licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
1633
[![Build Status](https://api.travis-ci.org/JuliaGeometry/GeometryBasics.jl.svg?branch=master)](https://travis-ci.com/JuliaGeometry/GeometryBasics.jl) [![Codecov](https://codecov.io/gh/JuliaGeometry/GeometryBasics.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaGeometry/GeometryBasics.jl) [![Docs - stable](https://img.shields.io/badge/docs-stable-lightgrey.svg)](http://juliageometry.github.io/GeometryBasics.jl/stable/) [![Docs - dev](https://img.shields.io/badge/docs-dev-blue.svg)](http://juliageometry.github.io/GeometryBasics.jl/dev/) # GeometryBasics.jl Basic geometry types. This package aims to offer a standard set of geometry types that easily work with metadata, query frameworks on geometries and different memory layouts. The aim is to create a solid basis for graphics/plotting, finite element analysis, geo applications, and general geometry manipulations - while offering a Julian API that still allows performant C-interop. This package is a replacement for the discontinued [GeometryTypes](https://github.com/JuliaGeometry/GeometryTypes.jl/). **Documentation:** http://juliageometry.github.io/GeometryBasics.jl/stable/ ## Contributing Make sure your changes don't break the documentation. To build the documentation locally, you first need to instantiate the `docs/` project: ``` julia --project=docs/ pkg> instantiate pkg> dev . ``` Then use `julia --project=docs/ docs/make.jl` to build the documentation. This will also run the doctests defined in Markdown files. The doctests should be written for the Julia version configured in [ci.yml](.github/workflows/ci.yml) (`:docs` section).
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
306
# API Reference ## Exports ```@autodocs Modules = [GeometryBasics] Order = [:module, :constant, :type, :function, :macro] Public = true Private = false ``` ## Private ```@autodocs Modules = [GeometryBasics] Order = [:module, :constant, :type, :function, :macro] Public = false Private = true ```
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
3248
# Decomposition ## GeometryBasics Mesh interface GeometryBasics defines an interface to decompose abstract geometries into points and triangle meshes. This can be done for any arbitrary primitive, by overloading the following interface: ```julia function GeometryBasics.coordinates(rect::Rect2, nvertices=(2,2)) mini, maxi = extrema(rect) xrange, yrange = LinRange.(mini, maxi, nvertices) return ivec(((x,y) for x in xrange, y in yrange)) end function GeometryBasics.faces(rect::Rect2, nvertices=(2, 2)) w, h = nvertices idx = LinearIndices(nvertices) quad(i, j) = QuadFace{Int}(idx[i, j], idx[i+1, j], idx[i+1, j+1], idx[i, j+1]) return ivec((quad(i, j) for i=1:(w-1), j=1:(h-1))) end ``` Those methods, for performance reasons, expect you to return an iterator, to make materializing them with different element types allocation free. But of course, can also return any `AbstractArray`. With these methods defined, this constructor will magically work: ```julia rect = Rect2(0.0, 0.0, 1.0, 1.0) m = GeometryBasics.mesh(rect) ``` If you want to set the `nvertices` argument, you need to wrap your primitive in a `Tesselation` object: ```julia m = GeometryBasics.mesh(Tesselation(rect, (50, 50))) length(coordinates(m)) == 50^2 ``` As you can see, `coordinates` and `faces` are also defined on a mesh ```julia coordinates(m) faces(m) ``` But will actually not be an iterator anymore. Instead, the mesh constructor uses the `decompose` function, that will collect the result of coordinates and will convert it to a concrete element type: ```julia decompose(Point2f, rect) == convert(Vector{Point2f}, collect(coordinates(rect))) ``` The element conversion is handled by `simplex_convert`, which also handles convert between different face types: ```julia decompose(QuadFace{Int}, rect) == convert(Vector{QuadFace{Int}}, collect(faces(rect))) length(decompose(QuadFace{Int}, rect)) == 1 fs = decompose(GLTriangleFace, rect) fs isa Vector{GLTriangleFace} length(fs) == 2 # 2 triangles make up one quad ;) ``` `mesh` uses the most natural element type by default, which you can get with the unqualified Point type: ```julia decompose(Point, rect) isa Vector{Point{2, Float64}} ``` You can also pass the element type to `mesh`: ```julia m = GeometryBasics.mesh(rect, pointtype=Point2f, facetype=QuadFace{Int}) ``` You can also set the uv and normal type for the mesh constructor, which will then calculate them for you, with the requested element type: ```julia m = GeometryBasics.mesh(rect, uv=Vec2f, normaltype=Vec3f) ``` As you can see, the normals are automatically calculated, the same is true for texture coordinates. You can overload this behavior by overloading `normals` or `texturecoordinates` the same way as coordinates. `decompose` works a bit different for normals/texturecoordinates, since they dont have their own element type. Instead, you can use `decompose` like this: ```julia decompose(UV(Vec2f), rect) decompose(Normal(Vec3f), rect) # the short form for the above: decompose_uv(rect) decompose_normals(rect) ``` You can also use `triangle_mesh`, `normal_mesh` and `uv_normal_mesh` to call the `mesh` constructor with predefined element types (Point2/3f, Vec2/3f), and the requested attributes.
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
127
# Implementation In the backend, GeometryTypes relies on fixed-size arrays, specifically static vectors. TODO add more here.
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
3712
# GeometryBasics.jl Basic geometry types. This package aims to offer a standard set of geometry types that easily work with metadata, query frameworks on geometries and different memory layouts. The aim is to create a solid basis for graphics/plotting, finite element analysis, geo applications, and general geometry manipulations - while offering a Julian API that still allows performant C-interop. This package is a replacement for the discontinued [GeometryTypes](https://github.com/JuliaGeometry/GeometryTypes.jl/). ## Quick start Create some points: ```@repl quickstart using GeometryBasics p1 = Point(3, 1) p2 = Point(1, 3); p3 = Point(4, 4); ``` Geometries can carry metadata: ```@repl quickstart poi = meta(p1, city="Abuja", rainfall=1221.2) ``` Metadata is stored in a NamedTuple and can be retrieved as such: ```@repl quickstart meta(poi) ``` Specific metadata attributes can be directly retrieved: ```@repl quickstart poi.rainfall ``` To remove the metadata and keep only the geometry, use `metafree`: ```@repl quickstart metafree(poi) ``` Geometries have predefined metatypes: ```@repl quickstart multipoi = MultiPointMeta([p1], city="Abuja", rainfall=1221.2) ``` Connect the points with lines: ```@repl quickstart l1 = Line(p1, p2) l2 = Line(p2, p3); ``` Connect the lines in a linestring: ```@repl quickstart LineString([l1, l2]) ``` Linestrings can also be constructed directly from points: ```@repl quickstart LineString([p1, p2, p3]) ``` The same goes for polygons: ```@repl quickstart Polygon(Point{2, Int}[(3, 1), (4, 4), (2, 4), (1, 2), (3, 1)]) ``` Create a rectangle placed at the origin with unit width and height: ```@repl quickstart rect = Rect(Vec(0.0, 0.0), Vec(1.0, 1.0)) ``` Decompose the rectangle into two triangular faces: ```@repl quickstart rect_faces = decompose(TriangleFace{Int}, rect) ``` Decompose the rectangle into four vertices: ```@repl quickstart rect_vertices = decompose(Point{2, Float64}, rect) ``` Combine the vertices and faces into a triangle mesh: ```@repl quickstart mesh = Mesh(rect_vertices, rect_faces) ``` Use `GeometryBasics.mesh` to get a mesh directly from a geometry: ```@repl quickstart mesh = GeometryBasics.mesh(rect) ``` ## Aliases GeometryBasics exports common aliases for Point, Vec, Mat and Rect: ### Vec | |`T`(eltype) |`Float64` |`Float32` |`Int` |`UInt` | |--------|------------|----------|----------|----------|----------| |`N`(dim)|`Vec{N,T}` |`Vecd{N}` |`Vecf{N}` |`Veci{N}` |`Vecui{N}`| |`2` |`Vec2{T}` |`Vec2d` |`Vec2f` |`Vec2i` |`Vec2ui` | |`3` |`Vec3{T}` |`Vec3d` |`Vec3f` |`Vec3i` |`Vec3ui` | ### Point | |`T`(eltype) |`Float64` |`Float32` |`Int` |`UInt` | |--------|------------|----------|----------|----------|----------| |`N`(dim)|`Point{N,T}`|`Pointd{N}`|`Pointf{N}`|`Pointi{N}`|`Pointui{N}`| |`2` |`Point2{T}` |`Point2d` |`Point2f` |`Point2i` |`Point2ui`| |`3` |`Point3{T}` |`Point3d` |`Point3f` |`Point3i` |`Point3ui`| ### Mat | |`T`(eltype) |`Float64` |`Float32` |`Int` |`UInt` | |--------|------------|----------|----------|----------|----------| |`N`(dim)|`Mat{N,T}` |`Matd{N}` |`Matf{N}` |`Mati{N}` |`Matui{N}`| |`2` |`Mat2{T}` |`Mat2d` |`Mat2f` |`Mat2i` |`Mat2ui` | |`3` |`Mat3{T}` |`Mat3d` |`Mat3f` |`Mat3i` |`Mat3ui` | ### Rect | |`T`(eltype) |`Float64` |`Float32` |`Int` |`UInt` | |--------|------------|----------|----------|----------|----------| |`N`(dim)|`Rect{N,T}` |`Rectd{N}`|`Rectf{N}`|`Recti{N}`|`Rectui{N}`| |`2` |`Rect2{T}` |`Rect2d` |`Rect2f` |`Rect2i` |`Rect2ui` | |`3` |`Rect3{T}` |`Rect3d` |`Rect3f` |`Rect3i` |`Rect3ui` |
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
464
# Meshes ## Types * [`AbstractMesh`](@ref) * [`Mesh`](@ref) ## How to create a mesh ### Meshing.jl ### MeshIO.jl The [`MeshIO.jl`](https://github.com/JuliaIO/MeshIO.jl) package provides load/save support for several file formats which store meshes. ## How to access data The following functions can be called on an [`AbstractMesh`](@ref) to access its underlying data. * [`faces`](@ref) * [`coordinates`](@ref) * `texturecoordinates` * [`normals`](@ref)
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
3803
# Metadata ## Meta The `Meta` method provides metadata handling capabilities in GeometryBasics. Similarly to remove the metadata and keep only the geometry, use `metafree`, and for vice versa i.e., remove the geometry and keep the metadata use `meta`. ### Syntax ```julia meta(geometry, meta::NamedTuple) meta(geometry; meta...) metafree(meta-geometry) meta(meta-geometry) ``` ### Examples ```@repl meta using GeometryBasics p1 = Point(2.2, 3.6) poi = meta(p1, city="Abuja", rainfall=1221.2) ``` Metadata is stored in a NamedTuple and can be retrieved as such: ```@repl meta meta(poi) ``` Specific metadata attributes can be directly retrieved: ```@repl meta poi.rainfall metafree(poi) ``` Metatypes are predefined for geometries: ```@repl meta multipoi = MultiPointMeta([p1], city="Abuja", rainfall=1221.2) ``` (In the above example we have also used a geometry-specific meta method.) ```@repl meta GeometryBasics.MetaType(Polygon) GeometryBasics.MetaType(Mesh) ``` The metageometry objects are infact composed of the original geometry types. ```@repl meta GeometryBasics.MetaFree(PolygonMeta) GeometryBasics.MetaFree(MeshMeta) ``` ## MetaT In GeometryBasics we can have tabular layout for a collection of meta-geometries by putting them into a StructArray that extends the [Tables.jl](https://github.com/JuliaData/Tables.jl) API. In practice it's not necessary for the geometry or metadata types to be consistent. For example, a geojson format can have heterogeneous geometries. Hence, such cases require automatic widening of the geometry data types to the most appropriate type. The MetaT method works around the fact that, a collection of geometries and metadata of different types can be represented tabularly whilst widening to the appropriate type. ### Syntax ```julia MetaT(geometry, meta::NamedTuple) MetaT(geometry; meta...) ``` Returns a `MetaT` that holds a geometry and its metadata `MetaT` acts the same as `Meta` method. The difference lies in the fact that it is designed to handle geometries and metadata of different/heterogeneous types. For example, while a Point MetaGeometry is a `PointMeta`, the MetaT representation is `MetaT{Point}`. ### Examples ```@repl meta MetaT(Point(1, 2), city = "Mumbai") ``` For a tabular representation, an iterable of `MetaT` types can be passed on to a `meta_table` method. ### Syntax ```julia meta_table(iter) ``` ### Examples Create an array of 2 linestrings: ```@repl meta ls = [LineString([Point(i, i+1), Point(i-1,i+5)]) for i in 1:2]; coordinates.(ls) ``` Create a multi-linestring: ```@repl meta mls = MultiLineString(ls); coordinates.(mls) ``` Create a polygon: ```@repl meta poly = Polygon(Point{2, Int}[(40, 40), (20, 45), (45, 30), (40, 40)]); coordinates(poly) ``` Put all geometries into an array: ```@repl meta geom = [ls..., mls, poly]; ``` Generate some random metadata: ```@repl meta prop = [(country_states = "India$(i)", rainfall = (i*9)/2) for i in 1:4] feat = [MetaT(i, j) for (i,j) = zip(geom, prop)]; # create an array of MetaT ``` We can now generate a `StructArray` / `Table` with `meta_table`: ```@repl meta sa = meta_table(feat); ``` The data can be accessed through `sa.main` and the metadata through `sa.country_states` and `sa.rainfall`. Here we print only the type names of the data items for brevity: ```@repl meta [nameof.(typeof.(sa.main)) sa.country_states sa.rainfall] ``` ### Disadvantages * The MetaT is pretty generic in terms of geometry types, it's not subtype to geometries. eg : A `MetaT{Point, NamedTuple{Names, Types}}` is not subtyped to `AbstractPoint` like a `PointMeta` is. * This might cause problems on using `MetaT` with other constructors/methods inside or even outside GeometryBasics methods designed to work with the main `Meta` types.
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.4.11
b62f2b2d76cee0d61a2ef2b3118cd2a3215d3134
docs
208
# Primitives ## Points and Vectors ## Simplices ## Shapes * [`Circle`](@ref) * [`Sphere`](@ref) * [`Cylinder`](@ref) ## Abstract types * `GeometryPrimitive` * `AbstractSimplex` * [`AbstractMesh`](@ref)
GeometryBasics
https://github.com/JuliaGeometry/GeometryBasics.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
204
using Documenter using DiscoDiff makedocs( sitename = "DiscoDiff.jl Documentation", modules = [DiscoDiff], format = Documenter.HTML(prettyurls = false), pages = ["Home" => "index.md"], )
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
86
module DiscoDiff include("./ignore_gradient.jl") include("./diff_examples.jl") end
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
745
export heaviside, sign_diff using NNlib: sigmoid """ heaviside(Number, [steepnes]) -> Number Implements the Heaviside function in the forward pass. It is 1 if x > 0 and 0 otherwise. The derivative is taken to be the sigmoid. An extra parameter k controls the steepnes of the sigmoid, default is 1. """ heaviside = construct_diff_version( x -> x > zero(typeof(x)) ? one(typeof(x)) : zero(typeof(x)), sigmoid, ) """ sign_diff(Number, [steepnes]) -> Number Implements the sign function in the forward pass. It is 1 if x > 0, -1 if x < 0 and 0 if x = 0. The derivative is taken to be the tanh. An extra parameter k controls the steepnes of the sigmoid, default is 1. """ sign_diff = construct_diff_version(sign, tanh)
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
1411
export ignore_gradient, construct_diff_version using ForwardDiff, ChainRulesCore """ ignore_gradient(x) -> x Drops the gradient in any computation. In reverse mode it uses ChainRulesCore API. In forward mode it simply returns a new number with a zero dual. """ ignore_gradient(x) = ChainRulesCore.@ignore_derivatives x ignore_gradient(x::ForwardDiff.Dual) = typeof(x)(x.value) function ignore_gradient(arr::AbstractArray{<:ForwardDiff.Dual}) return typeof(arr)(ignore_gradient.(arr)) end """ construct_diff_version(f, g) -> pass_trough_function Constructs a pass trough function for the given function `f` and gradient function `g`. The pass trough function is a function that returns the same value as `f` but the gradient is taken from `g`. Optional parameter k controls the steepnes of the gradient, default is 1. Supports both scalars and arrays. """ function construct_diff_version(f, g) @inline function pass_trough_function(x::T; k = nothing) where {T} if isnothing(k) if T <: Number k = one(T) elseif T <: AbstractArray k = one(eltype(T)) else error("Type not supported only supports Number and AbstractArray.") end end zero = g(x .* k) .- ignore_gradient(g(x .* k)) return ignore_gradient(f(x)) .+ zero end return pass_trough_function end
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
731
using DiscoDiff, Test, ForwardDiff, NNlib @testset "heaviside function" begin @test heaviside(2.0) == 1.0 @test heaviside(-2.0) == 0.0 @test heaviside(-2.0, k = 2.0) == 0.0 end @testset "heaviside function gradient" begin x = 2.0 value = NNlib.sigmoid(x) f(x) = heaviside(x) @test isapprox(ForwardDiff.derivative(f, x), value * (1.0 - value), atol = 1e-8) end using DiscoDiff, Test, ForwardDiff @testset "sign_diff" begin @test sign_diff(2.0) == 1.0 @test sign_diff(-2.0) == -1.0 @test sign_diff(0.0) == 0.0 end @testset "sign_diff gradient" begin x = 2.0 f(x) = sign_diff(x) value = 1.0 - tanh(x)^2 @test isapprox(ForwardDiff.derivative(f, x), value, atol = 1e-8) end
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
317
using DiscoDiff using Test using ForwardDiff, Zygote @testset "ignore gradient" begin function f(x) return 3x + x^2 - ignore_gradient(x^2) end x = 2.0 @test isapprox(ForwardDiff.derivative(f, x), 3 + 2x, atol = 1e-8) @test isapprox(Zygote.gradient(f, x)[1], 3 + 2x, atol = 1e-8) end
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
code
85
using DiscoDiff, Test include("./ignore_gradient.jl") include("./diff_examples.jl")
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
docs
3078
# DiscoDiff.jl A small package for differentiable discontinuities in Julia. Implements a simple API to generate differentiable discontinuous functions using the pass-through trick. Works both in forward and reverse mode with scalars and arrays. ## Main API To generate a differentiable function version of a discontinuous function `f` such that the gradient of `f` is the gradient of `g`, simply use: ````julia new_f = construct_diff_version(f,g) ```` This is used in the case $$ \frac{df}{dx} $$ is either not defined or does not have the desired properties. For example where $f$ is the sign function. Sometimes we want to still be able to propagate gradients trough this. In this case we impose $$ \frac{df}{dx} = \frac{dg}{dx} $$ Use it as: ```julia new_f(x) # control gradient steppes new_f(2.0, k = 100.0) ``` In the second case we have $$ \frac{df}{dx}(2.0) = \frac{dg}{dx}(100.0 \cdot 2.0) $$ Note: to avoid type instabilities ensure $x$ and $k$ are of the same type. The package works both with forward and reverse mode automatic differentiation. ````julia using Zygote, ForwardDiff using DiscoDiff using LinearAlgebra f(x) = 1.0 g(x) = x new_f = construct_diff_version(f,g) f(1.0) == 1.0 Zygote.gradient(new_f, 1.0)[1] == 1.0 ForwardDiff.derivative(new_f, 1.0) == 1.0 ```` And it supports not scalar functions ````julia using Zygote, ForwardDiff using DiscoDiff f = construct_diff_version(x -> x, x -> x.^2) x = rand(10) f(x) == x Zygote.jacobian(f, x)[1] == diagm(2 * x) ForwardDiff.jacobian(f, x) == diagm(2 * x) ```` # Other We also export to read-made function. ## Overview The Heaviside function, also known as the step function, is a discontinuous function named after the British physicist Oliver Heaviside. It is often used in control theory, signal processing, and probability theory. The Heaviside function is defined as: $$ H(x) = \begin{cases} 0 & \text{for } x \leq 0, \\ 1 & \text{for } x > 0. \end{cases} $$ We also implement a differentiable version of the sign function defined as: $$ sign(x) = \begin{cases} 1 & \text{for } x > 0, \\ 0 & \text{for } x = 0, \\ -1 & \text{for } x < 0. \end{cases} $$ ## Differentiable Discontinuous functions We implement a differentiable version of the Heaviside function, where the derivative is the derivative of the sigmoid. This function has a "steepness" parameter that controls the transition smoothness. The function is `heaviside(x, k)`. We implement a differentiable version of the sign function, where the derivative is the derivative of tanh. This function has a "steepness" parameter that controls the transition smoothness. The function is `sign_diff(x, k)` to avoid overriding the Base `sign` function. - `x`: The input to the function. - `k`: The steepness parameter. Higher values of `k` make the sigmoid steeper and, hence, closer to the discontinuous function. The default is 1 in all cases. #### Usage For the Heaviside function: ```julia heaviside(1.0) heaviside(1.0, k = 2.0) ``` For the sign function ```julia sign_diff(2.0) sign_diff(2.0, k = 2.0) ```
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
docs
128
# Main Function Documentation ```@docs ignore_gradient construct_diff_version ``` # Examples ```@docs heaviside sign_diff ```
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
0.1.0
7432af52e9a7cbdf61ce1847240d6f72b6f15763
docs
128
# Main Function Documentation ```@docs ignore_gradient construct_diff_version ``` # Examples ```@docs heaviside sign_diff ```
DiscoDiff
https://github.com/Devetak/DiscoDiff.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
789
# generate examples import Literate # TODO: Remove items from `SKIPFILE` as soon as they run on the latest # stable `Optim` (or other dependency) #ONLYSTATIC = ["ipnewton_basics.jl",] ONLYSTATIC = [] EXAMPLEDIR = joinpath(@__DIR__, "src", "examples") GENERATEDDIR = joinpath(@__DIR__, "src", "examples", "generated") for example in filter!(x -> endswith(x, ".jl"), readdir(EXAMPLEDIR)) input = abspath(joinpath(EXAMPLEDIR, example)) script = Literate.script(input, GENERATEDDIR) code = strip(read(script, String)) mdpost(str) = replace(str, "@__CODE__" => code) Literate.markdown(input, GENERATEDDIR, postprocess = mdpost, documenter = !(example in ONLYSTATIC)) Literate.notebook(input, GENERATEDDIR, execute = !(example in ONLYSTATIC)) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2308
if Base.HOME_PROJECT[] !== nothing # JuliaLang/julia/pull/28625 Base.HOME_PROJECT[] = abspath(Base.HOME_PROJECT[]) end using Documenter, Optim # use include("Rosenbrock.jl") etc # Generate examples include("generate.jl") cp(joinpath(@__DIR__, "..", "LICENSE.md"), joinpath(@__DIR__, "src", "LICENSE.md"); force = true) #run('mv ../CONTRIBUTING.md ./dev/CONTRIBUTING.md') # TODO: Should we use the $odir/CONTRIBUTING.md file instead? makedocs( doctest = false, sitename = "Optim", pages = [ "Home" => "index.md", "Tutorials" => [ "Minimizing a function" => "user/minimization.md", "Gradients and Hessians" => "user/gradientsandhessians.md", "Configurable Options" => "user/config.md", "Linesearch" => "algo/linesearch.md", "Algorithm choice" => "user/algochoice.md", "Preconditioners" => "algo/precondition.md", "Complex optimization" => "algo/complex.md", "Manifolds" => "algo/manifolds.md", "Tips and tricks" => "user/tipsandtricks.md", "Interior point Newton" => "examples/generated/ipnewton_basics.md", "Maximum likelihood estimation" => "examples/generated/maxlikenlm.md", "Conditional maximum likelihood estimation" => "examples/generated/rasch.md", ], "Algorithms" => [ "Gradient Free" => [ "Nelder Mead" => "algo/nelder_mead.md", "Simulated Annealing" => "algo/simulated_annealing.md", "Simulated Annealing w/ bounds" => "algo/samin.md", "Particle Swarm" => "algo/particle_swarm.md", ], "Gradient Required" => [ "Adam and AdaMax" => "algo/adam_adamax.md", "Conjugate Gradient" => "algo/cg.md", "Gradient Descent" => "algo/gradientdescent.md", "(L-)BFGS" => "algo/lbfgs.md", "Acceleration" => "algo/ngmres.md", ], "Hessian Required" => [ "Newton" => "algo/newton.md", "Newton with Trust Region" => "algo/newton_trust_region.md", "Interior point Newton" => "algo/ipnewton.md", ] ], "Contributing" => "dev/contributing.md", "License" => "LICENSE.md", ] ) deploydocs( repo = "github.com/JuliaNLSolvers/Optim.jl.git", )
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
7482
# # Nonlinear constrained optimization # #- #md # !!! tip #md # This example is also available as a Jupyter notebook: #md # [`ipnewton_basics.ipynb`](@__NBVIEWER_ROOT_URL__examples/generated/ipnewton_basics.ipynb) #- # # The nonlinear constrained optimization interface in # `Optim` assumes that the user can write the optimization # problem in the following way. # ```math # \min_{x\in\mathbb{R}^n} f(x) \quad \text{such that}\\ # l_x \leq \phantom{c(}x\phantom{)} \leq u_x \\ # l_c \leq c(x) \leq u_c. # ``` # For equality constraints on ``x_j`` or ``c(x)_j`` you set those # particular entries of bounds to be equal, ``l_j=u_j``. # Likewise, setting ``l_j=-\infty`` or ``u_j=\infty`` means that the # constraint is unbounded from below or above respectively. using Optim, NLSolversBase #hide import NLSolversBase: clear! #hide # # Constrained optimization with `IPNewton` # We will go through examples on how to use the constraints interface # with the interior-point Newton optimization algorithm [IPNewton](../../algo/ipnewton.md). # Throughout these examples we work with the standard Rosenbrock function. # The objective and its derivatives are given by fun(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 function fun_grad!(g, x) g[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1] g[2] = 200.0 * (x[2] - x[1]^2) end function fun_hess!(h, x) h[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]^2 h[1, 2] = -400.0 * x[1] h[2, 1] = -400.0 * x[1] h[2, 2] = 200.0 end; # ## Optimization interface # To solve a constrained optimization problem we call the `optimize` # method # ``` julia # optimize(d::AbstractObjective, constraints::AbstractConstraints, initial_x::Tx, method::ConstrainedOptimizer, options::Options) # ``` # We can create instances of `AbstractObjective` and # `AbstractConstraints` using the types `TwiceDifferentiable` and # `TwiceDifferentiableConstraints` from the package `NLSolversBase.jl`. # ## Box minimization # We want to optimize the Rosenbrock function in the box # ``-0.5 \leq x \leq 0.5``, starting from the point ``x_0=(0,0)``. # Box constraints are defined using, for example, # `TwiceDifferentiableConstraints(lx, ux)`. x0 = [0.0, 0.0] df = TwiceDifferentiable(fun, fun_grad!, fun_hess!, x0) lx = [-0.5, -0.5]; ux = [0.5, 0.5] dfc = TwiceDifferentiableConstraints(lx, ux) res = optimize(df, dfc, x0, IPNewton()) ## Test the results #src using Test #src @test Optim.converged(res) #src @test Optim.minimum(res) β‰ˆ 0.25 #src # Like the rest of Optim, you can also use `autodiff=:forward` and just pass in # `fun`. # If we only want to set lower bounds, use `ux = fill(Inf, 2)` ux = fill(Inf, 2) dfc = TwiceDifferentiableConstraints(lx, ux) clear!(df) res = optimize(df, dfc, x0, IPNewton()) @test Optim.converged(res) #src @test Optim.minimum(res) < 0.0 + sqrt(eps()) #src # ## Defining "unconstrained" problems # An unconstrained problem can be defined either by passing # `Inf` bounds or empty arrays. # **Note that we must pass the correct type information to the empty `lx` and `ux`** lx = fill(-Inf, 2); ux = fill(Inf, 2) dfc = TwiceDifferentiableConstraints(lx, ux) clear!(df) res = optimize(df, dfc, x0, IPNewton()) @test Optim.converged(res) #src @test Optim.minimum(res) < 0.0 + sqrt(eps()) #src lx = Float64[]; ux = Float64[] dfc = TwiceDifferentiableConstraints(lx, ux) clear!(df) res = optimize(df, dfc, x0, IPNewton()) @test Optim.converged(res) #src @test Optim.minimum(res) < 0.0 + sqrt(eps()) #src # ## Generic nonlinear constraints # We now consider the Rosenbrock problem with a constraint on # ```math # c(x)_1 = x_1^2 + x_2^2. # ``` # We pass the information about the constraints to `optimize` # by defining a vector function `c(x)` and its Jacobian `J(x)`. # The Hessian information is treated differently, by considering the # Lagrangian of the corresponding slack-variable transformed # optimization problem. This is similar to how the [CUTEst # library](https://github.com/JuliaSmoothOptimizers/CUTEst.jl) works. # Let ``H_j(x)`` represent the Hessian of the ``j``th component # ``c(x)_j`` of the generic constraints. # and ``\lambda_j`` the corresponding dual variable in the # Lagrangian. Then we want the `constraint` object to # add the values of ``H_j(x)`` to the Hessian of the objective, # weighted by ``\lambda_j``. # The Julian form for the supplied function ``c(x)`` and the derivative # information is then added in the following way. con_c!(c, x) = (c[1] = x[1]^2 + x[2]^2; c) function con_jacobian!(J, x) J[1,1] = 2*x[1] J[1,2] = 2*x[2] J end function con_h!(h, x, Ξ») h[1,1] += Ξ»[1]*2 h[2,2] += Ξ»[1]*2 end; # **Note that `con_h!` adds the `Ξ»`-weighted Hessian value of each # element of `c(x)` to the Hessian of `fun`.** # We can then optimize the Rosenbrock function inside the ball of radius # ``0.5``. lx = Float64[]; ux = Float64[] lc = [-Inf]; uc = [0.5^2] dfc = TwiceDifferentiableConstraints(con_c!, con_jacobian!, con_h!, lx, ux, lc, uc) res = optimize(df, dfc, x0, IPNewton()) @test Optim.converged(res) #src @test Optim.minimum(res) β‰ˆ 0.2966215688829263 #src # We can add a lower bound on the constraint, and thus # optimize the objective on the annulus with # inner and outer radii ``0.1`` and ``0.5`` respectively. lc = [0.1^2] dfc = TwiceDifferentiableConstraints(con_c!, con_jacobian!, con_h!, lx, ux, lc, uc) res = optimize(df, dfc, x0, IPNewton()) @test Optim.converged(res) #src @test Optim.minimum(res) β‰ˆ 0.2966215688829255 #src # **Note that the algorithm warns that the Initial guess is not an # interior point.** `IPNewton` can often handle this, however, if the # initial guess is such that `c(x) = u_c`, then the algorithm currently # fails. We may fix this in the future. # ## Multiple constraints # The following example illustrates how to add an additional constraint. # In particular, we add a constraint function # ```math # c(x)_2 = x_2\sin(x_1)-x_1 # ``` function con2_c!(c, x) c[1] = x[1]^2 + x[2]^2 ## First constraint c[2] = x[2]*sin(x[1])-x[1] ## Second constraint c end function con2_jacobian!(J, x) ## First constraint J[1,1] = 2*x[1] J[1,2] = 2*x[2] ## Second constraint J[2,1] = x[2]*cos(x[1])-1.0 J[2,2] = sin(x[1]) J end function con2_h!(h, x, Ξ») ## First constraint h[1,1] += Ξ»[1]*2 h[2,2] += Ξ»[1]*2 ## Second constraint h[1,1] += Ξ»[2]*x[2]*-sin(x[1]) h[1,2] += Ξ»[2]*cos(x[1]) ## Symmetrize h h[2,1] = h[1,2] h end; # We generate the constraint objects and call `IPNewton` with # initial guess ``x_0 = (0.25,0.25)``. x0 = [0.25, 0.25] lc = [-Inf, 0.0]; uc = [0.5^2, 0.0] dfc = TwiceDifferentiableConstraints(con2_c!, con2_jacobian!, con2_h!, lx, ux, lc, uc) res = optimize(df, dfc, x0, IPNewton()) @test Optim.converged(res) #src @test Optim.minimum(res) β‰ˆ 1.0 #src @test isapprox(Optim.minimizer(res), zeros(2), atol=sqrt(eps())) #src #md # ## [Plain Program](@id ipnewton_basics-plain-program) #md # #md # Below follows a version of the program without any comments. #md # The file is also available here: [ipnewton_basics.jl](ipnewton_basics.jl) #md # #md # ```julia #md # @__CODE__ #md # ```
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
7281
# # Maximum Likelihood Estimation: The Normal Linear Model # #- #md # !!! tip #md # This example is also available as a Jupyter notebook: #md # [`maxlikenlm.ipynb`](@__NBVIEWER_ROOT_URL__examples/generated/maxlikenlm.ipynb) #- # # The following tutorial will introduce maximum likelihood estimation # in Julia for the normal linear model. # # The normal linear model (sometimes referred to as the OLS model) is # the workhorse of regression modeling and is utilized across a number # of diverse fields. In this tutorial, we will utilize simulated data # to demonstrate how Julia can be used to recover the parameters of # interest. # # The first order of business is to use the `Optim` package # and also include the `NLSolversBase` routine: # using Optim, NLSolversBase using LinearAlgebra: diag using ForwardDiff #md # !!! tip #md # Add Optim with the following command at the Julia command prompt: #md # `Pkg.add("Optim")` # # The first item that needs to be addressed is the data generating process or DGP. # The following code will produce data from a normal linear model: n = 40 # Number of observations nvar = 2 # Number of variables Ξ² = ones(nvar) * 3.0 # True coefficients x = [ 1.0 0.156651 # X matrix of explanatory variables plus constant 1.0 -1.34218 1.0 0.238262 1.0 -0.496572 1.0 1.19352 1.0 0.300229 1.0 0.409127 1.0 -0.88967 1.0 -0.326052 1.0 -1.74367 1.0 -0.528113 1.0 1.42612 1.0 -1.08846 1.0 -0.00972169 1.0 -0.85543 1.0 1.0301 1.0 1.67595 1.0 -0.152156 1.0 0.26666 1.0 -0.668618 1.0 -0.36883 1.0 -0.301392 1.0 0.0667779 1.0 -0.508801 1.0 -0.352346 1.0 0.288688 1.0 -0.240577 1.0 -0.997697 1.0 -0.362264 1.0 0.999308 1.0 -1.28574 1.0 -1.91253 1.0 0.825156 1.0 -0.136191 1.0 1.79925 1.0 -1.10438 1.0 0.108481 1.0 0.847916 1.0 0.594971 1.0 0.427909] Ξ΅ = [0.5539830489065279 # Errors -0.7981494315544392 0.12994853889935182 0.23315434715658184 -0.1959788033050691 -0.644463980478783 -0.04055657880388486 -0.33313251280917094 -0.315407370840677 0.32273952815870866 0.56790436131181 0.4189982390480762 -0.0399623088796998 -0.2900421677961449 -0.21938513655749814 -0.2521429229103657 0.0006247891825243118 -0.694977951759846 -0.24108791530910414 0.1919989647431539 0.15632862280544485 -0.16928298502504732 0.08912288359190582 0.0037707641031662006 -0.016111044809837466 0.01852191562589722 -0.762541135294584 -0.7204431774719634 -0.04394527523005201 -0.11956323865320413 -0.6713329013627437 -0.2339928433338628 -0.6200532213195297 -0.6192380993792371 0.08834918731846135 -0.5099307915921438 0.41527207925609494 -0.7130133329859893 -0.531213372742777 -0.09029672309221337] y = x * Ξ² + Ξ΅; # Generate Data # In the above example, we have 500 observations, 2 explanatory # variables plus an intercept, an error variance equal to 0.5, # coefficients equal to 3.0, and all of these are subject to change by # the user. Since we know the true value of these parameters, we # should obtain these values when we maximize the likelihood function. # # The next step in our tutorial is to define a Julia function for the # likelihood function. The following function defines the likelihood # function for the normal linear model: function Log_Likelihood(X, Y, Ξ², log_Οƒ) Οƒ = exp(log_Οƒ) llike = -n/2*log(2Ο€) - n/2* log(Οƒ^2) - (sum((Y - X * Ξ²).^2) / (2Οƒ^2)) llike = -llike end # The log likelihood function accepts 4 inputs: the matrix of # explanatory variables (X), the dependent variable (Y), the Ξ²'s, and # the error varicance. Note that we exponentiate the error variance in # the second line of the code because the error variance cannot be # negative and we want to avoid this situation when maximizing the # likelihood. # # The next step in our tutorial is to optimize our function. We first # use the `TwiceDifferentiable` command in order to obtain the Hessian # matrix later on, which will be used to help form t-statistics: func = TwiceDifferentiable(vars -> Log_Likelihood(x, y, vars[1:nvar], vars[nvar + 1]), ones(nvar+1); autodiff=:forward); # The above statment accepts 4 inputs: the x matrix, the dependent # variable y, and a vector of Ξ²'s and the error variance. The # `vars[1:nvar]` is how we pass the vector of Ξ²'s and the `vars[nvar + # 1]` is how we pass the error variance. You can think of this as a # vector of parameters with the first 2 being Ξ²'s and the last one is # the error variance. # # The `ones(nvar+1)` are the starting values for the parameters and # the `autodiff=:forward` command performs forward mode automatic # differentiation. # # The actual optimization of the likelihood function is accomplished # with the following command: opt = optimize(func, ones(nvar+1)) ## Test the results #src using Test #src @test Optim.converged(opt) #src @test Optim.g_residual(opt) < 1e-8 #src # The first input to the command is the function we wish to optimize # and the second input are the starting values. # # After a brief period of time, you should see output of the # optimization routine, with the parameter estimates being very close # to our simulated values. # # The optimization routine stores several quantities and we can obtain # the maximim likelihood estimates with the following command: parameters = Optim.minimizer(opt) @test parameters β‰ˆ [2.83664, 3.05345, -0.98837] atol=1e-5 #src # !!! Note # Fieldnames for all of the quantities can be obtained with the following command: # fieldnames(opt) # # In order to obtain the correct Hessian matrix, we have to "push" the # actual parameter values that maximizes the likelihood function since # the `TwiceDifferentiable` command uses the next to last values to # calculate the Hessian: numerical_hessian = hessian!(func,parameters) # Let's find the estimated value of Οƒ, rather than log Οƒ, and it's standard error # To do this, we will use the Delta Method: https://en.wikipedia.org/wiki/Delta_method # this function exponetiates log Οƒ function transform(parameters) parameters[end] = exp(parameters[end]) parameters end # get the Jacobian of the transformation J = ForwardDiff.jacobian(transform, parameters)' parameters = transform(parameters) # We can now invert our Hessian matrix and use the Delta Method, # to obtain the variance-covariance matrix: var_cov_matrix = J*inv(numerical_hessian)*J' # test the estimated parameters and t-stats for correctness @test parameters β‰ˆ [2.83664, 3.05345, 0.37218] atol=1e-5 #src t_stats = parameters./sqrt.(diag(var_cov_matrix)) @test t_stats β‰ˆ [48.02655, 45.51568, 8.94427] atol=1e-4 #src # see the results println("parameter estimates:", parameters) println("t-statsitics: ", t_stats) # From here, one may examine other statistics of interest using the # output from the optimization routine. #md # ## [Plain Program](@id maxlikenlm-plain-program) #md # #md # Below follows a version of the program without any comments. #md # The file is also available here: [maxlikenlm.jl](maxlikenlm.jl) #md # #md # ```julia #md # @__CODE__ #md # ```
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
6646
# # Conditional Maximum Likelihood for the Rasch Model # #- #md # !!! tip #md # This example is also available as a Jupyter notebook: #md # [``rasch.ipynb``](@__NBVIEWER_ROOT_URL__examples/generated/rasch.ipynb) #- using Optim, Random #hide # # The Rasch model is used in psychometrics as a model for # assessment data such as student responses to a standardized # test. Let $X_{pi}$ be the response accuracy of student $p$ # to item $i$ where $X_{pi}=1$ if the item was answered correctly # and $X_{pi}=0$ otherwise for $p=1,\ldots,n$ and $i=1,\ldots,m$. # The model for this accuracy is # ```math # P(\mathbf{X}_{p}=\mathbf{x}_{p}|\xi_p, \mathbf\epsilon) = \prod_{i=1}^m \dfrac{(\xi_p \epsilon_j)^{x_{pi}}}{1 + \xi_p\epsilon_i} # ``` # where $\xi_p > 0$ the latent ability of person $p$ and $\epsilon_i > 0$ # is the difficulty of item $i$. # We simulate data from this model: Random.seed!(123) n = 1000 m = 5 theta = randn(n) delta = randn(m) r = zeros(n) s = zeros(m) for i in 1:n p = exp.(theta[i] .- delta) ./ (1.0 .+ exp.(theta[i] .- delta)) for j in 1:m if rand() < p[j] ##correct r[i] += 1 s[j] += 1 end end end f = [sum(r.==j) for j in 1:m]; # Since the number of parameters increases # with sample size standard maximum likelihood will not provide us # consistent estimates. Instead we consider the conditional likelihood. # It can be shown that the Rasch model is an exponential family model and # that the sum score $r_p = \sum_{i} x_{pi}$ is the sufficient statistic for # $\xi_p$. If we condition on the sum score we should be able to eliminate # $\xi_p$. Indeed, with a bit of algebra we can show # ```math # P(\mathbf{X}_p = \mathbf{x}_p | r_p, \mathbf\epsilon) = \dfrac{\prod_{i=1}^m \epsilon_i^{x{ij}}}{\gamma_{r_i}(\mathbf\epsilon)} # ``` # where $\gamma_r(\mathbf\epsilon)$ is the elementary symmetric function of order $r$ # ```math # \gamma_r(\mathbf\epsilon) = \sum_{\mathbf{y} : \mathbf{1}^\intercal \mathbf{y} = r} \prod_{j=1}^m \epsilon_j^{y_j} # ``` # where the sum is over all possible answer configurations that give a sum # score of $r$. Algorithms to efficiently compute $\gamma$ and its # derivatives are available in the literature (see eg Baker (1996) for a review # and Biscarri (2018) for a more modern approach) function esf_sum!(S::AbstractArray{T,1}, x::AbstractArray{T,1}) where T <: Real n = length(x) fill!(S,zero(T)) S[1] = one(T) @inbounds for col in 1:n for r in 1:col row = col - r + 1 S[row+1] = S[row+1] + x[col] * S[row] end end end function esf_ext!(S::AbstractArray{T,1}, H::AbstractArray{T,3}, x::AbstractArray{T,1}) where T <: Real n = length(x) esf_sum!(S, x) H[:,:,1] .= zero(T) H[:,:,2] .= one(T) @inbounds for i in 3:n+1 for j in 1:n H[j,j,i] = S[i-1] - x[j] * H[j,j,i-1] for k in j+1:n H[k,j,i] = S[i-1] - ((x[j]+x[k])*H[k,j,i-1] + x[j]*x[k]*H[k,j,i-2]) H[j,k,i] = H[k,j,i] end end end end # The objective function we want to minimize is the negative log conditional # likelihood # ```math # \begin{aligned} # \log{L_C(\mathbf\epsilon|\mathbf{r})} &= \sum_{p=1}^n \sum_{i=1}^m x_{pi} \log{\epsilon_i} - \log{\gamma_{r_p}(\mathbf\epsilon)}\\ # &= \sum_{i=1}^m s_i \log{\epsilon_i} - \sum_{r=1}^m f_r \log{\gamma_r(\mathbf\epsilon)} # \end{aligned} # ``` Ο΅ = ones(Float64, m) Ξ²0 = zeros(Float64, m) last_Ξ² = fill(NaN, m) S = zeros(Float64, m+1) H = zeros(Float64, m, m, m+1) function calculate_common!(x, last_x) if x != last_x copyto!(last_x, x) Ο΅ .= exp.(-x) esf_ext!(S, H, Ο΅) end end function neglogLC(Ξ²) calculate_common!(Ξ², last_Ξ²) return -s'log.(Ο΅) + f'log.(S[2:end]) end # Parameter estimation is usually performed with respect to the unconstrained parameter # $\beta_i = -\log{\epsilon_i}$. Taking the derivative with respect to $\beta_i$ # (and applying the chain rule) one obtains # ```math # \dfrac{\partial\log L_C(\mathbf\epsilon|\mathbf{r})}{\partial \beta_i} = -s_i + \epsilon_i\sum_{r=1}^m \dfrac{f_r \gamma_{r-1}^{(j)}}{\gamma_r} # ``` # where $\gamma_{r-1}^{(i)} = \partial \gamma_{r}(\mathbf\epsilon)/\partial\epsilon_i$. function g!(storage, Ξ²) calculate_common!(Ξ², last_Ξ²) for j in 1:m storage[j] = s[j] for l in 1:m storage[j] -= Ο΅[j] * f[l] * (H[j,j,l+1] / S[l+1]) end end end # Similarly the Hessian matrix can be computed # ```math # \dfrac{\partial^2 \log L_C(\mathbf\epsilon|\mathbf{r})}{\partial \beta_i\partial\beta_j} = \begin{cases} \displaystyle -\epsilon_i \sum_{r=1}^m \dfrac{f_r\gamma_{r-1}^{(i)}}{\gamma_r}\left(1 - \dfrac{\gamma_{r-1}^{(i)}}{\gamma_r}\right) & \text{if $i=j$}\\ # \displaystyle -\epsilon_i\epsilon_j\sum_{r=1}^m \dfrac{f_r \gamma_{r-2}^{(i,j)}}{\gamma_r} - \dfrac{f_r\gamma_{r-1}^{(i)}\gamma_{r-1}^{(j)}}{\gamma_r^2} &\text{if $i\neq j$} # \end{cases} # ``` # where $\gamma_{r-2}^{(i,j)} = \partial^2 \gamma_{r}(\mathbf\epsilon)/\partial\epsilon_i\partial\epsilon_j$. function h!(storage, Ξ²) calculate_common!(Ξ², last_Ξ²) for j in 1:m for k in 1:m storage[k,j] = 0.0 for l in 1:m if j == k storage[j,j] += f[l] * (Ο΅[j]*H[j,j,l+1] / S[l+1]) * (1 - Ο΅[j]*H[j,j,l+1] / S[l+1]) elseif k > j storage[k,j] += Ο΅[j] * Ο΅[k] * f[l] * ((H[k,j,l] / S[l+1]) - (H[j,j,l+1] * H[k,k,l+1]) / S[l+1] ^ 2) else #k < j storage[k,j] += Ο΅[j] * Ο΅[k] * f[l] * ((H[j,k,l] / S[l+1]) - (H[j,j,l+1] * H[k,k,l+1]) / S[l+1] ^ 2) end end end end end # The estimates of the item parameters are then obtained via standard optimization # algorithms (either Newton-Raphson or L-BFGS). One last issue is that the model is # not identifiable (multiplying the $\xi_p$ by a constant and dividing the $\epsilon_i$ # by the same constant results in the same likelihood). Therefore some kind of constraint # must be imposed when estimating the parameters. Typically either $\epsilon_1 = 0$ or # $\prod_{i=1}^m \epsilon_i = 1$ (which is equivalent to $\sum_{i=1}^m \beta_i = 0$). con_c!(c, x) = (c[1] = sum(x); c) function con_jacobian!(J, x) J[1,:] .= ones(length(x)) end function con_h!(h, x, Ξ») for i in 1:size(h)[1] for j in 1:size(h)[2] h[i,j] += (i == j) ? Ξ»[1] : 0.0 end end end lx = Float64[]; ux = Float64[] lc = [0.0]; uc = [0.0] df = TwiceDifferentiable(neglogLC, g!, h!, Ξ²0) dfc = TwiceDifferentiableConstraints(con_c!, con_jacobian!, con_h!, lx, ux, lc, uc) res = optimize(df, dfc, Ξ²0, IPNewton()) # Compare the estimate to the truth delta_hat = res.minimizer [delta delta_hat]
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
13038
module OptimMOIExt using Optim using Optim.LinearAlgebra import MathOptInterface as MOI function __init__() @static if isdefined(Base, :get_extension) setglobal!(Optim, :Optimizer, Optimizer) end end mutable struct Optimizer{T} <: MOI.AbstractOptimizer # Problem data. variables::MOI.Utilities.VariablesContainer{T} starting_values::Vector{Union{Nothing,T}} nlp_model::Union{MOI.Nonlinear.Model,Nothing} sense::MOI.OptimizationSense # Parameters. method::Union{Optim.AbstractOptimizer,Nothing} silent::Bool options::Dict{Symbol,Any} # Solution attributes. results::Union{Nothing,Optim.MultivariateOptimizationResults} end function Optimizer{T}() where {T} return Optimizer{T}( MOI.Utilities.VariablesContainer{T}(), Union{Nothing,T}[], nothing, MOI.FEASIBILITY_SENSE, nothing, false, Dict{Symbol,Any}(), nothing, ) end Optimizer() = Optimizer{Float64}() MOI.supports(::Optimizer, ::MOI.NLPBlock) = true function MOI.supports(::Optimizer, ::Union{MOI.ObjectiveSense,MOI.ObjectiveFunction}) return true end MOI.supports(::Optimizer, ::MOI.Silent) = true function MOI.supports(::Optimizer, p::MOI.RawOptimizerAttribute) return p.name == "method" || hasfield(Optim.Options, Symbol(p.name)) end function MOI.supports(::Optimizer, ::MOI.VariablePrimalStart, ::Type{MOI.VariableIndex}) return true end const BOUNDS{T} = Union{MOI.LessThan{T},MOI.GreaterThan{T},MOI.EqualTo{T},MOI.Interval{T}} const _SETS{T} = Union{MOI.GreaterThan{T},MOI.LessThan{T},MOI.EqualTo{T}} function MOI.supports_constraint( ::Optimizer{T}, ::Type{MOI.VariableIndex}, ::Type{<:BOUNDS{T}}, ) where {T} return true end function MOI.supports_constraint( ::Optimizer{T}, ::Type{MOI.ScalarNonlinearFunction}, ::Type{<:_SETS{T}}, ) where {T} return true end MOI.supports_incremental_interface(::Optimizer) = true function MOI.copy_to(model::Optimizer, src::MOI.ModelLike) return MOI.Utilities.default_copy_to(model, src) end MOI.get(::Optimizer, ::MOI.SolverName) = "Optim" function MOI.set(model::Optimizer, ::MOI.ObjectiveSense, sense::MOI.OptimizationSense) model.sense = sense return end function MOI.set(model::Optimizer, ::MOI.ObjectiveFunction{F}, func::F) where {F} nl = convert(MOI.ScalarNonlinearFunction, func) if isnothing(model.nlp_model) model.nlp_model = MOI.Nonlinear.Model() end MOI.Nonlinear.set_objective(model.nlp_model, nl) return nothing end function MOI.set(model::Optimizer, ::MOI.Silent, value::Bool) model.silent = value return end MOI.get(model::Optimizer, ::MOI.Silent) = model.silent const TIME_LIMIT = "time_limit" MOI.supports(::Optimizer, ::MOI.TimeLimitSec) = true function MOI.set(model::Optimizer, ::MOI.TimeLimitSec, value::Real) MOI.set(model, MOI.RawOptimizerAttribute(TIME_LIMIT), Float64(value)) end function MOI.set(model::Optimizer, attr::MOI.TimeLimitSec, ::Nothing) delete!(model.options, Symbol(TIME_LIMIT)) end function MOI.get(model::Optimizer, ::MOI.TimeLimitSec) return get(model.options, Symbol(TIME_LIMIT), nothing) end MOI.Utilities.map_indices(::Function, opt::Optim.AbstractOptimizer) = opt function MOI.set(model::Optimizer, p::MOI.RawOptimizerAttribute, value) if p.name == "method" model.method = value else model.options[Symbol(p.name)] = value end return end function MOI.get(model::Optimizer, p::MOI.RawOptimizerAttribute) if p.name == "method" return p.method end key = Symbol(p.name) if haskey(model.options, key) return model.options[key] end error("RawOptimizerAttribute with name $(p.name) is not set.") end MOI.get(model::Optimizer, ::MOI.SolveTimeSec) = time_run(model.results) function MOI.empty!(model::Optimizer) MOI.empty!(model.variables) empty!(model.starting_values) model.nlp_model = nothing model.sense = MOI.FEASIBILITY_SENSE model.results = nothing return end function MOI.is_empty(model::Optimizer) return MOI.is_empty(model.variables) && isempty(model.starting_values) && isnothing(model.nlp_model) && model.sense == MOI.FEASIBILITY_SENSE end function MOI.add_variable(model::Optimizer{T}) where {T} push!(model.starting_values, nothing) return MOI.add_variable(model.variables) end function MOI.is_valid(model::Optimizer, index::Union{MOI.VariableIndex,MOI.ConstraintIndex}) return MOI.is_valid(model.variables, index) end function MOI.add_constraint( model::Optimizer{T}, vi::MOI.VariableIndex, set::BOUNDS{T}, ) where {T} return MOI.add_constraint(model.variables, vi, set) end function MOI.add_constraint( model::Optimizer{T}, f::MOI.ScalarNonlinearFunction, s::_SETS{T}, ) where {T} if model.nlp_model === nothing model.nlp_model = MOI.Nonlinear.Model() end index = MOI.Nonlinear.add_constraint(model.nlp_model, f, s) return MOI.ConstraintIndex{typeof(f),typeof(s)}(index.value) end function starting_value(optimizer::Optimizer{T}, i) where {T} if optimizer.starting_values[i] !== nothing return optimizer.starting_values[i] else v = optimizer.variables return min(max(zero(T), v.lower[i]), v.upper[i]) end end function MOI.set( model::Optimizer, ::MOI.VariablePrimalStart, vi::MOI.VariableIndex, value::Union{Real,Nothing}, ) MOI.throw_if_not_valid(model, vi) model.starting_values[vi.value] = value return end function requested_features(::Optim.ZerothOrderOptimizer, has_constraints) return Symbol[] end function requested_features(::Optim.FirstOrderOptimizer, has_constraints) features = [:Grad] if has_constraints push!(features, :Jac) end return features end function requested_features(::Union{IPNewton,Optim.SecondOrderOptimizer}, has_constraints) features = [:Grad, :Hess] if has_constraints push!(features, :Jac) end return features end function sparse_to_dense!(A, I::Vector, nzval) for k in eachindex(I) i, j = I[k] A[i, j] += nzval[k] end return A end function sym_sparse_to_dense!(A, I::Vector, nzval) for k in eachindex(I) i, j = I[k] A[i, j] += nzval[k] A[j, i] = A[i, j] end return A end function MOI.optimize!(model::Optimizer{T}) where {T} backend = MOI.Nonlinear.SparseReverseMode() vars = MOI.get(model.variables, MOI.ListOfVariableIndices()) evaluator = MOI.Nonlinear.Evaluator(model.nlp_model, backend, vars) nlp_data = MOI.NLPBlockData(evaluator) # load parameters if isnothing(model.nlp_model) error("An objective should be provided to Optim with `@objective`.") end objective_scale = model.sense == MOI.MAX_SENSE ? -one(T) : one(T) zero_ΞΌ = zeros(T, length(nlp_data.constraint_bounds)) function f(x) return objective_scale * MOI.eval_objective(evaluator, x) end function g!(G, x) fill!(G, zero(T)) MOI.eval_objective_gradient(evaluator, G, x) if model.sense == MOI.MAX_SENSE rmul!(G, objective_scale) end return G end function h!(H, x) fill!(H, zero(T)) MOI.eval_hessian_lagrangian(evaluator, H_nzval, x, objective_scale, zero_ΞΌ) sym_sparse_to_dense!(H, hessian_structure, H_nzval) return H end method = model.method nl_constrained = !isempty(nlp_data.constraint_bounds) features = MOI.features_available(evaluator) has_bounds = any( vi -> isfinite(model.variables.lower[vi.value]) || isfinite(model.variables.upper[vi.value]), vars, ) if method === nothing if nl_constrained method = IPNewton() elseif :Grad in features # FIXME `fallback_method(f, g!, h!)` returns `Newton` but if there # are variable bounds, `Newton` is not supported. On the other hand, # `fallback_method(f, g!)` returns `LBFGS` which is supported if `has_bounds`. if :Hess in features && !has_bounds method = Optim.fallback_method(f, g!, h!) else method = Optim.fallback_method(f, g!) end else method = Optim.fallback_method(f) end end used_features = requested_features(method, nl_constrained) MOI.initialize(evaluator, used_features) if :Hess in used_features hessian_structure = MOI.hessian_lagrangian_structure(evaluator) H_nzval = zeros(T, length(hessian_structure)) end initial_x = starting_value.(model, eachindex(model.starting_values)) options = copy(model.options) if !nl_constrained && has_bounds && !(method isa IPNewton) options = Optim.Options(; options...) model.results = optimize( f, g!, model.variables.lower, model.variables.upper, initial_x, Fminbox(method), options; inplace = true, ) else d = Optim.promote_objtype(method, initial_x, :finite, true, f, g!, h!) Optim.add_default_opts!(options, method) options = Optim.Options(; options...) if nl_constrained || has_bounds if nl_constrained lc = [b.lower for b in nlp_data.constraint_bounds] uc = [b.upper for b in nlp_data.constraint_bounds] c!(c, x) = MOI.eval_constraint(evaluator, c, x) if !(:Jac in features) error( "Nonlinear constraints should be differentiable to be used with Optim.", ) end if !(:Hess in features) error( "Nonlinear constraints should be twice differentiable to be used with Optim.", ) end jacobian_structure = MOI.jacobian_structure(evaluator) J_nzval = zeros(T, length(jacobian_structure)) function jacobian!(J, x) fill!(J, zero(T)) MOI.eval_constraint_jacobian(evaluator, J_nzval, x) sparse_to_dense!(J, jacobian_structure, J_nzval) return J end function con_hessian!(H, x, Ξ») fill!(H, zero(T)) MOI.eval_hessian_lagrangian(evaluator, H_nzval, x, zero(T), Ξ») sym_sparse_to_dense!(H, hessian_structure, H_nzval) return H end c = TwiceDifferentiableConstraints( c!, jacobian!, con_hessian!, model.variables.lower, model.variables.upper, lc, uc, ) else @assert has_bounds c = TwiceDifferentiableConstraints( model.variables.lower, model.variables.upper, ) end model.results = optimize(d, c, initial_x, method, options) else model.results = optimize(d, initial_x, method, options) end end return end function MOI.get(model::Optimizer, ::MOI.TerminationStatus) if model.results === nothing return MOI.OPTIMIZE_NOT_CALLED elseif Optim.converged(model.results) return MOI.LOCALLY_SOLVED else return MOI.OTHER_ERROR end end function MOI.get(model::Optimizer, ::MOI.RawStatusString) return summary(model.results) end # Ipopt always has an iterate available. function MOI.get(model::Optimizer, ::MOI.ResultCount) return model.results === nothing ? 0 : 1 end function MOI.get(model::Optimizer, attr::MOI.PrimalStatus) if !(1 <= attr.result_index <= MOI.get(model, MOI.ResultCount())) return MOI.NO_SOLUTION end if Optim.converged(model.results) return MOI.FEASIBLE_POINT else return MOI.UNKNOWN_RESULT_STATUS end end MOI.get(::Optimizer, ::MOI.DualStatus) = MOI.NO_SOLUTION function MOI.get(model::Optimizer, attr::MOI.ObjectiveValue) MOI.check_result_index_bounds(model, attr) val = minimum(model.results) if model.sense == MOI.MAX_SENSE val = -val end return val end function MOI.get(model::Optimizer, attr::MOI.VariablePrimal, vi::MOI.VariableIndex) MOI.check_result_index_bounds(model, attr) MOI.throw_if_not_valid(model, vi) return Optim.minimizer(model.results)[vi.value] end function MOI.get( model::Optimizer{T}, attr::MOI.ConstraintPrimal, ci::MOI.ConstraintIndex{MOI.VariableIndex,<:BOUNDS{T}}, ) where {T} MOI.check_result_index_bounds(model, attr) MOI.throw_if_not_valid(model, ci) return Optim.minimizer(model.results)[ci.value] end end # module
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
5768
# Manifold interface: every manifold (subtype of Manifold) defines the functions # project_tangent!(m, g, x): project g on the tangent space to m at x # retract!(m, x): map x back to a point on the manifold m # For mathematical references, see e.g. # The Geometry of Algorithms with Orthogonality Constraints # Alan Edelman, TomΓ‘s A. Arias, and Steven T. Smith # SIAM. J. Matrix Anal. & Appl., 20(2), 303–353. (51 pages) # Optimization Algorithms on Matrix Manifolds # P.-A. Absil, R. Mahony, R. Sepulchre # Princeton University Press, 2008 abstract type Manifold end # fallback for out-of-place ops project_tangent(M::Manifold,x) = project_tangent!(M, similar(x), x) retract(M::Manifold,x) = retract!(M, copy(x)) # Fake objective function implementing a retraction mutable struct ManifoldObjective{T<:NLSolversBase.AbstractObjective} <: NLSolversBase.AbstractObjective manifold::Manifold inner_obj::T end # TODO: is it safe here to call retract! and change x? function NLSolversBase.value!(obj::ManifoldObjective, x) xin = retract(obj.manifold, x) value!(obj.inner_obj, xin) end function NLSolversBase.value(obj::ManifoldObjective) value(obj.inner_obj) end function NLSolversBase.gradient(obj::ManifoldObjective) gradient(obj.inner_obj) end function NLSolversBase.gradient(obj::ManifoldObjective,i::Int) gradient(obj.inner_obj,i) end function NLSolversBase.gradient!(obj::ManifoldObjective,x) xin = retract(obj.manifold, x) gradient!(obj.inner_obj,xin) project_tangent!(obj.manifold,gradient(obj.inner_obj),xin) return gradient(obj.inner_obj) end function NLSolversBase.value_gradient!(obj::ManifoldObjective,x) xin = retract(obj.manifold, x) value_gradient!(obj.inner_obj,xin) project_tangent!(obj.manifold,gradient(obj.inner_obj),xin) return value(obj.inner_obj) end """Flat Euclidean space {R,C}^N, with projections equal to the identity.""" struct Flat <: Manifold end # all the functions below are no-ops, and therefore the generated code # for the flat manifold should be exactly the same as the one with all # the manifold stuff removed retract(M::Flat, x) = x retract!(M::Flat,x) = x project_tangent(M::Flat, g, x) = g project_tangent!(M::Flat, g, x) = g """Spherical manifold {|x| = 1}.""" struct Sphere <: Manifold end retract!(S::Sphere, x) = (x ./= norm(x)) # dot accepts any iterables project_tangent!(S::Sphere,g,x) = (g .-= real(dot(x,g)).*x) """ N x n matrices with orthonormal columns, i.e. such that X'X = I. Special cases: N x 1 = sphere, N x N = orthogonal/unitary group. Stiefel() uses a SVD algorithm to compute the retraction. To use a Cholesky-based orthogonalization (faster but less stable), use Stiefel(:CholQR). When the function to be optimized depends only on the subspace X*X' spanned by a point X in the Stiefel manifold, first-order optimization algorithms are equivalent for the Stiefel and Grassmann manifold, so there is no separate Grassmann manifold. """ abstract type Stiefel <: Manifold end struct Stiefel_CholQR <: Stiefel end struct Stiefel_SVD <: Stiefel end function Stiefel(retraction=:SVD) if retraction == :CholQR Stiefel_CholQR() elseif retraction == :SVD Stiefel_SVD() end end function retract!(S::Stiefel_SVD, X) U,S,V = svd(X) X .= U*V' end function retract!(S::Stiefel_CholQR, X) overlap = X'X X .= X/cholesky(overlap).U end #For functions depending only on the subspace spanned by X, we always have G = A*X for some A, and so X'G = G'X, and Stiefel == Grassmann #Edelman et al. have G .-= X*G'X (2.53), corresponding to a different metric ("canonical metric"). We follow Absil et al. here and use the metric inherited from Nxn matrices. project_tangent!(S::Stiefel, G, X) = (XG = X'G; G .-= X*((XG .+ XG')./2)) """ Multiple copies of the same manifold. Points are stored as inner_dims x outer_dims, e.g. the product of 2x2 Stiefel manifolds of dimension N x n would be a N x n x 2 x 2 matrix. """ struct PowerManifold<:Manifold "Type of embedded manifold" inner_manifold::Manifold "Dimension of the embedded manifolds" inner_dims::Tuple "Number of embedded manifolds" outer_dims::Tuple end function retract!(m::PowerManifold, x) for i=1:prod(m.outer_dims) # TODO: use for i in LinearIndices(m.outer_dims)? retract!(m.inner_manifold,get_inner(m, x, i)) end x end function project_tangent!(m::PowerManifold, g, x) for i=1:prod(m.outer_dims) project_tangent!(m.inner_manifold,get_inner(m, g, i),get_inner(m, x, i)) end g end @inline function get_inner(m::PowerManifold, x, i::Int) size_inner = prod(m.inner_dims) size_outer = prod(m.outer_dims) @assert 1 <= i <= size_outer return reshape(view(x, (i-1)*size_inner+1:i*size_inner), m.inner_dims) end """ Product of two manifolds {P = (x1,x2), x1 ∈ m1, x2 ∈ m2}. P is stored as a flat 1D array, and x1 is before x2 in memory. Use get_inner(m, x, {1,2}) to access x1 or x2 in their original format. """ struct ProductManifold<:Manifold m1::Manifold m2::Manifold dims1::Tuple dims2::Tuple end function retract!(m::ProductManifold, x) retract!(m.m1, get_inner(m,x,1)) retract!(m.m2, get_inner(m,x,2)) x end function project_tangent!(m::ProductManifold, g, x) project_tangent!(m.m1, get_inner(m, g, 1), get_inner(m, x, 1)) project_tangent!(m.m2, get_inner(m, g, 2), get_inner(m, x, 2)) g end function get_inner(m::ProductManifold, x, i::Integer) N1 = prod(m.dims1) N2 = prod(m.dims2) @assert length(x) == N1+N2 if i == 1 return reshape(view(x, 1:N1),m.dims1) elseif i == 2 return reshape(view(x, N1+1:N1+N2), m.dims2) else error("Only two components in a product manifold") end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
6970
""" # Optim.jl Welcome to Optim.jl! Optim.jl is a package used to solve continuous optimization problems. It is written in Julia for Julians to help take advantage of arbitrary number types, fast computation, and excellent automatic differentiation tools. ## REPL help `?` followed by an algorithm name (`?BFGS`), constructors (`?Optim.Options`) prints help to the terminal. ## Documentation Besides the help provided at the REPL, it is possible to find help and general documentation online at http://julianlsolvers.github.io/Optim.jl/stable/ . """ module Optim using Compat using NLSolversBase # for shared infrastructure in JuliaNLSolvers using PositiveFactorizations # for globalization strategy in Newton import PositiveFactorizations: cholesky!, cholesky using LineSearches # for globalization strategy in Quasi-Newton algs import NaNMath # for functions that ignore NaNs (no poisoning) import Parameters: @with_kw, # for types where constructors are simply defined @unpack # by their default values, and simple unpacking # of fields using Printf # For printing, maybe look into other options using FillArrays # For handling scalar bounds in Fminbox #using Compat # for compatibility across multiple julia versions # for extensions of functions defined in Base. import Base: length, push!, show, getindex, setindex!, maximum, minimum # objective and constraints types and functions relevant to them. import NLSolversBase: NonDifferentiable, OnceDifferentiable, TwiceDifferentiable, nconstraints, nconstraints_x, NotInplaceObjective, InplaceObjective # var for NelderMead import StatsBase: var import LinearAlgebra import LinearAlgebra: Diagonal, diag, Hermitian, Symmetric, rmul!, mul!, norm, normalize!, diagind, eigen, BLAS, cholesky, Cholesky, # factorizations I, svd, opnorm, # for safeguards in newton trust regions issuccess import SparseArrays: AbstractSparseMatrix # exported functions and types export optimize, maximize, # main function # Re-export objective types from NLSolversBase NonDifferentiable, OnceDifferentiable, TwiceDifferentiable, # Re-export constraint types from NLSolversBase TwiceDifferentiableConstraints, # I don't think these should be here [pkofod] OptimizationState, OptimizationTrace, # Optimization algorithms ## Zeroth order methods (heuristics) NelderMead, ParticleSwarm, SimulatedAnnealing, ## First order ### Quasi-Newton GradientDescent, BFGS, LBFGS, ### Conjugate gradient ConjugateGradient, ### Acceleration methods AcceleratedGradientDescent, MomentumGradientDescent, Adam, AdaMax, ### Nonlinear GMRES NGMRES, OACCEL, ## Second order ### (Quasi-)Newton Newton, ### Trust region NewtonTrustRegion, # Constrained ## Box constraints, x_i in [lb_i, ub_i] ### Specifically Univariate, R -> R GoldenSection, Brent, ### Multivariate, R^N -> R Fminbox, SAMIN, ## Manifold constraints Manifold, Flat, Sphere, Stiefel, ## Non-linear constraints IPNewton include("types.jl") # types used throughout include("Manifolds.jl") # code to handle manifold constraints include("multivariate/precon.jl") # preconditioning functionality # utilities include("utilities/generic.jl") # generic utilities include("utilities/maxdiff.jl") # find largest difference include("utilities/update.jl") # trace code # Unconstrained optimization ## Grid Search include("multivariate/solvers/zeroth_order/grid_search.jl") ## Zeroth order (Heuristic) Optimization Methods include("multivariate/solvers/zeroth_order/nelder_mead.jl") include("multivariate/solvers/zeroth_order/simulated_annealing.jl") include("multivariate/solvers/zeroth_order/particle_swarm.jl") ## Quasi-Newton include("multivariate/solvers/first_order/gradient_descent.jl") include("multivariate/solvers/first_order/bfgs.jl") include("multivariate/solvers/first_order/l_bfgs.jl") ## Acceleration methods include("multivariate/solvers/first_order/adamax.jl") include("multivariate/solvers/first_order/adam.jl") include("multivariate/solvers/first_order/accelerated_gradient_descent.jl") include("multivariate/solvers/first_order/momentum_gradient_descent.jl") ## Conjugate gradient include("multivariate/solvers/first_order/cg.jl") ## Newton ### Line search include("multivariate/solvers/second_order/newton.jl") include("multivariate/solvers/second_order/krylov_trust_region.jl") ### Trust region include("multivariate/solvers/second_order/newton_trust_region.jl") ## Nonlinear GMRES include("multivariate/solvers/first_order/ngmres.jl") # Constrained optimization ## Box constraints include("multivariate/solvers/constrained/fminbox.jl") include("multivariate/solvers/constrained/samin.jl") # Univariate methods include("univariate/solvers/golden_section.jl") include("univariate/solvers/brent.jl") include("univariate/types.jl") include("univariate/printing.jl") # Line search generic code include("utilities/perform_linesearch.jl") # Backward compatibility include("deprecate.jl") # convenient user facing optimize methods include("univariate/optimize/interface.jl") include("multivariate/optimize/interface.jl") # actual optimize methods include("univariate/optimize/optimize.jl") include("multivariate/optimize/optimize.jl") # Convergence include("utilities/assess_convergence.jl") include("multivariate/solvers/zeroth_order/zeroth_utils.jl") # Traces include("utilities/trace.jl") # API include("api.jl") ## Interior point includes include("multivariate/solvers/constrained/ipnewton/types.jl") # Tracing include("multivariate/solvers/constrained/ipnewton/utilities/update.jl") # Constrained optimization include("multivariate/solvers/constrained/ipnewton/iplinesearch.jl") include("multivariate/solvers/constrained/ipnewton/interior.jl") include("multivariate/solvers/constrained/ipnewton/ipnewton.jl") # Convergence include("multivariate/solvers/constrained/ipnewton/utilities/assess_convergence.jl") # Traces include("multivariate/solvers/constrained/ipnewton/utilities/trace.jl") # Maximization convenience wrapper include("maximize.jl") @static if !isdefined(Base, :get_extension) include("../ext/OptimMOIExt.jl") using .OptimMOIExt const Optimizer = OptimMOIExt.Optimizer else # declare this upfront so that the MathOptInterface extension can assign it # without creating a new global global Optimizer end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
7935
Base.summary(r::OptimizationResults) = summary(r.method) # might want to do more here than just return summary of the method used minimizer(r::OptimizationResults) = r.minimizer minimum(r::OptimizationResults) = r.minimum iterations(r::OptimizationResults) = r.iterations iteration_limit_reached(r::OptimizationResults) = r.iteration_converged trace(r::OptimizationResults) = length(r.trace) > 0 ? r.trace : error("No trace in optimization results. To get a trace, run optimize() with store_trace = true.") function x_trace(r::UnivariateOptimizationResults) tr = trace(r) !haskey(tr[1].metadata, "minimizer") && error("Trace does not contain x. To get a trace of x, run optimize() with extended_trace = true") [ state.metadata["minimizer"] for state in tr ] end function x_lower_trace(r::UnivariateOptimizationResults) tr = trace(r) !haskey(tr[1].metadata, "x_lower") && error("Trace does not contain x. To get a trace of x, run optimize() with extended_trace = true") [ state.metadata["x_lower"] for state in tr ] end x_lower_trace(r::MultivariateOptimizationResults) = error("x_lower_trace is not implemented for $(summary(r)).") function x_upper_trace(r::UnivariateOptimizationResults) tr = trace(r) !haskey(tr[1].metadata, "x_upper") && error("Trace does not contain x. To get a trace of x, run optimize() with extended_trace = true") [ state.metadata["x_upper"] for state in tr ] end x_upper_trace(r::MultivariateOptimizationResults) = error("x_upper_trace is not implemented for $(summary(r)).") function x_trace(r::MultivariateOptimizationResults) tr = trace(r) if isa(r.method, NelderMead) throw(ArgumentError("Nelder Mead does not operate with a single x. Please use either centroid_trace(...) or simplex_trace(...) to extract the relevant points from the trace.")) end !haskey(tr[1].metadata, "x") && error("Trace does not contain x. To get a trace of x, run optimize() with extended_trace = true") [ state.metadata["x"] for state in tr ] end function centroid_trace(r::MultivariateOptimizationResults) tr = trace(r) if !isa(r.method, NelderMead) throw(ArgumentError("There is no centroid involved in optimization using $(r.method). Please use x_trace(...) to grab the points from the trace.")) end !haskey(tr[1].metadata, "centroid") && error("Trace does not contain centroid. To get a trace of the centroid, run optimize() with extended_trace = true") [ state.metadata["centroid"] for state in tr ] end function simplex_trace(r::MultivariateOptimizationResults) tr = trace(r) if !isa(r.method, NelderMead) throw(ArgumentError("There is no simplex involved in optimization using $(r.method). Please use x_trace(...) to grab the points from the trace.")) end !haskey(tr[1].metadata, "simplex") && error("Trace does not contain simplex. To get a trace of the simplex, run optimize() with trace_simplex = true") [ state.metadata["simplex"] for state in tr ] end function simplex_value_trace(r::MultivariateOptimizationResults) if !isa(r.method, NelderMead) throw(ArgumentError("There are no simplex values involved in optimization using $(r.method). Please use f_trace(...) to grab the objective values from the trace.")) end !haskey(tr[1].metadata, "simplex_values") && error("Trace does not contain objective values at the simplex. To get a trace of the simplex values, run optimize() with trace_simplex = true") [ state.metadata["simplex_values"] for state in tr ] end f_trace(r::OptimizationResults) = [ state.value for state in trace(r) ] g_norm_trace(r::OptimizationResults) = error("g_norm_trace is not implemented for $(summary(r)).") g_norm_trace(r::MultivariateOptimizationResults) = [ state.g_norm for state in trace(r) ] f_calls(r::OptimizationResults) = r.f_calls f_calls(d) = first(d.f_calls) g_calls(r::OptimizationResults) = error("g_calls is not implemented for $(summary(r)).") g_calls(r::MultivariateOptimizationResults) = r.g_calls g_calls(d::NonDifferentiable) = 0 g_calls(d) = first(d.df_calls) h_calls(r::OptimizationResults) = error("h_calls is not implemented for $(summary(r)).") h_calls(r::MultivariateOptimizationResults) = r.h_calls h_calls(d::Union{NonDifferentiable, OnceDifferentiable}) = 0 h_calls(d) = first(d.h_calls) h_calls(d::TwiceDifferentiableHV) = first(d.hv_calls) converged(r::UnivariateOptimizationResults) = r.converged function converged(r::MultivariateOptimizationResults) conv_flags = r.x_converged || r.f_converged || r.g_converged x_isfinite = isfinite(x_abschange(r)) || isnan(x_relchange(r)) f_isfinite = if r.iterations > 0 isfinite(f_abschange(r)) || isnan(f_relchange(r)) else true end g_isfinite = isfinite(g_residual(r)) return conv_flags && all((x_isfinite, f_isfinite, g_isfinite)) end x_converged(r::OptimizationResults) = error("x_converged is not implemented for $(summary(r)).") x_converged(r::MultivariateOptimizationResults) = r.x_converged f_converged(r::OptimizationResults) = error("f_converged is not implemented for $(summary(r)).") f_converged(r::MultivariateOptimizationResults) = r.f_converged f_increased(r::OptimizationResults) = error("f_increased is not implemented for $(summary(r)).") f_increased(r::MultivariateOptimizationResults) = r.f_increased g_converged(r::OptimizationResults) = error("g_converged is not implemented for $(summary(r)).") g_converged(r::MultivariateOptimizationResults) = r.g_converged x_abstol(r::OptimizationResults) = error("x_abstol is not implemented for $(summary(r)).") x_reltol(r::OptimizationResults) = error("x_reltol is not implemented for $(summary(r)).") x_tol(r::OptimizationResults) = error("x_tol is not implemented for $(summary(r)).") x_abstol(r::MultivariateOptimizationResults) = r.x_abstol x_reltol(r::MultivariateOptimizationResults) = r.x_reltol x_tol(r::MultivariateOptimizationResults) = r.x_abstol x_abschange(r::MultivariateOptimizationResults) = r.x_abschange x_relchange(r::MultivariateOptimizationResults) = r.x_relchange f_abstol(r::OptimizationResults) = error("f_abstol is not implemented for $(summary(r)).") f_reltol(r::OptimizationResults) = error("f_reltol is not implemented for $(summary(r)).") f_tol(r::OptimizationResults) = error("f_tol is not implemented for $(summary(r)).") f_tol(r::MultivariateOptimizationResults) = r.f_reltol f_abstol(r::MultivariateOptimizationResults) = r.f_abstol f_reltol(r::MultivariateOptimizationResults) = r.f_reltol f_abschange(r::MultivariateOptimizationResults) = r.f_abschange f_relchange(r::MultivariateOptimizationResults) = r.f_relchange g_tol(r::OptimizationResults) = error("g_tol is not implemented for $(summary(r)).") g_tol(r::MultivariateOptimizationResults) = r.g_abstol g_residual(r::MultivariateOptimizationResults) = r.g_residual initial_state(r::OptimizationResults) = error("initial_state is not implemented for $(summary(r)).") initial_state(r::MultivariateOptimizationResults) = r.initial_x lower_bound(r::OptimizationResults) = error("lower_bound is not implemented for $(summary(r)).") lower_bound(r::UnivariateOptimizationResults) = r.initial_lower upper_bound(r::OptimizationResults) = error("upper_bound is not implemented for $(summary(r)).") upper_bound(r::UnivariateOptimizationResults) = r.initial_upper rel_tol(r::OptimizationResults) = error("rel_tol is not implemented for $(summary(r)).") rel_tol(r::UnivariateOptimizationResults) = r.rel_tol abs_tol(r::OptimizationResults) = error("abs_tol is not implemented for $(summary(r)).") abs_tol(r::UnivariateOptimizationResults) = r.abs_tol time_limit(r::MultivariateOptimizationResults) = r.time_limit time_run( r::MultivariateOptimizationResults) = r.time_run time_limit(r::OptimizationResults) = error("time_limit is not implemented for $(summary(r)).") time_run( r::OptimizationResults) = error("time_run is not implemented for $(summary(r)).")
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3470
Base.@deprecate method(x) summary(x) const has_deprecated_fminbox = Ref(false) function optimize( df::OnceDifferentiable, initial_x::Array{T}, l::Array{T}, u::Array{T}, ::Type{Fminbox}; x_tol::T = eps(T), f_tol::T = sqrt(eps(T)), g_tol::T = sqrt(eps(T)), allow_f_increases::Bool = true, iterations::Integer = 1_000, store_trace::Bool = false, show_trace::Bool = false, extended_trace::Bool = false, show_warnings::Bool = true, callback = nothing, show_every::Integer = 1, linesearch = LineSearches.HagerZhang{T}(), eta::Real = convert(T,0.4), mu0::T = convert(T, NaN), mufactor::T = convert(T, 0.001), precondprep = (P, x, l, u, mu) -> precondprepbox!(P, x, l, u, mu), optimizer = ConjugateGradient, optimizer_o = Options(store_trace = store_trace, show_trace = show_trace, extended_trace = extended_trace, show_warnings = show_warnings), nargs...) where T<:AbstractFloat if !has_deprecated_fminbox[] @warn("Fminbox with the optimizer keyword is deprecated, construct Fminbox{optimizer}() and pass it to optimize(...) instead.") has_deprecated_fminbox[] = true end optimize(df, initial_x, l, u, Fminbox{optimizer}(); allow_f_increases=allow_f_increases, iterations=iterations, store_trace=store_trace, show_trace=show_trace, extended_trace=extended_trace, show_warnings=show_warnings, show_every=show_every, callback=callback, linesearch=linesearch, eta=eta, mu0=mu0, mufactor=mufactor, precondprep=precondprep, optimizer_o=optimizer_o) end function optimize(::AbstractObjective) throw(ErrorException("Optimizing an objective `obj` without providing an initial `x` has been deprecated without backwards compatability. Please explicitly provide an `x`: `optimize(obj, x)``")) end function optimize(::AbstractObjective, ::Method) throw(ErrorException("Optimizing an objective `obj` without providing an initial `x` has been deprecated without backwards compatability. Please explicitly provide an `x`: `optimize(obj, x, method)``")) end function optimize(::AbstractObjective, ::Method, ::Options) throw(ErrorException("Optimizing an objective `obj` without providing an initial `x` has been deprecated without backwards compatability. Please explicitly provide an `x`: `optimize(obj, x, method, options)``")) end function optimize(::AbstractObjective, ::Options) throw(ErrorException("Optimizing an objective `obj` without providing an initial `x` has been deprecated without backwards compatability. Please explicitly provide an `x`: `optimize(obj, x, options)``")) end function optimize(df::OnceDifferentiable, l::Array{T}, u::Array{T}, F::Fminbox{O}; kwargs...) where {T<:AbstractFloat,O<:AbstractOptimizer} throw(ErrorException("Optimizing an objective `obj` without providing an initial `x` has been deprecated without backwards compatability. Please explicitly provide an `x`: `optimize(obj, x, l, u, method, options)``")) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
5086
# In v1.0 we should possibly just overload getproperty # Base.getproperty(w::WrapVar, s::Symbol) = getfield(w.v, s) struct MaximizationWrapper{T} res::T end res(r::MaximizationWrapper) = r.res # ============================================================================== # Univariate warppers # ============================================================================== function maximize(f, lb::Real, ub::Real, method::AbstractOptimizer; kwargs...) fmax = x->-f(x) MaximizationWrapper(optimize(fmax, lb, ub, method; kwargs...)) end function maximize(f, lb::Real, ub::Real; kwargs...) fmax = x->-f(x) MaximizationWrapper(optimize(fmax, lb, ub; kwargs...)) end # ============================================================================== # Multivariate warppers # ============================================================================== function maximize(f, x0::AbstractArray; kwargs...) fmax = x->-f(x) MaximizationWrapper(optimize(fmax, x0; kwargs...)) end function maximize(f, x0::AbstractArray, method::AbstractOptimizer, options = Optim.Options(); kwargs...) fmax = x->-f(x) MaximizationWrapper(optimize(fmax, x0, method, options; kwargs...)) end function maximize(f, g, x0::AbstractArray, method::AbstractOptimizer, options = Optim.Options(); kwargs...) fmax = x->-f(x) gmax = (G,x)->(g(G,x); G.=-G) MaximizationWrapper(optimize(fmax, gmax, x0, method, options; kwargs...)) end function maximize(f, g, h, x0::AbstractArray, method::AbstractOptimizer, options = Optim.Options(); kwargs...) fmax = x->-f(x) gmax = (G,x)->(g(G,x); G.=-G) hmax = (H,x)->(h(G,x); H.=-H) MaximizationWrapper(optimize(fmax, gmax, hmax, x0, method, options; kwargs...)) end minimum(r::MaximizationWrapper) = throw(MethodError()) maximizer(r::Union{UnivariateOptimizationResults,MultivariateOptimizationResults}) = throw(MethodError()) maximizer(r::MaximizationWrapper) = minimizer(res(r)) maximum(r::Union{UnivariateOptimizationResults,MultivariateOptimizationResults}) = throw(MethodError()) maximum(r::MaximizationWrapper) = -minimum(res(r)) Base.summary(r::MaximizationWrapper) = summary(res(r)) for api_method in (:lower_bound, :upper_bound, :rel_tol, :abs_tol, :iterations, :initial_state, :converged, :x_tol, :x_converged, :x_abschange, :g_tol, :g_converged, :g_residual, :f_tol, :f_converged, :f_increased, :f_relchange, :iteration_limit_reached, :f_calls, :g_calls, :h_calls) @eval $api_method(r::MaximizationWrapper) = $api_method(res(r)) end function Base.show(io::IO, r::MaximizationWrapper{<:UnivariateOptimizationResults}) @printf io "Results of Maximization Algorithm\n" @printf io " * Algorithm: %s\n" summary(r) @printf io " * Search Interval: [%f, %f]\n" lower_bound(r) upper_bound(r) @printf io " * Maximizer: %e\n" maximizer(r) @printf io " * Maximum: %e\n" maximum(r) @printf io " * Iterations: %d\n" iterations(r) @printf io " * Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(%.1e*|x|+%.1e): %s\n" rel_tol(r) abs_tol(r) converged(r) @printf io " * Objective Function Calls: %d" f_calls(r) return end function Base.show(io::IO, r::MaximizationWrapper{<:MultivariateOptimizationResults}) take = Iterators.take @printf io "Results of Optimization Algorithm\n" @printf io " * Algorithm: %s\n" summary(r.res) if length(join(initial_state(r), ",")) < 40 @printf io " * Starting Point: [%s]\n" join(initial_state(r), ",") else @printf io " * Starting Point: [%s, ...]\n" join(take(initial_state(r), 2), ",") end if length(join(maximizer(r), ",")) < 40 @printf io " * Maximizer: [%s]\n" join(maximizer(r), ",") else @printf io " * Maximizer: [%s, ...]\n" join(take(maximizer(r), 2), ",") end @printf io " * Maximum: %e\n" maximum(r) @printf io " * Iterations: %d\n" iterations(r) @printf io " * Convergence: %s\n" converged(r) if isa(r.res.method, NelderMead) @printf io " * √(Ξ£(yα΅’-yΜ„)Β²)/n < %.1e: %s\n" g_tol(r) g_converged(r) else @printf io " * |x - x'| ≀ %.1e: %s \n" x_tol(r) x_converged(r) @printf io " |x - x'| = %.2e \n" x_abschange(r) @printf io " * |f(x) - f(x')| ≀ %.1e |f(x)|: %s\n" f_tol(r) f_converged(r) @printf io " |f(x) - f(x')| = %.2e |f(x)|\n" f_relchange(r) @printf io " * |g(x)| ≀ %.1e: %s \n" g_tol(r) g_converged(r) @printf io " |g(x)| = %.2e \n" g_residual(r) @printf io " * Stopped by an decreasing objective: %s\n" (f_increased(r) && !iteration_limit_reached(r)) end @printf io " * Reached Maximum Number of Iterations: %s\n" iteration_limit_reached(r) @printf io " * Objective Calls: %d" f_calls(r) if !(isa(r.res.method, NelderMead) || isa(r.res.method, SimulatedAnnealing)) @printf io "\n * Gradient Calls: %d" g_calls(r) end if isa(r.res.method, Newton) || isa(r.res.method, NewtonTrustRegion) @printf io "\n * Hessian Calls: %d" h_calls(r) end return end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
9416
abstract type AbstractOptimizer end abstract type AbstractConstrainedOptimizer <: AbstractOptimizer end abstract type ZerothOrderOptimizer <: AbstractOptimizer end abstract type FirstOrderOptimizer <: AbstractOptimizer end abstract type SecondOrderOptimizer <: AbstractOptimizer end abstract type UnivariateOptimizer <: AbstractOptimizer end abstract type AbstractOptimizerState end abstract type ZerothOrderState <: AbstractOptimizerState end """ Configurable options with defaults (values 0 and NaN indicate unlimited): ``` x_abstol::Real = 0.0, x_reltol::Real = 0.0, f_abstol::Real = 0.0, f_reltol::Real = 0.0, g_abstol::Real = 1e-8, g_reltol::Real = 1e-8, outer_x_abstol::Real = 0.0, outer_x_reltol::Real = 0.0, outer_f_abstol::Real = 0.0, outer_f_reltol::Real = 0.0, outer_g_abstol::Real = 1e-8, outer_g_reltol::Real = 1e-8, f_calls_limit::Int = 0, g_calls_limit::Int = 0, h_calls_limit::Int = 0, allow_f_increases::Bool = true, allow_outer_f_increases::Bool = true, successive_f_tol::Int = 1, iterations::Int = 1_000, outer_iterations::Int = 1000, store_trace::Bool = false, show_trace::Bool = false, extended_trace::Bool = false, show_warnings::Bool = true, show_every::Int = 1, callback = nothing, time_limit = NaN ``` See http://julianlsolvers.github.io/Optim.jl/stable/#user/config/ """ struct Options{T, TCallback} x_abstol::T x_reltol::T f_abstol::T f_reltol::T g_abstol::T g_reltol::T outer_x_abstol::T outer_x_reltol::T outer_f_abstol::T outer_f_reltol::T outer_g_abstol::T outer_g_reltol::T f_calls_limit::Int g_calls_limit::Int h_calls_limit::Int allow_f_increases::Bool allow_outer_f_increases::Bool successive_f_tol::Int iterations::Int outer_iterations::Int store_trace::Bool trace_simplex::Bool show_trace::Bool extended_trace::Bool show_warnings::Bool show_every::Int callback::TCallback time_limit::Float64 end function Options(; x_tol = nothing, f_tol = nothing, g_tol = nothing, x_abstol::Real = 0.0, x_reltol::Real = 0.0, f_abstol::Real = 0.0, f_reltol::Real = 0.0, g_abstol::Real = 1e-8, g_reltol::Real = 1e-8, outer_x_tol = nothing, outer_f_tol = nothing, outer_g_tol = nothing, outer_x_abstol::Real = 0.0, outer_x_reltol::Real = 0.0, outer_f_abstol::Real = 0.0, outer_f_reltol::Real = 0.0, outer_g_abstol::Real = 1e-8, outer_g_reltol::Real = 1e-8, f_calls_limit::Int = 0, g_calls_limit::Int = 0, h_calls_limit::Int = 0, allow_f_increases::Bool = true, allow_outer_f_increases::Bool = true, successive_f_tol::Int = 1, iterations::Int = 1_000, outer_iterations::Int = 1000, store_trace::Bool = false, trace_simplex::Bool = false, show_trace::Bool = false, extended_trace::Bool = false, show_warnings::Bool = true, show_every::Int = 1, callback = nothing, time_limit = NaN) show_every = show_every > 0 ? show_every : 1 #if extended_trace && callback === nothing # show_trace = true #end if !(x_tol === nothing) x_abstol = x_tol end if !(g_tol === nothing) g_abstol = g_tol end if !(f_tol === nothing) f_reltol = f_tol end if !(outer_x_tol === nothing) outer_x_abstol = outer_x_tol end if !(outer_g_tol === nothing) outer_g_abstol = outer_g_tol end if !(outer_f_tol === nothing) outer_f_reltol = outer_f_tol end Options(promote(x_abstol, x_reltol, f_abstol, f_reltol, g_abstol, g_reltol, outer_x_abstol, outer_x_reltol, outer_f_abstol, outer_f_reltol, outer_g_abstol, outer_g_reltol)..., f_calls_limit, g_calls_limit, h_calls_limit, allow_f_increases, allow_outer_f_increases, successive_f_tol, Int(iterations), Int(outer_iterations), store_trace, trace_simplex, show_trace, extended_trace, show_warnings, Int(show_every), callback, Float64(time_limit)) end _show_helper(output, k, v) = output * "$k = $v, " _show_helper(output, k, ::Nothing) = output function Base.show(io::IO, o::Optim.Options) content = foldl(fieldnames(typeof(o)), init = "Optim.Options(") do output, k v = getfield(o, k) return _show_helper(output, k, v) end print(io, content) println(io, ")") end function Base.show(io::IO, ::MIME"text/plain", o::Optim.Options) for k in fieldnames(typeof(o)) v = getfield(o, k) if v isa Nothing @printf io "%24s = %s\n" k "nothing" else @printf io "%24s = %s\n" k v end end end function print_header(options::Options) if options.show_trace @printf "Iter Function value Gradient norm \n" end end function print_header(method::AbstractOptimizer) @printf "Iter Function value Gradient norm \n" end struct OptimizationState{Tf<:Real, T <: AbstractOptimizer} iteration::Int value::Tf g_norm::Tf metadata::Dict end const OptimizationTrace{Tf, T} = Vector{OptimizationState{Tf, T}} abstract type OptimizationResults end mutable struct MultivariateOptimizationResults{O, Tx, Tc, Tf, M, Tls, Tsb} <: OptimizationResults method::O initial_x::Tx minimizer::Tx minimum::Tf iterations::Int iteration_converged::Bool x_converged::Bool x_abstol::Tf x_reltol::Tf x_abschange::Tc x_relchange::Tc f_converged::Bool f_abstol::Tf f_reltol::Tf f_abschange::Tc f_relchange::Tc g_converged::Bool g_abstol::Tf g_residual::Tc f_increased::Bool trace::M f_calls::Int g_calls::Int h_calls::Int ls_success::Tls time_limit::Float64 time_run::Float64 stopped_by::Tsb end # pick_best_x and pick_best_f are used to pick the minimizer if we stopped because # f increased and we didn't allow it pick_best_x(f_increased, state) = f_increased ? state.x_previous : state.x pick_best_f(f_increased, state, d) = f_increased ? state.f_x_previous : value(d) function Base.show(io::IO, t::OptimizationState) @printf io "%6d %14e %14e\n" t.iteration t.value t.g_norm if !isempty(t.metadata) for (key, value) in t.metadata @printf io " * %s: %s\n" key value end end return end function Base.show(io::IO, tr::OptimizationTrace) @printf io "Iter Function value Gradient norm \n" @printf io "------ -------------- --------------\n" for state in tr show(io, state) end return end function Base.show(io::IO, r::MultivariateOptimizationResults) take = Iterators.take if converged(r) status_string = "success" else status_string = "failure" end if iteration_limit_reached(r) status_string *= " (reached maximum number of iterations)" end if f_increased(r) && !iteration_limit_reached(r) status_string *= " (objective increased between iterations)" end if isa(r.ls_success, Bool) && !r.ls_success status_string *= " (line search failed)" end if time_run(r) > time_limit(r) status_string *= " (exceeded time limit of $(time_limit(r)))" end @printf io " * Status: %s\n\n" status_string @printf io " * Candidate solution\n" @printf io " Final objective value: %e\n" minimum(r) @printf io "\n" @printf io " * Found with\n" @printf io " Algorithm: %s\n" summary(r) @printf io "\n" @printf io " * Convergence measures\n" if isa(r.method, NelderMead) @printf io " √(Ξ£(yα΅’-yΜ„)Β²)/n %s %.1e\n" g_converged(r) ? "≀" : "β‰°" g_tol(r) else @printf io " |x - x'| = %.2e %s %.1e\n" x_abschange(r) x_abschange(r)<=x_abstol(r) ? "≀" : "β‰°" x_abstol(r) @printf io " |x - x'|/|x'| = %.2e %s %.1e\n" x_relchange(r) x_relchange(r)<=x_reltol(r) ? "≀" : "β‰°" x_reltol(r) @printf io " |f(x) - f(x')| = %.2e %s %.1e\n" f_abschange(r) f_abschange(r)<=f_abstol(r) ? "≀" : "β‰°" f_abstol(r) @printf io " |f(x) - f(x')|/|f(x')| = %.2e %s %.1e\n" f_relchange(r) f_relchange(r)<=f_reltol(r) ? "≀" : "β‰°" f_reltol(r) @printf io " |g(x)| = %.2e %s %.1e\n" g_residual(r) g_residual(r)<=g_tol(r) ? "≀" : "β‰°" g_tol(r) end @printf io "\n" @printf io " * Work counters\n" @printf io " Seconds run: %d (vs limit %d)\n" time_run(r) isnan(time_limit(r)) ? Inf : time_limit(r) @printf io " Iterations: %d\n" iterations(r) @printf io " f(x) calls: %d\n" f_calls(r) if !(isa(r.method, NelderMead) || isa(r.method, SimulatedAnnealing)) @printf io " βˆ‡f(x) calls: %d\n" g_calls(r) end if isa(r.method, Newton) || isa(r.method, NewtonTrustRegion) @printf io " βˆ‡Β²f(x) calls: %d\n" h_calls(r) end return end function Base.append!(a::MultivariateOptimizationResults, b::MultivariateOptimizationResults) a.iterations += iterations(b) a.minimizer = minimizer(b) a.minimum = minimum(b) a.iteration_converged = iteration_limit_reached(b) a.x_converged = x_converged(b) a.f_converged = f_converged(b) a.g_converged = g_converged(b) append!(a.trace, b.trace) a.f_calls += f_calls(b) a.g_calls += g_calls(b) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2000
# Some Boiler-plate code for preconditioning # # Meaning of P: # P β‰ˆ βˆ‡Β²E, so the preconditioned gradient is P^{-1} βˆ‡E # P can be an arbitrary type but at a minimum it MUST provide: # ldiv!(x, P, b) -> x = P \ b # dot(x, P, b) -> x' P b # # If `dot` is not provided, then Optim.jl will try to define it via # dot(x, P, b) = dot(x, mul!(similar(x), P, y)) # # finally the preconditioner can be updated after each x-update using # precondprep! # but this is passed as an argument at the moment! # # Fallback ldiv!(out, M, A) = LinearAlgebra.ldiv!(out, M, A) dot(a, M, b) = LinearAlgebra.dot(a, M, b) dot(a, b) = LinearAlgebra.dot(a, b) ##################################################### # [0] Defaults and aliases for easier reading of the code # these can also be over-written if necessary. # default preconditioner update precondprep!(P, x) = nothing ##################################################### # [1] Empty preconditioner = Identity # # out = P^{-1} * A ldiv!(out, ::Nothing, A) = copyto!(out, A) # A' * P B dot(A, ::Nothing, B) = dot(A, B) ##################################################### # [2] Diagonal preconditioner # P = Diag(d) # Covered by base ##################################################### # [3] Inverse Diagonal preconditioner # here, P is stored by the entries of its inverse # TODO: maybe implement this in Base? mutable struct InverseDiagonal diag end ldiv!(out::AbstractArray, P::InverseDiagonal, A::AbstractArray) = copyto!(out, A .* P.diag) dot(A::AbstractArray, P::InverseDiagonal, B::Vector) = dot(A, B ./ P.diag) ##################################################### # [4] Matrix Preconditioner # the assumption here is that P is given by its inverse, which is typical # > ldiv! is about to be moved to Base, so we need a temporary hack # > mul! is already in Base, which defines `dot` # nothing to do! ldiv!(x, P::AbstractMatrix, b) = copyto!(x, P \ b)
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
8269
# Multivariate optimization function check_kwargs(kwargs, fallback_method) kws = Dict{Symbol, Any}() method = nothing for kwarg in kwargs if kwarg[1] != :method kws[kwarg[1]] = kwarg[2] else method = kwarg[2] end end if method === nothing method = fallback_method end kws, method end default_options(method::AbstractOptimizer) = NamedTuple() function add_default_opts!(opts::Dict{Symbol, Any}, method::AbstractOptimizer) for newopt in pairs(default_options(method)) if !haskey(opts, newopt[1]) opts[newopt[1]] = newopt[2] end end end fallback_method(f) = NelderMead() fallback_method(f, g!) = LBFGS() fallback_method(f, g!, h!) = Newton() function fallback_method(f::InplaceObjective) if !(f.fdf isa Nothing) if !(f.hv isa Nothing) return KrylovTrustRegion() end return LBFGS() elseif !(f.fgh isa Nothing) return Newton() elseif !(f.fghv isa Nothing) return KrylovTrustRegion() end end function fallback_method(f::NotInplaceObjective) if !(f.fdf isa Nothing) return LBFGS() elseif !(f.fgh isa Nothing) return LBFGS() else throw(ArgumentError("optimize does not support $(typeof(f)) as the first positional argument")) end end fallback_method(f::NotInplaceObjective{<:Nothing, <:Nothing, <:Any}) = Newton() fallback_method(d::OnceDifferentiable) = LBFGS() fallback_method(d::TwiceDifferentiable) = Newton() # promote the objective (tuple of callables or an AbstractObjective) according to method requirement promote_objtype(method, initial_x, autodiff::Symbol, inplace::Bool, args...) = error("No default objective type for $method and $args.") # actual promotions, notice that (args...) captures FirstOrderOptimizer and NonDifferentiable, etc promote_objtype(method::ZerothOrderOptimizer, x, autodiff::Symbol, inplace::Bool, args...) = NonDifferentiable(args..., x, real(zero(eltype(x)))) promote_objtype(method::FirstOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f) = OnceDifferentiable(f, x, real(zero(eltype(x))); autodiff = autodiff) promote_objtype(method::FirstOrderOptimizer, x, autodiff::Symbol, inplace::Bool, args...) = OnceDifferentiable(args..., x, real(zero(eltype(x))); inplace = inplace) promote_objtype(method::FirstOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f, g, h) = OnceDifferentiable(f, g, x, real(zero(eltype(x))); inplace = inplace) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f) = TwiceDifferentiable(f, x, real(zero(eltype(x))); autodiff = autodiff) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f::NotInplaceObjective) = TwiceDifferentiable(f, x, real(zero(eltype(x)))) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f::InplaceObjective) = TwiceDifferentiable(f, x, real(zero(eltype(x)))) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f::NLSolversBase.InPlaceObjectiveFGHv) = TwiceDifferentiableHV(f, x) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f::NLSolversBase.InPlaceObjectiveFG_Hv) = TwiceDifferentiableHV(f, x) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f, g) = TwiceDifferentiable(f, g, x, real(zero(eltype(x))); inplace = inplace, autodiff = autodiff) promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, f, g, h) = TwiceDifferentiable(f, g, h, x, real(zero(eltype(x))); inplace = inplace) # no-op promote_objtype(method::ZerothOrderOptimizer, x, autodiff::Symbol, inplace::Bool, nd::NonDifferentiable) = nd promote_objtype(method::ZerothOrderOptimizer, x, autodiff::Symbol, inplace::Bool, od::OnceDifferentiable) = od promote_objtype(method::FirstOrderOptimizer, x, autodiff::Symbol, inplace::Bool, od::OnceDifferentiable) = od promote_objtype(method::ZerothOrderOptimizer, x, autodiff::Symbol, inplace::Bool, td::TwiceDifferentiable) = td promote_objtype(method::FirstOrderOptimizer, x, autodiff::Symbol, inplace::Bool, td::TwiceDifferentiable) = td promote_objtype(method::SecondOrderOptimizer, x, autodiff::Symbol, inplace::Bool, td::TwiceDifferentiable) = td # if no method or options are present function optimize(f, initial_x::AbstractArray; inplace = true, autodiff = :finite, kwargs...) method = fallback_method(f) checked_kwargs, method = check_kwargs(kwargs, method) d = promote_objtype(method, initial_x, autodiff, inplace, f) add_default_opts!(checked_kwargs, method) options = Options(; checked_kwargs...) optimize(d, initial_x, method, options) end function optimize(f, g, initial_x::AbstractArray; inplace = true, autodiff = :finite, kwargs...) method = fallback_method(f, g) checked_kwargs, method = check_kwargs(kwargs, method) d = promote_objtype(method, initial_x, autodiff, inplace, f, g) add_default_opts!(checked_kwargs, method) options = Options(; checked_kwargs...) optimize(d, initial_x, method, options) end function optimize(f, g, h, initial_x::AbstractArray; inplace = true, autodiff = :finite, kwargs...) method = fallback_method(f, g, h) checked_kwargs, method = check_kwargs(kwargs, method) d = promote_objtype(method, initial_x, autodiff, inplace, f, g, h) add_default_opts!(checked_kwargs, method) options = Options(; checked_kwargs...) optimize(d, initial_x, method, options) end # no method supplied with objective function optimize(d::T, initial_x::AbstractArray, options::Options) where T<:AbstractObjective optimize(d, initial_x, fallback_method(d), options) end # no method supplied with inplace and autodiff keywords becauase objective is not supplied function optimize(f, initial_x::AbstractArray, options::Options; inplace = true, autodiff = :finite) method = fallback_method(f) d = promote_objtype(method, initial_x, autodiff, inplace, f) optimize(d, initial_x, method, options) end function optimize(f, g, initial_x::AbstractArray, options::Options; inplace = true, autodiff = :finite) method = fallback_method(f, g) d = promote_objtype(method, initial_x, autodiff, inplace, f, g) optimize(d, initial_x, method, options) end function optimize(f, g, h, initial_x::AbstractArray{T}, options::Options; inplace = true, autodiff = :finite) where {T} method = fallback_method(f, g, h) d = promote_objtype(method, initial_x, autodiff, inplace, f, g, h) optimize(d, initial_x, method, options) end # potentially everything is supplied (besides caches) function optimize(f, initial_x::AbstractArray, method::AbstractOptimizer, options::Options = Options(;default_options(method)...); inplace = true, autodiff = :finite) d = promote_objtype(method, initial_x, autodiff, inplace, f) optimize(d, initial_x, method, options) end function optimize(f, c::AbstractConstraints, initial_x::AbstractArray, method::AbstractOptimizer, options::Options = Options(;default_options(method)...); inplace = true, autodiff = :finite) d = promote_objtype(method, initial_x, autodiff, inplace, f) optimize(d, c, initial_x, method, options) end function optimize(f, g, initial_x::AbstractArray, method::AbstractOptimizer, options::Options = Options(;default_options(method)...); inplace = true, autodiff = :finite) d = promote_objtype(method, initial_x, autodiff, inplace, f, g) optimize(d, initial_x, method, options) end function optimize(f, g, h, initial_x::AbstractArray{T}, method::AbstractOptimizer, options::Options = Options(;default_options(method)...); inplace = true, autodiff = :finite) where T d = promote_objtype(method, initial_x, autodiff, inplace, f, g, h) optimize(d, initial_x, method, options) end function optimize(d::D, initial_x::AbstractArray, method::SecondOrderOptimizer, options::Options = Options(;default_options(method)...); autodiff = :finite, inplace = true) where {D <: Union{NonDifferentiable, OnceDifferentiable}} d = promote_objtype(method, initial_x, autodiff, inplace, d) optimize(d, initial_x, method, options) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
7455
update_g!(d, state, method) = nothing function update_g!(d, state, method::M) where M<:Union{FirstOrderOptimizer, Newton} # Update the function value and gradient value_gradient!(d, state.x) if M <: FirstOrderOptimizer #only for methods that support manifold optimization project_tangent!(method.manifold, gradient(d), state.x) end end update_fg!(d, state, method) = nothing update_fg!(d, state, method::ZerothOrderOptimizer) = value!(d, state.x) function update_fg!(d, state, method::M) where M<:Union{FirstOrderOptimizer, Newton} value_gradient!(d, state.x) if M <: FirstOrderOptimizer #only for methods that support manifold optimization project_tangent!(method.manifold, gradient(d), state.x) end end # Update the Hessian update_h!(d, state, method) = nothing update_h!(d, state, method::SecondOrderOptimizer) = hessian!(d, state.x) after_while!(d, state, method, options) = nothing function initial_convergence(d, state, method::AbstractOptimizer, initial_x, options) gradient!(d, initial_x) stopped = !isfinite(value(d)) || any(!isfinite, gradient(d)) maximum(abs, gradient(d)) <= options.g_abstol, stopped end function initial_convergence(d, state, method::ZerothOrderOptimizer, initial_x, options) false, false end function optimize(d::D, initial_x::Tx, method::M, options::Options{T, TCallback} = Options(;default_options(method)...), state = initial_state(method, options, d, initial_x)) where {D<:AbstractObjective, M<:AbstractOptimizer, Tx <: AbstractArray, T, TCallback} t0 = time() # Initial time stamp used to control early stopping by options.time_limit tr = OptimizationTrace{typeof(value(d)), typeof(method)}() tracing = options.store_trace || options.show_trace || options.extended_trace || options.callback !== nothing stopped, stopped_by_callback, stopped_by_time_limit = false, false, false f_limit_reached, g_limit_reached, h_limit_reached = false, false, false x_converged, f_converged, f_increased, counter_f_tol = false, false, false, 0 f_converged, g_converged = initial_convergence(d, state, method, initial_x, options) converged = f_converged || g_converged # prepare iteration counter (used to make "initial state" trace entry) iteration = 0 options.show_trace && print_header(method) _time = time() trace!(tr, d, state, iteration, method, options, _time-t0) ls_success::Bool = true while !converged && !stopped && iteration < options.iterations iteration += 1 ls_success = !update_state!(d, state, method) if !ls_success break # it returns true if it's forced by something in update! to stop (eg dx_dg == 0.0 in BFGS, or linesearch errors) end if !(method isa NewtonTrustRegion) update_g!(d, state, method) # TODO: Should this be `update_fg!`? end x_converged, f_converged, g_converged, f_increased = assess_convergence(state, d, options) # For some problems it may be useful to require `f_converged` to be hit multiple times # TODO: Do the same for x_tol? counter_f_tol = f_converged ? counter_f_tol+1 : 0 converged = x_converged || g_converged || (counter_f_tol > options.successive_f_tol) if !(converged && method isa Newton) && !(method isa NewtonTrustRegion) update_h!(d, state, method) # only relevant if not converged end if tracing # update trace; callbacks can stop routine early by returning true stopped_by_callback = trace!(tr, d, state, iteration, method, options, time()-t0) end # Check time_limit; if none is provided it is NaN and the comparison # will always return false. _time = time() stopped_by_time_limit = _time-t0 > options.time_limit f_limit_reached = options.f_calls_limit > 0 && f_calls(d) >= options.f_calls_limit ? true : false g_limit_reached = options.g_calls_limit > 0 && g_calls(d) >= options.g_calls_limit ? true : false h_limit_reached = options.h_calls_limit > 0 && h_calls(d) >= options.h_calls_limit ? true : false if (f_increased && !options.allow_f_increases) || stopped_by_callback || stopped_by_time_limit || f_limit_reached || g_limit_reached || h_limit_reached stopped = true end if method isa NewtonTrustRegion # If the trust region radius keeps on reducing we need to stop # because something is wrong. Wrong gradients or a non-differentiability # at the solution could be explanations. if state.delta ≀ method.delta_min stopped = true end end if g_calls(d) > 0 && !all(isfinite, gradient(d)) options.show_warnings && @warn "Terminated early due to NaN in gradient." break end if h_calls(d) > 0 && !(d isa TwiceDifferentiableHV) && !all(isfinite, hessian(d)) options.show_warnings && @warn "Terminated early due to NaN in Hessian." break end end # while after_while!(d, state, method, options) # we can just check minimum, as we've earlier enforced same types/eltypes # in variables besides the option settings Tf = typeof(value(d)) f_incr_pick = f_increased && !options.allow_f_increases stopped_by =(f_limit_reached=f_limit_reached, g_limit_reached=g_limit_reached, h_limit_reached=h_limit_reached, time_limit=stopped_by_time_limit, callback=stopped_by_callback, f_increased=f_incr_pick) return MultivariateOptimizationResults{typeof(method),Tx,typeof(x_abschange(state)),Tf,typeof(tr), Bool, typeof(stopped_by)}(method, initial_x, pick_best_x(f_incr_pick, state), pick_best_f(f_incr_pick, state, d), iteration, iteration == options.iterations, x_converged, Tf(options.x_abstol), Tf(options.x_reltol), x_abschange(state), x_relchange(state), f_converged, Tf(options.f_abstol), Tf(options.f_reltol), f_abschange(d, state), f_relchange(d, state), g_converged, Tf(options.g_abstol), g_residual(d, state), f_increased, tr, f_calls(d), g_calls(d), h_calls(d), ls_success, options.time_limit, _time-t0, stopped_by, ) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
17514
import NLSolversBase: value, value!, value!!, gradient, gradient!, value_gradient!, value_gradient!! ####### FIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIX THE MIDDLE OF BOX CASE THAT WAS THERE mutable struct BarrierWrapper{TO, TB, Tm, TF, TDF} <: AbstractObjective obj::TO b::TB # barrier mu::Tm # multipler Fb::TF Ftotal::TF DFb::TDF DFtotal::TDF end f_calls(obj::BarrierWrapper) = f_calls(obj.obj) g_calls(obj::BarrierWrapper) = g_calls(obj.obj) h_calls(obj::BarrierWrapper) = h_calls(obj.obj) function BarrierWrapper(obj::NonDifferentiable, mu, lower, upper) barrier_term = BoxBarrier(lower, upper) BarrierWrapper(obj, barrier_term, mu, copy(obj.F), copy(obj.F), nothing, nothing) end function BarrierWrapper(obj::OnceDifferentiable, mu, lower, upper) barrier_term = BoxBarrier(lower, upper) BarrierWrapper(obj, barrier_term, mu, copy(obj.F), copy(obj.F), copy(obj.DF), copy(obj.DF)) end struct BoxBarrier{L, U} lower::L upper::U end function in_box(bb::BoxBarrier, x) all(x->x[1]>=x[2] && x[1]<=x[3], zip(x, bb.lower, bb.upper)) end in_box(bw::BarrierWrapper, x) = in_box(bw.b, x) # evaluates the value and gradient components comming from the log barrier function _barrier_term_value(x::T, l, u) where T dxl = x - l dxu = u - x if dxl <= 0 || dxu <= 0 return T(Inf) end vl = ifelse(isfinite(dxl), -log(dxl), T(0)) vu = ifelse(isfinite(dxu), -log(dxu), T(0)) return vl + vu end function _barrier_term_gradient(x::T, l, u) where T dxl = x - l dxu = u - x g = zero(T) if isfinite(l) g += -one(T)/dxl end if isfinite(u) g += one(T)/dxu end return g end function value_gradient!(bb::BoxBarrier, g, x) g .= _barrier_term_gradient.(x, bb.lower, bb.upper) value(bb, x) end function gradient(bb::BoxBarrier, g, x) g = copy(g) g .= _barrier_term_gradient.(x, bb.lower, bb.upper) end # Wrappers function value!!(bw::BarrierWrapper, x) bw.Fb = value(bw.b, x) bw.Ftotal = bw.mu*bw.Fb if in_box(bw, x) value!!(bw.obj, x) bw.Ftotal += value(bw.obj) end end function value_gradient!!(bw::BarrierWrapper, x) bw.Fb = value(bw.b, x) bw.Ftotal = bw.mu*bw.Fb bw.DFb .= _barrier_term_gradient.(x, bw.b.lower, bw.b.upper) bw.DFtotal .= bw.mu .* bw.DFb if in_box(bw, x) value_gradient!!(bw.obj, x) bw.Ftotal += value(bw.obj) bw.DFtotal .+= gradient(bw.obj) end end function value_gradient!(bb::BarrierWrapper, x) bb.DFb .= _barrier_term_gradient.(x, bb.b.lower, bb.b.upper) bb.Fb = value(bb.b, x) bb.DFtotal .= bb.mu .* bb.DFb bb.Ftotal = bb.mu*bb.Fb if in_box(bb, x) value_gradient!(bb.obj, x) bb.DFtotal .+= gradient(bb.obj) bb.Ftotal += value(bb.obj) end end value(bb::BoxBarrier, x) = mapreduce(x->_barrier_term_value(x...), +, zip(x, bb.lower, bb.upper)) function value!(obj::BarrierWrapper, x) obj.Fb = value(obj.b, x) obj.Ftotal = obj.mu*obj.Fb if in_box(obj, x) value!(obj.obj, x) obj.Ftotal += value(obj.obj) end obj.Ftotal end value(obj::BarrierWrapper) = obj.Ftotal function value(obj::BarrierWrapper, x) F = obj.mu*value(obj.b, x) if in_box(obj, x) F += value(obj.obj, x) end F end function gradient!(obj::BarrierWrapper, x) gradient!(obj.obj, x) obj.DFb .= gradient(obj.b, obj.DFb, x) # this should just be inplace? obj.DFtotal .= gradient(obj.obj) .+ obj.mu*obj.Fb end gradient(obj::BarrierWrapper) = obj.DFtotal # this mutates mu but not the gradients # Super unsafe in that it depends on x_df being correct! function initial_mu(obj::BarrierWrapper, F) T = typeof(obj.Fb) # this will not work if F is real, G is complex gbarrier = map(x->(isfinite.(x[2]) ? one(T)/(x[1]-x[2]) : zero(T)) + (isfinite(x[3]) ? one(T)/(x[3]-x[1]) : zero(T)), zip(obj.obj.x_f, obj.b.lower, obj.b.upper)) # obj.mu = initial_mu(gradient(obj.obj), gradient(obj.b, obj.DFb, obj.obj.x_df), T(F.mufactor), T(F.mu0)) obj.mu = initial_mu(gradient(obj.obj), gbarrier, T(F.mufactor), T(F.mu0)) end # Attempt to compute a reasonable default mu: at the starting # position, the gradient of the input function should dominate the # gradient of the barrier. function initial_mu(gfunc::AbstractArray{T}, gbarrier::AbstractArray{T}, mu0factor::T = T(1)/1000, mu0::T = convert(T, NaN)) where T if isnan(mu0) gbarriernorm = sum(abs, gbarrier) if gbarriernorm > 0 mu = mu0factor*sum(abs, gfunc)/gbarriernorm else # Presumably, there is no barrier function mu = zero(T) end else mu = mu0 end return mu end function limits_box(x::AbstractArray{T}, d::AbstractArray{T}, l::AbstractArray{T}, u::AbstractArray{T}) where T alphamax = convert(T, Inf) @inbounds for i in eachindex(x) if d[i] < 0 alphamax = min(alphamax, ((l[i]-x[i])+eps(l[i]))/d[i]) elseif d[i] > 0 alphamax = min(alphamax, ((u[i]-x[i])-eps(u[i]))/d[i]) end end epsilon = eps(max(alphamax, one(T))) if !isinf(alphamax) && alphamax > epsilon alphamax -= epsilon end return alphamax end # Default preconditioner for box-constrained optimization # This creates the inverse Hessian of the barrier penalty function precondprepbox!(P, x, l, u, dfbox) @. P.diag = 1/(dfbox.mu*(1/(x-l)^2 + 1/(u-x)^2) + 1) end struct Fminbox{O<:AbstractOptimizer, T, P} <: AbstractConstrainedOptimizer method::O mu0::T mufactor::T precondprep::P end """ # Fminbox ## Constructor ```julia Fminbox(method; mu0=NaN, mufactor=0.0001, precondprep(P, x, l, u, mu) -> precondprepbox!(P, x, l, u, mu)) ``` ## Description Fminbox implements a primal barrier method for optimization with simple bounds (or box constraints). A description of an approach very close to the one implemented here can be found in section 19.6 of Nocedal and Wright (sec. 19.6, 2006). ## References - Wright, S. J. and J. Nocedal (1999), Numerical optimization. Springer Science 35.67-68: 7. """ function Fminbox(method::AbstractOptimizer = LBFGS(); mu0::Real = NaN, mufactor::Real = 0.001, precondprep = (P, x, l, u, mu) -> precondprepbox!(P, x, l, u, mu)) if method isa Newton || method isa NewtonTrustRegion throw(ArgumentError("Newton is not supported as the Fminbox optimizer.")) end Fminbox(method, promote(mu0, mufactor)..., precondprep) # default optimizer end Base.summary(F::Fminbox) = "Fminbox with $(summary(F.method))" # barrier_method() constructs an optimizer to solve the barrier problem using m = Fminbox.method as the reference. # Essentially it only updates the P and precondprep fields of `m`. # fallback barrier_method(m::AbstractOptimizer, P, precondprep) = error("You need to specify a valid inner optimizer for Fminbox, $m is not supported. Please consult the documentation.") barrier_method(m::ConjugateGradient, P, precondprep) = ConjugateGradient(eta = m.eta, alphaguess = m.alphaguess!, linesearch = m.linesearch!, P = P, precondprep = precondprep) barrier_method(m::LBFGS, P, precondprep) = LBFGS(alphaguess = m.alphaguess!, linesearch = m.linesearch!, P = P, precondprep = precondprep) barrier_method(m::GradientDescent, P, precondprep) = GradientDescent(alphaguess = m.alphaguess!, linesearch = m.linesearch!, P = P, precondprep = precondprep) barrier_method(m::Union{NelderMead, SimulatedAnnealing, ParticleSwarm, BFGS, AbstractNGMRES}, P, precondprep) = m # use `m` as is function optimize(f, g, l::AbstractArray{T}, u::AbstractArray{T}, initial_x::AbstractArray{T}, F::Fminbox = Fminbox(), options = Options(); inplace = true, autodiff = :finite) where T<:AbstractFloat g! = inplace ? g : (G, x) -> copyto!(G, g(x)) od = OnceDifferentiable(f, g!, initial_x, zero(T)) optimize(od, l, u, initial_x, F, options) end optimize(f, l::Number, u::Number, initial_x::AbstractArray{T}; kwargs...) where T = optimize(f, Fill(T(l), size(initial_x)...), Fill(T(u), size(initial_x)...), initial_x; kwargs...) optimize(f, l::AbstractArray, u::Number, initial_x::AbstractArray{T}; kwargs...) where T = optimize(f, l, Fill(T(u), size(initial_x)...), initial_x; kwargs...) optimize(f, l::Number, u::AbstractArray, initial_x::AbstractArray{T}; kwargs...) where T = optimize(f, Fill(T(l), size(initial_x)...), u, initial_x; kwargs...) optimize(f, l::Number, u::Number, initial_x::AbstractArray{T}, mo::AbstractConstrainedOptimizer, opt::Options=Options(); kwargs...) where T = optimize(f, Fill(T(l), size(initial_x)...), Fill(T(u), size(initial_x)...), initial_x, mo, opt; kwargs...) optimize(f, l::AbstractArray, u::Number, initial_x::AbstractArray{T}, mo::AbstractConstrainedOptimizer, opt::Options=Options(); kwargs...) where T = optimize(f, l, Fill(T(u), size(initial_x)...), initial_x, mo, opt; kwargs...) optimize(f, l::Number, u::AbstractArray, initial_x::AbstractArray{T}, mo::AbstractConstrainedOptimizer, opt::Options=Options(); kwargs...) where T = optimize(f, Fill(T(l), size(initial_x)...), u, initial_x, mo, opt; kwargs...) optimize(f, g, l::Number, u::Number, initial_x::AbstractArray{T}, opt::Options; kwargs...) where T = optimize(f, g, Fill(T(l), size(initial_x)...), Fill(T(u), size(initial_x)...), initial_x, opt; kwargs...) optimize(f, g, l::AbstractArray, u::Number, initial_x::AbstractArray{T}, opt::Options; kwargs...) where T = optimize(f, g, l, Fill(T(u), size(initial_x)...), initial_x, opt; kwargs...) optimize(f, g, l::Number, u::AbstractArray, initial_x::AbstractArray{T}, opt::Options; kwargs...) where T = optimize(f, g, Fill(T(l), size(initial_x)...), u, initial_x, opt; kwargs...) function optimize(f, l::AbstractArray, u::AbstractArray, initial_x::AbstractArray, F::Fminbox = Fminbox(), options::Options = Options(); inplace = true, autodiff = :finite) if f isa NonDifferentiable f = f.f end od = OnceDifferentiable(f, initial_x, zero(eltype(initial_x)); autodiff = autodiff) optimize(od, l, u, initial_x, F, options) end function optimize( df::OnceDifferentiable, l::AbstractArray, u::AbstractArray, initial_x::AbstractArray, F::Fminbox = Fminbox(), options::Options = Options()) T = eltype(initial_x) t0 = time() outer_iterations = options.outer_iterations allow_outer_f_increases = options.allow_outer_f_increases show_trace, store_trace, extended_trace = options.show_trace, options.store_trace, options.extended_trace x = copy(initial_x) P = InverseDiagonal(copy(initial_x)) # to be careful about one special case that might occur commonly # in practice: the initial guess x is exactly in the center of the # box. In that case, gbarrier is zero. But since the # initialization only makes use of the magnitude, we can fix this # by using the sum of the absolute values of the contributions # from each edge. boundaryidx = Vector{Int}() for i in eachindex(l) thisx = x[i] thisl = l[i] thisu = u[i] if thisx == thisl thisx = T(99)/100*thisl + T(1)/100*thisu x[i] = thisx push!(boundaryidx,i) elseif thisx == thisu thisx = T(1)/100*thisl + T(99)/100*thisu x[i] = thisx push!(boundaryidx,i) elseif thisx < thisl || thisx > thisu throw(ArgumentError("Initial x[$(Tuple(CartesianIndices(x)[i]))]=$thisx is outside of [$thisl, $thisu]")) end end if length(boundaryidx) > 0 @warn("Initial position cannot be on the boundary of the box. Moving elements to the interior.\nElement indices affected: $boundaryidx") end dfbox = BarrierWrapper(df, zero(T), l, u) # Use the barrier-aware preconditioner to define # barrier-aware optimization method instance (precondition relevance) _optimizer = barrier_method(F.method, P, (P, x) -> F.precondprep(P, x, l, u, dfbox)) state = initial_state(_optimizer, options, dfbox, x) # we wait until state has been initialized to set the initial mu because # we need the gradient of the objective and initial_state will value_gradient!! # the objective, so that forces an evaluation if F.method isa NelderMead gradient!(dfbox, x) end dfbox.mu = initial_mu(dfbox, F) if F.method isa NelderMead for i = 1:length(state.f_simplex) x = state.simplex[i] boxval = value(dfbox.b, x) state.f_simplex[i] += boxval end state.i_order = sortperm(state.f_simplex) end if show_trace > 00 println("Fminbox") println("-------") print("Initial mu = ") show(IOContext(stdout, :compact=>true), "text/plain", dfbox.mu) println("\n") end g = copy(x) fval_all = Vector{Vector{T}}() # Count the total number of outer iterations iteration = 0 # define the function (dfbox) to optimize by the inner optimizer xold = copy(x) converged = false local results first = true f_increased, stopped_by_time_limit, stopped_by_callback = false, false, false stopped = false _time = time() while !converged && !stopped && iteration < outer_iterations fval0 = dfbox.obj.F # Increment the number of steps we've had to perform iteration += 1 copyto!(xold, x) # Optimize with current setting of mu if show_trace > 0 header_string = "Fminbox iteration $iteration" println(header_string) println("-"^length(header_string)) print("Calling inner optimizer with mu = ") show(IOContext(stdout, :compact=>true), "text/plain", dfbox.mu) println("\n") println("(numbers below include barrier contribution)") end # we need to update the +mu*barrier_grad part. Since we're using the # value_gradient! not !! as in initial_state, we won't make a superfluous # evaluation if !(F.method isa NelderMead) value_gradient!(dfbox, x) else value!(dfbox, x) end if !(F.method isa NelderMead && iteration == 1) reset!(_optimizer, state, dfbox, x) end resultsnew = optimize(dfbox, x, _optimizer, options, state) stopped_by_callback = resultsnew.stopped_by.callback if first results = resultsnew first = false else append!(results, resultsnew) end dfbox.obj.f_calls[1] = 0 if hasfield(typeof(dfbox.obj), :df_calls) dfbox.obj.df_calls[1] = 0 end if hasfield(typeof(dfbox.obj), :h_calls) dfbox.obj.h_calls[1] = 0 end copyto!(x, minimizer(results)) boxdist = min(minimum(x-l), minimum(u-x)) if show_trace > 0 println() println("Exiting inner optimizer with x = ", x) print("Current distance to box: ") show(IOContext(stdout, :compact=>true), "text/plain", boxdist) println() println("Decreasing barrier term ΞΌ.\n") end # Decrease mu dfbox.mu *= T(F.mufactor) # Test for convergence g = x.-min.(max.(x.-gradient(dfbox.obj), l), u) results.x_converged, results.f_converged, results.g_converged, f_increased = assess_convergence(x, xold, minimum(results), fval0, g, options.outer_x_abstol, options.outer_x_reltol, options.outer_f_abstol, options.outer_f_reltol, options.outer_g_abstol) converged = results.x_converged || results.f_converged || results.g_converged || stopped_by_callback if f_increased && !allow_outer_f_increases @warn("f(x) increased: stopping optimization") break end _time = time() stopped_by_time_limit = _time-t0 > options.time_limit ? true : false stopped = stopped_by_time_limit end stopped_by =(#f_limit_reached=f_limit_reached, #g_limit_reached=g_limit_reached, #h_limit_reached=h_limit_reached, time_limit=stopped_by_time_limit, callback=stopped_by_callback, f_increased=f_increased && !options.allow_f_increases) return MultivariateOptimizationResults(F, initial_x, minimizer(results), df.f(minimizer(results)), iteration, results.iteration_converged, results.x_converged, results.x_abstol, results.x_reltol, norm(x - xold), norm(x - xold)/norm(x), results.f_converged, results.f_abstol, results.f_reltol, f_abschange(minimum(results), value(dfbox)), f_relchange(minimum(results), value(dfbox)), results.g_converged, results.g_abstol, norm(g, Inf), results.f_increased, results.trace, results.f_calls, results.g_calls, results.h_calls, nothing, options.time_limit, _time-t0, stopped_by) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
18178
# """ # History: Based on Octave code samin.cc, by Michael Creel, # which was originally based on Gauss code by E.G. Tsionas. A source # for the Gauss code is http://web.stanford.edu/~doubleh/otherpapers/sa.txt # The original Fortran code by W. Goffe is at # http://www.degruyter.com/view/j/snde.1996.1.3/snde.1996.1.3.1020/snde.1996.1.3.1020.xml?format=INT # Tsionas and Goffe agreed to MIT licensing of samin.jl in email # messages to Creel. # # This Julia code uses the same names for control variables, # for the most part. A notable difference is that the initial # temperature can be found automatically to ensure that the active # bounds when the temperature begins to reduce cover the entire # parameter space (defined as a n-dimensional rectangle that is the # Cartesian product of the(lb_i, ub_i), i = 1,2,..n. The code also # allows for parameters to be restricted, by setting lb_i = ub_i, # for the appropriate i. """ # SAMIN ## Constructor ```julia SAMIN(; nt::Int = 5 # reduce temperature every nt*ns*dim(x_init) evaluations ns::Int = 5 # adjust bounds every ns*dim(x_init) evaluations rt::T = 0.9 # geometric temperature reduction factor: when temp changes, new temp is t=rt*t neps::Int = 5 # number of previous best values the final result is compared to f_tol::T = 1e-12 # the required tolerance level for function value comparisons x_tol::T = 1e-6 # the required tolerance level for x coverage_ok::Bool = false, # if false, increase temperature until initial parameter space is covered verbosity::Int = 1) # scalar: 0, 1, 2 or 3 (default = 1). ``` ## Description The `SAMIN` method implements the Simulated Annealing algorithm for problems with bounds constrains a described in Goffe et. al. (1994) and Goffe (1996). The algorithm ## References - Goffe, et. al. (1994) "Global Optimization of Statistical Functions with Simulated Annealing", Journal of Econometrics, V. 60, N. 1/2. - Goffe, William L. (1996) "SIMANN: A Global Optimization Algorithm using Simulated Annealing " Studies in Nonlinear Dynamics & Econometrics, Oct96, Vol. 1 Issue 3. """ @with_kw struct SAMIN{T}<:AbstractConstrainedOptimizer nt::Int = 5 # reduce temperature every nt*ns*dim(x_init) evaluations ns::Int = 5 # adjust bounds every ns*dim(x_init) evaluations rt::T = 0.9 # geometric temperature reduction factor: when temp changes, new temp is t=rt*t neps::Int = 5 # number of previous best values the final result is compared to f_tol::T = 1e-12 # the required tolerance level for function value comparisons x_tol::T = 1e-6 # the required tolerance level for x coverage_ok::Bool = false # if false, increase temperature until initial parameter space is covered verbosity::Int = 1 # scalar: 0, 1, 2 or 3 (default = 1: see final results). end # * verbosity: scalar: 0, 1, 2 or 3 (default = 1). # * 0 = no screen output # * 1 = only final results to screen # * 2 = summary every temperature change, without param values # * 3 = summary every temperature change, with param values # covered by the trial values. 1: start decreasing temperature immediately Base.summary(::SAMIN) = "SAMIN" function optimize(obj_fn, lb::AbstractArray, ub::AbstractArray, x::AbstractArray{Tx}, method::SAMIN, options::Options = Options()) where Tx t0 = time() # Initial time stamp used to control early stopping by options.time_limit hline = "="^80 d = NonDifferentiable(obj_fn, x) tr = OptimizationTrace{typeof(value(d)), typeof(method)}() tracing = options.store_trace || options.show_trace || options.extended_trace || options.callback !== nothing @unpack nt, ns, rt, neps, f_tol, x_tol, coverage_ok, verbosity = method verbose = verbosity > 0 x0 = copy(x) n = size(x,1) # dimension of parameter # Set initial values nacc = 0 # total accepted trials t = 2.0 # temperature - will initially rise or fall to cover parameter space. Then it will fall converge = 0 # convergence indicator 0 (failure), 1 (normal success), or 2 (convergence but near bounds) x_converged = false f_converged = false x_absΞ” = Inf f_absΞ” = Inf # most recent values, to compare to when checking convergend fstar = typemax(Float64)*ones(neps) # Initial obj_value xopt = copy(x) f_old = value!(d, x) fopt = copy(f_old) # give it something to compare to details = [f_calls(d) t fopt xopt'] bounds = ub - lb # check for out-of-bounds starting values for i = 1:n if(( x[i] > ub[i]) || (x[i] < lb[i])) error("samin: initial parameter $(i) out of bounds") end end options.show_trace && print_header(method) iteration = 0 _time = time() trace!(tr, d, (x=xopt, iteration=iteration), iteration, method, options, _time-t0) stopped_by_callback = false # main loop, first increase temperature until parameter space covered, then reduce until convergence while converge==0 # statistics to report at each temp change, set back to zero nup = 0 nrej = 0 nnew = 0 ndown = 0 lnobds = 0 # repeat nt times then adjust temperature for m = 1:nt # repeat ns times, then adjust bounds nacp = zeros(n) for j = 1:ns # generate new point by taking last and adding a random value # to each of elements, in turn for h = 1:n iteration += 1 # new Sept 2011, if bounds are same, skip the search for that vbl. # Allows restrictions without complicated programming if (lb[h] != ub[h]) xp = copy(x) xp[h] += (Tx(2.0) * rand(Tx) - Tx(1.0)) * bounds[h] if (xp[h] < lb[h]) || (xp[h] > ub[h]) xp[h] = lb[h] + (ub[h] - lb[h]) * rand(Tx) lnobds += 1 end # Evaluate function at new point f_proposal = value(d, xp) # Accept the new point if the function value decreases if (f_proposal <= f_old) x = copy(xp) f_old = f_proposal nacc += 1 # total number of acceptances nacp[h] += 1 # acceptances for this parameter nup += 1 # If lower than any other point, record as new optimum if f_proposal < fopt xopt = copy(xp) fopt = f_proposal d.F = f_proposal nnew +=1 details = [details; [f_calls(d) t f_proposal xp']] end # If the point is higher, use the Metropolis criteria to decide on # acceptance or rejection. else p = exp(-(f_proposal - f_old) / t) if rand(Tx) < p x = copy(xp) f_old = copy(f_proposal) d.F = f_proposal nacc += 1 nacp[h] += 1 ndown += 1 else nrej += 1 end end end if tracing # update trace; callbacks can stop routine early by returning true stopped_by_callback = trace!(tr, d, (x=xopt,iteration=iteration), iteration, method, options, time()-t0) end # If options.iterations exceeded, terminate the algorithm _time = time() if f_calls(d) >= options.iterations || _time-t0 > options.time_limit || stopped_by_callback if verbose println(hline) println("SAMIN results") println("NO CONVERGENCE: MAXEVALS exceeded") @printf("\n Obj. value: %16.5f\n\n", fopt) println(" parameter search width") for i=1:n @printf("%16.5f %16.5f \n", xopt[i], bounds[i]) end println(hline) end converge = 0 return MultivariateOptimizationResults(method, x0,# initial_x, xopt, #pick_best_x(f_incr_pick, state), fopt, # pick_best_f(f_incr_pick, state, d), f_calls(d), #iteration, f_calls(d) >= options.iterations, #iteration == options.iterations, false, # x_converged, x_tol,#T(options.x_tol), 0.0,#T(options.x_tol), x_absΞ”,# x_abschange(state), NaN,# x_abschange(state), false,# f_converged, f_tol,#T(options.f_tol), 0.0,#T(options.f_tol), f_absΞ”,#f_abschange(d, state), NaN,#f_abschange(d, state), false,#g_converged, 0.0,#T(options.g_tol), NaN,#g_residual(d), false, #f_increased, tr, f_calls(d), g_calls(d), h_calls(d), true, options.time_limit, _time-t0,NamedTuple()) end end end # Adjust bounds so that approximately half of all evaluations are accepted test = 0 for i = 1:n if (lb[i] != ub[i]) ratio = nacp[i] / ns if(ratio > 0.6) bounds[i] = bounds[i] * (1.0 + 2.0 * (ratio - 0.6) / 0.4) end if(ratio < .4) bounds[i] = bounds[i] / (1.0 + 2.0 * ((0.4 - ratio) / 0.4)) end # keep within initial bounds if(bounds[i] > (ub[i] - lb[i])) bounds[i] = ub[i] - lb[i] test += 1 end else test += 1 # make sure coverage check passes for the fixed parameters end end nacp = 0 # set back to zero # check if we cover parameter space, if we have yet to do so if !coverage_ok coverage_ok = (test == n) end end # intermediate output, if desired if verbosity > 1 println(hline) println("samin: intermediate results before next temperature change") println("temperature: ", round(t, digits=5)) println("current best function value: ", round(fopt, digits=5)) println("total evaluations so far: ", f_calls(d)) println("total moves since last temperature reduction: ", nup + ndown + nrej) println("downhill: ", nup) println("accepted uphill: ", ndown) println("rejected uphill: ", nrej) println("out of bounds trials: ", lnobds) println("new minima this temperature: ", nnew) println() println(" parameter search width") for i=1:n @printf("%16.5f %16.5f \n", xopt[i], bounds[i]) end println(hline*"\n") end # Check for convergence, if we have covered the parameter space if coverage_ok # last value close enough to last neps values? fstar[1] = f_old f_absΞ” = abs.(fopt - f_old) # close enough to best so far? if all((abs.(fopt .- fstar)) .< f_tol) # within to for last neps trials? f_converged = true # check for bound narrow enough for parameter convergence if any(bounds .> x_tol) x_converged = false converge = 0 # no conv. if bounds too wide break else converge = 1 x_converged = true x_absΞ” = maximum(bounds) end else f_converged = false end # check if optimal point is near boundary of parameter space, and change message if so if (converge == 1) && (lnobds > 0) converge = 2 end # Like to see the final results? if (converge > 0) if verbose println(hline) println("SAMIN results") if (converge == 1) println("==> Normal convergence <==") end if (converge == 2) printstyled("==> WARNING <==\n", color=:red) println("Last point satisfies convergence criteria, but is near") println("boundary of parameter space.") println(lnobds, " out of ", (nup+ndown+nrej), " evaluations were out of bounds in the last round.") println("Expand bounds and re-run, unless this is a constrained minimization.") end println("total number of objective function evaluations: ", f_calls(d)) @printf("\n Obj. value: %16.10f\n\n", fopt) println(" parameter search width") for i=1:n @printf("%16.5f %16.5f \n", xopt[i], bounds[i]) end println(hline*"\n") end end # Reduce temperature, record current function value in the # list of last "neps" values, and loop again t *= rt pushfirst!(fstar, f_old) fstar = fstar[1:end-1] f_old = copy(fopt) x = copy(xopt) else # coverage not ok - increase temperature quickly to expand search area t *= 10.0 for i = neps:-1:2 fstar[i] = fstar[i-1] end f_old = fopt x = xopt end end return MultivariateOptimizationResults(method, x0,# initial_x, xopt, #pick_best_x(f_incr_pick, state), fopt, # pick_best_f(f_incr_pick, state, d), f_calls(d), #iteration, f_calls(d) >= options.iterations, #iteration == options.iterations, x_converged, # x_converged, x_tol,#T(options.x_tol), 0.0,#T(options.x_tol), x_absΞ” ,# x_abschange(state), NaN,# x_relchange(state), f_converged, # f_converged, f_tol,#T(options.f_tol), 0.0,#T(options.f_tol), f_absΞ” ,#f_abschange(d, state), NaN,#f_relchange(d, state), false,#g_converged, 0.0,#T(options.g_tol), NaN,#g_residual(d), false, #f_increased, tr, f_calls(d), g_calls(d), h_calls(d), true, options.time_limit, _time-t0, NamedTuple()) end # TODO # Handle traces # * details: a px3 matrix. p is the number of times improvements were found. # The columns record information at the time an improvement was found # * first: cumulative number of function evaluations # * second: temperature # * third: function value # # Add doc entry
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
36219
# TODO: when Optim supports sparse arrays, make a SparseMatrixCSC version of jacobianx abstract type AbstractBarrierState end # These are used not only for the current state, but also for the step and the gradient struct BarrierStateVars{T} slack_x::Vector{T} # values of slack variables for x slack_c::Vector{T} # values of slack variables for c Ξ»x::Vector{T} # Ξ» for equality constraints on slack_x Ξ»c::Vector{T} # Ξ» for equality constraints on slack_c Ξ»xE::Vector{T} # Ξ» for equality constraints on x Ξ»cE::Vector{T} # Ξ» for linear/nonlinear equality constraints end # Note on Ξ»xE: # We could just set equality-constrained variables to their # constraint values at the beginning of optimization, but this # might make the initial guess infeasible in terms of its # inequality constraints. This would be a much bigger problem than # not matching the equality constraints. So we allow them to # differ, and require that the algorithm can cope with it. function BarrierStateVars{T}(bounds::ConstraintBounds) where T slack_x = Array{T}(undef, length(bounds.ineqx)) slack_c = Array{T}(undef, length(bounds.ineqc)) Ξ»x = similar(slack_x) Ξ»c = similar(slack_c) Ξ»xE = Array{T}(undef, length(bounds.eqx)) Ξ»cE = Array{T}(undef, length(bounds.eqc)) sv = BarrierStateVars{T}(slack_x, slack_c, Ξ»x, Ξ»c, Ξ»xE, Ξ»cE) end BarrierStateVars(bounds::ConstraintBounds{T}) where T = BarrierStateVars{T}(bounds) function BarrierStateVars(bounds::ConstraintBounds{T}, x) where T sv = BarrierStateVars(bounds) setslack!(sv.slack_x, x, bounds.ineqx, bounds.Οƒx, bounds.bx) sv end function BarrierStateVars(bounds::ConstraintBounds{T}, x, c) where T sv = BarrierStateVars(bounds) setslack!(sv.slack_x, x, bounds.ineqx, bounds.Οƒx, bounds.bx) setslack!(sv.slack_c, c, bounds.ineqc, bounds.Οƒc, bounds.bc) sv end function setslack!(slack, v, ineq, Οƒ, b) for i = 1:length(ineq) dv = v[ineq[i]]-b[i] slack[i] = abs(Οƒ[i]*dv) end slack end slack(bstate::BarrierStateVars) = [bstate.slack_x; bstate.slack_c] lambdaI(bstate::BarrierStateVars) = [bstate.Ξ»x; bstate.Ξ»c] lambdaE(bstate::BarrierStateVars) = [bstate.Ξ»xE; bstate.Ξ»cE] # TODO: Not used by IPNewton? lambdaI(state::AbstractBarrierState) = lambdaI(state.bstate) lambdaE(state::AbstractBarrierState) = lambdaE(state.bstate) # TODO: Not used by IPNewton? Base.similar(bstate::BarrierStateVars) = BarrierStateVars(similar(bstate.slack_x), similar(bstate.slack_c), similar(bstate.Ξ»x), similar(bstate.Ξ»c), similar(bstate.Ξ»xE), similar(bstate.Ξ»cE)) Base.copy(bstate::BarrierStateVars) = BarrierStateVars(copy(bstate.slack_x), copy(bstate.slack_c), copy(bstate.Ξ»x), copy(bstate.Ξ»c), copy(bstate.Ξ»xE), copy(bstate.Ξ»cE)) function Base.fill!(b::BarrierStateVars, val) fill!(b.slack_x, val) fill!(b.slack_c, val) fill!(b.Ξ»x, val) fill!(b.Ξ»c, val) fill!(b.Ξ»xE, val) fill!(b.Ξ»cE, val) b end Base.convert(::Type{BarrierStateVars{T}}, bstate::BarrierStateVars) where T = BarrierStateVars(convert(Array{T}, bstate.slack_x), convert(Array{T}, bstate.slack_c), convert(Array{T}, bstate.Ξ»x), convert(Array{T}, bstate.Ξ»c), convert(Array{T}, bstate.Ξ»xE), convert(Array{T}, bstate.Ξ»cE)) Base.isempty(bstate::BarrierStateVars) = isempty(bstate.slack_x) & isempty(bstate.slack_c) & isempty(bstate.Ξ»xE) & isempty(bstate.Ξ»cE) Base.eltype(::Type{BarrierStateVars{T}}) where T = T Base.eltype(sv::BarrierStateVars) = eltype(typeof(sv)) function Base.show(io::IO, b::BarrierStateVars) print(io, "BarrierStateVars{$(eltype(b))}:") for fn in (:slack_x, :slack_c, :Ξ»x, :Ξ»c, :Ξ»xE, :Ξ»cE) print(io, "\n $fn: ") show(io, getfield(b, fn)) end end Base.:(==)(v::BarrierStateVars, w::BarrierStateVars) = v.slack_x == w.slack_x && v.slack_c == w.slack_c && v.Ξ»x == w.Ξ»x && v.Ξ»c == w.Ξ»c && v.Ξ»xE == w.Ξ»xE && v.Ξ»cE == w.Ξ»cE const bsv_seed = sizeof(UInt) == 64 ? 0x145b788192d1cde3 : 0x766a2810 Base.hash(b::BarrierStateVars, u::UInt) = hash(b.Ξ»cE, hash(b.Ξ»xE, hash(b.Ξ»c, hash(b.Ξ»x, hash(b.slack_c, hash(b.slack_x, u+bsv_seed)))))) function dot(v::BarrierStateVars, w::BarrierStateVars) dot(v.slack_x,w.slack_x) + dot(v.slack_c, w.slack_c) + dot(v.Ξ»x, w.Ξ»x) + dot(v.Ξ»c, w.Ξ»c) + dot(v.Ξ»xE, w.Ξ»xE) + dot(v.Ξ»cE, w.Ξ»cE) end function norm(b::BarrierStateVars, p::Real) norm(b.slack_x, p) + norm(b.slack_c, p) + norm(b.Ξ»x, p) + norm(b.Ξ»c, p) + norm(b.Ξ»xE, p) + norm(b.Ξ»cE, p) end """ BarrierLineSearch{T} Parameters for interior-point line search methods that use only the value """ struct BarrierLineSearch{T} c::Vector{T} # value of constraints-functions at trial point bstate::BarrierStateVars{T} # trial point for slack and Ξ» variables end Base.convert(::Type{BarrierLineSearch{T}}, bsl::BarrierLineSearch) where T = BarrierLineSearch(convert(Vector{T}, bsl.c), convert(BarrierStateVars{T}, bsl.bstate)) """ BarrierLineSearchGrad{T} Parameters for interior-point line search methods that exploit the slope. """ struct BarrierLineSearchGrad{T} c::Vector{T} # value of constraints-functions at trial point J::Matrix{T} # constraints-Jacobian at trial point bstate::BarrierStateVars{T} # trial point for slack and Ξ» variables bgrad::BarrierStateVars{T} # trial point's gradient end Base.convert(::Type{BarrierLineSearchGrad{T}}, bsl::BarrierLineSearchGrad) where T = BarrierLineSearchGrad(convert(Vector{T}, bsl.c), convert(Matrix{T}, bsl.J), convert(BarrierStateVars{T}, bsl.bstate), convert(BarrierStateVars{T}, bsl.bgrad)) function ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, Ξ±s::NTuple{4,Number}) ls_update!(out.slack_x, base.slack_x, step.slack_x, Ξ±s[2]) ls_update!(out.slack_c, base.slack_c, step.slack_c, Ξ±s[2]) ls_update!(out.Ξ»x, base.Ξ»x, step.Ξ»x, Ξ±s[3]) ls_update!(out.Ξ»c, base.Ξ»c, step.Ξ»c, Ξ±s[3]) ls_update!(out.Ξ»xE, base.Ξ»xE, step.Ξ»xE, Ξ±s[4]) ls_update!(out.Ξ»cE, base.Ξ»cE, step.Ξ»cE, Ξ±s[4]) out end ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, Ξ±s::Tuple{Number,Number}) = ls_update!(out, base, step, (Ξ±s[1],Ξ±s[1],Ξ±s[2],Ξ±s[1])) ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, Ξ±::Number) = ls_update!(out, base, step, (Ξ±,Ξ±,Ξ±,Ξ±)) ls_update!(out::BarrierStateVars, base::BarrierStateVars, step::BarrierStateVars, Ξ±s::AbstractVector) = ls_update!(out, base, step, Ξ±s[1]) # (Ξ±s...,)) function initial_convergence(d, state, method::ConstrainedOptimizer, initial_x, options) # TODO: Make sure state.bgrad has been evaluated at initial_x # state.bgrad normally comes from constraints.c!(..., initial_x) in initial_state gradient!(d, initial_x) stopped = !isfinite(value(d)) || any(!isfinite, gradient(d)) norm(gradient(d), Inf) + norm(state.bgrad, Inf) < options.g_abstol, stopped end function optimize(f, g, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, method::ConstrainedOptimizer=IPNewton(), options::Options = Options(;default_options(method)...)) d = TwiceDifferentiable(f, g, initial_x) optimize(d, lower, upper, initial_x, method, options) end function optimize(f, g, h, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, method::ConstrainedOptimizer=IPNewton(), options::Options = Options(;default_options(method)...)) d = TwiceDifferentiable(f, g, h, initial_x) optimize(d, lower, upper, initial_x, method, options) end function optimize(d::TwiceDifferentiable, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, options::Options = Options(;default_options(IPNewton())...)) optimize(d, lower, upper, initial_x, IPNewton(), options) end function optimize(d, lower::AbstractArray, upper::AbstractArray, initial_x::AbstractArray, method::ConstrainedOptimizer, options::Options = Options(;default_options(method)...)) twicediffed = d isa TwiceDifferentiable ? d : TwiceDifferentiable(d, initial_x) bounds = ConstraintBounds(lower, upper, [], []) constraints = TwiceDifferentiableConstraints( (c,x)->nothing, (J,x)->nothing, (H,x,Ξ»)->nothing, bounds) state = initial_state(method, options, twicediffed, constraints, initial_x) optimize(twicediffed, constraints, initial_x, method, options, state) end function optimize(d::AbstractObjective, constraints::AbstractConstraints, initial_x::AbstractArray, method::ConstrainedOptimizer, options::Options = Options(;default_options(method)...), state = initial_state(method, options, d, constraints, initial_x)) #== TODO: Let's try to unify this with the unconstrained `optimize` in Optim The only thing we'd have to deal with is to dispatch the univariate `optimize` to one with empty constraints::AbstractConstraints ==# t0 = time() # Initial time stamp used to control early stopping by options.time_limit _time = t0 tr = OptimizationTrace{typeof(value(d)), typeof(method)}() tracing = options.store_trace || options.show_trace || options.extended_trace || options.callback !== nothing stopped, stopped_by_callback, stopped_by_time_limit = false, false, false f_limit_reached, g_limit_reached, h_limit_reached = false, false, false x_converged, f_converged, f_increased, counter_f_tol = false, false, false, 0 g_converged, stopped = initial_convergence(d, state, method, initial_x, options) converged = g_converged # prepare iteration counter (used to make "initial state" trace entry) iteration = 0 options.show_trace && print_header(method) trace!(tr, d, state, iteration, method, options, t0) while !converged && !stopped && iteration < options.iterations iteration += 1 update_state!(d, constraints, state, method, options) && break # it returns true if it's forced by something in update! to stop (eg dx_dg == 0.0 in BFGS or linesearch errors) update_fg!(d, constraints, state, method) # TODO: Do we need to rethink f_increased for `ConstrainedOptimizer`s? x_converged, f_converged, g_converged, f_increased = assess_convergence(state, d, options) # With equality constraints, optimization is not necessarily # monotonic in the value of the function. If the function # change is approximately canceled by a change in the equality # violation, it's possible to spuriously satisfy the f_tol # criterion. Consequently, we require that the f_tol condition # be satisfied a certain number of times in a row before # declaring convergence. counter_f_tol = f_converged ? counter_f_tol+1 : 0 converged = x_converged || g_converged || (counter_f_tol > options.successive_f_tol) # We don't use the Hessian for anything if we have declared convergence, # so we might as well not make the (expensive) update if converged == true !converged && update_h!(d, constraints, state, method) if tracing # update trace; callbacks can stop routine early by returning true stopped_by_callback = trace!(tr, d, state, iteration, method, options) end # Check time_limit; if none is provided it is NaN and the comparison # will always return false. _time = time() stopped_by_time_limit = _time-t0 > options.time_limit ? true : false f_limit_reached = options.f_calls_limit > 0 && f_calls(d) >= options.f_calls_limit ? true : false g_limit_reached = options.g_calls_limit > 0 && g_calls(d) >= options.g_calls_limit ? true : false h_limit_reached = options.h_calls_limit > 0 && h_calls(d) >= options.h_calls_limit ? true : false if (f_increased && !options.allow_f_increases) || stopped_by_callback || stopped_by_time_limit || f_limit_reached || g_limit_reached || h_limit_reached stopped = true end end # while after_while!(d, constraints, state, method, options) # we can just check minimum, as we've earlier enforced same types/eltypes # in variables besides the option settings T = typeof(options.f_reltol) Tf = typeof(value(d)) f_incr_pick = f_increased && !options.allow_f_increases return MultivariateOptimizationResults(method, initial_x, pick_best_x(f_incr_pick, state), pick_best_f(f_incr_pick, state, d), iteration, iteration == options.iterations, x_converged, T(options.x_abstol), T(options.x_reltol), x_abschange(state), x_relchange(state), f_converged, T(options.f_abstol), T(options.f_reltol), f_abschange(d, state), f_relchange(d, state), g_converged, T(options.g_abstol), g_residual(d), f_increased, tr, f_calls(d), g_calls(d), h_calls(d), nothing, options.time_limit, _time-t0, NamedTuple()) end # Fallbacks (for methods that don't need these) after_while!(d, constraints::AbstractConstraints, state, method, options) = nothing update_h!(d, constraints::AbstractConstraints, state, method) = nothing """ initialize_ΞΌ_Ξ»!(state, bounds, ΞΌ0=:auto, Ξ²=0.01) initialize_ΞΌ_Ξ»!(state, bounds, (Hobj,HcI), ΞΌ0=:auto, Ξ²=0.01) Pick ΞΌ and Ξ» to ensure that the equality constraints are satisfied locally (at the current `state.x`), and that the initial gradient including the barrier would be a descent direction for the problem without the barrier (ΞΌ = 0). This ensures that the search isn't pushed out of the basin of the user-supplied initial guess. Upon entry, the objective function gradient, constraint values, and constraint jacobian must be set in `state.g`, `state.c`, and `state.J` respectively. If you also wish to ensure that the projection of Hessian is minimally-perturbed along the initial gradient, supply the hessian of the objective (`Hobj`) and HcI = βˆ‘_i (Οƒ_i/s_i)βˆ‡βˆ‡ c_{Ii} for the constraints. This can be obtained as HcI = hessianI(state.x, constraints, 1./state.slack_c) You can manually specify `ΞΌ` by supplying a numerical value for `ΞΌ0`. Whether calculated algorithmically or specified manually, the values of `Ξ»` are set using the chosen `ΞΌ`. """ function initialize_ΞΌ_Ξ»!(state, bounds::ConstraintBounds, Hinfo, ΞΌ0::Union{Symbol,Number}, Ξ²::Number=1//100) if nconstraints(bounds) == 0 && nconstraints_x(bounds) == 0 state.ΞΌ = 0 fill!(state.bstate, 0) return state end gf = state.g # must be pre-set to βˆ‡f # Calculate projection of βˆ‡f into the subspace spanned by the # equality constraint Jacobian JE = jacobianE(state, bounds) # QRF = qrfact(JE) # Q = QRF[:Q] # PEg = Q'*(Q*gf) # in the subspace of JE C = JE*JE' Cc = cholesky(Positive, C) Pperpg = gf-JE'*(Cc \ (JE*gf)) # in the nullspace of JE # Set ΞΌ JI = jacobianI(state, bounds) if ΞΌ0 == :auto # Calculate projections of the Lagrangian's gradient, and # possibly hessian, along (βˆ‡f)_βŸ‚ Dperp = dot(Pperpg, Pperpg) Οƒ, s = sigma(bounds), slack(state) Οƒdivs = Οƒ./s Ξ”g = JI'*Οƒdivs PperpΞ”g = Ξ”g - JE'*(Cc \ (JE*Ξ”g)) DI = dot(PperpΞ”g, PperpΞ”g) ΞΊperp, ΞΊI = hessian_projections(Hinfo, Pperpg, (JI*Pperpg)./s) # Calculate ΞΌ and Ξ»I ΞΌ = Ξ² * (ΞΊperp == 0 ? sqrt(Dperp/DI) : min(sqrt(Dperp/DI), abs(ΞΊperp/ΞΊI))) if !isfinite(ΞΌ) Ξ”gtilde = JI'*(1 ./ s) PperpΞ”gtilde = Ξ”gtilde - JE'*(Cc \ (JE*Ξ”gtilde)) DItilde = dot(PperpΞ”gtilde, PperpΞ”gtilde) ΞΌ = Ξ²*sqrt(Dperp/DItilde) end if !isfinite(ΞΌ) || ΞΌ == 0 ΞΌ = one(ΞΌ) end else ΞΌ = convert(eltype(state.x), ΞΌ0) end state.ΞΌ = ΞΌ # Set Ξ»I @. state.bstate.Ξ»x = ΞΌ / state.bstate.slack_x @. state.bstate.Ξ»c = ΞΌ / state.bstate.slack_c # Calculate Ξ»E Ξ»I = lambdaI(state) βˆ‡bI = gf - JI'*Ξ»I # qrregularize!(QRF) # in case of any 0 eigenvalues Ξ»E = Cc \ (JE*βˆ‡bI) + (cbar(bounds) - cE(state, bounds))/ΞΌ k = unpack_vec!(state.bstate.Ξ»xE, Ξ»E, 0) k = unpack_vec!(state.bstate.Ξ»cE, Ξ»E, k) k == length(Ξ»E) || error("Something is wrong when initializing ΞΌ and Ξ».") state end function initialize_ΞΌ_Ξ»!(state, bounds::ConstraintBounds, ΞΌ0::Union{Number,Symbol}, Ξ²::Number=1//100) initialize_ΞΌ_Ξ»!(state, bounds, nothing, ΞΌ0, Ξ²) end function hessian_projections(Hinfo::Tuple{AbstractMatrix,AbstractMatrix}, Pperpg, y) ΞΊperp = dot(Hinfo[1]*Pperpg, Pperpg) ΞΊI = dot(Hinfo[2]*Pperpg, Pperpg) + dot(y,y) ΞΊperp, ΞΊI end hessian_projections(Hinfo::Nothing, Pperpg::AbstractVector{T}) where T = convert(T, Inf), zero(T) function jacobianE(state, bounds::ConstraintBounds) J, x = state.constr_J, state.x JEx = jacobianx(J, bounds.eqx) JEc = view(J, bounds.eqc, :) JE = vcat(JEx, JEc) end jacobianE(state, constraints) = jacobianE(state, constraints.bounds) function jacobianI(state, bounds::ConstraintBounds) J, x = state.constr_J, state.x JIx = jacobianx(J, bounds.ineqx) JIc = view(J, bounds.ineqc, :) JI = vcat(JIx, JIc) end jacobianI(state, constraints) = jacobianI(state, constraints.bounds) # TODO: when Optim supports sparse arrays, make a SparseMatrixCSC version function jacobianx(J::AbstractArray, indx) Jx = zeros(eltype(J), length(indx), size(J, 2)) for (i,j) in enumerate(indx) Jx[i,j] = 1 end Jx end function sigma(bounds::ConstraintBounds) [bounds.Οƒx; bounds.Οƒc] # don't include Οƒz end sigma(constraints) = sigma(constraints.bounds) slack(state) = slack(state.bstate) cbar(bounds::ConstraintBounds) = [bounds.valx; bounds.valc] cbar(constraints) = cbar(constraints.bounds) cE(state, bounds::ConstraintBounds) = [state.x[bounds.eqx]; state.constr_c[bounds.eqc]] function hessianI!(h, x, constraints, Ξ»cI, ΞΌ) Ξ» = userΞ»(Ξ»cI, constraints) constraints.h!(h, x, Ξ») h end """ hessianI(x, constraints, Ξ»cI, ΞΌ) -> h Compute the hessian at `x` of the `Ξ»cI`-weighted sum of user-supplied constraint functions for just the inequalities. This also includes contributions from any variables with bounds at 0, since those do not cause introduction of a slack variable. Other (nonzero) box constraints do not contribute to `h`, because the hessian of `x_i` is zero. (They contribute indirectly via their slack variables.) """ hessianI(x, constraints, Ξ»cI, ΞΌ) = hessianI!(zeros(eltype(x), length(x), length(x)), x, constraints, Ξ»cI, ΞΌ) """ userΞ»(Ξ»cI, bounds) -> Ξ» Accumulates `Ξ»cI` into a vector `Ξ»` ordered as the user-supplied constraint functions `c`. Upper and lower bounds are summed, weighted by `Οƒ`. The resulting Ξ» includes an overall negative sign so that this becomes the coefficient for the user-supplied hessian. This is relevant only for the inequalities. If you want the Ξ» for just the equalities, you can use `Ξ»[bounds.ceq] = Ξ»cE` for a zero-filled `Ξ»`. """ function userΞ»(Ξ»cI, bounds::ConstraintBounds) ineqc, Οƒc = bounds.ineqc, bounds.Οƒc Ξ» = zeros(eltype(bounds), nconstraints(bounds)) for i = 1:length(ineqc) Ξ»[ineqc[i]] -= Ξ»cI[i]*Οƒc[i] end Ξ» end userΞ»(Ξ»cI, constraints) = userΞ»(Ξ»cI, constraints.bounds) ## Computation of the Lagrangian and its gradient # This is in a parametrization that is also useful during linesearch # TODO: `lagrangian` does not seem to be used (IPNewton)? function lagrangian(d, bounds::ConstraintBounds, x, c, bstate::BarrierStateVars, ΞΌ) f_x = NLSolversBase.value!(d, x) ev = equality_violation(bounds, x, c, bstate) L_xsΞ» = f_x + barrier_value(bounds, x, bstate, ΞΌ) + ev f_x, L_xsΞ», ev end function lagrangian_fg!(gx, bgrad, d, bounds::ConstraintBounds, x, c, J, bstate::BarrierStateVars, ΞΌ) fill!(bgrad, 0) f_x, g_x = NLSolversBase.value_gradient!(d,x) gx .= g_x ev = equality_violation(bounds, x, c, bstate) L_xsΞ» = f_x + barrier_value(bounds, x, bstate, ΞΌ) + ev barrier_grad!(bgrad, bounds, x, bstate, ΞΌ) equality_grad!(gx, bgrad, bounds, x, c, J, bstate) f_x, L_xsΞ», ev end # TODO: do we need lagrangian_vec? Maybe for automatic differentiation? ## Computation of Lagrangian and derivatives when passing all parameters as a single vector function lagrangian_vec(p, d, bounds::ConstraintBounds, x, c::AbstractArray, bstate::BarrierStateVars, ΞΌ) unpack_vec!(x, bstate, p) f_x, L_xsΞ», ev = lagrangian(d, bounds, x, c, bstate, ΞΌ) L_xsΞ» end function lagrangian_vec(p, d, bounds::ConstraintBounds, x, c::Function, bstate::BarrierStateVars, ΞΌ) # Use this version when using automatic differentiation unpack_vec!(x, bstate, p) f_x, L_xsΞ», ev = lagrangian(d, bounds, x, c(x), bstate, ΞΌ) L_xsΞ» end function lagrangian_fgvec!(p, storage, gx, bgrad, d, bounds::ConstraintBounds, x, c, J, bstate::BarrierStateVars, ΞΌ) unpack_vec!(x, bstate, p) f_x, L_xsΞ», ev = lagrangian_fg!(gx, bgrad, d, bounds, x, c, J, bstate, ΞΌ) pack_vec!(storage, gx, bgrad) L_xsΞ» end ## for line searches that don't use the gradient along the line function lagrangian_linefunc(Ξ±s, d, constraints, state) _lagrangian_linefunc(Ξ±s, d, constraints, state)[2] end function _lagrangian_linefunc(Ξ±s, d, constraints, state) b_ls, bounds = state.b_ls, constraints.bounds ls_update!(state.x_ls, state.x, state.s, alphax(Ξ±s)) ls_update!(b_ls.bstate, state.bstate, state.bstep, Ξ±s) constraints.c!(b_ls.c, state.x_ls) lagrangian(d, constraints.bounds, state.x_ls, b_ls.c, b_ls.bstate, state.ΞΌ) end alphax(Ξ±::Number) = Ξ± alphax(Ξ±s::Union{Tuple,AbstractVector}) = Ξ±s[1] function lagrangian_linefunc!(Ξ±, d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained)}) # For backtrack_constrained, the last evaluation is the one we # keep, so it's safe to store the results in state state.f_x, state.L, state.ev = _lagrangian_linefunc(Ξ±, d, constraints, state) state.L end lagrangian_linefunc!(Ξ±, d, constraints, state, method) = lagrangian_linefunc(Ξ±, d, constraints, state) ## for line searches that do use the gradient along the line function lagrangian_lineslope(Ξ±s, d, constraints, state) f_x, L, ev, slope = _lagrangian_lineslope(Ξ±s, d, constraints, state) L, slope end function _lagrangian_lineslope(Ξ±s, d, constraints, state) b_ls, bounds = state.b_ls, constraints.bounds bstep, bgrad = state.bstep, b_ls.bgrad ls_update!(state.x_ls, state.x, state.s, alphax(Ξ±s)) ls_update!(b_ls.bstate, state.bstate, bstep, Ξ±s) constraints.c!(b_ls.c, state.x_ls) constraints.jacobian!(b_ls.J, state.x_ls) f_x, L, ev = lagrangian_fg!(state.g, bgrad, d, bounds, state.x_ls, b_ls.c, b_ls.J, b_ls.bstate, state.ΞΌ) slopeΞ± = slopealpha(state.s, state.g, bstep, bgrad) f_x, L, ev, slopeΞ± end function lagrangian_lineslope!(Ξ±s, d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained_grad)}) # For backtrack_constrained, the last evaluation is the one we # keep, so it's safe to store the results in state state.f_x, state.L, state.ev, slope = _lagrangian_lineslope(Ξ±s, d, constraints, state) state.L, slope end lagrangian_lineslope!(Ξ±s, d, constraints, state, method) = lagrangian_lineslope(Ξ±s, d, constraints, state) slopealpha(sx, gx, bstep, bgrad) = dot(sx, gx) + dot(bstep.slack_x, bgrad.slack_x) + dot(bstep.slack_c, bgrad.slack_c) + dot(bstep.Ξ»x, bgrad.Ξ»x) + dot(bstep.Ξ»c, bgrad.Ξ»c) + dot(bstep.Ξ»xE, bgrad.Ξ»xE) + dot(bstep.Ξ»cE, bgrad.Ξ»cE) function linesearch_anon(d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained_grad)}) Ξ±s->lagrangian_lineslope!(Ξ±s, d, constraints, state, method) end function linesearch_anon(d, constraints, state, method::IPOptimizer{typeof(backtrack_constrained)}) Ξ±s->lagrangian_linefunc!(Ξ±s, d, constraints, state, method) end ## Computation of Lagrangian terms: barrier penalty """ barrier_value(constraints, state) -> val barrier_value(bounds, x, sx, sc, ΞΌ) -> val Compute the value of the barrier penalty at the current `state`, or at a position (`x`,`sx`,`sc`), where `x` is the current position, `sx` are the coordinate slack variables, and `sc` are the linear/nonlinear slack variables. `bounds` holds the parsed bounds. """ function barrier_value(bounds::ConstraintBounds, x, sx, sc, ΞΌ) # bΞΌ is the coefficient of ΞΌ in the barrier penalty bΞΌ = _bv(sx) + # coords with other bounds _bv(sc) # linear/nonlinear constr. ΞΌ*bΞΌ end barrier_value(bounds::ConstraintBounds, x, bstate::BarrierStateVars, ΞΌ) = barrier_value(bounds, x, bstate.slack_x, bstate.slack_c, ΞΌ) barrier_value(bounds::ConstraintBounds, state) = barrier_value(bounds, state.x, state.bstate.slack_x, state.bstate.slack_c, state.ΞΌ) barrier_value(constraints::AbstractConstraints, state) = barrier_value(constraints.bounds, state) # don'tcall this barrier_value because it lacks ΞΌ function _bv(v, idx, Οƒ) # TODO: Not used, delete? (IPNewton) ret = loginf(one(eltype(Οƒ))*one(eltype(v))) for (i,iv) in enumerate(idx) ret += loginf(Οƒ[i]*v[iv]) end -ret end _bv(v) = isempty(v) ? loginf(one(eltype(v))) : -sum(loginf, v) loginf(Ξ΄) = Ξ΄ > 0 ? log(Ξ΄) : -oftype(Ξ΄, Inf) """ barrier_grad!(bgrad, bounds, x, bstate, ΞΌ) barrier_grad!(gsx, gsc, bounds, x, sx, sc, ΞΌ) Compute the gradient of the barrier penalty at (`x`,`sx`,`sc`), where `x` is the current position, `sx` are the coordinate slack variables, and `sc` are the linear/nonlinear slack variables. `bounds::ConstraintBounds` holds the parsed bounds. The result is *added* to `gsx`, and `gsc`, so these vectors need to be initialized appropriately. """ function barrier_grad!(gsx, gsc, bounds::ConstraintBounds, x, sx, sc, ΞΌ) barrier_grad!(gsx, sx, ΞΌ) barrier_grad!(gsc, sc, ΞΌ) nothing end barrier_grad!(bgrad, bounds::ConstraintBounds, x, bstate, ΞΌ) = barrier_grad!(bgrad.slack_x, bgrad.slack_c, bounds, x, bstate.slack_x, bstate.slack_c, ΞΌ) function barrier_grad!(out, v, ΞΌ) for i = 1:length(out) out[i] -= ΞΌ/v[i] end nothing end ## Computation of Lagrangian terms: equality constraints penalty """ equality_violation([f=identity], bounds, x, c, bstate) -> val equality_violation([f=identity], bounds, x, c, sx, sc, Ξ»x, Ξ»c, Ξ»xE, Ξ»cE) -> val Compute the sum of `f(v_i)`, where `v_i = Ξ»_i*(target - observed)` measures the difference between the current state and the equality-constrained state. `bounds::ConstraintBounds` holds the parsed bounds. `x` is the current position, `sx` are the coordinate slack variables, and `sc` are the linear/nonlinear slack variables. `c` holds the values of the linear-nonlinear constraints, and the Ξ» arguments hold the Lagrange multipliers for `x`, `sx`, `sc`, and `c` respectively. """ function equality_violation(f, bounds::ConstraintBounds, x, c, sx, sc, Ξ»x, Ξ»c, Ξ»xE, Ξ»cE) ev = equality_violation(f, sx, x, bounds.ineqx, bounds.Οƒx, bounds.bx, Ξ»x) + equality_violation(f, sc, c, bounds.ineqc, bounds.Οƒc, bounds.bc, Ξ»c) + equality_violation(f, x, bounds.valx, bounds.eqx, Ξ»xE) + equality_violation(f, c, bounds.valc, bounds.eqc, Ξ»cE) end equality_violation(bounds::ConstraintBounds, x, c, sx, sc, Ξ»x, Ξ»c, Ξ»xE, Ξ»cE) = equality_violation(identity, bounds, x, c, sx, sc, Ξ»x, Ξ»c, Ξ»xE, Ξ»cE) function equality_violation(f, bounds::ConstraintBounds, x, c, bstate::BarrierStateVars) equality_violation(f, bounds, x, c, bstate.slack_x, bstate.slack_c, bstate.Ξ»x, bstate.Ξ»c, bstate.Ξ»xE, bstate.Ξ»cE) end equality_violation(bounds::ConstraintBounds, x, c, bstate::BarrierStateVars) = equality_violation(identity, bounds, x, c, bstate) equality_violation(f, bounds::ConstraintBounds, state::AbstractBarrierState) = equality_violation(f, bounds, state.x, state.constr_c, state.bstate) equality_violation(bounds::ConstraintBounds, state::AbstractBarrierState) = equality_violation(identity, bounds, state) equality_violation(f, constraints::AbstractConstraints, state::AbstractBarrierState) = equality_violation(f, constraints.bounds, state) equality_violation(constraints::AbstractConstraints, state::AbstractBarrierState) = equality_violation(constraints.bounds, state) # violations of s = Οƒ*(v-b) function equality_violation(f, s, v, ineq, Οƒ, b, Ξ») ret = f(zero(eltype(Ξ»))*(zero(eltype(s))-zero(eltype(Οƒ))*(zero(eltype(v))-zero(eltype(b))))) for (i,iv) in enumerate(ineq) ret += f(Ξ»[i]*(s[i] - Οƒ[i]*(v[iv]-b[i]))) end ret end # violations of v = target function equality_violation(f, v, target, idx, Ξ») ret = f(zero(eltype(Ξ»))*(zero(eltype(v))-zero(eltype(target)))) for (i,iv) in enumerate(idx) ret += f(Ξ»[i]*(target[i] - v[iv])) end ret end """ equality_grad!(gx, gbstate, bounds, x, c, J, bstate) Compute the gradient of `equality_violation`, storing the result in `gx` (an array) and `gbstate::BarrierStateVars`. """ function equality_grad!(gx, gsx, gsc, gΞ»x, gΞ»c, gΞ»xE, gΞ»cE, bounds::ConstraintBounds, x, c, J, sx, sc, Ξ»x, Ξ»c, Ξ»xE, Ξ»cE) equality_grad_var!(gsx, gx, bounds.ineqx, bounds.Οƒx, Ξ»x) equality_grad_var!(gsc, gx, bounds.ineqc, bounds.Οƒc, Ξ»c, J) gx[bounds.eqx] .= gx[bounds.eqx] .- Ξ»xE equality_grad_var!(gx, bounds.eqc, Ξ»cE, J) equality_grad_Ξ»!(gΞ»x, sx, x, bounds.ineqx, bounds.Οƒx, bounds.bx) equality_grad_Ξ»!(gΞ»c, sc, c, bounds.ineqc, bounds.Οƒc, bounds.bc) equality_grad_Ξ»!(gΞ»xE, x, bounds.valx, bounds.eqx) equality_grad_Ξ»!(gΞ»cE, c, bounds.valc, bounds.eqc) end equality_grad!(gx, gb::BarrierStateVars, bounds::ConstraintBounds, x, c, J, b::BarrierStateVars) = equality_grad!(gx, gb.slack_x, gb.slack_c, gb.Ξ»x, gb.Ξ»c, gb.Ξ»xE, gb.Ξ»cE, bounds, x, c, J, b.slack_x, b.slack_c, b.Ξ»x, b.Ξ»c, b.Ξ»xE, b.Ξ»cE) # violations of s = Οƒ*(x-b) function equality_grad_var!(gs, gx, ineq, Οƒ, Ξ») for (i,ix) in enumerate(ineq) Ξ»i = Ξ»[i] gs[i] += Ξ»i gx[ix] -= Ξ»i*Οƒ[i] end nothing end function equality_grad_var!(gs, gx, ineq, Οƒ, Ξ», J) @. gs = gs + Ξ» if !isempty(ineq) gx .= gx .- view(J, ineq, :)'*(Ξ».*Οƒ) end nothing end function equality_grad_Ξ»!(gΞ», s, v, ineq, Οƒ, b) for (i,iv) in enumerate(ineq) gΞ»[i] += s[i] - Οƒ[i]*(v[iv]-b[i]) end nothing end # violations of v = target function equality_grad_var!(gx, idx, Ξ», J) if !isempty(idx) gx .= gx .- view(J, idx, :)'*Ξ» end nothing end function equality_grad_Ξ»!(gΞ», v, target, idx) for (i,iv) in enumerate(idx) gΞ»[i] += target[i] - v[iv] end nothing end """ isfeasible(constraints, state) -> Bool isfeasible(constraints, x, c) -> Bool isfeasible(constraints, x) -> Bool isfeasible(bounds, x, c) -> Bool Return `true` if point `x` is feasible, given the `constraints` which specify bounds `lx`, `ux`, `lc`, and `uc`. `x` is feasible if lx[i] <= x[i] <= ux[i] lc[i] <= c[i] <= uc[i] for all possible `i`. """ function isfeasible(bounds::ConstraintBounds, x, c) isf = true for (i,j) in enumerate(bounds.eqx) isf &= x[j] == bounds.valx[i] end for (i,j) in enumerate(bounds.ineqx) isf &= bounds.Οƒx[i]*(x[j] - bounds.bx[i]) >= 0 end for (i,j) in enumerate(bounds.eqc) isf &= c[j] == bounds.valc[i] end for (i,j) in enumerate(bounds.ineqc) isf &= bounds.Οƒc[i]*(c[j] - bounds.bc[i]) >= 0 end isf end isfeasible(constraints, state::AbstractBarrierState) = isfeasible(constraints, state.x, state.constraints_c) function isfeasible(constraints, x) # don't assume c! returns c (which means this is a little more awkward) c = Array{eltype(x)}(undef, constraints.bounds.nc) constraints.c!(c, x) isfeasible(constraints, x, c) end isfeasible(constraints::AbstractConstraints, x, c) = isfeasible(constraints.bounds, x, c) isfeasible(constraints::Nothing, state::AbstractBarrierState) = true isfeasible(constraints::Nothing, x) = true """ isinterior(constraints, state) -> Bool isinterior(constraints, x, c) -> Bool isinterior(constraints, x) -> Bool isinterior(bounds, x, c) -> Bool Return `true` if point `x` is on the interior of the allowed region, given the `constraints` which specify bounds `lx`, `ux`, `lc`, and `uc`. `x` is in the interior if lx[i] < x[i] < ux[i] lc[i] < c[i] < uc[i] for all possible `i`. """ function isinterior(bounds::ConstraintBounds, x, c) isi = true for (i,j) in enumerate(bounds.ineqx) isi &= bounds.Οƒx[i]*(x[j] - bounds.bx[i]) > 0 end for (i,j) in enumerate(bounds.ineqc) isi &= bounds.Οƒc[i]*(c[j] - bounds.bc[i]) > 0 end isi end isinterior(constraints, state::AbstractBarrierState) = isinterior(constraints, state.x, state.constraints_c) function isinterior(constraints, x) c = Array{eltype(x)}(undef, constraints.bounds.nc) constraints.c!(c, x) isinterior(constraints, x, c) end isinterior(constraints::AbstractConstraints, x, c) = isinterior(constraints.bounds, x, c) isinterior(constraints::Nothing, state::AbstractBarrierState) = true isinterior(constraints::Nothing, x) = true ## Utilities for representing total state as single vector # TODO: Most of these seem to be unused (IPNewton)? function pack_vec(x, b::BarrierStateVars) n = length(x) for fn in fieldnames(b) n += length(getfield(b, fn)) end vec = Array{eltype(x)}(undef, n) pack_vec!(vec, x, b) end function pack_vec!(vec, x, b::BarrierStateVars) k = pack_vec!(vec, x, 0) for fn in fieldnames(b) k = pack_vec!(vec, getfield(b, fn), k) end k == length(vec) || throw(DimensionMismatch("vec should have length $k, got $(length(vec))")) vec end function pack_vec!(vec, x, k::Int) for i = 1:length(x) vec[k+=1] = x[i] end k end function unpack_vec!(x, b::BarrierStateVars, vec::Vector) k = unpack_vec!(x, vec, 0) for fn in fieldnames(b) k = unpack_vec!(getfield(b, fn), vec, k) end k == length(vec) || throw(DimensionMismatch("vec should have length $k, got $(length(vec))")) x, b end function unpack_vec!(x, vec::Vector, k::Int) for i = 1:length(x) x[i] = vec[k+=1] end k end ## More utilities function estimate_maxstep(Ξ±max, x, s) for i = 1:length(s) si = s[i] if si < 0 Ξ±max = min(Ξ±max, -x[i]/si) end end Ξ±max end # TODO: This is not used anymore?? function qrregularize!(QRF) R = QRF[:R] for i = 1:size(R, 1) if R[i,i] == 0 R[i,i] = 1 end end QRF end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2634
function backtrack_constrained(Ο•, Ξ±::Real, Ξ±max::Real, Ξ±Imax::Real, LcoefsΞ±::Tuple{<:Real,<:Real,<:Real}, c1::Real = 0.5, ρ::Real=oftype(Ξ±, 0.5), Ξ±minfrac::Real = sqrt(eps(one(Ξ±))); show_linesearch::Bool=false) # TODO: Specify that all elements should be of the same type T <: Real? # TODO: What does Ξ±I do?? Ξ±, Ξ±I = min(Ξ±, 0.999*Ξ±max), min(Ξ±, 0.999*Ξ±Imax) Ξ±min = Ξ±minfrac * Ξ± L0, L1, L2 = LcoefsΞ± if show_linesearch println("L0 = $L0, L1 = $L1, L2 = $L2") end while Ξ± >= Ξ±min val = Ο•((Ξ±, Ξ±I)) Ξ΄ = evalgrad(L1, Ξ±, Ξ±I) if show_linesearch println("Ξ± = $Ξ±, Ξ±I = $Ξ±I, value: ($L0, $val, $(L0+Ξ΄))") end if isfinite(val) && val - (L0 + Ξ΄) <= c1*abs(val-L0) return Ξ±, Ξ±I end Ξ± *= ρ Ξ±I *= ρ end Ο•((zero(Ξ±), zero(Ξ±I))) # to ensure that state gets set appropriately return zero(Ξ±), zero(Ξ±I) end function backtrack_constrained_grad(Ο•, Ξ±::Real, Ξ±max::Real, LcoefsΞ±::Tuple{<:Real,<:Real,<:Real}, c1::Real = 0.9, c2::Real = 0.9, ρ::Real=oftype(Ξ±, 0.5), Ξ±minfrac::Real = sqrt(eps(one(Ξ±))); show_linesearch::Bool=false) # TODO: Specify that all elements should be of the same type T <: Real? # TODO: Should c1 be 0.9 or 0.5 default? # TODO: Should ρ be 0.9 or 0.5 default? Ξ± = min(Ξ±, 0.999*Ξ±max) Ξ±min = Ξ±minfrac * Ξ± L0, L1, L2 = LcoefsΞ± if show_linesearch println("L0 = $L0, L1 = $L1, L2 = $L2") end while Ξ± >= Ξ±min val, slopeΞ± = Ο•(Ξ±) Ξ΄val = L1*Ξ± Ξ΄slope = L2*Ξ± if show_linesearch println("Ξ± = $Ξ±, value: ($L0, $val, $(L0+Ξ΄val)), slope: ($L1, $slopeΞ±, $(L1+Ξ΄slope))") end if isfinite(val) && val - (L0 + Ξ΄val) <= c1*abs(val-L0) && (slopeΞ± < c2*abs(L1) || slopeΞ± - (L1 + Ξ΄slope) .<= c2*abs.(slopeΞ±-L1)) return Ξ± end Ξ± *= ρ end Ο•(zero(Ξ±)) # to ensure that state gets set appropriately return zero(Ξ±) end # Evaluate for a step parametrized as [Ξ±, Ξ±, Ξ±I, Ξ±] function evalgrad(slopeΞ±, Ξ±, Ξ±I) Ξ±*(slopeΞ±[1] + slopeΞ±[2] + slopeΞ±[4]) + Ξ±I*slopeΞ±[3] end # TODO: Never used anywhere? Intended for a linesearch that depends on Ο•''? function mulhess(HΞ±, Ξ±, Ξ±I) Ξ±v = [Ξ±, Ξ±, Ξ±I, Ξ±] HΞ±*Ξ±v end # TODO: Never used anywhere? Intended for a linesearch that depends on Ο•''? function evalhess(HΞ±, Ξ±, Ξ±I) Ξ±v = [Ξ±, Ξ±, Ξ±I, Ξ±] dot(Ξ±v, HΞ±*Ξ±v) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
17606
struct IPNewton{F,TΞΌ<:Union{Symbol,Number}} <: IPOptimizer{F} linesearch!::F ΞΌ0::TΞΌ # Initial value for the barrier penalty coefficient ΞΌ show_linesearch::Bool # TODO: ΞΌ0, and show_linesearch were originally in options end Base.summary(::IPNewton) = "Interior Point Newton" promote_objtype(method::IPNewton, x, autodiff::Symbol, inplace::Bool, f::TwiceDifferentiable) = f promote_objtype(method::IPNewton, x, autodiff::Symbol, inplace::Bool, f) = TwiceDifferentiable(f, x, real(zero(eltype(x))); autodiff = autodiff) promote_objtype(method::IPNewton, x, autodiff::Symbol, inplace::Bool, f, g) = TwiceDifferentiable(f, g, x, real(zero(eltype(x))); inplace = inplace, autodiff = autodiff) promote_objtype(method::IPNewton, x, autodiff::Symbol, inplace::Bool, f, g, h) = TwiceDifferentiable(f, g, h, x, real(zero(eltype(x))); inplace = inplace) # TODO: Add support for InitialGuess from LineSearches """ # Interior-point Newton ## Constructor ```jl IPNewton(; linesearch::Function = Optim.backtrack_constrained_grad, ΞΌ0::Union{Symbol,Number} = :auto, show_linesearch::Bool = false) ``` The initial barrier penalty coefficient `ΞΌ0` can be chosen as a number, or set to `:auto` to let the algorithm decide its value, see `initialize_ΞΌ_Ξ»!`. *Note*: For constrained optimization problems, we recommend always enabling `allow_f_increases` and `successive_f_tol` in the options passed to `optimize`. The default is set to `Optim.Options(allow_f_increases = true, successive_f_tol = 2)`. As of February 2018, the line search algorithm is specialised for constrained interior-point methods. In future we hope to support more algorithms from `LineSearches.jl`. ## Description The `IPNewton` method implements an interior-point primal-dual Newton algorithm for solving nonlinear, constrained optimization problems. See Nocedal and Wright (Ch. 19, 2006) for a discussion of interior-point methods for constrained optimization. ## References The algorithm was [originally written by Tim Holy](https://github.com/JuliaNLSolvers/Optim.jl/pull/303) (@timholy, [email protected]). - J Nocedal, SJ Wright (2006), Numerical optimization, second edition. Springer. - A WΓ€chter, LT Biegler (2006), On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106 (1), 25-57. """ IPNewton(; linesearch::Function = backtrack_constrained_grad, ΞΌ0::Union{Symbol,Number} = :auto, show_linesearch::Bool = false) = IPNewton(linesearch, ΞΌ0, show_linesearch) mutable struct IPNewtonState{T,Tx} <: AbstractBarrierState x::Tx f_x::T x_previous::Tx g::Tx f_x_previous::T H::Matrix{T} # Hessian of the Lagrangian? HP # TODO: remove HP? It's not used Hd::Vector{Int8} # TODO: remove Hd? It's not used s::Tx # step for x # Barrier penalty fields ΞΌ::T # coefficient of the barrier penalty ΞΌnext::T # ΞΌ for the next iteration L::T # value of the Lagrangian (objective + barrier + equality) L_previous::T bstate::BarrierStateVars{T} # value of slack and Ξ» variables (current "position") bgrad::BarrierStateVars{T} # gradient of slack and Ξ» variables at current "position" bstep::BarrierStateVars{T} # search direction for slack and Ξ» constr_c::Vector{T} # value of the user-supplied constraints at x constr_J::Matrix{T} # value of the user-supplied Jacobian at x ev::T # equality violation, βˆ‘_i Ξ»_Ei (c*_i - c_i) Optim.@add_linesearch_fields() # x_ls and alpha b_ls::BarrierLineSearchGrad{T} gtilde::Tx Htilde # Positive Cholesky factorization of H from PositiveFactorizations.jl end # TODO: Do we need this convert thing? (It seems to be used with `show(IPNewtonState)`) function Base.convert(::Type{IPNewtonState{T,Tx}}, state::IPNewtonState{S, Sx}) where {T,Tx,S,Sx} IPNewtonState(convert(Tx, state.x), T(state.f_x), convert(Tx, state.x_previous), convert(Tx, state.g), T(state.f_x_previous), convert(Matrix{T}, state.H), state.HP, state.Hd, convert(Tx, state.s), T(state.ΞΌ), T(state.ΞΌnext), T(state.L), T(state.L_previous), convert(BarrierStateVars{T}, state.bstate), convert(BarrierStateVars{T}, state.bgrad), convert(BarrierStateVars{T}, state.bstep), convert(Vector{T}, state.constr_c), convert(Matrix{T}, state.constr_J), T(state.ev), convert(Tx, state.x_ls), T(state.alpha), convert(BarrierLineSearchGrad{T}, state.b_ls), convert(Tx, state.gtilde), state.Htilde, ) end function initial_state(method::IPNewton, options, d::TwiceDifferentiable, constraints::TwiceDifferentiableConstraints, initial_x::AbstractArray{T}) where T # Check feasibility of the initial state mc = nconstraints(constraints) constr_c = fill(T(NaN), mc) # TODO: When we change to `value!` from NLSolversBase instead of c! # we can also update `initial_convergence` for ConstrainedOptimizer in interior.jl constraints.c!(constr_c, initial_x) if !isinterior(constraints, initial_x, constr_c) @warn("Initial guess is not an interior point") Base.show_backtrace(stderr, backtrace()) println(stderr) end # Allocate fields for the objective function n = length(initial_x) g = similar(initial_x) s = similar(initial_x) f_x_previous = NaN f_x, g_x = value_gradient!(d, initial_x) g .= g_x # needs to be a separate copy of g_x hessian!(d, initial_x) H = collect(T, hessian(d)) Hd = zeros(Int8, n) # More constraints constr_J = fill(T(NaN), mc, n) gtilde = copy(g) constraints.jacobian!(constr_J, initial_x) ΞΌ = T(1) bstate = BarrierStateVars(constraints.bounds, initial_x, constr_c) bgrad = copy(bstate) bstep = copy(bstate) # b_ls = BarrierLineSearch(similar(constr_c), similar(bstate)) b_ls = BarrierLineSearchGrad(copy(constr_c), copy(constr_J), copy(bstate), copy(bstate)) state = IPNewtonState( copy(initial_x), # Maintain current state in state.x f_x, # Store current f in state.f_x copy(initial_x), # Maintain previous state in state.x_previous g, # Store current gradient in state.g (TODO: includes Lagrangian calculation?) T(NaN), # Store previous f in state.f_x_previous H, 0, # will be replaced Hd, similar(initial_x), # Maintain current x-search direction in state.s ΞΌ, ΞΌ, T(NaN), T(NaN), bstate, bgrad, bstep, constr_c, constr_J, T(NaN), Optim.@initial_linesearch()..., # Maintain a cache for line search results in state.lsr b_ls, gtilde, 0) Hinfo = (state.H, hessianI(initial_x, constraints, 1 ./ bstate.slack_c, 1)) initialize_ΞΌ_Ξ»!(state, constraints.bounds, Hinfo, method.ΞΌ0) update_fg!(d, constraints, state, method) update_h!(d, constraints, state, method) state end function update_fg!(d, constraints::TwiceDifferentiableConstraints, state, method::IPNewton) state.f_x, state.L, state.ev = lagrangian_fg!(state.g, state.bgrad, d, constraints.bounds, state.x, state.constr_c, state.constr_J, state.bstate, state.ΞΌ) update_gtilde!(d, constraints, state, method) end function update_gtilde!(d, constraints::TwiceDifferentiableConstraints, state, method::IPNewton) # Calculate the modified x-gradient for the block-eliminated problem # gtilde is the gradient for the affine-scaling problem, i.e., # with ΞΌ=0, used in the adaptive setting of ΞΌ. Once we calculate ΞΌ we'll correct it gtilde, bstate, bgrad = state.gtilde, state.bstate, state.bgrad bounds = constraints.bounds copyto!(gtilde, state.g) JIc = view(state.constr_J, bounds.ineqc, :) if !isempty(JIc) Hssc = Diagonal(bstate.Ξ»c./bstate.slack_c) # TODO: Can we use broadcasting / dot-notation here and eliminate gc? gc = JIc'*(Diagonal(bounds.Οƒc) * (bstate.Ξ»c - Hssc*bgrad.Ξ»c)) # NOT bgrad.slack_c gtilde .+= gc end for (i,j) in enumerate(bounds.ineqx) gxi = bounds.Οƒx[i]*(bstate.Ξ»x[i] - bgrad.Ξ»x[i]*bstate.Ξ»x[i]/bstate.slack_x[i]) gtilde[j] += gxi end state end function update_h!(d, constraints::TwiceDifferentiableConstraints, state, method::IPNewton) x, ΞΌ, Hxx, J = state.x, state.ΞΌ, state.H, state.constr_J bstate, bgrad, bounds = state.bstate, state.bgrad, constraints.bounds m, n = size(J, 1), size(J, 2) hessian!(d, state.x) # objective's Hessian copyto!(Hxx, hessian(d)) # objective's Hessian # accumulate the constraint second derivatives Ξ» = userΞ»(bstate.Ξ»c, constraints) Ξ»[bounds.eqc] = -bstate.Ξ»cE # the negative sign is from the Hessian # Important! We are assuming that constraints.h! adds the hessian of the # non-objective Lagrangian terms to the existing objective Hessian Hxx. # This follows the approach by the CUTEst interface constraints.h!(Hxx, x, Ξ») # Add the Jacobian terms (JI'*Hss*JI) JIc = view(J, bounds.ineqc, :) Hssc = Diagonal(bstate.Ξ»c./bstate.slack_c) HJ = JIc'*Hssc*JIc for j = 1:n, i = 1:n Hxx[i,j] += HJ[i,j] end # Add the variable inequalities portions of J'*Hssx*J for (i,j) in enumerate(bounds.ineqx) Hxx[j,j] += bstate.Ξ»x[i]/bstate.slack_x[i] end state.Htilde = cholesky(Positive, Hxx, Val{true}) state end function update_state!(d, constraints::TwiceDifferentiableConstraints, state::IPNewtonState{T}, method::IPNewton, options) where T state.f_x_previous, state.L_previous = state.f_x, state.L bstate, bstep, bounds = state.bstate, state.bstep, constraints.bounds qp = solve_step!(state, constraints, options, method.show_linesearch) # If a step Ξ±=1 will not change any of the parameters, we can quit now. # This prevents a futile linesearch. if is_smaller_eps(state.x, state.s) && is_smaller_eps(bstate.slack_x, bstep.slack_x) && is_smaller_eps(bstate.slack_c, bstep.slack_c) && is_smaller_eps(bstate.Ξ»x, bstep.Ξ»x) && is_smaller_eps(bstate.Ξ»c, bstep.Ξ»c) return false end # Estimate Ξ±max, the upper bound on distance of movement along the search line Ξ±max = convert(eltype(bstate), Inf) Ξ±max = estimate_maxstep(Ξ±max, bstate.slack_x, bstep.slack_x) Ξ±max = estimate_maxstep(Ξ±max, bstate.slack_c, bstep.slack_c) Ξ±max = estimate_maxstep(Ξ±max, bstate.Ξ»x, bstep.Ξ»x) Ξ±max = estimate_maxstep(Ξ±max, bstate.Ξ»c, bstep.Ξ»c) # Determine the actual distance of movement along the search line Ο• = linesearch_anon(d, constraints, state, method) # TODO: This only works for method.linesearch = backtracking_constrained_grad # TODO: How are we meant to implement backtracking_constrained?. # It requires both an alpha and an alphaI (Ξ±max and Ξ±Imax) ... state.alpha = method.linesearch!(Ο•, T(1), Ξ±max, qp; show_linesearch=method.show_linesearch) # Maintain a record of previous position copyto!(state.x_previous, state.x) # Update current position # x = x + alpha * s ls_update!(state.x, state.x, state.s, state.alpha) ls_update!(bstate, bstate, bstep, state.alpha) # Ensure that the primal-dual approach does not deviate too much from primal # (See Waechter & Biegler 2006, eq. 16) ΞΌ = state.ΞΌ for i = 1:length(bstate.slack_x) p = ΞΌ / bstate.slack_x[i] bstate.Ξ»x[i] = max(min(bstate.Ξ»x[i], 1e10*p), 1e-10*p) end for i = 1:length(bstate.slack_c) p = ΞΌ / bstate.slack_c[i] bstate.Ξ»c[i] = max(min(bstate.Ξ»c[i], 1e10*p), 1e-10*p) end state.ΞΌ = state.ΞΌnext # Evaluate the constraints at the new position constraints.c!(state.constr_c, state.x) constraints.jacobian!(state.constr_J, state.x) state.ev == equality_violation(constraints, state) false end function solve_step!(state::IPNewtonState, constraints, options, show_linesearch::Bool = false) x, s, ΞΌ, bounds = state.x, state.s, state.ΞΌ, constraints.bounds bstate, bstep, bgrad = state.bstate, state.bstep, state.bgrad J, Htilde = state.constr_J, state.Htilde # Solve the Newton step JE = jacobianE(state, bounds) gE = [bgrad.Ξ»xE; bgrad.Ξ»cE] M = JE*(Htilde \ JE') MF = cholesky(Positive, M, Val{true}) # These are a solution to the affine-scaling problem (with ΞΌ=0) ΔλE0 = MF \ (gE + JE * (Htilde \ state.gtilde)) Ξ”x0 = Htilde \ (JE'*ΔλE0 - state.gtilde) # Check that the solution to the linear equations represents an improvement Hpstepx, HstepΞ»E = Matrix(Htilde)*Ξ”x0 - JE'*ΔλE0, -JE*Ξ”x0 # TODO: don't use full here # TODO: How to handle show_linesearch? # This was originally in options.show_linesearch, but I removed it as none of the other Optim algorithms have it there. # We should move show_linesearch back to options when we refactor # LineSearches to work on the function Ο•(Ξ±) if show_linesearch println("|gx| = $(norm(state.gtilde)), |Hstepx + gx| = $(norm(Hpstepx+state.gtilde))") println("|gE| = $(norm(gE)), |HstepΞ»E + gE| = $(norm(HstepΞ»E+gE))") end if norm(gE) + norm(state.gtilde) < max(norm(HstepΞ»E + gE), norm(Hpstepx + state.gtilde)) # Precision problems gave us a worse solution than the one we started with, abort fill!(s, 0) fill!(bstep, 0) return state end # Set ΞΌ (see the predictor strategy in Nodecal & Wright, 2nd ed., section 19.3) solve_slack!(bstep, Ξ”x0, bounds, bstate, bgrad, J, zero(state.ΞΌ)) # store temporarily in bstep Ξ±s = convert(eltype(bstate), 1.0) Ξ±s = estimate_maxstep(Ξ±s, bstate.slack_x, bstep.slack_x) Ξ±s = estimate_maxstep(Ξ±s, bstate.slack_c, bstep.slack_c) Ξ±Ξ» = convert(eltype(bstate), 1.0) Ξ±Ξ» = estimate_maxstep(Ξ±Ξ», bstate.Ξ»x, bstep.Ξ»x) Ξ±Ξ» = estimate_maxstep(Ξ±Ξ», bstate.Ξ»c, bstep.Ξ»c) m = max(1, length(bstate.slack_x) + length(bstate.slack_c)) ΞΌaff = (dot(bstate.slack_x + Ξ±s*bstep.slack_x, bstate.Ξ»x + Ξ±Ξ»*bstep.Ξ»x) + dot(bstate.slack_c + Ξ±s*bstep.slack_c, bstate.Ξ»c + Ξ±Ξ»*bstep.Ξ»c))/m ΞΌmean = (dot(bstate.slack_x, bstate.Ξ»x) + dot(bstate.slack_c, bstate.Ξ»c))/m # When there's only one constraint, ΞΌaff can be exactly zero. So limit the decrease. state.ΞΌnext = NaNMath.max((ΞΌaff/ΞΌmean)^3 * ΞΌmean, ΞΌmean/10) ΞΌ = state.ΞΌ # Solve for the *real* step (including ΞΌ) ΞΌsinv = ΞΌ * [bounds.Οƒx./bstate.slack_x; bounds.Οƒc./bstate.slack_c] gtildeΞΌ = state.gtilde - jacobianI(state, bounds)' * ΞΌsinv ΔλE = MF \ (gE + JE * (Htilde \ gtildeΞΌ)) Ξ”x = Htilde \ (JE'*ΔλE - gtildeΞΌ) copyto!(s, Ξ”x) k = unpack_vec!(bstep.Ξ»xE, ΔλE, 0) k = unpack_vec!(bstep.Ξ»cE, ΔλE, k) k == length(ΔλE) || error("exhausted targets before ΔλE") solve_slack!(bstep, Ξ”x, bounds, bstate, bgrad, J, ΞΌ) # Solve for the quadratic parameters (use the real H, not the posdef H) Hstepx, HstepΞ»E = state.H*Ξ”x - JE'*ΔλE, -JE*Ξ”x qp = state.L, slopealpha(state.s, state.g, bstep, bgrad), dot(Ξ”x, Hstepx) + dot(ΔλE, HstepΞ»E) qp end function solve_slack!(bstep, s, bounds, bstate, bgrad, J, ΞΌ) # Solve for the slack variable and Ξ»I updates for (i, j) in enumerate(bounds.ineqx) bstep.slack_x[i] = -bgrad.Ξ»x[i] + bounds.Οƒx[i]*s[j] # bstep.Ξ»x[i] = -bgrad.slack_x[i] - ΞΌ*bstep.slack_x[i]/bstate.slack_x[i]^2 # bstep.Ξ»x[i] = -bgrad.slack_x[i] - bstate.Ξ»x[i]*bstep.slack_x[i]/bstate.slack_x[i] bstep.Ξ»x[i] = -(-ΞΌ/bstate.slack_x[i] + bstate.Ξ»x[i]) - bstate.Ξ»x[i]*bstep.slack_x[i]/bstate.slack_x[i] end JIc = view(J, bounds.ineqc, :) SigmaJIΞ”x = Diagonal(bounds.Οƒc)*(JIc*s) for i = 1:length(bstep.Ξ»c) bstep.slack_c[i] = -bgrad.Ξ»c[i] + SigmaJIΞ”x[i] # bstep.Ξ»c[i] = -bgrad.slack_c[i] - ΞΌ*bstep.slack_c[i]/bstate.slack_c[i]^2 # bstep.Ξ»c[i] = -bgrad.slack_c[i] - bstate.Ξ»c[i]*bstep.slack_c[i]/bstate.slack_c[i] bstep.Ξ»c[i] = -(-ΞΌ/bstate.slack_c[i] + bstate.Ξ»c[i]) - bstate.Ξ»c[i]*bstep.slack_c[i]/bstate.slack_c[i] end bstep end function is_smaller_eps(ref, step) ise = true for (r, s) in zip(ref, step) ise &= (s == 0) | (abs(s) < eps(r)) end ise end function default_options(method::ConstrainedOptimizer) (; allow_f_increases = true, successive_f_tol = 2) end # Utility functions that assist in testing: they return the "full # Hessian" and "full gradient" for the equation with the slack and Ξ»I # eliminated. # TODO: should we put these elsewhere? function Hf(bounds::ConstraintBounds, state) JE = jacobianE(state, bounds) Hf = [Matrix(state.Htilde) -JE'; -JE zeros(eltype(JE), size(JE, 1), size(JE, 1))] end Hf(constraints, state) = Hf(constraints.bounds, state) function gf(bounds::ConstraintBounds, state) bstate, ΞΌ = state.bstate, state.ΞΌ ΞΌsinv = ΞΌ * [bounds.Οƒx./bstate.slack_x; bounds.Οƒc./bstate.slack_c] gtildeΞΌ = state.gtilde - jacobianI(state, bounds)' * ΞΌsinv [gtildeΞΌ; state.bgrad.Ξ»xE; state.bgrad.Ξ»cE] end gf(constraints, state) = gf(constraints.bounds, state)
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
160
abstract type ConstrainedOptimizer{T} <: AbstractConstrainedOptimizer end abstract type IPOptimizer{T} <: ConstrainedOptimizer{T} end # interior point methods
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
527
function assess_convergence(state::IPNewtonState, d, options::Options) # We use the whole bstate-gradient `bgrad` bgrad = state.bgrad Optim.assess_convergence(state.x, state.x_previous, state.L, state.L_previous, [state.g; bgrad.slack_x; bgrad.slack_c; bgrad.Ξ»x; bgrad.Ξ»c; bgrad.Ξ»xE; bgrad.Ξ»cE], options.x_abstol, options.f_reltol, options.g_abstol) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
1807
function print_header(method::IPOptimizer) @printf "Iter Lagrangian value Function value Gradient norm |==constr.| μ\n" end function Base.show(io::IO, t::OptimizationState{<:Real, <:IPOptimizer}) md = t.metadata @printf io "%6d %-14e %-14e %-14e %-14e %-6.2e\n" t.iteration md["Lagrangian"] t.value t.g_norm md["ev"] md["μ"] if !isempty(t.metadata) for (key, value) in md key ∈ ("Lagrangian", "μ", "ev") && continue @printf io " * %s: %s\n" key value end end return end function Base.show(io::IO, tr::OptimizationTrace{<:Real, <:IPOptimizer}) @printf io "Iter Lagrangian value Function value Gradient norm |==constr.| μ\n" @printf io "------ ---------------- -------------- -------------- -------------- --------\n" for state in tr show(io, state) end return end function trace!(tr, d, state, iteration, method::IPOptimizer, options, curr_time=time()) dt = Dict() dt["Lagrangian"] = state.L dt["μ"] = state.μ dt["ev"] = abs(state.ev) dt["time"] = curr_time if options.extended_trace dt["α"] = state.alpha dt["x"] = copy(state.x) dt["g(x)"] = copy(state.g) dt["h(x)"] = copy(state.H) if !isempty(state.bstate) dt["gtilde(x)"] = copy(state.gtilde) dt["bstate"] = copy(state.bstate) dt["bgrad"] = copy(state.bgrad) dt["c"] = copy(state.constr_c) end end g_norm = norm(state.g, Inf) + norm(state.bgrad, Inf) Optim.update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
287
function ls_update!(out::AbstractArray, base::AbstractArray, step::AbstractArray, Ξ±) length(out) == length(base) == length(step) || throw(DimensionMismatch("all arrays must have the same length, got $(length(out)), $(length(base)), $(length(step))")) @. out = base + Ξ±*step end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3254
# http://stronglyconvex.com/blog/accelerated-gradient-descent.html # TODO: Need to specify alphamax on each iteration # Flip notation relative to Duckworth # Start with x_{0} # y_{t} = x_{t - 1} - alpha g(x_{t - 1}) # If converged, return y_{t} # x_{t} = y_{t} + (t - 1.0) / (t + 2.0) * (y_{t} - y_{t - 1}) struct AcceleratedGradientDescent{IL, L} <: FirstOrderOptimizer alphaguess!::IL linesearch!::L manifold::Manifold end Base.summary(::AcceleratedGradientDescent) = "Accelerated Gradient Descent" function AcceleratedGradientDescent(; alphaguess = LineSearches.InitialPrevious(), # TODO: investigate good defaults linesearch = LineSearches.HagerZhang(), # TODO: investigate good defaults manifold::Manifold=Flat()) AcceleratedGradientDescent(_alphaguess(alphaguess), linesearch, manifold) end mutable struct AcceleratedGradientDescentState{T, Tx} <: AbstractOptimizerState x::Tx x_previous::Tx f_x_previous::T iteration::Int y::Tx y_previous::Tx s::Tx @add_linesearch_fields() end function initial_state(method::AcceleratedGradientDescent, options, d, initial_x::AbstractArray{T}) where T initial_x = copy(initial_x) retract!(method.manifold, initial_x) value_gradient!!(d, initial_x) project_tangent!(method.manifold, gradient(d), initial_x) AcceleratedGradientDescentState(copy(initial_x), # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous real(T)(NaN), # Store previous f in state.f_x_previous 0, # Iteration copy(initial_x), # Maintain intermediary current state in state.y similar(initial_x), # Maintain intermediary state in state.y_previous similar(initial_x), # Maintain current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::AcceleratedGradientDescentState, method::AcceleratedGradientDescent) value_gradient!(d, state.x) state.iteration += 1 project_tangent!(method.manifold, gradient(d), state.x) # Search direction is always the negative gradient state.s .= .-gradient(d) # Determine the distance of movement along the search line lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) # Make one move in the direction of the gradient copyto!(state.y_previous, state.y) state.y .= state.x .+ state.alpha.*state.s retract!(method.manifold, state.y) # Update current position with Nesterov correction scaling = (state.iteration - 1) / (state.iteration + 2) state.x .= state.y .+ scaling.*(state.y .- state.y_previous) retract!(method.manifold, state.x) lssuccess == false # break on linesearch error end function trace!(tr, d, state, iteration, method::AcceleratedGradientDescent, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end function default_options(method::AcceleratedGradientDescent) (; allow_f_increases = true) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2695
""" # Adam ## Constructor ```julia Adam(; alpha=0.0001, beta_mean=0.9, beta_var=0.999, epsilon=1e-8) ``` ## Description Adam is a gradient based optimizer that choses its search direction by building up estimates of the first two moments of the gradient vector. This makes it suitable for problems with a stochastic objective and thus gradient. The method is introduced in [1] where the related AdaMax method is also introduced, see `?AdaMax` for more information on that method. ## References [1] https://arxiv.org/abs/1412.6980 """ struct Adam{T, Tm} <: FirstOrderOptimizer Ξ±::T β₁::T Ξ²β‚‚::T Ο΅::T manifold::Tm end # could use epsilon = T->sqrt(eps(T)) and input the promoted type Adam(; alpha = 0.0001, beta_mean = 0.9, beta_var = 0.999, epsilon = 1e-8) = Adam(alpha, beta_mean, beta_var, epsilon, Flat()) Base.summary(::Adam) = "Adam" function default_options(method::Adam) (; allow_f_increases = true, iterations=10_000) end mutable struct AdamState{Tx, T, Tm, Tu, Ti} <: AbstractOptimizerState x::Tx x_previous::Tx f_x_previous::T s::Tx m::Tm u::Tu iter::Ti end function reset!(method, state::AdamState, obj, x) value_gradient!!(obj, x) end function initial_state(method::Adam, options, d, initial_x::AbstractArray{T}) where T initial_x = copy(initial_x) value_gradient!!(d, initial_x) Ξ±, β₁, Ξ²β‚‚ = method.Ξ±, method.β₁, method.Ξ²β‚‚ m = copy(gradient(d)) u = zero(m) a = 1 - β₁ iter = 0 AdamState(initial_x, # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous real(T(NaN)), # Store previous f in state.f_x_previous similar(initial_x), # Maintain current search direction in state.s m, u, iter) end function update_state!(d, state::AdamState{T}, method::Adam) where T state.iter = state.iter+1 value_gradient!(d, state.x) Ξ±, β₁, Ξ²β‚‚, Ο΅ = method.Ξ±, method.β₁, method.Ξ²β‚‚, method.Ο΅ a = 1 - β₁ b = 1 - Ξ²β‚‚ m, u = state.m, state.u v = u m .= β₁ .* m .+ a .* gradient(d) v .= Ξ²β‚‚ .* v .+ b .* gradient(d) .^ 2 # mΜ‚ = m./(1-β₁^state.iter) # vΜ‚ = v./(1-Ξ²β‚‚^state.iter) #@. z = z - Ξ±*mΜ‚/(sqrt(vΜ‚+Ο΅)) Ξ±β‚œ = Ξ± * sqrt(1 - Ξ²β‚‚^state.iter) / (1 - β₁^state.iter) @. state.x = state.x - Ξ±β‚œ * m / (sqrt(v) + Ο΅) # Update current position # x = x + alpha * s false # break on linesearch error end function trace!(tr, d, state, iteration, method::Adam, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2594
""" # AdaMax ## Constructor ```julia AdaMax(; alpha=0.002, beta_mean=0.9, beta_var=0.999, epsilon=1e-8) ``` ## Description AdaMax is a gradient based optimizer that choses its search direction by building up estimates of the first two moments of the gradient vector. This makes it suitable for problems with a stochastic objective and thus gradient. The method is introduced in [1] where the related Adam method is also introduced, see `?Adam` for more information on that method. [1] https://arxiv.org/abs/1412.6980 """ struct AdaMax{T,Tm} <: FirstOrderOptimizer Ξ±::T β₁::T Ξ²β‚‚::T Ο΅::T manifold::Tm end AdaMax(; alpha = 0.002, beta_mean = 0.9, beta_var = 0.999, epsilon = sqrt(eps(Float64))) = AdaMax(alpha, beta_mean, beta_var, epsilon, Flat()) Base.summary(::AdaMax) = "AdaMax" function default_options(method::AdaMax) (; allow_f_increases = true, iterations=10_000) end mutable struct AdaMaxState{Tx, T, Tm, Tu, Ti} <: AbstractOptimizerState x::Tx x_previous::Tx f_x_previous::T s::Tx m::Tm u::Tu iter::Ti end function reset!(method, state::AdaMaxState, obj, x) value_gradient!!(obj, x) end function initial_state(method::AdaMax, options, d, initial_x::AbstractArray{T}) where T initial_x = copy(initial_x) value_gradient!!(d, initial_x) Ξ±, β₁, Ξ²β‚‚ = method.Ξ±, method.β₁, method.Ξ²β‚‚ m = copy(gradient(d)) u = zero(m) a = 1 - β₁ iter = 0 AdaMaxState(initial_x, # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous real(T(NaN)), # Store previous f in state.f_x_previous similar(initial_x), # Maintain current search direction in state.s m, u, iter) end function update_state!(d, state::AdaMaxState{T}, method::AdaMax) where T state.iter = state.iter+1 value_gradient!(d, state.x) Ξ±, β₁, Ξ²β‚‚, Ο΅ = method.Ξ±, method.β₁, method.Ξ²β‚‚, method.Ο΅ a = 1 - β₁ m, u = state.m, state.u m .= β₁ .* m .+ a .* gradient(d) u .= max.(Ο΅, max.(Ξ²β‚‚ .* u, abs.(gradient(d)))) # I know it's not there in the paper but if m and u start at 0 for some element... NaN occurs next @. state.x = state.x - (Ξ± / (1 - β₁^state.iter)) * m / u # Update current position # x = x + alpha * s false # break on linesearch error end function trace!(tr, d, state, iteration, method::AdaMax, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
7156
# Translation from our variables to Nocedal and Wright's # JMW's dx <=> NW's s # JMW's dg <=> NW' y struct BFGS{IL, L, H, T, TM} <: FirstOrderOptimizer alphaguess!::IL linesearch!::L initial_invH::H initial_stepnorm::T manifold::TM end Base.summary(::BFGS) = "BFGS" """ # BFGS ## Constructor ```julia BFGS(; alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), initial_invH = x -> Matrix{eltype(x)}(I, length(x), length(x)), manifold = Flat()) ``` ## Description The `BFGS` method implements the Broyden-Fletcher-Goldfarb-Shanno algorithm as described in Nocedal and Wright (sec. 8.1, 1999) and the four individual papers Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970). It is a quasi-Newton method that updates an approximation to the Hessian using past approximations as well as the gradient. See also the limited memory variant `LBFGS` for an algorithm that is more suitable for high dimensional problems. ## References - Wright, S. J. and J. Nocedal (1999), Numerical optimization. Springer Science 35.67-68: 7. - Broyden, C. G. (1970), The convergence of a class of double-rank minimization algorithms, Journal of the Institute of Mathematics and Its Applications, 6: 76–90. - Fletcher, R. (1970), A New Approach to Variable Metric Algorithms, Computer Journal, 13 (3): 317–322, - Goldfarb, D. (1970), A Family of Variable Metric Updates Derived by Variational Means, Mathematics of Computation, 24 (109): 23–26, - Shanno, D. F. (1970), Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, 24 (111): 647–656. """ function BFGS(; alphaguess = LineSearches.InitialStatic(), # TODO: benchmark defaults linesearch = LineSearches.HagerZhang(), # TODO: benchmark defaults initial_invH = nothing, initial_stepnorm = nothing, manifold::Manifold=Flat()) BFGS(_alphaguess(alphaguess), linesearch, initial_invH, initial_stepnorm, manifold) end mutable struct BFGSState{Tx, Tm, T,G} <: AbstractOptimizerState x::Tx x_previous::Tx g_previous::G f_x_previous::T dx::Tx dg::Tx u::Tx invH::Tm s::Tx @add_linesearch_fields() end function _init_identity_matrix(x::AbstractArray{T}, scale::T = T(1)) where {T} x_ = reshape(x, :) Id = x_ .* x_' .* false idxs = diagind(Id) @. @view(Id[idxs]) = scale * true return Id end function reset!(method, state::BFGSState, obj, x) n = length(x) T = eltype(x) retract!(method.manifold, x) value_gradient!(obj, x) project_tangent!(method.manifold, gradient(obj), x) if method.initial_invH === nothing if method.initial_stepnorm === nothing # Identity matrix of size n x n state.invH = _init_identity_matrix(x) else initial_scale = T(method.initial_stepnorm) * inv(norm(gradient(obj), Inf)) state.invH = _init_identity_matrix(x, initial_scale) end else state.invH .= method.initial_invH(x) end end function initial_state(method::BFGS, options, d, initial_x::AbstractArray{T}) where T n = length(initial_x) initial_x = copy(initial_x) retract!(method.manifold, initial_x) value_gradient!!(d, initial_x) project_tangent!(method.manifold, gradient(d), initial_x) if method.initial_invH === nothing if method.initial_stepnorm === nothing # Identity matrix of size n x n invH0 = _init_identity_matrix(initial_x) else initial_scale = T(method.initial_stepnorm) * inv(norm(gradient(d), Inf)) invH0 = _init_identity_matrix(initial_x, initial_scale) end else invH0 = method.initial_invH(initial_x) end # Maintain a cache for line search results # Trace the history of states visited BFGSState(initial_x, # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous copy(gradient(d)), # Store previous gradient in state.g_previous real(T)(NaN), # Store previous f in state.f_x_previous similar(initial_x), # Store changes in position in state.dx similar(initial_x), # Store changes in gradient in state.dg similar(initial_x), # Buffer stored in state.u invH0, # Store current invH in state.invH similar(initial_x), # Store current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::BFGSState, method::BFGS) n = length(state.x) T = eltype(state.s) # Set the search direction # Search direction is the negative gradient divided by the approximate Hessian mul!(vec(state.s), state.invH, vec(gradient(d))) rmul!(state.s, T(-1)) project_tangent!(method.manifold, state.s, state.x) # Maintain a record of the previous gradient copyto!(state.g_previous, gradient(d)) # Determine the distance of movement along the search line # This call resets invH to initial_invH is the former in not positive # semi-definite lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) # Update current position state.dx .= state.alpha.*state.s state.x .= state.x .+ state.dx retract!(method.manifold, state.x) lssuccess == false # break on linesearch error end function update_h!(d, state, method::BFGS) n = length(state.x) # Measure the change in the gradient state.dg .= gradient(d) .- state.g_previous # Update the inverse Hessian approximation using Sherman-Morrison dx_dg = real(dot(state.dx, state.dg)) if dx_dg > 0 mul!(vec(state.u), state.invH, vec(state.dg)) c1 = (dx_dg + real(dot(state.dg, state.u))) / (dx_dg' * dx_dg) c2 = 1 / dx_dg # invH = invH + c1 * (s * s') - c2 * (u * s' + s * u') if(state.invH isa Array) # i.e. not a CuArray invH = state.invH; dx = state.dx; u = state.u; @inbounds for j in 1:n c1dxj = c1 * dx[j]' c2dxj = c2 * dx[j]' c2uj = c2 * u[j]' for i in 1:n invH[i, j] = muladd(dx[i], c1dxj, muladd(-u[i], c2dxj, muladd(c2uj, -dx[i], invH[i, j]))) end end else mul!(state.invH,vec(state.dx),vec(state.dx)', c1,1) mul!(state.invH,vec(state.u ),vec(state.dx)',-c2,1) mul!(state.invH,vec(state.dx),vec(state.u )',-c2,1) end end end function trace!(tr, d, state, iteration, method::BFGS, options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) dt["g(x)"] = copy(gradient(d)) dt["~inv(H)"] = copy(state.invH) dt["Current step size"] = state.alpha end g_norm = norm(gradient(d), Inf) update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
8506
# # Conjugate gradient # # This is an independent implementation of: # W. W. Hager and H. Zhang (2006) Algorithm 851: CG_DESCENT, a # conjugate gradient method with guaranteed descent. ACM # Transactions on Mathematical Software 32: 113–137. # # Code comments such as "HZ, stage X" or "HZ, eqs Y" are with # reference to a particular point in this paper. # # Several aspects of the following have also been incorporated: # W. W. Hager and H. Zhang (2013) The limited memory conjugate # gradient method. # # This paper will be denoted HZ2013 below. # # # There are some modifications and/or extensions from what's in the # paper (these may or may not be extensions of the cg_descent code # that can be downloaded from Hager's site; his code has undergone # numerous revisions since publication of the paper): # # cgdescent: the termination condition employs a "unit-correct" # expression rather than a condition on gradient # components---whether this is a good or bad idea will require # additional experience, but preliminary evidence seems to suggest # that it makes "reasonable" choices over a wider range of problem # types. # # both: checks for Inf/NaN function values # # both: support maximum value of alpha (equivalently, c). This # facilitates using these routines for constrained minimization # when you can calculate the distance along the path to the # disallowed region. (When you can't easily calculate that # distance, it can still be handled by returning Inf/NaN for # exterior points. It's just more efficient if you know the # maximum, because you don't have to test values that won't # work.) The maximum should be specified as the largest value for # which a finite value will be returned. See, e.g., limits_box # below. The default value for alphamax is Inf. See alphamaxfunc # for cgdescent and alphamax for linesearch_hz. struct ConjugateGradient{Tf, T, Tprep, IL, L} <: FirstOrderOptimizer eta::Tf P::T precondprep!::Tprep alphaguess!::IL linesearch!::L manifold::Manifold end Base.summary(::ConjugateGradient) = "Conjugate Gradient" """ # Conjugate Gradient Descent ## Constructor ```julia ConjugateGradient(; alphaguess = LineSearches.InitialHagerZhang(), linesearch = LineSearches.HagerZhang(), eta = 0.4, P = nothing, precondprep = (P, x) -> nothing, manifold = Flat()) ``` The strictly positive constant ``eta`` is used in determining the next step direction, and the default here deviates from the one used in the original paper (where it was ``0.01``). See more details in the original papers referenced below. ## Description The `ConjugateGradient` method implements Hager and Zhang (2006) and elements from Hager and Zhang (2013). Notice, the default `linesearch` is `HagerZhang` from LineSearches.jl. This line search is exactly the one proposed in Hager and Zhang (2006). ## References - W. W. Hager and H. Zhang (2006) Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software 32: 113-137. - W. W. Hager and H. Zhang (2013), The Limited Memory Conjugate Gradient Method. SIAM Journal on Optimization, 23, pp. 2150-2168. """ function ConjugateGradient(; alphaguess = LineSearches.InitialHagerZhang(), linesearch = LineSearches.HagerZhang(), eta::Real = 0.4, P::Any = nothing, precondprep = (P, x) -> nothing, manifold::Manifold=Flat()) ConjugateGradient(eta, P, precondprep, _alphaguess(alphaguess), linesearch, manifold) end mutable struct ConjugateGradientState{Tx,T,G} <: AbstractOptimizerState x::Tx x_previous::Tx g_previous::G f_x_previous::T y::Tx py::Tx pg::Tx s::Tx @add_linesearch_fields() end function reset!(cg, cgs::ConjugateGradientState, obj, x) cgs.x .= x cg.precondprep!(cg.P, x) ldiv!(cgs.pg, cg.P, gradient(obj)) if cg.P !== nothing project_tangent!(cg.manifold, cgs.pg, x) end cgs.s .= -cgs.pg cgs.f_x_previous = typeof(cgs.f_x_previous)(NaN) end function initial_state(method::ConjugateGradient, options, d, initial_x) T = eltype(initial_x) initial_x = copy(initial_x) retract!(method.manifold, initial_x) value_gradient!!(d, initial_x) project_tangent!(method.manifold, gradient(d), initial_x) pg = copy(gradient(d)) # Could move this out? as a general check? #= # Output messages isfinite(value(d)) || error("Initial f(x) is not finite ($(value(d)))") if !all(isfinite, gradient(d)) @show gradient(d) @show find(.!isfinite.(gradient(d))) error("Gradient must have all finite values at starting point") end =# # Determine the intial search direction # if we don't precondition, then this is an extra superfluous copy # TODO: consider allowing a reference for pg instead of a copy method.precondprep!(method.P, initial_x) ldiv!(pg, method.P, gradient(d)) if method.P !== nothing project_tangent!(method.manifold, pg, initial_x) end ConjugateGradientState(initial_x, # Maintain current state in state.x 0 .*(initial_x), # Maintain previous state in state.x_previous 0 .*(gradient(d)), # Store previous gradient in state.g_previous real(T)(NaN), # Store previous f in state.f_x_previous 0 .*(initial_x), # Intermediate value in CG calculation 0 .*(initial_x), # Preconditioned intermediate value in CG calculation pg, # Maintain the preconditioned gradient in pg -pg, # Maintain current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::ConjugateGradientState, method::ConjugateGradient) # Search direction is predetermined # Maintain a record of the previous gradient copyto!(state.g_previous, gradient(d)) # Determine the distance of movement along the search line lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) # Update current position # x = x + alpha * s @. state.x = state.x + state.alpha * state.s retract!(method.manifold, state.x) # Update the function value and gradient value_gradient!(d, state.x) project_tangent!(method.manifold, gradient(d), state.x) # Check sanity of function and gradient isfinite(value(d)) || error("Non-finite f(x) while optimizing ($(value(d)))") # Determine the next search direction using HZ's CG rule # Calculate the beta factor (HZ2013) # ----------------- # Comment on py: one could replace the computation of py with # ydotpgprev = dot(y, pg) # dot(y, py) >>> dot(y, pg) - ydotpgprev # but I am worried about round-off here, so instead we make an # extra copy, which is probably minimal overhead. # ----------------- method.precondprep!(method.P, state.x) @compat dPd = real(dot(state.s, method.P, state.s)) etak = method.eta * real(dot(state.s, state.g_previous)) / dPd # New in HZ2013 state.y .= gradient(d) .- state.g_previous ydots = real(dot(state.y, state.s)) copyto!(state.py, state.pg) # below, store pg - pg_previous in py ldiv!(state.pg, method.P, gradient(d)) state.py .= state.pg .- state.py # ydots may be zero if f is not strongly convex or the line search does not satisfy Wolfe betak = (real(dot(state.y, state.pg)) - real(dot(state.y, state.py)) * real(dot(gradient(d), state.s)) / ydots) / ydots # betak may be undefined if ydots is zero (may due to f not strongly convex or non-Wolfe linesearch) beta = NaNMath.max(betak, etak) # TODO: Set to zero if betak is NaN? state.s .= beta.*state.s .- state.pg project_tangent!(method.manifold, state.s, state.x) lssuccess == false # break on linesearch error end update_g!(d, state, method::ConjugateGradient) = nothing function trace!(tr, d, state, iteration, method::ConjugateGradient, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3362
struct GradientDescent{IL, L, T, Tprep} <: FirstOrderOptimizer alphaguess!::IL linesearch!::L P::T precondprep!::Tprep manifold::Manifold end Base.summary(::GradientDescent) = "Gradient Descent" """ # Gradient Descent ## Constructor ```julia GradientDescent(; alphaguess = LineSearches.InitialHagerZhang(), linesearch = LineSearches.HagerZhang(), P = nothing, precondprep = (P, x) -> nothing) ``` Keywords are used to control choice of line search, and preconditioning. ## Description The `GradientDescent` method is a simple gradient descent algorithm, that is the search direction is simply the negative gradient at the current iterate, and then a line search step is used to compute the final step. See Nocedal and Wright (ch. 2.2, 1999) for an explanation of the approach. ## References - Nocedal, J. and Wright, S. J. (1999), Numerical optimization. Springer Science 35.67-68: 7. """ function GradientDescent(; alphaguess = LineSearches.InitialPrevious(), # TODO: Investigate good defaults. linesearch = LineSearches.HagerZhang(), # TODO: Investigate good defaults P = nothing, precondprep = (P, x) -> nothing, manifold::Manifold=Flat()) GradientDescent(_alphaguess(alphaguess), linesearch, P, precondprep, manifold) end mutable struct GradientDescentState{Tx, T} <: AbstractOptimizerState x::Tx x_previous::Tx f_x_previous::T s::Tx @add_linesearch_fields() end function reset!(method, state::GradientDescentState, obj, x) retract!(method.manifold, x) value_gradient!!(obj, x) project_tangent!(method.manifold, gradient(obj), x) end function initial_state(method::GradientDescent, options, d, initial_x::AbstractArray{T}) where T initial_x = copy(initial_x) retract!(method.manifold, initial_x) value_gradient!!(d, initial_x) project_tangent!(method.manifold, gradient(d), initial_x) GradientDescentState(initial_x, # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous real(T(NaN)), # Store previous f in state.f_x_previous similar(initial_x), # Maintain current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::GradientDescentState{T}, method::GradientDescent) where T value_gradient!(d, state.x) # Search direction is always the negative preconditioned gradient project_tangent!(method.manifold, gradient(d), state.x) method.precondprep!(method.P, state.x) ldiv!(state.s, method.P, gradient(d)) rmul!(state.s, eltype(state.s)(-1)) if method.P !== nothing project_tangent!(method.manifold, state.s, state.x) end # Determine the distance of movement along the search line lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) # Update current position # x = x + alpha * s @. state.x = state.x + state.alpha * state.s retract!(method.manifold, state.x) lssuccess == false # break on linesearch error end function trace!(tr, d, state, iteration, method::GradientDescent, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
8031
# Notational note # JMW's dx_history <=> NW's S # JMW's dg_history <=> NW's Y # Here alpha is a cache that parallels betas # It is not the step-size # q is also a cache function twoloop!(s, gr, rho, dx_history, dg_history, m::Integer, pseudo_iteration::Integer, alpha, q, scaleinvH0::Bool, precon) # Count number of parameters n = length(s) # Determine lower and upper bounds for loops lower = pseudo_iteration - m upper = pseudo_iteration - 1 # Copy gr into q for backward pass copyto!(q, gr) # Backward pass for index in upper:-1:lower if index < 1 continue end i = mod1(index, m) dgi = dg_history[i] dxi = dx_history[i] @inbounds alpha[i] = rho[i] * real(dot(dxi, q)) @inbounds q .-= alpha[i] .* dgi end # Copy q into s for forward pass if scaleinvH0 == true && pseudo_iteration > 1 # Use the initial scaling guess from # Nocedal & Wright (2nd ed), Equation (7.20) #= pseudo_iteration > 1 prevents this scaling from happening at the first iteration, but also at the first step after a reset due to invH being non-positive definite (pseudo_iteration = 1). TODO: Maybe we can still use the scaling as long as iteration > 1? =# i = mod1(upper, m) dxi = dx_history[i] dgi = dg_history[i] scaling = real(dot(dxi, dgi)) / sum(abs2, dgi) @. s = scaling*q else # apply preconditioner if scaleinvH0 is false as the true setting # is essentially its own kind of preconditioning # (Note: preconditioner update was done outside of this function) ldiv!(s, precon, q) end # Forward pass for index in lower:1:upper if index < 1 continue end i = mod1(index, m) dgi = dg_history[i] dxi = dx_history[i] @inbounds beta = rho[i] * real(dot(dgi, s)) @inbounds s .+= dxi .* (alpha[i] - beta) end # Negate search direction rmul!(s, eltype(s)(-1)) return end struct LBFGS{T, IL, L, Tprep} <: FirstOrderOptimizer m::Int alphaguess!::IL linesearch!::L P::T precondprep!::Tprep manifold::Manifold scaleinvH0::Bool end """ # LBFGS ## Constructor ```julia LBFGS(; m::Integer = 10, alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), P=nothing, precondprep = (P, x) -> nothing, manifold = Flat(), scaleinvH0::Bool = true && (typeof(P) <: Nothing)) ``` `LBFGS` has two special keywords; the memory length `m`, and the `scaleinvH0` flag. The memory length determines how many previous Hessian approximations to store. When `scaleinvH0 == true`, then the initial guess in the two-loop recursion to approximate the inverse Hessian is the scaled identity, as can be found in Nocedal and Wright (2nd edition) (sec. 7.2). In addition, LBFGS supports preconditioning via the `P` and `precondprep` keywords. ## Description The `LBFGS` method implements the limited-memory BFGS algorithm as described in Nocedal and Wright (sec. 7.2, 2006) and original paper by Liu & Nocedal (1989). It is a quasi-Newton method that updates an approximation to the Hessian using past approximations as well as the gradient. ## References - Wright, S. J. and J. Nocedal (2006), Numerical optimization, 2nd edition. Springer - Liu, D. C. and Nocedal, J. (1989). "On the Limited Memory Method for Large Scale Optimization". Mathematical Programming B. 45 (3): 503–528 """ function LBFGS(; m::Integer = 10, alphaguess = LineSearches.InitialStatic(), # TODO: benchmark defaults linesearch = LineSearches.HagerZhang(), # TODO: benchmark defaults P=nothing, precondprep = (P, x) -> nothing, manifold::Manifold=Flat(), scaleinvH0::Bool = true && (typeof(P) <: Nothing) ) LBFGS(Int(m), _alphaguess(alphaguess), linesearch, P, precondprep, manifold, scaleinvH0) end Base.summary(::LBFGS) = "L-BFGS" mutable struct LBFGSState{Tx, Tdx, Tdg, T, G} <: AbstractOptimizerState x::Tx x_previous::Tx g_previous::G rho::Vector{T} dx_history::Tdx dg_history::Tdg dx::Tx dg::Tx u::Tx f_x_previous::T twoloop_q twoloop_alpha pseudo_iteration::Int s::Tx @add_linesearch_fields() end function reset!(method, state::LBFGSState, obj, x) retract!(method.manifold, x) value_gradient!(obj, x) project_tangent!(method.manifold, gradient(obj), x) state.pseudo_iteration = 0 end function initial_state(method::LBFGS, options, d, initial_x) T = real(eltype(initial_x)) n = length(initial_x) initial_x = copy(initial_x) retract!(method.manifold, initial_x) value_gradient!!(d, initial_x) project_tangent!(method.manifold, gradient(d), initial_x) LBFGSState(initial_x, # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous copy(gradient(d)), # Store previous gradient in state.g_previous fill(T(NaN), method.m), # state.rho [similar(initial_x) for i = 1:method.m], # Store changes in position in state.dx_history [eltype(gradient(d))(NaN).*gradient(d) for i = 1:method.m], # Store changes in position in state.dg_history T(NaN)*initial_x, # Buffer for new entry in state.dx_history T(NaN)*initial_x, # Buffer for new entry in state.dg_history T(NaN)*initial_x, # Buffer stored in state.u real(T)(NaN), # Store previous f in state.f_x_previous similar(initial_x), #Buffer for use by twoloop Vector{T}(undef, method.m), #Buffer for use by twoloop 0, eltype(gradient(d))(NaN).*gradient(d), # Store current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::LBFGSState, method::LBFGS) n = length(state.x) # Increment the number of steps we've had to perform state.pseudo_iteration += 1 project_tangent!(method.manifold, gradient(d), state.x) # update the preconditioner method.precondprep!(method.P, state.x) # Determine the L-BFGS search direction # FIXME just pass state and method? twoloop!(state.s, gradient(d), state.rho, state.dx_history, state.dg_history, method.m, state.pseudo_iteration, state.twoloop_alpha, state.twoloop_q, method.scaleinvH0, method.P) project_tangent!(method.manifold, state.s, state.x) # Save g value to prepare for update_g! call copyto!(state.g_previous, gradient(d)) # Determine the distance of movement along the search line lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) # Update current position state.dx .= state.alpha .* state.s state.x .= state.x .+ state.dx retract!(method.manifold, state.x) lssuccess == false # break on linesearch error end function update_h!(d, state, method::LBFGS) n = length(state.x) # Measure the change in the gradient state.dg .= gradient(d) .- state.g_previous # Update the L-BFGS history of positions and gradients rho_iteration = one(eltype(state.dx)) / real(dot(state.dx, state.dg)) if isinf(rho_iteration) # TODO: Introduce a formal error? There was a warning here previously state.pseudo_iteration=0 return true end idx = mod1(state.pseudo_iteration, method.m) state.dx_history[idx] .= state.dx state.dg_history[idx] .= state.dg state.rho[idx] = rho_iteration false end function trace!(tr, d, state, iteration, method::LBFGS, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2662
# See p. 280 of Murphy's Machine Learning # x_k1 = x_k - alpha * gr + mu * (x - x_previous) struct MomentumGradientDescent{Tf, IL,L} <: FirstOrderOptimizer mu::Tf alphaguess!::IL linesearch!::L manifold::Manifold end Base.summary(::MomentumGradientDescent) = "Momentum Gradient Descent" function MomentumGradientDescent(; mu::Real = 0.01, alphaguess = LineSearches.InitialPrevious(), # TODO: investigate good defaults linesearch = LineSearches.HagerZhang(), # TODO: investigate good defaults manifold::Manifold=Flat()) MomentumGradientDescent(mu, _alphaguess(alphaguess), linesearch, manifold) end mutable struct MomentumGradientDescentState{Tx, T} <: AbstractOptimizerState x::Tx x_previous::Tx x_momentum::Tx f_x_previous::T s::Tx @add_linesearch_fields() end function initial_state(method::MomentumGradientDescent, options, d, initial_x) T = eltype(initial_x) initial_x = copy(initial_x) retract!(method.manifold, initial_x) value_gradient!!(d, initial_x) project_tangent!(method.manifold, gradient(d), initial_x) MomentumGradientDescentState(initial_x, # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous similar(initial_x), # Record momentum correction direction in state.x_momentum real(T)(NaN), # Store previous f in state.f_x_previous similar(initial_x), # Maintain current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::MomentumGradientDescentState, method::MomentumGradientDescent) project_tangent!(method.manifold, gradient(d), state.x) # Search direction is always the negative gradient state.s .= .-gradient(d) # Update position, and backup current one state.x_momentum .= state.x .- state.x_previous # Determine the distance of movement along the search line lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) state.x .+= state.alpha.*state.s .+ method.mu.*state.x_momentum retract!(method.manifold, state.x) lssuccess == false # break on linesearch error end function trace!(tr, d, state, iteration, method::MomentumGradientDescent, options, curr_time=time()) common_trace!(tr, d, state, iteration, method, options, curr_time) end function default_options(method::MomentumGradientDescent) (; allow_f_increases = true) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
18290
#= TODO: - How to deal with f_increased (as state and preconstate shares the same x and x_previous vectors) - Check whether this makes sense for other preconditioners than GradientDescent and L-BFGS * There might be some issue of dealing with x_current and x_previous in MomentumGradientDescent * Trust region based methods may not work because we assume the preconditioner calls perform_linesearch! =# abstract type AbstractNGMRES <: FirstOrderOptimizer end # TODO: Enforce TPrec <: Union{FirstOrderoptimizer,SecondOrderOptimizer}? struct NGMRES{IL, Tp,TPrec <: AbstractOptimizer,L} <: AbstractNGMRES alphaguess!::IL # Initial step length guess for linesearch along direction xP->xA linesearch!::L # Preconditioner moving from xP to xA (precondition x to accelerated x) manifold::Manifold nlprecon::TPrec # Nonlinear preconditioner nlpreconopts::Options # Preconditioner options Ο΅0::Tp # Ensure A-matrix is positive definite wmax::Int # Maximum window size end struct OACCEL{IL, Tp,TPrec <: AbstractOptimizer,L} <: AbstractNGMRES alphaguess!::IL # Initial step length guess for linesearch along direction xP->xA linesearch!::L # Linesearch between xP and xA (precondition x to accelerated x) manifold::Manifold nlprecon::TPrec # Nonlinear preconditioner nlpreconopts::Options # Preconditioner options Ο΅0::Tp # Ensure A-matrix is positive definite wmax::Int # Maximum window size end Base.summary(s::NGMRES) = "Nonlinear GMRES preconditioned with $(summary(s.nlprecon))" Base.summary(s::OACCEL) = "O-ACCEL preconditioned with $(summary(s.nlprecon))" """ # N-GMRES ## Constructor ```julia NGMRES(; alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), manifold = Flat(), wmax::Int = 10, Ο΅0 = 1e-12, nlprecon = GradientDescent( alphaguess = LineSearches.InitialStatic(alpha=1e-4,scaled=true), linesearch = LineSearches.Static(), manifold = manifold), nlpreconopts = Options(iterations = 1, allow_f_increases = true), ) ``` ## Description This algorithm takes a step given by the nonlinear preconditioner `nlprecon` and proposes an accelerated step by minimizing an approximation of the (\ell_2) residual of the gradient on a subspace spanned by the previous `wmax` iterates. N-GMRES was originally developed for solving nonlinear systems [1], and reduces to GMRES for linear problems. Application of the algorithm to optimization is covered, for example, in [2]. ## References [1] De Sterck. Steepest descent preconditioning for nonlinear GMRES optimization. NLAA, 2013. [2] Washio and Oosterlee. Krylov subspace acceleration for nonlinear multigrid schemes. ETNA, 1997. """ function NGMRES(;manifold::Manifold = Flat(), alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), nlprecon = GradientDescent( alphaguess = LineSearches.InitialStatic(alpha=1e-4,scaled=true), # Step length arbitrary, linesearch = LineSearches.Static(), manifold = manifold), nlpreconopts = Options(iterations = 1, allow_f_increases = true), Ο΅0 = 1e-12, # Ο΅0 = 1e-12 -- number was an arbitrary choice# wmax::Int = 10) # wmax = 10 -- number was an arbitrary choice to match L-BFGS field `m` @assert manifold == nlprecon.manifold NGMRES(_alphaguess(alphaguess), linesearch, manifold, nlprecon, nlpreconopts, Ο΅0, wmax) end """ # O-ACCEL ## Constructor ```julia OACCEL(;manifold::Manifold = Flat(), alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), nlprecon = GradientDescent( alphaguess = LineSearches.InitialStatic(alpha=1e-4,scaled=true), linesearch = LineSearches.Static(), manifold = manifold), nlpreconopts = Options(iterations = 1, allow_f_increases = true), Ο΅0 = 1e-12, wmax::Int = 10) ``` ## Description This algorithm takes a step given by the nonlinear preconditioner `nlprecon` and proposes an accelerated step by minimizing an approximation of the objective on a subspace spanned by the previous `wmax` iterates. O-ACCEL is a slight tweak of N-GMRES, first presented in [1]. ## References [1] Riseth. Objective acceleration for unconstrained optimization. 2018. """ function OACCEL(;manifold::Manifold = Flat(), alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), nlprecon = GradientDescent( alphaguess = LineSearches.InitialStatic(alpha=1e-4,scaled=true), # Step length arbitrary linesearch = LineSearches.Static(), manifold = manifold), nlpreconopts = Options(iterations = 1, allow_f_increases = true), Ο΅0 = 1e-12, # Ο΅0 = 1e-12 -- number was an arbitrary choice wmax::Int = 10) # wmax = 10 -- number was an arbitrary choice to match L-BFGS field `m` @assert manifold == nlprecon.manifold OACCEL(_alphaguess(alphaguess), linesearch, manifold, nlprecon, nlpreconopts, Ο΅0, wmax) end mutable struct NGMRESState{P,Tx,Te,T,eTx} <: AbstractOptimizerState where P <: AbstractOptimizerState # eTx is the eltype of Tx x::Tx # Reference to nlpreconstate.x x_previous::Tx # Reference to nlpreconstate.x_previous x_previous_0::Tx # Used to deal with assess_convergence of NGMRES f_x_previous::T f_x_previous_0::T # Used to deal with assess_convergence of NGMRES f_xP::T # For tracing purposes grnorm_xP::T # For tracing purposes s::Tx # Search direction for linesearch between xP and xA nlpreconstate::P # Nonlinear preconditioner state X::Array{eTx,2} # Solution vectors in the window R::Array{eTx,2} # Gradient vectors in the window Q::Array{T,2} # Storage to create linear system (TODO: make Symmetric?) ΞΎ::Te # Storage to create linear system curw::Int # Counter for current window size A::Array{T,2} # Container for AΞ± = b b::Vector{T} # Container for AΞ± = b xA::Vector{eTx} # Container for accelerated step k::Int # Used for indexing where to put values in the Storage containers restart::Bool # Restart flag g_abstol::T # Exit tolerance to be checked after nonlinear preconditioner apply subspacealpha::Vector{T} # Storage for coefficients in the subspace for the acceleration step @add_linesearch_fields() end "Update storage Q[i,j] and Q[j,i] for `NGMRES`" @inline function _updateQ!(Q, i::Int, j::Int, X, R, ::NGMRES) Q[j,i] = real(dot(R[:, j], R[:,i])) if i != j Q[i,j] = Q[j, i] # TODO: Use Symmetric? end end "Update storage A[i,j] for `NGMRES`" @inline function _updateA!(A, i::Int, j::Int, Q, ΞΎ, Ξ·, ::NGMRES) A[i,j] = Q[i,j]-ΞΎ[i]-ΞΎ[j]+Ξ· end "Update storage ΞΎ[i,:] for `NGMRES`" @inline function _updateΞΎ!(ΞΎ, i::Int, X, x, R, r, ::NGMRES) ΞΎ[i] = real(dot(vec(r), R[:,i])) end "Update storage b[i] for `NGMRES`" @inline function _updateb!(b, i::Int, ΞΎ, Ξ·, ::NGMRES) b[i] = Ξ· - ΞΎ[i] end "Update value Ξ· for `NGMRES`" @inline function _updateΞ·(x, r, ::NGMRES) real(dot(r, r)) end "Update storage Q[i,j] and Q[j,i] for `OACCEL`" @inline function _updateQ!(Q, i::Int, j::Int, X, R, ::OACCEL) Q[i,j] = real(dot(X[:,i], R[:,j])) if i != j Q[j,i] = real(dot(X[:,j], R[:,i])) end end "Update storage A[i,j] for `OACCEL`" @inline function _updateA!(A, i::Int, j::Int, Q, ΞΎ, Ξ·, ::OACCEL) A[i,j] = Q[i,j]-ΞΎ[i,1]-ΞΎ[j,2]+Ξ· end "Update storage ΞΎ[i,:] for `OACCEL`" @inline function _updateΞΎ!(ΞΎ, i::Int, X, x, R, r, ::OACCEL) ΞΎ[i,1] = real(dot(X[:,i], r)) ΞΎ[i,2] = real(dot(x, R[:,i])) end "Update storage b[i] for `OACCEL`" @inline function _updateb!(b, i::Int, ΞΎ, Ξ·, ::OACCEL) b[i] = Ξ· - ΞΎ[i,1] end "Update value Ξ· for `OACCEL`" @inline function _updateΞ·(x, r, ::OACCEL) real(dot(x, r)) end const ngmres_oaccel_warned = Ref{Bool}(false) function initial_state(method::AbstractNGMRES, options, d, initial_x::AbstractArray{eTx}) where eTx if !(typeof(method.nlprecon) <: Union{GradientDescent,LBFGS}) if !ngmres_oaccel_warned[] @warn "Use caution. N-GMRES/O-ACCEL has only been tested with Gradient Descent and L-BFGS preconditioning." ngmres_oaccel_warned[] = true end end nlpreconstate = initial_state(method.nlprecon, method.nlpreconopts, d, initial_x) # Manifold comment: # We assume nlprecon calls retract! and project_tangent! on # nlpreconstate.x and gradient(d) T = real(eTx) n = length(nlpreconstate.x) wmax = method.wmax X = Array{eTx}(undef, n, wmax) R = Array{eTx}(undef, n, wmax) Q = Array{T}(undef, wmax, wmax) ΞΎ = if typeof(method) <: OACCEL Array{T}(undef, wmax, 2) else Array{T}(undef, wmax) end copyto!(view(X,:,1), nlpreconstate.x) copyto!(view(R,:,1), gradient(d)) _updateQ!(Q, 1, 1, X, R, method) NGMRESState(nlpreconstate.x, # Maintain current state in state.x. Use same vector as preconditioner. nlpreconstate.x_previous, # Maintain in state.x_previous. Use same vector as preconditioner. copy(nlpreconstate.x), # Maintain state at the beginning of an iteration in state.x_previous_0. Used for convergence asessment. T(NaN), # Store previous f in state.f_x_previous T(NaN), # Store f value from the beginning of an iteration in state.f_x_previous_0. Used for convergence asessment. T(NaN), # Store value f_xP of f(x^P) for tracing purposes T(NaN), # Store value grnorm_xP of |g(x^P)| for tracing purposes similar(initial_x), # Maintain current search direction in state.s nlpreconstate, # State storage for preconditioner X, R, Q, ΞΎ, 1, # curw Array{T}(undef, wmax, wmax), # A Array{T}(undef, wmax), # b vec(similar(initial_x)), # xA 0, # iteration counter false, # Restart flag options.g_abstol, # Exit tolerance check after nonlinear preconditioner apply Array{T}(undef, wmax), # subspacealpha @initial_linesearch()...) end nlprecon_post_optimize!(d, state, method) = update_h!(d, state.nlpreconstate, method) nlprecon_post_accelerate!(d, state, method) = update_h!(d, state.nlpreconstate, method) function nlprecon_post_accelerate!(d, state::NGMRESState{X,T}, method::LBFGS) where X where T state.nlpreconstate.pseudo_iteration += 1 update_h!(d, state.nlpreconstate, method) end function update_state!(d, state::NGMRESState{X,T}, method::AbstractNGMRES) where X where T # Maintain a record of previous position, for convergence assessment copyto!(state.x_previous_0, state.x) state.f_x_previous_0 = value(d) state.k += 1 curw = state.curw # Step 1: Call preconditioner to get x^P res = optimize(d, state.x, method.nlprecon, method.nlpreconopts, state.nlpreconstate) # TODO: Is project_tangent! necessary, or is it called by nlprecon before exit? project_tangent!(method.manifold, gradient(d), state.x) if any(.!isfinite.(state.x)) || any(.!isfinite.(gradient(d))) || !isfinite(value(d)) @warn("Non-finite values attained from preconditioner $(summary(method.nlprecon)).") return true end # Calling value_gradient! in normally done on state.x in optimize or update_g! above, # but there are corner cases where we need this. state.f_xP, _g = value_gradient!(d, state.x) # Manifold start project_tangent!(method.manifold, gradient(d), state.x) # Manifold stop gP = gradient(d) state.grnorm_xP = g_residual(gP) if g_residual(gP) ≀ state.g_abstol return false # Exit on gradient norm convergence end # Deals with update_h! etc for preconditioner, if needed nlprecon_post_optimize!(d, state, method.nlprecon) # Step 2: Do acceleration calculation Ξ· = _updateΞ·(state.x, gP, method) for i = 1:curw # Update storage vectors according to method {NGMRES, OACCEL} _updateΞΎ!(state.ΞΎ, i, state.X, state.x, state.R, gP, method) _updateb!(state.b, i, state.ΞΎ, Ξ·, method) end for i = 1:curw for j = 1:curw # Update system matrix according to method {NGMRES, OACCEL} _updateA!(state.A, i, j, state.Q, state.ΞΎ, Ξ·, method) end end Ξ± = view(state.subspacealpha, 1:curw) Aview = view(state.A, 1:curw, 1:curw) bview = view(state.b, 1:curw) # The outer max is to avoid Ξ΄=0, which may occur if A=0, e.g. at numerical convergence Ξ΄ = method.Ο΅0*max(maximum(diag(Aview)), method.Ο΅0) try Ξ± .= (Aview + Ξ΄*I) \ bview catch e @warn("Calculating Ξ± failed in $(summary(method)).") @warn("Exception info:\n $e") Ξ± .= NaN end if any(isnan, Ξ±) @warn("Calculated Ξ± is NaN in $(summary(method)). Restarting ...") state.s .= zero(eltype(state.s)) state.restart = true else # xA = xP + \sum_{j=1}^{curw} Ξ±[j] * (X[j] - xP) state.xA .= (1.0-sum(Ξ±)).*vec(state.x) .+ sum(state.X[:,k]*Ξ±[k] for k = 1:curw) state.s .= reshape(state.xA, size(state.x)) .- state.x end # 3: Perform condition checks if real(dot(state.s, gP)) β‰₯ 0 || !isfinite(real(dot(state.s, gP))) # Moving from xP to xA is *not* a descent direction # Discard xA state.restart = true # TODO: expand restart heuristics lssuccess = true state.alpha = 0.0 else state.restart = false # Update f_x_previous and dphi_0_previous according to preconditioner step # This may be used in perform_linesearch!/alphaguess! when moving from x^P to x^A # TODO: make this a function? state.f_x_previous = state.nlpreconstate.f_x_previous if typeof(method.alphaguess!) <: LineSearches.InitialConstantChange nlprec = method.nlprecon if isdefined(nlprec, :alphaguess!) && typeof(nlprec.alphaguess!) <: LineSearches.InitialConstantChange method.alphaguess!.dΟ•_0_previous[] = nlprec.alphaguess!.dΟ•_0_previous[] end end # state.x_previous and state.x are dealt with by reference lssuccess = perform_linesearch!(state, method, ManifoldObjective(method.manifold, d)) @. state.x = state.x + state.alpha * state.s # Manifold start retract!(method.manifold, state.x) # Manifold stop # TODO: Move these into `nlprecon_post_accelerate!` ? state.nlpreconstate.f_x_previous = state.f_x_previous if typeof(method.alphaguess!) <: LineSearches.InitialConstantChange nlprec = method.nlprecon if isdefined(nlprec, :alphaguess!) && typeof(nlprec.alphaguess!) <: LineSearches.InitialConstantChange nlprec.alphaguess!.dΟ•_0_previous[] = method.alphaguess!.dΟ•_0_previous[] end end # Deals with update_h! etc. for preconditioner, if needed nlprecon_post_accelerate!(d, state, method.nlprecon) end #= Update x_previous and f_x_previous to be the values at the beginning of the N-GMRES iteration. For convergence assessment purposes. =# copyto!(state.x_previous, state.x_previous_0) state.f_x_previous = state.f_x_previous_0 lssuccess == false # Break on linesearch error end function update_g!(d, state, method::AbstractNGMRES) # Update the function value and gradient # TODO: do we need a retract! on state.x here? value_gradient!(d, state.x) project_tangent!(method.manifold, gradient(d), state.x) if state.restart == false state.curw = min(state.curw + 1, method.wmax) else state.k = 0 state.curw = 1 end j = mod(state.k, method.wmax) + 1 copyto!(view(state.X,:,j), vec(state.x)) copyto!(view(state.R,:,j), vec(gradient(d))) for i = 1:state.curw _updateQ!(state.Q, i, j, state.X, state.R, method) end end function trace!(tr, d, state, iteration, method::AbstractNGMRES, options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) dt["g(x)"] = copy(gradient(d)) dt["subspace-Ξ±"] = state.subspacealpha[1:state.curw-1] if state.restart == true dt["Current step size"] = NaN else dt["Current step size"] = state.alpha # This is a wasteful hack to get the previous values for debugging purposes only. xP = state.x .- state.alpha .* state.s dt["x^P"] = copy(xP) # TODO: What's a good way to include g(x^P) here without messing up gradient counts? end end dt["Restart"] = state.restart if state.restart == false dt["f(x^P)"] = state.f_xP dt["|g(x^P)|"] = state.grnorm_xP end g_norm = g_residual(d) update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end # # function assess_convergence(state::NGMRESState, d, options::Options) # default_convergence_assessment(state, d, options) # end function default_options(method::AbstractNGMRES) (;allow_f_increases = true) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
6332
struct KrylovTrustRegion{T <: Real} <: SecondOrderOptimizer initial_radius::T max_radius::T eta::T rho_lower::T rho_upper::T cg_tol::T end KrylovTrustRegion(; initial_radius::Real = 1.0, max_radius::Real = 100.0, eta::Real = 0.1, rho_lower::Real = 0.25, rho_upper::Real = 0.75, cg_tol::Real = 0.01) = KrylovTrustRegion(initial_radius, max_radius, eta, rho_lower, rho_upper, cg_tol) update_h!(d, state, method::KrylovTrustRegion) = nothing # TODO: support x::Array{T,N} et al.? mutable struct KrylovTrustRegionState{T} <: AbstractOptimizerState x::Vector{T} x_previous::Vector{T} f_x_previous::T s::Vector{T} interior::Bool accept_step::Bool radius::T m_diff::T f_diff::T rho::T r::Vector{T} # residual vector d::Vector{T} # direction to consider cg_iters::Int end function initial_state(method::KrylovTrustRegion, options, d, initial_x::Array{T}) where T n = length(initial_x) # Maintain current gradient in gr @assert(method.max_radius > 0) @assert(0 < method.initial_radius < method.max_radius) @assert(0 <= method.eta < method.rho_lower) @assert(method.rho_lower < method.rho_upper) @assert(method.rho_lower >= 0) value_gradient!!(d, initial_x) KrylovTrustRegionState(copy(initial_x), # Maintain current state in state.x copy(initial_x), # x_previous zero(T), # f_x_previous similar(initial_x), # Maintain current search direction in state.s true, # interior true, # accept step convert(T,method.initial_radius), zero(T), # model change zero(T), # observed f change zero(T), # state.rho Vector{T}(undef, n), # residual vector Vector{T}(undef, n), # direction to consider 0) # cg_iters end function trace!(tr, d, state, iteration, method::KrylovTrustRegion, options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) dt["radius"] = copy(state.radius) dt["interior"] = state.interior dt["accept_step"] = state.accept_step dt["norm(s)"] = norm(state.s) dt["rho"] = state.rho dt["m_diff"] = state.m_diff dt["f_diff"] = state.f_diff dt["cg_iters"] = state.cg_iters end g_norm = norm(gradient(d), Inf) update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end function cg_steihaug!(objective::TwiceDifferentiableHV, state::KrylovTrustRegionState{T}, method::KrylovTrustRegion) where T n = length(state.x) x, g, d, r, z, Hd = state.x, gradient(objective), state.d, state.r, state.s, hv_product(objective) fill!(z, 0.0) # the search direction is initialized to the 0 vector, r .= g # so at first the whole gradient is the residual. d .= -r # the first direction is the direction of steepest descent. rho0 = 1e100 # just a big number state.cg_iters = 0 for i in 1:n state.cg_iters += 1 hv_product!(objective, x, d) dHd = dot(d, Hd) if -1e-15 < dHd < 1e-15 break end alpha = dot(r, r) / dHd if dHd < 0. || norm(z .+ alpha .* d) >= state.radius a_ = dot(d, d) b_ = 2 * dot(z, d) c_ = dot(z, z) - state.radius^2 tau = (-b_ + sqrt(b_ * b_ - 4 * a_ * c_)) / (2 * a_) z .+= tau .* d break end z .+= alpha .* d rho_prev = dot(r, r) if i == 1 rho0 = rho_prev end r .+= alpha * Hd rho_next = dot(r, r) r_sqnorm_ratio = rho_next / rho_prev d[:] = -r + r_sqnorm_ratio * d if (rho_next / rho0) < method.cg_tol^2 break end end hv_product!(objective, x, z) return dot(g, z) + 0.5 * dot(z, Hd) end function update_state!(objective::TwiceDifferentiableHV, state::KrylovTrustRegionState, method::KrylovTrustRegion) state.m_diff = cg_steihaug!(objective, state, method) @assert state.m_diff <= 0 state.f_diff = value(objective, state.x .+ state.s) - value(objective) state.rho = state.f_diff / state.m_diff state.interior = norm(state.s) < 0.9 * state.radius if state.rho < method.rho_lower state.radius *= 0.25 elseif (state.rho > method.rho_upper) && (!state.interior) state.radius = min(2 * state.radius, method.max_radius) end state.accept_step = state.rho > method.eta if state.accept_step state.x .+= state.s end return false end function update_g!(objective, state::KrylovTrustRegionState, method::KrylovTrustRegion) if state.accept_step # Update the function value and gradient state.f_x_previous = value(objective) value_gradient!(objective, state.x) end end function assess_convergence(state::KrylovTrustRegionState, d, options::Options) if !state.accept_step return state.radius < options.x_abstol, false, false, false end x_converged, f_converged, f_increased, g_converged = false, false, false, false if norm(state.s, Inf) < options.x_abstol x_converged = true end # Absolute Tolerance # if abs(f_x - f_x_previous) < f_tol # Relative Tolerance if abs(state.f_diff) < max(options.f_reltol * (abs(value(d)) + options.f_reltol), eps(abs(value(d))+abs(state.f_x_previous))) f_converged = true end if norm(gradient(d), Inf) < options.g_abstol g_converged = true end return x_converged, f_converged, g_converged, false end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3614
struct Newton{IL, L} <: SecondOrderOptimizer alphaguess!::IL linesearch!::L end """ # Newton ## Constructor ```julia Newton(; alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang()) ``` ## Description The `Newton` method implements Newton's method for optimizing a function. We use a special factorization from the package `PositiveFactorizations.jl` to ensure that each search direction is a direction of descent. See Wright and Nocedal and Wright (ch. 6, 1999) for a discussion of Newton's method in practice. ## References - Nocedal, J. and S. J. Wright (1999), Numerical optimization. Springer Science 35.67-68: 7. """ function Newton(; alphaguess = LineSearches.InitialStatic(), # Good default for Newton linesearch = LineSearches.HagerZhang()) # Good default for Newton Newton(_alphaguess(alphaguess), linesearch) end Base.summary(::Newton) = "Newton's Method" mutable struct NewtonState{Tx, T, F<:Cholesky} <: AbstractOptimizerState x::Tx x_previous::Tx f_x_previous::T F::F s::Tx @add_linesearch_fields() end function initial_state(method::Newton, options, d, initial_x) T = eltype(initial_x) n = length(initial_x) # Maintain current gradient in gr s = similar(initial_x) value_gradient!!(d, initial_x) hessian!!(d, initial_x) NewtonState(copy(initial_x), # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous T(NaN), # Store previous f in state.f_x_previous Cholesky(similar(d.H, T, 0, 0), :U, BLAS.BlasInt(0)), similar(initial_x), # Maintain current search direction in state.s @initial_linesearch()...) end function update_state!(d, state::NewtonState, method::Newton) # Search direction is always the negative gradient divided by # a matrix encoding the absolute values of the curvatures # represented by H. It deviates from the usual "add a scaled # identity matrix" version of the modified Newton method. More # information can be found in the discussion at issue #153. T = eltype(state.x) if typeof(NLSolversBase.hessian(d)) <: AbstractSparseMatrix state.s .= .-(NLSolversBase.hessian(d)\convert(Vector{T}, gradient(d))) else state.F = cholesky!(Positive, NLSolversBase.hessian(d)) if typeof(gradient(d)) <: Array # is this actually StridedArray? ldiv!(state.s, state.F, -gradient(d)) else # not Array, we can't do inplace ldiv gv = Vector{T}(undef, length(gradient(d))) copyto!(gv, -gradient(d)) copyto!(state.s, state.F\gv) end end # Determine the distance of movement along the search line lssuccess = perform_linesearch!(state, method, d) # Update current position # x = x + alpha * s @. state.x = state.x + state.alpha * state.s lssuccess == false # break on linesearch error end function trace!(tr, d, state, iteration, method::Newton, options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) dt["g(x)"] = copy(gradient(d)) dt["h(x)"] = copy(NLSolversBase.hessian(d)) dt["Current step size"] = state.alpha end g_norm = norm(gradient(d), Inf) update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
15660
# # Check whether we are in the "hard case". # # Args: # H_eigv: The eigenvalues of H, low to high # qg: The inner product of the eigenvalues and the gradient in the same order # # Returns: # hard_case: Whether it is a candidate for the hard case # lambda_index: The index of the first lambda not equal to the smallest # eigenvalue, which is only correct if hard_case is true. function check_hard_case_candidate(H_eigv, qg) @assert length(H_eigv) == length(qg) if H_eigv[1] >= 0 # The hard case is only when the smallest eigenvalue is negative. return false, 1 end hard_case = true lambda_index = 1 hard_case_check_done = false while !hard_case_check_done if lambda_index > length(H_eigv) hard_case_check_done = true elseif abs(H_eigv[1] - H_eigv[lambda_index]) > 1e-10 # The eigenvalues are reported in order. hard_case_check_done = true else if abs(qg[lambda_index]) > 1e-10 hard_case_check_done = true hard_case = false end lambda_index += 1 end end hard_case, lambda_index end # Equation 4.38 in N&W (2006) function calc_p!(lambda::T, min_i, n, qg, H_eig, p) where T fill!( p, zero(T) ) for i = min_i:n p[:] -= qg[i] / (H_eig.values[i] + lambda) * H_eig.vectors[:, i] end return nothing end #== Returns a tuple of initial safeguarding values for Ξ». Newton's method might not work well without these safeguards when the Hessian is not positive definite. ==# function initial_safeguards(H, gr, delta, lambda) # equations are on p. 560 of [MORESORENSEN] T = eltype(gr) Ξ»S = maximum(-diag(H)) # they state on the first page that ||β‹…|| is the Euclidean norm gr_norm = norm(gr) Hnorm = opnorm(H, 1) Ξ»L = max(T(0), Ξ»S, gr_norm/delta - Hnorm) Ξ»U = gr_norm/delta + Hnorm # p. 558 lambda = min(max(lambda, Ξ»L), Ξ»U) if lambda ≀ Ξ»S lambda = max(T(1)/1000*Ξ»U, sqrt(Ξ»L*Ξ»U)) end lambda end # Choose a point in the trust region for the next step using # the interative (nearly exact) method of section 4.3 of N&W (2006). # This is appropriate for Hessians that you factorize quickly. # # Args: # gr: The gradient # H: The Hessian # delta: The trust region size, ||s|| <= delta # s: Memory allocated for the step size, updated in place # tolerance: The convergence tolerance for root finding # max_iters: The maximum number of root finding iterations # # Returns: # m - The numeric value of the quadratic minimization. # interior - A boolean indicating whether the solution was interior # lambda - The chosen regularizing quantity # hard_case - Whether or not it was a "hard case" as described by N&W (2006) # reached_solution - Whether or not a solution was reached (as opposed to # terminating early due to max_iters) function solve_tr_subproblem!(gr, H, delta, s; tolerance=1e-10, max_iters=5) T = eltype(gr) n = length(gr) delta_sq = delta^2 @assert n == length(s) @assert (n, n) == size(H) @assert max_iters >= 1 # Note that currently the eigenvalues are only sorted if H is perfectly # symmetric. (Julia issue #17093) Hsym = Symmetric(H) if any(!isfinite, Hsym) return T(Inf), false, zero(T), false, false end H_eig = eigen(Hsym) if !isempty(H_eig.values) min_H_ev, max_H_ev = H_eig.values[1], H_eig.values[n] else return T(Inf), false, zero(T), false, false end H_ridged = copy(H) # Cache the inner products between the eigenvectors and the gradient. qg = H_eig.vectors' * gr # These values describe the outcome of the subproblem. They will be # set below and returned at the end. interior = true hard_case = false reached_solution = true # Unconstrained solution if min_H_ev >= 1e-8 calc_p!(zero(T), 1, n, qg, H_eig, s) end if min_H_ev >= 1e-8 && sum(abs2, s) <= delta_sq # No shrinkage is necessary: -(H \ gr) is the minimizer interior = true reached_solution = true lambda = zero(T) else interior = false # The hard case is when the gradient is orthogonal to all # eigenvectors associated with the lowest eigenvalue. hard_case_candidate, min_i = check_hard_case_candidate(H_eig.values, qg) # Solutions smaller than this lower bound on lambda are not allowed: # they don't ridge H enough to make H_ridge PSD. lambda_lb = nextfloat(-min_H_ev) lambda = lambda_lb hard_case = false if hard_case_candidate # The "hard case". lambda is taken to be -min_H_ev and we only need # to find a multiple of an orthogonal eigenvector that lands the # iterate on the boundary. # Formula 4.45 in N&W (2006) calc_p!(lambda, min_i, n, qg, H_eig, s) p_lambda2 = sum(abs2, s) if p_lambda2 > delta_sq # Then we can simply solve using root finding. else hard_case = true reached_solution = true tau = sqrt(delta_sq - p_lambda2) # I don't think it matters which eigenvector we pick so take # the first. calc_p!(lambda, min_i, n, qg, H_eig, s) s[:] = -s + tau * H_eig.vectors[:, 1] end end lambda = initial_safeguards(H, gr, delta, lambda) if !hard_case # Algorithim 4.3 of N&W (2006), with s insted of p_l for consistency # with Optim.jl reached_solution = false for iter in 1:max_iters lambda_previous = lambda for i=1:n H_ridged[i, i] = H[i, i] + lambda end F = cholesky(Hermitian(H_ridged), check=false) # Sometimes, lambda is not sufficiently large for the Cholesky factorization # to succeed. In that case, we set double lambda and continue to next iteration if !issuccess(F) lambda *= 2 continue end R = F.U s[:] = -R \ (R' \ gr) q_l = R' \ s norm2_s = dot(s, s) lambda_update = norm2_s * (sqrt(norm2_s) - delta) / (delta * dot(q_l, q_l)) lambda += lambda_update # Check that lambda is not less than lambda_lb, and if so, go # half the way to lambda_lb. if lambda < lambda_lb lambda = 0.5 * (lambda_previous - lambda_lb) + lambda_lb end if abs(lambda - lambda_previous) < tolerance reached_solution = true break end end end end m = dot(gr, s) + 0.5 * dot(s, H * s) return m, interior, lambda, hard_case, reached_solution end struct NewtonTrustRegion{T <: Real} <: SecondOrderOptimizer initial_delta::T delta_hat::T delta_min::T eta::T rho_lower::T rho_upper::T use_fg::Bool end """ # NewtonTrustRegion ## Constructor ```julia NewtonTrustRegion(; initial_delta = 1.0, delta_hat = 100.0, delta_min = 0.0, eta = 0.1, rho_lower = 0.25, rho_upper = 0.75, use_fg = true) ``` The constructor has 5 keywords: * `initial_delta`, the starting trust region radius. Defaults to `1.0`. * `delta_hat`, the largest allowable trust region radius. Defaults to `100.0`. * `delta_min`, the smallest alowable trust region radius. Optimization halts if the updated radius is smaller than this value. Defaults to `sqrt(eps(Float64))`. * `eta`, when `rho` is at least `eta`, accept the step. Defaults to `0.1`. * `rho_lower`, when `rho` is less than `rho_lower`, shrink the trust region. Defaults to `0.25`. * `rho_upper`, when `rho` is greater than `rho_upper`, grow the trust region. Defaults to `0.75`. * `use_fg`, when true always evaluate the gradient with the value after solving the subproblem. This is more efficient if f and g share expensive computations. Defaults to `true`. ## Description The `NewtonTrustRegion` method implements Newton's method with a trust region for optimizing a function. The method is designed to take advantage of the second-order information in a function's Hessian, but with more stability that Newton's method when functions are not globally well-approximated by a quadratic. This is achieved by repeatedly minimizing quadratic approximations within a dynamically-sized trust region in which the function is assumed to be locally quadratic. See Wright and Nocedal and Wright (ch. 4, 2006) for a discussion of trust-region methods in practice. ## References - Nocedal, J., & Wright, S. (2006). Numerical optimization. Springer Science & Business Media. """ NewtonTrustRegion(; initial_delta::Real = 1.0, delta_hat::Real = 100.0, delta_min::Real = sqrt(eps(Float64)), eta::Real = 0.1, rho_lower::Real = 0.25, rho_upper::Real = 0.75, use_fg=true) = NewtonTrustRegion(initial_delta, delta_hat, delta_min, eta, rho_lower, rho_upper, use_fg) Base.summary(::NewtonTrustRegion) = "Newton's Method (Trust Region)" mutable struct NewtonTrustRegionState{Tx, T, G} <: AbstractOptimizerState x::Tx x_previous::Tx g_previous::G f_x_previous::T s::Tx hard_case::Bool reached_subproblem_solution::Bool interior::Bool delta::T lambda::T eta::T rho::T end function initial_state(method::NewtonTrustRegion, options, d, initial_x) T = eltype(initial_x) n = length(initial_x) # Maintain current gradient in gr @assert(method.delta_hat > 0, "delta_hat must be strictly positive") @assert(0 < method.initial_delta < method.delta_hat, "delta must be in (0, delta_hat)") @assert(0 <= method.eta < method.rho_lower, "eta must be in [0, rho_lower)") @assert(method.rho_lower < method.rho_upper, "must have rho_lower < rho_upper") @assert(method.rho_lower >= 0.) # Keep track of trust region sizes delta = copy(method.initial_delta) # Record attributes of the subproblem in the trace. hard_case = false reached_subproblem_solution = true interior = true lambda = NaN NLSolversBase.value_gradient_hessian!!(d, initial_x) NewtonTrustRegionState(copy(initial_x), # Maintain current state in state.x copy(initial_x), # Maintain previous state in state.x_previous copy(gradient(d)), # Store previous gradient in state.g_previous T(NaN), # Store previous f in state.f_x_previous similar(initial_x), # Maintain current search direction in state.s hard_case, reached_subproblem_solution, interior, T(delta), T(lambda), T(method.eta), # eta zero(T)) # rho end function update_state!(d, state::NewtonTrustRegionState, method::NewtonTrustRegion) T = eltype(state.x) # Find the next step direction. m, state.interior, state.lambda, state.hard_case, state.reached_subproblem_solution = solve_tr_subproblem!(gradient(d), NLSolversBase.hessian(d), state.delta, state.s) # Maintain a record of previous position copyto!(state.x_previous, state.x) state.f_x_previous = value(d) # Update current position state.x .+= state.s # Update the function value and gradient if method.use_fg state.g_previous .= gradient(d) value_gradient!(d, state.x) else value!(d, state.x) end # Update the trust region size based on the discrepancy between # the predicted and actual function values. (Algorithm 4.1 in N&W (2006)) f_x_diff = state.f_x_previous - value(d) if abs(m) <= eps(T) # This should only happen when the step is very small, in which case # we should accept the step and assess_convergence(). state.rho = 1.0 elseif m > 0 # This can happen if the trust region radius is too large and the # Hessian is not positive definite. We should shrink the trust # region. state.rho = -1.0 else state.rho = f_x_diff / (0 - m) end if state.rho < method.rho_lower state.delta *= 0.25 elseif (state.rho > method.rho_upper) && (!state.interior) state.delta = min(2 * state.delta, method.delta_hat) else # else leave delta unchanged. end if state.rho <= state.eta # The improvement is too small and we won't take it. # If you reject an interior solution, make sure that the next # delta is smaller than the current step. Otherwise you waste # steps reducing delta by constant factors while each solution # will be the same. If this keeps on happening it could be a sign # errors in the gradient or a non-differentiability at the optimum. x_diff = state.x - state.x_previous state.delta = 0.25 * norm(x_diff) d.F = state.f_x_previous copyto!(state.x, state.x_previous) if method.use_fg copyto!(d.DF, state.g_previous) copyto!(d.x_df, state.x_previous) end else if method.use_fg hessian!(d, state.x) else NLSolversBase.gradient_hessian!!(d, state.x) end end false end function assess_convergence(state::NewtonTrustRegionState, d, options::Options) x_converged, f_converged, g_converged, converged, f_increased = false, false, false, false, false if state.rho > state.eta # Accept the point and check convergence x_converged, f_converged, g_converged, f_increased = assess_convergence(state.x, state.x_previous, value(d), state.f_x_previous, gradient(d), options.x_abstol, options.f_reltol, options.g_abstol) end x_converged, f_converged, g_converged, f_increased end function trace!(tr, d, state, iteration, method::NewtonTrustRegion, options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) dt["g(x)"] = copy(gradient(d)) dt["h(x)"] = copy(NLSolversBase.hessian(d)) dt["delta"] = copy(state.delta) dt["interior"] = state.interior dt["hard case"] = state.hard_case dt["reached_subproblem_solution"] = state.reached_subproblem_solution dt["lambda"] = state.lambda end g_norm = norm(gradient(d), Inf) update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
215
function grid_search(f, grid) min_value = f(grid[1]) arg_min_value = grid[1] for el in grid if f(el) < min_value arg_min_value = el end end return arg_min_value end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
12387
abstract type Simplexer end struct AffineSimplexer <: Simplexer a::Float64 b::Float64 end AffineSimplexer(;a = 0.025, b = 0.5) = AffineSimplexer(a, b) function simplexer(S::AffineSimplexer, initial_x::Tx) where Tx n = length(initial_x) initial_simplex = Tx[copy(initial_x) for i = 1:n+1] for j ∈ eachindex(initial_x) initial_simplex[j+1][j] = (1+S.b) * initial_simplex[j+1][j] + S.a end initial_simplex end abstract type NMParameters end struct AdaptiveParameters <: NMParameters Ξ±::Float64 Ξ²::Float64 Ξ³::Float64 Ξ΄::Float64 end AdaptiveParameters(; Ξ± = 1.0, Ξ² = 1.0, Ξ³ = 0.75 , Ξ΄ = 1.0) = AdaptiveParameters(Ξ±, Ξ², Ξ³, Ξ΄) parameters(P::AdaptiveParameters, n::Integer) = (P.Ξ±, P.Ξ² + 2/n, P.Ξ³ - 1/2n, P.Ξ΄ - 1/n) struct FixedParameters <: NMParameters Ξ±::Float64 Ξ²::Float64 Ξ³::Float64 Ξ΄::Float64 end FixedParameters(; Ξ± = 1.0, Ξ² = 2.0, Ξ³ = 0.5, Ξ΄ = 0.5) = FixedParameters(Ξ±, Ξ², Ξ³, Ξ΄) parameters(P::FixedParameters, n::Integer) = (P.Ξ±, P.Ξ², P.Ξ³, P.Ξ΄) struct NelderMead{Ts <: Simplexer, Tp <: NMParameters} <: ZerothOrderOptimizer initial_simplex::Ts parameters::Tp end """ # NelderMead ## Constructor ```julia NelderMead(; parameters = AdaptiveParameters(), initial_simplex = AffineSimplexer()) ``` The constructor takes 2 keywords: * `parameters`, an instance of either `AdaptiveParameters` or `FixedParameters`, and is used to generate parameters for the Nelder-Mead Algorithm * `initial_simplex`, an instance of `AffineSimplexer` ## Description Our current implementation of the Nelder-Mead algorithm is based on [1] and [3]. Gradient-free methods can be a bit sensitive to starting values and tuning parameters, so it is a good idea to be careful with the defaults provided in Optim.jl. Instead of using gradient information, Nelder-Mead is a direct search method. It keeps track of the function value at a number of points in the search space. Together, the points form a simplex. Given a simplex, we can perform one of four actions: reflect, expand, contract, or shrink. Basically, the goal is to iteratively replace the worst point with a better point. More information can be found in [1], [2] or [3]. ## References - [1] Nelder, John A. and R. Mead (1965). "A simplex method for function minimization". Computer Journal 7: 308–313. doi:10.1093/comjnl/7.4.308 - [2] Lagarias, Jeffrey C., et al. "Convergence properties of the Nelder–Mead simplex method in low dimensions." SIAM Journal on Optimization 9.1 (1998): 112-147 - [3] Gao, Fuchang and Lixing Han (2010). "Implementing the Nelder-Mead simplex algorithm with adaptive parameters". Computational Optimization and Applications. doi:10.1007/s10589-010-9329-3 """ function NelderMead(; kwargs...) KW = Dict(kwargs) if haskey(KW, :initial_simplex) || haskey(KW, :parameters) initial_simplex, parameters = AffineSimplexer(), AdaptiveParameters() haskey(KW, :initial_simplex) && (initial_simplex = KW[:initial_simplex]) haskey(KW, :parameters) && (parameters = KW[:parameters]) return NelderMead(initial_simplex, parameters) else return NelderMead(AffineSimplexer(), AdaptiveParameters()) end end Base.summary(::NelderMead) = "Nelder-Mead" # centroid except h-th vertex function centroid!(c::AbstractArray{T}, simplex, h=0) where T n = length(c) fill!(c, zero(T)) for i in eachindex(simplex) if i != h xi = simplex[i] c .+= xi end end rmul!(c, T(1)/n) end centroid(simplex, h) = centroid!(similar(simplex[1]), simplex, h) nmobjective(y::Vector, m::Integer, n::Integer) = sqrt(var(y) * (m / n)) function print_header(method::NelderMead) @printf "Iter Function value √(Ξ£(yα΅’-yΜ„)Β²)/n \n" @printf "------ -------------- --------------\n" end function Base.show(io::IO, trace::OptimizationTrace{<:Real, NelderMead}) @printf io "Iter Function value √(Ξ£(yα΅’-yΜ„)Β²)/n \n" @printf io "------ -------------- --------------\n" for state in trace.states show(io, state) end return end function Base.show(io::IO, t::OptimizationState{<:Real, NelderMead}) @printf io "%6d %14e %14e\n" t.iteration t.value t.g_norm if !isempty(t.metadata) for (key, value) in t.metadata @printf io " * %s: %s\n" key value end end return end mutable struct NelderMeadState{Tx, T, Tfs} <: ZerothOrderState x::Tx m::Int simplex::Vector{Tx} x_centroid::Tx x_lowest::Tx x_second_highest::Tx x_highest::Tx x_reflect::Tx x_cache::Tx f_simplex::Tfs nm_x::T f_lowest::T i_order::Vector{Int} Ξ±::T Ξ²::T Ξ³::T Ξ΄::T step_type::String end function reset!(method::NelderMead, state::NelderMeadState, obj, x) state.simplex = simplexer(method.initial_simplex, x) value!(obj, first(state.simplex)) state.f_simplex[1] = value(obj) for i in 2:length(state.simplex) state.f_simplex[i] = value(obj, state.simplex[i]) end # Get the indices that correspond to the ordering of the f values # at the vertices. i_order[1] is the index in the simplex of the vertex # with the lowest function value, and i_order[end] is the index in the # simplex of the vertex with the highest function value state.i_order = sortperm(state.f_simplex) end function initial_state(method::NelderMead, options, d, initial_x) T = eltype(initial_x) n = length(initial_x) m = n + 1 simplex = simplexer(method.initial_simplex, initial_x) f_simplex = zeros(T, m) value!!(d, first(simplex)) f_simplex[1] = value(d) for i in 2:length(simplex) f_simplex[i] = value(d, simplex[i]) end # Get the indices that correspond to the ordering of the f values # at the vertices. i_order[1] is the index in the simplex of the vertex # with the lowest function value, and i_order[end] is the index in the # simplex of the vertex with the highest function value i_order = sortperm(f_simplex) Ξ±, Ξ², Ξ³, Ξ΄ = parameters(method.parameters, n) NelderMeadState(copy(initial_x), # Variable to hold final minimizer value for MultivariateOptimizationResults m, # Number of vertices in the simplex simplex, # Maintain simplex in state.simplex centroid(simplex, i_order[m]), # Maintain centroid in state.centroid copy(initial_x), # Store cache in state.x_lowest copy(initial_x), # Store cache in state.x_second_highest copy(initial_x), # Store cache in state.x_highest copy(initial_x), # Store cache in state.x_reflect copy(initial_x), # Store cache in state.x_cache f_simplex, # Store objective values at the vertices in state.f_simplex T(nmobjective(f_simplex, n, m)), # Store nmobjective in state.nm_x f_simplex[i_order[1]], # Store lowest f in state.f_lowest i_order, # Store a vector of rankings of objective values T(Ξ±), T(Ξ²), T(Ξ³), T(Ξ΄), "initial") end function update_state!(f::F, state::NelderMeadState{T}, method::NelderMead) where {F, T} # Augment the iteration counter shrink = false n, m = length(state.x), state.m centroid!(state.x_centroid, state.simplex, state.i_order[m]) copyto!(state.x_lowest, state.simplex[state.i_order[1]]) copyto!(state.x_second_highest, state.simplex[state.i_order[n]]) copyto!(state.x_highest, state.simplex[state.i_order[m]]) state.f_lowest = state.f_simplex[state.i_order[1]] f_second_highest = state.f_simplex[state.i_order[n]] f_highest = state.f_simplex[state.i_order[m]] # Compute a reflection @. state.x_reflect = state.x_centroid + state.Ξ± * (state.x_centroid - state.x_highest) f_reflect = value(f, state.x_reflect) if f_reflect < state.f_lowest # Compute an expansion @. state.x_cache = state.x_centroid + state.Ξ² *(state.x_reflect - state.x_centroid) f_expand = value(f, state.x_cache) if f_expand < f_reflect copyto!(state.simplex[state.i_order[m]], state.x_cache) @inbounds state.f_simplex[state.i_order[m]] = f_expand state.step_type = "expansion" else copyto!(state.simplex[state.i_order[m]], state.x_reflect) @inbounds state.f_simplex[state.i_order[m]] = f_reflect state.step_type = "reflection" end # shift all order indeces, and wrap the last one around to the first i_highest = state.i_order[m] @inbounds for i = m:-1:2 state.i_order[i] = state.i_order[i-1] end state.i_order[1] = i_highest elseif f_reflect < f_second_highest copyto!(state.simplex[state.i_order[m]], state.x_reflect) @inbounds state.f_simplex[state.i_order[m]] = f_reflect state.step_type = "reflection" sortperm!(state.i_order, state.f_simplex) else if f_reflect < f_highest # Outside contraction @. state.x_cache = state.x_centroid + state.Ξ³ * (state.x_reflect - state.x_centroid) f_outside_contraction = value(f, state.x_cache) if f_outside_contraction < f_reflect copyto!(state.simplex[state.i_order[m]], state.x_cache) @inbounds state.f_simplex[state.i_order[m]] = f_outside_contraction state.step_type = "outside contraction" sortperm!(state.i_order, state.f_simplex) else shrink = true end else # f_reflect > f_highest # Inside constraction @. state.x_cache = state.x_centroid - state.Ξ³ *(state.x_reflect - state.x_centroid) f_inside_contraction = value(f, state.x_cache) if f_inside_contraction < f_highest copyto!(state.simplex[state.i_order[m]], state.x_cache) @inbounds state.f_simplex[state.i_order[m]] = f_inside_contraction state.step_type = "inside contraction" sortperm!(state.i_order, state.f_simplex) else shrink = true end end end if shrink for i = 2:m ord = state.i_order[i] copyto!(state.simplex[ord], state.x_lowest + state.Ξ΄*(state.simplex[ord]-state.x_lowest)) state.f_simplex[ord] = value(f, state.simplex[ord]) end step_type = "shrink" sortperm!(state.i_order, state.f_simplex) end state.nm_x = nmobjective(state.f_simplex, n, m) false end function after_while!(f, state, method::NelderMead, options) sortperm!(state.i_order, state.f_simplex) x_centroid_min = centroid(state.simplex, state.i_order[state.m]) f_centroid_min = value(f, x_centroid_min) f_min, i_f_min = findmin(state.f_simplex) x_min = state.simplex[i_f_min] if f_centroid_min < f_min x_min = x_centroid_min f_min = f_centroid_min end if f isa BarrierWrapper f.Fb = f_min else f.F = f_min end state.x .= x_min end # We don't have an f_x_previous in NelderMeadState, so we need to special case these pick_best_x(f_increased, state::NelderMeadState) = state.x pick_best_f(f_increased, state::NelderMeadState, d) = value(d) function assess_convergence(state::NelderMeadState, d, options::Options) g_converged = state.nm_x <= options.g_abstol # Hijact g_converged for NM stopping criterior return false, false, g_converged, false end function initial_convergence(d, state::NelderMeadState, method::NelderMead, initial_x, options) nmo = nmobjective(state.f_simplex, state.m, length(initial_x)) !isfinite(value(d)), nmo <= options.g_abstol, !isfinite(nmo) end function trace!(tr, d, state, iteration, method::NelderMead, options::Options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["centroid"] = copy(state.x_centroid) dt["step_type"] = state.step_type end if options.trace_simplex dt["simplex"] = state.simplex dt["simplex_values"] = state.f_simplex end update!(tr, iteration, state.f_lowest, state.nm_x, dt, options.store_trace, options.show_trace, options.show_every, options.callback, options.trace_simplex) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
13963
struct ParticleSwarm{Tl, Tu} <: ZerothOrderOptimizer lower::Tl upper::Tu n_particles::Int end """ # Particle Swarm ## Constructor ```julia ParticleSwarm(; lower = [], upper = [], n_particles = 0) ``` The constructor takes 3 keywords: * `lower = []`, a vector of lower bounds, unbounded below if empty or `-Inf`'s * `upper = []`, a vector of upper bounds, unbounded above if empty or `Inf`'s * `n_particles = 0`, the number of particles in the swarm, defaults to least three ## Description The Particle Swarm implementation in Optim.jl is the so-called Adaptive Particle Swarm algorithm in [1]. It attempts to improve global coverage and convergence by switching between four evolutionary states: exploration, exploitation, convergence, and jumping out. In the jumping out state it intentionally tries to take the best particle and move it away from its (potentially and probably) local optimum, to improve the ability to find a global optimum. Of course, this comes a the cost of slower convergence, but hopefully converges to the global optimum as a result. Note, that convergence is never assessed for ParticleSwarm. It will run until it reaches the maximum number of iterations set in Optim.Options(iterations=x)`. ## References - [1] Zhan, Zhang, and Chung. Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B: CyberneticsVolume 39, Issue 6 (2009): 1362-1381 """ ParticleSwarm(; lower = [], upper = [], n_particles = 0) = ParticleSwarm(lower, upper, n_particles) Base.summary(::ParticleSwarm) = "Particle Swarm" mutable struct ParticleSwarmState{Tx,T} <: ZerothOrderState x::Tx iteration::Int lower::Tx upper::Tx c1::T # Weight variable; currently not exposed to users c2::T # Weight variable; currently not exposed to users w::T # Weight variable; currently not exposed to users limit_search_space::Bool n_particles::Int X V X_best score::Vector{T} best_score::Vector{T} x_learn current_state iterations::Int end function initial_state(method::ParticleSwarm, options, d, initial_x::AbstractArray{T}) where T #= Variable X represents the whole swarm of solutions with the columns being the individual particles (= solutions to the optimization problem.) In each iteration the cost function is evaluated for all particles. For the next iteration all particles "move" towards their own historically best and the global historically best solution. The weighing coefficients c1 and c2 define how much towards the global or individual best solution they are pulled. In each iteration there is a check for an additional special solution which consists of the historically global best solution where one randomly chosen parameter is modified. This helps the swarm jumping out of local minima. =# n = length(initial_x) if isempty(method.lower) limit_search_space = false lower = copy(initial_x) lower .= -Inf else lower = method.lower limit_search_space = true end if isempty(method.upper) upper = copy(initial_x) upper .= Inf # limit_search_space is whatever it was for lower else upper = method.upper limit_search_space = true end @assert length(lower) == length(initial_x) "limits must be of same length as x_initial." @assert all(upper .> lower) "upper must be greater than lower" if method.n_particles > 0 if method.n_particles < 3 @warn("Number of particles is set to 3 (minimum required)") n_particles = 3 else n_particles = method.n_particles end else # user did not define number of particles n_particles = maximum([3, length(initial_x)]) end c1 = T(2) c2 = T(2) w = T(1) X = Array{T,2}(undef, n, n_particles) V = Array{T,2}(undef, n, n_particles) X_best = Array{T,2}(undef, n, n_particles) dx = zeros(T, n) score = zeros(T, n_particles) x = copy(initial_x) best_score = zeros(T, n_particles) x_learn = copy(initial_x) current_state = 0 value!!(d, initial_x) score[1] = value(d) # if search space is limited, spread the initial population # uniformly over the whole search space if limit_search_space for i in 1:n_particles for j in 1:n ww = upper[j] - lower[j] X[j, i] = lower[j] + ww * rand(T) X_best[j, i] = X[j, i] V[j, i] = ww * (rand(T) * T(2) - T(1)) / 10 end end else for i in 1:n_particles for j in 1:n if i == 1 if abs(initial_x[i]) > T(0) dx[j] = abs(initial_x[i]) else dx[j] = T(1) end end X[j, i] = initial_x[j] + dx[j] * rand(T) X_best[j, i] = X[j, i] V[j, i] = abs(X[j, i]) * (rand(T) * T(2) - T(1)) end end end for j in 1:n X[j, 1] = initial_x[j] X_best[j, 1] = initial_x[j] end for i in 2:n_particles score[i] = value(d, X[:, i]) end ParticleSwarmState( x, 0, lower, upper, c1, c2, w, limit_search_space, n_particles, X, V, X_best, score, best_score, x_learn, 0, options.iterations) end function update_state!(f, state::ParticleSwarmState{T}, method::ParticleSwarm) where T n = length(state.x) if state.iteration == 0 copyto!(state.best_score, state.score) f.F = Base.minimum(state.score) end f.F = housekeeping!(state.score, state.best_score, state.X, state.X_best, state.x, value(f), state.n_particles) # Elitist Learning: # find a new solution named 'x_learn' which is the current best # solution with one randomly picked variable being modified. # Replace the current worst solution in X with x_learn # if x_learn presents the new best solution. # In all other cases discard x_learn. # This helps jumping out of local minima. worst_score, i_worst = findmax(state.score) for k in 1:n state.x_learn[k] = state.x[k] end random_index = rand(1:n) random_value = randn() sigma_learn = 1 - (1 - 0.1) * state.iteration / state.iterations r3 = randn() * sigma_learn if state.limit_search_space state.x_learn[random_index] = state.x_learn[random_index] + (state.upper[random_index] - state.lower[random_index]) / 3.0 * r3 else state.x_learn[random_index] = state.x_learn[random_index] + state.x_learn[random_index] * r3 end if state.limit_search_space if state.x_learn[random_index] < state.lower[random_index] state.x_learn[random_index] = state.lower[random_index] elseif state.x_learn[random_index] > state.upper[random_index] state.x_learn[random_index] = state.upper[random_index] end end score_learn = value(f, state.x_learn) if score_learn < f.F f.F = score_learn * 1.0 for j in 1:n state.X_best[j, i_worst] = state.x_learn[j] state.X[j, i_worst] = state.x_learn[j] state.x[j] = state.x_learn[j] end state.score[i_worst] = score_learn state.best_score[i_worst] = score_learn end # TODO find a better name for _f (look inthe paper, it might be called f there) state.current_state, _f = get_swarm_state(state.X, state.score, state.x, state.current_state) state.w, state.c1, state.c2 = update_swarm_params!(state.c1, state.c2, state.w, state.current_state, _f) update_swarm!(state.X, state.X_best, state.x, n, state.n_particles, state.V, state.w, state.c1, state.c2) if state.limit_search_space limit_X!(state.X, state.lower, state.upper, state.n_particles, n) end compute_cost!(f, state.n_particles, state.X, state.score) state.iteration += 1 false end function update_swarm!(X::AbstractArray{Tx}, X_best, best_point, n, n_particles, V, w, c1, c2) where Tx # compute new positions for the swarm particles for i in 1:n_particles for j in 1:n r1 = rand(Tx) r2 = rand(Tx) vx = X_best[j, i] - X[j, i] vg = best_point[j] - X[j, i] V[j, i] = V[j, i]*w + c1*r1*vx + c2*r2*vg X[j, i] = X[j, i] + V[j, i] end end end function get_mu_1(f::Tx) where Tx if Tx(0) <= f <= Tx(4)/10 return Tx(0) elseif Tx(4)/10 < f <= Tx(6)/10 return Tx(5) * f - Tx(2) elseif Tx(6)/10 < f <= Tx(7)/10 return Tx(1) elseif Tx(7)/10 < f <= Tx(8)/10 return -Tx(10) * f + Tx(8) else return Tx(0) end end function get_mu_2(f::Tx) where Tx if Tx(0) <= f <= Tx(2)/10 return Tx(0) elseif Tx(2)/10 < f <= Tx(3)/10 return Tx(10) * f - Tx(2) elseif Tx(3)/10 < f <= Tx(4)/10 return Tx(1) elseif Tx(4)/10 < f <= Tx(6)/10 return -Tx(5) * f + Tx(3) else return Tx(0) end end function get_mu_3(f::Tx) where Tx if Tx(0) <= f <= Tx(1)/10 return Tx(1) elseif Tx(1)/10 < f <= Tx(3)/10 return -Tx(5) * f + Tx(3)/2 else return Tx(0) end end function get_mu_4(f::Tx) where Tx if Tx(0) <= f <= Tx(7)/10 return Tx(0) elseif Tx(7)/10 < f <= Tx(9)/10 return Tx(5) * f - Tx(7)/2 else return Tx(1) end end function get_swarm_state(X::AbstractArray{Tx}, score, best_point, previous_state) where Tx # swarm can be in 4 different states, depending on which # the weighing factors c1 and c2 are adapted. # New state is not only depending on the current swarm state, # but also from the previous state. n, n_particles = size(X) f_best, i_best = findmin(score) XtX = X'X #@assert size(XtX) == (n_particles, n_particles) XtX_tr = LinearAlgebra.tr(XtX) d = sum(XtX, dims=1) @inbounds for i in eachindex(d) d[i] = sqrt(max(n_particles * XtX[i, i] + XtX_tr - 2 * d[i], Tx(0.0))) end dg = d[i_best] dmin, dmax = extrema(d) f = (dg - dmin) / max(dmax - dmin, sqrt(eps(Tx))) mu = zeros(Tx, 4) mu[1] = get_mu_1(f) mu[2] = get_mu_2(f) mu[3] = get_mu_3(f) mu[4] = get_mu_4(f) best_mu, i_best_mu = findmax(mu) current_state = 0 if previous_state == 0 current_state = i_best_mu elseif previous_state == 1 if mu[1] > 0 current_state = 1 else if mu[2] > 0 current_state = 2 elseif mu[4] > 0 current_state = 4 else current_state = 3 end end elseif previous_state == 2 if mu[2] > 0 current_state = 2 else if mu[3] > 0 current_state = 3 elseif mu[1] > 0 current_state = 1 else current_state = 4 end end elseif previous_state == 3 if mu[3] > 0 current_state = 3 else if mu[4] > 0 current_state = 4 elseif mu[2] > 0 current_state = 2 else current_state = 1 end end elseif previous_state == 4 if mu[4] > 0 current_state = 4 else if mu[1] > 0 current_state = 1 elseif mu[2] > 0 current_state = 2 else current_state = 3 end end end return current_state, f end function update_swarm_params!(c1, c2, w, current_state, f::T) where T delta_c1 = T(5)/100 + rand(T) / T(20) delta_c2 = T(5)/100 + rand(T) / T(20) if current_state == 1 c1 += delta_c1 c2 -= delta_c2 elseif current_state == 2 c1 += delta_c1 / 2 c2 -= delta_c2 / 2 elseif current_state == 3 c1 += delta_c1 / 2 c2 += delta_c2 / 2 elseif current_state == 4 c1 -= delta_c1 c2 -= delta_c2 end if c1 < T(3)/2 c1 = T(3)/2 elseif c1 > T(5)/2 c1 = T(5)/2 end if c2 < T(3)/2 c2 = T(5)/2 elseif c2 > T(5)/2 c2 = T(5)/2 end if c1 + c2 > T(4) c_total = c1 + c2 c1 = c1 / c_total * 4 c2 = c2 / c_total * 4 end w = 1 / (1 + T(3)/2 * exp(-T(26)/10 * f)) return w, c1, c2 end function housekeeping!(score, best_score, X, X_best, best_point, F, n_particles) n = size(X, 1) for i in 1:n_particles if score[i] <= best_score[i] best_score[i] = score[i] for k in 1:n X_best[k, i] = X[k, i] end if score[i] <= F for k in 1:n best_point[k] = X[k, i] end F = score[i] end end end return F end function limit_X!(X, lower, upper, n_particles, n) # limit X values to boundaries for i in 1:n_particles for j in 1:n if X[j, i] < lower[j] X[j, i] = lower[j] elseif X[j, i] > upper[j] X[j, i] = upper[j] end end end nothing end function compute_cost!(f, n_particles::Int, X::Matrix, score::Vector) for i in 1:n_particles score[i] = value(f, X[:, i]) end nothing end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3710
log_temperature(t) = 1 / log(t) constant_temperature(t) = 1.0 function default_neighbor!(x::AbstractArray{T}, x_proposal::AbstractArray) where T @assert size(x) == size(x_proposal) for i in 1:length(x) @inbounds x_proposal[i] = x[i] + T(randn()) # workaround because all types might not have randn end return end struct SimulatedAnnealing{Tn, Ttemp} <: ZerothOrderOptimizer neighbor!::Tn temperature::Ttemp keep_best::Bool # not used!? end """ # SimulatedAnnealing ## Constructor ```julia SimulatedAnnealing(; neighbor = default_neighbor!, temperature = log_temperature, keep_best::Bool = true) ``` The constructor takes 3 keywords: * `neighbor = a!(x_proposed, x_current)`, a mutating function of the current `x`, and the proposed `x` * `T = b(iteration)`, a function of the current iteration that returns a temperature * `p = c(f_proposal, f_current, T)`, a function of the current temperature, current function value and proposed function value that returns an acceptance probability ## Description Simulated Annealing is a derivative free method for optimization. It is based on the Metropolis-Hastings algorithm that was originally used to generate samples from a thermodynamics system, and is often used to generate draws from a posterior when doing Bayesian inference. As such, it is a probabilistic method for finding the minimum of a function, often over a quite large domains. For the historical reasons given above, the algorithm uses terms such as cooling, temperature, and acceptance probabilities. """ SimulatedAnnealing(;neighbor = default_neighbor!, temperature = log_temperature, keep_best::Bool = true) = SimulatedAnnealing(neighbor, temperature, keep_best) Base.summary(::SimulatedAnnealing) = "Simulated Annealing" mutable struct SimulatedAnnealingState{Tx,T} <: ZerothOrderState x::Tx iteration::Int x_current::Tx x_proposal::Tx f_x_current::T f_proposal::T end # We don't have an f_x_previous in SimulatedAnnealing, so we need to special case these pick_best_x(f_increased, state::SimulatedAnnealingState) = state.x pick_best_f(f_increased, state::SimulatedAnnealingState, d) = value(d) function initial_state(method::SimulatedAnnealing, options, d, initial_x::AbstractArray{T}) where T value!!(d, initial_x) # Store the best state ever visited best_x = copy(initial_x) SimulatedAnnealingState(copy(best_x), 1, best_x, copy(initial_x), value(d), value(d)) end function update_state!(nd, state::SimulatedAnnealingState{Tx, T}, method::SimulatedAnnealing) where {Tx, T} # Determine the temperature for current iteration t = method.temperature(state.iteration) # Randomly generate a neighbor of our current state method.neighbor!(state.x_current, state.x_proposal) # Evaluate the cost function at the proposed state state.f_proposal = value(nd, state.x_proposal) if state.f_proposal <= state.f_x_current # If proposal is superior, we always move to it copyto!(state.x_current, state.x_proposal) state.f_x_current = state.f_proposal # If the new state is the best state yet, keep a record of it if state.f_proposal < value(nd) nd.F = state.f_proposal copyto!(state.x, state.x_proposal) end else # If proposal is inferior, we move to it with probability p p = exp(-(state.f_proposal - state.f_x_current) / t) if rand() <= p copyto!(state.x_current, state.x_proposal) state.f_x_current = state.f_proposal end end state.iteration += 1 false end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
905
function trace!(tr, d, state, iteration, method::Union{ZerothOrderOptimizer, SAMIN}, options::Options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) end update!(tr, state.iteration, d.F, NaN, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end function assess_convergence(state::ZerothOrderState, d, options::Options) false, false, false, false end f_abschange(d::AbstractObjective, state::ZerothOrderState) = convert(typeof(value(d)), NaN) f_relchange(d::AbstractObjective, state::ZerothOrderState) = convert(typeof(value(d)), NaN) x_abschange(state::ZerothOrderState) = convert(real(eltype(state.x)), NaN) x_relchange(state::ZerothOrderState) = convert(real(eltype(state.x)), NaN)
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
1914
function print_header(method::Brent) @printf "Iter Function value Lower bound Upper bound Best bound\n" end function Base.show(io::IO, trace::OptimizationTrace{<:Real, Brent}) @printf io "Iter Function value Lower bound Upper bound Best bound\n" @printf io "------ -------------- ----------- ----------- ----------\n" for state in trace.states show(io, state) end return end function Base.show(io::IO, t::OptimizationState{<:Real, Brent}) @printf io "%6d %14e %14e %14e %s\n" t.iteration t.value t.metadata["x_lower"] t.metadata["x_upper"] t.metadata["best bound"] return end function print_header(method::GoldenSection) @printf "Iter Function value Lower bound Upper bound\n" end function Base.show(io::IO, trace::OptimizationTrace{<:Real, GoldenSection}) @printf io "Iter Function value Lower bound Upper bound" @printf io "------ -------------- ----------- -----------" for state in trace.states show(io, state) end return end function Base.show(io::IO, t::OptimizationState{<:Real, GoldenSection}) @printf io "%6d %14e %14e %14e\n" t.iteration t.value t.metadata["x_lower"] t.metadata["x_upper"] return end function Base.show(io::IO, r::UnivariateOptimizationResults) @printf io "Results of Optimization Algorithm\n" @printf io " * Algorithm: %s\n" summary(r) @printf io " * Search Interval: [%f, %f]\n" lower_bound(r) upper_bound(r) @printf io " * Minimizer: %e\n" minimizer(r) @printf io " * Minimum: %e\n" minimum(r) @printf io " * Iterations: %d\n" iterations(r) @printf io " * Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(%.1e*|x|+%.1e): %s\n" rel_tol(r) abs_tol(r) converged(r) @printf io " * Objective Function Calls: %d" f_calls(r) return end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
354
mutable struct UnivariateOptimizationResults{Tb,Tt,Tf, Tx,M,O<:UnivariateOptimizer} <: OptimizationResults method::O initial_lower::Tb initial_upper::Tb minimizer::Tx minimum::Tf iterations::Int iteration_converged::Bool converged::Bool rel_tol::Tt abs_tol::Tt trace::OptimizationTrace{M} f_calls::Int end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
1557
# Univariate Options function optimize(f, lower::T, upper::T; method = Brent(), rel_tol::Real = sqrt(eps(float(T))), abs_tol::Real = eps(float(T)), iterations::Integer = 1_000, store_trace::Bool = false, show_trace::Bool = false, show_warnings::Bool = true, callback = nothing, show_every = 1, extended_trace::Bool = false) where T <: Real show_every = show_every > 0 ? show_every : 1 if extended_trace && callback === nothing show_trace = true end show_trace && print_header(method) Tf = float(T) optimize(f, Tf(lower), Tf(upper), method; rel_tol = Tf(rel_tol), abs_tol = Tf(abs_tol), iterations = iterations, store_trace = store_trace, show_trace = show_trace, show_warnings = show_warnings, show_every = show_every, callback = callback, extended_trace = extended_trace) end function optimize(f, lower::Union{Integer, Real}, upper::Union{Integer, Real}; kwargs...) T = promote_type(typeof(lower/1), typeof(upper/1)) optimize(f, T(lower), T(upper); kwargs...) end function optimize(f, lower::Union{Integer, Real}, upper::Union{Integer, Real}, method::Union{Brent, GoldenSection}; kwargs...) T = promote_type(typeof(lower/1), typeof(upper/1)) optimize(f, T(lower), T(upper), method; kwargs...) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
6979
""" # Brent ## Constructor ```julia Brent(;) ``` ## Description Also known as the Brent-Dekker algorith, `Brent` is a univariate optimization algorithm for minimizing functions on some interval `[a,b]`. The method uses bisection to find a zero of the gradient. If the original interval contains a minimum, bisection will reliably find the solution, but can be slow. To this end `Brent` combines bisection with the secant method and inverse quadratic interpolation to accelerate convergence. ## References R. P. Brent (2002) Algorithms for Minimization Without Derivatives. Dover edition. """ struct Brent <: UnivariateOptimizer end Base.summary(::Brent) = "Brent's Method" function optimize( f, x_lower::T, x_upper::T, mo::Brent; rel_tol::T = sqrt(eps(T)), abs_tol::T = eps(T), iterations::Integer = 1_000, store_trace::Bool = false, show_trace::Bool = false, show_warnings::Bool = true, callback = nothing, show_every = 1, extended_trace::Bool = false) where T <: AbstractFloat t0 = time() options = (store_trace=store_trace, show_trace=show_trace, show_warnings=show_warnings, show_every=show_every, callback=callback) if x_lower > x_upper error("x_lower must be less than x_upper") end # Save for later initial_lower = x_lower initial_upper = x_upper golden_ratio::T = T(1)/2 * (3 - sqrt(T(5.0))) new_minimizer = x_lower + golden_ratio*(x_upper-x_lower) new_minimum = f(new_minimizer) best_bound = "initial" f_calls = 1 # Number of calls to f step = zero(T) old_step = zero(T) old_minimizer = new_minimizer old_old_minimizer = new_minimizer old_minimum = new_minimum old_old_minimum = new_minimum iteration = 0 converged = false # Trace the history of states visited tr = OptimizationTrace{T, typeof(mo)}() tracing = store_trace || show_trace || extended_trace || callback !== nothing stopped_by_callback = false if tracing # update trace; callbacks can stop routine early by returning true state = (new_minimizer=new_minimizer, x_lower=x_lower, x_upper=x_upper, best_bound=best_bound, new_minimum=new_minimum) stopped_by_callback = trace!(tr, nothing, state, iteration, mo, options, time()-t0) end while iteration < iterations && !stopped_by_callback p = zero(T) q = zero(T) x_tol = rel_tol * abs(new_minimizer) + abs_tol x_midpoint = (x_upper+x_lower)/2 if abs(new_minimizer - x_midpoint) <= 2*x_tol - (x_upper-x_lower)/2 converged = true break end iteration += 1 if abs(old_step) > x_tol # Compute parabola interpolation # new_minimizer + p/q is the optimum of the parabola # Also, q is guaranteed to be positive r = (new_minimizer - old_minimizer) * (new_minimum - old_old_minimum) q = (new_minimizer - old_old_minimizer) * (new_minimum - old_minimum) p = (new_minimizer - old_old_minimizer) * q - (new_minimizer - old_minimizer) * r q = 2(q - r) if q > 0 p = -p else q = -q end end if abs(p) < abs(q*old_step/2) && p < q*(x_upper-new_minimizer) && p < q*(new_minimizer-x_lower) old_step = step step = p/q # The function must not be evaluated too close to x_upper or x_lower x_temp = new_minimizer + step if ((x_temp - x_lower) < 2*x_tol || (x_upper - x_temp) < 2*x_tol) step = (new_minimizer < x_midpoint) ? x_tol : -x_tol end else old_step = (new_minimizer < x_midpoint) ? x_upper - new_minimizer : x_lower - new_minimizer step = golden_ratio * old_step end # The function must not be evaluated too close to new_minimizer if abs(step) >= x_tol new_x = new_minimizer + step else new_x = new_minimizer + ((step > 0) ? x_tol : -x_tol) end new_f = f(new_x) f_calls += 1 if new_f < new_minimum if new_x < new_minimizer x_upper = new_minimizer best_bound = "upper" else x_lower = new_minimizer best_bound = "lower" end old_old_minimizer = old_minimizer old_old_minimum = old_minimum old_minimizer = new_minimizer old_minimum = new_minimum new_minimizer = new_x new_minimum = new_f else if new_x < new_minimizer x_lower = new_x else x_upper = new_x end if new_f <= old_minimum || old_minimizer == new_minimizer old_old_minimizer = old_minimizer old_old_minimum = old_minimum old_minimizer = new_x old_minimum = new_f elseif new_f <= old_old_minimum || old_old_minimizer == new_minimizer || old_old_minimizer == old_minimizer old_old_minimizer = new_x old_old_minimum = new_f end end if tracing # update trace; callbacks can stop routine early by returning true state = (new_minimizer=new_minimizer, x_lower=x_lower, x_upper=x_upper, best_bound=best_bound, new_minimum=new_minimum) stopped_by_callback = trace!(tr, nothing, state, iteration, mo, options, time()-t0) end end return UnivariateOptimizationResults(mo, initial_lower, initial_upper, new_minimizer, new_minimum, iteration, iteration == iterations, converged, rel_tol, abs_tol, tr, f_calls) end function trace!(tr, d, state, iteration, method::Brent, options, curr_time=time()) dt = Dict() dt["time"] = curr_time dt["minimizer"] = state.new_minimizer dt["x_lower"] = state.x_lower dt["x_upper"] = state.x_upper dt["best bound"] = state.best_bound T = eltype(state.new_minimum) update!(tr, iteration, state.new_minimum, T(NaN), dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
4888
""" # GoldenSection ## Constructor ```julia GoldenSection(;) ``` ## Description The `GoldenSection` method seeks to minimize a univariate function on an interval `[a, b]`. At all times the algorithm maintains a tuple of three minimizer candidates `(c, d, e)` where ``c<d<e`` such that the ratio of the largest to the smallest interval is the Golden Ratio. ## References https://en.wikipedia.org/wiki/Golden-section_search """ struct GoldenSection <: UnivariateOptimizer end Base.summary(::GoldenSection) = "Golden Section Search" function optimize(f, x_lower::T, x_upper::T, mo::GoldenSection; rel_tol::T = sqrt(eps(T)), abs_tol::T = eps(T), iterations::Integer = 1_000, store_trace::Bool = false, show_trace::Bool = false, show_warnings::Bool = true, callback = nothing, show_every = 1, extended_trace::Bool = false, nargs...) where T <: AbstractFloat if x_lower > x_upper error("x_lower must be less than x_upper") end t0 = time() options = (store_trace=store_trace, show_trace=show_trace, show_warnings=show_warnings, show_every=show_every, callback=callback) # Save for later initial_lower = x_lower initial_upper = x_upper golden_ratio::T = 0.5 * (3.0 - sqrt(5.0)) new_minimizer = x_lower + golden_ratio*(x_upper-x_lower) new_minimum = f(new_minimizer) best_bound = "initial" f_calls = 1 # Number of calls to f iteration = 0 converged = false # Trace the history of states visited tr = OptimizationTrace{T, typeof(mo)}() tracing = store_trace || show_trace || extended_trace || callback !== nothing stopped_by_callback = false if tracing # update trace; callbacks can stop routine early by returning true state = (new_minimizer=new_minimizer, x_lower=x_lower, x_upper=x_upper, best_bound=best_bound, new_minimum=new_minimum) stopped_by_callback = trace!(tr, nothing, state, iteration, mo, options, time()-t0) end while iteration < iterations && !stopped_by_callback x_tol = rel_tol * abs(new_minimizer) + abs_tol x_midpoint = (x_upper+x_lower)/2 if abs(new_minimizer - x_midpoint) <= 2*x_tol - (x_upper-x_lower)/2 converged = true break end iteration += 1 if x_upper - new_minimizer > new_minimizer - x_lower new_x = new_minimizer + golden_ratio*(x_upper - new_minimizer) new_f = f(new_x) f_calls += 1 if new_f < new_minimum x_lower = new_minimizer best_bound = "lower" new_minimizer = new_x new_minimum = new_f else x_upper = new_x best_bound = "upper" end else new_x = new_minimizer - golden_ratio*(new_minimizer - x_lower) new_f = f(new_x) f_calls += 1 if new_f < new_minimum x_upper = new_minimizer best_bound = "upper" new_minimizer = new_x new_minimum = new_f else x_lower = new_x best_bound = "lower" end end if tracing # update trace; callbacks can stop routine early by returning true state = (new_minimizer=new_minimizer, x_lower=x_lower, x_upper=x_upper, best_bound=best_bound, new_minimum=new_minimum) stopped_by_callback = trace!(tr, nothing, state, iteration, mo, options, time()-t0) end end return UnivariateOptimizationResults(mo, initial_lower, initial_upper, new_minimizer, new_minimum, iteration, iteration == iterations, converged, rel_tol, abs_tol, tr, f_calls) end function trace!(tr, d, state, iteration, method::GoldenSection, options, curr_time=time()) dt = Dict() dt["time"] = curr_time dt["minimizer"] = state.new_minimizer dt["x_lower"] = state.x_lower dt["x_upper"] = state.x_upper T = eltype(state.new_minimum) update!(tr, iteration, state.new_minimum, T(NaN), dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3403
f_abschange(d::AbstractObjective, state) = f_abschange(value(d), state.f_x_previous) f_abschange(f_x::T, f_x_previous) where T = abs(f_x - f_x_previous) f_relchange(d::AbstractObjective, state) = f_relchange(value(d), state.f_x_previous) f_relchange(f_x::T, f_x_previous) where T = abs(f_x - f_x_previous)/abs(f_x) x_abschange(state) = x_abschange(state.x, state.x_previous) x_abschange(x, x_previous) = maxdiff(x, x_previous) x_relchange(state) = x_relchange(state.x, state.x_previous) x_relchange(x, x_previous) = maxdiff(x, x_previous)/maximum(abs, x) g_residual(d, state) = g_residual(d) g_residual(d, state::NelderMeadState) = state.nm_x g_residual(d::AbstractObjective) = g_residual(gradient(d)) g_residual(d::NonDifferentiable) = convert(typeof(value(d)), NaN) g_residual(g) = maximum(abs, g) gradient_convergence_assessment(state::AbstractOptimizerState, d, options) = g_residual(gradient(d)) ≀ options.g_abstol gradient_convergence_assessment(state::ZerothOrderState, d, options) = false # Default function for convergence assessment used by # AcceleratedGradientDescentState, BFGSState, ConjugateGradientState, # GradientDescentState, LBFGSState, MomentumGradientDescentState and NewtonState function assess_convergence(state::AbstractOptimizerState, d, options::Options) assess_convergence(state.x, state.x_previous, value(d), state.f_x_previous, gradient(d), options.x_abstol, options.x_reltol, options.f_abstol, options.f_reltol, options.g_abstol) end function assess_convergence(x, x_previous, f_x, f_x_previous, gx, x_abstol, x_reltol, f_abstol, f_reltol, g_abstol) x_converged, f_converged, f_increased, g_converged = false, false, false, false # TODO: Create function for x_convergence_assessment if x_abschange(x, x_previous) ≀ x_abstol x_converged = true end if x_abschange(x, x_previous) ≀ x_reltol * maximum(abs, x) x_converged = true end # Relative Tolerance # TODO: Create function for f_convergence_assessment if f_abschange(f_x, f_x_previous) ≀ f_abstol f_converged = true end if f_abschange(f_x, f_x_previous) ≀ f_reltol*abs(f_x) f_converged = true end if f_x > f_x_previous f_increased = true end g_converged = g_residual(gx) ≀ g_abstol return x_converged, f_converged, g_converged, f_increased end # Used by Fminbox and IPNewton function assess_convergence(x, x_previous, f_x, f_x_previous, g, x_tol, f_tol, g_tol) x_converged, f_converged, f_increased, g_converged = false, false, false, false if x_abschange(x, x_previous) ≀ x_tol x_converged = true end # Absolute Tolerance # if abs(f_x - f_x_previous) < f_tol # Relative Tolerance if f_abschange(f_x, f_x_previous) ≀ f_tol*abs(f_x) f_converged = true end if f_x > f_x_previous f_increased = true end if g_residual(g) ≀ g_tol g_converged = true end return x_converged, f_converged, g_converged, f_increased end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
355
macro def(name, definition) esc(quote macro $name() esc($(Expr(:quote, definition))) end end) end @def add_linesearch_fields begin x_ls::Tx alpha::T end @def initial_linesearch begin (similar(initial_x), # Buffer of x for line search in state.x_ls real(one(T))) # Keep track of step size in state.alpha end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
415
# generic version for gpu support function maxdiff(x::AbstractArray, y::AbstractArray) return mapreduce((a, b) -> abs(a - b), max, x, y) end # allocation free version for normal arrays function maxdiff(x::Array, y::Array) res = real(zero(x[1] - y[1])) @inbounds for i in 1:length(x) delta = abs(x[i] - y[i]) if delta > res res = delta end end return res end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2620
# Reset the search direction if it becomes corrupted # return true if the direction was changed reset_search_direction!(state, d, method) = false # no-op _alphaguess(a) = a _alphaguess(a::Number) = LineSearches.InitialStatic(alpha=a) # Note that for these resets we're using `gradient(d)` but we don't need to use # project_tangent! here, because we already did that inplace on gradient(d) after # the last evaluation (we basically just always do it) function reset_search_direction!(state, d, method::BFGS) if method.initial_invH === nothing n = length(state.x) T = typeof(state.invH) if method.initial_stepnorm === nothing state.invH .= _init_identity_matrix(state.x) else initial_scale = method.initial_stepnorm * inv(norm(gradient(d), Inf)) state.invH .= _init_identity_matrix(state.x, initial_scale) end else state.invH .= method.initial_invH(state.x) end # copyto!(state.invH, method.initial_invH(state.x)) state.s .= .-gradient(d) return true end function reset_search_direction!(state, d, method::LBFGS) state.pseudo_iteration = 1 state.s .= .-gradient(d) return true end function reset_search_direction!(state, d, method::ConjugateGradient) state.s .= .-state.pg return true end function perform_linesearch!(state, method, d) # Calculate search direction dphi0 dphi_0 = real(dot(gradient(d), state.s)) # reset the direction if it becomes corrupted if dphi_0 >= zero(dphi_0) && reset_search_direction!(state, d, method) dphi_0 = real(dot(gradient(d), state.s)) # update after direction reset end phi_0 = value(d) # Guess an alpha method.alphaguess!(method.linesearch!, state, phi_0, dphi_0, d) # Store current x and f(x) for next iteration state.f_x_previous = phi_0 copyto!(state.x_previous, state.x) # Perform line search; catch LineSearchException to allow graceful exit try state.alpha, Ο•alpha = method.linesearch!(d, state.x, state.s, state.alpha, state.x_ls, phi_0, dphi_0) return true # lssuccess = true catch ex if isa(ex, LineSearches.LineSearchException) state.alpha = ex.alpha # We shouldn't warn here, we should just carry it to the output # @warn("Linesearch failed, using alpha = $(state.alpha) and # exiting optimization.\nThe linesearch exited with message:\n$(ex.message)") return false # lssuccess = false else rethrow(ex) end end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
706
# First order methods trace, used by AcceleratedGradientDescent, # ConjugateGradient, GradientDescent, LBFGS and MomentumGradientDescent function common_trace!(tr, d, state, iteration, method::FirstOrderOptimizer, options, curr_time=time()) dt = Dict() dt["time"] = curr_time if options.extended_trace dt["x"] = copy(state.x) dt["g(x)"] = copy(gradient(d)) dt["Current step size"] = state.alpha end g_norm = maximum(abs, gradient(d)) update!(tr, iteration, value(d), g_norm, dt, options.store_trace, options.show_trace, options.show_every, options.callback) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
812
function update!(tr::OptimizationTrace{Tf, T}, iteration::Integer, f_x::Tf, grnorm::Real, dt::Dict, store_trace::Bool, show_trace::Bool, show_every::Int = 1, callback = nothing, trace_simplex = false) where {Tf, T} os = OptimizationState{Tf, T}(iteration, f_x, grnorm, dt) if store_trace push!(tr, os) end if show_trace if iteration % show_every == 0 show(os) flush(stdout) end end if callback !== nothing && (iteration % show_every == 0) if store_trace stopped = callback(tr) else stopped = callback(os) end else stopped = false end stopped end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2432
module TestOptim using Test import Optim import MathOptInterface const MOI = MathOptInterface function runtests() for name in names(@__MODULE__; all = true) if startswith("$(name)", "test_") @testset "$(name)" begin getfield(@__MODULE__, name)() end end end return end function test_SolverName() @test MOI.get(Optim.Optimizer(), MOI.SolverName()) == "Optim" end function test_supports_incremental_interface() @test MOI.supports_incremental_interface(Optim.Optimizer()) end function test_MOI_Test() model = MOI.Utilities.CachingOptimizer( MOI.Utilities.UniversalFallback(MOI.Utilities.Model{Float64}()), Optim.Optimizer(), ) MOI.set(model, MOI.Silent(), true) MOI.Test.runtests( model, MOI.Test.Config( atol = 1e-6, rtol = 1e-6, optimal_status = MOI.LOCALLY_SOLVED, exclude = Any[ MOI.ConstraintBasisStatus, MOI.VariableBasisStatus, MOI.ConstraintName, MOI.VariableName, MOI.ObjectiveBound, MOI.DualObjectiveValue, MOI.SolverVersion, MOI.ConstraintDual, ], ), exclude = String[ # No objective "test_attribute_SolveTimeSec", "test_attribute_RawStatusString", # FIXME The hessian callback for constraints is called with # `Ξ» = [-Inf, 0.0]` and then we get `NaN`, ... "expression_hs071", # Terminates with `OTHER_ERROR` "test_objective_ObjectiveFunction_duplicate_terms", "test_objective_ObjectiveFunction_constant", "test_objective_ObjectiveFunction_VariableIndex", "test_objective_FEASIBILITY_SENSE_clears_objective", "test_nonlinear_expression_hs109", "test_objective_qp_ObjectiveFunction_zero_ofdiag", "test_objective_qp_ObjectiveFunction_edge_cases", "test_solve_TerminationStatus_DUAL_INFEASIBLE", "test_solve_result_index", "test_modification_transform_singlevariable_lessthan", "test_modification_delete_variables_in_a_batch", "test_modification_delete_variable_with_single_variable_obj", ], ) return end end # module TestOptim TestOptim.runtests()
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
441
@testset "Literate examples" begin SKIPFILE = [] EXAMPLEDIR = joinpath(@__DIR__, "../docs/src/examples") myfilter(str) = occursin(r"\.jl$", str) && !(str in SKIPFILE) for file in filter!(myfilter, readdir(EXAMPLEDIR)) @testset "$file" begin mktempdir() do dir cd(dir) do include(joinpath(EXAMPLEDIR, file)) end end end end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
10422
using Test using Optim using OptimTestProblems using OptimTestProblems.MultivariateProblems const MVP = MultivariateProblems import PositiveFactorizations: Positive, cholesky # for the IPNewton tests using Random import LineSearches import NLSolversBase import NLSolversBase: clear! import LinearAlgebra: norm, diag, I, Diagonal, dot, eigen, issymmetric, mul! import SparseArrays: normalize!, spdiagm debug_printing = false special_tests = [ "bigfloat/initial_convergence", ] special_tests = map(s->"./special/"*s*".jl", special_tests) general_tests = [ "api", "callables", "callbacks", "convergence", "default_solvers", "deprecate", "initial_convergence", "objective_types", "Optim", "optimize", "type_stability", "types", "counter", "maximize", ] general_tests = map(s->"./general/"*s*".jl", general_tests) univariate_tests = [ # optimize "optimize/interface", "optimize/optimize", # solvers "solvers/golden_section", "solvers/brent", # "initial_convergence", "dual", ] univariate_tests = map(s->"./univariate/"*s*".jl", univariate_tests) multivariate_tests = [ ## optimize "optimize/interface", "optimize/optimize", "optimize/inplace", ## solvers ## constrained "solvers/constrained/fminbox", "solvers/constrained/ipnewton/interface", "solvers/constrained/ipnewton/constraints", "solvers/constrained/ipnewton/counter", "solvers/constrained/ipnewton/ipnewton_unconstrained", "solvers/constrained/samin", ## first order "solvers/first_order/accelerated_gradient_descent", "solvers/first_order/adam_adamax", "solvers/first_order/bfgs", "solvers/first_order/cg", "solvers/first_order/gradient_descent", "solvers/first_order/l_bfgs", "solvers/first_order/momentum_gradient_descent", "solvers/first_order/ngmres", ## second order "solvers/second_order/newton", "solvers/second_order/newton_trust_region", "solvers/second_order/krylov_trust_region", ## zeroth order "solvers/zeroth_order/grid_search", "solvers/zeroth_order/nelder_mead", "solvers/zeroth_order/particle_swarm", "solvers/zeroth_order/simulated_annealing", ## other "array", "extrapolate", "lsthrow", "precon", "manifolds", "complex", "fdtime", "arbitrary_precision", "successive_f_tol", "f_increase", "measurements", ] multivariate_tests = map(s->"./multivariate/"*s*".jl", multivariate_tests) input_tuple(method, prob) = ((MVP.objective(prob),),) input_tuple(method::Optim.FirstOrderOptimizer, prob) = ((MVP.objective(prob),), (MVP.objective(prob), MVP.gradient(prob))) input_tuple(method::Optim.SecondOrderOptimizer, prob) = ((MVP.objective(prob),), (MVP.objective(prob), MVP.gradient(prob)), (MVP.objective(prob), MVP.gradient(prob), MVP.hessian(prob))) function run_optim_tests(method; convergence_exceptions = (), minimizer_exceptions = (), minimum_exceptions = (), f_increase_exceptions = (), iteration_exceptions = (), skip = (), show_name = false, show_trace = false, show_res = false, show_itcalls = false) # Loop over unconstrained problems for (name, prob) in MultivariateProblems.UnconstrainedProblems.examples if !isfinite(prob.minimum) || !any(isfinite, prob.solutions) debug_printing && println("$name has no registered minimum/minimizer. Skipping ...") continue end show_name && printstyled("Problem: ", name, "\n", color=:green) # Look for name in the first elements of the iteration_exceptions tuples iter_id = findall(n->n[1] == name, iteration_exceptions) # If name wasn't found, use default 1000 iterations, else use provided number iters = length(iter_id) == 0 ? 1000 : iteration_exceptions[iter_id[1]][2] # Construct options allow_f_increases = (name in f_increase_exceptions) dopts = Optim.default_options(method) if haskey(dopts, :allow_f_increases) allow_f_increases = allow_f_increases || dopts[:allow_f_increases] dopts = (;dopts..., allow_f_increases = allow_f_increases) end options = Optim.Options(allow_f_increases = allow_f_increases, iterations = iters, show_trace = show_trace; dopts...) # Use finite difference if it is not differentiable enough if !(name in skip) for (i, input) in enumerate(input_tuple(method, prob)) if (!prob.isdifferentiable && i > 1) || (!prob.istwicedifferentiable && i > 2) continue end # Loop over appropriate input combinations of f, g!, and h! results = Optim.optimize(input..., prob.initial_x, method, options) @test isa(summary(results), String) show_res && println(results) show_itcalls && printstyled("Iterations: $(Optim.iterations(results))\n", color=:red) show_itcalls && printstyled("f-calls: $(Optim.f_calls(results))\n", color=:red) show_itcalls && printstyled("g-calls: $(Optim.g_calls(results))\n", color=:red) show_itcalls && printstyled("h-calls: $(Optim.h_calls(results))\n", color=:red) if !((name, i) in convergence_exceptions) @test Optim.converged(results) # Print on error, easier to debug CI if !(Optim.converged(results)) printstyled(name, " did not converge with i = ", i, "\n", color=:red) printstyled(results, "\n", color=:red) end end if !((name, i) in minimum_exceptions) @test Optim.minimum(results) < prob.minimum + sqrt(eps(typeof(prob.minimum))) end if !((name, i) in minimizer_exceptions) @test norm(Optim.minimizer(results) - prob.solutions) < 1e-2 end end else debug_printing && printstyled("Skipping $name\n", color=:blue) end end end function run_optim_tests_constrained(method; convergence_exceptions = (), minimizer_exceptions = (), minimum_exceptions = (), f_increase_exceptions = (), iteration_exceptions = (), skip = (), show_name = false, show_trace = false, show_res = false, show_itcalls = false) # TODO: Update with constraint problems too? # Loop over unconstrained problems for (name, prob) in MVP.UnconstrainedProblems.examples if !isfinite(prob.minimum) || !any(isfinite, prob.solutions) debug_printing && println("$name has no registered minimum/minimizer. Skipping ...") continue end show_name && printstyled("Problem: ", name, "\n", color=:green) # Look for name in the first elements of the iteration_exceptions tuples iter_id = findall(n->n[1] == name, iteration_exceptions) # If name wasn't found, use default 1000 iterations, else use provided number iters = length(iter_id) == 0 ? 1000 : iteration_exceptions[iter_id[1]][2] # Construct options allow_f_increases = (name in f_increase_exceptions) options = Optim.Options(iterations = iters, show_trace = show_trace; Optim.default_options(method)...) # Use finite difference if it is not differentiable enough if !(name in skip) && prob.istwicedifferentiable # Loop over appropriate input combinations of f, g!, and h! df = TwiceDifferentiable(MVP.objective(prob), MVP.gradient(prob), MVP.objective_gradient(prob), MVP.hessian(prob), prob.initial_x) infvec = fill(Inf, size(prob.initial_x)) constraints = TwiceDifferentiableConstraints(-infvec, infvec) results = optimize(df,constraints,prob.initial_x, method, options) @test isa(Optim.summary(results), String) show_res && println(results) show_itcalls && printstyled("Iterations: $(Optim.iterations(results))\n", color=:red) show_itcalls && printstyled("f-calls: $(Optim.f_calls(results))\n", color=:red) show_itcalls && printstyled("g-calls: $(Optim.g_calls(results))\n", color=:red) show_itcalls && printstyled("h-calls: $(Optim.h_calls(results))\n", color=:red) if !(name in convergence_exceptions) @test Optim.converged(results) # Print on error if !(Optim.converged(results)) printstyled(name, "did not converge\n", color=:red) printstyled(results, "\n", color=:red) end end if !(name in minimum_exceptions) @test Optim.minimum(results) < prob.minimum + sqrt(eps(typeof(prob.minimum))) end if !(name in minimizer_exceptions) @test norm(Optim.minimizer(results) - prob.solutions) < 1e-2 end else debug_printing && printstyled("Skipping $name\n", color=:blue) end end end @testset "special" begin for my_test in special_tests println(my_test) @time include(my_test) end end @testset "general" begin for my_test in general_tests println(my_test) @time include(my_test) end end @testset "univariate" begin for my_test in univariate_tests println(my_test) @time include(my_test) end end @testset "multivariate" begin for my_test in multivariate_tests println(my_test) @time include(my_test) end end println("Literate examples") @time include("examples.jl") @testset "show method for options" begin o = Optim.Options() @test occursin(" = ", sprint(show, o)) end @testset "MOI wrapper" begin include("MOI_wrapper.jl") end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
81
@testset "package issues" begin @test isempty(detect_ambiguities(Optim)) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
7465
# Test multivariate optimization @testset "Multivariate API" begin rosenbrock = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"] f = MVP.objective(rosenbrock) g! = MVP.gradient(rosenbrock) h! = MVP.hessian(rosenbrock) initial_x = rosenbrock.initial_x T = eltype(initial_x) d1 = OnceDifferentiable(f, initial_x) d2 = OnceDifferentiable(f, g!, initial_x) d3 = TwiceDifferentiable(f, g!, h!, initial_x) Optim.optimize(f, initial_x, BFGS()) Optim.optimize(f, g!, initial_x, BFGS()) Optim.optimize(f, g!, h!, initial_x, BFGS()) Optim.optimize(d2, initial_x, BFGS()) Optim.optimize(d3, initial_x, BFGS()) Optim.optimize(f, initial_x, BFGS(), Optim.Options()) Optim.optimize(f, g!, initial_x, BFGS(), Optim.Options()) Optim.optimize(f, g!, h!, initial_x, BFGS(), Optim.Options()) Optim.optimize(d2, initial_x, BFGS(), Optim.Options()) Optim.optimize(d3, initial_x, BFGS(), Optim.Options()) Optim.optimize(d1, initial_x, BFGS()) Optim.optimize(d2, initial_x, BFGS()) Optim.optimize(d1, initial_x, GradientDescent()) Optim.optimize(d2, initial_x, GradientDescent()) Optim.optimize(d1, initial_x, LBFGS()) Optim.optimize(d2, initial_x, LBFGS()) Optim.optimize(f, initial_x, NelderMead()) Optim.optimize(d3, initial_x, Newton()) Optim.optimize(f, initial_x, SimulatedAnnealing()) optimize(f, initial_x, BFGS()) optimize(f, g!, initial_x, BFGS()) optimize(f, g!, h!, initial_x, BFGS()) optimize(f, initial_x, GradientDescent()) optimize(f, g!, initial_x, GradientDescent()) optimize(f, g!, h!, initial_x, GradientDescent()) optimize(f, initial_x, LBFGS()) optimize(f, g!, initial_x, LBFGS()) optimize(f, g!, h!, initial_x, LBFGS()) optimize(f, initial_x, NelderMead()) optimize(f, g!, initial_x, NelderMead()) optimize(f, g!, h!, initial_x, NelderMead()) optimize(f, g!, h!, initial_x, Newton()) optimize(f, initial_x, SimulatedAnnealing()) optimize(f, g!, initial_x, SimulatedAnnealing()) optimize(f, g!, h!, initial_x, SimulatedAnnealing()) options = Optim.Options(g_tol = 1e-12, iterations = 10, store_trace = true, show_trace = false) res = optimize(f, g!, h!, initial_x, BFGS(), options) options_g = Optim.Options(g_tol = 1e-12, iterations = 10, store_trace = true, show_trace = false) options_f = Optim.Options(g_tol = 1e-12, iterations = 10, store_trace = true, show_trace = false) res = optimize(f, g!, h!, initial_x, GradientDescent(), options_g) res = optimize(f, g!, h!, initial_x, LBFGS(), options_g) res = optimize(f, g!, h!, initial_x, NelderMead(), options_f) res = optimize(f, g!, h!, initial_x, Newton(), options_g) options_sa = Optim.Options(iterations = 10, store_trace = true, show_trace = false) res = optimize(f, g!, h!, initial_x, SimulatedAnnealing(), options_sa) res = optimize(f, g!, h!, initial_x, BFGS(), options_g) options_ext = Optim.Options(g_tol = 1e-12, iterations = 10, store_trace = true, show_trace = false, extended_trace = true) res_ext = optimize(f, g!, h!, initial_x, BFGS(), options_ext) @test summary(res) == "BFGS" @test Optim.minimum(res) β‰ˆ 1.2580194638225255 @test Optim.minimizer(res) β‰ˆ [-0.116688, 0.0031153] rtol=0.001 @test Optim.iterations(res) == 10 @test Optim.f_calls(res) == 38 @test Optim.g_calls(res) == 38 @test Optim.converged(res) == false @test Optim.x_converged(res) == false @test Optim.f_converged(res) == false @test Optim.g_converged(res) == false @test Optim.g_tol(res) == 1e-12 @test Optim.iteration_limit_reached(res) == true @test Optim.initial_state(res) == [-1.2, 1.0] @test haskey(Optim.trace(res_ext)[1].metadata,"x") # just testing if it runs Optim.trace(res) Optim.f_trace(res) Optim.g_norm_trace(res) @test_throws ErrorException Optim.x_trace(res) @test_throws ErrorException Optim.x_lower_trace(res) @test_throws ErrorException Optim.x_upper_trace(res) @test_throws ErrorException Optim.lower_bound(res) @test_throws ErrorException Optim.upper_bound(res) @test_throws ErrorException Optim.rel_tol(res) @test_throws ErrorException Optim.abs_tol(res) options_extended = Optim.Options(store_trace = true, extended_trace = true) res_extended = Optim.optimize(f, g!, initial_x, BFGS(), options_extended) @test haskey(Optim.trace(res_extended)[1].metadata,"~inv(H)") @test haskey(Optim.trace(res_extended)[1].metadata,"g(x)") @test haskey(Optim.trace(res_extended)[1].metadata,"x") options_extended_nm = Optim.Options(store_trace = true, extended_trace = true) res_extended_nm = Optim.optimize(f, g!, initial_x, NelderMead(), options_extended_nm) @test haskey(Optim.trace(res_extended_nm)[1].metadata,"centroid") @test haskey(Optim.trace(res_extended_nm)[1].metadata,"step_type") end # Test univariate API @testset "Univariate API" begin f(x) = 2x^2+3x+1 res = optimize(f, -2.0, 1.0, GoldenSection()) @test summary(res) == "Golden Section Search" @test Optim.minimum(res) β‰ˆ -0.125 @test Optim.minimizer(res) β‰ˆ -0.749999994377939 @test Optim.iterations(res) == 38 @test Optim.iteration_limit_reached(res) == false @test_throws ErrorException Optim.trace(res) @test_throws ErrorException Optim.x_trace(res) @test_throws ErrorException Optim.x_lower_trace(res) @test_throws ErrorException Optim.x_upper_trace(res) @test_throws ErrorException Optim.f_trace(res) @test Optim.lower_bound(res) == -2.0 @test Optim.upper_bound(res) == 1.0 @test Optim.rel_tol(res) β‰ˆ 1.4901161193847656e-8 @test Optim.abs_tol(res) β‰ˆ 2.220446049250313e-16 @test_throws ErrorException Optim.initial_state(res) @test_throws ErrorException Optim.g_norm_trace(res) @test_throws ErrorException Optim.g_calls(res) @test_throws ErrorException Optim.x_converged(res) @test_throws ErrorException Optim.f_converged(res) @test_throws ErrorException Optim.g_converged(res) @test_throws ErrorException Optim.x_tol(res) @test_throws ErrorException Optim.f_tol(res) @test_throws ErrorException Optim.g_tol(res) res = optimize(f, -2.0, 1.0, GoldenSection(), store_trace = true, extended_trace = true) # Right now, these just "test" if they run Optim.x_trace(res) Optim.x_lower_trace(res) Optim.x_upper_trace(res) end @testset "#948" begin res1 = optimize(OnceDifferentiable(t -> t[1]^2, (t, g) -> fill!(g, NaN), [0.0]), [0.0]) res2 = optimize(OnceDifferentiable(t -> t[1]^2, (t, g) -> fill!(g, Inf), [0.0]), [0.0]) res3 = optimize(OnceDifferentiable(t -> Inf, [0.0]), [0.0]) @test !Optim.converged(res1) @test !Optim.converged(res2) @test !Optim.converged(res3) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
384
mutable struct MyCallable f end (a::MyCallable)(x) = a.f(x) @testset "callables" begin @testset "univariate" begin # FIXME end @testset "multivariate" begin function rosenbrock(x::Vector) return (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 end a = MyCallable(rosenbrock) optimize(a, rand(2), Optim.Options()) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2627
@testset "Callbacks" begin problem = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"] f = MVP.objective(problem) g! = MVP.gradient(problem) h! = MVP.hessian(problem) initial_x = problem.initial_x d2 = OnceDifferentiable(f, g!, initial_x) d3 = TwiceDifferentiable(f, g!, h!, initial_x) for method in (NelderMead(), SimulatedAnnealing()) ot_run = false cb = tr -> begin @test tr[end].iteration % 3 == 0 ot_run = true false end options = Optim.Options(callback = cb, show_every=3, store_trace=true) optimize(f, initial_x, method, options) @test ot_run == true os_run = false cb = os -> begin @test os.iteration % 3 == 0 os_run = true false end options = Optim.Options(callback = cb, show_every=3) optimize(f, initial_x, method, options) @test os_run == true # Test early stopping by callbacks options = Optim.Options(callback = x -> x.iteration == 5 ? true : false) optimize(f, zeros(2), NelderMead(), options) end for method in (BFGS(), ConjugateGradient(), GradientDescent(), MomentumGradientDescent()) ot_run = false cb = tr -> begin @test tr[end].iteration % 3 == 0 ot_run = true false end options = Optim.Options(callback = cb, show_every=3, store_trace=true) optimize(d2, initial_x, method, options) @test ot_run == true os_run = false cb = os -> begin @test os.iteration % 3 == 0 os_run = true false end options = Optim.Options(callback = cb, show_every=3) optimize(d2, initial_x, method, options) @test os_run == true end for method in (Newton(),) ot_run = false cb = tr -> begin @test tr[end].iteration % 3 == 0 ot_run = true false end options = Optim.Options(callback = cb, show_every=3, store_trace=true) optimize(d3, initial_x, method, options) @test ot_run == true os_run = false cb = os -> begin @test os.iteration % 3 == 0 os_run = true false end options = Optim.Options(callback = cb, show_every=3) optimize(d3, initial_x, method, options) @test os_run == true end res = optimize(x->x^2, -5, 5, callback=_->true) @test res.iterations == 0 end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2542
mutable struct DummyState <: Optim.AbstractOptimizerState x x_previous f_x f_x_previous g end mutable struct DummyStateZeroth <: Optim.ZerothOrderState x x_previous f_x f_x_previous g end mutable struct DummyOptions x_tol f_tol g_tol g_abstol end mutable struct DummyMethod <: Optim.AbstractOptimizer end mutable struct DummyMethodZeroth <: Optim.ZerothOrderOptimizer end @testset "Convergence assessment" begin ## assess_convergence # should converge x0, x1 = [1.], [1.0 - 1e-7] f0, f1 = 1.0, 1.0 - 1e-7 g = [1e-7] x_tol = 1e-6 f_tol = 1e-6 # rel tol g_tol = 1e-6 g_abstol = 1e-6 @test Optim.assess_convergence(x1, x0, f1, f0, g, x_tol, f_tol, g_tol) == (true, true, true, false) # f_increase f0, f1 = 1.0, 1.0 + 1e-7 @test Optim.assess_convergence(x1, x0, f1, f0, g, x_tol, f_tol, g_tol) == (true, true, true, true) # f_increase without convergence f_tol = 1e-12 @test Optim.assess_convergence(x1, x0, f1, f0, g, x_tol, f_tol, g_tol) == (true, false, true, true) @test Optim.assess_convergence(x1, x0, f1, f0, g, x_tol, f_tol, g_tol) == (true, false, true, true) f_tol = 1e-6 # rel tol dOpt = DummyOptions(x_tol, f_tol, g_tol, g_abstol) @test Optim.assess_convergence(x1, x0, f1, f0, g, x_tol, f_tol, g_tol) == (true, true, true, true) f0, f1 = 1.0, 1.0 - 1e-7 dOpt = DummyOptions(x_tol, f_tol, g_tol, g_abstol) @test Optim.assess_convergence(x1, x0, f1, f0, g, x_tol, f_tol, g_tol) == (true, true, true, false) ## initial_convergence and gradient_convergence_assessment ds = DummyState(x1, x0, f1, f0, g) dOpt = DummyOptions(x_tol, f_tol, g_tol, g_abstol) dm = DummyMethod() # >= First Order d = Optim.OnceDifferentiable(x->sum(abs2.(x)),zeros(2)) Optim.gradient!(d,ones(2)) @test Optim.gradient_convergence_assessment(ds,d,dOpt) == false Optim.gradient!(d,zeros(2)) @test Optim.gradient_convergence_assessment(ds,d,dOpt) == true @test Optim.initial_convergence(d, ds, dm, ones(2), dOpt) == (false, false) @test Optim.initial_convergence(d, ds, dm, zeros(2), dOpt) == (true, false) # Zeroth order methods have no gradient -> returns false by default ds = DummyStateZeroth(x1, x0, f1, f0, g) dm = DummyMethodZeroth() @test Optim.gradient_convergence_assessment(ds,d,dOpt) == false @test Optim.initial_convergence(d, ds, dm, ones(2), dOpt) == (false, false) # should check all other methods as well end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2515
@testset "function counter" begin prob = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"] let global fcount = 0 global fcounter function fcounter(reset::Bool = false) if reset fcount = 0 else fcount += 1 end fcount end global gcount = 0 global gcounter function gcounter(reset::Bool = false) if reset gcount = 0 else gcount += 1 end gcount end global hcount = 0 global hcounter function hcounter(reset::Bool = false) if reset hcount = 0 else hcount += 1 end hcount end end f(x) = begin fcounter() MVP.objective(prob)(x) end g!(out, x) = begin gcounter() MVP.gradient(prob)(out, x) end h!(out, x) = begin hcounter() MVP.hessian(prob)(out, x) end ls = LineSearches.HagerZhang() for solver in (AcceleratedGradientDescent, BFGS, ConjugateGradient, GradientDescent, LBFGS, MomentumGradientDescent, NGMRES, OACCEL) fcounter(true); gcounter(true) res = Optim.optimize(f, g!, prob.initial_x, solver(linesearch = ls)) @test fcount == Optim.f_calls(res) @test gcount == Optim.g_calls(res) end for solver in (Newton(linesearch = ls), NewtonTrustRegion()) fcounter(true); gcounter(true); hcounter(true) res = Optim.optimize(f,g!, h!, prob.initial_x, solver) @test fcount == Optim.f_calls(res) @test gcount == Optim.g_calls(res) @test hcount == Optim.h_calls(res) end # Need to define fg! and hv! for KrylovTrustRegion fg!(out,x) = begin g!(out,x) f(x) end hv!(out, x, v) = begin n = length(x) H = Matrix{Float64}(undef, n, n) h!(H, x) out .= H * v end begin solver = Optim.KrylovTrustRegion() fcounter(true); gcounter(true); hcounter(true) df = Optim.TwiceDifferentiableHV(f, fg!, hv!, prob.initial_x) res = Optim.optimize(df, prob.initial_x, solver) @test fcount == Optim.f_calls(res) @test gcount == Optim.g_calls(res) @test hcount == Optim.h_calls(res) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
383
@testset "default solvers" begin prob = MVP.UnconstrainedProblems.examples["Powell"] f = objective(prob) g! = gradient(prob) h! = hessian(prob) @test summary(optimize(f, prob.initial_x)) == summary(NelderMead()) @test summary(optimize(f, g!, prob.initial_x)) == summary(LBFGS()) @test summary(optimize(f, g!, h!, prob.initial_x)) == summary(Newton()) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
606
@testset "Initial Convergence Handling" begin f(x) = x[1]^2 function g!(out, x) out[1] = 2.0 * x[1] end function h!(out, x) out[1,1] = 2.0 end for Optimizer in (AcceleratedGradientDescent, GradientDescent, ConjugateGradient, LBFGS, BFGS, MomentumGradientDescent) res = optimize(f, g!, [0.], Optimizer()) @test Optim.minimizer(res)[1] β‰ˆ 0. end for Optimizer in (Newton, NewtonTrustRegion) res = optimize(f, g!, h!, [0.], Optimizer()) @test Optim.minimizer(res)[1] β‰ˆ 0. end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
1207
@testset "maximization wrapper" begin @testset "univariate" begin resmax = maximize(x->x^3, -1, 9) resmin = optimize(x->-x^3, -1, 9) @test Optim.maximum(resmax) == -Optim.minimum(resmin) @test resmax.res.minimum == resmin.minimum for meth in (Brent(), GoldenSection()) resmax = maximize(x->x^3, -1, 9, meth) resmin = optimize(x->-x^3, -1, 9, meth) @test Optim.maximum(resmax) == -Optim.minimum(resmin) @test resmax.res.minimum == resmin.minimum end end @testset "multivariate" begin resmax = maximize(x->x[1]^3+x[2]^2, [3.0, 0.0]) resmin = optimize(x->-x[1]^3-x[2]^2, [3.0, 0.0]) @test Optim.maximum(resmax) == -Optim.minimum(resmin) @test resmax.res.minimum == resmin.minimum for meth in (NelderMead(), BFGS(), LBFGS(), GradientDescent(), Newton(), NewtonTrustRegion(), SimulatedAnnealing()) resmax = maximize(x->x[1]^3+x[2]^2, [3.0, 0.0]) resmin = optimize(x->-x[1]^3-x[2]^2, [3.0, 0.0]) @test Optim.maximum(resmax) == -Optim.minimum(resmin) @test resmax.res.minimum == resmin.minimum end end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2931
@testset "objective types" begin @testset "autodiff" begin # Should throw, as :wah is not a proper autodiff choice @test_throws ErrorException OnceDifferentiable(x->x, rand(10); autodiff=:wah) for T in (OnceDifferentiable, TwiceDifferentiable) odad1 = T(x->5.0, rand(1); autodiff = :finite) odad2 = T(x->5.0, rand(1); autodiff = :forward) Optim.gradient!(odad1, rand(1)) Optim.gradient!(odad2, rand(1)) # odad3 = T(x->5., rand(1); autodiff = :reverse) @test Optim.gradient(odad1) == [0.0] @test Optim.gradient(odad2) == [0.0] # @test odad3.g == [0.0] end for a in (1.0, 5.0) xa = rand(1) odad1 = OnceDifferentiable(x->a*x[1], xa; autodiff = :finite) odad2 = OnceDifferentiable(x->a*x[1], xa; autodiff = :forward) # odad3 = OnceDifferentiable(x->a*x[1], xa; autodiff = :reverse) Optim.gradient!(odad1, xa) Optim.gradient!(odad2, xa) @test Optim.gradient(odad1) β‰ˆ [a] @test Optim.gradient(odad2) == [a] # @test odad3.g == [a] end for a in (1.0, 5.0) xa = rand(1) odad1 = OnceDifferentiable(x->a*x[1]^2, xa; autodiff = :finite) odad2 = OnceDifferentiable(x->a*x[1]^2, xa; autodiff = :forward) # odad3 = OnceDifferentiable(x->a*x[1]^2, xa; autodiff = :reverse) Optim.gradient!(odad1, xa) Optim.gradient!(odad2, xa) @test Optim.gradient(odad1) β‰ˆ 2.0*a*xa @test Optim.gradient(odad2) == 2.0*a*xa # @test odad3.g == 2.0*a*xa end for dtype in (OnceDifferentiable, TwiceDifferentiable) for autodiff in (:finite, :forward) differentiable = dtype(x->sum(x), rand(2); autodiff = autodiff) Optim.value(differentiable) Optim.value!(differentiable, rand(2)) Optim.value_gradient!(differentiable, rand(2)) Optim.gradient!(differentiable, rand(2)) dtype == TwiceDifferentiable && Optim.hessian!(differentiable, rand(2)) end end end @testset "value/grad" begin a = 3.0 x_seed = rand(1) odad1 = OnceDifferentiable(x->a*x[1]^2, x_seed) Optim.value_gradient!(odad1, x_seed) @test Optim.gradient(odad1) β‰ˆ 2 .* a .* (x_seed) @testset "call counters" begin @test Optim.f_calls(odad1) == 1 @test Optim.g_calls(odad1) == 1 @test Optim.h_calls(odad1) == 0 Optim.value_gradient!(odad1, x_seed .+ 1.0) @test Optim.f_calls(odad1) == 2 @test Optim.g_calls(odad1) == 2 @test Optim.h_calls(odad1) == 0 end @test Optim.gradient(odad1) β‰ˆ 2 .* a .* (x_seed .+ 1.0) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
1925
@testset "optimize" begin eta = 0.9 function f1(x) (1.0 / 2.0) * (x[1]^2 + eta * x[2]^2) end function g1(storage, x) storage[1] = x[1] storage[2] = eta * x[2] end function h1(storage, x) storage[1, 1] = 1.0 storage[1, 2] = 0.0 storage[2, 1] = 0.0 storage[2, 2] = eta end results = optimize(f1, g1, h1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 results = optimize(f1, g1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 results = optimize(f1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 results = optimize(f1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 # tests for bfgs_initial_invH initial_invH = zeros(2,2) h1(initial_invH, [127.0, 921.0]) initial_invH = Matrix(Diagonal(diag(initial_invH))) results = optimize(f1, g1, [127.0, 921.0], BFGS(initial_invH = x -> initial_invH), Optim.Options()) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 # Tests for PR #302 results = optimize(cos, 0, 2pi); @test norm(Optim.minimizer(results) - pi) < 0.01 results = optimize(cos, 0.0, 2pi); @test norm(Optim.minimizer(results) - pi) < 0.01 results = optimize(cos, 0, 2pi, Brent()); @test norm(Optim.minimizer(results) - pi) < 0.01 results = optimize(cos, 0.0, 2pi, Brent()); @test norm(Optim.minimizer(results) - pi) < 0.01 results = optimize(cos, 0, 2pi, method = Brent()) @test norm(Optim.minimizer(results) - pi) < 0.01 results = optimize(cos, 0.0, 2pi, method = Brent()) @test norm(Optim.minimizer(results) - pi) < 0.01 end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
1292
@testset "Type Stability" begin function rosenbrock(x::Vector{T}) where T o = one(T) c = convert(T,100) return (o - x[1])^2 + c * (x[2] - x[1]^2)^2 end function rosenbrock_gradient!(storage::Vector{T}, x::Vector{T}) where T o = one(T) c = convert(T,100) storage[1] = (-2*o) * (o - x[1]) - (4*c) * (x[2] - x[1]^2) * x[1] storage[2] = (2*c) * (x[2] - x[1]^2) end function rosenbrock_hessian!(storage::Matrix{T}, x::Vector{T}) where T o = one(T) c = convert(T,100) f = 4*c storage[1, 1] = (2*o) - f * x[2] + 3 * f * x[1]^2 storage[1, 2] = -f * x[1] storage[2, 1] = -f * x[1] storage[2, 2] = 2*c end for method in (NelderMead(), SimulatedAnnealing(), BFGS(), ConjugateGradient(), GradientDescent(), MomentumGradientDescent(), AcceleratedGradientDescent(), LBFGS(), Newton()) for T in (Float32, Float64) result = optimize(rosenbrock, rosenbrock_gradient!, rosenbrock_hessian!, fill(zero(T), 2), method) @test eltype(Optim.minimizer(result)) == T end end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2042
using Compat import Compat.String @testset "Types" begin solver = NelderMead() T = typeof(solver) trace = OptimizationTrace{Float64, T}() push!(trace,OptimizationState{Float64, T}(1,1.0,1.0,Dict())) push!(trace,OptimizationState{Float64, T}(2,1.0,1.0,Dict())) @test length(trace) == 2 @test trace[end].iteration == 2 prob = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"] f_prob = MVP.objective(prob) for res in ( Optim.optimize(f_prob, prob.initial_x, NelderMead()), Optim.optimize(f_prob, prob.initial_x, SimulatedAnnealing()), Optim.optimize( MVP.objective(prob), MVP.gradient(prob), prob.initial_x, LBFGS() ) ) @test typeof(f_prob(prob.initial_x)) == typeof(Optim.minimum(res)) @test eltype(prob.initial_x) == eltype(Optim.minimizer(res)) io = IOBuffer() show(io, res) s = String(take!(io)) line_shift = res.method isa Union{SimulatedAnnealing,LBFGS} ? 5 : 1 lines = split(s, '\n') @test lines[4] |> contains("Final objective value") @test lines[7] |> contains("Algorithm") @test lines[9] |> contains("Convergence measures") @test lines[13 + line_shift] |> contains("Iterations") @test lines[14 + line_shift] |> contains("f(x) calls") if res.method isa NelderMead @test lines[10] |> contains("√(Ξ£(yα΅’-yΜ„)Β²)/n ≀ 1.0e-08") elseif res.method isa Union{SimulatedAnnealing,LBFGS} @test lines[10] |> contains("|x - x'|") @test lines[11] |> contains("|x - x'|/|x'|") @test lines[12] |> contains("|f(x) - f(x')|") @test lines[13] |> contains("|f(x) - f(x')|/|f(x')|") @test lines[14] |> contains("|g(x)|") end end io = IOBuffer() res = show(io, MIME"text/plain"(), Optim.Options(x_abstol = 10.0)) @test String(take!(io)) |> contains("x_abstol = 10.0") end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2397
# TODO: Add HigherPrecision.jl tests here? # TODO: Test Interior Point algorithm as well @testset "Arbitrary Precision" begin prob = MVP.UnconstrainedProblems.examples["Rosenbrock"] f = MVP.objective(prob) g! = MVP.gradient(prob) h! = MVP.hessian(prob) @testset "BigFloat" begin x0 = big.(prob.initial_x) res = optimize(f, x0) debug_printing && @show res @test Optim.converged(res) == true @test Optim.minimum(res) < 1e-8 @test Optim.minimizer(res) β‰ˆ [1.0, 1.0] atol=1e-4 rtol=0 res = optimize(f, g!, x0) debug_printing && @show res @test Optim.converged(res) == true @test Optim.minimum(res) < 1e-16 @test Optim.minimizer(res) β‰ˆ [1.0, 1.0] atol=1e-10 rtol=0 res = optimize(f, g!, h!, x0) debug_printing && @show res @test Optim.converged(res) == true @test Optim.minimum(res) < 1e-16 @test Optim.minimizer(res) β‰ˆ [1.0, 1.0] atol=1e-10 rtol=0 lower = big.([-Inf, -Inf]) upper = big.([0.5, 1.5]) res = optimize(f, g!, lower, upper, x0, Fminbox(), Optim.Options(outer_g_abstol=sqrt(eps(big(1.0))), g_abstol=sqrt(eps(big(1.0))))) debug_printing && @show res @test Optim.converged(res) == true @test Optim.minimum(res) β‰ˆ 0.25 atol=1e-10 rtol=0 @test Optim.minimizer(res) β‰ˆ [0.5, 0.25] atol=1e-10 rtol=0 res = optimize(f, lower, upper, x0, Fminbox(), Optim.Options(outer_g_abstol=sqrt(eps(big(1.0))), g_abstol=sqrt(eps(big(1.0))))) debug_printing && @show res @test Optim.converged(res) == true @test Optim.minimum(res) β‰ˆ 0.25 atol=1e-10 rtol=0 @test Optim.minimizer(res) β‰ˆ [0.5, 0.25] atol=1e-10 rtol=0 end end @testset "Float32 doesn't work in Fminbox" begin f(x::AbstractVector{T}) where {T} = (T(1.0) - x[1])^2 + T(100.0) * (x[2] - x[1]^2)^2 function g!(storage::AbstractVector{T}, x::AbstractVector{T}) where {T} storage[1] = T(-2.0) * (T(1.0) - x[1]) - T(400.0) * (x[2] - x[1]^2) * x[1] storage[2] = T(200.0) * (x[2] - x[1]^2) end for T = (Float32, Float64, BigFloat) lower = T[1.25, -2.1] upper = T[Inf, Inf] initial_x = T[2.0, 2.0] od = OnceDifferentiable(f, g!, initial_x) results = optimize(od, lower, upper, initial_x, Fminbox(GradientDescent())) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
4193
using StableRNGs @testset "normalized array" begin rng = StableRNG(1323) grdt!(buf, _) = (buf .= 0; buf[1] = 1; buf) result = optimize(x->x[1], grdt!, randn(rng,2,2), ConjugateGradient(manifold=Sphere())) @test result.minimizer β‰ˆ [-1 0; 0 0] @test result.minimum β‰ˆ -1 end @testset "input types" begin f(X) = (10 - X[1])^2 + (0 - X[2])^2 + (0 - X[3])^2 + (5 - X[4])^2 function g!(storage, x) storage[1] = -20 + 2 * x[1] storage[2] = 2 * x[2] storage[3] = 2 * x[3] storage[4] = -10 + 2 * x[4] return end @testset "vector" begin for m in (AcceleratedGradientDescent, ConjugateGradient, BFGS, LBFGS, NelderMead, GradientDescent, MomentumGradientDescent, NelderMead, ParticleSwarm, SimulatedAnnealing, NGMRES, OACCEL) debug_printing && printstyled("Solver: "*string(m); color = :green) res = optimize(f, g!, [1., 0., 1., 0.], m()) @test typeof(Optim.minimizer(res)) <: Vector if !(m in (NelderMead, SimulatedAnnealing, ParticleSwarm)) @test norm(Optim.minimizer(res) - [10.0, 0.0, 0.0, 5.0]) < 10e-8 end end end @testset "matrix" begin for m in (AcceleratedGradientDescent, ConjugateGradient, BFGS, LBFGS, ConjugateGradient, GradientDescent, MomentumGradientDescent, ParticleSwarm, SimulatedAnnealing, NGMRES, OACCEL) res = optimize(f, g!, Matrix{Float64}(I, 2, 2), m()) @test typeof(Optim.minimizer(res)) <: Matrix if !(m in (SimulatedAnnealing, ParticleSwarm)) @test norm(Optim.minimizer(res) - [10.0 0.0; 0.0 5.0]) < 10e-8 end end end @testset "tensor" begin eye3 = zeros(2,2,1) eye3[:,:,1] = Matrix{Float64}(I, 2, 2) for m in (AcceleratedGradientDescent, ConjugateGradient, BFGS, LBFGS, ConjugateGradient, GradientDescent, MomentumGradientDescent, ParticleSwarm, SimulatedAnnealing, NGMRES, OACCEL) res = optimize(f, g!, eye3, m()) _minimizer = Optim.minimizer(res) @test typeof(_minimizer) <: Array{Float64, 3} @test size(_minimizer) == (2,2,1) if !(m in (SimulatedAnnealing, ParticleSwarm)) @test norm(_minimizer - [10.0 0.0; 0.0 5.0]) < 10e-8 end end end end using RecursiveArrayTools @testset "arraypartition input" begin rng = StableRNG(133) function polynomial(x) return (10.0 - x[1])^2 + (7.0 - x[2])^4 + (108.0 - x[3])^4 end function polynomial_gradient!(storage, x) storage[1] = -2.0 * (10.0 - x[1]) storage[2] = -4.0 * (7.0 - x[2])^3 storage[3] = -4.0 * (108.0 - x[3])^3 end function polynomial_hessian!(storage, x) storage[1, 1] = 2.0 storage[1, 2] = 0.0 storage[1, 3] = 0.0 storage[2, 1] = 0.0 storage[2, 2] = 12.0 * (7.0 - x[2])^2 storage[2, 3] = 0.0 storage[3, 1] = 0.0 storage[3, 2] = 0.0 storage[3, 3] = 12.0 * (108.0 - x[3])^2 end ap = ArrayPartition(rand(rng, 1), rand(rng, 2)) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, NelderMead()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, ParticleSwarm()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, SimulatedAnnealing()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, GradientDescent()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, AcceleratedGradientDescent()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, MomentumGradientDescent()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, ConjugateGradient()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, BFGS()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, LBFGS()) optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, Newton()) # optimize(polynomial, polynomial_gradient!, polynomial_hessian!, ap, NewtonTrustRegion()) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
3232
@testset "Complex numbers" begin Random.seed!(0) # Test case: minimize quadratic plus quartic # ΞΌ is the strength of the quartic. ΞΌ = 0 is just a quadratic problem n = 4 A = randn(n,n) + im*randn(n,n) A = A'A + I b = randn(n) + im*randn(n) ΞΌ = 1.0 fcomplex(x) = real(dot(x,A*x)/2 - dot(b,x)) + ΞΌ*sum(abs.(x).^4) gcomplex(x) = A*x-b + 4ΞΌ*(abs.(x).^2).*x gcomplex!(stor,x) = copyto!(stor,gcomplex(x)) x0 = randn(n)+im*randn(n) xref = Optim.minimizer(Optim.optimize(fcomplex, gcomplex!, x0, Optim.LBFGS())) @testset "Finite difference setup" begin oda1 = OnceDifferentiable(fcomplex, x0) fx, gx = NLSolversBase.value_gradient!(oda1, x0) @test fx == fcomplex(x0) @test gcomplex(x0) β‰ˆ NLSolversBase.gradient(oda1) end @testset "Zeroth and second order methods" begin for method in (Optim.NelderMead,Optim.ParticleSwarm,Optim.Newton) @test_throws Any Optim.optimize(fcomplex, gcomplex!, x0, method()) end #not supposed to converge, but it should at least go through without errors res = Optim.optimize(fcomplex, gcomplex!, x0, Optim.SimulatedAnnealing()) end @testset "First order methods" begin options = Optim.Options(allow_f_increases=true) # TODO: AcceleratedGradientDescent fail to converge? for method in (Optim.GradientDescent(), Optim.ConjugateGradient(), Optim.LBFGS(), Optim.BFGS(), Optim.NGMRES(), Optim.OACCEL(),Optim.MomentumGradientDescent(mu=0.1)) debug_printing && printstyled("Solver: $(summary(method))\n", color=:green) res = Optim.optimize(fcomplex, gcomplex!, x0, method, options) debug_printing && printstyled("Iter\tf-calls\tg-calls\n", color=:green) debug_printing && printstyled("$(Optim.iterations(res))\t$(Optim.f_calls(res))\t$(Optim.g_calls(res))\n", color=:red) if !Optim.converged(res) @warn("$(summary(method)) failed.") display(res) println("########################") end ressum = summary(res) # Just check that no errors arise when doing display(res) @test typeof(fcomplex(x0)) == typeof(Optim.minimum(res)) @test eltype(x0) == eltype(Optim.minimizer(res)) @test Optim.converged(res) @test Optim.minimizer(res) β‰ˆ xref rtol=1e-4 res = Optim.optimize(fcomplex, x0, method, options) @test Optim.converged(res) @test Optim.minimizer(res) β‰ˆ xref rtol=1e-4 # # To compare with the equivalent real solvers # to_cplx(x) = x[1:n] + im*x[n+1:2n] # from_cplx(x) = [real(x);imag(x)] # freal(x) = fcomplex(to_cplx(x)) # greal!(stor,x) = copyto!(stor, from_cplx(gcomplex(to_cplx(x)))) # opt = Optim.Options(allow_f_increases=true,show_trace=true) # println("$(summary(method)) cplx") # res_cplx = Optim.optimize(fcomplex,gcomplex!,x0,method,opt) # println("$(summary(method)) real") # res_real = Optim.optimize(freal,greal!,from_cplx(x0),method,opt) end end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2011
import LineSearches @testset "Extrapolation" begin methods = [LBFGS(), ConjugateGradient(), LBFGS(alphaguess = LineSearches.InitialQuadratic(), linesearch = LineSearches.BackTracking(order=2))] msgs = ["LBFGS Default Options: ", "CG Default Options: ", "LBFGS + Backtracking + Extrapolation: "] if debug_printing println("--------------------") println("Rosenbrock Example: ") println("--------------------") end rosenbrock(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 for (method, msg) in zip(methods, msgs) results = Optim.optimize(rosenbrock, zeros(2), method) debug_printing && println(msg, "g_calls = ", results.g_calls, ", f_calls = ", results.f_calls) end if debug_printing println("--------------------------------------") println("p-Laplacian Example (preconditioned): ") println("--------------------------------------") end plap(U; n=length(U)) = (n-1) * sum((0.1 .+ diff(U).^2).^2) - sum(U) / (n-1) plap1(U; n=length(U), dU = diff(U), dW = 4 .* (0.1 .+ dU.^2) .* dU) = (n - 1) .* ([0.0; dW] .- [dW; 0.0]) .- ones(n) / (n - 1) precond(x::Vector) = precond(length(x)) precond(n::Number) = Optim.InverseDiagonal(diag(spdiagm(-1 => -ones(n-1), 0 => 2*ones(n), 1 => -ones(n-1)) * (n+1))) f(X) = plap([0;X;0]) g!(g, X) = copyto!(g, (plap1([0;X;0]))[2:end-1]) N = 100 initial_x = zeros(N) P = precond(initial_x) methods = [LBFGS(P=P), ConjugateGradient(P=P), LBFGS(alphaguess = LineSearches.InitialQuadratic(), linesearch = LineSearches.BackTracking(order=2), P=P)] for (method, msg) in zip(methods, msgs) results = Optim.optimize(f, g!, copy(initial_x), method) debug_printing && println(msg, "g_calls = ", Optim.g_calls(results), ", f_calls = ", Optim.f_calls(results)) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
894
@testset "f increase behaviour" begin f(x) = 2*x[1]^2 g!(G, x) = copyto!(G, 4*x[1]) # Returned "minimizers" from one iteration of Gradient Descent minimizers = [0.3, # allow_f_increases = true, alpha = 0.1 -1.5, # allow_f_increases = true, alpha = 1.0 0.3, # allow_f_increases = false, alpha = 0.1 0.5] # allow_f_increases = false, alpha = 1.0 k = 0 for allow in [true, false] for alpha in [0.1, 1.0] k += 1 method = GradientDescent( alphaguess = LineSearches.InitialStatic(alpha=alpha), linesearch = LineSearches.Static(), ) opts = Optim.Options(iterations=1,allow_f_increases=allow) res = optimize(f, g!, [0.5], method, opts) @test minimizers[k] == Optim.minimizer(res)[1] end end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2096
@testset "Finite difference timing" begin fd_input_tuple(method::Optim.FirstOrderOptimizer, prob) = ((MVP.objective(prob),),) fd_input_tuple(method::Optim.SecondOrderOptimizer, prob) = ((MVP.objective(prob),), (MVP.objective(prob), MVP.gradient(prob))) function run_optim_fd_tests(method; problems = ("Extended Rosenbrock", "Powell", "Paraboloid Diagonal", "Penalty Function I",), show_name = true, show_trace = false, show_time = false, show_res = false) # Loop over unconstrained problems for name in problems prob = MVP.UnconstrainedProblems.examples[name] show_name && printstyled("Problem: ", name, "\n", color=:green) options = Optim.Options(allow_f_increases=true, show_trace = show_trace) for (i, input) in enumerate(fd_input_tuple(method, prob)) # Loop over appropriate input combinations of f, g!, and h! results = Optim.optimize(input..., prob.initial_x, method, options) debug_printing && printstyled("f-calls: $(Optim.f_calls(results))\n", color=:red) show_res && display(results) show_time && @time Optim.optimize(input..., prob.initial_x, method, options) @test Optim.converged(results) @test Optim.minimum(results) < prob.minimum + sqrt(eps(typeof(prob.minimum))) @test norm(Optim.minimizer(results) - prob.solutions) < 1e-2 end end end @testset "Timing with LBFGS" begin debug_printing && printstyled("#####################\nSolver: L-BFGS\n", color=:blue) run_optim_fd_tests(LBFGS(), show_name=debug_printing, show_time = debug_printing) end @testset "Timing with Newton" begin debug_printing && printstyled("#####################\nSolver: Newton\n", color=:blue) run_optim_fd_tests(Newton(), show_name=debug_printing, show_time = debug_printing) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
640
@testset "Line search errors" begin hz = LineSearches.HagerZhang(; delta = 0.1, sigma = 0.9, alphamax = Inf, rho = 5.0, epsilon = 1e-6, gamma = 0.66, linesearchmax = 2) for optimizer in (ConjugateGradient, GradientDescent, LBFGS, BFGS, Newton, AcceleratedGradientDescent, MomentumGradientDescent) debug_printing && println("Testing $(string(optimizer))") prob = MultivariateProblems.UnconstrainedProblems.examples["Exponential"] @test optimize(MVP.objective(prob), prob.initial_x, optimizer(alphaguess = LineSearches.InitialPrevious(), linesearch = hz)).ls_success == false end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2894
using StableRNGs @testset "Manifolds" begin rng = StableRNG(213) # Test case: find eigenbasis for first two eigenvalues of a symmetric matrix by minimizing the Rayleigh quotient under orthogonality constraints n = 4 m = 2 A = Diagonal(range(1, stop=2, length=n)) fmanif(x) = real(dot(x,A*x)/2) gmanif(x) = A*x gmanif!(stor,x) = copyto!(stor,gmanif(x)) # A[2,2] /= 10 #optional: reduce the gap to make the problem artificially harder x0 = randn(rng,n,m)+im*randn(rng,n,m) @testset "Stiefel, retraction = $retraction" for retraction in [:SVD,:CholQR] manif = Optim.Stiefel(retraction) # AcceleratedGradientDescent should be compatible also, but I haven't been able to make it converge for ls in (Optim.BackTracking,Optim.HagerZhang,Optim.StrongWolfe,Optim.MoreThuente) for method in (Optim.GradientDescent, Optim.ConjugateGradient, Optim.LBFGS, Optim.BFGS, Optim.NGMRES, Optim.OACCEL) debug_printing && printstyled("Solver: $(summary(method())), linesearch: $(summary(ls()))\n", color=:green) res = Optim.optimize(fmanif, gmanif!, x0, method(manifold=manif,linesearch=ls()), Optim.Options(allow_f_increases=true,g_tol=1e-6)) debug_printing && printstyled("Iter\tf-calls\tg-calls\n", color=:green) debug_printing && printstyled("$(Optim.iterations(res))\t$(Optim.f_calls(res))\t$(Optim.g_calls(res))\n", color=:red) @test Optim.converged(res) end end res = Optim.optimize(fmanif, gmanif!, x0, Optim.MomentumGradientDescent(mu=0.0, manifold=manif)) @test Optim.converged(res) end @testset "Power and Product" begin # Power @views fprod(x) = fmanif(x[:,1]) + fmanif(x[:,2]) @views gprod!(stor,x) = (gmanif!(stor[:, 1],x[:, 1]);gmanif!(stor[:, 2],x[:, 2]);stor) m1 = Optim.PowerManifold(Optim.Sphere(), (n,), (2,)) rng = StableRNG(0) x0 = randn(rng, n, 2) + im*randn(rng, n, 2) res = Optim.optimize(fprod, gprod!, x0, Optim.ConjugateGradient(manifold=m1)) @test Optim.converged(res) minpow = Optim.minimizer(res) # Product @views fprod(x) = fmanif(x[1:n]) + fmanif(x[n+1:2n]) @views gprod!(stor,x) = (gmanif!(stor[1:n],x[1:n]);gmanif!(stor[n+1:2n],x[n+1:2n]);stor) m2 = Optim.ProductManifold(Optim.Sphere(), Optim.Sphere(), (n,), (n,)) rng = StableRNG(0) x0 = randn(rng,2n) + im*randn(rng,2n) res = Optim.optimize(fprod, gprod!, x0, Optim.ConjugateGradient(manifold=m2)) @test Optim.converged(res) minprod = Optim.minimizer(res) # results should be exactly equal: same initial guess, same sequence of operations @test minpow[:,1] == minprod[1:n] @test minpow[:,2] == minprod[n+1:2n] end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
526
import Measurements @testset "Measurements+Optim" begin #example problem in #823 f(x)=(1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 xmes=zeros(Measurements.Measurement{Float64},2) xfloat = zeros(2) resmes = optimize(f,xmes) resfloat = optimize(f,xfloat) #given an initial value, they should give the exact same answer @test all(Optim.minimizer(resmes) .|> Measurements.value .== Optim.minimizer(resfloat)) @test Optim.minimum(resmes) .|> Measurements.value .== Optim.minimum(resfloat) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2281
import LinearAlgebra: qr, ldiv! # this implements the 1D p-laplacian (p = 4) # F(u) = βˆ‘_{i=1}^{N} h (W(u_i') - βˆ‘_{i=1}^{N-1} h u_i # where u_i' = (u_i - u_{i-1})/h # plap: implements the functional without boundary condition # preconditioner is a discrete laplacian, which defines a metric # equivalent (in the limit h β†’ 0) to that induced by the hessian, but # does not approximate the hessian explicitly. @testset "Preconditioning" begin plap(U; n=length(U)) = (n-1) * sum((0.1 .+ diff(U).^2).^2) - sum(U) / (n-1) plap1(U; n=length(U), dU = diff(U), dW = 4 .* (0.1 .+ dU.^2) .* dU) = (n - 1) .* ([0.0; dW] .- [dW; 0.0]) .- ones(n) / (n-1) precond(x::Vector) = precond(length(x)) precond(n::Number) = Optim.InverseDiagonal(diag(spdiagm(-1 => -ones(n-1), 0 => 2*ones(n), 1 => -ones(n-1)) * (n+1))) f(X) = plap([0;X;0]) g!(G, X) = copyto!(G, (plap1([0;X;0]))[2:end-1]) GRTOL = 1e-6 debug_printing && println("Test a basic preconditioning example") for N in (10, 50, 250) debug_printing && println("N = ", N) initial_x = zeros(N) Plap = precond(initial_x) ID = nothing for optimizer in (GradientDescent, ConjugateGradient, LBFGS) for (P, wwo) in zip((ID, Plap), (" WITHOUT", " WITH")) results = Optim.optimize(f, g!, copy(initial_x), optimizer(P = P), Optim.Options(g_tol = GRTOL, allow_f_increases = true, iterations=250000)) debug_printing && println(optimizer, wwo, " preconditioning : g_calls = ", Optim.g_calls(results), ", f_calls = ", Optim.f_calls(results)) if (optimizer == GradientDescent) && (N > 15) && (P == ID) debug_printing && println(" (gradient descent is not expected to converge)") else @test Optim.converged(results) end end end end @testset "no ☠️ #900" begin x, y, A = randn(10), randn(10), qr(randn(10,10)+4I) ldiv!(x, A, y) @test_throws MethodError ldiv!(x, nothing, y) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
472
@testset "successive_f_tol" begin alg = GradientDescent( alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.Static(), ) opt = Optim.Options( iterations = 10, successive_f_tol = 5, f_tol = 3, g_tol = -1, ) result = Optim.optimize( sum, (y, _) -> fill!(y, 1), [0.0, 0.0], alg, opt, ) @test result.iterations == opt.successive_f_tol + 1 end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
785
@testset "inplace keyword" begin rosenbrock = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"] f = MVP.objective(rosenbrock) g! = MVP.gradient(rosenbrock) h! = MVP.hessian(rosenbrock) function g(x) G = similar(x) g!(G, x) G end function h(x) n = length(x) H = similar(x, n, n) h!(H, x) H end initial_x = rosenbrock.initial_x inp_res = optimize(f, g, h, initial_x; inplace = false) op_res = optimize(f, g!, h!, initial_x; inplace = true) for op in (Optim.minimizer, Optim.minimum, Optim.f_calls, Optim.g_calls, Optim.h_calls, Optim.iterations, Optim.converged) @test all(op(inp_res) .=== op(op_res)) end end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
5197
@testset "interface" begin problem = MultivariateProblems.UnconstrainedProblems.examples["Exponential"] f = MVP.objective(problem) g! = MVP.gradient(problem) h! = MVP.hessian(problem) nd = NonDifferentiable(f, fill!(similar(problem.initial_x), 0)) od = OnceDifferentiable(f, g!, fill!(similar(problem.initial_x), 0)) td = TwiceDifferentiable(f, g!, h!, fill!(similar(problem.initial_x), 0)) tdref = TwiceDifferentiable(f, g!, h!, fill!(similar(problem.initial_x), 0)) ref = optimize(tdref, problem.initial_x, Newton(), Optim.Options()) # test AbstractObjective interface for obj in (nd, od, td) res = [] push!(res, optimize(obj, problem.initial_x)) push!(res, optimize(obj, problem.initial_x, Optim.Options())) for r in res @test norm(Optim.minimum(ref)-Optim.minimum(r)) < 1e-6 end end ad_res = optimize(od, problem.initial_x, Newton()) @test norm(Optim.minimum(ref)-Optim.minimum(ad_res)) < 1e-6 ad_res2 = optimize(od, problem.initial_x, Newton()) @test norm(Optim.minimum(ref)-Optim.minimum(ad_res2)) < 1e-6 # test f, g!, h! interface for tup in ((f,), (f, g!), (f, g!, h!)) fgh_res = [] push!(fgh_res, optimize(tup..., problem.initial_x)) for m in (NelderMead(), LBFGS(), Newton()) push!(fgh_res, optimize(tup..., problem.initial_x; f_tol = 1e-8)) push!(fgh_res, optimize(tup..., problem.initial_x, m)) push!(fgh_res, optimize(tup..., problem.initial_x, m, Optim.Options())) end for r in fgh_res @test norm(Optim.minimum(ref)-Optim.minimum(r)) < 1e-6 end end # simple tests for https://github.com/JuliaNLSolvers/Optim.jl/issues/805 @test AcceleratedGradientDescent(alphaguess=1.0).alphaguess! isa Optim.LineSearches.InitialStatic @test BFGS(alphaguess=1.0).alphaguess! isa Optim.LineSearches.InitialStatic @test ConjugateGradient(alphaguess=1.0).alphaguess! isa Optim.LineSearches.InitialStatic @test GradientDescent(alphaguess=1.0).alphaguess! isa Optim.LineSearches.InitialStatic @test MomentumGradientDescent(alphaguess=1.0).alphaguess! isa Optim.LineSearches.InitialStatic @test Newton(alphaguess=1.0).alphaguess! isa Optim.LineSearches.InitialStatic optimize(od, problem.initial_x, AcceleratedGradientDescent(alphaguess=1.0)) optimize(od, problem.initial_x, BFGS(alphaguess=1.0)) optimize(od, problem.initial_x, ConjugateGradient(alphaguess=1.0)) optimize(od, problem.initial_x, GradientDescent(alphaguess=1.0)) optimize(od, problem.initial_x, MomentumGradientDescent(alphaguess=1.0)) optimize(td, problem.initial_x, Newton(alphaguess=1.0)) end @testset "only_fg!, only_fgh!" begin f(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 function g!(G, x) G[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1] G[2] = 200.0 * (x[2] - x[1]^2) G end function h!(H, x) H[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]^2 H[1, 2] = -400.0 * x[1] H[2, 1] = -400.0 * x[1] H[2, 2] = 200.0 H end function fg!(F,G,x) G === nothing || g!(G,x) F === nothing || return f(x) nothing end function fgh!(F,G,H,x) G === nothing || g!(G,x) H === nothing || h!(H,x) F === nothing || return f(x) nothing end result_fg! = Optim.optimize(Optim.only_fg!(fg!), [0., 0.], Optim.LBFGS()) # works fine @test result_fg!.minimizer β‰ˆ [1,1] result_fgh! = Optim.optimize(Optim.only_fgh!(fgh!), [0., 0.], Optim.Newton()) @test result_fgh!.minimizer β‰ˆ [1,1] end @testset "#816" begin w = rand(2) f(x) = sum(x.^2) g!(G, x) = @. G = 2x g(x) = 2x h!(H, x) = @. H = [2.0 0.0; 0.0 2.0] hv!(Hv, x) = @. Hv = [2.0, 2.0] .* x _hv!(Hv, x, v) = @. Hv = [2.0, 2.0] .* x res = Optim.optimize(f, w) @test res.method isa NelderMead res = Optim.optimize(f, g!, w) @test res.method isa LBFGS function fg!(_, G, x) isnothing(G) || g!(G, x) return f(x) end function fg(x) return f(x), g(x) end res = Optim.optimize(Optim.only_fg!(fg!), w) @test res.method isa LBFGS res = Optim.optimize(Optim.only_fg(fg), w) @test res.method isa LBFGS res = Optim.optimize(Optim.only_g_and_fg(g, fg), w) @test res.method isa LBFGS function fgh!(_, G, H, x) isnothing(G) || g!(G, x) isnothing(H) || h!(H, x) return f(x) end res = Optim.optimize(Optim.only_fgh!(fgh!), w) @test res.method isa Newton res = Optim.optimize(Optim.only_fgh!(fgh!), w) @test res.method isa Newton function fghv!(_, G, Hv, x, v) isnothing(G) || g!(G, x) isnothing(Hv) || hv!(Hv, v) return f(x) end res = Optim.optimize(Optim.only_fghv!(fghv!), w) @test res.method isa Optim.KrylovTrustRegion res = Optim.optimize(Optim.only_fg_and_hv!(fg!, _hv!), w) @test res.method isa Optim.KrylovTrustRegion end @testset "issue 1041 and 1038" begin g(x) = -exp(-(x-pi)^2) @test_nowarn optimize(x->g(x[1]),[0.],method = AcceleratedGradientDescent()) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git
[ "MIT" ]
1.9.4
d9b79c4eed437421ac4285148fcadf42e0700e89
code
2793
@testset "optimize" begin eta = 0.9 function f1(x) (1.0 / 2.0) * (x[1]^2 + eta * x[2]^2) end function g1(storage, x) storage[1] = x[1] storage[2] = eta * x[2] end function h1(storage, x) storage[1, 1] = 1.0 storage[1, 2] = 0.0 storage[2, 1] = 0.0 storage[2, 2] = eta end results = optimize(f1, g1, h1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 results = optimize(f1, g1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 results = optimize(f1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 results = optimize(f1, [127.0, 921.0]) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 # tests for bfgs_initial_invH initial_invH = zeros(2,2) h1(initial_invH, [127.0, 921.0]) initial_invH = Matrix(Diagonal(diag(initial_invH))) results = optimize(f1, g1, [127.0, 921.0], BFGS(initial_invH = x -> initial_invH), Optim.Options()) @test Optim.g_converged(results) @test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01 # test timeout function f2(x) sleep(0.1) (1.0 / 2.0) * (x[1]^2 + eta * x[2]^2) end results = optimize(f2, g1, [127.0, 921.0], BFGS(), Optim.Options(; time_limit=0.0)) @test !Optim.g_converged(results) @test Optim.time_limit(results) < Optim.time_run(results) end @testset "#718" begin f(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2 function g!(G, x) G[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1] G[2] = 200.0 * (x[2] - x[1]^2) end function h!(H, x) H[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]^2 H[1, 2] = -400.0 * x[1] H[2, 1] = -400.0 * x[1] H[2, 2] = 200.0 end function fg!(F,G,x) G === nothing || g!(G,x) F === nothing || return f(x) nothing end function fgh!(F,G,H,x) G === nothing || g!(G,x) H === nothing || h!(H,x) F === nothing || return f(x) nothing end optimize(Optim.only_fg!(fg!), [0., 0.], NelderMead()) optimize(Optim.only_fgh!(fgh!), [0., 0.], NelderMead()) optimize(Optim.only_fgh!(fgh!), [0., 0.], ParticleSwarm()) optimize(Optim.only_fgh!(fgh!), [0., 0.], SimulatedAnnealing()) optimize(Optim.only_fgh!(fgh!), [0., 0.], GradientDescent()) optimize(Optim.only_fgh!(fgh!), [0., 0.], LBFGS()) optimize(Optim.only_fgh!(fgh!), [0., 0.], BFGS()) optimize(Optim.only_fgh!(fgh!), [0., 0.], NewtonTrustRegion()) optimize(Optim.only_fgh!(fgh!), [0., 0.], Newton()) end
Optim
https://github.com/JuliaNLSolvers/Optim.jl.git