licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
867
# Example 8: Composite Multiscale Cross-Approximate Entropy Import two signals of uniformly distributed pseudorandom integers in the range [1 8] and create a multiscale entropy object with the following parameters: `EnType` = XApEn(), embedding dimension = 2, time delay = 2, radius distance threshold = 0.5 ```@example using EntropyHub # hide X = ExampleData("randintegers2"); Mobj = MSobject(XApEn, m = 2, tau = 2, r = 0.5) Mobj # hide ``` Calculate the comsposite multiscale cross-approximate entropy over 3 temporal scales where the radius distance threshold value (`r`) specified by `Mobj` becomes scaled by the variance of the signal at each scale. ```@example using EntropyHub # hide X = ExampleData("randintegers2"); # hide Mobj = MSobject(XApEn, m = 2, tau = 2, r = 0.5) # hide MSx, _ = cXMSEn(X[:,1], X[:,2], Mobj, Scales = 3, RadNew = 1) MSx # hide ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
1194
# Example 9: Hierarchical Multiscale corrected Cross-Conditional Entropy Import the x and y components of the Henon system of equations and create a multiscale entropy object with the following parameters: `EnType` = XCondEn(), embedding dimension = 2, time delay = 2, number of symbols = 12, logarithm base = 2, normalization = true ``` Data = ExampleData("henon"); Mobj = MSobject(XCondEn, m = 2, tau = 2, c = 12, Logx = 2, Norm = true) using Plots scatter(Data[:,1], Data[:,2], markercolor = "green", markerstrokecolor = "black", markersize = 3, background_color = "black", grid = false) ``` ![Henon](../assets/henonjl.png) Calculate the hierarchical multiscale corrected cross-conditional entropy over 4 temporal scales and return the average cross-entropy at each scale (`Sn`), the complexity index (`Ci`), and a plot of the multiscale entropy curve and the hierarchical tree with the cross-entropy value at each node. ```@example using EntropyHub # hide Data = ExampleData("henon"); # hide Mobj = MSobject(XCondEn, m = 2, tau = 2, c = 12, Logx = 2, Norm = true) # hide MSx, Sn, Ci = hXMSEn(Data[:,1], Data[:,2], Mobj, Scales = 4, Plotx = true) ``` ![hXMSEn](../assets/hXMSEnjl.png)
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
1822
```@contents Pages = ["Example1.md", "Example2.md", "Example3.md", "Example4.md", "Example5.md", "Example6.md","Example7.md","Example8.md","Example9.md","Example10.md", "Example11.md", "Example12.md", "Example13.md"] ``` # Examples: The following sections provide some basic examples of EntropyHub functions. These examples are merely a snippet of the full range of EntropyHub functionality. In the following examples, signals / data are imported into Julia using the [`ExampleData()`](@ref) function. To use this function as shown in the examples below, __*an internet connection is required*__. !!! tip "IMPORTANT TO NOTE" Parameters of the base or cross- entropy methods are passed to multiscale and multiscale cross- functions using the multiscale entropy object using MSobject. Base and cross- entropy methods are declared with MSobject() using any Base or Cross- entropy function. See the MSobject example in the following sections for more info. !!! warning "Hierarchical Multiscale Entropy (+ Multiscale Cross-Entropy)" In hierarchical multiscale entropy ([hMSEn](@ref)) and hierarchical multiscale cross-entropy ([hXMSEn](@ref)) functions, the length of the time series signal(s) is halved at each scale. Thus, hMSEn and hXMSEn only use the first 2^N data points where 2^N <= the length of the original time series signal. i.e. For a signal of 5000 points, only the first 4096 are used. For a signal of 1500 points, only the first 1024 are used. !!! danger "BIDIMENSIONAL ENTROPIES" Each bidimensional entropy function (SampEn2D, FuzzEn2D, DistEn2D, EspEn2D) has an important keyword argument - `Lock`. Bidimensional entropy functions are "locked" by default (`Lock == true`) to only permit matrices with a maximum size of 128 x 128.
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
719
```@meta CollapsedDocStrings = true Description = "Entropy of single time series signals" ``` # Base Entropies __*Functions for estimating the entropy of a single univariate time series.*__ `The following functions also form the base entropy method used by Multiscale functions` -> [`MSEn`](@ref), [`cMSEn`](@ref), [`rMSEn`](@ref), [`hMSEn`](@ref) ```@docs EntropyHub.ApEn EntropyHub.SampEn EntropyHub.FuzzEn EntropyHub.K2En EntropyHub.PermEn EntropyHub.CondEn EntropyHub.DistEn EntropyHub.SpecEn EntropyHub.DispEn EntropyHub.SyDyEn EntropyHub.IncrEn EntropyHub.CoSiEn EntropyHub.PhasEn EntropyHub.SlopEn EntropyHub.BubbEn EntropyHub.GridEn EntropyHub.EnofEn EntropyHub.AttnEn EntropyHub.RangEn EntropyHub.DivEn ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
1580
```@meta CollapsedDocStrings = true Description = "Entropy of two-dimensional (2D) data" ``` # Bidimensional Entropies __*Functions for estimating the entropy of a two-dimensional univariate matrix.*__ While EntropyHub functions primarily apply to time series data, with the following bidimensional entropy functions one can estimate the entropy of two-dimensional (2D) matrices. Hence, bidimensional entropy functions are useful for applications such as image analysis. !!! danger "IMPORTANT: Locked Matrix Size" Each bidimensional entropy function ([`SampEn2D`](@ref), [`FuzzEn2D`](@ref), [`DistEn2D`](@ref), [`DispEn2D`](@ref), [`EspEn2D`](@ref), [`PermEn2D`](@ref)) has an important keyword argument - `Lock`. Bidimensional entropy functions are "locked" by default (`Lock == true`) to only permit matrices with a maximum size of 128 x 128. The reason for this is because there are hundreds of millions of pairwise calculations performed in the estimation of bidimensional entropy, so memory errors often occur when storing data on RAM. e.g. For a matrix of size [200 x 200], an embedding dimension (`m`) = 3, and a time delay (`tau`) = 1, there are 753,049,836 pairwise matrix comparisons (6,777,448,524 elemental subtractions). To pass matrices with sizes greater than [128 x 128], set `Lock = false`. `CAUTION: unlocking the permitted matrix size may cause your Julia IDE to crash.` ```@docs EntropyHub.SampEn2D EntropyHub.FuzzEn2D EntropyHub.DistEn2D EntropyHub.DispEn2D EntropyHub.PermEn2D EntropyHub.EspEn2D ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
541
```@meta CollapsedDocStrings = true Description = "Entropy between two time series signals" ``` # Cross Entropies __*Functions for estimating the cross-entropy between two univariate time series.*__ `The following functions also form the cross-entropy method used by Multiscale Cross-Entropy functions.` -> [`XMSEn`](@ref), [`cXMSEn`](@ref), [`rXMSEn`](@ref), [`hXMSEn`](@ref) ```@docs EntropyHub.XApEn EntropyHub.XSampEn EntropyHub.XFuzzEn EntropyHub.XK2En EntropyHub.XPermEn EntropyHub.XCondEn EntropyHub.XDistEn EntropyHub.XSpecEn ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
1068
```@meta CollapsedDocStrings = true Description = "Multiscale entropy between two time series signals" ``` # Multiscale Cross-Entropies __*Functions for estimating the multiscale entropy between two univariate time series.*__ Just as one can calculate multiscale entropy using any Base entropy, the same functionality is possible with multiscale cross-entropy using any Cross-entropy function: [`XApEn`](@ref), [`XSampEn`](@ref), [`XK2En`](@ref), [`XCondEn`](@ref), [`XPermEn`](@ref), [`XSpecEn`](@ref), [`XDistEn`](@ref), [`XFuzzEn`](@ref). To do so, we again use the [`MSobject`](@ref) function to pass a multiscale object (`Mobj`) to the multiscale cross-entropy functions. !!! info "NOTE:" Multiscale cross-entropy functions have three positional arguments: 1. the first data seuqence, `Sig1` (a vector of >10 elements), 2. the second data seuqence, `Sig2` (a vector of > 10 elements), 3. the multiscale entropy object, `Mobj` -> see [`MSobject`](@ref) ```@docs EntropyHub.XMSEn EntropyHub.cXMSEn EntropyHub.rXMSEn EntropyHub.hXMSEn ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
978
```@meta CollapsedDocStrings = true Description = "Multiscale entropy of single time series signals" ``` # Multiscale Entropies __*Functions for estimating the multiscale entropy of a univariate time series.*__ Multiscale entropy can be calculated using any of the Base entropies: ([`ApEn`](@ref), [`AttnEn`](@ref), [`BubbEn`](@ref), [`CondEn`](@ref), [`CoSiEn`](@ref), [`DistEn`](@ref), [`DivEn`](@ref), [`DispEn`](@ref), [`EnofEn`](@ref), [`FuzzEn`](@ref), [`GridEn`](@ref), [`IncrEn`](@ref), [`K2En`](@ref), [`PermEn`](@ref), [`PhasEn`](@ref), [`RangEn`](@ref), [`SampEn`](@ref), [`SlopEn`](@ref), [`SpecEn`](@ref), [`SyDyEn`](@ref)). !!! info "NOTE:" Multiscale cross-entropy functions have two positional arguments: 1. the data sequence, `Sig` (a vector > 10 elements), 2. the multiscale entropy object, `Mobj` -> see [`MSobject`](@ref) ```@docs EntropyHub.MSobject EntropyHub.MSEn EntropyHub.cMSEn EntropyHub.rMSEn EntropyHub.hMSEn ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
467
```@meta CollapsedDocStrings = true Description = "Entropy of multivariate time series " ``` # Multivariate Entropies __*Functions for estimating the entropy of a multivariate time series dataset.*__ `The following functions also form the multivariate entropy method used by Multivariate Multiscale functions.` -> [`MvMSEn`](@ref), [`cMvMSEn`](@ref) ```@docs EntropyHub.MvSampEn EntropyHub.MvFuzzEn EntropyHub.MvPermEn EntropyHub.MvDispEn EntropyHub.MvCoSiEn ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
1024
```@meta CollapsedDocStrings = true Description = "Multivariate multiscale entropy of multivariate time series " ``` # Multivariate Multiscale Entropies __*Functions for estimating the Multivariate multiscale entropy of a multivariate time series dataset.*__ Just as one can calculate multiscale entropy using any Base or Cross- entropy, the same functionality is possible with multivariate multiscale entropy using any Multivariate function: [`MvSampEn`](@ref), [`MvFuzzEn`](@ref), [`MvDispEn`](@ref), [`MvPermEn`](@ref), [`MvCoSiEn`](@ref). To do so, we again use the [`MSobject`](@ref) function to pass a multiscale object (`Mobj`) to the multivariate multiscale entropy functions. !!! info "NOTE:" Multivariate multiscale entropy functions have two positional arguments: 1. the multivariate dataset, `Data` (an NxM matrix of N observations (>10 elements), and M time series (>1)), 2. the multiscale entropy object, `Mobj` -> see [`MSobject`](@ref) ```@docs EntropyHub.MvMSEn EntropyHub.cMvMSEn ```
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "Apache-2.0" ]
2.0.0
c4c17ff5a1c4186a68e6cd8e504f830a8bd25890
docs
242
```@meta CollapsedDocStrings = true ``` # Other Entropies __*Supplementary functions for various tasks related to EntropyHub and signal processing.*__ ```@docs EntropyHub.ExampleData EntropyHub.WindowData ``` [`EntropyHub.MSobject`](@ref)
EntropyHub
https://github.com/MattWillFlood/EntropyHub.jl.git
[ "MIT" ]
0.3.0
bfe2782c68eadd44e719a00bbaf96c83b921e4e1
code
163146
module XSteam #h_prho beh鰒er T_prho f鰎 samtliga regioner!!!! #*********************************************************************************************************** #* Water and steam properties according to IAPWS IF-97 * #* By Magnus Holmgren, www.x-eng.com * #* The steam tables are free and provided as is. * #* We take no responsibilities for any errors in the code or damage thereby. * #* You are free to use, modify and distribute the code as long as authorship is properly acknowledged. * #* Please notify me at [email protected] if the code is used in commercial applications * #*********************************************************************************************************** # # XSteam provides accurate steam and water properties from 0 - 1000 bar and from 0 - 2000 deg C according to # the standard IAPWS IF-97. For accuracy of the functions in different regions see IF-97 (www.iapws.org) # # *** Using XSteam ***************************************************************************************** #XSteam take 2 or 3 arguments. The first argument must always be the steam table function you want to use. #The other arguments are the inputs to that function. #Example: XSteam("h_pt",1,20) Returns the enthalpy of water at 1 bar and 20 degC #Example: XSteam("TSat_p",1) Returns the saturation temperature of water at 1 bar. #For a list of valid Steam Table functions se bellow or the XSteam macros for MS Excel. # #*** Nomenclature ****************************************************************************************** # First the wanted property then a _ then the wanted input properties. # Example. T_ph is temperature as a function of pressure and enthalpy. # For a list of valid functions se bellow or XSteam for MS Excel. # T Temperature (deg C) # p Pressure (bar) # h Enthalpy (kJ/kg) # v Specific volume (m3/kg) # rho Density # s Specific entropy # u Specific internal energy # Cp Specific isobaric heat capacity # Cv Specific isochoric heat capacity # w Speed of sound # my Viscosity # tc Thermal Conductivity # st Surface Tension # x Vapour fraction # vx Vapour Volume Fraction # #*** Valid Steam table functions. **************************************************************************** # #Temperature #Tsat_p Saturation temperature #T_ph Temperture as a function of pressure and enthalpy #T_ps Temperture as a function of pressure and entropy #T_hs Temperture as a function of enthalpy and entropy # #Pressure #psat_T Saturation pressure #p_hs Pressure as a function of h and s. #p_hrho Pressure as a function of h and rho. Very unaccurate for solid water region since it"s almost incompressible! # #Enthalpy #hV_p Saturated vapour enthalpy #hL_p Saturated liquid enthalpy #hV_T Saturated vapour enthalpy #hL_T Saturated liquid enthalpy #h_pT Entalpy as a function of pressure and temperature. #h_ps Entalpy as a function of pressure and entropy. #h_px Entalpy as a function of pressure and vapour fraction #h_prho Entalpy as a function of pressure and density. Observe for low temperatures (liquid) this equation has 2 solutions. #h_Tx Entalpy as a function of temperature and vapour fraction # #Specific volume #vV_p Saturated vapour volume #vL_p Saturated liquid volume #vV_T Saturated vapour volume #vL_T Saturated liquid volume #v_pT Specific volume as a function of pressure and temperature. #v_ph Specific volume as a function of pressure and enthalpy #v_ps Specific volume as a function of pressure and entropy. # #Density #rhoV_p Saturated vapour density #rhoL_p Saturated liquid density #rhoV_T Saturated vapour density #rhoL_T Saturated liquid density #rho_pT Density as a function of pressure and temperature. #rho_ph Density as a function of pressure and enthalpy #rho_ps Density as a function of pressure and entropy. # #Specific entropy #sV_p Saturated vapour entropy #sL_p Saturated liquid entropy #sV_T Saturated vapour entropy #sL_T Saturated liquid entropy #s_pT Specific entropy as a function of pressure and temperature (Returns saturated vapour entalpy if mixture.) #s_ph Specific entropy as a function of pressure and enthalpy # #Specific internal energy #uV_p Saturated vapour internal energy #uL_p Saturated liquid internal energy #uV_T Saturated vapour internal energy #uL_T Saturated liquid internal energy #u_pT Specific internal energy as a function of pressure and temperature. #u_ph Specific internal energy as a function of pressure and enthalpy #u_ps Specific internal energy as a function of pressure and entropy. # #Specific isobaric heat capacity #CpV_p Saturated vapour heat capacity #CpL_p Saturated liquid heat capacity #CpV_T Saturated vapour heat capacity #CpL_T Saturated liquid heat capacity #Cp_pT Specific isobaric heat capacity as a function of pressure and temperature. #Cp_ph Specific isobaric heat capacity as a function of pressure and enthalpy #Cp_ps Specific isobaric heat capacity as a function of pressure and entropy. # #Specific isochoric heat capacity #CvV_p Saturated vapour isochoric heat capacity #CvL_p Saturated liquid isochoric heat capacity #CvV_T Saturated vapour isochoric heat capacity #CvL_T Saturated liquid isochoric heat capacity #Cv_pT Specific isochoric heat capacity as a function of pressure and temperature. #Cv_ph Specific isochoric heat capacity as a function of pressure and enthalpy #Cv_ps Specific isochoric heat capacity as a function of pressure and entropy. # #Speed of sound #wV_p Saturated vapour speed of sound #wL_p Saturated liquid speed of sound #wV_T Saturated vapour speed of sound #wL_T Saturated liquid speed of sound #w_pT Speed of sound as a function of pressure and temperature. #w_ph Speed of sound as a function of pressure and enthalpy #w_ps Speed of sound as a function of pressure and entropy. # #Viscosity #Viscosity is not part of IAPWS Steam IF97. Equations from #"Revised Release on the IAPWS Formulation 1985 for the Viscosity of Ordinary Water Substance", 2003 are used. #Viscosity in the mixed region (4) is interpolated according to the density. This is not true since it will be two fases. #my_pT Viscosity as a function of pressure and temperature. #my_ph Viscosity as a function of pressure and enthalpy #my_ps Viscosity as a function of pressure and entropy. # #Thermal Conductivity #Revised release on the IAPS Formulation 1985 for the Thermal Conductivity of ordinary water substance (IAPWS 1998) #tcL_p Saturated vapour thermal conductivity #tcV_p Saturated liquid thermal conductivity #tcL_T Saturated vapour thermal conductivity #tcV_T Saturated liquid thermal conductivity #tc_pT Thermal conductivity as a function of pressure and temperature. #tc_ph Thermal conductivity as a function of pressure and enthalpy #tc_hs Thermal conductivity as a function of enthalpy and entropy # #Surface tension #st_T Surface tension for two phase water/steam as a function of T #st_p Surface tension for two phase water/steam as a function of T #Vapour fraction #x_ph Vapour fraction as a function of pressure and enthalpy #x_ps Vapour fraction as a function of pressure and entropy. # #Vapour volume fraction #vx_ph Vapour volume fraction as a function of pressure and enthalpy #vx_ps Vapour volume fraction as a function of pressure and entropy. #*Contents. #*1 Calling functions #*1.1 #*1.2 Temperature (T) #*1.3 Pressure (p) #*1.4 Enthalpy (h) #*1.5 Specific Volume (v) #*1.6 Density (rho) #*1.7 Specific entropy (s) #*1.8 Specific internal energy (u) #*1.9 Specific isobaric heat capacity (Cp) #*1.10 Specific isochoric heat capacity (Cv) #*1.11 Speed of sound #*1.12 Viscosity #*1.13 Prandtl #*1.14 Kappa #*1.15 Surface tension #*1.16 Heat conductivity #*1.17 Vapour fraction #*1.18 Vapour Volume Fraction # #*2 IAPWS IF 97 Calling functions #*2.1 Functions for region 1 #*2.2 Functions for region 2 #*2.3 Functions for region 3 #*2.4 Functions for region 4 #*2.5 Functions for region 5 # #*3 Region Selection #*3.1 Regions as a function of pT #*3.2 Regions as a function of ph #*3.3 Regions as a function of ps #*3.4 Regions as a function of hs # #4 Region Borders #4.1 Boundary between region 1 and 3. #4.2 Region 3. pSat_h and pSat_s #4.3 Region boundary 1to3 and 3to2 as a functions of s # #5 Transport properties #5.1 Viscosity (IAPWS formulation 1985) #5.2 Thermal Conductivity (IAPWS formulation 1985) #5.3 Surface Tension # #6 Units # #7 Verification #7.1 Verifiy region 1 #7.2 Verifiy region 2 #7.3 Verifiy region 3 #7.4 Verifiy region 4 #7.5 Verifiy region 5 #*********************************************************************************************************** #*1 Calling functions * #*********************************************************************************************************** #*********************************************************************************************************** #*1.1 #fun=lower(fun); #switch fun #*********************************************************************************************************** #*1.2 Temperature function Tsat_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 Out = fromSIunit_T(T4_p(p)); else Out = NaN; end Out end function Tsat_s(s) s = toSIunit_s(s); if s > -0.0001545495919 && s < 9.155759395 ps = p4_s(s); Out = fromSIunit_T(T4_p(ps)); else Out = NaN; end Out end function T_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); region = region_ph(p, h); if region == 1 Out = fromSIunit_T(T1_ph(p, h)); elseif region == 2 Out = fromSIunit_T(T2_ph(p, h)); elseif region == 3 Out = fromSIunit_T(T3_ph(p, h)); elseif region == 4 Out = fromSIunit_T(T4_p(p)); elseif region == 5 Out = fromSIunit_T(T5_ph(p, h)); else Out = NaN; end Out end function T_ps(p,s) #println("p=",p,"s=",s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Out = fromSIunit_T(T1_ps(p, s)); elseif Region == 2 Out = fromSIunit_T(T2_ps(p, s)); elseif Region == 3 Out = fromSIunit_T(T3_ps(p, s)); elseif Region == 4 Out = fromSIunit_T(T4_p(p)); elseif Region == 5 Out = fromSIunit_T(T5_ps(p, s)); else Out = NaN; end Out end function T_hs(h,s) h = toSIunit_h(h); s = toSIunit_s(s); Region = region_hs(h, s); if Region == 1 p1 = p1_hs(h, s); Out = fromSIunit_T(T1_ph(p1, h)); elseif Region == 2 p2 = p2_hs(h, s); Out = fromSIunit_T(T2_ph(p2, h)); elseif Region == 3 p3 = p3_hs(h, s); Out = fromSIunit_T(T3_ph(p3, h)); elseif Region == 4 Out = fromSIunit_T(T4_hs(h, s)); elseif Region == 5 #error("functions of hs is not avlaible in region 5"); else Out = NaN; end Out end #*********************************************************************************************************** #*1.3 Pressure (p) function psat_T(t) T = toSIunit_T(t); if T < 647.096 && T > 273.15 Out = fromSIunit_p(p4_T(T)); else Out = NaN; end Out end function psat_s(s) s = toSIunit_s(s); if s > -0.0001545495919 && s < 9.155759395 Out = fromSIunit_p(p4_s(s)); else Out = NaN; end Out end function p_hs(h,s) h = toSIunit_h(h); s = toSIunit_s(s); Region = region_hs(h, s); if Region == 1 Out = fromSIunit_p(p1_hs(h, s)); elseif Region == 2 Out = fromSIunit_p(p2_hs(h, s)); elseif Region == 3 Out = fromSIunit_p(p3_hs(h, s)); elseif Region == 4 tSat = T4_hs(h, s); Out = fromSIunit_p(p4_T(tSat)); elseif Region == 5 #error("functions of hs is not avlaible in region 5"); else Out = NaN; end Out end function p_hrho(h,rho) h=h; rho=rho; #Not valid for water or sumpercritical since water rho does not change very much with p. #Uses iteration to find p. High_Bound = fromSIunit_p(100); Low_Bound = fromSIunit_p(0.000611657); ps = fromSIunit_p(10); rhos = 1 / v_ph(ps, h); while abs(rho - rhos) > 0.0000001 rhos = 1 / v_ph(ps, h); if rhos >= rho High_Bound = ps; else Low_Bound = ps; end ps = (Low_Bound + High_Bound) / 2; end Out = ps; Out end #*********************************************************************************************************** #*1.4 Enthalpy (h) function hV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 Out = fromSIunit_h(h4V_p(p)); else Out = NaN; end Out end function hL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 Out = fromSIunit_h(h4L_p(p)); else Out = NaN; end Out end function hV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 p = p4_T(T); Out = fromSIunit_h(h4V_p(p)); else Out = NaN; end Out end function hL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 p = p4_T(T); Out = fromSIunit_h(h4L_p(p)); else Out = NaN; end Out end function h_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_h(h1_pT(p, T)); elseif Region == 2 Out = fromSIunit_h(h2_pT(p, T)); elseif Region == 3 Out = fromSIunit_h(h3_pT(p, T)); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_h(h5_pT(p, T)); else Out = NaN; end Out end function h_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Out = fromSIunit_h(h1_pT(p, T1_ps(p, s))); elseif Region == 2 Out = fromSIunit_h(h2_pT(p, T2_ps(p, s))); elseif Region == 3 Out = fromSIunit_h(h3_rhoT(1 / v3_ps(p, s), T3_ps(p, s))); elseif Region == 4 xs = x4_ps(p, s); Out = fromSIunit_h(xs * h4V_p(p) + (1 - xs) * h4L_p(p)); elseif Region == 5 Out = fromSIunit_h(h5_pT(p, T5_ps(p, s))); else Out = NaN; end Out end function h_px(p,x) p = toSIunit_p(p); x = toSIunit_x(x); if x > 1 || x < 0 || p >= 22.064 Out = NaN; return end hL = h4L_p(p); hV = h4V_p(p); Out = hL + x * (hV - hL); Out end function h_prho(p,rho) p = toSIunit_p(p); rho = 1 / toSIunit_v(1 / rho); Region = Region_prho(p, rho); if Region == 1 Out = fromSIunit_h(h1_pT(p, T1_prho(p, rho))); elseif Region == 2 Out = fromSIunit_h(h2_pT(p, T2_prho(p, rho))); elseif Region == 3 Out = fromSIunit_h(h3_rhoT(rho, T3_prho(p, rho))); elseif Region == 4 if p < 16.529 vV = v2_pT(p, T4_p(p)); vL = v1_pT(p, T4_p(p)); else vV = v3_ph(p, h4V_p(p)); vL = v3_ph(p, h4L_p(p)); end hV = h4V_p(p); hL = h4L_p(p); x = (1 / rho - vL) / (vV - vL); Out = fromSIunit_h((1 - x) * hL + x * hV); elseif Region == 5 Out = fromSIunit_h(h5_pT(p, T5_prho(p, rho))); else Out = NaN; end Out end function h_Tx(t,x) T = toSIunit_T(t); x = toSIunit_x(x); if x > 1 || x < 0 || T >= 647.096 Out = NaN; return Out end p = p4_T(T); hL = h4L_p(p); hV = h4V_p(p); Out = hL + x * (hV - hL); Out end #*********************************************************************************************************** #*1.5 Specific Volume (v) function vV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_v(v2_pT(p, T4_p(p))); else Out = fromSIunit_v(v3_ph(p, h4V_p(p))); end else Out = NaN; end Out end rhoV_p(p)=1/vV_p(p) function vL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_v(v1_pT(p, T4_p(p))); else Out = fromSIunit_v(v3_ph(p, h4L_p(p))); end else Out = NaN; end Out end rhoL_p(p)=1/vL_p(p) function vV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_v(v2_pT(p4_T(T), T)); else Out = fromSIunit_v(v3_ph(p4_T(T), h4V_p(p4_T(T)))); end else Out = NaN; end Out end rhoV_T(t)=1/vV_T(t) function vL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_v(v1_pT(p4_T(T), T)); else Out = fromSIunit_v(v3_ph(p4_T(T), h4L_p(p4_T(T)))); end else Out = NaN; end Out end rhoL_T(t)=1/vL_T(t) function v_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_v(v1_pT(p, T)); elseif Region == 2 Out = fromSIunit_v(v2_pT(p, T)); elseif Region == 3 Out = fromSIunit_v(v3_ph(p, h3_pT(p, T))); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_v(v5_pT(p, T)); else Out = NaN; end Out end rho_pT(p,t)=1/v_pT(p,t) function v_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region == 1 Out = fromSIunit_v(v1_pT(p, T1_ph(p, h))); elseif Region == 2 Out = fromSIunit_v(v2_pT(p, T2_ph(p, h))); elseif Region == 3 Out = fromSIunit_v(v3_ph(p, h)); elseif Region == 4 xs = x4_ph(p, h); if p < 16.529 v4v = v2_pT(p, T4_p(p)); v4L = v1_pT(p, T4_p(p)); else v4v = v3_ph(p, h4V_p(p)); v4L = v3_ph(p, h4L_p(p)); end Out = fromSIunit_v((xs * v4v + (1 - xs) * v4L)); elseif Region == 5 Ts = T5_ph(p, h); Out = fromSIunit_v(v5_pT(p, Ts)); else Out = NaN; end Out end rho_ph(p,h)=1/v_ph(p,h) function v_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Out = fromSIunit_v(v1_pT(p, T1_ps(p, s))); elseif Region == 2 Out = fromSIunit_v(v2_pT(p, T2_ps(p, s))); elseif Region == 3 Out = fromSIunit_v(v3_ps(p, s)); elseif Region == 4 xs = x4_ps(p, s); if p < 16.529 v4v = v2_pT(p, T4_p(p)); v4L = v1_pT(p, T4_p(p)); else v4v = v3_ph(p, h4V_p(p)); v4L = v3_ph(p, h4L_p(p)); end Out = fromSIunit_v((xs * v4v + (1 - xs) * v4L)); elseif Region == 5 Ts = T5_ps(p, s); Out = fromSIunit_v(v5_pT(p, Ts)); else Out = NaN; end Out end rho_ps(p,s)=1/v_ps(p,s) #*********************************************************************************************************** #*1.6 Density (rho) # Density is calculated as 1/v. Se section 1.5 Volume #*********************************************************************************************************** #*1.7 Specific entropy (s) function sV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_s(s2_pT(p, T4_p(p))); else Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p))); end else Out = NaN; end Out end function sL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_s(s1_pT(p, T4_p(p))); else Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p))); end else Out = NaN; end Out end function sV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_s(s2_pT(p4_T(T), T)); else Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T)); end else Out = NaN; end Out end function sL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_s(s1_pT(p4_T(T), T)); else Out = fromSIunit_s(s3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T)); end else Out = NaN; end Out end function s_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_s(s1_pT(p, T)); elseif Region == 2 Out = fromSIunit_s(s2_pT(p, T)); elseif Region == 3 hs = h3_pT(p, T); rhos = 1 / v3_ph(p, hs); Out = fromSIunit_s(s3_rhoT(rhos, T)); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_s(s5_pT(p, T)); else Out = NaN; end Out end function s_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region == 1 T = T1_ph(p, h); Out = fromSIunit_s(s1_pT(p, T)); elseif Region == 2 T = T2_ph(p, h); Out = fromSIunit_s(s2_pT(p, T)); elseif Region == 3 rhos = 1 / v3_ph(p, h); Ts = T3_ph(p, h); Out = fromSIunit_s(s3_rhoT(rhos, Ts)); elseif Region == 4 Ts = T4_p(p); xs = x4_ph(p, h); if p < 16.529 s4v = s2_pT(p, Ts); s4L = s1_pT(p, Ts); else v4v = v3_ph(p, h4V_p(p)); s4v = s3_rhoT(1 / v4v, Ts); v4L = v3_ph(p, h4L_p(p)); s4L = s3_rhoT(1 / v4L, Ts); end Out = fromSIunit_s((xs * s4v + (1 - xs) * s4L)); elseif Region == 5 T = T5_ph(p, h); Out = fromSIunit_s(s5_pT(p, T)); else Out = NaN; end Out end #*********************************************************************************************************** #*1.8 Specific internal energy (u) function uV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_u(u2_pT(p, T4_p(p))); else Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p))); end else Out = NaN; end Out end function uL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_u(u1_pT(p, T4_p(p))); else Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p))); end else Out = NaN; end Out end function uV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_u(u2_pT(p4_T(T), T)); else Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T)); end else Out = NaN; end Out end function uL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_u(u1_pT(p4_T(T), T)); else Out = fromSIunit_u(u3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T)); end else Out = NaN; end Out end function u_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_u(u1_pT(p, T)); elseif Region == 2 Out = fromSIunit_u(u2_pT(p, T)); elseif Region == 3 hs = h3_pT(p, T); rhos = 1 / v3_ph(p, hs); Out = fromSIunit_u(u3_rhoT(rhos, T)); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_u(u5_pT(p, T)); else Out = NaN; end Out end function u_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region == 1 Ts = T1_ph(p, h); Out = fromSIunit_u(u1_pT(p, Ts)); elseif Region == 2 Ts = T2_ph(p, h); Out = fromSIunit_u(u2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ph(p, h); Ts = T3_ph(p, h); Out = fromSIunit_u(u3_rhoT(rhos, Ts)); elseif Region == 4 Ts = T4_p(p); xs = x4_ph(p, h); if p < 16.529 u4v = u2_pT(p, Ts); u4L = u1_pT(p, Ts); else v4v = v3_ph(p, h4V_p(p)); u4v = u3_rhoT(1 / v4v, Ts); v4L = v3_ph(p, h4L_p(p)); u4L = u3_rhoT(1 / v4L, Ts); end Out = fromSIunit_u((xs * u4v + (1 - xs) * u4L)); elseif Region == 5 Ts = T5_ph(p, h); Out = fromSIunit_u(u5_pT(p, Ts)); else Out = NaN; end Out end function u_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Ts = T1_ps(p, s); Out = fromSIunit_u(u1_pT(p, Ts)); elseif Region == 2 Ts = T2_ps(p, s); Out = fromSIunit_u(u2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ps(p, s); Ts = T3_ps(p, s); Out = fromSIunit_u(u3_rhoT(rhos, Ts)); elseif Region == 4 if p < 16.529 uLp = u1_pT(p, T4_p(p)); uVp = u2_pT(p, T4_p(p)); else uLp = u3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)); uVp = u3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)); end xs = x4_ps(p, s); Out = fromSIunit_u((xs * uVp + (1 - xs) * uLp)); elseif Region == 5 Ts = T5_ps(p, s); Out = fromSIunit_u(u5_pT(p, Ts)); else Out = NaN; end Out end #*********************************************************************************************************** #*1.9 Specific isobaric heat capacity (Cp) function CpV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_Cp(Cp2_pT(p, T4_p(p))); else Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p))); end else Out = NaN; end Out end function CpL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_Cp(Cp1_pT(p, T4_p(p))); else Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p))); end else Out = NaN; end Out end function CpV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_Cp(Cp2_pT(p4_T(T), T)); else Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T)); end else Out = NaN; end Out end function CpL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_Cp(Cp1_pT(p4_T(T), T)); else Out = fromSIunit_Cp(Cp3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T)); end else Out = NaN; end Out end function Cp_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_Cp(Cp1_pT(p, T)); elseif Region == 2 Out = fromSIunit_Cp(Cp2_pT(p, T)); elseif Region == 3 hs = h3_pT(p, T); rhos = 1 / v3_ph(p, hs); Out = fromSIunit_Cp(Cp3_rhoT(rhos, T)); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_Cp(Cp5_pT(p, T)); else Out = NaN; end Out end function Cp_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region == 1 Ts = T1_ph(p, h); Out = fromSIunit_Cp(Cp1_pT(p, Ts)); elseif Region == 2 Ts = T2_ph(p, h); Out = fromSIunit_Cp(Cp2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ph(p, h); Ts = T3_ph(p, h); Out = fromSIunit_Cp(Cp3_rhoT(rhos, Ts)); elseif Region == 4 Out = NaN; elseif Region == 5 Ts = T5_ph(p, h); Out = fromSIunit_Cp(Cp5_pT(p, Ts)); else Out = NaN; end Out end function Cp_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Ts = T1_ps(p, s); Out = fromSIunit_Cp(Cp1_pT(p, Ts)); elseif Region == 2 Ts = T2_ps(p, s); Out = fromSIunit_Cp(Cp2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ps(p, s); Ts = T3_ps(p, s); Out = fromSIunit_Cp(Cp3_rhoT(rhos, Ts)); elseif Region == 4 Out = NaN; elseif Region == 5 Ts = T5_ps(p, s); Out = fromSIunit_Cp(Cp5_pT(p, Ts)); else Out = NaN; end Out end #*********************************************************************************************************** #*1.10 Specific isochoric heat capacity (Cv) function CvV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_Cv(Cv2_pT(p, T4_p(p))); else Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p))); end else Out = NaN; end Out end function CvL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_Cv(Cv1_pT(p, T4_p(p))); else Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p))); end else Out = NaN; end Out end function CvV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_Cv(Cv2_pT(p4_T(T), T)); else Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T)); end else Out = NaN; end Out end function CvL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_Cv(Cv1_pT(p4_T(T), T)); else Out = fromSIunit_Cv(Cv3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T)); end else Out = NaN; end Out end function Cv_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_Cv(Cv1_pT(p, T)); elseif Region == 2 Out = fromSIunit_Cv(Cv2_pT(p, T)); elseif Region == 3 hs = h3_pT(p, T); rhos = 1 / v3_ph(p, hs); Out = fromSIunit_Cv(Cv3_rhoT(rhos, T)); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_Cv(Cv5_pT(p, T)); else Out = NaN; end Out end function Cv_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region == 1 Ts = T1_ph(p, h); Out = fromSIunit_Cv(Cv1_pT(p, Ts)); elseif Region == 2 Ts = T2_ph(p, h); Out = fromSIunit_Cv(Cv2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ph(p, h); Ts = T3_ph(p, h); Out = fromSIunit_Cv(Cv3_rhoT(rhos, Ts)); elseif Region == 4 Out = NaN; elseif Region == 5 Ts = T5_ph(p, h); Out = fromSIunit_Cv(Cv5_pT(p, Ts)); else Out = NaN; end Out end function Cv_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Ts = T1_ps(p, s); Out = fromSIunit_Cv(Cv1_pT(p, Ts)); elseif Region == 2 Ts = T2_ps(p, s); Out = fromSIunit_Cv(Cv2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ps(p, s); Ts = T3_ps(p, s); Out = fromSIunit_Cv(Cv3_rhoT(rhos, Ts)); elseif Region == 4 Out = NaN; #(xs * CvVp + (1 - xs) * CvLp) / Cv_scale - Cv_offset elseif Region == 5 Ts = T5_ps(p, s); Out = fromSIunit_Cv(Cv5_pT(p, Ts)); else #Out = CVErr(xlErrValue); end Out end #*********************************************************************************************************** #*1.11 Speed of sound function wV_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_w(w2_pT(p, T4_p(p))); else Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p))); end else Out = NaN; end Out end function wL_p(p) p = toSIunit_p(p); if p > 0.000611657 && p < 22.06395 if p < 16.529 Out = fromSIunit_w(w1_pT(p, T4_p(p))); else Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p))); end else Out = NaN; end Out end function wV_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_w(w2_pT(p4_T(T), T)); else Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p4_T(T), h4V_p(p4_T(T)))), T)); end else Out = NaN; end Out end function wL_T(t) T = toSIunit_T(t); if T > 273.15 && T < 647.096 if T <= 623.15 Out = fromSIunit_w(w1_pT(p4_T(T), T)); else Out = fromSIunit_w(w3_rhoT(1 / (v3_ph(p4_T(T), h4L_p(p4_T(T)))), T)); end else Out = NaN; end Out end function w_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 1 Out = fromSIunit_w(w1_pT(p, T)); elseif Region == 2 Out = fromSIunit_w(w2_pT(p, T)); elseif Region == 3 hs = h3_pT(p, T); rhos = 1 / v3_ph(p, hs); Out = fromSIunit_w(w3_rhoT(rhos, T)); elseif Region == 4 Out = NaN; elseif Region == 5 Out = fromSIunit_w(w5_pT(p, T)); else Out = NaN; end Out end function w_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region == 1 Ts = T1_ph(p, h); Out = fromSIunit_w(w1_pT(p, Ts)); elseif Region == 2 Ts = T2_ph(p, h); Out = fromSIunit_w(w2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ph(p, h); Ts = T3_ph(p, h); Out = fromSIunit_w(w3_rhoT(rhos, Ts)); elseif Region == 4 Out = NaN; elseif Region == 5 Ts = T5_ph(p, h); Out = fromSIunit_w(w5_pT(p, Ts)); else Out = NaN; end Out end function w_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); Region = region_ps(p, s); if Region == 1 Ts = T1_ps(p, s); Out = fromSIunit_w(w1_pT(p, Ts)); elseif Region == 2 Ts = T2_ps(p, s); Out = fromSIunit_w(w2_pT(p, Ts)); elseif Region == 3 rhos = 1 / v3_ps(p, s); Ts = T3_ps(p, s); Out = fromSIunit_w(w3_rhoT(rhos, Ts)); elseif Region == 4 Out = NaN; #(xs * wVp + (1 - xs) * wLp) / w_scale - w_offset elseif Region == 5 Ts = T5_ps(p, s); Out = fromSIunit_w(w5_pT(p, Ts)); else Out = NaN; end Out end #*********************************************************************************************************** #*1.12 Viscosity function my_pT(p,t) p = toSIunit_p(p); T = toSIunit_T(t); Region = region_pT(p, T); if Region == 4 Out = NaN; elseif Region in [1,2,3,5] Out = fromSIunit_my(my_AllRegions_pT(p, T)); else Out = NaN; end Out end function my_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); Region = region_ph(p, h); if Region in [1, 2, 3, 5] Out = fromSIunit_my(my_AllRegions_ph(p, h)); elseif Region == 4 Out = NaN; else Out = NaN; end Out end function my_ps(p,s) h = h_ps(p,s); Out = my_ph(p,h); Out end #*********************************************************************************************************** #*1.13 Prandtl function pr_pT(p,t) Cp = toSIunit_Cp(Cp_pT(p,t)); my = toSIunit_my(my_pT(p,t)); tc = toSIunit_tc(tc_pT(p,t)); Out = Cp * 1000 * my / tc; Out end function pr_ph(p,h) Cp = toSIunit_Cp(Cp_ph(p, h)); my = toSIunit_my(my_ph(p,h)); tc = toSIunit_tc(tc_ph(p,h)); Out = Cp * 1000 * my / tc; Out end #*********************************************************************************************************** #*1.14 Kappa #*********************************************************************************************************** #*********************************************************************************************************** #*1.15 Surface tension function st_T(t) T = toSIunit_T(t); Out = fromSIunit_st(Surface_Tension_T(T)); Out end function st_p(p) T = Tsat_p(p); T = toSIunit_T(T); Out = fromSIunit_st(Surface_Tension_T(T)); Out end #*********************************************************************************************************** #*1.16 Thermal conductivity function tcL_p(p) T = Tsat_p(p); v = vL_p(p); p = toSIunit_p(p); T = toSIunit_T(T); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end function tcV_p(p) ps = p; T = Tsat_p(ps); v = vV_p(ps); p = toSIunit_p(p); T = toSIunit_T(T); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end function tcL_T(t) Ts = t; p = psat_T(Ts); v = vL_T(Ts); p = toSIunit_p(p); T = toSIunit_T(Ts); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end function tcV_T(t) Ts = t; p = psat_T(Ts); v = vV_T(Ts); p = toSIunit_p(p); T = toSIunit_T(Ts); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end function tc_pT(p,t) Ts = t; ps = p; v = v_pT(ps, Ts); p = toSIunit_p(ps); T = toSIunit_T(Ts); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end function tc_ph(p,h) hs = h; ps = p; v = v_ph(ps, hs); T = T_ph(ps, hs); p = toSIunit_p(ps); T = toSIunit_T(T); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end function tc_hs(h,s) hs = h; p = p_hs(hs, s); ps = p; v = v_ph(ps, hs); T = T_ph(ps, hs); p = toSIunit_p(p); T = toSIunit_T(T); v = toSIunit_v(v); rho = 1 / v; Out = fromSIunit_tc(tc_ptrho(p, T, rho)); Out end #*********************************************************************************************************** #*1.17 Vapour fraction function x_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); if p > 0.000611657 && p < 22.06395 Out = fromSIunit_x(x4_ph(p, h)); else Out = NaN; end Out end function x_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); if p > 0.000611657 && p < 22.06395 Out = fromSIunit_x(x4_ps(p, s)); else Out = NaN; end Out end #*********************************************************************************************************** #*1.18 Vapour Volume Fraction function vx_ph(p,h) p = toSIunit_p(p); h = toSIunit_h(h); if p > 0.000611657 && p < 22.06395 if p < 16.529 vL = v1_pT(p, T4_p(p)); vV = v2_pT(p, T4_p(p)); else vL = v3_ph(p, h4L_p(p)); vV = v3_ph(p, h4V_p(p)); end xs = x4_ph(p, h); Out = fromSIunit_vx((xs * vV / (xs * vV + (1 - xs) * vL))); else Out = NaN; end Out end function vx_ps(p,s) p = toSIunit_p(p); s = toSIunit_s(s); if p > 0.000611657 && p < 22.06395 if p < 16.529 vL = v1_pT(p, T4_p(p)); vV = v2_pT(p, T4_p(p)); else vL = v3_ph(p, h4L_p(p)); vV = v3_ph(p, h4V_p(p)); end xs = x4_ps(p, s); Out = fromSIunit_vx((xs * vV / (xs * vV + (1 - xs) * vL))); else Out = NaN; end Out end function check() err=check(); err end #*********************************************************************************************************** #*2 IAPWS IF 97 Calling functions * #*********************************************************************************************************** # #*********************************************************************************************************** #*2.1 Functions for region 1 function v1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma_der_pi = 0; for i = 1 : 34 gamma_der_pi = gamma_der_pi - n1[i] * I1[i] * (7.1 - Pi) ^ (I1[i]- 1) * (tau - 1.222) ^ J1[i]; end v1_pT = R * T / p * Pi * gamma_der_pi / 1000; v1_pT end function h1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma_der_tau = 0; for i = 1 : 34 gamma_der_tau = gamma_der_tau + (n1[i] * (7.1 - Pi) ^ I1[i] * J1[i]* (tau - 1.222) ^ (J1[i] - 1)); end h1_pT = R * T * tau * gamma_der_tau; h1_pT end function u1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma_der_tau = 0; gamma_der_pi = 0; for i = 1 : 34 gamma_der_pi = gamma_der_pi - n1[i] * I1[i] * (7.1 - Pi) ^ (I1[i] - 1) * (tau - 1.222) ^ J1[i]; gamma_der_tau = gamma_der_tau + (n1[i] * (7.1 - Pi) ^ I1[i] * J1[i] * (tau - 1.222) ^ (J1[i] - 1)); end u1_pT = R * T * (tau * gamma_der_tau - Pi * gamma_der_pi); u1_pT end function s1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma = 0; gamma_der_tau = 0; for i = 1 : 34 gamma_der_tau = gamma_der_tau + (n1[i] * (7.1 - Pi) ^ I1[i] * J1[i] * (tau - 1.222) ^ (J1[i] - 1)); gamma = gamma + n1[i] * (7.1 - Pi) ^ I1[i] * (tau - 1.222) ^ J1[i]; end s1_pT = R * tau * gamma_der_tau - R * gamma; s1_pT end function Cp1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma_der_tautau = 0; for i = 1 :34 gamma_der_tautau = gamma_der_tautau + (n1[i] * (7.1 - Pi) ^ I1[i] * J1[i] * (J1[i] - 1) * (tau - 1.222) ^ (J1[i] - 2)); end Cp1_pT = -R * tau ^ 2 * gamma_der_tautau; Cp1_pT end function Cv1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma_der_pi = 0; gamma_der_pipi = 0; gamma_der_pitau = 0; gamma_der_tautau = 0; for i = 1 : 34 gamma_der_pi = gamma_der_pi - n1[i] * I1[i] * (7.1 - Pi) ^ (I1[i] - 1) * (tau - 1.222) ^ J1[i]; gamma_der_pipi = gamma_der_pipi + n1[i] * I1[i] * (I1[i] - 1) * (7.1 - Pi) ^ (I1[i] - 2) * (tau - 1.222) ^ J1[i]; gamma_der_pitau = gamma_der_pitau - n1[i] * I1[i] * (7.1 - Pi) ^ (I1[i] - 1) * J1[i] * (tau - 1.222) ^ (J1[i] - 1); gamma_der_tautau = gamma_der_tautau + n1[i] * (7.1 - Pi) ^ I1[i] * J1[i] * (J1[i] - 1) * (tau - 1.222) ^ (J1[i] - 2); end Cv1_pT = R * (-tau ^ 2 * gamma_der_tautau + (gamma_der_pi - tau * gamma_der_pitau) ^ 2 / gamma_der_pipi); Cv1_pT end function w1_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation #Eqution 7, Table 3, Page 6 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 8, 8, 21, 23, 29, 30, 31, 32]; J1 = [-2, -1, 0, 1, 2, 3, 4, 5, -9, -7, -1, 0, 1, 3, -3, 0, 1, 3, 17, -4, 0, 6, -5, -2, 10, -8, -11, -6, -29, -31, -38, -39, -40, -41]; n1 = [0.14632971213167, -0.84548187169114, -3.756360367204, 3.3855169168385, -0.95791963387872, 0.15772038513228, -0.016616417199501, 8.1214629983568E-04, 2.8319080123804E-04, -6.0706301565874E-04, -0.018990068218419, -0.032529748770505, -0.021841717175414, -5.283835796993E-05, -4.7184321073267E-04, -3.0001780793026E-04, 4.7661393906987E-05, -4.4141845330846E-06, -7.2694996297594E-16, -3.1679644845054E-05, -2.8270797985312E-06, -8.5205128120103E-10, -2.2425281908E-06, -6.5171222895601E-07, -1.4341729937924E-13, -4.0516996860117E-07, -1.2734301741641E-09, -1.7424871230634E-10, -6.8762131295531E-19, 1.4478307828521E-20, 2.6335781662795E-23, -1.1947622640071E-23, 1.8228094581404E-24, -9.3537087292458E-26]; R = 0.461526; #kJ/(kg K) Pi = p / 16.53; tau = 1386 / T; gamma_der_pi = 0; gamma_der_pipi = 0; gamma_der_pitau = 0; gamma_der_tautau = 0; for i = 1 : 34 gamma_der_pi = gamma_der_pi - n1[i] * I1[i] * (7.1 - Pi) ^ (I1[i] - 1) * (tau - 1.222) ^ J1[i]; gamma_der_pipi = gamma_der_pipi + n1[i] * I1[i] * (I1[i] - 1) * (7.1 - Pi) ^ (I1[i] - 2) * (tau - 1.222) ^ J1[i]; gamma_der_pitau = gamma_der_pitau - n1[i] * I1[i] * (7.1 - Pi) ^ (I1[i] - 1) * J1[i] * (tau - 1.222) ^ (J1[i] - 1); gamma_der_tautau = gamma_der_tautau + n1[i] * (7.1 - Pi) ^ I1[i] * J1[i] * (J1[i] - 1) * (tau - 1.222) ^ (J1[i] - 2); end w1_pT = (1000 * R * T * gamma_der_pi ^ 2 / ((gamma_der_pi - tau * gamma_der_pitau) ^ 2 / (tau ^ 2 * gamma_der_tautau) - gamma_der_pipi)) ^ 0.5; w1_pT end function T1_ph(p, h) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation, 5.2.1 The Backward Equation T ( p,h ) #Eqution 11, Table 6, Page 10 I1 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 6]; J1 = [0, 1, 2, 6, 22, 32, 0, 1, 2, 3, 4, 10, 32, 10, 32, 10, 32, 32, 32, 32]; n1 = [-238.72489924521, 404.21188637945, 113.49746881718, -5.8457616048039, -1.528548241314E-04, -1.0866707695377E-06, -13.391744872602, 43.211039183559, -54.010067170506, 30.535892203916, -6.5964749423638, 9.3965400878363E-03, 1.157364750534E-07, -2.5858641282073E-05, -4.0644363084799E-09, 6.6456186191635E-08, 8.0670734103027E-11, -9.3477771213947E-13, 5.8265442020601E-15, -1.5020185953503E-17]; Pi = p / 1; eta = h / 2500; T = 0; for i = 1 : 20 T = T + n1[i] * Pi ^ I1[i] * (eta + 1) ^ J1[i]; end T1_ph = T; T1_ph end function T1_ps(p, s) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #5 Equations for Region 1, Section. 5.1 Basic Equation, 5.2.2 The Backward Equation T ( p, s ) #Eqution 13, Table 8, Page 11 I1 = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4]; J1 = [0, 1, 2, 3, 11, 31, 0, 1, 2, 3, 12, 31, 0, 1, 2, 9, 31, 10, 32, 32]; n1 = [174.78268058307, 34.806930892873, 6.5292584978455, 0.33039981775489, -1.9281382923196E-07, -2.4909197244573E-23, -0.26107636489332, 0.22592965981586, -0.064256463395226, 7.8876289270526E-03, 3.5672110607366E-10, 1.7332496994895E-24, 5.6608900654837E-04, -3.2635483139717E-04, 4.4778286690632E-05, -5.1322156908507E-10, -4.2522657042207E-26, 2.6400441360689E-13, 7.8124600459723E-29, -3.0732199903668E-31]; Pi = p / 1; Sigma = s / 1; T = 0; for i = 1 : 20 T = T + n1[i] * Pi ^ I1[i] * (Sigma + 2) ^ J1[i]; end T1_ps = T; T1_ps end function p1_hs(h, s) #Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) to the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #5 Backward Equation p(h,s) for Region 1 #Eqution 1, Table 2, Page 5 I1 = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5]; J1 = [0, 1, 2, 4, 5, 6, 8, 14, 0, 1, 4, 6, 0, 1, 10, 4, 1, 4, 0]; n1 = [-0.691997014660582, -18.361254878756, -9.28332409297335, 65.9639569909906, -16.2060388912024, 450.620017338667, 854.68067822417, 6075.23214001162, 32.6487682621856, -26.9408844582931, -319.9478483343, -928.35430704332, 30.3634537455249, -65.0540422444146, -4309.9131651613, -747.512324096068, 730.000345529245, 1142.84032569021, -436.407041874559]; eta = h / 3400; Sigma = s / 7.6; p = 0; for i = 1 : 19 p = p + n1[i] * (eta + 0.05) ^ I1[i] * (Sigma + 0.05) ^ J1[i]; end p1_hs = p * 100; p1_hs end function T1_prho(p ,rho) #Solve by iteration. Observe that for low temperatures this equation has 2 solutions. #Solve with half interval method Low_Bound = 273.15; High_Bound = T4_p(p); rhos=-1000; Ts =0.0 while abs(rho - rhos) > 0.00001 Ts = (Low_Bound + High_Bound) / 2; rhos = 1 / v1_pT(p, Ts); if rhos < rho High_Bound = Ts; else Low_Bound = Ts; end end T1_prho = Ts; T1_prho end #*********************************************************************************************************** #*2.2 functions for region 2 function v2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0_pi = 1 / Pi; gr_pi = 0; for i = 1 : 43 gr_pi = gr_pi + nr[i] * Ir[i] * Pi ^ (Ir[i] - 1) * (tau - 0.5) ^ Jr[i]; end v2_pT = R * T / p * Pi * (g0_pi + gr_pi) / 1000; v2_pT end function h2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0_tau = 0; for i = 1 : 9 g0_tau = g0_tau + n0[i] * J0[i] * tau ^ (J0[i] - 1); end gr_tau = 0; for i = 1 : 43 gr_tau = gr_tau + nr[i] * Pi ^ Ir[i] * Jr[i] * (tau - 0.5) ^ (Jr[i] - 1); end h2_pT = R * T * tau * (g0_tau + gr_tau); h2_pT end function u2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0_pi = 1 / Pi; g0_tau = 0; for i = 1 : 9 g0_tau = g0_tau + n0[i] * J0[i] * tau ^ (J0[i] - 1); end gr_pi = 0; gr_tau = 0; for i = 1 : 43 gr_pi = gr_pi + nr[i] * Ir[i] * Pi ^ (Ir[i] - 1) * (tau - 0.5) ^ Jr[i]; gr_tau = gr_tau + nr[i] * Pi ^ Ir[i] * Jr[i] * (tau - 0.5) ^ (Jr[i] - 1); end u2_pT = R * T * (tau * (g0_tau + gr_tau) - Pi * (g0_pi + gr_pi)); u2_pT end function s2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0 = log(Pi); g0_tau = 0; for i = 1 : 9 g0 = g0 + n0[i] * tau ^ J0[i]; g0_tau = g0_tau + n0[i] * J0[i] * tau ^ (J0[i] - 1); end gr = 0; gr_tau = 0; for i = 1 : 43 gr = gr + nr[i] * Pi ^ Ir[i] * (tau - 0.5) ^ Jr[i]; gr_tau = gr_tau + nr[i] * Pi ^ Ir[i] * Jr[i] * (tau - 0.5) ^ (Jr[i] - 1); end s2_pT = R * (tau * (g0_tau + gr_tau) - (g0 + gr)); s2_pT end function Cp2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0_tautau = 0; for i = 1 : 9 g0_tautau = g0_tautau + n0[i] * J0[i] * (J0[i] - 1) * tau ^ (J0[i] - 2); end gr_tautau = 0; for i = 1 : 43 gr_tautau = gr_tautau + nr[i] * Pi ^ Ir[i] * Jr[i] * (Jr[i] - 1) * (tau - 0.5) ^ (Jr[i] - 2); end Cp2_pT = -R * tau ^ 2 * (g0_tautau + gr_tautau); Cp2_pT end function Cv2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0_tautau = 0; for i = 1 : 9 g0_tautau = g0_tautau + n0[i] * J0[i] * (J0[i] - 1) * tau ^ (J0[i] - 2); end gr_pi = 0; gr_pitau = 0; gr_pipi = 0; gr_tautau = 0; for i = 1 : 43 gr_pi = gr_pi + nr[i] * Ir[i] * Pi ^ (Ir[i] - 1) * (tau - 0.5) ^ Jr[i]; gr_pipi = gr_pipi + nr[i] * Ir[i] * (Ir[i] - 1) * Pi ^ (Ir[i] - 2) * (tau - 0.5) ^ Jr[i]; gr_pitau = gr_pitau + nr[i] * Ir[i] * Pi ^ (Ir[i] - 1) * Jr[i] * (tau - 0.5) ^ (Jr[i] - 1); gr_tautau = gr_tautau + nr[i] * Pi ^ Ir[i] * Jr[i] * (Jr[i] - 1) * (tau - 0.5) ^ (Jr[i] - 2); end Cv2_pT = R * (-tau ^ 2 * (g0_tautau + gr_tautau) - (1 + Pi * gr_pi - tau * Pi * gr_pitau) ^ 2 / (1 - Pi ^ 2 * gr_pipi)); Cv2_pT end function w2_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2, Section. 6.1 Basic Equation #Table 11 and 12, Page 14 and 15 J0 = [0, 1, -5, -4, -3, -2, -1, 2, 3]; n0 = [-9.6927686500217, 10.086655968018, -0.005608791128302, 0.071452738081455, -0.40710498223928, 1.4240819171444, -4.383951131945, -0.28408632460772, 0.021268463753307]; Ir = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 10, 10, 10, 16, 16, 18, 20, 20, 20, 21, 22, 23, 24, 24, 24]; Jr = [0, 1, 2, 3, 6, 1, 2, 4, 7, 36, 0, 1, 3, 6, 35, 1, 2, 3, 7, 3, 16, 35, 0, 11, 25, 8, 36, 13, 4, 10, 14, 29, 50, 57, 20, 35, 48, 21, 53, 39, 26, 40, 58]; nr = [-1.7731742473213E-03, -0.017834862292358, -0.045996013696365, -0.057581259083432, -0.05032527872793, -3.3032641670203E-05, -1.8948987516315E-04, -3.9392777243355E-03, -0.043797295650573, -2.6674547914087E-05, 2.0481737692309E-08, 4.3870667284435E-07, -3.227767723857E-05, -1.5033924542148E-03, -0.040668253562649, -7.8847309559367E-10, 1.2790717852285E-08, 4.8225372718507E-07, 2.2922076337661E-06, -1.6714766451061E-11, -2.1171472321355E-03, -23.895741934104, -5.905956432427E-18, -1.2621808899101E-06, -0.038946842435739, 1.1256211360459E-11, -8.2311340897998, 1.9809712802088E-08, 1.0406965210174E-19, -1.0234747095929E-13, -1.0018179379511E-09, -8.0882908646985E-11, 0.10693031879409, -0.33662250574171, 8.9185845355421E-25, 3.0629316876232E-13, -4.2002467698208E-06, -5.9056029685639E-26, 3.7826947613457E-06, -1.2768608934681E-15, 7.3087610595061E-29, 5.5414715350778E-17, -9.436970724121E-07]; R = 0.461526; #kJ/(kg K) Pi = p; tau = 540 / T; g0_tautau = 0; for i = 1 : 9 g0_tautau = g0_tautau + n0[i] * J0[i] * (J0[i] - 1) * tau ^ (J0[i] - 2); end gr_pi = 0; gr_pitau = 0; gr_pipi = 0; gr_tautau = 0; for i = 1 : 43 gr_pi = gr_pi + nr[i] * Ir[i] * Pi ^ (Ir[i] - 1) * (tau - 0.5) ^ Jr[i]; gr_pipi = gr_pipi + nr[i] * Ir[i] * (Ir[i] - 1) * Pi ^ (Ir[i] - 2) * (tau - 0.5) ^ Jr[i]; gr_pitau = gr_pitau + nr[i] * Ir[i] * Pi ^ (Ir[i] - 1) * Jr[i] * (tau - 0.5) ^ (Jr[i] - 1); gr_tautau = gr_tautau + nr[i] * Pi ^ Ir[i] * Jr[i] * (Jr[i] - 1) * (tau - 0.5) ^ (Jr[i] - 2); end w2_pT = (1000 * R * T * (1 + 2 * Pi * gr_pi + Pi ^ 2 * gr_pi ^ 2) / ((1 - Pi ^ 2 * gr_pipi) + (1 + Pi * gr_pi - tau * Pi * gr_pitau) ^ 2 / (tau ^ 2 * (g0_tautau + gr_tautau)))) ^ 0.5; w2_pT end function T2_ph(p, h) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2,6.3.1 The Backward Equations T( p, h ) for Subregions 2a, 2b, and 2c if p < 4 sub_reg = 1; else if p < (905.84278514723 - 0.67955786399241 * h + 1.2809002730136E-04 * h ^ 2) sub_reg = 2; else sub_reg = 3; end end if sub_reg == 1 #Subregion A #Table 20, Eq 22, page 22 Ji = [0, 1, 2, 3, 7, 20, 0, 1, 2, 3, 7, 9, 11, 18, 44, 0, 2, 7, 36, 38, 40, 42, 44, 24, 44, 12, 32, 44, 32, 36, 42, 34, 44, 28]; Ii = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7]; ni = [1089.8952318288, 849.51654495535, -107.81748091826, 33.153654801263, -7.4232016790248, 11.765048724356, 1.844574935579, -4.1792700549624, 6.2478196935812, -17.344563108114, -200.58176862096, 271.96065473796, -455.11318285818, 3091.9688604755, 252266.40357872, -6.1707422868339E-03, -0.31078046629583, 11.670873077107, 128127984.04046, -985549096.23276, 2822454697.3002, -3594897141.0703, 1722734991.3197, -13551.334240775, 12848734.66465, 1.3865724283226, 235988.32556514, -13105236.545054, 7399.9835474766, -551966.9703006, 3715408.5996233, 19127.72923966, -415351.64835634, -62.459855192507]; Ts = 0; hs = h / 2000; for i = 1 : 34 Ts = Ts + ni[i] * p ^ (Ii[i]) * (hs - 2.1) ^ Ji[i]; end T2_ph = Ts; elseif sub_reg == 2 #Subregion B #Table 21, Eq 23, page 23 Ji = [0, 1, 2, 12, 18, 24, 28, 40, 0, 2, 6, 12, 18, 24, 28, 40, 2, 8, 18, 40, 1, 2, 12, 24, 2, 12, 18, 24, 28, 40, 18, 24, 40, 28, 2, 28, 1, 40]; Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 7, 7, 9, 9]; ni = [1489.5041079516, 743.07798314034, -97.708318797837, 2.4742464705674, -0.63281320016026, 1.1385952129658, -0.47811863648625, 8.5208123431544E-03, 0.93747147377932, 3.3593118604916, 3.3809355601454, 0.16844539671904, 0.73875745236695, -0.47128737436186, 0.15020273139707, -0.002176411421975, -0.021810755324761, -0.10829784403677, -0.046333324635812, 7.1280351959551E-05, 1.1032831789999E-04, 1.8955248387902E-04, 3.0891541160537E-03, 1.3555504554949E-03, 2.8640237477456E-07, -1.0779857357512E-05, -7.6462712454814E-05, 1.4052392818316E-05, -3.1083814331434E-05, -1.0302738212103E-06, 2.821728163504E-07, 1.2704902271945E-06, 7.3803353468292E-08, -1.1030139238909E-08, -8.1456365207833E-14, -2.5180545682962E-11, -1.7565233969407E-18, 8.6934156344163E-15]; Ts = 0; hs = h / 2000; for i = 1 : 38 Ts = Ts + ni[i] * (p - 2) ^ (Ii[i]) * (hs - 2.6) ^ Ji[i]; end T2_ph = Ts; else #Subregion C #Table 22, Eq 24, page 24 Ji = [0, 4, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 4, 8, 4, 0, 1, 4, 10, 12, 16, 20, 22]; Ii = [-7, -7, -6, -6, -5, -5, -2, -2, -1, -1, 0, 0, 1, 1, 2, 6, 6, 6, 6, 6, 6, 6, 6]; ni = [-3236839855524.2, 7326335090218.1, 358250899454.47, -583401318515.9, -10783068217.47, 20825544563.171, 610747.83564516, 859777.2253558, -25745.72360417, 31081.088422714, 1208.2315865936, 482.19755109255, 3.7966001272486, -10.842984880077, -0.04536417267666, 1.4559115658698E-13, 1.126159740723E-12, -1.7804982240686E-11, 1.2324579690832E-07, -1.1606921130984E-06, 2.7846367088554E-05, -5.9270038474176E-04, 1.2918582991878E-03]; Ts = 0; hs = h / 2000; for i = 1 : 23 Ts = Ts + ni[i] * (p + 25) ^ (Ii[i]) * (hs - 1.8) ^ Ji[i]; end T2_ph = Ts; end T2_ph end function T2_ps(p, s) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #6 Equations for Region 2,6.3.2 The Backward Equations T( p, s ) for Subregions 2a, 2b, and 2c #Page 26 if p < 4 sub_reg = 1; else if s < 5.85 sub_reg = 3; else sub_reg = 2; end end if sub_reg == 1 #Subregion A #Table 25, Eq 25, page 26 Ii = [-1.5, -1.5, -1.5, -1.5, -1.5, -1.5, -1.25, -1.25, -1.25, -1, -1, -1, -1, -1, -1, -0.75, -0.75, -0.5, -0.5, -0.5, -0.5, -0.25, -0.25, -0.25, -0.25, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.75, 0.75, 0.75, 0.75, 1, 1, 1.25, 1.25, 1.5, 1.5]; Ji = [-24, -23, -19, -13, -11, -10, -19, -15, -6, -26, -21, -17, -16, -9, -8, -15, -14, -26, -13, -9, -7, -27, -25, -11, -6, 1, 4, 8, 11, 0, 1, 5, 6, 10, 14, 16, 0, 4, 9, 17, 7, 18, 3, 15, 5, 18]; ni = [-392359.83861984, 515265.7382727, 40482.443161048, -321.93790923902, 96.961424218694, -22.867846371773, -449429.14124357, -5011.8336020166, 0.35684463560015, 44235.33584819, -13673.388811708, 421632.60207864, 22516.925837475, 474.42144865646, -149.31130797647, -197811.26320452, -23554.39947076, -19070.616302076, 55375.669883164, 3829.3691437363, -603.91860580567, 1936.3102620331, 4266.064369861, -5978.0638872718, -704.01463926862, 338.36784107553, 20.862786635187, 0.033834172656196, -4.3124428414893E-05, 166.53791356412, -139.86292055898, -0.78849547999872, 0.072132411753872, -5.9754839398283E-03, -1.2141358953904E-05, 2.3227096733871E-07, -10.538463566194, 2.0718925496502, -0.072193155260427, 2.074988708112E-07, -0.018340657911379, 2.9036272348696E-07, 0.21037527893619, 2.5681239729999E-04, -0.012799002933781, -8.2198102652018E-06]; Pi = p; Sigma = s / 2; teta = 0; for i = 1 : 46 teta = teta + ni[i] * Pi ^ Ii[i] * (Sigma - 2) ^ Ji[i]; end T2_ps = teta; elseif sub_reg == 2 #Subregion B #Table 26, Eq 26, page 27 Ii = [-6, -6, -5, -5, -4, -4, -4, -3, -3, -3, -3, -2, -2, -2, -2, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5]; Ji = [0, 11, 0, 11, 0, 1, 11, 0, 1, 11, 12, 0, 1, 6, 10, 0, 1, 5, 8, 9, 0, 1, 2, 4, 5, 6, 9, 0, 1, 2, 3, 7, 8, 0, 1, 5, 0, 1, 3, 0, 1, 0, 1, 2]; ni = [316876.65083497, 20.864175881858, -398593.99803599, -21.816058518877, 223697.85194242, -2784.1703445817, 9.920743607148, -75197.512299157, 2970.8605951158, -3.4406878548526, 0.38815564249115, 17511.29508575, -1423.7112854449, 1.0943803364167, 0.89971619308495, -3375.9740098958, 471.62885818355, -1.9188241993679, 0.41078580492196, -0.33465378172097, 1387.0034777505, -406.63326195838, 41.72734715961, 2.1932549434532, -1.0320050009077, 0.35882943516703, 5.2511453726066E-03, 12.838916450705, -2.8642437219381, 0.56912683664855, -0.099962954584931, -3.2632037778459E-03, 2.3320922576723E-04, -0.1533480985745, 0.029072288239902, 3.7534702741167E-04, 1.7296691702411E-03, -3.8556050844504E-04, -3.5017712292608E-05, -1.4566393631492E-05, 5.6420857267269E-06, 4.1286150074605E-08, -2.0684671118824E-08, 1.6409393674725E-09]; Pi = p; Sigma = s / 0.7853; teta = 0; for i = 1 : 44 teta = teta + ni[i] * Pi ^ Ii[i] * (10 - Sigma) ^ Ji[i]; end T2_ps = teta; else #Subregion C #Table 27, Eq 27, page 28 Ii = [-2, -2, -1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7]; Ji = [0, 1, 0, 0, 1, 2, 3, 0, 1, 3, 4, 0, 1, 2, 0, 1, 5, 0, 1, 4, 0, 1, 2, 0, 1, 0, 1, 3, 4, 5]; ni = [909.68501005365, 2404.566708842, -591.6232638713, 541.45404128074, -270.98308411192, 979.76525097926, -469.66772959435, 14.399274604723, -19.104204230429, 5.3299167111971, -21.252975375934, -0.3114733441376, 0.60334840894623, -0.042764839702509, 5.8185597255259E-03, -0.014597008284753, 5.6631175631027E-03, -7.6155864584577E-05, 2.2440342919332E-04, -1.2561095013413E-05, 6.3323132660934E-07, -2.0541989675375E-06, 3.6405370390082E-08, -2.9759897789215E-09, 1.0136618529763E-08, 5.9925719692351E-12, -2.0677870105164E-11, -2.0874278181886E-11, 1.0162166825089E-10, -1.6429828281347E-10]; Pi = p; Sigma = s / 2.9251; teta = 0; for i = 1 : 30 teta = teta + ni[i] * Pi ^ Ii[i] * (2 - Sigma) ^ Ji[i]; end T2_ps = teta; end T2_ps end function p2_hs(h, s) #Supplementary Release on Backward Equations for Pressure as a function of Enthalpy and Entropy p(h,s) to the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #Chapter 6:Backward Equations p(h,s) for Region 2 if h < (-3498.98083432139 + 2575.60716905876 * s - 421.073558227969 * s ^ 2 + 27.6349063799944 * s ^ 3) sub_reg = 1; else if s < 5.85 sub_reg = 3; else sub_reg = 2; end end if sub_reg == 1 #Subregion A #Table 6, Eq 3, page 8 Ii = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 6, 7]; Ji = [1, 3, 6, 16, 20, 22, 0, 1, 2, 3, 5, 6, 10, 16, 20, 22, 3, 16, 20, 0, 2, 3, 6, 16, 16, 3, 16, 3, 1]; ni = [-1.82575361923032E-02, -0.125229548799536, 0.592290437320145, 6.04769706185122, 238.624965444474, -298.639090222922, 0.051225081304075, -0.437266515606486, 0.413336902999504, -5.16468254574773, -5.57014838445711, 12.8555037824478, 11.414410895329, -119.504225652714, -2847.7798596156, 4317.57846408006, 1.1289404080265, 1974.09186206319, 1516.12444706087, 1.41324451421235E-02, 0.585501282219601, -2.97258075863012, 5.94567314847319, -6236.56565798905, 9659.86235133332, 6.81500934948134, -6332.07286824489, -5.5891922446576, 4.00645798472063E-02]; eta = h / 4200; Sigma = s / 12; Pi = 0; for i = 1 : 29 Pi = Pi + ni[i] * (eta - 0.5) ^ Ii[i] * (Sigma - 1.2) ^ Ji[i]; end p2_hs = Pi ^ 4 * 4; elseif sub_reg == 2 #Subregion B #Table 7, Eq 4, page 9 Ii = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, 12, 14]; Ji = [0, 1, 2, 4, 8, 0, 1, 2, 3, 5, 12, 1, 6, 18, 0, 1, 7, 12, 1, 16, 1, 12, 1, 8, 18, 1, 16, 1, 3, 14, 18, 10, 16]; ni = [8.01496989929495E-02, -0.543862807146111, 0.337455597421283, 8.9055545115745, 313.840736431485, 0.797367065977789, -1.2161697355624, 8.72803386937477, -16.9769781757602, -186.552827328416, 95115.9274344237, -18.9168510120494, -4334.0703719484, 543212633.012715, 0.144793408386013, 128.024559637516, -67230.9534071268, 33697238.0095287, -586.63419676272, -22140322476.9889, 1716.06668708389, -570817595.806302, -3121.09693178482, -2078413.8463301, 3056059461577.86, 3221.57004314333, 326810259797.295, -1441.04158934487, 410.694867802691, 109077066873.024, -24796465425889.3, 1888019068.65134, -123651009018773]; eta = h / 4100; Sigma = s / 7.9; Pi = 0; for i = 1 : 33 Pi = Pi + ni[i] * (eta - 0.6) ^ Ii[i] * (Sigma - 1.01) ^ Ji[i]; end p2_hs = Pi ^ 4 * 100; else #Subregion C #Table 8, Eq 5, page 10 Ii = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 10, 12, 16]; Ji = [0, 1, 2, 3, 4, 8, 0, 2, 5, 8, 14, 2, 3, 7, 10, 18, 0, 5, 8, 16, 18, 18, 1, 4, 6, 14, 8, 18, 7, 7, 10]; ni = [0.112225607199012, -3.39005953606712, -32.0503911730094, -197.5973051049, -407.693861553446, 13294.3775222331, 1.70846839774007, 37.3694198142245, 3581.44365815434, 423014.446424664, -751071025.760063, 52.3446127607898, -228.351290812417, -960652.417056937, -80705929.2526074, 1626980172256.69, 0.772465073604171, 46392.9973837746, -13731788.5134128, 1704703926305.12, -25110462818730.8, 31774883083552, 53.8685623675312, -55308.9094625169, -1028615.22421405, 2042494187562.34, 273918446.626977, -2.63963146312685E+15, -1078908541.08088, -29649262098.0124, -1.11754907323424E+15]; eta = h / 3500; Sigma = s / 5.9; Pi = 0; for i = 1 : 31 Pi = Pi + ni[i] * (eta - 0.7) ^ Ii[i] * (Sigma - 1.1) ^ Ji[i]; end p2_hs = Pi ^ 4 * 100; end p2_hs end function T2_prho(p,rho) #Solve by iteration. Observe that fo low temperatures this equation has 2 solutions. #Solve with half interval method if p < 16.5292 Low_Bound = T4_p(p); else Low_Bound = B23T_p(p); end High_Bound = 1073.15; rhos=-1000; Ts=0.0 while abs(rho - rhos) > 0.000001 Ts = (Low_Bound + High_Bound) / 2; rhos = 1 / v2_pT(p, Ts); if rhos < rho High_Bound = Ts; else Low_Bound = Ts; end end T2_prho = Ts; T2_prho end #*********************************************************************************************************** #*2.3 functions for region 3 function p3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fidelta = 0; for i = 2 : 40 fidelta = fidelta + ni[i] * Ii[i] * delta ^ (Ii[i] - 1) * tau ^ Ji[i]; end fidelta = fidelta + ni(1) / delta; p3_rhoT = rho * R * T * delta * fidelta / 1000; p3_rhoT end function u3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fitau = 0; for i = 2 : 40 fitau = fitau + ni[i] * delta ^ Ii[i] * Ji[i] * tau ^ (Ji[i] - 1); end u3_rhoT = R * T * (tau * fitau); u3_rhoT end function h3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fidelta = 0; fitau = 0; for i = 2 : 40 fidelta = fidelta + ni[i] * Ii[i] * delta ^ (Ii[i] - 1) * tau ^ Ji[i]; fitau = fitau + ni[i] * delta ^ Ii[i] * Ji[i] * tau ^ (Ji[i] - 1); end fidelta = fidelta + ni(1) / delta; h3_rhoT = R * T * (tau * fitau + delta * fidelta); h3_rhoT end function s3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fi = 0; fitau = 0; for i = 2 : 40 fi = fi + ni[i] * delta ^ Ii[i] * tau ^ Ji[i]; fitau = fitau + ni[i] * delta ^ Ii[i] * Ji[i] * tau ^ (Ji[i] - 1); end fi = fi + ni(1) * log(delta); s3_rhoT = R * (tau * fitau - fi); s3_rhoT end function Cp3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fitautau = 0; fidelta = 0; fideltatau = 0; fideltadelta = 0; for i = 2 : 40 fitautau = fitautau + ni[i] * delta ^ Ii[i] * Ji[i] * (Ji[i] - 1) * tau ^ (Ji[i] - 2); fidelta = fidelta + ni[i] * Ii[i] * delta ^ (Ii[i] - 1) * tau ^ Ji[i]; fideltatau = fideltatau + ni[i] * Ii[i] * delta ^ (Ii[i] - 1) * Ji[i] * tau ^ (Ji[i] - 1); fideltadelta = fideltadelta + ni[i] * Ii[i] * (Ii[i] - 1) * delta ^ (Ii[i] - 2) * tau ^ Ji[i]; end fidelta = fidelta + ni(1) / delta; fideltadelta = fideltadelta - ni(1) / (delta ^ 2); Cp3_rhoT = R * (-tau ^ 2 * fitautau + (delta * fidelta - delta * tau * fideltatau) ^ 2 / (2 * delta * fidelta + delta ^ 2 * fideltadelta)); Cp3_rhoT end function Cv3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fitautau = 0; for i = 1 : 40 fitautau = fitautau + ni[i] * delta ^ Ii[i] * Ji[i] * (Ji[i] - 1) * tau ^ (Ji[i] - 2); end Cv3_rhoT = R * -(tau * tau * fitautau); Cv3_rhoT end function w3_rhoT(rho, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #7 Basic Equation for Region 3, Section. 6.1 Basic Equation #Table 30 and 31, Page 30 and 31 Ii = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 9, 9, 10, 10, 11]; Ji = [0, 0, 1, 2, 7, 10, 12, 23, 2, 6, 15, 17, 0, 2, 6, 7, 22, 26, 0, 2, 4, 16, 26, 0, 2, 4, 26, 1, 3, 26, 0, 2, 26, 2, 26, 2, 26, 0, 1, 26]; ni = [1.0658070028513, -15.732845290239, 20.944396974307, -7.6867707878716, 2.6185947787954, -2.808078114862, 1.2053369696517, -8.4566812812502E-03, -1.2654315477714, -1.1524407806681, 0.88521043984318, -0.64207765181607, 0.38493460186671, -0.85214708824206, 4.8972281541877, -3.0502617256965, 0.039420536879154, 0.12558408424308, -0.2799932969871, 1.389979956946, -2.018991502357, -8.2147637173963E-03, -0.47596035734923, 0.0439840744735, -0.44476435428739, 0.90572070719733, 0.70522450087967, 0.10770512626332, -0.32913623258954, -0.50871062041158, -0.022175400873096, 0.094260751665092, 0.16436278447961, -0.013503372241348, -0.014834345352472, 5.7922953628084E-04, 3.2308904703711E-03, 8.0964802996215E-05, -1.6557679795037E-04, -4.4923899061815E-05]; R = 0.461526; #kJ/(KgK) tc = 647.096; #K pc = 22.064; #MPa rhoc = 322; #kg/m3 delta = rho / rhoc; tau = tc / T; fitautau = 0; fidelta = 0; fideltatau = 0; fideltadelta = 0; for i = 2 : 40 fitautau = fitautau + ni[i] * delta ^ Ii[i] * Ji[i] * (Ji[i] - 1) * tau ^ (Ji[i] - 2); fidelta = fidelta + ni[i] * Ii[i] * delta ^ (Ii[i] - 1) * tau ^ Ji[i]; fideltatau = fideltatau + ni[i] * Ii[i] * delta ^ (Ii[i] - 1) * Ji[i] * tau ^ (Ji[i] - 1); fideltadelta = fideltadelta + ni[i] * Ii[i] * (Ii[i] - 1) * delta ^ (Ii[i] - 2) * tau ^ Ji[i]; end fidelta = fidelta + ni(1) / delta; fideltadelta = fideltadelta - ni(1) / (delta ^ 2); w3_rhoT = (1000 * R * T * (2 * delta * fidelta + delta ^ 2 * fideltadelta - (delta * fidelta - delta * tau * fideltatau) ^ 2 / (tau ^ 2 * fitautau))) ^ 0.5; w3_rhoT end function T3_ph(p, h) #Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #2004 #Section 3.3 Backward Equations T(p,h) and v(p,h) for Subregions 3a and 3b #Boundary equation, Eq 1 Page 5 h3ab = 2014.64004206875 + 3.74696550136983 * p - 2.19921901054187E-02 * p ^ 2 + 8.7513168600995E-05 * p ^ 3; if h < h3ab #Subregion 3a #Eq 2, Table 3, Page 7 Ii = [-12, -12, -12, -12, -12, -12, -12, -12, -10, -10, -10, -8, -8, -8, -8, -5, -3, -2, -2, -2, -1, -1, 0, 0, 1, 3, 3, 4, 4, 10, 12]; Ji = [0, 1, 2, 6, 14, 16, 20, 22, 1, 5, 12, 0, 2, 4, 10, 2, 0, 1, 3, 4, 0, 2, 0, 1, 1, 0, 1, 0, 3, 4, 5]; ni = [-1.33645667811215E-07, 4.55912656802978E-06, -1.46294640700979E-05, 6.3934131297008E-03, 372.783927268847, -7186.54377460447, 573494.7521034, -2675693.29111439, -3.34066283302614E-05, -2.45479214069597E-02, 47.8087847764996, 7.64664131818904E-06, 1.28350627676972E-03, 1.71219081377331E-02, -8.51007304583213, -1.36513461629781E-02, -3.84460997596657E-06, 3.37423807911655E-03, -0.551624873066791, 0.72920227710747, -9.92522757376041E-03, -0.119308831407288, 0.793929190615421, 0.454270731799386, 0.20999859125991, -6.42109823904738E-03, -0.023515586860454, 2.52233108341612E-03, -7.64885133368119E-03, 1.36176427574291E-02, -1.33027883575669E-02]; ps = p / 100; hs = h / 2300; Ts = 0; for i = 1 : 31 Ts = Ts + ni[i] * (ps + 0.24) ^ Ii[i] * (hs - 0.615) ^ Ji[i]; end T3_ph = Ts * 760; else #Subregion 3b #Eq 3, Table 4, Page 7,8 Ii = [-12, -12, -10, -10, -10, -10, -10, -8, -8, -8, -8, -8, -6, -6, -6, -4, -4, -3, -2, -2, -1, -1, -1, -1, -1, -1, 0, 0, 1, 3, 5, 6, 8]; Ji = [0, 1, 0, 1, 5, 10, 12, 0, 1, 2, 4, 10, 0, 1, 2, 0, 1, 5, 0, 4, 2, 4, 6, 10, 14, 16, 0, 2, 1, 1, 1, 1, 1]; ni = [3.2325457364492E-05, -1.27575556587181E-04, -4.75851877356068E-04, 1.56183014181602E-03, 0.105724860113781, -85.8514221132534, 724.140095480911, 2.96475810273257E-03, -5.92721983365988E-03, -1.26305422818666E-02, -0.115716196364853, 84.9000969739595, -1.08602260086615E-02, 1.54304475328851E-02, 7.50455441524466E-02, 2.52520973612982E-02, -6.02507901232996E-02, -3.07622221350501, -5.74011959864879E-02, 5.03471360939849, -0.925081888584834, 3.91733882917546, -77.314600713019, 9493.08762098587, -1410437.19679409, 8491662.30819026, 0.861095729446704, 0.32334644281172, 0.873281936020439, -0.436653048526683, 0.286596714529479, -0.131778331276228, 6.76682064330275E-03]; hs = h / 2800; ps = p / 100; Ts = 0; for i = 1 : 33 Ts = Ts + ni[i] * (ps + 0.298) ^ Ii[i] * (hs - 0.72) ^ Ji[i]; end T3_ph = Ts * 860; end T3_ph end function v3_ph(p, h) #Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #2004 #Section 3.3 Backward Equations T(p,h) and v(p,h) for Subregions 3a and 3b #Boundary equation, Eq 1 Page 5 h3ab = 2014.64004206875 + 3.74696550136983 * p - 2.19921901054187E-02 * p ^ 2 + 8.7513168600995E-05 * p ^ 3; if h < h3ab #Subregion 3a #Eq 4, Table 6, Page 9 Ii = [-12, -12, -12, -12, -10, -10, -10, -8, -8, -6, -6, -6, -4, -4, -3, -2, -2, -1, -1, -1, -1, 0, 0, 1, 1, 1, 2, 2, 3, 4, 5, 8]; Ji = [6, 8, 12, 18, 4, 7, 10, 5, 12, 3, 4, 22, 2, 3, 7, 3, 16, 0, 1, 2, 3, 0, 1, 0, 1, 2, 0, 2, 0, 2, 2, 2]; ni = [5.29944062966028E-03, -0.170099690234461, 11.1323814312927, -2178.98123145125, -5.06061827980875E-04, 0.556495239685324, -9.43672726094016, -0.297856807561527, 93.9353943717186, 1.92944939465981E-02, 0.421740664704763, -3689141.2628233, -7.37566847600639E-03, -0.354753242424366, -1.99768169338727, 1.15456297059049, 5683.6687581596, 8.08169540124668E-03, 0.172416341519307, 1.04270175292927, -0.297691372792847, 0.560394465163593, 0.275234661176914, -0.148347894866012, -6.51142513478515E-02, -2.92468715386302, 6.64876096952665E-02, 3.52335014263844, -1.46340792313332E-02, -2.24503486668184, 1.10533464706142, -4.08757344495612E-02]; ps = p / 100; hs = h / 2100; vs = 0; for i = 1 : 32 vs = vs + ni[i] * (ps + 0.128) ^ Ii[i] * (hs - 0.727) ^ Ji[i]; end v3_ph = vs * 0.0028; else #Subregion 3b #Eq 5, Table 7, Page 9 Ii = [-12, -12, -8, -8, -8, -8, -8, -8, -6, -6, -6, -6, -6, -6, -4, -4, -4, -3, -3, -2, -2, -1, -1, -1, -1, 0, 1, 1, 2, 2]; Ji = [0, 1, 0, 1, 3, 6, 7, 8, 0, 1, 2, 5, 6, 10, 3, 6, 10, 0, 2, 1, 2, 0, 1, 4, 5, 0, 0, 1, 2, 6]; ni = [-2.25196934336318E-09, 1.40674363313486E-08, 2.3378408528056E-06, -3.31833715229001E-05, 1.07956778514318E-03, -0.271382067378863, 1.07202262490333, -0.853821329075382, -2.15214194340526E-05, 7.6965608822273E-04, -4.31136580433864E-03, 0.453342167309331, -0.507749535873652, -100.475154528389, -0.219201924648793, -3.21087965668917, 607.567815637771, 5.57686450685932E-04, 0.18749904002955, 9.05368030448107E-03, 0.285417173048685, 3.29924030996098E-02, 0.239897419685483, 4.82754995951394, -11.8035753702231, 0.169490044091791, -1.79967222507787E-02, 3.71810116332674E-02, -5.36288335065096E-02, 1.6069710109252]; ps = p / 100; hs = h / 2800; vs = 0; for i = 1 : 30 vs = vs + ni[i] * (ps + 0.0661) ^ Ii[i] * (hs - 0.72) ^ Ji[i]; end v3_ph = vs * 0.0088; end v3_ph end function T3_ps(p, s) #Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #2004 #3.4 Backward Equations T(p,s) and v(p,s) for Subregions 3a and 3b #Boundary equation, Eq 6 Page 11 if s <= 4.41202148223476 #Subregion 3a #Eq 6, Table 10, Page 11 Ii = [-12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -6, -6, -5, -5, -5, -4, -4, -4, -2, -2, -1, -1, 0, 0, 0, 1, 2, 2, 3, 8, 8, 10]; Ji = [28, 32, 4, 10, 12, 14, 5, 7, 8, 28, 2, 6, 32, 0, 14, 32, 6, 10, 36, 1, 4, 1, 6, 0, 1, 4, 0, 0, 3, 2, 0, 1, 2]; ni = [1500420082.63875, -159397258480.424, 5.02181140217975E-04, -67.2057767855466, 1450.58545404456, -8238.8953488889, -0.154852214233853, 11.2305046746695, -29.7000213482822, 43856513263.5495, 1.37837838635464E-03, -2.97478527157462, 9717779473494.13, -5.71527767052398E-05, 28830.794977842, -74442828926270.3, 12.8017324848921, -368.275545889071, 6.64768904779177E+15, 0.044935925195888, -4.22897836099655, -0.240614376434179, -4.74341365254924, 0.72409399912611, 0.923874349695897, 3.99043655281015, 3.84066651868009E-02, -3.59344365571848E-03, -0.735196448821653, 0.188367048396131, 1.41064266818704E-04, -2.57418501496337E-03, 1.23220024851555E-03]; Sigma = s / 4.4; Pi = p / 100; teta = 0; for i = 1 : 33 teta = teta + ni[i] * (Pi + 0.24) ^ Ii[i] * (Sigma - 0.703) ^ Ji[i]; end T3_ps = teta * 760; else #Subregion 3b #Eq 7, Table 11, Page 11 Ii = [-12, -12, -12, -12, -8, -8, -8, -6, -6, -6, -5, -5, -5, -5, -5, -4, -3, -3, -2, 0, 2, 3, 4, 5, 6, 8, 12, 14]; Ji = [1, 3, 4, 7, 0, 1, 3, 0, 2, 4, 0, 1, 2, 4, 6, 12, 1, 6, 2, 0, 1, 1, 0, 24, 0, 3, 1, 2]; ni = [0.52711170160166, -40.1317830052742, 153.020073134484, -2247.99398218827, -0.193993484669048, -1.40467557893768, 42.6799878114024, 0.752810643416743, 22.6657238616417, -622.873556909932, -0.660823667935396, 0.841267087271658, -25.3717501764397, 485.708963532948, 880.531517490555, 2650155.92794626, -0.359287150025783, -656.991567673753, 2.41768149185367, 0.856873461222588, 0.655143675313458, -0.213535213206406, 5.62974957606348E-03, -316955725450471, -6.99997000152457E-04, 1.19845803210767E-02, 1.93848122022095E-05, -2.15095749182309E-05]; Sigma = s / 5.3; Pi = p / 100; teta = 0; for i = 1 : 28 teta = teta + ni[i] * (Pi + 0.76) ^ Ii[i] * (Sigma - 0.818) ^ Ji[i]; end T3_ps = teta * 860; end T3_ps end function v3_ps(p, s) #Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) and T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #2004 #3.4 Backward Equations T(p,s) and v(p,s) for Subregions 3a and 3b #Boundary equation, Eq 6 Page 11 if s <= 4.41202148223476 #Subregion 3a #Eq 8, Table 13, Page 14 Ii = [-12, -12, -12, -10, -10, -10, -10, -8, -8, -8, -8, -6, -5, -4, -3, -3, -2, -2, -1, -1, 0, 0, 0, 1, 2, 4, 5, 6]; Ji = [10, 12, 14, 4, 8, 10, 20, 5, 6, 14, 16, 28, 1, 5, 2, 4, 3, 8, 1, 2, 0, 1, 3, 0, 0, 2, 2, 0]; ni = [79.5544074093975, -2382.6124298459, 17681.3100617787, -1.10524727080379E-03, -15.3213833655326, 297.544599376982, -35031520.6871242, 0.277513761062119, -0.523964271036888, -148011.182995403, 1600148.99374266, 1708023226634.27, 2.46866996006494E-04, 1.6532608479798, -0.118008384666987, 2.537986423559, 0.965127704669424, -28.2172420532826, 0.203224612353823, 1.10648186063513, 0.52612794845128, 0.277000018736321, 1.08153340501132, -7.44127885357893E-02, 1.64094443541384E-02, -6.80468275301065E-02, 0.025798857610164, -1.45749861944416E-04]; Pi = p / 100; Sigma = s / 4.4; omega = 0; for i = 1 : 28 omega = omega + ni[i] * (Pi + 0.187) ^ Ii[i] * (Sigma - 0.755) ^ Ji[i]; end v3_ps = omega * 0.0028; else #Subregion 3b #Eq 9, Table 14, Page 14 Ii = [-12, -12, -12, -12, -12, -12, -10, -10, -10, -10, -8, -5, -5, -5, -4, -4, -4, -4, -3, -2, -2, -2, -2, -2, -2, 0, 0, 0, 1, 1, 2]; Ji = [0, 1, 2, 3, 5, 6, 0, 1, 2, 4, 0, 1, 2, 3, 0, 1, 2, 3, 1, 0, 1, 2, 3, 4, 12, 0, 1, 2, 0, 2, 2]; ni = [5.91599780322238E-05, -1.85465997137856E-03, 1.04190510480013E-02, 5.9864730203859E-03, -0.771391189901699, 1.72549765557036, -4.67076079846526E-04, 1.34533823384439E-02, -8.08094336805495E-02, 0.508139374365767, 1.28584643361683E-03, -1.63899353915435, 5.86938199318063, -2.92466667918613, -6.14076301499537E-03, 5.76199014049172, -12.1613320606788, 1.67637540957944, -7.44135838773463, 3.78168091437659E-02, 4.01432203027688, 16.0279837479185, 3.17848779347728, -3.58362310304853, -1159952.60446827, 0.199256573577909, -0.122270624794624, -19.1449143716586, -1.50448002905284E-02, 14.6407900162154, -3.2747778718823]; Pi = p / 100; Sigma = s / 5.3; omega = 0; for i = 1 : 31 omega = omega + ni[i] * (Pi + 0.298) ^ Ii[i] * (Sigma - 0.816) ^ Ji[i]; end v3_ps = omega * 0.0088; end v3_ps end function p3_hs(h, s) #Supplementary Release on Backward Equations ( ) , p h s for Region 3, #Equations as a function of h and s for the Region Boundaries, and an Equation #( ) sat , T hs for Region 4 of the IAPWS Industrial formulation 1997 for the #Thermodynamic Properties of Water and Steam #2004 #Section 3 Backward functions p(h,s), T(h,s), and v(h,s) for Region 3 if s < 4.41202148223476 #Subregion 3a #Eq 1, Table 3, Page 8 Ii = [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 6, 7, 8, 10, 10, 14, 18, 20, 22, 22, 24, 28, 28, 32, 32]; Ji = [0, 1, 5, 0, 3, 4, 8, 14, 6, 16, 0, 2, 3, 0, 1, 4, 5, 28, 28, 24, 1, 32, 36, 22, 28, 36, 16, 28, 36, 16, 36, 10, 28]; ni = [7.70889828326934, -26.0835009128688, 267.416218930389, 17.2221089496844, -293.54233214597, 614.135601882478, -61056.2757725674, -65127225.1118219, 73591.9313521937, -11664650591.4191, 35.5267086434461, -596.144543825955, -475.842430145708, 69.6781965359503, 335.674250377312, 25052.6809130882, 146997.380630766, 5.38069315091534E+19, 1.43619827291346E+21, 3.64985866165994E+19, -2547.41561156775, 2.40120197096563E+27, -3.93847464679496E+29, 1.47073407024852E+24, -4.26391250432059E+31, 1.94509340621077E+38, 6.66212132114896E+23, 7.06777016552858E+33, 1.75563621975576E+41, 1.08408607429124E+28, 7.30872705175151E+43, 1.5914584739887E+24, 3.77121605943324E+40]; Sigma = s / 4.4; eta = h / 2300; Pi = 0; for i = 1 : 33 Pi = Pi + ni[i] * (eta - 1.01) ^ Ii[i] * (Sigma - 0.75) ^ Ji[i]; end p3_hs = Pi * 99; else #Subregion 3b #Eq 2, Table 4, Page 8 Ii = [-12, -12, -12, -12, -12, -10, -10, -10, -10, -8, -8, -6, -6, -6, -6, -5, -4, -4, -4, -3, -3, -3, -3, -2, -2, -1, 0, 2, 2, 5, 6, 8, 10, 14, 14]; Ji = [2, 10, 12, 14, 20, 2, 10, 14, 18, 2, 8, 2, 6, 7, 8, 10, 4, 5, 8, 1, 3, 5, 6, 0, 1, 0, 3, 0, 1, 0, 1, 1, 1, 3, 7]; ni = [1.25244360717979E-13, -1.26599322553713E-02, 5.06878030140626, 31.7847171154202, -391041.161399932, -9.75733406392044E-11, -18.6312419488279, 510.973543414101, 373847.005822362, 2.99804024666572E-08, 20.0544393820342, -4.98030487662829E-06, -10.230180636003, 55.2819126990325, -206.211367510878, -7940.12232324823, 7.82248472028153, -58.6544326902468, 3550.73647696481, -1.15303107290162E-04, -1.75092403171802, 257.98168774816, -727.048374179467, 1.21644822609198E-04, 3.93137871762692E-02, 7.04181005909296E-03, -82.910820069811, -0.26517881813125, 13.7531682453991, -52.2394090753046, 2405.56298941048, -22736.1631268929, 89074.6343932567, -23923456.5822486, 5687958081.29714]; Sigma = s / 5.3; eta = h / 2800; Pi = 0; for i = 1 : 35 Pi = Pi + ni[i] * (eta - 0.681) ^ Ii[i] * (Sigma - 0.792) ^ Ji[i]; end p3_hs = 16.6 / Pi; end p3_hs end function h3_pT(p, T) #Not avalible with if 97 #Solve function T3_ph-T=0 with half interval method. #ver2.6 Start corrected bug if p < 22.06395 #Bellow tripple point Ts = T4_p(p); #Saturation temperature if T <= Ts #Liquid side High_Bound = h4L_p(p); #Max h 鋜 liauid h. Low_Bound = h1_pT(p, 623.15); else Low_Bound = h4V_p(p); #Min h 鋜 Vapour h. High_Bound = h2_pT(p, B23T_p(p)); end else #Above tripple point. R3 from R2 till R3. Low_Bound = h1_pT(p, 623.15); High_Bound = h2_pT(p, B23T_p(p)); end #ver2.6 End corrected bug Ts = T+1; hs=0.0 while abs(T - Ts) > 0.00001 hs = (Low_Bound + High_Bound) / 2; Ts = T3_ph(p, hs); if Ts > T High_Bound = hs; else Low_Bound = hs; end end h3_pT = hs; h3_pT end function T3_prho(p, rho) #Solve by iteration. Observe that fo low temperatures this equation has 2 solutions. #Solve with half interval method Low_Bound = 623.15; High_Bound = 1073.15; ps=-1000; Ts=0.0; while abs(p - ps) > 0.00000001 Ts = (Low_Bound + High_Bound) / 2; ps = p3_rhoT(rho, Ts); if ps > p High_Bound = Ts; else Low_Bound = Ts; end end T3_prho = Ts; T3_prho end #*********************************************************************************************************** #*2.4 functions for region 4 function p4_T(T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Section 8.1 The Saturation-Pressure Equation #Eq 30, Page 33 teta = T - 0.23855557567849 / (T - 650.17534844798); a = teta ^ 2 + 1167.0521452767 * teta - 724213.16703206; B = -17.073846940092 * teta ^ 2 + 12020.82470247 * teta - 3232555.0322333; C = 14.91510861353 * teta ^ 2 - 4823.2657361591 * teta + 405113.40542057; p4_T = (2 * C / (-B + (B ^ 2 - 4 * a * C) ^ 0.5)) ^ 4; p4_T end function T4_p(p) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Section 8.2 The Saturation-Temperature Equation #Eq 31, Page 34 beta = p ^ 0.25; E = beta ^ 2 - 17.073846940092 * beta + 14.91510861353; f = 1167.0521452767 * beta ^ 2 + 12020.82470247 * beta - 4823.2657361591; G = -724213.16703206 * beta ^ 2 - 3232555.0322333 * beta + 405113.40542057; D = 2 * G / (-f - (f ^ 2 - 4 * E * G) ^ 0.5); T4_p = (650.17534844798 + D - ((650.17534844798 + D) ^ 2 - 4 * (-0.23855557567849 + 650.17534844798 * D)) ^ 0.5) / 2; T4_p end function h4_s(s) #Supplementary Release on Backward Equations ( ) , p h s for Region 3,Equations as a function of h and s for the Region Boundaries, and an Equation( ) sat , T hs for Region 4 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #4 Equations for Region Boundaries Given Enthalpy and Entropy # Se picture page 14 if (s > -0.0001545495919 && s <= 3.77828134)==1 #hL1_s #Eq 3,Table 9,Page 16 Ii = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 7, 8, 12, 12, 14, 14, 16, 20, 20, 22, 24, 28, 32, 32]; Ji = [14, 36, 3, 16, 0, 5, 4, 36, 4, 16, 24, 18, 24, 1, 4, 2, 4, 1, 22, 10, 12, 28, 8, 3, 0, 6, 8]; ni = [0.332171191705237, 6.11217706323496E-04, -8.82092478906822, -0.45562819254325, -2.63483840850452E-05, -22.3949661148062, -4.28398660164013, -0.616679338856916, -14.682303110404, 284.523138727299, -113.398503195444, 1156.71380760859, 395.551267359325, -1.54891257229285, 19.4486637751291, -3.57915139457043, -3.35369414148819, -0.66442679633246, 32332.1885383934, 3317.66744667084, -22350.1257931087, 5739538.75852936, 173.226193407919, -3.63968822121321E-02, 8.34596332878346E-07, 5.03611916682674, 65.5444787064505]; Sigma = s / 3.8; eta = 0; for i = 1 : 27 eta = eta + ni[i] * (Sigma - 1.09) ^ Ii[i] * (Sigma + 0.0000366) ^ Ji[i]; end h4_s = eta * 1700; elseif (s > 3.77828134 && s <= 4.41202148223476 )==1 #hL3_s #Eq 4,Table 10,Page 16 Ii = [0, 0, 0, 0, 2, 3, 4, 4, 5, 5, 6, 7, 7, 7, 10, 10, 10, 32, 32]; Ji = [1, 4, 10, 16, 1, 36, 3, 16, 20, 36, 4, 2, 28, 32, 14, 32, 36, 0, 6]; ni = [0.822673364673336, 0.181977213534479, -0.011200026031362, -7.46778287048033E-04, -0.179046263257381, 4.24220110836657E-02, -0.341355823438768, -2.09881740853565, -8.22477343323596, -4.99684082076008, 0.191413958471069, 5.81062241093136E-02, -1655.05498701029, 1588.70443421201, -85.0623535172818, -31771.4386511207, -94589.0406632871, -1.3927384708869E-06, 0.63105253224098]; Sigma = s / 3.8; eta = 0; for i = 1 : 19 eta = eta + ni[i] * (Sigma - 1.09) ^ Ii[i] * (Sigma + 0.0000366) ^ Ji[i]; end h4_s = eta * 1700; elseif (s > 4.41202148223476 && s <= 5.85 )==1 #Section 4.4 Equations ( ) 2ab " h s and ( ) 2c3b "h s for the Saturated Vapor Line #Page 19, Eq 5 #hV2c3b_s(s) Ii = [0, 0, 0, 1, 1, 5, 6, 7, 8, 8, 12, 16, 22, 22, 24, 36]; Ji = [0, 3, 4, 0, 12, 36, 12, 16, 2, 20, 32, 36, 2, 32, 7, 20]; ni = [1.04351280732769, -2.27807912708513, 1.80535256723202, 0.420440834792042, -105721.24483466, 4.36911607493884E+24, -328032702839.753, -6.7868676080427E+15, 7439.57464645363, -3.56896445355761E+19, 1.67590585186801E+31, -3.55028625419105E+37, 396611982166.538, -4.14716268484468E+40, 3.59080103867382E+18, -1.16994334851995E+40]; Sigma = s / 5.9; eta = 0; for i = 1 : 16 eta = eta + ni[i] * (Sigma - 1.02) ^ Ii[i] * (Sigma - 0.726) ^ Ji[i]; end h4_s = eta ^ 4 * 2800; elseif (s > 5.85 && s < 9.155759395)==1 #Section 4.4 Equations ( ) 2ab " h s and ( ) 2c3b "h s for the Saturated Vapor Line #Page 20, Eq 6 Ii = [1, 1, 2, 2, 4, 4, 7, 8, 8, 10, 12, 12, 18, 20, 24, 28, 28, 28, 28, 28, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36]; Ji = [8, 24, 4, 32, 1, 2, 7, 5, 12, 1, 0, 7, 10, 12, 32, 8, 12, 20, 22, 24, 2, 7, 12, 14, 24, 10, 12, 20, 22, 28]; ni = [-524.581170928788, -9269472.18142218, -237.385107491666, 21077015581.2776, -23.9494562010986, 221.802480294197, -5104725.33393438, 1249813.96109147, 2000084369.96201, -815.158509791035, -157.612685637523, -11420042233.2791, 6.62364680776872E+15, -2.27622818296144E+18, -1.71048081348406E+31, 6.60788766938091E+15, 1.66320055886021E+22, -2.18003784381501E+29, -7.87276140295618E+29, 1.51062329700346E+31, 7957321.70300541, 1.31957647355347E+15, -3.2509706829914E+23, -4.18600611419248E+25, 2.97478906557467E+34, -9.53588761745473E+19, 1.66957699620939E+24, -1.75407764869978E+32, 3.47581490626396E+34, -7.10971318427851E+38]; Sigma1 = s / 5.21; Sigma2 = s / 9.2; eta = 0; for i = 1 : 30 eta = eta + ni[i] * (1 / Sigma1 - 0.513) ^ Ii[i] * (Sigma2 - 0.524) ^ Ji[i]; end h4_s = exp(eta) * 2800; else h4_s = -99999; end h4_s end function p4_s(s) #Uses h4_s and p_hs for the diffrent regions to determine p4_s h_sat = h4_s(s); if (s > -0.0001545495919 && s <= 3.77828134)==1 p4_s = p1_hs(h_sat, s); elseif (s > 3.77828134 && s <= 5.210887663)==1 p4_s = p3_hs(h_sat, s); elseif (s > 5.210887663 && s < 9.155759395)==1 p4_s = p2_hs(h_sat, s); else p4_s = -99999; end p4_s end function h4L_p(p) hs=0.0 if (p > 0.000611657 && p < 22.06395)==1 Ts = T4_p(p); if p < 16.529 h4L_p = h1_pT(p, Ts); else #Iterate to find the the backward solution of p3sat_h Low_Bound = 1670.858218; High_Bound = 2087.23500164864; ps=-1000; while abs(p - ps) > 0.00001 hs = (Low_Bound + High_Bound) / 2; ps = p3sat_h(hs); if ps > p High_Bound = hs; else Low_Bound = hs; end end h4L_p = hs; end else h4L_p = -99999; end h4L_p end function h4V_p(p) hs=0.0 if p > 0.000611657 && p < 22.06395 Ts = T4_p(p); if p < 16.529 h4V_p = h2_pT(p, Ts); else #Iterate to find the the backward solution of p3sat_h Low_Bound = 2087.23500164864; High_Bound = 2563.592004+5; ps=-1000; while abs(p - ps) > 0.000001 hs = (Low_Bound + High_Bound) / 2; ps = p3sat_h(hs); if ps < p High_Bound = hs; else Low_Bound = hs; end end h4V_p = hs; end else h4V_p = -99999; end h4V_p end function x4_ph(p, h) #Calculate vapour fraction from hL and hV for given p h4v = h4V_p(p); h4L = h4L_p(p); if h > h4v x4_ph = 1; elseif h < h4L x4_ph = 0; else x4_ph = (h - h4L) / (h4v - h4L); end x4_ph end function x4_ps(p, s) if p < 16.529 ssv = s2_pT(p, T4_p(p)); ssL = s1_pT(p, T4_p(p)); else ssv = s3_rhoT(1 / (v3_ph(p, h4V_p(p))), T4_p(p)); ssL = s3_rhoT(1 / (v3_ph(p, h4L_p(p))), T4_p(p)); end if s < ssL x4_ps = 0; elseif s > ssv x4_ps = 1; else x4_ps = (s - ssL) / (ssv - ssL); end x4_ps end function T4_hs(h, s) #Supplementary Release on Backward Equations ( ) , p h s for Region 3, #Chapter 5.3 page 30. #The if 97 function is only valid for part of region4. Use iteration outsida. Ii = [0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 8, 10, 10, 12, 14, 14, 16, 16, 18, 18, 18, 20, 28]; Ji = [0, 3, 12, 0, 1, 2, 5, 0, 5, 8, 0, 2, 3, 4, 0, 1, 1, 2, 4, 16, 6, 8, 22, 1, 20, 36, 24, 1, 28, 12, 32, 14, 22, 36, 24, 36]; ni = [0.179882673606601, -0.267507455199603, 1.162767226126, 0.147545428713616, -0.512871635973248, 0.421333567697984, 0.56374952218987, 0.429274443819153, -3.3570455214214, 10.8890916499278, -0.248483390456012, 0.30415322190639, -0.494819763939905, 1.07551674933261, 7.33888415457688E-02, 1.40170545411085E-02, -0.106110975998808, 1.68324361811875E-02, 1.25028363714877, 1013.16840309509, -1.51791558000712, 52.4277865990866, 23049.5545563912, 2.49459806365456E-02, 2107964.67412137, 366836848.613065, -144814105.365163, -1.7927637300359E-03, 4899556021.00459, 471.262212070518, -82929439019.8652, -1715.45662263191, 3557776.82973575, 586062760258.436, -12988763.5078195, 31724744937.1057]; if (s > 5.210887825 && s < 9.15546555571324)==1 Sigma = s / 9.2; eta = h / 2800; teta = 0; for i = 1 : 36 teta = teta + ni[i] * (eta - 0.119) ^ Ii[i] * (Sigma - 1.07) ^ Ji[i]; end T4_hs = teta * 550; else #function psat_h if (s > -0.0001545495919 && s <= 3.77828134)==1 Low_Bound = 0.000611; High_Bound = 165.291642526045; hL=-1000; while abs(hL - h) > 0.00001 && abs(High_Bound - Low_Bound) > 0.0001 PL = (Low_Bound + High_Bound) / 2; Ts = T4_p(PL); hL = h1_pT(PL, Ts); if hL > h High_Bound = PL; else Low_Bound = PL; end end elseif s > 3.77828134 && s <= 4.41202148223476 PL = p3sat_h(h); elseif s > 4.41202148223476 && s <= 5.210887663 PL = p3sat_h(h); end Low_Bound = 0.000611; High_Bound = PL; sss=-1000; p=0.0 while (abs(s - sss) > 0.000001 && abs(High_Bound - Low_Bound) > 0.0000001)==1 p = (Low_Bound + High_Bound) / 2; #Calculate s4_ph Ts = T4_p(p); xs = x4_ph(p, h); if p < 16.529 s4v = s2_pT(p, Ts); s4L = s1_pT(p, Ts); else v4v = v3_ph(p, h4V_p(p)); s4v = s3_rhoT(1 / v4v, Ts); v4L = v3_ph(p, h4L_p(p)); s4L = s3_rhoT(1 / v4L, Ts); end sss = (xs * s4v + (1 - xs) * s4L); if sss < s High_Bound = p; else Low_Bound = p; end end T4_hs = T4_p(p); end T4_hs end #*********************************************************************************************************** #*2.5 functions for region 5 function h5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0_tau = 0; for i = 1 : 6 gamma0_tau = gamma0_tau + ni0[i] * Ji0[i] * tau ^ (Ji0[i] - 1); end gammar_tau = 0; for i = 1 : 5 gammar_tau = gammar_tau + nir[i] * Pi ^ Iir[i] * Jir[i] * tau ^ (Jir[i] - 1); end h5_pT = R * T * tau * (gamma0_tau + gammar_tau); h5_pT end function v5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0_pi = 1 / Pi; gammar_pi = 0; for i = 1 : 5 gammar_pi = gammar_pi + nir[i] * Iir[i] * Pi ^ (Iir[i] - 1) * tau ^ Jir[i]; end v5_pT = R * T / p * Pi * (gamma0_pi + gammar_pi) / 1000; v5_pT end function u5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0_pi = 1 / Pi; gamma0_tau = 0; for i = 1 : 6 gamma0_tau = gamma0_tau + ni0[i] * Ji0[i] * tau ^ (Ji0[i] - 1); end gammar_pi = 0; gammar_tau = 0; for i = 1 : 5 gammar_pi = gammar_pi + nir[i] * Iir[i] * Pi ^ (Iir[i] - 1) * tau ^ Jir[i]; gammar_tau = gammar_tau + nir[i] * Pi ^ Iir[i] * Jir[i] * tau ^ (Jir[i] - 1); end u5_pT = R * T * (tau * (gamma0_tau + gammar_tau) - Pi * (gamma0_pi + gammar_pi)); u5_pT end function Cp5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0_tautau = 0; for i = 1 : 6 gamma0_tautau = gamma0_tautau + ni0[i] * Ji0[i] * (Ji0[i] - 1) * tau ^ (Ji0[i] - 2); end gammar_tautau = 0; for i = 1 : 5 gammar_tautau = gammar_tautau + nir[i] * Pi ^ Iir[i] * Jir[i] * (Jir[i] - 1) * tau ^ (Jir[i] - 2); end Cp5_pT = -R * tau ^ 2 * (gamma0_tautau + gammar_tautau); Cp5_pT end function s5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0 = log(Pi); gamma0_tau = 0; for i = 1 : 6 gamma0_tau = gamma0_tau + ni0[i] * Ji0[i] * tau ^ (Ji0[i] - 1); gamma0 = gamma0 + ni0[i] * tau ^ Ji0[i]; end gammar = 0; gammar_tau = 0; for i = 1 : 5 gammar = gammar + nir[i] * Pi ^ Iir[i] * tau ^ Jir[i]; gammar_tau = gammar_tau + nir[i] * Pi ^ Iir[i] * Jir[i] * tau ^ (Jir[i] - 1); end s5_pT = R * (tau * (gamma0_tau + gammar_tau) - (gamma0 + gammar)); s5_pT end function Cv5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0_tautau = 0; for i = 1 : 6 gamma0_tautau = gamma0_tautau + ni0[i] * (Ji0[i] - 1) * Ji0[i] * tau ^ (Ji0[i] - 2); end gammar_pi = 0; gammar_pitau = 0; gammar_pipi = 0; gammar_tautau = 0; for i = 1 : 5 gammar_pi = gammar_pi + nir[i] * Iir[i] * Pi ^ (Iir[i] - 1) * tau ^ Jir[i]; gammar_pitau = gammar_pitau + nir[i] * Iir[i] * Pi ^ (Iir[i] - 1) * Jir[i] * tau ^ (Jir[i] - 1); gammar_pipi = gammar_pipi + nir[i] * Iir[i] * (Iir[i] - 1) * Pi ^ (Iir[i] - 2) * tau ^ Jir[i]; gammar_tautau = gammar_tautau + nir[i] * Pi ^ Iir[i] * Jir[i] * (Jir[i] - 1) * tau ^ (Jir[i] - 2); end Cv5_pT = R * (-(tau ^ 2 *(gamma0_tautau + gammar_tautau)) - (1 + Pi * gammar_pi - tau * Pi * gammar_pitau)^2 / (1 - Pi ^ 2 * gammar_pipi)); Cv5_pT end function w5_pT(p, T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam, September 1997 #Basic Equation for Region 5 #Eq 32,33, Page 36, Tables 37-41 Ji0 = [0, 1, -3, -2, -1, 2]; ni0 = [-13.179983674201, 6.8540841634434, -0.024805148933466, 0.36901534980333, -3.1161318213925, -0.32961626538917]; Iir = [1, 1, 1, 2, 3]; Jir = [0, 1, 3, 9, 3]; nir = [-1.2563183589592E-04, 2.1774678714571E-03, -0.004594282089991, -3.9724828359569E-06, 1.2919228289784E-07]; R = 0.461526; #kJ/(kg K) tau = 1000 / T; Pi = p; gamma0_tautau = 0; for i = 1 : 6 gamma0_tautau = gamma0_tautau + ni0[i] * (Ji0[i] - 1) * Ji0[i] * tau ^ (Ji0[i] - 2); end gammar_pi = 0; gammar_pitau = 0; gammar_pipi = 0; gammar_tautau = 0; for i = 1 : 5 gammar_pi = gammar_pi + nir[i] * Iir[i] * Pi ^ (Iir[i] - 1) * tau ^ Jir[i]; gammar_pitau = gammar_pitau + nir[i] * Iir[i] * Pi ^ (Iir[i] - 1) * Jir[i] * tau ^ (Jir[i] - 1); gammar_pipi = gammar_pipi + nir[i] * Iir[i] * (Iir[i] - 1) * Pi ^ (Iir[i] - 2) * tau ^ Jir[i]; gammar_tautau = gammar_tautau + nir[i] * Pi ^ Iir[i] * Jir[i] * (Jir[i] - 1) * tau ^ (Jir[i] - 2); end w5_pT = (1000 * R * T * (1 + 2 * Pi * gammar_pi + Pi ^ 2 * gammar_pi ^ 2) / ((1 - Pi ^ 2 * gammar_pipi) + (1 + Pi * gammar_pi - tau * Pi * gammar_pitau) ^ 2 / (tau ^ 2 * (gamma0_tautau + gammar_tautau)))) ^ 0.5; w5_pT end function T5_ph(p, h) #Solve with half interval method Low_Bound = 1073.15; High_Bound = 2273.15; hs=h-1; Ts=0.0 while abs(h - hs) > 0.00001 Ts = (Low_Bound + High_Bound) / 2; hs = h5_pT(p, Ts); if hs > h High_Bound = Ts; else Low_Bound = Ts; end end T5_ph = Ts; T5_ph end function T5_ps(p, s) #Solve with half interval method Low_Bound = 1073.15; High_Bound = 2273.15; ss=s-1; Ts=0.0 while abs(s - ss) > 0.00001 Ts = (Low_Bound + High_Bound) / 2; ss = s5_pT(p, Ts); if ss > s High_Bound = Ts; else Low_Bound = Ts; end end T5_ps = Ts; T5_ps end function T5_prho(p,rho) #Solve by iteration. Observe that fo low temperatures this equation has 2 solutions. #Solve with half interval method Ts=0.0 Low_Bound = 1073.15; High_Bound = 2073.15; rhos=-1000; while abs(rho - rhos) > 0.000001 Ts = (Low_Bound + High_Bound) / 2; rhos = 1 / v2_pT(p, Ts); if rhos < rho High_Bound = Ts; else Low_Bound = Ts; end end T5_prho = Ts; T5_prho end #*********************************************************************************************************** #*3 Region Selection #*********************************************************************************************************** #*3.1 Regions as a function of pT function region_pT(p, T) if T > 1073.15 && p < 10 && T < 2273.15 && p > 0.000611 region_pT = 5; elseif T <= 1073.15 && T > 273.15 && p <= 100 && p > 0.000611 if T > 623.15 if p > B23p_T(T) region_pT = 3; if T < 647.096 ps = p4_T(T); if abs(p - ps) < 0.00001 region_pT = 4; end end else region_pT = 2; end else ps = p4_T(T); if abs(p - ps) < 0.00001 region_pT = 4; elseif p > ps region_pT = 1; else region_pT = 2; end end else region_pT = 0; #**Error, Outside valid area end region_pT end #*********************************************************************************************************** #*3.2 Regions as a function of ph function region_ph( p, h) #Check if outside pressure limits if p < 0.000611657 || p > 100 region_ph = 0; return region_ph end #Check if outside low h. if h < 0.963 * p + 2.2 #Linear adaption to h1_pt()+2 to speed up calcualations. if h < h1_pT(p, 273.15) region_ph = 0; return region_ph end end if p < 16.5292 #Bellow region 3,Check region 1,4,2,5 #Check Region 1 Ts = T4_p(p); hL = 109.6635 * log(p) + 40.3481 * p + 734.58; #Approximate function for hL_p if abs(h - hL) < 100 #if approximate is not god enough use real function hL = h1_pT(p, Ts); end if h <= hL region_ph = 1; return region_ph end #Check Region 4 hV = 45.1768 * log(p) - 20.158 * p + 2804.4; #Approximate function for hV_p if abs(h - hV) < 50 #if approximate is not god enough use real function hV = h2_pT(p, Ts); end if h < hV region_ph = 4; return region_ph end #Check upper limit of region 2 Quick Test if h < 4000 region_ph = 2; return region_ph end #Check region 2 (Real value) h_45 = h2_pT(p, 1073.15); if h <= h_45 region_ph = 2; return region_ph end #Check region 5 if p > 10 region_ph = 0; return region_ph end h_5u = h5_pT(p, 2273.15); if h < h_5u region_ph = 5; return region_ph end region_ph = 0; return else #for p>16.5292 #Check if in region1 if h < h1_pT(p, 623.15) region_ph = 1; return region_ph end #Check if in region 3 or 4 (Bellow Reg 2) if h < h2_pT(p, B23T_p(p)) #Region 3 or 4 if p > p3sat_h(h) region_ph = 3; return region_ph else region_ph = 4; return region_ph end end #Check if region 2 if h < h2_pT(p, 1073.15) region_ph = 2; return region_ph end end region_ph = 0; region_ph end #*********************************************************************************************************** #*3.3 Regions as a function of ps function region_ps( p, s) if p < 0.000611657 || p > 100 || s < 0 || s > s5_pT(p, 2273.15) region_ps = 0; return region_ps end #Check region 5 if s > s2_pT(p, 1073.15) if p <= 10 region_ps = 5; return region_ps else region_ps = 0; return region_ps end end #Check region 2 if p > 16.529 ss = s2_pT(p, B23T_p(p)); #Between 5.047 & 5.261. Use to speed up! else ss = s2_pT(p, T4_p(p)); end if s > ss region_ps = 2; return region_ps end #Check region 3 ss = s1_pT(p, 623.15); if p > 16.529 && s > ss if p > p3sat_s(s) region_ps = 3; return region_ps else region_ps = 4; return region_ps end end #Check region 4 (Not inside region 3) if p < 16.529 && s > s1_pT(p, T4_p(p)) region_ps = 4; return region_ps end #Check region 1 if p > 0.000611657 && s > s1_pT(p, 273.15) region_ps = 1; return region_ps end region_ps = 1; region_ps end #*********************************************************************************************************** #*3.4 Regions as a function of hs function region_hs( h, s) if s < -0.0001545495919 region_hs = 0; return region_hs end #Check linear adaption to p=0.000611. if bellow region 4. hMin = (((-0.0415878 - 2500.89262) / (-0.00015455 - 9.155759)) * s); if s < 9.155759395 && h < hMin region_hs = 0; return region_hs end #******Kolla 1 eller 4. (+liten bit 鰒er B13) if s >= -0.0001545495919 && s <= 3.77828134 if h < h4_s(s) region_hs = 4; return region_hs elseif s < 3.397782955 #100MPa line is limiting TMax = T1_ps(100, s); hMax = h1_pT(100, TMax); if h < hMax region_hs = 1; return region_hs else region_hs = 0; return region_hs end else #The point is either in region 4,1,3. Check B23 hB = hB13_s(s); if h < hB region_hs = 1; return region_hs end TMax = T3_ps(100, s); vmax = v3_ps(100, s); hMax = h3_rhoT(1 / vmax, TMax); if h < hMax region_hs = 3; return region_hs else region_hs = 0; return region_hs end end end #******Kolla region 2 eller 4. (講re delen av omr錮e b23-> max) if s >= 5.260578707 && s <= 11.9212156897728 if s > 9.155759395 #Above region 4 Tmin = T2_ps(0.000611, s); hMin = h2_pT(0.000611, Tmin); #function adapted to h(1073.15,s) hMax = -0.07554022 * s ^ 4 + 3.341571 * s ^ 3 - 55.42151 * s ^ 2 + 408.515 * s + 3031.338; if h > hMin && h < hMax region_hs = 2; return region_hs else region_hs = 0; return region_hs end end hV = h4_s(s); if h < hV #Region 4. Under region 3. region_hs = 4; return region_hs end if s < 6.04048367171238 TMax = T2_ps(100., s); hMax = h2_pT(100., TMax); else #function adapted to h(1073.15,s) hMax = -2.988734 * s ^ 4 + 121.4015 * s ^ 3 - 1805.15 * s ^ 2 + 11720.16 * s - 23998.33; end if h < hMax #Region 2. 講er region 4. region_hs = 2; return region_hs else region_hs = 0; return region_hs end end #Kolla region 3 eller 4. Under kritiska punkten. if s >= 3.77828134 && s <= 4.41202148223476 hL = h4_s(s); if h < hL region_hs = 4; return region_hs end TMax = T3_ps(100, s); vmax = v3_ps(100, s); hMax = h3_rhoT(1 / vmax, TMax); if h < hMax region_hs = 3; return region_hs else region_hs = 0; return region_hs end end #Kolla region 3 eller 4 fr錸 kritiska punkten till 鰒re delen av b23 if s >= 4.41202148223476 && s <= 5.260578707 hV = h4_s(s); if h < hV region_hs = 4; return region_hs end #Kolla om vi 鋜 under b23 giltighetsomr錮e. if s <= 5.048096828 TMax = T3_ps(100, s); vmax = v3_ps(100, s); hMax = h3_rhoT(1 / vmax, TMax); if h < hMax region_hs = 3; return region_hs else region_hs = 0; return region_hs end else #Inom omr錮et f鰎 B23 i s led. if (h > 2812.942061) #Ovanf鰎 B23 i h_led if s > 5.09796573397125 TMax = T2_ps(100, s); hMax = h2_pT(100, TMax); if h < hMax region_hs = 2; return region_hs else region_hs = 0; return region_hs end else region_hs = 0; return region_hs end end if (h < 2563.592004) #Nedanf鰎 B23 i h_led men vi har redan kollat ovanf鰎 hV2c3b region_hs = 3; return region_hs end #Vi 鋜 inom b23 omr錮et i b錮e s och h led. Tact = TB23_hs(h, s); pact = p2_hs(h, s); pBound = B23p_T(Tact); if pact > pBound region_hs = 3; return region_hs else region_hs = 2; return region_hs end end end region_hs = 0; region_hs end #*********************************************************************************************************** #*3.5 Regions as a function of p and rho function Region_prho(p,rho) v = 1 / rho; if p < 0.000611657 || p > 100 Region_prho = 0; return end if p < 16.5292 #Bellow region 3, Check region 1,4,2 if v < v1_pT(p, 273.15) #Observe that this is not actually min of v. Not valid Water of 4癈 is ligther. Region_prho = 0; return Region_prho end if v <= v1_pT(p, T4_p(p)) Region_prho = 1; return Region_prho end if v < v2_pT(p, T4_p(p)) Region_prho = 4; return Region_prho end if v <= v2_pT(p, 1073.15) Region_prho = 2; return Region_prho end if p > 10 #Above region 5 Region_prho = 0; return Region_prho end if v <= v5_pT(p, 2073.15) Region_prho = 5; return Region_prho end else #Check region 1,3,4,3,2 (Above the lowest point of region 3.) if v < v1_pT(p, 273.15) #Observe that this is not actually min of v. Not valid Water of 4癈 is ligther. Region_prho = 0; return Region_prho end if v < v1_pT(p, 623.15) Region_prho = 1; return Region_prho end #Check if in region 3 or 4 (Bellow Reg 2) if v < v2_pT(p, B23T_p(p)) #Region 3 or 4 if p > 22.064 #Above region 4 Region_prho = 3; return Region_prho end if v < v3_ph(p, h4L_p(p)) || v > v3_ph(p, h4V_p(p)) #Uses iteration!! Region_prho = 3; return Region_prho else Region_prho = 4; return Region_prho end end #Check if region 2 if v < v2_pT(p, 1073.15) Region_prho = 2; return Region_prho end end Region_prho = 0; Region_prho end #*********************************************************************************************************** #*4 Region Borders #*********************************************************************************************************** #*********************************************************************************************************** #*4.1 Boundary between region 2 and 3. function B23p_T(T) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #1997 #Section 4 Auxiliary Equation for the Boundary between Regions 2 and 3 #Eq 5, Page 5 B23p_T = 348.05185628969 - 1.1671859879975 * T + 1.0192970039326E-03 * T ^ 2; B23p_T end function B23T_p(p) #Release on the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water and Steam #1997 #Section 4 Auxiliary Equation for the Boundary between Regions 2 and 3 #Eq 6, Page 6 B23T_p = 572.54459862746 + ((p - 13.91883977887) / 1.0192970039326E-03) ^ 0.5; B23T_p end #*********************************************************************************************************** #*4.2 Region 3. pSat_h & pSat_s function p3sat_h(h) #Revised Supplementary Release on Backward Equations for the functions T(p,h), v(p,h) & T(p,s), v(p,s) for Region 3 of the IAPWS Industrial formulation 1997 for the Thermodynamic Properties of Water & Steam #2004 #Section 4 Boundary Equations psat(h) & psat(s) for the Saturation Lines of Region 3 #Se pictures Page 17, Eq 10, Table 17, Page 18 Ii = [0, 1, 1, 1, 1, 5, 7, 8, 14, 20, 22, 24, 28, 36]; Ji = [0, 1, 3, 4, 36, 3, 0, 24, 16, 16, 3, 18, 8, 24]; ni = [0.600073641753024, -9.36203654849857, 24.6590798594147, -107.014222858224, -91582131580576.8, -8623.32011700662, -23.5837344740032, 2.52304969384128E+17, -3.89718771997719E+18, -3.33775713645296E+22, 35649946963.6328, -1.48547544720641E+26, 3.30611514838798E+18, 8.13641294467829E+37]; hs = h / 2600; ps = 0; for i = 1:14 ps = ps + ni[i] * (hs - 1.02) ^ Ii[i] * (hs - 0.608) ^ Ji[i]; end p3sat_h = ps * 22; p3sat_h end function p3sat_s(s) Ii = [0, 1, 1, 4, 12, 12, 16, 24, 28, 32]; Ji = [0, 1, 32, 7, 4, 14, 36, 10, 0, 18]; ni = [0.639767553612785, -12.9727445396014, -2.24595125848403E+15, 1774667.41801846, 7170793495.71538, -3.78829107169011E+17, -9.55586736431328E+34, 1.87269814676188E+23, 119254746466.473, 1.10649277244882E+36]; Sigma = s / 5.2; Pi = 0; for i = 1:10 Pi = Pi + ni[i] * (Sigma - 1.03) ^ Ii[i] * (Sigma - 0.699) ^ Ji[i]; end p3sat_s = Pi * 22; p3sat_s end #*********************************************************************************************************** #4.3 Region boundary 1to3 & 3to2 as a functions of s function hB13_s(s) #Supplementary Release on Backward Equations ( ) , p h s for Region 3, #Chapter 4.5 page 23. Ii = [0, 1, 1, 3, 5, 6]; Ji = [0, -2, 2, -12, -4, -3]; ni = [0.913965547600543, -4.30944856041991E-05, 60.3235694765419, 1.17518273082168E-18, 0.220000904781292, -69.0815545851641]; Sigma = s / 3.8; eta = 0; for i = 1 : 6 eta = eta + ni[i] * (Sigma - 0.884) ^ Ii[i] * (Sigma - 0.864) ^ Ji[i]; end hB13_s = eta * 1700; hB13_s end function TB23_hs(h, s) #Supplementary Release on Backward Equations ( ) , p h s for Region 3, #Chapter 4.6 page 25. Ii = [-12, -10, -8, -4, -3, -2, -2, -2, -2, 0, 1, 1, 1, 3, 3, 5, 6, 6, 8, 8, 8, 12, 12, 14, 14]; Ji = [10, 8, 3, 4, 3, -6, 2, 3, 4, 0, -3, -2, 10, -2, -1, -5, -6, -3, -8, -2, -1, -12, -1, -12, 1]; ni = [6.2909626082981E-04, -8.23453502583165E-04, 5.15446951519474E-08, -1.17565945784945, 3.48519684726192, -5.07837382408313E-12, -2.84637670005479, -2.36092263939673, 6.01492324973779, 1.48039650824546, 3.60075182221907E-04, -1.26700045009952E-02, -1221843.32521413, 0.149276502463272, 0.698733471798484, -2.52207040114321E-02, 1.47151930985213E-02, -1.08618917681849, -9.36875039816322E-04, 81.9877897570217, -182.041861521835, 2.61907376402688E-06, -29162.6417025961, 1.40660774926165E-05, 7832370.62349385]; Sigma = s / 5.3; eta = h / 3000; teta = 0; for i = 1 : 25 teta = teta + ni[i] * (eta - 0.727) ^ Ii[i] * (Sigma - 0.864) ^ Ji[i]; end TB23_hs = teta * 900; TB23_hs end #*********************************************************************************************************** #*5 Transport properties #*********************************************************************************************************** #*5.1 Viscosity (IAPWS formulation 1985, Revised 2003) #*********************************************************************************************************** function my_AllRegions_pT( p, T) h0 = [0.5132047, 0.3205656, 0, 0, -0.7782567, 0.1885447]; h1 = [0.2151778, 0.7317883, 1.241044, 1.476783, 0, 0]; h2 = [-0.2818107, -1.070786, -1.263184, 0, 0, 0]; h3 = [0.1778064, 0.460504, 0.2340379, -0.4924179, 0, 0]; h4 = [-0.0417661, 0, 0, 0.1600435, 0, 0]; h5 = [0, -0.01578386, 0, 0, 0, 0]; h6 = [0, 0, 0, -0.003629481, 0, 0]; #Calcualte density. region=region_pT(p,T) if region ==1 rho = 1 / v1_pT(p, T); elseif region == 2 rho = 1 / v2_pT(p, T); elseif region == 3 hs = h3_pT(p, T); rho = 1 / v3_ph(p, hs); elseif region == 4 rho = NaN; elseif region == 5 rho = 1 / v5_pT(p, T); else my_AllRegions_pT = NaN; return my_AllRegions_pT end rhos = rho / 317.763; Ts = T / 647.226; ps = p / 22.115; #Check valid area if T > 900 + 273.15 || (T > 600 + 273.15 && p > 300) || (T > 150 + 273.15 && p > 350) || p > 500 my_AllRegions_pT = NaN; return my_AllRegions_pT end my0 = Ts ^ 0.5 / (1 + 0.978197 / Ts + 0.579829 / (Ts ^ 2) - 0.202354 / (Ts ^ 3)); Sum = 0; for i = 0 : 5 Sum = Sum + h0[i+1] * (1 / Ts - 1) ^ i + h1[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 1 + h2[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 2 + h3[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 3 + h4[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 4 + h5[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 5 + h6[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 6; end my1 = exp(rhos * Sum); mys = my0 * my1; my_AllRegions_pT = mys * 0.000055071; my_AllRegions_pT end function my_AllRegions_ph(p,h) h0 = [0.5132047, 0.3205656, 0, 0, -0.7782567, 0.1885447]; h1 = [0.2151778, 0.7317883, 1.241044, 1.476783, 0, 0]; h2 = [-0.2818107, -1.070786, -1.263184, 0, 0, 0]; h3 = [0.1778064, 0.460504, 0.2340379, -0.4924179, 0, 0]; h4 = [-0.0417661, 0, 0, 0.1600435, 0, 0]; h5 = [0, -0.01578386, 0, 0, 0, 0]; h6 = [0, 0, 0, -0.003629481, 0, 0]; #Calcualte density. region = region_ph(p, h) if region == 1 Ts = T1_ph(p, h); T = Ts; rho = 1 / v1_pT(p, Ts); elseif region == 2 Ts = T2_ph(p, h); T = Ts; rho = 1 / v2_pT(p, Ts); elseif region == 3 rho = 1 / v3_ph(p, h); T = T3_ph(p, h); elseif region == 4 xs = x4_ph(p, h); if p < 16.529 v4v = v2_pT(p, T4_p(p)); v4L = v1_pT(p, T4_p(p)); else v4v = v3_ph(p, h4V_p(p)); v4L = v3_ph(p, h4L_p(p)); end rho = 1 / (xs * v4v + (1 - xs) * v4L); T = T4_p(p); elseif region == 5 Ts = T5_ph(p, h); T = Ts; rho = 1 / v5_pT(p, Ts); else my_AllRegions_ph = NaN; return my_AllRegions_ph end rhos = rho / 317.763; Ts = T / 647.226; ps = p / 22.115; #Check valid area if T > 900 + 273.15 || (T > 600 + 273.15 && p > 300) || (T > 150 + 273.15 && p > 350) || p > 500 my_AllRegions_ph = NaN; return my_AllRegions_ph end my0 = Ts ^ 0.5 / (1 + 0.978197 / Ts + 0.579829 / (Ts ^ 2) - 0.202354 / (Ts ^ 3)); Sum = 0; for i = 0 : 5 Sum = Sum + h0[i+1] * (1 / Ts - 1) ^ i + h1[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 1 + h2[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 2 + h3[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 3 + h4[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 4 + h5[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 5 + h6[i+1] * (1 / Ts - 1) ^ i * (rhos - 1) ^ 6; end my1 = exp(rhos * Sum); mys = my0 * my1; my_AllRegions_ph = mys * 0.000055071; my_AllRegions_ph end #*********************************************************************************************************** #*5.2 Thermal Conductivity (IAPWS formulation 1985) function tc_ptrho( p, T, rho) #Revised release on the IAPWS formulation 1985 for the Thermal Conductivity of ordinary water #IAPWS September 1998 #Page 8 #ver2.6 Start corrected bug if T < 273.15 tc_ptrho = NaN; #Out of range of validity (para. B4) return elseif T < 500 + 273.15 if p > 100 tc_ptrho = NaN; #Out of range of validity (para. B4) return tc_ptrho end elseif T <= 650 + 273.15 if p > 70 tc_ptrho = NaN; #Out of range of validity (para. B4) return tc_ptrho end else T <= 800 + 273.15 if p > 40 tc_ptrho = NaN; #Out of range of validity (para. B4) return tc_ptrho end end #ver2.6 End corrected bug T = T / 647.26; rho = rho / 317.7; tc0 = T ^ 0.5 * (0.0102811 + 0.0299621 * T + 0.0156146 * T ^ 2 - 0.00422464 * T ^ 3); tc1 = -0.39707 + 0.400302 * rho + 1.06 * exp(-0.171587 * (rho + 2.39219) ^ 2); dT = abs(T - 1) + 0.00308976; Q = 2 + 0.0822994 / dT ^ (3 / 5); if T >= 1 s = 1 / dT; else s = 10.0932 / dT ^ (3 / 5); end tc2 = (0.0701309 / T ^ 10 + 0.011852) * rho ^ (9 / 5) * exp(0.642857 * (1 - rho ^ (14 / 5))) + 0.00169937 * s * rho ^ Q * exp((Q / (1 + Q)) * (1 - rho ^ (1 + Q))) - 1.02 * exp(-4.11717 * T ^ (3 / 2) - 6.17937 / rho ^ 5); tc_ptrho = tc0 + tc1 + tc2; tc_ptrho end #*********************************************************************************************************** #5.3 Surface Tension function Surface_Tension_T(T) #IAPWS Release on Surface Tension of Ordinary Water Substance, #September 1994 tc = 647.096; #K B = 0.2358; #N/m bb = -0.625; my = 1.256; if T < 0.01 || T > tc Surface_Tension_T = NaN; #"Out of valid region" return Surface_Tension_T end tau = 1 - T / tc; Surface_Tension_T = B * tau ^ my * (1 + bb * tau); Surface_Tension_T end #*********************************************************************************************************** #*6 Units * #*********************************************************************************************************** function toSIunit_p( Ins ) #Translate bar to MPa toSIunit_p = Ins / 10; toSIunit_p end function fromSIunit_p( Ins ) #Translate bar to MPa fromSIunit_p = Ins * 10; fromSIunit_p end function toSIunit_T( Ins ) #Translate degC to Kelvon toSIunit_T = Ins + 273.15; toSIunit_T end function fromSIunit_T( Ins ) #Translate Kelvin to degC fromSIunit_T = Ins - 273.15; fromSIunit_T end function toSIunit_h( Ins ) toSIunit_h = Ins; toSIunit_h end function fromSIunit_h( Ins ) fromSIunit_h = Ins; fromSIunit_h end function toSIunit_v( Ins ) toSIunit_v = Ins; toSIunit_v end function fromSIunit_v( Ins ) fromSIunit_v = Ins; fromSIunit_v end function toSIunit_s( Ins ) toSIunit_s = Ins; toSIunit_s end function fromSIunit_s( Ins ) fromSIunit_s = Ins; fromSIunit_s end function toSIunit_u( Ins ) toSIunit_u = Ins; toSIunit_u end function fromSIunit_u( Ins ) fromSIunit_u = Ins; fromSIunit_u end function toSIunit_Cp( Ins ) toSIunit_Cp = Ins; toSIunit_Cp end function fromSIunit_Cp( Ins ) fromSIunit_Cp = Ins; fromSIunit_Cp end function toSIunit_Cv( Ins ) toSIunit_Cv = Ins; toSIunit_Cv end function fromSIunit_Cv( Ins ) fromSIunit_Cv = Ins; fromSIunit_Cv end function toSIunit_w( Ins ) toSIunit_w = Ins; toSIunit_w end function fromSIunit_w( Ins ) fromSIunit_w = Ins; fromSIunit_w end function toSIunit_tc( Ins ) toSIunit_tc = Ins; toSIunit_tc end function fromSIunit_tc( Ins ) fromSIunit_tc = Ins; fromSIunit_tc end function toSIunit_st( Ins ) toSIunit_st = Ins; toSIunit_st end function fromSIunit_st( Ins ) fromSIunit_st = Ins; fromSIunit_st end function toSIunit_x( Ins ) toSIunit_x = Ins; toSIunit_x end function fromSIunit_x( Ins ) fromSIunit_x = Ins; fromSIunit_x end function toSIunit_vx( Ins ) toSIunit_vx = Ins; toSIunit_vx end function fromSIunit_vx( Ins ) fromSIunit_vx = Ins; fromSIunit_vx end function toSIunit_my( Ins ) toSIunit_my = Ins; toSIunit_my end function fromSIunit_my( Ins ) fromSIunit_my = Ins; fromSIunit_my end #*********************************************************************************************************** #*7 Verification * #*********************************************************************************************************** function check() err=0; #********************************************************************************************************* #* 7.1 Verifiy region 1 #IF-97 Table 5, Page 9 p=[30/10,800/10,30/10]; T=[300,300,500]; Fun=[:v1_pT,:h1_pT,:u1_pT,:s1_pT,:Cp1_pT,:w1_pT]; IF97=[0.00100215168 0.000971180894 0.001202418; 115.331273 184.142828 975.542239; 112.324818 106.448356 971.934985; 0.392294792 0.368563852 2.58041912; 4.17301218 4.01008987 4.65580682; 1507.73921 1634.69054 1240.71337]; R1=zeros(6,3); for i=1:3 for j=1:6 ex=:($(Fun(j))(p[$i],T[$i])) R1[j,i]=eval(ex); end end Region1_error=abs((R1-IF97)./IF97) err=err+sum(sum(Region1_error>1E-8)) #IF-97 Table 7, Page 11 p=[30/10,800/10,800/10]; h=[500,500,1500]; IF97=[391.798509,378.108626,611.041229]; R1=zeros(1,3); for i=1:3 R1[i]=T1_ph(p[i],h[i]); end T1_ph_error=abs((R1-IF97)./IF97) err=err+sum(sum(T1_ph_error>1E-8)) #IF-97 Table 9, Page 12 p=[30/10,800/10,800/10]; s=[0.5,0.5,3]; IF97=[307.842258,309.979785,565.899909]; R1=zeros(1,3); for i=1:3 R1[i]=T1_ps(p[i],s[i]); end T1_ps_error=abs((R1-IF97)./IF97) err=err+sum(sum(T1_ps_error>1E-8)) #Supplementary Release on Backward Equations #for Pressure as a Function of Enthalpy and Entropy p(h,s) #Table 3, Page 6 h=[0.001,90,1500]; s=[0,0,3.4]; IF97=[0.0009800980612,91.929547272,58.68294423]; R1=zeros(1,3); for i=1:3 R1[i]=p1_hs(h[i],s[i]); end p1_hs_error=abs((R1-IF97)./IF97) err=err+sum(sum(p1_hs_error>1E-8)) #********************************************************************************************************* #* 7.2 Verifiy region 2 # IF-97 Table 15, Page 17 p=[0.035/10,0.035/10,300/10]; T=[300,700,700]; Fun=[:v2_pT,:h2_pT,:u2_pT,:s2_pT,:Cp2_pT,:w2_pT]; IF97=[39.4913866 92.3015898 0.00542946619; 2549.91145 3335.68375 2631.49474; 2411.6916 3012.62819 2468.61076; 8.52238967 10.1749996 5.17540298; 1.91300162 2.08141274 10.3505092; 427.920172 644.289068 480.386523]; R2=zeros(6,3); for i=1:3 for j=1:6 ex=:($(Fun(i))(p[$i],T[$i])) R2[j,i]=eval(ex); end end Region2_error=abs((R2-IF97)./IF97) err=err+sum(sum(Region2_error>1E-8)) #IF-97 Table 24, Page 25 p=[0.01/10,30/10,30/10,50/10,50/10,250/10,400/10,600/10,600/10]; h=[3000,3000,4000,3500,4000,3500,2700,2700,3200]; IF97=[534.433241,575.37337,1010.77577,801.299102,1015.31583,875.279054,743.056411,791.137067,882.75686]; R2=zeros(1,9); for i=1:9 R2[i]=T2_ph(p[i],h[i]); end T2_ph_error=abs((R2-IF97)./IF97) err=err+sum(sum(T2_ph_error>1E-8)) #IF-97 Table 29, Page 29 p=[1/10,1/10,25/10,80/10,80/10,900/10,200/10,800/10,800/10]; s=[7.5,8,8,6,7.5,6,5.75,5.25,5.75]; IF97=[399.517097,514.127081,1039.84917,600.48404,1064.95556,1038.01126,697.992849,854.011484,949.017998]; R2=zeros(1,9); for i=1:9 R2[i]=T2_ps(p[i],s[i]); end T2_ps_error=abs((R2-IF97)./IF97) err=err+sum(sum(T2_ps_error>1E-8)) #Supplementary Release on Backward Equations for Pressure as a Function of Enthalpy and Entropy p(h,s) #Table 3, Page 6 h=[2800,2800,4100,2800,3600,3600,2800,2800,3400]; s=[6.5,9.5,9.5,6,6,7,5.1,5.8,5.8]; IF97=[1.371012767,0.001879743844,0.1024788997,4.793911442,83.95519209,7.527161441,94.3920206,8.414574124,83.76903879]; R2=zeros(1,9); for i=1:9 R2[i]=p2_hs(h[i],s[i]); end p2_hs_error=abs((R2-IF97)./IF97) err=err+sum(sum(p2_hs_error>1E-8)) #********************************************************************************************************* #* 7.3 Verifiy region 3 # IF-97 Table 33, Page 32 T=[650,650,750]; rho=[500,200,500]; Fun=[:p3_rhoT,:h3_rhoT,:u3_rhoT,:s3_rhoT,:Cp3_rhoT,:w3_rhoT]; IF97=[25.5837018 22.2930643 78.3095639; 1863.43019 2375.12401 2258.68845; 1812.26279 2263.65868 2102.06932; 4.05427273 4.85438792 4.46971906; 13.8935717 44.6579342 6.34165359; 502.005554 383.444594 760.696041]; R3=zeros(6,3); for i=1:3 for j=1:6 R3[j,i]=eval(:($(Fun(i))(rho[$i],T[$i]))); end end Region3_error=abs((R3-IF97)./IF97) err=err+sum(sum(Region3_error>1E-8)) #T3_ph p=[200/10,500/10,1000/10,200/10,500/10,1000/10]; h=[1700,2000,2100,2500,2400,2700]; IF97=[629.3083892,690.5718338,733.6163014,641.8418053,735.1848618,842.0460876]; R3=zeros(1,6); for i=1:6 R3[i]=T3_ph(p[i],h[i]); end T3_ph_error=abs((R3-IF97)./IF97) err=err+sum(sum(T3_ph_error>1E-8)) #v3_ph p=[200/10,500/10,1000/10,200/10,500/10,1000/10]; h=[1700,2000,2100,2500,2400,2700]; IF97=[0.001749903962,0.001908139035,0.001676229776,0.006670547043,0.0028012445,0.002404234998]; R3=zeros(1,6); for i=1:6 R3[i]=v3_ph(p[i],h[i]); end v3_ph_error=abs((R3-IF97)./IF97) err=err+sum(sum(v3_ph_error>1E-7)) #T3_ps p=[200/10,500/10,1000/10,200/10,500/10,1000/10]; s=[3.7,3.5,4,5,4.5,5]; IF97=[620.8841563,618.1549029,705.6880237,640.1176443,716.3687517,847.4332825]; R3=zeros(1,6); for i=1:6 R3[i]=T3_ps(p[i],s[i]); end T3_ps_error=abs((R3-IF97)./IF97) err=err+sum(sum(T3_ps_error>1E-8)) #v3_ps p=[200/10,500/10,1000/10,200/10,500/10,1000/10]; s=[3.7,3.5,4,5,4.5,5]; IF97=[0.001639890984,0.001423030205,0.001555893131,0.006262101987,0.002332634294,0.002449610757]; R3=zeros(1,6); for i=1:6 R3[i]=v3_ps(p[i],s[i]); end v3_ps_error=abs((R3-IF97)./IF97) err=err+sum(sum(v3_ps_error>1E-8)) #p3_hs h=[1700,2000,2100,2500,2400,2700]; s=[3.8,4.2,4.3,5.1,4.7,5]; IF97=[25.55703246,45.40873468,60.7812334,17.20612413,63.63924887,88.39043281]; R3=zeros(1,6); for i=1:6 R3[i]=p3_hs(h[i],s[i]); end p3_hs_error=abs((R3-IF97)./IF97) err=err+sum(sum(p3_hs_error>1E-8)) #h3_pT (Iteration) p=[255.83702,222.93064,783.09564]./10; T=[650,650,750]; IF97=[1863.271389,2375.696155,2258.626582]; R3=zeros(1,3); for i=1:3 R3[i]=h3_pT(p[i],T[i]); end h3_pT_error=abs((R3-IF97)./IF97) err=err+sum(sum(h3_pT_error>1E-6)) #Decimals in IF97 #********************************************************************************************************* #* 7.4 Verifiy region 4 #Saturation pressure, If97, Table 35, Page 34 T=[300,500,600]; IF97=[0.0353658941, 26.3889776, 123.443146]/10; R3=zeros(1,3); for i=1:3 R3[i]=p4_T(T[i]); end p4_t_error=abs((R3-IF97)./IF97) err=err+sum(sum( p4_t_error>1E-7)) T=[1,10,100]/10; IF97=[372.755919,453.035632,584.149488]; R3=zeros(1,3); for i=1:3 R3[i]=T4_p(T[i]); end T4_p_error=abs((R3-IF97)./IF97) err=err+sum(sum( T4_p_error>1E-7)) s=[1,2,3,3.8,4,4.2,7,8,9,5.5,5,4.5]; IF97=[308.5509647,700.6304472,1198.359754,1685.025565,1816.891476,1949.352563,2723.729985,2599.04721,2511.861477,2687.69385,2451.623609,2144.360448]; R3=zeros(1,12); for i=1:12 R3[i]=h4_s(s[i]); end h4_s_error=abs((R3-IF97)./IF97) err=err+sum(sum( h4_s_error>1E-7)) #********************************************************************************************************* #* 7.5 Verifiy region 5 # IF-97 Table 42, Page 39 T=[1500,1500,2000]; p=[5,80,80]/10; Fun=[:v5_pT,:h5_pT,:u5_pT,:s5_pT,:Cp5_pT,:w5_pT]; IF97=[1.38455354 0.0865156616 0.115743146; 5219.76332 5206.09634 6583.80291; 4527.48654 4513.97105 5657.85774; 9.65408431 8.36546724 9.15671044; 2.61610228 2.64453866 2.8530675; 917.071933 919.708859 1054.35806]; R5=zeros(6,3); for i=1:3 for j=1:6 R5[j,i]=eval(:($(Fun(j))(p[$i],T[$i]))); end end Region5_error=abs((R5-IF97)./IF97) err=err+sum(sum(Region5_error>1E-8)) #T5_ph (Iteration) p=[0.5,8,8]; h=[5219.76331549428,5206.09634477373,6583.80290533381]; IF97=[1500,1500,2000]; R5=zeros(1,3); for i=1:3 R5[i]=T5_ph(p[i],h[i]); end T5_ph_error=abs((R5-IF97)./IF97) err=err+sum(sum(T5_ph_error>1E-7)) #Decimals in IF97 #T5_ps (Iteration) p=[0.5,8,8]; s=[9.65408430982588,8.36546724495503,9.15671044273249]; IF97=[1500,1500,2000]; R5=zeros(1,3); for i=1:3 R5[i]=T5_ps(p[i],s[i]); end T5_ps_error=abs((R5-IF97)./IF97) err=err+sum(sum(T5_ps_error>1E-4)) #Decimals in IF97 end #********************************************************************************************************* #* 7.6 Verifiy calling funtions # #fun=["Tsat_p","T_ph","T_ps","T_hs","psat_T","p_hs","hV_p","hL_p","hV_T","hL_T","h_pT","h_ps","h_px","h_prho","h_Tx","vV_p","vL_p","vV_T","vL_T","v_pT","v_ph","v_ps","rhoV_p","rhoL_p","rhoV_T","rhoL_T","rho_pT","rho_ph","rho_ps","sV_p","sL_p","sV_T","sL_T","s_pT","s_ph","uV_p","uL_p","uV_T","uL_T","u_pT","u_ph","u_ps","CpV_p","CpL_p","CpV_T","CpL_T","Cp_pT","Cp_ph","Cp_ps","CvV_p","CvL_p","CvV_T","CvL_T","Cv_pT","Cv_ph","Cv_ps","wV_p","wL_p","wV_T","wL_T","w_pT","w_ph","w_ps","my_pT","my_ph","my_ps","tcL_p","tcV_p","tcL_T","tcV_T","tc_pT","tc_ph","tc_hs","st_T","st_p","x_ph","x_ps","vx_ph","vx_ps"]; #In1=["1","1","1","100","100","84","1","1","100","100","1","1","1","1","100","1","1","100","100","1","1","1","1","1","100","100","1","1","1","0.006117","0.0061171","0.0001","100","1","1","1","1","100","100","1","1","1","1","1","100","100","1","1","1","1","1","100","100","1","1","1","1","1","100","100","1","1","1","1","1","1","1","1","25","25","1","1","100","100","1","1","1","1","1"]; #In2=["0","100","1","0.2","0","0.296","0","0","0","0","20","1","0.5","2","0.5","0","0","0","0","100","1000","5","0","0","0","0","100","1000","1","0","0","0","0","20","84.01181117","0","0","0","0","100","1000","1","0","0","0","0","100","200","1","0","0","0","0","100","200","1","0","0","0","0","100","200","1","100","100","1","0","0","0","0","25","100","0.34","0","0","1000","4","418","4"]; #Control=["99.60591861","23.84481908","73.70859421","13.84933511","1.014179779","2.295498269","2674.949641","417.4364858","2675.572029","419.099155","84.01181117","308.6107171","1546.193063","1082.773391","1547.33559210927","1.694022523","0.001043148","1.671860601","0.001043455","1.695959407","0.437925658","1.03463539","0.590310924","958.6368897","0.598135993","958.3542773","0.589636754","2.283492601","975.6236788","9.155465556","1.8359E-05","9.155756716","1.307014328","0.296482921","0.296813845","2505.547389","417.332171","2506.015308","418.9933299","2506.171426","956.2074342","308.5082185","2.075938025","4.216149431","2.077491868","4.216645119","2.074108555","4.17913573168802","4.190607038","1.552696979","3.769699683","1.553698696","3.76770022","1.551397249","4.035176364","3.902919468","472.0541571","1545.451948","472.2559492","1545.092249","472.3375235","1542.682475","1557.8585","1.22704E-05","0.000914003770302108","0.000384222","0.677593822","0.024753668","0.607458162","0.018326723","0.607509806","0.605710062","0.606283124","0.0589118685876641","0.058987784","0.258055424","0.445397961","0.288493093","0.999233827"]; # #for i=1:length(fun) # # T=:($(fun[i])(parse(Float64,$(In1[i])),parse(Float64,$(In2[i])))); # Res=eval(T); # Error=(Res-(parse(Float64,Control[i])))/parse(Float64,Control[i]); # #Check=[T,"=",num2str(Res)," - (Control)",char(Control[i]),"=",num2str(Error)] # if Error>1E-5 # err=err+1; # error("To large error") # end #end phc(p,h)=Cp_ph(p,h) phg(p,h)=Cp_ph(p,h)/Cv_ph(p,h) phq(p,h)=x_ph(p,h) phs(p,h)=s_ph(p,h) pht(p,h)=T_ph(p,h) phv(p,h)=v_ph(p,h) phw(p,h)=w_ph(p,h) phm(p,h)=my_ph(p,h) pqc(p,q)=(1.0-q)*CpL_p(p)+q*CpV_p(p) pqh(p,q)=(1.0-q)*hL_p(p)+q*hV_p(p) pqk(p,q)=(1.0-q)*tcL_p(p)+q*tcV_p(p) pqg(p,q)=(1.0-q)*CpL_p(p)/CvL_p(p)+q*CpV_p(p)/CvV_p(p) pqs(p,q)=(1.0-q)*sL_p(p)+q*sV_p(p) pqv(p,q)=(1.0-q)*vL_p(p)+q*vV_p(p) pqw(p,q)=(1.0-q)*wL_p(p)+q*wV_p(p) pqm(p,q)=(1.0-q)*my_ph(p,hL_p(p))+q*my_ph(p,hV_p(p)) psc(p,s)=Cp_ps(p,s) psg(p,s)=Cp_ps(p,s)/Cv_ps(p,s) psh(p,s)=h_ps(p,s) psq(p,s)=x_ps(p,s) pst(p,s)=T_ps(p,s) psv(p,s)=v_ps(p,s) psw(p,s)=w_ps(p,s) psm(p,s)=my_ps(p,s) pt(p)=Tsat_p(p) ptc(p,t)=Cp_pT(p,t) ptg(p,t)=Cp_pT(p,t)/Cv_pT(p,t) pth(p,t)=h_pT(p,t) ptk(p,t)=tc_pT(p,t) ptm(p,t)=my_pT(p,t) pts(p,t)=s_pT(p,t) ptv(p,t)=v_pT(p,t) ptw(p,t)=w_pT(p,t) tp(t)=psat_T(t) tqc(t,q)=(1.0-q)*CpL_T(t)+q*CpV_T(t) tqg(t,q)=(1.0-q)*CpL_T(t)/CvL_T(t)+q*CpV_T(t)/CvV_T(t) tqh(t,q)=(1.0-q)*hL_T(t)+q*hV_T(t) tqk(t,q)=(1.0-q)*tcL_T(t)+q*tcV_T(t) tqs(t,q)=(1.0-q)*sL_T(t)+q*sV_T(t) tqv(t,q)=(1.0-q)*vL_T(t)+q*vV_T(t) tqw(t,q)=(1.0-q)*wL_T(t)+q*wV_T(t) hst(h,s)=T_hs(h,s) hsp(h,s)=p_hs(h,s) pqu(p,q)=(1.0-q)*uL_p(p)+q*uV_p(p) tqu(t,q)=(1.0-q)*uL_T(t)+q*uV_T(t) ptu(p,t)=u_pT(p,t) phu(p,h)=u_ph(p,h) psu(p,h)=s_ph(p,h) hsk(h,s)=tc_hs(h,s) pvh(p,v)=h_prho(p,1/v) hvp(h,v)=p_hrho(h,1/v) export phc,phg,phq,phs,pht,phv,phw,phm,pqc,pqh,pqk,pqg,pqs,pqv,pqw,pqm,psc,psg,psh,psq,pst,psv,psw,psm export pt,ptc,ptg,pth,ptk,ptm,pts,ptv,ptw,tp,tqc,tqg,tqh,tqk,tqs,tqv,tqw,hst,pqu,tqu,ptu,phu,psu,hsk,pvh,hvp export Tsat_p,T_ph,T_ps,T_hs,psat_T,p_hs,hV_p,hL_p,hV_T,hL_T,h_pT,h_ps,h_px,h_prho,h_Tx,vV_p,vL_p,vV_T,vL_T,v_pT,v_ph,v_ps export rhoV_p,rhoL_p,rhoV_T,rhoL_T,rho_pT,rho_ph,rho_ps,sV_p,sL_p,sV_T,sL_T,s_pT,s_ph,uV_p,uL_p,uV_T,uL_T,u_pT,u_ph,u_ps,CpV_p export CpL_p,CpV_T,CpL_T,Cp_pT,Cp_ph,Cp_ps,CvV_p,CvL_p,CvV_T,CvL_T,Cv_pT,Cv_ph,Cv_ps,wV_p,wL_p,wV_T,wL_T,w_pT,w_ph,w_ps,my_pT,my_ph,my_ps export tcL_p,tcV_p,tcL_T,tcV_T,tc_pT,tc_ph,tc_hs,st_T,st_p,x_ph,x_ps,vx_ph,vx_ps; end
XSteam
https://github.com/hzgzh/XSteam.jl.git
[ "MIT" ]
0.3.0
bfe2782c68eadd44e719a00bbaf96c83b921e4e1
docs
9147
## XSteam for julia Immigrate By hzgzh Date: 2019-9-29 X Steam for julia is a implementation of the IAPWS IF97 standard formulation immigrate from XSteam for matlab By Magnus Holmgren, www.x-eng.com The steam tables are free and provided as is. We take no responsibilities for any errors in the code or damage thereby. You are free to use, modify and distribute the code as long as authorship is properly acknowledged. Please notify me at [email protected] if the code is used in commercial applications. It provides accurate data for water and steam and mixtures of water and steam properties from 0 - 1000 bar and from 0 - 2000 deg C. The initial units of XSteam are SI units as denoted in this document. All functions however call unit conversion functions so the units can be easily changed. A text file with unit conversion functions for English units are enclosed with the file. ### Usage The XSteam code are used in the following way: * Example: rho_pT(1,200) returns the density at 1 bar and 200°C. * winsteam syntax pth(1,200) returns the entalpy at 1bar and 200°C ### Introduction X Steam for matlab is a implementation of the IAPWS IF97 standard formulation. It provides accurate thermo hydraulic data for water and steam and mixtures of water and steam in the region: * 0°C < temperature < 2000°C for * 0.00611 bar a < pressure < 100 bar a * 0°C < temperature < 1000°C for * 0.00611 bar a < pressure < 1000 bar a For accuracy and further information on IAPWS IF97 formulation, se homepage of the international association for properties of water and steam (www.iapws.org). ### Unit |Notation|Quantity|Unit| |-|-|-| |T|Temperature|°C| |p|Pressure|bar| |h|Enthalpy|kJ/kg| |v|Specific volume|$m^3/kg$| |rho|Density|$kg/m^3$| |s|Specific entropy|kJ/(kg °C)| |u|Specific internal energy|kJ/kg| |Cp|Specific isobaric heat capacity|kJ/(kg °C)| |Cv|Specific isochoric heat capacity|kJ/(kg °C)| |w|Speed of sound|m/s| |my|Viscosity|Pa s| |tc|Thermal Conductivity|W/(m °C)| |st|Surface Tension|N/m| |x or q|Vapour fraction (0-1)|-| |vx|Vapour Volume Fraction (0-1)|-| ## XSteam functions ### Temperature |Function|In1|In2|Out| |-|-|-|-| |Tsat_p or pt|p||Saturation temperature| |T_ph or pht|p|H|Temperture as a function of pressure and enthalpy| |T_ps or pst|p|S|Temperture as a function of pressure and entropy| |T_hs or hst|h|S|Temperture as a function of enthalpy and entropy| ### Pressure |Function|In1|In2|Out| |-|-|-|-| |psat_T or tp|T||Saturation pressure| |p_hs or hsp|h|s|Pressure as a function of h and s.| |p_hrho or hvp|h|rho|Pressure as a function of h and rho (density) or Specific volume .Very unaccurate for solid water region since it's almost incompressible!| ### Enthalpy |Function|In1|In2|Out| |-|-|-|-| |hV_p or pqh(p,1)|p||Saturated vapour enthalpy| |hL_p or pqh(p,0)|p||Saturated liquid enthalpy| |hV_T or tqh(t,1)|T||Saturated vapour enthalpy| |hL_T or tqh(t,0)|T||Saturated liquid enthalpy| |h_pT or pth| p| T| Entalpy as a function of pressure and temperature.| |h_ps or psh| p| s| Entalpy as a function of pressure and entropy.| |h_px or pqh| p| x| Entalpy as a function of pressure and vapour fraction| |h_Tx or tqh| T| X| Entalpy as a function of temperature and vapour fraction| |h_prho or pvh| p| rho|Entalpy as a function of pressure and density or Specific volume. Observe for low temperatures (liquid) this equation has 2 solutions.(Not valid!!)| ### Specific volume |Function|In1|In2|Out| |-|-|-|-| |vV_p or pqv(p,1)| p|| Saturated vapour volume| |vL_p or pqv(p,0)| p|| Saturated liquid volume| |vV_T or tqv(p,1)| T|| Saturated vapour volume| |vL_T or tqv(p,0)| T|| Saturated liquid volume| |v_pT or ptv| p| T|Specific volume as a function of pressure and temperature.| |v_ph or phv| p| h| Specific volume as a function of pressure and enthalpy| |v_ps or psv| p| s| Specific volume as a function of pressure and entropy.| ### Density |Function|In1|In2|Out| |-|-|-|-| |rhoV_p or 1/pqv(p,1)| p|| Saturated vapour density| |rhoL_p or 1/pqv(p,0)| p|| Saturated liquid density| |rhoV_T or 1/tqv(t,1)| T|| Saturated vapour density| |rhoL_T or 1/tqv(t,0)| T|| Saturated liquid density| |rho_pT or 1/ptv| p| T| Density as a function of pressure and temperature.| |rho_ph or 1/phv| p| h| Density as a function of pressure and enthalpy| |rho_ps or 1/psv| p| s| Density as a function of pressure and entropy.| ### Specific entropy |Function|In1|In2|Out| |-|-|-|-| |sV_p or pqs(p,1)| p|| Saturated vapour entropy| |sL_p or pqs(p,0)| p|| Saturated liquid entropy| |sV_T or tqs(p,1)| T|| Saturated vapour entropy| |sL_T or tqs(p,0)| T|| Saturated liquid entropy| |s_pT or pts|p| T|Specific entropy as a function of pressure and temperature(Returns saturated vapour entalpy if mixture.)| |s_ph or phs| p| h|Specific entropy as a function of pressure and enthalpy| ### Specific internal energy |Function|In1|In2|Out| |-|-|-|-| |uV_p or pqu(p,1)| p|| Saturated vapour internal energy| |uL_p or pqu(p,0)| p|| Saturated liquid internal energy| |uV_T or tqu(t,1)| T|| Saturated vapour internal energy| |uL_T or tqu(t,0)| T|| Saturated liquid internal energy| |u_pT or ptu|p| T|Specific internal energy as a function of pressure and temperature.| |u_ph or phu|p| h|Specific internal energy as a function of pressure and enthalpy| |u_ps or psu|p| s|Specific internal energy as a function of pressure and entropy.| ### Specific isobaric heat capacity |Function|In1|In2|Out| |-|-|-|-| |CpV_p or pqc(p,1)| p||Saturated vapour heat capacity| |CpL_p or pqc(p,0)| p|| Saturated liquid heat capacity| |CpV_T or tqc(t,1)| T|| Saturated vapour heat capacity| |CpL_T or tqc(t,0)| T|| Saturated liquid heat capacity| |Cp_pT or ptc|p| T|Specific isobaric heat capacity as a function of pressure and temperature.| |Cp_ph or phc|p| h|Specific isobaric heat capacity as a function of pressure and enthalpy| |Cp_ps or psc|p| s|Specific isobaric heat capacity as a function of pressure and entropy.| ### Specific isochoric heat capacity |Function|In1|In2|Out| |-|-|-|-| |CvV_p| p|| Saturated vapour isochoric heat capacity| |CvL_p| p|| Saturated liquid isochoric heat capacity| |CvV_T| T|| Saturated vapour isochoric heat capacity| |CvL_T| T|| Saturated liquid isochoric heat capacity| |Cv_pT|p| T|Specific isochoric heat capacity as a function of pressure and temperature.| |Cv_ph|p| h|Specific isochoric heat capacity as a function of pressure and enthalpy| |Cv_ps|p| s|Specific isochoric heat capacity as a function of pressure and entropy.| ### Speed of sound |Function|In1|In2|Out| |-|-|-|-| |wV_p or pqw(p,1)| p|| Saturated vapour speed of sound| |wL_p or pqw(p,0)| p|| Saturated liquid speed of sound| |wV_T or tqw(t,1)| T|| Saturated vapour speed of sound| |wL_T or tqw(t,0)| T|| Saturated liquid speed of sound| |w_pT or ptw|p| T|Speed of sound as a function of pressure and temperature.| |w_ph or phw| p| h| Speed of sound as a function of pressure and enthalpy| |w_ps or psw| p| s| Speed of sound as a function of pressure and entropy.| ### Viscosity Viscosity is not part of IAPWS Steam IF97. Equations from "Revised Release on the IAPWS Formulation 1985 for the Viscosity of Ordinary Water Substance", 2003 are used. Viscosity in the mixed region (4) is interpolated according to the density. This is not true since it will be two fases. |Function|In1|In2|Out| |-|-|-|-| |my_pT or ptm| p| T| Viscosity as a function of pressure and temperature.| |my_ph or phm| p| h| Viscosity as a function of pressure and enthalpy| |my_ps or psm| p| s| Viscosity as a function of pressure and entropy.| |pqm|p|q| Viscosity as a function of pressure and quality.| ### Thermal Conductivity Revised release on the IAPS Formulation 1985 for the Thermal Conductivity of ordinary water substance (IAPWS 1998) |Function|In1|In2|Out| |-|-|-|-| |tcL_p or pqk(p,1)| p|| Saturated vapour thermal conductivity| |tcV_p or pqk(p,0)| p|| Saturated liquid thermal conductivity| |tcL_T or tqk(t,1)| T||Saturated vapour thermal conductivity| |tcV_T or tqk(t,0)| T|| Saturated liquid thermal conductivity| |tc_pT or ptk|p| T|Thermal conductivity as a function of pressure and temperature.| |tc_ph or phk|p| h|Thermal conductivity as a function of pressure and enthalpy| |tc_hs or hsk|h| s| Thermal conductivity as a function of enthalpy and entropy| ### Surface Tension IAPWS Release on Surface Tension of Ordinary Water Substance,September 1994 |Function|In1|In2|Out| |-|-|-|-| |st_T|T||Surface tension for two phase water/steam as a function of T| |st_p|p||Surface tension for two phase water/steam as a function of T| ### Vapour fraction |Function|In1|In2|Out| |-|-|-|-| |x_ph or phq|p| h|Vapour fraction for two phase water/steam as a function of T| |x_ps or psq|p| s|Vapour fraction for two phase water/steam as a function of T| ### Vapour Volume Fraction Observe that vapour volume fraction is very sensitive. Vapour volume is about 1000 times greater than liquid volume and therefore vapour volume fraction gets close to the accurancy of IAPWS IF-97 |Function|In1|In2|Out| |-|-|-|-| |vx_ph|p| h|Vapour volume fraction as a function of pressure and enthalpy| |vx_ps|p| s|Vapour volume fraction as a function of pressure and entropy.|
XSteam
https://github.com/hzgzh/XSteam.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
935
using PyCall # Check devito version and update if necessary struct DevitoException <: Exception msg::String end pk = try pyimport("pkg_resources") catch e run(PyCall.python_cmd(`-m pip install -U --user --no-cache-dir setuptools`)) pyimport("pkg_resources") end ################## Devito ################## # pip command dvver = "4.8.10" cmd = PyCall.python_cmd(`-m pip install --user --no-cache-dir devito\[extras,tests\]\>\=$(dvver)`) try dv_ver = VersionNumber(split(pk.get_distribution("devito").version, "+")[1]) if dv_ver < VersionNumber(dvver) @info "Devito version too low, updating to >=$(dvver)" run(cmd) end catch e @info "Devito not installed, installing with PyCall python" run(cmd) end ################## Matplotlib ################## try mpl = pyimport("matplotlib") catch e run(PyCall.python_cmd(`-m pip install --user --no-cache-dir matplotlib`)) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
165
using Pkg Pkg.add(PackageSpec(url="https://github.com/JuliaLang/TOML.jl.git")) using TOML for k=keys(TOML.parsefile("./Project.toml")["deps"]) Pkg.add(k) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1599
using Documenter, JUDI, Weave # Convert example to documentation markdown file ex_path = "$(JUDI.JUDIPATH)/../examples/scripts" doc_path = "$(JUDI.JUDIPATH)/../docs" weave("$(ex_path)/modeling_basic_2D.jl"; out_path="$(doc_path)/src/tutorials/quickstart.md", doctype="github") weave("$(ex_path)/imaging_conditions.jl"; out_path="$(doc_path)/src/tutorials/imaging_conditions.md", doctype="github") # Create documentation makedocs(sitename="JUDI documentation", doctest=false, clean=true, authors="Mathias Louboutin", pages = Any[ "Home" => "index.md", "About" => "about.md", "Installation" => "installation.md", "Getting Started" => "basics.md", "JUDI API" => Any[ "Abstract vectors" => "abstract_vectors.md", "Data Structures" => "data_structures.md", "Linear Operators" => "linear_operators.md", "Preconditioners" => "preconditioners.md", "Input/Output" => "io.md", "Helper Functions" => "helper.md"], "Inversion" => "inversion.md", "Tutorials" => map( s -> "tutorials/$(s)", sort(filter(x->endswith(x, ".md"), readdir(joinpath(@__DIR__, "src/tutorials/"))))), "Devito backend reference" => "pysource.md"], format = Documenter.HTML( # assets = ["assets/slim.css"], prettyurls = get(ENV, "CI", nothing) == "true"), ) # Deploy documentation deploydocs(repo="github.com/slimgroup/JUDI.jl")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2021
# Create BP Synthetic data w/ 20 Hz peak frequency and using # the same geometry as the original data set, but w/o surface # related multiples. # Author: Philipp Witte, [email protected] # Date: May 2018 # # TO DO # Set up path where data will be saved data_path = "/path/to/data/" using JUDI, SegyIO, JLD, PyPlot # Load velocity if !isfile("bp_synthetic_2004_true_velocity.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_true_velocity.jld`) end vp = load(join([pwd(), "/bp_synthetic_2004_true_velocity.jld"]))["vp"] / 1f3 # Load density if !isfile("bp_synthetic_2004_density.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_density.jld`) end rho = load(join([pwd(), "/bp_synthetic_2004_density.jld"]))["rho"] # Load geometry of original BP data set if !isfile("bp_synthetic_2004_header_geometry.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_header_geometry.jld`) end geometry = load(join([pwd(), "/bp_synthetic_2004_header_geometry.jld"])) # Set up model structure d = (6.25, 6.25) o = (0., 0.) m0 = (1f0 ./ vp).^2 n = size(m0) model0 = Model(n, d, o, m0; rho=rho) # Load header geometry from original data set src_geometry = geometry["src_geometry"] rec_geometry = geometry["rec_geometry"] nsrc = geometry["nsrc"] # Set up source wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.020) # 27 Hz peak frequency q = judiVector(src_geometry, wavelet) ################################################################################################### # Save data to disk opt = Options(limit_m = true, space_order = 16, buffer_size = 4000f0, save_data_to_disk = true, file_path = data_path, file_name = "bp_observed_data_") # Setup operators F = judiModeling(model0, q.geometry, rec_geometry; options=opt) # Model data (write to disk) F*q
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2202
# RTM of the BP synthetic 2007 data set # Author: Philipp Witte # Date: March 2018 # # TO DO # Set up path where data will be saved data_path = "/path/to/data/" using JUDI, SegyIO, JLD, PyPlot, LinearAlgebra # Load velocity model if !isfile("bp_synthetic_2004_migration_velocity.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_migration_velocity.jld`) end vp = load(join([pwd(), "/bp_synthetic_2004_migration_velocity.jld"]))["vp"] / 1f3 # Set up model structure d = (6.25, 6.25) o = (0., 0.) m0 = (1f0 ./ vp).^2 n = size(m0) model0 = Model(n, d, o, m0) # Scan directory for segy files and create out-of-core data container container = segy_scan(data_path, "bp_observed_data", ["GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container; segy_depth_key = "SourceDepth") # Set up source src_geometry = Geometry(container; key = "source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.020) # 27 Hz peak frequency q = judiVector(src_geometry, wavelet) # Info structure for linear operators ntComp = get_computational_nt(src_geometry, d_obs.geometry, model0) # no. of computational time steps ################################################################################################### # Enable optimal checkpointing opt = Options(limit_m = true, buffer_size = 3000f0, isic = true, dft_subsampling_factor=8) # Setup operators q_dist = generate_distribution(q) F = judiModeling(model0, q.geometry, d_obs.geometry; options=opt) J = judiJacobian(F, q) # Set up random frequencies nfreq = 10 J.options.frequencies = Array{Any}(undef, d_obs.nsrc) J.options.dft_subsampling_factor = 8 for k=1:d_obs.nsrc J.options.frequencies[k] = select_frequencies(q_dist; fmin=0.003, fmax=0.04, nf=nfreq) end # Add random noise d_lin = get_data(d_obs) for j=1:d_lin.nsrc noise = randn(Float32, size(d_lin.data[j])) d_lin.data[j] += (noise/norm(vec(noise), Inf)*0.02f0) end # Topmute Ml = judiDataMute(q.geometry, d_lin.geometry) d_lin = Ml*d_lin # RTM rtm = adjoint(J)*d_lin save("bp_synethic_2004_rtm_frequency.jld", "rtm", rtm)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3910
# Least-squares RTM of the BP synthetic 2007 data set # Author: Philipp Witte # Date: March 2018 # # TO DO # Set up path where data will be saved data_path = "/path/to/data/" using JUDI, SegyIO, JLD, PyPlot, JOLI, Random, LinearAlgebra # Load velocity model(replace with correct paths) if !isfile("bp_synthetic_2004_migration_velocity.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_migration_velocity.jld`) end vp = load(join([pwd(), "/bp_synthetic_2004_migration_velocity.jld"]))["vp"] / 1f3 if !isfile("bp_synthetic_2004_water_bottom.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/bp_synthetic_2004_water_bottom.jld`) end water_bottom = load(join([pwd(), "/bp_synthetic_2004_water_bottom.jld"]))["wb"] # Set up model structure d = (6.25, 6.25) o = (0., 0.) m0 = (1f0 ./ vp).^2 n = size(m0) model0 = Model(n, d, o, m0) # Scan directory for segy files and create out-of-core data container container = segy_scan(data_path, "bp_observed_data", ["GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container; segy_depth_key = "SourceDepth") # Set up source src_geometry = Geometry(container; key = "source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.020) # 27 Hz peak frequency q = judiVector(src_geometry, wavelet) # Info structure for linear operators ntComp = get_computational_nt(src_geometry, d_obs.geometry, model0) # no. of computational time steps ################################################################################################### # Set options opt = Options(limit_m = true, buffer_size = 3000f0, isic = true, dft_subsampling_factor=8) # Setup operators F = judiModeling(model0, q.geometry, d_obs.geometry; options=opt) J = judiJacobian(F, q) # Right-hand preconditioners D = judiDepthScaling(model0) T = judiTopmute(model0.n, (1 .- water_bottom), []) Mr = D*T # Left-hand preconditioners Ml = judiDataMute(q.geometry, d_obs.geometry) # Linearized Bregman parameters x = zeros(Float32, prod(model0.n)) z = zeros(Float32, prod(model0.n)) batchsize = 200 niter = 20 nfreq = 20 fval = zeros(Float32, niter) q_dist = generate_distribution(q) J.options.frequencies = Array{Any}(undef, d_obs.nsrc) # Soft thresholding functions and Curvelet transform soft_thresholding(x::Array{Float64}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float64,lambda), 0.0) soft_thresholding(x::Array{Float32}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float32,lambda), 0f0) C = joCurvelet2D(model0.n[1], model0.n[2]; zero_finest=true, DDT=Float32, RDT=Float64) lambda = [] t = [] # t = 1f-4 # Main loop for j=1:niter println("Iteration: ", j) # Set randomized frequencies for k=1:d_obs.nsrc J.options.frequencies[k] = select_frequencies(q_dist; fmin=0.003, fmax=0.04, nf=nfreq) end # Select batch and set up left-hand preconditioner i = randperm(d_obs.nsrc)[1:batchsize] d_sub = get_data(d_obs[i]) # Compute residual and estimate source if j > 1 d_pred = J[i]*Mr*x r = Ml[i]*d_pred - Ml[i]*d_sub else r = Ml[i]*d_sub*(-1f0) # skip forward modeling in first iteration end # Residual and gradient g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml[i])*r # Step size and update variable fval[j] = .5*norm(r)^2 t = norm(r)^2/norm(g)^2 # divide by 10 println(" Stepsize: ", t) j==1 && (global lambda = 0.03*norm(C*t*g, Inf)) # estimate thresholding parameter in 1st iteration # Update variables global z -= t*g global x = adjoint(C)*soft_thresholding(C*z, lambda) # Save snapshot save(join([path, "/results/splsrtm_freq_iteration_", string(j), ".jld"]), "x", reshape(x, model0.n), "z", reshape(z, model0.n), "t", t, "lambda", lambda, "fval", fval[j]) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3990
# Example for basic 2D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using JUDI, PyPlot, JLD, SegyIO, LinearAlgebra # Load Sigsbee model if !isfile("sigsbee2A_model.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/sigsbee2A_model.jld`) end M = load("sigsbee2A_model.jld") m = M["m"][1200:2200, 150:800] m0 = M["m0"][1200:2200, 150:800] dm = M["dm"][1200:2200, 150:800] n = size(m) # Setup model structure model = Model(n, M["d"], M["o"], m) model0 = Model(n, M["d"], M["o"], m0) dm = vec(dm) ## Set up receiver geometry nsrc = 1 # number of sources nxrec = 1200 xrec = range(700f0, stop=6700f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time timeR = 8000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) ## Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell([6800f0]) ysrc = convertToCell([0f0]) zsrc = convertToCell([20f0]) # source sampling and number of time steps timeS = 8000f0 dtS = 2f0 # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # setup wavelet f0 = 0.015 wavelet = ricker_wavelet(timeS,dtS,f0) q = judiVector(srcGeometry,wavelet) ################################################################################################# opt = Options(isic=false, save_data_to_disk=false, optimal_checkpointing=false ) # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model; options=opt) F0 = judiModeling(model0; options=opt) Ps = judiProjection(srcGeometry) J = judiJacobian(Pr*F0*Ps', q) # Set frequencies q_dist = generate_distribution(q) J.options.frequencies = Array{Any}(undef, nsrc) J.options.frequencies[1] = select_frequencies(q_dist; fmin=0.003, fmax=0.04, nf=20) # Velocity contrast d_lin1 = J*dm rtm1 = J'*d_lin1 # Impedance J.options.isic = true d_lin2 = J*dm rtm2 = J'*d_lin2 ############################################## Plots ############################################### # Normalize images dm1 = rtm1 / norm(rtm1, Inf) dm2 = rtm2 / norm(rtm2, Inf) # Plot migration velocity fig=figure(figsize=(6.66, 5)) s1 = subplot(2, 2, 1) im1 = imshow(adjoint(sqrt.(1f0 ./ m0)), vmin=1.5, vmax=4.511,cmap="gray", extent=(9.144, 16.764, 6.096, 1.143)) s1[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t1 = title("a)", fontweight="bold", size=10, loc="left") t1["set_position"]([-.14, 1]) # Plot true image s2 = subplot(2, 2, 2) im2 = imshow(adjoint(reshape(dm, n)), vmin=-6e-2, vmax=6e-2,cmap="gray", extent=(9.144, 16.764, 6.096, 1.143)) s2[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t2 = title("b)", fontweight="bold", size=10, loc="left") t2["set_position"]([-.14, 1]) # RTM image w/ zero-lag cross-correlation imaging condition s3 = subplot(2, 2, 3) im3 = imshow(adjoint(reshape(dm1,n)), vmin=-1e-1, vmax=1e-1,cmap="gray", extent=(9.144, 16.764, 6.096, 1.143)) s3[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t3 = title("c)", fontweight="bold", size=10, loc="left") t3["set_position"]([-.14, 1]) # RTM image w/ inverse-scattering/impedance imaging condition s4 = subplot(2, 2, 4) im4 = imshow(adjoint(reshape(dm2, n)), vmin=-4e-2, vmax=4e-2,cmap="gray", extent=(9.144, 16.764, 6.096, 1.143)) s4[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t4 = title("d)", fontweight="bold", size=10, loc="left") t4["set_position"]([-.14, 1]) tight_layout() savefig("figure1", dpi=300, format="png") run(`mogrify -trim figure1`)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
4701
# Example for basic 2D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using JUDI, PyPlot, JLD, SegyIO, LinearAlgebra # Load Marmousi (4 km x 2 km) if !isfile("marmousi_small.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/marmousi_small.jld`) end M = load("marmousi_small.jld") # Setup model structure model = Model(M["n"], M["d"], M["o"], M["m"]) model0 = Model(M["n"], M["d"], M["o"], M["m0"]) dm = vec(M["dm"]) # Setup receivers nsrc = 10 nxrec = 761 # 10 m receiver spacing xrec = range(100f0, stop=3900f0, length=nxrec) yrec = 0f0 zrec = range(210f0, stop=210f0, length=nxrec) # receiver sampling and recording time timeR = 2500f0 dtR = 4f0 # Set up receiver structure rec_geometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) ## Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell(range(200f0, stop=3800f0, length=nsrc)) ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc)) zsrc = convertToCell(range(20f0, stop=20f0, length=nsrc)) # source sampling and number of time steps timeS = 2500f0 dtS = 1f0 # Set up source structure src_geometry = Geometry(xsrc,ysrc,zsrc;dt=dtS,t=timeS) # Set up source wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.030) # 25 Hz peak frequency q = judiVector(src_geometry, wavelet) ################################################################################################# opt = Options(isic=true, optimal_checkpointing=true) # Setup operators Pr = judiProjection(rec_geometry) F = judiModeling(model; options=opt) F0 = judiModeling(model0; options=opt) Ps = judiProjection(src_geometry) J = judiJacobian(Pr*F0*Ps', q) # Time-domain RTM d_lin = J*dm rtm_time_5 = adjoint(J[5])*d_lin[5] rtm_time = adjoint(J)*d_lin # Frequency-domain RTM J.options.optimal_checkpointing = false J.options.dft_subsampling_factor = 8 q_dist = generate_distribution(q) J.options.frequencies = Array{Any}(undef, nsrc) for j=1:nsrc J.options.frequencies[j] = select_frequencies(q_dist; fmin=0.002, fmax=0.05, nf=20) end rtm_freq = adjoint(J)*d_lin rtm_freq_5 = adjoint(J[5])*d_lin[5] ######################################### Plots #################################################### n = model0.n rtm_time_5 = reshape(rtm_time_5, n)[:, 41:end] rtm_time = reshape(rtm_time, n)[:, 41:end] rtm_freq_5 = reshape(rtm_freq_5, n)[:, 41:end] rtm_freq = reshape(rtm_freq, n)[:, 41:end] rtm_time_5 /= norm(rtm_time_5, Inf) rtm_time /= norm(rtm_time, Inf) rtm_freq_5 /= norm(rtm_freq_5, Inf) rtm_freq /= norm(rtm_freq, Inf) figure(figsize=(6.66, 6)) s1=subplot(3, 2, 1) im1 = imshow(adjoint(model0.m[:, 41:end]),cmap="gray", extent=(0.0, 4.0, 2.0, 0.2)) s1[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t1 = title("a)", fontweight="bold", size=10, loc="left") t1["set_position"]([-.18, 1]) s2=subplot(3, 2, 2) im1 = imshow(adjoint(reshape(dm, n)[:, 41:end]), vmin=-1e-1, vmax=1e-1,cmap="gray", extent=(0.0, 4.0, 2.0, 0.2)) s2[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t2 = title("b)", fontweight="bold", size=10, loc="left") t2["set_position"]([-.18, 1]) s3=subplot(3, 2, 3) im1 = imshow(adjoint(rtm_time_5), vmin=-2e-2, vmax=2e-2,cmap="gray", extent=(0.0, 4.0, 2.0, 0.2)) s3[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t3 = title("c)", fontweight="bold", size=10, loc="left") t3["set_position"]([-.18, 1]) s4=subplot(3, 2, 4) im1 = imshow(adjoint(rtm_time), vmin=-5e-2, vmax=5e-2,cmap="gray", extent=(0.0, 4.0, 2.0, 0.2)) s4[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t4 = title("d)", fontweight="bold", size=10, loc="left") t4["set_position"]([-.18, 1]) s5=subplot(3, 2, 5) im1 = imshow(adjoint(rtm_freq_5), vmin=-8e-2, vmax=8e-2,cmap="gray", extent=(0.0, 4.0, 2.0, 0.2)) s5[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t5 = title("e)", fontweight="bold", size=10, loc="left") t5["set_position"]([-.18, 1]) s6=subplot(3, 2, 6) im1 = imshow(adjoint(rtm_freq), vmin=-1.5e-1, vmax=1.5e-1,cmap="gray", extent=(0.0, 4.0, 2.0, 0.2)) s6[:tick_params]("both", labelsize=8) xlabel("Lateral position [km]", size=8); ylabel("Depth [km]", size=8) t6 = title("f)", fontweight="bold", size=10, loc="left") t6["set_position"]([-.18, 1]) tight_layout() savefig("figure2", dpi=300, format="png") run(`mogrify -trim figure2`)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2975
# Generate observed linearized data for the Sigsbee2A velocity model # Author: Philipp Witte, [email protected] # Date: May 2018 # # TO DO: # Replace w/ full path the directory where the observed data will be stored file_path="/path/to/data/" file_name="sigsbee2A_marine" using JUDI, PyPlot, JLD, SegyIO # Load Sigsbee model if !isfile("sigsbee2A_model.jld") run(`wget ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/CompressiveLSRTM/sigsbee2A_model.jld`) end M = load("sigsbee2A_model.jld") # Setup model structure model0 = Model(M["n"], M["d"], M["o"], M["m0"]) dm = vec(M["dm"]) # Source interval [m] source_spacing = 25 ## Set up receiver geometry domain_x = (model0.n[1] - 1)*model0.d[1] nrec = 1200 # no. of receivers xmin = 500f0 xmax = domain_x - 500f0 min_offset = 100f0 # [m] max_offset = 12000f0 xmid = domain_x / 2 # Source/receivers nsrc = Int(length(xmin:source_spacing:xmax)) xrec = Vector{Vector{Float32}}(undef, nsrc) yrec = Vector{Vector{Float32}}(undef, nsrc) zrec = Vector{Vector{Float32}}(undef, nsrc) xsrc = Vector{Vector{Float32}}(undef, nsrc) ysrc = Vector{Vector{Float32}}(undef, nsrc) zsrc = Vector{Vector{Float32}}(undef, nsrc) # Vessel goes from left to right in right-hand side of model nsrc_half = Int(nsrc/2) for j=1:nsrc_half xloc = xmid + (j-1)*source_spacing xrec[j] = range(xloc - max_offset, xloc - min_offset, length=nrec) yrec[j] = [0.] zrec[j] = range(50f0, 50f0, length=nrec) xsrc[j] = [xloc] ysrc[j] = [0f0] zsrc[j] = [20f0] end # Vessel goes from right to left in left-hand side of model for j=1:nsrc_half xloc = xmid - (j-1)*source_spacing xrec[nsrc_half + j] = range(xloc + min_offset, xloc + max_offset, length=nrec) yrec[nsrc_half + j] = [0f0] zrec[nsrc_half + j] = range(50f0, 50f0, length=nrec) xsrc[nsrc_half + j] = [xloc] ysrc[nsrc_half + j] = [0f0] zsrc[nsrc_half + j] = [20f0] end # receiver sampling and recording time timeR = 10000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR) # Source sampling and number of time steps timeS = 10000f0 dtS = 2f0 # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # Setup wavelet f0 = 0.015 # dominant frequency in [kHz] wavelet = ricker_wavelet(timeS,dtS,f0) q = judiVector(srcGeometry,wavelet) ################################################################################################# opt = Options(isic=true, # impedance modeling save_data_to_disk=true, file_path = file_path, # directory for saving generated shots file_name = file_name ) # Setup operators Pr = judiProjection(recGeometry) F0 = judiModeling(model0; options=opt) Ps = judiProjection(srcGeometry) J = judiJacobian(Pr*F0*Ps', q) # Linearized modeling (shots written to disk as SEG-Y files automatically) J*dm
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2042
# Reverse-time migration of the Sigsbee2A model: time-domain vs. frequency domain w/ on-the-fly Fourier transforms # Author: Philipp Witte, [email protected] # Date: May 2018 # # TO DO: # Replace w/ full path the observed data directory path_to_data = "/path/to/directory/" data_name = "sigsbee2A_marine" # common base name of all shots using JUDI, PyPlot, JLD, SegyIO # Load Sigsbee model M = load("sigsbee2A_model.jld") # Setup model structure model0 = Model(M["n"], M["d"], M["o"], M["m0"]) dm = vec(M["dm"]) # Set up out-of-core data container container = segy_scan(path_to_data, data_name, ["GroupX","GroupY","RecGroupElevation","SourceSurfaceElevation","dt"]) d_lin = judiVector(container) # Set up source src_geometry = Geometry(container; key="source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.015) # 15 Hz peak frequency q = judiVector(src_geometry, wavelet) ################################################################################################# opt = Options(isic=true, optimal_checkpointing=true) # use impedance imaging # Setup operators Pr = judiProjection(d_lin.geometry) F0 = judiModeling(model0; options=opt) Ps = judiProjection(q.geometry) J = judiJacobian(Pr*F0*adjoint(Ps), q) # Time-domain RTM w/ optimal checkpointing rtm_time = adjoint(J)*d_lin # Save time-domain result save("sigsbee2A_rtm_time_domain", "rtm", reshape(rtm_time, model0.n)) # Generate probability density function from source spectrum q_dist = generate_distribution(q) # Select 20 random frequencies per source location nfreq = 20 J.options.optimal_checkpointing = false J.options.frequencies = Array{Any}(undef, d_lin.nsrc) for j=1:d_lin.nsrc J.options.frequencies[j] = select_frequencies(q_dist; fmin=0.003, fmax=0.04, nf=nfreq) end J.options.dft_subsampling_factor = 8 # perform dft every 8 time steps only # Frequency-domain RTM w/ on-the-fly DFTs rtm_freq = adjoint(J)*d_lin # Save frequency-domain result save("sigsbee2A_rtm_frequency_domain", "rtm", reshape(rtm_freq, model0.n))
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3077
# Sparsity-promoting LS-RTM on the Sigsbee 2A model w/ on-the-fly Fourier transforms # Author: Philipp Witte, [email protected] # Date: May 2018 # # TO DO: # Replace w/ full path the observed data directory #path_to_data = "/path/to/directory/" path_to_data="/home/pwitte3/.julia/dev/JUDI/examples/compressive_splsrtm/Sigsbee2A/" data_name = "sigsbee2A_marine" # common base name of all shots using JUDI, PyPlot, JLD, SegyIO, JOLI, Random, LinearAlgebra # Load Sigsbee model M = load("sigsbee2A_model.jld") # Setup model structure model0 = Model(M["n"], M["d"], M["o"], M["m0"]) dm = vec(M["dm"]) # Load data container = segy_scan(path_to_data, data_name, ["GroupX","GroupY","RecGroupElevation","SourceSurfaceElevation","dt"]) d_lin = judiVector(container) # Set up source src_geometry = Geometry(container; key="source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.015) # 15 Hz peak frequency q = judiVector(src_geometry, wavelet) ################################################################################################# opt = Options(isic=true) # Setup operators Pr = judiProjection(d_lin.geometry) F0 = judiModeling(model0; options=opt) Ps = judiProjection(src_geometry) J = judiJacobian(Pr*F0*Ps', q) # Right-hand preconditioners (model topmute) idx_wb = find_water_bottom(reshape(dm, model0.n)) Tm = judiTopmute(model0.n, idx_wb, 10) # Mute water column S = judiDepthScaling(model0) Mr = S*Tm # Linearized Bregman parameters x = zeros(Float32, prod(model0.n)) z = zeros(Float32, prod(model0.n)) batchsize = 100 niter = 20 nfreq = 20 fval = zeros(Float32, niter) q_dist = generate_distribution(q) J.options.frequencies = Array{Any}(undef, d_lin.nsrc) J.options.dft_subsampling_factor = 8 # Soft thresholding functions and Curvelet transform soft_thresholding(x::Array{Float64}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float64, lambda), 0.0) soft_thresholding(x::Array{Float32}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float32, lambda), 0f0) C = joCurvelet2D(model0.n[1], model0.n[2]; zero_finest=true, DDT=Float32, RDT=Float64) lambda = [] t = 2f-5 # 4f-5 for nfreq=10 # Main loop for j=1:niter println("Iteration: ", j) # Set randomized frequencies for k=1:d_lin.nsrc J.options.frequencies[k] = select_frequencies(q_dist; fmin=0.002, fmax=0.04, nf=nfreq) end # Compute residual and gradient i = randperm(d_lin.nsrc)[1:batchsize] d_sub = get_data(d_lin[i]) # load current shots into memory r = J[i]*Mr*x - d_sub g = Mr'*J[i]'*r # Step size and update variable fval[j] = .5*norm(r)^2 j==1 && (global lambda = 0.05*norm(C*t*g, Inf)) # estimate thresholding parameter in 1st iteration # Update variables global z -= t*g global x = adjoint(C)*soft_thresholding(C*z, lambda) # Save snapshot save(join(["snapshot_splsrtm_fourier_iteration_", string(j),".jld"]), "x", reshape(x, model0.n), "z", reshape(z, model0.n)) end # Save final result save("sigsbee2A_splsrtm_frequency_domain.jld", "x", x, "fval", fval, "lambda", lambda)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2713
# Sparsity-promoting LS-RTM on the Sigsbee 2A model w/ optimal checkpointing # Author: Philipp Witte, [email protected] # Date: May 2018 # # TO DO: # Replace w/ full path the observed data directory #path_to_data = "/path/to/directory/" path_to_data="/home/pwitte3/.julia/dev/JUDI/examples/compressive_splsrtm/Sigsbee2A/" data_name = "sigsbee2A_marine" # common base name of all shots using JUDI, PyPlot, JLD, SegyIO, JOLI, Random # Load Sigsbee model M = load("sigsbee2A_model.jld") # Setup model structure model0 = Model(M["n"], M["d"], M["o"], M["m0"]) dm = vec(M["dm"]) # Load data container = segy_scan(path_to_data, data_name, ["GroupX","GroupY","RecGroupElevation","SourceSurfaceElevation","dt"]) d_lin = judiVector(container) # Set up source src_geometry = Geometry(container; key="source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.015) # 15 Hz peak frequency q = judiVector(src_geometry, wavelet) ################################################################################################# opt = Options(isic=true, optimal_checkpointing=true) # Setup operators Pr = judiProjection(d_lin.geometry) F0 = judiModeling(model0; options=opt) Ps = judiProjection(src_geometry) J = judiJacobian(Pr*F0*Ps', q) # Right-hand preconditioners (model topmute) idx_wb = find_water_bottom(reshape(dm, model0.n)) Tm = judiTopmute(model0.n, idx_wb, 10) # Mute water column S = judiDepthScaling(model0) Mr = S*Tm # Linearized Bregman parameters x = zeros(Float32, prod(model0.n)) z = zeros(Float32, prod(model0.n)) batchsize = 100 niter = 20 fval = zeros(Float32, niter) t = 2f-5 # Soft thresholding functions and Curvelet transform soft_thresholding(x::Array{Float64}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float64, lambda), 0.0) soft_thresholding(x::Array{Float32}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float32, lambda), 0f0) C = joCurvelet2D(model0.n[1], model0.n[2]; zero_finest=true, DDT=Float32, RDT=Float64) lambda = [] # Main loop for j=1:niter println("Iteration: ", j) # Compute residual and gradient i = randperm(d_lin.nsrc)[1:batchsize] d_sub = get_data(d_lin[i]) # load shots into memory r = J[i]*Mr*x - d_sub g = Mr'*J[i]'*r # Step size and update variable fval[j] = .5*norm(r)^2 isempty(t) && (global t = norm(r)^2/norm(g)^2) j==1 && (global lambda = 0.01*norm(C*t*g, Inf)) # estimate thresholding parameter in 1st iteration # Update variables and save snapshot global z -= t*g global x = adjoint(C)*soft_thresholding(C*z, lambda) # Save snapshot save(join(["splsrtm_checkpointing_iteration_", string(j),".jld"]), "x", reshape(x, model0.n), "z", reshape(z, model0.n)) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
321
using Pkg Pkg.add("Statistics") Pkg.add("Random") Pkg.add("LinearAlgebra") Pkg.add("Interpolations") Pkg.add("DelimitedFiles") Pkg.add("Distributed") Pkg.add("SlimOptim") Pkg.add("NLopt") Pkg.add("HDF5") Pkg.add("SegyIO") Pkg.add("Plots") Pkg.add("SetIntersectionProjection") Pkg.add("ImageFiltering") Pkg.add("DrWatson")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1377
function save_data(x,z,data; pltfile,title,colormap,clim=nothing,h5file,h5openflag,h5varname) @info "save_data: $h5file" n = (length(x),length(z)) o = (x[1],z[1]) d = (x[2]-x[1],z[2]-z[1]) isnothing(clim) && (clim = (minimum(data),maximum(data))) plt = Plots.heatmap(x, z, data, c=colormap, xlims=(x[1],x[end]), ylims=(z[1],z[end]), yflip=true, title=title, clim=clim, xlabel="Lateral position [km]", ylabel="Depth [km]", dpi=600) Plots.savefig(plt, pltfile) fid = h5open(h5file, h5openflag) (haskey(fid, h5varname)) && (delete_object(fid, h5varname)) (haskey(fid, "o")) && (delete_object(fid, "o")) (haskey(fid, "n")) && (delete_object(fid, "n")) (haskey(fid, "d")) && (delete_object(fid, "d")) write(fid, h5varname, Matrix(adjoint(data)), # convert adjoint(Matrix) type to Matrix "o", collect(o.*1000f0), "n", collect(n), "d", collect(d.*1000f0)) close(fid) end function save_data_as_segy(x,z,data) end function save_fhistory(fhistory; h5file,h5openflag,h5varname) @info "save_fhistory: $h5file" fid = h5open(h5file, h5openflag) (haskey(fid, h5varname)) && (delete_object(fid, h5varname)) write(fid, h5varname, fhistory) close(fid) end """ Recalculate slowness^2 to density using Gardner formulae """ rho_from_slowness(m) = 0.23.*(sqrt.(1f0 ./ m).*1000f0).^0.25
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
7624
using DrWatson @quickactivate "Viking" using Viking using Statistics, Random, LinearAlgebra, Interpolations, DelimitedFiles, Distributed using JUDI, SlimOptim, NLopt, HDF5, SegyIO, Plots, ImageFiltering using SetIntersectionProjection ############# INITIAL DATA ############# modeling_type = "bulk" # slowness, bulk frq = 0.005 # kHz prestk_dir = "$(@__DIR__)/trim_segy/" prestk_file = "shot" dir_out = "$(@__DIR__)/fwi_lbfgs_$(modeling_type)/$(frq)Hz/" model_file = "$(@__DIR__)/initial_model/model.h5" # after each iteration you should set an appropriate model file computed with previous step # model_file = "$(@__DIR__)/fwi_lbfgs_$(modeling_type)/0.005Hz/model 10.h5" model_file_out = "model" # use original wavelet file wavelet_file = "$(@__DIR__)/../FarField.dat" # dt=1, skip=25 # or use deghosted wavelet # wavelet_file = "$(@__DIR__)/../proc/FarField_deghosted.dat" # dt=4, skip=0 wavelet_skip_start = 25 # 25 [lines] for raw source and 0 for deghosted source wavelet_dt = 1 # 1 [ms] for raw source and 4 [ms] for deghosted source segy_depth_key_src = "SourceSurfaceElevation" segy_depth_key_rec = "RecGroupElevation" seabed = 355 # [m] ############# INITIAL PARAMS ############# # water velocity, km/s global vwater = 1.5 # water density, g/cm^3 global rhowater = 1.02 # JUDI options buffer_size = 0f0 # limit model (meters) even if 0 buffer makes reflections from borders that does't hurt much the FWI result # prepare folder for output data mkpath(dir_out) # Load data and create data vector container = segy_scan(prestk_dir, prestk_file, ["SourceX", "SourceY", "GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container; segy_depth_key = segy_depth_key_rec) srcx = Float32.(get_header(container, "SourceX")[:,1]) grpx = Float32.(get_header(container, "GroupX")[:,1]) min_src_x = minimum(srcx)./1000f0 max_src_x = maximum(srcx)./1000f0 min_grp_x = minimum(grpx)./1000f0 max_grp_x = maximum(grpx)./1000f0 min_x = minimum([min_src_x, min_grp_x]) max_x = maximum([max_src_x, max_grp_x]) # Load starting model (mlog - slowness built with Vs from logs; mvsp - built from VSP) fid = h5open(model_file, "r") n, d, o = read(fid, "n", "d", "o") if haskey(fid, "mvsp") m0 = Float32.(read(fid, "mvsp")) else m0 = Float32.(read(fid, "m")) end close(fid) n = Tuple(Int64(i) for i in n) d = Tuple(Float32(i) for i in d) o = Tuple(Float32(i) for i in o) if modeling_type == "slowness" model0 = Model(n, d, o, m0) elseif modeling_type == "bulk" rho0 = rho_from_slowness(m0) model0 = Model(n, d, o, m0, rho=rho0) end @info "modeling_type: $modeling_type" @info "n: $n" @info "d: $d" @info "o: $o" x = (o[1]:d[1]:o[1]+(n[1]-1)*d[1])./1000f0 z = (o[2]:d[2]:o[2]+(n[2]-1)*d[2])./1000f0 global seabed_ind = Int.(round.(seabed./d[2])) if modeling_type == "slowness" model0.m[:,1:seabed_ind] .= (1/vwater)^2 elseif modeling_type == "bulk" model0.m[:,1:seabed_ind] .= (1/vwater)^2 model0.rho[:,1:seabed_ind] .= rhowater end # Set up wavelet and source vector src_geometry = Geometry(container; key = "source", segy_depth_key = segy_depth_key_src) # setup wavelet wavelet_raw = readdlm(wavelet_file, skipstart=wavelet_skip_start) itp = LinearInterpolation(0:wavelet_dt:wavelet_dt*(length(wavelet_raw)-1), wavelet_raw[:,1], extrapolation_bc=0f0) wavelet = Matrix{Float32}(undef,src_geometry.nt[1],1) wavelet[:,1] = itp(0:src_geometry.dt[1]:src_geometry.t[1]) q = judiVector(src_geometry, wavelet) # Data muters (t0 somehow can't be 0) Ml_ref = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:reflection) # keep reflections Ml_tur = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:turning) # keep turning waves # Bandpass filter Ml_freq = judiFilter(d_obs.geometry, 0.001, frq*1000f0) Mr_freq = judiFilter(q.geometry, 0.001, frq*1000f0) # Bound constraints vmin = 1.2 vmax = 5.2 # Slowness squared [s^2/km^2] mmin = (1f0 ./ vmax).^2 mmax = (1f0 ./ vmin).^2 ############# FWI ############# # JUDI options global jopt = JUDI.Options( IC = "fwi", limit_m = true, buffer_size = buffer_size, optimal_checkpointing=false, free_surface=true, # free_surface is ON to model multiples as well space_order=16) # increase space order for > 12 Hz source wavelet # optimization parameters niterations = 10 shot_from = 1 shot_to = length(d_obs) shot_step = 3 # we may want to calculate only each Nth shot to economy time count = 0 fhistory = Vector{Float32}(undef, 0) mute_reflections = false mute_turning = false # NLopt objective function function nlopt_obj_fun!(m_update, grad) global x, z, count, jopt, seabed_ind; count += 1 # Update model model0.m .= Float32.(reshape(m_update, size(model0))) if modeling_type == "bulk" model0.rho .= Float32.(reshape(rho_from_slowness(model0.m), size(model0))) model0.rho[:,1:seabed_ind] .= rhowater end # Select batch and calculate gradient # Subsampling the number of sources should in practice never be used for second order methods such as L-BFGS. # get_data(d_obs) is a temporal solution as Ml_freq doesn't work yet with SeisCon indsrc = shot_from:shot_step:shot_to if mute_reflections fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_tur[indsrc]*Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt) elseif mute_turning fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_ref[indsrc]*Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt) else fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt) end gradient = reshape(gradient, size(model0)) gradient[:, 1:seabed_ind] .= 0f0 grad[1:end] .= gradient[1:end] push!(fhistory, fval) println("iteration: ", count, "\tfval: ", fval, "\tnorm: ", norm(gradient)) save_data(x,z,adjoint(reshape(model0.m.data,size(model0))); pltfile=dir_out * "FWI slowness $count.png", title="FWI slowness^2 with L-BFGS $modeling_type: $(frq*1000)Hz, iter $count", colormap=:rainbow, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="w", h5varname="m") save_data(x,z,sqrt.(1f0 ./ adjoint(reshape(model0.m.data,size(model0)))); pltfile=dir_out * "FWI $count.png", title="FWI velocity with L-BFGS $modeling_type: $(frq*1000)Hz, iter $count", colormap=:rainbow, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="v") save_data(x,z,adjoint(reshape(gradient.data,size(model0))); pltfile=dir_out * "Gradient $count.png", title="FWI gradient with L-BFGS $modeling_type: $(frq*1000)Hz, iter $count", clim=(-maximum(gradient.data)/5f0, maximum(gradient.data)/5f0), colormap=:bluesreds, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="grad") save_fhistory(fhistory; h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="fhistory") return convert(Float64, fval) end println("No. ", "fval ", "norm(gradient)") opt = Opt(:LD_LBFGS, prod(size(model0))) min_objective!(opt, nlopt_obj_fun!) lower_bounds!(opt, mmin); upper_bounds!(opt, mmax) maxeval!(opt, niterations) (minf, minx, ret) = optimize(opt, copy(model0.m.data[:]))
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
9953
using DrWatson @quickactivate "Viking" using Viking using Statistics, Random, LinearAlgebra, Interpolations, DelimitedFiles, Distributed using JUDI, SlimOptim, NLopt, HDF5, SegyIO, Plots, ImageFiltering using SetIntersectionProjection ############# INITIAL DATA ############# modeling_type = "bulk" # slowness, bulk frq = 0.005 # kHz prestk_dir = "$(@__DIR__)/trim_segy/" prestk_file = "shot" dir_out = "$(@__DIR__)/fwi_pqn_$(modeling_type)/$(frq)Hz/" model_file = "$(@__DIR__)/initial_model/model.h5" # after each iteration you should set an appropriate model file computed with previous step # model_file = "$(@__DIR__)/fwi_pqn_$(modeling_type)/0.005Hz/model 10.h5" model_file_out = "model" # use original wavelet file wavelet_file = "$(@__DIR__)/../FarField.dat" # dt=1, skip=25 # or use deghosted wavelet # wavelet_file = "$(@__DIR__)/../proc/FarField_deghosted.dat" # dt=4, skip=0 wavelet_skip_start = 25 # 25 [lines] for raw source and 0 for deghosted source wavelet_dt = 1 # 1 [ms] for raw source and 4 [ms] for deghosted source segy_depth_key_src = "SourceSurfaceElevation" segy_depth_key_rec = "RecGroupElevation" seabed = 355 # [m] ############# INITIAL PARAMS ############# # water velocity, km/s global vwater = 1.5 # water density, g/cm^3 global rhowater = 1.02 # JUDI options buffer_size = 0f0 # limit model (meters) even if 0 buffer makes reflections from borders that does't hurt much the FWI result # prepare folder for output data mkpath(dir_out) # Load data and create data vector container = segy_scan(prestk_dir, prestk_file, ["SourceX", "SourceY", "GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container; segy_depth_key = segy_depth_key_rec) srcx = Float32.(get_header(container, "SourceX")[:,1]) grpx = Float32.(get_header(container, "GroupX")[:,1]) min_src_x = minimum(srcx)./1000f0 max_src_x = maximum(srcx)./1000f0 min_grp_x = minimum(grpx)./1000f0 max_grp_x = maximum(grpx)./1000f0 min_x = minimum([min_src_x, min_grp_x]) max_x = maximum([max_src_x, max_grp_x]) # Load starting model (mlog - slowness built with Vs from logs; mvsp - built from VSP) fid = h5open(model_file, "r") n, d, o = read(fid, "n", "d", "o") if haskey(fid, "mvsp") m0 = Float32.(read(fid, "mvsp")) else m0 = Float32.(read(fid, "m")) end close(fid) n = Tuple(Int64(i) for i in n) d = Tuple(Float32(i) for i in d) o = Tuple(Float32(i) for i in o) if modeling_type == "slowness" model0 = Model(n, d, o, m0) elseif modeling_type == "bulk" rho0 = rho_from_slowness(m0) model0 = Model(n, d, o, m0, rho=rho0) end @info "modeling_type: $modeling_type" @info "n: $n" @info "d: $d" @info "o: $o" x = (o[1]:d[1]:o[1]+(n[1]-1)*d[1])./1000f0 z = (o[2]:d[2]:o[2]+(n[2]-1)*d[2])./1000f0 global seabed_ind = Int.(round.(seabed./d[2])) if modeling_type == "slowness" model0.m[:,1:seabed_ind] .= (1/vwater)^2 elseif modeling_type == "bulk" model0.m[:,1:seabed_ind] .= (1/vwater)^2 model0.rho[:,1:seabed_ind] .= rhowater end # Set up wavelet and source vector src_geometry = Geometry(container; key = "source", segy_depth_key = segy_depth_key_src) # setup wavelet wavelet_raw = readdlm(wavelet_file, skipstart=wavelet_skip_start) itp = LinearInterpolation(0:wavelet_dt:wavelet_dt*(length(wavelet_raw)-1), wavelet_raw[:,1], extrapolation_bc=0f0) wavelet = Matrix{Float32}(undef,src_geometry.nt[1],1) wavelet[:,1] = itp(0:src_geometry.dt[1]:src_geometry.t[1]) q = judiVector(src_geometry, wavelet) # Data muters (t0 somehow can't be 0) Ml_ref = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:reflection) # keep reflections Ml_tur = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:turning) # keep turning waves # Bandpass filter Ml_freq = judiFilter(d_obs.geometry, 0.001, frq*1000f0) Mr_freq = judiFilter(q.geometry, 0.001, frq*1000f0) ############# FWI ############# # JUDI options global jopt = JUDI.Options( IC = "fwi", limit_m = true, buffer_size = buffer_size, optimal_checkpointing=false, free_surface=true, # free_surface is ON to model multiples as well space_order=16) # increase space order for > 12 Hz source wavelet # optimization parameters niterations = 10 shot_from = 1 shot_to = length(d_obs) shot_step = 3 # we may want to calculate only each Nth shot to economy time count = 0 fhistory = Vector{Float32}(undef, 0) mute_reflections = false mute_turning = false # SETUP CONSTARAINTS options=PARSDMM_options() options.FL=Float32 options=default_PARSDMM_options(options,options.FL) constraint = Vector{SetIntersectionProjection.set_definitions}() # Bound constraints vmin = 1.2 vmax = 5.2 vBoundCoef = 0.5 kr = 50 # Slowness squared [s^2/km^2] mmin = (1f0 ./ vmax).^2 mmax = (1f0 ./ vmin).^2 mminArr = ones(Float32, size(model0)) .* mmin mmaxArr = ones(Float32, size(model0)) .* mmax # mminArr = imfilter(model0.m.data * (1f0-vBoundCoef), Kernel.gaussian(kr)) # mmaxArr = imfilter(model0.m.data * (1f0+vBoundCoef), Kernel.gaussian(kr)) # ind = model0.m .< mminArr # mminArr[ind] .= model0.m[ind] # ind = model0.m .> mmaxArr # mmaxArr[ind] .= model0.m[ind] # bounds: set_type = "bounds" TD_OP = "identity" app_mode = ("matrix","") custom_TD_OP = ([],false) push!(constraint, set_definitions(set_type,TD_OP,vec(mminArr),vec(mmaxArr),app_mode,custom_TD_OP)); #TV (TV,dummy1,dummy2,dummy3) = get_TD_operator(model0.m,"TV",options.FL) mvar_min = 0.0 mvar_max = norm(TV*vec(m0),1) * 2.5 set_type = "l1" TD_OP = "TV" app_mode = ("matrix","") custom_TD_OP = ([],false) push!(constraint, set_definitions(set_type,TD_OP,mvar_min,mvar_max,app_mode,custom_TD_OP)); # set up constraints with bounds and TV (P_sub,TD_OP,set_Prop) = setup_constraints(constraint, model0,options.FL) (TD_OP,AtA,l,y) = PARSDMM_precompute_distribute(TD_OP,set_Prop,model0,options) options.rho_ini = ones(Float32, length(TD_OP))*10.0f0 proj_intersection = x-> PARSDMM(x, AtA, TD_OP, set_Prop, P_sub, model0, options) # Projection function function prj(input) @info "prj minimum(input): $(minimum(input))" input = Float32.(input) (x,dummy1,dummy2,dymmy3) = proj_intersection(vec(input)) return x end # Set water bottom mask wb_mask = ones(Float32,size(m0)) wb_mask[:, 1:seabed_ind] .= 0f0 # wb_mask[:, 1:seabed_ind+20] .= 0f0 # Build small cluster nthread = Sys.CPU_THREADS nw = 2 ENV["OMP_DISPLAY_ENV"] = "true" ENV["OMP_PROC_BIND"] = "close" ENV["OMP_NUM_THREADS"] = "$(div(nthread, nw))" addprocs(nw) @show workers() for k in 1:nworkers() place1 = (k - 1) * div(nthread,nworkers()) place2 = (k + 0) * div(nthread,nworkers()) - 1 @show place1, place2, div(nthread, nw) @spawnat workers()[k] ENV["GOMP_CPU_AFFINITY"] = "$(place1)-$(place2)"; end @everywhere using Distributed, JUDI.TimeModeling, SlimOptim, LinearAlgebra, PyPlot, SetIntersectionProjection, SegyIO function objective(m, d_obs, wb_mask) global x, z, count, jopt, seabed_ind, mminArr, mmaxArr; count += 1 @info "objective minimum(m): $(minimum(m))" m = reshape(m, size(model0)) # pqn may cross the mmin/mmax limits ind = m .< mminArr m[ind] .= mminArr[ind] ind = m .> mmaxArr m[ind] .= mmaxArr[ind] model0.m .= Float32.(reshape(m, size(model0))) if modeling_type == "bulk" model0.rho .= Float32.(reshape(rho_from_slowness(model0.m), size(model0))) model0.rho[:,1:seabed_ind] .= rhowater end t = @elapsed begin indsrc = shot_from:shot_step:shot_to if mute_reflections fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_tur[indsrc]*Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt) elseif mute_turning fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_ref[indsrc]*Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt) else fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt) end gradient = reshape(gradient, size(model0)) end @info "elapsed fwi_objective time: $t" gradient .*= wb_mask if gscale == 0f0 # compute scalar from first gradient, apply to future gradients global gscale = .25f0 ./ maximum(gradient) @show gscale end gradient .*= gscale push!(fhistory, fval) println("iteration: ", count, "\tfval: ", fval, "\tnorm: ", norm(gradient)) save_data(x,z,adjoint(reshape(model0.m.data,size(model0))); pltfile=dir_out * "FWI slowness $count.png", title="FWI slowness^2 with PQN $modeling_type: $(frq*1000)Hz, iter $count", colormap=:rainbow, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="w", h5varname="m") save_data(x,z,sqrt.(1f0 ./ adjoint(reshape(model0.m.data,size(model0)))); pltfile=dir_out * "FWI $count.png", title="FWI velocity with PQN $modeling_type: $(frq*1000)Hz, iter $count", colormap=:rainbow, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="v") save_data(x,z,adjoint(reshape(gradient.data,size(model0))); pltfile=dir_out * "Gradient $count.png", title="FWI gradient with PQN $modeling_type: $(frq*1000)Hz, iter $count", clim=(-maximum(gradient.data)/5f0, maximum(gradient.data)/5f0), colormap=:bluesreds, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="grad") save_fhistory(fhistory; h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="fhistory") return fval, vec(gradient.data) end # struct to save the first gradient scalar gscale = 0f0 g(x) = objective(x, d_obs, wb_mask) # FWI with PQN gscale = 0f0 options_pqn = pqn_options(progTol=0, store_trace=true, verbose=3, maxIter=niterations) sol = pqn(g, vec(m0), prj, options_pqn); rmprocs(workers());
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
8569
using DrWatson @quickactivate "Viking" using Viking using Statistics, Random, LinearAlgebra, Interpolations, DelimitedFiles, Distributed using JUDI, SlimOptim, NLopt, HDF5, SegyIO, Plots, ImageFiltering using SetIntersectionProjection @everywhere using JUDI.FFTW, Zygote, Flux ############# INITIAL DATA ############# modeling_type = "bulk" # slowness, bulk frq = 0.005 # kHz prestk_dir = "$(@__DIR__)/trim_segy/" # prestk_dir = "$(@__DIR__)/trim_segy_200_500/" prestk_file = "shot" dir_out = "$(@__DIR__)/fwi_spg_$(modeling_type)/$(frq)Hz/" # dir_out = "$(@__DIR__)/fwi_spg_$(modeling_type)_buffer_3km/$(frq)Hz/" model_file = "$(@__DIR__)/initial_model/model.h5" # after each iteration you should set an appropriate model file computed with previous step # model_file = "$(@__DIR__)/fwi_spg_$(modeling_type)/0.008Hz/model 10.h5" model_file_out = "model" # use original wavelet file wavelet_file = "$(@__DIR__)/../FarField.dat" # dt=1, skip=25 # or use deghosted wavelet # wavelet_file = "$(@__DIR__)/../proc/FarField_deghosted.dat" # dt=4, skip=0 wavelet_skip_start = 25 # 25 [lines] for raw source and 0 for deghosted source wavelet_dt = 1 # 1 [ms] for raw source and 4 [ms] for deghosted source segy_depth_key_src = "SourceSurfaceElevation" segy_depth_key_rec = "RecGroupElevation" seabed = 355 # [m] ############# INITIAL PARAMS ############# # water velocity, km/s global vwater = 1.5 # water density, g/cm^3 global rhowater = 1.02 # JUDI options buffer_size = 0f0 # limit model (meters) even if 0 buffer makes reflections from borders that does't hurt much the FWI result # prepare folder for output data mkpath(dir_out) # Load data and create data vector container = segy_scan(prestk_dir, prestk_file, ["SourceX", "SourceY", "GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container; segy_depth_key = segy_depth_key_rec) srcx = Float32.(get_header(container, "SourceX")[:,1]) grpx = Float32.(get_header(container, "GroupX")[:,1]) min_src_x = minimum(srcx)./1000f0 max_src_x = maximum(srcx)./1000f0 min_grp_x = minimum(grpx)./1000f0 max_grp_x = maximum(grpx)./1000f0 min_x = minimum([min_src_x, min_grp_x]) max_x = maximum([max_src_x, max_grp_x]) # Load starting model (mlog - slowness built with Vs from logs; mvsp - built from VSP) fid = h5open(model_file, "r") n, d, o = read(fid, "n", "d", "o") if haskey(fid, "mvsp") m0 = Float32.(read(fid, "mvsp")) else m0 = Float32.(read(fid, "m")) end close(fid) n = Tuple(Int64(i) for i in n) d = Tuple(Float32(i) for i in d) o = Tuple(Float32(i) for i in o) if modeling_type == "slowness" model0 = Model(n, d, o, m0) elseif modeling_type == "bulk" rho0 = rho_from_slowness(m0) model0 = Model(n, d, o, m0, rho=rho0) end @info "modeling_type: $modeling_type" @info "n: $n" @info "d: $d" @info "o: $o" x = (o[1]:d[1]:o[1]+(n[1]-1)*d[1])./1000f0 z = (o[2]:d[2]:o[2]+(n[2]-1)*d[2])./1000f0 global seabed_ind = Int.(round.(seabed./d[2])) if modeling_type == "slowness" model0.m[:,1:seabed_ind] .= (1/vwater)^2 elseif modeling_type == "bulk" model0.m[:,1:seabed_ind] .= (1/vwater)^2 model0.rho[:,1:seabed_ind] .= rhowater end # Set up wavelet and source vector src_geometry = Geometry(container; key = "source", segy_depth_key = segy_depth_key_src) # setup wavelet wavelet_raw = readdlm(wavelet_file, skipstart=wavelet_skip_start) itp = LinearInterpolation(0:wavelet_dt:wavelet_dt*(length(wavelet_raw)-1), wavelet_raw[:,1], extrapolation_bc=0f0) wavelet = Matrix{Float32}(undef,src_geometry.nt[1],1) wavelet[:,1] = itp(0:src_geometry.dt[1]:src_geometry.t[1]) q = judiVector(src_geometry, wavelet) # Data muters (t0 somehow can't be 0) Ml_ref = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:reflection) # keep reflections Ml_tur = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:turning) # keep turning waves # Bandpass filter Ml_freq = judiFilter(d_obs.geometry, 0.001, frq*1000f0) Mr_freq = judiFilter(q.geometry, 0.001, frq*1000f0) ############# FWI ############# # JUDI options global jopt = JUDI.Options( IC = "fwi", limit_m = true, buffer_size = buffer_size, optimal_checkpointing=false, free_surface=true, # free_surface is ON to model multiples as well space_order=16) # increase space order for > 12 Hz source wavelet # optimization parameters niterations = 20 count = 0 fhistory = Vector{Float32}(undef, 0) mute_reflections = false mute_turning = false # SETUP CONSTARAINTS options=PARSDMM_options() options.FL=Float32 options=default_PARSDMM_options(options,options.FL) constraint = Vector{SetIntersectionProjection.set_definitions}() # Bound constraints vmin = 1.2 vmax = 5.2 vBoundCoef = 0.5 kr = 50 # Slowness squared [s^2/km^2] mmin = (1f0 ./ vmax).^2 mmax = (1f0 ./ vmin).^2 mminArr = ones(Float32, size(model0)) .* mmin mmaxArr = ones(Float32, size(model0)) .* mmax # mminArr = imfilter(model0.m.data * (1f0-vBoundCoef), Kernel.gaussian(kr)) # mmaxArr = imfilter(model0.m.data * (1f0+vBoundCoef), Kernel.gaussian(kr)) # ind = model0.m .< mminArr # mminArr[ind] .= model0.m[ind] # ind = model0.m .> mmaxArr # mmaxArr[ind] .= model0.m[ind] @everywhere function H(x) n = size(x, 1) σ = ifftshift(sign.(-n/2+1:n/2)) y = imag(ifft(σ.*fft(x, 1), 1)) return y end @everywhere envelope(x, y) = sum(abs2.((x - y) .+ 1im .* H(x - y))) @everywhere denvelope(x, y) = Zygote.gradient(xs->envelope(xs, y), x)[1] @everywhere myloss(x, y) = (envelope(x, y), denvelope(x, y)) @everywhere myloss(randn(Float32, 10, 10), randn(Float32, 10, 10)) # Optimization parameters batchsize = 300 # Objective function for minConf library count = 0 function objective_function(m_update) global x, z, count, jopt, seabed_ind; count += 1 # Update model model0.m .= Float32.(reshape(m_update, size(model0))) if modeling_type == "bulk" model0.rho .= Float32.(reshape(rho_from_slowness(model0.m), size(model0))) model0.rho[:,1:seabed_ind] .= rhowater end # fwi function value and gradient indsrc = randperm(d_obs.nsrc)[1:batchsize] if mute_reflections fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_tur[indsrc]*Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt, misfit=myloss) elseif mute_turning fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_ref[indsrc]*Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt, misfit=myloss) else fval, gradient = fwi_objective(model0, Mr_freq[indsrc]*q[indsrc], Ml_freq[indsrc]*get_data(d_obs[indsrc]), options=jopt, misfit=myloss) end gradient = reshape(gradient, size(model0)) gradient[:, 1:seabed_ind] .= 0f0 gradient = .125f0*gradient/maximum(abs.(gradient)) # scale for line search push!(fhistory, fval) println("iteration: ", count, "\tfval: ", fval, "\tnorm: ", norm(gradient)) save_data(x,z,adjoint(reshape(model0.m.data,size(model0))); pltfile=dir_out * "FWI slowness $count.png", title="FWI slowness^2 with L-BFGS $modeling_type: $(frq*1000)Hz, iter $count", colormap=:rainbow, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="w", h5varname="m") save_data(x,z,sqrt.(1f0 ./ adjoint(reshape(model0.m.data,size(model0)))); pltfile=dir_out * "FWI $count.png", title="FWI velocity with L-BFGS $modeling_type: $(frq*1000)Hz, iter $count", colormap=:rainbow, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="v") save_data(x,z,adjoint(reshape(gradient.data,size(model0))); pltfile=dir_out * "Gradient $count.png", title="FWI gradient with L-BFGS $modeling_type: $(frq*1000)Hz, iter $count", clim=(-maximum(gradient.data)/5f0, maximum(gradient.data)/5f0), colormap=:bluesreds, h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="grad") save_fhistory(fhistory; h5file=dir_out * model_file_out * " " * string(count) * ".h5", h5openflag="r+", h5varname="fhistory") return fval, gradient end # Bound projection proj(x) = reshape(median([vec(mminArr) vec(x) vec(mmaxArr)]; dims=2), size(model0)) # FWI with SPG options = spg_options(verbose=3, maxIter=niterations, memory=3) sol = spg(objective_function, model0.m.data, proj, options)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1128
using DrWatson @quickactivate "Viking" using SegyIO prestk_dir = "$(@__DIR__)/../" prestk_file = "seismic.segy" dt = 4 # ms ns = 1000 # limit number of samples as there is no useful waves below 4 seconds dir_out = "$(@__DIR__)/trim_segy/" container = segy_scan(prestk_dir, prestk_file, ["SourceX", "SourceY", "GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) # prepare folder for output data mkpath(dir_out) I = length(container) progress = 0 for i in 1:I block = container[i] block_out = SeisBlock(Float32.(block.data[1:ns,:])) # without copying (copy is not supported for fileheader) block_out.fileheader = block.fileheader block_out.fileheader.bfh.DataSampleFormat = 5 block_out.traceheaders = block.traceheaders block_out.fileheader.bfh.dt = Int(round(dt*1000f0)) block_out.fileheader.bfh.ns = ns set_header!(block_out, "dt", Int(round(dt*1000f0))) set_header!(block_out, "ns", ns) segy_write(dir_out * "shot_$i.sgy", block_out) if round(i/I*100f0) > progress global progress = round(i/I*100f0) @info "progress: ($progress)%" end end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
5392
using DrWatson @quickactivate "Viking" using Viking using Statistics, Random, LinearAlgebra, Interpolations, DelimitedFiles, Distributed using JUDI, NLopt, HDF5, SegyIO, Plots ############# INITIAL DATA ############# modeling_type = "bulk" # slowness, bulk prestk_dir = "$(@__DIR__)/../proc/" prestk_file = "s_deghost_gain_mute_dip_radon.sgy" # dir_out = "$(@__DIR__)/rtm_pqn/" # dir_out = "$(@__DIR__)/rtm_spg/" dir_out = "$(@__DIR__)/rtm_lbfgs/" # choose the most accurate model # model_file = "$(@__DIR__)/../fwi/fwi_pqn_$(modeling_type)/0.005Hz/model 10.h5" # model_file = "$(@__DIR__)/../fwi/fwi_spg_$(modeling_type)/0.005Hz/model 10.h5" model_file = "$(@__DIR__)/../fwi/fwi_lbfgs_$(modeling_type)/0.005Hz/model 10.h5" # use original wavelet file # wavelet_file = "$(@__DIR__)/../FarField.dat" # dt=1, skip=25 # or use deghosted wavelet wavelet_file = "$(@__DIR__)/../proc/FarField_deghosted.dat" # dt=4, skip=0 wavelet_skip_start = 0 # 25 [lines] for raw source and 0 for deghosted source wavelet_dt = 4 # 1 [ms] for raw source and 4 [ms] for deghosted source segy_depth_key_src = "SourceSurfaceElevation" segy_depth_key_rec = "RecGroupElevation" dense_factor = 2 # make model n-times denser to achieve better stability seabed = 355 # [m] # water velocity, km/s global vwater = 1.5 # water density, g/cm^3 global rhowater = 1.02 # JUDI options buffer_size = 0f0 # limit model (meters) # prepare folder for output data mkpath(dir_out) # Load data and create data vector # block = segy_read(prestk_dir * prestk_file) container = segy_scan(prestk_dir, prestk_file, ["SourceX", "SourceY", "GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container; segy_depth_key = segy_depth_key_rec) srcx = Float32.(get_header(container, "SourceX")[:,1]) grpx = Float32.(get_header(container, "GroupX")[:,1]) min_src_x = minimum(srcx)./1000f0 max_src_x = maximum(srcx)./1000f0 min_grp_x = minimum(grpx)./1000f0 max_grp_x = maximum(grpx)./1000f0 min_cdp_x = (min_src_x+min_grp_x)/2f0 max_cdp_x = (max_src_x+max_grp_x)/2f0 min_x = minimum([min_src_x, min_grp_x]) max_x = maximum([max_src_x, max_grp_x]) # Load starting model (mlog - slowness built with Vs from logs; mvsp - built from VSP) n, d, o, m0 = read(h5open(model_file, "r"), "n", "d", "o", "m") n = Tuple(Int64(i) for i in n) d = Tuple(Float32(i) for i in d) o = Tuple(Float32(i) for i in o) i_dense = 1:1/Float32(dense_factor):size(m0)[1] j_dense = 1:1/Float32(dense_factor):size(m0)[2] m0_itp = interpolate(m0, BSpline(Linear())) m0 = m0_itp(i_dense, j_dense) n = size(m0) d = Tuple(Float32(i/dense_factor) for i in d) if modeling_type == "slowness" model0 = Model(n, d, o, m0_dense) elseif modeling_type == "bulk" rho0 = rho_from_slowness(m0) model0 = Model(n, d, o, m0, rho=rho0) end x = (o[1]:d[1]:o[1]+(n[1]-1)*d[1])./1000f0 z = (o[2]:d[2]:o[2]+(n[2]-1)*d[2])./1000f0 global seabed_ind = Int.(round.(seabed./d[2])) if modeling_type == "slowness" model0.m[:,1:seabed_ind] .= (1/vwater)^2 elseif modeling_type == "bulk" model0.m[:,1:seabed_ind] .= (1/vwater)^2 model0.rho[:,1:seabed_ind] .= rhowater end # Set up wavelet and source vector src_geometry = Geometry(container; key = "source", segy_depth_key = segy_depth_key_src) # setup wavelet wavelet_raw = readdlm(wavelet_file, skipstart=wavelet_skip_start) itp = LinearInterpolation(0:wavelet_dt:wavelet_dt*(length(wavelet_raw)-1), wavelet_raw[:,1], extrapolation_bc=0f0) wavelet = Matrix{Float32}(undef,src_geometry.nt[1],1) wavelet[:,1] = itp(0:src_geometry.dt[1]:src_geometry.t[1]) q = judiVector(src_geometry, wavelet) ############################################## RTM ################################################# # JUDI options jopt = JUDI.Options( space_order=32, limit_m = true, buffer_size = buffer_size, optimal_checkpointing=false, IC = "isic") # Right-hand preconditioners (model topmute) idx_wb = find_water_bottom(reshape(model0.m, size(model0))) Tm = judiTopmute(size(model0), idx_wb, 10) # Mute water column S = judiDepthScaling(model0) Mr = S*Tm # Left-hand side preconditioners Ml = judiDataMute(q.geometry, d_obs.geometry, vp=1100f0, t0=0.001f0, mode=:reflection) # keep reflections # Setup operators Pr = judiProjection(d_obs.geometry) F = judiModeling(model0; options=jopt) Ps = judiProjection(q.geometry) J = judiJacobian(Pr*F*adjoint(Ps), q) shot_from = 1 shot_to = length(d_obs) shot_step = 3 # only compute each 3rd shot (that is enough) indsrc = rand(shot_from:shot_from+shot_step-1):shot_step:shot_to # Topmute d_obs = Ml[indsrc]*d_obs[indsrc] # RTM rtm = adjoint(Mr)*adjoint(J[indsrc])*d_obs data = rtm isa Vector ? rtm : rtm.data zmax = 3.2f0 # km nz = sum(z .<= zmax) # save RTM as HDF5 and plots save_data(x,z[1:nz],adjoint(reshape(data, size(model0))[:,1:nz]); pltfile=dir_out * "RTM_$(modeling_type).png", title="RTM", clim=(-mean(abs.(data))*15f0, mean(abs.(data))*15f0), colormap=:seismic, h5file=dir_out * "rtm_$(modeling_type).h5", h5openflag="w", h5varname="rtm") # save RTM as SEGY block_out = SeisBlock(collect(reshape(data, size(model0))')) set_header!(block_out, "dt", Int16(round(z[2]*1e6))) set_header!(block_out, "CDP", collect(1:size(data)[1])) set_header!(block_out, "CDPX", collect(Int32.(round.(x*100f0)))) segy_write(dir_out * "rtm_$(modeling_type).sgy", block_out)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
57
module Viking using HDF5, Plots include("utils.jl") end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1387
export save_data, save_fhistory, rho_from_slowness function save_data(x,z,data; pltfile,title,colormap,clim=nothing,h5file,h5openflag,h5varname) @info "save_data: $h5file" n = (length(x),length(z)) o = (x[1],z[1]) d = (x[2]-x[1],z[2]-z[1]) isnothing(clim) && (clim = (minimum(data),maximum(data))) plt = Plots.heatmap(x, z, data, c=colormap, xlims=(x[1],x[end]), ylims=(z[1],z[end]), yflip=true, title=title, clim=clim, xlabel="Lateral position [km]", ylabel="Depth [km]", dpi=600) Plots.savefig(plt, pltfile) fid = h5open(h5file, h5openflag) (haskey(fid, h5varname)) && (delete_object(fid, h5varname)) (haskey(fid, "o")) && (delete_object(fid, "o")) (haskey(fid, "n")) && (delete_object(fid, "n")) (haskey(fid, "d")) && (delete_object(fid, "d")) write(fid, h5varname, Matrix(adjoint(data)), # convert adjoint(Matrix) type to Matrix "o", collect(o.*1000f0), "n", collect(n), "d", collect(d.*1000f0)) close(fid) end function save_fhistory(fhistory; h5file,h5openflag,h5varname) @info "save_fhistory: $h5file" fid = h5open(h5file, h5openflag) (haskey(fid, h5varname)) && (delete_object(fid, h5varname)) write(fid, h5varname, fhistory) close(fid) end """ Recalculate slowness^2 to density using Gardner formulae """ rho_from_slowness(m) = 0.23.*(sqrt.(1f0 ./ m).*1000f0).^0.25
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2435
# Example for linearized modeling with Flux networks # Author: Mathias Louboutin, [email protected] # Date: June 2022 # Adapted from https://github.com/slimgroup/JUDI4Flux.jl/tree/master/examples using JUDI, SegyIO, JOLI, Flux # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v0 = ones(Float32,n) .+ 0.4f0 v[:, Int(round(end/2)):end] .= 4f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 dm = vec(m - m0) # Setup model structure nsrc = 1 # number of sources model0 = Model(n, d, o, m0) # Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time time = 1000f0 # receiver recording time [ms] dt = 1f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc) ## Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell([600f0]) ysrc = convertToCell([0f0]) zsrc = convertToCell([20f0]) # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dt, t=time) # setup wavelet f0 = 0.01f0 # MHz wavelet = ricker_wavelet(time, dt, f0) q = judiVector(srcGeometry, wavelet) # return linearized data as Julia array opt = Options(return_array=true) # Non-linear forward modeling operator F0 = judiModeling(model0, srcGeometry, recGeometry; options=opt) num_samples = recGeometry.nt[1] * nxrec ################################################################################## # Fully connected neural network with linearized modeling operator n_in = 100 n_out = 10 W1 = randn(Float32, prod(model0.n), n_in) b1 = randn(Float32, prod(model0.n)) W2 = judiJacobian(F0, q) b2 = randn(Float32, num_samples) W3 = randn(Float32, n_out, num_samples) b3 = randn(Float32, n_out) function network(x) x = W1*x .+ b1 x = vec(W2*x) .+ b2 x = W3*x .+ b3 return x end # Inputs and target x = zeros(Float32, n_in) y = randn(Float32, n_out) # Evaluate MSE loss loss(x, y) = Flux.mse(network(x), y) # Compute gradient w.r.t. x and y Δx, Δy = gradient(loss, x, y) # Compute gradient for x, y and weights (except for W2) p = Flux.params(x, y, W1, b1, b2, W3, b3) gs = gradient(() -> loss(x, y), p) # Access gradients Δx = gs[x] ΔW1 = gs[W1] Δb1 = gs[b1] # and so on...
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1611
# Example for extended source modeling with Flux # Author: Mathias Louboutin, [email protected] # Date: June 2022 # Adapted from https://github.com/slimgroup/JUDI4Flux.jl/tree/master/examples using JUDI, SegyIO, JOLI, Flux # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v[:, Int(round(end/2)):end] .= 4f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 # Setup model structure nsrc = 1 # number of sources model = Model(n, d, o, m) # Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time time = 1000f0 # receiver recording time [ms] dt = 1f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc) # setup wavelet f0 = 0.01f0 # MHz wavelet = ricker_wavelet(time, dt, f0) # return linearized data as Julia array opt = Options(return_array=true, dt_comp=dt) # Linear operators Pr = judiProjection(recGeometry) A_inv = judiModeling(model; options=opt) Pw = judiLRWF(dt, wavelet) F = Pr*A_inv*adjoint(Pw) # Extended source weight w = randn(Float32, model.n) ##################################################################################### # Extended source forward # Build CNN w = reshape(w, n[1], n[2], 1, 1) m = reshape(m, n[1], n[2], 1, 1) y = randn(Float32, recGeometry.nt[1], nxrec, 1, 1) loss(w, m, y) = Flux.mse(F(m, w), y) p = Flux.params(w, m, y) gs = gradient(() -> loss(w, m, y), p)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1953
# Example for extended source modeling with Flux # Author: Mathias Louboutin, [email protected] # Date: June 2022 # Adapted from https://github.com/slimgroup/JUDI4Flux.jl/tree/master/examples using JUDI, SegyIO, JOLI, Flux # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v[:, Int(round(end/2)):end] .= 4f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 # Setup info and model structure nsrc = 1 # number of sources model = Model(n, d, o, m) # Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time time = 1000f0 # receiver recording time [ms] dt = 1f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc) # setup wavelet f0 = 0.01f0 # MHz wavelet = ricker_wavelet(time, dt, f0) # return linearized data as Julia array opt = Options(return_array=true, dt_comp=dt) # Linear operators Pr = judiProjection(recGeometry) A_inv = judiModeling( model; options=opt) Pw = judiLRWF(dt, wavelet) F = Pr*A_inv*adjoint(Pw) ##################################################################################### # Build CNN n_in = 10 n_out = 8 batchsize = nsrc conv1 = Conv((3, 3), n_in => 1, stride=1, pad=1) conv2 = Conv((3, 3), 1 => n_out, stride=1, pad=1) function network(x, m) x = conv1(x) x = F(m, x) x = F'(m, x) x = conv2(x) return x end loss(x, m, y) = Flux.mse(network(x, m), y) x = randn(Float32, n[1], n[2], n_in, batchsize) m = reshape(m, n[1], n[2], 1, 1) # y = randn(Float32, n[1], n[2], n_out, batchsize) # Compute gradient of parameters p = Flux.params(x, m, y, conv1, conv2) gs = gradient(() -> loss(x, m, y), p) # Access gradients Δx = gs[x] Δm = gs[m] Δy = gs[y] Δw1 = gs[conv1.weight] Δb1 = gs[conv1.bias]
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2692
# Example for basic 2D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using JUDI, SegyIO, LinearAlgebra, PyPlot, IterativeSolvers, JOLI # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v[:,Int(round(end/2)):end] .= 5f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 # Setup model structure nsrc = 1 # number of sources model = Model(n, d, o, m) # Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time time = 2000f0 # receiver recording time [ms] dt = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc) # Source wavelet f0 = 0.01f0 # kHz wavelet = ricker_wavelet(time, dt, f0) ################################################################################################### # Write shots as segy files to disk opt = Options() # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model; options=opt) # Random weights (size of the model) w = judiWeights(randn(Float32, model.n)) # Create operator for injecting the weights, multiplied by the provided wavelet(s) Pw = judiLRWF(dt, wavelet) # Model observed data w/ extended source lambda = 1f2 I = joDirac(prod(model.n), DDT=Float32, RDT=Float32) F = Pr*F*adjoint(Pw) F̄ = [F; lambda*I] # Simultaneous observed data d_sim = F*w # # Adjoint operation w_adj = adjoint(F)*d_sim # # LSQR w_inv = 0f0 .* w w_inv_no_damp = 0f0 .* w lsqr!(w_inv, F̄, [d_sim; lambda*w]; maxiter=2, verbose=true, damp=1e2) lsqr!(w_inv_no_damp, F, d_sim; maxiter=2, verbose=true, damp=1e2) d_pred = F*w_inv; d_pred_no_damp = F*w_inv_no_damp; # Plot results figure() subplot(1,3,1) imshow(d_sim.data[1], vmin=-5e2, vmax=5e2, cmap="gray"); title("Observed data") subplot(1,3,2) imshow(d_pred.data[1], vmin=-2e2, vmax=2e2, cmap="gray"); title("Predicted data") subplot(1,3,3) imshow(d_pred_no_damp.data[1], vmin=-2e2, vmax=2e2, cmap="gray"); title("Predicted data no damp") figure() subplot(2,2,1) imshow(w.weights[1], vmin=-3, vmax=3, cmap="gray"); title("Weights") subplot(2,2,2) imshow(w_adj.weights[1], vmin=minimum(w_adj), vmax=maximum(w_adj), cmap="gray"); title("Adjoint") subplot(2,2,3) imshow(w_inv.weights[1], vmin=minimum(w_inv), vmax=maximum(w_inv), cmap="gray"); title("D-LSQR") subplot(2,2,4) imshow(w_inv_no_damp.weights[1], vmin=minimum(w_inv), vmax=maximum(w_inv), cmap="gray"); title("LSQR")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2124
# 2D FWI on Overthrust model using minConf library # Author: Philipp Witte, [email protected] # Date: December 2017 # using Statistics, Random, LinearAlgebra using JUDI, HDF5, SegyIO, SlimOptim, SlimPlotting # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ m0) vmin = ones(Float32, model0.n) .* 1.3f0 vmax = ones(Float32, model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### F0 = judiModeling(deepcopy(model0), src_geometry, d_obs.geometry) # Optimization parameters niterations = parse(Int, get(ENV, "NITER", "10")) batchsize = 16 fhistory_SGD = zeros(Float32, niterations) # Projection operator for bound constraints proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)]; dims=2),model0.n) ls = BackTracking(order=3, iterations=10, ) # Main loop for j=1:niterations # get fwi objective function value and gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, gradient = fwi_objective(model0, q[i], d_obs[i]) p = -gradient/norm(gradient, Inf) println("FWI iteration no: ",j,"; function value: ",fval) fhistory_SGD[j] = fval # linesearch function ϕ(α) F0.model.m .= proj(model0.m .+ α * p) misfit = .5*norm(F0[i]*q[i] - d_obs[i])^2 @show α, misfit return misfit end step, fval = ls(ϕ, 1f-1, fval, dot(gradient, p)) # Update model and bound projection model0.m .= proj(model0.m .+ step .* p) end figure() plot_velocity(model0.m'.^(-.5)) title("FWI with SGD")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2387
# 2D Envelope FWI on Overthrust model with SPG using minConf library and Zygote for the derivative of the Envelope misfit # Author: Mathias Louboutin # Date: September 2022 # using Statistics, Random, LinearAlgebra, PyPlot, Distributed using JUDI, SlimOptim, HDF5, SegyIO @everywhere using JUDI.FFTW, Zygote # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ m0) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### @everywhere function H(x) n = size(x, 1) σ = ifftshift(sign.(-n/2+1:n/2)) y = imag(ifft(σ.*fft(x, 1), 1)) return y end @everywhere envelope(x, y) = sum(abs2.((x - y) .+ 1im .* H(x - y))) @everywhere denvelope(x, y) = gradient(xs->envelope(xs, y), x)[1] @everywhere myloss(x, y)= (envelope(x, y), denvelope(x, y)) @everywhere myloss(randn(Float32, 10, 10), randn(Float32, 10, 10)) # Optimization parameters fevals = parse(Int, get(ENV, "NITER", "10")) batchsize = 8 # Objective function for minConf library count = 0 function objective_function(x) model0.m .= reshape(x,model0.n); # fwi function value and gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, grad = fwi_objective(model0, q[i], d_obs[i]; misfit=myloss) grad = .125f0*grad/maximum(abs.(grad)) # scale for line search global count; count+= 1 return fval, grad end # Bound projection proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)]; dims=2),model0.n) # FWI with SPG options = spg_options(verbose=3, maxIter=fevals, memory=3) sol = spg(objective_function, model0.m, proj, options) # Plot result imshow(reshape(sqrt.(1f0 ./ sol.x), model0.n)', extent=[0, 10, 3, 0]) xlabel("Lateral position [km]") ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1861
# 2D FWI on Overthrust model with L-BFGS using NLopt library # Author: Philipp Witte, [email protected] # Date: December 2017 # using Statistics, Random, LinearAlgebra using JUDI, HDF5, NLopt, SegyIO # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./m0) vmin = ones(Float32, model0.n) .* 1.3f0 vmax = ones(Float32, model0.n) .* 6.5f0 # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet q = judiVector(src_geometry, wavelet) ############################### FWI ########################################### # optimization parameters batchsize = 16 count = 0 # NLopt objective function println("No. ", "fval ", "norm(gradient)") function f!(x,grad) # Update model model0.m .= convert(Array{Float32, 2}, reshape(x, model0.n)) # Seclect batch and calculate gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, gradient = fwi_objective(model0, q[i], d_obs[i]) # Reset gradient in water column to zero gradient = reshape(gradient, model0.n) gradient[:, 1:21] .= 0f0 grad[1:end] = vec(gradient) global count; count += 1 println(count, " ", fval, " ", norm(grad)) return convert(Float64, fval) end # Optimization parameters opt = Opt(:LD_LBFGS, prod(model0.n)) lower_bounds!(opt, mmin); upper_bounds!(opt, mmax) min_objective!(opt, f!) maxeval!(opt, parse(Int, get(ENV, "NITER", "10"))) (minf, minx, ret) = optimize(opt, vec(model0.m.data))
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3647
# 2D FWI on Overthrust model using minConf library # Authors: # Philipp Witte, [email protected] # Date: December 2017 # Mathias Louboutin, [email protected] # Date: January 2022 using Statistics, Random, LinearAlgebra using JUDI, SlimOptim, HDF5, SegyIO, PyPlot using SetIntersectionProjection # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ m0) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### # Optimization parameters niterations = parse(Int, get(ENV, "NITER", "10")) batchsize = 10 fhistory_SGD = zeros(Float32,niterations) ########## Setup constraints # with constraints: options=PARSDMM_options() options.FL=Float32 options=default_PARSDMM_options(options,options.FL) options.adjust_gamma = true options.adjust_rho = true options.adjust_feasibility_rho = true options.Blas_active = true options.maxit = 1000 options.feas_tol = 0.001 options.obj_tol = 0.001 options.evol_rel_tol = 0.00001 options.rho_ini=[1.0f0] set_zero_subnormals(true) BLAS.set_num_threads(2) options.parallel=false options.feasibility_only = false options.zero_ini_guess=true constraint = Vector{SetIntersectionProjection.set_definitions}() #bounds: vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] m_min = vec((1f0 ./ vmax).^2) m_max = vec((1f0 ./ vmin).^2) set_type = "bounds" TD_OP = "identity" app_mode = ("matrix","") custom_TD_OP = ([],false) push!(constraint, set_definitions(set_type,TD_OP,m_min,m_max,app_mode,custom_TD_OP)) #TV (TV,dummy1,dummy2,dummy3) = get_TD_operator(model0,"TV",options.FL) m_min = 0.0 m_max = norm(TV*vec(v0),1) *2.0f0 set_type = "l1" TD_OP = "TV" app_mode = ("matrix","") custom_TD_OP = ([],false) push!(constraint, set_definitions(set_type,TD_OP,m_min,m_max,app_mode,custom_TD_OP)) #set up constraints, precompute some things and define projector (P_sub,TD_OP,set_Prop) = setup_constraints(constraint,model0,options.FL) (TD_OP,AtA,l,y) = PARSDMM_precompute_distribute(TD_OP,set_Prop,model0,options) options.rho_ini = ones(length(TD_OP))*10.0 proj_intersection = x-> PARSDMM(x, AtA, TD_OP, set_Prop, P_sub, model0, options) function proj(input) input = Float32.(input) (x,dummy1,dummy2,dymmy3) = proj_intersection(vec(input.data)) return reshape(x, model0.n) end ########## Run F0 = judiModeling(deepcopy(model0), q.geometry, d_obs.geometry) ls = BackTracking(order=3, iterations=10) # Main loop for j=1:niterations # get fwi objective function value and gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, gradient = fwi_objective(model0,q[i],d_obs[i]) p = -gradient/norm(gradient, Inf) println("FWI iteration no: ",j,"; function value: ",fval) fhistory_SGD[j] = fval # linesearch function ϕ(α) F0.model.m .= proj(model0.m .+ α * p) misfit = .5*norm(F0[i]*q[i] - d_obs[i])^2 return misfit end step, fval = ls(ϕ, 1f0, fval, dot(gradient, p)) # Update model and bound projection model0.m .= proj(model0.m .+ step .* p) end figure(); imshow(sqrt.(1f0./adjoint(model0.m))); title("FWI with SPG")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1878
# 2D FWI on Overthrust model with SPG using minConf library # Author: Philipp Witte, [email protected] # Date: December 2017 # using Statistics, Random, LinearAlgebra, PyPlot using JUDI, SlimOptim, HDF5, SegyIO # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ m0) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### # Optimization parameters fevals = parse(Int, get(ENV, "NITER", "10")) batchsize = 8 # Objective function for minConf library count = 0 function objective_function(x) model0.m .= reshape(x,model0.n); # fwi function value and gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, grad = fwi_objective(model0, q[i], d_obs[i]) grad = .125f0*grad/maximum(abs.(grad)) # scale for line search global count; count+= 1 return fval, grad end # Bound projection proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)]; dims=2),model0.n) # FWI with SPG options = spg_options(verbose=3, maxIter=fevals, memory=3) sol = spg(objective_function, model0.m, proj, options) # Plot result imshow(reshape(sqrt.(1f0 ./ sol.x), model0.n)', extent=[0, 10, 3, 0]) xlabel("Lateral position [km]") ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2353
# 2D FWI with student's t misfit on Overthrust model with SPG using minConf library # Author: Mathias Louboutin # Date: September 2022 # using Statistics, Random, LinearAlgebra, PyPlot, SlimPlotting using JUDI, SlimOptim, HDF5, SegyIO # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ m0) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ## Add outliers to the data for s=1:d_obs.nsrc # wrongly scale a few traces nrec = d_obs[s].geometry.nrec[1] inds = rand(1:nrec, 10) d_obs.data[s][:, inds] .*= 20 end ############################### FWI ########################################### # Optimization parameters fevals = parse(Int, get(ENV, "NITER", "10")) batchsize = 8 # Objective function for minConf library count = 0 function objective_function(x, misfit=mse) model0.m .= reshape(x,model0.n); # fwi function value and gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, grad = fwi_objective(model0, q[i], d_obs[i]; misfit=misfit) grad = .125f0*grad/maximum(abs.(grad)) # scale for line search global count; count+= 1 return fval, vec(grad.data) end # Bound projection proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)]; dims=2), size(x)) # Compare l2 with students t ϕmse = x->objective_function(x) ϕst = x->objective_function(x, studentst) # FWI with SPG options = spg_options(verbose=3, maxIter=fevals, memory=3) solmse = spg(ϕmse, vec(m0), proj, options) solst = spg(ϕst, vec(m0), proj, options) # Plot result figure(figsize=(10, 10)) subplot(211) plot_velocity(reshape(solmse.x.^(-.5), model0.n)', d; name="MSE", new_fig=false) subplot(212) plot_velocity(reshape(solst.x.^(-.5), model0.n)', d; name="Student's t", new_fig=false)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1971
# FWI on Overthrust model using minConf library # Author: Philipp Witte, [email protected] # Date: December 2017 # using Statistics, Random, LinearAlgebra using JUDI, HDF5, SegyIO, PyPlot, IterativeSolvers # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1 ./ m0) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### # Set up operators F = judiModeling(model0, q.geometry, d_obs.geometry) J = judiJacobian(F,q) # Optimization parameters maxiter = parse(Int, get(ENV, "NITER", "10")) maxiter_GN = parse(Int, get(ENV, "NITER", "5")) batch_size = 5 * parse(Int, get(ENV, "NITER", "$(q.nsrc ÷ 5)")) fhistory_GN = zeros(Float32,maxiter) proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)]; dims=2),model0.n) # Gauss-Newton method for j=1:maxiter println("Iteration: ",j) i = randperm(q.nsrc)[1:batch_size] # # Model predicted data for subset of sources d_pred = F[i]*q[i] fhistory_GN[j] = .5f0*norm(d_pred - d_obs[i])^2 # GN update direction p = lsqr!(similar(model0.m), J[i], d_pred - d_obs[i]; maxiter=maxiter_GN, verbose=true) # update model and bound constraints model0.m .= proj(model0.m .- reshape(p, model0.n)) # alpha=1 end figure(); imshow(sqrt.(1f0./model0.m)'); title("FWI with Gauss-Newton")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3246
# Example for basic 2D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Mathias Louboutin, [email protected] # February 2022 using JUDI, HDF5, SlimPlotting, PyPlot, LinearAlgebra, Downloads, SlimPlotting, Distributed # Load model data_path = dirname(pathof(JUDI))*"/../data/" # Load migration velocity model if ~isfile(data_path*"marmousi_model.h5") Downloads.download("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5", data_path*"marmousi_model.h5") end n, d, o, m0, m = read(h5open(data_path*"marmousi_model.h5","r"), "n", "d", "o", "m0", "m") # Subsample tso that runs ok with ci fact = 3 m = m[1:fact:end, 1:fact:end] m0 = m0[1:fact:end, 1:fact:end] n = size(m) d = (fact*d[1], fact*d[2]) # Base is 5m spacing # Setup info and model structure nsrc = 21 # number of sources model = Model(n, d, o, m) model0 = Model(n, d, o, m0) # Set up receiver geometry nxrec = n[1] xrec = range(0f0, stop=(n[1] - 1)*d[1], length=nxrec) yrec = 0f0 zrec = range(d[end], stop=d[end], length=nxrec) # receiver sampling and recording time td = 3000f0 # receiver recording time [ms] dtd = 2f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtd, t=td, nsrc=nsrc) # Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell(range(0f0, stop=(n[1] - 1)*d[1], length=nsrc)) ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc)) zsrc = convertToCell(range(d[2], stop=d[2], length=nsrc)) # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtd, t=td) # setup wavelet f0 = 0.015f0 # kHz wavelet = ricker_wavelet(td, dtd, f0) q = judiVector(srcGeometry, wavelet) ################################################################################################### # Infer subsampling based on free memory mem = Sys.free_memory()/(1024^3) grad_mem = 40 t_sub = max(1, ceil(Int, nworkers()*grad_mem/mem)) # Write shots as segy files to disk opt = Options(IC="isic", subsampling_factor=t_sub) # Setup operators F = judiModeling(model, srcGeometry, recGeometry; options=opt) F0 = judiModeling(model0, srcGeometry, recGeometry; options=opt) J = judiJacobian(F0, q) # Nonlinear modeling dobs = F*q d0 = F0*q I = inv(judiIllumination(J; mode="uv")) rtm = J'*(d0 - dobs) # Plot illum c1, c2 = maximum(I.illums["u"])/10, maximum(I.illums["v"])/2 figure() subplot(311) plot_velocity(I.illums["u"]'; new_fig=false, cmap="gist_ncar", vmax=c1) subplot(312) plot_velocity(I.illums["v"]'; new_fig=false, cmap="gist_ncar", vmax=c2) subplot(313) plot_velocity(I.illums["u"]'.*I.illums["v"]'; new_fig=false, cmap="gist_ncar", vmax=c1*c2) # savefig("Illums.png", bbox_inches="tight") tight_layout() # Plot rtm with corrections figure(figsize=(10, 5)) subplot(221) plot_simage(rtm'; new_fig=false, name="rtm", aspect="auto") subplot(222) plot_simage((I*rtm)'; new_fig=false, name="rtmu", aspect="auto") subplot(223) plot_simage((I("v")*rtm)'; new_fig=false, name="rtmv", aspect="auto") subplot(224) plot_simage((I("uv")*rtm)'; new_fig=false, name="rtmuv", aspect="auto") tight_layout() # savefig("rtms.png", bbox_inches="tight") tight_layout()
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
6807
#' # Imaging conditions in JUDI #' --- #' title: Overview of JUDI imaging conditions for inversion #' author: Mathias Louboutin #' date: October 2022 #' --- #' This example script is written using [Weave.jl](https://github.com/JunoLab/Weave.jl) and can be converted to different format for documentation and usage #' This example is converted to a markdown file for the documentation. #' # Import JUDI, Linear algebra utilities and Plotting using JUDI, LinearAlgebra, PyPlot #+ echo = false; results = "hidden" close("all") #' # Create a JUDI model structure #' In JUDI, a `Model` structure contains the grid information (origin, spacing, number of gridpoints) #' and the physical parameters. The squared slowness is always required as the base physical parameter for propagation. In addition, #' JUDI supports additional physical representations. First we accept `density` that can either be a direct input `Model(n, d, o, m, rho)` or #' an optional keyword argument `Model(n,d,o,m;rho=rho)`. Second, we also provide VTI/TTI kernels parametrized by the THomsen parameters that can be input as keyword arguments #' `Model(n,d,o,m; rho=rho, epsilon=epsilon;delta=delta,theta=theta,phi=phi)`. Because the thomsen parameters are optional the propagator wil lonloy use the ones provided. #' For example `Model(n,d,o,m; rho=rho, epsilon=epsilon;delta=delta)` will infer a VTI propagation #' ## Create discrete parameters # Set up model structure n = (601, 151) # (x,y,z) or (x,z) d = (10f0, 10f0) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.5f0 v0 = ones(Float32,n) .+ 0.51f0 v[:, 101:end] .= 2f0 v0[:, 101:end] .= 2f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 # Setup model structure nsrc = 1 # number of sources model = Model(n, d, o, m) model0 = Model(n, d, o, m0) #' # Create acquisition geometry #' In this simple usage example, we create a simple acquisiton by hand. In practice the acquisition geometry will be defined by the dataset #' beeing inverted. We show in a spearate tutorial how to use [SegyIO.jl](https://github.com/slimgroup/SegyIO.jl) to handle SEGY seismic datasets in JUDI. #' ## Create source and receivers positions at the surface # Set up receiver geometry xrec = [1 * (n[1] - 1) * d[1] / 4] yrec = [0f0] # WE have to set the y coordiante to zero (or any number) for 2D modeling zrec = [d[1]] # receiver sampling and recording time timeD = 2500f0 # receiver recording time [ms] dtD = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtD, t=timeD, nsrc=nsrc) #' The source geometry is a but different. Because we want to create a survey with `nsrc` shot records, we need #' to convert the vector of sources postions `[s0, s1, ... sn]` into an array of array [[s0], [s1], ...] so that #' JUDI understands that this is a set of indepednet `nsrc` xsrc = 3 * (n[1] - 1) * d[1] / 4 ysrc = 0f0 zsrc = d[1] # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtD, t=timeD) #' # Source judiVector #' Finally, with the geometry defined, we can create a source wavelet (a simple Ricker wavelet here) a our first `judiVector` #' In JUDI, a `judiVector` is the core structure that represent a acquisition-geometry based dataset. This structure encapsulate #' the physical locations (trace coordinates) and corrsponding data trace in a source-based structure. for a given `judiVector` `d` then #' `d[1]` will be the shot record for the first source, or in the case of the source term, the first source wavelet and its positon. # setup wavelet f0 = 0.015f0 # kHz wavelet = ricker_wavelet(timeD, dtD, f0) q = judiVector(srcGeometry, wavelet) #' # Modeling #' With our survey and subsurface model setup, we can now model and image seismic data. #' Linear Operators #' The core idea behind JUDI is to abstract seismic inverse problems in term of linear algebra. In its simplest form, seismic inversion can be formulated as #' ```math #' \underset{\mathbf{m}}{\text{argmin}} \ \ \phi(\mathbf{m}) = \frac{1}{2} ||\mathbf{P}_r \mathbf{F}(\mathbf{m}) \mathbf{P}_s^{\top} \mathbf{q} - \mathbf{d} ||_2^2 \\ #' \text{ } \\ #' \nabla_{\mathbf{m}} \phi(\mathbf{m}) = \mathbf{J}(\mathbf{m}, \mathbf{q})^{\top} (\mathbf{P}_r \mathbf{F}(\mathbf{m}) \mathbf{P}_s^{\top} \mathbf{q} - \mathbf{d}) #' ``` #' #' where $\mathbf{P}_r$ is the receiver projection (measurment operator) and $\mathbf{P}_s^{\top}$ is the source injection operator (adjoint of measurment at the source location). #' Therefore, we bastracted these operation to be able to define these operators # Setup operators F = judiModeling(model, srcGeometry, recGeometry) F0 = judiModeling(model0, srcGeometry, recGeometry) #' # Model and image data #' We first model synthetic data using our defined source and true model # Nonlinear modeling dobs = F*q #' # Inversion #' Our main goal is to provide an inversion framework for seismic inversion. In this tutorial, we highlight the different imaging conditions #' available in JUDI. These imaging conditions are designed to enhanced properties in the gradient beneficial to the inversion problem such #' as the frequency content. Because these imaging conditions are intended tho be used in potential least-square problems, we also implemented #' (and test as part of our CI) their adjoint such that we can model linearized data with the JAcobian that correspond to the adjoint of the #' modified adjoint state crosscorelation imaging condition. #' We compute now the FWI gradient with three different imaging conditions: #' - "as" adjoint state imaging condition. This is the conventional cross-correlation adjoint state gradient. #' - "isic" that computes the inverse scattering imaging condition designed to provide reflections for LSRTM (high frequency content) #' - "FWI" that computes the complement of "isic" and brings up the low frequency content for velocity inversion #' #' These can be specified in the Option structure via `IC="as/isic/fwi` fas, g_as = fwi_objective(model0, q, 0*dobs; options=Options(IC="as", space_order=12)) fisic, g_isic = fwi_objective(model0, q, 0*dobs; options=Options(IC="isic", space_order=12)) ffwi, g_fwi = fwi_objective(model0, q, 0*dobs; options=Options(IC="fwi", space_order=12)) #' We show below the sensitivity kernels for a single source-receiver pair highlighting the inversion properties of these imaging conditions ni(x) = 10 * x ./ norm(x, Inf) fig = figure(figsize=(8, 12)) subplot(311) imshow(ni(g_isic'), cmap="seismic", aspect="auto", vmin=-1, vmax=1) title("ISIC") subplot(312) imshow(ni(g_fwi'), cmap="seismic", aspect="auto", vmin=-1, vmax=1) title("FWI") subplot(313) imshow(ni(g_as'), cmap="seismic", aspect="auto", vmin=-1, vmax=1) title("Adjoint State") tight_layout() display(fig)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2698
# LS-RTM of the 2D Marmousi model using LSQR # Author: [email protected] # Date: June 2022 using Statistics, Random, LinearAlgebra, JOLI, Distributed using JUDI, SegyIO, HDF5, PyPlot, IterativeSolvers # Load migration velocity model if ~isfile("$(JUDI.JUDI_DATA)/marmousi_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/marmousi_model.h5", "r"), "n", "d", "o", "m0") # Smaller model for CI if get(ENV, "NITER", "10") == "2" fact = 4 m0 = m0[1:fact:end, 1:fact:end] n = size(m0) d = d .* fact else fact = 1 end # Set up model structure model0 = Model(n, d, o, m0) grad_mem = 40 / (fact^3) # Based on n and CFL condition # Load data if ~isfile("$(JUDI.JUDI_DATA)/marmousi_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy") end block = segy_scan(JUDI.JUDI_DATA, "marmousi_2D.segy", ["GroupX","GroupY","RecGroupElevation","SourceSurfaceElevation","dt"]) d_lin = judiVector(block) # linearized observed data # Set up wavelet src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.03) # 30 Hz wavelet q = judiVector(src_geometry, wavelet) ################################################################################################### # Infer subsampling based on free memory mem = Sys.free_memory()/(1024^3) t_sub = max(1, ceil(Int, .5*nworkers()*grad_mem/mem)) # Setup operators opt = Options(subsampling_factor=t_sub, isic=true) # ~40 GB of memory per source without subsampling M = judiModeling(model0, q.geometry, d_lin.geometry; options=opt) J = judiJacobian(M, q) # Right-hand preconditioners (model topmute) Mr = judiTopmute(model0; taperwidth=10) # Left-hand Preconditionners (data top mute) Ml = judiDataMute(q.geometry, d_lin.geometry) #' set up number of iterations niter = parse(Int, get(ENV, "NITER", "10")) # Default to 64, 5 for CI only with NITER=1 nsrc = 5 * parse(Int, get(ENV, "NITER", "10")) indsrc = randperm(q.nsrc)[1:nsrc] lsqr_sol = zeros(Float32, prod(model0.n)) # LSQR dinv = d_lin[indsrc] Jinv = J[indsrc] Jp = Ml[indsrc]*Jinv*Mr dinvp = Ml[indsrc]*dinv lsqr!(lsqr_sol, Jp, dinvp; maxiter=niter) # Save final velocity model, function value and history h5open("lsrtm_marmousi_lsqr_result.h5", "w") do file write(file, "x", reshape(lsqr_sol, model0.n)) end # Plot final image figure(); imshow(reshape(lsqr_sol, model0.n)', extent = (0, 7.99, 3.19, 0), cmap = "gray", vmin = -3e-2, vmax = 3e-2) title("LS-RTM with LSQR") xlabel("Lateral position [km]") ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
9957
#' # Modeling and inversion with JUDI #' --- #' title: Overview of JUDI modeling and inversion usage #' author: Mathias Louboutin, Philipp Witte #' date: April 2022 #' --- #' This example script is written using [Weave.jl](https://github.com/JunoLab/Weave.jl) and can be converted to different format for documentation and usage #' This example is converted to a markdown file for the documentation. #' # Import JUDI, Linear algebra utilities and Plotting using JUDI, LinearAlgebra, SlimPlotting #+ echo = false; results = "hidden" close("all") imcmap = "cet_CET_L1" dcmap = "PuOr" #' # Create a JUDI model structure #' In JUDI, a `Model` structure contains the grid information (origin, spacing, number of gridpoints) #' and the physical parameters. The squared slowness is always required as the base physical parameter for propagation. In addition, #' JUDI supports additional physical representations. First we accept `density` that can either be a direct input `Model(n, d, o, m, rho)` or #' an optional keyword argument `Model(n,d,o,m;rho=rho)`. Second, we also provide VTI/TTI kernels parametrized by the THomsen parameters that can be input as keyword arguments #' `Model(n,d,o,m; rho=rho, epsilon=epsilon;delta=delta,theta=theta,phi=phi)`. Because the thomsen parameters are optional the propagator wil lonloy use the ones provided. #' For example `Model(n,d,o,m; rho=rho, epsilon=epsilon;delta=delta)` will infer a VTI propagation #' ## Create discrete parameters # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.5f0 v0 = ones(Float32,n) .+ 0.5f0 v[:,Int(round(end/2)):end] .= 3.5f0 rho = (v0 .+ .5f0) ./ 2 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 dm = vec(m0 - m) # Setup model structure nsrc = 2 # number of sources model = Model(n, d, o, m) model0 = Model(n, d, o, m0) #' # Create acquisition geometry #' In this simple usage example, we create a simple acquisiton by hand. In practice the acquisition geometry will be defined by the dataset #' beeing inverted. We show in a spearate tutorial how to use [SegyIO.jl](https://github.com/slimgroup/SegyIO.jl) to handle SEGY seismic datasets in JUDI. #' ## Create source and receivers positions at the surface # Set up receiver geometry nxrec = 120 xrec = range(0f0, stop=(n[1]-1)*d[1], length=nxrec) yrec = 0f0 # WE have to set the y coordiante to zero (or any number) for 2D modeling zrec = range(d[1], stop=d[1], length=nxrec) # receiver sampling and recording time timeD = 1250f0 # receiver recording time [ms] dtD = 2f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtD, t=timeD, nsrc=nsrc) #' The source geometry is a but different. Because we want to create a survey with `nsrc` shot records, we need #' to convert the vector of sources postions `[s0, s1, ... sn]` into an array of array [[s0], [s1], ...] so that #' JUDI understands that this is a set of indepednet `nsrc` xsrc = convertToCell(range(0f0, stop=(n[1]-1)*d[1], length=nsrc)) ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc)) zsrc = convertToCell(range(d[1], stop=d[1], length=nsrc)) # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtD, t=timeD) #' # Source judiVector #' Finally, with the geometry defined, we can create a source wavelet (a simple Ricker wavelet here) a our first `judiVector` #' In JUDI, a `judiVector` is the core structure that represent a acquisition-geometry based dataset. This structure encapsulate #' the physical locations (trace coordinates) and corrsponding data trace in a source-based structure. for a given `judiVector` `d` then #' `d[1]` will be the shot record for the first source, or in the case of the source term, the first source wavelet and its positon. # setup wavelet f0 = 0.01f0 # kHz wavelet = ricker_wavelet(timeD, dtD, f0) q = judiVector(srcGeometry, wavelet) #' # Modeling #' With our survey and subsurface model setup, we can now model and image seismic data. We first define a few options. In this tutorial #' we will choose to compute gradients/images subsampling the forward wavefield every two time steps `subsampling_factor=2` and we fix the computational #' time step to be `1ms` wiuth `dt_comp=1.0` know to satisfy the CFL condition for this simple example. In practice, when `dt_comp` isn't provided, JUDI will compute the CFL #' condition for the propagation. # Setup options opt = Options(subsampling_factor=2, space_order=16, free_surface=false) #' Linear Operators #' The core idea behind JUDI is to abstract seismic inverse problems in term of linear algebra. In its simplest form, seismic inversion can be formulated as #' ```math #' \underset{\mathbf{m}}{\text{argmin}} \ \ \phi(\mathbf{m}) = \frac{1}{2} ||\mathbf{P}_r \mathbf{F}(\mathbf{m}) \mathbf{P}_s^{\top} \mathbf{q} - \mathbf{d} ||_2^2 \\ #' \text{ } \\ #' \nabla_{\mathbf{m}} \phi(\mathbf{m}) = \mathbf{J}(\mathbf{m}, \mathbf{q})^{\top} (\mathbf{P}_r \mathbf{F}(\mathbf{m}) \mathbf{P}_s^{\top} \mathbf{q} - \mathbf{d}) #' ``` #' #' where $\mathbf{P}_r$ is the receiver projection (measurment operator) and $\mathbf{P}_s^{\top}$ is the source injection operator (adjoint of measurment at the source location). #' Therefore, we bastracted these operation to be able to define these operators # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model; options=opt) F0 = judiModeling(model0; options=opt) Ps = judiProjection(srcGeometry) J = judiJacobian(Pr*F0*adjoint(Ps), q) #' # Model and image data #' We first model synthetic data using our defined source and true model # Nonlinear modeling dobs = Pr*F*adjoint(Ps)*q #' Plot the shot record fig = figure() plot_sdata(dobs[1]; new_fig=false, name="Synthetic data", cmap=dcmap) display(fig) #' Because we have abstracted the linear algebra, we can solve the adjoint wave-equation as well #' where the data becomes the source. This adjoint solve will be part of the imaging procedure. # # Adjoint qad = Ps*adjoint(F)*adjoint(Pr)*dobs #' We can easily now test the adjointness of our operator with the standard dot test. Because we #' intend to conserve our linear algebra abstraction, `judiVector` implements all the necessary linear #' algebra functions such as dot product or norm to be used directly. # <x, F'y> dot1 = dot(q, qad) # <F x, y> dot2 = dot(dobs, dobs) # Compare @show dot1, dot2, (dot2 - dot2)/(dot1 + dot2) #' # Inversion #' Our main goal is to provide an inversion framework for seismic inversion. To this end, as shown earlier, #' users can easily define the Jacobian operator and compute an RTM image (i.e FWI gradient) with a simple matrix-vector product. #' Once again, we provide both the Jacobian and its adjoint and we can compute Born linearized data. # Linearized modeling J*dm dD = J*dm # Adjoint jacobian, RTM image rtm = adjoint(J)*dD #' We show the linearized data. fig = figure() plot_sdata(dobs[1]; new_fig=false, name="Linearized data", cmap=dcmap) display(fig) #' And the RTM image fig = figure() plot_simage(rtm'; new_fig=false, name="RTM image", cmap=imcmap) display(fig) #' ## Inversion utility functions #' We currently introduced the lineaar operators that allow to write seismic modeling and inversion in a high-level, linear algebra way. These linear operators allow the script to closely follow the mathematics and to be readable and understandable. #' #' However, these come with overhead. In particular, consider the following compuation on the FWI gradient: #' #' ```julia #' d_syn = F*q #' r = judiJacobian(F, q)' * (d_syn - d_obs) #' ``` #' #' In this two lines, the forward modeling is performed twice: once to compute `d_syn` then once again to compute the Jacobian adjoint. In order to avoid this overhead for practical inversion, we provide utility function that directly comput the gradient and objective function (L2- misfit) of FWI, LSRTM and TWRI with minimum overhead. #' FWI misfit and gradient # evaluate FWI objective function f, g = fwi_objective(model0, q, dobs; options=opt) #' Plot gradient fig = figure() plot_simage(g'; new_fig=false, name="FWI gradient", cmap=imcmap) display(fig) #' LSRTM misfit and gradient # evaluate LSRTM objective function fj, gj = lsrtm_objective(model0, q, dD, dm; options=opt) fjn, gjn = lsrtm_objective(model0, q, dobs, dm; nlind=true, options=opt) #' Plot gradients fig = figure() plot_simage(gj'; new_fig=false, name="LSRTM gradient", cmap=imcmap, cbar=true) display(fig) fig = figure() plot_simage(gjn'; new_fig=false, name="LSRTM gradient with background data substracted", cmap=imcmap, cbar=true) display(fig) #' By extension, lsrtm_objective is the same as fwi_objecive when `dm` is zero #' And with computing of the residual. Small noise can be seen in the difference #' due to floating point roundoff errors with openMP, but running with #' OMP_NUM_THREADS=1 (no parllelism) produces the exact (difference == 0) same result #' gjn2 == g fjn2, gjn2 = lsrtm_objective(model0, q, dobs, 0f0.*dm; nlind=true, options=opt) #' Plot gradient fig = figure() plot_simage(gjn2'; new_fig=false, name="LSRTM gradient with zero perturbation", cmap=imcmap) display(fig) #' # TWRI #' Finally, JUDI implements TWRI, an augmented method to tackle cycle skipping. Once again we provide a computationnally efficient wrapper function that returns the objective value and necessary gradients f, gm, gy = twri_objective(model0, q, dobs, nothing; options=opt, optionswri=TWRIOptions(params=:all)) # With on-the-fly DFT, experimental f, gmf = twri_objective(model0, q, dobs, nothing; options=Options(frequencies=[[.009, .011], [.008, .012]]), optionswri=TWRIOptions(params=:m)) #' Plot gradients fig = figure() plot_simage(gm'; new_fig=false, name="TWRI gradient w.r.t m", cmap=imcmap) display(fig) fig = figure() plot_sdata(gy[1]; new_fig=false, name="TWRI gradient w.r.t y", cmap=dcmap) display(fig)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2354
# Example for basic 3D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using JUDI # Set up model structure n = (120, 100, 90) # (x,y,z) or (x,z) d = (10., 10., 10.) o = (0., 0., 0.) # Velocity [km/s] v = ones(Float32,n) .* 1.4f0 v0 = ones(Float32,n) .* 1.4f0 v[:, :, Int(round(end/2)):end] .= 4.0f0 rho = ones(Float32, n) # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 dm = vec(m - m0) # Setup model structure nsrc = 4 model = Model(n, d, o, m) # to include density call Model(n,d,o,m,rho) model0 = Model(n, d, o, m0) # Set up 3D receiver geometry by defining one receiver vector in each x and y direction nxrec = 120 nyrec = 100 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = range(100f0, stop=900f0, length=nyrec) zrec = 50f0 # Construct 3D grid from basis vectors (xrec, yrec, zrec) = setup_3D_grid(xrec, yrec, zrec) # receiver sampling and recording time timeR = 100f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) # Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell([250f0, 500f0, 750f0, 1000f0]) ysrc = convertToCell([200f0, 400f0, 600f0, 800f0]) zsrc = convertToCell([50f0, 60f0, 70f0, 80f0]) # source sampling and number of time steps timeS = 100f0 # source length in [ms] dtS = 2f0 # source sampling interval # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # setup wavelet f0 = 0.01f0 wavelet = ricker_wavelet(timeS, dtS, f0) ################################################################################################### # Enable optimal checkpointing opt = Options(optimal_checkpointing=true) # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model) Ps = judiProjection(srcGeometry) q = judiVector(srcGeometry, wavelet) # Nonlinear modeling dobs = Pr*F*adjoint(Ps)*q qad = Ps*F*adjoint(Pr)*dobs # Linearied modeling F0 = judiModeling(model0) # modeling operator for background model J = judiJacobian(Pr*F0*adjoint(Ps), q) dD = J*dm rtm = adjoint(J)*dD # evaluate FWI objective function f, g = fwi_objective(model0, q, dobs; options=opt)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1711
# Example for basic 3D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using JUDI # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ .5f0 v[:, Int(round(end/2)):end] .= 4.0f0 rho = ones(Float32, n) vs = zeros(Float32,n) vs[:, Int(round(end/2)):end] .= 2f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 # Setup model structure nsrc = 1 model = Model(n, d, o, m; rho=rho, vs=vs) # Set up 3D receiver geometry by defining one receiver vector in each x and y direction nxrec = 120 nyrec = 100 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(10f0, stop=10f0, length=nxrec) # receiver sampling and recording time timeR = 1500f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) # Set up source geometry (cell array with source locations for each shot) xsrc = 600f0 ysrc = 0f0 zsrc = 10f0 # source sampling and number of time steps timeS = 1500f0 # source length in [ms] dtS = 2f0 # source sampling interval # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # setup wavelet f0 = 0.01f0 wavelet = ricker_wavelet(timeS, dtS, f0) ################################################################################################### # Setup operators F = judiModeling(model, srcGeometry, recGeometry; options=Options(space_order=8, free_surface=true)) q = judiVector(srcGeometry, wavelet) # Nonlinear modeling dobs = F*q
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2096
using JUDI, SegyIO, LinearAlgebra, PyPlot # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v[:,Int(round(end/2)):end] .= 3f0 v0 = ones(Float32,n) .+ 0.4f0 # Slowness squared [s^2/km^2] m0 = (1f0 ./ v0).^2 m = (1f0 ./ v).^2 dm = vec(m - m0) # Setup model structure nsrc = 2 # number of sources model0 = Model(n, d, o, m0) model = Model(n, d, o, m) # Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time time = 1000f0 # receiver recording time [ms] dt = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc) # Source wavelet f0 = 0.01f0 # kHz wavelet = ricker_wavelet(time, dt, f0) ################################################################################################### # Write shots as segy files to disk opt = Options(return_array=false, dt_comp=1.0, free_surface=true) # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model; options=opt) # Extended source weights weights = Array{Array}(undef, nsrc) for j=1:nsrc weights[j] = randn(Float32, model.n) end w = judiWeights(weights) # Create operator for injecting the weights, multiplied by the provided wavelet(s) Pw = judiLRWF(nsrc, dt, wavelet) # Model observed data w/ extended source F = Pr*F*adjoint(Pw) # Simultaneous observed data d_sim = F*w dw = adjoint(F)*d_sim # Jacobian J = judiJacobian(F, w) d_lin = J*dm g = adjoint(J)*d_lin # Plot results figure() subplot(1,2,1) imshow(d_sim.data[1], vmin=-5e2, vmax=5e2, cmap="gray"); title("Non-linear shot record") subplot(1,2,2) imshow(d_lin.data[1], vmin=-5e3, vmax=5e3, cmap="gray"); title("Linearized shot record") figure() subplot(1,2,1) imshow(adjoint(dw.weights[1]), vmin=-5e6, vmax=5e6, cmap="gray"); title("Weights 1") subplot(1,2,2) imshow(adjoint(reshape(g, model0.n)), vmin=-1e8, vmax=1e8, cmap="gray"); title("Gradient w.r.t. m")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1863
# Example for basic 2D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using JUDI, SegyIO, LinearAlgebra, PyPlot # Set up model structure n = (100, 100, 80) # (x,y,z) or (x,z) d = (10., 10., 10.) o = (0., 0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v[:, :, Int(round(end/2)):end] .= 3f0 v0 = ones(Float32,n) .+ 0.4f0 # Slowness squared [s^2/km^2] m0 = (1f0 ./ v0).^2 m = (1f0 ./ v).^2 dm = vec(m - m0) # Setup model structure nsrc = 1 # number of sources model0 = Model(n, d, o, m0) model = Model(n, d, o, m) # Receiver geometry nxrec = 120 nyrec = 100 xrec = range(50f0, stop=950f0, length=nxrec) yrec = range(100f0, stop=900f0, length=nyrec) zrec = 50f0 # Construct 3D grid from basis vectors (xrec, yrec, zrec) = setup_3D_grid(xrec, yrec, zrec) # receiver sampling and recording time time = 60f0 # receiver recording time [ms] dt = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dt, t=time, nsrc=nsrc) # Source wavelet f0 = 0.01f0 # kHz wavelet = ricker_wavelet(time, dt, f0) ################################################################################################### # Write shots as segy files to disk opt = Options(return_array=false) # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model; options=opt) # Random weights (size of the model) weights = randn(Float32, model.n) w = judiWeights(weights) # Create operator for injecting the weights, multiplied by the provided wavelet(s) Pw = judiLRWF(dt, wavelet) # Model observed data w/ extended source F = Pr*F*adjoint(Pw) # Simultaneous observed data d_sim = F*w dw = adjoint(F)*d_sim # Jacobian J = judiJacobian(F, w) d_lin = J*dm g = adjoint(J)*d_lin
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2040
using JUDI, SegyIO, LinearAlgebra, PyPlot # Set up model structure n = (121, 101) # (x,y,z) or (x,z) d = (2.5f0, 2.5f0) # in mm o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.5f0 v0 = ones(Float32,n) .+ 0.5f0 v[:,Int(round(end/2)):end] .= 4f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 dm = vec(m - m0) # Setup model structure nsrc = 1 # number of sources model = Model(n, d, o, m) model0 = Model(n, d, o, m0) ## Set up receiver geometry nxrec = 120 xrec = range(d[1], stop=d[2]*(n[1]-1), length=nxrec) yrec = 0f0 zrec = range(d[1], stop=d[1], length=nxrec) # receiver sampling and recording time timeR = 250f0 # receiver recording time [ms] dtR = 0.25f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) ## Set up source geometry (cell array with source locations for each shot) xsrc = d[1]*61 ysrc = 0f0 zsrc = d[1] # source sampling and number of time steps timeS = 250f0 # ms dtS = 0.25f0 # ms # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # setup wavelet f0 = .05 # kHz wavelet = ricker_wavelet(timeS, dtS, f0) q = judiVector(srcGeometry, wavelet) ################################################################################################### opt = Options(isic=true) # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model) F0 = judiModeling(model0; options=opt) Ps = judiProjection(srcGeometry) J = judiJacobian(Pr*F0*adjoint(Ps), q) # Nonlinear modeling dobs = Pr*F*adjoint(Ps)*q # With a transducer source pointing down so pi/2 angle and radius 5mm (1cm diameter) q2 = transducer(q, model.d, 5, pi/2 .* ones(q.nsrc)) Ps2 = judiProjection(q2.geometry) dobs2 = Pr*F*adjoint(Ps2)*q2 a = 1e-1 figure() subplot(121) imshow(dobs.data[1], vmin=-a, vmax=a, cmap="seismic", aspect=.25) title("Point source") subplot(122) imshow(dobs2.data[1], vmin=-a, vmax=a, cmap="seismic", aspect=.25) title("Transducer source") dm = J'*dobs2
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2741
# Example for basic 2D modeling: # The receiver positions and the source wavelets are the same for each of the four experiments. # Author: Philipp Witte, [email protected] # Date: January 2017 # using LinearAlgebra, Random using JUDI, SegyIO # Set up model structure n = (120, 100) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.4f0 v0 = ones(Float32,n) .+ 0.4f0 v[:,Int(round(end/2)):end] .= 3f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 dm = vec(m - m0) # Setup model structure nsrc = 2 # number of sources model = Model(n, d, o, m) model0 = Model(n, d, o, m0) # Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(50f0, stop=50f0, length=nxrec) # receiver sampling and recording time timeR = 1000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) # Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell([400f0, 800f0]) ysrc = convertToCell([0f0, 0f0]) zsrc = convertToCell([20f0, 20f0]) # source sampling and number of time steps timeS = 1000f0 # ms dtS = 4f0 # ms # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # setup wavelet f0 = 0.01f0 # kHz wavelet = ricker_wavelet(timeS, dtS, f0) q = judiVector(srcGeometry, wavelet) ################################################################################################### # Write shots as segy files to disk opt = Options() # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model; options=opt) F0 = judiModeling(model0; options=opt) Ps = judiProjection(srcGeometry) J = judiJacobian(Pr*F0*adjoint(Ps), q) # Nonlinear modeling dobs = Pr*F*adjoint(Ps)*q qad = Ps*adjoint(F)*adjoint(Pr)*dobs # Return wavefields u = F*adjoint(Ps)*q v = adjoint(F)*adjoint(Pr)*dobs # Modify wavefields v = abs(v) # take absolute value u = 2*u # multiple by scalar # Wavefields as source dnew = Pr*F*v qnew = Ps*adjoint(F)*u # Create custom wavefield as source (needs to be on computational time axis and contain padding) dtComp = get_dt(model) ntComp = get_computational_nt(q.geometry, model) u0 = zeros(Float32, ntComp[1], model.n[1] + 2*model.nb, model.n[2] + 2*model.nb) wavelet = -ricker_wavelet(timeS, dtComp, f0) u0[1:length(wavelet), 100, 45] .= wavelet uf = judiWavefield(dtComp, u0) dobs2 = Pr*F*uf # same as dobs # Wavefields as source + return wavefields u2 = F*u v2 = F*v # Supported algebraic operations u_add = u + u u_sub = u - v u_mult = u * 2f0 u_div = u / 2f0 u_norm = norm(u) u_dot = dot(u, u) u_abs = abs(u)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3356
# LS-RTM of the 2D Marmousi model using linearized bregmann # Author: [email protected] # Date: April 2022 using Statistics, Random, LinearAlgebra, JOLI using JUDI, SegyIO, HDF5, PyPlot, SlimOptim # Load migration velocity model if ~isfile("$(JUDI.JUDI_DATA)/marmousi_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/marmousi_model.h5", "r"), "n", "d", "o", "m0") # Smaller model for CI if get(ENV, "NITER", "10") == "2" fact = 4 m0 = m0[1:fact:end, 1:fact:end] n = size(m0) d = d .* fact else fact = 1 end # Set up model structure model0 = Model(n, d, o, m0) grad_mem = 40 / (fact^3) # Based on n and CFL condition # Coarsen for CI if get(ENV, "CI", nothing) == "true" model0 = Model(ceil.(Int, n ./ 2), d .* 2, o, m0[1:2:end, 1:2:end]) grad_mem = 5 end # Load data if ~isfile("$(JUDI.JUDI_DATA)/marmousi_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy") end block = segy_scan(JUDI.JUDI_DATA, "marmousi_2D.segy", ["GroupX","GroupY","RecGroupElevation","SourceSurfaceElevation","dt"]) d_lin = judiVector(block) # linearized observed data # Set up wavelet src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.03) # 30 Hz wavelet q = judiVector(src_geometry, wavelet) ################################################################################################### # Infer subsampling based on free memory mem = Sys.free_memory()/(1024^3) t_sub = max(1, ceil(Int, .5*nworkers()*grad_mem/mem)) # Setup operators opt = Options(subsampling_factor=t_sub, isic=true) # ~40 GB of memory per source without subsampling M = judiModeling(model0, q.geometry, d_lin.geometry; options=opt) J = judiJacobian(M, q) # Right-hand preconditioners (model topmute) Mr = judiTopmute(model0; taperwidth=10) # Left-hand Preconditionners (data top mute) Ml = judiDataMute(q.geometry, d_lin.geometry) # Sparsity C = joEye(prod(model0.n); DDT=Float32, RDT=Float32) # If available use curvelet instead for better result # Setup linearized bregman batchsize = 5 * parse(Int, get(ENV, "NITER", "10")) niter = parse(Int, get(ENV, "NITER", "10")) g_scale = 0 function obj(x) flush(stdout) dm = PhysicalParameter(x, model0.n, model0.d, model0.o) inds = randperm(q.nsrc)[1:batchsize] residual = Ml[inds]*J[inds]*Mr*dm - Ml[inds]*d_lin[inds] # grad G = reshape(Mr'*J[inds]'*Ml[inds]'*residual, model0.n) g_scale == 0 && (global g_scale = .05f0/maximum(G)) G .*= g_scale return .5f0*norm(residual)^2, G[:] end # Bregman bregopt = bregman_options(maxIter=niter, verbose=2, quantile=.9, alpha=.1, antichatter=false, spg=true) solb = bregman(obj, zeros(Float32, prod(model0.n)), bregopt, C); # Save final velocity model, function value and history h5open("lsrtm_marmousi_breg_result.h5", "w") do file write(file, "x", reshape(solb.x, model0.n), "z", reshape(solb.z, model0.n), "fval", Float32.(solb.ϕ_trace)) end # Plot final image figure() imshow(reshape(solb.x, model0.n)', extent = (0, 7.99, 3.19, 0), cmap = "gray", vmin = -3e-2, vmax = 3e-2) title("SPLS-RTM with Linearized Bregman") xlabel("Lateral position [km]") ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2764
# FWI on the 2D Overthrust model with L-BFGS from the NLopt library # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, NLopt, HDF5, SegyIO, PyPlot # Load starting model if ~isfile("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_model_2D.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5", "r"), "n", "d", "o", "m0") model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # Bound constraints vmin = 1.4f0 vmax = 6.5f0 # Load data and create data vector if ~isfile("$(JUDI.JUDI_DATA)/overthrust_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D.segy") end block = segy_read("$(JUDI.JUDI_DATA)/overthrust_2D.segy") d_obs = judiVector(block) # Set up wavelet and source vector src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet q = judiVector(src_geometry, wavelet) ############################################## FWI ################################################# # optimization parameters fevals = 10 # allow 10 function evalutations batchsize = 40 count = 0 fhistory = zeros(Float32, fevals+1) # NLopt objective function println("No. ", "fval ", "norm(gradient)") function f!(x, grad) # Update model model0.m .= x # Select batch and calculate gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, gradient = fwi_objective(model0, q[i], d_obs[i]) # Reset gradient in water column to zero gradient = reshape(gradient, model0.n); gradient[:, 1:21] .= 0f0 grad[1:end] .= gradient[1:end] global count; count += 1 println(count, " ", fval, " ", norm(grad)) fhistory[count] = fval return convert(Float64, fval) end # Optimization parameters opt = Opt(:LD_LBFGS, prod(model0.n)) min_objective!(opt, f!) mmin = (1f0 ./ vmax)^2 # bound constraints on slowness squared mmax = (1f0 ./ vmin)^2 lower_bounds!(opt, mmin); upper_bounds!(opt, mmax) maxeval!(opt, fevals) (minf, minx, ret) = optimize(opt, copy(model0.m)) # Save results, function values and elapsed time h5open("result_2D_overthrust_lbfgs.h5", "w") do file write(file, "x", sqrt.(1f0 ./ reshape(minx, model0.n)), "fhistory", fhistory) end # Plot convergence and final result figure(); plot(fhistory/norm(fhistory, Inf)); xlabel("Iteration no."); ylabel("Normalized residual"); title("Convergence of FWI w/ L-BFGS") figure(); imshow(sqrt.(1f0 ./ adjoint(model0.m)), extent=(0, 20.0, 5.15, 0)); title("FWI with L-BFGS"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3536
# FWI on the 2D Overthrust model with stochastic gradient descent # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, SlimOptim, HDF5, SegyIO, PyPlot # Load starting model if ~isfile("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_model_2D.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5", "r"), "n", "d", "o", "m0") model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ model0.m) vmin = ones(Float32, model0.n) .* 1.3f0 vmax = ones(Float32, model0.n) .* 6.5f0 vmin[:, 1:21] .= v0[:, 1:21] # keep water column fixed vmax[:, 1:21] .= v0[:, 1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data and create data vector if ~isfile("$(JUDI.JUDI_DATA)/overthrust_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D.segy") end block = segy_read("$(JUDI.JUDI_DATA)/overthrust_2D.segy") d_obs = judiVector(block) # Set up wavelet and source vector src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet q = judiVector(src_geometry, wavelet) ########################################### FWI #################################################### # Optimization parameters maxiter = 20 batchsize = 20 fhistory_SGD = zeros(Float32, maxiter) fTerm = 1e3 gTerm = 1e1 # Projection operator for bound constraints proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)], dims=2), model0.n) # Define misfit function function fwi_misfit(model::Model, q::judiVector, d::judiVector; misfit = "L2", compute_gradient = true) # Set up operators M = judiModeling(model, q.geometry, d.geometry) J = judiJacobian(M, q) # Data residual, function value and gradient if misfit == "L2" r = M*q - d f = .5f0*norm(r)^2 compute_gradient == true && (g = adjoint(J)*r) # gradient not necessary for line search elseif misifit == "huber" r = M*q - d f = eps^2*sqrt(1f0 + dot(r, r)/eps^2) - eps^2 compute_gradient == true && (g = adjoint(J)*r/sqrt(1f0 + dot(r, r)/eps^2)) else throw("Wrong misfit method specified") end if compute_gradient == true return f, g else return f end end # Main loop for j = 1: maxiter # select current subset of shots i = randperm(d_obs.nsrc)[1:batchsize] f, g = fwi_misfit(model0, q[i], d_obs[i]) println("FWI iteration no: ", j, "; function value: ", f) fhistory_SGD[j] = f # linesearch step = backtracking_linesearch(model0, q[i], d_obs[i], f, g,proj, fwi_misfit; alpha=1f0) # Update model and bound projection model0.m = proj(model0.m + reshape(step, model0.n)) if f <= fTerm || norm(g) <= gTerm break end end # Save results h5open("result_2D_overthrust_sgd.h5", "w") do file write(file, "x", sqrt.(1f0 ./ reshape(model0.m, model0.n)), "fhistory", fhistory_SGD) end # Plot convergence and final result figure(); plot(1:maxiter, fhistory_SGD/norm(fhistory_SGD, Inf)); xlabel("Iteration no."); ylabel("Normalized residual"); title("Convergence of FWI w/ SGD") figure(); imshow(sqrt.(1f0./adjoint(model0.m)), extent=(0, 20.0, 5.15, 0)); title("FWI with SGD"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2683
# FWI on the 2D Overthrust model using spectral projected gradient descent # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, SlimOptim, HDF5, SegyIO, PyPlot # Load starting model if ~isfile("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_model_2D.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5", "r"), "n", "d", "o", "m0") model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ model0.m) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:, 1:21] .= v0[:, 1:21] # keep water column fixed vmax[:, 1:21] .= v0[:, 1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data and create data vector if ~isfile("$(JUDI.JUDI_DATA)/overthrust_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_2D.segy") end block = segy_read("$(JUDI.JUDI_DATA)/overthrust_2D.segy") d_obs = judiVector(block) # Set up wavelet and source vector src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet q = judiVector(src_geometry, wavelet) ########################################### FWI #################################################### # Optimization parameters fevals = 20 batchsize = 20 fvals = [] # Objective function for library function objective_function(x) model0.m .= x; # select batch "elapsed_time", elapsed_time idx = randperm(d_obs.nsrc)[1:batchsize] f, g = fwi_objective(model0, q[idx], d_obs[idx]) global fvals; fvals = [fvals; f] return f, vec(g.data/norm(g, Inf)) # normalize gradient for line search end # Bound projection ProjBound(x) = median([mmin x mmax], dims=2)[1:end] # FWI with SPG options = spg_options(verbose = 3, maxIter = fevals, memory = 3, iniStep = 1f0) x, fsave, funEvals = spg(objective_function, vec(m0), ProjBound, options) # Save results h5open("result_2D_overthrust_spg.h5", "w") do file write(file, "x", sqrt.(1f0 ./ reshape(x, model0.n)), "fsave", fsave, "fhistory", convert(Array{Float32, 1}, fvals)) end # Plot convergence and final result figure(); plot(fvals/norm(fvals, Inf)); xlabel("Iteration no."); ylabel("Normalized residual"); title("Convergence of FWI w/ SPG") figure(); imshow(sqrt.(1f0 ./ adjoint(reshape(x, model0.n))), extent=(0, 20.0, 5.15, 0)); title("FWI with SPG"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2385
# 2D FWI on a small version of the Overthrust model with L-BFGS from the NLopt library # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, HDF5, NLopt, SegyIO, PyPlot # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/small_overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ model0.m) vmin = ones(Float32, model0.n) .* 1.3f0 vmax = ones(Float32, model0.n) .* 6.5f0 # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/small_overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008f0) # 8 Hz wavelet q = judiVector(src_geometry, wavelet) ############################### FWI ########################################### # optimization parameters fevals = 10 batchsize = 16 count = 0 fhistory = zeros(Float32, fevals+1) # NLopt objective function println("No. ", "fval ", "norm(gradient)") function f!(x,grad) # Update model model0.m .= x # Seclect batch and calculate gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, gradient = fwi_objective(model0, q[i], d_obs[i]) # Reset gradient in water column to zero gradient[:, 1:21] .= 0f0 grad[1:end] .= gradient[1:end] global count; count += 1 println(count, " ", fval, " ", norm(grad)) fhistory[count] = fval return convert(Float64, fval) end # Optimization parameters opt = Opt(:LD_LBFGS, prod(model0.n)) lower_bounds!(opt, mmin); upper_bounds!(opt, mmax) min_objective!(opt, f!) maxeval!(opt, fevals) (minf, minx, ret) = optimize(opt, copy(model0.m)) # Save results, function values and elapsed time h5open("result_2D_small_overthrust_lbfgs.h5", "w") do file write(file, "x", sqrt.(1f0 ./ reshape(minx, model0.n)), "fhistory", fhistory) end # Plot convergence and final result figure(); plot(fhistory/norm(fhistory, Inf)); xlabel("Iteration no."); ylabel("Normalized residual"); title("Convergence of FWI w/ L-BFGS") figure(); imshow(sqrt.(1f0./adjoint(model0.m)), extent=(0, 20.0, 5.15, 0)); title("FWI with L-BFGS"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3143
# 2D FWI on a small version of the Overthrust model using stochastic gradient descent # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, SlimOptim, HDF5, SegyIO, PyPlot # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/small_overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ model0.m) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/small_overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### # Optimization parameters maxiter = 10 batchsize = 8 fhistory_SGD = zeros(Float32, maxiter) fTerm = 1e3 gTerm = 1e1 # Projection operator for bound constraints proj(x) = reshape(median([vec(mmin) vec(x) vec(mmax)], dims=2), model0.n) # Define misfit function function fwi_misfit(model::Model, q::judiVector, d::judiVector; misfit = "L2", compute_gradient = true) # Set up operators M = judiModeling(model, q.geometry, d.geometry) J = judiJacobian(M, q) # Data residual, function value and gradient if misfit == "L2" r = M*q - d f = .5f0*norm(r)^2 compute_gradient == true && (g = adjoint(J)*r) # gradient not necessary for line search elseif misifit == "huber" r = M*q - d f = eps^2*sqrt(1f0 + dot(r, r)/eps^2) - eps^2 compute_gradient == true && (g = adjoint(J)*r/sqrt(1f0 + dot(r, r)/eps^2)) else throw("Wrong misfit method specified") end if compute_gradient == true return f, g else return f end end # Main loop for j = 1: maxiter # select current subset of shots i = randperm(d_obs.nsrc)[1:batchsize] f, g = fwi_misfit(model0, q[i], d_obs[i]) println("FWI iteration no: ", j, "; function value: ", f) fhistory_SGD[j] = f # linesearch step = backtracking_linesearch(model0, q[i], d_obs[i], f, g,proj, fwi_misfit; alpha=1f0) # Update model and bound projection model0.m = proj(model0.m + reshape(step, model0.n)) if f <= fTerm || norm(g) <= gTerm break end end # Save results h5open("result_2D_small_overthrust_sgd.h5", "w") do file write(file, "x", sqrt.(1f0 ./ reshape(model0.m, model0.n)), "fhistory", fhistory_SGD) end # Plot convergence and final result figure(); plot(1:maxiter, fhistory_SGD/norm(fhistory_SGD, Inf)); xlabel("Iteration no."); ylabel("Normalized residual"); title("Convergence of FWI w/ SGD") figure(); imshow(sqrt.(1f0 ./ adjoint(model0.m)), extent=(0, 20.0, 5.15, 0)); title("FWI with SGD"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2267
# 2D FWI on a small version of the Overthrust model with SPG from the minConf library # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, SlimOptim, HDF5, SegyIO, PyPlot # Load starting model n,d,o,m0 = read(h5open("$(JUDI.JUDI_DATA)/small_overthrust_model.h5","r"), "n", "d", "o", "m0") model0 = Model((n[1],n[2]), (d[1],d[2]), (o[1],o[2]), m0) # Bound constraints v0 = sqrt.(1f0 ./ model0.m) vmin = ones(Float32,model0.n) .* 1.3f0 vmax = ones(Float32,model0.n) .* 6.5f0 vmin[:,1:21] .= v0[:,1:21] # keep water column fixed vmax[:,1:21] .= v0[:,1:21] # Slowness squared [s^2/km^2] mmin = vec((1f0 ./ vmax).^2) mmax = vec((1f0 ./ vmin).^2) # Load data block = segy_read("$(JUDI.JUDI_DATA)/small_overthrust_shot_records.segy") d_obs = judiVector(block) # Set up wavelet src_geometry = Geometry(block; key="source") wavelet = ricker_wavelet(src_geometry.t[1],src_geometry.dt[1],0.008f0) # 8 Hz wavelet q = judiVector(src_geometry,wavelet) ############################### FWI ########################################### # Optimization parameters fevals = 10 batchsize = 8 fvals = [] # Objective function for minConf library function objective_function(x) model0.m .= x # fwi function value and gradient i = randperm(d_obs.nsrc)[1:batchsize] fval, grad = fwi_objective(model0, q[i], d_obs[i]) grad = .125f0*grad/norm(grad, Inf) # scale for line search global fvals; fvals = [fvals; fval] return fval, vec(grad.data) end # Bound projection ProjBound(x) = median([mmin x mmax]; dims=2)[1:end] # FWI with SPG options = spg_options(verbose=3, maxIter=fevals, memory=3) x, fsave, funEvals= spg(objective_function, vec(m0), ProjBound, options) # Save results h5open("result_2D_small_overthrust_spg.h5", "w") do file write(file, "x", sqrt.(1f0 ./ reshape(x, model0.n)), "fsave", fsave, "fhistory", convert(Array{Float32, 1}, fvals)) end # Plot convergence and final result figure(); plot(fvals/norm(fvals, Inf)); xlabel("Iteration no."); ylabel("Normalized residual"); title("Convergence of FWI w/ SPG") figure(); imshow(sqrt.(1f0 ./ adjoint(reshape(x, model0.n))), extent=(0, 20.0, 5.15, 0)); title("FWI with SPG"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2754
# FWI on the 3D Overthrust model using spectral projected gradient descent # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, SlimOptim, HDF5, SegyIO # Load overthrust model if ~isfile("$(JUDI.JUDI_DATA)/overthrust_3D_initial_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/3DFWI/overthrust_3D_initial_model.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/overthrust_3D_initial_model.h5", "r"), "n", "d", "o", "m0") # Set up model structure model0 = Model((n[1], n[2], n[3]), (d[1], d[2], d[3]), (o[1], o[2], o[3]), m0) # Bound constraints vmin = ones(Float32, model0.n) .+ 0.4f0 vmax = ones(Float32, model0.n) .+ 5.5f0 mmin = vec((1f0 ./ vmax).^2); vmax = [] mmax = vec((1f0 ./ vmin).^2); vmin = [] # Scan directory for segy files and create out-of-core data container container = segy_scan("/path/to/shot/records/", "overthrust_3D_shot", ["GroupX", "GroupY", "RecGroupElevation", "SourceSurfaceElevation", "dt"]) d_obs = judiVector(container) # Set up source src_geometry = Geometry(container; key = "source") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.008) # 8 Hz peak frequency q = judiVector(src_geometry, wavelet) ########################################### FWI #################################################### # Optimization parameters fevals = 15 batchsize = 1080 count = 0 fvals = [] opt = Options(limit_m = true, # model in only in area with receivers buffer_size = 500f0, # w/ 500 m buffer zone optimal_checkpointing = true ) # Objective function for minConf library function objective_function(x) # update model and save snapshot model0.m = reshape(x, model0.n); write(h5open(join(["snapshot_3D_FWI_iteration_", string(count),".h5"]), "w"), "v", sqrt.(1f0 ./ model0.m)) # select batch idx = randperm(d_obs.nsrc)[1:batchsize] # fwi function value and gradient f, g = fwi_objective(model0, q[idx], d_obs[idx]; options = opt) g = reshape(g, model0.n); g[:, :, 1:21] .= 0f0 # reset gradient in water column to 0. g = .125f0*g/maximum(abs.(g)) # scale gradient to help line search global count; count += 1; global fvals; fvals = [fvals; f] return f, vec(g) end # Bound projection ProjBound(x) = median([mmin x mmax], dims=2) # FWI with SPG spg_opt = spg_options(verbose = 3, maxIter = fevals, memory = 1) x, fsave, funEvals = minConf_SPG(objective_function, vec(model0.m), ProjBound, spg_opt) # Save results h5open("result_3D_overthrust_spg.h5", "w") do file write(file, "x", sqrt.(1 ./reshape(x, model0.n)), "fsave", fsave, "fhistory", convert(Array{Float32, 1}, fvals)) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2164
# Generate observed Born data for Marmousi examples # Author: [email protected] # Date: December 2018 # using JUDI, SegyIO, HDF5, LinearAlgebra # Load migration velocity model if ~isfile("$(JUDI.JUDI_DATA)/marmousi_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5") end n, d, o, m0, "dm" = read(h5open("$(JUDI.JUDI_DATA)/marmousi_model.h5", "r"), "n", "d", "o", "m0", "dm") # Set up model structure model = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) dm = vec(dm) # Set up source geometry (cell array with source locations for each shot) nsrc = 320 xsrc = convertToCell(range(25f0, stop=7965f0, length=nsrc)) ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc)) zsrc = convertToCell(range(10f0, stop=10f0, length=nsrc)) # source sampling and number of time steps timeS = 4000f0 # ms dtS = 4f0 # ms # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) ## Set up receiver geometry nxrec = 800 max_offset = 3990 nsrc_half = Int(round(nsrc/2)) xrec = Array{Any}(undef, nsrc) yrec = Array{Any}(undef, nsrc) zrec = Array{Any}(undef, nsrc) for j=1:nsrc_half xrec[j] = range(xsrc[j], stop=xsrc[j] + max_offset, length=nxrec) yrec[j] = range(0f0, stop=0f0, length=nxrec) zrec[j] = range(210f0, 210f0, length=nxrec) end for j=nsrc_half+1:nsrc xrec[j] = range(xsrc[j], stop=xsrc[j] - max_offset, length=nxrec) yrec[j] = range(0f0, stop=0f0, length=nxrec) zrec[j] = range(210f0, 210f0, length=nxrec) end # receiver sampling and recording time timeR = 4000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR) # setup wavelet f0 = 0.03f0 # kHz wavelet = ricker_wavelet(timeS, dtS, f0) q = judiVector(srcGeometry, wavelet) # Setup operators Pr = judiProjection(recGeometry) F = judiModeling(model) Ps = judiProjection(srcGeometry) J = judiJacobian(Pr*F*adjoint(Ps), q) # Born modeling dobs = J*dm block_out = judiVector_to_SeisBlock(dobs, q; source_depth_key="SourceDepth") segy_write("marmousi_2D.segy", block_out)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2078
# Generate 2D data for the overthrust model # Author: [email protected] # Date: December 2018 # using JUDI, HDF5, SegyIO # Load overthrust model if ~isfile("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/2DFWI/overthrust_model_2D.h5") end n, d, o, m = read(h5open("$(JUDI.JUDI_DATA)/overthrust_model_2D.h5","r"), "n", "d", "o", "m") # Set up model structure model = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m) # Set up source geometry (cell array with source locations for each shot) nsrc = 97 xsrc = convertToCell(range(400f0, stop=19600f0, length=nsrc)) ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc)) zsrc = convertToCell(range(50f0, stop=50f0, length=nsrc)) # source sampling and number of time steps timeS = 3000f0 # ms dtS = 4f0 # ms # Set up source structure src_geometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) ## Set up receivers xmin = 100f0; xmax = 19900f0 offset = 6000f0 nxrec = 240 xrec = Array{Any}(undef, nsrc) yrec = Array{Any}(undef, nsrc) zrec = Array{Any}(undef, nsrc) for j = 1: nsrc # 6 km max. offset around current source xsrc[j] - offset < xmin ? xlocal1 = xmin : xlocal1 = xsrc[j] - offset xsrc[j] + offset > xmax ? xlocal2 = xmax : xlocal2 = xsrc[j] + offset xrec[j] = xlocal1: 50f0: xlocal2 yrec[j] = range(0f0, stop=0f0, length=length(xrec[j])) zrec[j] = range(500f0, stop=500f0, length=length(xrec[j])) end timeR = 3000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval rec_geometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR) # Set up source f0 = 0.008 wavelet = ricker_wavelet(timeS, dtS, f0) ####################################################################### # Set up operators Pr = judiProjection(rec_geometry) Ps = judiProjection(src_geometry) A_inv = judiModeling(model) q = judiVector(src_geometry, wavelet) # Generate data d_obs = Pr*A_inv*adjoint(Ps)*q block_out = judiVector_to_SeisBlock(d_obs, q; source_depth_key="SourceDepth") segy_write("overthrust_2D.segy", block_out)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2491
# Generate 3D data for the overthrust model # Author: [email protected] # Date: January 2017 # using JUDI, HDF5 # Load overthrust model if ~isfile("$(JUDI.JUDI_DATA)/overthrust_3D_true_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/WaveformInversion.jl/3DFWI/overthrust_3D_true_model.h5") end n, d, o, m = read(h5open("$(JUDI.JUDI_DATA)/overthrust_3D_true_model.h5","r"), "n", "d", "o", "m") # Set up model structure model = Model((n[1], n[2], n[3]), (d[1], d[2], d[3]), (o[1], o[2], o[3]), m) # Set up source grid nsrc = 97^2 xsrc = 400f0: 200f0: 19600f0 # 400 m space from boundary ysrc = 400f0: 200f0: 19600f0 zsrc = 50f0 (xsrc, ysrc, zsrc) = setup_3D_grid(xsrc, ysrc, zsrc) xsrc = convertToCell(xsrc) ysrc = convertToCell(ysrc) zsrc = convertToCell(zsrc) timeS = 3000f0 dtS = 4f0 src_geometry = Geometry(xsrc, ysrc, zsrc; dt = dtS, t = timeS) ## Set up receivers xmin = 100f0; xmax = 19900f0 ymin = 100f0; ymax = 19900f0 offset = 6000f0 nxrec = 240 nyrec = 240 xrec = Array{Any,1}(undef, nsrc) yrec = Array{Any,1}(undef, nsrc) zrec = Array{Any}(undef, nsrc) for j = 1: nsrc # 6 km max. offset around current source xsrc[j] - offset < xmin ? xlocal1 = xmin : xlocal1 = xsrc[j] - offset xsrc[j] + offset > xmax ? xlocal2 = xmax : xlocal2 = xsrc[j] + offset ysrc[j] - offset < ymin ? ylocal1 = ymin : ylocal1 = ysrc[j] - offset ysrc[j] + offset > ymax ? ylocal2 = ymax : ylocal2 = ysrc[j] + offset xlocal = xlocal1: 50f0: xlocal2 ylocal = ylocal1: 50f0: ylocal2 zlocal = 500f0 (xlocal,ylocal,zlocal) = setup_3D_grid(xlocal, ylocal, zlocal) xrec[j] = xlocal yrec[j] = ylocal zrec[j] = zlocal end timeR = 3000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval rec_geometry = Geometry(xrec, yrec, zrec; dt = dtR, t = timeR) # Set up source f0 = 0.008 wavelet = ricker_wavelet(timeS, dtS, f0) ####################################################################### # Set up modeling options opt = Options(limit_m = true, save_data_to_disk = true, file_path = "path/to/shot/records", # replace w/ path to directory in which data will be stored (~total of 1.7 TB) file_name = "overthrust_3D_shot_" # adds x-y coordinates to name ) # Set up operators Pr = judiProjection(rec_geometry) Ps = judiProjection(src_geometry) A_inv = judiModeling(model; options=opt) q = judiVector(src_geometry, wavelet) # Generate data and save as individual SEG-Y files to disk d_obs = Pr*A_inv*adjoint(Ps)*q
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3082
# LS-RTM of the 2D Marmousi model using elastic average stochastic gradient descent # Author: [email protected] # Date: December 2018 # # Warning: The examples requires ~40 GB of memory per shot if used without optimal checkpointing. # using Statistics, Random, LinearAlgebra, Distributed using JUDI, SegyIO, HDF5, PyPlot # Load migration velocity model if ~isfile("$(JUDI.JUDI_DATA)/marmousi_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/marmousi_model.h5", "r"), "n", "d", "o", "m0") # Set up model structure model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # Load data if ~isfile("$(JUDI.JUDI_DATA)/marmousi_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy") end block = segy_read("$(JUDI.JUDI_DATA)/marmousi_2D.segy") d_lin = judiVector(block) # linearized observed data # Set up wavelet src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.03) # 30 Hz wavelet q = judiVector(src_geometry, wavelet) ################################################################################################### # Setup operators opt = Options(optimal_checkpointing=true) # ~40 GB of memory per source w/o checkpointing M = judiModeling(model0, q.geometry, d_lin.geometry;options=opt) J = judiJacobian(M, q) # Right-hand preconditioners (model topmute) Mr = judiTopmute(model0; taperwidth=10) # Left preconditioner Ml = judiDataMute(q.geometry, d_lin.geometry) # data topmute # Elastic average stochastic gradient descent niter = 20 p = 10 batchsize = 1 eta = 0.03f0 rho = 1f0 alpha = eta*rho beta = p*alpha x = zeros(Float32, prod(model0.n), p) xnew = zeros(Float32, prod(model0.n), p) xav = zeros(Float32, prod(model0.n)) # Parallel gradient function @everywhere function update_x(Ml, J, Mr, x, d, eta, alpha, xav) # gradient r = Ml*J*Mr*x - Ml*d g = adjoint(Mr)*adjoint(J)*adjoint(Ml)*r # Update variable return x - eta*g - alpha*(x - xav) end update_x_par = remote(update_x) # parallel function instance # Main loop for j = 1: niter println("Iteration: ", j) @sync begin for k = 1: p # Select batch batchsize == 1 ? i = randperm(d_lin.nsrc)[1] : i = randperm(d_lin.nsrc)[1:batchsize] # Calculate x update @async xnew[:, k] = update_x_par(Ml[i], J[i], Mr, x[:,k], d_lin[i], eta, alpha, xav) end end global xav = (1-beta)*xav + beta*(1/p *sum(x, dims=2)) global x = copy(xnew) end # Save final velocity model, function value and history h5open("lsrtm_marmousi_easgd_result.h5", "w") do file write(file, "x", reshape(xav, model0.n)) end # Plot final image figure(); imshow(copy(adjoint(reshape(xav, model0.n))), extent = (0, 7.99, 3.19, 0), cmap = "gray", vmin = -3e-2, vmax = 3e-2) title("LS-RTM with elastic average SGD"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3393
# Sparisty-promoting LS-RTM of the 2D Marmousi model with on-the-fly Fourier transforms # Author: [email protected] # Date: December 2018 # using Statistics, Random, LinearAlgebra using JUDI, SegyIO, HDF5, JOLI, PyPlot # Load migration velocity model if ~isfile("$(JUDI.JUDI_DATA)/marmousi_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/marmousi_model.h5", "r"), "n", "d", "o", "m0") # Set up model structure model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # Load data if ~isfile("$(JUDI.JUDI_DATA)/marmousi_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy") end block = segy_read("$(JUDI.JUDI_DATA)/marmousi_2D.segy") d_lin = judiVector(block) # linearized observed data # Set up wavelet src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.03) # 30 Hz wavelet q = judiVector(src_geometry, wavelet) ################################################################################################### # Setup operators opt = Options(optimal_checkpointing=false) M = judiModeling(model0, q.geometry, d_lin.geometry; options=opt) J = judiJacobian(M, q) # Right-hand preconditioners (model topmute) Mr = judiTopmute(model0; taperwidth=10) # Left preconditioner Ml = judiDataMute(q.geometry, d_lin.geometry) # data topmute # Generate distribution of frequecies from source wavelet q_dist = generate_distribution(q) # Linearized Bregman parameters x = zeros(Float32, prod(model0.n)) z = zeros(Float32, prod(model0.n)) batchsize = 10 niter = 20 fval = zeros(Float32, niter) J.options.frequencies = Array{Any}(undef, d_lin.nsrc) # Soft thresholding functions and Curvelet transform soft_thresholding(x::Array{Float64}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float64, lambda), 0.0) soft_thresholding(x::Array{Float32}, lambda) = sign.(x) .* max.(abs.(x) .- convert(Float32, lambda), 0f0) C = joCurvelet2D(model0.n[1], model0.n[2]; zero_finest = true, DDT = Float32, RDT = Float64) lambda = [] t = 1f-4 # Main loop for j = 1: niter println("Iteration: ", j) # Select batch and set up left-hand preconditioner i = randperm(d_lin.nsrc)[1:batchsize] # Select randomly selected batch of frequencies for each shot for k = 1: d_lin.nsrc J.options.frequencies[k] = select_frequencies(q_dist; fmin = 0.004f0, fmax = 0.05f0, nf=10) end # Compute residual and gradient r = Ml[i]*J[i]*Mr*x - Ml[i]*d_lin[i] g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml[i])*r # Step size and update variable fval[j] = .5f0*norm(r)^2 j == 1 && (global lambda = 0.5*norm(C*t*g, Inf)) # estimate thresholding parameter in 1st iteration # Update variables and save snapshot global z -= t*g global x = adjoint(C)*soft_thresholding(C*z, lambda) end # Save final velocity model, function value and history h5open("lsrtm_marmousi_frequency_result.h5", "w") do file write(file, "x", reshape(x, model0.n), "fval", fval) end # Plot final image figure(); imshow(copy(adjoint(reshape(x, model0.n))), extent = (0, 7.99, 3.19, 0), cmap = "gray", vmin = -3e-2, vmax = 3e-2) title("SPLS-RTM with on on-the-fly DFTs"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2542
# LS-RTM of the 2D Marmousi model using stochastic gradient descent # Author: [email protected] # Date: December 2018 # # Warning: The examples requires ~40 GB of memory per shot if used without optimal checkpointing. # using Statistics, Random, LinearAlgebra using JUDI, SegyIO, HDF5, PyPlot # Load migration velocity model if ~isfile("$(JUDI.JUDI_DATA)/marmousi_model.h5") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_model.h5") end n, d, o, m0 = read(h5open("$(JUDI.JUDI_DATA)/marmousi_model.h5", "r"), "n", "d", "o", "m0") # Set up model structure model0 = Model((n[1], n[2]), (d[1], d[2]), (o[1], o[2]), m0) # Load data if ~isfile("$(JUDI.JUDI_DATA)/marmousi_2D.segy") ftp_data("ftp://slim.gatech.edu/data/SoftwareRelease/Imaging.jl/2DLSRTM/marmousi_2D.segy") end block = segy_read("$(JUDI.JUDI_DATA)/marmousi_2D.segy") d_lin = judiVector(block) # linearized observed data # Set up wavelet src_geometry = Geometry(block; key = "source", segy_depth_key = "SourceDepth") wavelet = ricker_wavelet(src_geometry.t[1], src_geometry.dt[1], 0.03) # 30 Hz wavelet q = judiVector(src_geometry, wavelet) ################################################################################################### # Setup operators opt = Options(optimal_checkpointing=true) # ~40 GB of memory per source w/o checkpointing M = judiModeling(model0, q.geometry, d_lin.geometry; options=opt) J = judiJacobian(M, q) # Right-hand preconditioners (model topmute) Mr = judiTopmute(model0; taperwidth=10) # Left preconditioner Ml = judiDataMute(q.geometry, d_lin.geometry) # data topmute # Stochastic gradient x = zeros(Float32, prod(model.n)) batchsize = 10 niter = 20 fval = zeros(Float32, niter) # Main loop for j = 1: niter println("Iteration: ", j) # Select batch and set up left-hand preconditioner i = randperm(d_lin.nsrc)[1: batchsize] # Compute residual and gradient r = Ml[i]*J[i]*Mr*x - Ml[i]*d_lin[i] g = adjoint(Mr)*adjoint(J[i])*adjoint(Ml[i])*r # Step size and update variable fval[j] = .5f0*norm(r)^2 t = norm(r)^2/norm(g)^2 global x -= t*g end # Save final velocity model, function value and history h5open("lsrtm_marmousi_sgd_result.h5", "w") do file write(file, "x", reshape(x, model0.n), "fval", fval) end # Plot final image figure(); imshow(copy(adjoint(reshape(x, model0.n))), extent = (0, 7.99, 3.19, 0), cmap = "gray", vmin = -3e-2, vmax = 3e-2) title("LS-RTM with SGD"); xlabel("Lateral position [km]"); ylabel("Depth [km]")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2341
# Example for modeling simultaneous sources and reverse-time migration # Author: [email protected] # Date: December 2018 # using JUDI, PyPlot ## Set up model structure n = (120, 100) # (x, y, z) or (x, z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = ones(Float32, n) .+ 0.4f0 v0 = ones(Float32, n) .+ 0.4f0 v[:, Int(round(end/2)):end] .= 4.0f0 # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 dm = vec(m - m0) # Setup model structure nsrc = 1 # one simultaneous source experiment model = Model(n, d, o, m) model0 = Model(n, d, o, m0) ## Set up receiver geometry nxrec = 120 xrec = range(50f0, stop=1150f0, length=nxrec) yrec = 0f0 zrec = range(100f0, stop=100f0, length=nxrec) timeR = 2000f0 dtR = 4f0 # Setup receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt = dtR, t = timeR) ## Set up source geometry xsrc = [250f0, 500f0, 750f0, 1000f0] # four simultaneous sources ysrc = 0f0 zsrc = [50f0, 50f0, 50f0, 50f0] # Source sampling and number of time steps timeS = 2000f0 dtS = 4f0 # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt = dtS, t = timeS) # setup wavelets f0 = 0.01 # source peak frequencies q = ricker_wavelet(500f0, dtS, f0) # 500 ms wavelet # Create four source functions with different time shifts of q wavelet1 = zeros(srcGeometry.nt[1]) wavelet1[1:1+length(q)-1] = q wavelet2 = zeros(srcGeometry.nt[1]) wavelet2[41:41+length(q)-1] = q wavelet3 = zeros(srcGeometry.nt[1]) wavelet3[121:121+length(q)-1] = q wavelet4 = zeros(srcGeometry.nt[1]) wavelet4[201:201+length(q)-1] = q wavelet = [wavelet1 wavelet2 wavelet3 wavelet4] # Collect all wavelets ################################################################################################### # Setup operators Pr = judiProjection(recGeometry) A_inv = judiModeling(model) A0_inv = judiModeling(model0) Ps = judiProjection(srcGeometry) q = judiVector(srcGeometry, wavelet) # Linearized modeling d = Pr*A_inv*adjoint(Ps)*q # simultaneous shot J = judiJacobian(Pr*A0_inv*adjoint(Ps), q) dD = J*dm # simultaneous reflection data rtm = adjoint(J)*dD # RTM # Plot results figure(); imshow(d.data[1], vmin = -1e1, vmax = 1e1, cmap = "seismic"); title("Simultaneous shot w/ four sources") figure(); imshow(copy(adjoint(reshape(rtm,model.n))), ColorMap("gray")); title("Migrated simultaneous shot")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1452
################################################################################ # # Generate synthetic data for the BG Compass model # # Author: Mathias Loubout and Gabbrio Rizzuti # Date: September 2020 ################################################################################ ### Module loading using JUDI, JLD2 ### Load true model base_path = dirname(pathof(JUDI))*"/../examples/twri/" @load string(base_path*"data//BGCompass_tti.jld") n d o m # Model model_true = Model(n, d, o, m; nb=80) ### Acquisition geometrye dt = 4f0 T = 2500f0 # total recording time [ms] # Source wavelet freq_peak = 0.01f0 wavelet = ricker_wavelet(T, dt, freq_peak) # Sources nsrc = 51 x_src = convertToCell(range(0f0, stop = (n[1]-1)*d[1], length = nsrc)) y_src = convertToCell(range(0f0, stop = 0f0, length = nsrc)) z_src = convertToCell(range(0f0, stop = 0f0, length = nsrc)) # Receivers nrcv = n[1] x_rcv = range(0f0, stop = (n[1]-1)*d[1], length = nrcv) y_rcv = 0f0 z_rcv = range(12.5f0, stop = 12.5f0, length = nrcv) # Geometry structures src_geom = Geometry(x_src, y_src, z_src; dt = dt, t = T) rcv_geom = Geometry(x_rcv, y_rcv, z_rcv; dt = dt, t = T, nsrc = nsrc) # Source function fsrc = judiVector(src_geom, wavelet) # Setup operators F = judiModeling(model_true, src_geom,rcv_geom) dat = F*fsrc ### Saving data base_path = dirname(pathof(JUDI))*"/../examples/twri/" @save string(base_path*"data/BGCompass_data_acou.jld") model_true fsrc dat
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1513
################################################################################ # # Generate synthetic data for the BG Compass model # # Author: Mathias Loubout and Gabbrio Rizzuti # Date: September 2020 ################################################################################ ### Module loading using JUDI, JLD2 ### Load true model base_path = dirname(pathof(JUDI))*"/../examples/twri/" @load string(base_path*"data/BGCompass_tti.jld") n d o m epsilon delta theta # Model model_true = Model(n, d, o, m; nb=80, epsilon=epsilon, delta=delta, theta=theta) ### Acquisition geometrye dt = 4f0 T = 2500f0 # total recording time [ms] # Source wavelet freq_peak = 0.01f0 wavelet = ricker_wavelet(T, dt, freq_peak) # Sources nsrc = 51 x_src = convertToCell(range(0f0, stop = (n[1]-1)*d[1], length = nsrc)) y_src = convertToCell(range(0f0, stop = 0f0, length = nsrc)) z_src = convertToCell(range(0f0, stop = 0f0, length = nsrc)) # Receivers nrcv = n[1] x_rcv = range(0f0, stop = (n[1]-1)*d[1], length = nrcv) y_rcv = 0f0 z_rcv = range(12.5f0, stop = 12.5f0, length = nrcv) # Geometry structures src_geom = Geometry(x_src, y_src, z_src; dt = dt, t = T) rcv_geom = Geometry(x_rcv, y_rcv, z_rcv; dt = dt, t = T, nsrc = nsrc) # Source function fsrc = judiVector(src_geom, wavelet) # Setup operators F = judiModeling(model_true, src_geom,rcv_geom) dat = F*fsrc ### Saving data base_path = dirname(pathof(JUDI))*"/../examples/twri/" @save string(base_path*"data/BGCompass_data_tti.jld") model_true fsrc dat
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1508
################################################################################ # # Generate synthetic data for the BG Compass model # # Author: Mathias Loubout and Gabbrio Rizzuti # Date: September 2020 ################################################################################ ### Module loading using JUDI, JLD2 ### Load true model base_path = dirname(pathof(JUDI))*"/../examples/twri/" @load string(base_path*"data/GaussLens.jld") n d o m # Model model_true = Model(n, d, o, m; nb=80) ### Acquisition geometrye dt = 1f0 T = 2000f0 # total recording time [ms] # Source wavelet freq_peak = 0.006f0 wavelet = ricker_wavelet(T, dt, freq_peak) # Sources ix_src = 3:14:199 nsrc = length(ix_src) iz_src = 3 x_src = convertToCell((ix_src.-1)*d[1]) y_src = convertToCell(range(0f0, stop = 0f0, length = nsrc)) z_src = convertToCell(range((iz_src-1)*d[2], stop = (iz_src-1)*d[2], length = nsrc)) # Receivers ix_rcv = 3:199 iz_rcv = 199 nrcv = length(ix_rcv) x_rcv = (ix_rcv.-1)*d[1] y_rcv = 0f0 z_rcv = range((iz_rcv-1)*d[2], stop = (iz_rcv-1)*d[2], length = nrcv) # Geometry structures src_geom = Geometry(x_src, y_src, z_src; dt = dt, t = T) rcv_geom = Geometry(x_rcv, y_rcv, z_rcv; dt = dt, t = T, nsrc = nsrc) # Source function fsrc = judiVector(src_geom, wavelet) # Setup operators F = judiModeling(model_true, src_geom,rcv_geom) dat = F*fsrc ### Saving data base_path = dirname(pathof(JUDI))*"/../examples/twri/" @save string(base_path*"data/GaussLens_data_acou.jld") model_true fsrc dat
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3103
################################################################################ # # Run inversion for the BG Compass model # ################################################################################ ### Module loading using LinearAlgebra, JLD2, PyPlot, Dates, Distributed, Images using Optim, LineSearches using JUDI, SlimOptim ### Load synthetic data base_path = dirname(pathof(JUDI))*"/../examples/twri/" try @load string(base_path*"data/BGCompass_data_acou.jld") model_true dat fsrc catch e @info "Data not found, modeling true data" include(base_path*"data/gen_data_bg_acou.jl") @load string(base_path*"data/BGCompass_data_acou.jld") model_true dat fsrc end ### Background mode idx_w = 1 var = 20 m0 = deepcopy(model_true.m) m0[:, idx_w+1:end] = R.(imfilter(m0[:, idx_w+1:end], Kernel.gaussian(var))) model0 = model_true model0.m = m0 n = model0.n ### Set objective functional # Pre- and post-conditioning mask = zeros(Float32, model0.n) mask[:, idx_w+1:end] .= 1 function proj_bounds(m, mmin, mmax) m[m[:] .< mmin] .= mmin m[m[:] .> mmax] .= mmax return m end mmin = 1f0/6f0^2 mmax = .5f0 preproc(x) = proj_bounds(x, mmin, mmax) # [FWI] function funFWI!(F, G, x, dat, fsrc) model0.m .= preproc(x) fun, g = fwi_objective(model0, fsrc, dat) F = fun isnothing(G) && return fun isnothing(g_const) && (global g_const = .1/maximum(abs.(g))) G .= g_const .* g[:] .* vec(mask) return fun end # # [TWRIdual] ε0 = zeros(Float32, dat.nsrc) weight_fun_pars = ("srcfocus", 0) optwri = TWRIOptions(;grad_corr=true, comp_alpha=false, weight_fun=weight_fun_pars, eps=ε, params=:m) function funWRI!(F, G, x, dat, fsrc, freq) # Frequency specific focusing δ = sqrt(2)*m0[1]^(-.5)/(2*freq) optwri.weight_fun = ("srcfocus", δ) # Compute objective and gradient model0.m .= preproc(x) fun, g = twri_objective(model0, fsrc, dat, nothing; optionswri=optwri) F = fun isnothing(g_const) && (global g_const = .1/maximum(abs.(g))) G .= g_const .* g[:].* vec(mask) return fun end ### Optimization linesearch = HagerZhang(display=1, linesearchmax=5) method = LBFGS(;linesearch=linesearch) niter = 10 optimopt = Optim.Options(iterations = niter, store_trace = true, show_trace = true, show_every = 1) ## Starting guess x0_fwi = vec(m0) x0_wri = vec(m0) freq_list = 5:2:19 for f in freq_list println("\nInverting freqs: ", string(f-1), " - ", string(f+1), " Hz\n") dat_loc = low_filter(dat, 4; fmin=f-1, fmax=f+1) fsrc_loc = low_filter(fsrc, 4; fmin=f-1, fmax=f+1) fwi!(F, G, x) = funFWI!(F, G, x, dat_loc, fsrc_loc) wri!(F, G, x) = funWRI!(F, G, x, dat_loc, fsrc_loc, f) # FWI result = optimize(Optim.only_fg!(fwi!), x0_fwi, method, optimopt) global x0_fwi = Optim.minimizer(result) m_inv_fwi = preproc(x0_fwi) # WRI result = optimize(Optim.only_fg!(wri!), x0_wri, method, optimopt) global x0_wri = Optim.minimizer(result) m_inv_wri = preproc(x0_wri) # Save iter @save "$(base_path)/data/BG_compass_acou_sweep_$(f)Hz.jld" f m_inv_fwi m_inv_wri n end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3306
################################################################################ # # Run inversion for the BG Compass model # ################################################################################ ### Module loading using LinearAlgebra, Dates, Distributed, Images, Random using JUDI, JUDI.SLIM_optim, JLD2 R = Float32 ### Load synthetic data base_path = dirname(pathof(JUDI))*"/../examples/twri/" try @load string(base_path*"data/BGCompass_data_tti.jld") model_true dat fsrc catch e @info "Data not found, modeling true data" include(base_path*"data/gen_data_bg_tti.jl") @load string(base_path*"data/BGCompass_data_tti.jld") model_true dat fsrc end # Different sigmas for smoothing vvar = [20, 25, 30, 40] # Global parameters idx_w = 17 vare = 15 fevals = 20 batchsize = 25 # Bound projection function proj_bounds(m, mmin, mmax) m[m[:] .< mmin] .= mmin m[m[:] .> mmax] .= mmax return m end mmin = 1f0/4.5f0^2 mmax = 1f0/1.4f0^2 ProjBound(x) = proj_bounds(x, mmin, mmax) for var=vvar for anis=["tt", "st"] ### Background model model0 = deepcopy(model_true) model0.m[:, idx_w+1:end] = R.(imfilter(model0.m[:, idx_w+1:end], Kernel.gaussian(var))) if anis == "st" model0.epsilon[:, idx_w+1:end] = R.(imfilter(model0.epsilon[:, idx_w+1:end], Kernel.gaussian(vare))) model0.delta[:, idx_w+1:end] = R.(imfilter(model0.delta[:, idx_w+1:end], Kernel.gaussian(vare))) model0.theta[:, idx_w+1:end] = R.(imfilter(model0.theta[:, idx_w+1:end], Kernel.gaussian(vare))) end m0 = model0.m ### Set objective functional mask = zeros(Float32, model0.n) mask[:, idx_w+1:end] .= 1 # [TWRIdual] ε = zeros(Float32, fsrc.nsrc) ## Run # Very basic approximate inverse Hessian DZ = judiDepthScaling(model0) # Optimization parameters optwri = TWRIOptions(;grad_corr=false, comp_alpha=false, weight_fun=nothing, eps=ε, params=:m) # Objective function for minConf library function objective_function(x, fun="fwi") flush(Base.stdout) x = reshape(x, model0.n) # fwi function value and gradient i = randperm(dat.nsrc)[1:batchsize] # weight_fun_pars=weight_fun_pars if fun == "wri" fval, grad = twri_objective(model0, fsrc[i], dat[i], nothing; optionswri=optwri) else fval, grad = fwi_objective(model0, fsrc[i], dat[i]) end grad = DZ*(vec(mask) .* vec(grad)) grad = .1f0 .* grad ./ maximum(abs.(grad)) # scale for line search return fval, grad end wri_fun(x) = objective_function(x, "wri") fwi_fun(x) = objective_function(x, "fwi") # FWI with SPG x0 = vec(m0) options = spg_options(verbose=3, maxIter=fevals, memory=3, interp=0) sol = spg(wri_fun, x0, ProjBound, options) xwri, hwri = sol.x, sol.ϕ_trace @save string(base_path*"data/wriw_$(anis)_$(var).jld") xwri hwri x0 = vec(m0) sol = spg(fwi_fun, x0, ProjBound, options) xfwi, hfwi = sol.x, sol.ϕ_trace @save string(base_path*"data/fwiw_$(anis)_$(var).jld") xfwi hfwi end end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2838
################################################################################ # # Run inversion for the Gaussian lens model # ################################################################################ R = Float32 ### Module loading using LinearAlgebra, JLD2, PyPlot, Dates, Distributed using Optim, LineSearches using JUDI ### Load or model synthetic data base_path = dirname(pathof(JUDI))*"/../examples/twri/" try @load string(base_path*"data/GaussLens_data_acou.jld") model_true dat fsrc catch e @info "Data not found, modeling true data" include(base_path*"data/gen_data_gausslens_acou.jl") @load string(base_path*"data/GaussLens_data_acou.jld") model_true dat fsrc end ### Background model m0 = 1f0./2f0.^2*ones(R, model_true.n) n = model_true.n d = model_true.d o = model_true.o model0 = Model(n, d, o, m0) # Pre- and post-conditioning mask = zeros(Float32, model0.n) mask[6:end-5, 6:end-5] .= 1 function proj_bounds(m, mmin, mmax) m[m[:] .< mmin] .= mmin m[m[:] .> mmax] .= mmax return m end mmin = 1f0/4f0^2 mmax = 1f0/1f0^2 preproc(x) = proj_bounds(x, mmin, mmax) # [FWI] function funFWI!(F, G, x) i = rand(1:15, 4) model0.m .= preproc(x) fun, g = fwi_objective(model0, fsrc[i], dat[i]) F = fun isnothing(G) && return fun isnothing(g_const) && (global g_const = .1/maximum(abs.(g))) G .= g_const .* g[:] .* vec(mask) return fun end # # [TWRIdual] ε = zeros(Float32, fsrc.nsrc) v_bg = sqrt(1/m0[1]) freq_peak = 0.006f0 δ = R(sqrt(2)/2)*v_bg/freq_peak weight_fun_pars = ("srcfocus", δ) optwri = TWRIOptions(;grad_corr=true, comp_alpha=true, weight_fun=weight_fun_pars, eps=ε, params=:m) function funWRI(F, G, x, optwri) i = rand(1:15, 4) model0.m .= preproc(x) fun, g = twri_objective(model0, fsrc[i], dat[i], nothing; optionswri=optwri) F = fun isnothing(G) && return fun isnothing(g_const) && (global g_const = .1/maximum(abs.(g))) G .= g_const .* g[:].* vec(mask) return fun end funWRI!(F, G, x) = funWRI(F, G, x, optwri) ### Optimization linesearch = HagerZhang(display=1, linesearchmax=10) # Options method = LBFGS(;linesearch=linesearch) niter = 20 optimopt = Optim.Options(g_calls_limit=200, iterations = niter, store_trace = true, show_trace = true, show_every = 1) # ## Run FWI g_const = nothing x0_fwi = vec(m0) result = optimize(Optim.only_fg!(funFWI!), x0_fwi, method, optimopt) x0_fwi .= Optim.minimizer(result) m_inv_fwi = preproc(x0_fwi) loss_log_fwi = Optim.f_trace(result) @save "./GaussLens_result_fwi.jld" m_inv_fwi loss_log_fwi ## Run WRI g_const = nothing x0_wri = vec(m0) result = optimize(Optim.only_fg!(funWRI!), x0_wri, method, optimopt) x0_wri .= Optim.minimizer(result) m_inv_wri = preproc(x0_wri) loss_log_wri = Optim.f_trace(result) @save "./GaussLens_result_wri.jld" m_inv_wri loss_log_wri
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
383
module CUDAJUDIExt import JUDI: LazyPropagation, judiVector, eval_prop isdefined(Base, :get_extension) ? (using CUDA) : (using ..CUDA) CUDA.cu(F::LazyPropagation) = CUDA.cu(eval_prop(F)) CUDA.cu(x::Vector{Matrix{T}}) where T = [CUDA.cu(x[i]) for i=1:length(x)] CUDA.cu(x::judiVector{T, Matrix{T}}) where T = judiVector{T, CUDA.CuMatrix{T}}(x.nsrc, x.geometry, CUDA.cu(x.data)) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
226
module FluxJUDIExt import JUDI: LazyPropagation isdefined(Base, :get_extension) ? (using Flux) : (using ..Flux) Flux.cpu(x::LazyPropagation) = Flux.cpu(eval_prop(x)) Flux.gpu(x::LazyPropagation) = Flux.gpu(eval_prop(x)) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
625
module JLD2JUDIExt using JUDI isdefined(Base, :get_extension) ? (using JLD2) : (using ..JLD2) JLD2.rconvert(::Type{Geometry}, x::JLD2.ReconstructedMutable{N, FN, NT}) where {N, FN, NT} = Geometry([JUDI.tof32(getproperty(x, f)) for f in FN]...) JUDI.Geometry(x::JLD2.ReconstructedMutable{N, FN, NT}) where {N, FN, NT} = Geometry([JUDI.tof32(getproperty(x, f)) for f in FN]...) function JUDI.tof32(x::JLD2.ReconstructedStatic{N, FN, NT}) where {N, FN, NT} # Drop "typed" signature reconstructT = Symbol(split(string(N), "{")[1]) return JUDI.tof32(eval(reconstructT)([getproperty(x, f) for f in FN]...)) end end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
444
module ZygoteJUDIExt import JUDI: LazyPropagation, judiVector, eval_prop isdefined(Base, :get_extension) ? (using Zygote) : (using ..Zygote) Zygote.unbroadcast(x::AbstractArray, x̄::LazyPropagation) = Zygote.unbroadcast(x, eval_prop(x̄)) function Zygote.accum(x::judiVector{T, AT}, y::DenseArray) where {T, AT} newd = [Zygote.accum(x.data[i], y[:, :, i, 1]) for i=1:x.nsrc] return judiVector{T, AT}(x.nsrc, x.geometry, newd) end end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
4666
# Module with functions for time-domain modeling and inversion using OPESCI/devito # Author: Philipp Witte, [email protected] # Date: January, 2017 # Updated, December 2020, Mathias Louboutin, [email protected] __precompile__() module JUDI export JUDIPATH, set_verbosity, ftp_data, get_serial, set_serial, set_parallel JUDIPATH = dirname(pathof(JUDI)) # Only needed if extension not available (julia < 1.9) if !isdefined(Base, :get_extension) using Requires end # Dependencies using LinearAlgebra, Random, Printf using Distributed using DSP, FFTW, Dierckx using PyCall using JOLI, SegyIO using ChainRulesCore using OrderedCollections # Import Base functions to dispatch on JUDI types import Base.depwarn import Base.*, Base./, Base.+, Base.-, Base.==, Base.\ import Base.copy!, Base.copy, Base.copyto!, Base.deepcopy, Base.summary import Base.sum, Base.ndims, Base.reshape, Base.fill!, Base.axes, Base.dotview import Base.eltype, Base.length, Base.size, Base.iterate, Base.show, Base.display, Base.showarg, Base.elsize import Base.maximum, Base.minimum, Base.push! import Base.Broadcast.ArrayStyle, Base.Broadcast.extrude import Base.Broadcast.broadcasted, Base.BroadcastStyle, Base.Broadcast.DefaultArrayStyle, Base.Broadcast, Base.broadcast! import Base.getindex, Base.setindex!, Base.firstindex, Base.lastindex import Base.similar, Base.isapprox, Base.isequal import Base.materialize!, Base.materialize, Base.Broadcast.instantiate import Base.promote_shape, Base.diff, Base.cumsum, Base.cumsum! import Base.getproperty, Base.unsafe_convert, Base.convert # Import Linear Lagebra functions to dispatch on JUDI types import LinearAlgebra.transpose, LinearAlgebra.conj, LinearAlgebra.vcat, LinearAlgebra.adjoint import LinearAlgebra.vec, LinearAlgebra.dot, LinearAlgebra.norm, LinearAlgebra.abs import LinearAlgebra.rmul!, LinearAlgebra.lmul!, LinearAlgebra.rdiv!, LinearAlgebra.ldiv! import LinearAlgebra.mul!, Base.isfinite, Base.inv # JOLI import JOLI: jo_convert # FFTW import FFTW: fft, ifft # Import pycall array to python for easy plotting import PyCall.NpyArray # Import AD rrule import ChainRulesCore: rrule # Set python paths export devito const pm = PyNULL() const ac = PyNULL() const pyut = PyNULL() const devito = PyNULL() # Constants nworkers(::Any) = length(workers()) _TFuture = Future _verbose = false _devices = [] # Some usefull types const RangeOrVec = Union{AbstractRange, Vector} # Utils include("utilities.jl") # JUDI time modeling include("TimeModeling/TimeModeling.jl") module TimeModeling using ..JUDI # Define backward compatible types so that old JLD files load properly # Old JLD file expected to be arrays, SeisCon are expected to be read and built # from SEGY files const judiVector{T} = JUDI.judiVector{T, Matrix{T}} where T const GeometryIC = JUDI.GeometryIC{Float32} const GeometryOOC = JUDI.GeometryOOC{Float32} end # Backward Compatibility include("compat.jl") # Automatic Differentiation include("rrules.jl") # Initialize function __init__() pushfirst!(PyVector(pyimport("sys")."path"), joinpath(JUDIPATH, "pysource")) copy!(pm, pyimport("models")) copy!(ac, pyimport("interface")) copy!(pyut, pyimport("utils")) copy!(devito, pyimport("devito")) # Initialize lock at session start PYLOCK[] = ReentrantLock() # Make sure there is no conflict for the cuda init thread with CUDA.jl if get(ENV, "DEVITO_PLATFORM", "") == "nvidiaX" @info "Initializing openacc/openmp offloading" devito_model(Model((21, 21, 21), (10., 10., 10.), (0., 0., 0.), randn(Float32, 21, 21, 21)), Options()) global _devices = parse.(Int, get(ENV, "CUDA_VISIBLE_DEVICES", "-1")) end # Optional dependencies @static if !isdefined(Base, :get_extension) # JLD2 compat for loading older version of JUDI types @require JLD2="033835bb-8acc-5ee8-8aae-3f567f8a3819" begin @info "JLD2 compat enabled" include("../ext/JLD2JUDIExt.jl") end # Additional Zygote compat if in use @require Zygote="e88e6eb3-aa80-5325-afca-941959d7151f" begin @info "Zygote compat enabled" include("../ext/ZygoteJUDIExt.jl") end # Additional Flux compat if in use @require Flux="587475ba-b771-5e3f-ad9e-33799f191a9c" begin @info "Flux compat enabled" include("../ext/FluxJUDIExt.jl") end # Additional Flux compat if in use @require CUDA="052768ef-5323-5732-b1bb-66c8b64840ba" begin @info "CUDA compat enabled" include("../ext/CUDAJUDIExt.jl") end end end end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1189
export Info # Compatibility with `info` const IntNum = Union{Integer, Tuple{Integer,Integer}, Tuple{Integer,Integer,Integer}} mutable struct Info n::IntNum nsrc::Integer nt::Array{Integer,1} end function Info(n::IntNum, nsrc::Integer, nt::Integer) depwarn("Info is deprecated and will be removed in future versions", :Info; force=true) Info(n, nsrc, [nt for i=1:nsrc]) end for f in [:judiModeling, :judiProjection, :judiWavefield] @eval function $f(info::Info, ar...;kw...) depwarn("$($f)(info::Info, ar...; kw...) is deprecated, use $($f)(ar...; kw...)", Symbol($f); force=true) $f(ar...; kw...) end end for f in [:judiLRWF, :judiRHS] @eval $f(info::Info, ar...;kw...) = throw(ArgumentError("$($f)(info::Info, ...) is deprecated and requires a time sampling rate `dt`")) end # model.n, model.d, model.o function getproperty(m::AbstractModel, s::Symbol) for (sl, ns) in zip([:n, :d, :o, :nb], [:size, :spacing, :origin, :nbl]) if s == sl depwarn("Deprecated model.$(s), use $(ns)(model)", Symbol("model.$(s)"); force=true) return getfield(m.G, s) end end return getfield(m, s) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
7085
""" LazyPropagation post::Function F::judiPropagator q A structure to encapsulate a JUDI propagation that may not need to be computed. This allows to to bypass ChainRule's thunks that do not play well with Zygote (may be fixed). Only a few arithmetic operations are supported. By default, any attempt to perform an arithmectic (+, -, *, ...) operation on a LazyPropagation will evaluate the propagation. **Note**: Long term, this should be extended in order to allow writing FWI/LSRTM with linear operators rather than the `fwi_objective/lsrtm_objective` wrapper and infer what needs to be computed from these unevaluated propagations. Parameters =========== * `RT`: the return type of F*q for dispatch * `post`: Function (default to identity). Function to be applied to the result `post(F*q)` after propagation * `F`: the JUDI propgator * `q`: The source to compute F*q """ struct LazyPropagation post::Function F::judiPropagator q end eval_prop(F::LazyPropagation) = F.post(F.F * F.q) Base.collect(F::LazyPropagation) = eval_prop(F) LazyPropagation(F::judiPropagator, q) = LazyPropagation(identity, F, q) # Only a few arithmetic operation are supported for op in [:+, :-, :*, :/] @eval begin $(op)(F::LazyPropagation, y::AbstractArray{T}) where T = $(op)(eval_prop(F), y) $(op)(y::AbstractArray{T}, F::LazyPropagation) where T = $(op)(y, eval_prop(F)) $(op)(y::LazyPropagation, F::LazyPropagation) = $(op)(eval_prop(y), eval_prop(F)) broadcasted(::typeof($op), y::LazyPropagation, F::LazyPropagation) = broadcasted($(op), eval_prop(y), eval_prop(F)) end for YT ∈ [AbstractArray, Broadcast.Broadcasted] @eval begin broadcasted(::typeof($op), F::LazyPropagation, y::$(YT)) = broadcasted($(op), eval_prop(F), y) broadcasted(::typeof($op), y::$(YT), F::LazyPropagation) = broadcasted($(op), y, eval_prop(F)) end end end broadcasted(::typeof(^), y::LazyPropagation, p::Real) = eval_prop(y).^(p) *(F::judiPropagator, q::LazyPropagation) = F*eval_prop(q) *(M::Preconditioner, q::LazyPropagation) = M*eval_prop(q) matvec(M::Preconditioner, q::LazyPropagation) = matvec(M, eval_prop(q)) matvec(M::MultiPreconditioner, q::LazyPropagation) = matvec(M, eval_prop(q)) reshape(F::LazyPropagation, dims...) = LazyPropagation(x->reshape(x, dims...), F.F, F.q) copyto!(x::AbstractArray, F::LazyPropagation) = copyto!(x, eval_prop(F)) dot(x::AbstractArray, F::LazyPropagation) = dot(x, eval_prop(F)) dot(F::LazyPropagation, x::AbstractArray) = dot(x, F) norm(F::LazyPropagation, p::Real=2) = norm(eval_prop(F), p) adjoint(F::JUDI.LazyPropagation) = LazyPropagation(x->adjoint(F.post(x)), F.F, F.q) ############################ Two params rules ############################################ function rrule(F::judiPropagator{T, O}, m::AbstractArray{T}, q::AbstractArray{T}) where {T, O} y = F(m, q) function pullback(Δy) dm = ∇m(F, m, q, Δy) dq = ∇source(F, m, Δy) return (NoTangent(), dm, dq) end y = F.options.return_array ? reshape(y, F.rInterpolation, F.model; with_batch=true) : y return y, pullback end function ∇source(F::judiPropagator{T, O}, m::AbstractArray{T}, Δy) where {T, O} ra = F.options.return_array # Reshape if vector post::Function = ra ? (dq -> reshape_array(dq, F')) : identity return LazyPropagation(post, F(m)', Δy) end function ∇m(F::judiPropagator{T, :forward}, m::AbstractArray{T}, q::AbstractArray{T}, Δy) where {T} ra = F.options.return_array # Reshape if vector and a-dimensionalize post::Function = ra ? (dm -> reshape(dm, F.model.n..., 1, 1)) : identity q = _as_src(F.qInjection.op, F.model, q) return LazyPropagation(post, judiJacobian(F(m), q)', Δy) end ∇m(F::judiPropagator{T, :adjoint}, m, q, Δy) where {T} = ∇m(adjoint(F), m, Δy, q) ############################ Single param rules ############################################ # We derive the following rule based on linear algebra calculus for parametric matrices # The derivation of the dF where F = F(m) is derived below for F a wave-equation # propagator. The derivation is not valid for J the Jacobian that is not currently supported # for this case but is ony supported for J(q) where q is the source of the underlying wave equation. # # d (f(F*x))/dm = tr( (d (f(F*x))/dF)^T dF/dm) # dF/dm = J(m) # d (f(F*x))/dF = dy x^T # d (f(F*x))/dm = tr( (dy x^T)^T J ) = tr( x dy^T dF/dm ) = tr( x dy^T dF/dm ) # = tr( - Pr Ai da/dm Ai Ps' x dy^T) # = tr( - Pr Ai (u.dt2) dy^T) # = tr( - dy^T Pr Ai (u.dt2) ) # = tr(- (u.dt2)^T Ai^T Pr^ dy) = J^T dy # F = Pr Ai(m) Ps' # dF/dm = Pr dAi/dm Ps' = - Pr Ai da/dm Ai Ps' # # # Finally, for simplicity, we directly return `dm` rather than a Tangent to avoid # complications with the fields. function rrule(::typeof(*), F::judiPropagator, x::AbstractArray{T}) where T ra = F.options.return_array y = F*x postx = ra ? (dx -> reshape(dx, size(x))) : identity function Fback(Δy) dx = LazyPropagation(postx, F', Δy) # F is m parametric dF = ∇prop(F, x, Δy) return NoTangent(), dF, dx end y = F.options.return_array ? reshape_array(y, F) : y return y, Fback end # Rule for x->F(x). Currently supported are # m -> F(m) where m is the squared slowness and F is a wave-equation propagator # q -> J(a) where q is a source and J is the Jacobian w.r.t m of a wave-equation propagator # This rules expect the input of the pullback to come from F*q and to be a LazyPropagation function rrule(F::judiPropagator, x) Fx = F(x) postx = F.options.return_array ? (dx -> reshape(dx, size(x))) : identity function backx(ΔF) dx = LazyPropagation(postx, ΔF.F, ΔF.q) return NoTangent(), dx end return Fx, backx end ∇prop(F::judiPropagator, q::AbstractArray, dy::AbstractArray) = LazyPropagation(judiJacobian(F, q)', dy) ∇prop(J::judiJacobian{D, :born, FT}, dm::AbstractArray, δd::AbstractArray) where {D, FT} = LazyPropagation(judiJacobian(adjoint(J.F), δd), dm) ∇prop(J::judiJacobian{D, :adjoint_born, FT}, δd::AbstractArray, dm::AbstractArray) where {D, FT} = LazyPropagation(judiJacobian(adjoint(J.F), δd), dm) # projection (project::ProjectTo{AbstractArray})(dx::PhysicalParameter) = project(reshape(dx.data, project.axes)) (project::ProjectTo{AbstractArray})(dx::LazyPropagation) = project(reshape(eval_prop(dx), project.axes)) # Reshaping reshape_array(u, F::judiPropagator) = reshape(u, F.rInterpolation, F.model; with_batch=true) reshape_array(u, F::judiAbstractJacobian{T, :adjoint_born, FT}) where {T, FT} = reshape(u, F.model.n..., 1, 1) # Adjoint to avoid odd corner cases in some Zygote version function rrule(::typeof(adjoint), F::judiPropagator) Fa = adjoint(F) _LinOp_pullback(y) = (NoTangent(), adjoint(y)) return Fa, _LinOp_pullback end # Preconditioners function rrule(::typeof(*), P::Preconditioner, x) back(y) = NoTangent(), NoTangent(), matvec_T(P, y) return matvec(P, x), back end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3023
export set_devito_config, ftp_data, set_serial, set_parallel, set_verbosity export devito_omp, devito_icx, devito_acc, devito_nvc_host, devito_cuda, devito_sycl, devito_hip # Logging utilities set_verbosity(x::Bool) = begin global _verbose = x; end judilog(msg) = _verbose ? printstyled("JUDI: $(msg) \n", color=:magenta) : nothing function human_readable_time(t::Float64, decimals=2) units = ["ns", "μs", "ms", "s", "min", "hour"] scales = [1e-9, 1e-6, 1e-3, 1, 60, 3600] if t < 1e-9 tr = round(t/1e-9; sigdigits=decimals) return "$(tr) ns" end for i=2:6 if t < scales[i] tr = round(t/scales[i-1]; sigdigits=decimals) return "$(tr) $(units[i-1])" end end tr1 = div(t, 3600) tr2 = round(Int, rem(t, 3600)) return "$(tr1) h $(tr2) min" end macro juditime(msg, ex) return quote local t t = @elapsed $(esc(ex)) tr = human_readable_time(t) judilog($(esc(msg))*": $(tr)") end end # Utility for data loading JUDI_DATA = joinpath(JUDIPATH, "../data") ftp_data(ftp::String, name::String) = Base.Downloads().download("$(ftp)/$(name)", "$(JUDI.JUDI_DATA)/$(name)") ftp_data(ftp::String) = Base.Downloads().download(ftp, "$(JUDI.JUDI_DATA)/$(split(ftp, "/")[end])") # Parallelism _serial = false get_serial() = _serial set_serial(x::Bool) = begin global _serial = x; end set_serial() = begin global _serial = true; end set_parallel() = begin global _serial = false; end function _worker_pool() if _serial return nothing end p = default_worker_pool() pool = nworkers(p) < 2 ? nothing : p return pool end # Create a lock for pycall FOR THREAD/TASK SAFETY # See discussion at # https://github.com/JuliaPy/PyCall.jl/issues/882 const PYLOCK = Ref{ReentrantLock}() # acquire the lock before any code calls Python pylock(f::Function) = Base.lock(PYLOCK[]) do prev_gc = GC.enable(false) try return f() finally GC.enable(prev_gc) # recover previous state end end function rlock_pycall(meth, ::Type{T}, args...; kw...) where T out::T = pylock() do pycall(meth, T, args...; kw...) end return out end # Devito configuration set_devito_config(key::String, val::String) = set!(devito."configuration", key, val) set_devito_config(key::String, val::Bool) = set!(devito."configuration", key, val) set_devito_config(kw...) = begin for (k, v) in kw set_devito_config(k, v) end end # Easy configurations setupes devito_omp() = set_devito_config("language", "openmp") devito_icx() = set_devito_config(language="openmp", compiler="icx") devito_acc() = set_devito_config(language="openacc", compiler="nvc", platform="nvidiaX") devito_nvc_host() = set_devito_config(language="openmp", compiler="nvc") devito_cuda() = set_devito_config(language="cuda", platform="nvidiaX") devito_sycl() = set_devito_config(language="sycl", platform="intelgpuX") devito_hip() = set_devito_config(language="hip", platform="amdgpuX")
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3284
# Functions for time-domain modeling and inversion using devito # Author: Philipp Witte, [email protected] # Date: January, 2017 # Updated, December 2020, Mathias Louboutin, [email protected] ############################################################################# # Basics include("LinearOperators/basics.jl") ############################################################################# # Containers const Pdtypes = Union{Float32, Float16} include("Types/ModelStructure.jl") # model container include("Types/GeometryStructure.jl") # source or receiver setup, recording time and sampling include("Types/OptionsStructure.jl") ############################################################################# # Abstract vectors include("Types/abstract.jl") include("Types/lazy_msv.jl") include("Types/broadcasting.jl") include("Types/judiWavefield.jl") # dense RHS (wavefield) include("Types/judiWeights.jl") # Extended source weight vector include("Types/judiVector.jl") # Julia data container include("Types/judiComposites.jl") # A composite type to work with hcat/vcat of judi types # Utility types const SourceType{T} = Union{Vector{T}, Matrix{T}, judiMultiSourceVector{T}, PhysicalParameter{T}} const dmType{T} = Union{Vector{T}, PhysicalParameter{T}} ############################################################################# # Utils include("Utils/auxiliaryFunctions.jl") include("Utils/time_utilities.jl") include("Modeling/losses.jl") ############################################################################# # Linear operators include("LinearOperators/lazy.jl") include("LinearOperators/operators.jl") include("LinearOperators/callable.jl") ############################################################################# # Preconditioners include("Preconditioners/base.jl") include("Preconditioners/utils.jl") include("Preconditioners/DataPreconditioners.jl") include("Preconditioners/ModelPreconditioners.jl") ############################################################################# # PDE solvers include("Modeling/distributed.jl") # Modeling functions utilities include("Modeling/python_interface.jl") # forward/adjoint linear/nonlinear modeling include("Modeling/time_modeling_serial.jl") # forward/adjoint linear/nonlinear modeling include("Modeling/misfit_fg.jl") # FWI/LSRTM objective function value and gradient include("Modeling/twri_objective.jl") # TWRI objective function value and gradient include("Modeling/propagation.jl") ############################################################################# # Extra that need all imports ############################################################################################################################ # Enforce right precedence. Mainly we always want (rightfully) # - First data operation on the right # - Then propagation # - Then right preconditioning # I.e Ml * P * M * q must do Ml * (P * (M * q)) # It''s easier to just hard code the few cases that can happen for T in [judiMultiSourceVector, dmType] @eval *(Ml::Preconditioner, P::judiPropagator, Mr::Preconditioner, v::$(T)) = Ml * (P * (Mr * v)) @eval *(P::judiPropagator, Mr::Preconditioner, v::$(T)) = P * (Mr * v) @eval *(Ml::Preconditioner, P::judiPropagator, v::$(T)) = Ml * (P * v) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3113
export AbstractSize, time_space, time_space_src, time_src, rec_space, space, space_src struct AbstractSize dims::Dict end AbstractSize(n::NTuple{N, Symbol}, sizes) where N = AbstractSize(Dict(zip(n, sizes))) # Base function getindex(S::AbstractSize, sinds::Union{AbstractRange, Vector{<:Integer}}) k = keys(S.dims) dim_map = copy(S.dims) for (k, v) in S.dims new_v = typeof(v) <: Integer ? v : v[sinds] dim_map[k] = new_v end :src ∈ keys(dim_map) && (dim_map[:src] = length(sinds)) AbstractSize(dim_map) end getindex(S::AbstractSize, i::Integer) = getindex(S, i:i) getindex(S::AbstractSize, I...) = AbstractSize(keys(S.dims[I...]), values(S.dims[I...])) getindex(S::AbstractSize, I::Symbol) = S.dims[I] setindex!(S::AbstractSize, v, I::Symbol) = setindex!(S.dims, v, I) iterate(S::AbstractSize) = iterate(S.dims) iterate(S::AbstractSize, state) = iterate(S.dims, state) Base.isless(i::Int64, a::AbstractSize) = isless(i, nsamples(a)) convert(::Type{T}, S::AbstractSize) where T<:Number = convert(T, nsamples(S)) (::Type{T})(S::AbstractSize) where T<:Union{Integer, AbstractFloat} = convert(T, nsamples(S)) (c::Colon)(i::T, S::AbstractSize) where T = c(i, T(S)) Base.keys(S::AbstractSize) = keys(S.dims) Base.values(S::AbstractSize) = values(S.dims) Base.merge!(S1::AbstractSize, S2::AbstractSize) = merge!(S1.dims, S2.dims) ==(S1::AbstractSize, S2::AbstractSize) = S1.dims == S2.dims ==(S1::Integer, S2::AbstractSize) = nsamples(S2) == S1 ==(S1::AbstractSize, S2::Integer) = nsamples(S1) == S2 Base.repr(S::AbstractSize) = "($(join(keys(S.dims), " * ")))" similar(x::AbstractVector, ::Type{ET}, dims::AbstractSize) where ET = similar(x, ET, Int(dims)) # Update size set_space_size!(S::AbstractSize, vals::NTuple{2, Integer}) = begin pop!(S.dims, :y, 0); merge!(S.dims, Dict(zip((:x, :z), vals))) end set_space_size!(S::AbstractSize, vals::NTuple{3, Integer}) = merge!(S.dims, Dict(zip((:x, :y, :z), vals))) # Actual integer size nsamples(dims::Dict{Symbol, Any}) = sum(.*(values(dims)...)) ÷ get(dims, :src, 1) nsamples(dims::Dict{N, <:Integer}) where N = prod(values(dims)) nsamples(D::AbstractSize) = nsamples(D.dims) # Constructors space(N::NTuple{2, Integer}) = AbstractSize((:x, :z), (N[1], N[2])) space(N::NTuple{3, Integer}) = AbstractSize((:x, :y, :z), (N[1], N[2], N[3])) time_space(N::NTuple{2, Integer}) = AbstractSize((:time, :x, :z), ([0], N[1], N[2])) time_space(N::NTuple{3, Integer}) = AbstractSize((:time, :x, :y, :z), ([0], N[1], N[2], N[3])) time_space_src(nsrc::Integer, nt, N::Integer) = AbstractSize((:src, :time, :x, :y, :z), (nsrc, nt, zeros(Int, N)...)) time_space_src(nsrc::Integer, nt, N::NTuple{2, Integer}) = AbstractSize((:src, :time, :x, :z), (nsrc, nt, N...)) time_space_src(nsrc::Integer, nt, N::NTuple{3, Integer}) = AbstractSize((:src, :time, :x, :y, :z), (nsrc, nt, N...)) time_space_src(nsrc::Integer, nt) = AbstractSize((:src, :time, :x, :y, :z), (nsrc, nt, 0, 0, 0)) space_src(nsrc::Integer) = AbstractSize((:src, :x, :y, :z), (nsrc, 0, 0, 0)) time_src(nsrc::Integer, nt) = AbstractSize((:src, :time), (nsrc, nt))
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
1876
############################################################################# (F::judiModeling{D, O})(m::AbstractModel{D, N}) where {D, O, N} = judiModeling(m; options=F.options) (FS::judiDataSourceModeling{D, O})(F::judiModeling{D, O}) where {D, O} = judiDataSourceModeling{D, O}(FS.rInterpolation, F, FS.qInjection) (FS::judiDataModeling{D, O})(F::judiModeling{D, O}) where {D, O} = judiDataModeling{D, O}(FS.rInterpolation, F) (FS::judiPointSourceModeling{D, O})(F::judiModeling{D, O}) where {D, O} = judiPointSourceModeling{D, O}(F, FS.qInjection) (J::judiJacobian{D, O, FT})(F::judiModeling{D, O}) where {D, O, FT} = judiJacobian(J.F(F), J.q) for FT in [judiPointSourceModeling, judiDataModeling, judiDataSourceModeling, judiJacobian] @eval begin (F::$(FT))(m::AbstractModel) = F(F.F(m)) end end function (F::judiPropagator)(;kwargs...) Fl = deepcopy(F) for (k, v) in kwargs k in _mparams(Fl.model) && getfield(Fl.model, k) .= reshape(v, size(Fl.model)) end Fl end function (F::judiPropagator)(m, q) Fm = F(;m=m) _track_illum(F.model, Fm.model) return Fm*as_src(q) end function (F::judiPropagator)(m::AbstractArray) @info "Assuming m to be squared slowness for $(typeof(F))" return F(;m=reshape(m, size(F.model))) end (F::judiPropagator)(m::AbstractModel, q) = F(m)*as_src(q) function (J::judiJacobian{D, O, FT})(q::judiMultiSourceVector) where {D, O, FT} newJ = judiJacobian{D, O, FT}(J.m, J.n, J.F, q) _track_illum(J.model, newJ.model) return newJ end function (J::judiJacobian{D, O, FT})(x::Array{D, N}) where {D, O, FT, N} if length(x) == prod(size(J.model)) return J(;m=reshape(x, size(F.model.n))) end new_q = _as_src(J.qInjection.op, J.model, x) newJ = judiJacobian{D, O, FT}(J.m, J.n, J.F, new_q) _track_illum(J.model, newJ.model) return newJ end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
9116
export judiProjection, judiWavelet, judiLRWF, judiRHS ############################################################################################################################ # Abstract types abstract type judiNoopOperator{D} <: joAbstractLinearOperator{D, D} end ############################################################################################################################ # Concrete types # Lazy adjoint like in LinearAlgebra struct jAdjoint{T} op::T end # Projection operator struct judiProjection{D} <: judiNoopOperator{D} m::AbstractSize n::AbstractSize geometry::Geometry end # Wavelet "projection" struct judiWavelet{D} <: judiNoopOperator{D} m::AbstractSize n::AbstractSize wavelet::Vector{Array{D, N}} where N dt::Vector{D} end # Poorly named backward compat const judiLRWF{T} = judiWavelet{T} const Projection{D} = Union{judiProjection{D}, judiWavelet{D}} const AdjointProjection{D} = jAdjoint{<:Projection{D}} """ judiRHS dt::Vector{T} geometry::Geometry data Abstract sparse vector for right-hand-sides of the modeling operators. The `judiRHS` vector has the\\ dimensions of the full time history of the wavefields, but contains only the data defined at the \\ source or receiver positions (i.e. wavelets or shot records). Constructor ========== judiRHS(dt, geometry, data) Examples ======== Assuming `Pr` and `Ps` are projection operators of type `judiProjection` and `dobs` and `q` are\\ seismic vectors of type `judiVector`, then a `judiRHS` vector can be created as follows: rhs = Pr'*dobs # right-hand-side with injected observed data rhs = Ps'*q # right-hand-side with injected wavelet """ struct judiRHS{D} <: judiMultiSourceVector{D} nsrc::Integer P::jAdjoint{judiProjection{D}} d::judiVector end ############################################################################################################################ # Constructors """ judiProjection(geometry) Projection operator for sources/receivers to restrict or inject data at specified locations. Examples ======== `F` is a modeling operator of type `judiModeling` and `q` is a seismic source of type `judiVector`: Pr = judiProjection(rec_geometry) Ps = judiProjection(q.geometry) dobs = Pr*F*Ps'*q qad = Ps*F'*Pr'*dobs """ judiProjection(G::Geometry) = judiProjection{Float32}(rec_space(G), time_space_src(get_nsrc(G), G.nt, 3), G) """ judiWavelet(dt, wavelet) Low-rank wavefield operator which injects a wavelet q at every point of the subsurface. Examples ======== `F` is a modeling operator of type `judiModeling` and `w` is a weighting matrix of type `judiWeights`: Pr = judiProjection(rec_geometry) Pw = judiWavelet(rec_geometry.dt, q.data) # or judiLRWF(rec_geometry.dt, q.data) dobs = Pr*F*Pw'*w dw = Pw*F'*Pr'*dobs """ judiWavelet(nsrc::Integer, dt::T, w::Array{T, N}) where {T<:AbstractFloat, N} = judiWavelet{Float32}(space_src(nsrc), time_space_src(nsrc, length.(w)), [w for i=1:nsrc], [dt for i=1:nsrc]) judiWavelet(dt::T, w::Array{T, N}) where {T<:AbstractFloat, N} = judiWavelet(1, dt, w) judiWavelet(dt::Vector{<:Number}, w::Vector{T}) where T<:Array = judiWavelet{Float32}(space_src(length(dt)), time_space_src(length(dt), length.(w)), w, dt) judiWavelet(dt::Vector{<:Number}, w::Vector{<:Number}) = judiWavelet{Float32}(space_src(length(dt)), time_space_src(length(dt), [length(w) for i=1:length(dt)]), [w for i=1:length(dt)], dt) judiWavelet(dt::dtT, w::Array{T, N}) where {dtT<:Number, T<:Array, N} = judiWavelet([dt for i=1:length(w)], w) # Deprecation error judiWavelet(::Integer, ::Array{T, N}) where {T<:AbstractFloat, N} = throw(ArgumentError("Time sampling of the wavelet need to be suplied `judiWavelet(nsrc, dt, wavelet)`")) ############################################################################################################################ # Base overload getproperty(P::judiProjection, s::Symbol) = s == :data ? P.geometry : getfield(P, s) getproperty(P::judiWavelet, s::Symbol) = s == :data ? P.wavelet : getfield(P, s) function getproperty(jA::jAdjoint, s::Symbol) s == :m && (return jA.op.n) s == :n && (return jA.op.m) s == :op && (return getfield(jA, s)) return getproperty(jA.op, s) end size(jA::jAdjoint) = (jA.op.n, jA.op.m) display(P::jAdjoint) = println("Adjoint($(P.op))") display(P::judiProjection{D}) where D = println("JUDI projection operator $(repr(P.n)) -> $(repr(P.m))") ############################################################################################################################ # Indexing getindex(jA::jAdjoint{T}, i) where T = jAdjoint{T}(jA.op[i]) getindex(P::judiProjection{D}, i) where D = judiProjection{D}(P.m[i], P.n[i], P.geometry[i]) getindex(P::judiProjection{D}, i::Integer) where D = judiProjection{D}(P.m[i], P.n[i], P.geometry[i:i]) getindex(P::judiWavelet{D}, i) where D = judiWavelet{D}(P.m[i], P.n[i], P.wavelet[i], P.dt[i]) getindex(P::judiWavelet{D}, i::Integer) where D = judiWavelet{D}(P.m[i], P.n[i], P.wavelet[i:i], P.dt[i:i]) getindex(rhs::judiRHS{D}, i::Integer) where D = judiRHS{D}(length(i), rhs.P[i], rhs.d[i]) getindex(rhs::judiRHS{D}, i::RangeOrVec) where D = judiRHS{D}(length(i), rhs.P[i], rhs.d[i]) # Backward compatible subsample subsample(P::judiNoopOperator{D}, i) where D = getindex(P, i) ############################################################################################################################ # Linear algebra adjoint(jA::jAdjoint) = jA.op adjoint(P::judiNoopOperator{D}) where D = jAdjoint(P) transpose(jA::jAdjoint) = jA.op transpose(P::judiNoopOperator{D}) where D = jAdjoint(P) conj(jA::jAdjoint) = jA conj(P::judiNoopOperator{D}) where D = P *(P::jAdjoint{judiProjection{D}}, d::judiVector{D, AT}) where {D, AT} = judiRHS{D}(d.nsrc, P, d) # Combinations of rhs for (op, s) in zip([:+, :-], (1, -1)) for T1 in [judiRHS, LazyAdd] for T2 in [judiRHS, LazyAdd] @eval function $(op)(r1::$(T1){D}, r2::$(T2){D}) where D r1.nsrc == r2.nsrc || throw(ArgumentError("Incompatible number of source experiment")) LazyAdd{D}(r1.nsrc, r1, r2, $s) end end end end function *(M::Matrix{T}, P::judiProjection{T}) where T @assert size(M, 2) == get_nsrc(P) g = super_shot_geometry(P.geometry) geom = Geometry(g.xloc[1], g.yloc[1], g.zloc[1]; dt=g.dt[1], t=g.t[1], nsrc=size(M, 1)) return judiProjection(geom) end *(M::Matrix{T}, P::jAdjoint{judiProjection{T}}) where T = jAdjoint(M*P.op) *(M::Matrix{T}, R::judiRHS{T}) where T = judiRHS{T}(size(M, 1), M*R.P, M*R.d) ############################################################################################################################ # Comparison ==(jA1::jAdjoint, jA2::jAdjoint) = jA1.op == jA2.op ==(P1::judiProjection, P2::judiProjection) = P1.data == P2.data ==(P1::judiWavelet, P2::judiWavelet) = (P1.wavelet == P2.wavelet && P1.dt == P2.dt) ############################################################################################################################ ###### Inpout processing for propagation function make_src(q::judiMultiSourceVector, P::judiProjection{D}) where D P.data[1] ≈ q.geometry[1] || throw(ArgumentError("Incompatible geometry and source")) return P.data[1], make_input(q) end make_src(q, P::judiProjection{D}) where D = (P.data[1], reshape(make_input(q), P.data.nt[1], P.data.nrec[1])) make_src(q, P::judiLRWF{D}) where D = (make_input(q), P.data[1]) make_src(rhs::judiWavelet) = make_src(rhs.d, rhs.P) make_src(q, P::jAdjoint{<:judiNoopOperator}) = make_src(q, P.op) get_nsrc(P::Projection) = P.m[:src] get_nsrc(P::jAdjoint{<:Projection}) = P.op.m[:src] get_nt(P::Projection) = P.n[:time] get_nt(P::jAdjoint{<:Projection}) = P.op.n[:time] """ reshape(x, P::judiProjection, m::AbstractModel; with_batch=false) reshape the input `x` into an ML friendly format `HWCB` using the projection operator and model to infer dimensions sizes. """ function reshape(x::Vector{T}, P::judiProjection{T}, ::AbstractModel; with_batch=false) where T out = reshape(x, P.geometry) out = with_batch ? reshape(out, size(out, 1), size(out, 2), 1, size(out, 3)) : out return out end function reshape(x::Vector{T}, P::judiWavelet{T}, m::AbstractModel; with_batch=false) where T out = with_batch ? reshape(x, m.n..., 1,get_nsrc(P)) : reshape(x, m.n..., get_nsrc(P)) return out end function _as_src(P::judiLRWF{T}, model::AbstractModel, q::Array{T}) where T qcell = process_input_data(q, model, get_nsrc(P)) return judiWeights{T}(get_nsrc(P), qcell) end function _as_src(P::judiProjection{T}, ::AbstractModel, q::Array{T}) where T qcell = process_input_data(q, P.geometry) return judiVector{T, Matrix{T}}(get_nsrc(P), P.geometry, qcell) end _as_src(::judiNoopOperator, ::AbstractModel, q::judiMultiSourceVector) = q ############################################################################################################################ ###### Evaluate lazy operation eval(rhs::judiRHS) = rhs.d
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
14595
export judiModeling, judiDataModeling, judiDataSourceModeling, judiPointSourceModeling, judiJacobian const adjoint_map = Dict(:forward => :adjoint, :adjoint => :forward, :born => :adjoint_born, :adjoint_born => :born) # Base abstract types abstract type judiPropagator{D, O} <: joAbstractLinearOperator{D, D} end abstract type judiComposedPropagator{D, O} <: judiPropagator{D, O} end abstract type judiAbstractJacobian{D, O, FT} <: judiComposedPropagator{D, O} end ############################################################################################################################ # Concrete types struct judiModeling{D, O, MT} <: judiPropagator{D, O} m::AbstractSize n::AbstractSize model::MT options::JUDIOptions end struct judiPointSourceModeling{D, O} <: judiComposedPropagator{D, O} m::AbstractSize n::AbstractSize F::judiModeling{D, O} qInjection::AdjointProjection{D} function judiPointSourceModeling{D, O}(F::judiModeling{D, O}, qInjection::AdjointProjection{D}) where {D, O} # instantiate un-initialized sizes ts = time_space_src(get_nsrc(qInjection), get_nt(qInjection), size(F.model)) merge!(F.n, ts) merge!(F.m, ts) update_size(qInjection, F) new(F.m, qInjection.n, F, qInjection) end end struct judiDataModeling{D, O} <: judiComposedPropagator{D, O} m::AbstractSize n::AbstractSize rInterpolation::Projection{D} F::judiModeling{D, O} function judiDataModeling{D, O}(rInterpolation::Projection{D}, F::judiModeling{D, O}) where {D, O} ts = time_space_src(get_nsrc(rInterpolation), get_nt(rInterpolation), size(F.model)) merge!(F.n, ts) merge!(F.m, ts) update_size(rInterpolation, F) new(rInterpolation.m, F.n, rInterpolation, F) end end struct judiDataSourceModeling{D, O} <: judiComposedPropagator{D, O} m::AbstractSize n::AbstractSize rInterpolation::Projection{D} F::judiModeling{D, O} qInjection::AdjointProjection{D} function judiDataSourceModeling{D, O}(rInterpolation::Projection{D}, F::judiModeling{D, O}, qInjection::AdjointProjection{D}) where {D, O} ts = time_space_src(get_nsrc(rInterpolation), get_nt(rInterpolation), size(F.model)) merge!(F.n, ts) merge!(F.m, ts) update_size(rInterpolation, F) update_size(qInjection, F) new(rInterpolation.m, qInjection.n, rInterpolation, F, qInjection) end end struct judiJacobian{D, O, FT} <: judiAbstractJacobian{D, O, FT} m::AbstractSize n::AbstractSize F::FT q::judiMultiSourceVector end struct LazyScal s::Number P::judiPropagator end ############################################################################################################################ # Base and JOLI compat _get_property(::judiPropagator{T, O}, ::Val{:mode}) where {T, O} = O _get_property(J::judiPropagator, ::Val{:fop}) = x -> J*x _get_property(J::judiPropagator, ::Val{:fop_T}) = x -> J'*x _get_property(J::judiPropagator, ::Val{:name}) = "$(typeof(J))" _get_property(J::judiAbstractJacobian, ::Val{:rInterpolation}) = J.F.rInterpolation _get_property(J::judiAbstractJacobian, ::Val{:qInjection}) = J.F.qInjection _get_property(J::judiPropagator, ::Val{s}) where {s} = getfield(J, s) _get_property(C::judiComposedPropagator, ::Val{:model}) = C.F.model _get_property(C::judiComposedPropagator, ::Val{:options}) = C.F.options getproperty(J::judiPropagator, s::Symbol) = _get_property(J, Val{s}()) display(P::judiPropagator{D, O}) where {D, O} = println("JUDI $(String(O)){$D} propagator $(repr(P.n)) -> $(repr(P.m))") show(io::Union{IOBuffer, IOContext}, P::judiPropagator{D, O}) where {D, O} = print(io, "JUDI $(String(O)){$D} propagator $(repr(P.n)) -> $(repr(P.m))") ############################################################################################################################ # Constructors """ judiModeling(model; options=Options()) judiModeling(model, src_geometry, rec_geometry; options=Options()) Create seismic modeling operator for a velocity model given as a `Model` structure. The function also takes the source and receiver geometries as additional input arguments, which creates a combined operator `judiProjection*judiModeling*judiProjection'`. Example ======= `Pr` and `Ps` are projection operatos of type `judiProjection` and `q` is a data vector of type `judiVector`: F = judiModeling(model) dobs = Pr*F*Ps'*q F = judiModeling(model, q.geometry, rec_geometry) dobs = F*q """ function judiModeling(model::MT; options=Options()) where {MT<:AbstractModel} D = eltype(model) m = time_space(size(model)) return judiModeling{D, :forward, MT}(m, m, model, options) end judiModeling(model::MT, src_geom::Geometry, rec_geom::Geometry; options=Options()) where {MT<:AbstractModel} = judiProjection(rec_geom) * judiModeling(model; options=options) * adjoint(judiProjection(src_geom)) """ judiJacobian(F,q) Create a linearized modeling operator from the non-linear modeling operator `F` and the source `q`. `q` can be either a judiVector (point source Jacobian) or a `judiWeight` for extended source modeling. `F` is a full modeling operator including source/receiver projections. Examples ======== 1) `F` is a modeling operator without source/receiver projections: J = judiJacobian(Pr*F*Ps',q) 2) `F` is the combined operator `Pr*F*Ps'`: J = judiJacobian(F,q) """ function judiJacobian(F::judiComposedPropagator{D, O}, q::judiMultiSourceVector; options=nothing) where {D, O} update!(F.F.options, options) return judiJacobian{D, :born, typeof(F)}(F.m, space(size(F.model)), F, q) end # Backward compat with giving weights as array. Not recommened function judiJacobian(F::judiComposedPropagator{D, O}, q::Array{D, N}; options=nothing) where {D, O, N} update!(F.F.options, options) q = _as_src(F.qInjection.op, F.model, q) return judiJacobian(F, q) end ############################################################################################################################ # Linear algebra (conj/adj/...) # Adjoints conj(F::judiPropagator) = F transpose(F::judiPropagator) = adjoint(F) adjoint(s::Symbol) = adjoint_map[s] adjoint(F::judiModeling{D, O, MT}) where {D, O, MT} = judiModeling{D, adjoint(O), MT}(F.n, F.m, F.model, F.options) adjoint(F::judiDataModeling{D, O}) where {D, O} = judiPointSourceModeling{D, adjoint(O)}(adjoint(F.F), adjoint(F.rInterpolation)) adjoint(F::judiPointSourceModeling{D, O}) where {D, O}= judiDataModeling{D, adjoint(O)}(adjoint(F.qInjection), adjoint(F.F)) adjoint(F::judiDataSourceModeling{D, O}) where {D, O} = judiDataSourceModeling{D, adjoint(O)}(adjoint(F.qInjection), adjoint(F.F), adjoint(F.rInterpolation)) adjoint(J::judiJacobian{D, O, FT}) where {D, O, FT} = judiJacobian{D, adjoint(O), FT}(J.n, J.m, J.F, J.q) adjoint(L::LazyScal) = LazyScal(L.s, adjoint(L.P)) # Composition *(F::judiModeling{D, O}, P::AdjointProjection{D}) where {D, O} = judiPointSourceModeling{D, O}(F, P) *(P::Projection{D}, F::judiModeling{D, O}) where {D, O} = judiDataModeling{D, O}(P, F) *(P::Projection{D}, F::judiPointSourceModeling{D, O}) where {D, O} = judiDataSourceModeling{D, O}(P, F.F, F.qInjection) *(F::judiDataModeling{D, O}, P::AdjointProjection{D}) where {D, O} = judiDataSourceModeling{D, O}(F.rInterpolation, F.F, P) *(s::Number, P::judiPropagator) = LazyScal(s, P) \(P::judiPropagator, s::Number) = LazyScal(1/s, P) *(L::LazyScal, x::SourceType{T}) where {T<:Number} = L.s * (L.P * x) *(L::LazyScal, x::Array{T, N}) where {T<:Number, N} = L.s * (L.P * x) # Propagation via linear algebra `*` *(F::judiPropagator{T, O}, q::judiMultiSourceVector{T}) where {T<:Number, O} = multi_src_propagate(F, q) *(F::judiPropagator{T, O}, q::AbstractVector{T}) where {T<:Number, O} = multi_src_propagate(F, q) *(F::judiPropagator{T, O}, q::DenseArray{T}) where {T<:Number, O} = multi_src_propagate(F, q) *(F::judiAbstractJacobian{T, O, FT}, q::dmType{Tq}) where {T<:Number, Tq<:Pdtypes, O, FT} = multi_src_propagate(F, q) mul!(out::SourceType{T}, F::judiPropagator{T, O}, q::SourceType{T}) where {T<:Number, O} = begin y = F*q; copyto!(out, y) end mul!(out::SourceType{T}, F::judiAbstractJacobian{T, :born, FT}, q::Vector{T}) where {T<:Number, FT} = begin y = F*q[:]; copyto!(out, y) end mul!(out::SourceType{T}, F::judiAbstractJacobian{T, :born, FT}, q::Array{T, 2}) where {T<:Number, FT} = begin y = F*q[:]; copyto!(out, y) end mul!(out::SourceType{T}, F::judiAbstractJacobian{T, :born, FT}, q::Array{T, 3}) where {T<:Number, FT} = begin y = F*q[:]; copyto!(out, y) end mul!(out::SourceType{T1}, F::Union{joLinearFunction{T2, T1}, joLinearOperator{T2, T1}}, q::SourceType{T2}) where {T1<:Number, T2<:Number} = begin y = F*q; copyto!(out, y) end mul!(out::SourceType{T1}, F::Union{joLinearFunction{T2, T1}, joLinearOperator{T2, T1}}, q::Array{T2, 2}) where {T1<:Number, T2<:Number} = begin y = F*q[:]; copyto!(out, y) end mul!(out::SourceType{T1}, F::Union{joLinearFunction{T2, T1}, joLinearOperator{T2, T1}}, q::Array{T2, 3}) where {T1<:Number, T2<:Number} = begin y = F*q[:]; copyto!(out, y) end mul!(out::Array{T, 2}, F::judiAbstractJacobian{T, :adjoint_born, FT}, q::SourceType{T}) where {T<:Number, FT} = begin y = F*q; copyto!(out, y) end mul!(out::Array{T, 3}, F::judiAbstractJacobian{T, :adjoint_born, FT}, q::SourceType{T}) where {T<:Number, FT} = begin y = F*q; copyto!(out, y) end ############################################################################################################################ # Propagation input process_input_data(::judiPropagator{T}, data::judiMultiSourceVector{T}) where T = data process_input_data(F::judiModeling, q::DenseArray) = process_input_data(q, F.model) process_input_data(F::judiPointSourceModeling, q::DenseArray) = process_input_data(q, F.qInjection.geometry) process_input_data(F::judiDataSourceModeling, q::DenseArray) = process_input_data(q, F.qInjection.data) process_input_data(F::judiDataModeling, q::DenseArray) = process_input_data(q, F.model) process_input_data(J::judiJacobian{D, :adjoint_born, FT}, q::DenseArray) where {D, FT} = process_input_data(q, J.F.rInterpolation.data) process_input_data(::judiJacobian{D, :born, FT}, q::dmType{D}) where {D<:Number, FT} = q process_input_data(J::judiJacobian{D, :born, FT}, q::DenseArray) where {D<:Number, FT} = PhysicalParameter(J.model.m, q) make_input(::judiModeling, q::SourceType) = (nothing, make_input(q), nothing, nothing, nothing) make_input(::judiModeling, rhs::judiRHS) = (make_src(rhs)..., nothing, nothing, nothing) make_input(F::judiPointSourceModeling, q::SourceType{T}) where {T} = (make_src(q, F.qInjection)..., nothing, nothing, nothing) make_input(F::judiPointSourceModeling, q::Matrix{T}) where {T} = (F.qInjection.data[1], q, nothing, nothing, nothing) make_input(F::judiDataModeling, q::SourceType{T}) where {T} = (nothing, make_input(q), F.rInterpolation.geometry, nothing, nothing) make_input(F::judiDataModeling{T, O}, q::LazyAdd{T}) where {T, O} = (make_src(q)..., F.rInterpolation.geometry, nothing, nothing) make_input(F::judiDataModeling, rhs::judiRHS) = (make_src(rhs)..., F.rInterpolation.geometry, nothing, nothing) make_input(F::judiDataSourceModeling, q::SourceType{T}) where {T} = (make_src(q, F.qInjection)..., F.rInterpolation.data[1], nothing, nothing) make_input(F::judiDataSourceModeling, q::Matrix{T}) where {T} = (F.qInjection.data[1], q, F.rInterpolation.data[1], nothing, nothing) function make_input(J::judiJacobian{D, :born, FT}, q::dmType{Dq}) where {D<:Number, Dq<:Pdtypes, FT} srcGeom, srcData = make_src(J.q, J.F.qInjection) return srcGeom, srcData, J.F.rInterpolation.data[1], nothing, reshape(q, size(J.model)) end function make_input(J::judiJacobian{D, :adjoint_born, FT}, q::SourceType{D}) where {D, FT} srcGeom, srcData = make_src(J.q, J.F.qInjection) recGeom, recData = make_src(q, J.F.rInterpolation) return srcGeom, srcData, recGeom, recData, nothing end ############################################################################################################################ # Size update based on linear operator update_size(w::judiProjection, F::judiPropagator) = set_space_size!(w.n, size(F.model)) update_size(w::jAdjoint{<:judiProjection}, F::judiPropagator) = set_space_size!(w.op.n, size(F.model)) update_size(w::judiWavelet, F::judiPropagator) = set_space_size!(w.m, size(F.model)) update_size(w::jAdjoint{<:judiWavelet}, F::judiPropagator) = set_space_size!(w.op.m, size(F.model)) ############################################################################################################################ # indexing getindex(F::judiModeling{D, O, MT}, i) where {D, O, MT} = judiModeling{D, O, MT}(F.m[i], F.n[i], F.model, F.options[i]) getindex(F::judiDataModeling{D, O}, i) where {D, O} = judiDataModeling{D, O}(F.rInterpolation[i], F.F[i]) getindex(F::judiPointSourceModeling{D, O}, i) where {D, O}= judiPointSourceModeling{D, O}(F.F[i], F.qInjection[i]) getindex(F::judiDataSourceModeling{D, O}, i) where {D, O} = judiDataSourceModeling{D, O}(F.rInterpolation[i], F.F[i], F.qInjection[i]) getindex(J::judiJacobian{D, O, FT}, i) where {D, O, FT} = judiJacobian{D, O, FT}(J.m[i], J.n[i], J.F[i], J.q[i]) # SimSource *(M::Matrix{T}, F::judiPointSourceModeling{D, O}) where {T, D, O} = judiPointSourceModeling{D, O}(F.F, M*F.qInjection) *(M::Matrix{T}, F::judiDataModeling{D, O}) where {T, D, O} = judiDataModeling{D, O}(M*F.rInterpolation, F.F) *(M::Matrix{T}, F::judiDataSourceModeling{D, O}) where {T, D, O} = judiDataSourceModeling{D, O}(M*F.rInterpolation, F.F, M*F.qInjection) *(M::Matrix{T}, J::judiJacobian{D, O, FT}) where {T, D, O, FT} = judiJacobian(M*J.F, M*J.q) ############################################################################################################################ # Comparisons isequal(P1::judiPropagator, P2::judiPropagator) = P1 == P2 ==(F1::judiModeling{D, O1}, F2::judiModeling{D, O2}) where {D, O1, O2} = (O1 == O2 && F1.model == F2.model && F1.options == F2.options) ==(F1::judiDataModeling, F2::judiDataModeling) = (F1.F == F2.F && F1.rInterpolation == F2.rInterpolation) ==(F1::judiPointSourceModeling, F2::judiPointSourceModeling) = (F1.F == F2.F && F1.qInjection == F2.qInjection) ==(F1::judiDataSourceModeling, F2::judiDataSourceModeling) = (F1.F == F2.F && F1.qInjection == F2.qInjection && F1.rInterpolation == F2.rInterpolation) ==(F1::judiJacobian{D, O1, FT1}, F2::judiJacobian{D, O2, FT2}) where {D, O1, O2, FT1, FT2} = (O1 == O2 && FT1 == FT2 && F1.F == F2.F && F1.q == F2.q)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2605
""" single_reduce!(x, y) Inplace reduction of y into x. """ @inline single_reduce!(x::T, y::T) where T = x .+= y for T in [judiVector, judiWeights, judiWavefield] @eval @inline single_reduce!(x::$T, y::$T) = begin push!(x, y); x end end @inline single_reduce!(x::Ref, y::Ref) = begin x[] += y[]; x end @inline function single_reduce!(x::Tuple, y::Tuple) nx = length(x) ny = length(y) (nx == ny) || throw(ArgumentError("Incompatible lengths ($nx, $ny)")) for (xi, yi) in zip(x, y) single_reduce!(xi, yi) end x end """ local_reduce!(future, other) Reduce `other` future into local `future`. This is perform remotely on the julia worker `future.where`. """ function local_reduce!(my_future::_TFuture, other_future::_TFuture) y = remotecall_fetch(fetch, other_future.where, other_future) x = fetch(my_future) single_reduce!(x, y) y = [] nothing end """ reduce_level!(futures, nleaf) Reduce one level of the reduction tree consisting of `nleaf` futures. Each `leaf` reduces into itself `futures[i]`. """ function reduce_level!(futures::Vector{_TFuture}, nleaf::Int) nleaf == 0 && return @sync for i = 1:2:2*nleaf @async remotecall_wait(local_reduce!, futures[i].where, futures[i], futures[i+1]) end deleteat!(futures, 2:2:2*nleaf) end """ reduce!(x) binary-tree reduction of a Vector of Futures `x` Adapted from `DistributedOperations.jl` (MIT license). Striped from custom types in it and extended to multiple outputs with different reduction functions. """ function reduce!(futures::Vector{_TFuture}) isnothing(_worker_pool()) && return reduce_all_workers!(futures) # Number of parallel workers nwork = nworkers(_worker_pool()) nf = length(futures) # Reduction batch. We want to avoid finished task to hang waiting for the # binary tree reduction to reach their index holding memory. bsize = min(nwork, nf) # First batch res = reduce_all_workers!(futures[1:bsize]) # Loop until all reduced for i = bsize+1:bsize:nf last = min(nf, i + bsize - 1) single_reduce!(res, reduce_all_workers!(futures[i:last])) end return res end function reduce_all_workers!(futures::Vector{_TFuture}) # Get length a next power of two for binary reduction M = length(futures) L = round(Int, log2(prevpow(2,M))) m = 2^L # remainder R = M - m # Reduce the remainder reduce_level!(futures, R) # Binary tree reduction for l = L:-1:1 reduce_level!(futures, 2^(l-1)) end fetch(futures[myid()]) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
744
export mse, studentst """ mse(x, y) Mean square error `5f0 * norm(x - y, 2)^2` and its derivative w.r.t `x` `x-y` """ function mse(x::Matrix{T}, y::Matrix{T}) where {T<:Number} f = .5f0 * norm(x - y, 2)^2 r = x - y return f::T, r::Matrix{T} end _studentst_loss(x::T, y::T, k::T) where {T<:Number} = T(1/2) * (k + 1) * log(1 + (x-y)^2 / k) """ studentst(x, y) Student's T misfit `.5 * (k+1) * log(1 + (x-y)^2 / k)` and its derivative w.r.t x `(k + 1) * (x - y) / (k + (x - y)^2)` """ function studentst(x::Matrix{T}, y::Matrix{T}; k=T(2)) where {T<:Number} k = convert(T, k) f = sum(_studentst_loss.(x, y, k)) r = (k + 1) .* (x - y) ./ (k .+ (x - y).^2) return f::T, r::Matrix{T} end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
8798
export fwi_objective, lsrtm_objective, fwi_objective!, lsrtm_objective! # Type of accepted input Dtypes = Union{<:judiVector, NTuple{N, <:judiVector} where N, Vector{<:judiVector}, <:LazyMul} MTypes = Union{<:AbstractModel, NTuple{N, <:AbstractModel} where N, Vector{<:AbstractModel}} dmTypes = Union{dmType, NTuple{N, dmType} where N, Vector{dmType}} function _multi_src_fg(model_full::AbstractModel, source::Dtypes, dObs::Dtypes, dm, options::JUDIOptions; nlind::Bool=false, lin::Bool=false, misfit::Function=mse, illum::Bool=false, data_precon=nothing, model_precon=LinearAlgebra.I) GC.gc(true) devito.clear_cache() # assert this is for single source LSRTM @assert source.nsrc == 1 "Multiple sources are used in a single-source fwi_objective" @assert dObs.nsrc == 1 "Multiple-source data is used in a single-source fwi_objective" # Load full geometry for out-of-core geometry containers d_geometry = Geometry(dObs.geometry) s_geometry = Geometry(source.geometry) # If model preconditioner is provided, apply it dm = isnothing(dm) ? dm : model_precon * dm # Limit model to area with sources/receivers if options.limit_m == true @juditime "Limit model to geometry" begin model = deepcopy(model_full) model, dm = limit_model_to_receiver_area(s_geometry, d_geometry, model, options.buffer_size; pert=dm) end else model = model_full end # Set up Python model @juditime "Devito Model" begin modelPy = devito_model(model, options, dm) dtComp = convert(Float32, modelPy."critical_dt") end # Extrapolate input data to computational grid qIn = time_resample(make_input(source), s_geometry, dtComp) dObserved = time_resample(make_input(dObs), d_geometry, dtComp) qIn, dObserved = _maybe_pad_t0(qIn, s_geometry, dObserved, d_geometry, dtComp) # Set up coordinates @juditime "Sparse coords setup" begin src_coords = setup_grid(s_geometry, size(model)) # shifts source coordinates by origin rec_coords = setup_grid(d_geometry, size(model)) # shifts rec coordinates by origin end # Setup misfit function if !isnothing(data_precon) # resample new_t = StepRangeLen(0f0, Float32(dtComp), Int64(size(dObserved, 1))) Pcomp = time_resample(data_precon, new_t) runtime_misfit = (x, y) -> misfit(Pcomp*x, Pcomp*y) else runtime_misfit = misfit end mfunc = pyfunction(runtime_misfit, Matrix{Float32}, Matrix{Float32}) length(options.frequencies) == 0 ? freqs = nothing : freqs = options.frequencies IT = illum ? (PyArray, PyArray) : (PyObject, PyObject) @juditime "Python call to J_adjoint" begin argout = rlock_pycall(ac."J_adjoint", Tuple{Float32, PyArray, IT...}, modelPy, src_coords, qIn, rec_coords, dObserved, t_sub=options.subsampling_factor, checkpointing=options.optimal_checkpointing, freq_list=freqs, ic=options.IC, is_residual=false, born_fwd=lin, nlind=nlind, dft_sub=options.dft_subsampling_factor[1], f0=options.f0, return_obj=true, misfit=mfunc, illum=illum) end @juditime "Filter empty output" begin argout = filter_none(argout) end @juditime "Remove padding from gradient" begin grad = PhysicalParameter(remove_padding(argout[2], modelPy.padsizes; true_adjoint=options.sum_padding), spacing(model), origin(model)) end fval = Ref{Float32}(argout[1]) if illum @juditime "Process illumination" begin illumu = PhysicalParameter(remove_padding(argout[3], modelPy.padsizes; true_adjoint=false), spacing(model), origin(model)) illumv = PhysicalParameter(remove_padding(argout[4], modelPy.padsizes; true_adjoint=false), spacing(model), origin(model)) end return fval, grad, illumu, illumv end return fval, grad end multi_src_fg = retry(_multi_src_fg) # Find number of experiments """ get_nexp(x) Get number of experiments given a JUDI type. By default we have only one experiment unless we input a Vector of judiType such as [model, model] to compute gradient for different cases at once. """ get_nexp(x) = 1 for T in [judiVector, AbstractModel, judiWeights, judiWavefield, PhysicalParameter, Vector{Float32}] @eval get_nexp(v::Vector{<:$T}) = length(v) @eval get_nexp(v::Tuple{N, <:$T}) where N = length(v) end # Filter arguments for given task """ get_exp(x, i) Filter input `x`` for experiment number `i`. Returns `x` is a constant not depending on experiment. """ get_exp(x, i) = x get_exp(x::Tuple{}, i::Any) = x[i] for T in [judiVector, AbstractModel, judiWeights, judiWavefield, Array{Float32}, PhysicalParameter] @eval get_exp(v::Vector{<:$T}, i) = v[i] @eval get_exp(v::NTuple{N, <:$T}, i) where N = v[i] end function check_args(args...) n = [get_nexp(a) for a in args] nexp = maximum(n) check = all(ni -> (ni==nexp || ni==1), n) check || throw(ArgumentError("Incompatible number of experiements")) return nexp end ################################################################################################ ####################### User Interface ######################################################### ################################################################################################ """ fwi_objective(model, source, dobs; options=Options()) Evaluate the full-waveform-inversion (reduced state) objective function. Returns a tuple with function value and vectorized \\ gradient. `model` is a `Model` structure with the current velocity model and `source` and `dobs` are the wavelets and \\ observed data of type `judiVector`. Example ======= function_value, gradient = fwi_objective(model, source, dobs) """ function fwi_objective(model::MTypes, q::Dtypes, dobs::Dtypes; options=Options(), kw...) n_exp = check_args(model, q, dobs) G = n_exp == 1 ? similar(model.m, model) : [similar(get_exp(model, i).m, get_exp(model, i)) for i=1:n_exp] f = fwi_objective!(G, model, q, dobs; options=options, kw...) f, G end """ lsrtm_objective(model, source, dobs, dm; options=Options(), nlind=false) Evaluate the least-square migration objective function. Returns a tuple with function value and \\ gradient. `model` is a `Model` structure with the current velocity model and `source` and `dobs` are the wavelets and \\ observed data of type `judiVector`. Example ======= function_value, gradient = lsrtm_objective(model, source, dobs, dm) """ function lsrtm_objective(model::MTypes, q::Dtypes, dobs::Dtypes, dm::dmTypes; options=Options(), nlind=false, kw...) n_exp = check_args(model, q, dobs, dm) G = n_exp == 1 ? similar(model.m, model) : [similar(get_exp(model, i).m, get_exp(model, i)) for i=1:n_exp] f = lsrtm_objective!(G, model, q, dobs, dm; options=options, nlind=nlind, kw...) f, G end """ fwi_objective!(G, model, source, dobs; options=Options()) Evaluate the full-waveform-inversion (reduced state) objective function. Returns a the function value and assigns in-place \\ the gradient to G. `model` is a `Model` structure with the current velocity model and `source` and `dobs` are the wavelets and \\ observed data of type `judiVector`. Example ======= function_value = fwi_objective!(gradient, model, source, dobs) """ function fwi_objective!(G, model::MTypes, q::Dtypes, dobs::Dtypes; options=Options(), kw...) n_exp = check_args(G, model, dobs, q) return multi_exp_fg!(Val(n_exp), G, model, q, dobs, nothing; options=options, nlind=false, lin=false, kw...) end """ lsrtm_objective!(G, model, source, dobs, dm; options=Options(), nlind=false) Evaluate the least-square migration (data-space) objective function. Returns the function value and assigns in-place \\ the gradient to G. `model` is a `Model` structure with the current velocity model and `source` and `dobs` are the wavelets and \\ observed data of type `judiVector`. Example ======= function_value = lsrtm_objective!(gradient, model, source, dobs, dm; options=Options(), nlind=false) """ function lsrtm_objective!(G, model::MTypes, q::Dtypes, dobs::Dtypes, dm::dmTypes; options=Options(), nlind=false, kw...) n_exp = check_args(G, model, q, dobs, dm) return multi_exp_fg!(Val(n_exp), G, model, q, dobs, dm; options=options, nlind=nlind, lin=true, kw...) end multi_exp_fg!(n::Val{1}, ar...; kw...) = multi_src_fg!(ar...; kw...) function multi_exp_fg!(n::Val{N}, ar...; kw...) where N f = zeros(Float32, N) @sync for i=1:N ai = (get_exp(a, i) for a in ar) @async f[i] = multi_src_fg!(ai...; kw...) end sum(f) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
4935
""" propagate(F::judiPropagator{T, mode}, q) Base propagation interfaces that calls the devito `mode` propagator (forward/adjoint/..) with `q` as a source. The return type is infered from `F`. """ function propagate(F::judiPropagator{T, O}, q::AbstractArray{Tq}, illum::Bool) where {T, Tq, O} srcGeometry, srcData, recGeometry, recData, dm = make_input(F, q) return time_modeling(F.model, srcGeometry, srcData, recGeometry, recData, dm, O, F.options, _prop_fw(F), illum) end propagate(t::Tuple{judiPropagator, AbstractArray}) = propagate(t[1], t[2], compute_illum(t[1].model, t[1].mode)) propagate(F::judiPropagator{T, O}, q::AbstractArray{T}) where {T, O} = propagate(F, q, compute_illum(F.model, O)) """ run_and_reduce(func, pool, nsrc, arg_func) Runs the function `func` for indices `1:nsrc` within arguments `func(arg_func(i))`. If the the pool is empty, a standard loop and accumulation is ran. If the pool is a julia WorkerPool or any custom Distributed pool, the loop is distributed via `remotecall` followed by are binary tree remote reduction. """ function run_and_reduce(func, pool, nsrc, arg_func::Function; kw=nothing) # Run distributed loop res = Vector{_TFuture}(undef, nsrc) for i = 1:nsrc args_loc = arg_func(i) kw_loc = isnothing(kw) ? Dict() : kw(i) res[i] = remotecall(func, pool, args_loc...; kw_loc...) end res = reduce!(res) return res end function run_and_reduce(func, ::Nothing, nsrc, arg_func::Function; kw=nothing) @juditime "Running $(func) for first src" begin kw_loc = isnothing(kw) ? Dict() : kw(1) out = func(arg_func(1)...; kw_loc...) end for i=2:nsrc @juditime "Running $(func) for src $(i)" begin kw_loc = isnothing(kw) ? Dict() : kw(i) next = func(arg_func(i)...; kw_loc...) end @juditime "Reducting $(func) for src $(i)" begin single_reduce!(out, next) end end out end _prop_fw(::judiPropagator{T, O}) where {T, O} = true _prop_fw(::judiPropagator{T, :adjoint}) where T = false _prop_fw(J::judiJacobian) = _prop_fw(J.F) src_i(::judiAbstractJacobian{T, :born, FT}, q::dmType{Tq}, ::Integer) where {T<:Number, Tq<:Pdtypes, FT} = q src_i(::judiPropagator{T, O}, q::judiMultiSourceVector{T}, i::Integer) where {T, O} = q[i] src_i(::judiPropagator{T, O}, q::Vector{<:Array{T}}, i::Integer) where {T, O} = q[i] get_nsrc(::judiPropagator, q::judiMultiSourceVector) = q.nsrc get_nsrc(::judiPropagator, q::Vector{<:Array}) = length(q) get_nsrc(J::judiAbstractJacobian, ::dmType{T}) where T<:Number = J.q.nsrc """ multi_src_propagate(F::judiPropagator{T, O}, q::AbstractVector) Propagates the source `q` with the `F` propagator. The return type is infered from `F` and the propagation kernel is defined by `O` (forward, adjoint, born or adjoint_born). """ function multi_src_propagate(F::judiPropagator{T, O}, q::AbstractArray{Tq}) where {T<:Number, Tq<:Pdtypes, O} q = process_input_data(F, q) # Number of sources and init result nsrc = get_nsrc(F, q) pool = _worker_pool() illum = compute_illum(F.model, O) arg_func = i -> (F[i], src_i(F, q, i), illum) # Distribute source res = run_and_reduce(propagate, pool, nsrc, arg_func) res = update_illum(res, F) res = _project_to_physical_domain(res, F.model) res = as_vec(res, Val(F.options.return_array)) return res end """ multi_src_fg!(G, model, q, dobs, dm; options=Options(), nlind=false, lin=false) This is the main multi-source wrapper function for `fwi_objective` and `lsrtm_objective`. Computes the misifit and gradient (LSRTM if `lin` else FWI) for the given `q` source and `dobs` and perturbation `dm`. """ function multi_src_fg!(G, model, q, dobs, dm; options=Options(), ms_func=multi_src_fg, kw...) # Number of sources and init result nsrc = try q.nsrc catch; dobs.nsrc end pool = _worker_pool() illum = compute_illum(model, :adjoint_born) # Distribute source arg_func = i -> (model, q[i], dobs[i], dm, options[i]) kw_func = i -> Dict(:illum=> illum, Dict(k => kw_i(v, i) for (k, v) in kw)...) # Distribute source res = run_and_reduce(ms_func, pool, nsrc, arg_func; kw=kw_func) res = update_illum(res, model, :adjoint_born) f, g = as_vec(res, Val(options.return_array)) G .+= g return f end kw_i(b::Bool, ::Integer) = b kw_i(f::Function, ::Integer) = f kw_i(msv::judiMultiSourceVector, i::Integer) = msv[i] kw_i(P::DataPreconditioner, i::Integer) = P[i] kw_i(P::ModelPreconditioner, ::Integer) = P kw_i(P::MultiPreconditioner{TP, T}, i::Integer) where {TP, T} = MultiPreconditioner{TP, T}([kw_i(Pi, i) for Pi in P.precs]) kw_i(t::Tuple, i::Integer) = tuple(kw_i(ti, i) for ti in t) kw_i(d::Vector{<:Preconditioner}, i::Integer) = foldr(*, [kw_i(di, i) for di in d]) kw_i(d::Tuple{Vararg{<:Preconditioner}}, i::Integer) = foldr(*, [kw_i(di, i) for di in d])
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
10016
export devito_interface ########################################### Logging utility ######################################################## _op_str(fw::Bool) = fw ? "F" : "F'" ########################################## Python pycall wrappers with lock ######################################### _outtype(::Nothing, ::Integer, type) = type function _outtype(b::Bool, n::Integer, type) T = b ? PyArray : PyObject IT = n==1 ? (T,) : (T, T) return Tuple{type, IT...} end function wrapcall_data(func, args...;kw...) rtype = _outtype(get(kw, :illum, nothing), 1, PyArray) out = rlock_pycall(func, rtype, args...;kw...) tup = isa(out, Tuple) # The returned array `out` is a Python Row-Major array with dimension (time, rec). # Unlike standard array we want to keep this ordering in julia (time first) so we need to # make a wrapper around the pointer, to flip the dimension the re-permute the dimensions. shot = tup ? out[1] : out shot = permutedims(unsafe_wrap(Array, shot.data, reverse(size(shot))), length(size(shot)):-1:1) # Check what to return out = tup ? (shot, out[2]) : shot return out end function wrapcall_weights(func, args...;kw...) rtype = _outtype(get(kw, :illum, nothing), 1, PyArray) out = rlock_pycall(func, rtype, args...;kw...) return out end function wrapcall_wf(func, args...;kw...) rtype = _outtype(get(kw, :illum, nothing), 1, Array{Float32}) out = rlock_pycall(func, rtype, args...;kw...) return out end function wrapcall_grad(func, args...;kw...) rtype = _outtype(get(kw, :illum, nothing), 2, PyArray) out = rlock_pycall(func, rtype, args...;kw...) return out end # legacy wrapcall_function = wrapcall_grad # d_obs = Pr*F*Ps'*q function devito_interface(modelPy::PyObject, srcGeometry::Geometry, srcData::Array, recGeometry::Geometry, recData::Nothing, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("Pr*$(_op_str(fw))*Ps'*q") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, srcGeometry, dtComp) qIn = _maybe_pad_t0(qIn, srcGeometry, recGeometry, dtComp) # Set up coordinates with devito dimensions src_coords = setup_grid(srcGeometry, modelPy.shape) rec_coords = setup_grid(recGeometry, modelPy.shape) # Devito call return wrapcall_data(ac."forward_rec", modelPy, src_coords, qIn, rec_coords, fw=fw, f0=options.f0, illum=illum) end # u = F*Ps'*q function devito_interface(modelPy::PyObject, srcGeometry::Geometry, srcData::Array, recGeometry::Nothing, recData::Nothing, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("$(_op_str(fw))*Ps'*q") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, srcGeometry, dtComp) # Set up coordinates with devito dimensions src_coords = setup_grid(srcGeometry, modelPy.shape) # Devito call return wrapcall_wf(ac."forward_no_rec", modelPy, src_coords, qIn, fw=fw, illum=illum) end # d_obs = Pr*F*u function devito_interface(modelPy::PyObject, srcGeometry::Nothing, srcData::Array, recGeometry::Geometry, recData::Nothing, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("Pr*$(_op_str(fw))*u") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") # Set up coordinates with devito dimensions rec_coords = setup_grid(recGeometry, modelPy.shape) # Devito call return wrapcall_data(ac."forward_wf_src", modelPy, srcData, rec_coords, fw=fw, f0=options.f0, illum=illum) end # u_out = F*u_in function devito_interface(modelPy::PyObject, srcGeometry::Nothing, srcData::Array, recGeometry::Nothing, recData::Nothing, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("$(_op_str(fw))*u_in") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") # Devito call return wrapcall_wf(ac."forward_wf_src_norec", modelPy, srcData, fw=fw, illum=illum) end # d_lin = J*dm function devito_interface(modelPy::PyObject, srcGeometry::Geometry, srcData::Array, recGeometry::Geometry, recData::Nothing, dm::Union{PhysicalParameter, Array}, options::JUDIOptions, illum::Bool, fw::Bool) judilog("J($(_op_str(fw)), q)*dm") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, srcGeometry, dtComp) qIn = _maybe_pad_t0(qIn, srcGeometry, recGeometry, dtComp) # Set up coordinates with devito dimensions #origin = get_origin(modelPy) src_coords = setup_grid(srcGeometry, modelPy.shape) rec_coords = setup_grid(recGeometry, modelPy.shape) # Devito call return wrapcall_data(ac."born_rec", modelPy, src_coords, qIn, rec_coords, fw=fw, ic=options.IC, f0=options.f0, illum=illum) end # dm = J'*d_lin function devito_interface(modelPy::PyObject, srcGeometry::Geometry, srcData::Array, recGeometry::Geometry, recData::Array, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("J($(_op_str(fw)), q)'*d_lin") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, srcGeometry, dtComp) dIn = time_resample(recData, recGeometry, dtComp) qIn, dIn = _maybe_pad_t0(qIn, srcGeometry, dIn, recGeometry, dtComp) # Set up coordinates with devito dimensions src_coords = setup_grid(srcGeometry, modelPy.shape) rec_coords = setup_grid(recGeometry, modelPy.shape) length(options.frequencies) == 0 ? freqs = nothing : freqs = options.frequencies return wrapcall_grad(ac."J_adjoint", modelPy, src_coords, qIn, rec_coords, dIn, fw=fw, t_sub=options.subsampling_factor, checkpointing=options.optimal_checkpointing, freq_list=freqs, ic=options.IC, is_residual=true, dft_sub=options.dft_subsampling_factor[1], f0=options.f0, illum=illum) end ###################################################################################################################################################### # d_obs = Pr*F*Pw'*w - modeling w/ extended source function devito_interface(modelPy::PyObject, weights::Array, srcData::Array, recGeometry::Geometry, recData::Nothing, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("Pr*$(_op_str(fw))*Pw'*w") weights = pad_array(reshape(weights, modelPy.shape), modelPy.padsizes; mode=:zeros) # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, recGeometry, dtComp) # Set up coordinates with devito dimensions rec_coords = setup_grid(recGeometry, modelPy.shape) # Devito call return wrapcall_data(ac."forward_rec_w", modelPy, weights, qIn, rec_coords, fw=fw, f0=options.f0, illum=illum) end # dw = Pw*F'*Pr'*d_obs - adjoint modeling w/ extended source function devito_interface(modelPy::PyObject, recGeometry::Geometry, recData::Array, srcData::Array, ::Nothing, ::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("Pw*$(_op_str(fw))*Pr'*d_obs") # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") dIn = time_resample(recData, recGeometry, dtComp) qIn = time_resample(srcData, recGeometry, dtComp) qIn, dIn = _maybe_pad_t0(qIn, recGeometry, dIn, recGeometry, dtComp) # Set up coordinates with devito dimensions rec_coords = setup_grid(recGeometry, modelPy.shape) # Devito call return wrapcall_weights(ac."adjoint_w", modelPy, rec_coords, dIn, qIn, fw=fw, f0=options.f0, illum=illum) end # Jacobian of extended source modeling: d_lin = J*dm function devito_interface(modelPy::PyObject, weights::Array, srcData::Array, recGeometry::Geometry, recData::Nothing, dm::Union{PhysicalParameter, Array}, options::JUDIOptions, illum::Bool, fw::Bool) judilog("Jw($(_op_str(fw)), q)*dm") weights = pad_array(reshape(weights, modelPy.shape), modelPy.padsizes; mode=:zeros) # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, recGeometry, dtComp) # Set up coordinates with devito dimensions rec_coords = setup_grid(recGeometry, modelPy.shape) # Devito call return wrapcall_data(ac."born_rec_w", modelPy, weights, qIn, rec_coords, fw=fw, ic=options.IC, f0=options.f0, illum=illum) end # Adjoint Jacobian of extended source modeling: dm = J'*d_lin function devito_interface(modelPy::PyObject, weights::Array, srcData::Array, recGeometry::Geometry, recData::Array, dm::Nothing, options::JUDIOptions, illum::Bool, fw::Bool) judilog("Jw($(_op_str(fw)), q)'*d_lin") weights = pad_array(reshape(weights, modelPy.shape), modelPy.padsizes; mode=:zeros) # Interpolate input data to computational grid dtComp = convert(Float32, modelPy."critical_dt") qIn = time_resample(srcData, recGeometry, dtComp) dIn = time_resample(recData, recGeometry, dtComp) qIn, dIn = _maybe_pad_t0(qIn, recGeometry, dIn, recGeometry, dtComp) # Set up coordinates with devito dimensions rec_coords = setup_grid(recGeometry, modelPy.shape) length(options.frequencies) == 0 ? freqs = nothing : freqs = options.frequencies return wrapcall_grad(ac."J_adjoint", modelPy, nothing, qIn, rec_coords, dIn, fw=fw, t_sub=options.subsampling_factor, checkpointing=options.optimal_checkpointing, freq_list=freqs, ic=options.IC, ws=weights, is_residual=true, dft_sub=options.dft_subsampling_factor[1], f0=options.f0, illum=illum) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
4690
export time_modeling GeomOrNot = Union{Geometry, Array, Nothing} ArrayOrNot = Union{Array, PyArray, PyObject, Nothing} PhysOrNot = Union{PhysicalParameter, Array, Nothing} # Setup time-domain linear or nonlinear foward and adjoint modeling and interface to devito function _time_modeling(model_full::AbstractModel, srcGeometry::GeomOrNot, srcData::ArrayOrNot, recGeometry::GeomOrNot, recData::ArrayOrNot, dm::PhysOrNot, op::Symbol, options::JUDIOptions, fw::Bool, illum::Bool) GC.gc(true) devito.clear_cache() # Load full geometry for out-of-core geometry containers recGeometry = Geometry(recGeometry) srcGeometry = Geometry(srcGeometry) # Reutrn directly for J*0 if (op==:born && norm(dm) == 0) return judiVector(recGeometry, zeros(Float32, recGeometry.nt[1], length(recGeometry.xloc[1]))) end # limit model to area with sources/receivers if options.limit_m == true @juditime "Limit model to geometry" begin model = deepcopy(model_full) model, dm = limit_model_to_receiver_area(srcGeometry, recGeometry, model, options.buffer_size; pert=dm) end else model = model_full end # Set up Python model structure @juditime "Devito Model" begin modelPy = devito_model(model, options, dm) end # Devito interface @juditime "Propagation" begin argout = devito_interface(modelPy, srcGeometry, srcData, recGeometry, recData, dm, options, illum, fw) end @juditime "Filter empty output" begin argout = filter_none(argout) end argout = post_process(argout, modelPy, Val(op), recGeometry, srcGeometry, options) argout = save_to_disk(argout, srcGeometry, srcData, options, Val(fw), Val(options.save_data_to_disk)) return argout end # Backward compat for external packages post_process(t::Tuple, modelPy::PyObject, op::Val, Gr, o::JUDIOptions) = post_process(t, modelPy, op, Gr, nothing, o) # Post processing of output of devito based on parameters post_process(t::Tuple, modelPy::PyObject, op::Val, Gr, Gs, o::JUDIOptions) = (post_process(t[1], modelPy, op, Gr, Gs, o), post_process(Base.tail(t), modelPy, Val(:adjoint_born), Gr, Gs, Options(;sum_padding=false))...) post_process(t::Tuple{}, ::PyObject, ::Val, ::Any, ::Any, ::JUDIOptions) = t function post_process(v::AbstractArray{T, N}, modelPy::PyObject, ::Val{:adjoint}, ::Any, ::Any, options::JUDIOptions) where {T, N} if N == modelPy.dim return judiWeights{T}(1, [remove_padding(v, modelPy.padsizes; true_adjoint=false)]) else return judiWavefield{T}(1, [calculate_dt(modelPy)], [v]) end end post_process(v::AbstractArray{T}, modelPy::PyObject, ::Val{:forward}, ::Any, ::Any, options::JUDIOptions) where {T<:Number} = judiWavefield{T}(1, [calculate_dt(modelPy)], [v]) function post_process(v::AbstractArray{T}, modelPy::PyObject, ::Val{:adjoint_born}, Gr::Geometry{T}, ::Any, options::JUDIOptions) where {T<:Number} grad = remove_padding(v, modelPy.padsizes; true_adjoint=options.sum_padding) return PhysicalParameter(grad, modelPy.spacing, modelPy.origin) end post_process(v::AbstractArray{T}, modelPy::PyObject, ::Val{:forward}, G::Geometry{T}, Gs, options::JUDIOptions) where {T<:Number} = post_process_src(v, calculate_dt(modelPy), G, Gs) post_process(v::AbstractArray{T}, modelPy::PyObject, ::Val{:adjoint}, G::Geometry{T}, Gs, options::JUDIOptions) where {T<:Number} = post_process_src(v, calculate_dt(modelPy), G, Gs) post_process(v::AbstractArray{T}, modelPy::PyObject, ::Val{:born}, G::Geometry{T}, Gs, options::JUDIOptions) where {T<:Number} = post_process_src(v, calculate_dt(modelPy), G, Gs) post_process_src(v::AbstractArray{T}, dt::T, Gr::Geometry, Gs::Geometry) where {T<:Number} = judiVector{T, Matrix{T}}(1, Gr, [time_resample(v, dt, Gs, Gr)]) post_process_src(v::AbstractArray{T}, dt::T, Gr::Geometry, ::Any) where {T<:Number} = judiVector{T, Matrix{T}}(1, Gr, [time_resample(v, dt, Gr)]) # Saving to disk utilities save_to_disk(shot, args...) = shot save_to_disk(t::Tuple, args...) = save_to_disk(t[1], args...), Base.tail(t)... save_to_disk(shot::judiVector{T, Matrix{T}}, ::Any, ::Any, ::Any, ::Any, ::Val{false}) where {T<:Number} = shot function save_to_disk(shot::judiVector{T}, srcGeometry::GeometryIC{T}, srcData::Array, options::JUDIOptions, ::Val{true}, ::Val{true}) where {T<:Number} @juditime "Dump data to segy" begin container = write_shot_record(srcGeometry, [srcData], shot.geometry, shot.data, options) dout = judiVector(container) end return dout end time_modeling = retry(_time_modeling)
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
5538
export twri_objective, TWRIOptions # TWRI options mutable struct TWRIOptions grad_corr::Bool comp_alpha::Bool weight_fun eps params Invq::String end """ TWRIOptions grad_corr::Bool comp_alpha::Bool weight_fun eps params::Symbol Invq::String Options structure for TWRI. `grad_corr`: Whether to add the gradient correction J'(m0, q)*∇_y `comp_alpha`: Whether to compute optimal alpha (alpha=1 if not) `weight_fun`: Whether to apply focusing/weighting function to F(m0)'*y and its norm `eps`: Epsilon (noise level) value (default=0) `Invq`: How to compute F'Y, either as full field or as a rank 1 approximation `w(t)*q(x)` using the source wavelet for w `param`: Which gradient to compute. Choices are `nothing` (objective only), `:m`, `:y` or `:all` Constructor ========== All arguments are optional keyword arguments with the following default values: TWRIOptions(;grad_corr=false, comp_alpha=true, weight_fun=nothing, eps=0, params=:m) """ TWRIOptions(;grad_corr=false, comp_alpha=true, weight_fun=nothing, eps=0, params=:m, Invq="standard")= TWRIOptions(grad_corr, comp_alpha, weight_fun, eps, params, Invq) function getindex(opt::TWRIOptions, srcnum::Int) eloc = length(opt.eps) == 1 ? opt.eps : opt.eps[srcnum] return TWRIOptions(opt.grad_corr, opt.comp_alpha, opt.weight_fun, eloc, opt.params, opt.Invq) end subsample(opt::TWRIOptions, srcnum::Int) = getindex(opt, srcnum) function _twri_objective(model_full::AbstractModel, source::judiVector, dObs::judiVector, y::Union{judiVector, Nothing}, options::JUDIOptions, optionswri::TWRIOptions) # Load full geometry for out-of-core geometry containers dObs.geometry = Geometry(dObs.geometry) source.geometry = Geometry(source.geometry) # Limit model to area with sources/receivers if options.limit_m == true model = deepcopy(model_full) model = limit_model_to_receiver_area(source.geometry, dObs.geometry, model, options.buffer_size) else model = model_full end # Set up Python model structure modelPy = devito_model(model, options) dtComp = convert(Float32, modelPy."critical_dt") # Extrapolate input data to computational grid qIn = time_resample(make_input(source), source.geometry, dtComp) dObserved = time_resample(make_input(dObs), dObs.geometry, dtComp) if isnothing(y) Y = nothing else Y = time_resample(make_input(y), y.geometry, dtComp) _, Y = _maybe_pad_t0(qIn, source.geometry, Y, y.geometry, dtComp) end qIn, dObserved = _maybe_pad_t0(qIn, source.geometry, dObserved, dObs.geometry, dtComp) # Set up coordinates src_coords = setup_grid(source.geometry, size(model)) # shifts source coordinates by origin rec_coords = setup_grid(dObs.geometry, size(model)) # shifts rec coordinates by origin ~isempty(options.frequencies) ? freqs = options.frequencies : freqs = nothing ~isempty(options.frequencies) ? (wfilt, freqs) = filter_w(qIn, dtComp, freqs) : wfilt = nothing obj, gradm, grady = rlock_pycall(ac."wri_func", PyObject, modelPy, src_coords, qIn, rec_coords, dObserved, Y, t_sub=options.subsampling_factor, grad=optionswri.params, grad_corr=optionswri.grad_corr, eps=optionswri.eps, alpha_op=optionswri.comp_alpha, w_fun=optionswri.weight_fun, freq_list=freqs, wfilt=wfilt, f0=options.f0) if (optionswri.params in [:m, :all]) gradm = remove_padding(gradm, modelPy.padsizes; true_adjoint=options.sum_padding) gradm = PhysicalParameter(gradm, spacing(model), origin(model)) end if ~isnothing(grady) grady = time_resample(grady, dtComp, dObs.geometry) grady = judiVector(dObs.geometry, grady) end return filter_out(Ref{Float32}(obj), gradm, grady) end function filter_w(qIn, dt, freqs) ff = FFTW.fftfreq(length(qIn), 1/dt) df = ff[2] - ff[1] inds = [findmin(abs.(ff.-f))[2] for f in freqs] DFT = joDFT(length(qIn); DDT=Float32) R = joRestriction(size(DFT,1), inds; RDT=Complex{Float32}, DDT=Complex{Float32}) qfilt = DFT'*R'*R*DFT*qIn return qfilt, freqs end filter_out(obj, ::Nothing, ::Nothing) = obj filter_out(obj, m, ::Nothing) = obj, m filter_out(obj, ::Nothing, y) = obj, y filter_out(obj, m, y) = obj, m, y twri = retry(_twri_objective) # Parallel """ twri_objective(model, source, dobs; options=Options(), optionswri=TWRIOptions()) Evaluate the time domain Wavefield reconstruction inversion objective function. Returns a tuple with function value and \\ gradient(s) w.r.t to m and/or y. `model` is a `Model` structure with the current velocity model and `source` and `dobs` are the wavelets and \\ observed data of type `judiVector`. Example ======= function_value, gradient = fwi_objective(model, source, dobs) """ function twri_objective(model::AbstractModel, source::judiVector, dObs::judiVector, y::Union{judiVector, Nothing}; options=Options(), optionswri=TWRIOptions()) pool = _worker_pool() if isnothing(y) arg_func = j -> (model, source[j], dObs[j], nothing, options[j], optionswri[j]) else arg_func = j -> (model, source[j], dObs[j], y[j], options[j], optionswri[j]) end results = run_and_reduce(twri, pool, source.nsrc, arg_func) # Collect and reduce gradients out = as_vec(results, Val(options.return_array)) return out end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
14173
export DataMute, FrequencyFilter, judiTimeDerivative, judiTimeIntegration, TimeDifferential export judiFilter, filter_data, judiDataMute, muteshot, judiTimeGain time_resample(t::Tuple{Vararg{<:DataPreconditioner}}, newt) = prod(time_resample(ti, newt) for ti in t) time_resample(t::Vector{<:DataPreconditioner}, newt) = prod(time_resample(ti, newt) for ti in t) ############################################ Data mute ############################################### """ struct DataMute{T, mode} <: DataPreconditioner{T, T} srcGeom::Geometry recGeom::Geometry vp::Vector{T} t0::Vector{T} taperwidth::Vector{Int64} end Data mute linear operator a where {T, N}sociated with source `srcGeom` and receiver `recGeom` geometries used to compute the distance to the source for each trace in the data. Data mute preconditionner. Supports two modes (:reflection, :turning) that mute either the turning waves (standard direct wave mute) or mutes the reflections. A cosine tapr is applied with width `taperwidth` to avoid abrupt change and infinite frequency jumps in the data. Constructors ============ judiDataMute(srcGeom, recGeom; vp=1500, t0=.1, mode=:reflection, taperwidth=floor(Int, 2/t0)) Construct the data mute operator from the source `srcGeom` and receiver `recGeom` geometries. judiDataMute(q, d; vp=1500, t0=.1, mode=:reflection, taperwidth=floor(Int, 2/t0)) Construct the data mute operator from the judivector source `q` and judivector data `d`. Parameters ============ The following optional paramet where {T, N}rs control the muting operator - `vp`: P wave velocity of the direct wave (usually water velocity). Can be a constant or a Vector with one value per source position. Devfaults to `1500m/s` - `t0`: Time shift in seconds (usually width of the wavelet). Defaults to ``.1 sec`` - `mode`: `:reflection` to keep the reflections and mute above the direct wave (i.e for RTM) `:turning` to keep the turning waves and mute below the direct wave (i.e for FWI) - `taperwidth`: Width of the cosine taper in number of samples. Defaults to `2 / t0` """ struct DataMute{T, mode} <: DataPreconditioner{T, T} m::Integer srcGeom::Geometry recGeom::Geometry vp::Vector{T} t0::Vector{T} taperwidth::Vector{Int64} end function judiDataMute(srcGeom::Geometry, recGeom::Geometry; vp=1500, t0=.1, mode=:reflection, taperwidth=floor(Int, 2/t0)) mode ∈ [:reflection, :turning] || throw(ArgumentError("Only reflection (mute turning) and turning (mute refelctions) modes supported")) nsrc = get_nsrc(srcGeom) get_nsrc(recGeom) == nsrc || throw(ArgumentError("Incompatible geometries with $(nsrc) and $(get_nsrc(recGeom)) number of sources")) VP = Vector{Float32}(undef, nsrc); VP .= vp T0 = Vector{Float32}(undef, nsrc); T0 .= t0 TW = Vector{Int64}(undef, nsrc); TW .= taperwidth m = n_samples(recGeom) return DataMute{Float32, mode}(m, srcGeom, recGeom, VP, T0, TW) end judiDataMute(q::judiVector, d::judiVector; kw...) = judiDataMute(q.geometry, d.geometry; kw...) # Implementation matvec_T(D::DataMute{T, mode} , x::AbstractVecOrMat{T}) where {T, mode} = matvec(D, x) # Basically a mask so symmetric and self adjoint matvec(D::DataMute{T, mode} , x::AbstractVecOrMat{T}) where {T, mode} = muteshot(x, D.srcGeom, D.recGeom; vp=D.vp, t0=D.t0, mode=mode, taperwidth=D.taperwidth) # Real diagonal operator conj(I::DataMute{T, mode}) where {T, mode} = I adjoint(I::DataMute{T, mode}) where {T, mode} = I transpose(I::DataMute{T, mode}) where {T, mode} = I # getindex for source subsampling function getindex(P::DataMute{T, mode}, i) where {T, mode} geomi = P.recGeom[i] m = n_samples(geomi) inds = isa(i, Integer) ? (i:i) : i DataMute{T, mode}(m, P.srcGeom[inds], geomi, P.vp[inds], P.t0[inds], P.taperwidth[inds]) end function time_resample(d::DataMute{T, mode}, taxis::AbstractRange) where {T, mode} @assert get_nsrc(d.recGeom) == 1 new_rgeom = deepcopy(d.recGeom) new_sgeom = deepcopy(d.srcGeom) new_rgeom.taxis[1] = taxis new_sgeom.taxis[1] = taxis taperwidth = trunc.(Int64, d.taperwidth .* (d.recGeom.dt ./ taxis.step)) return DataMute{T, mode}(d.m, new_sgeom, new_rgeom, d.vp, d.t0, taperwidth) end function _mutetrace!(t::AbstractVector{T}, taper::AbstractVector{T}, i::Integer, taperwidth::Integer, ::Val{:reflection}) where T t[1:i-taperwidth] .= 0f0 t[i-taperwidth+1:i] .*= taper end function _mutetrace!(t::AbstractVector{T}, taper::AbstractVector{T}, i::Integer, taperwidth::Integer, ::Val{:turning}) where T t[i+taperwidth+1:end] .= 0f0 t[i+1:i+taperwidth] .*= taper end function muteshot!(shot::AbstractMatrix{T}, rGeom::Geometry, srcGeom::Geometry; vp=1500, t0=.1, mode=:reflection, taperwidth=floor(Int, 2/t0)) where T sGeom = Geometry(srcGeom) rGeom = Geometry(rGeom) nt, nrec = size(shot) taper = _taper(Val(mode), taperwidth) # Loop over traces @inbounds for t=1:nrec r = radius(rGeom, sGeom, t) tt = 1f3 * (r / vp + t0) / get_dt(rGeom, 1) i = min(max(1, floor(Int, tt)), nt) if _tapew(i, taperwidth, nt, Val(mode)) _mutew!(view(shot, :, t), taper, i, nt, Val(mode)) else _mutetrace!(view(shot, :, t), taper, i, taperwidth, Val(mode)) end end end function muteshot(shot::VecOrMat{T}, srcGeom::Geometry, recGeom::Geometry; vp=1500, t0=.1, mode=:reflection, taperwidth=floor(Int, 2/t0)) where {T<:Number} sr = reshape(shot, recGeom) for s=1:get_nsrc(recGeom) sri = view(sr, :, :, s) muteshot!(sri, recGeom[s], srcGeom[s]; vp=vp[s], t0=t0[s], mode=mode, taperwidth=taperwidth[s]) end return reshape(sr, size(shot)) end function muteshot(shot::judiVector, srcGeom::Geometry; vp=1500, t0=.1, mode=:reflection, taperwidth=20) out = deepcopy(get_data(shot)) for s=1:out.nsrc muteshot!(out.data[s], shot.geometry[s], srcGeom[s]; vp=vp[s], t0=t0[s], mode=mode, taperwidth=taperwidth[s]) end out end muteshot(shot::judiVector, srcGeom::Geometry, recGeom::Geometry; kw...) = muteshot(shot, srcGeom; kw...) """ struct FrequencyFilter recGeom Bandpass filter linear operator. Filters the input `judiVector` or `Vector` Constructor ============ judiFilter(geometry, fmin, fmax) judiFilter(judiVector, fmin, fmax) """ struct FrequencyFilter{T, fm, FM} <: DataPreconditioner{T, T} m::Integer recGeom::Geometry end judiFilter(geometry::Geometry, fmin::T, fmax::T) where T = judiFilter(geometry, Float32(fmin), Float32(fmax)) judiFilter(geometry::Geometry, fmin::Float32, fmax::Float32) = FrequencyFilter{Float32, fmin, fmax}(n_samples(geometry), geometry) judiFilter(v::judiVector, fmin, fmax) = judiFilter(v.geometry, fmin, fmax) function matvec(D::FrequencyFilter{T, fm, FM}, x::VecOrMat{T}) where {T, fm, FM} dr = reshape(x, D.recGeom) for j=1:get_nsrc(D.recGeom) dri = view(dr, :, :, j) filter!(dri, dri, get_dt(D.recGeom, j); fmin=fm, fmax=FM) end return reshape(vcat(dr...), size(x)) end function matvec(::FrequencyFilter{T, fm, FM}, Din::judiVector{T, AT}) where {T, fm, FM, AT} Dout = deepcopy(Din) for j=1:Dout.nsrc filter!(Dout.data[j], Din.data[j], get_dt(Din.geometry, j); fmin=fm, fmax=FM) end return Dout end # getindex for source subsampling function getindex(P::FrequencyFilter{T, fm, FM}, i) where {T, fm, FM} geomi = P.recGeom[i] return FrequencyFilter{T, fm, FM}(n_samples(geomi), geomi) end function time_resample(d::FrequencyFilter{T, fm, fM}, taxis::AbstractRange) where {T, fm, fM} @assert get_nsrc(d.recGeom) == 1 new_geom = deepcopy(d.recGeom) new_geom.taxis[1] = taxis return FrequencyFilter{T, fm, fM}(d.m, new_geom) end # filtering is self-adjoint (diagonal in fourier domain) matvec_T(D::FrequencyFilter{T, fm, FM}, x) where {T, fm, FM} = matvec(D, x) # Real diagonal operator conj(I::FrequencyFilter{T}) where T = I adjoint(I::FrequencyFilter{T}) where T = I transpose(I::FrequencyFilter{T}) where T = I function tracefilt!(x, y, ypad, filter) n = length(y) ypad[n:end] .= y ypad[1:n] .= view(y, n:-1:1) x .= filtfilt(filter, ypad)[n:end] nothing end function filter!(dout::AbstractArray{T, N}, din::AbstractArray{T, N}, dt::T; fmin=T(0.01), fmax=T(100)) where {T, N} if fmin == 0 responsetype = Lowpass(fmax; fs=1e3/dt) elseif isinf(fmax) responsetype = Highpass(fmin; fs=1e3/dt) else responsetype = Bandpass(fmin, fmax; fs=1e3/dt) end filter = digitalfilter(responsetype, Butterworth(5)) ytmp = zeros(T, size(din, 1)*2-1) map(i-> tracefilt!(selectdim(dout, N, i), selectdim(din, N, i), ytmp, filter), 1:size(dout, 2)) end filter_data(Din::judiVector; fmin=0, fmax=Inf) = judiFilter(Din.geometry, fmin, fmax)*Din filter_data(Din::judiVector, ::Any; fmin=0, fmax=Inf) = filter_data(Din; fmin=fmin, fmax=fmax) """ filter(Din, dt_in; fmin=0, fmax=25) Performs a causal filtering [fmin, fmax] on the input data bases on its sampling rate `dt`. Automatically perfroms a lowpass if fmin=0 (default) """ function filter_data(Din::Matrix{T}, dt_in; fmin=0, fmax=Inf) where T out = similar(Din) filter!(out, Din, dt_in; fmin=T(fmin), fmax=T(fmax)) return out end # Legacy `low_filter` low_filter(ar...) = filter_data(ar...) # Legacy top mute is deprecated since only working for marine data judiMarineTopmute2D(::Integer, geometry::Geometry; params=Array{Any}(undef, 3), flipmask=false) = throw(MethodError(judiMarineTopmute2D, "judiMarineTopmute2D is deprecated due to its limitations and inaccuracy, please use judiDataMute")) """ struct TimeDifferential recGeom Differential operator of order `K` to be applied along the time dimension. Applies the ilter `w^k` where `k` is the order. For example, the tinme derivative is `TimeDifferential{1}` and the time integration is `TimeDifferential{-1}` Constructor ============ judiTimeIntegration(recGeom, order) judiTimeIntegration(judiVector, order) judiTimeDerivative(recGeom, order) judiTimeDerivative(judiVector, order) """ struct TimeDifferential{T, K} <: DataPreconditioner{T, T} m::Integer recGeom::Geometry end TimeDifferential(g::Geometry{T}, order::Number) where T = TimeDifferential{T, order}(n_samples(g), g) judiTimeDerivative(v::judiVector{T, AT}, order::Number) where {T, AT} = TimeDifferential(v.geometry, order) judiTimeDerivative(g::Geometry{T}, order::Number) where {T} = TimeDifferential(g, order) judiTimeIntegration(v::judiVector{T, AT}, order::Number) where {T, AT} = TimeDifferential(v.geometry, -order) judiTimeIntegration(g::Geometry{T}, order::Number) where {T} = TimeDifferential(g, -order) # Real diagonal operator conj(D::TimeDifferential{T, K}) where {T, K} = D adjoint(D::TimeDifferential{T, K}) where {T, K} = D transpose(D::TimeDifferential{T, K}) where {T, K} = D inv(D::TimeDifferential{T, K}) where {T, K} = TimeDifferential{T, -K}(D.m, D.recGeom) # diagonal in fourier domain so self-adjoint matvec_T(D::TimeDifferential{T, K}, x) where {T, K} = matvec(D, x) # getindex for source subsampling function getindex(P::TimeDifferential{T, K}, i) where {T, K} geomi = P.recGeom[i] m = n_samples(geomi) TimeDifferential{T, K}(m, geomi) end function time_resample(d::TimeDifferential{T, K}, taxis::AbstractRange) where {T, K} @assert get_nsrc(d.recGeom) == 1 new_geom = deepcopy(d.recGeom) new_geom.taxis[1] = taxis return TimeDifferential{T, K}(d.m, new_geom) end function matvec(D::TimeDifferential{T, K}, x::judiVector{T, AT}) where {T, AT, K} out = similar(x) for s=1:out.nsrc # make omega^K ω = 2 .* pi .* fftfreq(get_nt(D.recGeom, s), 1/get_dt(D.recGeom, s)) ω[ω.==0] .= 1f0 ω .= abs.(ω).^K out.data[s] .= real.(ifft(ω .* fft(x.data[s], 1), 1)) end return out end function matvec(D::TimeDifferential{T, K}, x::Array{T}) where {T, K} xr = reshape(x, D.recGeom) out = similar(xr) # make omega^K ω = 2 .* pi .* fftfreq(get_nt(D.recGeom, 1), 1/get_dt(D.recGeom, 1)) ω[ω.==0] .= 1f0 ω .= abs.(ω).^K out .= real.(ifft(ω .* fft(xr, 1), 1)) return reshape(out, size(x)) end """ struct TimeGain recGeom Apply gain `t^K` to the data along the time axis for each trace. This is used in practice to correct for 3D amplitude decay when running 2D inversion Constructor ============ judiTimeGain(recGeom, pow) judiTimeGain(judiVector, pow) """ struct TimeGain{T, K} <: DataPreconditioner{T, T} m::Integer recGeom::Geometry TimeGain{T, K}(recGeom::Geometry) where {T, K} = new{T, K}(n_samples(recGeom), recGeom) end TimeGain(g::Geometry{T}, pow::Number) where T = TimeGain{T, pow}(g) judiTimeGain(v::judiVector{T, AT}, pow::Number) where {T, AT} = TimeGain(v.geometry, pow) judiTimeGain(g::Geometry{T}, pow::Number) where {T} = TimeGain(g, pow) # Real diagonal operator conj(D::TimeGain{T, K}) where {T, K} = D adjoint(D::TimeGain{T, K}) where {T, K} = D transpose(D::TimeGain{T, K}) where {T, K} = D inv(D::TimeGain{T, K}) where {T, K} = TimeGain{T, -K}(D.recGeom) # diagonal in fourier domain so self-adjoint matvec_T(D::TimeGain{T, K}, x) where {T, K} = matvec(D, x) # getindex for source subsampling getindex(D::TimeGain{T, K}, i) where {T, K} = TimeGain{T, K}(D.recGeom[i]) function time_resample(d::TimeGain{T, K}, taxis::AbstractRange) where {T, K} @assert get_nsrc(d.recGeom) == 1 new_geom = deepcopy(d.recGeom) new_geom.taxis[1] = taxis return TimeGain{T, K}(new_geom) end function matvec(D::TimeGain{T, K}, x::judiVector{T, AT}) where {T, AT, K} out = similar(x) for s=1:out.nsrc # make time^K timek = (D.recGeom.taxis[s]).^K out.data[s] .= timek .* x.data[s] end return out end function matvec(D::TimeGain{T, K}, x::Array{T}) where {T, K} xr = reshape(x, D.recGeom) # make time^K timek = (D.recGeom.taxis[1]).^K out = timek .* xr return reshape(out, size(x)) end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
8732
export judiIllumination, judiDepthScaling, judiTopmute export DepthScaling, TopMute """ DepthScaling{T, N, K} Depth scaling operator in `N` dimensions scaling by `depth^K`. Constructor =========== judiDepthScaling(model::AbstractModel; K=.5) """ struct DepthScaling{T, N, K} <: ModelPreconditioner{T, T} m::Integer depth::Array{T, N} end function judiDepthScaling(model::AbstractModel; K=.5f0) N = length(size(model)) depth = reshape(range(0f0, stop=(size(model)[end] - 1) * spacing(model)[end], length=size(model)[end]), ones(Int64, N-1)..., :) return DepthScaling{Float32, N, K}(prod(size(model)), depth) end matvec(D::DepthScaling{T, N, K}, x::Vector{T}) where {T, N, K} = vec(reshape(x, :, size(D.depth, N)) .* D.depth[:]'.^K) matvec(D::DepthScaling{T, N, K}, x::AbstractArray{T, N}) where {T, N, K} = x .* D.depth.^K matvec(D::DepthScaling{T, N, K}, x::PhysicalParameter{T}) where {T, N, K} = PhysicalParameter(x.n, x.d, x.o, x.data .* D.depth.^K) matvec(D::DepthScaling{T, N, K}, x::judiWeights{T}) where {T, N, K} = judiWeights{T}(x.nsrc, [matvec(D, x.data[s]) for s=1:x.nsrc]) # Diagonal operator, self-adjoint matvec_T(D::DepthScaling{T, N, K}, x) where {T, N, K} = matvec(D, x) # Real diagonal operator conj(I::DepthScaling{T}) where T = I adjoint(I::DepthScaling{T}) where T = I transpose(I::DepthScaling{T}) where T = I inv(I::DepthScaling{T, N, K}) where {T, N, K} = DepthScaling{Float32, N, -K}(I.m, I.depth) """ TopMute{T, N, Nw} Mute top of the model in `N` dimensions Constructor =========== judiTopmute(model; taperwidht=10) judiTopmute(n, wb, taperwidth) # Legacy """ struct TopMute{T, N, Nw} <: ModelPreconditioner{T, T} m::Integer wb::Array{Int64, Nw} taperwidth::Int64 TopMute(m::Integer, wb::Array{T, Nw}, taperwidth::Integer) where {T, Nw} = new{Float32, Nw+1, Nw}(m, wb, taperwidth) end judiTopmute(n::NTuple{N, Integer}, wb::Array{T, Nw}, taperwidth::Integer) where {T, N, Nw} = TopMute(prod(n), wb, taperwidth) judiTopmute(n::NTuple{N, Integer}, wb::Integer, taperwidth::Integer) where {N} = TopMute(prod(n), wb*ones(Int64, n[1:end-1]), taperwidth) function judiTopmute(model::AbstractModel; taperwidth=10) wb = find_water_bottom(model.m.data) return TopMute(prod(size(model)), wb, taperwidth) end function matvec(D::TopMute{T, N}, x::Array{T, N}) where {T, N} out = 1 .* x taper = D.taperwidth < 2 ? 1 : _taper(Val(:reflection), D.taperwidth) for i in CartesianIndices(D.wb) out[i, 1:D.wb[i]-D.taperwidth] .= 0 s = max(D.wb[i]-D.taperwidth+1, 1) ni = length(s:D.wb[i]) tap = D.taperwidth < 2 ? 1 : taper[end-ni+1:end] out[i, s:D.wb[i]] .*= tap end out end matvec(D::TopMute{T, N}, x::PhysicalParameter{T}) where {T, N} = PhysicalParameter(x, matvec(D, x.data)) matvec(D::TopMute{T, N}, x::judiWeights{T}) where {T, N} = judiWeights{T}(x.nsrc, [matvec(D, x.data[s]) for s=1:x.nsrc]) matvec(D::TopMute{T, N}, x::Vector{T}) where {T, N} = vec(matvec(D, reshape(x, size(D.wb)..., :))) matvec_T(D::TopMute{T, N}, x) where {T, N} = matvec(D, x) # Real diagonal operator conj(I::TopMute{T, N}) where {T, N} = I adjoint(I::TopMute{T, N}) where {T, N} = I transpose(I::TopMute{T, N}) where {T, N} = I inv(::TopMute{T, N}) where {T, N} = throw(MethodError(inv, "Topmute masks contains zeros cannot be inverted")) """ judiIllumination(model; mode="u", k=1, recompute=true) # Arguments - `model`: JUDI Model structure - `mode`: Type of ilumination, choicees of ("u", "v", "uv") - `k`: Power of the illumination, real number - `recompute`: Flag whether to recompute the illumination at each new propagation (Defaults to true) judiIllumination(F; mode="u", k=1, recompute=true) # Arguments - `F`: JUDI propagator - `mode`: Type of ilumination, choicees of ("u", "v", "uv") - `k`: Power of the illumination, real positive number - `recompute`: Flag whether to recompute the illumination at each new propagation (Defaults to true) Diagonal approximation of the FWI Hessian as the energy of the wavefield. The diagonal contains the sum over time of the wavefield chosen as `mode`. Options for the mode are "u" for the forward wavefield illumination, "v" for the adjoint wavefield illumination, and "uv" for the pointwise product of the forward and adjoint wavefields illuminations. Additionally, the parameter "k" provides control on the scaling of the daiagonal raising it to the power `k`. Example ======== I = judiIllumination(model) Construct the diagonal operator such that I*x = x ./ |||u||_2^2 """ struct judiIllumination{DDT, M, K, R} <: ModelPreconditioner{DDT, DDT} name::String illums m::Integer end function judiIllumination(model::AbstractModel; mode="u", k=1, recompute=true) n = prod(size(model)) # Initialize the illumination as the identity illum = Dict(s=>PhysicalParameter(size(model), spacing(model), origin(model), ones(Float32, size(model))) for s in split(mode, "")) I = judiIllumination{Float32, Symbol(mode), k, recompute}("Illumination", illum, n) init_illum(model, I) return I end judiIllumination(F::judiPropagator; kw...) = judiIllumination(F.model; kw...) # Real diagonal operator conj(I::judiIllumination{T}) where T = I adjoint(I::judiIllumination{T}) where T = I transpose(I::judiIllumination{T}) where T = I # Inverse inv(I::judiIllumination{T, M, K, R}) where {T, M, K, R} = judiIllumination{T, M, -K, R}(I.name, I.illums, I.m) # Mul function matvec(I::judiIllumination{T, M, K, R}, x::Vector{T}) where {T, M, K, R} illum = (.*(values(I.illums)...)).^(1/length(I.illums)) inds = findall(illum[:] .> eps(T)) out = T(0) * x out[inds] .= illum[:][inds].^K .* x[inds] return out end function matvec(I::judiIllumination{T, M, K, R}, x::PhysicalParameter{T}) where {T, M, K, R} illum = (.*(values(I.illums)...)).^(1/length(I.illums)) inds = findall(illum .> eps(T)) out = T(0) * x out[inds] .= illum[inds].^K .* x[inds] return out end # Functor function (I::judiIllumination{T, M, K, R})(mode::String) where {T, M, K, R} illum = Dict(s=>similar(first(values(I.illums))) for s in split(mode, "")) for k ∈ keys(illum) if k ∈ keys(I.illums) illum[k] = deepcopy(I.illums[k]) else fill!(illum[k], 1) end end judiIllumination{T, Symbol(mode), K, R}(I.name, illum, I.m) end # Assignment function set_val(I::judiIllumination{T, M, K, R}, mode, v) where {T, M, K, R} key = mode ∈ [:forward, :born] ? "u" : "v" if key in keys(I.illums) # For safety when propagation doesn't reach all the model v[v .== 0] .= 1f0 combine!(I.illums[key], v) end end # status function is_updated(I::judiIllumination{T, M, K, R}) where {T, M, K, R} updated = true for (k, v) in I.illums im, iM = extrema(v) updated = (im == iM == 1) && updated end return ~updated end ################## Illumination tracker. #################### # We carry a global tracker that associate an illumination operator # with its model so that we can extract it after propagation _illums = Dict() init_illum(model::AbstractModel, Tm::judiIllumination) = (_illums[objectid(model)] = [Tm, false]) function update_illum(vals::Tuple, F::judiPropagator{D, O}) where {D, O} if length(vals) == 3 update_illum(F.model, vals[2], :forward) update_illum(F.model, vals[3], :adjoint) else update_illum(F.model, vals[2], O) end return vals[1] end update_illum(vals, ::judiPropagator) = vals function update_illum(vals::Tuple, model::AbstractModel, ::Any) length(vals) == 2 && (return vals) update_illum(model, vals[3], :forward) update_illum(model, vals[4], :adjoint) return vals[1:2] end function update_illum(model::AbstractModel, i::PhysicalParameter, mode) set_val(_illums[objectid(model)][1], mode, i) _illums[objectid(model)][2] = is_updated(_illums[objectid(model)][1]) end function _compute_illum(::judiIllumination{T, M, K, R}, status, mode) where {T, M, K, R} if status && ~R return false elseif (mode ∈ [:forward, :born] && M ∈ [:u, :uv]) || (mode == :adjoint && M ∈ [:v, :uv]) || (mode == :adjoint_born) return true else return false end end function compute_illum(model::AbstractModel, mode::Symbol) objectid(model) ∉ keys(_illums) && (return false) return _compute_illum(_illums[objectid(model)]..., mode) end function _track_illum(old_m::AbstractModel, new_m::AbstractModel) if (objectid(old_m) ∈ keys(_illums)) && (objectid(new_m) ∉ keys(_illums)) _illums[objectid(new_m)] = _illums[objectid(old_m)] end end
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
3059
abstract type Preconditioner{D, R} <: joAbstractLinearOperator{D, R} end """ ModelPreconditioner{T} Base abstract type for model space preconditioners. Acta on [`PhysicalParameter{T}`](@ref) or `Vector{T}` """ abstract type ModelPreconditioner{D, R} <: Preconditioner{D, R} end """ DataPreconditioner{T} Base abstract for Data space preconditioner. As a data space operator, it must implement `getindex(M, i)` to be aplied on a single shot record. Acts on `judiVector{T}` or `Vector{T}`. """ abstract type DataPreconditioner{D, R} <: Preconditioner{D, R} end # JOLI compat _get_property(J::Preconditioner, ::Val{:fop}) = x -> matvec(J, x) _get_property(J::Preconditioner, ::Val{:fop_T}) = x -> matvec_T(J, x) _get_property(J::Preconditioner, ::Val{:name}) = "$(typeof(J))" _get_property(J::Preconditioner, ::Val{:n}) = getfield(J, :m) _get_property(J::Preconditioner, ::Val{s}) where {s} = getfield(J, s) getproperty(J::Preconditioner, s::Symbol) = _get_property(J, Val{s}()) # Base compat *(J::Preconditioner, ms::judiMultiSourceVector) = matvec(J, ms) *(J::Preconditioner, ms::PhysicalParameter) = matvec(J, ms) *(J::Preconditioner, v::VecOrMat{T}) where T = matvec(J, v) mul!(out::judiMultiSourceVector, J::Preconditioner, ms::judiMultiSourceVector) = copyto!(out, matvec(J, ms)) mul!(out::PhysicalParameter, J::Preconditioner, ms::PhysicalParameter) = copyto!(out, matvec(J, ms)) # OOC judiVector *(J::DataPreconditioner, v::judiVector{T, SegyIO.SeisCon}) where T = LazyMul(v.nsrc, J, v) *(J::Preconditioner, v::LazyMul) = LazyMul(v.nsrc, J*v.P, v) """ MultiPrcontinioner{TP, T} Type for the combination of preconditioners. It is a linear operator that applies the preconditioners in sequence. """ struct MultiPreconditioner{TP, T} <: Preconditioner{T, T} precs::Vector{TP} end function matvec(J::MultiPreconditioner, x) y = J.precs[end] * x for P in J.precs[1:end-1] y = P * y end return y end function matvec_T(J::MultiPreconditioner, x) y = J.precs[1]' * x for P in J.precs[2:end] y = P' * y end return y end conj(I::MultiPreconditioner{TP, T}) where {TP, T} = MultiPreconditioner{TP, T}(conj.(I.precs)) adjoint(I::MultiPreconditioner{TP, T}) where {TP, T} = MultiPreconditioner{TP, T}(adjoint.(reverse(I.precs))) transpose(I::MultiPreconditioner{TP, T}) where {TP, T} = MultiPreconditioner{TP, T}(transpose.(reverse(I.precs))) getindex(I::MultiPreconditioner{TP, T}, i) where {TP, T} = MultiPreconditioner{TP, T}([getindex(P, i) for P in I.precs]) for T in [DataPreconditioner, ModelPreconditioner] @eval *(P1::$(T){DT}, P2::$(T){DT}) where DT = MultiPreconditioner{$(T), DT}([P1, P2]) @eval *(P::$(T){DT}, P2::MultiPreconditioner{$(T), DT}) where DT = MultiPreconditioner{$(T), DT}([P, P2.precs...]) @eval *(P2::MultiPreconditioner{$(T), DT}, P::$(T){DT}) where DT = MultiPreconditioner{$(T), DT}([P2.precs..., P]) end time_resample(x::MultiPreconditioner{TP, T}, newt) where {TP, T} = MultiPreconditioner{TP, T}([time_resample(P, newt) for P in x.precs])
JUDI
https://github.com/slimgroup/JUDI.jl.git
[ "MIT" ]
3.4.7
21f9b9ae041be1caba073bb496235bceaa1d2ff0
code
2253
export find_water_bottom # Taper function. Used for data and model muting _taper(::Val{:reflection}, n::Integer=20) = convert(Vector{Float32}, (cos.(range(pi, stop=2*pi, length=n)) .+ 1) ./ 2) _taper(::Val{:turning}, n::Integer=20) = convert(Vector{Float32}, (cos.(range(0, stop=pi, length=n)) .+ 1) ./ 2) # Muting utils _yloc(y::Vector{T}, t::Integer) where T = length(y) > 1 ? y[t] : y[1] radius(G1::Geometry, G2::Geometry, t::Integer) = sqrt.((G1.xloc[1][t] .- G2.xloc[1][1]).^2 .+ (_yloc(G1.yloc[1], t) .- G2.yloc[1][1]).^2 .+ (G1.zloc[1][t] .- G2.zloc[1][1]).^2) _tapew(i::Integer, taperwidth::Integer, ::Integer, ::Val{:reflection}) = i < taperwidth _tapew(i::Integer, taperwidth::Integer, nt::Integer, ::Val{:turning}) = i > (nt - taperwidth) _mutew!(t::AbstractVector{T}, taper::AbstractVector{T}, i::Integer, ::Integer, ::Val{:reflection}) where T = broadcast!(*, t[1:i], t[1:i], taper[end-i+1:end]) _mutew!(t::AbstractVector{T}, taper::AbstractVector{T}, i::Integer, nt::Integer, ::Val{:turning}) where T = broadcast!(*, t[i:nt], t[i:nt], taper[1:(nt-i+1)]) # water bottom """ find_water_bottom(v; eps=1e-4) Fund water bottom based on (x, y) or (x, y, z) input array by finding the first value for each vertical trace that is not close to the top value (first value such that m[x,y,z] > m[x,y,1] for each x, y) """ function find_water_bottom(m::AbstractArray{avDT, N};eps = 1e-4) where {avDT, N} #return the indices of the water bottom of a seismic image n = size(m) idx = zeros(Integer, n[1:end-1]) wbfunc(x, x1) = abs(x - x1) > eps for i in CartesianIndices(idx) idx[i] = findfirst(x->wbfunc(x, m[i, 1]), m[i, :]) end return idx end function find_water_bottom(m::AbstractArray{avDT, N}, wbval::Number; inv=true) where {avDT, N} #return the indices of the water bottom of a seismic image n = size(m) idx = zeros(Integer, n[1:end-1]) wbfunc(x) = inv ? x < wbval : x > wbval for i in CartesianIndices(idx) idx[i] = findfirst(wbfunc, m[i, :]) end return idx end find_water_bottom(m::PhysicalParameter, wbval::Number; inv=true) = find_water_bottom(m.data, wbval; inv=inv) find_water_bottom(m::PhysicalParameter;eps=1e-4) = find_water_bottom(m.data; eps=eps)
JUDI
https://github.com/slimgroup/JUDI.jl.git