licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 6421 | @testset "Fminbox" begin
# Quadratic objective function
# For (A*x-b)^2/2
function quadratic!(g, x, A, b)
AtAx = A'A*x
v = dot(x, AtAx)/2 - dot(b'*A, x)
if g !== nothing
g .= AtAx .- A'b
end
return v
end
Random.seed!(1)
N = 8
boxl = 2.0
# Generate a problem where the bounds-free solution lies outside of the chosen box
function find_outbox(N, limit)
outbox = false
while !outbox
# Random least squares problem
A = randn(N,N)
b = randn(N)
# Useful calculation that can be re-used
# Random starting point
initial_x = A\b
# The objective
funcg! = (g, x) -> quadratic!(g, x, A, b)
g = similar(initial_x)
funcg!(g, initial_x)
# Find the minimum
_objective = OnceDifferentiable(x->funcg!(nothing, x), (g, x)->funcg!(g, x), funcg!, initial_x)
results = optimize(_objective, initial_x, ConjugateGradient())
@test Optim.converged(results)
results = optimize(_objective, Optim.minimizer(results), ConjugateGradient()) # restart to ensure high-precision convergence
@test Optim.converged(results)
opt_x = Optim.minimizer(results)
@test norm(g) < 1e-4
if any(t -> abs(t) > boxl, opt_x)
return _objective
end
end
nothing
end
_objective = find_outbox(N, boxl)
# fminbox
l = fill(-boxl, N)
u = fill(boxl, N)
initial_x = (rand(N) .- 0.5) .* boxl
for _optimizer in (ConjugateGradient(), GradientDescent(), LBFGS(), BFGS())
debug_printing && printstyled("Solver: ", summary(_optimizer), "\n", color=:green)
results = optimize(_objective, l, u, initial_x, Fminbox(_optimizer))
@test Optim.converged(results)
@test summary(results) == "Fminbox with $(summary(_optimizer))"
opt_x = Optim.minimizer(results)
NLSolversBase.gradient!(_objective, opt_x)
g = NLSolversBase.gradient(_objective)
# check first-order constrained optimality conditions
for i = 1:N
@test abs(g[i]) < 3e-3 || (opt_x[i] < -boxl+1e-3 && g[i] > 0) || (opt_x[i] > boxl-1e-3 && g[i] < 0)
end
end
# Throw ArgumentError when initial guess is outside the box
@test_throws ArgumentError optimize(_objective, l, u, 2u, Fminbox(GradientDescent()))
# tests for #180
results = optimize(_objective, l, u, initial_x, Fminbox(), Optim.Options(outer_iterations = 2))
@test Optim.iterations(results) == 2
@test Optim.minimum(results) == _objective.f(Optim.minimizer(results))
# Warn when initial condition is not in the interior of the box
initial_x = rand([-1,1],N)*boxl
@test_logs (:warn, "Initial position cannot be on the boundary of the box. Moving elements to the interior.\nElement indices affected: [1, 2, 3, 4, 5, 6, 7, 8]") optimize(_objective, l, u, initial_x, Fminbox(), Optim.Options(outer_iterations = 1))
# might fail if changes are made to Optim.jl
# TODO: come up with a better test
#results = Optim.optimize(_objective, initial_x, l, u, Fminbox(); optimizer_o = Optim.Options(iterations = 2))
#@test Optim.iterations(results) == 470
@testset "simple input" begin
function exponential(x)
return exp((2.0 - x[1])^2) + exp((3.0 - x[2])^2)
end
function exponential_gradient!(storage, x)
storage[1] = -2.0 * (2.0 - x[1]) * exp((2.0 - x[1])^2)
storage[2] = -2.0 * (3.0 - x[2]) * exp((3.0 - x[2])^2)
storage
end
function exponential_gradient(x)
storage = similar(x)
storage[1] = -2.0 * (2.0 - x[1]) * exp((2.0 - x[1])^2)
storage[2] = -2.0 * (3.0 - x[2]) * exp((3.0 - x[2])^2)
storage
end
initial_x = [0.0, 0.0]
optimize(exponential, exponential_gradient!, initial_x, BFGS())
lb = fill(-0.1, 2)
ub = fill(1.1, 2)
od = OnceDifferentiable(exponential, initial_x)
optimize(od, lb, ub, initial_x, Fminbox())
nd = NonDifferentiable(exponential, initial_x)
optimize(nd, lb, ub, initial_x, Fminbox(NelderMead()))
od_forward = OnceDifferentiable(exponential, initial_x; autodiff = :forward)
optimize(od_forward, lb, ub, initial_x, Fminbox())
optimize(exponential, lb, ub, initial_x, Fminbox())
optimize(exponential, exponential_gradient!, lb, ub, initial_x, Fminbox())
optimize(od, lb, ub, initial_x)
optimize(od_forward, lb, ub, initial_x)
optimize(exponential, lb, ub, initial_x)
optimize(exponential, exponential_gradient!, lb, ub, initial_x)
@testset "inplace and autodiff keywords #616" begin
optimize(exponential, lb, ub, initial_x, Fminbox())
optimize(exponential, lb, ub, initial_x, Fminbox(); autodiff = :finite)
optimize(exponential, lb, ub, initial_x, Fminbox(); autodiff = :forward)
optimize(exponential, exponential_gradient, lb, ub, initial_x, Fminbox(), inplace = false)
end
@testset "error for second order methods #616" begin
@test_throws ArgumentError optimize(x->x, (G,x)->x, rand(1),rand(1),rand(1), Fminbox(Newton()))
@test_throws ArgumentError optimize(x->x, (G,x)->x, rand(1),rand(1),rand(1), Fminbox(NewtonTrustRegion()))
end
@testset "allow for an Optim.Options to be passed #623" begin
optimize(exponential, lb, ub, initial_x, Fminbox(), Optim.Options())
optimize(exponential, exponential_gradient!, lb, ub, initial_x, Fminbox(), Optim.Options())
@test_broken optimize(exponential, exponential_gradient, lb, ub, initial_x, Optim.Options())
end
end
end
@testset "#631" begin
# Fminbox evaluates outside the box #861
# https://github.com/JuliaNLSolvers/Optim.jl/issues/861
for m in (GradientDescent(), ConjugateGradient(), BFGS(), LBFGS())
optimize(x -> sqrt(x[1]), (g,x)->(g[1]=1/(2*sqrt(x[1]))), [0.0], [10.0], [1.0], Fminbox(m))
optimize(x -> sqrt(x[1]), [0.0], [10.0], [1.0], Fminbox(m); autodiff=:forwarddiff)
end
end
@testset "#865" begin
optimize(x -> sum(x), [0.,0.0], [2.0,2.0], [1.,1.0], Fminbox(NelderMead()))
end | Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 335 | @testset "SAMIN" begin
prob = MVP.UnconstrainedProblems.examples["Himmelblau"]
xtrue = prob.solutions
f = OptimTestProblems.MultivariateProblems.objective(prob)
x0 = prob.initial_x
res = optimize(f, x0.-100., x0.+100.0, x0, Optim.SAMIN(), Optim.Options(iterations=1000000))
@test Optim.minimum(res) < 1e-6
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 27421 | @testset "Constraints" begin
# Utility function for hand-setting the μ parameter
function setstate!(state, μ, d, constraints, method)
state.μ = μ
Optim.update_fg!(d, constraints, state, method)
Optim.update_h!(d, constraints, state, method)
end
@testset "Bounds parsing" begin
b = Optim.ConstraintBounds([0.0, 0.5, 2.0], [1.0, 1.0, 2.0], [5.0, 3.8], [5.0, 4.0])
@test b.eqx == [3]
@test b.valx == [2.0]
@test b.ineqx == [1,1,2,2]
@test b.σx == [1,-1,1,-1]
@test b.bx == [0.0,1.0,0.5,1.0]
@test b.eqc == [1]
@test b.valc == [5]
@test b.ineqc == [2,2]
@test b.σc == [1,-1]
@test b.bc == [3.8,4.0]
io = IOBuffer()
show(io, b)
@test String(take!(io)) == "ConstraintBounds:\n Variables:\n x[3]=2.0\n x[1]≥0.0, x[1]≤1.0, x[2]≥0.5, x[2]≤1.0\n Linear/nonlinear constraints:\n c_1=5.0\n c_2≥3.8, c_2≤4.0"
b = Optim.ConstraintBounds(Float64[], Float64[], [5.0, 3.8], [5.0, 4.0])
for fn in (:eqx, :valx, :ineqx, :σx, :bx)
@test isempty(getfield(b, fn))
end
@test b.eqc == [1]
@test b.valc == [5]
@test b.ineqc == [2,2]
@test b.σc == [1,-1]
@test b.bc == [3.8,4.0]
ba = Optim.ConstraintBounds([], [], [5.0, 3.8], [5.0, 4.0])
@test eltype(ba) == Float64
@test_throws ArgumentError Optim.ConstraintBounds([0.0, 0.5, 2.0], [1.0, 1.0, 2.0], [5.0, 4.8], [5.0, 4.0])
@test_throws DimensionMismatch Optim.ConstraintBounds([0.0, 0.5, 2.0], [1.0, 1.0], [5.0, 4.8], [5.0, 4.0])
end
@testset "IPNewton computations" begin
# Compare hand-computed gradient against that from automatic differentiation
function check_autodiff(d, bounds, x, cfun::Function, bstate, μ)
c = cfun(x)
J = Optim.NLSolversBase.ForwardDiff.jacobian(cfun, x)
p = Optim.pack_vec(x, bstate)
ftot! = (storage, p)->Optim.lagrangian_fgvec!(p, storage, gx, bgrad, d, bounds, x, c, J, bstate, μ)
pgrad = similar(p)
ftot!(pgrad, p)
chunksize = min(8, length(p))
TD = Optim.NLSolversBase.ForwardDiff.Dual{Optim.ForwardDiff.Tag{Nothing,Float64},eltype(p),chunksize}
xd = similar(x, TD)
bstated = Optim.BarrierStateVars{TD}(bounds)
pcmp = similar(p)
ftot = p->Optim.lagrangian_vec(p, d, bounds, xd, cfun, bstated, μ)
#ForwardDiff.gradient!(pcmp, ftot, p, Optim.ForwardDiff.{chunksize}())
Optim.NLSolversBase.ForwardDiff.gradient!(pcmp, ftot, p)
@test pcmp ≈ pgrad
end
# Basic setup (using two objectives, one equal to zero and the other a Gaussian)
μ = 0.2345678
d0 = TwiceDifferentiable(x->0.0, (g,x)->fill!(g, 0.0), (h,x)->fill!(h,0), rand(3))
A = randn(3,3); H = A'*A
dg = TwiceDifferentiable(x->(x'*H*x)[1]/2, (g,x)->(g[:] = H*x), (h,x)->(h[:,:]=H), rand(3))
x = clamp.(randn(3), -0.99, 0.99)
gx = similar(x)
cfun = x->Float64[]
c = Float64[]
J = Array{Float64}(undef, 0,0)
method = Optim.IPNewton(μ0 = μ)
options = Optim.Options(; Optim.default_options(method)...)
## In the code, variable constraints are special-cased (for
## reasons of user-convenience and efficiency). It's
## important to check that the special-casing yields the same
## result as the general case. So in the first three
## constrained cases below, we compare variable constraints
## against the same kind of constraint applied generically.
cvar! = (c, x) -> copyto!(c, x)
cvarJ! = (J, x) -> copyto!(J, Matrix{Float64}(I, size(J)...))
cvarh! = (h, x, λ) -> h # h! adds to h, it doesn't replace it
## No constraints
bounds = Optim.ConstraintBounds(Float64[], Float64[], Float64[], Float64[])
bstate = Optim.BarrierStateVars(bounds, x)
bgrad = similar(bstate)
f_x, L = Optim.lagrangian_fg!(gx, bgrad, dg, bounds, x, Float64[], Array{Float64}(undef, 0,0), bstate, μ)
@test f_x == L == dg.f(x)
@test gx == H*x
constraints = TwiceDifferentiableConstraints(
(c,x)->nothing, (J,x)->nothing, (H,x,λ)->nothing, bounds)
state = Optim.initial_state(method, options, dg, constraints, x)
@test Optim.gf(bounds, state) ≈ gx
@test Optim.Hf(constraints, state) ≈ H
stateconvert = convert(Optim.IPNewtonState{Float64, Vector{Float64}}, state)
@test Optim.gf(bounds, stateconvert) ≈ gx
@test Optim.Hf(constraints, stateconvert) ≈ H
## Pure equality constraints on variables
xbar = fill(0.2, length(x))
bounds = Optim.ConstraintBounds(xbar, xbar, [], [])
bstate = Optim.BarrierStateVars(bounds)
rand!(bstate.λxE)
bgrad = similar(bstate)
f_x, L = Optim.lagrangian_fg!(gx, bgrad, d0, bounds, x, c, J, bstate, μ)
@test f_x == 0
@test L ≈ dot(bstate.λxE, xbar-x)
@test gx == -bstate.λxE
@test bgrad.λxE == xbar-x
# TODO: Fix autodiff check
#check_autodiff(d0, bounds, x, cfun, bstate, μ)
constraints = TwiceDifferentiableConstraints(
(c,x)->nothing, (J,x)->nothing, (H,x,λ)->nothing, bounds)
state = Optim.initial_state(method, options, d0, constraints, x)
copyto!(state.bstate.λxE, bstate.λxE)
setstate!(state, μ, d0, constraints, method)
@test Optim.gf(bounds, state) ≈ [gx; xbar-x]
n = length(x)
eyen = Matrix{Float64}(I, n, n)
@test Optim.Hf(constraints, state) ≈ [eyen -eyen; -eyen zeros(n,n)]
# Now again using the generic machinery
bounds = Optim.ConstraintBounds([], [], xbar, xbar)
constraints = TwiceDifferentiableConstraints(cvar!, cvarJ!, cvarh!, bounds)
state = Optim.initial_state(method, options, d0, constraints, x)
copyto!(state.bstate.λcE, bstate.λxE)
setstate!(state, μ, d0, constraints, method)
@test Optim.gf(bounds, state) ≈ [gx; xbar-x]
n = length(x)
eyen = Matrix{Float64}(I, n, n)
@test Optim.Hf(constraints, state) ≈ [eyen -eyen; -eyen zeros(n,n)]
## Nonnegativity constraints
bounds = Optim.ConstraintBounds(zeros(length(x)), fill(Inf,length(x)), [], [])
y = rand(length(x))
bstate = Optim.BarrierStateVars(bounds, y)
rand!(bstate.λx)
bgrad = similar(bstate)
f_x, L = Optim.lagrangian_fg!(gx, bgrad, d0, bounds, y, Float64[], Array{Float64}(undef, 0,0), bstate, μ)
@test f_x == 0
@test L ≈ -μ*sum(log, y)
@test bgrad.slack_x == -μ./y + bstate.λx
@test gx == -bstate.λx
# TODO: Fix autodiff check
#check_autodiff(d0, bounds, y, cfun, bstate, μ)
constraints = TwiceDifferentiableConstraints(
(c,x)->nothing, (J,x)->nothing, (H,x,λ)->nothing, bounds)
state = Optim.initial_state(method, options, d0, constraints, y)
setstate!(state, μ, d0, constraints, method)
@test Optim.gf(bounds, state) ≈ -μ./y
@test Optim.Hf(constraints, state) ≈ μ*Diagonal(1 ./ y.^2)
# Now again using the generic machinery
bounds = Optim.ConstraintBounds([], [], zeros(length(x)), fill(Inf,length(x)))
constraints = TwiceDifferentiableConstraints(cvar!, cvarJ!, cvarh!, bounds)
state = Optim.initial_state(method, options, d0, constraints, y)
setstate!(state, μ, d0, constraints, method)
@test Optim.gf(bounds, state) ≈ -μ./y
@test Optim.Hf(constraints, state) ≈ μ*Diagonal(1 ./ y.^2)
## General inequality constraints on variables
lb, ub = rand(length(x)).-2, rand(length(x)).+1
bounds = Optim.ConstraintBounds(lb, ub, [], [])
bstate = Optim.BarrierStateVars(bounds, x)
rand!(bstate.slack_x) # intentionally displace from the correct value
rand!(bstate.λx)
bgrad = similar(bstate)
f_x, L = Optim.lagrangian_fg!(gx, bgrad, d0, bounds, x, Float64[], Array{Float64}(undef, 0,0), bstate, μ)
@test f_x == 0
s = bounds.σx .* (x[bounds.ineqx] - bounds.bx)
Ltarget = -μ*sum(log, bstate.slack_x) +
dot(bstate.λx, bstate.slack_x - s)
@test L ≈ Ltarget
dx = similar(gx); fill!(dx, 0)
for (i,j) in enumerate(bounds.ineqx)
dx[j] -= bounds.σx[i]*bstate.λx[i]
end
@test gx ≈ dx
@test bgrad.slack_x == -μ./bstate.slack_x + bstate.λx
# TODO: Fix autodiff check
#check_autodiff(d0, bounds, x, cfun, bstate, μ)
constraints = TwiceDifferentiableConstraints(
(c,x)->nothing, (J,x)->nothing, (H,x,λ)->nothing, bounds)
state = Optim.initial_state(method, options, d0, constraints, x)
copyto!(state.bstate.slack_x, bstate.slack_x)
copyto!(state.bstate.λx, bstate.λx)
setstate!(state, μ, d0, constraints, method)
gxs, hxs = zeros(length(x)), zeros(length(x))
s, λ = state.bstate.slack_x, state.bstate.λx
for (i,j) in enumerate(bounds.ineqx)
# # Primal
# gxs[j] += -2*μ*bounds.σx[i]/s[i] + μ*(x[j]-bounds.bx[i])/s[i]^2
# hxs[j] += μ/s[i]^2
# Primal-dual
gstmp = -μ/s[i] + λ[i]
gλtmp = s[i] - bounds.σx[i]*(x[j]-bounds.bx[i])
htmp = λ[i]/s[i]
hxs[j] += htmp
gxs[j] += bounds.σx[i]*(gstmp - λ[i]) - bounds.σx[i]*htmp*gλtmp
end
@test Optim.gf(bounds, state) ≈ gxs
@test Optim.Hf(constraints, state) ≈ Diagonal(hxs)
# Now again using the generic machinery
bounds = Optim.ConstraintBounds([], [], lb, ub)
constraints = TwiceDifferentiableConstraints(cvar!, cvarJ!, cvarh!, bounds)
state = Optim.initial_state(method, options, d0, constraints, x)
copyto!(state.bstate.slack_c, bstate.slack_x)
copyto!(state.bstate.λc, bstate.λx)
setstate!(state, μ, d0, constraints, method)
@test Optim.gf(bounds, state) ≈ gxs
@test Optim.Hf(constraints, state) ≈ Diagonal(hxs)
## Nonlinear equality constraints
cfun = x->[x[1]^2+x[2]^2, x[2]*x[3]^2]
cfun! = (c, x) -> copyto!(c, cfun(x))
cJ! = (J, x) -> copyto!(J, [2*x[1] 2*x[2] 0;
0 x[3]^2 2*x[2]*x[3]])
ch! = function(h, x, λ)
h[1,1] += 2*λ[1]
h[2,2] += 2*λ[1]
h[3,3] += 2*λ[2]*x[2]
end
c = cfun(x)
J = Optim.NLSolversBase.ForwardDiff.jacobian(cfun, x)
Jtmp = similar(J); @test cJ!(Jtmp, x) ≈ J # just to check we did it right
cbar = rand(length(c))
bounds = Optim.ConstraintBounds([], [], cbar, cbar)
bstate = Optim.BarrierStateVars(bounds, x, c)
rand!(bstate.λcE)
bgrad = similar(bstate)
f_x, L = Optim.lagrangian_fg!(gx, bgrad, d0, bounds, x, c, J, bstate, μ)
@test f_x == 0
@test L ≈ dot(bstate.λcE, cbar-c)
@test gx ≈ -J'*bstate.λcE
@test bgrad.λcE == cbar-c
# TODO: Fix autodiff check
#check_autodiff(d0, bounds, x, cfun, bstate, μ)
constraints = TwiceDifferentiableConstraints(cfun!, cJ!, ch!, bounds)
state = Optim.initial_state(method, options, d0, constraints, x)
copyto!(state.bstate.λcE, bstate.λcE)
setstate!(state, μ, d0, constraints, method)
heq = zeros(length(x), length(x))
ch!(heq, x, bstate.λcE)
@test Optim.gf(bounds, state) ≈ [gx; cbar-c]
@test Optim.Hf(constraints, state) ≈ [Matrix(cholesky(Positive, heq)) -J';
-J zeros(size(J,1), size(J,1))]
## Nonlinear inequality constraints
bounds = Optim.ConstraintBounds([], [], .-rand(length(c)).-1, rand(length(c)).+2)
bstate = Optim.BarrierStateVars(bounds, x, c)
rand!(bstate.slack_c) # intentionally displace from the correct value
rand!(bstate.λc)
bgrad = similar(bstate)
f_x, L = Optim.lagrangian_fg!(gx, bgrad, d0, bounds, x, c, J, bstate, μ)
@test f_x == 0
Ltarget = -μ*sum(log, bstate.slack_c) +
dot(bstate.λc, bstate.slack_c - bounds.σc.*(c[bounds.ineqc]-bounds.bc))
@test L ≈ Ltarget
@test gx ≈ -J[bounds.ineqc,:]'*(bstate.λc.*bounds.σc)
@test bgrad.slack_c == -μ./bstate.slack_c + bstate.λc
@test bgrad.λc == bstate.slack_c - bounds.σc .* (c[bounds.ineqc] - bounds.bc)
# TODO: Fix autodiff check
#check_autodiff(d0, bounds, x, cfun, bstate, μ)
constraints = TwiceDifferentiableConstraints(cfun!, cJ!, ch!, bounds)
state = Optim.initial_state(method, options, d0, constraints, x)
copyto!(state.bstate.slack_c, bstate.slack_c)
copyto!(state.bstate.λc, bstate.λc)
setstate!(state, μ, d0, constraints, method)
hineq = zeros(length(x), length(x))
λ = zeros(size(J, 1))
for (i,j) in enumerate(bounds.ineqc)
λ[j] += bstate.λc[i]*bounds.σc[i]
end
ch!(hineq, x, λ)
JI = J[bounds.ineqc,:]
# # Primal
# hxx = μ*JI'*Diagonal(1 ./ bstate.slack_c.^2)*JI - hineq
# gf = -JI'*(bounds.σc .* bstate.λc) + JI'*Diagonal(bounds.σc)*(bgrad.slack_c - μ(bgrad.λc ./ bstate.slack_c.^2))
# Primal-dual
# hxx = full(cholesky(Positive, -hineq)) + JI'*Diagonal(bstate.λc./bstate.slack_c)*JI
hxx = -hineq + JI'*Diagonal(bstate.λc./bstate.slack_c)*JI
gf = -JI'*(bounds.σc .* bstate.λc) + JI'*Diagonal(bounds.σc)*(bgrad.slack_c - (bgrad.λc .* bstate.λc ./ bstate.slack_c))
@test Optim.gf(bounds, state) ≈ gf
@test Optim.Hf(constraints, state) ≈ Matrix(cholesky(Positive, hxx, Val{true}))
end
@testset "IPNewton initialization" begin
method = IPNewton()
options = Optim.Options(; Optim.default_options(method)...)
x = [1.0,0.1,0.3,0.4]
## A linear objective function (hessian is zero)
f_g = [1.0,2.0,3.0,4.0]
d = TwiceDifferentiable(x->dot(x, f_g), (g,x)->copyto!(g, f_g), (h,x)->fill!(h, 0), x)
# Variable bounds
constraints = TwiceDifferentiableConstraints([0.5, 0.0, -Inf, -Inf], [Inf, Inf, 1.0, 0.8])
state = Optim.initial_state(method, options, d, constraints, x)
Optim.update_fg!(d, constraints, state, method)
@test norm(f_g - state.g) ≈ 0.01*norm(f_g)
# Nonlinear inequalities
constraints = TwiceDifferentiableConstraints(
(c,x)->(c[1]=x[1]*x[2]; c[2]=3*x[3]+x[4]^2),
(J,x)->(J[:,:] = [x[2] x[1] 0 0; 0 0 3 2*x[4]]),
(h,x,λ)->(h[4,4] += λ[2]*2),
[], [], [0.05, 0.4], [0.15, 4.4])
@test Optim.isinterior(constraints, x)
state = Optim.initial_state(method, options, d, constraints, x)
Optim.update_fg!(d, constraints, state, method)
@test norm(f_g - state.g) ≈ 0.01*norm(f_g)
# Mixed equalities and inequalities
constraints = TwiceDifferentiableConstraints(
(c,x)->(c[1]=x[1]*x[2]; c[2]=3*x[3]+x[4]^2),
(J,x)->(J .= [x[2] x[1] 0 0; 0 0 3 2*x[4]]),
(h,x,λ)->(h[4,4] += λ[2]*2),
[], [], [0.1, 0.4], [0.1, 4.4])
@test Optim.isfeasible(constraints, x)
state = Optim.initial_state(method, options, d, constraints, x)
Optim.update_fg!(d, constraints, state, method)
J = zeros(2,4)
constraints.jacobian!(J, x)
eqnormal = vec(J[1,:]); eqnormal = eqnormal/norm(eqnormal)
@test abs(dot(state.g, eqnormal)) < 1e-12 # orthogonal to equality constraint
Pfg = f_g - dot(f_g, eqnormal)*eqnormal
Pg = state.g - dot(state.g, eqnormal)*eqnormal
@test norm(Pfg - Pg) ≈ 0.01*norm(Pfg)
## An objective function with a nonzero hessian
hd = [1.0, 100.0, 0.01, 2.0] # diagonal terms of hessian
d = TwiceDifferentiable(x->sum(hd.*x.^2)/2, (g,x)->copyto!(g, hd.*x), (h,x)->copyto!(h, Diagonal(hd)), x)
NLSolversBase.gradient!(d, x)
gx = NLSolversBase.gradient(d)
hx = Diagonal(hd)
# Variable bounds
constraints = TwiceDifferentiableConstraints([0.5, 0.0, -Inf, -Inf], [Inf, Inf, 1.0, 0.8])
state = Optim.initial_state(method, options, d, constraints, x)
Optim.update_fg!(d, constraints, state, method)
@test abs(dot(gx, state.g)/dot(gx,gx) - 1) <= 0.011
Optim.update_h!(d, constraints, state, method)
@test abs(dot(gx, state.H*gx)/dot(gx, hx*gx) - 1) <= 0.011
# Nonlinear inequalities
constraints = TwiceDifferentiableConstraints(
(c,x)->(c[1]=x[1]*x[2]; c[2]=3*x[3]+x[4]^2),
(J,x)->(J[:,:] = [x[2] x[1] 0 0; 0 0 3 2*x[4]]),
(h,x,λ)->(h[4,4] += λ[2]*2),
[], [], [0.05, 0.4], [0.15, 4.4])
@test Optim.isinterior(constraints, x)
state = Optim.initial_state(method, options, d, constraints, x)
Optim.update_fg!(d, constraints, state, method)
@test abs(dot(gx, state.g)/dot(gx,gx) - 1) <= 0.011
Optim.update_h!(d, constraints, state, method)
@test abs(dot(gx, state.H*gx)/dot(gx, hx*gx) - 1) <= 0.011
# Mixed equalities and inequalities
constraints = TwiceDifferentiableConstraints(
(c,x)->(c[1]=x[1]*x[2]; c[2]=3*x[3]+x[4]^2),
(J,x)->(J[:,:] = [x[2] x[1] 0 0; 0 0 3 2*x[4]]),
(h,x,λ)->(h[4,4] += λ[2]*2),
[], [], [0.1, 0.4], [0.1, 4.4])
@test Optim.isfeasible(constraints, x)
state = Optim.initial_state(method, options, d, constraints, x)
Optim.update_fg!(d, constraints, state, method)
J = zeros(2,4)
constraints.jacobian!(J, x)
eqnormal = vec(J[1,:]); eqnormal = eqnormal/norm(eqnormal)
@test abs(dot(state.g, eqnormal)) < 1e-12 # orthogonal to equality constraint
Pgx = gx - dot(gx, eqnormal)*eqnormal
@test abs(dot(Pgx, state.g)/dot(Pgx,Pgx) - 1) <= 0.011
Optim.update_h!(d, constraints, state, method)
@test abs(dot(Pgx, state.H*Pgx)/dot(Pgx, hx*Pgx) - 1) <= 0.011
end
@testset "IPNewton step" begin
function autoqp(d, constraints, state)
# Note that state must be fully up-to-date, and you must
# have also called Optim.solve_step!
p = Optim.pack_vec(state.x, state.bstate)
chunksize = 1 #min(8, length(p))
# TODO: How do we deal with the new Tags in ForwardDiff?
# TD = ForwardDiff.Dual{chunksize, eltype(y)}
TD = Optim.NLSolversBase.ForwardDiff.Dual{Optim.NLSolversBase.ForwardDiff.Tag{Nothing,Float64}, eltype(p), chunksize}
# TODO: It doesn't seem like it is possible to to create a dual where the values are duals?
# TD2 = ForwardDiff.Dual{chunksize, ForwardDiff.Dual{chunksize, eltype(p)}}
# TD2 = ForwardDiff.Dual{ForwardDiff.Tag{Nothing,Float64}, typeof(TD), chunksize}
Tx = typeof(state.x)
stated = convert(Optim.IPNewtonState{TD, Tx,1}, state)
# TODO: Uncomment
#stated2 = convert(Optim.IPNewtonState{TD2, Tx, 1}, state)
ϕd = αs->Optim.lagrangian_linefunc(αs, d, constraints, stated)
# TODO: Uncomment
#ϕd2 = αs->Optim.lagrangian_linefunc(αs, d, constraints, stated2)
#ForwardDiff.gradient(ϕd, zeros(4)), ForwardDiff.hessian(ϕd2, zeros(4))
Optim.NLSolversBase.ForwardDiff.gradient(ϕd, [0.0])#, ForwardDiff.hessian(ϕd2, [0.0])
end
F = 1000
d = TwiceDifferentiable(x->F*x[1], (g, x) -> (g[1] = F), (h, x) -> (h[1,1] = 0), [0.0,])
μ = 1e-20
method = Optim.IPNewton(μ0=μ)
options = Optim.Options(; Optim.default_options(method)...)
x0 = μ/F*10 # minimum is at μ/F
# Nonnegativity (the case that doesn't require slack variables)
constraints = TwiceDifferentiableConstraints([0.0], [])
state = Optim.initial_state(method, options, d, constraints, [x0])
qp = Optim.solve_step!(state, constraints, options)
@test state.s[1] ≈ -(F-μ/x0)/(state.bstate.λx[1]/x0)
# TODO: Fix ForwardDiff
#g0, H0 = autoqp(d, constraints, state)
@test qp[1] ≈ F*x0-μ*log(x0)
# TODO: Fix ForwardDiff
#@test [qp[2]] ≈ g0 #-(F-μ/x0)^2*x0^2/μ
# TODO: Fix ForwardDiff
#@test [qp[3]] ≈ H0 # μ/x0^2*(x0 - F*x0^2/μ)^2
bstate, bstep, bounds = state.bstate, state.bstep, constraints.bounds
αmax = Optim.estimate_maxstep(Inf, state.x[bounds.ineqx].*bounds.σx,
state.s[bounds.ineqx].*bounds.σx)
ϕ = Optim.linesearch_anon(d, constraints, state, method)
val0 = ϕ(0.0)
val0 = isa(val0, Tuple) ? val0[1] : val0
@test val0 ≈ qp[1]
α = method.linesearch!(ϕ, 1.0, αmax, qp)
@test α > 1e-3
# TODO: Add linesearch_anon tests for IPNewton(linesearch! = backtracking_constrained)
end
@testset "Slack" begin
σswap(σ, a, b) = σ == 1 ? (a, b) : (b, a)
# Test that we achieve a high-precision minimum for fixed
# μ. For anything other than nonnegativity/nonpositivity
# constraints, this tests whether the slack variables are
# solving the problem they were designed to address (the
# possibility that adjacent floating-point numbers are too
# widely spaced to accurately satisfy the KKT equations near a
# boundary).
F0 = 1000
μ = 1e-20 # smaller than eps(1.0)
method = Optim.IPNewton(μ0=μ)
options = Optim.Options(; Optim.default_options(method)...)
for σ in (1, -1)
F = σ*F0
# Nonnegativity/nonpositivity (the case that doesn't require slack variables)
d = TwiceDifferentiable(x->F*x[1], (g, x) -> (g[1] = F), (h, x) -> (h[1,1] = 0), [0.0,])
constraints = TwiceDifferentiableConstraints(σswap(σ, [0.0], [])...)
state = Optim.initial_state(method, options, d, constraints, [μ/F*10])
for i = 1:10
Optim.update_state!(d, constraints, state, method, options)
state.μ = μ
Optim.update_fg!(d, constraints, state, method)
Optim.update_h!(d, constraints, state, method)
end
@test isapprox(first(state.x), μ/F, rtol=1e-4)
# |x| ≥ 1, and check that we get slack precision better than eps(1.0)
d = TwiceDifferentiable(x->F*(x[1]-σ), (g, x) -> (g[1] = F), (h, x) -> (h[1,1] = 0), [0.0,])
constraints = TwiceDifferentiableConstraints(σswap(σ, [Float64(σ)], [])...)
state = Optim.initial_state(method, options, d, constraints, [(1+eps(1.0))*σ])
for i = 1:10
Optim.update_state!(d, constraints, state, method, options)
state.μ = μ
Optim.update_fg!(d, constraints, state, method)
Optim.update_h!(d, constraints, state, method)
end
@test state.x[1] == σ
@test state.bstate.slack_x[1] < eps(float(σ))
# |x| >= 1 using the linear/nonlinear constraints
d = TwiceDifferentiable(x->F*(x[1]-σ), (g, x) -> (g[1] = F), (h, x) -> (h[1,1] = 0), [0.0,])
constraints = TwiceDifferentiableConstraints(
(c,x)->(c[1] = x[1]),
(J,x)->(J[1,1] = 1.0),
(h,x,λ)->nothing,
[], [], σswap(σ, [Float64(σ)], [])...)
state = Optim.initial_state(method, options, d, constraints, [(1+eps(1.0))*σ])
for i = 1:10
Optim.update_state!(d, constraints, state, method, options)
Optim.update_fg!(d, constraints, state, method)
Optim.update_h!(d, constraints, state, method)
end
@test state.x[1] ≈ σ
@test state.bstate.slack_c[1] < eps(float(σ))
end
end
@testset "Constrained optimization" begin
# TODO: Add more problems
mcvp = MVP.ConstrainedProblems.examples
method = IPNewton()
for (name, prob) in mcvp
debug_printing && printstyled("Problem: ", name, "\n", color=:green)
df = TwiceDifferentiable(MVP.objective(prob), MVP.gradient(prob),
MVP.objective_gradient(prob), MVP.hessian(prob), prob.initial_x)
cd = prob.constraintdata
constraints = TwiceDifferentiableConstraints(
cd.c!, cd.jacobian!, cd.h!,
cd.lx, cd.ux, cd.lc, cd.uc)
options = Optim.Options(; Optim.default_options(method)...)
minval = NLSolversBase.value(df, prob.solutions)
results = optimize(df,constraints, prob.initial_x, method, options)
@test isa(summary(results), String)
@test Optim.converged(results)
@test Optim.minimum(results) < minval + sqrt(eps(minval))
debug_printing && printstyled("Iterations: $(Optim.iterations(results))\n", color=:red)
debug_printing && printstyled("f-calls: $(Optim.f_calls(results))\n", color=:red)
debug_printing && printstyled("g-calls: $(Optim.g_calls(results))\n", color=:red)
debug_printing && printstyled("h-calls: $(Optim.h_calls(results))\n", color=:red)
results = optimize(MVP.objective(prob),constraints, prob.initial_x, method, options)
@test isa(summary(results), String)
@test Optim.converged(results)
@test Optim.minimum(results) < minval + sqrt(eps(minval))
end
# Test constraints on both x and c
prob = mcvp["HS9"]
df = TwiceDifferentiable(MVP.objective(prob), MVP.gradient(prob),
MVP.objective_gradient(prob), MVP.hessian(prob), prob.initial_x)
cd = prob.constraintdata
lx = [5,5]; ux = [15,15]
constraints = TwiceDifferentiableConstraints(
cd.c!, cd.jacobian!, cd.h!,
lx, ux, cd.lc, cd.uc)
options = Optim.Options(; Optim.default_options(method)...)
xsol = [9.,12.]
x0 = [12. 14.0]
minval = NLSolversBase.value(df, xsol)
results = optimize(df,constraints, [12, 14.0], method, options)
@test isa(Optim.summary(results), String)
@test Optim.converged(results)
@test Optim.minimum(results) < minval + sqrt(eps(minval))
# Test the tracing
# TODO: Update this when show_linesearch becomes part of Optim.Options
method = IPNewton(show_linesearch = true)
options = Optim.Options(iterations = 2,
show_trace = true, extended_trace=true, store_trace = true;
Optim.default_options(method)...)
results = optimize(df,constraints, [12, 14.0], method, options)
io = IOBuffer()
show(io, results.trace)
@test startswith(String(take!(io)), "Iter Lagrangian value Function value Gradient norm |==constr.| μ\n------ ---------------- -------------- -------------- -------------- --------\n")
# TODO: Add test where we start with an infeasible point
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 2080 | @testset "Function counter" begin
prob = OptimTestProblems.UnconstrainedProblems.examples["Rosenbrock"]
let
global fcount = 0
global fcounter
function fcounter(reset::Bool = false)
if reset
fcount = 0
else
fcount += 1
end
fcount
end
global gcount = 0
global gcounter
function gcounter(reset::Bool = false)
if reset
gcount = 0
else
gcount += 1
end
gcount
end
global hcount = 0
global hcounter
function hcounter(reset::Bool = false)
if reset
hcount = 0
else
hcount += 1
end
hcount
end
end
f(x) = begin
fcounter()
MVP.objective(prob)(x)
end
g!(out, x) = begin
gcounter()
MVP.gradient(prob)(out, x)
end
h!(out, x) = begin
hcounter()
MVP.hessian(prob)(out, x)
end
options = Optim.Options(; Optim.default_options(IPNewton())...)
# TODO: Run this on backtrack_constrained as well (when we figure out what it does)
for ls in [Optim.backtrack_constrained_grad,]
#Optim.backtrack_constrained]
fcounter(true); gcounter(true); hcounter(true)
df = TwiceDifferentiable(f, g!, h!, prob.initial_x)
infvec = fill(Inf, size(prob.initial_x))
# TODO: fix `optimize`so that empty constraints work
#constraints = TwiceDifferentiableConstraints([], [])
constraints = TwiceDifferentiableConstraints(-infvec, infvec)
res = optimize(df, constraints, prob.initial_x,
IPNewton(linesearch = ls),
options)
@test fcount == Optim.f_calls(res)
@test gcount == Optim.g_calls(res)
@test hcount == Optim.h_calls(res)
end
# TODO: Test a constrained problem
# TODO: Test constraints call counter (if we need to make one)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1886 | using Optim, Test
@testset "#711" begin
# make sure it doesn't try to promote df
dof = 7
fun(x) = 0.0; x0 = fill(0.1, dof)
df = TwiceDifferentiable(fun, x0)
lx = fill(-1.2, dof); ux = fill(+1.2, dof)
dfc = TwiceDifferentiableConstraints(lx, ux)
res = optimize(df, dfc, x0, IPNewton(); autodiff=:forward)
res = optimize(df, dfc, x0, IPNewton())
end
@testset "#600" begin
function exponential(x)
return exp((2.0 - x[1])^2) + exp((3.0 - x[2])^2)
end
function exponential_gradient!(storage, x)
storage[1] = -2.0 * (2.0 - x[1]) * exp((2.0 - x[1])^2)
storage[2] = -2.0 * (3.0 - x[2]) * exp((3.0 - x[2])^2)
storage
end
function exponential_hessian!(storage, x)
Optim.NLSolversBase.ForwardDiff.hessian!(storage, exponential, x)
end
function exponential_gradient(x)
storage = similar(x)
storage[1] = -2.0 * (2.0 - x[1]) * exp((2.0 - x[1])^2)
storage[2] = -2.0 * (3.0 - x[2]) * exp((3.0 - x[2])^2)
storage
end
initial_x = [0.0, 0.0]
optimize(exponential, exponential_gradient!, initial_x, BFGS())
lb = fill(-0.1, 2)
ub = fill(1.1, 2)
od = OnceDifferentiable(exponential, initial_x)
optimize(od, lb, ub, initial_x, IPNewton())
optimize(od, lb, ub, initial_x, IPNewton(), Optim.Options())
optimize(exponential, lb, ub, initial_x, IPNewton())
optimize(exponential, lb, ub, initial_x, IPNewton(), Optim.Options())
optimize(exponential, exponential_gradient!, lb, ub, initial_x, IPNewton())
optimize(exponential, exponential_gradient!, lb, ub, initial_x, IPNewton(), Optim.Options())
optimize(exponential, exponential_gradient!, exponential_hessian!, lb, ub, initial_x, IPNewton())
optimize(exponential, exponential_gradient!, exponential_hessian!, lb, ub, initial_x, IPNewton(), Optim.Options())
optimize(TwiceDifferentiable(od, initial_x), lb, ub, initial_x)
optimize(TwiceDifferentiable(od, initial_x), lb, ub, initial_x, Optim.Options())
end | Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 179 | @testset "IPNewton Unconstrained" begin
method = IPNewton()
run_optim_tests_constrained(method; show_name=debug_printing, show_res=false, show_itcalls=debug_printing)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1702 | @testset "Accelerated Gradient Descent" begin
f(x) = x[1]^4
function g!(storage, x)
storage[1] = 4 * x[1]^3
return
end
initial_x = [1.0]
options = Optim.Options(show_trace = debug_printing, allow_f_increases=true)
results = Optim.optimize(f, g!, initial_x, AcceleratedGradientDescent(), options)
@test norm(Optim.minimum(results)) < 1e-6
@test summary(results) == "Accelerated Gradient Descent"
# TODO: Check why skip problems fail
skip = ("Trigonometric", "Large Polynomial", "Parabola", "Paraboloid Random Matrix",
"Paraboloid Diagonal", "Extended Rosenbrock", "Penalty Function I", "Beale",
"Extended Powell",
)
run_optim_tests(AcceleratedGradientDescent();
skip = skip,
convergence_exceptions = (("Rosenbrock", 1),("Rosenbrock", 2)),
minimum_exceptions = (("Rosenbrock", 2),),
minimizer_exceptions = (("Rosenbrock", 2),),
iteration_exceptions = (("Powell", 1100),
("Rosenbrock", 10000),
("Polynomial", 1500),
("Fletcher-Powell", 10000),
("Extended Powell", 8000)),
f_increase_exceptions = ("Hosaki", "Polynomial", "Powell", "Himmelblau",
"Extended Powell", "Fletcher-Powell",
"Quadratic Diagonal", "Rosenbrock"),
show_name=debug_printing)#,
#show_res = debug_printing)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1839 | @testset "Adam" begin
f(x) = x[1]^4
function g!(storage, x)
storage[1] = 4 * x[1]^3
return
end
initial_x = [1.0]
options = Optim.Options(show_trace = debug_printing, allow_f_increases=true, iterations=100_000)
results = Optim.optimize(f, g!, initial_x, Adam(), options)
@test norm(Optim.minimum(results)) < 1e-6
@test summary(results) == "Adam"
# TODO: Check why skip problems fail
skip = ("Large Polynomial", "Parabola", "Paraboloid Random Matrix",
"Paraboloid Diagonal", "Penalty Function I", "Polynomial", "Powell",
"Extended Powell", "Trigonometric", "Himmelblau", "Rosenbrock", "Extended Rosenbrock",
"Quadratic Diagonal", "Beale", "Fletcher-Powell", "Exponential",
)
run_optim_tests(Adam();
skip = skip,
show_name = debug_printing)
end
@testset "AdaMax" begin
f(x) = x[1]^4
function g!(storage, x)
storage[1] = 4 * x[1]^3
return
end
initial_x = [1.0]
options = Optim.Options(show_trace = debug_printing, allow_f_increases=true, iterations=100_000)
results = Optim.optimize(f, g!, initial_x, AdaMax(), options)
@test norm(Optim.minimum(results)) < 1e-6
@test summary(results) == "AdaMax"
# TODO: Check why skip problems fail
skip = ("Trigonometric", "Large Polynomial", "Parabola", "Paraboloid Random Matrix",
"Paraboloid Diagonal", "Extended Rosenbrock", "Penalty Function I", "Beale",
"Extended Powell", "Himmelblau", "Large Polynomial", "Polynomial", "Powell",
"Exponential",
)
run_optim_tests(AdaMax();
skip = skip,
show_name=debug_printing,
iteration_exceptions = (("Trigonometric", 1_000_000,),))
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 330 | @testset "BFGS" begin
# Trigonometric gets stuck in a local minimum?
skip = ("Trigonometric",)
run_optim_tests(BFGS(); convergence_exceptions = (("Polynomial",1),),
f_increase_exceptions = ("Extended Rosenbrock",),
skip=skip,
show_name = debug_printing)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 2162 | @testset "Conjugate Gradient" begin
# TODO: Investigate the exceptions (could be they just need more iterations?)
# Test Optim.cg for all differentiable functions in MultivariateProblems.UnconstrainedProblems.examples
# Trigonometric gets stuck in a local minimum?
skip = ("Trigonometric", "Extended Powell")
run_optim_tests(ConjugateGradient(),
skip=skip,
convergence_exceptions = (("Powell", 1), ("Powell", 2), ("Polynomial", 1),
("Extended Rosenbrock", 1),
("Extended Powell", 1),
("Extended Powell", 2)),
minimum_exceptions = (("Paraboloid Diagonal", 1)),
minimizer_exceptions = (("Paraboloid Diagonal", 1),
("Extended Powell", 1),
("Extended Powell", 2)),
f_increase_exceptions = (("Hosaki"),),
iteration_exceptions = (("Paraboloid Diagonal", 10000),),
show_name = debug_printing)
@testset "matrix input" begin
cg_objective(X, B) = sum(abs2, X .- B)/2
function cg_objective_gradient!(G, X, B)
for i = 1:length(G)
G[i] = X[i]-B[i]
end
end
Random.seed!(1)
B = rand(2,2)
results = Optim.optimize(X -> cg_objective(X, B), (G, X) -> cg_objective_gradient!(G, X, B), rand(2,2), ConjugateGradient())
@test Optim.converged(results)
@test Optim.minimum(results) < 1e-8
end
@testset "Undefined beta_k behaviour" begin
# Ref #669
# If y_k is zero, then betak is undefined.
# Check that we don't produce NaNs
f(x) = 100 - x[1] + exp(x[1] - 100)
g!(grad, x) = grad[1] = -1 + exp(x[1] - 100)
res = optimize(f, g!, [0.0], ConjugateGradient(alphaguess=LineSearches.InitialStatic(alpha=1.0), linesearch=LineSearches.BackTracking()))
@test Optim.converged(res)
@test Optim.minimum(res) ≈ 1.0
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 2053 | @testset "Gradient Descent" begin
run_optim_tests(GradientDescent(),
skip = ("Trigonometric", "Powell", "Extended Powell", "Paraboloid Random Matrix",),
f_increase_exceptions = ("Hosaki",),
convergence_exceptions = (("Polynomial", 1), ("Polynomial", 2), ("Rosenbrock", 1), ("Rosenbrock", 2),
("Extended Rosenbrock", 1), ("Extended Rosenbrock", 2),
("Penalty Function I", 1),
("Penalty Function I", 2)),
iteration_exceptions = (("Rosenbrock", 10000),
("Extended Rosenbrock", 12000),
("Fletcher-Powell", 10000),
("Paraboloid Diagonal", 10000),
# ("Paraboloid Random Matrix", 20000), should be seeded
("Penalty Function I", 10000),),
show_name = debug_printing)
function f_gd_1(x)
(x[1] - 5.0)^2
end
function g_gd_1(storage, x)
storage[1] = 2.0 * (x[1] - 5.0)
end
initial_x = [0.0]
d = OnceDifferentiable(f_gd_1, g_gd_1, initial_x)
results = Optim.optimize(d, initial_x, GradientDescent())
@test_throws ErrorException Optim.x_trace(results)
@test Optim.g_converged(results)
@test norm(Optim.minimizer(results) - [5.0]) < 0.01
@test summary(results) == "Gradient Descent"
eta = 0.9
function f_gd_2(x)
(1.0 / 2.0) * (x[1]^2 + eta * x[2]^2)
end
function g_gd_2(storage, x)
storage[1] = x[1]
storage[2] = eta * x[2]
end
d = OnceDifferentiable(f_gd_2, g_gd_2, [1.0, 1.0])
results = Optim.optimize(d, [1.0, 1.0], GradientDescent())
@test_throws ErrorException Optim.x_trace(results)
@test Optim.g_converged(results)
@test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 514 | @testset "L-BFGS" begin
# Trigonometric gets stuck in a local minimum?
skip = ("Trigonometric",)
if Sys.WORD_SIZE == 32
iteration_exceptions = (("Extended Powell", 2000),)
else
iteration_exceptions = ()
end
run_optim_tests(LBFGS(),
f_increase_exceptions = ("Extended Rosenbrock",),
skip=skip,
iteration_exceptions = iteration_exceptions,
show_name = debug_printing,
)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1061 | @testset "Momentum Gradient Descent" begin
# TODO: check the skips and exceptions, maybe it's enough to increase number of iterations?
skip = ("Rosenbrock", "Extended Powell", "Extended Rosenbrock",
"Trigonometric", "Penalty Function I", "Beale","Paraboloid Random Matrix")
run_optim_tests(MomentumGradientDescent(),
skip = skip,
convergence_exceptions = (("Large Polynomial",1), ("Himmelblau",1),
("Fletcher-Powell", 1),("Fletcher-Powell", 2),
("Powell", 1)),
minimum_exceptions = (("Large Polynomial", 1), ("Large Polynomial", 2)),
iteration_exceptions = (("Paraboloid Diagonal", 10000),
("Powell", 10000)),
f_increase_exceptions = ("Exponential", "Polynomial",
"Paraboloid Random Matrix", "Hosaki"),
show_name = debug_printing)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 5790 | using Optim, Test
## REMEMBER TO UPDATE TESTS FOR BOTH THE N-GMRES and the O-ACCEL TEST SETS
@testset "N-GMRES" begin
method = NGMRES
solver = method()
skip = ("Trigonometric", )
run_optim_tests(solver; skip = skip,
iteration_exceptions = (("Penalty Function I", 10000), ("Paraboloid Random Matrix", 10000)),
show_name = debug_printing)
# Specialized tests
prob = MVP.UnconstrainedProblems.examples["Rosenbrock"]
df = OnceDifferentiable(MVP.objective(prob),
MVP.gradient(prob),
prob.initial_x)
@test solver.nlpreconopts.iterations == 1
@test solver.nlpreconopts.allow_f_increases == true
defopts = Optim.default_options(solver)
@test defopts == (; allow_f_increases = true)
state = Optim.initial_state(solver, Optim.Options(;defopts...), df,
prob.initial_x)
@test state.x === state.nlpreconstate.x
@test state.x_previous === state.nlpreconstate.x_previous
@test size(state.X) == (length(state.x), solver.wmax)
@test size(state.R) == (length(state.x), solver.wmax)
@test size(state.Q) == (solver.wmax, solver.wmax)
@test size(state.ξ) == (solver.wmax,)
@test state.curw == 1
@test size(state.A) == (solver.wmax, solver.wmax)
@test length(state.b) == solver.wmax
@test length(state.xA) == length(state.x)
# Test that tracing doesn't throw errors
res = optimize(df, prob.initial_x, solver,
Optim.Options(extended_trace=true, store_trace=true;
defopts...))
@test Optim.converged(res)
# The bounds are due to different systems behaving differently
# TODO: is it a bad idea to hardcode these?
@test 64 < Optim.iterations(res) < 100
@test 234 < Optim.f_calls(res) < 310
@test 234 < Optim.g_calls(res) < 310
@test Optim.minimum(res) < 1e-10
@test_throws AssertionError method(manifold=Optim.Sphere(), nlprecon = GradientDescent())
for nlprec in (LBFGS, BFGS)
solver = method(nlprecon=nlprec())
clear!(df)
res = optimize(df, prob.initial_x, solver)
if !Optim.converged(res)
display(res)
end
@test Optim.converged(res)
@test Optim.minimum(res) < 1e-10
end
# O-ACCEL handles the InitialConstantChange functionality in a special way,
# so we should test that it works well.
for nlprec in (GradientDescent(),
GradientDescent(alphaguess = LineSearches.InitialConstantChange()))
solver = method(nlprecon = nlprec,
alphaguess = LineSearches.InitialConstantChange())
clear!(df)
res = optimize(df, prob.initial_x, solver)
if !Optim.converged(res)
display(res)
end
@test Optim.converged(res)
@test Optim.minimum(res) < 1e-10
end
end
@testset "O-ACCEL" begin
method = OACCEL
solver = method()
skip = ("Trigonometric", )
run_optim_tests(solver; skip = skip,
iteration_exceptions = (("Penalty Function I", 10000), ),
show_name = debug_printing)
prob = MVP.UnconstrainedProblems.examples["Rosenbrock"]
df = OnceDifferentiable(MVP.objective(prob),
MVP.gradient(prob),
prob.initial_x)
@test solver.nlpreconopts.iterations == 1
@test solver.nlpreconopts.allow_f_increases == true
defopts = Optim.default_options(solver)
@test defopts == (;allow_f_increases = true)
state = Optim.initial_state(solver, Optim.Options(;defopts...), df,
prob.initial_x)
@test state.x === state.nlpreconstate.x
@test state.x_previous === state.nlpreconstate.x_previous
@test size(state.X) == (length(state.x), solver.wmax)
@test size(state.R) == (length(state.x), solver.wmax)
@test size(state.Q) == (solver.wmax, solver.wmax)
@test size(state.ξ) == (solver.wmax, 2)
@test state.curw == 1
@test size(state.A) == (solver.wmax, solver.wmax)
@test length(state.b) == solver.wmax
@test length(state.xA) == length(state.x)
# Test that tracing doesn't throw errors
res = optimize(df, prob.initial_x, solver,
Optim.Options(extended_trace=true, store_trace=true;
defopts...))
@test Optim.converged(res)
# The bounds are due to different systems behaving differently
# TODO: is it a bad idea to hardcode these?
@test 72 < Optim.iterations(res) < 100
@test 245 < Optim.f_calls(res) < 310
@test 245 < Optim.g_calls(res) < 310
@test Optim.minimum(res) < 1e-10
@test_throws AssertionError method(manifold=Optim.Sphere(), nlprecon = GradientDescent())
for nlprec in (LBFGS, BFGS)
solver = method(nlprecon=nlprec())
clear!(df)
res = optimize(df, prob.initial_x, solver)
if !Optim.converged(res)
display(res)
end
@test Optim.converged(res)
@test Optim.minimum(res) < 1e-10
end
# O-ACCEL handles the InitialConstantChange functionality in a special way,
# so we should test that it works well.
for nlprec in (GradientDescent(),
GradientDescent(alphaguess = LineSearches.InitialConstantChange()))
solver = method(nlprecon = nlprec,
alphaguess = LineSearches.InitialConstantChange())
clear!(df)
res = optimize(df, prob.initial_x, solver)
if !Optim.converged(res)
display(res)
end
@test Optim.converged(res)
@test Optim.minimum(res) < 1e-10
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 2223 | @testset "Krylov Trust Region" begin
@testset "Toy test problem 1" begin
# Test on actual optimization problems.
function f(x::Vector)
(x[1] - 5.0)^4
end
function fg!(g, x)
g[1] = 4.0 * (x[1] - 5.0)^3
f(x)
end
function fg2!(_f, g, x)
g === nothing || (g[1] = 4.0 * (x[1] - 5.0)^3)
_f === nothing || return f(x)
end
function hv!(Hv, x, v)
Hv[1] = 12.0 * (x[1] - 5.0)^2 * v[1]
end
d = Optim.TwiceDifferentiableHV(f, fg!, hv!, [0.0])
d2 = Optim.TwiceDifferentiableHV(NLSolversBase.only_fg_and_hv!(fg2!, hv!), [0.0])
result = Optim.optimize(d, [0.0], Optim.KrylovTrustRegion())
@test norm(Optim.minimizer(result) - [5.0]) < 0.01
result = Optim.optimize(d2, [0.0], Optim.KrylovTrustRegion())
@test norm(Optim.minimizer(result) - [5.0]) < 0.01
end
@testset "Toy test problem 2" begin
eta = 0.9
function f2(x::Vector)
0.5 * (x[1]^2 + eta * x[2]^2)
end
function fg2!(storage::Vector, x::Vector)
storage[:] = [x[1], eta * x[2]]
f2(x)
end
function hv2!(Hv::Vector, x::Vector, v::Vector)
Hv[:] = [1.0 0.0; 0.0 eta] * v
end
d2 = Optim.TwiceDifferentiableHV(f2, fg2!, hv2!, Float64[127, 921])
result = Optim.optimize(d2, Float64[127, 921], Optim.KrylovTrustRegion())
@test result.g_converged
@test norm(Optim.minimizer(result) - [0.0, 0.0]) < 0.01
end
@testset "Stock test problems" begin
for (name, prob) in MultivariateProblems.UnconstrainedProblems.examples
if prob.istwicedifferentiable
hv!(storage::Vector, x::Vector, v::Vector) = begin
n = length(x)
H = Matrix{Float64}(undef, n, n)
MVP.hessian(prob)(H, x)
storage .= H * v
end
fg!(g::Vector, x::Vector) = begin
MVP.gradient(prob)(g,x)
MVP.objective(prob)(x)
end
ddf = Optim.TwiceDifferentiableHV(MVP.objective(prob), fg!, hv!, prob.initial_x)
result = Optim.optimize(ddf, prob.initial_x, Optim.KrylovTrustRegion())
@test norm(Optim.minimizer(result) - prob.solutions) < 1e-2
end
end
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1872 | @testset "Newton" begin
function f_1(x::Vector)
(x[1] - 5.0)^4
end
function g!_1(storage::Vector, x::Vector)
storage[1] = 4.0 * (x[1] - 5.0)^3
end
function h!_1(storage::Matrix, x::Vector)
storage[1, 1] = 12.0 * (x[1] - 5.0)^2
end
initial_x = [0.0]
Optim.optimize(NonDifferentiable(f_1, initial_x), [0.0], Newton())
Optim.optimize(OnceDifferentiable(f_1, g!_1, initial_x), [0.0], Newton())
options = Optim.Options(store_trace = false, show_trace = false,
extended_trace = true)
results = Optim.optimize(f_1, g!_1, h!_1, [0.0], Newton(), options)
@test_throws ErrorException Optim.x_trace(results)
@test Optim.g_converged(results)
@test norm(Optim.minimizer(results) - [5.0]) < 0.01
eta = 0.9
function f_2(x::Vector)
(1.0 / 2.0) * (x[1]^2 + eta * x[2]^2)
end
function g!_2(storage::Vector, x::Vector)
storage[1] = x[1]
storage[2] = eta * x[2]
end
function h!_2(storage::Matrix, x::Vector)
storage[1, 1] = 1.0
storage[1, 2] = 0.0
storage[2, 1] = 0.0
storage[2, 2] = eta
end
results = Optim.optimize(f_2, g!_2, h!_2, [127.0, 921.0], Newton())
@test_throws ErrorException Optim.x_trace(results)
@test Optim.g_converged(results)
@test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01
@test summary(results) == "Newton's Method"
@testset "newton in concave region" begin
prob=MultivariateProblems.UnconstrainedProblems.examples["Himmelblau"]
res = optimize(MVP.objective(prob), MVP.gradient(prob), MVP.hessian(prob), [0., 0.], Newton())
@test norm(Optim.minimizer(res) - prob.solutions) < 1e-9
end
@testset "Optim problems" begin
run_optim_tests(Newton(); skip = ("Trigonometric",), show_name = debug_printing)
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 7008 | using Optim, Test, Distributions, Random, LinearAlgebra
@testset "Newton Trust Region" begin
@testset "Subproblems I" begin
# verify that solve_tr_subproblem! finds the minimum
n = 2
gr = [-0.74637,0.52388]
H = [0.945787 -3.07884; -3.07884 -1.27762]
s = zeros(n)
m, interior = Optim.solve_tr_subproblem!(gr, H, 1., s, max_iters=100)
for j in 1:10
bad_s = rand(n)
bad_s ./= norm(bad_s) # boundary
model(s2) = (gr' * s2)[] + .5 * (s2' * H * s2)[]
@test model(s) <= model(bad_s) + 1e-8
end
end
@testset "Subproblems II" begin
# random Hessians--verify that solve_tr_subproblem! finds the minimum
for i in 1:10000
n = rand(1:10)
gr = randn(n)
H = randn(n, n)
H += H'
s = zeros(n)
m, interior = Optim.solve_tr_subproblem!(gr, H, 1., s, max_iters=100)
model(s2) = (gr' * s2) + .5 * (s2' * H * s2)
@test model(s) <= model(zeros(n)) + 1e-8 # origin
for j in 1:10
bad_s = rand(n)
bad_s ./= norm(bad_s) # boundary
@test model(s) <= model(bad_s) + 1e-8
bad_s .*= rand() # interior
@test model(s) <= model(bad_s) + 1e-8
end
end
end
@testset "Test problems" begin
#######################################
# First test the subproblem.
Random.seed!(42)
n = 5
H = rand(n, n)
H = H' * H + 4 * I
H_eig = eigen(H)
U = H_eig.vectors
gr = zeros(n)
gr[1] = 1.
s = zeros(Float64, n)
true_s = -H \ gr
s_norm2 = dot(true_s, true_s)
true_m = dot(true_s, gr) + 0.5 * dot(true_s, H * true_s)
# An interior solution
delta = sqrt(s_norm2) + 1.0
m, interior, lambda, hard_case, reached_solution =
Optim.solve_tr_subproblem!(gr, H, delta, s)
@test interior
@test !hard_case
@test reached_solution
@test abs(m - true_m) < 1e-12
@test norm(s - true_s) < 1e-12
@test abs(lambda) < 1e-12
# A boundary solution
delta = 0.5 * sqrt(s_norm2)
m, interior, lambda, hard_case, reached_solution =
Optim.solve_tr_subproblem!(gr, H, delta, s)
@test !interior
@test !hard_case
@test reached_solution
@test m > true_m
@test abs(norm(s) - delta) < 1e-12
@test lambda > 0
# A "hard case" where the gradient is orthogonal to the lowest eigenvector
# Test the checking
hard_case, lambda_index =
Optim.check_hard_case_candidate([-1., 2., 3.], [0., 1., 1.])
@test hard_case
@test lambda_index == 2
hard_case, lambda_index =
Optim.check_hard_case_candidate([-1., -1., 3.], [0., 0., 1.])
@test hard_case
@test lambda_index == 3
hard_case, lambda_index =
Optim.check_hard_case_candidate([-1., -1., -1.], [0., 0., 0.])
@test hard_case
@test lambda_index == 4
hard_case, lambda_index =
Optim.check_hard_case_candidate([1., 2., 3.], [0., 1., 1.])
@test !hard_case
hard_case, lambda_index =
Optim.check_hard_case_candidate([-1., -1., -1.], [0., 0., 1.])
@test !hard_case
hard_case, lambda_index =
Optim.check_hard_case_candidate([-1., 2., 3.], [1., 1., 1.])
@test !hard_case
# Now check an actual hard case problem
L = fill(0.1, n)
L[1] = -1.
H = U * Matrix(Diagonal(L)) * U'
H = 0.5 * (H' + H)
@test issymmetric(H)
gr = U[:,2][:]
@test abs(dot(gr, U[:,1][:])) < 1e-12
true_s = -H \ gr
s_norm2 = dot(true_s, true_s)
true_m = dot(true_s, gr) + 0.5 * dot(true_s, H * true_s)
delta = 0.5 * sqrt(s_norm2)
m, interior, lambda, hard_case, reached_solution =
Optim.solve_tr_subproblem!(gr, H, delta, s)
@test !interior
@test hard_case
@test reached_solution
@test abs(lambda + L[1]) < 1e-4
@test abs(norm(s) - delta) < 1e-12
#######################################
# Next, test on actual optimization problems.
function f(x::Vector)
(x[1] - 5.0)^4
end
function g!(storage::Vector, x::Vector)
storage[1] = 4.0 * (x[1] - 5.0)^3
end
function h!(storage::Matrix, x::Vector)
storage[1, 1] = 12.0 * (x[1] - 5.0)^2
end
d = TwiceDifferentiable(f, g!, h!, [0.0,])
options = Optim.Options(store_trace = false, show_trace = false,
extended_trace = true)
results = Optim.optimize(d, [0.0], NewtonTrustRegion(), options)
@test_throws ErrorException Optim.x_trace(results)
@test length(results.trace) == 0
@test results.g_converged
@test norm(Optim.minimizer(results) - [5.0]) < 0.01
@test summary(results) == "Newton's Method (Trust Region)"
eta = 0.9
function f_2(x::Vector)
0.5 * (x[1]^2 + eta * x[2]^2)
end
function g!_2(storage::Vector, x::Vector)
storage[1] = x[1]
storage[2] = eta * x[2]
end
function h!_2(storage::Matrix, x::Vector)
storage[1, 1] = 1.0
storage[1, 2] = 0.0
storage[2, 1] = 0.0
storage[2, 2] = eta
end
d = TwiceDifferentiable(f_2, g!_2, h!_2, Float64[127, 921])
results = Optim.optimize(d, Float64[127, 921], NewtonTrustRegion())
@test results.g_converged
@test norm(Optim.minimizer(results) - [0.0, 0.0]) < 0.01
# Test Optim.newton for all twice differentiable functions in
# MultivariateProblems.UnconstrainedProblems.examples
@testset "Optim problems" begin
run_optim_tests(NewtonTrustRegion(); skip = ("Trigonometric", ),
show_name = debug_printing)
end
end
@testset "PR #341" begin
# verify that no PosDef exception is thrown
Optim.solve_tr_subproblem!([0, 1.], [-1000 0; 0. -999], 1e-2, ones(2))
end
@testset "Handle Inf without erroring" begin
o = optimize(TwiceDifferentiable(t -> rand(), (g, t)->(g.=t.+10), (h,t)->NaN*t*t',ones(10)), ones(10), NewtonTrustRegion())
@test !(o.f_converged || o.g_converged || o.x_converged)
end
@testset "delta_min" begin
c = (t, Δ, D, ke) -> t < Δ ? -(exp(-ke*t) - 1)*D/(ke*Δ) : -(exp(-ke*Δ) - 1)*D/(ke*Δ)*exp(-ke*(t-Δ))
ke₀ = 0.5
D₀ = 100.0
t₁ = 2.0
ll = Δ -> begin
sum(
map(
zip(
[0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 8.0],
[19.90278833504542, 29.50697731718643, 42.106713695572836, 60.402701110755814, 72.78413106065605, 48.58414814304506, 36.134598474160484, 24.137636435583193, 3.2819695104173814]
)
) do (t,y)
ct = c(t, Δ, D₀, ke₀)
return logpdf(Normal(ct, ct*0.1), y)
end
)
end
@test_throws DomainError Optim.optimize(t -> -ll(t[1]), [2.1],
NewtonTrustRegion(delta_min=-1.0),
Optim.Options(show_trace = false, allow_f_increases = false, g_tol = 1e-5))
Optim.optimize(t -> -ll(t[1]), [2.1],
NewtonTrustRegion(delta_min=0.0),
Optim.Options( show_trace = false, allow_f_increases = false, g_tol = 1e-5))
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 222 | @testset "Grid Search" begin
@test Optim.grid_search(x -> (1.0 - x)^2, [-1:0.1:1.0;]) == 1
end
# Cartesian product over 2 dimensions.
#grid_search(x -> (1.0 - x[1])^2 + (2.0 - x[2])^2, product[-1:0.1:1.0, -1:0.1:1.0])
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1088 | @testset "Nelder Mead" begin
# Test Optim.nelder_mead for all functions except Large Polynomials in MultivariateProblems.UnconstrainedProblems.examples
skip = ("Large Polynomial", "Extended Powell", "Quadratic Diagonal",
"Extended Rosenbrock", "Paraboloid Diagonal", "Paraboloid Random Matrix",
"Trigonometric", "Penalty Function I",)
run_optim_tests(NelderMead(),
convergence_exceptions = (("Powell", 1)),
minimum_exceptions = (("Exponential", 1), ("Exponential", 2)),
skip = skip, show_name = debug_printing)
# Test if the trace is correctly stored.
prob = MultivariateProblems.UnconstrainedProblems.examples["Rosenbrock"]
res = Optim.optimize(MVP.objective(prob), prob.initial_x, method = NelderMead(), store_trace = true, extended_trace=true)
@test ( length(unique(Optim.g_norm_trace(res))) != 1 || length(unique(Optim.f_trace(res))) != 1 ) && issorted(Optim.f_trace(res)[end:1])
@test !(res.trace[1].metadata["centroid"] === res.trace[end].metadata["centroid"])
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1288 | @testset "Particle Swarm" begin
# TODO: Run on MultivariateProblems.UnconstrainedProblems?
Random.seed!(100)
function f_s(x::Vector)
(x[1] - 5.0)^4
end
function rosenbrock_s(x::Vector)
(1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
end
initial_x = [0.0]
upper = [100.0]
lower = [-100.0]
n_particles = 4
options = Optim.Options(iterations=100)
res = Optim.optimize(f_s, initial_x, ParticleSwarm(lower, upper, n_particles),
options)
@test norm(Optim.minimizer(res) - [5.0]) < 0.1
initial_x = [0.0, 0.0]
lower = [-20., -20.]
upper = [20., 20.]
n_particles = 5
options = Optim.Options(iterations=300)
res = Optim.optimize(rosenbrock_s, initial_x, ParticleSwarm(lower, upper, n_particles),
options)
@test norm(Optim.minimizer(res) - [1.0, 1.0]) < 0.1
options = Optim.Options(iterations=300, show_trace=true, extended_trace=true, store_trace=true)
res = Optim.optimize(rosenbrock_s, initial_x, ParticleSwarm(lower, upper, n_particles), options)
@test summary(res) == "Particle Swarm"
res = Optim.optimize(rosenbrock_s, initial_x, ParticleSwarm(n_particles = n_particles), options)
@test summary(res) == "Particle Swarm"
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 773 | @testset "Simulated Annealing" begin
Random.seed!(1)
function f_s(x::Vector)
(x[1] - 5.0)^4
end
options = Optim.Options(iterations=100_000)
results = Optim.optimize(f_s, [0.0], SimulatedAnnealing(), options)
@test norm(Optim.minimizer(results) - [5.0]) < 0.1
function rosenbrock_s(x::Vector)
(1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
end
options = Optim.Options(iterations=100_000)
results = Optim.optimize(rosenbrock_s, [0.0, 0.0], SimulatedAnnealing(), options)
@test norm(Optim.minimizer(results) - [1.0, 1.0]) < 0.1
options = Optim.Options(iterations=10, show_trace=true, store_trace=true, extended_trace=true)
results = Optim.optimize(rosenbrock_s, [0.0, 0.0], SimulatedAnnealing(), options)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 374 | @testset "bigfloat initial convergence #720" begin
f(x) = x[1]^2
x0 = BigFloat[0]
obj = OnceDifferentiable(f, x0; autodiff=:forward)
for method in (GradientDescent, BFGS, LBFGS, AcceleratedGradientDescent, MomentumGradientDescent, ConjugateGradient, Newton, NewtonTrustRegion, SimulatedAnnealing)
result = Optim.optimize(f, x0, method())
end
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 185 | @testset "Dual numbers" begin
f(x,y) = x[1]^2+y[1]^2
g(param) = Optim.minimum(optimize(x->f(x,param), -1,1))
@test Optim.NLSolversBase.ForwardDiff.gradient(g, [1.0]) == [2.0]
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 379 | @testset "#853" begin
"Model parameter"
struct yObj
p
end
"Univariable Functor"
function (s::yObj)(x)
return x*s.p
end
"Multivariable Functor with array input"
function (s::yObj)(x_v)
return x_v[1]*s.p
end
model = yObj(1.0)
Optim.optimize(model, -1, 2, [1.]) # already worked
Optim.optimize(model, -1, 2) # didn't work
Optim.optimize(model, -1., 2.) # didn't work
end | Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 654 | @testset "optimize" begin
# Tests for PR #302
results = optimize(cos, 0, 2pi);
@test norm(Optim.minimizer(results) - pi) < 0.01
results = optimize(cos, 0.0, 2pi);
@test norm(Optim.minimizer(results) - pi) < 0.01
results = optimize(cos, 0, 2pi, Brent());
@test norm(Optim.minimizer(results) - pi) < 0.01
results = optimize(cos, 0.0, 2pi, Brent());
@test norm(Optim.minimizer(results) - pi) < 0.01
results = optimize(cos, 0, 2pi, method = Brent());
@test norm(Optim.minimizer(results) - pi) < 0.01
results = optimize(cos, 0.0, 2pi, method = Brent());
@test norm(Optim.minimizer(results) - pi) < 0.01
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 1230 | @testset "Brent's Method" begin
for (name, prob) in OptimTestProblems.UnivariateProblems.examples
for T in (Float64, BigFloat)
results = optimize(prob.f, convert(Array{T}, prob.bounds)..., method = Brent())
@test Optim.converged(results)
@test norm(Optim.minimizer(results) .- prob.minimizers) < 1e-7
end
end
## corner cases - empty and zero-width brackets
result = optimize(sqrt, 4.0, 4.0, method = Brent())
@test Optim.converged(result)
@test Optim.minimizer(result) == 4.0
@test Optim.minimum(result) == 2.0
@test_throws ErrorException optimize(identity, 2.0, 1.0, Brent())
@test summary(result) == "Brent's Method"
## corner cases - largely flat functions
result = optimize(x->sign(x), -2, 2)
@test Optim.converged(result)
@test Optim.minimum(result) == -1.0
result = optimize(x->sign(x), -1, 2)
@test Optim.converged(result)
@test Optim.minimum(result) == -1.0
result = optimize(x->sign(x), -2, 1)
@test Optim.converged(result)
@test Optim.minimum(result) == -1.0
result = Optim.optimize(x->sin(x), 0, 2π, Optim.Brent(); abs_tol=1e-4, store_trace=false, show_trace=true, iterations=2)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | code | 856 | @testset "Golden Section" begin
for (name, prob) in OptimTestProblems.UnivariateProblems.examples
for T in (Float64, BigFloat)
results = optimize(prob.f, convert(Array{T}, prob.bounds)...,
method = GoldenSection())
@test Optim.converged(results)
@test norm(Optim.minimizer(results) .- prob.minimizers) < 1e-7
end
end
## corner cases - empty and zero-width brackets
result = optimize(sqrt, 4.0, 4.0, method = GoldenSection())
@test Optim.converged(result)
@test Optim.minimizer(result) == 4.0
@test Optim.minimum(result) == 2.0
@test_throws ErrorException optimize(identity, 2.0, 1.0, GoldenSection())
result = Optim.optimize(x->sin(x), 0, 2π, Optim.GoldenSection(); abs_tol=1e-4, store_trace=false, show_trace=true, iterations=2)
end
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 1213 | # Notes for Optim Contributors
Welcome to Optim.jl, and thanks for showing an interest in our package.
## Before filing an issue
Reporting a potential bug? Please be sure to include a [Minimal Working Example](https://en.wikipedia.org/wiki/Minimal_Working_Example) so the other contributors can get right at solving your issue. Including the version of Optim.jl you have installed and the exact version of Julia you are using is encouraged as well.
## Contributing code
Contributing code? We welcome all bug fixes, documentation, and new features. However, before you spend several weeks learning all the kinks and corners of Optim.jl to contribute a new algorithm, it is adviced to reach out via an issue or through [gitter](https://gitter.im/JuliaNLSolvers/Optim.jl) to gauge the interest. While we want to provide as many good solvers to the end-users, we need to think about the over-all fit of the algorithm for Optim.jl, and the possibility of maintaining the extra code.
If you want to contribute, but you don't have any ideas for a PR, feel free to take a look at the issues labelled [help wanted](https://github.com/JuliaNLSolvers/Optim.jl/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22).
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 4340 | # Optim master release notes
* Fix Preconditioning example for v1.0 syntax
* Improve handling of alternative number types in univariate optimization
* Add conditional likelihood example to docs
* Improve Fminbox trace printing.
# Optim v0.17.2 release notes
* Fix some typos
* Fix doc building
# Optim v0.17.0 release notes
* Drop support for Julia versions less 1.0. Optim v.17.1 is also out.
# Optim v0.11.0 release notes
* Optional scaling for inverse Hessian in L-BFGS
* Support for initial step length guesses via LineSearches
# Optim v0.10.0 release notes
* Support for optimization on Riemannian manifolds
* Support for optimization of functions of complex variables
* New experimental KrylovTrustRegion method useful when cheap Hessian-vector products are available.
* Improved support for BigFloats
* Add doc strings to methods
* Drop support for Julia versions less than v0.6.0-pre
# Optim v0.9.0 release notes
* Fminbox: If an initial guess is on the boundary of the box, the guess is moved inside the box and a warning is produced, as opposed to crashing with an error.
* Significant changes to the Non-, Once-, and TwiceDifferentiable setup; these now hold temporaries relevant to the evaluation of objectives, gradients, and Hessians. They also hold f-, g-, and h_calls counters.
* Refactor tests
* Drop v0.4 support
* Add limits to f-, g-, and h_calls
* Improve trace for univariate optimization
* Changed order of storage arrays and evaluation point arrays in gradient and Hessian calls
* Skip v0.8.0 to allow fixes on Julia v0.5.0
# Optim v0.7.6 release notes
* Fix deprecations for *Function constructors
* Fix depwarns on Julia master (v0.6)
* Update references to new JuliaNLSolvers home for Optim+family
# Optim v0.7.5 release notes
* Various bug fixes
* Deprecate DifferentiableFunction, TwiceDifferentiable in favor of OnceDifferentiable, TwiceDifferentiable
* widen some type annotations (e.g. allow for multidimensional arrays as inputs again)
* introduce allow_f_increases keyword in Optim.Options to allow objective to increase between iterations
* New option in Optim.Options: allow_f_increases. Defaults to false, but if set to true, the solver will not stop even if a step leads to an increase in the objective.
* Newton and BFGS: set initial step length to one.
See [328](https://github.com/JuliaOpt/Optim.jl/pull/328).
# Optim v0.7.3 release notes
* OptimizationOptions is now unexported, and has been renamed to Options. Must be accessed as Optim.Options as a result.
* Bug fixes to Nelder-Mead tracing.
* Keywords with ! in them have been deprecated to version without. For example, linesearch! -> linesearch.
* Failures in a line search now terminates the optimization with a warning and status of non-convergence. The results can still be accessed, but `minimizer(res)` will not represent a local minimum.
See [275](https://github.com/JuliaOpt/Optim.jl/pull/275).
# Optim v0.7.0 release notes
* Refactor code internally to clean up code and allow more flexible use Optim
* Switch to new (v.0.3) ForwardDiff
* Make minimizer/minimum transition final
* Fix dispatch bug for univariate optimization.
* The line search functionality has been separated into a new package
[LineSearches.jl](https://github.com/anriseth/LineSearches.jl), see
[277](https://github.com/JuliaOpt/Optim.jl/pull/277).
* Make move to minimizer (the argmin) and minimum (objective at argmin) final: field names are now in sync with function based API.
# Optim v0.6.1 release notes
* Assess convergence in *g* before iterating to avoid line search errors if `initial_x` is a stationary point
* Fix trace bug in LevenbergMarquardt.
* Add ForwardDiff AD functionality to NewtonTrustRegion
* Make documentation even more noticable in README.md
# Optim v0.6.0 release notes
* Various bug fixes
* Added box constraints to Levenberg Marquardt
* Changed old solver: Nelder-Mead w/ Adaptive parameters
* Julia v0.5 deprecation fixes
* Added NewtonTrustRegion solver [238](https://github.com/JuliaOpt/Optim.jl/pull/238) [245](https://github.com/JuliaOpt/Optim.jl/pull/245)
* Added ParticleSwarm solver [218](https://github.com/JuliaOpt/Optim.jl/pull/218)
* Added documentation generated by [Documenter.jl](https://github.com/JuliaDocs/Documenter.jl), see PR[225](https://github.com/JuliaOpt/Optim.jl/pull/225).
* Added NEWS.md
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 5092 | # Optim.jl
[](https://julianlsolvers.github.io/Optim.jl/stable)
[](https://julianlsolvers.github.io/Optim.jl/dev)
[](https://github.com/JuliaNLSolvers/Optim.jl/actions/workflows/windows.yml)
[](https://github.com/JuliaNLSolvers/Optim.jl/actions/workflows/linux.yml)
[](https://github.com/JuliaNLSolvers/Optim.jl/actions/workflows/mac.yml)
[](https://codecov.io/gh/JuliaNLSolvers/Optim.jl)
[](https://doi.org/10.21105/joss.00615)
Univariate and multivariate optimization in Julia.
Optim.jl is part of the [JuliaNLSolvers](https://github.com/JuliaNLSolvers)
family.
## Help and support
For help and support, please post on the [Optimization (Mathematical)](https://discourse.julialang.org/c/domain/opt/13)
section of the Julia discourse or the `#math-optimization` channel of the Julia [slack](https://julialang.org/slack/).
## Installation
Install `Optim.jl` using the Julia package manager:
```julia
import Pkg
Pkg.add("Optim")
```
## Documentation
The online documentation is available at [https://julianlsolvers.github.io/Optim.jl/stable](https://julianlsolvers.github.io/Optim.jl/stable).
## Example
To minimize the [Rosenbrock function](https://en.wikipedia.org/wiki/Rosenbrock_function),
do:
```julia
julia> using Optim
julia> rosenbrock(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
rosenbrock (generic function with 1 method)
julia> result = optimize(rosenbrock, zeros(2), BFGS())
* Status: success
* Candidate solution
Final objective value: 5.471433e-17
* Found with
Algorithm: BFGS
* Convergence measures
|x - x'| = 3.47e-07 ≰ 0.0e+00
|x - x'|/|x'| = 3.47e-07 ≰ 0.0e+00
|f(x) - f(x')| = 6.59e-14 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 1.20e+03 ≰ 0.0e+00
|g(x)| = 2.33e-09 ≤ 1.0e-08
* Work counters
Seconds run: 0 (vs limit Inf)
Iterations: 16
f(x) calls: 53
∇f(x) calls: 53
julia> Optim.minimizer(result)
2-element Vector{Float64}:
0.9999999926033423
0.9999999852005355
julia> Optim.minimum(result)
5.471432670590216e-17
```
To get information on the keywords used to construct method instances, use the
Julia REPL help prompt (`?`)
```julia
help?> LBFGS
search: LBFGS
LBFGS
≡≡≡≡≡
Constructor
===========
LBFGS(; m::Integer = 10,
alphaguess = LineSearches.InitialStatic(),
linesearch = LineSearches.HagerZhang(),
P=nothing,
precondprep = (P, x) -> nothing,
manifold = Flat(),
scaleinvH0::Bool = true && (typeof(P) <: Nothing))
LBFGS has two special keywords; the memory length m, and the scaleinvH0 flag.
The memory length determines how many previous Hessian approximations to
store. When scaleinvH0 == true, then the initial guess in the two-loop
recursion to approximate the inverse Hessian is the scaled identity, as can be
found in Nocedal and Wright (2nd edition) (sec. 7.2).
In addition, LBFGS supports preconditioning via the P and precondprep keywords.
Description
===========
The LBFGS method implements the limited-memory BFGS algorithm as described in
Nocedal and Wright (sec. 7.2, 2006) and original paper by Liu & Nocedal
(1989). It is a quasi-Newton method that updates an approximation to the
Hessian using past approximations as well as the gradient.
References
==========
• Wright, S. J. and J. Nocedal (2006), Numerical optimization, 2nd edition.
Springer
• Liu, D. C. and Nocedal, J. (1989). "On the Limited Memory Method for
Large Scale Optimization". Mathematical Programming B. 45 (3): 503–528
```
## Use with JuMP
You can use Optim.jl with [JuMP.jl](https://github.com/jump-dev/JuMP.jl) as
follows:
```julia
julia> using JuMP, Optim
julia> model = Model(Optim.Optimizer);
julia> set_optimizer_attribute(model, "method", BFGS())
julia> @variable(model, x[1:2]);
julia> @objective(model, Min, (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2)
(x[1]² - 2 x[1] + 1) + (100.0 * ((-x[1]² + x[2]) ^ 2.0))
julia> optimize!(model)
julia> objective_value(model)
3.7218241804173566e-21
julia> value.(x)
2-element Vector{Float64}:
0.9999999999373603
0.99999999986862
```
## Citation
If you use `Optim.jl` in your work, please cite the following:
```tex
@article{mogensen2018optim,
author = {Mogensen, Patrick Kofod and Riseth, Asbj{\o}rn Nilsen},
title = {Optim: A mathematical optimization package for {Julia}},
journal = {Journal of Open Source Software},
year = {2018},
volume = {3},
number = {24},
pages = {615},
doi = {10.21105/joss.00615}
}
```
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 3588 | # Optim.jl
Univariate and multivariate optimization in Julia.
Optim.jl is part of the [JuliaNLSolvers](https://github.com/JuliaNLSolvers) family.
| **Source** | **Build Status** | **Social** | **References to cite** |
|:-:|:-:|:-:|:-:|
| [](https://github.com/JuliaNLSolvers/Optim.jl) | [](https://travis-ci.org/JuliaNLSolvers/Optim.jl) | [](https://gitter.im/JuliaNLSolvers/Optim.jl) | [](https://doi.org/10.21105/joss.00615) |
| [](https://codecov.io/gh/JuliaNLSolvers/Optim.jl) |[](https://ci.appveyor.com/project/blegat/optim-jl) | | [](https://zenodo.org/badge/latestdoi/3933868) |
## What
Optim is a Julia package for optimizing functions of
various kinds. While there is some support for box constrained and Riemannian optimization, most
of the solvers try to find an ``x`` that minimizes a function ``f(x)`` without any constraints.
Thus, the main focus is on unconstrained optimization.
The provided solvers, under certain conditions, will converge to a local minimum.
In the case where a global minimum is desired we supply some methods such as (bounded) simulated annealing and particle swarm. For a dedicated package for global optimization techniques, see e.g. [BlackBoxOptim](https://github.com/robertfeldt/BlackBoxOptim.jl).
## Why
There are many solvers available from both free and commercial sources, and many
of them are accessible from Julia. Few of them are written in Julia.
Performance-wise this is rarely a problem, as they are often written in either
Fortran or C. However, solvers written directly in Julia
does come with some advantages.
When writing Julia software (packages) that require something to be optimized, the programmer
can either choose to write their own optimization routine, or use one of the many
available solvers. For example, this could be something from the [NLopt](https://github.com/JuliaOpt/NLopt.jl) suite.
This means adding a dependency which is not written in Julia, and more assumptions
have to be made as to the environment the user is in. Does the user have the proper
compilers? Is it possible to use GPL'ed code in the project? Optim is released
under the MIT license, and installation is a simple `Pkg.add`, so it really doesn't
get much freer, easier, and lightweight than that.
It is also true, that using a solver written in C or Fortran makes it impossible to leverage one
of the main benefits of Julia: multiple dispatch. Since Optim is entirely written
in Julia, we can currently use the dispatch system to ease the use of custom preconditioners.
A planned feature along these lines is to allow for user controlled choice of solvers
for various steps in the algorithm, entirely based on dispatch, and not predefined
possibilities chosen by the developers of Optim.
Being a Julia package also means that Optim has access to the automatic differentiation
features through the packages in [JuliaDiff](http://www.juliadiff.org/).
## How
The package is a registered package, and can be installed with `Pkg.add`.
```julia
julia> using Pkg; Pkg.add("Optim")
```
or through the `pkg` REPL mode by typing
```
] add Optim
```
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 1319 | # Adam and AdaMax
This page contains information about Adam and AdaMax. Notice, that these algorithms do not use line search algorithms, so some tuning of `alpha` may be necessary to obtain sufficiently fast convergence on your specific problem.
## Constructors
```julia
Adam(; alpha=0.0001,
beta_mean=0.9,
beta_var=0.999,
epsilon=1e-8)
```
where `alpha` is the step length or learning parameter. `beta_mean` and `beta_var` are exponential decay parameters for the first and second moments estimates. Setting these closer to 0 will cause past iterates to matter less for the current steps and setting them closer to 1 means emphasizing past iterates more. `epsilon` should rarely be changed, and just exists to avoid a division by 0.
```julia
AdaMax(; alpha=0.002,
beta_mean=0.9,
beta_var=0.999,
epsilon=1e-8)
```
where `alpha` is the step length or learning parameter. `beta_mean` and `beta_var` are exponential decay parameters for the first and second moments estimates. Setting these closer to 0 will cause past iterates to matter less for the current steps and setting them closer to 1 means emphasizing past iterates more.
## References
Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 156 | # Brent's Method
## Constructor
## Description
## Example
## References
R. P. Brent (2002) Algorithms for Minimization Without Derivatives. Dover edition.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2826 | # Conjugate Gradient Descent
## Constructor
```julia
ConjugateGradient(; alphaguess = LineSearches.InitialHagerZhang(),
linesearch = LineSearches.HagerZhang(),
eta = 0.4,
P = nothing,
precondprep = (P, x) -> nothing)
```
## Description
The `ConjugateGradient` method implements Hager and Zhang (2006) and elements from
Hager and Zhang (2013). Notice, that the default `linesearch` is `HagerZhang` from
LineSearches.jl. This line search is exactly the one proposed in Hager and Zhang (2006).
The constant ``eta`` is used in determining the next step direction, and the default
here deviates from the one used in the original paper (``0.01``). It needs to be
a strictly positive number.
## Example
Let's optimize the 2D Rosenbrock function. The function and gradient are given by
```
f(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
function g!(storage, x)
storage[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1]
storage[2] = 200.0 * (x[2] - x[1]^2)
end
```
we can then try to optimize this function from `x=[0.0, 0.0]`
```
julia> optimize(f, g!, zeros(2), ConjugateGradient())
Results of Optimization Algorithm
* Algorithm: Conjugate Gradient
* Starting Point: [0.0,0.0]
* Minimizer: [1.000000002262018,1.0000000045408348]
* Minimum: 5.144946e-18
* Iterations: 21
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 2.09e-10
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 1.55e+00 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 3.36e-09
* stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 54
* Gradient Calls: 39
```
We can compare this to the default first order solver in Optim.jl
```
julia> optimize(f, g!, zeros(2))
Results of Optimization Algorithm
* Algorithm: L-BFGS
* Starting Point: [0.0,0.0]
* Minimizer: [0.9999999999373614,0.999999999868622]
* Minimum: 7.645684e-21
* Iterations: 16
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 3.48e-07
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 9.03e+06 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 2.32e-09
* stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 53
* Gradient Calls: 53
```
We see that for this objective and starting point, `ConjugateGradient()` requires
fewer gradient evaluations to reach convergence.
## References
- W. W. Hager and H. Zhang (2006) Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Transactions on Mathematical Software 32: 113-137.
- W. W. Hager and H. Zhang (2013), The Limited Memory Conjugate Gradient Method. SIAM Journal on Optimization, 23, pp. 2150-2168.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 4653 | # Complex optimization
Optimization of functions defined on complex inputs (``\mathbb{C}^n
\to \mathbb{R}``) is supported by simply passing a complex ``x`` as
input. The algorithms supported are all those which can naturally be
extended to work with complex numbers: simulated annealing and all the
first-order methods.
The gradient of a complex-to-real function is defined as the only
vector ``g`` such that
```math
f(x+h) = f(x) + \mbox{Re}(g' * h) + \mathcal{O}(h^2).
```
This is sometimes written
```math
g = \frac{df}{d(z*)} = \frac{df}{d(\mbox{Re}(z))} + i \frac{df}{d(\mbox{Im(z)})}.
```
The gradient of a ``\mathbb{C}^n \to \mathbb{R}`` function is a
``\mathbb{C}^n \to \mathbb{C}^n`` map. Even if it is differentiable when
seen as a function of ``\mathbb{R}^{2n}`` to ``\mathbb{R}^{2n}``, it
might not be
complex-differentiable. For instance, take ``f(z) = \mbox{Re}(z)^2``.
Then ``g(z) = 2 \mbox{Re}(z)``, which is not complex-differentiable
(holomorphic). Therefore,
the Hessian of a ``\mathbb{C}^n \to \mathbb{R}`` function is in
general not well-defined as a ``n \times n`` complex matrix (only as a
``2n \times 2n`` real matrix), and therefore
second-order optimization algorithms are not applicable directly. To
use second-order optimization, convert to real variables.
## Examples
We show how to minimize a quadratic plus quartic function with
the `LBFGS` optimization algorithm.
```jl
using Random
Random.seed!(0) # Set the seed for reproducibility
# μ is the strength of the quartic. μ = 0 is just a quadratic problem
n = 4
A = randn(n,n) + im*randn(n,n)
A = A'A + I
b = randn(n) + im*randn(n)
μ = 1.0
fcomplex(x) = real(dot(x,A*x)/2 - dot(b,x)) + μ*sum(abs.(x).^4)
gcomplex(x) = A*x-b + 4μ*(abs.(x).^2).*x
gcomplex!(stor,x) = copyto!(stor,gcomplex(x))
x0 = randn(n)+im*randn(n)
res = optimize(fcomplex, gcomplex!, x0, LBFGS())
```
The output of the optimization is
```
Results of Optimization Algorithm
* Algorithm: L-BFGS
* Starting Point: [0.48155603952425174 - 1.477880724921868im,-0.3219431528959694 - 0.18542418173298963im, ...]
* Minimizer: [0.14163543901272568 - 0.034929496785515886im,-0.1208600058040362 - 0.6125620908171383im, ...]
* Minimum: -1.568997e+00
* Iterations: 16
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 3.28e-09
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = -4.25e-16 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 6.33e-11
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 48
* Gradient Calls: 48
```
Similarly, with `ConjugateGradient`.
``` julia
res = optimize(fcomplex, gcomplex!, x0, ConjugateGradient())
```
```
Results of Optimization Algorithm
* Algorithm: Conjugate Gradient
* Starting Point: [0.48155603952425174 - 1.477880724921868im,-0.3219431528959694 - 0.18542418173298963im, ...]
* Minimizer: [0.1416354378490425 - 0.034929499492595516im,-0.12086000949769983 - 0.6125620892675705im, ...]
* Minimum: -1.568997e+00
* Iterations: 23
* Convergence: false
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 8.54e-10
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = -4.25e-16 |f(x)|
* |g(x)| ≤ 1.0e-08: false
|g(x)| = 3.72e-08
* Stopped by an increasing objective: true
* Reached Maximum Number of Iterations: false
* Objective Calls: 51
* Gradient Calls: 29
```
### Differentation
The finite difference methods used by `Optim` support real functions
with complex inputs.
``` julia
res = optimize(fcomplex, x0, LBFGS())
```
```
Results of Optimization Algorithm
* Algorithm: L-BFGS
* Starting Point: [0.48155603952425174 - 1.477880724921868im,-0.3219431528959694 - 0.18542418173298963im, ...]
* Minimizer: [0.1416354390108624 - 0.034929496786122484im,-0.12086000580073922 - 0.6125620908025359im, ...]
* Minimum: -1.568997e+00
* Iterations: 16
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 3.28e-09
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: true
|f(x) - f(x')| = 0.00e+00 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 1.04e-10
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 48
* Gradient Calls: 48
```
Automatic differentiation support for complex inputs may come when
[Cassete.jl](https://github.com/JuliaDiff/Capstan.jl) is ready.
## References
- Sorber, L., Barel, M. V., & Lathauwer, L. D. (2012). Unconstrained optimization of real functions in complex variables. SIAM Journal on Optimization, 22(3), 879-898.
- Kreutz-Delgado, K. (2009). The complex gradient operator and the CR-calculus. arXiv preprint arXiv:0906.4835.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 72 | # Golden Section
## Constructor
## Description
## Example
## References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 1291 | # Gradient Descent
## Constructor
```julia
GradientDescent(; alphaguess = LineSearches.InitialPrevious(),
linesearch = LineSearches.HagerZhang(),
P = nothing,
precondprep = (P, x) -> nothing)
```
## Description
Gradient Descent a common name for a quasi-Newton solver. This means that it takes
steps according to
```math
x_{n+1} = x_n - P^{-1}\nabla f(x_n)
```
where ``P`` is a positive definite matrix. If ``P`` is the Hessian, we get Newton's method.
In Gradient Descent, ``P`` is simply an appropriately dimensioned identity matrix,
such that we go in the exact opposite direction of the gradient. This means
that we do not use the curvature information from the Hessian, or an approximation
of it. While it does seem quite logical to go in the opposite direction of the fastest
increase in objective value, the procedure can be very slow if the problem is ill-conditioned.
See the section on preconditioners for ways to remedy this when using Gradient Descent.
As with the other quasi-Newton solvers in this package, a scalar ``\alpha`` is introduced
as follows
```math
x_{n+1} = x_n - \alpha P^{-1}\nabla f(x_n)
```
and is chosen by a linesearch algorithm such that each step gives sufficient descent.
## Example
## References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 157 | # Interior point Newton method
```@docs
IPNewton
```
## Examples
- [Nonlinear constrained optimization in Optim](../examples/generated/ipnewton_basics.md)
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2382 | # (L-)BFGS
This page contains information about BFGS and its limited memory version L-BFGS.
## Constructors
```julia
BFGS(; alphaguess = LineSearches.InitialStatic(),
linesearch = LineSearches.HagerZhang(),
initial_invH = nothing,
initial_stepnorm = nothing,
manifold = Flat())
```
`initial_invH` has a default value of `nothing`. If the user has a specific initial
matrix they want to supply, it should be supplied as a function of an array similar
to the initial point `x0`.
If `initial_stepnorm` is set to a number `z`, the initial matrix will be the
identity matrix scaled by `z` times the sup-norm of the gradient at the initial
point `x0`.
```julia
LBFGS(; m = 10,
alphaguess = LineSearches.InitialStatic(),
linesearch = LineSearches.HagerZhang(),
P = nothing,
precondprep = (P, x) -> nothing,
manifold = Flat(),
scaleinvH0::Bool = true && (typeof(P) <: Nothing))
```
## Description
This means that it takes steps according to
```math
x_{n+1} = x_n - P^{-1}\nabla f(x_n)
```
where ``P`` is a positive definite matrix. If ``P`` is the Hessian, we get Newton's method.
In (L-)BFGS, the matrix is an approximation to the Hessian built using differences
in the gradient across iterations. As long as the initial matrix is positive definite
it is possible to show that all the follow matrices will be as well. The starting
matrix could simply be the identity matrix, such that the first step is identical
to the Gradient Descent algorithm, or even the actual Hessian.
There are two versions of BFGS in the package: BFGS, and L-BFGS. The latter is different
from the former because it doesn't use a complete history of the iterative procedure to
construct ``P``, but rather only the latest ``m`` steps. It doesn't actually build the Hessian
approximation matrix either, but computes the direction directly. This makes more suitable for
large scale problems, as the memory requirement to store the relevant vectors will
grow quickly in large problems.
As with the other quasi-Newton solvers in this package, a scalar ``\alpha`` is introduced
as follows
```math
x_{n+1} = x_n - \alpha P^{-1}\nabla f(x_n)
```
and is chosen by a linesearch algorithm such that each step gives sufficient descent.
## Example
## References
Wright, Stephen, and Jorge Nocedal (2006) "Numerical optimization." Springer
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2794 | # Line search
## Description
The line search functionality has been moved to
[LineSearches.jl](https://github.com/JuliaNLSolvers/LineSearches.jl).
Line search is used to decide the step length along the direction computed by
an optimization algorithm.
The following `Optim` algorithms use line search:
* Accelerated Gradient Descent
* (L-)BFGS
* Conjugate Gradient
* Gradient Descent
* Momentum Gradient Descent
* Newton
By default `Optim` calls the line search algorithm `HagerZhang()` provided by `LineSearches`.
Different line search algorithms can be assigned with
the `linesearch` keyword argument to the given algorithm.
`LineSearches` also allows the user to decide how the
initial step length for the line search algorithm is chosen.
This is set with the `alphaguess` keyword argument for the `Optim` algorithm.
The default procedure varies.
## Example
This example compares two different line search algorithms on the Rosenbrock problem.
First, run `Newton` with the default line search algorithm:
```julia
using Optim, LineSearches
prob = Optim.UnconstrainedProblems.examples["Rosenbrock"]
algo_hz = Newton(;alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang())
res_hz = Optim.optimize(prob.f, prob.g!, prob.h!, prob.initial_x, method=algo_hz)
```
This gives the result
``` julia
* Algorithm: Newton's Method
* Starting Point: [0.0,0.0]
* Minimizer: [0.9999999999999994,0.9999999999999989]
* Minimum: 3.081488e-31
* Iterations: 14
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 3.06e-09
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 2.94e+13 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 1.11e-15
* stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 44
* Gradient Calls: 44
* Hessian Calls: 14
```
Now we can try `Newton` with the More-Thuente line search:
``` julia
algo_mt = Newton(;alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.MoreThuente())
res_mt = Optim.optimize(prob.f, prob.g!, prob.h!, prob.initial_x, method=algo_mt)
```
This gives the following result, reducing the number of function and gradient calls:
``` julia
Results of Optimization Algorithm
* Algorithm: Newton's Method
* Starting Point: [0.0,0.0]
* Minimizer: [0.9999999999999992,0.999999999999998]
* Minimum: 2.032549e-29
* Iterations: 14
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 3.67e-08
* |f(x) - f(x')| ≤ 0.0e00 |f(x)|: false
|f(x) - f(x')| = 1.66e+13 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 1.76e-13
* stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 17
* Gradient Calls: 17
* Hessian Calls: 14
```
## References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 1986 | # Manifold optimization
Optim.jl supports the minimization of functions defined on Riemannian manifolds, i.e. with simple constraints such as normalization and orthogonality. The basic idea of such algorithms is to project back ("retract") each iterate of an unconstrained minimization method onto the manifold. This is used by passing a `manifold` keyword argument to the optimizer.
## Howto
Here is a simple test case where we minimize the Rayleigh quotient `<x, A x>` of a symmetric matrix `A` under the constraint `||x|| = 1`, finding an eigenvector associated with the lowest eigenvalue of `A`.
```julia
n = 10
A = Diagonal(range(1, stop=2, length=n))
f(x) = dot(x,A*x)/2
g(x) = A*x
g!(stor,x) = copyto!(stor,g(x))
x0 = randn(n)
manif = Optim.Sphere()
Optim.optimize(f, g!, x0, Optim.ConjugateGradient(manifold=manif))
```
## Supported solvers and manifolds
All first-order optimization methods are supported.
The following manifolds are currently supported:
* Flat: Euclidean space, default. Standard unconstrained optimization.
* Sphere: spherical constraint `||x|| = 1`, where `x` is a real or complex array of any dimension.
* Stiefel: Stiefel manifold of N by n matrices with orthogonal columns, i.e. `X'*X = I`
The following meta-manifolds construct manifolds out of pre-existing ones:
* PowerManifold: identical copies of a specified manifold
* ProductManifold: product of two (potentially different) manifolds
See `test/multivariate/manifolds.jl` for usage examples.
Implementing new manifolds is as simple as adding methods `project_tangent!(M::YourManifold,g,x)` and `retract!(M::YourManifold,x)`. If you implement another manifold or optimization method, please contribute a PR!
## References
The Geometry of Algorithms with Orthogonality Constraints, Alan Edelman, Tomás A. Arias, Steven T. Smith, SIAM. J. Matrix Anal. & Appl., 20(2), 303–353
Optimization Algorithms on Matrix Manifolds, P.-A. Absil, R. Mahony, R. Sepulchre, Princeton University Press, 2008
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 6211 | # Nelder-Mead
Nelder-Mead is currently the standard algorithm when no derivatives are provided.
## Constructor
```julia
NelderMead(; parameters = AdaptiveParameters(),
initial_simplex = AffineSimplexer())
```
The keywords in the constructor are used to control the following parts of the
solver:
* `parameters` is a an instance of either `AdaptiveParameters` or `FixedParameters`, and is
used to generate parameters for the Nelder-Mead Algorithm.
* `initial_simplex` is an instance of `AffineSimplexer`. See more
details below.
## Description
Our current implementation of the Nelder-Mead algorithm is based on Nelder and Mead (1965) and
Gao and Han (2010). Gradient free methods can be a bit sensitive to starting values
and tuning parameters, so it is a good idea to be careful with the defaults provided
in Optim.
Instead of using gradient information, Nelder-Mead is a direct search method.
It keeps track of the function value at a number
of points in the search space. Together, the points form a simplex. Given a simplex,
we can perform one of four actions: reflect, expand, contract, or shrink. Basically,
the goal is to iteratively replace the worst point with a better point. More information
can be found in Nelder and Mead (1965), Lagarias, et al (1998) or Gao and Han (2010).
The stopping rule is the same as in the original paper, and is the standard
error of the function values at the vertices. To set the tolerance level for this
convergence criterion, set the `g_tol` level as described in the Configurable Options
section.
When the solver finishes, we return a minimizer which is either the centroid or one of the vertices.
The function value at the centroid adds a function evaluation, as we need to evaluate the objection
at the centroid to choose the smallest function value. However, even if the function value at the centroid can be returned
as the minimum, we do not trace it during the optimization iterations. This is to avoid
too many evaluations of the objective function which can be computationally expensive.
Typically, there should be no more than twice as many `f_calls` than `iterations`.
Adding an evaluation at the centroid when tracing could considerably increase the total
run-time of the algorithm.
### Specifying the initial simplex
The default choice of `initial_simplex` is `AffineSimplexer()`. A simplex is represented
by an ``(n+1)``-dimensional vector of ``n``-dimensional vectors. It is used together
with the initial `x` to create the initial simplex. To
construct the ``i``th vertex, it simply multiplies entry ``i`` in the initial vector with
a constant `b`, and adds a constant `a`. This means that the ``i``th of the ``n`` additional
vertices is of the form
```math
(x_0^1, x_0^2, \ldots, x_0^i, \ldots, 0,0) + (0, 0, \ldots, x_0^i\cdot b+a,\ldots, 0,0)
```
If an ``x_0^i`` is zero, we need the ``a`` to make sure all vertices are unique. Generally,
it is advised to start with a relatively large simplex.
If a specific simplex is wanted, it is possible to construct the ``(n+1)``-vector of ``n``-dimensional vectors,
and pass it to the solver using a new type definition and a new method for the function `simplexer`.
For example, let us minimize the two-dimensional Rosenbrock function, and choose three vertices that have elements
that are simply standard uniform draws.
```julia
using Optim
struct MySimplexer <: Optim.Simplexer end
Optim.simplexer(S::MySimplexer, initial_x) = [rand(length(initial_x)) for i = 1:length(initial_x)+1]
f(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
optimize(f, [.0, .0], NelderMead(initial_simplex = MySimplexer()))
```
Say we want to implement the initial simplex as in Matlab's `fminsearch`. This is very close
to the `AffineSimplexer` above, but with a small twist. Instead of always adding the `a`,
a constant is only added to entries that are zero. If the entry is non-zero, five
percent of the level is added. This might be implemented (by the user) as
```julia
struct MatlabSimplexer{T} <: Optim.Simplexer
a::T
b::T
end
MatlabSimplexer(;a = 0.00025, b = 0.05) = MatlabSimplexer(a, b)
function Optim.simplexer(S::MatlabSimplexer, initial_x::AbstractArray{T, N}) where {T, N}
n = length(initial_x)
initial_simplex = Array{T, N}[copy(initial_x) for i = 1:n+1]
for j = 1:n
initial_simplex[j+1][j] += initial_simplex[j+1][j] != zero(T) ? S.b * initial_simplex[j+1][j] : S.a
end
initial_simplex
end
```
### The parameters of Nelder-Mead
The different types of steps in the algorithm are governed by four parameters:
``\alpha`` for the reflection, ``\beta`` for the expansion, ``\gamma`` for the contraction,
and ``\delta`` for the shrink step. We default to the adaptive parameters scheme in
Gao and Han (2010). These are based on the dimensionality of the problem, and
are given by
```math
\alpha = 1, \quad \beta = 1+2/n,\quad \gamma =0.75 - 1/2n,\quad \delta = 1-1/n
```
It is also possible to specify the original parameters from Nelder and Mead (1965)
```math
\alpha = 1,\quad \beta = 2, \quad\gamma = 1/2, \quad\delta = 1/2
```
by specifying `parameters = Optim.FixedParameters()`. For specifying custom values,
`parameters = Optim.FixedParameters(α = a, β = b, γ = g, δ = d)` is used, where a, b, g, d are the chosen values. If another
parameter specification is wanted, it is possible to create a custom sub-type of`Optim.NMParameters`,
and add a method to the `parameters` function. It should take the new type as the
first positional argument, and the dimensionality of `x` as the second positional argument, and
return a 4-tuple of parameters. However, it will often be easier to simply supply
the wanted parameters to `FixedParameters`.
## References
Nelder, John A. and R. Mead (1965). "A simplex method for function minimization". Computer Journal 7: 308–313. doi:10.1093/comjnl/7.4.308.
Lagarias, Jeffrey C., et al. "Convergence properties of the Nelder--Mead simplex method in low dimensions." SIAM Journal on optimization 9.1 (1998): 112-147.
Gao, Fuchang and Lixing Han (2010). "Implementing the Nelder-Mead simplex algorithm with adaptive parameters". Computational Optimization and Applications [DOI 10.1007/s10589-010-9329-3]
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2891 | # Newton's Method
## Constructor
```julia
Newton(; alphaguess = LineSearches.InitialStatic(),
linesearch = LineSearches.HagerZhang())
```
The constructor takes two keywords:
* `linesearch = a(d, x, p, x_new, g_new, phi0, dphi0, c)`, a function performing line search, see the line search section.
* `alphaguess = a(state, dphi0, d)`, a function for setting the initial guess for the line search algorithm, see the line search section.
## Description
Newton's method for optimization has a long history, and is in some sense the
gold standard in unconstrained optimization of smooth functions, at least from a theoretical viewpoint.
The main benefit is that it has a quadratic rate of convergence near a local optimum. The main
disadvantage is that the user has to provide a Hessian. This can be difficult, complicated, or simply annoying.
It can also be computationally expensive to calculate it.
Newton's method for optimization consists of applying Newton's method for solving
systems of equations, where the equations are the first order conditions, saying
that the gradient should equal the zero vector.
```math
\nabla f(x) = 0
```
A second order Taylor expansion of the left-hand side leads to the iterative scheme
```math
x_{n+1} = x_n - H(x_n)^{-1}\nabla f(x_n)
```
where the inverse is not calculated directly, but the step size is instead calculated by solving
```math
H(x) \textbf{s} = \nabla f(x_n).
```
This is equivalent to minimizing a quadratic model, ``m_k`` around the current ``x_n``
```math
m_k(s) = f(x_n) + \nabla f(x_n)^\top \textbf{s} + \frac{1}{2} \textbf{s}^\top H(x_n) \textbf{s}
```
For functions where ``H(x_n)`` is difficult, or computationally expensive to obtain, we might
replace the Hessian with another positive definite matrix that approximates it.
Such methods are called Quasi-Newton methods; see (L-)BFGS and Gradient Descent.
In a sufficiently small neighborhood around the minimizer, Newton's method has
quadratic convergence, but globally it might have slower convergence, or it might
even diverge. To ensure convergence, a line search is performed for each ``\textbf{s}``.
This amounts to replacing the step formula above with
```math
x_{n+1} = x_n - \alpha \textbf{s}
```
and finding a scalar ``\alpha`` such that we get sufficient descent; see the line search section for more information.
Additionally, if the function is locally
concave, the step taken in the formulas above will go in a direction of ascent,
as the Hessian will not be positive (semi)definite.
To avoid this, we use a specialized method to calculate the step direction. If
the Hessian is positive semidefinite then the method used is standard, but if
it is not, a correction is made using the functionality in [PositiveFactorizations.jl](https://github.com/timholy/PositiveFactorizations.jl).
## Example
show the example from the issue
## References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 5257 | # Newton's Method With a Trust Region
## Constructor
```julia
NewtonTrustRegion(; initial_delta = 1.0,
delta_hat = 100.0,
eta = 0.1,
rho_lower = 0.25,
rho_upper = 0.75)
```
The constructor takes keywords that determine the initial and maximal size of the trust region, when to grow and shrink the region, and how close the function should be to the quadratic approximation. The notation follows chapter four of Numerical Optimization. Below, ```rho``` ``=\rho`` refers to the ratio of the actual function change to the change in the quadratic approximation for a given step.
* `initial_delta:`The starting trust region radius
* `delta_hat:` The largest allowable trust region radius
* `eta:` When ```rho``` is at least ```eta```, accept the step.
* `rho_lower: ` When ```rho``` is less than ```rho_lower```, shrink the trust region.
* `rho_upper:` When ```rho``` is greater than ```rho_upper```, grow the trust region (though no greater than ```delta_hat```).
## Description
Newton's method with a trust region is designed to take advantage of the second-order information in a function's Hessian, but with more stability than Newton's method when functions are not globally well-approximated by a quadratic. This is achieved by repeatedly minimizing quadratic approximations within a dynamically-sized "trust region" in which the function is assumed to be locally quadratic [1].
Newton's method optimizes a quadratic approximation to a function. When a function is well approximated by a quadratic (for example, near an optimum), Newton's method converges very quickly by exploiting the second-order information in the Hessian matrix. However, when the function is not well-approximated by a quadratic, either because the starting point is far from the optimum or the function has a more irregular shape, Newton steps can be erratically large, leading to distant, irrelevant areas of the space.
Trust region methods use second-order information but restrict the steps to be within a "trust region" where the function is believed to be approximately quadratic. At iteration ``k``, a trust region method chooses a step ``p`` to minimize a quadratic approximation to the objective such that the step size is no larger than a given trust region size, ``\Delta_k``.
```math
\underset{p\in\mathbb{R}^n}\min m_k(p) = f_k + g_k^T p + \frac{1}{2}p^T B_k p \quad\textrm{such that } ||p||\le \Delta_k
```
Here, ``p`` is the step to take at iteration ``k``, so that ``x_{k+1} = x_k + p``. In the definition of ``m_k(p)``, ``f_k = f(x_k)`` is the value at the previous location, ``g_k=\nabla f(x_k)`` is the gradient at the previous location, ``B_k = \nabla^2 f(x_k)`` is the Hessian matrix at the previous iterate, and ``||\cdot||`` is the Euclidian norm.
If the trust region size, ``\Delta_k``, is large enough that the minimizer of the quadratic approximation ``m_k(p)`` has ``||p|| \le \Delta_k``, then the step is the same as an ordinary Newton step. However, if the unconstrained quadratic minimizer lies outside the trust region, then the minimizer to the constrained problem will occur on the boundary, i.e. we will have ``||p|| = \Delta_k``. It turns out that when the Cholesky decomposition of ``B_k`` can be computed, the optimal ``p`` can be found numerically with relative ease. ([1], section 4.3) This is the method currently used in Optim.
It makes sense to adapt the trust region size, ``\Delta_k``, as one moves through the space and assesses the quality of the quadratic fit. This adaptation is controlled by the parameters ``\eta``, ``\rho_{lower}``, and ``\rho_{upper}``, which are parameters to the ```NewtonTrustRegion``` optimization method. For each step, we calculate
```math
\rho_k := \frac{f(x_{k+1}) - f(x_k)}{m_k(p) - m_k(0)}
```
Intuitively, ``\rho_k`` measures the quality of the quadratic approximation: if ``\rho_k \approx 1``, then our quadratic approximation is reasonable. If ``p`` was on the boundary and ``\rho_k > \rho_{upper}``, then perhaps we can benefit from larger steps. In this case, for the next iteration we grow the trust region geometrically up to a maximum of ``\hat\Delta``:
```math
\rho_k > \rho_{upper} \Rightarrow \Delta_{k+1} = \min(2 \Delta_k, \hat\Delta).
```
Conversely, if ``\rho_k < \rho_{lower}``, then we shrink the trust region geometrically:
``\rho_k < \rho_{lower} \Rightarrow \Delta_{k+1} = 0.25 \Delta_k``.
Finally, we only accept a point if its decrease is appreciable compared to the quadratic approximation. Specifically, a step is only accepted ``\rho_k > \eta``. As long as we choose ``\eta`` to be less than ``\rho_{lower}``, we will shrink the trust region whenever we reject a step. Eventually, if the objective function is locally quadratic, ``\Delta_k`` will become small enough that a quadratic approximation will be accurate enough to make progress again.
## Example
```julia
using Optim, OptimTestProblems
prob = UnconstrainedProblems.examples["Rosenbrock"];
res = Optim.optimize(prob.f, prob.g!, prob.h!, prob.initial_x, NewtonTrustRegion())
```
## References
[1] Nocedal, Jorge, and Stephen Wright. Numerical optimization. Springer Science & Business Media, 2006.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 6013 | # Acceleration methods: N-GMRES and O-ACCEL
## Constructors
```julia
NGMRES(;
alphaguess = LineSearches.InitialStatic(),
linesearch = LineSearches.HagerZhang(),
manifold = Flat(),
wmax::Int = 10,
ϵ0 = 1e-12,
nlprecon = GradientDescent(
alphaguess = LineSearches.InitialStatic(alpha=1e-4,scaled=true),
linesearch = LineSearches.Static(),
manifold = manifold),
nlpreconopts = Options(iterations = 1, allow_f_increases = true),
)
```
```julia
OACCEL(;manifold::Manifold = Flat(),
alphaguess = LineSearches.InitialStatic(),
linesearch = LineSearches.HagerZhang(),
nlprecon = GradientDescent(
alphaguess = LineSearches.InitialStatic(alpha=1e-4,scaled=true),
linesearch = LineSearches.Static(),
manifold = manifold),
nlpreconopts = Options(iterations = 1, allow_f_increases = true),
ϵ0 = 1e-12,
wmax::Int = 10)
```
## Description
These algorithms take a step given by the nonlinear preconditioner `nlprecon`
and proposes an accelerated step on a subspace spanned by the previous
`wmax` iterates.
- N-GMRES accelerates based on a minimization of an approximation to the $\ell_2$ norm of the
gradient.
- O-ACCEL accelerates based on a minimization of a n approximation to the objective.
N-GMRES was originally developed for solving nonlinear systems [1], and reduces to
GMRES for linear problems.
Application of the algorithm to optimization is covered, for example, in [2].
A description of O-ACCEL and its connection to N-GMRES can be found in [3].
*We recommend trying [LBFGS](lbfgs.md) on your problem before N-GMRES or O-ACCEL. All three algorithms have similar computational cost and memory requirements, however, L-BFGS is more efficient for many problems.*
## Example
This example shows how to accelerate `GradientDescent` on the Extended Rosenbrock problem.
First, we try to optimize using `GradientDescent`.
```julia
using Optim, OptimTestProblems
UP = UnconstrainedProblems
prob = UP.examples["Extended Rosenbrock"]
optimize(UP.objective(prob), UP.gradient(prob), prob.initial_x, GradientDescent())
```
The algorithm does not converge within 1000 iterations.
```
Results of Optimization Algorithm
* Algorithm: Gradient Descent
* Starting Point: [-1.2,1.0, ...]
* Minimizer: [0.8923389282461412,0.7961268644300445, ...]
* Minimum: 2.898230e-01
* Iterations: 1000
* Convergence: false
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 4.02e-04
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 2.38e-03 |f(x)|
* |g(x)| ≤ 1.0e-08: false
|g(x)| = 8.23e-02
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: true
* Objective Calls: 2525
* Gradient Calls: 2525
```
Now, we use `OACCEL` to accelerate `GradientDescent`.
```julia
# Default nonlinear procenditioner for `OACCEL`
nlprecon = GradientDescent(alphaguess=LineSearches.InitialStatic(alpha=1e-4,scaled=true),
linesearch=LineSearches.Static())
# Default size of subspace that OACCEL accelerates over is `wmax = 10`
oacc10 = OACCEL(nlprecon=nlprecon, wmax=10)
optimize(UP.objective(prob), UP.gradient(prob), prob.initial_x, oacc10)
```
This drastically improves the `GradientDescent` algorithm, converging in 87 iterations.
```
Results of Optimization Algorithm
* Algorithm: O-ACCEL preconditioned with Gradient Descent
* Starting Point: [-1.2,1.0, ...]
* Minimizer: [1.0000000011361219,1.0000000022828495, ...]
* Minimum: 3.255053e-17
* Iterations: 87
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 6.51e-08
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 7.56e+02 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 1.06e-09
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 285
* Gradient Calls: 285
```
We can improve the acceleration further by changing the acceleration subspace size `wmax`.
```julia
oacc5 = OACCEL(nlprecon=nlprecon, wmax=5)
optimize(UP.objective(prob), UP.gradient(prob), prob.initial_x, oacc5)
```
Now, the O-ACCEL algorithm has accelerated `GradientDescent` to converge in 50 iterations.
```
Results of Optimization Algorithm
* Algorithm: O-ACCEL preconditioned with Gradient Descent
* Starting Point: [-1.2,1.0, ...]
* Minimizer: [0.9999999999392858,0.9999999998784691, ...]
* Minimum: 9.218164e-20
* Iterations: 50
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 2.76e-07
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 5.18e+06 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 4.02e-11
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 181
* Gradient Calls: 181
```
As a final comparison, we can do the same with N-GMRES.
```julia
ngmres5 = NGMRES(nlprecon=nlprecon, wmax=5)
optimize(UP.objective(prob), UP.gradient(prob), prob.initial_x, ngmres5)
```
Again, this significantly improves the `GradientDescent` algorithm, and converges in 63 iterations.
```
Results of Optimization Algorithm
* Algorithm: Nonlinear GMRES preconditioned with Gradient Descent
* Starting Point: [-1.2,1.0, ...]
* Minimizer: [0.9999999998534468,0.9999999997063993, ...]
* Minimum: 5.375569e-19
* Iterations: 63
* Convergence: true
* |x - x'| ≤ 0.0e+00: false
|x - x'| = 9.94e-09
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = 1.29e+03 |f(x)|
* |g(x)| ≤ 1.0e-08: true
|g(x)| = 4.94e-11
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 222
* Gradient Calls: 222
```
## References
[1] De Sterck. Steepest descent preconditioning for nonlinear GMRES optimization. NLAA, 2013.
[2] Washio and Oosterlee. Krylov subspace acceleration for nonlinear multigrid schemes. ETNA, 1997.
[3] Riseth. Objective acceleration for unconstrained optimization. 2018.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 1194 | # Particle Swarm
## Constructor
```julia
ParticleSwarm(; lower = [],
upper = [],
n_particles = 0)
```
The constructor takes three keywords:
* `lower = []`, a vector of lower bounds, unbounded below if empty or `Inf`'s
* `upper = []`, a vector of upper bounds, unbounded above if empty or `Inf`'s
* `n_particles = 0`, number of particles in the swarm, defaults to least three
## Description
The Particle Swarm implementation in Optim.jl is the so-called Adaptive Particle
Swarm algorithm in [1]. It attempts to improve global coverage and convergence by
switching between four evolutionary states: exploration, exploitation, convergence,
and jumping out. In the jumping out state it intentially tries to take the best
particle and move it away from its (potentially and probably) local optimum, to
improve the ability to find a global optimum. Of course, this comes a the cost
of slower convergence, but hopefully converges to the global optimum as a result.
## References
[1] Zhan, Zhang, and Chung. Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics, Part B: CyberneticsVolume 39, Issue 6, 2009, Pages 1362-1381 (2009)
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2481 | # Preconditioning
The `GradientDescent`, `ConjugateGradient` and `LBFGS` methods support preconditioning. A preconditioner
can be thought of as a change of coordinates under which the Hessian is better conditioned. With a
good preconditioner substantially improved convergence is possible.
A preconditioner `P`can be of any type as long as the following two methods are
implemented:
* `A_ldiv_B!(pgr, P, gr)` : apply `P` to a vector `gr` and store in `pgr`
(intuitively, `pgr = P \ gr`)
* `dot(x, P, y)` : the inner product induced by `P`
(intuitively, `dot(x, P * y)`)
Precisely what these operations mean, depends on how `P` is stored. Commonly, we store a matrix `P` which
approximates the Hessian in some vague sense. In this case,
* `A_ldiv_B!(pgr, P, gr) = copyto!(pgr, P \ A)`
* `dot(x, P, y) = dot(x, P * y)`
Finally, it is possible to update the preconditioner as the state variable `x`
changes. This is done through `precondprep!` which is passed to the
optimizers as kw-argument, e.g.,
```jl
method=ConjugateGradient(P = precond(100), precondprep! = precond(100))
```
though in this case it would always return the same matrix.
(See `fminbox.jl` for a more natural example.)
Apart from preconditioning with matrices, `Optim.jl` provides
a type `InverseDiagonal`, which represents a diagonal matrix by
its inverse elements.
## Example
Below, we see an example where a function is minimized without and with a preconditioner
applied.
```jl
using ForwardDiff, Optim, SparseArrays
initial_x = zeros(100)
plap(U; n = length(U)) = (n-1)*sum((0.1 .+ diff(U).^2).^2 ) - sum(U) / (n-1)
plap1(x) = ForwardDiff.gradient(plap,x)
precond(n) = spdiagm(-1 => -ones(n-1), 0 => 2ones(n), 1 => -ones(n-1)) * (n+1)
f(x) = plap([0; x; 0])
g!(G, x) = copyto!(G, (plap1([0; x; 0]))[2:end-1])
result = Optim.optimize(f, g!, initial_x, method = ConjugateGradient(P = nothing))
result = Optim.optimize(f, g!, initial_x, method = ConjugateGradient(P = precond(100)))
```
The former optimize call converges at a slower rate than the latter. Looking at a
plot of the 2D version of the function shows the problem.

The contours are shaped like ellipsoids, but we would rather want them to be circles.
Using the preconditioner effectively changes the coordinates such that the contours
becomes less ellipsoid-like. Benchmarking shows that using preconditioning provides
an approximate speed-up factor of 15 in this 100 dimensional case.
## References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 4732 | # SAMIN
## Constructor
```julia
SAMIN(; nt::Int = 5 # reduce temperature every nt*ns*dim(x_init) evaluations
ns::Int = 5 # adjust bounds every ns*dim(x_init) evaluations
rt::T = 0.9 # geometric temperature reduction factor: when temp changes, new temp is t=rt*t
neps::Int = 5 # number of previous best values the final result is compared to
f_tol::T = 1e-12 # the required tolerance level for function value comparisons
x_tol::T = 1e-6 # the required tolerance level for x
coverage_ok::Bool = false, # if false, increase temperature until initial parameter space is covered
verbosity::Int = 0) # scalar: 0, 1, 2 or 3 (default = 0).
```
## Description
The `SAMIN` method implements the Simulated Annealing algorithm for problems with
bounds constraints as described in Goffe et. al. (1994) and Goffe (1996). A key control
parameter is rt, the geometric temperature reduction rate, which should be between zero
and one. Setting rt lower will cause the algorithm to contract the search space more quickly,
reducing the run time. Setting rt too low will cause the algorithm to narrow the search
too quickly, and the true minimizer may be skipped over. If possible, run the algorithm
multiple times to verify that the same solution is found each time. If this is not the case,
increase rt. When in doubt, start with a conservative rt, for example, rt=0.95, and allow for
a generous iteration limit. The algorithm requires lower and upper bounds on the parameters,
although these bounds are often set rather wide, and are not necessarily meant to reflect
constraints in the model, but rather bounds that enclose the parameter space. If the final
`x`s are very close to the boundary (which can be checked by setting verbosity=1), it is a
good idea to restart the optimizer with wider bounds, unless the bounds actually reflect
hard constraints on `x`.
## Example
This example shows a successful minimization:
```julia
julia> using Optim, OptimTestProblems
julia> prob = UnconstrainedProblems.examples["Rosenbrock"];
julia> res = Optim.optimize(prob.f, fill(-100.0, 2), fill(100.0, 2), prob.initial_x, SAMIN(), Optim.Options(iterations=10^6))
================================================================================
SAMIN results
==> Normal convergence <==
total number of objective function evaluations: 23701
Obj. value: 0.0000000000
parameter search width
1.00000 0.00000
1.00000 0.00000
================================================================================
Results of Optimization Algorithm
* Algorithm: SAMIN
* Starting Point: [-1.2,1.0]
* Minimizer: [0.9999999893140956,0.9999999765350857]
* Minimum: 5.522977e-16
* Iterations: 23701
* Convergence: false
* |x - x'| ≤ 0.0e+00: false
|x - x'| = NaN
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = NaN |f(x)|
* |g(x)| ≤ 0.0e+00: false
|g(x)| = NaN
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 23701
* Gradient Calls: 0
```
## Example
This example shows an unsuccessful minimization, because the cooling rate,
rt=0.5, is too rapid:
```julia
julia> using Optim, OptimTestProblems
julia> prob = UnconstrainedProblems.examples["Rosenbrock"];
julia> res = Optim.optimize(prob.f, fill(-100.0, 2), fill(100.0, 2), prob.initial_x, SAMIN(rt=0.5), Optim.Options(iterations=10^6))
================================================================================
SAMIN results
==> Normal convergence <==
total number of objective function evaluations: 12051
Obj. value: 0.0011613045
parameter search width
0.96592 0.00000
0.93301 0.00000
================================================================================
Results of Optimization Algorithm
* Algorithm: SAMIN
* Starting Point: [-1.2,1.0]
* Minimizer: [0.9659220825756248,0.9330054696322896]
* Minimum: 1.161304e-03
* Iterations: 12051
* Convergence: false
* |x - x'| ≤ 0.0e+00: false
|x - x'| = NaN
* |f(x) - f(x')| ≤ 0.0e+00 |f(x)|: false
|f(x) - f(x')| = NaN |f(x)|
* |g(x)| ≤ 0.0e+00: false
|g(x)| = NaN
* Stopped by an increasing objective: false
* Reached Maximum Number of Iterations: false
* Objective Calls: 12051
* Gradient Calls: 0
```
## References
- Goffe, et. al. (1994) "Global Optimization of Statistical Functions with Simulated Annealing", Journal of Econometrics, V. 60, N. 1/2.
- Goffe, William L. (1996) "SIMANN: A Global Optimization Algorithm using Simulated Annealing " Studies in Nonlinear Dynamics & Econometrics, Oct96, Vol. 1 Issue 3.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2764 | # Simulated Annealing
## Constructor
```julia
SimulatedAnnealing(; neighbor = default_neighbor!,
T = default_temperature,
p = kirkpatrick)
```
The constructor takes three keywords:
* `neighbor = a!(x_proposed, x_current)`, a mutating function of the current x, and the proposed x
* `T = b(iteration)`, a function of the current iteration that returns a temperature
* `p = c(f_proposal, f_current, T)`, a function of the current temperature, current function value and proposed function value that returns an acceptance probability
## Description
Simulated Annealing is a derivative free method for optimization. It is based on
the Metropolis-Hastings algorithm that was originally used to generate samples
from a thermodynamics system, and is often used to generate draws from a posterior
when doing Bayesian inference. As such, it is a probabilistic method for finding
the minimum of a function, often over a quite large domains. For the historical
reasons given above, the algorithm uses terms such as cooling, temperature, and
acceptance probabilities.
As the constructor shows, a simulated annealing implementation is characterized
by a temperature, a neighbor function, and
an acceptance probability. The temperature controls how volatile the changes in
minimizer candidates are allowed to be, as it enters the acceptance probability.
For example, the original Kirkpatrick et al. acceptance probability function can be written
as follows
```julia
p(f_proposal, f_current, T) = exp(-(f_proposal - f_current)/T)
```
A high temperature makes it more likely that a draw is accepted, by pushing acceptance
probability to 1. As in the Metropolis-Hastings
algorithm, we always accept a smaller function value, but we also sometimes accept a
larger value. As the temperature decreases, we're more and more likely to only accept
candidate `x`'s that lowers the function value. To obtain a new `f_proposal`, we need
a neighbor function. A simple neighbor function adds a standard normal draw to each
dimension of `x`
```julia
function neighbor!(x_proposal::Array, x::Array)
for i in eachindex(x)
x_proposal[i] = x[i]+randn()
end
end
```
As we see, it is not really possible
to disentangle the role of the different components of the algorithm. For example, both the
functional form of the acceptance function, the temperature and (indirectly) the neighbor
function determine if the next draw of `x` is accepted or not.
The current implementation of Simulated Annealing is very rough. It lacks quite
a few features which are normally part of a proper SA implementation.
A better implementation is under way, see [this issue](https://github.com/JuliaNLSolvers/Optim.jl/issues/200).
## Example
## References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 2422 | ## Notes for contributing
We are always happy to get help from people who normally do not contribute to the package. However, to make the process run smoothly, we ask you to read this page before creating your pull request. That way it is more probable that your changes will be incorporated, and in the end it will mean less work for everyone.
### Things to consider
When proposing a change to `Optim.jl`, there are a few things to consider. If you're in doubt feel free to reach out. A simple way to get in touch, is to join our [gitter channel](https://gitter.im/JuliaNLSolvers/Optim.jl).
Before submitting a pull request, please consider the following bullets:
* Did you remember to provide tests for your changes? If not, please do so, or ask for help.
* Did your change add new functionality? Remember to add a section in the documentation.
* Did you change existing code in a breaking way? Then remember to use Julia's deprecation tools to help users migrate to the new syntax.
* Add a note in the NEWS.md file, so we can keep track of changes between versions.
### Adding a solver
If you're contributing a new solver, you shouldn't need to touch any of the code in
`src/optimize.jl`. You should rather add a file named (`solver` is the name of the solver)
`solver.jl` in `src`, and make sure that you define an `Optimizer` subtype
`struct Solver <: Optimizer end` with appropriate fields, a default constructor with a keyword
for each field, a state type that holds all variables that are (re)used throughout
the iterative procedure, an `initial_state` that initializes such a state, and an `update!` method
that does the actual work. Say you want to contribute a solver called
`Minim`, then your `src/minim.jl` file would look something like
```
struct Minim{IF, F<:Function, T} <: Optimizer
alphaguess!::IF
linesearch!::F
minim_parameter::T
end
Minim(; alphaguess = LineSearches.InitialStatic(), linesearch = LineSearches.HagerZhang(), minim_parameter = 1.0) =
Minim(linesearch, minim_parameter)
type MinimState{T,N,G}
x::AbstractArray{T,N}
x_previous::AbstractArray{T,N}
f_x_previous::T
s::AbstractArray{T,N}
@add_linesearch_fields()
end
function initial_state(method::Minim, options, d, initial_x)
# prepare cache variables etc here
end
function update!{T}(d, state::MinimState{T}, method::Minim)
# code for Minim here
false # should the procedure force quit?
end
```
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 3220 | ## Algorithm choice
There are two main settings you must choose in Optim: the algorithm and the linesearch.
## Algorithms
The first choice to be made is that of the order of the method. Zeroth-order methods do not have gradient information, and are very slow to converge, especially in high dimension. First-order methods do not have access to curvature information and can take a large number of iterations to converge for badly conditioned problems. Second-order methods can converge very quickly once in the vicinity of a minimizer. Of course, this enhanced performance comes at a cost: the objective function has to be differentiable, you have to supply gradients and Hessians, and, for second order methods, a linear system has to be solved at each step.
If you can provide analytic gradients and Hessians, and the dimension of the problem is not too large, then second order methods are very efficient. The Newton method with trust region is the method of choice.
When you do not have an explicit Hessian or when the dimension becomes large enough that the linear solve in the Newton method becomes the bottleneck, first order methods should be preferred. BFGS is a very efficient method, but also requires a linear system solve. LBFGS usually has a performance very close to that of BFGS, and avoids linear system solves (the parameter `m` can be tweaked: increasing it can improve the convergence, at the expense of memory and time spent in linear algebra operations). The conjugate gradient method usually converges less quickly than LBFGS, but requires less memory. Gradient descent should only be used for testing. Acceleration methods are experimental.
When the objective function is non-differentiable or you do not want to use gradients, use zeroth-order methods. Nelder-Mead is currently the most robust.
## Linesearches
Linesearches are used in every first- and second-order method except for the trust-region Newton method. Linesearch routines attempt to locate quickly an approximate minimizer of the univariate function ``\alpha \to f(x+ \alpha d)``, where ``d`` is the descent direction computed by the algorithm. They vary in how accurate this minimization is. Two good linesearches are BackTracking and HagerZhang, the former being less stringent than the latter. For well-conditioned objective functions and methods where the step is usually well-scaled (such as LBFGS or Newton), a rough linesearch such as BackTracking is usually the most performant. For badly behaved problems or when extreme accuracy is needed (gradients below the square root of the machine epsilon, about ``10^{-8}`` with `Float64`), the HagerZhang method proves more robust. An exception is the conjugate gradient method which requires an accurate linesearch to be efficient, and should be used with the HagerZhang linesearch.
## Summary
As a very crude heuristic:
For a low-dimensional problem with analytic gradients and Hessians, use the Newton method with trust region. For larger problems or when there is no analytic Hessian, use LBFGS, and tweak the parameter `m` if needed. If the function is non-differentiable, use Nelder-Mead. Use the HagerZhang linesearch for robustness and BackTracking for speed.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 5282 | ## Configurable options
There are several options that simply take on some default values if the user
doesn't supply anything else than a function (and gradient) and a starting point.
### Solver options
There quite a few different solvers available in Optim, and they are all listed
below. Notice that the constructors are written without input here, but they
generally take keywords to tweak the way they work. See the pages describing each
solver for more detail.
Requires only a function handle:
* `NelderMead()`
* `SimulatedAnnealing()`
Requires a function and gradient (will be approximated if omitted):
* `BFGS()`
* `LBFGS()`
* `ConjugateGradient()`
* `GradientDescent()`
* `MomentumGradientDescent()`
* `AcceleratedGradientDescent()`
Requires a function, a gradient, and a Hessian (cannot be omitted):
* `Newton()`
* `NewtonTrustRegion()`
Box constrained minimization:
* `Fminbox()`
Special methods for bounded univariate optimization:
* `Brent()`
* `GoldenSection()`
### General Options
In addition to the solver, you can alter the behavior of the Optim package by using the following keywords:
* `x_tol`: Absolute tolerance in changes of the input vector `x`, in infinity norm. Defaults to `0.0`.
* `f_tol`: Relative tolerance in changes of the objective value. Defaults to `0.0`.
* `g_tol`: Absolute tolerance in the gradient, in infinity norm. Defaults to `1e-8`. For gradient free methods, this will control the main convergence tolerance, which is solver specific.
* `f_calls_limit`: A soft upper limit on the number of objective calls. Defaults to `0` (unlimited).
* `g_calls_limit`: A soft upper limit on the number of gradient calls. Defaults to `0` (unlimited).
* `h_calls_limit`: A soft upper limit on the number of Hessian calls. Defaults to `0` (unlimited).
* `allow_f_increases`: Allow steps that increase the objective value. Defaults to `false`. Note that, when setting this to `true`, the last iterate will be returned as the minimizer even if the objective increased.
* `iterations`: How many iterations will run before the algorithm gives up? Defaults to `1_000`.
* `store_trace`: Should a trace of the optimization algorithm's state be stored? Defaults to `false`.
* `show_trace`: Should a trace of the optimization algorithm's state be shown on `stdout`? Defaults to `false`.
* `extended_trace`: Save additional information. Solver dependent. Defaults to `false`.
* `show_warnings`: Should warnings due to NaNs or Inf be shown? Defaults to `true`.
* `trace_simplex`: Include the full simplex in the trace for `NelderMead`. Defaults to `false`.
* `show_every`: Trace output is printed every `show_every`th iteration.
* `callback`: A function to be called during tracing. A return value of `true` stops the `optimize` call. The callback function is called every `show_every`th iteration. If `store_trace` is false, the argument to the callback is of the type [`OptimizationState`](https://github.com/JuliaNLSolvers/Optim.jl/blob/a1035134ca1f3ebe855f1cde034e32683178225a/src/types.jl#L155), describing the state of the current iteration. If `store_trace` is true, the argument is a list of all the states from the first iteration to the current.
* `time_limit`: A soft upper limit on the total run time. Defaults to `NaN` (unlimited).
Box constrained optimization has additional keywords to alter the behavior of the outer solver:
* `outer_x_tol`: Absolute tolerance in changes of the input vector `x`, in infinity norm. Defaults to `0.0`.
* `outer_f_tol`: Relative tolerance in changes of the objective value. Defaults to `0.0`.
* `outer_g_tol`: Absolute tolerance in the gradient, in infinity norm. Defaults to `1e-8`. For gradient free methods, this will control the main convergence tolerance, which is solver specific.
* `allow_outer_f_increases`: Allow steps that increase the objective value. Defaults to `false`. Note that, when setting this to `true`, the last iterate will be returned as the minimizer even if the objective increased.
* `outer_iterations`: How many iterations will run before the algorithm gives up? Defaults to `1_000`.
If you specify `outer_iterations = 10` and `iterations = 100`, the outer algorithm will run for `10` iterations, and for each outer iteration the inner algorithm will run for `100` iterations.
We currently recommend the statically dispatched interface by using the `Optim.Options`
constructor:
```jl
res = optimize(f, g!,
[0.0, 0.0],
GradientDescent(),
Optim.Options(g_tol = 1e-12,
iterations = 10,
store_trace = true,
show_trace = false,
show_warnings = true))
```
Another interface is also available, based directly on keywords:
```jl
res = optimize(f, g!,
[0.0, 0.0],
method = GradientDescent(),
g_tol = 1e-12,
iterations = 10,
store_trace = true,
show_trace = false,
show_warnings = true)
```
Notice the need to specify the method using a keyword if this syntax is used.
This approach might be deprecated in the future, and as a result we recommend writing code
that has to maintained using the `Optim.Options` approach.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 4878 | ## Gradients and Hessians
To use first- and second-order methods, you need to provide gradients and Hessians, either in-place or out-of-place. There are three main ways of specifying derivatives: analytic, finite-difference and automatic differentiation.
## Analytic
This results in the fastest run times, but requires the user to perform the often tedious task of computing the derivatives by hand. The gradient of complicated objective functions (e.g. involving the solution of algebraic equations, differential equations, eigendecompositions, etc.) can be computed efficiently using the adjoint method (see e.g. [these lecture notes](https://math.mit.edu/~stevenj/18.336/adjoint.pdf)). In particular, assuming infinite memory, the gradient of a ``\mathbb{R}^N \to \mathbb{R}`` function ``f`` can always be computed with a runtime comparable with only one evaluation of ``f``, no matter how large ``N``.
To use analytic derivatives, simply pass `g!` and `h!` functions to `optimize`.
## Finite differences
This uses the functionality in [DiffEqDiffTools.jl](https://github.com/JuliaDiffEq/DiffEqDiffTools.jl) to compute gradients and Hessians through central finite differences: ``f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}``. For a ``\mathbb{R}^N \to \mathbb{R}`` objective function ``f``, this requires ``2N`` evaluations of ``f``. It is therefore efficient in low dimensions but slow when ``N`` is large. It is also inaccurate: ``h`` is chosen equal to ``\epsilon^{1/3}`` where ``\epsilon`` is the machine epsilon (about ``10^{-16}`` for `Float64`) to balance the truncation and rounding errors, resulting in an error of ``\epsilon^{2/3}`` (about ``10^{-11}`` for `Float64`) for the derivative.
Finite differences are on by default if gradients and Hessians are not supplied to the `optimize` call.
## Automatic differentiation
Automatic differentiation techniques are a middle ground between finite differences and analytic computations. They are exact up to machine precision, and do not require intervention from the user. They come in two main flavors: [forward and reverse mode](https://en.wikipedia.org/wiki/Automatic_differentiation). Forward-mode automatic differentiation is relatively straightforward to implement by propagating the sensitivities of the input variables, and is often faster than finite differences. The disadvantage is that the objective function has to be written using only Julia code. Forward-mode automatic differentiation still requires a runtime comparable to ``N`` evaluations of ``f``, and is therefore costly in large dimensions, like finite differences.
Reverse-mode automatic differentiation can be seen as an automatic implementation of the adjoint method mentioned above, and requires a runtime comparable to only one evaluation of ``f``. It is however considerably more complex to implement, requiring to record the execution of the program to then run it backwards, and incurs a larger overhead.
Forward-mode automatic differentiation is supported through the [ForwardDiff.jl](https://github.com/JuliaDiff/ForwardDiff.jl) package by providing the `autodiff=:forward` keyword to `optimize`. Reverse-mode automatic differentiation is not supported explicitly yet (although you can use it by writing your own `g!` function). There are a number of implementations in Julia, such as [ReverseDiff.jl](https://github.com/JuliaDiff/ReverseDiff.jl).
## Example
Let us consider the Rosenbrock example again.
```julia
function f(x)
return (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
end
function g!(G, x)
G[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1]
G[2] = 200.0 * (x[2] - x[1]^2)
end
function h!(H, x)
H[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]^2
H[1, 2] = -400.0 * x[1]
H[2, 1] = -400.0 * x[1]
H[2, 2] = 200.0
end
initial_x = zeros(2)
```
Let us see if BFGS and Newton's Method can solve this problem with the functions
provided.
```jlcon
julia> Optim.minimizer(optimize(f, g!, h!, initial_x, BFGS()))
2-element Array{Float64,1}:
1.0
1.0
julia> Optim.minimizer(optimize(f, g!, h!, initial_x, Newton()))
2-element Array{Float64,1}:
1.0
1.0
```
This is indeed the case. Now let us use finite differences for BFGS.
```jlcon
julia> Optim.minimizer(optimize(f, initial_x, BFGS()))
2-element Array{Float64,1}:
1.0
1.0
```
Still looks good. Returning to automatic differentiation, let us try both solvers using this
method. We enable [forward mode](https://github.com/JuliaDiff/ForwardDiff.jl) automatic
differentiation by using the `autodiff = :forward` keyword.
```jlcon
julia> Optim.minimizer(optimize(f, initial_x, BFGS(); autodiff = :forward))
2-element Array{Float64,1}:
1.0
1.0
julia> Optim.minimizer(optimize(f, initial_x, Newton(); autodiff = :forward))
2-element Array{Float64,1}:
1.0
1.0
```
Indeed, the minimizer was found, without providing any gradients or Hessians.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 10826 | ## Unconstrained Optimization
To show how the Optim package can be used, we minimize the
[Rosenbrock function](http://en.wikipedia.org/wiki/Rosenbrock_function),
a classical test problem for numerical optimization. We'll assume that you've already
installed the Optim package using Julia's package manager.
First, we load Optim and define the Rosenbrock function:
```jl
using Optim
f(x) = (1.0 - x[1])^2 + 100.0 * (x[2] - x[1]^2)^2
```
Once we've defined this function, we can find the minimizer (the input that minimizes the objective) and the minimum (the value of the objective at the minimizer) using any of our favorite optimization algorithms. With a function defined,
we just specify an initial point `x` and call `optimize` with a starting point `x0`:
```jl
x0 = [0.0, 0.0]
optimize(f, x0)
```
*Note*: it is important to pass `initial_x` as an array. If your problem is one-dimensional, you have to wrap it in an array. An easy way to do so is to write `optimize(x->f(first(x)), [initial_x])` which make sure the input is an array, but the anonymous function automatically passes the first (and only) element onto your given `f`.
Optim will default to using the Nelder-Mead method in the multivariate case, as we did not provide a gradient. This can also
be explicitly specified using:
```jl
optimize(f, x0, NelderMead())
```
Other solvers are available. Below, we use L-BFGS, a quasi-Newton method that requires a gradient.
If we pass `f` alone, Optim will construct an approximate gradient for us using central finite differencing:
```jl
optimize(f, x0, LBFGS())
```
For better performance and greater precision, you can pass your own gradient function. If your objective is written in all Julia code with no special calls to external (that is non-Julia) libraries, you can also use automatic differentiation, by using the `autodiff` keyword and setting it to `:forward`:
```julia
optimize(f, x0, LBFGS(); autodiff = :forward)
```
For the Rosenbrock example, the analytical gradient can be shown to be:
```jl
function g!(G, x)
G[1] = -2.0 * (1.0 - x[1]) - 400.0 * (x[2] - x[1]^2) * x[1]
G[2] = 200.0 * (x[2] - x[1]^2)
end
```
Note, that the functions we're using to calculate the gradient (and later the Hessian `h!`) of the Rosenbrock function mutate a fixed-sized storage array, which is passed as an additional argument called `G` (or `H` for the Hessian) in these examples. By mutating a single array over many iterations, this style of function definition removes the sometimes considerable costs associated with allocating a new array during each call to the `g!` or `h!` functions. If you prefer to have your gradients simply accept an `x`, you can still use `optimize` by setting the `inplace` keyword to `false`:
```jl
optimize(f, g, x0; inplace = false)
```
where `g` is a function of `x` only.
Returning to our in-place version, you simply pass `g!` together with `f` from before to use the gradient:
```jl
optimize(f, g!, x0, LBFGS())
```
For some methods, like simulated annealing, the gradient will be ignored:
```jl
optimize(f, g!, x0, SimulatedAnnealing())
```
In addition to providing gradients, you can provide a Hessian function `h!` as well. In our current case this is:
```jl
function h!(H, x)
H[1, 1] = 2.0 - 400.0 * x[2] + 1200.0 * x[1]^2
H[1, 2] = -400.0 * x[1]
H[2, 1] = -400.0 * x[1]
H[2, 2] = 200.0
end
```
Now we can use Newton's method for optimization by running:
```jl
optimize(f, g!, h!, x0)
```
Which defaults to `Newton()` since a Hessian function was provided. Like gradients, the Hessian function will be ignored if you use a method that does not require it:
```jl
optimize(f, g!, h!, x0, LBFGS())
```
Note that Optim will not generate approximate Hessians using finite differencing
because of the potentially low accuracy of approximations to the Hessians. Other
than Newton's method, none of the algorithms provided by the Optim package employ
exact Hessians.
## Box Constrained Optimization
A primal interior-point algorithm for simple "box" constraints (lower and upper bounds) is available. Reusing our Rosenbrock example from above, boxed minimization is performed as follows:
```jl
lower = [1.25, -2.1]
upper = [Inf, Inf]
initial_x = [2.0, 2.0]
inner_optimizer = GradientDescent()
results = optimize(f, g!, lower, upper, initial_x, Fminbox(inner_optimizer))
```
This performs optimization with a barrier penalty, successively scaling down the barrier coefficient and using the chosen `inner_optimizer` (`GradientDescent()` above) for convergence at each step. To change algorithm specific options, such as the line search algorithm, specify it directly in the `inner_optimizer` constructor:
```
lower = [1.25, -2.1]
upper = [Inf, Inf]
initial_x = [2.0, 2.0]
# requires using LineSearches
inner_optimizer = GradientDescent(linesearch=LineSearches.BackTracking(order=3))
results = optimize(f, g!, lower, upper, initial_x, Fminbox(inner_optimizer))
```
This algorithm uses diagonal preconditioning to improve the accuracy, and hence is a good example of how to use `ConjugateGradient` or `LBFGS` with preconditioning. Other methods will currently not use preconditioning. Only the box constraints are used. If you can analytically compute the diagonal of the Hessian of your objective function, you may want to consider writing your own preconditioner.
There are two iterations parameters: an outer iterations parameter used to control `Fminbox` and an inner iterations parameter used to control the inner optimizer. For example, the following restricts the optimization to 2 major iterations
```julia
results = optimize(f, g!, lower, upper, initial_x, Fminbox(GradientDescent()), Optim.Options(outer_iterations = 2))
```
In contrast, the following sets the maximum number of iterations for each `GradientDescent()` optimization to 2
```julia
results = optimize(f, g!, lower, upper, initial_x, Fminbox(GradientDescent()), Optim.Options(iterations = 2))
```
### Using second order information
When the Hessian of the objective function is available it is possible to use the primal-dual algorithm implemented in `IPNewton`. The interface
is similar
```julia
results = optimize(f, lower, upper, initial_x, IPNewton())
results = optimize(f, g!, lower, upper, initial_x, IPNewton())
results = optimize(f, g!, h!, lower, upper, initial_x, IPNewton())
```
## Minimizing a univariate function on a bounded interval
Minimization of univariate functions without derivatives is available through
the `optimize` interface:
```jl
optimize(f, lower, upper, method; kwargs...)
```
Notice the lack of initial `x`. A specific example is the following quadratic
function.
```jl
julia> f_univariate(x) = 2x^2+3x+1
f_univariate (generic function with 1 method)
julia> optimize(f_univariate, -2.0, 1.0)
Results of Optimization Algorithm
* Algorithm: Brent's Method
* Search Interval: [-2.000000, 1.000000]
* Minimizer: -7.500000e-01
* Minimum: -1.250000e-01
* Iterations: 7
* Convergence: max(|x - x_upper|, |x - x_lower|) <= 2*(1.5e-08*|x|+2.2e-16): true
* Objective Function Calls: 8
```
The output shows that we provided an initial lower and upper bound, that there is
a final minimizer and minimum, and that it used seven major iterations. Importantly,
we also see that convergence was declared. The default method is Brent's method,
which is one out of two available methods:
* Brent's method, the default (can be explicitly selected with `Brent()`).
* Golden section search, available with `GoldenSection()`.
If we want to manually specify this method, we use the usual syntax as for multivariate optimization.
```jl
optimize(f, lower, upper, Brent(); kwargs...)
optimize(f, lower, upper, GoldenSection(); kwargs...)
```
Keywords are used to set options for this special type of optimization. In addition to the `iterations`, `store_trace`, `show_trace`, `show_warnings`, and `extended_trace` options, the following options are also available:
* `rel_tol`: The relative tolerance used for determining convergence. Defaults to `sqrt(eps(T))`.
* `abs_tol`: The absolute tolerance used for determining convergence. Defaults to `eps(T)`.
## Obtaining results
After we have our results in `res`, we can use the API for getting optimization results.
This consists of a collection of functions. They are not exported, so they have to be prefixed by `Optim.`.
Say we do the following optimization:
```jl
res = optimize(x->dot(x,[1 0. 0; 0 3 0; 0 0 1]*x), zeros(3))
```
If we can't remember what method we used, we simply use
```jl
summary(res)
```
which will return `"Nelder Mead"`. A bit more useful information is the minimizer and minimum of the objective functions, which can be found using
```jlcon
julia> Optim.minimizer(res)
3-element Array{Float64,1}:
-0.499921
-0.3333
-1.49994
julia> Optim.minimum(res)
-2.8333333205768865
```
### Complete list of functions
A complete list of functions can be found below.
Defined for all methods:
* `summary(res)`
* `minimizer(res)`
* `minimum(res)`
* `iterations(res)`
* `iteration_limit_reached(res)`
* `trace(res)`
* `x_trace(res)`
* `f_trace(res)`
* `f_calls(res)`
* `converged(res)`
Defined for univariate optimization:
* `lower_bound(res)`
* `upper_bound(res)`
* `x_lower_trace(res)`
* `x_upper_trace(res)`
* `rel_tol(res)`
* `abs_tol(res)`
Defined for multivariate optimization:
* `g_norm_trace(res)`
* `g_calls(res)`
* `x_converged(res)`
* `f_converged(res)`
* `g_converged(res)`
* `initial_state(res)`
## Input types
Most users will input `Vector`'s as their `initial_x`'s, and get an `Optim.minimizer(res)` out that is also a vector. For zeroth and first order methods, it is also possible to pass in matrices, or even higher dimensional arrays. The only restriction imposed by leaving the `Vector` case is, that it is no longer possible to use finite difference approximations or automatic differentiation. Second order methods (variants of Newton's method) do not support this more general input type.
## Notes on convergence flags and checks
Currently, it is possible to access a minimizer using `Optim.minimizer(result)` even if
all convergence flags are `false`. This means that the user has to be a bit careful when using
the output from the solvers. It is advised to include checks for convergence if the minimizer
or minimum is used to carry out further calculations.
A related note is that first and second order methods makes a convergence check
on the gradient before entering the optimization loop. This is done to prevent
line search errors if `initial_x` is a stationary point. Notice, that this is only
a first order check. If `initial_x` is any type of stationary point, `g_converged`
will be true. This includes local minima, saddle points, and local maxima. If `iterations` is `0`
and `g_converged` is `true`, the user needs to keep this point in mind.
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 11021 | ## Dealing with constant parameters
In many applications, there may be factors that are relevant to the function evaluations,
but are fixed throughout the optimization. An obvious example is using data in a
likelihood function, but it could also be parameters we wish to hold constant.
Consider a squared error loss function that depends on some data `x` and `y`,
and parameters `betas`. As far as the solver is concerned, there should only be one
input argument to the function we want to minimize, call it `sqerror`.
The problem is that we want to optimize a function `sqerror` that really depends
on three inputs, and two of them are constant throughout the optimization procedure.
To do this, we need to define the variables `x` and `y`
```jl
x = [1.0, 2.0, 3.0]
y = 1.0 .+ 2.0 .* x .+ [-0.3, 0.3, -0.1]
```
We then simply define a function in three variables
```julia
function sqerror(betas, X, Y)
err = 0.0
for i in 1:length(X)
pred_i = betas[1] + betas[2] * X[i]
err += (Y[i] - pred_i)^2
end
return err
end
```
and then optimize the following anonymous function
```jl
res = optimize(b -> sqerror(b, x, y), [0.0, 0.0])
```
Alternatively, we can define a closure `sqerror(betas)` that is aware of the variables we
just defined
```jl
function sqerror(betas)
err = 0.0
for i in 1:length(x)
pred_i = betas[1] + betas[2] * x[i]
err += (y[i] - pred_i)^2
end
return err
end
```
We can then optimize the `sqerror` function just like any other function
```jl
res = optimize(sqerror, [0.0, 0.0])
```
## Avoid repeating computations
Say you are optimizing a function
```julia
f(x) = x[1]^2+x[2]^2
g!(storage, x) = copyto!(storage, [2x[1], 2x[2]])
```
In this situation, no calculations from `f` could be reused in `g!`. However, sometimes
there is a substantial similarity between the objective function, and gradient, and
some calculations can be reused.
To avoid repeating calculations, define functions `fg!` or `fgh!` that compute
the objective function, the gradient and the Hessian (if needed) simultaneously.
These functions internally can be written to avoid repeating common calculations.
For example, here we define a function `fg!` to compute the objective function and
the gradient, as required:
```julia
function fg!(F, G, x)
# do common computations here
# ...
if G !== nothing
# code to compute gradient here
# writing the result to the vector G
# G .= ...
end
if F !== nothing
# value = ... code to compute objective function
return value
end
end
```
`Optim` will only call this function with an argument `G` that is `nothing` (if the gradient is not required)
or a `Vector` that should be filled (in-place) with the gradient. This flexibility is convenient for algorithms
that only use the gradient in some iterations but not in others.
Now we call `optimize` with the following syntax:
```julia
Optim.optimize(Optim.only_fg!(fg!), [0., 0.], Optim.LBFGS())
```
Similarly, for a computation that requires the Hessian, we can write:
```julia
function fgh!(F, G, H, x)
G === nothing || # compute gradient and store in G
H === nothing || # compute Hessian and store in H
F === nothing || return f(x)
nothing
end
Optim.optimize(Optim.only_fgh!(fgh!), [0., 0.], Optim.Newton())
```
## Provide gradients
As mentioned in the general introduction, passing analytical gradients can have an
impact on performance. To show an example of this, consider the separable extension of the
Rosenbrock function in dimension 5000, see [SROSENBR](ftp://ftp.numerical.rl.ac.uk/pub/cutest/sif/SROSENBR.SIF) in CUTEst.
Below, we use the gradients and objective functions from [mastsif](http://www.cuter.rl.ac.uk/Problems/mastsif.shtml) through [CUTEst.jl](https://github.com/JuliaSmoothOptimizers/CUTEst.jl).
We only show the first five iterations of an attempt to minimize the function using
Gradient Descent.
```jlcon
julia> @time optimize(f, initial_x, GradientDescent(),
Optim.Options(show_trace=true, iterations = 5))
Iter Function value Gradient norm
0 4.850000e+04 2.116000e+02
1 1.018734e+03 2.704951e+01
2 3.468449e+00 5.721261e-01
3 2.966899e+00 2.638790e-02
4 2.511859e+00 5.237768e-01
5 2.107853e+00 1.020287e-01
21.731129 seconds (1.61 M allocations: 63.434 MB, 0.03% gc time)
Results of Optimization Algorithm
* Algorithm: Gradient Descent
* Starting Point: [1.2,1.0, ...]
* Minimizer: [1.0287767703731154,1.058769439356144, ...]
* Minimum: 2.107853e+00
* Iterations: 5
* Convergence: false
* |x - x'| < 0.0: false
* |f(x) - f(x')| / |f(x)| < 0.0: false
* |g(x)| < 1.0e-08: false
* Reached Maximum Number of Iterations: true
* Objective Function Calls: 23
* Gradient Calls: 23
julia> @time optimize(f, g!, initial_x, GradientDescent(),
Optim.Options(show_trace=true, iterations = 5))
Iter Function value Gradient norm
0 4.850000e+04 2.116000e+02
1 1.018769e+03 2.704998e+01
2 3.468488e+00 5.721481e-01
3 2.966900e+00 2.638792e-02
4 2.511828e+00 5.237919e-01
5 2.107802e+00 1.020415e-01
0.009889 seconds (915 allocations: 270.266 KB)
Results of Optimization Algorithm
* Algorithm: Gradient Descent
* Starting Point: [1.2,1.0, ...]
* Minimizer: [1.0287763814102757,1.05876866832087, ...]
* Minimum: 2.107802e+00
* Iterations: 5
* Convergence: false
* |x - x'| < 0.0: false
* |f(x) - f(x')| / |f(x)| < 0.0: false
* |g(x)| < 1.0e-08: false
* Reached Maximum Number of Iterations: true
* Objective Function Calls: 23
* Gradient Calls: 23
```
The objective has obtained a value that is very similar between the two runs, but
the run with the analytical gradient is way faster. It is possible that the finite
differences code can be improved, but generally the optimization will be slowed down
by all the function evaluations required to do the central finite differences calculations.
## Separating time spent in Optim's code and user provided functions
Consider the Rosenbrock problem.
```julia
using Optim, OptimTestProblems
prob = UnconstrainedProblems.examples["Rosenbrock"];
```
Say we optimize this function, and look at the total run time of `optimize` using
the Newton Trust Region method, and we are surprised that it takes a long time to run.
We then wonder if time is spent in Optim's own code (solving the sub-problem for example)
or in evaluating the objective, gradient or hessian that we provided. Then it can
be very useful to use the [TimerOutputs.jl](https://github.com/KristofferC/TimerOutputs.jl) package.
This package allows us to run an over-all timer for `optimize`, and add individual
timers for `f`, `g!`, and `h!`. Consider the example below, that is due to the author
of the package (Kristoffer Carlsson).
```julia
using TimerOutputs
const to = TimerOutput()
f(x ) = @timeit to "f" prob.f(x)
g!(x, g) = @timeit to "g!" prob.g!(x, g)
h!(x, h) = @timeit to "h!" prob.h!(x, h)
begin
reset_timer!(to)
@timeit to "Trust Region" begin
res = Optim.optimize(f, g!, h!, prob.initial_x, NewtonTrustRegion())
end
show(to; allocations = false)
end
```
We see that the time is actually *not* spent in our provided functions, but most
of the time is spent in the code for the trust region method.
## Early stopping
Sometimes it might be of interest to stop the optimizer early. The simplest way to
do this is to set the `iterations` keyword in `Optim.Options` to some number.
This will prevent the iteration counter exceeding some limit, with the standard value
being 1000. Alternatively, it is possible to put a soft limit on the run time of
the optimization procedure by setting the `time_limit` keyword in the `Optim.Options`
constructor.
```julia
using Optim, OptimTestProblems
problem = UnconstrainedProblems.examples["Rosenbrock"]
f = problem.f
initial_x = problem.initial_x
function slow(x)
sleep(0.1)
f(x)
end
start_time = time()
optimize(slow, zeros(2), NelderMead(), Optim.Options(time_limit = 3.0))
```
This will stop after about three seconds. If it is more important that we stop before the limit
is reached, it is possible to use a callback with a simple model for predicting how much
time will have passed when the next iteration is over. Consider the following code
```julia
using Optim, OptimTestProblems
problem = UnconstrainedProblems.examples["Rosenbrock"]
f = problem.f
initial_x = problem.initial_x
function very_slow(x)
sleep(.5)
f(x)
end
start_time = time()
time_to_setup = zeros(1)
function advanced_time_control(x)
println(" * Iteration: ", x.iteration)
so_far = time()-start_time
println(" * Time so far: ", so_far)
if x.iteration == 0
time_to_setup .= time()-start_time
else
expected_next_time = so_far + (time()-start_time-time_to_setup[1])/(x.iteration)
println(" * Next iteration ≈ ", expected_next_time)
println()
return expected_next_time < 13 ? false : true
end
println()
false
end
optimize(very_slow, zeros(2), NelderMead(), Optim.Options(callback = advanced_time_control))
```
It will try to predict the elapsed time after the next iteration is over, and stop now
if it is expected to exceed the limit of 13 seconds. Running it, we get something like
the following output
```jlcon
julia> optimize(very_slow, zeros(2), NelderMead(), Optim.Options(callback = advanced_time_control))
* Iteration: 0
* Time so far: 2.219298839569092
* Iteration: 1
* Time so far: 3.4006409645080566
* Next iteration ≈ 4.5429909229278564
* Iteration: 2
* Time so far: 4.403923988342285
* Next iteration ≈ 5.476739525794983
* Iteration: 3
* Time so far: 5.407265901565552
* Next iteration ≈ 6.4569235642751055
* Iteration: 4
* Time so far: 5.909044027328491
* Next iteration ≈ 6.821732044219971
* Iteration: 5
* Time so far: 6.912338972091675
* Next iteration ≈ 7.843148183822632
* Iteration: 6
* Time so far: 7.9156060218811035
* Next iteration ≈ 8.85849153995514
* Iteration: 7
* Time so far: 8.918903827667236
* Next iteration ≈ 9.870419979095459
* Iteration: 8
* Time so far: 9.922197818756104
* Next iteration ≈ 10.880185931921005
* Iteration: 9
* Time so far: 10.925468921661377
* Next iteration ≈ 11.888488478130764
* Iteration: 10
* Time so far: 11.92870283126831
* Next iteration ≈ 12.895747828483582
* Iteration: 11
* Time so far: 12.932114839553833
* Next iteration ≈ 13.902462200684981
Results of Optimization Algorithm
* Algorithm: Nelder-Mead
* Starting Point: [0.0,0.0]
* Minimizer: [0.23359374999999996,0.042187499999999996, ...]
* Minimum: 6.291677e-01
* Iterations: 11
* Convergence: false
* √(Σ(yᵢ-ȳ)²)/n < 1.0e-08: false
* Reached Maximum Number of Iterations: false
* Objective Function Calls: 24
```
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 1.9.4 | d9b79c4eed437421ac4285148fcadf42e0700e89 | docs | 4906 | ---
title: 'Optim: A mathematical optimization package for Julia'
tags:
- Optimization
- Julia
authors:
- name: Patrick K Mogensen
orcid: 0000-0002-4910-1932
affiliation: 1
- name: Asbjørn N Riseth
orcid: 0000-0002-5861-7885
affiliation: 2
affiliations:
- name: University of Copenhagen
index: 1
- name: University of Oxford
index: 2
date: 7 March 2018
bibliography: paper.bib
---
# Summary
[Optim](https://github.com/JuliaNLSolvers/Optim.jl/) provides a range
of optimization capabilities written in the Julia programming language
[@bezanson2017julia]. Our aim is to enable researchers, users, and
other Julia packages to solve optimization problems without writing
such algorithms themselves.
The package supports optimization on manifolds,
functions of complex numbers, and input types such as arbitrary
precision vectors and matrices. We have implemented routines for
derivative free, first-order, and second-order optimization methods.
The user can provide derivatives themselves, or request that they are
calculated using automatic differentiation or finite difference
methods. The main focus of the package has currently been on
unconstrained optimization, however, box-constrained optimization is
supported, and a more comprehensive support for constraints is
underway.
Similar to Optim, the C library
[NLopt](http://ab-initio.mit.edu/nlopt) [@johnson2018nlopt] contains a
collection of nonlinear optimization routines. In Python,
[scipy.optimize](https://docs.scipy.org/doc/scipy/reference/optimize.html)
supports many of the same algorithms as Optim does, and
[Pymanopt](https://pymanopt.github.io/) [@townsend2016pymanopt] is a
toolbox for manifold optimization.
Within the Julia community, the packages
[BlackBoxOptim.jl](https://github.com/robertfeldt/BlackBoxOptim.jl)
and
[Optimize.jl](https://github.com/JuliaSmoothOptimizers/Optimize.jl)
provide optimization capabilities focusing on derivative-free and
large-scale smooth problems respectively.
The packages [Convex.jl](https://github.com/JuliaOpt/Convex.jl) and
[JuMP.jl](https://github.com/JuliaOpt/JuMP.jl) [@dunning2017jump] define
modelling languages for which users can formulate optimization problems.
In contrast to the previously mentioned optimization codes, Convex and JuMP
work as abstraction layers between the user and solvers from a other packages.
## Optimization routines
As of version 0.14, the following optimization routines are available.
- Second-order methods
* Newton
* Newton with trust region
* Hessian-vector with trust region
- First-order methods
* BFGS
* L-BFGS (with linear preconditioning)
* Conjugate gradient (with linear preconditioning)
* Gradient descent (with linear preconditioning)
- Acceleration methods
* Nonlinear GMRES
* Objective acceleration
- Derivative-free methods
* Nelder–Mead
* Simulated annealing
* Particle swarm
- Interval bound univariate methods
* Brent's method
* Golden-section search
The derivative based methods use line searches to assist
convergence. Multiple line search algorithms are available, including
interpolating backtracking and methods that aim to satisfy the Wolfe
conditions.
# Usage in research and industry
The optimization routines in this package have been used in both
industrial and academic contexts. For example, parts of the internal
work in the company Ternary Intelligence Inc. [@ternary2017] rely on
the package. Notably, an upcoming book on optimization
[@mykel2018optimization] uses Optim for its examples. Optim has been
used for a wide range of applications in academic research, including
optimal control [@riseth2017comparison; @riseth2017dynamic], parameter
estimation [@riseth2017operator; @rackauckas2017differentialequations;
and @dony2018parametric], quantum physics [@damle2018variational],
crystalline modelling [@chen2017qm; @braun2017effect], and
the large-scale astronomical cataloguing project Celeste
[@regier2015celeste; @regier2016celeste]. A new acceleration scheme
for optimization [@riseth2017objective], and a preconditioning scheme
for geometry optimisation [@packwood2016universal]
have also been tested within the Optim framework.
# Acknowledgements
John Myles White initiated the development of the Optim code base
in 2012. We owe much to him and Timothy Holy for creating a solid
package for optimization that the rest of the Julia community could
further improve upon. We would also like to thank everyone who has
contributed with code and discussions to help improve the package. In
particular, Antoine Levitt, Christoph Ortner, and Chris Rackauckas
have been helpful in providing suggestions and code contributions
towards more modularity and greater support for non-trivial inputs and
decision spaces.
# Funding
Asbjørn Riseth is partially supported by the EPSRC research grant EP/L015803/1.
# References
| Optim | https://github.com/JuliaNLSolvers/Optim.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 926 | push!(LOAD_PATH,"../src/")
using Documenter, AuditoryStimuli
makedocs(
modules = [AuditoryStimuli],
format = Documenter.HTML(prettyurls = get(ENV, "CI", nothing) == "true"),
sitename = "AuditoryStimuli.jl",
authors = "Robert Luke",
pages = [
"Home" => "index.md",
"Introduction / Tutorial" => "realtime-introduction.md",
"Examples" => Any[
"Amplitude Modulated Noise" => "example-ssr.md",
"Harmonic Stacks" => "example-hs.md",
"Bandpass Noise" => "example-bpnoise.md",
"Interaural Time Delay" => "example-itd.md",
"ITD Modulation" => "example-itmfr.md",
"Signal and Noise" => "example-signoise.md",
],
"Advanced Usage" => "advanced.md",
"API" => "api.md"
]
)
deploydocs(
repo = "github.com/rob-luke/AuditoryStimuli.jl.git",
push_preview = true,
devbranch = "main"
)
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 3147 | #=
White noise generator with variable volume
==========================================
This program generates white noise and plays it through your speakers.
The volume of the white noise can be adjusted via a command prompt.
Details
-------
Noise is played. The user is asked to select an amplification from 1-9.
When the user selects an amplification it is applied to the noise.
The noise is ramped to the desired value.
Simulatenously the user is asked for a new amplification.
The amplification of the noise can be modified at any time, it does not have
to have ramped all the way to the previously selected value.
If the user selects a value other than 1-9 the noise is ramped off
=#
using PortAudio, Unitful, AuditoryStimuli, SampledSignals, Printf, DSP
using Pipe: @pipe
# ###########################
# ## Helper functions
# ###########################
"""
This function returns the port audio stream matching the requested card
"""
function get_soundcard_stream(soundcard::String="Fireface")
a = PortAudio.devices()
idx = [occursin(soundcard, d.name) for d in a]
if sum(idx) > 1
error("Multiple soundcards with requested name ($soundcard) were found: $a")
end
name = a[findfirst(idx)].name
println("Using device: $name")
stream = PortAudioStream(name, 0, 2)
end
"""
This function presents a prompt to the user and ensures
the response is valid. If the response is valid it is returned.
If not, it returns `quit`.
"""
function query_prompt(query, typ)
print(query, ": ")
choice = uppercase(strip(readline(stdin)))
if ((ret = tryparse(typ, choice)) != nothing) && (0 < ret < 10)
return ret
elseif choice == "F"
return "f"
else
println("A number between 1-9 was not entered... quiting")
return "quit"
end
end
# ###########################
# ## Main program structure
# ###########################
responsetype = Bandpass(500, 4000; fs=48000)
designmethod = Butterworth(4)
zpg = digitalfilter(responsetype, designmethod)
f1 = DSP.Filters.DF2TFilter(zpg)
f2 = DSP.Filters.DF2TFilter(zpg)
# Set up the audio pathway objects
soundcard = get_soundcard_stream()
noise_source = NoiseSource(Float64, 48000, 2, 0.2)
amplify = Amplification(0.1, 0.01, 0.005)
bandpass = AuditoryStimuli.Filter([f1, f2])
# Instansiate the audio stream in its own thread
noise_stream = Threads.@spawn begin
while amplify.current > 0.001
@pipe read(noise_source, 0.01u"s") |> modify(amplify, _) |> modify(bandpass, _) |> write(soundcard, _)
end
end
# Main function
while amplify.current> 0.001
a = query_prompt("Select amplification. 1(quiet) to 9(loud), or q(quit)", Float64)
if a isa Number
# Update the target amplifcation
setproperty!(amplify, :target, a / 10.0)
elseif a == "f"
# Enable or disable the band pass filter
setproperty!(bandpass, :enable, !bandpass.enable)
else
# Ramp the amplifcation to zero and then exit
setproperty!(amplify, :target, 0.0)
while amplify.current > 0.001; sleep(0.2); end
println("Shuting down")
end
end
close(soundcard)
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 6504 | """
A Julia package for generating auditory stimuli.
"""
module AuditoryStimuli
using DSP
using SampledSignals
using LinearAlgebra
using Random
using Logging
using FFTW
using Unitful
using Plots
using Parameters
using Unitful: AbstractQuantity, AffineQuantity, DimensionlessQuantity
import SampledSignals: nchannels, samplerate, unsafe_read!
import Plots: plot
export bandpass_noise,
bandpass_filter,
amplitude_modulate,
ITD_modulate,
set_RMS,
ramp_on,
ramp_off,
set_ITD,
PlotSpectroTemporal,
NoiseSource,
CorrelatedNoiseSource,
SinusoidSource,
DummySampleSink,
Amplification,
AmplitudeModulation,
TimeDelay,
samplerate,
modify,
plot,
interaural_coherence,
plot_cross_correlation
# #########################################
# ##### Signal Generation
# #########################################
include("SignalGenerators/NoiseSource.jl")
include("SignalGenerators/CorrelatedNoiseSource.jl")
include("SignalGenerators/SinusoidSource.jl")
include("SignalGenerators/DummySampleSink.jl")
# #########################################
# ##### Signal Modifiers
# #########################################
include("SignalModifiers/Amplification.jl")
include("SignalModifiers/BandpassFilter.jl")
include("SignalModifiers/Modulation.jl")
include("SignalModifiers/TimeDelay.jl")
# #########################################
# ##### Signal Metrics
# #########################################
include("SignalMetrics/InterauralCoherence.jl")
# #########################################
# ##### Signal Plotting
# #########################################
include("Plotting.jl")
"""
bandpass_noise(number_samples, number_channels, lower_bound, upper_bound, sample_rate; filter_order=14)
Generates band pass noise with specified upper and lower bounds using a butterworth filter.
"""
function bandpass_noise(number_samples::Int, number_channels::Int, lower_bound::Number, upper_bound::Number, sample_rate::Number; filter_order::Int = 14)
bandpass_filter(randn(number_samples, number_channels), lower_bound, upper_bound, sample_rate, filter_order=filter_order)
end
# #########################################
# ##### Signal Modifiers
# #########################################
"""
bandpass_filter(AbstractArray, lower_bound, upper_bound, sample_rate; filter_order=14)
bandpass_filter(SampledSignal, lower_bound, upper_bound; filter_order=14)
Signal will be filtered with bandpass butterworth filter between 'lower_bound' and `upper_bound` with filter of `filter_order`.
"""
function bandpass_filter(x::AbstractArray, lower_bound::Number, upper_bound::Number, sample_rate::Number; filter_order::Int = 14)
responsetype = Bandpass(lower_bound, upper_bound; fs=sample_rate)
designmethod = Butterworth(filter_order)
filt(digitalfilter(responsetype, designmethod), x)
end
function bandpass_filter(x::SampledSignals.SampleBuf, lower_bound::typeof(1u"Hz"), upper_bound::typeof(1u"Hz"); filter_order::Int = 14)
x.data = bandpass_filter(x.data, ustrip(lower_bound), ustrip(upper_bound), x.samplerate, filter_order=filter_order)
x
end
"""
amplitude_modulate(data, modulation_frequency, sample_rate; phase=π)
Amplitude modulates the signal
See [wikipedia](https://en.wikipedia.org/wiki/Amplitude_modulation)
"""
function amplitude_modulate(x::AbstractArray, modulation_frequency::Number, sample_rate::Number; phase::Number = π)
t = 1:size(x, 1)
t = t ./ sample_rate
fits = mod(maximum(t), (1/modulation_frequency))
if !(isapprox(fits, 0, atol = 1e-5) || isapprox(fits, 1/modulation_frequency, atol = 1e-5) )
@warn("Not a complete modulation")
end
# println(maximum(t))
# println(1/modulation_frequency)
# println(mod(maximum(t), (1/modulation_frequency)))
M = 1 .* cos.(2 * π * modulation_frequency * t .+ phase)
(1 .+ M) .* x;
end
function amplitude_modulate(x::SampledSignals.SampleBuf, modulation_frequency::typeof(1u"Hz"); phase::Number = π)
amplitude_modulate(x, modulation_frequency * 1.0, phase=phase)
end
function amplitude_modulate(x::SampledSignals.SampleBuf, modulation_frequency::typeof(1.0u"Hz"); phase::Number = π)
x.data = amplitude_modulate(x.data, ustrip(modulation_frequency), x.samplerate, phase=phase)
x
end
"""
ITD_modulate(data, modulation_frequency, ITD_1, ITD_2, samplerate)
Modulate an applied ITD
"""
function ITD_modulate(x::AbstractArray, modulation_frequency::Number, ITD_1::Int, ITD_2::Int, sample_rate)
@warn "Unvalidated code"
t = 1:size(x, 1)
t = t ./ sample_rate
Ti = 1 / modulation_frequency
switches = round.(Int, collect(0:Ti:maximum(t))*sample_rate)
switches_starts = switches[1:1:end]
switches_stops = switches[2:1:end]
switch_samples = switches_stops[1] - switches_starts[1]
for idx = 1:2:length(switches_starts)-1
x[switches_starts[idx]+1:switches_stops[idx], 1] = x[switches_starts[idx]+1+ITD_1:switches_stops[idx]+ITD_1, 1] .* tukey(switch_samples, 0.01)
x[switches_stops[idx]+1:switches_stops[idx+1], 1] = x[switches_stops[idx]+1+ITD_2:switches_stops[idx+1]+ITD_2, 1] .* tukey(switch_samples, 0.01)
end
return x
end
"""
set_RMS(data, desired_rms)
Modify rms of signal to desired value
"""
function set_RMS(data::AbstractArray, desired_rms::Number)
data / (rms(data) / desired_rms)
end
"""
ramp_on(data, number_samples)
Apply a linear ramp to start of signal
"""
function ramp_on(data::AbstractArray, number_samples::Int)
data[1:number_samples, :] = LinRange(0, 1, number_samples) .* data[1:number_samples, :]
return data
end
"""
ramp_off(data, number_samples)
Apply a linear ramp to end of signal
"""
function ramp_off(data::AbstractArray, number_samples::Int)
data[end-number_samples+1:end, :] = LinRange(1, 0, number_samples) .* data[end-number_samples+1:end, :]
return data
end
"""
set_ITD(data, number_samples)
Introduce an ITD of number_samples
"""
function set_ITD(data::AbstractArray, number_samples::Int)
abs_number_samples = abs(number_samples)
if number_samples > 0
data[:, 1] = [zeros(abs_number_samples, 1); data[1:end - abs_number_samples, 1]]
elseif number_samples < 0
data[:, 2] = [zeros(abs_number_samples, 1); data[1:end - abs_number_samples, 2]]
end
return data
end
end # module
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 4596 |
using Plots
using Statistics
"""
PlotSpectroTemporal(data, sample_rate)
This function plots the time, spectrogram, and periodogram of a signal.
"""
function PlotSpectroTemporal(x::AbstractArray, sample_rate::Number;
figure_size::Tuple=(750, 400),
window = hamming,
amplitude_limits = nothing,
power_limits = nothing,
time_limits = nothing,
frequency_limits = [0, 1500],
correlation_annotate = true, kwargs...)
# Generate time vector
t = 1:size(x, 1)
t = t ./ sample_rate
if time_limits == nothing
time_limits = [0, maximum(t)]
end
# Calculate signal transforms
spec = spectrogram(x[:, 1], 1024, 256, fs = sample_rate, window = window)
peri1 = welch_pgram(x[:, 1], 2048, 512, fs = sample_rate)
peri1_power = vector_pow2db(power(peri1))
if size(x, 2)>1; peri2 = welch_pgram(x[:, 2], 2048, 512, fs = sample_rate); end
tfft = fft(x[:, 1])
# Extract required stats
if isnothing(amplitude_limits)
amplitude_limits = maximum(abs.(x))
amplitude_limits = (-amplitude_limits, amplitude_limits)
end
if isnothing(power_limits)
idxs = (freq(peri1) .> frequency_limits[1]) .& (freq(peri1) .< frequency_limits[2])
power_limits = (minimum(peri1_power[idxs]), maximum(peri1_power[idxs]))
end
# Create plots
spec_plot = heatmap(time(spec), freq(spec), power(spec), colorbar = false, xlab = "Time (s)", ylab = "Frequency (Hz)", ylims = frequency_limits, xlims = time_limits)
peri_plot = plot(peri1_power, freq(peri1), yticks = [], xlab = "Power (dB)", lab = "", ylims = frequency_limits, xlims = power_limits)
if size(x, 2)>1; peri_plot = plot!(vector_pow2db(power(peri2)), freq(peri2), yticks = [], xlab = "Power (dB)", lab = "", ylims = frequency_limits); end
time_plot = plot(t, x, xticks = [], leg = false, ylab = "Amplitude", lab = "", ylims = amplitude_limits, xlims = time_limits)
corr_plot = histogram(x, orientation = :h, ticks = [], leg = false, framestyle = :none, link = :none, bins=LinRange(amplitude_limits[1], amplitude_limits[2], 15), ylims = amplitude_limits)
if ((size(x, 2)>1) & correlation_annotate)
maximum_hist_val = maximum(corr_plot.series_list[2].plotattributes[:y][.~isnan.(corr_plot.series_list[2].plotattributes[:y])])
d = annotate!(0, 0.9 * maximum(amplitude_limits), text(string("Corr = ", round(cor(x)[2, 1], digits=3)),:left,8))
d = annotate!(0, -0.9 * maximum(amplitude_limits), text(string("Std = ", round(std(x), digits=3)),:left,8))
end
# Return all plots in layout
l = Plots.@layout [c{0.6w, 0.3h} d ; a{0.8w} b]
return plot(time_plot, corr_plot, spec_plot, peri_plot, layout = l, size = figure_size, link = :none; kwargs...)
end
function vector_pow2db(a::Vector)
for index = 1:size(a, 1)
a[index] = pow2db(a[index])
end
return a
end
function plot_cross_correlation(x::T; lags::AbstractQuantity=0u"s") where {T<:SampledSignals.SampleBuf}
lags_seconds = lags |> u"s" |> ustrip
lags_samples = Int(lags_seconds * x.samplerate)
plot_cross_correlation(x.data, lags_samples, x.samplerate)
end
function plot_cross_correlation(x::T; lags::AbstractQuantity=0u"s") where {T<:DummySampleSink}
lags_seconds = lags |> u"s" |> ustrip
lags_samples = Int(lags_seconds * x.samplerate)
plot_cross_correlation(x.buf, lags_samples, x.samplerate)
end
"""
plot_cross_correlation(x::SampleBuf, lags::Unitful.Time)
Plot the cross correlation of a two channel audio signal.
Inputs
------
* `x` data in the form of SampledSignals.SampleBuf. Must be two channels of audio.
* `lags` time range of lags to be used when plotting the cross correlation function.
If lags=0, then the entire function will be used, effecively same as lags=Inf.
Example
-------
```julia
correlation = 0.6
source = CorrelatedNoiseSource(Float64, 48u"kHz", 2, 0.1, correlation)
a = read(source, 3u"s")
plot_cross_correlation(a, lags=4u"ms")
```
"""
function plot_cross_correlation(x::Array{T, 2}, lags::Int, samplerate::Number) where {T<:Number}
if lags == 0
lags = size(x, 1) - 1
end
lags = round.(Int, -lags:1:lags)
lag_times = lags ./ samplerate
lag_times = lag_times .* 1.0u"s"
plot(lag_times, crosscor(x[:, 1], x[:, 2], lags),
label="", ylab="Cross Correlation", xlab="Lag", ylims=(-1, 1))
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 2187 | """
CorrelatedNoiseSource(eltype, samplerate, nchannels, std, correlation)
CorrelatedNoiseSource is a two-channel noise signal generator with controlled correlation between channels.
Inputs
------
* `samplerate` specifies the sample rate of the signal.
* `nchannels` specifies the number of channels of the signal.
* `std` specifies the desired standard deviation of the signal.
* `correlation` specifies the desired correlation between the signals.
Output
------
* SampleSource object
Example
-------
```julia
source_object = CorrelatedNoiseSource(Float64, 48000, 2, 0.3, 0.75)
cn = read(source_object, 480) # Specify number of samples of signal to generate
cn = read(source_object, 50u"ms") # Specify length of time of signal to generate
```
"""
mutable struct CorrelatedNoiseSource{T} <: SampleSource
samplerate::Float64
nchannels::Int64
cholcov::Array{Float64}
function CorrelatedNoiseSource(eltype, samplerate::Number, nchannels::Number, std::Number, corr::Number)
@assert nchannels==2 "Only two channels are supported for CorrelatedNoiseSource"
if corr < 1
correlation_matrix = [1.0 corr ; corr 1.0]
standard_deviation = [std 0.0 ; 0.0 std]
covariance_matrix = standard_deviation*correlation_matrix*standard_deviation
cholcov = cholesky(covariance_matrix)
cholcov = cholcov.U
else
cholcov = [std std ; 0 0]
end
new{eltype}(Float64(samplerate), Int64(nchannels), Array{Float64}(cholcov))
end
CorrelatedNoiseSource(eltype, samplerate::Unitful.Frequency, nchannels::Number, std::Number, corr::Number) = CorrelatedNoiseSource(eltype, samplerate |> u"Hz" |> ustrip, nchannels, std, corr)
end
Base.eltype(::CorrelatedNoiseSource{T}) where T = T
nchannels(source::CorrelatedNoiseSource) = source.nchannels
samplerate(source::CorrelatedNoiseSource) = source.samplerate
function unsafe_read!(source::CorrelatedNoiseSource, buf::Array, frameoffset, framecount)
buf[1+frameoffset:framecount+frameoffset, 1:source.nchannels] = randn(framecount, source.nchannels) * source.cholcov
framecount
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 1883 | # This code is from https://github.com/JuliaAudio/SampledSignals.jl/blob/2d078e86489232f77af3696f0ea6d0e34016e7b0/test/support/util.jl
# Copyright (c) 2015: Spencer Russell. Released under the MIT "Expat" License.
mutable struct DummySampleSink{T} <: SampleSink
samplerate::Float64
buf::Array{T, 2}
end
DummySampleSink(eltype, samplerate::Number, channels::Int) =
DummySampleSink{eltype}(samplerate, Array{eltype}(undef, 0, channels))
function DummySampleSink(eltype, samplerate::Union{typeof(1u"Hz"), typeof(1u"kHz"),
typeof(1.0u"Hz"), typeof(1.0u"kHz")},
nchannels::Int)
samplerate = ustrip(uconvert(u"Hz", samplerate))
DummySampleSink(eltype, samplerate, nchannels)
end
samplerate(sink::DummySampleSink) = sink.samplerate
nchannels(sink::DummySampleSink) = size(sink.buf, 2)
Base.eltype(sink::DummySampleSink{T}) where T = T
function SampledSignals.unsafe_write(sink::DummySampleSink, buf::Array,
frameoffset, framecount)
eltype(buf) == eltype(sink) || error("buffer type ($(eltype(buf))) doesn't match sink type ($(eltype(sink)))")
nchannels(buf) == nchannels(sink) || error("buffer channel count ($(nchannels(buf))) doesn't match sink channel count ($(nchannels(sink)))")
sink.buf = vcat(sink.buf, view(buf, (1:framecount) .+ frameoffset, :))
framecount
end
# ######################
# Plotting
# ######################
PlotSpectroTemporal(x::AuditoryStimuli.DummySampleSink; kwargs...) = PlotSpectroTemporal(x.buf, x.samplerate; kwargs...)
function plot(x::AuditoryStimuli.DummySampleSink;
xlab::String = "Time (s)",
ylab::String = "Amplitude",
kwargs...)
t = 1:size(x.buf, 1)
t = t ./ x.samplerate
plot(t, x.buf, xlab = xlab, ylab = ylab; kwargs...)
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 1503 | """
NoiseSource(eltype, samplerate, nchannels, std=1)
NoiseSource is a multi-channel noise signal generator. The noise on each channel is independent.
Inputs
------
* `samplerate` specifies the sample rate of the signal specified in Hz.
* `nchannels` specifies the number of channels of the signal.
* `std` specifies the desired standard deviation of the signal.
Output
------
* SampleSource object
Example
-------
```julia
source_object = NoiseSource(Float64, 48u"kHz", 2, 0.3)
wn = read(source_object, 480) # Specify number of samples of signal to generate
wn = read(source_object, 50u"ms") # Specify length of time of signal to generate
```
"""
mutable struct NoiseSource{T} <: SampleSource
samplerate::Float64
nchannels::Int64
std::Float64
function NoiseSource(eltype, samplerate::Number, nchannels::Int, std::Number=1)
new{eltype}(samplerate, nchannels, std)
end
function NoiseSource(eltype, samplerate::Unitful.Frequency, nchannels::Int, std::Number=1)
samplerate = ustrip(uconvert(u"Hz", samplerate))
NoiseSource(eltype, samplerate, nchannels, std)
end
end
Base.eltype(::NoiseSource{T}) where T = T
nchannels(source::NoiseSource) = source.nchannels
samplerate(source::NoiseSource) = source.samplerate
function unsafe_read!(source::NoiseSource, buf::Array, frameoffset, framecount)
buf[1+frameoffset:framecount+frameoffset, 1:source.nchannels] = source.std .* randn(framecount, source.nchannels)
framecount
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 2129 | """
SinusoidSource(eltype, samplerate, freqs)
SinusoidSource is a single-channel sine-tone signal generator. `freqs` can be an
array of frequencies for a multi-frequency source, or a single frequency for a
single sinusoid source.
Inputs
------
* `samplerate` specifies the sample rate of the signal.
* `freqs` sinusoid frequencies to generate.
Output
------
* SampleSource object
Example
-------
```julia
source_object = SinusoidSource(Float64, 48u"kHz", 200:200:2400)
cn = read(source_object, 50u"ms") # Generate 50 ms of harmonic stack audio
```
"""
mutable struct SinusoidSource{T} <: SampleSource
samplerate::Float64
freqs::Vector{Float64} # in radians/sample
phases::Vector{Float64}
function SinusoidSource(eltype, samplerate::Number, freqs::Array)
# convert frequencies from cycles/sec to rad/sample
radfreqs = map(f->2pi*f/samplerate, freqs)
new{eltype}(Float64(samplerate), radfreqs, zeros(length(freqs)))
end
SinusoidSource(eltype, samplerate, freq::StepRange) = SinusoidSource(eltype, samplerate, collect(freq))
SinusoidSource(eltype, samplerate::Number, freq::Real) = SinusoidSource(eltype, samplerate, [freq])
SinusoidSource(eltype, samplerate::Unitful.Frequency, freq::Real) = SinusoidSource(eltype, samplerate |> u"Hz" |> ustrip, [freq])
SinusoidSource(eltype, samplerate::Unitful.Frequency, freq::Array) = SinusoidSource(eltype, samplerate |> u"Hz" |> ustrip, freq)
end
Base.eltype(::SinusoidSource{T}) where T = T
nchannels(source::SinusoidSource) = 1
samplerate(source::SinusoidSource) = source.samplerate
function unsafe_read!(source::SinusoidSource, buf::Array, frameoffset, framecount)
inc = 2pi / samplerate(source)
for i in 1:framecount
buf[i+frameoffset, 1] = 0
end
for tone_idx in 1:length(source.freqs)
tone_freq = source.freqs[tone_idx]
tone_phas = source.phases[tone_idx]
for i in 1:framecount
buf[i+frameoffset, 1] += sin.(tone_phas)
tone_phas += tone_freq
end
source.phases[tone_idx] = tone_phas
end
framecount
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 1926 | using StatsBase
"""
interaural_coherence(x::SampleBuf, lags::Unitful.Time)
Compute the interaural coherence of a two channel sound signals.
Interaural coherence (IAC) is commonly defined as the
peak of the cross-correlation coefficient of the signals at the two ears [1, 2].
It is commonly computed over a restricted range of `lags` of the cross-correlation function.
Inputs
------
* `x` data in the form of SampledSignals.SampleBuf. Must be two channels of audio.
* `lags` time range of lags to be used for finding maximum in cross correlation function.
If lags=0, then the entire function will be used, effecively same as lags=Inf.
References
----------
1. Chait, M., Poeppel, D., de Cheveigne, A., and Simon, J.Z. (2005). Human auditory cortical processing of changes in interaural correlation. J Neurosci 25, 8518-8527.
2. Aaronson, N.L., and Hartmann, W.M. (2010). Interaural coherence for noise bands: waveforms and envelopes. J Acoust Soc Am 127, 1367-1372.
Example
-------
```julia
correlation = 0.6
source = CorrelatedNoiseSource(Float64, 48000, 2, 0.1, correlation)
a = read(source, 3u"s")
@test interaural_coherence(a.data) ≈ correlation atol = 0.025
```
"""
function interaural_coherence(x::T; lags::AbstractQuantity=0u"s")::Float64 where {T<:SampledSignals.SampleBuf}
lags_seconds = lags |> u"s" |> ustrip
lags_samples = Int(lags_seconds * x.samplerate)
interaural_coherence(x.data; lags=lags_samples)
end
function interaural_coherence(x::T; lags::AbstractQuantity=0u"s")::Float64 where {T<: DummySampleSink}
lags_seconds = lags |> u"s" |> ustrip
lags_samples = Int(lags_seconds * x.samplerate)
interaural_coherence(x.buf; lags=lags_samples)
end
function interaural_coherence(x::Array{T, 2}; lags::Int=0)::Float64 where {T<:Number}
if lags == 0
lags = size(x, 1) - 1
end
cc = crosscor(x[:, 1], x[:, 2], -lags:lags)
iac = maximum(cc)
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 2282 | """
Amplification(target, current, change_limit)
Apply amplification to the signal.
This modifier allows the user to specify a `target` linear amplification
value that will be applied to the signal.
The modifier will then change the amplification of the
signal until the desired amplification is achieved. The rate
at which the amplification can be changed per frame is parameterised by
the `change_limit` parameter.
To slowly ramp a signal to a desired value set the `target` amplification
to the desired value, and the `change_limit` to a small value.
To instantly change the signal set the `change_limit` to infinity and
modify the `target` value.
When initialising the modifier specify the desired starting point
using the `current` parameter.
You can access the exact amplification at any time by querying the
`current` parameter.
Inputs
------
* `target` desired linear amplification factor to be applied to signal.
* `current` linear amplification currently applied to signal.
Also used to specify the intial value for the process.
* `change_limit` maximum change that can occur per frame.
* `enable` enable the modifier, if false the signal will be passed through without modification.
Example
-------
```julia
amplify = Amplification(0.1, 0.0, 0.05)
attenuated_sound = modify(amplify, original_sound)
```
"""
@with_kw mutable struct Amplification
target::Float64=0 # Desired scaling factor
current::Float64=0 # Current scaling factor
change_limit::Float64=Inf # Maximum change in scaling per frame
enable::Bool=true # Enable or pass through the signal
Amplification(a, b, c, d) = new(a, b, c, d)
Amplification(a, b, c) = new(a, b, c, true)
Amplification(a, b) = new(a, b, Inf, true)
Amplification(a) = new(a, 0, Inf, true)
end
function modify(sink::Amplification, buf)
if sink.enable
# Determine if the currect scaling needs to be updated
if sink.target != sink.current
error = sink.target - sink.current
error_sign = sign(error)
abs_error = abs(error)
sink.current = sink.current + (min(sink.change_limit, abs_error) * error_sign)
end
buf.data = buf.data .* sink.current
end
return buf
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 885 | using DSP
"""
Filter(filters)
Apply filter to the signal
Inputs
------
* `filters` array of DSP filter objects.
Example
-------
```julia
using DSP
responsetype = Bandpass(500, 4000; fs=48000)
designmethod = Butterworth(4)
zpg = digitalfilter(responsetype, designmethod)
f_left = DSP.Filters.DF2TFilter(zpg)
f_right = DSP.Filters.DF2TFilter(zpg)
bandpass = AuditoryStimuli.Filter([f_left, f_right])
filtered_sound = modify(bandpass, original_sound)
```
"""
mutable struct Filter
filter::Array{DSP.DF2TFilter, 1} # Filter object
enable::Bool
num_filters::Int
end
function Filter(filters::Any)
AuditoryStimuli.Filter(filters, true, length(filters))
end
function modify(sink::Filter, buf)
if sink.enable
for idx in 1:sink.num_filters
buf.data[:, idx] = DSP.filt(sink.filter[idx], buf.data[:, idx])
end
end
return buf
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 1504 | """
AmplitudeModulation(rate, phase, depth)
Apply amplitude modulation to the signal
Inputs
------
* `rate` (Hz) desired modulation rate to be applied to signal.
* `phase` phase of modulation to be applied to signal applied to signal.
Defaults to pi so that modulation starts at a minimum.
* `depth` modulation depth.
Example
-------
```julia
modulate = AmplitudeModulation(1u"Hz")
modulated_sound = modify(modulate, original_sound)
```
"""
@with_kw mutable struct AmplitudeModulation
rate::typeof(1.0u"Hz")=0.0u"Hz"
phase::Number=π
depth::Number=1
enable::Bool=true
time::Float64=0.0
AmplitudeModulation(a::AbstractQuantity, b, c, d, e) = new(a, b, c, d, e)
AmplitudeModulation(a::AbstractQuantity, b, c, d) = new(a, b, c, d, 0.0)
AmplitudeModulation(a::AbstractQuantity, b, c) = new(a, b, c, true, 0.0)
AmplitudeModulation(a::AbstractQuantity, b) = new(a, b, 1, true, 0.0)
AmplitudeModulation(a::AbstractQuantity) = new(a, π, 1, true, 0.0)
end
function AmplitudeModulation(a::Number, args...)
@error "You must use units for modulation rate."
end
function modify(sink::AmplitudeModulation, buf)
start_time = sink.time
end_time = start_time + (size(buf, 1) / samplerate(buf))
if sink.enable
t = range(start_time, stop=end_time, length=size(buf, 1))
M = 1 .* cos.(2 * π * ustrip(sink.rate) * t .+ sink.phase) .* sink.depth
buf.data = (1 .+ M) .* buf.data
end
sink.time = end_time
return buf
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 2287 | """
TimeDelay(channel, delay, enable, buffer)
TimeDelay(channel, delay, enable, buffer; samplerate)
Apply a time delay to a specific channel.
Inputs
------
* `channel` which channel should have a time delay applied.
* `delay` delay to be applied in samples or unit of time.
* `enable` should the modifier be enabled. Defaults to true.
* `buffer` initial values with which to pad the time delay. Defaults to zeros.
* `samplerate` keyword argument required if delay is specified in unit of time.
Example
-------
```julia
itd = TimeDelay(2, 0.5u"ms", samplerate=48u"kHz")
sound_with_itd = modify(itd, original_sound)
```
"""
Base.@kwdef mutable struct TimeDelay
channel::Int=1
delay::Int=0
enable::Bool=true
buffer::Array=[]
function TimeDelay(c::Int, d::AbstractQuantity, args...; samplerate::Number)
if isa(samplerate, AbstractQuantity)
samplerate= samplerate |> u"Hz" |> ustrip
end
delay_seconds = d |> u"s" |> ustrip
delay_samples = delay_seconds * samplerate
if round(delay_samples) != delay_samples
@info "Not rounded number of samples $delay_samples"
delay_samples = round(delay_samples)
end
delay_samples = Int(delay_samples)
TimeDelay(c, delay_samples, args...)
end
function TimeDelay(c::Int, d::Int, e::Bool, b::Array)
d >= 0 || error("Delay must be positive")
length(b) == d || error("Length of buffer must match delay")
return new(c, d, e, b)
end
function TimeDelay(c::Int, d::Int, e::Bool)
d >= 0 || error("Delay must be positive")
buffer = zeros(d, 1)
return new(c, d, e, buffer)
end
function TimeDelay(c::Int, d::Int)
d >= 0 || error("Delay must be positive")
buffer = zeros(d, 1)
return new(c, d, true, buffer)
end
function TimeDelay(c::Int)
return new(c, 0, true, [])
end
end
function modify(sink::TimeDelay, buf)
if sink.enable && sink.delay != 0
new_buffer = buf.data[end-sink.delay+1:end, sink.channel]
new_data = [sink.buffer; buf.data[1:end - sink.delay, sink.channel]]
buf.data[:, sink.channel] = new_data
sink.buffer = new_buffer
end
return buf
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | code | 25064 | using AuditoryStimuli
using Test
using DSP
using StatsBase
using Statistics
using Logging
using Plots
using Unitful
using SampledSignals
using Pipe
using Images
Fs = 48000
ENV["JULIA_DEBUG"] = "all"
@testset "Offline Stimuli" begin
@testset "Generator Functions" begin
# ==================================
@testset "One hit signal generation" begin
@testset "Bandpass Noise" begin
# Test different constructors
bn = bandpass_noise(Fs * 30, 2, 300, 700, Fs)
# Test data is actuall filtered
for lower_bound = 500:500:1500
for upper_bound = 2000:500:3000
bn = bandpass_noise(Fs * 30, 2, lower_bound, upper_bound, Fs)
@test size(bn, 1) == Fs * 30
spec = welch_pgram(bn[:, 1], fs=Fs)
val, idx_lb = findmin(abs.(freq(spec) .- lower_bound))
val, idx_bl = findmin(abs.(freq(spec) .- (lower_bound - 250)))
@test (amp2db(power(spec)[idx_lb]) - amp2db(power(spec)[idx_bl])) > 10
val, idx_ub = findmin(abs.(freq(spec) .- upper_bound))
val, idx_bu = findmin(abs.(freq(spec) .- (upper_bound + 250)))
@test (amp2db(power(spec)[idx_ub]) - amp2db(power(spec)[idx_bu])) > 10
end
end
end
end
end
@testset "Modifier Functions" begin
# ==================================
@testset "Filter Signals" begin
@testset "Bandpass Butterworth" begin
@testset "Abstract Arrays" begin
# Test data is actuall filtered
for lower_bound = 500:500:1500
for upper_bound = 2000:500:3000
x = randn(Fs*30, 2)
bn = bandpass_filter(x, lower_bound, upper_bound, Fs)
@test size(bn, 1) == Fs * 30
@test size(bn, 2) == 2
for channel = 1:2
spec = welch_pgram(bn[:, channel], fs=Fs)
val, idx_lb = findmin(abs.(freq(spec) .- lower_bound))
val, idx_bl = findmin(abs.(freq(spec) .- (lower_bound - 250)))
@test (amp2db(power(spec)[idx_lb]) - amp2db(power(spec)[idx_bl])) > 10
val, idx_ub = findmin(abs.(freq(spec) .- upper_bound))
val, idx_bu = findmin(abs.(freq(spec) .- (upper_bound + 250)))
@test (amp2db(power(spec)[idx_ub]) - amp2db(power(spec)[idx_bu])) > 10
end
end
end
end
@testset "Sampled Signals" begin
source = CorrelatedNoiseSource(Float64, 48000, 2, 1, 0.1)
a = read(source, 48000)
b = bandpass_filter(a, 300u"Hz", 700u"Hz")
@test typeof(b) == typeof(a)
@test typeof(b) == SampleBuf{Float64,2}
end
end
end
@testset "Modulate Signals" begin
@testset "Amplitude Modulation" begin
@testset "Abstract Arrays" begin
for modulation_frequency = 1:1:10
x = randn(Fs, 1)
@test_nowarn amplitude_modulate(x, modulation_frequency, Fs)
end
for modulation_frequency = 1.3:1:10
x = randn(Fs, 1)
amplitude_modulate(x, modulation_frequency, Fs)
@test_logs (:warn, "Not a complete modulation") amplitude_modulate(x, modulation_frequency, Fs)
end
end
@testset "Sampled Signals" begin
source = CorrelatedNoiseSource(Float64, 48000, 2, 1, 0.1)
a = read(source, 48000)
b = amplitude_modulate(a, 20u"Hz")
@test typeof(b) == typeof(a)
@test typeof(b) == SampleBuf{Float64,2}
end
end
@testset "ITD Modulation" begin
@testset "Abstract Arrays" begin
source = CorrelatedNoiseSource(Float64, Fs, 2, 0.3, 0.99)
cn = read(source, Fs * 1)
bn = bandpass_filter(cn, 300, 700, Fs)
mn = amplitude_modulate(bn, 40, Fs)
im = ITD_modulate(mn, 8, 24, -24, Fs)
source = CorrelatedNoiseSource(Float64, Fs, 2, 0.3, 0.99)
cn = read(source, Fs * 1)
bn = bandpass_filter(cn, 300, 700, Fs)
mn = amplitude_modulate(bn, 40, Fs)
im = ITD_modulate(mn, 8, 48, -48, Fs)
end
end
end
@testset "RMS" begin
@testset "Abstract Arrays" begin
for desired_rms = 01:0.1:1
bn = bandpass_noise(Fs * 30, 2, 300, 700, Fs)
bn = set_RMS(bn, desired_rms)
@test rms(bn) ≈ desired_rms
end
end
@testset "Sampled Signals" begin
for desired_rms = 01:0.1:1
source = CorrelatedNoiseSource(Float64, 48000, 2, 1, 0.5)
bn = read(source, Fs * 30)
bn = set_RMS(bn, desired_rms)
@test rms(bn) ≈ desired_rms
end
end
end
@testset "Ramps" begin
@testset "Ramp on" begin
for ramp_length = [1, 2]
bn = bandpass_noise(Fs * 5, 2, 300, 700, Fs)
bn = ramp_on(bn, Fs * ramp_length)
@test rms(bn[1:Fs, :]) < rms(bn[2*Fs:3*Fs, :])
end
end
@testset "Ramp off" begin
for ramp_length = [1, 2]
bn = bandpass_noise(Fs * 5, 2, 300, 700, Fs)
bn = ramp_off(bn, Fs * ramp_length)
@test rms(bn[end-Fs:end, :]) < rms(bn[2*Fs:3*Fs, :])
end
end
end
@testset "ITD" begin
for desired_itd = -100:10:100
source = CorrelatedNoiseSource(Float64, Fs, 2, 0.3, 0.9)
cn = read(source, Fs * 5)
bn = bandpass_filter(cn, 300, 700, Fs)
bn = set_ITD(bn, desired_itd)
lags = round.(Int, -150:1:150)
c = crosscor(bn[:, 2], bn[:, 1], lags)
x, idx = findmax(c)
@test lags[idx] == desired_itd
end
end
end
@testset "Plotting" begin
# =======================
@testset "SpectroTempral" begin
source = CorrelatedNoiseSource(Float64, Fs, 2, 0.3, 0.99)
cn = read(source, Fs * 1)
bn = bandpass_filter(cn, 300, 700, Fs)
mn = amplitude_modulate(bn, 40, Fs)
im = ITD_modulate(mn, 8, 24, -24, Fs)
p = PlotSpectroTemporal(im, 48000)
@test isa(p, Plots.Plot) == true
source = NoiseSource(Float64, 48000, 2, 0.1)
sink = DummySampleSink(Float64, 48000, 2)
some_data = read(source, 3.0u"s"/frames)
@pipe read(source, 3.0u"s"/frames) |> write(sink, _)
p = PlotSpectroTemporal(sink)
@test isa(p, Plots.Plot) == true
p = plot(sink)
@test isa(p, Plots.Plot) == true
p = plot_cross_correlation(sink)
@test isa(p, Plots.Plot) == true
p = plot_cross_correlation(sink, lags=0.1u"s")
@test isa(p, Plots.Plot) == true
p = plot_cross_correlation(some_data)
@test isa(p, Plots.Plot) == true
end
end
end
# =======================
# Stream Processing
# =======================
@testset "Online Stimuli" begin
@testset "Generators" begin
@testset "NoiseSource generator" begin
# Test instansiation
source = NoiseSource(Float64, 48.0u"kHz", 2)
@test source.samplerate == 48000
@test source.samplerate == samplerate(source)
source = NoiseSource(Float64, 48u"kHz", 2)
@test source.samplerate == 48000
source = NoiseSource(Float64, 48000u"Hz", 2)
@test source.samplerate == 48000
source = NoiseSource(Float64, 48000.1u"Hz", 2)
@test source.samplerate == 48000.1
source = NoiseSource(Float64, 44100, 1)
@test source.samplerate == 44100
source = NoiseSource(Float64, 48000, 2)
@test source.samplerate == 48000
# Test read
a = read(source, 48000)
@test size(a) == (48000, 2)
@test std(a) ≈ 1 atol = 0.01
a = read(source, 1u"s")
@test size(a) == (48000, 2)
@test std(a) ≈ 1 atol = 0.01
# Test result
for deviation = 0.1:0.1:1.3
source = NoiseSource(Float64, 48000, 1, deviation)
a = read(source, 48000*3)
@test std(a) ≈ deviation atol = 0.01
end
end
@testset "CorrelatedNoiseSource generator" begin
# Test instansiation
source = CorrelatedNoiseSource(Float64, 48.0u"kHz", 2, 1, 0.1)
@test source.samplerate == 48000
@test source.samplerate == samplerate(source)
source = CorrelatedNoiseSource(Float64, 48u"kHz", 2, 1, 1)
@test source.samplerate == 48000
source = CorrelatedNoiseSource(Float64, 46u"Hz", 2, 1, 1)
@test source.samplerate == 46
source = CorrelatedNoiseSource(Float64, 44100.0u"Hz", 2, 1, 1)
@test source.samplerate == 44100
# Test read
source = CorrelatedNoiseSource(Float64, 48000, 2, 1, 0.1)
a = read(source, 48000)
@test size(a) == (48000, 2)
@test std(a) ≈ 1 atol = 0.01
# Test behaviour
for deviation = 0.1:0.2:1.3
for correlation = 0.0:0.2:1
source = CorrelatedNoiseSource(Float64, 48000, 2, deviation, correlation)
a = read(source, 3u"s")
@test std(a) ≈ deviation atol = 0.025
@test cor(a.data)[2, 1] ≈ correlation atol = 0.025
@test interaural_coherence(a.data) ≈ correlation atol = 0.025
end
end
end
@testset "Harmonic Complex" begin
# Test instansiation
source = SinusoidSource(Float64, 48000u"Hz", 2)
@test source.samplerate == 48000
source = SinusoidSource(Float64, 48000.7u"Hz", [100, 324, 55, 999])
@test source.samplerate == 48000.7
source = SinusoidSource(Float64, 48000, 300:300:3000)
source = SinusoidSource(Float64, 48000, 2000)
a = read(source, 48000)
@test size(a) == (48000, 1)
freqs = collect(200:200:2400.0)
source = SinusoidSource(Float64, 48000, freqs)
a = read(source, 48000)
b = welch_pgram(vec(a.data), fs=a.samplerate)
maxs_cart = Images.findlocalmaxima(power(b))
maxs = [idx[1] for idx in maxs_cart]
maxs = maxs[power(b)[maxs] .> 0.02]
@test freq(b)[maxs] == freqs
end
end
@testset "Modifiers" begin
@testset "Input / Output" begin
desired_rms = 0.3
for num_channels = 1:2
for frames = [100, 50, 20]
source = NoiseSource(Float64, Fs, num_channels, desired_rms)
sink = DummySampleSink(Float64, 48000, num_channels)
for idx = 1:frames
@pipe read(source, 1.0u"s"/frames) |> write(sink, _)
end
@test size(sink.buf, 1) == 48000
@test size(sink.buf, 2) == num_channels
@test rms(sink.buf) ≈ desired_rms atol = 0.01
end
end
source = NoiseSource(Float64, 96000u"Hz", 2, 0.1)
@test source.samplerate == 96000
source = NoiseSource(Float64, 96u"kHz", 2)
@test source.samplerate == 96000
sink = DummySampleSink(Float64, 48000u"Hz", 3)
@test sink.samplerate == 48000
sink = DummySampleSink(Float64, 48000.0u"Hz", 3)
@test sink.samplerate == 48000
sink = DummySampleSink(Float64, 48u"kHz", 4)
@test sink.samplerate == 48000
sink = DummySampleSink(Float64, 48.0u"kHz", 4)
@test sink.samplerate == 48000
end
@testset "Amplification" begin
# Test different ways of instanciating the modifier
@test Amplification().target == 0
@test Amplification().current == 0
@test Amplification().change_limit == Inf
@test Amplification().enable == true
@test Amplification(1).target == 1.0
@test Amplification(1, 3).target == 1.0
@test Amplification(1, 3).current == 3.0
@test Amplification(1, 3, 4, false).change_limit == 4.0
@test Amplification(1, 3, 4, false).enable == false
@test Amplification(target=3).target == 3
@test Amplification(current=3).current == 3
@test Amplification(change_limit=3).change_limit == 3
@test Amplification(enable=false).enable == false
@test Amplification(enable=false, current=2).enable == false
@test Amplification(enable=false, current=2).current == 2
# Ensure disabled does nothing
source = NoiseSource(Float64, 48000, 2, 1)
sink = DummySampleSink(Float64, 48000, 2)
amp = Amplification(2, 3, 0.5, false)
data = read(source, 1u"s")
@pipe data |> modify(amp, _) |> write(sink, _)
@test sink.buf == data.data
desired_rms = 0.3
amp_mod = 0.1
num_channels = 1
@testset "Static" begin
source = NoiseSource(Float64, Fs, num_channels, desired_rms)
sink = DummySampleSink(Float64, 48000, num_channels)
amp = Amplification(amp_mod, amp_mod, 0.005)
for idx = 1:200
@pipe read(source, 0.01u"s") |> modify(amp, _) |> write(sink, _)
end
@test size(sink.buf, 1) == 96000
@test size(sink.buf, 2) == num_channels
@test rms(sink.buf) ≈ desired_rms * amp_mod atol = 0.01
end
@testset "Dynamic" begin
source = NoiseSource(Float64, Fs, num_channels, desired_rms)
sink = DummySampleSink(Float64, 48000, num_channels)
amp = Amplification(target=amp_mod, current=amp_mod, change_limit=0.5)
for idx = 1:200
if idx == 100
setproperty!(amp, :target, 1.0)
end
@pipe read(source, 0.01u"s") |> modify(amp, _) |> write(sink, _)
end
@test size(sink.buf, 1) == 96000
@test size(sink.buf, 2) == num_channels
@test rms(sink.buf[1:48000]) ≈ desired_rms * amp_mod atol = 0.01
@test rms(sink.buf[48000:96000]) ≈ desired_rms atol = 0.01
end
end
@testset "Filtering" begin
desired_rms = 0.3
amp_mod = 0.1
for num_channels = 1:2
@testset "Channels: $num_channels" begin
source = NoiseSource(Float64, Fs, num_channels, desired_rms)
sink = DummySampleSink(Float64, Fs, num_channels)
lower_bound = 1000
upper_bound = 4000
responsetype = Bandpass(lower_bound, upper_bound; fs=Fs)
designmethod = Butterworth(14)
zpg = digitalfilter(responsetype, designmethod)
f1 = DSP.Filters.DF2TFilter(zpg)
f2 = DSP.Filters.DF2TFilter(zpg)
filters = [f1]
if num_channels == 2; filters = [filters[1], f2]; end
bandpass = AuditoryStimuli.Filter(filters)
for idx = 1:500
@pipe read(source, 0.01u"s") |> modify(bandpass, _) |> write(sink, _)
end
@test size(sink.buf, 1) == 48000 * 5
@test size(sink.buf, 2) == num_channels
for chan = 1:num_channels
spec = welch_pgram(sink.buf[:, chan], 12000, fs=Fs)
val, idx_lb = findmin(abs.(freq(spec) .- lower_bound))
val, idx_bl = findmin(abs.(freq(spec) .- (lower_bound - 500)))
@test (amp2db(power(spec)[idx_lb]) - amp2db(power(spec)[idx_bl])) > 10
val, idx_ub = findmin(abs.(freq(spec) .- upper_bound))
val, idx_bu = findmin(abs.(freq(spec) .- (upper_bound + 500)))
@test (amp2db(power(spec)[idx_ub]) - amp2db(power(spec)[idx_bu])) > 10
end
# Test turning filter off
setproperty!(bandpass, :enable, false)
for idx = 1:1500
@pipe read(source, 0.01u"s") |> modify(bandpass, _) |> write(sink, _)
end
@test size(sink.buf, 1) == 48000 * 20
@test size(sink.buf, 2) == num_channels
for chan = 1:num_channels
spec = welch_pgram(sink.buf[48000* 5:48000*20, chan], 12000, fs=Fs)
val, idx_lb = findmin(abs.(freq(spec) .- lower_bound))
val, idx_bl = findmin(abs.(freq(spec) .- (lower_bound - 500)))
@test (amp2db(power(spec)[idx_lb]) - amp2db(power(spec)[idx_bl])) < 6
val, idx_ub = findmin(abs.(freq(spec) .- upper_bound))
val, idx_bu = findmin(abs.(freq(spec) .- (upper_bound + 500)))
@test (amp2db(power(spec)[idx_ub]) - amp2db(power(spec)[idx_bu])) < 6
end
end
end
end
@testset "Amplitude Modulation" begin
for num_channels = 1:5
@testset "Channels: $num_channels" begin
source = NoiseSource(Float64, Fs, num_channels)
sink = DummySampleSink(Float64, 48000, num_channels)
am = AmplitudeModulation(10u"Hz")
for idx = 1:10
@pipe read(source, 0.01u"s") |> modify(am, _) |> write(sink, _)
end
@test size(sink.buf, 1) == 4800
@test size(sink.buf, 2) == num_channels
start_mod = Statistics.sum(abs.(sink.buf[1:1000, :]))
mid_mod = Statistics.sum(abs.(sink.buf[2000:3000, :]))
end_mod = Statistics.sum(abs.(sink.buf[3800:4800, :]))
@test mid_mod > start_mod
@test mid_mod > end_mod
# Test different ways of instanciating the modifier
@test AmplitudeModulation(1u"MHz").rate == 1000000u"Hz"
@test AmplitudeModulation(1u"kHz").rate == 1000u"Hz"
@test AmplitudeModulation(1u"mHz").rate == 0.001u"Hz"
@test AmplitudeModulation(10u"Hz").rate == 10u"Hz"
@test AmplitudeModulation(1.0u"Hz").rate == 1u"Hz"
@test AmplitudeModulation(10u"Hz", 0.0).rate == 10u"Hz"
@test AmplitudeModulation(10.3u"Hz", 0.0).rate == 10.3u"Hz"
@test AmplitudeModulation(10u"Hz", π).rate == 10u"Hz"
@test AmplitudeModulation(10u"Hz", π, 0.0).rate == 10u"Hz"
@test AmplitudeModulation(10u"Hz", π, 0.5).rate == 10u"Hz"
@test AmplitudeModulation(10.8u"Hz", π, 0.5).rate == 10.8u"Hz"
@test AmplitudeModulation(1.0u"kHz", π, 1.5).rate == 1000u"Hz"
@test AmplitudeModulation(1.0u"kHz", π, 1.5, false).enable == false
@test AmplitudeModulation(10u"Hz", π, 1.5).depth == 1.5
@test AmplitudeModulation(rate=3u"Hz").rate == 3.0u"Hz"
@test AmplitudeModulation(phase=3).phase == 3
@test AmplitudeModulation(depth=0.5).depth == 0.5
# Test defaults
@test AmplitudeModulation().rate == 0u"Hz"
@test AmplitudeModulation().phase == π
@test AmplitudeModulation().depth == 1
@test AmplitudeModulation().enable == true
@test AmplitudeModulation().time == 0
# Test bad instansiation
@test_logs (:error, "You must use units for modulation rate.") AmplitudeModulation(33)
# Ensure disabled does nothing
sink = DummySampleSink(Float64, 48000, num_channels)
amp = AmplitudeModulation(enable=false)
data = read(source, 1u"s")
@pipe data |> modify(amp, _) |> write(sink, _)
@test sink.buf == data.data
end
end
end
@testset "ITD" begin
# Test instansiation
@test TimeDelay().channel == 1
@test TimeDelay(2).channel == 2
@test TimeDelay(1, 22).delay == 22
@test TimeDelay(1, 22, false).delay == 22
@test TimeDelay(1, 22, false, ones(22, 1)).buffer == ones(22, 1)
@test TimeDelay(delay=33, buffer=zeros(33, 1)).delay == 33
@test TimeDelay(channel=33).channel == 33
@test TimeDelay(enable=false, channel=3).channel == 3
@test TimeDelay(enable=false, channel=3).enable == false
@test TimeDelay(2, 0.5u"ms", samplerate=48u"kHz").delay == 24
@test TimeDelay(2, 1u"ms", samplerate=48u"kHz").delay == 48
@test_logs (:info, "Not rounded number of samples 23.04") TimeDelay(2, 0.48u"ms", samplerate=48u"kHz")
# Test correct behaiour
for desired_itd = -100:10:100
source = CorrelatedNoiseSource(Float64, 48000, 2, 0.3, 1)
if desired_itd >= 0
itd = TimeDelay(2, desired_itd)
else
itd = TimeDelay(1, -desired_itd)
end
sink = DummySampleSink(Float64, 48000, 2)
for idx = 1:10
@pipe read(source, 0.1u"s") |> modify(itd, _) |> write(sink, _)
end
lags = round.(Int, -150:1:150)
c = crosscor(sink.buf[:, 1], sink.buf[:, 2], lags)
x, idx = findmax(c)
@test lags[idx] == desired_itd
end
end
end
end
@testset "Signal Metrics" begin
@testset "Interaural Coherence" begin
for correlation = 0.2:0.2:0.8
source = CorrelatedNoiseSource(Float64, 48000, 2, 0.4, correlation)
a = read(source, 3u"s")
@test interaural_coherence(a.data) ≈ correlation atol = 0.025
@test interaural_coherence(a.data, lags=100) ≈ correlation atol = 0.025
@test interaural_coherence(a) ≈ correlation atol = 0.025
@test interaural_coherence(a, lags=1u"s") ≈ correlation atol = 0.025
@test interaural_coherence(a, lags=1.0u"s") ≈ correlation atol = 0.025
@test interaural_coherence(a, lags=900u"ms") ≈ correlation atol = 0.025
end
# Test still works when ITD applied
correlation = 0.5
delay_samples = 100
delay_time = (delay_samples / 48000)u"s"
source = CorrelatedNoiseSource(Float64, 48000, 2, 0.4, correlation)
itd = TimeDelay(1, 22)
sink = DummySampleSink(Float64, 48000, 2)
@pipe read(source, 3u"s") |> modify(itd, _) |> write(sink, _)
@test interaural_coherence(sink) ≈ correlation atol = 0.025
@test interaural_coherence(sink, lags=2*delay_time) ≈ correlation atol = 0.025
# Whereas if the range of lags doesnt encompas the maximum the iac will be
# less than the global maximum
@test interaural_coherence(sink, lags=0.1*delay_time) < (correlation - 0.1)
end
end
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 1166 | # Contributing to AuditoryStimuli.jl
I warmly welcome any contributions from the community.
This may take the form of feedback via the issues list, bug reports (also via the issues list),
code submission (via pull requests).
Please feel free to suggest features, or additional stimuli you are interested in.
Or if you just want to show support, click the star button at the top of the page.
This repository makes extensive use of GitHub actions.
When you submit a pull request the continuous integration will kick in to gear.
The code in your pull request will then be automatically tested against several version of Julia,
and on several operating systems to ensure that it doesn't break anything.
Additionally the documentation will be rebuilt based on your pull request.
This will allow you to check that it renders correctly and your changes are realised.
Further, a spell check will be performed on the pull request.
Don't be disheartened if the continuous integration results come back with a red cross initially.
You can push further changes to fix any issues that arise.
And if you get stuck just ping @rob-luke and we will solve the issues together.
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 1792 | # AuditoryStimuli.jl goes beep and ssshhh

[](http://codecov.io/github/rob-luke/AuditoryStimuli.jl?branch=master)
[](https://doi.org/10.21105/joss.03613)
Generate auditory stimuli for real-time applications. Specifically, stimuli that are used in auditory research.
## Stimuli
This package provides low levels tools to build any stimulus.
It also provides high level convenience functions and examples for common stimuli such as:
* Amplitude modulated noise
* Harmonic stacks or harmonic complexes
* Binaural stimuli with user specified interaural correlation
* Frequency following response stimuli
* and more...
## Documentation
https://rob-luke.github.io/AuditoryStimuli.jl
## Community guidelines
I warmly welcome any contributions from the community.
This may take the form of feedback via the issues list,
bug reports (also via the issues list),
code submission (via pull requests).
Please feel free to suggest features, or additional stimuli you are interested in.
Or if you just want to show support, click the star button at the top of the page.
## Acknowledgements
This package is built on top of the excellent packages:
* [SampledSignals](https://github.com/JuliaAudio/SampledSignals.jl)
* [Unitful](https://github.com/ajkeller34/Unitful.jl)
* [Plots](https://github.com/JuliaPlots/Plots.jl)
If you use this package please cite:
```text
Luke, R., (2021). AuditoryStimuli.jl: A Julia package for generating real-time auditory stimuli.
Journal of Open Source Software, 6(65), 3613, https://doi.org/10.21105/joss.03613
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 705 | ---
name: Bug report
about: Tell us about broken, incorrect, or inconsistent behavior.
title: ''
labels: BUG
assignees: ''
---
#### Describe the bug
*Replace this text with a description of the bug.*
#### Steps to reproduce
*Replace this text with a code snippet or minimal working example [MWE] to
replicate your problem.
[MWE]: https://en.wikipedia.org/wiki/Minimal_Working_Example
#### Expected results
*Replace this text with a description of what you expected to happen.*
#### Actual results
*Replace this text with the actual output, traceback, screenshot, or other
description of the results.*
#### Additional information
*Replace this text with the output of `using Pkg; Pkg.status()`.*
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 522 | ---
name: Documentation
about: Request a new tutorial, an improvement to an existing tutorial, or a new term in our glossary.
title: ''
labels: DOC
assignees: ''
---
*Please make the issue title a succinct description of your proposed change.
For example: "add 'foo' to the glossary" or "add my favorite visualization to
the signal in noise example".*
#### Proposed documentation ehancement
*Describe your proposed enhancement in detail. If you are requesting a new
glossary term, please include a proposed definition.*
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 853 | ---
name: Feature request
about: Suggest additions or improvements to AuditoryStimuli.jl.
title: ''
labels: ENH
assignees: ''
---
#### Describe the new feature or enhancement
*Please provide a clear and concise description of what you want to add or
change.*
#### Describe your proposed implementation
*Describe how you think the feature or improvement should be implemented (e.g.,
as a new type on an existing type? as new capability added to an existing
method?) If you're not sure, please delete this section and the next section.*
#### Describe possible alternatives
*If you've suggested an implementation above, list here any alternative
implementations you can think of, and brief comments explaining why the chosen
implementation is better.*
#### Additional comments
*Add any other context or screenshots about the feature request here.*
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 634 | # Advanced Usage
The introduction provides a simple example but for efficient use the following considerations may be required.
## Threading
Running the audio stream in its own thread so you can process user input or run other code in parallel.
This is easily accomplished using `@spawn`, see: [example](https://github.com/rob-luke/AuditoryStimuli.jl/blob/master/examples/test_streamer.jl).
## Enabling/Disabling pipeline components
Enable or disable processing rather than modifying the pipeline.
Each modifier has an enable flag so that it can be disabled,
when disabled the signal is simply passed through and not modified.
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 590 | # Library
---
```@meta
CurrentModule = AuditoryStimuli
```
## Module
```@docs
AuditoryStimuli
```
## Signal generators
```@docs
NoiseSource
CorrelatedNoiseSource
SinusoidSource
```
## Online signal modifiers
```@docs
Amplification
AuditoryStimuli.Filter
AmplitudeModulation
TimeDelay
```
## Offline Signal modifiers
```@docs
ramp_on
ramp_off
```
## Plotting
```@docs
PlotSpectroTemporal
plot_cross_correlation
```
## Signal Metrics
```@docs
interaural_coherence
```
## Depreciated
```@docs
bandpass_noise
bandpass_filter
amplitude_modulate
ITD_modulate
set_RMS
set_ITD
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 1868 | # Example: Bandpass Noise
In this example we geneate a bandpass noise signal.
This common stimulus is used for determining hearing thresholds.
### Realtime Example
In this example we process the audio in 10 millisecond frames.
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
source = NoiseSource(Float64, 48u"kHz", 1)
sink = DummySampleSink(Float64, 48u"kHz", 1)
# Design the filter
responsetype = Bandpass(300, 700; fs=48000)
designmethod = Butterworth(14)
zpg = digitalfilter(responsetype, designmethod)
f_left = DSP.Filters.DF2TFilter(zpg)
bp = AuditoryStimuli.Filter([f_left])
# Run real time audio processing
for frame = 1:100
@pipe read(source, 0.01u"s") |> modify(bp, _) |> write(sink, _)
end
# Validate the audio pipeline output
PlotSpectroTemporal(sink, frequency_limits = [0, 4000])
current() |> DisplayAs.PNG # hide
```
### Offline Example
It is also possible to generate the audio in an offline (all in one step) manner. This may be useful for creating wav files for use in simpler experiments.
```@example offline
using AuditoryStimuli, Unitful, Plots, DSP, WAV
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
source = NoiseSource(Float64, 48u"kHz", 2, 0.2)
# Design the filter
responsetype = Bandpass(500, 4000; fs=48000)
designmethod = Butterworth(4)
zpg = digitalfilter(responsetype, designmethod)
f_left = DSP.Filters.DF2TFilter(zpg)
f_right = DSP.Filters.DF2TFilter(zpg)
bp = AuditoryStimuli.Filter([f_left, f_right])
# Run real time audio processing
audio = read(source, 1.0u"s")
modulated_audio = modify(bp, audio)
# Write the audio to disk as a wav file
wavwrite(modulated_audio.data, "BP-noise.wav",Fs=48000)
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 1812 | # Example: Harmonic Stack Complex
Harmonic stacks are often used to investigate pitch processing and streaming/grouping.
Harmonic complexes contain a set of frequency components which are harmonics.
In this example we generate a harmonic stack which is modulated at 15 Hz.
### Realtime Example
In this example we process the audio in 10 millisecond frames.
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
stack_frequencies = 200:200:2400
source = SinusoidSource(Float64, 48u"kHz", stack_frequencies)
amp = Amplification(current=1/length(stack_frequencies),
target=1/length(stack_frequencies),
change_limit=1)
am = AmplitudeModulation(15u"Hz")
sink = DummySampleSink(Float64, 48u"kHz", 1)
# Run real time audio processing
for frame = 1:100
@pipe read(source, 0.01u"s") |> modify(amp, _) |> modify(am, _) |> write(sink, _)
end
# Validate the audio pipeline output
PlotSpectroTemporal(sink, frequency_limits = [0, 3000], time_limits = [0.135, 0.33])
current() |> DisplayAs.PNG # hide
```
### Offline Example
It is also possible to generate the audio in an offline (all in one step) manner.
This may be useful for creating wav files for use in simpler experiments.
```@example offline
using AuditoryStimuli, Unitful, Plots, WAV
default(size=(700, 300)) # hide
using DisplayAs # hide
stack_frequencies = 200:200:2400
source = SinusoidSource(Float64, 48u"kHz", stack_frequencies)
am = AmplitudeModulation(15u"Hz")
audio = read(source, 1.0u"s")
modulated_audio = modify(am, audio)
# Write the audio to disk as a wav file
wavwrite(modulated_audio.data ./ length(stack_frequencies), "harmonic-stack.wav",Fs=48000)
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 3438 | # Example: Interaural Time Delay
Stimuli with a delay applied to one ear causes the sound to be perceived
as coming from a different direction [1].
These stimuli are commonly used to investigate source localisation algorithms [2].
[1] Grothe, Benedikt, Michael Pecka, and David McAlpine. "Mechanisms of sound localization in mammals." Physiological reviews 90.3 (2010): 983-1012.
[2] Luke, R., & McAlpine, D. (2019, May). A spiking neural network approach to auditory source lateralisation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1488-1492). IEEE.
Chicago
### Realtime Example: Broadband Signal
In this example we apply a 0.5 ms delay to the second channel (right ear).
When presented over headphones this causes the sound to be perceived as arriving from the left,
as the sound arrives at the left ear first.
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
default(size=(700, 300)) # hide
using DisplayAs # hide
source = CorrelatedNoiseSource(Float64, 48u"kHz", 2, 0.2, 1)
itd_left = TimeDelay(2, 0.5u"ms", samplerate=48u"kHz")
sink = DummySampleSink(Float64, 48u"kHz", 2)
for frame = 1:100
@pipe read(source, 1/100u"s") |> modify(itd_left, _) |> write(sink, _)
end
# Validate the audio pipeline output
plot(sink, label=["Left" "Right"])
current() |> DisplayAs.PNG # hide
```
The stimulus output can be validated by observing that the peak in the cross correlation function occurs at 0.5 ms.
```@example realtime
plot_cross_correlation(sink, lags=2u"ms")
current() |> DisplayAs.PNG # hide
```
### Realtime Example: Narrowband Signal
If we desire a narrowband signal with reduced coherence
then we can still use the same functional blocks.
```@example realtime
source = CorrelatedNoiseSource(Float64, 48u"kHz", 2, 0.2, 0.6)
responsetype = Bandpass(300, 700; fs=48000)
designmethod = Butterworth(14)
zpg = digitalfilter(responsetype, designmethod)
f_left = DSP.Filters.DF2TFilter(zpg)
f_right = DSP.Filters.DF2TFilter(zpg)
bp = AuditoryStimuli.Filter([f_left, f_right])
itd_left = TimeDelay(2, 1.25u"ms", samplerate=48u"kHz")
sink = DummySampleSink(Float64, 48u"kHz", 2)
for frame = 1:1000
@pipe read(source, 1/100u"s") |> modify(bp, _) |> modify(itd_left, _) |> write(sink, _)
end
plot(sink, label=["Left" "Right"])
current() |> DisplayAs.PNG # hide
```
As expected the cross-correlation function will now be damped,
but the peak should still be equal to the correlation of the signals,
and the peak shift should correspond to the applied time delay.
```@example realtime
plot_cross_correlation(sink, lags=4u"ms")
current() |> DisplayAs.PNG # hide
```
And we can use the convenience function to determine the interaural coherence (IAC)
of the signal, which should be approximately 0.6 as set above.
```@example realtime
interaural_coherence(sink)
```
Whereas if we used the naive correlation implementation from StatsBase we would
be extracting the cross correlation value at zero.
```@example realtime
using Statistics
cor(sink.buf)[2, 1]
```
However, note that if we compute the IAC over a restricted range of lags
then we will miss the peak and thus not report the global maximum.
By default, as above, the entire range of available lags is used.
So if we use only a 1 ms window, whereas the itd was 1.25 ms, the IAC
will be under reported.
```@example realtime
interaural_coherence(sink, lags=1u"ms")
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 2259 | # Example: Interaural Time Delay Modulation
This stimuli has an ITD that is modulated from the left to right.
This stimulus is used to elicit an interaural time delay following response,
which has been related to spatial listening performance [1].
[1] Undurraga, J. A., Haywood, N. R., Marquardt, T., & McAlpine, D. (2016). Neural representation of interaural time differences in humans—An objective measure that matches behavioural performance. Journal of the Association for Research in Otolaryngology, 17(6), 591-607.
### Realtime Example
This example contains several processing steps and a dynamically changing pipeline.
A signal is generated which is identical in two channels.
This signal is then bandpass filtered between 300 and 700 Hz,
and is then modulated at 20 Hz.
At the minimum of each modulation the ITD is switched from left to right leading with a 48 sample delay.
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
source = CorrelatedNoiseSource(Float64, 48u"kHz", 2, 0.2, 1)
sink = DummySampleSink(Float64, 48u"kHz", 2)
am = AmplitudeModulation(20u"Hz")
# Design the filter
responsetype = Bandpass(300, 700; fs=48000)
designmethod = Butterworth(14)
zpg = digitalfilter(responsetype, designmethod)
f_left = DSP.Filters.DF2TFilter(zpg)
f_right = DSP.Filters.DF2TFilter(zpg)
bp = AuditoryStimuli.Filter([f_left, f_right])
itd_left = TimeDelay(2, 1u"ms", true, samplerate=48u"kHz")
itd_right = TimeDelay(1, 1u"ms", false, samplerate=48u"kHz")
# Run real time audio processing
for frame = 1:4
@pipe read(source, 1/20u"s") |>
modify(bp, _) |> modify(am, _) |>
modify(itd_left, _) |> modify(itd_right, _) |>
write(sink, _)
# For each modulation cycle switch between left and right leading ITD
itd_left.enable = !itd_left.enable
itd_right.enable = !itd_right.enable
end
# Validate the audio pipeline output
plot(sink, label=["Left" "Right"])
current() |> DisplayAs.PNG # hide
```
In the figure above we observe that in the first and third modulation the signal is left leading, and that in the second and fourth cycle the signal is right leading.
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 1292 | # Example: Signal and Noise
This example demonstrates how to produce a signal of interest
and an additive noise signal. The noise signal is only applied
during a specified time window.
### Realtime Example
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
source = NoiseSource(Float64, 48u"kHz", 1, 1)
noisesource = NoiseSource(Float64, 48u"kHz", 1, 1)
sink = DummySampleSink(Float64, 48u"kHz", 1)
am = AmplitudeModulation(40u"Hz")
# Design the filter
responsetype = Bandpass(1500, 2500; fs=48000)
designmethod = Butterworth(14)
zpg = digitalfilter(responsetype, designmethod)
f_left = DSP.Filters.DF2TFilter(zpg)
bp = AuditoryStimuli.Filter([f_left])
# Run real time audio processing
for frame = 1:100
# Generate the signal of interest
output = @pipe read(source, 0.01u"s") |> modify(bp, _) |> modify(am, _)
# During 0.3-0.7s add a white noise to the output
if 30 < frame < 70
output += read(noisesource, 0.01u"s")
end
# Write the output to device
write(sink, output)
end
# Validate the audio pipeline output
PlotSpectroTemporal(sink, frequency_limits = [0, 4000])
current() |> DisplayAs.PNG # hide
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 1681 | # Example: Amplitude Modulated Noise
In this example we geneate a white noise signal which is modualted at 40 Hz.
These signals are commonly used to ellicit auditory steady-state responses [1].
[1] Luke, R., Van Deun, L., Hofmann, M., Van Wieringen, A., & Wouters, J. (2015). Assessing temporal modulation sensitivity using electrically evoked auditory steady state responses. Hearing research, 324, 37-45.
### Realtime Example
In this example we process the audio in 10 millisecond frames.
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
source = NoiseSource(Float64, 48u"kHz", 1, 0.2)
sink = DummySampleSink(Float64, 48u"kHz", 1)
am = AmplitudeModulation(40u"Hz")
# Run real time audio processing
for frame = 1:100
@pipe read(source, 0.01u"s") |> modify(am, _) |> write(sink, _)
end
# Validate the audio pipeline output
plot(sink, label="")
current() |> DisplayAs.PNG # hide
```
### Offline Example
It is also possible to generate the audio in an offline (all in one step) manner. This may be useful for creating wav files for use in simpler experiments.
```@example offline
using AuditoryStimuli, Unitful, Plots, WAV
default(size=(700, 300)) # hide
using DisplayAs # hide
# Specify the source, modifiers, and sink of our audio pipeline
source = NoiseSource(Float64, 48u"kHz", 1, 0.2)
am = AmplitudeModulation(40u"Hz")
# Run real time audio processing
audio = read(source, 1.0u"s")
modulated_audio = modify(am, audio)
# Write the audio to disk as a wav file
wavwrite(modulated_audio.data, "AM-noise.wav",Fs=48000)
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 445 | # AuditoryStimuli.jl
A [Julia](http://julialang.org) package for generating auditory stimuli.
---
### Installation
To install this package enter the package manager by pressing `]` at the julia prompt and enter:
```julia
pkg> add AuditoryStimuli
```
### Overview
This package provides a framework for generating audio in real time. It can also be used to generate audio offline. Tutorials and examples are provided for both approaches.
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.1.4 | f22064ca0431e912ad5e41f2697df1f5e722e0b5 | docs | 6319 | # Real-Time Audio Processing
In this tutorial the basics of real-time audio processing are introduced,
and how you can generate real time audio with this package.
It is common to process audio in small chunks of samples called frames.
This is more efficient than processing signals on a sample by sample basis,
yet allows dynamic adaptation of the audio signal.
In this example we use a frame size of 1/100th of a second,
or 480 samples when using a sample rate of 48 kHz.
However, the frame size can be adjusted to suit your research needs.
Real-time processing consists of a source, zero or more modifiers, and a sink.
Sources generate the raw signal.
Modifiers alter the signal.
Sinks are a destination for the signals, typically a sound card, but in this example we use a buffer.
First the required packages are loaded and the sample rate and number of audio channels is specified.
This package makes extensive use of units to minimise the chance of coding mistakes,
below the sample rate is specified in the unit of kHz.
```@example realtime
using AuditoryStimuli, Unitful, Plots, Pipe, DSP
using DisplayAs # hide
sample_rate = 48u"kHz"
audio_channels = 2
source_rms = 0.2
default(size=(700, 300)) # hide
```
## Set up the signal pipeline components
First we need a source.
In this example a simple white noise source is used.
The type of data (floats) is specified, as is the
the sample rate, number of channels, and the RMS of each channel.
```@example realtime
source = NoiseSource(Float64, sample_rate, audio_channels, source_rms)
nothing # hide
```
A sink is also required.
This would typically be a sound card, but that is not possible with a web page tutorial.
Instead, for this website example a dummy sink is used, which simply saves the sample to a buffer.
Dummy sink are also useful for validating our generated stimuli, as we can measure and plot the output.
```@example realtime
sink = DummySampleSink(Float64, sample_rate, audio_channels)
# But on a real system you would use something like
# devices = PortAudio.devices()
# println(devices)
# sink = PortAudioStream(devices[3], sample_rate, audio_channels)
```
In this example a single signal modifier is used.
This signal modifier simply adjusts the amplitude of the signal
with a linear scaling.
We specify the desired linear amplification to be 1.0, so no modification to the amplitude.
However, we do not want the signal to jump from silent to full intensity,
so we specify the current value of the amplitude as 0 (silent) and set the maximum increase per frame to be
0.05.
This will ramp the signal from silent to full intensity.
```@example realtime
amp = Amplification(current=0.0, target=1.0, change_limit=0.05)
nothing # hide
```
## Run the real-time audio pipeline
To run the real-time processing we generate a pipeline and run it.
We use the `pipe` notation to conveniently describe the audio pipeline.
In this simple example we read a frame with duration 1/100th of a second from the source.
The frame of white noise is piped through the amplitude modifier,
and then piped in to the sink.
Modifiers always take the modification object as the first argument, followed by an underscore to represent the piped data.
Similarly, when writing the data to a sink, the sink is always the first argument, followed by an underscore to represent the piped data.
The pipeline is run 100 times, resulting in 1 second of generated audio.
```@example realtime
for frame = 1:100
@pipe read(source, 0.01u"s") |> modify(amp, _) |> write(sink, _)
end
```
## Verify processing was correctly applied
We can plot the data from sink (as it was a DummySink, which is simply a buffer) to confirm the signal generated matches our expectations.
As expected, we see below that two channels of audio are generated, that the signal is 1 second long, and that there is a ramp applied to the onset.
```@example realtime
plot(sink)
current() |> DisplayAs.PNG # hide
```
## Apply a filter modifier
A more advanced application is to use a filter as a modifier.
The filter maintains its state between calls, so can be used for real-time audio processing.
Below a bandpass filter is designed, for more details on filter design
using the DSP package see [this documentation](https://docs.juliadsp.org/stable/filters/).
```@example realtime
responsetype = Bandpass(500, 4000; fs=48000)
designmethod = Butterworth(4)
zpg = digitalfilter(responsetype, designmethod)
nothing # hide
```
Once the filter is specified as a zero pole gain representation
two filters are instantiated using this specification.
A filter must be generated for each channel of audio.
These DSP.Filters are then passed in to the AuditoryStimuli filter object for further use.
```@example realtime
f_left = DSP.Filters.DF2TFilter(zpg)
f_right = DSP.Filters.DF2TFilter(zpg)
bandpass = AuditoryStimuli.Filter([f_left, f_right])
nothing # hide
```
Once the filters are designed and placed in an AuditoryStimuli.Filter object they can
be used just like any other modifier.
Below the filter is included in the pipeline and applied to 1 second of audio in 1/100th second frames.
This example demonstrates how an arbitrary number of modifiers can be chained to create complex audio stimuli.
```@example realtime
for frame = 1:100
@pipe read(source, 0.01u"s") |> modify(amp, _) |> modify(bandpass, _) |> write(sink, _)
end
```
## Modifying modifier parameters
Further, the parameters of modifiers can be varied at any time.
This can be handy to adapt your stimuli to user responses or feedback.
Below the target amplification is updated to be set to zero.
This effectively ramps off the signal.
```@example realtime
setproperty!(amp, :target, 0.0)
for frame = 1:20
@pipe read(source, 0.01u"s") |> modify(amp, _) |> modify(bandpass, _) |> write(sink, _)
end
nothing # hide
```
## Verify output
The entire signal (both the amplification, then the filtering sections) can be viewed
using the convenience plotting function below.
We observe that the signal is ramped on due to the amplification modifier.
We can then see that at 1 second the spectral content of the signal was modified.
And finally the signal is ramped off.
```@example realtime
PlotSpectroTemporal(sink, figure_size=(700, 400), frequency_limits = [0, 8000])
current() |> DisplayAs.PNG # hide
```
| AuditoryStimuli | https://github.com/rob-luke/AuditoryStimuli.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 711 | using Documenter
using TreeTools
using BenchmarkTools
makedocs(
sitename = "TreeTools",
format = Documenter.HTML(),
modules = [TreeTools],
pages = [
"Home" => "index.md",
"Basic concepts" => "basic_concepts.md",
"Reading and writing" => "IO.md",
"Iteration" => "Iteration.md",
"Useful functions" => "useful_functions.md",
"Modifying the tree" => "modifying_the_tree.md",
]
)
# Documenter can also automatically deploy documentation to gh-pages.
# See "Hosting Documentation" and deploydocs() in the Documenter manual
# for more information.
#=deploydocs(
repo = "<repository url>"
)=#
deploydocs(
repo = "github.com/PierreBarrat/TreeTools.jl.git",
)
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 1222 | module TreeTools
using Random
## Iteration
import Base: eltype, iterate, IteratorEltype, IteratorSize, length
## Indexing
import Base: eachindex, firstindex, get!, getindex, lastindex, setindex!
## Others
import Base: ==, cat, convert, copy, count, delete!, hash, in, insert!, intersect
import Base: isempty, isequal, keys, map, map!, setdiff, show, size
import Base: union, union!, unique, unique!, write
##
include("objects.jl")
export Tree, TreeNode, TreeNodeData, MiscData
export isleaf, isroot, isinternal
export ancestor, children, branch_length, branch_length!, label, label!
export data, data!, root
include("methods.jl")
export lca, node2tree, node2tree!, node_depth, distance, divtime, share_labels, is_ancestor
include("iterators.jl")
export POT, POTleaves, nodes, leaves, internals
include("prunegraft.jl")
export insert!, graft!, prune!, prunesubtree!
include("reading.jl")
export parse_newick_string, read_tree
include("writing.jl")
export write_newick, newick
include("misc.jl")
export print_tree, check_tree, print_tree_ascii
include("splits.jl")
export Split, SplitList
export arecompatible, iscompatible
include("simple_shapes.jl")
export star_tree, balanced_binary_tree, ladder_tree
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 4376 | """
nodes(t; skiproot=false)
leaves(t)
internals(t; skiproot=false)
Iterator over all nodes / leaves / internal nodes of a tree.
If `skiproot`, the root node will be skipped by the iterator.
# Note
`length` cannot be called on `internals(t)` as the latter is based on `Iterators.filter`.
A way to get the number of internal nodes of a tree is for example by calling
`length(nodes(t)) - length(leaves(t))`.
"""
nodes, leaves, internals
function nodes(t::Tree; skiproot = false)
return if skiproot
Iterators.filter(x -> !isroot(x), values(t.lnodes))
else
values(t.lnodes)
end
end
leaves(t::Tree) = values(t.lleaves)
function internals(t::Tree; skiproot = false)
return if skiproot
Iterators.filter(x->!x.isleaf && !isroot(x), values(t.lnodes))
else
Iterators.filter(x->!x.isleaf, values(t.lnodes))
end
end
nodes(f::Function, t::Tree) = filter(f, values(t.lnodes))
#=
Post order traversal iterators
=#
abstract type POTIterator end
Base.IteratorSize(::Type{POTIterator}) = Iterators.HasLength()
Base.IteratorEltype(::Type{POTIterator}) = HasEltype()
Base.iterate(itr::POTIterator) = firststate(itr, itr.root)
"""
struct POT{T<:TreeNodeData} <: POTIterator
root::TreeNode{T}
end
"""
struct POT{T<:TreeNodeData} <: POTIterator
root::TreeNode{T}
end
Base.eltype(::Type{POT{T}}) where T = TreeNode{T}
POT(t::Tree) = POT(t.root)
function Base.length(iter::POT)
return count(x->true, iter.root)
end
"""
struct POTleaves{T<:TreeNodeData} <: POTIterator
root::TreeNode{T}
end
"""
struct POTleaves{T<:TreeNodeData} <: POTIterator
root::TreeNode{T}
end
Base.eltype(::Type{POTleaves{T}}) where T = TreeNode{T}
POTleaves(t::Tree) = POTleaves(t.root)
function Base.length(iter::POTleaves)
return count(isleaf, iter.root)
end
struct POTState{T<:TreeNodeData}
n::TreeNode{T}
i::Int # Position of n in list of siblings -- `n.anc.child[i]==n`
direction::Symbol
end
"""
- `state.n.isleaf`: go to sibling and down or ancestor and up (stop if root)
- Otherwise: go to deepest child and up.
"""
function Base.iterate(itr::POTIterator, state::POTState)
if state.direction == :down
return go_down(itr, state)
elseif state.direction == :up
return go_up(itr, state)
elseif state.direction == :stop
return nothing
end
end
function go_down(itr::POTIterator, state::POTState{T}) where T
if state.n.isleaf # Go back to ancestor or sibling anyway
if state.n.isroot || state.n == itr.root
return (state.n, POTState{T}(n, 0, :stop))
elseif state.i < length(state.n.anc.child) # Go to sibling
return (state.n, POTState{T}(state.n.anc.child[state.i+1], state.i+1, :down))
else # Go back to ancestor
return (state.n, POTState{T}(state.n.anc, get_sibling_number(state.n.anc), :up))
end
end
return firststate(itr, state.n) # Go to deepest child of `n`
end
function go_up(itr::POT{T}, state::POTState{T}) where T
if state.n.isroot || state.n == itr.root
return (state.n, POTState{T}(state.n, 0, :stop))
elseif state.i < length(state.n.anc.child) # Go to sibling
return (state.n, POTState{T}(state.n.anc.child[state.i+1], state.i+1, :down))
else # Go back to ancestor
return (state.n, POTState{T}(state.n.anc, get_sibling_number(state.n.anc), :up))
end
end
function go_up(itr::POTleaves{T}, state::POTState{T}) where T
if state.n.isleaf
if state.n.isroot || state.n == itr.root
return (state.n, POTState{T}(state.n, 0, :stop))
elseif state.i < length(state.n.anc.child) # Go to sibling
return (state.n, POTState{T}(state.n.anc.child[state.i+1], state.i+1, :down))
else # Go back to ancestor
return (state.n, POTState{T}(state.n.anc, get_sibling_number(state.n.anc), :up))
end
else
if state.n.isroot || state.n == itr.root
return nothing
elseif state.i < length(state.n.anc.child) # Go to sibling
iterate(itr, POTState(state.n.anc.child[state.i+1], state.i+1, :down))
else # Go back to ancestor
iterate(itr, POTState(state.n.anc, get_sibling_number(state.n.anc), :up))
end
end
end
"""
Go to deepest child of `a`.
"""
function firststate(itr::POTIterator, a::TreeNode{T}) where T
if a.isleaf
return iterate(itr, POTState{T}(a, 1, :up))
end
firststate(itr, a.child[1])
end
function get_sibling_number(n::TreeNode)
if n.isroot
return 0
end
for (i,c) in enumerate(n.anc.child)
if n == c
return i
end
end
@error "Could not find $(n.label) in children of $(n.anc.label)."
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 28033 | ###############################################################################################################
################################# Trees from nodes, etc... #######################################
###############################################################################################################
"""
node2tree(root::TreeNode{T}; label = default_tree_label(), force_new_labels=false)
Create a `Tree` object from `root` with name `label`. If `force_new_labels`, a random
string is added to node labels to make them unique.
"""
function node2tree(
root::TreeNode{T};
label = default_tree_label(), force_new_labels = false
) where T
if !isroot(root)
@warn "Creating a tree from non-root node $(root.label)."
end
tree = Tree(root, Dict{String, TreeNode{T}}(), Dict{String, TreeNode{T}}(), label)
node2tree_addnode!(tree, root; force_new_labels)
return tree
end
function node2tree!(tree::Tree, root::TreeNode; force_new_labels=false)
tree.root = root
tree.lnodes = Dict{String, TreeNode}()
tree.lleaves = Dict{String, TreeNode}()
node2tree_addnode!(tree, root; force_new_labels)
end
"""
function node2tree_addnode!(tree::Tree, node::TreeNode; safe = true)
Add existing `node::TreeNode` and all of its children to `tree::Tree`.
If `node` is a leaf node, also add it to `tree.lleaves`.
## Note on labels
- throw error if `node.label` already exists in `tree`. Used `force_new_labels` to append
a random string to label, making it unique.
- if `node.label` can be
interpreted as a bootstrap value, a random string is added to act as an actual label.
See `?TreeTools.isbootstrap` for labels interpreted as bootstrap.
This is only applied to internal nodes.
"""
function node2tree_addnode!(tree::Tree, node::TreeNode; force_new_labels=false)
isbb = !isleaf(node) && isbootstrap(node.label)
if isempty(node.label) || (in(node, tree) && force_new_labels) || isbb
set_unique_label!(node, tree; delim="__")
end
if haskey(tree.lnodes, node.label)
error("Node $(node.label) appears twice in tree. Use `force_new_labels`.")
end
tree.lnodes[node.label] = node
if node.isleaf
tree.lleaves[node.label] = node
end
for c in node.child
node2tree_addnode!(tree, c; force_new_labels)
end
end
"""
isbootstrap(label::AbstractString)
`label` is interpreted as a confidence value if `label` can be parsed as a
decimal number (*e.g.* `"87"`, `"100"`, `"76.8"`, `"0.87"`" or `"1.0"`)
Multiple confidence values separated by a `/` are also interpreted as such.
- `"87.7/32"` will be interpreted as a confidence value
- `"87.7/cool_node"` will not
"""
function isbootstrap(label::AbstractString)
elements = split(label, '/')
for e in elements
if isnothing(tryparse(Float64, e))
return false
end
end
return true
end
"""
parse_bootstrap(label::AbstractString)
**NOT IMPLEMENTED YET**
Parse and return confidence value for `label`. Return `missing` if nothing could be parsed.
`label` is interpreted as a bootstrap value if
- `label` can be parsed as a <= 100 integer (*e.g.* `"87"` or `"100"`)
- `label can be parsed as a <= 1 decimal number (*e.g.* `"0.87"`" or `"1.0"`)
If label is of one of these forms and followed by a string of the form `__NAME`, it is also
parsed.
"""
function parse_bootstrap(label::AbstractString)
@warn "`parse_bootstrap` is not implemented yet, doing nothing and return `missing`."
return missing
end
"""
name_nodes!(t::Tree)
Give a label to label-less nodes in `t`.
"""
function name_nodes!(t::Tree)
name_nodes!(t.root, collect(keys(t.lnodes)))
end
function name_nodes!(r::TreeNode, labels ; i = 0)
ii = i
if r.isleaf && isempty(r.label)
@warn "Label-less leaf node!"
end
if isempty(r.label)
while in("NODE_$ii", labels)
ii += 1
end
r.label = "NODE_$ii"
ii += 1
for c in r.child
ii = name_nodes!(c, labels, i = ii)
end
end
return ii
end
"""
share_labels(tree1, tree2)
Check if `tree1` and `tree2` share the same labels for leaf nodes.
"""
function share_labels(tree1, tree2)
l1 = Set(l for l in keys(tree1.lleaves))
l2 = Set(l for l in keys(tree2.lleaves))
return l1 == l2
end
"""
map(f, t::Tree)
map(f, r::TreeNode)
"""
Base.map(f, r::TreeNode) = map(f, POT(r))
Base.map(f, t::Tree) = map(f, t.root)
"""
map!(f, t::Tree)
map!(f, r::TreeNode)
In the `Tree` version, call `f(n)` on all nodes of `t`.
In the `TreeNode` version, call `f(n)` on each node in the clade below `r`, `r` included.
Useful if `f` changes its input. Return `nothing`.
"""
function Base.map!(f, r::TreeNode)
for c in r.child
map!(f, c)
end
f(r)
return nothing
end
Base.map!(f, t::Tree) = map!(f, t.root)
"""
count(f, r::TreeNode)
Call `f(n)` on each node in the clade below `r` and return the number of time it returns
`true`.
"""
function Base.count(f, r::TreeNode)
c = _count(f, 0, r)
return c
end
Base.count(f, t::Tree) = count(f, t.root)
function _count(f, c, r)
if f(r)
c += 1
end
for n in r.child
c += _count(f, 0, n)
end
return c
end
###############################################################################################################
##################################### Copy tree with different NodeData #######################################
###############################################################################################################
function _copy(r::TreeNode, ::Type{T}) where T <: TreeNodeData
!r.isroot && error("Copying non-root node.")
data = _copy_data(T, r)
child = if r.isleaf
Array{TreeNode{T}, 1}(undef, 0)
else
Array{TreeNode{T}, 1}(undef, length(r.child))
end
cr = TreeNode(
data;
anc=nothing, isleaf=r.isleaf, isroot=true, label=r.label, tau=r.tau, child=child
)
for (i,c) in enumerate(r.child)
_copy!(cr, c, i)
end
return cr
end
"""
_copy!(an::TreeNode{T}, n::TreeNode) where T <: TreeNodeData
Create a copy of `n` with node data type `T` and add it to the children of `an`.
"""
function _copy!(an::TreeNode{T}, n::TreeNode, i) where T <: TreeNodeData
data = _copy_data(T, n)
child = if n.isleaf
Array{TreeNode{T}, 1}(undef, 0)
else
Array{TreeNode{T}, 1}(undef, length(n.child))
end
cn = TreeNode(
data;
anc=an, isleaf=n.isleaf, isroot=n.isroot, label=n.label, tau=n.tau, child=child
)
# Adding `cn` to the children of its ancestor `an`
an.child[i] = cn
# Copying children of `n`
for (i,c) in enumerate(n.child)
_copy!(cn, c, i)
end
return nothing
end
_copy_data(::Type{T}, n::TreeNode{T}) where T <: TreeNodeData = copy(n.data)
_copy_data(::Type{T}, n::TreeNode) where T <: TreeNodeData = T()
"""
copy(t::Tree; force_new_tree_label = false, label=nothing)
Make a copy of `t`. The copy can be modified without changing `t`. By default `tree.label`
is also copied. If this is not desired `force_new_tree_label=true` will create create a copy
of the tree with a new label. Alternatively a `label` can be set with the `label` argument.
"""
function Base.copy(t::Tree{T}; force_new_tree_label = false, label=nothing) where T <: TreeNodeData
if force_new_tree_label
node2tree(_copy(t.root, T))
else
node2tree(_copy(t.root, T), label = isnothing(label) ? t.label : label)
end
end
"""
convert(Tree{T}, t::Tree)
convert(T, t::Tree)
Create a copy of `t` with data of type `T::TreeNodeData` at nodes (see ?`TreeNodeData`).
"""
Base.convert(::Type{Tree{T}}, t::Tree{T}) where T <: TreeNodeData = t
function Base.convert(::Type{Tree{T}}, t::Tree; label=t.label) where T <: TreeNodeData
return node2tree(_copy(t.root, T), label=label)
end
Base.convert(::Type{T}, t::Tree) where T <: TreeNodeData = convert(Tree{T}, t)
###############################################################################################################
################################################### Clades ####################################################
###############################################################################################################
"""
node_findroot(node::TreeNode ; maxdepth=1000)
Return root of the tree to which `node` belongs.
"""
function node_findroot(node::TreeNode ; maxdepth=1000)
temp = node
it = 0
while !temp.isroot && it <= maxdepth
temp = temp.anc
it += 1
end
if it > maxdepth
@error("Could not find root after $maxdepth iterations.")
error()
end
return temp
end
"""
node_ancestor_list(node::TreeNode)
Return array of all ancestors of `node` up to the root.
"""
function node_ancestor_list(node::TreeNode)
list = [node.label]
a = node
while !a.isroot
push!(list, a.anc.label)
a = a.anc
end
return list
end
"""
isclade(nodelist)
isclade(nodelist::AbstractArray{<:AbstractString}, t::Tree)
Check if `nodelist` is a clade. All nodes in `nodelist` should be leaves.
"""
function isclade(nodelist; safe=true)
out = true
if safe && !mapreduce(x->x.isleaf, *, nodelist, init=true)
out = false
else
claderoot = lca(nodelist)
# Now, checking if `clade` is the same as `nodelist`
for c in POTleaves(claderoot)
flag = false
for n in nodelist
if n.label==c.label
flag = true
break
end
end
if !flag
out = false
break
end
end
end
return out
end
function isclade(nodelist::AbstractArray{<:AbstractString}, t::Tree)
return isclade([t.lnodes[n] for n in nodelist])
end
###############################################################################################################
######################################## LCA, divtime, ... ####################################################
###############################################################################################################
"""
node_depth(node::TreeNode)
Topologic distance from `node` to root.
"""
function node_depth(node::TreeNode)
d = 0
_node = node
while !_node.isroot
_node = _node.anc
d += 1
end
return d
end
"""
lca(i_node::TreeNode, j_node::TreeNode)
Find and return lowest common ancestor of `i_node` and `j_node`.
Idea is to go up in the tree in an asymmetric way on the side of the deeper node, until both are at equal distance from root. Then, problem is solved by going up in a symmetric way. (https://stackoverflow.com/questions/1484473/how-to-find-the-lowest-common-ancestor-of-two-nodes-in-any-binary-tree/6183069#6183069)
"""
function lca(i_node::TreeNode, j_node::TreeNode)
if i_node.isroot
return i_node
elseif j_node.isroot
return j_node
end
ii_node = i_node
jj_node = j_node
di = node_depth(ii_node)
dj = node_depth(jj_node)
while di != dj
if di > dj
ii_node = ii_node.anc
di -=1
else
jj_node = jj_node.anc
dj -=1
end
end
while ii_node != jj_node
ii_node = ii_node.anc
jj_node = jj_node.anc
end
return ii_node
end
"""
lca(nodelist)
Find the common ancestor of all nodes in `nodelist`. `nodelist` is an iterable collection of `TreeNode` objects.
"""
function lca(nodelist::Vararg{<:TreeNode})
# Getting any element to start with
ca = first(nodelist)
for node in nodelist
if !is_ancestor(ca, node)
ca = lca(ca, node)
end
end
return ca
end
lca(nodelist) = lca(nodelist...)
"""
lca(t::Tree, labels::Array{<:AbstractString,1})
lca(t::Tree, labels...)
"""
function lca(t::Tree, labels)
ca = t.lnodes[first(labels)]
for l in labels
if !is_ancestor(ca, t.lnodes[l])
ca = lca(ca, t.lnodes[l])
end
end
return ca
end
lca(t::Tree, labels::Vararg{<:AbstractString}) = lca(t, collect(labels))
"""
blca(nodelist::Vararg{<:TreeNode})
Return list of nodes just below `lca(nodelist)`. Useful for introducing splits in a tree.
"""
function blca(nodelist::Vararg{<:TreeNode})
r = lca(nodelist...)
out = []
for n in nodelist
a = n
while a.anc != r
a = a.anc
end
push!(out, a)
end
return out
end
"""
distance(t::Tree, n1::AbstractString, n2::AbstractString; topological=false)
distance(n1::TreeNode, n2::TreeNode; topological=false)
Compute branch length distance between `n1` and `n2` by summing the `branch_length` values.
If `topological`, the value `1.` is summed instead, counting the number of branches
separating the two nodes (*Note*: the output is not an `Int`!).
"""
function distance(i_node::TreeNode, j_node::TreeNode; topological=false)
a_node = lca(i_node, j_node)
tau = 0.
ii_node = i_node
jj_node = j_node
while ii_node != a_node
tau += topological ? 1. : ii_node.tau
ii_node = ii_node.anc
end
while jj_node != a_node
tau += topological ? 1. : jj_node.tau
jj_node = jj_node.anc
end
return tau
end
function distance(t::Tree, n1::AbstractString, n2::AbstractString; topological=false)
return distance(t.lnodes[n1], t.lnodes[n2]; topological)
end
# for convenience with old functions -- should be removed eventually
divtime(i_node, j_node) = distance(i_node, j_node)
"""
is_ancestor(t::Tree, a::AbstractString, n::AbstractString)
is_ancestor(a::TreeNode, n::TreeNode)
Check if `a` is an ancestor of `n`, in the sense that `ancestor(ancestor(...(node))) == a`.
"""
function is_ancestor(a::TreeNode, node::TreeNode)
return if a == node
true
else
isroot(node) ? false : is_ancestor(a, ancestor(node))
end
end
is_ancestor(t::Tree, a::AbstractString, n::AbstractString) = is_ancestor(t[a], t[n])
"""
distance_to_deepest_leaf(n::TreeNode; topological=false)
Distance from `n` to the deepest leaf in the clade below `n`.
"""
function distance_to_deepest_leaf(n::TreeNode; topological=false)
return maximum(l -> distance(n, l; topological), POTleaves(n))
end
tree_height(tree::Tree; kwargs...) = distance_to_deepest_leaf(tree.root; kwargs...)
"""
distance_to_shallowest_leaf(n::TreeNode; topological = false)
Distance from `n` to the closest leaf in the clade below `n`.
"""
function distance_to_shallowest_leaf(n::TreeNode; topological = false)
return minimum(l -> distance(n, l; topological), POTleaves(n))
end
function distance_to_closest_leaf(tree::Tree, label::AbstractString; topological = false)
return minimum(l -> distance(tree[label], l; topological), leaves(tree))
end
###############################################################################################################
######################################## Topology: root, binarize, ladderize... ####################################################
###############################################################################################################
"""
binarize!(t::Tree; time=0.)
Make `t` binary by adding arbitrary internal nodes with branch length `time`.
"""
function binarize!(t::Tree; mode = :balanced, time = 0.)
# I would like to implement `mode = :random` too in the future
z = binarize!(t.root; mode, time)
node2tree!(t, t.root)
return z
end
function binarize!(n::TreeNode{T}; mode = :balanced, time = 0.) where T
z = 0
if length(n.child) > 2
c_left, c_right = _partition(n.child, mode)
for part in (c_left, c_right)
if length(part) > 1
z += 1
nc = TreeNode(T(), label=make_random_label("BINARIZE"))
for c in part
prunenode!(c)
graftnode!(nc, c)
end
graftnode!(n, nc; time)
end
end
end
for c in n.child
z += binarize!(c; mode, time)
end
return z
end
function _partition(X, mode)
# for now mode==:balanced all the time, so it's simple
L = length(X)
half = div(L,2) + mod(L,2)
return X[1:half], X[(half+1):end]
end
#=
root the tree to which `node` belongs at `node`. Base function for rooting.
- If `node.isroot`,
- Else if `newroot == nothing`, root the tree defined by `node` at `node`. Call `root!(node.anc; node)`.
- Else, call `root!(node.anc; node)`, then change the ancestor of `node` to be `newroot`.
=#
function _root!(node::Union{TreeNode,Nothing}; newroot::Union{TreeNode, Nothing}=nothing)
# Breaking cases
if node.anc == nothing || node.isroot
if !(node.anc == nothing && node.isroot)
@warn "There was a problem with input tree: previous root node has an ancestor."
elseif newroot != nothing
i = findfirst(c->c.label==newroot.label, node.child)
deleteat!(node.child, i)
node.anc = newroot
node.tau = newroot.tau
node.isroot = false
end
else # Recursion
if newroot == nothing
# if node.isleaf
# error("Cannot root on a leaf node")
# end
node.isroot = true
_root!(node.anc, newroot=node)
push!(node.child, node.anc)
node.anc = nothing
node.tau = missing
else
i = findfirst(c->c.label==newroot.label, node.child)
deleteat!(node.child, i)
_root!(node.anc, newroot=node)
push!(node.child, node.anc)
node.anc = newroot
node.tau = newroot.tau
end
end
end
"""
root!(tree::Tree, node::AbstractString; root_on_leaf, time=0.)
Root `tree` at `tree.lnodes[node]`. Equivalent to outgroup rooting.
If `time` is non-zero, root above `node` at height `time`, inserting a new node.
"""
function root!(tree::Tree, node::AbstractString; root_on_leaf = false, time = 0.)
if isleaf(tree[node]) && !ismissing(time) && time == 0
if root_on_leaf
# remove `node` from set of leaves
delete!(tree.lleaves, node)
tree[node].isleaf = false
else
error("Cannot root on a leaf node")
end
end
new_root = if !ismissing(time) && time == 0
node
else
r = try
insert!(tree, node; time)
catch
@error "Error inserting new root at height $time on branch above node $node"
rethrow()
end
label(r)
end
_root!(tree.lnodes[new_root])
tree.root = tree.lnodes[new_root]
remove_internal_singletons!(tree) # old root is potentially a singleton
if label(tree.root) != new_root
label!(tree, label(tree.root), new_root)
end
return nothing
end
"""
root!(tree; method=:midpoint, topological = false)
Root tree using `method`. Only implemented method is `:midpoint`.
# Methods
## `:midpoint`
Distance between nodes can be either topological (number of branches) or based on branch
length. Does not create a polytomy at the root: if the midpoint is an already existing
internal node (not the root), creates a new root node at infinitesimal distance below it.
Midpoint rooting will exit without doing anything if
- the distance between the two farthest leaves is `0`. This happens if all branch lengths
are 0.
- the current root is already the midpoint.
## `:model`
Provide keyword argument `model::Tree`.
Try to root `tree` like `model`. If the two trees only differ by rooting, they will have
the same topology at the end of this. Else, tree will be rerooted but a warning will
be given.
"""
function root!(tree; method=:midpoint, topological = false, model=nothing)
if method == :midpoint
root_midpoint!(tree; topological)
elseif method == :model
root_like_model!(tree, model)
end
return nothing
end
"""
root_like_model!(tree, model::Tree)
Try to root `tree` like `model`. If the two trees only differ by rooting, they will have
the same topology at the end of this. Else, tree will be rerooted but a warning will
be given.
"""
function root_like_model!(tree, model::Tree)
@assert share_labels(tree, model) "Can only be used for trees that share leaves"
#
warn_1() = @warn """`tree` and `model` differ by more than rooting, but the rerooting \
algorithm nonetheless found a sensible root for `tree` and re-rooted.
Maybe check what you're doing."""
# Look at the two splits below the root of `model` ...
M1 = model |> root |> children |> first
M2 = model |> root |> children |> last
S1 = map(label, POTleaves(M1))
S2 = map(label, POTleaves(M2))
# ... and to what nodes they correspond in `tree`
A1 = lca(tree, S1...)
A2 = lca(tree, S2...)
R, time = if !isroot(A1) && !isroot(A2)
# if none of them is the root, then `tree` is already rooted correctly
if SplitList(model) != SplitList(tree)
@warn "Tree and model differ too much for rooting. Leaving input tree unchanged."
end
return nothing
elseif isroot(A1) && isroot(A2)
@warn "Tree and model differ too much for rooting. Leaving input tree unchanged."
return nothing
elseif isroot(A1)
# else, we root on the ancestor of the one that is not the root
# branch length is calculated proportionally from model
time = distance(A2, ancestor(A2)) * distance(M2, ancestor(M2)) / distance(M1, M2)
label(A2), time
elseif isroot(A2)
time = distance(A1, ancestor(A1)) * distance(M1, ancestor(M1)) / distance(M1, M2)
label(A1), time
end
TreeTools.root!(tree, R; time)
if SplitList(model) != SplitList(tree)
warn_1()
end
return nothing
end
function root_midpoint!(t::Tree; topological = false)
exit_warning = "Failed to midpoint root, tree unchanged"
if length(leaves(t)) == 1
@warn "Can't midpoint root tree with only one leaf"
@warn exit_warning
return nothing
end
# Find the good branch
b_l, b_h, L1, L2, fail = find_midpoint(t; topological)
fail && (@warn exit_warning; return nothing)
# The midpoint is between b_l and b_h == b_l.anc
# L1 and L2 are the farthest apart leaves
# It's on the side of L1 w.r. to the current root, that is we should be in the situation
#=
-- Root --
| |
b_h |
| |
b_l |
| |
L1 L2
=#
# If the midpoint is exactly on b_h and b_h is not the root, we introduce a singleton below to root on.
d1 = distance(b_l, L1; topological)
d2 = distance(b_l, L2; topological)
@debug """
Midpoint on branch $(label(b_h)) --> $(label(b_l)).
Farthest apart leaves: $(label(L1)) and $(label(L2)).
Distances: L1 --> b_l: $(d1) // L2 --> b_h: $(distance(b_h, L2; topological))
"""
@assert d1 <= d2 """
Issue with branch lengths.
"""
if isroot(b_h) && isapprox(abs(d1-d2), 2*distance(b_l, b_h; topological))
# The root is already the midpoint
@debug """
Distances to previous root:
$(L1.label) --> $(distance(t.root, L1; topological)) / $(L2.label) --> $(distance(t.root, L2; topological))
"""
@debug "Previous root was already midpoint, leaving tree unchanged."
else
# Introducing a singleton that will act as the new root.
τ = if topological
# root halfway along the branch
ismissing(b_l) ? missing : b_l.tau/2
else
_τ = (d2-d1)/2
_τ = isapprox(_τ, b_l.tau) ? b_l.tau : _τ # if small numerical error, fix it
end
@assert ismissing(τ) || 0 <= τ <= b_l.tau """
Issue with time on the branch above midpoint.
Got τ=$τ and expected `missing` or `0 <= τ <= `$(b_l.tau).
"""
R = insert!(t, b_l; time=τ, name=get_unique_label(t, "MIDPOINT_ROOT"))
node2tree!(t, t.root)
@debug "Introducing new root between $(b_l.label) and $(b_h.label)"
@debug "Distances to R: $(L1.label) --> $(distance(R, L1; topological)) / $(L2.label) --> $(distance(R, L2; topological))"
# Rooting on R
root!(t, R.label)
end
return nothing
end
function find_midpoint(t::Tree{T}; topological = false) where T
# Find pair of leaves with largest distance
max_dist = -Inf
L1 = ""
L2 = ""
for n1 in leaves(t), n2 in leaves(t)
d = distance(n1, n2; topological)
ismissing(d) && (@error "Can't midpoint root for tree with missing branch length."; error())
if d > max_dist && n1 != n2
max_dist = d
L1, L2 = (n1.label, n2.label)
end
end
@debug "Farthest leaves: $L1 & $L2 -- distance $max_dist"
@assert L1 != L2 "Issue: farthest apart leaves have the same label."
(isempty(L1) || isempty(L2)) && @warn "One of farthest apart leaves has an empty label."
if max_dist == 0 || ismissing(max_dist)
@warn "Null or missing branch lengths: cannot midpoint root."
return first(nodes(t)), first(nodes(t)), first(nodes(t)), first(nodes(t)), true
end
# Find leaf farthest away from lca(L1, L2)
A = lca(t, L1, L2).label
d1 = distance(t, L1, A; topological)
d2 = distance(t, L2, A; topological)
@assert isapprox(d1 + d2, max_dist; rtol = 1e-10) # you never know ...
L_ref = d1 > d2 ? t[L1] : t[L2]
L_other = d1 > d2 ? t[L2] : t[L1]
# Find middle branch: go up from leaf furthest from lca(L1, L2)
# midpoint is between b_l and b_h
b_l = nothing
b_h = L_ref
d = 0
it = 0
while d < max_dist/2 && !isroot(b_h) && it < 1e5
d += topological ? 1. : branch_length(b_h)
b_l = isnothing(b_l) ? b_h : b_l.anc
b_h = b_h.anc
@assert b_h != A "Issue during midpoint rooting."
it += 1
end
it >= 1e5 && error("Tree too large to midpoint root (>1e5 levels) (or there was a bug)")
@debug "Midpoint found between $(b_l.label) and $(b_h.label)"
return b_l, b_h, L_ref, L_other, false
end
"""
ladderize!(t::Tree)
Ladderize `t` by placing nodes with largest clades left in the newick string.
"""
ladderize!(t::Tree) = ladderize!(t.root)
function ladderize!(n::TreeNode)
function _isless(v1::Tuple{Int, String}, v2::Tuple{Int, String})
if (v1[1] < v2[1]) || (v1[1] == v2[1] && v1[2] < v2[2])
return true
else
return false
end
end
if n.isleaf
return (1, n.label)
else
rank = Array{Any}(undef, length(n.child))
for (k, c) in enumerate(n.child)
rank[k] = ladderize!(c)
end
n.child = n.child[sortperm(rank; lt= _isless)]
return sum([r[1] for r in rank]), n.label
end
return nothing
end
###############################################################################################################
######################################## Other ####################################################
###############################################################################################################
"""
branches_of_spanning_tree(t::Tree, leaves...)
Return the set of branches of `t` spanning `leaves`. The output is a `Vector{String}`
containing labels of nodes. The branch above each of these nodes is in the spanning tree.
"""
function branches_in_spanning_tree(t::Tree{T}, leaves::Vararg{String}) where T
R = lca(t, leaves...) # root of the spanning tree
visited = Dict{String, Bool}()
for n in leaves
a = t[n]
while !haskey(visited, a.label) && a != R
visited[a.label] = true
a = t[a.label].anc
end
end
return collect(keys(visited))
end
branches_in_spanning_tree(t, leaves::Vector{String}) = branches_in_spanning_tree(t, leaves...)
function branches_in_spanning_tree(t, leaves::Vararg{TreeNode})
return branches_in_spanning_tree(t, Iterators.map(x->x.label, leaves)...)
end
"""
resolution_index(t::Tree)
Compute a measure of how resolved `t` is: `R = (I-1) / (L-2)` where `I` is the number of
internal nodes and `L` the number of leaves.
A fully resolved tree has `R=1`. A star tree has `R=0`.
Trees with only one leaf are also considered fully resolved.
"""
function resolution_index(t::Tree)
if length(leaves(t)) == 1 || length(leaves(t)) == 2
# if tree only contains 1 or 2 leaves it is resolved
return 1
else
L = length(leaves(t))
I = length(nodes(t)) - L
return (I-1) / (L-2)
end
end
resolution_value(t::Tree) = resolution_index(t::Tree)
const tree_distance_types = (:RF,)
"""
distance(t1::Tree, t2::Tree; type = :RF, normalize = false)
Compute distance between two trees.
See `TreeTools.tree_distance_types` for allowed types.
If `normalize`, the distance is normalized to `[0,1]`.
"""
function distance(t1::Tree, t2::Tree; type = :RF, normalize = false)
if Symbol(type) == :RF
return RF_distance(t1, t2; normalize)
else
error("Unknown distance type $(type) - see `TreeTools.tree_distance_types`")
end
end
"""
RF_distance(t1::Tree, t2::Tree; normalize=false)
Compute the Robinson–Foulds distance between `t1` and `t2`.
RF distance is the sum of the number of splits present in `t1` and not `t2` and in `t2`
and not `t1`.
If `normalize`, the distance is normalized to `[0,1]`.
"""
function RF_distance(t1::Tree, t2::Tree; normalize=false)
@assert share_labels(t1, t2) "Cannot compute RF distance for trees that do not share leaves"
s1 = SplitList(t1)
s2 = SplitList(t2)
d = length(s1) + length(s2) - 2*length(TreeTools.intersect(s1, s2))
if !normalize || (length(s1) + length(s2) < 3)
# can't normalize if both trees have only the root split
return d
else
return d / (length(s1) + length(s2) - 2)
end
end
function distance_matrix(t::Tree)
# grossly unoptimized
return [distance(n, m) for n in POTleaves(t), m in POTleaves(t)]
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 10219 | function Base.show(io::IO, ::MIME"text/plain", node::TreeNode)
if !get(io, :compact, false)
if isroot(node)
println(io, "Node $(node.label) (root)")
println(io, "Ancestor : `nothing` (root)")
else
println(io, "Node $(node.label): ")
println(io, "Ancestor: $(node.anc.label), branch length = $(node.tau)")
end
print(io, "$(length(node.child)) children: $([x.label for x in node.child])")
end
return nothing
end
function Base.show(io::IO, node::TreeNode)
print(io, "$(typeof(node)): $(node.label)")
node.isroot && print(io, " (root)")
return nothing
end
function Base.show(io::IO, t::Tree{T}) where T
nn = length(nodes(t))
nl = length(leaves(t))
long = begin
base = "Tree{$T}: "
base *= nn > 1 ? "$nn nodes, " : "$nn node, "
base *= nl > 1 ? "$nl leaves" : "$nl leaf"
base
end
if length(long) < 0.8*displaysize(io)[2]
print(io, long)
return nothing
end
short = begin
base = "Tree w. "
base *= nl > 1 ? "$nl leaves" : "$nl leaf"
base
end
print(io, short)
return nothing
end
function Base.show(io::IO, ::MIME"text/plain", t::Tree; maxnodes=40)
if length(nodes(t)) < maxnodes
print_tree_ascii(io, t)
else
show(io, t)
end
end
function print_tree_(io, node, cdepth; vindent=2, hindent=5, hoffset=0, maxdepth=5)
hspace = ""
for i in 1:hindent
hspace *= "-"
end
offset = ""
for i in 1:hoffset
offset *= " "
end
if cdepth < maxdepth
println(io, "$offset $hspace $(node.label):$(node.tau)")
elseif cdepth == maxdepth
if node.isleaf
println(io, "$offset $hspace $(node.label):$(node.tau)")
else
println(io, "$offset $hspace $(node.label):$(node.tau) ...")
end
end
#
if cdepth <= maxdepth
if !node.isleaf
for c in node.child
for i in 1:vindent
cdepth < maxdepth && println(io, "$offset $(" "^hindent)|")
end
print_tree_(
io, c, cdepth + 1;
vindent, hindent, hoffset=hoffset+hindent, maxdepth
)
end
end
#
end
end
function print_tree(io, node::TreeNode; vindent=2, hindent=5, maxdepth=5)
print_tree_(io, node, 1; vindent, hindent, hoffset=0, maxdepth)
end
function print_tree(io, t::Tree; vindent=2, hindent=5, maxdepth=5)
return print_tree(io, t.root; vindent, hindent, maxdepth)
end
"""
print_tree_ascii(io, t::Tree)
Julia implementation of Bio.Phylo.draw_ascii function:
https://github.com/biopython/biopython/blob/master/Bio/Phylo/_utils.py
"""
function print_tree_ascii(io, t::Tree)
column_width = 80
taxa = [ node.label for node in POTleaves(t)] #need leaves in Post-Order Traversal
max_label_width = maximum([length(taxon) for taxon in taxa])
drawing_width = column_width - max_label_width - 1
drawing_height = 2 * length(taxa) - 1
function get_col_positions(t::Tree)
depths = [divtime(node, t.root) for node in values(t.lnodes)]
# If there are no branch lengths, assume unit branch lengths
if ismissing(maximum(depths))
println(io, "\n not all branch lengths known, assuming identical branch lengths")
depths = [node_depth(node) for node in values(t.lnodes)]
end
# Potential drawing overflow due to rounding -- 1 char per tree layer
fudge_margin = max(ceil(Int, log2(length(taxa))), 1)
if maximum(depths)==0
cols_per_branch_unit = (drawing_width - fudge_margin)
else
cols_per_branch_unit = (drawing_width - fudge_margin) / maximum(depths)
end
return Dict(zip(keys(t.lnodes), round.(Int,depths*cols_per_branch_unit .+2.0)))
end
function get_row_positions(t::Tree)
positions = Dict{Any, Int}(zip(taxa, 2 *(1:length(taxa)) ) )
function calc_row(clade::TreeNode)
for subclade in clade.child
if !haskey(positions, subclade.label)
calc_row(subclade)
end
end
if !haskey(positions, clade.label)
positions[clade.label] = floor(
Int,
(positions[clade.child[1].label] + positions[clade.child[end].label])/2
)
end
end
calc_row(t.root)
return positions
end
col_positions = get_col_positions(t)
row_positions = get_row_positions(t)
char_matrix = [[" " for x in 1:(drawing_width+1)] for y in 1:(drawing_height+1)]
function draw_clade(clade::TreeNode, startcol::Int)
thiscol = col_positions[clade.label]
thisrow = row_positions[clade.label]
# Draw a horizontal line
for col in startcol:thiscol
char_matrix[thisrow][col] = "_"
end
if !isempty(clade.child)
# Draw a vertical line
toprow = row_positions[clade.child[1].label]
botrow = row_positions[clade.child[end].label]
for row in (toprow+1):botrow
char_matrix[row][thiscol] = "|"
end
# Short terminal branches need something to stop rstrip()
if (col_positions[clade.child[1].label] - thiscol) < 2
char_matrix[toprow][thiscol] = ","
end
# Draw descendents
for child in clade.child
draw_clade(child, thiscol + 1)
end
end
end
draw_clade(t.root, 1)
# Print the complete drawing
for i in 1:length(char_matrix)
line = rstrip(join(char_matrix[i]))
# Add labels for terminal taxa in the right margin
if i % 2 == 0
line = line * " " * strip(taxa[round(Int, i/2)]) #remove white space from labels to make more tidy
end
println(io, line)
end
end
"""
check_tree(t::Tree; strict=true)
- Every non-leaf node should have at least one child (two if `strict`)
- Every non-root node should have exactly one ancestor
- If n.child[...] == c, c.anc == n is true
- Tree has only one root
"""
function check_tree(tree::Tree; strict=true)
labellist = Dict{String, Int}()
nroot = 0
flag = true
for n in nodes(tree)
if !n.isleaf && length(n.child)==0
(flag = false) || (@warn "Node $(n.label) is non-leaf and has no child.")
elseif !n.isroot && n.anc == nothing
(flag = false) || (@warn "Node $(n.label) is non-root and has no ancestor.")
elseif strict && length(n.child) == 1
if !(n.isroot && n.child[1].isleaf)
(flag = false) || (@warn "Node $(n.label) has only one child.")
end
elseif length(n.child) == 0 && !haskey(tree.lleaves, n.label)
(flag = false) || (@warn "Node $(n.label) has no child but is not in `tree.lleaves`")
end
for c in n.child
if c.anc != n
(flag = false) || (@warn "One child of $(n.label) does not satisfy `c.anc == n`.")
end
end
if get(labellist, n.label, 0) == 0
labellist[n.label] = 1
else
labellist[n.label] += 1
(flag = false) || (@warn "Label $(n.label) already exists!")
end
if n.isroot
nroot += 1
end
end
if nroot > 1
(flag = false) || (@warn "Tree has multiple roots")
elseif nroot ==0
(flag = false) || (@warn "Tree has no root")
end
return flag
end
default_tree_label(n=10) = randstring(n)
make_random_label(base="NODE"; delim = "_") = make_random_label(base, 8; delim)
make_random_label(base, i; delim = "_") = base * delim * randstring(i)
function get_unique_label(t::Tree, base = "NODE"; delim = "_")
label = make_random_label(base; delim)
while haskey(t.lnodes, label)
label = make_random_label(base; delim)
end
return label
end
function set_unique_label!(node::TreeNode, t::Tree; delim = "_")
base = label(node)
new_label = get_unique_label(t, base; delim)
node.label = new_label
end
"""
create_label(t::Tree, base="NODE")
Create new node label in tree `t` with format `\$(base)_i` with `i::Int`.
"""
function create_label(t::Tree, base="NODE")
label_init = 1
pattern = Regex(base)
for n in values(t.lnodes)
if match(pattern, n.label)!=nothing && parse(Int, n.label[length(base)+2:end]) >= label_init
label_init = parse(Int, n.label[length(base)+2:end]) + 1
end
end
return "$(base)_$(label_init)"
end
"""
map_dict_to_tree!(t::Tree{MiscData}, dat::Dict; symbol=false, key = nothing)
Map data in `dat` to nodes of `t`. All node labels of `t` should be keys of `dat`. Entries of `dat` should be dictionaries, or iterable similarly, and are added to `n.data.dat`.
If `!isnothing(key)`, only a specific key of `dat` is added. It's checked for by `k == key || Symbol(k) == key` for all keys `k` of `dat`.
If `symbol`, data is added to nodes of `t` with symbols as keys.
"""
function map_dict_to_tree!(t::Tree{MiscData}, dat::Dict; symbol=false, key = nothing)
for (name, n) in t.lnodes
for (k,v) in dat[name]
if !isnothing(key) && (k == key || Symbol(k) == key)
n.data.dat[key] = v
elseif isnothing(key)
n.data.dat[symbol ? Symbol(k) : k] = v
end
end
end
nothing
end
"""
map_dict_to_tree!(t::Tree{MiscData}, dat::Dict, key)
Map data in `dat` to nodes of `t`. All node labels of `t` should be keys of `dat`. Entries of `dat` corresponding to `k` are added to `t.lnodes[k].data.dat[key]`.
"""
function map_dict_to_tree!(t::Tree{MiscData}, dat::Dict, key)
for (name, n) in t.lnodes
n.data.dat[key] = dat[name]
end
end
"""
rand_times!(t[, p])
Add random branch lengths to tree distributed according to `p` (default [0,1]).
"""
function rand_times!(t, p)
for n in values(t.lnodes)
if !n.isroot
n.tau = rand(p)
end
end
return nothing
end
function rand_times!(t)
for n in values(t.lnodes)
if !n.isroot
n.tau = rand()
end
end
return nothing
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 5063 | """
abstract type TreeNodeData
Abstract supertype for data attached to the `dat` field of `TreeNode` objects.
Implemented concrete types are
- `EmptyData`: empty struct. Use if you do not have to attach data to nodes.
- `MiscData`: contains a dictionary for attaching extra data to nodes. Also behaves like
a `Dict` for indexing/iterating, *e.g.* `x.dat[key] == x[key]`.
"""
abstract type TreeNodeData end
Base.copy(x::TreeNodeData) = deepcopy(x)
"""
struct MiscData <: TreeNodeData
dat::Dict{Any,Any}
end
"""
struct MiscData <: TreeNodeData
dat::Dict{Any,Any}
end
MiscData(; dat=Dict()) = MiscData(dat)
Base.iterate(d::MiscData) = iterate(d.dat)
Base.iterate(d::MiscData, state) = iterate(d.dat, state)
Base.eltype(::Type{MiscData}) = eltype(Dict{Any,Any})
Base.length(d::MiscData) = length(d.dat)
Base.getindex(d::MiscData, i) = getindex(d.dat, i)
Base.setindex!(d::MiscData, k, v) = setindex!(d.dat, k, v)
Base.firstindex(d::MiscData, i) = firstindex(d.dat, i)
Base.lastindex(d::MiscData, i) = lastindex(d.dat, i)
Base.get!(d::MiscData, k, v) = get!(d.dat, k, v)
Base.haskey(d::MiscData, k) = haskey(d.dat, k)
Base.copy(d::MiscData) = MiscData(copy(d.dat))
"""
struct EmptyData <: TreeNodeData
"""
struct EmptyData <: TreeNodeData
end
Base.copy(::EmptyData) = EmptyData()
const DEFAULT_NODE_DATATYPE = EmptyData
"""
mutable struct TreeNode{T <: TreeNodeData}
Structural information on the tree, *i.e.* topology and branch length.
- `anc::Union{Nothing,TreeNode}`: Ancestor
- `child::Array{TreeNode,1}`: List of children
- `isleaf::Bool`
- `isroot::Bool`
- `tau::Union{Missing, Float64}`
- `data::T`
"""
mutable struct TreeNode{T <: TreeNodeData}
anc::Union{Nothing,TreeNode{T}}
child::Array{TreeNode{T},1}
isleaf::Bool
isroot::Bool
label::String
tau::Union{Missing, Float64}
data::T
function TreeNode(anc, child, isleaf, isroot, label, tau, data::T) where T
tau = !ismissing(tau) ? convert(Float64, tau) : missing
return new{T}(anc, child, isleaf, isroot, label, tau, data)
end
end
function TreeNode(
data::T;
anc = nothing,
child = Array{TreeNode{T},1}(undef, 0),
isleaf = true,
isroot = true,
label = make_random_label(),
tau = missing,
) where T
return TreeNode(anc, child, isleaf, isroot, label, tau, data)
end
function TreeNode(;
data = DEFAULT_NODE_DATATYPE(),
anc = nothing,
child = Array{TreeNode{typeof(data)},1}(undef, 0),
isleaf = true,
isroot = true,
label = make_random_label(),
tau = missing,
)
return TreeNode(anc, child, isleaf, isroot, label, tau, data)
end
"""
==(x::TreeNode, y::TreeNode)
Equality of labels between `x` and `y`.
"""
function Base.isequal(x::TreeNode, y::TreeNode)
return x.label == y.label
end
Base.:(==)(x::TreeNode, y::TreeNode) = isequal(x,y)
Base.hash(x::TreeNode, h::UInt) = hash(x.label, h)
children(n::TreeNode) = n.child
function ancestor(n::TreeNode)
@assert !isroot(n) "Trying to access the ancestor of root node $(label(n))"
return n.anc
end
branch_length(n::TreeNode) = n.tau
"""
branch_length!(n::TreeNode, τ)
Set the branch length above `n` to `τ`.
"""
branch_length!(n::TreeNode, τ::Union{Missing, Real}) = (n.tau = τ)
label(n::TreeNode) = n.label
isleaf(n) = n.isleaf
isroot(n) = n.isroot
isinternal(n) = !isleaf(n)
data(n::TreeNode) = n.data
"""
data!(n::TreeNode{T}, dat::T)
Set the the data field of `n` to `dat`.
"""
data!(n::TreeNode{T}, dat::T) where T = (n.data = dat)
"""
mutable struct Tree{T <: TreeNodeData}
"""
mutable struct Tree{T <: TreeNodeData}
root::Union{Nothing, TreeNode{T}}
lnodes::Dict{String, TreeNode{T}}
lleaves::Dict{fieldtype(TreeNode{T}, :label), TreeNode{T}}
label::String
end
function Tree(
root::TreeNode{T};
lnodes = Dict{String, TreeNode{T}}(root.label => root),
lleaves = Dict{fieldtype(TreeNode{T}, :label), TreeNode{T}}(root.label => root),
label = default_tree_label()
) where T
return Tree(root, lnodes, lleaves, label)
end
Tree() = Tree(TreeNode())
function Base.in(n::AbstractString, t::Tree; exclude_internals=false)
exclude_internals ? haskey(t.lleaves, n) : haskey(t.lnodes, n)
end
Base.in(n::TreeNode, t::Tree; exclude_internals=false) = in(n.label, t; exclude_internals)
Base.getindex(t::Tree, label) = getindex(t.lnodes, label)
label(t::Tree) = t.label
"""
label!(t::Tree, label::AbstractString)
Change the label of the `Tree` to `label`.
"""
label!(t::Tree, label::AbstractString) = (t.label = string(label))
"""
label!(t::Tree, node::TreeNode, new_label::AbstractString)
label!(t::Tree, old_label, new_label)
Change the label of a `TreeNode` to `new_label`.
"""
function label!(tree::Tree, node::TreeNode, label::AbstractString)
@assert in(node, tree) "Node $(node.label) is not in tree."
@assert !in(label, tree) "Node $(label) is already in tree: can't rename $(node.label) like this."
tree.lnodes[label] = node
delete!(tree.lnodes, node.label)
if node.isleaf
tree.lleaves[label] = node
delete!(tree.lleaves, node.label)
end
node.label = label
return nothing
end
label!(t::Tree, old_label, new_label) = label!(t, t[old_label], new_label)
root(t::Tree) = t.root
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 11908 | """
prunenode!(node::TreeNode)
Prune node `node` by detaching it from its ancestor.
Return pruned `node` and its previous ancestor.
"""
function prunenode!(node::TreeNode)
if node.isroot
@warn "Trying to prune root: aborting"
return node, TreeNode()
end
anc = node.anc
for (i,c) in enumerate(anc.child)
if c == node
deleteat!(anc.child,i)
break
end
end
if isempty(anc.child)
anc.isleaf = true
end
node.anc = nothing
node.isroot = true
return node, anc
end
"""
prunenode(node::TreeNode)
Prune node `node` by detaching it from its ancestor.
Return pruned `node` and previous root `r`.
The tree defined by `node` is copied before the operation and is not modified.
"""
function prunenode(node::TreeNode)
if node.isroot
@warn "Trying to prune root: aborting"
node_ = deepcopy(node)
return node_, node_
end
node_ = deepcopy(node)
r = node_findroot(node_)
anc = node_.anc
for (i,c) in enumerate(anc.child)
if c == node_
deleteat!(anc.child,i)
break
end
end
node_.anc = nothing
node_.isroot = true
return node_, r
end
"""
graftnode!(r::TreeNode, n::TreeNode ; tau=n.tau)
Graft `n` on `r`.
*Note*: this does not modify the `Tree` object. You could have to use `node2tree!` after,
or call the `graft!` function.
"""
function graftnode!(r::TreeNode, n::TreeNode; time=n.tau)
if !n.isroot || n.anc != nothing
@error "Trying to graft non-root node $(n)."
end
push!(r.child, n)
r.isleaf = false
n.anc = r
n.isroot = false
n.tau = time
return nothing
end
"""
prunesubtree!(tree, node)
prunesubtree!(tree, labels)
Same as `prune!`, but returns the pruned node as a `TreeNode` and its previous ancestor.
See `prune!` for details on `kwargs`.
"""
function prunesubtree!(tree, r::TreeNode; remove_singletons=true, create_leaf = :warn)
# Checks
if r.isroot
error("Trying to prune root in tree $(label(tree))")
elseif !in(r, tree)
error("Node $(r.label) is not in tree $(tree.label). Cannot prune.")
elseif length(children(ancestor(r))) == 1
if create_leaf == :warn
@warn "Pruning node $(r.label) will create a new leaf $(ancestor(r).label)"
elseif !create_leaf
error("Pruning node $(r.label) will create a new leaf $(ancestor(r).label)")
end
end
a = r.anc
delnode(n) = begin
delete!(tree.lnodes, n.label)
if n.isleaf
delete!(tree.lleaves, n.label)
end
end
map!(delnode, r)
prunenode!(r)
if remove_singletons
remove_internal_singletons!(tree, delete_time=false)
end
return r, a
end
prunesubtree!(t, r::AbstractString; kwargs...) = prunesubtree!(t, t[r]; kwargs...)
function prunesubtree!(tree, labels::AbstractArray; clade_only=true, kwargs...)
if clade_only && !isclade(labels, tree)
error("Can't prune non-clade $labels")
end
r = lca(tree, labels)
return prunesubtree!(tree, r; kwargs...)
end
function prunesubtree!(tree, label1, label2::Vararg{AbstractString}; kwargs...)
return prunesubtree!(tree, vcat(label1, label2...); kwargs...)
end
"""
prune!(tree, node; kwargs...)
prune!(tree, labels::AbstractArray)
prune!(tree, labels...)
Prune `node` from `tree`.
`node` can be a label or a `TreeNode`.
Return the subtree defined by `node` as a `Tree` object as well as the previous
ancestor of `node`.
If a list of labels is provided, the MRCA of the corresponding nodes is pruned.
## kwargs
- `remove_singletons`: remove singletons (internals with one child) in the tree after pruning. Default `true`.
- `clade_only`: if a list of labels is provided, check that it corresponds to a clade before pruning. Default `true`.
- `create_leaf`: if the ancestor of `r` has only one child (singleton), pruning `r`
will create a leaf. If `create_leaf == :warn`, this will trigger a warning. If
`create_leaf = false`, it will trigger an error. If `create_leaf = true`, then this
is allowed. Default: `:warn`.
## Example
```jldoctest
using TreeTools # hide
tree = parse_newick_string("(A:1.,(B:1.,(X1:0.,X2:0.)X:5.)BX:1.)R;")
prune!(tree, ["X1", "X2"])
map(label, nodes(tree))
# output
3-element Vector{String}:
"B"
"A"
"R"
```
"""
function prune!(t, r; kwargs...)
r, a = prunesubtree!(t, r; kwargs...)
return node2tree(r), a
end
function prune!(t, labels...; kwargs...)
r, a = prunesubtree!(t, labels...; kwargs...)
return node2tree(r), a
end
"""
graft!(tree::Tree, n, r; graft_on_leaf=false, time=branch_length(n))
Graft `n` onto `r` and return the grafted node.
`r` can be a label or a `TreeNode`, and should belong to `tree`.
`n` can be a `TreeNode` or a `Tree`.
In the latter case, `n` will be *copied* before being grafted.
None of the nodes of the subtree of `n` should belong to `tree`.
If `r` is a leaf and `graft_on_leaf` is set to `false` (default), will raise an error.
"""
function graft!(
t::Tree{T}, n::TreeNode{T}, r::TreeNode;
graft_on_leaf=false, time = branch_length(n),
) where T
# checks
if !graft_on_leaf && isleaf(r)
error("Cannot graft: node $r is a leaf (got `graft_on_leaf=false`")
elseif !isroot(n) && !isnothing(ancestor(n))
error("Cannot graft non-root node $(label(n))")
end
# checking that the subtree defined by `n` is not in `t`
for c in POT(n)
if in(c, t)
error("Cannot graft node \"$(label(c))\": a node in tree $(label(t)) already has the same label.")
end
end
# Handling tree dicts
isleaf(r) && delete!(t.lleaves, label(r))
for c in POT(n)
t.lnodes[label(c)] = c
if isleaf(c)
t.lleaves[label(c)] = c
end
end
# grafting
graftnode!(r, n; time)
return n
end
function graft!(t::Tree{T}, n::TreeNode{R}, r::TreeNode; kwargs...) where T where R
error(
"Cannot graft node of type $(typeof(n)) on tree of type $(typeof(t)).
Try to change node data type"
)
end
graft!(t, n::TreeNode, r::AbstractString; kwargs...) = graft!(t, n, t[r]; kwargs...)
graft!(t1, t2::Tree, r; kwargs...) = graft!(t1, copy(t2).root, r; kwargs...)
#= NOT TESTED -- TODO =#
function __subtree_prune_regraft!(
t::Tree, p::AbstractString, g::AbstractString;
remove_singletons = true, graft_on_leaf = false, create_new_leaf = false,
)
# Checks
if !create_new_leaf && length(children(ancestor(t[p]))) == 1
error("Cannot prune node $p without creating a new leaf (got `create_new_leaf=false`)")
elseif !graft_on_leaf && isleaf(t[g])
error("Cannot graft: node $g is a leaf (got `graft_on_leaf=false`)")
end
# prune
n, a = prunenode!(t[p])
if isleaf(a)
t.lleaves[label(a)] = a
end
# graft
if isleaf(g)
delete!(t.lleaves, g)
end
graft!(t, n, g)
return nothing
end
"""
insert_node!(c::TreeNode, a::TreeNode, s::TreeNode, time)
Insert `s` between `a` and `c` at height `t`: `a --> s -- t --> c`. Return `s`.
The relation `branch_length(s) + t == branch_length(c)` should hold.
"""
function insert_node!(c::TreeNode{T}, a::TreeNode{T}, s::TreeNode{T}, t::Missing) where T
@assert ancestor(c) == a
@assert ismissing(branch_length(c))
@assert ismissing(branch_length(s))
prunenode!(c)
graftnode!(a, s)
graftnode!(s, c)
return s
end
function insert_node!(c::TreeNode{T}, a::TreeNode{T}, s::TreeNode{T}, t::Number) where T
@assert ancestor(c) == a
@assert branch_length(s) == branch_length(c) - t
@assert branch_length(c) >= t
prunenode!(c)
branch_length!(c, t)
graftnode!(a, s)
graftnode!(s, c)
return s
end
"""
insert!(tree, node; name, time)
Insert a singleton named `name` above `node`, at height `time` on the branch.
Return the inserted singleton.
`time` can be a `Number` or `missing`.
"""
function insert!(
t::Tree{T},
n::TreeNode;
name = get_unique_label(t),
time = zero(branch_length(n)),
) where T
# Checks
nτ = branch_length(n)
if isroot(n)
error("Cannot insert node above root in tree $(label(t))")
elseif ismissing(time) != ismissing(nτ) || (!ismissing(time) && time > nτ)
error("Cannot insert node at height $time on branch with length $nτ")
elseif in(name, t)
error("node $name is already in tree $(label(t))")
end
#
sτ = nτ - time
s = TreeNode(; label=name, tau = sτ, data = T())
insert_node!(n, ancestor(n), s, time)
t.lnodes[name] = s
return s
end
insert!(t::Tree, n::AbstractString; kwargs...) = insert!(t, t[n]; kwargs...)
"""
delete_node!(node::TreeNode; delete_time = false)
Delete `node`. If it is an internal node, its children are regrafted on `node.anc`.
Returns the new `node.anc`.
If `delete_time`, branch length above `node` is not added to the regrafted branch.
Otherwise, the regrafted branch's length is unchanged. Return modified `node.anc`.
Note that the previous node will still be in the dictionary `lnodes` and `lleaves` (if a leaf) and the print function will fail on the tree,
to fully remove from the tree and apply the print function use `delete_node!(t::Tree, label)`
"""
function delete_node!(node::TreeNode; delete_time = false)
node.isroot && error("Cannot delete root node")
out = node.anc
if node.isleaf
prunenode!(node)
else
base_time = branch_length(node)
for c in reverse(node.child)
nc = prunenode!(c)[1]
new_time = branch_length(nc) + (delete_time ? 0. : base_time)
graftnode!(node.anc, nc, time = new_time)
end
prunenode!(node)
end
return out
end
"""
delete!(tree::Tree, label; delete_time = false, remove_internal_singletons = true)
Delete node `label` from `tree`.
Children of `label` are regrafted onto its ancestor.
If `delete_time`, the branch length above deleted node is also deleted,
otherwise it is added to the regrafted branch.
If `remove_internal_singletons`, internal singletons are removed after node is deleted.
"""
function delete!(t::Tree, label; delete_time = false, remove_internal_singletons = true)
delete_node!(t.lnodes[label]; delete_time)
delete!(t.lnodes, label)
haskey(t.lleaves, label) && delete!(t.lleaves, label)
remove_internal_singletons!(t; delete_time)
return nothing
end
"""
delete_null_branches!(tree::Tree; threshold=1e-10)
Delete internal node with branch length smaller than `threshold`. Propagates recursively down the tree. For leaf nodes, set branch length to 0 if smaller than `threshold`.
"""
delete_null_branches!(tree::Tree; threshold=1e-10) = delete_branches!(n -> branch_length(n) < threshold, tree.root)
function delete_branches!(f, n::TreeNode; keep_time=false)
for c in copy(children(n)) # copy needed since `children(n)` is about to change
delete_branches!(f, c; keep_time)
end
if !isroot(n) && f(n)
if isleaf(n)
# if `n` is a leaf, set its branch length to 0
n.tau = ismissing(n.tau) ? missing : 0.
else
delete_node!(n; delete_time = !keep_time)
end
end
return n
end
"""
delete_branches!(f, tree::Tree)
delete_branches!(f, n::TreeNode)
Delete branch above node `n` if `f(n)` returns `true` when called on node `n`. When called on a `Tree` propagates recursively down the tree.
Only when called on a `Tree` will nodes be additionally deleted from the `lnodes` and `lleaves` dictionaries.
If `keep_time`, the branch length of the deleted branches will be added to child branches.
"""
function delete_branches!(f, tree::Tree; keep_time=false)
delete_branches!(f, tree.root)
remove_internal_singletons!(tree)
node2tree!(tree, tree.root)
return nothing
end
"""
remove_internal_singletons!(tree; delete_time = false)
Remove nodes with one child. Root node is left as is.
If `delete_time` is set to `false` (default), the length of branches above removed nodes
is added to the branch length above their children.
"""
function remove_internal_singletons!(tree; delete_time = false)
root = tree.root
for n in nodes(tree)
if length(n.child) == 1
if !n.isroot
delete_node!(n; delete_time)
delete!(tree.lnodes, n.label)
end
end
end
# If root itself is a singleton, prune its child
if length(tree.root.child) == 1 && !tree.root.child[1].isleaf
r = tree.root
n = r.child[1]
#
n.anc = nothing
n.isroot = true
tree.root = n
#
for i in eachindex(children(r))
pop!(r.child)
end
delete!(tree.lnodes, label(r))
end
return nothing
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 7545 | let n::Int64=0
global increment_n() = (n+=1)
global reset_n() = (n=0)
end
let file::String = ""
global get_nwk_file() = file # use for easy access when error
global set_nwk_file(s) = (file=s)
end
"""
read_tree(
nwk_filename::AbstractString;
node_data_type=DEFAULT_NODE_DATATYPE, label=default_tree_label(), force_new_labels=false
)
read_tree(
io::IO;
node_data_type=DEFAULT_NODE_DATATYPE, label=default_tree_label(), force_new_labels=false
)
Read Newick file and create a `Tree{node_data_type}` object from it. The input file can
contain multiple Newick strings on different lines. The output will then be an array of
`Tree` objects.
The call `node_data_type()` must return a valid instance of a subtype of `TreeNodeData`.
You can implement your own subtypes, or see `?TreeNodeData` for already implemented ones.
Use `force_new_labels=true` to force the renaming of all internal nodes.
By default the tree will be assigned a `default_tree_label()`, however the label of the
tree can also be assigned with the `label` parameter.
If you have a variable containing a Newick string and want to build a tree from it,
use `parse_newick_string` instead.
## Note on labels
The `Tree` type identifies nodes by their labels. This means that labels have to be unique.
For this reason, the following is done when reading a tree:
- if an internal node does not have a label, a unique one will be created of the form
`"NODE_i"`
- if a node has a label that was already found before in the tree, a random identifier
will be appended to it to make it unique. Note that the identifier is created using
`randstring(8)`, unicity is technically not guaranteed.
- if `force_new_labels` is used, a unique identifier is appended to node labels
- if node labels in the Newick file are identified as confidence/bootstrap values, a random
identifier is appended to them, even if they're unique in the tree. See
`?TreeTools.isbootstrap` to see which labels are identified as confidence values.
"""
function read_tree(
io::IO;
node_data_type=DEFAULT_NODE_DATATYPE, label=default_tree_label(), force_new_labels=false
)
trees = map(Iterators.filter(!isempty, eachline(io))) do line
t = parse_newick_string(line; node_data_type, label, force_new_labels)
check_tree(t)
t
end
return length(trees) == 1 ? trees[1] : trees
end
function read_tree(
nwk_filename::AbstractString;
node_data_type=DEFAULT_NODE_DATATYPE, label=default_tree_label(), force_new_labels=false
)
return open(nwk_filename, "r") do io
read_tree(io; node_data_type, label, force_new_labels)
end
end
"""
parse_newick_string(
nw::AbstractString;
node_data_type=DEFAULT_NODE_DATATYPE, force_new_labels=false
)
Parse newick string into a tree. See `read_tree` for more informations.
"""
function parse_newick_string(
nw::AbstractString;
node_data_type=DEFAULT_NODE_DATATYPE,
label=default_tree_label(),
force_new_labels=false,
strict_check = true,
)
@assert nw[end] == ';' "Newick string does not end with ';'"
reset_n()
root = parse_newick(nw[1:end-1]; node_data_type)
tree = node2tree(root; label, force_new_labels)
check_tree(tree, strict = strict_check)
return tree
end
"""
read_newick(nwk_filename::AbstractString)
Read Newick file `nwk_filename` and create a graph of `TreeNode` objects in the process.
Return the root of said graph.
`node2tree` or `read_tree` must be called to obtain a `Tree` object.
"""
function read_newick(nwk_filename::AbstractString; node_data_type=DEFAULT_NODE_DATATYPE)
if !isa(node_data_type(), TreeNodeData)
throw(ArgumentError("`node_data_type()` should return a valid instance of `TreeNodeData`"))
end
set_nwk_file(nwk_filename)
nw = open(nwk_filename) do io
readlines(io)
end
if length(nw) > 1
error("File $nwk_filename has more than one line.")
elseif length(nw) == 0
error("File $nwk_filename is empty")
end
nw = nw[1]
if nw[end] != ';'
error("File $nwk_filename does not end with ';'")
end
nw = nw[1:end-1]
reset_n()
root = parse_newick(nw; node_data_type)
return root
end
"""
parse_newick(nw::AbstractString; node_data_type=DEFAULT_NODE_DATATYPE)
Parse newick string into a `TreeNode`.
"""
function parse_newick(nw::AbstractString; node_data_type=DEFAULT_NODE_DATATYPE)
if isempty(nw)
error("Cannot parse empty Newick string.")
end
reset_n()
root = TreeNode(node_data_type())
parse_newick!(nw, root, node_data_type)
root.isroot = true # Rooting the tree with outer-most node of the newick string
root.tau = missing
return root
end
"""
parse_newick!(nw::AbstractString, root::TreeNode)
Parse the tree contained in Newick string `nw`, rooting it at `root`.
"""
function parse_newick!(nw::AbstractString, root::TreeNode, node_data_type)
# Setting isroot to false. Special case of the root is handled in main calling function
root.isroot = false
# Getting label of the node, after last parenthesis
parts = map(x->String(x), split(nw, ")"))
lab, tau = nw_parse_name(String(parts[end]))
if lab == ""
lab = "NODE_$(increment_n())"
elseif length(lab) > 1 && lab[1:2] == "[&" # Deal with extended newick annotations
lab = "NODE_$(increment_n())" * lab
end
root.label, root.tau = (lab,tau)
if length(parts) == 1 # Is a leaf. Subtree is empty
root.isleaf = true
else # Has children
root.isleaf = false
if parts[1][1] != '('
println(parts[1][1])
@error "Parenthesis mismatch around $(parts[1]). This may be caused by spaces in the newick string."
error("$(get_nwk_file()): incorrect Newick format.")
else
parts[1] = parts[1][2:end] # Removing first bracket
end
children = join(parts[1:end-1], ")") # String containing children, now delimited with ','
l_children = nw_parse_children(children) # List of children (array of strings)
for sc in l_children
nc = TreeNode(node_data_type())
parse_newick!(sc, nc, node_data_type) # Will set everything right for subtree corresponding to nc
nc.anc = root
push!(root.child, nc)
end
end
end
"""
nw_parse_children(s::AbstractString)
Idea from http://stackoverflow.com/a/26809037
Split a string of children in newick format to an array of strings.
## Example
`"A,(B,C),D"` --> `["A","(B,C)","D"]`
"""
function nw_parse_children(s::AbstractString)
parcount = 0
annotation = false # For reading extended newick grammar, with [&key=val] after label
l_children = []
current = ""
cstart = 1
cend = 1
for (i,c) in enumerate("$(s),")
if c == '['
annotation = true
elseif c == ']'
annotation = false
elseif c == ',' && parcount == 0 && annotation == false
cend = i-1
push!(l_children, s[cstart:cend])
cstart = i+1
else
if c == '('
parcount +=1
elseif c == ')'
parcount -=1
end
end
end
return l_children
end
"""
nw_parse_name(s::AbstractString)
Parse Newick string of child into name and time to ancestor.
Default value for missing time is `missing`.
"""
function nw_parse_name(s::AbstractString)
if occursin(':', s) # Node has a time
temp = split(s, ":")
if length(temp) > 1 # Node also has a name, return both
length(temp) != 2 && @warn("Unexpected format $s: may cause some issues")
tau = (tau = tryparse(Float64,temp[2]); isnothing(tau) ? missing : tau) # Dealing with unparsable times
return string(temp[1]), tau
else # Return empty name
tau = (tau = tryparse(Float64,temp[1]); isnothing(tau) ? missing : tau) # Dealing with unparsable times
return "", tau
end
else # Node does not have a time, return string as name
return s, missing
end
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 1839 | """
star_tree(n, times)
Create a star tree with `n` leaves.
`times` can be an iterable of length `n` or a number/missing.
"""
function star_tree(n::Integer, time::Union{Missing, Real} = missing)
return star_tree(n, Iterators.map(x -> time, 1:n))
end
function star_tree(n::Integer, time_vals)
@assert n > 0 "Number of leaves must be positive"
@assert length(time_vals) == n "Number of leaves and times must match - \
Instead $n and $(length(time_vals))"
tree = Tree(TreeNode(; label="root"))
for (i, t) in enumerate(time_vals)
graft!(tree, TreeNode(; label="$i", tau=t), "root"; graft_on_leaf=true)
end
return tree
end
"""
ladder_tree(n[, t=missing])
Return a ladder tree with `n` leaves with total height `t`.
For 4 leaves `A, B, C, D`, this would be `(A:t,(B:2t/3,(C:t/3,D:t/3)));`.
The elementary branch length is `t/(n-1)` if `n>1`.
"""
function ladder_tree(n::Integer, T::Union{Missing, Real} = missing)
# proceeds by recursively grafting asymetric shapes (An:(T-τ),Bn:τ) onto B_(n-1)
@assert n > 0 "Number of leaves must be positive"
if n == 1
return Tree(TreeNode(; tau = T))
end
τ = ismissing(T) ? missing : T / (n-1)
tree = Tree(TreeNode(; label = "root"))
# first two nodes of the ladder
graft!(tree, TreeNode(; label = "$n", tau=T), "root"; graft_on_leaf=true)
node = graft!(tree, TreeNode(; tau=τ), "root")
_ladder_tree!(tree, label(node), n-1, T-τ, τ)
return tree
end
function _ladder_tree!(tree, node, n, T, τ)
# graft the next leaf on node
if n > 1
graft!(tree, TreeNode(; label = "$n", tau = T), node; graft_on_leaf=true)
node = graft!(tree, TreeNode(; tau = τ), node)
_ladder_tree!(tree, node, n-1, T-τ, τ)
else
label!(tree, node, "$n")
end
return nothing
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 14528 | #############################################################
########################### Split ###########################
#############################################################
"""
Split
`dat::Array{Int,1}`: indices of leaves in the split
"""
struct Split
dat::Array{Int,1}
function Split(dat)
if !issorted(dat)
@error("`split.dat` must be sorted")
end
return new(dat)
end
end
Split(L::Integer) = Split(fill(typemax(Int), L))
# Iteration
Base.iterate(s::Split) = iterate(s.dat)
Base.iterate(s::Split, i::Integer) = iterate(s.dat, i)
Base.IteratorSize(::Type{Split}) = HasLength()
Base.length(s::Split) = length(s.dat)
Base.size(s::Split) = length(s)
Base.IteratorEltype(::Type{Split}) = HasEltype()
Base.eltype(::Type{Split}) = Int
Base.eltype(::Split) = Int
# Indexing
Base.getindex(s::Split, i::Integer) = s.dat[i]
# Equality
Base.:(==)(s::Split, t::Split) = (s.dat == t.dat)
"""
isequal(s::Split, t::Split[, mask::Array{Bool,1}])
Test for equality between splits restricted to `mask`.
"""
function Base.isequal(s::Split, t::Split, mask::Array{Bool,1})
_in = max(length(s), length(t)) > 20 ? insorted : in
for i in s
if mask[i] && !_in(i, t.dat)
return false
end
end
for i in t
if mask[i] && !_in(i, s.dat)
return false
end
end
return true
end
Base.isequal(s::Split, t::Split) = (s.dat == t.dat)
Base.hash(s::Split, h::UInt) = hash(s.dat, h)
function is_root_split(s::Split, mask::Array{Bool,1})
Lmask = sum(mask)
Ls = 0
for i in s
if mask[i]
Ls += 1
end
end
return Ls == Lmask
end
"""
isroot(s::Split, mask::Array{Bool,1})
Check if `s` is the root split when restricted to `mask`.
"""
isroot(s::Split, mask) = is_root_split(s, mask)
function is_leaf_split(s::Split, mask::Array{Bool,1})
Ls = 0
for i in s
if mask[i]
Ls += 1
end
if Ls > 1
return false
end
end
return true
end
is_leaf_split(s) = (length(s) == 1)
"""
isleaf(s::Split)
isleaf(s::Split, mask::Array{Bool,1})
Check if `s` is a leaf split.
"""
isleaf(s::Split) = is_leaf_split(s)
isleaf(s::Split, mask) = is_leaf_split(s, mask)
"""
isempty(s::Split, mask::Array{Bool,1})
isempty(s::Split)
"""
function Base.isempty(s::Split, mask::Array{Bool,1})
Ls = 0
for i in s
if mask[i]
return false
end
end
return true
end
Base.isempty(s::Split) = isempty(s.dat)
"""
joinsplits!(s::Split, t...)
Join `t` to `s`.
"""
function joinsplits!(s::Split, t::Vararg{Split})
for x in t
append!(s.dat, x.dat)
end
sort!(s.dat)
unique!(s.dat)
return nothing
end
# Same as above, but assume s is initialized with 0s, and start filling at index `i`.
function _joinsplits!(s::Split, t::Split, i::Integer)
for j in 1:length(t)
s.dat[j + i - 1] = t.dat[j]
end
return nothing
end
"""
joinsplits(s::Split, t::Split)
Join `s` and `t`. Return resulting `Split`.
"""
function joinsplits(s::Split, t...)
sc = Split(copy(s.dat))
joinsplits!(sc, t...)
return sc
end
"""
is_sub_split(s::Split, t::Split[, mask])
Check if `s` is a subsplit of `t`.
"""
function is_sub_split(s::Split, t::Split)
_in = maximum(length(t)) > 20 ? insorted : in
for i in s
if !_in(i,t.dat)
return false
end
end
return true
end
function is_sub_split(s::Split, t::Split, mask)
_in = maximum(length(t)) > 20 ? insorted : in
for i in s
if mask[i] && !_in(i,t.dat)
return false
end
end
return true
end
"""
are_disjoint(s::Split, t::Split)
are_disjoint(s::Split, t::Split, mask)
Check if `s` and `t` share leaves.
"""
function are_disjoint(s::Split, t::Split)
_in = maximum(length(t)) > 20 ? insorted : in
for i in s
if _in(i,t.dat)
return false
end
end
for i in t
if _in(i,s.dat)
return false
end
end
return true
end
function are_disjoint(s::Split, t::Split, mask)
_in = maximum(length(t)) > 20 ? insorted : in
for i in s
if mask[i] && _in(i,t.dat)
return false
end
end
for i in t
if mask[i] && _in(i,s.dat)
return false
end
end
return true
end
#############################################################
######################### SplitList #########################
#############################################################
"""
SplitList{T}
- `leaves::Array{T,1}`: labels of leaves
- `splits::Array{Split,1}`
- `mask::Array{Bool,1}`: subset of leaves for which splits apply.
- `splitmap::Dict{T,Split}`: indicate the split corresponding to the branch above a node.
Only initialized if built from a tree with labels on internal nodes.
# Constructors
SplitList(leaves::Array{T,1}) where T
Empty `SplitList`.
SplitList(t::Tree[, mask])
List of splits in `t`. `mask` defaults to ones.
SplitList(r::TreeNode, leaves[, mask])
Compute the list of splits below `r`, including `r` itself.
Assume that `r` is part of a tree with `leaves`.
`mask` defaults to the set of leaves that are descendents
of `r`.
"""
struct SplitList{T}
leaves::Array{T,1}
splits::Array{Split,1}
mask::Array{Bool,1}
splitmap::Dict{T,Split} ## Maps each leaf to the split it is in.
function SplitList{T}(leaves::Array{T,1}, splits, mask, splitmap) where T
if issorted(leaves) && allunique(leaves)
return new(leaves, splits, mask, splitmap)
else
@error("Leaves must be sorted and unique")
end
end
end
function SplitList(
leaves::Array{T,1},
splits::Array{Split,1},
mask::Array{Bool,1},
splitmap::Dict
) where T
SplitList{T}(leaves, splits, mask, convert(Dict{T, Split}, splitmap))
end
function SplitList(leaves::Array{T,1}) where T
SplitList{T}(
leaves,
Array{Split,1}(undef,0),
ones(Bool, length(leaves)),
Dict{T, Split}()
)
end
# Iteration
Base.iterate(S::SplitList) = iterate(S.splits)
Base.iterate(S::SplitList, i::Integer) = iterate(S.splits, i)
Base.IteratorSize(::Type{SplitList}) = HasLength()
Base.length(S::SplitList) = length(S.splits)
Base.IteratorEltype(::Type{SplitList}) = HasEltype()
Base.eltype(::Type{SplitList}) = TreeTools.Split
Base.eltype(::SplitList) = Split
# Indexing
Base.getindex(S::SplitList, i) = getindex(S.splits, i)
Base.setindex!(S::SplitList, s::Split, i) = setindex!(S.splits, s, i)
Base.firstindex(S::SplitList) = firstindex(S.splits)
Base.lastindex(S::SplitList) = lastindex(S.splits)
Base.eachindex(S::SplitList) = eachindex(S.splits)
Base.isempty(S::SplitList) = isempty(S.splits)
Base.keys(S::SplitList) = LinearIndices(S.splits)
# Equality
function Base.:(==)(S::SplitList, T::SplitList)
S.leaves == T.leaves &&
sort(S.splits, by=x->x.dat) == sort(T.splits, by=x->x.dat) &&
S.mask == T.mask
end
Base.hash(S::SplitList, h::UInt) = hash(S.splits, h)
function Base.cat(aS::Vararg{SplitList{T}}) where T
if !mapreduce(S->S.leaves==aS[1].leaves && S.mask==aS[1].mask, *, aS, init=true)
error("Split lists do not share leaves or masks")
end
catS = SplitList(aS[1].leaves, Array{Split,1}(undef,0), aS[1].mask, Dict{T, Split}())
for S in aS
append!(catS.splits, S.splits)
end
unique!(catS.splits)
return catS
end
"""
isroot(S::SplitList, i)
Is `S[i]` the root?
"""
isroot(S::SplitList, i) = isroot(S[i], S.mask)
"""
leaves(S::SplitList, i)
Return array of leaves in `S.splits[i]`, taking `S.mask` into account.
"""
function leaves(S::SplitList, i)
idx = S[i].dat[findall(i -> S.mask[i], S[i].dat)]
return S.leaves[idx]
end
function SplitList(t::Tree, mask=ones(Bool, length(t.lleaves)))
leaves = sort(collect(keys(t.lleaves)))
leafmap = Dict(leaf=>i for (i,leaf) in enumerate(leaves))
return SplitList(t.root, leaves, mask, leafmap)
end
function SplitList(r::TreeNode, leaves)
leaves_srt = !issorted(leaves) ? sort(leaves) : leaves
leafmap = Dict(leaf=>i for (i,leaf) in enumerate(leaves_srt))
# Compute mask : leaves that are descendents or `r`
mask = zeros(Bool, length(leaves_srt))
set_mask(n) = if n.isleaf mask[leafmap[n.label]] = true end
map!(set_mask, r)
#
S = SplitList(
leaves_srt,
Array{Split,1}(undef,0),
mask,
Dict{eltype(leaves), Split}(),
)
_splitlist!(S, r, leafmap)
return S
end
function SplitList(
r::TreeNode,
leaves,
mask,
leafmap = Dict(leaf=>i for (i,leaf) in enumerate(sort(leaves)))
)
!issorted(leaves) ? leaves_srt = sort(leaves) : leaves_srt = leaves
S = SplitList(
leaves_srt,
Array{Split,1}(undef,0),
mask,
Dict{eltype(leaves_srt), Split}(),
)
_splitlist!(S, r, leafmap)
return S
end
"""
_splitlist!(S::SplitList, r::TreeNode, leafmap::Dict)
Compute the split defined by `r` and store it in S, by first calling `_splitlist!`
on all children of `r` and joining resulting splits.
Leaf-splits and root-split are not stored.
"""
function _splitlist!(S::SplitList, r::TreeNode, leafmap::Dict)
if r.isleaf
s = Split([leafmap[r.label]])
else
L = 0
for c in r.child
sc = _splitlist!(S, c, leafmap)
L += length(sc)
end
s = Split(L)
i = 1
for c in r.child
if c.isleaf
s.dat[i] = leafmap[c.label]
i += 1
else
sc = S.splitmap[c.label]
_joinsplits!(s,sc,i)
i += length(sc)
end
end
sort!(s.dat)
unique!(s.dat)
push!(S.splits, s)
S.splitmap[r.label] = s
end
return s
end
function Base.show(io::IO, S::SplitList)
println(io, "SplitList of $(length(S)) splits")
max_i = 20
for (i,s) in enumerate(S)
if i > max_i
println(io, "... ($(length(S)-max_i) more)")
break
end
println(io, leaves(S,i))
end
end
Base.show(S::SplitList) = show(stdout, S)
"""
isequal(S::SplitList, i::Integer, j::Integer; mask=true)
"""
function Base.isequal(S::SplitList, i::Integer, j::Integer; mask=true)
if mask
return isequal(S.splits[i], S.splits[j], S.mask)
else
return S.splits[i] == S.splits[j]
end
end
"""
isequal(S::SplitList, A::AbstractArray)
Is `[leaves(S,i) for i in ...]` equal to `A`?
"""
function Base.isequal(S::SplitList, A::AbstractArray)
sort([leaves(S,i) for i in eachindex(S.splits)]) == sort(A)
end
==(S::SplitList, A::AbstractArray) = isequal(S,A)
"""
arecompatible(s::Split, t::Split[, mask::Array{Bool}])
Are splits `s` and `t` compatible **in the cluster sense**.
arecompatible(s::SplitList, i::Integer, j::Integer; mask=true)
Are `s.splits[i]` and `s.splits[j]` compatible **in the cluster sense**?
"""
function arecompatible(s::Split, t::Split)
if is_sub_split(s, t) || is_sub_split(t, s)
return true
elseif are_disjoint(s,t)
return true
else
return false
end
end
function arecompatible(s::Split, t::Split, mask::Array{Bool})
if is_sub_split(s, t, mask) || is_sub_split(t, s, mask)
return true
elseif are_disjoint(s, t, mask)
return true
else
return false
end
end
function arecompatible(s::SplitList, i::Integer, j::Integer; mask=true)
if mask
return arecompatible(s.splits[i], s.splits[j], s.mask)
else
return arecompatible(s.splits[i], s.splits[j])
end
end
"""
iscompatible(s::Split, S::SplitList, mask=S.mask; usemask=true)
Is `s` compatible with all splits in `S`?
"""
function iscompatible(s::Split, S::SplitList, mask=S.mask; usemask=true)
for t in S
if usemask && !arecompatible(s, t, mask)
return false
elseif !usemask && !arecompatible(s, t)
return false
end
end
return true
end
"""
in(s, S::SplitList, mask=S.mask; usemask=true)
Is `s` in `S`?
"""
function Base.in(s::Split, S::SplitList, mask=S.mask; usemask=true)
for t in S
if (!usemask && s == t) || (usemask && isequal(s, t, mask))
return true
end
end
return false
end
"""
setdiff(S::SplitList, T::SplitList, mask=:left)
Return array of splits in S that are not in T.
`mask` options: `:left`, `:right`, `:none`.
"""
function Base.setdiff(S::SplitList, T::SplitList, mask=:left)
if mask == :none
m = ones(Bool, length(S.leaves))
usemask = false
elseif mask == :left
m = S.mask
usemask = true
elseif mask == :right
m = T.mask
usemask = true
else
@error "Unrecognized `mask` kw-arg."
end
#
U = SplitList(S.leaves)
for s in S
if (
!in(s, T, m; usemask) &&
!isroot(s, m) &&
!isleaf(s, m) &&
!isempty(s,m)
)
push!(U.splits, s)
end
end
return U
end
"""
union(S::SplitList, T::SplitList, mask=:none)
union!(S::SplitList, T::SplitList, mask=:none)
Build a union of `Split`s. Ignore potential incompatibilities. Possible values of
`mask` are `:none, :left, :right`.
"""
union, union!
function Base.union!(S::SplitList, T::SplitList; mask=:none)
if mask == :none
m = ones(Bool, length(S.leaves))
elseif mask == :left
m = S.mask
elseif mask == :right
m = T.mask
else
@error "Unrecognized `mask` kw-arg."
end
for t in T
if !in(t, S, m)
push!(S.splits, t)
end
end
return S
end
function Base.union!(S::SplitList, T...; mask=:none)
for t in T
union!(S, t)
end
return S
end
function Base.union(S::SplitList, T...; mask=:none)
if mask == :none
m = ones(Bool, length(S.leaves))
elseif mask == :left
m = S.mask
elseif mask == :right
m = T.mask
else
@error "Unrecognized `mask` kw-arg."
end
U = SplitList(copy(S.leaves))
union!(U, S, T...; mask)
return U
end
"""
intersect(S::SplitList, T::SplitList, mask=:none)
Build an intersection of `Split`s. Possible values of `mask` are `:none, :left, :right`.
"""
function Base.intersect(S::SplitList, T::SplitList, mask=:none)
if mask == :none
m = ones(Bool, length(S.leaves))
elseif mask == :left
m = S.mask
elseif mask == :right
m = T.mask
else
@error "Unrecognized `mask` kw-arg."
end
#
U = SplitList(S.leaves)
for s in S
if in(s, T, m)
push!(U.splits, s)
end
end
return U
end
"""
unique(S::SplitList; usemask=true)
unique!(S::SplitList; usemask=true)
"""
unique, unique!
function Base.unique!(S::SplitList; usemask=true)
todel = Int64[]
hashes = Dict{Array{Int,1}, Bool}()
for (i,s) in enumerate(S)
if haskey(hashes, s.dat)
push!(todel, i)
end
hashes[s.dat] = true
end
deleteat!(S.splits, todel)
end
function Base.unique(S::SplitList; usemask=true)
Sc = deepcopy(S)
unique!(Sc, usemask=usemask)
return Sc
end
"""
clean!(S::SplitList, mask=S.mask;
clean_leaves=true, clean_root=false
)
Remove leaf and empty splits according to S.mask. Option to remove root.
"""
function clean!(
S::SplitList, mask=S.mask;
clean_leaves=true, clean_root=false
)
idx = Int64[]
for (i,s) in enumerate(S)
if clean_leaves && isleaf(s, mask)
push!(idx, i)
elseif clean_root && isroot(s, mask)
push!(idx, i)
elseif isempty(s, mask)
push!(idx, i)
end
end
deleteat!(S.splits, idx)
end
#############################################################
####################### Indexing Tree #######################
#############################################################
function Base.getindex(tree::Tree, S::SplitList, i::Int)
return lca(tree, leaves(S, i)...)
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 2957 | const write_styles = (:newick)
"""
write(io::IO, t::Tree; style=:newick, internal_labels=true, write_root=true)
write(filename::AbstractString, t::Tree, mode="w"; kwargs...)
Write `t` to file or IO with format determined by `style`. If `internal_labels == false`,
do not write labels of internal nodes in the string.
"""
function write(io::IO, t::Tree; style=:newick, internal_labels=true, write_root=true)
return if style in (:newick, :Newick, "newick", "Newick")
write_newick(io, t; internal_labels, write_root)
else
@error "Unknown write style $style. Allowed: $(write_styles)."
error()
end
end
function write(
filename::AbstractString, t::Tree, mode::AbstractString = "w"; kwargs...
)
return open(filename, mode) do io
write(io, t; kwargs...)
end
end
"""
write(filename, trees...; style=:newick, internal_labels=true)
Write each tree in `trees` in `filename`, separated by a newline '\n' character.
"""
function write(
filename::AbstractString, trees::Vararg{Tree}; kwargs...
)
return open(filename, "w") do io
for (i,t) in enumerate(trees)
write(io, t; kwargs...)
i < length(trees) && write(io, '\n')
end
end
end
"""
write_newick(io::IO, tree::Tree; kwargs...)
write_newick(filename::AbstractString, tree::Tree, mode="w"; kwargs...)
write_newick(tree::Tree; kwargs...)
Write Newick string corresponding to `tree` to `io` or `filename`. If output is not
provided, return the Newick string. If `internal_labels == false`, do not
write labels of internal nodes in the string.
"""
function write_newick(io::IO, tree::Tree; kwargs...)
return write(io, newick(tree; kwargs...) * "\n")
end
function write_newick(
filename::AbstractString, tree::Tree, mode::AbstractString = "w"; kwargs...
)
return open(filename, mode) do io
write_newick(io, tree; kwargs...)
end
end
"""
newick(tree::Tree; internal_labels=true, write_root=true)
Return the Newick string correpsonding to `tree`.
If `internal_labels == false`, do not write labels of internal nodes in the string.
If `!write_root`, do not write label and time for the root node (unrooted tree).
"""
write_newick(tree::Tree; kwargs...) = newick(tree; kwargs...)
write_newick(node::TreeNode) = newick(node)
newick(tree::Tree; kwargs...) = newick(tree.root; kwargs...)
function newick(root::TreeNode; internal_labels = true, write_root=true)
return _newick!("", root, internal_labels, write_root)*";"
end
function _newick!(s::String, root::TreeNode, internal_labels=true, write_root=true)
if !isempty(root.child)
s *= '('
# temp = sort(root.child, by=x->length(POTleaves(x)))
for c in root.child
s = _newick!(s, c, internal_labels)
s *= ','
end
s = s[1:end-1] # Removing trailing ','
s *= ')'
end
if isleaf(root) || (internal_labels && (!isroot(root) || write_root))
s *= root.label
end
if !ismissing(root.tau) && !isroot(root)
s *= ':'
s *= string(root.tau)
end
if isroot(root) && write_root
s *= ":0"
end
return s
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 923 | using TreeTools
using Test
@testset verbose=true "TreeTools" begin
@testset "IO" begin
println("## IO")
include("$(dirname(pathof(TreeTools)))/../test/IO/test.jl")
end
@testset "Objects" begin
println("## Objects")
include("$(dirname(pathof(TreeTools)))/../test/objects/test.jl")
end
@testset "Methods" begin
println("## Methods")
include("$(dirname(pathof(TreeTools)))/../test/methods/test.jl")
end
@testset "Prune/Graft" begin
println("## Prune/Graft")
include("prunegraft/test.jl")
end
@testset "Iterators" begin
println("## Iterators")
include("$(dirname(pathof(TreeTools)))/../test/iterators/test.jl")
end
@testset "Splits" begin
println("## Splits")
include("$(dirname(pathof(TreeTools)))/../test/splits/test.jl")
end
@testset "Simple shapes" begin
println("## Shapes")
include("$(dirname(pathof(TreeTools)))/../test/simple_shapes/test.jl")
end
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 922 | # println("##### reading #####")
using Test
using TreeTools
# Reading
@testset "Basic" begin
@test typeof(read_tree("$(dirname(pathof(TreeTools)))/../test/IO/trees.nwk")) <: Vector{<:Tree}
@test typeof(read_tree("$(dirname(pathof(TreeTools)))/../test/IO/tree.nwk")) <: Tree
@test isa(read_tree("$(dirname(pathof(TreeTools)))/../test/IO/tree.nwk"; node_data_type=MiscData), Tree{MiscData})
@test read_tree("$(dirname(pathof(TreeTools)))/../test/IO/tree.nwk"; label="test_tree").label == "test_tree"
end
# Writing
@testset "Writing to file" begin
tmp_file_name, tmp_file_io = mktemp()
t1 = parse_newick_string("((D,A,B),C);")
@test try write_newick(tmp_file_name, t1, "w"); true catch err false end
@test try write_newick(tmp_file_io, t1); true catch err false end
@test try write(tmp_file_name, t1); true catch err false end
@test try write(tmp_file_io, t1); true catch err false end
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 903 | using Test
using TreeTools
# println("##### iterators #####")
begin
nwk = "(((A1:1,A2:1,B:1,C:1)i_2:0.5,(D1:0,D2:0)i_3:1.5)i_1:1,(E:1.5,(F:1.0,(G:0.,H:0.)i_6:0.5)i_5:1)i_4:1)i_r;"
tree = parse_newick_string(nwk)
tnodes = sort(["A1", "A2", "B", "C", "i_2", "D1", "D2", "i_3", "i_1", "E", "F", "G", "H", "i_6", "i_5", "i_4", "i_r"])
tleaves = sort(["A1", "A2", "B", "C", "D1", "D2", "E", "F", "G", "H"])
@testset "1" begin
@test sort([x.label for x in POT(tree)]) == tnodes
@test sort([x.label for x in TreeTools.POTleaves(tree)]) == tleaves
end
@testset "in" begin
for n in nodes(tree)
@test in(n, tree)
@test in(n.label, tree)
if !n.isleaf
@test !in(n, tree; exclude_internals=true)
end
end
end
@testset "indexing in tree" begin
for n in nodes(tree)
@test tree[n.label] == tree.lnodes[n.label]
end
@test_throws KeyError tree["some_random_string"]
end
end
| TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
|
[
"MIT"
] | 0.6.13 | 0102ab9be27a64b0963c77280a495c761e1a8c4f | code | 805 | using Test
using TreeTools
print("empty node: \n")
n = TreeNode()
empty_t = node2tree(n);
print_tree_ascii(IO, empty_t)
print("single node: \n")
t1 = parse_newick_string("A:1")
print_tree_ascii(IO, t1)
print("nodes with branch length: \n")
t1 = parse_newick_string("(A:1, B:2)R:0")
print_tree_ascii(IO, t1)
print("unnamed nodes and no branch length: \n")
t2 = parse_newick_string("(A:1,)")
print_tree_ascii(IO, t2)
print("unnamed node with branch length: \n")
t2 = parse_newick_string("(A:1,:2):0")
print_tree_ascii(IO, t2)
print("node with no branch length: \n")
t2 = parse_newick_string("(A:1, B)R")
print_tree_ascii(IO, t2)
print("tree with branch lengths from nwk file")
t3 = node2tree(TreeTools.read_newick("$(dirname(pathof(TreeTools)))/../test/iterators/tree1.nwk"))
print_tree_ascii(IO, t3) | TreeTools | https://github.com/PierreBarrat/TreeTools.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.