licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
4340
# Customize these variables to allow other names LONGITUDE_NAMES = ["long", "lon", "longitude"] LATITUDE_NAMES = ["lat", "latitude"] TIME_NAMES = ["t", "time"] DATE_NAMES = ["date"] ALTITUDE_NAMES = ["z", "z_reference", "z_physical"] export times, dates, longitudes, latitudes, altitudes, time_name, date_name, longitude_name, latitude_name, altitude_name, has_time, has_date, has_longitude, has_latitude, has_altitude, conventional_dim_name """ _dim_name(dim_names, allowed_names) Return the `dim_name` within `dim_names` that is contained in `allowed_names`. Return `nothing` is not available. Example ========== ```jldoctest julia> ClimaAnalysis.Var._dim_name(["z", "lat", "lon"], ["lon", "long"]) 1 ``` """ function _dim_name(dim_names, allowed_names) return findfirst(possible_name -> possible_name in dim_names, allowed_names) end """ has_time(var::OutputVar) Return whether `var` has a `time` dimesnion. """ has_time(var::OutputVar) = !isnothing(_dim_name(keys(var.dims), TIME_NAMES)) """ has_date(var::OutputVar) Return whether `var` has a `date` dimesnion. """ has_date(var::OutputVar) = !isnothing(_dim_name(keys(var.dims), DATE_NAMES)) """ has_longitude(var::OutputVar) Return whether `var` has a `longitude` dimesnion. """ has_longitude(var::OutputVar) = !isnothing(_dim_name(keys(var.dims), LONGITUDE_NAMES)) """ has_latitude(var::OutputVar) Return whether `var` has a `latitude` dimesnion. """ has_latitude(var::OutputVar) = !isnothing(_dim_name(keys(var.dims), LATITUDE_NAMES)) """ has_altitude(var::OutputVar) Return whether `var` has a `altitude` dimesnion. """ has_altitude(var::OutputVar) = !isnothing(_dim_name(keys(var.dims), ALTITUDE_NAMES)) """ find_dim_name(dim_names::Iterable, allowed_names::Iterable) Find the first occurrence of a name in `allowed_names` in `dim_names`. Example ========== ```jldoctest julia> ClimaAnalysis.Var.find_dim_name(["z", "lat", "lon"], ["lon", "long"]) "lon" ``` """ function find_dim_name(dim_names, allowed_names) dim_name = _dim_name(dim_names, allowed_names) isnothing(dim_name) && error("var does not have $(first(allowed_names)) among its dimensions") return allowed_names[dim_name] end """ time_name(var::OutputVar) Return the name of the `time` dimension in `var`. """ time_name(var::OutputVar) = find_dim_name(keys(var.dims), TIME_NAMES) """ times(var::OutputVar) Return the `time` dimension in `var`. """ times(var::OutputVar) = var.dims[time_name(var)] """ date_name(var::OutputVar) Return the name of the `date` dimension in `var`. """ date_name(var::OutputVar) = find_dim_name(keys(var.dims), DATE_NAMES) """ dates(var::OutputVar) Return the `date` dimension in `var`. """ dates(var::OutputVar) = var.dims[date_name(var)] """ longitude_name(var::OutputVar) Return the name of the `longitude` dimension in `var`. """ longitude_name(var::OutputVar) = find_dim_name(keys(var.dims), LONGITUDE_NAMES) """ longitudes(var::OutputVar) Return the `longitude` dimension in `var`. """ longitudes(var::OutputVar) = var.dims[longitude_name(var)] """ latitude_name(var::OutputVar) Return the name of the `latitude` dimension in `var`. """ latitude_name(var::OutputVar) = find_dim_name(keys(var.dims), LATITUDE_NAMES) """ latitudes(var::OutputVar) Return the `latitude` dimension in `var`. """ latitudes(var::OutputVar) = var.dims[latitude_name(var)] """ altitude_name(var::OutputVar) Return the name of the `altitude` dimension in `var`. """ altitude_name(var::OutputVar) = find_dim_name(keys(var.dims), ALTITUDE_NAMES) """ altitudes(var::OutputVar) Return the `altitude` dimension in `var`. """ altitudes(var::OutputVar) = var.dims[altitude_name(var)] """ conventional_dim_name(dim_name::AbstractString) Return the type of dimension as a string from longitude, latitude, time, date, or altitude if possible or `dim_name` as a string otherwise. """ function conventional_dim_name(dim_name::AbstractString) dim_name in LONGITUDE_NAMES && return "longitude" dim_name in LATITUDE_NAMES && return "latitude" dim_name in TIME_NAMES && return "time" dim_name in DATE_NAMES && return "date" dim_name in ALTITUDE_NAMES && return "altitude" return dim_name end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
748
using Test using ClimaAnalysis using Aqua import ExplicitImports @testset "Aqua tests" begin Aqua.test_undefined_exports(ClimaAnalysis) Aqua.test_stale_deps(ClimaAnalysis) Aqua.test_deps_compat(ClimaAnalysis) Aqua.detect_ambiguities(ClimaAnalysis; recursive = true) Aqua.test_piracies(ClimaAnalysis) end @testset "Explicit Imports" begin @test isnothing(ExplicitImports.check_no_implicit_imports(ClimaAnalysis)) @test isnothing( ExplicitImports.check_no_stale_explicit_imports(ClimaAnalysis), ) @test isnothing( ExplicitImports.check_all_qualified_accesses_via_owners(ClimaAnalysis), ) @test isnothing( ExplicitImports.check_no_self_qualified_accesses(ClimaAnalysis), ) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
357
using Documenter import ClimaAnalysis @testset "Test docstrings" begin DocMeta.setdocmeta!( ClimaAnalysis, :DocTestSetup, :(using ClimaAnalysis; using ClimaAnalysis.Utils; using ClimaAnalysis.Var; using ClimaAnalysis.Sim); recursive = true, ) doctest(ClimaAnalysis; manual = false) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
202
using Test import JuliaFormatter import ClimaAnalysis @testset "Formatting" begin @test JuliaFormatter.format( ClimaAnalysis; verbose = false, overwrite = false, ) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
781
using SafeTestsets using Test #! format: off @safetestset "Aqua" begin @time include("aqua.jl") end @safetestset "Docstrings" begin @time include("doctest.jl") end @safetestset "Format" begin @time include("format.jl") end @safetestset "Utils" begin @time include("test_Utils.jl") end @safetestset "Numerics" begin @time include("test_Numerics.jl") end @safetestset "SimDir" begin @time include("test_Sim.jl") end @safetestset "Atmos" begin @time include("test_Atmos.jl") end @safetestset "Leaderboard" begin @time include("test_Leaderboard.jl") end @safetestset "OutputVar" begin @time include("test_Var.jl") end @safetestset "MakieExt" begin @time include("test_MakieExt.jl") end @safetestset "GeoMakieExt" begin @time include("test_GeoMakieExt.jl") end #! format: on nothing
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
4552
using Test import ClimaAnalysis import OrderedCollections: OrderedDict @testset "To pressure coordinates" begin # Let start with testing a single column z_alt = 0:100.0 |> collect data = copy(z_alt) zvar = ClimaAnalysis.OutputVar(Dict("z" => z_alt), data) # Fake pressure, linearly decreasing, so that we can check precisely pressure = 300.0:-2.0:100.0 |> collect pdata = copy(pressure) attribs = Dict("short_name" => "pfull") dim_attribs = Dict{String, Any}() pressure_var = ClimaAnalysis.OutputVar(attribs, Dict("z" => z_alt), dim_attribs, pdata) pressure_in_pressure_coordinates = ClimaAnalysis.Atmos.to_pressure_coordinates(pressure_var, pressure_var) @test collect(keys(pressure_in_pressure_coordinates.dims)) == ["pfull"] # reverse because we go from min to max for pressure (to have it increasing # for Interpolations.jl) @test pressure_in_pressure_coordinates.dims["pfull"] == reverse(pdata) @test pressure_in_pressure_coordinates.data == reverse(pdata) # Fake var, again linear. When everything is linear we should obtain the # input variable back var_func(z) = 500 + 10 * z myvardata = var_func.(z_alt) mydata = copy(myvardata) attribs = Dict("short_name" => "myvar") dim_attribs = Dict{String, Any}() myvar = ClimaAnalysis.OutputVar( attribs, Dict("z" => z_alt), dim_attribs, mydata, ) myvar_in_pressure_coordinates = ClimaAnalysis.Atmos.to_pressure_coordinates(myvar, pressure_var) @test collect(keys(myvar_in_pressure_coordinates.dims)) == ["pfull"] @test myvar_in_pressure_coordinates.dims["pfull"] == reverse(pdata) @test myvar_in_pressure_coordinates.data == reverse(mydata) exp_pressure = exp.(-0.01 .* z_alt |> collect) exp_pdata = copy(exp_pressure) attribs = Dict("short_name" => "pfull") dim_attribs = Dict{String, Any}() exp_pressure_var = ClimaAnalysis.OutputVar( attribs, Dict("z" => z_alt), dim_attribs, exp_pdata, ) myvar_in_exp_pressure_coordinates = ClimaAnalysis.Atmos.to_pressure_coordinates(myvar, exp_pressure_var) # Linear range from min to max expected_range = collect( range( minimum(exp_pressure), maximum(exp_pressure), length = length(exp_pdata), ), ) @test myvar_in_exp_pressure_coordinates.dims["pfull"] == expected_range # Specify pressure levels @test ClimaAnalysis.Atmos.to_pressure_coordinates( myvar, exp_pressure_var, target_pressure = [1.0], ).data[1] == mydata[1] # From the pressure range we can compute the corresponding altitudes corresponding_z = -100 .* log.(expected_range) @test myvar_in_exp_pressure_coordinates.data β‰ˆ var_func.(corresponding_z) rtol = 1e-5 # 3D test long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect zzz = 0.0:10.0 |> collect var3D_func(lg, lt, zz) = 2lg + 3lt + 4zz data = [var3D_func(lg, lt, zz) for lg in long, lt in lat, zz in zzz] dims = OrderedDict(["lon" => long, "lat" => lat, "z" => zzz]) dim_attribs = Dict{String, Any}() var3D = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) altitude = [zz for lg in long, lt in lat, zz in zzz] pdata3D = exp.(-0.01 .* altitude) attribs = Dict("short_name" => "pfull") dim_attribs = Dict{String, Any}() pressure3D = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, pdata3D) my3Dvar_in_exp_pressure_coordinates = ClimaAnalysis.Atmos.to_pressure_coordinates(var3D, pressure3D) # Linear range from min to max overall_range = collect(range(minimum(pdata3D), maximum(pdata3D), length = length(zzz))) @test my3Dvar_in_exp_pressure_coordinates.dims["pfull"] == overall_range # From the pressure range we can compute the corresponding altitudes expected_output = [ var3D_func.(lg, lt, -100 .* log(p)) for lg in long, lt in lat, p in overall_range ] @test my3Dvar_in_exp_pressure_coordinates.data β‰ˆ expected_output rtol = 1e-5 # Error checking @test_throws ErrorException ClimaAnalysis.Atmos.to_pressure_coordinates( var3D, pressure_var, ) # This will fail because there is no recognized altitude dimension Zvar = ClimaAnalysis.OutputVar(Dict("Z" => z_alt), z_alt) @test_throws ErrorException ClimaAnalysis.Atmos.to_pressure_coordinates( Zvar, Zvar, ) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
3978
using Test import ClimaAnalysis import Makie import CairoMakie import GeoMakie using OrderedCollections @testset "MakieExt" begin tmp_dir = mktempdir(cleanup = false) @info "Tempdir", tmp_dir long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect data2D = reshape(1.0:(91 * 181), (181, 91)) dims2D = OrderedDict(["lon" => long, "lat" => lat]) attribs = Dict([ "long_name" => "The quick brown fox jumps over the lazy dog. The quick brown fox.", "short_name" => "name", "units" => "bob", ]) path = "a/b/c" dim_attributes2D = OrderedDict([ "lon" => Dict(["units" => "degrees"]), "lat" => Dict(["units" => "degrees"]), ]) var2D = ClimaAnalysis.OutputVar(attribs, dims2D, dim_attributes2D, data2D) fig = Makie.Figure() ClimaAnalysis.Visualize.heatmap2D_on_globe!(fig, var2D) output_name = joinpath(tmp_dir, "test2D_globe.png") Makie.save(output_name, fig) fig2 = Makie.Figure() ClimaAnalysis.Visualize.contour2D_on_globe!( fig2, var2D, more_kwargs = Dict( :plot => ClimaAnalysis.Utils.kwargs(colormap = :vik), ), ) output_name = joinpath(tmp_dir, "test_contours2D_globe.png") Makie.save(output_name, fig2) # Test cmap test_cmap = ClimaAnalysis.Visualize._constrained_cmap( Makie.colorschemes[:vik], 0.0, 15000.0 + (5000.0 / 3.0), mid = 5000.0, categorical = true, ) fig3 = Makie.Figure() ClimaAnalysis.Visualize.contour2D_on_globe!( fig3, var2D, more_kwargs = Dict( :plot => ClimaAnalysis.Utils.kwargs(colormap = test_cmap), ), ) output_name = joinpath(tmp_dir, "test_contours2D_globe_with_test_cmap.png") Makie.save(output_name, fig3) test_cmap = ClimaAnalysis.Visualize._constrained_cmap( range(Makie.colorant"red", stop = Makie.colorant"green", length = 15), 0.0, 15000.0 + (5000.0 / 3.0), ) fig4 = Makie.Figure() ClimaAnalysis.Visualize.contour2D_on_globe!( fig4, var2D, more_kwargs = Dict( :plot => ClimaAnalysis.Utils.kwargs(colormap = test_cmap), ), ) output_name = joinpath(tmp_dir, "test_contours2D_globe_with_test_cmap2.png") Makie.save(output_name, fig4) # Test with oceanmask fig5 = Makie.Figure() ClimaAnalysis.Visualize.heatmap2D_on_globe!( fig5, var2D, mask = ClimaAnalysis.Visualize.oceanmask(), more_kwargs = Dict(:mask => ClimaAnalysis.Utils.kwargs(color = :blue)), ) output_name = joinpath(tmp_dir, "test_contours2D_globe_with_oceanmask.png") Makie.save(output_name, fig5) # Test plot_bias fig6 = Makie.Figure() lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data = collect(reshape(-32400:32399, (360, 180))) ./ (32399.0 / 5.0) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) data_zero = zeros(length(lon), length(lat)) var_zero = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data_zero) ClimaAnalysis.Visualize.plot_bias_on_globe!(fig6, var, var_zero) output_name = joinpath(tmp_dir, "plot_bias.png") Makie.save(output_name, fig6) # Test plot bias with keyword arguments fig7 = Makie.Figure() ClimaAnalysis.Visualize.plot_bias_on_globe!( fig7, var, var_zero, more_kwargs = Dict( :axis => Dict(:title => "no title"), :plot => Dict(:extendhigh => nothing), ), ) output_name = joinpath(tmp_dir, "plot_bias_kwargs.png") Makie.save(output_name, fig7) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
13234
using Test import ClimaAnalysis @testset "Constructors and helper functions" begin # Testing constructor using short name and model names rmse_var = ClimaAnalysis.RMSEVariable("ta", ["model1", "model2"]) @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2"] @test ClimaAnalysis.category_names(rmse_var) == ["ANN", "DJF", "MAM", "JJA", "SON"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "", "model2" => "") @test rmse_var.short_name == "ta" @test isnan(rmse_var.RMSEs[1, 1]) # Testing constructor using short name, model names, and provided units rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["model1", "model2"], Dict("model1" => "units1", "model2" => "units2"), ) @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2"] @test ClimaAnalysis.category_names(rmse_var) == ["ANN", "DJF", "MAM", "JJA", "SON"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "units1", "model2" => "units2") @test rmse_var.short_name == "ta" @test isnan(rmse_var.RMSEs[1, 1]) # Testing constructor using short name, model names, category_names, and provided units rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["model1", "model2"], ["cat1", "cat2"], Dict("model1" => "units1", "model2" => "units2"), ) @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2"] @test ClimaAnalysis.category_names(rmse_var) == ["cat1", "cat2"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "units1", "model2" => "units2") @test rmse_var.short_name == "ta" @test isnan(rmse_var.RMSEs[1, 1]) # Testing constructor using short name, model names, category names, RMSEs, and units rmse_var = ClimaAnalysis.RMSEVariable( "short_name", ["model1", "model2", "model3"], ["cat1", "cat2"], ones(3, 2), Dict("model1" => "units"), ) @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2", "model3"] @test ClimaAnalysis.category_names(rmse_var) == ["cat1", "cat2"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "units", "model2" => "", "model3" => "") @test rmse_var.short_name == "short_name" @test rmse_var.RMSEs == ones(3, 2) # Testing constructors for passing units as a string rmse_var = ClimaAnalysis.RMSEVariable("ta", ["model1", "model2"], "same_unit") @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2"] @test ClimaAnalysis.category_names(rmse_var) == ["ANN", "DJF", "MAM", "JJA", "SON"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "same_unit", "model2" => "same_unit") @test rmse_var.short_name == "ta" @test isnan(rmse_var.RMSEs[1, 1]) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["model1", "model2"], ["cat1", "cat2"], "same_unit", ) @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2"] @test ClimaAnalysis.category_names(rmse_var) == ["cat1", "cat2"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "same_unit", "model2" => "same_unit") @test rmse_var.short_name == "ta" @test isnan(rmse_var.RMSEs[1, 1]) rmse_var = ClimaAnalysis.RMSEVariable( "short_name", ["model1", "model2", "model3"], ["cat1", "cat2"], ones(3, 2), "units", ) @test ClimaAnalysis.model_names(rmse_var) == ["model1", "model2", "model3"] @test ClimaAnalysis.category_names(rmse_var) == ["cat1", "cat2"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("model1" => "units", "model2" => "units", "model3" => "units") @test rmse_var.short_name == "short_name" @test rmse_var.RMSEs == ones(3, 2) # Error handling # Duplicate model names and category names @test_throws ErrorException ClimaAnalysis.RMSEVariable( "ta", ["model1", "model1"], ["cat1"], ones(2, 1), Dict("model1" => ""), ) @test_throws ErrorException ClimaAnalysis.RMSEVariable( "ta", ["model1", "model2"], ["cat1", "cat1"], ones(2, 2), Dict("model1" => ""), ) # Negative RMSE @test_throws ErrorException ClimaAnalysis.RMSEVariable( "ta", ["model1", "model2"], ["cat1", "cat1"], -1.0 .* ones(2, 2), Dict("model1" => ""), ) # Shape of RMSE array @test_throws ErrorException ClimaAnalysis.RMSEVariable( "ta", ["model1", "model2"], ["cat1", "cat1"], ones(1, 2), Dict("model1" => ""), ) end @testset "Reading RMSEs from CSV file" begin # Testing constructor using CSV file csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") @test ClimaAnalysis.model_names(rmse_var) == ["ACCESS-CM2", "ACCESS-ESM1-5"] @test ClimaAnalysis.category_names(rmse_var) == ["DJF", "MAM", "JJA", "SON", "ANN"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("ACCESS-CM2" => "", "ACCESS-ESM1-5" => "") @test rmse_var.short_name == "ta" @test rmse_var.RMSEs[1, 1] == 11.941 @test isnan(rmse_var.RMSEs[2, 5]) # Testing constructor using CSV file with units provided rmse_var = ClimaAnalysis.read_rmses( csv_file_path, "ta", units = Dict("ACCESS-ESM1-5" => "m", "wacky" => "weird"), ) @test ClimaAnalysis.rmse_units(rmse_var) == Dict("ACCESS-CM2" => "", "ACCESS-ESM1-5" => "m") # Testing constructor using CSV file with units being a string rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta", units = "m") @test ClimaAnalysis.rmse_units(rmse_var) == Dict("ACCESS-CM2" => "m", "ACCESS-ESM1-5" => "m") end @testset "Indexing" begin csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var[1, 1] = 100.0 @test rmse_var.RMSEs[1, 1] == 100.0 rmse_var[1, 1:3] = [100.0, 110.0, 120.0] @test rmse_var.RMSEs[1, 1:3] == [100.0, 110.0, 120.0] rmse_var[1:2, 1] = [100.0, 110.0]' @test rmse_var.RMSEs[1:2, 1] == [100.0, 110.0] rmse_var["ACCESS-ESM1-5", "DJF"] = 200.0 @test rmse_var["ACCESS-ESM1-5", "DJF"] == 200.0 rmse_var["ACCESS-ESM1-5", ["DJF", "MAM", "ANN"]] = [200.0, 210.0, 220.0] @test rmse_var["ACCESS-ESM1-5", [1, 2, 5]] == [200.0, 210.0, 220.0] rmse_var["ACCESS-ESM1-5"] = [120.0, 130.0, 140.0, 150.0, 160.0] @test rmse_var["ACCESS-ESM1-5"] == [120.0, 130.0, 140.0, 150.0, 160.0] # Check error handling @test_throws ErrorException rmse_var[5, 5] = 100.0 @test_throws ErrorException rmse_var["do not exist"] = 100.0 @test_throws ErrorException rmse_var["do not exist", "test"] = 100.0 @test_throws ErrorException rmse_var["ACCESS-ESM1-5", "test"] = 100.0 @test_throws ErrorException rmse_var["model1", "ANN"] = 100.0 @test_throws DimensionMismatch rmse_var["ACCESS-ESM1-5"] = [120.0, 130.0, 140.0] @test_throws DimensionMismatch rmse_var[1, :] = [120.0, 130.0, 140.0] end @testset "Adding model and category" begin # Add single model csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model(rmse_var, "new model") @test ClimaAnalysis.model_names(rmse_var) == ["ACCESS-CM2", "ACCESS-ESM1-5", "new model"] @test ClimaAnalysis.category_names(rmse_var) == ["DJF", "MAM", "JJA", "SON", "ANN"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("ACCESS-CM2" => "", "ACCESS-ESM1-5" => "", "new model" => "") @test all(isnan.(rmse_var["new model"])) # Add single category rmse_var = ClimaAnalysis.add_category(rmse_var, "new cat") @test ClimaAnalysis.model_names(rmse_var) == ["ACCESS-CM2", "ACCESS-ESM1-5", "new model"] @test ClimaAnalysis.category_names(rmse_var) == ["DJF", "MAM", "JJA", "SON", "ANN", "new cat"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict("ACCESS-CM2" => "", "ACCESS-ESM1-5" => "", "new model" => "") @test all(isnan.(rmse_var[:, "new cat"])) # Add multiple models csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model(rmse_var, "new model", "new model 2") @test ClimaAnalysis.model_names(rmse_var) == ["ACCESS-CM2", "ACCESS-ESM1-5", "new model", "new model 2"] @test ClimaAnalysis.category_names(rmse_var) == ["DJF", "MAM", "JJA", "SON", "ANN"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict( "ACCESS-CM2" => "", "ACCESS-ESM1-5" => "", "new model" => "", "new model 2" => "", ) @test all(isnan.(rmse_var["new model"])) @test all(isnan.(rmse_var["new model 2"])) # Add multiple categories rmse_var = ClimaAnalysis.add_category(rmse_var, "new cat", "new cat 2") @test ClimaAnalysis.model_names(rmse_var) == ["ACCESS-CM2", "ACCESS-ESM1-5", "new model", "new model 2"] @test ClimaAnalysis.category_names(rmse_var) == ["DJF", "MAM", "JJA", "SON", "ANN", "new cat", "new cat 2"] @test ClimaAnalysis.rmse_units(rmse_var) == Dict( "ACCESS-CM2" => "", "ACCESS-ESM1-5" => "", "new model" => "", "new model 2" => "", ) @test all(isnan.(rmse_var[:, "new cat"])) @test all(isnan.(rmse_var[:, "new cat 2"])) end @testset "Removing model" begin csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model(rmse_var, "new model", "new model 2") rmse_var[2, 5] = 10.0 rmse_var_delete = ClimaAnalysis.Leaderboard._delete_model( rmse_var, "ACCESS-CM2", "new model", ) @test rmse_var_delete.short_name == "ta" @test ClimaAnalysis.model_names(rmse_var_delete) == ["ACCESS-ESM1-5", "new model 2"] @test ClimaAnalysis.category_names(rmse_var_delete) == ClimaAnalysis.category_names(rmse_var) @test rmse_var_delete[1, :] == rmse_var[2, :] @test all(isnan.(rmse_var_delete[2, :])) # Delete all models rmse_var_delete = ClimaAnalysis.Leaderboard._delete_model( rmse_var_delete, "ACCESS-ESM1-5", "new model 2", ) @test rmse_var_delete.short_name == "ta" @test isempty(ClimaAnalysis.model_names(rmse_var_delete)) @test ClimaAnalysis.category_names(rmse_var_delete) == ClimaAnalysis.category_names(rmse_var) @test rmse_var_delete[:, :] |> size == (0, 5) end @testset "Adding units" begin csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") # Adding a single unit rmse_var = ClimaAnalysis.add_model(rmse_var, "hi") ClimaAnalysis.add_unit!(rmse_var, "hi", "test") @test ClimaAnalysis.rmse_units(rmse_var)["hi"] == "test" # Adding multiple units rmse_var = ClimaAnalysis.add_model(rmse_var, "hello1", "hello2") ClimaAnalysis.add_unit!( rmse_var, Dict("hello1" => "units1", "hello2" => "units2"), ) @test ClimaAnalysis.rmse_units(rmse_var)["hello1"] == "units1" @test ClimaAnalysis.rmse_units(rmse_var)["hello2"] == "units2" end @testset "Finding best, worst, and median model" begin csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var[:, :] = [[1.0 2.0 3.0 4.0 5.0]; [6.0 7.0 8.0 9.0 10.0]] ClimaAnalysis.add_unit!(rmse_var, "ACCESS-CM2", "units") ClimaAnalysis.add_unit!(rmse_var, "ACCESS-ESM1-5", "units") val, model_name = ClimaAnalysis.find_best_single_model(rmse_var, category_name = "ANN") @test model_name == "ACCESS-CM2" @test val == [1.0, 2.0, 3.0, 4.0, 5.0] @test val |> size == (5,) val, model_name = ClimaAnalysis.find_worst_single_model(rmse_var, category_name = "ANN") @test model_name == "ACCESS-ESM1-5" @test val == [6.0, 7.0, 8.0, 9.0, 10.0] @test val |> size == (5,) val = ClimaAnalysis.median(rmse_var) @test val == [7.0, 9.0, 11.0, 13.0, 15.0] ./ 2.0 @test val |> size == (5,) # Test with NaN in RMSE array rmse_var = ClimaAnalysis.add_model(rmse_var, "for adding NaN") ClimaAnalysis.add_unit!(rmse_var, "for adding NaN", "units") val, model_name = ClimaAnalysis.find_best_single_model(rmse_var, category_name = "ANN") @test model_name == "ACCESS-CM2" @test val == [1.0, 2.0, 3.0, 4.0, 5.0] @test val |> size == (5,) val, model_name = ClimaAnalysis.find_worst_single_model(rmse_var, category_name = "ANN") @test model_name == "ACCESS-ESM1-5" @test val == [6.0, 7.0, 8.0, 9.0, 10.0] @test val |> size == (5,) val = ClimaAnalysis.median(rmse_var) @test val == [7.0, 9.0, 11.0, 13.0, 15.0] ./ 2.0 @test val |> size == (5,) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
12132
using Test import ClimaAnalysis import Makie import CairoMakie using OrderedCollections @testset "MakieExt" begin tmp_dir = mktempdir(cleanup = false) @info "Tempdir", tmp_dir long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data3D = reshape(1.0:(91 * 181 * 11), (11, 181, 91)) dims3D = OrderedDict(["time" => time, "lon" => long, "lat" => lat]) attribs = Dict([ "long_name" => "The quick brown fox jumps over the lazy dog. The quick brown fox.", "short_name" => "name", "units" => "bob", ]) path = "a/b/c" dim_attributes3D = OrderedDict([ "time" => Dict(["units" => "s"]), "lon" => Dict(["units" => "degrees"]), "lat" => Dict(["units" => "degrees"]), ]) var3D = ClimaAnalysis.OutputVar(attribs, dims3D, dim_attributes3D, data3D) fig = Makie.Figure() @test_throws ErrorException ClimaAnalysis.Visualize.heatmap2D!(fig, var3D) data2D = reshape(1.0:(91 * 181), (181, 91)) dims2D = OrderedDict(["lon" => long, "lat" => lat]) attribs = Dict([ "long_name" => "The quick brown fox jumps over the lazy dog. The quick brown fox.", "short_name" => "name", "units" => "bob", ]) path = "a/b/c" dim_attributes2D = OrderedDict([ "lon" => Dict(["units" => "degrees"]), "lat" => Dict(["units" => "degrees"]), ]) var2D = ClimaAnalysis.OutputVar(attribs, dims2D, dim_attributes2D, data2D) ClimaAnalysis.Visualize.heatmap2D!(fig, var2D) output_name = joinpath(tmp_dir, "test2D.png") Makie.save(output_name, fig) # Test with a GridLayout fig = Makie.Figure() layout = fig[1, 1] = Makie.GridLayout() ClimaAnalysis.Visualize.heatmap2D!(layout, var2D) output_name = joinpath(tmp_dir, "test2D_gd.png") Makie.save(output_name, fig) # New figure fig = Makie.Figure() @test_throws ErrorException ClimaAnalysis.Visualize.sliced_heatmap!( fig, var3D, ) cut = Dict("time" => 1) ClimaAnalysis.Visualize.sliced_heatmap!(fig, var3D, cut) output_name = joinpath(tmp_dir, "test3D_sliced.png") Makie.save(output_name, fig) # New figure fig = Makie.Figure() ClimaAnalysis.Visualize.heatmap!(fig, var3D; time = 1) output_name = joinpath(tmp_dir, "test3D_sliced_kwargs.png") Makie.save(output_name, fig) @test_throws ErrorException ClimaAnalysis.Visualize.line_plot1D!(fig, var3D) data1D = reshape(1.0:(91), (91)) dims1D = OrderedDict(["lat" => lat]) attribs = Dict([ "long_name" => "The quick brown fox jumps over the lazy dog. The quick brown fox.", "short_name" => "name", "units" => "bob", ]) path = "a/b/c" dim_attributes1D = OrderedDict(["lat" => Dict(["units" => "degrees"])]) var1D = ClimaAnalysis.OutputVar(attribs, dims1D, dim_attributes1D, data1D) fig = Makie.Figure() ClimaAnalysis.Visualize.line_plot1D!(fig, var1D) output_name = joinpath(tmp_dir, "test1D.png") Makie.save(output_name, fig) fig = Makie.Figure() cut = Dict("lon" => 30) ClimaAnalysis.Visualize.sliced_line_plot!(fig, var2D, cut) output_name = joinpath(tmp_dir, "test2D_sliced.png") Makie.save(output_name, fig) fig = Makie.Figure() ClimaAnalysis.Visualize.line_plot!(fig, var2D; lon = 30) output_name = joinpath(tmp_dir, "test2D_sliced_kwargs.png") Makie.save(output_name, fig) # Test plot! fig = Makie.Figure() ClimaAnalysis.Visualize.plot!(fig, var2D; lon = 30) output_name = joinpath(tmp_dir, "test_plot2D_sliced.png") Makie.save(output_name, fig) fig = Makie.Figure() ClimaAnalysis.Visualize.plot!(fig, var3D; lon = 30, time = 1) output_name = joinpath(tmp_dir, "test_plot3D_sliced.png") Makie.save(output_name, fig) fig = Makie.Figure() ClimaAnalysis.Visualize.plot!(fig, var3D; time = 1) output_name = joinpath(tmp_dir, "test_plot3D_sliced_once.png") Makie.save(output_name, fig) # Test passing more_kwargs fig = Makie.Figure() ClimaAnalysis.Visualize.plot!( fig, var3D; time = 1, more_kwargs = Dict(:cb => [:vertical => :false]), ) fig = Makie.Figure() ClimaAnalysis.Visualize.plot!( fig, var3D; time = 1, more_kwargs = Dict( :plot => ClimaAnalysis.Utils.kwargs(colormap = :inferno), ), ) output_name = joinpath(tmp_dir, "test_plot3D_sliced_once.png") Makie.save(output_name, fig) # Test dim_on_y fig = Makie.Figure() ClimaAnalysis.Visualize.plot!( fig, var3D; time = 1, lon = 30, more_kwargs = Dict( :plot => ClimaAnalysis.Utils.kwargs(colormap = :inferno), :axis => ClimaAnalysis.Utils.kwargs(dim_on_y = true), ), ) output_name = joinpath(tmp_dir, "test_plot3D_sliced_swapped.png") Makie.save(output_name, fig) # Test overriding title, xlabel, and ylabel fig = Makie.Figure() ClimaAnalysis.Visualize.heatmap2D!( fig, var2D, more_kwargs = Dict( :axis => ClimaAnalysis.Utils.kwargs( title = "My title: The quick brown fox jumps over the lazy dog. The quick brown fox.", xlabel = "My xlabel", ylabel = "My ylabel", ), ), ) output_name = joinpath(tmp_dir, "test2D_title.png") Makie.save(output_name, fig) # Plotting box plot csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model(rmse_var, "CliMA") rmse_var["CliMA", :] = [12.0, 12.0, 11.0, 14.0, 6.0] ClimaAnalysis.add_unit!( rmse_var, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "CliMA" => "units", ), ) rmse_var[2, 5] = 4.0 rmse_var1 = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var1 = ClimaAnalysis.add_model(rmse_var1, "CliMA", "test_model") rmse_var1["CliMA", :] = [12.0, 12.0, 11.0, 14.0, 6.0] rmse_var1["test_model", :] = [12.0, 12.0, 11.0, 14.0, 6.0] ClimaAnalysis.add_unit!( rmse_var1, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "CliMA" => "units", "test_model" => "units", ), ) rmse_var1[2, 5] = 4.0 fig = Makie.Figure(; size = (800, 300 * 3 + 400), fontsize = 20) ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_var, model_names = ["CliMA"], best_and_worst_category_name = "ANN", ) ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_var, model_names = ["CliMA"], ploc = (2, 1), best_and_worst_category_name = "ANN", ) ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_var1, model_names = ["CliMA", "ACCESS-ESM1-5"], ploc = (3, 1), best_and_worst_category_name = "ANN", ) output_name = joinpath(tmp_dir, "test_boxplots.png") Makie.save(output_name, fig) # Plotting leaderboard csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model(rmse_var, "CliMA") rmse_var[:, :] = [ [10.0 11.0 12.0 13.0 14.0] [36.0 37.0 38.0 39.0 30.0] [11.0 12.0 13.0 14.0 15.0] ] ClimaAnalysis.add_unit!( rmse_var, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "CliMA" => "units", ), ) rmse_var1 = ClimaAnalysis.read_rmses(csv_file_path, "ta1") rmse_var1 = ClimaAnalysis.add_model(rmse_var1, "CliMA") rmse_var1[:, :] = [ [6.0 7.0 8.0 9.0 10.0] [11.0 12.0 13.0 14.0 15.0] [1.0 2.0 3.0 4.0 5.0] ] ClimaAnalysis.add_unit!( rmse_var1, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "CliMA" => "units", ), ) rmse_var2 = ClimaAnalysis.read_rmses(csv_file_path, "ta2") rmse_var2 = ClimaAnalysis.add_model(rmse_var2, "CliMA") rmse_var2[:, :] = [ [0.5 1.0 1.5 2.0 2.5] [6.0 7.0 8.0 9.0 10.0] [11.0 12.0 13.0 14.0 15.0] ] ClimaAnalysis.add_unit!( rmse_var2, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "CliMA" => "units", ), ) # Normalized RMSEs should improve going from ta to ta1 to ta2 for CliMA model # Colors for ta of both models should be similar (close to 1) # Colors for ta2 of best model should be greener (improve) from ta1 to ta2 # for CliMA, the normalized RMSEs from greatest to least should be ta1, ta, and ta2 fig = Makie.Figure(; fontsize = 20) ClimaAnalysis.Visualize.plot_leaderboard!( fig, rmse_var, rmse_var1, rmse_var2, best_category_name = "ANN", ) output_name = joinpath(tmp_dir, "test_leaderboard.png") Makie.save(output_name, fig) # Plot box plots and leaderboard in one plot rmse_vars = (rmse_var, rmse_var1, rmse_var2) fig = Makie.Figure(; size = (800, 300 * 3 + 400), fontsize = 20) for i in 1:3 ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_vars[i], ploc = (i, 1), best_and_worst_category_name = "ANN", ) end ClimaAnalysis.Visualize.plot_leaderboard!( fig, rmse_vars..., best_category_name = "ANN", ploc = (4, 1), ) output_name = joinpath(tmp_dir, "test_boxplot_and_leaderboard.png") Makie.save(output_name, fig) # Plotting box plot with NaN rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model(rmse_var, "CliMA") ClimaAnalysis.add_unit!( rmse_var, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "CliMA" => "units", ), ) rmse_var[2, 5] = 10.0 fig = Makie.Figure(; fontsize = 20) ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_var, model_names = ["CliMA"], best_and_worst_category_name = "ANN", ) output_name = joinpath(tmp_dir, "test_boxplot_nan.png") Makie.save(output_name, fig) fig = Makie.Figure(; fontsize = 20) ClimaAnalysis.Visualize.plot_leaderboard!( fig, rmse_var, model_names = ["CliMA"], best_category_name = "ANN", ) output_name = joinpath(tmp_dir, "test_leaderboard_nan.png") Makie.save(output_name, fig) # Testing with long name rmse_var = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var = ClimaAnalysis.add_model( rmse_var, "long_name_name_name_name_name_name_name", ) ClimaAnalysis.add_unit!( rmse_var, Dict( "ACCESS-ESM1-5" => "units", "ACCESS-CM2" => "units", "long_name_name_name_name_name_name_name" => "units", ), ) rmse_var[2, 5] = 10.0 fig = Makie.Figure(; fontsize = 20) ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_var, model_names = ["long_name_name_name_name_name_name_name"], best_and_worst_category_name = "ANN", ) output_name = joinpath(tmp_dir, "test_boxplot_long_name.png") Makie.save(output_name, fig) # Test error handling for plot_leaderboard csv_file_path = joinpath(@__DIR__, "sample_data/test_csv.csv") rmse_var1 = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var1 = ClimaAnalysis.add_category(rmse_var1, "hi") rmse_var2 = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var2 = ClimaAnalysis.add_category(rmse_var2, "hello") @test_throws ErrorException ClimaAnalysis.Visualize.plot_leaderboard!( fig, rmse_var1, rmse_var2, model_names = ["CliMA"], best_category_name = "ANN", ) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
3542
using Test import ClimaAnalysis @testset "integration weights for lon and lat" begin # Integration weights for lon (not equispaced) lon = [-180.0, -45.0, 100.0, 180.0] lon_weights = [135.0, 145.0, 80.0, 0.0] .* (Ο€ / 180.0) @test all( isapprox.( lon_weights, ClimaAnalysis.Numerics._integration_weights_lon_left(lon), ), ) # Integration weights for lat (not equispaced) lat = [-90.0, 20.0, 45.0, 90.0] lat_weights = [110.0, 25.0, 45.0, 0.0] .* (Ο€ / 180.0) .* cosd.(lat) @test all( isapprox.( lat_weights, ClimaAnalysis.Numerics._integration_weights_lat_left(lat), ), ) # Integration weights for lon (not equispaced) lon = collect(range(-180.0, 180.0, 5)) lon_weights = [90.0 for _ in lon] .* (Ο€ / 180.0) @test all( isapprox.( lon_weights, ClimaAnalysis.Numerics._integration_weights_lon_equispaced(lon), ), ) lat = collect(range(-90.0, 90.0, 5)) lat_weights = [45.0 for _ in lat] .* (Ο€ / 180.0) .* cosd.(lat) @test all( isapprox.( lat_weights, ClimaAnalysis.Numerics._integration_weights_lat_equispaced(lat), ), ) end @testset "Integrating on lon and lat" begin # Integrating only lon (non equispaced) lon = collect(range(-180.0, 179.0, 100)) # Force array to be non equispaced for testing _integration_weights_lon push!(lon, 180.0) lon_data = ones(length(lon)) @test isapprox( ClimaAnalysis.Numerics._integrate_lon(lon_data, lon, dims = 1)[1], 2.0Ο€, atol = 0.01, ) # Integrating only lat (non equispaced) lat = collect(range(-90.0, 89.0, 100)) # Force array to be non equispaced for testing _integration_weights_lat push!(lat, 90.0) lat_data = ones(length(lat)) @test isapprox( ClimaAnalysis.Numerics._integrate_lat(lat_data, lat, dims = 1)[1], 2.0, atol = 0.01, ) # Integrating both lon and lat data = ones(length(lat), length(lon)) integrated_lat = ClimaAnalysis.Numerics._integrate_lat(data, lat, dims = 1) integrated_latlon = ClimaAnalysis.Numerics._integrate_lon(integrated_lat, lon, dims = 1) integrated_lon = ClimaAnalysis.Numerics._integrate_lon(data, lon, dims = 2) integrated_lonlat = ClimaAnalysis.Numerics._integrate_lat(integrated_lon, lat, dims = 1) # Order of integration should not matter @test isapprox(integrated_latlon[1], integrated_lonlat[1]) @test isapprox(integrated_latlon[1], 4Ο€, atol = 0.01) # Error checking for length of lon and lat and values in lon and lat @test_throws "Cannot integrate when latitude is a single point" ClimaAnalysis.Numerics._integrate_lat( lat_data, [0.0], dims = 1, ) @test_throws "Cannot integrate when latitude is a single point" ClimaAnalysis.Numerics._integrate_lat( lon_data, [0.0], dims = 1, ) # Integrating only lon (non equispaced) lon = collect(range(-179.5, 179.5, 360)) lon_data = ones(length(lon)) @test isapprox( ClimaAnalysis.Numerics._integrate_lon(lon_data, lon, dims = 1)[1], 2.0Ο€, atol = 0.01, ) # Integrating only lat (non equispaced) lat = collect(range(-89.5, 89.5, 180)) lat_data = ones(length(lat)) @test isapprox( ClimaAnalysis.Numerics._integrate_lat(lat_data, lat, dims = 1)[1], 2.0, atol = 0.01, ) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
3648
using Test import ClimaAnalysis @testset "SimDir" begin simulation_path = joinpath(@__DIR__, "sample_data") simdir = ClimaAnalysis.SimDir(simulation_path) @test ClimaAnalysis.available_vars(simdir) == Set(["va", "ua", "orog", "ta", "ts", "pfull"]) @test ClimaAnalysis.available_reductions(simdir, short_name = "ta") == Set(["average", "max", "min"]) @test_throws ErrorException ClimaAnalysis.available_reductions( simdir, short_name = "bob", ) @test ClimaAnalysis.available_periods( simdir, short_name = "ta", reduction = "max", ) == Set(["3.0h", "4.0h"]) @test_throws ErrorException ClimaAnalysis.available_periods( simdir, short_name = "ta", reduction = "bob", ) @test simdir.variable_paths["orog"]["inst"][nothing] == joinpath(simulation_path, "orog_inst.nc") @test simdir.variable_paths["ta"]["max"] == Dict{Any, Any}( "3.0h" => joinpath(simulation_path, "ta_3.0h_max.nc"), "4.0h" => joinpath(simulation_path, "ta_4.0h_max.nc"), ) @test simdir.vars["ta"]["max"] == Dict{Any, Any}("3.0h" => nothing, "4.0h" => nothing) expected_files = Set( joinpath(simulation_path, f) for f in readdir(simulation_path) if endswith(f, ".nc") ) @test simdir.allfiles == expected_files @test !isempty(simdir) @test isempty(ClimaAnalysis.SimDir(tempdir())) end @testset "OutputVar" begin simulation_path = joinpath(@__DIR__, "sample_data") simdir = ClimaAnalysis.SimDir(simulation_path) ta_max = get(simdir, short_name = "ta", reduction = "max", period = "4.0h") ts_max = get(simdir, short_name = "ts", reduction = "max", period = "1.0h") @test ClimaAnalysis.units(ta_max) == "K" @test collect(keys(ta_max.dims)) == Array(["time", "lon", "lat", "z"]) @test ta_max.dim2index == Dict(["time" => 1, "lon" => 2, "lat" => 3, "z" => 4]) @test ta_max.index2dim == ["time", "lon", "lat", "z"] @test ta_max.dim_attributes["lat"]["units"] == "degrees_north" @test size(ta_max.data) == (3, 180, 80, 10) @test_throws ErrorException get(simdir, short_name = "bob") @test_throws ErrorException get( simdir, short_name = "ta", reduction = "max", period = "10.0h", ) # Check if reduction = inst and passing a period @test_throws ErrorException orog = get(simdir, short_name = "orog", reduction = "inst", period = "4.0h") orog = get(simdir, short_name = "orog", reduction = "inst") # Check is_z_1d pfull = get(simdir, short_name = "pfull", reduction = "inst") @test ClimaAnalysis.is_z_1D(pfull) == false # Check the shorter gets @test_throws ErrorException get(simdir, "ta") @test_throws ErrorException get(simdir; short_name = "ta") @test_throws ErrorException get( simdir; short_name = "ta", reduction = "max", ) @test orog == get(simdir, "orog") @test orog == get(simdir; short_name = "orog", reduction = "inst", period = nothing) @test ts_max == get(simdir; short_name = "ts", reduction = "max") # short_name, long_name, units @test ClimaAnalysis.short_name(orog) == "orog" @test ClimaAnalysis.long_name(orog) == "Surface Altitude, Instantaneous" @test ClimaAnalysis.units(orog) == "m" # The ts_max file bundled with ClimaAnalysis does not have the short_name # attribute because it was generated before that was a feature. We use that # to check the empty tring @test ClimaAnalysis.short_name(ts_max) == "" end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
6018
using Test import ClimaAnalysis: Utils import Dates @testset "Regexp" begin @test Utils.match_nc_filename("bob") === nothing @test Utils.match_nc_filename("ta_1d_average.nc") == Tuple(["ta", "1d", "average"]) @test Utils.match_nc_filename("ta_3.0h_average.nc") == Tuple(["ta", "3.0h", "average"]) @test Utils.match_nc_filename("toa_net_flux_1m_40s_inst.nc") == Tuple(["toa_net_flux", "1m_40s", "inst"]) @test Utils.match_nc_filename("toa_net_flux_1M_inst.nc") == Tuple(["toa_net_flux", "1M", "inst"]) @test Utils.match_nc_filename("p500_1M_inst.nc") == Tuple(["p500", "1M", "inst"]) @test Utils.match_nc_filename("pfull_6.0m_max.nc") == Tuple(["pfull", "6.0m", "max"]) @test Utils.match_nc_filename("hu_inst.nc") == Tuple(["hu", nothing, "inst"]) end @testset "Squeeze" begin @test Utils.squeeze([[1 2] [3 4]]) == [1, 2, 3, 4] end @testset "nearest_index" begin @test Utils.nearest_index([10, 20, 30], 0) == 1 @test Utils.nearest_index([10, 20, 30], 100) == 3 @test Utils.nearest_index([10, 20, 30], 20) == 2 @test Utils.nearest_index([10, 20, 30], typemax(Int)) == 3 @test Utils.nearest_index([10, 20, 30], -typemax(Int)) == 1 end @testset "kwargs" begin @test values(Utils.kwargs(a = 1, b = 2)) == (; a = 1, b = 2) end @testset "seconds_to_prettystr" begin @test Utils.seconds_to_prettystr(1) == "1s" @test Utils.seconds_to_prettystr(2) == "2s" @test Utils.seconds_to_prettystr(60) == "1m" @test Utils.seconds_to_prettystr(61) == "1m 1s" @test Utils.seconds_to_prettystr(3600) == "1h" @test Utils.seconds_to_prettystr(3666) == "1h 1m 6s" @test Utils.seconds_to_prettystr(86400) == "1d" @test Utils.seconds_to_prettystr(86401) == "1d 1s" @test Utils.seconds_to_prettystr(86522) == "1d 2m 2s" @test Utils.seconds_to_prettystr(24 * 60 * 60 * 365) == "1y" @test Utils.seconds_to_prettystr(24 * 60 * 60 * 365 + 60) == "1y 1m" @test Utils.seconds_to_prettystr(24 * 60 * 60 * 365 + 68) == "1y 1m 8s" @test Utils.seconds_to_prettystr(24 * 60 * 60 * 365 + 68.5) == "1y 1m 8.5s" end @testset "format_title" begin @test Utils.warp_string("") == "" @test Utils.warp_string("test", max_width = 4) == "test" @test Utils.warp_string(" test ", max_width = 4) == "test" @test Utils.warp_string(" test") == "test" @test Utils.warp_string("test1", max_width = 4) == "test1" @test Utils.warp_string(" test1 ", max_width = 4) == "test1" @test Utils.warp_string("test blah", max_width = 4) == "test\nblah" @test Utils.warp_string("test1 test2 test3", max_width = 4) == "test1\ntest2\ntest3" @test Utils.warp_string("abc def", max_width = 3) == "abc\ndef" @test Utils.warp_string("is a test", max_width = 4) == "is a\ntest" @test Utils.warp_string("a b c d", max_width = 2) == "a\nb\nc\nd" @test Utils.warp_string("a b c d e f", max_width = 5) == "a b c\nd e f" @test Utils.warp_string("a\tb\nc\vd\fe\rf", max_width = 11) == "a b c d e f" end @testset "split by season" begin empty_dates = Vector{Dates.DateTime}() @test Utils.split_by_season(empty_dates) == ([], [], [], []) date = [Dates.DateTime(2015, 4, 13)] @test Utils.split_by_season(date) == ([Dates.DateTime(2015, 4, 13)], [], [], []) dates = [ Dates.DateTime(2015, 1, 13), Dates.DateTime(2018, 2, 13), Dates.DateTime(1981, 7, 6), Dates.DateTime(1993, 11, 19), Dates.DateTime(2040, 4, 1), Dates.DateTime(2000, 8, 18), ] expected_dates = ( [Dates.DateTime(2040, 4, 1)], [Dates.DateTime(1981, 7, 6), Dates.DateTime(2000, 8, 18)], [Dates.DateTime(1993, 11, 19)], [Dates.DateTime(2015, 1, 13), Dates.DateTime(2018, 2, 13)], ) @test Utils.split_by_season(dates) == expected_dates end @testset "equispaced" begin equispaced = Utils._isequispaced([1.0, 2.0, 3.0]) @test equispaced == true equispaced = Utils._isequispaced([0.0, 2.0, 3.0]) @test equispaced == false end @testset "Date and time conversion" begin reference_date = Dates.DateTime(2013, 7, 1, 12) date_one_day = Dates.DateTime(2013, 7, 2, 12) date_one_hour = Dates.DateTime(2013, 7, 1, 13) date_one_min = Dates.DateTime(2013, 7, 1, 12, 1) date_one_sec = Dates.DateTime(2013, 7, 1, 12, 0, 1) # Test time_to_date @test Utils.time_to_date(reference_date, 86400.0) == date_one_day @test Utils.time_to_date(reference_date, 3600.0) == date_one_hour @test Utils.time_to_date(reference_date, 60.0) == date_one_min @test Utils.time_to_date(reference_date, 1.0) == date_one_sec # Test date_to_time @test Utils.date_to_time(reference_date, date_one_day) == 86400.0 @test Utils.date_to_time(reference_date, date_one_hour) == 3600.0 @test Utils.date_to_time(reference_date, date_one_min) == 60.0 @test Utils.date_to_time(reference_date, date_one_sec) == 1.0 # Test period_to_seconds_float @test Utils.period_to_seconds_float(Dates.Millisecond(1)) == 0.001 @test Utils.period_to_seconds_float(Dates.Second(1)) == 1.0 @test Utils.period_to_seconds_float(Dates.Minute(1)) == 60.0 @test Utils.period_to_seconds_float(Dates.Hour(1)) == 3600.0 @test Utils.period_to_seconds_float(Dates.Day(1)) == 86400.0 @test Utils.period_to_seconds_float(Dates.Week(1)) == 604800.0 @test Utils.period_to_seconds_float(Dates.Month(1)) == 2.629746e6 @test Utils.period_to_seconds_float(Dates.Year(1)) == 3.1556952e7 end @testset "data_at_dim_vals" begin data = [[1, 2, 3] [4, 5, 6] [7, 8, 9]] dim_arr = [2.0, 3.0, 4.0] dim_idx = 2 @test Utils._data_at_dim_vals(data, dim_arr, dim_idx, []) == reshape([], 3, 0) @test Utils._data_at_dim_vals(data, dim_arr, dim_idx, [2.1]) == reshape([1; 2; 3], 3, 1) @test Utils._data_at_dim_vals(data, dim_arr, dim_idx, [2.1, 2.9, 4.0]) == data end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
code
55424
using Test import ClimaAnalysis import Interpolations as Intp import NaNStatistics: nanmean import NCDatasets: NCDataset import OrderedCollections: OrderedDict import Unitful: @u_str import Dates @testset "General" begin # Add test for short constructor long = -180.0:180.0 |> collect data = copy(long) longvar = ClimaAnalysis.OutputVar(Dict("long" => long), data) @test longvar.dims["long"] == long # Unitful attribs = Dict("long_name" => "hi", "units" => "m/s") dim_attributes = OrderedDict(["long" => Dict("units" => "m")]) var_with_unitful = ClimaAnalysis.OutputVar( attribs, Dict("long" => long), dim_attributes, data, ) @test ClimaAnalysis.units(var_with_unitful) == "m s^-1" @test var_with_unitful.attributes["units"] == u"m" / u"s" # Unparsable unit attribs = Dict("long_name" => "hi", "units" => "bob") var_without_unitful = ClimaAnalysis.OutputVar( attribs, Dict("long" => long), dim_attributes, data, ) @test ClimaAnalysis.units(var_without_unitful) == "bob" @test var_without_unitful.attributes["units"] == "bob" # Reading directly from file ncpath = joinpath(@__DIR__, "topo_drag.res.nc") file_var = ClimaAnalysis.OutputVar(ncpath, "t11") NCDataset(ncpath) do nc @test nc["t11"][:, :, :] == file_var.data end # center_longitude! # # Check var without long dims = Dict("z" => long) var_error = ClimaAnalysis.OutputVar( Dict{String, Any}(), dims, Dict{String, Any}(), data, ) @test_throws ErrorException ClimaAnalysis.center_longitude!( var_error, 180.0, ) time = 0:10.0 |> collect dims = OrderedDict("lon" => long, "time" => time) data = collect(reshape(1:(361 * 11), (361, 11))) var_good = ClimaAnalysis.OutputVar( Dict{String, Any}(), dims, Dict{String, Any}(), data, ) ClimaAnalysis.center_longitude!(var_good, 90.0) # We are shifting by 91 @test var_good.dims["lon"][180] == 90 @test var_good.data[3, :] == data[3, :] @test var_good.data[180, 1] == 271 @test_throws ErrorException ClimaAnalysis.OutputVar( Dict("time" => time), [1], ) end @testset "Interpolant boundary conditions" begin # Check boundary condtions for lon (equispaced and span), lat (equispaced and span), and # time lon = 0.5:1.0:359.5 |> collect lat = -89.5:1.0:89.5 |> collect time = 1.0:100 |> collect data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) attribs = Dict("long_name" => "hi") dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), "time" => Dict("units" => "test_units3"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test var.interpolant.et == (Intp.Periodic(), Intp.Flat(), Intp.Throw()) # Not equispaced for lon and lat lon = 0.5:1.0:359.5 |> collect |> x -> push!(x, 42.0) |> sort lat = -89.5:1.0:89.5 |> collect |> x -> push!(x, 42.0) |> sort time = 1.0:100 |> collect data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test var.interpolant.et == (Intp.Throw(), Intp.Throw(), Intp.Throw()) # Does not span entire range for and lat lon = 0.5:1.0:350.5 |> collect lat = -89.5:1.0:80.5 |> collect time = 1.0:100 |> collect data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test var.interpolant.et == (Intp.Throw(), Intp.Throw(), Intp.Throw()) # Dates for the time dimension lon = 0.5:1.0:359.5 |> collect lat = -89.5:1.0:89.5 |> collect time = [ Dates.DateTime(2020, 3, 1, 1, 1), Dates.DateTime(2020, 3, 1, 1, 2), Dates.DateTime(2020, 3, 1, 1, 3), ] data = ones(length(lon), length(lat), length(time)) dims = OrderedDict(["lon" => lon, "lat" => lat, "time" => time]) attribs = Dict("long_name" => "hi") dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), "time" => Dict("units" => "test_units3"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test isnothing(var.interpolant) end @testset "empty" begin dims = OrderedDict{String, Vector{Float64}}() data = Float64[] empty_var = ClimaAnalysis.OutputVar(dims, data) @test ClimaAnalysis.isempty(empty_var) dims = OrderedDict{String, Vector{Float64}}() data = fill(1.0) empty_var = ClimaAnalysis.OutputVar(dims, data) @test !ClimaAnalysis.isempty(empty_var) long = 0.0:180.0 |> collect dims = OrderedDict(["long" => long]) data = ones(size(long)) dim_attributes = OrderedDict(["lon" => Dict("b" => 2)]) attribs = Dict("short_name" => "bob", "long_name" => "hi") not_empty_var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) @test !ClimaAnalysis.isempty(not_empty_var) end @testset "Arithmetic operations" begin long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data1 = collect(reshape(1.0:(91 * 181 * 11), (11, 181, 91))) dims = OrderedDict(["time" => time, "lon" => long, "lat" => lat]) dim_attributes = OrderedDict([ "time" => Dict("units" => "s"), "lon" => Dict("b" => 2), "lat" => Dict("a" => 1), ]) attribs = Dict("short_name" => "bob", "long_name" => "hi") var1 = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data1) dim_attributes2 = OrderedDict([ "time" => Dict("units" => "m"), "lon" => Dict("lol" => 2), "lat" => Dict("a" => 1), ]) var2 = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes2, data1) data3 = 5.0 .+ collect(reshape(1.0:(91 * 181 * 11), (11, 181, 91))) attribs3 = Dict("long_name" => "bob", "short_name" => "bula") var3 = ClimaAnalysis.OutputVar(attribs3, dims, dim_attributes, data3) # Check arecompatible @test !ClimaAnalysis.arecompatible(var1, var2) @test ClimaAnalysis.arecompatible(var1, var3) var1plus10 = var1 + 10 @test var1plus10.data == data1 .+ 10 @test ClimaAnalysis.short_name(var1plus10) == "bob + 10" @test ClimaAnalysis.long_name(var1plus10) == "hi + 10" @test var1plus10((0.0, 0.0, 0.0)) == var1((0.0, 0.0, 0.0)) + 10 tenplusvar1 = 10 + var1 @test tenplusvar1.data == data1 .+ 10 @test ClimaAnalysis.short_name(tenplusvar1) == "10 + bob" @test ClimaAnalysis.long_name(tenplusvar1) == "10 + hi" @test tenplusvar1((0.0, 0.0, 0.0)) == 10 + var1((0.0, 0.0, 0.0)) var1plusvar3 = var1 + var3 @test var1plusvar3.data == data1 .+ data3 @test ClimaAnalysis.short_name(var1plusvar3) == "bob + bula" @test ClimaAnalysis.long_name(var1plusvar3) == "hi + bob" # Test for element wise multiplication and division between OutputVars var_times = var1 * var3 @test var_times.data == var1.data .* var3.data var_divide = var1 / var3 @test var_divide.data == var1.data ./ var3.data end @testset "Reductions (sphere dims)" begin long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data = collect(reshape(1.0:(91 * 181 * 11), (11, 181, 91))) dims = OrderedDict(["time" => time, "lon" => long, "lat" => lat]) dim_attributes = OrderedDict([ "time" => Dict(), "lon" => Dict("b" => 2), "lat" => Dict("a" => 1), ]) attribs = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) # Test copy var_copied = copy(var) fields = fieldnames(ClimaAnalysis.OutputVar) for field in fields @test getfield(var, field) == getfield(var_copied, field) @test getfield(var, field) !== getfield(var_copied, field) end # Test reduction lat_avg = ClimaAnalysis.average_lat(var) @test lat_avg.dims == OrderedDict(["lon" => long, "time" => time]) @test lat_avg.dim_attributes == OrderedDict(["lon" => Dict("b" => 2), "time" => Dict()]) @test lat_avg.data == dropdims(nanmean(data, dims = 3), dims = 3) wei_lat_avg = ClimaAnalysis.weighted_average_lat(var) @test wei_lat_avg.dims == OrderedDict(["lon" => long, "time" => time]) @test wei_lat_avg.dim_attributes == OrderedDict(["lon" => Dict("b" => 2), "time" => Dict()]) weights = ones(size(data)) for i in eachindex(time) for j in eachindex(long) for k in eachindex(lat) weights[i, j, k] = cosd(lat[k]) end end end weights ./= nanmean(cosd.(lat)) expected_avg = dropdims(nanmean(data .* weights, dims = 3), dims = 3) @test wei_lat_avg.data β‰ˆ expected_avg # Test reduction with NaN latnan = [1, 2, 3] datanan = [10.0, 20.0, NaN] dimsnan = OrderedDict(["lat" => latnan]) dim_attributesnan = OrderedDict(["lat" => Dict("b" => 2)]) attribsnan = Dict("lat_name" => "hi") varnan = ClimaAnalysis.OutputVar(attribsnan, dimsnan, dim_attributesnan, datanan) @test isnan(ClimaAnalysis.average_lat(varnan; ignore_nan = false).data[]) @test ClimaAnalysis.average_lat(varnan; weighted = true).data[] β‰ˆ (datanan[1] * cosd(latnan[1]) + datanan[2] * cosd(latnan[2])) / (cosd(latnan[1]) + cosd(latnan[2])) wrong_dims = OrderedDict(["lat" => [0.0, 0.1]]) wrong_dim_attributes = OrderedDict(["lat" => Dict("a" => 1)]) wrong_var = ClimaAnalysis.OutputVar( Dict{String, Any}(), wrong_dims, wrong_dim_attributes, [0.0, 0.1], ) @test_logs ( :warn, "Detected latitudes are small. If units are radians, results will be wrong", ) lat_lon_avg = ClimaAnalysis.average_lon(lat_avg) @test lat_lon_avg.dims == OrderedDict(["time" => time]) @test lat_lon_avg.dim_attributes == OrderedDict(["time" => Dict()]) @test lat_lon_avg.data == dropdims(nanmean(lat_avg.data, dims = 2), dims = 2) lat_lon_time_avg = ClimaAnalysis.average_time(lat_lon_avg) @test lat_lon_time_avg.dims == OrderedDict() @test lat_lon_time_avg.dim_attributes == OrderedDict() @test lat_lon_time_avg.data[] == nanmean(data) @test lat_lon_time_avg.attributes["long_name"] == "hi averaged over lat (0.0 to 90.0) averaged over lon (0.0 to 180.0) averaged over time (0.0 to 10.0)" end @testset "Reductions (box dims)" begin x = 0.0:180.0 |> collect y = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data = reshape(1.0:(91 * 181 * 11), (11, 181, 91)) # Identical test pattern to sphere setup, with `dims` modified. dims = OrderedDict(["time" => time, "x" => x, "y" => y]) dim_attributes = OrderedDict([ "time" => Dict(), "x" => Dict("b" => 2), "y" => Dict("a" => 1), ]) attribs = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) y_avg = ClimaAnalysis.average_y(var) @test y_avg.dims == OrderedDict(["x" => x, "time" => time]) @test y_avg.dim_attributes == OrderedDict(["x" => Dict("b" => 2), "time" => Dict()]) @test y_avg.data == dropdims(nanmean(data, dims = 3), dims = 3) y_x_avg = ClimaAnalysis.average_x(y_avg) xy_avg = ClimaAnalysis.average_xy(var) @test y_x_avg.data == xy_avg.data @test y_x_avg.dims == OrderedDict(["time" => time]) @test y_x_avg.dim_attributes == OrderedDict(["time" => Dict()]) @test y_x_avg.data == dropdims(nanmean(y_avg.data, dims = 2), dims = 2) y_x_time_avg = ClimaAnalysis.average_time(y_x_avg) xy_time_avg = ClimaAnalysis.average_time(xy_avg) @test y_x_time_avg.dims == OrderedDict() @test y_x_time_avg.dim_attributes == OrderedDict() @test y_x_time_avg.data[] == nanmean(data) @test y_x_time_avg.attributes["long_name"] == "hi averaged over y (0.0 to 90.0) averaged over x (0.0 to 180.0) averaged over time (0.0 to 10.0)" @test xy_time_avg.attributes["long_name"] == "hi averaged horizontally over x (0.0 to 180.0) and y (0.0 to 90.0) averaged over time (0.0 to 10.0)" end @testset "Slicing" begin z = 0.0:20.0 |> collect time = 100.0:110.0 |> collect data = reshape(1.0:(11 * 21), (11, 21)) dims = OrderedDict(["time" => time, "z" => z]) dim_attributes = OrderedDict(["time" => Dict("units" => "s"), "z" => Dict("b" => 2)]) attribs = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) z_sliced = ClimaAnalysis.slice(var, z = 1.0) # 1.0 is the second index z_expected_data = data[:, 2] @test z_sliced.dims == OrderedDict(["time" => time]) @test z_sliced.dim_attributes == OrderedDict(["time" => Dict("units" => "s")]) @test z_sliced.data == z_expected_data t_sliced = ClimaAnalysis.slice(var, time = 200.0) # 200 is the last index t_expected_data = data[end, :] @test t_sliced.dims == OrderedDict(["z" => z]) @test t_sliced.dim_attributes == OrderedDict(["z" => Dict("b" => 2)]) @test t_sliced.data == t_expected_data @test t_sliced.attributes["long_name"] == "hi time = 1m 50.0s" # Test with the general slice t_sliced = ClimaAnalysis.slice(var, time = 200.0) # 200 is the last index t_expected_data = data[end, :] @test t_sliced.dims == OrderedDict(["z" => z]) @test t_sliced.dim_attributes == OrderedDict(["z" => Dict("b" => 2)]) @test t_sliced.data == t_expected_data @test t_sliced.attributes["long_name"] == "hi time = 1m 50.0s" @test t_sliced.attributes["slice_time"] == "110.0" @test t_sliced.attributes["slice_time_units"] == "s" end @testset "Windowing" begin z = 0.0:20.0 |> collect time = 0.0:10.0 |> collect data = reshape(1.0:(11 * 21), (11, 21)) dims = OrderedDict(["time" => time, "z" => z]) dim_attributes = OrderedDict(["time" => Dict("units" => "s"), "z" => Dict("b" => 2)]) attribs = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) # Dimension not existing @test_throws ErrorException ClimaAnalysis.window(var, "lat") # Left right not ordered @test_throws ErrorException ClimaAnalysis.window( var, "time", left = 10, right = 1, ) var_windowed = ClimaAnalysis.window(var, "time", left = 2.5, right = 5.1) expected_data = data[3:6, :] @test var_windowed.data == expected_data @test var_windowed.dims["time"] == time[3:6] end @testset "Extracting dimension" begin @test ClimaAnalysis.Var.find_dim_name(["a", "b"], ["c", "a"]) == "a" @test_throws ErrorException ClimaAnalysis.Var.find_dim_name( ["a", "b"], ["c", "d"], ) long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect time = 0.0:10.0 |> collect alt = 0.0:2.0 |> collect data = reshape(1.0:(3 * 91 * 181 * 11), (11, 181, 91, 3)) dims = OrderedDict(["time" => time, "lon" => long, "lat" => lat, "z" => alt]) attribs = Dict("short_name" => "bob", "long_name" => "hi") dim_attributes = OrderedDict([ "time" => Dict(), "lon" => Dict("b" => 2), "lat" => Dict("a" => 1), "z" => Dict(), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) @test ClimaAnalysis.time_name(var) == "time" @test ClimaAnalysis.longitude_name(var) == "lon" @test ClimaAnalysis.latitude_name(var) == "lat" @test ClimaAnalysis.altitude_name(var) == "z" @test ClimaAnalysis.times(var) == time @test ClimaAnalysis.latitudes(var) == lat @test ClimaAnalysis.longitudes(var) == long @test ClimaAnalysis.altitudes(var) == alt @test ClimaAnalysis.has_time(var) @test ClimaAnalysis.has_longitude(var) @test ClimaAnalysis.has_latitude(var) @test ClimaAnalysis.has_altitude(var) @test ClimaAnalysis.conventional_dim_name("long") == "longitude" @test ClimaAnalysis.conventional_dim_name("latitude") == "latitude" @test ClimaAnalysis.conventional_dim_name("t") == "time" @test ClimaAnalysis.conventional_dim_name("date") == "date" @test ClimaAnalysis.conventional_dim_name("z") == "altitude" @test ClimaAnalysis.conventional_dim_name("hi") == "hi" end @testset "Interpolation" begin # 1D interpolation with linear data, should yield correct results long = -175.0:175.0 |> collect data = copy(long) longvar = ClimaAnalysis.OutputVar(Dict("long" => long), data) @test longvar.([10.5, 20.5]) == [10.5, 20.5] # Test error for data outside of range @test_throws BoundsError longvar(200.0) # 2D interpolation with linear data, should yield correct results time = 100.0:110.0 |> collect z = 0.0:20.0 |> collect data = reshape(1.0:(11 * 21), (11, 21)) var2d = ClimaAnalysis.OutputVar(Dict("time" => time, "z" => z), data) @test var2d.([[105.0, 10.0], [105.5, 10.5]]) == [116.0, 122] end @testset "Dim of units and range" begin x = 0.0:180.0 |> collect y = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data = collect(reshape(1.0:(91 * 181 * 11), (11, 181, 91))) dims = OrderedDict(["time" => time, "x" => x, "y" => y]) dim_attributes = OrderedDict([ "time" => Dict("units" => "seconds"), "x" => Dict("units" => "km"), ]) attribs = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) @test ClimaAnalysis.dim_units(var, "y") == "" @test ClimaAnalysis.dim_units(var, "x") == "km" @test ClimaAnalysis.range_dim(var, "x") == (0.0, 180.0) @test_throws ErrorException( "Var does not have dimension z, found [\"time\", \"x\", \"y\"]", ) ClimaAnalysis.dim_units(var, "z") @test_throws ErrorException( "Var does not have dimension z, found [\"time\", \"x\", \"y\"]", ) ClimaAnalysis.range_dim(var, "z") end @testset "Long name updates" begin # Setup to test x_avg, y_avg, xy_avg x = 0.0:180.0 |> collect y = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data = collect(reshape(1.0:(91 * 181 * 11), (11, 181, 91))) dims = OrderedDict(["time" => time, "x" => x, "y" => y]) dim_attributes = OrderedDict([ "time" => Dict("units" => "seconds"), "x" => Dict("units" => "km"), "y" => Dict("units" => "km"), ]) attribs = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data) y_avg = ClimaAnalysis.average_y(var) @test y_avg.attributes["long_name"] == "hi averaged over y (0.0 to 90.0km)" x_avg = ClimaAnalysis.average_x(var) @test x_avg.attributes["long_name"] == "hi averaged over x (0.0 to 180.0km)" xy_avg = ClimaAnalysis.average_xy(var) @test xy_avg.attributes["long_name"] == "hi averaged horizontally over x (0.0 to 180.0km) and y (0.0 to 90.0km)" # Setup to test average_lat and average_lon long = 0.0:180.0 |> collect lat = 0.0:90.0 |> collect time = 0.0:10.0 |> collect data1 = collect(reshape(1.0:(91 * 181 * 11), (11, 181, 91))) dims = OrderedDict(["time" => time, "lon" => long, "lat" => lat]) dim_attributes = OrderedDict([ "time" => Dict("units" => "seconds"), "lon" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) attribs = Dict("long_name" => "hi") var1 = ClimaAnalysis.OutputVar(attribs, dims, dim_attributes, data1) lat_avg = ClimaAnalysis.average_lat(var1) lon_avg = ClimaAnalysis.average_lon(var1) lat_weighted_avg = ClimaAnalysis.weighted_average_lat(var1) @test lon_avg.attributes["long_name"] == "hi averaged over lon (0.0 to 180.0test_units1)" @test lat_avg.attributes["long_name"] == "hi averaged over lat (0.0 to 90.0test_units2)" @test lat_weighted_avg.attributes["long_name"] == "hi weighted averaged over lat (0.0 to 90.0test_units2)" end @testset "Consistent units checking" begin x_long = 0.0:180.0 |> collect x_lat = 0.0:90.0 |> collect x_data = reshape(1.0:(181 * 91), (181, 91)) x_dims = OrderedDict(["long" => x_long, "lat" => x_lat]) x_attribs = Dict("long_name" => "hi") x_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) x_var = ClimaAnalysis.OutputVar(x_attribs, x_dims, x_dim_attribs, x_data) y_lon = 0.0:90.0 |> collect y_lat = 0.0:45.0 |> collect y_data = reshape(1.0:(91 * 46), (91, 46)) y_dims = OrderedDict(["lon" => y_lon, "lat" => y_lat]) y_attribs = Dict("long_name" => "hi") y_dim_attribs = OrderedDict([ "lon" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) y_var = ClimaAnalysis.OutputVar(y_attribs, y_dims, y_dim_attribs, y_data) @test_nowarn ClimaAnalysis.Var._check_dims_consistent(x_var, y_var) # Test if units are consistent between dimensions x_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units2"), "lat" => Dict("units" => "test_units1"), ]) x_var = ClimaAnalysis.OutputVar(x_attribs, x_dims, x_dim_attribs, x_data) @test_throws "Units for dimensions [\"long\", \"lat\"] in x is not consistent with units for dimensions [\"lon\", \"lat\"] in y" ClimaAnalysis.Var._check_dims_consistent( x_var, y_var, ) # Test if units are missing from any of the dimensions x_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units2"), "lat" => Dict("units" => ""), ]) x_var = ClimaAnalysis.OutputVar(x_attribs, x_dims, x_dim_attribs, x_data) @test_throws "Units for dimensions [\"lat\"] are missing in x and units for dimensions [\"lat\"] are missing in y" ClimaAnalysis.Var._check_dims_consistent( x_var, x_var, ) @test_throws "Units for dimensions [\"lat\"] are missing in x" ClimaAnalysis.Var._check_dims_consistent( x_var, y_var, ) @test_throws "Units for dimensions [\"lat\"] are missing in y" ClimaAnalysis.Var._check_dims_consistent( y_var, x_var, ) # Test if type of dimensions agree x_data = reshape(1.0:(91 * 181), (91, 181)) x_dims = OrderedDict(["lat" => x_lat, "long" => x_long]) x_dim_attribs = OrderedDict([ "lat" => Dict("units" => "test_units1"), "long" => Dict("units" => "test_units2"), ]) x_var = ClimaAnalysis.OutputVar(x_attribs, x_dims, x_dim_attribs, x_data) @test_throws "Dimensions do not agree between x ([\"latitude\", \"longitude\"]) and y ([\"longitude\", \"latitude\"])" ClimaAnalysis.Var._check_dims_consistent( x_var, y_var, ) # Test number of dimensions are the same x_data = reshape(1.0:(181), (181)) x_dims = OrderedDict(["long" => x_long]) x_attribs = Dict("long_name" => "hi") x_dim_attribs = OrderedDict(["long" => Dict("units" => "test_units1")]) x_var = ClimaAnalysis.OutputVar(x_attribs, x_dims, x_dim_attribs, x_data) @test_throws "Number of dimensions do not match between x (1) and y (2)" ClimaAnalysis.Var._check_dims_consistent( x_var, y_var, ) end @testset "Reordering" begin # Reordering the dimensions of a var to match itself src_long = 0.0:180.0 |> collect src_lat = 0.0:90.0 |> collect src_data = ones(length(src_long), length(src_lat)) src_dims = OrderedDict(["long" => src_long, "lat" => src_lat]) src_attribs = Dict("long_name" => "hi") src_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) src_var = ClimaAnalysis.OutputVar( src_attribs, src_dims, src_dim_attribs, src_data, ) reordered_var = ClimaAnalysis.reordered_as(src_var, src_var) @test reordered_var.attributes == src_var.attributes @test reordered_var.dims == src_var.dims @test reordered_var.dim_attributes == src_var.dim_attributes @test reordered_var.data == src_var.data # Reordering the dimensions of src_var to match a different order of dimensions in # dest_var dest_long = 20.0:180.0 |> collect dest_lat = 30.0:90.0 |> collect dest_data = zeros(length(dest_lat), length(dest_long)) dest_dims = OrderedDict(["lat" => dest_lat, "long" => dest_long]) dest_attribs = Dict("long_name" => "hi") dest_dim_attribs = OrderedDict([ "lat" => Dict("units" => "test_units4"), "long" => Dict("units" => "test_units3"), ]) dest_var = ClimaAnalysis.OutputVar( dest_attribs, dest_dims, dest_dim_attribs, dest_data, ) reordered_var = ClimaAnalysis.reordered_as(src_var, dest_var) @test reordered_var.attributes == src_var.attributes @test reordered_var.dims == OrderedDict(["lat" => src_lat, "long" => src_long]) @test reordered_var.dim_attributes == OrderedDict([ "lat" => Dict("units" => "test_units2"), "long" => Dict("units" => "test_units1"), ]) @test reordered_var.data == ones(length(src_lat), length(src_long)) # Reordering but dim_attributes is not available for every dimension src_dim_attribs_one = OrderedDict(["lat" => Dict("units" => "test_units2")]) src_dim_attribs_empty = empty(src_dim_attribs_one) src_dim_attribs_extra = OrderedDict([ "extra_info" => "hi", "lat" => Dict("units" => "test_units2"), ]) src_var_one = ClimaAnalysis.OutputVar( src_attribs, src_dims, src_dim_attribs_one, src_data, ) src_var_empty = ClimaAnalysis.OutputVar( src_attribs, src_dims, src_dim_attribs_empty, src_data, ) src_var_extra = ClimaAnalysis.OutputVar( src_attribs, src_dims, src_dim_attribs_extra, src_data, ) reordered_var = ClimaAnalysis.reordered_as(src_var_one, dest_var) @test reordered_var.dim_attributes == src_dim_attribs_one reordered_var = ClimaAnalysis.reordered_as(src_var_empty, dest_var) @test reordered_var.dim_attributes == src_dim_attribs_empty reordered_var = ClimaAnalysis.reordered_as(src_var_extra, dest_var) @test reordered_var.dim_attributes == OrderedDict([ "lat" => Dict("units" => "test_units2"), "extra_info" => "hi", ]) # Error checking for dimensions not being the same in both src_long = 20.0:180.0 |> collect src_lat = 30.0:90.0 |> collect src_dims = OrderedDict(["long" => src_long, "lat" => src_lat]) src_data = ones(length(src_long), length(src_lat)) dest_lat = 30.0:90.0 |> collect dest_dims = OrderedDict(["lat" => dest_lat]) dest_data = ones(length(src_lat)) src_var = ClimaAnalysis.OutputVar(src_dims, src_data) dest_var = ClimaAnalysis.OutputVar(dest_dims, dest_data) @test_throws ErrorException ClimaAnalysis.reordered_as(src_var, dest_var) end @testset "Resampling" begin src_long = 0.0:180.0 |> collect src_lat = 0.0:90.0 |> collect src_data = reshape(1.0:(181 * 91), (181, 91)) src_dims = OrderedDict(["long" => src_long, "lat" => src_lat]) src_attribs = Dict("long_name" => "hi") src_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) src_var = ClimaAnalysis.OutputVar( src_attribs, src_dims, src_dim_attribs, src_data, ) dest_long = 0.0:90.0 |> collect dest_lat = 0.0:45.0 |> collect dest_data = reshape(1.0:(91 * 46), (91, 46)) dest_dims = OrderedDict(["long" => dest_long, "lat" => dest_lat]) dest_attribs = Dict("long_name" => "hi") dest_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) dest_var = ClimaAnalysis.OutputVar( dest_attribs, dest_dims, dest_dim_attribs, dest_data, ) @test src_var.data == ClimaAnalysis.resampled_as(src_var, src_var).data resampled_var = ClimaAnalysis.resampled_as(src_var, dest_var) @test resampled_var.data == reshape(1.0:(181 * 91), (181, 91))[1:91, 1:46] @test_throws BoundsError ClimaAnalysis.resampled_as(dest_var, src_var) # BoundsError check src_long = 90.0:120.0 |> collect src_lat = 45.0:90.0 |> collect src_data = zeros(length(src_long), length(src_lat)) src_dims = OrderedDict(["long" => src_long, "lat" => src_lat]) src_var = ClimaAnalysis.OutputVar( src_attribs, src_dims, src_dim_attribs, src_data, ) dest_long = 85.0:115.0 |> collect dest_lat = 50.0:85.0 |> collect dest_data = zeros(length(dest_long), length(dest_lat)) dest_dims = OrderedDict(["long" => dest_long, "lat" => dest_lat]) dest_var = ClimaAnalysis.OutputVar( dest_attribs, dest_dims, dest_dim_attribs, dest_data, ) @test_throws BoundsError ClimaAnalysis.resampled_as(src_var, dest_var) end @testset "Units" begin long = -180.0:180.0 |> collect data = copy(long) # Unitful attribs = Dict("long_name" => "hi", "units" => "m/s") dim_attributes = OrderedDict(["long" => Dict("units" => "m")]) var_with_unitful = ClimaAnalysis.OutputVar( attribs, Dict("long" => long), dim_attributes, data, ) var_without_unitful = ClimaAnalysis.OutputVar( Dict{String, Any}(), Dict("long" => long), dim_attributes, data, ) var_empty_unit = ClimaAnalysis.OutputVar( Dict{String, Any}("units" => ""), Dict("long" => long), dim_attributes, data, ) @test ClimaAnalysis.has_units(var_with_unitful) # Convert to cm/s var_unitful_in_cms = ClimaAnalysis.convert_units(var_with_unitful, "cm/s") @test var_unitful_in_cms.data == 100 .* var_with_unitful.data # Unparsable because of new units @test_throws ErrorException ClimaAnalysis.convert_units( var_with_unitful, "bob", ) # New units, using conversion function var_notunitful = ClimaAnalysis.convert_units( var_with_unitful, "bob", conversion_function = (data) -> 2 * data, ) @test var_notunitful.data == 2 .* var_with_unitful.data # New units parsaeble, but with conversion function @test_logs (:warn, "Ignoring conversion_function, units are parseable.") ClimaAnalysis.convert_units( var_with_unitful, "cm/s", conversion_function = (data) -> 2 * data, ) end @testset "Integrating on lat and lon" begin # Tests for integrate_lon lon = collect(range(-179.5, 179.5, 360)) lon_data = ones(length(lon)) lon_dims = OrderedDict(["lon" => lon]) lon_attribs = Dict("long_name" => "hi") lon_dim_attribs = OrderedDict(["lon" => Dict("units" => "deg")]) var = ClimaAnalysis.OutputVar( lon_attribs, lon_dims, lon_dim_attribs, lon_data, ) var_integrated_lon = ClimaAnalysis.Var.integrate_lon(var) @test isapprox(var_integrated_lon.data[1], 2.0 * Ο€, atol = 0.01) @test var_integrated_lon.dims == OrderedDict() @test var_integrated_lon.dim_attributes == OrderedDict() @test "hi integrated over lon (-179.5 to 179.5deg)" == var_integrated_lon.attributes["long_name"] @test_throws "var does not has latitude as a dimension" ClimaAnalysis.Var.integrate_lat( var, ) # Tests for integrate_lat lat = collect(range(-89.5, 89.5, 180)) lat_data = ones(length(lat)) lat_dims = OrderedDict(["lat" => lat]) lat_attribs = Dict("long_name" => "hi") lat_dim_attribs = OrderedDict(["lat" => Dict("units" => "deg")]) var = ClimaAnalysis.OutputVar( lat_attribs, lat_dims, lat_dim_attribs, lat_data, ) var_integrated_lat = ClimaAnalysis.Var.integrate_lat(var) @test isapprox(var_integrated_lat.data[1], 2.0, atol = 0.01) @test var_integrated_lat.dims == OrderedDict() @test var_integrated_lat.dim_attributes == OrderedDict() @test "hi integrated over lat (-89.5 to 89.5deg)" == var_integrated_lat.attributes["long_name"] @test_throws "var does not has longitude as a dimension" ClimaAnalysis.Var.integrate_lon( var, ) # Unit checking dim_attribs_no_units = OrderedDict([ "lon" => Dict("units" => ""), "lat" => Dict("units" => ""), ]) var_lon_no_units = ClimaAnalysis.OutputVar( lon_attribs, lon_dims, dim_attribs_no_units, lon_data, ) @test_throws ErrorException ClimaAnalysis.Var.integrate_lon( var_lon_no_units, ) var_lat_no_units = ClimaAnalysis.OutputVar( lat_attribs, lat_dims, dim_attribs_no_units, lat_data, ) @test_throws ErrorException ClimaAnalysis.Var.integrate_lat( var_lat_no_units, ) end @testset "Integrating on sphere" begin # Integrate out all dimensions (lat and lon) from OutputVar lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs = Dict("long_name" => "hi") dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) integrated_var = ClimaAnalysis.Var.integrate_lonlat(var) @test isapprox(integrated_var.data[1], 4 * Ο€, atol = 0.1) @test integrated_var.dims == OrderedDict() @test integrated_var.dim_attributes == OrderedDict() # Integrating out lon and lat to get time series data lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) time = collect(range(0.0, 10.0, 10)) data = ones(length(lat), length(time), length(lon)) dims = OrderedDict(["lat" => lat, "time" => time, "lon" => lon]) attribs = Dict("long_name" => "hi") dim_attribs = OrderedDict([ "lat" => Dict("units" => "deg"), "time" => Dict("units" => "days"), "lon" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) integrated_var = ClimaAnalysis.Var.integrate_lonlat(var) @test all( isapprox.(integrated_var.data, [4 * Ο€ for _ in 1:10], atol = 0.01), ) @test integrated_var.dims == OrderedDict(["time" => time]) @test integrated_var.dim_attributes == OrderedDict(["time" => Dict("units" => "days")]) @test "hi integrated over lon (-179.5 to 179.5deg) and integrated over lat (-89.5 to 89.5deg)" == integrated_var.attributes["long_name"] # Unit checking dim_attribs_no_lon = OrderedDict([ "time" => Dict("units" => "days"), "lat" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs_no_lon, data) @test_throws "The unit for lon is missing or is not degree" ClimaAnalysis.Var.integrate_lonlat( var, ) dim_attribs_no_lat = OrderedDict([ "time" => Dict("units" => "days"), "lon" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs_no_lat, data) @test_throws "The unit for lat is missing or is not degree" ClimaAnalysis.Var.integrate_lonlat( var, ) end @testset "split_by_season" begin lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) time = [0.0] push!(time, 5_184_000.0) # correspond to 2024-3-1 push!(time, 5_184_001.0) push!(time, 13_132_800.0) # correspond to 2024-6-1 push!(time, 13_132_802.0) push!(time, 13_132_803.0) data = ones(length(lat), length(time), length(lon)) dims = OrderedDict(["lat" => lat, "time" => time, "lon" => lon]) attribs = Dict("long_name" => "hi", "start_date" => "2024-1-1") dim_attribs = OrderedDict([ "lat" => Dict("units" => "deg"), "time" => Dict("units" => "s"), "lon" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) MAM, JJA, SON, DJF = ClimaAnalysis.split_by_season(var) # Check size of data @test size(MAM.data) == (length(lat), 2, length(lon)) @test size(JJA.data) == (length(lat), 3, length(lon)) @test size(SON.data) == (0,) @test size(DJF.data) == (length(lat), 1, length(lon)) # Check times are correct in OutputVars @test MAM.dims["time"] == [5_184_000.0, 5_184_001.0] @test JJA.dims["time"] == [13_132_800.0, 13_132_802.0, 13_132_803.0] @test DJF.dims["time"] == [0.0] # Check start date MAM.attributes["start_date"] == "2024-1-1" JJA.attributes["start_date"] == "2024-1-1" DJF.attributes["start_date"] == "2024-1-1" # Check empty OutputVar @test isempty(SON) # Check error handling attribs_no_start_date = Dict("long_name" => "hi") var = ClimaAnalysis.OutputVar(attribs_no_start_date, dims, dim_attribs, data) @test_throws ErrorException ClimaAnalysis.split_by_season(var) dim_attribs_no_sec = OrderedDict([ "lat" => Dict("units" => "deg"), "time" => Dict("units" => "min"), "lon" => Dict("units" => "deg"), ]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs_no_sec, data) @test_throws ErrorException ClimaAnalysis.split_by_season(var) lon = collect(range(-179.5, 179.5, 360)) data = ones(length(lon)) dims = OrderedDict(["lon" => lon]) attribs = Dict("long_name" => "hi", "start_date" => "2024-1-1") dim_attribs = OrderedDict(["lon" => Dict("units" => "deg")]) var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test_throws ErrorException ClimaAnalysis.split_by_season(var) end @testset "Compute bias" begin lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var_ones = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data_ones) data_twos = ones(length(lon), length(lat)) .* 2.0 var_twos = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data_twos) bias_var = ClimaAnalysis.bias(var_ones, var_twos) global_bias = ClimaAnalysis.global_bias(var_ones, var_twos) # Check global bias computation, short_name, long_name, and units @test bias_var.attributes["global_bias"] == -1.0 @test global_bias == -1.0 @test bias_var.data == ones(length(lon), length(lat)) * -1.0 @test ClimaAnalysis.short_name(bias_var) == "sim-obs_short" @test ClimaAnalysis.long_name(bias_var) == "SIM - OBS short" @test ClimaAnalysis.units(bias_var) == "kg" # Flip order in bias and check computations bias_var = ClimaAnalysis.bias(var_twos, var_ones) global_bias = ClimaAnalysis.global_bias(var_twos, var_ones) @test bias_var.attributes["global_bias"] == 1.0 @test global_bias == 1.0 @test bias_var.data == ones(length(lon), length(lat)) * 1.0 end @testset "Compute mse" begin lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var_ones = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data_ones) data_threes = ones(length(lon), length(lat)) .* 3.0 var_threes = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data_threes) squared_error_var = ClimaAnalysis.squared_error(var_ones, var_threes) global_mse = ClimaAnalysis.global_mse(var_ones, var_threes) global_rmse = ClimaAnalysis.global_rmse(var_ones, var_threes) # Check global bias computation, short_name, long_name, and units @test squared_error_var.attributes["global_mse"] == (1.0 - 3.0)^2 @test squared_error_var.attributes["global_rmse"] == 2.0 @test global_mse == (1.0 - 3.0)^2 @test global_rmse == 2.0 @test squared_error_var.data == (data_ones - data_threes) .^ 2 @test ClimaAnalysis.short_name(squared_error_var) == "(sim-obs)^2_short" @test ClimaAnalysis.long_name(squared_error_var) == "(SIM - OBS)^2 short" @test ClimaAnalysis.units(squared_error_var) == "kg^2" # Flip order in squared_error and check computations squared_error_var = ClimaAnalysis.squared_error(var_threes, var_ones) global_mse = ClimaAnalysis.global_mse(var_threes, var_ones) global_rmse = ClimaAnalysis.global_rmse(var_threes, var_ones) @test squared_error_var.attributes["global_mse"] == (3.0 - 1.0)^2 @test squared_error_var.attributes["global_rmse"] == 2.0 @test global_mse == (3.0 - 1.0)^2 @test global_rmse == 2.0 @test squared_error_var.data == (data_threes - data_ones) .^ 2 # Check unit handling lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs_unitful = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg^2/m") dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var_unitful = ClimaAnalysis.OutputVar(attribs_unitful, dims, dim_attribs, data_ones) attribs_not_unitful = Dict( "long_name" => "idk", "short_name" => "short", "units" => "wacky/weird^2", ) var_not_unitful = ClimaAnalysis.OutputVar( attribs_not_unitful, dims, dim_attribs, data_ones, ) var_unitful = ClimaAnalysis.squared_error(var_unitful, var_unitful) var_not_unitful = ClimaAnalysis.squared_error(var_not_unitful, var_not_unitful) @test ClimaAnalysis.units(var_unitful) == "(kg^2 m^-1)^2" @test ClimaAnalysis.units(var_not_unitful) == "(wacky/weird^2)^2" end @testset "Units and dims check for error functions" begin # Missing units for data lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs_missing_data_units = Dict("long_name" => "idk", "short_name" => "short") dim_attribs = OrderedDict([ "lon" => Dict("units" => "rad"), "lat" => Dict("units" => "rad"), ]) var_missing_data_units = ClimaAnalysis.OutputVar( attribs_missing_data_units, dims, dim_attribs, data_ones, ) @test_throws ErrorException ClimaAnalysis.bias( var_missing_data_units, var_missing_data_units, ) @test_throws ErrorException ClimaAnalysis.squared_error( var_missing_data_units, var_missing_data_units, ) # Mismatch units for data lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs_kg = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") attribs_g = Dict("long_name" => "idk", "short_name" => "short", "units" => "g") dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var_kg = ClimaAnalysis.OutputVar(attribs_kg, dims, dim_attribs, data_ones) var_g = ClimaAnalysis.OutputVar(attribs_g, dims, dim_attribs, data_ones) @test_throws ErrorException ClimaAnalysis.bias(var_kg, var_g) @test_throws ErrorException ClimaAnalysis.squared_error(var_kg, var_g) # Mismatch units for dims lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") dim_attribs_rad = OrderedDict([ "lon" => Dict("units" => "rad"), "lat" => Dict("units" => "rad"), ]) dim_attribs_deg = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) var_rad = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs_rad, data_ones) var_deg = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs_deg, data_ones) @test_throws ErrorException ClimaAnalysis.bias(var_rad, var_deg) @test_throws ErrorException ClimaAnalysis.squared_error(var_rad, var_deg) # Missing units for dims lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data_ones = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") dim_attribs = OrderedDict(["lon" => Dict("units" => "deg")]) var_missing_dim_units = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data_ones) @test_throws ErrorException ClimaAnalysis.bias( var_missing_dim_units, var_missing_dim_units, ) @test_throws ErrorException ClimaAnalysis.squared_error( var_missing_dim_units, var_missing_dim_units, ) # Missing dims lon = collect(range(-179.5, 179.5, 360)) data_missing_dim = ones(length(lon)) dims_missing_dim = OrderedDict(["lon" => lon]) dim_attribs_missing_dim = OrderedDict(["lon" => Dict("units" => "deg")]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var_missing = ClimaAnalysis.OutputVar( attribs, dims_missing_dim, dim_attribs_missing_dim, data_missing_dim, ) @test_throws ErrorException ClimaAnalysis.bias(var_missing, var_missing) @test_throws ErrorException ClimaAnalysis.squared_error( var_missing, var_missing, ) # Dimensions should be lon and lat lon = collect(range(-179.5, 179.5, 360)) tal = collect(range(-89.5, 89.5, 180)) data_tal = ones(length(lon), length(tal)) dims_tal = OrderedDict(["lon" => lon, "tal" => tal]) dim_attribs_tal = OrderedDict([ "lon" => Dict("units" => "deg"), "tal" => Dict("units" => "deg"), ]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var_tal = ClimaAnalysis.OutputVar(attribs, dims_tal, dim_attribs_tal, data_tal) @test_throws ErrorException ClimaAnalysis.bias(var_tal, var_tal) @test_throws ErrorException ClimaAnalysis.squared_error(var_tal, var_tal) end @testset "Setting units" begin # Unit exists (unitful) lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) var_units = ClimaAnalysis.set_units(var, "idk") @test ClimaAnalysis.units(var_units) == "idk" # Unit exists (not unitful) lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "wacky") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) var_units = ClimaAnalysis.set_units(var, "idk") @test ClimaAnalysis.units(var_units) == "idk" # Unit does not exist lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) attribs = Dict("long_name" => "idk", "short_name" => "short") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) var_units = ClimaAnalysis.set_units(var, "idk") @test ClimaAnalysis.units(var_units) == "idk" end @testset "Dates to seconds for vars" begin # Test for no start date time_arr = [ Dates.DateTime(2020, 3, 1, 1, 1), Dates.DateTime(2020, 3, 1, 1, 2), Dates.DateTime(2020, 3, 1, 1, 3), ] data = ones(length(time_arr)) dims = OrderedDict("time" => time_arr) dim_attribs = OrderedDict("time" => Dict("blah" => "blah")) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) var_s = ClimaAnalysis.Var._dates_to_seconds(var) @test ClimaAnalysis.times(var_s) == [0.0, 60.0, 120.0] @test var_s.attributes["start_date"] == "2020-03-01T01:01:00" # Test for a new start date var_s = ClimaAnalysis.Var._dates_to_seconds( var; new_start_date = "2020-03-01T01:03:00", ) @test ClimaAnalysis.times(var_s) == [-120.0, -60.0, 0.0] @test var_s.attributes["start_date"] == "2020-03-01T01:03:00" # Test for a new start date as a DateTime object var_s = ClimaAnalysis.Var._dates_to_seconds( var; new_start_date = Dates.DateTime("2020-03-01T01:03:00"), ) @test ClimaAnalysis.times(var_s) == [-120.0, -60.0, 0.0] @test var_s.attributes["start_date"] == "2020-03-01T01:03:00" # Test for shifting dates var_s = ClimaAnalysis.Var._dates_to_seconds( var, shift_by = t -> t - Dates.Day(15), ) @test ClimaAnalysis.times(var_s) == [0.0, 60.0, 120.0] @test var_s.attributes["start_date"] == "2020-02-15T01:01:00" # Test for shifting dates and new date together var_s = ClimaAnalysis.Var._dates_to_seconds( var; new_start_date = "2020-03-01T01:00:00", shift_by = t -> t + Dates.Minute(4), ) @test ClimaAnalysis.times(var_s) == [300.0, 360.0, 420.0] @test var_s.attributes["start_date"] == "2020-03-01T01:00:00" # Test constructor for OutputVar that uses _dates_to_seconds ncpath = joinpath(@__DIR__, "sample_nc/test_pr.nc") file_var = ClimaAnalysis.OutputVar( ncpath; new_start_date = nothing, shift_by = identity, ) @test ClimaAnalysis.times(file_var) == [0.0, 1398902400.0] @test file_var.attributes["start_date"] == "1979-01-01T00:00:00" # Test for error handling # Use date dimension instead of time dimension date_arr = [ Dates.DateTime(2020, 3, 1, 1, 1), Dates.DateTime(2020, 3, 1, 1, 2), Dates.DateTime(2020, 3, 1, 1, 3), ] data = ones(length(date_arr)) dims = OrderedDict("date" => date_arr) dim_attribs = OrderedDict("date" => Dict("blah" => "blah")) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test_throws ErrorException ClimaAnalysis.Var._dates_to_seconds(var) # Cannot convert if the element type of time array is float time_arr = [0.0, 60.0, 120.0] data = ones(length(time_arr)) dims = OrderedDict("time" => time_arr) dim_attribs = OrderedDict("time" => Dict("blah" => "blah")) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test_throws ErrorException ClimaAnalysis.Var._dates_to_seconds(var) end @testset "End of previous month" begin # Shift to beginning of month and shift back one month time_arr = [ Dates.DateTime("2010-02-01T00:00:00"), Dates.DateTime("2010-03-01T00:02:00"), Dates.DateTime("2010-04-01T00:02:00"), ] data = ones(length(time_arr)) dims = OrderedDict("time" => time_arr) dim_attribs = OrderedDict("time" => Dict("blah" => "blah")) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) var_s = ClimaAnalysis.Var._dates_to_seconds(var) var_times = ClimaAnalysis.shift_to_start_of_previous_month(var_s) @test ClimaAnalysis.times(var_times) == [0.0, 2678400.0, 5097600.0] @test var_times.attributes["start_date"] == "2010-01-01T00:00:00" # Error checking # Dates in time array time_arr = [ Dates.DateTime(2020, 3, 1, 1, 1), Dates.DateTime(2020, 3, 1, 1, 2), Dates.DateTime(2020, 3, 1, 1, 3), ] data = ones(length(time_arr)) dims = OrderedDict("time" => time_arr) dim_attribs = OrderedDict("time" => Dict("blah" => "blah")) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test_throws ErrorException ClimaAnalysis.shift_to_start_of_previous_month( var, ) # Time is not a dimension lon = collect(range(-179.5, 179.5, 360)) lat = collect(range(-89.5, 89.5, 180)) data = ones(length(lon), length(lat)) dims = OrderedDict(["lon" => lon, "lat" => lat]) dim_attribs = OrderedDict([ "lon" => Dict("units" => "deg"), "lat" => Dict("units" => "deg"), ]) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) @test_throws ErrorException ClimaAnalysis.shift_to_start_of_previous_month( var, ) # Units is wrong time_arr = [ Dates.DateTime("2010-02-01T00:00:00"), Dates.DateTime("2010-03-01T00:02:00"), Dates.DateTime("2010-04-01T00:02:00"), ] data = ones(length(time_arr)) dims = OrderedDict("time" => time_arr) dim_attribs = OrderedDict("time" => Dict("units" => "blah")) attribs = Dict("long_name" => "idk", "short_name" => "short", "units" => "kg") var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data) var_min = ClimaAnalysis.Var._dates_to_seconds(var) var_min.dim_attributes["time"]["units"] = "min" @test_throws ErrorException ClimaAnalysis.shift_to_start_of_previous_month( var_min, ) end
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
20853
ClimaAnalysis.jl Release Notes =============================== v0.5.10 ------- ## Features ### Set units You can now set units for a `OutputVar`. This is useful if you need to change the name of the units or units are missing. ```julia new_var = ClimaAnalysis.set_units(var, "kg m s^-1") ``` ### Extrapolating `OutputVar` on longitude and latitude Extrapolation is now possible for the longitude and latitude dimensions. If the dimension arrays are equispaced and span the entire range, then a periodic boundary condition is added for the longitude dimension and a flat boundary condition is added for the latitude dimension. ### Preprocess dates and times There is now support for preprocessing dates and times. The constructor for reading NetCDF files now automatically converts dates to seconds in the time dimension. This is done because `ClimaAnalysis` does not support interpolating on dates which mean functions that rely on the interpolats, such as `resampled_as`, will not work otherwise. Also, the constructor supports two additional parameters `new_start_date` and `shift_by`. After converting from dates to seconds, the seconds are shifted to match `new_start_date`. If preprocessing of dates is needed before shifting to `new_start_date`, then the parameter `shift_by` can be used as it accepts a function that takes in `Dates.DateTime` elements and return Dates.DateTime elements. This function is applied to each element of the time array. ```julia # Shift the dates to first day of month, convert to seconds, and adjust seconds to # match "1/1/2010" shift_var = OutputVar( "test.nc", "pr", new_start_date = "1/1/2010", # or Dates.DateTime(2010, 1, 1) shift_by = Dates.firstdayofmonth, ) ``` The function `Var.shift_to_start_of_previous_month` is added to shift the times in the time dimension to the end of the previous month. This function is helpful in ensuring consistency in dates between simulation and observational data. One example of this is when adjusting monthly averaged data. For instance, data on 2010-02-01 in the `OutputVar` corresponds to the monthly average for January. This function shifts the times so that 2010-01-01 will correspond to the monthly average for January. ```julia sim_var = shift_to_start_of_previous_month(sim_var) ``` ## Bug fixes - Interpolation is not possible with dates. When dates are detected in any dimension, an interpolat will not be made. - Fix identifying variables with underscore in the short name (such as `net_toa_flux`). ([#109](https://github.com/CliMA/ClimaAnalysis.jl/pull/109 "PR109")) ## Minor changes - Var.arecompatible only check for the units of the dimensions instead of checking that the dimension attributes fully match. v0.5.9 ------ ## Features ### Reorder dimensions Before, resampling requires that the order of the dimensions is the same between the two `OutputVar`s. This feature adds the functionality of reordering the dimensions in a `OutputVar` to match the ordering of another `OutputVar`. The function `resampled_as` is updated to use `reordered_as`. See the example below of this functionality. ```julia julia> src_var.dims |> keys |> collect 2-element Vector{String}: "long" "lat" julia> dest_var.dims |> keys |> collect 2-element Vector{String}: "lat" "long" julia> reordered_var = ClimaAnalysis.reordered_as(src_var, dest_var); julia> reordered_var.dims |> keys |> collect 2-element Vector{String}: "lat" "long" ``` ## Bug fixes - Fix models repeating in legend of box plots by not considering the models in `model_names` when finding the best and worst models. - Fix legend from covering the box plot by adding the parameter `legend_text_width` which control the number of characters on each line of the legend of the box plot. - Use default marker size instead of a marker size of 20 when plotting other models beside `CliMA` on the box plot. - Fix support for `""` in units. v0.5.8 ------ ## Features This release introduces the following features - [Directly reading NetCDF files](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#add-support-for-directly-reading-netcdf-files) - [Resampling a OutputVar using the dimensions from another OutputVar](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#resampling-a-outputvar-using-the-dimensions-from-another-outputvar) - [Add support for converting units](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#add-support-for-converting-units) - [Applying a land/sea mask to GeoMakie plots](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#applying-a-landsea-mask-to-geomakie-plots) - [Integrating OutputVar with respect to longitude or latitude](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#integrating-outputvar-with-respect-to-longitude-or-latitude) - [Splitting OutputVar by season](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#splitting-outputvar-by-season) - [Compute bias and squared error between OutputVar](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#compute-bias-and-squared-error-between-outputvar) - [Represent RMSEs from various models](https://github.com/CliMA/ClimaAnalysis.jl/blob/main/NEWS.md#represent-rmses-from-various-models) ### Add support for directly reading NetCDF files Starting version 0.5.8, `ClimaAnalysis` now supports NetCDF files that were not generated with [`ClimaDiagnostics`](https://github.com/CliMA/ClimaDiagnostics.jl) [0]. To load a `NetCDF` file into a `ClimaAnalysis.OutputVar`, just pass the path of such file to the constructor ```julia import ClimaAnalysis: OutputVar myfile = OutputVar("my_netcdf_file.nc") ``` `ClimaAnalysis` will try to find a variable in this file. If multiple are available, `ClimaAnalysis` picks the latest in alphabetical order. If you want to specify one, pass it to the constructor: ```julia import ClimaAnalysis: OutputVar myfile = OutputVar("my_netcdf_file.nc", "myvar") ``` [0] Restrictions apply. ### Resampling a `OutputVar` using the dimensions from another `OutputVar` You can use the `resampled_as(src_var, dest_var)` function where `src_var` is a OutputVar with the data you want to resample using the dimensions in another OutputVar `dest_var`. If resampling is possible, then a new `OutputVar` is returned where the data in `src_var` is resampled using a linear interpolation to fit the dimensions in `dest_var`. Resampling is not possible when the dimensions in either `OutputVar`s are missing units, the dimensions between the `OutputVar`s do not agree, or the data in `src_var` is not defined everywhere on the dimensions in `dest_var`. ```julia julia> src_var.data 3Γ—4 Matrix{Float64}: 1.0 4.0 7.0 10.0 2.0 5.0 8.0 11.0 3.0 6.0 9.0 12.0 julia> src_var.dims OrderedDict{String, Vector{Float64}} with 2 entries: "lon" => [0.0, 1.0, 2.0] "latitude" => [0.0, 1.0, 2.0, 3.0] julia> dest_var.dims # dims that src_var.data should be resampled on OrderedDict{String, Vector{Float64}} with 2 entries: "long" => [0.0, 1.0] "lat" => [0.0, 1.0, 2.0] julia> resampled_var = ClimaAnalysis.resampled_as(src_var, dest_var); julia> resampled_var.data 2Γ—3 Matrix{Float64}: 1.0 4.0 7.0 2.0 5.0 8.0 julia> resampled_var.dims # updated dims that are the same as the dims in dest_var OrderedDict{String, Vector{Float64}} with 2 entries: "lon" => [0.0, 1.0] "latitude" => [0.0, 1.0, 2.0] ``` ### Add support for converting units `ClimaAnalysis` now uses [Unitful](https://painterqubits.github.io/Unitful.jl/stable) to handle variable units, when possible. When a `OutputVar` has `units` among its `attributes`, `ClimaAnalysis` will try to use `Unitful` to parse it. If successful, `OutputVar` can be directly converted to other compatible units. For example, if `var` has units of `m/s`, ```julia-repl julia> ClimaAnalysis.convert_units(var, "cm/s") ``` will convert to `cm/s`. Some units are not recognized by `Unitful`. Please, open an issue about that: we can add more units. In those cases, or when units are incompatible, you can also pass a `conversion_function` that specify how to transform units. ```julia-repl julia> ClimaAnalysis.convert_units(var, "kg/s", conversion_function = (x) - 1000x) ``` ### Applying a land/sea mask to `GeoMakie` plots When plotting with `GeoMakie` (ie, using the `contour2D_on_globe!` and `heatmap2D_on_globe!` function), it is now possible to mask out a portion of the output. The most common use cases are to hide the ocean or the continents. To hide the ocean, you can now pass `mask = ClimaAnalysis.Visualize.oceanmask()` to the globe plotting functions. You can customize how the mask is plotted by passing the `:mask` extra keywords. For example: ```julia import ClimaAnalysis.Visualize: contour2D_on_globe!, oceanmask import ClimaAnalysis.Utils: kwargs as ca_kwargs import GeoMakie import CairoMakie fig = CairoMakie.Figure() contour2D_on_globe!(fig, var, mask = oceanmask(), more_kwargs = Dict(:mask => ca_kwargs(color = :blue)), ) CairoMakie.save("myfigure.pdf", fig) ``` ### Integrating `OutputVar` with respect to longitude or latitude You can use the `integrate_lon(var)`, `integrate_lat(var)`, or `integrate_lonlat(var)` functions for integrating along longitude, latitude, or both respectively. The bounds of integration are determined by the range of the dimensions longitude and latitude in `var`. The unit of both longitude and latitude should be degree. If the points are equispaced, it is assumed that each point correspond to the midpoint of a cell which results in rectangular integration using the midpoint rule. Otherwise, the integration being done is rectangular integration using the left endpoints for integrating longitude and latitude. See the example of integrating over a sphere where the data is all ones to find the surface area of a sphere. ```julia julia> lon = collect(range(-179.5, 179.5, 360)); julia> lat = collect(range(-89.5, 89.5, 180)); julia> data = ones(length(lon), length(lat)); julia> dims = OrderedDict(["lon" => lon, "lat" => lat]); julia> dim_attribs = OrderedDict([ "lon" => Dict("units" => "degrees_east"), "lat" => Dict("units" => "degrees_north"), ]); julia> attribs = Dict("long_name" => "f"); julia> var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data); julia> integrated_var = integrate_lonlat(var); julia> integrated_var.dims # no dimensions since longitude and latitude are integrated out OrderedDict{String, Vector{Float64}}() julia> integrated_var.data # approximately 4Ο€ (the surface area of a sphere) 0-dimensional Array{Float64, 0}: 12.566530113084296 julia> long_name(integrated_var) # updated long name to reflect the data being integrated "f integrated over lon (-179.5 to 179.5degrees_east) and integrated over lat (-89.5 to 89.5degrees_north)" ``` ### Splitting OutputVar by season `OutputVar`s can be split by seasons using `split_by_season(var)` provided that a start date can be found in `var.attributes["start_date"]` and time is a dimension in the `OutputVar`. The unit of time is expected to be second. The function `split_by_season(var)` returns a vector of four `OutputVar`s with each `OutputVar` corresponding to a season. The months of the seasons are March to May, June to August, September to November, and December to February. The order of the vector is MAM, JJA, SON, and DJF. If there are no dates found for a season, then the `OutputVar` for that season will be an empty `OutputVar`. ```julia julia> attribs = Dict("start_date" => "2024-1-1"); julia> time = [0.0, 5_184_000.0, 13_132_800.0]; # correspond to dates 2024-1-1, 2024-3-1, 2024-6-1 julia> dims = OrderedDict(["time" => time]); julia> dim_attribs = OrderedDict(["time" => Dict("units" => "s")]); # unit is second julia> data = [1.0, 2.0, 3.0]; julia> var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data); julia> MAM, JJA, SON, DJF = ClimaAnalysis.split_by_season(var); julia> ClimaAnalysis.isempty(SON) # empty OutputVar because no dates between September to November true julia> [MAM.dims["time"], JJA.dims["time"], DJF.dims["time"]] 3-element Vector{Vector{Float64}}: [5.184e6] [1.31328e7] [0.0] julia> [MAM.data, JJA.data, DJF.data] 3-element Vector{Vector{Float64}}: [2.0] [3.0] [1.0] ``` ### Compute bias and squared error between OutputVar Bias and squared error can be computed from simulation data and observational data in `OutputVar`s using `bias(sim, obs)` and `squared_error(sim, obs)`. The function `bias(sim, obs)` returns a `OutputVar` whose data is the bias (`sim.data - obs.data`) and computes the global bias of `data` in `sim` and `obs` over longitude and latitude. The result is stored in `var.attributes["global_bias"]`. The function `squared_error(sim, obs)` returns a `OutputVar` whose data is the squared error (`(sim.data - obs.data)^2`) and computes the global mean squared error (MSE) and the global root mean squared error (RMSE) of `data` in `sim` and `obs` over longitude and latitude. The result is stored in `var.attributes["global_mse"]` and `var.attributes["global_rmse"]`. Resampling is automatically done by resampling `obs` on `sim`. If you are only interested in computing global bias, MSE, or RMSE, you can use `global_bias(sim, obs)`, `global_mse(sim, obs)`, or `global_rmse(sim, obs)`. As of now, these functions are implemented for `OutputVar`s with only the dimensions longitude and latitude. Furthermore, units must be supplied for data and dimensions in `sim` and `obs` and the units for longitude and latitude should be degrees. Consider the following example, where we compute the bias and RMSE between our simulation and some observations stored in "ta\_1d\_average.nc". ```julia julia> obs_var = OutputVar("ta_1d_average.nc"); # load in observational data julia> sim_var = get(simdir("simulation_output"), "ta"); # load in simulation data julia> ClimaAnalysis.short_name(sim_var) "ta" julia> bias_var = ClimaAnalysis.bias(sim_var, obs_var); # bias_var is a OutputVar that can be plotted julia> global_bias(sim, obs) 2.0 julia> units(bias_var) "K" julia> se_var = ClimaAnalysis.squared_error(sim_var, obs_var); # can also be plotted julia> global_mse(sim, obs) 4.0 julia> global_rmse(sim, obs) 2.0 julia> units(se_var) "K^2" ``` ### Plotting bias Building upon the other features introduced in this release, you can now directly plot bias and root mean squared error between two variables with the `plot_bias_on_globe!` function. Typically, this is done to compare simulated data against observations. In the example below, we plot the bias between our simulation and some observations stored in `ta_1d_average.nc`. ```julia import ClimaAnalysis import ClimaAnalysis.Visualize: plot_bias_on_globe! import GeoMakie import CairoMakie obs_var = ClimaAnalysis.OutputVar("ta_1d_average.nc") sim_var = ClimaAnalysis.get(ClimaAnalysis.simdir("simulation_output"), "ta") fig = CairoMakie.Figure() plot_bias_on_globe!(fig, sim_var, obs_var) CairoMakie.save("myfigure.pdf", fig) ``` ### Represent RMSEs from various models To facilitate analysis of root mean squared errors (RMSEs) over different models and categories (e.g., seasons) for a single variable of interest, `RMSEVariable` is introduced in this release. See the examples below of constructing a `RMSEVariable` using a short name, a vector of model names, a vector of categories, and a dictionary mapping model names to units or a string of the name of the unit. ```julia import ClimaAnalysis rmse_var = ClimaAnalysis.RMSEVariable("ta", ["ACCESS-CM2", "ACCESS-ESM1-5"]) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), ) # Convenience functions if models all share the same unit rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], "K", ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], "K", ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], ones(2, 5), "K", ) ``` A `RMSEVariable` can be inspected using `model_names`, `category_names`, and `rmse_units` which provide the model names, the category names, and the units respectively. #### Reading RMSEs from CSV file A CSV file containing model names in the first column and root mean squared errors in the subsequent columns with a header describing each category (i.e. seasons) can be read into a `RMSEVariable`. See the example below on how to use this functionality. ```julia rmse_var = ClimaAnalysis.read_rmses("./data/test_csv.csv", "ta") rmse_var = ClimaAnalysis.read_rmses( "./data/test_csv.csv", "ta", units = Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), # passing units as a dictionary ) rmse_var = ClimaAnalysis.read_rmses( "./data/test_csv.csv", "ta", units = "K", # passing units as a string ) ``` #### Indexing `RMSEVariable` supports indexing by integer or string. See the example for indexing into a `RMSEVariable`. ```julia rmse_var["ACCESS-CM2"] rmse_var[:, "MAM"] rmse_var["ACCESS-CM2", ["ANN", "DJF", "MAM"]] rmse_var[2,5] = 11.2 rmse_var[:, :] ``` #### Adding categories, models, and units Adding categories (e.g., seasons, months, years, etc.), models, and units to a `RMSEVariable` can be done using `add_category`, `add_model`, and `add_units!`. See the example below for how to use this functionality. ```julia rmse_var2 = ClimaAnalysis.add_category(rmse_var, "Jan") # can take in mode than one category rmse_var = ClimaAnalysis.add_model(rmse_var, "CliMA") # can take in more than one model name ClimaAnalysis.add_unit!(rmse_var, "CliMA", "K") ClimaAnalysis.add_unit!(rmse_var, Dict("CliMA" => "K")) # for adding multiple units ``` #### Summary statistics Comparsion between models can be done using `find_best_single_model`, `find_worst_single_model`, and `median`. The functions `find_best_single_model` and `find_worst_single_model` default to the category "ANN" (corresponding to the annual mean), but any category be considered using the parameter `category_name`. Furthermore, the model's root mean squared errors (RMSEs) and name is returned. The function `median` only return the model's RMSEs. Any `NaN` that appear in the data is ignored when computing the summary statistics. See the example below on how to use this functionality. ```julia ClimaAnalysis.find_best_single_model(rmse_var, category_name = "DJF") ClimaAnalysis.find_worst_single_model(rmse_var, category_name = "DJF") ClimaAnalysis.median(rmse_var) ``` #### Plotting RMSEVariable `RMSEVariable` can be visualized as a box plot or heat map using `plot_boxplot!` and `plot_leaderboard!`. The function `plot_boxplot!` makes a box plot for each category in the `RMSEVariable` and plots any other models as specified by `model_names`. The function `plot_leaderboard!` makes a heatmap of the RMSEs between the variables of interest and the categories. The values of the heatmap are normalized by dividing over the median model's RMSEs for each variable. ## Bug fixes - Increased the default value for `warp_string` to 72. - Binary operation between Real and OutputVar now update the interpolation of the resulting OutputVar ## New compat requirements `ClimaAnalysis` 0.5.8 drops support for versions of `GeoMakie` prior to `0.7.3`. This change is required to acquire land-sea mask data from `GeoMakie`. Version `0.7.3` specifically is also required because it fixes a precompilation bug in `GeoMakie`. As a result, the minimum version of `Makie` is now `0.21.5`. - `GeoMakie` >= 0.7.3 - `Makie` >= 0.21.5 - `CairoMakie` >= 0.12.0 v0.5.7 ------ - Add support for evaluating `OutputVar`s onto arbitrary target points (with multilinear interpolation). - `average` operations now ignore `NaN`s by default. - Add `has_*` methods to query whether a `Var` has a given dimension (e.g., `z`). - Support `Makie` backends besides `CairoMakie`. - Add methods to get the range and units of a given dimension in `Var`. v0.5.6 ------ - Fix finding variables with name like `clwup_1m_40s_inst.nc` (composed period). - Add support for weighted averages in `average_lat`. v0.5.5 ------ - Fix reading `NetCDF` files with dimensions in incorrect order. v0.5.4 ------ - Added support for extraction dimension from functions, such as `times`. - Reorganized internal modules so that each file is a module. v0.5.3 ------ - Add `Visualize.contour2D_on_globe!` for discrete contours.
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
6312
<h1 align="center"> <img src="logo.svg" width="100px"> <br> ClimaAnalysis.jl </h1> <p align="center"> <strong>Analyzing and visualizing ClimaAtmos simulations</strong> </p> [![CI](https://github.com/CliMA/ClimaAnalysis.jl/actions/workflows/CI.yml/badge.svg)](https://github.com/CliMA/ClimaAnalysis.jl/actions/workflows/CI.yml) [![Docs](https://img.shields.io/badge/docs_are_here-click_me!-blue.svg)](https://clima.github.io/ClimaAnalysis.jl/dev/) [![codecov](https://codecov.io/gh/CliMA/ClimaAnalysis.jl/graph/badge.svg?token=tXO3LzS8v9)](https://codecov.io/gh/CliMA/ClimaAnalysis.jl) `ClimaAnalysis.jl` is a Julia library to post-process and visualize `ClimaAtmos` simulations (and, more generally, NetCDF files). Check out the [documentation](https://CliMA.github.io/ClimaAnalysis.jl) for more information and tutorials. ## Features - Read, organize, and process NetCDF files - Visualize heatmaps and 1D profiles with `Makie` - Visualize heatmaps on a globe with `GeoMakie` - Apply averages and other reductions to the output variables - Slice variables along a given value (e.g., take the slice with altitude of 500 meters) - Window variables within given ranges (e.g., select times between 10 and 100 days) - Perform mathematical operations between output variables - Extract dimensions from conventional names (e.g., `times`) - Interpolate output variables onto arbitrary points - Reinterpolate output variables onto pressure levels ## ClimaAnalysis.jl Developer Guidelines These guidelines aim to ensure consistent code quality, maintainability, and a smooth collaborative workflow for `ClimaAnalysis.jl`. Please, read these guidelines even if you are familiar with other CliMA packages as there may be some differences. ### Tests and environments We prioritize well-tested code to guarantee `ClimaAnalysis.jl` functions reliably. Here are some principles we follow: #### Tests are collected in the `test` folder and are exclusively there This means that all the tests can be run with `Pkg.test()`. #### There are no checked `Manifest.toml` files While checking in `Manifest.toml` files ensures reproducibility, it also introduces some nuisance, including: - lot of git/repository noise just for "up deps"; - multiple environments that have to be managed; - busywork to keep the manifests updated. In this repository, we have two environments: - project, - documentation. The project environment defines the test dependencies in its `extras` (to reduce the number of environments and to avoid the "cannot merge projects" problem). > :note: Please, open an issue if you find workflow problems/friction with this > system. #### Running tests `ClimaAnalysis.jl` defines the test dependencies directly in the main `Project.toml`. This means that the package can be tested simply by running `] test` in a Julia REPL, as shown below: Start a Julia session in the `ClimaAnalysis` directory: ``` sh julia --project ``` Enter `Pkg` mode by typing `]`. This will change the prompt. Run `test`. When doing so, `Julia` will start a new temporary environment where the tests are run in isolation. Tests are running checking for in-bounds and for deprecations, and this can result in code invalidation and new precompilation. Note, the project environment does not contain the test dependencies. Therefore, you will find that some dependencies are missing if you try "manually" run the test in a REPL. To solve this problem, use [TestEnv](https://github.com/JuliaTesting/TestEnv.jl). Install `TestEnv` in your base environment (`julia -e 'using Pkg; Pkg.add("TestEnv")'`). Then, when you want to use the test dependencies, activate it from your REPL with `using TestEnv; TestEnv.activate()`. This will bump you to an environment where the test dependencies are available. > :note: Please, open an issue if you find workflow problems/friction with this > system. #### Code Formatting with `JuliaFormatter.jl` One of the tests consists in checking that the code is uniformly formatted. We use [JuliaFormatter.jl](https://github.com/domluna/JuliaFormatter.jl) to achieve consistent formatting. Here's how to use it: You can either install in your base environment with ``` sh julia -e 'using Pkg; Pkg.add("JuliaFormatter")' ``` or use it from within the `TestEnv` (or base) environments (see previous section). Then, you can format the package running: ``` julia using JuliaFormatter; format(".") ``` or just with `format(".")` if the package is already imported. The rules for formatting are defined in the `.JuliaFormatter.toml`. If you are used to formatting from the command line instead of the REPL, you can install `JuliaFormatter` in your base environment and call ``` sh julia -e 'using JuliaFormatter; format(".")' ``` You could also define a shell alias ``` sh alias julia_format_here="julia -e 'using JuliaFormatter; format(\".\")'" ``` > :note: Please, open an issue if you find workflow problems/friction with this > system. ### Documentation Documentation is generated with [Documenter.jl](https://documenter.juliadocs.org/stable/). We strive to have complete and up-to-date information. To generate documentation, run ``` sh julia --project=docs docs/make.jl ``` Please, update the documentation if you add new features or change the behavior of existing ones. We encourage using `jldoctest` to add and test examples in docstrings. ### Pull Request (PR) and commits Here's how to structure your contributions effectively: - Descriptive Title: Briefly summarize the changes your PR introduces. Commit titles should preferably be under 50 characters, start with a capital latter, and use imperative verbs (e.g., "Remove superfluous function call"). - Detailed Description: Explain the purpose of your changes. Focus on the intent. - Breaking Changes: If your PR introduces breaking changes, highlight them clearly in the description. Your pull request can contain one or multiple commits. In either cases, it is important that each commit is atomic (meaning that each commit represents a single logical change). Please, squash commits that represent a single logical change (e.g., do not have two commits when the second just fixes the first). Pull requests are not merged, but _rebased_, ensuring a linear history (this is handled automatically by GitHub).
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
2908
# API ```@meta CurrentModule = ClimaAnalysis ``` ## Sim ```@docs Sim.SimDir Base.get Sim.available_vars Sim.available_reductions Sim.available_periods ``` ## Var ```@docs Var.OutputVar Var.read_var Var.is_z_1D Base.isempty(var::OutputVar) Var.short_name Var.long_name Var.units Var.has_units Var.slice Var.average_lat Var.weighted_average_lat Var.average_lon Var.average_x Var.average_y Var.average_xy Var.average_time Var.window Var.arecompatible Var.center_longitude! Var.times Var.dates Var.longitudes Var.latitudes Var.altitudes Var.time_name Var.date_name Var.longitude_name Var.latitude_name Var.altitude_name Var.has_time Var.has_date Var.has_longitude Var.has_latitude Var.has_altitude Var.conventional_dim_name Var.dim_units Var.range_dim Var.reordered_as Var.resampled_as Var.convert_units Var.set_units Var.integrate_lonlat Var.integrate_lat Var.integrate_lon Var.split_by_season(var::OutputVar) Var.bias Var.global_bias Var.squared_error Var.global_mse Var.global_rmse Var.shift_to_start_of_previous_month ``` ## Leaderboard ```@docs Leaderboard.RMSEVariable Leaderboard.RMSEVariable(short_name, model_names::Vector{String}) Leaderboard.RMSEVariable(short_name, model_names::Vector{String}, units::Dict) Leaderboard.RMSEVariable(short_name, model_names::Vector{String}, category_names::Vector{String}, units::Dict) Leaderboard.RMSEVariable(short_name::String, model_names::Vector{String}, category_names::Vector{String}, RMSEs, units::Dict) Leaderboard.RMSEVariable(short_name, model_names::Vector{String}, units::String) Leaderboard.RMSEVariable(short_name, model_names::Vector{String}, category_names::Vector{String}, units::String) Leaderboard.RMSEVariable(short_name::String, model_names::Vector{String}, category_names::Vector{String}, RMSEs, units::String) Leaderboard.model_names Leaderboard.category_names Leaderboard.rmse_units Leaderboard.read_rmses Base.getindex(rmse_var::RMSEVariable, model_name, category) Base.getindex(rmse_var::RMSEVariable, model_name::String) Base.setindex!(rmse_var::RMSEVariable, rmse, model_name, category) Base.setindex!(rmse_var::RMSEVariable, rmse, model_name::String) Leaderboard.add_category Leaderboard.add_model Leaderboard.add_unit! Leaderboard.find_best_single_model Leaderboard.find_worst_single_model Leaderboard.median ``` ## Utilities For development and not ```@docs Utils.match_nc_filename Utils.squeeze Utils.nearest_index Utils.kwargs Utils.seconds_to_prettystr Utils.warp_string ``` ## Atmos ```@docs Atmos Atmos.to_pressure_coordinates ``` ## Makie ```@docs Visualize.heatmap2D! Visualize.sliced_heatmap! Visualize.heatmap! Visualize.line_plot1D! Visualize.sliced_line_plot! Visualize.sliced_plot! Visualize.plot! Visualize.plot_boxplot! Visualize.plot_leaderboard! ``` ## GeoMakie ```@docs Visualize.oceanmask Visualize.landmask Visualize.contour2D_on_globe! Visualize.heatmap2D_on_globe! Visualize.plot_bias_on_globe! ```
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
5702
# How-to guide and cookbook ## How do I make a line plot with variable on the y axis instead of the x one? By default, the plotting functions in `MakieExt` place the variable on the x axis. If you want it on the y axis instead (e.g., you are plotting the vertical profile of a column), you can pass the `dim_on_y = true` argument to the axis. For instance, ```julia plot!(var, more_kwargs = Dict(:axis => [:dim_on_y = true])) ``` `ClimaAnalysis.Utils` provides a convenience function `kwargs` to specify arguments a little bit more easily without having to think about `Symbol`s too much. ```julia plot!(var, more_kwargs = Dict(:axis => kwargs(dim_on_y = true)) ``` ## How do I take an average of a a variable in a given window of time? You can use the `window` function to select a portion of a given `var`. For example, to select only the time from 10 seconds to 100 for `var` ```julia reduced_var = window(var, "time", left = 10, right = 100) ``` Now, you can apply the usual average functions. ## How do I make the y axis logscale? The plotting routines can pass additional arguments to `Makie` through the `more_kwargs` keyword arguments. `more_kwargs` has to be a dictionary that maps symbols to a list of pairs. The accepted symbols are `:axis`, `:plot`, and `:cb`, and the pairs have to be pairs of symbols to values (the keyword arguments you want to pass down). Given that the type structure is a little complicated, `ClimaAnalysis` comes with a helper function for you to use. So, if you want to set the logscale for the `y` axis, you would do something like ```julia import ClimaAnalysis.Utils: kwargs as ca_kwargs plot!(fig, var, more_kwargs = Dict(:axis => ca_kwargs(yscale = log))) ``` where inside `ca_kwargs` you pass the arguments you would pass to `Makie.Axis`. ## How do I center my longitude to 180 instead of 0? You can use the `center_longitude!` function. ## How do I find the specific name of a dimension in a `OutputVar` given its conventional name? Suppose you want to extract the `longitudes` of your data but you don't know if the dimension was called `lon` or `long`. In this case, you can use the `Var.longitude_name` function to find the name. This function scans the names and compares them to a standard list in `ClimaAnalysis.Var.LONGITUDE_NAMES`. You can also customize that variable if your name is not in that list. Equivalent functions exist for others dimensions too. ## How do I move to pressure coordinates? The `Atmos` module in `ClimaAnalysis` comes with a function, `to_pressure_coordinates` that does precisely that. The function takes an input `OutputVar` and a pressure `OutputVar`. If the two are compatible, a new `OutputVar` is returned where the values are linearly interpolated on fixed pressure levels. ## How do I reorder the dimensions in a `OutputVar` to match the dimensions in another `OutputVar`? You can use the `reordered_as(src_var, dest_var)` function where `src_var` is a `OutputVar` with the dimensions you want to reorder to match the dimensions in the OutputVar `dest_var`. ```@setup reordered_as import ClimaAnalysis import OrderedCollections: OrderedDict src_long = 0.0:180.0 |> collect src_lat = 0.0:90.0 |> collect src_data = ones(length(src_long), length(src_lat)) src_dims = OrderedDict(["long" => src_long, "lat" => src_lat]) src_attribs = Dict("long_name" => "hi") src_dim_attribs = OrderedDict([ "long" => Dict("units" => "test_units1"), "lat" => Dict("units" => "test_units2"), ]) src_var = ClimaAnalysis.OutputVar(src_attribs, src_dims, src_dim_attribs, src_data) dest_long = 20.0:180.0 |> collect dest_lat = 30.0:90.0 |> collect dest_data = zeros(length(dest_lat), length(dest_long)) dest_dims = OrderedDict(["lat" => dest_lat, "long" => dest_long]) dest_attribs = Dict("long_name" => "hi") dest_dim_attribs = OrderedDict([ "lat" => Dict("units" => "test_units4"), "long" => Dict("units" => "test_units3"), ]) dest_var = ClimaAnalysis.OutputVar( dest_attribs, dest_dims, dest_dim_attribs, dest_data, ) ``` ```@repl reordered_as src_var.dims |> keys |> collect dest_var.dims |> keys |> collect reordered_var = ClimaAnalysis.reordered_as(src_var, dest_var); reordered_var.dims |> keys |> collect ``` ## How do I resample the data in a `OutputVar` using the dimensions from another `OutputVar`? You can use the `resampled_as(src_var, dest_var)` function where `src_var` is a OutputVar with the data you want to resample using the dimensions in another OutputVar `dest_var`. If resampling is possible, then a new `OutputVar` is returned where the data in `src_var` is resampled using a linear interpolation to fit the dimensions in `dest_var`. Resampling is not possible when the dimensions in either `OutputVar`s are missing units, the dimensions between the `OutputVar`s do not agree, or the data in `src_var` is not defined everywhere on the dimensions in `dest_var`. ```@julia resampled_as julia> src_var.data 3Γ—4 Matrix{Float64}: 1.0 4.0 7.0 10.0 2.0 5.0 8.0 11.0 3.0 6.0 9.0 12.0 julia> src_var.dims OrderedDict{String, Vector{Float64}} with 2 entries: "lon" => [0.0, 1.0, 2.0] "latitude" => [0.0, 1.0, 2.0, 3.0] julia> dest_var.dims # dims that src_var.data should be resampled on OrderedDict{String, Vector{Float64}} with 2 entries: "long" => [0.0, 1.0] "lat" => [0.0, 1.0, 2.0] julia> resampled_var = ClimaAnalysis.resampled_as(src_var, dest_var); julia> resampled_var.data 2Γ—3 Matrix{Float64}: 1.0 4.0 7.0 2.0 5.0 8.0 julia> resampled_var.dims # updated dims that are the same as the dims in dest_var OrderedDict{String, Vector{Float64}} with 2 entries: "lon" => [0.0, 1.0] "latitude" => [0.0, 1.0, 2.0] ```
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
7243
# ClimaAnalysis `ClimaAnalysis`, your one-stop-shop for all your CliMA analysis needs. ## Quick start ### `SimDir` Suppose you ran a `ClimaAtmos` simulation, and the output is saved in the folder `simulation_output`. The first step in using `ClimaAnalysis` is to instantiate a `SimDir`: ``` julia import ClimaAnalysis simdir = ClimaAnalysis.SimDir("simulation_output") ``` `ClimaAnalysis.SimDir` scans the `simulation_output`, finds all the output files, and organizes them. As of version `0.1.0`, `ClimaAnalysis` uses file names to identify files and variables. In this, `ClimaAnalysis` assumes that the default names for outputs are used in `ClimaAtmos` (i.e., `<short_name>_<reduction_time>_<reduction_type>.nc`, as in `ta_1h_max.nc`, or `<short_name>_1d_inst.nc`). Once you have a `SimDir`, you can inspect the output. For example, to find what variables are available: ``` julia-repl julia> println(summary(simdir)) Output directory: simulation_output Variables: - va average (2.0h) - ua average (6.0h) - orog inst (1.0d) - ta average (3.0h) max (4.0h, 3.0h) min (3.0h) - ts max (1.0h) ``` Now, you can access any given variable ``` julia ta_max = get(simdir; short_name = "t12", reduction = "max", period = "3.0h") ``` `ta_max` is a ` OutputVar`, a type that contains the variable as well as some metadata. When there is only one combination `short_name/reduction/period`, the function `get` can be used with `get(simdir, short_name)` (e.g., `get(simdir, "orog")` in the previous example). Let us learn about ` OutputVar`s ### `OutputVar` ` OutputVar`s contain the raw data (in `.data`), the attributes read from the file, and the information regarding the dimension over which the variable is defined. ``` julia-repl julia> ts_max.dims OrderedCollections.OrderedDict{String, Vector{Float32}} with 4 entries: "time" => [10800.0, 21600.0, 32400.0, 43200.0] "lon" => [-180.0, -177.989, -175.978, -173.966, -171.955, -169.944, -167.933, -165.922… "lat" => [-80.0, -77.9747, -75.9494, -73.924, -71.8987, -69.8734, -67.8481, -65.8228, … "z" => [0.0, 5000.0, 10000.0, 15000.0, 20000.0, 25000.0, 30000.0, 35000.0, 40000.0, … ``` Here we have the dimensions and their values. The dimensions are ordered as in the file, so that the first index of `.data` is `time`, and so on. We can find the attributes of the dimensions in `.attributes`: ``` julia-repl julia> ts_max.dim_attributes["lon"] "lon" => Dict("units"=>"degrees_east") ``` Some of the attributes are exposed with function calls. For example ``` julia-repl julia> long_name(ts_max) Surface Temperature, max within 1.0 Hour(s) ``` These function use the attributes in the NetCDF files. When not available, empty strings are returned. Given an `OutputVar`, we can perform manipulations. For instance, we can take the average over latitudes: ``` julia ts_max_lat_averaged = ClimaAnalysis.average_lat(ts_max) ``` Now, ``` julia ts_max_lat_averaged.dims = OrderedCollections.OrderedDict{String, Vector{Float32}} with 3 entries: "time" => [10800.0, 21600.0, 32400.0, 43200.0] "lon" => [-180.0, -177.989, -175.978, -173.966, -171.955, -169.944, -167.933, -165.922… "z" => [0.0, 5000.0, 10000.0, 15000.0, 20000.0, 25000.0, 30000.0, 35000.0, 40000.0, … ``` We can also take a time/altitude slice, for example, the plane with altitude closest to 8000 meters. ``` julia ts_max_lat_averaged_sliced = ClimaAnalysis.slice(ts_max_lat_averaged, 8_000) ``` Alternatively, you can also call `ClimaAnalysis.slice(ts_max_lat_averaged_sliced, time = 8_000)`. Now, ``` julia ts_max_lat_averaged_sliced.dims = OrderedCollections.OrderedDict{String, Vector{Float32}} with 2 entries: "time" => [10800.0, 21600.0, 32400.0, 43200.0] "lon" => [-180.0, -177.989, -175.978, -173.966, -171.955, -169.944, -167.933, -165.922… ``` You can get the dimensions from standard names, for example, to find the `times`, simply run ``` julia times(ts_max_lat_averaged_sliced) = 4-element Vector{Float32}: 10800.0 21600.0 32400.0 43200.0 ``` `OutputVar`s can be evaluated on arbitrary points. For instance ``` julia-repl julia> ts_max(12000., 23., 45., 1200.) ``` will return the value of the maximum temperature at time 12000, longitude 23, latitude 45, and altitude 1200. This can be used to interpolate `OutputVar`s onto new grids. #### Mathematical operations `OutputVar`s support the usual mathematical operations. For instance, if `ts_max` is an `OutputVar`, `2 * ts_max` will be an `OutputVar` with doubled values. For binary operations (e.g., `+, -, *, /`), `ClimaAnalysis` will check if the operation is well defined (i.e., the two variables are defined on the physical space). Binary operations do remove some attribute information. #### `Visualize` We can directly visualize `OutputVar`s. If [`Makie`](https://docs.makie.org/stable/) is available, `ClimaAnalysis` can be used for plotting. Importing `Makie` and `ClimaAnalysis` in the same session automatically loads the necessary `ClimaAnalysis` plotting modules. If we want to make a heatmap for `ta_max` at time of 100 s at altitude `z` of 30000 meters: ``` julia import CairoMakie import ClimaAnalysis.Visualize as viz fig = Makie.Figure(size = (400, 600)) viz.plot!( fig, ta_max, time = 100.0, z = 30_000.0 ) Makie.save("ta_max.png", fig) ``` If we want to have a line plot, we can simply add another argument (e.g., `lat = 30`), to slice through that value. If you want to customize some of the properties, you can pass the `more_kwargs` to the `plot!` function. `more_kwargs` is a dictionary that can contain additional arguments to the `Axis` (`:axis`), `plot` (`:plot`), and `Colorbar` (`:cb`) functions. `more_kwargs` is a Dictionary that maps the symbols `:axis`, `:plot`, and `:cb` to their additional arguments. For instance, to choose the colormap for the colorbar to viridis ``` julia viz.plot!( fig, ta_max, time = 100.0, z = 30_000.0, more_kwargs = Dict(:cb => [:colormap => :viridis]) ) ``` Note the `Symbol` in colormap!. `:cb` has to be a mapping of `Symbol`s and values. `ClimaAnalysis` has a convenience function `kwargs` to more easily pass down the keyword arguments avoiding this step. With that, the above example becomes ``` julia import ClimaAnalysis.Utils : kwargs as ca_kwargs viz.plot!( fig, ta_max, time = 100.0, z = 30_000.0, more_kwargs = Dict(:cb => ca_kwargs(colormap = :inferno)) ) ``` With `Utils.kwargs`, you can just pass the arguments as you would pass them to the constructor. If you need more control over the placement of plots, you can pass `Makie.GridLayout` objects to the plotting functions. For example, ``` julia using CairoMakie fig = Figure() layout = fig[1, 2] = GridLayout() viz.plot!( layout, ta_max, time = 100.0, z = 30_000.0, more_kwargs = Dict(:cb => ca_kwargs(colormap = :inferno)) ) ``` When you pass a `GridLayout`, the optional argument `p_loc` refers to the placement within the layout. When you pass a `Figure`, it refers to the placement within the figure. If you have `GeoMakie` and are working on a variable defined on a `long-lat` grid, you can directly plot on a projected global surface. For that, load `GeoMakie` and use the `heatmap2D_on_globe!` function.
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
5880
# `RMSEVariable`s `RMSEVariable`s contain all the information needed to process and compare root mean squared errors (RMSEs) between different models and categories (e.g., seasons) for a single variable of interest. `ClimaAnalysis` provides several constructors for making a `RMSEVariable`. For all constructors, a short name and a vector of model names must be provided. If units are not provided, then each model will have no unit which denotes the missing unit. See the examples below where the constructor can take in a short name, a vector of model names, a vector of categories, and a dictionary mapping model names to units or a string of the name of the unit. ```@example rmse_var import ClimaAnalysis rmse_var = ClimaAnalysis.RMSEVariable("ta", ["ACCESS-CM2", "ACCESS-ESM1-5"]) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], ones(2, 5), Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), ) # Convenience functions if models all share the same unit rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], "K", ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], "K", ) rmse_var = ClimaAnalysis.RMSEVariable( "ta", ["ACCESS-CM2", "ACCESS-ESM1-5"], ["DJF", "MAM", "JJA", "SON", "ANN"], ones(2, 5), "K", ) nothing # hide ``` The `RMSEVariable` can be inspected using `model_names`, `category_names`, and `rmse_units` which provide the model names, the category names, and the units respectively. ```@repl rmse_var ClimaAnalysis.model_names(rmse_var) ClimaAnalysis.category_names(rmse_var) ClimaAnalysis.rmse_units(rmse_var) ``` ## Reading RMSEs from CSV file Typically, the root mean squared errors (RMSEs) of different models across different categories are stored in a different file and need to be loaded in. `ClimaAnalysis` can load this information from a CSV file and store it in a `RMSEVariable`. The format of the CSV file should have a header consisting of the entry "model_name" (or any other text as it is ignored by the function) and rest of the entries should be the category names. Each row after the header should start with the model name and the root mean squared errors for each category for that model. The entries of the CSV file should be separated by commas. See the example below using `read_rmses` where data is loaded from `test_csv.csv` and a short name of `ta` is provided. One can also pass in a dictionary mapping model names to units for `units` or a string if the units are the same for all the models. ```@example rmse_var rmse_var = ClimaAnalysis.read_rmses("./data/test_csv.csv", "ta") rmse_var = ClimaAnalysis.read_rmses( "./data/test_csv.csv", "ta", units = Dict("ACCESS-CM2" => "K", "ACCESS-ESM1-5" => "K"), # passing units as a dictionary ) rmse_var = ClimaAnalysis.read_rmses( "./data/test_csv.csv", "ta", units = "K", # passing units as a string ) nothing # hide ``` ## Indexing After loading the data, one may want to inspect, change, or manipulate the data. This is possible by the indexing functionality that `RMSEVariable` provides. Indexing into a `RMSEVariable` is similar, but not the same as indexing into an array. Indexing by integer or string is supported, but linear indexing (e.g. `rmse_var[1]`) is not supported. integer or string is supported, but linear indexing (e.g., `rmse_var[1]`) is not supported. ```@repl rmse_var rmse_var[:, :] rmse_var["ACCESS-CM2"] rmse_var[:, "MAM"] rmse_var["ACCESS-CM2", ["ANN", "DJF", "MAM"]] rmse_var[2,5] = 11.2; rmse_var[:, :] ``` ## Adding categories, models, and units It may be the case that the CSV file does not contain all the models you want to analyze, or you want to consider another category but do not want to go in and manually edit the CSV file to add it. `ClimaAnalysis` provides `add_category`, `add_model`, and `add_unit!` for adding categories, models, and units respectively. Multiple model or categories can be provided (e.g., `add_model(rmse_var, "model1", "model2")`) in the functions. For adding multiple units, one can pass in a dictionary mapping model names to units. See the example below using this functionality. ```@julia rmse_var rmse_var2 = ClimaAnalysis.add_category(rmse_var, "Jan") # can take in more than one category rmse_var = ClimaAnalysis.add_model(rmse_var, "CliMA") # can take in more than one model name ClimaAnalysis.add_unit!(rmse_var, "CliMA", "K") ClimaAnalysis.add_unit!(rmse_var, Dict("CliMA" => "K")) # for adding multiple units ``` ## Summary statistics `ClimaAnalysis` provides several functions to compute summary statistics. As of now, `ClimaAnalysis` provides methods for find the best single model, the worst single model, and the median model. The functions `find_best_single_model` and `find_worst_single_model` default to the category "ANN" (corresponding to the annual mean), but any category can be considered using the parameter `category_name`. Furthermore, the model's root mean squared errors (RMSEs) and the model's name are returned. The function `median` only returns the median model's RMSEs. Any `NaN` that appears in the data is ignored when computing the summary statistics. See the example below using this functionality. ```@repl rmse_var ClimaAnalysis.find_best_single_model(rmse_var, category_name = "DJF") ClimaAnalysis.find_worst_single_model(rmse_var, category_name = "DJF") ClimaAnalysis.median(rmse_var) ```
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
10583
# `OutputVar`s `OutputVar`s are the heart of `ClimaAnalysis`. This page is under construction, in the meantime, consult [`OutputVar`](@ref). `OutputVar`s can be directly generated from most NetCDF files. Just pass the path to the constructor: ```julia import ClimaAnalysis: OutputVar myfile = OutputVar("my_netcdf_file.nc") ``` `ClimaAnalysis` will try to find a variable in this file. If multiple are available, `ClimaAnalysis` picks the latest in alphabetical order. If you want to specify one, pass it to the constructor: ```julia import ClimaAnalysis: OutputVar myfile = OutputVar("my_netcdf_file.nc", "myvar") ``` ## Physical units `OutputVar`s can contain information about their physical units. For `OutputVar`s read from NetCDF files, this is obtained from the `units` attribute (and stored in the `attributes["units"]`). When possible, `ClimaAnalysis` uses [Unitful](https://painterqubits.github.io/Unitful.jl/stable) to handle units. This enables automatic unit conversion for `OutputVar`s. Consider the following example: ```julia import ClimaAnalysis values = 0:100.0 |> collect data = copy(values) attribs = Dict("long_name" => "speed", "units" => "m/s") dim_attribs = Dict{String, Any}() var = ClimaAnalysis.OutputVar(attribs, Dict("distance" => values), dim_attribs, data) var_cms = ClimaAnalysis.convert_units(var, "cm/s") ``` In this example, we set up` var`, an `OutputVar` with units of meters per second. Then, we called [`ClimaAnalysis.convert_units`](@ref) to convert the units to centimeters per second. Sometimes, this automatic unit conversion is not possible (e.g., when you want to transform between incompatible units). In this case, you an pass a function that specify how to apply this transformation. For example, in the previous case, we can assume that we are talking about water and transform units into a mass flux: ```julia new_var = ClimaAnalysis.convert_units(var, "kg m/s", conversion_function = (x) -> 1000x) ``` !!! note If you find some unparseable units, please open an issue. We can fix them! If units do not exist or you want to change the name of the units, then one can uses the `set_units` function. ```julia new_var = ClimaAnalysis.set_units(var, "kg m s^-1") ``` !!! warning "Override existing units" If units already exist, this will override the units for data in `var`. ## Interpolations and extrapolations Interpolating a `OutputVar` onto coordinates can be done by doing the following: ```julia var((0.0, 0.0)) # var is a two-dimensional OutputVar ``` A multilinear interpolation is used to determine the value at the coordinate (0, 0). !!! warning "Interpolate on dates" If any of the dimensions contains `Dates.DateTime` elements, interpolation is not possible. `Interpolations.jl` does not support interpolating on dates. Extrapolating is supported only on the longitude and latitude dimensions. For the longitude and latitude dimensions, a periodic boundary condition and a flat boundary condition are added, respectively, when the dimension array is equispaced and spans the entire range. For all other cases, extrapolating beyond the domain of the dimension will throw an error. ## Preprocess dates and seconds When loading a NetCDF file, dates in the time dimension are automatically converted to seconds and a start date is added to the attributes of the `OutputVar`. This is done because `ClimaAnalysis` does not support interpolating on dates which mean functions that rely on the interpolats, such as `resampled_as`, will not work otherwise. Two additional parameters are provided to help preprocess dates which are `new_start_date` and `shift_by`. If `new_start_date` is provided, then dates in the time dimension will automatically be converted with reference to the `new_start_date` rather than the first date found in the NetCDF file. The parameter `new_start_date` can be any string parseable by the [Dates](https://docs.julialang.org/en/v1/stdlib/Dates/) module or a `Dates.DateTime` object. If additional preprocessing is needed, then one can provide a function that takes in and returns a `Date.DateTime` object. This function is applied to each date before converting each dates to seconds with reference with the start date. ```@julia dates_to_seconds # Shift the dates to first day of month, convert to seconds, and adjust seconds to # match the date 1/1/2010 obs_var = ClimaAnalysis.OutputVar( "pr.nc", "precip", new_start_date = "2010-01-01T00:00:00", # or Dates.DateTime(2010, 1, 1) shift_by = Dates.firstdayofmonth, ) ``` Additionally, the function `shift_to_start_of_previous_month(var::OutputVar)` is provided to help with preprocessing. This function shifts the times in the time dimension to the start of the previous month. After applying this function, the start date in the attributes corresponds to the first element in the time array. ```@julia beginning sim_var = shift_to_start_of_previous_month(sim_var) ``` This function is helpful in ensuring consistency in dates between simulation and observational data. One example of this is when adjusting monthly averaged data. For instance, suppose that data on 2010-02-01 in `sim_var` corresponds to the monthly average for January. This function shifts the times so that 2010-01-01 will correspond to the monthly average for January. ## Integration `OutputVar`s can be integrated with respect to longitude, latitude, or both using `integrate_lon(var)`, `integrate_lat(var)`, or `integrate_lonlat(var)` respectively. The bounds of integration are determined by the range of the dimensions longitude and latitude in `var`. The unit of both longitude and latitude should be degree. If the points are equispaced, it is assumed that each point correspond to the midpoint of a cell which results in rectangular integration using the midpoint rule. Otherwise, the integration being done is rectangular integration using the left endpoints for integrating longitude and latitude. See the example of integrating over a sphere where the data is all ones to find the surface area of a sphere. ```@julia integrate_lonlat julia> lon = collect(range(-179.5, 179.5, 360)); julia> lat = collect(range(-89.5, 89.5, 180)); julia> data = ones(length(lon), length(lat)); julia> dims = OrderedDict(["lon" => lon, "lat" => lat]); julia> dim_attribs = OrderedDict([ "lon" => Dict("units" => "degrees_east"), "lat" => Dict("units" => "degrees_north"), ]); julia> attribs = Dict("long_name" => "f"); julia> var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data); julia> integrated_var = integrate_lonlat(var); julia> integrated_var.dims # no dimensions since longitude and latitude are integrated out OrderedDict{String, Vector{Float64}}() julia> integrated_var.data # approximately 4Ο€ (the surface area of a sphere) 0-dimensional Array{Float64, 0}: 12.566530113084296 julia> long_name(integrated_var) # updated long name to reflect the data being integrated "f integrated over lon (-179.5 to 179.5degrees_east) and integrated over lat (-89.5 to 89.5degrees_north)" ``` ## Split by season `OutputVar`s can be split by seasons using `split_by_season(var)` provided that a start date can be found in `var.attributes["start_date"]` and time is a dimension in the `OutputVar`. The unit of time is expected to be second. The function `split_by_season(var)` returns a vector of four `OutputVar`s with each `OutputVar` corresponding to a season. The months of the seasons are March to May, June to August, September to November, and December to February. The order of the vector is MAM, JJA, SON, and DJF. If there are no dates found for a season, then the `OutputVar` for that season will be an empty `OutputVar`. ```@julia split_by_season julia> attribs = Dict("start_date" => "2024-1-1"); julia> time = [0.0, 5_184_000.0, 13_132_800.0]; # correspond to dates 2024-1-1, 2024-3-1, 2024-6-1 julia> dims = OrderedDict(["time" => time]); julia> dim_attribs = OrderedDict(["time" => Dict("units" => "s")]); # unit is second julia> data = [1.0, 2.0, 3.0]; julia> var = ClimaAnalysis.OutputVar(attribs, dims, dim_attribs, data); julia> MAM, JJA, SON, DJF = ClimaAnalysis.split_by_season(var); julia> ClimaAnalysis.isempty(SON) # empty OutputVar because no dates between September to November true julia> [MAM.dims["time"], JJA.dims["time"], DJF.dims["time"]] 3-element Vector{Vector{Float64}}: [5.184e6] [1.31328e7] [0.0] julia> [MAM.data, JJA.data, DJF.data] 3-element Vector{Vector{Float64}}: [2.0] [3.0] [1.0] ``` ## Bias and squared error Bias and squared error can be computed from simulation data and observational data in `OutputVar`s using `bias(sim, obs)` and `squared_error(sim, obs)`. The function `bias(sim, obs)` returns a `OutputVar` whose data is the bias (`sim.data - obs.data`) and computes the global bias of `data` in `sim` and `obs` over longitude and latitude. The result is stored in `var.attributes["global_bias"]`. The function `squared_error(sim, obs)` returns a `OutputVar` whose data is the squared error (`(sim.data - obs.data)^2`) and computes the global mean squared error (MSE) and the global root mean squared error (RMSE) of `data` in `sim` and `obs` over longitude and latitude. The result is stored in `var.attributes["global_mse"]` and `var.attributes["global_rmse"]`. Resampling is automatically done by resampling `obs` on `sim`. If you are only interested in computing global bias, MSE, or RMSE, you can use `global_bias(sim, obs)`, `global_mse(sim, obs)`, or `global_rmse(sim, obs)`. As of now, these functions are implemented for `OutputVar`s with only the dimensions longitude and latitude. Furthermore, units must be supplied for data and dimensions in `sim` and `obs` and the units for longitude and latitude should be degrees. Consider the following example, where we compute the bias and RMSE between our simulation and some observations stored in "ta\_1d\_average.nc". ```@julia bias_and_mse julia> obs_var = OutputVar("ta_1d_average.nc"); # load in observational data julia> sim_var = get(simdir("simulation_output"), "ta"); # load in simulation data julia> ClimaAnalysis.short_name(sim_var) "ta" julia> bias_var = ClimaAnalysis.bias(sim_var, obs_var); # bias_var is a OutputVar that can be plotted julia> global_bias(sim, obs) 2.0 julia> units(bias_var) "K" julia> se_var = ClimaAnalysis.squared_error(sim_var, obs_var); # can also be plotted julia> global_mse(sim, obs) 4.0 julia> global_rmse(sim, obs) 2.0 julia> units(se_var) "K^2" ```
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
2718
# Visualizing `OutputVar`s This page is under construction, in the meantime, consult [`Visualize`](@ref). ### Masking part of the output in `GeoMakie` When performing ocean or land simulations, it is often convenient to hide the other component (e.g., hide the ocean and focus on the continents). For `GeoMakie` plots, there is a direct way to accomplish this. In this section, we discuss this feature. The main `GeoMakie` plots are [`Visualize.contour2D_on_globe!`](@ref) and [`Visualize.heatmap2D_on_globe!`](@ref). Both these functions take a `mask` argument. By default, `mask` is `nothing`, meaning that the entire output is displayed on the globe. Alternatively, `mask` can be a collection of polygons that can be plotted with [`Makie.poly`](https://docs.makie.org/v0.21/reference/plots/poly). `ClimaAnalysis` comes with the most important ones [`Visualize.oceanmask`](@ref) and [`Visualize.landmask`](@ref), to hide ocean and continents respectively. For example, suppose `var` it the variable we want to plot with a ocean mask ```julia import ClimaAnalysis.Visualize: contour2D_on_globe!, oceanmask import ClimaAnalysis.Utils: kwargs as ca_kwargs import GeoMakie import CairoMakie fig = CairoMakie.Figure() contour2D_on_globe!(fig, var, mask = oceanmask(), more_kwargs = Dict(:mask => ca_kwargs(color = :blue)), ) CairoMakie.save("myfigure.pdf", fig) ``` In this example, we plotted `var` on the globe and overplotted a blue ocean. `ca_kwargs` (`Utils.kwargs`) is a convenience function to pass keyword arguments more easily. !!! note Masking does not affect the colorbar. If you have values defined beneath the map, they can still affect the colorbar. The output might look something like: ![oceanmask](./assets/oceanmask.png) ### Plotting bias After [computing the bias](@ref bias) between observational and simulation data, you may want to plot the bias and display information such as the root mean squared error (RMSE) and the global bias in the plot. To do this, you use the function [`plot_bias_on_globe!(fig, sim, obs)`](@ref Visualize.plot_bias_on_globe!). In the example below, we plot the bias between our simulation and some observations stored in `ta_1d_average.nc`. ```julia import ClimaAnalysis import ClimaAnalysis.Visualize: plot_bias_on_globe! import GeoMakie import CairoMakie obs_var = ClimaAnalysis.OutputVar("ta_1d_average.nc") sim_var = ClimaAnalysis.get(ClimaAnalysis.simdir("simulation_output"), "ta") fig = CairoMakie.Figure() plot_bias_on_globe!(fig, sim_var, obs_var) CairoMakie.save("myfigure.pdf", fig) ``` The output produces something like: ![biasplot](./assets/bias_plot.png)
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "Apache-2.0" ]
0.5.10
1f6c4859eafc66f1b6df4932bd7040747581d816
docs
3247
# Visualizing `RMSEVariable`s Instead of computing summary statistics, it may be more helpful to plot a box plot or a heatmap. `ClimaAnalysis` provides the functions `plot_boxplot!` and `plot_leaderboard!` to help visualize the root mean squared errors (RMSEs) in a `RMSEVariable`. The function [`Visualize.plot_boxplot!`](@ref) makes a box plot for each category in the `RMSEVariable`. The best model and worst model and any other models in `model_names` are plotted. When finding the best and worst single models, any models in `model_names` will be excluded. The category to find the best and worst model defaults to "ANN", but can be changed using the parameter `best_and_worst_category_name`. The function [`Visualize.plot_leaderboard!`](@ref) makes a heatmap of the RMSEs between the variables of interest and the categories. The best model for each variable of interest and the models in `model_names` are shown in the heatmap. Similar to `plot_boxplot!`, the category to find the best model defaults to "ANN", but can be changed using the parameter `best_category_name`. The values of the heatmap are normalized by dividing over the median model's RMSEs for each variable. ```@setup plotting import ClimaAnalysis import CairoMakie csv_file_path = "./data/test_csv.csv" rmse_var_ta = ClimaAnalysis.read_rmses(csv_file_path, "ta") rmse_var_ta = ClimaAnalysis.add_model(rmse_var_ta, "CliMA", "test1", "test2") rmse_var_ta[:, :] = [ [10.0 11.0 12.0 13.0 14.0] [36.0 37.0 38.0 39.0 30.0] [11.0 12.0 13.0 14.0 15.0] [13.0 13.0 13.0 13.0 15.0] [24.0 24.0 24.0 24.0 24.0] ] ClimaAnalysis.add_unit!( rmse_var_ta, Dict( "ACCESS-ESM1-5" => "K", "ACCESS-CM2" => "K", "CliMA" => "K", "test1" => "K", "test2" => "K", ), ) rmse_var_pr = ClimaAnalysis.read_rmses(csv_file_path, "pr") rmse_var_pr = ClimaAnalysis.add_model(rmse_var_pr, "CliMA") rmse_var_pr[:, :] = [ [6.0 7.0 8.0 9.0 10.0] [11.0 12.0 13.0 14.0 15.0] [1.0 2.0 3.0 4.0 11.0] ] ClimaAnalysis.add_unit!( rmse_var_pr, Dict( "ACCESS-ESM1-5" => "kg m^-2 s^-1", "ACCESS-CM2" => "kg m^-2 s^-1", "CliMA" => "kg m^-2 s^-1", ), ) rmse_var_ha = ClimaAnalysis.read_rmses(csv_file_path, "ha") rmse_var_ha = ClimaAnalysis.add_model(rmse_var_ha, "CliMA") rmse_var_ha[:, :] = [ [0.5 1.0 1.5 2.0 2.5] [6.0 7.0 8.0 9.0 10.0] [11.0 12.0 13.0 14.0 7.0] ] ClimaAnalysis.add_unit!( rmse_var_ha, Dict( "ACCESS-ESM1-5" => "m^2 s^-2", "ACCESS-CM2" => "m^2 s^-2", "CliMA" => "m^2 s^-2", ), ) ``` ```@example plotting import ClimaAnalysis import CairoMakie # Plot box plots rmse_vars = (rmse_var_ta, rmse_var_pr, rmse_var_ha) fig = CairoMakie.Figure(; size = (800, 300 * 3 + 400), fontsize = 20) for i in 1:3 ClimaAnalysis.Visualize.plot_boxplot!( fig, rmse_vars[i], ploc = (i, 1), best_and_worst_category_name = "ANN", ) end # Plot leaderboard ClimaAnalysis.Visualize.plot_leaderboard!( fig, rmse_vars..., best_category_name = "ANN", ploc = (4, 1), ) CairoMakie.save("./assets/boxplot_and_leaderboard.png", fig) nothing # hide ``` ![box plot](./assets/boxplot_and_leaderboard.png)
ClimaAnalysis
https://github.com/CliMA/ClimaAnalysis.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
463
using Documenter, Carlo, Carlo.JobTools makedocs( sitename = "Carlo.jl", format = Documenter.HTML(prettyurls = false), checkdocs = :all, pages = [ "index.md", "abstract_mc.md", "Advanced Topics" => [ "evaluables.md", "jobtools.md", "resulttools.md", "rng.md", "parallel_run_mode.md", ], ], ) deploydocs(repo = "github.com/lukas-weber/Carlo.jl.git")
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
659
module Carlo export AbstractMC, MCContext, measure!, is_thermalized, write_checkpoint, read_checkpoint!, read_checkpoint export Evaluator, evaluate!, start using Statistics include("jobtools/JobTools.jl") include("resulttools/ResultTools.jl") include("log.jl") include("util.jl") include("random_wrap.jl") include("accumulator.jl") include("measurements.jl") include("mc_context.jl") include("abstract_mc.jl") include("version.jl") include("results.jl") include("merge.jl") include("evaluable.jl") include("run.jl") include("scheduler_task.jl") include("scheduler_single.jl") include("scheduler_mpi.jl") include("cli.jl") include("precompile.jl") end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
2965
using MPI """ This type is an interface for implementing your own Monte Carlo algorithm that will be run by Carlo. """ abstract type AbstractMC end """ Carlo.init!(mc::YourMC, ctx::MCContext, params::AbstractDict) Executed when a simulation is started from scratch. """ function init! end init!(mc::AbstractMC, ctx::MCContext, params::AbstractDict, comm::MPI.Comm) = init!(mc, ctx, params) """ Carlo.sweep!(mc::YourMC, ctx::MCContext) Perform one Monte Carlo sweep or update to the configuration. !!! note Doing measurements is supported during this step as some algorithms require doing so for efficiency. Remember to check for [`is_thermalized`](@ref) in that case. """ function sweep! end sweep!(mc::AbstractMC, ctx::MCContext, comm::MPI.Comm) = sweep!(mc, ctx) """ Carlo.measure!(mc::YourMC, ctx::MCContext) Perform one Monte Carlo measurement. """ function measure! end function measure!(mc::AbstractMC, ctx::MCContext, comm::MPI.Comm) if MPI.Comm_size(comm) == 1 measure!(mc, ctx) else error( "running in parallel run mode but measure(::MC, ::MCContext, ::MPI.Comm) not implemented", ) end return nothing end """ Carlo.write_checkpoint(mc::YourMC, out::HDF5.Group) Save the complete state of the simulation to `out`. """ function write_checkpoint end function write_checkpoint( mc::AbstractMC, dump_file::Union{HDF5.Group,Nothing}, comm::MPI.Comm, ) if MPI.Comm_size(comm) == 1 write_checkpoint(mc, dump_file) else error( "running in parallel run mode but write_checkpoint(::MC, ::Union{HDF5.Group,Nothing}, ::MPI.Comm) not implemented", ) end return nothing end function write_checkpoint(obj, dump_file::HDF5.Group) @warn "checkpointing $(typeof(obj)) not supported. Implement Carlo.write_checkpoint." return nothing end """ Carlo.read_checkpoint!(mc::YourMC, in::HDF5.Group) Read the state of the simulation from `in`. """ function read_checkpoint! end function read_checkpoint!( mc::AbstractMC, dump_file::Union{HDF5.Group,Nothing}, comm::MPI.Comm, ) if MPI.Comm_size(comm) == 1 read_checkpoint!(mc, dump_file) else error( "running in parallel run mode but read_checkpoint!(::MC, ::Union{HDF5.Group,Nothing}, ::MPI.Comm) not implemented", ) end return nothing end function read_checkpoint(::Type{T}, dump_file::HDF5.Group) where {T} @warn "checkpointing $(T) not supported. Implement Carlo.read_checkpoint. Attempting to construct $(T)() as a stand-in..." return T() end """ Carlo.register_evaluables(mc::Type{YourMC}, eval::Evaluator, params::AbstractDict) This function is used to calculate postprocessed quantities from quantities that were measured during the simulation. Common examples are variances or ratios of observables. See [evaluables](@ref) for more details. """ function register_evaluables end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
3485
using HDF5 using ElasticArrays const binning_output_chunk_size = 1000 mutable struct Accumulator{T<:Number,N,M} const bin_length::Int64 bins::ElasticArray{T,N,M,Vector{T}} current_filling::Int64 end function Accumulator{T}(bin_length::Integer, shape::Tuple{Vararg{Integer}}) where {T} if bin_length < 1 throw(ArgumentError("bin_length ($bin_length) needs to be >= 1")) end bins = ElasticArray{T}(undef, shape..., 1) bins .= 0 return Accumulator(Int64(bin_length), bins, Int64(0)) end Base.isempty(acc::Accumulator) = num_bins(acc) == 0 && acc.current_filling == 0 has_complete_bins(acc::Accumulator) = num_bins(acc) > 0 Statistics.mean(acc::Accumulator) = dropdims(mean(bins(acc); dims = ndims(acc.bins)); dims = ndims(acc.bins)) std_of_mean(acc::Accumulator) = dropdims( std(bins(acc); dims = ndims(acc.bins)) / sqrt(num_bins(acc)); dims = ndims(acc.bins), ) bins(acc::Accumulator) = Array(@view acc.bins[axes(acc.bins)[1:end-1]..., 1:end-1]) shape(acc::Accumulator) = size(acc.bins)[1:end-1] num_bins(acc::Accumulator) = size(acc.bins)[end] - 1 function add_sample!(acc::Accumulator, value) if size(value) != shape(acc) error( "size of added value ($(length(value))) does not size of accumulator ($(shape(acc)))", ) end current_bin = @view acc.bins[axes(acc.bins)[1:end-1]..., end:end] # this one avoids some allocations for i in eachindex(value) current_bin[i] += value[i] end acc.current_filling += 1 if acc.current_filling == acc.bin_length current_bin ./= acc.bin_length append!(acc.bins, zeros(shape(acc)...)) acc.current_filling = 0 end return nothing end function write_measurements!(acc::Accumulator{T}, out::HDF5.Group) where {T} if has_complete_bins(acc) if haskey(out, "samples") saved_samples = out["samples"] old_bin_count = size(saved_samples, ndims(saved_samples)) else out["bin_length"] = acc.bin_length saved_samples = create_dataset( out, "samples", eltype(acc.bins), ((shape(acc)..., num_bins(acc)), (shape(acc)..., -1)); chunk = (shape(acc)..., binning_output_chunk_size), ) attributes(out["samples"])["v0.2_format"] = true old_bin_count = 0 end HDF5.set_extent_dims(saved_samples, (shape(acc)..., old_bin_count + num_bins(acc))) saved_samples[axes(saved_samples)[1:end-1]..., old_bin_count+1:end] = bins(acc) acc.bins = acc.bins[axes(acc.bins)[1:end-1]..., end:end] end return nothing end function write_checkpoint(acc::Accumulator, out::HDF5.Group) out["bin_length"] = acc.bin_length out["current_bin_filling"] = acc.current_filling out["samples"] = Array(acc.bins) if size(out["samples"]) == (1, 1) attributes(out["samples"])["v0.2_format"] = true end return nothing end function read_checkpoint(::Type{<:Accumulator}, in::HDF5.Group) samples = read(in, "samples") # TODO: this maintains checkpoint compatibility with Carlo v0.1.5. remove in v0.3 if size(samples) == (1, 1) && !haskey(attributes(in["samples"]), "v0.2_format") samples = dropdims(samples; dims = 1) end return Accumulator( read(in, "bin_length"), ElasticArray(samples), read(in, "current_bin_filling"), ) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
3296
using ArgParse using PrecompileTools using PrettyTables """ start(job::JobInfo, ARGS) Call this from your job script to start the Carlo command line interface. If for any reason you do not want to use job scripts, you can directly schedule a job using start(Carlo.MPIScheduler, job) """ function start(job::JobInfo, args::AbstractVector{<:AbstractString}) s = ArgParseSettings() @add_arg_table! s begin "run", "r" help = "Starts a simulation" action = :command "status", "s" help = "Check the progress of a simulation" action = :command "merge", "m" help = "Merge results of an incomplete simulation" action = :command "delete", "d" help = "Clean up a simulation directory" action = :command end @add_arg_table! s["run"] begin "--single", "-s" help = "run in single core mode" action = :store_true "--restart", "-r" help = "delete existing files and start from scratch" action = :store_true end parsed_args = parse_args(args, s) if isnothing(parsed_args) return nothing end cmd = parsed_args["%COMMAND%"] cmd_funcs = Dict( "run" => cli_run, "merge" => cli_merge, "status" => cli_status, "delete" => cli_delete, ) return cmd_funcs[cmd](job, parsed_args[cmd]) end function cli_run(job::JobInfo, args::AbstractDict) if args["restart"] if args["single"] || (MPI.Init(); MPI.Comm_rank(MPI.COMM_WORLD)) == 0 cli_delete(job, Dict()) end end scheduler = args["single"] ? SingleScheduler : MPIScheduler if scheduler == MPIScheduler && (MPI.Init(); MPI.Comm_size(MPI.COMM_WORLD)) == 1 @info "running with a single process: defaulting to --single scheduler" scheduler = SingleScheduler end return with_logger(default_logger()) do start(scheduler, job) end end function cli_status(job::JobInfo, ::AbstractDict) try tasks = JobTools.read_progress(job) data = permutedims( hcat( ( [ basename(x.dir), x.sweeps, x.target_sweeps, x.num_runs, "$(round(Int,100*x.thermalization_fraction))%", ] for x in tasks )..., ), ) header = ["task", "sweeps", "target", "runs", "thermalized"] pretty_table(data, vlines = :none, header = header, crop = :none) return all(map(x -> x.sweeps >= x.target_sweeps, tasks)) catch err if isa(err, Base.IOError) @error "Could not read job progress. Not run yet?" exit(1) else rethrow(err) end end end function cli_delete(job::JobInfo, ::AbstractDict) rm("$(job.dir)/../$(job.name).results.json"; force = true) rm(job.dir; recursive = true, force = true) return nothing end function cli_merge(job::JobInfo, ::AbstractDict) for task in job.tasks merge_results(job.mc, JobTools.task_dir(job, task); parameters = task.params) end JobTools.concatenate_results(job) return nothing end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
3799
struct Evaluable{T<:Number,R<:Real} internal_bin_length::Int64 rebin_length::Int64 rebin_count::Int64 mean::Vector{T} error::Vector{R} end function jackknife(func::Function, sample_set::Tuple{Vararg{AbstractArray,N}}) where {N} sample_count = minimum(x -> last(size(x)), sample_set) # truncate sample counts to smallest sample_set = map(s -> s[axes(s)[1:end-1]..., 1:sample_count], sample_set) # the .+0 is a trick to decay 0-dim arrays to scalars sums = map(s -> dropdims(sum(s; dims = ndims(s)); dims = ndims(s)) .+ 0, sample_set) # evaluation based on complete dataset (truncated to the lowest sample_count) complete_eval = func((sums ./ sample_count)...) # evaluation on the jacked datasets jacked_eval_mean = zero(complete_eval) for k = 1:sample_count jacked_means = ( (sum .- view(samples, axes(samples)[1:end-1]..., k)) ./ (sample_count - 1) for (sum, samples) in zip(sums, sample_set) ) jacked_eval_mean += func(jacked_means...) end jacked_eval_mean /= sample_count @assert length(complete_eval) == length(jacked_eval_mean) # mean and error bias_corrected_mean = sample_count * complete_eval .- (sample_count - 1) * jacked_eval_mean error = real.(zero(complete_eval)) for k = 1:sample_count jacked_means = ( (sum .- view(samples, axes(samples)[1:end-1]..., k)) ./ (sample_count - 1) for (sum, samples) in zip(sums, sample_set) ) # use abs2 to give real number error for complex number variables error += abs2.(func(jacked_means...) - jacked_eval_mean) end error = sqrt.((sample_count - 1) .* error ./ sample_count) return vec(collect(bias_corrected_mean)), vec(collect(error)) end function evaluate( evaluation::Func, used_observables::NTuple{N,ResultObservable}, )::Union{Evaluable,Nothing} where {Func,N} internal_bin_length = minimum(obs -> obs.internal_bin_length, used_observables) rebin_length = minimum(obs -> obs.rebin_length, used_observables) bin_count = minimum(rebin_count, used_observables) if bin_count == 0 return nothing end return Evaluable( internal_bin_length, rebin_length, bin_count, jackknife(evaluation, map(obs -> obs.rebin_means, used_observables))..., ) end function ResultObservable(eval::Evaluable) return ResultObservable( eval.internal_bin_length, eval.rebin_length, eval.mean, eval.error, fill(NaN, size(eval.mean)...), eltype(eval.mean)[], ) end struct Evaluator observables::Dict{Symbol,ResultObservable} evaluables::Dict{Symbol,Evaluable} end Evaluator(observables::Dict{Symbol,ResultObservable}) = Evaluator(observables, Dict{Symbol,Evaluable}()) """ evaluate!(func::Function, eval::Evaluator, name::Symbol, (ingredients::Symbol...)) Define an evaluable called `name`, i.e. a quantity depending on the observable averages `ingredients...`. The function `func` will get the ingredients as parameters and should return the value of the evaluable. Carlo will then perform jackknifing to calculate a bias-corrected result with correct error bars that appears together with the observables in the result file. """ function evaluate!( evaluation::Func, eval::Evaluator, name::Symbol, ingredients::NTuple{N,Symbol}, ) where {Func,N} notfound = setdiff(ingredients, keys(eval.observables)) if !isempty(notfound) @warn "Evaluable '$name': ingredients $notfound not found. Skipping..." return nothing end eval.evaluables[name] = evaluate(evaluation, tuple((eval.observables[i] for i in ingredients)...)) return nothing end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
380
using Logging using Dates const date_format = "yyyy-mm-dd HH:MM:SS" function log_formatter(level::LogLevel, _module, group, id, file, line) (color, prefix, suffix) = Logging.default_metafmt(level, _module, group, id, file, line) return color, "$(prefix) $(Dates.format(now(), date_format))", suffix end default_logger() = ConsoleLogger(meta_formatter = log_formatter)
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
2271
using HDF5 using Random """ Holds the Carlo-internal state of the simulation and provides an interface to - **Random numbers**: the public field `MCContext.rng` is a random number generator (see [rng](@ref)) - **Measurements**: see [`measure!(::MCContext, ::Symbol, ::Any)`](@ref) - **Simulation state**: see [`is_thermalized`](@ref) """ mutable struct MCContext{RNG<:Random.AbstractRNG} sweeps::Int64 thermalization_sweeps::Int64 rng::RNG measure::Measurements end """ measure!(ctx::MCContext, name::Symbol, value) Measure a sample for the observable named `name`. The sample `value` may be either a scalar or vector of a float type. """ measure!(ctx::MCContext, name::Symbol, value) = add_sample!(ctx.measure, name, value) """ is_thermalized(ctx::MCContext)::Bool Returns true if the simulation is thermalized. """ is_thermalized(ctx::MCContext) = ctx.sweeps > ctx.thermalization_sweeps function MCContext{RNG}(parameters::AbstractDict; seed_variation::Integer = 0) where {RNG} measure = Measurements(parameters[:binsize]) register_observable!(measure, :_ll_checkpoint_read_time, 1, ()) register_observable!(measure, :_ll_checkpoint_write_time, 1, ()) if haskey(parameters, :seed) rng = RNG(parameters[:seed] * (1 + seed_variation)) else rng = RNG() end return MCContext(Int64(0), Int64(parameters[:thermalization]), rng, measure) end function write_measurements!(ctx::MCContext, meas_file::HDF5.Group) write_measurements!(ctx.measure, create_absent_group(meas_file, "observables")) return nothing end function write_checkpoint(ctx::MCContext, out::HDF5.Group) write_checkpoint(ctx.rng, create_group(out, "random_number_generator")) write_checkpoint(ctx.measure, create_group(out, "measurements")) out["sweeps"] = ctx.sweeps out["thermalization_sweeps"] = ctx.thermalization_sweeps return nothing end function read_checkpoint(::Type{MCContext{RNG}}, in::HDF5.Group) where {RNG} sweeps = read(in, "sweeps") therm_sweeps = read(in, "thermalization_sweeps") return MCContext( sweeps, therm_sweeps, read_checkpoint(RNG, in["random_number_generator"]), read_checkpoint(Measurements, in["measurements"]), ) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
2161
mutable struct Measurements default_bin_size::Int64 observables::Dict{Symbol,Accumulator} end Measurements(default_bin_size::Integer) = Measurements(default_bin_size, Dict()) function add_sample!(meas::Measurements, obsname::Symbol, value) if !haskey(meas.observables, obsname) register_observable!( meas, obsname, meas.default_bin_size, size(value), float(eltype(value)), ) end add_sample!( meas.observables[obsname]::Accumulator{ float(eltype(value)), ndims(value) + 1, ndims(value), }, value, ) return nothing end Base.isempty(meas::Measurements) = all(isempty.(values(meas.observables))) has_complete_bins(meas::Measurements) = any(has_complete_bins.(values(meas.observables))) function register_observable!( meas::Measurements, obsname::Symbol, bin_length::Integer, shape::Tuple{Vararg{Integer}}, T::Type{<:Number} = Float64, ) if haskey(meas.observables, obsname) error("Accumulator '$obsname' already exists.") end meas.observables[obsname] = Accumulator{T}(bin_length, shape) return nothing end function write_measurements!(meas::Measurements, out::HDF5.Group) for (name, obs) in meas.observables if has_complete_bins(obs) write_measurements!(obs, create_absent_group(out, String(name))) end end return nothing end function write_checkpoint(meas::Measurements, out::HDF5.Group) out["default_bin_size"] = meas.default_bin_size for (name, obs) in meas.observables @assert !has_complete_bins(obs) write_checkpoint(obs, create_group(out, "observables/$(name)")) end return nothing end function read_checkpoint(::Type{Measurements}, in::HDF5.Group) default_bin_size = read(in, "default_bin_size") observables = Dict{Symbol,Accumulator}() for obsname in keys(in["observables"]) observables[Symbol(obsname)] = read_checkpoint(Accumulator, in["observables/$(obsname)"]) end return Measurements(default_bin_size, observables) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
5606
using Logging """Determine the number of bins in the rebin procedure. Rebinning will not be performed if the number of samples is smaller than `min_bin_count`.""" function calc_rebin_count(sample_count::Integer, min_bin_count::Integer = 10)::Integer return sample_count <= min_bin_count ? sample_count : (min_bin_count + round(cbrt(sample_count - min_bin_count))) end function calc_rebin_length(total_sample_count, rebin_length) if total_sample_count == 0 return 1 elseif rebin_length !== nothing return rebin_length else return total_sample_count Γ· calc_rebin_count(total_sample_count) end end """ This helper function consecutively opens all ".meas.h5" files of a task. For each observable in the file, it calls states[obs_key] = func(obs_key, obs, get(states, obs_key, nothing)) Finally the dictionary `states` is returned. This construction allows `func` to only care about a single observable, simplifying the merging code. """ function iterate_measfile_observables(func::Func, filenames) where {Func} states = Dict{Symbol,Any}() for filename in filenames h5open(filename, "r") do meas_file for obs_name in keys(meas_file["observables"]) obs_key = Symbol(obs_name) obs = nothing try obs = meas_file["observables"][obs_name] catch err if err isa KeyError @warn "$(obs_name): $(err). Skipping..." continue end rethrow(err) end states[obs_key] = func(obs_key, obs, get(states, obs_key, nothing)) end end end return states end function merge_results( ::Type{MC}, taskdir::AbstractString; parameters::Dict{Symbol,Any}, rebin_length::Union{Integer,Nothing} = get(parameters, :rebin_length, nothing), sample_skip::Integer = get(parameters, :rebin_sample_skip, 0), ) where {MC<:AbstractMC} merged_results = merge_results( JobTools.list_run_files(taskdir, "meas\\.h5"); rebin_length, sample_skip, ) evaluator = Evaluator(merged_results) register_evaluables(MC, evaluator, parameters) results = merge( merged_results, Dict(name => ResultObservable(obs) for (name, obs) in evaluator.evaluables), ) write_results(results, taskdir * "/results.json", taskdir, parameters, Version(MC)) return nothing end function merge_results( filenames::AbstractArray{<:AbstractString}; rebin_length::Union{Integer,Nothing}, sample_skip::Integer = 0, ) obs_types = iterate_measfile_observables(filenames) do _, obs_group, state internal_bin_length = read(obs_group, "bin_length") sample_size = size(obs_group["samples"]) # TODO: compat for v0.1.5 format. Remove in v0.3 if length(sample_size) == 2 && sample_size[1] == 1 && !haskey(attributes(obs_group["samples"]), "v0.2_format") sample_size = (sample_size[2],) end shape = sample_size[1:end-1] nsamples = max(0, sample_size[end] - sample_skip) type = eltype(obs_group["samples"]) if isnothing(state) return (; T = type, internal_bin_length, shape, total_sample_count = nsamples) end if shape != state.shape error("Observable shape ($shape) does not agree between runs ($(state.shape))") end return (; T = promote_type(state.T, type), internal_bin_length = state.internal_bin_length, shape = state.shape, total_sample_count = state.total_sample_count + nsamples, ) end binned_obs = iterate_measfile_observables(filenames) do obs_name, obs_group, state obs_type = obs_types[obs_name] if state === nothing binsize = calc_rebin_length(obs_type.total_sample_count, rebin_length) state = (; acc = Accumulator{obs_type.T}(binsize, obs_type.shape), accΒ² = Accumulator{real(obs_type.T)}(binsize, obs_type.shape), ) end samples = read(obs_group, "samples") # TODO: compat for v0.1.5 format. Remove in v0.3 if !haskey(attributes(obs_group["samples"]), "v0.2_format") samples = reshape(samples, obs_type.shape..., :) end for value in Iterators.drop(eachslice(samples; dims = ndims(samples)), sample_skip) add_sample!(state.acc, value) add_sample!(state.accΒ², abs2.(value)) end return state end return Dict{Symbol,ResultObservable}( obs_name => begin ΞΌ = mean(obs.acc) Οƒ = std_of_mean(obs.acc) no_rebinning_Οƒ = sqrt.( max.(0, mean(obs.accΒ²) .- abs2.(ΞΌ)) ./ (obs.acc.bin_length * num_bins(obs.acc) - 1) ) autocorrelation_time = 0.5 .* (Οƒ ./ no_rebinning_Οƒ) .^ 2 # broadcasting promotes 0-dim arrays to scalar, which we do not want ensure_array(x::Number) = fill(x) ensure_array(x::AbstractArray) = x ResultObservable( obs_types[obs_name].internal_bin_length, obs.acc.bin_length, ΞΌ, Οƒ, ensure_array(autocorrelation_time), bins(obs.acc), ) end for (obs_name, obs) in binned_obs if num_bins(obs.acc) > 0 ) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
259
using PrecompileTools using ..JobTools @setup_workload begin @compile_workload begin tm = TaskMaker() tm.thermalization = 10 tm.sweeps = 10 tm.binsize = 1 tm.test = [1] task(tm, Lx = 2, T = 1) end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1077
using Random using HDF5 function guess_xoshiro_version() num_fields = length(fieldnames(Xoshiro)) if num_fields == 4 return 1 elseif num_fields == 5 return 2 end error( "Carlo wrapper does not support this version of Xoshiro yet. Please file a bug report", ) end function write_checkpoint(rng::Xoshiro, out::HDF5.Group) out["type"] = "xoroshiro256++" out["state"] = collect(getproperty.(rng, fieldnames(Xoshiro))) out["rng_version"] = guess_xoshiro_version() return nothing end function read_checkpoint(::Type{Xoshiro}, in::HDF5.Group) rng_type = read(in["type"]) if rng_type != "xoroshiro256++" error("checkpoint was done with a different RNG: $(rng_type)") end rng_version = read(in["rng_version"]) if rng_version != guess_xoshiro_version() error( "checkpoint was done with a different version of Xoshiro. Try running with the version of Julia you used originally.", ) end state = read(in["state"]) return Random.Xoshiro(state...) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1191
import JSON """Result of a Carlo Monte Carlo calculation containing the mean, statistical error and autocorrelation time.""" mutable struct ResultObservable{T<:Number,R<:Real,N,M} internal_bin_length::Int64 rebin_length::Int64 mean::Array{T,N} error::Array{R,N} autocorrelation_time::Array{R,N} rebin_means::Array{T,M} end rebin_count(obs::ResultObservable) = Int64(size(obs.rebin_means)[end]) JSON.lower(obs::ResultObservable) = Dict( "mean" => obs.mean, "error" => obs.error, "autocorr_time" => maximum(obs.autocorrelation_time), "rebin_len" => obs.rebin_length, "rebin_count" => rebin_count(obs), "internal_bin_len" => obs.internal_bin_length, ) function write_results( observables::AbstractDict, filename::AbstractString, taskdir::AbstractString, parameters::Dict, version::Version, ) open(filename, "w") do file JSON.print( file, Dict( "task" => taskdir, "parameters" => parameters, "results" => observables, "version" => to_dict(version), ), 1, ) end return nothing end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
4721
using Random using Printf struct Run{MC<:AbstractMC,RNG<:Random.AbstractRNG} context::MCContext{RNG} implementation::MC end function Run{MC,RNG}(params::Dict, comm::MPI.Comm) where {MC<:AbstractMC,RNG<:AbstractRNG} seed_variation = MPI.Comm_rank(comm) context = MCContext{RNG}(params; seed_variation) implementation = MC(merge(params, Dict(:_comm => comm))) init!(implementation, context, params, comm) return Run{MC,RNG}(context, implementation) end """Perform one MC step. Returns the number of thermalized sweeps performed""" function step!(run::Run, comm::MPI.Comm) sweep_time = @elapsed sweep!(run.implementation, run.context, comm) run.context.sweeps += 1 if is_thermalized(run.context) measure_time = @elapsed measure!(run.implementation, run.context, comm) if MPI.Comm_rank(comm) == 0 measure!(run.context, :_ll_sweep_time, sweep_time) measure!(run.context, :_ll_measure_time, measure_time) end return 1 end if MPI.Comm_rank(comm) != 0 if !isempty(run.context.measure) error( "In parallel run mode, only the first rank of the run communicator is allowed to do measurements!", ) end end return 0 end function write_measurements(run::Run, file_prefix::AbstractString) try cp(file_prefix * ".meas.h5", file_prefix * ".meas.h5.tmp", force = true) catch e if !isa(e, Base.IOError) rethrow() end end h5open(file_prefix * ".meas.h5.tmp", "cw") do file write_measurements!(run.context, file["/"]) write_hdf5( Version(typeof(run.implementation)), create_absent_group(file, "version"), ) end @assert !has_complete_bins(run.context.measure) end function write_checkpoint!(run::Run, file_prefix::AbstractString, comm::MPI.Comm) checkpoint_write_time = @elapsed begin is_run_leader = MPI.Comm_rank(comm) == 0 if is_run_leader write_measurements(run, file_prefix) elseif !isempty(run.context.measure) error("In parallel run mode, only the first rank of a run can do measurements!") end contexts = MPI.gather(run.context, comm) if !is_run_leader write_checkpoint(run.implementation, nothing, comm) else h5open(file_prefix * ".dump.h5.tmp", "w") do file for (i, context) in enumerate(contexts) write_checkpoint(context, create_group(file, @sprintf("context/%04d", i))) end write_checkpoint(run.implementation, create_group(file, "simulation"), comm) write_hdf5( Version(typeof(run.implementation)), create_group(file, "version"), ) end end end if is_run_leader add_sample!(run.context.measure, :_ll_checkpoint_write_time, checkpoint_write_time) end return nothing end function write_checkpoint_finalize(file_prefix::AbstractString) mv(file_prefix * ".dump.h5.tmp", file_prefix * ".dump.h5", force = true) mv(file_prefix * ".meas.h5.tmp", file_prefix * ".meas.h5", force = true) return nothing end function read_checkpoint( ::Type{Run{MC,RNG}}, file_prefix::AbstractString, parameters::Dict, comm::MPI.Comm, )::Union{Run{MC,RNG},Nothing} where {MC,RNG} no_checkpoint = Ref(false) if is_run_leader(comm) no_checkpoint[] = !isfile(file_prefix * ".dump.h5") end MPI.Bcast!(no_checkpoint, 0, comm) if no_checkpoint[] return nothing end context = nothing mc = MC(merge(parameters, Dict(:_comm => comm))) if is_run_leader(comm) checkpoint_read_time = @elapsed begin h5open(file_prefix * ".dump.h5", "r") do file ranks = 0:MPI.Comm_size(comm)-1 keys = [@sprintf("context/%04d", rank + 1) for rank in ranks] contexts = [ haskey(file, key) ? read_checkpoint(MCContext{RNG}, file[key]) : MCContext{RNG}(parameters; seed_variation = rank) for (rank, key) in zip(ranks, keys) ] context = MPI.scatter(contexts, comm) read_checkpoint!(mc, file["simulation"], comm) end end @assert context !== nothing add_sample!(context.measure, :_ll_checkpoint_read_time, checkpoint_read_time) else context = MPI.scatter(nothing, comm) read_checkpoint!(mc, nothing, comm) end @assert context !== nothing return Run{MC,RNG}(context, mc) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
12579
using Dates using MPI using HDF5 using .JobTools: JobInfo @enum MPISchedulerAction begin A_INVALID = 0x00 A_EXIT = 0x01 A_CONTINUE = 0x02 A_NEW_TASK = 0x03 A_PROCESS_DATA_NEW_TASK = 0x04 end function warn_if_controller_slow(delay::Real) if delay > 0.5 @warn "controller took a long time to respond: $delay" end end struct TaskInterruptedException <: Exception end struct MPISchedulerIdleResponse action::MPISchedulerAction task_id::Int run_id::Int sweeps_until_comm::Int64 end MPISchedulerIdleResponse(action::MPISchedulerAction) = MPISchedulerIdleResponse(action, 0, 0, 0) struct MPISchedulerBusyResponse action::MPISchedulerAction sweeps_until_comm::Int64 end MPISchedulerBusyResponse(action::MPISchedulerAction) = MPISchedulerBusyResponse(action, 0) struct MPISchedulerBusyRequest task_id::Int sweeps_since_last_query::Int64 end const T_STATUS_REQUEST = 4355 const T_IDLE_RESPONSE = 4356 const T_BUSY_REQUEST = 4357 const T_BUSY_RESPONSE = 4358 @enum MPISchedulerStatus begin S_IDLE = 9 S_BUSY = 10 S_TIMEUP = 11 end struct MPIScheduler <: AbstractScheduler end mutable struct MPISchedulerController <: AbstractScheduler num_active_ranks::Int task_id::Union{Int,Nothing} tasks::Vector{SchedulerTask} end MPISchedulerController(job::JobInfo, active_ranks::Integer) = MPISchedulerController( active_ranks, length(job.tasks), [ SchedulerTask( p.target_sweeps, p.sweeps, t.params[:thermalization], p.dir, 0, get(t.params, :max_runs_per_task, typemax(Int64)), ) for (p, t) in zip(JobTools.read_progress(job), job.tasks) ], ) mutable struct MPISchedulerWorker task_id::Int run_id::Int task::SchedulerTask run::Union{Run,Nothing} end function start(::Type{MPIScheduler}, job::JobInfo) JobTools.create_job_directory(job) MPI.Init() comm = MPI.COMM_WORLD rank = MPI.Comm_rank(comm) num_ranks = MPI.Comm_size(comm) rc = false if num_ranks == 1 @error "started MPIScheduler with a single rank, but at least two are required for doing any work. Use SingleScheduler instead." end ranks_per_run = job.ranks_per_run == :all ? num_ranks - 1 : job.ranks_per_run if (num_ranks - 1) % ranks_per_run != 0 error( "Number of MPI worker ranks ($num_ranks - 1 = $(num_ranks-1)) is not a multiple of ranks per run ($(ranks_per_run))!", ) end run_comm = MPI.Comm_split(comm, rank == 0 ? 0 : 1 + (rank - 1) Γ· ranks_per_run, 0) run_leader_comm = MPI.Comm_split(comm, is_run_leader(run_comm) ? 1 : nothing, 0) if rank == 0 @info "starting job '$(job.name)'" if ranks_per_run != 1 @info "running in parallel run mode with $(ranks_per_run) ranks per run" end rc = start(MPISchedulerController, job, run_leader_comm) @info "controller: concatenating results" JobTools.concatenate_results(job) else start(MPISchedulerWorker, job, run_leader_comm, run_comm) end MPI.Barrier(comm) # MPI.Finalize() return rc end function start(::Type{MPISchedulerController}, job::JobInfo, run_leader_comm::MPI.Comm) controller = MPISchedulerController(job, MPI.Comm_size(run_leader_comm) - 1) MPI.Barrier(run_leader_comm) while controller.num_active_ranks > 0 react!(controller, run_leader_comm) end all_done = controller.task_id === nothing @info "controller: stopping due to $(all_done ? "completion" : "time limit")" return !all_done end function get_new_task_id_with_significant_work( tasks::AbstractVector{<:SchedulerTask}, task_id::Union{Nothing,Integer}, ) for _ in eachindex(tasks) task_id = get_new_task_id(tasks, task_id) if task_id === nothing return nothing end task = tasks[task_id] if task.target_sweeps - task.sweeps > max(task.thermalization * task.scheduled_runs, task.scheduled_runs) return task_id end end return nothing end function controller_react_idle( controller::MPISchedulerController, run_leader_comm::MPI.Comm, rank::Integer, ) controller.task_id = get_new_task_id_with_significant_work(controller.tasks, controller.task_id) if controller.task_id === nothing MPI.Send( MPISchedulerIdleResponse(A_EXIT), run_leader_comm; dest = rank, tag = T_IDLE_RESPONSE, ) controller.num_active_ranks -= 1 else task = controller.tasks[controller.task_id] task.scheduled_runs += 1 @assert controller.num_active_ranks > 0 sweeps_until_comm = clamp( (task.target_sweeps - task.sweeps) Γ· task.scheduled_runs, 0, task.target_sweeps Γ· controller.num_active_ranks, ) MPI.Send( MPISchedulerIdleResponse( A_NEW_TASK, controller.task_id, task.scheduled_runs, sweeps_until_comm, ), run_leader_comm; dest = rank, tag = T_IDLE_RESPONSE, ) end return nothing end function controller_react_busy( controller::MPISchedulerController, run_leader_comm::MPI.Comm, rank::Integer, ) msg = MPI.Recv( MPISchedulerBusyRequest, run_leader_comm; source = rank, tag = T_BUSY_REQUEST, ) task = controller.tasks[msg.task_id] task.sweeps += msg.sweeps_since_last_query if is_done(task) task.scheduled_runs -= 1 if task.scheduled_runs > 0 @info "$(basename(task.dir)) has enough sweeps. Waiting for $(task.scheduled_runs) busy ranks." MPI.Send( MPISchedulerBusyResponse(A_NEW_TASK), run_leader_comm; dest = rank, tag = T_BUSY_RESPONSE, ) else @info "$(basename(task.dir)) is done. Merging." MPI.Send( MPISchedulerBusyResponse(A_PROCESS_DATA_NEW_TASK), run_leader_comm; dest = rank, tag = T_BUSY_RESPONSE, ) end else sweeps_until_comm = clamp( (task.target_sweeps - task.sweeps) Γ· task.scheduled_runs, 1, max(1, task.target_sweeps Γ· controller.num_active_ranks), ) MPI.Send( MPISchedulerBusyResponse(A_CONTINUE, sweeps_until_comm), run_leader_comm; dest = rank, tag = T_BUSY_RESPONSE, ) end return nothing end function controller_react_timeup(controller::MPISchedulerController) controller.num_active_ranks -= 1 return nothing end function react!(controller::MPISchedulerController, run_leader_comm::MPI.Comm) rank_status, status = MPI.Recv( MPISchedulerStatus, run_leader_comm, MPI.Status; source = MPI.ANY_SOURCE, tag = T_STATUS_REQUEST, ) rank = status.source if rank_status == S_IDLE controller_react_idle(controller, run_leader_comm, rank) elseif rank_status == S_BUSY controller_react_busy(controller, run_leader_comm, rank) elseif rank_status == S_TIMEUP controller_react_timeup(controller) else error("Invalid rank status $(rank_status)") end return nothing end function start( ::Type{MPISchedulerWorker}, job::JobInfo, run_leader_comm::MPI.Comm, run_comm::MPI.Comm, ) worker::Union{MPISchedulerWorker,Nothing} = nothing scheduler_task::Union{SchedulerTask,Nothing} = nothing time_start = Dates.now() time_last_checkpoint = Dates.now() if is_run_leader(run_comm) MPI.Barrier(run_leader_comm) end while true if worker === nothing response = worker_signal_idle(run_leader_comm, run_comm) if response.action == A_EXIT break end task = job.tasks[response.task_id] scheduler_task = SchedulerTask( response.sweeps_until_comm, 0, task.params[:thermalization], JobTools.task_dir(job, task), ) rundir = run_dir(scheduler_task, response.run_id) run = read_checkpoint(Run{job.mc,job.rng}, rundir, task.params, run_comm) if run !== nothing is_run_leader(run_comm) && @info "read $rundir" else run = Run{job.mc,job.rng}(task.params, run_comm) is_run_leader(run_comm) && @info "initialized $rundir" end worker = MPISchedulerWorker(response.task_id, response.run_id, scheduler_task, run) time_last_checkpoint = Dates.now() end timeup = Ref(false) while !is_done(worker.task) worker.task.sweeps += step!(worker.run, run_comm) yield() timeup[] = JobTools.is_checkpoint_time(job, time_last_checkpoint) || JobTools.is_end_time(job, time_start) MPI.Bcast!(timeup, 0, run_comm) if timeup[] break end end if JobTools.is_end_time(job, time_start) worker_signal_timeup(run_leader_comm, run_comm) @info "exits: time up" break end response = worker_signal_busy( run_leader_comm, run_comm, worker.task_id, worker.task.sweeps, ) worker.task.target_sweeps -= worker.task.sweeps worker.task.sweeps = 0 if response.action == A_PROCESS_DATA_NEW_TASK write_checkpoint(worker, run_comm) if is_run_leader(run_comm) merge_results( job.mc, worker.task.dir; parameters = job.tasks[worker.task_id].params, ) end worker = nothing elseif response.action == A_NEW_TASK write_checkpoint(worker, run_comm) worker = nothing else if timeup[] write_checkpoint(worker, run_comm) time_last_checkpoint = Dates.now() end @assert response.action == A_CONTINUE worker.task.target_sweeps = response.sweeps_until_comm @assert !is_done(worker.task) end end end is_run_leader(run_comm::MPI.Comm) = MPI.Comm_rank(run_comm) == 0 function worker_signal_timeup(run_leader_comm::MPI.Comm, run_comm::MPI.Comm) if is_run_leader(run_comm) MPI.Send(S_TIMEUP, run_leader_comm; dest = 0, tag = T_STATUS_REQUEST) end end function worker_signal_idle(run_leader_comm::MPI.Comm, run_comm::MPI.Comm) response = Ref{MPISchedulerIdleResponse}() if is_run_leader(run_comm) delay = @elapsed begin MPI.Send(S_IDLE, run_leader_comm; dest = 0, tag = T_STATUS_REQUEST) response[] = MPI.Recv( MPISchedulerIdleResponse, run_leader_comm; source = 0, tag = T_IDLE_RESPONSE, ) end warn_if_controller_slow(delay) end MPI.Bcast!(response, 0, run_comm) return response[] end function worker_signal_busy( run_leader_comm::MPI.Comm, run_comm::MPI.Comm, task_id::Integer, sweeps_since_last_query::Integer, ) response = Ref{MPISchedulerBusyResponse}() if is_run_leader(run_comm) MPI.Send(S_BUSY, run_leader_comm; dest = 0, tag = T_STATUS_REQUEST) MPI.Send( MPISchedulerBusyRequest(task_id, sweeps_since_last_query), run_leader_comm; dest = 0, tag = T_BUSY_REQUEST, ) response[] = MPI.Recv( MPISchedulerBusyResponse, run_leader_comm; source = 0, tag = T_BUSY_RESPONSE, ) end MPI.Bcast!(response, 0, run_comm) return response[] end function write_checkpoint(scheduler::MPISchedulerWorker, run_comm::MPI.Comm) rundir = run_dir(scheduler.task, scheduler.run_id) write_checkpoint!(scheduler.run, rundir, run_comm) if is_run_leader(run_comm) write_checkpoint_finalize(rundir) @info "rank $(MPI.Comm_rank(MPI.COMM_WORLD)): checkpointing $rundir" end return nothing end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
3434
using Dates using Logging using .JobTools: JobInfo abstract type AbstractScheduler end mutable struct SingleScheduler <: AbstractScheduler job::JobInfo run::Union{Run,Nothing} time_start::Dates.DateTime time_last_checkpoint::Dates.DateTime task_id::Union{Int,Nothing} tasks::Vector{SchedulerTask} end function SingleScheduler(job::JobInfo) return SingleScheduler(job, nothing, Dates.now(), Dates.now(), 1, SchedulerTask[]) end function start(::Type{SingleScheduler}, job::JobInfo) MPI.Init() if MPI.Comm_size(MPI.COMM_WORLD) > 1 && MPI.Comm_rank(MPI.COMM_WORLD) == 0 @info "started SingleScheduler running with multiple MPI ranks: running in parallel run mode!" end JobTools.create_job_directory(job) scheduler = SingleScheduler(job) scheduler.time_start = Dates.now() scheduler.time_last_checkpoint = scheduler.time_start scheduler.tasks = map( # thermalization information is not needed by the single scheduler, so we pass 0 x -> SchedulerTask(x.target_sweeps, x.sweeps, 0, x.dir), JobTools.read_progress(scheduler.job), ) scheduler.task_id = get_new_task_id(scheduler.tasks, length(scheduler.tasks)) while scheduler.task_id !== nothing && !JobTools.is_end_time(scheduler.job, scheduler.time_start) task = scheduler.job.tasks[scheduler.task_id] scheduler_task = scheduler.tasks[scheduler.task_id] rundir = run_dir(scheduler_task, 1) scheduler.run = read_checkpoint(Run{job.mc,job.rng}, rundir, task.params, MPI.COMM_WORLD) if scheduler.run !== nothing @info "read $rundir" else scheduler.run = Run{job.mc,job.rng}(task.params, MPI.COMM_WORLD) @info "initialized $rundir" end while !is_done(scheduler_task) && !JobTools.is_end_time(scheduler.job, scheduler.time_start) scheduler_task.sweeps += step!(scheduler.run, MPI.COMM_WORLD) if JobTools.is_checkpoint_time(scheduler.job, scheduler.time_last_checkpoint) write_checkpoint(scheduler) end end write_checkpoint(scheduler) taskdir = scheduler_task.dir @info "merging $(taskdir)" merge_results(job.mc, scheduler_task.dir; parameters = task.params) scheduler.task_id = get_new_task_id(scheduler.tasks, scheduler.task_id) end JobTools.concatenate_results(scheduler.job) all_done = scheduler.task_id === nothing @info "stopping due to $(all_done ? "completion" : "time limit")" MPI.Barrier(MPI.COMM_WORLD) return !all_done end function get_new_task_id( tasks::AbstractVector{SchedulerTask}, old_id::Integer, )::Union{Integer,Nothing} next_unshifted = findfirst( x -> !is_done(x) && x.scheduled_runs < x.max_scheduled_runs, circshift(tasks, -old_id), ) if next_unshifted === nothing return nothing end return (next_unshifted + old_id - 1) % length(tasks) + 1 end get_new_task_id(::AbstractVector{SchedulerTask}, ::Nothing) = nothing function write_checkpoint(scheduler::SingleScheduler) scheduler.time_last_checkpoint = Dates.now() rundir = run_dir(scheduler.tasks[scheduler.task_id], 1) write_checkpoint!(scheduler.run, rundir, MPI.COMM_WORLD) write_checkpoint_finalize(rundir) @info "checkpointing $rundir" return nothing end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
587
mutable struct SchedulerTask target_sweeps::Int64 sweeps::Int64 thermalization::Int64 # used for scheduling estimates only dir::String scheduled_runs::Int64 max_scheduled_runs::Int64 end SchedulerTask( target_sweeps::Integer, sweeps::Integer, thermalization::Integer, dir::AbstractString, ) = SchedulerTask(target_sweeps, sweeps, thermalization, dir, 0, typemax(Int64)) is_done(task::SchedulerTask) = task.sweeps >= task.target_sweeps function run_dir(task::SchedulerTask, run_id::Integer) return @sprintf "%s/run%04d" task.dir run_id end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
316
using HDF5 using Dates """Helper to create a group inside a HDF5 node but only if it does not already exist.""" function create_absent_group( g::Union{HDF5.File,HDF5.Group}, name::AbstractString, )::HDF5.Group return if haskey(g, name) g[name] else create_group(g, name) end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1007
function pkgversion_or_missing(mod) if isdefined(Base, :pkgversion) return string(pkgversion(mod)) end return missing end """ Version The version information for both `Carlo` and the parent module of the `AbstractMC` implementation that is currently used. """ struct Version carlo_version::Union{Missing,String} mc_package::String mc_version::Union{Missing,String} function Version(mc::Type{<:AbstractMC}) return new( pkgversion_or_missing(@__MODULE__), string(parentmodule(mc)), pkgversion_or_missing(parentmodule(mc)), ) end end function write_hdf5(version::Version, group::HDF5.Group) for (field, value) in to_dict(version) if !haskey(group, field) group[field] = string(value) end end end function to_dict(version::Version) return Dict( string.(fieldnames(typeof(version))) .=> getfield.(Ref(version), fieldnames(typeof(version))), ) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
199
module JobTools export JobInfo, TaskInfo, TaskMaker, task, make_tasks, result_filename, current_task_name using Statistics include("taskinfo.jl") include("jobinfo.jl") include("taskmaker.jl") end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
4954
using JSON using Dates using Random """Parse a duration of the format `[[hours:]minutes]:seconds`.""" function parse_duration(duration::AbstractString)::Dates.Period m = match(r"^(((?<hours>\d+):)?(?<minutes>\d+):)?(?<seconds>\d+)$", duration) if isnothing(m) error("$duration does not match [[HH:]MM:]SS") end conv(period, x) = isnothing(x) ? Dates.Second(0) : convert(Dates.Second, period(parse(Int32, x))) return conv(Dates.Hour, m[:hours]) + conv(Dates.Minute, m[:minutes]) + conv(Dates.Second, m[:seconds]) end parse_duration(duration::Dates.Period) = duration """ JobInfo( job_directory_prefix::AbstractString, mc::Type; checkpoint_time::Union{AbstractString, Dates.Second}, run_time::Union{AbstractString, Dates.Second}, tasks::Vector{TaskInfo}, rng::Type = Random.Xoshiro, ranks_per_run::Union{Integer, Symbol} = 1, ) Holds all information required for a Monte Carlo calculation. The data of the calculation (parameters, results, and checkpoints) will be saved under `job_directory_prefix`. `mc` is the the type of the algorithm to use, implementing the [abstract_mc](@ref) interface. `checkpoint_time` and `run_time` specify the interval between checkpoints and the total desired run_time of the simulation. Both may be specified as a string of format `[[hours:]minutes:]seconds` Each job contains a set of `tasks`, corresponding to different sets of simulation parameters that should be run in parallel. The [`TaskMaker`](@ref) type can be used to conveniently generate them. `rng` sets the type of random number generator that should be used. Setting the optional parameter `ranks_per_run > 1` enables [Parallel run mode](@ref parallel_run_mode). The special value `ranks_per_run = :all` uses all available ranks for a single run.""" struct JobInfo name::String dir::String mc::Type rng::Type tasks::Vector{TaskInfo} checkpoint_time::Dates.Second run_time::Dates.Second ranks_per_run::Union{Int,Symbol} end function JobInfo( job_file_name::AbstractString, mc::Type; rng::Type = Random.Xoshiro, checkpoint_time::Union{AbstractString,Dates.Second}, run_time::Union{AbstractString,Dates.Second}, tasks::Vector{TaskInfo}, ranks_per_run::Union{Integer,Symbol} = 1, ) job_file_name = expanduser(job_file_name) if (ranks_per_run isa Symbol && ranks_per_run != :all) || (ranks_per_run isa Integer && ranks_per_run < 1) throw( ArgumentError( "ranks_per_run should be positive integer or :all, not $ranks_per_run.", ), ) end return JobInfo( basename(job_file_name), job_file_name * ".data", mc, rng, tasks, parse_duration(checkpoint_time), parse_duration(run_time), ranks_per_run, ) end function task_dir(job::JobInfo, task::TaskInfo) return "$(job.dir)/$(task.name)" end """ result_filename(job::JobInfo) Returns the filename of the `.results.json` file containing the merged results of the calculation of `job`. """ result_filename(job::JobInfo) = "$(job.dir)/../$(job.name).results.json" function concatenate_results(job::JobInfo) open(result_filename(job), "w") do out results = skipmissing(map(job.tasks) do task try open(task_dir(job, task) * "/results.json", "r") do in return JSON.parse(in) end catch e if !isa(e, Base.SystemError) rethrow() end return missing end end) JSON.print(out, collect(results), 1) end return nothing end function create_job_directory(job::JobInfo) mkpath(job.dir) for task in job.tasks mkpath(task_dir(job, task)) end return nothing end function read_progress(job::JobInfo) return map(job.tasks) do task target_sweeps = task.params[:sweeps] sweeps = read_dump_progress(task_dir(job, task)) num_runs = length(sweeps) thermalized_sweeps = sum( max(0, total_sweeps - therm_sweeps) for (total_sweeps, therm_sweeps) in sweeps; init = 0, ) thermalization_fraction = 0 if num_runs > 0 thermalization_fraction = mean(ts == 0 ? 1.0 : min(s, ts) / ts for (s, ts) in sweeps) end return TaskProgress( target_sweeps, thermalized_sweeps, num_runs, thermalization_fraction, task_dir(job, task), ) end |> collect end is_checkpoint_time(job::JobInfo, time_last_checkpoint::Dates.DateTime) = Dates.now() >= time_last_checkpoint + job.checkpoint_time is_end_time(job::JobInfo, time_start::Dates.DateTime) = Dates.now() >= time_start + job.run_time
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
3082
using HDF5 using Printf """ TaskInfo(name::AbstractString, params::Dict{Symbol,Any}) Holds information of one parameter set in a Monte Carlo calculation. While it is possible to construct it by hand, for multiple tasks, it is recommended to use [`TaskMaker`](@ref) for convenience. # Special parameters While `params` can hold any kind of parameter, some are special and used to configure the behavior of Carlo. - `sweeps`: *required*. The minimum number of Monte Carlo measurement sweeps to perform for the task. - `thermalization`: *required*. The number of thermalization sweeps to perform. - `binsize`: *required*. The internal default binsize for observables. Carlo will merge this many samples into one bin before saving them. On top of this, a rebinning analysis is performed, so that this setting mostly affects disk space and IO efficiency. To get correct autocorrelation times, it should be 1. In all other cases much higher. - `rng`: *optional*. Type of the random number generator to use. See [rng](@ref). - `seed`: *optional*. Optionally run calculations with a fixed seed. Useful for debugging. - `rebin_length`: *optional*. Override the automatic rebinning length chosen by Carlo (⚠ do not set without knowing what you are doing). - `rebin_sample_skip`: *optional*. Skip the first ``N`` internal bins of each run when performing the rebinning analysis. Useful if `thermalization` was not set high enough at the start of the simulation. - `max_runs_per_task`: *optional*. If set, puts a limit on the maximum number of runs that will be scheduled for this task. Out of these parameters, it is only permitted to change `sweeps` for an existing calculation. This is handy to run the simulation for longer or shorter than planned originally. """ struct TaskInfo name::String params::Dict{Symbol,Any} function TaskInfo(name::AbstractString, params::AbstractDict) required_keys = [:sweeps, :thermalization, :binsize] if !(required_keys βŠ† keys(params)) error( "task $name missing required parameters $(setdiff(required_keys, keys(params)))", ) end return new(name, params) end end function task_name(task_id::Integer) return @sprintf "task%04d" task_id end function list_run_files(taskdir::AbstractString, ending::AbstractString) return map( x -> taskdir * "/" * x, filter(x -> occursin(Regex("^run\\d{4,}\\.$ending\$"), x), readdir(taskdir)), ) end function read_dump_progress(taskdir::AbstractString) sweeps = Tuple{Int64,Int64}[] for dumpname in list_run_files(taskdir, "dump\\.h5") h5open(dumpname, "r") do f push!( sweeps, ( read(f["context/0001/sweeps"], Int64), read(f["context/0001/thermalization_sweeps"], Int64), ), ) end end return sweeps end struct TaskProgress target_sweeps::Int64 sweeps::Int64 num_runs::Int64 thermalization_fraction::Float64 dir::String end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
2374
""" TaskMaker() Tool for generating a list of tasks, i.e. parameter sets, to be simulated in a Monte Carlo simulation. The fields of `TaskMaker` can be freely assigned and each time [`task`](@ref) is called, their current state will be copied into a new task. Finally the list of tasks can be generated using [`make_tasks`](@ref) In most cases the resulting tasks will be used in the constructor of [`JobInfo`](@ref), the basic description for jobs in Carlo. # Example The following example creates a list of 5 tasks for different parameters `T`. This could be a scan of the finite-temperature phase diagram of some model. The first task will be run with more sweeps than the rest. ```@example tm = TaskMaker() tm.sweeps = 10000 tm.thermalization = 2000 tm.binsize = 500 task(tm; T=0.04) tm.sweeps = 5000 for T in range(0.1, 10, length=5) task(tm; T=T) end tasks = make_tasks(tm) ``` """ mutable struct TaskMaker tasks::Vector{TaskInfo} current_task_params::Dict{Symbol,Any} TaskMaker() = new([], Dict{Symbol,Any}()) end function Base.setproperty!(tm::TaskMaker, symbol::Symbol, value) Base.getfield(tm, :current_task_params)[symbol] = value return nothing end function Base.getproperty(tm::TaskMaker, symbol::Symbol) return Base.getfield(tm, :current_task_params)[symbol] end """ current_task_name(tm::TaskMaker) Returns the name of the task that will be created by `task(tm)`. """ function current_task_name(tm::TaskMaker) return task_name(length(Base.getfield(tm, :tasks)) + 1) end """ task(tm::TaskMaker; kwargs...) Creates a new task for the current set of parameters saved in `tm`. Optionally, `kwargs` can be used to specify parameters that are set for this task only. """ function task(tm::TaskMaker; kwargs...) taskname = current_task_name(tm) append!( Base.getfield(tm, :tasks), [ TaskInfo( taskname, merge(Base.getfield(tm, :current_task_params), Dict{Symbol,Any}(kwargs)), ), ], ) return nothing end """ make_tasks(tm::TaskMaker)::Vector{TaskInfo} Generate a list of tasks from `tm` based on the previous calls of [`task`](@ref). The output of this will typically be supplied to the `tasks` argument of [`JobInfo`](@ref). """ function make_tasks(tm::TaskMaker) return Base.getfield(tm, :tasks) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1850
module ResultTools using JSON using Measurements make_scalar(x) = x isa AbstractVector && size(x) == (1,) ? only(x) : x function measurement_from_obs(obsname, obs) if ismissing(obs) return missing end if !isnothing(obs["rebin_len"]) && !isnothing(obs["autocorr_time"]) && obs["autocorr_time"] >= obs["rebin_len"] @warn "$obsname: autocorrelation time longer than rebin length. Results may be unreliable." end mean = obs["mean"] if mean isa AbstractDict mean = Complex(mean["re"], mean["im"]) end error = obs["error"] sanitize(m, e) = (isnothing(m) || isnothing(e)) ? missing : m Β± e sanitize(m::Complex, e) = (isnothing(m) || isnothing(e)) ? missing : Complex(real(m) Β± e, imag(m)) sanitize(m::AbstractDict, e) = (isnothing(m) || isnothing(e)) ? missing : Complex(m["re"] Β± e, m["im"]) return make_scalar(sanitize.(mean, error)) end """ ResultTools.dataframe(result_json::AbstractString) Helper to import result data from a `*.results.json` file produced after a Carlo calculation. Returns a Tables.jl-compatible dictionary that can be used as is or converted into a DataFrame or other table structure. Observables and their errorbars will be converted to Measurements.jl measurements. """ function dataframe(result_json::AbstractString) json = JSON.parsefile(result_json) obsnames = unique(Iterators.flatten(keys(t["results"]) for t in json)) flattened_json = Dict{String,Any}[ Dict( "task" => basename(t["task"]), t["parameters"]..., Dict( obsname => measurement_from_obs(obsname, get(t["results"], obsname, missing)) for obsname in obsnames )..., ) for t in json ] return flattened_json end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
683
using Carlo using Carlo.JobTools function compat_job(versions; dir) return JobInfo( "$dir/dump_compat", TestMC; tasks = [ TaskInfo( "julia$julia_version-$version", Dict( :sweeps => 1000, :thermalization => 0, :binsize => 100, :min_julia_version => julia_version, ), ) for (julia_version, version) in versions ], checkpoint_time = "00:40", run_time = "00:10", ) end function gen_compat_data() start(Carlo.SingleScheduler, compat_job([(VERSION, pkgversion(Carlo))])) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
424
using Carlo using Carlo.JobTools include("test_mc.jl") tm = TaskMaker() tm.binsize = 2 tm.rebin_sample_skip = 1000 tm.rebin_length = 1000 tm.sweeps = 10 tm.thermalization = 0 task(tm) tm.thermalization = 100000 tm.sweeps = 100000000000 task(tm) task(tm) job = JobInfo( ARGS[1] * "/test", TestMC; tasks = make_tasks(tm), checkpoint_time = "00:05", run_time = "00:10", ) Carlo.start(job, ARGS[2:end])
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
532
using Test using Carlo using Carlo.JobTools import Carlo.JobTools as JT using Carlo.ResultTools using MPI include("test_utils.jl") include("test_mc.jl") tests = [ "test_dump_compat.jl" "test_taskinfo.jl" "test_jobinfo.jl" "test_evaluable.jl" "test_run.jl" "test_accumulator.jl" "test_random_wrap.jl" "test_results.jl" "test_measurements.jl" "test_mccontext.jl" "test_merge.jl" "test_taskmaker.jl" "test_scheduler.jl" "test_cli.jl" ] for test in tests include(test) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
780
using Carlo @struct_equal Carlo.Accumulator @testset "Accumulator" begin bin_length = 124 obs = Carlo.Accumulator{Float64}(bin_length, (2,)) Carlo.add_sample!(obs, [1, 1.2]) @test test_checkpointing(obs) for i = 2:bin_length Carlo.add_sample!(obs, [i, 1.2]) end @test obs.current_filling == 0 @test size(obs.bins) == (2, 2) @test isapprox(obs.bins[:, 1], [(bin_length + 1) / 2, 1.2]) for i = 1:3*bin_length+10 Carlo.add_sample!(obs, [1, 1.2]) end @test size(obs.bins, 2) == 5 tmpdir = mktempdir() h5open(tmpdir * "/test.h5", "w") do file Carlo.write_measurements!(obs, create_group(file, "obs")) @test size(obs.bins, 2) == 1 @test size(file["obs/samples"]) == (2, 4) end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
2032
function test_binning_properties(result_file) results = JSON.parsefile(result_file) for result in results sweeps = result["parameters"]["sweeps"] bin_length = result["parameters"]["binsize"] rebin_length = result["parameters"]["rebin_length"] rebin_sample_skip = result["parameters"]["rebin_sample_skip"] for (obsname, obs) in result["results"] if startswith(obsname, "_ll_") || isnothing(obs["internal_bin_len"]) continue end @test rebin_length == obs["rebin_len"] @test bin_length == obs["internal_bin_len"] @test obs["rebin_count"] * rebin_length < sweeps Γ· bin_length - rebin_sample_skip end end end @testset "CLI" begin mktempdir() do tmpdir dummy_jobfile = "dummy_jobfile.jl" run_cmd(cmd; quiet = false) = run( pipeline( `$(Base.julia_cmd()) $dummy_jobfile $tmpdir $cmd`, stderr = quiet ? devnull : stderr, ), ) @test_throws ProcessFailedException run_cmd("status"; quiet = true) @test_throws ProcessFailedException run_cmd("merge"; quiet = true) run_cmd("delete") @test !isfile(tmpdir * "/test.results.json") run_cmd("run") run_cmd("status") run_cmd("merge") @test isfile(tmpdir * "/test.results.json") test_binning_properties(tmpdir * "/test.results.json") run_cmd("delete") @test !isfile(tmpdir * "/test.results.json") @test !isdir(tmpdir * "/test") tm = TaskMaker() tm.sweeps = 100 tm.thermalization = 100 tm.binsize = 10 task(tm) task(tm) task(tm) job = JobInfo( tmpdir * "/test", TestMC; tasks = make_tasks(tm), checkpoint_time = "00:05", run_time = "00:10", ) JobTools.create_job_directory(job) run_cmd("status") end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1990
include("compat_job.jl") @testset "Checkpoint compatibility" begin mktempdir() do tmpdir cp("dump_compat.data", tmpdir * "/dump_compat.data") cp("dump_compat.results.json", tmpdir * "/dump_compat.results.json") job = compat_job([(v"1.10.2", v"0.1.5")]; dir = tmpdir) progress = JobTools.read_progress(job) obs_names = Set([ :_ll_sweep_time, :test, :test2, :test4, :test_rng, :test_vec, :_ll_measure_time, ]) MPI.Init() for (i, task) in enumerate(job.tasks) @testset "$(task.name)" begin if VERSION < task.params[:min_julia_version] continue end run = Carlo.read_checkpoint( Carlo.Run{job.mc,job.rng}, "$tmpdir/dump_compat.data/$(task.name)/run0001", task.params, MPI.COMM_WORLD, ) for i = 1:10 Carlo.step!(run, MPI.COMM_WORLD) end Carlo.write_measurements( run, "$tmpdir/dump_compat.data/$(task.name)/run0001", ) Carlo.write_checkpoint!( run, "$tmpdir/dump_compat.data/$(task.name)/run0001", MPI.COMM_WORLD, ) @test run.context.sweeps - run.context.thermalization_sweeps == progress[i].sweeps + 10 Carlo.merge_results( job.mc, "$tmpdir/dump_compat.data/$(task.name)"; parameters = task.params, ) end end JobTools.concatenate_results(job) df = ResultTools.dataframe("$tmpdir/dump_compat.results.json") @test issubset(obs_names, Symbol.(keys(only(df)))) end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1190
using Carlo @testset "Evaluable" begin @testset "scalar" begin func = (x::Real, y::Real) -> x / y means = ([2, 3, 4], [5, 4, 3]) # TODO: proper statistical test @test all( Carlo.jackknife(func, means) .β‰ˆ ([0.712962962962963], [0.25726748128610744]), ) end @testset "vector" begin func = x -> x[1] / x[2] means = ([2 3 4; 5 4 3],) @test all( Carlo.jackknife(func, means) .β‰ˆ ([0.712962962962963], [0.25726748128610744]), ) func2 = x -> [x[1] / x[2], 2x[1] / x[2]] @test all( Carlo.jackknife(func2, means) .β‰ˆ ( [0.712962962962963, 2 * 0.712962962962963], [0.25726748128610744, 2 * 0.25726748128610744], ), ) end @testset "ComplexScalar" begin func3 = (x::Complex, y::Complex) -> x / y means = ([1 + 0im, 1 + 1im, 1 + 2im], [2 - 0im, 2 - 1im, 2 - 2im]) results = Carlo.jackknife(func3, means) @test results[2][1] isa Real @test all( results .β‰ˆ ([0.2188235294117648 + 0.6847058823529415im], [0.3388562075744883]), ) end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1246
using JSON using Dates using Carlo.JobTools import Carlo.JobTools as JT @testset "JobInfo" begin tm = JT.TaskMaker() tm.thermalization = 100 tm.sweeps = 7 tm.binsize = 10 task(tm; test = 1) task(tm; test = 2) task(tm; test = 3) tmpdir = mktempdir() job = JT.JobInfo( tmpdir * "/test", TestMC; tasks = make_tasks(tm), checkpoint_time = "15:00", run_time = "30:00", ) JT.create_job_directory(job) for task in job.tasks @test isdir(JT.task_dir(job, task)) open(JT.task_dir(job, task) * "/results.json", "w") do io write(io, "{}") end end JT.concatenate_results(job) results = open(JSON.parse, "$(job.dir)/../$(job.name).results.json", "r") @test results == [Dict(), Dict(), Dict()] end @testset "Parse Duration" begin @test_throws ErrorException JT.parse_duration("10:") @test_throws ErrorException JT.parse_duration("10::00") @test_throws ErrorException JT.parse_duration("a:2:00") @test JT.parse_duration("10:00") == Dates.Second(60 * 10) @test JT.parse_duration("100") == Dates.Second(100) @test JT.parse_duration("5:32:10") == Dates.Second(5 * 60 * 60 + 32 * 60 + 10) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
2937
import Carlo using HDF5 using MPI struct TestMC <: AbstractMC end TestMC(params::AbstractDict) = TestMC() Carlo.init!(mc::TestMC, ctx::MCContext, params::AbstractDict) = nothing Carlo.sweep!(mc::TestMC, ctx::MCContext) = nothing function Carlo.measure!(mc::TestMC, ctx::MCContext) measure!(ctx, :test, ctx.sweeps) measure!(ctx, :test2, ctx.sweeps^2) measure!(ctx, :test_vec, [ctx.sweeps, sin(ctx.sweeps)]) measure!(ctx, :test_rng, rand(ctx.rng)) return nothing end Carlo.write_checkpoint(mc::TestMC, out::HDF5.Group) = nothing Carlo.read_checkpoint!(mc::TestMC, in::HDF5.Group) = nothing function Carlo.register_evaluables(::Type{TestMC}, eval::Evaluator, params::AbstractDict) evaluate!((x, y) -> y - x^2, eval, :test4, (:test, :test2)) evaluate!(x -> x^2, eval, :test5, (:test,)) evaluate!(eval, :test6, (:test_vec,)) do x r = zero(x) r[1] = x[1] return r end return nothing end mutable struct TestParallelRunMC <: AbstractMC state::Float64 try_measure_on_nonroot::Bool end TestParallelRunMC(params::AbstractDict) = TestParallelRunMC(0, false) function Carlo.init!( mc::TestParallelRunMC, ctx::MCContext, params::AbstractDict, comm::MPI.Comm, ) mc.state = MPI.Comm_rank(comm) mc.try_measure_on_nonroot = get(params, :try_measure_on_nonroot, false) return nothing end function Carlo.sweep!(mc::TestParallelRunMC, ctx::MCContext, comm::MPI.Comm) chosen_rank = rand(ctx.rng, 0:MPI.Comm_size(comm)-1) chosen_rank = MPI.Bcast(chosen_rank, 0, comm) addition_state = MPI.Bcast(mc.state, chosen_rank, comm) mc.state += sin(addition_state) return nothing end function Carlo.measure!(mc::TestParallelRunMC, ctx::MCContext, comm::MPI.Comm) mean = MPI.Reduce(mc.state, +, comm) mean2 = MPI.Reduce(mc.state^2, +, comm) if MPI.Comm_rank(comm) == 0 measure!(ctx, :test_det, sin(ctx.sweeps)) measure!(ctx, :test, mean) measure!(ctx, :test2, mean2) measure!(ctx, :test_local, rand(ctx.rng)) end if mc.try_measure_on_nonroot measure!(ctx, :test2, 0.0) end return nothing end function Carlo.write_checkpoint( mc::TestParallelRunMC, out::Union{HDF5.Group,Nothing}, comm::MPI.Comm, ) states = MPI.Gather(mc.state, comm) if MPI.Comm_rank(comm) == 0 out["states"] = states end return nothing end function Carlo.read_checkpoint!( mc::TestParallelRunMC, in::Union{HDF5.Group,Nothing}, comm::MPI.Comm, ) if MPI.Comm_rank(comm) == 0 states = read(in["states"]) else states = nothing end mc.state = MPI.Scatter(states, typeof(mc.state), comm) return nothing end function Carlo.register_evaluables( ::Type{TestParallelRunMC}, eval::Evaluator, params::AbstractDict, ) evaluate!((x, y) -> y - x^2, eval, :test4, (:test, :test2)) return nothing end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
439
using Carlo @struct_equal Carlo.MCContext @testset "MCContext" begin thermalization = 10 ctx = Carlo.MCContext{Random.Xoshiro}( Dict(:binsize => 3, :seed => 123, :thermalization => thermalization), ) @test ctx.rng == Random.Xoshiro(123) Carlo.measure!(ctx, :test, 2.0) tmp_hdf5_file() do file Carlo.write_measurements!(ctx, open_group(file, "/")) end @test test_checkpointing(ctx) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
679
using Carlo @struct_equal Carlo.Measurements @testset "Measurements" begin meas = Carlo.Measurements(3) Carlo.add_sample!(meas, :test, 1) Carlo.add_sample!(meas, :test, 2) Carlo.add_sample!(meas, :test, 3) Carlo.add_sample!(meas, :test2, [3, 4]) @test_throws TypeError Carlo.add_sample!(meas, :test2, 3) @test_throws ErrorException Carlo.register_observable!(meas, :test2, 2, (3,)) Carlo.register_observable!(meas, :test3, 2, (3, 2)) Carlo.add_sample!(meas, :test3, rand(3, 2)) tmp_hdf5_file() do file root = open_group(file, "/") Carlo.write_measurements!(meas, root) end @test test_checkpointing(meas) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
5081
using Carlo using Random using Statistics function create_mock_data( generator; runs::Integer, internal_binsize::Integer, samples_per_run::Integer, extra_samples::Integer = 0, obsname::Symbol, ) tmpdir = mktempdir() all_samples = [] filenames = ["$tmpdir/run$i.h5" for i = 1:runs] idx = 1 for run = 1:runs nsamples = samples_per_run + extra_samples * (run == 1) samples = [] h5open(filenames[run], "w") do file meas = Carlo.Measurements(internal_binsize) for i = 1:nsamples value = generator(idx) Carlo.add_sample!(meas, obsname, value) if i <= (nsamples Γ· internal_binsize) * internal_binsize append!(samples, value) end idx += 1 end Carlo.write_measurements!(meas, create_group(file, "observables")) end push!(all_samples, samples) end return collect(filenames), all_samples end @testset "rebin_count" begin for sample_count = 0:100 rebins = Carlo.calc_rebin_count(sample_count) @test (sample_count != 0) <= rebins <= sample_count end end @testset "Merge counter" begin tmpdir = mktempdir() runs = 4 for internal_binsize in [1, 3, 4] for samples_per_run in [5, 7] extra_samples = 100 total_samples = runs * samples_per_run + extra_samples @testset "samples = $(total_samples), binsize = $(internal_binsize)" begin filenames, samples = create_mock_data(; runs = runs, obsname = :count_test, internal_binsize = internal_binsize, samples_per_run = samples_per_run, extra_samples = extra_samples, ) do idx return idx end filenames2, _ = create_mock_data( idx -> [idx+1.0im 1.0; 1.0im 0]; runs = runs, obsname = :vec_test, internal_binsize = internal_binsize, samples_per_run = samples_per_run, extra_samples = extra_samples, ) @testset for sample_skip in [0, 10] @testset for rebin_length in [nothing, 1, 2] results = Carlo.merge_results(filenames; rebin_length, sample_skip) count_obs = results[:count_test] skipped_samples = mapreduce( s -> s[1+internal_binsize*sample_skip:end], vcat, samples, ) rebinned_samples = skipped_samples[1:internal_binsize*count_obs.rebin_length*Carlo.rebin_count( count_obs, )] @test count_obs.mean[1] β‰ˆ mean(rebinned_samples) if rebin_length !== nothing @test count_obs.rebin_length == rebin_length end results2 = Carlo.merge_results( filenames2; rebin_length = rebin_length, sample_skip, ) vec_obs = results2[:vec_test] @test iszero(vec_obs.error[2]) @test vec_obs.error[1] β‰ˆ count_obs.error[1] @test vec_obs.mean β‰ˆ [count_obs.mean[1]+1.0im 1.0; 1.0im 0] end end end end end end @testset "Merge AR(1)" begin runs = 2 # parameters for an AR(1) random walk y_{t+1} = Ξ± y_{t} + N(ΞΌ=0, Οƒ) # autocorrelation time and error of this are known analytically for ar1_alpha in [0.5, 0.7, 0.8, 0.9] @testset "Ξ± = $ar1_alpha" begin ar1_sigma = 0.54 ar1_y = 0 rng = Xoshiro(520) filenames, _ = create_mock_data(; runs = runs, obsname = :ar1_test, samples_per_run = 200000, internal_binsize = 1, ) do idx ar1_y = ar1_alpha * ar1_y + ar1_sigma * randn(rng) return ar1_y end results = Carlo.merge_results(filenames; rebin_length = 100) # AR(1) ar1_obs = results[:ar1_test] expected_mean = 0.0 expected_std = ar1_sigma / sqrt(1 - ar1_alpha^2) expected_autocorrtime = -1 / log(ar1_alpha) expected_autocorrtime = 0.5 * (1 + 2 * ar1_alpha / (1 - ar1_alpha)) @test abs(ar1_obs.mean[1] - expected_mean) < 4 * ar1_obs.error[1] @test isapprox( ar1_obs.autocorrelation_time[1], expected_autocorrtime, rtol = 0.1, ) end end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
362
using Carlo using Random @struct_equal Random.Xoshiro @testset "Random wrapper" begin rng = Random.Xoshiro(141376357, 3244512, 3768, 5326171454) for i = 1:1000 rand(rng) end @test rand(rng, UInt32) == 1232139906 @test rand(rng, UInt32) == 1416645027 @test rand(rng, UInt32) == 1517520173 @test test_checkpointing(rng) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
370
using Carlo using JSON @testset "Results" begin result_obs = Carlo.ResultObservable( Int64(100), Int64(3), [1.0, 2.0, 3.0], [0.1, 0.1, 0.1], [0.1, 0.2, 0.3], zeros(3, 4), ) repr = JSON.parse(JSON.json(result_obs, 1)) @test repr["mean"] == result_obs.mean @test repr["error"] == result_obs.error end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
1228
using Random import Carlo @testset "Run" begin params = Dict(:thermalization => 100, :binsize => 13) MPI.Init() run = Carlo.Run{TestMC,Random.Xoshiro}(params, MPI.COMM_WORLD) sweeps = 131 for i = 1:sweeps Carlo.step!(run, MPI.COMM_WORLD) end @test run.context.sweeps == sweeps tmpdir = mktempdir() Carlo.write_checkpoint!(run, tmpdir * "/test", MPI.COMM_WORLD) @test nothing === Carlo.read_checkpoint( Carlo.Run{TestMC,Random.Xoshiro}, tmpdir * "/test", params, MPI.COMM_WORLD, ) Carlo.write_checkpoint_finalize(tmpdir * "/test") run2 = Carlo.read_checkpoint( Carlo.Run{TestMC,Random.Xoshiro}, tmpdir * "/test", params, MPI.COMM_WORLD, ) @test run.implementation == run2.implementation @test run.context.rng == run2.context.rng Carlo.step!(run, MPI.COMM_WORLD) Carlo.write_checkpoint!(run, tmpdir * "/test", MPI.COMM_WORLD) run3 = Carlo.read_checkpoint( Carlo.Run{TestMC,Random.Xoshiro}, tmpdir * "/test", params, MPI.COMM_WORLD, ) @test run3.implementation == run2.implementation @test run3.context.rng == run2.context.rng end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
4923
using Serialization using Carlo.ResultTools using Logging @testset "Task Selection" begin @test Carlo.get_new_task_id(Carlo.SchedulerTask[], 0) === nothing @test Carlo.get_new_task_id_with_significant_work(Carlo.SchedulerTask[], 0) === nothing sweeps = [100, 10, 10, 101, 10] tasks = [Carlo.SchedulerTask(100, s, 10, "") for s in sweeps] @test Carlo.get_new_task_id(tasks, 1) == 2 @test Carlo.get_new_task_id(tasks, 2) == 3 @test Carlo.get_new_task_id(tasks, 3) == 5 @test Carlo.get_new_task_id(tasks, 4) == 5 @test Carlo.get_new_task_id(tasks, 5) == 2 tasks = [Carlo.SchedulerTask(100, s, 10, "") for s in [100, 100, 100]] for i = 1:length(tasks) @test Carlo.get_new_task_id(tasks, i) === nothing end @test Carlo.get_new_task_id(tasks, nothing) === nothing end function make_test_job( dir::AbstractString, sweeps::Integer; ranks_per_run = 1, ntasks = 3, kwargs..., ) tm = TaskMaker() tm.sweeps = sweeps tm.seed = 13245432 tm.thermalization = 14 tm.binsize = 1 for (k, v) in kwargs setproperty!(tm, k, v) end for i = 1:ntasks task(tm; i = i) end return JobInfo( dir, ranks_per_run == 1 ? TestMC : TestParallelRunMC; tasks = make_tasks(tm), checkpoint_time = "1:00", run_time = "10:00", ranks_per_run = ranks_per_run, ) end function run_test_job_mpi(job::JobInfo; num_ranks::Integer, silent::Bool = false) JT.create_job_directory(job) job_path = job.dir * "/jobfile" serialize(job_path, job) cmd = `$(mpiexec()) -n $num_ranks $(Base.julia_cmd()) test_scheduler_mpi.jl $(job_path)` if silent cmd = pipeline(cmd; stdout = devnull, stderr = devnull) end run(cmd) return nothing end function compare_results(job1::JobInfo, job2::JobInfo) results1 = ResultTools.dataframe(JT.result_filename(job1)) results2 = ResultTools.dataframe(JT.result_filename(job2)) for (task1, task2) in zip(results1, results2) for key in keys(task1) if !startswith(key, "_ll_") @test (key, task1[key]) == (key, task2[key]) end end end end @testset "Task Scheduling" begin mktempdir() do tmpdir @testset "MPI parallel run mode" begin job_2rank = make_test_job("$tmpdir/test2_2rank", 100, ranks_per_run = 2) run_test_job_mpi(job_2rank; num_ranks = 5) tasks = JT.read_progress(job_2rank) for task in tasks @test task.sweeps >= task.target_sweeps end job_all_full = make_test_job("$tmpdir/test2_full", 200, ranks_per_run = :all) run_test_job_mpi(job_all_full; num_ranks = 5) # test checkpointing by resetting the seed on a finished simulation job_all_half = make_test_job("$tmpdir/test2_half", 100, ranks_per_run = :all) run_test_job_mpi(job_all_half; num_ranks = 5) job_all_half = make_test_job("$tmpdir/test2_half", 200, ranks_per_run = :all) run_test_job_mpi(job_all_half; num_ranks = 5) compare_results(job_all_full, job_all_half) tasks = JT.read_progress(job_all_half) for task in tasks @test task.num_runs == 1 @test task.sweeps == task.target_sweeps end job_fail = make_test_job( "$tmpdir/test2_fail", 100; ranks_per_run = 2, try_measure_on_nonroot = true, ) @test_throws ProcessFailedException run_test_job_mpi( job_fail; num_ranks = 5, silent = true, ) # only run leader can measure end @testset "MPI" begin job = make_test_job("$tmpdir/test1", 100) run_test_job_mpi(job; num_ranks = 4) tasks = JT.read_progress(job) for task in tasks @test task.sweeps >= task.target_sweeps end end @testset "Single" begin with_logger(Logging.NullLogger()) do job3_full = make_test_job("$tmpdir/test3_full", 200) start(Carlo.SingleScheduler, job3_full) job3_halfhalf = make_test_job("$tmpdir/test3_halfhalf", 100) start(Carlo.SingleScheduler, job3_halfhalf) job3_halfhalf = make_test_job("$tmpdir/test3_halfhalf", 200) start(Carlo.SingleScheduler, job3_halfhalf) for job in (job3_full, job3_halfhalf) tasks = JT.read_progress(job) for task in tasks @test task.sweeps == task.target_sweeps end end compare_results(job3_full, job3_halfhalf) end end end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
200
using HDF5 using Carlo using MPI using Serialization using Logging include("test_mc.jl") job = deserialize(ARGS[1]) with_logger(Logging.NullLogger()) do Carlo.start(Carlo.MPIScheduler, job) end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
886
@testset "TaskInfo" begin @testset "required parameters" begin @test_throws ErrorException TaskInfo( "test", Dict(:thermalization => 100, :binsize => 10), ) TaskInfo("test2", Dict(:thermalization => 100, :sweeps => 100, :binsize => 10)) end @testset "list_run_files" begin tmpdir = mktempdir() files = ["0001", "0002", "10000", "9999999"] for filename in files h5open("$tmpdir/run$filename.dump.h5", "w") do file create_group(file, "context") file["context/sweeps"] = 4362 end end open("$tmpdir/run0001.dump.h", "w") do file end open("$tmpdir/walke0001.dump.h5", "w") do file end @test JT.list_run_files(tmpdir, "dump\\.h5") == map(x -> "$tmpdir/run$x.dump.h5", files) end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
524
@struct_equal TaskInfo @testset "TaskMaker" begin tm = TaskMaker() tm.sweeps = 2 tm.thermalization = 1 tm.binsize = "hi" task(tm, baz = 2.4) tm.binsize = "ho" task(tm, baz = 1) @test make_tasks(tm) == [ TaskInfo( "task0001", Dict(:baz => 2.4, :binsize => "hi", :thermalization => 1, :sweeps => 2), ), TaskInfo( "task0002", Dict(:baz => 1, :binsize => "ho", :thermalization => 1, :sweeps => 2), ), ] end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
code
460
using HDF5 using StructEquality function tmp_hdf5_file(func::Function) tmp = tempname(cleanup = true) res = try h5open(func, tmp, "w") finally rm(tmp) end return res end function test_checkpointing(obj) return tmp_hdf5_file() do file group = create_group(file, "test") Carlo.write_checkpoint(obj, group) obj2 = Carlo.read_checkpoint(typeof(obj), group) return obj == obj2 end end
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
1394
# ![Carlo.jl](docs/header.svg) [![Docs dev](https://img.shields.io/badge/docs-latest-blue.svg)](https://lukas.weber.science/Carlo.jl/dev/) [![Docs stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://lukas.weber.science/Carlo.jl/stable/) [![CI](https://github.com/lukas-weber/Carlo.jl/workflows/CI/badge.svg)](https://github.com/lukas-weber/Carlo.jl/actions) [![codecov](https://codecov.io/gh/lukas-weber/Carlo.jl/branch/main/graph/badge.svg?token=AI8CPOGKXF)](https://codecov.io/gh/lukas-weber/Carlo.jl) Carlo is a framework for developing high-performance, distributed (quantum) Monte Carlo simultations. Its aim is to take care of model-independent tasks such as * autocorrelation and error analysis, * Monte-Carlo-aware MPI scheduling, and * checkpointing while leaving all the flexibility of implementating Monte Carlo updates and estimators to you. ## Getting started To install the package, type ```julia using Pkg; Pkg.add("Carlo") ``` The package itself does not include Monte Carlo algorithms. The quickest way to see how to implement one yourself is to check out the reference implementation for the [Ising](https://github.com/lukas-weber/Ising.jl) model. If you are a practitioner, stay tuned for a (not yet released) stochastic series expansion or auxiliary field quantum Monte Carlo packages–or let me know if you are interested in testing it pre-release!
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
1000
# [Implementing your algorithm](@id abstract_mc) To run your own Monte Carlo algorithm with Carlo, you need to implement the `AbstractMC` interface documented in this file. For an example implementation showcasing all the features, take a look at the [Ising](https://github.com/lukas-weber/Ising.jl) example implementation. ```@docs Carlo.AbstractMC ``` The following methods all need to be defined for your Monte Carlo algoritm type (here referred to as `YourMC <: AbstractMC`). See [Parallel run mode](@ref parallel_run_mode) for a slightly different interface that allows inner MPI parallelization of your algorithm. ```@docs Carlo.init! Carlo.sweep! Carlo.measure! Carlo.write_checkpoint Carlo.read_checkpoint! Carlo.register_evaluables ``` # [Interfacing with Carlo features](@id mc_context) The `MCContext` type, passed to your code by some of the functions above enables to use some features provided by Carlo. ```@docs MCContext is_thermalized measure!(::MCContext, ::Symbol, ::Any) ```
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
1625
# [Evaluables](@id evaluables) In addition to simply calculating the averages of some observables in your Monte Carlo simulations, sometimes you are also interested in quantities that are functions of these observables, such as the Binder cumulant which is related to the ratio of moments of the magnetization. This presents two problems. First, estimating the errors of such quantities is not trivial due to correlations. Second, simply computing functions of quantities with errorbars incurs a bias. Luckily, Carlo can help you with this by letting you define such quantities – we call them *evaluables* – in the [`Carlo.register_evaluables(YourMC, eval, params)`](@ref) function. This function gets an `Evaluator` which can be used to ```@docs evaluate! ``` ## Example This is an example for a `register_evaluables` implementation for a model of a magnet. ```@example using Carlo struct YourMC <: AbstractMC end # hide function Carlo.register_evaluables( ::Type{YourMC}, eval::Evaluator, params::AbstractDict, ) T = params[:T] Lx = params[:Lx] Ly = get(params, :Ly, Lx) evaluate!(eval, :Susceptibility, (:Magnetization2,)) do mag2 return Lx * Ly * mag2 / T end evaluate!(eval, :BinderRatio, (:Magnetization2, :Magnetization4)) do mag2, mag4 return mag2 * mag2 / mag4 end return nothing end ``` Note that this code is called after the simulation is over, so there is no way to access the simulation state. However, it is possible to get the needed information about the system (e.g. temperature, system size) from the task parameters `params`.
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
4043
# Carlo.jl ## Overview Carlo is a framework that aims to simplify the implementation of high-performance Monte Carlo codes by handling the parallelization, checkpointing and error analysis. What sets it apart is a focus on ease of use and minimalism. ## Installation Installation is simple via the Julia REPL. ```julia ] add Carlo ``` If you wish to use the system MPI implementation, take a look at the [MPI.jl documentation](https://juliaparallel.org/MPI.jl/stable/configuration/#using_system_mpi) and be aware that in that case also the system binary of HDF5 as described [here](https://juliaio.github.io/HDF5.jl/stable/#Using-custom-or-system-provided-HDF5-binaries)! ## Usage In order to work with Carlo, a Monte Carlo algorithm has to implement the [AbstractMC](@ref abstract_mc) interface. A full example of this is given in the reference implementation for the [Ising](https://github.com/lukas-weber/Ising.jl) model. Then, to perform simulation, one writes a *job script* defining all the parameters needed for the simulation, which could look something like the following. ```@example #!/usr/bin/env julia using Carlo using Carlo.JobTools using Ising tm = TaskMaker() tm.sweeps = 10000 tm.thermalization = 2000 tm.binsize = 100 tm.Lx = 10 tm.Ly = 10 Ts = range(0.1, 4, length=20) for T in Ts task(tm; T=T) end job = JobInfo(@__FILE__, Ising.MC; checkpoint_time="30:00", run_time="15:00", tasks=make_tasks(tm) ) start(dummy, dummy2) = nothing # hide start(job, ARGS) ``` This example starts a simulation for the Ising model on the 10Γ—10 lattice for 20 different temperatures. Using the function [`start(job::JobInfo, ARGS)`](@ref) enables the Carlo CLI when we execute the script above as follows. ```bash ./myjob --help ``` The command line interface allows (re)starting a job, merging preliminary results, and showing the completion status of a calculation. ### Starting jobs ```bash ./myjob run ``` This will start a simulation on a single core. To use multiple cores, use MPI. ```bash mpirun -n $num_cores ./myjob run ``` Once the simulation is started, a directory `myjob.data` will be created to store all simulation data. The name of the directory corresponds to the first argument of `JobInfo`. Usually that will be `@__FILE__`, but you could also collect your simulation data in a different directory. The data directory will contain hdf5 files for each task of the job that contain checkpointing snapshots and measurement results. Once the job is done, Carlo will average the measurement data for you and produce the file `myjob.results.json` in the same directory as the `myjob.data` directory. This file contains means and errorbars of all observables. See [ResultTools](@ref result_tools) for some tips on consuming this file back into julia for your plotting or other postprocessing. ### Job status ```bash ./myjob status ``` Use this command to find out the state of the simulation. It will show a table with the number of completed measurement sweeps, the target number of sweeps, the numbers of runs, and the fraction of them that is thermalized. The fraction is defined as thermalization sweeps completed/total thermalization sweeps needed. ### Merging jobs ```bash ./myjob merge ``` Usually Carlo will automatically merge results once a job is complete, but when you are impatient and you want to check on results of a running or aborted job, this command is your friend. It will produce a `myjob.results.json` file containing the averages of the currently available data. ### Deleting jobs ```bash ./myjob delete ``` This deletes `myjob.data` and `myjob.results.json`. Of course, you should archive your simulation data instead of deleting them. However, if you made an error in a previous simulation, keep in mind that by default Carlo will continue it from the checkpoints. For that case of restarting a job there is a handy shortcut as well ```bash ./myjob run --restart ``` ## Shortcuts All commands here have shortcut versions that you can view in the help.
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
302
# [JobTools](@id jobtools) This submodule contains tools to specify or read job information necessary to run Carlo calculations. ```@docs JobInfo TaskInfo result_filename start(job::JobInfo,::AbstractVector{<:AbstractString}) ``` ## TaskMaker ```@docs TaskMaker task make_tasks current_task_name ```
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
2327
# [Parallel run mode](@id parallel_run_mode) One of Carlo’s features is to automatically parallelize independent Monte Carlo simulation runs over MPI. These runs can either share the same set of parameters – in which case their results are averaged – or have different parameters entirely. Sometimes this kind of trivial parallelism is not satisfactory. For example, it does not shorten the time needed for thermalization, and some Monte Carlo algorithms can benefit from some sort of population control that exchanges data between different simulations of the same random process. For these cases, Carlo features a *parallel run mode* where each Carlo run does not run on one but multiple MPI ranks. Parallel run mode is enabled in [`JobInfo`](@ref) by passing the `ranks_per_run` argument. ## Parallel `AbstractMC` interface In order to use parallel run mode, the Monte Carlo algorithm must implement a modified version of the [`AbstractMC`](@ref) interface including additional `MPI.Comm` arguments that allow coordination between the different ranks per run. The first three functions Carlo.init!(mc::YourMC, ctx::MCContext, params::AbstractDict, comm::MPI.Comm) Carlo.sweep!(mc::YourMC, ctx::MCContext, comm::MPI.Comm) Carlo.measure!(mc::YourMC, ctx::MCContext, comm::MPI.Comm) simply receive an additional `comm` argument. An important restriction here is that only rank 0 can make measurements on the given `MCContext`, so you are responsible to communicate the measurement results to that rank. For checkpointing, there is a similar catch. Carlo.write_checkpoint(mc::YourMC, out::Union{HDF5.Group,Nothing}, comm::MPI.Comm) Carlo.read_checkpoint!(mc::YourMC, in::Union{HDF5.Group,Nothing}, comm::MPI.Comm) In these methods, only rank 0 receives an `HDF5.Group` and the other ranks need to communicate. Carlo does not use the collective writing mode of parallel HDF5. Sometimes, you also want to share work during the construction of `YourMC`. For this reason, Carlo will add the hidden parameter `_comm` to the parameter dictionary received by the constructor `YourMC(params::AbstractDict)`. `params[:_comm]` is then an MPI communicator similar to the `comm` argument of the functions above. Lastly, the `Carlo.register_evaluables` function remains the same as in the normal interface.
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
625
# [ResultTools](@id result_tools) This is a small module to ease importing Carlo results back into Julia. It contains the function ```@docs Carlo.ResultTools.dataframe ``` If we use ResultTools with DataFrames.jl to read out the results of the Ising example, it would be the following. ```@example using Plots using DataFrames using Carlo.ResultTools df = DataFrame(ResultTools.dataframe("example.results.json")) plot(df.T, df.Energy; xlabel = "Temperature", ylabel="Energy per spin", group=df.Lx, legendtitle="L") ``` In the plot we can nicely see how the model approaches the ground state energy at low temperatures.
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.2.1
1f06171b2b00e966e2247339bb592ff6ac698b19
docs
353
# [Random Number Generators](@id rng) Carlo takes care of storing and managing the state of random number generators (RNG) for you. It is accessible through the `rng` field of [`MCContext`](@ref) and the type of RNG to use can be set by the `rng` parameter in every task (see [`TaskInfo`](@ref)). The currently supported types are - `Random.Xoshiro`
Carlo
https://github.com/lukas-weber/Carlo.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
675
#! /usr/bin/env julia using Documenter using GeometryBasics DocMeta.setdocmeta!(GeometryBasics, :DocTestSetup, :(using GeometryBasics); recursive=true) makedocs(format=Documenter.HTML(prettyurls=get(ENV, "CI", "false") == "true"), sitename="GeometryBasics.jl", pages=[ "index.md", "primitives.md", "rectangles.md", "polygons.md", "meshes.md", "decomposition.md", "metadata.md", "api.md" ], modules=[GeometryBasics]) deploydocs(repo="github.com/JuliaGeometry/GeometryBasics.jl.git", push_preview=true)
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
2875
module GeometryBasics using StaticArrays, Tables, StructArrays, IterTools, LinearAlgebra using GeoInterface import Extents using EarCut_jll using Base: @propagate_inbounds include("fixed_arrays.jl") include("offsetintegers.jl") include("basic_types.jl") include("primitives/rectangles.jl") include("primitives/spheres.jl") include("primitives/cylinders.jl") include("primitives/pyramids.jl") include("primitives/particles.jl") include("interfaces.jl") include("metadata.jl") include("viewtypes.jl") include("geometry_primitives.jl") include("meshes.jl") include("triangulation.jl") include("lines.jl") include("boundingboxes.jl") include("deprecated.jl") include("geointerface.jl") export AbstractGeometry, GeometryPrimitive export Mat, Point, Vec export LineFace, Polytope, Line, NgonFace, convert_simplex export LineString, AbstractPolygon, Polygon, MultiPoint, MultiLineString, MultiPolygon export Simplex, connect, Triangle, NSimplex, Tetrahedron export QuadFace, metafree, coordinates, TetrahedronFace export TupleView, SimplexFace, Mesh, meta export Triangle, TriangleP export AbstractFace, TriangleFace, QuadFace, GLTriangleFace export OffsetInteger, ZeroIndex, OneIndex, GLIndex export FaceView, SimpleFaceView export AbstractPoint, PointMeta, PointWithUV export PolygonMeta, MultiPointMeta, MultiLineStringMeta, MeshMeta, LineStringMeta, MultiPolygonMeta export decompose, coordinates, faces, normals, decompose_uv, decompose_normals, texturecoordinates export Tesselation, pointmeta, Normal, UV, UVW export GLTriangleFace, GLUVMesh3D export AbstractMesh, Mesh, TriangleMesh export GLNormalMesh2D export MetaT, meta_table # all the different predefined mesh types # Note: meshes can contain arbitrary meta information, export AbstractMesh, TriangleMesh, PlainMesh, GLPlainMesh, GLPlainMesh2D, GLPlainMesh3D export UVMesh, GLUVMesh, GLUVMesh2D, GLUVMesh3D export NormalMesh, GLNormalMesh, GLNormalMesh2D, GLNormalMesh3D export NormalUVMesh, GLNormalUVMesh, GLNormalUVMesh2D, GLNormalUVMesh3D export NormalUVWMesh, GLNormalUVWMesh, GLNormalUVWMesh2D, GLNormalUVWMesh3D # mesh creation functions export triangle_mesh, triangle_mesh, uv_mesh export uv_mesh, normal_mesh, uv_normal_mesh export height, origin, radius, width, widths export HyperSphere, Circle, Sphere export Cylinder, Cylinder2, Cylinder3, Pyramid, extremity export HyperRectangle, Rect, Rect2, Rect3, Recti, Rect2i, Rect3i, Rectf, Rect2f, Rect3f, Rectd, Rect2d, Rect3d export before, during, meets, overlaps, intersects, finishes export centered, direction, area, volume, update export max_dist_dim, max_euclidean, max_euclideansq, min_dist_dim, min_euclidean export min_euclideansq, minmax_dist_dim, minmax_euclidean, minmax_euclideansq export self_intersections, split_intersections if Base.VERSION >= v"1.4.2" include("precompile.jl") _precompile_() end end # module
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
14530
""" Abstract Geometry in R{Dim} with Number type T """ abstract type AbstractGeometry{Dim,T<:Number} end abstract type GeometryPrimitive{Dim,T} <: AbstractGeometry{Dim,T} end Base.ndims(::AbstractGeometry{Dim}) where {Dim} = Dim """ Geometry made of N connected points. Connected as one flat geometry, it makes a Ngon / Polygon. Connected as volume it will be a Simplex / Tri / Cube. Note That `Polytope{N} where N == 3` denotes a Triangle both as a Simplex or Ngon. """ abstract type Polytope{Dim,T} <: AbstractGeometry{Dim,T} end abstract type AbstractPolygon{Dim,T} <: Polytope{Dim,T} end abstract type AbstractPoint{Dim,T} <: StaticVector{Dim,T} end abstract type AbstractFace{N,T} <: StaticVector{N,T} end abstract type AbstractSimplexFace{N,T} <: AbstractFace{N,T} end abstract type AbstractNgonFace{N,T} <: AbstractFace{N,T} end abstract type AbstractSimplex{Dim,N,T} <: StaticVector{Dim,T} end """ Face index, connecting points to form a simplex """ @fixed_vector SimplexFace = AbstractSimplexFace const TetrahedronFace{T} = SimplexFace{4,T} Face(::Type{<:SimplexFace{N}}, ::Type{T}) where {N,T} = SimplexFace{N,T} """ Face index, connecting points to form an Ngon """ @fixed_vector NgonFace = AbstractNgonFace const LineFace{T} = NgonFace{2,T} const TriangleFace{T} = NgonFace{3,T} const QuadFace{T} = NgonFace{4,T} function Base.show(io::IO, x::TriangleFace{T}) where {T} return print(io, "TriangleFace(", join(x, ", "), ")") end Face(::Type{<:NgonFace{N}}, ::Type{T}) where {N,T} = NgonFace{N,T} Face(F::Type{NgonFace{N,FT}}, ::Type{T}) where {FT,N,T} = F @propagate_inbounds Base.getindex(x::Polytope, i::Integer) = coordinates(x)[i] @propagate_inbounds Base.iterate(x::Polytope) = iterate(coordinates(x)) @propagate_inbounds Base.iterate(x::Polytope, i) = iterate(coordinates(x), i) """ Fixed Size Polygon, e.g. - N 1-2 : Illegal! - N = 3 : Triangle - N = 4 : Quadrilateral (or Quad, Or tetragon) - N = 5 : Pentagon - ... """ struct Ngon{Dim,T<:Real,N,Point<:AbstractPoint{Dim,T}} <: AbstractPolygon{Dim,T} points::SVector{N,Point} end const NNgon{N} = Ngon{Dim,T,N,P} where {Dim,T,P} function (::Type{<:NNgon{N1}})(p0::P, points::Vararg{P,N2}) where {P<:AbstractPoint{Dim,T}, N1, N2} where {Dim,T} @assert N1 == N2+1 return Ngon{Dim,T,N1,P}(SVector(p0, points...)) end Base.show(io::IO, x::NNgon{N}) where {N} = print(io, "Ngon{$N}(", join(x, ", "), ")") # Interfaces coordinates(x::Ngon) = x.points # Base Array interface Base.length(::Type{<:NNgon{N}}) where {N} = N Base.length(::NNgon{N}) where {N} = N """ The Ngon Polytope element type when indexing an array of points with a SimplexFace """ function Polytope(P::Type{<:AbstractPoint{Dim,T}}, ::Type{<:AbstractNgonFace{N,IT}}) where {N,Dim,T,IT} return Ngon{Dim,T,N,P} end """ The fully concrete Ngon type, when constructed from a point type! """ function Polytope(::Type{<:NNgon{N}}, P::Type{<:AbstractPoint{NDim,T}}) where {N,NDim,T} return Ngon{NDim,T,N,P} end const LineP{Dim,T,P<:AbstractPoint{Dim,T}} = Ngon{Dim,T,2,P} const Line{Dim,T} = LineP{Dim,T,Point{Dim,T}} # Simplex{D, T, 3} & Ngon{D, T, 3} are both representing a triangle. # Since Ngon is supposed to be flat and a triangle is flat, lets prefer Ngon # for triangle: const TriangleP{Dim,T,P<:AbstractPoint{Dim,T}} = Ngon{Dim,T,3,P} const Triangle{Dim,T} = TriangleP{Dim,T,Point{Dim,T}} const Triangle3d{T} = Triangle{3,T} Base.show(io::IO, x::TriangleP) = print(io, "Triangle(", join(x, ", "), ")") Base.summary(io::IO, ::Type{<:TriangleP}) = print(io, "Triangle") const Quadrilateral{Dim,T} = Ngon{Dim,T,4,P} where {P<:AbstractPoint{Dim,T}} Base.show(io::IO, x::Quadrilateral) = print(io, "Quad(", join(x, ", "), ")") Base.summary(io::IO, ::Type{<:Quadrilateral}) = print(io, "Quad") function coordinates(lines::AbstractArray{LineP{Dim,T,PointType}}) where {Dim,T,PointType} return if lines isa Base.ReinterpretArray return coordinates(lines.parent) else result = PointType[] for line in lines append!(result, coordinates(line)) end return result end end """ A `Simplex` is a generalization of an N-dimensional tetrahedra and can be thought of as a minimal convex set containing the specified points. * A 0-simplex is a point. * A 1-simplex is a line segment. * A 2-simplex is a triangle. * A 3-simplex is a tetrahedron. Note that this datatype is offset by one compared to the traditional mathematical terminology. So a one-simplex is represented as `Simplex{2,T}`. This is for a simpler implementation. It applies to infinite dimensions. The structure of this type is designed to allow embedding in higher-order spaces by parameterizing on `T`. """ struct Simplex{Dim,T<:Real,N,Point<:AbstractPoint{Dim,T}} <: Polytope{Dim,T} points::SVector{N,Point} end const NSimplex{N} = Simplex{Dim,T,N,P} where {Dim,T,P} const TetrahedronP{T,P<:AbstractPoint{3,T}} = Simplex{3,T,4,P} const Tetrahedron{T} = TetrahedronP{T,Point{3,T}} Base.show(io::IO, x::TetrahedronP) = print(io, "Tetrahedron(", join(x, ", "), ")") coordinates(x::Simplex) = x.points function (::Type{<:NSimplex{N1}})(p0::P, points::Vararg{P,N2}) where {P<:AbstractPoint{Dim,T}, N1, N2} where {Dim,T} @assert N1 == N2+1 return Simplex{Dim,T,N1,P}(SVector(p0, points...)) end # Base Array interface Base.length(::Type{<:NSimplex{N}}) where {N} = N Base.length(::NSimplex{N}) where {N} = N """ The Simplex Polytope element type when indexing an array of points with a SimplexFace """ function Polytope(P::Type{<:AbstractPoint{Dim,T}}, ::Type{<:AbstractSimplexFace{N}}) where {N,Dim,T} return Simplex{Dim,T,N,P} end """ The fully concrete Simplex type, when constructed from a point type! """ function Polytope(::Type{<:NSimplex{N}}, P::Type{<:AbstractPoint{NDim,T}}) where {N,NDim,T} return Simplex{NDim,T,N,P} end Base.show(io::IO, x::LineP) = print(io, "Line(", x[1], " => ", x[2], ")") """ LineString(points::AbstractVector{<:AbstractPoint}) A LineString is a geometry of connected line segments """ struct LineString{Dim,T<:Real,P<:AbstractPoint,V<:AbstractVector{<:LineP{Dim,T,P}}} <: AbstractVector{LineP{Dim,T,P}} points::V end coordinates(x::LineString) = coordinates(x.points) Base.copy(x::LineString) = LineString(copy(x.points)) Base.size(x::LineString) = size(getfield(x, :points)) Base.getindex(x::LineString, i) = getindex(getfield(x, :points), i) function LineString(points::AbstractVector{LineP{Dim,T,P}}) where {Dim,T,P} return LineString{Dim,T,P,typeof(points)}(points) end """ LineString(points::AbstractVector{<: AbstractPoint}, skip = 1) Creates a LineString from a vector of points. With `skip == 1`, the default, it will connect the line like this: ```julia points = Point[a, b, c, d] linestring = LineString(points) @assert linestring == LineString([a => b, b => c, c => d]) ``` """ function LineString(points::AbstractVector{<:AbstractPoint}, skip=1) return LineString(connect(points, LineP, skip)) end function LineString(points::AbstractVector{<:Pair{P,P}}) where {P<:AbstractPoint{N,T}} where {N, T} return LineString(reinterpret(LineP{N,T,P}, points)) end function LineString(points::AbstractVector{<:AbstractPoint}, faces::AbstractVector{<:LineFace}) return LineString(connect(points, faces)) end """ LineString(points::AbstractVector{<: AbstractPoint}, indices::AbstractVector{<: Integer}, skip = 1) Creates a LineString from a vector of points and an index list. With `skip == 1`, the default, it will connect the line like this: ```julia points = Point[a, b, c, d]; faces = [1, 2, 3, 4] linestring = LineString(points, faces) @assert linestring == LineString([a => b, b => c, c => d]) ``` To make a segmented line, set skip to 2 ```julia points = Point[a, b, c, d]; faces = [1, 2, 3, 4] linestring = LineString(points, faces, 2) @assert linestring == LineString([a => b, c => d]) ``` """ function LineString(points::AbstractVector{<:AbstractPoint}, indices::AbstractVector{<:Integer}, skip=1) faces = connect(indices, LineFace, skip) return LineString(points, faces) end """ Polygon(exterior::AbstractVector{<:Point}) Polygon(exterior::AbstractVector{<:Point}, interiors::Vector{<:AbstractVector{<:AbstractPoint}}) """ struct Polygon{Dim,T<:Real,P<:AbstractPoint{Dim,T},L<:AbstractVector{<:LineP{Dim,T,P}}, V<:AbstractVector{L}} <: AbstractPolygon{Dim,T} exterior::L interiors::V end Base.copy(x::Polygon) = Polygon(copy(x.exterior), copy(x.interiors)) function Base.:(==)(a::Polygon, b::Polygon) return (a.exterior == b.exterior) && (a.interiors == b.interiors) end function Polygon(exterior::E, interiors::AbstractVector{E}) where {E<:AbstractVector{LineP{Dim,T,P}}} where {Dim, T, P} return Polygon{Dim,T,P,typeof(exterior),typeof(interiors)}(exterior, interiors) end Polygon(exterior::L) where {L<:AbstractVector{<:LineP}} = Polygon(exterior, L[]) function Polygon(exterior::AbstractVector{P}, skip::Int=1) where {P<:AbstractPoint{Dim,T}} where {Dim,T} return Polygon(LineString(exterior, skip)) end function Polygon(exterior::AbstractVector{P}, faces::AbstractVector{<:Integer}, skip::Int=1) where {P<:AbstractPoint{Dim,T}} where {Dim,T} return Polygon(LineString(exterior, faces, skip)) end function Polygon(exterior::AbstractVector{P}, faces::AbstractVector{<:LineFace}) where {P<:AbstractPoint{Dim,T}} where {Dim, T} return Polygon(LineString(exterior, faces)) end function Polygon(exterior::AbstractVector{P}, interior::AbstractVector{<:AbstractVector{P}}) where {P<:AbstractPoint{Dim, T}} where {Dim, T} ext = LineString(exterior) # We need to take extra care for empty interiors, since # if we just map over it, it won't infer the element type correctly! int = typeof(ext)[] foreach(x -> push!(int, LineString(x)), interior) return Polygon(ext, int) end function coordinates(polygon::Polygon{N,T,PointType}) where {N,T,PointType} exterior = coordinates(polygon.exterior) if isempty(polygon.interiors) return exterior else result = PointType[] append!(result, exterior) foreach(x -> append!(result, coordinates(x)), polygon.interiors) return result end end """ MultiPolygon(polygons::AbstractPolygon) """ struct MultiPolygon{Dim,T<:Real,Element<:AbstractPolygon{Dim,T}, A<:AbstractVector{Element}} <: AbstractVector{Element} polygons::A end function MultiPolygon(polygons::AbstractVector{P}; kw...) where {P<:AbstractPolygon{Dim,T}} where {Dim,T} return MultiPolygon(meta(polygons; kw...)) end Base.getindex(mp::MultiPolygon, i) = mp.polygons[i] Base.size(mp::MultiPolygon) = size(mp.polygons) struct MultiLineString{Dim,T<:Real,Element<:LineString{Dim,T},A<:AbstractVector{Element}} <: AbstractVector{Element} linestrings::A end function MultiLineString(linestrings::AbstractVector{L}; kw...) where {L<:AbstractVector{LineP{Dim,T,P}}} where {Dim,T,P} return MultiLineString(meta(linestrings; kw...)) end Base.getindex(ms::MultiLineString, i) = ms.linestrings[i] Base.size(ms::MultiLineString) = size(ms.linestrings) """ MultiPoint(points::AbstractVector{AbstractPoint}) A collection of points """ struct MultiPoint{Dim,T<:Real,P<:AbstractPoint{Dim,T},A<:AbstractVector{P}} <: AbstractVector{P} points::A end function MultiPoint(points::AbstractVector{P}; kw...) where {P<:AbstractPoint{Dim,T}} where {Dim,T} return MultiPoint(meta(points; kw...)) end Base.getindex(mpt::MultiPoint, i) = mpt.points[i] Base.size(mpt::MultiPoint) = size(mpt.points) """ AbstractMesh An abstract mesh is a collection of Polytope elements (Simplices / Ngons). The connections are defined via faces(mesh), the coordinates of the elements are returned by coordinates(mesh). Arbitrary meta information can be attached per point or per face """ abstract type AbstractMesh{Element<:Polytope} <: AbstractVector{Element} end """ Mesh <: AbstractVector{Element} The concrete AbstractMesh implementation. """ struct Mesh{Dim,T<:Number,Element<:Polytope{Dim,T},V<:AbstractVector{Element}} <: AbstractMesh{Element} simplices::V # usually a FaceView, to connect a set of points via a set of faces. end Tables.schema(mesh::Mesh) = Tables.schema(getfield(mesh, :simplices)) function Base.getproperty(mesh::Mesh, name::Symbol) if name === :position # a mesh always has position defined by coordinates... return metafree(coordinates(mesh)) else return getproperty(getfield(mesh, :simplices), name) end end function Base.propertynames(mesh::Mesh) names = propertynames(getfield(mesh, :simplices)) if :position in names return names else # a mesh always has positions! return (names..., :position) end end function Base.summary(io::IO, ::Mesh{Dim,T,Element}) where {Dim,T,Element} print(io, "Mesh{$Dim, $T, ") summary(io, Element) return print(io, "}") end Base.size(mesh::Mesh) = size(getfield(mesh, :simplices)) Base.getindex(mesh::Mesh, i::Integer) = getfield(mesh, :simplices)[i] function Mesh(elements::AbstractVector{<:Polytope{Dim,T}}) where {Dim,T} return Mesh{Dim,T,eltype(elements),typeof(elements)}(elements) end function Mesh(points::AbstractVector{<:AbstractPoint}, faces::AbstractVector{<:AbstractFace}) return Mesh(connect(points, faces)) end function Mesh(points::AbstractVector{<:AbstractPoint}, faces::AbstractVector{<:Integer}, facetype=TriangleFace, skip=1) return Mesh(connect(points, connect(faces, facetype, skip))) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
1208
function Rect(geometry::AbstractArray{<:Point{N,T}}) where {N,T} return Rect{N,T}(geometry) end """ Construct a HyperRectangle enclosing all points. """ function Rect{N1,T1}(geometry::AbstractArray{PT}) where {N1,T1,PT<:AbstractPoint} N2, T2 = length(PT), eltype(PT) @assert N1 >= N2 vmin = Point{N2,T2}(typemax(T2)) vmax = Point{N2,T2}(typemin(T2)) for p in geometry vmin, vmax = minmax(p, vmin, vmax) end o = vmin w = vmax - vmin return if N1 > N2 z = zero(Vec{N1 - N2,T1}) Rect{N1,T1}(vcat(o, z), vcat(w, z)) else Rect{N1,T1}(o, w) end end function Rect(primitive::GeometryPrimitive{N,T}) where {N,T} return Rect{N,T}(primitive) end function Rect{T}(primitive::GeometryPrimitive{N,T}) where {N,T} return Rect{N,T}(primitive) end function Rect{T}(a::Pyramid) where {T} w, h = a.width / T(2), a.length m = Vec{3,T}(a.middle) return Rect{T}(m .- Vec{3,T}(w, w, 0), m .+ Vec{3,T}(w, w, h)) end function Rect{T}(a::Sphere) where {T} mini, maxi = extrema(a) return Rect{T}(mini, maxi .- mini) end Rect{T}(a) where {T} = Rect{T}(coordinates(a)) Rect{N,T}(a) where {N,T} = Rect{N,T}(coordinates(a))
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
784
using Base: @deprecate_binding # Types ...f0 renamed to ...f @deprecate_binding Vecf0 Vecf @deprecate_binding Pointf0 Pointf for i in 1:4 for T in [:Point, :Vec] oldname = Symbol("$T$(i)f0") newname = Symbol("$T$(i)f") @eval begin @deprecate_binding $oldname $newname end end oldname = Symbol("Mat$(i)f0") newname = Symbol("Mat$(i)f") @eval begin @deprecate_binding $oldname $newname end end # Rect types @deprecate_binding Rect2D Rect2 @deprecate_binding Rect3D Rect3 @deprecate_binding FRect Rectf @deprecate_binding FRect2D Rect2f @deprecate_binding FRect3D Rect3f @deprecate_binding IRect Recti @deprecate_binding IRect2D Rect2i @deprecate_binding IRect3D Rect3i @deprecate_binding TRect RectT
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
5641
function unit(::Type{T}, i::Integer) where {T <: StaticVector} tup = ntuple(Val(length(T))) do j return ifelse(i == j, 1, 0) end return T(tup) end macro fixed_vector(name_parent) @assert name_parent.head == :(=) name, parent = name_parent.args expr = quote struct $(name){S,T} <: $(parent){S,T} data::NTuple{S,T} function $(name){S,T}(x::NTuple{S,T}) where {S,T} return new{S,T}(x) end function $(name){S,T}(x::NTuple{S,Any}) where {S,T} return new{S,T}(StaticArrays.convert_ntuple(T, x)) end end size_or(::Type{$(name)}, or) = or eltype_or(::Type{$(name)}, or) = or eltype_or(::Type{$(name){S,T} where S}, or) where {T} = T eltype_or(::Type{$(name){S,T} where T}, or) where {S} = or eltype_or(::Type{$(name){S,T}}, or) where {S,T} = T size_or(::Type{$(name){S,T} where S}, or) where {T} = or size_or(::Type{$(name){S,T} where T}, or) where {S} = Size{(S,)}() size_or(::Type{$(name){S,T}}, or) where {S,T} = (S,) # Array constructor function $(name){S}(x::AbstractVector{T}) where {S,T} @assert S <= length(x) return $(name){S,T}(ntuple(i -> x[i], Val(S))) end function $(name){S,T1}(x::AbstractVector{T2}) where {S,T1,T2} @assert S <= length(x) return $(name){S,T1}(ntuple(i -> convert(T1, x[i]), Val(S))) end function $(name){S,T}(x) where {S,T} return $(name){S,T}(ntuple(i -> convert(T, x), Val(S))) end $(name){S}(x::T) where {S,T} = $(name){S,T}(ntuple(i -> x, Val(S))) $(name){1,T}(x::T) where {T} = $(name){1,T}((x,)) $(name)(x::NTuple{S}) where {S} = $(name){S}(x) function $(name)(x::T) where {S,T <: Tuple{Vararg{Any,S}}} return $(name){S,StaticArrays.promote_tuple_eltype(T)}(x) end function $(name){S}(x::T) where {S,T <: Tuple} return $(name){S,StaticArrays.promote_tuple_eltype(T)}(x) end $(name){S,T}(x::StaticVector) where {S,T} = $(name){S,T}(Tuple(x)) @generated function (::Type{$(name){S,T}})(x::$(name)) where {S,T} idx = [:(x[$i]) for i in 1:S] return quote $($(name)){S,T}($(idx...)) end end @generated function Base.convert(::Type{$(name){S,T}}, x::$(name)) where {S,T} idx = [:(x[$i]) for i in 1:S] return quote $($(name)){S,T}($(idx...)) end end @generated function (::Type{SV})(x::StaticVector) where {SV <: $(name)} len = size_or(SV, size(x))[1] return if length(x) == len :(SV(Tuple(x))) elseif length(x) > len elems = [:(x[$i]) for i in 1:len] :(SV($(Expr(:tuple, elems...)))) else error("Static Vector too short: $x, target type: $SV") end end Base.@pure StaticArrays.Size(::Type{$(name){S,Any}}) where {S} = Size(S) Base.@pure StaticArrays.Size(::Type{$(name){S,T}}) where {S,T} = Size(S) Base.@propagate_inbounds function Base.getindex(v::$(name){S,T}, i::Int) where {S,T} return v.data[i] end Base.Tuple(v::$(name)) = v.data function Base.convert(::Type{$(name){S,T}}, x::NTuple{S,T}) where {S,T} return $(name){S,T}(x) end function Base.convert(::Type{$(name){S,T}}, x::Tuple) where {S,T} return $(name){S,T}(convert(NTuple{S,T}, x)) end @generated function StaticArrays.similar_type(::Type{SV}, ::Type{T}, s::Size{S}) where {SV <: $(name),T,S} return if length(S) === 1 $(name){S[1],T} else StaticArrays.default_similar_type(T, s(), Val{length(S)}) end end Base.:(*)(a::$name, b::$name) = a .* b function Base.broadcasted(f, a::AbstractArray{T}, b::$name) where {T <: $name} return Base.broadcasted(f, a, (b,)) end end return esc(expr) end abstract type AbstractPoint{Dim,T} <: StaticVector{Dim,T} end @fixed_vector Point = AbstractPoint @fixed_vector Vec = StaticVector const Mat = SMatrix const VecTypes{N,T} = Union{StaticVector{N,T},NTuple{N,T}} const Vecf{N} = Vec{N,Float32} const Pointf{N} = Point{N,Float32} Base.isnan(p::Union{AbstractPoint,Vec}) = any(isnan, p) Base.isinf(p::Union{AbstractPoint,Vec}) = any(isinf, p) Base.isfinite(p::Union{AbstractPoint,Vec}) = all(isfinite, p) ## Generate aliases ## As a text file instead of eval/macro, to not confuse code linter #= open(joinpath(@__DIR__, "generated-aliases.jl"), "w") do io for i in 1:4 for T in [:Point, :Vec, :Mat] namei = "$T$i" res = T == :Mat ? "Mat{$i,$i,T,$(i * i)}" : "$T{$i,T}" println(io, "const $(namei){T} = $res") println(io, "export $namei") for (postfix, t) in ["d" => Float64, "f" => Float32, "i" => Int, "ui" => UInt] namep = "$T$i$postfix" println(io, "const $(namep) = $(namei){$t}") println(io, "export $namep") # mnamep = "$(mname)$postfix" # println(io, "const $mnamep = $mname{$t}") # println(io, "export $mnamep") end end end end =# include("generated-aliases.jl") export Mat, Vec, Point, unit export Vecf, Pointf
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
2537
const Point1{T} = Point{1,T} export Point1 const Point1d = Point1{Float64} export Point1d const Point1f = Point1{Float32} export Point1f const Point1i = Point1{Int64} export Point1i const Point1ui = Point1{UInt64} export Point1ui const Vec1{T} = Vec{1,T} export Vec1 const Vec1d = Vec1{Float64} export Vec1d const Vec1f = Vec1{Float32} export Vec1f const Vec1i = Vec1{Int64} export Vec1i const Vec1ui = Vec1{UInt64} export Vec1ui const Mat1{T} = Mat{1,1,T,1} export Mat1 const Mat1d = Mat1{Float64} export Mat1d const Mat1f = Mat1{Float32} export Mat1f const Mat1i = Mat1{Int64} export Mat1i const Mat1ui = Mat1{UInt64} export Mat1ui const Point2{T} = Point{2,T} export Point2 const Point2d = Point2{Float64} export Point2d const Point2f = Point2{Float32} export Point2f const Point2i = Point2{Int64} export Point2i const Point2ui = Point2{UInt64} export Point2ui const Vec2{T} = Vec{2,T} export Vec2 const Vec2d = Vec2{Float64} export Vec2d const Vec2f = Vec2{Float32} export Vec2f const Vec2i = Vec2{Int64} export Vec2i const Vec2ui = Vec2{UInt64} export Vec2ui const Mat2{T} = Mat{2,2,T,4} export Mat2 const Mat2d = Mat2{Float64} export Mat2d const Mat2f = Mat2{Float32} export Mat2f const Mat2i = Mat2{Int64} export Mat2i const Mat2ui = Mat2{UInt64} export Mat2ui const Point3{T} = Point{3,T} export Point3 const Point3d = Point3{Float64} export Point3d const Point3f = Point3{Float32} export Point3f const Point3i = Point3{Int64} export Point3i const Point3ui = Point3{UInt64} export Point3ui const Vec3{T} = Vec{3,T} export Vec3 const Vec3d = Vec3{Float64} export Vec3d const Vec3f = Vec3{Float32} export Vec3f const Vec3i = Vec3{Int64} export Vec3i const Vec3ui = Vec3{UInt64} export Vec3ui const Mat3{T} = Mat{3,3,T,9} export Mat3 const Mat3d = Mat3{Float64} export Mat3d const Mat3f = Mat3{Float32} export Mat3f const Mat3i = Mat3{Int64} export Mat3i const Mat3ui = Mat3{UInt64} export Mat3ui const Point4{T} = Point{4,T} export Point4 const Point4d = Point4{Float64} export Point4d const Point4f = Point4{Float32} export Point4f const Point4i = Point4{Int64} export Point4i const Point4ui = Point4{UInt64} export Point4ui const Vec4{T} = Vec{4,T} export Vec4 const Vec4d = Vec4{Float64} export Vec4d const Vec4f = Vec4{Float32} export Vec4f const Vec4i = Vec4{Int64} export Vec4i const Vec4ui = Vec4{UInt64} export Vec4ui const Mat4{T} = Mat{4,4,T,16} export Mat4 const Mat4d = Mat4{Float64} export Mat4d const Mat4f = Mat4{Float32} export Mat4f const Mat4i = Mat4{Int64} export Mat4i const Mat4ui = Mat4{UInt64} export Mat4ui
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
6745
# Implementation of trait based interface from https://github.com/JuliaGeo/GeoInterface.jl/ GeoInterface.isgeometry(::Type{<:AbstractGeometry}) = true GeoInterface.isgeometry(::Type{<:AbstractFace}) = true GeoInterface.isgeometry(::Type{<:AbstractPoint}) = true GeoInterface.isgeometry(::Type{<:AbstractMesh}) = true GeoInterface.isgeometry(::Type{<:AbstractPolygon}) = true GeoInterface.isgeometry(::Type{<:LineString}) = true GeoInterface.isgeometry(::Type{<:MultiPoint}) = true GeoInterface.isgeometry(::Type{<:MultiLineString}) = true GeoInterface.isgeometry(::Type{<:MultiPolygon}) = true GeoInterface.isgeometry(::Type{<:Mesh}) = true GeoInterface.geomtrait(::Point) = PointTrait() GeoInterface.geomtrait(::Line) = LineTrait() GeoInterface.geomtrait(::LineString) = LineStringTrait() GeoInterface.geomtrait(::Polygon) = PolygonTrait() GeoInterface.geomtrait(::MultiPoint) = MultiPointTrait() GeoInterface.geomtrait(::MultiLineString) = MultiLineStringTrait() GeoInterface.geomtrait(::MultiPolygon) = MultiPolygonTrait() GeoInterface.geomtrait(::Ngon) = PolygonTrait() GeoInterface.geomtrait(::AbstractMesh) = PolyhedralSurfaceTrait() # GeoInterface calls this method in `GeoInterface.convert(GeometryBasics, ...)` geointerface_geomtype(::GeoInterface.PointTrait) = Point geointerface_geomtype(::GeoInterface.MultiPointTrait) = MultiPoint geointerface_geomtype(::GeoInterface.LineTrait) = Line geointerface_geomtype(::GeoInterface.LineStringTrait) = LineString geointerface_geomtype(::GeoInterface.MultiLineStringTrait) = MultiLineString geointerface_geomtype(::GeoInterface.PolygonTrait) = Polygon geointerface_geomtype(::GeoInterface.MultiPolygonTrait) = MultiPolygon geointerface_geomtype(::GeoInterface.PolyhedralSurfaceTrait) = Mesh GeoInterface.geomtrait(::Simplex{Dim,T,1}) where {Dim,T} = PointTrait() GeoInterface.geomtrait(::Simplex{Dim,T,2}) where {Dim,T} = LineStringTrait() GeoInterface.geomtrait(::Simplex{Dim,T,3}) where {Dim,T} = PolygonTrait() GeoInterface.ncoord(::PointTrait, g::Point) = length(g) GeoInterface.getcoord(::PointTrait, g::Point, i::Int) = g[i] GeoInterface.ngeom(::LineTrait, g::Line) = length(g) GeoInterface.getgeom(::LineTrait, g::Line, i::Int) = g[i] GeoInterface.ngeom(::LineStringTrait, g::LineString) = length(g) + 1 # n line segments + 1 GeoInterface.ncoord(::LineStringTrait, g::LineString{Dim}) where {Dim} = Dim function GeoInterface.getgeom(::LineStringTrait, g::LineString, i::Int) return GeometryBasics.coordinates(g)[i] end GeoInterface.ngeom(::PolygonTrait, g::Polygon) = length(g.interiors) + 1 # +1 for exterior function GeoInterface.getgeom(::PolygonTrait, g::Polygon, i::Int)::typeof(g.exterior) return i > 1 ? g.interiors[i - 1] : g.exterior end GeoInterface.ngeom(::MultiPointTrait, g::MultiPoint) = length(g) GeoInterface.getgeom(::MultiPointTrait, g::MultiPoint, i::Int) = g[i] function GeoInterface.ngeom(::MultiLineStringTrait, g::MultiLineString) return length(g) end function GeoInterface.getgeom(::MultiLineStringTrait, g::MultiLineString, i::Int) return g[i] end GeoInterface.ncoord(::MultiLineStringTrait, g::MultiLineString{Dim}) where {Dim} = Dim GeoInterface.ngeom(::MultiPolygonTrait, g::MultiPolygon) = length(g) GeoInterface.getgeom(::MultiPolygonTrait, g::MultiPolygon, i::Int) = g[i] function GeoInterface.ncoord(::AbstractGeometryTrait, ::Simplex{Dim,T,N,P}) where {Dim,T,N,P} return Dim end function GeoInterface.ncoord(::AbstractGeometryTrait, ::AbstractGeometry{Dim,T}) where {Dim,T} return Dim end function GeoInterface.ngeom(::AbstractGeometryTrait, ::Simplex{Dim,T,N,P}) where {Dim,T,N,P} return N end GeoInterface.ngeom(::PolygonTrait, ::Ngon) = 1 # can't have any holes GeoInterface.getgeom(::PolygonTrait, g::Ngon, _) = LineString(g.points) function GeoInterface.ncoord(::PolyhedralSurfaceTrait, ::Mesh{Dim,T,E,V} where {Dim,T,E,V}) return Dim end GeoInterface.ngeom(::PolyhedralSurfaceTrait, g::AbstractMesh) = length(g) GeoInterface.getgeom(::PolyhedralSurfaceTrait, g::AbstractMesh, i) = g[i] function GeoInterface.convert(::Type{Point}, type::PointTrait, geom) x, y = GeoInterface.x(geom), GeoInterface.y(geom) if GeoInterface.is3d(geom) z = GeoInterface.z(geom) T = promote_type(typeof(x), typeof(y), typeof(z)) return Point{3,T}(x, y, z) else GeoInterface.x(geom), GeoInterface.y(geom) T = promote_type(typeof(x), typeof(y)) return Point{2,T}(x, y) end end function GeoInterface.convert(::Type{LineString}, type::LineStringTrait, geom) g1 = getgeom(geom, 1) x, y = GeoInterface.x(g1), GeoInterface.y(g1) if GeoInterface.is3d(geom) z = GeoInterface.z(g1) T = promote_type(typeof(x), typeof(y), typeof(z)) return LineString([Point{3,T}(GeoInterface.x(p), GeoInterface.y(p), GeoInterface.z(p)) for p in getgeom(geom)]) else T = promote_type(typeof(x), typeof(y)) return LineString([Point{2,T}(GeoInterface.x(p), GeoInterface.y(p)) for p in getgeom(geom)]) end end function GeoInterface.convert(::Type{Polygon}, type::PolygonTrait, geom) t = LineStringTrait() exterior = GeoInterface.convert(LineString, t, GeoInterface.getexterior(geom)) if GeoInterface.nhole(geom) == 0 return Polygon(exterior) else interiors = map(h -> GeoInterface.convert(LineString, t, h), GeoInterface.gethole(geom)) return Polygon(exterior, interiors) end end function GeoInterface.convert(::Type{MultiPoint}, type::MultiPointTrait, geom) g1 = getgeom(geom, 1) x, y = GeoInterface.x(g1), GeoInterface.y(g1) if GeoInterface.is3d(geom) z = GeoInterface.z(g1) T = promote_type(typeof(x), typeof(y), typeof(z)) return MultiPoint([Point{3,T}(GeoInterface.x(p), GeoInterface.y(p), GeoInterface.z(p)) for p in getgeom(geom)]) else T = promote_type(typeof(x), typeof(y)) return MultiPoint([Point{2,T}(GeoInterface.x(p), GeoInterface.y(p)) for p in getgeom(geom)]) end end function GeoInterface.convert(::Type{MultiLineString}, type::MultiLineStringTrait, geom) t = LineStringTrait() return MultiLineString(map(l -> GeoInterface.convert(LineString, t, l), getgeom(geom))) end function GeoInterface.convert(::Type{MultiPolygon}, type::MultiPolygonTrait, geom) t = PolygonTrait() return MultiPolygon(map(poly -> GeoInterface.convert(Polygon, t, poly), getgeom(geom))) end function Extents.extent(rect::Rect2) (xmin, ymin), (xmax, ymax) = extrema(rect) return Extents.Extent(X=(xmin, xmax), Y=(ymin, ymax)) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
4609
## # Generic base overloads Base.extrema(primitive::GeometryPrimitive) = (minimum(primitive), maximum(primitive)) function widths(x::AbstractRange) mini, maxi = Float32.(extrema(x)) return maxi - mini end ## # conversion & decompose convert_simplex(::Type{T}, x::T) where {T} = (x,) function convert_simplex(NFT::Type{NgonFace{N,T1}}, f::Union{NgonFace{N,T2}}) where {T1,T2,N} return (convert(NFT, f),) end function convert_simplex(NFT::Type{NgonFace{3,T}}, f::NgonFace{3,T2}) where {T,T2} return (convert(NFT, f),) end function convert_simplex(NFT::Type{NgonFace{2,T}}, f::NgonFace{2,T2}) where {T,T2} return (convert(NFT, f),) end """ convert_simplex(::Type{Face{3}}, f::Face{N}) Triangulate an N-Face into a tuple of triangular faces. """ @generated function convert_simplex(::Type{TriangleFace{T}}, f::Union{SimplexFace{N},NgonFace{N}}) where {T,N} 3 <= N || error("decompose not implemented for N <= 3 yet. N: $N")# other wise degenerate v = Expr(:tuple) for i in 3:N push!(v.args, :(TriangleFace{T}(f[1], f[$(i - 1)], f[$i]))) end return v end """ convert_simplex(::Type{Face{2}}, f::Face{N}) Extract all line segments in a Face. """ @generated function convert_simplex(::Type{LineFace{T}}, f::Union{SimplexFace{N},NgonFace{N}}) where {T,N} 2 <= N || error("decompose not implented for N <= 2 yet. N: $N")# other wise degenerate v = Expr(:tuple) for i in 1:(N - 1) push!(v.args, :(LineFace{$T}(f[$i], f[$(i + 1)]))) end # connect vertices N and 1 push!(v.args, :(LineFace{$T}(f[$N], f[1]))) return v end to_pointn(::Type{T}, x) where {T<:Point} = convert_simplex(T, x)[1] # disambiguation method overlords convert_simplex(::Type{Point}, x::Point) = (x,) convert_simplex(::Type{Point{N,T}}, p::Point{N,T}) where {N,T} = (p,) function convert_simplex(::Type{Point{N,T}}, x) where {N,T} N2 = length(x) return (Point{N,T}(ntuple(i -> i <= N2 ? T(x[i]) : T(0), N)),) end function convert_simplex(::Type{Vec{N,T}}, x) where {N,T} N2 = length(x) return (Vec{N,T}(ntuple(i -> i <= N2 ? T(x[i]) : T(0), N)),) end collect_with_eltype(::Type{T}, vec::Vector{T}) where {T} = vec collect_with_eltype(::Type{T}, vec::AbstractVector{T}) where {T} = collect(vec) function collect_with_eltype(::Type{T}, iter) where {T} isempty(iter) && return T[] # We need to get `eltype` information from `iter`, it seems to be `Any` # most of the time so the eltype checks here don't actually work l = if Base.IteratorSize(iter) isa Union{Base.HasShape,Base.HasLength} if Base.IteratorEltype(iter) isa Base.HasEltype && isconcretetype(eltype(iter)) # Work out the exact length length(convert_simplex(T, first(iter))) * length(iter) else # We know it is at least the length of iter, # after that we will `push!` if we have to length(iter) end else 0 end n = 0 result = Vector{T}(undef, l) for element in iter # convert_simplex always returns a tuple, # so that e.g. convert(Triangle, quad) can return 2 elements for telement in convert_simplex(T, element) n += 1 if n > l push!(result, telement) else result[n] = telement end end end return result end """ The unnormalized normal of three vertices. """ function orthogonal_vector(v1, v2, v3) a = v2 - v1 b = v3 - v1 return cross(a, b) end """ ``` normals{VT,FD,FT,FO}(vertices::Vector{Point{3, VT}}, faces::Vector{Face{FD,FT,FO}}, NT = Normal{3, VT}) ``` Compute all vertex normals. """ function normals(vertices::AbstractVector{<:AbstractPoint{3,T}}, faces::AbstractVector{F}; normaltype=Vec{3,T}) where {T,F<:NgonFace} return normals(vertices, faces, normaltype) end function normals(vertices::AbstractVector{<:AbstractPoint{3,T}}, faces::AbstractVector{F}, ::Type{N}) where {T,F<:NgonFace,N} normals_result = zeros(N, length(vertices)) for face in faces v = metafree.(vertices[face]) # we can get away with two edges since faces are planar. n = orthogonal_vector(v[1], v[2], v[3]) for i in 1:length(F) fi = face[i] normals_result[fi] = normals_result[fi] + n end end normals_result .= normalize.(normals_result) return normals_result end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
5969
""" coordinates(geometry) Returns the edges/vertices/coordinates of a geometry. Is allowed to return lazy iterators! Use `decompose(ConcretePointType, geometry)` to get `Vector{ConcretePointType}` with `ConcretePointType` to be something like `Point{3, Float32}`. """ function coordinates(points::AbstractVector{<:AbstractPoint}) return points end """ faces(geometry) Returns the face connections of a geometry. Is allowed to return lazy iterators! Use `decompose(ConcreteFaceType, geometry)` to get `Vector{ConcreteFaceType}` with `ConcreteFaceType` to be something like `TriangleFace{Int}`. """ function faces(f::AbstractVector{<:AbstractFace}) return f end function normals(primitive, nvertices=nothing; kw...) # doesn't have any specific algorithm to generate normals # so will be generated from faces + positions # which we indicate by returning nothing! # Overload normals(primitive::YourPrimitive), to calcalute the normals # differently return nothing end function faces(primitive, nvertices=nothing; kw...) # doesn't have any specific algorithm to generate faces # so will try to triangulate the coordinates! return nothing end texturecoordinates(primitive, nvertices=nothing) = nothing """ Tesselation(primitive, nvertices) For abstract geometries, when we generate a mesh from them, we need to decide how fine grained we want to mesh them. To transport this information to the various decompose methods, you can wrap it in the Tesselation object e.g. like this: ```julia sphere = Sphere(Point3f(0), 1) m1 = mesh(sphere) # uses a default value for tesselation m2 = mesh(Tesselation(sphere, 64)) # uses 64 for tesselation length(coordinates(m1)) != length(coordinates(m2)) ``` For grid based tesselation, you can also use a tuple: ```julia rect = Rect2(0, 0, 1, 1) Tesselation(rect, (5, 5)) """ struct Tesselation{Dim,T,Primitive,NGrid} primitive::Primitive nvertices::NTuple{NGrid,Int} end function Tesselation(primitive::GeometryPrimitive{Dim,T}, nvertices::NTuple{N,<:Integer}) where {Dim,T,N} return Tesselation{Dim,T,typeof(primitive),N}(primitive, Int.(nvertices)) end Tesselation(primitive, nvertices::Integer) = Tesselation(primitive, (nvertices,)) # This is a bit lazy, I guess we should just refactor these methods # to directly work on Tesselation - but this way it's backward compatible and less # refactor work :D nvertices(tesselation::Tesselation) = tesselation.nvertices nvertices(tesselation::Tesselation{T,N,P,1}) where {T,N,P} = tesselation.nvertices[1] function coordinates(tesselation::Tesselation) return coordinates(tesselation.primitive, nvertices(tesselation)) end faces(tesselation::Tesselation) = faces(tesselation.primitive, nvertices(tesselation)) normals(tesselation::Tesselation) = normals(tesselation.primitive, nvertices(tesselation)) function texturecoordinates(tesselation::Tesselation) return texturecoordinates(tesselation.primitive, nvertices(tesselation)) end ## Decompose methods # Dispatch type to make `decompose(UV{Vec2f}, primitive)` work # and to pass through tesselation information # Types that can be converted to a mesh via the functions below const Meshable{Dim,T} = Union{Tesselation{Dim,T},Mesh{Dim,T},AbstractPolygon{Dim,T}, GeometryPrimitive{Dim,T}, AbstractVector{<:AbstractPoint{Dim,T}}} struct UV{T} end UV(::Type{T}) where {T} = UV{T}() UV() = UV(Vec2f) struct UVW{T} end UVW(::Type{T}) where {T} = UVW{T}() UVW() = UVW(Vec3f) struct Normal{T} end Normal(::Type{T}) where {T} = Normal{T}() Normal() = Normal(Vec3f) function decompose(::Type{F}, primitive) where {F<:AbstractFace} f = faces(primitive) f === nothing && return nothing return collect_with_eltype(F, f) end function decompose(::Type{P}, primitive) where {P<:AbstractPoint} return collect_with_eltype(P, metafree(coordinates(primitive))) end function decompose(::Type{Point}, primitive::Meshable{Dim,T}) where {Dim,T} return collect_with_eltype(Point{Dim,T}, metafree(coordinates(primitive))) end function decompose(::Type{Point}, primitive::LineString{Dim,T}) where {Dim,T} return collect_with_eltype(Point{Dim,T}, metafree(coordinates(primitive))) end function decompose(::Type{T}, primitive) where {T} return collect_with_eltype(T, primitive) end decompose_uv(primitive) = decompose(UV(), primitive) decompose_uvw(primitive) = decompose(UVW(), primitive) decompose_normals(primitive) = decompose(Normal(), primitive) function decompose(NT::Normal{T}, primitive) where {T} n = normals(primitive) if n === nothing return collect_with_eltype(T, normals(coordinates(primitive), faces(primitive))) end return collect_with_eltype(T, n) end function decompose(UVT::Union{UV{T},UVW{T}}, primitive) where {T} # This is the fallback for texture coordinates if a primitive doesn't overload them # We just take the positions and normalize them uv = texturecoordinates(primitive) if uv === nothing # If the primitive doesn't even have coordinates, we're out of options and return # nothing, indicating that texturecoordinates aren't implemented positions = decompose(Point, primitive) positions === nothing && return nothing # Let this overlord do the work return decompose(UVT, positions) end return collect_with_eltype(T, uv) end function decompose(UVT::Union{UV{T},UVW{T}}, positions::AbstractVector{<:VecTypes}) where {T} N = length(T) positions_nd = decompose(Point{N,eltype(T)}, positions) bb = Rect(positions_nd) # Make sure we get this as points return map(positions_nd) do p return T((p .- minimum(bb)) ./ widths(bb)) end end # Stay backward compatible: function decompose(::Type{T}, primitive::Meshable, nvertices) where {T} return decompose(T, Tesselation(primitive, nvertices)) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
3678
""" intersects(a::Line, b::Line) -> Bool, Point Intersection of 2 line segments `a` and `b`. Returns `(intersection_found::Bool, intersection_point::Point)` """ # 2D Line-segment intersection algorithm by Paul Bourke and many others. # http://paulbourke.net/geometry/pointlineplane/ function intersects(a::Line{2,T1}, b::Line{2,T2}) where {T1,T2} T = promote_type(T1, T2) p0 = zero(Point2{T}) x1, y1 = a[1] x2, y2 = a[2] x3, y3 = b[1] x4, y4 = b[2] denominator = ((y4 - y3) * (x2 - x1)) - ((x4 - x3) * (y2 - y1)) numerator_a = ((x4 - x3) * (y1 - y3)) - ((y4 - y3) * (x1 - x3)) numerator_b = ((x2 - x1) * (y1 - y3)) - ((y2 - y1) * (x1 - x3)) if denominator == 0 # no intersection: lines are parallel return false, p0 end # If we ever need to know if the lines are coincident, we can get that too: # denominator == numerator_a == numerator_b == 0 && return :coincident_lines # unknown_a and b tell us how far along the line segment the intersection is. unknown_a = numerator_a / denominator unknown_b = numerator_b / denominator # Values between [0, 1] mean the intersection point of the lines rests on # both of the line segments. if 0 <= unknown_a <= 1 && 0 <= unknown_b <= 1 # Substituting an unknown back lets us find the intersection point. x = x1 + (unknown_a * (x2 - x1)) y = y1 + (unknown_a * (y2 - y1)) return true, Point2{T}(x, y) end # lines intersect, but outside of at least one of these line segments. return false, p0 end function simple_concat(vec::AbstractVector, range, endpoint::P) where {P} result = Vector{P}(undef, length(range) + 1) for (i, j) in enumerate(range) result[i] = vec[mod1(j, length(vec))] end result[end] = endpoint return result end function consecutive_pairs(arr) n = length(arr) return zip(view(arr, 1:(n - 1)), view(arr, 2:n)) end """ self_intersections(points::AbstractVector{AbstractPoint}) Finds all self intersections of polygon `points` """ function self_intersections(points::AbstractVector{<:AbstractPoint}) sections = similar(points, 0) intersections = Int[] wraparound(i) = mod1(i, length(points) - 1) for (i, (a, b)) in enumerate(consecutive_pairs(points)) for (j, (a2, b2)) in enumerate(consecutive_pairs(points)) is1, is2 = wraparound(i + 1), wraparound(i - 1) if i != j && is1 != j && is2 != j && !(i in intersections) && !(j in intersections) intersected, p = intersects(Line(a, b), Line(a2, b2)) if intersected push!(intersections, i, j) push!(sections, p) end end end end return intersections, sections end """ split_intersections(points::AbstractVector{AbstractPoint}) Splits polygon `points` into it's self intersecting parts. Only 1 intersection is handled right now. """ function split_intersections(points::AbstractVector{<:AbstractPoint}) intersections, sections = self_intersections(points) return if isempty(intersections) return [points] elseif length(intersections) == 2 && length(sections) == 1 a, b = intersections p = sections[1] a, b = min(a, b), max(a, b) poly1 = simple_concat(points, (a + 1):(b - 1), p) poly2 = simple_concat(points, (b + 1):(length(points) + a), p) return [poly1, poly2] else error("More than 1 intersections can't be handled currently. Found: $intersections, $sections") end end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
10411
const FaceMesh{Dim,T,Element} = Mesh{Dim,T,Element,<:FaceView{Element}} coordinates(mesh::FaceMesh) = coordinates(getfield(mesh, :simplices)) faces(mesh::FaceMesh) = faces(getfield(mesh, :simplices)) function texturecoordinates(mesh::AbstractMesh) hasproperty(mesh, :uv) && return mesh.uv hasproperty(mesh, :uvw) && return mesh.uvw return nothing end function normals(mesh::AbstractMesh) hasproperty(mesh, :normals) && return mesh.normals return nothing end const GLTriangleElement = Triangle{3,Float32} const GLTriangleFace = TriangleFace{GLIndex} const PointWithUV{Dim,T} = PointMeta{Dim,T,Point{Dim,T},(:uv,),Tuple{Vec{2,T}}} const PointWithNormal{Dim,T} = PointMeta{Dim,T,Point{Dim,T},(:normals,),Tuple{Vec{3,T}}} const PointWithUVNormal{Dim,T} = PointMeta{Dim,T,Point{Dim,T},(:normals, :uv), Tuple{Vec{3,T},Vec{2,T}}} const PointWithUVWNormal{Dim,T} = PointMeta{Dim,T,Point{Dim,T},(:normals, :uvw), Tuple{Vec{3,T},Vec{3,T}}} """ TriangleMesh{Dim, T, PointType} Abstract Mesh with triangle elements of eltype `T`. """ const TriangleMesh{Dim,T,PointType} = AbstractMesh{TriangleP{Dim,T,PointType}} """ PlainMesh{Dim, T} Triangle mesh with no meta information (just points + triangle faces) """ const PlainMesh{Dim,T} = TriangleMesh{Dim,T,Point{Dim,T}} const GLPlainMesh{Dim} = PlainMesh{Dim,Float32} const GLPlainMesh2D = GLPlainMesh{2} const GLPlainMesh3D = GLPlainMesh{3} """ UVMesh{Dim, T} PlainMesh with texture coordinates meta at each point. `uvmesh.uv isa AbstractVector{Vec2f}` """ const UVMesh{Dim,T} = TriangleMesh{Dim,T,PointWithUV{Dim,T}} const GLUVMesh{Dim} = UVMesh{Dim,Float32} const GLUVMesh2D = UVMesh{2} const GLUVMesh3D = UVMesh{3} """ NormalMesh{Dim, T} PlainMesh with normals meta at each point. `normalmesh.normals isa AbstractVector{Vec3f}` """ const NormalMesh{Dim,T} = TriangleMesh{Dim,T,PointWithNormal{Dim,T}} const GLNormalMesh{Dim} = NormalMesh{Dim,Float32} const GLNormalMesh2D = GLNormalMesh{2} const GLNormalMesh3D = GLNormalMesh{3} """ NormalUVMesh{Dim, T} PlainMesh with normals and uv meta at each point. `normalmesh.normals isa AbstractVector{Vec3f}` `normalmesh.uv isa AbstractVector{Vec2f}` """ const NormalUVMesh{Dim,T} = TriangleMesh{Dim,T,PointWithUVNormal{Dim,T}} const GLNormalUVMesh{Dim} = NormalUVMesh{Dim,Float32} const GLNormalUVMesh2D = GLNormalUVMesh{2} const GLNormalUVMesh3D = GLNormalUVMesh{3} """ NormalUVWMesh{Dim, T} PlainMesh with normals and uvw (texture coordinates in 3D) meta at each point. `normalmesh.normals isa AbstractVector{Vec3f}` `normalmesh.uvw isa AbstractVector{Vec3f}` """ const NormalUVWMesh{Dim,T} = TriangleMesh{Dim,T,PointWithUVWNormal{Dim,T}} const GLNormalUVWMesh{Dim} = NormalUVWMesh{Dim,Float32} const GLNormalUVWMesh2D = GLNormalUVWMesh{2} const GLNormalUVWMesh3D = GLNormalUVWMesh{3} function decompose_triangulate_fallback(primitive::Meshable; pointtype, facetype) positions = decompose(pointtype, primitive) faces = decompose(facetype, primitive) # If faces returns nothing for primitive, we try to triangulate! if faces === nothing # triangulation.jl faces = decompose(facetype, positions) end return positions, faces end """ mesh(primitive::GeometryPrimitive; pointtype=Point, facetype=GLTriangle, uv=nothing, normaltype=nothing) Creates a mesh from `primitive`. Uses the element types from the keyword arguments to create the attributes. The attributes that have their type set to nothing are not added to the mesh. Note, that this can be an `Int` or `Tuple{Int, Int}``, when the primitive is grid based. It also only losely correlates to the number of vertices, depending on the algorithm used. #TODO: find a better number here! """ function mesh(primitive::Meshable; pointtype=Point, facetype=GLTriangleFace, uv=nothing, normaltype=nothing) positions, faces = decompose_triangulate_fallback(primitive; pointtype=pointtype, facetype=facetype) # We want to preserve any existing attributes! attrs = attributes(primitive) # Make sure this doesn't contain position, we'll add position explicitely via meta! delete!(attrs, :position) if uv !== nothing # this may overwrite an existing :uv, but will only create a copy # if it has a different eltype, otherwise it should replace it # with exactly the same instance - which is what we want here attrs[:uv] = decompose(UV(uv), primitive) end if normaltype !== nothing primitive_normals = normals(primitive) if primitive_normals !== nothing attrs[:normals] = decompose(normaltype, primitive_normals) else # Normals not implemented for primitive, so we calculate them! n = normals(positions, faces; normaltype=normaltype) if n !== nothing # ok jeez, this is a 2d mesh which cant have normals attrs[:normals] = n end end end return Mesh(meta(positions; attrs...), faces) end """ mesh(polygon::AbstractVector{P}; pointtype=P, facetype=GLTriangleFace, normaltype=nothing) Create a mesh from a polygon given as a vector of points, using triangulation. """ function mesh(polygon::AbstractVector{P}; pointtype=P, facetype=GLTriangleFace, normaltype=nothing) where {P<:AbstractPoint{2}} return mesh(Polygon(polygon); pointtype=pointtype, facetype=facetype, normaltype=normaltype) end function mesh(polygon::AbstractPolygon{Dim,T}; pointtype=Point{Dim,T}, facetype=GLTriangleFace, normaltype=nothing) where {Dim,T} positions, faces = decompose_triangulate_fallback(polygon; pointtype=pointtype, facetype=facetype) if normaltype !== nothing n = normals(positions, faces; normaltype=normaltype) positions = meta(positions; normals=n) end return Mesh(positions, faces) end pointtype(x::Mesh) = eltype(decompose(Point, x)) facetype(x::Mesh) = eltype(faces(x)) function triangle_mesh(primitive::Mesh{N}) where {N} # already target type: if pointtype(primitive) === Point{N,Float32} && GLTriangleFace === facetype(primitive) return primitive else return mesh(primitive; pointtype=Point{N,Float32}, facetype=GLTriangleFace) end end function triangle_mesh(primitive::Meshable{N}; nvertices=nothing) where {N} if nvertices !== nothing @warn("nvertices argument deprecated. Wrap primitive in `Tesselation(primitive, nvertices)`") primitive = Tesselation(primitive, nvertices) end return mesh(primitive; pointtype=Point{N,Float32}, facetype=GLTriangleFace) end function uv_mesh(primitive::Meshable{N,T}) where {N,T} return mesh(primitive; pointtype=Point{N,Float32}, uv=Vec2f, facetype=GLTriangleFace) end function uv_normal_mesh(primitive::Meshable{N}) where {N} return mesh(primitive; pointtype=Point{N,Float32}, uv=Vec2f, normaltype=Vec3f, facetype=GLTriangleFace) end function normal_mesh(points::AbstractVector{<:AbstractPoint}, faces::AbstractVector{<:AbstractFace}) _points = decompose(Point3f, points) _faces = decompose(GLTriangleFace, faces) return Mesh(meta(_points; normals=normals(_points, _faces)), _faces) end function normal_mesh(primitive::Meshable{N}; nvertices=nothing) where {N} if nvertices !== nothing @warn("nvertices argument deprecated. Wrap primitive in `Tesselation(primitive, nvertices)`") primitive = Tesselation(primitive, nvertices) end return mesh(primitive; pointtype=Point{N,Float32}, normaltype=Vec3f, facetype=GLTriangleFace) end """ volume(triangle) Calculate the signed volume of one tetrahedron. Be sure the orientation of your surface is right. """ function volume(triangle::Triangle) v1, v2, v3 = triangle sig = sign(orthogonal_vector(v1, v2, v3) β‹… v1) return sig * abs(v1 β‹… (v2 Γ— v3)) / 6 end """ volume(mesh) Calculate the signed volume of all tetrahedra. Be sure the orientation of your surface is right. """ function volume(mesh::Mesh) return sum(volume, mesh) end function Base.merge(meshes::AbstractVector{<:Mesh}) return if isempty(meshes) error("No meshes to merge") elseif length(meshes) == 1 return meshes[1] else ps = reduce(vcat, coordinates.(meshes)) fs = reduce(vcat, faces.(meshes)) idx = length(faces(meshes[1])) offset = length(coordinates(meshes[1])) for mesh in Iterators.drop(meshes, 1) N = length(faces(mesh)) for i = idx .+ (1:N) fs[i] = fs[i] .+ offset end idx += N offset += length(coordinates(mesh)) end return Mesh(ps, fs) end end """ pointmeta(mesh::Mesh; meta_data...) Attaches metadata to the coordinates of a mesh """ function pointmeta(mesh::Mesh; meta_data...) points = coordinates(mesh) attr = attributes(points) delete!(attr, :position) # position == metafree(points) # delete overlapping attributes so we can replace with `meta_data` foreach(k -> delete!(attr, k), keys(meta_data)) return Mesh(meta(metafree(points); attr..., meta_data...), faces(mesh)) end function pointmeta(mesh::Mesh, uv::UV) return pointmeta(mesh; uv=decompose(uv, mesh)) end function pointmeta(mesh::Mesh, normal::Normal) return pointmeta(mesh; normals=decompose(normal, mesh)) end """ pop_pointmeta(mesh::Mesh, property::Symbol) Remove `property` from point metadata. Returns the new mesh, and the property! """ function pop_pointmeta(mesh::Mesh, property::Symbol) points = coordinates(mesh) attr = attributes(points) delete!(attr, :position) # position == metafree(points) # delete overlapping attributes so we can replace with `meta_data` m = pop!(attr, property) return Mesh(meta(metafree(points); attr...), faces(mesh)), m end """ facemeta(mesh::Mesh; meta_data...) Attaches metadata to the faces of a mesh """ function facemeta(mesh::Mesh; meta_data...) return Mesh(coordinates(mesh), meta(faces(mesh); meta_data...)) end function attributes(hasmeta::Mesh) return Dict{Symbol,Any}((name => getproperty(hasmeta, name) for name in propertynames(hasmeta))) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
10858
#= Helper functions that works around the fact, that there is no generic Table interface for this functionality. Once this is in e.g. Tables.jl, it should be removed from GeometryBasics! =# """ attributes(hasmeta) Returns all attributes of meta as a Dict{Symbol, Any}. Needs to be overloaded, and returns empty dict for non overloaded types! Gets overloaded by default for all Meta types. """ function attributes(hasmeta) return Dict{Symbol,Any}() end function attributes(hasmeta::StructArray) return Dict{Symbol,Any}((name => getproperty(hasmeta, name) for name in propertynames(hasmeta))) end """ getcolumns(t, colnames::Symbol...) Gets a column from any Array like (Table/AbstractArray). For AbstractVectors, a column will be the field names of the element type. """ function getcolumns(tablelike, colnames::Symbol...) return getproperty.((tablelike,), colnames) end getcolumn(t, colname::Symbol) = getcolumns(t, colname)[1] """ MetaType(::Type{T}) Returns the Meta Type corresponding to `T` E.g: ```julia MetaType(Point) == PointMeta ``` """ MetaType(::Type{T}) where {T} = error("No Meta Type for $T") """ MetaFree(::Type{T}) Returns the original type containing no metadata for `T` E.g: ```julia MetaFree(PointMeta) == Point ``` """ MetaFree(::Type{T}) where {T} = error("No meta free Type for $T") """ meta(x::MetaObject) Returns the metadata of `x` """ meta(x::T) where {T} = error("$T has no meta!") metafree(x::T) where {T} = x macro meta_type(name, mainfield, supertype, params...) MetaName = Symbol("$(name)Meta") field = QuoteNode(mainfield) NoParams = Symbol("$(MetaName)NoParams") params_sym = map(params) do param param isa Symbol && return param param isa Expr && param.head == :(<:) && return param.args[1] return error("Unsupported type parameter: $(param)") end expr = quote struct $MetaName{$(params...),Typ<:$supertype{$(params_sym...)},Names,Types} <: $supertype{$(params_sym...)} main::Typ meta::NamedTuple{Names,Types} end const $NoParams{Typ,Names,Types} = $MetaName{$(params_sym...),Typ,Names, Types} where {$(params_sym...)} function Base.getproperty(x::$MetaName{$(params_sym...),Typ,Names,Types}, field::Symbol) where {$(params...),Typ,Names,Types} field === $field && return getfield(x, :main) field === :main && return getfield(x, :main) Base.sym_in(field, Names) && return getfield(getfield(x, :meta), field) return error("Field $field not part of Element") end function GeometryBasics.MetaType(XX::Type{<:$supertype{$(params_sym...)} where {$(params...)}}) return $MetaName end function GeometryBasics.MetaType(ST::Type{<:$supertype{$(params_sym...)}}, ::Type{NamedTuple{Names,Types}}) where {$(params...), Names, Types} return $MetaName{$(params_sym...),ST,Names,Types} end GeometryBasics.MetaFree(::Type{<:$MetaName{$(params_sym...),Typ}}) where {$(params_sym...), Typ<:$supertype{$(params_sym...)} } = Typ GeometryBasics.MetaFree(::Type{<:$MetaName}) = $name GeometryBasics.metafree(x::$MetaName) = getfield(x, :main) GeometryBasics.metafree(x::AbstractVector{<:$MetaName}) = getproperty(x, $field) GeometryBasics.meta(x::$MetaName) = getfield(x, :meta) GeometryBasics.meta(x::AbstractVector{<:$MetaName}) = getproperty(x, :meta) function GeometryBasics.meta(main::$supertype{$(params_sym...)}; meta...) where {$(params...)} isempty(meta) && return elements # no meta to add! return $MetaName(main; meta...) end function GeometryBasics.meta(elements::AbstractVector{XX}; meta...) where {XX<:$supertype{$(params_sym...)}} where {$(params...)} isempty(meta) && return elements # no meta to add! n = length(elements) for (k, v) in meta if v isa AbstractVector mn = length(v) mn != n && error("Metadata array needs to have same length as data. Found $(n) data items, and $mn metadata items") else error("Metadata needs to be an array with the same length as data items. Found: $(typeof(v))") end end nt = values(meta) # get the first element to get the per element named tuple type ElementNT = typeof(map(first, nt)) return StructArray{MetaType(XX, ElementNT)}(($(mainfield)=elements, nt...)) end function GeometryBasics.attributes(hasmeta::$MetaName) return Dict{Symbol,Any}((name => getproperty(hasmeta, name) for name in propertynames(hasmeta))) end function (MT::Type{<:$MetaName})(args...; meta...) nt = values(meta) obj = MetaFree(MT)(args...) return MT(obj, nt) end function (MT::Type{<:$MetaName})(main::$(name); meta...) nt = values(meta) return MT(main, nt) end function Base.propertynames(::$MetaName{$(params_sym...),Typ,Names,Types}) where {$(params...), Typ, Names, Types} return ($field, Names...) end function StructArrays.component(x::$MetaName{$(params_sym...),Typ,Names,Types}, field::Symbol) where {$(params...),Typ,Names,Types} return getproperty(x, field) end function StructArrays.staticschema(::Type{$MetaName{$(params_sym...),Typ,Names, Types}}) where {$(params...), Typ,Names,Types} return NamedTuple{($field, Names...),Base.tuple_type_cons(Typ, Types)} end function StructArrays.createinstance(::Type{$MetaName{$(params_sym...),Typ,Names, Types}}, metafree, args...) where {$(params...),Typ,Names,Types} return $MetaName(metafree, NamedTuple{Names,Types}(args)) end end return esc(expr) end @meta_type(Point, position, AbstractPoint, Dim, T) Base.getindex(x::PointMeta, idx::Int) = getindex(metafree(x), idx) @meta_type(NgonFace, ngon, AbstractNgonFace, N, T) Base.getindex(x::NgonFaceMeta, idx::Int) = getindex(metafree(x), idx) @meta_type(SimplexFace, simplex, AbstractSimplexFace, N, T) Base.getindex(x::SimplexFaceMeta, idx::Int) = getindex(metafree(x), idx) @meta_type(Polygon, polygon, AbstractPolygon, N, T) @meta_type(LineString, lines, AbstractVector, P <: Line) Base.getindex(x::LineStringMeta, idx::Int) = getindex(metafree(x), idx) Base.size(x::LineStringMeta) = size(metafree(x)) @meta_type(MultiPoint, points, AbstractVector, P <: AbstractPoint) Base.getindex(x::MultiPointMeta, idx::Int) = getindex(metafree(x), idx) Base.size(x::MultiPointMeta) = size(metafree(x)) @meta_type(MultiLineString, linestrings, AbstractVector, P <: LineString) Base.getindex(x::MultiLineStringMeta, idx::Int) = getindex(metafree(x), idx) Base.size(x::MultiLineStringMeta) = size(metafree(x)) @meta_type(MultiPolygon, polygons, AbstractVector, P <: Polygon) Base.getindex(x::MultiPolygonMeta, idx::Int) = getindex(metafree(x), idx) Base.size(x::MultiPolygonMeta) = size(metafree(x)) @meta_type(Mesh, mesh, AbstractMesh, Element <: Polytope) Base.getindex(x::MeshMeta, idx::Int) = getindex(metafree(x), idx) Base.size(x::MeshMeta) = size(metafree(x)) """ MetaT(geometry, meta::NamedTuple) MetaT(geometry; meta...) Returns a `MetaT` that holds a geometry and its metadata `MetaT` acts the same as `Meta` method. The difference lies in the fact that it is designed to handle geometries and metadata of different/heterogeneous types. eg: While a Point MetaGeometry is a `PointMeta`, the MetaT representation is `MetaT{Point}` The downside being it's not subtyped to `AbstractPoint` like a `PointMeta` is. Example: ```julia julia> MetaT(Point(1, 2), city = "Mumbai") MetaT{Point{2,Int64},(:city,),Tuple{String}}([1, 2], (city = "Mumbai",)) ``` """ struct MetaT{T,Names,Types} main::T meta::NamedTuple{Names,Types} end MetaT(x; kwargs...) = MetaT(x, values(kwargs)) """ metafree(x::MetaT) metafree(x::Array{MetaT}) Free the MetaT from metadata i.e. returns the geometry/array of geometries """ function metafree(x::MetaT) return getfield(x, :main) end metafree(x::AbstractVector{<:MetaT}) = map(metafree, x) """ meta(x::MetaT) meta(x::Array{MetaT}) Returns the metadata of a `MetaT` """ function meta(x::MetaT) return getfield(x, :meta) end meta(x::AbstractVector{<:MetaT}) = map(meta, x) # helper methods function Base.getproperty(x::MetaT, field::Symbol) return if field == :main metafree(x) elseif field == :meta meta(x) else getproperty(meta(x), field) end end Base.propertynames(x::MetaT) = (:main, propertynames(meta(x))...) getnamestypes(::Type{MetaT{T,Names,Types}}) where {T,Names,Types} = (T, Names, Types) # explicitly give the "schema" of the object to StructArrays function StructArrays.staticschema(::Type{F}) where {F<:MetaT} T, names, types = getnamestypes(F) return NamedTuple{(:main, names...),Base.tuple_type_cons(T, types)} end # generate an instance of MetaT type function StructArrays.createinstance(::Type{F}, x, args...) where {F<:MetaT} T, names, types = getnamestypes(F) return MetaT(x, NamedTuple{names,types}(args)) end """ Puts an iterable of MetaT's into a StructArray """ function meta_table(iter) cols = Tables.columntable(iter) return meta_table(first(cols), Base.tail(cols)) end function meta_table(main, meta::NamedTuple{names}) where {names} eltypes = Tuple{map(eltype, values(meta))...} F = MetaT{eltype(main),names,eltypes} return StructArray{F}(; main=main, meta...) end Base.getindex(x::MetaT, idx::Int) = getindex(metafree(x), idx) Base.size(x::MetaT) = size(metafree(x))
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
2541
""" OffsetInteger{O, T} OffsetInteger type mainly for indexing. * `O` - The offset relative to Julia arrays. This helps reduce copying when communicating with 0-indexed systems such as OpenGL. """ struct OffsetInteger{O,T<:Integer} <: Integer i::T OffsetInteger{O,T}(x::Integer) where {O,T<:Integer} = new{O,T}(T(x + O)) end const ZeroIndex{T<:Integer} = OffsetInteger{-1,T} const OneIndex{T<:Integer} = OffsetInteger{0,T} const GLIndex = ZeroIndex{Cuint} raw(x::OffsetInteger) = x.i raw(x::Integer) = x value(x::OffsetInteger{O,T}) where {O,T} = raw(x) - O value(x::Integer) = x function show(io::IO, oi::OffsetInteger) return print(io, "|$(raw(oi)) (indexes as $(value(oi))|") end Base.eltype(::Type{OffsetInteger{O,T}}) where {O,T} = T Base.eltype(oi::OffsetInteger) = eltype(typeof(oi)) # constructors and conversion function OffsetInteger{O1,T1}(x::OffsetInteger{O2,T2}) where {O1,O2,T1<:Integer,T2<:Integer} return OffsetInteger{O1,T1}(convert(T2, x)) end OffsetInteger{O}(x::Integer) where {O} = OffsetInteger{O,eltype(x)}(x) OffsetInteger{O}(x::OffsetInteger) where {O} = OffsetInteger{O,eltype(x)}(x) # This constructor has a massive method invalidation as a consequence, # and doesn't seem to be needed, so let's remove it! Base.convert(::Type{IT}, x::OffsetInteger) where {IT<:Integer} = IT(value(x)) Base.promote_rule(::Type{IT}, ::Type{<:OffsetInteger}) where {IT<:Integer} = IT function Base.promote_rule(::Type{OffsetInteger{O1,T1}}, ::Type{OffsetInteger{O2,T2}}) where {O1,O2,T1<:Integer, T2<:Integer} return OffsetInteger{pure_max(O1, O2),promote_type(T1, T2)} end Base.@pure pure_max(x1, x2) = x1 > x2 ? x1 : x2 # Need to convert to Int here because of: https://github.com/JuliaLang/julia/issues/35038 Base.to_index(I::OffsetInteger) = convert(Int, raw(OneIndex(I))) Base.to_index(I::OffsetInteger{0}) = convert(Int, raw(I)) # basic operators for op in (:(-), :abs) @eval Base.$op(x::T) where {T<:OffsetInteger} = T($(op)(value(x))) end for op in (:(+), :(-), :(*), :(/), :div) @eval begin @inline function Base.$op(x::OffsetInteger{O}, y::OffsetInteger{O}) where {O} return OffsetInteger{O}($op(value(x), value(y))) end end end for op in (:(==), :(>=), :(<=), :(<), :(>), :sub_with_overflow) @eval begin @inline function Base.$op(x::OffsetInteger{O}, y::OffsetInteger{O}) where {O} return $op(x.i, y.i) end end end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
2908
macro warnpcfail(ex::Expr) modl = __module__ file = __source__.file === nothing ? "?" : String(__source__.file) line = __source__.line quote $(esc(ex)) || @warn """precompile directive $($(Expr(:quote, ex))) failed. Please report an issue in $($modl) (after checking for duplicates) or remove this directive.""" _file=$file _line=$line end end function _precompile_() ccall(:jl_generating_output, Cint, ()) == 1 || return nothing @warnpcfail precompile(HyperRectangle{2,Float32}, (Int, Int, Int, Int)) @warnpcfail precompile(==, (HyperRectangle{2,Float32}, HyperRectangle{2,Float32})) @warnpcfail precompile(normal_mesh, (Tesselation{3,Float32,Cylinder{3,Float32},1},)) @warnpcfail precompile(normal_mesh, (Tesselation{3,Float32,HyperSphere{3,Float32},1},)) @warnpcfail precompile(normal_mesh, (HyperSphere{3,Float32},)) @warnpcfail precompile(Tuple{typeof(*),SMatrix{4, 4, Float32, 16},HyperRectangle{3, Float32}}) # time: 0.11091917 @warnpcfail precompile(Tuple{typeof(coordinates),HyperRectangle{2, Float32},Tuple{Int64, Int64}}) # time: 0.08693867 @warnpcfail precompile(union, (HyperRectangle{3, Float32}, HyperRectangle{3, Float32})) @warnpcfail precompile(Tuple{typeof(decompose),Type{Point{2, Float32}},HyperRectangle{2, Float32}}) # time: 0.026609203 @warnpcfail precompile(Tuple{Type{HyperRectangle{3, Float32}},HyperRectangle{2, Float32}}) # time: 0.023717888 @warnpcfail precompile(Tuple{typeof(+),HyperRectangle{3, Float32},Point{3, Float32}}) # time: 0.006633118 @warnpcfail precompile(Tuple{Type{Rect2{T} where T},Float32,Float32,Float32,Float32}) # time: 0.001636267 @warnpcfail precompile(Tuple{typeof(*),HyperRectangle{2, Float32},Float32}) # time: 0.001057589 if Base.VERSION >= v"1.6.0-DEV.1083" @warnpcfail precompile(triangle_mesh, (Polygon{2, Float32, Point2f, LineString{2, Float32, Point2f, Base.ReinterpretArray{Line{2, Float32}, 1, Tuple{Point2f, Point2f}, TupleView{Tuple{Point2f, Point2f}, 2, 1, Vector{Point2f}}, false}}, Vector{LineString{2, Float32, Point2f, Base.ReinterpretArray{Line{2, Float32}, 1, Tuple{Point2f, Point2f}, TupleView{Tuple{Point2f, Point2f}, 2, 1, Vector{Point2f}}, false}}}},)) else @warnpcfail precompile(triangle_mesh, (Polygon{2, Float32, Point2f, LineString{2, Float32, Point2f, Base.ReinterpretArray{Line{2, Float32}, 1, Tuple{Point2f, Point2f}, TupleView{Tuple{Point2f, Point2f}, 2, 1, Vector{Point2f}}}}, Vector{LineString{2, Float32, Point2f, Base.ReinterpretArray{Line{2, Float32}, 1, Tuple{Point2f, Point2f}, TupleView{Tuple{Point2f, Point2f}, 2, 1, Vector{Point2f}}}}}},)) end @warnpcfail precompile(split_intersections, (Vector{Point2f},)) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
7657
#= ported from: http://docs.ros.org/jade/api/convex_decomposition/html/triangulate_8cpp_source.html The MIT License (MIT) Copyright (c) 2006 John W. Ratcliff Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. =# """ area(vertices::AbstractVector{AbstractPoint{3}}, face::TriangleFace) Calculate the area of one triangle. """ function area(vertices::AbstractVector{<:AbstractPoint{3,VT}}, face::TriangleFace{FT}) where {VT,FT} v1, v2, v3 = vertices[face] return 0.5 * norm(orthogonal_vector(v1, v2, v3)) end """ area(vertices::AbstractVector{AbstractPoint{3}}, faces::AbstractVector{TriangleFace}) Calculate the area of all triangles. """ function area(vertices::AbstractVector{<:AbstractPoint{3,VT}}, faces::AbstractVector{TriangleFace{FT}}) where {VT,FT} return sum(x -> area(vertices, x), faces) end """ area(contour::AbstractVector{AbstractPoint}}) Calculate the area of a polygon. For 2D points, the oriented area is returned (negative when the points are oriented clockwise). """ function area(contour::AbstractVector{<:AbstractPoint{2,T}}) where {T} length(contour) < 3 && return zero(T) A = zero(T) p = lastindex(contour) for q in eachindex(contour) A += cross(contour[p], contour[q]) p = q end return A * T(0.5) end function area(contour::AbstractVector{<:AbstractPoint{3,T}}) where {T} A = zero(eltype(contour)) o = first(contour) for i in (firstindex(contour) + 1):(lastindex(contour) - 1) A += cross(contour[i] - o, contour[i + 1] - o) end return norm(A) * T(0.5) end """ in(point, triangle) Determine if a point is inside of a triangle. """ function Base.in(P::T, triangle::Triangle) where {T<:AbstractPoint} A, B, C = coordinates(triangle) a = C .- B b = A .- C c = B .- A ap = P .- A bp = P .- B cp = P .- C a_bp = a[1] * bp[2] - a[2] * bp[1] c_ap = c[1] * ap[2] - c[2] * ap[1] b_cp = b[1] * cp[2] - b[2] * cp[1] t0 = zero(eltype(T)) return ((a_bp >= t0) && (b_cp >= t0) && (c_ap >= t0)) end function snip(contour::AbstractVector{<:AbstractPoint}, u, v, w, n, V) A = contour[V[u]] B = contour[V[v]] C = contour[V[w]] x = (((B[1] - A[1]) * (C[2] - A[2])) - ((B[2] - A[2]) * (C[1] - A[1]))) if 0.0000000001f0 > x return false end for p in 1:n ((p == u) || (p == v) || (p == w)) && continue P = contour[V[p]] if P in Triangle(A, B, C) return false end end return true end """ decompose(facetype, contour::AbstractArray{<:AbstractPoint}) Triangulate a Polygon without hole. Returns a Vector{`facetype`} defining indexes into `contour`. """ function decompose(::Type{FaceType}, points::AbstractArray{P}) where {P<:AbstractPoint,FaceType<:AbstractFace} #= allocate and initialize list of Vertices in polygon =# result = FaceType[] # the algorithm doesn't like closed contours contour = if isapprox(last(points), first(points)) @view points[1:(end - 1)] else @view points[1:end] end n = length(contour) if n < 3 error("Not enough points in the contour. Found: $contour") end #= we want a counter-clockwise polygon in V =# if 0 < area(contour) V = Int[i for i in 1:n] else V = Int[i for i in n:-1:1] end nv = n #= remove nv-2 Vertices, creating 1 triangle every time =# count = 2 * nv #= error detection =# v = nv while nv > 2 #= if we loop, it is probably a non-simple polygon =# if 0 >= count return result end count -= 1 #= three consecutive vertices in current polygon, <u,v,w> =# u = v (u > nv) && (u = 1) #= previous =# v = u + 1 (v > nv) && (v = 1) #= new v =# w = v + 1 (w > nv) && (w = 1) #= next =# if snip(contour, u, v, w, nv, V) #= true names of the vertices =# a = V[u] b = V[v] c = V[w] #= output Triangle =# push!(result, convert_simplex(FaceType, TriangleFace(a, b, c))...) #= remove v from remaining polygon =# s = v t = v + 1 while t <= nv V[s] = V[t] s += 1 t += 1 end nv -= 1 #= resest error detection counter =# count = 2 * nv end end return result end function earcut_triangulate(polygon::Vector{Vector{Point{2,Float64}}}) lengths = map(x -> UInt32(length(x)), polygon) len = UInt32(length(lengths)) array = ccall((:u32_triangulate_f64, libearcut), Tuple{Ptr{GLTriangleFace},Cint}, (Ptr{Ptr{Float64}}, Ptr{UInt32}, UInt32), polygon, lengths, len) return unsafe_wrap(Vector{GLTriangleFace}, array[1], array[2]; own=true) end function earcut_triangulate(polygon::Vector{Vector{Point{2,Float32}}}) lengths = map(x -> UInt32(length(x)), polygon) len = UInt32(length(lengths)) array = ccall((:u32_triangulate_f32, libearcut), Tuple{Ptr{GLTriangleFace},Cint}, (Ptr{Ptr{Float32}}, Ptr{UInt32}, UInt32), polygon, lengths, len) return unsafe_wrap(Vector{GLTriangleFace}, array[1], array[2]; own=true) end function earcut_triangulate(polygon::Vector{Vector{Point{2,Int64}}}) lengths = map(x -> UInt32(length(x)), polygon) len = UInt32(length(lengths)) array = ccall((:u32_triangulate_i64, libearcut), Tuple{Ptr{GLTriangleFace},Cint}, (Ptr{Ptr{Int64}}, Ptr{UInt32}, UInt32), polygon, lengths, len) return unsafe_wrap(Vector{GLTriangleFace}, array[1], array[2]; own=true) end function earcut_triangulate(polygon::Vector{Vector{Point{2,Int32}}}) lengths = map(x -> UInt32(length(x)), polygon) len = UInt32(length(lengths)) array = ccall((:u32_triangulate_i32, libearcut), Tuple{Ptr{GLTriangleFace},Cint}, (Ptr{Ptr{Int32}}, Ptr{UInt32}, UInt32), polygon, lengths, len) return unsafe_wrap(Vector{GLTriangleFace}, array[1], array[2]; own=true) end best_earcut_eltype(x) = Float64 best_earcut_eltype(::Type{Float64}) = Float64 best_earcut_eltype(::Type{<:AbstractFloat}) = Float32 best_earcut_eltype(::Type{Int64}) = Int64 best_earcut_eltype(::Type{Int32}) = Int32 best_earcut_eltype(::Type{<:Integer}) = Int64 function faces(polygon::Polygon{Dim,T}) where {Dim,T} PT = Point{Dim,best_earcut_eltype(T)} points = [decompose(PT, polygon.exterior)] foreach(x -> push!(points, decompose(PT, x)), polygon.interiors) return earcut_triangulate(points) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
5247
""" TupleView{T, N, Skip, A} TupleView, groups elements of an array as tuples. N is the dimension of the tuple, M tells how many elements to skip to the next tuple. By default TupleView{N} defaults to skip N items. # a few examples: ```julia x = [1, 2, 3, 4, 5, 6] TupleView{2, 1}(x): > [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] TupleView{2}(x): > [(1, 2), (3, 4), (5, 6)] TupleView{2, 3}(x): > [(1, 2), (4, 5)] TupleView{3, 1}(x): > [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] ``` TupleView can be used together with reinterpret: ```julia x = [1, 2, 3, 4] y = reinterpret(Point{2, Int}, TupleView{2, 1}(x)) > [Point(1, 2), Point(2, 3), Point(3, 4)] ``` """ struct TupleView{T,N,Skip,A} <: AbstractVector{T} data::A connect::Bool end coordinates(tw::TupleView) = coordinates(tw.data) function Base.size(x::TupleView{T,N,M}) where {T,N,M} nitems = length(x.data) Γ· (N - (N - M)) nitems = nitems - max(N - M, 0) return (nitems + x.connect,) # plus one item if we connect end function Base.getindex(x::TupleView{T,N,M}, index::Integer) where {T,N,M} return ntuple(i -> x.data[mod1(((index - 1) * M) + i, length(x.data))], N) end function TupleView{N}(x::AbstractVector; connect=false) where {N} return TupleView{N,N}(x, connect=connect) end function TupleView{N,M}(x::AbstractVector{T}; connect=false) where {T,N,M} return TupleView{NTuple{N,T},N,M,typeof(x)}(x, connect) end @inline function connected_line(points::AbstractVector{<:AbstractPoint{N}}, skip=N) where {N} return connect(points, Line, skip) end """ connect(points::AbstractVector{<: AbstractPoint}, P::Type{<: Polytope{N}}, skip::Int = N) Creates a view that connects a number of points to a Polytope `P`. Between each polytope, `skip` elements are skipped untill the next starts. Example: ```julia x = connect(Point[(1, 2), (3, 4), (5, 6), (7, 8)], Line, 2) x == [Line(Point(1, 2), Point(3, 4)), Line(Point(5, 6), Point(7, 8))] """ @inline function connect(points::AbstractVector{Point}, P::Type{<:Polytope{N,T} where {N,T}}, skip::Int=length(P)) where {Point <: AbstractPoint} return reinterpret(Polytope(P, Point), TupleView{length(P),skip}(points)) end @inline function connect(points::AbstractVector{T}, P::Type{<:Point{N}}, skip::Int=N) where {T <: Real,N} return reinterpret(Point{N,T}, TupleView{N,skip}(points)) end @inline function connect(points::AbstractVector{T}, P::Type{<:AbstractFace{N}}, skip::Int=N) where {T <: Real,N} return reinterpret(Face(P, T), TupleView{N,skip}(points)) end @inline function connect(points::AbstractMatrix{T}, P::Type{<:AbstractPoint{N}}) where {T <: Real,N} return if size(points, 1) === N return reinterpret(Point{N,T}, points) elseif size(points, 2) === N seglen = size(points, 1) columns = ntuple(N) do i return view(points, ((i - 1) * seglen + 1):(i * seglen)) end return StructArray{Point{N,T}}(columns) else error("Dim 1 or 2 must be equal to the point dimension!") end end """ FaceView{Element, Point, Face, P, F} FaceView enables to link one array of points via a face array, to generate one abstract array of elements. E.g., this becomes possible: ``` x = FaceView(rand(Point3f, 10), TriangleFace[(1, 2, 3), (2, 4, 5), ...]) x[1] isa Triangle == true x isa AbstractVector{<: Triangle} == true # This means we can use it as a mesh: Mesh(x) # should just work! # Can also be used for Points: linestring = FaceView(points, LineFace[...]) Polygon(linestring) ``` """ struct FaceView{Element,Point <: AbstractPoint,Face <: AbstractFace,P <: AbstractVector{Point},F <: AbstractVector{Face}} <: AbstractVector{Element} elements::P faces::F end const SimpleFaceView{Dim,T,NFace,IndexType,PointType <: AbstractPoint{Dim,T},FaceType <: AbstractFace{NFace,IndexType}} = FaceView{Ngon{Dim,T,NFace,PointType},PointType,FaceType,Vector{PointType},Vector{FaceType}} function Base.getproperty(faceview::FaceView, name::Symbol) return getproperty(getfield(faceview, :elements), name) end function Base.propertynames(faceview::FaceView) return propertynames(getfield(faceview, :elements)) end Tables.schema(faceview::FaceView) = Tables.schema(getfield(faceview, :elements)) Base.size(faceview::FaceView) = size(getfield(faceview, :faces)) @propagate_inbounds function Base.getindex(x::FaceView{Element}, i) where {Element} return Element(map(idx -> coordinates(x)[idx], faces(x)[i])) end @propagate_inbounds function Base.setindex!(x::FaceView{Element}, element::Element, i) where {Element} face = faces(x)[i] for (i, f) in enumerate(face) # TODO unroll!? coordinates(x)[face[i]] = element[i] end return element end function connect(points::AbstractVector{P}, faces::AbstractVector{F}) where {P <: AbstractPoint,F <: AbstractFace} return FaceView{Polytope(P, F),P,F,typeof(points),typeof(faces)}(points, faces) end coordinates(mesh::FaceView) = getfield(mesh, :elements) faces(mesh::FaceView) = getfield(mesh, :faces)
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
3246
""" Cylinder{N, T} A `Cylinder` is a 2D rectangle or a 3D cylinder defined by its origin point, its extremity and a radius. `origin`, `extremity` and `r`, must be specified. """ struct Cylinder{N,T} <: GeometryPrimitive{N,T} origin::Point{N,T} extremity::Point{N,T} r::T end """ Cylinder2{T} Cylinder3{T} A `Cylinder2` or `Cylinder3` is a 2D/3D cylinder defined by its origin point, its extremity and a radius. `origin`, `extremity` and `r`, must be specified. """ const Cylinder2{T} = Cylinder{2,T} const Cylinder3{T} = Cylinder{3,T} origin(c::Cylinder{N,T}) where {N,T} = c.origin extremity(c::Cylinder{N,T}) where {N,T} = c.extremity radius(c::Cylinder{N,T}) where {N,T} = c.r height(c::Cylinder{N,T}) where {N,T} = norm(c.extremity - c.origin) direction(c::Cylinder{N,T}) where {N,T} = (c.extremity .- c.origin) ./ height(c) function rotation(c::Cylinder{2,T}) where {T} d2 = direction(c) u = @SVector [d2[1], d2[2], T(0)] v = @MVector [u[2], -u[1], T(0)] normalize!(v) return hcat(v, u, @SVector T[0, 0, 1]) end function rotation(c::Cylinder{3,T}) where {T} d3 = direction(c) u = @SVector [d3[1], d3[2], d3[3]] if abs(u[1]) > 0 || abs(u[2]) > 0 v = @MVector [u[2], -u[1], T(0)] else v = @MVector [T(0), -u[3], u[2]] end normalize!(v) w = @SVector [u[2] * v[3] - u[3] * v[2], -u[1] * v[3] + u[3] * v[1], u[1] * v[2] - u[2] * v[1]] return hcat(v, w, u) end function coordinates(c::Cylinder{2,T}, nvertices=(2, 2)) where {T} r = Rect(c.origin[1] - c.r / 2, c.origin[2], c.r, height(c)) M = rotation(c) points = coordinates(r, nvertices) vo = to_pointn(Point3{T}, origin(c)) return (M * (to_pointn(Point3{T}, point) .- vo) .+ vo for point in points) end function faces(sphere::Cylinder{2}, nvertices=(2, 2)) return faces(Rect(0, 0, 1, 1), nvertices) end function coordinates(c::Cylinder{3,T}, nvertices=30) where {T} if isodd(nvertices) nvertices = 2 * (nvertices Γ· 2) end nvertices = max(8, nvertices) nbv = nvertices Γ· 2 M = rotation(c) h = height(c) range = 1:(2 * nbv + 2) function inner(i) return if i == length(range) c.extremity elseif i == length(range) - 1 origin(c) else phi = T((2Ο€ * (((i + 1) Γ· 2) - 1)) / nbv) up = ifelse(isodd(i), 0, h) (M * Point(c.r * cos(phi), c.r * sin(phi), up)) .+ c.origin end end return (inner(i) for i in range) end function faces(c::Cylinder{3}, facets=30) isodd(facets) ? facets = 2 * div(facets, 2) : nothing facets < 8 ? facets = 8 : nothing nbv = Int(facets / 2) indexes = Vector{TriangleFace{Int}}(undef, facets) index = 1 for j in 1:(nbv - 1) indexes[index] = (index + 2, index + 1, index) indexes[index + 1] = (index + 3, index + 1, index + 2) index += 2 end indexes[index] = (1, index + 1, index) indexes[index + 1] = (2, index + 1, 1) for i in 1:length(indexes) i % 2 == 1 ? push!(indexes, (indexes[i][1], indexes[i][3], 2 * nbv + 1)) : push!(indexes, (indexes[i][2], indexes[i][1], 2 * nbv + 2)) end return indexes end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
99
struct Particle{N,T} <: GeometryPrimitive{N,T} position::Point{N,T} velocity::Vec{N,T} end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
726
struct Pyramid{T} <: GeometryPrimitive{3,T} middle::Point{3,T} length::T width::T end function coordinates(p::Pyramid{T}) where {T} leftup = Point{3,T}(-p.width, p.width, 0) / 2 leftdown = Point(-p.width, -p.width, 0) / 2 tip = Point{3,T}(p.middle + Point{3,T}(0, 0, p.length)) lu = Point{3,T}(p.middle + leftup) ld = Point{3,T}(p.middle + leftdown) ru = Point{3,T}(p.middle - leftdown) rd = Point{3,T}(p.middle - leftup) return Point{3,T}[ tip, rd, ru, tip, ru, lu, tip, lu, ld, tip, ld, rd, ru, rd, lu, ld, lu, rd ] end function faces(::Pyramid) return (TriangleFace(triangle) for triangle in TupleView{3}(1:18)) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
17063
""" HyperRectangle{N, T} A `HyperRectangle` is a generalization of a rectangle into N-dimensions. Formally it is the cartesian product of intervals, which is represented by the `origin` and `widths` fields, whose indices correspond to each of the `N` axes. """ struct HyperRectangle{N,T} <: GeometryPrimitive{N,T} origin::Vec{N,T} widths::Vec{N,T} end ## # Constructors & typealiases """ const Rect{N,T} = HyperRectangle{N,T} A rectangle in N dimensions, formally the cartesian product of intervals. See also [`HyperRectangle`](@ref). Its aliases are | |`T`(eltype)|`Float64` |`Float32` |`Int` | |--------|-----------|----------|----------|----------| |`N`(dim)|`Rect{N,T}`|`Rectd{N}`|`Rectf{N}`|`Recti{N}`| |`2` |`Rect2{T}` |`Rect2d` |`Rect2f` |`Rect2i` | |`3` |`Rect3{T}` |`Rect3d` |`Rect3f` |`Rect3i` | There is an additional unexported alias `RectT` that simply reverses the order of type parameters: `RectT{T,N} == Rect{N,T}`. """ Rect, Rect2, Rect3, RectT, Rectd, Rect2d, Rect3d, Rectf, Rect2f, Rect3f, Recti, Rect2i, Rect3i const Rect{N,T} = HyperRectangle{N,T} const Rect2{T} = Rect{2,T} const Rect3{T} = Rect{3,T} const RectT{T,N} = Rect{N,T} const Rectd{N} = Rect{N,Float64} const Rect2d = Rect2{Float64} const Rect3d = Rect3{Float64} const Rectf{N} = Rect{N,Float32} const Rect2f = Rect2{Float32} const Rect3f = Rect3{Float32} const Recti{N} = Rect{N,Int} const Rect2i = Rect2{Int} const Rect3i = Rect3{Int} Rect() = Rect{2,Float32}() RectT{T}() where {T} = Rect{2,T}() Rect{N}() where {N} = Rect{N,Float32}() function Rect{N,T}() where {T,N} # empty constructor such that update will always include the first point return Rect{N,T}(Vec{N,T}(typemax(T)), Vec{N,T}(typemin(T))) end # conversion from other Rects function Rect{N,T1}(a::Rect{N,T2}) where {N,T1,T2} return Rect(Vec{N,T1}(minimum(a)), Vec{N,T1}(widths(a))) end function Rect(v1::Vec{N,T1}, v2::Vec{N,T2}) where {N,T1,T2} T = promote_type(T1, T2) return Rect{N,T}(Vec{N,T}(v1), Vec{N,T}(v2)) end function RectT{T}(v1::VecTypes{N}, v2::VecTypes{N}) where {N,T} return if T <: Integer Rect{N,T}(round.(T, v1), round.(T, v2)) else return Rect{N,T}(Vec{N,T}(v1), Vec{N,T}(v2)) end end function Rect{N}(v1::VecTypes{N}, v2::VecTypes{N}) where {N} T = promote_type(eltype(v1), eltype(v2)) return Rect{N,T}(Vec{N,T}(v1), Vec{N,T}(v2)) end """ Rect(vals::Number...) ``` Rect(vals::Number...) ``` Rect constructor for individually specified intervals. e.g. Rect(0,0,1,2) has origin == Vec(0,0) and width == Vec(1,2) """ @generated function Rect(vals::Number...) # Generated so we get goodish codegen on each signature n = length(vals) @assert iseven(n) mid = div(n, 2) v1 = Expr(:call, :Vec) v2 = Expr(:call, :Vec) # TODO this can be inbounds append!(v1.args, [:(vals[$i]) for i in 1:mid]) append!(v2.args, [:(vals[$i]) for i in (mid + 1):length(vals)]) return Expr(:call, :Rect, v1, v2) end Rect3(a::Vararg{Number,6}) = Rect3(Vec{3}(a[1], a[2], a[3]), Vec{3}(a[4], a[5], a[6])) Rect3(args::Vararg{Number,4}) = Rect3(Rect{2}(args...)) #= From different args =# function (Rect)(args::Vararg{Number,4}) args_prom = promote(args...) return Rect2{typeof(args_prom[1])}(args_prom...) end function (Rect2)(args::Vararg{Number,4}) args_prom = promote(args...) return Rect2{typeof(args_prom[1])}(args_prom...) end function (Rect{2,T})(args::Vararg{Number,4}) where {T} x, y, w, h = T <: Integer ? round.(T, args) : args return Rect2{T}(Vec{2,T}(x, y), Vec{2,T}(w, h)) end function RectT{T}(args::Vararg{Number,4}) where {T} x, y, w, h = T <: Integer ? round.(T, args) : args return Rect2{T}(Vec{2,T}(x, y), Vec{2,T}(w, h)) end function Rect3f(x::Rect2{T}) where {T} return Rect{3,T}(Vec{3,T}(minimum(x)..., 0), Vec{3,T}(widths(x)..., 0.0)) end function Rect2{T}(a::Rect2) where {T} return Rect2{T}(minimum(a), widths(a)) end function RectT{T}(a::Rect2) where {T} return Rect2{T}(minimum(a), widths(a)) end function Rect{N,T}(a::GeometryPrimitive) where {N,T} return Rect{N,T}(Vec{N,T}(minimum(a)), Vec{N,T}(widths(a))) end function Rect2(xy::VecTypes{2}, w::Number, h::Number) return Rect2(xy..., w, h) end function Rect2(x::Number, y::Number, wh::VecTypes{2}) return Rect2(x, y, wh...) end function RectT{T}(xy::VecTypes{2}, w::Number, h::Number) where {T} return Rect2{T}(xy..., w, h) end function RectT{T}(x::Number, y::Number, wh::VecTypes{2}) where {T} return Rect2{T}(x, y, wh...) end # TODO These are kinda silly function Rect2(xy::NamedTuple{(:x, :y)}, wh::NamedTuple{(:width, :height)}) return Rect2(xy.x, xy.y, wh.width, wh.height) end function Rect3f(x::Tuple{Tuple{<:Number,<:Number},Tuple{<:Number,<:Number}}) return Rect3f(Vec3f(x[1]..., 0), Vec3f(x[2]..., 0)) end function Rect3f(x::Tuple{Tuple{<:Number,<:Number,<:Number}, Tuple{<:Number,<:Number,<:Number}}) return Rect3f(Vec3f(x[1]...), Vec3f(x[2]...)) end # allow auto-conversion between different eltypes Base.convert(::Type{Rect{N, T}}, r::Rect{N}) where {N, T} = Rect{N, T}(r) origin(prim::Rect) = prim.origin Base.maximum(prim::Rect) = origin(prim) + widths(prim) Base.minimum(prim::Rect) = origin(prim) Base.length(prim::Rect{N,T}) where {T,N} = N widths(prim::Rect) = prim.widths width(prim::Rect) = prim.widths[1] height(prim::Rect) = prim.widths[2] volume(prim::HyperRectangle) = prod(prim.widths) area(prim::Rect2) = volume(prim) """ split(rectangle, axis, value) Splits an Rect into two along an axis at a given location. """ split(b::Rect, axis, value::Integer) = _split(b, axis, value) split(b::Rect, axis, value::Number) = _split(b, axis, value) function _split(b::H, axis, value) where {H<:Rect} bmin = minimum(b) bmax = maximum(b) b1max = setindex(bmax, value, axis) b2min = setindex(bmin, value, axis) return H(bmin, b1max - bmin), H(b2min, bmax - b2min) end ### # Algebraic operations """ *(m::Mat, h::Rect) Transform a `Rect` using a matrix. Maintains axis-align properties so a significantly larger Rect may be generated. """ function Base.:(*)(m::Mat{N1,N1,T1}, h::Rect{N2,T2}) where {N1,N2,T1,T2} # TypeVar constants T = promote_type(T1, T2) D = N1 - N2 # get all points on the Rect d = decompose(Point, h) # make sure our points are sized for the tranform pts = (Vec{N1,T}[vcat(pt, ones(Vec{D,T})) for pt in d]...,)::NTuple{2^N2,Vec{N1,T}} vmin = Vec{N1,T}(typemax(T)) vmax = Vec{N1,T}(typemin(T)) # tranform all points, tracking min and max points for pt in pts pn = m * pt vmin = min.(pn, vmin) vmax = max.(pn, vmax) end return Rect{N2,T}(vmin, vmax - vmin) end # equal dimension case function Base.:(*)(m::Mat{N,N,T1}, h::Rect{N,T2}) where {N,T1,T2} # TypeVar constants T = promote_type(T1, T2) # get all points on the Rect pts = decompose(Point, h) # make sure our points are sized for the tranform vmin = Vec{N,T}(typemax(T)) vmax = Vec{N,T}(typemin(T)) # tranform all points, tracking min and max points for pt in pts pn = m * Vec(pt) vmin = min.(pn, vmin) vmax = max.(pn, vmax) end return Rect{N,T}(vmin, vmax - vmin) end # fast path. TODO make other versions fast without code duplications like now function Base.:(*)(m::Mat{4,4,T}, h::Rect{3,T}) where {T} # equal dimension case # get all points on the Rect pts = (Vec{4,T}(0.0, 0.0, 0.0, 1.0), Vec{4,T}(1.0, 0.0, 0.0, 1.0), Vec{4,T}(0.0, 1.0, 0.0, 1.0), Vec{4,T}(1.0, 1.0, 0.0, 1.0), Vec{4,T}(0.0, 0.0, 1.0, 1.0), Vec{4,T}(1.0, 0.0, 1.0, 1.0), Vec{4,T}(0.0, 1.0, 1.0, 1.0), Vec{4,T}(1.0, 1.0, 1.0, 1.0)) # make sure our points are sized for the tranform vmin = Vec{4,T}(typemax(T)) vmax = Vec{4,T}(typemin(T)) o, w = origin(h), widths(h) _o = Vec{4,T}(o[1], o[2], o[3], T(0)) _w = Vec{4,T}(w[1], w[2], w[3], T(1)) # tranform all points, tracking min and max points for pt in pts pn = m * (_o + (pt .* _w)) vmin = min.(pn, vmin) vmax = max.(pn, vmax) end _vmin = Vec{3,T}(vmin[1], vmin[2], vmin[3]) _vmax = Vec{3,T}(vmax[1], vmax[2], vmax[3]) return Rect{3,T}(_vmin, _vmax - _vmin) end Base.:(-)(h::Rect{N,T}, move::Number) where {N,T} = h - Vec{N,T}(move) Base.:(+)(h::Rect{N,T}, move::Number) where {N,T} = h + Vec{N,T}(move) function Base.:(-)(h::Rect{N,T}, move::StaticVector{N}) where {N,T} return Rect{N,T}(minimum(h) .- move, widths(h)) end function Base.:(+)(h::Rect{N,T}, move::StaticVector{N}) where {N,T} return Rect{N,T}(minimum(h) .+ move, widths(h)) end function Base.:(*)(rect::Rect, scaling::Union{Number,StaticVector}) return Rect(minimum(rect) .* scaling, widths(rect) .* scaling) end # Enables rectangular indexing into a matrix function Base.to_indices(A::AbstractMatrix{T}, I::Tuple{Rect2{IT}}) where {T,IT<:Integer} rect = I[1] mini = minimum(rect) wh = widths(rect) return ((mini[1] + 1):(mini[1] + wh[1]), (mini[2] + 1):(mini[2] + wh[2])) end function minmax(p::StaticVector, vmin, vmax) any(isnan, p) && return (vmin, vmax) return min.(p, vmin), max.(p, vmax) end # Annoying special case for view(Vector{Point}, Vector{Face}) function minmax(tup::Tuple, vmin, vmax) for p in tup any(isnan, p) && continue vmin = min.(p, vmin) vmax = max.(p, vmax) end return vmin, vmax end function positive_widths(rect::Rect{N,T}) where {N,T} mini, maxi = minimum(rect), maximum(rect) realmin = min.(mini, maxi) realmax = max.(mini, maxi) return Rect{N,T}(realmin, realmax .- realmin) end ### # set operations """ isempty(h::Rect) Return `true` if any of the widths of `h` are negative. """ Base.isempty(h::Rect{N,T}) where {N,T} = any(<(zero(T)), h.widths) """ Perform a union between two Rects. """ function Base.union(h1::Rect{N}, h2::Rect{N}) where {N} m = min.(minimum(h1), minimum(h2)) mm = max.(maximum(h1), maximum(h2)) return Rect{N}(m, mm - m) end """ diff(h1::Rect, h2::Rect) Perform a difference between two Rects. """ diff(h1::Rect, h2::Rect) = h1 """ intersect(h1::Rect, h2::Rect) Perform a intersection between two Rects. """ function intersect(h1::Rect{N}, h2::Rect{N}) where {N} m = max.(minimum(h1), minimum(h2)) mm = min.(maximum(h1), maximum(h2)) return Rect{N}(m, mm - m) end function update(b::Rect{N,T}, v::Vec{N,T2}) where {N,T,T2} return update(b, Vec{N,T}(v)) end function update(b::Rect{N,T}, v::Vec{N,T}) where {N,T} m = min.(minimum(b), v) maxi = maximum(b) mm = if any(isnan, maxi) v - m else max.(v, maxi) - m end return Rect{N,T}(m, mm) end # Min maximum distance functions between hrectangle and point for a given dimension function min_dist_dim(rect::Rect{N,T}, p::Vec{N,T}, dim::Int) where {N,T} return max(zero(T), max(minimum(rect)[dim] - p[dim], p[dim] - maximum(rect)[dim])) end function max_dist_dim(rect::Rect{N,T}, p::Vec{N,T}, dim::Int) where {N,T} return max(maximum(rect)[dim] - p[dim], p[dim] - minimum(rect)[dim]) end function min_dist_dim(rect1::Rect{N,T}, rect2::Rect{N,T}, dim::Int) where {N,T} return max(zero(T), max(minimum(rect1)[dim] - maximum(rect2)[dim], minimum(rect2)[dim] - maximum(rect1)[dim])) end function max_dist_dim(rect1::Rect{N,T}, rect2::Rect{N,T}, dim::Int) where {N,T} return max(maximum(rect1)[dim] - minimum(rect2)[dim], maximum(rect2)[dim] - minimum(rect1)[dim]) end # Total minimum maximum distance functions function min_euclideansq(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}) where {N,T} minimum_dist = T(0.0) for dim in 1:length(p) d = min_dist_dim(rect, p, dim) minimum_dist += d * d end return minimum_dist end function max_euclideansq(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}) where {N,T} maximum_dist = T(0.0) for dim in 1:length(p) d = max_dist_dim(rect, p, dim) maximum_dist += d * d end return maximum_dist end function min_euclidean(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}) where {N,T} return sqrt(min_euclideansq(rect, p)) end function max_euclidean(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}) where {N,T} return sqrt(max_euclideansq(rect, p)) end # Functions that return both minimum and maximum for convenience function minmax_dist_dim(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}, dim::Int) where {N,T} minimum_d = min_dist_dim(rect, p, dim) maximum_d = max_dist_dim(rect, p, dim) return minimum_d, maximum_d end function minmax_euclideansq(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}) where {N,T} minimum_dist = min_euclideansq(rect, p) maximum_dist = max_euclideansq(rect, p) return minimum_dist, maximum_dist end function minmax_euclidean(rect::Rect{N,T}, p::Union{Vec{N,T},Rect{N,T}}) where {N,T} minimumsq, maximumsq = minmax_euclideansq(rect, p) return sqrt(minimumsq), sqrt(maximumsq) end # http://en.wikipedia.org/wiki/Allen%27s_interval_algebra function before(b1::Rect{N}, b2::Rect{N}) where {N} for i in 1:N maximum(b1)[i] < minimum(b2)[i] || return false end return true end meets(b1::Rect{N}, b2::Rect{N}) where {N} = maximum(b1) == minimum(b2) function overlaps(b1::Rect{N}, b2::Rect{N}) where {N} for i in 1:N maximum(b2)[i] > maximum(b1)[i] > minimum(b2)[i] && minimum(b1)[i] < minimum(b2)[i] || return false end return true end function starts(b1::Rect{N}, b2::Rect{N}) where {N} return if minimum(b1) == minimum(b2) for i in 1:N maximum(b1)[i] < maximum(b2)[i] || return false end return true else return false end end function during(b1::Rect{N}, b2::Rect{N}) where {N} for i in 1:N maximum(b1)[i] < maximum(b2)[i] && minimum(b1)[i] > minimum(b2)[i] || return false end return true end function finishes(b1::Rect{N}, b2::Rect{N}) where {N} return if maximum(b1) == maximum(b2) for i in 1:N minimum(b1)[i] > minimum(b2)[i] || return false end return true else return false end end ### # Containment """ in(b1::Rect, b2::Rect) Check if Rect `b1` is contained in `b2`. This does not use strict inequality, so Rects may share faces and this will still return true. """ function Base.in(b1::Rect{N}, b2::Rect{N}) where {N} for i in 1:N maximum(b1)[i] <= maximum(b2)[i] && minimum(b1)[i] >= minimum(b2)[i] || return false end return true end """ in(pt::VecTypes, b1::Rect{N, T}) Check if a point is contained in a Rect. This will return true if the point is on a face of the Rect. """ function Base.in(pt::VecTypes, b1::Rect{N,T}) where {T,N} for i in 1:N pt[i] <= maximum(b1)[i] && pt[i] >= minimum(b1)[i] || return false end return true end # # Equality # Base.:(==)(b1::Rect, b2::Rect) = minimum(b1) == minimum(b2) && widths(b1) == widths(b2) Base.isequal(b1::Rect, b2::Rect) = b1 == b2 centered(R::Type{Rect{N,T}}) where {N,T} = R(Vec{N,T}(-0.5), Vec{N,T}(1)) centered(R::Type{Rect{N}}) where {N} = R(Vec{N,Float32}(-0.5), Vec{N,Float32}(1)) centered(R::Type{Rect}) = R(Vec{2,Float32}(-0.5), Vec{2,Float32}(1)) ## # Rect2 decomposition function faces(rect::Rect2, nvertices=(2, 2)) w, h = nvertices idx = LinearIndices(nvertices) quad(i, j) = QuadFace{Int}(idx[i, j], idx[i + 1, j], idx[i + 1, j + 1], idx[i, j + 1]) return ivec((quad(i, j) for i in 1:(w - 1), j in 1:(h - 1))) end function coordinates(rect::Rect2, nvertices=(2, 2)) mini, maxi = extrema(rect) xrange, yrange = LinRange.(mini, maxi, nvertices) return ivec(((x, y) for x in xrange, y in yrange)) end function texturecoordinates(rect::Rect2, nvertices=(2, 2)) xrange, yrange = LinRange.((0, 1), (1, 0), nvertices) return ivec(((x, y) for x in xrange, y in yrange)) end function normals(rect::Rect2, nvertices=(2, 2)) return Iterators.repeated((0, 0, 1), prod(nvertices)) end ## # Rect3 decomposition function coordinates(rect::Rect3) # TODO use n w = widths(rect) o = origin(rect) points = Point{3,Int}[(0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), (0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 1, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, 1, 0), (0, 1, 0), (0, 1, 1)] return ((x .* w .+ o) for x in points) end function texturecoordinates(rect::Rect3) return coordinates(Rect3(0, 0, 0, 1, 1, 1)) end function faces(rect::Rect3) return QuadFace{Int}[(1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16), (17, 18, 19, 20), (21, 22, 23, 24),] end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
2156
""" HyperSphere{N, T} A `HyperSphere` is a generalization of a sphere into N-dimensions. A `center` and radius, `r`, must be specified. """ struct HyperSphere{N,T} <: GeometryPrimitive{N,T} center::Point{N,T} r::T end """ Circle{T} An alias for a HyperSphere of dimension 2. (i.e. `HyperSphere{2, T}`) """ const Circle{T} = HyperSphere{2,T} """ Sphere{T} An alias for a HyperSphere of dimension 3. (i.e. `HyperSphere{3, T}`) """ const Sphere{T} = HyperSphere{3,T} HyperSphere{N}(p::Point{N,T}, number) where {N,T} = HyperSphere{N,T}(p, convert(T, number)) widths(c::HyperSphere{N,T}) where {N,T} = Vec{N,T}(radius(c) * 2) radius(c::HyperSphere) = c.r origin(c::HyperSphere) = c.center Base.minimum(c::HyperSphere{N,T}) where {N,T} = Vec{N,T}(origin(c)) - Vec{N,T}(radius(c)) Base.maximum(c::HyperSphere{N,T}) where {N,T} = Vec{N,T}(origin(c)) + Vec{N,T}(radius(c)) function Base.in(x::AbstractPoint, c::HyperSphere) return norm(origin(c) - x) ≀ radius(c) end centered(S::Type{HyperSphere{N,T}}) where {N,T} = S(Vec{N,T}(0), T(0.5)) function centered(::Type{T}) where {T<:HyperSphere} return centered(HyperSphere{ndims_or(T, 3),eltype_or(T, Float32)}) end function coordinates(s::Circle, nvertices=64) rad = radius(s) inner(fi) = Point(rad * sin(fi + pi), rad * cos(fi + pi)) .+ origin(s) return (inner(fi) for fi in LinRange(0, 2pi, nvertices)) end function texturecoordinates(s::Circle, nvertices=64) return coordinates(Circle(Point2f(0.5), 0.5f0), nvertices) end function coordinates(s::Sphere, nvertices=24) ΞΈ = LinRange(0, pi, nvertices) Ο† = LinRange(0, 2pi, nvertices) inner(ΞΈ, Ο†) = Point(cos(Ο†) * sin(ΞΈ), sin(Ο†) * sin(ΞΈ), cos(ΞΈ)) .* s.r .+ s.center return ivec((inner(ΞΈ, Ο†) for ΞΈ in ΞΈ, Ο† in Ο†)) end function texturecoordinates(s::Sphere, nvertices=24) ux = LinRange(0, 1, nvertices) return ivec(((Ο†, ΞΈ) for ΞΈ in reverse(ux), Ο† in ux)) end function faces(sphere::Sphere, nvertices=24) return faces(Rect(0, 0, 1, 1), (nvertices, nvertices)) end function normals(s::Sphere{T}, nvertices=24) where {T} return coordinates(Sphere(Point{3,T}(0), 1), nvertices) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
948
using Test @testset "conversion" begin @test convert(Point, (2, 3)) === Point(2, 3) @test convert(Point, (2.0, 3)) === Point(2.0, 3.0) end @testset "broadcast" begin @testset for T in (Vec, Point) x = [T(2, 3), T(7, 3)] @test [T(4, 9), T(14, 9)] == x .* T(2, 3) @test [T(4, 6), T(9, 6)] == x .+ T(2, 3) @test [T(0, 0), T(5, 0)] == x .- T(2, 3) end end @testset "finite, nan, inf tests" begin for T in (Vec, Point) @testset "$T" begin nan_point = T(Float64.((1.0, 2.0, 3.0, NaN))) inf_point = T(Float64.((1.0, 2.0, Inf, 4.0))) @test isinf(inf_point) @test !isinf(nan_point) @test isnan(nan_point) @test !isnan(inf_point) @test !isfinite(nan_point) @test !isfinite(inf_point) @test !isfinite(nan_point + inf_point) @test isfinite(T(1, 2, 3)) end end end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
6021
@testset "Basic types" begin point = Point(2, 3) @test geomtrait(point) isa PointTrait @test testgeometry(point) @test ncoord(point) == 2 @test getcoord(point, 2) == 3 @test GeoInterface.coordinates(point) == [2, 3] line = Line(Point(2, 3), Point(4, 5)) @test geomtrait(line) isa LineTrait @test testgeometry(line) @test ngeom(line) == 2 @test getgeom(line, 2) == Point(4, 5) @test GeoInterface.coordinates(line) == [[2, 3], [4, 5]] mp = MultiPoint([point, point]) @test geomtrait(mp) isa MultiPointTrait @test testgeometry(mp) @test ngeom(mp) == 2 @test getgeom(mp, 2) == point @test GeoInterface.coordinates(mp) == [[2, 3], [2, 3]] linestring = LineString(Point{2,Int}[(10, 10), (20, 20), (10, 40)]) @test geomtrait(linestring) isa LineStringTrait @test testgeometry(linestring) @test ngeom(linestring) == 3 @test ncoord(linestring) == 2 @test getgeom(linestring, 1) == Point(10, 10) @test getgeom(linestring, 2) == Point(20, 20) @test getgeom(linestring, 3) == Point(10, 40) @test GeoInterface.coordinates(linestring) == [[10, 10], [20, 20], [10, 40]] multilinestring = MultiLineString([linestring, linestring]) @test geomtrait(multilinestring) isa MultiLineStringTrait @test testgeometry(multilinestring) @test GeoInterface.coordinates(multilinestring) == [[[10, 10], [20, 20], [10, 40]], [[10, 10], [20, 20], [10, 40]]] @test ncoord(multilinestring) == 2 poly = Polygon(rand(Point{2,Float32}, 5), [rand(Point{2,Float32}, 5)]) @test geomtrait(poly) isa PolygonTrait @test testgeometry(poly) @test length(GeoInterface.coordinates(poly)) == 2 @test length(GeoInterface.coordinates(poly)[1]) == 5 triangle = Triangle(point, point, point) @test geomtrait(triangle) isa PolygonTrait # ?? should it be a Triangle trait @test testgeometry(triangle) @test length(GeoInterface.coordinates(triangle)) == 1 @test length(GeoInterface.coordinates(triangle)[1]) == 3 polys = MultiPolygon([poly, poly]) @test geomtrait(polys) isa MultiPolygonTrait @test testgeometry(polys) @test length(GeoInterface.coordinates(polys)) == 2 @test length(GeoInterface.coordinates(polys)[1]) == 2 @test length(GeoInterface.coordinates(polys)[1][1]) == 5 end @testset "Mesh" begin mesh = triangle_mesh(Sphere(Point3f(0), 1)) @test testgeometry(mesh) end @testset "Convert" begin # convert GeoJSON geometry types to GeometryBasics via the GeoInterface point_str = """{"type":"Point","coordinates":[30.1,10.1]}""" point_3d_str = """{"type":"Point","coordinates":[30.1,10.1,5.1]}""" linestring_str = """{"type":"LineString","coordinates":[[30.1,10.1],[10.1,30.1],[40.1,40.1]]}""" polygon_str = """{"type":"Polygon","coordinates":[[[30.1,10.1],[40.1,40.1],[20.1,40.1],[10.1,20.1],[30.1,10.1]]]}""" polygon_hole_str = """{"type":"Polygon","coordinates":[[[35.1,10.1],[45.1,45.1],[15.1,40.1],[10.1,20.1],[35.1,10.1]],[[20.1,30.1],[35.1,35.1],[30.1,20.1],[20.1,30.1]]]}""" multipoint_str = """{"type":"MultiPoint","coordinates":[[10.1,40.1],[40.1,30.1],[20.1,20.1],[30.1,10.1]]}""" multilinestring_str = """{"type":"MultiLineString","coordinates":[[[10.1,10.1],[20.1,20.1],[10.1,40.1]],[[40.1,40.1],[30.1,30.1],[40.1,20.1],[30.1,10.1]]]}""" multipolygon_str = """{"type":"MultiPolygon","coordinates":[[[[30.1,20.1],[45.1,40.1],[10.1,40.1],[30.1,20.1]]],[[[15.1,5.1],[40.1,10.1],[10.1,20.1],[5.1,10.1],[15.1,5.1]]]]}""" multipolygon_hole_str = """{"type":"MultiPolygon","coordinates":[[[[40.1,40.1],[20.1,45.1],[45.1,30.1],[40.1,40.1]]],[[[20.1,35.1],[10.1,30.1],[10.1,10.1],[30.1,5.1],[45.1,20.1],[20.1,35.1]],[[30.1,20.1],[20.1,15.1],[20.1,25.1],[30.1,20.1]]]]}""" point_json = GeoJSON.read(point_str) point_3d_json = GeoJSON.read(point_3d_str) linestring_json = GeoJSON.read(linestring_str) polygon_json = GeoJSON.read(polygon_str) polygon_hole_json = GeoJSON.read(polygon_hole_str) multipoint_json = GeoJSON.read(multipoint_str) multilinestring_json = GeoJSON.read(multilinestring_str) multipolygon_json = GeoJSON.read(multipolygon_str) multipolygon_hole_json = GeoJSON.read(multipolygon_hole_str) point_gb = GeoInterface.convert(GeometryBasics, point_json) point_3d_gb = GeoInterface.convert(GeometryBasics, point_3d_json) linestring_gb = GeoInterface.convert(GeometryBasics, linestring_json) polygon_gb = GeoInterface.convert(GeometryBasics, polygon_json) polygon_hole_gb = GeoInterface.convert(GeometryBasics, polygon_hole_json) multipoint_gb = GeoInterface.convert(GeometryBasics, multipoint_json) multilinestring_gb = GeoInterface.convert(GeometryBasics, multilinestring_json) multipolygon_gb = GeoInterface.convert(GeometryBasics, multipolygon_json) multipolygon_hole_gb = GeoInterface.convert(GeometryBasics, multipolygon_hole_json) @test point_gb === Point{2,Float32}(30.1, 10.1) @test point_3d_gb === Point{3,Float32}(30.1, 10.1, 5.1) @test linestring_gb isa LineString @test length(linestring_gb) == 2 @test eltype(linestring_gb) == Line{2,Float32} @test polygon_gb isa Polygon @test isempty(polygon_gb.interiors) @test polygon_hole_gb isa Polygon @test length(polygon_hole_gb.interiors) == 1 @test multipoint_gb isa MultiPoint @test length(multipoint_gb) == 4 @test multipoint_gb[4] === Point{2,Float32}(30.1, 10.1) @test multilinestring_gb isa MultiLineString @test length(multilinestring_gb) == 2 @test multipolygon_gb isa MultiPolygon @test length(multipolygon_gb) == 2 @test multipolygon_hole_gb isa MultiPolygon @test length(multipolygon_hole_gb) == 2 @test length(multipolygon_hole_gb[1].interiors) == 0 @test length(multipolygon_hole_gb[2].interiors) == 1 end @testset "Extent" begin rect = Rect2f(Vec2f(0), Vec2f(1.0)) ext = extent(rect) @test ext.X == (0.0f0, 1.0f0) @test ext.Y == (0.0f0, 1.0f0) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
11951
using Test, GeometryBasics @testset "Cylinder" begin @testset "constructors" begin o, extr, r = Point2f(1, 2), Point2f(3, 4), 5.0f0 s = Cylinder(o, extr, r) @test typeof(s) == Cylinder{2,Float32} @test typeof(s) == Cylinder2{Float32} @test origin(s) == o @test extremity(s) == extr @test radius(s) == r #@test abs(height(s)- norm([1,2]-[3,4]))<1e-5 h = norm(o - extr) @test isapprox(height(s), h) #@test norm(direction(s) - Point{2,Float32}([2,2]./norm([1,2]-[3,4])))<1e-5 @test isapprox(direction(s), Point2f(2, 2) ./ h) v1 = rand(Point{3,Float64}) v2 = rand(Point{3,Float64}) R = rand() s = Cylinder(v1, v2, R) @test typeof(s) == Cylinder{3,Float64} @test typeof(s) == Cylinder3{Float64} @test origin(s) == v1 @test extremity(s) == v2 @test radius(s) == R @test height(s) == norm(v2 - v1) #@test norm(direction(s) - Point{3,Float64}((v2-v1)./norm(v2-v1)))<1e-10 @test isapprox(direction(s), (v2 - v1) ./ norm(v2 .- v1)) end @testset "decompose" begin m = GeometryBasics.normal_mesh(Sphere(Point3f(0), 1f0)) @test decompose_uv(m) isa Vector{Vec2f} o, extr, r = Point2f(1, 2), Point2f(3, 4), 5.0f0 s = Cylinder(o, extr, r) positions = Point{3,Float32}[(-0.7677671, 3.767767, 0.0), (2.767767, 0.23223293, 0.0), (0.23223293, 4.767767, 0.0), (3.767767, 1.2322329, 0.0), (1.2322329, 5.767767, 0.0), (4.767767, 2.232233, 0.0)] @test decompose(Point3f, Tesselation(s, (2, 3))) β‰ˆ positions FT = TriangleFace{Int} faces = FT[(1, 2, 4), (1, 4, 3), (3, 4, 6), (3, 6, 5)] @test faces == decompose(FT, Tesselation(s, (2, 3))) v1 = Point{3,Float64}(1, 2, 3) v2 = Point{3,Float64}(4, 5, 6) R = 5.0 s = Cylinder(v1, v2, R) positions = Point{3,Float64}[(4.535533905932738, -1.5355339059327373, 3.0), (7.535533905932738, 1.4644660940672627, 6.0), (3.0412414523193148, 4.041241452319315, -1.0824829046386295), (6.041241452319315, 7.041241452319315, 1.9175170953613705), (-2.535533905932737, 5.535533905932738, 2.9999999999999996), (0.46446609406726314, 8.535533905932738, 6.0), (-1.0412414523193152, -0.04124145231931431, 7.0824829046386295), (1.9587585476806848, 2.9587585476806857, 10.08248290463863), (1, 2, 3), (4, 5, 6)] @test decompose(Point3{Float64}, Tesselation(s, 8)) β‰ˆ positions faces = TriangleFace{Int}[(3, 2, 1), (4, 2, 3), (5, 4, 3), (6, 4, 5), (7, 6, 5), (8, 6, 7), (1, 8, 7), (2, 8, 1), (3, 1, 9), (2, 4, 10), (5, 3, 9), (4, 6, 10), (7, 5, 9), (6, 8, 10), (1, 7, 9), (8, 2, 10)] @test faces == decompose(TriangleFace{Int}, Tesselation(s, 8)) m = triangle_mesh(Tesselation(s, 8)) @test m === triangle_mesh(m) @test GeometryBasics.faces(m) == faces @test GeometryBasics.coordinates(m) β‰ˆ positions m = normal_mesh(s)# just test that it works without explicit resolution parameter @test m isa GLNormalMesh muv = uv_mesh(s) @test Rect(Point.(texturecoordinates(muv))) == Rect2f(Vec2f(0), Vec2f(1.0)) end end @testset "HyperRectangles" begin a = Rect(Vec(0, 0), Vec(1, 1)) pt_expa = Point{2,Int}[(0, 0), (1, 0), (0, 1), (1, 1)] @test decompose(Point{2,Int}, a) == pt_expa mesh = normal_mesh(a) @test decompose(Point2f, mesh) == pt_expa b = Rect(Vec(1, 1, 1), Vec(1, 1, 1)) pt_expb = Point{3,Int64}[[1, 1, 1], [1, 1, 2], [1, 2, 2], [1, 2, 1], [1, 1, 1], [2, 1, 1], [2, 1, 2], [1, 1, 2], [1, 1, 1], [1, 2, 1], [2, 2, 1], [2, 1, 1], [2, 2, 2], [1, 2, 2], [1, 1, 2], [2, 1, 2], [2, 2, 2], [2, 1, 2], [2, 1, 1], [2, 2, 1], [2, 2, 2], [2, 2, 1], [1, 2, 1], [1, 2, 2]] @test decompose(Point{3,Int}, b) == pt_expb mesh = normal_mesh(b) @test isempty(Rect{3,Float32}()) end NFace = NgonFace @testset "Faces" begin @test convert_simplex(GLTriangleFace, QuadFace{Int}(1, 2, 3, 4)) == (GLTriangleFace(1, 2, 3), GLTriangleFace(1, 3, 4)) @test convert_simplex(NFace{3,ZeroIndex{Int}}, QuadFace{ZeroIndex{Int}}(1, 2, 3, 4)) == (NFace{3,ZeroIndex{Int}}(1, 2, 3), NFace{3,ZeroIndex{Int}}(1, 3, 4)) @test convert_simplex(NFace{3,OffsetInteger{3,Int}}, NFace{4,OffsetInteger{2,Int}}(1, 2, 3, 4)) == (NFace{3,OffsetInteger{3,Int}}(1, 2, 3), NFace{3,OffsetInteger{3,Int}}(1, 3, 4)) @test convert_simplex(LineFace{Int}, QuadFace{Int}(1, 2, 3, 4)) == (LineFace{Int}(1, 2), LineFace{Int}(2, 3), LineFace{Int}(3, 4), LineFace{Int}(4, 1)) @testset "NgonFace ambiguity" begin face = NgonFace((1, 2)) @test convert_simplex(NgonFace{2,UInt32}, face) === (NgonFace{2,UInt32}((1, 2)),) @test convert_simplex(typeof(face), face) === (face,) face = NgonFace((1,)) @test convert_simplex(NgonFace{1,UInt32}, face) === (NgonFace{1,UInt32}((1,)),) @test convert_simplex(typeof(face), face) === (face,) end end @testset "Normals" begin n64 = Vec{3,Float64}[(0.0, 0.0, -1.0), (0.0, 0.0, -1.0), (0.0, 0.0, -1.0), (0.0, 0.0, -1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (0.0, 0.0, 1.0), (-1.0, 0.0, 0.0), (-1.0, 0.0, 0.0), (-1.0, 0.0, 0.0), (-1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (1.0, 0.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, 1.0, 0.0), (0.0, -1.0, 0.0), (0.0, -1.0, 0.0), (0.0, -1.0, 0.0), (0.0, -1.0, 0.0),] n32 = map(Vec{3,Float32}, n64) r = triangle_mesh(centered(Rect3)) # @test normals(coordinates(r), GeometryBasics.faces(r)) == n32 # @test normals(coordinates(r), GeometryBasics.faces(r)) == n64 end @testset "HyperSphere" begin sphere = Sphere{Float32}(Point3f(0), 1.0f0) points = decompose(Point, Tesselation(sphere, 3)) point_target = Point{3,Float32}[[0.0, 0.0, 1.0], [1.0, 0.0, 6.12323e-17], [1.22465e-16, 0.0, -1.0], [-0.0, 0.0, 1.0], [-1.0, 1.22465e-16, 6.12323e-17], [-1.22465e-16, 1.49976e-32, -1.0], [0.0, -0.0, 1.0], [1.0, -2.44929e-16, 6.12323e-17], [1.22465e-16, -2.99952e-32, -1.0]] @test points β‰ˆ point_target f = decompose(TriangleFace{Int}, Tesselation(sphere, 3)) face_target = TriangleFace{Int}[[1, 2, 5], [1, 5, 4], [2, 3, 6], [2, 6, 5], [4, 5, 8], [4, 8, 7], [5, 6, 9], [5, 9, 8]] @test f == face_target circle = Circle(Point2f(0), 1.0f0) points = decompose(Point2f, Tesselation(circle, 20)) @test length(points) == 20 tess_circle = Tesselation(circle, 32) mesh = triangle_mesh(tess_circle) @test decompose(Point2f, mesh) β‰ˆ decompose(Point2f, tess_circle) end @testset "Rectangles" begin rect = Rect2f(0, 7, 20, 3) @test (rect + 4) == Rect2f(4, 11, 20, 3) @test (rect + Vec(2, -2)) == Rect2f(2, 5, 20, 3) @test (rect - 4) == Rect2f(-4, 3, 20, 3) @test (rect - Vec(2, -2)) == Rect2f(-2, 9, 20, 3) base = Vec3f(1, 2, 3) wxyz = Vec3f(-2, 4, 2) rect = Rect3f(base, wxyz) @test (rect + 4) == Rect3f(base .+ 4, wxyz) @test (rect + Vec(2, -2, 3)) == Rect3f(base .+ Vec(2, -2, 3), wxyz) @test (rect - 4) == Rect3f(base .- 4, wxyz) @test (rect - Vec(2, -2, 7)) == Rect3f(base .- Vec(2, -2, 7), wxyz) rect = Rect2f(0, 7, 20, 3) @test (rect * 4) == Rect2f(0, 7 * 4, 20 * 4, 3 * 4) @test (rect * Vec(2, -2)) == Rect2f(0, -7 * 2, 20 * 2, -3 * 2) base = Vec3f(1, 2, 3) wxyz = Vec3f(-2, 4, 2) rect = Rect3f(base, wxyz) @test (rect * 4) == Rect3f(base .* 4, wxyz .* 4) @test (rect * Vec(2, -2, 3)) == Rect3f(base .* Vec(2, -2, 3), wxyz .* Vec(2, -2, 3)) rect1 = Rect(Vec(0.0, 0.0), Vec(1.0, 2.0)) rect2 = Rect(0.0, 0.0, 1.0, 2.0) @test rect1 isa GeometryBasics.HyperRectangle{2,Float64} @test rect1 == rect2 split1, split2 = GeometryBasics.split(rect1, 2, 1) @test widths(split1) == widths(split2) @test origin(split1) == Vec(0, 0) @test origin(split2) == Vec(0, 1) @test in(split1, rect1) @test !in(rect1, split1) prim = Rect(0.0, 0.0, 1.0, 1.0) @test length(prim) == 2 @test width(prim) == 1.0 @test height(prim) == 1.0 b1 = Rect2(0.0, 0.0, 2.0, 2.0) b2 = Rect2(0, 0, 2, 2) @test isequal(b1, b2) pt = Point(1.0, 1.0) b1 = Rect(0.0, 0.0, 1.0, 1.0) @test in(pt, b1) rect = Rect(0.0, 0.0, 1.0, 1.0) @test GeometryBasics.positive_widths(rect) isa GeometryBasics.HyperRectangle{2,Float64} h1 = Rect(0.0, 0.0, 1.0, 1.0) h2 = Rect(1.0, 1.0, 2.0, 2.0) @test union(h1, h2) isa GeometryBasics.HyperRectangle{2,Float64} @test GeometryBasics.diff(h1, h2) == h1 @test GeometryBasics.intersect(h1, h2) isa GeometryBasics.HyperRectangle{2,Float64} b = Rect(0.0, 0.0, 1.0, 1.0) v = Vec(1, 2) @test update(b, v) isa GeometryBasics.HyperRectangle{2,Float64} v = Vec(1.0, 2.0) @test update(b, v) isa GeometryBasics.HyperRectangle{2,Float64} p = Vec(5.0, 4.0) rect = Rect(0.0, 0.0, 1.0, 1.0) @test min_dist_dim(rect, p, 1) == 4.0 @test min_dist_dim(rect, p, 2) == 3.0 @test max_dist_dim(rect, p, 1) == 5.0 @test max_dist_dim(rect, p, 2) == 4.0 rect1 = Rect(0.0, 0.0, 1.0, 1.0) rect2 = Rect(3.0, 1.0, 4.0, 2.0) @test min_dist_dim(rect1, rect2, 1) == 2.0 @test min_dist_dim(rect1, rect2, 2) == 0.0 @test max_dist_dim(rect1, rect2, 1) == 7.0 @test max_dist_dim(rect1, rect2, 2) == 3.0 @test !before(rect1, rect2) rect1 = Rect(0.0, 0.0, 1.0, 1.0) rect2 = Rect(3.0, 2.0, 4.0, 2.0) @test before(rect1, rect2) @test !meets(rect1, rect2) rect2 = Rect(1.0, 1.0, 4.0, 2.0) @test meets(rect1, rect2) rect1 = Rect(1.0, 1.0, 2.0, 2.0) rect2 = Rect(0.0, 0.0, 2.0, 1.0) @test !overlaps(rect1, rect2) rect1 = Rect(1.0, 1.0, 2.0, 2.0) rect2 = Rect(1.5, 1.5, 2.0, 2.0) @test overlaps(rect1, rect2) rect1 = Rect(1.0, 1.0, 2.0, 2.0) rect2 = Rect(0.0, 0.0, 2.0, 1.0) @test !GeometryBasics.starts(rect1, rect2) rect2 = Rect(1.0, 1.0, 1.5, 1.5) @test !GeometryBasics.starts(rect1, rect2) rect2 = Rect(1.0, 1.0, 3.0, 3.0) @test GeometryBasics.starts(rect1, rect2) rect1 = Rect(1.0, 1.0, 2.0, 2.0) rect2 = Rect(0.0, 0.0, 4.0, 4.0) @test during(rect1, rect2) rect1 = Rect(0.0, 0.0, 2.0, 3.0) rect2 = Rect(1.0, 1.0, 4.0, 2.0) @test !during(rect1, rect2) rect1 = Rect(1.0, 1.0, 2.0, 2.0) rect2 = Rect(0.0, 0.0, 4.0, 4.0) @test !finishes(rect1, rect2) rect1 = Rect(1.0, 0.0, 1.0, 1.0) rect2 = Rect(0.0, 0.0, 2.0, 1.0) @test !finishes(rect1, rect2) rect1 = Rect(1.0, 1.0, 1.0, 2.0) rect2 = Rect(0.0, 0.0, 2.0, 3.0) @test finishes(rect1, rect2) end
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
code
29003
using Test, Random, StructArrays, Tables, StaticArrays, OffsetArrays using GeometryBasics using LinearAlgebra using GeometryBasics: attributes using GeoInterface using GeoJSON using Extents @testset "GeometryBasics" begin @testset "algorithms" begin cube = Rect(Vec3f(-0.5), Vec3f(1)) cube_faces = decompose(TriangleFace{Int}, faces(cube)) cube_vertices = decompose(Point{3,Float32}, cube) @test area(cube_vertices, cube_faces) == 6 mesh = Mesh(cube_vertices, cube_faces) @test GeometryBasics.volume(mesh) β‰ˆ 1 @test GeometryBasics.volume(cube) β‰ˆ 1 rect = Rect(1, 2, 7.5, 2.0) @test GeometryBasics.area(rect) β‰ˆ 15 points_cwise = Point2f[(0,0), (0,1), (1,1)] points_ccwise = Point2f[(0,0), (1,0), (1,1)] @test area(points_cwise) β‰ˆ -0.5 @test area(points_ccwise) β‰ˆ 0.5 @test area(OffsetArray(points_cwise, -2)) β‰ˆ -0.5 points3d = Point3f[(0,0,0), (0,0,1), (0,1,1)] @test area(OffsetArray(points3d, -2)) β‰ˆ 0.5 pm2d = [PointMeta(0.0, 0.0, a=:d), PointMeta(0.0, 1.0, a=:e), PointMeta(1.0, 0.0, a=:f)] @test area(pm2d) β‰ˆ -0.5 pm3d = [PointMeta(0.0, 0.0, 0.0, a=:d), PointMeta(0.0, 1.0, 0.0, a=:e), PointMeta(1.0, 0.0, 0.0, a=:f)] @test_broken area(pm3d) β‰ˆ 0.5 # Currently broken as zero(PointMeta(0.0, 0.0, 0.0, a=:d)) fails end @testset "embedding metadata" begin @testset "Meshes" begin @testset "per vertex attributes" begin points = rand(Point{3, Float64}, 8) tfaces = TetrahedronFace{Int}[(1, 2, 3, 4), (5, 6, 7, 8)] normals = rand(SVector{3, Float64}, 8) stress = LinRange(0, 1, 8) mesh = Mesh(meta(points, normals = normals, stress = stress), tfaces) @test hasproperty(coordinates(mesh), :stress) @test hasproperty(coordinates(mesh), :normals) @test coordinates(mesh).stress === stress @test coordinates(mesh).normals === normals @test coordinates(mesh).normals === normals @test GeometryBasics.faces(mesh) === tfaces @test propertynames(coordinates(mesh)) == (:position, :normals, :stress) end @testset "per face attributes" begin # Construct a cube out of Quads points = Point{3, Float64}[ (0.0, 0.0, 0.0), (2.0, 0.0, 0.0), (2.0, 2.0, 0.0), (0.0, 2.0, 0.0), (0.0, 0.0, 12.0), (2.0, 0.0, 12.0), (2.0, 2.0, 12.0), (0.0, 2.0, 12.0) ] facets = QuadFace{Cint}[ 1:4, 5:8, [1,5,6,2], [2,6,7,3], [3, 7, 8, 4], [4, 8, 5, 1] ] markers = Cint[-1, -2, 0, 0, 0, 0] # attach some additional information to our faces! mesh = Mesh(points, meta(facets, markers = markers)) @test hasproperty(GeometryBasics.faces(mesh), :markers) # test with === to assert we're not doing any copies @test GeometryBasics.faces(mesh).markers === markers @test coordinates(mesh) === points @test metafree(GeometryBasics.faces(mesh)) === facets end end @testset "polygon with metadata" begin polys = [Polygon(rand(Point{2, Float32}, 20)) for i in 1:10] pnames = [randstring(4) for i in 1:10] numbers = LinRange(0.0, 1.0, 10) bin = rand(Bool, 10) # create a polygon poly = PolygonMeta(polys[1], name = pnames[1], value = numbers[1], category = bin[1]) # create a MultiPolygon with the right type & meta information! multipoly = MultiPolygonMeta(polys, name = pnames, value = numbers, category = bin) @test multipoly isa AbstractVector @test poly isa GeometryBasics.AbstractPolygon @test GeometryBasics.getcolumn(poly, :name) == pnames[1] @test GeometryBasics.MetaFree(PolygonMeta) == Polygon @test GeometryBasics.getcolumn(multipoly, :name) == pnames @test GeometryBasics.MetaFree(MultiPolygonMeta) == MultiPolygon meta_p = meta(polys[1], boundingbox=Rect(0, 0, 2, 2)) @test meta_p.boundingbox === Rect(0, 0, 2, 2) @test metafree(meta_p) === polys[1] attributes(meta_p) == Dict{Symbol, Any}(:boundingbox => meta_p.boundingbox, :polygon => polys[1]) end @testset "point with metadata" begin p = Point(1.1, 2.2) @test p isa AbstractVector{Float64} pm = PointMeta(1.1, 2.2; a=1, b=2) p1 = Point(2.2, 3.6) p2 = [p, p1] @test coordinates(p2) == p2 @test meta(pm) === (a=1, b=2) @test metafree(pm) === p @test propertynames(pm) == (:position, :a, :b) @test GeometryBasics.MetaFree(typeof(pm)) == Point{2,Float64} @test_broken zero(pm) == [0, 0] end @testset "MultiPoint with metadata" begin p = collect(Point{2, Float64}(x, x+1) for x in 1:5) @test p isa AbstractVector mpm = MultiPointMeta(p, a=1, b=2) @test coordinates(mpm) == mpm @test meta(mpm) === (a=1, b=2) @test metafree(mpm) == p @test propertynames(mpm) == (:points, :a, :b) end @testset "LineString with metadata" begin linestring = LineStringMeta(Point{2, Int}[(10, 10), (20, 20), (10, 40)], a = 1, b = 2) @test linestring isa AbstractVector @test meta(linestring) === (a = 1, b = 2) @test metafree(linestring) == linestring @test propertynames(linestring) == (:lines, :a, :b) end @testset "MultiLineString with metadata" begin linestring1 = LineString(Point{2, Int}[(10, 10), (20, 20), (10, 40)]) linestring2 = LineString(Point{2, Int}[(40, 40), (30, 30), (40, 20), (30, 10)]) multilinestring = MultiLineString([linestring1, linestring2]) multilinestringmeta = MultiLineStringMeta([linestring1, linestring2]; boundingbox = Rect(1.0, 1.0, 2.0, 2.0)) @test multilinestringmeta isa AbstractVector @test meta(multilinestringmeta) === (boundingbox = Rect(1.0, 1.0, 2.0, 2.0),) @test metafree(multilinestringmeta) == multilinestring @test propertynames(multilinestringmeta) == (:linestrings, :boundingbox) end @testset "Mesh with metadata" begin m = triangle_mesh(Sphere(Point3f(0), 1)) m_meta = MeshMeta(m; boundingbox=Rect(1.0, 1.0, 2.0, 2.0)) @test meta(m_meta) === (boundingbox = Rect(1.0, 1.0, 2.0, 2.0),) @test metafree(m_meta) === m @test propertynames(m_meta) == (:mesh, :boundingbox) end end @testset "embedding MetaT" begin @testset "MetaT{Polygon}" begin polys = [Polygon(rand(Point{2, Float32}, 20)) for i in 1:10] multipol = MultiPolygon(polys) pnames = [randstring(4) for i in 1:10] numbers = LinRange(0.0, 1.0, 10) bin = rand(Bool, 10) # create a polygon poly = MetaT(polys[1], name = pnames[1], value = numbers[1], category = bin[1]) # create a MultiPolygon with the right type & meta information! multipoly = MetaT(multipol, name = pnames, value = numbers, category = bin) @test multipoly isa MetaT @test poly isa MetaT @test GeometryBasics.getcolumn(poly, :name) == pnames[1] @test GeometryBasics.getcolumn(multipoly, :name) == pnames meta_p = MetaT(polys[1], boundingbox=Rect(0, 0, 2, 2)) @test meta_p.boundingbox === Rect(0, 0, 2, 2) @test GeometryBasics.metafree(meta_p) == polys[1] @test GeometryBasics.metafree(poly) == polys[1] @test GeometryBasics.metafree(multipoly) == multipol @test GeometryBasics.meta(meta_p) == (boundingbox = GeometryBasics.HyperRectangle{2,Int64}([0, 0], [2, 2]),) @test GeometryBasics.meta(poly) == (name = pnames[1], value = 0.0, category = bin[1]) @test GeometryBasics.meta(multipoly) == (name = pnames, value = numbers, category = bin) end @testset "MetaT{Point}" begin p = Point(1.1, 2.2) @test p isa AbstractVector{Float64} pm = MetaT(Point(1.1, 2.2); a=1, b=2) p1 = Point(2.2, 3.6) p2 = [p, p1] @test coordinates(p2) == p2 @test pm.meta === (a=1, b=2) @test pm.main === p @test propertynames(pm) == (:main, :a, :b) @test GeometryBasics.metafree(pm) == p @test GeometryBasics.meta(pm) == (a = 1, b = 2) end @testset "MetaT{MultiPoint}" begin p = collect(Point{2, Float64}(x, x+1) for x in 1:5) @test p isa AbstractVector mpm = MetaT(MultiPoint(p); a=1, b=2) @test coordinates(mpm.main) == Point{2, Float64}[(x, x+1) for x in 1:5] @test mpm.meta === (a=1, b=2) @test mpm.main == p @test propertynames(mpm) == (:main, :a, :b) @test GeometryBasics.metafree(mpm) == p @test GeometryBasics.meta(mpm) == (a = 1, b = 2) end @testset "MetaT{LineString}" begin linestring = MetaT(LineString(Point{2, Int}[(10, 10), (20, 20), (10, 40)]), a = 1, b = 2) @test linestring isa MetaT @test linestring.meta === (a = 1, b = 2) @test propertynames(linestring) == (:main, :a, :b) @test GeometryBasics.metafree(linestring) == LineString(Point{2, Int}[(10, 10), (20, 20), (10, 40)]) @test GeometryBasics.meta(linestring) == (a = 1, b = 2) end @testset "MetaT{MultiLineString}" begin linestring1 = LineString(Point{2, Int}[(10, 10), (20, 20), (10, 40)]) linestring2 = LineString(Point{2, Int}[(40, 40), (30, 30), (40, 20), (30, 10)]) multilinestring = MultiLineString([linestring1, linestring2]) multilinestringmeta = MetaT(MultiLineString([linestring1, linestring2]); boundingbox = Rect(1.0, 1.0, 2.0, 2.0)) @test multilinestringmeta isa MetaT @test multilinestringmeta.meta === (boundingbox = Rect(1.0, 1.0, 2.0, 2.0),) @test multilinestringmeta.main == multilinestring @test propertynames(multilinestringmeta) == (:main, :boundingbox) @test GeometryBasics.metafree(multilinestringmeta) == multilinestring @test GeometryBasics.meta(multilinestringmeta) == (boundingbox = GeometryBasics.HyperRectangle{2,Float64}([1.0, 1.0], [2.0, 2.0]),) end #= So mesh works differently for MetaT since `MetaT{Point}` not subtyped to `AbstractPoint` =# @testset "MetaT{Mesh}" begin @testset "per vertex attributes" begin points = rand(Point{3, Float64}, 8) tfaces = TetrahedronFace{Int}[(1, 2, 3, 4), (5, 6, 7, 8)] normals = rand(SVector{3, Float64}, 8) stress = LinRange(0, 1, 8) mesh_nometa = Mesh(points, tfaces) mesh = MetaT(mesh_nometa, normals = normals, stress = stress) @test hasproperty(mesh, :stress) @test hasproperty(mesh, :normals) @test mesh.stress == stress @test mesh.normals == normals @test GeometryBasics.faces(mesh.main) == tfaces @test propertynames(mesh) == (:main, :normals, :stress) end end end @testset "view" begin @testset "TupleView" begin x = [1, 2, 3, 4, 5, 6] y = TupleView{2, 1}(x) @test y == [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)] y = TupleView{2}(x) @test y == [(1, 2), (3, 4), (5, 6)] y = TupleView{2, 3}(x) @test y == [(1, 2), (4, 5)] y = TupleView{3, 1}(x) @test y == [(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)] y = TupleView{2, 1}(x, connect = true) @test y == [(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)] end @testset "connected views" begin numbers = [1, 2, 3, 4, 5, 6] x = connect(numbers, Point{2}) @test x == Point[(1, 2), (3, 4), (5, 6)] line = connect(x, Line, 1) @test line == [Line(Point(1, 2), Point(3, 4)), Line(Point(3, 4), Point(5, 6))] triangles = connect(x, Triangle) @test triangles == [Triangle(Point(1, 2), Point(3, 4), Point(5, 6))] x = connect([1, 2, 3, 4, 5, 6, 7, 8], Point{2}) tetrahedra = connect(x, NSimplex{4}) @test tetrahedra == [Tetrahedron(x[1], x[2], x[3], x[4])] @testset "matrix non-copy point views" begin # point in row points = [1 2; 1 4; 66 77] comparison = [Point(1, 2), Point(1, 4), Point(66, 77)] @test connect(points, Point{2}) == comparison # point in column points = [1 1 66; 2 4 77] # huh, reinterpret array doesn't seem to like `==` @test all(((a,b),)-> a==b, zip(connect(points, Point{2}), comparison)) end end @testset "face views" begin numbers = [1, 2, 3, 4, 5, 6] points = connect(numbers, Point{2}) faces = connect([1, 2, 3], TriangleFace) triangles = connect(points, faces) @test triangles == [Triangle(Point(1, 2), Point(3, 4), Point(5, 6))] x = Point{3}(1.0) triangles = connect([x], [TriangleFace(1, 1, 1)]) @test triangles == [Triangle(x, x, x)] points = connect([1, 2, 3, 4, 5, 6, 7, 8], Point{2}) faces = connect([1, 2, 3, 4], SimplexFace{4}) triangles = connect(points, faces) @test triangles == [Tetrahedron(points...)] end @testset "reinterpret" begin numbers = collect(reshape(1:6, 2, 3)) points = reinterpret(Point{2, Int}, numbers) @test points[1] === Point(1, 2) @test points[2] === Point(3, 4) numbers[4] = 0 @test points[2] === Point(3, 0) end end @testset "constructors" begin @testset "LineFace" begin points = connect([1, 2, 3, 4, 5, 6], Point{2}) linestring = LineString(points) @test linestring == [Line(points[1], points[2]), Line(points[2], points[3])] points = rand(Point{2, Float64}, 4) linestring = LineString(points, 2) @test linestring == [Line(points[1], points[2]), Line(points[3], points[4])] linestring = LineString([points[1] => points[2], points[2] => points[3]]) @test linestring == [Line(points[1], points[2]), Line(points[2], points[3])] faces = [1, 2, 3] linestring = LineString(points, faces) @test linestring == LineString([points[1] => points[2], points[2] => points[3]]) a, b, c, d = Point(1, 2), Point(3, 4), Point(5, 6), Point(7, 8) points = [a, b, c, d]; faces = [1, 2, 3, 4] linestring = LineString(points, faces, 2) @test linestring == LineString([a => b, c => d]) faces = [LineFace(1, 2) , LineFace(3, 4)] linestring = LineString(points, faces) @test linestring == LineString([a => b, c => d]) end @testset "Polygon" begin points = connect([1, 2, 3, 4, 5, 6], Point{2}) polygon = Polygon(points) @test polygon == Polygon(LineString(points)) points = rand(Point{2, Float64}, 4) linestring = LineString(points, 2) @test Polygon(points, 2) == Polygon(linestring) faces = [1, 2, 3] polygon = Polygon(points, faces) @test polygon == Polygon(LineString(points, faces)) a, b, c, d = Point(1, 2), Point(3, 4), Point(5, 6), Point(7, 8) points = [a, b, c, d]; faces = [1, 2, 3, 4] polygon = Polygon(points, faces, 2) @test polygon == Polygon(LineString(points, faces, 2)) faces = [LineFace(1, 2), LineFace(3, 4)] polygon = Polygon(points, faces) @test polygon == Polygon(LineString(points, faces)) @test ndims(polygon) === 2 end @testset "Mesh" begin numbers = [1, 2, 3, 4, 5, 6] points = connect(numbers, Point{2}) mesh = Mesh(points, [1,2,3]) @test mesh == [Triangle(points...)] x = Point{3}(1.0) mesh = Mesh([x], [TriangleFace(1, 1, 1)]) @test mesh == [Triangle(x, x, x)] points = connect([1, 2, 3, 4, 5, 6, 7, 8], Point{2}) faces = connect([1, 2, 3, 4], SimplexFace{4}) mesh = Mesh(points, faces) @test mesh == [Tetrahedron(points...)] points = rand(Point3f, 8) tfaces = [GLTriangleFace(1, 2, 3), GLTriangleFace(5, 6, 7)] normals = rand(Vec3f, 8) uv = rand(Vec2f, 8) mesh = Mesh(points, tfaces) meshuv = Mesh(meta(points; uv=uv), tfaces) meshuvnormal = Mesh(meta(points; normals=normals, uv=uv), tfaces) @test mesh isa GLPlainMesh @test meshuv isa GLUVMesh3D @test meshuvnormal isa GLNormalUVMesh3D t = Tesselation(Rect2f(0, 0, 2, 2), (30, 30)) m = GeometryBasics.mesh(t, pointtype=Point3f, facetype=QuadFace{Int}) m2 = GeometryBasics.mesh(m, facetype=QuadFace{GLIndex}) @test GeometryBasics.faces(m2) isa Vector{QuadFace{GLIndex}} @test GeometryBasics.coordinates(m2) isa Vector{Point3f} end @testset "Multi geometries" begin # coordinates from https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry#Geometric_objects points = Point{2, Int}[(10, 40), (40, 30), (20, 20), (30, 10)] multipoint = MultiPoint(points) @test size(multipoint) === size(points) @test multipoint[3] === points[3] linestring1 = LineString(Point{2, Int}[(10, 10), (20, 20), (10, 40)]) linestring2 = LineString(Point{2, Int}[(40, 40), (30, 30), (40, 20), (30, 10)]) multilinestring = MultiLineString([linestring1, linestring2]) @test size(multilinestring) === (2,) @test multilinestring[1] === linestring1 @test multilinestring[2] === linestring2 polygon11 = Polygon(Point{2, Int}[(30, 20), (45, 40), (10, 40), (30, 20)]) polygon12 = Polygon(Point{2, Int}[(15, 5), (40, 10), (10, 20), (5, 10), (15, 5)]) multipolygon1 = MultiPolygon([polygon11, polygon12]) @test size(multipolygon1) === (2,) @test multipolygon1[1] === polygon11 @test multipolygon1[2] === polygon12 polygon21 = Polygon(Point{2, Int}[(40, 40), (20, 45), (45, 30), (40, 40)]) polygon22 = Polygon(LineString(Point{2, Int}[(20, 35), (10, 30), (10, 10), (30, 5), (45, 20), (20, 35)]), [LineString(Point{2, Int}[(30, 20), (20, 15), (20, 25), (30, 20)])]) multipolygon2 = MultiPolygon([polygon21, polygon22]) @test size(multipolygon2) === (2,) @test multipolygon2[1] === polygon21 @test multipolygon2[2] === polygon22 end end @testset "decompose/triangulation" begin @test isempty(decompose(Vec3f, [])) @test decompose(Vec3f, []) isa Vector{Vec3f} primitive = Sphere(Point3f(0), 1) @test ndims(primitive) === 3 mesh = triangle_mesh(primitive) @test decompose(Point, mesh) isa Vector{Point3f} @test decompose(Point, primitive) isa Vector{Point3f} primitive = Rect2(0, 0, 1, 1) mesh = triangle_mesh(primitive) @test decompose(Point, mesh) isa Vector{Point2f} @test decompose(Point, primitive) isa Vector{Point2{Int}} primitive = Rect3(0, 0, 0, 1, 1, 1) triangle_mesh(primitive) primitive = Sphere(Point3f(0), 1) m_normal = normal_mesh(primitive) @test normals(m_normal) isa Vector{Vec3f} primitive = Rect2(0, 0, 1, 1) m_normal = normal_mesh(primitive) @test normals(m_normal) isa Vector{Vec3f} primitive = Rect3(0, 0, 0, 1, 1, 1) m_normal = normal_mesh(primitive) @test normals(m_normal) isa Vector{Vec3f} points = decompose(Point2f, Circle(Point2f(0), 1)) tmesh = triangle_mesh(points) @test normals(tmesh) == nothing m = GeometryBasics.mesh(Sphere(Point3f(0), 1)) @test normals(m) == nothing m_normals = pointmeta(m, Normal()) @test normals(m_normals) isa Vector{Vec3f} @test texturecoordinates(m) == nothing r2 = Rect2(0.0, 0.0, 1.0, 1.0) @test collect(texturecoordinates(r2)) == [(0.0, 1.0), (1.0, 1.0), (0.0, 0.0), (1.0, 0.0)] r3 = Rect3(0.0, 0.0, 1.0, 1.0, 2.0, 2.0) @test first(texturecoordinates(r3)) == Vec3(0, 0, 0) uv = decompose_uv(m) @test Rect(Point.(uv)) == Rect(0, 0, 1, 1) points = decompose(Point2f, Circle(Point2f(0), 1)) m = GeometryBasics.mesh(points) @test coordinates(m) === points linestring = LineString(Point{2, Int}[(10, 10), (20, 20), (10, 40)]) pts = Point{2, Int}[(10, 10), (20, 20), (10, 40)] linestring = LineString(pts) pts_decomp = decompose(Point{2, Int}, linestring) @test pts === pts_decomp pts_ext = Point{2, Int}[(5, 1), (3, 3), (4, 8), (1, 2), (5, 1)] ls_ext = LineString(pts_ext) pts_int1 = Point{2, Int}[(2, 2), (3, 8),(5, 6), (3, 4), (2, 2)] ls_int1 = LineString(pts_int1) pts_int2 = Point{2, Int}[(3, 2), (4, 5),(6, 1), (1, 4), (3, 2)] ls_int2 = LineString(pts_int2) poly_ext = Polygon(ls_ext) poly_ext_int = Polygon(ls_ext, [ls_int1, ls_int2]) @test decompose(Point{2, Int}, poly_ext) == pts_ext @test decompose(Point{2, Int}, poly_ext_int) == [pts_ext..., pts_int1..., pts_int2...] end @testset "mesh" begin primitive = Triangle(Point2f(0), Point2f(1), Point2f(1,0)) m = GeometryBasics.mesh(primitive) @test length(faces(m)) == 1 end @testset "convert mesh + meta" begin m = uv_normal_mesh(Circle(Point2f(0), 1f0)) # for 2D primitives we dont actually calculate normals @test !hasproperty(m, :normals) end @testset "convert mesh + meta" begin m = uv_normal_mesh(Rect3f(Vec3f(-1), Vec3f(1, 2, 3))) m_normal = normal_mesh(m) # make sure we don't loose the uv @test hasproperty(m_normal, :uv) @test m == m_normal # Make sure we don't create any copies @test m.position === m_normal.position @test m.normals === m_normal.normals @test m.uv === m_normal.uv m = GeometryBasics.mesh(Rect3f(Vec3f(-1), Vec3f(1, 2, 3)); uv=Vec2{Float64}, normaltype=Vec3{Float64}, pointtype=Point3{Float64}) m_normal = normal_mesh(m) @test hasproperty(m_normal, :uv) @test m.position !== m_normal.position @test m.normals !== m_normal.normals # uv stays untouched, since we don't specify the element type in normalmesh @test m.uv === m_normal.uv end @testset "modifying meta" begin xx = rand(10) points = rand(Point3f, 10) m = GeometryBasics.Mesh(meta(points, xx=xx), GLTriangleFace[(1,2,3), (3,4,5)]) color = rand(10) m = pointmeta(m; color=color) @test hasproperty(m, :xx) @test hasproperty(m, :color) @test_throws ErrorException GeometryBasics.MetaType(Simplex) @test_throws ErrorException GeometryBasics.MetaFree(Simplex) @test m.xx === xx @test m.color === color m, colpopt = GeometryBasics.pop_pointmeta(m, :color) m, xxpopt = GeometryBasics.pop_pointmeta(m, :xx) @test propertynames(m) == (:position,) @test colpopt === color @test xxpopt === xx @testset "creating meta" begin x = Point3f[(1,3,4)] # no meta gets added, so should stay the same @test meta(x) === x @test meta(x, value=[1]).position === x end pos = Point2f[(10, 2)] m = Mesh(meta(pos, uv=[Vec2f(1, 1)]), [GLTriangleFace(1, 1, 1)]) @test m.position === pos end @testset "mesh conversion" begin s = Sphere(Point3(0.0), 1.0) m = GeometryBasics.mesh(s) @test m isa Mesh{3, Float64} @test coordinates(m) isa Vector{Point{3, Float64}} @test GeometryBasics.faces(m) isa Vector{GLTriangleFace} # Check, that decompose isn't making a copy for matching eltype @test coordinates(m) === decompose(Point{3, Float64}, m) tmesh = triangle_mesh(m) @test tmesh isa GLPlainMesh @test coordinates(tmesh) === decompose(Point3f, tmesh) nmesh = normal_mesh(m) @test nmesh isa GLNormalMesh @test metafree(coordinates(nmesh)) === decompose(Point3f, nmesh) @test normals(nmesh) === decompose_normals(nmesh) m = GeometryBasics.mesh(s, pointtype=Point3f) @test m isa Mesh{3, Float32} @test coordinates(m) isa Vector{Point3f} @test GeometryBasics.faces(m) isa Vector{GLTriangleFace} end @testset "lines intersects" begin a = Line(Point(0.0, 0.0), Point(4.0, 1.0)) b = Line(Point(0.0, 0.25), Point(3.0, 0.25)) c = Line(Point(0.0, 0.25), Point(0.5, 0.25)) d = Line(Point(0.0, 0.0), Point(0.0, 4.0)) e = Line(Point(1.0, 0.0), Point(0.0, 4.0)) f = Line(Point(5.0, 0.0), Point(6.0, 0.0)) @test intersects(a, b) === (true, Point(1.0, 0.25)) @test intersects(a, c) === (false, Point(0.0, 0.0)) @test intersects(d, d) === (false, Point(0.0, 0.0)) found, point = intersects(d, e) @test found && point β‰ˆ Point(0.0, 4.0) @test intersects(a, f) === (false, Point(0.0, 0.0)) # issue #168 # If these tests fail then you can increase the tolerance on the checks so # long as you know what you're doing :) line_helper(a, b, c, d) = Line(Point(a, b), Point(c, d)) b, loc = intersects(line_helper(-3.1, 15.588457268119894, 3.1, 15.588457268119894), line_helper(2.0866025403784354, 17.37050807568877, -4.0866025403784505, 13.806406460551015)) @test b @test loc β‰ˆ Point(-1.0000000000000058, 15.588457268119894) b, loc = intersects(line_helper(5743.933982822018, 150.0, 5885.355339059327, -50.0), line_helper(5760.0, 100.0, 5760.0, 140.0)) @test b @test loc β‰ˆ Point(5760.0, 127.27922061357884) end @testset "Offsetintegers" begin x = 1 @test GeometryBasics.raw(x) isa Int64 @test GeometryBasics.value(x) == x x = ZeroIndex(1) @test eltype(x) == Int64 x = OffsetInteger{0}(1) @test typeof(x) == OffsetInteger{0,Int64} x1 = OffsetInteger{0}(2) @test GeometryBasics.pure_max(x, x1) == x1 @test promote_rule(typeof(x), typeof(x1)) == OffsetInteger{0,Int64} x2 = 1 @test promote_rule(typeof(x2), typeof(x1)) == Int64 @test Base.to_index(x1) == 2 @test -(x1) == OffsetInteger{0,Int64}(-2) @test abs(x1) == OffsetInteger{0,Int64}(2) @test +(x, x1) == OffsetInteger{0,Int64}(3) @test *(x, x1) == OffsetInteger{0,Int64}(2) @test -(x, x1) == OffsetInteger{0,Int64}(-1) #test for / @test div(x, x1) == OffsetInteger{0,Int64}(0) @test !==(x, x1) @test !>=(x, x1) @test <=(x, x1) @test !>(x, x1) @test <(x, x1) end @testset "MetaT and heterogeneous data" begin ls = [LineString([Point(i, (i+1)^2/6), Point(i*0.86,i+5), Point(i/3, i/7)]) for i in 1:10] mls = MultiLineString([LineString([Point(i+1, (i)^2/6), Point(i*0.75,i+8), Point(i/2.5, i/6.79)]) for i in 5:10]) poly = Polygon(Point{2, Int}[(40, 40), (20, 45), (45, 30), (40, 40)]) geom = [ls..., mls, poly] prop = Any[(country_states = "India$(i)", rainfall = (i*9)/2) for i in 1:11] push!(prop, (country_states = 12, rainfall = 1000)) # a pinch of heterogeneity feat = [MetaT(i, j) for (i,j) = zip(geom, prop)] sa = meta_table(feat) @test nameof(eltype(feat)) == :MetaT @test eltype(sa) === MetaT{Any,(:country_states, :rainfall),Tuple{Any,Float64}} @test propertynames(sa) === (:main, :country_states, :rainfall) @test getproperty(sa, :country_states) isa Array{Any} @test getproperty(sa, :main) == geom maintype, metanames, metatype = GeometryBasics.getnamestypes(typeof(feat[1])) @test (metanames, metatype) == ((:country_states, :rainfall), Tuple{String,Float64}) @test StructArrays.createinstance(typeof(feat[1]), LineString([Point(1, (2)^2/6), Point(1*0.86,6), Point(1/3, 1/7)]), "Mumbai", 100) isa typeof(feat[1]) @test Base.getindex(feat[1], 1) isa Line @test Base.size(feat[1]) == (2,) end @testset "StructArrays integration" begin pt = meta(Point(0.0, 0.0), color="red", alpha=0.1) @test StructArrays.component(pt, :position) == Point(0.0, 0.0) @test StructArrays.component(pt, :color) == "red" @test StructArrays.component(pt, :alpha) == 0.1 @test StructArrays.staticschema(typeof(pt)) == NamedTuple{(:position, :color, :alpha), Tuple{Point2{Float64}, String, Float64}} @test StructArrays.createinstance(typeof(pt), Point(0.0, 0.0), "red", 0.1) == pt s = StructArray([pt, pt]) @test StructArrays.components(s) == ( position = [Point(0.0, 0.0), Point(0.0, 0.0)], color = ["red", "red"], alpha = [0.1, 0.1] ) s[2] = meta(Point(0.1, 0.1), color="blue", alpha=0.3) @test StructArrays.components(s) == ( position = [Point(0.0, 0.0), Point(0.1, 0.1)], color = ["red", "blue"], alpha = [0.1, 0.3] ) end @testset "Tests from GeometryTypes" begin include("geometrytypes.jl") end @testset "Point & Vec type" begin include("fixed_arrays.jl") end @testset "GeoInterface" begin include("geointerface.jl") end using Aqua # Aqua tests # Intervals brings a bunch of ambiquities unfortunately Aqua.test_all(GeometryBasics; ambiguities=false) end # testset "GeometryBasics"
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git