u fxx=fxu=fuu = [] return fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu end function lin_dyn_f(x,u,A,B,Q,R) u[isnan.(u)] .= 0 xnew = A*x + B*u return xnew end dyn = (x,u,i) -> lin_dyn_f(x,u,A,B,Q,R) costf = (x,u) -> 0.5*(sum(x.*(Q*x),dims=1) + sum(u.*(R*u),dims=1))[:] diffdyn = (x,u) -> lin_dyn_df(x,u,Q,R) function rollout(u) x = zeros(n,T) x[:,1] = x0 for t = 1:T-1 x[:,t+1] = dyn(x[:,t],u[:,t],t) end x end x = rollout(u) model = LinearTimeVaryingModelsBase.SimpleLTVModel(repeat(A,1,1,N),repeat(B,1,1,N),false) # plotFn(x) = plot(squeeze(x,2)') traj = GaussianPolicy(Float64,T,n,m) # run the optimization local Vx, Vxx, cost, otrace, totalcost outercosts = zeros(5) @time for iter = 1:5 cost0 = 0.5*sum(x.*(Q*x)) + 0.5*sum(u.*(R*u)) x, u, traj, Vx, Vxx, cost, otrace = iLQGkl(dyn,costf,diffdyn, x, traj, model; cost=cost0, lims=lims,kwargs...); totalcost = get(otrace, :cost)[2] outercosts[iter] = sum(totalcost) println("Outer loop: Cost = ", sum(cost)) end totalcost = get(otrace, :cost)[2] plotstuff_linear(x,u,[cost],min.(totalcost,400)) # plotstuff_linear(x,u,totalcost,outercosts) x, u, traj, Vx, Vxx, cost, otrace end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
1721
""" xnew,unew,cnew,sigmanew = forward_pass(traj_new, x0,u,x,α,f,costfun,lims,diff) # Arguments - α: step size (αk is applied to old trajectory) - diff: function to determine difference `diff(xnew[:,i], x[:,i])` - f: forward dynamics `x(k+1) = f(x(k), u(k), k)` - `cnew = costfun(xnew, unew)` """ function forward_pass(traj_new, x0,u,x,α,f,costfun,lims,diff) n = size(x0,1) m,N = size(u) xnew = Array{eltype(x0)}(undef,n,N) xnew[:,1] = x0 unew = copy(u) cnew = zeros(N) for i = 1:N if !isempty(traj_new) unew[:,i] .+= traj_new.k[:,i]*α dx = diff(xnew[:,i], x[:,i]) unew[:,i] .+= traj_new.K[:,:,i]*dx end if !isempty(lims) unew[:,i] = clamp.(unew[:,i],lims[:,1], lims[:,2]) end xnewi = f(xnew[:,i], unew[:,i], i) if i < N xnew[:,i+1] = xnewi end end cnew = costfun(xnew, unew) return xnew,unew,cnew end function forward_covariance(model, x, u, traj) fx,fu,fxx,fxu,fuu = df(model, x, u) n = size(fx,1) m = size(fu,2) N = size(fx,3) R1 = covariance(model,x,u) # Simple empirical prediction covariance Σ0 = R1 # TODO: I was lazy here ix = 1:n iu = n+1:n+m sigmanew = Array{Float64}(undef,n+m,n+m,N) sigmanew[ix,ix,1] = Σ0 for i = 1:N-1 K,Σ = traj.K[:,:,i], traj.Σ[:,:,i] sigmanew[ix,ix,i+1] = fx[:,:,i]*sigmanew[ix,ix,i]*fx[:,:,i]' + R1 # Iterate dLyap forward sigmanew[iu,ix,i] = K*sigmanew[ix,ix,i] sigmanew[ix,iu,i] = sigmanew[ix,ix,i]*K' sigmanew[iu,iu,i] = K*sigmanew[ix,ix,i]*K' + Σ end sigmanew end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
13461
import Base: length EmptyMat3 = Array{Float64}(undef, 0,0,0) EmptyMat2 = Array{Float64}(undef, 0,0) emptyMat3(P) = Array{P}(undef, 0,0,0) emptyMat2(P) = Array{P}(undef, 0,0) mutable struct Trace iter::Int64 λ::Float64 dλ::Float64 cost::Float64 α::Float64 grad_norm::Float64 improvement::Float64 reduce_ratio::Float64 time_derivs::Float64 time_forward::Float64 time_backward::Float64 divergence::Float64 η::Float64 Trace() = new(0,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.) end (t::MVHistory)(args...) = increment!(t, args...) """ `GaussianPolicy{P}` # Fileds: ``` T::Int # number of time steps n::Int # State dimension m::Int # Number of control inputs K::Array{P,3} # Time-varying feedback gain ∈ R(n,m,T) k::Array{P,2} # Open loop control signal ∈ R(m,T) Σ::Array{P,3} # Time-varying controller covariance ∈ R(m,m,T) Σi::Array{P,3} # The inverses of Σ ``` """ mutable struct GaussianPolicy{P} T::Int n::Int m::Int K::Array{P,3} k::Array{P,2} Σ::Array{P,3} Σi::Array{P,3} end eye(P,n) = Matrix{P}(I,n,n) GaussianPolicy(P) = GaussianPolicy(0,0,0,emptyMat3(P),emptyMat2(P),emptyMat3(P),emptyMat3(P)) GaussianPolicy(P,T,n,m) = GaussianPolicy(T,n,m,zeros(P,m,n,T),zeros(P,m,T),cat([eye(P,m) for t=1:T]..., dims=3),cat([eye(P,m) for t=1:T]..., dims=3)) Base.isempty(gp::GaussianPolicy) = gp.T == gp.n == gp.m == 0 Base.length(gp::GaussianPolicy) = gp.T include("klutils.jl") """ iLQG - solve the deterministic finite-horizon optimal control problem. minimize sum_i cost(x[:,i],u[:,i]) + cost(x[:,end]) s.t. x[:,i+1] = f(x[:,i],u[:,i]) Inputs ====== `f, costfun, df` 1) step: `xnew = f(x,u,i)` is called during the forward pass. Here the state x and control u are vectors: size(x)==(n,), size(u)==(m,). The time index `i` is a scalar. 2) cost: `cost = costfun(x,u)` is called in the forward pass to compute the cost per time-step along the trajectory `x,u`. 3) derivatives: `fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu = df(x,u)` computes the derivatives along a trajectory. In this case size(x)==(n, N) where N is the trajectory length. size(u)==(m, N). The time indexes are I=(1:N). Dimensions match the variable names e.g. size(fxu)==(n, n, m, N) If cost function or system is time invariant, the dimension of the corresponding derivatives can be reduced by dropping the time dimension `x0` - The initial state from which to solve the control problem. Should be a column vector. If a pre-rolled trajectory is available then size(x0)==(n, N) can be provided and cost set accordingly. `u0` - The initial control sequence. A matrix of size(u0)==(m, N) where m is the dimension of the control and N is the number of state transitions. Outputs ======= `x` - the optimal state trajectory found by the algorithm. size(x)==(n, N) `u` - the optimal open-loop control sequence. size(u)==(m, N) `traj_new` - A new `GaussianPolicy` object containing feedforward control trajectory and feedback-gains, these gains multiply the deviation of a simulated trajectory from the nominal trajectory x. See `?GaussianPolicy` for more help. `Vx` - the gradient of the cost-to-go. size(Vx)==(n, N) `Vxx` - the Hessian of the cost-to-go. size(Vxx)==(n, n N) `cost` - the costs along the trajectory. size(cost)==(1, N) the cost-to-go is V = fliplr(cumsum(fliplr(cost))) `trace` - a trace of various convergence-related values. One row for each iteration, the columns of trace are `[iter λ α g_norm Δcost z sum(cost) dλ]` see below for details. # Keyword arguments `lims`, [], control limits\n `α`, logspace(0,-3,11), backtracking coefficients\n `tol_fun`, 1e-7, reduction exit criterion\n `tol_grad`, 1e-4, gradient exit criterion\n `max_iter`, 500, maximum iterations\n `λ`, 1, initial value for λ\n `dλ`, 1, initial value for dλ\n `λfactor`, 1.6, λ scaling factor\n `λmax`, 1e10, λ maximum value\n `λmin`, 1e-6, below this value λ = 0\n `regType`, 1, regularization type 1: q_uu+λ*I 2: V_xx+λ*I\n `reduce_ratio_min`, 0, minimal accepted reduction ratio\n `diff_fun`, -, user-defined diff for sub-space optimization\n `plot`, 1, 0: no k>0: every k iters k<0: every k iters, with derivs window\n `verbosity`, 2, 0: no 1: final 2: iter 3: iter, detailed\n `plot_fun`, x->0, user-defined graphics callback\n `cost`, [], initial cost for pre-rolled trajectory This code consists of a port and extension of a MATLAB library provided by the autors of ` INPROCEEDINGS{author={Tassa, Y. and Mansard, N. and Todorov, E.}, booktitle={Robotics and Automation (ICRA), 2014 IEEE International Conference on}, title={Control-Limited Differential Dynamic Programming}, year={2014}, month={May}, doi={10.1109/ICRA.2014.6907001}}` """ function iLQG(f,costfun,df, x0, u0; lims = [], α = exp10.(range(0, stop=-3, length=11)), tol_fun = 1e-7, tol_grad = 1e-4, max_iter = 500, λ = 1., dλ = 1., λfactor = 1.6, λmax = 1e10, λmin = 1e-6, regType = 1, reduce_ratio_min = 0, diff_fun = -, plot = 1, verbosity = 2, plot_fun = x->0, cost = [], traj_prev = 0 ) debug("Entering iLQG") local fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu,xnew,unew,costnew,g_norm,Vx,Vxx,dV,αi # --- initial sizes and controls n = size(x0, 1) # dimension of state vector m = size(u0, 1) # dimension of control vector N = size(u0, 2) # number of state transitions u = u0 # initial control sequence traj_new = GaussianPolicy(Float64) # traj_prev = GaussianDist(Float64) # --- initialize trace data structure trace = MVHistory() trace(:λ, 0, λ) trace(:dλ, 0, dλ) # --- initial trajectory debug("Setting up initial trajectory") if size(x0,2) == 1 # only initial state provided diverge = true for outer αi ∈ α debug("# test different backtracing parameters α and break loop when first succeeds") x,un,cost, = forward_pass(traj_new,x0[:,1],αi*u,[],1,f,costfun, lims,diff_fun) debug("# simplistic divergence test") if all(abs.(x) .< 1e8) u = un diverge = false break end end elseif size(x0,2) == N debug("# pre-rolled initial forward pass, initial traj provided") x = x0 diverge = false isempty(cost) && error("Initial trajectory supplied, initial cost must also be supplied") else error("pre-rolled initial trajectory must be of correct length (size(x0,2) == N)") end trace(:cost, 0, sum(cost)) # plot_fun(x) # user plotting if diverge if verbosity > 0 @printf("\nEXIT: Initial control sequence caused divergence\n") end return end # constants, timers, counters flg_change = true Δcost = 0. expected_reduction = 0. print_head = 10 # print headings every print_head lines last_head = print_head t_start = time() verbosity > 0 && @printf("\n---------- begin iLQG ----------\n") satisfied = true iter = accepted_iter = 1 while accepted_iter <= max_iter reduce_ratio = 0. # ====== STEP 1: differentiate dynamics and cost along new trajectory if flg_change _t = @elapsed fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu = df(x, u) trace(:time_derivs, iter, _t) flg_change = false end # Determine what kind of system we are dealing with linearsys = isempty(fxx) && isempty(fxu) && isempty(fuu); debug("linear system: $linearsys") # ====== STEP 2: backward pass, compute optimal control law and cost-to-go back_pass_done = false while !back_pass_done _t = @elapsed diverge, traj_new,Vx, Vxx,dV = if linearsys back_pass(cx,cu,cxx,cxu,cuu,fx,fu,λ, regType, lims,x,u) else back_pass(cx,cu,cxx,cxu,cuu,fx,fu,fxx,fxu,fuu,λ, regType, lims,x,u) end increment!(trace, :time_backward, iter, _t) iter == 1 && (traj_prev = traj_new) # TODO: set k μu to zero fir traj_prev if diverge > 0 verbosity > 2 && @printf("Cholesky failed at timestep %d.\n",diverge) dλ,λ = max(dλ*λfactor, λfactor), max(λ*dλ, λmin) if λ > λmax; break; end continue end back_pass_done = true end k, K = traj_new.k, traj_new.K # check for termination due to small gradient g_norm = mean(maximum(abs.(k) ./ (abs.(u) .+ 1), dims=1)) trace(:grad_norm, iter, g_norm) if g_norm < tol_grad && λ < 1e-5 && satisfied verbosity > 0 && @printf("\nSUCCESS: gradient norm < tol_grad\n") break end # ====== STEP 3: line-search to find new control sequence, trajectory, cost fwd_pass_done = false if back_pass_done debug("# serial backtracking line-search") @elapsed(for outer αi = α xnew,unew,costnew = forward_pass(traj_new, x0[:,1] ,u, x,αi,f,costfun, lims, diff_fun) Δcost = sum(cost) - sum(costnew) expected_reduction = -αi*(dV[1] + αi*dV[2]) reduce_ratio = if expected_reduction > 0 Δcost/expected_reduction else @warn("negative expected reduction: should not occur") sign(Δcost) end if reduce_ratio > reduce_ratio_min fwd_pass_done = true break end end) |> x -> trace(:time_forward, iter, x) end # ====== STEP 4: accept step (or not), print status # print headings if verbosity > 1 && last_head == print_head last_head = 0 @printf("%-12s", "iteration cost reduction expected gradient log10(λ) η divergence\n") end if fwd_pass_done && satisfied # TODO: I added satisfied here, verify if this is reasonable if verbosity > 1 @printf("%-12d%-12.6g%-12.3g%-12.3g%-12.3g%-12.1f\n", iter, sum(cost), Δcost, expected_reduction, g_norm, log10(λ)) last_head += 1 end dλ = min(dλ / λfactor, 1/ λfactor) λ *= dλ # accept changes x,u,cost = copy(xnew),copy(unew),copy(costnew) traj_new.k = copy(u) flg_change = true plot_fun(x) if Δcost < tol_fun verbosity > 0 && @printf("\nSUCCESS: cost change < tol_fun\n") break end accepted_iter += 1 else # no cost improvement αi = NaN dλ,λ = max(dλ * λfactor, λfactor), max(λ * dλ, λmin)# increase λ if verbosity > 1 @printf("%-12d%-12s%-12.3g%-12.3g%-12.3g%-12.1f\n", iter,"NO STEP", Δcost, expected_reduction, g_norm, log10(λ)) last_head = last_head+1 end if λ > λmax # terminate ? verbosity > 0 && @printf("\nEXIT: λ > λmax\n") break end end # update trace trace(:λ, iter, λ) trace(:dλ, iter, dλ) trace(:α, iter, αi) trace(:improvement, iter, Δcost) trace(:cost, iter, sum(cost)) trace(:reduce_ratio, iter, reduce_ratio) iter += 1 end iter == max_iter && verbosity > 0 && @printf("\nEXIT: Maximum iterations reached.\n") iter == 1 && error("Failure: no iterations completed, something is wrong. Try enabling the debug flag in DifferentialDynamicProgramming.jl for verbose printing.") verbosity > 0 && print_timing(trace,iter,t_start,cost,g_norm,λ) return x, u, traj_new, Vx, Vxx, cost, trace end function print_timing(trace,iter,t_start,cost,g_norm,λ) diff_t = get(trace, :time_derivs)[2] diff_t = sum(diff_t[.!isnan.(diff_t)]) back_t = get(trace, :time_backward)[2] back_t = sum(back_t[.!isnan.(back_t)]) fwd_t = get(trace, :time_forward)[2] fwd_t = sum(fwd_t[.!isnan.(fwd_t)]) total_t = time()-t_start info = 100/total_t*[diff_t, back_t, fwd_t, (total_t-diff_t-back_t-fwd_t)] try @printf("\n iterations: %-3d\n final cost: %-12.7g\n final grad: %-12.7g\n final λ: %-12.7e\n time / iter: %-5.0f ms\n total time: %-5.2f seconds, of which\n derivs: %-4.1f%%\n back pass: %-4.1f%%\n fwd pass: %-4.1f%%\n other: %-4.1f%% (graphics etc.)\n =========== end iLQG ===========\n",iter,sum(cost),g_norm,λ,1e3*total_t/iter,total_t,info[1],info[2],info[3],info[4]) catch @show g_norm end end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
12252
""" `x, u, traj_new, Vx, Vxx, cost, trace = iLQGkl(dynamics,costfun,derivs, x0, traj_prev, model; constrain_per_step = false, kl_step = 0, lims = [], # Control signal limits ::Matrix ∈ R(m,2) tol_fun = 1e-7, tol_grad = 1e-4, max_iter = 50, print_head = 10, # Print headers this often print_period = 1, # Print this often reduce_ratio_min = 0, # Not used ATM diff_fun = -, verbosity = 2, # ∈ (0,3) plot_fun = x->0, # Not used cost = [], # Supply if pre-rolled trajectory supplied ηbracket = [1e-8,1,1e16], # dual variable bracket [min_η, η, max_η] del0 = 0.0001, # Start of dual variable increase gd_alpha = 0.01 # Step size in GD (ADAMOptimizer) when constrain_per_step is true )` Solves the iLQG problem with constraints on control signals `lims` and bound on the KL-divergence `kl_step` from the old trajectory distribution `traj_prev::GaussianPolicy`. To solve the maximum entropy problem, use controller `controller(xi,i) = u[:,i] + K[:,:,i]*(xi-x[:,i]) + chol(Σ)*randn(m)` where `K` comes from `traj_new`. Note that multiplying the cost by a constant changes the relative weight between the cost term and the entropy term, i.e., higher cost produces less noise through chol(Σ) since (Σ = Qᵤᵤ⁻¹). """ function iLQGkl(dynamics,costfun,derivs, x0, traj_prev, model; constrain_per_step = false, kl_step = 1, lims = [], tol_fun = 1e-7, tol_grad = 1e-4, max_iter = 50, print_head = 10, print_period = 1, reduce_ratio_min = 0, diff_fun = -, verbosity = 2, plot_fun = x->0, cost = [], ηbracket = [1e-8,1,1e16], # min_η, η, max_η del0 = 0.0001, gd_alpha = 0.01 ) debug("Entering iLQG") local fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu,xnew,unew,costnew,sigmanew,g_norm,Vx,Vxx,dV # --- initial sizes and controls u = copy(traj_prev.k) # initial control sequence n = size(x0, 1) # dimension of state vector m,N = size(u) # dimension of control vector and number of state transitions traj_new = GaussianPolicy(Float64) k_old = copy(traj_prev.k) traj_prev.k *= 0 # We are adding new k to u, so must set this to zero for correct kl calculations ηbracket = copy(ηbracket) # Because we do changes in this Array if constrain_per_step ηbracket = ηbracket.*ones(1,N) kl_step = kl_step*ones(N) end η = view(ηbracket,2,:) # --- initialize trace data structure trace = MVHistory() # --- initial trajectory debug("Checking initial trajectory") if size(x0,2) == N debug("# pre-rolled initial forward pass, initial traj provided") x = x0 diverge = false isempty(cost) && error("Initial trajectory supplied, initial cost must also be supplied") else error("pre-rolled initial trajectory must be of correct length (size(x0,2) == N)") end trace(:cost, 0, sum(cost)) # constants, timers, counters Δcost = 0. expected_reduction = 0. divergence = 0. step_mult = 1. iter = 0 last_head = print_head t_start = time() verbosity > 0 && @printf("\n---------- begin iLQG ----------\n") satisfied = false # Indicating KL-constraint satisfied # ====== STEP 1: differentiate dynamics and cost along new trajectory _t = @elapsed fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu = derivs(x, u) trace(:time_derivs, 0, _t) reduce_ratio = 0. kl_cost_terms = (∇kl(traj_prev), ηbracket) # This tuple is sent into back_pass, elements in ηbracket are mutated. for outer iter = 1:(constrain_per_step ? 0 : max_iter) # Single KL constraint diverge = 1 # ====== STEP 2: backward pass, compute optimal control law and cost-to-go back_pass_done = false while diverge > 0 # Done when regularization (through 1/η) for Quu is high enough # debug("Entering back_pass with η=$ηbracket") # η is the only regularization when optimizing KL, hence λ = 0 and regType arbitrary _t = @elapsed diverge, traj_new,Vx, Vxx,dV = back_pass_gps(cx,cu,cxx,cxu,cuu,fx,fu, lims,x,u,kl_cost_terms) # Set λ=0 since we use η trace(:time_backward, iter, _t) if diverge > 0 ηbracket[2] += del0 # η increased, used in back_pass through kl_cost_terms # Higher η downweights the original Q function and upweights KL-cost terms del0 *= 2 if verbosity > 2 println("Inversion failed at timestep $diverge. η-bracket: ", ηbracket) end # if ηbracket[2] > 0.999ηbracket[3] # terminate ? # if verbosity > 0 # @printf("\nEXIT: η > ηmax (back_pass failed)\n") # @show kl_cost_terms[1][5] # @show diverge # @show traj_new.Σ[:,:,diverge] # @show traj_new.Σi[:,:,diverge] # @show ηbracket[2], 0.999ηbracket[3] # end # break # end end end # check for termination due to small gradient g_norm = mean(maximum(abs.(traj_new.k) ./ (abs.(u) .+1),dims=1)) trace(:grad_norm, iter, g_norm) # ====== STEP 3: Forward pass _t = @elapsed begin # debug("# entering forward_pass") xnew,unew,costnew = forward_pass(traj_new, x0[:,1] ,u, x,1,dynamics,costfun, lims, diff_fun) sigmanew = forward_covariance(model, x, u, traj_new) traj_new.k .+= traj_prev.k # unew = k_new + k_old + Knew*Δx, this doesn't matter since traj_prev.k set to 0 above Δcost = sum(cost) - sum(costnew) expected_reduction = -(dV[1] + dV[2]) # According to second order approximation reduce_ratio = Δcost/expected_reduction # calc_η modifies the dual variables η according to current constraint_violation ηbracket, satisfied, divergence = calc_η(xnew,x,sigmanew,ηbracket, traj_new, traj_prev, kl_step) end trace(:time_forward, iter, _t) debug("Forward pass done: η: $ηbracket") # ====== STEP 4: accept step (or not), print status # print headings if verbosity > 1 && iter % print_period == 0 if last_head == print_head last_head = 0 @printf("%-12s", "iteration est. cost reduction expected gradient log10(η) divergence entropy\n") end @printf("%-14d%-14.6g%-14.3g%-14.3g%-12.3g%-12.2f%-14.3g%-12.3g\n", iter, sum(costnew), Δcost, expected_reduction, g_norm, log10(mean(η)), mean(divergence), entropy(traj_new)) last_head += 1 end # update trace trace(:alpha, iter, 1) trace(:improvement, iter, Δcost) trace(:cost, iter, sum(costnew)) trace(:reduce_ratio, iter, reduce_ratio) trace(:divergence, iter, mean(divergence)) trace(:η, iter, ηbracket[2]) # Termination checks # if g_norm < tol_grad && divergence-kl_step > 0 # In this case we're only going to get even smaller gradients and might as well quit # verbosity > 0 && @printf("\nEXIT: gradient norm < tol_grad while constraint violation too large\n") # break # end if satisfied # KL-constraint is satisfied and we're happy (at least if Δcost is positive) plot_fun(x) verbosity > 0 && @printf("\nSUCCESS: abs(KL-divergence) < kl_step\n") break end if ηbracket[2] > 0.999ηbracket[3] verbosity > 0 && @printf("\nEXIT: η > ηmax\n") break end # graphics(xnew,unew,cost,traj_new.K,Vx,Vxx,fx,fxx,fu,fuu,trace[1:iter],0) end # !constrain_per_step if constrain_per_step # This implements the gradient descent procedure for η optimizer = ADAMOptimizer(kl_step, α=gd_alpha) for outer iter = 1:max_iter diverge = 1 del = del0*ones(N) while diverge > 0 diverge, traj_new,Vx, Vxx,dV = back_pass_gps(cx,cu,cxx,cxu,cuu,fx,fu, lims,x,u,kl_cost_terms) if diverge > 0 delind = diverge # This is very inefficient since back_pass only returs a single diverge per call. ηbracket[2,delind] .+= del[delind] del[delind] *= 2 if verbosity > 2; println("Inversion failed at timestep $diverge. η-bracket: ", mean(η)); end if all(ηbracket[2,:] .> 0.999ηbracket[3,:]) # TODO: This termination criteria could be improved verbosity > 0 && @printf("\nEXIT: η > ηmax\n") break end end end xnew,unew,costnew = forward_pass(traj_new, x0[:,1] ,u, x,1,dynamics,costfun, lims, diff_fun) sigmanew = forward_covariance(model, x, u, traj_new) traj_new.k .+= traj_prev.k # unew = k_new + k_old + Knew*Δx Δcost = sum(cost) - sum(costnew) expected_reduction = -(dV[1] + dV[2]) reduce_ratio = Δcost/expected_reduction divergence = kl_div_wiki(xnew,x,sigmanew, traj_new, traj_prev) constraint_violation = divergence - kl_step lη = log.(η) # Run GD in log-space (much faster) η .= exp.(optimizer(lη, -constraint_violation, iter)) # η .= optimizer(η, -constraint_violation, iter) # println(maximum(constraint_violation), " ", extrema(η), " ", indmax(constraint_violation)) # println(round.(constraint_violation,4)) η .= clamp.(η, ηbracket[1,:], ηbracket[3,:]) g_norm = mean(maximum(abs.(traj_new.k) ./ (abs.(u) .+1),dims=1)) trace(:grad_norm, iter, g_norm) # @show maximum(constraint_violation) if all(divergence .< 2*kl_step) && mean(constraint_violation) < 0.1*kl_step[1] satisfied = true break end if verbosity > 1 && iter % print_period == 0 if last_head == print_head last_head = 0 @printf("%-12s", "iteration est. cost reduction expected log10(η) divergence entropy\n") end @printf("%-14d%-14.6g%-14.3g%-14.3g%-12.3f%-12.3g%-14.3g\n", iter, sum(costnew), Δcost, expected_reduction, mean(log10.(η)), mean(divergence), entropy(traj_new)) last_head += 1 end end end iter == max_iter && verbosity > 0 && @printf("\nEXIT: Maximum iterations reached.\n") # if costnew < 1.1cost # In this case we made an (approximate) improvement under the model and accept the changes x,u,cost = xnew,unew,costnew traj_new.k = copy(u) # else # traj_new = traj_prev # verbosity > 0 && println("Cost (under model) increased, did not accept changes to u") # end traj_prev.k = k_old any((divergence .> kl_step) .& (abs.(divergence - kl_step) .> 0.1*kl_step)) && @warn("KL divergence too high for some time steps when done") verbosity > 0 && print_timing(trace,iter,t_start,cost,g_norm,mean(ηbracket[2,:])) return x, u, traj_new, Vx, Vxx, cost, trace end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
7514
""" Calculate the Q terms related to the KL-constraint. (Actually, only related to log(p̂(τ)) since the constraint is rewritten as Entropy term and other term dissapears into expectation under p(τ).) Qtt is [Qxx Qxu; Qux Quu] Qt is [Qx; Qu] These terms should be added to the Q terms calculated in the backwards pass to produce the final Q terms. This Function should be called from within the backwards_pass Function or just prior to it to adjust the cost derivative matrices. """ function ∇kl(traj_prev) isempty(traj_prev) && (return (0,0,0,0,0)) debug("Calculating KL cost addition terms") m,n,T = traj_prev.m,traj_prev.n,traj_prev.T cx,cu,cxx,cuu,cxu = zeros(n,T),zeros(m,T),zeros(n,n,T),zeros(m,m,T),zeros(m,n,T) for t in 1:T K, k = traj_prev.K[:,:,t], traj_prev.k[:,t] Σi = traj_prev.Σi[:,:,t] cx[:,t] = K'*Σi*k cu[:,t] = -Σi*k cxx[:,:,t] = K'*Σi*K cuu[:,:,t] = Σi cxu[:,:,t] = -Σi*K # https://github.com/cbfinn/gps/blob/master/python/gps/algorithm/traj_opt/traj_opt_lqr_python.py#L355 end return cx,cu,cxx,cxu,cuu end """ This is the inverse of Σₓᵤ """ function KLmv(Σi,K,k) M = [K'*Σi*K -K'*Σi; -Σi*K Σi ] v = [K'*Σi*k; -Σi*k] M,v end """ This function produces lots of negative values which are clipped by the max(0,kl) """ function kl_div(xnew,xold, Σ_new, traj_new, traj_prev) (isempty(traj_new) || isempty(traj_prev)) && (return 0) μ_new = [xnew-xold; unew] T = traj_new.T # m = traj_new.m kldiv = zeros(T) for t = 1:T μt = μ_new[:,t] Σt = Σ_new[:,:,t] Kp = traj_prev.K[:,:,t] Kn = traj_new.K[:,:,t] kp = traj_prev.k[:,t] kn = traj_new.k[:,t] + kp # unew must be added here Σp = traj_prev.Σ[:,:,t] Σn = traj_new.Σ[:,:,t] Σip = traj_prev.Σi[:,:,t] Σin = traj_new.Σi[:,:,t] Mp,vp = KLmv(Σip,Kp,kp) Mn,vn = KLmv(Σin,Kn,kn) cp = .5*kp'Σip*kp cn = .5*kn'Σin*kn kldiv[t] = -0.5μt'*(Mn-Mp)*μt - μt'*(vn-vp) - cn + cp -0.5sum(Σt*(Mn-Mp)) -0.5logdet(Σn) + 0.5logdet(Σp) kldiv[t] = max.(0,kldiv[t]) end return kldiv end """ This version seems to be symmetric and positive """ function kl_div_wiki(xnew,xold, Σ_new, traj_new, traj_prev) μ_new = xnew-xold T,m,n = traj_new.T, traj_new.m, traj_new.n kldiv = zeros(T) for t = 1:T μt = μ_new[:,t] Σt = Σ_new[1:n,1:n,t] Kp = traj_prev.K[:,:,t] Kn = traj_new.K[:,:,t] kp = traj_prev.k[:,t] kn = traj_new.k[:,t] #traj_new.k[:,t] contains kp already Σp = traj_prev.Σ[:,:,t] Σn = traj_new.Σ[:,:,t] Σip = traj_prev.Σi[:,:,t] Σin = traj_new.Σi[:,:,t] dim = m k_diff = kp-kn K_diff = Kp-Kn try kldiv[t] = 1/2 * (tr(Σip*Σn) + k_diff'Σip*k_diff - dim + logdet(Σp) - logdet(Σn) ) # Wikipedia term kldiv[t] += 1/2 *( μt'K_diff'Σip*K_diff*μt + tr(K_diff'Σip*K_diff*Σt) )[1] kldiv[t] += k_diff'Σip*K_diff*μt catch e println(e) @show Σip, Σin, Σp, Σn return Inf end end kldiv = max.(0,kldiv) return kldiv end entropy(traj::GaussianPolicy) = mean(logdet(traj.Σ[:,:,t])/2 for t = 1:traj.T) + traj.m*log(2π)/2 """ new_η, satisfied, divergence = calc_η(xnew,xold,sigmanew,η, traj_new, traj_prev, kl_step) This Function caluculates the step size """ function calc_η(xnew,xold,sigmanew,ηbracket, traj_new, traj_prev, kl_step::Number) kl_step > 0 || (return (ηbracket, true,0)) divergence = kl_div_wiki(xnew,xold,sigmanew, traj_new, traj_prev) |> mean constraint_violation = divergence - kl_step # Convergence check - constraint satisfaction. satisfied = abs(constraint_violation) < 0.1*kl_step # allow some small constraint violation if satisfied debug(@sprintf("KL: %12.7f / %12.7f, converged", divergence, kl_step)) else if constraint_violation < 0 # η was too big. ηbracket[3] = ηbracket[2] ηbracket[2] = max(geom(ηbracket), 0.1*ηbracket[3]) debug(@sprintf("KL: %12.4f / %12.4f, η too big, new η: (%-5.3g < %-5.3g < %-5.3g)", divergence, kl_step, ηbracket...)) else # η was too small. ηbracket[1] = ηbracket[2] ηbracket[2] = min(geom(ηbracket), 10.0*ηbracket[1]) debug(@sprintf("KL: %12.4f / %12.4f, η too small, new η: (%-5.3g < %-5.3g < %-5.3g)", divergence, kl_step, ηbracket...)) end end return ηbracket, satisfied, divergence end function calc_η(xnew,xold,sigmanew,ηbracket, traj_new, traj_prev, kl_step::AbstractVector) any(kl_step .> 0) || (return (ηbracket, true,0)) divergence = kl_div_wiki(xnew,xold,sigmanew, traj_new, traj_prev) if !isa(kl_step,AbstractVector) divergence = mean(divergence) end constraint_violation = divergence - kl_step # Convergence check - constraint satisfaction. satisfied = all(abs.(constraint_violation) .< 0.1*kl_step) # allow some small constraint violation if satisfied debug(@sprintf("KL: %12.7f / %12.7f, converged", mean(divergence), mean(kl_step))) else too_big = constraint_violation .< 0 debug("calc_η: Sum(too big η) = $sum(too_big)") ηbracket[3,too_big] = ηbracket[2,too_big] ηbracket[2,too_big] = max.(geom(ηbracket[:,too_big]), 0.1*ηbracket[3,too_big]) ηbracket[1,!too_big] = ηbracket[2,!too_big] ηbracket[2,!too_big] = min.(geom(ηbracket[:,!too_big]), 10.0*ηbracket[1,!too_big]) end return ηbracket, satisfied, divergence end geom(ηbracket::AbstractMatrix) = sqrt.(ηbracket[1,:].*ηbracket[3,:]) geom(ηbracket::AbstractVector) = sqrt(ηbracket[1]*ηbracket[3]) # # using Base.Test # n,m,T = 1,1,3 # Σnew = cat([eye(n+m) for t=1:T]..., dims=3) # Σ = cat([eye(m) for t=1:T]..., dims=3) # K = zeros(m,n,T) # k = zeros(m,T) # # traj_new = DifferentialDynamicProgramming.GaussianPolicy(T,n,m,K,k,Σ,Σ) # traj_prev = DifferentialDynamicProgramming.GaussianPolicy(T,n,m,copy(K),copy(k),copy(Σ),copy(Σ)) # xnew = zeros(n,T) # xold = zeros(n,T) # unew = zeros(m,T) # # kl_div_wiki(xnew,xold, Σnew, traj_new, traj_prev) # # traj_new.k = ones(m,T) # traj_prev.k = ones(m,T) # kl_div_wiki(xnew,xold, Σnew, traj_new, traj_prev) # traj_new.k .*= 0 # # traj_new.K = ones(m,n,T) # kl_div_wiki(xnew,xold, Σnew, traj_new, traj_prev) # traj_new.K .*= 0 # # traj_new.Σ .*=2 # kl_div_wiki(xnew,xold, Σnew, traj_new, traj_prev) mutable struct ADAMOptimizer{T,N} α::T β1::T β2::T ɛ::T m::Array{T,N} v::Array{T,N} end ADAMOptimizer(g::AbstractArray{T,N}; α = 0.005, β1 = 0.9, β2 = 0.999, ɛ = 1e-8, m=zeros(g), v=zeros(g)) where {T,N} = ADAMOptimizer{T,N}(α, β1, β2, ɛ, m, v) """ (a::ADAMOptimizer{T,N})(Θ::Array{T,N}, g::Array{T,N}, t::Number) Applies the gradient `g` to the parameters `Θ` (mutating) at iteration `t` ADAM GD update http://sebastianruder.com/optimizing-gradient-descent/index.html#adam """ function (a::ADAMOptimizer{T,N})(Θ::AbstractArray{T,N}, g::AbstractArray{T,N}, t) where {T,N} a.m .= a.β1 .* a.m .+ (1-a.β1) .* g m̂ = a.m ./ (1 - a.β1 ^ t) a.v .= a.β2 .* a.v .+ (1-a.β2) .* g.^2 v̂ = a.v ./ (1 - a.β2 ^ t) # @show size(Θ), size(m̂), size(v̂) Θ .-= a.α .* m̂ ./ (sqrt.(v̂) .+ a.ɛ) end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
5542
plotstuff_pendcart(args...) = println("Install package Plots.jl (and call using Plots) to plot results in the end of demo_pendcart") function care(A, B, Q, R) G = try B*inv(R)*B' catch error("R must be non-singular.") end Z = [A -G; -Q -A'] S = schur(Z) S = ordschur(S, real(S.values).<0) U = S.Z (m, n) = size(U) U11 = U[1:div(m, 2), 1:div(n,2)] U21 = U[div(m,2)+1:m, 1:div(n,2)] return U21/U11 end function lqr(A, B, Q, R) S = care(A, B, Q, R) K = R\B'*S return K end """ demo_pendcart(;kwargs...) Run the iLQG Function to find an optimal trajectory For the "pendulum on a cart system". Requires package ControlSystems.jl # Arguments `x0 = [π-0.6,0,0,0]` `goal = [π,0,0,0]` `Q = Diagonal([10,1,2,1])` : State weight matrix `R = 1` : Control weight matrix `lims = 5.0*[-1 1]` : control limits, `T = 600` : Number of time steps `doplot = true` : Plot results """ function demo_pendcart(;x0 = [π-0.6,0,0,0], goal = [π,0,0,0], Q = Diagonal([10.,1,2,1]), # State weight matrix R = 1., # Control weight matrix lims = 5.0*[-1 1], # control limits, T = 600, # Number of time steps doplot = true # Plot results ) N = T+1 g = 9.82 l = 0.35 # Length of pendulum h = 0.01 # Sample time d = 0.99 A = [0 1 0 0; # Linearlized system dynamics matrix, continuous time g/l -d 0 0; 0 0 0 1; 0 0 0 0] B = [0, -1/l, 0, 1] C = eye(4) # Assume all states are measurable D = 4 L = lqr(A,B,Q,R) # Calculate the optimal state feedback I = T function fsys_closedloop(t,x,L,xd) dx = copy(x) dx[1] -= pi u = -(L*dx)[1] xd[1] = x[2] xd[2] = -g/l * sin(x[1]) + u/l * cos(x[1]) - d*x[2] xd[3] = x[4] xd[4] = u end function fsys(t,x,u,xd) xd[1] = x[2] xd[2] = -g/l * sin(x[1]) + u/l * cos(x[1]) - d*x[2] xd[3] = x[4] xd[4] = u end dfvec = zeros(4) function dfsys(x,u) dfvec[1] = x[1]+h*x[2] dfvec[2] = x[2]+h*(-g/l*sin(x[1])+u[1]/l*cos(x[1])- d*x[2]) dfvec[3] = x[3]+h*x[4] dfvec[4] = x[4]+h*u[1] dfvec end function cost_quadratic(x,u) local d = (x.-goal) 0.5(d'*Q*d + u'R*u)[1] end function cost_quadratic(x::Matrix,u) local d = (x.-goal) T = size(u,2) c = Vector{Float64}(undef,T+1) for t = 1:T c[t] = 0.5(d[:,t]'*Q*d[:,t] + u[:,t]'R*u[:,t])[1] end c[end] = cost_quadratic(x[:,end][:],[0.0]) return c end cx = zeros(4,T) cu = zeros(1,T) cxu = zeros(D,1) function dcost_quadratic(x,u) cx .= Q*(x.-goal) cu .= R.*u return cx,cu,cxu end function lin_dyn_f(x,u,i) u[isnan.(u)] .= 0 f = dfsys(x,u) end fxc = Array{Float64}(undef,D,D,I) fuc = Array{Float64}(undef,D,1,I) fxd = Array{Float64}(undef,D,D,I) fud = Array{Float64}(undef,D,1,I) for ii = 1:I fxc[:,:,ii] = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0] fuc[:,:,ii] = [0, 0, 0, 1] end function lin_dyn_df(x,u) u[isnan.(u)] .= 0 D = size(x,1) nu,I = size(u) cx,cu,cxu = dcost_quadratic(x,u) cxx = Q cuu = [R] for ii = 1:I fxc[2,1,ii] = -g/l*cos(x[1,ii])-u[ii]/l*sin(x[1,ii]) fxc[2,2,ii] = -d fuc[2,1,ii] = cos(x[1,ii])/l ABd = exp([fxc[:,:,ii]*h fuc[:,:,ii]*h; zeros(nu, D + nu)])# ZoH sampling fxd[:,:,ii] = ABd[1:D,1:D] fud[:,:,ii] = ABd[1:D,D+1:D+nu] end fxx=fxu=fuu = [] return fxd,fud,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu end x = zeros(4,N) u = zeros(1,T) """ Simulate a pendulum on a cart using the non-linear equations """ function simulate_pendcart(x0,L, dfsys, cost) x[:,1] = x0 u[1] = 0 for t = 2:T dx = copy(x[:,t-1]) dx[1] -= pi u[t] = -(L*dx)[1] if !isempty(lims) u[t] = clamp(u[t],lims[1],lims[2]) end x[:,t] = dfsys(x[:,t-1],u[t]) end dx = copy(x[:,T]) dx[1] -= pi uT = -(L*dx)[1] if !isempty(lims) uT = clamp(uT,lims[1],lims[2]) end x[:,T+1] = dfsys(x[:,T],uT) c = cost(x,u) return x, u, c end # Simulate the closed loop system with regular LQG control and watch it fail due to control limits x00, u00, cost00 = simulate_pendcart(x0, L, dfsys, cost_quadratic) f(x,u,i) = lin_dyn_f(x,u,i) df(x,u) = lin_dyn_df(x,u) # plotFn(x) = plot(squeeze(x,2)') println("Entering iLQG function") # subplot(n=4,nc=2) x, u, L, Vx, Vxx, cost, trace = iLQG(f,cost_quadratic, df, x0, 0*u00, lims = lims, # plotFn = x -> Plots.subplot!(x'), regType = 2, α = exp10.(range(0.2, stop=-3, length=6)), λmax = 1e15, verbosity = 3, tol_fun = 1e-8, tol_grad = 1e-8, max_iter = 1000); doplot && plotstuff_pendcart(x00, u00, x,u,cost00,cost,trace) println("Done") return x, u, L, Vx, Vxx, cost, trace end
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
346
using DifferentialDynamicProgramming using Test, Statistics, LinearAlgebra @info("Compile time is high for this package, this is expected and is not an error.") # write your own tests here include("test_readme.jl") demo_linear() demo_linear_kl(kl_step=100) demo_pendcart() demoQP() # include(Pkg.dir("GuidedPolicySearch","examples","bb.jl"))
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
4378
using ControlSystems function fsys_closedloop(t,x,L,xd) dx = copy(x) dx[1] -= pi u = -(L*dx)[1] xd[1] = x[2] xd[2] = -g/l * sin(x[1]) + u/l * cos(x[1]) xd[3] = x[4] xd[4] = u end function fsys(t,x,u,xd) xd[1] = x[2] xd[2] = -g/l * sin(x[1]) + u/l * cos(x[1]) xd[3] = x[4] xd[4] = u end function dfsys(x,u) [x[1]+h*x[2]; x[2]+h*(-g/0.35*sin(x[1])+u/0.35*cos(x[1])); x[3]+h*x[4]; x[4]+h*u] end function cost_quadratic(x,u) d = (x.-goal) 0.5(d'*Q*d + u'R*u)[1] end function cost_quadratic(x::Matrix,u) d = (x.-goal) T = size(u,2) c = Vector{Float64}(T+1) for t = 1:T c[t] = 0.5(d[:,t]'*Q*d[:,t] + u[:,t]'R*u[:,t])[1] end c[end] = cost_quadratic(x[:,end][:],[0.0]) return c end function dcost_quadratic(x,u) cx = Q*(x.-goal) cu = R.*u cxu = zeros(D,1) return cx,cu,cxu end function lin_dyn_f(x,u,i) u[isnan(u)] = 0 f = dfsys(x,u) c = cost_quadratic(x,u) return f,c end function lin_dyn_fT(x) cost_quadratic(x,0.0) end function lin_dyn_df(x,u) u[isnan(u)] = 0 D = size(x,1) nu,I = size(u) fx = Array{Float64}(D,D,I) fu = Array{Float64}(D,1,I) cx,cu,cxu = dcost_quadratic(x,u) cxx = Q cuu = [R] for ii = 1:I fx[:,:,ii] = [0 1 0 0; -g/0.35*cos(x[1,ii])-u[ii]/0.35*sin(x[1,ii]) 0 0 0; 0 0 0 1; 0 0 0 0] fu[:,:,ii] = [0, cos(x[1,ii])/0.35, 0, 1] ABd = exp([fx[:,:,ii]*h fu[:,:,ii]*h; zeros(nu, D + nu)])# ZoH sampling fx[:,:,ii] = ABd[1:D,1:D] fu[:,:,ii] = ABd[1:D,D+1:D+nu] end fxx=fxu=fuu = [] return fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu end """ Simulate a pendulum on a cart using the non-linear equations """ function simulate_pendcart(x0,L, dfsys, cost) x = zeros(4,N) u = zeros(1,T) x[:,1] = x0 u[1] = 0 for t = 2:T dx = copy(x[:,t-1]) dx[1] -= pi u[t] = -(L*dx)[1] if !isempty(lims) u[t] = clamp(u[t],lims[1],lims[2]) end x[:,t] = dfsys(x[:,t-1],u[t]) end dx = copy(x[:,T]) dx[1] -= pi uT = -(L*dx)[1] if !isempty(lims) uT = clamp(uT,lims[1],lims[2]) end x[:,T+1] = dfsys(x[:,T],uT) c = cost(x,u) return x, u, c end T = 600 # Number of time steps N = T+1 g = 9.82 l = 0.35 # Length of pendulum h = 0.01 # Sample time lims = []#5.0*[-1 1] # control limits, e.g. ones(m,1)*[-1 1]*.6 goal = [π,0,0,0] # Reference point A = [0 1 0 0; # Linearlized system dynamics matrix, continuous time g/l 0 0 0; 0 0 0 1; 0 0 0 0] B = [0, -1/l, 0, 1] C = eye(4) # Assume all states are measurable D = 4 sys = ss(A,B,C,zeros(4)) Q = h*diagm([10,1,2,1]) # State weight matrix R = h*1 # Control weight matrix L = lqr(sys,Q,R) # Calculate the optimal state feedback x0 = [π-0.6,0,0,0] # Simulate the closed loop system with regular LQG control and watch it fail due to control limits x00, u00, cost00 = simulate_pendcart(x0, L, dfsys, cost_quadratic) u0 = 0u00 fx = A fu = B cxx = Q cxu = zeros(size(B)) cuu = R f(x,u,i) = lin_dyn_f(x,u,i) fT(x) = lin_dyn_fT(x) df(x,u) = lin_dyn_df(x,u) # plotFn(x) = plot(squeeze(x,2)') # run the optimization println("Entering iLQG function") # subplot(n=4,nc=2) alpha = exp10.(range(0, stop=-3, length=11)) tol_fun = 1e-7 tol_grad = 1e-4 max_iter = 500 λ = 1 dλ = 1 λfactor = 1.6 λmax = 1e10 λmin = 1e-6 regType = 1 reduce_ratio_min = 0 diff_fun = - plot = 1 verbosity = 2 plot_fun = x->0 cost = [] kl_step = 0 traj_prev = 0 regType=2 alpha= exp10.(range(0.2, stop=-3, length=6)) verbosity=3 tol_fun = 1e-7 max_iter=1000 import Base: length EmptyMat3 = Array(Float64,0,0,0) EmptyMat2 = Array(Float64,0,0) emptyMat3(P) = Array(P,0,0,0) emptyMat2(P) = Array(P,0,0) mutable struct GaussianDist{P} T::Int n::Int m::Int fx::Array{P,3} fu::Array{P,3} Σ::Array{P,3} μx::Array{P,2} μu::Array{P,2} end GaussianDist(P) = GaussianDist(0,0,0,emptyMat3(P),emptyMat3(P),emptyMat3(P),emptyMat2(P),emptyMat2(P)) Base.isempty(gd::GaussianDist) = gd.T == gd.n == gd.m == 0 mutable struct GaussianTrajDist{P} policy::GaussianDist{P} dynamics::GaussianDist{P} end debug(x) = println(x)
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
code
1930
using Test, Statistics, LinearAlgebra, Random # make stable linear dynamics Random.seed!(0) eye = DifferentialDynamicProgramming.eye costs = map(1:10) do MCiteration h = .01 # time step n = 10 # state dimension m = 2 # control dimension A = randn(n,n) A = A-A' # skew-symmetric = pure imaginary eigenvalues A = exp(h*A) # discrete time B = h*randn(n,m) # quadratic costs Q = h*eye(n) R = .1*h*eye(m) # control limits lims = []# ones(m,1)*[-1 1]*.6 T = 1000 # horizon x0 = ones(n,1) # initial state u0 = .1*randn(m,T) # initial controls # optimization problem N = T+1 fx = A fu = B cxx = Q cxu = zeros(size(B)) cuu = R # Specify dynamics functions function lin_dyn_df(x,u,Q,R) u[isnan.(u)] .= 0 cx = Q*x cu = R*u fxx=fxu=fuu = [] return fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu end function lin_dyn_f(x,u,A,B) u[isnan.(u)] .= 0 xnew = A*x + B*u return xnew end function lin_dyn_cost(x,u,Q) c = 0.5*sum(x.*(Q*x)) + 0.5*sum(u.*(R*u)) return c end f(x,u,i) = lin_dyn_f(x,u,A,B) costfun(x,u) = lin_dyn_cost(x,u,Q) df(x,u) = lin_dyn_df(x,u,Q,R) # plotFn(x) = plot(squeeze(x,2)') # run the optimization @time x, u, L, Vx, Vxx, cost, otrace = iLQG(f,costfun,df, x0, u0, lims=lims, verbosity=3); # using Plots # plot(x', title="States", subplot=1, layout=(3,1), show=true) # plot!(u', title="Control signals", subplot=2, show=true) # plot!(cost, title="Cost", subplot=3, show=true) sum(cost) end @test maximum(costs) < 25 # This should be the case most of the times @test mean(costs) < 10 # This should be the case most of the times @test minimum(costs) < 5 # This should be the case most of the times
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT", "BSD-3-Clause" ]
0.4.0
ab5c53d7ce5b457f9b91217fa33e133cf3386b39
docs
4151
# DifferentialDynamicProgramming [![Build Status](https://travis-ci.org/baggepinnen/DifferentialDynamicProgramming.jl.svg?branch=master)](https://travis-ci.org/baggepinnen/DifferentialDynamicProgramming.jl) [![Coverage Status](https://coveralls.io/repos/github/baggepinnen/DifferentialDynamicProgramming.jl/badge.png?branch=master)](https://coveralls.io/github/baggepinnen/DifferentialDynamicProgramming.jl?branch=master) ## Installation The package is registered and can be added with `] add DifferentialDynamicProgramming` The latest version is formally compatible with Julia v1.1+ (but probably works well for julia v1.0 as well if you `dev` it). ## Demo functions The following demo functions are provided `demo_linear()` To run the iLQG DDP algorithm on a simple linear problem `demoQP` To solve a demo quadratic program `demo_pendcart()` Where a pendulum attached to a cart is simulated. ## Usage ### Demo linear See demo file `demo_linear.jl` for a usage example. ```julia # make stable linear dynamics h = .01 # time step n = 10 # state dimension m = 2 # control dimension A = randn(n,n) A = A-A' # skew-symmetric = pure imaginary eigenvalues A = exp(h*A) # discrete time B = h*randn(n,m) # quadratic costs Q = h*eye(n) R = .1*h*eye(m) # control limits lims = [] #ones(m,1)*[-1 1]*.6 T = 1000 # horizon x0 = ones(n,1) # initial state u0 = .1*randn(m,T) # initial controls # optimization problem N = T+1 fx = A fu = B cxx = Q cxu = zeros(size(B)) cuu = R # Specify dynamics functions function lin_dyn_df(x,u,Q,R) u[isnan(u)] = 0 cx = Q*x cu = R*u fxx=fxu=fuu = [] return fx,fu,fxx,fxu,fuu,cx,cu,cxx,cxu,cuu end function lin_dyn_f(x,u,A,B) u[isnan(u)] = 0 xnew = A*x + B*u return xnew end function lin_dyn_cost(x,u,Q) c = 0.5*sum(x.*(Q*x)) + 0.5*sum(u.*(R*u)) return c end f(x,u,i) = lin_dyn_f(x,u,A,B,Q,R) costfun(x,u) = lin_dyn_cost(x,u,Q) df(x,u) = lin_dyn_df(x,u,Q,R) # run the optimization @time x, u, L, Vx, Vxx, cost, otrace = iLQG(f, costfun ,df, x0, u0, lims=lims); ``` ### Demo pendulum on cart There is an additional demo function `demo_pendcart()`, where a pendulum attached to a cart is simulated. In this example, regular LQG control fails in stabilizing the pendulum at the upright position due to control limitations. The DDP-based optimization solves this by letting the pendulum fall, and increases the energy in the pendulum during the fall such that it will stay upright after one revolution. ![window](images/states_pendcart.png) ![window](images/control_pendcart.png) # Citing This code consists of a port and extensions of a MATLAB library provided by the autors of ``` BIBTeX: @INPROCEEDINGS{ author = {Tassa, Y. and Mansard, N. and Todorov, E.}, booktitle = {Robotics and Automation (ICRA), 2014 IEEE International Conference on}, title = {Control-Limited Differential Dynamic Programming}, year = {2014}, month={May}, doi={10.1109/ICRA.2014.6907001}} http://www.mathworks.com/matlabcentral/fileexchange/52069-ilqg-ddp-trajectory-optimization http://www.cs.washington.edu/people/postdocs/tassa/ ``` The code above was extended with KL-divergence constrained optimization for the thesis [Bagge Carlson, F.](https://www.control.lth.se/staff/fredrik-bagge-carlson/), ["Machine Learning and System Identification for Estimation in Physical Systems"](https://lup.lub.lu.se/search/publication/ffb8dc85-ce12-4f75-8f2b-0881e492f6c0) (PhD Thesis 2018). ```bibtex @thesis{bagge2018, title = {Machine Learning and System Identification for Estimation in Physical Systems}, author = {Bagge Carlson, Fredrik}, keyword = {Machine Learning,System Identification,Robotics,Spectral estimation,Calibration,State estimation}, month = {12}, type = {PhD Thesis}, number = {TFRT-1122}, institution = {Dept. Automatic Control, Lund University, Sweden}, year = {2018}, url = {https://lup.lub.lu.se/search/publication/ffb8dc85-ce12-4f75-8f2b-0881e492f6c0}, } ```
DifferentialDynamicProgramming
https://github.com/baggepinnen/DifferentialDynamicProgramming.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
685
export bibliography, file using BibTeX using BibTeXFormat using Mustache read_file(path) = read(open(path), String) function bibliography(cites::Vector{String}) bibliography = Bibliography(read_file(joinpath(dirname(@__FILE__), "SpectralClustering.bib"))) formatted_entries = format_entries(UNSRTAlphaStyle,bibliography) return write_to_string( HTMLBackend() ,formatted_entries, cites) end function file(name::String) file = read_file(joinpath(dirname(@__FILE__),"src", "js",name)) return file end function file(name::String, data::Dict{String, String}) file = read_file(joinpath(dirname(@__FILE__),"src", "js",name)) return render(file, data) end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
600
using Pkg packages = ["Documenter","Formatting", "Images", "TestImages", "RDatasets", "InfoZIP", "ImageView", "ImageMagick","Mustache", "StringEncodings", "TextAnalysis", "Latexify", "IJulia"] for p in packages try if Pkg.installed(p) == nothing Pkg.add(p) end catch e Pkg.add(p) end end using Documenter using SpectralClustering try Pkg.installed("BibTeX") catch Pkg.clone("https://github.com/JuliaTeX/BibTeX.jl.git") end try Pkg.installed("BibTeXFormat") catch Pkg.clone("https://github.com/lucianolorenti/BibTeXFormat.jl.git") end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
1717
using Documenter using SpectralClustering makedocs( modules = [SpectralClustering], format = Documenter.HTML(prettyurls = true), source = "src", clean = false, sitename = "SpectralClustering.jl", pages = Any[ "Home" => "index.md", "Getting Started"=>"start.md", "Main Modules" => Any[ "Graph Creation" => "man/graphcreation.md", "Embedding" => "man/embedding.md", "Approximate Embedding" => "man/approximate.md", "Eigenvector Clustering" => "man/clusterize.md", "Co-Regularized" => "man/multiview.md", "Incremental" => "man/incremental.md" ], "Utility Modules" => Any[ "Data Access" => "man/data_access.md", "Graph" => "man/graph.md", "Landmarks Selection" => "man/landmark_selection.md" ], ], doctest = false ) notebook_output_dir = joinpath(dirname(@__FILE__), "build","notebooks") mkpath(notebook_output_dir) using IJulia jupyter_path = first(IJulia.find_jupyter_subcommand("nbconvert")) for file in readdir(joinpath(dirname(@__FILE__), "notebooks")) full_path = joinpath(dirname(@__FILE__), "notebooks", file) if (endswith(file,".ipynb")) run(`$(jupyter_path) nbconvert --to html $full_path --output-dir=$notebook_output_dir`) elseif (file != ".ipynb_checkpoints") cp(full_path, joinpath(notebook_output_dir,file), force=true) end end deploydocs( repo = "github.com/lucianolorenti/SpectralClustering.jl.git", deps = nothing, make = nothing, target = "build" )
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
100
push!(LOAD_PATH, joinpath(dirname(@__FILE__), "../")) using IJulia notebook(dir=dirname(@__FILE__))
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
10519
using Clustering, LightGraphs, SparseArrays, LinearAlgebra, Arpack export NystromMethod, LandmarkBasedRepresentation, DNCuts """ Large Scale Spectral Clustering with Landmark-Based Representation Xinl ei Chen Deng Cai # Members - `landmark_selector::{T <: AbstractLandmarkSelection}` Method for extracting landmarks - `number_of_landmarks::Integer` Number of landmarks to obtain - `n_neighbors::Integer` Number of nearest neighbors - `nev::Integer` Number of eigenvectors - `w::Function` Number of clusters to obtain - `normalize::Bool` """ struct LandmarkBasedRepresentation{T <: AbstractLandmarkSelection} landmark_selector::T number_of_landmarks::Integer n_neighbors::Integer nev::Integer w::Function normalize::Bool end """ ``` embedding(cfg::LandmarkBasedRepresentation, X) ``` """ function embedding(cfg::LandmarkBasedRepresentation, X) n = number_of_patterns(X) p = cfg.number_of_landmarks landmark_indices = select_landmarks(cfg.landmark_selector, p, X) landmarks = get_element(X, landmark_indices) neighbors_cfg = KNNNeighborhood(landmarks, cfg.n_neighbors) I = zeros(Integer, n*cfg.n_neighbors) J = zeros(Integer, n*cfg.n_neighbors) V = zeros(n*cfg.n_neighbors) for i = 1:n i_neighbors = neighbors(neighbors_cfg, get_element(X, i)) weights = cfg.w(i, [], get_element(X, i), get_element(landmarks, i_neighbors)) weights ./= sum(weights) for (j, (neigh, w)) in enumerate(zip(i_neighbors, weights)) I[(i-1)*cfg.n_neighbors + j] = neigh J[(i-1)*cfg.n_neighbors + j] = i V[(i-1)*cfg.n_neighbors + j] = w end end Z = sparse(I, J, V, p, n) (svd) = svds(Z*Z', nsv=cfg.nev)[1] v = svd.S S = spdiagm(0=>1 ./ (sqrt.(v)))[1] B = S * svd.U' * Z if cfg.normalize B = normalize_cols(B) end return B' end """ ```julia type NystromMethod{T<:AbstractLandmarkSelection} landmarks_selector::T number_of_landmarks::Integer w::Function nvec::Integer end ``` The type ```NystromMethod``` proposed in Spectral Grouping Using the Nystrom Method by Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. It has to be defined: - `landmarks_selector::T<:AbstractLandmarkSelection`. A mechanism to select the sampled points. - `number_of_landmarks::Integer`. The number of points to sample - `w::Function`. The weight function for compute the similiarity. The signature of the weight function has to be `weight(i, j, e1,e2)`. Where `e1` and `e2` ara the data elements i-th and j-th respectivily, obtained via `get_element`, usually is a vector. - `nvec::Integer`. The number of eigenvector to obtain. - `threaded::Bool`. Default: True. Specifies whether the threaded version is used. """ struct NystromMethod{T <: AbstractLandmarkSelection} <: EigenvectorEmbedder landmarks_selector::T number_of_landmarks::Integer w::Function nvec::Integer threaded::Bool end function NystromMethod(landmarks_selector::T, number_of_landmarks::Integer, w::Function, nvec::Integer) where T <: AbstractLandmarkSelection return NystromMethod(landmarks_selector, number_of_landmarks, w, nvec, true) end """ create_A_B(cfg::NystromMethod, landmarks::Vector{Int},X) Arguments: - `cfg::NystromMethod`. The method configuration. - `landmarks::Vector{T}`. A vector of integer that containts the \$n\$ indexes sampled from the data. - `X` is the data that containt \$ N \$ patterns. Let \$ W \\in \\mathbb{R}^{N \\times N}, W = \\begin{bmatrix} A & B^T \\\\ B & C \\end{bmatrix}, A \\in \\mathbb{R}^{ n \\times n }, B \\in \\mathbb{R}^{(N-n) \\times n}, C \\in \\mathbb{R}^{(N-n)\\times (N-n)} \$ . \$A\$ represents the subblock of weights among the random samples, \$B\$ contains the weights from the random samples to the rest of the pixels, and \$C\$ contains the weights between all of the remaining pixels. The function computes \$A\$ and \$B\$ from the data ```X``` using the weight function defined in ```cfg```. """ function create_A_B(cfg::NystromMethod, landmarks::Vector{<:Integer}, X) n = number_of_patterns(X) p = length(landmarks) indexes_b = setdiff(collect(1:n), landmarks) m = length(indexes_b) n = p A = zeros(Float32, p, p) B = zeros(Float32, p, m) qq = length(get_element(X, 1)) landmarks_m = zeros(Float32, length(get_element(X, 1)), length(landmarks)) # Get a copy of the landamrks for j = 1:length(landmarks) get_element!(view(landmarks_m, :, j), X, landmarks[j]) end Threads.@threads for j = 1:length(landmarks) A[:,j] = cfg.w(landmarks[j], landmarks, view(landmarks_m, :, j), landmarks_m) end vec_k = zeros(Float32, length(get_element(X, 1)), Threads.nthreads()) Threads.@threads for k = 1:length(indexes_b) thread_id = Threads.threadid() get_element!(view(vec_k, :, thread_id), X, indexes_b[k]) B[:,k] = cfg.w(indexes_b[k], landmarks, view(vec_k, :, thread_id), landmarks_m) end return (A, B) end function create_A_B_single_thread(cfg::NystromMethod, landmarks::Vector{<:Integer}, X) n = number_of_patterns(X) p = length(landmarks) indexes_b = setdiff(collect(1:n), landmarks) m = length(indexes_b) n = p A = zeros(Float32, p, p) B = zeros(Float32, p, m) qq = length(get_element(X, 1)) landmarks_m = zeros(Float32, length(get_element(X, 1)), length(landmarks)) for j = 1:length(landmarks) get_element!(view(landmarks_m, :, j), X, landmarks[j]) end for j = 1:length(landmarks) A[:,j] = cfg.w(landmarks[j], landmarks, view(landmarks_m, :, j), landmarks_m) end vec_k = zeros(Float32, length(get_element(X, 1))) for k = 1:length(indexes_b) get_element!(vec_k, X, indexes_b[k]) B[:,k] = cfg.w(indexes_b[k], landmarks, vec_k, landmarks_m) end return (A, B) end """ create_A_B(cfg::NystromMethod, X) # Arguments: - `cfg::NystromMethod` - `X` #Return values - Sub-matrix A - Sub-matrix B - `Vector{Int}`. The sampled points used build the sub-matrices This is an overloaded method. Computes the submatrix A and B according to [`create_A_B(::NystromMethod, ::Vector{Int}, ::Any)`](@ref). Returns the two submatrices and the sampled points used to calcluate it """ function create_A_B(cfg::NystromMethod, X) landmarks = select_landmarks(cfg.landmarks_selector, cfg.number_of_landmarks, X) if (cfg.threaded) (A, B) = create_A_B(cfg::NystromMethod, landmarks, X) else (A, B) = create_A_B_single_thread(cfg::NystromMethod, landmarks, X) end return (A, B, landmarks) end """ embedding(cfg::NystromMethod, X) This is an overloaded function """ function embedding(cfg::NystromMethod, X) n = number_of_patterns(X) landmarks = select_landmarks(cfg.landmarks_selector, cfg.number_of_landmarks, X) return embedding(cfg, landmarks, X) end """ embedding(cfg::NystromMethod, landmarks::Vector{Int}, X) # Arguments - `cfg::[NystromMethod](@ref)` - `landmarks::Vector{Int}` - `x::Any` # Return values - `(E, L)`: The approximated eigenvectors, the aprooximated eigenvalues Performs the eigenvector embedding according to """ function embedding(cfg::NystromMethod, landmarks::Vector{<:Integer}, X) if (cfg.threaded) (A, B) = create_A_B(cfg, landmarks, X) else (A, B) = create_A_B_single_thread(cfg, landmarks, X) end return embedding(cfg, A, B, landmarks) end function compute_dhat(AA::Matrix{T}, BB::Matrix{T}) where T n = size(AA, 1) m = size(BB, 2) dhat = zeros(T, n + m) dhat[1:n] = sum(AA, dims = 1) + sum(BB, dims = 2)' dhat[n + 1:end] = sum(BB, dims = 1) + sum(BB, dims = 2)' * pinv(AA) * BB dhat[dhat .< 0] .= 0 return 1 ./ (sqrt.(dhat) .+ eps()) end function compute_V(AA::Matrix{T}, BB::Matrix{T}, nvec::Integer) where T <: Number n = size(AA, 1) m = size(BB, 2) Asi = real(sqrt(Symmetric(pinv(AA)))) F = svd(AA + ((Asi * (BB * BB')) * Asi)) V_1 = (Asi * F.U) .* vec((1 ./ (sqrt.(F.S) .+ eps())))' VA = AA * V_1[:,1:nvec + 1] VB = BB' * V_1[:,1:nvec + 1] return vcat(VA, VB) end function normalize_A_and_B!(AA::Matrix, BB::Matrix) n = size(AA, 1) m = size(BB, 2) dhat = compute_dhat(AA, BB) vv = view(dhat, 1:n) vb = view(dhat, n .+ (1:m)) for I in CartesianIndices(size(AA)) @inbounds AA[I] *= vv[I[1]] * vv[I[2]] end for I in CartesianIndices(size(BB)) @inbounds BB[I] *= vv[I[1]] * vb[I[2]] end end """ embedding(cfg::NystromMethod, A::Matrix, B::Matrix, landmarks::Vector{Int}) Performs the eigenvector approximation given the two submatrices A and B. """ function embedding(cfg::NystromMethod, AA::Matrix, BB::Matrix, landmarks::Vector{<:Integer}) n = size(AA, 1) m = size(BB, 2) normalize_A_and_B!(AA, BB) V = compute_V(AA, BB, cfg.nvec) indexes_b = setdiff(collect(1:(n + m)), landmarks) indexes = sortperm(vcat(landmarks, indexes_b)) for i = 2:cfg.nvec + 1 V[:,i] = V[:,i] ./ V[:,1] end return V[indexes,2:cfg.nvec + 1] end """ ```@julia type DNCuts ``` # Multiscale Combinatorial Grouping for Image Segmentation and Object Proposal Generation ## Jordi Pont-Tuset, Pablo Arbeláez, Jonathan T. Barron, Member, Ferran Marques, Jitendra Malik """ struct DNCuts <: EigenvectorEmbedder scales::Integer nev::Integer img_size end function pixel_decimate(img_size::Tuple{Int,Int}, steps) (nr, nc) = img_size decimated = CartesianIndices(img_size)[1:steps:nr, 1:steps:nc] return (LinearIndices(img_size)[decimated][:], size(decimated)) end embedding(d::DNCuts, g::Graph) = embedding(d, adjacency_matrix(g)) """ ``` embedding(d::DNCuts, L) ``` """ function embedding(d::DNCuts, W::AbstractMatrix{T}) where T<:Number matrices = [] img_size = d.img_size for j = 1:d.scales (idx, img_size) = pixel_decimate(img_size, 2) B = W[:, idx] C = Diagonal(vec(1 ./ sum(B, dims=2))) * B push!(matrices, C) W = C' * B end ss = ShiMalikLaplacian(d.nev) V = embedding(ss, NormalizedLaplacian(NormalizedAdjacency(CombinatorialAdjacency(W)))) for s = d.scales:-1:1 V = matrices[s] * V end return svd_whiten(V) end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
2876
export clusterize, KMeansClusterizer, YuEigenvectorRotation, EigenvectorClusterizer, EigenvectorClusteringResult using Clustering import Clustering.assignments import Clustering.ClusteringResult struct EigenvectorClusteringResult{T<:Integer} <: ClusteringResult assignments::Vector{T} end function assignments(r::EigenvectorClusteringResult) return r.assignments end abstract type EigenvectorClusterizer end """ ```julia struct KMeansClusterizer <: EigenvectorClusterizer k::Integer init::Symbol end ``` """ struct KMeansClusterizer <: EigenvectorClusterizer k::Integer init::Symbol end function KMeansClusterizer(k::Integer) return KMeansClusterizer(k, :kmpp) end function clusterize(t::KMeansClusterizer, E) model = kmeans(Matrix(E'), t.k, init =t.init) return EigenvectorClusteringResult(assignments(model)) end """ Multiclass Spectral Clustering """ struct YuEigenvectorRotation <: EigenvectorClusterizer maxIter::Integer end function YuEigenvectorRotation() return YuEigenvectorRotation(500) end function clusterize(cfg::YuEigenvectorRotation, X_star_hat::Matrix) (N,k) = size(X_star_hat) X_star_hat = spdiagm(0=>1 ./ sqrt.(vec(mapslices(norm, X_star_hat, dims=[2]))))*X_star_hat hasConverged = false R_star = zeros(k,k) R_star[:, 1] = [X_star_hat[rand(1:N), i] for i = 1:k ] c = zeros(N) for j=2:k c = c + abs.(X_star_hat*R_star[:,j-1]) i = findmin(c)[2] R_star[:, j] = X_star_hat[i, :]' end lastObjectiveValue = Inf nIter = 0 ncut_value = 0 X_star = nothing while !hasConverged nIter = nIter+ 1 X_hat = X_star_hat*R_star #non maximum supression labels = vec([I[2] for I in findmax(X_hat, dims=2)[2]]) X_star = zeros(size(X_star_hat)) for (i, l) = enumerate(labels) X_star[i, l] = l end F = svd(X_star' * X_star_hat, full=true) U, S, Vh = (F.U, F.S, F.Vt) ncutValue = sum(S) if ((abs(ncutValue - lastObjectiveValue) < eps()) || (nIter > cfg.maxIter)) hasConverged = true else lastObjectiveValue = ncutValue R_star = Vh'*U' end end labels = vec([I[2] for I in findmax(X_star, dims=2)[2]]) return EigenvectorClusteringResult(labels) end """ ```julia function clusterize{T<:EigenvectorEmbedder, C<:EigenvectorClusterizer}(cfg::T, clus::C, X) ``` Given a set of patterns `X` generates an eigenvector space according to `T<:EigenvectorEmbeddder` and then clusterize the eigenvectors using the algorithm defined by `C<:EigenvectorClusterize`. """ function clusterize(cfg::T, clus::C, X, params...) where T<:EigenvectorEmbedder where C<:EigenvectorClusterizer E = embedding(cfg,X, params...) return clusterize(clus, E) end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
9966
export embedding, NgLaplacian, ShiMalikLaplacian, YuShiPopout, PartialGroupingConstraints using LightGraphs using LightGraphs.LinAlg using ArnoldiMethod using LinearAlgebra using Arpack abstract type AbstractEmbedding <: EigenvectorEmbedder end """ ```julia type NgLaplacian <: AbstractEmbedding ``` # Members - `nev::Integer`. The number of eigenvectors to obtain - `normalize::Bool`. Wether normalize the obtained eigenvectors Given a affinity matrix `` W \\in \\mathbb{R}^{n \\times n} ``. Ng et al defines the laplacian as `` L = D^{-\\frac{1}{2}} W D^{-\\frac{1}{2}} `` where `` D `` is a diagonal matrix whose (i,i)-element is the sum of W's i-th row. The embedding function solves a relaxed version of the following optimization problem: ``\\begin{array}{crclcl} \\displaystyle \\max_{ U \\in \\mathbb{R}^{n\\times k} \\hspace{10pt} } & \\mathrm{Tr}(U^T L U) &\\\\ \\textrm{s.a.} {U^T U} = I && \\end{array}`` U is a matrix that contains the `nev` largest eigevectors of `` L ``. # References - [On Spectral Clustering: Analysis and an algorithm. Andrew Y. Ng, Michael I. Jordan, Yair Weiss](http://ai.stanford.edu/~ang/papers/nips01-spectral.pdf) """ struct NgLaplacian <: AbstractEmbedding nev::Integer normalize::Bool end NgLaplacian(nev::Integer) = NgLaplacian(nev, true) """ ```julia embedding(cfg::NgLaplacian, W::CombinatorialAdjacency) ``` Performs the eigendecomposition of the laplacian matrix of the weight matrix `` W `` defined according to [`NgLaplacian`](@ref) """ function embedding(cfg::NgLaplacian, W::CombinatorialAdjacency) return embedding(cfg, NormalizedAdjacency(W)) end """ ```julia embedding(cfg::NgLaplacian, L::NormalizedAdjacency) ``` Performs the eigendecomposition of the laplacian matrix of the weight matrix `` W `` defined according to [`NgLaplacian`](@ref) """ embedding(cfg::NgLaplacian, L::NormalizedAdjacency) = embedding(cfg, sparse(L)) """ ```julia embedding(cfg::NgLaplacian, L::SparseMatrixCSC) ``` Performs the eigendecomposition of the laplacian matrix of the weight matrix `` W `` defined according to [`NgLaplacian`](@ref) """ function embedding(cfg::NgLaplacian, L::AbstractMatrix) (vals, vec) = LightGraphs.eigs(L, nev = cfg.nev + 5, which = LM(), restarts=5000) vec = real(vec) a = (.!(isapprox.(vals, 1))) vec = vec[:, a] vec = vec[:, 1:cfg.nev] if cfg.normalize return normalize_rows(vec) else return vec end end """ The normalized laplacian as defined in `` D^{-\\frac{1}{2}} (D-W) D^{-\\frac{1}{2}} ``. ## References: - Spectral Graph Theory. Fan Chung - Normalized Cuts and Image Segmentation. Jiambo Shi and Jitendra Malik ``` type ShiMalikLaplacian <: AbstractEmbedding ``` # Members - `nev::Integer`. The number of eigenvector to obtain. - `normalize::Bool`. Wether normalize the obtained eigenvectors """ struct ShiMalikLaplacian <: AbstractEmbedding nev::Integer normalize::Bool end ShiMalikLaplacian(nev::Integer) = ShiMalikLaplacian(nev, true) """ ``` struct PartialGroupingConstraints <: AbstractEmbedding ``` # Members - `nev::Integer`. The number of eigenvector to obtain. - `smooth::Bool`. Whether to user Smooth Constraints - `normalize::Bool`. Whether to normalize the rows of the obtained vectors Segmentation Given Partial Grouping Constraints Stella X. Yu and Jianbo Shi """ struct PartialGroupingConstraints <: AbstractEmbedding nev::Integer smooth::Bool normalize::Bool end function PartialGroupingConstraints(nev::Integer; smooth::Bool=true, normalize::Bool=false) return PartialGroupingConstraints(nev, smooth, normalize) end """ ``` struct PGCMatrix{T,I,F} <: AbstractMatrix{T} ``` Partial grouping constraint structure. This sturct is passed to eigs to performe the L*x computation according to (41), (42) and (43) of ""Segmentation Given Partial Grouping Constraints"" """ struct PGCMatrix{T} <: AbstractMatrix{T} W::NormalizedAdjacency{T} At end import Base.size import LinearAlgebra.issymmetric import Base.* import LinearAlgebra.mul! function size(a::PGCMatrix) return size(a.W) end function issymmetric(a::PGCMatrix) return true end function mul!(dest::AbstractVector, a::PGCMatrix, x::AbstractVector) z = x - (a.At * x) y = a.W * z dest[:] = y - (a.At* y) end function restriction_matrix(nv::Integer, restrictions::Vector{Vector{Integer}}) I = Integer[] J = Integer[] V = Float64[] k = 0 for j = 1:length(restrictions) U_t = restrictions[j] for i=1:length(U_t)-1 elem_i = U_t[i] elem_j = U_t[i+1] k += 1 push!(I, elem_i) push!(J, k) push!(V, 1.0) push!(I, elem_j) push!(J, k) push!(V, -1.0) end end return sparse(I, J, V, nv, k) end """ ``` function embedding(cfg::PartialGroupingConstraints, L::NormalizedAdjacency, restrictions::Vector{Vector{Integer}}) ``` # Arguments - `cfg::PartialGroupingConstraints` - `L::NormalizedAdjacency` - `restrictions::Vector{Vector{Integer}}` """ function embedding(cfg::PartialGroupingConstraints, L::NormalizedAdjacency, restrictions::Vector{Vector{Integer}}) U = restriction_matrix(size(L, 1), restrictions) if (cfg.smooth) U = sparse(L.A)' * U end DU = sparse(spdiagm(0=>prescalefactor(L)) * U) F = svds(DU, nsv=size(U, 2)-1)[1] AAt = sparse(F.U)*sparse(F.U)' (eigvals, eigvec) = LightGraphs.eigs(PGCMatrix(L, AAt), nev = cfg.nev, which = LM()) eigvec = real(eigvec) V = spdiagm(0=>prescalefactor(L)) * eigvec if cfg.normalize return normalize_rows(V) else return V end end """ ``` embedding(cfg::PartialGroupingConstraints, gr::Graph, restrictions::Vector{Vector{Integer}}) ``` # Arguments - `cfg::PartialGroupingConstraints` - `L::NormalizedAdjacency` - `restrictions::Vector{Vector{Integer}}` """ function embedding(cfg::PartialGroupingConstraints, gr::Graph, restrictions::Vector{Vector{Integer}}) L = NormalizedAdjacency(CombinatorialAdjacency(adjacency_matrix(gr))) return embedding(cfg, L, restrictions) end """ ``` struct YuShiPopout <: AbstractEmbedding ``` # Members - `nev::Integer`. The number of eigenvector to obtain. Understanding Popout through Repulsion Stella X. Yu and Jianbo Shi """ struct YuShiPopout <: AbstractEmbedding nev::Integer normalize::Bool end YuShiPopout(nev::Integer) = YuShiPopout(nev, true) """ ```julia function embedding(cfg::YuShiPopout, grA::Graph, grR::Graph) ``` # References - Grouping with Directed Relationships. Stella X. Yu and Jianbo Shi - Understanding Popout through Repulsion. Stella X. Yu and Jianbo Shi """ function embedding(cfg::YuShiPopout, grA::Graph, grR::Graph, restrictions::Vector{Vector{Integer}}) Wa = adjacency_matrix(grA) Wr = adjacency_matrix(grR) dr = vec(sum(Wr, 1)) W = Wa - Wr + spdiagm(dr) return embedding(PartialGroupingConstraints(cfg.nev), NormalizedAdjacency(CombinatorialAdjacency(W)), restrictions) end """ ```julia function embedding(cfg::YuShiPopout, grA::Graph, grR::Graph) ``` # References - Grouping with Directed Relationships. Stella X. Yu and Jianbo Shi - Understanding Popout through Repulsion. Stella X. Yu and Jianbo Shi """ function embedding(cfg::YuShiPopout, grA::Graph, grR::Graph) Wa = adjacency_matrix(grA) Wr = adjacency_matrix(grR) dr = vec(sum(Wr, dims=1)) da = vec(sum(Wa, dims=1)) Weq = Wa - Wr + spdiagm(0=>dr) Deq = spdiagm(0=>da + dr) Wa = nothing da = nothing Wr = nothing dr = nothing (eigvals, eigvec) = Arpack.eigs(Weq, Deq, nev = cfg.nev, tol = 0.000001, which = :LM) #indexes = sortperm(real(eigvals)) return eigvec #if (cfg.normalize) # return SpectralClustering.normalize_rows(eigvec) #else # return eigvec #end end """ ```julia embedding(cfg::NgLaplacian, W::CombinatorialAdjacency) ``` Performs the eigendecomposition of the laplacian matrix of the weight matrix `` W `` defined according to [`NgLaplacian`](@ref) """ function embedding(cfg::ShiMalikLaplacian, W::CombinatorialAdjacency) return embedding(cfg, NormalizedLaplacian(NormalizedAdjacency(W))) end """ ```julia embedding(cfg::ShiMalikLaplacian, L::NormalizedLaplacian) ``` # Parameters - `cfg::ShiMalikLaplacian`. An instance of a [`ShiMalikLaplacian`](@ref) that specify the number of eigenvectors to obtain - `gr::Union{Graph,SparseMatrixCSC}`. The `Graph`(@ref Graph) or the weight matrix of wich is going to be computed the normalized laplacian matrix. Performs the eigendecomposition of the normalized laplacian matrix of the laplacian matriz `L` defined acoording to [`ShiMalikLaplacian`](@ref). Returns the cfg.nev eigenvectors associated with the non-zero smallest eigenvalues. """ function embedding(cfg::ShiMalikLaplacian, L::NormalizedLaplacian) (vals, V) = LightGraphs.eigs(sparse(L), nev=min(cfg.nev + 10, size(L, 1)), which = SR(), restarts=5000) idxs = findall(real(vals) .> 0.0000001) idxs = idxs[1:min(length(idxs), cfg.nev)] V = spdiagm(0 => L.A.A.D.^(1 / 2)) * real(V[:,idxs]) if cfg.normalize return normalize_rows(V) else return V end end """ ``` embedding{T<:AbstractEmbedding}(cfg::T, neighborhood::VertexNeighborhood, oracle::Function, data) ``` """ function embedding(cfg::T, neighborhood::VertexNeighborhood, oracle::Function, data) where T <: AbstractEmbedding graph = create(cfg.graph_creator, data) return embedding(cfg, graph) end """ ```julia embedding(cfg::T, gr::Graph) where T<:AbstractEmbedding ``` Performs the eigendecomposition of the laplacian matrix of the weight matrix `` W `` derived from the graph `gr` defined according to [`NgLaplacian`](@ref) """ function embedding(cfg::T, gr::Graph) where T <: AbstractEmbedding return embedding(cfg, CombinatorialAdjacency(adjacency_matrix(gr, dir = :both))) end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
3207
export AbstractLandmarkSelection, LandmarkBasedRepresentation, RandomLandmarkSelection, EvenlySpacedLandmarkSelection, select_landmarks, BresenhamLandmarkSelection, MS3 using StatsBase """ ```julia abstract type AbstractLandmarkSelection end ``` Abstract type that defines how to sample data points. Types that inherint from `AbstractLandmarkSelection` has to implements the following interface: ```julia select_landmarks{L<:AbstractLandmarkSelection}(c::L, X) ``` The `select_landmarks`function returns an array with the indices of the sampled points. # Arguments - ```c::T<:AbstractLandmarkSelecion```. The landmark selection type. - ```d::D<:DataAccessor```. The [`DataAccessor`](ref) type. - ```X```. The data. The data to be sampled. """ abstract type AbstractLandmarkSelection end """ ``` struct RandomLandmarkSelection <: LandmarkSelection ``` `Random` random samples `n` data points from a dataset. """ struct RandomLandmarkSelection <: AbstractLandmarkSelection end """ ```julia select_landmarks(c::RandomLandmarkSelection,d::T,n::Integer, X) ``` The function returns `n`random points according to `RandomLandmarkSelection` # Arguments - c::RandomLandmarkSelection. - n::Integer. The number of data points to sample. - X. The data to be sampled. """ function select_landmarks(c::RandomLandmarkSelection,n::Integer, X) return StatsBase.sample(1:number_of_patterns(X), n, replace = false) end """ ``` struct EvenlySpacedLandmarkSelection <: AbstractLandmarkSelection ``` The `EvenlySpacedLandmarkSelection` selection method selects `n` evenly spaced points from a dataset. """ struct EvenlySpacedLandmarkSelection <: AbstractLandmarkSelection end """ ``` select_landmarks(c::EvenlySpacedLandmarkSelection,n::Integer, X) ``` """ function select_landmarks(c::EvenlySpacedLandmarkSelection, n::Integer, X) m = number_of_patterns(X) return collect(1:round(Integer,floor(m/n)):m)[1:n] end struct BresenhamLandmarkSelection <: AbstractLandmarkSelection end function select_landmarks(c::BresenhamLandmarkSelection, m::Integer, X) n = number_of_patterns(X) return round.(Integer, [(i-1)*n//m + n//(2*m) for i=1:m]) end """ ``` struct MS3 <: AbstractLandmarkSelection proportion::Float64 sim::Function end ``` The `MS3` selection method selects `m` NYSTROM SAMPLING DEPENDS ON THE EIGENSPECTRUM SHAPE OF THE DATA """ struct MS3 <: AbstractLandmarkSelection proportion::Float64 sim::Function end function select_landmarks(c::MS3, m::Integer, X) cant = number_of_patterns(X) points = [rand(1:cant); rand(1:cant)] while (length(points)<m) T_candidates = setdiff(1:cant, points) T = rand(T_candidates, round(Integer,length(T_candidates)*c.proportion)) min_simmilarity = Inf min_point = 0 for t in T simmilarity = 0 for p in points simmilarity = simmilarity + c.sim(get_element(X,p), get_element(X,t))^2 end if simmilarity < min_simmilarity min_simmilarity = simmilarity min_point = t end end push!(points, min_point) end return points end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
5498
export embedding, View, CoRegularizedMultiView, KernelProduct, KernelAddition """ A view ```julia struct View embedder::NgLaplacian lambda::Float64 end ``` # Members - embedder::EigenvectorEmbedder - lambda::Float64 """ struct View nev::Integer lambda::Float64 end """ # Co-regularized Multi-view Spectral Clustering ### Abhishek Kumar, Piyush Rai, Hal Daumé """ struct CoRegularizedMultiView <: EigenvectorEmbedder max_iterations::Integer views::Vector{View} end function CoRegularizedMultiView(views::Vector{View}; max_iterations::Integer=500) return CoRegularizedMultiView(max_iterations, views) end """ ```julia embedding(cfg::CoRegularizedMultiView, X::Vector) ``` # Arguments - `cfg::CoRegularizedMultiView` - `X::Vector{Graph}` An example that shows how to use this methods is provied in the Usage section of the manual """ function embedding(cfg::CoRegularizedMultiView, X::Vector{Graph}; disagreement::Union{Nothing,Vector} = nothing) U = Vector{Matrix}(undef, length(cfg.views)) Laplacians = [sparse(NormalizedAdjacency(CombinatorialAdjacency(adjacency_matrix(X[i], dir=:both)))) for i=1:length(cfg.views) ] #Initialize all U(v),2≤v≤m$ for i=2:length(cfg.views) U[i] = embedding(NgLaplacian(cfg.views[i].nev, false), Laplacians[i]) end curr_objective = -Inf prev_objective = 0 best_objective = Inf iterations_without_improvement = 0 threshold = 0.00001 iteration = 0 while iteration < cfg.max_iterations && (abs(curr_objective - prev_objective) > threshold) && (iterations_without_improvement < 8) for i=1:length(cfg.views) L = Laplacians[i] for j=1:length(cfg.views) if (j!=i) L = L + cfg.views[j].lambda*U[j]*U[j]' end end U[i] = embedding(NgLaplacian(cfg.views[i].nev, false), L) prev_objective = curr_objective curr_objective = sum([tr((U[d]*U[d]')*(U[j]*U[j]')) for j=1:length(U) for d=1:length(U)]) if curr_objective < best_objective best_objective = curr_objective iterations_without_improvement = 0 else iterations_without_improvement += 1 end if (disagreement!=nothing) push!( disagreement, curr_objective) end iteration += 1 end end return U[1] end struct KernelAddition <: EigenvectorEmbedder embedder::EigenvectorEmbedder end function embedding(cfg::KernelAddition, X::Vector{Graph}) W = adjacency_matrix(X[1]) for j=2:length(X) W += adjacency_matrix(X[j]) end W = CombinatorialAdjacency(W) return embedding(cfg.embedder, W) end struct KernelProduct <: EigenvectorEmbedder embedder::EigenvectorEmbedder end function embedding(cfg::KernelProduct, X::Vector{Graph}) W = adjacency_matrix(X[1]) for j=2:length(X) W .*= adjacency_matrix(X[j]) end W = CombinatorialAdjacency(W) return embedding(cfg.embedder, W) end """ type LargeScaleMultiView # Large-Scale Multi-View Spectral Clustering via Bipartite Graph. In AAAI (pp. 2750-2756). ## Li, Y., Nie, F., Huang, H., & Huang, J. (2015, January). [Matlab implementation](https://github.com/zzz123xyz/MVSC/blob/master/MVSC.m) # Members - `k::Integer`. Number of clusters. - `n_salient_points::Integer`. Number of salient points. - `k_nn::Integer`. k nearest neighbors. - 'gamma::Float64`. """ struct LargeScaleMultiView k::Integer n_salient_points::Integer k_nn::Integer gamma::Float64 end """ # Parameters - `cfg::LargeScaleMultiView` - `data::Vector`. An array of views. """ #=function embedding(cfg::LargeScaleMultiView, data::Vector) niters = 10; n = V = length(data) salient_points = rest_of_points = a = fill(1/nbclusters, [V]); for v = 1:V RestPnt = data{v}(:,RestPntInd)'; PairDist = pdist2(RestPnt,SltPnt(:,dim_V_ind1(v): dim_V_ind2(v))); [score, ind] = sort(PairDist,2); ind = ind(:,1:k); %***** %make a Indicator Mask to record j \in \theta_i IndMask = zeros(n - nbSltPnt, nbSltPnt); for i = 1:n - nbSltPnt IndMask(i, ind(i,:)) = 1; end Kernel = exp(-(PairDist).^2 ./ (2*param^2)); Kernel = Kernel.*IndMask; SumSltKnl = repmat(sum(Kernel, 2),[1,nbSltPnt]); Z{v} = Kernel ./ SumSltKnl; Dc{v} = diag(sum(Z{v},1)+eps); Dr{v} = diag(sum(Z{v},2)); D{v} = blkdiag(Dr{v},Dc{v}); tmp1 = zeros(n); tmp1(1:n-nbSltPnt,n-nbSltPnt+1:end) = Z{v}; tmp1(n-nbSltPnt+1:end,1:n-nbSltPnt) = Z{v}'; W{v} = tmp1; L{v} = eye(n) - (D{v}^-0.5) * W{v} * (D{v}^-0.5); end for t = 1:niters L_sum = zeros(n, n); Z_hat = zeros(n - nbSltPnt, nbSltPnt); for v = 1:V Z_hat = Z_hat + a(v)^gamma*Z{v}*(Dc{v})^(-0.5); end % compute G according to (14) [Gx_a, S, Gu_a] = svd(Z_hat, 'econ'); Gx = Gx_a(:,1:nbclusters); Gu = Gu_a(:,1:nbclusters); G = [Gx', Gu']'; for v = 1:V h(v) = trace(G'*L{v}*G); %*** h(v) = trace(G'*L{v}*G); dim of G mismatch L end % compute a(v) according to (10) tmp1 = (gamma .* h).^(1/(1-gamma)) ; a = tmp1 ./ sum(tmp1); [Y, C] = kmeans(G, nbclusters); % compute the value of objective function (5) for v = 1:V L_sum = L_sum + a(v)^gamma*L{v}; end obj_value(t) = trace(G'*L_sum*G); %obj_value(t) = trace(G'*L_sum*G); end =#
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
359
module SpectralClustering export EigenvectorEmbedder, embedding abstract type EigenvectorEmbedder end include("Utils/DataAccess.jl") include("Utils/DataProcessing.jl") include("Graph/Graphs.jl") include("LandmarkSelection.jl") include("Embedding.jl") include("ApproximateEmbedding.jl") include("MultiView.jl") include("EigenvectorClustering.jl") end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
8815
using NearestNeighbors using StatsBase using Statistics export VertexNeighborhood, KNNNeighborhood, create, PixelNeighborhood, local_scale, neighbors, RandomNeighborhood, CliqueNeighborhood import SpectralClustering: spatial_position import Base.ones """ ```julia struct RandomKGraph ``` The type RandomKGraph defines the parameters needed to create a random k-graph. Every vertex it is connected to `k` random neigbors. # Members - `number_of_vertices::Integer`. Defines the number of vertices of the graph. - `k::Integer`. Defines the minimum number of neighborhood of every vertex. """ struct RandomKGraph number_of_vertices::Integer k::Integer end """ ```julia create(cfg::RandomKGraph) ``` Construct a [`RandomKGraph`](@ref) such that every vertex is connected with other k random vertices. """ function create(cfg::RandomKGraph) g = Graph(cfg.number_of_vertices) for i = 1:cfg.number_of_vertices cant = 0 while cant < cfg.k selected = rand(1:cfg.number_of_vertices) while selected == i selected = rand(1:cfg.number_of_vertices) end connect!(g, i, selected, rand()) cant = cant + 1 end end return g; end """ ```julia abstract type VertexNeighborhood end ``` The abstract type VertexNeighborhood provides an interface to query for the neighborhood of a given vertex. Every concrete type that inherit from VertexNeighborhood must define the function ```julia neighbors{T<:VertexNeighborhood}(cfg::T, j::Integer, data) ``` which returns the neighbors list of the vertex j for the given data. """ abstract type VertexNeighborhood end """ ```julia struct PixelNeighborhood <: VertexNeighborhood ``` `PixelNeighborhood` defines neighborhood for a given pixel based in its spatial location. Given a pixel located at (x,y), returns every pixel inside \$(x+e,y), (x-e,y)\$ and \$(x,y+e)(x,y-e)\$. # Members - e:: Integer. Defines the radius of the neighborhood. """ struct PixelNeighborhood <: VertexNeighborhood e::Integer end """ ```julia neighbors(cfg::PixelNeighborhood, j::Integer, img) ``` Returns the neighbors of the pixel j according to the specified in [`PixelNeighborhood`](@ref) """ function neighbors(cfg::PixelNeighborhood, j::Integer, img::Matrix{T}) where T <: Colorant pos = CartesianIndices(img)[j] w_r = max(pos[1] - cfg.e, 1):min(pos[1] + cfg.e, size(img, 1)) w_c = max(pos[2] - cfg.e, 1):min(pos[2] + cfg.e, size(img, 2)) return vec(map(x->LinearIndices(img)[x[1],x[2]], CartesianIndices((w_r, w_c)))) end """ ```julia struct CliqueNeighborhood <: VertexNeighborhood ``` `CliqueNeighborhood` specifies that the neighborhood for a given vertex \$j\$ in a graph of \$n\$ vertices are the remaining n-1 vertices. """ struct CliqueNeighborhood <: VertexNeighborhood end """ ```julia neighbors(config::CliqueNeighborhood, j::Integer, X) ``` Return every other vertex index different from \$j\$. See [`CliqueNeighborhood`](@ref) """ function neighbors(config::CliqueNeighborhood, j::Integer, X) return filter!(x->x != j, collect(1:number_of_patterns(X))) end """ ```julia struct KNNNeighborhood <: VertexNeighborhood k::Integer tree::KDTree end ``` `KNNNeighborhood` specifies that the neighborhood for a given vertex \$j\$ are the \$k\$ nearest neighborgs. It uses a tree to search the nearest patterns. # Members - `k::Integer`. The number of k nearest neighborgs to connect. - `tree::KDTree`. Internal data structure. - `f::Function`. Transformation function """ struct KNNNeighborhood <: VertexNeighborhood k::Integer tree::KDTree t::Function end """ ```julia KNNNeighborhood(X::Matrix, k::Integer) ``` Create the [`KNNNeighborhood`](@ref) type by building a `k`-nn tre from de data `X` Return the indexes of the `config.k` nearest neigbors of the data point `j` of the data `X`. """ function KNNNeighborhood(X, k::Integer, f::Function = x->x) tree = KDTree(hcat([f(get_element(X, j)) for j = 1:number_of_patterns(X)]...)) return KNNNeighborhood(k, tree, f) end neighbors(config::KNNNeighborhood, j::Integer, X) = neighbors(config, get_element(X, j)) function neighbors(config::KNNNeighborhood, data) idxs, dists = knn(config.tree, config.t(data), config.k + 1, true) return idxs[2:config.k + 1] end """ ```@julia struct RandomNeighborhood <: VertexNeighborhood k::Integer end ``` For a given index `j`return `k` random vertices different from `j` """ struct RandomNeighborhood <: VertexNeighborhood k::Integer end function neighbors(config::RandomNeighborhood, j::Integer, X) samples = StatsBase.sample(1:number_of_patterns(X), config.k, replace = false) if (in(j, samples)) filter!(e->e != j, samples) end while (length(samples) < config.k) s = StatsBase.sample(1:number_of_patterns(X), 1)[1] if (s != j) push!(samples, s) end end return samples end """ ```julia weight{T<:DataAccessor}(w::Function,d::T, i::Int,j::Int,X) ``` Invoke the weight function provided to compute the similarity between the pattern `i` and the pattern `j`. """ function weight(w::Function, i::Integer, j::Integer, X) x_i = get_element(X, i) x_j = get_element(X, j) return w(i, j, x_i, x_j) end """ ```julia create(w_type::DataType, neighborhood::VertexNeighborhood, oracle::Function,X) ``` Given a [`VertexNeighborhood`](@ref), a simmilarity function `oracle` construct a simmilarity graph of the patterns in `X`. """ function create(w_type::DataType, neighborhood::VertexNeighborhood, oracle::Function, X) number_of_vertices = number_of_patterns(X) g = Graph(number_of_vertices; weight_type = w_type) @Threads.threads for j = 1:number_of_vertices neigh = neighbors(neighborhood, j, X) x_j = get_element(X, j) x_neigh = get_element(X, neigh) weights = oracle(j, neigh, x_j, x_neigh) connect!(g, j, neigh, weights) end GC.gc() return g end """ ```julia create(neighborhood::VertexNeighborhood, oracle::Function,X) ``` Given a [`VertexNeighborhood`](@ref), a simmilarity function `oracle` construct a simmilarity graph of the patterns in `X`. """ function create(neighborhood::VertexNeighborhood, oracle::Function, X) create(Float64, neighborhood, oracle, X) end """ ```julia local_scale(neighborhood::KNNNeighborhood, oracle::Function, X; k::Integer = 7) ``` Computes thescale of each pattern according to [Self-Tuning Spectral Clustering](https://papers.nips.cc/paper/2619-self-tuning-spectral-clustering.pdf). Return a matrix containing for every pattern the local_scale. # Arguments - `neighborhood::KNNNeighborhood` - `oracle::Function` - `X` the data \"The selection of thescale \$ \\sigma \$ can be done by studying thestatistics of the neighborhoods surrounding points \$ i \$ and \$ j \$ .i \" Zelnik-Manor and Perona use \$ \\sigma_i = d(s_i, s_K) \$ where \$s_K\$ is the \$ K \$ neighbor of point \$ s_i \$ . They \"used a single value of \$K=7\$, which gave good results even for high-dimensional data \" . """ function local_scale(neighborhood::T, oracle::Function, X; k::Integer = 7, sortdim::Integer=1) where T<:VertexNeighborhood sort_data(d::AbstractArray; dims=1) = sort(d) sort_data(d::AbstractMatrix; dims=1) = sort(d, dims=dims) temp = nothing distance_function = nothing try temp = oracle(get_element(X, 1), get_element(X, [1, 2])) distance_function = (a,b,c,d)->oracle(c, d) catch e temp = oracle(0, [0], get_element(X, 1), get_element(X, [1, 2])) distance_function = oracle end number_of_vertices = number_of_patterns(X) scales = zeros(size(temp, 2), number_of_vertices) for j = 1:number_of_vertices neigh = neighbors(neighborhood, j, X) distances = distance_function(j, neigh, get_element(X, j), get_element(X, neigh)) scales[:, j] .= sort_data(distances, dims=sortdim)[k, :] end return scales end #=""" Given a graph (g) created from a X_prev \in R^{d x n}, updates de graph from the matrix X \in R^{d x m}, m > n. Adding the correspondent vertices and connecting them whith the existing ones. """ function update!(config::GraphCreationConfig,g::Graph,X) number_of_vertices = number_of_patterns(config.da,X) old_number_of_vertices = number_of_vertices(g) for j=old_number_of_vertices+1:number_of_vertices add_vertex!(g) end for j=old_number_of_vertices+1:number_of_vertices neigh = neighbors(config.neighborhood,j,X) for i in neigh w = weight(config.oracle,i,j,X) connect!(g,i,j,w) end end end =# # Weight functions constant(k) = (i::Integer, neigh, v, m) = ones(size(m, 2)) * k ones(i::Integer, neigh, v, m) = ones(size(m, 2))
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
12611
export Creation, Matrices, Graph, connect!, disconnect, remove_vertex!, reindex!, random_graph, target_vertex, cycles, number_of_neighbors using LightGraphs import LightGraphs: nv, ne, has_edge, is_directed import Base.length import Base.empty! import Base.iterate """ ```julia type Edge ``` """ mutable struct Edge{T} next_v1::Union{Nothing,Edge{T}} prev_v1::Union{Nothing,Edge{T}} next_v2::Union{Nothing,Edge{T}} prev_v2::Union{Nothing,Edge{T}} v1 v2 weight::T end function weight_type(edge::Edge{T}) where T return T end mutable struct Vertex{T, EdgeType} id::Integer data::T edges::Union{Nothing,Edge{EdgeType}} number_of_edges::Integer degree::Float64 connections::Set{Integer} lock::Threads.SpinLock end function weight_type(v::Vertex{V,E}) where V where E return E end function Vertex(id::Integer,d::DataType = Any, val=nothing, weight_type::DataType=Float64) return Vertex{d, weight_type}(id,val,nothing,0,0, Set{Integer}(),Threads.SpinLock()) end function Edge(v1::Vertex,v2::Vertex,w::Number) return Edge{weight_type(v1)}(nothing,nothing,nothing,nothing,v1,v2,convert(weight_type(v1),w)) end struct Graph vertices::Vector{Vertex} is_dirty::Bool end struct EdgeIterator e::Union{Nothing,Edge} i::Integer end function empty!(g::Graph) for i=1:length(g.vertices) g.vertices[i].edges = nothing g.vertices[i].number_of_edges = 0 g.vertices[i].degree = 0 end end """ ```julia Graph(n_vertices::Integer=0; vertex_type::DataType = Any ,initial_value=nothing, weight_type::DataType = Float64) ``` Construct an undirected weighted grpah of `n_vertices` vertices. """ function Graph(n_vertices::Integer=0; vertex_type::DataType = Any ,initial_value=nothing, weight_type::DataType = Float64) vertices = Vector{Vertex{vertex_type, weight_type}}(undef, n_vertices) for i=1:n_vertices vertices[i] = Vertex(i,vertex_type,initial_value, weight_type) end return Graph(vertices,false) end function is_directed(g::Graph) return false end """ ```julia nv(g::Graph) ``` Return the number of vertices of `g`. """ function nv(g::Graph) return length(g.vertices) end function ne(g::Graph) return sum([v.number_of_edges for v in g.vertices]) end function has_edge(gr::Graph, i::Integer, k::Integer) return (k in gr.vertices[i].connections) end function insert!(v::Vertex,e::Edge) if (e.v1 == v) #El siguiente del nuevo es el primero de la lista original e.next_v1 = v.edges #El anterior del primero de la lista original es ahora el nuevo if (v.edges != nothing) if (v.edges.v1 == v) v.edges.prev_v1 = e else v.edges.prev_v2 = e end end v.edges = e else e.next_v2 = v.edges if (v.edges != nothing) if (v.edges.v1 == v) v.edges.prev_v1 = e else v.edges.prev_v2 = e end end v.edges = e end end function set_previous(v::Vertex,e::Edge,prev::Union{Nothing,Edge}) if (e.v1 == v) e.prev_v1=prev else e.prev_v2=prev end end function set_next(v::Vertex,e::Edge,next::Union{Nothing,Edge}) if (e.v1 == v) e.next_v1=next else e.next_v2=next end end function linked_list_connect(v::Vertex,e::Edge,next::Union{Nothing,Edge}) set_next(v,e,next) if (next != nothing) set_previous(v,next,e) end end function remove!(v::Vertex,e::Edge) if (e.v1 == v) prev = e.prev_v1 if (prev == nothing) v.edges = e.next_v1 if e.next_v1 != nothing set_previous(v,e.next_v1,nothing) end return else linked_list_connect(v,prev,e.next_v1) end else prev = e.prev_v2 if (prev == nothing) v.edges = e.next_v2 if e.next_v2 != nothing set_previous(v,e.next_v2,nothing) end return else linked_list_connect(v,prev,e.next_v2) end end end """ ```julia function connect!(g::Graph, i::Integer, neighbors::Vector, weigths::Vector) ``` """ function connect!(g::Graph, i::Integer, neighbors::Vector, w::Vector) for j=1:length(neighbors) connect!(g,i,neighbors[j],w[j]) end end """ ```julia connect!(g::Graph,i::Integer,j::Integer,w::Number) ``` Connect the vertex `i` with the vertex `j` with weight `w`. """ function connect!(g::Graph,i::Integer,j::Integer,w::Number) if (i==j) return end if i>nv(g) || j>nv(g) throw("Invalid vertex") end if (w<=0) return end vertex_j = g.vertices[j] vertex_i = g.vertices[i] if !(vertex_j.id in vertex_i.connections) edge = Edge(g.vertices[i],g.vertices[j],w) lock(vertex_i.lock) lock(vertex_j.lock) insert!(g.vertices[i],edge) insert!(g.vertices[j],edge) push!(vertex_i.connections, vertex_j.id) push!(vertex_j.connections, vertex_i.id) unlock(vertex_j.lock) unlock(vertex_i.lock) g.vertices[i].number_of_edges=g.vertices[i].number_of_edges+1 g.vertices[j].number_of_edges=g.vertices[j].number_of_edges+1 g.vertices[i].degree = g.vertices[i].degree + w g.vertices[j].degree = g.vertices[j].degree + w end end """ ```julia target_vertex(e::Edge,v::Vertex) ``` Given an edge `e` and a vertex `v` returns the other vertex different from `v` """ function target_vertex(e::Edge,v::Vertex) if (e.v1 == v) return e.v2 elseif (e.v2 == v) return e.v1 else return Nothing end end """ ```julia length(v::Vertex) ``` Return the number of edges connected to a given vertex. """ function length(v::Vertex) return v.number_of_edges end function iterate(v::Vertex) if v.edges == nothing return nothing else edge = v.edges next_edge = edge.v1 == v ? edge.next_v1 : edge.next_v2 return (edge, next_edge) end end function iterate(v::Vertex, state) edge = state if edge == nothing return nothing else next_edge = edge.v1 == v ? edge.next_v1 : edge.next_v2 return (edge, next_edge) end end import Base.show function show(io::IO, e::Edge) println(string(e.v1.id," -(",e.weight, ")-> ",e.v2.id)) end function show(io::IO, g::Graph) for vertex in g.vertices println(vertex) for e in vertex println(e) end end end function show(io::IO, v::Vertex) repr = "Vertex $(v.id) (" if v.data != nothing repr *= "data=$(v.data), " end repr *= "n_edges=$(v.number_of_edges), " repr *= "degree=$(v.degree))" println(repr) end function find_edge(p, v::Vertex) for e in v if (p(e)) return e end end return nothing end """ ```julia disconnect(g::Graph,i::Integer,j::Integer) ``` Removes the edge that connects the `i`-th vertex to the `j`-th vertex. """ function disconnect(g::Graph,i::Integer,j::Integer) vertex_i = g.vertices[i] vertex_j = g.vertices[j] edge = find_edge(e->(e.v1 == vertex_j || e.v2==vertex_j),g.vertices[i]) remove!(vertex_i,edge) remove!(vertex_j,edge) delete!(vertex_i.connections, vertex_j.id) delete!(vertex_j.connections, vertex_i.id) vertex_i.degree = vertex_i.degree - edge.weight vertex_j.degree = vertex_j.degree - edge.weight g.is_dirty = true end function update_connections!(g::Graph) for i=1:nv(g) empty!(g.vertices[i].connections) for e in g.vertices[i] v_j = target_vertex(e, g.vertices[i]) push!(g.vertices[i].connections, v_j.id) end end end function reindex!(g::Graph) for i=1:nv(g) g.vertices[i].id = i end update_connections!(g) g.is_dirty = false end """ ```julia remove_vertex!(g::Graph,i::Integer) ``` Remove the `i`-th vertex. """ function remove_vertex!(g::Graph,i::Integer) if i>nv(g) throw("No se puede eliminar") end if (g.is_dirty) reindex!(g) end vertex_i = g.vertices[i] for e in vertex_i if e.v1 == vertex_i remove!(e.v2,e) e.v2.degree = e.v2.degree - e.weight e.v2.number_of_edges = e.v2.number_of_edges-1 else remove!(e.v1,e) e.v1.number_of_edges = e.v1.number_of_edges-1 e.v1.degree = e.v1.degree - e.weight end end deleteat!(g.vertices,i) g.is_dirty=true end function add_vertex!(g::Graph, datatype = Any, data=nothing) if g.is_dirty reindex!(g) end new_id = nv(g) +1 vertex = Vertex(new_id,datatype, data) push!(g.vertices,vertex) return vertex end function connect(e::Edge, v::Vertex) return e.v1 == v || e.v2 == v end function number_of_neighbors(g::Graph) number = zeros(Int,nv(g)) for i=1:length(g.vertices) n=0 for e in g.vertices[i] n= n +1 end number[i] = n end return number end """ ``` function random_graph(iterations::Integer; probs=[0.4,0.4,0.2], weight=()->5, debug=false) ``` Create a random graphs. `probs` is an array of probabilities. The function create a vertex with probability `probs[1]`, connect two vertices with probability `probs[2]` and delete a vertex with probability `probs[2]`. The weight of the edges is given by `weight` """ function random_graph(iterations::Integer; probs=[0.4,0.4,0.2], weight=()->5, debug=false) g= Graph() for i=1:iterations action = sum(rand() .>= cumsum(probs)) +1 nog = nv(g) if action==1 add_vertex!(g) if debug println("add_vertex!(g)") end elseif action == 2 if (nog >= 2) v1 = rand(1:nog) v2 = rand(1:nog) if (v1!=v2) if (debug) println("connect!(g,$(v1),$(v2),5)") end connect!(g,v1,v2,weight()) end end elseif action == 3 if (nog > 0) v1 = rand(1:nog) if (debug) println("remove_vertex!(g,$(v1))") end remove_vertex!(g,v1) end end end return g end struct TargetVertexAndWeight vertex_id::Integer edge_weight::Float64 end struct Triangle edge_1::TargetVertexAndWeight edge_2::TargetVertexAndWeight end function Triangle() return Triangle((-1,-1.0),(-1,-1.0)) end import Base.hash import Base.isequal function hash(a::Triangle, h::UInt) if a.edge_1.vertex_id < a.edge_2.vertex_id hash(a.edge_1.vertex_id, hash(a.edge_2.vertex_id, hash(:Triangle, h))) else hash(a.edge_2.vertex_id, hash(a.edge_1.vertex_id, hash(:Triangle, h))) end end isequal(a::Triangle, b::Triangle) = Base.isequal(hash(a), hash(b)) function compute_cycles(vertice_inicio::Vertex, vertice::Vertex, visitados::Vector{Bool}, ciclos::Set{Triangle}, cant_aristas::Integer, peso_aristas::TargetVertexAndWeight) if !visitados[vertice.id] visitados[vertice.id] = true cant_aristas = cant_aristas+1 for edge in vertice vertice_destino = target_vertex(edge, vertice) if cant_aristas == 1 peso_aristas.vertex_id = vertice_destino.id peso_aristas.edge_weight = edge.weight end if vertice_destino == vertice_inicio && cant_aristas == 3 push!(ciclos, Triangle( deepcopy(peso_aristas), TargetVertexAndWeight(vertice.id, edge.weight))) visitados[vertice.id]=false return #Si encontre un ciclo, no voy a encontrar otro else if !visitados[vertice_destino.id] if cant_aristas < 3 compute_cycles(vertice_inicio, vertice_destino, visitados, ciclos, cant_aristas,peso_aristas) end end end end visitados[vertice.id]=false end end function cycles(g::Graph) visitados = fill(false,length(g.vertices)) ciclos_vertices = [] for i=1:length(g.vertices) v = g.vertices[i] peso_aristas = TargetVertexAndWeight(-1,-1.0) ciclos = Set{Triangle}() compute_cycles(v,v, visitados,ciclos,0,peso_aristas) push!(ciclos_vertices,ciclos) end return ciclos_vertices end include("Creation.jl") include("Matrices.jl") include("Plot.jl")
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
1309
import LightGraphs.LinAlg: adjacency_matrix """ adjacency_matrix(g[, T=Int; dir=:out]) Return a sparse adjacency matrix for a graph, indexed by `[u, v]` vertices. Non-zero values indicate an edge between `u` and `v`. Users may override the default data type (`Int`) and specify an optional direction. ### Optional Arguments `dir=:out`: `:in`, `:out`, or `:both` are currently supported. ### Implementation Notes This function is optimized for speed and directly manipulates CSC sparse matrix fields. """ function adjacency_matrix(g::Graph, T::DataType=Float64; dir::Symbol=:out) n_v = nv(g) nz = ne(g) colpt = ones(Int64, n_v + 1) rowval = sizehint!(Vector{Int64}(), nz) weights = sizehint!(Vector{T}(), nz) for j in 1:n_v # this is by column, not by row. wgts = sizehint!(Vector{T}(), g.vertices[j].number_of_edges) dsts = sizehint!(Vector{Int64}(), g.vertices[j].number_of_edges) for e in g.vertices[j] push!(wgts,e.weight) push!(dsts,target_vertex(e,g.vertices[j]).id) end colpt[j + 1] = colpt[j] + length(dsts) dsts_indices = sortperm(dsts) append!(rowval, dsts[dsts_indices]) append!(weights, wgts[dsts_indices]) end return SparseMatrixCSC(n_v, n_v, colpt, rowval, weights) end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
673
using Plots using GraphRecipes import GraphRecipes: get_source_destiny_weight export fixed_layout function get_source_destiny_weight(g::Graph) L = ne(g) sources = Array{Int}(undef, L) destiny = Array{Int}(undef, L) weights = Array{Float64}(undef, L) i = 0 for v in g.vertices for e in v i += 1 sources[i] = e.v1.id destiny[i] = e.v2.id weights[i] = e.weight end end return sources, destiny, weights end function fixed_layout(locations::AbstractArray{T,2}, adjmat::AbstractMatrix; kw...) where T return locations[1, :], locations[2, :], zeros(Int, size(locations, 2)) end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
3627
export get_element, number_of_patterns, number_of_pixels, get_pixel, get_element!, spatial_position, pattern_dimension, get_element, assign! using ColorTypes function pattern_dimension(X) return length(get_element(X,1)) end """ ```julia function get_element!(o::Matrix, img::Matrix{C}, i::Vector{Integer}) where C<:Colorant ``` """ function get_element!(o::D, img::Matrix{C}, i::Vector{<:Integer}) where D<:AbstractArray where C<:Colorant car_inds = CartesianIndices(img)[i] values = img[car_inds] for (j, pos) in enumerate(car_inds) @inbounds o[1, j] = pos[2] @inbounds o[2, j] = pos[1] end N = length(C) component = N >= 3 ? (comp1, comp2, comp3, alpha) : (comp1, alpha) for j=1:length(C) @inbounds o[2+j,:] = component[j].(values) end end function get_element!(o::D, data::Matrix{C}, i::Integer) where D<:AbstractArray where C<:Number o[:] = data[:, i] end """ ```julia function assign!(vec::T, val::C) where T<:AbstractArray where C<:Colorant ``` This function assigns the components of the color component val to a vector v """ function assign!(vec::T, val::C) where T<:AbstractArray where C<:Colorant N = length(C) component = N >= 3 ? (comp1, comp2, comp3, alpha) : (comp1, alpha) for j=1:length(C) @inbounds vec[j] = component[j](val) end end """ ```@julia get_element!{T<:AbstractArray}(vec::T, img::Matrix{Gray}, i::Integer) ``` Return through```vec``` the intensity image element [x,y, i], where \$x,y\$ are the spatial position of the pixel and the value i of the pixel \$(x,y)\$. """ function get_element!(vec::T, img::Matrix{C}, i::Integer) where T<:AbstractArray where C<:Colorant ind = spatial_position(img,i) @inbounds vec[1] = ind[2] @inbounds vec[2] = ind[1] assign!(view(vec,3:length(vec)), img[i]) end """ ``` function get_element( img::Matrix{RGB}, i::Vector) ``` """ function get_element(img::Matrix{T}, i::Vector) where T<:Colorant m = zeros(length(T)+2,length(i)) get_element!(m,img,i) return m end function get_element(img::Matrix{T}, i::Integer) where T<:Colorant m = zeros(length(T)+2) get_element!(m,img,i) return m end """ ```@julia number_of_patterns{T<:Any}(X::Matrix{T,3}) ``` Return the number of pixels in the image """ number_of_patterns(X::Matrix{T}) where T<:Colorant = size(X,1)*size(X,2) """ ```@julia spatial_position(X::Matrix, i::Int) ``` Returns the sub indexes from the linear index ```i``` """ spatial_position(img::Matrix, i) = CartesianIndices(img)[i] get_element(X::T,i) where T<:AbstractArray= view(X,:,i) number_of_patterns(X::T) where T<:AbstractArray = size(X,2) get_element(X::Vector,i) = X[i] number_of_patterns(X::Vector) = length(X) number_of_patterns(X::Array{T, 3}) where T = size(X, 2) * size(X, 3) """ ``` function get_element(data::Array{T, 3}, i::Vector) where T<:Number ``` """ function get_element(data::Array{T, 3}, i::Vector) where T<:Number m = zeros(size(data,1)+2,length(i)) get_element!(m, data, i) return m end get_element(data::Array{T, 3}, i::Integer) where T<:Number = get_element(data, [i]) get_element!(o::AbstractArray, data::Array{T,3}, i::Integer) where T<:Number = get_element!(o, data, [i]) function get_element!(o::AbstractArray, data::Array{T,3}, i::Vector) where T<:Number (_, nr, nc) = size(data) cart_indices = CartesianIndices((nr,nc))[i] @inbounds for (i, pos) in enumerate(cart_indices) o[3:end, i] = data[:, pos[1], pos[2]] o[1,i] = pos[2] o[2,i] = pos[1] end end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
1528
using LinearAlgebra, SparseArrays function normalize_matrix(A::AbstractMatrix, dim::Integer; f=LinearAlgebra.norm) if (size(A, dim) == 1) return A end return A./mapslices(f, A, dims=[dim]) end normalize_rows(A::AbstractMatrix; f=LinearAlgebra.norm) = normalize_matrix(A, 2, f=f) normalize_cols(A::AbstractMatrix; f=LinearAlgebra.norm) = normalize_matrix(A, 1, f=f) function normalize_matrix!(A::AbstractMatrix, dim::Integer; f=LinearAlgebra.norm) if (size(A, dim) == 1) return A end A ./= mapslices(f, A, dims=[dim]) end normalize_rows!(A::AbstractMatrix; f=LinearAlgebra.norm) = normalize_matrix!(A, 2, f=f) normalize_cols!(A::AbstractMatrix; f=LinearAlgebra.norm) = normalize_matrix!(A, 1, f=f) #= # get the column sums of A S = vec(sum(A,1)) # get the nonzero entries in A. ei is row index, ej is col index, ev is the value in A ei,ej,ev = findnz(A) # get the number or rows and columns in A m,n = size(A) # create a new normalized matrix. For each nonzero index (ei,ej), its new value will be # the old value divided by the sum of that column, which can be obtained by S[ej] A_normalized = sparse(ei,ej,ev./S[ej],m,n) http://stackoverflow.com/questions/24296856/in-julia-how-can-i-column-normalize-a-sparse-matrix =# function normalize_cols(A::SparseMatrixCSC) sums = sum(A, 1) + eps() I, J, V = findnz(A) for idx in 1:length(V) V[idx] /= sums[J[idx]] end sparse(I, J, V) end function svd_whiten(X) U, s, Vt = svd(X) return U * Vt end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
code
15618
using SpectralClustering using Distances using Test using LinearAlgebra using Statistics using Clustering using Images using Random using Distributions import LightGraphs.LinAlg: adjacency_matrix number_of_vertices = 5 Random.seed!(0) function two_gaussians(N::Integer = 500; std_1=5, std_2 = 5, center_1=[15,5], center_2=[-15, 5]) d1 = (randn(2, N) * std_1) .+ center_1 d2 = (randn(2, N) * std_2) .+ center_2 labels = round.(Integer, vcat(zeros(N), ones(N))) return (hcat(d1, d2), labels) end function three_gaussians(N::Integer = 250; ) d1 = (randn(2, N) * 1.5) .+ [5, 0] d2 = (randn(2, N) * 1) .+ [0, 0] d3 = (randn(2, N) * 1.5) .+ [-5, 0] labels = round.(Integer, vcat(zeros(N), ones(N), ones(N)* 2)) return (hcat(d1, d2, d3), labels) end @testset "Graph Creation" begin @testset "KNNNeighborhood" begin function weight(i::Integer, neigh, v, m) return Distances.colwise(SqEuclidean(), m, v) end data = convert.(Float64, [2 2; -2 -2; 2 -2; -2 2;0 0]') knnconfig = KNNNeighborhood(data, 3); graph = create(knnconfig, weight, data); v1 = graph.vertices[1] @test v1.number_of_edges == 3 for edge in v1 v2 = target_vertex(edge, v1) @test norm(data[:, v2.id] - [-2, -2]) > 0.001 end @test graph.vertices[2].connections == Set([4,3,5]) @test graph.vertices[end].number_of_edges == 4 end @testset "RandomNeighborhood" begin data, labels = two_gaussians() randomconfig = RandomNeighborhood(5) graph = create(randomconfig, ones, data); @test all([v.number_of_edges for v in graph.vertices] .>= 5) end @testset "CliqueNeighborhood" begin data, labels = two_gaussians(15) clique = CliqueNeighborhood() graph = create(clique, ones, data); @test all([v.number_of_edges for v in graph.vertices] .== 29) @test all([v.degree for v in graph.vertices] .== 29) end @testset "PixelNeighborhood" begin img = fill(RGB(1, 0, 0), 20, 20) nconfig = PixelNeighborhood(1) graph = create(nconfig, ones, img) @test length(graph.vertices) == size(img, 1) * size(img, 2) @test graph.vertices[1].number_of_edges == 3 @test graph.vertices[148].number_of_edges == 8 end @testset "Local Sale Knn" begin function weight(i::Integer, neigh, v, m) return Distances.colwise(Euclidean(), m, v) end X = [5.0 5; 5 4; 4 4; 6 6; -10 -10; -9 -9; -8 -8; -11 -11]' knnconfig = KNNNeighborhood(X, 3) scale = local_scale(knnconfig, weight, X, k = 3) @test isapprox(scale[1], sqrt(2)) @test isapprox(scale[end], sqrt(18)) end @testset "Local Sale Image" begin function weight(i::Integer, neigh, v, m) col_dist = Distances.colwise(Euclidean(), m[3:end, :], v[3:end]) xy_dist = Distances.colwise(Euclidean(), m[1:2, :], v[1:2]) return hcat(col_dist, xy_dist) end X = rand(RGB, 50, 50) knnconfig = PixelNeighborhood(3) scale = local_scale(knnconfig, weight, X, k = 9) @test size(scale) == (2, 50 * 50) end end; @testset "Embedding" begin @testset "NgLaplacian" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end (data, labels) = two_gaussians() knnconfig = KNNNeighborhood(data, 7) graph = create(knnconfig, weight, data) emb = embedding(NgLaplacian(1), graph) pred_clustering = convert(Array{Int64}, (emb .<= mean(emb))) @test randindex(pred_clustering, labels)[4] > 0.9 end @testset "ShiMalikLaplacian" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end (data, labels) = two_gaussians() knnconfig = KNNNeighborhood(data, 15) graph = create(knnconfig, weight, data) emb = embedding(ShiMalikLaplacian(1), graph) pred_clustering = convert(Array{Int64}, (emb .<= mean(emb))) @test randindex(pred_clustering, labels)[4] > 0.9 end @testset "PartialGroupingConstraints" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 0.7) end N = 150 (d, labels) = three_gaussians(N) knnconfig = KNNNeighborhood(d, 100) graph = create(knnconfig, weight, d) indices_clus_1 = [1, 2, 3, 4, 5] indices_clus_2 = [N+1, N+2, N+3, N+4] indices_clus_3 = [2*N+1, 2*N+2, 2*N+3, 2*N+4] constraints = Vector{Integer}[ vcat(indices_clus_1, indices_clus_2) ] ; emb_1 = embedding(PartialGroupingConstraints(1, smooth=true), graph, constraints) labels_1 = vcat(zeros(Integer, N*2), ones(Integer, N)) constraints = Vector{Integer}[ vcat(indices_clus_2, indices_clus_3) ] emb_2 = embedding(PartialGroupingConstraints(1, smooth=true), graph, constraints) labels_2 = vcat(zeros(Integer, N), ones(Integer, N*2)) pred_clustering = convert(Array{Int64}, (emb_1 .<= mean(emb_1))) @test randindex(pred_clustering, labels_1)[4] > 0.85 @test randindex(pred_clustering, labels_2)[4] < 0.5 pred_clustering = convert(Array{Int64}, (emb_2 .<= mean(emb_2))) @test randindex(pred_clustering, labels_2)[4] > 0.85 @test randindex(pred_clustering, labels_1)[4] < 0.5 end @testset "YuShiPopout" begin function weight(i::Integer, ineigh, vi, vneigh) intensity_dist = Distances.colwise(Euclidean(), vi[3:end], vneigh[3:end, :]) xy_dist = Distances.colwise(Euclidean(), vi[1:2], vneigh[1:2, :]) a = 5 b = 0.05 return (pdf.(Normal(0, a*15), xy_dist) - pdf.(Normal(0, a), xy_dist)) .* (pdf.(Normal(0, b*100), intensity_dist) - pdf.(Normal(0, b), intensity_dist)) end function attraction(i::Integer, ineigh, vi, vneigh) diff = weight(i, ineigh, vi, vneigh) diff[diff.<0] .= 0 return diff end function repulsion(i::Integer, ineigh, vi, vneigh) diff = weight(i, ineigh, vi, vneigh) diff[diff.>0] .= 0 return abs.(diff) end img = zeros(31,31) img[8:25, 3:12] .= 0.9 img[3:12, 5:28] .= 0.2 img[8:25, 25:30] .= 0.6 img = Gray.(img + randn(31, 31)*0.03) labels = zeros(Integer, 31, 31) labels[8:25, 3:12] .= 1 labels[3:12, 5:28] .= 2 labels[8:25, 25:30] .= 3 nconfig = PixelNeighborhood(4) graph_attraction = create(nconfig, attraction, img); graph_repulsion = create(nconfig, repulsion, img); emb_config = YuShiPopout(3, false) cluster_result = clusterize(emb_config, KMeansClusterizer(4), graph_attraction, graph_repulsion) @test randindex(cluster_result.assignments[:], labels[:])[4] > 0.9 end end @testset "Clustering" begin @testset "KMeans Clustering" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end (data, labels) = two_gaussians() knnconfig = KNNNeighborhood(data, 7) graph = create(knnconfig, weight, data) (data, labels) = two_gaussians() pred_clustering = clusterize(NgLaplacian(2), KMeansClusterizer(2), graph) @test randindex(pred_clustering.assignments, labels)[4] > 0.9 end @testset "YuEigenvectorRotation" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end (data, labels) = two_gaussians() knnconfig = KNNNeighborhood(data, 7) graph = create(knnconfig, weight, data) (data, labels) = two_gaussians() pred_clustering = clusterize(NgLaplacian(2), YuEigenvectorRotation(500), graph) @test randindex(pred_clustering.assignments, labels)[4] > 0.9 end end @testset "Landmark Selection" begin @testset "RandomLandmarkSelection" begin r = RandomLandmarkSelection() data = rand(2, 25) s = select_landmarks(r, 15, data) @test length(s) == 15 @test length(unique(s)) == length(s) @test minimum(s)>=1 && maximum(s)<= 25 end @testset "EvenlySpacedLandmarkSelection" begin e = EvenlySpacedLandmarkSelection() data = rand(2, 25) s = select_landmarks(e, 5, data) @test length(s) == 5 @test all(diff(s) .== 5) @test minimum(s)>=1 && maximum(s)<= 25 end @testset "BresenhamLandmarkSelection" begin e = BresenhamLandmarkSelection() data = rand(2, 25) s = select_landmarks(e, 5, data) @test length(s) == 5 @test all(diff(s) .> 0) @test minimum(s)>=1 && maximum(s)<= 25 end end @testset "Approximate Embedding" begin @testset "Nystrom" begin @testset "Data embedding" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end (data, labels) = two_gaussians(6000) embedding_config = NystromMethod(EvenlySpacedLandmarkSelection(), 1000, weight, 1) emb = embedding(embedding_config, data) pred_clustering = convert(Array{Int64}, (emb .<= mean(emb))) @test randindex(pred_clustering, labels)[4] > 0.9 end @testset "Image embedding" begin function weight(i::Integer,j::Vector{<:Integer},pixel_i, neighbors_data) data_diff = pixel_i[3:5] .- neighbors_data[3:5,:] a = exp.(-abs.(data_diff)./(2*0.1^2)) a = prod(a, dims=1) return vec(a) end img = fill(RGB(0,0,0), 50, 50) cluster_1 = CartesianIndices(size(img))[5:20, 5:20] cluster_2 = CartesianIndices(size(img))[35:42, 35:47] img[cluster_1] .= RGB(1, 0, 0) img[cluster_2] .= RGB(0, 0, 1) labels = zeros(Integer, 50*50) labels[LinearIndices(size(img))[cluster_1][:]] .= 1 labels[LinearIndices(size(img))[cluster_2][:]] .= 2 embedding_config = NystromMethod(EvenlySpacedLandmarkSelection(), 500, weight, 1) emb = embedding(embedding_config, img) emb = vec(round.(emb, digits=2)) clusters = zeros(Integer, 50*50) for (i, val) in enumerate(unique(emb)) clusters[findall(emb.==val)] .= i -1 end @test randindex(clusters, labels)[4] > 0.95 end end @testset "DNCuts" begin function weight(i::Integer,j::Vector{<:Integer},pixel_i, neighbors_data) data_diff = pixel_i[3:5] .- neighbors_data[3:5,:] a = exp.(-((data_diff).^2)./(0.1)) a = prod(a, dims=1) return vec(a) end img = fill(RGB(0,0,0), 50, 50) cluster_1 = CartesianIndices(size(img))[5:20, 5:20] cluster_2 = CartesianIndices(size(img))[35:42, 35:47] img[cluster_1] .= RGB(1, 0, 0) img[cluster_2] .= RGB(0, 0, 1) labels = ones(Integer, 50*50) labels[LinearIndices(size(img))[cluster_1][:]] .= 2 labels[LinearIndices(size(img))[cluster_2][:]] .= 3 nconfig = PixelNeighborhood(4) graph = create(nconfig, weight, img); dncuts = DNCuts(2, 2, size(img)) emb = embedding(dncuts, graph) pred_clustering = clusterize(dncuts, KMeansClusterizer(3), graph) @test randindex(pred_clustering.assignments, labels)[4] > 0.9 end @testset "LandmarkBasedRepresentation" begin function weight(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end (data, labels) = two_gaussians(6000) cfg = LandmarkBasedRepresentation( BresenhamLandmarkSelection(), 500, 25, 2, weight, true) emb = embedding(cfg, data) pred_clustering = convert(Array{Int64}, (emb[:, 1] .<= mean(emb[:, 1]))) @test randindex(pred_clustering, labels)[4] > 0.9 end end @testset "MultiView" begin @testset "CoRegularizedMultiView" begin function weight_1(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end function weight_2(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 45) end (data, labels) = two_gaussians(500, center_1=[-15, -15], center_2=[9, 9]) knnconfig = KNNNeighborhood(data, 7) graph_1 = create(knnconfig, weight_1, data); graph_2 = create(knnconfig, weight_2, data); coreg = CoRegularizedMultiView([View(1, 0.001), View(1, 0.001)]) emb = embedding(coreg, [graph_1, graph_2]) pred_clustering = convert(Array{Int64}, (emb[:, 1] .<= mean(emb[:, 1]))) @test randindex(pred_clustering, labels)[4] > 0.9 end @testset "KernelProduct" begin function weight_1(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end function weight_2(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 45) end (data, labels) = two_gaussians(500, center_1=[-15, -15], center_2=[9, 9]) knnconfig = KNNNeighborhood(data, 7) graph_1 = create(knnconfig, weight_1, data); graph_2 = create(knnconfig, weight_2, data); kernel_addition = KernelProduct(NgLaplacian(2)) emb = embedding(kernel_addition, [graph_1, graph_2]) pred_clustering = convert(Array{Int64}, (emb[:, 1] .<= mean(emb[:, 1]))) @test randindex(pred_clustering, labels)[4] > 0.9 end @testset "KernelAddition" begin function weight_1(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 15) end function weight_2(i::Integer, neigh, v, m) return exp.(-Distances.colwise(SqEuclidean(), m, v) / 45) end (data, labels) = two_gaussians(500, center_1=[-15, -15], center_2=[9, 9]) knnconfig = KNNNeighborhood(data, 7) graph_1 = create(knnconfig, weight_1, data); graph_2 = create(knnconfig, weight_2, data); kernel_addition = KernelAddition(NgLaplacian(2)) emb = embedding(kernel_addition, [graph_1, graph_2]) pred_clustering = convert(Array{Int64}, (emb[:, 1] .<= mean(emb[:, 1]))) @test randindex(pred_clustering, labels)[4] > 0.9 end end @testset "Utils" begin @testset "Normalization" begin a = rand(50, 3) @test isapprox(norm(SpectralClustering.normalize_rows(a)[1, :]), 1) @test isapprox(norm(SpectralClustering.normalize_cols(a)[:, 1]), 1) a = rand(50, 1) @test isapprox(norm(SpectralClustering.normalize_rows(a)[1, :]), a[1]) end end @testset "DataAcces" begin a = rand(50, 3) @test number_of_patterns(a) == 3 @test get_element(a, 1) == a[:, 1] a = a' @test number_of_patterns(a) == 50 @test get_element(a, 1) == a[:, 1] a = rand(RGB, 50 ,50) @test number_of_patterns(a) == 50*50 end
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
2693
# SpectralClustering - [Documentation](https://lucianolorenti.github.io/SpectralClustering.jl/latest) - Check out the [Examples](https://lucianolorenti.github.io/SpectralClustering.jl/latest/notebooks/Index.html) [![Coverage Status](https://coveralls.io/repos/github/lucianolorenti/SpectralClustering.jl/badge.svg?branch=master)](https://coveralls.io/github/lucianolorenti/SpectralClustering.jl?branch=master) The library provides functions that allow: * Build the affinity matrix. * Perform the embedding of the patterns in the space spanned by the eigenvectors of the matrices derived from the affinity matrix. * Obtain an approximation of the eigenvectors in order to reduce the computational complexity. * Exploiting information from multiple views. Corresponding nodes in each graph should have the same cluster membership. * Clusterize the eigenvector space. # Methods implemented * Graph construction * [Self-Tuning Spectral Clustering](https://papers.nips.cc/paper/2619-self-tuning-spectral-clustering.pdf) * Embedding * [Normalized cuts and image segmentation](https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf) * [On Spectral Clustering: Analysis and an algorithm](https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf) * [Understanding Popout through Repulsion](https://pdfs.semanticscholar.org/019c/099ab01902416a625a9d18a36e61b88f5a3d.pdf) * [Segmentation Given Partial Grouping Constraints](http://www.cs.cmu.edu/~xingyu/papers/yu_bias.pdf) * Approximate embedding * [Spectral grouping using the nystrom method](https://people.eecs.berkeley.edu/~malik/papers/FBCM-nystrom.pdf) * [Nystrom sampling depends on the eigenspectrum shape of the data](https://openreview.net/pdf?id=HJZvjvJPf) * [Large Scale Spectral Clustering with Landmark-Based Representation](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.365.6933&rep=rep1&type=pdf) * Multiple views * Kernel Addition * Kernel Product * Feature Concatenation (in the examples section) * [Co-regularized Multi-view Spectral Clustering](https://papers.nips.cc/paper/4360-co-regularized-multi-view-spectral-clustering.pdf) * Incremental * TODO [Incremental spectral clustering by efficiently updating the eigen-system](https://www.sciencedirect.com/science/article/pii/S0031320309002209/pdfft?md5=dc50ecba5ab9ab23ea239ef89244800a&pid=1-s2.0-S0031320309002209-main.pdf) * Clusterize * [Multiclass Spectral Clustering](http://www.public.asu.edu/~jye02/CLASSES/Spring-2007/Papers/PAPERS/295_yu_s.pdf) * KMeans via [Clustering.jl](https://github.com/JuliaStats/Clustering.jl) The documentation and the library is still a work in progress.
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
2556
# SpectralClustering.jl Given a set of patterns $X=\{x_1,x_2,...x_n\} \in {\mathbb R}^m$, and a simmilarity function $d:{\mathbb R}^m \times {\mathbb R}^m \rightarrow {\mathbb R}$, is possible to build an affinity matrix $W$ such that $W(i,j) = d(x_i, x_j)$. Spectral clustering algorithms obtains a low rank representation of the patterns solving the following optimization problem $\begin{array}{ccc} \max & \mbox{Tr}(U^T L U) \\ U \in {\mathbb R}^{n\times k} & \\ \textrm{s.a.} & {U^T U} = I \end{array}$ where $L = D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$ is the Laplacian matrix derived from $W$ according [ng2002spectral](#ng2002spectral) and $D$ is a diagonal matrix with the sum of the rows of $W$ located in its main diagonal. Once obtained $U$, their rows are considered as the new coordinates of the patterns. In this new representation is simpler to apply a traditional clustering algorithm [shi2000normalized](#shi2000normalized). Spectral graph partitioning methods have been successfully applied to circuit layout [3, 1], load balancing [4] and image segmentation [10, 6]. As a discriminative approach, they do not make assumptions about the global structure of data. Instead, local evidence on how likely two data points belong to the same class is first collected and a global decision is then made to divide all data points into disjunct sets according to some criterion. Often, such a criterion can be interpreted in an embedding framework, where the grouping relationships among data points are preserved as much as possible in a lower-dimensional representation. ## Installation At the Julia REPL: ```julia ]add https://github.com/lucianolorenti/SpectralClustering.jl.git ``` ## Description The library provides functions that allow: * Build the affinity matrix. [Simmilarity graph creation](@ref), [Graph matrices](ref) * Perform the embedding of the patterns in the space spanned by the eigenvectors of the matrices derived from the affinity matrix. [Eigenvector Embedding](@ref) * Obtain an approximation of the eigenvector in order to reduce the computational complexity. [Approximate embedding](@ref) * Exploiting information from multiple views. Corresponding nodes in each graph should have the same cluster membership. [MultiView Embedding](@ref) * Clusterize the eigenvector space. [Eigenvector Clustering](@ref) # Bibliography ```@eval import Documenter.Documents.RawHTML Base.include(@__MODULE__, "DocUtils.jl") RawHTML(bibliography(["ng2002spectral","shi2000normalized","yu2001understanding"])) ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
697
# Approximate embedding Given a symmetric affinity matrix \$A\$, we would like to compute the \$k\$ smallest eigenvectors of the Laplacian of A. Directly computing such eigenvectors can be very costly even with sophisticated solvers, due to the large size of \$A\$. # Examples [Approximate embedding examples](../../../notebooks/Approximate Embedding.html ) # Bibliography ```@eval import Documenter.Documents.RawHTML Base.include(@__MODULE__, "DocUtils.jl") RawHTML(bibliography(["pont2017multiscale"])) ``` # Reference ## Index ```@index Modules=[SpectralClustering] Pages=["man/approximate.md"] ``` ## Content ```@autodocs Pages=["ApproximateEmbedding.jl"] Modules=[SpectralClustering] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
1114
# Eigenvector Clustering Once the eigenvectors are obtained, we have a continuous solution for a discrete problem. In order to obtain an assigment for every pattern, it is needed to discretize the eigenvectors. Obtaining this discrete solution from eigenvectors often requires solving another clustering problem, albeit in a lower-dimensional space. That is, eigenvectors are treated as geometrical coordinates of a point set. This library provides two methods two obtain the discrete solution: - Kmeans by means of [Clustering.jl](https://github.com/JuliaStats/Clustering.jl) - The one proposed in [Multiclass spectral clustering](#stella2003multiclassv) # Examples [Eigenvector clusterization examples](../../../notebooks/Eigenvector Clustering.html) # Reference Index ```@index Modules = [SpectralClustering] Pages=["man/data_access.md"] ``` # Members Documentation ```@autodocs Modules = [SpectralClustering] Pages=["EigenvectorClustering.jl"] ``` # Bibliography ```@eval import Documenter.Documents.RawHTML Base.include(@__MODULE__, "DocUtils.jl") RawHTML(bibliography(["stella2003multiclass"])) ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
612
# Data Access In order to establish how the data is going to be accessed, the module `DataAccess` provides an unified interface to access to the data for the underlaying algorithms. Every `DataAccessor` must implement this two methods: 1. `get_element(d::T, X, i::Integer)`. This function must return the i-th pattern of `X`. 2. `number_of_patterns(d::T,X)`. This function must return the numer of patterns of `X` # Reference Index ```@index Modules = [SpectralClustering] Pages=["man/data_access.md"] ``` # Members Documentation ```@autodocs Modules = [SpectralClustering] Pages=["Utils/DataAccess.jl"] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
1663
# Eigenvector Embedding Spectral clustering techniques require the computation of the extreme eigenvectors of matrices derived from patterns similarity . The Laplacian matrix obtained from the data is generally used as the starting point for decomposition into autovectors. Given the symmetric matrix $ W (i, j) = w_{ij}, W \in R^{n \times n} $ that contains information about similarity between the patterns, if $ D = W \mathbf {1} $, the unnormalized Laplacian matrix is defined as $ L = D-W $. The matrix $ W $ can be seen as the incidence matrix of a weighted graph. The [Simmilarity graph creation] (@ref) utilities implement functions that allow the construction of simmilarty graphs. The Embedding utilities contain the functions for performing the embedding of the patterns in the space spanned by the $ k $ eigenvectors of a matrix derived from $W$. Currently the module implements the techniques described in: - [On spectral clustering: Analysis and an algorithm.](#ng2002spectral) - [Normalized cuts and image segmentation.](#shi2000normalized) - [Understanding Popout through Repulsion.](#yu2001understanding) - [Segmentation Given Partial Grouping Constraints](#yu2004segmentation) # Examples [Embedding examples](../../../notebooks/Embedding.html) # Bibliography ```@eval import Documenter.Documents.RawHTML Base.include(@__MODULE__, "DocUtils.jl") RawHTML(bibliography(["ng2002spectral","shi2000normalized","yu2001understanding", "yu2004segmentation","lee2007trajectory"])) ``` ## Index ```@index Modules=[SpectralClustering] Pages=["man/embedding.md"] ``` ## Content ```@autodocs Modules=[SpectralClustering] Pages=["src/Embedding.jl"] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
185
# Graphs # Reference ## Index ```@contents Pages=["man/graph.md"] Modules=[SpectralClustering] ``` ## Content ```@autodocs Pages=["Graph/Graphs.jl"] Modules=[SpectralClustering] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
1424
# Simmilarity graph creation A weighted graph is an ordered pair $G=(V,E)$ that is composed of a set $V$ of vertices together with a set $E$ of edges $(i,j,w)$ $i,j \in V,w \in R$. The number $w$, the weight, represent the simmilarity between $i$ and $j$. In order to build a simmilarity graph two elements have to be defined: 1. Which are the neighbors for a given vertex. For this, a concrete type that inherit from [`NeighborhoodConfig`](@ref SpectralClustering.VertexNeighborhood) has to be instantiated. 2. The simmilarity function between patterns. The function receives the element being evaluated and its neighbors and returns a vector with the simmilarities between them. The signature of the function has to be the following `function weight(i::Integer, j::Vector{Integer}, e1, e2)` where `i::Int` is the index of the pattern being evaluated, `j::Vector{Integer}` are the indices of the neighbors of `i`; `e1` are the `i`-th pattern and `e2` are the neighbors patterns. # Examples [Graph creation examples](../../../notebooks/Graph creation.html) # Bibliography ```@eval import Documenter.Documents.RawHTML Base.include(@__MODULE__, "DocUtils.jl") RawHTML(bibliography(["Zelnik-manor04self-tuningspectral"])) ``` # Reference ## Index ```@index Modules=[SpectralClustering] Pages = ["man/graphcreation.md"] ``` ## Content ```@autodocs Modules=[SpectralClustering] Pages=["Graph/Creation.jl"] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
34
# Incremental Spectral Clustering
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
1197
# Landmark Selection In order to avoid the construction of a complete similarity matrix some spectral clustering methods compute the simmilarity function between a subset of patterns. This module provides an interface to sample points from diferentes data structures. Methods availaible: - `Random` . This selection method samples $k$ random points from a dataset - `EvenlySpaced`. This selection method samples spaced evenly acorrding ther index. ## Detailed Description ### Random Landmark Selection ```@example using SpectralClustering number_of_points = 20 dimension = 5 data = rand(dimension,number_of_points) selector = RandomLandmarkSelection() number_of_landmarks = 7 select_landmarks(selector, number_of_landmarks, data ) ``` ### Evenly Spaced Landmark Selection ```@example using SpectralClustering number_of_points = 20 dimension = 5 data = rand(dimension,number_of_points) selector = EvenlySpacedLandmarkSelection() number_of_landmarks = 5 select_landmarks(selector, number_of_landmarks, data ) ``` ## Index ```@index Modules=[SpectralClustering] Pages=["man/landmark_selection.md"] ``` ## Content ```@autodocs Modules=[SpectralClustering] Pages=["src/LandmarkSelection.jl"] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
0.1.2
085361b986546da28d16474cfcb8b28479b80d2d
docs
576
# MultiView Embedding When the dataset has more than one representation, each of them is named view. In the context of spectral clustering, co-regularization techniques attempt to encourage the similarity of the examples in the new representation generated from the eigenvectors of each view. # Examples [MultiView Embedding examples](../../../notebooks/Multiview Embedding.html ) # Reference Index ```@index Modules = [SpectralClustering] Pages=["man/data_access.md"] ``` # Members Documentation ```@autodocs Modules = [SpectralClustering] Pages=["MultiView.jl"] ```
SpectralClustering
https://github.com/lucianolorenti/SpectralClustering.jl.git
[ "MIT" ]
1.0.13
b7e11245178a57be72e47a69468dca6b73f192d8
code
5349
# The implementations are inspired by MatrixMarket.jl # https://github.com/JuliaSparse/MatrixMarket.jl # The MatrixMarket.jl package is licensed under the MIT Expat License: # Copyright (c) 2013: Viral B. Shah. # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """julia MatrixDepot Give access to a wealth of sample and test matrices and accompanying data. A set of matrices is generated locally (with arguments controlling the special case). Another set is loaded from one of the publicly accessible matrix collections `SuiteSparse Matrix Collection` (formerly `University of Florida Matrix Collection`) and the `Matrix Market Collection`. Access is like using MatrixDepot A = matrixdepot("hilb", 10) # locally generated hilbert matrix dimensions (10,10) A = matrixdepot("HB/1138_bus") # named matrix of the SuiteSparse Collection A = matrixdepot(sp(1)) # same matrix using numerical id A = matrixdepot("Harwell*/*/1138_bus") # matrix from the Matrix Market Collection md = mdopen("*/bfly") # named matrix with some extra data A = md.A co = md.coord tx = md("Gname_10.txt") md = mdopen("gravity", 10, false) # locally generated example with rhs and solution A = md.A b = md.b x = md.x ###### commands: mdinfo, listdir, listgroups, matrixdepot, mdopen, listdata, mdlist, metasymbols, setgroup!, deletegroup!. ###### selector patterns: strings, string-patterns (using "*", "?", "[]", "/", "**"), regular expressions: for names builtin(42), user(3,5), sp(10:11,6,2833), mm(1), mm(:): to access by integer id or all sp(pattern), mm(pattern) to access corresponding (alternative) matrix for other collection ###### predicate patterns: isboolean, isinteger, isreal, iscomplex isgeneral, issymmetric, ishermitian, isskew isbuiltin, isuser, islocal, isremote, isloaded, isunloaded issvdok keyword(string expression), logical, hasdata(symbol), @pred(expression) see also: "logical" for logical combinations of all kinds of patterns. """ module MatrixDepot using LinearAlgebra, SparseArrays, Serialization using Scratch import Base: show export matrixdepot export listnames, listdir, listdata, listgroups, mdlist, mdinfo, metasymbols, mdopen export @addgroup, @rmgroup, @modifygroup # deprecated export setgroup!, deletegroup! # exports for predicate functions in `logical.jl` export builtin, user, sp, mm, logical export isgeneral, issymmetric, isskew, ishermitian export iscomplex, isreal, isinteger, isboolean export isremote, islocal, isloaded, isunloaded, isbuiltin, isuser export issvdok, isposdef export @pred, keyword, hasdata, charfun # The following functions are re-used as predicate functions / logical operators import Base: isreal, isinteger import LinearAlgebra: issymmetric, ishermitian import SparseArrays: issparse import Base: &, |, *, ~ include("types.jl") # common data type definitions include("higham.jl") # test matrices include("regu.jl") # regularization test problem include("graph.jl") # adjacency matrices for graphs include("data.jl") # global variables and matrix data include("common.jl") # main functions include("logical.jl") # operations on patterns and predicates include("download.jl") # download data from the UF and MM sparse matrix collection include("datareader.jl") # read matrix data from local storage include("matrixmarket.jl") # read matrix data from local storage include("markdown.jl") # construct MD objects include("downloadmm.jl") # read metadata from MM database include("downloadsp.jl") # read metadata from SS database function init(;ignoredb::Bool=false) GROUP = "group.jl" GENERATOR = "generator.jl" url_redirect() # env MATRIXDEPOT_URL_REDIRECT == "1" if !isdir(data_dir()) # env MATRIXDEPOT_DATA mkpath(data_dir()) end @info("verify download of index files...") downloadindices(MATRIX_DB, ignoredb=ignoredb) @info("used remote sites are $(remote_name(preferred(SSRemoteType))) and $(remote_name(preferred(MMRemoteType)))") nothing end # will be called automatically once after `using`, `import`, `require`. function __init__() try init() catch ex; @warn "exception during initialization: '$ex'" end end end # end module
MatrixDepot
https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git
[ "MIT" ]
1.0.13
b7e11245178a57be72e47a69468dca6b73f192d8
code
15546
######################## # helper functions ######################## argerr(s::AbstractString) = throw(ArgumentError(s)) daterr(s::AbstractString) = throw(DataError(s)) parserr(s::AbstractString) = throw(Meta.ParseError(s)) """ listgroups() Return a list of available groups (array of `Symbol`). """ function listgroups() groups = Symbol[] append!(groups, sort!(collect(keys(SUBSETS)))) append!(groups, sort!(collect(keys(MATRIXCLASS)))) append!(groups, sort!(collect(keys(USERMATRIXCLASS)))) groups end ####################### # matrix group ####################### # write one property association function propline(io::IO, propname, matnames) write(io, repr(propname)) write(io, " => [") for str in matnames write(io, repr(str)) write(io, ", ") end write(io, "],\n") end # add, remove, or replace complete user group function modgroup(prop::Symbol, mats::Union{Nothing,Pattern}) prop in keys(MATRIXCLASS) && daterr("$prop can not be modified.") if mats !== nothing USERMATRIXCLASS[prop] = mats else delete!(USERMATRIXCLASS, prop) end return nothing end """ setgroup!(s::Symbol, p::Pattern) Define user group. `s` must not be one of the predefined group names. `p` may be any pattern, also a vector of matrix names. """ setgroup!(s::Symbol, p::Pattern) = modgroup(s, p) """ deletegroup!(s::Symbol) Delete a previously defined user group. """ deletegroup!(s::Symbol) = modgroup(s, nothing) "add a group to Matrix Depot" macro addgroup(ex) @warn("`@addgroup name = ex` is deprecated, use `setgroup!(:name, ex)`") nn = QuoteNode(ex.args[1]) :( modgroup($(esc(nn)), $(esc(ex.args[2]))) ) end "add or replace group in Matrix Depot" macro modifygroup(ex) @warn("`@modifygroup name = ex`` is deprecated, use `setgroup!(:name, ex)`") nn = QuoteNode(ex.args[1]) :( modgroup($(esc(nn)), $(esc(ex.args[2]))) ) end "remove an added group from Matrix Depot" macro rmgroup(ex) @warn("`@rmgroup name` is deprecated, use `deletegroup!(:name)`") nn = QuoteNode(ex) :( modgroup($(esc(nn)), nothing) ) end ################################ # user defined matrix generators ################################ abstract type MatrixGenerator end abstract type FunctionName <: MatrixGenerator end abstract type Group <: MatrixGenerator end function include_generator(::Type{FunctionName}, fn::AbstractString, f::Function) (haskey(MATRIXDICT, fn) ? MATRIXDICT : USERMATRIXDICT)[fn] = f end function addtogroup(dir::Dict, groupname::Symbol, f::Function) if groupname in keys(dir) fn = fname(f) gr = dir[groupname] fn in gr || push!(gr, fn) true else false end end function include_generator(::Type{Group}, groupname::Symbol, f::Function) addtogroup(MATRIXCLASS, groupname, f) || addtogroup(USERMATRIXCLASS, groupname, f) || argerr("$(groupname) is not a group in MatrixDepot, use `setgroup!`` to add this group") end #a more lightweight alternative to calling `init` again after adding user-defined matrices. function publish_user_generators() insertlocal(MATRIX_DB, GeneratedMatrixData{:U}, USERMATRIXDICT) #note that we do not call writedb because we don't serialize user matrix generators end "return the name of the function `f` as a string." function fname(f::Function) for (key, value) in MATRIXDICT value == f && return key end for (key, value) in USERMATRIXDICT value == f && return key end "unknown-function" end """ listdir([db,] p::AbstractString) list directories and the number of matrices contained in them. get an overview of the count of names down directories. return a list with summary information for directories in matrix name space. The input argument is split into 2 patterns by the first double slash `"//"`. The whole string (with multiple slashes reduced to single slashes) determines a subset of all matrix names. They are then grouped by the first pattern and for each different group value the number of names in the subset is counted. A final `/` is replaced by `"//**"`. E.g. + `listdir("/*")` - count names without a `/`. + `listdir("/k*")` - count names without `/` starting with `k*`. + `listdir("*//*")` - count names with one directory part (sp-collection) + `listdir("*/*//*")` - count names with two directory parts (mm-collection) + `listdir("*//*/*")` - count names with two directory parts (mm-collection) + `listdir("Har*//*/*")` - restrict to directories starting with "Har" + `listdir("Har*/*//*")` - all subdirectoreis of the previous """ listdir(p::AbstractString, xp::Pattern=()) = listdir(MATRIX_DB, p, xp) function listdir(db::MatrixDatabase, p::AbstractString, xp::Pattern) check_symbols(xp) r = findfirst(r"/+", p) if r !== nothing && first(r) == 1 p = p[last(r)+1:end] depth = 0 else m = match(r"^(([^/]+/)+)(/|$)", p) depth = m !== nothing ? count(x == '/' for x in m.captures[1]) : -1 end p = replace(p, r"//+" => '/') endswith(p, '/') && ( p = string(p, "**") ) r = shell_to_regex(p, false) if depth >= 0 length(p) == 1 && ( p = ".*/" ) listdir(db, r & xp, depth) else argerr("pattern '$p' needs '//' in the middle or '/' at start or end") end end function listdir(db::MatrixDatabase, r::Pattern, depth::Int) result = Dict{AbstractString, Int}() f(x, n) = string(join(x[1:n], '/'), "/*" ^ max(length(x) - n, 0)) for name in mdlist(r) li = split(name, '/') if length(li) >= depth key = f(li, depth) result[key] = get!(result, key, 0) + 1 end end sort!([string(k, " - (", v, ")") for (k,v) in result]) end """ listdata([db,] p::Pattern) Return an array of `MatrixData` objects according to matched patterns. """ listdata(p::Pattern) = listdata(MATRIX_DB, p) listdata(db::MatrixDatabase, p::Pattern) = mdata.(mdlist(db, p)) """ mdlist([db,] p::Pattern) return a vector of full matrix names where name or alias match given pattern. `p` can be one of the following: + a plain string (without characters `*` and `?`) which must match exactly + a string containing `*` and `?` acting like a shell path pattern + a regular expression + an integer matching equivalent to the alias string `"#\$p"` + a range of integers + a group name expressed as a symbol e.g. `:local`, `:all`, `:illcond`, `:posdef` + the name of a predicate function `f(::MatrixData)::Bool`, e.g. `issymmetric`, isposdef, ... + a vector of patterns meaning the union (or `|`) + a tuple of patterns meaning the intersection ( or `&`) """ mdlist(p::Pattern) = mdlist(MATRIX_DB, p) is_all(res::Vector) = length(res) == 1 && res[1] == "" function mdlist(db::MatrixDatabase, p::Pattern) res = list!(db, [""], p) is_all(res) ? list_all(db) : res end function list!(db::MatrixDatabase, res::Vector{String}, r::Regex) isempty(res) && return res if is_all(res) empty!(res) for name in keys(db.data) if match(r, name) !== nothing push!(res, name) end end sort!(res) else for i = 1:length(res) name = res[i] if match(r, name) === nothing res[i] = "" end end for i = length(res):-1:1 if res[i] == "" deleteat!(res, i) end end end res end function list!(db::MatrixDatabase, res::Vector{String}, p::Symbol) isempty(res) && return res x = if haskey(SUBSETS, p) SUBSETS[p](db) elseif haskey(MATRIXCLASS, p) MATRIXCLASS[p] elseif haskey(USERMATRIXCLASS, p) list!(db, [""], USERMATRIXCLASS[p]) else argerr("unknown group name '$p'") # EMPTY_PATTERN end if is_all(res) empty!(res) append!(res, sort(x)) else intersect!(res, x) end end """ shell_to_regex return a regular expression if shell pattern characters `"*?]"` are contained in string, otherwise return string. If no `'/'` is contained in p and p is not "*", insert `"(.*/)?"` in regular expression. """ function shell_to_regex(p::AbstractString, retain_pure::Bool) regex(p) = Regex(string('^', p, '$')) p = replace(p, r"//+" => '/') # p = p == "*" || '/' in p ? p : string("(**/)\x03", p) if occursin(r"[*?.]", p) p = replace(p, "**" => "\x01\x02") p = replace(p, '*' => "[^/]*") p = replace(p, '?' => "[^/]") p = replace(p, '.' => "[.]") p = replace(p, '\x01' => '.') p = replace(p, '\x02' => '*') p = replace(p, '\x03' => '?') regex(p) else retain_pure ? p : regex(p) end end function singlist!(db::MatrixDatabase, res::Vector{String}, p::AbstractString) if is_all(res) if haskey(db.data, p) res[1] = p res else empty!(res) end else if p in res empty!(res) push!(res, p) else empty!(res) end end end function list!(db::MatrixDatabase, res::Vector{String}, p::AbstractString) isempty(res) && return res r = shell_to_regex(p, true) r isa Regex ? list!(db, res, r) : singlist!(db, res, r) end list!(db::MatrixDatabase, res::Vector{String}, p::Alias) = list!(db, res, aliasresolve(db, p)) function list!(db::MatrixDatabase, res::Vector{String}, p::Alternate{R}) where R xlate = R == MMRemoteType ? name2mm : name2ss xpatterns = xlate.(mdlist(db, p.pattern)) list!(db, res, xpatterns) end # If res is symbolically [""], populate it with the set of all available names function resall!(db::MatrixDatabase, res::Vector{String}) if is_all(res) x = list_all(db) resize!(res, length(x)) copyto!(res, x) end res end function list!(db::MatrixDatabase, res::Vector{String}, p::Not) isempty(res) && return res cres = list!(db, copy(res), p.pattern) isempty(cres) && return res resall!(db, res) setdiff!(res, cres) end # logical OR function list!(db::MatrixDatabase, res::Vector{String}, r::AbstractVector) isempty(r) && return empty!(res) check_symbols(r) isempty(res) && return res length(r) == 1 && return list!(db, res, r[1]) cres = copy(res) list!(db, res, r[1]) for y in r[2:end] union!(res, list!(db, copy(cres), y)) end sort!(res) end list!(db::MatrixDatabase, res::Vector{String}, ::Tuple{}) = res # logical AND function list!(db::MatrixDatabase, res::Vector{String}, r::Tuple) isempty(res) && return res check_symbols(r) for y in sort_by_type(r) list!(db, res, y) isempty(res) && break end res end function list!(db::MatrixDatabase, res::Vector{String}, pred::Function) isempty(res) && return res resall!(db, res) filter!(k -> pred(db.data[k]), res) end # return a vector with re-arranged the contents of itr # the elements of its must be of type Pattern function sort_by_type(itr) f(p::AbstractString) = true f(p::Symbol) = true f(p::AbstractVector) = all(f.(p)) f(p::Tuple) = all(f.(p)) f(p::Pattern) = false vall = collect(itr) vend = filter(!f, vall) filter!(f, vall) append!(vall, vend) vall end ## internal list special cases list_all(db::MatrixDatabase) = sort!(String.(collect(keys(db.data)))) list_local(db::MatrixDatabase) = union(collect(keys(MATRIXDICT)), keys(USERMATRIXDICT)) list_builtin(db::MatrixDatabase) = collect(keys(MATRIXDICT)) list_user(db::MatrixDatabase) = collect(keys(USERMATRIXDICT)) const SUBSETS = Dict( :local => list_local, :builtin => list_builtin, :user => list_user, :all => list_all, ) function verify_loaded(db::MatrixDatabase, data::RemoteMatrixData) if isempty(data.metadata) || !isfile(matrixfile(data)) loadmatrix(data) end data end verify_loaded(db::MatrixDatabase, data::MatrixData) = data function verify_loadinfo(data::RemoteMatrixData) file = matrixfile(data) if !isfile(file) file = matrixinfofile(data) if !isfile(file) loadinfo(data) end end file end mdatav(db::MatrixDatabase, p::Pattern) = verify_loaded(db, mdata(db, p)) """ load([db,] pattern) Load data from remote repository for all problems matching pattern. Return the number of successfully loaded matrices. """ load(p::Pattern) = load(MATRIX_DB, p) load(db::MatrixDatabase, p::Pattern) = _load(db, loadmatrix, p) """ loadinfo([db,] pattern) """ loadinfo(p::Pattern) = loadinfo(MATRIX_DB, p) loadinfo(db::MatrixDatabase, p::Pattern) = _load(db, loadinfo, p) """ loadsvd([db,], pattern) """ loadsvd(p::Pattern) = loadsvd(MATRIX_DB, p) loadsvd(db::MatrixDatabase, p::Pattern) = _load(db, loadsvd, p) function _load(db::MatrixDatabase, loadfunc::Function, p::Pattern) check_symbols(p) n = 0 for name in mdlist(p) try n += loadfunc(db.data[name]) catch ex ex isa InterruptException && rethrow() @warn "could not load $name: $ex" end end n end """ mdopen([db,] pattern) mdopen(f, [db,] pattern) Return `MatrixDescriptor` object, which can be used with data access functions. Make sure that data files are loaded. Keeps a cache of already delivered matrices and metadata. If the pattern has not a unique resolution, an error is thrown. """ mdopen(p::Pattern, args...) = mdopen(MATRIX_DB, p, args...) function mdopen(db::MatrixDatabase, p::Pattern, args...) _mdopen(mdatav(db, p), args...) end mdopen(f::Function, p::Pattern, args...) = mdopen(f, MATRIX_DB, p, args...) function mdopen(f::Function, db::MatrixDatabase, p::Pattern, args...) data = _mdopen(mdatav(db, p), args...) f(data) end """ mdata(db, pattern) Return unique `MatrixData` object according to pattern. """ mdata(p::Pattern) = mdata(MATRIX_DB, p) function mdata(db::MatrixDatabase, p::Pattern) check_symbols(p) li = mdlist(db, p) length(li) == 0 && daterr("no matrix according to $p found") length(li) > 1 && daterr("pattern not unique: $p -> $li") db.data[li[1]] end """ getmeta([db, ], Union{MatrixDescriptor,MatrixData}) Return copy of list of metadata names. """ getmeta(mdesc::MatrixDescriptor) = getmeta(mdesc.data) getmeta(data::RemoteMatrixData) = copy(data.metadata) getmeta(data::MatrixData) = String[] _mdopen(data::RemoteMatrixData)= MatrixDescriptor(data) function _mdopen(data::GeneratedMatrixData, args...) md = MatrixDescriptor(data, args...) md.A # trigger generation of data and fill cache md end ### # convenience API ### """ matrixdepot(p::Pattern, args...) Return matrix according to pattern or local matrix according to name and arguments. If not loaded, load remote matrix first. `p` must be a unique pattern (match only one name). The presence of arguments makes sense only if the pattern matches the name of a generated (=local) matrix. Only the matrix part is delivered, also in the local cases, where the underlying function returns a structure containing matrix and vectors. Use `md = mdopen; md.A, md.b ...` to access those objects. """ matrixdepot(p::Pattern, args...) = matrixdepot(MATRIX_DB, p, args...) function matrixdepot(db::MatrixDatabase, p::Pattern, args...) mdopen(db, p, args...) do md md.A end end
MatrixDepot
https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git
[ "MIT" ]
1.0.13
b7e11245178a57be72e47a69468dca6b73f192d8
code
6065
""" user-defined matrix generators to be populated with `include_generator` in user source code """ const USERMATRIXDICT = Dict{String,Function}() """ user-defined groups """ const USERMATRIXCLASS = Dict{Symbol,Pattern}() """ Associate names with matrix-generating functions """ const MATRIXDICT = Dict("hilb" => hilb, "hadamard" => hadamard, "cauchy" => cauchy, "circul" => circul, "dingdong" => dingdong, "frank" => frank, "invhilb" => invhilb, "forsythe" => forsythe, "magic" => magic, "grcar" => grcar, "triw" => triw, "moler" => moler, "pascal" => pascal, "kahan" => kahan, "pei" => pei, "vand" => vand, "invol" => invol, "chebspec" => chebspec, "lotkin" => lotkin, "clement" => clement, "fiedler" => fiedler, "minij" => minij, "binomial" => binomialm, "tridiag" => tridiag, "lehmer" => lehmer, "parter" => parter, "chow" => chow, "randcorr" => randcorr, "poisson" => poisson, "neumann" => neumann, "rosser" => rosser, "sampling" => sampling, "wilkinson" => wilkinson, "rando" => rando, "randsvd" => randsvd, "rohess" => rohess, "kms" => kms, "wathen" => wathen, "oscillate" => oscillate, "toeplitz" => toeplitz, "hankel" => hankel, "golub" => golub, "companion" => companion, "prolate" => prolate, "deriv2" => deriv2, "shaw" => shaw, "wing" => wing, "foxgood" => foxgood, "heat" => heat, "baart" => baart, "phillips" => phillips, "gravity" => gravity, "blur" => blur, "spikes" => spikes, "ursell" => ursell, "parallax" => parallax, "erdrey" => erdrey, "gilbert" => gilbert, "smallworld" => smallworld ) """ predefined matrix classes (for the generated functions) """ const MATRIXCLASS = Dict( :symmetric => ["hilb", "cauchy", "circul", "dingdong", "invhilb", "moler", "pascal", "pei", "clement", "fiedler", "minij", "lehmer", "randcorr", "poisson", "wilkinson", "kms", "wathen", "oscillate", "prolate", "hankel"], :inverse => ["hilb", "hadamard", "cauchy", "invhilb", "forsythe", "magic", "triw", "moler", "pascal", "kahan", "pei", "vand", "invol", "lotkin", "clement", "fiedler", "minij", "tridiag", "lehmer", "poisson", "kms" ], :illcond => ["hilb", "cauchy", "frank", "invhilb", "forsythe", "triw", "moler", "pascal", "kahan","pei", "vand", "invol", "lotkin", "tridiag", "rosser", "randsvd", "kms", "oscillate", "prolate", "golub"], :posdef => ["hilb", "cauchy", "circul", "invhilb", "moler", "pascal", "pei", "minij", "tridiag", "lehmer", "poisson", "kms", "wathen", "oscillate"], :eigen => ["hadamard", "circul", "dingdong", "frank", "forsythe", "grcar", "pascal", "invol","chebspec", "lotkin", "clement", "fiedler", "minij", "tridiag", "parter", "chow", "poisson", "neumann", "rosser", "sampling", "wilkinson","wathen", "oscillate"], :sparse => ["poisson", "neumann", "wathen", "blur", "erdrey", "gilbert", "smallworld"], :random => ["rosser", "rando", "randcorr", "randsvd", "rohess", "wathen", "oscillate", "golub", "erdrey", "gilbert", "smallworld"], :regprob => ["deriv2", "shaw", "wing", "foxgood", "heat", "baart", "phillips", "gravity", "blur", "spikes", "ursell", "parallax"], :graph => ["erdrey", "gilbert", "smallworld"] ) # remote parameters for several data sources const SS_REMOTE = SSRemoteType(RemoteParametersNew( "https://sparse.tamu.edu", "https://sparse.tamu.edu/MM", "https://sparse.tamu.edu/files/ss_index.mat", "https://sparse.tamu.edu/files/ssstats.csv", ".tar.gz" )) const MM_REMOTE = MMRemoteType(RemoteParameters( "https://math.nist.gov/MatrixMarket", "https://math.nist.gov/pub/MatrixMarket2", "https://math.nist.gov/MatrixMarket/matrices.html", """<TITLE>The Matrix Market Matrices by Name</TITLE>""", ("M", """<A HREF="/MatrixMarket/data/""", 2, ".html", 3, nothing), ".mtx.gz" )) # return the single instance for the remote type preferred(::Type{SSRemoteType}) = SS_REMOTE preferred(::Type{MMRemoteType}) = MM_REMOTE """ The place to store all matrix data in process """ const MATRIX_DB = MatrixDatabase() # local storage directory const DATA_DIR = @get_scratch!("data") data_dir() = get(ENV, "MATRIXDEPOT_DATA", DATA_DIR) url_redirect() = URL_REDIRECT[] = get(ENV, "MATRIXDEPOT_URL_REDIRECT", "0") != "0" const REDIRECT_DIR = abspath(dirname(@__FILE__), "..", "test", "data") const URL_REDIRECT = Ref(false) function redirect(url::AbstractString) if URL_REDIRECT[] urlpart = split(url, ":/", limit=2)[2] if Sys.iswindows() string("file:/", replace(REDIRECT_DIR, '\\' => '/'), urlpart) else string("file://", REDIRECT_DIR, urlpart) end else url end end
MatrixDepot
https://github.com/JuliaLinearAlgebra/MatrixDepot.jl.git