licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 217 | # Lennard-Jones-FJC model thermodynamics (isotensional/asymptotic/reduced/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LennardJones.Thermodynamics.Isotensional.Asymptotic.Reduced.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 300 | # Log-squared-FJC model thermodynamics
* [Log-squared-FJC model thermodynamics (isometric)](../../../../isometric)
* [Log-squared-FJC model thermodynamics (isotensional)](../../../../isotensional)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 252 | # Log-squared-FJC model thermodynamics (isometric)
* [Log-squared-FJC model thermodynamics (isometric/asymptotic)](../../../../../asymptotic)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isometric]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 354 | # Log-squared-FJC model thermodynamics (isotensional)
* [Log-squared-FJC model thermodynamics (isotensional/asymptotic)](../../../../../asymptotic)
* [Log-squared-FJC model thermodynamics (isotensional/legendre)](../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isotensional]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 386 | # Log-squared-FJC model thermodynamics (isometric/asymptotic)
* [Log-squared-FJC model thermodynamics (isometric/asymptotic/reduced)](../../../../../../reduced)
* [Log-squared-FJC model thermodynamics (isometric/asymptotic/legendre)](../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isometric.Asymptotic]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 191 | # Log-squared-FJC model thermodynamics (isometric/asymptotic/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isometric.Asymptotic.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 311 | # Log-squared-FJC model thermodynamics (isometric/asymptotic/reduced)
* [Log-squared-FJC model thermodynamics (isometric/asymptotic/reduced/legendre)](../../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isometric.Asymptotic.Reduced]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 207 | # Log-squared-FJC model thermodynamics (isometric/asymptotic/reduced/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isometric.Asymptotic.Reduced.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 398 | # Log-squared-FJC model thermodynamics (isotensional/asymptotic)
* [Log-squared-FJC model thermodynamics (isotensional/asymptotic/reduced)](../../../../../../reduced)
* [Log-squared-FJC model thermodynamics (isotensional/asymptotic/legendre)](../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isotensional.Asymptotic]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 175 | # Log-squared-FJC model thermodynamics (isotensional/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isotensional.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 197 | # Log-squared-FJC model thermodynamics (isotensional/asymptotic/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isotensional.Asymptotic.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 320 | # Log-squared-FJC model thermodynamics (isotensional/asymptotic/reduced)
* [Log-squared-FJC model thermodynamics (isotensional/asymptotic/reduced/legendre)](../../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isotensional.Asymptotic.Reduced]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 213 | # Log-squared-FJC model thermodynamics (isotensional/asymptotic/reduced/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.LogSquared.Thermodynamics.Isotensional.Asymptotic.Reduced.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 277 | # Morse-FJC model thermodynamics
* [Morse-FJC model thermodynamics (isometric)](../../../../isometric)
* [Morse-FJC model thermodynamics (isotensional)](../../../../isotensional)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 235 | # Morse-FJC model thermodynamics (isometric)
* [Morse-FJC model thermodynamics (isometric/asymptotic)](../../../../../asymptotic)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isometric]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 331 | # Morse-FJC model thermodynamics (isotensional)
* [Morse-FJC model thermodynamics (isotensional/asymptotic)](../../../../../asymptotic)
* [Morse-FJC model thermodynamics (isotensional/legendre)](../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isotensional]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 363 | # Morse-FJC model thermodynamics (isometric/asymptotic)
* [Morse-FJC model thermodynamics (isometric/asymptotic/reduced)](../../../../../../reduced)
* [Morse-FJC model thermodynamics (isometric/asymptotic/legendre)](../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isometric.Asymptotic]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 180 | # Morse-FJC model thermodynamics (isometric/asymptotic/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isometric.Asymptotic.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 294 | # Morse-FJC model thermodynamics (isometric/asymptotic/reduced)
* [Morse-FJC model thermodynamics (isometric/asymptotic/reduced/legendre)](../../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isometric.Asymptotic.Reduced]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 196 | # Morse-FJC model thermodynamics (isometric/asymptotic/reduced/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isometric.Asymptotic.Reduced.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 375 | # Morse-FJC model thermodynamics (isotensional/asymptotic)
* [Morse-FJC model thermodynamics (isotensional/asymptotic/reduced)](../../../../../../reduced)
* [Morse-FJC model thermodynamics (isotensional/asymptotic/legendre)](../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isotensional.Asymptotic]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 164 | # Morse-FJC model thermodynamics (isotensional/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isotensional.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 186 | # Morse-FJC model thermodynamics (isotensional/asymptotic/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isotensional.Asymptotic.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 303 | # Morse-FJC model thermodynamics (isotensional/asymptotic/reduced)
* [Morse-FJC model thermodynamics (isotensional/asymptotic/reduced/legendre)](../../../../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isotensional.Asymptotic.Reduced]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 202 | # Morse-FJC model thermodynamics (isotensional/asymptotic/reduced/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Ufjc.Morse.Thermodynamics.Isotensional.Asymptotic.Reduced.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 246 | # WLC model thermodynamics
* [WLC model thermodynamics (isometric)](../../../isometric)
* [WLC model thermodynamics (isotensional)](../../../isotensional)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Wlc.Thermodynamics]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 209 | # WLC model thermodynamics (isometric)
* [WLC model thermodynamics (isometric/legendre)](../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Wlc.Thermodynamics.Isometric]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 218 | # WLC model thermodynamics (isotensional)
* [WLC model thermodynamics (isotensional/legendre)](../../../../legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Wlc.Thermodynamics.Isotensional]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 150 | # WLC model thermodynamics (isometric/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Wlc.Thermodynamics.Isometric.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 156 | # WLC model thermodynamics (isotensional/legendre)
```@autodocs
Modules = [Polymers.Physics.SingleChain.Wlc.Thermodynamics.Isotensional.Legendre]
```
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 302 | ---
layout: default
title: Contributors
nav_order: 1
description: "This is the description!"
permalink: /contributors
---
# Contributors
<br>
<a href="https://github.com/sandialabs/Polymers/graphs/contributors">
<img src="https://contrib.rocks/image?repo=sandialabs/Polymers" />
</a>
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"BSD-3-Clause"
] | 0.3.7 | 5c9185bac8d9a5f2d96a37387c88fa5cf535e1be | docs | 145 | ---
layout: default
title: Home
nav_order: 1
description: "This is the description!"
permalink: /
---
# Polymers Modeling Library
Hello world!
| Polymers | https://github.com/sandialabs/Polymers.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 2976 | using EntropyHub
using Documenter, DocumenterTools
#OutdatedWarning.generate("src")
DocMeta.setdocmeta!(EntropyHub, :DocTestSetup, :(using EntropyHub); recursive=true)
makedocs(
source="src",
modules=[EntropyHub],
authors="Matthew W. Flood <[email protected]>",
#repo="https://github.com/MattWillFlood/EntropyHub.jl/blob/{commit}{path}#{line}",
#repo = Remotes.repourl("https://github.com/MattWillFlood/EntropyHub.jl"),
sitename="EntropyHub.jl",
doctest=false,
draft=false,
clean=true,
format=Documenter.HTML(;
prettyurls=get(ENV, "CI", nothing) == "true",
canonical="https://mattwillflood.github.io/EntropyHub.jl/",
assets = ["assets/favicon.ico"],
collapselevel = 1,
),
pages=[
"Home" => "index.md",
"Guide" => ["Base Entropies" => "Guide/Base_Entropies.md",
"Cross-Entropies" => "Guide/Cross_Entropies.md",
"Multivariate Entropies" => "Guide/Multivariate_Entropies.md",
"Bidimensional Entropies" => "Guide/Bidimensional_Entropies.md",
"Multiscale Entropies" => "Guide/Multiscale_Entropies.md",
"Multiscale Cross-Entropies" => "Guide/Multiscale_Cross_Entropies.md",
"Multivariate Multiscale Entropies" => "Guide/Multivariate_Multiscale_Entropies.md",
"Other Functions" => "Guide/Other.md",
],
"Examples" => ["Notes on Examples" => "Examples/Examples.md",
"Ex.1: Sample Entropy" => "Examples/Example1.md",
"Ex.2: Permutation Entropy" => "Examples/Example2.md",
"Ex.3: Phase Entropy" => "Examples/Example3.md",
"Ex.4: Cross-Distribution Entropy" => "Examples/Example4.md",
"Ex.5: Multiscale Entropy Object" => "Examples/Example5.md",
"Ex.6: Multiscale [Increment] Entropy" => "Examples/Example6.md",
"Ex.7: Refined Multiscale [Sample] Entropy" => "Examples/Example7.md",
"Ex.8: Composite Multiscale Cross-Approximate Entropy" => "Examples/Example8.md",
"Ex.9: Hierarchical Multiscale corrected Cross-Conditional Entropy" => "Examples/Example9.md",
"Ex.10: Bidimensional Fuzzy Entropy" => "Examples/Example10.md",
"Ex.11: Multivariate Dispersion Entropy" => "Examples/Example11.md",
"Ex.12: [Generalized] Refined-composite Multivariate Multiscale Fuzzy Entropy" => "Examples/Example12.md",
"Ex.13: Window Data Tool" => "Examples/Example13.md",
],
],
)
deploydocs(
repo="github.com/MattWillFlood/EntropyHub.jl.git",
versions = ["stable" => "v^", "v#.#"],
branch = "gh-pages",
#versions = nothing,
)
#=
deploydocs(;
repo="github.com/MattWillFlood/EntropyHub.jl",
devbranch = "master",
devurl = "dev",
versions = ["stable" => "v^", "v#.#.#", devurl =>devurl],
)
"""
=# | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 14164 | module EntropyHub
export
ApEn,
AttnEn,
BubbEn,
CoSiEn,
CondEn,
DispEn,
DistEn,
DivEn,
EnofEn,
FuzzEn,
GridEn,
IncrEn,
K2En,
PermEn,
PhasEn,
RangEn,
SampEn,
SlopEn,
SyDyEn,
SpecEn,
XApEn,
XCondEn,
XDistEn,
XFuzzEn,
XK2En,
XPermEn,
XSpecEn,
XSampEn,
MvSampEn,
MvCoSiEn,
MvPermEn,
MvDispEn,
MvFuzzEn,
SampEn2D,
FuzzEn2D,
DistEn2D,
DispEn2D,
PermEn2D,
EspEn2D,
MSobject,
MSEn,
cMSEn,
rMSEn,
hMSEn,
XMSEn,
cXMSEn,
rXMSEn,
hXMSEn,
MvMSEn,
cMvMSEn,
EMD,
ExampleData,
WindowData
# using Reexport
include("./_ApEn.jl"),
include("./_AttnEn.jl"),
include("./_BubbEn.jl"),
include("./_CondEn.jl"),
include("./_CoSiEn.jl"),
include("./_DispEn.jl"),
include("./_DistEn.jl"),
include("./_DivEn.jl"),
include("./_FuzzEn.jl"),
include("./_EnofEn.jl"),
include("./_GridEn.jl"),
include("./_IncrEn.jl"),
include("./_K2En.jl"),
include("./_PermEn.jl"),
include("./_PhasEn.jl"),
include("./_RangEn.jl"),
include("./_SampEn.jl"),
include("./_SpecEn.jl"),
include("./_SyDyEn.jl"),
include("./_SlopEn.jl"),
include("./_XApEn.jl"),
include("./_XFuzzEn.jl"),
include("./_XDistEn.jl"),
include("./_XCondEn.jl"),
include("./_XSpecEn.jl"),
include("./_XSampEn.jl"),
include("./_XK2En.jl"),
include("./_XPermEn.jl"),
include("./_MSobject.jl"),
include("./_ExampleData.jl"),
include("./_WindowData.jl"),
include("./_MSEn.jl"),
include("./_XMSEn.jl"),
include("./_cMSEn.jl"),
include("./_cXMSEn.jl"),
include("./_rMSEn.jl"),
include("./_rXMSEn.jl"),
include("./_hMSEn.jl"),
include("./_hXMSEn.jl"),
include("./_SampEn2D.jl"),
include("./_FuzzEn2D.jl"),
include("./_DistEn2D.jl"),
include("./_DispEn2D.jl"),
include("./_PermEn2D.jl"),
include("./_EspEn2D.jl"),
include("./_MvSampEn.jl"),
include("./_MvFuzzEn.jl"),
include("./_MvDispEn.jl"),
include("./_MvPermEn.jl"),
include("./_MvCoSiEn.jl"),
include("./_MvMSEn.jl"),
include("./_cMvMSEn.jl"),
# Base Entropies:
using ._ApEn: ApEn
using ._AttnEn: AttnEn
using ._BubbEn: BubbEn
using ._CoSiEn: CoSiEn
using ._CondEn: CondEn
using ._DispEn: DispEn
using ._DistEn: DistEn
using ._DivEn: DivEn
using ._EnofEn: EnofEn
using ._FuzzEn: FuzzEn
using ._GridEn: GridEn
using ._IncrEn: IncrEn
using ._K2En: K2En
using ._PermEn: PermEn
using ._PhasEn: PhasEn
using ._RangEn: RangEn
using ._SampEn: SampEn
using ._SlopEn: SlopEn
using ._SpecEn: SpecEn
using ._SyDyEn: SyDyEn
# Cross Entropies:
using ._XApEn: XApEn
using ._XCondEn: XCondEn
using ._XDistEn: XDistEn
using ._XFuzzEn: XFuzzEn
using ._XK2En: XK2En
using ._XPermEn: XPermEn
using ._XSampEn: XSampEn
using ._XSpecEn: XSpecEn
# Multivariate Entropies:
using ._MvSampEn: MvSampEn
using ._MvFuzzEn: MvFuzzEn
using ._MvCoSiEn: MvCoSiEn
using ._MvDispEn: MvDispEn
using ._MvPermEn: MvPermEn
# Bidimensional Entropies
using ._SampEn2D: SampEn2D
using ._DistEn2D: DistEn2D
using ._FuzzEn2D: FuzzEn2D
using ._DispEn2D: DispEn2D
using ._PermEn2D: PermEn2D
using ._EspEn2D: EspEn2D
# Multiscale Entropies
using ._MSobject: MSobject
using ._MSEn: MSEn, EMD
using ._cMSEn: cMSEn
using ._rMSEn: rMSEn
using ._hMSEn: hMSEn
using ._XMSEn: XMSEn
using ._cXMSEn: cXMSEn
using ._rXMSEn: rXMSEn
using ._hXMSEn: hXMSEn
using ._MvMSEn: MvMSEn
using ._cMvMSEn: cMvMSEn
# Other Functions
using ._ExampleData: ExampleData
using ._WindowData: WindowData
greet() = print(raw"""
___ _ _ _____ _____ ____ ____ _ _
| _|| \ | ||_ _|| \| || || \ / | ___________
| \_ | \| | | | | __/| || __| \ \_/ / / _______ \
| _|| \ \ | | | | \ | || | \ / | / ___ \ |
| \_ | |\ | | | | |\ \ | || | | | | | / \ | |
|___||_| \_| |_| |_| \_||____||_| |_| _|_|__\___/ | |
_ _ _ _ ____ / |__\______\/ |
| | | || | | || \ An open-source | /\______\__|_/
| |_| || | | || | toolkit for | | / \ | |
| _ || | | || \ entropic time- | | \___/ | |
| | | || |_| || \ series analysis | \_______/ |
|_| |_|\_____/|_____/ \___________/
Please use the following citation on any scientific outputs achieved with the help of EntropyHub:
Matthew W. Flood,
EntropyHub: An Open-Source Toolkit for Entropic Time Series Analysis,
PLoS One 16(11):e0259448 (2021),
DOI: 10.1371/journal.pone.0259448
www.EntropyHub.xyz
""")
raw"""
___ _ _ _____ _____ ____ ____ _ _
| _|| \ | ||_ _|| \| || || \ / | ___________
| \_ | \| | | | | __/| || __| \ \_/ / / _______ \
| _|| \ \ | | | | \ | || | \ / | / ___ \ |
| \_ | |\ | | | | |\ \ | || | | | | | / \ | |
|___||_| \_| |_| |_| \_||____||_| |_| _|_|__\___/ | |
_ _ _ _ ____ / |__\______\/ |
| | | || | | || \ An open-source | /\______\__|_/
| |_| || | | || | toolkit for | | / \ | |
| _ || | | || \ entropic time- | | \___/ | |
| | | || |_| || \ series analysis | \_______/ |
|_| |_|\_____/|_____/ \___________/
EntropyHub functions belong to one of five main classes/categories:
Base Entropies >> e.g. Approximate Entropy (ApEn),
Sample Entropy (SampEn)
Cross Entropies >> e.g. Cross-Approximate Entropy (XApEn)
Cross-Sample Entropy (XSampEn)
Bidimensional Entropies >> e.g. Bidimensional Sample Entropy (SampEn2D)
Bidimensional Fuzzy Entropy (FuzzEn2D)
Multiscale Entropies >> e.g. Multiscale Sample Entropy (MSEn)
Refined Multiscale Sample Entropy (rMSEn)
Composite Multiscale Sample Entropy (cMSEn)
Multiscale Cross Entropies >> e.g. Multiscale Cross-Sample Entropy (XMSEn)
Refined Multiscale Cross-Sample Entropy (rXMSEn)
_________________________________________________________________________
Base Entropies | Function Name
______________________________________________________|__________________
Approximate Entropy | ApEn
Sample Entropy | SampEn
Fuzzy Entropy | FuzzEn
Kolmogorov Entropy | K2En
Permutation Entropy | PermEn
Conditional Entropy | CondEn
Distribution Entropy | DistEn
Spectral Entropy | SpecEn
Dispersion Entropy | DispEn
Symbolic Dynamic Entropy | SyDyEn
Increment Entropy | IncrEn
Cosine Similarity Entropy | CoSiEn
Phase Entropy | PhasEn
Slope Entropy | SlopEn
Bubble Entropy | BubbEn
Gridded Distribution Entropy | GridEn
Entropy of Entropy | EnofEn
Attention Entropy | AttnEn
Diversity Entropy | DivEn
Range Entropy | RangEn
_________________________________________________________________________
Cross Entropies | Function Name
______________________________________________________|__________________
Cross Sample Entropy | XSampEn
Cross Approximate Entropy | XApEn
Cross Fuzzy Entropy | XFuzzEn
Cross Permutation Entropy | XPermEn
Cross Conditional Entropy | XCondEn
Cross Distribution Entropy | XDistEn
Cross Spectral Entropy | XSpecEn
Cross Kolmogorov Entropy | XK2En
_________________________________________________________________________
Multivariate Entropies | Function Name
_____________________________________________________|___________________
Multivariate Sample Entropy | MvSampEn
Multivariate Fuzzy Entropy | MvFuzzEn
Multivariate Cosine Similarity Entropy | MvCoSiEn
Multivariate Dispersion Entropy | MvDispEn
Multivariate Permutation Entropy | MvPermEn
_________________________________________________________________________
Bidimensional Entropies | Function Name
_____________________________________________________|__________________
Bidimensional Sample Entropy | SampEn2D
Bidimensional Fuzzy Entropy | FuzzEn2D
Bidimensional Distribution Entropy | DistEn2D
Bidimensional Dispersion Entropy | DispEn2D
Bidimensional Permutation Entropy | PermEn2D
Bidimensional Espinosa Entropy | EspEn2D
_________________________________________________________________________
Multiscale Entropy Functions | Function Name
______________________________________________________|__________________
Multiscale Entropy Object | MSobject
|
Multiscale Entropy | MSEn
Composite/Refined-Composite Multiscale Entropy | cMSEn
Refined Multiscale Entropy | rMSEn
Hierarchical Multiscale Entropy Object | hMSEn
_________________________________________________________________________
Multiscale Entropies MSEn | Function Name
_________________________________________________________________________
Multiscale Sample Entropy |
Multiscale Approximate Entropy |
Multiscale Fuzzy Entropy |
Multiscale Permutation Entropy |
Multiscale Dispersion Entropy |
Multiscale Cosine Similarity Entropy |
Multiscale Symblic Dynamic Entropy | MSobject
Multiscale Conditional Entropy | +
Multiscale Entropy of Entropy | MSEn / cMSEn
Multiscale Gridded Distribution Entropy | rMSEn / hMSEn
Multiscale Slope Entropy |
Multiscale Phase Entropy |
Multiscale Kolmogorov Entropy |
Multiscale Distribution Entropy |
Multiscale Bubble Entropy |
Multiscale Increment Entropy |
Multiscale Attention Entropy |
Multiscale Diversity Entropy |
Multiscale Range Entropy |
_________________________________________________________________________
Multiscale Cross-Entropy Functions | Function Name
______________________________________________________|__________________
Multiscale Cross-Entropy Object | MSobject
|
Multiscale Cross-Entropy | XMSEn
Composite/Refined-Composite Multiscale Cross-Entropy | cXMSEn
Refined Multiscale Entropy | rXMSEn
Hierarchical Multiscale Entropy Object | hXMSEn
_________________________________________________________________________
Multiscale Cross-Entropies | Function Name
_________________________________________________________________________
Multiscale Cross-Sample Entropy |
Multiscale Cross-Approximate Entropy |
Multiscale Cross-Fuzzy Entropy | MSobject
Multiscale Cross-Permutation Entropy | +
Multiscale Cross-Distribution Entropy | XMSEn / cXMSEn
Multiscale Cross-Kolmogorov Entropy | rXMSEn / hXMSEn
Multiscale Cross-Conditional Entropy |
We kindly ask that if you use EntropyHub in your research, to please
include the following citation with the appropriate version number,
as well as original articles upon which functions are derived:
Matthew W. Flood (2021),
"EntropyHub - An open source toolkit for entropic time series analysis"
PLoS ONE 16(11):e0295448,
DOI: 10.1371/journal.pone.0259448
https://www.EntropyHub.xyz
© Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
"""
end | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3430 | module _ApEn
export ApEn
using Statistics: mean, std
"""
Ap, Phi = ApEn(Sig)
Returns the approximate entropy estimates `Ap` and the log-average number of
matched vectors `Phi` for `m` = [0,1,2], estimated from the data sequence `Sig`
using the default parameters: embedding dimension = 2, time delay = 1,
radius distance threshold = 0.2*SD(`Sig`), logarithm = natural
Ap, Phi = ApEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))
Returns the approximate entropy estimates `Ap` of the data sequence `Sig`
for dimensions = [0,1,...,`m`] using the specified keyword arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer\n
`tau` - Time Delay, a positive integer\n
`r` - Radius Distance Threshold, a positive scalar \n
`Logx` - Logarithm base, a positive scalar\n
# See also `XApEn`, `SampEn`, `MSEn`, `FuzzEn`, `PermEn`, `CondEn`, `DispEn`
# References:
[1] Steven M. Pincus,
"Approximate entropy as a measure of system complexity."
Proceedings of the National Academy of Sciences
88.6 (1991): 2297-2301.
"""
function ApEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))
N = length(Sig)
(N>10) ? nothing : error("Sig: must be a numeric vector with >10 samples")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(r>=0) ? nothing : error("r: must be a positive value")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Counter = 1*(abs.(Sig .- transpose(Sig)) .<= r)
M = Int.([m*ones(N-m*tau); repeat(collect(m-1:-1:1),inner=tau)])
Ap = zeros(m+1)
Phi = zeros(m+2)
for n = 1:N-tau
ix = findall(Counter[n, :] .== 1)
for k = 1:M[n]
ix = ix[(ix .+ (k*tau)) .<= N]
p1 = repeat(transpose(Sig[n:tau: n+(tau*k)]), length(ix))
p2 = Sig[ix .+ transpose(collect(0:tau:(k*tau)))]
ix = ix[findall(maximum(abs.(p1 - p2),dims=2) .<= r)]
Counter[n, ix] .+= 1
end
end
#Phi[1] = log(Logx, N)/N
Phi[2] = mean(log.(Logx, sum(Counter.>0,dims=2)/N))
Ap[1] = Phi[1] - Phi[2]
for k = 0:m-1
ai = sum(Counter.>k+1,dims=2)/(N-(k+1)*tau)
bi = sum(Counter.>k,dims=2)/(N-(k*tau))
ai = ai[ai.>0]
bi = bi[bi.>0]
Phi[k+3] = sum(log.(Logx,ai))/(N-(k+1)*tau)
Ap[k+2] = sum(log.(Logx,bi))/(N-(k*tau)) - Phi[k+3]
end
return Ap, Phi
end
end
"""Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3602 | module _AttnEn
export AttnEn
using StatsBase: Histogram, fit
"""
Av4, (Hxx,Hnn,Hxn,Hnx) = AttnEn(Sig)
Returns the attention entropy (`Av4`) calculated as the average of the
sub-entropies (`Hxx`,`Hxn`,`Hnn`,`Hnx`) estimated from the data sequence
(`Sig`) using a base-2 logarithm.
Av4, (Hxx, Hnn, Hxn, Hnx) = AttnEn(Sig::AbstractArray{T,1} where T<:Real; Logx::Real=2)
Returns the attention entropy (`Av4`) and the sub-entropies (`Hxx`,`Hnn`,`Hxn`,`Hnx`)
from the data sequence (`Sig`) where,
Hxx: entropy of local-maxima intervals
Hnn: entropy of local minima intervals
Hxn: entropy of intervals between local maxima and subsequent minima
Hnx: entropy of intervals between local minima and subsequent maxima
# Arguments:
`Logx` - Logarithm base, a positive scalar
(Enter 0 for natural logarithm)
See also `EnofEn`, `SpecEn`, `XSpecEn`, `PermEn`, `MSEn`
# References:
[1] Jiawei Yang, et al.,
"Classification of Interbeat Interval Time-series Using
Attention Entropy."
IEEE Transactions on Affective Computing
(2020)
"""
function AttnEn(Sig::AbstractArray{T,1} where T<:Real; Logx::Real=2)
(Logx == 0) ? Logx = exp(1) : nothing
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Xmax = PkFind(Sig)
Xmin = PkFind(-Sig)
Txx = diff(Xmax)
Tnn = diff(Xmin)
Temp = diff(sort(vcat(Xmax, Xmin)))
if isempty(Xmax)
error("No local maxima found!")
elseif isempty(Xmin)
error("No local minima found!")
end
(Xmax[1]<Xmin[1]) ? (Txn = Temp[1:2:end]; Tnx = Temp[2:2:end]) :
(Txn = Temp[2:2:end]; Tnx = Temp[1:2:end])
Edges = -0.5:N
Pnx = fit(Histogram,Tnx,Edges).weights
Pnn = fit(Histogram,Tnn,Edges).weights
Pxx = fit(Histogram,Txx,Edges).weights
Pxn = fit(Histogram,Txn,Edges).weights
Pnx = Pnx[Pnx.!=0]/size(Tnx,1)
Pxn = Pxn[Pxn.!=0]/size(Txn,1)
Pnn = Pnn[Pnn.!=0]/size(Tnn,1)
Pxx = Pxx[Pxx.!=0]/size(Txx,1)
Hxx = -sum(Pxx.*(log.(Logx,Pxx)))
Hxn = -sum(Pxn.*(log.(Logx,Pxn)))
Hnx = -sum(Pnx.*(log.(Logx,Pnx)))
Hnn = -sum(Pnn.*(log.(Logx,Pnn)))
Av4 = (Hnn + Hxx + Hxn + Hnx)/4
return Av4, (Hxx,Hnn,Hxn,Hnx)
end
function PkFind(X)
Nx = size(X,1)
Indx = zeros(Int,Nx);
for n = 2:Nx-1
if X[n-1]< X[n] > X[n+1]
Indx[n] = n
elseif X[n-1] < X[n] == X[n+1]
k = 1
while (n+k)<Nx && X[n] == X[n+k]
k +=1
end
if X[n] > X[n+k]
Indx[n] = n + floor((k-1)/2)
end
end
end
Indx = Indx[Indx.!==0]
return Indx
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3401 | module _BubbEn
export BubbEn
using GroupSlices
"""
Bubb, H = BubbEn(Sig)
Returns the bubble entropy (`Bubb`) and the conditional Rényi entropy (`H`)
estimates of dimension m = 2 from the data sequence (`Sig`) using
the default parameters:
embedding dimension = 2, time delay = 1, logarithm = natural
Bubb, H = BubbEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Logx::Real=exp(1))
Returns the bubble entropy (`Bubb`) estimate of the data sequence (`Sig`)
using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
BubbEn returns estimates for each dimension [2,...,m]
`tau` - Time Delay, a positive integer \n
`Logx` - Logarithm base, a positive scalar \n
# See also `PhasEn`, `MSEn`
# References:
[1] George Manis, M.D. Aktaruzzaman and Roberto Sassi,
"Bubble entropy: An entropy almost free of parameters."
IEEE Transactions on Biomedical Engineering
64.11 (2017): 2711-2718.
"""
function BubbEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Logx::Real=exp(1))
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau >0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive scalar > 0")
Sx = zeros(N,m+1)
H = zeros(m+1)
Sx[:,1] = Sig
for k = 2:m+1
Sx[1:N-(k-1)*tau,k] = Sig[1+(k-1)*tau:N]
Swapx = BubbSort(Sx[1:N-(k-1)*tau,1:k])
Locs = getindex.(indexin(Swapx, unique(Swapx)))
Temp = unique(Locs)
p = zeros(size(Temp,1))
for n in Temp
p[n] = sum(Locs.==n);
end
p ./= (N-(k-1)*tau)
H[k] = -log(Logx, sum(p.^2))
if round(sum(p),digits=6) != 1
@warn("Potential error in detected swap number")
end
end
Bubb = diff(H)./log.(Logx, (2:m+1)./(0:m-1))
Bubb = Bubb[2:end]
return Bubb, H
end
function BubbSort(Data)
x,N2 = size(Data)
swaps = zeros(Int, x)
for y = 1:x
t = 1
while t <= N2-1
for kk = 1:N2-t
if Data[y,kk] > Data[y,kk+1]
temp = Data[y,kk]
Data[y,kk] = Data[y,kk+1]
Data[y,kk+1] = temp
swaps[y] = swaps[y] + 1
end
end
t = t + 1;
end
end
bsorted = Data;
return swaps # bsorted
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3876 | module _CoSiEn
export CoSiEn
using Statistics: std, mean, median
using LinearAlgebra: Diagonal, UpperTriangular
"""
CoSi, Bm = CoSiEn(Sig)
Returns the cosine similarity entropy (`CoSi`) and the corresponding
global probabilities estimated from the data sequence (`Sig`) using the
default parameters: embedding dimension = 2, time delay = 1,
angular threshold = .1, logarithm = base 2,
CoSi, Bm = CoSiEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=.1, Logx::Real=2, Norm::Int=0)
Returns the cosine similarity entropy (`CoSi`) estimated from the data
sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
`tau` - Time Delay, a positive integer \n
`r` - Angular threshold, a value in range [0 < r < 1] \n
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of `Sig`, one of the following integers: \n
[0] no normalisation - default
[1] normalises `Sig` by removing median(`Sig`)
[2] normalises `Sig` by removing mean(`Sig`)
[3] normalises `Sig` w.r.t. SD(`Sig`)
[4] normalises `Sig` values to range [-1 1]
# See also `PhasEn`, `SlopEn`, `GridEn`, `MSEn`, `cMSEn`
# References:
[1] Theerasak Chanwimalueang and Danilo Mandic,
"Cosine similarity entropy: Self-correlation-based complexity
analysis of dynamical systems."
Entropy
19.12 (2017): 652.
"""
function CoSiEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
r::Real=.1, Logx::Real=2, Norm::Int=0)
Logx == 0 ? Logx = exp(1) : nothing
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(0<r<1) ? nothing : error("r: must be a scalar in range [0 1]")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(Norm in collect(0:4)) ? nothing : error("Norm: must be an integer in range [0 4]")
if Norm == 1
Xi = Sig .- median(Sig);
elseif Norm == 2
Xi = Sig .- mean(Sig);
elseif Norm == 3
Xi = (Sig .- mean(Sig))/std(Sig,corrected=false)
elseif Norm == 4
Xi = (2*(Sig .- minimum(Sig))/(maximum(Sig)-minimum(Sig))) .- 1;
else
Xi = Sig;
end
Nx = N-((m-1)*tau);
Zm = zeros(Nx,m);
for n = 1:m
Zm[:,n] = Xi[(n-1)*tau+1:Nx+(n-1)*tau]
end
Num = Zm*transpose(Zm);
Mag = sqrt.(sum(Diagonal(Num),dims=1))[:]
Den = Mag*transpose(Mag)
AngDis = round.(acos.(round.(Num./Den,digits=8))/pi,digits=6)
if maximum(imag.(AngDis)) < (10^-5)
Bm = (sum(UpperTriangular(AngDis .< r))-Nx)/(Nx*(Nx-1)/2)
else
Bm = (sum(UpperTriangular(real.(AngDis) .< r))-Nx)/(Nx*(Nx-1)/2)
@warn("Complex values ignored.")
end
if Bm == 1 || Bm == 0
CoSi = NaN
else
CoSi = -(Bm*log(Logx, Bm)) - ((1-Bm)*log(Logx, 1-Bm))
end
return CoSi, Bm
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4165 | module _CondEn
export CondEn
using Statistics: std, mean
using StatsBase: Histogram, fit
"""
Cond, SEw, SEz = CondEn(Sig)
Returns the corrected conditional entropy estimates (`Cond`) and the
corresponding Shannon entropies (m: `SEw`, m+1: `SEz`) for m = [1,2]
estimated from the data sequence (`Sig`) using the default parameters:
embedding dimension = 2, time delay = 1, symbols = 6, logarithm = natural,
normalisation = false
*Note: CondEn(m=1) returns the Shannon entropy of `Sig`.*
Cond, SEw, SEz = CondEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)
Returns the corrected conditional entropy estimates (`Cond`) from the data
sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
`tau` - Time Delay, a positive integer \n
`c` - # of symbols, an integer > 1 \n
`Logx` - Logarithm base, a positive scalar \n
`Norm` - Normalisation of CondEn value: \n
[false] no normalisation - default
[true] normalises w.r.t Shannon entropy of data sequence `Sig`
# See also `XCondEn`, `MSEn`, `PermEn`, `DistEn`, `XPermEn`
# References:
[1] Alberto Porta, et al.,
"Measuring regularity by means of a corrected conditional
entropy in sympathetic outflow."
Biological cybernetics
78.1 (1998): 71-78.
"""
function CondEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
c::Int=6, Logx::Real=exp(1), Norm::Bool=false)
(size(Sig)[1] > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(Logx > 0) ? nothing : error("Logx: must be a positive number > 0")
(c > 1) ? nothing : error("c: must be an integer > 1")
Edges = range(minimum(Sig),maximum(Sig),length=c+1)
Sx = map(x -> sum(Edges[1:c].<=x), Sig)
N = size(Sx)[1]
SEw = zeros(m-1)
SEz = zeros(m-1)
Prcm = zeros(m-1)
Xi = zeros(N,m)
Xi[:,m] = Sx
for k = 1:m-1
Nx = N-(k*tau)
Xi[1:Nx,end-k] = Sx[(k*tau)+1:N]
Wi = Xi[1:Nx,m-k+1:m] * (c.^collect(k-1:-1:0)) # Maybe dot notation here???
Zi = Xi[1:Nx,m-k:m] * (c.^collect(k:-1:0))
Pw = fit(Histogram, Wi, minimum(Wi)-.5:maximum(Wi)+.5).weights
Pz = fit(Histogram, Zi, minimum(Zi)-.5:maximum(Zi)+.5).weights
Prcm[k] = sum(Pw.==1)/Nx
if sum(Pw)!= Nx || sum(Pz)!= Nx
@warn("Potential error estimating probabilities.")
end
Pw = Pw[Pw.!=0]; Pw /= N;
Pz = Pz[Pz.!=0]; Pz /= N;
SEw[k] = -transpose(Pw)*log.(Logx, Pw)
SEz[k] = -transpose(Pz)*log.(Logx, Pz)
end
Temp = fit(Histogram,Sx,.5:c+.5).weights/N;
Temp = Temp[Temp.!=0]
S1 = -transpose(Temp)*log.(Logx, Temp)
Cond = SEz - SEw + Prcm*S1;
Cond = vcat(S1, Cond);
if Norm
Cond = Cond/S1;
end
return Cond, SEw, SEz
end
end
#= Sig = (Sig.-mean(Sig))./std(Sig,corrected=false);
Edges = range(minimum(Sig),maximum(Sig),length=c+1)
#Edges[1] -= .1; Edges[end] += .1
Sx = map(x -> searchsortedfirst(Edges,x), Sig) .- 1
Sx[Sx.==0] .= 1 =#
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 7118 | module _DispEn
export DispEn
using Clustering: kmeans, assignments
using Statistics: std, mean
using StatsFuns: normcdf
"""
Dispx, RDE = DispEn(Sig)
Returns the dispersion entropy (`Dispx`) and the reverse dispersion entropy
(`RDE`) estimated from the data sequence (`Sig`) using the default parameters:
embedding dimension = 2, time delay = 1, symbols = 3, logarithm = natural,
data transform = normalised cumulative density function (ncdf)
Dispx, RDE = DispEn(Sig::AbstractArray{T,1} where T<:Real; c::Int=3, m::Int=2, tau::Int=1, Typex::String="ncdf", Logx::Real=exp(1), Fluct::Bool=false, Norm::Bool=false, rho::Real=1)
Returns the dispersion entropy (`Dispx`) and the reverse dispersion entropy (`RDE`)
estimated from the data sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer\n
`tau` - Time Delay, a positive integer\n
`c` - Number of symbols, an integer > 1\n
`Typex` - Type of data-to-symbolic sequence transform, one of the following:
{`"linear", "kmeans" ,"ncdf", "finesort", "equal"`}\n
See the EntropyHub guide for more info on these transforms.\n
`Logx` - Logarithm base, a positive scalar\n
`Fluct` - When Fluct == true, DispEn returns the fluctuation-based
Dispersion entropy. [default: false]\n
`Norm` - Normalisation of Dispx and RDE value:
[false] no normalisation - default
[true] normalises w.r.t number of possible dispersion patterns
(c^m or (2c -1)^m-1 if Fluct == true).\n
`rho` - *If Typex == 'finesort', rho is the tuning parameter* (default: 1)\n
# See also `PermEn`, `SyDyEn`, `MSEn`
# References:
[1] Mostafa Rostaghi and Hamed Azami,
"Dispersion entropy: A measure for time-series analysis."
IEEE Signal Processing Letters
23.5 (2016): 610-614.
[2] Hamed Azami and Javier Escudero,
"Amplitude-and fluctuation-based dispersion entropy."
Entropy
20.3 (2018): 210.
[3] Li Yuxing, Xiang Gao and Long Wang,
"Reverse dispersion entropy: A new complexity measure for
sensor signal."
Sensors
19.23 (2019): 5203.
[4] Wenlong Fu, et al.,
"Fault diagnosis for rolling bearings based on fine-sorted
dispersion entropy and SVM optimized with mutation SCA-PSO."
Entropy
21.4 (2019): 404.
"""
function DispEn(Sig::AbstractArray{T,1} where T<:Real; c::Int=3, m::Int=2, tau::Int=1, Typex::String="ncdf",
Logx::Real=exp(1), Fluct::Bool=false, Norm::Bool=false, rho::Real=1)
N = size(Sig)[1]
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(c > 1) ? nothing : error("c: must be an integer > 1")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(lowercase(Typex) in ["linear", "kmeans", "ncdf", "finesort","equal"]) ? nothing :
error("Typex: must be one of the following strings - 'linear','kmeans','ncdf','finesort','equal'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(rho>=0) ? nothing : error("rho: must be a positive scalar.")
if lowercase(Typex) == "linear"
Edges = range(minimum(Sig),maximum(Sig),length=c+1)
Zi = map(x -> sum(Edges[1:c].<=x), Sig)
elseif lowercase(Typex) == "kmeans"
Temp = kmeans(transpose(Sig), c; maxiter=200)
Zx = assignments(Temp)
Clux = Temp.centers
xx = sortperm(Clux[:]); Zi = zeros(N)
for k = 1:c
Zi[Zx.==xx[k]] .= k;
end
elseif lowercase(Typex) == "ncdf"
Zx = normcdf.(mean(Sig),std(Sig,corrected=false),Sig);
#= Zi= map(x -> searchsortedfirst(range(0,1,length=c+1),x), Zx) .- 1
Zi[Zi.==0] .= 1 =#
Zi = map(x -> sum(range(0,1,length=c+1)[1:c].<=x), Zx)
elseif lowercase(Typex) == "finesort"
Zx = normcdf.(mean(Sig),std(Sig,corrected=false),Sig)
Zi = map(x -> sum(range(0,1,length=c+1)[1:c].<=x), Zx)
Ym = zeros(N-(m-1)*tau, m)
for n = 1:m
Ym[:,n] = Zx[1+(n-1)*tau:N-((m-n)*tau)]
end
Yi = floor.(maximum(abs.(diff(Ym,dims=2)),dims=2)./(rho*std(abs.(diff(Sig)),corrected=false)))
elseif lowercase(Typex) == "equal"
ix = sortperm(Sig,alg=MergeSort);
xx = Int.(round.(range(0,N,length=c+1)))
Zi = zeros(N)
for k = 1:c
Zi[ix[xx[k]+1:xx[k+1]]] .= k
end
end
Zm = zeros(N-(m-1)*tau, m)
for n = 1:m
Zm[:,n] = Zi[1+(n-1)*tau:N-((m-n)*tau)]
end
(lowercase(Typex) == "finesort") ? Zm = hcat(Zm, Yi) : nothing
if Fluct
Zm = diff(Zm,dims=2)
(m < 2) ? @warn(["Fluctuation-based Dispersion Entropy is undefined for m = 1. "...
"An embedding dimension (m) > 1 should be used."]) : nothing
end
T = unique(Zm,dims=1)
Nx = size(T)[1]
Counter = zeros(Nx)
for n = 1:Nx
Counter[n] = sum(all(Zm .- transpose(T[n,:]) .==0, dims=2))
end
Ppi = Counter[Counter.!= 0]/size(Zm)[1]
if Fluct
RDE = sum((Ppi .- (1/((2*c - 1)^(m-1)))).^2)
else
RDE = sum((Ppi .- (1/(c^m))).^2)
end
#RDE = sum(Ppi.^2) - (1/Nx)
if round(sum(Ppi)) != 1
@warn("Potential Error calculating probabilities")
end
Dispx = -sum(Ppi.*log.(Logx, Ppi))
if Norm
#Dispx = Dispx/log(Logx, Nx)
#RDE = RDE/(1 - (1/Nx))
if Fluct
Dispx = Dispx/(log(Logx, (2*c - 1)^(m-1)))
RDE = RDE/(1 - (1/((2*c - 1)^(m-1))))
else
Dispx = Dispx/(log(Logx, c^m))
RDE = RDE/(1 - (1/(c^m)))
end
end
return Dispx, RDE
end
end
#= for n = 1:m
Zm[:,n] = Zi[1+(n-1)*tau:N-((m-n)*tau)]
T[:,n] = repeat(1:c,inner=(c^(n-1),1),outer=(c^(m-n),1))
end
if lowercase(Typex) == "finesort"
Zm = hcat(Zm, Yi)
temp = sort(unique(Yi))
T = repeat(T,outer=(length(temp),1))
T = hcat(T,repeat(temp,inner=Nx))
Counter = repeat(Counter,outer=length(Yi))
Nx = length(Counter)
end
if Fluct
Zm = diff(Zm,dims=2)
T = unique(Zm,dims=1)
Nx = size(T,1)
Counter = zeros(Nx)
end =#
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 7052 | module _DispEn2D
export DispEn2D
using Clustering: kmeans, assignments
using Statistics: std, mean
using StatsFuns: normcdf
"""
Disp2D, RDE = DispEn2D(Mat)
Returns the bidimensional dispersion entropy estimate (`Disp2D`) and reverse
bidimensional dispersion entropy (`RDE`) estimated for the data matrix (`Mat`)
using the default parameters: time delay = 1, symbols = 3, logarithm = natural,
data transform = normalised cumulative density function (`'ncdf'`), logarithm = natural,
template matrix size = [floor(H/10) floor(W/10)], (where H and W represent
the height (rows) and width (columns) of the data matrix `Mat`) \n
** The minimum number of rows and columns of Mat must be > 10.**
Disp2D, RDE = DispEn2D(Mat::AbstractArray{T,2} where T<:Real;
m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
c::Int=3, Typex::String="ncdf", Logx::Real=exp(1), Norm::Bool=false, Lock::Bool=true)
Returns the bidimensional dispersion entropy (`Disp2D`) and reverse
bidimensional distribution entropy (`RDE`) estimate for the data matrix (`Mat`)
using the specified 'keyword' arguments:
# Arguments:
`m` - Template submatrix dimensions, an integer scalar (i.e. the same
height and width) or a two-element tuple of integers
[height, width] with a minimum value > 1.
[default: [floor(H/10) floor(W/10)]] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`c` - Number of symbols, an integer > 1
`Typex` - Type of symbolic mapping transform, one of the following:
{`linear`, `kmeans`, `ncdf`, `equal`}
See the `EntropyHub Guide` for more info on these transforms.
`Logx` - Logarithm base, a positive scalar [default: natural]\n
** enter 0 for natural logarithm.**\n
`Norm` - Normalisation of `Disp2D` value, a boolean:
- [false] no normalisation - default
- [true] normalises w.r.t number of possible dispersion patterns.
`Lock` - By default, DispEn2D only permits matrices with a maximum
size of 128 x 128 to prevent memory errors when storing data on RAM.
e.g. For Mat = [200 x 200], m = 3, and tau = 1, DispEn2D
creates a vector of 753049836 elements. To enable matrices
greater than [128 x 128] elements, set `Lock` to false.
[default: 'true']
`WARNING: unlocking the permitted matrix size may cause your Julia
IDE to crash.`
# See also `DispEn`, `DistEn2D`, `SampEn2D`, `FuzzEn2D`, `MSEn`
# References:
[1] Hamed Azami, et al.,
"Two-dimensional dispersion entropy: An information-theoretic
method for irregularity analysis of images."
Signal Processing: Image Communication,
75 (2019): 178-187.
"""
function DispEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
c::Int=3, Typex::String="ncdf", Logx::Real=exp(1), Norm::Bool=false, Lock::Bool=true)
Logx == 0 ? Logx = exp(1) : nothing
NL, NW = size(Mat)
((NL > 128 || NW > 128) && Lock) ?
error("To prevent memory errors, matrix width & length must have <= 128 elements.
To estimatDispEn2D for the current matrix ($NL,$NW) change Lock to 'false'.
Caution: unlocking the safe matrix size may cause the Julia IDE to crash.") :
nothing
length(m)==1 ? (mL = m; mW = m) : (mL = m[1]; mW = m[2])
(NL > 10 && NW > 10) ? nothing :
error("Number of rows and columns in Mat must be > 10")
(minimum(m) > 1) ? nothing : error("m: must be an integer > 1, or 2-element integer tuple w/ values > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(c > 1) ? nothing : error("c: must be an integer > 1")
(lowercase(Typex) in ["linear", "kmeans", "ncdf", "equal"]) ? nothing :
error("Typex: must be one of the following strings - 'linear','kmeans','ncdf','equal'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if lowercase(Typex) == "linear"
Edges = range(minimum(Mat),maximum(Mat),length=c+1)
Zi = map(x -> sum(Edges[1:c].<=x), Mat)
elseif lowercase(Typex) == "kmeans"
Temp = kmeans(transpose(Mat[:]), c; maxiter=200)
Zx = assignments(Temp)
Clux = Temp.centers
xx = sortperm(Clux[:]); Zi = zeros(Int,length(Mat))
for k = 1:c
Zi[Zx.==xx[k]] .= k;
end
Zi = reshape(Zi,size(Mat))
elseif lowercase(Typex) == "ncdf"
Zx = normcdf.(mean(Mat),std(Mat,corrected=false),Mat);
Zi = map(x -> sum(range(0,1,length=c+1)[1:c].<=x), Zx);
elseif lowercase(Typex) == "equal"
ix = sortperm(Mat'[:],alg=MergeSort);
xx = Int.(round.(range(0,length(Mat),length=c+1)))
Zi = zeros(Int, length(Mat))
for k = 1:c
Zi[ix[xx[k]+1:xx[k+1]]] .= k
end
Zi = reshape(Zi,size(Mat'))'
end
NL = NL - (mL-1)*tau
NW = NW - (mW-1)*tau
X = zeros(Int,NL*NW,mL*mW)
p = 0
for k = 1:NL
for n = 1:NW
p += 1
X[p,:] = Zi[k:tau:(mL-1)*tau+k,n:tau:(mW-1)*tau+n][:]
end
end
p != NL*NW ? @warn("Potential error with submatrix division.") : nothing
T = unique(X,dims=1)
Nx = size(T)[1]
Counter = zeros(Nx)
for n = 1:Nx
Counter[n] = sum(all(X .- transpose(T[n,:]) .==0, dims=2))
end
Ppi = Counter[Counter.!= 0]/size(X)[1]
big(c)^(mL*mW) > 10^16 ? error("RDE cannot be estimated with c = $c and
a submatrix of size $mL x $mW. Required floating point precision exceeds 10^16.
Consider reducing the template submatrix size (m) or the number of symbols (c).") : nothing
#RDE = sum(Ppi.^2) - (1/Nx)
RDE = sum((Ppi .- (1/(c^(mL*mW)))).^2);
if round(sum(Ppi),digits=4) != 1
@warn("Potential Error calculating probabilities")
end
Disp2D = -sum(Ppi.*log.(Logx, Ppi))
if Norm
Disp2D = Disp2D/log(Logx, c^(mL*mW))
RDE = RDE./(1 - (1/(c^(mL*mW))))
end
return Disp2D, RDE
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4833 | module _DistEn
export DistEn
using StatsBase: Histogram, fit, skewness
"""
Dist, Ppi = DistEn(Sig)
Returns the distribution entropy estimate (`Dist`) and the
corresponding distribution probabilities (`Ppi`) estimated from
the data sequence (`Sig`) using the default parameters:
embedding dimension = 2, time delay = 1, binning method = 'Sturges',
logarithm = base 2, normalisation = w.r.t # of histogram bins
Dist, Ppi = DistEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)
Returns the distribution entropy estimate (`Dist`) estimated from
the data sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer \n
`tau` - Time Delay, a positive integer \n
`Bins` - Histogram bin selection method for distance distribution,
one of the following: \n
an integer > 1 indicating the number of bins, or one of the
following strings {'sturges','sqrt','rice','doanes'}
[default: 'sturges']
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of DistEn value: \n
[false] no normalisation.
[true] normalises w.r.t # of histogram bins - default
# See also `XDistEn`, `DistEn2D`, `MSEn`, `K2En`
# References:
[1] Li, Peng, et al.,
"Assessing the complexity of short-term heartbeat interval
series by distribution entropy."
Medical & biological engineering & computing
53.1 (2015): 77-87.
"""
function DistEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)
Logx == 0 ? Logx = exp(1) : nothing
N = size(Sig)[1]
(N>10) ? nothing : error("Sig: must be a numeric vector")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if typeof(Bins)<:Int
(Bins>1) ? nothing :
error("Bins: must be an integer > 1 (or name of binning method)")
elseif typeof(Bins)<:String
(lowercase(Bins) in ["sturges","sqrt","rice","doanes"]) ? nothing :
error("Bins: must be one of the following strings
'sturges', 'sqrt', 'rice', 'doanes' (or an integer >1)")
end
Nx = size(Sig)[1] - ((m-1)*tau)
Zm = zeros(Nx,m)
for n = 1:m
Zm[:,n] = Sig[(n-1)*tau + 1:Nx+(n-1)*tau]
end
DistMat = zeros(Int(Nx*(Nx-1)/2))
for k = 1:Nx-1
Ix = [Int((k-1)*(Nx - k/2)+1), Int(k*(Nx-((k+1)/2)))]
DistMat[Ix[1]:Ix[2]] = maximum(abs.(transpose(Zm[k,:]) .- Zm[k+1:end,:]),dims=2)
# DistMat[Ix[1]:Ix[2]] = maximum(abs.(repeat(Zm[k,:],outer=(1,Nx-k)) .- Zm[k+1:end,:]'),dims=2)
end
Ny = size(DistMat)[1]
if eltype(Bins)<:Char
if lowercase(Bins) == "sturges"
Bx = ceil(log2(Ny) + 1)
elseif lowercase(Bins) == "rice"
Bx = ceil(2*(Ny^(1/3)))
elseif lowercase(Bins) == "sqrt"
Bx = ceil(sqrt(Ny))
elseif lowercase(Bins) == "doanes"
sigma = sqrt(6*(Ny-2)/((Ny+1)*(Ny+3)))
Bx = ceil(1+log2(Ny)+log2(1+abs(skewness(DistMat)/sigma)))
else
error("Please enter a valid binning method")
end
else
Bx = Bins
end
By = collect(range(minimum(DistMat),maximum(DistMat),length=Int(Bx+1)))
By[end] += 1; By[1]-= 1
Ppi = fit(Histogram, DistMat, By).weights/Ny
if round(sum(Ppi),digits=6) != 1
@warn("Potential error estimating probabilities (p = $(sum(Ppi))")
Ppi = Ppi[Ppi.!=0]
elseif any(Ppi.==0)
print("Note: $(sum(Ppi.==0))/$(length(Ppi)) bins were empty \n")
Ppi = Ppi[Ppi.!=0]
end
Dist = -sum(Ppi.*log.(Logx, Ppi))
if Norm
Dist = Dist/(log(Logx, Bx));
end
return Dist, Ppi
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 7157 | module _DistEn2D
export DistEn2D
using StatsBase: fit, Histogram, skewness
"""
Dist2D = DistEn2D(Mat)
Returns the bidimensional distribution entropy estimate (`Dist2D`)
estimated for the data matrix (`Mat`) using the default parameters:
time delay = 1, histogram binning method = "sturges", logarithm = natural,
template matrix size = [floor(H/10) floor(W/10)], (where H and W represent
the height (rows) and width (columns) of the data matrix `Mat`) \n
** The minimum number of rows and columns of Mat must be > 10.**
Dist2D = DistEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Int=2, Lock::Bool=true)
Returns the bidimensional distribution entropy (`Dist2D`) estimate for
the data matrix (`Mat`) using the specified 'keyword' arguments:
# Arguments:
`m` - Template submatrix dimensions, an integer scalar (i.e. the same
height and width) or a two-element tuple of integers
[height, width] with a minimum value > 1.
[default: [floor(H/10) floor(W/10)]] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`Bins` - Histogram bin selection method for distance distribution,
an integer > 1 indicating the number of bins, or one of the
following strings {`"sturges", "sqrt", "rice", "doanes"``}
[default: 'sturges'] \n
`Logx` - Logarithm base, a positive scalar [default: natural]\n
** enter 0 for natural logarithm.**\n
`Norm` - Normalisation of `Dist2D` value, one of the following integers:
[0] no normalisation.
[1] normalises values of data matrix (`Mat`) to range [0 1].
[2] normalises values of data matrix (`Mat`) to range [0 1],
and normalises the distribution entropy value (`Dist2D`)
w.r.t the number of histogram bins. [default]
[3] normalises the distribution entropy value
w.r.t the number of histogram bins, without normalising
data matrix values. \n
`Lock` - By default, DistEn2D only permits matrices with a maximum
size of 128 x 128 to prevent memory errors when storing data on RAM.
e.g. For Mat = [200 x 200], m = 3, and tau = 1, DistEn2D
creates a vector of 753049836 elements. To enable matrices
greater than [128 x 128] elements, set `Lock` to false.
[default: 'true']
`WARNING: unlocking the permitted matrix size may cause your Julia
IDE to crash.`
# See also `DistEn`, `XDistEn`, `SampEn2D`, `FuzzEn2D`, `MSEn`
# References:
[1] Hamed Azami, Javier Escudero and Anne Humeau-Heurtier,
"Bidimensional distribution entropy to analyze the irregularity
of small-sized textures."
IEEE Signal Processing Letters
24.9 (2017): 1338-1342.
"""
function DistEn2D(Mat::AbstractArray{T,2} where T<:Real;
m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10), tau::Int=1,
Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Int=2, Lock::Bool=true)
Logx == 0 ? Logx = exp(1) : nothing
NL, NW = size(Mat)
((NL > 128 || NW > 128) && Lock) ?
error("To prevent memory errors, matrix width & length must have <= 128 elements.
To estimate DistEn2D for the current matrix ($NL,$NW) change Lock to 'false'.
Caution: unlocking the safe matrix size may cause the Julia IDE to crash.") :
nothing
length(m)==1 ? (mL = m; mW = m) : (mL = m[1]; mW = m[2])
(NL > 10 && NW > 10) ? nothing :
error("Number of rows and columns in Mat must be > 10")
(minimum(m) > 1) ? nothing : error("m: must be an integer > 1")
(tau >0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if typeof(Bins)<:Int
(Bins>1) ? nothing :
error("Bins: must be an integer > 1 (or name of binning method)")
elseif typeof(Bins)<:String
(lowercase(Bins) in ["sturges","sqrt","rice","doanes"]) ? nothing :
error("Bins: must be one of the following strings
'sturges', 'sqrt', 'rice', 'doanes' (or an integer >1)")
end
(Norm in [0, 1, 2, 3]) ? nothing : error("Norm: must be an integer in the range [0 3]")
Norm in [1, 2] ? Mat = (Mat.-minimum(Mat))./maximum(Mat.-minimum(Mat)) : nothing
NL = NL - (mL-1)*tau
NW = NW - (mW-1)*tau
X = zeros(mL,mW,NL*NW)
p = 0
for k = 1:NL
for n = 1:NW
p += 1
X[:,:,p] = Mat[k:tau:(mL-1)*tau+k,n:tau:(mW-1)*tau+n]
end
end
p = size(X,3)
p != NL*NW ? @warn("Potential error with submatrix division.") : nothing
Ny = Int(p*(p-1)/2)
Ny > 300000000 ? @warn("Number of pairwise distance calculations is $Ny") : nothing
Y = zeros(Ny)
for k = 1:p-1
Ix = Int.([(k-1)*(p - k/2)+1, k*(p-((k+1)/2))])
Y[Ix[1]:Ix[2]] = maximum(abs.(X[:,:,k+1:end] .- X[:,:,k]),dims=(1,2))
end
if eltype(Bins)<:Char
if lowercase(Bins) == "sturges"
Bx = ceil(log2(Ny) + 1)
elseif lowercase(Bins) == "rice"
Bx = ceil(2*(Ny^(1/3)))
elseif lowercase(Bins) == "sqrt"
Bx = ceil(sqrt(Ny))
elseif lowercase(Bins) == "doanes"
sigma = sqrt(6*(Ny-2)/((Ny+1)*(Ny+3)))
Bx = ceil(1+log2(Ny)+log2(1+abs(skewness(convert(Array{Float64,1},Y))/sigma)))
else
error("Please enter a valid binning method")
end
else
Bx = Bins
end
By = collect(range(minimum(Y),maximum(Y),length=Int(Bx+1)))
By[end] += 1; By[1] -= 1
Ppi = fit(Histogram, Y[:], By).weights/Ny
if round(sum(Ppi),digits=6) != 1
@warn("Potential error estimating probabilities (p = $(sum(Ppi)))")
Ppi = Ppi[Ppi.!=0]
elseif any(Ppi.==0)
print("Note: $(sum(Ppi.==0))/$(length(Ppi)) bins were empty \n")
Ppi = Ppi[Ppi.!=0]
end
Dist2D = -sum(Ppi.*log.(Logx, Ppi))
Norm >= 2 ? Dist2D /= (log(Logx, Bx)) : nothing
return Dist2D
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
"""
#= Y = []
for k = 1:p-1
append!(Y,maximum(abs.(X[:,:,k+1:end] .- X[:,:,k]),dims=(1,2)))
end =# | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4317 | module _DivEn
export DivEn
using StatsBase: Histogram, fit
"""
Div, CDEn, Bm = DivEn(Sig)
Returns the diversity entropy (`Div`), the cumulative diversity entropy (`CDEn`),
and the corresponding probabilities (`Bm`) estimated from the data sequence (`Sig`)
using the default parameters: embedding dimension = 2, time delay = 1, #bins = 5, logarithm = natural,
Div, CDEn, Bm = DivEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Int=5, Logx::Real=exp(1))
Returns the diversity entropy (`Div`) estimated from the data sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
`tau` - Time Delay, a positive integer \n
`r` - Histogram bins #: either \n
* an integer [1 < `r`] representing the number of bins
* a list/numpy array of 3 or more increasing values in range [-1 1] representing the bin edges including the rightmost edge.\n
`Logx` - Logarithm base, a positive scalar (Enter 0 for natural logarithm)
# See also `CoSiEn`, `PhasEn`, `SlopEn`, `GridEn`, `MSEn`
# References:
[1] X. Wang, S. Si and Y. Li,
"Multiscale Diversity Entropy: A Novel Dynamical Measure for Fault
Diagnosis of Rotating Machinery,"
IEEE Transactions on Industrial Informatics,
vol. 17, no. 8, pp. 5419-5429, Aug. 2021
[2] Y. Wang, M. Liu, Y. Guo, F. Shu, C. Chen and W. Chen,
"Cumulative Diversity Pattern Entropy (CDEn): A High-Performance,
Almost-Parameter-Free Complexity Estimator for Nonstationary Time Series,"
IEEE Transactions on Industrial Informatics
vol. 19, no. 9, pp. 9642-9653, Sept. 2023
"""
function DivEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
r::Union{Int, Vector, StepRangeLen, Tuple}=5, Logx::Real=exp(1))
Logx == 0 ? Logx = exp(1) : nothing
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
r isa Union{Vector, StepRangeLen, Tuple} ? r = collect(r) : nothing
if r isa Int
(r<1) ? error("r: must be an int > 1 or a vector of 3 or more increasing values in range [-1 1]") : r = collect(LinRange(-1,1,r+1))
elseif r isa Vector
(r isa Vector && length(r) > 2 && minimum(r) >= -1 && maximum(r)<= 1 && minimum(diff(r))>0) ? nothing :
error("r: must be an int > 1 or a vector of 3 or more increasing values in range [-1 1]")
else
error("r: must be an int > 1 or a vector of 3 or more increasing values in range [-1 1]")
end
Nx = N - (m-1)*tau
Zm = zeros((Nx,m))
for n = 1:m
Zm[:,n] = Sig[1 + (n-1)*tau:Nx+((n-1)*tau)]
end
Num = sum(Zm[1:end-1,:].*Zm[2:end,:],dims=2)
Den = sqrt.(sum(Zm[2:end,:].^2,dims=2)).*sqrt.(sum(Zm[1:end-1,:].^2,dims=2))
Di = (Num./Den)[:]
Bm = fit(Histogram, Di, r).weights
Bm = Bm[Bm.>0]/sum(Bm)
round(sum(Bm),digits = 6) != 1.0 ? (@warn "Warning: Potential error is probability estimation! Sum(Pi) == " round(sum(Bm),digits=6)) : nothing
r = length(r)-1
Pj = 1 .- cumsum(Bm)
Pj = (Pj./sum(Pj))[1:end-1]
CDEn = -sum(Pj.*log.(Pj)./log(Logx))./(log(r)/log(Logx))
Div = -sum(Bm.*log.(Bm)./log(Logx))./(log(r)/log(Logx))
return Div, CDEn, Bm
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3465 | module _EnofEn
export EnofEn
using StatsBase: countmap, Histogram, fit
"""
EoE, AvEn, S2 = EnofEn(Sig)
Returns the entropy of entropy (`EoE`), the average Shannon entropy (`AvEn`), and
the number of levels (`S2`) across all windows estimated from the data sequence (`Sig`) using
the default parameters:
window length (samples) = 10, slices = 10, logarithm = natural,
heartbeat interval range (xmin, xmax) = (min(Sig), max(Sig))
EoE, AvEn, S2 = EnofEn(Sig::AbstractArray{T,1} where T<:Real; tau::Int=10, S::Int=10, Xrange::Tuple{Real,REal}, Logx::Real=exp(1))
Returns the entropy of entropy (`EoE`) estimated from the data sequence
(`Sig`) using the specified 'keyword' arguments:
# Arguments:
`tau` - Window length, an integer > 1 \n
`S` - Number of slices (s1,s2), a two-element tuple of integers > 2 \n
`Xrange` - The min and max heartbeat interval, a two-element tuple where X[1] <= X[2]\n
`Logx` - Logarithm base, a positive scalar \n
# See also `SampEn`, `MSEn`, `ApEn`
# References:
[1] Chang Francis Hsu, et al.,
"Entropy of entropy: Measurement of dynamical complexity for
biological systems."
Entropy
19.10 (2017): 550.
"""
function EnofEn(Sig::AbstractArray{T,1} where T<:Real; tau::Int=10, S::Int=10,
Xrange::Tuple{Real,Real}=(minimum(Sig),maximum(Sig)), Logx::Real=exp(1))
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(tau > 1 && tau < length(Sig)) ? nothing : error("tau: must be an integer > 1")
(S > 1) ? nothing : error("S: must be an integer > 1")
(length(Xrange)==2 && (Xrange[1]<=Xrange[2])) ? nothing : error("Xrange: must be a two-element numeric tuple where Xrange[1]<Xrange[2]")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Wn = Int(floor(N/tau))
Wj = transpose(reshape(Sig[1:Wn*tau],tau,Wn))
Yj = zeros(Wn)
#Edges = collect(range(minimum(Sig),maximum(Sig),length=(S[1]+1)))
Edges = collect(range(Xrange[1],Xrange[2],length=(S+1)))
Edges[1] -= .1; Edges[end] += .1
for n = 1:Wn
Temp = fit(Histogram,Wj[n,:],Edges).weights/tau
Temp = Temp[Temp.>0]
Yj[n] = -sum(Temp.*log.(Logx, Temp))
end
AvEn = sum(Yj)/Wn
#Edges = collect(range(minimum(Yj),maximum(Yj),length=(S[2]+1)))
#Edges[1] -= .1; Edges[end] += .1
#Pjl = fit(Histogram,Yj,Edges).weights/Wn
#Pjl = Pjl[Pjl.>0]
Pjl = collect(values(countmap(round.(Yj,digits=12))))./Wn
S2 = length(Pjl)
if round(sum(Pjl),digits=5) != 1
@warn("Possible error estimating probabilities")
end
EoE = -sum(Pjl.*log.(Logx, Pjl))
return EoE, AvEn, S2
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4802 | module _EspEn2D
export EspEn2D
"""
Esp2D, = EspEn2D(Mat)
Returns the bidimensional Espinosa entropy estimate (`Esp2D`)
estimated for the data matrix (`Mat`) using the default parameters:
time delay = 1, tolerance threshold = 20, percentage similarity = 0.7
logarithm = natural, matrix template size = [floor(H/10) floor(W/10)],
(where H and W represent the height (rows) and width (columns) of
the data matrix `Mat`)
** The minimum number of rows and columns of `Mat` must be > 10.
Esp2D = EspEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, r::Real=20, ps::Float=.7, Logx::Real=exp(1), Lock::Bool=true)
Returns the bidimensional Espinosa entropy (`Esp2D`) estimates for the data
matrix (`Mat`) using the specified 'keyword' arguments:
# Arguments:
`m` - Template submatrix dimensions, an integer scalar (i.e. the same
height and width) or a two-element vector of integers [height, width] with a minimum value > 1.
(default: [floor(H/10) floor(W/10)]) \n
`tau` - Time Delay, a positive integer (default: 1) \n
`r` - Tolerance threshold, a positive scalar (default: 20) \n
`ps` - Percentage similarity, a value in range [0 1], (default: 0.7) \n
`Logx` - Logarithm base, a positive scalar (default: natural) \n
`Lock` - By default, EspEn2D only permits matrices with a maximum
size of 128 x 128 to prevent memory errors when storing data
on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1,
EspEn2D creates a vector of 753049836 elements.
To enable matrices greater than [128 x 128] elements,
set `Lock` to false. (default: true) \n
`WARNING: unlocking the permitted matrix size may cause your Julia
IDE to crash.`
# See also `SampEn2D`, `FuzzEn2D`, `DispEn2D`, `DistEn2D`, `PermEn2D`
# References:
[1] Ricardo Espinosa, et al.,
"Two-dimensional EspEn: A New Approach to Analyze Image Texture
by Irregularity."
Entropy,
23:1261 (2021)
"""
function EspEn2D(Mat::AbstractArray{T,2} where T<:Real;
m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, r::Real=20, ps::Real=0.7, Logx::Real=exp(1), Lock::Bool=true)
NL, NW = size(Mat)
((NL > 128 || NW > 128) && Lock) ?
error("To prevent memory errors, matrix width & length must have <= 128 elements.
To estimate EspEn2D for the current matrix ($NL,$NW) change Lock to 'false'.
Caution: unlocking the safe matrix size may cause the Julia IDE to crash.") :
nothing
length(m)==1 ? (mL = m; mW = m) : (mL = m[1]; mW = m[2])
(NL > 10 && NW > 10) ? nothing :
error("Number of rows and columns in Mat must be > 10")
(minimum(m)>1) ? nothing :
error("m: must be an integer > 1, or a 2 element tuple of integer values > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(r >= 0) ? nothing : error("r: must be a positive value")
((ps >= 0) && (ps <= 1)) ? nothing : error("ps: must be a value in range [0 1]")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
NL = NL - (mL-1)*tau
NW = NW - (mW-1)*tau
X = zeros(mL,mW,NL*NW)
p = 0
for k = 1:NL
for n = 1:NW
p += 1
X[:,:,p] = Mat[k:tau:(mL-1)*tau+k,n:tau:(mW-1)*tau+n]
end
end
p = size(X,3)
p != NL*NW ? @warn("Potential error with submatrix division.") : nothing
Ny = p*(p-1)/2
Ny > 300000000 ? @warn("Number of pairwise distance calculations is $Ny") : nothing
Cij = -ones(p-1,p-1)
for k = 1:p-1
Temp = abs.(X[:,:,k+1:p] .- X[:,:,k]) .<= r
Cij[1:(end-k+1),k] = sum(Temp,dims=(1,2))
end
Dm = sum((Cij[:]/(mL*mW)).>=ps)/(p*(p-1)/2)
Esp2D = -log(Logx, Dm)
return Esp2D
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3942 | module _ExampleData
export ExampleData
using DelimitedFiles
using HTTP
"""
Data = ExampleData(SigName::String)
Imports sample data time series with specific properties that are commonly
used as benchmarks for assessing the performance of various entropy methods.
The datasets returned by ExampleData() are used in the examples provided in documentation on www.EntropyHub.xyz and elsewhere.
***Note*** ExampleData() requires an internet connection to download and import the required datasets!
`Data`is the sample dataset imported corresponding to the string input `SigName` which can be one of the following string:
# Arguments:
`SigName` - \n
`uniform` - uniformly distributed random number sequence in range [0 1], N = 5000
`randintegers` - randomly distributed integer sequence in range [1 8], N = 4096
`gaussian` - normally distributed number sequence [mean: 0, SD: 1], N = 5000
`henon` - X and Y components of the Henon attractor [alpha: 1.4, beta: .3, Xo = 0, Yo = 0], N = 4500
`lorenz` - X, Y, and Z components of the Lorenz attractor [sigma: 10, beta: 8/3, rho: 28, Xo = 10, Yo = 20, Zo = 10], N = 5917
`chirp` - chirp signal (f0 = .01, t1 = 4000, f1 = .025), N = 5000
`uniform2` - two uniformly distributed random number sequences in range [0,1], N = 4096
`gaussian2` - two normally distributed number sequences [mean: 0, SD: 1], N = 3000
`randintegers2` - two uniformly distributed pseudorandom integer sequences in range [1 8], N = 3000
`uniform_Mat` - matrix of uniformly distributed random numbers in range [0 1], N = 50 x 50
`gaussian_Mat` - matrix of normally distributed numbers [mean: 0, SD: 1], N = 60 x 120
`randintegers_Mat` - matrix of randomly distributed integers in range [1 8], N = 88 x 88
`mandelbrot_Mat` - matrix representing a Mandelbrot fractal image with values in range [0 255], N = 92 x 115
`entropyhub_Mat` - matrix representing the EntropyHub logo with values in range [0 255], N = 127 x 95
For further info on these graining procedures see the `EntropyHub guide <https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHub%20Guide.pdf>`_.
"""
function ExampleData(SigName)
Chk = ["uniform","uniform2","randintegers2","randintegers",
"henon","chirp","gaussian","gaussian2","lorenz",
"uniform_Mat", "gaussian_Mat", "entropyhub_Mat",
"mandelbrot_Mat","randintegers_Mat"]
SigName in Chk ? nothing : error("SigName must be one of the following:\n$Chk")
url = "https://raw.githubusercontent.com/MattWillFlood/EntropyHub/main/ExampleData/" * SigName * ".txt"
Temp = HTTP.get(url).body
if (SigName in ["henon","lorenz"]) || (SigName[end] == '2') || (SigName[end-2:end] == "Mat")
X = readdlm(Temp, skipstart=2)
else
X = readdlm(Temp, skipstart=2);
size(X)[1] < size(X)[2] ? X = X[1,:] : X = X[:,1]
end
return X
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 10094 | module _FuzzEn
export FuzzEn
using Statistics: mean, std
using LinearAlgebra: UpperTriangular, I, inv
"""
Fuzz, Ps1, Ps2 = FuzzEn(Sig)
Returns the fuzzy entropy estimates `Fuzz` and the average fuzzy distances
(`m`:Ps1, `m+1`:Ps2) for `m` = [1,2] estimated from the data sequence `Sig`
using the default parameters: embedding dimension = 2, time delay = 1,
fuzzy function (`Fx`) = "default", fuzzy function parameters (`r`) = [0.2, 2],
logarithm = natural
Fuzz, Ps1, Ps2 = FuzzEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2), Fx::String="default", Logx::Real=exp(1))
Returns the fuzzy entropy estimates `Fuzz` for dimensions = [1,...,`m`]
estimated for the data sequence `Sig` using the specified keyword arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer [default: 2]\n
`tau` - Time Delay, a positive integer [default: 1]\n
`Fx` - Fuzzy function name, one of the following:
{`"sigmoid", "modsampen", "default", "gudermannian",`
`"bell", "triangular", "trapezoidal1", "trapezoidal2",`
`"z_shaped", "gaussian", "constgaussian"`}\n
`r` - Fuzzy function parameters, a 1 element scalar or a 2 element
tuple of positive values. The `r` parameters for each fuzzy
function are defined as follows: [default: [.2 2]]\n
default: r(1) = divisor of the exponential argument
r(2) = argument exponent (pre-division)
sigmoid: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
modsampen: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
gudermannian: r = a scalar whose value is the numerator of
argument to gudermannian function:
GD(x) = atan(tanh(`r`/x))
triangular: r = a scalar whose value is the threshold (corner point) of the triangular function.
trapezoidal1: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the trapezoid.
trapezoidal2: r(1) = a value corresponding to the upper corner point of the trapezoid.
r(2) = a value corresponding to the lower corner point of the trapezoid.
z_shaped: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the z-shape.
bell: r(1) = divisor of the distance value
r(2) = exponent of generalized bell-shaped function
gaussian: r = a scalar whose value scales the slope of the Gaussian curve.
constgaussian: r = a scalar whose value defines the lower threshod and shape of the Gaussian curve.
[DEPRICATED] linear: r = an integer value. When r = 0, the
argument of the exponential function is
normalised between [0 1]. When r = 1,
the minimuum value of the exponential
argument is set to 0. \n
`Logx` - Logarithm base, a positive scalar [default: natural]
## For further information on keyword arguments, see the EntropyHub guide.
# See also `SampEn`, `ApEn`, `PermEn`, `DispEn`, `XFuzzEn`, `FuzzEn2D`, `MSEn`
# References:
[1] Weiting Chen, et al.
"Characterization of surface EMG signal based on fuzzy entropy."
IEEE Transactions on neural systems and rehabilitation engineering
15.2 (2007): 266-272.
[2] Hong-Bo Xie, Wei-Xing He, and Hui Liu
"Measuring time series regularity using nonlinear
similarity-based sample entropy."
Physics Letters A
372.48 (2008): 7140-7146.
[3] Hamed Azami, et al.
"Fuzzy Entropy Metrics for the Analysis of Biomedical Signals:
Assessment and Comparison"
IEEE Access
7 (2019): 104833-104847
"""
function FuzzEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
r::Union{Real,Tuple{Real,Real}}=(.2,2.0), Fx::String="default", Logx::Real=exp(1))
N = size(Sig)[1]
(N>10) ? nothing : error("Sig: must be a numeric vector")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(minimum(r)>=0 && length(r)<=2) ?
nothing : error("r: must be a scalar or 2 element tuple of positive values")
(lowercase(Fx) in ["default","sigmoid","modsampen","gudermannian","bell", "z_shaped",
"triangular", "trapezoidal1","trapezoidal2","gaussian","constgaussian"]) ?
nothing : error("Fx: must be one of the following strings -
'default', 'sigmoid', 'modsampen', 'gudermannian', 'bell', 'z_shaped',
'triangular', 'trapezoidal1','trapezoidal2','gaussian','constgaussian'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if length(r) == 2 && lowercase(Fx)=="linear"
r = 0;
print("Multiple values for r entered. Default value (0) used.\n")
elseif length(r) == 2 && lowercase(Fx)=="gudermannian"
r = r[1]
print("Multiple values for r entered. First value used.\n")
end
m += 1
Fun = getfield(_FuzzEn,Symbol(lowercase(Fx)))
Sx = zeros(N,m)
for k = 1:m
Sx[1:N-(k-1)*tau,k] = Sig[1+(k-1)*tau:end]
end
Ps1 = zeros(m)
Ps2 = zeros(m-1)
Ps1[1] = .5
for k = 2:m
N1 = N - k*tau; N2 = N - (k-1)*tau;
T2 = Sx[1:N2,1:k] .- mean(Sx[1:N2,1:k],dims=2)
d2 = zeros(N2-1,N2-1)
for p = 1:N2-1
Mu2 = maximum(abs.(repeat(transpose(T2[p,:]),N2-p) - T2[p+1:end,:]),dims=2)
d2[p,p:end] = Fun(Mu2[:],r)
end
d1 = d2[1:N1-1,1:N1-1]
Ps1[k] = sum(d1)/(N1*(N1-1))
Ps2[k-1] = sum(d2)/(N2*(N2-1))
end
Fuzz = (log.(Logx, Ps1[1:end-1]) - log.(Logx,Ps2))
return Fuzz, Ps1, Ps2
end
function sigmoid(x,r)
if length(r) == 1
error("When Fx = 'Sigmoid', r must be a two-element tuple.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function modsampen(x,r)
if length(r) == 1
error("When Fx = 'Modsampen', r must be a two-element tuple.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function default(x,r)
if length(r) == 1
error("When Fx = 'Default', r must be a two-element tuple.")
end
y = exp.(-(x.^r[2])/r[1])
return y
end
function gudermannian(x,r)
if r <= 0
error("When Fx = 'Gudermannian', r must be a scalar > 0.")
end
y = atan.(tanh.(r[1]./x))
y ./= maximum(y)
return y
end
"""
function linear(x,r)
if r == 0 && length(x)>1
y = exp.(-(x .- minimum(x))/(maximum(x)-minimum(x)))
elseif r == 1
y = exp.(-(x .- minimum(x)))
elseif r == 0 && length(x)==1
y = [0]
else
error("When Fx = 'Linear', r must be 0 or 1.")
end
return y
end
"""
function triangular(x,r)
length(r)==1 ? nothing : error("When Fx = 'Triangular', r must be a scalar > 0.")
y = 1 .- (x./r)
y[x .> r] .= 0
return y
end
function trapezoidal1(x, r)
length(r)==1 ? nothing : error("When Fx = 'Trapezoidal1', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= r*2] = 2 .- (x[x .<= r*2]./r)
y[x .<= r] .= 1
return y
end
function trapezoidal2(x, r)
(r isa Tuple) && (length(r)==2) ? nothing : error("When Fx = 'Trapezoidal2', r must be a two-element tuple.")
y = zeros(length(x))
y[x .<= maximum(r)] = 1 .- (x[x .<= maximum(r)] .- minimum(r))./(maximum(r)-minimum(r))
y[x .<= minimum(r)] .= 1
return y
end
function z_shaped(x, r)
length(r)==1 ? nothing : error("When Fx = 'Z_shaped', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= 2*r] = 2*(((x[x .<= 2*r] .- 2*r)./r).^2)
y[x .<= 1.5*r] = 1 .- (2*(((x[x .<= 1.5*r] .- r)/r).^2))
y[x .<= r] .= 1
return y
end
function bell(x, r)
(r isa Tuple) && length(r)==2 ? nothing : error("When Fx = 'Bell', r must be a two-element tuple.")
y = inv.(1 .+ abs.(x./r[1]).^(2*r[2]))
return y
end
function gaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'Gaussian', r must be a scalar > 0.")
y = exp.(-((x.^2)./(2*(r.^2))))
return y
end
function constgaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'ConstGaussian', r must be a scalar > 0.")
y = ones(length(x))
y[x .> r] = exp.(-log(2)*((x[x .> r] .- r)./r).^2)
return y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 11651 | module _FuzzEn2D
export FuzzEn2D
using Statistics: mean, std
"""
Fuzz2D = FuzzEn2D(Mat)
Returns the bidimensional fuzzy entropy estimate (`Fuzz2D`) estimated for
the data matrix (`Mat`) using the default parameters: time delay = 1,
fuzzy function (Fx) = 'default', fuzzy function parameters (r) = [0.2, 2],
logarithm = natural, template matrix size = [floor(H/10) floor(W/10)],
(where H and W represent the height and width of the data matrix 'Mat') \n
** The minimum dimension size of Mat must be > 10.**
Fuzz2D = FuzzEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2*std(Mat, corrected=false),2),
Fx::String="default", Logx::Real=exp(1), Lock::Bool=true)
Returns the bidimensional fuzzy entropy (`Fuzz2D`) estimates for the data
matrix (`Mat`) using the specified 'keyword' arguments:
# Arguments:
`m` - Template submatrix dimensions, an integer scalar (i.e. the same
height and width) or a two-element vector of integers
[height, width] with a minimum value > 1.
(default: [floor(H/10) floor(W/10)]) \n
`tau` - Time Delay, a positive integer (default: 1) \n
`Fx` - Fuzzy function name, one of the following:
{`"sigmoid", "modsampen", "default", "gudermannian",`
`"bell", "triangular", "trapezoidal1", "trapezoidal2",`
`"z_shaped", "gaussian", "constgaussian"`}\n
`r` - Fuzzy function parameters, a 1 element scalar or a 2 element
vector of positive values. The 'r' parameters for each fuzzy
function are defined as follows:\n
sigmoid: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
modsampen: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
default: r (1) = divisor of the exponential argument
r(2) = argument exponent (pre-division)
gudermannian: r = a scalar whose value is the numerator of
argument to gudermannian function:
GD(x) = atan(tanh(r/x))
triangular: r = a scalar whose value is the threshold (corner point) of the triangular function.
trapezoidal1: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the trapezoid.
trapezoidal2: r(1) = a value corresponding to the upper corner point of the trapezoid.
r(2) = a value corresponding to the lower corner point of the trapezoid.
z_shaped: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the z-shape.
bell: r(1) = divisor of the distance value
r(2) = exponent of generalized bell-shaped function
gaussian: r = a scalar whose value scales the slope of the Gaussian curve.
constgaussian: r = a scalar whose value defines the lower threshod and shape of the Gaussian curve.
[DEPRICATED] linear: r = an integer value. When r = 0, the
argument of the exponential function is
normalised between [0 1]. When r = 1,
the minimuum value of the exponential
argument is set to 0. \n
`Logx` - Logarithm base, a positive scalar (default: natural)\n
`Lock` - By default, FuzzEn2D only permits matrices with a maximum
size of 128 x 128 to prevent memory errors when storing data on RAM.
e.g. For Mat = [200 x 200], m = 3, and tau = 1, FuzzEn2D
creates a vector of 753049836 elements. To enable matrices
greater than [128 x 128] elements, set `Lock` to false.
(default: true)\n
` WARNING: unlocking the permitted matrix size may cause
your Julia IDE to crash.` \n
# See also `SampEn2D`, `FuzzEn`, `XFuzzEn`
# References:
[1] Luiz Fernando Segato Dos Santos, et al.,
"Multidimensional and fuzzy sample entropy (SampEnMF) for
quantifying H&E histological images of colorectal cancer."
Computers in biology and medicine
103 (2018): 148-160.
[2] Mirvana Hilal and Anne Humeau-Heurtier,
"Bidimensional fuzzy entropy: Principle analysis and biomedical
applications."
41st Annual International Conference of the IEEE (EMBC) Society
2019.
[3] Hamed Azami, et al.
"Fuzzy Entropy Metrics for the Analysis of Biomedical Signals:
Assessment and Comparison"
IEEE Access
7 (2019): 104833-104847
"""
function FuzzEn2D(Mat::AbstractArray{T,2} where T<:Real;
m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2*std(Mat,corrected=false),2),
Fx::String="default", Logx::Real=exp(1), Lock::Bool=true)
NL, NW = size(Mat)
((NL > 128 || NW > 128) && Lock) ?
error("To prevent memory errors, matrix width & length must have <= 128 elements.
To estimate FuzzEn2D for the current matrix ($NL,$NW) change Lock to 'false'.
Caution: unlocking the safe matrix size may cause the Julia IDE to crash.") :
nothing
length(m)==1 ? (mL = m; mW = m) : (mL = m[1]; mW = m[2])
(NL > 10 && NW > 10) ? nothing :
error("Number of rows and columns in Mat must be > 10")
(minimum(m)>1) ? nothing : error("m: must be an integer > 1, or a 2 element integer tuple > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(minimum(r)>=0) ? nothing : error("r: must be a positive value")
#error("r: must be 2 element tuple of positive values")
(lowercase(Fx) in ["default","sigmoid","modsampen","gudermannian","bell", "z_shaped",
"triangular", "trapezoidal1","trapezoidal2","gaussian","constgaussian"]) ?
nothing : error("Fx: must be one of the following strings -
'default', 'sigmoid', 'modsampen', 'gudermannian', 'bell', 'z_shaped',
'triangular', 'trapezoidal1','trapezoidal2','gaussian','constgaussian'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if length(r) == 2 && lowercase(Fx)=="linear"
r = 0;
print("Multiple values for r entered. Default value (0) used.\n")
elseif length(r) == 2 && lowercase(Fx)=="gudermannian"
r = r[1]
print("Multiple values for r entered. First value used.\n")
end
Fun = getfield(_FuzzEn2D,Symbol(lowercase(Fx)))
NL = NL - mL*tau
NW = NW - mW*tau
X1 = zeros(mL,mW,NL*NW)
X2 = zeros(mL+1,mW+1,NL*NW)
p = 0;
for k = 1:NL
for n = 1:NW
p += 1
Temp2 = Mat[k:tau:(mL)*tau+k,n:tau:(mW)*tau+n]
Temp1 = Temp2[1:end-1,1:end-1]
X1[:,:,p] = Temp1 .- mean(Temp1)
X2[:,:,p] = Temp2 .- mean(Temp2)
end
end
p = size(X1,3)
p != NL*NW ? @warn("Potential error with submatrix division.") : nothing
Ny = p*(p-1)/2;
Ny > 300000000 ? @warn("Number of pairwise distance calculations is $Ny") : nothing
Y1 = zeros(p-1)
Y2 = zeros(p-1)
for k = 1:p-1
Temp1 = maximum(abs.(X1[:,:,k+1:end] .- X1[:,:,k]),dims=(1,2))
Y1[k] = sum(Fun(Temp1[:], r))
Temp2 = maximum(abs.(X2[:,:,k+1:end] .- X2[:,:,k]),dims=(1,2))
Y2[k] = sum(Fun(Temp2[:], r))
end
Fuzz2D = -log(Logx, sum(Y2)/sum(Y1))
return Fuzz2D
end
function sigmoid(x,r)
if length(r) == 1
error("When Fx = 'Sigmoid', r must be a two-element vector.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function modsampen(x,r)
if length(r) == 1
error("When Fx = 'Modsampen', r must be a two-element vector.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function default(x,r)
if length(r) == 1
error("When Fx = 'Default', r must be a two-element vector.")
end
y = exp.(-(x.^r[2])/r[1])
return y
end
function gudermannian(x,r)
if r <= 0
error("When Fx = 'Gudermannian', r must be a scalar > 0.")
end
y = atan.(tanh.(r[1]./x))
y ./= maximum(y)
return y
end
"""
function linear(x,r)
if r == 0 && length(x)>1
y = exp.(-(x .- minimum(x))/(maximum(x)-minimum(x)))
elseif r == 1
y = exp.(-(x .- minimum(x)))
elseif r == 0 && length(x)==1
y = [0]
else
error("When Fx = 'Linear', r must be 0 or 1.")
end
return y
end
"""
function triangular(x,r)
length(r)==1 ? nothing : error("When Fx = 'Triangular', r must be a scalar > 0.")
y = 1 .- (x./r)
y[x .> r] .= 0
return y
end
function trapezoidal1(x, r)
length(r)==1 ? nothing : ("When Fx = 'Trapezoidal1', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= r*2] = 2 .- (x[x .<= r*2]./r)
y[x .<= r] .= 1
return y
end
function trapezoidal2(x, r)
(r isa Tuple) && (length(r)==2) ? nothing : error("When Fx = 'Trapezoidal2', r must be a two-element tuple.")
y = zeros(length(x))
y[x .<= maximum(r)] = 1 .- (x[x .<= maximum(r)] .- minimum(r))./(maximum(r)-minimum(r))
y[x .<= minimum(r)] .= 1
return y
end
function z_shaped(x, r)
length(r)==1 ? nothing : error("When Fx = 'Z_shaped', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= 2*r] .= 2*(((x[x .<= 2*r] .- 2*r)./r).^2)
y[x .<= 1.5*r] .= 1 .- (2*(((x[x .<= 1.5*r] .- r)/r).^2))
y[x .<= r] .= 1
return y
end
function bell(x, r)
(r isa Tuple) && length(r)==2 ? nothing : error("When Fx = 'Bell', r must be a two-element tuple.")
y = inv.(1 .+ abs.(x./r[1]).^(2*r[2]))
return y
end
function gaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'Gaussian', r must be a scalar > 0.")
y = exp.(-((x.^2)./(2*(r.^2))))
return y
end
function constgaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'ConstGaussian', r must be a scalar > 0.")
y = ones(length(x))
y[x .> r] = exp.(-log(2)*((x[x .> r] .- r)./r).^2)
return y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5549 | module _GridEn
export GridEn
using Plots
using Plots.PlotMeasures
using StatsBase: Histogram, fit
"""
GDE, GDR, _ = GridEn(Sig)
Returns the gridded distribution entropy (`GDE`) and the gridded
distribution rate (`GDR`) estimated from the data sequence (`Sig`) using
the default parameters:
grid coarse-grain = 3, time delay = 1, logarithm = base 2
GDE, GDR, PIx, GIx, SIx, AIx = GridEn(Sig)
In addition to GDE and GDR, GridEn returns the following indices
estimated for the data sequence (`Sig`) using the default parameters:
[`PIx`] - Percentage of points below the line of identity (LI)
[`GIx`] - Proportion of point distances above the LI
[`SIx`] - Ratio of phase angles (w.r.t. LI) of the points above the LI
[`AIx`] - Ratio of the cumulative area of sectors of points above the LI
GDE, GDR, ..., = GridEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=3, tau::Int=1, Logx::Real=exp(1), Plotx::Bool=false)
Returns the gridded distribution entropy (`GDE`) estimated from the data
sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Grid coarse-grain (m x m sectors), an integer > 1 \n
`tau` - Time Delay, a positive integer \n
`Logx` - Logarithm base, a positive scalar \n
`Plotx` - When Plotx == true, returns gridded Poicaré plot and a bivariate
histogram of the grid point distribution (default: false) \n
# See also `PhasEn`, `CoSiEn`, `SlopEn`, `BubbEn`, `MSEn`
# References:
[1] Chang Yan, et al.,
"Novel gridded descriptors of poincaré plot for analyzing
heartbeat interval time-series."
Computers in biology and medicine
109 (2019): 280-289.
[2] Chang Yan, et al.
"Area asymmetry of heart rate variability signal."
Biomedical engineering online
16.1 (2017): 1-14.
[3] Alberto Porta, et al.,
"Temporal asymmetries of short-term heart period variability
are linked to autonomic regulation."
American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology
295.2 (2008): R550-R557.
[4] C.K. Karmakar, A.H. Khandoker and M. Palaniswami,
"Phase asymmetry of heart rate variability signal."
Physiological measurement
36.2 (2015): 303.
"""
function GridEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=3, tau::Int=1,
Logx::Real=exp(1), Plotx::Bool=false)
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau >0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Sig_n = (Sig.-minimum(Sig))/(maximum(Sig)-minimum(Sig))
Temp = hcat(Sig_n[1:end-tau], Sig_n[1+tau:end])
Edges = collect(0:1/m:1); Edges[end] = 1.1
N = fit(Histogram,(Temp[:,1],Temp[:,2]),(Edges,Edges)).weights
Pj = reverse(transpose(N),dims=1)/size(Temp,1); Ppi = Pj[Pj.>0];
if round(sum(Ppi),digits=4) != 1
@warn("Potential error of estimated probabilities: P = $(sum(Ppi))")
end
GDE = -sum(Ppi.*(log.(Ppi)/log(Logx)));
GDR = sum(N.!=0)/(m*m);
T2 = atand.(Temp[:,2]./Temp[:,1])
Dup = sum(abs.(diff(Temp[T2.>45,:],dims=2)))
Dtot = sum(abs.(diff(Temp[T2.!=45,:],dims=2)))
Sup = sum((T2[T2.>45].-45))
Stot = sum(abs.(T2[T2.!=45].-45))
Aup = sum(abs.((T2[T2.>45].-45).*sqrt.(sum(Temp[T2.>45,:].^2,dims=2))))
Atot = sum(abs.((T2[T2.!=45].-45).*sqrt.(sum(Temp[T2.!=45,:].^2,dims=2))))
PIx = 100*sum(T2.<45)/sum(T2.!=45)
GIx = 100*Dup/Dtot
SIx = 100*Sup/Stot
AIx = 100*Aup/Atot
if Plotx
ntrvl = range(0,1,length=m+1)
p1 = plot(Sig_n[1:end-tau],Sig_n[tau+1:end],seriestype =:scatter,
c=:magenta, markerstrokecolor=:magenta, markersize = 2)
plot!(hcat(ntrvl,ntrvl)',hcat(zeros(m+1),ones(m+1))',c=:cyan,lw=3)
plot!(hcat(zeros(m+1),ones(m+1))',hcat(ntrvl,ntrvl)',c=:cyan,lw=3)
plot!([0, 1],[0, 1],c=:black, legend=false, aspect_ratio=:equal,
xlim = (0, 1), ylim = (0, 1),
xticks=[0, 1], yticks=[0, 1], xlabel= "X ₙ" , ylabel="X ₙ₊ₜ")
p2 = histogram2d(Temp[:,1],Temp[:,2], nbins=ntrvl,
xticks=[0, 1], yticks=[0, 1], xlabel= "X ₙ" , ylabel="X ₙ₊ₜ",
xlim = (0, 1), ylim = (0, 1), aspect_ratio=:equal,
colorbar_entry=false, seriescolor=:cool,show_empty_bins=true)
xx = plot(p1,p2,layout=(1,2),legend=false, framestyle=:grid, margin=7mm)
display(xx)
end
return GDE, GDR, PIx, GIx, SIx, AIx
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3694 | module _IncrEn
export IncrEn
using Statistics: std
"""
Incr = IncrEn(Sig)
Returns the increment entropy (`Incr`) estimate of the data sequence
(`Sig`) using the default parameters:
embedding dimension = 2, time delay = 1, quantifying resolution = 4,
logarithm = base 2,
Incr = IncrEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, R::Int=4, Logx::Real=2, Norm::Bool=false)
Returns the increment entropy (`Incr`) estimate of the data sequence
(`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
`tau` - Time Delay, a positive integer \n
`R` - Quantifying resolution, a positive scalar \n
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of IncrEn value: \n
[false] no normalisation - default
[true] normalises w.r.t embedding dimension (m-1).
# See also `PermEn`, `SyDyEn`, `MSEn`
# References:
[1] Xiaofeng Liu, et al.,
"Increment entropy as a measure of complexity for time series."
Entropy
18.1 (2016): 22.1.
*** "Correction on Liu, X.; Jiang, A.; Xu, N.; Xue, J. - Increment
Entropy as a Measure of Complexity for Time Series,
Entropy 2016, 18, 22."
Entropy
18.4 (2016): 133.
[2] Xiaofeng Liu, et al.,
"Appropriate use of the increment entropy for
electrophysiological time series."
Computers in biology and medicine
95 (2018): 13-23.
"""
function IncrEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
R::Int=4, Logx::Real=2, Norm::Bool=false)
Logx == 0 ? Logx = exp(1) : nothing
(size(Sig,1) > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(R > 0) ? nothing : error("R: must be a positive integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Vi = diff(Sig)
N = size(Vi,1)-((m-1)*tau)
Vk = zeros(N,m)
for k = 1:m
Vk[:,k] = Vi[1+(k-1)*tau:N+(k-1)*tau]
end
Sk = sign.(Vk)
Temp = std(Vk,dims=2)[:]
Qk = min.(R, floor.((abs.(Vk)*R)./repeat(Temp,outer=(1,m))))
Qk[any(Temp.==0,dims=2), :] .= 0 #should that be all()
Wk = Sk.*Qk
Wk[Wk.==-0] .= 0
Px = unique(Wk,dims=1)
Counter = zeros(Int,size(Px,1));
for k = 1:size(Px,1)
Counter[k] = sum(all(Wk .- transpose(Px[k,:]) .==0 ,dims=2))
end
Ppi = Counter/N
if size(Px,1) > (2*R + 1)^m
@warn("Error with probability estimation'")
elseif round(sum(Ppi),digits=5) != 1
@warn("Error with probability estimation")
end
Incr = -sum(Ppi.*(log.(Logx, Ppi)))
if Norm
Incr = Incr/(m-1);
end
return Incr
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 2999 | module _K2En
export K2En
using Statistics: std
"""
K2, Ci = K2En(Sig)
Returns the Kolmogorov entropy estimates `K2` and the correlation
integrals `Ci` for `m` = [1,2] estimated from the data sequence `Sig`
using the default parameters: embedding dimension = 2, time delay = 1,
r = 0.2*SD(`Sig`), logarithm = natural
K2, Ci = K2En(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))
Returns the Kolmogorov entropy estimates `K2` for dimensions = [1,...,`m`]
estimated from the data sequence `Sig` using the 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer\n
`tau` - Time Delay, a positive integer\n
`r` - Radius, a positive scalar \n
`Logx` - Logarithm base, a positive scalar\n
# See also `DistEn`, `XK2En`, `MSEn`
# References:
[1] Peter Grassberger and Itamar Procaccia,
"Estimation of the Kolmogorov entropy from a chaotic signal."
Physical review A 28.4 (1983): 2591.
[2] Lin Gao, Jue Wang and Longwei Chen
"Event-related desynchronization and synchronization
quantification in motor-related EEG by Kolmogorov entropy"
J Neural Eng. 2013 Jun;10(3):03602
"""
function K2En(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1))
N = size(Sig)[1]
(N>10) ? nothing : error("Sig: must be a numeric vector")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(r>0) ? nothing : error("r: must be a positive scalar > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
m = m+1
Zm = zeros(N,m)
Ci = zeros(m)
for n = 1:m
N2 = N-(n-1)*tau
Zm[1:N2,n] = Sig[(n-1)*tau + 1:N]
Norm = Inf*ones(N2-1,N2-1)
for k = 1:N2-1
Temp = repeat(transpose(Zm[k,1:n]),N2-k,1) - Zm[k+1:N2,1:n]
Norm[k,k:N2-1] = sqrt.(sum(Temp.^2, dims=2))
end
Ci[n] = 2*sum(Norm .< r)/(N2*(N2-1))
end
K2 = log.(Logx, Ci[1:m-1]./Ci[2:m])/tau
K2[isinf.(K2)] .= NaN
return K2, Ci
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 13283 | module _MSEn
export MSEn, EMD
using Statistics: std, mean, median, var
using DataInterpolations: CubicSpline
#using Dierckx: Spline1D
using Plots
using DSP: conv
#=function __init__()
@warn("\n\n Methodx option IMF (Intrinisic Mode Function) is not stable.
Random or highly aperiodic signals may not decompose fully.
Access to the IMFs decomposed by the empirical mode decomposition (EMD) function
can be found by calling EntropyHub.EMD(`Sig`,`MaxIMFs`).
A stable EMD function will be included in future releases.\n\n")
end=#
"""
MSx, CI = MSEn(Sig, Mobj)
Returns a vector of multiscale entropy values `MSx` and the complexity
index `CI` of the data sequence `Sig` using the parameters specified
by the multiscale object `Mobj` over 3 temporal scales with coarse-
graining (default).
MSx, CI = MSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3,
Methodx::String="coarse", RadNew::Int=0, Plotx::Bool=false)
Returns a vector of multiscale entropy values `MSx` and the complexity
index `CI` of the data sequence `Sig` using the parameters specified by
the multiscale object `Mobj` and the following 'keyword' arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3) \n
`Method` - Graining method, one of the following:
{`coarse`,`modified`,`imf`,`timeshift`,`generalized`} [default = `coarse`]
For further info on these graining procedures, see the EntropyHub guide. \n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `SampEn` or `ApEn`,
RadNew allows the radius threshold to be updated at each
time scale (Xt). If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of RadNew specifies one of the
following methods:\n
[1] Standard Deviation - r*std(Xt)\n
[2] Variance - r*var(Xt) \n
[3] Mean Absolute Deviation - r*mean_ad(Xt) \n
[4] Median Absolute Deviation - r*med_ad(Xt)\n
`Plotx` - When Plotx == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false]\n
`For further info on these graining procedures see the EntropyHub guide.`
# See also `MSobject`, `rMSEn`, `cMSEn`, `hMSEn`, `SampEn`, `ApEn`, `XMSEn`
# References:
[1] Madalena Costa, Ary Goldberger, and C-K. Peng,
"Multiscale entropy analysis of complex physiologic time series."
Physical review letters
89.6 (2002): 068102.
[2] Vadim V. Nikulin, and Tom Brismar,
"Comment on “Multiscale entropy analysis of complex physiologic
time series”."
Physical review letters
92.8 (2004): 089803.
[3] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
"Costa, Goldberger, and Peng reply."
Physical Review Letters
92.8 (2004): 089804.
[4] Madalena Costa, Ary L. Goldberger and C-K. Peng,
"Multiscale entropy analysis of biological signals."
Physical review E
71.2 (2005): 021906.
[5] Ranjit A. Thuraisingham and Georg A. Gottwald,
"On multiscale entropy analysis for physiological data."
Physica A: Statistical Mechanics and its Applications
366 (2006): 323-332.
[6] Meng Hu and Hualou Liang,
"Intrinsic mode entropy based on multivariate empirical mode
decomposition and its application to neural data analysis."
Cognitive neurodynamics
5.3 (2011): 277-284.
[7] Anne Humeau-Heurtier
"The multiscale entropy algorithm and its variants: A review."
Entropy
17.5 (2015): 3110-3123.
[8] Jianbo Gao, et al.,
"Multiscale entropy analysis of biological signals: a
fundamental bi-scaling law."
Frontiers in computational neuroscience
9 (2015): 64.
[9] Paolo Castiglioni, et al.,
"Multiscale Sample Entropy of cardiovascular signals: Does the
choice between fixed-or varying-tolerance among scales
influence its evaluation and interpretation?."
Entropy
19.11 (2017): 590.
[10] Tuan D Pham,
"Time-shift multiscale entropy analysis of physiological signals."
Entropy
19.6 (2017): 257.
[11] Hamed Azami and Javier Escudero,
"Coarse-graining approaches in univariate multiscale sample
and dispersion entropy."
Entropy 20.2 (2018): 138.
[12] Madalena Costa and Ary L. Goldberger,
"Generalized multiscale entropy analysis: Application to quantifying
the complex volatility of human heartbeat time series."
Entropy 17.3 (2015): 1197-1203.
"""
function MSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3,
Methodx::String="coarse", RadNew::Int=0, Plotx::Bool=false)
(size(Sig,1)>10) ? nothing : error("Sig: must be a numeric vector" )
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(lowercase(Methodx) in ["coarse","modified","imf","timeshift","generalized"]) ? nothing :
error("Method: must be one of the following string names - 'coarse','modified','imf','timeshift','generalized'")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("SampEn","ApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with
entropy function 'SampEn' or 'ApEn'")
lowercase(String(Symbol(Mobj.Func))[1]) == 'x' ? error("Base entropy estimator is a cross-entropy method.
To perform multiscale CROSS-entropy estimation, use rXMSEn.") : nothing
String(Symbol(Mobj.Func))=="SampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
if lowercase(Methodx)=="imf"
Sig, _ = EMD(Sig,Scales-1)
# sum(all(Sig.==0,dims=2))==0 ? nothing : Sig = Sig[all(Sig.!=0,dims=2),:]
#Scales >= size(Sig,1) ? nothing :
#@warn("Max number of IMF's decomposed from EMD is less than number of Scales.
# MSEn evaluated over $(size(Sig,1)) scales instead of $Scales.")
#Scales = size(Sig,1)
sum(all(Sig.==0,dims=2))==0 ? Tp1 = ones(Int,size(Sig,1)) : Tp1 = vec(collect(all(Sig .!= 0, dims=2)));
if !all(Bool.(Tp1)) || (size(Sig,1)<Scales)
Sig = Sig[Bool.(Tp1),:]
@warn("Max number of IMF's decomposed from EMD is less than number of Scales.
MSEn evaluated over $(size(Sig,1)) scales instead of $Scales.")
Scales = size(Sig,1);
end
end
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
Func2 = getfield(_MSEn,Symbol(lowercase(Methodx)))
if RadNew > 0
if RadNew == 1
Rnew = x -> std(x, corrected=false)
elseif RadNew == 2
Rnew = x -> var(x, corrected=false)
elseif RadNew == 3
Rnew = x -> mean(abs.(x .- mean(x)))
elseif RadNew == 4
Rnew = x -> median(abs.(x .- median(x)))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Standard Deviation","Variance","Mean Abs Deviation",
"Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
for T = 1:Scales
print(". ")
Temp = Func2(Sig,T)
if lowercase(Methodx) == "timeshift"
Tempx = zeros(T)
for k = 1:T
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(Temp[k,:])) : nothing
Tempy = Mobj.Func(Temp[k,:]; Args...)
typeof(Tempy)<:Tuple ? Tempx[k] = Tempy[1][end] : Tempx[k] = Tempy[end]
# Tempx[k] = Tempy[end]
end
Temp2 = mean(Tempx)
else
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(Temp[:])) : nothing
Tempx = Mobj.Func(Temp[:]; Args...)
typeof(Tempx)<:Tuple ? Temp2 = Tempx[1][end] : Temp2 = Tempx[end]
#Temp2 = Tempx[1][end]
end
MSx[T] = Temp2
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Multiscale $(Mobj.Func) ($(titlecase(Methodx))-graining method)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255)) #ylim=(0,maximum(MSx)+.2),
display(p1)
end
return MSx, CI
end
function coarse(Z,sx)
Ns = Int(floor(size(Z,1)/sx))
Y = mean(reshape(Z[1:sx*Ns],sx,Ns),dims=1)
return Y
end
function modified(Z,sx)
#= Ns = size(Z,1) - sx + 1
Y = zeros(Ns)
for k = 1:Ns
Y[k] = mean(Z[k:k+sx-1])
end=#
Y = (conv(Z,ones(Int,sx))/sx)[sx:end-sx+1]
return Y
end
function imf(Z,sx)
Y = sum(Z[1:sx,:],dims=1)
return Y
end
function timeshift(Z,sx)
Y = reshape(Z[1:Int(sx*floor(length(Z)/sx))],
(sx,Int(floor(length(Z)/sx))))
return Y
end
function generalized(Z,sx)
Ns = floor(Int, length(Z)/sx)
Y = var(reshape(Z[1:sx*Ns],sx,Ns)',corrected=false,dims=2)
return Y
end
function PkFind(X)
Nx = length(X)
Indx = zeros(Int,Nx);
for n = 2:Nx-1
if X[n-1]< X[n] > X[n+1]
Indx[n] = n
elseif X[n-1] < X[n] == X[n+1]
k = 1
Indx[n] = n
while (n+k)<Nx && X[n] == X[n+k]
Indx[n+k] = n+k
k+=1
end
n+=k
end
end
Indx = Indx[Indx.!==0]
return Indx
end
function EMD(X, Scales::Int)
Xt = copy(X); N = size(Xt,1); n=1; IMFs = zeros(Scales+1,N)
MaxER = 20; MinTN = 2; #Xt .-= mean(Xt)
r1 = Xt
while n <= Scales
r0 = Xt
x = 0;
Upx = PkFind(r0); Lwx = PkFind(-r0)
UpEnv = CubicSpline(r0[Upx], Upx) #Spline1D(Upx,r0[Upx],k=3,bc="nearest")
LwEnv = CubicSpline(r0[Lwx], Lwx) #Spline1D(Lwx,r0[Lwx],k=3,bc="nearest")
r1 = r0.- (UpEnv(1:N) .+ LwEnv(1:N))./2 #r0.- (UpEnv.(1:N) .+ LwEnv.(1:N))./2
RT = (sum(r0.*r0) - sum(r1.*r1))/sum(r0.*r0)
length(vcat(Upx,Lwx)) <= MinTN ? (LOG = "Decomposition hit minimal extrema criteria."; break) : nothing
while x < 100 && RT > 0.2
r0 = 1*r1
Upx = PkFind(r0); Lwx = PkFind(-r0)
UpEnv = CubicSpline(r0[Upx], Upx) #Spline1D(Upx,r0[Upx],k=3,bc="nearest")
LwEnv = CubicSpline(r0[Lwx], Lwx) #Spline1D(Lwx,r0[Lwx],k=3,bc="nearest")
r1 = r0.- (UpEnv(1:N) .+ LwEnv(1:N))./2 #r0.- (UpEnv.(1:N) .+ LwEnv.(1:N))./2
RT = (sum(r0.*r0) - sum(r1.*r1))/sum(r0.*r0)
x += 1;
10*log10(sqrt(sum(r0.*r0))/sqrt(sum(r1.*r1))) > MaxER ?
(LOG = "Decomposition hit energy ratio criteria."; break) : nothing
end
IMFs[n,:] = r1
Xt .-= r1
IMFs[Scales+1,:] = r0 .+ mean(X)
n+=1
end
LOG = "All went well :) "
return IMFs, LOG
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4418 | module _MSobject
export MSobject
"""
Mobj = MSobject()
Returns a multiscale entropy object (`Mobj`) based on that originally
proposed by Costa et. al. (2002) using the following default parameters:
EnType = SampEn(), embedding dimension = 2, time delay = 1,
radius = 0.2*SD(`Sig`), logarithm = natural
Mobj = MSobject(EnType::Function)
Returns a multiscale entropy object by passing the entropy function
(`EnType`) and the specifying default parameters for that entropy function.
To see the default parameters for a particular entropy method,
type: `? EntropyHub.EnType` \n
(e.g. `? EntropyHub.SampEn`)
Mobj = MSobject(EnType::Function; kwargs...)
Returns a multiscale entropy object using the specified entropy method
(`EnType`) and the 'keyword' parameters for that particular method.
To see the default parameters for a particular entropy method,
type: ? EntropyHub.EnType (e.g. ? EntropyHub.SampEn)
EnType can be any of the following entropy functions:
# Base Entropies:
-----------------
`ApEn` - Approximate Entropy \n
`SampEn` - Sample Entropy \n
`FuzzEn` - Fuzzy Entropy \n
`K2En` - Kolmogorov Entropy \n
`PermEn` - Permutation Entropy \n
`CondEn` - Conditional Entropy \n
`DistEn` - Distribution Entropy \n
`DispEn` - Dispersion Entropy \n
`SpecEn` - Spectral Entropy \n
`SyDyEn` - Symbolic Dynamic Entropy \n
`IncrEn` - Increment Entropy \n
`CoSiEn` - Cosine Similarity Entropy \n
`PhasEn` - Phase Entropy \n
`SlopEn` - Slope Entropy \n
`BubbEn` - Bubble Entropy \n
`GridEn` - Gridded Distribution Entropy \n
`EnofEn` - Entropy of Entropy \n
`AttnEn` - Attention Entropy \n
`DivEn` - Diversity Entropy \n
`RangEn` - Range Entropy \n
# Cross Entropies:
------------------
`XApEn` - Cross-Approximate Entropy \n
`XSampEn` - Cross-Sample Entropy \n
`XFuzzEn` - Cross-Fuzzy Entropy \n
`XK2En` - Cross-Kolmogorov Entropy \n
`XPermEn` - Cross-Permutation Entropy \n
`XCondEn` - Cross-Conditional Entropy \n
`XDistEn` - Cross-Distribution Entropy \n
`XSpecEn` - Cross-Spectral Entropy \n
# Multivariate Entropies:
------------------
`MvSampEn` - Multivariate Sample Entropy \n
`MvFuzzEn` - Multivariate Fuzzy Entropy \n
`MvPermEn` - Multivariate Permutation Entropy \n
`MvCoSiEn` - Multivariate Cosine Similarity Entropy \n
`MvDispEn` - Multivariate Dispersion Entropy \n
# See also `MSEn`, `XMSEn`, `MvMSEn`, `rMSEn`, `cMSEn`, `hMSEn`, `rXMSEn`, `cXMSEn`, `hXMSEn`, `cMvMSEn`
"""
function MSobject(EnType::Function=SampEn; kwargs...)
Chk = ["ApEn";"SampEn";"FuzzEn";"K2En";"PermEn";"CondEn";"DistEn";"DivEn";
"DispEn";"SyDyEn";"IncrEn";"CoSiEn";"PhasEn";"SpecEn";"SlopEn";"RangEn";
"GridEn";"BubbEn";"EnofEn";"AttnEn";
"XApEn";"XSampEn";"XFuzzEn";"XPermEn";
"XCondEn";"XDistEn";"XSpecEn";"XK2En";
"MvSampEn";"MvFuzzEn";"MvPermEn";
"MvCoSiEn";"MvDispEn"]
(String(Symbol(EnType)) in Chk) ? nothing :
error("EnType: must be a valid entropy function name.
For more info, type: julia> ? EntropyHub.MSobject")
#Mobj = (Func=getfield(Main.EntropyHub, Symbol(EnType)), kwargs...)
Mobj = (Func= EnType, kwargs...)
return Mobj
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5947 | module _MvCoSiEn
export MvCoSiEn
using Statistics: std, mean, median
using LinearAlgebra: Diagonal, UpperTriangular
"""
MCoSi, Bm = MvCoSiEn(Data)
Returns the multivariate cosine similarity entropy estimate (`MCoSi`)
and the corresponding global probabilities (`Bm`) estimated for the
M multivariate sequences in `Data` using the default parameters:
embedding dimension = 2*ones(M), time delay = ones(M),
angular threshold = 0.1, logarithm = 2, data normalization = none,
!!! note
To maximize the number of points in the embedding process, this algorithm
uses N-max(m * tau) delay vectors and _*not*_ N-max(m) * max(tau) as employed
in [1][2].
-------------------------------------------------------------
MCoSi, Bm = MvCoSiEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, r::Real=.1, Logx::Real=2, Norm::Int=0)
Returns the multivariate cosine similarity entropy estimates (`MSamp`)
estimated from the M multivariate data sequences in `Data` using the
specified keyword arguments:
# Arguments:
`Data` - Multivariate dataset, NxM matrix of N (>10) observations (rows) and M (cols) univariate data sequences\n
`m` - Embedding Dimension, a vector of M positive integers\n
`tau` - Time Delay, a vector of M positive integers\n
`r` - Angular threshold, a value in range [0 < r < 1] \n
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of `Data`, one of the following integers:\n
* [0] no normalisation - default
* [1] remove median(`Data`) to get zero-median series
* [2] remove mean(`Data`) to get zero-mean series
* [3] normalises each sequence in `Data` to unit variance and zero mean
* [4] normalises each sequence in `Data` values to range [-1 1]
# See also `CoSiEn`, `MvDispEn`, `MvSampEn`, `MvFuzzEn`, `MvPermEn`, `MSEn`
# References:
[1] H. Xiao, T. Chanwimalueang and D. P. Mandic,
"Multivariate Multiscale Cosine Similarity Entropy"
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5997-6001, doi: 10.1109/ICASSP43922.2022.9747282.
[2] Xiao, H.; Chanwimalueang, T.; Mandic, D.P.,
"Multivariate Multiscale Cosine Similarity Entropy and Its
Application to Examine Circularity Properties in Division Algebras."
Entropy 2022, 24, 1287.
[3] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy: A tool for complexity
analysis of multichannel data."
Physical Review E 84.6 (2011): 061918.
[4] Theerasak Chanwimalueang and Danilo Mandic,
"Cosine similarity entropy: Self-correlation-based complexity
analysis of dynamical systems."
Entropy
19.12 (2017): 652.
"""
function MvCoSiEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing,
tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, r::Real=.1, Logx::Real=2, Norm::Int=0)
N, Dn = size(Data)
isnothing(m) ? m = 2*ones(Int, Dn) : nothing
isnothing(tau) ? tau = ones(Int, Dn) : nothing
Logx==0 ? Logx = exp(1) : nothing
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
ndims(m)==1 && length(m)==Dn && all(m.>0) && eltype(m)<:Int ? nothing : error("m: vector of M positive integers")
ndims(tau)==1 && length(tau)==Dn && all(tau.>0) && eltype(tau)<:Int ? nothing : error("tau: vector of M positive integers")
(0<r<1) ? nothing : error("r: must be a scalar in range 0 < r < 1")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(Norm in collect(0:4)) ? nothing : error("Norm: must be an integer in range [0 4]")
if Norm == 1
Xi = Data .- median(Data,dims=1)
elseif Norm == 2
Xi = Data .- mean(Data,dims=1)
elseif Norm == 3
Xi = (Data .- mean(Data, dims=1))./std(Data,corrected=false, dims=1)
elseif Norm == 4
Xi = (2*(Data .- minimum(Data, dims=1))./(maximum(Data,dims=1).-minimum(Data, dims=1))) .- 1;
else
Xi = Data;
end
Nx = N-maximum((m.-1).*tau)
Zm = zeros(Nx,sum(m));
q=1
for k = 1:Dn
for p = 1:m[k]
Zm[:,q] = Xi[1+(p-1)*tau[k]:Nx+(p-1)*tau[k], k]
q += 1
end
end
Num = Zm*transpose(Zm);
Mag = sqrt.(sum(Diagonal(Num),dims=1))[:]
Den = Mag*transpose(Mag)
AngDis = round.(acos.(round.(Num./Den,digits=8))/pi,digits=6)
if maximum(imag.(AngDis)) < (10^-5)
Bm = (sum(UpperTriangular(AngDis .< r))-Nx)/(Nx*(Nx-1)/2)
else
Bm = (sum(UpperTriangular(real.(AngDis) .< r))-Nx)/(Nx*(Nx-1)/2)
@warn("Complex values ignored.")
end
Bm == 1 || Bm == 0 ? MCoSi = NaN : MCoSi = -(Bm*log(Logx, Bm)) - ((1-Bm)*log(Logx, 1-Bm))
return MCoSi, Bm
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 8706 | module _MvDispEn
export MvDispEn
using Clustering: kmeans, assignments
using Statistics: std, mean
using StatsFuns: normcdf
using Combinatorics: combinations
"""
MDisp, RDE = MvDispEn(Data)
Returns the multivariate dispersion entropy estimate (`MDisp`) and
the reverse dispersion entropy (`RDE`) for the M multivariate sequences
in `Data` using the default parameters:
embedding dimension = 2*ones(M,1), time delay = ones(M,1), # symbols = 3,
algorithm method = "v1" (see below), data transform = normalised cumulative density function (ncdf)
logarithm = natural, data normalization = true,
!!! note
By default, `MvDispEn` uses the method termed `mvDEii` in [1],
which follows the original multivariate embedding approach of Ahmed & Mandic [2].
The `v1` method therefore returns a singular entropy estimate.
If the `v2` method is selected (`Methodx=="v2"`), the main method
outlined in [1] termed `mvDE` is applied. In this case, entropy is estimated
using each combination of multivariate delay vectors with lengths 1:max(m),
with each entropy value returned accordingly. See [1] for more info.
-------------------------------------------------------------
MDisp, RDE = MvDispEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, c::Int=3, Methodx::String="v1", Typex::String="NCDF", Norm::Bool=false, Logx::Real=exp(1))
Returns the multivariate dispersion entropy estimate (`MDisp`) for the M
multivariate data sequences in `Data` using the specified keyword arguments:
# Arguments:
`Data` - Multivariate dataset, NxM matrix of N (>10) observations (rows) and M (cols) univariate data sequences\n
`m` - Embedding Dimension, a vector of M positive integers\n
`tau` - Time Delay, a vector of M positive integers\n
`c` - Number of symbols in transform, an integer > 1 \n
`Methodx` - The method of multivariate dispersion entropy estimation as outlined in [1], either:\n
* `"v1"` - employs the method consistent with the original multivariate embedding approach of Ahmed &
Mandic [2], termed `mvDEii` in [1]. (default)
* `"v2"` - employs the main method derived in [1], termed `mvDE`.
`Typex` - Type of data-to-symbolic sequence transform, one of the following:\n
{`'linear'`, `'kmeans'`, `'ncdf'`, `'equal'`}
See the `EntropyHub Guide` for more info on these transforms.
`Norm` - Normalisation of `MDisp` and `RDE` values, a boolean:\n
* [false] no normalisation (default)
* [true] normalises w.r.t number of possible dispersion patterns (`c^m`).
`Logx` - Logarithm base, a positive scalar \n
# See also `DispEn`, `DispEn2D`, `MvSampEn`, `MvFuzzEn`, `MvPermEn`, `MSEn`
# References:
[1] H Azami, A Fernández, J Escudero
"Multivariate Multiscale Dispersion Entropy of Biomedical Times Series"
Entropy 2019, 21, 913.
[2] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy: A tool for complexity
analysis of multichannel data."
Physical Review E 84.6 (2011): 061918.
[3] Mostafa Rostaghi and Hamed Azami,
"Dispersion entropy: A measure for time-series analysis."
IEEE Signal Processing Letters
23.5 (2016): 610-614.
[4] Hamed Azami and Javier Escudero,
"Amplitude-and fluctuation-based dispersion entropy."
Entropy
20.3 (2018): 210.
[5] Li Yuxing, Xiang Gao and Long Wang,
"Reverse dispersion entropy: A new complexity measure for sensor signal."
Sensors
19.23 (2019): 5203.
"""
function MvDispEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing,
c::Int=3, Methodx::String="v1", Typex::String="NCDF", Norm::Bool=false, Logx::Real=exp(1))
N, Dn = size(Data)
isnothing(m) ? m = 2*ones(Int, Dn) : nothing
isnothing(tau) ? tau = ones(Int, Dn) : nothing
Logx==0 ? Logx = exp(1) : nothing
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
ndims(m)==1 && length(m)==Dn && all(m.>0) && eltype(m)<:Int ? nothing : error("m: vector of M positive integers")
ndims(tau)==1 && length(tau)==Dn && all(tau.>0) && eltype(tau)<:Int ? nothing : error("tau: vector of M positive integers")
(c > 1) ? nothing : error("c: must be an integer > 1")
(lowercase(Typex) in ["linear", "kmeans", "ncdf","equal"]) ? nothing :
error("Typex: must be one of the following strings - 'linear','kmeans','ncdf','equal'")
(lowercase(Methodx) in ["v1", "v2"]) ? nothing : error("Methodx: must be either 'v1' or 'v2'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Sx = zeros(Int8, N, Dn)
for q in eachindex(1:Dn)
Sig = Data[:,q]
if lowercase(Typex) == "linear"
Edges = range(minimum(Sig),maximum(Sig),length=c+1)
Zi = map(x -> sum(Edges[1:c].<=x), Sig)
elseif lowercase(Typex) == "kmeans"
Temp = kmeans(transpose(Sig), c; maxiter=200)
Zx = assignments(Temp)
Clux = Temp.centers
xx = sortperm(Clux[:]); Zi = zeros(N)
for k = 1:c
Zi[Zx.==xx[k]] .= k;
end
elseif lowercase(Typex) == "ncdf"
Zx = normcdf.(mean(Sig),std(Sig,corrected=false),Sig);
Zi = map(x -> sum(range(0,1,length=c+1)[1:c].<=x), Zx)
elseif lowercase(Typex) == "equal"
ix = sortperm(Sig,alg=MergeSort);
xx = Int.(round.(range(0,N,length=c+1)))
Zi = zeros(N)
for k = 1:c
Zi[ix[xx[k]+1:xx[k+1]]] .= k
end
end
Sx[:,q] = Zi[:]
end
Nx = N-maximum((m.-1).*tau)
Vex = zeros(Int8, Nx, sum(m))
q=1
for k = 1:Dn
for p = 1:m[k]
Vex[:,q] = Sx[1+(p-1)*tau[k]:Nx+(p-1)*tau[k], k]
q += 1
end
end
if lowercase(Methodx) == "v1"
Px = unique(Vex,dims=1)
Counter = map(n -> sum(all((Vex .- Px[n:n,:]).==0, dims=2)), 1:size(Px,1))
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
if round(sum(Ppi),digits=5) != 1
@warn ("Potential error with probability calculation")
end
MDisp = -sum(Ppi.*log.(Logx,Ppi))
RDE = sum((Ppi .- (1/(c^sum(m)))).^2)
if Norm
MDisp = MDisp/log(Logx, c^sum(m))
RDE = RDE/(1-(1/(c^sum(m))))
end
#return MDisp, RDE
elseif lowercase(Methodx) == "v2"
P = sum(m)
MDisp = zeros(maximum(m))
RDE = zeros(maximum(m))
for k in eachindex(1:maximum(m))
print(" . ")
Temp = collect(combinations(1:P,k))
Vez = zeros(Int8, Nx*binomial(P,k),k)
for q in eachindex(1:size(Temp,1))
# Vez[q*Nx:(q+1)*Nx-1,:] = Vex[:,Temp[q][:]]
Vez[1+(q-1)*Nx:q*Nx,:] = Vex[:,Temp[q]]
end
Px = unique(Vez, dims=1)
Counter = map(n -> sum(all((Vez .- Px[n:n,:]).==0,dims=2)), 1:size(Px,1))
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
if round(sum(Ppi),digits=5) != 1
@warn ("Potential error with probability calculation")
end
MDisp[k] = -sum(Ppi.*log.(Logx,Ppi))
RDE[k] = sum((Ppi .- (1/(c^k))).^2)
if Norm
MDisp[k] = MDisp[k]/log(Logx, c^k)
RDE[k] = RDE[k]/(1-(1/(c^k)))
end
end
end
return MDisp, RDE
end
end
"""Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 11052 | module _MvFuzzEn
export MvFuzzEn
using Statistics: std, mean
"""
MFuzz, B0, Bt, B1 = MvFuzzEn(Data)
Returns the multivariate fuzzy entropy estimate (`MFuzz`) and the
average vector distances (`m`: `B0`; joint total `m+1` subspace: `Bt`;
all possible `m+1` subspaces: `B1`), from the M multivariate sequences
in `Data` using the default parameters:
embedding dimension = 2*ones(M,1), time delay = ones(M,1),
fuzzy membership function = "default", fuzzy function parameters= [0.2, 2],
logarithm = natural, data normalization = false,
!!! note
The entropy value returned as `MFuzz` is estimated using the "full"
method [i.e. -log(Bt/B0)] which compares delay vectors across all possible `m+1`
expansions of the embedding space as applied in [1][3]. Contrary to
conventional definitions of sample entropy, this method does not provide a
lower bound of 0!!
Thus, it is possible to obtain negative entropy values for multivariate
fuzzy entropy, even for stochastic processes...
Alternatively, one can calculate `MFuzz` via the "naive" method,
which ensures a lower bound of 0, by using the average vector distances
for an individual `m+1` subspace (B1) [e.g. -log(B1(1)/B0)],
or the average for all `m+1` subspaces [i.e. -log(mean(B1)/B0)].
To maximize the number of points in the embedding process, this algorithm
uses N - max(m * tau) delay vectors and _*not*_ N - max(m) * max(tau) as employed
in [1] and [3].
-------------------------------------------------------------
MFuzz, B0, Bt, B1 = MvFuzzEn(Data::AbstractArray{T} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, r::Union{Real,Tuple{Real,Real}}=(.2,2.0), Fx::String="default", Logx::Real=exp(1), Norm::Bool=false)
Returns the multivariate sample entropy estimates (`MSamp`) estimated
from the M multivariate data sequences in `Data` using the specified
keyword arguments:
# Arguments:
`Data` - Multivariate dataset, NxM matrix of N (>10) observations (rows) and M (cols) univariate data sequences\n
`m` - Embedding Dimension, a vector of M positive integers\n
`tau` - Time Delay, a vector of M positive integers\n
`Fx` - Fuzzy function name, one of the following:
{`"sigmoid", "modsampen", "default", "gudermannian",`
`"bell", "triangular", "trapezoidal1", "trapezoidal2",`
`"z_shaped", "gaussian", "constgaussian"`}\n
`r` - Fuzzy function parameters, a 1 element scalar or a 2 element
tuple of positive values. The `r` parameters for each fuzzy
function are defined as follows: [default: [.2 2]]\n
default: r(1) = divisor of the exponential argument
r(2) = argument exponent (pre-division)
sigmoid: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
modsampen: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
gudermannian: r = a scalar whose value is the numerator of
argument to gudermannian function:
GD(x) = atan(tanh(`r`/x))
triangular: r = a scalar whose value is the threshold (corner point) of the triangular function.
trapezoidal1: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the trapezoid.
trapezoidal2: r(1) = a value corresponding to the upper corner point of the trapezoid.
r(2) = a value corresponding to the lower corner point of the trapezoid.
z_shaped: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the z-shape.
bell: r(1) = divisor of the distance value
r(2) = exponent of generalized bell-shaped function
gaussian: r = a scalar whose value scales the slope of the Gaussian curve.
constgaussian: r = a scalar whose value defines the lower threshod and shape of the Gaussian curve.\n
`Logx` - Logarithm base, a positive scalar \n
`Norm` - Normalisation of all M sequences to unit variance, a boolean\n
# See also `MvSampEn`, `FuzzEn`, `XFuzzEn`, `FuzzEn2D`, `MSEn`, `MvPermEn`
# References:
[1] Ahmed, Mosabber U., et al.
"A multivariate multiscale fuzzy entropy algorithm with application
to uterine EMG complexity analysis."
Entropy 19.1 (2016): 2.
[2] Azami, Alberto Fernández, Javier Escudero.
"Refined multiscale fuzzy entropy based on standard deviation for
biomedical signal analysis."
Medical & biological engineering & computing 55 (2017): 2037-2052.
[3] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy analysis."
IEEE signal processing letters 19.2 (2011): 91-94.
"""
function MvFuzzEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing,
r::Union{Real,Tuple{Real,Real}}=(.2,2.0), Fx::String="default", Logx::Real=exp(1), Norm::Bool=false)
N, Dn = size(Data)
isnothing(m) ? m = 2*ones(Int, Dn) : nothing
isnothing(tau) ? tau = ones(Int, Dn) : nothing
Norm ? Data = Data./std(Data, dims=1, corrected=false) : nothing
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
ndims(m)==1 && length(m)==Dn && all(m.>0) && eltype(m)<:Int ? nothing : error("m: vector of M positive integers")
ndims(tau)==1 && length(tau)==Dn && all(tau.>0) && eltype(tau)<:Int ? nothing : error("tau: vector of M positive integers")
(minimum(r)>=0 && length(r)<=2) ?
nothing : error("r: must be a scalar or 2 element tuple of positive values")
(lowercase(Fx) in ["default","sigmoid","modsampen","gudermannian","bell", "z_shaped",
"triangular", "trapezoidal1","trapezoidal2","gaussian","constgaussian"]) ?
nothing : error("Fx: must be one of the following strings -
'default', 'sigmoid', 'modsampen', 'gudermannian', 'bell', 'z_shaped',
'triangular', 'trapezoidal1','trapezoidal2','gaussian','constgaussian'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Fun = getfield(_MvFuzzEn,Symbol(lowercase(Fx)))
Nx = N - maximum((m.-1).*tau)
Ny = N - maximum(m.*tau)
Vex = zeros(Nx,sum(m))
q = 1;
for k = 1:Dn
for p = 1:m[k]
Vex[:,q] = Data[1+(p-1)*tau[k]:Nx+(p-1)*tau[k], k]
q += 1
end
end
Count0 = Distx(Vex .- mean(Vex,dims=2), r, Fun)
B0 = sum(Count0)/(Nx*(Nx-1)/2)
B1 = zeros(Dn)
Temp = cumsum(m)
Vez = Inf.*ones(1,sum(m)+1)
for k = 1:Dn
Sig = Data[1+m[k]*tau[k]:Ny+m[k]*tau[k], k]
Vey = hcat(Vex[1:Ny, 1:Temp[k]], Sig, Vex[1:Ny, Temp[k]+1:end])
Vez = vcat(Vez, Vey)
Count1 = Distx(Vey .- mean(Vey,dims=2), r, Fun);
B1[k] = sum(Count1)/(Ny*(Ny-1)/2)
end
Vez = Vez[2:end,:]
Count1 = Distx(Vez .- mean(Vez,dims=2), r, Fun)
Bt = sum(Count1)/(Dn*Ny*((Dn*Ny)-1)/2)
MFuzz = -log(Bt/B0)/log(Logx)
return MFuzz, B0, Bt, B1
end
function Distx(Vex, r, Fun)
Nt = size(Vex)[1]
Counter = zeros(Nt-1,Nt-1)
for x=1:Nt-1
Counter[x,x:end] = Fun(maximum(abs.(Vex[x+1:end,:] .- Vex[x:x,:]), dims=2)[:], r)
end
return Counter
end
function sigmoid(x,r)
if length(r) == 1
error("When Fx = 'Sigmoid', r must be a two-element tuple.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function modsampen(x,r)
if length(r) == 1
error("When Fx = 'Modsampen', r must be a two-element tuple.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function default(x,r)
if length(r) == 1
error("When Fx = 'Default', r must be a two-element tuple.")
end
y = exp.(-(x.^r[2])/r[1])
return y
end
function gudermannian(x,r)
if r <= 0
error("When Fx = 'Gudermannian', r must be a scalar > 0.")
end
y = atan.(tanh.(r[1]./x))
y ./= maximum(y)
return y
end
function triangular(x,r)
length(r)==1 ? nothing : error("When Fx = 'Triangular', r must be a scalar > 0.")
y = 1 .- (x./r)
y[x .> r] .= 0
return y
end
function trapezoidal1(x, r)
length(r)==1 ? nothing : error("When Fx = 'Trapezoidal1', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= r*2] = 2 .- (x[x .<= r*2]./r)
y[x .<= r] .= 1
return y
end
function trapezoidal2(x, r)
(r isa Tuple) && (length(r)==2) ? nothing : error("When Fx = 'Trapezoidal2', r must be a two-element tuple.")
y = zeros(length(x))
y[x .<= maximum(r)] = 1 .- (x[x .<= maximum(r)] .- minimum(r))./(maximum(r)-minimum(r))
y[x .<= minimum(r)] .= 1
return y
end
function z_shaped(x, r)
length(r)==1 ? nothing : error("When Fx = 'Z_shaped', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= 2*r] = 2*(((x[x .<= 2*r] .- 2*r)./r).^2)
y[x .<= 1.5*r] = 1 .- (2*(((x[x .<= 1.5*r] .- r)/r).^2))
y[x .<= r] .= 1
return y
end
function bell(x, r)
(r isa Tuple) && length(r)==2 ? nothing : error("When Fx = 'Bell', r must be a two-element tuple.")
y = inv.(1 .+ abs.(x./r[1]).^(2*r[2]))
return y
end
function gaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'Gaussian', r must be a scalar > 0.")
y = exp.(-((x.^2)./(2*(r.^2))))
return y
end
function constgaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'ConstGaussian', r must be a scalar > 0.")
y = ones(length(x))
y[x .> r] = exp.(-log(2)*((x[x .> r] .- r)./r).^2)
return y
end
end
"""Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 6813 | module _MvMSEn
export MvMSEn
using Statistics: std, mean, median, var
using Plots
using DSP: conv
"""
MSx, CI = MvMSEn(Data, Mobj)
Returns a vector of multivariate multiscale entropy values (`MSx`) and the complexity
index (`CI`) of the data sequences in `Data` using the parameters specified
by the multiscale object (`Mobj`) over 3 temporal scales with coarse-
graining (default).
!!! note
By default, the `MvSampEn` and `MvFuzzEn` multivariate entropy algorithms
estimate entropy values using the "full" method by comparing delay vectors
across all possible `m+1` expansions of the embedding space as applied in [1].
These methods are not lower-bounded to 0, like most entropy algorithms,
so `MvMSEn` may return negative entropy values if the base multivariate
entropy function is `MvSampEn` and `MvFuzzEn`, even for stochastic processes...
-------------------------------------------------------------
MSx, CI = MSEn(Data::AbstractArray{T,2} where T<:Real, Mobj::NamedTuple; Scales::Int=3, Methodx::String="coarse", Plotx::Bool=false)
Returns a vector of multivariate multiscale entropy values (`MSx`) and the complexity
index (`CI`) of the data sequences in `Data` using the parameters specified by
the multiscale object (`Mobj`) and the following keyword arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3) \n
`Method` - Graining method, one of the following: \n
{`coarse`,`modified`,`generalized`} [default = `coarse`]
For further info on these graining procedures, see the EntropyHub guide. \n
`Plotx` - When Plotx == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false]
!!! tip
For further info on these graining procedures see the EntropyHub guide.
# See also `MSobject`, `cMvMSEn`, `MvFuzzEn`, `MvSampEn`, `MvPermEn`, `MvCoSiEn`, `MvDispEn`
# References:
[1] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy analysis."
IEEE signal processing letters 19.2 (2011): 91-94.
[2] Madalena Costa, Ary Goldberger, and C-K. Peng,
"Multiscale entropy analysis of complex physiologic time series."
Physical review letters
89.6 (2002): 068102.
[3] Vadim V. Nikulin, and Tom Brismar,
"Comment on “Multiscale entropy analysis of complex physiologic
time series”."
Physical Review Letters
92.8 (2004): 089803.
[4] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
"Costa, Goldberger, and Peng reply."
Physical Review Letters
92.8 (2004): 089804.
[5] Madalena Costa, Ary L. Goldberger and C-K. Peng,
"Multiscale entropy analysis of biological signals."
Physical review E
71.2 (2005): 021906.
[6] Ranjit A. Thuraisingham and Georg A. Gottwald,
"On multiscale entropy analysis for physiological data."
Physica A: Statistical Mechanics and its Applications
366 (2006): 323-332.
[7] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy: A tool for complexity
analysis of multichannel data."
Physical Review E 84.6 (2011): 061918.
"""
function MvMSEn(Data::AbstractArray{T,2} where T<:Real, Mobj::NamedTuple; Scales::Int=3, Methodx::String="coarse", Plotx::Bool=false)
N, Dn = size(Data)
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(lowercase(Methodx) in ["coarse","modified","generalized"]) ? nothing :
error("Method: must be one of the following string names - 'coarse','modified','generalized'")
String(Symbol(Mobj.Func))[1:2] != "Mv" ? error("Base entropy estimator must be a multivariate entropy method. ",
"To perform univariate multiscale entropy estimation, use MSEn().") : nothing
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
Func2 = getfield(_MvMSEn,Symbol(lowercase(Methodx)))
for T = 1:Scales
print(". ")
Temp = Func2(Data,T,Dn)
Tempx = Mobj.Func(Temp; Args...)
typeof(Tempx)<:Tuple ? Temp2 = mean(Tempx[1]) : Temp2 = mean(Tempx)
MSx[T] = Temp2
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Multivariate Multiscale $(string(Mobj.Func)[3:end]) ($(titlecase(Methodx))-graining method)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255)) #ylim=(0,maximum(MSx)+.2),
display(p1)
end
return MSx, CI
end
function coarse(Z, sx, Dn)
Ns = Int(floor(size(Z,1)/sx))
Y = zeros(Ns,Dn)
for k in 1:Dn
Y[:,k] = mean(reshape(Z[1:sx*Ns,k],sx,Ns),dims=1)
end
return Y
end
function modified(Z, sx, Dn)
Y = (conv(Z,ones(Int,sx))/sx)[sx:end-sx+1,:]
return Y
end
function generalized(Z, sx, Dn)
Ns = Int(floor(size(Z,1)/sx))
Y = zeros(Ns,Dn)
for k in 1:Dn
Y[:,k] = var(reshape(Z[1:sx*Ns, k],sx,Ns)',corrected=false,dims=2)
end
return Y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 9846 | module _MvPermEn
export MvPermEn
using Combinatorics: permutations
using Statistics: var, mean
using DSP: hilbert, unwrap, angle
"""
MPerm, MPnorm = MvPermEn(Data)
Returns the multivariate permutation entropy estimate (`MPerm`) and
the normalized permutation entropy for the M multivariate sequences in
`Data` using the default parameters:
embedding dimension = 2*ones(M,1), time delay = ones(M,1),
logarithm = 2, normalisation = w.r.t #symbols (sum(`m-1`))
!!! note
The multivariate permutation entropy algorithm implemented here uses
multivariate embedding based on Takens' embedding theorem, and follows
the methods for multivariate entropy estimation through shared spatial
reconstruction as originally presented by Ahmed & Mandic [1].
This function does _*NOT*_ use the multivariate permutation entropy
algorithm of Morabito et al. (Entropy, 2012) where the entropy values of
individual univariate sequences are averaged because such methods do not
follow the definition of multivariate embedding and therefore do not
consider cross-channel statistical complexity.
To maximize the number of points in the embedding process, this
algorithm uses N- max(tau * m) delay vectors and _*not*_ N-max(m) * max(tau)
as employed in [1].
-------------------------------------------------------------
MPerm, MPnorm = MvPermEn(Data::AbstractArray{T} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, Typex::String="none", tpx::Union{Int,Nothing}=nothing, Norm::Bool=false, Logx::Real=2)
Returns the multivariate permutation entropy estimate (`MPerm`) for
the M multivariate data sequences in `Data` using the specified keyword arguments:
# Arguments:
`Data` - Multivariate dataset, NxM matrix of N (>10) observations (rows) and M (cols) univariate data sequences\n
`m` - Embedding Dimension, a vector of M positive integers\n
`tau` - Time Delay, a vector of M positive integers\n
`Typex` - Permutation entropy variation, can be one of the following strings:\n
{`'modified'`, `'ampaware'`, `'weighted'`, `'edge'`, `'phase'`}
See the `EntropyHub guide <https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHub%20Guide.pdf>`_ for more info on MvPermEn variants.
`tpx` - Tuning parameter for associated permutation entropy variation. \n
* [ampaware] `tpx` is the A parameter, a value in range [0 1]; default = 0.5
* [edge] `tpx` is the r sensitivity parameter, a scalar > 0; default = 1
* [phase] `tpx` is the option to unwrap the phase angle of Hilbert-transformed signal, either [] or 1 (default = 0)\n
`Norm` - Normalisation of MPnorm value, a boolean operator:\n
* false - normalises w.r.t log(# of permutation symbols [sum(m)-1]) - default
* true - normalises w.r.t log(# of all possible permutations [sum(m)!])
`Logx` - Logarithm base, a positive scalar \n
# See also `PermEn`, `PermEn2D`, `XPermEn`, `MSEn`, `MvFuzzEn`, `MvSampEn`
# References:
[1] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy: A tool for complexity
analysis of multichannel data."
Physical Review E 84.6 (2011): 061918.
[2] Christoph Bandt and Bernd Pompe,
"Permutation entropy: A natural complexity measure for time series."
Physical Review Letters,
88.17 (2002): 174102.
[3] Chunhua Bian, et al.,
"Modified permutation-entropy analysis of heartbeat dynamics."
Physical Review E
85.2 (2012) : 021906
[4] Bilal Fadlallah, et al.,
"Weighted-permutation entropy: A complexity measure for time
series incorporating amplitude information."
Physical Review E
87.2 (2013): 022911.
[5] Hamed Azami and Javier Escudero,
"Amplitude-aware permutation entropy: Illustration in spike
detection and signal segmentation."
Computer methods and programs in biomedicine,
128 (2016): 40-51.
[6] Zhiqiang Huo, et al.,
"Edge Permutation Entropy: An Improved Entropy Measure for
Time-Series Analysis,"
45th Annual Conference of the IEEE Industrial Electronics Soc,
(2019), 5998-6003
[7] Maik Riedl, Andreas Müller, and Niels Wessel,
"Practical considerations of permutation entropy."
The European Physical Journal Special Topics
222.2 (2013): 249-262.
[8] Kang Huan, Xiaofeng Zhang, and Guangbin Zhang,
"Phase permutation entropy: A complexity measure for nonlinear time
series incorporating phase information."
Physica A: Statistical Mechanics and its Applications
568 (2021): 125686.
"""
function MvPermEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing,
Typex::String="none", tpx::Union{Real,Nothing}=nothing, Norm::Bool=false, Logx::Real=2)
N, Dn = size(Data)
isnothing(m) ? m = 2*ones(Int, Dn) : nothing
isnothing(tau) ? tau = ones(Int, Dn) : nothing
Logx==0 ? Logx = exp(1) : nothing
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
ndims(m)==1 && length(m)==Dn && all(m.>0) && eltype(m)<:Int ? nothing : error("m: vector of M positive integers")
ndims(tau)==1 && length(tau)==Dn && all(tau.>0) && eltype(tau)<:Int ? nothing : error("tau: vector of M positive integers")
(lowercase(Typex) in ["none","modified","ampaware","weighted","edge","phase"]) ?
nothing : error("Typex: must be one of the following strings - 'modified','ampaware','weighted','edge','phase'")
(isnothing(tpx) || tpx>0) ? nothing : error("tpx: the value of tpx relates to 'Type'.
See the EntropyHub guide for further info on the 'tpx' value.")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if lowercase(Typex) == "phase"
Data = angle.(hilbert(Data))
tpx == 1 ? Data = unwrap(Data) : nothing
end
Nx = N-maximum((m.-1).*tau)
Sx = zeros(Nx,sum(m))
q=1
for k = 1:Dn
for p = 1:m[k]
Sx[:,q] = Data[1+(p-1)*tau[k]:Nx+(p-1)*tau[k], k]
q += 1
end
end
Temp = sortind(Sx)
#Px = collect(permutations(collect(1:sum(m))))
Px = unique(Temp,dims=1)
#Counter = zeros(Int, size(Px,1))
if lowercase(Typex) == "modified"
Tx = (diff(sort(Sx,dims=2),dims=2).==0)
for km = 1:sum(m)-1
Temp[Tx[:,km],km+1] = Temp[Tx[:,km],km];
end
Px = unique(Temp,dims=1)
Counter = map(n -> sum(all(Temp .- transpose(Px[n,:]) .==0,dims=2)), 1:size(Px,1))
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
elseif lowercase(Typex) == "weighted"
Wj = var(Sx,corrected=false,dims=2)
Counter = map(n -> sum(Wj[all(Temp .- transpose(Px[n,:]) .==0,dims=2)]), 1:size(Px,1))
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Wj)
#=for n = 1:size(Px,1)
Counter[n] = sum(Wj[all(Temp .- transpose(Px[n]) .==0,dims=2)])
end=#
elseif lowercase(Typex) == "ampaware"
isnothing(tpx) ? tpx = 0.5 : nothing
tpx<0 || tpx>1 ? error("When Typex = 'ampaware', the A parameter must be in the range [0 1]") : nothing
AA = sum(abs.(Sx),dims=2)
AB = sum(abs.(diff(Sx,dims=2)),dims=2)
Ax = (tpx*AA/sum(m)) + ((1-tpx)*AB/(sum(m)-1));
#= for n = 1:size(Px,1)
Counter[n] = sum(Ax[all(Temp.-transpose(Px[n]).==0,dims=2)])
end =#
Counter = map(n -> sum(Ax[all(Temp .- transpose(Px[n,:]) .==0,dims=2)]), 1:size(Px,1))
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Ax);
elseif lowercase(Typex) == "edge"
isnothing(tpx) ? tpx = 1 : nothing
tpx <=0 ? error("When Typex = 'Edge', the r sensitivity parameter (tpx) must be > 0") : nothing
Counter = zeros(size(Px,1))
for n in eachindex(1:size(Px,1))
Tx = diff(Sx[all(Temp .- transpose(Px[n,:]) .==0,dims=2)[:],:],dims=2)
Counter[n] = sum(mean(hypot.(Tx,1),dims=2).^tpx)
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
else
Counter = map(n -> sum(all(Temp .- transpose(Px[n,:]) .==0,dims=2)), 1:size(Px,1))
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
end
if round(sum(Ppi),digits=5) != 1
@warn ("Potential error with probability calculation")
end
MPerm = -sum(Ppi.*(log.(Logx, Ppi)));
Norm ? Pnorm = MPerm/(log(Logx, factorial(sum(m)))) : Pnorm = MPerm/(sum(m)-1)
return MPerm, Pnorm
end
function sortind(X)
Y = zeros(Int, size(X))
for k = 1:length(X[:,1])
Y[k,:] = sortperm(X[k,:])
end
return Y
end
end
"""Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5509 | module _MvSampEn
export MvSampEn
using Statistics: std
# using LinearAlgebra: UpperTriangular, I
"""
MSamp, B0, Bt, B1 = MvSampEn(Data)
Returns the multivariate sample entropy estimate (`MSamp`) and the
average number of matched delay vectors (`m`: `B0`; joint total
`m+1` subspace: `Bt`; all possible `m+1` subspaces: `B1`),
from the M multivariate sequences in `Data` using the default parameters:
embedding dimension = 2*ones(M), time delay = ones(M), radius threshold = 0.2,
logarithm = natural, data normalization = false
!!! note
The entropy value returned as `MSamp` is estimated using the "full"
method [i.e. -log(Bt/B0)] which compares delay vectors across all possible `m+1`
expansions of the embedding space as applied in [1][2]. Contrary to
conventional definitions of sample entropy, this method does not provide a
lower bound of 0!!
Thus, it is possible to obtain negative entropy values for multivariate
sample entropy, even for stochastic processes...
Alternatively, one can calculate `MSamp` via the "naive" method,
which ensures a lower bound of 0, by using the average number of matched
vectors for an individual `m+1` subspace (B1) [e.g. -log(B1(1)/B0)],
or the average for all `m+1` subspaces [i.e. -log(mean(B1)/B0)].
To maximize the number of points in the embedding process, this algorithm
uses N - max(m * tau) delay vectors and _**not**_ N-max(m) * max(tau) as employed
in [1][2].
-------------------------------------------------------------
MSamp, B0, Bt, B1 = MvSampEn(Data::AbstractArray{T} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, r::Real=0.2, Logx::Real=exp(1), Norm::Bool=false)
Returns the multivariate sample entropy estimates (`MSamp`) estimated
from the M multivariate data sequences in `Data` using the specified
keyword arguments:
# Arguments:
`Data` - Multivariate dataset, NxM matrix of N (>10) observations (rows) and M (cols) univariate data sequences\n
`m` - Embedding Dimension, a vector of M positive integers\n
`tau` - Time Delay, a vector of M positive integers\n
`r` - Radius Distance Threshold, a positive scalar \n
`Logx` - Logarithm base, a positive scalar \n
`Norm` - Normalisation of all M sequences to unit variance, a boolean\n
# See also `SampEn`, `XSampEn`, `SampEn2D`, `MSEn`, `MvFuzzEn`, `MvPermEn`
# References:
[1] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy: A tool for complexity
analysis of multichannel data."
Physical Review E 84.6 (2011): 061918.
[2] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy analysis."
IEEE signal processing letters 19.2 (2011): 91-94.
"""
function MvSampEn(Data::AbstractArray{T,2} where T<:Real; m::Union{AbstractArray{T} where T<:Int, Nothing}=nothing, tau::Union{AbstractArray{T} where T<:Int, Nothing}=nothing,
r::Real=0.2, Logx::Real=exp(1), Norm::Bool=false)
N, Dn = size(Data)
isnothing(m) ? m = 2*ones(Int, Dn) : nothing
isnothing(tau) ? tau = ones(Int, Dn) : nothing
Norm ? Data = Data./std(Data, dims=1, corrected=false) : nothing
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
ndims(m)==1 && length(m)==Dn && all(m.>0) && eltype(m)<:Int ? nothing : error("m: vector of M positive integers")
ndims(tau)==1 && length(tau)==Dn && all(tau.>0) && eltype(tau)<:Int ? nothing : error("tau: vector of M positive integers")
(r>=0) ? nothing : error("r: must be a positive scalar value")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Nx = N - maximum((m.-1).*tau)
Ny = N - maximum(m.*tau)
Vex = zeros(Nx,sum(m))
q = 1;
for k = 1:Dn
for p = 1:m[k]
Vex[:,q] = Data[1+(p-1)*tau[k]:Nx+(p-1)*tau[k], k]
q += 1
end
end
Count0 = Distx(Vex,r)
B0 = sum(Count0)/(Nx*(Nx-1)/2)
B1 = zeros(Dn)
Temp = cumsum(m)
Vez = Inf.*ones(1,sum(m)+1)
for k = 1:Dn
Sig = Data[1+m[k]*tau[k]:Ny+m[k]*tau[k], k]
Vey = hcat(Vex[1:Ny, 1:Temp[k]], Sig, Vex[1:Ny, Temp[k]+1:end])
Vez = vcat(Vez, Vey)
Count1 = Distx(Vey, r);
B1[k] = sum(Count1)/(Ny*(Ny-1)/2)
end
Vez = Vez[2:end,:]
Count1 = Distx(Vez, r);
Bt = sum(Count1)/(Dn*Ny*((Dn*Ny)-1)/2)
MSamp = -log(Bt/B0)/log(Logx)
return MSamp, B0, Bt, B1
end
function Distx(Vex, r)
Nt = size(Vex)[1]
Counter = zeros(Bool, Nt-1,Nt-1)
for x=1:Nt-1
Counter[x,x:end] = all(abs.(Vex[x+1:end,:] .- Vex[x:x,:]) .<= r, dims=2)
end
return Counter
end
end
"""Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 12530 | module _PermEn
export PermEn
using Combinatorics: permutations
using Statistics: std, var, mean
using DSP: hilbert, unwrap, angle
"""
Perm, Pnorm, cPE = PermEn(Sig)
Returns the permuation entropy estimates `Perm`, the normalised
permutation entropy `Pnorm` and the conditional permutation entropy `cPE`
for `m` = [1,2] estimated from the data sequence `Sig` using the default
parameters: embedding dimension = 2, time delay = 1, logarithm = base 2,
normalisation = w.r.t #symbols (`m`-1)
Note: using the standard PermEn estimation, `Perm` = 0 when `m` = 1.
Note: It is recommeneded that signal length > 5m! (see [8] and Amigo et al., Europhys. Lett. 83:60005, 2008)
Perm, Pnorm, cPE = PermEn(Sig, m)
Returns the permutation entropy estimates `Perm` estimated from the data
sequence `Sig` using the specified embedding dimensions = [1,...,`m`]
with other default parameters as listed above.
Perm, Pnorm, cPE = PermEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Typex::String="none", tpx::Union{Real,Nothing}=nothing, Logx::Real=2, Norm::Bool=false)
Returns the permutation entropy estimates `Perm` for dimensions = [1,...,`m`]
estimated from the data sequence `Sig` using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
`tau` - Time Delay, a positive integer\n
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of PermEn value:\n
false - normalises w.r.t log(# of permutation symbols [m-1]) - default
true - normalises w.r.t log(# of all possible permutations [m!])
* Note: Normalised permutation entropy is undefined for m = 1.
** Note: When Typex = 'uniquant' and Norm = true, normalisation
is calculated w.r.t. log(tpx^m)\n
`Typex` - Permutation entropy variation, one of the following:
{`"none", "uniquant", "finegrain", "modified", "ampaware",
"weighted", "edge", "phase"}
See the EntropyHub guide for more info on PermEn variations. \n
`tpx` - Tuning parameter for associated permutation entropy variation.\n
[uniquant] 'tpx' is the L parameter, an integer > 1 (default = 4).
[finegrain] 'tpx' is the alpha parameter, a positive scalar (default = 1)
[ampaware] 'tpx' is the A parameter, a value in range [0 1] (default = 0.5)
[edge] 'tpx' is the r sensitivity parameter, a scalar > 0 (default = 1)
[phase] 'tpx' unwraps the instantaneous phase (angle of analytic signal) when tpx==1 (default = 0)
See the EntropyHub guide for more info on PermEn variations. \n
# See also `XPermEn`, `MSEn`, `XMSEn`, `SampEn`, `ApEn`, `CondEn`
# References:
[1] Christoph Bandt and Bernd Pompe,
"Permutation entropy: A natural complexity measure for time series."
Physical Review Letters,
88.17 (2002): 174102.
[2] Xiao-Feng Liu, and Wang Yue,
"Fine-grained permutation entropy as a measure of natural
complexity for time series."
Chinese Physics B
18.7 (2009): 2690.
[3] Chunhua Bian, et al.,
"Modified permutation-entropy analysis of heartbeat dynamics."
Physical Review E
85.2 (2012) : 021906
[4] Bilal Fadlallah, et al.,
"Weighted-permutation entropy: A complexity measure for time
series incorporating amplitude information."
Physical Review E
87.2 (2013): 022911.
[5] Hamed Azami and Javier Escudero,
"Amplitude-aware permutation entropy: Illustration in spike
detection and signal segmentation."
Computer methods and programs in biomedicine,
128 (2016): 40-51.
[6] Zhiqiang Huo, et al.,
"Edge Permutation Entropy: An Improved Entropy Measure for
Time-Series Analysis,"
45th Annual Conference of the IEEE Industrial Electronics Soc,
(2019), 5998-6003
[7] Zhe Chen, et al.
"Improved permutation entropy for measuring complexity of time
series under noisy condition."
Complexity
1403829 (2019).
[8] Maik Riedl, Andreas Müller, and Niels Wessel,
"Practical considerations of permutation entropy."
The European Physical Journal Special Topics
222.2 (2013): 249-262.
[9] Kang Huan, Xiaofeng Zhang, and Guangbin Zhang,
"Phase permutation entropy: A complexity measure for nonlinear time
series incorporating phase information."
Physica A: Statistical Mechanics and its Applications
568 (2021): 125686.
"""
function PermEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
Typex::String="none", tpx::Union{Real,Nothing}=nothing, Logx::Real=2, Norm::Bool=false)
Logx == 0 ? Logx = exp(1) : nothing
N = size(Sig)[1]
(N>10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(lowercase(Typex) in ["none","uniquant","finegrain","modified","ampaware","weighted","edge","phase"]) ?
nothing : error("Typex: must be one of the following strings -
'uniquant','finegrain','modified','ampaware','weighted','edge','phase'")
(isnothing(tpx) || tpx>0) ? nothing : error("tpx: the value of tpx relates to 'Type'.
See the EntropyHub guide for further info on the 'tpx' value.")
if lowercase(Typex) == "phase"
Sig = angle.(hilbert(Sig))
tpx == 1 ? Sig = unwrap(Sig) : nothing
end
Sx = zeros(N,m)
Perm = zeros(m)
Pnorm = zeros(m)
for k = 1:m
Nx = N-(k-1)*tau
Sx[1:Nx,k] = Sig[1+(k-1)*tau:N]
Temp = sortind(Sx[1:Nx,1:k])
Px = collect(permutations(collect(1:k)))
Counter = zeros(length(Px))
if lowercase(Typex) == "uniquant"
Temp = sort(Sx[1:Nx,1:k], dims=2)
S = zeros(size(Temp))
if isnothing(tpx)
tpx = 4;
elseif tpx <= 1 || typeof(tpx)!=Int
error("When Typex = 'Uniquant', L parameter (tpx) must be an integer > 1")
end
delta = (maximum(Sig)-minimum(Sig))/tpx
S[:,1] = map(x -> searchsortedfirst(
minimum(Sig):delta:maximum(Sig),x), Temp[:,1]) .- 1
#S[findall(S[:,1].==0),1] .+= 1
S[S[:,1].==0,1] .+= 1
if k > 1
S[:,2:k] = S[:,1] .+ floor.((Temp[:,2:k] .- Temp[:,1])/delta)
end
Px = unique(S,dims=1)
Counter = zeros(size(Px,1))
for n = 1:size(Px,1)
Counter[n] = sum(all(S .- transpose(Px[n,:]).==0,dims=2))
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
Norm = true # Might need to change back to 3
elseif lowercase(Typex) == "finegrain"
if k > 1
if isnothing(tpx)
tpx = 1;
elseif tpx <= 0
error("When Typex = 'finegrain', Alpha parameter (tpx) must be greater than 0")
end
q = floor.(maximum(abs.(diff(Sx[1:Nx,1:k],dims=2)),dims=2)./
(tpx*std(abs.(diff(Sig)),corrected=false)))
Temp = hcat(Temp, q)
Px = unique(Temp,dims=1)
Counter = zeros(size(Px,1))
for n = 1:size(Px,1)
Counter[n] = sum(all(Temp .- transpose(Px[n,:]).== 0,dims=2))
end
Counter = Counter[Counter.!=0]
Ppi = Counter./sum(Counter)
#clear q n qt
else
Ppi = 1
end
elseif lowercase(Typex) == "modified"
Tx = (diff(sort(Sx[1:Nx,1:k],dims=2),dims=2).==0)
for km = 1:k-1
Temp[Tx[:,km],km+1] = Temp[Tx[:,km],km];
end
Px = unique(Temp,dims=1)
Counter = zeros(size(Px,1))
for n = 1:size(Px,1)
Counter[n] = sum(all(Temp .- transpose(Px[n,:]) .==0,dims=2))
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
#clear Tx km
elseif lowercase(Typex) == "weighted"
if k > 1
Wj = var(Sx[1:Nx,1:k],corrected=false,dims=2)
for n = 1:size(Px,1)
Counter[n] = sum(Wj[all(Temp .- transpose(Px[n]) .==0,dims=2)])
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Wj)
#clear Wj n
else
Ppi = 1;
end
elseif lowercase(Typex) == "ampaware"
if k > 1
if isnothing(tpx)
tpx = 0.5;
elseif tpx<0 || tpx>1
error("When Typex = 'ampaware', the A parameter must be in the range [0 1]")
end
AA = sum(abs.(Sx[1:Nx,1:k]),dims=2)
AB = sum(abs.(diff(Sx[1:Nx,1:k],dims=2)),dims=2)
Ax = (tpx*AA/k) + ((1-tpx)*AB/(k-1));
for n = 1:size(Px,1)
Counter[n] = sum(Ax[all(Temp.-transpose(Px[n]).==0,dims=2)])
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Ax);
else
Ppi = 1;
end
#clear AA AB Ax
elseif lowercase(Typex) == "edge"
if isnothing(tpx)
tpx = 1;
elseif tpx <=0
error("When Typex = 'Edge', the r sensitivity parameter (tpx) must be > 0")
end
if k > 1
for n = 1:size(Px,1)
Sy = Sx[1:Nx,1:k]
Tx = diff(Sy[all(Temp .- transpose(Px[n]) .==0,dims=2)[:],:],dims=2)
Counter[n] = sum(mean(hypot.(Tx,1),dims=2).^tpx)
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
else Ppi = 1;
end
else
for n = 1:size(Px,1)
Counter[n] = sum(all(Temp .- transpose(Px[n]).==0,dims=2));
#sum(all(Temp .- transpose(Px[n]).==0,dims=2));
end
Counter = Counter[Counter.!=0]
Ppi = Counter/sum(Counter)
end
if round(sum(Ppi),digits=3) != 1
@warn ("Potential error with probability calculation")
end
Perm[k] = -sum(Ppi.*(log.(Logx, Ppi)));
if Norm
if Norm && lowercase(Typex)=="uniquant"
Pnorm[k] = Perm[k]/(log(Logx, tpx^k));
else
Pnorm[k] = Perm[k]/(log(Logx, factorial(k)));
end
else
Pnorm[k] = Perm[k]/(k-1);
end
end
cPE = diff(Perm);
return Perm, Pnorm, cPE
end
function sortind(X)
Y = zeros(Int, size(X))
for k = 1:length(X[:,1])
Y[k,:] = sortperm(X[k,:])
end
return Y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 6715 | module _PermEn2D
export PermEn2D
"""
Perm2D = PermEn2D(Mat)
Returns the bidimensional permutation entropy estimate (`Perm2D`) estimated for
the data matrix (`Mat`) using the default parameters: time delay = 1,
logarithm = natural, template matrix size = [floor(H/10) floor(W/10)],
(where H and W represent the height (rows) and width (columns) of the data matrix `Mat`) \n
** The minimum dimension size of Mat must be > 10.**
Perm2D = PermEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, Norm::Bool=true, Logx::Real=exp(1), Lock::Bool=true)
Returns the bidimensional permutation entropy (`Perm2D`) estimates for the data
matrix (`Mat`) using the specified 'keyword' arguments:
# Arguments:
`m` - Template submatrix dimensions, an integer scalar (i.e. the same
height and width) or a two-element vector of integers
[height, width] with a minimum value > 1.
(default: [floor(H/10) floor(W/10)]) \n
`tau` - Time Delay, a positive integer (default: 1) \n
`Norm` - Normalization of permutation entropy estimate, a boolean (default: true) \n
`Logx` - Logarithm base, a positive scalar (default: natural) \n
`Lock` - By default, PermEn2D only permits matrices with a maximum
size of 128 x 128 to prevent memory errors when storing data
on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1,
SampEn2D creates a vector of 753049836 elements.
To enable matrices greater than [128 x 128] elements,
set `Lock` to false. (default: true) \n
`WARNING: unlocking the permitted matrix size may cause your Julia
IDE to crash.`\n\n
**NOTE** - The original bidimensional permutation entropy algorithms
[1][2] do not account for equal-valued elements of the embedding
matrices.
To overcome this, `PermEn2D` uses the lowest common rank for
such instances. For example, given an embedding matrix A where,
A = [3.4 5.5 7.3]
|2.1 6 9.9|
[7.3 1.1 2.1]
would normally be mapped to an ordinal pattern like so,
[3.4 5.5 7.3 2.1 6 9.9 7.3 1.1 2.1] =>
[ 8 4 9 1 2 5 3 7 6 ]
However, indices 4 & 9, and 3 & 7 have the same values, 2.1
and 7.3 respectively. Instead, PermEn2D uses the ordinal pattern
[ 8 4 4 1 2 5 3 3 6 ]
where the lowest rank (4 & 3) are used instead (of 9 & 7).
Therefore, the number of possible permutations is no longer
(mx*my)!, but (mx*my)^(mx*my). Here, the PermEn2D value is
normalized by the maximum Shannon entropy (Smax = log((mx*my)!)
``assuming that no equal values are found in the permutation
motif matrices``, as presented in [1].
# See also `SampEn2D`, `FuzzEn2D`, `DispEn2D`, `DistEn2D`
# References:
[1] Haroldo Ribeiro et al.,
"Complexity-Entropy Causality Plane as a Complexity Measure
for Two-Dimensional Patterns"
PLoS ONE (2012), 7(8):e40689,
[2] Luciano Zunino and Haroldo Ribeiro,
"Discriminating image textures with the multiscale
two-dimensional complexity-entropy causality plane"
Chaos, Solitons and Fractals, 91:679-688 (2016)
[3] Matthew Flood and Bernd Grimm,
"EntropyHub: An Open-source Toolkit for Entropic Time Series Analysis"
PLoS ONE (2021) 16(11): e0259448.
"""
function PermEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, Norm::Bool=true, Logx::Real=exp(1), Lock::Bool=true)
NL, NW = size(Mat)
((NL > 128 || NW > 128) && Lock) ?
error("To prevent memory errors, matrix width & length must have <= 128 elements.
To estimate SampEn2D for the current matrix ($NL,$NW) change Lock to 'false'.
Caution: unlocking the safe matrix size may cause the Julia IDE to crash.") :
nothing
length(m)==1 ? (mL = m; mW = m) : (mL = m[1]; mW = m[2])
(NL > 10 && NW > 10) ? nothing :
error("Number of rows and columns in Mat must be > 10")
(minimum(m)>1) ? nothing :
error("m: must be an integer > 1, or a 2 element tuple of integer values > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
NL = NL - (mL-1)*tau
NW = NW - (mW-1)*tau
Temp = Mat[1:tau:(mL-1)*tau+1,1:tau:(mW-1)*tau+1]
Sord = sort(Temp[:])
Dix = sortperm(Temp[:])
if any(diff(Sord).==0)
for x in findall(diff(Sord).==0).+1
Dix[x] = Dix[x-1]
end
end
Counter = [0]
for k in 1:NL
for n in 1:NW
Temp = Mat[k:tau:(mL-1)*tau+k,n:tau:(mW-1)*tau+n]
Sord = sort(Temp[:])
Dx = sortperm(Temp[:])
if any(diff(Sord).==0)
for x in findall(diff(Sord).==0).+1
Dx[x] = Dx[x-1]
end
end
if any(all((Dix .- Dx).==0,dims=1))
Counter .+= all((Dix .- Dx).==0,dims=1).*1
else
Dix = [Dix Dx]
Counter = [Counter 1]
end
end
end
sum(Counter) != NL*NW ? @warn("Potential error with permutation comparisons.") : nothing
Pi = Counter/sum(Counter)
Perm2D = -sum(Pi.*log.(Logx, Pi))
Norm ? Perm2D /= log(Logx, factorial(big(mL*mW))) : nothing
return Perm2D
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4185 | module _PhasEn
export PhasEn
using Plots
using Random: randperm
"""
Phas = PhasEn(Sig)
Returns the phase entropy (`Phas`) estimate of the data sequence (`Sig`)
using the default parameters:
angular partitions = 4, time delay = 1, logarithm = natural,
Phas = PhasEn(Sig::AbstractArray{T,1} where T<:Real; K::Int=4, tau::Int=1, Logx::Real=exp(1), Norm::Bool=true, Plotx::Bool=false)
Returns the phase entropy (`Phas`) estimate of the data sequence (`Sig`)
using the specified 'keyword' arguments:
# Arguments:
`K` - Angular partitions (coarse graining), an integer > 1 \n
*Note: Division of partitions begins along the positive x-axis. As this point is somewhat arbitrary, it is
recommended to use even-numbered (preferably multiples of 4) partitions for sake of symmetry. \n
`tau` - Time Delay, a positive integer \n
`Logx` - Logarithm base, a positive scalar \n
`Norm` - Normalisation of `Phas` value: \n
[false] no normalisation
[true] normalises w.r.t. the number of partitions Log(`K`)
`Plotx` - When `Plotx` == true, returns Poincaré plot (default: false) \n
# See also `SampEn`, `ApEn`, `GridEn`, `MSEn`, `SlopEn`, `CoSiEn`, `BubbEn`
# References:
[1] Ashish Rohila and Ambalika Sharma,
"Phase entropy: a new complexity measure for heart rate
variability."
Physiological measurement
40.10 (2019): 105006.
"""
function PhasEn(Sig::AbstractArray{T,1} where T<:Real; K::Int=4, tau::Int=1,
Logx::Real=exp(1), Norm::Bool=true, Plotx::Bool=false)
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(K > 1) ? nothing : error("K: must be an integer > 1")
(tau >0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Yn = Sig[1+2*tau:end] .- Sig[tau+1:end-tau]
Xn = Sig[tau+1:end-tau] .- Sig[1:end-2*tau]
Theta_r = atan.(Yn./Xn)
Theta_r[(Yn.<0) .& (Xn.<0)] .+= pi
Theta_r[(Yn.<0) .& (Xn.>0)] .+= 2*pi
Theta_r[(Yn.>0) .& (Xn.<0)] .+= pi
Limx = ceil.(maximum(abs.(vcat(Yn, Xn))))
Angs = range(0,2*pi,length=K+1)
Tx = zeros(Int, K, length(Theta_r))
Si = zeros(K)
for n = 1:K
Temp = (Theta_r .> Angs[n]) .& (Theta_r .< Angs[n+1]);
Tx[n,Temp] .= 1
Si[n] = sum(Theta_r[Temp])
end
Si = Si[Si.!=0]
Phas = -sum((Si./sum(Si)).*(log.(Logx, Si./sum(Si))))
if Norm
Phas = Phas/(log(Logx, K))
end
if Plotx
Ys = sin.(Angs)*Limx*sqrt(2);
Xs = cos.(Angs)*Limx*sqrt(2);
Cols = hcat(zeros(K), repeat(randperm(K)/K,outer=(1,2)))
Tx = Bool.(Tx)
xx = plot()
for n = 1:K
plot!(Xn[Tx[n,:]], Yn[Tx[n,:]], seriestype =:scatter,
markersize = 2,
markercolor=RGB(Cols[n,:]...,),
markerstrokecolor=RGB(Cols[n,:]...,))
end
#plot!(hcat(zeros(K+1), Xs), hcat(Ys,zeros(K+1)),c=:magenta,
plot!(hcat(Xs,zeros(K+1))', hcat(Ys,zeros(K+1))',c=:magenta,
xlim = (-Limx, Limx), ylim = (-Limx, Limx),
size = (400, 400), legend=false,
xticks = [-Limx, 0, Limx], yticks = [-Limx, 0 ,Limx],
grid = false)
xlabel!("X ₙ₊ₜ - X ₙ")
ylabel!("X ₙ₊₂ₜ - X ₙ₊ₜ")
display(xx)
end
return Phas
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5285 | module _RangEn
export RangEn
using Statistics: mean
"""
Rangx, A, B = RangEn(Sig)
Returns the range entropy estimate (`Rangx`) and the number of matched state
vectors (`m: B`, `m+1: A`) estimated from the data sequence (`Sig`)
using the sample entropy algorithm and the following default parameters:
embedding dimension = 2, time delay = 1, radius threshold = 0.2, logarithm = natural.
Rangx, A, B = RangEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2, Methodx::String="SampEn", Logx::Real=exp(1))
Returns the range entropy estimates (`Rangx`) for dimensions = `m`
estimated for the data sequence (`Sig`) using the specified keyword arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer\n
`tau` - Time Delay, a positive integer\n
`r` - Radius Distance Threshold, a positive value between 0 and 1\n
`Methodx` - Base entropy method, either 'SampEn' [default] or 'ApEn'\n
`Logx` - Logarithm base, a positive scalar \n
# See also `ApEn`, `SampEn`, `FuzzEn`, `MSEn`
# References:
[1] Omidvarnia, Amir, et al.
"Range entropy: A bridge between signal complexity and self-similarity"
Entropy
20.12 (2018): 962.
[2] Joshua S Richman and J. Randall Moorman.
"Physiological time-series analysis using approximate entropy
and sample entropy."
American Journal of Physiology-Heart and Circulatory Physiology
2000
"""
function RangEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
r::Real=0.2, Methodx::String="SampEn", Logx::Real=exp(1))
N = length(Sig)
(N>10) ? nothing : error("Sig: must be a numeric vector")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(r>=0) && (r<=1) ? nothing : error("r: must be a scalar must be a value between 0 and 1")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(lowercase(Methodx) in ["sampen", "apen"]) ? nothing : error("Methodx must be either 'ApEn' or 'SampEn'")
if lowercase(Methodx) == "sampen"
Nx = N - m*tau
Sx = zeros(Nx,m+1)
for k = 1:m+1
Sx[:,k] = Sig[1 + (k-1)*tau:Nx + (k-1)*tau]
end
A = zeros(Int, Nx)
B = zeros(Int, Nx)
for k = 1:(Nx - 1)
Dxy = abs.(repeat(Sx[k,1:end-1],1,Nx-k) .- Sx[k+1:end,1:end-1]')'
Mx = maximum(Dxy,dims=2)
Mn = minimum(Dxy,dims=2)
RR = (Mx .- Mn)./(Mx .+ Mn) .<= r
B[k] = sum(RR)
if B[k]>0
Dxy2 = abs.(repeat(Sx[k,:],1,B[k]) .- Sx[k+1:end,:][RR[:],:]')'#Sx[k+1:end,:][all.(eachrow(RR)),:]')'
Mx = maximum(Dxy2,dims=2)
Mn = minimum(Dxy2,dims=2)
RR2 = (Mx .- Mn)./(Mx .+ Mn) .<= r
A[k] = sum(RR2)
end
end
Rangx = -log(sum(A)/sum(B))/log(Logx)
return Rangx, A, B
elseif lowercase(Methodx) == "apen"
Nx = N - (m-1)*tau
Sx = zeros(Nx,m)
for k = 1:m
Sx[:,k] = Sig[1 + (k-1)*tau:Nx + (k-1)*tau]
end
Sx = hcat(Sx, vcat(Sig[m*tau + 1:end],zeros(tau)))
B = zeros(Int, Nx)
A = zeros(Int, Nx-tau)
for k in 1:Nx
Dxy = abs.(repeat(Sx[k,1:end-1],1,Nx)' .- Sx[:,1:end-1])
Mx = maximum(Dxy,dims=2)
Mn = minimum(Dxy,dims=2)
RR = (Mx .- Mn)./(Mx .+ Mn) .<= r
B[k] = sum(RR)
if k <= (Nx - tau)
RR[end-tau+1:end] .= false
Dxy2 = abs.(repeat(Sx[k,:],1,sum(RR))' .- Sx[RR[:],:]) #Sx[all.(eachrow(RR)),:])
Mx2 = maximum(Dxy2,dims=2)
Mn2 = minimum(Dxy2,dims=2)
RR2 = (Mx2 .- Mn2)./(Mx2 .+ Mn2) .<= r
A[k] = sum(RR2)
end
end
Ax = mean(log.(A./(Nx-tau))/log(Logx))
Bx = mean(log.(B./Nx)/log(Logx))
Ap = Bx - Ax
return Ap, A, B
else
error("Methodx must be either 'ApEn' or 'SampEn'")
end
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5679 | module _SampEn
export SampEn
using Statistics: mean, std
using LinearAlgebra: UpperTriangular, I
"""
Samp, A, B = SampEn(Sig)
Returns the sample entropy estimates `Samp` and the number of matched state
vectors (`m`:B, `m+1`:A) for `m` = [0,1,2] estimated from the data sequence `Sig`
using the default parameters: embedding dimension = 2, time delay = 1,
radius threshold = 0.2*SD(`Sig`), logarithm = natural
Samp, A, B, (Vcp, Ka, Kb) = SampEn(Sig, ..., Vcp = true)
If `Vcp == true`, an additional tuple `(Vcp, Ka, Kb)` is returned with
the sample entropy estimates (`Samp`) and the number of matched state
vectors (`m: B`, `m+1: A`). `(Vcp, Ka, Kb)` contains the variance of the conditional
probabilities (`Vcp`), i.e. CP = A/B, and the number of **overlapping**
matching vector pairs of lengths m+1 (`Ka`) and m (`Kb`),
respectively. Note `Vcp` is undefined for the zeroth embedding dimension (m = 0)
and due to the computational demand, **will take substantially more time to return function outputs.**
See Appendix B in [2] for more info.
Samp, A, B = SampEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1), Vcp::Bool=false)
Returns the sample entropy estimates `Samp` for dimensions = [0,1,...,`m`]
estimated from the data sequence `Sig` using the specified keyword arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer\n
`tau` - Time Delay, a positive integer\n
`r` - Radius Distance Threshold, a positive scalar \n
`Logx` - Logarithm base, a positive scalar \n
`Vcp` - Option to return the variance of the conditional probabilities and the number of overlapping matching vector pairs of lengths \n
# See also `ApEn`, `FuzzEn`, `PermEn`, `CondEn`, `XSampEn`, `SampEn2D`, `MSEn`
# References:
[1] Joshua S Richman and J. Randall Moorman.
"Physiological time-series analysis using approximate entropy
and sample entropy."
American Journal of Physiology-Heart and Circulatory Physiology (2000).
[2] Douglas E Lake, Joshua S Richman, M.P. Griffin, J. Randall Moorman
"Sample entropy analysis of neonatal heart rate variability."
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
283, no. 3 (2002): R789-R797.
"""
function SampEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, r::Real=0.2*std(Sig,corrected=false), Logx::Real=exp(1), Vcp::Bool=false)
N = length(Sig)
(N>10) ? nothing : error("Sig: must be a numeric vector")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(r>=0) ? nothing : error("r: must be a positive scalar value")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Counter = 1*(abs.(Sig .- transpose(Sig)) .<= r).*UpperTriangular(ones(N,N)) - I(N)
M = Int.([m*ones(N-m*tau); repeat(collect(m-1:-1:1),inner=tau)])
A = zeros(m + 1)
B = zeros(m + 1)
A[1] = sum(Counter)
B[1] = N*(N-1)/2
for n = 1:N-tau
ix = findall(Counter[n, :] .== 1)
for k = 1:M[n]
ix = ix[ix .+ (k*tau) .<= N]
p1 = repeat(transpose(Sig[n:tau:n+(tau*k)]), length(ix))
p2 = Sig[ix .+ transpose(collect(0:tau:(k*tau)))]
ix = ix[findall(maximum(abs.(p1 - p2),dims=2) .<= r)]
if length(ix)>0
Counter[n, ix] .+= 1
else
break
end
end
end
for k = 1:m
A[k+1] = sum(Counter.>k)
B[k+1] = sum(Counter[:,1:N-(k*tau)].>=k)
end
Samp = -log.(Logx, A./B)
if Vcp
Temp = hcat(getindex.(findall(Counter.>m),1), getindex.(findall(Counter.>m),2))
if length(Temp[:,1])>1
Ka = zeros(Int, length(Temp[:,1]) -1)
for k = 1:size(Temp,1)-1 # (length(Temp[:,1])-1)
TF = (abs.(Temp[k+1:end,:] .- Temp[k,1]) .<= m*tau) .+ (abs.(Temp[k+1:end,:] .- Temp[k,2]) .<= m*tau)
Ka[k] = sum(any(TF.>0, dims=2))
end
else
Ka = 0
end
Temp = hcat(getindex.(findall(Counter[:,1:end-m*tau].>=m),1), getindex.(findall(Counter[:,1:end-m*tau].>=m),2))
if length(Temp[:,1])>1
Kb = zeros(Int, length(Temp[:,1]) -1)
for k = 1:size(Temp,1)-1 # (length(Temp[:,1]) -1)
TF = (abs.(Temp[k+1:end,:] .- Temp[k,1]) .<= (m-1)*tau) + (abs.(Temp[k+1:end,:] .- Temp[k,2]) .<= (m-1)*tau)
Kb[k] = sum(any(TF.>0, dims=2))
end
else
Kb = 0
end
Ka = sum(Ka)
Kb = sum(Kb)
CP = A[end]/B[end]
Vcp = (CP*(1-CP)/B[end]) + (Ka - Kb*(CP^2))/(B[end]^2)
return Samp, A, B, (Vcp, Ka, Kb)
else
return Samp, A, B
# return Samp, A, B
end
end
end
"""Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4916 | module _SampEn2D
export SampEn2D
using Statistics: mean, std
"""
SE2D, Phi1, Phi2 = SampEn2D(Mat)
Returns the bidimensional sample entropy estimate (`SE2D`) and the number
of matched sub-matricess (m:Phi1, m+1:Phi2) estimated for the data
matrix (`Mat`) using the default parameters: time delay = 1,
radius distance threshold = 0.2*SD(`Mat`), logarithm = natural
matrix template size = [floor(H/10) floor(W/10)], (where H and W represent
the height (rows) and width (columns) of the data matrix `Mat`) \n
** The minimum dimension size of Mat must be > 10.**
SE2D, Phi1, Phi2 = SampEn2D(Mat::AbstractArray{T,2} where T<:Real; m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, r::Real=0.2*std(Mat,corrected=false), Logx::Real=exp(1), Lock::Bool=true)
Returns the bidimensional sample entropy (`SE2D`) estimates for the data
matrix (`Mat`) using the specified 'keyword' arguments:
# Arguments:
`m` - Template submatrix dimensions, an integer scalar (i.e. the same
height and width) or a two-element vector of integers
[height, width] with a minimum value > 1.
(default: [floor(H/10) floor(W/10)]) \n
`tau` - Time Delay, a positive integer (default: 1) \n
`r` - Distance Threshold, a positive scalar (default: 0.2*SD(Mat)) \n
`Logx` - Logarithm base, a positive scalar (default: natural) \n
`Lock` - By default, SampEn2D only permits matrices with a maximum
size of 128 x 128 to prevent memory errors when storing data
on RAM. e.g. For Mat = [200 x 200], m = 3, and tau = 1,
SampEn2D creates a vector of 753049836 elements.
To enable matrices greater than [128 x 128] elements,
set `Lock` to false. (default: true) \n
`WARNING: unlocking the permitted matrix size may cause your Julia
IDE to crash.`
# See also `SampEn`, `FuzzEn2D`, `XSampEn`, `MSEn`
# References:
[1] Luiz Eduardo Virgili Silva, et al.,
"Two-dimensional sample entropy: Assessing image texture
through irregularity."
Biomedical Physics & Engineering Express
2.4 (2016): 045002.
"""
function SampEn2D(Mat::AbstractArray{T,2} where T<:Real;
m::Union{Int,Tuple{Int,Int}}=floor.(Int, size(Mat)./10),
tau::Int=1, r::Real=0.2*std(Mat,corrected=false), Logx::Real=exp(1), Lock::Bool=true)
NL, NW = size(Mat)
((NL > 128 || NW > 128) && Lock) ?
error("To prevent memory errors, matrix width & length must have <= 128 elements.
To estimate SampEn2D for the current matrix ($NL,$NW) change Lock to 'false'.
Caution: unlocking the safe matrix size may cause the Julia IDE to crash.") :
nothing
length(m)==1 ? (mL = m; mW = m) : (mL = m[1]; mW = m[2])
(NL > 10 && NW > 10) ? nothing :
error("Number of rows and columns in Mat must be > 10")
(minimum(m)>1) ? nothing :
error("m: must be an integer > 1, or a 2 element tuple of integer values > 1")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(r >= 0) ? nothing : error("r: must be a positive value")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
NL = NL - mL*tau
NW = NW - mW*tau
X = zeros(mL+1,mW+1,NL*NW)
p = 0
for k = 1:NL
for n = 1:NW
p += 1
X[:,:,p] = Mat[k:tau:(mL)*tau+k,n:tau:(mW)*tau+n]
end
end
p = size(X,3)
p != NL*NW ? @warn("Potential error with submatrix division.") : nothing
Ny = p*(p-1)/2
Ny > 300000000 ? @warn("Number of pairwise distance calculations is $Ny") : nothing
Y1 = zeros(p-1)
Y2 = zeros(p-1)
for k = 1:p-1
Temp = maximum(abs.(X[1:mL,1:mW,k+1:p] .- X[1:mL,1:mW,k]), dims=(1,2))[:] .< r
Y1[k] = sum(Temp); Temp = findall(Temp.>0) .+ k
Y2[k] = sum(maximum(abs.(X[:,:,Temp] .- X[:,:,k]),dims=(1,2)) .< r)
end
Phi1 = sum(Y1)/Ny
Phi2 = sum(Y2)/Ny
SE2D = -log(Logx, Phi2/Phi1)
return SE2D, Phi1, Phi2
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3814 | module _SlopEn
export SlopEn
using GroupSlices
"""
Slop = SlopEn(Sig)
Returns the slope entropy (`Slop`) estimates for embedding dimensions
[2, ..., m] of the data sequence (`Sig`) using the default parameters:
embedding dimension = 2, time delay = 1,
angular thresholds = [5 45], logarithm = base 2
Slop = SlopEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, Lvls::AbstractArray{T,1} where T<:Real=[5, 45], Logx::Real=2, Norm::Bool=true)
Returns the slope entropy (`Slop`) estimate of the data sequence (`Sig`)
using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 \n
SlopEn returns estimates for each dimension [2,...,m]
`tau` - Time Delay, a positive integer \n
`Lvls` - Angular thresolds, a vector of monotonically increasing
values in the range [0 90] degrees.\n
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of SlopEn value, a boolean operator: \n
[false] no normalisation
[true] normalises w.r.t. the number of patterns found (default)
# See also `PhasEn`, `GridEn`, `MSEn`, `CoSiEn`, `SampEn`, `ApEn`
# References:
[1] David Cuesta-Frau,
"Slope Entropy: A New Time Series Complexity Estimator Based on
Both Symbolic Patterns and Amplitude Information."
Entropy
21.12 (2019): 1167.
"""
function SlopEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
Lvls::AbstractArray{T,1} where T<:Real=[5, 45], Logx::Real=2, Norm::Bool=true)
Logx == 0 ? Logx = exp(1) : nothing
(size(Sig,1) >10) ? nothing : error("Sig: must be a numeric vector")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(length(Lvls)>1 && all(diff(Lvls).>0) && all(0 .< Lvls .< 90)) ? nothing :
error("Lvls: must be a vector of 2 or more monotonically increasing
values in the range [0 90] degrees")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
m = m-1;
Tx = atand.(Sig[1+tau:end] .- Sig[1:end-tau])
N = size(Tx,1)
Sx = zeros(Int,N,m)
Symbx = zeros(Int,size(Tx));
Slop = zeros(m)
sort!(Lvls)
for q = 2:length(Lvls)
Symbx[(Tx.<= Lvls[q]) .& (Tx .> Lvls[q-1])] .= q-1
Symbx[(Tx.>=-Lvls[q]) .& (Tx .<-Lvls[q-1])] .= -(q-1)
if q == length(Lvls)
Symbx[Tx.> Lvls[q]] .= q
Symbx[Tx.<-Lvls[q]] .= -q
end
end
for k = 1:m
Sx[1:N-k+1,k] = Symbx[k:N]
Locs = groupslices(Sx[1:N-k+1,1:k])
p = []
[push!(p, sum(Locs.==n)) for n in unique(Locs)]
Norm ? p ./=(N-k+1) : p./= length(p)
if Norm && round(sum(p)) != 1
@warn("Potential Error: Some permutations not accounted for!")
print(round(sum(p)))
end
Slop[k] = -sum(p.*log.(Logx, p))
end
return Slop
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4171 | module _SpecEn
export SpecEn
using FFTW: fft
using DSP: conv
"""
Spec, BandEn = SpecEn(Sig)
Returns the spectral entropy estimate of the full spectrum (`Spec`)
and the within-band entropy (`BandEn`) estimated from the data sequence (`Sig`)
using the default parameters:
N-point FFT = 2*len(`Sig`) + 1, normalised band edge frequencies = [0 1],
logarithm = base 2, normalisation = w.r.t # of spectrum/band frequency values.
Spec, BandEn = SpecEn(Sig::AbstractArray{T,1} where T<:Real; N::Int=1 + (2*size(Sig,1)), Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)
Returns the spectral entropy (`Spec`) and the within-band entropy (`BandEn`)
estimate for the data sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`N` - Resolution of spectrum (N-point FFT), an integer > 1 \n
`Freqs` - Normalised band edge frequencies, a 2 element tuple with values \n
in range [0 1] where 1 corresponds to the Nyquist frequency (Fs/2).
Note: When no band frequencies are entered, BandEn == SpecEn
`Logx` - Logarithm base, a positive scalar (enter 0 for natural log) \n
`Norm` - Normalisation of `Spec` value:\n
[false] no normalisation.
[true] normalises w.r.t # of spectrum/band frequency values - default.
For more info, see the EntropyHub guide.
# See also `XSpecEn`, `fft`, `MSEn`, `XMSEn`
# References:
[1] G.E. Powell and I.C. Percival,
"A spectral entropy method for distinguishing regular and
irregular motion of Hamiltonian systems."
Journal of Physics A: Mathematical and General
12.11 (1979): 2053.
[2] Tsuyoshi Inouye, et al.,
"Quantification of EEG irregularity by use of the entropy of
the power spectrum."
Electroencephalography and clinical neurophysiology
79.3 (1991): 204-210.
"""
function SpecEn(Sig::AbstractArray{T,1} where T<:Real; N::Int=1 + (2*size(Sig,1)),
Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)
(size(Sig)[1] > 4) ? nothing : error("Sig: must be a numeric vector")
(N > 1) ? nothing : error("N: must be an integer > 1")
(0<=Freqs[1]<1 && 0<Freqs[2]<=1 && Freqs[1]<Freqs[2]) ? nothing :
error("Freq: must be a two element tuple with values in range [0 1].
The values must be in increasing order.")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Freqs = collect(Freqs)
Fx = Int(ceil(N/2))
Freqs = Int.(round.(Freqs.*Fx))
Freqs[Freqs.==0] .= 1
if Freqs[1] > Freqs[2]
error("Lower band frequency must come first.")
elseif Freqs[2]-Freqs[1]<1
error("Spectrum resoution too low to determine bandwidth.")
elseif minimum(Freqs)<0 || maximum(Freqs)>Fx
error("Freqs must be normalized w.r.t sampling frequency [0 1].")
end
Temp = conv(Sig,Sig)
N <= size(Temp,1) ? Temp = Temp[1:N] : Temp = vcat(Temp,zeros(N-size(Temp)[1]))
Pt = abs.(fft(Temp))
Pxx = Pt[1:Fx]/sum(Pt[1:Fx])
Spec = -(transpose(Pxx)*log.(Logx, Pxx))
Pband = (Pxx[Freqs[1]:Freqs[2]])/sum(Pxx[Freqs[1]:Freqs[2]])
BandEn = -(transpose(Pband)*log.(Logx, Pband))
if Norm
Spec = Spec/(log(Logx, Fx));
BandEn = BandEn/(log(Logx, Freqs[2]-Freqs[1]+1));
end
return Spec, BandEn
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5520 | module _SyDyEn
export SyDyEn
using Clustering: kmeans, assignments
using StatsBase: Histogram, fit
using Statistics: mean
"""
SyDy, Zt = SyDyEn(Sig)
Returns the symbolic dynamic entropy (`SyDy`) and the symbolic sequence
(`Zt`) of the data sequence (`Sig`) using the default parameters:
embedding dimension = 2, time delay = 1, symbols = 3, logarithm = natural,
symbolic partition type = maximum entropy partitioning (`MEP`),
normalisation = normalises w.r.t # possible vector permutations (c^m)
SyDy, Zt = SyDyEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1, c::Int=3, Typex::String="MEP", Logx::Real=exp(1), Norm::Bool=true)
Returns the symbolic dynamic entropy (`SyDy`) and the symbolic sequence
(`Zt`) of the data sequence (`Sig`) using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer \n
`tau` - Time Delay, a positive integer \n
`c` - Number of symbols, an integer > 1 \n
`Typex` - Type of symbolic sequnce partitioning method, one of the following: \n
{"linear","uniform","MEP"(default),"kmeans"}
`Logx` - Logarithm base, a positive scalar \n
`Norm` - Normalisation of SyDyEn value: \n
[false] no normalisation
[true] normalises w.r.t # possible vector permutations (c^m+1) - default
See the EntropyHub guide for more info on these parameters.
# See also `DispEn`, `PermEn`, `CondEn`, `SampEn`, `MSEn`
# References:
[1] Yongbo Li, et al.,
"A fault diagnosis scheme for planetary gearboxes using
modified multi-scale symbolic dynamic entropy and mRMR feature
selection."
Mechanical Systems and Signal Processing
91 (2017): 295-312.
[2] Jian Wang, et al.,
"Fault feature extraction for multiple electrical faults of
aviation electro-mechanical actuator based on symbolic dynamics
entropy."
IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC), 2015.
[3] Venkatesh Rajagopalan and Asok Ray,
"Symbolic time series analysis via wavelet-based partitioning."
Signal processing
86.11 (2006): 3309-3320.
"""
function SyDyEn(Sig::AbstractArray{T,1} where T<:Real; m::Int=2, tau::Int=1,
c::Int=3, Typex::String="MEP", Logx::Real=exp(1), Norm::Bool=true)
N = size(Sig,1)
(N > 10) ? nothing : error("Sig: must be a numeric vector")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau > 0) ? nothing : error("tau: must be an integer > 0")
(c > 1) ? nothing : error("c: must be an integer > 1")
(lowercase(Typex) in ["linear", "kmeans", "uniform","mep"]) ? nothing :
error("Typex: must be one of the following strings - 'linear','kmeans','uniform','MEP'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Nx = N-((m-1)*tau)
Zt = zeros(N)
if lowercase(Typex) == "linear"
Edges = range(minimum(Sig),maximum(Sig),length=c+1)
Zt = map(x -> sum(Edges[1:c].<=x), Sig)
elseif lowercase(Typex) == "uniform"
Ix = sortperm(Sig)
Edges = range(1,N,length=c+1)
z = map(x -> sum(Edges[1:c].<=x), 1:N)
Zt[Ix] .= z
elseif lowercase(Typex) == "kmeans"
Tx = kmeans(transpose(Sig), c; maxiter=200)
z = Int.(assignments(Tx))
ix = sortperm(Tx.centers[:]); Zt = zeros(Int,N)
for k = 1:c
Zt[z.==ix[k]] .= k;
end
else
Tx = sort(Sig)
Edges = Tx[vcat(1, Int.(ceil.((1:c-1)*N/c)),N)]
Zt = map(x -> sum(Edges[1:end-1].<=x), Sig)
end
Zm = zeros(Int,Nx,m);
for n = 1:m
Zm[:,n] = Zt[(n-1)*tau + 1:Nx+(n-1)*tau]
end
T = unique(Zm,dims=1)
Counter = zeros(size(T,1))
Counter2 = zeros(size(T,1),c)
Bins = range(0.5,c+.5,step=1)
for n = 1:size(T,1)
Ordx = all(Zm .- transpose(T[n,:]).==0,dims=2)
Counter[n] = mean(Ordx)
Temp = Zm[vcat(falses(m*tau), Ordx[1:end-(m*tau)]),1]
Counter2[n,:] = fit(Histogram,Temp,Bins).weights
end
Counter2 ./= sum(Counter2,dims=2)
Counter2[isnan.(Counter2)] .= 0
P1 = -sum(Counter.*log.(Logx, Counter))
P2 = log.(Logx, repeat(Counter,outer=(1,c)).*Counter2)
P2[isinf.(P2)] .= 0
SyDy = P1 .- transpose(Counter)*(sum(P2,dims=2))
if round(sum(Counter),digits=4) != 1 || maximum(round.(sum(Counter2,dims=2),digits=4)) != 1
print(maximum(sum(Counter2,dims=2)))
@warn("Potential Error calculating probabilities")
end
if Norm
SyDy = SyDy/(log(Logx, c^(m+1)))
end
return SyDy, Zt
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4152 | module _WindowData
export WindowData
"""
WinData, Log = WindowData(Data)
Windows the sequence(s) given in `Data` into a collection of subsequnces
of floor(N/5) elements with no overlap, excluding any remainder
elements that do not fill the final window.
If `Data` is a univariate sequence (vector), `Windata` is a vector of 5
vectors. If `Data` is a set of multivariate sequences (NxM matrix),
each of M columns is treated as a sequence with N elements
and `WinData` is a vector of 5 matrices of size [(floor*N,5), M].
The `Log` dictionary contains information about the windowing process, including:
`DataType` - The type of data sequence passed as `Data`\n
`DataLength` - The number of sequence elements in `Data`\n
`WindowLength` - The number of elements in each window of `WinData`\n
`WindowOverlap` - The number of overlapping elements between windows\n
`TotalWindows` - The number of windows extracted from `Data`\n
`Mode` - Decision to include or exclude any remaining sequence
elements (`< WinLen`) that do not fill the window.\n
WinData, Log = WindowData(Data::AbstractArray{T} where T<:Real, WinLen::Union{Nothing,Int}=nothing, Overlap::Int=0, Mode::String="exclude")
Windows the sequence(s) given in `Data` into a collection of subsequnces
using the specified keyword arguments:
# Arguments:
`WinLen` - Number of elements in each window, a positive integer (>10)\n
`Overlap` - Number of overlapping elements between windows, a positive integer (< WinLen)\n
`Mode` - Decision to include or exclude any remaining sequence
elements (< `WinLen`) that do not fill the window,
a string - either `"include"` or `"exclude"` (default).\n
# See also `ExampleData`
"""
function WindowData(Data::AbstractArray{T} where T<:Real;
WinLen::Union{Nothing,Int}=nothing, Overlap::Int=0, Mode::String="exclude")
if ndims(Data)==1
DataType = "single univariate vector (1 sequence)"
N = length(Data)
Dn = 0
elseif ndims(Data)==2
N, Dn = size(Data)
DataType = "multivariate matrix ("*string(Dn)*" vectors)"
else
error("Only a vector or a Matrix can be passed as Data!")
end
(N>10) ? nothing : error("Data: must be a numpy Vector (length N) or an NxM numpy matrix where N>10 and M>1")
(isnothing(WinLen)) ? WinLen = Int(floor(N/5)) : nothing
(10<WinLen<N) ? nothing : error("WinLen: must be an integer such that 10 < WinLen < N")
(0<=Overlap<WinLen) ? nothing : error("Overlap: The number of overlapping window samples such that 0 <= Overlap < WinLen")
(lowercase(Mode) in ["exclude","include"]) ? nothing : error("Mode: Option to include/exclude samples that do not fill final window, either 'exclude' or 'include'")
M = Int(floor((N - Overlap)/(WinLen - Overlap)))
Step = Int(WinLen-Overlap)
Xout = []
map(k -> push!(Xout, Data[k:k+WinLen-1,:]), 1:Step:M*Step)
(lowercase(Mode)=="include" && (length(Xout)-1)*Step+WinLen!=N) ? (push!(Xout, Data[1+M*Step:end,:]); M+=1) : nothing
Log = Dict("DataType" => DataType, "DataLength" => N, "WindowLength" => WinLen,
"WindowOverlap" => Overlap, "TotalWindows" => M, "Mode" => Mode)
return Xout, Log
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4890 | module _XApEn
export XApEn
using Statistics: mean, std, var
"""
XAp, Phi = XApEn(Sig1, Sig2)
Returns the cross-approximate entropy estimates (`XAp`) and the average
number of matched vectors (`Phi`) for m = [0,1,2], estimated for the data
sequences contained in `Sig1` and `Sig2` using the default parameters:
embedding dimension = 2, time delay = 1,
radius distance threshold= 0.2*SDpooled(`Sig1`,`Sig2`), logarithm = natural
**NOTE**: XApEn is direction-dependent. Thus, `Sig1` is used as the template data sequence,
and `Sig2` is the matching sequence.``
XAp, Phi = XApEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1))
Returns the cross-approximate entropy estimates (`XAp`) between the data
sequences contained in `Sig1` and `Sig2` using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer [default: 2] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`r` - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(`Sig1`,`Sig2`)] \n
`Logx` - Logarithm base, a positive scalar [default: natural] \n
# See also `XSampEn`, `XFuzzEn`, `XMSEn`, `ApEn`, `SampEn`, `MSEn`
# References:
[1] Steven Pincus and Burton H. Singer,
"Randomness and degrees of irregularity."
Proceedings of the National Academy of Sciences
93.5 (1996): 2083-2088.
[2] Steven Pincus,
"Assessing serial irregularity and its implications for health."
Annals of the New York Academy of Sciences
954.1 (2001): 245-267.
"""
function XApEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1))
if all(isa.((Sig1,Sig2), AbstractVector))
N1 = size(Sig1,1); N2 = size(Sig2,1)
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N1 = maximum(size(Sig1)); N2 = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
r isa Nothing ? r = 0.2*sqrt((var(S1,corrected=false)*(N1-1) + var(S2,corrected=false)*(N2-1))/(N1+N2-1)) : nothing
(N1>=10 && N2>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(r >=0) ? nothing : error("r: must be a positive value")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Counter = 1*(abs.(S1 .- transpose(S2)) .<= r)
M = vcat(m*ones(Int,N1-(m*tau)), repeat((m-1):-1:1,inner=tau))
XAp = zeros(m+1)
Phi = zeros(m+2)
for n = 1:N1 - tau
ix = findall(Counter[n, :] .== 1)
for k = 1:M[n]
ix = ix[ix .+ (k*tau) .<= N2]
isempty(ix) ? break : nothing
p1 = repeat(transpose(S1[n:tau:n+(tau*k)]), outer=length(ix))
p2 = S2[ix .+ transpose(collect(0:tau:(k*tau)))]
ix = ix[findall(maximum(abs.(p1 - p2),dims=2) .<= r)]
Counter[n, ix] .+= 1
end
end
#Phi[1] = log(Logx, N1)/N1
#Phi[2] = mean(log.(Logx, sum(Counter.>0,dims=1)/N))
Temp = sum(Counter.>0,dims=1); Temp = Temp[Temp.!=0]
Phi[2] = mean(log.(Logx, Temp/N1))
XAp[1] = Phi[1] - Phi[2]
for k = 0:m-1
ai = sum(Counter.>(k+1),dims=1)/(N1-(k+1)*tau)
bi = sum(Counter.>k,dims=1)/(N1-(k*tau))
ai = ai[ai.!=0]
bi = bi[bi.!=0]
Phi[k+3] = sum(log.(Logx, ai))/(N1-(k+1)*tau)
XAp[k+2]= sum(log.(Logx, bi))/(N1-(k*tau)) - Phi[k+3]
end
return XAp, Phi
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5286 | module _XCondEn
export XCondEn
using StatsBase: fit, Histogram
using Statistics: mean, std
"""
XCond, SEw, SEz = XCondEn(Sig1, Sig2)
Returns the corrected cross-conditional entropy estimates (`XCond`) and the
corresponding Shannon entropies (m: SEw, m+1: SEz) for m = [1,2]
estimated for the data sequences contained in `Sig1` and `Sig2` using the default
parameters: embedding dimension = 2, time delay = 1, number of symbols = 6,
logarithm = natural
** Note: XCondEn is direction-dependent. Therefore, the order of the
data sequences `Sig1` and `Sig2` matters. If `Sig1` is the
sequence 'y', and `Sig2` is the second sequence 'u', the `XCond` is
the amount of information carried by y(i) when the pattern u(i) is found.**
XCond, SEw, SEz = XCondEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)
Returns the corrected cross-conditional entropy estimates (`XCond`) for
the data sequences contained in `Sig1` and `Sig2` using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 1 [default: 2] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`c` - Number of symbols, an integer > 1 [default: 6] \n
`Logx` - Logarithm base, a positive scalar [default: natural] \n
`Norm` - Normalisation of `XCond` values:
[false] no normalisation [default]\n
[true] normalises w.r.t cross-Shannon entropy. \n
# See also `XFuzzEn`, `XSampEn`, `XApEn`, `XPermEn`, `CondEn`, `XMSEn`
# References:
[1] Alberto Porta, et al.,
"Conditional entropy approach for the evaluation of the
coupling strength."
Biological cybernetics
81.2 (1999): 119-129.
"""
function XCondEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=2, tau::Int=1, c::Int=6, Logx::Real=exp(1), Norm::Bool=false)
if all(isa.((Sig1,Sig2), AbstractVector))
N = size(Sig1,1);
S1 = (Sig1 .- mean(Sig1))/std(Sig1,corrected=false)
S2 = (Sig2 .- mean(Sig2))/std(Sig2,corrected=false)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = (Sig1[:,1] .- mean(Sig1[:,1]))/std(Sig1[:,1],corrected=false)
S2 = (Sig2[:,2] .- mean(Sig2[:,2]))/std(Sig2[:,2],corrected=false)
N = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
length(S2)==N ? nothing : error("Sig1 and Sig2 must be the same length!")
(N>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 1) ? nothing : error("m: must be an integer > 1")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(c>1) ? nothing : error("c: must be an integer > 1")
Edges = range(minimum(S1),maximum(S1),length=c+1)
Sx1 = map(x -> sum(Edges[1:c].<=x), S1)
Edges = range(minimum(S2),maximum(S2),length=c+1)
Sx2 = map(x -> sum(Edges[1:c].<=x), S2)
SEw = zeros(m-1)
SEz = zeros(m-1)
Prcm = zeros(m-1)
Xi = zeros(Int,N,m)
for k = 1:m-1
Nx = N-(k-1)*tau
Xi[1:Nx,m-(k-1)] = Sx1[(k-1)*tau+1:N]
#Wi = transpose(c.^(k-1:-1:0))*transpose(Xi[1:Nx,m-k+1:m])
Wi = Xi[1:Nx,m-k+1:m]*(c.^(k-1:-1:0))
#Zi = (c^k)*transpose(Sx2[(k-1)*tau+1:N]) .+ Wi
Zi = (c^k)*Sx2[(k-1)*tau+1:N] + Wi
Pw = fit(Histogram, Wi[:], minimum(Wi)-.5:maximum(Wi)+.5).weights
Pz = fit(Histogram, Zi[:], minimum(Zi)-.5:maximum(Zi)+.5).weights
Prcm[k] = sum(Pz.==1)/Nx
(sum(Pw)!= Nx || sum(Pz)!= Nx) ? @warn("Potential error estimating probabilities.") : nothing
Pw = Pw[Pw.!=0]; Pw = Pw/N
Pz = Pz[Pz.!=0]; Pz = Pz/N
SEw[k] = -transpose(Pw)*log.(Logx, Pw)
SEz[k] = -transpose(Pz)*log.(Logx, Pz)
end
Temp = fit(Histogram,Sx2,nbins=c).weights
Temp = Temp[Temp.!=0]./N
Sy = -transpose(Temp)*log.(Logx, Temp)
XC = SEz - SEw + Prcm*Sy
XC = vcat(Sy, XC)
Norm ? XC = XC/Sy : nothing
return XC, SEw, SEz
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 5736 | module _XDistEn
export XDistEn
using StatsBase: fit, Histogram, skewness
using Statistics: mean, std
"""
XDist, Ppi = XDistEn(Sig1, Sig2)
Returns the cross-distribution entropy estimate (`XDist`) and the
corresponding distribution probabilities (`Ppi`) estimated between the data
sequences contained in `Sig1` and `Sig2` using the default parameters:
embedding dimension = 2, time delay = 1, binning method = 'Sturges',
logarithm = base 2, normalisation = w.r.t # of histogram bins
XDist, Ppi = XDistEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)
Returns the cross-distribution entropy estimate (`XDist`) estimated between the
data sequences contained in `Sig1` and `Sig2` using the specified 'keyword' = arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer [default: 2] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`Bins` - Histogram bin selection method for distance distribution,
an integer > 1 indicating the number of bins, or one of the
following strings {'sturges','sqrt','rice','doanes'}
[default: 'sturges'] \n
`Logx` - Logarithm base, a positive scalar [default: 2]
** enter 0 for natural log**\n
`Norm` - Normalisation of DistEn value:
[false] no normalisation.
[true] normalises w.r.t # of histogram bins [default] \n
# See also `XSampEn`, `XApEn`, `XPermEn`, `XCondEn`, `DistEn`, `DistEn2D`, `XMSEn`
# References:
[1] Yuanyuan Wang and Pengjian Shang,
"Analysis of financial stock markets through the multiscale
cross-distribution entropy based on the Tsallis entropy."
Nonlinear Dynamics
94.2 (2018): 1361-1376.
"""
function XDistEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=2, tau::Int=1, Bins::Union{Int,String}="Sturges", Logx::Real=2, Norm::Bool=true)
if all(isa.((Sig1,Sig2), AbstractVector))
N1 = size(Sig1,1); N2 = size(Sig2,1)
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N1 = maximum(size(Sig1)); N2 = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
Logx == 0 ? Logx = exp(1) : nothing
(N1>=10 && N2>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if typeof(Bins)<:Int
(Bins>1) ? nothing : error("Bins: must be an integer > 1 (or name of binning method)")
elseif typeof(Bins)<:String
(lowercase(Bins) in ["sturges","sqrt","rice","doanes"]) ? nothing :
error("Bins: must be one of the following strings
'sturges', 'sqrt', 'rice', 'doanes' (or an integer >1)")
end
Nx1 = N1 - ((m-1)*tau)
Nx2 = N2 - ((m-1)*tau)
Zm1 = zeros(Nx1,m)
Zm2 = zeros(Nx2,m)
for n = 1:m
Zm1[:,n] = S1[(n-1)*tau + 1:Nx1+(n-1)*tau]
Zm2[:,n] = S2[(n-1)*tau + 1:Nx2+(n-1)*tau]
end
DistMat = zeros(Nx1,Nx2);
for k = 1:Nx1
DistMat[k,:] = maximum(abs.(repeat(transpose(Zm1[k,:]),outer=Nx2) - Zm2),dims=2)
end
Ny = Nx1*Nx2
DistMat = reshape(DistMat,1,Ny)
if eltype(Bins)<:Char
if lowercase(Bins) == "sturges"
Bx = ceil(log2(Ny) + 1)
elseif lowercase(Bins) == "rice"
Bx = ceil(2*(Ny^(1/3)));
elseif lowercase(Bins) == "sqrt"
Bx = ceil(sqrt(Ny));
elseif lowercase(Bins) == "doanes"
sigma = sqrt(6*(Ny-2)/((Ny+1)*(Ny+3)));
Bx = ceil(1+log2(Ny)+log2(1+abs(skewness(DistMat)/sigma)));
else
error("Please enter a valid binning method")
end
else
Bx = Bins
end
By = collect(range(minimum(DistMat),maximum(DistMat),length=Int(Bx+1)))
By[end] += 1; By[1] -= 1
# Ppi = fit(Histogram, transpose(DistMat), By).weights/Ny
Ppi = fit(Histogram, DistMat[:], By).weights/Ny
if round(sum(Ppi),digits=6) != 1
@warn("Potential error estimating probabilities (p = $(sum(Ppi))")
Ppi = Ppi[Ppi.!=0]
elseif any(Ppi.==0)
print("Note: $(sum(Ppi.==0))/$(length(Ppi)) bins were empty")
Ppi = Ppi[Ppi.!=0]
end
XDist = -sum(Ppi.*log.(Logx, Ppi))
Norm ? XDist = XDist/log(Logx, Bx) : nothing
return XDist, Ppi
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 10619 | module _XFuzzEn
export XFuzzEn
using Statistics: mean, std
"""
XFuzz, Ps1, Ps2 = XFuzzEn(Sig1, Sig2)
Returns the cross-fuzzy entropy estimates (`XFuzz`) and the average fuzzy
distances (m:Ps1, m+1:Ps2) for m = [1,2] estimated for the data sequences
contained in `Sig1` and `Sig2`, using the default parameters: embedding dimension = 2,
time delay = 1, fuzzy function (Fx) = 'default',
fuzzy function parameters (r) = [0.2, 2], logarithm = natural
XFuzz, Ps1, Ps2 = XFuzzEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2), Fx::String="default", Logx::Real=exp(1))
Returns the cross-fuzzy entropy estimates (`XFuzz`) for dimensions = [1,...,m]
estimated for the data sequences in `Sig1` and `Sig2` using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer [default: 2] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`Fx` - Fuzzy function name, one of the following:
{`"sigmoid", "modsampen", "default", "gudermannian",`
`"bell", "triangular", "trapezoidal1", "trapezoidal2",`
`"z_shaped", "gaussian", "constgaussian"`}\n
`r` - Fuzzy function parameters, a scalar or a 2 element tuple
of positive values. The `r` parameters for each fuzzy
function are defined as follows:\n
sigmoid: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
modsampen: r(1) = divisor of the exponential argument
r(2) = value subtracted from argument (pre-division)
default: r(1) = divisor of the exponential argument
r(2) = argument exponent (pre-division)
gudermannian: r = a scalar whose value is the numerator of
argument to gudermannian function:
GD(x) = atan(tanh(`r`/x)).
triangular: r = a scalar whose value is the threshold (corner point) of the triangular function.
trapezoidal1: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the trapezoid.
trapezoidal2: r(1) = a value corresponding to the upper corner point of the trapezoid.
r(2) = a value corresponding to the lower corner point of the trapezoid.
z_shaped: r = a scalar whose value corresponds to the upper (2r) and lower (r) corner points of the z-shape.
bell: r(1) = divisor of the distance value
r(2) = exponent of generalized bell-shaped function
gaussian: r = a scalar whose value scales the slope of the Gaussian curve.
constgaussian: r = a scalar whose value defines the lower threshod and shape of the Gaussian curve.
[DEPRICATED] linear: r = an integer value. When r = 0, the
argument of the exponential function is
normalised between [0 1]. When r = 1,
the minimuum value of the exponential
argument is set to 0. \n
`Logx` - Logarithm base, a positive scalar \n
For further information on the 'keyword' arguments, see the EntropyHub guide.
# See also `FuzzEn`, `XSampEn`, `XApEn`, `FuzzEn2D`, `XMSEn`, `MSEn`
# References:
[1] Hong-Bo Xie, et al.,
"Cross-fuzzy entropy: A new method to test pattern synchrony of
bivariate time series."
Information Sciences
180.9 (2010): 1715-1724.
[3] Hamed Azami, et al.
"Fuzzy Entropy Metrics for the Analysis of Biomedical Signals:
Assessment and Comparison"
IEEE Access
7 (2019): 104833-104847
"""
function XFuzzEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=2, tau::Int=1, r::Union{Real,Tuple{Real,Real}}=(.2,2.0), Fx::String="default", Logx::Real=exp(1))
if all(isa.((Sig1,Sig2), AbstractVector))
N1 = size(Sig1,1); N2 = size(Sig2,1)
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N1 = maximum(size(Sig1)); N2 = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
(N1>=10 && N2>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(minimum(r)>=0 && length(r)<=2) ? nothing :
error("r: must be a scalar or 2 element vector of positive values")
(lowercase(Fx) in ["default","sigmoid","modsampen","gudermannian","bell", "z_shaped",
"triangular", "trapezoidal1","trapezoidal2","gaussian","constgaussian"]) ?
nothing : error("Fx: must be one of the following strings -
'default', 'sigmoid', 'modsampen', 'gudermannian', 'bell', 'z_shaped',
'triangular', 'trapezoidal1','trapezoidal2','gaussian','constgaussian'")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
if length(r) == 2 && lowercase(Fx)=="linear"
r = 0;
print("Multiple values for r entered. Default value (0) used.\n")
elseif length(r) == 2 && lowercase(Fx)=="gudermannian"
r = r[1]
print("Multiple values for r entered. First value used.\n")
end
m += 1
Fun = getfield(_XFuzzEn,Symbol(lowercase(Fx)))
Sx1 = zeros(N1,m)
Sx2 = zeros(N2,m)
for k = 1:m
Sx1[1:N1-(k-1)*tau,k] = S1[1 + (k-1)*tau:N1]
Sx2[1:N2-(k-1)*tau,k] = S2[1 + (k-1)*tau:N2]
end
Ps1 = zeros(m)
Ps2 = zeros(m-1)
Ps1[1] = 1
for k = 2:m
N1x = N1 - k*tau
N2x = N1 - (k-1)*tau
N1y = N2 - k*tau
N2y = N2 - (k-1)*tau
A = Sx1[1:N2x,1:k] .- mean(Sx1[1:N2x,1:k],dims=2)
B = Sx2[1:N2y,1:k] .- mean(Sx2[1:N2y,1:k],dims=2)
d2 = zeros(N2x,N2y)
for p = 1:N2x
Mu2 = maximum(abs.(transpose(A[p,:]) .- B),dims=2)
d2[p,:] = Fun(Mu2[:],r)
end
Ps1[k] = mean(d2[1:N1x,1:N1y])
Ps2[k-1] = mean(d2)
end
XFuzz = log.(Logx, Ps1[1:end-1]) .- log.(Logx, Ps2)
return XFuzz, Ps1, Ps2
end
function sigmoid(x,r)
if length(r) == 1
error("When Fx = 'Sigmoid', r must be a two-element vector.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function modsampen(x,r)
if length(r) == 1
error("When Fx = 'Modsampen', r must be a two-element vector.")
end
y = inv.(1 .+ exp.((x.-r[2])/r[1]))
return y
end
function default(x,r)
if length(r) == 1
error("When Fx = 'Default', r must be a two-element vector.")
end
y = exp.(-(x.^r[2])/r[1])
return y
end
function gudermannian(x,r)
if r <= 0
error("When Fx = 'Gudermannian', r must be a scalar > 0.")
end
y = atan.(tanh.(r[1]./x))
y ./= maximum(y)
return y
end
"""
function linear(x,r)
if r == 0 && length(x)>1
y = exp.(-(x .- minimum(x))/(maximum(x)-minimum(x)))
elseif r == 1
y = exp.(-(x .- minimum(x)))
elseif r == 0 && length(x)==1
y = [0]
else
error("When Fx = 'Linear', r must be 0 or 1.")
end
return y
end
"""
function triangular(x,r)
length(r)==1 ? nothing : error("When Fx = 'Triangular', r must be a scalar > 0.")
y = 1 .- (x./r)
y[x .> r] .= 0
return y
end
function trapezoidal1(x, r)
length(r)==1 ? nothing : error("When Fx = 'Trapezoidal1', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= r*2] = 2 .- (x[x .<= r*2]./r)
y[x .<= r] .= 1
return y
end
function trapezoidal2(x, r)
(r isa Tuple) && (length(r)==2) ? nothing : error("When Fx = 'Trapezoidal2', r must be a two-element tuple.")
y = zeros(length(x))
y[x .<= maximum(r)] = 1 .- (x[x .<= maximum(r)] .- minimum(r))./(maximum(r)-minimum(r))
y[x .<= minimum(r)] .= 1
return y
end
function z_shaped(x, r)
length(r)==1 ? nothing : error("When Fx = 'Z_shaped', r must be a scalar > 0.")
y = zeros(length(x))
y[x .<= 2*r] .= 2*(((x[x .<= 2*r] .- 2*r)./r).^2)
y[x .<= 1.5*r] .= 1 .- (2*(((x[x .<= 1.5*r] .- r)/r).^2))
y[x .<= r] .= 1
return y
end
function bell(x, r)
(r isa Tuple) && length(r)==2 ? nothing : error("When Fx = 'Bell', r must be a two-element tuple.")
y = inv.(1 .+ abs.(x./r[1]).^(2*r[2]))
return y
end
function gaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'Gaussian', r must be a scalar > 0.")
y = exp.(-((x.^2)./(2*(r.^2))))
return y
end
function constgaussian(x, r)
length(r)==1 ? nothing : error("When Fx = 'ConstGaussian', r must be a scalar > 0.")
y = ones(length(x))
y[x .> r] = exp.(-log(2)*((x[x .> r] .- r)./r).^2)
return y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 3886 | module _XK2En
export XK2En
using Statistics: std, mean, var
"""
XK2, Ci = XK2En(Sig1, Sig2)
Returns the cross-Kolmogorov entropy estimates (`XK2`) and the correlation
integrals (`Ci`) for m = [1,2] estimated between the data sequences
contained in `Sig1` and `Sig2` using the default parameters:
embedding dimension = 2, time delay = 1, distance threshold (r) = 0.2*SDpooled(Sig1, Sig2),
logarithm = natural
XK2, Ci = XK2En(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1))
Returns the cross-Kolmogorov entropy estimates (`XK2`) estimated between
the data sequences contained in `Sig1` and `Sig2` using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer [default: 2] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`r` - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(`Sig1`,`Sig2`)] \n
`Logx` - Logarithm base, a positive scalar [default: natural] \n
# See also `XSampEn`, `XFuzzEn`, `XApEn`, `K2En`, `XMSEn`, `XDistEn`
# References:
[1] Matthew W. Flood,
"XK2En - EntropyHub Project"
(2021) https://github.com/MattWillFlood/EntropyHub
"""
function XK2En(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1))
if all(isa.((Sig1,Sig2), AbstractVector))
N1 = size(Sig1,1); N2 = size(Sig2,1)
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N1 = maximum(size(Sig1)); N2 = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
r isa Nothing ? r = 0.2*sqrt((var(S1,corrected=false)*(N1-1) + var(S2,corrected=false)*(N2-1))/(N1+N2-1)) : nothing
(N1>=10 && N2>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
(r>0) ? nothing : error("r: must be 2 element tuple of positive values")
m += 1
Zm1 = zeros(N1,m)
Zm2 = zeros(N2,m)
Ci = zeros(m)
for n = 1:m
Nx = N1-(n-1)*tau
Zm1[1:Nx,n] = S1[(n-1)*tau + 1:N1]
Ny = N2-(n-1)*tau
Zm2[1:Ny,n] = S2[(n-1)*tau + 1:N2]
Norm = zeros(Nx,Ny)
for k = 1:Nx
Temp = repeat(transpose(Zm1[k,1:n]),outer=Ny) .- Zm2[1:Ny,1:n]
Norm[k,:] = sqrt.(sum(Temp.*Temp,dims=2))
end
Ci[n] = mean(Norm .< r)
end
XK2 = log.(Logx, Ci[1:m-1]./Ci[2:m])/tau
XK2[isinf.(XK2)] .= NaN
return XK2, Ci
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 12829 | module _XMSEn
export XMSEn, EMD
using Statistics: std, mean, median, var
# using Dierckx: Spline1D
using DataInterpolations: CubicSpline
using Plots
using DSP: conv
#=function __init__()
@warn("\n\n Methodx option IMF (Intrinisic Mode Function) is not stable.
Random or highly aperiodic signals may not decompose fully.
Access to the IMFs decomposed by the empirical mode decomposition (EMD) function
can be found by calling _MSEn.EMD(`Sig`,`MaxIMFs`).
A stable EMD function will be included in future releases.\n\n")
end=#
"""
MSx, CI = XMSEn(Sig1, Sig2, Mobj)
Returns a vector of multiscale cross-entropy values `MSx` and the complexity
index `CI` between the data sequences contained in `Sig1` and `Sig2` using the parameters
specified by the multiscale object `Mobj` over 3 temporal scales with coarse-
graining `default`.
MSx,CI = MSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, Methodx::String="coarse", RadNew::Int=0, Plotx::Bool=false)
Returns a vector of multiscale cross-entropy values `MSx` and the complexity
index `CI` of the data sequences contained in `Sig1` and `Sig2` using the parameters
specified by the multiscale object `Mobj` and the following 'keyword' arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3) \n
`Method` - Graining method, one of the following:\n
{`"coarse", "modified", "imf", "timeshift","generalized"`} [default: 'coarse']
For further info on graining procedures, see the Entropyhub guide. \n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `XSampEn` or `XApEn`,
`RadNew` allows the radius threshold to be updated at each
time scale (Xt). If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of `RadNew` specifies one of the
following methods: \n
[1] Pooled Standard Deviation - r*std(Xt) \n
[2] Pooled Variance - r*var(Xt) \n
[3] Total Mean Absolute Deviation - r*mean_ad(Xt) \n
[4] Total Median Absolute Deviation - r*med_ad(Xt) \n
`Plotx` - When `Plotx` == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false]
`For further info on these graining procedures see the EntropyHub guide.`
# See also `MSobject`, `MSEn`, `cXMSEn`, `rXMSEn`, `hXMSEn`, `XSampEn`, `XApEn`, `XFuzzEn`
# References:
[1] Rui Yan, Zhuo Yang, and Tao Zhang,
"Multiscale cross entropy: a novel algorithm for analyzing two
time series."
5th International Conference on Natural Computation.
Vol. 1, pp: 411-413 IEEE, 2009.
[2] Madalena Costa, Ary Goldberger, and C-K. Peng,
"Multiscale entropy analysis of complex physiologic time series."
Physical review letters
89.6 (2002): 068102.
[3] Vadim V. Nikulin, and Tom Brismar,
"Comment on “Multiscale entropy analysis of complex physiologic
time series”."
Physical review letters
92.8 (2004): 089803.
[4] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
"Costa, Goldberger, and Peng reply."
Physical Review Letters
92.8 (2004): 089804.
[5] Antoine Jamin, et al,
"A novel multiscale cross-entropy method applied to navigation
data acquired with a bike simulator."
41st annual international conference of the IEEE EMBC
IEEE, 2019.
[6] Antoine Jamin and Anne Humeau-Heurtier.
"(Multiscale) Cross-Entropy Methods: A Review."
Entropy
22.1 (2020): 45.
"""
function XMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, Methodx::String="coarse", RadNew::Int=0, Plotx::Bool=false)
(size(Sig1,1)>=10) && (size(Sig2,1)>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(lowercase(Methodx) in ["coarse","modified","imf","timeshift","generalized"]) ? nothing :
error("Method: must be one of the following string names -
'coarse','modified','imf','timeshift','generalized'")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("XSampEn","XApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with
entropy function 'XSampEn' or 'XApEn'")
String(Symbol(Mobj.Func))=="XSampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
if lowercase(Methodx)=="imf"
Imfx, _ = EMD(Sig1,Scales-1)
Imfy, _ = EMD(Sig2,Scales-1)
Sig1 = Imfx # [1:Scales,:]'
Sig2 = Imfy # [1:Scales,:]'
# If any of the IMFs are just zeros, then take only the IMFs that aren't
sum(all(Sig1.==0,dims=2))==0 ? Tp1 = ones(Int,size(Imfx,1)) : Tp1 = vec(collect(all(Sig1 .!= 0, dims=2)));
sum(all(Sig2.==0,dims=2))==0 ? Tp2 = ones(Int,size(Imfy,1)) : Tp2 = vec(collect(all(Sig2 .!= 0, dims=2)));
if !all(Bool.(Tp1.+Tp2.-1)) || (size(Imfx,1)<Scales || size(Imfy,1)<Scales)
Sig1 = Sig1[Bool.(Tp1.+Tp2.-1),:]
Sig2 = Sig2[Bool.(Tp1.+Tp2.-1),:]
@warn("Max number of IMF's decomposed from EMD is less than number of Scales.
MSEn evaluated over $(size(Sig,1)) scales instead of $Scales.")
Scales = size(Sig1,1);
end
end
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
Func2 = getfield(_XMSEn,Symbol(lowercase(Methodx)))
if RadNew > 0
if RadNew == 1
Rnew = (x,y) -> sqrt((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 2
Rnew = (x,y) -> ((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 3
Rnew = (x,y) -> mean(abs.(vcat(x,y) .- mean(vcat(x,y))))
elseif RadNew == 4
Rnew = (x,y) -> median(abs.(vcat(x,y) .- median(vcat(x,y))))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Pooled Standard Deviation","Pooled Variance","Total Mean Abs Deviation", "Total Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
for T = 1:Scales
print(" .")
TempA, TempB = Func2(Sig1, Sig2, T)
if lowercase(Methodx) == "timeshift"
Tempx = zeros(T)
for k = 1:T
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(TempA[k,:], TempB[k,:])) : nothing
Tempy = Mobj.Func(TempA[k,:], TempB[k,:]; Args...)
typeof(Tempy)<:Tuple ? Tempx[k] = Tempy[1][end] : Tempx[k] = Tempy[end]
# Tempx[k] = Tempy[1][end]
end
Temp2 = mean(Tempx)
else
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(TempA,TempB)) : nothing
Tempx = Mobj.Func(TempA, TempB; Args...)
typeof(Tempx)<:Tuple ? Temp2 = Tempx[1][end] : Temp2 = Tempx[end]
# Temp2 = Tempx[1][end]
end
MSx[T] = Temp2
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Multiscale $(Mobj.Func) ($(titlecase(Methodx))-graining method)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255))
display(p1)
end
return MSx, CI
end
function coarse(Za, Zb, sx)
Na = Int(floor(size(Za,1)/sx))
Nb = Int(floor(size(Zb,1)/sx))
Y1 = mean(reshape(Za[1:sx*Na],sx,Na),dims=1)[:]
Y2 = mean(reshape(Zb[1:sx*Nb],sx,Nb),dims=1)[:]
return Y1, Y2
end
function modified(Za, Zb, sx)
#= Ns = size(Z,1) - sx + 1
Y = zeros(Ns,2)
for k = 1:Ns
Y[k,1] = mean(Z[k:k+sx-1,1])
Y[k,2] = mean(Z[k:k+sx-1,2])
end=#
Y1 = (conv(Za,ones(Int, sx))/sx)[sx:end-sx+1][:]
Y2 = (conv(Zb,ones(Int, sx))/sx)[sx:end-sx+1][:]
return Y1, Y2
end
function imf(Za, Zb, sx)
Y1 = sum(Za[1:sx,:],dims=1)[:]
Y2 = sum(Zb[1:sx,:],dims=1)[:]
return Y1, Y2
end
function timeshift(Za, Zb, sx)
# Y1 = zeros(sx,Int(floor(size(Za,1)/sx)))
# Y2 = zeros(sx,Int(floor(size(Zb,1)/sx)))
Y1 = reshape(Za[1:Int(sx*floor(size(Za,1)/sx))],
(sx,Int(floor(size(Za,1)/sx))))
Y2 = reshape(Zb[1:Int(sx*floor(size(Zb,1)/sx))],
(sx,Int(floor(size(Zb,1)/sx))))
return Y1, Y2
end
function generalized(Za, Zb, sx)
Na = floor(Int, size(Za,1)/sx)
Nb = floor(Int, size(Zb,1)/sx)
Y1 = var(reshape(Za[1:sx*Na],sx,Na)', corrected=false, dims=2)[:]
Y2 = var(reshape(Zb[1:sx*Nb],sx,Nb)', corrected=false, dims=2)[:]
return Y1, Y2
end
function PkFind(X)
Nx = length(X)
Indx = zeros(Int,Nx);
for n = 2:Nx-1
if X[n-1]< X[n] > X[n+1]
Indx[n] = n
elseif X[n-1] < X[n] == X[n+1]
k = 1
Indx[n] = n
while (n+k)<Nx && X[n] == X[n+k]
Indx[n+k] = n+k
k+=1
end
n+=k
end
end
Indx = Indx[Indx.!==0]
return Indx
end
function EMD(X, Scales::Int)
Xt = copy(X); N = size(Xt,1); n=1; IMFs = zeros(Scales+1,N)
MaxER = 20; MinTN = 2; #Xt .-= mean(Xt)
r1 = Xt
while n <= Scales
r0 = Xt;
x = 0;
Upx = PkFind(r0); Lwx = PkFind(-r0)
UpEnv = CubicSpline(r0[Upx], Upx) #Spline1D(Upx,r0[Upx],k=3,bc="nearest")
LwEnv = CubicSpline(r0[Lwx], Lwx) #Spline1D(Lwx,r0[Lwx],k=3,bc="nearest")
r1 = r0.- (UpEnv(1:N) .+ LwEnv(1:N))./2 #r0.- (UpEnv.(1:N) .+ LwEnv.(1:N))./2
RT = (sum(r0.*r0) - sum(r1.*r1))/sum(r0.*r0)
length(vcat(Upx,Lwx)) <= MinTN ? (LOG = "Decomposition hit minimal extrema criteria."; break) : nothing
while x < 100 && RT > 0.2
r0 = 1*r1
Upx = PkFind(r0); Lwx = PkFind(-r0)
UpEnv = CubicSpline(r0[Upx], Upx) #Spline1D(Upx,r0[Upx],k=3,bc="nearest")
LwEnv = CubicSpline(r0[Lwx], Lwx) #Spline1D(Lwx,r0[Lwx],k=3,bc="nearest")
r1 = r0.- (UpEnv(1:N) .+ LwEnv(1:N))./2 # r0.- (UpEnv.(1:N) .+ LwEnv.(1:N))./2
RT = (sum(r0.*r0) - sum(r1.*r1))/sum(r0.*r0)
x += 1;
10*log10(sqrt(sum(r0.*r0))/sqrt(sum(r1.*r1))) > MaxER ?
(LOG = "Decomposition hit energy ratio criteria."; break) : nothing
end
IMFs[n,:] = r1
Xt .-= r1
IMFs[Scales+1,:] = r0 .+ mean(X)
n+=1
end
LOG = "All went well :) "
return IMFs, LOG
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4129 | module _XPermEn
export XPermEn
using StatsBase: fit, Histogram
using Combinatorics: permutations
"""
XPerm = XPermEn(Sig1, Sig2)
Returns the cross-permuation entropy estimates (`XPerm`) estimated betweeen
the data sequences contained in `Sig1` and `Sig2` using the default parameters:
embedding dimension = 3, time delay = 1, logarithm = base 2,
XPerm = XPermEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=3, tau::Int=1, Logx::Real=exp(1))
Returns the permutation entropy estimates (`XPerm`) estimated between the
data sequences contained in `Sig1` and `Sig2` using the specified 'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, an integer > 2 [default: 3] \n
**Note: XPerm is undefined for embedding dimensions < 3.**\n
`tau` - Time Delay, a positive integer [default: 1] \n
`Logx` - Logarithm base, a positive scalar [default: 2]
** enter 0 for natural log.** \n
# See also `PermEn`, `XApEn`, `XSampEn`, `XFuzzEn`, `XMSEn`
# References:
[1] Wenbin Shi, Pengjian Shang, and Aijing Lin,
"The coupling analysis of stock market indices based on
cross-permutation entropy."
Nonlinear Dynamics
79.4 (2015): 2439-2447.
"""
function XPermEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=3, tau::Int=1, Logx::Real=exp(1))
if all(isa.((Sig1,Sig2), AbstractVector))
N = size(Sig1,1);
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors of same length
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
length(S2)==N ? nothing : error("Sig1 and Sig2 must be the same length!")
(N>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 2) ? nothing : error("m: must be an integer > 1")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
N = length(S1)-(m-1)*tau
Sx1 = zeros(N,m)
Sx2 = zeros(N,m)
for k = 1:m
Sx1[:,k] = S1[1+(k-1)*tau:N+(k-1)*tau]
Sx2[:,k] = S2[1+(k-1)*tau:N+(k-1)*tau]
end
Temp = sortind(Sx1[1:N,1:m])
Gx = zeros(N,m)
for k = 1:N
Gx[k,:] = Sx2[k,Temp[k,:]]
end
Kt = zeros(m-2,m-2,N)
for k = 1:m-2
for j = k+1:m-1
G1 = Gx[:,j+1] .- Gx[:,k]
G2 = Gx[:,k] .- Gx[:,j]
Kt[k,j-1,:] = (G1.*G2 .> 0)
end
end
Di = sum(Kt,dims=(1,2))[:]
Ppi = fit(Histogram, Di, -.5:((m-2)*(m-1) + 1)/2).weights/N
Ppi = Ppi[Ppi.!=0]
XPerm = -sum(Ppi.*log.(Logx,Ppi))
if round(sum(Ppi),digits=6)!=1
@warn("Potential error with probability calculation")
end
return XPerm
end
function sortind(X)
Y = zeros(Int, size(X))
for k = 1:length(X[:,1])
Y[k,:] = sortperm(X[k,:])
end
return Y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 6215 | module _XSampEn
export XSampEn
using Statistics: std, var
using LinearAlgebra: UpperTriangular, I
"""
XSamp, A, B = XSampEn(Sig1, Sig2)
Returns the cross-sample entropy estimates (`XSamp`) and the number of
matched vectors (m:B, m+1:A) for m = [0,1,2] estimated for the two
univariate data sequences contained in `Sig1` and `Sig2` using the default parameters:
embedding dimension = 2, time delay = 1,
radius distance threshold= 0.2*SDpooled(`Sig1`,`Sig2`), logarithm = natural
XSamp, A, B, (Vcp, Ka, Kb) = XSampEn(Sig1, Sig2, ..., Vcp = true)
If `Vcp == true`, an additional tuple `(Vcp, Ka, Kb)` is returned with
the cross-sample entropy estimates (`XSamp`) and the number of matched state
vectors (`m: B`, `m+1: A`). `(Vcp, Ka, Kb)` contains the variance of the conditional
probabilities (`Vcp`), i.e. CP = A/B, and the number of **overlapping**
matching vector pairs of lengths m+1 (`Ka`) and m (`Kb`),
respectively. Note `Vcp` is undefined for the zeroth embedding dimension (m = 0)
and due to the computational demand, **will take substantially more time to return function outputs.**
See Appendix B in [2] for more info.
XSamp, A, B = XSampEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; m::Int=2, tau::Int=1, r::Union{Real,Nothing}=nothing, Logx::Real=exp(1), Vcp::Bool=false)
Returns the cross-sample entropy estimates (`XSamp`) for dimensions [0,1,...,m]
estimated between the data sequences in `Sig1` and `Sig2` using the specified
'keyword' arguments:
# Arguments:
`m` - Embedding Dimension, a positive integer [default: 2] \n
`tau` - Time Delay, a positive integer [default: 1] \n
`r` - Radius Distance Threshold, a positive scalar [default: 0.2*SDpooled(`Sig1`,`Sig2`)] \n
`Logx` - Logarithm base, a positive scalar [default: natural] \n
`Vcp` - Option to return the variance of the conditional probabilities and the number of overlapping matching vector pairs of lengths \n
See also `XFuzzEn`, `XApEn`, `SampEn`, `SampEn2D`, `XMSEn`, `ApEn`
# References:
[1] Joshua S Richman and J. Randall Moorman.
"Physiological time-series analysis using approximate entropy
and sample entropy."
American Journal of Physiology-Heart and Circulatory Physiology
(2000)
[2] Douglas E Lake, Joshua S Richman, M.P. Griffin, J. Randall Moorman
"Sample entropy analysis of neonatal heart rate variability."
American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
283, no. 3 (2002): R789-R797.
"""
function XSampEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
m::Int=2, tau::Int=1, r::Union{Nothing,Real}=nothing, Logx::Real=exp(1), Vcp::Bool=false)
if all(isa.((Sig1,Sig2), AbstractVector))
N1 = size(Sig1,1); N2 = size(Sig2,1)
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N1 = maximum(size(Sig1)); N2 = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
r isa Nothing ? r = 0.2*sqrt((var(S1,corrected=false)*(N1-1) + var(S2,corrected=false)*(N2-1))/(N1+N2-1)) : nothing
(N1>=10 && N2>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(m > 0) ? nothing : error("m: must be an integer > 0")
(tau>0) ? nothing : error("tau: must be an integer > 0")
(r >=0) ? nothing : error("r: must be a positive value")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Counter = 1*(abs.(S1 .- transpose(S2)) .<= r)
M = vcat(m*ones(Int,N1-(m*tau)), repeat((m-1):-1:1,inner=tau))
A = zeros(Int,m+1)
B = zeros(Int,m+1)
A[1] = sum(Counter); B[1] = N1*N2;
for n = 1:N1 - tau
ix = findall(Counter[n, :] .== 1)
for k = 1:M[n]
ix = ix[ix .+ (k*tau) .<= N2]
isempty(ix) ? break : nothing
p1 = repeat(transpose(S1[n:tau:n+(tau*k)]), size(ix,1))
p2 = S2[ix .+ transpose(collect(0:tau:(k*tau)))]
ix = ix[findall(maximum(abs.(p1 - p2),dims=2) .<= r)]
Counter[n, ix] .+= 1
end
end
for k = 1:m
A[k+1] = sum(Counter.>k)
B[k+1] = sum(Counter.>=k)
end
XSamp = -log.(Logx, A./B)
#return XSamp, A, B
if Vcp
T1 = getindex.(findall(Counter.>m),1)
T2 = getindex.(findall(Counter.>m),2)
Ka = UpperTriangular(((abs.(T1.-T1').<=m*tau) .+ (abs.(T2.-T2').<=m*tau))[1:end-1,2:end])
T1 = getindex.(findall(Counter[:,1:end-m*tau].>=m),1)
T2 = getindex.(findall(Counter[:,1:end-m*tau].>=m),2)
Kb = UpperTriangular(((abs.(T1.-T1').<=(m-1)*tau) .+ (abs.(T2.-T2').<=(m-1)*tau))[1:end-1,2:end])
Ka = sum(Ka.>0)
Kb = sum(Kb.>0)
CP = A[end]/B[end]
Vcp = (CP*(1-CP)/B[end]) + (Ka - Kb*(CP^2))/(B[end]^2)
return XSamp, A, B, (Vcp, Ka, Kb)
else
return XSamp, A, B
end
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 4739 | module _XSpecEn
export XSpecEn
using FFTW: fft
using DSP: conv
"""
XSpec, BandEn = XSpecEn(Sig)
Returns the cross-spectral entropy estimate (`XSpec`) of the full cross-
spectrum and the within-band entropy (`BandEn`) estimated between the data
sequences contained in `Sig` using the default parameters:
N-point FFT = 2 * max(length(`Sig1`/`Sig2`)) + 1, normalised band edge frequencies = [0 1],
logarithm = base 2, normalisation = w.r.t # of spectrum/band frequency
values.
XSpec, BandEn = XSpecEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing; N::Union{Nothing,Int}=nothing, Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)
Returns the cross-spectral entropy (`XSpec`) and the within-band entropy
(`BandEn`) estimate between the data sequences contained in `Sig1` and `Sig2` using the
following specified 'keyword' arguments:
# Arguments:
`N` - Resolution of spectrum (N-point FFT), an integer > 1 \n
`Freqs` - Normalised band edge frequencies, a scalar in range [0 1]
where 1 corresponds to the Nyquist frequency (Fs/2).
**Note: When no band frequencies are entered, BandEn == SpecEn** \n
`Logx` - Logarithm base, a positive scalar [default: base 2]
** enter 0 for natural log** \n
`Norm` - Normalisation of `XSpec` value:
[false] no normalisation.
[true] normalises w.r.t # of spectrum/band frequency values [default] \n
For more info, see the EntropyHub guide
# See also `SpecEn`, `fft`, `XDistEn`, `periodogram`, `XSampEn`, `XApEn`
# References:
[1] Matthew W. Flood,
"XSpecEn - EntropyHub Project"
(2021) https://github.com/MattWillFlood/EntropyHub
"""
function XSpecEn(Sig1::Union{AbstractMatrix{T}, AbstractVector{T}} where T<:Real, Sig2::Union{AbstractVector{T} where T<:Real, Nothing} = nothing;
N::Union{Nothing,Int}=nothing, Freqs::Tuple{Real,Real}=(0,1), Logx::Real=exp(1), Norm::Bool=true)
if all(isa.((Sig1,Sig2), AbstractVector))
N1 = size(Sig1,1); N2 = size(Sig2,1)
S1 = copy(Sig1); S2 = copy(Sig2)
elseif (minimum(size(Sig1))==2 && (Sig2 isa Nothing))
argmin(size(Sig1)) == 2 ? nothing : Sig1 = Sig1'
S1 = Sig1[:,1]; S2 = Sig1[:,2];
N1 = maximum(size(Sig1)); N2 = maximum(size(Sig1));
else error("""Sig1 and Sig2 must be 2 separate vectors
\t\t\t - OR -
Sig1 must be 2-column matrix and Sig2 nothing""")
end
N isa Nothing ? N = 2*max(N1,N2) + 1 : N = 2*N1 + 1;
(N1>=10 && N2>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(N > 1) ? nothing : error("N: must be an integer > 1")
(0<=Freqs[1]<1 && 0<Freqs[2]<=1 && Freqs[1]<Freqs[2]) ? nothing :
error("Freq: must be a two element tuple with values in range [0 1].
The values must be in increasing order.")
(Logx>0) ? nothing : error("Logx: must be a positive number > 0")
Freqs = collect(Freqs)
Fx = Int(ceil(N/2))
Freqs = Int.(round.(Freqs.*Fx))
Freqs[Freqs.==0] .= 1
if Freqs[1] > Freqs[2]
error("Lower band frequency must come first.")
elseif Freqs[2]-Freqs[1]<1
error("Spectrum resoution too low to determine bandwidth.")
elseif minimum(Freqs)<0 || maximum(Freqs)>Fx
error("Freqs must be normalized w.r.t sampling frequency [0 1].")
end
Temp = conv(S1,S2)
N <= size(Temp,1) ? Temp = Temp[1:N] : Temp = vcat(Temp,zeros(N-size(Temp,1)))
Pt = abs.(fft(Temp));
Pxx = Pt[1:Fx]/sum(Pt[1:Fx]);
XSpec = -transpose(Pxx)*log.(Logx, Pxx)
Pband = (Pxx[Freqs[1]:Freqs[2]])/sum(Pxx[Freqs[1]:Freqs[2]]);
BandEn = -transpose(Pband)*log.(Logx, Pband)
if Norm
XSpec = XSpec/log(Logx, Fx)
BandEn = BandEn/log(Logx, Freqs[2]-Freqs[1]+1)
end
return XSpec, BandEn
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 8368 | module _cMSEn
export cMSEn
using Statistics: std, mean, median, var
using Plots
using DSP: conv
"""
MSx, CI = cMSEn(Sig, Mobj)
Returns a vector of composite multiscale entropy values (`MSx`) for the data
sequence (`Sig`) using the parameters specified by the multiscale object
(`Mobj`) using the composite multiscale entropy method over 3 temporal scales.
MSx, CI = cMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Refined::Bool=false, Plotx::Bool=false)
Returns a vector of composite multiscale entropy values (`MSx`) of the
data sequence (`Sig`) using the parameters specified by the multiscale
object (`Mobj`) and the following 'keyword' arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3) \n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `SampEn` or `ApEn`,
RadNew allows the radius threshold to be updated at each
time scale (Xt). If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of RadNew specifies one of the
following methods:\n
[1] Standard Deviation - r*std(Xt)\n
[2] Variance - r*var(Xt) \n
[3] Mean Absolute Deviation - r*mean_ad(Xt) \n
[4] Median Absolute Deviation - r*med_ad(Xt)\n
`Refined` - Refined-composite MSEn method. When `Refined == true` and the
entropy function specified by Mobj is `SampEn` or `FuzzEn`, cMSEn returns
the refined-composite multiscale entropy (rcMSEn) [default: false]\n
`Plotx` - When `Plotx` == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false]\n
# See also `MSobject`, `rMSEn`, `MSEn`, `hMSEn`, `SampEn`, `ApEn`, `XMSEn`
# References:
[1] Madalena Costa, Ary Goldberger, and C-K. Peng,
"Multiscale entropy analysis of complex physiologic time series."
Physical review letters
89.6 (2002): 068102.
[2] Vadim V. Nikulin, and Tom Brismar,
"Comment on “Multiscale entropy analysis of complex physiologic
time series”."
Physical review letters
92.8 (2004): 089803.
[3] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
"Costa, Goldberger, and Peng reply."
Physical Review Letters
92.8 (2004): 089804.
[4] Shuen-De Wu, et al.,
"Time series analysis using composite multiscale entropy."
Entropy
15.3 (2013): 1069-1084.
[5] Shuen-De Wu, et al.,
"Analysis of complex time series using refined composite
multiscale entropy."
Physics Letters A
378.20 (2014): 1369-1374.
[6] Azami, Hamed, Alberto Fernández, and Javier Escudero.
"Refined multiscale fuzzy entropy based on standard deviation
for biomedical signal analysis."
Medical & biological engineering & computing 55 (2017): 2037-2052.
"""
function cMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Refined::Bool=false, Plotx::Bool=false)
(size(Sig,1)>10) ? nothing : error("Sig: must be a numeric vector" )
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("SampEn","ApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with
entropy function 'SampEn' or 'ApEn'")
(Refined && String(Symbol(Mobj.Func)) in ("SampEn","FuzzEn")) || Refined==false ?
nothing : error("Refined: If Refined == true, the base entropy function must be 'SampEn' or 'FuzzEn'")
lowercase(String(Symbol(Mobj.Func))[1]) == 'x' ? error("Base entropy estimator is a cross-entropy method.
To perform (refined-)composite multiscale CROSS-entropy estimation, use cXMSEn.") : nothing
String(Symbol(Mobj.Func))=="SampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
if Refined && String(Symbol(Mobj.Func))=="FuzzEn"
Tx = 1;
"Logx" in String.(Symbol.(keys(Mobj))) ? Logx = Mobj.Logx : Logx = exp(1);
elseif Refined && String(Symbol(Mobj.Func))=="SampEn"
Tx = 0;
"Logx" in String.(Symbol.(keys(Mobj))) ? Logx = Mobj.Logx : Logx = exp(1);
else
Tx = 0;
end
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
if RadNew > 0
if RadNew == 1
Rnew = x -> std(x, corrected=false)
elseif RadNew == 2
Rnew = x -> var(x, corrected=false)
elseif RadNew == 3
Rnew = x -> mean(abs.(x .- mean(x)))
elseif RadNew == 4
Rnew = x -> median(abs.(x .- median(x)))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Standard Deviation","Variance","Mean Abs Deviation",
"Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
for T = 1:Scales
Temp = modified(Sig,T,Tx)
N = Int(T*floor(length(Temp)/T))
Temp2 = zeros(T)
Temp3 = zeros(T)
for k = 1:T
print(". ")
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(Temp[k:T:N])) : nothing
if Refined
_, Ma, Mb = Mobj.Func(Temp[k:T:N]; Args...)
Temp2[k] = Ma[end]
Temp3[k] = Mb[end]
else
Temp2 = Mobj.Func(Temp[k:T:N]; Args...)
typeof(Temp2)<:Tuple ? Temp3[k] = Temp2[1][end] : Temp3[k] = Temp2[end]
#Temp3[k] = Temp2[1][end]
end
end
#Refined ? MSx[T] = -log(sum(Temp2)/sum(Temp3)) : MSx[T] = mean(Temp3)
if Refined && Tx==0
MSx[T] = -log(sum(Temp2)/sum(Temp3))/log(Logx)
elseif Refined && Tx==1
MSx[T] = -log(sum(Temp3)/sum(Temp2))/log(Logx)
else
MSx[T] = mean(Temp3)
end
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
Refined ? strx = "Refined-Composite" : strx = "Composite"
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = strx*" Multiscale $(Mobj.Func)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255)) #ylim=(0,maximum(MSx)+.2),
display(p1)
end
return MSx, CI
end
function modified(Z,sx, Tx)
Tx == 0 ? Y = (conv(Z,ones(Int,sx))/sx)[sx:end-sx+1] :
Y = [std(Z[x:x+sx-1], corrected=false) for x in 1:(length(Z)-sx+1)]
return Y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 7337 | module _cMvMSEn
export cMvMSEn
using Statistics: std, mean, median, var
using Plots
using DSP: conv
"""
MSx, CI = cMvMSEn(Data, Mobj)
Returns a vector of composite multivariate multiscale entropy values (`MSx`) and the complexity
index (`CI`) of the data sequences in `Data` using the parameters specified
by the multiscale object (`Mobj`) over 3 temporal scales with coarse-graining (default).
!!! note
By default, the `MvSampEn` and `MvFuzzEn` multivariate entropy algorithms
estimate entropy values using the "full" method by comparing delay vectors
across all possible `m+1` expansions of the embedding space as applied in [1].
These methods are not lower-bounded to 0, like most entropy algorithms,
so `MvMSEn` may return negative entropy values if the base multivariate
entropy function is `MvSampEn` and `MvFuzzEn`, even for stochastic processes...
-------------------------------------------------------------
MSx, CI = cMvMSEn(Data, Mobj, Refined = True)
Returns a vector of refined-composite multiscale entropy values (`MSx`) for the data
sequences in (`Data`) using the parameters specified by the multiscale object
(`Mobj`) using the refined-composite multivariate multiscale entropy method (rcMSE) over 3 temporal
scales. When `Refined == true`, the base entropy method must be `MvSampEn` or `MvFuzzEn`.
If the entropy method is `MvSampEn`, cMvMSEn employs the method described in [1].
If the entropy method is `MvFuzzEn`, cMvMSEn employs the method described in [5].
MSx, CI = cMVMSEn(Data::AbstractArray{T,2} where T<:Real, Mobj::NamedTuple; Scales::Int=3, Refined::Bool="false", Plotx::Bool=false)
Returns a vector of multivariate multiscale entropy values (`MSx`) and the complexity
index (`CI`) of the data sequences in `Data` using the parameters specified by
the multiscale object (`Mobj`) and the following keyword arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3) \n
`Refined` - Refined-composite MvMSEn method. \nWhen `Refined == True` and the
entropy function specified by `Mobj` is `MvSampEn` or `MvFuzzEn`,
`cMvMSEn` returns the refined-composite multivariate multiscale entropy (rcMSEn) [default: False]\n
`Plotx` - When Plotx == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false]
# See also `MvMSEn`, `MSobject`, `MvFuzzEn`, `MvSampEn`, `MvPermEn`, `MvCoSiEn`, `MvDispEn`
# References:
[1] Shuen-De Wu, et al.,
"Time series analysis using composite multiscale entropy."
Entropy
15.3 (2013): 1069-1084.
[2] Shuen-De Wu, et al.,
"Analysis of complex time series using refined composite
multiscale entropy."
Physics Letters A
378.20 (2014): 1369-1374.
[3] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy: A tool for complexity
analysis of multichannel data."
Physical Review E 84.6 (2011): 061918.
[4] Ahmed Mosabber Uddin, Danilo P. Mandic
"Multivariate multiscale entropy analysis."
IEEE signal processing letters 19.2 (2011): 91-94.
[5] Azami, Alberto Fernández, Javier Escudero.
"Refined multiscale fuzzy entropy based on standard deviation for
biomedical signal analysis."
Medical & biological engineering & computing 55 (2017): 2037-2052.
"""
function cMvMSEn(Data::AbstractArray{T,2} where T<:Real, Mobj::NamedTuple; Scales::Int=3, Refined::Bool=false, Plotx::Bool=false)
N, Dn = size(Data)
(N>10) && (Dn>1) ? nothing : error("Data: must be an NxM matrix where N>10 and M>1")
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(Refined && String(Symbol(Mobj.Func)) in ("MvSampEn","MvFuzzEn")) || Refined==false ?
nothing : error("Refined: If Refined == true, the base entropy function must be 'MvSampEn' or 'MvFuzzEn'")
String(Symbol(Mobj.Func))[1:2] != "Mv" ? error("Base entropy estimator must be a multivariate entropy method. ",
"To perform univariate multiscale entropy estimation, use MSEn().") : nothing
if Refined
if string(Mobj.Func)== "MvFuzzEn"
Tx = 1
elseif string(Mobj.Func) == "MvSampEn"
Tx = 0
end
"Logx" in String.(Symbol.(keys(Mobj))) ? Logx = Mobj.Logx : Logx = exp(1)
else
Tx = 0
end
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
for T = 1:Scales
print(". ")
Temp = modified(Data,T,Tx,Dn)
N = Int(T*floor(size(Temp,1)/T))
Ma = zeros(T)
Mb = zeros(T)
for k = 1:T
print(". ")
if Refined
_, Ma[k], Mb[k], _ = Mobj.Func(Temp[k:T:N,:]; Args...)
else
Ma[k], _, _, _ = Mobj.Func(Temp[k:T:N,:]; Args...)
end
end
Refined ? MSx[T] = -log(Logx, sum(Mb)/sum(Ma)) : MSx[T] = mean(Ma)
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
Refined ? strx = "Refined-Composite" : strx = "Composite"
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "$(strx) Multivariate Multiscale $(string(Mobj.Func)[3:end])",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255)) #ylim=(0,maximum(MSx)+.2),
display(p1)
end
return MSx, CI
end
function modified(Z, sx, Tx, Dn)
if Tx==0
Y = (conv(Z,ones(Int,sx))/sx)[sx:end-sx+1,:]
else
Ns = size(Z,1)-sx+1
Y = zeros(Ns,Dn)
for k in 1:Dn
Y[:,k] = map(x -> std(Z[x:x+sx-1,k], corrected=false), 1:Ns)
#Y[:,k] = std(reshape(Z[1:sx*Ns, k],Ns,sx),corrected=false,dims=2)
end
end
return Y
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 8858 | module _cXMSEn
export cXMSEn
using Statistics: std, mean, median, var
using Plots
using DSP: conv
"""
MSx, CI = cXMSEn(Sig1, Sig2, Mobj)
Returns a vector of composite multiscale cross-entropy values (`MSx`)
between two univariate data sequences contained in `Sig1` and `Sig2` using the
parameters specified by the multiscale object (`Mobj`) using the composite
multiscale method (cMSE) over 3 temporal scales.
MSx, CI = cXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Refined::Bool=false, Plotx::Bool=false)
Returns a vector of composite multiscale cross-entropy values (`MSx`)
between the data sequences contained in `Sig1` and `Sig2` using the parameters
specified by the multiscale object (`Mobj`) and the following keyword arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3)\n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by Mobj is `XSampEn` or `XApEn`,
RadNew rescales the radius threshold of the sub-sequences
at each time scale (Ykj). If a radius value is specified by
`Mobj` (`r`), this becomes the rescaling coefficient, otherwise
it is set to 0.2 (default). The value of RadNew specifies
one of the following methods:\n
[1] Pooled Standard Deviation - r*std(Ykj)\n
[2] Pooled Variance - r*var(Ykj)\n
[3] Total Mean Absolute Deviation - r*mean_ad(Ykj)\n
[4] Total Median Absolute Deviation - r*med_ad(Ykj,1)\n
`Refined` - Refined-composite XMSEn method. When `Refined` == true and the
entropy function specified by `Mobj` is `XSampEn` or `XFuzzEn`, cXMSEn
returns the refined-composite multiscale entropy (rcXMSEn).
(default: false)
`Plotx` - When `Plotx` == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false]
# See also `MSobject`, `XMSEn`, `rXMSEn`, `hXMSEn`, `XSampEn`, `XApEn`, `cMSEn`
# References:
[1] Rui Yan, Zhuo Yang, and Tao Zhang,
"Multiscale cross entropy: a novel algorithm for analyzing two
time series."
5th International Conference on Natural Computation.
Vol. 1, pp: 411-413 IEEE, 2009.
[2] Yi Yin, Pengjian Shang, and Guochen Feng,
"Modified multiscale cross-sample entropy for complex time
series."
Applied Mathematics and Computation
289 (2016): 98-110.
[3] Madalena Costa, Ary Goldberger, and C-K. Peng,
"Multiscale entropy analysis of complex physiologic time series."
Physical review letters
89.6 (2002): 068102.
[4] Antoine Jamin, et al,
"A novel multiscale cross-entropy method applied to navigation
data acquired with a bike simulator."
41st annual international conference of the IEEE EMBC
IEEE, 2019.
[5] Antoine Jamin and Anne Humeau-Heurtier.
"(Multiscale) Cross-Entropy Methods: A Review."
Entropy
22.1 (2020): 45.
[6] Shuen-De Wu, et al.,
"Time series analysis using composite multiscale entropy."
Entropy
15.3 (2013): 1069-1084.
"""
function cXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Refined::Bool=false, Plotx::Bool=false)
(size(Sig1,1)>=10) && (size(Sig2,1)>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("XSampEn","XApEn"))) ?
nothing : error("RadNew: must be 0, or an integer in range [1 4] with entropy function 'XSampEn' or 'XApEn'")
(Refined && String(Symbol(Mobj.Func)) in ("XSampEn","XFuzzEn")) || Refined==false ?
nothing : error("Refined: If Refined == true, the base entropy function must be 'XSampEn' or 'XFuzzEn'")
String(Symbol(Mobj.Func))=="XSampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
if Refined && String(Symbol(Mobj.Func))=="XFuzzEn"
Tx = 1;
"Logx" in String.(Symbol.(keys(Mobj))) ? Logx = Mobj.Logx : Logx = exp(1);
elseif Refined && String(Symbol(Mobj.Func))=="XSampEn"
Tx = 0;
"Logx" in String.(Symbol.(keys(Mobj))) ? Logx = Mobj.Logx : Logx = exp(1);
else
Tx = 0;
end
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
if RadNew > 0
if RadNew == 1
Rnew = (x,y) -> sqrt((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 2
Rnew = (x,y) -> ((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 3
Rnew = (x,y) -> mean(abs.(vcat(x,y) .- mean(vcat(x,y))))
elseif RadNew == 4
Rnew = (x,y) -> median(abs.(vcat(x,y) .- median(vcat(x,y))))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Pooled Standard Deviation","Pooled Variance","Total Mean Abs Deviation", "Total Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
for T = 1:Scales
TempA, TempB = modified(Sig1, Sig2, T, Tx)
N1 = Int(T*floor(size(TempA,1)/T))
N2 = Int(T*floor(size(TempB,1)/T))
Temp3 = zeros(T)
Temp2 = zeros(T)
for k = 1:T
print(" .")
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(TempA[k:T:N1], TempB[k:T:N2])) : nothing
if Refined == 1
_, Ma, Mb = Mobj.Func(TempA[k:T:N1], TempB[k:T:N2]; Args...)
Temp2[k] = Ma[end]
Temp3[k] = Mb[end]
else
Temp2 = Mobj.Func(TempA[k:T:N1], TempB[k:T:N2]; Args...)
typeof(Temp2)<:Tuple ? Temp3[k] = Temp2[1][end] : Temp3[k] = Temp2[end]
#Temp3[k] = Temp2[1][end]
end
end
# Refined == 1 ? MSx[T] = -log(sum(Temp2)/sum(Temp3)) : MSx[T] = mean(Temp3)
if Refined && Tx==0
MSx[T] = -log(sum(Temp2)/sum(Temp3))/log(Logx)
elseif Refined && Tx==1
MSx[T] = -log(sum(Temp3)/sum(Temp2))/log(Logx)
else
MSx[T] = mean(Temp3)
end
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
Refined ? strx = "Refined-Composite" : strx = "Composite"
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = strx*" Multiscale $(Mobj.Func)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255))
display(p1)
end
return MSx, CI
end
function modified(Za, Zb, sx, Tx)
if Tx==1
Y1 = [std(Za[x:x+sx-1], corrected=false) for x in 1:(length(Za)-sx+1)]
Y2 = [std(Zb[x:x+sx-1], corrected=false) for x in 1:(length(Zb)-sx+1)]
else
Y1 = (conv(Za,ones(Int, sx))/sx)[sx:end-sx+1][:]
Y2 = (conv(Zb,ones(Int, sx))/sx)[sx:end-sx+1][:]
end
return Y1, Y2
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 9261 | module _hMSEn
export hMSEn
using Statistics: std, mean, median, var
using Plots
"""
MSx, Sn, CI = hMSEn(Sig, Mobj)
Returns a vector of entropy values (`MSx`) calculated at each node in the
hierarchical tree, the average entropy value across all nodes at each
scale (Sn), and the complexity index (`CI`) of the hierarchical tree
(i.e. sum(Sn)) for the data sequence (`Sig`) using the parameters specified
by the multiscale object (`Mobj`) over 3 temporal scales (default).
The entropy values in MSx are ordered from the root node (S.00) to the
Nth subnode at scale T (S.TN): i.e. S.00, S.10, S.11, S.20, S.21, S.22,
S.23, S.30, S.31, S.32, S.33, S.34, S.35, S.36, S.37, S.40, ... , S.TN.
The average entropy values in Sn are ordered in the same way, with the
value of the root node given first: i.e. S0, S1, S2, ..., ST
MSx, Sn, CI = hMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Plotx::Bool=false)
Returns a vector of entropy values (`MSx`) calculated at each node in the
hierarchical tree, the average entropy value across all nodes at each
scale (Sn), and the complexity index (CI) of the entire hierarchical
tree for the data sequence (`Sig`) using the following 'keyword' arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3)
At each scale (T), entropy is estimated for 2^(T-1) nodes.\n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `SampEn` or `ApEn`,
`RadNew` allows the radius threshold to be updated at each
node in the tree. If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of `RadNew` specifies one of the
following methods:\n
[1] Standard Deviation - r*std(Xt)\n
[2] Variance - r*var(Xt)\n
[3] Mean Absolute Deviation - r*mean_ad(Xt)\n
[4] Median Absolute Deviation - r*med_ad(Xt,1)\n
`Plotx` - When `Plotx` == true, returns a plot of the average entropy
value at each time scale (i.e. the multiscale entropy curve)
and a hierarchical graph showing the entropy value of each node
in the hierarchical tree decomposition. (default: false)\n
# See also `MSobject`, `MSEn`, `cMSEn`, `rMSEn`, `SampEn`, `ApEn`, `XMSEn`
# References:
[1] Ying Jiang, C-K. Peng and Yuesheng Xu,
"Hierarchical entropy analysis for biological signals."
Journal of Computational and Applied Mathematics
236.5 (2011): 728-742.
"""
function hMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Plotx::Bool=false)
(size(Sig,1)>10) ? nothing : error("Sig: must be a numeric vector" )
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("SampEn","ApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with entropy function `SampEn` or `ApEn`")
lowercase(String(Symbol(Mobj.Func))[1]) == 'x' ? error("Base entropy estimator is a cross-entropy method.
To perform heirarchical multiscale CROSS-entropy estimation, use hXMSEn.") : nothing
String(Symbol(Mobj.Func))=="SampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
if RadNew > 0
if RadNew == 1
Rnew = x -> std(x, corrected=false)
elseif RadNew == 2
Rnew = x -> var(x, corrected=false)
elseif RadNew == 3
Rnew = x -> mean(abs.(x .- mean(x)))
elseif RadNew == 4
Rnew = x -> median(abs.(x .- median(x)))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Standard Deviation","Variance","Mean Abs Deviation", "Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
XX, N = Hierarchy(Sig, Scales)
MSx = zeros(size(XX,1))
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
for T in eachindex(XX[:,1]) # 1:size(XX,1)
print(". ")
Temp = XX[T,1:Int(N/(2^(floor(log2(T)))))]
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(Temp[:])) : nothing
Temp2 = Mobj.Func(Temp[:]; Args...)
typeof(Temp2)<:Tuple ? MSx[T] = Temp2[1][end] : MSx[T] = Temp2[end]
end
Sn = zeros(Scales)
for t = 1:Scales
Sn[t] = mean(MSx[2^(t-1):(2^t)-1])
end
CI = sum(Sn)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, Sn, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, Sn, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Hierarchical Multiscale $(Mobj.Func) Entropy",
grid=false, xlim=(0.5,Scales+.5), ylim=(minimum(Sn)-.25,maximum(Sn)+.25),
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255))
N = 2^(Scales-1)
x = zeros(2*N - 1)
x[1] = N
y = Scales.*(Scales .- floor.(Int, log2.(1:(2*N)-1)))
for k = 1:2*N-1
Q = floor(Int, log2(k))
P = floor(Int,k/2)
if k>1
Bool(k%2) ? x[k] = x[P] + N/(2^Q) : x[k] = x[P] - N/(2^Q)
end
end
Edges = hcat(repeat(1:N-1,inner=2),2:2*N-1)
labx = [k for k in string.(round.(MSx,digits=3))]
p2 = scatter(x,y,markersize=10*(MSx.-(minimum(MSx)).+1)./(abs(minimum(MSx))+1),
c=RGB(1,0,1), legend=false, xticks=false, yticks=false) #, txt=labx, markerfontsize=8)
annotate!(x, y.+1, labx, 12-Scales)
for k = 1:length(x)-1
plot!(x[Edges[k,:]],y[Edges[k,:]],c=RGB(8/255,63/255,77/255),
lw=2.5, ylim=(Scales-1, maximum(y)+1), xlim=(0,2*N), grid=false)
end
px = plot()
pt = plot(p1, px, p2, layout = grid(3,1, heights=[0.2,0.1, 0.7]))
display(pt)
end
return MSx, Sn, CI
end
function Hierarchy(Z,sx)
N = Int(2^floor(log2(size(Z,1))))
if mod(log2(size(Z,1)),1) != 0
@warn("Only first $(N) samples were used in hierarchical decomposition.
The last $(length(Z)-N) samples of the data sequence were ignored.")
end
if N/(2^(sx-1)) < 8
error("Data length ($(N)) is too short to estimate entropy at the lowest subtree.
Consider reducing the number of scales.")
end
Z = Z[1:N]
U = zeros((2^sx)-1,N)
U[1,:] = Z; p=2
for k = 1:sx-1
for n = 1:2^(k-1)
Temp = U[2^(k-1)+n-1,:]
U[p,1:Int(N/2)] = (Temp[1:2:end] + Temp[2:2:end])/2
U[p+1,1:Int(N/2)]= (Temp[1:2:end] - Temp[2:2:end])/2
p=p+2
end
end
return U, N
end
end
"""
MM = zeros(2*Scales - 1,T)
mid = Int(ceil(T/2))
for t = 1:Scales
MM[2*t -1, mid-(2^(t-1))+1:2:mid-1+(2^(t-1))] = MSx[2^(t-1):(2^t)-1]
end
b = bar3(MM)
zlim([min(MSx(MSx>0)) max(MSx)]);
cmap = colormap('cool'); colormap([1 1 1; cmap])
for k = 1:length(b)
zdata = b(k).ZData;
b(k).CData = zdata;
b(k).FaceColor = 'interp';
end
axis square, view([30 55])
yticks(1:2:(2*T -1)); yticklabels(0:T-1)
xticks(''); % xticks(1:2:(2*p.Results.Scales - 1))
xlabel('Subtree Nodes','FontSize',12,'FontWeight','bold','Color',[7 54 66]/255)
ylabel('Scale Factor','FontSize',12,'FontWeight','bold','Color',[7 54 66]/255)
zlabel('Entropy','FontSize',12,'FontWeight','bold','Color',[7 54 66]/255)
title(sprintf('Hierarchical Multiscale (%s) Entropy',func2str(Y{1})),...
'FontSize',16,'FontWeight','bold','Color',[7 54 66]/255)
"""
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 11063 | module _hXMSEn
export hXMSEn
using Statistics: std, mean, median, var
using Plots
"""
MSx, Sn, CI = hXMSEn(Sig1, Sig2, Mobj)
Returns a vector of cross-entropy values (`MSx`) calculated at each node
in the hierarchical tree, the average cross-entropy value across all
nodes at each scale (`Sn`), and the complexity index (`CI`) of the hierarchical
tree (i.e. sum(`Sn`)) between the data sequences contained in `Sig1` and `Sig2` using
the parameters specified by the multiscale object (`Mobj`) over 3 temporal
scales (default).
The entropy values in `MSx` are ordered from the root node (S.00) to the
Nth subnode at scale T (S.TN): i.e. S.00, S.10, S.11, S.20, S.21, S.22,
S.23, S.30, S.31, S.32, S.33, S.34, S.35, S.36, S.37, S.40, ... , S.TN.
The average cross-entropy values in Sn are ordered in the same way, with the
value of the root node given first: i.e. S0, S1, S2, ..., ST
MSx, Sn, CI = hXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Plotx::Bool=false)
Returns a vector of cross-entropy values (`MSx`) calculated at each node
in the hierarchical tree, the average cross-entropy value across all
nodes at each scale (`Sn`), and the complexity index (`CI`) of the entire
hierarchical tree between the data sequences contained in `Sig1` and `Sig2` using
the following name/value pair arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3)
At each scale (T), entropy is estimated for 2^(T-1) nodes. \n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `XSampEn` or `XApEn`,
`RadNew` allows the radius threshold to be updated at each
node in the tree. If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of `RadNew` specifies one of the
following methods: \n
[1] Pooled Standard Deviation - r*std(Xt) \n
[2] Pooled Variance - r*var(Xt) \n
[3] Total Mean Absolute Deviation - r*mean_ad(Xt) \n
[4] Total Median Absolute Deviation - r*med_ad(Xt) \n
`Plotx` - When `Plotx` == true, returns a plot of the average cross-entropy
value at each time scale (i.e. the multiscale entropy curve)
and a hierarchical graph showing the entropy value of each node
in the hierarchical tree decomposition. (default: false) \n
# See also `MSobject`, `XMSEn`, `rXMSEn`, `cXMSEn`, `XSampEn`, `XApEn`, `hMSEn`
# References:
[1] Matthew W. Flood (2021),
"EntropyHub - An open source toolkit for entropic time series analysis"
PLoS ONE 16(11):e0295448,
DOI: 10.1371/journal.pone.0259448
https://www.EntropyHub.xyz
[2] Rui Yan, Zhuo Yang, and Tao Zhang,
"Multiscale cross entropy: a novel algorithm for analyzing two
time series."
5th International Conference on Natural Computation.
Vol. 1, pp: 411-413 IEEE, 2009.
[3] Ying Jiang, C-K. Peng and Yuesheng Xu,
"Hierarchical entropy analysis for biological signals."
Journal of Computational and Applied Mathematics
236.5 (2011): 728-742.
"""
function hXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, RadNew::Int=0, Plotx::Bool=false)
(size(Sig1,1)>=10) && (size(Sig2,1)>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("XSampEn","XApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with entropy function `XSampEn` or `XApEn`")
String(Symbol(Mobj.Func))=="XSampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
if RadNew > 0
if RadNew == 1
Rnew = (x,y) -> sqrt((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 2
Rnew = (x,y) -> ((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 3
Rnew = (x,y) -> mean(abs.(vcat(x,y) .- mean(vcat(x,y))))
elseif RadNew == 4
Rnew = (x,y) -> median(abs.(vcat(x,y) .- median(vcat(x,y))))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Pooled Standard Deviation","Pooled Variance","Total Mean Abs Deviation", "Total Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
XX, YY, Na, Nb = Hierarchy(Sig1, Sig2, Scales)
MSx = zeros(size(XX,1))
for T in eachindex(XX[:,1]) # = 1:size(XX,1)
print(" .")
TempA = XX[T,1:Int(Na/(2^(floor(log2(T)))))]
TempB = YY[T,1:Int(Nb/(2^(floor(log2(T)))))]
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(TempA, TempB)) : nothing
Temp2 = Mobj.Func(TempA, TempB; Args...)
typeof(Temp2)<:Tuple ? MSx[T] = Temp2[1][end] : MSx[T] = Temp2[end]
end
Sn = zeros(Scales)
for t = 1:Scales
Sn[t] = mean(MSx[2^(t-1):(2^t)-1])
end
CI = sum(Sn)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, Sn, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, Sn, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Hierarchical Multiscale $(Mobj.Func) Entropy",
grid=false, xlim=(0.5,Scales+.5), ylim=(minimum(Sn)-.25,maximum(Sn)+.25),
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255))
N = 2^(Scales-1)
x = zeros(2*N - 1)
x[1] = N
y = Scales.*(Scales .- floor.(Int, log2.(1:(2*N)-1)))
for k = 1:2*N-1
Q = floor(Int, log2(k))
P = floor(Int,k/2)
if k>1
Bool(k%2) ? x[k] = x[P] + N/(2^Q) : x[k] = x[P] - N/(2^Q)
end
end
Edges = hcat(repeat(1:N-1,inner=2),2:2*N-1)
labx = [k for k in string.(round.(MSx,digits=3))]
p2 = scatter(x,y,markersize=10*(MSx.-(minimum(MSx)).+1)./(abs(minimum(MSx))+1),
c=RGB(1,0,1), legend=false, xticks=false, yticks=false) #, txt=labx, markerfontsize=8)
annotate!(x, y.+1, labx, 12-Scales)
for k = 1:length(x)-1
plot!(x[Edges[k,:]],y[Edges[k,:]],c=RGB(8/255,63/255,77/255),
lw=2.5, ylim=(Scales-1, maximum(y)+1), xlim=(0,2*N), grid=false)
end
px = plot()
pt = plot(p1, px, p2, layout = grid(3,1, heights=[0.2,0.1, 0.7]))
display(pt)
end
return MSx, Sn, CI
end
function Hierarchy(Za, Zb,sx)
Na = Int(2^floor(log2(size(Za,1))))
Nb = Int(2^floor(log2(size(Zb,1))))
if mod(log2(size(Za,1)),1) != 0
@warn("Only first $(Na) samples were used in hierarchical decomposition.
The last $(size(Za,1)-Na) samples of the data sequence were ignored.")
end
if mod(log2(size(Zb,1)),1) != 0
@warn("Only first $(Nb) samples were used in hierarchical decomposition.
The last $(size(Zb,1)-Nb) samples of the data sequence were ignored.")
end
if Na/(2^(sx-1)) < 8
error("Data length ($(Na)) of Sig1 is too short to estimate entropy at the lowest subtree.
Consider reducing the number of scales.")
elseif Nb/(2^(sx-1)) < 8
error("Data length ($(Nb)) of Sig2 is too short to estimate entropy at the lowest subtree.
Consider reducing the number of scales.")
end
Za = Za[1:Na,:]
Zb = Zb[1:Nb,:]
U1 = zeros((2^sx)-1,Na);
U2 = zeros((2^sx)-1,Nb);
U1[1,:] = Za;
U2[1,:] = Zb;
p=2
for k = 1:sx-1
for n = 1:2^(k-1)
Temp = U1[2^(k-1)+n-1,:]
U1[p,1:Int(Na/2)] = (Temp[1:2:end] + Temp[2:2:end])/2
U1[p+1,1:Int(Na/2)]= (Temp[1:2:end] - Temp[2:2:end])/2
p +=2
end
end
p=2
for k = 1:sx-1
for n = 1:2^(k-1)
Temp = U2[2^(k-1)+n-1,:]
U2[p,1:Int(Nb/2)] = (Temp[1:2:end] + Temp[2:2:end])/2
U2[p+1,1:Int(Nb/2)]= (Temp[1:2:end] - Temp[2:2:end])/2
p +=2
end
end
return U1, U2, Na, Nb
end
end
"""
MM = zeros(2*Scales - 1,T)
mid = Int(ceil(T/2))
for t = 1:Scales
MM[2*t -1, mid-(2^(t-1))+1:2:mid-1+(2^(t-1))] = MSx[2^(t-1):(2^t)-1]
end
b = bar3(MM)
zlim([min(MSx(MSx>0)) max(MSx)]);
cmap = colormap('cool'); colormap([1 1 1; cmap])
for k = 1:length(b)
zdata = b(k).ZData;
b(k).CData = zdata;
b(k).FaceColor = 'interp';
end
axis square, view([30 55])
yticks(1:2:(2*T -1)); yticklabels(0:T-1)
xticks(''); % xticks(1:2:(2*p.Results.Scales - 1))
xlabel('Subtree Nodes','FontSize',12,'FontWeight','bold','Color',[7 54 66]/255)
ylabel('Scale Factor','FontSize',12,'FontWeight','bold','Color',[7 54 66]/255)
zlabel('Entropy','FontSize',12,'FontWeight','bold','Color',[7 54 66]/255)
title(sprintf('Hierarchical Multiscale (%s) Entropy',func2str(Y{1})),...
'FontSize',16,'FontWeight','bold','Color',[7 54 66]/255)
"""
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 7594 | module _rMSEn
export rMSEn
using Statistics: std, mean, median, var
using DSP.Filters: filtfilt, Butterworth, Lowpass, digitalfilter
using Plots
"""
MSx, CI = rMSEn(Sig, Mobj)
Returns a vector of refined multiscale entropy values (`MSx`) and the complexity
index (`CI`) of the data sequence (`Sig`) using the parameters specified by
the multiscale object (`Mobj`) and the following default parameters:
Scales = 3, Butterworth LPF Order = 6, Butterworth LPF cutoff frequency
at scale (T): Fc = 0.5/T.
If the entropy function specified by `Mobj` is SampEn or ApEn, rMSEn
updates the threshold radius of the data sequence (Xt) at each scale
to 0.2std(Xt) if no `r` value is provided by Mobj, or r.std(Xt) if `r`
is specified.
MSx, CI = rMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3,
F_Order::Int=6, F_Num::Float64=0.5, RadNew::Int=0, Plotx::Bool=false)
Returns a vector of refined multiscale entropy values (`MSx`) and the complexity
index (`CI`) of the data sequence (`Sig`) using the parameters specified by
the multiscale object (`Mobj`) and the following 'keyword' arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default = 3) \n
`F_Order` - Butterworth low-pass filter order, a positive integer
(default: 6) \n
`F_Num` - Numerator of Butterworth low-pass filter cutoff frequency,
a scalar value in range [0 < `F_Num` < 1]. The cutoff frequency
at each scale (T) becomes: Fc = `F_Num/T. (default: 0.5) \n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `SampEn` or `ApEn`,
`RadNew` allows the radius threshold to be updated at each
time scale (Xt). If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of `RadNew` specifies one of the
following methods:\n
[1] Standard Deviation - r*std(Xt)\n
[2] Variance - r*var(Xt) \n
[3] Mean Absolute Deviation - r*mean_ad(Xt) \n
[4] Median Absolute Deviation - r*med_ad(Xt)\n
`Plotx` - When `Plotx` == true, returns a plot of the entropy value at each
time scale (i.e. the multiscale entropy curve) [default: false] \n
# See also `MSobject`, `MSEn`, `cMSEn`, `hMSEn`, `SampEn`, `ApEn`, `XMSEn`
# References:
[1] Madalena Costa, Ary Goldberger, and C-K. Peng,
"Multiscale entropy analysis of complex physiologic time series."
Physical review letters
89.6 (2002): 068102.
[2] Vadim V. Nikulin, and Tom Brismar,
"Comment on “Multiscale entropy analysis of complex physiologic
time series”."
Physical review letters
92.8 (2004): 089803.
[3] Madalena Costa, Ary L. Goldberger, and C-K. Peng.
"Costa, Goldberger, and Peng reply."
Physical Review Letters
92.8 (2004): 089804.
[4] José Fernando Valencia, et al.,
"Refined multiscale entropy: Application to 24-h holter
recordings of heart period variability in healthy and aortic
stenosis subjects."
IEEE Transactions on Biomedical Engineering
56.9 (2009): 2202-2213.
[5] Puneeta Marwaha and Ramesh Kumar Sunkaria,
"Optimal selection of threshold value ‘r’for refined multiscale
entropy."
Cardiovascular engineering and technology
6.4 (2015): 557-576.
"""
function rMSEn(Sig::AbstractArray{T,1} where T<:Real, Mobj::NamedTuple; Scales::Int=3,
F_Order::Int=6, F_Num::Float64=0.5, RadNew::Int=0, Plotx::Bool=false)
(size(Sig,1)>10) ? nothing : error("Sig: must be a numeric vector" )
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(F_Order>1) ? nothing : error("F_Order: must be an integer > 1")
(0 < F_Num < 1) ? nothing : error("F_Num: must be a scalar in range 0 < F_Num < 1")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("SampEn","ApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with entropy function `SampEn` or `ApEn`")
lowercase(String(Symbol(Mobj.Func))[1]) == 'x' ? error("Base entropy estimator is a cross-entropy method.
To perform refined multiscale CROSS-entropy estimation, use rXMSEn.") : nothing
String(Symbol(Mobj.Func))=="SampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
(RadNew==0 && String(Symbol(Mobj.Func)) in ("SampEn","ApEn")) ? RadNew=1 : nothing
if RadNew > 0
if RadNew == 1
Rnew = x -> std(x, corrected=false)
elseif RadNew == 2
Rnew = x -> var(x, corrected=false)
elseif RadNew == 3
Rnew = x -> mean(abs.(x .- mean(x)))
elseif RadNew == 4
Rnew = x -> median(abs.(x .- median(x)))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Standard Deviation","Variance","Mean Abs Deviation", "Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
for T = 1:Scales
print(". ")
Temp = refined(Sig,T,F_Order,F_Num)
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(Temp[:])) : nothing
Tempx = Mobj.Func(Temp[:]; Args...)
#MSx[T] = Tempx[1][end]
typeof(Tempx)<:Tuple ? MSx[T] = Tempx[1][end] : MSx[T] = Tempx[end]
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Refined Multiscale $(Mobj.Func)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255))
display(p1)
end
return MSx, CI
end
function refined(Z,sx,P1,P2)
Yt = filtfilt(digitalfilter(Lowpass(P2/sx), Butterworth(P1)), Z)
return Yt[1:sx:end]
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 8528 | module _rXMSEn
export rXMSEn
using DSP.Filters: filtfilt, Butterworth, Lowpass, digitalfilter
using Statistics: std, mean, median, var
using Plots
"""
MSx, CI = rXMSEn(Sig1, Sig2, Mobj)
Returns a vector of refined multiscale cross-entropy values (`MSx`) and
the complexity index (`CI`) between the data sequences contained in `Sig1` and `Sig2`
using the parameters specified by the multiscale object (`Mobj`) and the
following default parameters: Scales = 3, Butterworth LPF Order = 6,
Butterworth LPF cutoff frequency at scale (T): Fc = 0.5/T.
If the entropy function specified by `Mobj` is `XSampEn` or `XApEn`,
`rMSEn` updates the threshold radius of the data sequences (Xt) at each scale
to 0.2*SDpooled(Xa, Xb) when no `r` value is provided by `Mobj`, or
`r`*SDpooled(Xa, Xb) if `r` is specified.
MSx, CI = rXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, F_Order::Int=6, F_Num::Float64=0.5, RadNew::Int=0, Plotx::Bool=false)
Returns a vector of refined multiscale cross-entropy values (`MSx`) and
the complexity index (`CI`) between the data sequences contained in `Sig1` and `Sig2`
using the parameters specified by the multiscale object (`Mobj`) and the
following keyword arguments:
# Arguments:
`Scales` - Number of temporal scales, an integer > 1 (default: 3) \n
`F_Order` - Butterworth low-pass filter order, a positive integer (default: 6) \n
`F_Num` - Numerator of Butterworth low-pass filter cutoff frequency,
a scalar value in range [0 < `F_Num` < 1]. The cutoff frequency
at each scale (T) becomes: Fc = `F_Num`/T. (default: 0.5) \n
`RadNew` - Radius rescaling method, an integer in the range [1 4].
When the entropy specified by `Mobj` is `XSampEn` or `XApEn`,
`RadNew` allows the radius threshold to be updated at each
time scale (Xt). If a radius value is specified by `Mobj` (`r`),
this becomes the rescaling coefficient, otherwise it is set
to 0.2 (default). The value of `RadNew` specifies one of the
following methods: \n
[1] Pooled Standard Deviation - r*std(Xt) \n
[2] Pooled Variance - r*var(Xt) \n
[3] Total Mean Absolute Deviation - r*mean_ad(Xt) \n
[4] Total Median Absolute Deviation - r*med_ad(Xt) \n
`Plotx` - When `Plotx` == true, returns a plot of the entropy value at
each time scale (i.e. the multiscale entropy curve)
[default = false] \n
# See also `MSobject`, `XMSEn`, `cXMSEn`, `hXMSEn`, `XSampEn`, `XApEn`, `MSEn`
# References:
[1] Matthew W. Flood (2021),
"EntropyHub - An open source toolkit for entropic time series analysis"
PLoS ONE 16(11):e0295448,
DOI: 10.1371/journal.pone.0259448
https://www.EntropyHub.xyz
[2] Rui Yan, Zhuo Yang, and Tao Zhang,
"Multiscale cross entropy: a novel algorithm for analyzing two
time series."
5th International Conference on Natural Computation.
Vol. 1, pp: 411-413 IEEE, 2009.
[3] José Fernando Valencia, et al.,
"Refined multiscale entropy: Application to 24-h holter
recordings of heart period variability in healthy and aortic
stenosis subjects."
IEEE Transactions on Biomedical Engineering
56.9 (2009): 2202-2213.
[4] Puneeta Marwaha and Ramesh Kumar Sunkaria,
"Optimal selection of threshold value ‘r’for refined multiscale
entropy."
Cardiovascular engineering and technology
6.4 (2015): 557-576.
[5] Yi Yin, Pengjian Shang, and Guochen Feng,
"Modified multiscale cross-sample entropy for complex time
series."
Applied Mathematics and Computation
289 (2016): 98-110.
[6] Antoine Jamin, et al,
"A novel multiscale cross-entropy method applied to navigation
data acquired with a bike simulator."
41st annual international conference of the IEEE EMBC
IEEE, 2019.
[7] Antoine Jamin and Anne Humeau-Heurtier.
"(Multiscale) Cross-Entropy Methods: A Review."
Entropy
22.1 (2020): 45.
"""
function rXMSEn(Sig1::AbstractVector{T} where T<:Real, Sig2::AbstractVector{T} where T<:Real, Mobj::NamedTuple;
Scales::Int=3, F_Order::Int=6, F_Num::Float64=0.5, RadNew::Int=0, Plotx::Bool=false)
(size(Sig1,1)>=10) && (size(Sig2,1)>=10) ? nothing : error("Sig1/Sig2: sequences must have >= 10 values")
(length(Mobj) >= 1) ? nothing : error("Mobj: must be a multiscale entropy object created
with the function EntropyHub.MSobject")
(Scales>1) ? nothing : error("Scales: must be an integer > 1")
(F_Order>1) ? nothing : error("F_Order: must be an integer > 1")
(0 < F_Num < 1) ? nothing : error("F_Num: must be a scalar in range 0 < F_Num < 1")
(RadNew==0 || (RadNew in 1:4 && String(Symbol(Mobj.Func)) in ("XSampEn","XApEn"))) ? nothing :
error("RadNew: must be 0, or an integer in range [1 4] with entropy function `XSampEn` or `XApEn`")
String(Symbol(Mobj.Func))=="XSampEn" ? Mobj = merge(Mobj,(Vcp=false,)) : nothing
MSx = zeros(Scales)
Args = NamedTuple{keys(Mobj)[2:end]}(Mobj)
(RadNew==0 && String(Symbol(Mobj.Func)) in ("XSampEn","XApEn")) ? RadNew=1 : nothing
if RadNew > 0
if RadNew == 1
Rnew = (x,y) -> sqrt((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 2
Rnew = (x,y) -> ((var(x)*(size(x,1)-1) + var(y)*(size(y,1)-1))/(size(x,1)+size(y,1)-1))
elseif RadNew == 3
Rnew = (x,y) -> mean(abs.(vcat(x,y) .- mean(vcat(x,y))))
elseif RadNew == 4
Rnew = (x,y) -> median(abs.(vcat(x,y) .- median(vcat(x,y))))
end
if haskey(Mobj,:r)
Cx = Mobj.r
else
Cy = ("Pooled Standard Deviation","Pooled Variance","Total Mean Abs Deviation", "Total Median Abs Deviation")
@warn("No radius value provided in Mobj.
Default set to 0.2*$(Cy[RadNew]) of each new time-series.")
Cx = .2
end
end
for T = 1:Scales
print(" .")
TempA, TempB = refined(Sig1, Sig2,T,F_Order,F_Num)
RadNew > 0 ? Args = (Args..., r=Cx*Rnew(TempA, TempB)) : nothing
Tempx = Mobj.Func(TempA, TempB; Args...)
typeof(Tempx)<:Tuple ? MSx[T] = Tempx[1][end] : MSx[T] = Tempx[end]
#MSx[T] = Tempx[1][end]
end
CI = sum(MSx)
print("\n")
if any(isnan.(MSx))
println("Some entropy values may be undefined.")
end
if Plotx
p1 = plot(1:Scales, MSx, c=RGB(8/255, 63/255, 77/255), lw=3)
scatter!(1:Scales, MSx, markersize=6, c=RGB(1, 0, 1),
xlabel = "Scale Factor", ylabel = "Entropy Value",
guidefont = font(12, "arial", RGB(7/255, 54/255, 66/255)),
tickfontsize = 10, tickfontfamily="arial", legend=false,
title = "Refined Multiscale $(Mobj.Func)",
plot_titlefontsize=16, plot_titlefontcolor=RGB(7/255, 54/255, 66/255))
display(p1)
end
return MSx, CI
end
function refined(Za, Zb,sx,P1,P2)
Y1 = filtfilt(digitalfilter(Lowpass(P2/sx), Butterworth(P1)), Za)[:]
Y2 = filtfilt(digitalfilter(Lowpass(P2/sx), Butterworth(P1)), Zb)[:]
return Y1, Y2
end
end
"""
Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
""" | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | code | 102 | using EntropyHub
using Test
@testset "EntropyHub.jl" begin
#@test EntropyHub.ApEn(rand(100))
end
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 14075 | # EntropyHub: An open-source toolkit for entropic data analysis
__*Julia Edition*__
<p align="center">
<img src="https://github.com/MattWillFlood/EntropyHub/blob/main/Graphics/EntropyHub_JuliaLogo.png" alt = "EntropyHub Git" width="250" height="340" />
</p>
## Latest Update
### v2.0
__*----- New multivariate methods -----*__
Five new multivariate entropy functions incorporating several method-specific variations
> [Multivariate Sample Entropy](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.061918)
> [Multivariate Fuzzy Entropy](https://www.mdpi.com/1099-4300/19/1/2) [++ many fuzzy functions]
> [Multivariate Dispersion Entropy](https://www.mdpi.com/1099-4300/21/9/913) [++ many symbolic sequence transforms]
> [Multivariate Cosine Similarity Entropy](https://www.mdpi.com/1099-4300/24/9/1287)
> Multivariate Permutation Entropy [++ *amplitude-aware*, *edge*, *phase*, *weighted* and *modified* variants]
__*----- New multivariate multiscale methods -----*__
Two new multivariate multiscale entropy functions
> [Multivariate Multiscale Entropy](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.061918) [++ coarse, modified and generalized graining procedures]
> [Composite and Refined-composite Multivariate Multiscale Entropy](https://link.springer.com/article/10.1007/s11517-017-1647-5)
__*----- Extra signal processing tools -----*__
**WindowData()** is a new function that allows users to segment data (univariate or multivariate time series) into windows with/without overlapping samples! This allows users to calculate entropy on subsequences of their data to perform analyses with greater time resolution.
*Other little fixes...*
__*----- Docs edits -----*__
- Examples in the www.EntropyHub.xyz documentation were updated to match the latest package syntax.
## Welcome
This toolkit provides a wide range of functions to calculate different entropy statistics.
There is an ever-growing range of information-theoretic and dynamical systems entropy measures presented in the scientific literature.
The goal of EntropyHub is to integrate the many established entropy methods in one open-source package.
## About
Information and uncertainty can be regarded as two sides of the same coin:
the more uncertainty there is, the more information we gain by removing that
uncertainty. In the context of information and probability theory, ***Entropy***
quantifies that uncertainty.
Attempting to analyse the analog world around
us requires that we measure time in discrete steps, but doing so compromises
our ability to measure entropy accurately. Various measures have been derived
to estimate entropy (uncertainty) from discrete time series, each seeking to
best capture the uncertainty of the system under examination. This has resulted
in many entropy statistics from approximate entropy and sample entropy, to
multiscale sample entropy and refined-composite multiscale cross-sample entropy.
The goal of EntropyHub is to provide a comprehensive set of functions with a simple and
consistent syntax that allows the user to augment parameters at the command
line, enabling a range from basic to advanced entropy methods to be implemented
with ease.
***It is important to clarify that the entropy functions herein described
estimate entropy in the context of probability theory and information theory as
defined by Shannon, and not thermodynamic or other entropies from classical physics.***
## Installation
There are two ways to install EntropyHub for Julia.
#### Method 1:
1. In Julia, open the package REPL by typing `]`. The command line should appear as:
`@vX.Y. pkg> `
Where X and Y refer to your version of Julia.
2. Type:
`add EntropyHub`
(Note: this is __case sensitive__)
Alternatively, one can use the Pkg module to perform the same procedure:
`using Pkg`
`Pkg.add("EntropyHub")`
#### Method 2:
1. In Julia, open the package REPL by typing `]`. The command line should appear as:
`@vX.Y. pkg> `
Where X and Y refer to your version of Julia.
2. Type:
`add https://github.com/MattWillFlood/EntropyHub.jl`
(Note: this is __case sensitive__)
### System Requirements
There are several package dependencies which will be installed alongside EntropyHub (if not already installed):
DSP, FFTW, HTTP, Random, Plots, StatsBase, StatsFuns, GroupSlices,
Statistics, DelimitedFiles, Combinatorics, LinearAlgebra, DataInterpolations, Clustering
EntropyHub was designed using Julia 1.5 and is intended for use with Julia versions >= 1.2.
## Documentation & Help
A key advantage of EntropyHub is the comprehensive documentation available to help users to make the most of the toolkit.
To learn more about a specific function, one can do so easily from the command line by typing: `?`, which will open the julia help system, and then typing the function name.
For example:
julia> ?
help?> SampEn # Documentation on sample entropy function
julia> ?
help?> XSpecEn # Documentation on cross-spectral entropy function
julia> ?
help?> hXMSEn # Documentation on hierarchical multiscale cross-entropy function
All information on the EntropyHub package is detailed in the *EntropyHub Guide*, a .pdf document available [here](https://github.com/MattWillFlood/EntropyHub/blob/main/EntropyHub%20Guide.pdf).
## Functions
EntropyHub functions fall into 8 categories:
* Base functions for estimating the entropy of a single univariate time series.
* Cross functions for estimating the entropy between two univariate time series.
* Multivariate functions for estimating the entropy of a multivariate dataset.
* Bidimensional functions for estimating the entropy of a two-dimensional univariate matrix.
* Multiscale functions for estimating the multiscale entropy of a single univariate time series using any of the Base entropy functions.
* Multiscale Cross functions for estimating the multiscale entropy between two univariate time series using any of the Cross-entropy functions.
* Multivariate Multiscale functions for estimating the multivariate multiscale entropy of multivariate dataset using any of the Multivariate-entropy functions.
* Other Supplementary functions for various tasks related to EntropyHub and signal processing.
#### The following tables outline the functions available in the EntropyHub package.
*When new entropies are published in the scientific literature, efforts will
be made to incorporate them in future releases.*
### Base Entropies:
Entropy Type | Function Name
---|---
Approximate Entropy | ApEn
Sample Entropy | SampEn
Fuzzy Entropy | FuzzEn
Kolmogorov Entropy | K2En
Permutation Entropy | PermEn
Conditional Entropy | CondEn
Distribution Entropy | DistEn
Spectral Entropy | SpecEn
Dispersion Entropy | DispEn
Symbolic Dynamic Entropy | SyDyEn
Increment Entropy | IncrEn
Cosine Similarity Entropy | CoSiEn
Phase Entropy | PhasEn
Slope Entropy | SlopEn
Bubble Entropy | BubbEn
Gridded Distribution Entropy | GridEn
Entropy of Entropy | EnofEn
Attention Entropy | AttnEn
Range Entropy | RangEn
Diversity Entropy | DivEn
_______________________________________________________________________
### Cross Entropies:
Entropy Type | Function Name
--|--
Cross Sample Entropy | XSampEn
Cross Approximate Entropy | XApEn
Cross Fuzzy Entropy | XFuzzEn
Cross Permutation Entropy | XPermEn
Cross Conditional Entropy | XCondEn
Cross Distribution Entropy | XDistEn
Cross Spectral Entropy | XSpecEn
Cross Kolmogorov Entropy | XK2En
_______________________________________________________________________
### Multivariate Entropies:
Entropy Type | Function Name
--|--
Multivariate Sample Entropy | MvSampEn
Multivariate Fuzzy Entropy | MvFuzzEn
Multivariate Permutation Entropy | MvPermEn
Multivariate Dispersion Entropy | MvDispEn
Multivariate Cosine Similarity Entropy | MvCoSiEn
_______________________________________________________________________
### Bidimensional Entropies
Entropy Type | Function Name
--|--
Bidimensional Sample Entropy | SampEn2D
Bidimensional Fuzzy Entropy | FuzzEn2D
Bidimensional Distribution Entropy | DistEn2D
Bidimensional Dispersion Entropy | DispEn2D
Bidimensional Permutation Entropy | PermEn2D
Bidimensional Espinosa Entropy | EspEn2D
_________________________________________________________________________
### Multiscale Entropy Functions
Entropy Type | Function Name
--|--
Multiscale Entropy | MSEn
Composite/Refined-Composite Multiscale Entropy | cMSEn
Refined Multiscale Entropy | rMSEn
Hierarchical Multiscale Entropy | hMSEn
_________________________________________________________________________
### Multiscale Cross-Entropy Functions
Entropy Type | Function Name
--|--
Multiscale Cross-Entropy | XMSEn
Composite/Refined-Composite Multiscale Cross-Entropy | cXMSEn
Refined Multiscale Cross-Entropy | rXMSEn
Hierarchical Multiscale Cross-Entropy | hXMSEn
_________________________________________________________________________
### Multivariate Multiscale Entropy Functions
Entropy Type | Function Name
--|--
Multivariate Multiscale Entropy | MvMSEn
Composite/Refined-Composite Multivariate Multiscale Entropy | cMvMSEn
_________________________________________________________________________
### Other Functions
Entropy Type | Function Name
--|--
Example Data Import Tool | ExampleData
Window Data Tool | WindowData
Multiscale Entropy Object | MSobject
## License and Terms of Use
EntropyHub is licensed under the Apache License (Version 2.0) and is free to
use by all on condition that the following reference be included on any outputs
realized using the software:
Matthew W. Flood (2021),
EntropyHub: An Open-Source Toolkit for Entropic Time Series Analysis,
PLoS ONE 16(11):e0259448
DOI: 10.1371/journal.pone.0259448
www.EntropyHub.xyz
__________________________________________________________________
© Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
## Contact
If you find this package useful, please consider starring it on GitHub,
MatLab File Exchange, PyPI or Julia Packages as this helps us to gauge user
satisfaction.
If you have any questions about the package, please do not hesitate to contact us at: [email protected]
If you identify any bugs, please contact us at: [email protected]
If you need any help installing or using the toolkit, please contact us at: [email protected]
***Thank you*** for using EntropyHub.
Matt
___ _ _ _____ _____ ____ ____ _ _
| _|| \ | ||_ _|| \| || || \ / | ___________
| \_ | \| | | | | __/| || __| \ \_/ / / _______ \
| _|| \ \ | | | | \ | || | \ / | / ___ \ |
| \_ | |\ | | | | |\ \ | || | | | | | / \ | |
|___||_| \_| |_| |_| \_||____||_| |_| _|_|__\___/ | |
_ _ _ _ ____ / |__\______\/ |
| | | || | | || \ An open-source | /\______\__|_/
| |_| || | | || | toolkit for | | / \ | |
| _ || | | || \ entropic time- | | \___/ | |
| | | || |_| || \ series analysis | \_______/ |
|_| |_|\_____/|_____/ \___________/
<p align="center">
<img src="https://github.com/MattWillFlood/EntropyHub/blob/main/Graphics/EntropyHubLogo3.png" width="250" height="350"/>
</p> | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 7963 | ```@meta
CurrentModule = EntropyHub
```

# EntropyHub
__*An Open-Source Toolkit For Entropic Time Series Analysis*__
## Latest Updates
### v2.0
*----- New multivariate methods -----*
Five new multivariate entropy functions incorporating several method-specific variations
+ [Multivariate Sample Entropy](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.061918)
+ [Multivariate Fuzzy Entropy](https://www.mdpi.com/1099-4300/19/1/2) [++ many fuzzy functions]
+ [Multivariate Dispersion Entropy](https://www.mdpi.com/1099-4300/21/9/913) [++ many symbolic sequence transforms]
+ [Multivariate Cosine Similarity Entropy](https://www.mdpi.com/1099-4300/24/9/1287)
+ Multivariate Permutation Entropy [++ *amplitude-aware*, *edge*, *phase*, *weighted* and *modified* variants]
*----- New multivariate multiscale methods -----*
Two new multivariate multiscale entropy functions
+ [Multivariate Multiscale Entropy](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.84.061918) [++ coarse, modified and generalized graining procedures]
+ [Composite and Refined-composite Multivariate Multiscale Entropy](https://link.springer.com/article/10.1007/s11517-017-1647-5)
*----- Extra signal processing tools -----*
[`WindowData()`](@ref) is a new function that allows users to segment data (univariate or multivariate time series) into windows with/without overlapping samples! This allows users to calculate entropy on subsequences of their data to perform analyses with greater time resolution.
__**Other little fixes...**__
*----- Docs edits -----*
- Examples in the www.EntropyHub.xyz documentation were updated to match the latest package syntax.
_________________________________________________________
## Introduction
This toolkit provides a wide range of functions to calculate different entropy statistics.
There is an ever-growing range of information-theoretic and dynamical systems entropy measures presented in the scientific literature. The goal of **EntropyHub.jl** is to integrate the many established entropy methods in one open-source package with an extensive documentation and consistent syntax [that is also accessible in multiple programming languages ([Matlab](https://www.entropyhub.xyz/matlab/EHmatlab.html), [Python](https://www.entropyhub.xyz/python/EHpython.html))].
### About
Information and uncertainty can be regarded as two sides of the same coin:
the more uncertainty there is, the more information we gain by removing that
uncertainty. In the context of information and probability theory, **Entropy**
quantifies that uncertainty.
Various measures have been derived
to estimate entropy (uncertainty) from discrete time series, each seeking to
best capture the uncertainty of the system under examination. This has resulted
in many entropy statistics from approximate entropy and sample entropy, to
multiscale sample entropy and refined-composite multiscale cross-sample entropy.
The goal of EntropyHub is to provide a comprehensive set of functions with a simple and
consistent syntax that allows the user to augment parameters at the command
line, enabling a range from basic to advanced entropy methods to be implemented
with ease.
!!! warning "NOTE:"
It is important to clarify that the entropy functions herein described estimate entropy
in the context of probability theory and information theory as defined by Shannon,
and not thermodynamic or other entropies from classical physics.
## Installation
Using the Julia REPL:
```
julia> using Pkg; Pkg.add("EntropyHub")
```
or
```
julia> ]
pkg> add EntropyHub
```
To get the latest version of EntropyHub directly from GitHub:
```
julia> ]
pkg> add https://github.com/MattWillFlood/EntropyHub.jl
```
## Citing
EntropyHub is licensed under the Apache License (Version 2.0) and is free to use by
all on condition that the following reference be included on any outputs realized using the
software:
```
Matthew W. Flood (2021),
EntropyHub: An Open-Source Toolkit for Entropic Time Series Analysis,
PLoS ONE 16(11):e0259448
DOI: 10.1371/journal.pone.0259448
www.EntropyHub.xyz
```
__________________________________________________________________
© Copyright 2024 Matthew W. Flood, EntropyHub
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
For Terms of Use see https://github.com/MattWillFlood/EntropyHub
If you find this package useful, please consider starring it on [GitHub](https://github.com/MattWillFlood/EntropyHub.jl)
and Julia Packages (or MatLab File Exchange and PyPI). This helps us to gauge user satisfaction.
## Contact
For general queries and information about EntropyHub, contact: `[email protected]`
If you have any questions or need help using the package, please contact us at: `[email protected]`
If you notice or identify any issues, please do not hesitate to contact us at: `[email protected]`
We will do our best to help you with any relevant issues that you may have.
If you come across any errors or technical issues, you can raise these under the issues tab on the EntropyHub.jl GitHub page.
Similarly, if you have any suggestions or recommendations on how this package can be improved, please let us know.
__Thank you for using EntropyHub,__
Matt
## Function List
EntropyHub functions fall into 8 categories:
* `Base` functions for estimating the entropy of a single univariate time series.
* `Cross` functions for estimating the entropy between two univariate time series.
* `Bidimensional` functions for estimating the entropy of a two-dimensional univariate matrix.
* `Multiscale` functions for estimating the multiscale entropy of a single univariate time series using any of the Base entropy functions.
* `Multiscale Cross` functions for estimating the multiscale entropy between two univariate time series using any of the Cross-entropy functions.
* `Multivariate Multiscale` functions for estimating the multivariate multiscale entropy of multivariate dataset using any of the Multivariate-entropy functions.
* `Other` Supplementary functions for various tasks related to EntropyHub and signal processing.
```@index
```
___ _ _ _____ _____ ____ ____ _ _
| _|| \ | ||_ _|| \| || || \ / | ___________
| \_ | \| | | | | __/| || __| \ \_/ / / _______ \
| _|| \ \ | | | | \ | || | \ / | / ___ \ |
| \_ | |\ | | | | |\ \ | || | | | | | / \ | |
|___||_| \_| |_| |_| \_||____||_| |_| _|_|__\___/ | |
_ _ _ _ ____ / |__\______\/ |
| | | || | | || \ An open-source | /\______\__|_/
| |_| || | | || | toolkit for | | / \ | |
| _ || | | || \ entropic time- | | \___/ | |
| | | || |_| || \ series analysis | \_______/ |
|_| |_|\_____/|_____/ \___________/
Documentation for [EntropyHub](https://github.com/MattWillFlood/EntropyHub.jl). | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 1314 | # Example 1: Sample Entropy
Import a signal of normally distributed random numbers [mean = 0; SD = 1], and calculate the
sample entropy for each embedding dimension (m) from 0 to 4.
```@example
using EntropyHub # hide
X = ExampleData("gaussian");
Samp, _ = SampEn(X, m = 4);
Samp # hide
```
Select the last value to get the sample entropy for m = 4.
```@example
using EntropyHub # hide
X = ExampleData("gaussian"); # hide
Samp, _ = SampEn(X, m = 4); # hide
Samp[end]
```
Calculate the sample entropy for each embedding dimension (m) from 0 to 4 with a time delay (tau) of 2 samples.
```@example
using EntropyHub # hide
X = ExampleData("gaussian"); # hide
Samp, Phi1, Phi2 = SampEn(X, m = 4, tau = 2)
```
Import a signal of uniformly distributed random numbers in the range [-1, 1] and calculate the sample entropy for an embedding dimension (m) of 5, a time delay of 2, and a threshold radius of 0.075.
Return the conditional probability (Vcp) and the number of overlapping matching vector pairs of lengths m+1 (Ka) and m (Kb), respectively.
```@example
using EntropyHub # hide
X = ExampleData("uniform"); # hide
Samp, _, _, Vcp_Ka_Kb = SampEn(X, m = 5, tau = 2, r = 0.075, Vcp = true)
Vcp, Ka, Kb = Vcp_Ka_Kb
println("Vcp = ", Vcp) # hide
println("Ka = ", Ka) # hide
println("Kb = ", Kb) # hide
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 595 | # Example 10: Bidimensional Fuzzy Entropy
Import an image of a Mandelbrot fractal as a matrix.
```
X = ExampleData("mandelbrot_Mat");
using Plots
heatmap(X, background_color="black")
```

Calculate the bidimensional fuzzy entropy in trits (logarithm base 3) with a template
matrix of size [8 x 5], and a time delay (`tau`) of 2 using a `'constgaussian'` fuzzy membership function (r=24).
```@example
using EntropyHub # hide
X = ExampleData("mandelbrot_Mat"); # hide
FE2D = FuzzEn2D(X, m = (8, 5), tau = 2, Fx = "constgaussian", r = 24, Logx = 3)
``` | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 1948 | # Example 11: Multivariate Dispersion Entropy
Import a vector of 4096 uniformly distributed random integers in range [1 8] and convert it to a multivariate set of 4 sequences with 1024 samples each.
```@example
using EntropyHub # hide
X = ExampleData("randintegers");
Data = reshape(X, 1024, 4);
Data # hide
```
Calculate the multivariate dispersion entropy and reverse dispersion entropy for embedding dimensions (m) = [1,1,2,3], using a 7-symbol transform.
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Data = reshape(X, 1024, 4); # hide
MDisp, RDE = MvDispEn(Data, m = [1,1,2,3], c = 7);
MDisp # hide
```
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Data = reshape(X, 1024, 4); # hide
MDisp, RDE = MvDispEn(Data, m = [1,1,2,3], c = 7); # hide
RDE # hide
```
Perform the same calculation but normalize the output entropy estimate w.r.t the number of unique dispersion patterns
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Data = reshape(X, 1024, 4); # hide
MDisp, RDE = MvDispEn(Data, m = [1,1,2,3], c = 7, Norm = true);
MDisp # hide
```
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Data = reshape(X, 1024, 4); # hide
MDisp, RDE = MvDispEn(Data, m = [1,1,2,3], c = 7, Norm = true); # hide
RDE # hide
```
Compare the results above (``Methodx == 'v1'``) with those obtained using the *mvDE* method (``Methodx=='v2'``), returning estimates for each value from 1, ..., max(m)
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Data = reshape(X, 1024, 4); # hide
MDisp, RDE = MvDispEn(Data, m = [1,1,2,3], c = 7, Norm = true, Methodx = "v2")
MDisp # hide
```
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Data = reshape(X, 1024, 4); # hide
MDisp, RDE = MvDispEn(Data, m = [1,1,2,3], c = 7, Norm = true, Methodx = "v2") # hide
RDE # hide
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 1796 | # Example 12: [Generalized] Refined-composite Multivariate Multiscale Fuzzy Entropy
Import the x, y, and z components of the Lorenz system of equations.
```
Data = ExampleData("lorenz");
using Plots
scatter(Data[:,1], Data[:,2], Data[:,3],
markercolor = "green", markerstrokecolor = "black",
markersize = 3, background_color = "black", grid = false)
```

Create a multiscale entropy object with the following parameters:
EnType = MvFuzzEn(), fuzzy membership function = 'constgaussian', fuzzy function parameter = 1.75, normalized data to unit variance = true.
```@example
using EntropyHub # hide
Mobj = MSobject(MvFuzzEn, Fx = "constgaussian", r = 1.75, Norm = true)
```
Calculate the generalized refined-composite multivariate multiscale fuzzy entropy over 5 scales and plotting the output.
!!! tip
When the multivariate entropy method is multivariate fuzzy entropy (``MvFuzzEn``), **cMvMSEn** by default employs a generalized graining procedure
with the standard deviation (not the variance like in MvMSEn). This follows the method presented in [1].
[1] Azami, Fernández and Escudero.
" *Refined multiscale fuzzy entropy based on standard deviation for biomedical signal analysis* "
Medical & biological engineering & computing 55 (2017): 2037-2052
!!! warning
As with conventional generalized multiscale entropy, the multiscale entropy value for the first scale will always == 0, as the variance or
standard deviation of a singular value is 0!
```@example
using EntropyHub # hide
Data = ExampleData("lorenz"); # hide
Mobj = MSobject(MvFuzzEn, Fx = "constgaussian", r = 1.75, Norm = true) # hide
MSx, CI = cMvMSEn(Data, Mobj, Scales = 5, Refined = true, Plotx = true)
```

| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 2972 | # Example 13: Window Data Tool
This example shows how to use the [`WindowData()`](@ref) function to divide univariate/multivariate data into
subsequences.
_______________________________________________________________________________
### Ex. 1
Import a sequence of uniformly distributed random numbers.
```
X = ExampleData("uniform");
```
Extract a series of subsequences by dividing the sequence into windows of length 1024 with no overlap.
```@example
using EntropyHub # hide
X = ExampleData("uniform"); # hide
WinData, Log = WindowData(X, WinLen = 1024);
WinData # hide
```
```@example
using EntropyHub # hide
X = ExampleData("uniform"); # hide
WinData, Log = WindowData(X, WinLen = 1024); # hide
Log # hide
```
Repeat the previous step but change the number of overlapping window samples to 256.
```@example
using EntropyHub # hide
X = ExampleData("uniform"); # hide
WinData, Log = WindowData(X, WinLen = 1024, Overlap = 256);
WinData # hide
```
```@example
using EntropyHub # hide
X = ExampleData("uniform"); # hide
WinData, Log = WindowData(X, WinLen = 1024, Overlap = 256); # hide
Log # hide
```
_______________________________________________________________________________
### Ex. 2
Window a range of numbers (1:1234) into 5 windows.
```@example
using EntropyHub # hide
WinData, Log = WindowData(1:1234);
WinData # hide
```
```@example
using EntropyHub # hide
WinData, Log = WindowData(1:1234); # hide
Log # hide
```
Repeat the previous step, but this time retain any remaining samples that do not fill the last window.
```@example
using EntropyHub # hide
WinData, Log = WindowData(1:1234, Mode="include");
WinData # hide
```
```@example
using EntropyHub # hide
_, Log = WindowData(1:1234); # hide
Log # hide
```
Note that the last vector in `WinData` contains only 4 values.
```@example
using EntropyHub # hide
WinData, _ = WindowData(1:1234, Mode="include"); # hide
WinData[end] # hide
```
_______________________________________________________________________________
### Ex. 3
Generate a multivariate dataset of 5 uniformly-distributed random number sequences (N=3333) and
divide the dataset into subsets of 777 samples.
```@example
using EntropyHub # hide
using Random
X = rand(MersenneTwister(0), 3333, 5)
WinData, Log = WindowData(X, WinLen = 777)
WinData # hide
```
```@example
using EntropyHub # hide
using Random # hide
X = rand(MersenneTwister(0), 3333, 5) # hide
WinData, Log = WindowData(X, WinLen = 777) # hide
Log # hide
```
Repeat the previous step including 55 samples of overlap and retain any remaining samples that do not fill a window.
```@example
using EntropyHub # hide
using Random # hide
X = rand(MersenneTwister(0), 3333, 5) # hide
WinData, Log = WindowData(X, WinLen = 777, Overlap = 55, Mode = "include")
WinData # hide
```
```@example
using EntropyHub # hide
using Random # hide
X = rand(MersenneTwister(0), 3333, 5) # hide
WinData, Log = WindowData(X, WinLen = 777, Overlap = 55, Mode = "include") # hide
Log # hide
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 865 | # Example 2: (Fine-grained) Permutation Entropy
Import the x, y, and z components of the Lorenz system of equations.
```
Data = ExampleData("lorenz");
using Plots
scatter(Data[:,1], Data[:,2], Data[:,3],
markercolor = "green", markerstrokecolor = "black",
markersize = 3, background_color = "black", grid = false)
```

Calculate fine-grained permutation entropy of the z component in dits (logarithm base 10) with an embedding dimension of 3, time delay of 2, an alpha parameter of 1.234.
Return Pnorm normalised w.r.t the number of all possible permutations (m!) and the condition permutation entropy (cPE) estimate.
```@example
using EntropyHub # hide
Data = ExampleData("lorenz"); # hide
Z = Data[:,3];
Perm, Pnorm, cPE = PermEn(Z, m = 3, tau = 2, Typex = "finegrain",
tpx = 1.234, Logx = 10, Norm = false)
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 1018 | # Example 3: Phase Entropy w/ Second Order Difference Plot
Import the x and y components of the Henon system of equations.
```
Data = ExampleData("henon");
using Plots
scatter(Data[:,1], Data[:,2],
markercolor = "green", markerstrokecolor = "black",
markersize = 3, background_color = "black",grid = false)
```

Calculate the phase entropy of the y-component in bits (logarithm base 2) without normalization using 7 angular partitions and return the second-order difference plot.
```@example
using EntropyHub # hide
Data = ExampleData("henon"); # hide
Y = Data[:,2];
Phas = PhasEn(Y, K = 7, Norm = false, Logx = 2, Plotx = true)
```

Calculate the phase entropy of the x-component using 11 angular partitions, a time delay of 2, and return the second-order difference plot.
```@example
using EntropyHub # hide
Data = ExampleData("henon"); # hide
X = Data[:,1];
Phas = PhasEn(X, K = 11, tau = 2, Plotx = true)
```

| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 779 | # Example 4: Cross-Distribution Entropy w/ Different Binning Methods
Import a signal of pseudorandom integers in the range [1, 8] and calculate the cross-
distribution entropy with an embedding dimension of 5, a time delay (`tau`) of 3, and 'Sturges' bin selection method.
```@example
using EntropyHub # hide
X = ExampleData("randintegers2");
XDist, _ = XDistEn(X[:,1], X[:,2], m = 5, tau = 3);
println(" ") # hide
println("XDist = ", XDist) # hide
```
Use Rice's method to determine the number of histogram bins and return the probability of each bin (`Ppi`).
```@example
using EntropyHub # hide
X = ExampleData("randintegers2"); # hide
XDist, Ppi = XDistEn(X[:,1], X[:,2], m = 5, tau = 3, Bins = "rice")
println("XDist = ", XDist) # hide
println("Ppi = ", Ppi) #hide
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 839 | # Example 5: Multiscale Entropy Object - MSobject()
!!! warning "Note:"
The base and cross- entropy functions used in the multiscale entropy calculation
are declared by passing EntropyHub functions to MSobject(), not string names.
Create a multiscale entropy object (`Mobj`) for multiscale fuzzy entropy, calculated with
an embedding dimension of 5, a time delay (`tau`) of 2, using a sigmoidal fuzzy function with
the `r` scaling parameters (3, 1.2).
```@example
using EntropyHub # hide
Mobj = MSobject(FuzzEn, m = 5, tau = 2, Fx = "sigmoid", r = (3, 1.2))
```
Create a multiscale entropy object (`Mobj`) for multiscale corrected-cross-conditional entropy,
calculated with an embedding dimension of 6 and using a 11-symbolic data transform.
```@example
using EntropyHub # hide
Mobj = MSobject(XCondEn, m = 6, c = 11)
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 1284 | # Example 6: Multiscale Increment Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1 8] and
create a multiscale entropy object with the following parameters:
`EnType` = IncrEn(), embedding dimension = 3, a quantifying resolution = 6, normalization = true.
```@example
using EntropyHub # hide
X = ExampleData("randintegers");
Mobj = MSobject(IncrEn, m = 3, R = 6, Norm = true)
```
Calculate the multiscale increment entropy over 5 temporal scales using the modified
graining procedure where:
``y_j^{(\tau)} =\frac{1}{\tau } \sum_{i=\left(j-1\right)\tau +1}^{j\tau } x{_i}, 1<= j <= \frac{N}{\tau }``
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Mobj = MSobject(IncrEn, m = 3, R = 6, Norm = true) # hide
MSx, _ = MSEn(X, Mobj, Scales = 5, Methodx = "modified");
MSx # hide
```
Change the graining method to return generalized multiscale increment entropy.
``y_j^{(\tau)} =\frac{1}{\tau } \sum_{i=\left(j-1\right)\tau +1}^{j\tau } \left( x{_i} - \bar{x} \right)^{2}, 1<= j <= \frac{N}{\tau }``
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Mobj = MSobject(IncrEn, m = 3, R = 6, Norm = true) # hide
MSx, _ = MSEn(X, Mobj, Scales = 5, Methodx = "generalized");
MSx # hide
```
| EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
|
[
"Apache-2.0"
] | 2.0.0 | c4c17ff5a1c4186a68e6cd8e504f830a8bd25890 | docs | 951 | # Example 7: Refined Multiscale Sample Entropy
Import a signal of uniformly distributed pseudorandom integers in the range [1, 8] and
create a multiscale entropy object with the following parameters:
`EnType` = SampEn(), embedding dimension = 4, radius threshold = 1.25
```@example
using EntropyHub # hide
X = ExampleData("randintegers");
Mobj = MSobject(SampEn, m = 4, r = 1.25)
Mobj # hide
```
Calculate the refined multiscale sample entropy and the complexity index (`Ci`) over 5
temporal scales using a 3rd order Butterworth filter with a normalised corner frequency
of at each temporal scale (τ), where the radius threshold value (`r`) specified by `Mobj`
becomes scaled by the median absolute deviation of the filtered signal at each scale.
```@example
using EntropyHub # hide
X = ExampleData("randintegers"); # hide
Mobj = MSobject(SampEn, m = 4, r = 1.25) # hide
MSx, Ci = rMSEn(X, Mobj, Scales = 5, F_Order = 3, F_Num = 0.6, RadNew = 4)
``` | EntropyHub | https://github.com/MattWillFlood/EntropyHub.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.